Quarterly Groundwater Monitoring Report Second Quarter 2005 Lockheed Martin Corporation, Beaumont Site 2 Beaumont, California

Quarterly Groundwater Monitoring Report Second Quarter 2005 Lockheed Martin Corporation, Beaumont Site 2 Beaumont, California

October 2005 TC 16392-04

Prepared for Lockheed Martin Corporation Burbank, California

Prepared by Tetra Tech, Inc.

Brenda Meyer, P.E.

Project Manager

Paul Michalski, P.G.

Project Geologist

Thomas J. Villeneuxe, P.E.

Program Manager

TABLE OF CONTENTS

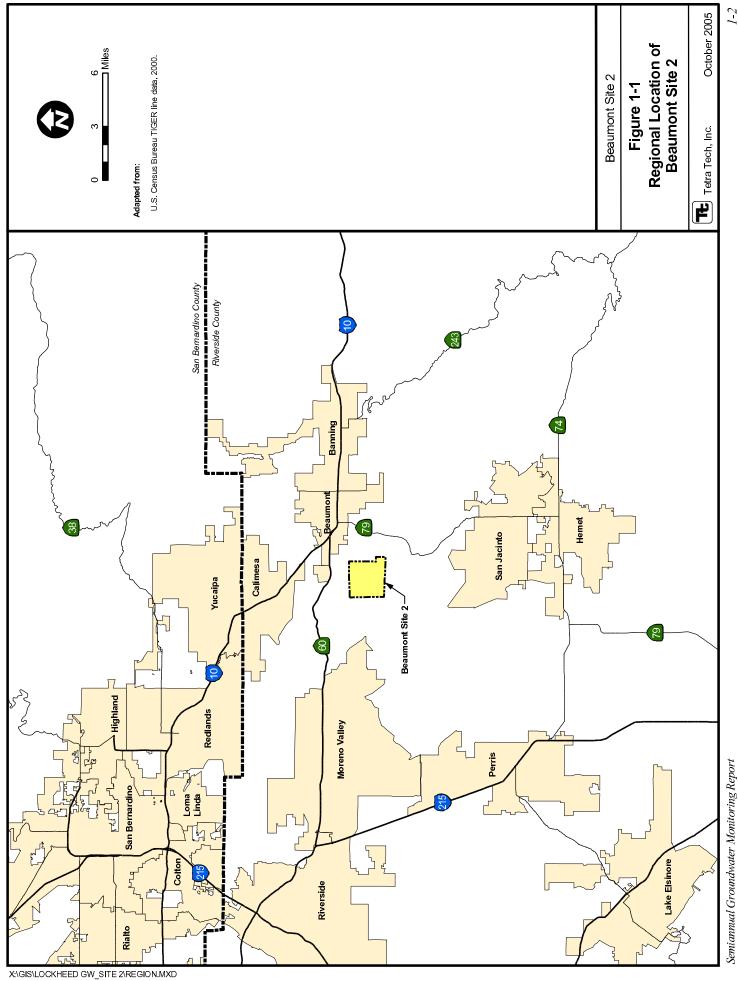
1.0	INTR	RODUCTION	1-1
	1.1	SITE BACKGROUND	1-1
	1.2	PREVIOUS ENVIRONMENTAL ACTIVITIES	1-5
		1.2.1 Preliminary Remedial Investigation	1-5
		1.2.2 Hydrogeologic Investigation	1-6
		1.2.3 Disposal Area Removal Action	1-6
		1.2.4 Remedial Action Certification Letter	1-7
		1.2.5 Monitoring Well Destruction Report	1-7
		1.2.6 Groundwater Sampling Results Former Production Well W2-3	1-7
		1.2.7 Groundwater Monitoring Well Installation Report	1-8
	1.3	GROUNDWATER MONITORING PROGRAM	1-8
2.0	SITE	CONCEPTUAL MODEL	2-1
	2.1	PHYSICAL SETTING	2-1
		2.1.1 Surface Water	2-1
	2.2	GEOLOGY	2-1
		2.2.1 Regional Geology	2-1
		2.2.2 Local Geology	
	2.3	HYDROGEOLOGY	
	2.4	DISTRIBUTION OF AFFECTED GROUNDWATER	
		2.4.1 Perchlorate	
		2.4.2 Trichloroethene	2-9
3.0	SUM	MARY OF FIELD ACTIVITIES	3-1
	3.1	GROUNDWATER LEVEL MEASUREMENTS	3-1
	3.2	GROUNDWATER SAMPLING	
	3.3	HABITAT CONSERVATION	3-5
4.0	GRO	UNDWATER MONITORING RESULTS	4-1
	4.1	GROUNDWATER ELEVATION	4-1
	4.2	GROUNDWATER FLOW DIRECTION	4-4
	4.3	ANALYTICAL DATA SUMMARY	4-4
	4.4	CHEMICALS OF POTENTIAL CONCERN	4-4
		4.4.1 Organic Analytes	
		4.4.2 Inorganic Analytes	
		4.4.3 Chemicals of Potential Concern Conclusions	
		4.4.4 Perchlorate	
		4.4.5 Trichloroethene	
		4.4.6 General Minerals	
	4.5	HABITAT CONSERVATION	4-11
5.0	SUM	MARY AND CONCLUSIONS	
	5.1	GROUNDWATER ELEVATION AND FLOW	
	5.2	WATER QUALITY MONITORING EVENT	
	5.3	WATER QUALITY MONITORING NETWORK	5-2
6.0	REFI	ERENCES	6-1
7.0	ACR	ONYMS	7-1

LIST OF FIGURES

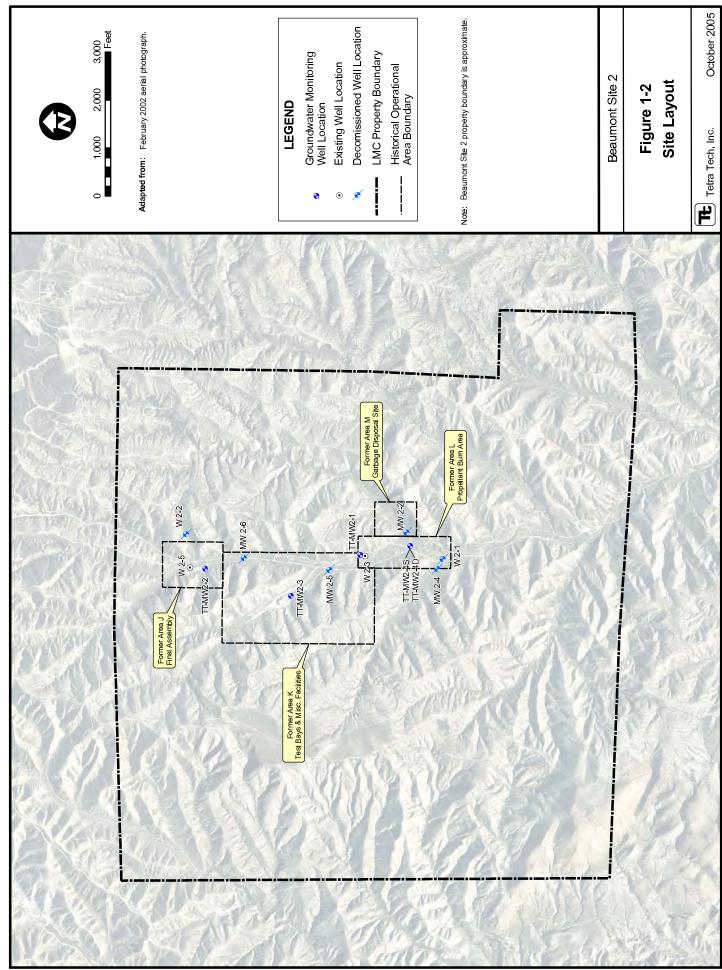
Figure 1-1 Regional Location of Beaumont Site 2	1-2
Figure 1-2 Site Layout	1-3
Figure 2-1 Physical Setting	2-2
Figure 2-2 Regional Geology	2-3
Figure 2-3 Cross Section Location Map	2-5
Figure 2-4 Geologic Cross Section A – A'	2-6
Figure 2-5 Geologic Cross Section B – B'	2-7
Figure 3-1 Second Quarter 2005 Sample Locations	3-4
Figure 4-1 June 2005, Second Quarter Groundwater Elevations	4-2
Figure 4-2 Groundwater Elevation vs. Time	4-3
Figure 4-3 Perchlorate and TCE Concentrations - Second Quarter 2005	4-8
Figure 4-4 Distribution of General Minerals - Second Quarter 2005	4-13
LIST OF TABLES	
Table 3-1 Well Construction Summary Table	3-2
Table 3-2 Sampling Schedule - Second Quarter 2005	3-3
Table 4-1 Groundwater Elevation Data - Second Quarter 2005	4-1
Table 4-2 Summary of Detected Volatile Organic Compound Concentrations - Second Quarter 2005	4-5
Table 4-3 Summary of Detected Inorganics Analytes (Perchlorate and Title 22, Total and Dissolved Metal Concentrations) - Second Quarter 2005	4-6
Table 4-4 Summary of General Mineral Concentrations - Second Quarter 2005	4-7
Table 4-5 Summary Statistics of Organic and Inorganic Analytes Detected (Excluding General Minerals) - Second Quarter 2005	
Table 4-6 Chemicals of Potential Concern	
APPENDICES	
APPENDIX A Field Data Sheets APPENDIX B Validated Analytical Results by Method APPENDIX C Water Level Hydrographs APPENDIX D Chemicals of Potential Concern Time-Series Graphs APPENDIX E Laboratory Analytical Data Packages APPENDIX F Consolidated Data Summary Table	

1.0 INTRODUCTION

This Quarterly Groundwater Monitoring Report (Report) prepared by Tetra Tech, Inc. (Tetra Tech), on behalf of Lockheed Martin Corporation (LMC), presents the results of the Second Quarter 2005 monitoring activities of the Beaumont Site 2 (Site) Groundwater Monitoring Program (GMP). The Site is located southwest of the City of Beaumont, Riverside County, California (Figure 1-1). Currently, the Site is inactive with the exception of ongoing investigative activities.


The objectives of this Report are to:

- Present the most current Site conceptual model,
- Document the monitoring procedures and results, and
- Analyze and evaluate the monitoring data generated.


This Report contains the following: data validation criteria and results; tabulated groundwater elevation and water quality data; water level hydrographs; a groundwater elevation map; perchlorate and trichloroethene (TCE) concentration distribution maps; and time-series graphs. This Report also includes: Site background, a current Site conceptual model, an evaluation of the groundwater monitoring data generated, and an evaluation of the current groundwater monitoring program at the Site.

1.1 SITE BACKGROUND

The Site is a 2,668-acre parcel located southwest of Beaumont, California. The parcels that comprise the Site were owned by individuals and the United States (U.S.) government prior to 1958. The Site was utilized by Grand Central Rocket Company (GCR) and Lockheed Propulsion Company (LPC) from 1958 to 1974 for small rocket motor assembly, testing operations, propellant incineration, and minor disposal activities. Between 1958 and 1960, portions of the Site were purchased by GCR and utilized as a remote test facility for early space and defense program efforts. In 1960, Lockheed Aircraft Corporation (LAC) purchased one-half interest in GCR. GCR became a wholly-owned subsidiary of LAC in 1961. The remaining parcels of land that comprise the Site were purchased from the U.S. government between 1961 and 1964. In 1963, LPC became an operating division of LAC and was responsible for the operation of the Site until its closure in 1974. Ogden Labs is known to have leased portions of the Site in the 1970s (Radian, 1986a). A layout of the Site is presented on Figure 1-2. In 1989, the Department of Toxic Substances Control (DTSC) issued a consent order requiring LMC to cleanup contamination at the Site related to past testing activities (CDHS, 1989). Based on characterization and cleanup activities performed at the Site, the DTSC issued a no further remedial action letter to LMC closing the Site in 1993.

Semiannual Groundwater Monitoring Report Second Quarter 2005 Beaumont Site 2

Semiannual Groundwater Monitoring Report Second Quarter 2005 Beaumont Site 2

Based on regulatory interest in perchlorate and 1,4-dioxane, a groundwater sample was collected from a historical groundwater production well (identified as W2-3) at the Site in January 2003. The sample was analyzed for volatile organic compounds (VOCs), perchlorate, and 1,4-dioxane to determine the potential presence and concentration of these chemicals in groundwater. The analytical results indicated that VOCs and 1,4-dioxane were not present at or above their respective laboratory reporting limits (LRLs). However, perchlorate was reported at a concentration of 4,080 micrograms per liter (μ g/L), which exceeded the California Department of Health Services drinking water notification level (DWNL) of 6 μ g/L. Based on the detection of perchlorate in the groundwater sample collected, the DTSC reopened the Site for further assessment.

Four (4) primary historical operational areas have been identified at the Site (Figure 1-2). Each operational area was responsible for various activities associated with rocket motor assembly, testing, and propellant incineration. A brief description of each operational area follows:

Operational Area "J" – Final Assembly

Rocket motor casings with solid propellant were transported to Building 250 (Historical Operational Area "J") where final assembly of the rocket hardware was conducted. The building was used from 1970 to 1974 for final assembly and shipment of short range attack missile rocket motors. Rocket motor assembly operations included installation of the nozzle and headcap, pressure check of the motor, installation of electrical systems, and preparations for shipment. During plant closure in 1974, all usable parts of this facility were dismantled, taken off site, and sold (Radian, 1986a).

Operational Area "K" – Test Bays and Miscellaneous Facilities

Historical Operational Area "K" consisted of a conditioning chamber and its associated bunker, centrifuge, and four (4) test bays. The conditioning chamber was used to examine the effects of extreme temperatures on rocket motors and to meet specification requirements. A centrifuge was located in the western test bay, where rocket motors were tested in order to determine if the solid propellant would separate from its casing under increased gravitational forces (i.e., g-forces). The initial testing activities had a history of explosions that destroyed complete test areas, especially during the period when GCR operated at the Site. As the technology became better understood, motor failures occurred less often. Following any motor failure, the hillsides were reportedly thoroughly policed to recover any unburned solid propellant (Radian, 1986a).

Operational Area "L" – Burn Area

Solid propellant reportedly was transported to the burn area and set directly on the ground surface for burning. No pits or trenches were dug as part of the burning process. The solid propellant was saturated

with diesel fuel to initiate combustion. Reportedly, the solid propellant would burn rapidly. There is no evidence or physical features that identify the precise location of burning activities (Radian, 1986a).

Operational Area "M" – Garbage Disposal Site

A garbage disposal site (Historical Operational Area "M") was located adjacent to a small creek at the Site. Scrap metal, paper, wood, and concrete materials were disposed of at the disposal site by LPC. Hazardous materials, including explosives and propellants, were never disposed of at this disposal site by LPC (according to employee interviews). Ogden Labs, a company that tested valves and explosive items, also used this disposal site. Reportedly, Ogden Labs disposed of hazardous waste at the garbage disposal site. In 1972, a Lockheed Safety Technician was exposed to toxic vapors of unsymmetrical dimethyl hydrazine from a pressurized gas container located within the disposal site. Based on potential exposure risks to occupants, LPC's safety group required Ogden Labs to take measures to remove any potentially hazardous materials at the disposal site. Shortly thereafter, a disposal company was contracted by Ogden Labs to clean up the disposal site (Radian, 1986a). The results of the removal action are discussed in Sections 2.3.

1.2 PREVIOUS ENVIRONMENTAL ACTIVITIES

Reports and documentation regarding previous environmental activities (i.e., soil/groundwater investigations, excavations, regulatory agency correspondence, etc.) were reviewed to provide a historical environmental evaluation of the Site. The review focused upon identifying activities conducted at the Site that would describe specific findings regarding chemical impacts to groundwater. Previous investigations reviewed included a preliminary remedial investigation (Radian, 1986b); hydrogeologic investigation (Radian, 1992a); disposal area removal action report (Radian, 1993); monitoring well destruction report (LMC, 1995); and a letter report for groundwater sampling results from former production well W2-3 (Tetra Tech, 2003). These investigations are briefly summarized in the following subsections.

1.2.1 Preliminary Remedial Investigation

In October 1986, Radian Corporation (Radian) conducted a remedial groundwater and geophysical investigation at the Site (Radian, 1986b). The objective of the remedial investigation was to determine the potential presence and lateral extents of possible contaminants in the groundwater beneath the Site. The remedial groundwater investigation was to include sampling four (4) of the existing groundwater production wells (designated W2-1, W2-2, W2-3, and W2-5 and shown on Figure 1-2) at the Site (Radian, 1986b). However, only well W2-3, located upgradient of the probable surface propellant burn area (Historical Operational Area "L"), was accessible during this investigation. A sample was collected from well W2-3 and analyzed for purgeable hydrocarbons using U.S. Environmental Protection Agency (EPA) Method 601. TCE was reported at a concentration of 4.2 µg/L in the sample.

Additionally, a geophysical survey was conducted in the area previously identified as the garbage disposal area (Historical Operational Area "M"). The objective of the survey was to determine the location and physically define the lateral extents of the former permitted garbage disposal area through the use of ground penetrating radar, terrain conductivity, and magnetic locator. The survey identified an area of approximately 250 feet wide by 450 feet long.

1.2.2 Hydrogeologic Investigation

In 1992, Radian performed a hydrogeologic investigation at the Site to assess potential source areas and to characterize subsurface soil and groundwater conditions (Radian, 1992b). The investigation included groundwater well installation and sampling.

During this investigation, four (4) groundwater monitoring wells (designated MW2-2, MW2-4, MW2-5, and MW2-6) were installed at the Site (Figure 1-2). MW2-2 was located approximately 400 feet southeast of the former propellant burn area and down-gradient of the disposal area. MW2-4 was the furthest down-gradient well and was located approximately 800 feet south of the former propellant burn area. Wells MW2-5 and MW2-6 were located approximately 2,600 feet and 800 feet, respectively, south of the Final Assembly Building area.

Groundwater monitoring wells MW2-2, MW2-4, MW2-5, and MW2-6, along with three (3) of the existing production wells (designated W2-3, W2-4, and W2-5), were sampled during this investigation and analyzed for halogenated volatile organics, aromatic volatile organics, semivolatile organic compounds (SVOCs), metals, and perchlorate. Laboratory results for halogenated and aromatic volatile organics analysis indicated that none were present above their respective detection limits in groundwater samples collected. Inorganic analytical results were also less than the detection limits for all metals except zinc, which ranged from 1,600 to 2,100 μ g/L. Perchlorate was reported in one (1) sample, collected from well W2-3 located downgradient of test bays, at a concentration of 3,300 μ g/L.

1.2.3 Disposal Area Removal Action

An electromagnetic survey (Radian, 1993) was conducted to determine the location and boundary of the former garbage disposal area (Historical Operational Area "M"). Subsurface anomalies were detected in the center portion of Historical Operational Area "M" in an area approximately 250 wide by 450 feet long. In order to visually confirm the presence of debris, a total of 12 hand-auger borings were advanced to depths ranging from between 3 to 5.5 feet bgs. Based on hand-auger sampling activities, subsurface debris coincided with the surface debris area. Subsequently, three (3) trenches were excavated (designated north, central, and south) to approximately 5 to 8 feet bgs across the debris area. A total of nine (9) soil samples were collected and analyzed for VOCs, SVOCs, and metals. Neither VOCs nor

SVOCs were reported above their respective detection limits. All metals results were below the 10 times Soluble Threshold Limit Concentration guidelines. An excavation was performed to remove all debris. A total of 816 tons of debris was removed and disposed of off-site. Three perimeter confirmation soil samples were collected and analyzed for VOCs, SVOCs, and metals. All results were below their respective guidelines. The excavation was backfilled to surrounding grade. Excavation activities were performed under the supervision of the DTSC.

1.2.4 Remedial Action Certification Letter

The DTSC issued a Remedial Action Certification Form on July 20, 1993 in a letter titled *Remedial Action Certification for Lockheed Beaumont No. 2, Beaumont, California*. Based on the information known at the time of the letter, the DTSC stated that appropriate response actions had been completed, that all acceptable engineering practices were implemented, and that no further removal/remedial action was necessary.

1.2.5 Monitoring Well Destruction Report

Based on the July 20, 1993 Remedial Action Certification letter issued by DTSC, groundwater monitoring wells MW2-2, MW2-4, MW2-5, and MW2-6 were abandoned (LMC, 1995). Prior to abandonment activities in 1995, the four (4) monitoring wells were sampled and analyzed for VOCs using EPA methods 8010 and 8020. VOC concentrations were not reported above their respective LRLs.

Well abandonment activities were performed in accordance with an abandonment work plan approved by the California Regional Water Quality Control Board and in compliance with the County of Riverside Department of Environmental Health Services and California Department of Water Resources Bulletin 74-90 guidelines. The wells were abandoned using a neat cement/bentonite injection technique, cutting, capping, and removal of the top 5 feet of casing through excavation, and backfilling the excavation area with native clean soils.

1.2.6 Groundwater Sampling Results Former Production Well W2-3

In January 2003, Tetra Tech collected a groundwater sample to confirm the historical detection of perchlorate in the groundwater sample collected from the Site (Tetra Tech, 2003). Field activities included the location and identification of existing production wells, recording the physical condition of each well, and groundwater sampling and analysis. Two of the four (4) production wells, W2-3 and W2-5, were visually identified at the Site. The depth to groundwater measured in well W2-3 was 45.65 feet below the top of the casing (btoc) and the total depth of well W2-3 was 209.94 feet btoc. Well W2-5 was dry with a total measured depth of 86.12 feet btoc. Based on historical documents, total well depth of

W2-5 was reported to be 500 feet btoc. A visual inspection with a mirror identified an obstruction in well W2-5, possibly consisting of dirt and debris. Therefore, only well W2-3 was sampled.

A groundwater sample was collected from W2-3 and analyzed for VOCs, perchlorate and 1,4-dioxane. Concentrations of VOCs and 1,4-dioxane were not reported above their respective LRLs. Perchlorate was reported at a concentration of 4,080 µg/L in the groundwater sample.

1.2.7 Groundwater Monitoring Well Installation Report

In August and September 2004, Tetra Tech installed and sampled five (5) groundwater monitoring wells (shown on Figure 1-2 and designated TT-MW2-1, TT-MW2-2, TT-MW2-3, TT-MW2-4S [for shallow screened] and TT-MW2-4D [for deep screened]) at the Site (Tetra Tech, 2004b). All five (5) of the monitoring wells were screened at "first water" with two (2) monitoring wells screened in alluvial material (silt, sand, and gravel) and three (3) monitoring wells screened in bedrock (San Timoteo Formation). The objective of the groundwater well installation activities was to provide data for an initial evaluation of groundwater conditions (water quality and groundwater flow direction) at the Site.

The five (5) new groundwater monitoring wells were sampled in September 2004 and analyzed for VOCs, SVOCs (including 1,4-dioxane and N-Nitrosodimethylamine), Title 22 metals, and perchlorate. Based on analytical results, the following constituents were reported above their respective Maximum Contaminant Levels (MCLs) or DWNLs in groundwater samples collected: perchlorate was detected in the alluvial wells located in Historical Operational Area "K" (TT-MW2-3) and propellant burn area (TT-MW2-1); arsenic was detected in the nested bedrock wells (TT-MW2-4D) and (TT-MW2-4S). Bis-(2-ethylhexly) phthalate and TCE were also detected in TT-MW2-3. Additional groundwater sampling information and results are presented in Sections 2.4 and 4.0. The report indicated that groundwater flow was south-southwest.

1.3 GROUNDWATER MONITORING PROGRAM

Quarterly water level measurements and water quality monitoring have taken place at the Site since September 2004. The current groundwater monitoring plan includes quarterly groundwater level measurements and water quality monitoring from five (5) wells (TT-MW2-1, TT-MW2-2, TT-MW2-3, TT-MW2-4S and TT-MW2-4D). Water levels measurements and sampling were performed in accordance with procedures described in the January 2004 *Groundwater Monitoring Well Installation Work Plan* prepared by Tetra Tech (Tetra Tech, 2004a). Groundwater samples are analyzed for VOCs, Title 22 metals, and perchlorate. Selected testing for general minerals was also performed for the Second Quarter 2005 water quality monitoring. Figure 1-2 shows the locations of the monitoring wells at the Site.

2.0 SITE CONCEPTUAL MODEL

The following sections describe the current conceptual model for the Site. This discussion is divided into four main sections: physical setting, geology, hydrogeology, and distribution of affected groundwater.

2.1 PHYSICAL SETTING

The Site is located at the northern end of the Peninsular Range Geomorphic Province (Harden, 1998). The Peninsular Range is a large block uplifted abruptly along its eastern edge and tilted westward. The province has a subtle northwest trend expressed by its higher mountains and longer valleys (Figure 2-1) (Sharp, 1975). The Site is primarily located within the confines of the Laborde Canyon valley floor which lies between the western foothills of the San Jacinto Mountains to the southwest and a "Badlands" topographic area to the northwest. The "Badlands," refers to areas of relatively soft sedimentary sandstone and siltstone deeply incised into canyons by runoff. Onsite elevations range from approximately 2,500 feet above mean sea level (msl) on the ridges at the northern boundary to about 1,800 feet above msl near the mouth of Laborde Canyon to the south.

2.1.1 Surface Water

The Site is bisected by Laborde Canyon, which traverses a north-south pathway through the area. Laborde Canyon forms the principal drainage course through the Site, and allows ephemeral storm water to drain southward toward the San Jacinto Valley. The watershed area, including the canyon itself, is ephemeral in nature and remains dry when there is no rainfall, consequently surface water at the site is also ephemeral in nature.

2.2 GEOLOGY

The following sections describe the regional and local geology in the area of the Site based on previous investigations and reports.

2.2.1 Regional Geology

The regional stratigraphy in the vicinity of the Site has been described and mapped by Dibblee (Dibblee, 1981). Geologic units, from oldest to youngest, consist of: the basement complex of late Paleozoic to middle Mesozoic age meta-sedimentary rocks and Mesozoic granitic rocks; non-marine sedimentary rocks of the Tertiary (Pliocene to Pleistocene) Mount Eden Formation overlain by the non-marine Tertiary sandstones and siltstones of the San Timoteo Formation; and Quaternary alluvium (Radian, 1990). Figure 2-2 presents the regional geology of the area depicting the San Timoteo Formation as the "undivided Pliocene nonmarine" unit and Quaternary alluvium as "alluvium". While Quaternary alluvium is present in canyons at the Site, the source of Figure 2-2 is a regional geologic map at a resolution that does not show such local details.

T3S

Semiannual Groundwater Monitoring Report Second Quarter 2005 Beaumont Site 2

Semiannual Groundwater Monitoring Report Second Quarter 2005 Beaumont Site 2

2-3

2.2.2 Local Geology

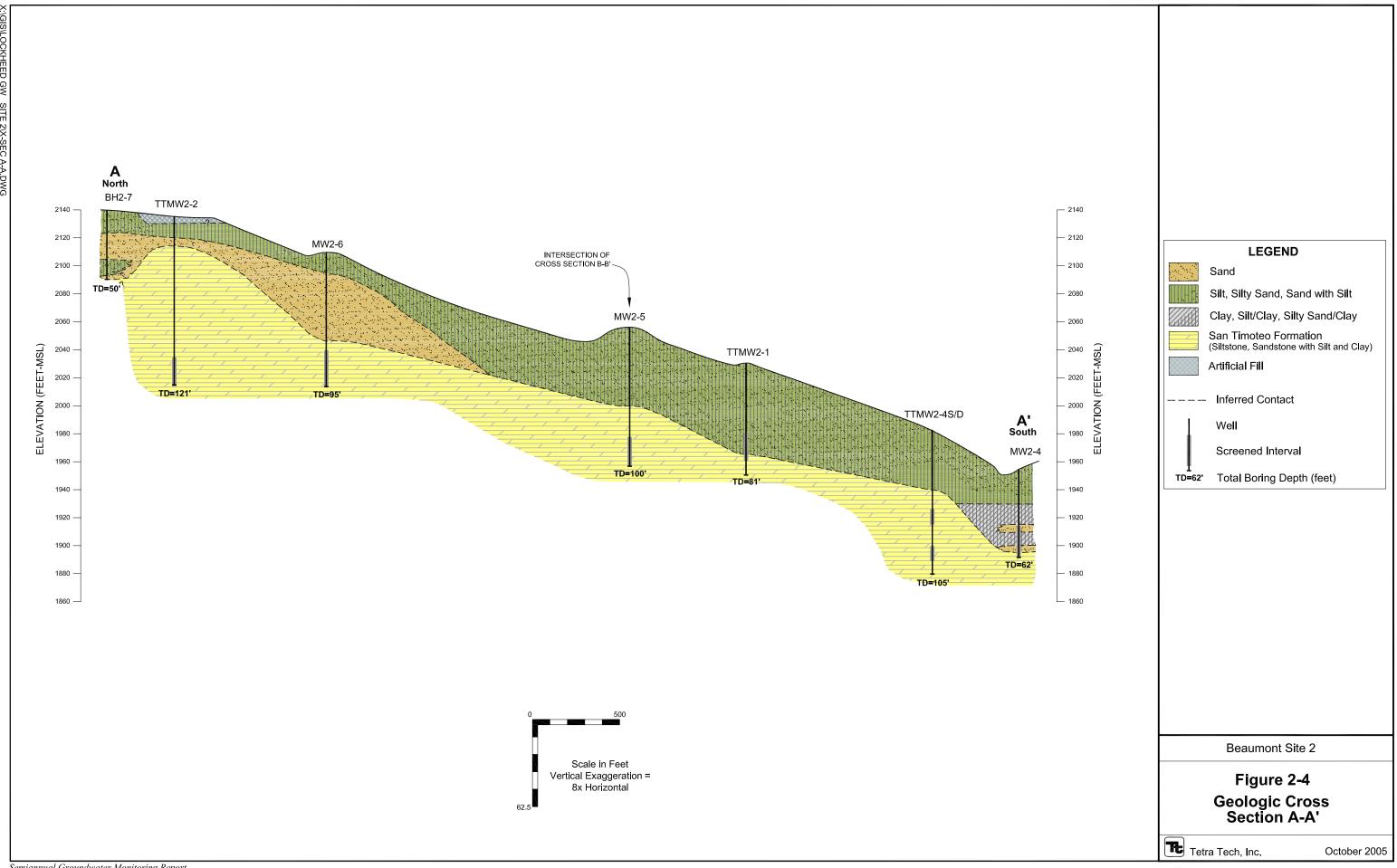
Findings from geologic studies conducted at the Site are consistent with the regional geologic mapping performed by Dibblee (1981). In general, there are two stratigraphic units present beneath the Site: the San Timoteo Formation (weathered and unweathered) and Quaternary alluvium. Based on soil borings results and groundwater data, unweathered portions of the San Timoteo Formation appear to act as a lower confining layer separating shallow groundwater in the Quaternary alluvium and weathered San Timoteo Formation from deeper groundwater zones. A geologic cross section location map is presented in Figure 2-3 and geologic cross sections through the Site are presented in Figures 2-4 and 2-5.

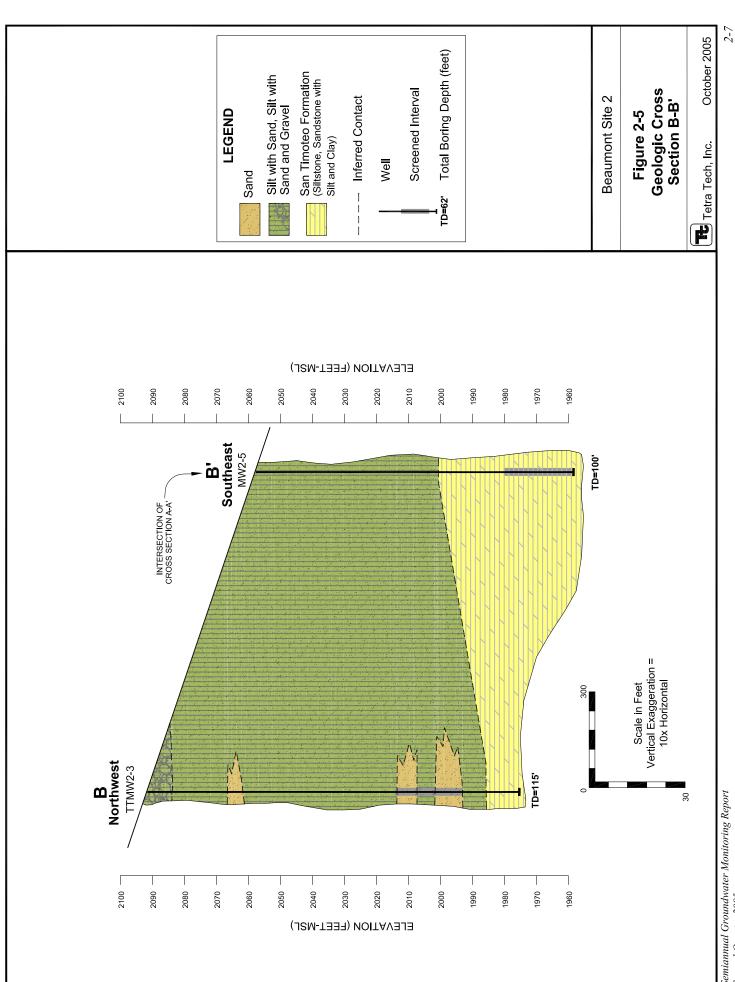
Faulting

Major faults within the region include the San Jacinto Fault, and associated branch faults that have been mapped near the southern end of the Site. Approximately 8 miles northeast of the Site, the Banning fault adjoins with the San Andreas Fault. The San Jacinto and San Andreas Fault zones have been active with moderate to major earthquakes occurring over the last 200 years. Numerous smaller faults are assumed to be associated with the movement of these two major faults (Figure 2-2).

Quaternary Alluvium

The Quaternary alluvium, primarily located within the confines of the Laborde Canyon valley, is derived from the weathering of the hillsides directly adjacent to the canyon. Alluvial deposits consist of very fine- to fine-grained silty sands and fine- to medium-grained poorly graded sands. These sandy zones are typically interbedded with finer grained silts and, in some cases, with silty clays.


San Timoteo


The San Timoteo Formation, as encountered in the subsurface and exposed on the Site, generally consists of very fine-grained siltstone and very fine- to medium-grained silty sand. Some coarse pebbles and fragments were encountered in the more coarse-grained portions of the formation. The San Timoteo Formation is generally poorly cemented, but is more indurated than the alluvial sediments that overlie the formation.

2.3 HYDROGEOLOGY

Groundwater at the Site is found primarily in the siltstones of the San Timoteo Formation, although these deposits yield only small quantities of water (Radian, 1986b). More recent investigations also suggest that groundwater is present just above the San Timoteo Formation as well. Recharge to groundwater through shallow alluvium occurs from direct infiltration of rainfall, and loss from surface drainage through the sides and bottoms of ephemeral stream channels. Based on the limited historical and recent groundwater levels measurements and topography, groundwater flow appears to follow the southward

Semiannual Groundwater Monitoring Report Second Quarter 2005 Beaumont Site 2

Semiannual Groundwater Monitoring Report Second Quarter 2005 Beaumont Site 2

slope of the Laborde Canyon floor. All five (5) of the monitoring wells in the GMP were screened at "first water." Two (2) monitoring wells were screened in alluvial material (TT-MW2-1 and TT-MW2-3) and three (3) monitoring wells were screened in bedrock (TT-MW2-2, TT-MW2-4S and TT-MW2-4D). This indicates that there may be two or more hydrostratigraphic units (i.e., a hydrostratigraphic unit is a formation, part of a formation, or a group of formations in which there are similar hydrologic characteristics that allow for grouping into aquifers and associated confining layers (Domenico, et.al, 1990). Based on the information to date, two (2) hydrostratigraphic units have been identified at the Site, an alluvial unit and a bedrock unit.

2.4 DISTRIBUTION OF AFFECTED GROUNDWATER

Although perchlorate, TCE, bis-(2-ethylhexly) phthalate, and arsenic have been detected in the groundwater at the Site, the arsenic appears to be naturally occurring (refer to Section 4.4.2) and the bis-(2-ethylhexly) phthalate is a common laboratory or field contaminant. Bis-(2-ethylhexly) phthalate was detected at low concentrations in a groundwater sample collected from well TT-MW2-3. No other SVOC was detected in this well or any other of the wells sampled during the September 2004 monitoring event. Phthalates are a very common plastizing agent used in plastics. It is ubiquitous in the environment and commonly detected as a field/laboratory contaminant. Although the results of the field and laboratory blanks analyzed during the September 2004 monitoring event did not report bis-(2-ethylhexl) phthalate in the blanks, this can be explained by the inconsistent or random nature of the detection of this common field/laboratory contaminant. As an environmental contaminant, phthalates are primarily detected in soil and groundwater associated with landfills. Well TT-MW2-3 is not associated with a landfill or down gradient of one. Detection of this compound at low concentrations as a single SVOC in an area not associated with a landfill supports that the detected of bis-(2-ethylhexly) phthalate is a field/laboratory contaminant. Therefore, this section is limited to discussing the distribution of perchlorate and TCE at the Site.

2.4.1 Perchlorate

Concentrations of perchlorate have consistently been reported in groundwater samples collected from the two (2) alluvial monitoring wells (TT-MW2-1 and TT-MW2-3). Perchlorate has not been reported above the LRL in groundwater samples collected from the three (3) bedrock monitoring wells sampled as part of the Site's GMP. Monitoring wells TT-MW2-1 is in Historical Operational Area "L" and TT-MW2-3 are located in Historical Operational Area "K". The horizontal and vertical extent of perchlorate affected groundwater has not been fully assessed at this time.

2.4.2 Trichloroethene

Low concentrations of TCE have consistently been reported in groundwater samples collected from one (1) of the two (2) alluvial monitoring wells (TT-MW2-3). TCE has not been detected in any of the other groundwater samples collected from monitoring wells sampled as part of the Site's GMP. Monitoring well TT-MW2-3 is located in Historical Operational Area "K". The horizontal and vertical extent of TCE affected groundwater has not been fully assessed at this time.

3.0 SUMMARY OF FIELD ACTIVITIES

The following sections summarize the Second Quarter 2005 groundwater monitoring event conducted at the Site. The results from this monitoring event is discussed in Section 4.0.

3.1 GROUNDWATER LEVEL MEASUREMENTS

The Second Quarter 2005 GMP groundwater level measurements were collected from all five (5) of the monitoring wells on June 2, 2005. There were no dry wells. A summary of well construction details is presented in Table 3-1. Copies of the field data sheets from the water quality monitoring event are presented in Appendix A.

3.2 GROUNDWATER SAMPLING

Table 3-2 lists the wells monitored for the Second Quarter 2005 monitoring event, analytical methods requested, sampling dates, and Quality Assurance/Quality Control (QA/QC) samples collected. All proposed wells were sampled. Groundwater sampling, analytical, and QA/QC procedures for the monitoring event are described in the *Groundwater Monitoring Well Installation Work Plan* (Tetra Tech, 2004a). Figure 3-1 presents well locations sampled.

Several field QA/QC procedures were instituted so that field measurements and samples were representative and collected in a manner that would provide adequate data to achieve the program objectives. These procedures are discussed below.

The following water quality field parameters were observed and recorded on field data sheets (Appendix A) during well purging activities: water level, temperature, pH, electrical conductivity (EC), turbidity, oxidation reduction potential, and dissolved oxygen. Purging was considered complete when at least one discharge hose volume had been removed and the above parameters had stabilized, or the well was purged dry (evacuated). Stabilization of water quality parameters was used as an indication that fresh formation water had entered the well and was being purged. The criteria for stabilization of these parameters are as follows: water level +/- 0.1 foot; temperature +/- 1 degree Centigrade; pH +/- 0.1 unit; and EC +/- 5%. Sampling instruments and equipment were maintained, calibrated, and operated in accordance with the manufacturer's specifications, guidelines, and recommendations. If a well was purged dry, the well was sampled with a disposable bailer after sufficient recharge had taken place to allow sample collection.

Groundwater samples were collected from wells TT-MW2-1 and TT-MW2-3 by low-flow purging and sampling through a variable flow submersible electric pump. Due to the relatively poor recharge rates

Table 3-1 Well Construction Summary Table Beaumont Site 2

TETRA TECH, INC.

						7	beaumont Site 4	one 7							
					Depth to	Depth to	Screen	Reported Depth of	Borehole	Casing Diameter (inches)	Screen Slot Size (inches)				
WellID	Date Installed	Date Destroyed	Well Type	Elevation (TOC, feet)	TOS (feet bgs)	BOS (feet bgs)	Length (feet)	Borehole (feet bgs)	Diameter (inches)	and Material	and Material	Drilling Method	Filter Pack	Northing Coordinate	Easting Coordinate
W2-1	Unknown		Production	Unknown	Unknown	Unknown	Unknown	Unknown	Unknown	Unknown	Unknown	Unknown	Unknown	2271823.25	6325081.02
W2-2	Unknown		Production	Unknown	Unknown	Unknown	Unknown	Unknown	Unknown	Unknown	Unknown	Unknown	Unknown	2272462.34	6325839.69
W2-3	Unknown		Production	2028.83	Unknown	Unknown	Unknown	Unknown	Unknown	~	Unknown	Unknown	Unknown	2273334.11	6325349.92
W2-5	Unknown		Production	2140.95	161	467	9	Unknown	Unknown	9	Unknown	Unknown	Unknown	2276981.24	6325110.52
MW2-2	11/28/90	09/19/95	Monitoring	1996.41	115	135	20	140	10	4	SS 0.020	ARCH	Lonestar #3	2272462.34	6325839.69
MW2-4	11/30/90	09/19/95	Monitoring	1956.36	40	09	20	62	10	4	SS 0.020	ARCH	Lonestar #3	2271712.28	6325287.77
MW2-5	12/01/90	09/20/95	Monitoring	2058.82	78	86	20	100	10	4	SS 0.020	ARCH	Lonestar #3	2274073.76	6325061.16
MW2-6	12/04/90	09/20/95	Monitoring	2111.95	70	06	Unknown	95	10	4	SS 0.020	ARCH	Lonestar #3	2275852.57	6325309.81
TT-MW2-1	09/01/04	NA	Monitoring	2035.21	50	70	20	81	12	4	PVC 0.020	HSA	RMC#3	2273430.33	6325373.78
TT-MW2-2	08/30/04	NA	Monitoring	2137.75	103.5	118.5	15	121	12	4	PVC 0.020	HSA	RMC #3	2276662.64	6325085.92
TT-MW2-3	08/31/04	NA	Monitoring	2094.66	78	86	20	115	12	4	PVC 0.020	HSA	RMC#3	2274876.52	6324520.74
TT-MW2-4S	09/01/04	NA	Monitoring	1986.94	09	70	10	106	12	4	PVC 0.020	HSA	RMC #3	2272392.82	6325561.45
TT-MW2-4D	09/07/04	NA	Monitoring	1987.16	85	95	10	106	12	4	PVC 0.020	HSA	RMC #3	2272392.82	6325561.45
Notes:															
	" - "	No information.	ند	PVC -	Polyvinyl chloride	ride									
	ARCH -	Air rotary casing hammer.	ıg hammer.	QA -	Quaternary alluvium.	uvium.									
	-sgq	Below ground surface.	surface.	SS -	Stainless steel.										
	BOS -	Bottom of screen.	en.	STF-	San Timoteo Formation.	-ormation.									
	HSA -	Hollow stem auger.	ıger.	TOC -	Top of casing.										
	NA -	Not applicable.		TOS -	Top of screen.										

Table 3-2 Sampling Schedule - Second Quarter 2005 Beaumont Site 2

			Samp	ple Analysis (and M	Iethod)		
Monitoring Well Location	Sample Date	VOCs (EPA 8260B)	Perchlorate (EPA 314.1)	Title 22 Metals - Total (1)	Title 22 Metals - Dissolved (1)	General Minerals (2)	Comments and QA / QC Samples
TT-MW2-1	07/08/05	X	X	X	X	X	
TT-MW2-2	07/07/05	X	X	X	X	X	MS / MSD sample
TT-MW2-3	07/08/05	X	X	X	X	X	Dup #1 (TT-MW2-103)
TT-MW2-4S	07/07/05	X	X	X	X	X	
TT-MW2-4D	07/07/05	X	X	X	X	X	

Total Sample Locations: 5
Total Locations Sampled: 5
Sample Locations Not Accessible: 0
Dry Sample Locations: 0

Notes:

(1) - Samples analyzed by EPA 6010B and EPA 7470A.

(2) - Samples analyzed for Total Dissolved Solids, NO₃, SO₄, HCO₃, CO₃, Na, Ca, Cl, K, Mg by methods A2320B, E160.1 and E300.0.

VOCs - Volatile organic compounds.

EPA - United States Environmental Protection Agency.

QA / QC - Quality Assurance / Quality Control.

MS / MSD - Matrix Spike / Matrix Spike Duplicate.

at wells TT-MW2-2, TT-MW2-4S, and TT-MW2-4D, continuous purging could not be sustained and the wells were pumped dry before stabilization of the water quality parameters could be achieved. Once dry, the wells were allowed to recover for several hours prior to collecting a sample with a disposable bailer.

