

2019
Problem Packet

DO NOT OPEN THIS PACKET

UNTIL THE CONTEST BEGINS

This page is intentionally blank.

Once the contest starts, you can

remove this page.

2019 Problem Packet
Problem Name Points Page

1 No More Shouting 5 5

2 Sum It Up 5 6

3 Goofy Gorillas 5 7

4 Caught Speeding 10 8

5 Brick House 10 10

6 Around and Around 15 11

7 Image Compression 15 13

8 Foveated Rendering 15 15

9 Time and Time Again 20 18

10 Caesar Cipher 20 20

11 Count to 10 25 22

12 Monty Hall 25 23

13 Minesweeper 25 27

14 Homeward Bound 30 29

15 LMCoin 35 31

16 Have You Seen My Key 35 34

17 Conway’s Game of Life 40 37

18 Mandelbrot Set 45 40

19 Network Ranger 50 43

20 Bird Watching 55 45

21 Hide Your Spies 55 48

22 Free Up Disk Space 60 51

23 Evacuate! 70 53

24 Sudoku 80 56

Copies of each problem description will also be available on the contest website

Frequently Asked Questions

Page 1 of 58 EN

Frequently Asked Questions

How does the contest work?

To solve each problem, your team will need to write a computer program that reads

input from the standard input channel and prints the expected output to the console.

Each problem describes the format of the input and the expected format for the output.

When you have finished your program, you will submit the source code for your

program to the contest website. The website will compile and run your code, and you

will be notified if your answer is correct or incorrect.

Who is judging our answers?

We have a team of Lockheed Martin employees responsible for judging the contest,

however most of the judging is done automatically by the contest website. The contest

website will compile and run your code, then compare your program’s output to the

expected official output. If the outputs match exactly, your team will be given credit for

answering the problem correctly. Our judging team will review the website’s work, but in

most cases the automated response will stand.

How is each problem scored?

Each problem is assigned a point value based on the difficulty of the problem. When the

website runs your program, it will compare your program’s output to the expected

judging output. If the outputs match exactly, you will be given the points for the problem.

There is no partial credit; your outputs must match exactly. If you are being told your

answer is incorrect and you are sure it’s not, double check the formatting of your output,

and make sure you don’t have any trailing whitespace or other unexpected characters.

We don’t understand the problem. How can we get help?

If you are having trouble understanding a problem, you can submit questions to the

problems team through the contest website. While we cannot give hints about how to

solve a problem, we may be able to clarify points that are unclear. If the problems team

notices an error with a problem during the contest, we will send out a notification to all

teams as soon as possible.

Our program works with the sample input/output, but it keeps getting marked as

incorrect! Why?

Please note that the official inputs and outputs used to judge your answers are MUCH

larger than the sample inputs and outputs provided to you. These inputs and outputs

cover a wider range of test cases. The problem description will describe the limits of

these inputs and outputs, but your program must be able to accept and handle any test

case that falls within those limits. All inputs and outputs have been thoroughly tested by

our problems team, and do not contain any invalid inputs.

 Frequently Asked Questions

EN Page 2 of 58

We can’t figure out why our answer is incorrect. What are we doing wrong?

Common errors may include:

1. Incorrect formatting - Double check the sample output in the problem and make

sure your program has the correct output format.

2. Incorrect rounding - See the next section for information on rounding decimals.

3. Invalid numbers - 0 (or 0.0, 0.00, etc.) is NOT a negative number. 0 may be an

acceptable answer, but -0 is not.

4. Extra characters - Make sure there is no extra whitespace at the end of each line

of your output. Trailing spaces are not a part of any problem’s output.

5. Decimal format - We use the period (.) as the decimal mark for all numbers.

If these tips don’t help, feel free to submit a question to the problems team through the

contest website. We cannot give hints about how to solve problems, but may be able to

provide more information about why your answers are being returned as incorrect.

Who writes these problems?

All of the problems you’re solving were written and tested by Lockheed Martin

employees. In many cases, these problems are similar to real problems we have to deal

with every day working at Lockheed Martin. If you’d like to learn more, ask any

volunteer for more information!

Can I get answers to these problems after the contest?

Certainly! A member of our problems team will be available after the contest to answer

any questions you have (and go over any incorrect answers you submitted so you can

see why they were wrong). If you’d like a copy of our solutions to these problems, or

those submitted by other teams, ask your coach to send an email to our Global

Problems Lead, Brett Reynolds, at brett.w.reynolds@lmco.com. We can also provide

copies of the official inputs and outputs used to judge your solutions.

How are ties broken?

At the end of the contest, teams will be ranked based on the number of points they

earned from correct answers during the contest. If there is a tie for the top three

positions in either division, ties will be broken as follows:

1. Fewest problems solved (this indicates more difficult problems were solved)

2. Fewest incorrect answers (this indicates they had fewer mistakes)

3. First team to submit their last correct response (this indicates they worked faster)

Please note that these tiebreaker methods may not be fully reflected on the contest

website’s live scoreboard. Additionally, the contest scoreboard will “freeze” 30 minutes

before the end of the contest, so keep working as hard as you can!

mailto:brett.w.reynolds@lmco.com

Rounding

Page 3 of 58 EN

Rounding

Some problems will ask you to round numbers. All problems use the “half up” method of

rounding unless otherwise stated in the problem description. Most likely, this is the sort

of rounding you learned in school, but some programming languages use different

rounding methods by default. Unless you are certain you know how your

programming language handles rounding, we recommend writing your own code

for rounding numbers based on the information provided in this section.

With “half up” rounding, numbers are rounded to the nearest integer. For example:

4. 1.49 rounds down to 1

5. 1.51 rounds up to 2

The “half up” term means that when a number is exactly in the middle, it rounds to the

number with the greatest absolute value (the one farthest from 0). For example:

6. 1.5 rounds up to 2

7. -1.5 rounds down to -2

Rounding errors are a common mistake; if a problem requires rounding and the contest

website keeps saying your program is incorrect, double check the rounding!

 Terminology

EN Page 4 of 58

Terminology

Throughout this packet, we will describe the inputs and outputs your programs will

receive. To avoid confusion, certain terms will be used to define various properties of

these inputs and outputs. These terms are defined below.

8. An integer is any whole number; that is, a number with no decimal or fractional

component: -5, 0, 5, and 123456789 are all integers.

9. A decimal number is any number that is not an integer. These numbers will

contain a decimal point and at least one digit after the decimal point. -1.52, 0.0,

and 3.14159 are all decimal numbers.

10. Decimal places refer to the number of digits in a decimal number following the

decimal point. Unless otherwise specified in a problem description, decimal

numbers may contain any number of decimal places greater or equal to 1.

11. A hexadecimal number or string consists of a series of one or more characters

including the digits 0-9 and/or the uppercase letters A, B, C, D, E, and/or F.

Lowercase letters are not used for hexadecimal values in this contest.

12. Positive numbers are those numbers strictly greater than 0. 1 is the smallest

positive integer; 0.000000000001 is a very small positive decimal number.

13. Non-positive numbers are all numbers that are not positive; that is, all numbers

less than or equal to 0.

14. Negative numbers are those numbers strictly less than 0. -1 is the greatest

negative integer; -0.000000000001 is a very large positive decimal number.

15. Non-negative numbers are all numbers that are not negative; that is, all

numbers greater than or equal to 0.

16. Inclusive indicates that the range defined by the given values includes both of

the values given. For example, the range 1 to 3 inclusive contains the numbers 1,

2, and 3.

17. Exclusive indicates that the range defined by the given values does not include

either of the values given. For example, the range 0 to 4 exclusive includes the

numbers 1, 2, and 3; 0 and 4 are not included.

18. Date and time formats are expressed using letters in place of numbers:

o HH indicates the hours, written with two digits (including a leading zero

when needed). The problem description will specify if 12- or 24-hour

formats should be used.

o MM indicates the minutes for times or the month for dates. In both cases,

the number is written with two digits (including a leading zero when

needed). January is month 01.

o YY or YYYY is the year, written with two or four digits (including a leading

zero when needed).

o DD is the date of the month, written with two digits (including a leading

zero when needed).

Problem 1: No More Shouting

Page 5 of 58 EN

Problem 1: No More Shouting

Points: 5

Author: Brett Reynolds, Orlando, Florida, United States

Problem Background

It’s common knowledge that on the internet, TYPING IN ALL

UPPERCASE LETTERS ISN’T VERY POLITE. It just looks like you’re shouting

at people, which isn’t a very good way to hold a conversation. You’ve been asked to

design a browser extension that can (forcibly) calm everyone down by converting

UPPERCASE SHOUTING into lowercase whispers. Try to stay calm as you solve this

problem.

Problem Description

Your program will be given lines of text in which all letters are uppercase. You must

convert these letters to lowercase without otherwise changing the content of the text.

Sample Input

The first line of your program’s input, received from the standard input channel, will

contain a positive integer representing the number of test cases. Each test case will

include a single line of text consisting of uppercase letters, numbers, spaces, and/or

punctuation.

2

THIS SENTENCE IS IN ALL CAPS

SHOUTING ISN’T NICE.

Sample Output

For each test case, your program must output the provided string after replacing all

uppercase letters with their lowercase equivalents. Spaces, numbers, and punctuation

should not be modified.

this sentence is in all caps

shouting isn’t nice.

 Problem 2: Sum It Up

EN Page 6 of 58

Problem 2: Sum It Up

Points: 5

Author: Shelly Adamie, Fort Worth, Texas, United States

Problem Background

Adding up numbers is very easy, unless you add a twist. If two numbers are the same,

sum their sums!

