
LOCKHEED MARTIN FIRST QUARTER 2005 GROUNDWATER MONITORING REPORT BEAUMONT SITE 2

Beaumont, California

Lockheed Martin First Quarter 2005 Groundwater Monitoring Report Beaumont Site 2

Beaumont, California

June 30, 2005 TC# 13505-02

Prepared for

Lockheed Martin Corporation Corporate Energy, Environmental Safety and Health Burbank, California

Prepared by

Tetra Tech, Inc. Pasadena, California

Brenda Meyer, P.E.
Project Manager

Thomas Villeneuve, P.E. Program Manager

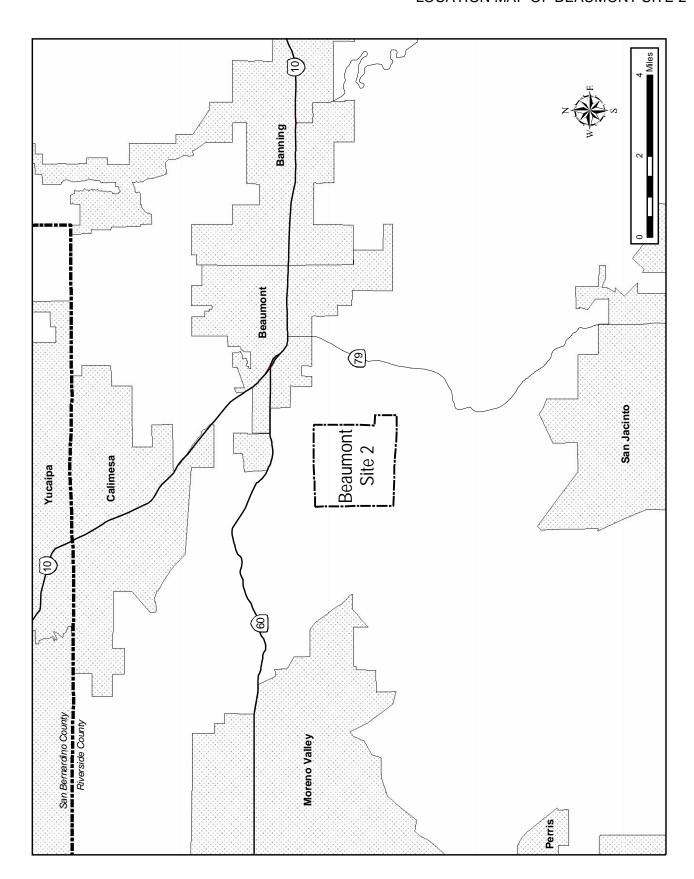
TABLE OF CONTENTS

Section		Page
1.0	INTRODUCTION	1-1
2.0	SITE BACKGROUND 2.1 Site Ownership 2.2 Historical Operations and Chemical Usage 2.3 Previous Investigations 2.3.1 Preliminary Remedial Investigation (Radian, 1986b) 2.3.2 Hydrogeologic Investigation (Radian, 1992) 2.3.3 Disposal Area Removal Action (Radian, 1993) 2.3.4 Monitoring Well Destruction Report (LMC, 1995) 2.3.5 Groundwater Sampling Results Former Production Well W2-3 2.3.6 Groundwater Monitoring Well Installation Report	2-1 2-4 2-5 2-5 2-7 2-7
3.0	GEOLOGY AND HYDROGEOLOGY 3.1 Regional Geology 3.2 Site Geology 3.3 Site Hydrogeology	3-1 3-1
4.0	GROUNDWATER MONITORING ACTIVITIES 4.1 Water Level Measurements 4.2 Groundwater Sampling 4.3 Biological Survey	4-1 4-1
5.0	SUMMARY OF ANALYTICAL RESULTS. 5.1 Groundwater Occurrence and Flow. 5.2 Analytical Sampling Results.	5-1
6.0	EVALUATION OF FINDINGS	6-1
7.0	REFERENCES	7-1

TABLE OF CONTENTS (contd.)

TABLES

		Page
		1 agc
Table 2-1	Beaumont Site 2 Historical Operational Areas	2-3
Table 4-1	Monitoring Well Construction Summary	
Table 4-2	Monitoring Well List and Testing Summary – First Quarter 2005	
Table 5-1	Summary of Groundwater Elevation Data – First Quarter 2005	
Table 5-2	Summary of Volatile Organic Compound Results	
Table 5-3	Summary of Title 22 Metals Results	
Table 5-4	Summary of Perchlorate Results	
	FIGURES	Page
E' 1.1	I C M CD CC 2	1.0
Figure 1-1	Location Map of Beaumont Site 2	
Figure 2-1	Historical Operational Areas Map	
Figure 2-2	Monitoring Well Locations	Z-10
	LIST OF APPENDICES	
Appendix A Appendix B Appendix C	Groundwater Monitoring Well Field Data Log Sheets COC and Laboratory Report Validated Laboratory Results by Method	


SECTION 1.0 INTRODUCTION

On behalf of Lockheed Martin Corporation (LMC), Tetra Tech, Inc. (Tetra Tech) has prepared the following first quarter 2005 groundwater monitoring report for LMC's Beaumont Site 2 (herein referred to as the Site) – *see Figure 1-1*. The Site (also known as the Laborde Canyon Site) consists of approximately 2,500 acres and is located approximately 70 miles east of Los Angeles, near the City of Beaumont, California. Historically, the Site was primarily used for small rocket motor assembly, testing, propellant incineration, and minor disposal activities.

Based on recent regulatory interest in perchlorate and 1,4-dioxane, a groundwater sample was collected from a historical groundwater production well (identified as W2-3) at the Site in January 2003. The sample was analyzed for volatile organic compounds (VOCs), perchlorate, and 1,4-dioxane to determine the potential presence and concentration of the chemicals in groundwater. The analytical results indicated that VOCs and 1,4-dioxane were not present at or above their respective detection limits. However, perchlorate was reported at a concentration of 4,080 micrograms per liter (μ g/L), which exceeds the State of California notification level of 6 μ g/L for that compound. Based on the detection of perchlorate in groundwater, Department of Toxic Substances Control (DTSC) reopened the Site for further assessment.

A limited investigation with respect to the chemicals of potential concern (COPCs) in the groundwater at the Site was conducted in August and September 2004 in accordance with the DTSC-approved *Final Lockheed Martin Beaumont Site 2 Groundwater Monitoring Well Installation Work Plan, Beaumont California* (Tetra Tech, 2004a). The objective of the groundwater well installation program was to determine the current groundwater conditions (i.e., groundwater gradient, COPCs, and extent of COPCs) at the Site. In order to accomplish the objective of the program, Tetra Tech installed four (4) groundwater monitoring wells (designated Tt-MW2-1 through Tt-MW2-4), and sampled and analyzed them for COPCs related to the historical operations at the Site. The activities and findings of the initial groundwater investigation are presented in *Final Lockheed Martin Beaumont Site 2 Groundwater Monitoring Well Installation Report, Beaumont California* (Tetra Tech, 2004b).

FIGURE 1-1 LOCATION MAP OF BEAUMONT SITE 2

Groundwater level measurements and samples were collected from groundwater monitoring wells Tt-MW2-1 through Tt-MW2-4 during the first quarter of 2005. This report presents a summary of the activities and findings of the first quarter 2005 groundwater monitoring event conducted at the Site, and is organized into the following sections:

- <u>Section 2.0 Site Background</u>: This section presents a brief description of the Site ownership, historical operations and chemical usage, and a summary of previous environmental investigations conducted at the Site;
- <u>Section 3.0 Geology and Hydrogeology</u>: This section presents a brief description of the regional and site-specific geology and hydrogeology;
- <u>Section 4.0 Groundwater Monitoring Activities</u>: This section presents descriptions of all the groundwater monitoring activities conducted at groundwater monitoring wells Tt-MW2-1 through Tt-MW2-4;
- <u>Section 5.0 Summary of Analytical Results</u>: This section provides a summary of the analytical results obtained during the groundwater sampling event, including a description of the general groundwater occurrence and flow patterns beneath the Site;
- <u>Section 6.0 Evaluation of Findings:</u> This section presents a summary of the findings of the groundwater monitoring event;
- <u>Section 7.0 References</u>: This section presents the list of documents cited in this report.

SECTION 2.0 SITE BACKGROUND

2.1 SITE OWNERSHIP

The Site consists of approximately 2,500 acres located southwest of Beaumont, California. The parcels that comprise the Site were owned by individuals and the United States (U.S.) government prior to 1958. Between 1958 and 1960, portions of the Site were purchased by the Grand Central Rocket Company (GCR). GCR utilized the Site as a remote test facility for early space and defense program efforts. In 1960, Lockheed Aircraft Corporation (LAC) purchased one-half interest in GCR. GCR became a wholly-owned subsidiary of LAC in 1961. The remaining parcels of land that comprise the Site were purchased from the U.S. government between 1961 and 1964. In 1963, Lockheed Propulsion Company (LPC) became an operating division of LAC and was responsible for the operation of the Site until its closure in 1974. Ogden Labs is known to have leased portions of the Site in the 1970s. In 1986, Wylie Labs planned to use the Site for the testing of a Class B explosive device. Wylie Labs set up some of the necessary equipment, but the tests were never performed (Radian, 1986a). Currently, the Site is inactive except for ongoing investigation activities.

2.2 HISTORICAL OPERATIONS AND CHEMICAL USAGE

The Site was utilized by GCR and LPC from 1960 to 1974 for small rocket motor assembly, testing operations, and propellant incineration. A summary of each historical operational area within the Site is presented in this subsection. The locations of the historical operational areas are presented on Figure 2-1.

Four (4) primary historical operational areas have been identified at the Site. Each area was responsible for various activities associated with rocket motor assembly, testing, and propellant incineration. The historical operational areas at the Site with corresponding grid point locations in Figure 2-1 are presented in Table 2-1.

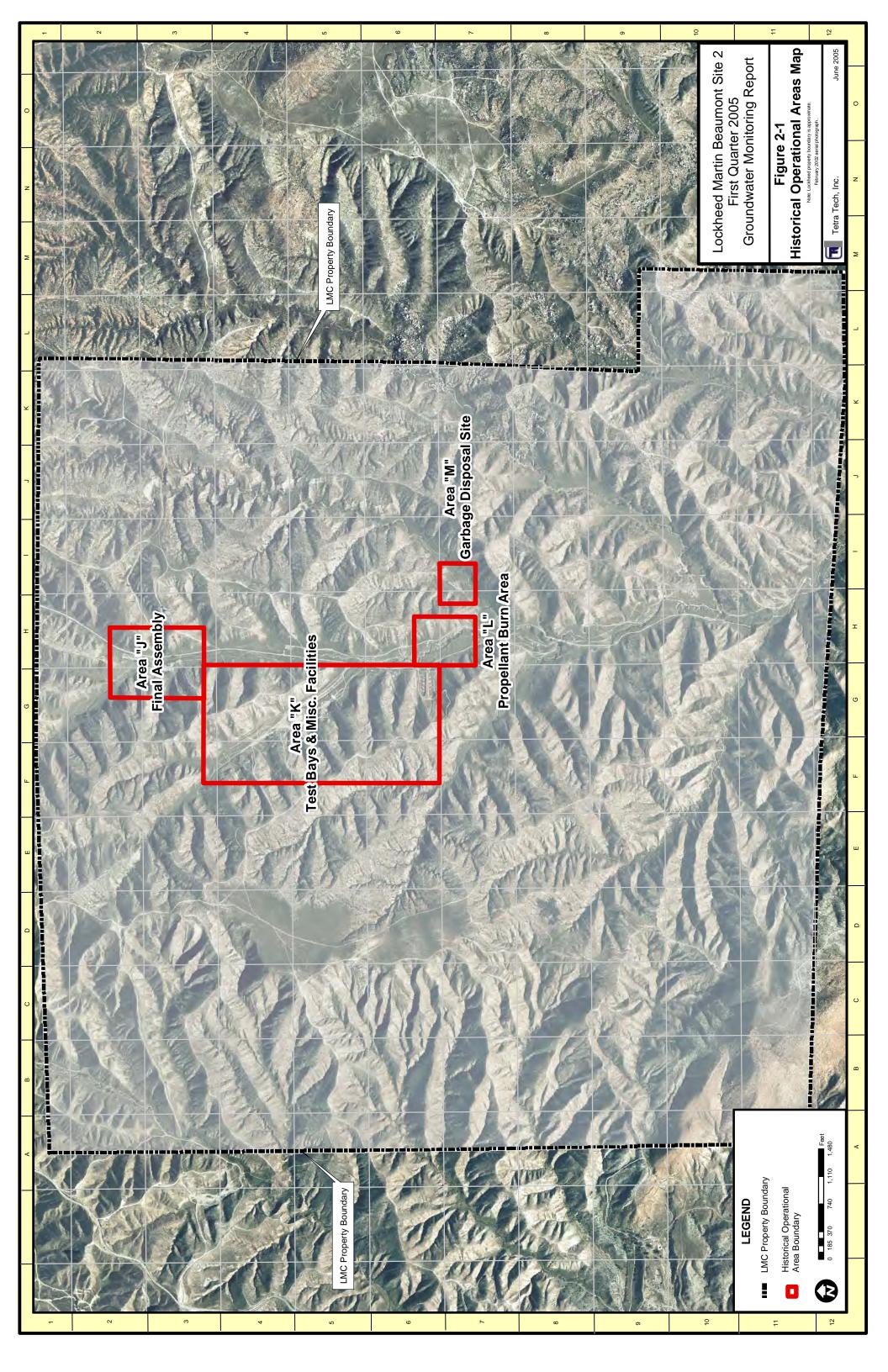


Table 2-1
Beaumont Site 2 Historical Operational Areas

Operational Area	Historical Operation Name	Location (Grid Points)
J	Final Assembly	G2 through H2 and G3 through H3
K	Test Bays and Miscellaneous Facilities	F3 through H3 and F6 through H6
L	Propellant Burn Area	Actual Location Unknown (approximate area: H6 through H7)
M	Garbage Disposal Site	H7 through I7

Operational Area "J" – Final Assembly

Rocket motor casings with solid propellant were transported to Building 250 within the Site where final assembly of the rocket hardware was conducted. The building was used from 1970 to 1974 for final assembly and shipment of short range attack missile (SRAM) rocket motors. Rocket motor assembly operations included installation of the nozzle and headcap, pressure check of the motor, installation of electrical systems, and preparations for shipment. During the plant closure in 1974, all usable parts of this facility were dismantled, taken off site, and sold (Radian, 1986a).

Operational Area "K" – Test Bays and Miscellaneous Facilities

A conditioning chamber and its associated bunker were located just north of the Surface Propellant Burn Area (Historical Operational Area "L"). The conditioning chamber was used to examine the effects of extreme temperatures on rocket motors and to meet specification requirements. A centrifuge was located in the western test bay, where rocket motors were centrifuged in order to determine if the solid propellant would separate from its casing under increased gravitational forces (g-forces). Four (4) test bays were located at the Site. The initial testing activities had a history of explosions that destroyed complete test areas, especially during the period when Grand Central Rocket operated at the Site. As the technology became better understood, motor failures occurred less often. Following any motor failure, the hillsides were thoroughly policed to recover any unburned solid propellant (Radian, 1986a).

Operational Area "L" – Burn Area

Large slabs of solid propellant were transported to the Site and set directly on the ground surface for burning. No pits or trenches were dug as part of the burning process. The solid propellant was saturated with diesel fuel to initiate combustion. Reportedly, the solid propellant would burn rapidly. There is no evidence or physical features that identifies the precise location of the burning activities (Radian, 1986a).

Operational Area "M" – Garbage Disposal Site

A garbage disposal site was located adjacent to a small creek at the Site. Scrap metal, paper, wood, and concrete materials were disposed of at the disposal site by LPC. Hazardous materials, including explosives and propellants, were never disposed of at this disposal site by LPC (according to employee interviews). Ogden Labs, a company that tested valves and explosive items, also used this disposal site. Reportedly, Ogden Labs disposed hazardous waste at the garbage disposal site. In 1972, a Lockheed Safety Technician was exposed to toxic vapors of unsymmetrical dimethyl hydrazine (UDMH) from a pressurized gas container located within the disposal site. Based on potential exposure risks to occupants, LPC's safety group required Ogden Labs to take measures to remove any potentially hazardous materials at the disposal site. Shortly thereafter, a disposal company was contracted by Ogden Labs to clean up the disposal site (Radian, 1986a).

2.3 PREVIOUS INVESTIGATIONS

Reports and documentation regarding environmental activities (i.e., soil/groundwater investigations, excavations, regulatory agency correspondence, etc.) were reviewed to provide a comprehensive historical environmental evaluation of the Site. The review focused upon identifying activities conducted at the Site that would describe specific findings regarding chemical impacts to groundwater. The previous investigations reviewed included a preliminary remedial investigation (Radian, 1986b), hydrogeologic investigation (Radian, 1992a), disposal area removal action report (Radian, 1993), monitoring well destruction report (LMC, 1995), and a letter report for groundwater sampling results from former production well W2-3 (Tetra Tech, 2003). These investigations are briefly summarized in the following subsections.

2.3.1 Preliminary Remedial Investigation

In October 1986, Radian Corporation (Radian) conducted a remedial groundwater and geophysical investigation at the Site (Radian, 1986b). The objective of the remedial investigation was to determine the potential presence and lateral extents of any possible contaminants in the groundwater beneath the Site. The remedial groundwater investigation was to include sampling the four (4) existing groundwater production wells (designated W2-1, W2-2, W2-3, and W2-5) at the Site and an existing groundwater production well, W2-4, located on the North Gate property (Radian, 1986b). However, only well W2-3, which is located upgradient of the probable surface propellant burn area (Historical Operational Area "L"), was accessible during this investigation. A sample was collected from well W2-3 and analyzed for purgeable hydrocarbons using U.S. Environmental Protection Agency (EPA) Method 601. Trichloroethylene (TCE) was reported at a concentration of $4.2 \mu g/L$ in the sample.

Additionally, a geophysical survey was conducted in the area previously identified as the garbage disposal area (Historical Operational Area "M"). The objective of the survey was to determine the location and physically define the lateral extents of the former permitted garbage disposal area through the use of ground penetrating radar (GPR), terrain conductivity (TC) and magnetic locator (ML). The survey identified an area of approximately 250 feet wide by 450 feet long.

2.3.2 Hydrogeologic Investigation

In 1992, Radian performed a hydrogeologic investigation at the Site in order to assess potential source areas and to characterize the subsurface soil and groundwater conditions (Radian, 1992). The investigation included performing a soil vapor survey, soil sampling, and groundwater well installation and sampling.

The soil vapor survey was performed at the garbage disposal site (Historical Operational Area "M"), final assembly building area (Historical Operational Area "J"), and propellant burn area (Historical Operational Area "L"). During the soil vapor survey, soil vapor samples were also collected at the southernmost portion of the test bays (Historical Operational Area "K"). During the investigation, a total of 42 soil vapor samples (nine at the garbage disposal site, nine at the final assembly building area, eight at the propellant burn area, and 16 general area samples) were collected at a maximum depth of 5 feet below ground surface (bgs) and analyzed for VOCs.

Analytical results from the soil vapor samples reported detectable concentrations of one or more of the following VOCs: 1,1,1-trichloroethane (1,1,1-TCA), 1,1-dichloroethane (1,1-DCA), TCE, and tetrachloroethene (PCE).

A total of four (4) soil samples were collected from 5 to 6.5 feet bgs in four (4) borings (designated as BH2-1, BH2-2, BH2-6, and BH2-7) at the Site. Two soil borings (BH2-1 and BH2-2) were drilled upgradient and downgradient of the garbage disposal site. Soil boring BH2-7 was drilled adjacent to the final assembly building area and soil boring BH2-6 was drilled adjacent to well MW2-6, approximately 1,000 feet south of the final assembly building area. The soil samples were analyzed for halogenated volatile organics, aromatic volatile organics, metals, and perchlorate. The report concluded that the laboratory results for the halogenated and aromatic volatile organics did not report any of the analytes above their detection limits. The results for the metals analyses were within the range of values expected for natural soil and were below their respective Total Threshold Limit Concentrations (TTLC).

During this investigation, four (4) new groundwater monitoring wells (designated MW2-2, MW2-4, MW2-5, and MW2-6) were installed at the Site. MW2-2 is located approximately 400 feet southeast of the former propellant burn area and downgradient of the disposal area. MW2-4 is the furthest downgradient well and is located approximately 800 feet south of the former propellant burn area. Wells MW2-5 and MW2-6 are located approximately 2,600 feet and 800 feet, respectively, south of the Final Assembly Building area.

The four (4) new groundwater monitoring wells, along with three (3) of the existing production wells (designated W2-3, W2-4, and W2-5), were sampled during this investigation and analyzed for halogenated volatile organics, aromatic volatile organics, semivolatile organic, metals, and perchlorate. The laboratory results from the halogenated and aromatic volatile organics analysis indicated that none were present in the groundwater above their respective detection limits. The inorganic analytical results were also less than the detection limits for all metals except zinc, which ranged from 2,100 to 1,600 μ g/L. Additionally, all seven samples were analyzed for perchlorate. Perchlorate was only reported for one sample, collected from well W2-3, at a concentration of 3,300 μ g/L (detection limit 20 μ g/L).

2.3.3 Disposal Area Removal Action

An electromagnetic survey (Radian, 1993) was conducted to determine the location and boundary of the former garbage disposal area (Historical Operational Area "M"). Subsurface anomalies were detected in the center portion of Historical Operational Area "M" in an area approximately 250 wide by 450 feet long. In order to visually confirm the presence of debris, a total of 12 handauger borings were drilled to depths ranging from 3 to 5.5 feet bgs. Based on the hand-auger sampling activities, the subsurface debris coincides with the surface debris area. Subsequently, three (3) trenches were excavated (designated north, central, and south) to approximately 5 to 8 feet bgs across the debris area. A total of nine (9) soil samples were collected and analyzed for VOCs, semivolatile organic compounds (SVOCs), and metals. Neither VOCs nor SVOCs were reported above their respective detection limits. All metals results were below the 10 times Soluble Threshold Limit Concentration (STLC) guidelines. An excavation was performed to remove all debris. A total of 816 tons of debris was removed and disposed of off site (BKK landfill). Three confirmation soil samples were collected from the perimeter and analyzed for VOCs, SVOCs, and metals. All results were below their respective guidelines. The excavation was backfilled to surrounding grade. The excavation activities were performed under the supervision of DTSC. DTSC issued a Remedial Action Certification letter on July 20, 1993 that indicated the remediation activities at the Site were completed and no further action was necessary.

2.3.4 Monitoring Well Destruction Report

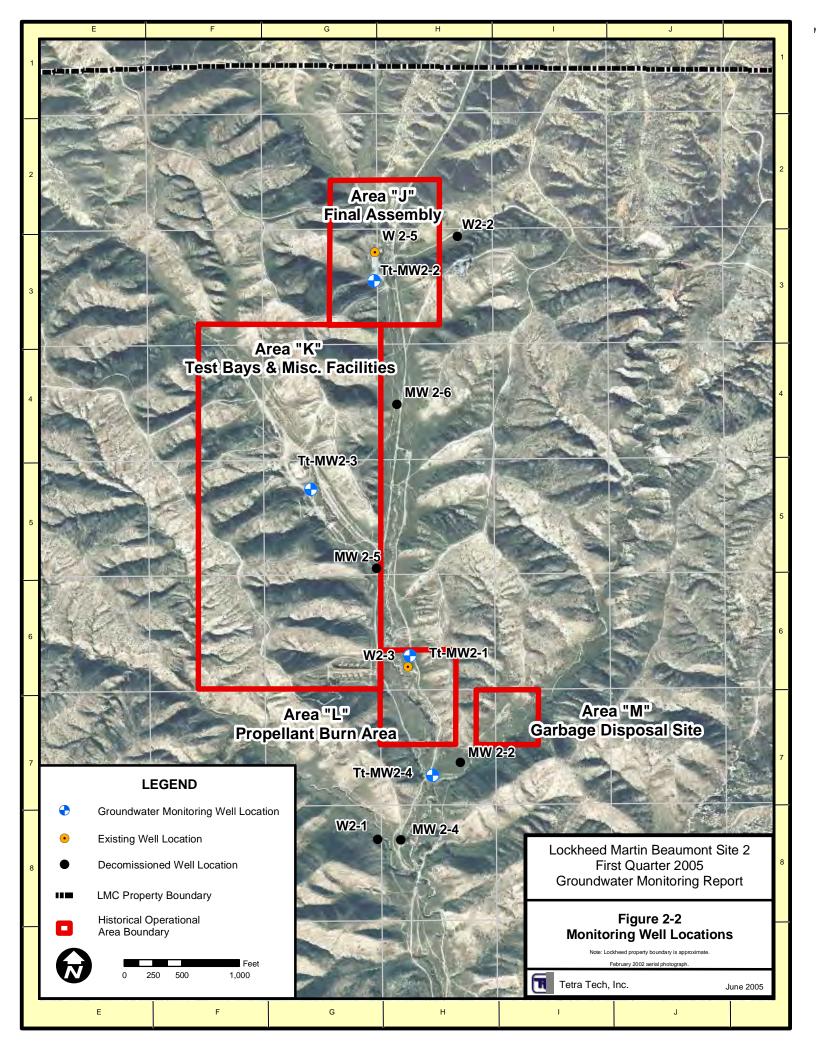
Based on the Remedial Action Certification letter issued by DTSC on July 20, 2003, LMC abandoned the four (4) groundwater monitoring wells MW2-2, MW2-4, MW2-5, and MW2-6 (LMC, 1995). Prior to abandonment activities in 1995, the four (4) monitoring wells were sampled and analyzed for VOCs using EPA Methods 8010 and 8020. VOCs concentrations were not reported above their respective detection limits.

The well abandonment activities were performed in accordance with the abandonment work plan approved by the California Regional Water Quality Control Board (CRWQCB). The groundwater monitoring wells were abandoned in compliance with the County of Riverside Department of Environmental Health Services (CRDEHS) and California Department of Water Resources

Bulletin 74-90 guidelines. The wells were abandoned using a neat cement/bentonite injection technique, cutting, capping, and removal of the top 5 feet of casing through excavation, and backfilling the excavation area with native clean soils.

2.3.5 Groundwater Sampling Results Former Production Well W2-3

In January 2003, Tetra Tech conducted groundwater sampling activities at the Site (Tetra Tech, 2003). The objective of the sampling was to confirm the historical detection of perchlorate in groundwater at the Site. The field activities included the location and identification of existing production wells, recording the physical condition of each well, and groundwater sampling and analysis.


Based on a file review of Unites States Geological Survey (USGS) topographic maps, Western Municipal District and Department of Water Resource (DWR) records and available Site reports, Tetra Tech identified four (4) production wells (W2-1, W2-2, W2-3 and W2-5) at the Site. Only wells W2-3 and W2-5 were visually identified at the Site. The depth to groundwater measured in well W2-3 was 45.65 feet below the top of the casing (BTOC) and the total depth of well W2-3 was 209.94 feet BTOC. Well W2-5 was dry with a total measured depth of 86.12 feet BTOC. Based on historical documents, total well depth of W2-5 was reported to be 500 feet BTOC. A visual inspection with a mirror identified an obstruction in well W2-5, possibly consisting of dirt and debris. Therefore, only well W2-3 was sampled.

A groundwater sample was collected from W2-3 and analyzed for VOCs, perchlorate and 1,4-dioxane. Concentrations of VOCs and 1,4-dioxane were not reported above their respective detection limits. Perchlorate was detected at 4,080 μ g/L in well W2-3.

2.3.6 Groundwater Monitoring Well Installation Report

In August and September 2004, Tetra Tech installed and sampled four (4) groundwater monitoring wells (designated Tt-MW2-1 through Tt-MW2-4) at the Site – *see Figure 2-2* (Tetra Tech, 2004b). The objective of the groundwater well installation program was to determine the current condition of groundwater conditions (i.e., groundwater gradient, COPCs, and extent of COPCs) at the Site.

The four (4) new groundwater monitoring wells were sampled and analyzed for VOCs, SVOCs (including 1,4-dioxane and N-Nitrosodimethylamine [NDMA]), Title 22 metals, and perchlorate. Based on the analytical results, the following constituents were reported above their respective Maximum Contaminant Level (MCL) or notification level (NL) in samples from the indicated well: perchlorate at 1,300 µg/L in Tt-MW2-3 (located in Historical Operational Area "K"); perchlorate at 3,500 µg/L in Tt-MW2-1 (located in Historical Operational Area "L"); and arsenic at 0.0853 mg/L in Tt-MW2-4 (deep) and at 0.0598 mg/L in Tt-MW2-4 (shallow) (downgradient of historical operational areas "L" and "M"). Bis-(2-ethylhexl)phthalate was also detected at 22 ug/L in Tt-MW2-3. The other COPCs were not reported above their respective MCL or NL in the analyzed groundwater samples. Based on the measured groundwater elevations, groundwater flow beneath the Site appeared to generally follow toward the southward sloping topography of Laborde Canyon.

SECTION 3.0 GEOLOGY AND HYDROGEOLOGY

3.1 REGIONAL GEOLOGY

The Site is located at the northern end of the Peninsular Range Geomorphic Province. In general, the Peninsular Range is a large block uplifted abruptly along its eastern edge and tilted westward. The province has a subtle northwest trend expressed by its higher mountains and longer valleys (Sharp, 1975). Major faults within the region include the San Jacinto Fault, and associated branch faults that have been mapped near the southern end of the Site. In addition, approximately 8 miles northeast of the Site, the Banning fault adjoins with the San Andreas Fault. The San Jacinto and San Andreas Fault zones have been active with moderate to major earthquakes occurring over the last 200 years.

The regional stratigraphy in the vicinity of the Site has been described and mapped by Dibblee (Dibblee, 1981). Geologic units, from oldest to youngest, consist of: the basement complex of late Paleozoic to middle Mesozoic age meta-sedimentary rocks and Mesozoic granitic rocks; non-marine sedimentary rocks of the Tertiary (Pliocene to Pleistocene) Mount Eden Formation overlain by the non-marine Tertiary sandstones and siltstones of the San Timoteo Formation; and Quaternary alluvium (Radian, 1990). A detailed description of site geology and hydrogeology is presented in the following subsections.

3.2 SITE GEOLOGY

The Site is primarily located within the confines of the Laborde Canyon valley floor and is underlain by Quaternary alluvium and colluvium. These geologic materials were derived from the weathering of the hillsides directly adjacent to the canyon. The alluvial deposits consist of very fine- to fine-grained silty sands and fine- to medium-grained poorly graded sands. These sandy zones are typically interbedded with finer grained silts and, in some cases, with silty clays.

The San Timoteo Formation, as encountered in the subsurface and exposed on site, consists of very fine-grained siltstone and very fine- to medium-grained silty sand. Some coarse pebbles and fragments were encountered in the more coarse-grained, sandy portions of the formation. The

rocks of the San Timeteo are generally poorly cemented, but are more indurated than the alluvial sediments that overlie the formation.

3.3 SITE HYDROGEOLOGY

The Site is located in an area that is commonly referred to as the "Badlands," an area of relatively soft sedimentary sandstone and siltstone deeply incised into numerous canyons by runoff. The Site is bisected by Laborde Canyon, which traverses a north-south pathway through the area. Laborde Canyon forms the principal drainage course through the Site, and allows ephemeral storm water to drain to the San Jacinto Valley. The watershed area, including the canyon itself, is ephemeral in nature and remains dry when there is no rainfall.

Groundwater at the Site is found primarily in the siltstones of the San Timoteo Formation, although these deposits yield only small quantities of water to wells (Radian, 1986b). Based on the historical and most recent groundwater levels measured at the Site, the groundwater gradient and flow direction generally follows the southward slope of the canyon floor. Recharge to the groundwater aquifer through the shallow alluvium occurs from direct infiltration of rainfall and loss from surface drainage through the sides and bottoms of stream channels.

SECTION 4.0 GROUNDWATER MONITORING ACTIVITIES

4.1 WATER LEVEL MEASUREMENTS

Water level measurements for the first quarter 2005 were collected in February 2005 from the five (5) monitoring well prior to groundwater sampling. Construction details for the wells is provided in Table 4-1. Measurements were taken at all proposed wells and there were no dry wells. Water level measurement results are discussed in Section 5.1. Copies of the field data log sheets for the groundwater monitoring wells are provided in Appendix A.

4.2 GROUNDWATER SAMPLING

A total of five (5) groundwater samples were collected and analyzed for VOCs by EPA Method 8260B, SVOCs (including 1,4-dioxane and NDMA) by EPA Method 8270C, Title 22 metals by EPA Method 6000/7000, and perchlorate by EPA Method 314.0. A summary of samples collected and analytical testing performed in provide in Table 4-2. The analytical results are discussed in Section 5.2.

Groundwater samples were collected from wells Tt-MW2-1 and Tt-MW2-3 by low-flow purging and sampling through the pump. Purging was considered complete when the water quality parameters (i.e., static water level, temperature, pH, electrical conductivity [EC], turbidity, oxidation reduction potential [ORP], and dissolved oxygen [DO]) stabilized. Stabilization of water quality parameters was used as an indication that fresh formation water had entered the well and was being purged. The criteria for stabilization of the parameters were as follows: water level +/- 0.1 foot; temperature +/- 1 degree Centigrade; pH +/- 0.1 unit; and EC +/- 5%. The data obtained during the process of purging the groundwater monitoring wells were recorded on field data log sheets (Appendix A).