For the monitoring event, water samples were collected in order of decreasing volatilization potential and placed in appropriate containers. A sample identification label was affixed to each sample container and sample custody was maintained by a chain-of-custody record. Collected samples were chilled and transported to Calscience Environmental Laboratories, Inc. (Garden Grove, California), a state-accredited analytical laboratory, via courier, thus maintaining proper temperatures and sample integrity. Trip blanks (LTBs) and equipment blanks (LEBs) were collected to assess cross-contamination potential of water samples while in transit and/or via sampling equipment. Two (2) LTBs and two (2) LEBs were collected during the Second Quarter 2005 monitoring event. Results were reviewed for the presence of cross-contaminants. If cross-contaminants were detected in the Quality Control (QC) blanks, the results were compared to the associated water samples and the water sample results were qualified, where appropriate.

The analyses of samples were conducted under approved EPA methods. Since the analytical data were obtained by following EPA-approved method criteria, the data were evaluated by using the EPA-

Semiannual Groundwater Monitoring Report Second Quarter 2005 Beaumont Site 2

3-4

approved validation methods described in the *National Functional Guidelines* (EPA, 1999 and EPA, 2004). The *National Functional Guidelines* contain instructions on method-required quality control parameters and on how to interpreter these parameters to confer validation to environmental data results. Control parameters used in validating data results include evaluating control limits on QC samples. These QC samples involved are laboratory control samples, method blank samples, duplicate samples, spiked samples, and digestion samples. Surrogate and other spike recoveries also qualify environmental data. A summary of validated analytical results by method is presented in Appendix B.

3.3 HABITAT CONSERVATION

As specified in the letter to the U.S. Fish and Wildlife Service dated May 19, 2004 (LMC, 2004) describing "No Affect" Activities for Environmental Remediation at Beaumont Site 1, prior to initiating groundwater monitoring field activities, a biological survey of the surrounding area of each proposed groundwater monitoring well location was performed by a Section 10A permitted or sub-permitted biologist to evaluate the potential for impacts during field activities to sensitive species/habitats (i.e., Stephens' Kangaroo Rat [SKR]). As part of the biological survey, the biologist identified and marked all potential or suspected SKR burrows that were located in the vicinity of each sampling location to avoid the potential "take" (i.e., harm, harassment, and/or death) of SKRs. The biologist also clearly marked the ingress and egress routes to each sampling location in an effort to minimize the overall footprint of field activities and impacts to SKR habitat. Further, as specified, after surveying the work areas, the biologist remained on Site during field activities to implement requirements of the "No Affect" agreement.

4.0 GROUNDWATER MONITORING RESULTS

The results of the Second Quarter 2005 groundwater monitoring event are presented in the following subsections. This section includes tabulated summaries of the groundwater elevation and water quality data collected, a groundwater elevation map, and an analyte results figure.

4.1 GROUNDWATER ELEVATION

Groundwater level measurements were collected from all five (5) of the wells proposed for the Second Quarter 2005 monitoring event. Groundwater elevations for wells monitored for the Second Quarter 2005 monitoring event are shown on Figure 4-1, a tabulated summary of groundwater elevations is presented in Table 4-1, and hydrographs for individual wells are presented in Appendix C.

Table 4-1 Groundwater Elevation Data - Second Quarter 2005 Beaumont Site 2

Well ID	Date Measured	Measuring Point Elevation (feet above msl)	Depth to Water (from Measuring Point, feet)	Groundwater Elevation (feet above msl)	HSU Screened
TT-MW2-1	06/02/05	2035.21	53.62	1981.59	QAL
TT-MW2-2	06/02/05	2135.73	68.70	2067.03	STF
TT-MW2-3	06/02/05	2092.10	68.74	2023.36	QA
TT-MW2-4S	06/02/05	1986.94	48.84	1938.10	STF
TT-MW2-4D	06/02/05	1987.16	55.83	1931.33	STF

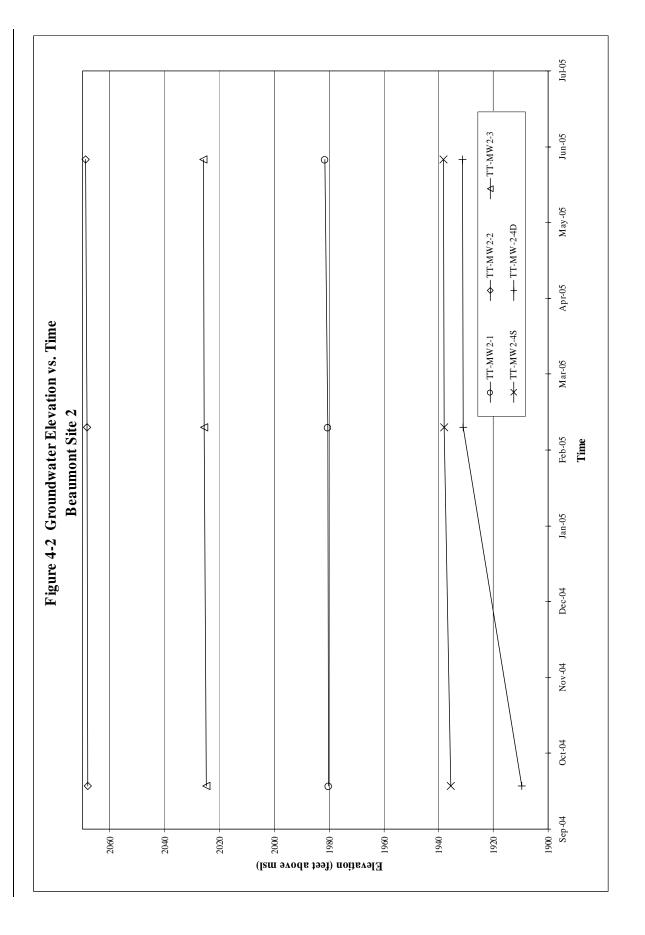
Notes:

HSU - Hydrostratigraphic Unit.

msl - Mean sea level.

QAL - Quaternary alluvium.

STF - San Timoteo Formation.


In comparison to First Quarter 2005, groundwater elevations increased for the two wells completed in the alluvium by 1.07 feet (TT-MW2-1) and 0.36 feet (TT-MW2-3). For the three wells screened in the San Timoteo Formation, groundwater elevations increased 0.68 feet (TT-MW2-1), 0.11 feet (TT-MW2-4S) and 0.42 feet (TT-MW2-4D). During the Second Quarter 2005 monitoring event, depth to water was approximately 66 feet bgs (elevation of 2,067 feet above msl) in the northern and central portions of the Site (as measured in TT-MW2-2) and approximately 47 feet bgs (elevation of 1,938 feet above msl) in the southern portion of the Site (as measured in TT-MW2-4S).

Groundwater levels in individual wells have remained relatively stable in the three (3) quarters that groundwater elevation data has been collected (Figure 4-2). The single exception is a 21-foot increase in the water level of TT-MW2-4D between September 2004 and February 2005. The cause of this comparatively large increase is unknown, but the initial data point could be erroneous. In general,

Semiannual Groundwater Monitoring Report Second Quarter 2005 Beaumont Site 2

TETRA TECH, INC.

4-3

Quarterly Groundwater Monitoring Report Second Quarter 2005 Beaumont Site 2

groundwater elevations have increased less than 1 foot between September 2004 and June 2005. Sufficient data are not available at this time to evaluate seasonal or long term trends in groundwater elevation at the Site.

4.2 GROUNDWATER FLOW DIRECTION

Although only limited groundwater elevation data are available, based on groundwater elevations and the southward sloping topography at the Site, groundwater flow appears to generally follow the southward sloping topography of Laborde Canyon. This pattern is consistent with that observed in a previous hydrogeologic study of the area (Radian, 1992b). But as discussed above, the data are limited at this time. The groundwater flow pattern will be refined as additional data are acquired on the hydrogeologic system that exists beneath the Site.

4.3 ANALYTICAL DATA SUMMARY

Groundwater samples collected during the Second Quarter 2005 groundwater monitoring event were tested for VOCs, metals, general minerals, and perchlorate. VOCs, perchlorate, and metals are potential contaminants of interest at the Site. The general minerals analyses were performed to help evaluate different hydrostratigraphic units. Summaries of validated laboratory analytical results for analytes detected above their respective LRLs during the monitoring event are presented in Tables 4-2, 4-3, and 4-4. A complete list of the analytes tested, along with validated sample results by analytical method, is provided in Appendix B. VOC and metal sample results detected above the published MCL (federal or state, whichever is lower) or DWNL are bolded in Tables 4-2 and 4-3. Figure 4-3 presents groundwater sampling analytical results for perchlorate and TCE concentrations reported for the Second Quarter 2005 monitoring event. Time-series graphs of perchlorate and TCE are provided in Appendix D. Laboratory analytical data packages, which include all environmental, field QC, and laboratory QC results are provided in Appendix E. A consolidated laboratory data summary table is presented in Appendix F.

4.4 CHEMICALS OF POTENTIAL CONCERN

Identification of chemicals of potential concern (COPC) is an ongoing process that will be conducted routinely to determine if the list of previously identified COPC still meets the objectives of the GMP and regulatory requirements. The purpose for identifying COPC is to establish a list of analytes that best represent the extent and magnitude of the affected groundwater and to focus more detailed analysis on those analytes.

Every analytical method has a standard list of tested target compounds. By reducing the number of

Table 4-2 Summary of Detected Volatile Organic Compound Concentrations - Second Quarter 2005 Beaumont Site 2

Sample Location	Sample Date	Trichloroethene (TCE) (ug/L)
TT-MW2-1	07/08/05	ND
TT-MW2-2	07/07/05	ND
TT-MW2-3	07/08/05	7.0
TT-MW2-4S	07/07/05	ND
TT-MW2-4D	07/07/05	ND
Duplicate (TT-MW2-103)	07/08/05	7.2
Equipment Blank	07/07/05	ND
Trip Blank	07/07/05	ND
Equipment Blank	07/08/05	ND
Trip Blank	07/08/05	ND
	Laboratory Reporting Limit (ug/L)	1.0
	Maximum Contaminant Level (ug/L)	5.0
Notes:		
Bold -	Maximum Contaminant Level exceeded.	
ND -	Not detected at or above laboratory reporting lim	it.
ug/L -	Micrograms per liter.	

target compounds for a given analytical method, the volume of data generated can also be reduced. If sufficient historical analytical data are available, analytes that have not been detected, common laboratory and field contaminants, spurious or randomly detected analytes, and analytes associated with chlorinated potable water, can be removed from the list of target compounds.

An evaluation of COPC based on the results of the Second Quarter 2005 monitoring event were reviewed to develop a consolidated list of analytes detected. The results were screened against the MCLs or DWNLs (if an MCL is not established). The analytes were organized and evaluated in two groups, organic and inorganic analytes, and divided into primary and secondary COPC. Table 4-5 presents a summary of organic and inorganic analytes detected during the Second Quarter 2005 monitoring event. Laboratory analytical results from the Second Quarter 2005 monitoring event are presented in the following two subsections.

4.4.1 Organic Analytes

TCE was the only detected VOC and was only detected in one monitoring well. TCE was detected at $7.0~\mu g/L$, above its respective MCL of $5.0~\mu g/L$, in a groundwater sample collected from alluvial screened well TT-MW2-3. TCE concentrations reported in groundwater samples collected from the Site have been relatively low and common breakdown products have not been observed in groundwater samples analyzed. Based on the limited and low TCE concentrations reported in groundwater samples collected from the Site, TCE is regarded as a secondary COPC. However, the distribution and concentration of TCE reported in samples collected will continue to be monitored and its COPC status evaluated.

TETRA TECH, INC.

Table 4-3 Summary of Detected Inorganic Analytes (Perchlorate and Title 22 Total and Dissolved Metal Concentrations) - Second Quarter 2005 Beaumont Site 2

					Deanmo	beaumont Site 2							
				-				Total Metals	als				
Sample Location	Sample Date	Perchlorate	Arsenic	Barium	Chromium	Cobalt	Copper	Lead	Molybdenum	Nickel	Silver	Vanadium	Zinc
The same of the same		(ug/L)	(mg/L)	(111g/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(11/Sim)	(11gm)	(111g/L)
TT-MW2-1	50/80//0	2,400	ND	0.209	0.0209	0.0063	0.0112	ND	ND	0.0144	ND	0.0257	0.0388
TT-MW2-2	07/07/05	ND	ND	0.0107	0.0089	ND	ND	ND	ND	ND	0.0074	0.0109	0.0188
TT-MW2-3	07/08/05	53,000	ND	0.145	ND	ND	ND	ND	ND	ND	ND	ND	0.0509
TT-MW2-4S	01/01/05	ND	0.0573	0.0502	0.0223	0.0069	ND	ND	0.0128	0.0091	0.0076	0.0981	0.0641
TT-MW2-4D	01/01/05	ND	0.0964	0.130	0.0396	0.0135	ND	0.0114	ND	0.0180	0.00825	0.167	0.0600
Duplicate (TT-MW2-103)	07/08/05	52,000	ND	0.143	ND	ND	ND	ND	ND	ND	ND	QN	0.0207
Equipment Blank	07/01/05	ND	ND	ND	0.00513	ND	ND	ND	ND	ND	0.00670	QN	ND
Equipment Blank	07/08/05	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.0511
							Q	Dissolved Metals	etals				
TT-MW2-1	07/08/05	NA	ND	0.132	ND	ND	ND	ND	ND	ND	ND	ND	ND
TT-MW2-2	50//0//0	NA	ND	0.0433	ND	ND	ND	ND	ND	ND	ND	0.0109	ND
TT-MW2-3	50/80/L0	NA	ND	0.138	ND	ND	ND	ND	ND	ND	ΠN	ΩN	0.0309
TT-MW2-4S	50/01/02	NA	0.0495	0.0774	ND	ND	ND	ND	0.0175	ND	ND	9200	ND
TT-MW2-4D	50/20/20	NA	0.0807	0.0454	ND	ND	ND	ON	0.0111	ND	ND	0.108	ND
Duplicate (TT-MW2-103)	50/80/20	NA	ND	0.137	ND	ND	ND	ND	ND	ND	ΠN	ΩN	0.0259
Equipment Blank	50//0//0	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	QN	ND
Equipment Blank	02/08/05	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Reporting Limit (mg/L)	(mg/L)		0.01	0.01	0.005	0.005	0.005	0.01	0.005	0.005	0.005	0.005	0.01
MCL / DWNL (mg/L)	(mg/L)	6 (1)	0.05	0.05	0.05	-	1(1)	0.015	-	0.1	0.1 (1)	•	5 (1)
Notes:													

Notes:

Bold - MCL or DWNL exceeded.

" - " - MCL or DWNL not established.

(1) - Drinking water notification level.

DWNL - California Department of Health services drinking water notification level.

MCL - Maximum Contaminant Level.

NA - Not applicable.

ND - Not detected at or above laboratory reporting limit.

ug/L - Micrograms per liter.

mg/L - Milligrams per liter.

OCTOBER 2005

Table 4-4 Summary of General Mineral Concentrations - Second Quarter 2005 Beaumont Site 2

				bear	Beaumont Site 2	7					
Sample Location	Sample Date	Calcium	Maonesium	Potassium	Sodium	Total Dissolved	Chloride	Nitrate (mo/L)	Sulfate	Bicarbonate	Carbonate
		(mg/L)	(mg/L)	(mg/L)	(mg/)	Solids (mg/L)	(mg/L)	(I)	(mg/L)	(mg/L) (2)	(mg/L) (2)
TT-MW2-1	20/80/20	79.4	16.9	3.51	173	620	180	6.3	44	200	ND
TT-MW2-2	50/L0/L0	10.1	1.79	1.22	129	440	44	ΩN	92	130	16
TT-MW2-3	02/08/02	93.2	12.9	2.92	195	800	270	12	51	06	ND
Duplicate (TT-MW2-103)	50/80/20	89.3	12.6	2.73	186	880	270	12	50	92	ND
TT-MW2-4S	20//0//0	7.68	3.42	2.33	106	300	39	0.56	40	120	12
TT-MW2-4D	01/01/05	11.7	8.80	3.13	8.69	220	20	ND	29	34	40
Equipment Blank	20/10/10	ND	QN	QN	ND	8.0	ND	QN	2.3	3.1	ND
Equipment Blank	07/08/05	ND	ND	ND	ND	2.7	ND	ND	2.4	2.2	ND
R	Reporting Limit (mg/L)	0.1	0.1	0.5	0.5	1	1	0.1	1	1	1
Notes:											

As nitrogen (N). (1) -(2) -ND -

As calcium carbonate (CaCO3).

Not detected at or above laboratory reporting limit.

Milligrams per liter. mg/L -

Semiannual Groundwater Monitoring Report Second Quarter 2005 Beaumont Site 2

TETRA TECH, INC. OCTOBER 2005

Table 4-5 Summary Statistics of Organic and Inorganic Analytes Detected - Second Quarter 2005

Beaumont Site 2

Organic Analytes Detected	Total Number of Samples Analyzed (1)	Total Number of Detections (1)	Number of Detections Exceeding MCL or DWNL (1)	Corresponding MCL/DWNL	Minmum Concentration Detected	Maximum Concentration Detected
Trichloroethene	5	I	I	5.0 μg/L	7.0 μg/L	7.0 µg/L
Inorganic Analytes Detected	Total Number of Samples Analyzed (1)	Total Number of Detections (1)	Number of Detections Exceeding MCL or DWNL (1)	Corresponding MCL / DWNL	Minmum Concentration Detected	Maximum Concentration Detected
Perchlorate	5	2	2	6 µg/L (2)	2,400 μg/L	53,000 μg/L
Arsenic	5	2	2	0.05 mg/L	0.0573 mg/L	0.0964 mg/L
Barium	5	5	0	0.05 mg/L	0.0107 mg/L	0.209 mg/L
Chromium	5	4	0	0.05 mg/L	0.0089 mg/L	0.0396 mg/L
Cobalt	5	3	0	-	0.0063 mg/L	0.0135 mg/L
Copper	5	1	0	1 mg/L (2)	0.0112 mg/L	0.0112 mg/L
Lead	5	1	0	0.015 mg/L	0.0114 mg/L	0.0114 mg/L
Molybdenum	5	1	0	-	0.0128 mg/L	0.0128 mg/L
Nickel	5	3	0	0.1 mg/L	0.0091 mg/L	0.0180 mg/L
Silver	5	3	0	0.1 mg/L	0.00825 mg/L	0.0076 mg/L
Vanadium	5	4	0	-	0.0109 mg/L	0.167 mg/L
Zinc	5	5	0	5 mg/L	0.0188 mg/L	0.0641 mg/L

Notes:

Bold - MCL or California Department of Health Services state drinking water notification level exceeded.

" - " - MCL or California Department of Health Services state drinking water notification level not established.

(1) - Number of detections exclude sample duplicates, trip blanks and equipment blanks.

(2) - California Department of Health Services state drinking water notification level.

(3) - Currently regulated under chromium (total) MCL.

DWNL - California Department of Health Services state drinking water notification level.

MCL - Maximum Contaminant Level.

mg/L - Milligrams per liter.

μg/L - Micrograms per liter.

4.4.2 Inorganic Analytes

Metals, as total and dissolved, were reported at relatively low concentrations in samples collected during the Second Quarter 2005 monitoring event. Only arsenic was reported above its respective MCL (0.05 mg/L) in groundwater samples collected from TT-MW2-4S and TT-MW2-4D. This nested pair of wells is screened in the bedrock hydrostratigraphic unit, a different hydrostratigraphic unit from the alluvial screened TT-MW2-1 and TT-MW2-3 wells. Arsenic has not been reported in groundwater samples collected from the alluvial screened wells. Given the above information, the concentrations of arsenic reported in groundwater samples collected are believed to result from naturally occurring arsenic and not a result of former Site operations. The metals (including arsenic), therefore, are considered neither primary nor secondary COPC at the Site. Metals will continue to be included in the testing performed at the Site and will be further evaluated as additional monitoring points are added to

the network. A further discussion of the general minerals and the hydrostratigraphic units is presented in Section 4.4.6.

Table 4-3 presents a summary of perchlorate concentrations reported in groundwater samples collected during the Second Quarter 2005 monitoring event. Based on concentrations and distribution of perchlorate reported in groundwater samples collected from the Site and concentrations reported from previous groundwater monitoring events (Tetra Tech, 2005), perchlorate has been identified as a primary COPC at the Site.

4.4.3 Chemicals of Potential Concern Conclusions

Based on the results of the three quarters of groundwater monitoring performed at the Site, a list of COPC was identified. Table 4-6 presents a list of those analytes detected in groundwater at the Site that are considered COPC. Based on the results of water quality monitoring and the screening of those results against the existing MCLs or DWNLs (if an MCL was not established), no additional COPC were identified, nor was there evidence to remove an analyte from the list of COPC.

Table 4-6 Chemicals of Potential Concern Beaumont Site 2

Analyte	Classification
Perchlorate	Primary
Trichloroethene	Secondary

4.4.4 Perchlorate

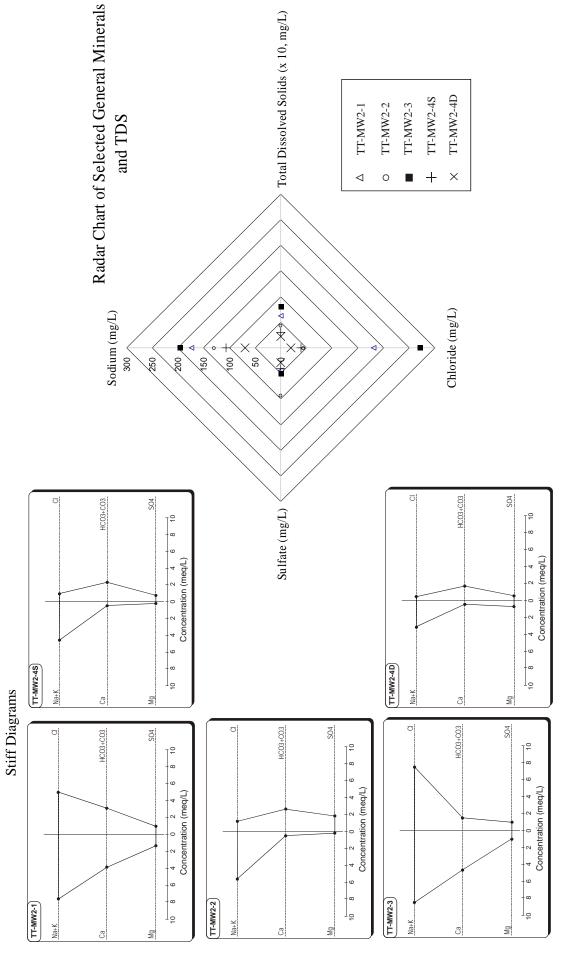
Perchlorate was reported in two (2) groundwater samples collected during the Second Quarter 2005 monitoring event at concentrations of 2,400 and 53,000 μg/L, which are above the perchlorate DWNL of 6 μg/L. During this event, the highest concentration of perchlorate was detected in a groundwater sample collected from monitoring well TT-MW2-3, located in the Historical Operational Area "K". Perchlorate was also detected in a groundwater sample collected from well TT-MW2-1, located in Historical Operational Area "L". Perchlorate concentrations in groundwater samples collected from TT-MW2-3 increased to 53,000 from 740 μg/L and decreased in TT-MW2-1 to 2,400 from 7,100 μg/L since the last quarterly monitoring event. Perchlorate was detected in groundwater samples collected from wells screened in the alluvium, but was not detected in groundwater samples collected from the three wells screened in the bedrock. Although limited in duration, the time-series graphs of perchlorate

are provided in Appendix D. Sufficient data is not available at this time to evaluate seasonal or long term trends in water quality at the Site.

4.4.5 Trichloroethene

TCE was reported in one (1) groundwater sample collected during the Second Quarter 2005 monitoring event at a concentration of 7.0 μ g/L, above the TCE MCL of 5 μ g/L. TCE was detected in the groundwater sample collected from monitoring well TT-MW2-3, located in Historical Operational Area "K". Monitoring well TT-MW2-3 is screened in alluvium. TCE concentrations in groundwater samples collected from TT-MW2-3 increased to 7.0 from 1.2 μ g/L since the last quarterly monitoring event. TCE was not reported in any of the wells sampled. Although limited in duration, the time-series graphs of TCE are provided in Appendix D. Sufficient data are not available at this time to evaluate seasonal or long term trends in water quality at the Site.

4.4.6 General Minerals


Groundwater samples were also collected for general mineral analysis (Table 4-4) to help identify possibly different hydrogeologic regimes between monitoring wells TT-MW2-1, TT-MW2-2 and TT-MW2-3; and the TT-MW2-4S/4D group. The wells completed in the bedrock, TT-MW2-2 and particularly TT-MW2-4S/4D, appear to have a similar hydrogeochemical signature but the concentrations of the constituents differ between the two units (Figure 4-4). Calcium, magnesium, potassium, sodium, chloride, nitrate, and, therefore, total dissolved solids are all detected at higher concentrations in the wells completed in the alluvium; and carbonate is higher in the wells completed in the bedrock. Based on these analyses, it appears that TT-MW2-2, TT-MW2-4S, and TT-MW2-4D are likely screened in a different hydrostratigraphic unit than wells TT-MW-2-1, and TT-MW2-3.

4.5 HABITAT CONSERVATION

As specified in the letter to the U.S. Fish and Wildlife Service dated May 19, 2004 describing "No Affect" Activities for Environmental Remediation at Beaumont Site 1 (LMC, 2004), all field activities were performed under the supervision of a Section 10A permitted or sub-permitted biologist who monitored each work location. As a result, no "take" of SKR occurred during the performance of the field activities related to the Second Quarter 2005 monitoring event.

Figure 4-4 Distribution of General Minerals – Second Quarter 2005

Beaumont Site 2

Quarterly Groundwater Monitoring Report Second Quarter 2005 Beaumont Site 2

5.0 SUMMARY AND CONCLUSIONS

For the Second Quarter 2005 monitoring event, a total of five (5) monitoring well locations were measured for groundwater levels and sampled for groundwater quality.

5.1 GROUNDWATER ELEVATION AND FLOW

During Second Quarter 2005 groundwater elevations increased an average of 0.7 feet in the alluvial wells and 0.4 feet in the bedrock wells. The depth to water was approximately 66 feet bgs (elevation of 2,067 feet above msl) in the northern and central portions of the Site (as measured in TT-MW2-2) and approximately 47 feet bgs (elevation of 1,938 feet above msl) in the southern portion of the Site (as measured in TT-MW2-4S).

Although only limited groundwater elevation data are available, based on the measured groundwater elevations at the Site and the southward sloping topography at the Site, groundwater flow appears southerly and to generally follow the topography of Laborde Canyon. Groundwater flow will be refined as additional data are acquired.

5.2 WATER QUALITY MONITORING EVENT

Groundwater samples collected during the Second Quarter 2005 groundwater monitoring event were tested for VOCS, metals, general minerals, and perchlorate. VOCs and perchlorate are potential contaminants of concern at the Site. The general minerals analyses were performed to help evaluate different hydrostratigraphic units.

Three analytes of interest (TCE, arsenic, and perchlorate) were detected above their respective regulatory thresholds during this sampling event. However, based on the historical operations at the Site, perchlorate and TCE are the COPC. The COPC were only detected in the two monitoring wells installed in the alluvium. Perchlorate was detected in both alluvial groundwater samples collected at concentrations of 2,400 µg/L (TT-MW2-1) and 53,000 µg/L (TT-MW2-3), above the DWNL of 6 µg/L. TCE was detected in one (1) of the alluvial monitoring wells (TT-MW2-3) at a concentration of 7.0 µg/L, above the MCL of 5 µg/L. Monitoring well TT-MW2-3 is located in Historical Operation Area "K" and well TT-MW2-1 is located in Historical Operational Area "L". The horizontal and vertical extent of TCE and perchlorate affected groundwater is not known at this time. These wells were installed as part of an initial water quality evaluation and based on these initial findings additional wells are scheduled to be installed. Sufficient data are not available at this time to evaluate seasonal or long term trends in water quality at the Site.

Groundwater samples were also collected for general mineral analysis to help identify possibly different hydrogeologic regimes. The three wells completed in the bedrock have a similar hydrogeochemical signature, and the two wells completed in the alluvium have a similar hydrogeochemical signature. However, the hydrogeochemical signature of the bedrock wells is not the same as the signature of the alluvial wells. Based on these analyses, it appears that the bedrock wells (TT-MW2-2, TT-MW2-4S, and TT-MW2-4D) are screened in a different hydrostratigraphic unit than the alluvial wells (TT-MW2-1, and TT-MW2-3).

5.3 WATER QUALITY MONITORING NETWORK

Three (3) quarters of water quality monitoring have been conducted at the Site since the September 2004 well installation activities. The current GMP includes quarterly groundwater level measurements and water quality monitoring from all five (5) of the Site's monitoring wells. Groundwater samples are analyzed for VOCs, metals, and perchlorate.

Based on groundwater monitoring results to date, no changes to the monitoring frequency of the groundwater monitoring network are proposed. Data generated from recent groundwater monitoring events is enabling development of a Work Plan for additional groundwater assessment at the Site. The monitoring well network will be reevaluated annually to determine if an increase or decrease in monitoring and/or sampling frequency is appropriate based on the objectives of the Site program and regulatory requirements.

6.0 REFERENCES

- California Department of Health Services (CDHS)
 - 1989 Lockheed Beaumont Consent Order, June 16, 1989.
- Dibblee, T.W.
 - 1981 Geologic Map of Banning (15-minute) Quadrangle, California, South Coast Geologic Society Map 2.
- Domenico, P. A. and Schwartz, F. W.
 - 1990 Physical and Chemical Hydrogeology, John Wiley & Sons, New York, New York, 1990.
- United States Environmental Protection Agency (EPA)
 - USEPA Contract Laboratory Program National Functional Guidelines for Organic Data Review, EPA-540/R-99-008 (PB99-963506), October 1999.
 - 2004 USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review, OSWER 9240.1-45, EPA-540-R-04-004, October 2004
- Harden, Deborah R.
 - 1998 California Geology. Prentice Hall, Inc., Upper Saddle River, New Jersey. 1998.
- Radian Corporation (Radian)
 - 1986a Lockheed Propulsion Company Beaumont Test Facilities Historical Report, September 1986.
 - 1986b Preliminary Remedial Investigation, Lockheed Propulsion Company Beaumont Test Facilities, December 1986.
 - 1990 Source and Hydrogeologic Investigation Final, Lockheed Propulsion Company Beaumont Test Facilities, February 19, 1990.
 - 1992a Lockheed Propulsion Company Beaumont Test Facilities Remedial Action Plan. February 1992.
 - 1992b Hydrogeologic Study, Lockheed Propulsion Company Beaumont Test Facilities, December 1992.
 - 1993 Disposal Area Removal Action, Lockheed Propulsion Company, Beaumont No. 2 Site, June 1993.
- Lockheed Martin Corporation (LMC)
 - 1995 Monitoring Well Destruction Report, Former Lockheed Propulsion Company, Beaumont No. 2 Facility, Beaumont, California, November 15, 1995.
 - 2004 Environmental Remediation at Beaumont Site 1 (Potrero Creek Site) and Beaumont Site 2 (Laborde Canyon), May 19, 2004.
- Sharp, R. P.
 - 1975 Geology Field Guide to Southern California, Kendall/Hunt Geology Field Guide Series, Second Edition, 1975.
- Tetra Tech, Incorporated (Tetra Tech)
 - Groundwater Sampling Results, Former Production Well W2-3, Beaumont Site 2, February 5, 2003.

TETRA TECH, INC. OCTOBER 2005

2004a Final Lockheed Martin Beaumont Site 2 Groundwater Monitoring Well Installation Work Plan Beaumont, California, January 23, 2004.

- 2004b Final Lockheed Martin Beaumont Site 2 Groundwater Monitoring Well Installation Report Beaumont, California, November 15, 2004.
- 2005 Lockheed Martin First Quarter 2005 Groundwater Monitoring Report Beaumont Site 2, Beaumont, California, June 2005.

7.0 ACRONYMS

1,1-DCA 1,1- dichloroethane

1,1,1-TCA 1,1,1-trichloroethane

bgs below ground surface

btoc below top of casing

CDHS California Department of Health Services

COPC chemical(s) of potential concern

DTSC Department of Toxic Substances Control

DWNL state drinking water notification level

EC electrical conductivity

EPA United States Environmental Protection Agency

GCR Grand Central Rocket

GMP groundwater monitoring program

HSU Hydrostratigraphic Unit

LAC Lockheed Aircraft Corporation

LEB equipment blank

LFB field blank

LMC Lockheed Martin Corporation

LPC Lockheed Propulsion Company

LRL laboratory reporting limit

LTB trip blank

MCL maximum contaminant level

MS matrix spike

MSD matrix spike duplicate

msl mean sea level
mg/L milligrams/liter

µg/L micrograms/liter

NA Not applicable

ND Not detected

QAL Quaternary alluvium

TETRA TECH, INC. OCTOBER 2005

QA/QC quality assurance/quality control

QC quality control

SKR Stephens' Kangaroo rat

STF San Timoteo Formation

SVOCs semi-volatile organic compounds

TCE trichloroethene

TDS total dissolved solids

U.S. United States

VOCs volatile organic compounds

June 2005 Quarter 2

GROUNDWATER MONITORING WELL Lockheed Beaumont

FIELD DATA LOG SHEET - STATIC WATER LEVELS

TETRA TECH, INC.
348 West Hospitality Lane, Suite 300
San Bernardino, CA 92408-3216
(909) 381-1674; FAX (909) 889-1391

Comments see foot note (feet) Well TD Second Static | Sample | Truck Access XX Quarter This Water Level see foot note (feet) Water Level (feet) (mdd) OVA Time Measured Date Static Water Mar-05 Level Monitoring Well I.D.

rt-MW2-1	NA	1/2	1243 ND	1 6	5362	536253.62 7 1 73.11	1	73.11
Tt-MW2-2	N.A	6/2	1206 ND	İ	6870	68.70	7	20:021 X Y 01:39 01:39
Tt-MW2-3	NA	6/2	1230	SY	68,74	10.101 Y Y 101.01	,	10.101
Tt-MW2-4S	A N	6/2	1254	QN.	48.84	48.84 4 8.84 × N 73.13	5	73.13
Tt-MW2-4D	NA	015	1300	IN	55,83	55.83 55.83 × N 97.90	,	06.79

NOTE:

ND - Not Detected NA ... or Available

If difference from this month and previous month is greater than 0.5 ft. confirm measurement with 2nd static water level measurement.

T.D. well only if sampling this quarter.

WELL	SING
ORING	T-PUR
MONIT	GSHEE
WATER	DATA LO
GROUNDWATER MONITORING WELL	FIELD DATA LOG SHEET - PURGING

Page Lof/

MONITORING WELL IDENTIFICATION		7- m	mw 2-				OVA: FID	OVA: FID PID L In Casing (ppm)	(initial)	35	(vented to)	
SAMPLE 1D. [[-] MATER STATIC WATER COLUMN (feet) []	3.37 br.a		DUPLICATE I.D. TOTAL WELL DEPTH (feet) CASING/TUBING DIAMET	ER (ir	73.11 4	28.09		FINAL PUMP DEPTH (feet) SAMPLER'S SIGNATURE	89			
WELLPUMP VOLUME (V) (gals) Time Activity	Water Level (ft btoc)	Pump Depth (ft btoc)	De J	EC hocker	pH	Turbidity (NTU)	Dissolved Oxygen (mg/L)	ORP (mV)	Color	Volume Purged (gals)	Bore Hole Volumes Purged	Flow Rate (MIPM) GPM)
848 startoure	5337	39								ď	b	0.9
	श्र-भा	89	1436 1.	1.215	7.33	7.35 36.4	6.08	90.5	claudy	2.5	6,19	1
	20,019 68	وي	24.41.	217	7.32	7.32 38.5	5003	74.5	cleudy	5:0	0,39	-
	54.5668	89	24.58)		7.32	153	221 7.32 153 5.97	61.3	clady	7.5	_	-
	5-54	ور	24.00		7.32	.221 7,32 +200	(mode)	57.8	cludy	10,0	0.18	+
	54.54	89	24.69	1.224	7.32	+28	6,07	542	clevely	12.5	10.97	-
	54.54	وي	24.64	-	7.32	7.32 +200		56.0	elendy	15.0	1.17	->
משלות משוו	11											
		Fe+2 (ppn.)		Taker	n from fir	st bailer, im	Taken from first bailer, immediately before sampling	re sampling.	PARAMETERS FOR WATER QUALITY STABILIZATION Temperature +1° C (1 8°F) Conductivity ±5%	S FOR WATER QU	ALITY STABIL Conductivity	SILIZATION + 5%

Note: All water levels and pump depths are measured from the notch in the top of the well casing. If volatiles are detected in the breathing zone during the initial screening, the breathing zone will be periodically monitored during purging and sampling activities and recorded in the logbook..

Page _ Lof _

GROUNDWATER MONITORING WELL FIELD DATA LOG SHEET - PURGING

SAMPLE I.D. TT-MUAR-2 DUPLICATE I.D. STATIC WATER LEVEL (ft btoc) 68.58 TOTAL WELL DEPTH (feet) L WAIER COLUMN (feet) S1.44 O.165. 33.44 WELLPUMP VOLUME (V) (gals) 51.44 VO.165. 33.44 Time Activity Level Depth (Deg. (umbos/or) C/F) M22/C/F 7:43 54-49 (ft btoc) (ft btoc) C/F) M22/C/F 7:48 68.58 / 1/4 22.00.58	E . E		IN BREATHING ZONE (ppm) FINAL PUMP DEPTH (feet) SAMPLEN'S SIGNATURE Oxygen (mg/L) ORP (my/) (my/) 2.39 82.2 C/wc	IN BREATHING ZONE (ppm) FINAL PUMP DEPTH (feet) SAMPLER'S SIGNATURE Dissolved Oxygen ORP	(initial) (initial)	N	(vented to)	
CASING/TUBING I L4440.less. 3 L4440.less. 3 L9440.less. 3 L944	E . E		SAMPLER'S SAMPLER'S Dissolved Oxygen (mg/L)	DEPTH (feet)				
CASING/TUBING I.4 4 ¥ Ø.1655. 3. 3. 4 4 Ø Ø.1655. 3. 3. 4 4 Ø Ø.1655. 3. 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	E	- 2	Dissolved Oxygen (mg/L)	ORP				
Water Level Pump Depth (Deg. C/F) (ft btoc) (ft btoc) 68.58 11.9 62.10 119 32.02			Dissolved Oxygen (mg/L)	ORP	Ø.			
911 SE 89			2,39	(mV)	Color	Volume Purged (gals)	Bore Hole Volumes Purged	Flow Rate (GPM)
82.10 119			2.39			Ø	Ø	1.5
		4200	1.0.1	82,2	cludy	7.5	0.22	1
	5.540 8.5	1200		62.1	clandy	75/	540	4
93.88 119 22.86	22.56 0,600 854 1200	2074	1,08	3101	clady	22.5	79,0	
99.30 119 22.4l	0.5948.55	68.55 +200	16.0	14.6	clady	30	0,90	
107.02119 22.20	0.5928.49131	181	1.05	26.4	clady	31.5	1.12	_
110,30119 22,12	0.584 8.55	101	69.0	24.6	24.6 clady	44	1.35	
well pursed dy						, q5	84.1	->I
Sample well								

Note: All water levels and pump depths are measured from the notch in the top of the well casing. If volatiles are detected in the breathing zone during the initial screening, the breathing zone will be periodically monitored during purging and sampling activities and recorded in the logbook..

-	
	1)

GROUNDWATER MONITORING WELL FIELD DATA LOG SHEET - PURGING

Page Lof ___

PURGING DEVICE quad for redi Slot - dedicated horse V:\graphics/irp\BGMP-AFRC\BGMP coreldrawfigs/purgetable.cdr PARAMETERS FOR WATER QUALITY STABILIZATION 200 GPM) (mlPM/ Rate Turbidity <5 NTUs Conductivity ±5% (vented to) Bore Hole 10.0 0.48 (vented to) 12.5 0,60 Volumes 7.5 0.36 Purged 0,24 15.0 0.72 175 0.84 210 B 0,0 Volume Purged (gals) 2.5 Ø Temperature ±1°C(1.8°F) pH ±0.1 initial) (iritial) Color clady Classed 104.7 Clear 96.4 Clear clear clear 8 Clear OVA: FID PID [4] In Casing (ppm) IN BREATHING ZONE (ppm) FINAL PUMP DEPTH (feet) 129.7 SAMPLER'S SIGNATURE 84,3 Taken from first bailer, immediately before sampling. 77.7 20.1 ORP (mV) 72.1 SAMPLING DEVICE 1 28 Dissolved Oxygen (mg/L) 97.1 1.32 1.16 1.2 121 1.3 32.19 x 0.65 2 2 9 3 x (gals) 62.17 52.0 24.44 1.456 7.44 9.02 24.031.439 7.3617. La 24,101.443 7,3813.2 DUPLICATE I.D. TT-MW2- 103 Turbidity 2437 1.454 7.40 24.8 24.41 1.455 7.4319.6 (NTU) 24.48 1.458 7.44 4.97 TOTAL WELL DEPTH (feet) /O/. 0 / 1.429 7.25 Hd CASING/TUBING DIAMETER (in/ft) EC (pumbos/cm) N 3 23.69 (Deg. C/F) 705 Temp mez SITE NUMBER Sample as 11 - 756 Pump Depth (ft btoc) 00 8 90 90 72,20 90 Bourman 68.85 90 71.97 90 22,4290 MONITORING WELL IDENTIFICATION dup Sample tire 72.34 72.22 72.18 72.19 STATIC WATER LEVEL (ft btoc) 66,85 Water Level (ft btoc) SAMPLE I.D. TT-MW2-3 WATER COLUMN (feet) 32.19 WELL/PUMP VOLUME (V) (gals) PROGRAM NAME LINK Activity stat pure Comments: 736 756 726 746 Time 721 731 741 751

Note: All water levels and pump depths are measured from the notch in the top of the well casing. If volatiles are detected in the breathing zone during the initial screening, the breathing zone will be periodically monitored during purging and sampling activities and recorded in the logbook...

-	_	-
1		•
1		
1		
-		

GROUNDWATER MONITORING WELL FIELD DATA LOG SHEET - PURGING

Page __of

PURGING DEVICE gund Sos realisto II - dodice ly his V:\graphics\irp\BGMP-AFRC\BGMP coreldrawfigs\purgetable.edr PARAMETERS FOR WATER QUALITY STABILIZATION Rate (mIPM/ GPM) Flow Turbidity <5 NTUs Conductivity ±5% (vented to) (vented to) 34.0 0.45 Bore Hole Volumes Purged 22.5 1.43 17.1 0.74 15.0 Volume Purged (gals) disposiste barbo 7.5 B (initial) Temperature ±1°C(1.8°F) pH ±0.1 (initial) alady Color clady 4.96 29, 6 clear OVA: FID PID Casing (ppm) IN BREATHING ZONE (ppm) FINAL PUMP DEPTH (feet) 345 4.53 16.0 SAMPLER'S SIGNATURE SAMPLING DEVICE Taken from first bailer, immediately before sampling. ORP (mV) Oxygen (mg/L) 4.90 Dissolved 47.25 Turbidity (NTU) 13.31 0.410 853 52.1 23.24 0.409 844 24.5 62,60 72 2324 0.407 8.3417.2 TOTAL WELL DEPTH (feet) 73,13 CASING/TUBING DIAMETER (in/ft) 3 V (gals) Hd EC PEC NUMBER NO STATE NO STAT WELLIPUMP VOLUME (V) (gals) 24.23x O. 15.75 1 J T- mw2-Temp (Deg. C/F) DUPLICATE I.D. SITE NUMBER Fe+2 (ppm) Pump Depth (ft btoc) 72 48.90 72 no posmo 55.90 77 10100 STATIC WATER LEVEL (ft btoc) 48.40 SAMPLE ID. TT MW2-45 Water Level (ft btoc) MONITORING WELL IDENTIFICATION Samole Lal WATER COLUMN (feet) 3423 PROGRAM NAME LMC Shedpung Activity 438 Comments: 943 946 Time DATE __ 938 938

Note: All water levels and pump depths are measured from the notch in the top of the well casing. If volatiles are detected in the breathing zone during the initial screening, the breathing zone will be periodically monitored during purging and sampling activities and recorded in the logbook...

