Quarterly Groundwater Monitoring Report Third Quarter 2005 Lockheed Martin Corporation, Beaumont Site 2 Beaumont, California

Quarterly Groundwater Monitoring Report Third Quarter 2005 Lockheed Martin Corporation, Beaumont Site 2 Beaumont, California

December 2005 TC 16392-04

Prepared for Lockheed Martin Corporation Burbank, California

Prepared by Tetra Tech, Inc.

Brenda Meyer, P.E.

Deputy Beaumont Program Manager

Paul Michalski, P.G. Project Geologist

2

Thomas J. Villeneuve, P.E.

Program Manager

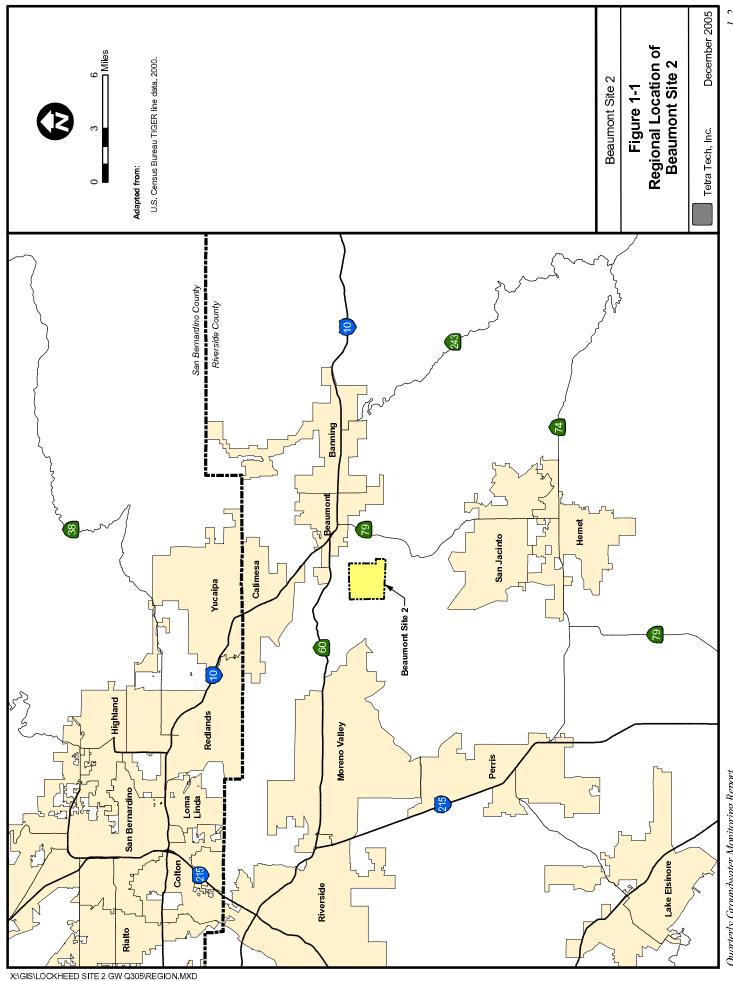
TABLE OF CONTENTS

1.0	INTR	CODUCTION	1-1
	1.1	SITE BACKGROUND	
	1.2	PREVIOUS ENVIRONMENTAL ACTIVITIES	
		1.2.1 Preliminary Remedial Investigation	
		1.2.2 Hydrogeologic Investigation	
		1.2.3 Disposal Area Removal Action	1-6
		1.2.4 Remedial Action Certification Letter	1-7
		1.2.5 Monitoring Well Destruction Report	1-7
		1.2.6 Groundwater Sampling Results From Former Production Well W2-3	1-7
	1.3	RECENT ENVIRONMENTAL ACTIVITIES	
		1.3.1 Groundwater Monitoring Well Installation Report	1-8
		1.3.2 Geophysical Testing	1-8
		1.3.3 Downgradient Well Installation Work Plan	1-9
	1.4	GROUNDWATER MONITORING PROGRAM	1-10
2.0	CON	CEPTUAL SITE MODEL	2-1
2.0	2.1	PHYSICAL SETTING	
	2.1	2.1.1 Surface Water	
	2.2	GEOLOGY	
		2.2.1 Regional Geology	
		2.2.2 Local Geology	
	2.3	HYDROGEOLOGY	
	2.4	DISTRIBUTION OF AFFECTED GROUNDWATER	
		2.4.1 Perchlorate	
		2.4.2 Trichloroethene	
3.0	CIIM	MARY OF MONITORING ACTIVITIES	
3.0	3.1	GROUNDWATER LEVEL MEASUREMENTS	
	3.1	GROUNDWATER LEVEL MEASUREMENTSGROUNDWATER SAMPLING	
	3.3	REDEVELOPMENT OF SITE MONITORING WELLS	
	3.3 3.4	HABITAT CONSERVATION	
4.0		UNDWATER MONITORING RESULTS	
	4.1	GROUNDWATER ELEVATION	
	4.2	GROUNDWATER FLOW DIRECTION	
	4.3	ANALYTICAL DATA SUMMARY	
	4.4	CHEMICALS OF POTENTIAL CONCERN	
		4.4.1 Organic Analytes	
		4.4.2 Inorganic Analytes	
		4.4.3 Chemicals of Potential Concern Conclusions	
		4.4.4 Perchlorate	
		4.4.5 Trichloroethene	
	4.5	GENERAL MINERALS	
	4.6	DATA REVIEW	
	4.7	HABITAT CONSERVATION	4-13
5.0	SUM	MARY AND CONCLUSIONS	5-1
	5.1	GROUNDWATER ELEVATION AND FLOW	
	5.2	WATER QUALITY MONITORING EVENT	5-1

	5.3 WATER QUALITY MONITORING NETWORK	5-2
6.0	REFERENCES	6-1
7.0	ACRONYMS	7-1
	LIST OF FIGURES	
Figure 1	1-1 Regional Location of Beaumont Site 2	1-2
Figure 1	1-2 Site Layout	1-3
Figure 2	2-1 Physical Setting	2-2
Figure 2	2-2 Regional Geology	2-3
Figure 2	2-3 Cross Section Location Map	2-5
Figure 2	2-4 Geologic Cross Section A – A'	2-6
Figure 2	2-5 Geologic Cross Section B – B'	2-7
Figure 3	3-1 Third Quarter 2005 Sample Locations	3-4
Figure 4	4-1 September 2005, Third Quarter Groundwater Elevations	4-2
Figure 4	4-2 Groundwater Elevation vs. Time	4-3
	4-3 Perchlorate and TCE Concentrations - Third Quarter 2005	
	4-4 Distribution of General Minerals - Third Quarter 2005	
	LIST OF TABLES	
Table 2	-1 Chemicals of Potential Concern	2-9
Table 2	-2 Summary of Groundwater COPC Analytical Results	2-10
Table 3	-1 Well Construction Summary Table	3-2
Table 3	-2 Sampling Schedule - Third Quarter 2005	3-3
Table 4	-1 Groundwater Elevation Data - Third Quarter 2005	4-1
Table 4	-2 Summary of Detected Organic Analytes - Third Quarter 2005	4-5
Table 4	4-3 Summary of Detected Inorganic Analytes (Perchlorate and Title 22, Total and	
	Dissolved Metal Concentrations) - Third Quarter 2005	4-6
Table 4	-4 Summary of General Mineral Concentrations - Third Quarter 2005	4-7
Table 4	-5 Summary Statistics of Organic and Inorganic Analytes Detected (Excluding General	4.0
	Minerals) - Third Quarter 2005	4-9
	APPENDICES	
	DIX A Consolidated Data Summary Table	
	DIX B Field Data Sheets	
	IDIX C Validated Analytical Results by Method	
	IDIX D Water Level Hydrographs IDIX E Chemicals of Potential Concern Time-Series Graphs	
	DIX F Laboratory Analytical Data Packages	

1.0 INTRODUCTION

This Quarterly Groundwater Monitoring Report (Report) prepared by Tetra Tech, Inc. (Tetra Tech), on behalf of Lockheed Martin Corporation (LMC), presents the results of the Third Quarter 2005 groundwater quality monitoring activities of the Beaumont Site 2 (Site) Groundwater Monitoring Program (GMP). The Site is located southwest of the City of Beaumont, Riverside County, California (Figure 1-1). Currently, the Site is inactive with the exception of ongoing investigative activities.


The objectives of this Report are to:

- Present the most current conceptual Site model (CSM),
- Document the water quality monitoring procedures and results, and
- Analyze and evaluate the water quality monitoring data generated.

This Report contains the following: data validation criteria and results; tabulated groundwater elevation and water quality data; water level hydrographs; a groundwater elevation map; perchlorate and trichloroethene (TCE) concentration distribution maps; and time-series graphs. This Report also includes: Site background, an evaluation of the groundwater monitoring data generated, and an evaluation of the current groundwater monitoring program at the Site.

1.1 SITE BACKGROUND

The Site is a 2,668-acre parcel located southwest of Beaumont, California. The parcels that comprise the Site were owned by individuals and the United States (U.S.) government prior to 1958. Between 1958 and 1960, portions of the Site were purchased by Grand Central Rocket Company (GCR) and utilized as a remote test facility for early space and defense program efforts. In 1960, Lockheed Aircraft Corporation (LAC) purchased one-half interest in GCR. GCR became a wholly-owned subsidiary of LAC in 1961. The remaining parcels of land that comprise the Site were purchased from the U.S. government between 1961 and 1964. In 1963, Lockheed Propulsion Company (LPC) became an operating division of LAC and was responsible for the operation of the Site until its closure in 1974. The Site was utilized by GCR and LPC from 1958 to 1974 for small rocket motor assembly, testing operations, propellant incineration, and minor disposal activities. Ogden Labs is known to have leased portions of the Site in the 1970s (Radian, 1986a). A layout of the Site is presented on Figure 1-2. In 1989, the Department of Toxic Substances Control (DTSC) issued a consent order requiring LMC to cleanup contamination at the Site related to past testing activities (CDHS, 1989). Based on characterization and cleanup activities performed at the Site, the DTSC issued a no further remedial action letter to LMC closing the Site in 1993.

Quarterly Groundwater Monitoring Report Third Quarter 2005 Beaumont Site 2

Quarterly Groundwater Monitoring Report Third Quarter 2005 Beaumont Site 2

X:\GIS\LOCKHEED SITE 2 GW Q305\SITE.MXD

Based on regulatory interest in perchlorate and 1,4-dioxane, a groundwater sample was collected from an inactive groundwater production well (identified as W2-3) at the Site in January 2003. The sample was analyzed for volatile organic compounds (VOCs), perchlorate, and 1,4-dioxane to determine the potential presence and concentration of these chemicals in groundwater. The analytical results indicated that VOCs and 1,4-dioxane were not present at or above their respective laboratory reporting limits (LRLs). However, perchlorate was reported at a concentration of 4,080 micrograms per liter (μ g/L), which exceeded the California Department of Health Services drinking water notification level (DWNL) of 6 μ g/L. Based on the detection of perchlorate in the groundwater sample collected, the DTSC reopened the Site for further assessment.

Four (4) primary historical operational areas have been identified at the Site (Figure 1-2). Each operational area was responsible for various activities associated with rocket motor assembly, testing, and propellant incineration. A brief description of each operational area follows:

<u>Operational Area J – Final Assembly</u>

Rocket motor casings with solid propellant were transported to Building 250 (Historical Operational Area J) where final assembly of the rocket hardware was conducted. The building was used from 1970 to 1974 for final assembly and shipment of short range attack missile rocket motors. Rocket motor assembly operations included installation of the nozzle and headcap, pressure check of the motor, installation of electrical systems, and preparations for shipment. During plant closure in 1974, all usable parts of this facility were dismantled, taken off site, and sold (Radian, 1986a).

Operational Area K – Test Bays and Miscellaneous Facilities

Historical Operational Area K consisted of a conditioning chamber and its associated bunker, centrifuge, and four (4) test bays. The conditioning chamber was used to examine the effects of extreme temperatures on rocket motors and to meet specification requirements. A centrifuge was located in the western test bay, where rocket motors were tested in order to determine if the solid propellant would separate from its casing under increased gravitational forces (i.e., g-forces). The initial testing activities had a history of explosions that destroyed complete test areas, especially during the period when GCR operated at the Site. As the technology became better understood, motor failures occurred less often. Following any motor failure, the hillsides were reportedly thoroughly policed to recover any unburned solid propellant (Radian, 1986a).

Operational Area L – Burn Area

Solid propellant reportedly was transported to the burn area (Historical Operational Area L) and set directly on the ground surface for burning. No pits or trenches were dug as part of the burning process. The solid propellant was saturated with diesel fuel to initiate combustion. Reportedly, the solid propellant would burn rapidly. There is no evidence or physical features that identify the precise location of burning activities (Radian, 1986a).

Operational Area M - Garbage Disposal Site

A garbage disposal site (Historical Operational Area M) was located adjacent to a small creek at the Site. Scrap metal, paper, wood, and concrete materials were disposed of at the disposal site by LPC. Hazardous materials, including explosives and propellants, were never disposed of at this disposal site by LPC (according to employee interviews). Ogden Labs, a company that tested valves and explosive items, also used this disposal site. Reportedly, Ogden Labs disposed of hazardous waste at the garbage disposal site. In 1972, a Lockheed Safety Technician was exposed to toxic vapors of unsymmetrical dimethyl hydrazine from a pressurized gas container located within the disposal site. Based on potential exposure risks to occupants, LPC's safety group required Ogden Labs to take measures to remove any potentially hazardous materials at the disposal site. Shortly thereafter, a disposal company was contracted by Ogden Labs to clean up the disposal site (Radian, 1986a).

1.2 PREVIOUS ENVIRONMENTAL ACTIVITIES

Reports and documentation regarding previous environmental activities (i.e., soil/groundwater investigations, excavations, regulatory agency correspondence, etc.) were reviewed to provide a historical environmental evaluation of the Site. The review focused upon identifying activities conducted at the Site that would describe specific findings regarding chemical impacts to groundwater. Previous investigations reviewed included a preliminary remedial investigation (Radian, 1986b); hydrogeologic investigation (Radian, 1992a); disposal area removal action report (Radian, 1993); monitoring well destruction report (LMC, 1995); and a letter report for groundwater sampling results from former production well W2-3 (Tetra Tech, 2003). These investigations are briefly summarized in the following subsections.

1.2.1 Preliminary Remedial Investigation

In October 1986, Radian Corporation (Radian) conducted a remedial groundwater and geophysical investigation at the Site (Radian, 1986b). The objective of the remedial investigation was to determine the potential presence and lateral extents of possible contaminants in the groundwater beneath the Site. The remedial groundwater investigation was to include sampling four (4) of the existing groundwater production wells (designated W2-1, W2-2, W2-3, and W2-5 and shown on Figure 1-2) at the Site

(Radian, 1986b). However, only well W2-3, located upgradient of the probable surface propellant burn area (Historical Operational Area "L"), was accessible during this investigation. A sample was collected from well W2-3 and analyzed for purgeable hydrocarbons using U.S. Environmental Protection Agency (EPA) Method 601. TCE was reported at a concentration of 4.2 µg/L in the sample.

1.2.2 Hydrogeologic Investigation

In 1992, Radian performed a hydrogeologic investigation at the Site to assess potential source areas and to characterize subsurface soil and groundwater conditions (Radian, 1992b). The investigation included groundwater well installation and sampling.

During this investigation, four (4) groundwater monitoring wells (designated MW2-2, MW2-4, MW2-5, and MW2-6) were installed at the Site (Figure 1-2). MW2-2 was located approximately 400 feet southeast of the former propellant burn area and down-gradient of the disposal area. MW2-4 was the furthest down-gradient well and was located approximately 800 feet south of the former propellant burn area. Wells MW2-5 and MW2-6 were located approximately 2,600 feet and 800 feet, respectively, south of the Final Assembly Building area.

Groundwater monitoring wells MW2-2, MW2-4, MW2-5, and MW2-6, along with three (3) of the existing production wells (designated W2-3, W2-4, and W2-5), were sampled during this investigation and analyzed for halogenated volatile organics, aromatic volatile organics, semivolatile organic compounds (SVOCs), metals, and perchlorate. Laboratory results for halogenated and aromatic volatile organics analysis indicated that none were present above their respective detection limits in groundwater samples collected. Inorganic analytical results were also less than the detection limits for all metals except zinc, which ranged from 1,600 to 2,100 µg/L. Perchlorate was reported in one (1) sample, collected from well W2-3 located downgradient of test bays, at a concentration of 3,300 µg/L.

1.2.3 Disposal Area Removal Action

An electromagnetic survey (Radian, 1993) was conducted to determine the location and boundary of the former garbage disposal area (Historical Operational Area "M"). Subsurface anomalies were detected in the center portion of Historical Operational Area "M" in an area approximately 250 wide by 450 feet long. In order to visually confirm the presence of debris, a total of 12 hand-auger borings were advanced to depths ranging from between 3 to 5.5 feet bgs. Based on hand-auger sampling activities, subsurface debris coincided with the surface debris area. Subsequently, three (3) trenches were excavated (designated north, central, and south) to approximately 5 to 8 feet bgs across the debris area. A total of nine (9) soil samples were collected and analyzed for VOCs, SVOCs, and metals. Neither VOCs nor

SVOCs were reported above their respective detection limits. All metals results were below the 10 times Soluble Threshold Limit Concentration guidelines. An excavation was performed to remove all debris. A total of 816 tons of debris was removed and disposed of off-site. Three perimeter confirmation soil samples were collected and analyzed for VOCs, SVOCs, and metals. All results were below their respective guidelines. The excavation was backfilled to surrounding grade. Excavation activities were performed under the supervision of the DTSC (Radian 1993).

1.2.4 Remedial Action Certification Letter

The DTSC issued a Remedial Action Certification Form on July 20, 1993 in a letter titled *Remedial Action Certification for Lockheed Beaumont No. 2, Beaumont, California*. Based on the information known at the time of the letter, the DTSC stated that appropriate response actions had been completed, that all acceptable engineering practices were implemented, and that no further removal/remedial action was necessary.

1.2.5 Monitoring Well Destruction Report

Based on the July 20, 1993 Remedial Action Certification letter issued by DTSC, groundwater monitoring wells MW2-2, MW2-4, MW2-5, and MW2-6 were abandoned (LMC, 1995). Prior to abandonment activities in 1995, the four (4) monitoring wells were sampled and analyzed for VOCs using EPA methods 8010 and 8020. VOC concentrations were not reported above their respective LRLs.

Well abandonment activities were performed in accordance with an abandonment work plan approved by the California Regional Water Quality Control Board and in compliance with the County of Riverside Department of Environmental Health Services and California Department of Water Resources Bulletin 74-90 guidelines. The wells were abandoned using a neat cement/bentonite injection technique, cutting, capping, and removal of the top 5 feet of casing through excavation, and backfilling the excavation area with native clean soils.

1.2.6 Groundwater Sampling Results From Former Production Well W2-3

In January 2003, Tetra Tech collected a groundwater sample to confirm the historical detection of perchlorate in the groundwater sample collected from the Site (Tetra Tech, 2003). Field activities included the location and identification of existing production wells, recording the physical condition of each well, and groundwater sampling and analysis. Two of the four (4) production wells, W2-3 and W2-5, were visually identified at the Site. The depth to groundwater measured in well W2-3 was 45.65 feet below the top of the casing (btoc) and the total depth of well W2-3 was 209.94 feet btoc. Well W2-5 was dry with a total measured depth of 86.12 feet btoc. Based on historical documents, total well depth of

W2-5 was reported to be 500 feet btoc. A visual inspection with a mirror identified an obstruction in well W2-5, possibly consisting of dirt and debris. Therefore, only well W2-3 was sampled.

As discussed in Section 1.1, a groundwater sample was collected from W2-3 and analyzed for VOCs, perchlorate and 1,4-dioxane. Concentrations of VOCs and 1,4-dioxane were not reported above their respective LRLs. Perchlorate was reported at a concentration of 4,080 µg/L in the groundwater sample.

1.3 RECENT ENVIRONMENTAL ACTIVITIES

1.3.1 Groundwater Monitoring Well Installation Report

In August and September 2004, Tetra Tech installed and sampled five (5) groundwater monitoring wells (shown on Figure 1-2 and designated TT-MW2-1, TT-MW2-2, TT-MW2-3, TT-MW2-4S [for shallow screened] and TT-MW2-4D [for deep screened]) at the Site (Tetra Tech, 2004b). All five (5) of the monitoring wells were screened at "first observed water" with two (2) monitoring wells screened in alluvial material (silt, sand, and gravel) and three (3) monitoring wells screened in bedrock (San Timoteo Formation). The objective of the groundwater well installation activities was to provide data for an initial evaluation of groundwater conditions (water quality and groundwater flow direction) at the Site.

The five (5) new groundwater monitoring wells were sampled in September 2004 and analyzed for VOCs, SVOCs (including 1,4-dioxane and N-nitrosodimethylamine), Title 22 metals, and perchlorate. Based on analytical results, the following constituents were reported above their respective Maximum Contaminant Levels (MCLs) or DWNLs in groundwater samples collected: perchlorate was detected in the alluvial wells located in Historical Operational Area "K" (TT-MW2-3) and propellant burn area (TT-MW2-1); arsenic was detected in the nested bedrock wells (TT-MW2-4D) and (TT-MW2-4S). Bis-(2-ethylhexyl) phthalate and TCE were also detected in TT-MW2-3. The report indicated that groundwater flow was south-southwest.

1.3.2 Geophysical Testing

Based on observations made during installation of monitoring wells TT-MW2-1, TT-MW 2-2, TT-MW 2-3, TT-MW 2-4S and TT-MW 2-4D and the results of groundwater sampling, it was decided that determining the boundary between unconsolidated alluvium and underlying material (e.g., the San Timoteo Formation) is important to future groundwater investigations at the Site. While unconsolidated alluvium and underlying materials at the Site are similar in color and grain size, differences in density should exist. Seismic geophysical surveys have proven to be a useful tool for imaging boundaries between materials with different densities.

Between April and September 2005, geophysical testing was performed at the Site to help in refining the CSM and as an aid to future groundwater monitoring well placement. A geophysical pilot test was initially performed to evaluate the effectiveness of seismic surveys to image the contact between alluvium and shallow San Timoteo Formation and potential geologic structure. The pilot test consisted of three (3) vertical seismic profiles and one (1) horizontal seismic survey. Vertical profiles were used to determine formation velocities in the vicinity of selected monitoring wells with subsequent comparison of those to data collected during the drilling of each well. The horizontal seismic survey (refraction and reflection) was oriented across the valley floor and completed at a previously drilled location (TT-MW-2-3) that contacted the San Timoteo Formation at greater then 100 feet below ground surface (bgs). The surveys were used to image the contact between alluvium and shallow San Timoteo Formation and potential geologic structure.

Based on the successful results of the geophysical pilot test, depths to boundaries between different velocity zones were estimated, stratigraphic correlations were assigned, and a geophysical survey was subsequently performed. The geophysical survey consisted of 10 horizontal seismic profiles. Eight (8) of the profiles were oriented across the valley floor and two (2) profiles were oriented approximately parallel to the valley floor (i.e., perpendicular to the other profiles). In general, the results of the geophysical survey correlated well with the geophysical pilot test and refinement of the CSM's alluvial zone into unconsolidated and slightly consolidated zones was possible. A complete description of the geophysical field activities will be provided to the DTSC under separate cover.

1.3.3 Downgradient Well Installation Work Plan

In November 2005, Tetra Tech prepared a letter work plan describing proposed activities to install additional downgradient groundwater monitoring wells approximately 2,500 feet south of the TT-MW2-4S/D well nest. The work plan was subsequently approved in a letter from the DTSC, dated November 16, 2005.

In November and December 2005, Tetra Tech installed three (3) groundwater monitoring wells (TT-MW2-5, TT-MW2-6S and TT-MW2-6D) south of the TT-MW2-4S/D well nest. The newly installed monitoring wells are scheduled to be sampled as part of the Fourth Quarter 2005 groundwater monitoring activities. A complete description of the field activities and the results will be provided to the DTSC under separate cover.

1.4 GROUNDWATER MONITORING PROGRAM

Quarterly water level measurements and water quality monitoring have taken place at the Site since September 2004. The current groundwater monitoring plan includes quarterly groundwater level measurements and water quality monitoring from five (5) wells (TT-MW2-1, TT-MW2-2, TT-MW2-3, TT-MW2-4S and TT-MW2-4D). Water levels measurements and sampling were performed in accordance with procedures described in the January 2004 *Groundwater Monitoring Well Installation Work Plan* prepared by Tetra Tech (Tetra Tech, 2004a). Groundwater samples are analyzed for VOCs, Title 22 metals, and perchlorate. Selected testing for general minerals was also performed for the Second Quarter 2005 water quality monitoring. Figure 1-2 shows the locations of the monitoring wells at the Site and tabular summaries of groundwater monitoring analytical results are presented in Appendix A.

2.0 CONCEPTUAL SITE MODEL

The following sections describe the conceptual model for the Site prior to the Third Quarter 2005 groundwater monitoring event. This discussion is divided into four main sections: physical setting, geology, hydrogeology, and distribution of affected groundwater.

2.1 PHYSICAL SETTING

The Site is located at the northern end of the Peninsular Range Geomorphic Province (Harden, 1998). The Peninsular Range is a large block uplifted abruptly along its eastern edge and tilted westward. The province has a subtle northwest trend expressed by its higher mountains and longer valleys (Figure 2-1) (Sharp, 1975). The Site is primarily located within the confines of the Laborde Canyon valley floor which lies between the western foothills of the San Jacinto Mountains to the southwest and a "Badlands" topographic area to the northwest. The "Badlands," refers to areas of relatively soft sedimentary sandstone and siltstone deeply incised into canyons by runoff. Onsite elevations range from approximately 2,500 feet above mean sea level (msl) on the ridges at the northern boundary to about 1,800 feet above msl near the mouth of Laborde Canyon to the south.

2.1.1 Surface Water

The Site is bisected by Laborde Canyon, which traverses a north-south pathway through the area. Laborde Canyon forms the principal drainage course through the Site, and allows ephemeral storm water to drain southward toward the San Jacinto Valley. The watershed area, including the canyon itself, is ephemeral in nature and remains dry when there is no rainfall, consequently surface water at the site is also ephemeral in nature.

2.2 GEOLOGY

The following sections describe the regional and local geology in the area of the Site based on previous investigations and reports.

2.2.1 Regional Geology

The regional stratigraphy in the vicinity of the Site has been described and mapped by Dibblee (Dibblee, 1981). Geologic units, from oldest to youngest, consist of: the basement complex of late Paleozoic to middle Mesozoic age meta-sedimentary rocks and Mesozoic granitic rocks; non-marine sedimentary rocks of the Tertiary (Pliocene to Pleistocene) Mount Eden Formation overlain by the non-marine Tertiary sandstones and siltstones of the San Timoteo Formation; and Quaternary alluvium (Radian, 1990). Figure 2-2 presents the regional geology of the area depicting the San Timoteo Formation as the "undivided Pliocene nonmarine" unit and Quaternary alluvium as "alluvium." While Quaternary

T3S

Quarterly Groundwater Monitoring Report Third Quarter 2005 Beaumont Site 2

Quarterly Groundwater Monitoring Report Third Quarter 2005 Beaumont Site 2

alluvium is present in canyons at the Site, the source of Figure 2-2 is a regional geologic map at a

resolution that does not show such local details.

2.2.2 Local Geology

Findings from geologic studies conducted at the Site are consistent with the regional geologic mapping

performed by Dibblee (1981). In general, there are two stratigraphic units present beneath the Site: the

San Timoteo Formation (weathered and unweathered) and Quaternary alluvium. Based on soil borings

results and groundwater data, unweathered portions of the San Timoteo Formation appear to act as a

lower confining layer separating shallow groundwater in the Quaternary alluvium and weathered San

Timoteo Formation from deeper groundwater zones. Based on the results of the seismic profiles

performed, stratigraphy at the Site consists of:

• Unconsolidated alluvium (silt and sand);

• Slightly consolidated alluvium (silt and sand);

Weathered San Timoteo Formation; and

• Competent San Timoteo Formation.

A geologic cross section location map is presented in Figure 2-3 and geologic cross sections through the

Site are presented in Figures 2-4 and 2-5.