Table 4-1 Monitoring Well Construction Summary

Screen Screen Reported Borth of feet) r r Slot Size Grain Flevation Length Depth of feet) r r Slot Size Grain TOS BOS (feet) Well (inches) (inches) Size Grain (feet) (feet) Well (inches) (inches) Size Grain (feet) (feet) Well (inches) Size Grain (feet) Well (inches) (inches) Size & & & & A PVC RMC#3 1985.21 1965.21 20.00 70.00 12 4 PVC sand 2032.23 2017.23 15.00 118.50 12 4 PVC sand 2014.10 1994.10 20.00 98.00 12 4 PVC sand 1926.94 1916.94 10.00 70.00 12 4 PVC sand </th <th></th> <th></th> <th>DOL</th> <th>i</th> <th></th> <th>i</th> <th></th> <th></th> <th></th> <th></th> <th>FilterPac</th> <th></th> <th></th>			DOL	i		i					FilterPac		
Elevation ToS Elevation Popth of ToS r r Slot Size & Grain	Date Elevation	Elevation	uc	Screen	Screen	Screen	Reported	Borehole Diamete	Casing Diamete	Screen	ㅗ	Northing	Easting
(feet) (feet) Well (inches) (inches) Size 8 & & & Size & (feet) (feet) material material Size (feet) (feet) material MAC #3 (feet) (feet) Material MAC #3 (feet) (feet) Material MAC #3 (feet) (feet) RMC #3 0.020 RMC #3 (feet) (feet) 118.50 12 4 PVC sand 2014.10 1994.10 20.00 98.00 12 4 PVC sand 1926.94 1916.94 10.00 70.00 12 4 PVC sand 1926.94 1916.94 10.00 95.00 12 4 PVC sand 1902.16 1892.16 10.00 95.00 12 4 PVC sand	Completed (feet MSL)	(feet MS	Ĺ	Elevation TOS	Elevation BOS	Length	Depth of	L	'n	Slot Size	Grain	Coordinate	Coordinate
1985.21 1965.21 20.00 70.00 12 4 PVC Sand				(feet)	(feet)	(feet)	Well	(inches)	(inches)	(inches)	Size	(y)	(x)
1985.21 1965.21 20.00 70.00 12 4 PVC sand 2032.23 2017.23 15.00 118.50 12 4 PVC sand 2014.10 1994.10 20.00 98.00 12 4 PVC sand 1926.94 1916.94 10.00 70.00 12 4 PVC sand 1926.94 1916.94 10.00 70.00 12 4 PVC sand 1927.16 1892.16 10.00 95.00 12 4 PVC sand 20020 RMC#3 2012.00 95.00 12 4 PVC sand 20020 RMC#3 2012.00 95.00 12 4 PVC sand 20020 RMC#3 2012.00 95.00 12 4 PVC sand 20020 RMC#3							(feet)		material	material			
1985.21 1965.21 20.00 70.00 12 4 PVC RMC#3 2032.23 2017.23 15.00 118.50 12 4 PVC sand 2014.10 1994.10 20.00 98.00 12 4 PVC sand 1926.94 1916.94 10.00 70.00 12 4 PVC sand 1902.16 1892.16 10.00 95.00 12 4 PVC sand 1902.16 1892.16 10.00 95.00 12 4 PVC sand													
1985.21 1965.21 20.00 70.00 12 4 PVC sand 2032.23 2017.23 15.00 118.50 12 4 PVC sand 2014.10 1994.10 20.00 98.00 12 4 PVC sand 1926.94 1916.94 10.00 70.00 12 4 PVC sand 1926.94 1916.94 10.00 70.00 12 4 PVC sand 1926.94 1916.94 10.00 95.00 12 4 PVC sand 1902.16 1892.16 10.00 95.00 12 4 PVC sand										0.020	RMC #3		
2032.23 2017.23 15.00 118.50 12 4 PVC sand 2014.10 1994.10 20.00 98.00 12 4 PVC sand 1926.94 1916.94 10.00 70.00 12 4 PVC sand 1926.94 1916.94 10.00 70.00 12 4 PVC sand 1926.94 1916.94 10.00 95.00 12 4 PVC sand 1902.16 1892.16 10.00 95.00 12 4 PVC sand	9/1/2004 2035.21	2035.	21	1985.21	1965.21	20.00	70.00	12	4	PVC	sand	2273430.33	6325373.90
2032.23 2017.23 15.00 118.50 12 4 PVC sand 2014.10 1994.10 20.00 98.00 12 4 PVC sand 1926.94 1916.94 10.00 70.00 12 4 PVC sand 1926.94 1916.94 10.00 70.00 12 4 PVC sand 1902.16 1892.16 10.00 95.00 12 4 PVC sand										0.020	RMC #3		
2014.10 1994.10 20.00 98.00 12 4 PVC sand 1926.94 1916.94 10.00 70.00 12 4 PVC sand 1926.94 1916.94 10.00 70.00 12 4 PVC sand 1902.16 1892.16 10.00 95.00 12 4 PVC sand sand 20.02 20.02 20.02 20.02 20.02 20.02 20.02	8/30/2004 2135.73	2135.7	73	2032.23	2017.23	15.00	118.50	12	4	PVC	sand	2276662.64	6325085.92
2014.10 1994.10 20.00 98.00 12 4 PVC sand 1926.94 1916.94 10.00 70.00 12 4 PVC sand 1902.16 1892.16 10.00 95.00 12 4 PVC sand 2002.0 RMC#3 3 0.020 RMC#3 3										0.020	RMC #3		
1926.94 1916.94 10.00 70.00 12 4 PVC sand 1902.16 1892.16 10.00 95.00 12 4 PVC sand	8/31/2004 2092.10	2092.	10	2014.10	1994.10	20.00	98.00	12	4	PVC	sand	2274876.52	6324520.74
1926.94 1916.94 10.00 70.00 12 4 PVC sand 1902.16 1892.16 10.00 95.00 12 4 PVC sand										0.020	RMC #3		
1902.16	9/7/2004 1986.94	1986	.94	1926.94	1916.94	10.00	70.00	12	4	PVC	sand	2272392.82	6325561.45
1902.16 1892.16 10.00 95.00 12 4 PVC sand										0.020	RMC #3		
	9/7/2004 1987.16	1987	.16	1902.16	1892.16	10.00	95.00	12	4	PVC	sand	2272392.82	6325561.45

MW - Monitoring well TOC - Top of Casing TOS - Top of Screen

BOS - Bottom of Screen

Monitoring Well List and Testing Summary – First Quarter 2005 Table 4-2

				1,4-		;	Title 22	
Monitoring Well or Sample Location	Sample Date	VOCS/EPA 8260B	SVOCS/EPA 8270C	Dioxane/EPA 314.0	NDMA	Perchlorate/ EPA 314.0	Metals/EPA 6010B/7000	Comments and QA/QC Samples
Tt-MW2-1	2/16/05	X	X	X	X	Х	X	
Tt-MW2-2	2/16/05	X	X	X	X	X	X	Well purged dry
Tt-MW2-3	2/16/05	X	X	X	X	X	X	
Tt-MW2-4 (shallow)	2/16/05	X	X	X	X	X	X	Well purged dry
Tt-MW2-4 (deep)	2/16/05	X	X	X	X	X	X	Well purged dry
Tt-MW2-20	2/16/05	X	X	X	X	X	X	Duplicate Tt-MW2-2

0 0 0 Total Samples Collected Sample Locations Not Accessible Total Sample Locations **Dry Sample Locations**

Notes: QA/QC - Quality Assurance/Quality Control

Due to the relatively poor recovery rates at wells Tt-MW2-2, Tt-MW2-4 (shallow), and Tt-MW2-4 (deep), continuous purging could not be sustained and the wells were pumped dry before stabilization of the water quality parameters could be achieved. Once dry, the wells were allowed to recover for several hours prior to collecting a sample with a disposable bailer.

A sample identification label was affixed to each sample container and sample custody was maintained by a chain-of-custody (COC) record. The COC record was completed in the field by the individuals collecting the samples. All samples were placed in the appropriate containers and each sample identification number, date, and time of sample collection was recorded on the COC record. The samples were chilled and transported to Calscience Environmental Laboratories, Inc., a California state-accredited analytical laboratory. Trip blanks and equipment blanks were collected to assess contamination of the environmental samples while in transit and / or via sampling equipment. A copy of the COC record is provided in Appendix B.

All sampling equipment was decontaminated after use in each well. All decontamination fluids were containerized and stored on site prior to disposal.

4.3 BIOLOGICAL SURVEY

Prior to initiating the groundwater monitoring field activities, a biological survey of the groundwater monitoring wells proposed for sampling was performed by a Section 10A permitted or sub-permitted biologist to evaluate the potential for impacts to sensitive species / habitats (i.e., Stephen's Kangaroo Rat [SKR]) during the field activities. As part of the biological survey, the biologist identified and marked all potential or suspected SKR burrows that were located in the vicinity of each well location to avoid the potential "take" (i.e., harm, harassment, and / or death) of SKRs. The biologist also clearly marked the ingress and egress routes to each well location in an effort to minimize the overall footprint of the field activities and the impacts to SKR habitat.

Furthermore, all of the field activities were performed under the supervision of the biologist who monitored each work location, including ingress and egress pathways. As a result, no "take" of SKR occurred during the performance of the activities related to the water level measurement and sampling of the groundwater wells.

SECTION 5.0 SUMMARY OF ANALYTICAL RESULTS

5.1 GROUNDWATER OCCURENCE AND FLOW

Water level measurements were collected from wells Tt-MW2-1 through Tt-MW2-4 on February 16, 2005. A tabulated summary of the measured depths to water and calculated groundwater elevations is presented in Table 5-1.

Table 5-1 Summary of Groundwater Elevation Data – First Quarter 2005

Well ID	Date Measured	Measuring Point Elevation (feet MSL)	Depth to Water (feet)	Groundwater Elevation (feet MSL)
Tt-MW2-1	02/16/05	2035.21	54.69	1980.52
Tt-MW2-2	02/16/05	2135.73	69.38	2066.35
Tt-MW2-3	02/16/05	2092.10	69.10	2023.00
Tt-MW2-4				
(shallow)	02/16/05	1986.94	48.95	1937.99
Tt-MW2-4				
(deep)	02/16/05	1987.16	56.25	1930.91

Notes: MSL = above mean sea level bgs = below ground surface

Based on the measured groundwater elevations, groundwater flow beneath the Site generally follows the southward sloping topography of Laborde Canyon. This pattern is consistent with that observed in a previous hydrogeologic study of the area (Radian, 1992b) and during the groundwater monitoring well installation program conducted in August and September 2004 (Tetra Tech, 2004b). However, it is unclear if this pattern is truly representative of actual hydraulic conditions, as there is some indication that a more complex or multi-layered hydrogeologic system exists beneath the Site.

5.2 ANALYTICAL SAMPLING RESULTS

On February 16, 2005, a total of five (5) groundwater samples were collected and analyzed for VOCs, SVOCs (including 1,4-dioxane and NDMA), Title 22 metals, and perchlorate. A summary of these analytical results is presented in Table 5-2. A copy of the laboratory analytical report is provided in Appendix B. Validated sample results are provided by method in Appendix C.

Trichloroethylene (TCE) (1.2 μ g/L), toluene (1.8 μ g/L), and xylenes (1.8 μ g/L) were the only VOCs detected and were only detected in the groundwater sample collected from well Tt-MW2-3 (located within Historical Operational Area "K"). The reported concentrations were below their respective MCL. A summary of the analytical results for VOCs is presented in Table 5-2.

SVOCs, including 1,3-dioxane and NDMA, were not detected in any of the analyzed groundwater samples.

Table 5-2 Summary of Volatile Organic Compound Results

Sample Location	Sample Date	VOCs (µg/L)
Tt-MW2-1	02/16/05	ND*
Tt-MW2-2	02/16/05	ND*
Tt-MW2-20 (DUP.)	02/16/05	ND*
Tt-MW2-3	02/16/05	TCE = 1.2 $Toluene = 1.8$ $Xylenes = 1.8$
Tt-MW2-4 (shallow)	02/16/05	ND*
Tt-MW2-4 (deep)	02/16/05	ND*
Equipment Blank	02/16/05	ND*
Trip Blank	02/16/05	ND*
Reporting Limit	(μg/L)	1.0
(1)Maximum Contaminar	nt Level (µg/L)	5.0 (TCE) 150 (toluene) 1,750 (xylenes)

Notes: (1) - Based on Title 22 California Code of Regulations, unless otherwise indicated

μg/L – micrograms per liter

DUP. – duplicate sample N/A - not analyzed

ND - compound not detected at or above its respective reporting limits

VOC - volatile organic compound

* None of the VOCs analyzed under EPA Method 8260B were detected at or above their respective reporting limits

Based on the analytical results of the Title 22 metals analyses, arsenic, barium, molybdenum, vanadium, and zinc were detected in the groundwater samples. However, all reported concentrations were below their respective drinking water MCL, except for the reported concentration of arsenic in the sample from well Tt-MW2-4 (deep) (0.0791 mg/L). A summary of the analytical results for the Title 22 metals is presented in Table 5-3.

Table 5-3 Summary of Title 22 Metals Results

Sample			Title 22 Metals (mg/L)		
Date	Arsenic	Barium	Molybdenum	Vanadium	Zinc
02/16/05	ND	0.0933	0.0074	0.0063	0.033
02/16/05	ND	0.0266	ND	0.0131	0.018
02/16/05	ND	0.0200	ND	0.0127	0.0125
02/16/05	ND	0.0974	ND	ND	ND
02/16/05	0.0427	0.0752	0.0173	0.0812	ND
02/16/05	0.0791	ND	0.0116	0.0995	ND
02/16/05	ND	ND	ND	ND	ND
ng/L)	0.01	0.01	0.005	0.005	0.01
ant Level	0.05	1.0	NE	NE	NE
	02/16/05 02/16/05 02/16/05 02/16/05 02/16/05 02/16/05 02/16/05 02/16/05 02/16/05	Date Arsenic 02/16/05 ND 02/16/05 ND 02/16/05 ND 02/16/05 ND 02/16/05 ND 02/16/05 0.0427 02/16/05 0.0791 02/16/05 ND ng/L) 0.01	Date Arsenic Barium 02/16/05 ND 0.0933 02/16/05 ND 0.0266 02/16/05 ND 0.0200 02/16/05 ND 0.0974 02/16/05 0.0427 0.0752 02/16/05 0.0791 ND 02/16/05 ND ND 0g/L) 0.01 0.01 ant Level 0.01 0.01	Sample Date (mg/L) Arsenic Barium Molybdenum 02/16/05 ND 0.0933 0.0074 02/16/05 ND 0.0266 ND 02/16/05 ND 0.0200 ND 02/16/05 ND 0.0974 ND 02/16/05 0.0427 0.0752 0.0173 02/16/05 0.0791 ND 0.0116 02/16/05 ND ND ND ng/L) 0.01 0.01 0.005 ant Level 0.01 0.01 0.005	Sample Date (mg/L) Arsenic Barium Molybdenum Vanadium 02/16/05 ND 0.0933 0.0074 0.0063 02/16/05 ND 0.0266 ND 0.0131 02/16/05 ND 0.0200 ND 0.0127 02/16/05 ND 0.0974 ND ND 02/16/05 0.0427 0.0752 0.0173 0.0812 02/16/05 0.0791 ND 0.0116 0.0995 02/16/05 ND ND ND ND ng/L) 0.01 0.01 0.005 0.005 ant Level

Notes:

(1) - Based on Title 22 California Code of Regulations, unless otherwise indicated

mg/L - milligrams per liter

DUP. – duplicate sample

bold - at or above maximum contaminant level/Action Level

N/A - not analyzed

ND - compound not detected at or above its respective reporting limits

NE - not established

Perchlorate was not detected in the groundwater samples collected from wells Tt-MW2-2, Tt-MW2-4 (shallow), or Tt-MW2-4 (deep). However, perchlorate was detected at concentrations of 7,100 μ g/L and 740 μ g/L in the samples collected from wells Tt-MW2-1 and Tt-MW2-3, respectively. A summary of the analytical results for perchlorate is presented in Table 5-4.

Table 5-4 Summary of Perchlorate Results

Sample Location	Sample Date	Perchlorate (µg/L)
Tt-MW2-1	02/16/05	7,100
Tt-MW2-2	02/16/05	ND
Tt-MW2-20 (DUP.)	02/16/05	ND
Tt-MW2-3	02/16/05	740
Tt-MW2-4 (shallow)	02/16/05	ND
Tt-MW2-4 (deep)	02/16/05	ND
Equipment Blank	02/15/05	ND
Reporting L	imit (μg/L)	2.0
(1)Maximum Contan	ninant Level (µg/L)	6.0(1)

Note: (1) - Current State of California Notification Level

bold – at or above maximum contaminant level/Action Level

boid – at or above maximum contaminant level/Action Level
µg/L – micrograms per liter
DUP. – duplicate sample
N/A - not analyzed
ND – compound not detected at or above its respective reporting limits

SECTION 6.0 EVALUATION OF FINDINGS

As part of the Site groundwater characterization program, Tetra Tech conducted quarterly monitoring in the first quarter of 2005 to monitor COPCs (i.e., VOCs, SVOCs, 1,4-dioxane, NDMA, Title 22 metals, and perchlorate) in groundwater beneath the Site. Groundwater samples were collected and groundwater level measurements were recorded from wells Tt-MW2-1 through Tt-MW2-4 on February 16, 2005.

Based on the groundwater elevations results discussed in Section 5.1, groundwater flow beneath the Site generally follows toward the southward sloping topography of Laborde Canyon. This pattern is consistent with that observed in a previous hydrogeologic study of the area (Radian, 1992b) and during the groundwater monitoring well installation program conducted in August and September 2004 (Tetra Tech, 2004b).

The reported concentrations of perchlorate in groundwater samples from wells Tt-MW2-1 (7,100 μ g/L) and Tt-MW2-3 (740 μ g/L), and arsenic in the sample from Tt-MW2-4 (deep) (0.0791 mg/L) were above their respective MCL or NL. The other COPCs were not reported above their respective notification levels (e.g., MCL or NL) in the analyzed groundwater samples. These wells showed similar detected concentrations in the September 2004 sampling event. However, there is insufficient water quality data to identify trends in the reported COPC concentrations.

Subsequent sampling events will including analytical testing for only VOCs, perchlorate, and metals. The compounds NDMA and 1,4-dioxane have not been detected in Site 2 monitoring wells and testing will no longer be performed for these compounds.

SECTION 7.0 REFERENCES

Dibblee, T. W., 1981. Geologic Map of Banning, 15-Minute Quadrangle, California, South Coast Geological Society, 1981.

Lockheed Martin Corporation, 1995. Monitoring Well Destruction Report, Former Lockheed Propulsion Company, Beaumont No. 2 Facility, Beaumont, California, November 15, 1995.

Radian, 1986a. Lockheed Propulsion Company Beaumont Test Facilities Historical Report, September 1986.
, 1986b. Preliminary Remedial Investigation, Lockheed Propulsion Company Beaumont Test Facilities, December 1986.
, 1990. Source and Hydrogeologic Investigation – Final, Lockheed Propulsion Company Beaumont Test Facilities, February 19, 1990.
, 1992a. Hydrogeologic Investigation and Landfill Investigation Workplan, Lockheed Propulsion Company Beaumont No. 2 Facility, July 1992.
, 1992b. Hydrogeologic Study, Lockheed Propulsion Company Beaumont Test Facilities, December 1992.
, 1993. Disposal Area Removal Action, Lockheed Propulsion Company, Beaumont No. 2 Site, June 1993.
Sharp, R. P., 1975. Geology Field Guide to Southern California, Kendall/Hunt Geology Field Guide Series, Second Edition, 1975.
Tetra Tech, Inc., 2003. Groundwater Sampling Results, Former Production Well W2-3, Beaumont Site 2, February 5, 2003.
, 2004a. Final Lockheed Martin Beaumont Site 2 Groundwater Monitoring Well Installation Work Plan Beaumont, California, January 23, 2004.
, 2004b. Final Lockheed Martin Beaumont Site 2 Groundwater Monitoring Well Installation Report Beaumont, California, November 15, 2004.

APPENDIX A

GROUNDWATER MUNITORING WELL FIELD DATA LOG SHEET - PURGING

D	0[
LEXE		_

	NG WELL IDENTIPICA		MW DUPLIC					OVA: FID	PID In			_ (vented to) _ (vented to)	
atic wat	TER LEVEL (ft bloc) 5 J. W. (feet) 18 P VOLUME (V) (gals)	56	TOTAL	WELL DEP	TH (feet)	n)	4"	SAMPLER"	IP DEPTH (feel	Charles		-	
Time	Activity	Water Level (ft btoc)	Pump Depth (It btec)	Temp (Deg. C/F)	EC (µmhos/em) *Ps5/en	рН	Turbidity (NTU)	Dissolved Oxygen (mg/L)	ORP (mV)	Color	Volume Purged (gals)	Bore Hole Volumes Purged	Flow Rate (mIPM / GPM)
W155	Stat Pup	54.69	68	-	_	-	-	-	-		0	0	0.5
2:05		57.65	68	24.43	1.232	7.70	237	2.16	-15.4	Cloudy	5.0	. 41	0.5
12:10		55.10	68	24.48	1.245	7.68	102.4	2.75	-14.9	Claudy	7.5	-62	0.5
2:15		58.25	18	24.49	1.210	7.66	144	2.34	-14.7	11 //	10.0	. 72	6.5
2120		58.24	68	24.73	1.284	7.66	237	2.43	-14.6	" "	12.5	1.04	0.5
2:25		59.28	68	24.59	1.324	7.61	359	2.58	11.3		15.0	1.75	4.5
2/30		58.31	18	24.56	1.340	7.59	392	2.65	-9.5	٦ ,	17.5	1.45	0.5
2:35		58.33	68	24.60	1.346	7.58	345	2.70	-8.1	11 21	24.4	1.66	0.5
12:40	Callect	500	phe										
		, -											
omments	Tuebida	ty 5+	Fe+2 (ppm	in p	Taker	from fi	irst bailer, im	modiately befo	ore sampling.	PARAMETERS FOR W Temperature ±1°C (10 pH ± 0.1		ALITY STAE Conductivi	ty ±5%

GROUNDWATER MC. ITORING WELL FIELD DATA LOG SHEET - PURGING

I defined has
A (vented to)
(vented to)
>

Time	Activity	Water Level (ft btoc)	Pump Depth (ft btoc)	Temp (Deg. C/F)	EC (umbodom) #5/@A	рН	Turbidity (NTU)	Dissolved Oxygen (mg/L)	ORP (mV)	Color	Volume Purged (gals)	Volumes Purged	Flow Rate (mIPM / GPM)
9:25	short las	69.38	119	-	_	-	_	_			0	0	0.5
9:35		72.91	119	22.23	.736	8.72	89.5	0.61	-27.5	Cloudy	5	.15	0.5
7:40	_	74.0	119	22.53	.715	8.71	63.7	0.70	_27.6	should cloudy	7.5	.73	0.5
7:45	-	75.12	119	22.93	.700	8.71	53.0	0.81	- 24.3	u "	10.0	.30	45
7:50		76.21	119	2356	.192	F.74	42.1	0.62	-34.	11 11	125	.37	0.5
9:55	* Increase	77.21	119	22.9	.701	8,73	72.3	0.61	-35.7	υ υ	15.0	.45	1.5
4'04		40.4	119	22.7	.726	8.67		0.60	-36.9	10 10	225	-68	1.5
0.45		87.4Z	119	77.51	.698	5.53	154	0.55	-32.8	relandy "	30	,91	1.5
1d 10		90.25	119	22.60	.198	8.63	99.9	0.67	-35.7	elandy "	37.5	1.13	1.5
0:15		92.93	119	22, 72	,820	9.64	F5. 10	0.80	-35.0	slightly chily	35	1.06	1,5
10:20		76.27	119	22.25	.978	8.63	194.0	8.09	-37.4		42.5	1.29	1.5
10: 23		103.42	119	22.25	.730	8.55	593	1.66	-26.9	C'hady"	50.0	1.51	1.5
10:30		107.41	119	22.50	.791	3.57	545	2.19	-25.2	Chaly	57.5	1.79	1.5
19:15		101.46	119	22.03	-791	8.62	564	1.43	-30.6	" "	65.0	1.97	1.5
2174		114.26	119	21.97	.722	8.59	620	0.10	-40.2		72.5	2.19	1.5
0146	Well Ran	Dry	- will	return	leter In	day	after	rechance	to 5	make -	80.0	12.92	145

Fe+2 (ppm) _____ Taken from first bailer, immediately before sampling.

PARAMETERS FOR WATER QUALITY STABILIZATION

Temperature ±1°C (1.8°F) Conductivity ±5%

PH ±0.1 Turbidity ≤5 NTUs

Will Lraw well level at return later in lay to sample after recharge

Sampled at 15:30 Water level at 91.35

Note: All water levels and pump depths are measured from the notch in the top of the well easing. If volatiles are detected in the breathing zone during the initial screening, the breathing zone will be periodically monitored during purging and sampling activities and recorded in the logbook.

GROUNDWATER MUNITORING WELL FIELD DATA LOG SHEET - PURGING

Page Lof 1

MONITORIN AMPLE I.D TATIC WAT WATER COL	NAME LMC OF WELL IDENTIFICA TE-MD2- ER LEVEL (ft bloc) UMN (feet) 3 2	3 69.10 . 22	DUPLIC TOTAL CASIN	CATE 1.D WELL DEP G/TUBING	TH (feet) / Z	7/. 3 (A)	3	SAMPLING OVA: FID [IN BREATH FINAL PUM SAMPLER'S	DEVICE	m) (initial)	NA NA	_ (vented to)	04/-
Time	Activity	Water Level (ft btoc)	Pump Depth (It btac)	Temp (Deg.	EC (pmhos/em)	рН	Turbidity (NTU)	Dissolved Oxygen (mg/L)	ORP (mV)	Color	Volume Purged (gals)	Bore Hole Volumes Purged	Flow Rate (miPM / GPM)
	Stat Pmp	69.10	100			_		_	_		-		0.5
161 00		72.33	100	23.74	1.253	7.49	60.0	7.31	13.1	Slightly clarky	2.5	./2	0.5
1:75		72.94	100	23.92	1.258	7.45	17.0	7.45	14.7	Chear	5.4	,24	4.5
160 30		72.79	100	23.94	1.260	7.41	7.8	7.33	16.2	Cha	7.5	.36	0.5
16:35		72.78	160	24.03	1.263	7.42	Z70	7.30	15.9	Clear	10.4	.48	4.5
6:48		72.78	100	24.06	1.266	241	5.5	7.40	15.8	Chew	12.5	.60	0.5
11195		72.78	/40	24.04	1. 765	7.42	4.8	7.4/	15.9	Cler	15.0	.72	0.5
6:50		72.75	144	14.05	1.266	7.41	4.5	7.45	16.1	Chen	17.5	.89	0.5
1655	Suplay												
						,							
omments			Fe+2 (ppm) ———	Taker	n from fi	rst bailer, im	mediately befo	re sampling.	PARAMETERS FOR W. Temperature ±1°C(1 pH ±0.1		ALITY STAI Conductivi	ty ± 5%

GROUNDWATER MC..ITORING WELL FIELD DATA LOG SHEET - PURGING

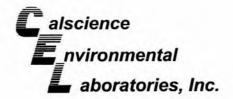
Dane	of	

AMPLE 1.D. FATIC WAT ATER COL	TE- MWZ- ER LEVEL (fibroe) _ UMN (feet) _ 24. VOLUME (V) (gels)	THON TE - 45 48.95 2	— M W2 _ DUPLIK _ TOTAL _ CASIN	CATE I.D WELL DEP	TH (feet)	3.15	4.	OVA: FID [IN BREATH FINAL PUM		777	NA	(vented to)	
Time	Activity	Water Level (ft btoc)	Pump Depth (ft btqc)	Temp (Deg. C/F)	EC (µmhos/cm) x	рН	Turbidity (NTU)	Dissolved Oxygen (mg/L)	ORP (mV)	Color	Volume Purged (gals)	Bore Hole Volumes Purged	Flow Rate (mIPM / GPM)
J:30	Start Pap	48.95	72			J				_	0	0	1.5
3 73		58.94	72	22.96	0.551	8.43	57.2	3.91	-9.5	slightly clardy	7.5	.48	1.5
2140		64.61	72	23.11	0.550	8.42	38.7	3.86	-7.7	n j	15.0	.95	1.5
3:45		66.33	72	2320	0.555	8.50	41.8	3.47	70.2	11	225	1.43	1.5
3:54		69.25	72	23.36	0.757	8.64	72.5	1-69	-16.4	n p	300	1.91	1.5
3:55		70.83	72	23.54	0.626	8.60	84.3	0.91	-19.7		37.5	2.3 P	1.5
3:56	Well,	Ran	Dry	Wil		n.	later	+ 5	ple	after reph	ge_		
7:10	Surpling	Bate											
											-		
omments:	Historica Will A	K Ne				u.f.	- myter	mediately before	re sampling.	PARAMETERS FOR Temperature ±1°C pH ±0.1		ALITY STAI Conductivi Turbidity	ty ± 5%

GROUNDWATER MONITORING WELL FIELD DATA LOG SHEET - PURGING

Page __of .

OGRAM NAM	- 18- 05 LMC	Bea	munt	CW	Saply			SAMPLINO	DEVICE _	Graffie Redi- Disperdh Bes	Lei		
	VELL IDENTIFICA		- MW	1-	Deep	2		OVA: FID	PID 🔲 ln	Casing (ppm) (initial)	NA	_ (vented to)	-
MPLE I.D.	T+-MWS	1-4D		ATE LD				IN BREATH	INO ZONE (PI	om) (initial)	N/H	_ (vented to)	
ATIC WATER	LEVEL (fi bloc) _	56.25	TOTAL	WELL DEP	TH (feet) 9	8.05		FINAL PUM	P DEPTH (fee	97			
	N (feet) 4/1.				DIAMETER (In/				SIGNATURE	Cask	5_		
BLL/PUMP V	OLUME (V) (gals)	41.80	×.65 =	27.	17 gal 3	V (gals)	81.51						
Time	Activity	Water Level (ft btoc)	Pump Depth (ft btoc)	Temp (Deg. C/F)	EC (µmhos/cm) x	pН	Turbidity (NTU)	Dissolved Oxygen (mg/L)	ORP (mV)	Color	Volume Purged (gale)	Bore Hole Volumes Purged	Flow Rate (mlPM)
	Int Pag	5625	97	_		-	_		_		_		1.5
4:15		69.90	97	23.40	0.444	8.88	50.0	1.79	-20.8	slightly closly	7,5	,29	1.5
14:20		74,10	97	23.52	0.446	8.9z	39.0	1.60	-21.9	11	15.0	.55	1.5
1:25		77.78	97	23.67	0.447	8.97	40.0	1.39	- 24.1	n //	22.5	.83	1.5
4:30		81.53	97	23.58	0.447	9.04	34.0	1.28	-26.0		34.0	1.10	1.5
7:35		89.35	97	23.45	0.453	8.95	30.0	1.58	- Z3.4	11 4	37.5	1.38	1.5
4:40		92,18	97	23,62	0.438	9.17	95.4	0.16	771.3		45	1.66	1.5
4:45		97.46	97	23.66	0.424	9.18	85.0	0.08	-31.9		525	1.93	1.5
4.48	well R	a Day	- W.	11 Re	torn 1	41	In L	+ 5	gle.	fle rechings	v		
17:20 3	sampting	68.46	1										
											9		
			Fe+2 (ppm		Take	- 6mm 6	lest hailes Im	mediately befo	se sempling	PARAMETERS FOR W.	TED OF	Time on in	71.171.770
omments:	Historica	le wel							re sampling.	PARAMETERS FOR WA		Conductivit	y ±5%
, , , , , , , , ,	will	/	ell d	,	to better			wa late		pH ± 0.1		Turbidity :	S NTU


L. M. H. 2020 -ESD Model 800 Turbidity Meter Calibration Log

Light box and turo	idity vial clean and lint	-free? yes	<u></u> no_		
Expected turbidity	of water < 5	NTU I	Battery CheckO	IC	
	s used for calibration _ r calibration should bra			NTU	
	djusted to 0 NTU stand and/or potentiometer O		no _		
0-20 NTU range a (Use potentiometer	djusted to 10 NTU stan r 20)	dard? yes	no _		
0-200 NTU range (Use potentiometer	adjusted to 10 NTU sta r 200)	/0 5+	thundered call	1, inted to	10 NTO
Turbidity readings	at the end of the day:			read	0.96
10 NTU standard (on 0-20 scale reads	-	NTU		
10 NTU standard o	on 0-200 scale reads		NTU		÷
Comments:	o i de la companya de				

YSI 556 Multi Probe System - Calibration Log

	Date 2 - 16-05 Time 7:30 Serial Number 02 M 0361 AA
1.	
	a. press the power key to display the run screen
	b. press the escape Esc key to display the main menu screen
	c. use the arrow keys to highlight the Calibrate selection
	d. press the enter key to display the calibration screen
2.	Conductivity Calibration Conductivity Standard Used 1.4/3 Initial Reading 1.162
	a. use the arrow keys to highlight the Conductivity selection
	b. press the enter key to display the conductivity calibration screen
	c. use the arrow keys to highlight the Specific Conductance selection
	d. press the enter key to display the conductivity calibration screen
	e. place 55 ml of a known conductivity standard in the transport / calibration cup and screw onto the probe module
	f. use the key pad to enter the value of the calibration standard (in mS/cm at 25 C)
	g. press the enter key to enter the conductivity calibration screen, allow a minimum of one minute for temperature equilibration
	 h. observe the readings for specific conductance, when the reading shows no significant change for 30 seconds press the enter key to continue
	i. press the enter key to return to the conductivity calibration screen
	j. press the Esc key to return to the calibration screen
3.	pH Calibration pH Standards Used 7/4 Initial Readings 7.04/4.04
	a. use the arrow keys to highlight the pH selection
	b. press the enter key to display the pH calibration screen
	c. use the arrow keys to highlight the 2 point selection
	d. press the enter key to display the pH calibration screen
	e. place 30 ml of a known pH standard in the transport / calibration cup and screw onto the probe module
	f. use the key pad to enter the value of the calibration standard (at the current temperature)
	g. press the enter key to enter the pH calibration screen, allow a minimum of one minute for temperature equilibration
	h. observe the readings for pH, when the reading shows no significant change for 30 seconds press the enter key to continue
	i. press the enter key to return to the pH calibration screen
	j. repeat steps d – I for the second calibration standard
	k. press the Esc key to return to the calibration screen
4.	
	a. use the arrow keys to highlight the Dissolved Oxygen selection
	b. press the enter key to display the dissolved oxygen calibration screen
	c. use the arrow keys to highlight the DO % selection
	 d. press the enter key to display the dissolved oxygen barometric pressure screen e. place 1/8" ml of tap water in the transport / calibration cup and screw onto the probe module (engage only one or two threads to
	e. place 1/8" ml of tap water in the transport / calibration cup and screw onto the probe module (engage only one or two threads to ensure that the DO sensor is vented to the atmosphere)
	f. press the enter key to enter the DO% calibration screen, allow a minimum of ten minutes for the air to become water saturated
	g. observe the readings for DO, when the reading shows no significant change for 30 seconds press the enter key to continue
	h. press the enter key to return to the DO calibration screen
	l. press the Esc key to return to the calibration screen
5.	
	a. use the arrow keys to highlight the ORP selection
	b. press the enter key to display the ORP calibration screen
	c. place 30 ml of a known ORP standard in the transport / calibration cup and screw onto the probe module
	d. use the key pad to enter the value of the calibration standard (at the current temperature)
	e. press the enter key to enter the ORP calibration screen, allow a minimum of one minute for temperature equilibration
	f. observe the readings for ORP, when the reading shows no significant change for 30 seconds press the enter key to continue
	g. press the enter key to return to the ORP calibration screen h. press the Esc key to return to the calibration screen
	n. press the Lac key to retain to the campitation sweet

APPENDIX B

February 24, 2005

Neil Shukla Tetra Tech, Inc. 3475 East Foothill Blvd., Suite 300 Pasadena, CA 91107-6024

Calscience Work Order No.: Subject:

05-02-0998

Client Reference:

Lockheed - Beaumont 2GW Sampling /

13505-02

Dear Client:

Enclosed is an analytical report for the above-referenced project. The samples included in this report were received 2/17/2005 and analyzed in accordance with the attached chain-of-custody.