-	73.5	_
1		•
1	m	
1		
1		

DATE -

GROUNDWATER MONITORING WELL

PURGING DEVICE grandfus redistal - de dicelelles Page Lof FIELD DATA LOG SHEET - PURGING 4 SITE NUMBER C

ITORII	MONITORING WELL IDENTIFICATION	H NOITY	7-7	MW2	91			OVA: FID [OVA: FID PID THE Cas	OVA: FID PID The Casing (ppm) IN BREATHING ZONE (ppm)	(initial)	1	(vented to)	
IC WAT	STATIC WATER LEVEL (ft bloc) 55, 88	55,88		TOTAL WELL DEPTH (feet)		97.90	0	FINAL PUN	FINAL PUMP DEPTH (feet)	96.5	8			
R COL	WATER COLUMN (feet)	42.02		9	CASING/TUBING DIAMETER (in/ft)		7		SAMPLER'S SIGNATURE					
JPUM.	WELLPUMP VOLUME (V) (gals)	200	42.02 x 0.65=		27.31 3 V (gals)	V (gals)	8 19			7				
Time	Activity	Water Level (ft btoc)	Pump Depth (ft btoc)	Temp (Deg. C/F)	EC (minostern)	Hd 6	Turbidity (NTU)	Dissolved Oxygen (mg/L)	ORP (mV)	Color		-	Bore Hole Volumes Purged	Flow Rate (mIPM / GPM)
2	1002 statano		55.88 96.5	-							8		8	7.7
1001	1		765 2377	2377	0.339 8,95 97.6	8,45	97.6	2.61	-23.3	clady	7.5	,	0,27	1
7101		1. S. US		23.79	0.340 8,95 48.0	8,95	48.0	2.46 -28.8	-28.8		15:0		0.55	\
101		77.95	77.95 96.5 23LT	7347	0.341 8.9623.5	8.96	23.5	_	-31.9		225		0.82	
1022		14,58	965 23,10	23,18	0.343 8.89 16.7	8.99	16,7	2.16	-35.2	2.16 -35.2 clear	300		1.10	
1201		88,90	88,90 96,573,72	23.T	0,345 8,49 18.3	8,49	183	2.08	2.08 -36.0	Clear	37.5		1.37	-
520		92.50	92,50 965 23,78	23.78	०.३५। १०९ प्युक	98	44.0	0.45	0.45 - 606		45		1.65	-
1038		95.5	95.5 96.5	-23.89	0.340 926 1200	926	1200	6,33	9.18-		, 52.5	7	1.92	-
63	well pu	proged de	*									इर्ए १.५६	36.	k
00/	Sample well	1/2												
Comments:			Fe+2 (ppm)		Taken	from fir	st bailer, im	Taken from first bailer, immediately before sampling.	re sampling.		PARAMETERS FOR WATER QUALITY STABILIZATION Temperature ±1°C (1.8°F) Conductivity ±5% Turbidity < 5 NITTE	QUALIT	LITY STABILIZATIC Conductivity ± 5% Turbidity < 5 NTT 15	LIZATIO ± 5%
										1	1.0-1		IL CITIES	20111

Note: All water levels and pump depths are measured from the notch in the top of the well casing. If volatiles are detected in the breathing zone during the initial screening, the breathing zone will be periodically monitored during priging and sampling activities and recorded in the logbook...

YSI 556 Multi Probe System - Calibration Log

	Date 7/8/05 Time 600 Serial Number 0/60785AK
	accessing the Calibration Screen
	press the power key to display the run screen
	press the escape Esc key to display the main menu screen
	use the arrow keys to highlight the Calibrate selection
	press the enter key to display the calibration screen
	Conductivity Calibration Conductivity Standard Used 1913 Initial Reading 1003
	use the arrow keys to highlight the Conductivity selection
	press the enter key to display the conductivity calibration screen
	use the arrow keys to highlight the Specific Conductance selection
	press the enter key to display the conductivity calibration screen
	place 55 ml of a known conductivity standard in the transport / calibration cup and screw onto the probe module
	use the key pad to enter the value of the calibration standard (in mS/cm at 25 C)
	press the enter key to enter the conductivity calibration screen, allow a minimum of one minute for temperature equilibration
	. observe the readings for specific conductance, when the reading shows no significant change for 30 seconds press the enter key t continue
	press the enter key to return to the conductivity calibration screen
	press the Esc key to return to the calibration screen
	H Calibration pH Standards Used $\frac{4/7}{100}$ Initial Readings $\frac{2/03}{100}$
	H Calibration pH Standards Used 4// Initial Readings 4.05/7.01
	use the arrow keys to highlight the pH selection
	press the enter key to display the pH calibration screen
	. use the arrow keys to highlight the 2 point selection
	. press the enter key to display the pH calibration screen
	place 30 ml of a known pH standard in the transport / calibration cup and screw onto the probe module
	use the key pad to enter the value of the calibration standard (at the current temperature)
	press the enter key to enter the pH calibration screen, allow a minimum of one minute for temperature equilibration
	observe the readings for pH, when the reading shows no significant change for 30 seconds press the enter key to continue
	press the enter key to return to the pH calibration screen
	repeat steps d – I for the second calibration standard
	press the Esc key to return to the calibration screen
1.	Dissolved Oxygen Calibration
	use the arrow keys to highlight the Dissolved Oxygen selection
	press the enter key to display the dissolved oxygen calibration screen
	use the arrow keys to highlight the DO % selection
	l. press the enter key to display the dissolved oxygen barometric pressure screen
	place 1/8" ml of tap water in the transport / calibration cup and screw onto the probe module (engage only one or two threads to
	ensure that the DO sensor is vented to the atmosphere)
	press the enter key to enter the DO% calibration screen, allow a minimum of ten minutes for the air to become water saturated
	observe the readings for DO, when the reading shows no significant change for 30 seconds press the enter key to continue
	press the enter key to return to the DO calibration screen
	press the Esc key to return to the calibration screen
5.	ORP Calibration ORP Standard Used 231 Initial Reading 233
	use the arrow keys to highlight the ORP selection
	press the enter key to display the ORP calibration screen
	e. place 30 ml of a known ORP standard in the transport / calibration cup and screw onto the probe module
	d. use the key pad to enter the value of the calibration standard (at the current temperature)
	e. press the enter key to enter the ORP calibration screen, allow a minimum of one minute for temperature equilibration observe the readings for ORP, when the reading shows no significant change for 30 seconds press the enter key to continue

g. press the enter key to return to the ORP calibration screenh. press the Esc key to return to the calibration screen

YSI 556 Multi Probe System – Calibration Log

		Date 7/7/05 Time 6000 Serial Number 0/60785 A/C
	Acc	cessing the Calibration Screen
	a.	press the power key to display the run screen
	b.	press the escape Esc key to display the main menu screen
	c.	use the arrow keys to highlight the Calibrate selection
	d.	press the enter key to display the calibration screen
,	Cor	nductivity Calibration Conductivity Standard Used 14/3 Initial Reading 1408
	a.	use the arrow keys to highlight the Conductivity selection
	b.	press the enter key to display the conductivity calibration screen
	c.	use the arrow keys to highlight the Specific Conductance selection
	d.	press the enter key to display the conductivity calibration screen
	e.	place 55 ml of a known conductivity standard in the transport / calibration cup and screw onto the probe module
	f.	use the key pad to enter the value of the calibration standard (in mS/cm at 25 C)
	g.	press the enter key to enter the conductivity calibration screen, allow a minimum of one minute for temperature equilibration
	h.	observe the readings for specific conductance, when the reading shows no significant change for 30 seconds press the enter key to
	11.	continue
		press the enter key to return to the conductivity calibration screen
	1.	press the Esc key to return to the calibration screen
	J.	
2	nН	Calibration pH Standards Used 4/7 Initial Readings 39/17.05
,.		use the arrow keys to highlight the nH selection
	a. b.	press the enter key to display the pH calibration screen
		use the arrow keys to highlight the 2 point selection
	C.	press the enter key to display the pH calibration screen
	d.	place 30 ml of a known pH standard in the transport / calibration cup and screw onto the probe module
	e.	use the key pad to enter the value of the calibration standard (at the current temperature)
	f.	press the enter key to enter the pH calibration screen, allow a minimum of one minute for temperature equilibration
	g.	observe the readings for pH, when the reading shows no significant change for 30 seconds press the enter key to continue
	h.	press the enter key to return to the pH calibration screen
	1.	repeat steps d – I for the second calibration standard
	J.	
	k.	press the Esc key to return to the calibration screen
4.	Di	ssolved Oxygen Calibration
	a.	use the arrow keys to highlight the Dissolved Oxygen selection
	b.	press the enter key to display the dissolved oxygen calibration screen
	C.	use the arrow keys to highlight the DO % selection
	d.	press the enter key to display the dissolved oxygen barometric pressure screen
	e.	place 1/8" ml of tap water in the transport / calibration cup and screw onto the probe module (engage only one or two threads to
		ensure that the DO sensor is vented to the atmosphere)
	f.	press the enter key to enter the DO% calibration screen, allow a minimum of ten minutes for the air to become water saturated
	g.	observe the readings for DO, when the reading shows no significant change for 30 seconds press the enter key to continue
	h.	press the enter key to return to the DO calibration screen
	1.	press the Esc key to return to the calibration screen
		237
5.		RP Calibration ORP Standard Used 23 Initial Reading 237
	a.	use the arrow keys to highlight the ORP selection
	b.	press the enter key to display the ORP calibration screen
	C.	place 30 ml of a known ORP standard in the transport / calibration cup and screw onto the probe module
	d.	use the key pad to enter the value of the calibration standard (at the current temperature)
	e.	press the enter key to enter the ORP calibration screen, allow a minimum of one minute for temperature equilibration
	f.	observe the readings for ORP, when the reading shows no significant change for 30 seconds press the enter key to continue

g. press the enter key to return to the ORP calibration screenh. press the Esc key to return to the calibration screen

Section Control of the Control o	Lockheed Martin, Beaumont							Table 3	3						
Empty Fine	Site: 2						Analy	rtical Data	Summary						
Find Discussion Find Discu	Extraction Method: SW3520B						EPA	Method S	\$W8270C						
The control of the	Analytical Method: SW8270C														
Fine in the interval of Surphies Fine interval	Matrix: water Units: ug/L														
The Market Fine I				Environme	ntal Samples										
MOLE Part December													20 9/11/1		
MDL Batch ID			Fleid ID:		05-02-0998				05-02-0998				05-02-0998		
MOL			Batch ID:		050216L03B				050216L03B				050216L03B		
1.2	Parameters	MDL		Pa	Result	Validity	Comments	Pol	Result	Validity	Comments	Pal	Result	Validity	
1.1.2	4 0.4 Trichlorchon Tone	9		ç	2	=		ç	2	=		Ç	2	=	
1.2. 1.2. 1.3. 1.4.	1,2,4-1 IICIIIOIODENZEIIE	5. 1.		2 5	2 2	0 =	ס כ	2 5	2 2	> =	ס מ	2 5	2 2	> =	ס כ
1.1	1 3-Dichlorobenzene			2 6	2 2	0 =	ם מ	9	2 2		ם מ	10	2 2	0	ם מ
14.4	1,4-Dichlorobenzene	1.1		10	2	ח	0	10	2	ס	ס ס	10	Q	ח	0
0.677 1.14 1.15 1.15 1.17 1.17 1.18 1.19	1-Methylnaphthalene	1.4		10	QN	o	0	10	QN	n	ō	10	QN	n	6
1.2	2,4,5-Trichlorophenol	0.97		10	QN	n	б	10	Q	n	D	10	QN	n	0
11	2,4,6-Trichlorophenol	1.2		10	Q	n	D	10	Q	ס	6	10	QN	ח	6
2.6	2,4-Dichlorophenol	7:		10	Q)	D	9	Q	ח	D	10	Q.)	б
1.0 ND	2,4-Dimethylphenol	1.2		9	ND	0	0	9	9	0	D	10	2	0	6
11. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	2,4-Dinitrophenol	5.6		20	2	0	D	20	2	>	D	20	2	> :	Б
13. 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1	2,4-Dinitrotoluene	1.0		9	Q.)	0	9	2	0	D	10	Q	0	6
1.3	2,6-Dinitrotoluene	1		10	2	o :	D	9	2	> :	0	0 :	2	o :	Б
1.0	2-Chloronaphthalene	1.3		9	Q !	> :	D	0 5	Q.	o :	0	10	2 :	0 :	6
1.2	Z-Chlorophenol	0.5		2 9	2 2	> =	0 0	2 9	2 2	> =	6	2 5	2 2	> =	50 5
1.2	2-Methylphone	7 -		2 5	2 2	> =	ס כ	2 5	2 2	> =	ס כ	2 5	2 2	=	0 5
12	2-Methylphenol	- 0		2 0	2 2		ם מ	9 0	2 2))	ם מ	10	200	0	ם מ
1.3	2-Nitrophenol	1.2		10	2	כ	0	9	2)	0 0	10	2	0	0
12. 34	3,3'-Dichlorobenzidine	6.		25	S	ס	0.	25	Q	ח	ס ס	25	Q.	ס	0
3.4 56 ND U	3-Nitroaniline	1.2		10	QN	n	D	10	ND N	n	D	10	QN	ח	6
12	4,6-dinitro-2-methylphenol	3.4		20	Q	ס	D	20	ND	n	D	20	Q.	n	50
12 10 ND U g 10	4-Bromophenyl-Phenyl Ether	1.2		10	Q	n	D	10	Q	n	б	10	ON.	5	6
1.3 10 ND U g 10	4-Chloro-3-Methylphenol	1.2		10	QN	כ	6	10	Q.	ח	D	10	Q.	ס	6
1.2	4-Chloroaniline	1.3		10	Q	ס	D	9	Q	ח	D	9	2	D	50
1.4 In the control of	4-Chlorophenyl-Phenyl Ether	1.2		9	Q.	0 :	0	9	2	0 :	D	0 9	2	0 :	5 0
1.30	4-Nitroaniline	2.4		10	2	0	0	0 9	N S	> =	0	0	2 2	0 =	0 1
1.4 10 ND U gg 10 ND U	4-Nitrophenol	0.80		2 5	2 2	0 =	0) (0	2 5	28	> =	5) (0	2 6	2 2	0 =	D) E
1.2 1.6 ND U gg 10 ND	Acenaphthene	5. 4		2 0	2 2	=	D C	9 9	2 2) =	D 0	10	2	0	0 0
1.2 1.6 ND U gg 10 ND	Acenaphthylene	4.		10	2	ח	0	9	2)	0	10	2	0	0
1.5	Aniline	1.2		10	Q	ח	D	10	QN	n	б	10	QN	n	б
1.7 10 10 10 10 10 10 10 1	Anthracene	1.5		10	QN	ח	50	10	QV	n	6	10	QN	n	D
0.62	Azobenzene	1.7		10	QN	n	D	10	ND	n	б	10	QN	n	0
0.88 10 ND U g 1	Benzidine	0.62		20	Q	n	6	20	N	n	6	20	Q	D	6
1.2 10 ND U g 10	Benzo (a) Pyrene	0.88		10	Q	n	D	9	Q	n	Б	10	Q	ח	б
0.71	Benzo (b) Fluoranthene	1.2		10	Q	ח	б	9	Q)	б	9	2	D	0
1.7 10 ND U g 10 ND U g 10 ND U g 10 ND U	Benzo (g,h,i) Perylene	0.71		10	Q)	0	10	Q	D	D	9	Q	0	60
	Benzo (k) Fluoranthene	1.7		9	Q	0	0	9	2)	D	10	2	0	6
							Ti								

Aethod: SW3520B lethod: SW8270C ter					Analy	tical Data	Analytical Data Summary					T.	
					-								
					170	Method	EPA Method SW8270C						
		Fnvironme	Environmental Samples										
	Field ID:		TT-MW2-1				TT-MW2-2				TT-MW2-20		
	SDG:		05-02-0998				05-02-0998				05-02-0998		
	Batch ID:		050216L03B				050216L03B				050216L03B		
Parameters MDL		PaL	Result	Validity	Comments	PQL	Result	Validity	Comments	PaL	Result	Validity	Comments
Benzo(a) Anthracene 1.1		10	Q	n	D	10	QN	n	D	10	Q	ס	Б
Benzoic Acid 0.43		20	QN	n	б	20	ND	n	Б	20	Q	ס	б
Benzyl Alcohol 1.0		10	Q	n	б	10	Q	n	D	10	Q	כ	6
hane	dent.	10	ND	ס	б	10	Q	D	Б	9	2	>	6
		52	2	ח	Б	52	2	0	D	25	2	> :	6
		10	Q.	0	Б	10	Q	0	6	10	QN :	5	6
alate		9	2	> :	D	9	2	D :	D	9	9	> :	6
ryl Pnthalate		9	Q.	0	Б	10	2	0 :	Б	9	2	5 :	D
		10	2	5	D	9	2	0 :	0	9	0 5	0 :	6
Din-Octyl Dhthalate		0 0	2 2	> =	D	2 5	2 2	0 =	0 0	2 5	2 2	> =	0 0
daga		2 5	2 2	=	D) C	2 5	2 2	0 =	ס כ	2 9	2 2	0 =	5) 6
		10	2	0	n 0	9	2	0	0 0	10	2) >	0
Diethyl Phthalate		9	QN	0	0	10	2	0	0	10	S	>	0
Dimethyl Phthalate 1.3		9	Q	כ	50	10	Q.	ח	50	10	Q.	>	0
Fluoranthene 1.5		10	Q	ח	Б	10	Q.	n	Б	10	Q	ח	D
		9	Q	5	Б	9	9	>	Б	9	9	>	D
diene		9	2	o :	50	9	2	> :	D	10	2	o :	0
		10	2 2	5	D	10	2 2	0 :	ומ	10	2 2	> =	0 1
Hexachloroethane Description of the control of the		9 9	2 5	>=	D E	9 9	2 2	0 =	ם מ	6 6	2 2	>=	ם מ
Pyrene		10	2 2	, ,	0 0	10	2 2	0	0 0	10	2	0	0 0
		9	2	ח	ם מ	9	2))	ם מ	10	2)	0
-n-propylamine		10	QV	ח	0	10	Q.	ס	מ	10	QN.	n	0
N-Nitrosodimethylamine 1.1		10	QV	n	מ	10	Q	ח	Б	10	Q	ר	D
N-Nitrosodiphenylamine 1.4		10	ND	n	б	10	Q	ח	б	10	QN	n	6
Naphthalene 1.4		10	Q	n	50	10	Q.	n	Б	10	Q	>	б
Nitrobenzene 1.3		52	Q	n	D	25	QN	ח	6	25	Q	>	б
Pentachlorophenol 0.75		10	ND	n	Б	10	QN	ס	D	10	Q	>	б
ıthrene		9	Q	ח	50	10	Q	כ	D	10	2	ס	6
Phenol 1.2		10	Q	n	D	10	2	כ	Б	10	2	כ	6
Pyrene 1.4		10	QN	n	b	10	QN	n	0	10	Q	ח	6
Pyridine 1.4		9	Q	>	D	9	Q	>	D	9	9	>	б

Electric	Cockneed Martin, Beaumont						Analy	rtical Data	Analytical Data Summary						
Market SW0270C Mark	action Method: SW3520B						EPA	Method	SW8270C						
Field ID: TT-MW2-3 SDG: SDG: SDG-20888 SDG	lytical Method: SW8270C														
Field ID: Field ID: Field ID: Field ID: Field ID: SDC3.	rix: Water s: ug/L														
Field ID: TT-MV2-3 SDG:				nvironme	ntal Samples										
The Mathematical Property of the Mathematical Mathemati															
SSOc. SSoc			Field ID:		TT-MW2-3				TT-MW2-4D				TT-MW2-48		
MDL			SDG:		05-02-0998 0502161 03B				05-02-0998 050216L03B				050216L03B		
13 10 ND U g 10 10 ND U g 10 10 ND U g 10 ND ND ND U g 10 ND U g 10 ND ND ND U g 10 ND ND ND ND ND ND ND N	ameters			Pal	Result	Validity	Comments		Result	Validity	Comments	Pal	Result	Validity	Comments
1.0 1.0	1. Trichlorohonzono	6.		C.	S	=	0	¢,	Q.	ם	0	10	9	ס	0
12	Dichlorobenzene	: -		10	QN CN	0	0 0	10	2	ס	0 0	10	Q	n	0
1.1 1.0 ND U 9 10 10 10 10 10 10 10	Dichlorobenzene	1.2		9	2	כו	0	10	2	ס	0	10	QN	n	0
14 10 ND U g 10 10 10 10 10 10 10	Dichlorobenzene	1.1		10	Q	ח	6	10	Ð	n	6	10	Q	ח	6
12	ethylnaphthalene	1.4		10	QN	ס	6	10	Q	ח	6	10	9	ם	0
12	5-Trichlorophenol	0.97		10	Q.	ם	6	10	2	Э.	D	9	2	D :	Б
1.1	5-Trichlorophenol	1.2		10	Q.	כ	0	9	2	>	Б	10	2	0 :	0
1.2 1.0 ND U g 10 10 11 11 10 ND U g 10 10 11 11 10 ND U g 10 10 10 10 10 10 10	Dichlorophenol	=		9	Q	ם	D	10	2	o :	Б	10	2	0 :	6
1.0	Dimethylphenol	1.2		10	2	0	6	9	2	0:	D	01	2 5	0 =	50 1
the control of the co	Dinitrophenol	5.6		20	Q.	0 :	0	200	2 5	5 =	D) 1	200	2 9	0 =	00 0
1.1 1.0 ND	Dinitrotoluene	1.0		10	2 2	5 =	0	0 0	2 2	> =	0 0	2 5	2 2	> =	5) 6
Appendix	Unitrotoluene			2 5	2 2	o =	50 0	2 5	2 2	=	ם מ	2 0	2 2		0
Application 1.2	locorbanol	3. 6		2 9	2 2	> =	ס כ	2 0	2 2	> =	n c	10	2	0	0
Aphenol 1.1 10 ND U g 10 Iniline 1.0 ND U g 10 Abenol 1.2 1.2 1.2 10 ND U g 10 Abenol 1.2 1.2 1.2 1.0 ND U g 10 Co-3-Methylphenol 3.4 50 ND U g 10 co-3-Methylphenol 1.2 1.0 ND U g 10 a-1-Mille 1.2 1.0 ND U<	sthylnaphthalene	1.2		9	2	כו	0	9	2	0	0	10	Q	כ	0
whenol 1.0 ND U g 10 whenol 1.2 10 ND U g 10 whenol 1.3 25 ND U g 10 nline 1.3 10 ND U g 10 nline 1.2 1.2 10 ND U g 10 co-3-Methylphenol 1.2 1.2 10 ND U g 10 co-3-Methylphenol 1.2 10 ND U g 10 methylphenol 1.2 10 ND U g 10	ethylphenol			10	QN	0	0	10	Q	ח	0	10	QN	כ	Б
openal 1.2 10 ND U gg 10 hilline 1.2 ND U g 10 unline 1.2 ND U g 10 tro-Zemethylphenol 3.4 50 ND U g 10 o-3-Methylphenol 1.2 10 ND U g 10 o-3-Methylphenol 2.4 10 ND U g 10 o-3-Methylphenol 2.4 10 ND U g 10 o-3-Methylphenol	troaniline	1.0		10	QN	ס	0	10	Q	n	D	10	QN	ח	Б
hlorobenzidine 1.3 25 ND U g 25 nilline 1.2 ND U g 25 nilline 1.2 ND U g 10 nilline 1.2 ND U g 10 nilline 1.2 ND U g 10 nilline 1.3 nilline 1.4 nilline 1.4 nilline 1.4 nilline 1.5 nilline 1.5 nilline 1.4 nilline 1.5 nillin	trophenol	1.2		10	QN	ח	0	10	2	n	ō	10	Q	>	Б
tro-2-methylphenol 3.4 550 ND U gg 100 pophenyl-Phenyl Ether 1.2 100 ND U gg 100 coanline 1.3 100 ND U gg 100 coanline 1.3 100 ND U gg 100 coanline 2.4 100 ND U gg 100 coanline 1.2 100 ND U gg 100 coanline 1.3 100 ND U gg 100 coanline 1.4 100 ND U gg 100 coanline 1.5	Dichlorobenzidine	1.3		25	9	ס	6	25	2	D	D	52	2	> :	D
tro-2-methylphenol 3.4 50 ND U gp 50 ophenyl-Phenyl Ether 1.2 10 ND U g 10 o-3-Methylphenol 1.2 10 ND U g 10 o-3-Methylphenol 1.3 10 ND U g 10 o-3-Methylphenol 1.3 10 ND U g 10 ophenol 1.2 10 ND U g 10 nnilline 2.4 10 ND U g 10 nnilline 1.0 ND U g 10 methylbenz[a]anthracene 1.0 ND U g 10 hthylene 1.4 10 ND U g 10 hthylene 1.5 10 ND U g 10 a) Pyrene 1.5 10 ND U g 10 b) Fluoranthene	troaniline	1.2		9	Q	ם	0	10	2	0	0	9	2	5	0
1.2 10 ND U g 10 ND O G O O O O O O O O	dinitro-2-methylphenol	3.4		20	9	0 :	0	20	2 5	0 =	0 1	20	2 2	5 =	D) (
Ocalitical control of the control of	omophenyl-Phenyl Ether	1.2		10	Q S	5	D	01	2 5	0 =	0 1	2 9	22	0 =	5
Odalliting Los 1.3 1.0 ND U g 1.0 Ophenyl-Phenyl Ether 1.2 10 ND U g 10 Shenol 0.86 10 ND U g 10 Ahbenol 1.0 ND U g 10 Athenol 1.0 ND U g 10 Athenol 1.4 10 ND U g 10 Athylene 1.4 10 ND U g 10 Athylene 1.2 10 ND U g 10 Abrorante 1.5 10 ND U g 10 Abroranthene 0.62 50 ND U g 10 Abroranthene 0.71 10 ND U g 10 Abroranthene 1.7 10 ND U g 10 Abroranthene 1.7	nloro-3-Methylphenol	2 7		0 9	2 9	o =	0 0	2 5	2 2	0 =	ס כ	2 5	2 2	=	D C
December Color C	loronham/LDham/ Ethar	3. 0.		2 9	2 2	0 =	D C	2 0	2 2		ם מ	9	2	0	0
whenol 0.86 10 ND U g 10 nethylbenz(a)anthracene 1.0 10 ND U g 10 hthylene 1.4 10 ND U g 10 hthylene 1.2 10 ND U g 10 ene 1.5 10 ND U g 10 zene 0.62 50 ND U g 10 a) Pyrene 0.62 50 ND U g 10 b) Fluoranthene 1.2 10 ND U g 10 g,h.i) Perylene 0.71 10 ND U g 10 k) Fluoranthene 1.7 10 ND U g 10 k) Fluoranthene 1.7 10 ND U g 10	troaniline	2.4		10	2	ח	0	10	2	ס	0	10	QN	n	0
methylbenz[a]anthracene 1.0 nn ND U g 10 hthene 1.4 10 ND U g 10 hthylene 1.2 10 ND U g 10 ene 1.5 10 ND U g 10 zene 0.62 50 ND U g 10 a) Pyrene 0.88 10 ND U g 10 b) Fluoranthene 1.2 10 ND U g 10 g,h.i) Perylene 0.71 10 ND U g 10 k) Fluoranthene 1.7 10 ND U g 10 k) Fluoranthene 1.7 10 ND U g 10	trophenol	0.86		10	QN	ס	0	10	Q	ס	D	10	QV	n	Б
hthene 1.4 10 ND U g 10 hthylene 1.2 10 ND U g 10 ene 1.5 10 ND U g 10 zene 0.62 50 ND U g 10 a) Pyrene 0.88 10 ND U g 10 b) Fluoranthene 1.2 10 ND U g 10 g,h.i) Perylene 0.71 10 ND U g 10 k) Fluoranthene 1.7 10 ND U g 10 k) Fluoranthene 1.7 10 ND U g 10	-Dimethylbenz[a]anthracene	1.0		10	Q	n	6	10	Q	כ	D)	10	QN	>	5
hthylene 1.4 10 ND U g 10 ene 1.5 10 ND U g 10 ene 1.5 10 ND U g 10 zene 1.7 10 ND U g 10 ne 0.62 50 ND U g 10 s) Pyrene 1.2 10 ND U g 10 g,h.i) Perylene 0.71 10 ND U g 10 k) Fluoranthene 1.7 10 ND U g 10 k) Fluoranthene 1.7 10 ND U g 10 k) Fluoranthene 1.7 10 ND U g 10	naphthene	1.4		10	Q	D	б	10	2	כ	D	9	Q)	50
tene 1.2 10 ND U gg 10 Zene 1.7 10 ND U gg 10 ND U gg 10 ND U gg 10 ND U gg 10 ND U gg 10 Sp 10 Sp 10 ND U gg 10 Sp 10 Sp 10 Sp 10 ND U gg 10 Sp 10 Sp 10 Sp 10 ND U gg 10 Sp 10 Sp 10 ND U gg 10 Sp 10 Sp 10 ND U gg 10 Sp 10 ND U gg 10 Sp 10 ND U gg 10	naphthylene	4.1		9	9	D	D	10	2	0 :	D	9	Q.	0 :	0
1.5 10 ND U gg 10 1.7 10 ND U gg 10 0.62 50 ND U gg 10 0.88 10 ND U gg 10 1.2 10 ND U gg 10 1.3 10 ND U gg 10 1.4 17 10 ND U gg 10	ne	1:2		10	9	> :	0	0 5	2	5	0	0 9	2 5	0 =	50 8
1.7 10 ND U gg 10 ND U	racene			10	2	5	0	10	2 5	0 :	0)	0 9	2 2	5 =	5 0
0.88 10 ND U g 10 10 10 10 10 10 10 10 10 10 10 10 10	penzene	1.7		10	2 9	0 =	0 0	2 2	2 2	0 =	0) (0	2 2	2 5	> =	ס כ
0.88 10 ND U g 10 10 10 10 10 10 10 10 10 10 10 10 10	Zidine	0.62		000	2 5	0 =	50 8	200	2 2	0 =	ס נ	200	2 2	=	D C
1.2 10 ND U g 10 10 10 10 10 10 10 10 10 10 10 10 10	zo (a) Pyrene	0.88		01	2 5	0 :	50 1	2 9	2 2	0 =	מ מ	2 5	2 2	0 =	ס כ
1.7 10 ND U g 10 10 11 1.7 1.7 10 ND U g 10 10 10 10 10 10 10 10 10 10 10 10 10	zo (b) Fluorantnene	2:1		0 9	2 9	0 =	0 1	2 9	2 2	0 =	o 0	2 5	2 2	0 =	D C
	zo (g,n,l) Perylene	0.71		2 9	2 5	5	ס נ	2 9	2 2	0 =	ס כ	2 5	2 2) =	ם מ
	zo (k) Fluoranmene	1./		2	NO.	0	50	2	2	0	סס	2	2	0	מ
		-													
												ľ			

Free Companies Free	Site: 2					Analy	Analytical Data Summary	Summary						
The control of the	Extraction Method: SW3520B					EPA	Method S	W8270C						
Withertheory English Problem 1 Fraction Problems (Comment) 1 TAMINGARD (Comment) 1	Analytical Method: SW8270C													
Fireful Comments Strategy Fireful Comments Strategy Stra	Matrix: Water													
The continue of the continue	Office age													
Field D. T-AMM24 Field D. Field D			Environ	nental Samples										
Secretary Part Pa		Field	Ċ	TT-MW2-3				TT-MW2-4D				TT-MW2-48		
Control		SDG		05-02-0998				05-02-0998				05-02-0998		
A				050216L03B		-		050216L03B		-		050216L03B	-	
Additionable 1.1 10 ND U g	Parameters	MDL	Po	Result	Validity	_	Pal	Result	Validity	\rightarrow		Result	-	Comme
March Marc	Benzo(a) Anthracene	-	10	S	0	0	10	S	ם	0	10	QN	0	0
Machine 1.0 Machine 1.	Benzoic Acid	0.43	50	2	0	0 0	20	2	0	0	20	2)	0
December 12	Benzyl Alcohol	1.0	9	Q	n	0	10	QN	ס	0	10	QN	n	0
Notestay Effect 10	Bis(2-Chloroethoxy) Methane	1.2	10	Q	ס	Б	10	Q	ח	6	10	Q	n	б
Note Septicify Effect 15	Bis(2-Chloroethyl) Ether	1.0	25	2	>	D	52	2	0	6	52	2	> :	D
Name	Bis(2-Chloroisopropyl) Ether	1.5	10	2	0 :	b	0	9	0 :	6	10	Q.	0 :	0
13	Bis(2-Ethylhexyl) Phthalate	0.0	10	2 5	0 =	0	10		0 =	6	0 9	2 2	> =	0 1
yi Phthalate 1.5 10 ND U g 10 ND U g 10 ND U G ND U g 10 ND U g 10 ND U g 10 ND U G	Chysone	0. 6	2 9	2 2	0 =	0 0	2 5	2 2	0 =	50 0	2 5	2 2	=	ס כ
ty Phthalaire 10 ND U g 10 ND U<	Di-n-Butyl Phthalate	5 K	2 5	2 2	0 =	o c	2 6	2 2	> =	ם מ	100	2 2) =	ם מ
Anniella	Di-n-Octvl Phthalate	10	10	2	0	0 0	9	2	0	0	10	2)	0
14 10 ND U g ND U	Dibenz (a,h) Anthracene	0.82	10	Q	ס	0	10	. QN	כ	0	10	QN	n	0
Principale 1.4 10 ND U g 10 ND U g 10 ND U g 10 ND U G 11 ND U G 10 ND U G 10 ND U G 11 ND U G 10 ND U G 1	Dibenzofuran	1.4	10	QN	ס	Б	10	Q	n	0	10	QN	n	D
1.5	Diethyl Phthalate	1.4	10	QN	ס	б	10	QN	n	0	10	Q	n	Б
there 1.5 10 ND U g 10 ND	Dimethyl Phthalate	1.3	10	Q	ס	ð	10	Q	ס	6	10	Q	0	Б
14 10 ND U g IO IO IO IO IO IO IO	Fluoranthene	1.5	9	9	5	50	10	9	ס	0	10	2	0	D
12 10 ND U g IO IO IO IO IO IO IO	Fluorene	1.4	10	2	0	0	10	2	5	6	10	2	5	6
1.2 1.2	Hexachloroborzono	1.2	2 9	22	0 =	0.0	2 9	2 2	0 =	00 0	2 6	2 2	> =	ס מ
123-c,d) Pyrene 0.893	Hexachlorocyclopentadiene	0.44	25. 52	22	0 =	ס ס	25	2 2	0 =	ם מ	25	2 2		ם מ
1.1.2 - 0.83	Hexachloroethane	0.98	9	2)	n 0	10	2)	0	10	2	0	ס ס
1.2 1.2 1.0 ND	Indeno (1,2,3-c,d) Pyrene	0.83	10	Q	0	0	10	Q	כ	0	10	Q	0	D
to-din-propylamine 1.3 10 ND U g 10	Isophorone	1.2	10	QN	ס	6	10	QV.	n	0	10	QN	n	Б
odimethylamine 1.1 10 ND U gg 10 ND U gg 10 ND U gg 10 ND U laher 1.4 10 ND U gg 10 ND U	N-Nitroso-di-n-propylamine	1,3	10	QN	ח	б	10	Q	n	6	10	Q	ס	б
14 10 ND U g 10 ND U g 10 ND U g 10 ND U U U U U U U U U	N-Nitrosodimethylamine	7	10	Q	>	Б	10	2	ס	0	9	Q	ם	Б
1.4 1.5	N-Nitrosodiphenylamine	1,4	10	2	> :	6	10	2	0	6	9	2	0 :	D
1.3	Naphthalene	1.4	10	2	0	6	9	2	5	0	10	2 5	0 :	6
1.5 10 ND U g 10 ND U U 10 N	Nirobenzene		22	2 2	0 =	6	2	2 5	0 =	50 1	2 5	22	0 =	00 8
1.2 1.2 1.0 ND U gg 10 ND U gg 10 ND U gg 10 ND U h gg 10	Pentachiorophenol		2 9	25	5 =	6	2 9	2 2	5 =	50 0	2 5	2 2	0 =	ס כ
1.4 1.4 1.0 ND U g 10 ND U g 10 ND U h g 1	Dhanol		2 5	2 2	0 =	0 0	2 5	2 2	=	0 0	2 5	2 5	=	ם כ
1.4 1.4 10 ND U g 10 ND U g 10 ND U g 10 ND U g 10 ND U	Pyrapa		2 9	2 2	=	0 0	2 6	2 2	=	0 0	2 0	2	=	ם כ
	Pyridine	4.1	9	2))	n 0	0	2	0	0	10	2	0	0

Part	Macroscope Mac	Lockheed Beaumont Site: 2						Ana	Table A	Summary						
Fig. 62 Fig.	Find Discrepance Find Discre	Extraction Method: SW5030B						EP.	A Method	SW8260B						
Sept. Comparison Sept. Compa	Color Colo	Matrix: Water			Environme	ntal Samples										
March Solid Soli	Mail			Field ID:		TT-MW2-2				TT-MW2-4D				TT-MW2-4S		
Column	House Control of the	Parameters	MDL	Batch ID:	Pal	050708L01 Result	Validity	Comments		050708L01 Result	Validity	Comments	Pal	050708L01 Result		Comments
Continue	Control Cont															
Marker Color Col	Color	Acetone	6.1		10	QN	D	D	10	QN	n	б	10	QN	ס	Б
Marke	Particle Color C	Benzene	0.26		0.50	Q	n	D	0.50	QN	n	6	0.50	QN	D	6
Continue	Figure 10.028	Bromobenzene	0.47		1.0	2	D :	D	1.0	2	o :	6	1.0	2	5	6
1,000 March Marc	Continue	Bromodickloromathana	0.68		0. 0.	22	> =	0) (0	0.	22	> =	0 0	0.0	2 2	> =	0
Continue	Continue	Bromoform	0.27		0.0	28	0 =	0) 0	0.0	S CN	0 =	5) 0	0.0	28	o =	0 0
Control Cont	Control Cont	Bromomethane	2.9		000	2	0	מס מס	10	20	0	מ מ	10	20	0 0	0 0
Figure 1.02	Continue	2-Butanone	4.2		10	Q	ח	Б	10	Q.	כ	6	10	Q	Э	5
10	Figure 0.22	n-Butylbenzene	0.29		1.0	2	ח	б	1.0	QN	ם:	6	1.0	Q	ח	50
The control of the co	Tricke 0.046	sec-Butylbenzene	0.21		0.0	22	5	0 0	0.0	22	> =	50 0	0, 0	2 2	> =	0, 0
1.6 1.6	October Octo	Carbon Disulfide	10.		2.0	28		0 0	0.0	22	0 =	5) 0	2.0	22	0 =	5) 0
Continue	1.00 ND U 29 1.10 ND U 20 20 20 20 20 20 20	Carbon Tetrachloride	0.42		0.50	2	0	n 01	0.50	2	00	n 0	0.50	2	0	0 0
0.22 1.0 ND U 9 1.0 ND U 0 1.0	O	Chlorobenzene	0.36		1.0	Q	n	0	1.0	QN	n	6	1.0	QN	n	0
1.87 1.87 1.98 1.09 1.00 1.00 1.00 1.00 1.00 1.00 1.00	Harter Cogare 1.00 ND U 9 10 ND U 9	Chloroethane	0.52		0.1	2	D	6	0.1	2	ם:	6	1.0	2	0	Б
Control Cont	Control of the cont	Chlorotorm	0.22		0.1		0 :	6	0.1	Q.	o :	6	1.0	2	0:	6
1,000 1,00	10	Chlorotoluene	0.24		0.1	22	00	0 0	10	200	00	5) 0	1.0	200		0 0
Control Cont	0.45	4-Chlorotoluene	0:30		1.0	2	n	0	1.0	2	0	n 0	1.0	2	0	0
Octobarie Cart	10	Dibromochloromethane	0.45		1.0	QN	ח	50	1.0	QN	ח	6	1.0	QN	n	0
O 22	0.32 0.38 0.38 0.39 0.40 0.38 0.30 0.30 0.30 0.30 0.30 0.30 0.3	1,2-Dibromosthana	2.5		2.0	22	ם =	0) (5.0	22	>=	00 1	5.0	22	>	6
0.24 1.0 ND U 9 1.0 ND	0.24	Dibromomethane	0.42		0.0	2 5	=	0) 0	0.0	22	0 =	0) 0	2.0	2 2	0 =	0) 0
0.38	0.38	1,2-Dichlorobenzene	0.24		1.0	QN	D	מס	1.0	2	ס	0	1.0	2	0	מס מ
10	1.0 ND 1.0 ND 1.0 ND 1.0 ND ND ND ND ND ND ND N	1,3-Dichlorobenzene	0.38		1.0	QN	n	0	1.0	N	כ	0	1.0	QN)	0
0.52	0.27	1,4-Dichlorobenzene	0:30		1.0	QN	Э	Ö	1.0	N	כ	Ö	1.0	Q	n	O)
0.31	0.25 0.50 0.25 0.50 0.25 0.50 0.25 0.50 0.26 0.27 0.28 0.50 0.70 0.28 0.29 0.20 0.20 0.20 0.20 0.20 0.20 0.20	Dichlorodifluoromethane	0.27		0.0	25	o :	D	0.1	2	o :	6	0.1	2	> :	Ö
0.31	0.35	1,1-Dichloroethane	0.53		0.50	22	0 =	D	0.50	22	>=	0 0	0.50	22	> =	0) 0
1.0	0.36	1,1-Dichloroethene	0.31		1.0	2))	0	1.0	2))	n 0:	1.0	2) >	מ ס
0.29 0.20 0.20 0.30 0.30 0.30 0.30 0.30 0.30	0.29 1.0 ND U 9 1.0 ND D 0 0 0	c-1,2-Dichloroethene	0.35		1.0	ND	ס	0	1.0	Q	Э	б	1.0	Q	n	б
0.28	0.28	t-1,2-Dichloroethene	0.29		0.1	2	D	6	1.0	2	>	6	0.1	2	o :	6
0.21	0.21	1,Z-Uichloropropane	0.28		0.0	2 2	>=	0 0	0.0	22	>=	0 0	0.0	22	0 =	0 0
0.21	0.21	2,2-Dichloropropane	0.40		1.0	Q.		0 0	1.0	28		n 0	0.0	22		D C
0.34 0.56 ND U g 0.50 ND U g 0.50 ND U g 0.50 ND U U G 0.50 ND U U G 0.50 ND U G 0.50 U 0.	0.46 0.46 0.50 ND U g 0.50 ND U g 0.50 ND U g 0.50 ND U 1.31 0.50 ND U g 0.50	1,1-Dichloropropene	0.21		1.0	QN	n	0	1.0	Q	0	0	1.0	Q.	00	0 0
0.31 0.50 ND U g 0	0.31 0.50 ND U g 0	c-1,3-Dichloropropene	0.45		0.50	QN	n	D	0.50	Q	D	Б	0.50	QN	ח	6
0.17 1.0 ND U gg 1	0.17	-1,3-Dichloropropene	0.31		0.50	2	ס	6	0.50	Q	>	6	0.50	Q	5	6
2.4 1.0 ND U gg 1.	2.6 1.0 ND U gg 1.	Ethylbenzene	0.17		0.7	2	> =	6	0.0	22	>=	6	0.0	2	> =	6
2.6	2.6	sopronylhenzene	200		0 0	2 2		5 C	2 0	25	> =	00 0	2 0	28	> =	o c
2.6 10 ND U 9 1.0	2.6 10 ND U g 10	o-Isopropyltoluene	0.21		0.0	22		ם מ	10.	2	0 0	5 0	0.0	200	0 =	D 0
2.4 10 ND U g 1.0 ND U	2.4 10 ND U g 1.0 ND	Methylene Chloride	2.6		9	2))	0	10	2))	0	10	2) >	ם מ
0.30	0.95 10 ND U g 10 ND U g 10 ND U g 10 ND O O O O O O O O O O O O O O O O O O	4-Methyl-2-Pentanone	2.4		10	Q	n	0	10	QN	ח	0	10	Q	n	0
0.29 1.0 ND U g 1.0 ND U g 1.0 ND U U U U U U U U U U U U U U U U U U	0.20 1.0 ND U g 1.0 ND	Naphthalene	0.95		9	2	D	6	10	9	Э:	6	10	Q.	n	6
		n-Propylbenzene	0.30		0.0	22	0	6	0,1	2	> =	6	0.1	2	o :	0
		otylerie 1	67.0		2	N.	0	O)	9.	O.	0	5	0.	NO.		0)