Faulting

Major faults within the region include the San Jacinto Fault, and associated branch faults that have been

mapped near the southern end of the Site. Approximately 8 miles northeast of the Site, the Banning fault

adjoins with the San Andreas Fault. The San Jacinto and San Andreas Fault zones have been active with

moderate to major earthquakes occurring over the last 200 years. Numerous smaller faults are assumed to

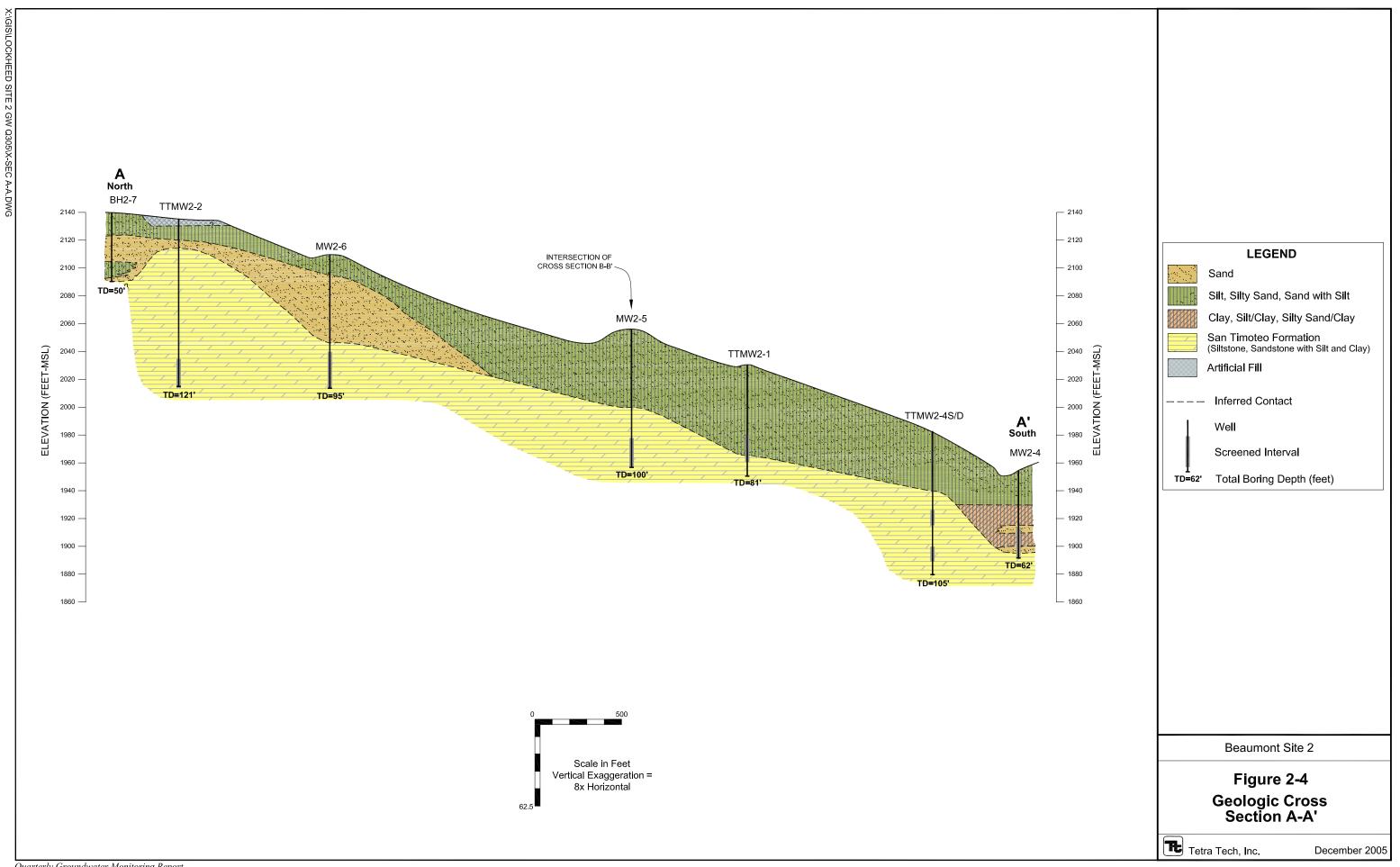
be associated with the movement of these two major faults (Figure 2-2).

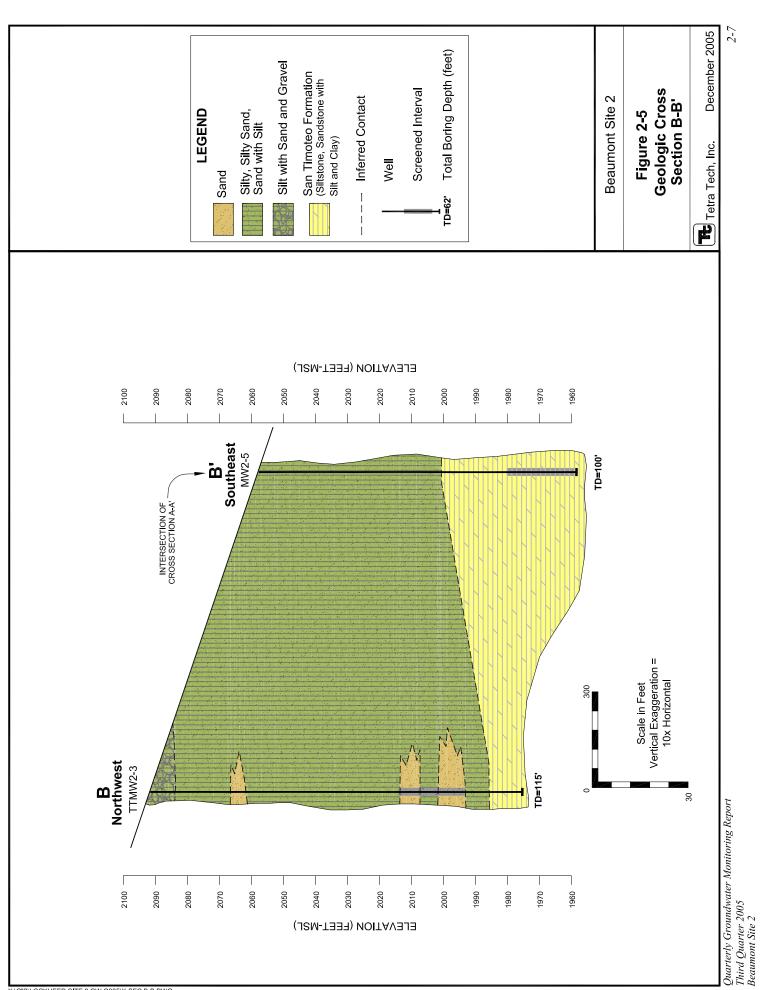
Quaternary Alluvium

The Quaternary alluvium, primarily located within the confines of the Laborde Canyon valley, is derived

from the weathering of the hillsides directly adjacent to the canyon. Alluvial deposits consist of very

fine- to fine-grained silty sands and fine- to medium-grained poorly graded sands. These sandy zones are


typically interbedded with finer grained silts and, in some cases, with silty clays.


Quarterly Groundwater Monitoring Report

Third Quarter 2005

Beaumont Site 2

Quarterly Groundwater Monitoring Report Third Quarter 2005 Beaumont Site 2

X:\GIS\LOCKHEED SITE 2 GW Q305\X-SEC B-B.DWG

San Timoteo

The San Timoteo Formation, as encountered in the subsurface and exposed on the Site, generally consists of very fine-grained siltstone and very fine- to medium-grained silty sand. Some coarse pebbles and fragments were encountered in the more coarse-grained portions of the formation. The San Timoteo Formation is generally poorly cemented, but is more indurated than the alluvial sediments that overlie the formation.

2.3 HYDROGEOLOGY

Groundwater at the Site is found primarily in the siltstones of the San Timoteo Formation, although these deposits yield only small quantities of water (Radian, 1986b). More recent investigations also suggest that groundwater is present just above the San Timoteo Formation as well. Recharge to groundwater through shallow alluvium occurs from direct infiltration of rainfall, and loss from surface drainage through the sides and bottoms of ephemeral stream channels. Based on the limited historical and recent groundwater levels measurements and topography, groundwater flow appears to follow the southward slope of the Laborde Canyon floor. All five (5) of the monitoring wells in the GMP were screened at "first observed water." Two (2) monitoring wells were screened in alluvial material (TT-MW2-1 and TT-MW2-3) and three (3) monitoring wells were screened in bedrock (TT-MW2-2, TT-MW2-4S and TT-MW2-4D). This indicates that there may be two or more hydrostratigraphic units (i.e., a hydrostratigraphic unit is a formation, part of a formation, or a group of formations in which there are similar hydrologic characteristics that allow for grouping into aquifers and associated confining layers (Domenico, et.al, 1990). Based on the information to date, two (2) hydrostratigraphic units have been identified at the Site, an alluvial/weathered bedrock unit and a bedrock unit.

2.4 DISTRIBUTION OF AFFECTED GROUNDWATER

Although perchlorate, TCE, bis-(2-ethylhexyl) phthalate, and arsenic have been detected in the groundwater at the Site, the arsenic appears to be naturally occurring (refer to Section 4.4.2) and the bis-(2-ethylhexyl) phthalate is a common laboratory or field contaminant. Bis-(2-ethylhexyl) phthalate was detected at low concentrations in a groundwater sample collected from well TT-MW2-3. No other SVOC was detected in this well or any other of the wells sampled during the September 2004 monitoring event. Phthalates are a very common plastizing agent used in plastics. It is ubiquitous in the environment and commonly detected as a field/laboratory contaminant. Although the results of the field and laboratory blanks analyzed during the September 2004 monitoring event did not report bis-(2-ethylhexyl) phthalate in the blanks, this can be explained by the inconsistent or random nature of the detection of this common field/laboratory contaminant. As an environmental contaminant, phthalates are primarily detected in soil

and groundwater associated with landfills. Well TT-MW2-3 is not associated with a landfill or down gradient of one. Detection of this compound at low concentrations as a single SVOC in an area not associated with a landfill supports that the detection of bis-(2-ethylhexyl) phthalate was a field/laboratory contaminant.

Based on the results of the groundwater monitoring performed at the Site, a list of chemicals of potential concern (COPC) was identified. Table 2-1 presents a list of those analytes detected in groundwater at the Site that are considered COPC and Table 2-2 presents a summary of groundwater analytical results for the COPC.

Table 2-1 Chemicals of Potential Concern
Beaumont Site 2

Analyte	Classification
Perchlorate	Primary
Trichloroethene	Secondary

2.4.1 Perchlorate

Concentrations of perchlorate have consistently been reported above the LRL in groundwater samples collected from the two (2) alluvial monitoring wells (TT-MW2-1 and TT-MW2-3). Perchlorate has not been reported above the LRL in groundwater samples collected from the remaining three (3) San Timoteo Formation monitoring wells (TT-MW2-2, TT-MW2-4S and TT-MW2-4D) sampled as part of the Site's GMP. Monitoring well TT-MW2-1 is located in Historical Operational Area L and TT-MW2-3 is located in Historical Operational Area K. The horizontal and vertical extent of perchlorate affected groundwater has not been fully assessed at this time.

2.4.2 Trichloroethene

Low concentrations of TCE have consistently been reported in groundwater samples collected from one (1) of the two (2) alluvial monitoring wells (TT-MW2-3). TCE has not been detected in any of the other groundwater samples collected from monitoring wells sampled as part of the Site's GMP. Monitoring well TT-MW2-3 is located in Historical Operational Area K. The horizontal and vertical extent of TCE-affected groundwater has not been fully assessed at this time.

Table 2-2 Summary of Groundwater COPC Analytical Results Beaumont Site 2

Sample Location	Sample Date	Perchlorate (ug/L)	Trichloroethene (ug/L)
TT-MW2-1	09/27/04	3,500	ND
	02/16/05	7,100	ND
	07/08/05	2,400	ND
TT-MW2-2	09/27/04	ND	ND
	02/16/05	ND	ND
	07/07/05	ND	ND
TT-MW2-3	09/27/04	1,300	1.6
	02/16/05	740	1.2
	07/08/05	53,000	7.0
TT-MW2-4S	09/27/04	ND	ND
	02/16/05	ND	ND
	07/07/05	ND	ND
TT-MW2-4D	09/27/04	ND	ND
	02/16/05	ND	ND
	07/07/05	ND	ND
MCL (unless noted)	/ DWNL (ug/L)	6.0 (1)	5

Notes:

Bold - MCL or DWNL exceeded.

(1) - Drinking water notification level.

DWNL - California Department of Health Services drinking water notification level.

MCL - Maximum Contaminant Level.

ug/L - Micrograms per liter.

ND - Not detected at or above laboratory reporting limit.

3.0 SUMMARY OF MONITORING ACTIVITIES

The following sections summarize the Third Quarter 2005 monitoring event conducted at the Site. The results from this monitoring event is discussed in Section 4.0.

3.1 GROUNDWATER LEVEL MEASUREMENTS

The Third Quarter 2005 GMP groundwater level measurements were collected from all five (5) of the monitoring wells on September 30, 2005. There were no dry wells. A summary of well construction details is presented in Table 3-1. Copies of the field data sheets from the water quality monitoring event are presented in Appendix B.

3.2 GROUNDWATER SAMPLING

The Third Quarter 2005 GMP groundwater samples were collected from all five (5) of the monitoring wells on September 30, 2005. Table 3-2 lists the wells monitored for the Third Quarter 2005 monitoring event, analytical methods, sampling dates, and Quality Assurance/Quality Control (QA/QC) samples collected. All proposed wells were sampled. Groundwater sampling, analytical, and QA/QC procedures for the monitoring event are described in the *Groundwater Monitoring Well Installation Work Plan* (Tetra Tech, 2004a). Figure 3-1 presents well locations sampled.

The following water quality field parameters were observed and recorded on field data sheets (Appendix B) during well purging activities: water level, temperature, pH, electrical conductivity (EC), turbidity, oxidation reduction potential, and dissolved oxygen. Purging was considered complete when at least one discharge hose volume had been removed and the above parameters had stabilized, or the well was purged dry (evacuated). Stabilization of water quality parameters was used as an indication that fresh formation water had entered the well and was being purged. The criteria for stabilization of these parameters are as follows: water level +/- 0.1 foot; temperature +/- 1 degree Centigrade; pH +/- 0.1 unit; and EC +/- 5%. Sampling instruments and equipment were maintained, calibrated, and operated in accordance with the manufacturer's specifications, guidelines, and recommendations. If a well was purged dry, the well was sampled with a disposable bailer after sufficient recharge had taken place to allow sample collection.

Groundwater samples were collected from wells TT-MW2-1 and TT-MW2-3 by low-flow purging and sampling through a variable flow submersible electric pump. Due to the relatively poor recharge rates at wells TT-MW2-2, TT-MW2-4S, and TT-MW2-4D, continuous purging could not be sustained and the wells were pumped dry before stabilization of the water quality parameters could be achieved. Once dry, the wells were allowed to recover for several hours prior to collecting a sample with a disposable bailer.

Table 3-1 Well Construction Summary Table Beaumont Site 2

						De	beaumont Site 2	7 a1							
Well ID	Date Installed	Date Destroved	Well Type	Elevation (TOC, feet)	Depth to TOS (feet BGS)	Depth to BOS (feet BGS)	Screen Length (feet)	Reported Depth of Borehole (feet BGS)	Borehole Diameter (inches)	Casing Diameter (inches) and Material	Screen Slot Size (inches) and Material	Drilling Method	Filter Pack	Northing Coordinate	Easting Coordinate
W2-1	Unknown	,	Production	Unknown	Unknown	Unknown	Unknown	Unknown	Unknown	Unknown	Unknown	Unknown	Unknown	2271823.25	6325081.02
W2-2	Unknown		Production	Unknown	Unknown	Unknown	Unknown	Unknown	Unknown	Unknown	Unknown	Unknown	Unknown	2272462.34	6325839.69
W2-3	Unknown	,	Production	2028.83	Unknown	Unknown	Unknown	Unknown	Unknown	∞	Unknown	Unknown	Unknown	2273334.11	6325349.92
W2-5	Unknown	,	Production	2140.95	161	467	9	Unknown	Unknown	9	Unknown	Unknown	Unknown	2276981.24	6325110.52
MW2-2	11/28/90	09/19/95	Monitoring	1996.41	115	135	20	140	10	4	SS 0.020	ARCH	Lonestar #3	2272462.34	6325839.69
MW2-4	11/30/90	09/19/95	Monitoring	1956.36	40	09	20	62	10	4	SS 0.020	ARCH	Lonestar #3	2271712.28	6325287.77
MW2-5	12/01/90	09/20/95	Monitoring	2058.82	78	86	20	100	10	4	SS 0.020	ARCH	Lonestar #3	2274073.76	6325061.16
MW2-6	12/04/90	09/20/95	Monitoring	2111.95	70	06	Unknown	95	10	4	SS 0.020	ARCH	Lonestar #3	2275852.57	6325309.81
TT-MW2-1	09/01/04	NA	Monitoring	2035.21	50	70	20	81	12	4	PVC 0.020	HSA	RMC#3	2273430.33	6325373.78
TT-MW2-2	08/30/04	NA	Monitoring	2137.75	103.5	118.5	15	121	12	4	PVC 0.020	HSA	RMC#3	2276662.64	6325085.92
TT-MW2-3	08/31/04	NA	Monitoring	2094.66	78	86	20	115	12	4	PVC 0.020	HSA	RMC #3	2274876.52	6324520.74
TT-MW2-4S	09/01/04	NA	Monitoring	1986.94	09	70	10	901	12	4	PVC 0.020	HSA	RMC #3	2272392.82	6325561.45
TT-MW2-4D	09/07/04	NA	Monitoring	1987.16	85	95	10	106	12	4	PVC 0.020	HSA	RMC #3	2272392.82	6325561.45
TT-MW2-5	12/01/05	NA	Monitoring		29	39	10	40	10	4	PVC 0.020	HSA	RMC#3		,
TT-MW2-6D	12/01/05	NA	Monitoring		28	38	10	08	10	4	PVC 0.020	HSA	RMC#3		,
TT-MW2-6S	12/01/05	NA	Monitoring	,	52	57	5	80	10	4	PVC 0.020	HSA	RMC #3	1	-
Notes:															
	= 1	No information.	'n.	PVC-	Polyvinyl Chloride.	le.									
	ARCH -	Air rotary casing hammer.	ing hammer.	QA -	Quaternary alluvium.	nm.									
	BGS -	Below ground surface.	l surface.	- SS	Stainless steel.										
	HSA -	Hollow stem auger.	auger.	STF-	San Timoteo Formation.	nation.									
	WSF -	Mean sea level.	al.	TOC-	Top of casing.										
	NA -	Not applicable.	ei.	TOS -	Top of screen.										

Table 3-2 Sampling Schedule - Third Quarter 2005 Beaumont Site 2

			Sample Ana	alysis (and Method)			
Monitoring Well Location	Sample Date	VOCs (EPA 8260B)	Perchlorate (EPA 314.1)	Title 22 Metals - Total (1)	Title 22 Metals - Dissolved (1)	General Minerals (2)	Comments and QA / QC Samples
TT-MW2-1	09/30/05	X	X	X	X	X	MS / MSD sample
TT-MW2-2	09/30/05	X	X	X	X	X	
TT-MW2-3	09/30/05	X	X	X	X	X	Duplicate (TT- MW2-103)
TT-MW2-4S	09/30/05	X	X	X	X	X	
TT-MW2-4D	09/30/05	X	X	X	X	X	

Total Sample Locations: 5
Total Samples Collected: 5
Sample Locations Not Accessible: 0
Dry Sample Locations: 0

Notes:

(1) - Samples analyzed by EPA 6010B and EPA 7470A.

(2) - Samples analyzed for Total Dissolved Solids, NO₃, SO₄, HCO₃, CO₃, Na, Ca, Cl, K, Mg.

VOCs - Volatile organic compounds.

EPA - United States Environmental Protection Agency.

QA / QC - Quality Assurance / Quality Control.

MS / MSD - Matrix Spike / Matrix Spike Duplicate.

For the monitoring event, water samples were collected in order of decreasing volatilization potential and placed in appropriate containers. A sample identification label was affixed to each sample container and sample custody was maintained by a chain-of-custody record. Collected samples were chilled and transported to Calscience Environmental Laboratories, Inc. (Garden Grove, California), a state-accredited analytical laboratory, via courier, thus maintaining proper temperatures and sample integrity. Trip blanks (LTBs) and equipment blanks (LEBs) were collected to assess cross-contamination potential of water samples while in transit and/or via sampling equipment. One (1) LTBs and two (2) LEBs were collected during the Third Quarter 2005 monitoring event and these results were reviewed for the presence of cross-contaminants. If cross-contaminants were detected in the Quality Control (QC) blanks, the results were compared to the associated water samples and the water sample results were qualified, where appropriate.

The analyses of samples were conducted under approved EPA methods. Since the analytical data were obtained by following EPA-approved method criteria, the data were evaluated by using the EPA-approved validation methods described in the *National Functional Guidelines* (EPA, 1999 and EPA, 2004). The *National Functional Guidelines* contain instructions on method-required quality control parameters and on how to interpreter these parameters to confer validation to environmental data results.

Control parameters used in validating data results include evaluating control limits on QC samples. These QC samples involved are laboratory control samples, method blank samples, duplicate samples,

Quarterly Groundwater Monitoring Report Third Quarter 2005 Beaumont Site 2

spiked samples, and digestion samples. Surrogate and other spike recoveries also qualify environmental

3.3 REDEVELOPMENT OF SITE MONITORING WELLS

Between September 21, 2005 and September 22, 2005 Berchtold Water Well Service (Riverside, California) redeveloped monitoring wells TT-MW2-1, TT-MW2-2, TT-MW2-3, TT-MW2-4S and TT-MW2-4D using a combination of swabbing, bailing and pumping. The volumes purged from wells TT-MW2-1, TT-MW2-2, TT-MW2-3, TT-MW2-4S and TT-MW2-4D were 125, 85, 187, 23 and 58 gallons respectively. Copies of the well development field data sheets are presented in Appendix B.

3.4 HABITAT CONSERVATION

Consistent with the U.S. Fish and Wildlife Service approved Habitat Conservation Plan (USFWS, 2005) describing "No Affect" activities for environmental remediation at the Site, prior to initiating groundwater monitoring field activities, a biological survey of the surrounding area of each proposed groundwater monitoring well location was performed by a Section 10A permitted or sub-permitted biologist to evaluate the potential for impacts during field activities to sensitive species/habitats (i.e., Stephens' Kangaroo Rat [SKR]). As part of the biological survey, the biologist identified and marked all potential or suspected SKR burrows that were located in the vicinity of each sampling location to avoid the potential "take" (i.e., harm, harassment, and/or death) of SKRs. The biologist also clearly marked the ingress and egress routes to each sampling location in an effort to minimize the overall footprint of field activities and impacts to SKR habitat. Further, as specified, after surveying the work areas, the biologist remained on Site during field activities to implement requirements of the "No Affect" agreement.

4.0 GROUNDWATER MONITORING RESULTS

The results of the Third Quarter 2005 monitoring event are presented in the following subsections. This section includes tabulated summaries of the groundwater elevation and water quality data collected, a groundwater elevation map, and an analyte results figure.

4.1 GROUNDWATER ELEVATION

Groundwater elevations for wells monitored for the Third Quarter 2005 monitoring event are shown on Figure 4-1, a tabulated summary of groundwater elevations is presented in Table 4-1, and hydrographs for individual wells are presented in Appendix D.

Table 4-1 Groundwater Elevation Data - Third Quarter 2005

Beaumont Site 2

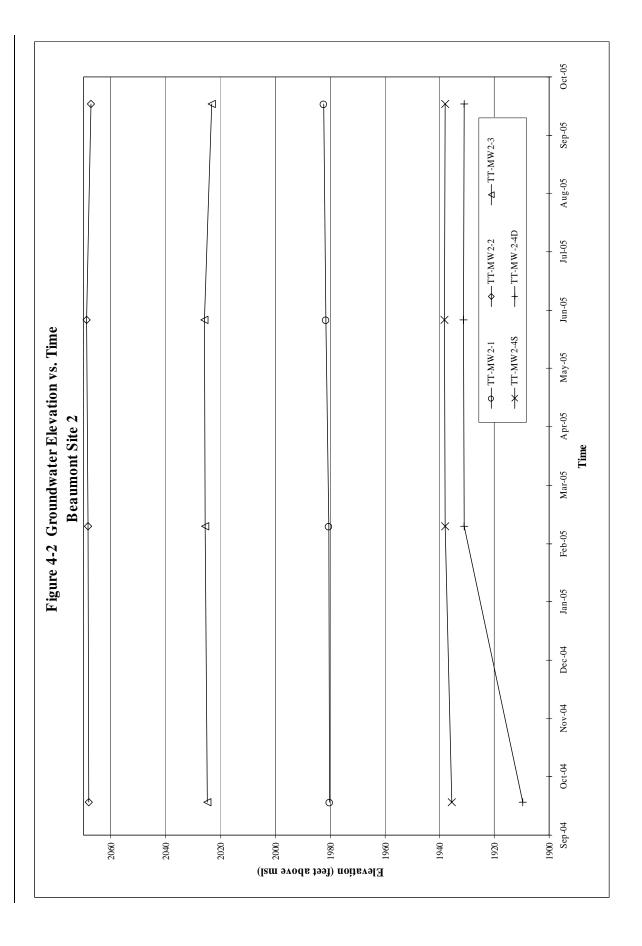
			ont bite 2		
Well ID	Date Measured	Measuring Point Elevation (feet above msl)	Depth to Water (from Measuring Point, feet)	Groundwater Elevation (feet above msl)	HSU Screened
TT-MW2-1	09/21/05	2035.21	52.90	1982.31	QAL
TT-MW2-2	09/21/05	2135.73	68.38	2067.35	STF
TT-MW2-3	09/22/05	2092.10	68.83	2023.27	QAL
TT-MW2-4S	09/21/05	1986.94	49.08	1937.86	STF
TT-MW2-4D	09/21/05	1987.16	56.04	1931.12	STF

Notes:

HSU - Hydrostratigraphic Unit.

msl - Mean sea level.

QAL - Quaternary alluvium.


STF - San Timoteo Formation.

In comparison to Second Quarter 2005, groundwater elevations increased in one of the alluvial monitoring wells (TT-MW2-3, 0.09 feet) and decreased in the other alluvial completed well (TT-MW2-1, 0.72 feet). For the three wells screened in the San Timoteo Formation, groundwater elevations increased 0.42 feet (TT-MW2-2), and decreased 0.24 feet (TT-MW2-4S) and 0.21 feet (TT-MW2-4D). During the Third Quarter 2005 monitoring event, depth to water was approximately 66 feet bgs (elevation of 2,067 feet above msl) in the northern and central portions of the Site (as measured in TT-MW2-2) and approximately 47 feet bgs (elevation of 1,938 feet above msl) in the southern portion of the Site (as measured in TT-MW2-4S).

Groundwater levels in individual wells have remained relatively stable in the four (4) quarters that groundwater elevation data has been collected (Figure 4-2). The single exception is a 21-foot increase in the water level of TT-MW2-4D between September 2004 and February 2005. The cause of this comparatively large increase is unknown, but the initial data point could be erroneous.

Quarterly Groundwater Monitoring Report Third Quarter 2005 Beaumont Site 2

TETRA TECH, INC.

Based on the available data, groundwater elevations at the Site do not appear to change significantly with the seasons. Sufficient data are not available at this time to evaluate long term trends in groundwater elevation at the Site.

4.2 GROUNDWATER FLOW DIRECTION

Although only limited groundwater elevation data are available, based on groundwater elevations and the southward sloping topography at the Site, groundwater flow appears to generally follow the southward sloping topography of Laborde Canyon. This pattern is consistent with that observed in a previous hydrogeologic study of the area (Radian, 1992b). But as discussed above, the data are limited at this time. The groundwater flow pattern will be refined as additional data are acquired on the hydrogeologic system that exists beneath the Site.

4.3 ANALYTICAL DATA SUMMARY

Groundwater samples collected during the Third Quarter 2005 monitoring event were tested for VOCs, metals, general minerals, and perchlorate. VOCs, perchlorate, and metals are potential contaminants of interest at the Site. The general minerals analyses were performed to help evaluate different hydrostratigraphic units. Summaries of validated laboratory analytical results for analytes detected above their respective LRLs during the monitoring event are presented in Tables 4-2, 4-3, and 4-4. A complete list of the analytes tested, along with validated sample results by analytical method, is provided in Appendix C. VOC, perchlorate, and metal sample results detected above the published MCL (federal or state, whichever is lower) or DWNL are bolded in Tables 4-2 and 4-3. Figure 4-3 presents groundwater sampling analytical results for perchlorate and TCE concentrations reported for the Third Quarter 2005 monitoring event. Time-series graphs of perchlorate and TCE are provided in Appendix E. Laboratory analytical data packages, which include all environmental, field QC, and laboratory QC results are provided in Appendix F. A consolidated laboratory data summary table is presented in Appendix A.