Unless otherwise noted, all analytical testing was accomplished in accordance with the guidelines established in our Quality Assurance Program Manual, applicable standard operating procedures, and other related documentation. The original report of any subcontracted analysis is provided herein, and follows the standard Calscience data package. The results in this analytical report are limited to the samples tested and any reproduction thereof must be made in its entirety.

If you have any questions regarding this report, please do not hesitate to contact the undersigned.

Sincerely,

Calscience Environmental

Laboratories, Inc.

Jason Torres Project Manager

Tetra Tech, Inc.

3475 East Foothill Blvd., Suite 300

Pasadena, CA 91107-6024

Date Received:

Work Order No:

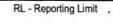
02/17/05 05-02-0998

Preparation:

EPA 3005A Filt. / EPA 7470A Filt.

Method:

Units:


EPA 6010B / EPA 7470A

mg/L

Project: Lockheed - Beaumont 2GW Sampling / 13505-02

Page 1 of 3

Client Sample Number				Sample lumber	Date Collected	Matrix	Date Prepared	Date Analyzed	QC Ba	tch ID
EB1-P	Manda in Jack		5-02-099	98-2	02/15/05	Aqueous	02/17/05	02/18/05	050217	L03F
Comment(s): -Mercury was a	nalyzed on 2/18/20	005 3:11:03	PM with	batch 05	0218L01F					
Parameter	Result	RL	DF	Qual	Parameter		Result	RL	DF	Qual
Antimony	ND	0.0150	1		Mercury		ND	0.000500	1	
Arsenic	ND	0.0100	1		Molybdenum		ND	0.00500	1	
Barium	ND	0.0100	1		Nickel		ND	0.00500	1	
Beryllium	ND	0.00100	1		Selenium		ND	0.0150	1	
Cadmium	ND	0.00500	1		Silver		ND	0.00500	1	
Chromium (Total)	ND	0.00500	1		Thallium		ND	0.0150	1	
Cobalt	ND	0.00500	1		Vanadium		ND	0.00500	1	
Copper	ND	0.00500	1		Zinc		ND	0.0100	1	
Lead	ND	0.0100	1					NAME OF THE PERSON OF THE PERS		
EB1-B			5-02-09	98-3	02/15/05	Aqueous	02/17/05	02/18/05	050217	L03F
Arsenic Barium	ND ND	0.0100 0.0100 0.00100	1 1 1		Molybdenum Nickel Selenium		ND ND ND	0.00500 0.00500 0.0150	1 1 1	
Beryllium Cadmium Chromium (Total) Cobalt Copper Lead	ND ND ND ND ND	0.00500 0.00500 0.00500 0.00500 0.0100	1 1 1 1 1		Silver Thallium Vanadium Zinc		ND ND ND ND	0.00500 0.0150 0.00500 0.0100	1 1 1	
Cadmium Chromium (Total) Cobalt Copper	ND ND ND ND	0.00500 0.00500 0.00500 0.00500 0.0100	1 1 1 1	98-4	Silver Thallium Vanadium	Aqueous	ND ND ND	0.00500 0.0150 0.00500	1 1 1	7L03F
Cadmium Chromium (Total) Cobalt Copper Lead Tt-MW2-1	ND ND ND ND	0.00500 0.00500 0.00500 0.00500 0.0100	1 1 1 1 1 1 05-02-09	3187 - 11(1)	Silver Thallium Vanadium Zinc	Aqueous	ND ND ND ND	0.00500 0.0150 0.00500 0.0100	1 1 1 1 050217	7L03F
Cadmium Chromium (Total) Cobalt Copper Lead Tt-MW2-1 Comment(s): -Mercury was a	ND ND ND ND ND	0.00500 0.00500 0.00500 0.00500 0.0100	1 1 1 1 1 1 05-02-09	3187 - 11(1)	Silver Thallium Vanadium Zinc	Aqueous	ND ND ND ND	0.00500 0.0150 0.00500 0.0100 02/18/05	1 1 1 1	7L03F Qual
Cadmium Chromium (Total) Cobalt Copper Lead Tt-MW2-1 Comment(s): -Mercury was a	ND ND ND ND ND	0.00500 0.00500 0.00500 0.00500 0.0100	1 1 1 1 1 25-02-09	n batch 05	Silver Thallium Vanadium Zinc 02/16/05	Aqueous	ND ND ND ND	0.00500 0.0150 0.00500 0.0100 02/18/05	1 1 1 1 050217	
Cadmium Chromium (Total) Cobalt Copper Lead Tt-MW2-1 Comment(s): -Mercury was a Parameter Antimony	ND ND ND ND ND ND Result	0.00500 0.00500 0.00500 0.00500 0.0100 0.0100 0.005 3:17:12 RL	1 1 1 1 1 2 5-02-09	n batch 05	Silver Thallium Vanadium Zinc 02/16/05 02/18L01F Parameter	Aqueous	ND ND ND ND 02/17/05	0.00500 0.0150 0.00500 0.0100 02/18/05	1 1 1 1 050217	
Cadmium Chromium (Total) Cobalt Copper Lead Tt-MW2-1 Comment(s): -Mercury was a Parameter Antimony Arsenic	ND ND ND ND ND ND Manalyzed on 2/18/2: Result ND	0.00500 0.00500 0.00500 0.00500 0.0100 005 3:17:12 RL 0.0150	1 1 1 1 1 05-02-09: 2 PM with DE 1	n batch 05	Silver Thallium Vanadium Zinc 02/16/05 02/18L01F Parameter Mercury	Aqueous	ND ND ND ND 02/17/05	0.00500 0.0150 0.00500 0.0100 02/18/05	1 1 1 1 050217	
Cadmium Chromium (Total) Cobalt Copper Lead Tt-MW2-1 Comment(s): -Mercury was a Parameter Antimony Arsenic Barium	ND N	0.00500 0.00500 0.00500 0.00500 0.0100 005 3:17:12 RL 0.0150 0.0100	1 1 1 1 1 05-02-09 2 PM with DE 1	n batch 05	Silver Thallium Vanadium Zinc 02/16/05 02/18L01F Parameter Mercury Molybdenum	Aqueous	ND ND ND ND 02/17/05 Result ND 0.007	0.00500 0.0150 0.00500 0.0100 02/18/05 RL 0.000500 36 0.00500	050217 DE	
Cadmium Chromium (Total) Cobalt Copper Lead Tt-MW2-1 Comment(s): -Mercury was a Parameter Antimony Arsenic Barium Beryllium	ND N	0.00500 0.00500 0.00500 0.00500 0.0100 005 3:17:12 RL 0.0150 0.0100 0.0100	1 1 1 1 1 2 PM with DF 1 1	n batch 05	Silver Thallium Vanadium Zinc 02/16/05 02/18L01F Parameter Mercury Molybdenum Nickel	Aqueous	ND ND ND ND 02/17/05 Result ND 0.007 ND	0.00500 0.0150 0.00500 0.0100 02/18/05 RL 0.000500 0.00500 0.00500	1 1 1 1 050217	
Cadmium Chromium (Total) Cobalt Copper Lead Tt-MW2-1 Comment(s): -Mercury was a Parameter Antimony Arsenic Barium Beryllium Cadmium	ND N	0.00500 0.00500 0.00500 0.00500 0.0100 0.0100 0.0150 0.0100 0.0100 0.00100	1 1 1 1 1 2 PM with DE 1 1	n batch 05	Silver Thallium Vanadium Zinc 02/16/05 02/18L01F Parameter Mercury Molybdenum Nickel Selenium	Aqueous	ND ND ND ND 02/17/05 Result ND 0.007 ND ND	0.00500 0.0150 0.00500 0.0100 02/18/05 RL 0.000500 0.00500 0.00500 0.0150 0.00500	1 1 1 1 1 050217	
Cadmium Chromium (Total) Cobalt Copper Lead Tt-MW2-1	ND N	0.00500 0.00500 0.00500 0.00500 0.0100 005 3:17:12 RL 0.0150 0.0100 0.0100 0.00100 0.00500	1 1 1 1 1 2 PM with DF 1 1 1	n batch 05	Silver Thallium Vanadium Zinc 02/16/05 02/16/05 0218L01F Parameter Mercury Molybdenum Nickel Selenium Silver	Aqueous	ND N	0.00500 0.0150 0.00500 0.0100 02/18/05 RL 0.000500 0.00500 0.00500 0.0150 0.00500 0.0150	050217 DE 1 1 1 1 1 1	
Cadmium Chromium (Total) Cobalt Copper Lead Tt-MW2-1 Comment(s): -Mercury was a Parameter Antimony Arsenic Barium Beryllium Cadmium Chromium (Total)	ND N	0.00500 0.00500 0.00500 0.00500 0.0100 005 3:17:12 RL 0.0150 0.0100 0.0100 0.00100 0.00500 0.00500	1 1 1 1 1 2 PM with DE 1 1 1 1	n batch 05	Silver Thallium Vanadium Zinc 02/16/05 02/16/05 0218L01F Parameter Mercury Molybdenum Nickel Selenium Silver Thallium	Aqueous	ND N	0.00500 0.0150 0.00500 0.0100 02/18/05 RL 0.000500 0.00500 0.00500 0.0150 0.00500 0.0150 0.00500	050217 DE 1 1 1 1 1 1 1	

Tetra Tech, Inc.

3475 East Foothill Blvd., Suite 300

Pasadena, CA 91107-6024

Date Received:

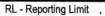
02/17/05

Work Order No:

05-02-0998

Preparation:

EPA 3005A Filt. / EPA 7470A Filt.


Method:

EPA 6010B / EPA 7470A

Units:

mg/L

Project: Lockheed -	SW Sam	GW Sampling / 13505-02						Page 2		
Client Sample Number				b Sample Number	Date Collected	Matrix	Date Prepared	Date Analyzed	QC Ba	tch ID
Tt-MW2-2	alias (bis amoreme	0	5-02-09	98-5	02/16/05	Aqueous	02/17/05	02/18/05	050217L03F	
Comment(s): -Mercury was	analyzed on 2/18/20	005 3:20:17	PM wit	h batch 05	0218L01F					
<u>Parameter</u>	Result	RL	DF	Qual	Parameter		Resu	it RL	DF	Qual
Antimony	ND	0.0150	1		Mercury		ND	0.000500	1	
Arsenic	ND	0.0100	1		Molybdenum		ND	0.00500	1	
Barium	0.0266	0.0100	1		Nickel		ND	0.00500	1	
Beryllium	ND	0.00100	1		Selenium		ND	0.0150	1	
Cadmium	ND	0.00500	1		Silver		ND	0.00500	1	
Chromium (Total)	ND	0.00500	1		Thallium		ND	0.0150	1	
Cobalt	ND	0.00500	1		Vanadium		0.01	31 0.0050	1	
Copper	ND	0.00500	1		Zinc		0.01	5. July 1977 7 T. J.	1	
_ead	ND	0.0100	1							
Tt-MW2-3		(5-02-09	98-6	02/16/05	Aqueous	02/17/05	02/18/05	050217	7L03F
Comment(s): -Mercury was	analyzed on 2/18/2	005 3:23:22	PM wit	h batch 05	0218I 01F					
Parameter	Result	RL	DF	Qual	Parameter		Resu	ılt RL	DF	Qual
Antimony	ND	0.0150	1		Mercury		ND	0.000500		-
Arsenic	ND	0.0100	1		Molybdenum		ND	0.00500	1	
Barium	0.0974	0.0100	1		Nickel		ND	0.00500	1	
Beryllium	ND	0.00100	1		Selenium		ND	0.0150	1	
Cadmium	ND	0.00500	1		Silver		ND	0.00500	1	
Chromium (Total)	ND	0.00500	1		Thallium		ND	0.0150	1	
Cobalt	ND	0.00500	1		Vanadium		ND	0.00500	1	
Copper	ND	0.00500	1		Zinc		ND	0.0100	1	
Lead	ND	0.0100	1					2,100,000		
Tt-MW2-4S	Salata Antonio		05-02-09	98-7	02/16/05	Aqueous	02/17/05	02/18/05	05021	7L03F
Comment(s): -Mercury was	analyzed on 2/18/2	005 3:26:29	PM wit	h hatch 05	0218I 01F					
Parameter	Result	RL	DF	Qual	Parameter		Resi	ult RL	DF	Qual
Antimony	ND	0.0150	1	V S V S A	Mercury		ND	0.000500		12.12
Arsenic	0.0427	0.0100	1		Molybdenum		0.01		1	
Barium	0.0752	0.0100	1		Nickel		ND.	0.00500	1	
Beryllium	ND	0.00100	1		Selenium		ND	0.0150	1	
Cadmium	ND	0.00500	1		Silver		ND	0.00500	1	
Chromium (Total)	ND	0.00500	1		Thallium		ND	0.0150	1	
Cobalt	ND	0.00500	1		Vanadium		0.08		1	
Copper	ND	0.00500	1		Zinc		ND	0.0100	1	
Lead	,,,,	3.00000					ND	0.0100		

Tetra Tech, Inc.

3475 East Foothill Blvd., Suite 300

Pasadena, CA 91107-6024

Date Received:

02/17/05

Work Order No:

05-02-0998

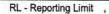
Preparation:

EPA 3005A Filt. / EPA 7470A Filt.

Method:

Units:

EPA 6010B / EPA 7470A

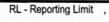

PA 60 1

mg/L

Project: Lockheed - Beaumont 2GW Sampling / 13505-02

Page 3 of 3

			ab Sample Number	Date Collected	Matrix	Date Prepared	Date Analyzed	QC Ba	tch ID
ON HILL BURNS	C	05-02-0998-8		02/16/05	Aqueous	02/17/05	02/18/05	050217L03F	
yzed on 2/18/2	005 3:29:32	2 PM wit	th batch 05	0218L01F					
Result		DF	Qual	Parameter		Resu	ilt RL	DF	Qual
ND	0.0150	1		Mercury		ND	0.000500	0 1	
0.0791	0.0100	1		Molybdenum		0.01	16 0.0050	1	
ND	0.0100	1		Nickel		ND	0.00500	1	
ND	0.00100	1		Selenium		ND	0.0150	1	
				Silver			0.00500	1	
				Thallium				1	
				Vanadium				1	
ND	0.0100	1							
		05-02-09	998-9	02/16/05	Aqueous	02/17/05	02/18/05	050217	L03F
vzed on 2/18/2	005 3:32:30) PM wi	th hatch 05	0218I 01F					
						Resi	ult RL	DF	Qual
			Good			-			-
				The second secon					
				7.3.301337.		-075			
							했습니다 아이를 살을 잃었다.		
				ZIIIC		0.01	25 0.0100	1	
ND		VS.A.FORD							
diametri, et	# Vernigana	099-04-	008-1,827	N/A	Aqueous	02/18/05	02/18/05	050218	L01F
Result	RL	DE	Qual						
ND	0.000500								
		097-01-	003-4,594	N/A	Aqueous	02/17/05	02/17/05	050217	L03F
Result	RL	DF	Qual	Parameter		Resi	ult RL	DF	Qual
				A STATE OF THE STA					
				- P. 1670 (F. 17)					
ND	0.00500	1		Thallium		ND	0.00500	1	
IND	0.00000								
	0.00500	1		Vanadium		ND	0.00500	4	
ND ND	0.00500	1		Vanadium Zinc		ND ND	0.00500 0.0100	1	
	Result ND 0.0791 ND	yzed on 2/18/2005 3:29:32 Result RL ND 0.0150 0.0791 0.0100 ND 0.00500 ND 0.00500 ND 0.0100 ND 0.00500 ND 0.0100 ND 0.0150 ND 0.0150 ND 0.0150 ND 0.0100 ND 0.0100	yzed on 2/18/2005 3:29:32 PM with Result RL DF ND 0.0150 1 ND 0.00500 1 ND 0.00500 1 ND 0.0150 1 ND 0.00500 1 ND 0.0150 1 ND 0.00500 1 ND 0.0150 1 ND 0.0150 1 ND 0.0150 1 ND 0.0150 1 ND 0.00500 1 ND 0.0100 1 ND 0.0100 1 ND 0.0100 1 ND 0.0150 1 ND 0.0100 1	Number	Number Collected	Number Collected Matrix	Number Collected Matrix Prepared	Number Collected Matrix Prepared Analyzed	Number Collected Matrix Prepared Analyzed QC Ba



Tetra Tech, Inc. 3475 East Foothill Blvd., Suite 300 Pasadena, CA 91107-6024 Date Received: Work Order No: Preparation: Method: 02/17/05 05-02-0998 N/A EPA 314.0

Project: Lockheed - Beaumont 2GW Sampling / 13505-02

Page 1 of 2

	A STATE OF THE STATE OF	, ,					
Client Sample Number		Lab Sample Number	Date Collected	Matrix	Date Prepared	Date Analyzed	QC Batch ID
EB1-P	gent and the	05-02-0998-2	02/15/05	Aqueous	N/A	02/23/05	050222L01
<u>Parameter</u>	Result	RL	DE	Qual	<u>Units</u>		
Perchlorate	ND	2.0	1		ug/L		
EB1-B		05-02-0998-3	02/15/05	Aqueous	N/A	02/23/05	050222L01
<u>Parameter</u>	Result	RL	DF	Qual	<u>Units</u>		
Perchlorate	ND	2.0	1		ug/L		
Tt-MW2-1	aria. Family.	05-02-0998-4	02/16/05	Aqueous	N/A	02/23/05	050222L01
<u>arameter</u>	Result	RL	DF	Qual	<u>Units</u>		
Perchlorate	7100	400	200		ug/L		
Tt-MW2-2	10000000000000000000000000000000000000	05-02-0998-5	02/16/05	Aqueous	N/A	02/23/05	050222L01
<u>Parameter</u>	Result	RL	DF	Qual	<u>Units</u>		
Perchlorate	ND	2.0	1		ug/L		
Tt-MW2-3		05-02-0998-6	02/16/05	Aqueous	N/A	02/23/05	050222L01
<u>Parameter</u>	Result	RL	DF	Qual	<u>Units</u>		
Perchlorate	740	20	10		ug/L		
Tt-MW2-4S	en e	05-02-0998-7	02/16/05	Aqueous	N/A	02/23/05	050222L01
<u>Parameter</u>	Result	RL	DF	Qual	<u>Units</u>		
Perchlorate	ND	2.0	1		ug/L		

DF - Dilution Factor ,

Qual - Qualifiers

Tetra Tech, Inc. 3475 East Foothill Blvd.

3475 East Foothill Blvd., Suite 300 Pasadena, CA 91107-6024

Date Received:

Work Order No: Preparation:

Method:

02/17/05

05-02-0998

N/A

EPA 314.0

Project: Lockheed - Beaumont 2GW Sampling / 13505-02

Page 2 of 2

Client Sample Number		Lab Sample Number	Date Collected	Matrix	Date Prepared	Date Analyzed	QC Batch ID
Tt-MW2-4D		05-02-0998-8	02/16/05	Aqueous	N/A	02/23/05	050222L01
<u>Parameter</u>	Result	RL	DF	Qual	<u>Units</u>		
Perchlorate	ND	2.0	1		ug/L		
Tt-MW2-20		05-02-0998-9	02/16/05	Aqueous	N/A	02/23/05	050222L01
<u>Parameter</u>	Result	RL	DF	Qual	<u>Units</u>		
Perchlorate	ND	2.0	1		ug/L		
Method Blank		099-05-203-261	N/A	Aqueous	N/A	02/22/05	050222L01
arameter	Result	RL	DF	Qual	<u>Units</u>		
Perchlorate	ND	2.0	1		ug/L		

Tetra Tech, Inc.

3475 East Foothill Blvd., Suite 300

Project: Lockheed - Beaumont 2GW Sampling / 13505-02

Pasadena, CA 91107-6024

Date Received:

Work Order No:

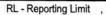
Preparation:

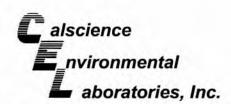
Method:

Units:

02/17/05

05-02-0998


EPA 3520B


EPA 8270C

ug/L

Page 1 of 9

Client Sample Number				ab Sample Number	Date Collected	Matrix	Date Prepared A	Date Analyzed	QC Ba	atch ID
ЕВ1-Р	oning and some	ı iğ	05-02-09	998-2	02/15/05	Aqueous	02/17/05	02/22/05	05021	6L03B
Parameter	Result	RL	DF	Qual	Parameter		Result	RL	DF	Qual
N-Nitrosodimethylamine	ND	10	1		2,4-Dinitropher	nol	ND	50	1	
Aniline	ND	10	1		4-Nitrophenol		ND	10	1	
Phenol	ND	10	1		Dibenzofuran		ND	10	1	
Bis(2-Chloroethyl) Ether	ND	25	1		2,4-Dinitrotolue	ene	ND	10	1	
2-Chlorophenol	ND	10	1		2,6-Dinitrotolue	ene	ND	10	1	
1,3-Dichlorobenzene	ND	10	1		Diethyl Phthala	ate	ND	10	1	
1,4-Dichlorobenzene	ND	10	1		4-Chloropheny		ND	10	1	
Benzyl Alcohol	ND	10	1		Fluorene	an altered and an artist	ND	10	1	
1,2-Dichlorobenzene	ND	10	1		4-Nitroaniline		ND	10	1	
2-Methylphenol	ND	10	1		Azobenzene		ND	10	1	
Bis(2-Chloroisopropyl) Ether	ND	10	1		4,6-Dinitro-2-N	1ethylphenol	ND	50	1	
3/4-Methylphenol	ND	10	1		N-Nitrosodiphe		ND	10	1	
I-Nitroso-di-n-propylamine	ND	10	1		4-Bromopheny		ND	10	1	
texachloroethane	ND	10	1		Hexachlorober		ND	10	1	
Nitrobenzene	ND	25	1		Pentachloroph		ND	10	1	
Isophorone	ND	10	1		Phenanthrene	01.01	ND	10	1	
2-Nitrophenol	ND	10	1		Anthracene		ND	10	1	
2,4-Dimethylphenol	ND	10	1		Di-n-Butyl Pht	nalate	ND	10	1	
Benzoic Acid	ND	50	1		Fluoranthene	idiato	ND	10	1	
Bis(2-Chloroethoxy) Methane	ND	10	1		Benzidine		ND	50	1	
2,4-Dichlorophenol	ND	10	1		Pyrene		ND	10	1	
1,2,4-Trichlorobenzene	ND	10	1		Pyridine		ND	10	1	
Naphthalene	ND	10	1		Butyl Benzyl P	hthalate	ND	10	1	
4-Chloroaniline	ND	10	1		3,3'-Dichlorobe		ND	25	1	
Hexachloro-1,3-Butadiene	ND	10	1		Benzo (a) Anth		ND	10	1	
4-Chloro-3-Methylphenol	ND	10	1		Bis(2-Ethylhex		ND	10	1	
2-Methylnaphthalene	ND	10	1		Chrysene	yi) i milalate	ND	10	1	
Hexachlorocyclopentadiene	ND	25	1		Di-n-Octyl Pht	halate	ND	10	4	
2,4,6-Trichlorophenol	ND	10	1		Benzo (k) Fluo		ND	10	1	
2,4,5-Trichlorophenol	ND	10	1		Benzo (b) Fluo		ND	10	1	
2-Chloronaphthalene	ND	10	1		Benzo (a) Pyre		ND	10	1	
2-Nitroaniline	ND	10	1		Benzo (g,h,i) F		ND	10	1	
Dimethyl Phthalate	ND	10	1		Indeno (1,2,3-		ND	10	1	
Acenaphthylene	ND	10	1		Dibenz (a,h) A		ND	10	4	
3-Nitroaniline	ND	10	1		1-Methylnapht		ND	10	1	
Acenaphthene	ND	10	1		. Wouldning	i i di Gi i G	ND	10	i	
Surrogates:	REC (%)	Control Limits		Qual	Surrogates:		REC (%	_	Ĺ.	Qual
2-Fluorophenol	87	15-138			Phenol-d6		89	<u>Limits</u> 17-141		
Nitrobenzene-d5	103	28-139			2-Fluorobipher	hor	97	33-144		
2,4,6-Tribromophenol	85	32-143			p-Terphenyl-d	•				
-, , o This officerior	65	32-143			p-1 erprierryl-d	14	127	23-160		

 Tetra Tech, Inc.
 Date Received:
 02/17/05

 3475 East Foothill Blvd., Suite 300
 Work Order No:
 05-02-0998

 Pasadena, CA 91107-6024
 Preparation:
 EPA 3520B

 Method:
 Linits:
 Linits:

Project: Lockheed - Beaumont 2GW Sampling / 13505-02 Page 2 of 9

Client Sample Number				ab Sample Number	Date Collected	Matrix	Date Prepared	Date Analyzed	QC Ba	atch ID
EB1-B	September 1	- Te	05-02-09	998-3	02/15/05	Aqueous	02/17/05	02/22/05	05021	SL03B
Parameter	Result	RL	DF	Qual	Parameter		Resul	t RL	DF	Qual
N-Nitrosodimethylamine	ND	10	1		2,4-Dinitrophe	nol	ND	50	1	
Aniline	ND	10	1		4-Nitrophenol		ND	10	1	
Phenol	ND	10	1		Dibenzofuran		ND	10	1	
Bis(2-Chloroethyl) Ether	ND	25	1		2,4-Dinitrotolue	ene	ND	10	1	
2-Chlorophenol	ND	10	1		2,6-Dinitrotolue	ene	ND	10	1	
1,3-Dichlorobenzene	ND	10	1		Diethyl Phthala	ate	ND	10	1	
1,4-Dichlorobenzene	ND	10	1		4-Chloropheny		ND	10	1	
Benzyl Alcohol	ND	10	1		Fluorene		ND	10	1	
1,2-Dichlorobenzene	ND	10	1		4-Nitroaniline		ND	10	1	
2-Methylphenol	ND	10	1		Azobenzene		ND	10	1	
Bis(2-Chloroisopropyl) Ether	ND	10	1		4,6-Dinitro-2-N	Methylphenol	ND	50	1	
3/4-Methylphenol	ND	10	1		N-Nitrosodiphe		ND	10	1	
N-Nitroso-di-n-propylamine	ND	10	1		4-Bromopheny		ND	10	1	
Hexachloroethane	ND	10	1		Hexachlorober		ND	10	1	
Nitrobenzene	ND	25	1		Pentachloroph		ND	10	1	
Isophorone	ND	10	1		Phenanthrene	21.5.1	ND	10	1	
2-Nitrophenol	ND	10	1		Anthracene		ND	10	1	
2,4-Dimethylphenol	ND	10	1		Di-n-Butyl Pht	nalate	ND	10	1	
Benzoic Acid	ND	50	1		Fluoranthene		ND	10	1	
Bis(2-Chloroethoxy) Methane	ND	10	1		Benzidine		ND	50	1	
2,4-Dichlorophenol	ND	10	1		Pyrene		ND	10	1	
1,2,4-Trichlorobenzene	ND	10	1		Pyridine		ND	10	1	
Naphthalene	ND	10	1		Butyl Benzyl P	hthalate	ND	10	1	
4-Chloroaniline	ND	10	1		3,3'-Dichlorobe		ND	25	1	
Hexachloro-1,3-Butadiene	ND	10	1		Benzo (a) Anth		ND	10	1	
4-Chloro-3-Methylphenol	ND	10	1		Bis(2-Ethylhex		ND	10	1	
2-Methylnaphthalene	ND	10	1		Chrysene	y, i mananato	ND	10	1	
Hexachlorocyclopentadiene	ND	25	1		Di-n-Octyl Pht	halate	ND	10	1	
2,4,6-Trichlorophenol	ND	10	1		Benzo (k) Fluo		ND	10	1	
2,4,5-Trichlorophenol	ND	10	1		Benzo (b) Fluo		ND	10	1	
2-Chloronaphthalene	ND	10	1		Benzo (a) Pyre		ND	10	1	
2-Nitroaniline	ND	10	1		Benzo (g,h,i) F		ND	10	1	
Dimethyl Phthalate	ND	10	1		Indeno (1,2,3-		ND	10	1	
Acenaphthylene	ND	10	1		Dibenz (a,h) A		ND	10	1	
3-Nitroaniline	ND	10	1		1-Methylnapht		ND	10	1	
Acenaphthene	ND	10	1		. moulymaphi	i ci ci ci	ND	10	(1)	
Surrogates:	REC (%)	Control		Qual	Surrogates:		REC (S	(6) Control	L	Qual
2-Fluorophenol	88	15-138			Phenol-d6		89	17-141		
Nitrobenzene-d5	106	28-139			2-Fluorobipher	hvt	99	33-144		
2,4,6-Tribromophenol	91	32-143			p-Terphenyl-d	•	127	23-160		

Tetra Tech, Inc.