State Communication Comm	Lockheed Beaumont							Table A							
Field D:	Site: 2						Analy	tical Data	Summary						
Field D:	Extraction Method: SW5030B						EPA	Method S	W8260B						
Field ID:	Analytical Method: SW8260E														
Field ID: TT-MW22 SDG: C6-07-0334	Matrix: Water			Environme	ental Samples										
Field D:	Units: ug/L		1		0 0100				Cr Chart TT				TT MANA AS		
SDG; OS-07-0334 OS-07-033			Field ID:		11-MWZ-2				U+-MINZ-4D				C+-244 M- 1 1		
Batch D: POL Result Validity Comments POL Result ND			SDG:		05-07-0334				05-07-0334				05-07-0334		
MDL Result Validity Comments PQL Hesult PQL Hesul			Batch ID:		050708L01				050708L01			100	USU/USEUT	11.03.4	
0.37	Parameters	MDL		Pal	Result		Comments	Pol	Result	Validity	Comments	ğ	Hesult	Validity	comments
1.0	1.1.2-Tetrachloroethane			1.0	QN	ס	0	1.0	9	D	б	1.0	QN	n	D
1.0	1.1.2.2-Tetrachloroethane			1.0	N	0	0	1.0	Q	n	D	1.0	QN	כ	Ö
0.35 1.0 ND U 9 1.0 ND U 0 <td>Tetrachloroethene</td> <td></td> <td></td> <td>1.0</td> <td>Q</td> <td>ח</td> <td>0</td> <td>1.0</td> <td>Q</td> <td>n</td> <td>б</td> <td>1.0</td> <td>Q</td> <td>ח</td> <td>Ö</td>	Tetrachloroethene			1.0	Q	ח	0	1.0	Q	n	б	1.0	Q	ח	Ö
0.39	Toluene			1.0	R	n	б	1.0	QN	n	D	1.0	2	5	D
0.36	1.2.3-Trichlorobenzene			1.0	Q	n	D	1.0	QN	n	6	1.0	2	ח	D
0.32 1.0 ND U g 1.0 ND U g 1.0 ND U G O <	1,2,4-Trichlorobenzene	0.35		1.0	2	n	0	1.0	Q	n	6	1.0	Q	ס	D
0.54 1.0 ND U g 1.0 ND	1.1.1-Trichloroethane	0.32	taki i	1.0	2	n	б	1.0	QN	ס	6	1.0	Q	ח	6
0.30	1,1,2-Trichloroethane	0.54		1.0	Q	n	0	1.0	QN	ח	g	1.0	9	ח	D
10 10 10 10 10 10 10 10	Trichloroethene	0.30		1.0	QN	n	0	1.0	Q	ס	6	1.0	Q	n	D
2.3 5.0 ND U g 5.0 ND	Trichlorofluoromethane	0.36		10	Q	ח	D	10	QN	ס	D	10	Q	n	D
0.26 1.0 ND U g 1.0 ND U g 1.0 ND U g 1.0 ND U g 1.0 ND U	1.2.3-Trichloropropane	2.3		5.0	Q	D	0	5.0	QN	n	D	9.0	Q	0	D
1.0 ND U g 1.0 ND U g 1.0 ND U g 1.0 ND U U G I.0 ND U U G I.0 ND U U G I.0 ND U G I.0	1,2,4-Trimethylbenzene	0.26		1.0	2	Э	6	1.0	QN	ס	D	1.0	2	ח	D
3.2 10 ND U g 10 ND U D D U D D D U D D D U D<	1.3.5-Trimethylbenzene	0.19		1.0	Q	n	5	1.0	2	ח	D	1.0	Q	0	6
wride 0.33 0.50 ND U g 0.50 ND U g 0.50 ND U ne 0.38 1.0 ND U g 1.0 ND U g 1.0 ND U D	Vinyl Acetate	3.2		10	Q	n	6	10	Q	n	D	10	Q	ח	6
le 0.38 1.0 ND U g 1.0 ND U g 1.0 ND U U ND U g 1.0 ND U U ND ND <t< td=""><td>Vinyl Chloride</td><td>0.33</td><td></td><td>0.50</td><td>Q</td><td>n</td><td>6</td><td>0.50</td><td>QN</td><td>n</td><td>D</td><td>0.50</td><td>2</td><td>כ</td><td>D</td></t<>	Vinyl Chloride	0.33		0.50	Q	n	6	0.50	QN	n	D	0.50	2	כ	D
utryl Ether (MTBE); 0.21 1.0 ND U g 1.0 ND U g 1.0 ND U biloro-1,2,2-Trifluoroethane 0.54 10 ND U g 10 ND U	n/m-Xvlene	0.38		1.0	Q	ח	6	1.0	QN	כ	D	1.0	Q	>	0
July Ether (MTBE): 0.29 1.0 ND U g 1.0 ND U g 1.0 ND U Aloro-1,2,2-Trifluoroethane 0.54 10 ND U g 10 ND U	o-Xvlene	0.21		1.0	Q	0	6	1.0	QN	ח	D	1.0	Q	כ	D
0.54 10 ND U g 10 ND U g 10 ND U	Methyl-t-Butyl Ether (MTBE)	0.29		1.0	Q	n	6	1.0	N	ח	D)	1.0	2	ס	D
	1,1,2-Trichloro-1,2,2-Trifluoroethane	0.54		10	QN	כ	6	10	2	ח	53	10	QN	>	6

Proceedings Process	Fig. 10 Fig. 12 Fig.	Lockheed Beaumont						Analy	Table A	Summarv						
Field Part Fie	Field Early Simples Field Early Simples Field Early Simples Field Early Size Fi	Extraction Method: SW5030B						EPA	Method S	W8260B						
Mar. State Mar. Mar	No. State Prof.	Analytical Method: SW6260E Matrix: Water			Environme	ental Samples										
March Part	Mail	Onlis: ug/L		Field ID:		TT-MW2-1				TT-MW2-3				TT-MW2-103		
Mail	Mail			SDG: Batch ID:		05-07-0439				05-07-0439 050712L03				05-07-0439 050712L03		
Columbia	10 10 10 10 10 10 10 10	Parameters	MDL		Pol	Result	Validity		Pal	Result	Validity		Pal	Result	Validity	Comments
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	1,000 1,00	Acetone			10	S	n	0	10	2	D	D	10	Q.	n	Di
0.644 0.064 0.067 0.067 0.067 0.067 0.067 0.067 0.07 0.0	0.644 0.067 0.067 0.067 0.067 0.067 0.067 0.067 0.067 0.067 0.07 0.0	Benzene	0.26		0.50	9))	n 0.	0.50	2	ח	0	09.0	QN	n	5
0.088	0.058 1.00	Bromobenzene	0.47		1.0	S	ח	0	1.0	QN	n	5	1.0	Q	ח	6
0.27 0.28 0.29	10	Bromochloromethane	0.68		1.0	Q	ח	6	1.0	2)	6	0.1	2	0	6
10 10 10 10 10 10 10 10	2.50	Bromodichloromethane	0.27		1.0	2	ח	0	0.0	Q.	5	6	0.0	2	0 =	50 0
10 10 10 10 10 10 10 10	Control Cont	Bromoform	0.62		0.1	22	>=	0 0	0.1	2 2	0 =	0) 0	10.0	2 2	=	5) 0
10 10 10 10 10 10 10 10	10 10 10 10 10 10 10 10	2. Butanone	4.9		9	25		0) 0	10	22		D 0	10	2	0	0
1.0	1.0	p-Butylbenzene	0.29		1.0	2	0	0 0	1.0	2	0	0	1.0	Q	0	6
1017 100 ND U 0 10 10 ND U 0 ND U 0 10 ND U 0 ND U 0 10 ND U 0 ND U 0 ND U 0 10 ND U 0	1017 100 ND U U S 100 ND U U U S 100 ND U U U S 100 ND U U U S 100 ND U U U S 100 ND U U S 100 N	sec-Butylbenzene	0.21		1.0	Q	ס	0	1.0	QN	n	D	1.0	Q	ס	6
0.42	0.45	tert-Butylbenzene	0.17		1.0	Q	n	D	1.0	QN	n	Б	1.0	₽!	>	6
10 10 10 10 10 10 10 10	1.00 1.00	Carbon Disulfide	1.0		10	2	ם	Б	0	2	o :	Б	10	2	0 :	0
1,000 1,00	10	Carbon Tetrachloride	0.42		0.50	2	> =	50	0.50	22	>=	00 0	0.50	22	>=	6
1,000 No.	1,000 1,00	Chlorobenzene	0.36	one.	0.1	22	0 =	D 0	0.0	2 2	0 =	0) 6	0.0	2 2	0 =	00 00
1.67 1.00	1,000 1,00	Chloretnane	70.0		0.	25	=	5) (0.0	2 5	=	ם מ	0.0	22		0
10 10 10 10 10 10 10 10	10 10 10 10 10 10 10 10	Chloromethane	1.82		0.0	2 5	=	D C	0.0	Q Q		0	10	2		0
10.80 1.0 ND	Control Cont	2-Chlorotoluene	0.24		1.0	9))	n 0	1.0	2	n	0	1.0	Q	ס	0
10	1,0 1,0	4-Chlorotoluene	0.30		1.0	Q	ס	5	1.0	QN	n	D	1.0	2	כ	6)
10	10	Dibromochloromethane	0.45		1.0	QN	n	6	1.0	Q	ח	D	1.0	2	> :	6
0.24	0.24	1,2-Dibromo-3-Chloropropane	2.5		5.0	2	n :	50	2.0	2	5	Б	5.0	2 2	> =	0
0.24	0.242	1,2-Dibromoethane	0.81		0.0	25	0 =	0	0.	22	5 =	50 0	0. 0	22	>=	5
0.38 0.30 0.30 0.30 0.30 0.30 0.30 0.30	0.38	Ulbromometriane	0.92		0.	2 5	0 =	5) (5.0	2 5	=	ס כ	0.0	2) =	0 0
0.37	1.0	1,2-Dichlorobenzene	0.38		0.0	28		D C	1.0	2	0	D C	1.0	2	0	0
10 10 10 10 10 10 10 10	10 10 10 10 10 10 10 10	1.4-Dichlorobenzene	0.30		0.1	9	0	0	1.0	2	n	0	1.0	Q	n	6
0.53	1,0 ND	Dichlorodifluoromethane	0.27		1.0	Q	n	5	1.0	Q	n	50	1.0	Q	n	6
0.22 0.50 ND U g 0.50 ND U g 1.00 ND U g 1	0.31	1,1-Dichloroethane	0.53		1.0	Q	n	D	1.0	2	D	б	1.0	2	n	0
0.35	0.236 1.0 ND U g 1.0 N	1,2-Dichloroethane	0.22		0.50	9	0	5	0.50	2)	D	0.50	2	0	6
0.35 1.0 ND U g 1.0 ND	0.35 1.0 ND U g 1.0 ND	1,1-Dichloroethene	0.31		0.	9	0 :	5	0.1	2 2	5	D I	0.0	2 2	0 =	6
0.28 1.0 ND U 9 1.0 ND	0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30	c-1,2-Dichloroethene	0.35		0.0	22	5 =	ם נ	0.0	S	0 =	5) (0.0	28	=	0) 0
1.0 ND	0.30 1.0 ND 0.40 1	1 9-Dichloropropage	0.28		5.0	28	0 =	D) C	0.0	S		0 0	1.0	2	0	0
0.40 1.0 ND U g 1.0 ND U g 1.0 ND U U D D U D D U D <	0.40 1.0 ND U g 1.0 ND U g 1.0 ND U 0.21 1.0 ND U g 1.0 ND U g 1.0 ND U 0.45 0.56 ND U g 1.0 ND U g 0.50 ND U U D U D U D U U D D U D D	1.3-Dichloropropane	0.30		1.0	2	0	0.	1.0	2	n	מ	1.0	QV	n	0
0.21	0.21	2,2-Dichloropropane	0.40		1.0	QN	n	0	1.0	Q	n	D	1.0	2	n	6
0.34	0.45	1,1-Dichloropropene	0.21		1.0	2	> :	D	0.1	25)	50	0.0	22	-	מ מ
0.21 1.0 ND U g 1.0 ND	0.21 1.0 ND U g 1.0 ND	c-1,3-Dichloropropene	0.45		0.50	22	>=	53 6	0.50	2 2	>=	0) 0	0.50	25	0 =	0) 0
1.0 ND U g	1.0 ND U g	t-1,3-Dichloropropene	0.31		0.50	2 2	> =	0	0.50	S	0 =	0) (0	1000	2 2	=	o c
0.24	0.24 1.0 ND U gg 1	Ethylbenzene 2-Hexanone	2.0		0.0	28	0 =	D) C	10	200	0	D) 0	10	2	0	0 0
2.4	2.6 1.0 ND U gg 1.	Isopropylbenzene	0.24		1.0	2	0	0	0.1	2	0	0	1.0	Q	n	0
2.6 10 ND U gg 1.0 ND U gg 1.	2.6 10 ND U g 1.0 ND	p-Isopropyltoluene	0.21		0.1	2)	0	1.0	QN	n	50	1.0	Q	n	D
2.4 10 ND U g 1.0 ND	2.4 10 ND U g 1.0 ND U g 1.	Methylene Chloride	2.6		10	2	D	6	10	QN	n	6	10	2	ח	Б
0.30 1.0 ND U g 10 ND U g 10 ND U g 1.0 ND U	0.30 1.0 ND U g 10 ND U g 10 ND U g 1.0 ND U U U g 1.0 ND U U U g 1.0 ND U U U U U U U U U U U U U U U U U U	4-Methyl-2-Pentanone	2.4		10	QN	n	Б	10	Q	0	б	10	2)	5
0.30 1.0 ND U g 1.0 ND U g 1.0 ND U g 0.1.0	0.30 0.10 ND U g 1.0 ND U g 1.0 ND U g 0.10 ND U g 0.1	Naphthalene	0.95		10	2	5	D	9	2	0	6	10	2	0 :	6
0.29 UN 0.1 g U UN 0.1 g U UN 0.1 g U UN 0.1	0.29 UN 0.1 g U UN 0.1	n-Propylbenzene	0.30		0.	2	0	5	0.0	2	0	6	1.0	2 2	> =	50 0
		Styrene	0.29		0.1	N	0	6	2.	Q.	0	6	0.	N N	0	00

Since 2 Comment Comm	Lockheed Beaumont							Table A	A						
Field ID:	Site: 2						Analy	rtical Data	Summary						
The control of the	Extraction Method: SW5030B						EPA	Method	SW8260B						
The continuental Samples Safeth D. The continuental Safeth D. T	Analytical Method: SW8260E														
Field D: TT-MW2-1	Matrix: Water			Environme	ental Samples										
Fight Comments	Units: ug/L														
SDG: C6-07-0439 C6-07-043			Field ID:		TT-MW2-1				TT-MW2-3				TT-MW2-103		
MDL Poll P			SDG:		05-07-0439				05-07-0439				05-07-0439		
MOL POL Result Validity Comments POL Result POL			Batch ID:		050712L03				050712L03				050712L03	A 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
achloroethane 0.37 1.0 ND U gg	Parameters	MDL		Pal	Result	Validity	Comments	Pal	Result	Validity	Comments	Pal	Result	Validity	Comments
achloroethane 0.37 1.0 ND U g 1.0	1,1,1,2-Tetrachloroethane	0.37		1.0	QN	n	O	1.0	Q	0	D	1.0	Q	D	O
orderizene 0.29 1.0 ND U gg 1.	1,1,2,2-Tetrachloroethane	0.37		1.0	Q	n	0	1.0	Q	n	D	1.0	QN	n	D
1.0 ND U g 1.0 ND	Tetrachloroethene	0.29		1.0	Q	ח	0	1.0	Q	0	מ	1.0	QN	n	6
1.0 ND U g 1.0 ND U MD U MD U	Toluene	0.35		1.0	ND	n	6	1.0	QN	n	б	1.0	QN	n	б
1.0 ND U g 1.0 ND U MD	1,2,3-Trichlorobenzene	0.39		1.0	ND	n	6	1.0	QN	n	6	1.0	QN	n	0
proethane 0.32 1.0 ND U g 1.0 ND U g <th< td=""><td>1,2,4-Trichlorobenzene</td><td>0.35</td><td></td><td>1.0</td><td>ND</td><td>n</td><td>Б</td><td>1.0</td><td>QN</td><td>n</td><td>6</td><td>1.0</td><td>Q</td><td>n</td><td>Di</td></th<>	1,2,4-Trichlorobenzene	0.35		1.0	ND	n	Б	1.0	QN	n	6	1.0	Q	n	Di
Size	1,1,1-Trichloroethane	0.32		1.0	ND	n	D	1.0	QN	n	6	1.0	QN	n	Б
Consistence	1,1,2-Trichloroethane	0.54		1.0	ND	n	б	1.0	QN	n	б	1.0	QN	n	6
romethane 0.36 10 ND U g 10 ND U G ND U D	Trichloroethene	0.30		1.0	Q	n	Б	1.0	7.0		6	1.0	7.2		D
Propriopane 2.3 5.0 ND	Trichlorofluoromethane	0.36		10	N N	n	6	10	QN	n	b	10	Q)	00
trybenzene 0.26 1.0 ND U gg 1.	1,2,3-Trichloropropane	2.3		9.0	ND	n	6	5.0	ND	n	6	5.0	ND	n	0
thybenzene 0.19 1.0 ND U gg 1.	1,2,4-Trimethylbenzene	0.26		1.0	ND	n	Б	1.0	QN	ח	б	1.0	QN	n	5
8.2 10 ND U g 1.50 ND	1,3,5-Trimethylbenzene	0.19		1.0	QN	n	Б	1.0	ON	n	6	1.0	Q	n	6
de 0.33 0.60 ND U g 0.50 ND U g 0.50 ND U g 0.50 ND U g 0.50 ND U U g 1.0 ND	Vinyl Acetate	3.2		10	QN.	n	6	10	QN	n	6	10	QN	n	D
0.38	Vinyl Chloride	0.33		0.50	QN	n	6	0.50	QV	n	D	0.50	QN	n	6
Sutyl Ether (MTBE) 0.21 1.0 ND U g 1.0 ND U g 1.0 ND U Aloro-1,2,2-Trifluoroethane 0.54 10 ND U g 10 ND U	p/m-Xylene	0.38		1.0	QN	n	6	1.0	QN	n	6	1.0	QN	n	6
0.29 1.0 ND U g 1.0 ND U g 1.0 ND U roethane 0.54 10 ND U g 10 ND U U D U U D U ND ND U ND	o-Xylene	0.21		1.0	QN	n	Б	1.0	QN	n	g	1.0	QN	n	9
0.54 10 ND U g 10 ND U g 10 ND U	Methyl-t-Butyl Ether (MTBE)	0.29		1.0	ND	n	0	1.0	QN	n	ō	1.0	QN	n	D
	1,1,2-Trichloro-1,2,2-Trifluoroethane	0.54		10	Q	n	6	10	Q	n	6	10	Q	n	6

Lockheed Beaumont							Table B	8						
Site: 2						Analy	tical Data	Analytical Data Summary						
Extraction Method: None						EP	A Method	E314.0						
Analytical Method: E314.0														
Matrix: Water														
Units: ug/L			Environm	Environmental Samples										
		Field ID:		TT-MW2-2				TT-MW2-4D				TT-MW2-4S		
		SDG:		05-07-0334				05-07-0334				05-07-0334		
		Batch ID:		050707L02				050707L02				050707L02		
Parameters	MDL		PaL	Result	Validity	Validity Comments	Pal	Result	Validity	Validity Comments	Pal	Result	Validity	Validity Comments
Perchlorate	0.59		2.0	QN	ם	D	5.0	QN	ס	Б	2.0	QV	ם	D

Lockheed Beaumont							Table B	8						
Site: 2						Analy	rtical Data	Analytical Data Summary						
Extraction Method: None						EF	EPA Method E314.0	E314.0						
Analytical Method: E314.0														
Matrix: Water														
Units: ug/L			Environm	Environmental Samples										
		Field ID:		TT-MW2-1				TT-MW2-3				TT-MW2-103		
		SDG:		05-07-0439				05-07-0439				05-07-0439		
		Batch ID:		050714L01				050714L01				050714L01		
Parameters	MDL		Pol	Result	Validity	Validity Comments	Pal	Result	Validity	Validity Comments	Pal	Result	Validity	Validity Comments
				Dilution 100				Dilution 2000				Dilution 2000		
Perchlorate	0.59		200	2400		6	4000	23000		D	4000	52000		D

Lockheed Beaumont							Table C							
Site: 2						Analy	Analytical Data Summary	Summary						
Extraction Method: SW3010A						EPA	EPA Method SW6010B	V6010B						
Analytical Method: SW6010B														
Matrix: Water														
Units: mg/L														
		Envir	Environmental Samples	seldur										
	E	Field ID:	Ė	TT-MW2-2				TT-MW2-2				TT-MW2-4D		
	0.	SDG:	05-0	05-07-0334				05-07-0334				05-07-0334		
	Bat	Batch ID:	020	050708L03				050708L03				050708L03		
Parameters	MDL	Po		Result	Validity C	Comments	Pal	Result	Validity	Validity Comments	Pal	Result	Validity	Comments
				(Unfiltered)				(Filtered)				(Unfiltered)		
Antimony	0.00209	0.01	20	Q.)	0	0.0150	Q	ס	Б	0.0150	Q	Э	D
Arsenic	0.00308	0.0100		Q.	>	0:	0.0100	QN	ס	D	0.0100	0.0964		Б
Barium	0.000719	0.0100		0.0107		D	0.0100	0.0433		б	0.010	0.130		0
Berylium	0.000176	00.00		QN	n	Б	0.00100	ND	ס	Б	0.00100	2	ח	6
Cadmium	0.000350	0.00500		QN	n	Б	0.00500	ND	D	б	0.00500	Q	>	6
Calcium	0.00932	0.1		10.1		б					0.1	11.7		6
Chromium	0.000350	0.00500		0.00893	æ	¥	0.00500	Q.	5	Б	0.0050	0.0396		0
Cobalt	0.000696	0.00		ND Q	ס	6	0.00500	2	ס	D	0.0050	0.0135		0
Copper	0.00134	00.00		QN	ח	6	0.00500	Q	ס	D	0.00500	2	0	0
Lead	0.00236	0.0100		Q.	<u></u>	Б	0.0100	Q	ח	D	0.0100	0.0114		6
Magnesium	0.00328	0.1		62.	7	o					0.10	8.80		6
Molybdenum	0.000800	00.00		QN	n	б	0.00500	Q	ח	D	0.00500	2	0	0
Nickel	0.00137	0.00		Q.	_	D	0.00500	Q	ס	Б	0.0050	0.0180		50
Potassium	0.0561	0.50		1.22		Б					0.50	3.13		Б
Selenium	0.00295	0.0150		QN QN	O	Б	0.0150	Q	0	б	0.0150	Q	0	0
Silver	0.000400	0.00500		0.00749	В	×	0.00500	Q	D	Б	0.00500	0.00825	0	¥
Sodium	0.0192	0.500		129		0					0.5	8.69		D
Thallium	0.00233	0.0150		QN	n	б	0.0150	Q	n	Б	0.0150	Q	0	D
Vanadium	0.000314	0.0050		0.0109		б	0.0050	0.0109		D	0.005	0.167		Б
Zinc	0.000848	0.0100		0.0188	7	o	0.0100	Q	>	50	0.0100	0.0600		5

Majorio	Makinotic SW2010A	Lockheed Beaumont							Table C							
Make	Marked: SW6010B Part Par	Site: 2						Anal	ytical Data	Summary						
Make	Fleid ID: Flei	Extraction Method: SW3010A						EP	A Method S	W6010B						
Wildlife Filed ID (Control Excitation Community) Samples Filed ID (Control Excitation Community) Samples TT-MW2-45 (Control	Waler Environmental Samples Thanku24D Thanku24S	Analytical Method: SW6010B														
Third Thir	Field ID: TT-AMV2-4D TT-A	Matrix: Water														
Field ID: Thinword Special Samples Thinword Special Samples Thinword Thinw	Fibrat D: TT-AWV2-4S TT-A	Units: mg/L														
Field Field Four Theorem Field Fie	Field ID: TH-MV2-4D															
Field D: SDG:	Field ID: TT-MW2-4D TT-MW2-4S SEC-7-6334 SEC-7-				nvironmer	ital Samples										
SDG;	SDG;			eld ID:		TT-MW2-4D				TT-MW2-4S				TT-MW2-4S		
MOI POI	Match Date			SDG:		05-07-0334				05-07-0334				05-07-0334		
Formation (erg) MDL (Filtered) POL (Filtered) Pol (Polithered) Pol (Polithered) POL (Polithered) Fasult (Prifered) POL (Prifered) <	MDL		ď	itch ID:		050708L03				050708L03				050708L03		
Y Coording (Coording) (Countilliered)	y (Filtered) (Uniffered) (Uni	Parameters			Pal	Result	Validity	Comments		Result	Validity		Pol	Result	Validity	Comments
y 0.005209 0.01550 ND U g 0.01550 ND U G 0.01550 ND U G 0.01500 0.04857 U G 0.01500 0.04857 U G 0.01500 0.04857 U G 0.01000 0.04857 U G 0.01000 0.05873 U G 0.01000 0.04852 U G 0.01000 0.04852 U G 0.0100 0.04744 U G 0.0100 0.04744 U G 0.0100 0.04744 U G 0.0100 ND U G 0.0100 ND U G 0.0100 ND U G 0.0100 ND U G 0.00500 ND U G 0.00500 ND U G 0.00500 <td>y 0.01520 N.D. U g 0.0150 N.D. U g 0.0150 N.D. U g 0.0150 O.0150 <th< td=""><td></td><td></td><td></td><td></td><td>(Filtered)</td><td></td><td></td><td></td><td>(Unfiltered)</td><td></td><td></td><td></td><td>(Filtered)</td><td></td><td></td></th<></td>	y 0.01520 N.D. U g 0.0150 N.D. U g 0.0150 N.D. U g 0.0150 O.0150 O.0150 <th< td=""><td></td><td></td><td></td><td></td><td>(Filtered)</td><td></td><td></td><td></td><td>(Unfiltered)</td><td></td><td></td><td></td><td>(Filtered)</td><td></td><td></td></th<>					(Filtered)				(Unfiltered)				(Filtered)		
Continue	Continue	Antimony	0.00209		0.0150	Q	ס	0.	0.0150	Q	ס	D	0.0150	ND ON	D	g
Control	n 0,000719 0,0100 0,0454 g 0,0100 0,0502 g 0,0100 n 0,000350 0,000350 0,00030 ND U g 0,00100 ND U g 0,0100 m 0,000320 0,000320 0,00500 ND U g 0,010 U g 0,00500 ND U g 0,00500 n 0,000320 0,000500 ND U g 0,00500 ND U g 0,00500 n 0,000328 0,0100 ND U g 0,00500 ND U g 0,00500 num 0,000328 0,0100 ND U g 0,00500 ND U g 0,00500 num 0,000328 0,0100 ND U g 0,00500 ND U g 0,00500 num 0,000328 0,00050 0,0118 U g 0,00500 <t< td=""><td>Arsenic</td><td>0.00308</td><td></td><td>0.0100</td><td>0.0807</td><td></td><td>0</td><td>0.0100</td><td>0.0573</td><td></td><td>0</td><td>0.0100</td><td>0.0495</td><td></td><td>б</td></t<>	Arsenic	0.00308		0.0100	0.0807		0	0.0100	0.0573		0	0.0100	0.0495		б
National Control	n 0,000176 ND U g 0,00100 ND U g 0,00100 ND U g 0,00050 ND U g 0,00050 ND U g 0,00050 ND U g 0,00050 ND U g 0,0050 0,00233 B K 0,00500 0,000360 0,000506 0,000500 0,00500 0,00500 0,00502 0,00500	Barium	0.000719		0.0100	0.0454		0	0.0100	0.0502		0	0.0100	0.0774		Б
March Coods Coods March Marc	March 0,000350	Beryllium	0.000176		0.00100	Q	n	0	0.00100	Q	>	6	0.00100	Q	n	б
mm 0.00932 ND 0.10 7.68 9 0.00500 ND U 9 0.00560 ND D 0.005	Continue	Cadmium	0.000350		0.00500.0	Q	ס	D	0.00500	ND	n	50	0.00500	Q	n	б
March Concose Concos	March 0.000350 0.00560 ND	Calcium	0.00932						0.10	7.68		50				
Concesse	Concesse	Chromium	0.000350		0.00500.0	QN	n	Б	0.0050	0.0223	ω	¥	0.00500	Q	n	D
0.00134 0.00500 ND U g 0.00500 ND U g 0.00500 ND U U G 0.00500 ND U U G 0.00500 ND U G 0.00500 ND U G 0.00500 ND U G 0.00500 0.00500 ND U G 0.00500 0.00500 0.00500 0.00500 O.00500 ND U G 0.00500 0.00500 O.00500 ND U G 0.00500 O.00500 ND U G 0.00500 O.00500 ND U G 0.00500 O.00500 ND U G 0.00500 O.00500 O.0	10,00134 0,00500 ND U g U G U U G U U U	Cobalt	0.000696		0.0000.0	QN	n	б	0.00500	0.00692		D	0.00500	2	ח	б
umm 0.000236 0.0100 ND U g 0.0100 ND U G 0.0100 ND U D 0.0100 ND U D	lum 0.00236 0.0100 ND U g 0.0100 ND U g 0.010 3.42 g 0.010 g 0.010 3.42 g 0.0050 num 0.000800 0.00500 0.0111 g 0.0050 0.0128 g 0.0050 n 0.00137 0.00500 ND U g 0.0050 0.0039 g 0.0050 n 0.00295 0.0150 ND U g 0.0050 ND U g 0.0050 D g 0.0150 D g 0.0150 ND U g 0.0050 D g 0.0150 D g 0.0150 D G 0.0050 D D g 0.0150 D g 0.0150 D G 0.0150 D G 0.0050 D G 0.0050 0.0050 D G 0.0150 D G 0.0050 0.0050 D	Copper	0.00134		0.0000.0	QN	ח	б	0.00500	ND	ח	D	0.00500	Q	n	6
nesium 0.00328 0.0050 0.0111 g 0.0050 0.0128 g 0.0050 0.0175 N bdenum 0.000800 0.00500 0.0111 g 0.00500 0.0128 g 0.0050 0.0175 N bdenum 0.000501 0.00500 ND U g 0.00500 0.00919 ND U g 0.00500 ND U ND U g 0.00500 ND U ND U D ND U ND ND U ND ND U ND	nestium 0.00328 0.0111 g 0.105 0.0128 g 0.0050 0.00128 g 0.0050 0.00128 g 0.0050	Lead	0.00236		0.0100	QN	n	б	0.0100	QN	ח	00	0.0100	Q	ס	б
bdenum 0.000800 0.00175 <t< td=""><td>bdenum 0.000800 0.0017 0.00500 0.0114 g 0.0050 0.0128 g 0.0050 ssium 0.00561 0.00560 ND U g 0.0050 0.00919 g 0.0050 inium 0.00295 0.0150 ND U g 0.015</td><td>Magnesium</td><td>0.00328</td><td></td><td></td><td></td><td></td><td></td><td>0.10</td><td>3.42</td><td></td><td>D</td><td></td><td></td><td></td><td></td></t<>	bdenum 0.000800 0.0017 0.00500 0.0114 g 0.0050 0.0128 g 0.0050 ssium 0.00561 0.00560 ND U g 0.0050 0.00919 g 0.0050 inium 0.00295 0.0150 ND U g 0.015	Magnesium	0.00328						0.10	3.42		D				
Said Continue Co	ell 0.00137 0.00500 ND U g 0.00500 0.00919 g 0.00500 ssium 0.0561 ND U g 0.0150 D G 0.0150 ulm 0.000314 0.0100 ND U g 0.0150 U g 0.0150 U g 0.0150 ulm 0.000848 0.0100 ND U g 0.0100 0.0641 g 0.0100	Molybdenum	0.000800		0.0050	0.0111		б	0.0050	0.0128		D	0.0050	0.0175		Б
ssium 0.0561 ND 0.50 2.33 g 0.0150 ND U Goodsoo ND U g 0.0150 ND U g 0.0150 ND U Goodsoo ND U g 0.0150 ND U G ND U G 0.0150 ND U G ND U G 0.0150 ND U G 0.0150 <td>ssium 0.0561 ND U G.50 2.33 g 0.0150 nium 0.00295 ND U g 0.0150 ND U g 0.0150 ND U g 0.0150 ND U g 0.0150 B k 0.00500 um 0.00233 0.0150 ND U g 0.0150 ND U g 0.0150 U g</td> <td>Nickel</td> <td>0.00137</td> <td></td> <td>0.0000.0</td> <td>QV</td> <td>n</td> <td>б</td> <td>0.00500</td> <td>0.00919</td> <td></td> <td>Б</td> <td>0.00500</td> <td>2</td> <td>ס</td> <td>D</td>	ssium 0.0561 ND U G.50 2.33 g 0.0150 nium 0.00295 ND U g 0.0150 ND U g 0.0150 ND U g 0.0150 ND U g 0.0150 B k 0.00500 um 0.00233 0.0150 ND U g 0.0150 ND U g 0.0150 U g	Nickel	0.00137		0.0000.0	QV	n	б	0.00500	0.00919		Б	0.00500	2	ס	D
nium 0.00295 0.0150 ND U g 0.0150 ND U g 0.0150 ND U D	nium 0.00295 ND U g 0.0150 ND U g 0.0150 ND U g 0.0150 ND U g 0.00500 0.00769 B K 0.00500 um 0.0192 0.0150 ND U g 0.0150 D g 0.0150 D g 0.0150 ium 0.000314 0.0055 0.108 U g 0.0150 D g 0.0150 idium 0.000848 0.0100 ND U g 0.0100 0.0641 g 0.0100 0.0100 0.0100 0.0100 0.0641 g 0.0100 g 0.0100	Potassium	0.0561						0.50	2.33		Б				
r 0.000400 0.00500 ND U g 0.00569 B k 0.00500 ND U um 0.0192 0.0150 ND U g 0.0150 ND U g 0.0150 ND U ND U D 0.0150 ND U D D 0.0150 ND D D D D D D D D D D D	r 0.000400 0.00500 ND U g 0.00500 0.00769 B k 0.00500 um 0.0192 0.0150 ND U g 0.0500 106 g 0.0150 lium 0.000233 0.0150 ND U g 0.0150 ND U g 0.0150 0.0981 g 0.0150 0.0050 0.00848 0.0100 ND U g 0.0100 0.0641 g 0.0100 0.01	Selenium	0.00295		0.0150	QV	ם	D	0.0150	Q	n	б	0.0150	Q	ס	D
um 0.0192 MD U G.0500 106 g 0.0150 ND U G.0150 ND U <td>um 0.0192 0.0150 106 g 0.0150 ium 0.00233 0.0150 ND U g 0.0150 ND U g 0.0150 0.0150 Idium 0.000314 0.005 0.0108 U g 0.0100 0.0050 0.0050 0.000848 0.0100 ND U g 0.0100 0.0641 g 0.0100</td> <td>Silver</td> <td>0.000400</td> <td></td> <td>0.00500.0</td> <td>QN</td> <td>ס</td> <td>0</td> <td>0.00500</td> <td>0.00769</td> <td>æ</td> <td>¥</td> <td>0.00500</td> <td>Q</td> <td>ס</td> <td>D</td>	um 0.0192 0.0150 106 g 0.0150 ium 0.00233 0.0150 ND U g 0.0150 ND U g 0.0150 0.0150 Idium 0.000314 0.005 0.0108 U g 0.0100 0.0050 0.0050 0.000848 0.0100 ND U g 0.0100 0.0641 g 0.0100	Silver	0.000400		0.00500.0	QN	ס	0	0.00500	0.00769	æ	¥	0.00500	Q	ס	D
lum 0.00233 0.0150 ND U g 0.0150 ND U g 0.0150 0.0050 0.0056 0.0050 0.0050 0.0056 0.0056 0.0050 0.0056 0.0056 0.0050 0.0056	ium 0.00233 0.0150 ND U g 0.0150 ND U g 0.0150 U g 0.0150 U g 0.0150 U g 0.0150 0.0050 0.0050 0.000348 0.0100 ND U g 0.0100 0.0641 g 0.0100 0.000348 0.0100 ND U g 0.0100 g 0.0100	Sodium	0.0192						0.500	106		Б				
Idium 0.000314 0.005 0.108 g 0.0050 0.0981 g 0.0050 0.0765 U 0.000848 0.0100 ND U g 0.0100 ND U	Idium 0.000314 0.005 0.108 g 0.0050 0.0981 g 0.0050 0.000848 0.0100 ND U g 0.0100 g 0.0100	Thallium	0.00233		0.0150	Q	0	6	0.0150	QN	n	Б	0.0150	Q	ס	0
0.000848 0.0100 ND U g 0.0100 g 0.0100 ND U	0.000848 0.0100 ND U g 0.0100 0.0641 g 0.0100 0.0000848	Vanadium	0.000314		0.005	0.108		Б	0.0050	0.0981		Б	0.0050	0.0765		Б
		Zinc	0.000848		0.0100	Q	O	б	0.0100	0.0641		D	0.0100	Q	ם	6

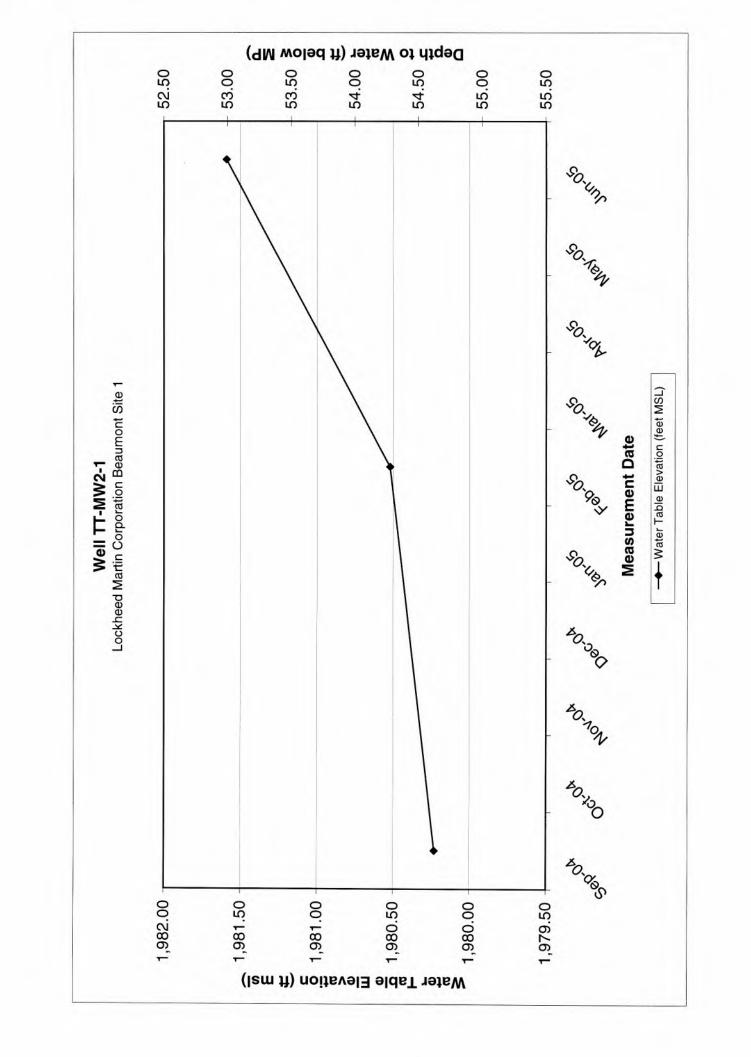
State 2 State St	Lockheed Beaumont							Table C							
The Matheust SW2010A Market Marke	Site: 2						Anal	vtical Data	Summary						
Field ID: Field ID: TI-MW2-1 Field ID	Extraction Method: SW3010A						EP4	Method S	W6010B						
Third color	Analytical Method: SW6010B														
The part of the	Matrix: Water														
Field Discrete Fiel	Units: mg/L			3											
Field ID Field ID TT-MW2-1 Field ID TT-MW2-1 Field ID Field ID TT-MW2-2 C6-07-0439 C6-07-															
Thickline Fleid ID. Thickline Thic			Envi	ironmental	Samples										
SDG: SDG: C6-77-0429 C6		Field	0	-	T-MW2-1				TT-MW2-1				TT-MW2-3		
MDL		SDS	-	10	5-07-0439				05-07-0439				05-07-0439		
MDL POL Result Vaildity Comments POL Result Vaildity Comments POL Result Comments POL Result Comments POL P		Batch	D:	0	50711L07				050711L07				050711L07		
Control Cont	Parameters			QL QL	Result	Validity	Comments		Result	Validity	Comments		Result	Validity	Validity Comments
National Colored National Na				7	Jufiltered)				(Filtered)				(Unfiltered)		
C 0,000208 0,0100 ND U g 0,0100 ND 0,0100 ND III 0,000719 0,000719 0,000710 0,0209 0,0100 0,0132 U g 0,0100 0,0145 III 0,000718 0,000100 ND U g 0,0100 ND 0,0146 ND 0,0146 ND 0,0146 ND 0,0140 ND 0,0146 ND 0,0140 ND 0,0146 ND 0,0146 ND 0,0140 0,0140 0,0140 0,0140 0,0140 0,0140 0,0140	Antimony	0.00209	0.0	150	Q.	ס	01	0.0150	Q	כ	07	0.0150	Q	5	0
Control	Arsenic	0.00308	0.0	100	Q.	D	0	0.0100	Q.	ס	0	0.0100	N	0	0.
um 0,000176 0,00100 ND U g 0,00100 ND U g 0,00100 ND U G 0,00500 ND ND U g 0,00500 ND U g 0,00500 ND U g 0,00500 ND U g 0,00500 <td>Barium</td> <td>0.000719</td> <td>0.0</td> <td>010</td> <td>0.209</td> <td></td> <td>0</td> <td>0.010</td> <td>0.132</td> <td></td> <td>50</td> <td>0.010</td> <td>0.145</td> <td></td> <td>Б</td>	Barium	0.000719	0.0	010	0.209		0	0.010	0.132		50	0.010	0.145		Б
umm 0,000350 0,00 ND U g 0,00500 ND 0,0 0,0 ND ND ND 0,0 0,0 ND ND <th< td=""><td>Beryllium</td><td>0.000176</td><td>0.00</td><td>0100</td><td>N</td><td>n</td><td>0</td><td>0.00100</td><td>QN</td><td>n</td><td>Б</td><td>0.00100</td><td>Q</td><td>n</td><td>б</td></th<>	Beryllium	0.000176	0.00	0100	N	n	0	0.00100	QN	n	Б	0.00100	Q	n	б
mm 0.00832 0.1 794 g 0.00500 ND 0.1 93.2 lum 0.000350 0.00500 0.02099 g 0.00500 ND U g 0.00500 ND r 0.000506 0.00500 0.01024 g 0.00500 ND U g 0.00500 ND r 0.00236 0.0100 ND U g 0.00500 ND U g 0.00500 ND sium 0.00238 0.11 16.9 U g 0.00500 ND U g 0.00500 ND sium 0.00137 0.0050 ND U g 0.00500 ND U g 0.00500 ND im 0.00137 0.0050 0.0144 g 0.00500 ND U g 0.00500 ND im 0.00260 0.0144 U g 0.00500 ND U g 0.00500	Cadmium	0.000350	0.00	0200	QN	ס	б	0.00500	QN	ח	Б	0.00500	QN	ח	б
Image: British	Calcium	0.00932	0	1.1	79.4		б					0.1	93.2		b
Continue	Chromium	0.000350	0.0		0.0209		5	0.00500	QN	n	б	0.00500	Q	n	b
Control	Cobalt	0.000696	0.00		0.00634		6	0.00500	QN	ח	б	0.00500	Q	כ	б
sium 0.0100236 0.0100 ND g 0.0100 ND g 0.0100 ND 12.9 lenum 0.00328 0.1 16.9 g 0.00500 ND 0.1 12.9 lenum 0.000800 0.00500 0.0144 g 0.00500 ND U g 0.00500 ND lum 0.00541 0.0150 ND U g 0.0150 ND	Copper	0.00134	0.0		0.0112		б	0.00500	QN	ח	б	0.00500	Q	ס	g
Secondary Continue	Lead	0.00236	0.0	100	ND	ח	6	0.0100	ND	ח	6	0.0100	Q	כ	б
Control	Magnesium	0.00328	0	-	16.9		б					0.1	12.9		D
lum 0.00501 0.00501 0.00437 0.00561 0.00560 0.00560 ND U g 0.00560 ND 0.00500 ND Imm 0.00295 0.0150 ND U g 0.0150 ND U g 0.0150 ND Imm 0.000400 0.00500 ND U g 0.0150 ND ND ND ND ND 195 ND ND ND ND 0.500 ND	Molybdenum	0.000800	0.00	0200	ND	ח	6	0.00500	QN	ס	6	0.00500	Q	ח	б
lum 0.0561 0.50 3.51 g 0.0150 ND 2.92 Imm 0.00295 0.0150 ND U g 0.0150 ND U g 0.0150 ND n 0.00400 0.00500 ND U g 0.0150 ND ND n 0.0023 0.0150 ND U g 0.0150 ND ND nm 0.000314 0.0150 ND U g 0.0150 ND ND nm 0.000314 0.0100 0.0257 g 0.00500 ND U g 0.0150 ND nm 0.000348 0.0100 0.0257 g 0.0100 ND U g 0.0100	Nickel	0.00137	0.0	020	0.0144		б	0.00500	QN	n	б	0.00500	DN	n	g
Imm 0.00295 0.0150 ND U g 0.0150 ND U g 0.0150 ND	Potassium	0.0561	0	20	3.51	7	6	1				0.50	2.92		6
10.000400 0.00500 ND U g 0.00100 0.00509 U g 0.00100 U g	Selenium	0.00295	0.0	150	ND	n	б	0.0150	QN	n	б	0.0150	QN	n	б
Jum 0.0192 0.5500 173 g 0.0150 195 lum 0.00233 0.0150 ND U g 0.0150 ND U g 0.0150 ND dlum 0.000848 0.0100 0.0388 B K 0.0100 ND U g 0.0100 0.0509	Silver	0.000400	0.00	0200	ND	ח	б	0.00500	QN	D	5	0.00500	ND	n	g
lum 0.00233 0.0150 ND U g 0.0150 ND U g 0.0150 ND U g 0.0150 ND U g 0.0150 ND ND <td>Sodium</td> <td>0.0192</td> <td>9.6</td> <td>200</td> <td>173</td> <td></td> <td>б</td> <td></td> <td></td> <td></td> <td></td> <td>0.500</td> <td>195</td> <td></td> <td>g</td>	Sodium	0.0192	9.6	200	173		б					0.500	195		g
dlum 0.000314 0.0050 0.00500 ND U g 0.00500 ND 0.000848 0.0100 0.0388 B k 0.0100 U g 0.0100 0.0509	Thallium	0.00233	0.0	150	ND	n	б	0.0150	QN	n	6	0.0150	ND	n	g
0.000848 B K 0.0100 U g 0.0100 0.0509	Vanadium	0.000314	0.0		0.0257		б	0.00500	QN	ח	Б	0.00500	Q	ח	б
	Zinc	0.000848	0.0	100	0.0388	В	×	0.0100	QN	ס	6	0.0100	0.0509	BJ	f, K
			+												
			-	-											