4.4 CHEMICALS OF POTENTIAL CONCERN

Identification of COPC is an ongoing process that will be conducted routinely to determine if the list of previously identified COPC still meets the objectives of the GMP and regulatory requirements. The purpose for identifying COPC is to establish a list of analytes that best represent the extent and magnitude of the affected groundwater and to focus more detailed analysis on those analytes. Every analytical method has a standard list of tested target compounds and by reducing the number of target compounds for a given analytical method, the volume of data generated can also be reduced. If

Table 4-2 Summary of Detected Organic Analytes - Third Quarter 2005

Beaumont Site 2

Sample Location	Sample Date	Trichloroethene (TCE) (ug/L)
TT-MW2-1	09/30/05	ND
TT-MW2-2	09/30/05	ND
TT-MW2-3	09/30/05	5.6
TT-MW2-4S	09/30/05	ND
TT-MW2-4D	09/30/05	ND
	Laboratory Reporting Limit (ug/L)	1.0
	Maximum Contaminant Level (ug/L)	5.0
Notes:		
Bo	ld - Maximum Contaminant Level exceeded.	
N	ID - Not detected at or above reporting limit.	
ug	/L - Micrograms per liter.	

sufficient historical analytical data are available, analytes that have not been detected, common laboratory and field contaminants, spurious or randomly detected analytes, and analytes associated with chlorinated potable water, can be removed from the list of target compounds.

An evaluation of COPC based on the results of the Third Quarter 2005 monitoring event was performed. The results were screened against the MCLs or DWNLs (if an MCL is not established). The analytes were organized and evaluated in two groups, organic and inorganic analytes, and divided into primary and secondary COPC. Table 4-5 presents a summary of organic and inorganic analytes detected during the Third Quarter 2005 monitoring event. Laboratory analytical results from the Third Quarter 2005 monitoring event are presented in the following two subsections.

4.4.1 Organic Analytes

TCE was the only VOC reported in groundwater samples collected (Table 4-2). TCE was detected in a groundwater sample collected from alluvial screened monitoring well TT-MW2-3 at $5.6 \,\mu g/L$, above its respective MCL of $5.0 \,\mu g/L$. TCE concentrations reported in groundwater samples collected from the Site have been relatively low and common breakdown products have not been observed in groundwater samples analyzed. Based on the limited and low TCE concentrations reported in groundwater samples collected from the Site, TCE is regarded as a secondary COPC. However, the distribution and concentration of TCE reported in groundwater samples collected will continue to be monitored and its COPC status evaluated.

Table 4-3 Summary of Detected Inorganic Analytes (Perchlorate and Title 22, Total and Dissolved Metal Concentrations) - Third Quarter 2005

Beaumont Site 2

			Total Metals			-	•	-	-		•		•	•	
Sample Location	Sample Date	Perchlorate (ug/L)	Antimony (mg/L)	Arsenic (mg/L)	Barium (mg/L)	Beryllium (mg/L)	Chromium (mg/L)	Cobalt (mg/L)	Copper (mg/L)	Lead (mg/L)	Molybdenum (mg/L)	Nickel (mg/L)	Selenium (mg/L0	Vanadium (mg/L)	Zinc (mg/L)
TT-MW2-1	09/30/05	3,000 (2)	ND	ND	0.133	ND	0.0055	ND	0.0060	ND	ND	ND	ND	0.0052	0.0149 (B)
TT-MW2-2	09/30/05	ND	QN	ND	0.0128	QN	ND	ND	ND	ND	ND	ND	QN	0.0107	0.0134
TT-MW2-3	09/30/05	68,000 (2)	ND	ND	0.120	ND	0.0056	ND	0.0051	ND	ND	ND	0.0151	0.0051	0.0168 (B)
TT-MW2-4S	09/30/05	2.1	0.0932	ND	1.87	0.0118	0.296	0.123	0.287	0.127	ND	0.229	ND	0.629	0.795
TT-MW2-4D	09/30/05	ND	ND	0.0569	0.059	ND	0.0115	0.00522	0.0142	ND	0.0111	0.0096	ND	0.137	0.0320
			Dissolved Metals	etals		•			•						
TT-MW2-1	09/30/05	NA	ND	ND	0.125	ND	0.00506	ND	ND	ND	ND	ND	ND	ND	0.0125
TT-MW2-2	90/30/02	NA	QN	QN	QN	QN	ND	ND	ND	ND	ND	ND	QN	0.0134	ND
TT-MW2-3	09/30/02	NA	QN	QN	0.104	QN	ND	ND	ND	ND	ND	ND	QN	ND	ND
TT-MW2-4S	09/30/02	NA	QN	0.0430	QN	QN	ND	ND	ND	ND	0.00971	ND	QN	0.124	ND
TT-MW2-4D	09/30/02	NA	ND	0.0823	ND	ND	ND	ND	ND	ND	0.00989	ND	ND	0.127	ND
Laboratory Reporting Limit	porting Limit	2.0	0.0150	0.0100	0.0100	0.00100	0.00500	0.005000	0.00500	0.0100	0.00500	0.00500	0.0150	0.00500	0.0100
MCL (unless noted) / DWNL	ted) / DWNL	6 (1)	0.006	0.05	1	0.004	0.05	-	1 (1)	0.015	-	0.1	0.05	-	5 (1)

Notes:

Bold - MCL or DWNL exceeded.

" - " - MCL or DWNL not established.

(1) - Drinking water notification level.

(2) - Elevated laboratory reporting limit.

The sample result is less than five (5) times the blank concentration. The result qualified for blank concentration is considered not to have originated from the environmental sample, since cross-contamination is suspected. (B)

DWNL - California Department of Health services drinking water notification level.

MCL - Maximum Contaminant Level.

NA - Not analyzed.

ND - Not detected at or above reporting limit

ug/L - Micrograms per liter.

mg/L - Milligrams per liter.

Beaumont Site 2

Table 4-4 Summary of General Mineral Concentrations (1) - Third Quarter 2005 Beaumont Site 2

				Rean	Beaumont Site 2						
Sample Location	Sample Date	Calcium (mg/L)	Magnesium (mg/L)	Potassium (mg/L)	Sodium (mg/)	Total Dissolved Solids (mg/L)	Chloride (mg/L)	Nitrate (mg/L) (2)	Sulfate (mg/L)	Bicarbonate (mg/L) (3)	Carbonate (mg/L) (3)
I-2MM-LL	90/30/02	62.0	11.1	2.42	169	640	160 (4)	<i>L</i> .8	44	180	ND
TT-MW2-2	09/30/02	7.48	1.07	0.813	110	290	47 (4)	QN	39	130	4.0
TT-MW2-3	09/30/05	87.3	13.8	3.46	187	720	290 (4)	12	51	98	ND
TT-MW2-4S	09/30/05	157	102	42.2	120	310	36 (4)	0.38	51	100	8.0
TT-MW2-4D	09/30/05	6.84	4.18	2.58	65.4	260	22 (4)	ND	32	46	24
Reporti	Reporting Limit (mg/L)	0.100	0.100	0.500	0.500	1.0	1.0	0.10	1.0	1.0	1.0
Notes:											

General mineral concentration results are from unfiltered samples.

As nitrogen (N). (2)

As calcium carbonate (CaCO3). (3) -

Elevated laboratory reporting limit. (4)

Not detected at or above reporting limit. ND-

Milligrams per liter.

Quarterly Groundwater Monitoring Report Third Quarter 2005 Beaumont Site 2

Table 4-5 Summary Statistics of Organic and Inorganic Analytes Detected (Excluding General Minerals) - Third Quarter 2005

Reaumont	C:4a	1
Беяниони	311P	

Organic Analytes Detected	Total Number of Samples Analyzed (1)	Total Number of Detections (1)	Number of Detections Exceeding MCL or DWNL (1)	Corresponding MCL (unless noted) / DWNL	Minimum Concentration Detected	Maximum Concentration Detected
Trichloroethene	5	1	1	5.0 μg/L	5.6 μg/L	5.6 μg/L
Inorganic Analytes Detected (3)	Total Number of Samples Analyzed (1)	Total Number of Detections (1)	Number of Detections Exceeding MCL or DWNL (1)	Corresponding MCL (unless noted) / DWNL	Minimum Concentration Detected	Maximum Concentration Detected
Perchlorate	5	3	2	6 μg/L (2)	2.1 μg/L	68,000 μg/L
Antimony	5	1	1	0.006 mg/L	0.0932 mg/L	0.0932 mg/L
Arsenic	5	1	1	0.05 mg/L	0.0569 mg/L	0.0569 mg/L
Barium	5	5	1	1 mg/L	0.0128 mg/L	1.87 mg/L
Beryllium	5	1	1	0.004 mg/L	0.0118 mg/L	0.0118 mg/L
Chromium	5	4	1	0.05 mg/L	0.0055 mg/L	0.296 mg/L
Cobalt	5	2	0	-	0.00522 mg/L	0.123 mg/L
Copper	5	4	0	1 mg/L (2)	0.0051 mg/L	0.287 mg/L
Lead	5	1	1	0.015 mg/L	0.127 mg/L	0.127 mg/L
Molybdenum	5	1	0	-	0.0111 mg/L	0.0111 mg/L
Nickel	5	2	1	0.1 mg/L	0.0096 mg/L	0.229 mg/L
Selenium	5	1	0	0.05 mg/L	0.0151 mg/L	0.0151 mg/L
Vanadium	5	5	0	-	0.0051 mg/L	0.629 mg/L
Zinc	5 (4)	3	0	5 mg/L	0.0134 mg/L	0.795 mg/L

Notes:

Bold - MCL or California Department of Health Services state drinking water notification level exceeded.

"- "- MCL or California Department of Health Services state drinking water notification level not established.

(1) - Number of detections exclude sample duplicates, trip blanks and equipment blanks.

(2) - California Department of Health Services state drinking water notification level.

(3) - Unfiltered results are utilized for Title 22 metals.

(4) - Samples with detected blank concentrations are not included in summary analysis, see subsection 4.6.

DWNL - California Department of Health Services state drinking water notification level.

MCL - Maximum Contaminant Level.

mg/L - Milligrams per liter.

 $\mu g/L$ - Micrograms per liter.

4.4.2 Inorganic Analytes

Metals, as total and dissolved, were reported at relatively low concentrations in groundwater samples collected during the Third Quarter 2005 monitoring event (Table 4-3), with one exception. Arsenic, barium, beryllium, chromium, lead and nickel were reported above their respective MCLs in groundwater samples collected from the TT-MW2-4S/D well nest. Arsenic was reported above its respective MCL in filtered and unfiltered groundwater samples collected from TT-MW2-4D. Barium,

beryllium, chromium, lead and nickel were reported above their respective MCLs in an unfiltered

groundwater sample collected from TT-MW2-4S. This nested pair of wells is screened in the bedrock

hydrostratigraphic unit, a different hydrostratigraphic unit from the alluvial screened TT-MW2-1 and

TT-MW2-3 wells. Arsenic has not been reported in groundwater samples collected from the alluvial

screened wells. Also, total metal results for TT-MW2-4S appear inconsistent with past results, arsenic

has historically been detected in samples collected from this well and was not detected but several other

metals were detected.

The concentrations of arsenic reported in groundwater samples collected are believed to result from

naturally occurring arsenic and not a result of former Site operations and the other metals detected

above the MCL are suspect. At this time, the metals (including arsenic), therefore, are considered

neither primary nor secondary COPC at the Site. Metals will continue to be included in the testing

performed at the Site and will continue to be evaluated as additional monitoring points are added to the

network. A further discussion of the general minerals and the hydrostratigraphic units is presented in

Section 4.4.6.

Table 4-3 presents a summary of perchlorate concentrations reported in groundwater samples collected

during the Third Quarter 2005 monitoring event. Based on concentrations and distribution of

perchlorate reported in groundwater samples collected from the Site and concentrations reported from

previous groundwater monitoring events (Tetra Tech, 2005), perchlorate has been retained as a primary

COPC at the Site.

4.4.3 Chemicals of Potential Concern Conclusions

Based on the results of groundwater monitoring performed at the Site to date, perchlorate has been

identified as a primary COPC and TCE has been identified as a secondary COPC. Based on the results

of water quality monitoring and the screening of those results against the existing MCLs or DWNLs (if

an MCL was not established), no additional COPC were identified, nor was there evidence to remove

an analyte from the list of COPC.

4.4.4 Perchlorate

Perchlorate was reported in three (3) groundwater samples collected during the Third Quarter 2005

monitoring event, at concentrations of 2.1, 3,000 and 68,000 µg/L, of which two (2) groundwater

samples collected exceed the perchlorate DWNL of 6 µg/L. During this event, the highest

concentration of perchlorate was detected in a groundwater sample collected from monitoring well TT-

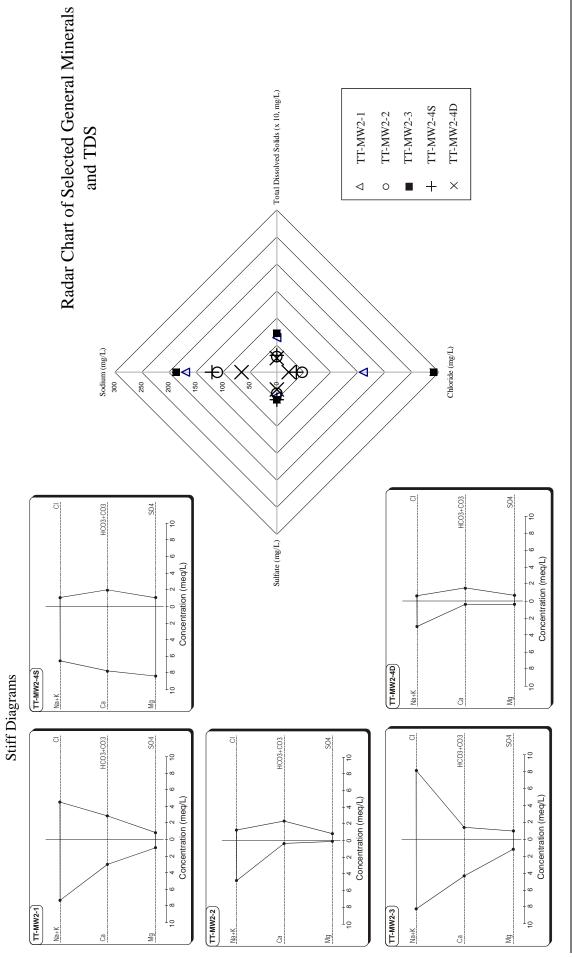
Quarterly Groundwater Monitoring Report Third Quarter 2005 4-10

MW2-3, located in the Historical Operational Area K. Perchlorate was also detected in groundwater samples collected from well TT-MW2-1 and TT-MW2-4S, located in Historical Operational Area L.

Perchlorate concentrations in groundwater samples collected from TT-MW2-3 increased to 68,000 μg/L from 53,000 μg/L, increased in TT-MW2-1 to 3,000 μg/L from 2,400 μg/L and increased from not detected above the LRL to 2.1 μg/L since the last quarterly monitoring event. The highest concentrations of perchlorate were detected in groundwater samples collected from wells screened in the alluvium (i.e, TT-MW2-1 and TT-MW2-3). Although limited in duration, time-series graphs of perchlorate are provided in Appendix E. Sufficient data is not available at this time to evaluate seasonal or long term trends in perchlorate groundwater concentrations at the Site.

4.4.5 Trichloroethene

TCE was reported in one (1) groundwater sample collected during the Third Quarter 2005 monitoring event at a concentration of 5.6 μ g/L, which exceeds the TCE MCL of 5 μ g/L. TCE was detected in the groundwater sample collected from monitoring well TT-MW2-3, located in Historical Operational Area K. Monitoring well TT-MW2-3 is screened in alluvium. The concentrations of TCE in the groundwater sample collected from TT-MW2-3 decreased to 5.6 μ g/L from 7.0 μ g/L since the last quarterly monitoring event. TCE was not reported in any of the other wells sampled. Although limited in duration, time-series graphs of TCE are provided in Appendix E. Sufficient data are not available at this time to evaluate seasonal or long term trends in TCE groundwater concentrations at the Site.


4.5 GENERAL MINERALS

Groundwater samples were also collected for general mineral analysis (Table 4-4) to help identify possibly different hydrogeologic regimes between monitoring wells TT-MW2-1, TT-MW2-2 and TT-MW2-3; and the TT-MW2-4S/4D group. Taking into consideration the suspect data reported for TT-MW2-4S, the wells completed in the bedrock, TT-MW2-2 and TT-MW2-4S/4D, appear to have a similar hydrogeochemical signature (Figure 4-4). Although not as consistent as the signature for the bedrock wells, the wells completed in the alluvium also have a similar signature. Sodium, chloride, nitrate, and, therefore, total dissolved solids are all detected at higher concentrations in the wells completed in the alluvium; and carbonate is higher in the wells completed in the bedrock. Based on these analyses, it appears that TT-MW2-2, TT-MW2-4S, and TT-MW2-4D are likely screened in a different hydrostratigraphic unit than wells TT-MW-2-1, and TT-MW2-3.

Figure 4-4 Distribution of General Minerals – Third Quarter 2005

TETRA TECH, INC.

Quarterly Groundwater Monitoring Report Third Quarter 2005 Beaumont Site 2

4.6 DATA REVIEW

There was one data package (05-09-1857) that contained all data results for this data review. The data was

reviewed using the latest versions of the National Functional Guidelines document from the EPA. All

quality control samples, control limits, surrogate recoveries, field duplicate results, and method required

criteria were reviewed.

The relative percent difference (RPDs) between the duplicate samples were calculated and the RPDs were

all within the 30 percent acceptance criteria. The data review showed that all data results met all required

criteria except as listed below. Unless listed below all data results are of known precision and accuracy,

did not require any qualification and may be used as stated.

There was a detection of zinc in the bailer blank that qualified bailer sampled zinc results that were within

five times the blank concentration. They are denoted with a (B) flag.

4.7 HABITAT CONSERVATION

Consistent with the U.S. Fish and Wildlife Service approved Habitat Conservation Plan (USFWS, 2005)

describing "No Affect" activities for environmental remediation at the Site, all field activities were

performed under the supervision of a Section 10A permitted or sub-permitted biologist who monitored

each work location. As a result, no "take" of SKR occurred during the performance of the field activities

related to the Third Quarter 2005 monitoring event.

Quarterly Groundwater Monitoring Report Third Quarter 2005 Beaumont Site 2 4-13

5.0 SUMMARY AND CONCLUSIONS

For the Third Quarter 2005 groundwater monitoring event, a total of five (5) monitoring well locations were measured for groundwater levels and sampled for groundwater quality.

5.1 GROUNDWATER ELEVATION AND FLOW

Based on the available data, groundwater elevations at the Site do not appear to change significantly with the seasons. The depth to water was approximately 66 feet bgs (elevation of 2,067 feet above msl) in the northern and central portions of the Site (as measured in TT-MW2-2) and approximately 47 feet bgs (elevation of 1,938 feet above msl) in the southern portion of the Site (as measured in TT-MW2-4S).

Although only limited groundwater elevation data are available, based on the measured groundwater elevations at the Site and the southward sloping topography at the Site, groundwater flow appears southerly and to generally follow the topography of Laborde Canyon. Groundwater flow will be refined as additional data are acquired.

5.2 WATER QUALITY MONITORING EVENT

Groundwater samples collected during the Third Quarter 2005 monitoring event were tested for VOCS, metals, general minerals, and perchlorate. VOCs and perchlorate are potential contaminants of concern at the Site. The general minerals analyses were performed to help evaluate different hydrostratigraphic units.

Analytes of interest detected above their respective regulatory thresholds during this sampling event were TCE, arsenic and other metals, and perchlorate. However, based on the historical operations at the Site, perchlorate and TCE are the COPC.

Perchlorate was reported in three (3) groundwater samples collected during the Third Quarter 2005 monitoring event, at concentrations of 2.1, 3,000 and 68,000 µg/L, of which two (2) groundwater samples collected exceed the perchlorate DWNL of 6 µg/L. The highest concentration of perchlorate was detected in a groundwater sample collected from monitoring well TT-MW2-3, located in the Historical Operational Area K. Perchlorate was also detected in groundwater samples collected from well TT-MW2-1 and TT-MW2-4S, located downgradient, in Historical Operational Area L. This is the first quarterly monitoring event where perchlorate was reported in a groundwater sample collected from well TT-MW2-4S. This detection could be an indication that perchlorate is present in the upper portion of the bedrock hydrostratigraphic unit or perchlorate could have been pulled down into the bedrock unit during well redevelopment activities. Subsequent monitoring events will provide the data necessary to evaluate

the source of the perchlorate detections. The horizontal and vertical extent of TCE and perchlorate affected groundwater is not known at this time.

TCE was reported in one (1) groundwater sample collected during the Third Quarter 2005 monitoring event at a concentration of $5.6 \mu g/L$, which exceeds the TCE MCL of $5 \mu g/L$. TCE was detected in the groundwater sample collected from monitoring well TT-MW2-3, located in Historical Operational Area K. Monitoring well TT-MW2-3 is screened in alluvium.

The monitoring wells sampled were installed as part of an initial water quality evaluation and based on these results additional well installations are planned. Sufficient data are not available at this time to evaluate seasonal or long term trends in water quality at the Site.

Groundwater samples were also collected for general mineral analysis to help identify possibly different hydrogeologic regimes between monitoring wells TT-MW2-1, TT-MW2-2 and TT-MW2-3; and the TT-MW2-4S/4D group. Taking into consideration the suspect data reported for TT-MW2-4S, the wells completed in the bedrock, TT-MW2-2 and TT-MW2-4S/4D, appear to have a similar hydrogeochemical signature (Figure 4-4). Although not as consistent as the signature for the bedrock wells, the wells completed in the alluvium also have a similar signature. Based on these analyses, it appears that TT-MW2-2, TT-MW2-4S, and TT-MW2-4D are likely screened in a different hydrostratigraphic unit than wells TT-MW-2-1, and TT-MW2-3.

5.3 WATER QUALITY MONITORING NETWORK

Four (4) quarters of water quality monitoring have been conducted at the Site since the September 2004 well installation activities. The current GMP will be updated to include quarterly groundwater level measurements and water quality monitoring from the three (3) recently installed groundwater monitoring wells (TT-MW2-5, TT-MW2-6S and TT-MW2-6D). Groundwater samples are analyzed for VOCs, metals, general minerals and perchlorate. Based on groundwater monitoring results to date, no changes to the monitoring frequency of the groundwater monitoring network are proposed. The monitoring well network will be reevaluated annually to determine if an increase or decrease in monitoring and/or sampling frequency is appropriate based on the objectives of the Site program and regulatory requirements. The annual evaluation of the GMP will be performed during the summer quarterly reporting period.

In November and December 2005, Tetra Tech installed three (3) groundwater monitoring wells south of the TT-MW2-4S/D well nest. The objective of the groundwater well installation activities was to provide data for an evaluation of downgradient groundwater conditions at the Site. The newly installed

monitoring wells are scheduled to be sampled as part of the Fourth Quarter 2005 groundwater monitoring activities. A report summarizing their installation will be submitted for review in early 2006.

Data generated from recent groundwater monitoring events and the geophysical investigation have enabled development of a Work Plan for additional groundwater assessment at the Site. The work plan will be submitted in early 2006 for review by the DTSC.

6.0 REFERENCES

California Department of Health Services (CDHS)

1989 Lockheed Beaumont Consent Order, June 16, 1989.

Dibblee, T.W.

1981 Geologic Map of Banning (15-minute) Quadrangle, California, South Coast Geologic Society Map 2.

Domenico, P. A. and Schwartz, F. W.

1990 Physical and Chemical Hydrogeology, John Wiley & Sons, New York, New York, 1990.

United States Environmental Protection Agency (EPA)

1999 USEPA Contract Laboratory Program National Functional Guidelines for Organic Data Review, EPA-540/R-99-008 (PB99-963506), October 1999.

2004 USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review, OSWER 9240.1-45, EPA-540-R-04-004, October 2004

Harden, Deborah R.

1998 California Geology. Prentice Hall, Inc., Upper Saddle River, New Jersey. 1998.

Radian Corporation (Radian)

1986a Lockheed Propulsion Company Beaumont Test Facilities Historical Report, September 1986.

1986b Preliminary Remedial Investigation, Lockheed Propulsion Company Beaumont Test Facilities, December 1986.

1990 Source and Hydrogeologic Investigation – Final, Lockheed Propulsion Company Beaumont Test Facilities, February 19, 1990.

1992a Lockheed Propulsion Company Beaumont Test Facilities Remedial Action Plan. February 1992.

1992b Hydrogeologic Study, Lockheed Propulsion Company Beaumont Test Facilities, December 1992

1993 Disposal Area Removal Action, Lockheed Propulsion Company, Beaumont No. 2 Site, June 1993.

Lockheed Martin Corporation (LMC)

1995 Monitoring Well Destruction Report, Former Lockheed Propulsion Company, Beaumont No. 2 Facility, Beaumont, California, November 15, 1995.

2004 Environmental Remediation at Beaumont Site 1 (Potrero Creek Site) and Beaumont Site 2 (Laborde Canyon), May 19, 2004.

Sharp, R. P.

1975 Geology Field Guide to Southern California, Kendall/Hunt Geology Field Guide Series, Second Edition, 1975.

Tetra Tech, Incorporated (Tetra Tech)

Groundwater Sampling Results, Former Production Well W2-3, Beaumont Site 2, February 5, 2003.

2004a Final Lockheed Martin Beaumont Site 2 Groundwater Monitoring Well Installation Work Plan Beaumont, California, January 23, 2004.

- 2004b Final Lockheed Martin Beaumont Site 2 Groundwater Monitoring Well Installation Report Beaumont, California, November 15, 2004.
- 2005 Lockheed Martin First Quarter 2005 Groundwater Monitoring Report Beaumont Site 2, Beaumont, California, June 2005.

United States Fish and Wildlife Service (USFWS)

2005 Endangered Species Act Incidental Take Permit for Potrero Creek and Laborde Canyon Properties Habitat Conservation Plan, October 14, 2005.

7.0 ACRONYMS

bgs below ground surface

btoc below top of casing

CDHS California Department of Health Services

COPC chemical(s) of potential concern

CSM Conceptual Site model

DTSC Department of Toxic Substances Control

DWNL state drinking water notification level

EC electrical conductivity

EPA United States Environmental Protection Agency

GCR Grand Central Rocket

GMP groundwater monitoring program

HSU Hydrostratigraphic Unit

LAC Lockheed Aircraft Corporation

LEB equipment blank

LFB field blank

LMC Lockheed Martin Corporation

LPC Lockheed Propulsion Company

LRL laboratory reporting limit

LTB trip blank

MCL maximum contaminant level

MS matrix spike

MSD matrix spike duplicate

msl mean sea level

mg/L milligrams/liter

μg/L micrograms/liter

NA Not applicable

ND Not detected

QAL Quaternary alluvium

QA/QC quality assurance/quality control

QC quality control

RPD relative percent difference

SKR Stephens' Kangaroo rat

STF San Timoteo Formation

SVOCs semi-volatile organic compounds

TCE trichloroethene

TDS total dissolved solids

U.S. United States

VOCs volatile organic compounds

VALIDATION GUIDELINES

Validation Qualifiers

- B: The sample result is less than 5 times (10 times for common organic laboratory contaminants) the blank contamination. The result qualified for blank contamination is considered not to have originated from the environmental sample, since cross-contamination is suspected.
- J: The analyte was positively identified, but the analyte concentration is an estimated value.
- R: The sample result is rejected and not usable for any purpose. The presence or absence of the analyte cannot be verified.
- U: The analyte was analyzed for, but was not detected above the MDL.
- UJ: The analyte was not detected above the MDL. However, the MDL may be elevated above the reported detection limit.
- Y: Confirmation column results indicate a non-detect for the target analyte.

Qualifier Descriptors

- a: The analyte was found in the method blank.
- b: The surrogate spike recovery was outside control limits.
- c: The Matrix Spike (MS) and/or Matrix Spike Duplicate (MSD) recoveries were outside control limits.
- d: The Laboratory Control Sample (LCS) recovery was outside control limits.
- e: A holding time violation occurred.
- f: The duplicate samples Relative Percent Difference (RPD) was outside the control limit.
- g: The datum met prescribed method criteria.
- h: The method requires a confirmation result, but none was performed...
- k: The analyte was found in a field blank.
- I: The second column confirmation result indicates the analyte was not confirmed.
- n: The laboratory case narrative indicated a QC problem.
- p: The result was qualified based on professional judgement.
- q: The analyte detection was below the Practical Quantitation Limit (PQL).
- r: The result is above the instrument's calibration range.
- t: The sample temperature was outside acceptance criteria.