3475 East Foothill Blvd., Suite 300

Pasadena, CA 91107-6024

Date Received:

Work Order No:

Preparation:

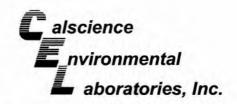
Method:

Units:

02/17/05 05-02-0998

EPA 3520B

EPA 8270C


ug/L

Project: Lockheed - Beaumont 2GW Sampling / 13505-02

Page 3 of 9

Client Sample Number				ab Sample Number	Date Collected	Matrix	Date Prepared /	Date Analyzed	QC Ba	atch ID
Tt-MW2-1	Pales of State	r dia	05-02-09	998-4	02/16/05	Aqueous	02/17/05	02/22/05	05021	6L03B
Parameter	Result	RL	DF	Qual	Parameter		Result	RL	DF	Qual
N-Nitrosodimethylamine	ND	10	1		2,4-Dinitropher	nol	ND	50	1	
Aniline	ND	10	1		4-Nitrophenol		ND	10	1	
Phenol	ND	10	1		Dibenzofuran		ND	10	1	
Bis(2-Chloroethyl) Ether	ND	25	1		2,4-Dinitrotolue	ene	ND	10	1	
2-Chlorophenol	ND	10	1		2,6-Dinitrotolue	ene	ND	10	1	
1,3-Dichlorobenzene	ND	10	1		Diethyl Phthala	ate	ND	10	1	
1,4-Dichlorobenzene	ND	10	1		4-Chloropheny	I-Phenyl Ether	ND	10	1	
Benzyl Alcohol	ND	10	1		Fluorene	2 76. 5. 77. 60	ND	10	1	
1,2-Dichlorobenzene	ND	10	1		4-Nitroaniline		ND	10	1	
2-Methylphenol	ND	10	1		Azobenzene		ND	10	1	
Bis(2-Chloroisopropyl) Ether	ND	10	1		4,6-Dinitro-2-N	Methylphenol	ND	50	1	
3/4-Methylphenol	ND	10	1		N-Nitrosodiphe		ND	10	1	
V-Nitroso-di-n-propylamine	ND	10	1		4-Bromopheny		ND	10	1	
dexachloroethane	ND	10	1		Hexachlorober		ND	10	1	
Nitrobenzene	ND	25	1		Pentachloroph		ND	10	1	
Isophorone	ND	10	1		Phenanthrene		ND	10	1	
2-Nitrophenol	ND	10	1		Anthracene		ND	10	1	
2,4-Dimethylphenol	ND	10	1		Di-n-Butyl Pht	halate	ND	10	1	
Benzoic Acid	ND	50	1		Fluoranthene		ND	10	1	
Bis(2-Chloroethoxy) Methane	ND	10	1		Benzidine		ND	50	1	
2,4-Dichlorophenol	ND	10	1		Pyrene		ND	10	1	
1,2,4-Trichlorobenzene	ND	10	1		Pyridine		ND	10	1	
Naphthalene	ND	10	1		Butyl Benzyl P	hthalate	ND	10	1	
4-Chloroaniline	ND	10	1		3,3'-Dichlorobe		ND	25	1	
Hexachloro-1,3-Butadiene	ND	10	1		Benzo (a) Anti		ND	. 10	1	
4-Chloro-3-Methylphenol	ND	10	1		Bis(2-Ethylhex		ND	10	1	
2-Methylnaphthalene	ND	10	1		Chrysene	yı) i malalala	ND	10	1	
Hexachlorocyclopentadiene	ND	25	1		Di-n-Octyl Pht	halate	ND	10	1	
2,4,6-Trichlorophenol	ND	10	1		Benzo (k) Fluo		ND	10	1	
2,4,5-Trichlorophenol	ND	10	1		Benzo (b) Fluo		ND	10	1	
2-Chloronaphthalene	ND	10	1		Benzo (a) Pyre		ND	10	1	
2-Nitroaniline	ND	10	1		Benzo (g,h,i) F		ND	10	1	
Dimethyl Phthalate	ND	10	1		Indeno (1,2,3-	J. 1550 3150 a. I. I.	ND	10	1	
Acenaphthylene	ND	10	1		Dibenz (a,h) A		ND	10	1	
3-Nitroaniline	ND	10	1		1-Methylnapht		ND	10	1	
Acenaphthene	ND	10	1		. Wearymaphi	i laidi le	ND	10	,	
Surrogates:	REC (%)	Control		Qual	Surrogates:		REC (%	(c) Contro	L	Qual
2-Fluorophenol	93	15-138			Phenol-d6		95	17-141		
Nitrobenzene-d5	112	28-139			2-Fluorobipher	nvi	105	33-144		
2,4,6-Tribromophenol	99	32-143			p-Terphenyl-d		133	23-160		
-, ., - · · · · · · · · · · · · · · · · · ·	33	02-140			b- i ei bi iei iyi-d	1.7	133	23-160		

Tetra Tech, Inc.

3475 East Foothill Blvd., Suite 300 Pasadena, CA 91107-6024

Date Received:

Work Order No: Preparation: Method:

Units:

02/17/05 05-02-0998 EPA 3520B EPA 8270C ug/L

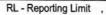
Page 4 of 9

Project: Lockheed - Beaumont 2GW Sampling / 13505-02

Client Sample Number				ab Sample Number	Date Collected	Matrix	Date Prepared	Date Analyzed	QC Ba	atch ID
Tt-MW2-2		lanta e	05-02-09	All the second	02/16/05	Aqueous	02/17/05	02/22/05	05021	6L03B
Parameter	Result	RL	DF	Qual	Parameter		Result	RL	DF	Qual
N-Nitrosodimethylamine	ND	10	1		2,4-Dinitrophe	nol	ND	50	1	
Aniline	ND	10	1		4-Nitrophenol		ND	10	1	
Phenol	ND	10	1		Dibenzofuran		ND	10	1	
Bis(2-Chloroethyl) Ether	ND	25	1		2,4-Dinitrotolue	ene	ND	10	1	
2-Chlorophenol	ND	10	1		2,6-Dinitrotolue	ene	ND	10	1	
1,3-Dichlorobenzene	ND	10	1		Diethyl Phthala	ate	ND	10	1	
1,4-Dichlorobenzene	ND	10	1			A-Phenyl Ether	ND	10	1	
Benzyl Alcohol	ND	10	1		Fluorene	0.1100470000	ND	10	1	
1,2-Dichlorobenzene	ND	10	1		4-Nitroaniline		ND	10	1	
2-Methylphenol	ND	10	1		Azobenzene		ND	10	1	
Bis(2-Chloroisopropyl) Ether	ND	10	1		4,6-Dinitro-2-N	Methylphenol	ND	50	1	
3/4-Methylphenol	ND	10	1		N-Nitrosodiphe		ND	10	1	
I-Nitroso-di-n-propylamine	ND	10	1			/-Phenyl Ether	ND	10	1	
Hexachloroethane	ND	10	1		Hexachlorober		ND	10	1	
Nitrobenzene	ND	25	1		Pentachloroph		ND	10	1	
Isophorone	ND	10	1		Phenanthrene		ND	10	1	
2-Nitrophenol	ND	10	1		Anthracene		ND	10	1	
2,4-Dimethylphenol	ND	10	1		Di-n-Butyl Pht	halate	ND	10	1	
Benzoic Acid	ND	50	1		Fluoranthene	idiato	ND	10	1	
Bis(2-Chloroethoxy) Methane	ND	10	1		Benzidine		ND	50	1	
2,4-Dichlorophenol	ND	10	1		Pyrene		ND	10	1	
1,2,4-Trichlorobenzene	ND	10	1		Pyridine		ND	10	1	
Naphthalene	ND	10	1		Butyl Benzyl P	hthalate	ND	10	1	
4-Chloroaniline	ND	10	1		3,3'-Dichlorobe		ND	25	1	
Hexachloro-1,3-Butadiene	ND	10	1		Benzo (a) Anti		ND	10	1	
4-Chloro-3-Methylphenol	ND	10	1		Bis(2-Ethylhex		ND	10	1	
2-Methylnaphthalene	ND	10	1		Chrysene	yi) i ililalala	ND	10	1	
Hexachlorocyclopentadiene	ND	25	1		Di-n-Octyl Pht	halate	ND	10	1	
2,4,6-Trichlorophenol	ND	10	1		Benzo (k) Fluc		ND	10	1	
2,4,5-Trichlorophenol	ND	10	1		Benzo (b) Fluo		ND	10	1	
2-Chloronaphthalene	ND	10	1		Benzo (a) Pyre		ND	10	1	
2-Nitroaniline	ND	10	1		Benzo (g,h,i) F		ND	10	1	
Dimethyl Phthalate	ND	10	1		Indeno (1,2,3-		ND	10	1	
Acenaphthylene	ND	10	1		Dibenz (a,h) A		ND	10	1	
3-Nitroaniline	ND	10	1		1-Methylnapht		ND	10	1	
Acenaphthene	ND	10	1		- wearymaphi	i iaici ic	ND	10	1	
Surrogates:	REC (%)	Control Limits		Qual	Surrogates:		REC (9		Ĺ.	Qual
2-Fluorophenol	98	15-138			Phenol-d6		101	Limits 17-141		
Nitrobenzene-d5	117	28-139			2-Fluorobipher	nvd	101	33-144		
2,4,6-Tribromophenol	77	32-143			p-Terphenyl-d		134	23-160		

 Tetra Tech, Inc.
 Date Received:
 02/17/05

 3475 East Foothill Blvd., Suite 300
 Work Order No:
 05-02-0998


 Pasadena, CA 91107-6024
 Preparation:
 EPA 3520B

 Method:
 EPA 8270C

 Units:
 ug/L

Project: Lockheed - Beaumont 2GW Sampling / 13505-02 Page 5 of 9

Client Sample Number				ab Sample Number	Date Collected	Matrix	Date Prepared	Date Analyzed	QC Ba	atch ID
Tt-MW2-3	A partition of	138	05-02-09	998-6	02/16/05	Aqueous	02/17/05	02/22/05	050216	SL03B
Parameter Parameter	Result	RL	DF	Qual	Parameter		Result	RL	DF	Qual
N-Nitrosodimethylamine	ND	10	1		2,4-Dinitropher	nol	ND	50	1	
Aniline	ND	10	1		4-Nitrophenol		ND	10	1	
Phenol	ND	10	1		Dibenzofuran		ND	10	1	
Bis(2-Chloroethyl) Ether	ND	25	1		2,4-Dinitrotolue	ene	ND	10	1	
2-Chlorophenol	ND	10	1		2,6-Dinitrotolue	ene	ND	10	1	
,3-Dichlorobenzene	ND	10	1		Diethyl Phthala	ite	ND	10	1	
,4-Dichlorobenzene	ND	10	1		4-Chloropheny	I-Phenyl Ether	ND	10	1	
Benzyl Alcohol	ND	10	1		Fluorene	an manage autom	ND -	10	1	
1,2-Dichlorobenzene	ND	10	1		4-Nitroaniline		ND	10	1	
2-Methylphenol	ND	10	1		Azobenzene		ND	10	1	
Bis(2-Chloroisopropyl) Ether	ND	10	1		4,6-Dinitro-2-N	fethylphenol	ND	50	1	
8/4-Methylphenol	ND	10	1		N-Nitrosodiphe		ND	10	1	
I-Nitroso-di-n-propylamine	ND	10	1		4-Bromopheny		ND	10	1	
-lexachloroethane	ND	10	1		Hexachlorober		ND	10	1	
Nitrobenzene	ND	25	1		Pentachloroph		ND	10	1	
sophorone	ND	10	1		Phenanthrene		ND	10	1	
2-Nitrophenol	ND	10	1		Anthracene		ND	10	1	
2,4-Dimethylphenol	ND	10	1		Di-n-Butyl Phti	nalate	ND	10	1	
Benzoic Acid	ND	50	1		Fluoranthene		ND	10	1	
Bis(2-Chloroethoxy) Methane	ND	10	1		Benzidine		ND	50	1	
2,4-Dichlorophenol	ND	10	1		Pyrene		ND	10	1	
1,2,4-Trichlorobenzene	ND	10	1		Pyridine		ND	10	1	
Naphthalene	ND	10	1		Butyl Benzyl P	hthalate	ND	10	1	
1-Chloroaniline	ND	10	1		3,3'-Dichlorobe		ND	25	1	
Hexachloro-1,3-Butadiene	ND	10	1		Benzo (a) Anth		ND	10	1	
1-Chloro-3-Methylphenol	ND	10	1		Bis(2-Ethylhex		ND	10	1	
2-Methylnaphthalene	ND	10	1		Chrysene	91) 1 114161616	ND	10	1	
Hexachlorocyclopentadiene	ND	25	1		Di-n-Octyl Pht	halate	ND	10	1	
2,4,6-Trichlorophenol	ND	10	1		Benzo (k) Fluo		ND	10	1	
2,4,5-Trichlorophenol	ND	10	1		Benzo (b) Fluc		ND	10	1	
2-Chloronaphthalene	ND	10	1		Benzo (a) Pyre		ND	10	1	
2-Nitroaniline	ND	10	1		Benzo (g,h,i) F		ND	10	1	
Dimethyl Phthalate	ND	10	1		Indeno (1,2,3-	C 144 TO 150 TO 14 TO 15 TO 15	ND	10	1	
Acenaphthylene	ND	10	1		Dibenz (a,h) A		ND	10	1	
3-Nitroaniline	ND	10	1		1-Methylnapht		ND	10	1	
Acenaphthene	ND	10	1		carymaphie		ND	.0		
Surrogates:	REC (%)	Control Limits		Qual	Surrogates:		REC (%	_	1	Qual
2-Fluorophenol	70	15-138			Phenol-d6		74	Limits 17-141		
Vitrobenzene-d5	101	28-139			2-Fluorobipher	nud.	95	33-144		
2,4,6-Tribromophenol	80	32-143			p-Terphenyl-d	•	127	23-160		

Tetra Tech, Inc.

3475 East Foothill Blvd., Suite 300

Pasadena, CA 91107-6024

Date Received:

Work Order No: Preparation:

Method: Units:

02/17/05 05-02-0998

EPA 3520B EPA 8270C

ug/L

Project: Lockheed - Beaumont 2GW Sampling / 13505-02

Page 6 of 9

Client Sample Number				b Sample Number	Date Collected	Matrix	Date Prepared	Date Analyzed	QC Ba	atch ID
Tt-MW2-4S	entrollar 5 1	7	05-02-09	98-7	02/16/05	Aqueous	02/17/05	02/22/05	05021	6L03B
Parameter	Result	RL	DF	Qual	Parameter		Result	RL	DF	Qual
N-Nitrosodimethylamine	ND	10	1		2,4-Dinitropher	nol	ND	50	1	
Aniline	ND	10	1		4-Nitrophenol		ND	10	1	
Phenol	ND	10	1		Dibenzofuran		ND	10	1	
Bis(2-Chloroethyl) Ether	ND	25	1		2,4-Dinitrotolue	ene	ND	10	1	
2-Chlorophenol	ND	10	1		2,6-Dinitrotolue		ND	10	1	
,3-Dichlorobenzene	ND	10	1		Diethyl Phthala		ND	10	1	
,4-Dichlorobenzene	ND	10	1		4-Chloropheny		ND	10	1	
Benzyl Alcohol	ND	10	1		Fluorene	CONTRACTOR OF THE CONTRACTOR O	ND	10	1	
,2-Dichlorobenzene	ND	10	1		4-Nitroaniline		ND	10	1	
2-Methylphenol	ND	10	1		Azobenzene		ND	10	1	
Bis(2-Chloroisopropyl) Ether	ND	10	1		4,6-Dinitro-2-M	lethylphenol	ND	50	1	
8/4-Methylphenol	ND	10	1		N-Nitrosodiphe		ND	10	1	
I-Nitroso-di-n-propylamine	ND	10	1		4-Bromopheny		ND	10	1	
lexachloroethane	ND	10	1		Hexachlorober		ND	10	1	
Vitrobenzene	ND	25	1		Pentachloroph	T0000	ND	10	1	
sophorone	ND	10	1		Phenanthrene	Orion	ND	10	1	
2-Nitrophenol	ND	10	1		Anthracene		ND	10	1	
2,4-Dimethylphenol	ND	10	1		Di-n-Butyl Pht	nalate	ND	10	1	
Benzoic Acid	ND	50	1		Fluoranthene	ididio	ND	10	1	
Bis(2-Chloroethoxy) Methane	ND	10	1		Benzidine		ND	50	1	
2,4-Dichlorophenol	ND	10	1		Pyrene		ND	10	1	
,2,4-Trichlorobenzene	ND	10	1		Pyridine		ND	10	1	
Naphthalene	ND	10	1		Butyl Benzyl P	hthalate	ND	10	1	
I-Chloroaniline	ND	10	1		3,3'-Dichlorobe		ND	25	1	
Hexachloro-1,3-Butadiene	ND	10	1		Benzo (a) Anth		ND	10	1	
I-Chloro-3-Methylphenol	ND	10	1		Bis(2-Ethylhex		ND	10	1	
2-Methylnaphthalene	ND	10	1		Chrysene	yi) i ilulalate	ND	10	1	
Hexachlorocyclopentadiene	ND	25	1		Di-n-Octyl Pht	halate	ND	10	1	
2,4,6-Trichlorophenol	ND	10	1		Benzo (k) Fluo		ND	10	1	
2,4,5-Trichlorophenol	ND	10	1		Benzo (b) Fluo		ND	10	1	
2-Chloronaphthalene	ND	10	1		Benzo (a) Pyre		ND ND	10	1	
2-Nitroaniline	ND	10	1		Benzo (g,h,i) F		ND	10	1	
Dimethyl Phthalate	ND	10	1		Indeno (1,2,3-		ND ND	10	1	
Acenaphthylene	ND	10	1		Dibenz (a,h) A	The second second		10		
3-Nitroaniline	ND	10	1		1-Methylnapht		ND ND	10	1	
Acenaphthene	ND	10	1		r-weurymaphu	ialerie	ND	10	1	
Surrogates:	REC (%)	Control Limits		Qual	Surrogates:		REC (%			Qual
2-Fluorophenol	106	15-138			Phenol-d6		110	<u>Limits</u> 17-141		
Vitrobenzene-d5	122	28-139			2-Fluorobipher	h	110	33-144		
2,4,6-Tribromophenol	113	32-143			p-Terphenyl-d	*	115 147	23-160		

Tetra Tech, Inc. 3475 East Foothill Blvd., Suite 300 Pasadena, CA 91107-6024 Date Received: Work Order No: Preparation: Method: Units: 02/17/05 05-02-0998 EPA 3520B EPA 8270C ug/L

Project: Lockheed - Beaumont 2GW Sampling / 13505-02

Page 7 of 9

Client Sample Number				ab Sample Number	Date Collected	Matrix	Date Prepared	Date Analyzed	QC Ba	atch ID
Tt-MW2-4D	Approximate and the second	and of the	05-02-09	998-8	02/16/05	Aqueous	02/17/05	02/22/05	05021	SL03B
Parameter	Result	RL	DF	Qual	Parameter		Resul	RL	DF	Qual
N-Nitrosodimethylamine	ND	10	1		2,4-Dinitrophe	nol	ND	50	1	
Aniline	ND	10	1		4-Nitrophenol		ND	10	1	
Phenol	ND	10	1		Dibenzofuran		ND	10	1	
Bis(2-Chloroethyl) Ether	ND	25	1		2,4-Dinitrotolu	ene	ND	10	1	
2-Chlorophenol	ND	10	1		2,6-Dinitrotolu	ene	ND	10	1	
1,3-Dichlorobenzene	ND	10	1		Diethyl Phthala	ate	ND	10	1	
1,4-Dichlorobenzene	ND	10	1			/-Phenyl Ether	ND	10	1	
Benzyl Alcohol	ND	10	1		Fluorene	COUNTY STREET	ND	10	1	
1,2-Dichlorobenzene	ND	10	1		4-Nitroaniline		ND	10	1	
2-Methylphenol	ND	10	1		Azobenzene		ND	10	1	
Bis(2-Chloroisopropyl) Ether	ND	10	1		4,6-Dinitro-2-N	Methylphenol	ND	50	1	
3/4-Methylphenol	ND	10	1		N-Nitrosodiphe		ND	10	1	
I-Nitroso-di-n-propylamine	ND	10	1			/-Phenyl Ether	ND	10	1	
.lexachloroethane	ND	10	1		Hexachlorober		ND	10	1	
Nitrobenzene	ND	25	1		Pentachloroph		ND	10	1	
Isophorone	ND	10	1		Phenanthrene		ND	10	1	
2-Nitrophenol	ND	10	1		Anthracene		ND	10	1	
2,4-Dimethylphenol	ND	10	1		Di-n-Butyl Pht	halate	ND	10	1	
Benzoic Acid	ND	50	1		Fluoranthene	, rainai o	ND	10	1	
Bis(2-Chloroethoxy) Methane	ND	10	1		Benzidine		ND	50	1	
2,4-Dichlorophenol	ND	10	1		Pyrene		ND	10	1	
1,2,4-Trichlorobenzene	ND	10	1		Pyridine		ND	10	1	
Naphthalene	ND	10	1		Butyl Benzyl P	hthalate	ND	10	1	
4-Chloroaniline	ND	10	1		3,3'-Dichlorobe		ND	25	1	
Hexachloro-1,3-Butadiene	ND	10	1		Benzo (a) Anti		ND	10	1	
4-Chloro-3-Methylphenol	ND	10	1		Bis(2-Ethylhex		ND	10	1	
2-Methylnaphthalene	ND	10	1		Chrysene	y, / / milalato	ND	10	1	
Hexachlorocyclopentadiene	ND	25	1		Di-n-Octyl Pht	halate	ND	10	1	
2,4,6-Trichlorophenol	ND	10	1		Benzo (k) Fluo		ND	10	1	
2,4,5-Trichlorophenol	ND	10	1		Benzo (b) Fluo		ND	10	1	
2-Chloronaphthalene	ND	10	1		Benzo (a) Pyre		ND	10	1	
2-Nitroaniline	ND	10	1		Benzo (g,h,i) F		ND	10	1	
Dimethyl Phthalate	ND	10	1		Indeno (1,2,3-		ND	10	1	
Acenaphthylene	ND	10	1		Dibenz (a,h) A	PAYED COLDER	ND	10	1	
3-Nitroaniline	ND	10	1		1-Methylnapht		ND	10	1	
Acenaphthene	ND	10	1				NO	10		
Surrogates:	REC (%)	Control Limits		Qual	Surrogates:		REC (%		Ĺ	Qual
2-Fluorophenol	99	15-138			Phenol-d6		104	<u>Limits</u> 17-141		
Nitrobenzene-d5	119	28-139			2-Fluorobipher	nvi	104 113	33-144		
2,4,6-Tribromophenol	114	32-143			p-Terphenyl-d	*	113	23-160		

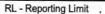
RL - Reporting Limit ,

DF - Dilution Factor ,

Qual - Qualifiers

 Tetra Tech, Inc.
 Date Received:
 02/17/05

 3475 East Foothill Blvd., Suite 300
 Work Order No:
 05-02-0998


 Pasadena, CA 91107-6024
 Preparation:
 EPA 3520B

 Method:
 Units:
 EPA 8270C

 Units:
 ug/L

Project: Lockheed - Beaumont 2GW Sampling / 13505-02 Page 8 of 9

Tt-MW2-20				Number	Collected	Matrix	Prepared	Analyzed	QC Ba	atch ID
Tt-MW2-20			05-02-09	998-9	02/16/05	Aqueous	02/17/05	02/22/05	05021	6L03B
Parameter	Result	RL	DF	Qual	Parameter		Result	RL	DF	Qual
N-Nitrosodimethylamine	ND	10	1		2,4-Dinitropher	nol	ND	50	1	
Aniline	ND	10	1		4-Nitrophenol		ND	10	1	
Phenol	ND	10	1		Dibenzofuran		ND	10	1	
Bis(2-Chloroethyl) Ether	ND	25	1		2,4-Dinitrotolue	ene	ND	10	1	
2-Chlorophenol	ND	10	1		2,6-Dinitrotolue	ene	ND	10	1	
1,3-Dichlorobenzene	ND	10	1		Diethyl Phthala	ate	ND	10	1	
1,4-Dichlorobenzene	ND	10	1		4-Chloropheny		ND	10	1	
Benzyl Alcohol	ND	10	1		Fluorene	an at house	ND	10	1	
1,2-Dichlorobenzene	ND	10	1		4-Nitroaniline		ND	10	1	
2-Methylphenol	ND	10	1		Azobenzene		ND	10	1	
Bis(2-Chloroisopropyl) Ether	ND	10	1		4,6-Dinitro-2-N	Methylphenol	ND	50	1	
3/4-Methylphenol	ND	10	1		N-Nitrosodiphe		ND	10	1	
V-Nitroso-di-n-propylamine	ND	10	1		4-Bromopheny		ND	10	1	
Hexachloroethane	ND	10	1		Hexachlorober		ND	10	1	
Nitrobenzene	ND	25	1		Pentachloroph		ND	10	1	
Isophorone	ND	10	1		Phenanthrene		ND	10	1	
2-Nitrophenol	ND	10	1		Anthracene		ND	10	1	
2,4-Dimethylphenol	ND	10	1		Di-n-Butyl Phtl	halate	ND	10	1	
Benzoic Acid	ND	50	1		Fluoranthene	il di di di	ND	10	1	
Bis(2-Chloroethoxy) Methane	ND	10	1		Benzidine		ND	50	1	
2,4-Dichlorophenol	ND	10	1		Pyrene		ND	10	1	
1,2,4-Trichlorobenzene	ND	10	1		Pyridine		ND	10	1	
Naphthalene	ND	10	1		Butyl Benzyl P	hthalate	ND	10	1	
4-Chloroaniline	ND	10	1		3,3'-Dichlorobe		ND	25	1	
Hexachloro-1,3-Butadiene	ND	10	1		Benzo (a) Anti		ND	10	1	
4-Chloro-3-Methylphenol	ND	10	1		Bis(2-Ethylhex		ND	10	1	
2-Methylnaphthalene	ND	10	1		Chrysene	y, i maialato	ND	10	1	
Hexachlorocyclopentadiene	ND	25	1		Di-n-Octyl Pht	halate	ND	10	1	
2,4,6-Trichlorophenol	ND	10	1		Benzo (k) Fluo		ND	10	1	
2,4,5-Trichlorophenol	ND	10	1		Benzo (b) Fluo		ND	10	1	
2-Chloronaphthalene	ND	10	1		Benzo (a) Pyre		ND	10	1	
2-Nitroaniline	ND	10	1		Benzo (g,h,i) F		ND	10	1	
Dimethyl Phthalate	ND	10	1		Indeno (1,2,3-		ND	10	1	
Acenaphthylene	ND	10	1		Dibenz (a,h) A		ND	10	1	
3-Nitroaniline	ND	10	1		1-Methylnapht		ND	10	1	
Acenaphthene	ND	10	1				, in	,0		
Surrogates:	REC (%)	Control Limits		Qual	Surrogates:		REC (9	6) Control		Qual
2-Fluorophenol	93	15-138			Phenol-d6		05	17-141		
Nitrobenzene-d5	107	28-139			2-Fluorobipher	ovd	95 88	33-144		
2,4,6-Tribromophenol	88	32-143			p-Terphenyl-d	•	107	23-160		

Tetra Tech, Inc.

3475 East Foothill Blvd., Suite 300

Pasadena, CA 91107-6024

Date Received:

Work Order No:

Preparation:

Method:

Units:

02/17/05 05-02-0998

EPA 3520B

EPA 8270C

ug/L

Project: Lockheed - Beaumont 2GW Sampling / 13505-02 Page 9 of 9

Client Sample Number				ab Sample Number	Date Collected	Matrix	Date Prepared	Date Analyzed	QC Ba	atch ID
Method Blank	Mark Miller		095-01-0	003-1,621	N/A	Aqueous	02/16/05	02/21/05	05021	SL03B
<u>Parameter</u>	Result	RL	DF	Qual	Parameter		Resu	t RL	DF	Qual
N-Nitrosodimethylamine	ND	10	1		2,4-Dinitrophe	nol	ND	50	1	
Aniline	ND	10	1		4-Nitrophenol		ND	10	1	
Phenol	ND	10	1		Dibenzofuran		ND	10	1	
Bis(2-Chloroethyl) Ether	ND	25	1		2,4-Dinitrotolue	ene	ND	10	1	
2-Chlorophenol	ND	10	1		2,6-Dinitrotolue		ND	10	1	
1,3-Dichlorobenzene	ND	10	1		Diethyl Phthala	ate	ND	10	1	
1,4-Dichlorobenzene	ND	10	1		4-Chloropheny	I-Phenyl Ether	ND	10	1	
Benzyl Alcohol	ND	10	- 1		Fluorene		ND	10	1	
1,2-Dichlorobenzene	ND	10	1		4-Nitroaniline		ND	10	1	
2-Methylphenol	ND	10	1		Azobenzene		ND	10	1	
Bis(2-Chloroisopropyl) Ether	ND	10	1		4,6-Dinitro-2-N	Methylphenol	ND	50	1	
3/4-Methylphenol	ND	10	1		N-Nitrosodiphe	enylamine	ND	10	1	
N-Nitroso-di-n-propylamine	ND	10	1		4-Bromopheny	I-Phenyl Ether	ND	10	1	
Hexachloroethane	ND	10	- 1		Hexachlorober	nzene	ND	10	1	
Nitrobenzene	ND	25	1		Pentachloroph	enol	ND	10	1	
Isophorone	ND	10	1		Phenanthrene		ND	10	1	
2-Nitrophenol	ND	10	1		Anthracene		ND	10	1	
2,4-Dimethylphenol	ND	10	1		Di-n-Butyl Pht	halate	ND	10	1	
Benzoic Acid	ND	50	1		Fluoranthene		ND	10	1	
Bis(2-Chloroethoxy) Methane	ND	10	1		Benzidine		ND	50	1	
2,4-Dichlorophenol	ND	10	1		Pyrene		ND	10	1	
1,2,4-Trichlorobenzene	ND	10	1		Pyridine		ND	10	1	
Naphthalene	ND	10	1		Butyl Benzyl P	hthalate	ND	10	1	
4-Chloroaniline	ND	10	1		3,3'-Dichlorobe	enzidine	ND	25	1	
Hexachloro-1,3-Butadiene	ND	10	1		Benzo (a) Anti		ND	10	1	
4-Chloro-3-Methylphenol	ND	10	1		Bis(2-Ethylhex	yl) Phthalate	ND	10	1	
2-Methylnaphthalene	ND	10	1		Chrysene		ND	10	1	
Hexachlorocyclopentadiene	ND	25	1		Di-n-Octyl Pht	halate	ND	10	1	
2,4,6-Trichlorophenol	ND	10	1		Benzo (k) Fluo	ranthene	ND	10	1	
2,4,5-Trichlorophenol	ND	10	1		Benzo (b) Fluo	oranthene	ND	10	1	
2-Chloronaphthalene	ND	10	1		Benzo (a) Pyre	ene	ND	10	1	
2-Nitroaniline	ND	10	1		Benzo (g,h,i) F	Perylene	ND	10	1	
Dimethyl Phthalate	ND	10	1		Indeno (1,2,3-	c,d) Pyrene	ND	10	1	
Acenaphthylene	ND	10	1		Dibenz (a,h) A	nthracene	ND	10	1	
3-Nitroaniline	ND	10	1		1-Methylnapht	halene	ND	10	1	
Acenaphthene	ND	10	1							
Surrogates:	REC (%)	Control Limits		Qual	Surrogates:		REC (%) Contro	L	Qual
2-Fluorophenol	82	15-138			Phenol-d6		85	17-141		
Nitrobenzene-d5	107	28-139			2-Fluorobipher	nyl	89	33-144		
2,4,6-Tribromophenol	92	32-143			p-Terphenyl-d		115	23-160		

Tetra Tech, Inc. 3475 East Foothill Blvd., Suite 3

3475 East Foothill Blvd., Suite 300 Pasadena, CA 91107-6024

Date Received:

Work Order No: Preparation:

Method:

02/17/05

05-02-0998

EPA 3520B EPA 8270C(M) Isotope

Dilution

Project: Lockheed - Beaumont 2GW Sampling / 13505-02

Page 2 of 3

Client Sample Number		Lab Sample Number	Date Collected	Matrix	Date Prepared	Date Analyzed	QC Batch ID
Tt-MW2-3		05-02-0998-6	02/16/05	Aqueous	02/17/05	02/22/05	050216L03D
<u>Parameter</u>	Result	RL	DF	Qual	<u>Units</u>		
1,4-Dioxane	ND	2.0	1		ug/L		
Surrogates:	REC (%)	Control Limits		Qual			
Nitrobenzene-d5	101	56-123					
Tt-MW2-4S	41	05-02-0998-7	02/16/05	Aqueous	02/17/05	02/22/05	050216L03D
<u>Parameter</u>	Result	RL	DF	Qual	<u>Units</u>		
4-Dioxane	ND	2.0	1		ug/L		
Surrogates:	REC (%)	Control Limits		Qual			
Nitrobenzene-d5	122	56-123					
Tt-MW2-4D		05-02-0998-8	02/16/05	Aqueous	02/17/05	02/22/05	050216L03D
<u>Parameter</u>	Result	RL	DF	Qual	<u>Units</u>		
1,4-Dioxane	ND	2.0	1		ug/L		
Surrogates:	REC (%)	Control Limits		Qual			
Nitrobenzene-d5	119	56-123					
Tt-MW2-20		05-02-0998-9	02/16/05	Aqueous	02/17/05	02/22/05	050216L03D
<u>Parameter</u>	Result	RL	DF	Qual	<u>Units</u>		
1,4-Dioxane	ND	2.0	1		ug/L		
Surrogates:	REC (%)	Control Limits		Qual			
Nitrobenzene-d5	107	56-123					

RL - Reporting Limit ,

DF - Dilution Factor

Qual - Qualifiers

Tetra Tech, Inc.