Problem Description

Your program will be given two numbers. If they are not equal, return their sum. If they

are equal, return double their sum.

Sample Input

The first line of your program’s input, received from the standard input channel, will

contain a positive integer representing the number of test cases. Each test case will

include a single line consisting of two non-negative integers separated by spaces.

5
1 3

2 2

3 2

13 13
125 9

Sample Output

For each test case, your program must output the value calculated according to the

rules described above.

4

8

5

52

134

Problem 3: Goofy Gorillas

Page 7 of 58 EN

Problem 3: Goofy Gorillas

Points: 5

Author: Shelly Adamie, Fort Worth, Texas, United States

Problem Background

The local zoo’s most popular exhibit contains two

gorillas. However, the gorillas can cause the

zookeepers some issues. We need to be able to

alert the zookeepers of trouble in the gorilla

compound.

Problem Description

Your program will be given information about

whether each of the gorillas is smiling or not. We need to alert the zookeepers if both

gorillas are smiling (which might mean they’re causing trouble), or if neither gorilla is

smiling (which might mean they’re about to fight). If only one gorilla is smiling,

everything is probably ok.

Sample Input

The first line of your program’s input, received from the standard input channel, will

contain a positive integer representing the number of test cases. Each test case will

include a single line containing two boolean values (“true” or “false”) separated by

spaces.

2
true false

true true

Sample Output

For each test case, your program must output “true” if the zookeepers should be alerted

about potential trouble, or “false” if everything seems ok.

false
true

 Problem 4: Caught Speeding

EN Page 8 of 58

Problem 4: Caught Speeding

Points: 10

Author: Holly Norton, Fort Worth, Texas, United States

Problem Background

You are driving a little too fast, and a police officer

pulls you over. He needs to determine how big your

speeding ticket should be; fortunately for you, he’s

decided to give you a bit of a break if it happens to

be your birthday.

Problem Description

Your program should compute the ticket you are

going to receive based on the speed you were

travelling:

• If your speed is 60 or less, you don’t get a ticket.

• If your speed is between 61 and 80 inclusive, you get a small ticket.

• If your speed is 81 or higher, you get a big ticket.

If today is your birthday, all of these numbers are increased by 5 (for example, you can

drive up to 65 without getting a ticket).

Sample Input

The first line of your program’s input, received from the standard input channel, will

contain a positive integer representing the number of test cases. Each test case will

consist of a single line, including two values separated by spaces:

• A positive integer representing your speed

• The word “true”, indicating today is your birthday, or the word “false”, indicating it

is not.

3

60 false
82 false

83 true

Sample Output

For each test case, your program must print a single line, as follows:

Problem 4: Caught Speeding

Page 9 of 58 EN

• Print “no ticket” if you do not receive a ticket

• Print “small ticket” if you receive a small ticket

• Print “big ticket” if you receive a big ticket

no ticket

big ticket

small ticket

 Problem 5: Brick House

EN Page 10 of 58

Problem 5: Brick House

Points: 10

Author: Holly Norton, Fort Worth, Texas, United States

Problem Background

We want to build a row of bricks for our brick house that

is a certain number of inches long, and we have a number of small bricks and large

bricks with which to do it. You need to write an application that will decide if its is

possible to build this row of bricks using some or all of the given bricks. You do not need

to use all of the given bricks!

Problem Description

Your program will be given a goal length for the brick wall and the number of small and

large bricks available. Small bricks are each 1 inch long. Large bricks are 5 inches long.

You will need to determine if it is possible to build a row of bricks exactly as long as the

goal using only the available bricks.

Sample Input

The first line of your program’s input, received from the standard input channel, will

contain a positive integer representing the number of test cases. Each test case will

consist of a single line, including three non-negative integers separated by spaces:

• The first integer represents the number of small, one-inch-long bricks

• The second integer represents the number of large, five-inch-long bricks

• The third integer represents the target length of the wall, X, in inches

3

3 1 8

3 1 9

3 2 10

Sample Output

For each test case, your program must print a single line with the word “true” if it is

possible to build a wall of exactly X inches using only the bricks available. Otherwise, it

should print “false”.

true

false

true

Problem 6: Around and Around

Page 11 of 58 EN

Problem 6: Around and Around

Points: 15

Author: Chris Mason, Sunnyvale, California, United States

Problem Background

In 1962, John Glenn completed a historic

spaceflight, orbiting the Earth three times in a small

spacecraft. This flight was one of many that paved

the way for an era of space exploration, eventually

leading to the moon landings just seven years later.

Despite the seemingly simple nature of Glenn’s

flight, it still required very precise calculations to

ensure that he remained in orbit and didn’t either fly

off into space or come crashing back to Earth.

Objects in orbit don’t remain in space simply

because they’ve left Earth’s atmosphere; they’re

still constantly falling towards Earth. The reason

they stay in space is because they’re moving so

fast that they continually “miss” the Earth as they

fall. In the case of John Glenn’s historic flight, he

was moving at an orbital speed of 17,544 miles per

hour (28,234.8 kilometers per hour). This is fast

enough to travel from New York to London in less

than 12 minutes. During his entire flight, which

lasted just short of five hours, Glenn travelled a total distance of 75,679.3 miles

(121,794 kilometers).

Your task today is to determine how far an object in orbit at a particular height will travel

during a single orbit of Earth.

Problem Description

Your program will be given the altitude of an object orbiting around Earth at the equator.

Using this information, your program must calculate the total distance travelled by that

object during a single orbit. It will help you to know that the circumference of the Earth at

the equator is 40,075 kilometers.

Sample Input

The first line of your program’s input, received from the standard input channel, will

contain a positive integer representing the number of test cases. Each test case will

 Problem 6: Around and Around

EN Page 12 of 58

consist of a single line, including an integer representing the object’s altitude above the

Earth’s sea level in kilometers. Altitudes will be greater than or equal to 160 (the lowest

possible orbital height for Earth).

3

160

200

265

Sample Output

For each test case, your program must output the distance travelled by an object

orbiting around the equator at the given altitude in kilometers. Each value should be

rounded to the nearest tenth of a kilometer (one decimal place).

41080.3

41331.6

41740.0

Problem 7: Image Compression

Page 13 of 58 EN

Problem 7: Image Compression

Points: 15

Author: Steve Brailsford, Marietta, Georgia, United States

Problem Background

Images can be saved onto a computer in many

different types of file formats, each with its own

advantages and disadvantages. JPEG (or JPG)

images are commonly used for photography,

because their format allows the image

information to be compressed, reducing the size

of the file and allowing you to take more pictures.

The downside to this is that repeatedly editing a

JPEG image causes the quality of the image to

gradually get worse over time; each time the file

is saved, the existing image data is compressed

further and further, losing fine details.

The process of compressing a JPEG image is

complicated but can be broken down into several

individual steps. One of these steps is called

quantization, which takes a wide range of numbers created by a previous step in the

process and converts them to a smaller, more manageable scale. This results in some

loss of detail as previously mentioned; two different but close numbers may be

converted to the same result number. However, the human eye often cannot discern

very high-frequency changes, so this loss is usually not noticeable.

Problem Description

Your program will need to implement an example quantization algorithm that accepts

perceived brightness values and converts them to an integer value between 0 and 255

inclusive. Your program will be given a list of decimal values representing brightness

values (such as might be read by a scanner). Your program must identify the highest

(max) value and the lowest (min) value from the list of values, then convert all values in

the list to the target scale using this formula:

𝑂𝑢𝑡𝑝𝑢𝑡 =
𝐼𝑛𝑝𝑢𝑡 − 𝑀𝑖𝑛

𝑀𝑎𝑥 − 𝑀𝑖𝑛
∗ 255

All results should be rounded to the nearest integer.

 Problem 7: Image Compression

EN Page 14 of 58

Sample Input

The first line of your program’s input, received from the standard input channel, will

contain a positive integer representing the number of test cases. Each test case will

include the following lines of input:

• A positive integer, X, representing the number of values in the list

• X lines, each containing a decimal number to be converted

2

5

0.0

25.0

50.0

75.0

100.0

6

12.3

-67.1

122.8

428.4

-15.9
221.0

Sample Output

For each test case, your program must output the list of converted numbers,

maintaining the same order. Print one number per line, and round all results to the

nearest integer.

0

64

128
191

255

41

0

98

255

26

148

The image for this problem is licensed under the Creative Commons Attribution 3.0 Unported License (see

https://creativecommons.org/licenses/by/3.0/ for more info) and was created by Michael Gäbler and AzaToth from the Wik imedia

Commons. It is free for use provided that attribution is given to the authors along with the terms of this license.

https://creativecommons.org/licenses/by/3.0/

Problem 8: Foveated Rendering

Page 15 of 58 EN

Problem 8: Foveated Rendering

Points: 15

Author: Gary Hoffmann, Denver, Colorado, United States

Problem Background

Virtual Reality has exploded into the market in the last five years, being used for

everything from games and entertainment to product design and engineering. One of

the more recent advances in VR headset design is the addition of eye tracking to

increase performance.

The human eye has an extremely narrow field of view in which perfect 20/20 vision is

attainable and fine detail can be distinguished. This clarity of vision is due to the fovea,

a small depression in the inner retina specialized for this purpose. However, due to the

size of the fovea, the human eye can only see clearly within a field of view of less than

10°. The rest of our vision comes from the brain piecing together imagery as we look

around.

Due to this fact, a VR headset only needs to render the highest resolution imagery

directly where the user is looking. Images outside of that field of view can be rendered

at a lower quality, increasing the performance of the system.