Consolidated Data Summary Table Beaumont Site 2

Consolidated Data Summary Table Beaumont Site 2

	J\pm- muinələ2	<0.00295	<0.00295	<0.00295	200000	<0.00295	<0.00295	<0.00295	<0.00295		0.813<0.00295	<0.00295	<0.00295	<0.00295	<0.00295	<0.00295	<0.00295	<0.00295	<0.00295		<0.00295	<0.00295	<0.00295	<0.00295	<0.00295	<0.00295	<0.00295
	J\gm- muisssto¶			3.51					1.22		0.813				2.32			88	3.13		2.58				2.33	42.2	
	МіскеІ -тд/L	0.0120	37		701000	<0.00137	<0.00137	<0.00137	1.		<0.00137	<0.00137	<0.00137	<0.00137	<0.00137	<0.00137	0.00721	<0.00137	0.0180		0.00955	<0.00137	0.0364	<0.00137	0.00919	0.229	<0.00137
	7/6ш- шпиәрզ√ію		0.00736	<0.000800 0.0144	000000	<0.000800 <0.00137 <.42<0.000800 <0.00137	<0.000800		<0.000800			<0.000800			<0.0000800			0.0116		0.0111	0.0111			0.0173	10.00	<0.000800	0.00971
	J\pm- muieengeM			16.9	1				1.79 Jc		V				12.9				8.80		4.18				3.42	102	
letals	7/6ш- реә7	<0.00236		<0.00236	90000	<0.00236	20.00236 20.00236	<0.00236			<0.00236 1.07	<0.00236	<0.00236				<0.00236	<0.00236	0.0114			<0.00236	0.0188	<0.00236	<0.00236	0.127	236
SW6010 - Metals	Copper -mg/L	0.0129	<0.00134	0.0112	\neg	1	40.00134	<0.00134	<0.00134		<0.00134	<0.00134		<0.00134	<0.00134		0.00882	<0.00134	<0.00134			34			<0.00134	0.287	<0.00134
	Л∕9т- л9/∟	0.00591	<0.000696	0.00634	000000	<0.000696 0.00600	40.00090	<0.000696	<0.000696		<0.000696 <0.00134	<0.000696	<0.000696	<0.000696	<0.000696	40.00086 40.000886	<0.000696	<0.000696	0.0135		0.00522	<0.000696	0.0194	<0.000696	0.00692	0.123	<0.000696
	Сһготіит -т9/L		<0.0000350	79.4 0.0209			2		_	<0.000350		20			20	0.00003		350	0.0396			350	$\overline{}$	<0.000350	\neg	<0.0000350	3350
	J\gm- muiɔlsɔ		Ť	79.4 (000	0.79	1	Ì	10.1	Ì	7.48	Ì				87.3		Ť	11.7		6.84	Ť		Ì	7.68		
	∆\pm- muimbs⊃	<0.000350	<0.0000350	<0.000350	010000	<0.000350	<0.000350	<0.000350			<0.000350	<0.000350	<0.000350			<0.0000350 <0.0000350	<0.000350	<0.000350				<0.000350	<0.000350	<0.000350	<0.0000350	<0.000350 157	<0.000350
	Beryllium -mg/L	176		<0.000176	017000	Untiltered <0.000176 <0.000350 62.0 0.00557			<0.000176		<0.000176 <0.000350					<0.0001/6					<0.000176 <0.000350	<0.000176					176
	Filter	70	Unfiltered .	Unfiltered	Filtered	Untilitered	Linfiltored				D	Filtered	Unfiltered <		Unfiltered	Unilitered	Infiltered			Filtered	ō	Filtered		Unfiltered -	07/07/05 Unfiltered <0.000176	Filtered Unfiltered 0.0118	Filtered
	Sample	09/27/04	02/16/05	02/08/05	07/08/05	09/30/02	50/05/60	02/16/05	07/07/05	07/07/05	20/08/60	90/30/60	09/27/04	02/16/05	07/08/05	09/30/05	09/22/04	02/16/05	07/07/05	07/07/05	09/30/02	90/30/60	09/27/04	02/16/05	07/07/05	07/07/05	09/30/02
	Elevation	09/27/04	02/16/05	06/02/05	06/02/05	09/21/05	09/21/05	02/16/05	06/02/05	06/02/05	09/21/05	09/21/05	09/27/04	02/16/05		09/21/05	Т	02/16/05	06/02/05	06/02/05	09/21/05	09/21/05	09/27/04	02/16/05	06/02/05	06/02/05	09/21/05
Water Level Data	Groundwater Elevation (feet above mean sea level)	1980.23	1980.52	1981.59	1981.59	1982.31	1982.31	2068.37	2069.05	2069.05	2069.37	2069.37	2024.88	2025.56	2025.92	2025.83	1909 58	1930.91	1931.33	1931.33	1931.12	1931.12	1935.42	1937.99	1938.10	1938.10	1937.86
	Depth to Water (feet below ground surface)	54.98	54.69	53.62	53.62	52.90	52.90	69.38	68.70	68.70	68.38	68.38	82.69	69.10	68.74	68.83	77.58	56.25	55.83	55.83	56.04	56.04	51.52	48.95	48.84	48.84	49.08
	Sample	TT-MW2-1	TT-MW2-1	TT-MW2-1	TT-MW2-1	TT-MW2-1	L-SWWZ-1	2-2WW-TT	TT-MW2-2	TT-MW2-2	TT-MW2-2	TT-MW2-2	TT-MW2-3	TT-MW2-3	TT-MW2-3	I -MWZ-3	TT-MW2-4D	TT-MW2-4D	TT-MW2-4D	TT-MW2-4D	TT-MW2-4D	TT-MW2-4D	TT-MW2-4S	TT-MW2-4S	TT-MW2-4S	TT-MW2-4S	TT-MW2-4S

Consolidated Data Summary Table Beaumont Site 2

	1,Pichloropropene -ug/L	<0.21	<0.21	<0.21	3	<0.21	3	<0.21	<0.21	<0.21		<0.21		<0.21	<0.21	<0.21	<0.21		<0.21	<0.21	<0.21	1	<0.21		<0.21	<0.21	<0.21	3	<0.21
	1,1-Dichloroethene -ug/L			<0.31 <(<0.31 <($\overline{}$	$\overline{}$	$\overline{}$	<0.31 <(<0.31 <(_			\rightarrow	<0.31 <($\overline{}$	$\overline{}$	<0.31	$\overline{}$	<0.31 <(\neg	$\overline{}$	$\overline{}$	<0.31 <($\overline{}$	<0.31
sic —	1,1-Dichloroethane -ug/L			<0.53 <0	-	<0.53 <0				<0.53 <0		<0.53 <0	-				<0.53 <0				<0.53 <0		<0.53 <0				<0.53 <0		<0.53 <
SW8260 - Volatile Organics				$\overline{}$	-	54 <0.													54 <0.										
olatile	J.gu- ansthanorotrifluoroethane -ug/L	54 <0.54		54 <0.54	-	> <0.54	-			24 <0.54		24 <0.54		<0.54	54 <0.54		24 <0.54			54 <0.54	54 <0.54		54 <0.54		54 <0.54	54 <0.54	54 <0.54		24 <0.54
	J.gu- arshloroethane -ug/L			7 <0.54		7 <0.54				7 <0.54		7 <0.54	-	7 <0.5	$\overline{}$	_	7 <0.54				7 <0.54	4	7 <0.54		$\overline{}$		7 <0.54		7 <0.54
SW8	1,5,2-Tetrachloroethane -ug/L	2 <0.37		2 <0.37		2 <0.37	-	2 <0.37		2 <0.37	-	2 <0.37		<0.32 <0.37 <0.54	2 <0.37		2 <0.37	-			2 <0.37		2 <0.37		2 <0.37		2 <0.37	- 6	2 <0.37
	J\gu- ənsrtəorochtəirT-f,f,f			<0.32		<0.32				<0.32		<0.32		<0.3	-	\neg	<0.32			\neg	<0.32		<0.32		$\overline{}$		7 <0.32		<0.32
	J,PTetrachloroethane -ug/L	<0.37		<0.37		<0.37			$\overline{}$	<0.37		<0.37			$\overline{}$		<0.37				<0.37		<0.37				<0.37	1	<0.37
SW7470	Mercury -mg/L	<0.0000672	<0.0000672	<0.0000672		<0.00000672		<0.00000672	<0.00000672	<0.0000672		<0.00000672		<0.00000672	<0.0000672	<0.0000672	<0.0000672		<0.0000672	<0.00000672	<0.00000672		<0.00000672		<0.00000672	<0.0000672	<0.0000672		<0.000067
	J∖gm- ɔni∑	0.0460	0.0334				新			0.0188 Jc		\neg	848	_	$\overline{}$		\neg	848	_	848	0.0600			3848	$\overline{}$	848	0.0641		0.795
Netals	J\gm- muibsnsV		0.00626	0.0257			314			0.0109				$\overline{}$	$\overline{}$	4	$\overline{}$	3314		2	0.167		0.137	0.127			0.0981		0.629
SW6010 - Metals	J\gm- muillsdT	33		<0.00233				<0.00233 (<0.00233								$\overline{}$			<0.00233 ($\overline{}$		<0.00233 (<0.00233 (
	J/gm- muibos			173		169				129		110				-	187				8.69		65.4				106		120
	Silver -mg/L	<0.000400	<0.000400	<0.000400		<0.000400	<0.000400	<0.000400	<0.000400		<0.000400	<0.000400	<0.000400	<0.000400	<0.000400	<0.000400	<0.000400	<0.000400	<0.000400	<0.000400		<0.000400	<0.000400	<0.000400	<0.000400	<0.000400		<0.000400	<0.000400
	Filter	1=		Unfiltered		힜	pe pe	ered	\neg	Unfiltered				$\overline{}$			σ			Unfiltered	Unfiltered		Unfiltered				Unfiltered		ered
	Sample	4	02/16/05	02/08/05	02/08/05		09/30/02	09/27/04		07/07/05	02/02/05	09/30/05 Unfiltered				07/08/05			09/27/04	02/16/05	50//0//0		09/30/02				02/02/05	02/02/05	09/30/05 Unfiltered
	Elevation	09/27/04	02/16/05	06/02/05	06/02/05	09/21/05	09/21/05	09/27/04	02/16/05	06/02/05	06/02/05	09/21/05	09/21/05	09/27/04	02/16/05	06/02/05	09/21/05	09/21/05	09/27/04	02/16/05	06/02/05	06/02/05	09/21/05	09/21/05	09/27/04	02/16/05	06/02/05	06/02/05	09/21/05
Water Level Data	Groundwater Elevation (feet above mean sea level)	1980.23	1980.52	1981.59	1981.59	1982.31	1982.31	2068.05	2068.37	2069.05	2069.05	2069.37	2069.37	2024.88	2025.56	2025.92	2025.83	2025.83	1909.58	1930.91	1931.33	1931.33	1931.12	1931.12	1935.42	1937.99	1938.10	1938.10	1937.86
4	Depth to Water (feet below ground surface)	54.98	54.69	53.62	53.62	52.90	52.90	02.69	69.38	68.70	68.70	68.38	68.38	82.69	69.10	68.74	68.83	68.83	77.58	56.25	55.83	55.83	56.04	56.04	51.52	48.95	48.84	48.84	49.08
	Sample Point	TT-MW2-1	TT-MW2-1	TT-MW2-1	TT-MW2-1	TT-MW2-1	TT-MW2-1	TT-MW2-2	TT-MW2-2	TT-MW2-2	TT-MW2-2	TT-MW2-2	TT-MW2-2	TT-MW2-3	TT-MW2-3	TT-MW2-3	TT-MW2-3	TT-MW2-3	TT-MW2-4D	TT-MW2-4D	TT-MW2-4D	TT-MW2-4D	TT-MW2-4D	TT-MW2-4D	TT-MW2-4S	TT-MW2-4S	TT-MW2-4S	TT-MW2-4S	TT-MW2-4S

Consolidated Data Summary Table Beaumont Site 2

	4-Chlorotoluene -ug/L	<0.30	<0.30	<0.30 <0.21	<0.30 <0.21		<0.30	<0.30	<0.30 <0.21	00.0	<0.30 <0.0>	<0.30 <0.21	<0.30	<0.30	<0.30 <0.21	0	_	05.05	20.07	<0.30 <0.21		<0.30	<0.30	<0.30 <0.21	-030 -031	00.00
	2-Chlorotoluene -ug/L 2-Hexanone -ug/L	$\overline{}$	$\overline{}$	<0.24 <1.9	<0.24 <1.9		\overline{v}	7	<0.24 <1.9	_	<0.24 <1.9	<0.24 <1.9			<0.24 <1.9			50.24 < 1.9	17	<0.24 <1.9		7	√.	<0.24 <1.9	0 1/ 1/0	V
	2-Butanone (MEK) -ug/L	NI	N	<4.2 <0	<4.2 <0		2	2	<4.2 <0		0> Z.4>	<4.2 <0			<4.2 <0	_		V C	_	<4.2 <0	$\overline{}$	$\overline{}$		<4.2 <0	C 17	1
	2,2-Dichloropropane -ug/L	-	$\overline{}$	<0.40	<0.40			_	<0.40		<0.40	<0.40	<0.40	<0.40	<0.40	-		04.0		<0.40				<0.40	070	-
	J\gu- ənəznədoroldɔid-4,†	-		<0.30	<0.30				<0.30		05.0>	<0.30	<0.30		<0.30		<0.30	×0.30		<0.30		<0.30	<0.30	<0.30	06.0	Ĭ
Organics	1,3-Dichloropropane -ug/L		Ī	<0.30	<0.30				<0.30		<0.30	<0.30		<0.30	<0.30			0.30		<0.30				<0.30	06 0	
atile Or	J/gu- ənəznədoroldəid-£,t			<0.38	VO 38				<0.38		<0.38	40.38 86.02	_		<0.38	$\overline{}$	$\overline{}$	0.38		<0.38		$\overline{}$	$\overline{}$	<0.38	00.0	_
0 - Volatile	1∖ይս- ənəznədlγતtյəmiาT-Շ,£,Ր	<0.19	_	<0.19	01.0	_	<0.19		<0.19		<0.19	of 0>		<0.19	<0.19				- O. B	<0.19				<0.19	Ç	0 0
SW8260	1,2-Dichloropropane -ug/L	_	$\overline{}$	<0.28	20.00		2 <0.28	$\overline{}$	<0.28		<0.28	2 0 28			2 <0.28			_	87.0× 7	2 <0.28				2 <0.28	9	1
C.	1,2-Dichloroethane -ug/L			4 <0.22	4 -0 22		4 < 0.22		4 <0.22		4 <0.22	4 <0 22			4 <0.22				4 <0.22	4 <0.22			0	4 <0.22		
	J\gu- anaznado1olrloiG-S,f	8		<0.24	10.04				1 <0.24		1 <0.24	1 -0 24	_		1 <0.24		<0.24		<0.24	1 <0.24				1 <0.24	100	
	J\2-Dibromoethane -ug\L			.26 <0.81	26 0 81				.26 <0.81		6 <0.81	6 70 81	6 <0.81	6 < 0.81	6 < 0.81			_	6 <0.81	6 <0.81				6 <0.81	200	
	الكب، -Trimethylbenzene -ug/L	35 <0.26	8	Ŷ	5	7	35 < 0.26	Ŷ	8		35 <0.26	35 77 28	35 <0.26		.35 <0.26			_	35 <0.26	35 <0.26				.35 <0.26	9	
	J\gu- ənaqorqoroldəirT-E,S,P,	100		3 <0.35	20 07		3 <0.35	3 <0.35		\neg	3 <0.35	2 70 35						0 0	3 <0.	9		3 <0.35	0	Ŷ		Ī
	L.S.3-Trichlorobenzene -ug/L	<0.39 <2.3		<0.39 <2.3	020		<0.39 <2.3	<0.39 <2.3	<0.39 <2.		<0.39 <2.3	030 703		_			V	39 <2	39	<0.39 <2.3		<0.39 <2.3		<0.39 <2.3	0	000
	Filter	_	-	ō	Filtered		P		g	\neg	Q	Filtered	-	_		Filtered		_	Untiltered <0.	Unfiltered <0		Unfiltered <0		p	Filtered	_
	Sample Date	4			07/08/05 Fi			02/16/05 U	U 50/20/20			09/30/05 FI	_			09/30/05 Fi				07/07/05 FI		09/27/04 U	_	_	07/07/05 Fi	-
	Elevation	4			06/02/05	+		02/16/05	06/02/05	1		09/21/05	1	1	1.0				1	06/02/05	100	09/27/04	J.		06/02/05	
Water Level Data	Groundwater Elevation (feet above mean sea level)	1980.23	1980.52	1981.59	1981.59	1982.31	2068.05	2068.37	2069.05	2069.05	2069.37	2069.37	2025 56	2025.92	2025.83	2025.83	1909.58	1930.91	1931.33	1931.33	1931.12	1935.42	1937.99	1938.10	1938.10	2007
	Depth to Water (feet below ground	54.98	54.69	53.62	53.62	52.90	69.70	69.38	68.70	68.70	68.38	68.38	69.70	68.74	68.83	68.83	77.58	56.25	55.83	55.83	56.04	51.52	48.95	48.84	48.84	0000
	Sample	TT-MW2-1	TT-MW2-1	TT-MW2-1	TT-MW2-1	TT-MW2-1	TT-MW2-2	TT-MW2-2	TT-MW2-2	TT-MW2-2	TT-MW2-2	TT-MW2-2	TT-MW2-3	TT-MW2-3	TT-MW2-3	TT-MW2-3	TT-MW2-4D	T-MW2-4D	TT-MW2-4D	TT-MW2-4D	TT-MW2-4D	IT-MW2-4S	TT-MW2-4S	TT-MW2-4S	TT-MW2-4S	0. 011111

Consolidated Data Summary Table Beaumont Site 2

	J/gu- ənsrtəmoroulfiboroldəiQ	<0.27	<0.27	<0.27		<0.27	70.07	70.07	<0.27		<0.27		<0.27	<0.27	<0.27	<0.27	1	<0.27	<0.27	<0.27		<0.27		<0.27	<0.27	<0.27		<0.27	
	J\gu- ənsrhəmomordiO	N	_	_	_	<0.42 <	070	$\overline{}$		_	<0.42 <				$\overline{}$	<0.42 <			$\overline{}$	<0.42 <		<0.42 <			<0.42	<0.42 <		<0.42 <	
İ	DBCP (1,2-Dibromo-3-chloropropane) -ug/L		<2.5		\neg	<2.5	105	Т		Т	<2.5			2	2	<2.5	\neg	<2.5	\neg			<2.5		2		<2.5 <		<2.5	
Ī	Chloromethane -ug/L	100	<1.8			<1.8	α,				<1.8		<1.8			×1.8				<1.8		<1.8		_	<1.8 <	<1.8 <		<1.8 <	
	Chloroform -ug/L	<0.22	<0.22	<0.22		<0.22	00 07			-	<0.22				$\overline{}$	<0.22			$\overline{}$	<0.22		<0.22		$\overline{}$	j	<0.22		<0.22	
	Chloroethane -ug/L	N	_			<0.52	70.52				<0.52					<0.52				<0.52		<0.52				<0.52		<0.52	
	Chlorodibromomethane -ug/L	In				<0.45	10 15			_	<0.45				$\overline{}$	<0.45			$\overline{}$	<0.45		<0.45			<0.45	<0.45		<0.45	
ganics	Chlorobromomethane -ug/L	8	<0.68	<0.68		<0.68	89.07	_		_	<0.68			<0.68		<0.68				<0.68		<0.68			<0.68	<0.68		<0.68	
atile O	Chlorobenzene -ug/L	10	<0.36	<0.36		<0.36	36.07	_			<0.36					<0.36				<0.36		<0.36			<0.36	<0.36		<0.36	
SW8260 - Volatile Organics	Carbon tetrachloride -ug/L	a	<0.42			<0.42	010	040		+	<0.42					<0.42				<0.42		<0.42			<0.42	<0.42		<0.42	
SW826	J-gu- əpiflusib nodas					<1.0	0	Т		$\overline{}$	<1.0					<1.0	П	\neg		<1.0		<1.0			<1.0	<1.0		<1.0	
	Sromomethane -ug/L	1	<2.9	6		<2.9	100				<2.9					<2.9		<2.9		<2.9		<2.9				<2.9		<2.9	
	J\gu- mາofomos8	<0.62	<0.62	<0.62		<0.62	70.62		$\overline{}$		<0.62				$\overline{}$	<0.62				<0.62		<0.62			<0.62	<0.62		<0.62	
	J/gu- ansthanorolichiomod	<0.27	<0.27	<0.27		<0.27	70.07	$\overline{}$	$\overline{}$		<0.27					<0.27				<0.27		<0.27				<0.27		<0.27	
	Bromobenzene -ug/L	<0.47	<0.47	<0.47		<0.47	70.47	_	$\overline{}$	$\overline{}$	<0.47		<0.47	<0.47		<0.47		-	$\overline{}$	<0.47		<0.47			<0.47	<0.47		<0.47	
	٦/6n- əuəzuəg					<0.26	90 07	Т			<0.26					<0.26	\neg	\neg		<0.26		<0.26			<0.26	<0.26		<0.26	
-	J/gu- ənojəɔA	1=		<6.1 <		<6.1 <	14	$\overline{}$	_		<6.1 <		<6.1 <	<6.1 <		<6.1 <		\neg		<6.1 <		<6.1 <			<6.1 <	<6.1 <		<6.1 <	
	4-Methyl-2-pentanone -ug/L	<2.4	<2.4	<2.4		<2.4	100	- 4	4	_	<2.4		<2.4	<2.4	<2.4	<2.4				<2.4		<2.4			<2.4	<2.4		<2.4	
	Filter	Unfiltered	Unfiltered	Unfiltered	Filtered	Unfiltered	Filtered	Infiltered	Unfiltered	Filtered	Unfiltered	Filtered	Unfiltered	Unfiltered	Unfiltered	Unfiltered	Filtered	Unfiltered	Unfiltered	Unfiltered	Filtered	Unfiltered	Filtered			Unfiltered		ğ	Poson
	Sample	4	02/16/05 U	07/08/05 U	07/08/05 F	09/30/05	09/30/05 F	-		-	09/30/0E	-		_						07/07/05 U			$\overline{}$				_	09/30/05 U	00/20/05 Eiltorod
	Elevation	09/27/04	02/16/05	06/02/05	06/02/05	09/21/05	09/21/05	02/16/05	06/02/05	06/02/05	09/21/05	09/21/05	09/27/04	02/16/05	06/02/05	09/21/05	1	1											20/16/00
Water Level Data	Groundwater Elevation (feet above mean sea level)	1980.23	1980.52	1981.59	1981.59	1982.31	1982.31	2068.37	2069.05	2069.05	2069.37	2069.37	2024.88	2025.56	2025.92	2025.83	2025.83	1909.58	1930.91	1931.33	1931.33	1931.12	1931.12	1935.42	1937.99	1938.10	1938.10	1937.86	1027 96
	Depth to Water (feet below ground surface)	54.98	54.69	53.62	53.62	52.90	52.90	69.38	68.70	68.70	68.38	68.38	82.69	69.10	68.74	68.83	68.83	77.58	56.25	55.83	55.83	56.04	56.04	51.52	48.95	48.84	48.84	49.08	40.00
	Sample Point	TT-MW2-1	TT-MW2-1	TT-MW2-1	TT-MW2-1	11-MW2-1	TT-MW2-1	TT-MW2-2	TT-MW2-2	TT-MW2-2	TT-MW2-2	TT-MW2-2	TT-MW2-3	TT-MW2-3	TT-MW2-3	TT-MW2-3	1-MW2-3	TT-MW2-4D	11-MW2-4D	TT-MW2-4D	TT-MW2-4D	TT-MW2-4D	IT-MW2-4D	TT-MW2-4S	TT-MW2-4S	TT-MW2-4S	LT-MW2-4S	IT-MW2-4S	TAMAIS AC

Consolidated Data Summary Table Beaumont Site 2

	n-Propylbenzene -ug/L	<0.30	<0.30	¢0.30	000	<0.30	0207	<0.30	<0.30		<0.30		<0.30	<0.30	<0.30	<0.30	000	05.05	0.30	00.00	0.30		<0.30	<0.30	<0.30	0	<0.30	
	¬/βn- səuəjʎχ-d'w				00.0	<0.38					<0.38					<0.38					70.38					000	<0.38	
	cis-1,3-Dichloropropene -ug/L	<0.45	<0.45	<0.45		<0.45	70.45	-0.45 -0.45	<0.45		<0.45		<0.45	<0.45	<0.45	<0.45	1	<0.45	<0.45	<0.45	70.45		<0.45	<0.45	<0.45	1	<0.45	
	J\pu- enetheoroldziG-2,f-eic		$\overline{}$	<0.35	100	cc.0>	70.35		_		<0.35					<0.35				\$0.35	70.25		<0.35		<0.35		<0.35	
	Vinyl chloride -ug/L			<0.33		<0.33	70.33		_		<0.33		$\overline{}$			<0.33	\neg		_	×0.33	10 33		<0.33	<0.33	<0.33		<0.33	
	√gu- etste -ug/L	<3.2	_	<3.2		<3.2	19.0	466			<3.2		$\overline{}$			<3.2	_			<3.2	130	1	<3.2		<3.2	-	<3.2	
S	J\gu- ənshtəmoroulforoldoirT	<0.36	<0.36	<0.36	000	<0.3b	36 07	98.07	<0.36		<0.36		<0.36	<0.36	<0.36	<0.36	000	<0.36	<0.36	<0.36	26.07	20.0	<0.36	<0.36	<0.36	000	<0.36	
- Volatile Organics	Trichloroethene -ug/L	<0.30		<0.30	000	×0.30	08.07		38		<0.30					5.6			စ္ကုန္ပ	<0.30	08.07	200	<0.30	<0.30	<0.30	3	<0.30	
latile (J/gu- ənəuloT			<0.35	100	<0.35	30.00	VO.35	_		<0.35		35	$\overline{}$		<0.35			93	<0.35	20.07		<0.35			1	<0.35	
09 - Vo	Tetrachloroethene -ug/L	<0.29		<0.29	000	<0.29	00.0	62.02			<0.29		$\overline{}$			<0.29				<0.29	00.00		<0.29				<0.29	
SW8260	Styrene -ug/L	6		<0.29	000	<0.29	00.0	82.05			<0.29		$\overline{}$			<0.29		_		<0.29	00.0		<0.29		<0.29		<0.29	
	√gu- ənəletidek	2		<0.95		<0.95	200	26.05			<0.95		<0.95			<0.95				<0.95	30.00	20.00	<0.95		<0.95		<0.95	
	J/gu- ənəznədi <i>үt</i> uB-N	6		<0.29		<0.29	900		_		<0.29					<0.29				<0.29	00.0	0.50	< 0.29		<0.29		<0.29 <	
	Methyl tert-butyl ether -ug/L	6		<0.29 <		<0.29 <	000				< 0.29		<0.29			<0.29 <				<0.29 <	900		< 0.29	< 0.29 <	<0.29 <		<0.29	3
	sopropylbenzene -ug/L	4		<0.24 <		<0.24 <		× 42.0×			<0.24 <					<0.24 <				<0.24 <	200		<0.24 <				<0.24 <	
	Είλγίρenzene -ug/L	_				<0.17 <					<0.17		<0.17 <			<0.17 <				<0.17 <	11		<0.17 <	10		П	<0.17 <	
	Dichloromethane -ug/L	8		6 <0.17		- 1		0 41		Т			6		9	9				П		\neg	$\overline{}$			П		
4		V		ed <2.6		ed <2.6	1	7 5	3 6		ed <2.6	_	2	Ş	2	3		ed <2.6		ed <2.6	- 7		ed <2.6		$\overline{}$		ed <2.6	_
	Filter	Unfilter	Unfilter	Unfilter	Filterec	Unfilter	Filterec	Unfilter	Unfiltered	Filtered	Unfiltered	Filtered	Unfilter	Unfiltered	Unfiltered	Unfilter	Filtered	Unfiltered	Unfiltered	Unfiltered	Filtered	Eiltorod	Unfiltered	Unfiltered	Unfiltered	Filtered	Unfiltered	Filtered
	Sample Date	09/27/04 Unfiltered	02/16/05 Unfiltered	07/08/05 Unfiltered	07/08/05 Filtered	09/30/05 Unfiltered	09/30/05 Filtered	09/27/04 Unfiltered	02/16/05 Unilitered	07/07/05		90/30/60	09/27/04 Unfiltered		20/80/20						07/07/05						09/30/02	90/08/60
						1	+	+	+	+										1		+	1					
	Elevation	09/27/04	02/16/05	06/02/05	06/02/05	09/21/05	09/21/05	09/27/04	02/16/05	6/02/05	09/21/05	09/21/05	09/27/04	02/16/05	06/02/05	09/21/05	09/21/05	09/27/04	02/16/05	06/02/05	06/02/05	09/21/05	09/27/04	02/16/05	06/02/05	06/02/05	09/21/05	09/21/05
ata	71		0	0								0	٥	٥	0	0	0	٥	0	0							0	0
Water Level Data	Groundwater Elevation (feet above mean	1980.23	1980.52	1981.59	1981.59	1982.31	1982.31	2068.05	2008.37	2069.05	2069.37	2069.37	2024.88	2025.56	2025.92	2025.83	2025.83	1909.58	1930.91	1931.33	1931.33	1931.12	1935.12	1937.99	1938.10	1938.10	1937.86	1937.86
>	Depth to Water (feet below ground	54.98	54.69	53.62	53.62	52.90	52.90	69.70	69.38	68.70	68.38	68.38	82.69	69.10	68.74	68.83	68.83	77.58	56.25	55.83	55.83	56.04	51 52	48.95	48.84	48.84	49.08	49.08
	Sample	TT-MW2-1	TT-MW2-1	TT-MW2-1	TT-MW2-1	TT-MW2-1	TT-MW2-1	TT-MW2-2	II-MW2-2	TT-MW2-2	TT-MW2-2	TT-MW2-2	TT-MW2-3	TT-MW2-3	TT-MW2-3	TT-MW2-3	TT-MW2-3	TT-MW2-4D	TT-MW2-4D	TT-MW2-4D	TT-MW2-4D	11-MW2-4D	TT-MW2-4S	TT-MW2-4S	TT-MW2-4S	TT-MW2-4S	TT-MW2-4S	TT-MW2-4S