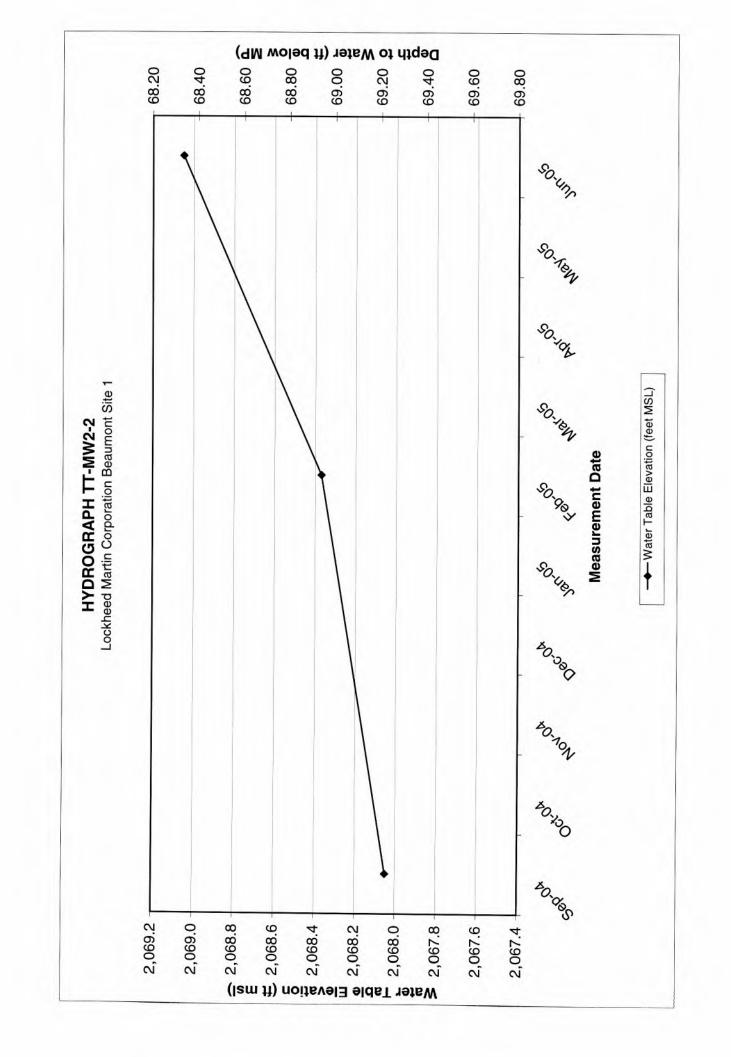
Extraction Method: SWEGTORA EPA Method SWEGTORA EPA Method: SW	Lockheed Beaumont							Table C							
Fig. 64 Fig. 65 Fig.	Site: 2						Analy	rtical Data	Summary						
Kr. Well whole Sweding Find Fin	Extraction Method: SW3010A						EPA	Method S	W6010B						
ix. Walfer Find III. Environmental Samples Find III. TT-AMV2-103 Find III.	Analytical Method: SW6010B														
Figure F	Matrix: Water														
Field D: SDG:	Units: mg/L:														
Fleuich Fleu															
Timestate Field ID: Timestate Field ID: Timestate Time			E	vironment	al Samples										
SpG: SpG: SpG: SpG: SpG: SpG: SpG: SpG:		Ž	Jd ID:		TT-MW2-3				TT-MW2-103				TT-MW2-103		
Maintenant Mai		0)	DG:		05-07-0439				05-07-0439				05-07-0439		
Main		Bai	tch ID:		050711L07				050711L07				050711L07		
Comparison Com	Parameters	MDL		POL	Result	Validity	Comments	Pal	Result	Validity	Comments	Pal	Result	Validity	Comments
December Concessed Control Concessed Control Concessed Control Concessed Control Control Concessed Control Con					(Filtered)				(Unfiltered)				(Filtered)		
10,0000014 0,0000014 0,000014 0,000014 0,000014 0,00014 0,000014 0,000014 0,000014 0,000014 0,000014 0,000014 0,000014 0,000014 0,000014 0,0000014 0,0000014 0,00000014 0,00	Antimony	0.00209	o'	0150	QN	D	D	0.0150	Q	D	01	0.0150	QN	0	50
High Control Control	Arsenic	0.00308	Ö	0100	QN	n	0:	0.0100	Q	ח	0	0.0100	Q	כ	Б
Initiation	Barium	0.000719	0	010	0.138		0	0.010	0.143		0	0.010	0.137		б
December 0,000356 0,00550 ND U g 0,00500 ND U g 0,00500 ND U U G 0,00500 ND U	Beryllium	0.000176	0.0	00100	ND	n	6	0.00100	QN	n	б	0.00100	QN	ח	б
Marie 0.00635 0.00550 ND U g 0.00550	Cadmium	0.000350	0.0	00200	QN	n	6	0.00500	QN	n	6	0.00500	QN	n	б
Marie 0,000550 ND U g 0,00550 N	Calcium	0.00932						0.1	89.3		Б				
10,000,000,000,000,000,000,000,000,000,	Chromium	0.000350	0.0	00200	QN	n	б	0.00500	QN	n	Б	0.00500	QN	ח	b
Continue	Cobalt	0.000696	0.0	00200	QN	n	б	0.00500	ND	n	б	0.00500	QN	n	б
1	Copper	0.00134	0.0	00200	Q	n	D	0.00500	Q	ס	D	0.00500	Q	n	6
12.6 12.6	Lead	0.00236	0	0100	Q	ם	б	0.0100	Q	ס	D	0.0100	Q	n	6
bdenum 0.000800 0.00500 ND U g 0.00500 ND U	Magnesium	0.00328						0.1	12.6		g				
Salum	Molybdenum	0.000800	0.0	00200	ND	n	6	0.00500	ND	ח	D	0.00500	Q	n	ð
ssium 0.0561 ND U g 0.50750 ND U g 0.0150 ND U g 0.00500 ND U g 0.0150 ND <td>Nickel</td> <td>0.00137</td> <td>0.0</td> <td>00200</td> <td>ND</td> <td>n</td> <td>б</td> <td>0.00500</td> <td>ND</td> <td>n</td> <td>б</td> <td>0.00500</td> <td>QN</td> <td>n</td> <td>6</td>	Nickel	0.00137	0.0	00200	ND	n	б	0.00500	ND	n	б	0.00500	QN	n	6
nium 0.00295 ND U g 0.0150 ND	Potassium	0.0561						0.50	2.73		D				
r 0.000400 ND U g 0.00500 ND U G.00500 ND U D	Selenium	0.00295	0	0150	QN	n	5	0.0150	QN	ח	50	0.0150	QN	ח	D
um 0.0192 ND U g 0.0150 NB U g 0.0150 ND U g 0.0150 ND U g 0.0150 ND U Q 0.0150 ND	Silver	0.000400	0.0	00200	QN.	n	5)	0.00500	QN	ס	5	0.00500	QN	ח	б
ium 0.00233 0.0150 ND U g 0.0150 ND U g 0.0150 ND U U G 0.00500 ND U U U U U U U U U U U U U U U U U U	Sodium	0.0192						0.500	186		Б				
Indiam 0.000314 0.00500 ND U g 0.00500 ND U g 0.00500 ND U O	Thallium	0.00233	0	0150	QN	n	6	0.0150	Q	כ	ס	0.0150	QN	כ	6
0.000848 0.0100 0.0309 BJ f,k 0.0100 0.0207 BJ f,k 0.0100 0.0259 B	Vanadium	0.000314	0.0	00200	Q	ם	D	0.00500	Q	5	ס	0.00500	Q	ח	б
	Zinc	0.000848	0	0100	0.0309	ВЭ	f, K	0.0100	0.0207	ВЭ	f, K	0.0100	0.0259	В	×
				-											

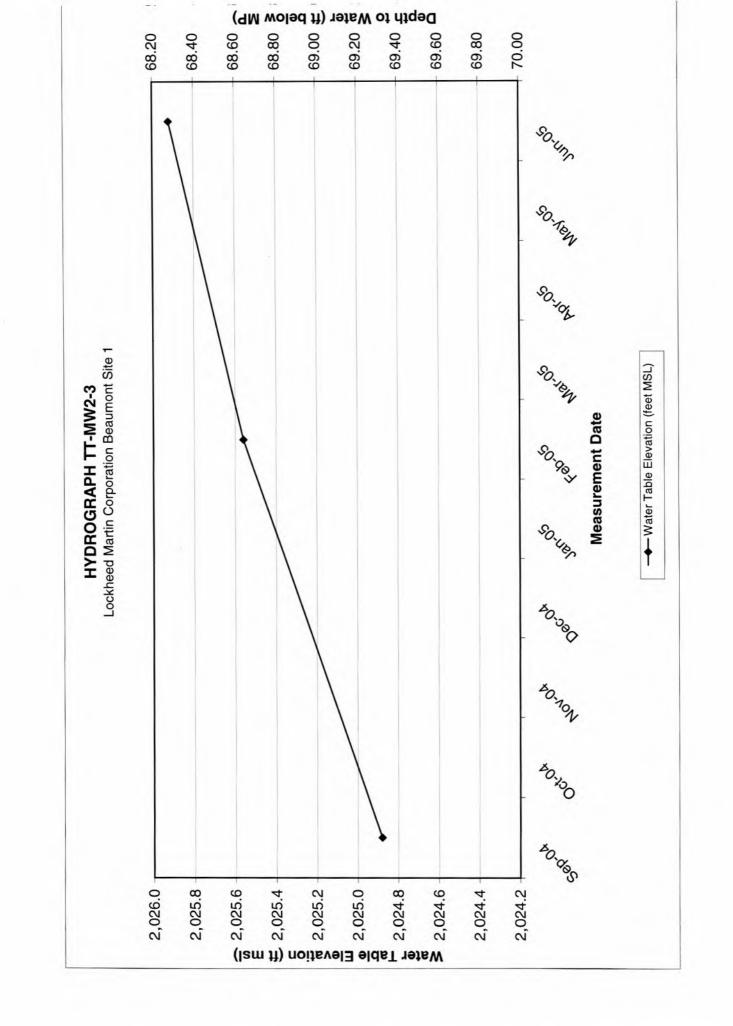
Lockheed Beaumont					Ta	Table D						
Site: 2					Analytical Data Summary	Data Sum	ımary					
Extraction Method: SW7470A					EPA Method SW7470A	od SW74	70A					
Analytical Method: SW7470A												
Matrix: Water												
Units: mg/L												
		Envil	Environmental Samples	uples								
		2										
		Fleid ID:			Z-ZMM-1					11-MWZ-4D		
		SDG:			05-07-0334					05-07-0334		
Parameters	MDL		Batch ID	Pal	Result	Validity	Validity Comments	Batch ID	PaL	Result	Validity	Validity Comments
					(Unfiltered)					(Unfiltered)		
Mercury	0.0000672	2	050708L02 0.000500	0.000500	Q	ס	Б	050708L02 0.000500	0.0000500	Q	D	ס

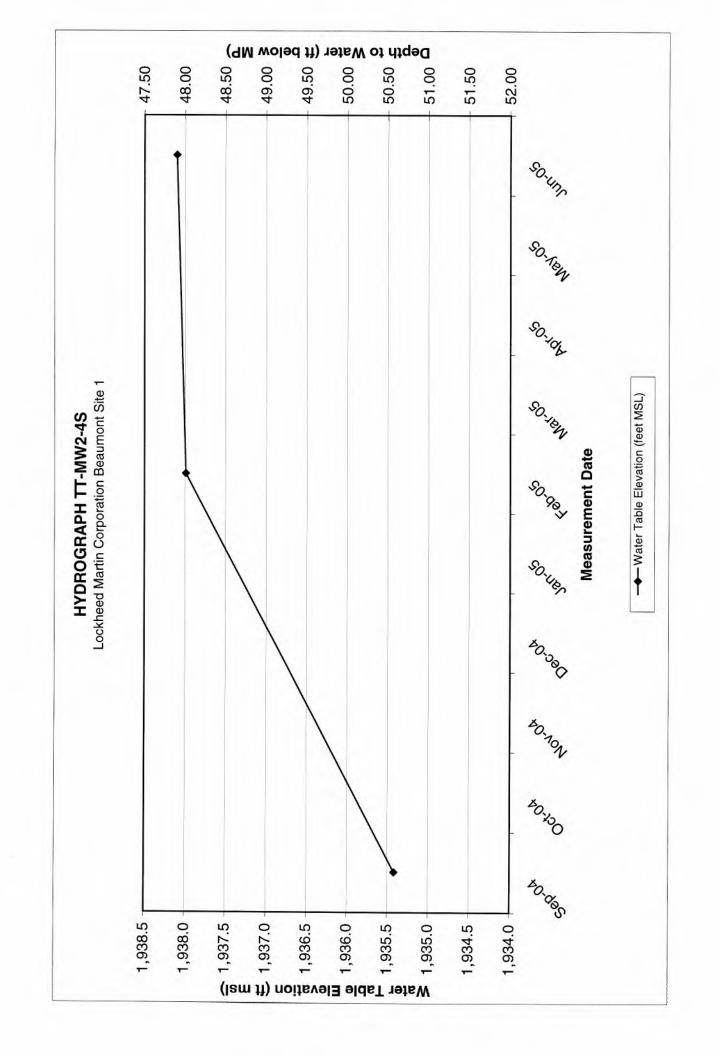
Lockheed Beaumont					Ta	Table D			
Site: 2					Analytical [Jata Sum	mary		
Extraction Method: SW7470A					EPA Method SW7470A	od SW74	70A		
Analytical Method: SW7470A									
Matrix: Water									
Units: mg/L									
		Enviro	Environmental Samples	selc					
		Field ID:			TT-MW2-4S				
		SDG:			05-07-0334				
Parameters	MDL	J	Batch ID	Pal	Result	Validity	Validity Comments		
					(Unfiltered)				
Mercury	0.0000672		050708L02 0.000500	0.000500	2	>	б		

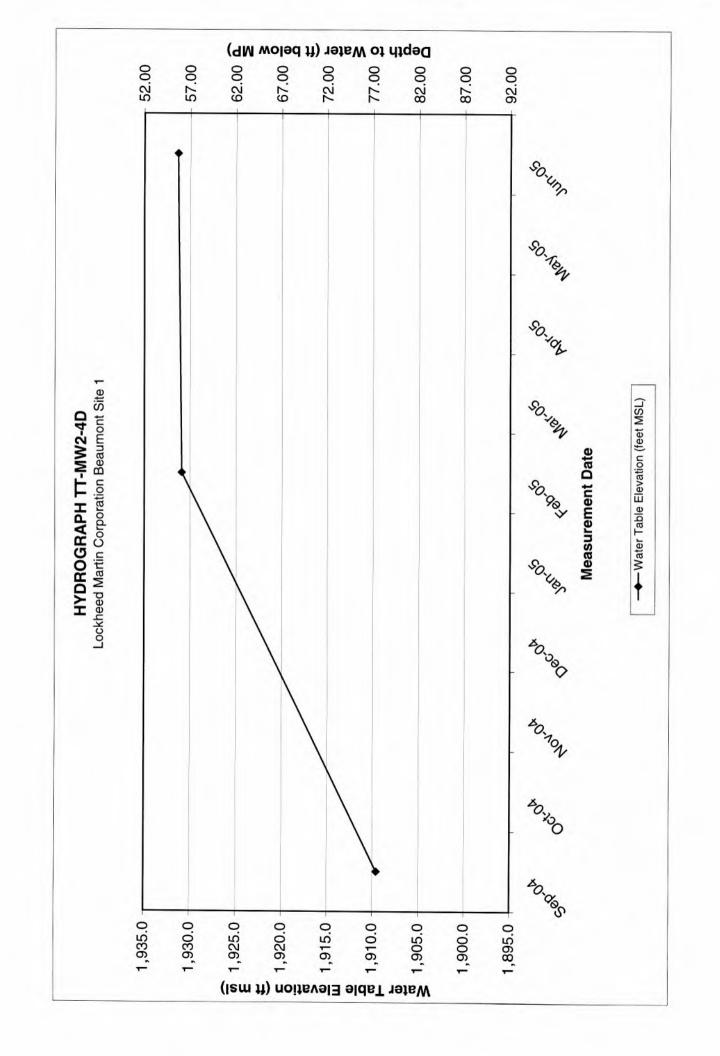
									mments			0	
									Validity Comments		=	,	
						The second secon	TT-MW2-3	05-07-0439	Result	(Unfiltered)	2	2	
									Pal		000000	0000	
									Batch ID		0507111 01	02071120	
	ımary	70A							Validity Comments			D)	
Table D	Data Surr	od SW74							Validity		=		
Ta	Analytical	EPA Method SW7470A					TT-MW2-1	05-07-0439	Result	(Unfiltered)	2	2	
						seld			Pal		00000	0.00000	
						Environmental Samples			Batch ID		000000	090/11501	
						Enviro	Field ID:	SDG:					
									MDL		0.0000	0.00000	
Lockheed Beaumont	Site: 2	Extraction Method: SW7470A	Analytical Method: SW7470A	Matrix: Water	Units: mg/L				Parameters		News Control	wercury	

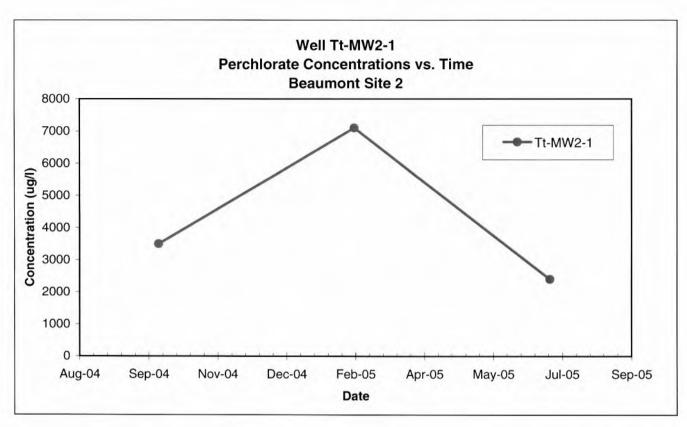

Lockheed Beaumont					Ta	Table D			
Site: 2					Analytical D	ata Sum	mary		
Extraction Method: SW7470A					EPA Method SW7470A	od SW74	70A		
Analytical Method: SW7470A									
Matrix: Water									
Units: mg/L									
		Envi	Environmental Samples	nples					
		Field ID:			TT-MW2-103				
		SDG:			05-07-0439				
Parameters	MDL		Batch ID	Pal	Result	Validity	Validity Comments		
					(Unfiltered)				
Mercury	0.0000672		050711L01 0.000500	0.000500	QV	n	б		

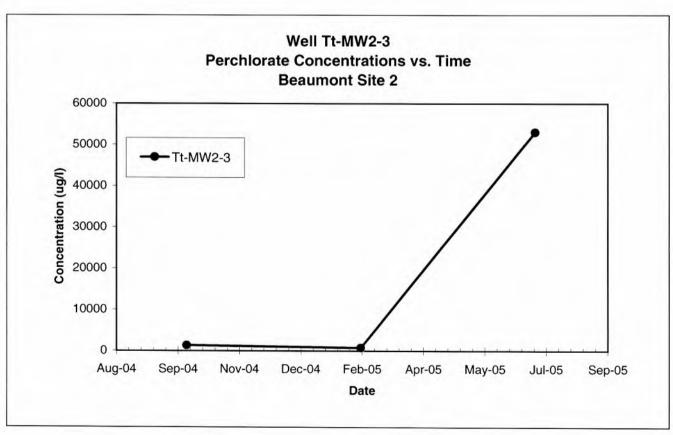

Lockheed Beaumont							Table E						
Site: 2						Analytical Data Summary	Data Sur	nmary					
Extraction Method: See Below						California Title 22 General Minerals	22 Gener	al Minerals					
Analytical Method: See Below													
Matrix: Water													
Units: mg/L													
				Environmental Samples	Samples								
			Field ID:			TT-MW2-2					TT-MW2-4D		
	EPA		SDG:			05-07-0334					05-07-0334		
Parameters	Method	MDL		Batch ID	Pol	Result	Validity	Validity Comments	Batch ID	Pal	Result	Validity	Validity Comments
Bicarbonate (as CaCO3)	A2320B	0.85		50711ALKD1	ro	130		0.	50711ALKD1	-	28		0.
Carbonate (as CaCO3)	A2320B	0.85		50711ALKD1	-	16		0	50711ALKD1	-	40		0
Dissolved Solids	E160.1	-	1 12	50708TDSD1	-	440		ס	50708TDSD1	-	220		0
Chloride	E300.0	0.055		050708L01	10	* 4		D	050708L01	S	20 **		6
Nitrate as N	E300.0	0.028		050708L01	0.10	Q	ח	ס	050708L01	0.10	Q	ס	6
Sulfate	E300.0	0.069		050708L01	10	* 26	В	¥	050708L01	2	29 **	В	×
Sample diluted at a factor of 10													
** Sample diluted at a factor of 5													

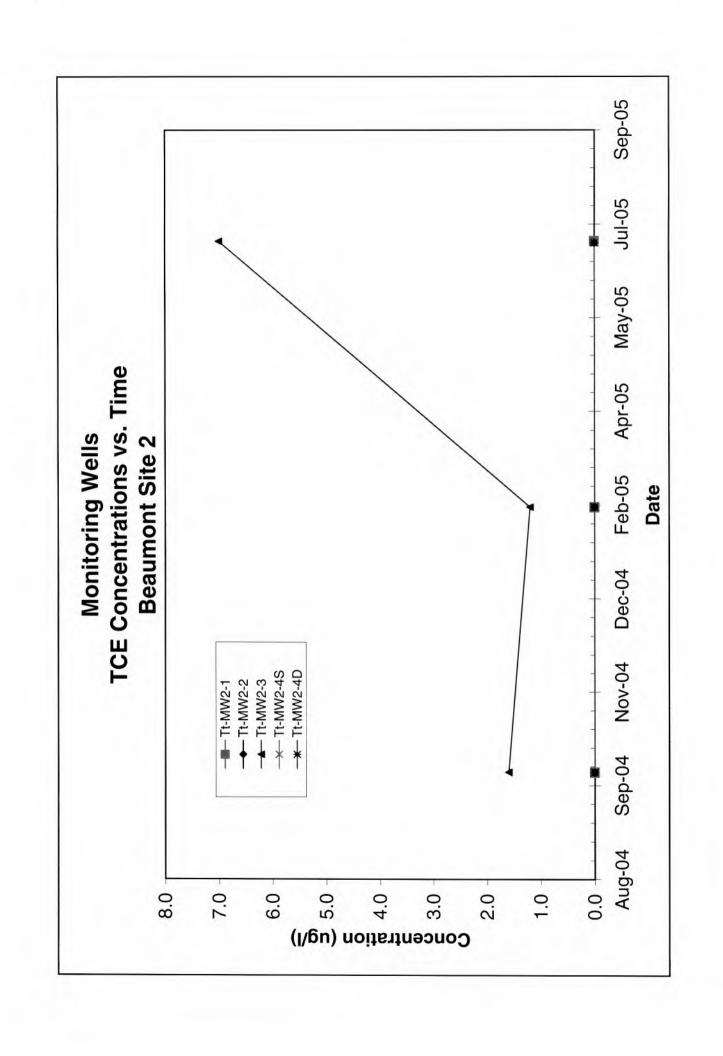

Sile; 2 Analytical Data Summary Extraction Method; See Below Analytical Method; See B	Lockheed Beaumont						ř	Table E		
ethod: See Below ethod:	Site: 2						Analytical	Data Sun	nmary	
ethod: See Below ethod: See GaCO3)	Extraction Method: See Below					J	Salifornia Title	22 Gener	al Minerals	
Environmental Samples EPA Eleid ID: Environmental Samples ET-IMW2-45	Analytical Method: See Below									
Environmental Samples Envi	Matrix: Water									
Result R	Units: mg/L									
(as CaCO3) A2320B 0.85 50711ALKD1 5 12 silds E300.0 0.028 0.028 0.050708L01 5 40°* uted at a factor of 5 40°* 0.069 0.069 0.056 0.050708L01 5 40°*				ū	vironmental S	amples				
(as CaCO3) A2320B 0.85 50711ALKD1 5 120 sids E160.1 1 50708TDSD1 1 300 Legon.0 0.055 50771ALKD1 5 120 E300.0 0.056 50708TDSD1 1 300 Legon.0 0.056 50708LD1 5 39* Legon.0 0.069 0.056 0.056 40* Led at a factor of 5 1 0.069 0.05708L01 5 40*			Fie	:QI PI			TT-MW2-4S			
(as CaCO3) A2320B 0.85 50711ALKD1 5 120 sids E160.1 1 650714ALKD1 5 120 sids E300.0 0.055 50714ALKD1 1 12 sids E300.0 0.055 650708LD1 1 300 E300.0 0.028 050708LD1 5 39** uted at a factor of 5 E300.0 0.069 050708LD1 5 40**		EPA	S	DG:			05-07-0334			
nate (as CaCO3) A2320B 0.85 50711ALKD1 5 120 ate (as CaCO3) A2320B 0.85 50711ALKD1 1 12 ed Solids E160.1 1 50708TDSD1 1 300 ed Solids E300.0 0.055 050708L01 5 39 * as N E300.0 0.069 050708L01 5 40 * B le diluted at a factor of 5 e diluted at a factor of 5 6 40 * B	Parameters	Method			Batch ID	Pal	Result	Validity	Comments	
nate (as CaCO3) A2320B 0.85 50711ALKD1 5 120 ate (as CaCO3) A2320B 0.85 50711ALKD1 1 12 ed Solids E160.1 1 50708TDSD1 1 300 e E300.0 0.055 050708L01 5 39* as N E300.0 0.069 050708L01 5 40* B le diluted at a factor of 5 e 050708L01 5 40* B										
ate (as CaCO3) A2320B 0.85 50711ALKD1 1 12 ed Solids E160.1 1 50708TDSD1 1 300 e E300.0 0.055 050708L01 5 39* as N E300.0 0.069 050708L01 5 40* B le diluted at a factor of 5 e 6050708L01 5 40* B	Bicarbonate (as CaCO3)	A2320B	0.85	20	0711ALKD1	2	120		б	
ed Solids	Carbonate (as CaCO3)	A2320B	0.85	2	0711ALKD1	-	12		D	
e Bandard Band	Dissolved Solids	E160.1	-	5	0708TDSD1	-	300		Б	
as N E300.0 0.028 050708L01 0.10 0.56 B E300.0 0.069 050708L01 5 40 B B ele diluted at a factor of 5	Chloride	E300.0	0.055		050708L01	2	. 68		Б	
le diluted at a factor of 5	Nitrate as N	E300.0	0.028		050708L01	0.10	0.56		D	
* Sample diluted at a factor of 5	Sulfate	E300.0	690.0		050708L01	2	* 04	В	¥	
	* Sample diluted at a factor of 5									

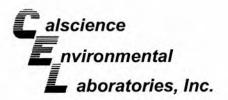

Lockheed Beaumont							Table E						
Site: 2						Analytical Data Summary	Data Sur	mmary					
Extraction Method: See Below						California Title 22 General Minerals	22 Genel	ral Minerals					
Analytical Method: See Below													
Matrix: Water													
Units: mg/L			3										
				Environmental Samples	Samples								
			Field ID:			TT-MW2-1					TT-MW2-3		
	EPA		SDG:			05-07-0439					05-07-0439		
Parameters	Method	MDL		Batch ID	Pal	Result	Validity	Validity Comments	Batch ID	PQL	Result	Validity	Validity Comments
Bicarbonate (as CaCO3)	A2320B	0.85		50711ALKD1	w	200		0.	50711ALKD1	-	06		ס
Carbonate (as CaCO3)	A2320B	0.85		50711ALKD1	1.0	Q	ס	0	50711ALKD1	1.0	QN	n	D
Dissolved Solids	E160.1	-		50712TDSD1	-	620		D	50712TDSD1	1	800		D
Chloride	E300.0	0.055		050708L02	20	180 *		D	050708L02	20	270 *		б
Nitrate as N	E300.0	0.028		050708L02	1.0	9.3 **		D	050708L02	1	12 **	٦	9
Sulfate	E300.0	0.069		050708L02	10	** 44	a	×	050708L02	10	51 **	ω	×
Sample diluted at a factor of 50													
** Sample diluted at a factor of 10													


						_	Table E			
Site: 2						Analytical Data Summary	Data Sur	nmary		
Extraction Method: See Below						California Title 22 General Minerals	22 Gener	ral Minerals		
Analytical Method: See Below										
Matrix: Water										
Units: mg/L										
				Environmental Samples	Samples					
			Field ID:			TT-MW2-103				
	EPA		SDG:			05-07-0439				
Parameters	Method	MDL		Batch ID	Pol	Result	Validity	Validity Comments		
Bicarbonate (as CaCO3)	A2320B	0.85		50711ALKD1	-	92		0		
Carbonate (as CaCO3)	A2320B	0.85		50711ALKD1	1.0	QN	n	0 0		
Dissolved Solids	E160.1	-		50712TDSD1	-	880		0		
Chloride	E300.0	0.055		050708L02	20	270 *		0		
Nitrate as N	E300.0	0.028		050708L02	-	12 **	7	0		
Sulfate	E300.0	690.0		050708L02	10	£0 ***	8	*		
* Sample diluted at a factor of 50										
** Sample diluted at a factor of 10										









July 18, 2005

Brenda Meyer Tetra Tech, Inc. 348 West Hospitality Lane, Ste 100 San Bernardino, CA 92408-3216

Subject: Calscience Work Order No.: 05-07-0334

Client Reference: LMC Beaumont Site 2 / TC #16392-01

Dear Client:

Enclosed is an analytical report for the above-referenced project. The samples included in this report were received 7/7/2005 and analyzed in accordance with the attached chain-of-custody.

Unless otherwise noted, all analytical testing was accomplished in accordance with the guidelines established in our Quality Assurance Program Manual, applicable standard operating procedures, and other related documentation. The original report of any subcontracted analysis is provided herein, and follows the standard Calscience data package. The results in this analytical report are limited to the samples tested and any reproduction thereof must be made in its entirety.

If you have any questions regarding this report, please do not hesitate to contact the undersigned.

Sincerely,

Calscience Environmental

Laboratories, Inc.

Jason Torres Project Manager

CA-ELAP ID: 1230

P ID: 1230 • NELAP ID: 03220CA

CSDLAC ID: 10109

SCAQMD ID: 93LA0830

7440 Lincoln Way, Garden Grove, CA 92841-1427 • TEL:(714) 895-5494 •

FAX: (714) 894-7501

Tetra Tech, Inc.

348 West Hospitality Lane, Ste 100

San Bernardino, CA 92408-3216

Date Received:

Date Neceiveu.

07/07/05

Work Order No:

05-07-0334

Preparation: Method:

Units:

EPA 3005A Filt. / EPA 7470A Filt.

EPA 6010B / EPA 7470A

Project: LMC Beaumont Site 2 / TC #16392-01

Page 1 of 3

mg/L

Client Sample Number				ab Sample Number	Date Collected	Matrix	Date Prepared	Date Analyzed	QC Ba	atch ID
LEB-070705-B		(05-07-03	334-2	07/07/05	Aqueous	07/08/05	07/11/05	050708	3L03
Comment(s): -Mercury was	analyzed on 7/8/200	5 1:37:40	PM with	batch 050	708L02					
Parameter	Result	RL	DF	Qual	Parameter		Resu	ilt RL	DF	Qual
Antimony	ND	0.0150	1		Mercury		ND	0.000500	1	
Arsenic	ND	0.0100	1		Molybdenum		ND	0.00500	1	
Barium	ND	0.0100	1		Nickel		ND	0.00500	1	
Beryllium	ND	0.00100	1		Selenium		ND	0.0150	1	
Cadmium	ND	0.00500	1		Silver		ND	0.00500	1	
Chromium	ND	0.00500	1		Thallium		ND	0.0150	1	
Cobalt	ND	0.00500	1		Vanadium		ND	0.00500	1	
Copper	ND	0.00500	1		Zinc		ND	0.0100	1	
Lead	ND	0.0100	1							
TT-MW2-4D			05-07-03	334-3	07/07/05	Aqueous	07/08/05	07/11/05	05070	3L03
Comment(s): -Mercury was	s analyzed on 7/8/200	05 1:42:13	PM with	batch 050	708L02					
Parameter	Result	RL	DF	Qual	Parameter		Resu	ult RL	DE	Qual
Antimony	ND	0.0150	1		Mercury		ND	0.000500		-
Arsenic	0.0807	0.01	1		Molybdenum		0.01		1	
Barium	0.0454	0.01	1		Nickel		ND.	0.00500	1	
Beryllium	ND	0.00100	1		Selenium		ND	0.0150	1	
Cadmium	ND	0.00500	1		Silver		ND	0.00500	1	
Chromium	ND	0.00500	1		Thallium		ND	0.0150	1	
Cobalt	ND	0.00500	1		Vanadium		0.10		1	
Copper	ND	0.00500	1		Zinc		ND	0.0100	1	
Lead	ND	0.0100	1				112	7217.157		
TT-MW2-4S			05-07-03	334-4	07/07/05	Aqueous	07/08/05	07/11/05	05070	BL03
Comment(s): -Mercury was	s analyzed on 7/8/200	05 1:46:37	PM with	batch 050	708L02					
Parameter	Result	RL	DF	Qual	Parameter		Resu	ult RL	DF	Qual
Antimony	ND	0.0150	1		Mercury		ND	0.000500		
Arsenic	0.0495	0.01	1		Molybdenum		0.01		1	
Barium	0.0774	0.01	1		Nickel		ND	0.00500	1	
Beryllium	ND	0.00100	1		Selenium		ND	0.0150	1	
Cadmium	ND	0.00500	1		Silver		ND	0.00500	1	
Chromium	ND	0.00500	1		Thallium		ND	0.0150	1	
Cobalt	ND	0.00500	1		Vanadium		0.07		1	
Copper	ND	0.00500	1		Zinc		ND	0.0100	1	
Lead	ND	0.0100	1					0.0.50		

RL - Reporting Limit

DF - Dilution Factor

Tetra Tech, Inc.

348 West Hospitality Lane, Ste 100

San Bernardino, CA 92408-3216

Date Received:

07/07/05

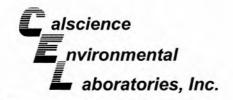
Work Order No:

05-07-0334

Preparation: Method:

EPA 3005A Filt. / EPA 7470A Filt.

Units:


EPA 6010B / EPA 7470A

mg/L

Project: LMC Beaumont Site 2 / TC #16392-01

Page 2 of 3

			Number	Collected	Matrix	Prepared	Analyzed	QC Ba	tch ID
		05-07-03	334-5	07/07/05	Aqueous	07/08/05	07/11/05	050708	BL03
analyzed on 7/8/200	05 1:50:59	PM with	batch 050	708L02					
Result	RL	DF	Qual	Parameter		Resu	t RL	DF	Qual
ND	0.0150	1		Mercury		ND	0.000500	1	
ND	0.0100	1		Molybdenum		ND	0.00500	1	
0.0433	0.01	1		Nickel		ND	0.00500	1	
ND	0.00100	1		Selenium		ND	0.0150	1	
ND	0.00500	1		Silver		ND	0.00500	1	
ND	0.00500	1		Thallium		ND	0.0150	1	
ND	0.00500	1		Vanadium		0.010	9 0.005	1	
ND	0.00500	1		Zinc		ND	0.0100	1	
ND	0.0100	1							
	Result ND ND 0.0433 ND ND ND ND ND ND	Result RL ND 0.0150 ND 0.0100 0.0433 0.01 ND 0.00100 ND 0.00500 ND 0.00500 ND 0.00500 ND 0.00500 ND 0.00500 ND 0.00500	Result RL DF ND 0.0150 1 ND 0.0100 1 0.0433 0.01 1 ND 0.00100 1 ND 0.00500 1	Result RL DF Qual ND 0.0150 1 ND 0.0100 1 0.0433 0.01 1 ND 0.00100 1 ND 0.00500 1	ND 0.0150 1 Mercury ND 0.0100 1 Molybdenum 0.0433 0.01 1 Nickel ND 0.00100 1 Selenium ND 0.00500 1 Silver ND 0.00500 1 Thallium ND 0.00500 1 Vanadium ND 0.00500 1 Zinc	Result RL DF Qual Parameter ND 0.0150 1 Mercury ND 0.0100 1 Molybdenum 0.0433 0.01 1 Nickel ND 0.00100 1 Selenium ND 0.00500 1 Silver ND 0.00500 1 Thallium ND 0.00500 1 Vanadium ND 0.00500 1 Zinc	Result RL DF Qual Parameter Result ND 0.0150 1 Mercury ND ND 0.0100 1 Molybdenum ND 0.0433 0.01 1 Nickel ND ND 0.00100 1 Selenium ND ND 0.00500 1 Silver ND ND 0.00500 1 Thallium ND ND 0.00500 1 Vanadium 0.010 ND 0.00500 1 Zinc ND	Result RL DF Qual Parameter Result RL ND 0.0150 1 Mercury ND 0.000500 ND 0.0100 1 Molybdenum ND 0.00500 0.0433 0.01 1 Nickel ND 0.00500 ND 0.00100 1 Selenium ND 0.0150 ND 0.00500 1 Silver ND 0.00500 ND 0.00500 1 Thallium ND 0.0150 ND 0.00500 1 Vanadium 0.0109 0.005 ND 0.00500 1 Zinc ND 0.0100	Result RL DF Qual Parameter Result RL DF ND 0.0150 1 Mercury ND 0.000500 1 ND 0.0100 1 Molybdenum ND 0.00500 1 0.0433 0.01 1 Nickel ND 0.00500 1 ND 0.00100 1 Selenium ND 0.0150 1 ND 0.00500 1 Silver ND 0.00500 1 ND 0.00500 1 Thallium ND 0.0150 1 ND 0.00500 1 Vanadium 0.0109 0.005 1 ND 0.00500 1 Zinc ND 0.0100 1

Tetra Tech, Inc.

348 West Hospitality Lane, Ste 100

San Bernardino, CA 92408-3216

Date Received:

07/07/05

Work Order No:

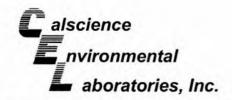
05-07-0334

Preparation:

EPA 3010A Total / EPA 7470A Total

Method:

EPA 6010B / EPA 7470A


mg/L

Units:

Project: LMC Beaumont Site 2 / TC #16392-01

Page 3 of 3

Client Sample Number				ab Sample Number	Date Collected	Matrix	Date Prepared	Date Analyzed	QC Ba	tch ID
Method Blank			099-04-0	008-2,010	N/A	Aqueous	07/08/05	07/08/05	050708	BL02
Parameter	Result	RL	DF	Qual						
Mercury	ND	0.00050	0 1							
Method Blank			097-01-0	003-5,092	N/A	Aqueous	07/08/05	07/11/05	050708	BL03
Parameter	Result	RL	DF	Qual	Parameter		Resul	t RL	DF	Qual
Antimony	ND	0.0150	1		Molybdenum		ND	0.00500	1	
Arsenic	ND	0.0100	1		Nickel		ND	0.00500	1	
Barium	ND	0.0100	1		Selenium		ND	0.0150	1	
Beryllium	ND	0.00100	1		Silver		ND	0.00500	1	
Cadmium	ND	0.00500	1		Thallium		ND	0.0150	1	
Chromium	ND	0.00500	1		Vanadium		ND	0.00500	1	
Cobalt	ND	0.00500	1		Zinc		ND	0.0100	1	
Copper	ND	0.00500	1		Lead		ND	0.0100	1	

Tetra Tech, Inc.

348 West Hospitality Lane, Ste 100

San Bernardino, CA 92408-3216

Date Received:

07/07/05

Work Order No:

05-07-0334

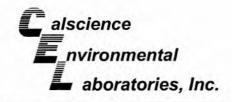
Preparation:

EPA 3010A Total / EPA 7470A Total

Method:

EPA 6010B / EPA 7470A

Units:


mg/L

Project: LMC Beaumont Site 2 / TC #16392-01

Page 1 of 3

Client Sample	Number			b Sample Number	Date Collected	Matrix	Date Prepared	Date Analyzed	QC Ba	tch ID
LEB-070705	-В		05-07-03	34-2	07/07/05	Aqueous	07/08/05	07/11/05	050708	L03
Comment(s):	-Mercury was analyzed on 7/8/200	05 1:35:24	PM with	batch 050	708L02					
Parameter	Result	RL	DF	Qual	Parameter		Result	RL	DF	Qual
Antimony	ND	0.0150	1		Nickel		ND	0.00500	1	
Arsenic	ND	0.0100	1		Selenium		ND	0.0150	1	
Barium	ND	0.0100	1		Silver		0.006	0 0.005	1	
Beryllium	ND	0.00100	1		Thallium		ND	0.0150	1	
Cadmium	ND	0.00500	1		Vanadium		ND	0.00500	1	
Chromium	0.00513	0.005	1		Zinc		ND	0.0100	1	
Cobalt	ND	0.00500	1		Calcium		ND	0.100	1	
Copper	ND	0.00500	1		Magnesium		ND	0.100	1	
Lead	ND	0.0100	1		Potassium		ND	0.500	1	
Mercury	ND	0.000500	1		Sodium		ND	0.500	1	
Molybdenum	ND	0.00500	1							
TT-MW2-4D			05-07-03	34-3	07/07/05	Aqueous	07/08/05	07/11/05	050708	BL03
Comment(s):	-Mercury was analyzed on 7/8/200	05 1:39:56	PM with	batch 050	708L02					
	Result	-							The last	Qua
Parameter Parameter	Result	RL	DF	Qual	<u>Parameter</u>		Result	RL	DF	Qua
Parameter Antimony	ND Result	0.0150	<u>DF</u>	Qual	Parameter Nickel			The second second	DF 1	Qua
			200	Qual	The second secon		0.01 ND	The second second		Qua
Antimony	ND	0.0150	200	Qual	Nickel		0.018 ND	30 0.005	1	Qua
Antimony Arsenic	ND 0.0964	0.0150 0.01	200	Qual	Nickel Selenium		0.018 ND	0.005 0.0150	1	Qua
Antimony Arsenic Barium	ND 0.0964 0.130	0.0150 0.01 0.01	200	Qual	Nickel Selenium Silver		0.018 ND 0.008	0.0150 0.0150 0.0150 0.0150	1 1 1	Qua
Antimony Arsenic Barium Beryllium	ND 0.0964 0.130 ND	0.0150 0.01 0.01 0.00100	200	Qual	Nickel Selenium Silver Thallium		0.018 ND 0.008 ND	0.005 0.0150 0.0150 0.0150 0.0150	1 1 1	Qua
Antimony Arsenic Barium Beryllium Cadmium Chromium	ND 0.0964 0.130 ND ND	0.0150 0.01 0.01 0.00100 0.00500	200	Qual	Nickel Selenium Silver Thallium Vanadium		0.018 ND 0.008 ND 0.16	0.005 0.0150 0.0150 0.0150 0.0150	1 1 1	Qua
Antimony Arsenic Barium Beryllium Cadmium Chromium Cobalt	ND 0.0964 0.130 ND ND 0.0396	0.0150 0.01 0.01 0.00100 0.00500 0.005	200	Qual	Nickel Selenium Silver Thallium Vanadium Zinc		0.018 ND 0.000 ND 0.16 0.066	30 0.005 0.0150 325 0.005 0.0150 7 0.005 00 0.01	1 1 1 1 1 1	Qua
Antimony Arsenic Barium Beryllium Cadmium Chromium Cobalt Copper	ND 0.0964 0.130 ND ND 0.0396 0.0135	0.0150 0.01 0.01 0.00100 0.00500 0.005 0.005 0.00500	1 1 1 1 1 1	Qual	Nickel Selenium Silver Thallium Vanadium Zinc Calcium		0.018 ND 0.000 ND 0.16 0.066 11.7	30 0.005 0.0150 325 0.005 0.0150 7 0.005 00 0.01 0.1	1 1 1 1 1 1	Qua
Antimony Arsenic Barium Beryllium Cadmium	ND 0.0964 0.130 ND ND 0.0396 0.0135	0.0150 0.01 0.01 0.00100 0.00500 0.005 0.005 0.00500	1 1 1 1 1 1 1 1	Qual	Nickel Selenium Silver Thallium Vanadium Zinc Calcium Magnesium		0.018 ND 0.000 ND 0.16 0.06 11.7 8.80	30 0.005 0.0150 325 0.005 0.0150 7 0.005 00 0.01 0.1	1 1 1 1 1 1 1	Qua

DF - Dilution Factor

Tetra Tech, Inc.