Problem Description

You have been tasked with writing a module for a virtual reality application that

determines the rendering quality for each section of the headset’s screen. For simplicity,

your module will only deal with a single eye on a single screen. The screen will be

divided into a 20-by-20 grid of blocks.

Your program will be given the coordinates

within the grid at which the user is currently

focusing their sight, and will need to output

the rendering level of each cell in the grid

row by row.

The cell the user is looking directly at should

be rendered at full quality - 100%. All cells

around that cell should be rendered at half

quality (50%), and all cells around those

should be rendered at one-quarter quality

(25%). All other cells should be rendered at

the minimum level of 10%.

 Problem 8: Foveated Rendering

EN Page 16 of 58

For example, if the user is looking at the block in row 7, column 10, the rendering quality

for each block in the grid would be:

 𝐶𝑜𝑙 0 ⋯ 7 8 9 10 11 12 13 ⋯ 19
𝑅𝑜𝑤

0 10% ⋯ 10% 10% 10% 10% 10% 10% 10% ⋯ 10%
⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋰ ⋮
4 10% ⋯ 10% 10% 10% 10% 10% 10% 10% ⋯ 10%
5 10% ⋯ 10% 25% 25% 25% 25% 25% 10% ⋯ 10%
6 10% ⋯ 10% 25% 50% 50% 50% 25% 10% ⋯ 10%
7 10% ⋯ 10% 25% 50% 100% 50% 25% 10% ⋯ 10%
8 10% ⋯ 10% 25% 50% 50% 50% 25% 10% ⋯ 10%
9 10% ⋯ 10% 25% 25% 25% 25% 25% 10% ⋯ 10%

10 10% ⋯ 10% 10% 10% 10% 10% 10% 10% ⋯ 10%
⋮ ⋮ ⋰ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮

19 10% ⋯ 10% 10% 10% 10% 10% 10% 10% ⋯ 10%

Sample Input

The first line of your program’s input, received from the standard input channel, will

contain a positive integer representing the number of test cases. Each test case will

include a single line of input containing two integers, separated by spaces, representing

the row and column number of the eye position within the screen’s grid, respectively.

Row and column numbers will be between 0 and 19 inclusive.

2

7 10

0 0

Sample Output

For each test case, your program must output the rendering quality percentage for each

block in the grid. Each row should be printed as a separate line, and columns should be

separated by spaces.

10

10

10

10

10

10 10 10 10 10 10 10 10 25 25 25 25 25 10 10 10 10 10 10 10

10 10 10 10 10 10 10 10 25 50 50 50 25 10 10 10 10 10 10 10

10 10 10 10 10 10 10 10 25 50 100 50 25 10 10 10 10 10 10 10

10 10 10 10 10 10 10 10 25 50 50 50 25 10 10 10 10 10 10 10

10 10 10 10 10 10 10 10 25 25 25 25 25 10 10 10 10 10 10 10

Problem 8: Foveated Rendering

Page 17 of 58 EN

10

10

10
10

10

10

10

10

10

10

100 50 25 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10

50 50 25 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10

25 25 25 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10

10

10

10

10

10

10
10

10

10

10
10

10

10

10

10

10

10

 Problem 9: Time and Time Again

EN Page 18 of 58

Problem 9: Time and Time Again

Points: 20

Author: Jonathan Brown, Fort Worth, Texas, United States

Problem Background

Times and periods of times can be expressed in many

different ways. National and regional differences, and even

personal preferences, have led to a wide range of formats for

expressing times. This can lead to a great deal of confusion;

does the date 01/03 refer to January 3rd or March 1st… or

January 2003? Is the time 8:45 in the morning or the evening?

You have been asked to break through some of this confusion

by converting a list of times to a new, consistent format.

Problem Description

Your program will receive a list of time durations that provide

the number of hours, minutes, and/or seconds within the

duration.

• Hours will be given as a non-negative integer followed by a lowercase letter ‘h’

(e.g. 2h). Hours will range from 0 to 99 inclusive.

• Minutes will be given as a non-negative integer followed by a lowercase letter ‘m’

(e.g. 2m). Minutes will range from 0 to 59 inclusive.

• Seconds will be given as a non-negative integer followed by a lowercase letter ‘s’

(e.g. 2s). Seconds will range from 0 to 59 inclusive.

These values may not be presented in this order. Values may be separated by spaces,

commas, and/or the word “and”; this text should be ignored. Some of these values may

be missing; for example, an input may only give you minutes and seconds. Any omitted

values should be assumed to be zero.

Regardless of what information is provided, your program will need to print the duration

in a simpler, more consistent format:

HH:MM:SS

In this format, HH is a two-digit number representing the number of hours (including a

leading zero, if necessary). MM is a two-digit number representing the number of

minutes (including a leading zero, if necessary). SS is a two-digit number representing

the number of seconds (including a leading zero, if necessary). Each number is

Problem 9: Time and Time Again

Page 19 of 58 EN

separated from the next with a colon, and they are always presented in the same order.

All numbers must be included with the output, even if they are zero.

Sample Input

The first line of your program’s input, received from the standard input channel, will

contain a positive integer representing the number of test cases. Each test case will

include a single line of input containing a string describing a time duration in a variable

format as noted above.

5

1m and 45s

10m,10s
32s, and 12h

76h

1s

Sample Output

For each test case, your program must output the same time interval on a single line in

the HH:MM:SS format described above.

00:01:45

00:10:10

12:00:32

76:00:00

00:00:01

 Problem 10: Caesar Cipher

EN Page 20 of 58

Problem 10: Caesar Cipher

Points: 20

Author: Steve Gerali, Denver, Colorado, United States

Problem Background

The Caesar Cipher is one of the earliest known ciphers,

and among the simplest to learn. It is a “substitution

cipher”, in which each letter in the original message (the “plaintext”) is shifted a certain

number of places down the alphabet. For example, with a shift of 1, an A would be

replaced with a B, a B would be replaced with a C, and so on. This method is named

after Julius Caesar, who apparently used it to communicate with his generals.

To pass an encrypted message from one person to another, it is necessary that both

parties have the “key” for the cipher, so that the sender can encrypt it and the recipient

can decrypt it. For the Caesar Cipher, the key is the number of letters by which to shift

the cipher alphabet.

Problem Description

You are working for the History Channel, who wants to decrypt all communications that

Julius Caesar made to his generals in order to support a new documentary they’re

filming about the Roman emperor. You will be given a list of encrypted messages, and

the key believed to be used to encrypt those messages. Your program must decrypt

those messages.

For the purposes of this problem, we will be using the English alphabet, shown below in

its standard order (with a shift of 0).

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

If encrypting a message with a shift of 1, each letter in the plaintext will be replaced with

the respective letter shown in the 1-shifted alphabet below.

B C D E F G H I J K L M N O P Q R S T U V W X Y Z A

To decrypt a message, the process is reversed; a letter in the ciphertext would be

replaced with the respective letter in the original English alphabet.

Spaces are not encrypted in this cipher and should remain in place when decrypting a

message.

Problem 10: Caesar Cipher

Page 21 of 58 EN

Sample Input

The first line of your program’s input, received from the standard input channel, will

contain a positive integer representing the number of test cases. Each test case will

include two lines:

• A line with a single integer representing the message key - the number of letters

by which to shift the alphabet when encrypting the message.

• A line containing lowercase letters and spaces, representing the encrypted

message.

3

1

buubdl bu ebxo

3

ghvwurb wkh fdvwoh

6

yzkgr znk ynov

Sample Output

For each test case, your program must output the decrypted message. Messages

should be printed in lowercase, and all spaces should be retained.

attack at dawn

destroy the castle

steal the ship

 Problem 11: Count to 10

EN Page 22 of 58

Problem 11: Count to 10

Points: 25

Author: Ryan Regensburger, Huntsville, Alabama, United States

Problem Background

When testing software or hardware, it’s considered a “best practice” to test every

possible situation to prove that the code or device is stable under any condition it might

come across. For example, if we have a chip with eight LEDs, we might want to light up

those LEDs in every combination to make sure they function properly. This is essentially

an 8-bit binary counter, displaying each number from 0 to 255.

Problem Description

In this problem, you will need to generate test data for a binary counter like that

described above. You will be provided with the number of bits to use for your counter,

and will need to generate a list of all binary numbers with at most that number of bits in

numerical order.

Sample Input

The first line of your program’s input, received from the standard input channel, will

contain a positive integer representing the number of test cases. Each test case will

include a single line with a positive integer, representing the number of bits to use.

1

3

Sample Output

For each test case, your program must output a list of binary numbers, ranging from 0 to

the maximum value with the indicated number of bits, inclusive. Numbers must be listed

one per line, in numerical order. Include any leading zeros up to the required bit length.

000
001

010

011

100
101

110

111

Problem 12: Monty Hall

Page 23 of 58 EN

Problem 12: Monty Hall

Points: 25

Author: Christian Lin, Greenville, South Carolina, United States

Problem Background

The “Monty Hall Problem” is a statistical problem named after the original host of the

game show “Let’s Make a Deal!” In one of the game’s more famous segments, the host

would give a contestant the choice of three doors. Behind one door was a car, but goats

were behind the other two. The contestant would pick a door - for example, Door

Number 1 - and the host, who knew what was behind each door, would pick a different

door - for example, Door Number 3 - and open it. The host’s door would always contain

a goat. The host would then give the contestant the option to switch to the other

unopened door (Door Number 2, in this case).

The problem is this: is it to the contestant’s advantage to switch doors? Does it matter if

they switch?

It may seem counter-intuitive, but the answer is yes - the contestant is actually twice as

likely to win if they switch! The reason why has stumped even experts in mathematics

until they had the solution proved to them. Here’s the solution:

When the contestant makes their first choice, each door has a 33% chance of having a

car behind it. To put this another way, there’s a 67% chance the contestant is wrong -

that the car is behind one of the other two doors.