3475 East Foothill Blvd., Suite 300 Pasadena, CA 91107-6024

Date Received:

Work Order No:

Preparation:

Method:

02/17/05

05-02-0998

EPA 3520B

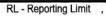
EPA 8270C(M) Isotope Dilution

Project: Lockheed - Beaumont 2GW Sampling / 13505-02

Page 3 of 3

	Lab Sample Number	Date Collected	Matrix	Date Prepared	Date Analyzed	QC Batch ID
	099-09-004-369	N/A	Aqueous	02/16/05	02/21/05	050216L03D
Result	RL	DF	Qual	<u>Units</u>		
ND	1.0	0.5		ug/L		
REC (%)	Control Limits		Qual			
107	56-123					
	ND REC (%)	Number	Number Collected 099-09-004-369 N/A Result RL DF ND 1.0 0.5 REC (%) Control Limits	Number Collected Matrix 099-09-004-369 N/A Aqueous Result RL DF Qual ND 1.0 0.5 REC (%) Control Limits Qual	Number Collected Matrix Prepared 099-09-004-369 N/A Aqueous 02/16/05 Result RL DF Qual Units ND 1.0 0.5 ug/L REC (%) Control Limits Qual	Number Collected Matrix Prepared Analyzed 099-09-004-369 N/A Aqueous 02/16/05 02/21/05 Result RL DF Qual Units ND 1.0 0.5 ug/L REC (%) Control Limits Qual

Tetra Tech, Inc. 3475 East Foothill Blvd., Suite 300


Pasadena, CA 91107-6024

Date Received: Work Order No: Preparation: Method: 02/17/05 05-02-0998 EPA 3520B EPA 1625CM

Project: Lockheed - Beaumont 2GW Sampling / 13505-02

Page 1 of 3

Project. Lockneed - bea	ullionit 2000 Sai	ripling / 15505	-02				r ago r or s
Client Sample Number		Lab Sample Number	Date Collected	Matrix	Date Prepared	Date Analyzed	QC Batch ID
EB1-P		05-02-0998-2	02/15/05	Aqueous	02/18/05	02/24/05	050218L05
Parameter .	Result	RL	DF	Qual	<u>Units</u>		
N-Nitrosodimethylamine	ND	2.0	1		ng/L		
Surrogates:	REC (%)	Control Limits		Qual			
1,4-Dichlorobenzene-d4	124	50-130					
EB1-B		05-02-0998-3	02/15/05	Aqueous	02/18/05	02/24/05	050218L05
Parameter	Result	RL	DF	Qual	<u>Units</u>		
'-Nitrosodimethylamine	ND	2.0	1		ng/L		
Surrogates:	REC (%)	Control Limits		Qual			
1,4-Dichlorobenzene-d4	123	50-130					
Tt-MW2-1		05-02-0998-4	02/16/05	Aqueous	02/18/05	02/24/05	050218L05
<u>Parameter</u>	Result	RL	DF	Qual	<u>Units</u>		
N-Nitrosodimethylamine	ND	2.0	1		ng/L		
Surrogates:	REC (%)	Control Limits		Qual			
1,4-Dichlorobenzene-d4	111	50-130					
Tt-MW2-2		05-02-0998-5	02/16/05	Aqueous	02/18/05	02/24/05	050218L05
<u>Parameter</u>	Result	RL	DF	Qual	<u>Units</u>		
N-Nitrosodimethylamine	ND	2.0	1		ng/L		
Surrogates:	REC (%)	Control Limits		Qual			
1,4-Dichlorobenzene-d4	103	50-130					

DF - Dilution Factor ,

Qual - Qualifiers

Tetra Tech, Inc.

3475 East Foothill Blvd., Suite 300 Pasadena, CA 91107-6024

Date Received: Work Order No: Preparation:

Method:

02/17/05 05-02-0998 EPA 3520B EPA 1625CM

Project: Lockheed - Beaumont 2GW Sampling / 13505-02

Page 2 of 3

Project. Lockneed - bear	unioni 2000 Sai	2GW Sampling / 13303-02							
Client Sample Number		Lab Sample Number	Date Collected	Matrix	Date Prepared	Date Analyzed	QC Batch ID		
Tt-MW2-3		05-02-0998-6	02/16/05	Aqueous	02/18/05	02/24/05	050218L05		
<u>Parameter</u>	Result	RL	DF	Qual	<u>Units</u>				
N-Nitrosodimethylamine	ND	2.0	1		ng/L				
Surrogates:	REC (%)	Control Limits		Qual					
1,4-Dichlorobenzene-d4	111	50-130							
Tt-MW2-4S		05-02-0998-7	02/16/05	Aqueous	02/18/05	02/24/05	050218L05		
<u>Parameter</u>	Result	RL	DF	Qual	<u>Units</u>				
¹-Nitrosodimethylamine	ND	2.0	1		ng/L				
Surrogates:	REC (%)	Control Limits		Qual					
1,4-Dichlorobenzene-d4	100	50-130							
Tt-MW2-4D		05-02-0998-8	02/16/05	Aqueous	02/18/05	02/24/05	050218L05		
<u>Parameter</u>	Result	RL	DF	Qual	<u>Units</u>				
N-Nitrosodimethylamine	ND	2.0	1		ng/L				
Surrogates:	REC (%)	Control Limits		Qual					
1,4-Dichlorobenzene-d4	61	50-130							
Tt-MW2-20	- Element	05-02-0998-9	02/16/05	Aqueous	02/18/05	02/24/05	050218L05		
<u>Parameter</u>	Result	RL	DF	Qual	<u>Units</u>				
N-Nitrosodimethylamine	ND	2.0	1		ng/L				
Surrogates:	REC (%)	Control Limits		Qual					
1,4-Dichlorobenzene-d4	94	50-130							

RL - Reporting Limit ,

DF - Dilution Factor ,

Qual - Qualifiers

Tetra Tech, Inc.

3475 East Foothill Blvd., Suite 300 Pasadena, CA 91107-6024

Date Received:

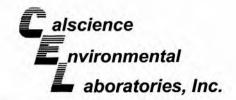
Work Order No:

Preparation:

Method:

02/17/05

05-02-0998


EPA 3520B

EPA 1625CM

Project: Lockheed - Beaumont 2GW Sampling / 13505-02

Page 3 of 3

	Lab Sample Number	Date Collected	Matrix	Date Prepared	Date Analyzed	QC Batch ID
Maritina di	099-07-027-146	N/A	Aqueous	02/18/05	02/23/05	050218L05
Result	RL	DF	Qual	<u>Units</u>		
ND	2.0	1		ng/L		
REC (%)	Control Limits		Qual			
112	50-130					
	ND REC (%)	Number 099-07-027-146 Result RL ND 2.0 REC (%) Control Limits	Number Collected 099-07-027-146 N/A Result RL DF ND 2.0 1 REC (%) Control Limits	Number Collected Matrix 099-07-027-146 N/A Aqueous Result RL DF Qual ND 2.0 1 REC (%) Control Limits Qual	Number Collected Matrix Prepared 099-07-027-146 N/A Aqueous 02/18/05 Result RL DF Qual Units ND 2.0 1 ng/L REC (%) Control Limits Qual	Number Collected Matrix Prepared Analyzed 099-07-027-146 N/A Aqueous 02/18/05 02/23/05 Result RL DF Qual Units ND 2.0 1 ng/L REC (%) Control Limits Qual

Tetra Tech, Inc.

3475 East Foothill Blvd., Suite 300

Pasadena, CA 91107-6024

Date Received:

Work Order No:

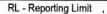
Preparation:

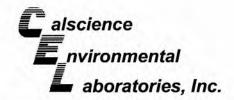
Method:

Units:

02/17/05 05-02-0998

EPA 5030B


EPA 8260B


PA 8260B ug/L

Page 1 of 11

Project: Lockheed - Beaumont 2GW Sampling / 13505-02

Client Sample Number				ab Sample Number	Date Collected	Matrix	Date Prepared	Date Analyzed	QC Ba	atch ID
TB1			05-02-09	98-1	02/15/05	Aqueous	02/17/05	02/17/05	050217	7L01
Parameter	Result	RL	DF	Qual	Parameter		Resu	t RL	DF	Qual
Acetone	ND	10	1		1,3-Dichloropro	opane	ND	1.0	1	
Benzene	ND	0.50	1		2,2-Dichloropro	opane	ND	1.0	1	
Bromobenzene	ND	1.0	1		1,1-Dichloropr	opene	ND	1.0	1	
Bromochloromethane	ND	1.0	1		c-1,3-Dichloro	propene	ND	0.50	1	
Bromodichloromethane	ND	1.0	1		t-1,3-Dichlorop	propene	ND	0.50	1	
Bromoform	ND	1.0	1		Ethylbenzene		ND	1.0	1	
Bromomethane	ND	10	1		2-Hexanone		ND	10	1	
2-Butanone	ND	10	1		Isopropylbenze	ene	ND	1.0	1	
n-Butylbenzene	ND	1.0	1		p-Isopropyltolu	iene	ND	1.0	1	
sec-Butylbenzene	ND	1.0	1		Methylene Chl	oride	ND	10	1	
tert-Butylbenzene	ND	1.0	1		4-Methyl-2-Pe	ntanone	ND	10	1	
Carbon Disulfide	ND	10	1		Naphthalene		ND	10	1	
Carbon Tetrachloride	ND	0.50	1		n-Propylbenze	ne	ND	1.0	1	
Chlorobenzene	ND	1.0	1		Styrene		ND	1.0	1	
Chloroethane	ND	1.0	1		1,1,1,2-Tetrac	hloroethane	ND	1.0	1	
Chloroform	ND	1.0	1		1,1,2,2-Tetrac		ND	1.0	1	
Chloromethane	ND	10	1		Tetrachloroeth	ene	ND	1.0	1	
2-Chlorotoluene	ND	1.0	1		Toluene		ND	1.0	1	
4-Chlorotoluene	ND	1.0	1		1,2,3-Trichloro	benzene	ND	1.0	1	
Dibromochloromethane	ND	1.0	1		1,2,4-Trichlord	benzene	ND	1.0	1	
1,2-Dibromo-3-Chloropropane	ND	5.0	1		1,1,1-Trichlord		ND	1.0	1	
1,2-Dibromoethane	ND	1.0	1		1,1,2-Trichlord	-1,2,2-Trifluoroel		10	1	
Dibromomethane	ND	1.0	1		1,1,2-Trichlord		ND	1.0	1	
1,2-Dichlorobenzene	ND	1.0	1		Trichloroethen	ie	ND	1.0	1	
1,3-Dichlorobenzene	ND	1.0	1		Trichlorofluoro	methane	ND	10	1	
1,4-Dichlorobenzene	ND	1.0	1		1,2,3-Trichlord	propane	ND	5.0	1	
Dichlorodifluoromethane	ND	1.0	1		1,2,4-Trimethy		ND	1.0	1	
1,1-Dichloroethane	ND	1.0	1		1,3,5-Trimethy		ND	1.0	1	
1,2-Dichloroethane	ND	0.50	1		Vinyl Acetate		ND	10	1	
1,1-Dichloroethene	ND	1.0	1		Vinyl Chloride		ND	0.50	1	
c-1,2-Dichloroethene	ND	1.0	1		p/m-Xylene		ND	1.0	1	
t-1,2-Dichloroethene	ND	1.0	1		o-Xylene		ND	1.0	1	
1,2-Dichloropropane	ND	1.0	1			Ether (MTBE)	ND	1.0	1	
Surrogates:	REC (%)	Control Limits		Qual	Surrogates:		REC (Qual
Dibromofluoromethane	104	82-136			1,2-Dichloroet	hane-d4	104	82-142		
Toluene-d8	100	80-116			1,4-Bromofluo	robenzene	92	72-114		



Tetra Tech, Inc. 3475 East Foothill Blvd., Suite 300 Pasadena, CA 91107-6024 Date Received: Work Order No: Preparation: Method: Units: 02/17/05 05-02-0998 EPA 5030B EPA 8260B ug/L

Project: Lockheed - Beaumont 2GW Sampling / 13505-02

Page 2 of 11

Client Sample Number				b Sample Number	Date Collected	Matrix	Date Prepared	Date Analyzed	QC Ba	atch ID
EB1-P			05-02-09	98-2	02/15/05	Aqueous	02/17/05	02/17/05	050217	7L01
<u>Parameter</u>	Result	RL	DF	Qual	<u>Parameter</u>		Result	RL	DF	Qual
Acetone	ND	10	1		1,3-Dichloropro	opane	ND	1.0	1	
Benzene	ND	0.50	1		2,2-Dichloropro	opane	ND	1.0	1	
Bromobenzene	ND	1.0	1		1,1-Dichloropro	opene	ND	1.0	1	
Bromochloromethane	ND	1.0	1		c-1,3-Dichloro	propene	ND	0.50	1	
romodichloromethane	ND	1.0	1		t-1,3-Dichlorop	ropene	ND	0.50	1	
Bromoform	ND	1.0	1		Ethylbenzene		ND	1.0	1	
Bromomethane	ND	10	1		2-Hexanone		ND	10	1	
2-Butanone	ND	10	1		Isopropylbenze	ene	ND	1.0	1	
n-Butylbenzene	ND	1.0	1		p-Isopropyltolu		ND	1.0	1	
ec-Butylbenzene	ND	1.0	1		Methylene Chl	oride	ND	10	1	
ert-Butylbenzene	ND	1.0	1		4-Methyl-2-Per		ND	10	1	
Carbon Disulfide	ND	10	1		Naphthalene		ND	10	1	
Carbon Tetrachloride	ND	0.50	1		n-Propylbenze	ne	ND	1.0	1	
Chlorobenzene	ND	1.0	1		Styrene		ND	1.0	1	
Chloroethane	ND	1.0	1		1,1,1,2-Tetrac	hloroethane	ND	1.0	1	
Chloroform	ND	1.0	1		1,1,2,2-Tetrac		ND	1.0	1	
Chloromethane	ND	10	1		Tetrachloroeth		ND	1.0	1	
-Chlorotoluene	ND	1.0	1		Toluene		ND	1.0	1	
-Chlorotoluene	ND	1.0	1		1,2,3-Trichlord	benzene	ND	1.0	1	
Dibromochloromethane	ND	1.0	1		1,2,4-Trichlord		ND	1.0	1	
,2-Dibromo-3-Chloropropane	ND	5.0	1		1,1,1-Trichlord		ND	1.0	1	
,2-Dibromoethane	ND	1.0	1			-1,2,2-Trifluoroet		10	1	
Dibromomethane	ND	1.0	1		1,1,2-Trichlord	Charles and the second second second	ND	1.0	1	
1,2-Dichlorobenzene	ND	1.0	1		Trichloroethen		ND	1.0	1	
,3-Dichlorobenzene	ND	1.0	1		Trichlorofluoro	7/	ND	10	1	
,4-Dichlorobenzene	ND	1.0	1		1,2,3-Trichlord		ND	5.0	1	
Dichlorodifluoromethane	ND	1.0	1		1,2,4-Trimethy		ND	1.0	1	
,1-Dichloroethane	ND	1.0	1		1,3,5-Trimethy		ND	1.0	1	
1,2-Dichloroethane	ND	0.50	1		Vinyl Acetate		ND	10	1	
,1-Dichloroethene	ND	1.0	1		Vinyl Chloride		ND	0.50	1	
-1,2-Dichloroethene	ND	1.0	1		p/m-Xylene		ND	1.0	1	
1,2-Dichloroethene	ND	1.0	1		o-Xylene		ND	1.0	1	
,2-Dichloropropane	ND	1.0	1		Methyl-t-Butyl	Ether (MTRF)	ND	1.0	1	
Surrogates:	REC (%)	Control		Qual	Surrogates:	(N110L)	REC (9			Qual
Dibromofluoromethane	105	82-136			1,2-Dichloroet	hane-d4	107	82-142		
Foluene-d8	99	80-116			1,4-Bromofluo		94	72-114		

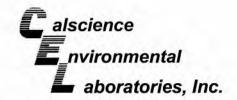


Tetra Tech, Inc. 3475 East Foothill Blvd., Suite 300 Pasadena, CA 91107-6024 Date Received: Work Order No: Preparation: Method: Units: 02/17/05 05-02-0998 EPA 5030B EPA 8260B ug/L

Project: Lockheed - Beaumont 2GW Sampling / 13505-02

Page 3 of 11

Client Sample Number				b Sample Number	Date Collected	Matrix	Date Prepared	Date Analyzed	QC Ba	atch ID
EB1-B			05-02-0998-3		02/15/05	Aqueous	02/17/05	02/18/05	050217	7L03
<u>Parameter</u>	Result	RL	DF	Qual	Parameter		Result	RL	DF	Qual
Acetone	ND	10	1		1,3-Dichloropr	opane	ND	1.0	1	
Benzene	ND	0.50	1		2,2-Dichloropr	opane	ND	1.0	1	
Bromobenzene	ND	1.0	1		1,1-Dichloropr	opene	ND	1.0	1	
Bromochloromethane	ND	1.0	1		c-1,3-Dichloro	propene	ND	0.50	1	
Bromodichloromethane	ND	1.0	1		t-1,3-Dichlorop	propene	ND	0.50	1	
Bromoform	ND	1.0	1		Ethylbenzene		ND	1.0	1	
Bromomethane	ND	10	1		2-Hexanone		ND	10	1	
2-Butanone	ND	10	1		Isopropylbenze	ene	ND	1.0	1	
n-Butylbenzene	ND	1.0	1		p-Isopropyltolu		ND	1.0	1	
ec-Butylbenzene	ND	1.0	1		Methylene Chl		ND	10	1	
ert-Butylbenzene	ND	1.0	1		4-Methyl-2-Pe		ND	10	1	
Carbon Disulfide	ND	10	1		Naphthalene		ND	10	1	
Carbon Tetrachloride	ND	0.50	1		n-Propylbenze	ne	ND	1.0	1	
Chlorobenzene	ND	1.0	1		Styrene		ND	1.0	1	
Chloroethane	ND	1.0	1		1,1,1,2-Tetrac	hloroethane	ND	1.0	1	
Chloroform	ND	1.0	1		1,1,2,2-Tetrac		ND	1.0	1	
Chloromethane	ND	10	1		Tetrachloroeth		ND	1.0	1	
2-Chlorotoluene	ND	1.0	1		Toluene		ND	1.0	1	
-Chlorotoluene	ND	1.0	1		1,2,3-Trichlord	benzene	ND	1.0	1	
Dibromochloromethane	ND	1.0	1		1,2,4-Trichlord		ND	1.0	1	
,2-Dibromo-3-Chloropropane	ND	5.0	1		1,1,1-Trichlord		ND	1.0	1	
.2-Dibromoethane	ND	1.0	1			-1,2,2-Trifluoroet		10	1	
Dibromomethane	ND	1.0	1		1,1,2-Trichlord		ND	1.0	1	
.2-Dichlorobenzene	ND	1.0	1		Trichloroethen		ND	1.0	1	
,3-Dichlorobenzene	ND	1.0	1		Trichlorofluoro	Parameter 1	ND	10	1	
,4-Dichlorobenzene	ND	1.0	1		1,2,3-Trichlord		ND	5.0	1	
Dichlorodifluoromethane	ND .	1.0	1		1,2,4-Trimethy		ND	1.0	1	
,1-Dichloroethane	ND	1.0	1		1,3,5-Trimethy		ND	1.0	1	
,2-Dichloroethane	ND	0.50	1		Vinyl Acetate		ND	10	1	
.1-Dichloroethene	ND	1.0	1		Vinyl Chloride		ND	0.50	1	
:-1,2-Dichloroethene	ND	1.0	1		p/m-Xylene		ND	1.0	1	
-1,2-Dichloroethene	ND	1.0	1		o-Xvlene		ND	1.0	1	
,2-Dichloropropane	ND	1.0	1		Methyl-t-Butyl	Ether (MTBF)	ND	1.0	1	
Surrogates:	REC (%)	Control		Qual	Surrogates:		REC (%			Qual
Dibromofluoromethane	105	82-136			1,2-Dichloroet	hane-d4	104	82-142		
Toluene-d8	100	80-116			1,4-Bromofluo		92	72-114		

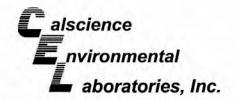


Tetra Tech, Inc. 3475 East Foothill Blvd., Suite 300 Pasadena, CA 91107-6024 Date Received: Work Order No: Preparation: Method: Units: 02/17/05 05-02-0998 EPA 5030B EPA 8260B ug/L

Project: Lockheed - Beaumont 2GW Sampling / 13505-02

Page 4 of 11

Client Sample Number				b Sample Number	Date Collected	Matrix	Date Prepared	Date Analyzed	QC Ba	atch ID
Tt-MW2-1		•	05-02-09	98-4	02/16/05	Aqueous	02/17/05	02/18/05	050217	7L03
Parameter Parameter	Result	RL	DF	Qual	Parameter		Resul	RL	DF	Qual
Acetone	ND	10	1		1,3-Dichloropre	opane	ND	1.0	1	
Benzene	ND	0.50	1		2,2-Dichloropro	opane	ND	1.0	1	
Bromobenzene	ND	1.0	1		1,1-Dichloropre	opene	ND	1.0	1	
Bromochloromethane	ND	1.0	1		c-1,3-Dichloro	propene	ND	0.50	1	
Bromodichloromethane	ND	1.0	1		t-1,3-Dichlorop	ropene	ND	0.50	1	
Bromoform	ND	1.0	1		Ethylbenzene		ND	1.0	1	
Bromomethane	ND	10	1		2-Hexanone		ND	10	1	
2-Butanone	ND	10	1		Isopropylbenze	ene	ND	1.0	1	
n-Butylbenzene	ND	1.0	1		p-Isopropyltolu	ene	ND	1.0	1	
sec-Butylbenzene	ND	1.0	1		Methylene Chl	oride	ND	10	1	
ert-Butylbenzene	ND	1.0	1		4-Methyl-2-Pe	ntanone	ND	10	1	
Carbon Disulfide	ND	10	1		Naphthalene		ND	10	1	
arbon Tetrachloride	ND	0.50	1		n-Propylbenze	ne	ND	1.0	1	
Chlorobenzene	ND	1.0	1		Styrene		ND	1.0	1	
Chloroethane	ND	1.0	1		1,1,1,2-Tetrac	hloroethane	ND	1.0	1	
Chloroform	ND	1.0	1		1,1,2,2-Tetrac		ND	1.0	1	
Chloromethane	ND	10	1		Tetrachloroeth	ene	ND	1.0	1	
2-Chlorotoluene	ND	1.0	1		Toluene		ND	1.0	1	
1-Chlorotoluene	ND	1.0	1		1,2,3-Trichlord	benzene	ND	1.0	1	
Dibromochloromethane	ND	1.0	1		1,2,4-Trichlord		ND	1.0	1	
1,2-Dibromo-3-Chloropropane	ND	5.0	1		1,1,1-Trichlord		ND	1.0	1	
1,2-Dibromoethane	ND	1.0	1			-1,2,2-Trifluoroe		10	1	
Dibromomethane	ND	1.0	1		1,1,2-Trichlord		ND	1.0	1	
1.2-Dichlorobenzene	ND	1.0	1		Trichloroethen		ND	1.0	1	
1,3-Dichlorobenzene	ND	1.0	1		Trichlorofluoro	methane	ND	10	1	
1,4-Dichlorobenzene	ND	1.0	1		1,2,3-Trichloro		ND	5.0	1	
Dichlorodifluoromethane	ND	1.0	1		1,2,4-Trimethy	C. S. Carrier C. C.	ND	1.0	1	
1,1-Dichloroethane	ND	1.0	1		1,3,5-Trimethy		ND	1.0	1	
1,2-Dichloroethane	ND	0.50	1		Vinyl Acetate	ALL STREET	ND	10	1	
1,1-Dichloroethene	ND	1.0	1		Vinyl Chloride		ND	0.50	1	
c-1,2-Dichloroethene	ND	1.0	1		p/m-Xylene		ND	1.0	1	
-1,2-Dichloroethene	ND	1.0	1		o-Xylene		ND	1.0	1	
1,2-Dichloropropane	ND	1.0	1			Ether (MTBE)	ND	1.0	1	
Surrogates:	REC (%)	Control Limits		Qual	Surrogates:		REC (Qual
Dibromofluoromethane	106	82-136			1,2-Dichloroet	hane-d4	104	82-142		
Toluene-d8	100	80-116			1,4-Bromofluo	robenzene	93	72-114		



Tetra Tech, Inc. 3475 East Foothill Blvd., Suite 300 Pasadena, CA 91107-6024 Date Received: Work Order No: Preparation: Method: Units: 02/17/05 05-02-0998 EPA 5030B EPA 8260B ug/L

Project: Lockheed - Beaumont 2GW Sampling / 13505-02

Page 5 of 11

Client Sample Number				b Sample Number	Date Collected	Matrix	Date Prepared	Date Analyzed	QC Ba	atch ID
Tt-MW2-2			05-02-09	98-5	02/16/05	Aqueous	02/17/05	02/18/05	05021	7L03
<u>Parameter</u>	Result	RL	DF	Qual	Parameter		Resu	it RL	DF	Qual
Acetone	ND	10	1		1,3-Dichloropro	opane	ND	1.0	1	
Benzene	ND	0.50	1		2,2-Dichloropro	opane	ND	1.0	1	
Bromobenzene	ND	1.0	1		1,1-Dichloropre	opene	ND	1.0	1	
Bromochloromethane	ND	1.0	1		c-1,3-Dichloro	propene	ND	0.50	1	
Bromodichloromethane	ND	1.0	1		t-1,3-Dichlorop		ND	0.50	1	
Bromoform	ND	1.0	1		Ethylbenzene		ND	1.0	1	
Bromomethane	ND	10	1		2-Hexanone		ND	10	1	
2-Butanone	ND	10	1		Isopropylbenze	ene	ND	1.0	1	
n-Butylbenzene	ND	1.0	1		p-Isopropyltolu		ND	1.0	1	
sec-Butylbenzene	ND	1.0	1		Methylene Chl	oride	ND	10	1	
ert-Butylbenzene	ND	1.0	1		4-Methyl-2-Per		ND	10	1	
Carbon Disulfide	ND	10	1		Naphthalene		ND	10	1	
arbon Tetrachloride	ND	0.50	1		n-Propylbenze	ne	ND	1.0	1	
chlorobenzene	ND	1.0	1		Styrene		ND	1.0	1	
Chloroethane	ND	1.0	1		1,1,1,2-Tetrac	hloroethane	ND	1.0	1	
Chloroform	ND	1.0	1		1,1,2,2-Tetrac		ND	1.0	1	
Chloromethane	ND	10	1		Tetrachloroeth	ene	ND	1.0	1	
2-Chlorotoluene	ND	1.0	1		Toluene		ND	1.0	1	
I-Chlorotoluene	ND	1.0	1		1,2,3-Trichlord	benzene	ND	1.0	1	
Dibromochloromethane	ND	1.0	1		1,2,4-Trichlord		ND	1.0	1	
,2-Dibromo-3-Chloropropane	ND	5.0	1		1,1,1-Trichlord	ethane	ND	1.0	1	
.2-Dibromoethane	ND	1.0	1		The state of the s	-1,2,2-Trifluoroe		10	1	
Dibromomethane	ND	1.0	1		1,1,2-Trichlord	The second secon	ND	1.0	1	
1,2-Dichlorobenzene	ND	1.0	1		Trichloroethen		ND	1.0	1	
1,3-Dichlorobenzene	ND	1.0	1		Trichlorofluoro		ND	10	1	
1,4-Dichlorobenzene	ND	1.0	1		1,2,3-Trichlord	11110000000	ND	5.0	1	
Dichlorodifluoromethane	ND	1.0	1		1,2,4-Trimethy	The state of the s	ND	1.0	1	
,1-Dichloroethane	ND	1.0	1		1,3,5-Trimethy		ND	1.0	1	
1,2-Dichloroethane	ND	0.50	1		Vinyl Acetate		ND	10	1	
1,1-Dichloroethene	ND	1.0	1		Vinyl Chloride		ND	0.50	1	
:-1,2-Dichloroethene	ND	1.0	1		p/m-Xylene		ND	1.0	1	
-1,2-Dichloroethene	ND	1.0	1		o-Xylene		ND	1.0	1	
,2-Dichloropropane	ND	1.0	1		Methyl-t-Butyl	Ether (MTBE)	ND	1.0	1	
Surrogates:	REC (%)	Control Limits		Qual	Surrogates:		REC		L	Qual
Dibromofluoromethane	110	82-136			1,2-Dichloroet	hane-d4	106	82-142		
Toluene-d8	100	80-116			1,4-Bromofluo	robenzene	90	72-114		

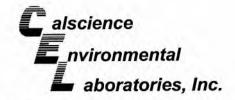


Tetra Tech, Inc. 3475 East Foothill Blvd., Suite 300 Pasadena, CA 91107-6024 Date Received: Work Order No: Preparation: Method: Units: 02/17/05 05-02-0998 EPA 5030B EPA 8260B ug/L

Project: Lockheed - Beaumont 2GW Sampling / 13505-02

Page 6 of 11

Client Sample Number				b Sample Number	Date Collected	Matrix	Date Prepared	Date Analyzed	QC B	atch ID
Tt-MW2-3			05-02-09	98-6	02/16/05	Aqueous	02/17/05	02/18/05	05021	7L03
Parameter	Result	RL	DF	Qual	Parameter		Resul	RL	DE	Qual
Acetone	ND	10	1		1,3-Dichloropro	opane	ND	1.0	1	
Benzene	ND	0.50	1		2,2-Dichloropro	opane	ND	1.0	1	
Bromobenzene	ND	1.0	1		1,1-Dichloropro	opene	ND	1.0	1	
Bromochloromethane	ND	1.0	1		c-1,3-Dichloro	propene	ND	0.50	1	
Bromodichloromethane	ND	1.0	1		t-1,3-Dichlorop	A THE PARTY OF THE	ND	0.50	1	
Bromoform	ND	1.0	1		Ethylbenzene	3500	ND	1.0	1	
Bromomethane	ND	10	1		2-Hexanone		ND	10	1	
2-Butanone	ND	10	1		Isopropylbenze	ene	ND	1.0	1	
n-Butylbenzene	ND	1.0	1		p-Isopropyltolu		ND	1.0	1	
sec-Butylbenzene	ND	1.0	1		Methylene Chl		ND	10	1	
ert-Butylbenzene	ND	1.0	1		4-Methyl-2-Per		ND	10	1	
Carbon Disulfide	ND	10	1		Naphthalene		ND	10	1	
arbon Tetrachloride	ND	0.50	1		n-Propylbenze	ne	ND	1.0	1	
Chlorobenzene	ND	1.0	1		Styrene		ND	1.0	1	
Chloroethane	ND	1.0	1		1,1,1,2-Tetrac	hloroethane	ND	1.0	1	
Chloroform	ND	1.0	1		1,1,2,2-Tetrac		ND	1.0	1	
Chloromethane	ND	10	1		Tetrachloroeth		ND	1.0	1	
-Chlorotoluene	ND	1.0	1		Toluene	7117	1.8	1.0	1	
l-Chlorotoluene	ND	1.0	1		1,2,3-Trichloro	benzene	ND	1.0	1	
Dibromochloromethane	ND	1.0	1		1,2,4-Trichlord		ND	1.0	1	
,2-Dibromo-3-Chloropropane	ND	5.0	1		1,1,1-Trichlord		ND	1.0	4	
,2-Dibromoethane	ND	1.0	1			-1,2,2-Trifluoroet		10	1	
Dibromomethane	ND	1.0	1		1,1,2-Trichlord		ND	1.0	1	
1,2-Dichlorobenzene	ND	1.0	1		Trichloroethen		1.2	1.0	4	
1,3-Dichlorobenzene	ND	1.0	1		Trichlorofluoro	79	ND	10	1	
,4-Dichlorobenzene	ND	1.0	1		1,2,3-Trichloro		ND	5.0	1	
Dichlorodifluoromethane	ND	1.0	1		1,2,4-Trimethy	The state of the s	ND	1.0	1	
,1-Dichloroethane	ND	1.0	1		1,3,5-Trimethy		ND	1.0	1	
,2-Dichloroethane	ND	0.50	1		Vinyl Acetate	1001120110	ND	10	1	
,1-Dichloroethene	ND	1.0	1		Vinyl Chloride		ND	0.50	1	
-1,2-Dichloroethene	ND	1.0	1		p/m-Xylene		1.8	1.0	1	
1,2-Dichloroethene	ND	1.0	1		o-Xylene		ND	1.0	1	
,2-Dichloropropane	ND	1.0	1		Methyl-t-Butyl	Ether (MTRF)	ND	1.0	1	
Surrogates:	REC (%)	Control Limits		Qual	Surrogates:	Edioi (MTDE)	REC (S			Qual
Dibromofluoromethane	106	82-136			1,2-Dichloroeth	hane-d4	101	82-142		
Foluene-d8	101	80-116			1,4-Bromofluo	44.14.14.14	92	72-114		

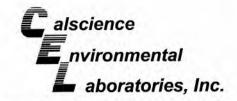


Tetra Tech, Inc. 3475 East Foothill Blvd., Suite 300 Pasadena, CA 91107-6024 Date Received: Work Order No: Preparation: Method: Units: 02/17/05 05-02-0998 EPA 5030B EPA 8260B ug/L

