Advances in Weather Radar Technology
IntuVue RDR-4000M

Tom Henderson
Honeywell Technical Sales
(425) 376-2378
tom.henderson@honeywell.com
• Obsolescence Issues
 – Military aircraft often have a very long life, however, aircraft electronics seem to “age” more quickly than the airframe
 – Changing technology may improve equipment capabilities, but, may also create obsolescence issues
 – Resulting in…
 • Older C-130 Weather Radar systems becoming more difficult to support
Problem Summary

• Capability Issues
 – New technology may extend the capability of the aircraft
 – New roles and missions for the aircraft tend to increase the crew workload
 – Resulting in…
 • The need to make systems more capable but more intuitive and easier to operate
Honeywell’s Solution

• RDR-4000M with IntuVue technology
 – Field tested and combat proven (C-17)
 – Selected by several C-130 operators
 – Improved Weather Detection and Weather Analysis
 – Reduces Pilot/Navigator workload
 – Significant increase in MTBF, overall system reliability and availability
Honeywell’s Solution

- RDR-4000M with IntuVue technology
 - Reduces Logistics Footprint; Lowers O&M costs
 - Shares hardware and technology with other Radar systems on other Civil and Military aircraft
 - Flexible configuration and growth potential
Key Design Features

• Elimination of Waveguide Runs & Switch
 – Reduced Maintenance (leaks, corrosion, switch)
 – Eliminates Waveguide Performance Loss
 – Reduces Installation complexity

• Radar Processor (RP-1M) VS APS-133
 – 60 Lighter (12 vs. 29 lbs), Smaller (3 vs. 8 MCU)
 – Digital Processing – Greater Reliability, Repeatability, and Flexibility
Key Design Features

- **Antenna Drive**
 - Highly Reliable Low RPM Direct Drive Motors reduce Maintenance costs
 - Elimination of Gears increases reliability and availability
 - Faster Scanning & Greater Pointing Accuracy for better weather avoidance and safety
Key Operational Features

- 3-Dimensional weather acquisition for more accurate analysis
- Longer range weather detection (320nm) for better avoidance planning
- Automatic flight path based hazard assessment to reduce pilot workload
- Analysis mode (Constant Altitude) for more accurate analysis
Key Operational Features

• Terrain based ground clutter extraction provides a clear picture of weather for easy analysis
• Improved weather, windshear & turbulence detection reduces deviations
• Skin Paint sector scan mode
• High Resolution Ground Map or Optional Precision Ground Map capability (PGM)
• Advanced Technologies:
 – Pulse Compression
 • Increased detection range & resolution for improved avoidance
 – Higher system sensitivity
 • Increased weather/windshear/turbulence detection performance
 – Direct Drive Antenna Design
 • Improved reliability, reduced maintenance costs and improved availability
RDR-4000M Technology

• Advanced Processing Approach:
 – Ground Clutter Extraction
 • Internal terrain database to remove ground returns
 – 3-D Volumetric Scan Buffer
 • Instant availability of multiple weather views

• Advanced Operational Modes:
 – Automatic Storm Cell threat analysis
 • Weather severity assessment for safe routing
 – Full Coverage Ground Map Mode
 • Multiple GMAP mode selection
Improved Operations
From Higher Reliability

- RDR-4000(M) – System MTBF 5,500 hours
 - Savings in delays, turn backs, and diversions
 - Antenna drive, using low RPM direct drive motors, providing 64,000 MTBF
 - Gearless direct drive antenna motors improve system availability
Highest Safety of Flight
From Weather Issues

• Increased Safety with Turbulence Avoidance
 – First and only system certified to the new enhanced turbulence MOPS criteria
 – Detects hazards along flight path
 – Automated weather detection reduces pilot workload
Ground Clutter Elimination

- Collect RF energy returns from weather
- Store storm data in 3D Buffer
- Use integrated terrain database to extract ground returns from weather
• Aircraft on level flight
 – Display weather at current altitude, Max/-4000 feet
 – Extend the upper and lower limits based on a/c climb or descend rate
 – Displays all primary weather
• Aircraft at cruise altitude (example FL290)
 – Display primary weather from FL250 up to Max (FL600) feet above the aircraft
 – Display secondary and low-level weather hashed
Automatic Mode
Climb

- Aircraft in climb mode
 - Display primary weather in aircraft flight path
 - Show off-flight-path weather as secondary
• **Constant Altitude Mode**
 – Display weather at selected altitude (in this case above current aircraft altitude)
 – Secondary weather and turbulence are suppressed
Map 1 - Full Coverage
Ground Map

- MAP 1
 - 3D buffer of Ground Returns
 - No tilt adjustment required
 - “normalized radar cross-section” display
 - Suitable for detection of terrain features, coastlines and large bodies of water
 - Optimized for longer ranges
Map 2 – High Resolution Ground Map

• MAP 2
 – Real beam mapping mode
 – Automatic tilt set by range/altitude
 • Set to maximize display coverage
 • Different Pilot / Copilot range selection provided by alternate scans
 – High resolution optimized for shorter range
Optional Map Mode
Precision Ground Map

- RDR-4000(M) Doppler Beam Sharpening (DBS)
 - Airport 4X zoom
 - 4nm miles
Skin Paint Mode

- **SKIN Paint**
 - Manual Sector Scan
 - Left, Center, or Right
 - Full scan (± 45°) each sector
 - Sectors centered at -35°, 0°, +35°
 - TILT knob active for ± 15°
 - Crew controlled Tilt for search
Summary

- RDR-4000M provides latest digital technology and best value today
 - Auto Mode weather detection significantly reduces pilot workload
 - Analysis capability to determine extent of hazardous conditions
 - Significant increase in weather detection performance
 - Skin Paint sector scan
 - High resolution or optional Precision Ground Mapping
 - New platform capable of further Growth
Summary

• Major components in USAF inventory
• Component commonality with many Civil Air Transport aircraft
• Lower cost, smaller size, less weight and less power consumption versus other legacy systems
• Higher reliability for maintenance cost savings and improved availability
RDR-4000M C-17 Installation

• APS-150/RDR-4000M Radome Installation
 – Antenna Drive Assembly
 – Flat Plate Antenna
 – Transmitter/Receiver
 – ≈36 lbs
 – No special handling equipment
 – Reliable Direct Drive Motors
 – Waveguide runs – replaced by Coaxial cable
Thank You

Contact Information:
Tom Henderson
Honeywell Technical Sales
(425) 376-2378
tom.henderson@honeywell.com