 Problem 12: Monty Hall

EN Page 24 of 58

When the host opens one of the two incorrect doors, these probabilities don’t change;

the contestant’s door still has a 33% chance of being right, and a 67% chance of being

wrong. What has changed is that we know one of the other two doors in in fact wrong; it

now has a 0% chance of being correct… shifting the 67% correct chance once shared

between the two unselected doors to the single remaining door.

To summarize, there’s still a 67% chance that the contestant is wrong, but with only one

other option remaining, that means the contestant has a 67% of being right if they

switch to that other option. It’s not a guarantee, but they’re still twice as likely to win!

Problem Description

You’ve been hired by a TV studio that wants to create a new game show based upon

the Monty Hall problem. In case contestants are familiar with the problem, however,

they’re changing the game to make things more exciting.

The game will start with a number of doors (greater than 3). As before, only one door

actually contains a prize. The contestant will pick one of these doors at the start of the

game. The host will then open one or more of the doors the contestant did not select

that do not contain prizes. The contestant will then be given the opportunity to select a

new door if they wish. This process continues until the last round, where the contestant

is given one final chance to switch doors. The door with the prize is then revealed.

The TV studio wants to conduct simulations of what they believe will be a worst-case

scenario; a particularly knowledgeable contestant, and a particularly helpful host.

Specifically, they want to run simulations in which the contestant and host follow these

rules:

Problem 12: Monty Hall

Page 25 of 58 EN

• When given the option to select a door, the contestant will select the door with

the highest probability of winning. In the event of a tie, the contestant will select

the door with the lowest number amongst those that are tied.

• When opening doors, the host will open the doors that had the highest probability

of winning after the previous round. The host will never open the door with the

prize and will never open any door the contestant has ever selected (either

currently or previously).

For example, consider a game in which there are ten doors. The prize is behind door

number 6 (marked in green), and three doors will be opened in each of two rounds. The

contestant starts by selecting the lowest numbered door, 1 (marked in yellow)

10% 10% 10% 10% 10% 10% 10% 10% 10% 10%

The host now opens three doors. Since all doors have an equal chance of having the

prize, he opens the last three doors: 8, 9, and 10. This increases the probability of all

the doors the contestant did not select:

10% 15% 15% 15% 15% 15% 15% X X X

The contestant is then given a chance to switch doors. The unselected, unopened doors

now each have a 15% chance of being correct, so the contestant selects the first one of

them. The host then opens three more doors with a high probability of winning. Normally

he would open doors 5, 6, and 7, but door 6 contains the prize. As a result, he skips

over door 6 and opens doors 4, 5, and 7 instead:

10% 15% 37.5% X X 37.5% X X X X

Only four doors remain now, and the contestant is again given the chance to switch.

With two doors now at a 37.5% probability of being correct, he selects the first one of

those. Unfortunately, his choice is incorrect, but he’s still more than tripled his chances

of winning from when the game started, simply by switching doors.

Your task is to write a program that will simulate several variations of this game. In each

simulation, the contestant and host will both follow the rules outlined above. You must

determine what the contestant’s chances of winning was are the end of each game.

Sample Input

The first line of your program’s input, received from the standard input channel, will

contain a positive integer representing the number of test cases. Each test case will

include a single line of input containing three positive integers, separated by spaces.

These integers represent, in order:

 Problem 12: Monty Hall

EN Page 26 of 58

• The number of doors at the start of the game

• The number of rounds during which doors will be opened by the host

• The number of doors opened in each round

3

10 2 3

10 3 2

10 4 1

Sample Output

For each test case, your program must output a single line containing the probability

that the contestant will win the prize at the end of the game, assuming both contestant

and host follow the rules outlined above. Probabilities should be printed as a percentage

rounded to two decimal places (include any trailing zeroes).

37.50%

57.86%

24.61%

Problem 13: Minesweeper

Page 27 of 58 EN

Problem 13: Minesweeper

Points: 25

Author: Lourdes Tuma, Denver, Colorado, United States

Problem Background

Minesweeper is a type of single-player puzzle game in which the

player continuously selects different cells of a rectangular grid.

Each cell of the grid is either occupied by a bomb or is a safe

cell. If the player selects a cell occupied by a bomb, they

“explode” and lose the game. Otherwise, the selected cell shows

the number of neighboring cells that contain bombs. Cells are

neighbors if they are adjacent horizontally, vertically, or

diagonally.

Problem Description

You will need to write a program that receives the size of a minesweeper grid and the

locations of the mines within that grid, then uses that information to display the

completed grid. The output should include the locations of all bombs, and numbers in

the safe cells indicating the number of neighboring bombs.

Sample Input

The first line of your program’s input, received from the standard input channel, will

contain a positive integer representing the number of test cases. Each test case will

include:

• A line containing three positive integers separated by spaces, representing:

o The number of rows within the minesweeper grid, R

o The number of columns within the minesweeper grid, C

o The number of bombs within the minesweeper grid, B

• B lines representing the location of each bomb within the grid. Each line contains

two integers separated by spaces, representing:

o The row of the bomb’s cell. The topmost row in the grid is row 0. Values

will range from 0 (inclusive) to R (exclusive).

o The column of the bomb’s cell. The leftmost column in the grid is column

0. Values will range from 0 (inclusive) to C (exclusive).

2

2 2 2

0 0

1 1

☼ 2 1 1

1 3 ☼ 2

0 2 ☼ 3

0 1 2 ☼

 Problem 13: Minesweeper

EN Page 28 of 58

5 3 4

1 2

2 2
4 0

4 1

Sample Output

For each test case, your program must output the minesweeper grid described by the

input. Write each row on a separate line, and one character per cell. Cells containing

bombs should be represented by an asterisk character (*); safe cells should contain a

number (0 through 8 inclusive) equal to the number of bombs in neighboring cells.

*2

2*

011

02*

02*

232

**1

Problem 14: Homeward Bound

Page 29 of 58 EN

Problem 14: Homeward Bound

Points: 30

Author: Steve Brailsford, Marietta, Georgia, United States

Problem Background

After a long delay figuring out what route he

should take, the travelling salesman has just

finished his journey and has collected orders from

customers all along the way. He finished his trip

at his company’s warehouse, and now he wants

to deliver all of his customer’s orders on the way

back home. To make sure he doesn’t miss

anyone, he’s planning to take the same trip in

reverse order. Unfortunately, as he’s walking

towards the ticket counter at the airline, he trips,

and scatters his used boarding passes

everywhere! He needs your help to get the

boarding passes back in the correct order so he

can reconstruct his journey and figure out how to

get back home.

Problem Description

Your program will be given several pairs of cities, indicating a departure and arrival

point for each of the salesman’s boarding passes. These pairs will be out of order. You

must reconstruct his original journey by determining the correct order of boarding

passes, then print the route he should take back home (the original route in reverse

order).

Sample Input

The first line of your program’s input, received from the standard input channel, will

contain a positive integer representing the number of test cases. Each test case will

include the following lines of input:

• A positive integer, X, indicating the number of boarding passes

• X lines, each listing two city names, separated by spaces. The first city is the

departure city for that boarding pass; the second is the arrival city. City names

will consist of upper and lower-case letters and underscores (_).

 Problem 14: Homeward Bound

EN Page 30 of 58

2

4

Fort_Worth Denver
Washington Toronto

Orlando Fort_Worth

Denver Washington

5

Riyadh Singapore

Madrid London

Chicago Madrid

Berlin Riyadh

London Berlin

Sample Output

For each test case, your program must output each city the salesman should visit on the

way home, one city per line, starting with his original final destination.

Toronto

Washington

Denver

Fort_Worth

Orlando

Singapore
Riyadh

Berlin

London

Madrid
Chicago

Problem 15: LMCoin

Page 31 of 58 EN

Problem 15: LMCoin

Points: 35

Author: Ben Fenton, Faslane, Helensburgh, United Kingdom

Problem Background

Bitcoin and other “cryptocurrencies” are fast becoming very popular in today’s world.

They are vastly different from traditional ways of paying for things, in that they don’t’

require a bank or credit card company to act as a mediator between the buyer and

seller. This avoids having to give the bank or other organization a transaction fee.

Instead, bitcoin is given directly to the other party. However, this leaves a big problem -

how do you prove you’ve paid for something? Or that you even have the money to pay

in the first place without someone vouching for you? This is known as the “double

spending problem.”

Instead of a bank recording all transactions in a central ledger, all users of bitcoin record

all of the transactions at the same time. This means that any attempt to fool the system

would be noticed and the transaction rejected. This is done through something called

“blockchain.” In this problem, we will build a simple blockchain for LMCoin, our very own

digital currency.

As the name implies, a blockchain consists of several “blocks” of data, each

representing a separate transaction. Each block is identified by a unique “hash”, a value

that is generated using all of the information stored in a block; this includes the hash of

the previous block in the chain. Therefore, as we go along the chain, the integrity of the

chain increases and ensures past transactions cannot be altered. Bitcoin and other

cryptocurrencies are created by “mining” them; adding a new block to the chain that

produces a unique “hash” value within a certain range - this involves a lot of guesswork!

Problem Description

You will need to write a program that implements the LMCoin blockchain. As the name

implies, a blockchain consists of several “blocks” of data, each representing a separate

transaction. Besides the start block (which doesn’t include the last item), each block has

four pieces of information:

1. A timestamp indicating when the block was created

2. Some data (such as a pizza order, for example)

3. An index (this block’s position in the chain)

4. The hash of the previous block in the chain

The hash algorithm used by our currency will work as follows:

 Problem 15: LMCoin

EN Page 32 of 58

𝐻𝑛 =
(𝑇𝑛 + 𝑉𝑛 + 𝑛 + 𝐻𝑛−1) ∗ 50

147

Where:

• 𝑛 is the index of the block within the chain; the first block in the chain has index 1.