Consolidated Data Summary Table Beaumont Site 2

	J\gu- lonəriqoriiniG-Þ,2	<2.6	<2.6				30	42.0	0.25				<2.6	<2.6			1	<2.6	0.25				<2.6	<2.6			
	2,4-Dimethylphenol -ug/L	<1.2	<1.2				0 5	7. 5	7.12				<1.2	<1.2				2.1.2	7.1>				<1.2	<1.2			
	J\gu- lonehorophcid-4,2	<1.1	<1.1				7	1.12					<1.1	<1.1				7.1	1.1				<1.1	<1.1			
iles	J\gu- lonehhorohiriT-8,4,6		<1.2				c	717						<1.2			T	<1.2 2.1.2	1					Ø.			T
mi-Volat	2,4,5-Trichlorophenol -مg/L		<0.97					76.05	Т					<0.97	Ī		Т		V6.05					<0.97			1
SW8270 - Semi-Volatiles	1-Methyinaphthalene -ug/L		<1.4				-	4.	4.				<1.4	<1.4			1	4.	4:12			1	<1.4	<1.4		1	
SW8	J/gu- eneznedotoldziG-4,f		<1.1										<1.1	<1.1			1	1					<1.1	<1.1			
	J/gu- eneznedoroldɔid-ɛ,f							v c	7.12					<1,2		1	,	2 0	T	1				<1.2			
	J/gu- ensznedoroldɔiG-S,f	<1.1	<1.1		1								<1.1	<1.1									<1.1	<1.1	1		
	J\gu- =neznedoroldoirT-4,S,f					1	T		T				<1.3	<1.3		1			5.1.5				<1.3	<1.3			Ī
s,	1/gu- enegoroprohicilo-E,f-enst	31		<0.31		<0.31		1	0.00		<0.31		17		<0.31	<0.31	\neg	<0.31	Т	10.0	<0.31		<0.31		<0.31		<0.31
SW8260 - Volatile Organics	الـ ادامان المرابعة	53	29	29		<0.29	1	T	62.02		<0.29		<0.29			<0.29	Т	<0.29	T	T	<0.29			<0.29			<0.29
Volatile	fert-Butylbenzene -ug/L	<0.17 <0	<0.17 <0.	<0.17 <0.		<0.17 <(0 17		<0.17 <0		<0.17 <0	<0.17 <	$\overline{}$	<0.17 <0				40.17	<0.17 <0		<0.17 <0		<0.17 <0		<0.17
W8260 -	¬/6n- euezueql∕ing-∋es	3		<0.21	П	<0.21		T	20.21		<0.21		<0.21			<0.21	Т		- L		<0.21		<0.21	21	<0.21		<0.21
S	¬/6n- əuə∣ʎҳ-o	_		<0.21	\neg	<0.21		_	20.21	_	<0.21		<0.21	<0.21		<0.21	$\overline{}$	<0.21	_	$\overline{}$	<0.21 <	_			<0.21 <	1	<0.21
	Filter	Unfiltered	Unfiltered	Unfiltered	Filtered	Unfiltered	Filtered		Unfiltered				àd			न				Filtered	Ø		Unfiltered		ъ		9 -
	Sample	09/27/04 U					09/30/05 F	146/05	02/07/07	07/07/05 F		99/30/05 Fi	09/27/04 U							07/07/05 U	_						09/30/05 Unfilter
	Elevation S	09/27/04 09				+	09/21/05	1	+	T		09/21/05 09				1	1		+	06/02/05			09/27/04 09	02/16/05 02			09/21/05 09
Water Level Data	Groundwater Elevation (feet above mean sea level)	1980.23	1980.52	1981.59	1981.59		1982.31		1	-		2069.37		8			1			1031.33				1937.99			1937.86
2	Depth to Water (feet below ground surface)	54.98	54.69	53.62	53.62	52.90	52.90	09.70	68.70	68.70	68.38	68.38	82.69	69.10	68.74	68.83	68.83	77.58	20.23	55.83	56.04	56.04	51.52	48.95	48.84	48.84	49.08
	Sample	TT-MW2-1	TT-MW2-1	TT-MW2-1	TT-MW2-1	TT-MW2-1	I -MWZ-1	Z-Z-MMZ-Z	TT-MW2-2	TT-MW2-2	TT-MW2-2	TT-MW2-2	TT-MW2-3	TT-MW2-3	TT-MW2-3	T-MW2-3	I-MWZ-3	II-MW2-4D	TT MW2-4D	TT-MW2-4D	TT-MW2-4D	TT-MW2-4D	TT-MW2-4S	TT-MW2-4S	TT-MW2-4S	TT-MW2-4S	TT-MW2-45

Consolidated Data Summary Table Beaumont Site 2

	4-Chloroaniline -ug/L							<1.3				7.0	T		0	1	<1.3	Т	-				<1.3				
_	4-Chloro-3-methylphenol -ug/L	<1.2	41.2			-	<1.2	4.2				4	12			-	<1.2 2.1.2	<1.2 2.1	1	1		<1.2	<1.2			_	
	4-Bromophenyl phenyl ether -ug/L	<1.2	<1.2				<1.2	<1.2				0	10	!			<1.2	<1.2				<1.2	<1.2				
	3/4-Wethylphenol -ug/L	<1.0	<1.0				<1.0	<1.0				5	2 0	2			<1.0	<1.0				<1.0	<1.0				
	J\gu- ənilinsoาili/6	<1.2	<1.2				<1.2	<1.2				C	4 5	1			<1.2	<1.2				<1.2	<1.2				
	3,3-Dichlorobenzidine -ug/L	<1.3	<1.3				<1.3	<1.3				0	5 4	2			<1.3	<1.3				<1.3	<1.3				
SW8270 - Semi-Volatiles	2-Nitrophenol -ug/L	<1.2	<1.2					<1.2					101	4			<1.2					<1.2	<1.2				
- Semi-	J/gu- ənilinsoาiiV-2	4.0	<1.0				<1.0	<1.0					0.17	2				<1.0				<1.0	<1.0				
SW8270	ς-Methylphenol -ug/L						4.1	<1.1					-1.1				M	<1.1				<1.1	<1.1				
0	2-Methyinaphthalene -ug/L		si.				<1.2					T	71.5				<1.2	I				<1.2	<1.2				
	J\gu- lonəhqoriinid-ə,4-lydrəM-2						<3.4	4				T	43.4				4	<3.4				<3.4	П				
	γ-Chlorophenol -ug/L		П				<1.0						0.1					<1.0				<1.0	Г				
	2-Chloronaphthalene -ug/L	Т	65				<1.3	6.				П	5.10				<1.3					41.3					
	∆/gu- ənəulotortinid-∂,	4.1	-				<1.1					Т		1				4.1				-					1
	J\gu- ənəulotortiniG-⊅,	T					<1.0						0.1				<1.0					×10	V	Г			
	Filter	Unfiltered		Unfiltered	Filtered	Unfiltered			nfiltered	Filtered	ufiltered				nfiltered	Filtered			Unfiltered	Filtered	Chillitered	Unfiltered			Filtered	nfiltered	tered
	Sample	4		07/08/05 U	07/08/05 Fi		09/27/04 Unfiltered	02/16/05 U	07/07/05 Unfiltered	07/07/05 Fi	09/30/05 Unfiltered	09/30/05 Fi	09/27/04 Untilitered	02/16/05 Unfiltered	09/30/05 Unfiltered	09/30/05 Fi				07/07/05 Fi	0 00/08/60		02/16/05 U	_	07/07/05 Fi	09/30/05 Unfiltered	09/30/05 Filtered
	Elevation	4			\dashv	+	09/27/04			Н		1	09/27/04	+		09/21/05	П		1		+	09/27/03	t	1	П		09/21/05
Water Level Data	Groundwater Elevation (feet above mean	1980.23	1980.52	1981.59	1981.59	1982.31	2068.05	2068.37	2069.05	2069.05	2069.37	2069.37	2024.88	2025.92	2025.83	2025.83	1909.58	1930.91	1931.33	1931.33	1931.12	1935.12	1937.99	1938.10	1938.10	1937.86	1937.86
	Depth to Water (feet below grund	54.98	54.69	53.62	53.62	52.90	92.30	69.38	68.70	68.70	68.38	68.38	69.78	68.74	68.83	68.83	77.58	56.25	55.83	55.83	56.04	51 52	48.95	48.84	48.84	49.08	49.08
	Sample	TT-MW2-1	TT-MW2-1	TT-MW2-1	TT-MW2-1	TT-MW2-1	T-MW2-2	IT-MW2-2	TT-MW2-2	TT-MW2-2	TT-MW2-2	T-MW2-2	11-MW2-3	T-MW2-3	T-MW2-3	T-MW2-3	T-MW2-4D	T-MW2-4D	T-MW2-4D	T-MW2-4D	-MWZ-4D	-MW2-4D	T-MW2-4S	TT-MW2-4S	TT-MW2-4S	TT-MW2-4S	TT-MW2-4S

Consolidated Data Summary Table Beaumont Site 2

Page Francisco Page Fran	Depth to Water (feet below ground ground surface) 54.98 54.69 53.62 53.62 53.62 52.90 69.70 69.70 68.38 68.38 68.38		Sample Date 09/27/04 02/16/05 07/08/05 07/08/05						_	_			_				
54.98 1980.22 099270d. Obs270d. Unfiltered 51.2 2.4 -0.08 <1.4	54.98 54.69 53.62 53.62 52.90 52.90 69.70 69.38 68.70 68.38 68.38	+	09/27/04 02/16/05 07/08/05 07/08/05	Filter	4-Chlorophenylphenyl ether -ug/L	V.S. d. a. J. K.T.	4-Aitrophenol-lonaddorii الماعرة	Acenaphthene -ug/L				Contractor (Contractor)	Benzo(a)pyrene -ug/L	Benzo(b)fluoranthene -ug/L	Benzo(g,h,i)perylene -ug/L	Benzo[k]fluoranthene -ug/L	Benzoic acid -ug/L
54.69 1980.52 Cor/16/05 Unificed of Late <2.4 <1.4 <1.2 <1.5 <1.7 <0.62 <1.1 <1.0 <1.1 <1.7 <1.7 <1.7 <1.7 <1.7 <1.7 <1.7 <1.7 <1.7 <1.7 <1.7 <1.7 <1.7 <1.7 <1.7 <1.7 <1.7 <1.7 <1.7 <1.7 <1.7 <1.7 <1.7 <1.7 <1.7 <1.7 <1.7 <1.7 <1.7 <1.7 <1.7 <1.7 <1.7 <1.7 <1.7 <1.7 <1.7 <1.7 <1.7 <1.7 <1.7 <1.7 <1.7 <1.7 <1.7 <1.7 <1.7 <1.7 <1.7 <1.7 <1.7 <1.7 <1.7 <1.7 <1.7 <1.7 <1.7 <1.7 <1.7 <1.7 <1.7 <1.7 <1.7 <1.7 <1.7 <1.7 <1.7 <1.7 <1.7 <1.7 <1.7 <1.7 <1.7 <1.7 <1.7 <1.7 <1.7 <1.7 <th< td=""><td>54.69 53.62 53.62 52.90 52.90 69.70 68.70 68.70 68.38 68.38 68.38</td><td></td><td>02/16/05 07/08/05 07/08/05 07/08/05</td><td>pa</td><td>2.</td><td>4</td><td>183</td><td>4.</td><td>4 <1</td><td></td><td>V</td><td></td><td><0.88</td><td><1.2</td><td><0.71</td><td><1.7</td><td><0.43</td></th<>	54.69 53.62 53.62 52.90 52.90 69.70 68.70 68.70 68.38 68.38 68.38		02/16/05 07/08/05 07/08/05 07/08/05	pa	2.	4	183	4.	4 <1		V		<0.88	<1.2	<0.71	<1.7	<0.43
53.82 1981 59 0602006 Uniflered Colorable Strike Colorable Strike <td>53.62 53.62 52.90 52.90 69.70 69.38 68.70 68.70 68.38 68.38</td> <td></td> <td>07/08/05</td> <td>Ъ</td> <td>2</td> <td></td> <td></td> <td></td> <td>4 <1</td> <td></td> <td></td> <td></td> <td><0.88</td> <td><1.2</td> <td><0.71</td> <td><1.7</td> <td><0.43</td>	53.62 53.62 52.90 52.90 69.70 69.38 68.70 68.70 68.38 68.38		07/08/05	Ъ	2				4 <1				<0.88	<1.2	<0.71	<1.7	<0.43
53.6Z 1981.59 06/02/06 07/02/06 (97/06/06) 07/02/06 (18) 07/02/06 (18) 07/02/06 (18) 07/02/06 (18) 07/02/06 (18) 07/02/06 (18) 07/02/06 (18) 07/02/06 (18) 07/02/06 (18) 07/02/06 (18) 0.0 <td>53.62 52.90 52.90 69.70 69.38 68.70 68.38 68.38 69.78</td> <td></td> <td>07/08/05</td> <td>Unfiltered</td> <td>Ţ</td> <td></td>	53.62 52.90 52.90 69.70 69.38 68.70 68.38 68.38 69.78		07/08/05	Unfiltered	Ţ												
52.90 1882.31 09/21/05 09/30/05 Unifiliared Committee Columnate	52.90 52.90 69.38 68.70 68.38 68.38 68.38		100	Filtered													
1982-30 1982-31 1982	69.70 69.38 69.38 68.70 68.38 68.38 69.78	09/21/05	09/30/05	Unfiltered	1	1	1	1		1	+						
69:38 2068.37 02/16/06 Unilitered (<1.2 <2.4 <0.86 <1.4 <1.4 <1.2 <1.5 <1.7 <0.62 <1.1 <0.88 <1.2 <0.71 <1.7 68.70 2069.05 07/07/05 Unilitered <1.2	69.38 68.70 68.70 68.38 68.38 69.78		09/30/05	_ 6	0	4		4	4	V	T U		<0.88	21.2	<0.71	7	<0.43
68.70 2069.05 O6/02/05 Driftlered CRANDOR Untiltered CRANDOR Companies CRANDOR	68.70 68.38 68.38 68.38 69.78		02/16/05	P	Si	4		4	4				<0.88	<1.2	<0.71		<0.43
68.70 2069.05 Ob/07/05 Filtered Printed Printed <t< td=""><td>68.38 68.38 68.38 69.78</td><td>1</td><td>07/07/05</td><td>ed</td><td></td><td>Į,</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>7.53</td></t<>	68.38 68.38 68.38 69.78	1	07/07/05	ed		Į,											7.53
68.38 2069.37 09/21/05 Olymittered 2.24 6.06 6.14 6.12 6.15 6.17 6.06 6.17 6.06 6.17 6.06 6.17 6.06 6.17 6.06 6.17 6.06 6.17 6.06 6.17 6.06 6.17 6.06 6.17 6.07 6.17 6.17 6.06 6.17 6.17 6.06 6.17 6.07 6.17 6.17 6.06 6.17 6.07 6.17 6.17 6.06 6.17 6.07 6.17 6.17 6.07 6.17 6.17 6.17 6.06 6.17 6.17 6.06 6.17 6.17 6.17 6.06 6.17 </td <td>68.38 68.38 69.78</td> <td></td> <td></td> <td>-iltered</td> <td></td>	68.38 68.38 69.78			-iltered													
68.38 2069.37 09/21/05 Filtered 4.2 4.2 4.2 4.1	68.38	09/21/05	1 50/08/60	Unfiltered													
68.78 2025.88 09/27/04 Unilitered (*1.2 (*2.4 (*0.86 (*1.4 (*1.4 (*1.5 (*1.5 (*1.7 (*0.62 (*1.1 (*0.88 (*1.2 (*0.71)))))))) 4.1.2 (*0.5.8 (*1.1 (*0.88 (*1.2 (*0.71)))) 4.1.2 (*0.71) 4.1	87.69	+			1		\neg			+			0	,	1	,	9
68.74 2025.30 06/10/00 Unfiltered C.2.4 C.0.8 C.1.5 C.1.7 C.0.0 C.1.7 C.1.1 C.1.1 C.1.1 C.1.1 C.1.1	000			90	T	1		T		T	T		00.00		VO.7		CU.43
68.83 2025.83 09/21/05 09/30/05 Unfiltered	68.74		07/08/05	9 6	Т								VO.00	Ž.	40.7		24.03
68.83 2025.83 09/21/05 09/30/05 Filtered	68.83			Jufiltered			l			-	-						
77.58 1909.58 09/27/04 09/27/04 Unfiltered C1.2 <2.4 <0.86 <1.4 <1.4 <1.5 <1.7 <0.62 <1.1 <0.88 <1.2 <0.71 <1.7 56.25 1930.91 02/16/05 02/16/05 Unfiltered <1.2	68.83		90/30/05	Filtered						-							
56.25 1930.91 02/16/05 02/16/05 Unfiltered <1.2 <1.4 <1.5 <1.7 <0.62 <1.1 <0.88 <1.2 <0.71 <1.7 55.83 1931.33 06/02/05 07/07/05 Unfiltered <1.2	77.58		09/27/04	p				4.					<0.88	<1.2	<0.71		<0.43
55.83 1931.33 06/02/05 07/07/05 Inflitered Common National Programment Commo	56.25	02/16/05	_	pe				4		T			<0.88	<1.2	<0.71		<0.43
55.83 1931.33 06/02/05 07/07/05 Filtered Printed <	55.83			Unfiltered													
56.04 1931.12 09/21/05 09/30/05 Unfiltered Unfiltered C2.4 c0.86 c1.4 c1.2 c1.5 c1.7 c0.62 c1.1 c0.88 c1.2 c0.71 c1.7 56.04 1931.12 09/27/04 09/27/04 Unfiltered c2.4 c0.86 c1.4 c1.2 c1.5 c1.7 c0.62 c1.1 c0.88 c1.2 c0.71 c1.7 48.35 1937.99 02/16/05 07/16/05 Unfiltered c1.2 c2.4 c0.86 c1.4 c1.4 c1.5 c1.7 c0.62 c1.1 c0.88 c1.2 c0.71 c1.7 48.35 1937.99 02/16/05 07/07/05 Unfiltered c1.2 c1.4 c1.2 c1.5 c1.7 c0.62 c1.1 c0.88 c1.2 c0.71 c1.7 48.84 1938.10 06/02/05 07/07/05 Filtered c1.4 c1.4 c1.5 c1.5 c1.7 c0.62 c1.1 c0.88 c1.7 c0.71 c1	55.83			-iltered													
56.04 1931.12 09/21/05 09/30/06 Filtered Filtered C.2.4 C.0.86 C.1.4 C.1.5 C	56.04			Jufiltered													
51.52 1935.42 09/27/04 09/27/04 Unfiltered <1.2 <2.4 <0.86 <1.4 <1.4 <1.2 <1.5 <1.7 <0.62 <1.1 <0.88 <1.2 <0.71 <1.7 <1.7 <1.7 <1.8 <1.7 <1.8 <1.7 <1.8 <1.7 <1.8 <1.7 <1.8 <1.7 <1.8 <1.7 <1.8 <1.7 <1.8 <1.7 <1.8 <1.7 <1.8 <1.7 <1.8 <1.7 <1.8 <1.7 <1.8 <1.7 <1.8 <1.7 <1.8 <1.7 <1.8 <1.7 <1.8 <1.7 <1.8 <1.7 <1.8 <1.7 <1.8 <1.7 <1.8 <1.7 <1.8 <1.7 <1.8 <1.7 <1.8 <1.7 <1.8 <1.7 <1.8 <1.7 <1.8 <1.7 <1.8 <1.7 <1.8 <1.7 <1.8 <1.7 <1.8 <1.7 <1.8 <1.8 <1.7 <1.8 <1.7 <1.8 <1.7 <1.8 <1.7 <1.8 <1.7 <1.8 <1.7 <1.8 <1.8 <1.7 <1.8 <1.7 <1.8 <1.7 <1.8 <1.7 <1.8 <1.7 <1.8 <1.7 <1.8 <1.7 <1.8 <1.7 <1.8 <1.7 <1.8 <1.7 <1.8 <1.7 <1.8 <1.7 <1.8 <1.7 <1.8 <1.7 <1.8 <1.7 <1.8 <1.7 <1.8 <1.7 <1.8 <1.7 <1.8 <1.7 <1.8 <1.7 <1.8 <1.7 <1.8 <1.7 <1.8 <1.7 <1.8 <1.7 <1.8 <1.7 <1.8 <1.7 <1.8 <1.7 <1.8 <1.7 <1.8 <1.7 <1.8 <1.7 <1.8 <1.7 <1.8 <1.7 <1.8 <1.7 <1.8 <1.7 <1.8 <1.7 <1.8 <1.7 <1.8 <1.7 <1.8 <1.7 <1.8 <1.7 <1.8 <1.7 <1.8 <1.7 <1.8 <1.7 <1.8 <1.7 <1.8 <1.7 <1.8 <1.7 <1.8 <1.7 <1.7 <1.8 <1.7 <1.7 <1.8 <1.7 <1.8 <1.7 <1.8 <1.7 <1.8 <1.7 <1.8 <1.7 <1.8 <1.7 <1.8 <1.7 <1.8 <1.7 <1.7 <1.8 <1.7 <1.8 <1.7 <1.7 <1.8 <1.7 <1.7 <1.8 <1.7 <1.7 <1.8 <1.7 <1.7 <1.7 <1.8 <1.7 <1.7 <1.7 <1.7 <1.7 <1.7 <1.7 <1.7	56.04		09/30/05 F	-iltered													
48.95 1937.99 02/16/05 02/16/05 Unfiltered <1.2 <2.4 <0.86 <1.4 <1.4 <1.2 <1.5 <1.7 <0.62 <1.1 <0.88 <1.2 <0.71 <1.7 <1.7 <1.7 <1.7 <1.7 <1.7 <1.7 <	51.52		09/27/04	eq				4.	1> 4.	ij			<0.88	<1.2	<0.71		<0.43
48.84 1938.10 06/02/05 07/07/05 Unfilter 48.84 1938.10 06/02/05 07/07/05 Filterec 49.08 1937.86 09/21/05 09/30/05 Unfilter	48.95		02/16/05	eq	2			4.	4				<0.88	<1.2	<0.71		<0.43
48.84 1938.10 06/02/05 07/07/05 Filterec 49.08 1937.86 09/21/05 09/30/05 Unfilter	48.84		02/02/05	Jufiltered													
49.08 1937.86 09/21/05 09/30/05 Unfilter	48.84		07/07/05	-iltered		1		1	+								
	49.08		09/30/05	Jufiltered							+						

Consolidated Data Summary Table Beaumont Site 2

Sample Date Status Sample Status Filter Status Objection of Chrysene -ug/L 09/27/04 Unfiltered 09/30/05 Unfiltered 0
Unfiltered <1.0 <1.5 <1.3
Unfiltered <1.0
Filtered
Filtered
Filtered
Unfiltered <1.0 <1.5 <1.3 <1.3 <1.3 <1.3 <1.3 <1.3 <1.3 <1.3
Unfiltered <1.0
Unfiltered Filtered Unfiltered 6.1.0 6.1.5 6.1.3 Unfiltered 6.1.0 6.1.5 6.1.3 Unfiltered 6.1.0 6.1.5 6.1.3 Unfiltered 6.1.0 6.1.0 6.1.5 6.1.3
Filtered Filtered Unfiltered <1.0
Unfiltered Filtered Color Colo
Filtered Color C
Unfiltered <1.0 <1.5 <1.3
Unfiltered <1.0 <1.5 <1.3 <1.3 Color of the
Unfiltered Filtered <1.0 <1.5 <1.3 Unfiltered <1.0 Unfiltered <1.0 <1.0 <1.5 <1.3 <1.3 Unfiltered <1.0 <1.0 <1.5 <1.3 <1.3 <1.3 <1.3 <1.3 <1.3 <1.3 <1.3
Filtered Unfiltered <1.0 <1.5 <1.3 Unfiltered <1.0 <1.5 <1.3 Unfiltered Filtered Unfiltered
Unfiltered <1.0
Unfiltered <1.0
Unfiltered <1.0 <1.5 <1.3
Unfiltered <1.0 <1.5
$\overline{}$
09/30/05 Eiltered

Consolidated Data Summary Table Beaumont Site 2

	Nitrobenzene -ug/L Pentachlorophenol -ug/L	0	<1.3 <0.75				<1.3 <0.75	<1.3 <0.75						<1.3 <0.75			<1.3 <0.75					1 0 075	T	T		
	Asphithalene -ug/L	~	4.1>				4							4.1>		1	<1.4						1. 7			
-Volatiles	N-Nitrosodimethylamine -ug/L N-Nitrosodiphenylamine -ug/L	7	1.4				1 <1.4							4.1>	1	-	1 <1.4						† <u> </u>			
SW8270 - Semi-Volatiles	lsophorone -ug/L	7	1.2 <1.1				12 <11	<1.2 <1.1						<1.2 <1.1	1		12 <11	<1.2 <1.1					4.0			
SW82	Indeno(1,2,3-cd)pyrene -ug/L			3.			<0.83							<0.83			<0.83						20.02			
	Hexachloroethane -ug/L	_	<0.98				<0.98	<0.98						<0.98			×0.98	<0.98				\neg	00.00	Т		
	Hexachlorocyclopentadiene (HCCPD) -ug/L	<0.44	<0.44				<0.44	<0.44					<0.44	<0.44			<0.44	<0.44				77.0	4.00	-		
Ц	Hexachlorobutadiene -ug/L	∇	d <1.2	Pé		P	C12		P		þ			d <1.2	D.	D	412				þ	13	y c	7		
	Filter	ō	_	_	_	_	Unfiltered	-	Unfiltered	-			_	\rightarrow	- 1	Eiltorod	_	-	Unfiltered	Filtered		_	Unfiltorod	_	_	Filtered
	Sample	09/27/04	02/16/05	02/08/05	02/08/05	09/30/02	09/27/04	02/16/05	07/07/05	02/02/05	90/30/02	90/30/02	09/27/04	02/16/05	07/08/05	09/30/05	09/27/04	02/16/05	02/02/05	02/02/05	90/30/02	09/30/05	03/27/04	07/07/05	10110	50//0//0
	Elevation	09/27/04	02/16/05	06/02/05	06/02/05	09/21/05	09/27/05	02/16/05	06/02/05	06/02/05	09/21/05	09/21/05	09/27/04	02/16/05	06/02/05	09/21/05	09/27/04	02/16/05	06/02/05	06/02/05	09/21/05	09/21/05	03/21/04	06/02/05	10,00,00	06/02/05
Water Level Data	Groundwater Elevation (feet above mean sea level)	1980.23	1980.52	1981.59	1981.59	1982.31	2068 05	2068.37	2069.05	2069.05	2069.37	2069.37	2024.88	2025.56	2025.92	2025.83	1909.58	1930.91	1931.33	1931.33	1931.12	1931.12	1933.42	1938 10	07 0007	1938.10
	Depth to Water (feet below ground surface)	54.98	54.69	53.62	53.62	52.90	52.30	69.38	68.70	68.70	68.38	68.38	82.69	69.10	68.74	69.83	77.58	56.25	55.83	55.83	56.04	56.04	30.10	48.84	100	48.84
	Sample	TT-MW2-1	TT-MW2-1	TT-MW2-1	TT-MW2-1	TT-MW2-1	TT-MW2-2	TT-MW2-2	TT-MW2-2	TT-MW2-2	TT-MW2-2	TT-MW2-2	TT-MW2-3	TT-MW2-3	TT-MW2-3	TT-MW2-3	TT-MW2-4D	TT-MW2-4D	TT-MW2-4D	TT-MW2-4D	TT-MW2-4D	TT-MW2-4D	TT MM2 40	TT-MW2-4S	OF CIVIN L	C4-7 MM-11