Project: Lockheed - Beaumont 2GW Sampling / 13505-02

Page 7 of 11

Client Sample Number				b Sample Number	Date Collected	Matrix	Date Prepared	Date Analyzed	QC Ba	tch ID
Tt-MW2-4S			05-02-09	98-7	02/16/05	Aqueous	02/17/05	02/18/05	050217	/L03
<u>Parameter</u>	Result	RL	DF	Qual	Parameter		Resul	t RL	DF	Qual
Acetone	ND	10	1		1,3-Dichloropr	opane	ND	1.0	1	
Benzene	ND	0.50	1		2,2-Dichloropr	opane	ND	1.0	1	
Bromobenzene	ND	1.0	1		1,1-Dichloropr	opene	ND	1.0	1	
Bromochloromethane	ND	1.0	1		c-1,3-Dichloro	propene	ND	0.50	1	
Bromodichloromethane	ND	1.0	1		t-1,3-Dichlorop	ropene	ND	0.50	1	
Bromoform	ND	1.0	1		Ethylbenzene		ND	1.0	1	
Bromomethane	ND	10	1		2-Hexanone		ND	10	1	
2-Butanone	ND	10	1		Isopropylbenze	ene	ND	1.0	1	
n-Butylbenzene	ND	1.0	1		p-Isopropyltolu		ND	1.0	1	
ec-Butylbenzene	ND	1.0	1		Methylene Chl		ND	10	1	
ert-Butylbenzene	ND	1.0	1		4-Methyl-2-Pe		ND	10	1	
Carbon Disulfide	ND	10	1		Naphthalene		ND	10	1	
Carbon Tetrachloride	ND	0.50	1		n-Propylbenze	ne	ND	1.0	1	
Chlorobenzene	ND	1.0	1		Styrene		ND	1.0	1	
Chloroethane	ND	1.0	1		1,1,1,2-Tetrac	hloroethane	ND	1.0	1	
Chloroform	ND	1.0	1		1,1,2,2-Tetrac		ND	1.0	1	
Chloromethane	ND	10	1		Tetrachloroeth		ND	1.0	1	
2-Chlorotoluene	ND	1.0	1		Toluene	200	ND	1.0	1	
-Chlorotoluene	ND	1.0	1		1,2,3-Trichlord	benzene	ND	1.0	1	
Dibromochloromethane	ND	1.0	1		1,2,4-Trichlord		ND	1.0	1	
,2-Dibromo-3-Chloropropane	ND	5.0	1		1,1,1-Trichlord		ND	1.0	1	
,2-Dibromoethane	ND	1.0	1			-1,2,2-Trifluoroet		10	1	
Dibromomethane	ND	1.0	1		1,1,2-Trichlord	the state of the s	ND	1.0	1	
.2-Dichlorobenzene	ND	1.0	1		Trichloroethen		ND	1.0	1	
,3-Dichlorobenzene	ND	1.0	1		Trichlorofluoro		ND	10	1	
,4-Dichlorobenzene	ND	1.0	1		1,2,3-Trichlord	14.2 24.64 (2)	ND	5.0	1	
Dichlorodifluoromethane	ND	1.0	1		1,2,4-Trimethy		ND	1.0	1	
,1-Dichloroethane	ND	1.0	1		1,3,5-Trimethy		ND	1.0	1	
1,2-Dichloroethane	ND	0.50	1		Vinyl Acetate		ND	10	1	
,1-Dichloroethene	ND	1.0	1		Vinyl Chloride		ND	0.50	1	
-1,2-Dichloroethene	ND	1.0	1		p/m-Xylene		ND	1.0	1	
-1,2-Dichloroethene	ND	1.0	1		o-Xvlene		ND	1.0	1	
,2-Dichloropropane	ND	1.0	1		Methyl-t-Butyl	Fther (MTBF)	ND	1.0	1	
Surrogates:	REC (%)	Control		Qual	Surrogates:	(III.DL)	REC (A STATE OF THE STA		Qual
Dibromofluoromethane	107	82-136			1,2-Dichloroet	hane-d4	108	82-142		
Foluene-d8	100	80-116			1,4-Bromofluo		93	72-114		



Tetra Tech, Inc. 3475 East Foothill Blvd., Suite 300 Pasadena, CA 91107-6024 Date Received: Work Order No: Preparation: Method: Units: 02/17/05 05-02-0998 EPA 5030B EPA 8260B ug/L

Project: Lockheed - Beaumont 2GW Sampling / 13505-02

Page 8 of 11

Client Sample Number				b Sample Number	Date Collected	Matrix	Date Prepared	Date Analyzed	QC Ba	tch ID
Tt-MW2-4D			05-02-09	98-8	02/16/05	Aqueous	02/17/05	02/18/05	050217	'L03
Parameter	Result	RL	DF	Qual	Parameter		Result	RL	DF	Qual
Acetone	ND	10	1		1,3-Dichloropro	opane	ND	1.0	1	
Benzene	ND	0.50	1		2,2-Dichloropn	opane	ND	1.0	1	
Bromobenzene	ND	1.0	1		1,1-Dichloropn	opene	ND	1.0	1	
Bromochloromethane	ND	1.0	1		c-1,3-Dichloro	propene	ND	0.50	1	
Bromodichloromethane	ND	1.0	1		t-1,3-Dichlorop	propene	ND	0.50	1	
Bromoform	ND	1.0	1		Ethylbenzene		ND	1.0	1	
Bromomethane	ND	10	1		2-Hexanone		ND	10	1	
2-Butanone	ND	10	1		Isopropylbenze	ene	ND	1.0	1	
n-Butylbenzene	ND	1.0	1		p-Isopropyltolu	iene	ND	1.0	1	
sec-Butylbenzene	ND	1.0	1		Methylene Chl	oride	ND	10	1	
ert-Butylbenzene	ND	1.0	1		4-Methyl-2-Pe	ntanone	ND	10	1	
Carbon Disulfide	ND	10	1		Naphthalene		ND	10	1	
`arbon Tetrachloride	ND	0.50	1		n-Propylbenze	ne	ND	1.0	1	
Chlorobenzene	ND	1.0	1		Styrene		ND	1.0	1	
Chloroethane	ND	1.0	1		1,1,1,2-Tetrac	hloroethane	ND	1.0	1	
Chloroform	ND	1.0	1		1,1,2,2-Tetrac	hloroethane	ND	1.0	1	
Chloromethane	ND	10	1		Tetrachloroeth	ene	ND	1.0	1	
2-Chlorotoluene	ND	1.0	1		Toluene		ND	1.0	1	
4-Chlorotoluene	ND	1.0	1		1,2,3-Trichlord	obenzene	ND	1.0	1	
Dibromochloromethane	ND	1.0	1		1,2,4-Trichlord	obenzene	ND	1.0	1	
1,2-Dibromo-3-Chloropropane	ND	5.0	1		1,1,1-Trichlord	pethane	ND	1.0	1	
1,2-Dibromoethane	ND	1.0	1		1,1,2-Trichlord	-1,2,2-Trifluoroet	hane ND	10	1	
Dibromomethane	ND	1.0	1		1,1,2-Trichlord	pethane	ND	1.0	1	
1,2-Dichlorobenzene	ND	1.0	1		Trichloroether	ne	ND	1.0	1	
1,3-Dichlorobenzene	ND	1.0	1		Trichlorofluoro	omethane	ND	10	1	
1,4-Dichlorobenzene	ND	1.0	1		1,2,3-Trichlord	opropane	ND	5.0	1	
Dichlorodifluoromethane	ND	1.0	1		1,2,4-Trimethy	ylbenzene	ND	1.0	1	
1,1-Dichloroethane	ND	1.0	1		1,3,5-Trimethy	ylbenzene	ND	1.0	1	
1,2-Dichloroethane	ND	0.50	1		Vinyl Acetate		ND	10	1	
1,1-Dichloroethene	ND	1.0	1		Vinyl Chloride		ND	0.50	1	
c-1,2-Dichloroethene	ND	1.0	1		p/m-Xylene		ND	1.0	1	
t-1,2-Dichloroethene	ND	1.0	1		o-Xylene		ND	1.0	1	
1,2-Dichloropropane	ND	1.0	1		Methyl-t-Butyl	Ether (MTBE)	ND	1.0	1	
Surrogates:	REC (%)	Control Limits		Qual	Surrogates:		REC (%) Control Limits	-	Qual
Dibromofluoromethane	107	82-136			1,2-Dichloroet	thane-d4	105	82-142		
Toluene-d8	101	80-116			1,4-Bromofluo	robenzene	92	72-114		

Tetra Tech, Inc.

3475 East Foothill Blvd., Suite 300

Pasadena, CA 91107-6024

Date Received:

Work Order No:

Preparation:

Method:

Units:

02/17/05

05-02-0998

EPA 5030B

EPA 8260B ug/L

Page 9 of 11

Project: Lockheed - Beaumont 2GW Sampling / 13505-02

Client Sample Number				ab Sample Number	Date Collected	Matrix	Date Prepared	Date Analyzed	QC Ba	atch ID
Tt-MW2-20			05-02-09	998-9	02/16/05	Aqueous	02/17/05	02/18/05	050217	7L03
Parameter Parameter	Result	RL	DF	Qual	Parameter		Resi	ult RL	DF	Qual
Acetone	ND	10	1		1,3-Dichloropn	opane	ND	1.0	1	
Benzene	ND	0.50	1		2,2-Dichloropr	opane	ND	1.0	1	
Bromobenzene	ND	1.0	1		1,1-Dichloropr	opene	ND	1.0	1	
Bromochloromethane	ND	1.0	1		c-1,3-Dichloro	propene	ND	0.50	1	
Bromodichloromethane	ND	1.0	1		t-1,3-Dichlorop	oropene	ND	0.50	1	
Bromoform	ND	1.0	1		Ethylbenzene		ND	1.0	1	
Bromomethane	ND	10	1		2-Hexanone		ND	10	1	
2-Butanone	ND	10	1		Isopropylbenze	ene	ND	1.0	1	
n-Butylbenzene	ND	1.0	1		p-Isopropyltolu	iene	ND	1.0	1	
sec-Butylbenzene	ND	1.0	1		Methylene Chl	oride	ND	10	1	
ert-Butylbenzene	ND	1.0	1		4-Methyl-2-Pe	ntanone	ND	10	1	
Carbon Disulfide	ND	10	1		Naphthalene		ND	10	1	
arbon Tetrachloride	ND	0.50	1		n-Propylbenze	ene	ND	1.0	1	
hlorobenzene	ND	1.0	1		Styrene		ND	1.0	1	
Chloroethane	ND	1.0	1		1,1,1,2-Tetrac	hloroethane	ND	1.0	1	
Chloroform	ND	1.0	1		1,1,2,2-Tetrac	hloroethane	ND	1.0	1	
Chloromethane	ND	10	1		Tetrachloroeth	nene	ND	1.0	1	
2-Chlorotoluene	ND	1.0	1		Toluene		ND	1.0	1	
1-Chlorotoluene	ND	1.0	1		1,2,3-Trichlord	obenzene	ND	1.0	1	
Dibromochloromethane	ND	1.0	1		1,2,4-Trichlord	obenzene	ND	1.0	1	
1,2-Dibromo-3-Chloropropane	ND	5.0	1		1,1,1-Trichlord	pethane	ND	1.0	1	
1,2-Dibromoethane	ND	1.0	1		1,1,2-Trichlord	o-1,2,2-Trifluoroe	ethane ND	10	1	
Dibromomethane	ND	1.0	1		1,1,2-Trichlore	oethane	ND	1.0	1	
1,2-Dichlorobenzene	ND	1.0	1		Trichloroether	ne	ND	1.0	1	
1,3-Dichlorobenzene	ND	1.0	1		Trichlorofluoro	omethane	ND	10	1	
1,4-Dichlorobenzene	ND	1.0	1		1,2,3-Trichlore		ND	5.0	1	
Dichlorodifluoromethane	ND	1.0	1		1,2,4-Trimethy	ylbenzene	ND	1.0	1	
1,1-Dichloroethane	ND	1.0	1		1,3,5-Trimethy	ylbenzene	ND	1.0	1	
1,2-Dichloroethane	ND	0.50	1		Vinyl Acetate		ND	10	1	
1,1-Dichloroethene	ND	1.0	1		Vinyl Chloride	01	ND	0.50	1	
c-1,2-Dichloroethene	ND	1.0	1		p/m-Xylene		ND	1.0	1	
:-1,2-Dichloroethene	ND	1.0	1		o-Xylene		ND	1.0	1	
1,2-Dichloropropane	ND	1.0	1		Methyl-t-Butyl	Ether (MTBE)	ND	1.0	1	
Surrogates:	REC (%)	Control Limits		Qual	Surrogates:		REC	Limits		Qual
Dibromofluoromethane	108	82-136			1,2-Dichloroet	thane-d4	108			
Toluene-d8	100	80-116			1,4-Bromofluc	orobenzene	92	72-114		

Tetra Tech, Inc.

3475 East Foothill Blvd., Suite 300

Pasadena, CA 91107-6024

Date Received:

Work Order No:

Preparation:

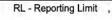
Method:

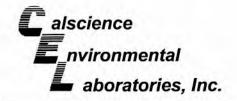
Units:

02/17/05

05-02-0998

EPA 5030B


EPA 8260B


ug/L

Project: Lockheed - Beaumont 2GW Sampling / 13505-02

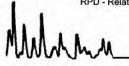
Page 10 of 11

Client Sample Number				b Sample Number	Date Collected	Matrix F	Date Prepared A	Date nalyzed	QC Ba	tch ID
Method Blank	TE THE		099-10-0	06-13,510	N/A	Aqueous ()2/17/05	2/17/05	050217	'L01
Parameter Parame	Result	RL	DF	Qual	Parameter		Result	RL	DF	Qual
Acetone	ND	10	1		1,3-Dichloropn	opane	ND	1.0	1	
Benzene	ND	0.50	1		2,2-Dichloropr	opane	ND	1.0	1	
Bromobenzene	ND	1.0	1		1,1-Dichloropr	opene	ND	1.0	1	
Bromochloromethane	ND	1.0	1		c-1,3-Dichloro	propene	ND	0.50	1	
Bromodichloromethane	ND	1.0	1		t-1,3-Dichlorop	oropene	ND	0.50	1	
Bromoform	ND	1.0	1		Ethylbenzene		ND	1.0	1	
Bromomethane	ND	10	1		2-Hexanone		ND	10	1	
2-Butanone	ND	10	1		Isopropylbenze	ene	ND	1.0	1	
n-Butylbenzene	ND	1.0	1		p-Isopropyltolu	iene	ND	1.0	1	
sec-Butylbenzene	ND	1.0	1		Methylene Chl	oride	ND	10	1	
tert-Butylbenzene	ND	1.0	1		4-Methyl-2-Pe	ntanone	ND	10	1	
Carbon Disulfide	ND	10	1		Naphthalene		ND	10	1	
Carbon Tetrachloride	ND	0.50	1		n-Propylbenze	ene	ND	1.0	1	
Chlorobenzene	ND	1.0	1		Styrene		ND	1.0	1	
Chloroethane	ND	1.0	1		1,1,1,2-Tetrac	hloroethane	ND	1.0	1	
Chloroform	ND	1.0	1		1,1,2,2-Tetrac	hloroethane	ND	1.0	1	
Chloromethane	ND	10	1		Tetrachloroeth	nene	ND	1.0	1	
2-Chlorotoluene	ND	1.0	1		Toluene		ND	1.0	1	
4-Chlorotoluene	ND	1.0	1		1,2,3-Trichlore	obenzene	ND	1.0	1	
Dibromochloromethane	ND	1.0	1		1,2,4-Trichlore	obenzene	ND	1.0	1	
1,2-Dibromo-3-Chloropropane	ND	5.0	1		1,1,1-Trichlore	pethane	ND	1.0	1	
1,2-Dibromoethane	ND	1.0	1		1,1,2-Trichlore	o-1,2,2-Trifluoroeth	ane ND	10	1	
Dibromomethane	ND	1.0	1		1,1,2-Trichlore	pethane	ND	1.0	1	
1,2-Dichlorobenzene	ND	1.0	1		Trichloroether	ne	ND	1.0	1	
1,3-Dichlorobenzene	ND	1.0	1		Trichlorofluoro	omethane	ND	10	1	
1,4-Dichlorobenzene	ND	1.0	1		1,2,3-Trichlore	opropane	ND	5.0	1	
Dichlorodifluoromethane	ND	1.0	1		1,2,4-Trimethy		ND	1.0	1	
1,1-Dichloroethane	ND	1.0	1		1,3,5-Trimeth	ylbenzene	ND	1.0	1	
1,2-Dichloroethane	ND	0.50	1		Vinyl Acetate		ND	10	1	
1,1-Dichloroethene	ND	1.0	1		Vinyl Chloride		ND	0.50	1	
c-1,2-Dichloroethene	ND	1.0	1		p/m-Xylene		ND	1.0	1	
t-1,2-Dichloroethene	ND	1.0	1		o-Xylene		ND	1.0	1	
1,2-Dichloropropane	ND	1.0	1		Methyl-t-Butyl	Ether (MTBE)	ND	1.0	1	
Surrogates:	REC (%)	Contro Limits		Qual	Surrogates:		REC (%) Control Limits		Qual
Dibromofluoromethane	101	82-136			1,2-Dichloroe	thane-d4	100	82-142		
Toluene-d8	100	80-116	6		1,4-Bromofluo	probenzene	94	72-114		

Tetra Tech, Inc. 3475 East Foothill Blvd., Suite 300 Pasadena, CA 91107-6024 Date Received: Work Order No: Preparation: Method: Units: 02/17/05 05-02-0998 EPA 5030B EPA 8260B ug/L

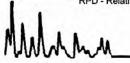
Project: Lockheed - Beaumont 2GW Sampling / 13505-02

Page 11 of 11


Client Sample Number				b Sample Number	Date Collected	Matrix	Date Prepared	Date Analyzed	QC Ba	atch ID
Method Blank			099-10-0	06-13,515	N/A	Aqueous	02/17/05	02/18/05	05021	7L03
<u>Parameter</u>	Result	RL	DF	Qual	Parameter		Resu	t RL	DF	Qual
Acetone	ND	10	1		1,3-Dichloropro	opane	ND	1.0	1	
Benzene	ND	0.50	1		2,2-Dichloropn	opane	ND	1.0	1	
Bromobenzene	ND	1.0	1		1,1-Dichloropro	opene	ND	1.0	1	
Bromochloromethane	ND	1.0	1		c-1,3-Dichloro	propene	ND	0.50	1	
romodichloromethane	ND	1.0	1		t-1,3-Dichlorop	propene	ND	0.50	1	
romoform	ND	1.0	1		Ethylbenzene		ND	1.0	1	
romomethane	ND	10	1		2-Hexanone		ND	10	1	
-Butanone	ND	10	1		Isopropylbenze	ene	ND	1.0	1	
-Butylbenzene	ND	1.0	1		p-Isopropyltolu	iene	ND	1.0	1	
ec-Butylbenzene	ND	1.0	1		Methylene Chl	oride	ND	10	1	
ert-Butylbenzene	ND	1.0	1		4-Methyl-2-Pe	ntanone	ND	10	1	
Carbon Disulfide	ND	10	1		Naphthalene		ND	10	1	
Carbon Tetrachloride	ND	0.50	1		n-Propylbenze	ne	ND	1.0	1	
chlorobenzene	ND	1.0	1		Styrene		ND	1.0	1	
hloroethane	ND	1.0	1		1,1,1,2-Tetrac	hloroethane	ND	1.0	1	
Chloroform	ND	1.0	1		1,1,2,2-Tetrac		ND	1.0	1	
hloromethane	ND	10	1		Tetrachloroeth		ND	1.0	1	
-Chlorotoluene	ND	1.0	1		Toluene		ND	1.0	1	
-Chlorotoluene	ND	1.0	1		1,2,3-Trichloro	benzene	ND	1.0	1	
Dibromochloromethane	ND	1.0	1		1,2,4-Trichlord		ND	1.0	1	
,2-Dibromo-3-Chloropropane	ND	5.0	1		1,1,1-Trichlord	ethane	ND	1.0	1	
,2-Dibromoethane	ND	1.0	1			-1,2,2-Trifluoroe		10	1	
Dibromomethane	ND	1.0	1		1,1,2-Trichlord		ND	1.0	1	
,2-Dichlorobenzene	ND	1.0	1		Trichloroethen		ND	1.0	1	
,3-Dichlorobenzene	ND	1.0	1		Trichlorofluoro	methane	ND	- 10	1	
,4-Dichlorobenzene	ND	1.0	1		1,2,3-Trichlord		ND	5.0	1	
Dichlorodifluoromethane	ND	1.0	1		1,2,4-Trimethy		ND	1.0	1	
,1-Dichloroethane	ND	1.0	1		1,3,5-Trimethy	The state of the s	ND	1.0	1	
,2-Dichloroethane	ND	0.50	1		Vinyl Acetate	ANALTHE	ND	10	1	
,1-Dichloroethene	ND	1.0	1		Vinyl Chloride		ND	0.50	1	
-1,2-Dichloroethene	ND	1.0	1		p/m-Xylene		ND	1.0	1	
-1,2-Dichloroethene	ND	1.0	1		o-Xvlene		ND	1.0	1	
,2-Dichloropropane	ND	1.0	1		Methyl-t-Butyl	Ether (MTBE)	ND	1.0	1	
Surrogates:	REC (%)	Control Limits		Qual	Surrogates:		REC (Qual
Dibromofluoromethane	104	82-136			1,2-Dichloroet	hane-d4	103	82-142		
Toluene-d8	100	80-116			1,4-Bromofluo	robenzene	93	72-114		

Tetra Tech, Inc. 3475 East Foothill Blvd., Suite 300 Pasadena, CA 91107-6024 Date Received: Work Order No: Preparation: Method: 02/17/05 05-02-0998 EPA 3010A Total EPA 6010B

Quality Control Sample ID	Matrix	Instrument	Date Prepared 02/17/05		Date Analyzed	MS/MSD Batch Number
05-02-0997-1	Aqueous	ICP 3300			02/17/05	050217803
<u>Parameter</u>	MS %REC	MSD %REC	%REC CL	RPD	RPD CL	Qualifiers
Antimony	100	101	80-120	0	0-20	
Arsenic	105	107	80-120	2	0-20	
Barium	107	108	80-120	1	0-20	
Beryllium	107	107	80-120	1	0-20	
Cadmium	109	110	80-120	1	0-20	
Chromium (Total)	104	105	80-120	1	0-20	
Cobalt	109	110	80-120	1	0-20	
Copper	106	107	80-120	1	0-20	
Lead	106	106	80-120	0	0-20	
Molybdenum	105	105	80-120	0	0-20	
Nickel	107	108	80-120	1	0-20	
Selenium	105	105	80-120	1	0-20	
Silver	110	111	80-120	1	0-20	
Thallium	106	105	80-120	0	0-20	
Vanadium	108	108	80-120	1	0-20	
Zinc	111	114	80-120	1	0-20	



Tetra Tech, Inc. 3475 East Foothill Blvd., Suite 300 Pasadena, CA 91107-6024 Date Received: Work Order No: Preparation: Method: 02/17/05 05-02-0998 N/A EPA 314.0

Quality Control Sample ID	Matrix	Instrument	Date Prepared		Date Analyzed	MS/MSD Batch Number	
05-02-1057-2	Aqueous	Aqueous IC 8			02/23/05	050222801	
<u>Parameter</u>	MS %REC	MSD %REC	%REC CL	RPD	RPD CL	Qualifiers	
Perchlorate	88	88	80-120	0	0-15		

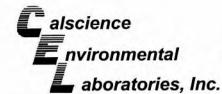
Tetra Tech, Inc. 3475 East Foothill Blvd., Suite 300 Pasadena, CA 91107-6024 Date Received: Work Order No: Preparation: Method: 02/17/05 05-02-0998 EPA 7470A Total EPA 7470A

Project Lockheed - Beaumont 2GW Sampling / 13505-02

Quality Control Sample ID	Matrix	Instrument	Date Prepared	А	Date nalyzed	MS/MSD Batch Number	
05-02-1059-1	Aqueous	Mercury	02/18/05	02/18/05		050218S01	
<u>Parameter</u>	MS %REC	MSD %REC	%REC CL	RPD	RPD CL	Qualifiers	
Mercury	88	87	71-134	1	0-14		

RPD - Relative Percent Difference ,

7440 Lincoln



Tetra Tech, Inc. 3475 East Foothill Blvd., Suite 300 Pasadena, CA 91107-6024 Date Received: Work Order No: Preparation: Method: 02/17/05 05-02-0998 EPA 5030B EPA 8260B

Project Lockheed - Beaumont 2GW Sampling / 13505-02

Quality Control Sample ID	Matrix	Instrument	Date Prepared		Date Analyzed	MS/MSD Batch Number	
05-02-0947-1	Aqueou	s GC/MS FF	02/17/05		02/17/05	050217S01	
<u>Parameter</u>	MS %REC	MSD %REC	%REC CL	RPD	RPD CL	Qualifiers	
Benzene	103	103	84-120	0	0-9		
Carbon Tetrachloride	120	122	71-137	2	0-10		
Chlorobenzene	107	106	87-111	1	0-8		
1,2-Dichlorobenzene	104	103	82-112	1	0-8		
1,1-Dichloroethene	102	96	76-130	6	0-18		
Toluene	112	112	85-115	1	0-8		
Trichloroethene	101	104	84-114	2	0-10		
Vinyl Chloride	117	113	68-128	3	0-16		
Methyl-t-Butyl Ether (MTBE)	106	98	63-135	8	0-20		
Tert-Butyl Alcohol (TBA)	133	106	25-169	22	0-41		
Diisopropyl Ether (DIPE)	103	98	70-130	5	0-11		
Ethyl-t-Butyl Ether (ETBE)	101	94	73-127	7	0-12		
Tert-Amyl-Methyl Ether (TAME)	101	97	71-125	5	0-12		
Ethanol	113	89	59-143	24	0-30		

Mulhan

Tetra Tech, Inc. 3475 East Foothill Blvd., Suite 300 Pasadena, CA 91107-6024

Date Received: Work Order No: Preparation: Method:

02/17/05 05-02-0998 **EPA 5030B EPA 8260B**

Project Lockheed - Beaumont 2GW Sampling / 13505-02

Quality Control Sample ID	Matrix	Instrument	Date Prepared		Date Analyzed	MS/MSD Batch Number	
Tt-MW2-1	Aqueous	GC/MS FF	02/17/05		02/18/05	050217S03	
<u>Parameter</u>	MS %REC	MSD %REC	%REC CL	RPD	RPD CL	Qualifiers	
Benzene	105	104	84-120	1	0-9		
Carbon Tetrachloride	123	127	71-137	3	0-10		
Chlorobenzene	109	108	87-111	2	0-8		
1,2-Dichlorobenzene	105	104	82-112	0	0-8		
1,1-Dichloroethene	101	97	76-130	5	0-18		
Toluene	113	111	85-115	1	0-8		
Trichloroethene	104	104	84-114	0	0-10		
Vinyl Chloride	116	116	68-128	0	0-16		
Methyl-t-Butyl Ether (MTBE)	98	96	63-135	1	0-20		
Tert-Butyl Alcohol (TBA)	128	118	25-169	8	0-41		
Diisopropyl Ether (DIPE)	99	99	70-130	0	0-11		
Ethyl-t-Butyl Ether (ETBE)	91	92	73-127	1	0-12		
Tert-Amyl-Methyl Ether (TAME)	92	93	71-125	1	0-12		
Ethanol	101	93	59-143	8	0-30		

RPD - Relative Percent Difference,

alscience nvironmental Quality Control - Laboratory Control Sample aboratories, Inc.

Tetra Tech, Inc. 3475 East Foothill Blvd., Suite 300 Pasadena, CA 91107-6024 Date Received: Work Order No: Preparation: Method: N/A 05-02-0998 EPA 3005A Filt. EPA 6010B

Quality Control Sample ID	Matrix	Instrument	Date Analyzed	Lab File ID Lo		LCS Batch Number	
097-01-003-4,594	Aqueous	ICP 3300	02/17/05			050217L03F	
Parameter		Conc Added	Conc Recovered	LCS %Rec	%Rec CL	Qualifiers	
Antimony		1.00	0.931	93	80-120		
Arsenic		1.00	0.986	99	80-120		
Barium		1.00	1.03	103	80-120		
Beryllium		1.00	0.977	98	80-120		
Cadmium		1.00	1.04	104	80-120		
Chromium (Total)		1.00	0.990	99	80-120		
Cobalt		1.00	1.05	105	80-120		
Copper		1.00	0.968	97	80-120		
Lead		1.00	1.02	102	80-120		
Molybdenum		1.00	1.01	101	80-120		
Nickel		1.00	1.02	102	80-120		
Selenium		1.00	0.963	96	80-120		
Silver		0.500	0.497	99	80-120		
Thallium		1.00	1.02	102	80-120		
Vanadium		1.00	1.00	100	80-120		
Zinc		1.00	1.01	101	80-120		

Tetra Tech, Inc. 3475 East Foothill Blvd., Suite 300 Pasadena, CA 91107-6024 Date Received: Work Order No: Preparation: Method: N/A 05-02-0998 N/A EPA 314.0

Project: Lockheed - Beaumont 2GW Sampling / 13505-02

Quality Control Sample ID	Matrix	Instrument	Date Prepared	Da Analy		LCS/LCSD Bate Number	ch
099-05-203-261	Aqueous	IC 8	N/A	02/23	/05	050222L01	
<u>Parameter</u>	LCS %R	EC LCSD	%REC %	REC CL	RPD	RPD CL	Qualifiers
Perchlorate	99	100)	85-115	1	0-15	

RPD - Relative Percent Difference ,

CL - Control Limit

alscience nvironmental Quality Control - Laboratory Control Sample aboratories, Inc.

Tetra Tech, Inc. 3475 East Foothill Blvd., Suite 300 Pasadena, CA 91107-6024 Date Received: Work Order No: Preparation: Method: N/A 05-02-0998 EPA 7470A Filt. EPA 7470A

Quality Control Sample ID Matrix		Instrument	Instrument Date Analyzed		e ID L	LCS Batch Number	
099-04-008-1,827	Aqueous	Mercury	02/18/05	050218-L01		050218L01F	
Parameter		Conc Added	Conc Recovered	LCS %Rec	%Rec CL	Qualifiers	
Mercury		0.0100	0.0101	101	90-122		

Tetra Tech, Inc. 3475 East Foothill Blvd., Suite 300 Pasadena, CA 91107-6024 Date Received: Work Order No: Preparation: Method: N/A 05-02-0998 EPA 3520B EPA 8270C

Quality Control Sample ID	Matrix	Instrument	Dat Prepa		Date alyzed	LCS/LCSD Bat Number	ch
095-01-003-1,621	Aqueous	GC/MS J	02/16	/05 02/	21/05	050216L03B	
<u>Parameter</u>	LCS %I	REC LCS	D %REC	%REC CL	RPD	RPD CL	Qualifiers
Phenol	73	(9	4-118	6	0-18	
2-Chlorophenol	66	(8	35-101	4	0-21	
1,4-Dichlorobenzene	81	7	8	39-93	4	0-45	
N-Nitroso-di-n-propylamine	55		3	33-123	3	0-38	
1,2,4-Trichlorobenzene	83	8	31	47-101	2	0-35	
4-Chloro-3-Methylphenol	71	(66	0-295	8	0-30	
Acenaphthene	104	1	05	31-133	1	0-31	
4-Nitrophenol	89		31	1-143	9	0-44	
2,4-Dinitrotoluene	112	1	23	16-166	10	0-49	
Pentachlorophenol	62		62	1-154	0	0-53	
Pyrene	62	j	70	15-159	12	0-47	

N/A

Quality Control - LCS/LCS Duplicate

Tetra Tech, Inc. 3475 East Foothill Blvd., Suite 300 Pasadena, CA 91107-6024 Date Received: Work Order No: Preparation:

05-02-0998 EPA 3520B

Method: EPA 8270C(M) Isotope Dilution

Quality Control Sample ID	Matrix	Instrument	Date Prepa	-	Date Analyzed	LCS/LCSD Bat Number	ch
099-09-004-369	Aqueous	GC/MS J	02/16	/05	02/21/05	050216L03D	
<u>Parameter</u>	LCS %	REC LCS	O %REC	%REC C	<u>L RPD</u>	RPD CL	Qualifiers
1,4-Dioxane	118	1	12	50-130	5	0-20	

Tetra Tech, Inc. 3475 East Foothill Blvd., Suite 300 Pasadena, CA 91107-6024 Date Received: Work Order No: Preparation: Method: N/A 05-02-0998 EPA 3520B EPA 1625CM

Quality Control Sample ID	Matrix	Instrument	Date Prepar		ate lyzed	LCS/LCSD Bate Number	ch
099-07-027-146	Aqueous	GC/MS H	02/18/	05 02/2	3/05	050218L05	
<u>Parameter</u>	LCS %	6REC LCS	D %REC	%REC CL	RPD	RPD CL	Qualifiers
N-Nitrosodimethylamine	118	. 1	25	50-130	6	0-20	

Tetra Tech, Inc. 3475 East Foothill Blvd., Suite 300 Pasadena, CA 91107-6024 Date Received: Work Order No: Preparation: Method: N/A 05-02-0998 EPA 5030B EPA 8260B

Quality Control Sample ID	Matrix	Instrument	Date Prepared		ate yzed	LCS/LCSD Bate Number	ch
099-10-006-13,510	Aqueous	GC/MS FF	02/17/05	02/1	7/05	050217L01	
<u>Parameter</u>	LCS %RE	C LCSD %	6REC	%REC CL	RPD	RPD CL	Qualifiers
Benzene	104	104		87-117	1	0-6	
Carbon Tetrachloride	125	122		75-141	2	0-11	
Chlorobenzene	108	107		88-112	1	0-6	
1,2-Dichlorobenzene	104	104		88-112	0	0-6	
1,1-Dichloroethene	99	99		80-128	1	0-15	
Toluene	111	111		87-117	0	0-7	
Trichloroethene	103	103		86-116	0	0-8	
Vinyl Chloride	114	113		74-128	1	0-10	
Methyl-t-Butyl Ether (MTBE)	88	98		85-121	10	0-17	
Tert-Butyl Alcohol (TBA)	87	115		51-153	28	0-37	
Diisopropyl Ether (DIPE)	96	99		74-128	3	0-9	
Ethyl-t-Butyl Ether (ETBE)	89	94		81-123	6	0-12	
Tert-Amyl-Methyl Ether (TAME)	89	96		81-123	8	0-9	
Ethanol	86	94		56-146	10	0-41	

Tetra Tech, Inc. 3475 East Foothill Blvd., Suite 300 Pasadena, CA 91107-6024

Date Received: Work Order No: Preparation: Method:

N/A 05-02-0998 **EPA 5030B EPA 8260B**

Quality Control Sample ID	Matrix	Inst	rument	Date Prepared		ate lyzed	LCS/LCSD Bat Number	ch
099-10-006-13,515	Aqueous	GC/I	MS FF	02/17/05	02/1	7/05	050217L03	
<u>Parameter</u>	LCS %	REC	LCSD %R	EC	%REC CL	RPD	RPD CL	Qualifiers
Benzene	106		104		87-117	1	0-6	
Carbon Tetrachloride	129		121		75-141	6	0-11	
Chlorobenzene	108		107		88-112	1	0-6	
1,2-Dichlorobenzene	104		104		88-112	0	0-6	
1,1-Dichloroethene	102		96		80-128	6	0-15	
Toluene	114		111		87-117	3	0-7	
Trichloroethene	104		105		86-116	1	0-8	
Vinyl Chloride	116		113		74-128	2	0-10	
Methyl-t-Butyl Ether (MTBE)	100		97		85-121	3	0-17	
Tert-Butyl Alcohol (TBA)	111		109		51-153	2	0-37	
Diisopropyl Ether (DIPE)	101		98		74-128	3	0-9	
Ethyl-t-Butyl Ether (ETBE)	98		94		81-123	5	0-12	
Tert-Amyl-Methyl Ether (TAME)	101		97		81-123	5	0-9	
Ethanol	92		89		56-146	3	0-41	

Glossary of Terms and Qualifiers

Work Order Number: 05-02-0998

Qualifier	<u>Definition</u>
*	See applicable analysis comment.
1	Surrogate compound recovery was out of control due to a required sample dilution, therefore, the sample data was reported without further clarification.
2	Surrogate compound recovery was out of control due to matrix interference. The associated method blank surrogate spike compound was in control and, therefore, the sample data was reported without further clarification.
3	Recovery of the Matrix Spike or Matrix Spike Duplicate compound was out of control due to matrix interference. The associated LCS and/or LCSD was in control and, therefore, the sample data was reported without further clarification.
4	The MS/MSD RPD was out of control due to matrix interference. The LCS/LCSD RPD was in control and, therefore, the sample data was reported without further clarification.
5	The PDS/PDSD associated with this batch of samples was out of control due to a matrix interference effect. The associated batch LCS/LCSD was in control and, hence, the associated sample data was reported with no further corrective action required.
Α	Result is the average of all dilutions, as defined by the method.
В	Analyte was present in the associated method blank.
С	Analyte presence was not confirmed on primary column.
E	Concentration exceeds the calibration range.
Н	Sample received and/or analyzed past the recommended holding time.
J	Analyte was detected at a concentration below the reporting limit and above the laboratory method detection limit. Reported value is estimated.
N	Nontarget Analyte.
ND	Parameter not detected at the indicated reporting limit.
Q	Spike recovery and RPD control limits do not apply resulting from the parameter concentration in the sample exceeding the spike concentration by a factor of four or greater.
U	Undetected at the laboratory method detection limit.
X	% Recovery and/or RPD out-of-range.
Z	Analyte presence was not confirmed by second column or GC/MS analysis.