• 𝐻𝑛 is the hash for the block at index 𝑛. (𝐻0 = 0)

• 𝑇𝑛 is the timestamp of the block at index 𝑛.

• 𝑉𝑛 is the numeric value of the data in the block at index 𝑛 (explained below).

A block’s data is converted to a numeric value by adding the values of each letter in the

data string, as shown below:

Letter a b c d e f g h i j k l m

Value 1 2 3 4 5 6 7 8 9 10 11 12 13

Letter n o p q r s t u v w x y z

Value 14 15 16 17 18 19 20 21 22 23 24 25 26

For example, the value of the string “cheese” is 3 + 8 + 5 + 5 + 19 + 5 = 45.

Timestamps will be in the format DDMMYYHHMM (two digits each for day, month, year,

hour, and minute, respectively); for example, 8:30 AM on 27 April 2019 would be written

as 2704190830.

Sample Input

The first line of your program’s input, received from the standard input channel, will

contain a positive integer representing the number of test cases. Each test case will

include the following lines of input:

• A line containing a space-separated list of data values for the first ten blocks in a

chain. Data values will contain only lowercase letters.

• A line containing a space-separated list of timestamps for the first ten blocks in a

chain. Timestamps will be in the format described above.

2

pepperoni veggie ham peppers cheese olives mushroom chicken beef bacon

2704191000 2704191030 2704191100 2704191130 2704191200 2704191230

2704191300 2704191330 2704191400 2704191430

candy candy salad chips pretzel icecream apple fries cookie sandwich

2602201200 2602201300 2702201200 2702201300 2802201200 2802201300

2902201200 2902201300 0103201200 0103201300

(Note that there are only four lines of input above following the number of test cases; the timestamps are

too long to fit on this page.)

Problem 15: LMCoin

Page 33 of 58 EN

Sample Output

For each test case, your program must output the hash of the tenth block in the chain,

calculated using the provided values. Printed hash values should be rounded to the

nearest whole number. Do not round any intermediate hash values used for

calculations.

1393884230

219309065

 Problem 16: Have You Seen My Key

EN Page 34 of 58

Problem 16: Have You Seen My Key

Points: 35

Author: Marcus Garza, Fort Worth, Texas, United States

Problem Background

In cryptography, there is an encryption scheme which is assumed to be perfect

(unbreakable) under some key assumptions, called the one-time pad (OTP) cipher. The

premise behind this cipher is that each encryption key is at least as long as the

message itself, and once used, is never used again.

Two weaknesses in the OTP scheme are the probability of a codebreaker knowing the

type of information being encrypted (the “lexicon”) and the size of the key space.

However, even if a codebreaker knows the lexicon, a brute force attack - testing every

possible key - is essentially impossible.

Let’s assume you’re trying to encrypt a message that has a key that is 2512 bits long.

2512 is a BIG number:

13,407,807,929,942,597,099,574,024,998,205,846,127,479,365,820,592,393,377,723,

561,443,721,764,030,073,546,976,801,874,298,166,903,427,690,031,858,186,486,050,

853,753,882,811,946,569,946,433,649,006,084,096

If a codebreaker tried a brute-force attack against this message, and was able to test

one key every nanosecond (0.000000001 seconds), it would take 100 trillion trillion

trillion trillion trillion trillion trillion trillion trillion years (that’s 9 “trillions”) to test every key.

That’s several orders of magnitude greater than the age of the universe, and while it

would eventually give you the correct plaintext, it would also give you every other

potentially correct plaintext, making it impossible to determine which message was

actually correct.

Problem Description

Your program will provide an implementation of the one-time pad cipher. Your program

will be given a 128-character hexadecimal string representing the encrypted ciphertext.

You will then be given another 128-character hexadecimal string representing the key.

The plaintext consists of 64 ASCII characters. To convert the ciphertext to the plaintext,

use this process, illustrated in the table below.

1. Get the next two hexadecimal characters from the ciphertext (e.g. ‘4F’)

2. Convert this hexadecimal value to its 8-bit binary equivalent (4F = 01001111)

3. Get the next two hexadecimal characters from the key string (e.g. ‘0C’)

4. Convert this hexadecimal value to its 8-bit binary equivalent (0C = 00001100)

5. XOR (exclusive-or) these two values together to create a new binary number

Problem 16: Have You Seen My Key

Page 35 of 58 EN

6. Convert the new binary number to an ASCII decimal value and print that

character

7. Repeat with the rest of the message

Hexadecimal 4F = Decimal 79 = Binary 01001111

Hexadecimal 0C = Decimal 12 = Binary 00001100

4F 0 1 0 0 1 1 1 1

0C 0 0 0 0 1 1 0 0

XOR 0 1 0 0 0 0 1 1

Binary 01000011 = Decimal 67 = ASCII ‘C’

If you are not familiar with XOR, it is a logical operation that checks to see if two

boolean values are different. If they are, the result is true (1). If they are the same, the

result is false (0).

Most programming languages allow you to XOR two numbers together

to produce a new number; these “bitwise” operations perform an XOR

comparison on each bit of the binary representation of those numbers,

just as we did above in the example: 79 XOR 12 = 67. This can be done

with the caret (^) operator in Java, C, C++, and Python, and the Xor operator in

VB.NET.

Sample Input

The first line of your program’s input, received from the standard input channel, will

contain a positive integer representing the number of test cases. Each test case will

include the following lines:

• A line containing a positive integer, X, representing the number of keys to use

• A line containing a 128-character hexadecimal string representing the ciphertext

• X lines, each containing a 128-character hexadecimal string representing a key

1

2

4F6F0E14089E040E286156061893404F658D1F6510D5744098DB1DF8904D5F0DF23710

D30230F4F985D4FAAE50F4984AF40B4C98F70E98F94998F043DF16D89F

0C006A7128CF716B5B15766F6BB3263A0BAC3F227FBA1060F4AE7E93B0393069934E31

F3515F988FE0F48EC63F87FD6A847923FA9B6BF58A68B8D063FF36F8BF

1B07676728EE686F410F226360E7602704FE3F1178B05433F9B678D8F3242F65974564

B67A44D49BF0A0DACF7090F12C926E3EFD997AB8922CE1DE639E5799DE

 (Note that there are only three lines of hexadecimal text above; they’re wrapping because they don’t fit

on the page)

XOR 0 1

0 0 1

1 1 0

 Problem 16: Have You Seen My Key

EN Page 36 of 58

Sample Output

For each test case, your program must output the 64-character plaintexts obtained by

decrypting the ciphertext with each provided key, one per line. The plaintexts must be

surrounded by brackets. The plaintexts may include trailing whitespace characters,

which should be included within the brackets.

[Code Quest is fun! Good luck today! Solve those problems!]

[This plaintext has the same ciphertext but a different key. AAAA]

Problem 17: Conway’s Game of Life

Page 37 of 58 EN

Problem 17: Conway’s Game of Life

Points: 40

Author: Louis Ronat, Denver, Colorado, United States

Problem Background

In 1940, computer scientist John von Neumann defined life as a creation which can

reproduce itself and simulate a Turing machine: briefly, a device which acts according to

a set of rules. This definition gave rise to a continuing series of mathematical

experiments. Among the most famous of these is a “game” created by mathematician

John Conway in 1970 called Life. Conway’s Life consists of a set of four rules to be

followed by a computer given an initial state of a grid filled with “live” and “dead” cells.

In each generation:

1. Any live cell adjacent to one or zero live cells dies (from loneliness).

2. Any live cell adjacent to two or three live cells lives.

3. Any live cell adjacent to four or more live cells dies (from overcrowding).

4. Any dead cell adjacent to exactly three live cells becomes alive (through

reproduction).

Diagonal cells are considered to be adjacent. Life evolves by applying these rules to the

“world” represented by the grid. The rules are applied, the world is redrawn, the rules

are applied again, and the world is redrawn again, repeating indefinitely

T = 0 1 2 3 4

 Problem 17: Conway’s Game of Life

EN Page 38 of 58

These seemingly simple rules are completely deterministic; that is, each generation is

determined entirely by the state of the previous generation. Despite this, these rules can

yield some very complex behavior. Theoretically, Life is a “universal Turing machine;”

this means that anything that can be calculated through an algorithm can be calculated

with Life.

Problem Description

You must design a program that implements Conway’s Life on a 10-by-10 grid. Your

program will be given an initial state for the first generation. It must then determine the

state of the world after a given number of generations have been performed. Note that

cells outside the bounds of the 10-by-10 grid are always considered dead.

Sample Input

The first line of your program’s input, received from the standard input channel, will

contain a positive integer representing the number of test cases. Each test case will

include the following lines of input:

• A line containing a positive integer, X, indicating the number of generations to

calculate

• Ten lines containing ten characters each representing the initial state of the

world. Characters will be either ‘1’, representing a “live” cell, or ‘0’, representing a

“dead” cell.

1

6

0000000000

0000000000

0000000000

0000010000

0000111000

0000111000

0000010000
0000000000

0000000000

0000000000

Sample Output

For each test case, your program must output the state of the world after the indicated

number of generations. Each test case should include ten lines with ten characters

each.