Consolidated Data Summary Table Beaumont Site 2

Sample Point	Depth to Water (feet below ground surface)	Groundwater Elevation (feet above mean sea level)	Elevation	Sample	Filter	Phenanthrene -ug/L	J∖gu- lon9/L	Pyrene -ug/L	Pyridine -ug/L	J/gu- enstham (yxortheorold)-C) sid	J\gu- rether -ug\L	bis(2-Ethylhexyl) phthalate -ug/L	n-Nitroso-di-n-propylamine -ug/L
TT-MW2-1	54.98	1980.23	09/27/04	09/27/04	$\overline{}$		<1.2	4.1>	<1.4	<1.2	<1.0	<1.0	<1.3
TT-MW2-1	54.69	1980.52	02/16/05	05/16/05	_		<1.2	<1.4	<1.4	<1.2	<1.0	<1.0	<1.3
TT-MW2-1	53.62	1981.59	06/02/05	02/08/05	Unfiltered								
TT-MW2-1	53.62	1981.59	06/02/05	02/08/05									
TT-MW2-1	52.90	1982.31	09/21/05	09/30/05									
1-MW2-1	52.90	1982.31	09/21/05	09/30/05	_	1	4	,			,		0
11-MW2-2	69.70	2068.05	09/27/04	09/27/04	Unfiltered	ν. <u>γ</u>	1 × ×	4.17	4.12	71.5	7 v	7 0	2 6
T-MW2-2	68.70	2069.05	06/02/05	07/07/05	_		4	1.	1.	4	2	2	2
TT-MW2-2	68.70	2069.05	06/02/05	02/02/05	-								
TT-MW2-2	68.38	2069.37	09/21/05	90/30/02									
IT-MW2-2	68.38	2069.37	09/21/05	09/30/05									
IT-MW2-3	69.78	2024.88	09/27/04	09/27/04	Unfiltered	<1.5	<1.2	4.1.4	<1.4	<1.2	<1.0	22	<1.3
IT-MW2-3	69.10	2025.56	02/16/05	02/16/05		<1.5	<1.2	4.1>	4.1>	<1.2	<1.0	<1.0	<1.3
IT-MW2-3	68.74	2025.92	06/02/05	02/08/05	_								3
T-MW2-3	68.83	2025.83	09/21/05										
T-MW2-3	68.83	2025.83	09/21/05										
IT-MW2-4D	77.58	1909.58	09/27/04	09/27/04	_		<1.2	4.1>	4.1>	<1.2	<1.0	<1.0	<1.3
IT-MW2-4D	56.25	1930.91	02/16/05	02/16/05	\rightarrow	<1.5	<1.2 2.1	4.1.4	4.1>	<1.2	<1.0	<1.0	<1.3
IT-MW2-4D	55.83	1931.33	06/02/05	02/02/05	Unfiltered								
IT-MW2-4D	55.83	1931.33	06/02/05	02/02/05	Filtered								
I-MW2-4D	56.04	1931.12	09/21/05	09/30/02	Untiltered								
TT-MW2-4D	56.04	1931.12	09/21/05	09/30/02	Filtered								-
11-MW2-45	25.16	1935.42	09/27/04	09/27/04	Untiltered		2.1>	4.1>	4.1>	7.1>	0.1>	0.1>	5.1.3
TT-MW2-4S	48.95	1937.99	02/16/05	02/16/05		<1.5	<1.2	4.1>	<1.4	<1.2	×1.0	<1.0	×1.3
11-MW2-4S	48.84	1938.10	06/02/05	07/07/05									
TT-MW2-45	48.84 49.08	1938.10	00/01/05	00/10/102	Filtered								
O+-ZAAIAI-II	20.00	00.100	2011100	200000									

TETRA 348 W. San Ber Telepho Telefax

TETRA TECH, INC.
348 W Hospitality Ln. Suite 100
San Bernardino, CA 92408
Telephone (909) 381-1674
Telefax (909) 889-1391

GROUNDWATER MONITORING WELL FIELD DATA LOG SHEET - DEVELOPMENT

Page 1 pr

WELL/PUMP VOLUME (V) (gals) 20.12 x 0.65 2 13.0 63 v (gals) 38.23 STATIC WATER LEVEL (ft bloc) 52.40 INITIAL WELL DEPTH (ft bloc) 7 3.02 CASING/TUBE DIAMETER (in/ft) SITE NUMBER MONITORING WELL IDENTIFICATION TT- MW 2-1 PROGRAM NAME Lockland Bounnant WATER COLUMN (feet) 20.12 DATE 9/21/05

DEVELOPMENT DEVICE SAGE Devery OVA: VA: O	Some !	(vented to)	(vented to)			
DEVELOPMENT DEVICE SAND OVA: OVA: FIDARRID In Casing (ppm) IN BREATHING ZONE (ppm) FINAL WELL DEPTH (ft btoc) SAMPLER'S SIGNATURE TYPE OF WATER LEVEL INSTRU	John Jo	(initial)	(initial)			Then
	DEVELOPMENT DEVICE	OVA: ☐ FIDÆPID In Casing (ppm)	IN BREATHING ZONE (ppm)	FINAL WELL DEPTH (ft bloc)	SAMPLER'S SIGNATURE	TYPE OF WATER LEVEL INSTRU

Flow Rate (GPM)	:1	1	1	1	(7.0					7					
Well Volumes Purged	D	D	B	1.91	4.20		4.20	5,35	6.50	7.65	8.79	9.56					
Volume Purged (gals)	Ø	d	B	2.5	55		8	20	ما	001	7						
Color			1	1	1			- Mg	brn	Pwa	byn						
ORP (mV)						60		733 Bm	-		44.1						
Dissolved Oxygen (mg/L)						approar		8.14	6.35	5.95	5.17						
Turbidity (NTU)						1 has		1577.69 +200	1200	1200	4500						
hd						ce l		7.69	7.47 4200	7.49 4200	7.6						
EC (ms/cm)						475		1.157	1.140	1,136	1.069						
Temp (°C)	1		1	1	1	non		24.12.	24.07	2d.lb	24.4)	27	•				
Pump Depth (ft btoc)	:1	1	. 1	1	. 4	10 dan	72.5	72.5	72.5	-	72.5						
Water Level (ft btoc)	52.30	1	.1	69.00	68.72	A 5: b	52.91	56.25	60.35 72.5	62.60 72.5	66,20 72.5	portod					
Activity	1405 State See 52.90	1425 end sunh	short back	اطراق معلم المها		no tu	Statour	01				enell					
Time	1405	1425	230	1440	1455	house	1035	0501	1005	1020	035	1045					Comments:
							2/6										, ,

TETR 348 w San B Teleph Telefa

TETRA TECH, INC.
348 W Hospitality Ln. Suite 100
San Bernardino, CA 92408
Telephone (909) 381-1674
Telefax (909) 889-1391

GROUNDWATER MONITORING WELL FIELD DATA LOG SHEET - DEVELOPMENT

Page 1 ok

DATE 2/21/05 - SITE NUMBER 2

PROGRAM NAME Locklad Runf

MONITORING WELL IDENTIFICATION TT-MW2-2

STATIC WATER LEVEL (ft bloc) 68.38 INITIAL WELL DEPTH (ft bloc) 119.78

WATER COLUMN (feet) 5/40 CASING/TUBE DIAMETER (in/ft) 4

WELL/PUMP VOLUME (V) (gals) 5/40 x 0.65-33.41 3 v (gals) 100.23

de	ed to)	ed to)			
pun	D (vent	D (vent			,
DEVELOPMENT DEVICE Sweb, Sailer, pump	(initial) $\nearrow D$ (vented to)	initial) AD (vented to)	25	0	TYPE OF WATER LEVEL INSTRUMENT Heren
Sush			FINAL WELL DEPTH (ft bloc) 120.25	O	STRUME
DEVICE	OVA: 🗆 FID CRPID In Casing (ppm)	IN BREATHING ZONE (ppm)	TH (ft btoo	IATURE	LEVEL IN
OPMENT	FIDER	ATHING Z	WELL DEF	SAMPLER'S SIGNATURE	F WATER
DEVEL	OVA:	IN BRE,	FINAL	SAMPLI	TYPEO
					2

750 stat seats 6836 ——————————————————————————————————	45.25 25.25 25.25 25.25	720.25 mil hes						1	1	
and swas start bal start pag well p well p ceta start pup ceta c	252	720.25 mell he						Ø	8	1
start bank start pang unell p ce han start perp	2522	720.23 mell he						b	B	1
short pury short pury short pury short pury	45.25	120,25						δ	8	ı
start pung mell p metul start pung start pung start pung	252	M 11 24						15	0.45	
Meeking of Start Out	45.27	M 1 m					1	15	0.45	00
start per	45.27	ad lland						58	1.65	1
start perp	252>	2000	5 000	chur as						1
Non	252	Dr > 2		4				55	1.65	1.7
Men	7577		8.78	125.9	2,88	10/-	clady	2/50	233	,
uell purpol	1	0.556	, ,		3,94	0.72-	200	850	2.50	~>
	- Lu									1
	,4									
	7.									

TETRA TECH, INC.
348 W Hospitality Ln. Suite 100
San Bernardino, CA 92408
Telephone (909) 381-1674
Telefax (909) 889-1391

FIELD DATA LOG SHEET - DEVELOPMENT

Page L of

DATE 9/22/05

PROGRAM NAME LOCK head Barnet

SITE NUMBER

MONITORING WELL IDENTIFICATION TT -MU2-3

STATIC WATER LEVEL (ft bloc) 68.63 INITIAL WELL DEPTH (ft bloc) 100.92

WATER COLUMN (feet) **32.01** CASING/TUBE DIAMETER (in/ft)

WELL/PUMP VOLUME (V) (gals) 32.09 x0.65 - 20.86 3 v (gals) 62.58

DEVELOPMENT DEVICE Scores, back, pury

OVA:

IN BREATHING ZONE (ppm) (initial)

FINAL WELL DEPTH (it btoc)

SAMPLER'S SIGNATURE

TYPE OF WATER LEVEL INSTRUMENT

TYPE OF WATER LEVEL INSTRUMENT

Well Flow Rate (GPM)	1	1		0.77		3,02 &	4	7.05	8.96						
Volume V Purged V			8	1	15	6.3									
Color	1							brn	clady						
ORP (mV)								82.4	72.0						
Dissolved Oxygen (mg/L)								7.80	16.0						
Turbidity (NTU)								4200	4500						
Hd								7.93							
EC (ms/cm)								1397	1.395						100
Temp (°C)		1	1	1				23.72	73.80						
Pump Depth (ft btoc)	1		1	1	100.5	1 du	100.5	lass	1000						
Water Level (ft btoc)	68.83	١	1	74.62	68.75	Duries	70.00 100.5	99.25 lass 23.72	9825						
Activity	shot such 68.63	end sumb	13 5 Start Dail	75 5 end bail	Shitan	well pured du	Stat pay		925 endpup 9925 1000 2350 1.39						
Time	715	730	135	755	815	128	823	915	925						

F

TETRA TECH, INC.
348 W Hospitality Ln. Suite 100
San Bernardino, CA 92408
Telephone (909) 381-1674
Telefax (909) 889-1391

GROUNDWATER MONITORING WELL FIELD DATA LOG SHEET - DEVELOPMENT

Page Cof L

OVA: ☐ FID → PID In Casing (ppm) (initial) (initial) (vented to) DEVELOPMENT DEVICE Sample , bash , porty FINAL WELL DEPTH (ft btoc) 7 3.15 TYPE OF WATER LEVEL INSTRUMEN IN BREATHING ZONE (ppm) SAMPLER'S SIGNATURE WELL/PUMP VOLUME (V) (gals) 24.06 x 0.65 x /5.64 3 v (gals) /5.67 STATIC WATER LEVEL (ft bloc) 49.08 INITIAL WELL DEPTH (ft bloc) 7.8.14 WATER COLUMN (feet) 24.06 CASING/TUBE DIAMETER (in/ft) MONITORING WELL IDENTIFICATION $77-m\omega_2-45$ SITE NUMBER PROGRAM NAME LOCKING A Beam DATE 9/21/05 - 9/22/05

Time Activity Level Depth (°C) (ms/cm) PH Turbidity Dissolved ORP Color Purged Volumes (gals) Purged (if blace) (if blace	I Flow Rate (GPM)	1	1	- +	-	6	1		1	7		
Temp EC pH Turbidity Dissolved ORP Color Vol (mg/L) (mg/L) (mg/L) (g g g g g g g g g g g g g g g g g g g	Wel Volun Purge	B	B	O TE	0.68	0.6			_	1.4		
Temp EC pH Turbidity Dissolved ORP (°C) (ms/cm) (MTU) (mg/L) (mV)	Volume Purged (gals)	d	Ø	(2)	0/	10			0/	23		
Temp EC pH Turbidity Oxygen (°C) (ms/cm) pH (NTU) (mg/L.)	Color				1	1		p				
Temp EC pH Turbidity Oxygen (°C) (ms/cm) pH (NTU) (mg/L) (mg/L)	ORP (mV)							chas	6			
Temp EC pH Turbidity (NTU)	Dissolved Oxygen (mg/L)											
Temp EC (ms/cm) Location (ms/cm)	Turbidity (NTU)							all he				
Temp EC (°C) (ms/cm	Н							the ch				
Temp (°C)	EC (ms/cm)											
	Temp (°C)		1		+			James	1	2/14		
State Seed (ft bloc) State Seed 224 ole State Day 6 3.90 (Charles of 12.90 Control 12.	Pump Depth (ft btoc)	1	1			•	dry		72.5	100	_	
Statents States End surs States End bail (Cz. ne bai bai led bai led te ture	Water Level (ft btoc)	24.06	1	!	63.90		(Kan	40	55,03	na		
	Activity	Stat 225	end seves	Statbail	pud bas	162 me bal	ba; bed		short Duner	uell		
11 1 8 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Time	05.9/	11/16	1112	1120	11 40	1150	tent	1322	1335		

Comments: 10' 5c/201

4

TETRA TECH, INC.
348 W Hospitality Ln. Suite 100
San Bernardino, CA 92408
Telephone (909) 381-1674
Telefax (909) 889-1391

GROUNDWATER MONITORING WELL FIELD DATA LOG SHEET - DEVELOPMENT

Page L of

DATE 9/21/05 — SITE NUMBER 2 PROGRAM NAME Lockbed Bound?

MONITORING WELL IDENTIFICATION TT-MW2-4D

STATIC WATER LEVEL (fi bloc) 5/6.04 INITIAL WELL DEPTH (fi bloc) 97.84

WATER COLUMN (feet) 4/1.80 CASING/TUBE DIAMETER (in/ft) 4

WELL/PUMP VOLUME (V) (gals) 4/1.80 x 0.65. 27.17 3 v (gals) 8/1.5/1

Dava ((initial) (vented to)	(initial) (vented to)			
o, bailer	(initial)	(initial)	98.02		WANT Hors
DEVELOPMENT DEVICE SWAP, Dailer, Pri	OVA: ☐ FIÐ ☐ PMD In Casing (ppm)	IN BREATHING ZONE (ppm)	FINAL WELL DEPTH (ft bloc) $ec{oldsymbol{q}}$	SAMPLER'S SIGNATURE	TYPE OF WATER LEVEL INSTRUMENT

	Time	Activity	Water Level (ft btoc)	Pump Depth (ft btoc)	Temp (°C)	EC (ms/cm)	hф	Turbidity (NTU)	Dissolved Oxygen (mg/L)	ORP (mV)	Color	Volume Purged (gals)	Well Volumes Purged	Flow Rate (GPM)	
	10:25	10:25 stat seals	1079	1	1							\$ -	ø	1	_
	10:40	10:40 end surt	1	1	1							Ø	Ø	1	
	1125	1125 Start had	l	٠.	.1						1	b	8	(_
	36 //	1136 end 20.1										97	0.37	1	_
	1245	Start ou m	64.76	97.5	(TD	(20.89 -	(-				•	0.1	75.0	80	_
	12.59	1259 well period dm	dered dw	dw							6	after a	1.55		
	I'm	neh.	to Site to more	4	Men	750	11.00	11 has	Meek	Ligar					
22	1356	h	70,32	96.5	1						1	77	1.55	.: /	
	7117	well	na	buresdi	Z.							58	2.13		_
															_
															-
															_
															,
															_
															_
															_
_	Comments:	Comments: 10' 50-ea													,

-	
1	IJ
1	

GROUNDWATER MONITORING WELL FIELD DATA LOG SHEET - PURGING

Page Lof

TE -	PROGRAM NAME		Bound	MBER				SAMPLING DEVICE		7 0	۲ ، ۲		
NITORII	MONITORING WELL IDENTIFICATION	17.	- 3	m22-1				OVA: FID	OVA: FID PID Zin Casing (ppm)		9	(vented to)	
SAMPLE I.D.	1- mm2.	1-75	DUPLIC	DUPLICATE I.D.				IN BREAT	IN BREATHING ZONE (ppm)	m) (initial)	3	(vented to)	
TIC WAT	STATIC WATER LEVEL (ft btoc) 52.79	52.29	TOTAL	WELL DEP	TOTAL WELL DEPTH (feet)	3.2	1	FINAL PUN	FINAL PUMP DEPTH (feet)	89			
TER COL	WATER COLUMN (feet) 20.42	.42	CASIN	TUBING	DIAMETER (in/ft)	(m)	1		SAMPLER'S SIGNATURE	-			
LL/PUM	WELL/PUMP VOLUME (V) (gals) ZO 127 O 65 -	20.42	r 0.65	13.	17	3 V (gals)	39.86	J		P			
Time	Activity	Water Level (ft btoc)	Pump Depth (ft btoc)	Temp (Deg. C/F)	EC (pumhos/em)	Hd (Turbidity (NTU)	Dissolved Oxygen (mg/L)	ORP (mV)	Color	Volume Purged (gals)	Bore Hole Volumes Purged	Flow Rate (mIPM / GPM)
1056	Spections	52.79	ور	1							Ø	Ø	0.5
1011		53.22	68	26.12	1.227	7.43	24.7	6.29	104.5	clady	2.5	91.0	\
106		5323	39	26.04	1.225	7.36	27.1	6.72	94.9	clady	5.0	0,38	/
1111		53.23	89	76.17	1,213 7,36 29.7	7.36	29.7	CM	91.3	claudy	2.5	0.57	
1116		53.24	39	26,57		7,34	58.2	७।व	931	cludy	100	0,75	
121		53,24	39	26.41	1.193	7.33	7.33 53.3	6.14	90.7	closoly	12.5	0.94	_
1126		63.24	39	26.53	11197738599	7.33	59.9	90.9	69,2	cludy	15.0	1.13	-1]
1124	Sample	cess									+		
Comments:	M5 (ms)	MSD	Fe+2 (ppm)		Take	n from fir	st bailer, imn	Taken from first bailer, immediately before sampling.	re sampling.	0,1	S FOR WATER QU, ≥1° C (1.8°F)	ALITY STABII Conductivity	ILIZATION y ±5%
										O+ HG		- Contraction	

Note: All water levels and pump depths are measured from the notch in the top of the well casing. If volatiles are detected in the breathing zone during the initial screening, the breathing zone will be periodically monitored during purging and sampling activities and recorded in the logbook...

GROUNDWATER MONITORING WELL	FIELD DATA LOG SHEET - PURGING

Page Lof

SAMPLE 1.D. TT- MW. 2-2 STATIC WATER LEVEL (ft bloc) 68.4		3	1									
STATIC WATER LEVEL (ft bloc) 66.43	0	or refire	OT STELL	1			IN BREATHI	OVA: FID IN PID IN CASING (ppm) IN BREATHING ZONE (ppm)	Casing (ppm) (initial) - (initial) -	22	(vented to)	
13.13	43	TOTAL	TOTAL WELL DEPTH (feet)	1	12025		FINAL PUM	FINAL PUMP DEPTH (feet)	=			
WAIER COLUMN (feet) S. WELLPUMP , VOLUME (V) (gals)	1.82	2 CASINGY 51.82 × O.45.1	TUBING .	3.68 3 v	(gals)	101.05	SAMPLER'S	SAMPLER'S SIGNATURE	S			
Activity Le	Water Level (ft btoc)	Pump Depth (ft btoc)	Temp (Deg. C/F)	EC (promitos/cm)	Hd	Turbidity (NTU)	Dissolved Oxygen (mg/L)	ORP (mV)	Color	Volume Purged (gals)	Bore Hole Volumes Purged	Flow Rate (mlPMF/ GPM)
statore 68	CF.89	119								8	Ø	2.0
		119	2268	0.562 8.60 170	29.8		38.7	299	clady	10	0.30	1
99	99.80	119	2206	841 Hars 255.0	8.64		4.43	65.2	childy	20	0.00	4
01	106.63 119		22.11	801 85.8 168	5.58			689	cluby	8	63:0	
11	1128 119		22.25	60.00	2918	4500		70.6	o lerde	40	1.28	. ·
well Di	Owcord	70	17					٠		46.	1.37	4
	o		-						1.		•	
			:	•								
	-											
59m0/2 42/58.42	8.42				1	247		u.	**			
								à.				

Note: All water levels and pump depths are measured from the notch in the top of the well casing. If volatiles are detected in the breathing zone during the initial screening, the breathing zone will be periodically monitored during purging and sampling activities and recorded in the logbook...

GROUNDWATER MONITORING WELL FIELD DATA LOG SHEET - PURGING

Page _____

400	(vented to)	(vented to)				Bore Hole Rate Volumes (mlPM / GPM)	Ø 0.5	0,12	0.24	0.36	0.47	0.59	V 11.0				PARAMETERS FOR WATER QUALITY STABILIZATION Temperature ±1°C (1.8°F) Conductivity ±5%
150-3-10-41	an	1 N				Volume Purged (gals)	0	. 1	5.0	7.5	10.0 0.47	12.5	15.0				S FOR WATER QUAL
Shorte sess	asing (ppm) (initial)	(i.itial)	90			Color		85.9 cleudy	74.3 olendy	elendr	elendy	clady	chai	di di			PARAMETERS FOR Temperature ±1° C
1 1	OVA: FID PID In Casing (ppm)	IN BREATHING ZONE (ppm)	FINAL PUMP DEPTH (feet)	SAMPLER'S SIGNATURE		ORP (mV)		85.9		67.3	Dd.8	632	62.0				e sampling.
PURGING DEVICE	OVA: FID	IN BREATHI	FINAL PUMI	SAMPLER'S		Dissolved Oxygen (mg/L)		28.17	3,03	2.84	2,73 64.8	2.66 632	2.55				ediately before
		mw2-103	.32	4	6328	Turbidity (NTU)		7.6524.6	7.59 28.8	7,031.3	7.5921.7	7.59 230	7,5924.5				Taken from first bailer, immediately before sampling.
		7 WZ	101	/A)	3 V (gals)	Hd		7.65	7.59		7.59						n from fir
<		FT-1	l (feet)	AMETER (in	21.09	EC (seminostem)		6651	1.509	1.510	1.570	1.513	1.519				Take
ABER	2-3	DUPLICATE I.D.	TOTAL WELL DEPTH (feet)	CASING/TUBING DIAMETER (in/ft)	7=59	Temp (Deg. (S C/F)		2581	25.92	36,30		26.44	7 6.54			J	
Bace met	T- MW2	DUPLIC	TOTAL	CASIN	K	Pump Depth (ft btoc)	90	90	90	90	90	90	20			4	Fe+2 (ppm)
	1	2-3	18.80	.45	32.45	Water Level (ft btoc)	LE. 87	71.09	71.65	21.86	21.82	71.62	28.16		٦٦٥	Sample	
7/ 50/00 I NAME 6 MC	CID	SAMPLEID. TIMUZ-	STATIC WATER LEVEL (ft btoc) (08.87	WATER COLUMN (feet) 32.45	WELL/PUMP VOLUME (V) (gals)	Activity	1206 startour	}							Somole .		1
DATE 7/2	IONITORIN	AMPLE I.D.	PATIC WATE	ATER COLL	ELLPUMP	Time	1206	1211	12.Ve	1221	1226	123	1736	4	1236	1425	Comments:

Note: All water levels and pump depths are measured from the notch in the top of the well casing. If volatiles are detected in the breathing zone during the initial sc. rening, the breathing zone will be periodically monitored during purging and sampling activities and recorded in the logbook...

348 W Hospitality Ln. Suite 100 San Bernardino, CA 92408 Telephone (909) 381-1674 Telefax (909) 889-1391 FETRA TECH, INC.

GROUNDWATER MONITORING WELL FIELD DATA LOG SHEET - SAMPLING

æ

SITE NUMBER

9130/05

DATE

- mw 2 - 45 PROGRAM NAME LYMC Berny MONITORING WELL IDENTIFICATION

WELL DEPTH (ft bloc) 7515 SAMPLE ID. TT - MWZ 4S DUPLICATE I.D. STATIC WATER LEVEL (ft btoc) 49.31

WELL/PUMP VOLUME (V) (gals) 23.81 × 0, 65 × 15.50 3 v (gals) 46.49 WATER COLUMN (feet) 23.5

CASING/TUBE DIAMETER (in/ft)

OVA:

FIRST PID In Casing (ppm) (initial)

(initial) (initial) AD (vented to) disposed to balo PURGING DEVICE Complete Complete The Complet 72 FINAL PUMP DEPTH (ft btoc) IN BREATHING ZONE (ppm) SAMPLER'S SIGNATURE SAMPLING DEVICE

		Water	Pump		EC			Dissolved			Volume	Well/Pump	Flow Rate
Time	Activity	Level (ft btoc)	Depth (ft btoc)	Temp (°C)	Temp (µmhos/cm (°C) ms/cm)	pH	Turbidity (NTU)	Oxygen (mg/L)	ORP (mV)	Color	Purged (gals)	Volumes Purged	(GPM
850	Shadow	19.31	72	1						1	Ø	Ø	0:/
55	*	55.40	-	23.64	23.W 0.376	8.87	135	5.71.	87.7	ded	S	0,32	,
900		61.45	22	230	0.379	28.8	\71/8	4.25	75.2	clade	0/	0,65	/
905		65.41	22	24.44	24.44 0.408	19.8	101.7	5.33	76.2	cladi	15	0.47	
916		69.15	74	24.59	24.59 0.388	\$176	8,7% 4200	4.32	47.8	c wa	22	1.29	
172	well	omod	di								7.5	1.55	+
1015	Samole Let	tell					4200			brn			
Alkalinity (ppm)Water level at time	Alkalinity (ppm) Fe+2 (ppm) Water level at time of sampling (ft btoc): 70.05	Fey ing (ft btoc):	Fe+2 (ppm)	00	Taken, imr	immediately before sampling	re sampling			PARAMETI Tempe 1°C (METERS FOR WATI Temperature ± 1°C (1.8°F) pH±0.1	PARAMETERS FOR WATER QUALITY STABILIZATION Temperature ± 1°C (1.8°F) PH ± 0.1 Turbidity ≤ 5 NTUs	BILIZATION ity ± 5% 5 NTUs

Note: All water levels and pump depths are measured from the notch in the top of the well casing. If volatiles are detected in the breathing zone during the initial screening, the breathing zone will be periodically monitored during purging and sampling activities and recorded in the logbook.

TETRA TECH, INC.
348 W Hospitality Ln. Suite 100
San Bernardino, CA 92408
Telephone (909) 381-1674
Telefax (909) 889-1391

GROUNDWATER MONITORING WELL FIELD DATA LOG SHEET - SAMPLING

Page _ L of

SAMPLER'S SIGNATURE WELL/PUMP VOLUME (V) (gals) 33,51 XO.65, 2678 3 v (gals) 65.34 WELL DEPTH (ft btoc) 98.65 CASING/TUBE DIAMETER (in/ft) SITE NUMBER 1- WW22-DUPLICATE I.D. PROGRAM NAME LM (Bound MONITORING WELL IDENTIFICATION STATIC WATER LEVEL (ft bloc) 645 SAMPLE I.D. T- WW.2-40 WATER COLUMN (feet) 33.51 DATE

PURGING DEVICE ON'S posses by Conted to Content of Cont

)		
		Water	Pump		EC			Dissolved			Volume	Well/Pump	Flow Rate
		Level	Depth	Temp	(trupostem		Turbidity	Oxygen	ORP		Purged	Volumes	(GPM
Time	Activity	(ft btoc)	(ft btoc)	(°C)	ms/cm)	Hd	(NTU)	(mg/L)	(mV)	Color	(gals)	Purged	-mi/min)
434	Starton.	64.5	25	1.							Ø	Ø	1.5
9 39	4	78.84	6	23.72	23,72 0,31	9.62	9.62 +7.00	9.45	-1.6.0	Cleek	7.5	0.34	,
444		79.95	97	23,76	23,76 0.3R	4.26	156	2.16	16.5	nterdu	15	0.69	
648		\$8.53	400	23.97	23.97 0.347	6.5	177	5.45	7.1.7	C toh	22.5	1.03	
454	•	91,34	47	24.55	0.338	9.30	+200	4.83	15.7	cian	38	1.38	س
959		93.97	197	24.67		4:36	7.36 4200	1.5%	-0.5	bry	37.5	1.72	
1001	well	ourse	11 9	14							40.5	99.1	اد
1930	Sychology	1		,			189			1/code	hen		
										1			
						*							
Alkalinity (ppm)	(mdd)	Fee	Fe+2 (ppm)_	1	Taken, imi	immediately before sampling	ore sampling			PARAMET	ERS FOR WATE	PARAMETERS FOR WATER QUALITY STABILIZATION	BILIZATION

Note: All water levels and pump depths are measured from the notch in the top of the well casing. If volatiles are detected in the breathing zone during the initial screening, the breathing zone will be periodically monitored during purging and sampling activities and recorded in the logbook.