Canary = Laboratory

DISTRIBUTION: White and Pink - Teth, Inc.

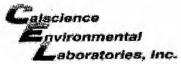
TETRA TECH, INC.

348 W. Hospitality Lane, Suite 100 San Bernardino, California 92408 Telephone: (909) 381-1674 FAX: (909) 889-1391

7440 Cincoln Way Borba Grace CA (714) 895-5494 CalScrence SHIP TO:

1126

CHAIN OF CUSTODY RECURD


P

2-16-05 PAGE

DATE

02-0998

Blank Blant Antex CHAIN OF CUSTODY: OBSERVATIONS/COMMENTS **TURN-AROUND TIME** METHOD OF SHIPMENT/SHIPMENT NO. PRESERVATIVES: (Water Only) Caurp Pumplanip NaOH H₂SO₄ 28 Norma Special Shipping/Handling/Stor Coverter Bile HCL NR (None required) PRESERVATIVE 2007 until 4 NUMBER OF CONTAINERS CONTAINER TYPE 3 3 3 3 3 3 3 3 TIME 3 **AATRIX TYPE** 3 2 2 Z 2 FILTERED/UNFILTERED 2 2 SB - Brass Sleeve P - Plastic Bottle/Jar 7 105 2/17/05 DATE PARAMETERS G - Glass Bottle/Jar SS - Stainless Steel Sleeve TETRA TECH, INC. CONTAINER TYPE: X X X COMPANY COMPANY COMP OLYS X MATRIX TYPE: S - Soil M - Sediment W - Water 0988 :001 2/16/05 15:30 12:40 2/16/05/17:30 19:20 19:15 PROJECT NAME: Beautrant 2 CW Sumpling 3/16/05 16:55 2/18/05/17:10 19.00 50:61 TIME Shakla 2/15/05 3/16/5 2/15/05 30/01/6 Mortin 3/15/05 DATE SIGNAT SIGNAT M UNFILTERED 109 PROJECT MANAGER: Ne7/ TE-MW2-30 F-MW2-45 K-MW2-40 Surazio CLIENT: LOCKIRED TE-MW2-2 -MW2-3 3505 SAMPLE NO SAMPLERS (Signatures) F-MW2 0 0 RELINQUISHED BY IISHED BY FILTERED Chris FILTERING RECEIVED BY 76 EBI EBI 声 TC#: 8 0

WORK ORDER #:

05-02-0998

Cooler _____ of SAMPLE RECEIPT FORM DATE: TEMPERATURE - SAMPLES RECEIVED BY: LABORATORY (Other than Calscience Courier): CALSCIENCE COURIER: Chilled, cooler with temperature blank provided. °C Temperature blank. °C IR thermometer. Chilled, cooler without temperature blank. Chilled and placed in cooler with wet ice. Ambient temperature. Ambient and placed in cooler with wet ice. Ambient temperature. °C Temperature blank. CUSTODY SEAL INTACT: Sample(s): _____ Cooler:___ No (Not Intact) : ____ Not Applicable (N/A): SAMPLE CONDITION: Yes Chain-Of-Custody document(s) received with samples....._____ Sample container label(s) consistent with custody papers....._____...._____..... Sample container(s) intact and good condition..... Correct containers for analyses requested...... Proper preservation noted on sample label(s)..... Tedlar bag(s) free of condensation..... Initial: COMMENTS:

APPENDIX C

Lockheed Martin, Beaumont				Table 1							
Site: 2			Anal	Analytical Data Summary	Summary						
Extraction Method: None			13	EPA Method E314.0	E314.0						
Analytical Method: E314.0											
Matrix: Water											
Units: ug/L	Environm	Environmental Samples									
	Field ID:	TT-MW2-1			TT-MW2-2				TT-MW2-20		
	SDG:	05-02-0998			05-02-0998				05-02-0998		
	Batch ID:	050222L01			050222L01				050222L01		
Parameters	MDL	Result	Validity Comments	PQL	Result	Validity	Validity Comments	PQL	Result	Validity	Comments
		Dilution 200									
Perchlorate	0.46 400	7100	б	2.0	ΔN	n	б	2.0	QN	n	б

									nts					
									Validity Comments		б			
									Validity)			
						TT-MW2-4S	05-02-0998	050222L01	Result		ND			
									PQL		2.0			
									Validity Comments		б			
									Validity		n			
	Analytical Data Summary	E314.0				TT-MW2-4D	05-02-0998	050222L01	Result		QN			
Table 1	ical Data	EPA Method E314.0							PQL		2.0			
	Analyt	EP/							Comments		б			
									Validity					
					ental Samples	TT-MW2-3	05-02-0998	050222L01	Result	Dilution 10	740			
					Environmer				PQL		20			
						Field ID:	SDG:	Batch ID:						
									MDL		0.46			
}eaumont		None	E314.0											
ockheed Martin, Beaumont	2	Extraction Method: None	Analytical Method: E314.0	Matrix: Water	Inits: ug/L				Parameters		orate			
Lockho	Site: 2	Extrac	Analyt	Matrix	Units:				Param		Perchlorate			

Part	Lockheed Martin, Beaumont							Table 2	a: 6						
Field ID: Front controlled Samples Front controlled Samples Front controlled Samples Field ID: Front Controlled Samples Field ID: Front Controlled Samples Field ID: Fold ID: Front Controlled Samples Field ID: Fold ID: Fold ID: Front Controlled Samples Field ID: Fold ID: F							Analy EPA	Method S	Summary W8260B						
The control of the					ıntal Samples										
Signature Sign	Units: ug/L		E C		TT-MW2-1				TT-MM/2-2				TT-MW/2-20		
MOL			SDG:		05-02-0998				05-02-0998				05-02-0998		
10	Parameters	MDL	Datcil ID.	PQL	Result		Comments	PQL	Result	Validity	Comments	PQL	Result	Validity	Comments
Traceleration	i i i i i i i i i i i i i i i i i i i	0			4				4	=				=	
Tracelerate 0.37 1.0 ND 0 0 9 100 ND 0 0 9 100 ND 0 1	1,1,1,2-I etrachloroethane	0.37		1.0	2 2	> =	D 8	0.0	ON S	o =	D 7	0. 6	2 2	> =	D 1
2.2.7-riffucrochrane 0.64 10 ND U 9 10 ND U neare 0.53 10 ND U 9 10 ND U neare 0.33 10 ND U 9 10 ND U neare 0.33 10 ND U 9 10 ND U nracele 0.35 10 ND U 9 10 ND U nracele 0.35 10 ND U 9 10 ND U nracele 0.35 10 ND U 9 10 ND U nracele 0.35 10 ND U 9 10 ND U nracele 0.25 10 ND U 9 10 ND U nracele 0.25 10 ND U 9 10 ND U <tr< td=""><td>1, 1, 1-1 normoletilarie 1, 1, 2, 2-Tetrachloroethane</td><td>0.37</td><td>ļ</td><td>0.10</td><td>2 2</td><td>> ></td><td>ם מ</td><td>0. 0.</td><td>2 2</td><td>> ></td><td>ກ ວ</td><td>0. 0.</td><td>2</td><td>> ></td><td>D</td></tr<>	1, 1, 1-1 normoletilarie 1, 1, 2, 2-Tetrachloroethane	0.37	ļ	0.10	2 2	> >	ם מ	0. 0.	2 2	> >	ກ ວ	0. 0.	2	> >	D
National	1,1,2-Trichloro-1,2,2-Trifluoroethane	0.54		10	QN)	0	10	QN)	5	10	2) >	n 0
Color	1,1,2-Trichloroethane	0.54		1.0	ND	n	D	1.0	ND	D	0	1.0	Q	n	D
The control of the co	1,1-Dichloroethane	0.53		1.0	Q.)	D	0.1	2	> :	g	0.1	9	⊃ :	D
10	1,1-Dichloroethene	0.31		0.0	2 2	> =	D 0	0. 0.	ON S	> =	D 0	0.1	2 2	> =	D 0
State	1, 1-Didiliolopioperie	0.20		5. 6	2 2	> =	ם כ	0. 0	28	> =	ס כ	5 6	2 2	> =	ס כ
10	1.2.3-Trichloropropane	2.3		5.0	28	D	ם מ	5.0	Q Q		ם מ	5.0	22) <u> </u>	ם מ
Colored Britain	1,2,4-Trichlorobenzene	0.35		1.0	ND	n	0	1.0	ND)	0	1.0	Q)	0
State	1,2,4-Trimethylbenzene	0.26		1.0	ND	n	D	1.0	ND	⊃	б	1.0	QN)	D
tene 0.81 1.0 ND U gg 1.0 ND U g	1,2-Dibromo-3-Chloropropane	2.5		2.0	ND	D	D	2.0	ND	-	б	2.0	Q	>	D
tener 0.24 1.0 ND U gg 1.0 ND U grants 0.050 ND U gg 1.0 ND U gg 1	1,2-Dibromoethane	0.81		1.0	Q :)	ō	1.0	Q :	o :	Ö	1.0	2	> :	ס
Figure 0.28 (1.0) ND	1,2-Dichlorodenzene	0.24		1.0	2	> =	D 0	1.0	Q Z	> =	0	1.0	2 2	> =	D 0
transe 0.19 1.0 ND U 9	1.2-Dichlorongnane	0.22		1.0	2 2	> =	ם כ	0.30	28	> =	ס כ	0.50	2 2	> =	ກ ເ
tene 0.38 1.0 ND U g 1	1.3.5-Trimethylbenzene	0.19		1.0	2 2) >	n 0	1.0	2 2) >	n 0	0.1	2 2) >	n 0
tene 0.30 1.0 ND U g 1	1,3-Dichlorobenzene	0.38		1.0	ND	n	0	1.0	ND	Э	5	1.0	Q.	0	0
cone 0.30 1.0 ND U gg 1.0 ND U anere 4.2 1.0 ND U g 1.0 ND U and 4.2 1.0 ND U g 1.0 ND U 0.30 1.3 1.0 ND U g 1.0 ND U anore 2.4 1.0 ND U g 1.0 ND U anore 2.4 1.0 ND U g 1.0 ND U anore 2.4 1.0 ND U g 1.0 ND U chance 0.25 1.0 ND U g 1.0 ND U chance 0.27 1.0 ND U g 1.0 ND U chance 0.22 1.0 ND U g 1.0 ND U <th< td=""><td>1,3-Dichloropropane</td><td>0:30</td><td></td><td>1.0</td><td>ND</td><td>n</td><td>g</td><td>1.0</td><td>QN</td><td>)</td><td>g</td><td>1.0</td><td>QN</td><td>n</td><td>Ø</td></th<>	1,3-Dichloropropane	0:30		1.0	ND	n	g	1.0	QN)	g	1.0	QN	n	Ø
anone 4.24 1.0 ND U g 10 ND U C C C C C C C C C C C C C C C C C C	1,4-Dichlorobenzene	0.30		0.1	Q S	> :	D	0. 0.	QN.	> :	D	0.1	2	> :	D
and the control of th	Z,Z-Dichloropropane	0.40		0.1	2 2	> =	D 8	0.1	2 2	> =	0	0.1	2 2	> =	D 1
anone 1.9 10 ND U g 10 ND U anone 0.30 1.0 ND U g 1.0 ND U anone 0.24 1.0 ND U g 1.0 ND U thane 0.26 0.50 ND U g 1.0 ND U thane 0.68 1.0 ND U g 1.0 ND U thane 0.67 1.0 ND U g 1.0 ND U thane 0.68 1.0 ND U g 1.0 ND U thane 0.27 1.0 ND U g 1.0 ND U thane 0.27 1.0 ND U g 1.0 ND U therance 0.28 1.0 ND U g 1.0 ND U	2-Chlorotoluene	0.24		1.0	2		ם מ	1.0	22		ם מ	5 0.1	22	> =	ם מ
anone 0.30 1.0 ND U g 1.0 ND U anone 2.4 10 ND U g 1.0 ND U 6.1 0.26 0.50 ND U g 1.0 ND U 6.26 0.26 ND U g 1.0 ND U 6.47 1.0 ND U g 1.0 ND U 6.48 1.0 ND U g 1.0 ND U 6.50 1.0 ND U g 1.0 ND U 6.62 1.0 ND U g 1.0 ND U <td>2-Hexanone</td> <td>1.9</td> <td></td> <td>10</td> <td>Q.</td> <td>))</td> <td>n 0</td> <td>10</td> <td>Q</td> <td>)</td> <td>n 0</td> <td>10</td> <td>2</td> <td>) ></td> <td>n 0</td>	2-Hexanone	1.9		10	Q.))	n 0	10	Q)	n 0	10	2) >	n 0
2.4 10 ND U 9 10 ND U 6.1 10 ND U 9 10 ND U 0.26 ND 0.50 ND U 9 1.0 ND U 0.67 1.0 ND U 9 1.0 ND U U 0.62 1.0 ND U 9 1.0 ND U U 0.62 1.0 ND U 9 1.0 ND U U 0.62 1.0 ND U 9 1.0 ND U U 0.62 1.0 ND U 9 1.0 ND U	4-Chlorotoluene	0:30		1.0	ND	n	D	1.0	ND	n	0	1.0	Ð	n	מ
Color	4-Methyl-2-Pentanone	2.4		10	ND	n	D	10	ND	n	D	10	QN	n	g
0.26 0.50 ND U 99 0.50 ND U 0.47 1.0 ND U 9 1.0 ND U 0.68 1.0 ND U 9 1.0 ND U 0.62 1.0 ND U 9 1.0 ND U 0.62 1.0 ND U 9 1.0 ND U 0.62 1.0 ND U 9 1.0 ND U 0.42 1.0 ND U 9 1.0 ND U 0.52 1.0 ND U 9 1.0 ND U 0.45 1.0 ND U 9 1.0 ND U 0.45 1.0 ND <td>Acetone</td> <td>6.1</td> <td></td> <td>10</td> <td>ND</td> <td>></td> <td>D</td> <td>10</td> <td>ND</td> <td>D</td> <td>D</td> <td>10</td> <td>Q</td> <td>></td> <td>g</td>	Acetone	6.1		10	ND	>	D	10	ND	D	D	10	Q	>	g
0.68	Benzene	0.26		0.50)	D :	0.50	Q S	> =	D :	0.50	2	> =	<u>ت</u>
0.62	Bromochloromethane	0.47		0. 6	28	> =	ס כ	0. 6		> =	ס כ	5. 6	2 2	> =	ס כ
0.62 1.0 ND U gg 1.0 ND U 1.0 1.0 ND U gg 1.0 ND U 0.42 1.0 ND U gg 1.0 ND U 0.36 1.0 ND U gg 1.0 ND U 0.52 1.0 ND U gg 1.0 ND U 0.45 1.0 ND U gg 1.0 ND U 0.27 1.0 ND U g 1.0 ND U 0.29 1.0 <t< td=""><td>Bromodichloromethane</td><td>0.00</td><td></td><td>0.1</td><td>28</td><td>D</td><td>ם מ</td><td>5.0</td><td>S S</td><td>> =</td><td>ם מ</td><td>0.10</td><td>2 2</td><td>> =</td><td>ם מ</td></t<>	Bromodichloromethane	0.00		0.1	28	D	ם מ	5.0	S S	> =	ם מ	0.10	2 2	> =	ם מ
2.9 10 ND U g 10 ND U 1.0 1.0 ND U g 10 ND U 0.36 1.0 ND U g 1.0 ND U 0.36 1.0 ND U g 1.0 ND U 0.52 1.0 ND U g 1.0 ND U 0.45 1.0 ND U g 1.0 ND U 0.27 1.0 ND U g 1.0 ND U 0.24 1.0 ND U g 1.0 ND U 0.29 1.0 ND	Bromoform	0.62		1.0	QN.))	n 0	1.0	Q))	n 0	1.0	2))	n 0
1.0	Bromomethane	2.9		10	QN	n	б	10	QN	D	б	10	QN	O:	ĝ
0.36 0.30 ND U g 0.30 ND U 0 0 0.22 1.0 ND U 0 0 0.45 ND U 0 0 0.45 ND U 0 0 0.45 ND U 0 0 0 0 0 0 0 0 0 0 0.45 ND U 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Carbon Disultide	1.0		10	ON S	o :	D (10	ON S	> :	D	10	2 2	> =	ס :
0.22	Carbon Tetrachioride	0.42		0.50	28	> =	D 0	0.50		> =	0 0	0.50	2 2	> =	D 0
0.22 1.0 ND U g 1.0 ND U 1.8 10 ND U g 1.0 ND U 0.45 1.0 ND U g 1.0 ND U 0.42 1.0 ND U g 1.0 ND U 0.27 1.0 ND U g 1.0 ND U 0.17 1.0 ND U g 1.0 ND U 0.29 1.0 ND U g 1.0 ND U 2.6 10 ND U g 10 ND U	Chloroethane	0.52		0.1	28	D	ם מ	0. 0.	Q Q	o	ם מ	5 0	22	> >	ם מ
1.8	Chloroform	0.22		1.0	ND)	0	1.0	ND)	0	1.0	Q	_	0 0
0.45 1.0 ND U g 1.0 ND U 0.42 1.0 ND U g 1.0 ND U 0.27 1.0 ND U g 1.0 ND U 0.17 1.0 ND U g 1.0 ND U 0.24 1.0 ND U g 1.0 ND U 1.0 0.29 1.0 ND U g 1.0 ND U 2.6 10 ND U g 10 ND U	Chloromethane	1.8		10	ND	n	g	10	ND	n	g	10	QN	n	g
0.27	Dibromochloromethane	0.45		1.0	QN :)	D	1.0	QN :	> :	D	1.0	Q :	> :	D
0.27 1.0 ND U g 1.0 ND U 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Dibromomethane	0.42		1.0	QN .)	D	1.0	QN .	o :	Q	1.0	Q E	> :	D
0.24 1.0 ND U g 1.0 ND U 0 0.29 1.0 ND U 0 0.29 1.0 ND U 0 0 0.29 1.0 ND U 0 0 1.0 ND U 0 1.0	Ulchlorodifluoromethane	0.27		0.1	2 2	> =	D 8	0.0	2 2	o =	D 8	0. 6	2 2	> =	D 1
2.6 1.0 ND U g 1.0 ND U 2.6 1.0 ND U g 1.0 ND U U U g 1.0 ND U U U U U U U U U U U U U U U U U U	Isopropylbenzene	0.17		5. 6	2 2	> =	ם כ	0. 0	28	> =	ס כ	5 6	2 2	> =	ס כ
2.6 10 ND U g 10 ND U	Methyl-t-Butyl Ether (MTRE)	0.24		5 6	2 2	> =	ס כ	5. 6	2 2	=	ס כ	5 6	2 2	> =	ס כ
	Methylene Chloride	2.6		10	Q.	0	n 0	10	Q.	b	n 0	10	2) ⊃	n 0

Lockheed Martin, Beaumont							Table 2							
Site: 2						Analy	Analytical Data Summary	Summary						
Extraction Method: SW5030B						EPA	EPA Method SW8260B	W8260B						
Analytical Method: SW8260B														
Matrix: Water			Environme	Environmental Samples										
Units: ug/L														
		Field ID:		TT-MW2-1				TT-MW2-2				TT-MW2-20		
		SDG:		05-02-0998				05-02-0998				05-02-0998		
		Batch ID:		050217L03				050217L03				050217L03		
Parameters	MDL		PQL	Result	Validity	Comments	PQL	Result	Validity	Validity Comments	PQL	Result	Validity	Comments
Naphthalene	0.95		10	QN	D	0	10	ND)	0	10	Q	n	D
Styrene	0.29		1.0	ND)	0	1.0	Q	_	ō	1.0	9	n	ס
Tetrachloroethene	0.29		1.0	QN	n	D	1.0	ND	n	D	1.0	Q	n	ס
Toluene	0.35		1.0	ND	n	б	1.0	ND	n	б	1.0	QN	n	g
Trichloroethene	0:30		1.0	QN	D	б	1.0	ND	D	D	1.0	Q	n	ס
Trichlorofluoromethane	0.36		10	ND	n	g	10	ND	n	g	10	ND	n	g
Vinyl Acetate	3.2		10	ND	n	g	10	ND	n	g	10	QN	n	g
Vinyl Chloride			0.50	ND	n	g	0.50	ND	n	g	0.50	ND	n	g
c-1,2-Dichloroethene			1.0	ND	n	б	1.0	ND	n	g	1.0	ND	n	g
c-1,3-Dichloropropene		,	0.50	ND	n	D	0.50	ND	⊃	g	0.50	Q	n	D
n-Butylbenzene			1.0	N	_	D	1.0	N)	D	1.0	g	D	ס
n-Propylbenzene	0.30		1.0	ND	n	б	1.0	ND	n	g	1.0	ND	n	g
o-Xylene	0.21		1.0	ND	n	g	1.0	ND	n	g	1.0	QN	n	g
p-Isopropyltoluene	0.21		1.0	ND	n	g	1.0	ND	n	g	1.0	QN	n	g
p/m-Xylene	0.38		1.0	ND	n	g	1.0	ND	n	g	1.0	QN	n	g
sec-Butylbenzene	0.21		1.0	ND	_	D	1.0	Q	-	D	1.0	9	D	D
t-1,2-Dichloroethene	0.29		1.0	ND	n	б	1.0	QN	n	б	1.0	QN	n	g
t-1,3-Dichloropropene	0.31		0.50	ND	n	б	0.50	ND	n	g	0.50	ND	n	g
tert-Butylbenzene	0.17		1.0	ND	n	g	1.0	ND	n	g	1.0	ND	n	g

Find	Lockheed Martin, Beaumont							Table 2							
Final Column Fina	Site: 2						Analyti	cal Data S	Summary						
The control of the	Extraction Method: SW5030B Analytical Method: SW8260B						EPA	Method SV	W8260B						
Field ID	Matrix: Water				ntal Samples										
Secretary Secr	Units: ug/L		Field ID:		TT-MW2-3				TT-MW2-4D				TT-MW2-4S		
Model			SDG:		05-02-0998				05-02-0998				05-02-0998		
Continue	Parameters	MDL	2 2 2	PQL	Result		mments	PQL	Result	Validity			Result	Validity	Comments
Continue						:			4	:			!	:	
Continue	1,1,1,2-Tetrachloroethane	0.37		1.0	QN .))	D	1.0	QN I	o :	D	1.0	Q !	> :	D
Column	1,1,1-I richloroethane	0.32		0.0	2 2)	g s	0.0		o =	D 0	0.0	2 2	> =	D 0
Transfer Control	1 1 2-Trichloro-1 2 2-Trifluoroethane	0.57		2.0	2 2	o =	ם כ	2. 0		> =	ס כ	5 6	2 2	> =	D
Continue	1, 1,2 Trichloroethane	0.54		1.0	Q Q		ם מ	1.0	Q Q	> =	ם מ	0.1	28	> =	ם מ
Transfer Control of the control of t	1.1-Dichloroethane	0.53		1.0	Q		n 0	1.0	QN ON) >	n 0	0.1	2) >	D 0
Continue	1,1-Dichloroethene	0.31		1.0	Q))	5	1.0	QN)	n 0	1.0	2)	n 0
Transverse 0.39 10 No	1,1-Dichloropropene	0.21		1.0	ND	n	g	1.0	ND	_	D	1.0	Q)	D
Particle	1,2,3-Trichlorobenzene	0.39		1.0	ND	n	g	1.0	ND	⊃	g	1.0	QN	n	g
Tracere 0.55	1,2,3-Trichloropropane	2.3		2.0	ND	n	D	2.0	ND	>	D	2.0	Q	⊃	g
Therefore 0.256 10 NO U 9	1,2,4-Trichlorobenzene	0.35		1.0	ND	n	g	1.0	ND	>	g	1.0	QN	⊃	g
No. 10 N	1,2,4-Trimethylbenzene	0.26		1.0	ND	n	D	1.0	ND	>	D	1.0	Q	_	g
Fig. 6 1 2 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1,2-Dibromo-3-Chloropropane	2.5		2.0	Q!)	D	2.0	Q :)	D	2.0	2 :)	ס
The control of the co	1,2-Dibromoethane	0.81		1.0	Q Z)	g	1.0	ON C	> =	g	1.0	2 2	> =	g
The control of the co	1,z-Uichlorobenzene	0.24		0.0)	D 0	0. 0	O C	> =	D 0	0.0	2 2	> =	D (
Figure 10.99	1,2-Dichlorographe	0.22		0.50	ב ב) =	ם כ	0.30	ON CN	> =	D	000	2 2	> =	ם מ
Continue	1.3.5-Trimethylbenzene	0.19		1.0	QN		ם מ	0.1	QN		ם מ	0.1	2 2	> =	ם מ
10	1,3-Dichlorobenzene	0.38		1.0	ND	n	ס	1.0	ND)	0	1.0	Q)	ם מ
1.0 ND U S S S S S S S S S	1,3-Dichloropropane	0:30		1.0	ND	n	g	1.0	ND	⊃	g	1.0	QN	n	g
10 10 10 10 10 10 10 10	1,4-Dichlorobenzene	0:30		1.0	ND	n	D	1.0	ND	⊃	D	1.0	Q	⊃	g
1.5 1.0 ND ND ND ND ND ND ND N	2,2-Dichloropropane	0.40		1.0	Q!)	б	1.0	Q :	> :	Ø	1.0	2 !	⊃ :	D
1.9	2-Butanone	4.2		10	O C)	50 0	10		> =	D 0	10	2 2	> =	D 0
Control Cont	2-Hexanone	1.9		10	S CN) =	ם מ	2 0	Q N	=	ם מ	10	SS	> =	ם מ
2.4 10 ND U 9 10 ND U	4-Chlorotoluene	0:30	.1	1.0	Q.		n 0	1.0	QN QN)	ם מ	1.0	2))	n 0
6.1	4-Methyl-2-Pentanone	2.4		10	Q	ם	0	10	QN	ם ס	n 0:	10	2)	n 0
0.26 0.50 ND U 9 1.0	Acetone	6.1		10	ND	n	g	10	ND	n	g	10	ND	n	g
0.47 1.0 ND U gg	Benzene	0.26		0.50	ND	n	g	0.50	ND)	D	0.50	QN	⊃	g
0.68 1.0 ND U g 1.0 ND	Bromobenzene	0.47		1.0	QN)	D	0. 0.	QN I	> :	D)	1.0	Q S	> :	D
0.227 1.0 ND U 9 1.0 N	Bromocnioromethane	0.68		0.1	2 2	0 :	D i	0. 6	2 2	o =	D i	0.1	2 2	> =	D :
2.9 2.9 2.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1	Bromoform	0.27		0. 0	ב ב) =	ם כ	5. 6		> =	ס כ	5. 6	2 2	> =	D
1,0 ND U g 10 ND U G ND U MD U G ND U MD U G	Bromomethane	2.9		10	2 2		n 0	10	QN ON) >	n 0	10	2) >	D 0
0.42 0.50 ND 0.50 ND 0.50 ND 0.50 ND 0.50 0.36 1.0 ND U 9 1.0 ND U 9 1.0 ND U 0.52 1.0 ND U 9 1.0 ND U 9 1.0 ND U 0 0.45 1.0 ND U 9 1.0 ND U 9 1.0 ND U 0 0 1.0 ND U 0	Carbon Disulfide	1.0		10	ND)	0	10	ND	n	0	10	Q	Π	0
0.36	Carbon Tetrachloride	0.42		0.50	ND	D	g	0.50	ND	⊃	g	0.50	QN	n	g
0.52	Chlorobenzene	0.36		1.0	Q i)	D	1.0	Q :	> :	D	1.0	9 :	⊃ :	D
0.42 1.8 1.0 1.8 1.0 1.0 1.0 1.0 1.0	Chloroethane	0.52		1.0	ON S) -	D :	0.1	ON C	> =	g :	1.0	2 2	o :	D :
0.45	Chlorogethan	1.0		0. 6	2 2	0 =	D 8	5. 6	O Z	o =	D 1	0. 6	2 2	> =	D 8
0.27	Dibromochloromethana	0.15		0 6)	D 0	2 6		> =	5	5 5	2 2	> =	D 0
0.27	Dibromomethane	0.42		5 0	2 2	> =	ס כ	5 6	2 2	> =	ס כ	5. 0	2 2	> =	ס כ
0.17 1.0 ND U gg 1.0 ND U ND U gg 1.0 ND U ND U gg 1.0	Dichlorodifluoromethane	0.27		1.0	Q.		ם מ	0.1	QN ON) ⊃	n 0	0.1	2) >	D 0
0.24 1.0 ND U gg 1	Ethylbenzene	0.17		1.0	QN	n	ם ס	1.0	ND)	0 0	1.0	Q	_	n 0
0.29 1.0 ND U g 1.0 ND	Isopropylbenzene	0.24	 	1.0	QN)	D	1.0	QN	n	0	1.0	Ð	n	0
2.6 10 ND U g 10 ND U g 10 ND U U U U U U U U U U U U U U U U U U	Methyl-t-Butyl Ether (MTBE)	0.29		1.0	ND	n	g	1.0	ND	n	g	1.0	ND	n	g
	Methylene Chloride	2.6	L	10	ND	n	б	10	ND	⊃	D	10	Ω	>	D