Problem 17: Conway’s Game of Life

Page 39 of 58 EN

0000000000

0000000000

0000111000
0001000100

0000000000

0000000000

0001000100

0000111000

0000000000

0000000000

 Problem 18: Mandelbrot Set

EN Page 40 of 58

Problem 18: Mandelbrot Set

Points: 45

Author: Louis Ronat, Denver, Colorado, United States

Problem Background

The Mandelbrot set is drawn by considering the recursive function 𝑍𝑛+1 = 𝑍𝑛
2 + 𝑐,

where 𝑐 is a complex number of the form 𝑎 + 𝑏𝑖 (in mathematics, 𝑖 is an imaginary

number with the value of √−1; thus, 𝑖2 = −1). By iterating repeatedly, using each value

of 𝑍 to calculate the next value, we find that for some input values of 𝑐, 𝑍 grows without

bound. For others, 𝑍 remains bound.

To draw the Mandelbrot set, we use the “complex plane”, where the horizontal x-axis

represents the value of 𝑎, and the vertical y-axis represents the value of 𝑏. Each point is

colored based on the number of iterations (𝑛) we can perform before the absolute value

of 𝑍 (|𝑍𝑛 |) becomes greater than a specified value. When this happens, it is said that

the function “diverges”. In the image below, black indicates that |𝑍𝑛 | remained below a

prescribed value for all values of 𝑛. Blue pixels represent points at which it took many

iterations to get |𝑍𝑛| above that value; red pixels required fewer iterations.

Problem 18: Mandelbrot Set

Page 41 of 58 EN

Let’s consider the function using a value of 𝑐 = 1.1 + 2𝑖.

Regardless of the value of 𝑐, the value of 𝑍0 always equals 0. We can use this to

determine the value of 𝑍1:

𝑍1 = 𝑍0
2 + 𝑐

𝑍1 = 02 + 1.1 + 2𝑖
𝑍1 = 1.1 + 2𝑖

From this, we can see that for any value of 𝑐, 𝑍1 = 𝑐. Now we need to determine if the

function has diverged. For the purposes of this problem, we’ll consider the function to

have diverged if |𝑍𝑛 | ≥ 100. Since 𝑖 is an imaginary number, we use this formula to

determine the absolute value of numbers of the form 𝑎 + 𝑏𝑖:

|𝑍1| = √𝑎1
2 + 𝑏1

2

|𝑍1| = √1.12 + 22

|𝑍1| = √1.21 + 4
|𝑍1| ≈ 2.2825

2.2825 is less than 100, so the function hasn’t diverged yet. We need to do more

iterations to determine when it diverges, if ever:

𝑍2 = 𝑍1
2 + 𝑐

𝑍2 = (𝑎1 + 𝑏1𝑖)2 + 𝑎0 + 𝑏0𝑖

𝑍2 = (1.1 + 2𝑖)2 + 1.1 + 2𝑖

𝑍2 = 1.12 + 1.1(2𝑖) + 1.1(2𝑖) + (2𝑖)2 + 1.1 + 2𝑖

𝑍2 = 1.21 + 4.4𝑖 − 4 + 1.1 + 2𝑖

𝑍2 = −1.69 + 6.4𝑖

𝑎2 = −1.69

𝑏2 = 6.4

|𝑍2| = √−1.692 + 6.42

|𝑍2| ≈ √2.8561 + 40.96
|𝑍2| ≈ 6.6194

(Remember that 𝑖2 = −1, so above, (2𝑖)2 = 22 ∗ 𝑖2 = 4 ∗ −1 = −4.)

|𝑍2 | is still less than 100, so it hasn’t diverged yet. How many iterations do we need to

do to reach that point?

n Z a b |Z|

1 1.1 + 2i 1.1 2 2.2825

2 -1.69 + 6.4i -1.69 6.4 6.6194

3 -37.0039 - 19.632i -37.0039 -19.632 41.8892

4 984.9732 + 1454.9211i 984.9732 1454.9211 1756.9769

 Problem 18: Mandelbrot Set

EN Page 42 of 58

So at 𝑛 = 4, we see that the value of |𝑍| > 100. This means that for this value of 𝑐, the

function has diverged at 4. We color the point at x = 1.1, y = 2 an appropriate color for

that value, and move on to the next value of 𝑐 to be checked.

Problem Description

Your program must identify the color to use in a rendering of the Mandelbrot set for a

given value of 𝑐. Use the following table and the explanation above to determine what

colors should be used:

Value of 𝑛 when function diverges Color

≤ 10 RED

11-20 ORANGE

21-30 YELLOW

31-40 GREEN

41-50 BLUE

≥ 51 BLACK

For the example calculation above, the function diverged at 𝑛 = 4, so the color for that

value of 𝑐 should be red.

Sample Input

The first line of your program’s input, received from the standard input channel, will

contain a positive integer representing the number of test cases. Each test case will

include a single line of input with two decimal numbers separated by spaces. These

numbers represent the values for 𝑎 and 𝑏, respectively. Remember that 𝑐 = 𝑎 + 𝑏𝑖.

4

1.1 2.0

-0.7 0.2

-0.5 0.65

-0.5 0.608

Sample Output

For each test case, your program must output the value of 𝑐, followed by a space,

followed by the color used to render that value of 𝑐 according to the table above. The

color should be printed in uppercase letters. Decimal values should be printed as they

were received from the input.

1.1+2.0i RED
-0.7+0.2i BLACK

-0.5+0.65i ORANGE

-0.5+0.608i BLUE

Problem 19: Network Ranger

Page 43 of 58 EN

Problem 19: Network Ranger

Points: 50

Author: Brett Reynolds, Orlando, Florida, United States

Problem Background

How is the internet like the post office? They both use addresses!

Computers and other devices that connect to the internet are assigned an Internet

Protocol (IP) address when they connect. While a newer format is available, most

systems still use the IPv4 format for these addresses. In this format, an IP address

consists of four numbers, separated by periods. Each number can range from 0 to 255.

For example, the address 127.0.0.1 always represents your own computer (the

“localhost”).

As with any other piece of data, your computer stores these addresses in a binary

format. Each number in the address is represented by an eight-bit binary string of 0’s

and 1’s; these strings are concatenated with each other to form the full address. For

example, the IP address 166.23.250.209 is converted as:

166 23 250 209

1 0 1 0 0 1 1 0 0 0 0 1 0 1 1 1 1 1 1 1 1 0 1 0 1 1 0 1 0 0 0 1

Just like mailing addresses can be grouped by a ZIP code or postal code, IP addresses

can be grouped by blocks. Internet companies can reserve these blocks to use in

assigning IP addresses to their customers, through a system called Classless Inter-

Domain Routing (CIDR). A CIDR block is defined by writing an IP address followed by a

slash and the number of bits that match between all members of the block (on the left

side of each address). For example, the IP addresses 192.168.0.0 and 192.168.108.68

are represented as the following binary numbers:

192 168 0 0

1 1 0 0 0 0 0 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

192 168 108 65

1 1 0 0 0 0 0 0 1 0 1 0 1 0 0 0 0 1 1 0 1 1 0 0 0 1 0 0 0 0 0 1

The first 17 bits of both addresses are the same, so these addresses are part of the

192.168.0.0/17 block (any further matches after the first mismatch aren’t counted). This

could also be written as the 192.168.108.65/17 block, but the convention is to use the

first (smallest) address in a block when writing it out in this manner.

 Problem 19: Network Ranger

EN Page 44 of 58

Blocks can be any size from /0 to /32. A /32 block would require that all 32 bits match;

this represents a single address. A /0 block wouldn’t require that any bits match; this

represents the entire internet!

For this problem, you are working with the FBI’s cyber crimes division to track down a

ring of internet scammers using ransomware to attack innocent people. You’ve been

able to track down a list of IP addresses used by the scammers. The FBI wants to get a

search warrant to figure out who is behind these IP addresses, but a judge won’t issue

the warrant unless you can identify the smallest possible range that covers all of those

addresses.

Problem Description

Your program will be given a list of IPv4 addresses and must identify the smallest CIDR

block that contains every address. Each CIDR block should be written using the first

(smallest) address within the block; that is, 192.168.0.0/16 may be an acceptable

answer, but 192.168.0.1/16 is not.

Sample Input

The first line of your program’s input, received from the standard input channel, will

contain a positive integer representing the number of test cases. Each test case will

include the following lines of input:

• A line containing a single positive integer, X, indicating the number of IP

addresses used in this test case

• X lines, each containing a single IPv4 address

2

2

192.168.0.0

192.168.255.255
4

32.73.94.16

32.73.89.172

32.73.95.210
32.73.92.82

Sample Output

For each test case, your program must output the smallest CIDR range that contains

every listed IP address, using the format described above.

192.168.0.0/16

32.73.88.0/21

Problem 20: Bird Watching

Page 45 of 58 EN

Problem 20: Bird Watching

Points: 55

Author: Joe Worsham, Colorado Springs, Colorado, United States

Problem Background

Machine learning (ML) is a fancy type of artificial intelligence algorithm that uses

patterns of previously-seen data to make predictions about new data that’s never been

seen before. ML algorithms can be very complex and can be used to solve extremely

difficult problems; for example, neural networks simulate how individual cells in a real,

living brain function. However, some are simple, straight-forward, and are great at

solving pattern-related problems. In this problem, you’ll need to create a machine

learning system of your own!

You are working with the local park service to sort through pictures they’ve taken of

birds recently. They want to be able to use these pictures to track the populations of

certain species, but they have a very large number of photos and need to find a way to

organize them. They decide to follow the practice of animal taxonomy and organize

them by the family of the bird pictured in the photo. With the number of photos to sort

through, they need an automated means of organizing the photos this way.