Conductivity ± 5% Furbidity ≤ 5 NTUs

Femperature ± 1°C (1.8°F) pH ± 0.1

Water level at time of sampling (ft btoc): 90.08

Comments:

VALIDATION GUIDELINES

Validation Qualifiers

- B: The sample result is less than 5 times (10 times for common organic laboratory contaminants) the blank contamination. The result qualified for blank contamination is considered not to have originated from the environmental sample, since cross-contamination is suspected.
- J: The analyte was positively identified, but the analyte concentration is an estimated value.
- R: The sample result is rejected and not usable for any purpose. The presence or absence of the analyte cannot be verified.
- U: The analyte was analyzed for, but was not detected above the MDL.
- UJ: The analyte was not detected above the MDL. However, the MDL may be elevated above the reported detection limit.
- Y: Confirmation column results indicate a non-detect for the target analyte.

Qualifier Descriptors

- a: The analyte was found in the method blank.
- b: The surrogate spike recovery was outside control limits.
- c: The Matrix Spike (MS) and/or Matrix Spike Duplicate (MSD) recoveries were outside control limits.
- d: The Laboratory Control Sample (LCS) recovery was outside control limits.
- e: A holding time violation occurred.
- f: The duplicate samples Relative Percent Difference (RPD) was outside the control limit.
- g: The datum met prescribed method criteria.
- h: The method requires a confirmation result, but none was performed...
- k: The analyte was found in a field blank.
- I: The second column confirmation result indicates the analyte was not confirmed.
- n: The laboratory case narrative indicated a QC problem.
- p: The result was qualified based on professional judgement.
- q: The analyte detection was below the Practical Quantitation Limit (PQL).
- r: The result is above the instrument's calibration range.
- t: The sample temperature was outside acceptance criteria.

Analytical Data Summary Enhod: None Environmental Samples Environmenta	Project: Beaumont							Table B - 1	-						
Method: None EPA Method E314.0 EPA Method E314.0 EPA Method E314.0 E	Site: 2						Analy	tical Data	Summary						
ethod: E314.0 er	Extraction Method: None						EP,	A Method	E314.0						
er Environmental Samples TT-MW2-1 TT-MW2-3	Analytical Method: E314.0														
Fleid ID: TT-MW2-1 TT-MW2-2 TT-MW2-2 TT-MW2-3	Matrix: Water														
Field ID: TT-MW2-1 TT-MW2-3	Units: ug/L			Environme	ental Samples										
SDG: C5-09-1857 O5-09-1857 O5-09-185			Field ID:		TT-MW2-1				TT-MW2-2				TT-MW2-3		
Batch ID: Dilution 100 Batch ID: DILUTIO			SDG:		05-09-1857				05-09-1857				05-09-1857		
MDL Result Validity Comments PQL Result PQL			Batch ID:		051004L01				051004L01				051004L01		
0.59 200 3000 g 2.0 ND U g 10000 68000 S 3000 g 300	Parameters	MDL		Pol	Result	Validity	Comments		Result	Validity	Comments	Pal	Result	Validity	Comments
0.59 200 3000 g 2.0 ND U g 10000 68000					Dilution 100								Dilution 5000		
	Perchlorate	0.59		200	3000		0	2.0	QN	ס	D	10000	68000		6
		8					D								

Sitie: 2 Analytical Data Summary Analytical Data Summary Analytical Data Summary Analytical Method: E314.0 Analytical E314								Table B-1	-						
Marker Mode	Site: 2						Analy	tical Data	Summary						
ethod: E314.0 art Fried ID: Batch ID: MDL Batch ID: Dilution 5000 0.59 0.59 10000 67000 67000 G7000 G	Extraction Method: None						EP.	A Method	E314.0						
er Environmental Samples TT-MW2-103 TT-MW2-4D TT-MW2-4D TT-MW2-4S SDG: SDG: 05-09-1857	Analytical Method: E314.0													-	
Field ID:	Matrix: Water													-	
Field ID: 1TT-MW2-103 TT-MW2-4D TT-MW2-4S TT-MW2-4D ST-MW2-4S ST-MW2-4D ST-MW2-4S ST-MW2-4S ST-MW2-4D ST-MW2-4D ST-MW2-4D ST-MW2-4D ST-MW2-4S ST-M	Jnits: ug/L			Environme	ental Samples										
SDG; O5-09-1857 O5-09-185			Field ID:		TT-MW2-103				TT-MW2-4D				TT-MW2-4S		
MDL Batch ID: District PQL Result Validity Comments PQL Result PQL			SDG:		05-09-1857				05-09-1857				05-09-1857		
MDL PQL Result Validity Comments PQL Result PQL Result PQL Result			Batch ID:		051004L01				051004L01				051004L01		
0.59 Dilution 5000 g 2.0 ND U g 2.0	arameters	MDL		PQL	Result	Validity	Comments		Result	Validity	Comments	Pal	Result	Validity	Comments
0.59 10000 67000 g 2.0 ND U g 2.0					Dilution 5000										
		0		0000	00029			00	CN	=		2.0	2.1		0
	erchlorate	86.0		0000	00079		ס	2	2		D				0

Project: Beaumont						Ta	Table B - 2						
Site: 2						Analytical Data Summary	I Data Sui	nmary					
Extraction Method: See Below						California Title 22 General Minerals	22 Gene	al Minerals					
Analytical Method: See Below													
Matrix: Water													
Units: mg/L													
				Environmental Samples	Samples								
			Field ID:			TT-MW2-1					TT-MW2-2		
	EPA		SDG:			05-09-1857					05-09-1857		
Parameters	Method	MDL		Batch ID	Pol	Result	Validity	Validity Comments	Batch ID	PaL	Result	Validity	Validity Comments
Bicarbonate (as CaCO3)	A2320B	0.85		51006ALKD3	S	180		0	51006ALKD3	ß	130		D
Carbonate (as CaCO3)	A2320B	8.0		51006ALKD3	1.0	Q	ס	б	51006ALKD3	1.0	4.0		D
Solids, Total Dissolved	E160.1	-		51006TDSD1	-	640		6	51006TDSD1	-	290		D
Chloride	E300.0	0.055		051001L01	20	160 *		6	051001L01	10	47 **		D
Nitrate (as N)	E300.0	0.028		051001L01	1.0	8.7 **		6	051001L01	0.10	Q	ח	D
Sulfate by IC	E300.0	690'0		051001L01	10	** 44	ω	¥	051001L01	9	36 **	ω	¥
Sample diluted at a factor of 50													
** Sample diluted at a factor of 10													
							1						

Project: Beaumont						Tai	Table B - 2						
Site: 2						Analytical Data Summary	Data Sun	nmary					
Extraction Method: See Below					-	California Title 22 General Minerals	22 Gener	al Minerals					
Analytical Method: See Below													
Matrix: Water					18								
Units: mg/L													
				Environmental Samples	Samples								
			Field ID:			TT-MW2-3					TT-MW2-103		
	EPA		SDG:			05-09-1857					05-09-1857		
Parameters	Method	MDL		Batch ID	Pol	Result	Validity	Validity Comments	Batch ID	Pal	Result	Validity	Validity Comments
Bicarbonate (as CaCO3)	A2320B	0.85		51006ALKD3	-	86		0	51006ALKD3	-	94		0
Carbonate (as CaCO3)	A2320B	0.85		51006ALKD3	1.0	Q	ח	6	51006ALKD3	1.0	QN	0	D
Solids, Total Dissolved	E160.1	-		51006TDSD1	-	720		6	51006TDSD1	-	200		6
Chloride	E300.0	0.055		051001L01	20	290 *		б	051001L01	20	290 *		0
Nitrate (as N)	E300.0	0.028		051001L01	-	12 **		6	051001L01	1	12 **		D
Sulfate by IC	E300.0	690.0		051001L01	10	51 **	ω.	¥	051001L01	9	** 64	ω	×
* Sample diluted at a factor of 50													
** Sample diluted at a factor of 10													

Project: Beaumont						Tai	Table B - 2						
Site: 2						Analytical Data Summary	Data Sui	mmary					
Extraction Method: See Below						California Title 22 General Minerals	22 Genel	ral Minerals					
Analytical Method: See Below													
Matrix: Water													
Units: mg/L													
				Environmental Samples	Samples								
					on di ino								
			Field ID:			TT-MW2-4D					TT-MW2-4S		
	EPA		SDG:			05-09-1857					05-09-1857		
Parameters	Method	MDL		Batch ID	Pal	Result	Validity	Validity Comments	Batch ID	PaL	Result	Validity	Validity Comments
Bicarbonate (as CaCO3)	A2320B	0.85		51006ALKD3	-	46		D	51006ALKD3	2	100		Б
Carbonate (as CaCO3)	A2320B	8.0		51006ALKD3	-	24		b	51006ALKD3	1.0	8.0		ō
Solids, Total Dissolved	E160.1	-		51006TDSD1	-	260		D	51006TDSD1	-	310		ס
Chloride	E300.0	0.055		051001L01	2	22.		D	051001L01	10	36 **		D
Nitrate (as N)	E300.0	0.028		051001L01	0.10	QN	n	50	051001L01	0.10	0.38		D
Sulfate by IC	E300.0	690'0		051001L01	2	32 *		D	051001L01	9	51 **	ω	×
Sample diluted at a factor of 5													
** Sample diluted at a factor of 10													

Sink of Entransment Method: SWe0104 Annihitical Data Summary EFA Method: SWe0104 Annihitical Method: Swe0104 Annihit	Doddilloni						anie D	,		4	AND DESCRIPTION OF THE PERSON NAMED IN			
This bound	Site: 2					Analy	rtical Data \$	Summary						
Exemple Exem	Extraction Method: SW3010A					EPA	Method SV	W6010B						
Find III Analytical Method: SW6010B														
Fleud III Fleu	Matrix: Water													
Field ID: Fiel	Units: mg/L													
Third Thir			L											
Third Discrete Field ID: Third Miss			Environm	ental samples										
SDG: GE-OB-1657 GE-OB-165		Field	<u></u>	TT-MW2-1				TT-MW2-1F				TT-MW2-2		
MOL		S	Ö	05-09-1857				05-09-1857				05-09-1857		
MDL PQL Result Validity Comments PQL Result Validity PQL PQ		Batch	ı D:	051003L06				051003L06				051003L06		
Charlested Cha	Parameters		113	Result	Validity			Result		Comments	PaL	Result		Comments
No. 00000000000000000000000000000000000				(Unfiltered)				(Filtered)				(Unfiltered)		
No. Control Antimony	0.00209	0.0150		ס	5	0.0150	N	D	D	0.0150	QN	D	Б	
The color of the	Arsenic	0.00308	0.0100		ס	0.	0.0100	Q	ח	б	0.0100	Q	ס	6
Illium	Barium	0.000719	0.010			0	0.010	0.125		g	0.0100	0.0128		6
National Concess Conce	Beryllium	0.000176	0.00100		ח	0	0.00100	QN	n	б	0.00100	ND	ח	6
lum 0,00932 0,1 62.0 g 0,00506 10,10 748 0 milum 0,000350 0,00550 0,00550 0,00550 0,00550 ND 0 g 0,00550 ND U airt 0,000340 0,00550 0,00560 ND U g 0,00550 ND	Cadmium	0.000350	0.00500		ח	0	0.00500	QN	n	b	0.00500	Q	n	6
December Concess Con	Calcium	0.00932	0.1			Б					0.10	7.48		0
airt 0,000696 0,00500 ND U g 0,00500 ND U G<	Chromium	0.000350	0.00500			D	0.00500	0.00506		D	0.00500	Q	ס	6
December 0,00034	Cobalt	0.000696	0.00500		ח	0	0.00500	2	כ	D	0.00500	Q	ס	D
1	Copper	0.00134	0.00500			D	0.00500	2	כ	Б	0.00500	Q	0	D
nestum 0.00328 0.1 11.1 g 0.00500 ND 1.07 1.07 ND U Go.00500 ND U G 0.00500 0.00500	Lead	0.00236	0.0100		n	Б	0.0100	Q	ס	D	0.0100	Q	ח	6
bdenum 0.000800 ND U g 0.00500 ND U g 0.00500 ND U g estimm 0.00137 0.00500 ND U g 0.00500 ND U g ssium 0.00295 0.00150 ND U g 0.00500 ND U g nium 0.00292 0.0150 ND U g 0.00500 ND U g um 0.0192 0.0150 ND U g 0.0150 ND U g um 0.00233 0.0150 ND U g 0.0150 ND U g 0.0150 ND U um 0.0050314 0.0150 0.0160 0.0160 0.0160 ND U g 0.0160 ND U g 0.0160 ND U g 0.0160 ND U g 0.0160 ND U g <td>Magnesium</td> <td>0.00328</td> <td>0.1</td> <td></td> <td></td> <td>D</td> <td></td> <td></td> <td></td> <td></td> <td>0.10</td> <td>1.07</td> <td></td> <td>b</td>	Magnesium	0.00328	0.1			D					0.10	1.07		b
el 0.00137 0.00500 ND U g 0.0150 ND U g <	Molybdenum	0.000800	0.00500		n	б	0.00500	Q	n	D	0.00500	Q	>	Б
ssium 0.0561 0.500 0.813 0 nium 0.00295 ND U g 0.0150 ND U MD U MD U MD U MD U	Nickel	0.00137	0.00500		n	б	0.00500	Q	ח	D	0.00500	Q	>	D
nium 0.00295 0.0150 ND U g 0.0150 ND U G 0.0150 ND U D	Potassium	0.0561	0.50			D					0.500	0.813		0
r 0.000400 0.00500 ND U g 0.00500 ND U D	Selenium	0.00295	0.0150		n	б	0.0150	Q	ח	D	0.0150	Q	5	D
um 0.0192 0.500 169 g 0.0150 11	Silver	0.000400	0.00500		n	б	0.00500	QN	ח	б	0.00500	Q	>	D
lium 0.00233 0.0150 ND U g 0.0107 U g 0.0107 U g 0.0107 0.0107 0.0107 0.0107 0.0104 0.	Sodium	0.0192	0.500			б					0.500	110		Б
Indiam 0.000314 0.00500 0.00528 g 0.00500 ND U g 0.0050 0.0107 0.000348 0.0100 0.0149 B K 0.0105 0.0134 0.0134	Thallium	0.00233	0.0150		ח	6	0.0150	QN	ח	б	0.0150	Q	ס	Б
0.000848 0.0100 0.0149 B k 0.0105 B k 0.0100 0.0134 0.0100 0.0134	Vanadium	0.000314	0.00500			D	0.00500	ND	n	б	0.0050	0.0107		00
	Zinc	0.000848	0.0100		а	¥	0.0100	0.0125	8	×	0.0100	0.0134		6

Site: 2													-	
						Anal	Analytical Data Summary	Summary						
Extraction Method: SW3010A						EP	EPA Method SW6010B	W6010B						
Analytical Method: SW6010B														
Matrix: Water														
Units: mg/L														
			Environmental Samples	tal Samples										
		Field ID:		TT-MW2-2F				TT-MW2-3				TT-MW2-103		
		SDG:		05-09-1857				05-09-1857				05-09-1857		
	8	Batch ID:		051003L06				051003L06				051003L06		
Parameters	MDL		Pal	Result	Validity	Comments	PaL	Result	Validity	Comments	Pal	Result	Validity	Comments
				(Filtered)				(Unfiltered)				(Unfiltered)		
Antimony	0.00209		0.0150	ND	ס	0.	0.0150	Q	>	D	0.0150	QN	>	D
Arsenic	0.00308		0.0100	QN	n	0	0.0100	Q	n	D	0.0100	QN	כ	0
Barium	0.000719		0.0100	QN	ח	מ	0.010	0.120		Б	0.010	0.118		9
Beryllium	0.000176		0.00100	Q	n	5	0.00100	QN	n	Б	0.00100	ND	n	b
Cadmium	0.000350		0.00500	QN	n	0	0.00500	QN	n	5	0.00500	QN	ס	б
Calcium	0.00932						0.1	87.3		6	0.1	84.8		g
Chromium	0.000350		0.00500	ND	n	6	0.00500	0.00563		Б	0.00500	0.00591		б
Cobalt	0.000696		0.00500	ND	n	Б	0.00500	DN	n	6	0.00500	QN	ס	D
Copper	0.00134		0.00500	ND	n	б	0.00500	0.00514	ſ	_	0.00500	0.00723	7	-
Lead	0.00236		0.0100	ND	n	б	0.0100	Q	n	50	0.0100	Q	ס	D
Magnesium	0.00328						0.1	13.8		0	0.1	13.8		б
Molybdenum	0.000800		0.00500	ND	n	б	0.00500	Q	n	0	0.00500	Q	ס	D
Nickel	0.00137		0.00500	Q	n	D	0.00500	Q	n	D	0.00500	Q	ס	D
Potassium	0.0561						0.50	3.46		0	0.50	3.57		D
Selenium	0.00295	truped	0.0150	ND	n	б	0.0150	0.0151		D	0.0150	Q	ס	D
Silver	0.000400		0.00500	ND	n	Б	0.00500	Q	ס	D	0.00500	Q	0	D
Sodium	0.0192						0.500	187		0	0.500	181		D
Thallium	0.00233		0.0150	ND	n	D	0.0150	ND	n	D	0.0150	ND	ח	6
Vanadium	0.000314		0.0050	0.0134		б	0.00500	0.00519		Б	0.00500	0.00607		D
Zinc	0.000848		0.0100	ND	n	Б	0.0100	0.0168	В	¥	0.0100	0.0149	8	×
		1												

SWEQUIAN Factorina in the control of the	Project: Beaumont						Table B - 3	-3						
Field Date Fie	Site: 2					Anal	ytical Data	Summary						
Fleid ID: TT-MW2-3F TT-MW2-10F TT-MW	Extraction Method: SW3010A					EP,	A Method S	W6010B						
Flield ID: TT-MW2-3F TT-MW2-10F TT-M	Analytical Method: SW6010B													
Field Diagrams Fiel	Matrix: Water													
Field D. Field D. T1-MW2-3F T1-MW2-105F T1-MW2-1	Units: mg/L													
Signature Continue		Environm	nental Samples											
Field D:								1000				TT MANO AD		
MICHAEL Batch ID. Coloration Colorat		Field	: □	TT-MW2-3F				05-09-1857				05-09-1857		
MDI		SDC	. · ·	051003106				051003L06				051003L06		
Concesse	Parameters	1		Result	Validity	Comments		Result		Comments	Pal	Result		Comments
0.00208				(Filtered)				(Filtered)				(Unfiltered)		
Control Cont	Antimony	0.00209	0.0150	Q	ס	0	0.0150	Q	D	б	0.0150	QN	n	50
Concorrect	Arsenic	0.00308	0.0100		ס	0	0.0100	Q	ס	6	0.0100	0.0569		Б
0.000176 0.000176 0.00100 ND U g 0.00100 ND U g 0.00100 ND U U G MD U U G MD U U G G G G G G G G	Barium	0.000719	0.010			D	0.010	0.103		מ	0.0100	0.0587		D
0.000360 0.00500 ND U g 0.00500 O.0145 O.00500 O.0145 O.00500 O.00500 O.0145 O.00500	Beryllium	0.000176	0.00100		n	D	0.00100	QN	ח	б	0.00100	Q	5	0
Control	Cadmium	0.000350	0.00500		n	ס	0.00500	Q	ס	D	0.00500	Q	0	Б
Concesse	Calcium	0.00932									0.10	6.84		б
March	Chromium	0.000350	0.00500		כ	D	0.00500	Q	ם :	D	0.0050	0.0115		6
March 0.00134 0.00500 ND U g 0.00500 ND U g 0.00500 ND U g 0.0100 ND U g 0.00500 ND U U G 0.00500 ND U U U U U U U U U	Cobalt	0.000696	0.00500		>	ס	0.00500	Q.	ם	D	0.00500	0.00522		D
Marie Concess Conces	Copper	0.00134	0.00500		כ	D	0.00500	2	ם :	D	0.0050	0.0142	-	6
March 0,00328	Lead	0.00236	0.0100		>	Б	0.0100	2	0	D	0.0100	2	0	5
March 0,000800	Magnesium	0.00328						!			01.0	4.18		50 1
0.00137	Molybdenum	0.000800	0.00500		D :	0	0.00500	2	0 =	D	0.0050	11100		50 0
0.00295 0.0150 ND U g 0.0150 ND U g 0.0150 ND U g 0.0150 ND U g 0.00500 ND U g 0.0150 ND U g	Nickel	0.00137	0.00500		0	50	0.00500	ON.	0	50	0.00500	0.00955		ס כ
0.002456 0.00500 ND U gg 0.0150 0.0320	Potassium	0.0561				,	0	CN CN	=		0.00	Z.30	=	D C
Control	Selenium	0.00295	0.010.0		0 :	ס	0.0130	2 2	=	ס מ	00200	2 5	=	0 0
um 0.0192 ND U g 0.0150 ND U g 0.0150 ND U ND U Q 0.0150 ND U ND U Q 0.0137 U Q 0.0137 U Q 0.0137 U Q 0.0100 D Q 0.0100 0.0320 D D D Q 0.0100 0.0100 0.0100 D Q 0.0100 D Q 0.0100 0.0100 D Q 0.0100 D Q 0.0100 D Q 0.0100 D Q 0.0100 D <	Silver	0.000400	0.0000		0	ס	0.0000	2	0	ח	0.50	65.4	,	0 0
Control Cont	Sodium	0.0192	0 0 0		=	7	0.0150	S	1	0	0.0150	QN	ח	0
0.000648 0.0100 ND U g 0.0100 U g 0.0100 0.0320	Vanadiim	0.00233	0.00500		0	ם מ	0.00500	2	כו	0	0.005	0.137		5
	Zino	0.0000	00100		=	0 0	0 0100	QN	ח	0	0.0100	0.0320		5
	ALIE ALIE ALIE ALIE ALIE ALIE ALIE ALIE					b								

Statistical Method: SW/90104 Analytical Data Summary EPA Method SW/90106 Analytical Method: SW/90108 EPA Method SW/90108	Project: Beaumont							dalle							
No. Process Site: 2						Anal	ytical Data	Summary							
Market SWegroe Final Methods SPEC Final Methods SPE	on Method:						EPA	Method 5	3W6010B						
Without Particular Standing Standi	Analytical Method: SW6010B														
Field Date Fie	Matrix: Water														
Field ID: TT-MW2-4DF TT-MW2-4SF TT-M	Units: mg/L														
Field ID: Field ID: Ti-AMV2-4DF Field ID: G-G0-1857 G-				Environme	ntal Samples										
Stock															
Side			Field ID:		TT-MW2-4DF				TT-MW2-4S				TT-MW2-4SF		
Mail			SDG:		05-09-1857				05-09-1857				05-09-1857		
Mail			Batch ID:		051003L06				051003L06			2	051003L06	Volidity	-tuommon
y 0.00209 0.0150 ND U g 0.0160	Parameters	MDL		2	(Filtered)	Validity	Comments		(Unfiltered)			Ž	(Filtered)	Validity	
Concisionary Conc	Anlimony	602000		0.0150	Q	0	o	0.0150	0.0932		0.	0.0150	Q.	ס	6
Control	Arsenic	0.00308		0.0100	0.0823		0	0.0100	QN	0	0	0.0100	0.0430		D
Name	Barium	0.000719		0.0100	Q	n	0.	10.0	1.87		0	0.0100	Q	n	Б
Concessor Conc	Bervillum	0.000176		0.00100	QN)	מ	0.0010	0.0118		б	0.00100	Q	n	50
1,000,0032 0,000350 0,000500 ND U g 0,005 0,005 Q Q Q Q Q Q Q Q Q	Cadmium	0.000350		0.00500	QN	n	D	0.00500	QN	ח	D	0.00500	9	>	Б
Image: Control of the control of t	Calcium	0.00932						0.100	157		Б				
Control	Chromium	0.000350		0.00500	QN	n	D	0.005	0.296		Б	0.00500	2	0	Б
lium 0.00134 0.00500 ND U g 0.005 0.287 g 0.00500 ND U 0.00236 0.0100 ND U g 0.0107 102 g 0.0100 ND U nrum 0.00528 0.00500 0.00500 ND U g 0.00500 ND U g 0.00500 ND U U D	Cobalt	0.000696		0.00500	Q)	D	0.005	0.123		D	0.00500	2	0	Б
National Colorate 0.000236	Copper	0.00134		0.00500	Q	_	D	0.005	0.287		ס	0.00500	Q		Б
10,00328	Lead	0.00236		0.0100	QN	D	ס	0.010	0.127		Б	0.0100	2	0	0
Jenum 0,000800 0,000800 0,000800 0,000800 0,000800 0,000801 ND U g 0,00050 ND U g 0,00050 ND U G 0,00050 ND U g 0,00050 ND U D	Magnesium	0.00328						0.100	102		D				
ium 0.00137 0.00560 ND U g 0.005 0.229 g 0.00500 ND U um 0.00295 0.0150 ND U g 0.0150 D 0.0154 U g 0.0150 D U g 0.0150 D U g 0.0150 D D 0.0154 D U <t< td=""><td>Molybdenum</td><td>0.000800</td><td></td><td>0.00500</td><td>0.00989</td><td></td><td>Б</td><td>0.00500</td><td>Q.</td><td>ח</td><td>D</td><td>0.00500</td><td>0.00971</td><td></td><td>б</td></t<>	Molybdenum	0.000800		0.00500	0.00989		Б	0.00500	Q.	ח	D	0.00500	0.00971		б
sium 0.0561 ND U g 0.0150 ND U Q 0.0150 ND	Nickel	0.00137		0.00500	Q	>	Б	0.005	0.229		D	0.00500	QN	0	6
um 0.00295 0.0150 ND U g 0.0150 ND U g 0.0150 ND U g 0.0150 ND U g 0.00500 ND U Q 0.0050 O.0150 ND U Q 0.0150 ND D I Q 0.0150 ND D D D D D<	Potassium	0.0561						0.5	42.2		D		!		
n 0.000400 0.00500 ND U g 0.00500 ND U g 0.00500 ND U n 0.0192 n 0.0150 ND U g 0.0150 ND U g 0.0150 ND U ND U ND U ND U ND U ND U ND ND U ND ND <td>Selenium</td> <td>0.00295</td> <td></td> <td>0.0150</td> <td>Q</td> <td>></td> <td>D</td> <td>0.0150</td> <td>2</td> <td>ס</td> <td>D</td> <td>0.0150</td> <td>Q.</td> <td>0</td> <td>0</td>	Selenium	0.00295		0.0150	Q	>	D	0.0150	2	ס	D	0.0150	Q.	0	0
um 0.0192 Location ND U 0.500 120 g 0.0150 ND U MD U g 0.0150 ND U MD MD U MD MD U MD MD<	Silver	0.000400		0.00500	ND	>	0	0.00500	Q	ס	Б	0.00500	2	0	6
lum 0.00233 0.0150 ND U g 0.0150 ND U g 0.0150 ND U Idium 0.000344 0.005 0.127 g 0.015 g 0.015 g 0.0124 U Idium 0.000848 0.0100 ND U g 0.010 D	Sodium	0.0192						0.500	120		Б				
Adium 0,000314 0,005 0,127	Thallium	0.00233		0.0150	QN	>	D	0.0150	2	ס	Б	0.0150	S	0	Б
0.000848 0.0100 ND U g 0.0105 g 0.0100 ND U	Vanadium	0.000314		0.005	0.127		D	0.005	0.629		Б	0.005	0.124		Б
	Zinc	0.000848		0.0100	Q	ס	D	0.010	0.795		50	0.0100	Q	0	50