Lockheed Martin, Beaumont							Table 2	2						
Site: 2						Analy	tical Data	Analytical Data Summary						
Extraction Method: SW5030B						EPA	EPA Method SW8260B	3W8260B						
Analytical Method: SW8260B														
Matrix: Water		T.	:nvironme	Environmental Samples										
Units: ug/L														
		Field ID:		TT-MW2-3				TT-MW2-4D				TT-MW2-4S		
		SDG:		05-02-0998				05-02-0998				05-02-0998		
		Batch ID:		050217L03				050217L03				050217L03		
Parameters	MDL		PQL	Result	Validity	Comments	PQL	Result	Validity	Comments	PQL	Result	Validity	Comments
Naphthalene	0.95		10	ND)	D	10	ND	n	ō	10	ND)	ō
Styrene	0.29		1.0	ND	n	D	1.0	QN	n	D	1.0	QN	n	б
Tetrachloroethene				ND	D	D	1.0	QN	n	ð	1.0	QN	D	б
Toluene				1.8		g	1.0	ND	N	б	1.0	ND	n	g
Trichloroethene				1.2		g	1.0	ND	N	6	1.0	ND	n	g
Trichlorofluoromethane				ND	N	g	10	ND	N	g	10	ND	n	g
Vinyl Acetate				ND	N	g	10	ND	N	g	10	ND	n	g
Vinyl Chloride	0.33		0.50	ND	U	g	0.50	ND	N	g	0.50	ND	U	g
c-1,2-Dichloroethene				ND	U	g	1.0	ND	N	g	1.0	ND	U	g
c-1,3-Dichloropropene		ļ		ND	n	D	0.50	ND	n	D	0.50	ND	n	g
n-Butylbenzene		ļ		ND	n	g	1.0	ND	n	D	1.0	ND	n	D
n-Propylbenzene	_			ND	n	g	1.0	ND	n	D	1.0	ND	n	D
o-Xylene				ND	n	g	1.0	ND	n	D	1.0	ND	n	D
p-IsopropyItoluene				ND	U	g	1.0	ND	N	g	1.0	ND	U	g
p/m-Xylene	0.38		1.0	1.8		g	1.0	ND	N	g	1.0	ND	U	g
sec-Butylbenzene	0.21		1.0	ND	⊃	D	1.0	Q)	D	1.0	Q	_	D
t-1,2-Dichloroethene	0.29		1.0	ND	n	б	1.0	QN	N	g	1.0	QN	Λ	б
t-1,3-Dichloropropene			0.50	ND	N	g	0.50	ND	N	g	0.50	ND	n	g
tert-Butylbenzene	0.17		1.0	ND	n	g	1.0	ND	n	D	1.0	ND	n	D

Section Comparison Compar	Lockheed Martin, Beaumont						Table 3							
The control of the	Site: 2					Analy	tical Data	Summary						
Find ID Find	Extraction Method: SW3520B					EPA	Method S	W8270C						
Figure F	Analytical Method: SW8270C Matrix: Water													
Fig. Fig. Environmental Samples Fig.	Units: ug/L													
Field D				ental Samples										
Signature Sign		2		4 C/V/V 1				CCNNATT				OC CWWA TT		
1.1 1.1		rieid ID.		1-2WW-11				2-2VIVI-11				02-2000-1-1		
MD1		SDG:		050216L03B				050216L03B				050216L03B		
1.3		1		Result	Validity	Comments	PQL	Result	Validity	Comments	PQL	Result		comments
11. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.		~	10	CZ	=	7	10	CZ	=	5	10	2	=	7
1.1) -	2 5	2 2	o =	ס מ	5 5	2 2	> =	ס מ	2 5	2 2	o =	ס מ
1.1		- 0	10	2 2	> =	ס כ	2 6	SS	> =	ם כ	2 6	2 2	D =	ם כ
14 10 10 10 10 10 10 10 10 10 10 10 10 10		1 -	10	Q.)	D 0	10	S Q))	n 0	10	2) ⊃	n 0
127 118 119 119 119 119 119 119 119 119 119		4	10	ND)	0	10	ND	n	0	10	Q	n	D
11.2		37	10	ND	n	g	10	ND	Π	g	10	ND	n	g
1.1 1.1		2	10	ND	⊃	D	10	ND	n	D	10	Q	D	g
2.6		1	10	ND	⊃	g	10	ND	⊃	g	10	Q	n	g
1.0 ND U 9 100 ND U 9 100 ND U 9 100 ND U 9 100 ND U 1		2	10	QN	>	g	10	QN.	D	D	10	Q	ח:	g
1.1 1.1		9	50	QN :)	D	20	Q !)	D	20	2)	g
1.1 1.1		0,	10	ON I	o :	g	10	ON S	o :	D	10	2 2	o :	g
1.2		c	0.	2 2	> =	D 1	2 5	2 2	> =	50 0	10	2 2	> =	<u>م</u>
1.2		ာ c	2 2	S S	> =	ם מ	2 6	S S	> =	5 1 C	2 (2	2 2	> =	ם כ
1.1 1.1			10	QN ON))	ם מ	10	QN	o	ם מ	10	2 2		ם מ
1.0 ND			10	Q)	n 0	10	Q)	0 0	10	2	ם	ם ס
1.2 1.2 1.0 ND U 9 1.0 ND U 0		0	10	ND	n	g	10	ND	Π	g	10	ND	n	g
13 13 15 15 10 10 10 10 10 10		2	10	ND	⊃	D	10	ND	n	D	10	Q	D	g
1.2 1.2 1.0		3	25	ND	⊃	g	25	ND	_	б	25	Q)	g
3.4 50 ND U g 50 ND U g 50 ND U g 60		2	10	ND	>	g	10	ND	_	g	10	Q	n	g
1.2		4	20	QN :	> :	g	20	Q :)	Ö	20	2)	g
1.2		2	9 ;	QN S)	D	10	QN :	> :	0	10	2) :	D
1.2		2 0	10	2 2	o =	D 0	10	2 2	> =	0	10	2 2	> =	g g
2.2		2 0	2 6		o =	ກ	2 5		> =	ם מ	2 5	2 2	> =	D
One 10 ND U gg 10 ND		2 7	10	2 2	=	ם מ	2 (2	S	> =	ם מ	10	2 5	> =	ם מ
1,0 ND U g 10 ND U g 10 ND U Q ND U Q 10 ND U Q ND U ND U Q ND U ND U Q ND </td <td></td> <td>. 98</td> <td>10</td> <td>Q.</td> <td>)</td> <td>D 0</td> <td>9 0</td> <td>Q.</td> <td>))</td> <td>ກ ບ</td> <td>10</td> <td>2 2</td> <td>))</td> <td>n 0</td>		. 98	10	Q.)	D 0	9 0	Q.))	ກ ບ	10	2 2))	n 0
1.4 10 ND U g 10 ND U BND U 0	benz[a]anthracene	0	10	QN	⊃	מ	10	ND	Π	0	10	<u>N</u>)	g
1.4		4	10	ND	n	g	10	ND	n	б	10	ND	n	g
1.2		4	9	ND	>	g	10	ND	_	Б	10	Q	n	g
1.5		2	10	ND	>	D	10	ND	n	D	10	Q	n	D
1.7		2	10	ND	>	g	10	ND	n i	g	10	Q	n	g
0.62		7	10	ND	⊃	g	10	ND	n	g	10	Q	n	g
0.88		32	20	Q.	> :	g	20	QN:)	D	20	2)	g
1.2		82	10	QN :	o :	g	10	Q :	o :	D	10	2)	g
0.71	0	7.	01	ON:	o :	D	10	ON:	о:	D	01	2 :	o :	D
1.7 ==== 10 ND ON			10	QN	-	D	10	QN	n :	D	10	Q	O :	D
	Benzo (k) Fluoranthene	7	10	QN	D	D	10	QN	n	D	10	Q	D	g

State Control State Cont	Dogwood Months Dogwood							Toble	•						
Fig. 10 Fig.	Site: 2						Analy	vtical Data	Summary						
Find Environmental Samples	Extraction Method: SW3520B						EPA	Method	SW8270C						
Field D Fiel	Analytical Method: SW8270C														
Finite F	Units: ug/L														
Triangle Field Foundation Simples Field Fiel			ı												
Field D			EN	vironmen	tal Samples										
MDL Barb ID POL Result Conference POL			Field ID:		TT-MW2-1				TT-MW2-2				TT-MW2-20		
March Date Barch Date March Date Mar			SDG:		05-02-0998				05-02-0998				05-02-0998		
MO1. MO2.			_		050216L03B	:			050216L03B			i	050216L03B		
1.1 1.1 1.0 1.0 1.0 1.0 1.0 1.0	Parameters	MDL		정	Result	Validity	Comments		Result	Validity	Comments	Pol	Result	Validity	Comments
10 10 10 10 10 10 10 10															
10.45 10	Benzo(a) Anthracene	- - ;		10	Q.	D :	D	10	QV :)	D	10	Q :	n :	g
There is a second of the control of	Benzoic Acid	0.43		20	ON S	> =	D 8	20	2 2	o =	D :	20	2 2	0 =	g
1.5	Benzyl Alconol	0.		2 5	2 2	> =	D ?	2 5	2 2	0 =	ס נ	2 5	2 2	o =	D 8
15 15 16 17 17 18 19 10 10 10 10 10 10 10	Bis(2-Chloroethyl) Ether	1.0		25	2 2	D	ם מ	25	2 2	0 0	ם מ	25	2 2	0 0	ם מ
10	Bis(2-Chloroisopropyl) Ether	1.5		10	ND	Π	0	10	ND	n	0	10	QN	Π	D
1.3	Bis(2-Ethylhexyl) Phthalate	1.0		10	ND	Π	g	10	QN	N	g	10	QN	N	g
15	Butyl Benzyl Phthalate	1.0		10	ND	D	g	10	ND		g	10	QN	D	g
1.5	Chrysene	5.1		10	QV.	⊃ :	D	10	QN :	o :	D	10	Q S	⊃ :	g
1.4	Di-n-Butyl Phthalate	ς: C		2 5	2	> =	0 0	2 5	O C	o =	D 0	2 5		> =	D 0
1.4	Dibora (a b) Authroppio	0.0		5 5	2 2	> =	ס מ	5 5	2 2	> =	ס ס	2 5		> =	ס פ
1.3	Dibenzofuran	4.1		10	2 2	D	ם מ	10	QN QN))	ם מ	9	Q Q	D	ם מ
1.3	Diethyl Phthalate	1.4		10	ND	n	ō	10	QN	n	0	10	QN	n	Ö
1.5	Dimethyl Phthalate	1.3		10	ND	n	g	10	ND	n	б	10	QN	n	g
1.2 1.4 10 NB U g I I I I I I I I I I I I I I I I I	Fluoranthene	1.5		10	ND	D	g	10	ND	D	б	10	QN	D	g
1.2	Fluorene	4.		10	QN:	D	g	10	QN	n:	D	10	Q :	n:	D
1.2 1.2 1.0	Hexachloro-1,3-Butadiene	1.2		10	QN.	> :	D	9	QN I)	0	9	QN S	> :	D
0.983	Hexachlorocyclopentadiene	7.7		75		> =	D C	75	O C	0 =	ם מ	70	ON CN	0	ם כ
1.2	Hexachloroethane	0.98		10	Q.)	n 0	10	Q.)	n 0	9 6	2)	n 0.
1.2 1.2 1.0 ND U g 1.0 ND U U	Indeno (1,2,3-c,d) Pyrene	0.83		10	ND	n	0	10	QN	n	D	10	QN	n	g
1.1	Isophorone	1.2		10	ND	n	б	10	ND	n	б	10	QN	n	D
1.1	N-Nitroso-di-n-propylamine	1.3		10	QN	D	g	10	QN	O:	б	10	QN	O :	g
1.4	N-Nitrosodimethylamine	- ,		10	QN S	D	D	10	ON S	o :	g	10	QN S	0 :	D :
1.3 1.4 1.5	N-Nitrosodipnenylamine	4		0.0		> =	D 0	2 6	O C	o =	ם מ	2 6		0 =	ם כ
Indophenol 0.75 10 ND U gg 10 ND	Nitrobenzene	1.3		25	2 2	D	ם מ	25	QN	0	ם מ	25	QN ON	0	ם מ
threfie 1.5 10 ND U gg	Pentachlorophenol	0.75		10	Q	n	ם מ	10	ND	n	ם מ	10	QN	n	ם מ
1.2 1.2	Phenanthrene	1.5		10	ND	n	0	10	ND	n	0	10	QN	Π	0
1.4 1.4 1.4 1.4 1.5	Phenol	1.2		10	ND	n	б	10	QN	n	g	10	QN	n	g
1.4 1.4 1.5 1.0	Pyrene	4.1		10	ND	n	D	10	ND	n	б	10	QN	n	D
	Pyridine	1.4	-	10	ND	n	g	10	ND	n	g	10	QN	N	g

Exercise Strictory Strictory Exercise Exercise	Lockheed Martin, Beaumont							Table 3	3						
The control of the	Site: 2 Extraction Method: SW3520B						Ana EP,	ytical Data	Summary W8270C						
Feder ID Feder ID	Analytical Method: SW8270C Matrix: Water						i								
Field Fiel	Units: ug/L														
Third Thir					ntal Samples										
MOL Barto Political Control Cont			Field ID:		TT-MW2-3				TT-MW2-4D				TT-MW2-4S		
MOL Result Validay Comments POL Result Validay POL POL			SDG:		05-02-0998 0502161 03B				05-02-0998 050216I 03B				05-02-0998 0502161 03B		
13	Parameters	MDL		PQL	Result	Validity	Comments		Result	Validity	Comments	PQL	Result	Validity	Comments
1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1	1,2,4-Trichlorobenzene	1.3		10	QN	⊃	D	10	QN	n	ō	10	2	⊃	٥
1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1	1,2-Dichlorobenzene	1.1		10	QN	n	0	10	ND	n	g	10	ND	n	g
1.1	1,3-Dichlorobenzene	1.2		10	ND)	ס	10	QN	D	б	10	Q		D
1.2	1,4-Dichlorobenzene			10		> =	D 0	10) =	0 0	10	22) =	0
1.2	2.4.5-Trichlorophenol	0.97		10	22	> >	ס ס	10	2 2	0 0	ם מ	10	22	> >	ם מ
1.1	2,4,6-Trichlorophenol	1.2		10	ND	n	0	10	ND	n	0	10	Q	n	n 01
1.0 2.6 2.7 2.8 2.9 2.0 2.0 2.0 2.0 2.0 2.0 2.0	2,4-Dichlorophenol	1.1		10	ND	n	g	10	ND	U	g	10	ND	n	g
1.0	2,4-Dimethylphenol	1.2		10	ND	n	g	10	QN	N	g	10	QN	n	ß
1.10	2,4-Dinitrophenol	2.6	ĺ	20	QN:)	D	20	QN:)	D	20	Q)	D
1.1	2,4-Dinitrotoluene	1.0		10	QN 2	o :	D	9	Q Z	o :	D :	10		> :	D
1.0 1.0	2,6-Dinitrotoluene 2-Chloropaphthalene	- 4		2 5		> =	5	2 6	2 2	o =	50 0	0 0	2 2	> =	50 5
1.1	2-Chlorophenol	0.1		10	Q Q)	ס ס	9 2	2 02) ⊃	n 0	10	2 2) ⊃	n 0
1.1 1.1	2-Methylnaphthalene	1.2		10	ND	n	0	10	QN	n	g	10	Q	n	g
1.0 1.0 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1	2-Methylphenol	1.1		10	ND	N	g	10	ND	N	g	10	QN	n	g
1.2	2-Nitroaniline	1.0		10	ND	⊃	D	10	ND	n	D	10	Q	⊃	D
1.2 1.0	2-Nitrophenol	1.2		10	Q Z	> =	D E	9	2)	g	10	2	> =	D i
3.4 50	3,3 -Dichloropenziaine 3-Nitroaniline	. c		10		> =	5 1	2 6	2 2	o =	ם כ	10	2 2	> =	5 1
1.2	4.6-dinitro-2-methylphenol	3.4		20	a Q	> >	ם מ	2 22	2 2))	n 0	20	2) >	n 0
1.2	4-Bromophenyl-Phenyl Ether	1.2		10	ND	n	0	10	ND	n	0	10	Q	n	0
1.3	4-Chloro-3-Methylphenol	1.2		10	ND	n	g	10	ND	n	g	10	ND	n	g
1.2	4-Chloroaniline	1.3	ĺ	10	Q.	D :	D	10	Q.)	g	10	2)	D
Denzial anthracene Continue	4-Chlorophenyl-Phenyl Ether	1.2		10	O S	> =	D 6	10	2 2	o =	D 0	10	2 2	> =	D 0
1.0 1.0	4-Nitroplenol	0.86		2 (2	S S	> =	ס כ	2 6	2 2	> =	ם כ	2 (2	2 2	> =	ם כ
1.4 10 ND U g 10 ND U g 10 ND U 0	7,12-Dimethylbenz[a]anthracene	1.0		10	QN	n	0	10	QN	n	o 0	10	2))	D D
1.4 10 ND 0 9 10 ND 0 </td <td>Acenaphthene</td> <td>1.4</td> <td></td> <td>10</td> <td>ND</td> <td>n</td> <td>0</td> <td>10</td> <td>QN</td> <td>n</td> <td>g</td> <td>10</td> <td>Q</td> <td>n</td> <td>g</td>	Acenaphthene	1.4		10	ND	n	0	10	QN	n	g	10	Q	n	g
1.2 10 ND U g 10 ND U g 10 ND U U U U U U U U U	Acenaphthylene	1.4		10	ND	n	б	10	QN	n	g	10	QN	n:	g
1.5	Aniline	1.2		10	QN :	O :	D	10	Q :	O :	g	10	2	-	D
1.2	Anthracene	1.5		10	ON CA	o =	0	10	2 2	0 =	g	10	2 2	> =	D E
0.00	Azobenzene	7.1		0.0		> =	ם נס	0 6		o =	D 0	0.0	2 2	> =	D 0
1.7	Benzo (a) Pyrene	0.02		30		> =	ם כ	200	2 2	> =	ם כ	30	2 2	> =	ם כ
0.71 10 ND U g 10 ND U g 10 ND U U U U U U U U U U U U U U U U U U	Benzo (b) Fluoranthene	1.2		10	Q.) ⊃	ກ ວ	9	2 02))	n 0	10	2) >	n 0
1.7	Benzo (g,h,i) Perylene	0.71		10	ND	n	0 0	10	QN	n	ס ס	10	Q)	ם מ
	Benzo (k) Fluoranthene	1.7		10	ND	n	0	10	QN	n	0	10	Q	n	D

Part	Lockheed Martin, Beaumont						Table 3							
The state of the control of the co	Site: 2					Analy	tical Data	Summary						
Find the control of	Extraction Method: SW3520B					EPA	Method S	W8270C						
The control of the														
Final Processor Final Proc	Mattix. Water													
Figure Free	Ollis. agr													
Triangle			Environme	antal Samples										
STOCK Control of the control of		<u>-</u>		2 200				C C C C C C C C C C C C C C C C C C C				OV COMPATE		
Marcheller		SDG:		05-02-0998				05-02-0998				05-02-0998		
A		Batch ID:		050216L03B				050216L03B				050216L03B		
A control of the co	Parameters	/IIIII	<u> </u>	Result	-	Comments	Pal	Result		Comments	PQL	Result	Validity	Comments
Accordance 1.1 1.1 1.0														
According to 0.43 500 ND U g g 100 ND U g g	Benzo(a) Anthracene	1.1	10	QN	n	g	10	ND	n	g	10	QN	n	g
All controls All	Benzoic Acid	0.43	50	ND	⊃	g	20	ND	⊃	g	20	ND	n	g
high control Methane 12	Benzyl Alcohol	1.0	10	ND	D	D	10	ND	n	D	10	ND	n	g
Horostroy/Jeffleer 10	Bis(2-Chloroethoxy) Methane	1.2	10	ND	D	g	10	ND	n	g	10	QN	n	D
Interceptopy literer 15	Bis(2-Chloroethyl) Ether	1.0	52	Q :)	б	52	Q :)	б	25	Q :)	Ö
The problement of the control of the	Bis(2-Chloroisopropyl) Ether	1.5	10	ND	D	D	10	ND	n	D	10	QN	n	D
The control of the co	Bis(2-Ethylhexyl) Phthalate	1.0	10	QN	D	D	9	QN	n :	g	10	Q	D	g
13	Butyl Benzyl Phthalate	1.0	10	QN	ר כ	D	9	QN	n	D	10	Q)	g
At Mathematical Antimication 1.5 10 ND U 9 10 <td>Chrysene</td> <td>1.3</td> <td>10</td> <td>Q</td> <td>></td> <td>D</td> <td>10</td> <td>Q</td> <td>D</td> <td>D</td> <td>10</td> <td>Q</td> <td>n:</td> <td>D</td>	Chrysene	1.3	10	Q	>	D	10	Q	D	D	10	Q	n:	D
All the continues of	Di-n-Butyl Phthalate	1.5	10	Q :	o :	D	10	Q.)	D	10	2	o :	D
And Thirting conditions of the control of t	Di-n-Octyl Phthalate	1.0	10	Q.	o:	D	10	QN:)	D	10	Q !	n:	D
Physiciate 1.4 10 ND U g 1	Dibenz (a,h) Anthracene	0.82	10	2 2	> =	D 0	2 5	2 2	> =	D 0	10	2 2	> =	D 0
13	Diothyl Dhthalate	ţ. .	2 6	2 2	o =	ס מ	5 5	2) =	ס מ	5 5	2 2	> =	ס ס
The first of the f	Discript Fittingate	‡. °	2 5	2 2	o =	ס כ	2 5	S S) =	ס מ	5 5	2 2	> =	ס מ
1.3	Dinemiyi Fimialate	ر د بر	2 6	ב ב	> =	ם מ	2 5	22	> =	ם מ	2 5	2 2	> =	ე (
1.2 1.0	Fluorene	5. 4.	10	2 2	> =	ם מ	9	2 2	o =	ם מ	10	2 2	o =	ם מ
1.2 1.2 1.0	Hexachloro-1 3-Butadiene	1.2	10	S N	=	ם מ	10	S) =	ח כ	10	S	=	ס כ
Intercolognetiation	Hexachlorobenzene	1.2	10	Q.	> =	ם מ	10	a Q	> =	ם מ	10	Q Q	> =	ם מ
Occupation	Hexachlorocyclopentadiene	0.44	22	Q))	0 0	25	Q)	n 0	25	Q	n	n 0
(1,2,3-c,d) Pyrene 0,83 10 ND U gg 10 ND U g	Hexachloroethane	86:0	10	QN)	0	10	QN	n	ס	10	Q	n	0
12 10 10 10 10 10 10 10	Indeno (1,2,3-c,d) Pyrene	0.83	10	ND	n	g	10	ND	n	g	10	ND	n	g
So-din-propylamine 1.3 10 ND U g ND U G ND U MD U <	Isophorone	1.2	10	ND	n	б	10	ND	N	g	10	ND	n	g
Sodimetrylamine 1.1 1 10 ND U g 10 N	N-Nitroso-di-n-propylamine	1.3	10	ND	D	g	10	ND	n	g	10	ND	n	g
1.4 1.4 1.0 ND	N-Nitrosodimethylamine	1.1	10	QN !	> :	D	10	QN:)	D	10	Q!	D :	D
Altered 1.4 1.4 1.0 ND U gg 10 ND U gg 10 ND U gg 10 ND U ND	N-Nitrosodiphenylamine	1.4	10	ON S	o :	D	10	ON I	o :	D	10	O S	o :	D)
Interpretable (a) (1.5) (a) (a) (b) (b) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c	Naphthalene	4. 6.	01.	S S	> =	D 0	25		> =	ם כ	25	2 2	o =	D) C
1.2 1.0 ND U g 1.0 ND U U G 1.0 ND U G 1.0 ND U G 1.0 ND U U G 1.0 ND U U G 1.0 ND U U U U U U U U U	Dentachlorophenol	0.75	101	2 2	=	ס כ	2 0	S N	=	ס כ	10	2 2	=	ס כ
1.2	Phenanthrene	2.5 7.7	2 (2 2	=	ס כ	2 0	2 8	=	ם מ	10	2 2	=	ס כ
14 10 ND U gg 10 ND U	Phenol	1.5	10	S N	> =	ם מ	10	S	=	ח כ	10	S	> =	ם מ
1.4 MD U g 10 ND U g 10 ND U D U D U D U D U D U D U D U D U D	Pyrene	1.1	9	28))	n 0	10	28))	n 0	10	2))	n 0
	Pyridine	1.4	10	QN	_	0	10	QN)	ס ס	10	QN	n	0
									İ					

Lockheed Martin, Beaumont								Table 4							
Site: 2							Analyti	Analytical Data Summary	ummary						
Extraction Method: SW3520B							EPA Meth	10ds E162	EPA Methods E1624, E1625C						
Analytical Method: See Below															
Matrix: Water															
Units: ug/L															
				Environmenta	tal Samples										
		4	Field ID:		TT-MW2-1				TT-MW2-2				TT-MW2-20		
			SDG:		05-02-0998				05-02-0998				05-02-0998		
		ď	Batch ID:	3	050216L03D				050216L03D				050216L03D		
Parameters	EPA Method	MDL		PQL	Result	Validity Comments	Comments	PQL	Result	Validity	Comments	PQL	Result	Validity	Comments
					(Unfiltered)				(Unfiltered)				(Unfiltered)		1
1,4-Dioxane	E1625C	0.57		2.0	ND	n	g	2.0	ND	n	g	2.0	ND	n	g
N-Nitrosodimethylamine	E1625C	0.55		2.0	ND	n	g	2.0	ND	N	g	2.0	ND	n	g

										Comments		Ď	מ			
										Validity		n	n			
							TT-MW2-4S	05-02-0998	050216L03D	Result	(Unfiltered)	ND	ND			
										PQL		2.0	2.0			
										Comments		Ď	D			
										Validity		n	n			
	Summary	EPA Methods E1624, E1625C					TT-MW2-4D	05-02-0998	050216L03D	Result	(Unfiltered)	ND	QN			
Table 4	ical Data (:hods E16;								PQL		2.0	2.0			
	Analyt	EPA Met								Comments		0	ō			
										Validity		n	n			
						Environmental Samples	TT-MW2-3	05-02-0998	050216L03D	Result	(Unfiltered)	ND	Ð			
						Environme				PQL		2.0	2.0			
							Field ID:	SDG:	Batch ID:							
										MDL		0.57	0.55			
										EPA Method		E1625C	E1625C			
Lockheed Martin, Beaumont	Site: 2	Extraction Method: SW3520B	Analytical Method: See Below	Matrix: Water	Units: ug/L					Parameters		1,4-Dioxane	N-Nitrosodimethylamine			

Lockheed Martin, Beaumont							Table 5							
Site: 2						Anal	Analytical Data Summary	Summary						
Extraction Method: EPA 300						EP/	EPA Method SW6010B	W6010B						
Analytical Method: SW6010B														
Matrix: Water														
Units: mg/L														
			Environme	Environmental Samples										
		Field ID:		TT-MW2-1				TT-MW2-2				TT-MW2-20		
		SDG:		05-02-0998				05-02-0998				05-02-0998		
		Batch ID:		050217L03F				050217L03F				050217L03F		
Parameters	MDL		PQL	Result	Validity	Comments	PQL	Result	Validity	Comments	PQL	Result	Validity	Comments
				(Unfiltered)				(Unfiltered)				(Unfiltered)		
								!						
Antimony	0.00209		0.0150	ND	⊃	D	0.0150	Q	D	g	0.0150	ND	D	g
Arsenic	0.00308		0.0100	ND	n	g	0.0100	ND	n	g	0.0100	ND	n	g
Barium	0.000719		0.0100	0.0933		D	0.0100	0.0266		D	0.0100	0.0200		D
Beryllium	0.000176)	0.00100	ND	n	g	0.00100	ND	n	g	0.00100	ND	n	g
Cadmium	0.0000350		0.00500	Q	-	D	0.00500	Q	_	D	0.00500	QN	_	D
Chromium (Total)	0.000350	0.000350 0.00500	0.00500	QN	n	б	0.00500	QN	n	g	0.00500	ND	n	б
Cobalt	0.000696		0.00500	ΩN	n	б	0.00500	QN	n	g	0.00500	ND	n	б
Copper	0.00134		0.00500	QN	n	б	0.00500	QN	n	g	0.00500	ND	n	g
Lead	0.00236		0.0100	QN)	D	0.0100	QN	n	D	0.0100	ND	n	D
Molybdenum	0.000800		0.00500	0.00736		D	0.00500	Q	_	D	0.00500	Q	_	D
Nickel	0.00137		0.00500	QN	n	б	0.00500	QN	n	g	0.00500	ND	n	б
Selenium	0.00295		0.0150	QN	n	б	0.0150	QN	n	g	0.0150	ND	n	б
Silver	0.000400		0.00500	ΩN	n	б	0.00500	QN	n	g	0.00500	ND	n	б
Thallium	0.00233		0.0150	ΔN	n	б	0.0150	QN	n	g	0.0150	ND	n	б
Vanadium	0.000314		0.00500	0.00626		ס	0.0050	0.0131		D	0.0050	0.0127		б
Zinc	0.000848	8	0.0100	0.0334		б	0.0100	0.0179	٦	ţ	0.0100	0.0125	٦	ţ

Lockheed Martin, Beaumont							Table 5							
Site: 2						Analy	Analytical Data Summary	ımmary						
Extraction Method: EPA 300						EPA	EPA Method SW6010B	6010B						
Analytical Method: SW6010B														
Matrix: Water														
Units: mg/L														
		Ш	nvironmer	Environmental Samples										
		Field ID:		TT-MW2-3			-	TT-MW2-4D				TT-MW2-4S		
		SDG:		05-02-0998				05-02-0998				05-02-0998		
		Batch ID:		050217L03F)	050217L03F				050217L03F		
Parameters	MDL		PQL	Result	Validity	Comments	PQL	Result	Validity (Comments	PQL	Result	Validity (Comments
				(Unfiltered)				(Unfiltered)				(Unfiltered)		
Antimony	0.00209	0.00209	0.0150	ND	n	D	0.0150	QN	n	ō	0.0150	ND	n	Ď
Arsenic	0.00308		0.0100	QN)	D	0.0100	0.0791		מ	0.0100	0.0427		ō
Barium	0.000719	0.000719 0.0100	0.0100	0.0974		D	0.0100	Q	n	D	0.0100	0.0752		D
Beryllium	0.000176) 	0.00100		n	д	0.00100	ND	n		0.00100	ND	n	g
Cadmium	0.000350) 	0.00500.0		n	g	0.00500	ND	n		0.00500	ND	Π	g
Chromium (Total)	0.000350	ر 	0.00500.0		n	g	0.00500	ND	N		0.00500	ND	n	g
Cobalt	0.000696	ر ا	00200		n	D	0.00500	Q	n		0.00500	ND)	D
Copper	0.00134	ر 	0.00500.0		n	g	0.00500	ND	n		0.00500	ND	Π	g
Lead	0.00236		0.0100	ND	n	д	0.0100	ND	n	g	0.0100	ND	n	g
Molybdenum	0.000800) 	0.00500.0		n	g	0.0050	0.0116		g	0.0050	0.0173		g
Nickel	0.00137	ງ 📗	0.00500.0		n	g	0.00500	ND	n	g	0.00500	ND	n	g
Selenium	0.00295		0.0150		n	g	0.0150	ND	n		0.0150	ND	n	g
Silver	0.000400	ر ا	0.00500	Q	_	D	0.00500	Q	\supset		0.00500	ND	⊃	D
Thallium	0.00233	0.00233	0.0150	ND	n	g	0.0150	ND	n	g	0.0150	ND	n	g
Vanadium	0.000314		0.00500.	Q	⊃	D	0.0050	0.0995		ס	0.0050	0.0812		D
Zinc	0.000848		0.0100	ND	n	g	0.0100	ND	n	g	0.0100	ND	n	g

_

Lockheed Martin, Beaumont				1	Table 6						
Site: 2				Analytical	Data Sum	mary					
Extraction Method: METHOD				EPA Method SW7470A	od SW74	70A					
Anilitical Method: SW7470A											
Matrix: Water											
Units: mg/L											
	En	Environmental Samples	nples								
	Field ID:			TT-MW2-1					TT-MW2-2		
	SDG:			05-02-0998					05-02-0998		
Parameters MDL		Batch ID	PQL	Result	Validity	Validity Comments	Batch ID	PQL	Result	Validity	Comments
				(Unfiltered)					(Unfiltered)		
Mercury 0.0000	0.0000672 050218L01F 0.000500	050218L01F	0.000500	ND	n	g	050218L01F 0.000500	0.000500	ND	n	б

Lockheed Martin, Beaumont					1	Table 6						
Site: 2					Analytical Data Summary	Data Surr	ımary					
Extraction Method: METHOD					EPA Method SW7470A	od SW74	70A					
Anilitical Method: SW7470A												
Matrix: Water												
Units: mg/L												
		Envir	Environmental Samples	səldu								
		Field ID:			TT-MW2-20					TT-MW2-3		
		SDG:			05-02-0998					05-02-0998		
Parameters	MDL		Batch ID	PQL	Result	Validity	Validity Comments	Batch ID	PQL	Result	Validity	Comments
					(Unfiltered)					(Unfiltered)		
Mercury	0.0000672		050218L01F 0.000500	0.000500	ND	n	g	050218L01F 0.000500	0.000500	ND	n	g

Lockheed Martin, Beaumont					1	Table 6						
Site: 2					Analytical Data Summary	Data Sum	mary					
Extraction Method: METHOD					EPA Method SW7470A	od SW74	70A					
Anilitical Method: SW7470A												
Matrix: Water												
Units: mg/L												
		Envir	Environmental Samples	səldu								
		Field ID:			TT-MW2-4D					TT-MW2-4S		
		SDG:			05-02-0998					05-02-0998		
Parameters	MDL		Batch ID	PQL	Result	Validity	Comments	Batch ID	PQL	Result	Validity	Comments
					(Unfiltered)					(Unfiltered)		
Mercury	0.0000672		050218L01F 0.000500	0.000500	ND	n	g	050218L01F 0.000500	0.000500	Q	n	g