Your colleague suggests that you use measurements of the birds obtained from the

photographs to predict a bird’s taxonomic family. She retrieves a set of information

about a long list of bird species and shows you there is an apparent correlation between

certain measurements and a bird’s family:

This graph is called a t-SNE embedding, a type of graph that converts multiple

measurements (in this case four) into a two-dimensional coordinate. Each point is color-

 Problem 20: Bird Watching

EN Page 46 of 58

coded based on the bird’s taxonomic family. As your colleague points out, most of the

colors are grouped together, giving her hypothesis that a pattern can be identified more

weight. Her suggestion is to determine how “far away” an unknown bird is from these

known measurements, and use that to make a reasonable prediction of the unknown

bird’s family.

Problem Description

Your colleague’s idea is called a k-Nearest Neighbor (kNN) algorithm. This will predict

an unknown bird’s family based upon available taxonomic data and the measurements

of the unknown bird. A kNN algorithm works by calculating the “distance” between an

unknown datum point and each known data point. The k known data points closest to

the unknown datum are then used to “vote” for the final decision.

In this problem, your algorithm should calculate the distance between the given

unknown data point and all known data points. Once all distances have been calculated,

count how many times each family of birds appears within the K closest points. This is

the “voting” process mentioned before. Whichever family gets the most votes is selected

as the family for the unknown bird.

In general, the value of K for this algorithm must be an integer; when there are only two

possible answers, this is usually an odd integer, to avoid the likelihood of ties during the

voting process. Here we have three possible answers, so ties will be possible. To

address this, start with an initial value of K = 5 for all unknown birds. In the event there

is a tie, increment K by 1 until the tie is broken; reset K to 5 for the next unknown bird.

The formula for calculating distance between N-dimensional points is as follows:

𝑑𝑝1 ,𝑝2
= √(𝑥1 − 𝑥2)2 + (𝑦1 − 𝑦2)2 + ⋯ + (𝑁1 − 𝑁2)2

Each bird will be represented by four points of data in addition to its family - its length,

body width, wingspan, and the angle of its wings relative to its body.

Sample Input

The first line of your program’s input, received from the standard input channel, will

contain a positive integer representing the number of test cases. Each test case will

include the following lines of input:

• A line containing two positive integers separated by spaces: X, representing the

number of known birds, and Y, representing the number of unknown birds.

• A total of X lines containing information about known birds. Each line will contain

the following values, separated by spaces:

o One of the words “Accipitridae”, “Passeridae”, or “Cathartidae”,

representing the bird’s taxonomic family

o A decimal number representing the bird’s length in inches.

Problem 20: Bird Watching

Page 47 of 58 EN

o A decimal number representing the bird’s body width in inches.

o A decimal number representing the bird’s wingspan in inches.

o A decimal number representing the bird’s wing angle in degrees.

• A total of Y lines containing information about unknown birds in your available

photographs. Each line will contain the following value, separated by spaces:

o A decimal number representing the bird’s length in inches.

o A decimal number representing the bird’s body width in inches.

o A decimal number representing the bird’s wingspan in inches.

o A decimal number representing the bird’s wing angle in degrees.

1

15 3

Accipitridae 12.30 7.03 25.32 88.59

Accipitridae 21.38 7.57 22.18 88.71

Passeridae 16.57 7.05 25.88 89.27

Passeridae 13.34 6.24 21.37 88.95

Passeridae 15.75 6.58 22.16 89.35

Accipitridae 15.16 5.17 22.43 89.04

Cathartidae 18.61 6.68 23.37 88.83

Accipitridae 21.32 8.14 20.09 88.55

Cathartidae 18.35 7.01 20.64 88.14

Cathartidae 13.61 5.33 23.72 90.21

Cathartidae 16.88 6.63 24.59 88.48

Accipitridae 15.63 8.66 23.19 88.51

Passeridae 17.29 7.62 26.46 89.31

Passeridae 20.03 8.68 20.97 89.05

Cathartidae 19.19 7.74 22.31 88.09

19.37 15.35 17.30 15.28

12.76 21.96 14.41 16.84

20.33 15.51 16.29 17.10

Sample Output

For each test case, your program must print the predicted taxonomic family for each

unknown bird, one per line.

Accipitridae

Cathartidae

Accipitridae

 Problem 21: Hide Your Spies

EN Page 48 of 58

Problem 21: Hide Your Spies

Points: 55

Author: Wojciech Kozioł, Mielec, Poland

Problem Background

You’re working with an intelligence agency to guide a spy through a secret enemy

installation. The enemy has cameras positioned throughout the building with a 360° field

of view; if your spy is caught on camera, the mission will fail! Fortunately, there are a

number of walls blocking the view of the cameras that your spy can hide behind. You

need to be able to determine if your spies will be seen based on the position of the

cameras, spies, and the walls in the room.

Problem Description

Your mission, should you choose to accept it, is to determine if there is a clear line of

sight from a camera at a given set of (𝑥, 𝑦) coordinates to a spy located at a different set

of coordinates. Several walls will be positioned throughout the room; if a wall intersects

a line drawn between the camera and the spy, the spy is hidden and avoids detection.

You must write a program that checks if the spy is successfully hidden and reports if he

has been detected or not.

The wall’s line doesn’t intersect the line

between the spy and the camera. The

spy is detected!

The wall is between the camera and the

spy, intersecting that line. The spy

remains hidden.

Problem 21: Hide Your Spies

Page 49 of 58 EN

To determine if two lines intersect, you’ll need to locate the point at which the lines

would intersect if they were continued infinitely in both directions. Remember that a

(non-vertical) line can be defined using the equation

𝑦 = 𝑎𝑥 + 𝑐

𝑎 is known as the “slope” of the line, and can be calculated from any two points (𝑥1,𝑦1)
and (𝑥2, 𝑦2) as follows:

𝑎 =
𝑦2 − 𝑦1

𝑥2 − 𝑥1

(If 𝑥2 − 𝑥1 = 0, then 𝑎 is undefined, and the line is vertical.) Once you know 𝑎, you can

calculate 𝑐 using it and the (𝑥, 𝑦) coordinates of one of the points on the line:

𝑐 = 𝑦 − 𝑎𝑥

Complete this process for the two lines you’re trying to check for intersection to obtain

both of their line equations. You can then use both equations to calculate the (𝑥, 𝑦) point

at which the lines would intersect. If this point is within the bounds of the points you

already knew about, then the wall is blocking the camera’s line of sight!

Sample Input

The first line of your program’s input, received from the standard input channel, will

contain a positive integer representing the number of test cases. Each test case will

include the following lines of input:

• A line containing five integers separated by spaces, representing the following

information, in order:

o The X-coordinate of the spy within the current room

o The Y-coordinate of the spy within the current room

o The X-coordinate of the camera within the current room

o The Y-coordinate of the camera within the current room

o The number of walls in the current room, W

• W lines containing four integers separated by spaces, each line representing

information about a wall within the room:

o The X-coordinate of the start of the wall

o The Y-coordinate of the start of the wall

o The X-coordinate of the end of the wall

o The Y-coordinate of the end of the wall

2

2 2 6 4 1

2 5 5 5

 Problem 21: Hide Your Spies

EN Page 50 of 58

2 2 6 4 2

4 1 4 5

1 5 4 5

Sample Output

For each test case, your program must output a single line containing either the word

“YES” (indicating that the spy was seen by the camera) or “NO” (if the spy evaded

detection).

YES

NO

Problem 22: Free Up Disk Space

Page 51 of 58 EN

Problem 22: Free Up Disk Space

Points: 60

Author: Doug Kelley, Palmdale, California, United States

Problem Background

The amount of disk space on your computer is getting low. We need an algorithm to

archive the oldest files (because they probably aren’t being used any more) and the

biggest files (because they take up the most space).

Remember that a kilobyte (KB) is 1,000 bytes (B). A megabyte (MB) is 1,000 KB. A

gigabyte (GB) is 1,000 MB.

Problem Description

Your program will be given a list of files on your computer and some information about

them. Each file should be assigned a score based on its age and size. Using today’s

date of April 27th, 2019, determine the age of the file in days. A file created in the

morning (from 12:00 AM through 11:59 AM) should be counted as ½ day older than one

created the same day in the afternoon (12:00 PM through 11:59 PM); thus, a file last

modified yesterday at 1:00 PM is 0.5 days old; one modified yesterday morning is 1.0

days old. Multiply the file’s age in days by its size in MB to determine the file’s score.

Remember to account for leap years in your calculations.

For example, a 1500 KB file was last modified on April 27, 2018, at 10:00 PM. The file is

364.5 days old (365 days, minus 0.5 days for an afternoon time). Multiplying this value

by the file’s size in MB - 1500 KB = 1.5 MB - results in a score of 546.75.

Your program must list the highest-scoring files and their scores until the total size of

the listed files accounts for at least 25% of your hard drive’s capacity.

Sample Input

The first line of your program’s input, received from the standard input channel, will

contain a positive integer representing the number of test cases. Each test case will

include the following lines of input:

• A line containing a positive integer, F, indicating the number of files on your

computer, a space, and a positive decimal, C, indicating the size of your hard

drive in GB.

• F lines listing the following information. Each data point is separated by spaces.

o The date the file was last modified, in DD/MM/YYYY format. All dates will

be no later than April 26, 2019.

o The time the file was last modified, in HH:MM format

 Problem 22: Free Up Disk Space

EN Page 52 of 58

o “AM” or “PM”, indicating if the timestamp was in the morning or afternoon

o A positive integer representing the size of the file in KB

o The name of the file. File names may include uppercase and lowercase

letters, numbers, and periods (.).