348 West Hospitality Lane, Ste 100

San Bernardino, CA 92408-3216

Date Received:

07/07/05

Work Order No:

05-07-0334

Preparation:

EPA 3010A Total / EPA 7470A Total

Method:

EPA 6010B / EPA 7470A

Units:

mg/L

Project: LMC Beaumont Site 2 / TC #16392-01

Page 2 of 3

Client Sample N	Number			ab Sample Number	Date Collected	Matrix	Date Prepared	Date Analyzed	QC Ba	atch ID
TT-MW2-4S		- 1	05-07-03	34-4	07/07/05	Aqueous	07/08/05	07/11/05	050708	3L03
Comment(s):	-Mercury was analyzed on 7/8/200	5 1:44:27	PM with	batch 050	708L02					
Parameter	Result	RL	DF	Qual	Parameter		Res	ult RL	DF	Qual
Antimony	ND	0.0150	1		Nickel		0	.0091 0.005	1	
Arsenic	0.0573	0.01	1		Selenium		ND	0.0150	1	
Barium	0.0502	0.01	1		Silver		0	.0076 0.005	1	
Beryllium	ND	0.00100	1		Thallium		ND	0.0150	1	
Cadmium	ND	0.00500	1		Vanadium		0	.0981 0.005	1	
Chromium	0.0223	0.005	1		Zinc		0	.0641 0.01	1	
Cobalt	0.0069	0.005	1		Calcium		7	.68 0.1	1	
Copper	ND	0.00500	1		Magnesium		3	.42 0.1	1	
Lead	ND	0.0100	1		Potassium		2	.33 0.5	1	
Mercury	ND	0.000500	1		Sodium		106	0.500	1	
Molybdenum	0.0128	0.005	1							
and the second second			05-07-0	224.5	07/07/05	Aqueous	07/08/05	07/11/05	05070	01.02
TT-MW2-2			05-07-0	334-3	01/01/03	Aqueous	01100103	07/11/03	050700	oLU3
	-Mercury was analyzed on 7/8/200		39.037.05		1000000	Aqueous	07/06/03	07/11/03	05070	SLU3
Comment(s):	-Mercury was analyzed on 7/8/200 Result		39.037.05		1000000	Aqueous	Res		DF	Qual
Comment(s): Parameter		5 1:48:48	PM with	batch 050	708L02	Aqueous			DF	
Comment(s): Parameter Antimony	Result	05 1:48:48 <u>RL</u>	PM with	batch 050	708L02 Parameter	Aqueous	Res	ult RL	DE	
Comment(s): Parameter Antimony Arsenic	<u>Result</u> ND	05 1:48:48 <u>RL</u> 0.0150 0.0100	PM with DF 1	batch 050	708L02 <u>Parameter</u> Nickel	Aqueous	Res ND ND	ult RL 0.00500	DF 1	
Comment(s): Parameter Antimony Arsenic Barium	Result ND ND	05 1:48:48 <u>RL</u> 0.0150 0.0100	PM with DF 1	batch 050	708L02 Parameter Nickel Selenium	Aqueous	Res ND ND	ult RL 0.00500 0.0150	DF 1	
Comment(s): Parameter Antimony Arsenic Barium Beryllium	Result ND ND 0.0107	05 1:48:48 <u>RL</u> 0.0150 0.0100 0.01	PM with DF 1	batch 050	708L02 Parameter Nickel Selenium Silver	Aqueous	Res ND ND 0 ND	ult RL 0.00500 0.0150 .0074 0.005	DF 1	
Comment(s): Parameter Antimony Arsenic Barium Beryllium Cadmium	Result ND ND 0.0107 ND ND	0.0150 0.0150 0.0100 0.0100 0.00100	PM with DF 1 1 1 1 1	batch 050	708L02 Parameter Nickel Selenium Silver Thallium	Aqueous	Res ND ND 0 ND	ult <u>RL</u> 0.00500 0.0150 .0074 0.005 0.0150	DF 1	
Comment(s): Parameter Antimony Arsenic Barium Beryllium Cadmium Chromium	Result ND ND 0.0107 ND ND	05 1:48:48 <u>RL</u> 0.0150 0.0100 0.0100 0.00100 0.00500	PM with DF 1 1 1 1 1 1 1	batch 050	708L02 Parameter Nickel Selenium Silver Thallium Vanadium	Aqueous	Res ND ND 0 ND	ult RL 0.00500 0.0150 .0074 0.005 0.0150 .0109 0.005 .0188 0.01	DF 1	
Comment(s): Parameter Antimony Arsenic Barium Beryllium Cadmium Chromium Cobalt	Result ND ND 0.0107 ND ND 0.0088	05 1:48:48 <u>RL</u> 0.0150 0.0100 0.00100 0.00500 0.00500	PM with DF 1 1 1 1 1 1 1 1	batch 050	708L02 Parameter Nickel Selenium Silver Thallium Vanadium Zinc	Aqueous	Res ND ND 0 ND 0 0	ult RL 0.00500 0.0150 .0074 0.005 0.0150 .0109 0.005 .0188 0.01	DF 1	
Comment(s): Parameter Antimony Arsenic Barium Beryllium Cadmium Chromium Cobalt Copper	Result ND ND 0.0107 ND ND ND ND 0.0088	05 1:48:48 <u>RL</u> 0.0150 0.0100 0.0100 0.00100 0.00500 0.0050 0.00500	PM with DF 1 1 1 1 1 1 1 1 1 1	batch 050	708L02 Parameter Nickel Selenium Silver Thallium Vanadium Zinc Calcium	Aqueous	Res ND ND 0 ND 0 0 10	ult RL 0.00500 0.0150 .0074 0.005 0.0150 .0109 0.005 .0188 0.01 .1 0.1	DF 1	
Comment(s): Parameter Antimony Arsenic Barium Beryllium Cadmium Chromium Cobalt Copper	Result ND ND 0.0107 ND	05 1:48:48 <u>RL</u> 0.0150 0.0100 0.0100 0.00100 0.00500 0.00500 0.00500 0.00500	PM with DF 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	batch 050	708L02 Parameter Nickel Selenium Silver Thallium Vanadium Zinc Calcium Magnesium	Aqueous	Res ND ND 0 ND 0 0 10	ult RL 0.00500 0.0150 .0074 0.005 0.0150 .0109 0.005 .0188 0.01 .1 0.1 .79 0.1 .22 0.5	DF 1	
Comment(s): Parameter Antimony Arsenic Barium Beryllium Cadmium Chromium Cobalt Copper Lead Mercury	Result ND ND 0.0107 ND	05 1:48:48 <u>RL</u> 0.0150 0.0100 0.00100 0.00500 0.00500 0.00500 0.00500 0.00500 0.00500	PM with DF 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	batch 050	708L02 Parameter Nickel Selenium Silver Thallium Vanadium Zinc Calcium Magnesium Potassium	Aqueous	Res ND ND 0 ND 0 0 10 11	ult RL 0.00500 0.0150 .0074 0.005 0.0150 .0109 0.005 .0188 0.01 .1 0.1 .79 0.1 .22 0.5	DE 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
	Result ND ND 0.0107 ND	05 1:48:48 <u>RL</u> 0.0150 0.0100 0.011 0.00100 0.00500 0.00500 0.00500 0.00500 0.00500 0.00500	PM with DE 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	batch 050	708L02 Parameter Nickel Selenium Silver Thallium Vanadium Zinc Calcium Magnesium Potassium	Aqueous	Res ND ND 0 ND 0 0 10 11	ult RL 0.00500 0.0150 .0074 0.005 0.0150 .0109 0.005 .0188 0.01 .1 0.1 .79 0.1 .22 0.5	DE 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Qual

DF - Dilution Factor

ND

0.000500

Mercury

Tetra Tech, Inc.

348 West Hospitality Lane, Ste 100

San Bernardino, CA 92408-3216

Date Received:

07/07/05

Work Order No:

05-07-0334

Preparation:

EPA 3010A Total / EPA 7470A Total

Method:

EPA 6010B / EPA 7470A

Units:

mg/L

Project: LMC Beaumont Site 2 / TC #16392-01

Page 3 of 3

Client Sample Number				ab Sample Number	Date Collected	Matrix	Date Prepared	Date Analyzed	QC Ba	atch ID
Method Blank			097-01-003-5,092	N/A	Aqueous	07/08/05	07/11/05	050708	3L03	
Parameter	Result	RL	DF	Qual	Parameter		Resul	t RL	DF	Qual
Antimony	ND	0.0150	1		Selenium		ND	0.0150	1	
Arsenic	ND	0.0100	1		Silver		ND	0.00500	1	
Barium	ND	0.0100	1		Thallium		ND	0.0150	1	
Beryllium	ND	0.00100	1		Vanadium		ND	0.00500	1	
Cadmium	ND	0.00500	1		Zinc		ND	0.0100	1	
Chromium	ND	0.00500	1		Calcium		ND	0.100	1	
Cobalt	ND	0.00500	1		Magnesium		ND	0.100	1	
Copper	ND	0.00500	1		Potassium		ND	0.500	1	
Lead	ND	0.0100	1		Sodium		ND	0.500	1	
Molybdenum	ND	0.00500	1		Nickel		ND	0.00500	1	

Tetra Tech, Inc.

348 West Hospitality Lane, Ste 100

San Bernardino, CA 92408-3216

Date Received:

Work Order No:

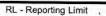
Preparation:

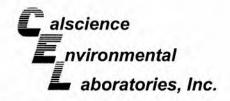
Method:

Units:

07/07/05 05-07-0334

EPA 5030B


EPA 8260B ug/L


ug

Project: LMC Beaumont Site 2 / TC #16392-01

Page 1 of 6

Client Sample Number				ab Sample Number	Date Collected	Matrix	Date Prepared	Date Analyzed	QC B	atch ID
LTB-070705			05-07-0	334-1	07/07/05	Aqueous	07/08/05	07/08/05	05070	8L01
Parameter	Result	RL	DF	Qual	Parameter		Result	RL	DF	Qual
Acetone	ND	10	1		1,3-Dichloropre	opane	ND	1.0	1	
Benzene	ND	0.50	1		2,2-Dichloropro	opane	ND	1.0	1	
Bromobenzene	ND	1.0	1		1,1-Dichloropre	opene	ND	1.0	1	
Bromochloromethane	ND	1.0	1		c-1,3-Dichloro	propene	ND	0.50	1	
Bromodichloromethane	ND	1.0	1		t-1,3-Dichlorop	ropene	ND	0.50	1	
Bromoform	ND	1.0	1		Ethylbenzene	12.00	ND	1.0	1	
Bromomethane	ND	10	1		2-Hexanone		ND	10	1	
2-Butanone	ND	10	1		Isopropylbenze	ene	ND	1.0	1	
n-Butylbenzene	ND	1.0	1		p-Isopropyltolu		ND	1.0	1	
sec-Butylbenzene	ND	1.0	1		Methylene Chle		ND	10	1	
ert-Butylbenzene	ND	1.0	1		4-Methyl-2-Per	ntanone	ND	10	1	
Carbon Disulfide	ND	10	1		Naphthalene		ND	10	1	
Carbon Tetrachloride	ND	0.50	1		n-Propylbenze	ne	ND	1.0	1	
Chlorobenzene	ND	1.0	1		Styrene		ND	1.0	1	
Chloroethane	ND	1.0	1		1,1,1,2-Tetracl	nloroethane	ND	1.0	1	
Chloroform	ND	1.0	1		1,1,2,2-Tetrach		ND	1.0	1	
Chloromethane	ND	10	1		Tetrachloroeth		ND	1.0	1	
2-Chlorotoluene	ND	1.0	1		Toluene	707	ND	1.0	1	
I-Chlorotoluene	ND	1.0	1		1,2,3-Trichloro	benzene	ND	1.0	1	
Dibromochloromethane	ND	1.0	1		1,2,4-Trichloro		ND	1.0	1	
1,2-Dibromo-3-Chloropropane	ND	5.0	1		1,1,1-Trichloro		ND	1.0	1	
,2-Dibromoethane	ND	1.0	1			-1,2,2-Trifluoroeth		10	1	
Dibromomethane	ND	1.0	1		1,1,2-Trichloro		ND	1.0	1	
,2-Dichlorobenzene	ND	1.0	1		Trichloroethen		ND	1.0	1	
,3-Dichlorobenzene	ND	1.0	1		Trichlorofluoro		ND	10	1	
,4-Dichlorobenzene	ND	1.0	1		1,2,3-Trichloro	110000000000000000000000000000000000000	ND	5.0	1	
Dichlorodifluoromethane	ND	1.0	1		1,2,4-Trimethy		ND	1.0	1	
,1-Dichloroethane	ND	1.0	1		1,3,5-Trimethy		ND	1.0	1	
,2-Dichloroethane	ND	0.50	1		Vinyl Acetate		ND	10	1	
,1-Dichloroethene	ND	1.0	1		Vinyl Chloride		ND	0.50	1	
-1,2-Dichloroethene	ND	1.0	1		p/m-Xylene		ND	1.0	1	
-1,2-Dichloroethene	ND	1.0	1		o-Xylene		ND	1.0	1	
,2-Dichloropropane	ND	1.0	1		Methyl-t-Butyl I	Ether (MTRF)	ND	1.0	1	
Surrogates:	REC (%)	Control Limits		Qual	Surrogates:	-aioi (WIDE)	REC (%		1	Qual
Dibromofluoromethane	101	74-140			1,2-Dichloroeth	ane-d4	99	74-146		
Toluene-d8	98	88-112			1,4-Bromofluor		99	74-110		

Tetra Tech, Inc.

348 West Hospitality Lane, Ste 100

Project: LMC Beaumont Site 2 / TC #16392-01

San Bernardino, CA 92408-3216

Date Received:

Work Order No:

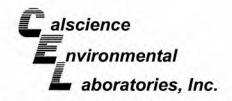
Preparation:

Method:

Units:

07/07/05 05-07-0334

EPA 5030B


EPA 8260B

ug/L

Page 2 of 6

Client Sample Number				ab Sample Number	Date Collected	Matrix	Date Prepared	Date Analyzed	QC B	atch ID
LEB-070705-B			05-07-03	334-2	07/07/05	Aqueous	07/08/05	07/08/05	05070	8L01
<u>Parameter</u>	Result	RL	DF	Qual	Parameter		Resul	t RL	DE	Qual
Acetone	10	10	1		1,3-Dichloropre	opane	ND	1.0	1	-
Benzene	ND	0.50	1		2,2-Dichloropre		ND	1.0	1	
Bromobenzene	ND	1.0	1		1,1-Dichloropre		ND	1.0	1	
Bromochloromethane	ND	1.0	1		c-1,3-Dichloro	propene	ND	0.50	1	
Bromodichloromethane	ND	1.0	1		t-1,3-Dichlorop	propene	ND	0.50	1	
Bromoform	ND	1.0	1		Ethylbenzene	430.4145	ND	1.0	1	
Bromomethane	ND	10	1		2-Hexanone		ND	10	1	
2-Butanone	ND	10	1		Isopropylbenze	ene	ND	1.0	1	
n-Butylbenzene	ND	1.0	1		p-Isopropyltolu		ND	1.0	1	
sec-Butylbenzene	ND	1.0	1		Methylene Chle		ND	10	1	
tert-Butylbenzene	ND	1.0	1		4-Methyl-2-Per		ND	10	1	
Carbon Disulfide	ND	10	1		Naphthalene	117117117	ND	10	1	
Carbon Tetrachloride	ND	0.50	1		n-Propylbenze	ne	ND	1.0	1	
Chlorobenzene	ND	1.0	1		Styrene		ND	1.0	1	
Chloroethane	ND	1.0	1		1,1,1,2-Tetracl	hloroethane	ND	1.0	1	
Chloroform	ND	1.0	1		1,1,2,2-Tetracl		ND	1.0	1	
Chloromethane	ND	10	1		Tetrachloroeth		ND	1.0	1	
2-Chlorotoluene	ND	1.0	1		Toluene		ND	1.0	1	
4-Chlorotoluene	ND	1.0	1		1,2,3-Trichloro	benzene	ND	1.0	1	
Dibromochloromethane	ND	1.0	1		1,2,4-Trichloro		ND	1.0	1	
1,2-Dibromo-3-Chloropropane	ND	5.0	1		1,1,1-Trichloro		ND	1.0	1	
1,2-Dibromoethane	ND	1.0	1			-1,2,2-Trifluoroetl		10	1	
Dibromomethane	ND	1.0	1		1,1,2-Trichloro		ND ND	1.0	1	
1,2-Dichlorobenzene	ND	1.0	1		Trichloroethen		ND	1.0	1	
1,3-Dichlorobenzene	ND	1.0	1		Trichlorofluoro		ND	10	1	
1,4-Dichlorobenzene	ND	1.0	1		1,2,3-Trichloro		ND	5.0	1	
Dichlorodifluoromethane	ND	1.0	1		1,2,4-Trimethy		ND	1.0	1	
1.1-Dichloroethane	ND	1.0	1		1,3,5-Trimethy		ND	1.0	1	
1.2-Dichloroethane	ND	0.50	1		Vinyl Acetate	IDC112C11G	ND	10	1	
1.1-Dichloroethene	ND	1.0	1		Vinyl Chloride		ND	0.50	- 1	
c-1,2-Dichloroethene	ND	1.0	1		p/m-Xylene		ND ND	1.0	1	
-1,2-Dichloroethene	ND	1.0	1		o-Xylene		ND	1.0	- 1	
I,2-Dichloropropane	ND	1.0	1		Methyl-t-Butyl I	Ether (MTRE)	ND ND	1.0	1	
Surrogates:	REC (%)	Control Limits		Qual	Surrogates:	circi (WIDC)	REC (9		1	Qual
Dibromofluoromethane	100	74-140			1,2-Dichloroeth	nane-d4	100	74-146		
Foluene-d8	98	88-112			1,4-Bromofluor		97	74-140		

Tetra Tech, Inc.

348 West Hospitality Lane, Ste 100

San Bernardino, CA 92408-3216

Date Received:

Work Order No:

Preparation:

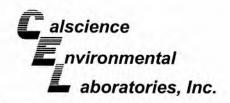
Method:

Units:

07/07/05 05-07-0334

EPA 5030B

EPA 8260B ug/L


Page 3 of 6

Project: LMC Beaumont Site 2 /	TC #16392-01
--------------------------------	--------------

Client Sample Number			L	ab Sample Number	Date Collected	Matrix	Date Prepared	Date Analyzed	QC B	atch ID
TT-MW2-4D			05-07-0	334-3	07/07/05	Aqueous	07/08/05	07/08/05	050708L01	
Parameter	Result	RL	DF	Qual	Parameter		Resu	ilt RL	DF	Qual
Acetone	ND	10	1		1,3-Dichloropr	opane	ND	1.0	1	255
Benzene	ND	0.50	1		2,2-Dichloropr	opane	ND	1.0	1	
Bromobenzene	ND	1.0	1		1,1-Dichloropr	opene	ND	1.0	1	
Bromochloromethane	ND	1.0	1		c-1,3-Dichloro		ND	0.50	1	
Bromodichloromethane	ND	1.0	1		t-1,3-Dichlorop	propene	ND	0.50	1	
Bromoform	ND	1.0	1		Ethylbenzene		ND	1.0	1	
Bromomethane	ND	10	1		2-Hexanone		ND	10	1	
2-Butanone	ND	10	1		Isopropylbenze	ene	ND	1.0	1	
n-Butylbenzene	ND	1.0	1		p-Isopropyltolu		ND	1.0	1	
sec-Butylbenzene	ND	1.0	1		Methylene Chl		ND	10	1	
ert-Butylbenzene	ND	1.0	1		4-Methyl-2-Pe		ND	10	1	
Carbon Disulfide	ND	10	1		Naphthalene	77787878	ND	10	1	
Carbon Tetrachloride	ND	0.50	1		n-Propylbenze	ne	ND	1.0	1	
Chlorobenzene	ND	1.0	1		Styrene		ND	1.0	1	
Chloroethane	ND	1.0	1		1,1,1,2-Tetrac	hloroethane	ND	1.0	1	
Chloroform	ND	1.0	1		1,1,2,2-Tetrac		ND	1.0	1	
Chloromethane	ND	10	1		Tetrachloroeth		ND	1.0	1	
2-Chlorotoluene	ND	1.0	1		Toluene	7117	ND	1.0	1	
1-Chlorotoluene	ND	1.0	1		1,2,3-Trichloro	benzene	ND	1.0	1	
Dibromochloromethane	ND	1.0	1		1,2,4-Trichloro		ND	1.0	1	
1,2-Dibromo-3-Chloropropane	ND	5.0	1		1,1,1-Trichloro	ethane	ND	1.0	1	
1,2-Dibromoethane	ND	1.0	1			-1,2,2-Trifluoroet		10	1	
Dibromomethane	ND	1.0	1		1,1,2-Trichloro		ND	1.0	1	
1,2-Dichlorobenzene	ND	1.0	1		Trichloroethen		ND	1.0	1	
1,3-Dichlorobenzene	ND	1.0	1		Trichlorofluoro	7	ND	10	1	
1,4-Dichlorobenzene	ND	1.0	1		1,2,3-Trichloro		ND	5.0	1	
Dichlorodifluoromethane	ND	1.0	1		1,2,4-Trimethy		ND	1.0	1	
1,1-Dichloroethane	ND	1.0	1		1,3,5-Trimethy		ND	1.0	1	
1,2-Dichloroethane	ND	0.50	1		Vinyl Acetate		ND	10	1	
1,1-Dichloroethene	ND	1.0	1		Vinyl Chloride		ND	0.50	1	
c-1,2-Dichloroethene	ND	1.0	1		p/m-Xylene		ND	1.0	1	
-1,2-Dichloroethene	ND	1.0	1		o-Xylene		ND	1.0	1	
,2-Dichloropropane	ND	1.0	1		Methyl-t-Butyl	Ether (MTRF)	ND	1.0	1	
Surrogates:	REC (%)	Control Limits		Qual	Surrogates:		REC (Qual
Dibromofluoromethane	102	74-140			1,2-Dichloroeth	nane-d4	99	74-146		
Toluene-d8	98	88-112			1,4-Bromofluor	obenzene	98	74-110		

RL - Reporting Limit ,

DF - Dilution Factor ,

Tetra Tech, Inc.

348 West Hospitality Lane, Ste 100

Project: LMC Beaumont Site 2 / TC #16392-01

San Bernardino, CA 92408-3216

Date Received:

Work Order No:

Preparation:

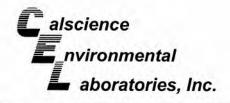
Method:

Units:

07/07/05 05-07-0334

EPA 5030B

EPA 8260B


ug/L

Page 4 of 6

Client Sample Number				ab Sample Number	Date Collected Matrix	Matrix	Date Prepared	Date Analyzed	QC Batch ID			
TT-MW2-4S			05-07-0334-4		07/07/05		07/08/05	07/08/05	050708L01			
Parameter	Result	RL	DF	Qual	Parameter		Resul	RL	DF	Qual		
Acetone	ND	10	1		1,3-Dichloropr	opane	ND	1.0	1			
Benzene	ND	0.50	1				ND	1.0	1			
Bromobenzene	ND	1.0	1		2,2-Dichloropropane 1,1-Dichloropropene c-1,3-Dichloropropene t-1,3-Dichloropropene Ethylbenzene 2-Hexanone Isopropylbenzene p-Isopropyltoluene Methylene Chloride 4-Methyl-2-Pentanone NI Naphthalene n-Propylbenzene Styrene 1,1,1,2-Tetrachloroethane Tetrachloroethene		ND	1.0	1			
Bromochloromethane	ND	1.0	1				ND	0.50	1			
Bromodichloromethane	ND	1.0	1				ND	0.50	1			
Bromoform	ND	1.0	1				ND	1.0	1			
Bromomethane	ND	10	1		And the second of the second of the		ND	10	1			
2-Butanone	ND	10	1		Isopropylbenzene p-Isopropyltoluene Methylene Chloride 4-Methyl-2-Pentanone Naphthalene n-Propylbenzene Styrene			1.0	1			
n-Butylbenzene	ND	1.0	1		p-Isopropyltoluene Methylene Chloride 4-Methyl-2-Pentanone Naphthalene n-Propylbenzene		ND	1.0	1			
sec-Butylbenzene	ND	1.0	1		Ethylbenzene 2-Hexanone Isopropylbenzene p-Isopropyltoluene Methylene Chloride 4-Methyl-2-Pentanone Naphthalene n-Propylbenzene Styrene 1,1,1,2-Tetrachloroethane 1,1,2,2-Tetrachloroethane Tetrachloroethene Toluene 1,2,3-Trichlorobenzene 1,2,4-Trichlorobenzene			10	1			
tert-Butylbenzene	ND	1.0	1				ND	10	1			
Carbon Disulfide	ND	10	1			The state of the s		10	1			
Carbon Tetrachloride	ND	0.50	1			ne		1.0	1			
Chlorobenzene	ND	1.0	1					1.0	1			
Chloroethane	ND	1.0	1		n-Propylbenzene Styrene 1,1,1,2-Tetrachloroethane 1,1,2,2-Tetrachloroethane			1.0	4			
Chloroform	ND	1.0	1		p-Isopropytoluene Methylene Chloride 4-Methyl-2-Pentanone Naphthalene n-Propylbenzene Styrene 1,1,1,2-Tetrachloroethane 1,1,2,2-Tetrachloroethane Tetrachloroethene Toluene 1,2,3-Trichlorobenzene 1,2,4-Trichlorobenzene 1,1,1-Trichloroethane 1,1,2-Trichloroethane			1.0	1			
Chloromethane	ND	10	1		The state of the s			1.0	1			
2-Chlorotoluene	ND	1.0	1			0110	ND	1.0	1			
4-Chlorotoluene	ND	1.0	1			henzene	ND	1.0	1			
Dibromochloromethane	ND	1.0	1				ND	1.0	1			
1,2-Dibromo-3-Chloropropane	ND	5.0	1				ND	1.0	1			
1,2-Dibromoethane	ND	1.0	1				ane ND	10	1			
Dibromomethane	ND	1.0	1		1,1,2-Trichloro		ND	1.0	- 1			
1,2-Dichlorobenzene	ND	1.0	1		Trichloroethen		ND	1.0	1			
1,3-Dichlorobenzene	ND	1.0	1		Trichlorofluoro		ND	10	1			
1,4-Dichlorobenzene	ND	1.0	1		1,2,3-Trichloro	UU 2 (0 M 2 (M 5 T))	ND	5.0				
Dichlorodifluoromethane	ND	1.0	1		1,2,4-Trimethy			7.57	1			
1,1-Dichloroethane	ND	1.0	1		1,3,5-Trimethy		ND	1.0	1			
1,2-Dichloroethane	ND	0.50	1		Vinyl Acetate	iberizerie	ND	1.0	1			
1,1-Dichloroethene	ND	1.0	1		Vinyl Chloride		ND	10	1			
c-1,2-Dichloroethene	ND	1.0	1		p/m-Xylene		ND	0.50	1			
t-1,2-Dichloroethene	ND	1.0	1		o-Xylene		ND	1.0	1			
1,2-Dichloropropane	ND	1.0	1			Ethor (MTDE)	ND	1.0	1			
Surrogates:	REC (%)	Control	1	Ouel	Methyl-t-Butyl E	Euler (MTBE)	ND	1.0	1	207		
		Limits		Qual	Surrogates:		REC (%	<u>Control</u> Limits		Qual		
Dibromofluoromethane	102	74-140			1,2-Dichloroeth	ane-d4	100	74-146				
Toluene-d8	97	88-112			1,4-Bromofluor	obenzene	97	74-110				

RL - Reporting Limit ,

DF - Dilution Factor ,

Tetra Tech, Inc.

348 West Hospitality Lane, Ste 100

San Bernardino, CA 92408-3216

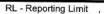
Date Received:

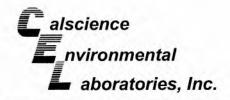
Work Order No:

Preparation:

Method:

Units:


07/07/05 05-07-0334 **EPA 5030B**


EPA 8260B ug/L

Project: LMC Beaumont Site 2 / TC #16392-01

Page 5 of 6

Client Sample Number		Lab Sample Number		Date Collected	Matrix	Date Prepared	Date Analyzed	QC Batch ID		
TT-MW2-2			05-07-0334-5		07/07/05	Aqueous	07/08/05	07/08/05	050708L01	
Parameter	Result	RL	DF	Qual	Parameter		Resul	RL	DF	Qual
Acetone	ND	10	1		1,3-Dichloropre	opane	ND	1.0	1	777
Benzene	ND	0.50	1		2,2-Dichloropro		ND	1.0	1	
Bromobenzene	ND	1.0	1		1,1-Dichloropre		ND	1.0	1	
Bromochloromethane	ND	1.0	1		c-1,3-Dichloro	propene	ND	0.50	1	
Bromodichloromethane	ND	1.0	1		t-1,3-Dichlorop	5-11-5-11-12-11-12-11-12-11-12-11-12-11-12-11-12-11-12-11-12-11-12-11-12-11-12-11-12-11-12-11-12-11-12-11-12-1	ND	0.50	1	
Bromoform	ND	1.0	1		Ethylbenzene		ND	1.0	1	
Bromomethane	ND	10	1		2-Hexanone		ND	10	1	
2-Butanone	ND	10	1		Isopropylbenze	ene	ND	1.0	1	
n-Butylbenzene	ND	1.0	1		p-Isopropyltolu		ND	1.0	1	
sec-Butylbenzene	ND	1.0	1		Methylene Chl		ND	10	1	
ert-Butylbenzene	ND	1.0	1		4-Methyl-2-Per		ND	10	1	
Carbon Disulfide	ND	10	1		Naphthalene		ND	10	1	
Carbon Tetrachloride	ND	0.50	1		n-Propylbenze	ne	ND	1.0	1	
Chlorobenzene	ND	1.0	1		Styrene		ND	1.0	1	
Chloroethane	ND	1.0	1		1,1,1,2-Tetracl	nloroethane	ND	1.0	1	
Chloroform	ND	1.0	1		1,1,2,2-Tetracl		ND	1.0	1	
Chloromethane	ND	10	1		Tetrachloroeth		ND	1.0	1	
2-Chlorotoluene	ND	1.0	1		Toluene	0110	ND	1.0	1	
1-Chlorotoluene	ND	1.0	1		1,2,3-Trichloro	henzene	ND	1.0	1	
Dibromochloromethane	ND	1.0	1		1,2,4-Trichloro		ND	1.0	1	
1,2-Dibromo-3-Chloropropane	ND	5.0	1		1,1,1-Trichloro		ND	1.0	1	
1,2-Dibromoethane	ND	1.0	1			-1,2,2-Trifluoroeth		10	1	
Dibromomethane	ND	1.0	1		1,1,2-Trichloro		ND	1.0	1	
1,2-Dichlorobenzene	ND	1.0	1		Trichloroethene		ND	1.0	4	
1,3-Dichlorobenzene	ND	1.0	1		Trichlorofluoro		ND	10	1	
,4-Dichlorobenzene	ND	1.0	1		1,2,3-Trichloro	11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ND	5.0	1	
Dichlorodifluoromethane	ND	1.0	1		1,2,4-Trimethy		ND	1.0	1	
,1-Dichloroethane	ND	1.0	1		1,3,5-Trimethy		ND	1.0	1	
,2-Dichloroethane	ND	0.50	1		Vinyl Acetate	DOI LOI IG	ND	1.0	1	
,1-Dichloroethene	ND	1.0	1		Vinyl Chloride		ND	0.50	1	
:-1,2-Dichloroethene	ND	1.0	1		p/m-Xylene		ND	1.0		
-1,2-Dichloroethene	ND	1.0	1		o-Xylene		ND	1.0	1	
,2-Dichloropropane	ND	1.0	1		Methyl-t-Butyl B	ther (MTRE)	ND	1.0	1	
Surrogates:	REC (%)	Control Limits		Qual	Surrogates:	-uici (WIDL)	REC (%		1	Qual
Dibromofluoromethane	100	74-140			1,2-Dichloroeth	ane-d4	100	74-146		
oluene-d8	98	88-112			1,4-Bromofluor		98	74-140		

Tetra Tech, Inc. 348 West Hospitality Lane, Ste 100 San Bernardino, CA 92408-3216 Date Received: Work Order No: Preparation: Method: Units: 07/07/05 05-07-0334 EPA 5030B EPA 8260B ug/L

Project: LMC Beaumont Site 2 / TC #16392-01

Page 6 of 6

Client Sample Number				ab Sample Number	Date Collected	Matrix	Date Prepared	Date Analyzed	QC B	atch ID
Method Blank			099-10-0	006-14,919	N/A	Aqueous	07/08/05	07/08/05	05070	8L01
<u>Parameter</u>	Result	RL	DF	Qual	Parameter		Resul	RL	DF	Qual
Acetone	ND	10	1		1,3-Dichloropr	opane	ND	1.0	1	
Benzene	ND	0.50	1		2,2-Dichloropr	The state of the s	ND	1.0	1	
Bromobenzene	ND	1.0	1		1,1-Dichloropr	opene	ND	1.0	1	
Bromochloromethane	ND	1.0	1		c-1,3-Dichloro		ND	0.50	1	
Bromodichloromethane	ND	1.0	1		t-1,3-Dichlorop	propene	ND	0.50	1	
Bromoform	ND	1.0	1		Ethylbenzene		ND	1.0	1	
Bromomethane	ND	10	1		2-Hexanone		ND	10	1	
2-Butanone	ND	10	1		Isopropylbenze	ene	ND	1.0	1	
n-Butylbenzene	ND	1.0	1		p-Isopropyltolu		ND	1.0	1	
sec-Butylbenzene	ND	1.0	1		Methylene Chl		ND	10	1	
ert-Butylbenzene	ND	1.0	1		4-Methyl-2-Pe		ND	10	1	
Carbon Disulfide	ND	10	1		Naphthalene		ND	10	1	
Carbon Tetrachloride	ND	0.50	1		n-Propylbenze	ene	ND	1.0	1	
Chlorobenzene	ND	1.0	1		Styrene		ND	1.0	1	
Chloroethane	ND	1.0	1		1,1,1,2-Tetrac	hloroethane	ND	1.0	1	
Chloroform	ND	1.0	1		1,1,2,2-Tetrac		ND	1.0	1	
Chloromethane	ND	10	1		Tetrachloroeth	ene	ND	1.0	1	
2-Chlorotoluene	ND	1.0	1		Toluene		ND	1.0	1	
1-Chlorotoluene	ND	1.0	1		1,2,3-Trichlord	benzene	ND	1.0	1	
Dibromochloromethane	ND	1.0	1		1,2,4-Trichlord	benzene	ND	1.0	1	
1,2-Dibromo-3-Chloropropane	ND	5.0	1		1,1,1-Trichlord	ethane	ND	1.0	1	
1,2-Dibromoethane	ND	1.0	1			-1,2,2-Trifluoroet		10	1	
Dibromomethane	ND	1.0	1		1,1,2-Trichlord		ND	1.0	1	
1,2-Dichlorobenzene	ND	1.0	1		Trichloroethen	e	ND	1.0	1	
1,3-Dichlorobenzene	ND	1.0	1		Trichlorofluoro		ND	10	1	
1,4-Dichlorobenzene	ND	1.0	1		1,2,3-Trichlord	11.100.00.100.100	ND	5.0	1	
Dichlorodifluoromethane	ND	1.0	1		1,2,4-Trimethy		ND	1.0	1	
1,1-Dichloroethane	ND	1.0	1		1,3,5-Trimethy		ND	1.0	1	
1,2-Dichloroethane	ND	0.50	1		Vinyl Acetate	CONTRACTOR SET	ND	10	1	
1,1-Dichloroethene	ND	1.0	1		Vinyl Chloride		ND	0.50	1	
-1,2-Dichloroethene	ND	1.0	1		p/m-Xylene		ND	1.0	1	
-1,2-Dichloroethene	ND	1.0	1		o-Xylene		ND	1.0	1	
1,2-Dichloropropane	ND	1.0	1		Methyl-t-Butyl	Ether (MTBE)	ND	1.0	1	
Surrogates:	REC (%)	Control Limits	7	Qual	Surrogates:		REC (%			Qual
Dibromofluoromethane	98	74-140			1,2-Dichloroet	hane-d4	96	74-146		
Toluene-d8	97	88-112			1,4-Bromofluo	robenzene	97	74-110		

RL - Reporting Limit ,

DF - Dilution Factor

Tetra Tech, Inc. 348 West Hospitality Lane, Ste 100 San Bernardino, CA 92408-3216 Date Received: Work Order No:

07/07/05 05-07-0334

Project: LMC Beaumont Site 2 / TC #16392-01

Page 1 of 2

Client Sample Number		Lab S	Sample Num	ber Da Colle		Matrix		
LEB-070705-B		05-	07-0334-2	07/07	7/05 A	queous		
Parameter_	Result	RL	DF	Qual	<u>Units</u>	Date Prepared	Date Analyzed	Method
Solids, Total Dissolved	8.0	1.0	1		mg/L	N/A	07/08/05	EPA 160.1
Chloride	ND	1.0	1		mg/L	N/A	07/08/05	EPA 300.0
Nitrate (as N)	ND	0.10	1		mg/L	N/A	07/08/05	EPA 300.0
Sulfate	2.3	1.0	1		mg/L	N/A	07/08/05	EPA 300.0
Perchlorate	ND	2.0	1		ug/L	N/A	07/08/05	EPA 314.0
Bicarbonate (as CaCO3)	3.1	1.0	1		mg/L	N/A	07/11/05	SM 2320B
Carbonate (as CaCO3)	ND	1.0	1		mg/L	N/A	07/11/05	SM 2320B
TT-MW2-4D		05-	07-0334-3	07/0	7/05 A	queous		
<u>Parameter</u>	Result	RL	DF	Qual	<u>Units</u>	Date Prepared	Date Analyzed	Method
Solids, Total Dissolved	220	1.0	1		mg/L	N/A	07/08/05	EPA 160.1
Chloride	20	5	5		mg/L	N/A	07/11/05	EPA 300.0
Nitrate (as N)	ND	0.10	1		mg/L	N/A	07/08/05	EPA 300.0
Sulfate	29	5	5		mg/L	N/A	07/11/05	EPA 300.0
Perchlorate	ND	2.0	1		ug/L	N/A	07/08/05	EPA 314.0
Bicarbonate (as CaCO3)	34	1.0	1		mg/L	N/A	07/11/05	SM 2320B
Carbonata (an CaCO2)	40	1.0	1		mg/L	N/A	07/11/05	SM 2320B
Carbonate (as CaCO3)								

RL - Reporting Limit ,

Solids, Total Dissolved

Bicarbonate (as CaCO3)

Carbonate (as CaCO3)

Chloride

Sulfate

Nitrate (as N)

Perchlorate

DF - Dilution Factor

300

0.56

39

40

ND

120

12

1.0

0.1

2.0

5.0

1.0

Qual - Qualifier

5

1

5

1

1

mg/L

mg/L

mg/L

mg/L

ug/L

mg/L

mg/L

N/A

N/A

N/A

N/A

N/A

N/A

N/A

07/08/05

07/11/05

07/08/05

07/11/05

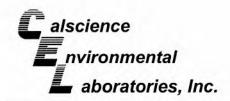
07/08/05

07/11/05

07/11/05

EPA 160.1

EPA 300.0


EPA 300.0

EPA 300.0

EPA 314.0

SM 2320B

SM 2320B

Tetra Tech, Inc. 348 West Hospitality Lane, Ste 100 San Bernardino, CA 92408-3216 Date Received: Work Order No:

07/07/05 05-07-0334

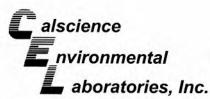
Project: LMC Beaumont Site 2 / TC #16392-01

Page 2 of 2

Client Sample Number		Lab S	ample Num	nber Da Colle		Matrix		
TT-MW2-2		05-0	7-0334-5	07/0	7/05 A	Aqueous		
<u>Parameter</u>	Result	<u>RL</u>	DF	Qual	<u>Units</u>	Date Prepared	Date Analyzed	Method
Solids, Total Dissolved	440	1.0	1		mg/L	N/A	07/08/05	EPA 160.1
Chloride	44	10	10		mg/L	N/A	07/08/05	EPA 300.0
Nitrate (as N)	ND	0.10	1		mg/L	N/A	07/08/05	EPA 300.0
Sulfate	92	10	10		mg/L	N/A	07/08/05	EPA 300.0
Perchlorate	ND	2.0	1		ug/L	N/A	07/08/05	EPA 314.0
Bicarbonate (as CaCO3)	130	5.0	1		mg/L	N/A	07/11/05	SM 2320B
Carbonate (as CaCO3)	16	1.0	1		mg/L	N/A	07/11/05	SM 2320B

Method Blank				N	Ά Α	queous		
<u>Parameter</u>	Result	<u>RL</u>	DF	Qual	<u>Units</u>	Date Prepared	Date Analyzed	Method
Chloride	ND	1.0	1		mg/L	N/A	07/08/05	EPA 300.0
Nitrate (as N)	ND	0.10	1		mg/L	N/A	07/08/05	EPA 300.0
Sulfate	ND	1.0	1		mg/L	N/A	07/08/05	EPA 300.0
Perchlorate	ND	2.0	1		ug/L	N/A	07/08/05	EPA 314.0

RL - Reporting Limit , 744



Tetra Tech, Inc. 348 West Hospitality Lane, Ste 100 San Bernardino, CA 92408-3216 Date Received: Work Order No: Preparation: Method: 07/07/05 05-07-0334 EPA 3010A Total EPA 6010B

Project LMC Beaumont Site 2 / TC #16392-01

Quality Control Sample ID	Matrix	Instrument	Date Prepared		Date Analyzed	MS/MSD Batch Number
TT-MW2-2	Aqueous	s ICP 3300	07/08/05		07/11/05	050708S03
<u>Parameter</u>	MS %REC	MSD %REC	%REC CL	RPD	RPD CL	Qualifiers
Antimony	98	101	80-120	3	0-20	
Arsenic	118	120	80-120	2	0-20	
Barium	113	113	80-120	0	0-20	
Beryllium	109	109	80-120	0	0-20	
Cadmium	117	117	80-120	0	0-20	
Chromium	110	110	80-120	0	0-20	
Cobalt	117	118	80-120	1	0-20	
Copper	103	103	80-120	0	0-20	
Lead	117	119	80-120	1	0-20	
Molybdenum	117	119	80-120	1	0-20	
Nickel	118	119	80-120	1	0-20	
Selenium	117	117	80-120	1	0-20	
Silver	112	112	80-120	0	0-20	
Thallium	116	117	80-120	1	0-20	
Vanadium	110	109	80-120	0	0-20	
Zinc	121	121	80-120	1	0-20	3
Calcium	4X	4X	80-120	4X	0-20	Q
Magnesium	155	181	80-120	5	0-20	3
Potassium	103	105	80-120	2	0-20	
Sodium	4X	4X	80-120	4X	0-20	Q

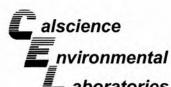
Mulma

Tetra Tech, Inc.

Date Received: 348 West Hospitality Lane, Ste 100 Work Order No: San Bernardino, CA 92408-3216 Preparation: Method:

07/07/05 05-07-0334 EPA 7470A Total **EPA 7470A**

Quality Control Sample ID	Matrix	Instrument	Date Prepared		Date Analyzed	MS/MSD Batch Number
TT-MW2-2	Aqueous	Mercury	07/08/05		07/08/05	050708S02
<u>Parameter</u>	MS %REC	MSD %REC	%REC CL	RPD	RPD CL	Qualifiers
Mercury	106	105	71-134	1	0-14	



Tetra Tech, Inc. 348 West Hospitality Lane, Ste 100 San Bernardino, CA 92408-3216 Date Received: Work Order No: Preparation: Method: 07/07/05 05-07-0334 EPA 5030B EPA 8260B

Project LMC Beaumont Site 2 / TC #16392-01

Quality Control Sample ID	Matrix	Instrument	Date Prepared		Date Analyzed	MS/MSD Batch Number
TT-MW2-2	Aqueous	GC/MS EE	07/08/05		07/08/05	050708S01
<u>Parameter</u>	MS %REC	MSD %REC	%REC CL	RPD	RPD CL	Qualifiers
Benzene	99	99	88-118	0	0-7	
Carbon Tetrachloride	94	95	67-145	1	0-11	
Chlorobenzene	101	101	88-118	1	0-7	
1,2-Dichlorobenzene	100	102	86-116	1	0-8	
1,1-Dichloroethene	98	97	70-130	1	0-25	
Toluene	99	99	87-123	0	0-8	
Trichloroethene	100	98	79-127	2	0-10	
Vinyl Chloride	87	88	69-129	1	0-13	
Methyl-t-Butyl Ether (MTBE)	94	92	71-131	2	0-13	
Tert-Butyl Alcohol (TBA)	77	84	36-168	10	0-45	
Diisopropyl Ether (DIPE)	97	96	81-123	1	0-9	
Ethyl-t-Butyl Ether (ETBE)	93	93	72-126	0	0-12	
Tert-Amyl-Methyl Ether (TAME)	92	91	72-126	1	0-12	
Ethanol	84	89	53-149	5	0-31	

Mulum

aboratories, Inc.

Tetra Tech, Inc. 348 West Hospitality Lane, Ste 100 San Bernardino, CA 92408-3216 Date Received: Work Order No:

N/A 05-07-0334

Method	Quality Control Sample ID	<u>Date</u> <u>Analyzed</u>	<u>Date</u> <u>Extracted</u>	MS% REC	MSD % REC	%REC CL	RPD	RPD CL	Qualifiers
EPA 300.0	TT-MW2-2	07/08/05	N/A	91	91	56-134	0	0-3	
EPA 300.0	TT-MW2-2	07/08/05	N/A	100	100	58-142	0	0-6	
EPA 300.0	TT-MW2-2	07/08/05	N/A	99	98	49-133	1	0-3	
EPA 314.0	TT-MW2-2	07/08/05	N/A	95	95	80-120	0	0-15	
	EPA 300.0 EPA 300.0 EPA 300.0	Method Sample ID EPA 300.0 TT-MW2-2 EPA 300.0 TT-MW2-2 EPA 300.0 TT-MW2-2	Method Sample ID Analyzed EPA 300.0 TT-MW2-2 07/08/05 EPA 300.0 TT-MW2-2 07/08/05 EPA 300.0 TT-MW2-2 07/08/05	Method Sample ID Analyzed Extracted EPA 300.0 TT-MW2-2 07/08/05 N/A EPA 300.0 TT-MW2-2 07/08/05 N/A EPA 300.0 TT-MW2-2 07/08/05 N/A	Method Sample ID Analyzed Extracted REC EPA 300.0 TT-MW2-2 07/08/05 N/A 91 EPA 300.0 TT-MW2-2 07/08/05 N/A 100 EPA 300.0 TT-MW2-2 07/08/05 N/A 99	Method Sample ID Analyzed Extracted REC REC EPA 300.0 TT-MW2-2 07/08/05 N/A 91 91 EPA 300.0 TT-MW2-2 07/08/05 N/A 100 100 EPA 300.0 TT-MW2-2 07/08/05 N/A 99 98	Method Sample ID Analyzed Extracted REC REC CL EPA 300.0 TT-MW2-2 07/08/05 N/A 91 91 56-134 EPA 300.0 TT-MW2-2 07/08/05 N/A 100 100 58-142 EPA 300.0 TT-MW2-2 07/08/05 N/A 99 98 49-133	Method Sample ID Analyzed Extracted REC REC CL RPD EPA 300.0 TT-MW2-2 07/08/05 N/A 91 91 56-134 0 EPA 300.0 TT-MW2-2 07/08/05 N/A 100 100 58-142 0 EPA 300.0 TT-MW2-2 07/08/05 N/A 99 98 49-133 1	Method Sample ID Analyzed Extracted REC REC CL RPD CL EPA 300.0 TT-MW2-2 07/08/05 N/A 91 91 56-134 0 0-3 EPA 300.0 TT-MW2-2 07/08/05 N/A 100 100 58-142 0 0-6 EPA 300.0 TT-MW2-2 07/08/05 N/A 99 98 49-133 1 0-3

Quality Control - Duplicate

Tetra Tech, Inc. 348 West Hospitality Lane, Ste 100 San Bernardino, CA 92408-3216 Date Received: Work Order No:

N/A 05-07-0334

Matrix: Aqueous								
Parameter	Method	QC Sample ID	Date Analyzed	Sample Conc	DUP Conc	RPD	RPD CL	Qualifiers
Alkalinity, Total (as CaCO3)	SM 2320B	05-07-0489-1	07/11/05	34000	34000	0	0-25	
Bicarbonate (as CaCO3)	SM 2320B	05-07-0489-1	07/11/05	28000	28000	0	0-25	
Carbonate (as CaCO3)	SM 2320B	05-07-0489-1	07/11/05	5600	5400	4	0-25	
Hydroxide (as CaCO3)	SM 2320B	05-07-0489-1	07/11/05	ND	ND	NA	0-25	
Solids, Total Dissolved	EPA 160.1	TT-MW2-2	07/08/05	440	450	2	0-25	

Quality Control - LCS/LCS Duplicate

Tetra Tech, Inc. 348 West Hospitality Lane, Ste 100 San Bernardino, CA 92408-3216

Date Received: Work Order No: Preparation: Method: N/A 05-07-0334 EPA 3010A Total EPA 6010B

Quality Control Sample ID	Matrix II	nstrument	Date Prepared	Da Anal	ate yzed	LCS/LCSD Bate Number	ch
097-01-003-5,092	Aqueous I	CP 3300	07/08/05 07/11/0		1/05	050708L03	
Parameter	LCS %REC	LCSD %RE	<u>C</u> %	REC CL	RPD	RPD CL	Qualifiers
Antimony	94	94		80-120	0	0-20	
Arsenic	96	97		80-120	1	0-20	
Barium	100	100		80-120	0	0-20	
Beryllium	92	92		80-120	0	0-20	
Cadmium	99	99		80-120	0	0-20	
Chromium	97	98		80-120	1	0-20	
Cobalt	101	101		80-120	0	0-20	
Copper	91	91		80-120	1	0-20	
Lead	102	103		80-120	1	0-20	
Molybdenum	102	103		80-120	1	0-20	
Nickel	101	101		80-120	0	0-20	
Selenium	92	92		80-120	0	0-20	
Silver	96	96		80-120	1	0-20	
Thallium	102	103		80-120	1	0-20	
Vanadium	94	94		80-120	0	0-20	
Zinc	99	99		80-120	0	0-20	
Calcium	102	101		80-120	1	0-20	
Magnesium	105	104		80-120	0	0-20	
Potassium	92	92		80-120	0	0-20	
Sodium	93	94		80-120	1	0-20	

alscience

nvironmental Quality Control - Laboratory Control Sample aboratories, Inc.

Tetra Tech, Inc.

348 West Hospitality Lane, Ste 100 San Bernardino, CA 92408-3216

Date Received:

Work Order No:

Preparation: Method:

N/A

05-07-0334

EPA 7470A Total EPA 7470A

Quality Control Sample ID	Matrix	Instrument	Date Analyzed	Lab File	e ID	LCS Batch Number
099-04-008-2,010	Aqueous	Mercury	07/08/05	050708-L-0)2.icp	050708L02
Parameter		Conc Added	Conc Recovered	LCS %Rec	%Rec CI	Qualifiers
Mercury		0.0100	0.0106	106	90-122	

Quality Control - LCS/LCS Duplicate

Tetra Tech, Inc. 348 West Hospitality Lane, Ste 100 San Bernardino, CA 92408-3216 Date Received: Work Order No: Preparation: Method: N/A 05-07-0334 EPA 5030B EPA 8260B

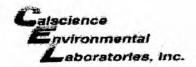
Quality Control Sample ID	Matrix	Instr	ument	Date Prepar		Date alyzed	LCS/LCSD Bar Number	tch
099-10-006-14,919	Aqueous	GC/N	GC/MS EE		05 07/	08/05	050708L01	
<u>Parameter</u>	LCS	6REC	LCSD %	REC	%REC CL	RPD	RPD CL	Qualifiers
Benzene	98		98		84-120	1	0-8	
Carbon Tetrachloride	95		94		63-147	0	0-10	
Chlorobenzene	101		101		89-119	0	0-7	
1,2-Dichlorobenzene	101		102		89-119	0	0-9	
1,1-Dichloroethene	99		100		77-125	1	0-16	
Toluene	98		97		83-125	1	0-9	
Trichloroethene	100)	99		89-119	1	0-8	
Vinyl Chloride	90		90		63-135	0	0-13	
Methyl-t-Butyl Ether (MTBE)	83		91		82-118	9	0-13	
Tert-Butyl Alcohol (TBA)	81		75		46-154	8	0-32	
Diisopropyl Ether (DIPE)	92		93		81-123	1	0-11	
Ethyl-t-Butyl Ether (ETBE)	89		90		74-122	1	0-12	
Tert-Amyl-Methyl Ether (TAME)	89		90		76-124	1	0-10	
Ethanol	89		89		60-138	1	0-32	

Quality Control - LCS/LCS Duplicate

Tetra Tech, Inc. 348 West Hospitality Lane, Ste 100 San Bernardino, CA 92408-3216 Date Received: Work Order No:

N/A 05-07-0334

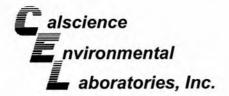
Matrix: Aqueou	ıs									
<u>Parameter</u>	Method	Quality Control Sample ID	<u>Date</u> <u>Extracted</u>	<u>Date</u> <u>Analyzed</u>	LCS % REC	LCSD % REC	%REC CL	RPD	RPD CL	Qual
Chloride	EPA 300.0	099-05-118-2,840	N/A	07/08/05	96	96	81-111	0	0-5	
Nitrate (as N)	EPA 300.0	099-05-118-2,840	N/A	07/08/05	99	98	87-111	0	0-12	
Sulfate	EPA 300.0	099-05-118-2,840	N/A	07/08/05	96	95	89-107	1	0-13	
Perchlorate	EPA 314.0	099-05-203-297	N/A	07/08/05	110	109	85-115	1	0-15	


Glossary of Terms and Qualifiers

Work Order Number: 05-07-0334

Qualifier	<u>Definition</u>
*	See applicable analysis comment.
1	Surrogate compound recovery was out of control due to a required sample dilution, therefore, the sample data was reported without further clarification.
2	Surrogate compound recovery was out of control due to matrix interference. The associated method blank surrogate spike compound was in control and, therefore, the sample data was reported without further clarification.
3	Recovery of the Matrix Spike or Matrix Spike Duplicate compound was out of control due to matrix interference. The associated LCS and/or LCSD was in control and, therefore, the sample data was reported without further clarification.
4	The MS/MSD RPD was out of control due to matrix interference. The LCS/LCSD RPD was in control and, therefore, the sample data was reported without further clarification.
5	The PDS/PDSD associated with this batch of samples was out of control due to a matrix interference effect. The associated batch LCS/LCSD was in control and, hence, the associated sample data was reported with no further corrective action required.
Α	Result is the average of all dilutions, as defined by the method.
В	Analyte was present in the associated method blank.
С	Analyte presence was not confirmed on primary column.
E	Concentration exceeds the calibration range.
Н	Sample received and/or analyzed past the recommended holding time.
J	Analyte was detected at a concentration below the reporting limit and above the laboratory method detection limit. Reported value is estimated.
N	Nontarget Analyte.
ND	Parameter not detected at the indicated reporting limit.
Q	Spike recovery and RPD control limits do not apply resulting from the parameter concentration in the sample exceeding the spike concentration by a factor of four or greater.
U	Undetected at the laboratory method detection limit.
X	% Recovery and/or RPD out-of-range.
Z	Analyte presence was not confirmed by second column or GC/MS analysis.

			200		20														OCR.CDF	T-MISC/C	TA/SID/:	X
CHAIN OF CUSTODY RECORD	17/65 PAGE OF	TURN-AROUND TIME	Standon OBSERVATIONS/COMMENTS	TIVE ONTAIN	MBER C	N 100	が上	7 # 400 3	7 /	7 (21 1 ms/ms0						PRESERVATIVES: (Water Only) HCL NaOH NR (None required) H ₂ SO ₄	TOTAL NUMBER OF CONTAINERS ON THIS CHAIN OF CUSTODY:	METHOD OF SHIPMENT/SHIPMENT NO.	Special Shipping/Handling/Storage Requirements:		
NOF CL	DATE 7		g		YT XIRTZ	/W	3	2/1%	/		11							TIME	1548 M	1745	7:45	
CHAIR	3334	PARAMETERS												-			SB - Brass Sleeve B P - Plastic Bottle/Jar	7/7/05	7 7 POS	7 7 7	JAY/OS 1	
Science		PARAI			0.0										<i>></i>	>	CONTAINER TYPE: G - Glass Bottle/Jar SS - Stainless Steel Sleeve		•			
Cal	py	1540 1540	-5/4	(1) 41 22 ma	SQ _ W 40 ? 7+2 7 74	2 4		X X X	XX	×	× × ×						CONTAINER TYPE G - Glass Bottle/Ja SS - Stainless Stee	TETRA TECH, INC.	COMPANY		SANY (A)	
SHIP TO:		, 12	341	7529	70,	y	×	×	×	×	メス		1				MATRIX TYPE: S Soil M - Sediment W - Water	1	BATTIN COMP	_	COMPANY	
IC. Suite 100	92408 4		Silea		11	1	7/7/05 600	015	1100	1115	1430						MAT W-	SIGNATURE	SIGNATURE OF	NRE Y	SIGNATURE	
FETRA TECH, INC. 148 W. Hospitality Lane, Suite	San Bernardino, California 92408 Telephone: (909) 381-1674 FAX: (909) 889-1391		1	(to)		T	1	705-B) 04-	- mw2-45	2- x						UNFILTERED	THE BIGN	Sign	BATIN SIC		
TE 348	San Telep FAX	CLIENT: LYM C	PROJECT MANAGER: Grench	TC#: 16392-		SAMPLE NO	· LTB-070705	2. 168-070708-B	3-T-MW2-40	4 TT- mu	5 TT-MWA	B.	7.	εċ	6	10.	FILTERING:	AVISTON (WCLOCKED BY	RELINQUISHED BY	RECEIVED BY	
		9 10	- Ju	- 100		-=					-			-	-	_		7		-/	-	


WORK ORDER #:

05-07-0334

Cooler _ \ of _ \

SAMPLE RECEIPT FORM

CLIENT: TETRA TECH	DATE: 7-7-05
TEMPERATURE - SAMPLES RECEIVED BY:	*
CALSCIENCE COURIER: Chilled, cooler with temperature blank provided. Chilled, cooler without temperature blank. Chilled and placed in cooler with wet ice. Ambient and placed in cooler with wet ice. Ambient temperature.	LABORATORY (Other than Calscience Courier): ° C Temperature blank. ° C IR thermometer. Ambient temperature.
3.8 °C Temperature blank.	Initial: W3
CUSTODY SEAL INTACT:	
Sample(s): No (Not Intact	Not Applicable (N/A):
SAMPLE CONDITION: Chain-Of-Custody document(s) received with samples Sample container label(s) consistent with custody papers Sample container(s) intact and good condition Correct containers for analyses requested Proper preservation noted on sample label(s) VOA vial(s) free of headspace	
COMMENTS:	

July 18, 2005

Brenda Meyer Tetra Tech, Inc. 348 West Hospitality Lane, Ste 100 San Bernardino, CA 92408-3216

Subject:

Calscience Work Order No.:

05-07-0439

Client Reference:

Beaumont Site 2 - 16392-01

Dear Client:

Enclosed is an analytical report for the above-referenced project. The samples included in this report were received 7/8/2005 and analyzed in accordance with the attached chain-of-custody.

Unless otherwise noted, all analytical testing was accomplished in accordance with the guidelines established in our Quality Assurance Program Manual, applicable standard operating procedures, and other related documentation. The original report of any subcontracted analysis is provided herein, and follows the standard Calscience data package. The results in this analytical report are limited to the samples tested and any reproduction thereof must be made in its entirety.

If you have any questions regarding this report, please do not hesitate to contact the undersigned.

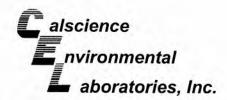
Sincerely,

Calscience Environmental

Laboratories, Inc.

Jason Torres Project Manager

CA-ELAP ID: 1230


NELAP ID: 03220CA

CSDLAC ID: 10109

SCAQMD ID: 93LA0830

7440 Lincoln Way, Garden Grove, CA 92841-1427 • TEL:(714) 895-5494 •

FAX: (714) 894-7501

348 West Hospitality Lane, Ste 100

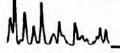
San Bernardino, CA 92408-3216

Tetra Tech, Inc.

Analytical Report

Date Received: 07/08/05

Work Order No: 05-07-0439 Preparation: EPA 3005A Filt. / EPA 7470A Filt.


Method: EPA 6010B / EPA 7470A mg/L

Units:

Project: Beaumont Site 2 - 16392-01 Page 1 of 3

Client Sample Number				ab Sample Number	Date Collected	Matrix	Date Prepared	Date Analyzed	QC B	atch ID
LEB-070805-6P			05-07-04	139-2	07/08/05	Aqueous	07/11/05	07/12/05	05071	1L07
Comment(s): -Mercury was a	analyzed on 7/11/200	05 2:36:45	5 PM wit	th batch 05	0711L01					
Parameter	Result	RL	DF	Qual	Parameter		Resu	t RL	DF	Qual
Antimony	ND	0.0150	1		Mercury		ND	0.000500		
Arsenic	ND	0.0100	1		Molybdenum		ND	0.00500	1	
Barium	ND	0.0100	1		Nickel		ND	0.00500	1	
Beryllium	ND	0.00100	1		Selenium		ND	0.0150	1	
Cadmium	ND	0.00500	1		Silver		ND	0.00500	1	
Chromium	ND	0.00500	1		Thallium		ND	0.0150	1	
Cobalt		0.00500	1		Vanadium		ND	0.00500	1	
Copper		0.00500	1		Zinc		0.029		1	
Lead	ND	0.0100	1				3.020			
TT-MW2-103		(05-07-04	139-3	07/08/05	Aqueous	07/11/05	07/12/05	05071	1L07
Arsenic Barium Beryllium Cadmium Chromium Cobalt Copper Lead	0.137 ND ND ND ND ND	0.0100 0.01 0.00100 0.00500 0.00500 0.00500 0.00500 0.0100	1 1 1 1 1 1 1		Molybdenum Nickel Selenium Silver Thallium Vanadium Zinc		ND ND ND ND ND ND O.025	0.00500 0.00500 0.0150 0.00500 0.0150 0.00500 9 0.01	1 1 1 1 1 1	
TT-MW2-3		0	5-07-04	39-4	07/08/05	Aqueous	07/11/05	07/12/05	05071	IL07
Comment(s): -Mercury was a	analyzed on 7/11/200	05 2:45:45	PM wit	h batch 05	0711L01					
Parameter	Result	RL	DF	Qual	Parameter		Resu	t RL	DF	Qual
Antimony	ND	0.0150	1		Mercury		ND	0.000500		
Arsenic	ND	0.0100	1		Molybdenum		ND	0.00500	1	
Barium	0.138	0.01	1		Nickel		ND	0.00500	1	
Beryllium		0.00100	1		Selenium		ND	0.00500	1	
Cadmium		0.00500	1		Silver		ND	0.00500	1	
Chromium		0.00500	1		Thallium		ND	0.00500	1	
Cobalt		0.00500	1		Vanadium		ND	0.00500	1	
Copper		0.00500	1		Zinc		0.030		1	

DF - Dilution Factor ,

Tetra Tech, Inc.

348 West Hospitality Lane, Ste 100 San Bernardino, CA 92408-3216

Date Received:

07/08/05

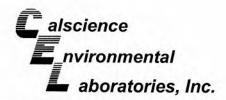
Work Order No:

05-07-0439

Preparation:

EPA 3005A Filt. / EPA 7470A Filt.

Method:


EPA 6010B / EPA 7470A

Units:

mg/L

Page 2 of 3

Client Sample	Number			Lab Sample Number 05-07-0439-5		Date Collected	Matrix	Date Prepared	Date Analyzed	QC Batch ID 050711L07	
TT-MW2-1			05-			07/08/05	Aqueous	07/11/05	07/12/05		
Comment(s):	-Mercury was analyzed on 7	7/11/2005 2:5	4:38 P	M with	h batch 05	0711L01					
Parameter Parameter	Re	sult RL	<u>D</u>)F	Qual	Parameter		Resul	t RL	DF	Qual
Antimony	NE	0.01	50	1		Mercury		ND	0.000500	1	-
Arsenic	NE	0.010	00	1		Molybdenum		ND	0.00500	1	
Barium	0.1	132 0.01		1		Nickel		ND	0.00500	1	
Beryllium	NE	0.00	100	1		Selenium		ND	0.0150	1	
Cadmium	NE	0.00	500	1		Silver		ND	0.00500	1	
Chromium	NE	0.005	500	1		Thallium		ND	0.0150	1	
Cobalt	NE	0.005	500	1		Vanadium		ND	0.00500	1	
Copper	NE	0.005	500	1		Zinc		ND	0.0100	1	
ead	NE	0.010	00	1							

Tetra Tech, Inc.

Client Sample Number Method Blank

348 West Hospitality Lane, Ste 100 San Bernardino, CA 92408-3216

Date Received:

07/08/05

Work Order No:

05-07-0439

Preparation:

EPA 3010A Total / EPA 7470A Total

Method:

EPA 6010B / EPA 7470A

mg/L

Units:

Page 3 of 3

Lab Sample Number	Date Collected	Matrix	Date Prepared	Date Analyzed	QC Batch ID	
099-04-008-2,011	N/A	Aqueous	07/11/05	07/11/05	050711L01	

<u>Parameter</u> Mercury	Result ND	<u>RL</u> 0.000500	<u>DF</u>	Qual						
Method Blank			097-01-003-5,093		N/A	Aqueous	07/11/05	07/12/05	050711	L07
<u>Parameter</u>	Result	RL	DF	Qual	Parameter		Result	RL	DF	Qual
Antimony	ND	0.0150	1		Molybdenum		ND	0.00500	1	
Arsenic	ND	0.0100	1		Nickel		ND	0.00500	1	
Barium	ND	0.0100	1		Selenium		ND	0.0150	1	
Beryllium	ND	0.00100	1		Silver		ND	0.00500	1	
Cadmium	ND	0.00500	1		Thallium		ND	0.0150	1	
Chromium	ND	0.00500	1		Vanadium		ND	0.00500	1	
Cobalt	ND	0.00500	1		Zinc		ND	0.0100	1	
Copper	ND	0.00500	1		Lead		ND	0.0100	1	

Tetra Tech, Inc.

348 West Hospitality Lane, Ste 100

San Bernardino, CA 92408-3216

Date Received:

07/08/05

Work Order No:

05-07-0439

Preparation:

EPA 3010A Total / EPA 7470A Total

Method:

EPA 6010B / EPA 7470A

Units:

mg/L

Project: Beaumont Site 2 - 16392-01

Page 1 of 3

Client Sample Number				ab Sample Number	Date Collected	Matrix	Date Prepared	Date Analyzed	QC Ba	atch ID
LEB-070805-6P		Ç	05-07-04	39-2	07/08/05	Aqueous	07/11/05	07/12/05	050711	1L07
Comment(s): -Mercury was	analyzed on 7/11/20	05 2:34:30	PM wit	h batch 05	0711L01					
Parameter	Result	RL	DF	Qual	Parameter		Result	RL	DF	Qual
Antimony	ND	0.0150	1		Nickel		ND	0.00500	1	
Arsenic	ND	0.0100	1		Selenium		ND	0.0150	1	
Barium	ND	0.0100	1		Silver		ND	0.00500	1	
Beryllium	ND	0.00100	1		Thallium		ND	0.0150	1	
Cadmium	ND	0.00500	1		Vanadium		ND	0.00500	1	
Chromium	ND	0.00500	1		Zinc		0.051		1	
Cobalt	ND	0.00500	1		Calcium		ND	0.100	1	
Copper	ND	0.00500	1		Magnesium		ND	0.100	1	
Lead	ND	0.0100	1		Potassium		ND	0.500	1	
Mercury	ND	0.000500	1		Sodium		ND	0.500	1	
Molybdenum	ND	0.00500	1					-,		
TT-MW2-103		C	5-07-04	39-3	07/08/05	Aqueous	07/11/05	07/12/05	050711	IL07
Comment(s): -Mercury was	analyzed on 7/11/20	05 2:39:02	PM wit	h batch 05	0711L01					
<u>Parameter</u>	Result	RL	DF	Qual	2		Dearth		5-	Qual
			DE	Qual	<u>Parameter</u>		Result	RL	DF	Qual
Antimony	ND	0.0150	1	Quai	Parameter Nickel			A STATE OF THE PARTY OF THE PAR	DF 1	Quai
	ND ND			Qual			ND	0.00500		Qual
Arsenic		0.0150	1	Quai	Nickel		ND ND			Quai
Arsenic Barium	ND	0.0150 0.0100	1	Quai	Nickel Selenium		ND ND ND	0.00500 0.0150		Quai
Antimony Arsenic Barium Beryllium Cadmium	ND 0.143	0.0150 0.0100 0.01	1 1 1	Qual	Nickel Selenium Silver		ND ND ND ND	0.00500 0.0150 0.00500 0.0150		Quai
Arsenic Barium Beryllium	ND 0.143 ND	0.0150 0.0100 0.01 0.00100	1 1 1 1	Qual	Nickel Selenium Silver Thallium		ND ND ND ND	0.00500 0.0150 0.00500 0.0150 0.00500		Qual
Arsenic Barium Beryllium Cadmium Chromium	ND 0.143 ND ND	0.0150 0.0100 0.01 0.00100 0.00500	1 1 1 1	Qual	Nickel Selenium Silver Thallium Vanadium		ND ND ND ND ND	0.00500 0.0150 0.00500 0.0150 0.00500 207 0.01		Qual
Arsenic Barium Beryllium Cadmium Chromium Cobalt	ND 0.143 ND ND ND	0.0150 0.0100 0.01 0.00100 0.00500 0.00500	1 1 1 1 1 1	<u> Quai</u>	Nickel Selenium Silver Thallium Vanadium Zinc		ND ND ND ND ND 0.0 89.3	0.00500 0.0150 0.00500 0.0150 0.00500 207 0.01 0.1		Qual
Arsenic Barium Beryllium Cadmium Chromium Cobalt Copper	ND 0.143 ND ND ND ND	0.0150 0.0100 0.01 0.00100 0.00500 0.00500 0.00500	1 1 1 1 1 1 1	<u> </u>	Nickel Selenium Silver Thallium Vanadium Zinc Calcium		ND ND ND ND ND 0.0: 89.3 12.6	0.00500 0.0150 0.00500 0.0150 0.00500 207 0.01 0.1 0.1		Qual
Arsenic Barium Beryllium Cadmium	ND 0.143 ND ND ND ND ND ND	0.0150 0.0100 0.01 0.00100 0.00500 0.00500 0.00500 0.00500	1 1 1 1 1 1 1 1	<u> </u>	Nickel Selenium Silver Thallium Vanadium Zinc Calcium Magnesium		ND ND ND ND ND 0.0 89.3	0.00500 0.0150 0.00500 0.0150 0.00500 207 0.01 0.1 0.1		Qual

DF - Dilution Factor ,

Tetra Tech, Inc.

348 West Hospitality Lane, Ste 100 San Bernardino, CA 92408-3216

Date Received:

07/08/05

Work Order No:

05-07-0439

Preparation:

EPA 3010A Total / EPA 7470A Total

Method:

EPA 6010B / EPA 7470A

Units:

mg/L

Project: Beaumont Site 2 - 16392-01

Page 2 of 3

Client Sample	Number		Lab Sample Number		Date Collected	Matrix	Date Prepared	Date Analyzed	QC Ba	atch ID
TT-MW2-3		j	05-07-04	139-4	07/08/05	Aqueous	07/11/05	07/12/05	05071	1L07
Comment(s):	-Mercury was analyzed on 7/11/20	05 2:43:3	4 PM wit	h batch 05	0711L01					
Parameter	Result	RL	DF	Qual	Parameter		Resu	It RL	DF	Qual
Antimony	ND	0.0150	1		Nickel		ND	0.00500	1	-
Arsenic	ND	0.0100	1		Selenium		ND	0.0150	1	
Barium	0.145	0.01	1		Silver		ND	0.00500	1	
Beryllium	ND	0.00100	1		Thallium		ND	0.0150	1	
Cadmium	ND	0.00500	1		Vanadium		ND	0.00500	1	
Chromium	ND	0.00500	1		Zinc		V-7	0509 0.01	1	
Cobalt	ND	0.00500	1		Calcium		93.2		1	
Copper	ND	0.00500	1		Magnesium		12.9	7. 9735	1	
Lead	ND	0.0100	1		Potassium		2.9		1	
Mercury	ND	0.000500	0 1		Sodium		195	0.500	1	
Molybdenum	ND	0.00500	1					120000		
TT-MW2-1			05-07-04	139-5	07/08/05	Aqueous	07/11/05	07/12/05	05071	1L07
Comment(s):	-Mercury was analyzed on 7/11/20	05 2:52:2	6 DM wit	h hatah 05	07111.01					
Parameter	Result	RL	DF	Qual	Parameter		Resu	it RL	DF	Qual
Antimony	ND	0.0150	1		Nickel			0144 0.005	1	Gadi
Arsenic	ND	0.0100	1		Selenium		ND.	0.0150	1	
Barium	0.209	0.01	1		Silver		ND	0.0150	1	
Beryllium	ND.	0.00100	1		Thallium		ND	0.00500	1	
Cadmium	ND	0.00500	1		Vanadium		1.77	0.0150	1	
Chromium	0.0209	360.000.00	1		Zinc			0388 0.01	1	
Cobalt	0.0063	1000	1		Calcium		79.4		1	
Copper	0.0112	100000000000000000000000000000000000000	1		Magnesium		16.9		1	
Lead	ND	0.0100	1		Potassium		3.5		1	
Mercury	ND	0.000500			Sodium		173	0.500	1	
Molybdenum	ND	0.00500	1				173	0.500		
Method Blar	ık	ń	099-04-0	08-2,011	N/A	Aqueous	07/11/05	07/11/05	05071	IL01
Parameter	Result	RL	DF	Qual						
Mercury		11-757 COV		Quai						
vici cui y	ND	0.000500	0 1							

DF - Dilution Factor ,

Tetra Tech, Inc.

348 West Hospitality Lane, Ste 100 San Bernardino, CA 92408-3216

Date Received:

07/08/05

Work Order No:

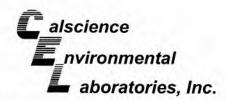
05-07-0439

Preparation:

EPA 3010A Total / EPA 7470A Total

Method:

EPA 6010B / EPA 7470A


Units:

mg/L

Project: Beaumont Site 2 - 16392-01

Page 3 of 3

Client Sample Number			Lab Sample Number 097-01-003-5,093		Date Collected	Matrix Aqueous	Date Prepared	Date Analyzed	QC Batch ID	
Method Blank					N/A		07/11/05	07/12/05	050711	IL07
Parameter	Result	RL	DF	Qual	Parameter		Resul	RL	DF	Qual
Antimony	ND	0.0150	1		Selenium		ND	0.0150	1	
Arsenic	ND	0.0100	1		Silver		ND	0.00500	1	
Barium	ND	0.0100	1		Thallium		ND	0.0150	1	
Beryllium	ND	0.00100	1		Vanadium		ND	0.00500	1	
Cadmium	ND	0.00500	1		Zinc		ND	0.0100	1	
Chromium	ND	0.00500	1		Calcium		ND	0.100	1	
Cobalt	ND	0.00500	1		Magnesium		ND	0.100	1	
Copper	ND	0.00500	1		Potassium		ND	0.500	1	
ead	ND	0.0100	1		Sodium		ND	0.500	1	
Molybdenum	ND	0.00500	1		Nickel		ND	0.00500	1	

Tetra Tech, Inc.

348 West Hospitality Lane, Ste 100 San Bernardino, CA 92408-3216

Date Received:

Work Order No: Preparation:

Method:

Units:

07/08/05 05-07-0439 EPA 5030B

EPA 8260B ug/L

Page 1 of 6

Client Sample Number			L	ab Sample Number	Date Collected	Matrix	Date Prepared	Date Analyzed	QC B	atch ID	
LTB-070805			05-07-0	439-1	07/08/05	Aqueous	07/12/05	07/12/05	05071	2L03	
<u>Parameter</u>	Result	RL	DF	Qual	Parameter		Result	RL	DF	Qual	
Acetone	ND	10	1		1,3-Dichloropr	opane	ND	1.0	1		
Benzene	ND	0.50	1		2,2-Dichloropr	opane	ND	1.0	1		
Bromobenzene	ND	1.0	1		1,1-Dichloropr		ND	1.0	1		
Bromochloromethane	ND	1.0	1		c-1,3-Dichloro		ND	0.50	1		
Bromodichloromethane	ND	1.0	1		t-1,3-Dichlorop		ND	0.50	1		
Bromoform	ND	1.0	1		Ethylbenzene	1. 4 K 2010	ND	1.0	1		
Bromomethane	ND	10	1		2-Hexanone		ND	10	1		
2-Butanone	ND	10	1		Isopropylbenze	ene	ND	1.0	1		
n-Butylbenzene	ND	1.0	1				ND	1.0	1		
sec-Butylbenzene	ND	1.0	1		p-Isopropyltoluene Methylene Chloride		ND	10	1		
tert-Butylbenzene	ND	1.0	1		4-Methyl-2-Per		ND	10	1		
Carbon Disulfide	ND	10	1		Naphthalene	TION TO TO	ND	10	1		
Carbon Tetrachloride	ND	0.50	1		n-Propylbenze	ne	ND	1.0	1		
Chlorobenzene	ND	1.0	1		Styrene		ND	1.0	1		
Chloroethane	ND	1.0	1		1,1,1,2-Tetracl	hloroethane	ND	1.0	1		
Chloroform	ND	1.0	1		1,1,2,2-Tetraci		ND	1.0	1		
Chloromethane	ND	10	1		Tetrachloroeth		ND	1.0	1		
2-Chlorotoluene	ND	1.0	1		Toluene	•	ND	1.0	1		
4-Chlorotoluene	ND	1.0	1		1,2,3-Trichloro	benzene	ND	1.0	1		
Dibromochloromethane	ND	1.0	1		1,2,4-Trichloro		ND	1.0	4		
1,2-Dibromo-3-Chloropropane	ND	5.0	1		1,1,1-Trichloro		ND	1.0	1		
1,2-Dibromoethane	ND	1.0	1		The second secon	-1,2,2-Trifluoroetl		10	1		
Dibromomethane	ND	1.0	1		1,1,2-Trichloro		ND	1.0	1		
1,2-Dichlorobenzene	ND	1.0	1		Trichloroethen		ND	1.0	1		
1,3-Dichlorobenzene	ND	1.0	1		Trichlorofluoro		ND	10	1		
1,4-Dichlorobenzene	ND	1.0	1		1,2,3-Trichloro		ND	5.0	1		
Dichlorodifluoromethane	ND	1.0	1		1,2,4-Trimethy	Andrew Marine and the last	ND	1.0	1		
1,1-Dichloroethane	ND	1.0	1		1,3,5-Trimethy		ND	1.0	1		
1,2-Dichloroethane	ND	0.50	1		Vinyl Acetate	DONZONO	ND	10	1		
1,1-Dichloroethene	ND	1.0	1		Vinyl Chloride		ND	0.50	1		
c-1,2-Dichloroethene	ND	1.0	1		p/m-Xylene		ND	1.0	1		
t-1,2-Dichloroethene	ND	1.0	1		o-Xvlene		ND	1.0			
1,2-Dichloropropane	ND	1.0	1		Methyl-t-Butyl I	Ether (MTRE)	ND	1.0	1		
Surrogates:	REC (%)	Control		Qual	Surrogates:	Luiei (WIDL)	REC (%) Control		Qual	
Dibromofluoromethane	99	74-140			1,2-Dichloroeth	nane-d4	102	<u>Limits</u> 74-146			
Toluene-d8	95	88-112			1,4-Bromofluor		98	74-146			

Tetra Tech, Inc.

348 West Hospitality Lane, Ste 100 San Bernardino, CA 92408-3216

Date Received:

Work Order No: Preparation:

Method:

Units:

07/08/05 05-07-0439

EPA 5030B EPA 8260B

ug/L

Page 2 of 6

Project: Beaumont Site 2 - 16392-01

Client Sample Number				ab Sample Number	Date Collected	Matrix	Date Prepared	Date Analyzed	QC B	atch ID
LEB-070805-6P			05-07-04	439-2	07/08/05	Aqueous	07/12/05	07/12/05	050712L03	
Parameter	Result	RL	DF	Qual	Parameter		Resul	t RL	DF	Qual
Acetone	12	10	1		1,3-Dichloropr	opane	ND	1.0	1	
Benzene	ND	0.50	1		2,2-Dichloropr	opane	ND	1.0	1	
Bromobenzene	ND	1.0	1		1,1-Dichloropr	opene	ND	1.0	1	
Bromochloromethane	ND	1.0	1		c-1,3-Dichloro	propene	ND	0.50	1	
Bromodichloromethane	ND	1.0	1		t-1,3-Dichlorop	propene	ND	0.50	1	
Bromoform	ND	1.0	1		Ethylbenzene	7.7.2.0	ND	1.0	1	
Bromomethane	ND	10	1		2-Hexanone		ND	10	1	
2-Butanone	ND	10	1		Isopropylbenze	ene	ND	1.0	1	
n-Butylbenzene	ND	1.0	1		p-Isopropyltolu	iene	ND	1.0	1	
sec-Butylbenzene	ND	1.0	1		Methylene Chl		ND	10	1	
ert-Butylbenzene	ND	1.0	1		4-Methyl-2-Pe		ND	10	1	
Carbon Disulfide	ND	10	1		Naphthalene		ND	10	1	
Carbon Tetrachloride	ND	0.50	1		n-Propylbenze	ne	ND	1.0	1	
Chlorobenzene	ND	1.0	1		Styrene		ND	1.0	1	
Chloroethane	ND	1.0	1		1,1,1,2-Tetrachloroethane		ND	1.0	1	
Chloroform	ND	1.0	1		1,1,2,2-Tetrachloroethane		ND	1.0	1	
Chloromethane	ND	10	1		Tetrachloroeth		ND	1.0	1	
2-Chlorotoluene	ND	1.0	1		Toluene		ND	1.0	1	
1-Chlorotoluene	ND	1.0	1		1,2,3-Trichlord	benzene	ND	1.0	1	
Dibromochloromethane	ND	1.0	1		1,2,4-Trichlord		ND	1.0	1	
1,2-Dibromo-3-Chloropropane	ND	5.0	1		1,1,1-Trichloro	ethane	ND	1.0	1	
1,2-Dibromoethane	ND	1.0	1			-1,2,2-Trifluoroet		10	1	
Dibromomethane	ND	1.0	1		1,1,2-Trichlord		ND	1.0	1	
1,2-Dichlorobenzene	ND	1.0	1		Trichloroethen		ND	1.0	1	
1,3-Dichlorobenzene	ND	1.0	1		Trichlorofluoro	methane	ND	10	1	
1,4-Dichlorobenzene	ND	1.0	1		1,2,3-Trichloro	propane	ND	5.0	1	
Dichlorodifluoromethane	ND	1.0	1		1,2,4-Trimethy		ND	1.0	1	
1,1-Dichloroethane	ND	1.0	1		1,3,5-Trimethy		ND	1.0	1	
1,2-Dichloroethane	ND	0.50	1		Vinyl Acetate	FOR PENSE	ND	10	1	
,1-Dichloroethene	ND	1.0	1		Vinyl Chloride		ND	0.50	1	
:-1,2-Dichloroethene	ND	1.0	1		p/m-Xylene		ND	1.0	1	
-1,2-Dichloroethene	ND	1.0	1		o-Xylene		ND	1.0	1	
,2-Dichloropropane	ND	1.0	1		Methyl-t-Butyl	Ether (MTBF)	ND	1.0	1	
Surrogates:	REC (%)	Control Limits		Qual	Surrogates:		REC (%			Qual
Dibromofluoromethane	100	74-140			1,2-Dichloroeth	nane-d4	107	74-146		
Foluene-d8	97	88-112			1,4-Bromofluoi		98	74-110		

RL - Reporting Limit

DF - Dilution Factor ,

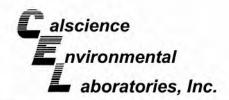
Units:

Tetra Tech, Inc. 348 West Hospitality Lane, Ste 100

348 West Hospitality Lane, Ste 100 San Bernardino, CA 92408-3216

Date Received: Work Order No: Preparation: Method:

EPA 5030B EPA 8260B ug/L

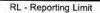

05-07-0439

07/08/05

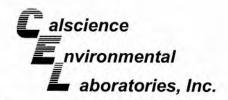
Project: Beaumont Site 2 - 16392-01

Page 3 of 6

Client Sample Number				ab Sample Number	Date Collected	Matrix	Date Prepared	Date Analyzed	QC Ba	atch ID
TT-MW2-103			05-07-04	439-3	07/08/05	Aqueous 07/12	07/12/05	07/12/05	05071	2L03
Parameter	Result	RL	DF	Qual	Parameter		Resul	t RL	DF	Qual
Acetone	ND	10	1		1,3-Dichloropr	opane	ND	1.0	1	
Benzene	ND	0.50	1		2,2-Dichloropr	opane	ND	1.0	1	
Bromobenzene	ND	1.0	1		1,1-Dichloropr	opene	ND	1.0	1	
Bromochloromethane	ND	1.0	1		c-1,3-Dichloro	propene	ND	0.50	1	
Bromodichloromethane	ND	1.0	1		t-1,3-Dichlorop		ND	0.50	1	
Bromoform	ND	1.0	1		Ethylbenzene		ND	1.0	1	
Bromomethane	ND	10	1		2-Hexanone		ND	10	1	
2-Butanone	ND	10	1		Isopropylbenze	ene	ND	1.0	1	
n-Butylbenzene	ND	1.0	1		p-Isopropyltolu	iene	ND	1.0	1	
sec-Butylbenzene	ND	1.0	1		Methylene Chl	oride	ND	10	1	
tert-Butylbenzene	ND	1.0	1		4-Methyl-2-Pe	ntanone	ND	10	1	
Carbon Disulfide	ND	10	1		Naphthalene		ND	10	1	
Carbon Tetrachloride	ND	0.50	1		n-Propylbenze	ene	ND	1.0	1	
Chlorobenzene	ND	1.0	1		Styrene		ND	1.0	1	
Chloroethane	ND	1.0	1		1,1,1,2-Tetrac	hloroethane	ND	1.0	1	
Chloroform	ND	1.0	1		1,1,2,2-Tetrac		ND	1.0	1	
Chloromethane	ND	10	1		Tetrachloroeth	ene	ND	1.0	1	
2-Chlorotoluene	ND	1.0	1		Toluene		ND	1.0	1	
4-Chlorotoluene	ND	1.0	1		1,2,3-Trichlord	benzene	ND	1.0	1	
Dibromochloromethane	ND	1.0	1		1,2,4-Trichlord		ND	1.0	1	
1,2-Dibromo-3-Chloropropane	ND	5.0	1		1,1,1-Trichlord		ND	1.0	1	
1,2-Dibromoethane	ND	1.0	1			-1,2,2-Trifluoroet		10	1	
Dibromomethane	ND	1.0	1		1,1,2-Trichlord		ND	1.0	1	
1,2-Dichlorobenzene	ND	1.0	1		Trichloroethen		7.2	1.0	1	
1,3-Dichlorobenzene	ND	1.0	1		Trichlorofluoro		ND	10	1	
1,4-Dichlorobenzene	ND	1.0	1		1,2,3-Trichlord	propane	ND	5.0	1	
Dichlorodifluoromethane	ND	1.0	1		1,2,4-Trimethy		ND	1.0	1	
1,1-Dichloroethane	ND	1.0	1		1,3,5-Trimethy		ND	1.0	1	
1,2-Dichloroethane	ND	0.50	1		Vinyl Acetate		ND	10	1	
1,1-Dichloroethene	ND	1.0	1		Vinyl Chloride		ND	0.50	1	
c-1,2-Dichloroethene	ND	1.0	1		p/m-Xylene		ND	1.0	1	
-1,2-Dichloroethene	ND	1.0	1		o-Xylene		ND	1.0	1	
1,2-Dichloropropane	ND	1.0	1		Methyl-t-Butyl	Ether (MTRF)	ND	1.0	1	
Surrogates:	REC (%)	Control Limits		Qual	Surrogates:		REC (Qual
Dibromofluoromethane	98	74-140			1,2-Dichloroet	hane-d4	104	74-146		
Toluene-d8	97	88-112			1,4-Bromofluo		99	74-110		



Tetra Tech, Inc. 348 West Hospitality Lane, Ste 100 San Bernardino, CA 92408-3216 Date Received: Work Order No: Preparation: Method: Units: 07/08/05 05-07-0439 EPA 5030B EPA 8260B ug/L


Project: Beaumont Site 2 - 16392-01

Page 4 of 6

Client Sample Number				ab Sample Number	Date Collected	Matrix	Date Prepared	Date Analyzed	QC Ba	atch ID
TT-MW2-3			05-07-04	439-4	07/08/05	Aqueous 07/12	07/12/05	07/12/05	050712	2L03
Parameter	Result	RL	DF	Qual	Parameter		Resul	t RL	DF	Qual
Acetone	ND	10	1		1,3-Dichloropre	opane	ND	1.0	1	
Benzene	ND	0.50	1		2,2-Dichloropro		ND	1.0	1	
Bromobenzene	ND	1.0	1		1,1-Dichloropro	opene	ND	1.0	1	
Bromochloromethane	ND	1.0	1		c-1,3-Dichloro	propene	ND	0.50	1	
Bromodichloromethane	ND	1.0	1		t-1,3-Dichlorop	propene	ND	0.50	1	
Bromoform	ND	1.0	1		Ethylbenzene		ND	1.0	1	
Bromomethane	ND	10	1		2-Hexanone		ND	10	1	
2-Butanone	ND	10	1		Isopropylbenze	ene	ND	1.0	1	
n-Butylbenzene	ND	1.0	1		p-Isopropyltolu	iene	ND	1.0	1	
sec-Butylbenzene	ND	1.0	1		Methylene Chl		ND	10	1	
ert-Butylbenzene	ND	1.0	1		4-Methyl-2-Per		ND	10	1	
Carbon Disulfide	ND	10	1		Naphthalene		ND	10	1	
Carbon Tetrachloride	ND	0.50	1		n-Propylbenze	ne	ND	1.0	1	
Chlorobenzene	ND	1.0	1		Styrene		ND	1.0	1	
Chloroethane	ND	1.0	1		1,1,1,2-Tetracl	hloroethane	ND	1.0	1	
Chloroform	ND	1.0	1		1,1,2,2-Tetraci	hloroethane	ND	1.0	1	
Chloromethane	ND	10	1		Tetrachloroeth		ND	1.0	-1	
2-Chlorotoluene	ND	1.0	1		Toluene		ND	1.0	1	
1-Chlorotoluene	ND	1.0	1		1,2,3-Trichloro	benzene	ND	1.0	1	
Dibromochloromethane	ND	1.0	1		1,2,4-Trichloro		ND	1.0	1	
1,2-Dibromo-3-Chloropropane	ND	5.0	1		1,1,1-Trichloro	ethane	ND	1.0	1	
1,2-Dibromoethane	ND	1.0	1			-1,2,2-Trifluoroet		10	1	
Dibromomethane	ND	1.0	1		1,1,2-Trichloro	The second secon	ND	1.0	1	
1,2-Dichlorobenzene	ND	1.0	1		Trichloroethen		7.0	1.0	1	
1,3-Dichlorobenzene	ND	1.0	1		Trichlorofluoro		ND	10	1	
1,4-Dichlorobenzene	ND	1.0	1		1,2,3-Trichloro	propane	ND	5.0	1	
Dichlorodifluoromethane	ND	1.0	1		1,2,4-Trimethy	F. R. 7-2-8" F. 7" N. CH.	ND	1.0	1	
1,1-Dichloroethane	ND	1.0	1		1,3,5-Trimethy		ND	1.0	4	
1,2-Dichloroethane	ND	0.50	1		Vinyl Acetate		ND	10	1	
1,1-Dichloroethene	ND	1.0	1		Vinyl Chloride		ND	0.50	1	
c-1,2-Dichloroethene	ND	1.0	1		p/m-Xylene		ND	1.0	1	
-1,2-Dichloroethene	ND	1.0	1		o-Xylene		ND	1.0	1	
1,2-Dichloropropane	ND	1.0	1		Methyl-t-Butyl	Ether (MTBE)	ND	1.0	1	
Surrogates:	REC (%)	Control Limits		Qual	Surrogates:		REC (S			Qual
Dibromofluoromethane	97	74-140			1,2-Dichloroett	hane-d4	108	74-146		
Toluene-d8	99	88-112			1,4-Bromofluo		98	74-110		

DF - Dilution Factor ,

Tetra Tech, Inc.