1
10 1.0

25/04/2019 10:30 AM 125000 file1.txt

02/03/2019 02:15 PM 62500 file2.exe

01/01/2019 05:34 PM 62500 file3.mov
31/12/2018 11:36 AM 31250 file4.gif

14/02/2019 10:42 PM 31250 file5.doc

23/08/2018 12:00 PM 31250 file6.sh

29/02/2016 09:20 AM 31250 file7.mp3

05/12/2018 01:30 PM 15625 file8

26/04/2019 01:30 PM 15625 file9.png

01/01/2000 04:15 PM 1000 file10.jpg

Sample Output

For each test case, your program must output the information listed below for the

highest-scoring files. Continue listing files until the total size of the listed files is equal to

or greater than 25% of C.

• The name of the file

• A space

• The score calculated for that file, rounded to three decimal places. Include any

trailing zeroes.

file7.mp3 36031.250

file6.sh 7703.125

file3.mov 7218.750

file10.jpg 7055.500

file4.gif 3656.250

file2.exe 3468.750

file5.doc 2234.375

Problem 23: Evacuate!

Page 53 of 58 EN

Problem 23: Evacuate!

Points: 70

Author: Richard Green, Whiteley, Hampshire, United Kingdom

Problem Background

It’s your first day working at Lockheed Martin as a

software engineer. You’ve finished your orientation

and are at your new desk, ready to start work

when…

BEEP! … BEEP! … BEEP!

It’s the fire alarm! You’re not familiar with the

building yet and don’t know where to go!

Fortunately, your coworkers help you get outside

safely, and it was just a fire drill anyway, but the

experience gives you an idea. What if you had an

app on your phone that could guide you to the nearest exit? You present the idea to

your manager, and they agree to start the project! (Quick note: This could happen! Ask

a volunteer about Lockheed Martin’s Destination Innovation program.)

Problem Description

Your program will read in an image of a building’s floor plan and must find the shortest

route to the outside of the building from the given start position. While searching for the

shortest path, you may travel in any cardinal direction - up, down, left, or right. You may

not move diagonally, nor through walls. In the event that multiple paths are tied for the

shortest length, take the path that exits closest to the top-left corner of the map. While

the map will be rectangular (or square), the building’s layout may not be.

Sample Input

The first line of your program’s input, received from the standard input channel, will

contain a positive integer representing the number of test cases. Each test case will

include the following lines of input:

• A line containing two integers separated by spaces:

o The first integer represents the width of the map, W

o The second integer represents the height of the map, H

• A total of H lines, each up to W characters long, containing the map of the

building.

o A # (hashtag) character represents a wall of the building.

 Problem 23: Evacuate!

EN Page 54 of 58

o A space indicates an empty navigable hallway or room.

o A lowercase letter o represents your start position within the building.

o An uppercase letter X represents an exit from the building.

o Lines may be shorter than W characters; any “missing” characters will be

outside the building and should have no bearing on your work. Remember

not to print any trailing whitespace in your output.

2

10 10

########X#
X ## #

#o# # # #

X

X ##

######X###

30 20

##X###############

#o##### #

##################X###########

Problem 23: Evacuate!

Page 55 of 58 EN

Sample Output

For each test case, your program must output the original map of the building, with the

shortest path marked using periods (.) in place of the spaces presented above.

########X#
X ## #

#...# ## #

#.#.# ## #

#o#.# # #

###.. # ##

####.## X

X ... ##

######X###

##X###############

##....... ####

##.#### #

##.# ### #

##.# # ### #

...# #

##.#######

##.....###

######. #

####.....# #

####.##### #

#######.# #############

#.###### #

#....... ########## #

#####.## #

#.....# ##########

#o##### #

##################X###########

 Problem 24: Sudoku

EN Page 56 of 58

Problem 24: Sudoku

Points: 80

Author: Brett Reynolds, Orlando, Florida, United States

Problem Background

Sudoku is a popular logic puzzle commonly found

in newspapers, magazines, and online. Most

likely originating in Indiana in 1979, the puzzle

format found great popularity in Japan in the

1980s and became a worldwide phenomenon in

the new millennium. Newspapers in particular

contributed to the puzzle’s establishment as a

household name due to the puzzle’s similarities

with crossword puzzles.

Sudoku is played on a 9-by-9 grid of squares

divided into 3-by-3 subgrids. Each square is filled

in with one of the numbers from 1 to 9 inclusive,

such that in the final solution any given digit

appears exactly once within its row, column, and

subgrid. The original puzzle is mostly blank, with only some numbers pre-filled as hints.

The player must use these hints to determine how to fill in the remaining squares

through process of elimination, logical deduction, and trial and error. In the image

above, the bold black numbers are the original hints given by the puzzle; the italic red

numbers are those filled in by the player to produce the solution. In order to be a

“proper” Sudoku puzzle, a given set of hints must have one unique solution.

The properties of Sudoku puzzles have lent it to a great deal of study by

mathematicians and computer scientists. Considerable research has been put into

finding the minimum number of clues that can be given while still producing a unique

solution (17), and into finding puzzles that follow certain patterns. Solving Sudoku

puzzles efficiently is a somewhat difficult task in computer science; it falls into the

category of problems known as “NP-complete.” This means that it is believed that no

algorithm exists that can solve a Sudoku puzzle in less than polynominal time (without

having loops nested at least two deep).

Problem Description

You will need to write a program that can read a Sudoku puzzle and find its solution.

Remember, to solve a Sudoku puzzle, you must fill in all the blank squares with a

4 6 2 5 7 1 8 3 9

9 1 3 4 6 8 5 7 2

7 5 8 9 2 3 1 4 6

1 9 4 7 5 6 2 8 3

8 2 7 3 4 9 6 5 1

6 3 5 8 1 2 4 9 7

5 4 1 6 9 7 3 2 8

2 8 9 1 3 4 7 6 5

3 7 6 2 8 5 9 1 4

Problem 24: Sudoku

Page 57 of 58 EN

number between 1 and 9 inclusive, such that each number appears exactly once in

each row, column, and 3-by-3 subgrid.

All of the puzzles your program will be given will be “proper” Sudoku puzzles; as stated

above, this means that each puzzle will have exactly one valid solution.

Sample Input

The first line of your program’s input, received from the standard input channel, will

contain a positive integer representing the number of test cases. Each test case will

include nine lines of text. Each line will contain only the digits from 1 through 9 inclusive

and underscores (_). Underscores represent blank spaces in the puzzle that must be

filled. Digits represent hints that should remain in place in the final solution.

2

4_2______

____6____

_589_____
_9__5__8_

___34__51

__16__32_
_8_1_____

3_62__9_4

___16__52

_7_5_4__6

39_______

62____39_

_______6_

9___3____
_5_71_94_

2__6__5_7

Sample Output

For each test case, your program must output the solved Sudoku puzzle, printing nine

lines with nine digits per line.

462571839

913468572

758923146

194756283

827349651

 Problem 24: Sudoku

EN Page 58 of 58

635812497

541697328

289134765
376285914

568327419

439168752

172594836

394286175

625471398

781953264

947835621

856712943

213649587

	Frequently Asked Questions
	Rounding
	Terminology
	Problem 1: No More Shouting
	Problem Background
	Problem Description
	Sample Input
	Sample Output

	Problem 2: Sum It Up
	Problem Background
	Problem Description
	Sample Input
	Sample Output

	Problem 3: Goofy Gorillas
	Problem Background
	Problem Description
	Sample Input
	Sample Output

	Problem 4: Caught Speeding
	Problem Background
	Problem Description
	Sample Input
	Sample Output

	Problem 5: Brick House
	Problem Background
	Problem Description
	Sample Input
	Sample Output

	Problem 6: Around and Around
	Problem Background
	Problem Description
	Sample Input
	Sample Output

	Problem 7: Image Compression
	Problem Background
	Problem Description
	Sample Input
	Sample Output

	Problem 8: Foveated Rendering
	Problem Background
	Problem Description
	Sample Input
	Sample Output

	Problem 9: Time and Time Again
	Problem Background
	Problem Description
	Sample Input
	Sample Output

	Problem 10: Caesar Cipher
	Problem Background
	Problem Description
	Sample Input
	Sample Output

	Problem 11: Count to 10
	Problem Background
	Problem Description
	Sample Input
	Sample Output

	Problem 12: Monty Hall
	Problem Background
	Problem Description
	Sample Input
	Sample Output

	Problem 13: Minesweeper
	Problem Background
	Problem Description
	Sample Input
	Sample Output

	Problem 14: Homeward Bound
	Problem Background
	Problem Description
	Sample Input
	Sample Output

	Problem 15: LMCoin
	Problem Background
	Problem Description
	Sample Input
	Sample Output

	Problem 16: Have You Seen My Key
	Problem Background
	Problem Description
	Sample Input
	Sample Output

	Problem 17: Conway’s Game of Life
	Problem Background
	Problem Description
	Sample Input
	Sample Output

	Problem 18: Mandelbrot Set
	Problem Background
	Problem Description
	Sample Input
	Sample Output

	Problem 19: Network Ranger
	Problem Background
	Problem Description
	Sample Input
	Sample Output

	Problem 20: Bird Watching
	Problem Background
	Problem Description
	Sample Input
	Sample Output

	Problem 21: Hide Your Spies
	Problem Background
	Problem Description
	Sample Input
	Sample Output

	Problem 22: Free Up Disk Space
	Problem Background
	Problem Description
	Sample Input
	Sample Output

	Problem 23: Evacuate!
	Problem Background
	Problem Description
	Sample Input
	Sample Output

	Problem 24: Sudoku
	Problem Background
	Problem Description
	Sample Input
	Sample Output