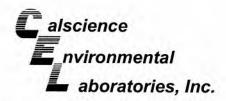
348 West Hospitality Lane, Ste 100 San Bernardino, CA 92408-3216

Date Received: Work Order No:

Preparation: Method:

Units:

07/08/05 05-07-0439 EPA 5030B


EPA 8260B ug/L

0.

Project: Beaumont Site 2 - 16392-01

Page 5 of 6

Client Sample Number				ab Sample Number	Date Collected	Matrix	Date Prepared	Date Analyzed	QC Ba	atch ID
TT-MW2-1			05-07-0	439-5	07/08/05	Aqueous	07/12/05	07/12/05	050712	2L03
Parameter Parame	Result	RL	DF	Qual	Parameter		Resu	t RL	DF	Qual
Acetone	ND	10	1		1,3-Dichloropre	opane	ND	1.0	1	
Benzene	ND	0.50	1		2,2-Dichloropr		ND	1.0	1	
Bromobenzene	ND	1.0	1		1,1-Dichloropre	opene	ND	1.0	1	
Bromochloromethane	ND	1.0	1		c-1,3-Dichloro	propene	ND	0.50	1	
Bromodichloromethane	ND	1.0	1		t-1,3-Dichlorop	100	ND	0.50	1	
Bromoform	ND	1.0	1		Ethylbenzene	THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NAMED IN COLUMN TW	ND	1.0	1	
Bromomethane	ND	10	1		2-Hexanone		ND	10	1	
2-Butanone	ND	10	1		Isopropylbenze	ene	ND	1.0	1	
n-Butylbenzene	ND	1.0	1		p-Isopropyltolu		ND	1.0	1	
sec-Butylbenzene	ND	1.0	1		Methylene Chl		ND	10	1	
tert-Butylbenzene	ND	1.0	1		4-Methyl-2-Per		ND	10	1	
Carbon Disulfide	ND	10	1		Naphthalene		ND	10	1	
Carbon Tetrachloride	ND	0.50	1		n-Propylbenze	ne	ND	1.0	1	
Chlorobenzene	ND	1.0	1		Styrene		ND	1.0	1	
Chloroethane	ND	1.0	1		1,1,1,2-Tetracl	hloroethane	ND	1.0	1	
Chloroform	ND	1.0	1		1,1,2,2-Tetracl		ND	1.0	1	
Chloromethane	ND	10	1		Tetrachloroeth		ND	1.0	1	
2-Chlorotoluene	ND	1.0	1		Toluene		ND	1.0	1	
4-Chlorotoluene	ND	1.0	1		1,2,3-Trichloro	benzene	ND	1.0	1	
Dibromochloromethane	ND	1.0	1		1,2,4-Trichloro		ND	1.0	1	
1,2-Dibromo-3-Chloropropane	ND	5.0	1		1,1,1-Trichloro		ND	1.0	1	
1,2-Dibromoethane	ND	1.0	1			-1,2,2-Trifluoroeth		10	1	
Dibromomethane	ND	1.0	1		1,1,2-Trichloro		ND	1.0	1	
1,2-Dichlorobenzene	ND	1.0	1		Trichloroethen		ND	1.0	1	
1,3-Dichlorobenzene	ND	1.0	1		Trichlorofluoro		ND	10	1	
1,4-Dichlorobenzene	ND	1.0	1		1,2,3-Trichloro	1, 12 1, 10111 2	ND	5.0	1	
Dichlorodifluoromethane	ND	1.0	1		1,2,4-Trimethy		ND	1.0	1	
1,1-Dichloroethane	ND	1.0	1		1,3,5-Trimethy		ND	1.0	1	
1,2-Dichloroethane	ND	0.50	1		Vinyl Acetate		ND	10	1	
1,1-Dichloroethene	ND	1.0	1		Vinyl Chloride		ND	0.50	1	
c-1,2-Dichloroethene	ND	1.0	1		p/m-Xylene		ND	1.0	1	
-1,2-Dichloroethene	ND	1.0	1		o-Xylene		ND	1.0	1	
1,2-Dichloropropane	ND	1.0	1		Methyl-t-Butyl I	Ether (MTBF)	ND	1.0	1	
Surrogates:	REC (%)	Control Limits		Qual	Surrogates:		REC (%			Qual
Dibromofluoromethane	101	74-140			1,2-Dichloroeth	nane-d4	104	74-146		
Foluene-d8	96	88-112			1,4-Bromofluor		98	74-110		

Tetra Tech, Inc.

348 West Hospitality Lane, Ste 100 San Bernardino, CA 92408-3216

Date Received:

Work Order No: Preparation:

Method:

Units:

07/08/05 05-07-0439 EPA 5030B

EPA 8260B ug/L


Page 6 of 6

Project: Beaumont Site 2 - 16392-01

Client Sample Number				ab Sample Number	Date Collected	Matrix	Date Prepared	Date Analyzed	QC B	atch ID
Method Blank			099-10-	006-14,963	N/A	Aqueous	07/12/05	07/12/05	050712L03	
<u>Parameter</u>	Result	RL	DF	Qual	Parameter		Resul	RL	DF	Qual
Acetone	ND	10	1		1,3-Dichloropr	opane	ND	1.0	1	
Benzene	ND	0.50	1		2,2-Dichloropr	opane	ND	1.0	1	
Bromobenzene	ND	1.0	1		1,1-Dichloropr	opene	ND	1.0	1	
Bromochloromethane	ND	1.0	1		c-1,3-Dichloro		ND	0.50	1	
Bromodichloromethane	ND	1.0	1		t-1,3-Dichlorop		ND	0.50	1	
Bromoform	ND	1.0	1		Ethylbenzene		ND	1.0	1	
Bromomethane	ND	10	1		2-Hexanone		ND	10	1	
2-Butanone	ND	10	1		Isopropylbenze	ene	ND	1.0	1	
n-Butylbenzene	ND	1.0	1		p-Isopropyltolu		ND	1.0	1	
sec-Butylbenzene	ND	1.0	1		Methylene Chl		ND	10	1	
tert-Butylbenzene	ND	1.0	1		4-Methyl-2-Per		ND	10	1	
Carbon Disulfide	ND	10	1		Naphthalene	nanono	ND	10	1	
Carbon Tetrachloride	ND	0.50	1		n-Propylbenze	ne	ND	1.0	1	
Chlorobenzene	ND	1.0	1		Styrene		ND	1.0	1	
Chloroethane	ND	1.0	1		1,1,1,2-Tetrac	hloroethane	ND	1.0	1	
Chloroform	ND	1.0	1		1,1,2,2-Tetracl		ND	1.0	1	
Chloromethane	ND	10	1		Tetrachloroeth		ND	1.0	1	
2-Chlorotoluene	ND	1.0	1		Toluene		ND	1.0	1	
4-Chlorotoluene	ND	1.0	1		1,2,3-Trichloro	benzene	ND	1.0	1	
Dibromochloromethane	ND	1.0	1		1,2,4-Trichloro		ND	1.0	1	
1,2-Dibromo-3-Chloropropane	ND	5.0	1		1,1,1-Trichloro		ND	1.0	1	
1,2-Dibromoethane	ND	1.0	1			-1,2,2-Trifluoroetl		10	1	
Dibromomethane	ND	1.0	1		1,1,2-Trichloro	The second control of the second of the	ND ND	1.0	1	
1,2-Dichlorobenzene	ND	1.0	1		Trichloroethen		ND	1.0	1	
1,3-Dichlorobenzene	ND	1.0	1		Trichlorofluoro		ND	10	1	
1,4-Dichlorobenzene	ND	1.0	1		1,2,3-Trichloro	11.17.14.14.1	ND	5.0	1	
Dichlorodifluoromethane	ND	1.0	1		1,2,4-Trimethy	And the second s	ND	1.0	1	
1,1-Dichloroethane	ND	1.0	1		1,3,5-Trimethy		ND	1.0	1	
1,2-Dichloroethane	ND	0.50	1		Vinyl Acetate	IDONE GITE	ND	1.0		
1,1-Dichloroethene	ND	1.0	1		Vinyl Chloride				1	
:-1,2-Dichloroethene	ND	1.0	1		p/m-Xylene		ND ND	0.50	1	
-1,2-Dichloroethene	ND	1.0	1		o-Xylene			1.0	1	
,2-Dichloropropane	ND	1.0	1		Methyl-t-Butyl I	Ether (MTRE)	ND ND	1.0	1	
Surrogates:	REC (%)	Control Limits		Qual	Surrogates:	culei (MTDE)	REC (%	1.0 Control Limits	1	Qual
Dibromofluoromethane	97	74-140			1,2-Dichloroeth	nane-d4	99	74-146		
Toluene-d8	95	88-112			1,4-Bromofluor		96	74-140		

RL - Reporting Limit

DF - Dilution Factor ,

Tetra Tech, Inc. 348 West Hospitality Lane, Ste 100 San Bernardino, CA 92408-3216

Date Received: Work Order No:

07/08/05 05-07-0439


Project: Beaumont Site 2 - 16392-01

Page 1 of 2

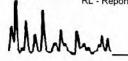
Client Sample Number		Lab	Sample Num		ate ected	Matrix		
LEB-070805-6P		05-	07-0439-2	07/0	8/05	Aqueous		
<u>Parameter</u>	Result	RL	DF	Qual	Units	Date Prepared	Date Analyzed	Method
Solids, Total Dissolved	2.7	1.0	1		mg/L	N/A	07/12/05	EPA 160.1
Chloride	ND	1.0	1		mg/L		07/09/05	EPA 300.0
Nitrate (as N)	ND	0.10	1		mg/L		07/09/05	EPA 300.0
Sulfate	2.4	1.0	1		mg/L		07/09/05	EPA 300.0
Perchlorate	ND	2.0	1		ug/L	N/A	07/14/05	EPA 314.0
Bicarbonate (as CaCO3)	2.2	1.0	1		mg/L		07/11/05	SM 2320B
Carbonate (as CaCO3)	ND	1.0	1		mg/L		07/11/05	SM 2320B
california (ad caded)	110	1.0			mg/L	N/A	07/11/05	SW 2320B
TT-MW2-103		05-	07-0439-3	07/0	8/05	Aqueous		
<u>Parameter</u>	Result	RL	DF	Qual	Units	Date Prepared	Date Analyzed	Method
Solids, Total Dissolved	990			7100		The state of the s		
Chloride	880	1.0	1		mg/L	N/A	07/12/05	EPA 160.1
	270	50	50		mg/L	N/A	07/11/05	EPA 300.0
Nitrate (as N)	12	1	10		mg/L	N/A	07/11/05	EPA 300.0
Sulfate	50	10	10		mg/L	N/A	07/11/05	EPA 300.0
Perchlorate	52000	4000	2000		ug/L	N/A	07/15/05	EPA 314.0
Bicarbonate (as CaCO3)	92	1.0	1		mg/L	N/A	07/11/05	SM 2320B
Carbonate (as CaCO3)	ND	1.0	1		mg/L	N/A	07/11/05	SM 2320B
TT-MW2-3		05-	07-0439-4	07/0	8/05	Aqueous		
				one		Aqueous		
Parameter	Result	RL	<u>DF</u>	Qual	Units	Date Prepared	Date Analyzed	Method
Solids, Total Dissolved	800	1.0	1		mg/L	N/A	07/12/05	EPA 160.1
Chloride	270	50	50		mg/L	N/A		
Nitrate (as N)	12	1	10				07/11/05	EPA 300.0
Sulfate	51	10	10		mg/L	N/A	07/11/05	EPA 300.0
Perchlorate	53000	4000			mg/L	N/A	07/11/05	EPA 300.0
Bicarbonate (as CaCO3)	90		2000		ug/L	N/A	07/15/05	EPA 314.0
Carbonate (as CaCO3)		1.0	1		mg/L	N/A	07/11/05	SM 2320B
Jainonale (as CaCO3)	ND	1.0	1		mg/L	N/A	07/11/05	SM 2320B

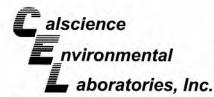
RL - Reporting Limit

DF - Dilution Factor

Tetra Tech, Inc. 348 West Hospitality Lane, Ste 100 San Bernardino, CA 92408-3216

Date Received: Work Order No:


07/08/05 05-07-0439


Project: Beaumont Site 2 - 16392-01

Page 2 of 2

Client Sample Number	Lab S	Sample Nun	nber Da Colle	ate ected	Matrix			
TT-MW2-1		05-	07-0439-5	07/0	8/05 A	queous		
<u>Parameter</u>	Result	RL	DF	Qual	<u>Units</u>	Date Prepared	Date Analyzed	Method
Solids, Total Dissolved	620	1.0	1		mg/L	N/A	07/12/05	EPA 160.1
Chloride	180	50	50		mg/L	N/A	07/09/05	EPA 300.0
Nitrate (as N)	9.3	1.0	10		mg/L	N/A	07/09/05	EPA 300.0
Sulfate	44	10	10		mg/L	N/A	07/09/05	EPA 300.0
Perchlorate	2400	200	100		ug/L	N/A	07/15/05	EPA 314.0
Bicarbonate (as CaCO3)	200	5.0	1		mg/L	N/A	07/11/05	SM 2320B
Carbonate (as CaCO3)	ND	1.0	1		mg/L	N/A	07/11/05	SM 2320B
Method Blank				N/	Α Α	queous		

<u>Parameter</u>	Result	RL	DF	Qual	<u>Units</u>	Date Prepared	Date Analyzed	Method
Chloride	ND	1.0	1		mg/L	N/A	07/08/05	EPA 300.0
Nitrate (as N)	ND	0.10	1		mg/L	N/A	07/08/05	EPA 300.0
Sulfate	ND	1.0	1		mg/L	N/A	07/08/05	EPA 300.0
Perchlorate	ND	2.0	1		ug/L	N/A	07/14/05	EPA 314.0

Tetra Tech, Inc. 348 West Hospitality Lane, Ste 100 San Bernardino, CA 92408-3216

Date Received: Work Order No: Preparation: Method:

07/08/05 05-07-0439 EPA 3010A Total **EPA 6010B**

Project Beaumont Site 2 - 16392-01

Quality Control Sample ID	Matrix	Instrument	Date Prepared		Date Analyzed	MS/MSD Batch Number	
TT-MW2-1	Aqueous	ICP 3300	07/11/05		07/12/05	050711S07	
<u>Parameter</u>	MS %REC	MSD %REC	%REC CL	RPD	RPD CL	Qualifiers	
Antimony	103	102	80-120	1	0-20		
Arsenic	114	112	80-120	1	0-20		
Barium	112	109	80-120	2	0-20		
Beryllium	106	106	80-120	0	0-20		
Cadmium	106	105	80-120	1	0-20		
Chromium	107	106	80-120	1	0-20		
Cobalt	107	105	80-120	2	0-20		
Copper	104	102	80-120	2	0-20		
Lead	106	106	80-120	0	0-20		
Molybdenum	113	113	80-120	0	0-20		
Nickel	106	105	80-120	1	0-20		
Selenium	108	107	80-120	1	0-20		
Silver	109	107	80-120	2	0-20		
Thallium	107	108	80-120	1	0-20		
Vanadium	108	107	80-120	1	0-20		
Zinc	111	116	80-120	4	0-20		

4X

4X

105

4X

80-120

80-120

80-120

80-120

4X

4X

2

4X

0-20

0-20

0-20

0-20

Q

Q

Q

4X

4X

109

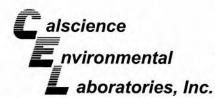
4X

Calcium

Magnesium

Potassium

Sodium



Tetra Tech, Inc. 348 West Hospitality Lane, Ste 100 San Bernardino, CA 92408-3216 Date Received: Work Order No: Preparation: Method: 07/08/05 05-07-0439 EPA 7470A Total EPA 7470A

Project Beaumont Site 2 - 16392-01

Quality Control Sample ID	Matrix	Instrument	Date Prepared		Date Analyzed	MS/MSD Batch Number
TT-MW2-1	Aqueous	Mercury	07/11/05		07/11/05	050711S01
<u>Parameter</u>	MS %REC	MSD %REC	%REC CL	RPD	RPD CL	Qualifiers
Mercury	107	110	71-134	2	0-14	

Mulum

Tetra Tech, Inc. 348 West Hospitality Lane, Ste 100 San Bernardino, CA 92408-3216

Date Received: Work Order No: Preparation: Method: 07/08/05 05-07-0439 EPA 5030B EPA 8260B

Quality Control Sample ID	Matrix	Instrument	Date Prepared		Date Analyzed	MS/MSD Batch Number	
TT-MW2-1	Aqueous	GC/MS M	07/12/05		07/12/05	050712S02	
<u>Parameter</u>	MS %REC	MSD %REC	%REC CL	RPD	RPD CL	Qualifiers	
Benzene	106	104	88-118	2	0-7		
Carbon Tetrachloride	108	110	67-145	2	0-11		
Chlorobenzene	104	103	88-118	1	0-7		

Benzene	106	104	88-118	2	0-7	
Carbon Tetrachloride	108	110	67-145	2	0-11	
Chlorobenzene	104	103	88-118	1	0-7	
1,2-Dichlorobenzene	105	107	86-116	2	0-8	
1,1-Dichloroethene	101	98	70-130	3	0-25	
Toluene	109	106	87-123	3	0-8	
Trichloroethene	101	101	79-127	0	0-10	
Vinyl Chloride	94	92	69-129	2	0-13	
Methyl-t-Butyl Ether (MTBE)	99	102	71-131	2	0-13	
Tert-Butyl Alcohol (TBA)	124	132	36-168	6	0-45	
Diisopropyl Ether (DIPE)	102	104	81-123	2	0-9	
Ethyl-t-Butyl Ether (ETBE)	99	102	72-126	2	0-12	
Tert-Amyl-Methyl Ether (TAME)	106	107	72-126	1	0-12	
Ethanol	111	113	53-149	1	0-31	

alscience nvironmental aboratories, Inc.

Quality Control - Spike/Spike Duplicate

Tetra Tech, Inc.

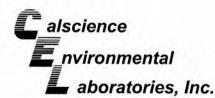
Date Received: Work Order No:

N/A 05-07-0439

348 West Hospitality Lane, Ste 100 San Bernardino, CA 92408-3216

									1
<u>Method</u>	Quality Control Sample ID	<u>Date</u> <u>Analyzed</u>	<u>Date</u> <u>Extracted</u>	MS% REC	MSD % REC	%REC CL	RPD	RPD CL	Qualifiers
EPA 300.0	TT-MW2-1	07/09/05	N/A	92	91	56-134	0	0-3	
EPA 300.0	TT-MW2-1	07/09/05	N/A	100	98	58-142	2	0-6	
EPA 300.0	TT-MW2-1	07/09/05	N/A	97	95	49-133	2	0-3	
EPA 314.0	TT-MW2-1	07/15/05	N/A	87	91	80-120	1	0-15	
	Method EPA 300.0 EPA 300.0 EPA 300.0	Method Quality Control Sample ID EPA 300.0 TT-MW2-1 EPA 300.0 TT-MW2-1 EPA 300.0 TT-MW2-1	Method Quality Control Sample ID Date Analyzed EPA 300.0 TT-MW2-1 07/09/05 EPA 300.0 TT-MW2-1 07/09/05 EPA 300.0 TT-MW2-1 07/09/05	Method Quality Control Sample ID Date Analyzed Date Extracted EPA 300.0 TT-MW2-1 07/09/05 N/A EPA 300.0 TT-MW2-1 07/09/05 N/A EPA 300.0 TT-MW2-1 07/09/05 N/A	Method Quality Control Sample ID Date Analyzed Date Extracted MS% REC EPA 300.0 TT-MW2-1 07/09/05 N/A 92 EPA 300.0 TT-MW2-1 07/09/05 N/A 100 EPA 300.0 TT-MW2-1 07/09/05 N/A 97	Method Quality Control Sample ID Date Analyzed Date Extracted MS% REC REC REC EPA 300.0 TT-MW2-1 07/09/05 N/A 92 91 EPA 300.0 TT-MW2-1 07/09/05 N/A 100 98 EPA 300.0 TT-MW2-1 07/09/05 N/A 97 95	Method Quality Control Sample ID Date Analyzed Date Extracted MS% REC REC REC %REC CL EPA 300.0 TT-MW2-1 07/09/05 N/A 92 91 56-134 EPA 300.0 TT-MW2-1 07/09/05 N/A 100 98 58-142 EPA 300.0 TT-MW2-1 07/09/05 N/A 97 95 49-133	Method Quality Control Sample ID Date Analyzed Date Extracted MS% REC REC MSD % REC REC REC CL RPD EPA 300.0 TT-MW2-1 07/09/05 N/A 92 91 56-134 0 EPA 300.0 TT-MW2-1 07/09/05 N/A 100 98 58-142 2 EPA 300.0 TT-MW2-1 07/09/05 N/A 97 95 49-133 2	Method Quality Control Sample ID Date Analyzed Date Extracted MS% REC REC MSD % REC REC REC REC RPD CL EPA 300.0 TT-MW2-1 07/09/05 N/A 92 91 56-134 0 0-3 EPA 300.0 TT-MW2-1 07/09/05 N/A 100 98 58-142 2 0-6 EPA 300.0 TT-MW2-1 07/09/05 N/A 97 95 49-133 2 0-3

Quality Control - Duplicate


Tetra Tech, Inc. 348 West Hospitality Lane, Ste 100 San Bernardino, CA 92408-3216

Date Received: Work Order No:

05-07-0439

N/A

Matrix: Aqueous								
<u>Parameter</u>	Method	QC Sample ID	Date Analyzed	Sample Conc	DUP Conc	RPD	RPD CL	Qualifiers
Alkalinity, Total (as CaCO3)	SM 2320B	05-07-0489-1	07/11/05	34000	34000	0	0-25	
Bicarbonate (as CaCO3)	SM 2320B	05-07-0489-1	07/11/05	28000	28000	0	0-25	
Carbonate (as CaCO3)	SM 2320B	05-07-0489-1	07/11/05	5600	5400	4	0-25	
Hydroxide (as CaCO3)	SM 2320B	05-07-0489-1	07/11/05	ND	ND	NA	0-25	
Solids, Total Dissolved	EPA 160.1	05-07-0297-1	07/12/05	1000	1100	4	0-25	

Quality Control - LCS/LCS Duplicate

Tetra Tech, Inc. 348 West Hospitality Lane, Ste 100 San Bernardino, CA 92408-3216 Date Received: Work Order No: Preparation: Method: N/A 05-07-0439 EPA 3010A Total EPA 6010B

Quality Control Sample ID	Matrix I	Date nstrument Prepared		Date Analyzed		LCS/LCSD Bat Number	ch
097-01-003-5,093 Parameter	Aqueous	ICP 3300	07/11/05	07/1:	2/05	050711L07	
	LCS %REC	LCSD %RI	<u>EC %F</u>	REC CL	RPD	RPD CL	Qualifiers
Antimony	104	102	8	0-120	2	0-20	
Arsenic	108	105	8	0-120	2	0-20	
Barium	110	110	8	0-120	0	0-20	
Beryllium	101	100	8	0-120	1	0-20	
Cadmium	105	106	8	0-120	1	0-20	
Chromium	106	107	8	0-120	0	0-20	
Cobalt	106	106	8	0-120	0	0-20	
Copper	98	98	8	0-120	1	0-20	
Lead	109	107	8	0-120	2	0-20	
Molybdenum	114	113		0-120	1	0-20	
Nickel	107	108	8	0-120	0	0-20	
Selenium	99	98	8	0-120	2	0-20	
Silver	103	104	8	0-120	0	0-20	
Thallium	108	107	8	0-120	1	0-20	
Vanadium	106	106	8	0-120	0	0-20	
Zinc	107	107	8	0-120	0	0-20	
Calcium	102	102	8	0-120	0	0-20	
Magnesium	103	104		0-120	1	0-20	
Potassium	104	101	8	0-120	3	0-20	
Sodium	96	93		0-120	3	0-20	

alscience nvironmental Quality Control - Laboratory Control Sample aboratories, Inc.

nel c

Tetra Tech, Inc. 348 West Hospitality Lane, Ste 100 San Bernardino, CA 92408-3216

Date Received: Work Order No: Preparation: Method: N/A 05-07-0439 EPA 7470A Total EPA 7470A

Project: Beaumont Site 2 - 16392-01

Quality Control Sample ID	Matrix	Instrument	Date Analyzed	Lab Fil	e ID	LCS Batch Number				
099-04-008-2,011	Aqueous	Mercury	07/11/05	050711-1-0	11.icp	050711L01				
<u>Parameter</u>		Conc Added	Conc Recovered	LCS %Rec	%Rec CL	Qualifiers				
Mercury		0.0100	0.0103	103	90-122					

Quality Control - LCS/LCS Duplicate

Tetra Tech, Inc. 348 West Hospitality Lane, Ste 100 San Bernardino, CA 92408-3216 Date Received: Work Order No: Preparation: Method: N/A 05-07-0439 EPA 5030B EPA 8260B

Project: Beaumont Site 2 - 16392-01

Quality Control Sample ID	Matrix	Instrument	Date Prepared		ate yzed	LCS/LCSD Bat Number	ch
099-10-006-14,963	Aqueous	GC/MS M	07/12/05	07/12	2/05	050712L03	
Parameter	LCS %F	REC LCSD	%REC	%REC CL	RPD	RPD CL	Qualifiers
Benzene	103	103		84-120	0	0-8	
Carbon Tetrachloride	110	114		63-147	4	0-10	
Chlorobenzene	104	104		89-119	0	0-7	
1,2-Dichlorobenzene	107	105		89-119	2	0-9	
1,1-Dichloroethene	100 103			77-125 3		0-16	
Toluene	105 109			83-125	4	0-9	
Trichloroethene	102	102		89-119	0	0-8	
Vinyl Chloride	92 9			63-135	2	0-13	
Methyl-t-Butyl Ether (MTBE)	97 99			82-118	1	0-13	
Tert-Butyl Alcohol (TBA)	114	119		46-154	4	0-32	
Diisopropyl Ether (DIPE)	102	102		81-123	0	0-11	
Ethyl-t-Butyl Ether (ETBE)	99	100		74-122	1	0-12	
Tert-Amyl-Methyl Ether (TAME)	104	105		76-124	1	0-10	
Ethanol	92	97		60-138	6	0-32	

Mullima_

Quality Control - LCS/LCS Duplicate

Tetra Tech, Inc. 348 West Hospitality Lane, Ste 100 San Bernardino, CA 92408-3216 Date Received: Work Order No:

N/A 05-07-0439

Project: Beaumont Site 2 - 16392-01

Matrix: Aqueou	IS									
<u>Parameter</u>	Method	Quality Control Sample ID	<u>Date</u> <u>Extracted</u>	<u>Date</u> <u>Analyzed</u>	LCS % REC	LCSD % REC	%REC CL	RPD	RPD CL	Qual
Chloride	EPA 300.0	099-05-118-2,841	N/A	07/08/05	95	95	81-111	0	0-5	
Nitrate (as N)	EPA 300.0	099-05-118-2,841	N/A	07/08/05	98	97	87-111	1	0-12	
Sulfate	EPA 300.0	099-05-118-2,841	N/A	07/08/05	96	96	89-107	0	0-13	
Perchlorate	EPA 314.0	099-05-203-298	N/A	07/14/05	98	101	85-115	3	0-15	

Glossary of Terms and Qualifiers

Work Order Number: 05-07-0439

Qualifier	<u>Definition</u>
*	See applicable analysis comment.
1	Surrogate compound recovery was out of control due to a required sample dilution, therefore, the sample data was reported without further clarification.
2	Surrogate compound recovery was out of control due to matrix interference. The associated method blank surrogate spike compound was in control and, therefore, the sample data was reported without further clarification.
3	Recovery of the Matrix Spike or Matrix Spike Duplicate compound was out of control due to matrix interference. The associated LCS and/or LCSD was in control and, therefore, the sample data was reported without further clarification.
4	The MS/MSD RPD was out of control due to matrix interference. The LCS/LCSD RPD was in control and, therefore, the sample data was reported without further clarification.
5	The PDS/PDSD associated with this batch of samples was out of control due to a matrix interference effect. The associated batch LCS/LCSD was in control and, hence, the associated sample data was reported with no further corrective action required.
Α	Result is the average of all dilutions, as defined by the method.
В	Analyte was present in the associated method blank.
С	Analyte presence was not confirmed on primary column.
E	Concentration exceeds the calibration range.
н	Sample received and/or analyzed past the recommended holding time.
J	Analyte was detected at a concentration below the reporting limit and above the laboratory method detection limit. Reported value is estimated.
N	Nontarget Analyte.
ND	Parameter not detected at the indicated reporting limit.
Q	Spike recovery and RPD control limits do not apply resulting from the parameter concentration in the sample exceeding the spike concentration by a factor of four or greater.
U	Undetected at the laboratory method detection limit.
X	% Recovery and/or RPD out-of-range.
Z	Analyte presence was not confirmed by second column or GC/MS analysis.

1000

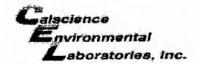
8

3

Canary = Laboratory

JISTRIBUTION: White and Pink = Tetra Tech, Inc.

BATIM


くぞうごろ

RECEIVED BY

COMPANY

CHAIN OF CUSTODY RECORD 1 OF/ DATE 7/8/05 PAGE PARAMETERS Science SHIP TO: CA PROJECT NAME: BREWMENT SITE 2 348 W. Hospitality Lane, Suite 100 San Bernardino, California 92408 Telephone: (909) 381-1674 FAX: (909) 889-1391 TETRA TECH, INC. PROJECT MANAGER: 7m7 CLIENT

Metals Silter HCO3, CO3, 14 4) Genmin-analyz Special Shipping/Handling/Storage Requirements: Gu NO3, 504, Ca, C1, K, Mg TOTAL NUMBER OF CONTAINERS ON THIS CHAIN OF CUSTODY: **OBSERVATIONS/COMMENTS** TURN-AROUND TIME METHOD OF SHIPMENT/SHIPMENT NO. Standard PRESERVATIVES: (Water Only) Speld NaOH H,SO,H SSSOLOS 1 1he HCL NR (None required) Carier PRESERVATIVE 圣 NUMBER OF CONTAINERS 0 **SONTAINER TYPE** 3 *ANTRIX TYPE* 600 14:10 TIME 2 TIME 2 FILTERED/UNFILTERED SB - Brass Sleeve P - Plastic Bottle/Jar 18/05/8/ D 1 CONTAINER TYPE: G - Glass Bottle/Jar SS - Stainless Steel Sleeve TETRA TECH, INC. U05 × × × × COMPANY COMPANY X × X X × × MATRIX TYPE: S - Soil M - Sediment W - Water 9988 701 × × × 756 765 918 600 TIME 615 Brenda Mayer 7/8/03 DATE ☐ UNFILTERED CARN MERVE 163-070805-6P TUHM MOTUYEN T-MW2-103 TB-070805 T-mma-3 TC# 16392-0 -- MUZhristophy Rd SAMPLERS (Signatures) SAMPLE RELINQUISHED BY RELINQUISHED BY ☐ FILTERED FILTERING RECEIVED BY 3.1 d 4 3 0 1 œ 6

WORK ORDER #:

05-07-0439

Cooler ____ of ___

SAMPLE RECEIPT FORM

CLIENT:	TETRATECH	DATE: 07/08/05
TEMPERA	TURE - SAMPLES RECEIVED BY:	~
Chill Chill Chill Amb	DE COURIER: led, cooler with temperature blank provided. led, cooler without temperature blank. led and placed in cooler with wet ice. pient and placed in cooler with wet ice. pient temperature.	LABORATORY (Other than Calscience Courier): °C Temperature blank. °C IR thermometer. Ambient temperature.
7-1 °C	Temperature blank.	Initial:
CUSTODY	SEAL INTACT:	
Sample(s):	Cooler: No (Not In	tact) : Not Applicable (N/A): / Initial:
Chain-Of-Cus Sample conta Sample conta Correct conta Proper prese VOA vial(s) fr	ainer label(s) consistent with custody papers ainer(s) intact and good condition ainers for analyses requested rvation noted on sample label(s)	Yes No N/A
COMMENT	TS:	

SW8260 -cis-1,2-Dichloroethene -ug/kg	<0.35	<0.35	<0.35		<0.35	<0.35	<0.35		<0.35	<0.35	<0.35	<0.35	<0.35	<0.35	<0.35		<0.35	<0.35	<0.35	
SW8260 -Vinyl chloride -ug/kg	_	_	<0.33				<0.33								<0.33				<0.33	1
SW8260 -Vinyl acetate -ug/kg			<3.2 <				<3.2 <			<3.2 <		<3.2 <			<3.2 <				<3.2	1
SW8260 -Trichlorofluoromethane -ug/kg	_		<0.36		<0.36		<0.36								<0.36				<0.36	1
SW8260 -Trichloroethene -ug/kg			<0.30 <				<0.30		2		П				<0.30		<0.30		<0.30	1
gx/gu- eneuloT- 0328WS	_		<0.35 <		<0.35 <		<0.35 <			2					<0.35 <		<0.35 <		<0.35 <	
SW8260 -Tetrachloroethene -ug/kg	_	<0.29 <0	<0.29 <(<0.29 <(<0.29 <(<0.29 <0	<0.29 <(<0.29 <0	
SW8260 -Siyrene -ug/kg	_	1	<0.29 <0				<0.29 <0						<0.29 <0		<0.29 <0				<0.29 <0	-
SW8260 -Naphthalene -ug/kg			_								95 <0	<0.95 <0	95 <0				95 40	95	<0.95 <0.	
	_	29 <0.95	29 <0.95		59 <0.95		29 <0.95		29 <0.95		29 <0.95	29 <0.			29 <0.95		29 <0.95	29 <0.95		+
SW8260 -N-Butylbenzene -ug/kg			4 <0.29				4 <0.29		4 <0.29	4 < 0.29	4 <0.29	4 <0.29			4 <0.29		4 <0.29	4 <0.29	4 <0.29	-
SW8260 -lsopropylbenzene -ug/kg	<0.24	<0.24	<0.24		<0.24	<0.24	<0.24			<0.24			<0.24	<0.24	<0.24				<0.24	4
SM8Se0 -Etµylbenzene -ug/kg	<0.17	<0.17	<0.17		<0.17	<0.17	<0.17		<0.17	<0.17	<0.17	< 0.17	<0.17	<0.17	<0.17		<0.17	<0.17	<0.17	
SW8260 -Dichloromethane -ug/kg	<2.6	<2.6	<2.6		<2.6	<2.6	<2.6		<2.6	<2.6	<2.6	<2.6	<2.6	<2.6	<2.6		<2.6	<2.6	<2.6	
SW8260 -Dichlorodifluoromethane -ug/kg	<0.27	<0.27	<0.27			<0.27	<0.27		<0.27	<0.27				<0.27	<0.27		<0.27		<0.27	
SW8260 -Dibromomethane -ug/kg	N		<0.42		<0.42	<0.42	<0.42		<0.42	<0.42	<0.42	<0.42	<0.42	<0.42	<0.42		<0.42	<0.42	<0.42	
SW8S60 -DBCP (1,2-Dibromo-3-chloropropane) -ug/kg		<2.5	<2.5		<2.5	<2.5	<2.5		<2.5	<2.5		<2.5	<2.5	<2.5	<2.5		<2.5		<2.5	1
SW8260 -Chloromethane -ug/kg	<1.8	<1.8	<1.8		<1.8	<1.8	<1.8		<1.8	<1.8	<1.8 <	<1.8	<1.8	<1.8	<1.8 <		<1.8 <	<1.8	<1.8	
SW8260 -Chloroform -ug/kg	Oi	<0.22	<0.22 <		<0.22	<0.22 <	<0.22 <		<0.22 <	<0.22		<0.22	<0.22 <	<0.22	<0.22 <		<0.22	22	<0.22	1
SW8260 -Chloroethane -ug/kg	0	_	<0.52 <		<0.52 <	<0.52 <	<0.52 <			<0.52 <		<0.52 <	<0.52 <		<0.52 <		<0.52 <	52	52	
SW8260 -Chlorodibromomethane -ug/kg	10	<0.45 <(<0.45 <(<0.45 <(<0.45 <(<0.45 <(<0.45 <(<0.45 <(<0.45 <(<0.45 <(<0.45 <0	<0.45 <(<0.45 <0	45	.45 <0.	
SW8260 -Chlorobromomethane -ug/kg	m		<0.68 <0		<0.68 <0	<0.68 <0	<0.68 <0			<0.68 <0		<0.68 <0	<0.68 <0		<0.68 <0		<0.68 <0		<0.68 <0.	-
SW8260 -Chlorobenzene -ug/kg	-								36 <0	36 <0	36 <0.	36 <0.			36 <0			36 <0.	36 <0	
V 400 000 000 000 000	A		12 <0.36		12 <0.36	12 <0.36	42 <0.36		42 <0.36	12 < 0.36		12 < 0.36	12 <0.36	12 <0.36	12 < 0.36		12 <0.36		12 <0.36	-
SW8260 -Carbon tetrachloride -ug/kg	¥	Ė			<0.42	<0.42	9		0	<0.42		<0.42	<0.42	<0.42	<0.42		<0.42		<0.42	
SW8260 -Carbon disulfide -ug/kg	v		0.1>		0.15	0.1>	0.1>		0.1>	0.1>	0.1>	0.1>	0.1>	0.1>	0.1>		0.1>		61.0	
SW8260 -Bromomethane -ug/kg	V		2 <2.9		2 <2.9	2 <2.9	2 <2.9		2 <2.9	2 <2.9		2 <2.9	2 <2.9	2 <2.9	2 <2.9		2 <2.9		2 <2.9	
SW8260 -Bromoform -ug/kg	V	2 <0.6	7 <0.62		7 <0.62	7 <0.62	29.0>		20.6	9.0> 7	20.6	9.0>	2 <0.6	2 < 0.6	7 <0.62	Ц	9.0> 2	20.6	<0.62	
SW8260 -Bromodichloromethane -ug/kg	<0.27	<0.2	<0.27		<0.47 <0.27	<0.47 <0.27	<0.47 <0.27		<0.47 <0.27 <0.62	<0.47 <0.27 <0.62	<0.47 <0.27 <0.62	<0.47 <0.27 <0.62	<0.47 <0.27 <0.62	<0.47 <0.27 <0.62	<0.27		<0.47 <0.27 <0.62	<0.47 <0.27 <0.62	<0.27	
SW8260 -Bromobenzene -ug/kg	<0.47	<0.47	<0.47	7	<0.47	<0.47	<0.47		<0.47	<0.47	<0.47	<0.47	<0.47	<0.47	<0.47		<0.47	<0.47	<0.47	
SM8Seo -Beuseue -n3/kg	<0.26	<0.26	<0.26		<0.26	<0.26	<0.26		<0.26	<0.26	<0.26	<0.26	<0.26	<0.26	<0.26		<0.26	<0.26	<0.26	
SW8260 -Acetone -ug/kg	c6.1	<6.1	1.9>		<6.1	<2.4 <6.1 <0.26	<2.4 <6.1 <0.26	P	<6.1	×6.1	<2.4 <6.1 <0.26	<2.4 <6.1 <0.26	<2.4 <6.1 <0.26	<6.1	c6.1		<6.1	<6.1	<6.1	
SW8260 -4-Methyl-2-pentanone -ug/kg	<2.4	<2.4	<2.4		<2.4	<2.4			<2.4	<2.4	<2.4	4.2	<2.4	<2.4 <6.1	<2.4 <6.1		<2.4	<2.4	<2.4	
SW8260 -4-lsopropyltoluene -ug/kg	å	<0.21	<0.21		<1.9 <0.30 <0.21 <2.4 <6.1 <0.26	<0.21	<1.9 <0.30 <0.21		<1.9 <0.30 <0.21 <2.4 <6.1 <0.26	<1.9 <0.30 <0.21 <2.4 <6.1 <0.26	<0.21	<0.21	<0.21	<0.21	<0.21		<0.30 <0.21 <2.4 <6.1 <0.26	<1.9 <0.30 <0.21 <2.4 <6.1 <0.26	<0.30 <0.21 <2.4 <6.1	
SW8260 -4-Chlorotoluene -ug/kg	10	<1.9 <0.30	<0.30		<0.30	<0.30	<0.30		<0.30	<0.30	<1.9 <0.30	<0.30	<0.30	<0.30	<0.30		<0.30	<0.30	<0.30	
SW8260 -2-Hexanone -ug/kg	6.15	6.15	6.1>		6.12	6.1.5	<1.9		6.1>	6.1>	41.9	<1.9	6.1>	41.9	<1.9		<1.9	<1.9	<1.9	
рате	09/27/04		07/08/05	8/05	09/27/04			20/2	09/27/04	09/27/04			09/27/04	02/16/05		20/2				2/02
	09/2	02/16/05	0//0	07/08/05	09/2	02/16/05	0//0	07/07/05	09/2	09/2	02/1	07/08/05	09/2	02/1	02/02/05	02/02/05	09/27/04	02/16/05	02/02/05	07/07/05
TEXTDATE Log Date	40/2	3/05	3/05	3/05	7/04	3/05	50/2	50/2	1/04	1/04	3/05	3/05	1/04	3/05	50/2	50/2	1/04	3/05	50/2	1/05
TEXT	09/27/04	02/16/05	02/08/05	02/08/05	09/27/04	02/16/05	02/02/05	07/07/05	09/27/04	09/27/04	02/16/05	07/08/05	09/27/04	02/16/05	02/02/05	02/02/05	09/27/04	02/16/05	02/02/05	07/07/05
	-	-	7	-	Ņ	Ş	-5	-5	20	67	3	3	ĝ.	ġ.	¢D	40	4S	45	sy.	45
STATION	TT-MW2-	TT-MW2-	TT-MW2-1	TT-MW2-1	TT-MW2-2	TT-MW2-2	TT-MW2-2	TT-MW2-2	TT-MW2-20	TT-MW2-3	TT-MW2-3	TT-MW2-3	TT-MW2-4D	TT-MW2-4D	TT-MW2-4D	TT-MW2-4D	TT-MW2-4S	TT-MW2-4S	TT-MW2-4S	TT-MW2-4S
io	Ė	Ė	Ė	Ė	Ė	Ė	É	Ė	Ė	É	Ė	Ė	Ė	Ė	Ė	Ė	Ë	Ė	Ĕ	Ě

STATION

Ti-MW2-1
Ti-MW2-1
Ti-MW2-1
Ti-MW2-2
Ti-MW2-2
Ti-MW2-2
Ti-MW2-3
Ti-MW2-3
Ti-MW2-3
Ti-MW2-4
Ti-MW2-4
Ti-MW2-4
Ti-MW2-45
Ti-MW2-4

SW8270 -2,6-Dinitrotoluene -mg/kg
SW8270 -2-Chloronaphthalene -mg/kg