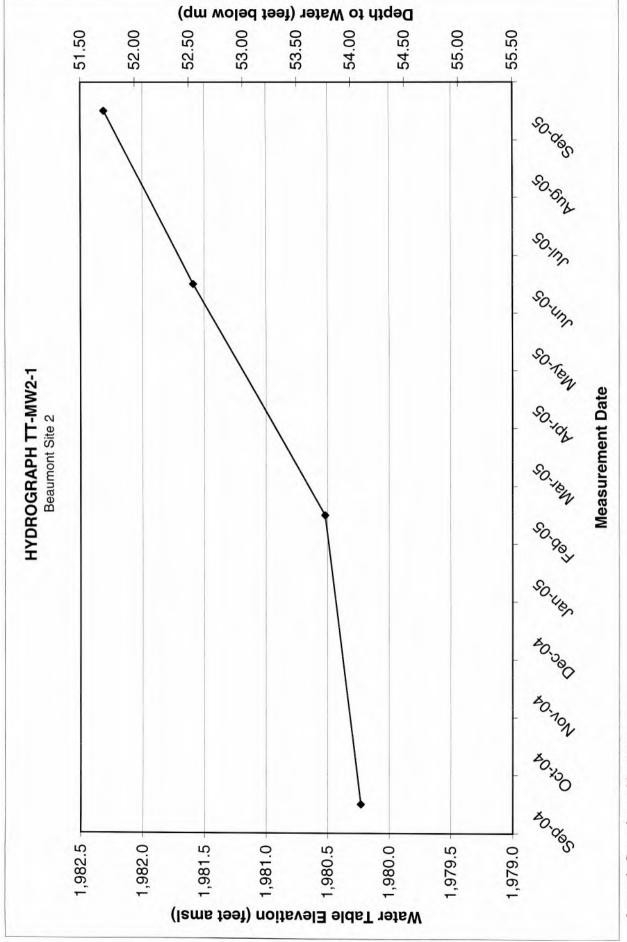
Site: 2	Project: Beaumont					Tab	Table B - 4						
National SW7470A	Site: 2					Analytical	Data Sum	mary					
Environmental Samples Environmental Samples Environmental Samples Environmental Samples Enteld ID: TT-MW2-1 TT-MW2-1 TT-MW2-1 TT-MW2-1 TT-MW2-1 TT-MW2-1 TT-MW2-1 Enteld ID: SDG: Batch ID PQL Result Result (Unlittered) (Unlittered) Enteld ID: Entel	Extraction Method: SW7470A					EPA Meth	od SW74	70A					
Environmental Samples Environmental Samples TT-MW2-1 TT-MW	Analytical Method: SW7470A												
Environmental Samples Environmental Samples Environmental Samples Environmental Samples TT-MW2-1 TT-MW2-1 TT-MW2-1 SDG:	Matrix: Water												
Fleid ID: TT-MW2-1 TT-MW2-1 SDG: D5-09-1857 D	Units: mg/L												
Field ID:													
TT-MW2-1 TT-MW2-1 TT-MW2-1F TT-MW2			Envir	onmental Sa	mples								
Teld ID: SDG; O5-09-1857		1								TT-MW0-1E			
SDG: SDG: O5-09-1857 O5			FIEIG ID:			1 -ZAAIAI-							
MDL Batch ID PQL Result (Unfiltered) Validity Comments Batch ID PQL Result (Filtered) 0.0000672 0.0000672 0.000500 ND U g 051003L05 0.000500 ND			SDG:			05-09-1857					05-09-1857		
(Unfiltered) (Filtered) (Filtered) (Filtered) (Filtered) (Filtered) (O.0000672 (O.000500 ND U g 051003L05 0.000500 ND U	Parameters	MDL		Batch ID	Pal	Result	Validity	Comments	Batch ID	PaL	Result	Validity	Comments
0.0000672 OS1003L05 0.000500 ND U g 051003L05 0.000500 ND U						(Unfiltered)					(Filtered)		
0.0000672 OS1003L05 0.000500 ND U g 051003L05 0.000500 ND U													
	Mercury	0.0000672		051003L05	0.0000500	Q	D	D	051003L05	0.0000000	Q.	>	D

Project: Beaumont					Tab	Table B - 4						
Site: 2					Analytical Data Summary	Data Sum	mary					
Extraction Method: SW7470A					EPA Method SW7470A	od SW74	70A					
Analytical Method: SW7470A												
Matrix: Water												
Units: mg/L												
		Envir	Environmental Samples	mples								
		Field ID:			TT-MW2-2					TT-MW2-2F		
		SDG:			05-09-1857					05-09-1857		
Parameters	MDL		Batch ID	Pal	Result	Validity	Validity Comments	Batch ID	Pal	Result	Validity	Validity Comments
					(Unfiltered)					(Filtered)		
										2	-	
Mercury	0.0000672		051003L05 0.000500	0.0000500	Q		0)	051003L05 0.000500	0.000500	2		0

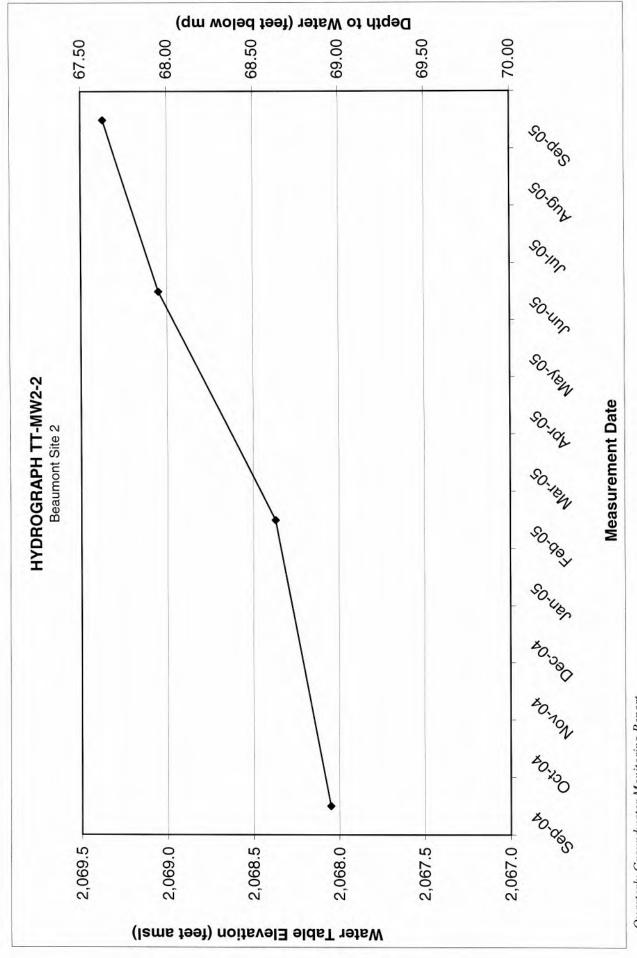
Site: 2	Project: Beaumont					Tab	Table B - 4						
Environmental Samples TT-MW2-3 TT-MW2-103 OS-09-1857 OS-09-1857 OS-09-1857 OS-09-1857 OS-09-1857 OS-09-1857 Onlittered) Os-09-1857 Os-09-185	Site: 2					Analytical	Data Sun	ımary					
Environmental Samples Environmental Samples Environmental Samples Environmental Samples TT-MW2-3 TT-MW2-103 SDG:	Extraction Method: SW7470A					EPA Meth	od SW74	70A					
Field ID:	Analytical Method: SW7470A												
Fleid ID:	Matrix: Water												
Fleid ID:	Units: mg/L												
Fleid ID:													
Field ID:			Envir	onmental Sa	seldur								
SDG: SDG: DQL Result Validity Comments Batch ID PQL Result Cunfiltered Cunfilter			Field ID:			TT-MW2-3					TT-MW2-103		
MDL Batch ID PQL Result Validity Comments Batch ID PQL Result (Unfiltered) (Unfiltered) 0.0000672			SDG:			05-09-1857					05-09-1857		
0.0000672	Parameters	MDL		Batch ID		Result	Validity	Comments	Batch ID	PaL	Result	Validity	Comments
0.0000672						(Unfiltered)					(Unfiltered)		
	Mercury	0.0000672		051003L05	0.000500		כ	50	051003L05	0.000500	Q	5	D

Sile: 2 Analytical Data Summary Extraction Method: SW7470A Extraction Method: SW7470A Analytical Method: SW7470A Analytical Data Summary Analytical Method: SW7470A Environmental Samples Matrix: Water Environmental Samples Line Signature Environmental Samples Parameters MDL Ratch ID PQL Parameters MDL Batch ID PQL (Filtered) Validity Comments Batch ID PQL	Project: Beaumont					Tab	Table B - 4						
Method: SW7470A	Site: 2					Analytical	Data Sum	mary					
ethod: SW7470A er Environmental Samples Environmental Samples Environmental Samples Fleid ID: TT-MW2-3F SDG: Batch ID PQL Result Validity Comments MDL Batch ID PQL Result Validity Comments O.0000672 Eleid ID: (Filtered) O.0000672 O.000500 ND U g	Extraction Method: SW7470A					EPA Meth	od SW74	70A					
Environmental Samples Envi	Analytical Method: SW7470A												
Fleid ID: TT-MW2-3F SDG: SDG: Batch ID PQL Result Validity Comments Connected Conn	Matrix: Water												
Fleid ID: TT-MW2-3F SDG: SDG: Batch ID PQL Result Validity Comments SDG: SDG: Batch ID PQL Result Validity Comments (Filtered) SDG: SDG:	Units: mg/L					1							
Environmental Samples Environmental Samples													
Fleid ID: TT-MW2-3F SDG: SDG: DS-09-1857 MDL Result Validity Comments SDG:		Enviro	onmental Sar	mples									
Fleid ID: TT-MW2-3F SDG: SDG: Batch ID PQL Result Validity Comments													
MDL Batch ID PQL Result Validity Comments (Filtered) 0.0000672 051003L05 0.000500 ND U g			Field ID			TT-MW2-3F					TT-MW2-103F		
MDL Batch ID PQL Result Validity Comments (Filtered) 0.0000672 051003L05 0.000500 ND U g			SDG:			05-09-1857					05-09-1857		
0.0000672 (Filtered) 0.0000672 051003L05 0.000500 ND U g	Parameters	MDL		Batch ID	Pal	Result	Validity	Comments		Pal	Result	Validity	Validity Comments
0.0000672 051003L05 0.000500 ND U g						(Filtered)					(Filtered)		
0.0000672 0.000500 ND U g													
	Mercury	0.0000672		051003L05	0.000500	QN	D	01	051003L05	0.000500	QN	n	Б

Project: Beaumont					Tab	Table B - 4						
Site: 2					Analytical Data Summary	Data Sum	mary					
Extraction Method: SW7470A					EPA Method SW7470A	od SW74	70A					
Analytical Method: SW7470A												
Matrix: Water												
Units: mg/L												
		Envir	Environmental Samples	seldu								
		Field ID:			TT-MW2-4D					TT-MW2-4DF		
		SDG:			05-09-1857					05-09-1857		
Parameters	MDL		Batch ID	Pal	Result	Validity	Validity Comments	Batch ID	PaL	Result	Validity	Validity Comments
					(Unfiltered)					(Filtered)		
	000000		2000100	00000	9	=		051003 05 0 000500	000000	S	=	0
Mercury	0.0000672		051003L05 0.000500	0.000000	2	0	59	021002502	0.00000	2		D

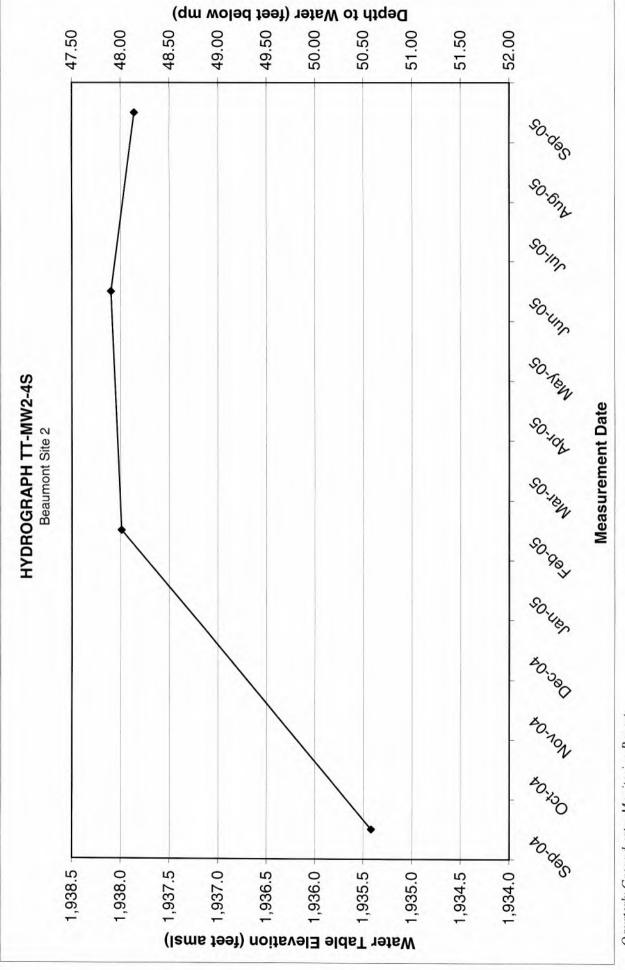

Project: Beaumont					Tab	Table B - 4						
Site: 2					Analytical Data Summary	Data Sum	ımary					
Extraction Method: SW7470A					EPA Method SW7470A	od SW74	70A					
Analytical Method: SW7470A												
Matrix: Water												
Units: mg/L												
		Envir	Environmental Samples	mples								
		Field ID:			TT-MW2-4S					TT-MW2-4SF		
		SDG:			05-09-1857					05-09-1857		
Parameters	MDL		Batch ID	Pal	Result	Validity	Validity Comments Batch ID	Batch ID	PaL	Result	Validity	Validity Comments
					(Onfiltered)					(Filtered)		
Mercury	0.0000672		051003L05 0.000500	0.000500	Q.	b	o	051003L05 0.000500	0.000500	Q	Þ	o
												>

Particle	Definition of the control of the con	EPAN	Method SW8	1960B						
This continue This continu	Field ID: Fiel						-			
Secondaria	Parth ID: POL Heault									
Math Black Mat	SDG: SDG: 06-09-1867 MDL			TT-MW2-2				TT-MW2-3		
MDL	MDL MDL MDL MDL MDL MDL MD		000	5-09-1857				05-09-1857 051003L01		
10 10 10 10 10 10 10 10	10	ity Comments		Result			Pal	Result	Validity	Comments
10 10 10 10 10 10 10 10	No.		C		=		C	S	n.	0
10 10 10 10 10 10 10 10	Total Control Contro	5 0	0.0	2 2	=	o c	2 0	28	-	0
No. 10. No.	100 100	0 0	0.0	200	0	D) 0	1.0	2	0	0
10 10 10 10 10 10 10 10	0.54 1.0 ND U U U U U U U U U U U U U U U U U U	0	10	Q.	n	0	10	Q	n	6
OSS 10 NO NO 10 NO NO 10 NO NO 10 NO NO NO NO NO NO NO N	0.53 0.653 1.0 0.031 0.31 0.321 0.38 0.28 0.28 0.28 0.39 0.30 0.30 0.30 0.30 0.30 0.40 0.40 0.40	0	1.0	QN	n		1.0	Q	ח	6
10 10 10 10 10 10 10 10	0.21 1.0 ND U U C C C C C C C C C C C C C C C C C	Б	1.0	QN	ח		1.0	2	> :	6
Control Cont	0.21 0.23 0.23 0.26 0.26 0.26 0.27 0.28 0.10 0.09 0.28 0.10 0.29 0.29 0.29 0.29 0.30 0.40 0.24 0.24 0.24 0.25 0.25 0.26 0.26 0.27 0.29 0.29 0.29 0.29 0.20 0.30 0.40 0.40 0.29 0.29 0.29 0.20 0.40 0.40 0.42 0.62 0.62 0.63 0.64 0.64 0.65 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.7	5	0.1	2)	1	1.0	2	0 :	0
2.33 2.34 2.35 2.35 2.36 2.37 2.37 2.38 2.39 2.30 2.39 2.30	C.38	Б	0.0	22	0 =	1	0.0	25	0 =	D) C
Cold	0.26	0) (0	0.7	2 2	>=		0.0	2 5	=	0 0
Control Cont	1.0	0 0	1.0	22	00		1.0	2	0	0
25. 5. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6.	10	0 0	1.0	2	0		1.0	Q	ס	0
0.24	0.24 1.0 ND U U U U U U U U U U U U U U U U U U	0 0	5.0	QN	n		9.0	Q	n	D
0.22	0.24	6	1.0	ND	n		1.0	2	>	6
0.22	0.28 0.50 ND U U U O O.38 0.38 0.39 0.39 0.39 0.39 0.39 0.39 0.39 0.39	6	1.0	2	o :		0.0	2	0:	6
0.128	0.28	D)	0.50	Q.	o =	1	0.50	2 2	>=	0 0
10.000 1.0	0.38 1.0 ND U U U U U U U U U U U U U U U U U U	0) (0	0.5	2 2	0 =		0.0	2 2	=	ם מ
1.0	0.30 0.30 1.0 0.30 1.0 0.30 1.0 0.24 1.9 1.9 1.0 0.24 1.0 0.25 1.0 0.65 1.0 0.67 1.0 0.67 1.0 0.68 1.0 0.68 1.0 0.68 1.0 0.68 1.0 0.69 1.0 0.68 1.0 0.69 1.0	D) C	1.0	200	0		1.0	2	0	0
1.0 1.0	0.30 0.40 0.40 0.40 1.0 0.24 1.9 0.30 0.30 0.30 0.30 0.47 1.0 0.68 0.67 1.0 0.69 0.62 0.62 0.62 0.62 0.62 0.62 0.63 0.64 0.64 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65	D 01	1.0	N	D		1.0	QV	ר	60
10	4.2 1.0 ND U V V V V V V V V V V V V V V V V V V	o,	1.0	ND	n		1.0	2	>	6
0.24 10 ND U 9 1	4.2 10 ND U U U U U U U U U U U U U U U U U U	50	0.1	2	0		0.0	2	0 =	6
1.24 1.0 ND U g 10 ND U g	1.04 1.0 ND U U C C C C C C C C C C C C C C C C C	0) (2 9	2 2	0 =		2 0	2 5	0 =	0 5
Control Cont	0.30 0.30 0.30 1.0 0.40 0.47 0.68 0.68 0.68 0.68 0.68 0.68 0.68 0.68	D) C	2.0	20			10	S))	0
2.4 10 ND U 9 10 ND U ND U 9 10 ND U	2.4 10 ND 0.26 0.56 ND 0.47 1.0 ND 0.68 1.0 ND 0.62 1.0 ND 0.62 1.0 ND 0.62 1.0 ND 0.62 1.0 ND 0.42 1.0 ND 0.45 1.0 ND 0.47 1.0 ND	0.	1.0	2	>		1.0	QN	n	50
Color	6.1 0.26 0.50 ND 0.26 1.0 ND 0.68 1.0 ND 0.62 1.0 ND 0.62 1.0 ND 0.62 1.0 ND 0.62 1.0 ND 0.42 0.50 ND 0.50 ND 0.42 0.50 ND 0.42 0.50 ND 0.45 1.0 ND 0.45 0.00 ND 0.47 0.00 ND 0.47 0.00 ND 0.48 0.00 ND 0.49 0.00 ND 0.40 0.00 ND 0.40 0.00 ND 0.40 0.00 ND 0.40 0.00 ND 0.62 0.00 ND	5	10	Q	D		10	2	э:	6
0.26	0.26 0.50 ND 0.68 1.0 ND 0.68 1.0 ND 0.62 1.0 ND 0.62 1.0 ND 0.62 1.0 ND 0.42 0.50 ND 0.25 1.0 ND 0.42 0.50 ND 0.26 1.0 ND 0.26 1.0 ND 0.26 1.0 ND 0.45 1.0 ND 0.45 0.77 1.0 ND 0.47 0.77 1.0 ND 0.47 0.77 1.0 ND 0.77 0.70 ND 0.77 0.70 ND	Б	9 6	Q.	> =		0,0	22	> =	0 0
0.67 0.68 1.0 0.08 1.0 0.08 1.0 0.08 1.0 0.08 1.0 0.08 1.0 0.08 1.0 0.09 1.0 0.09 1.0 0.09 1.0 0.00 0.42 1.0 0.00 0.42 0.52 1.0 0.00 0.42 0.52 0.50 0.50 0.50 0.50 0.50 0.50 0.5	0.27 1.0 ND 0.67 1.0 ND 0.67 1.0 ND 0.62 1.0 ND 0.62 1.0 ND 0.42 0.36 1.0 ND 0.52 1.0 ND 0.52 1.0 ND 0.45 1.0 ND 0.24 1.0 ND 0	0	0.50		>=		1000	2 9	0 =	o c
Control Cont	0.27 0.62 2.9 1.0 0.42 0.36 0.36 0.36 0.36 0.36 0.36 0.45 0.45 1.0 0.45 1.0 0.45 1.0 0.45 1.0 0.45 1.0 0.40 0.45 1.0 0.40 0.45 0.45 1.0 0.40 0.45 0.45 1.0 0.40 0.45 0.45 1.0 0.40 0.45 0.45 0.46 0.46 0.46 0.46 0.46 0.46 0.46 0.46 0.46 0.46 0.46 0.46 0.46 0.46 0.46 0.47 0.47 0.48	on 0	0.0	2 5	=	D C	10	200	0	0
0.62 1.0 ND U g 1.0 ND U g 1.0 ND U Q 1.0 ND <td>0.02 1.0 ND 1.0 ND 1.0 ND 0.22 1.0 ND 0.22 1.0 ND 0.22 1.0 ND 0.22 1.0 ND 0.44 1.0 ND 0.45 1.0 ND 0.45 1.0 ND 0.45 1.0 ND 0.47 1.0 ND 0.27 1.0 ND 0.24 /td> <td>0 0</td> <td>0.1</td> <td>Q.</td> <td>0</td> <td>n 01</td> <td>1.0</td> <td>Q</td> <td>)</td> <td>0</td>	0.02 1.0 ND 1.0 ND 1.0 ND 0.22 1.0 ND 0.22 1.0 ND 0.22 1.0 ND 0.22 1.0 ND 0.44 1.0 ND 0.45 1.0 ND 0.45 1.0 ND 0.45 1.0 ND 0.47 1.0 ND 0.27 1.0 ND 0.24	0 0	0.1	Q.	0	n 01	1.0	Q)	0
2.9 10 ND U 9 10 ND U	2.9 10 ND 1.0 ND 0.42 0.550 ND 0.50 ND 0.52 1.0 ND 0.22 1.0 ND 0.22 1.0 ND 0.45 0.45 1.0 ND 0.45 0.47 1.0 ND 0.17 0.27 1.0 ND 0.17 0.24 1.0 ND 0.24 1.	0	1.0	Q	ח	0	1.0	Q	כ	50
1.0 ND U g	1.0 ND 0.42 0.50 ND 0.36 1.0 ND 0.52 1.0 ND 0.22 1.0 ND 0.45 1.0 ND 0.45 1.0 ND 0.45 1.0 ND 0.27 1.0 ND	6	10	ND	n	б	10	ND	ח	5
0.42 0.50 ND U 9 0	0.42 0.50 ND 0.36 ND 0.36 0.50 ND 0.36 0.36 0.36 0.32 0.45 0.45 0.47 0.07 0.17 0.07 0.24 0.37 0.07 0.24 0.34 0.34 0.34 0.34 0.34 0.34 0.34 0.3	6	9	Q.	ם	D	9	Q	5:	6
0.35	0.36 0.27 1.8 1.0 0.42 1.0 0.45 1.0 0.45 1.0 0.45 1.0 0.07 0.17 1.0 0.17 1.0 0.17 1.0 0.17 0.17 1.0 0.10 0.27 1.0 0.10 0.27 1.0 0.10 0.27 1.0 0.10 0.27 1.0 0.27 1.0 0.27 1.0 0.27 1.0 0.10 0.27 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	6	0.50	22	>=	D) (1.50	2 2	>=	O) C
0.022 1.0 ND U 9 1.0 N	0.22 1.0 ND 1.0 ND 0.45 1.0 ND 0.47 1.0 ND 0.47 1.0 ND 0.47 1.0 ND 0.17 0.17 1.0 ND 0.17 0.17 1.0 ND 0.24 1.0 ND 0	D) (C	2	2 5	0 =	0) 0	0.0	S		0
1.6.	1.8 10 ND 0.45 1.0 ND 0.47 1.0 ND 0.17 1.0 ND 0.17 1.0 ND 0.17 1.0 ND 0.17 1.0 ND 0.27 1.0 ND 0.24 1.0	» c	0.0	200		D) (0	1.0	9	0	0
0.45	0.45 1.0 ND 0.27 1.0 ND 0.27 1.0 ND 0.17 0.17 0.17 0.24 1.0 ND 0.2	0	10	Q	>	5	10	QN	n	0
0.42	0.42 1.0 ND 0.27 1.0 ND 0.17 1.0 ND 0.17 1.0 ND 0.24 1.0 ND	6	1.0	ND	כ	Б	1.0	Q	0	6
0.27 1.0 ND U g 1.0 ND	0.27 1.0 ND 0.17 1.0 ND 0.24 1.0 ND	6	1.0	2	ח	53	0.1	2	0 :	6
0.24	0.17 1.0 ND 0.24 1.0 ND 0.24 1.0 ND	D	1.0	QN.	0 :	5	0.0	N S	5	0)
2.5 1.0 ND U g 1.0 ND	0.24 U.24	D) (0.1	22	0 =	0) (0	0.0	22	0 =	00 0
2.6 10 ND U g 10 ND U g 10 ND U		0) (0	0. 0.	22	0 =	on 5	0.0	22		0
	2.6 10 ND	0 0	10	2 2))	n 50	10	QV	n	0
		,								

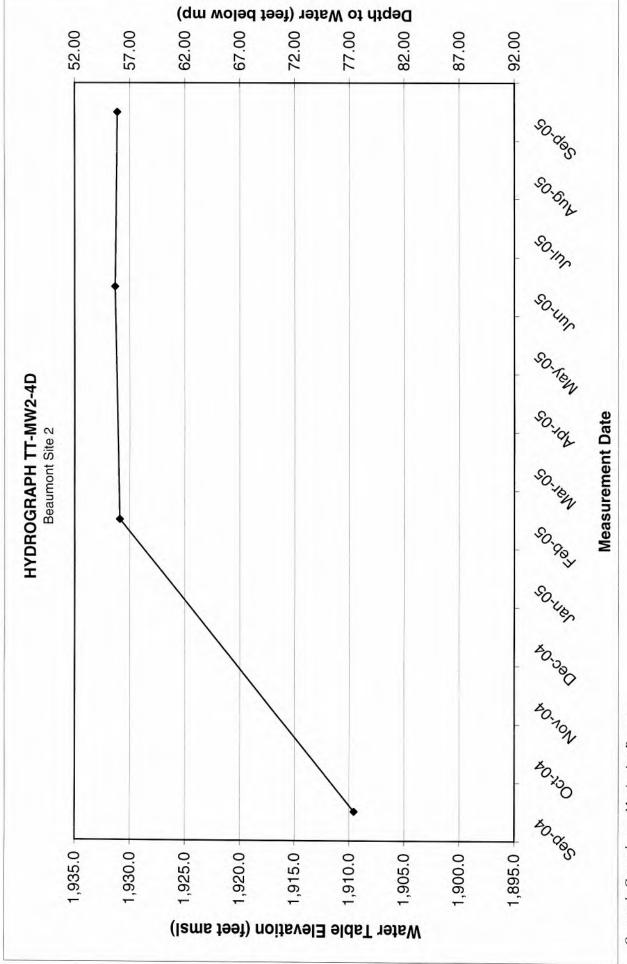

Since Commental Samples Commental Sample	Project: Beaumont							Table B - 5	-5						
Field ID:	Site: 2						Analy	rtical Data	Summary						
The continue of the continue	Extraction Method: SW5030B						EPA	Method S	:W8260B						
Field ID:	Analytical Method: SW8260B														
Field ID: TTAMV2-1 TTAMV2-2 SGG: G5-G9-1657 G	Matrix: Water			Environm	ental Samples										
Field ID: T1-MW2-1 T1-MW2-1 T1-MW2-2 SEDGIN S	Units: ug/L														
March ID, SDG; Def-Go-1687 Def-Go-1687 Def-Go-1687 Def-Go-1687 Def-Go-1687 Def-Go-1687 Def-Go-1687 Def-Go-10921 Def-Go-1687 Def-Go-10921 Def-Go-1687 Def-Go-10921 Def-Go-1687 Def-Go			Field ID:		TT-MW2-1				TT-MW2-2				TT-MW2-3		
MOL POL POL Result Validity Comments POL Result POL Result POL Result POL Result POL Result POL Result POL POL			SDG:		05-09-1857				05-09-1857				05-09-1857		
MDL PQL Result Validity Comments PQL Result Validity Comments PQL Result Nalidity Comments PQL Result Nalidity Comments PQL Result Nalidity Comments PQL Result Nalidity PQL Result Nalidity PQL Result Nalidity PQL N			Batch ID:		051003L01				051003L01				051003L01		
Comparison	Parameters	MDL			Result	Validity	Comments		Result	Validity	Comments	Pal	Result	Validity	Comments
1.0	Naphthalene	0.95		10	9	D	D.	10	QN	n	D	10	QN	D	O.
1.0 ND U g 1.0 ND	Styrene	0.29		1.0	Q	0	0.	1.0	Q	ח	0	1.0	S	ח	0
1.0 ND U g I.0 ND U G I.0	Tetrachloroethene	0.29		1.0	QV	n	0	1.0	Q	n	0	1.0	2	ר	0
1.0 ND	Toluene	0.35		1.0	Q	n	0	1.0	S	ח	מ	1.0	S	5	Ö
10	Trichloroethene	0.30		1.0	QN	n	D	1.0	QN	n	D	1.0	5.6		0
3.2 10 ND U g IO ND U G IO IO IO IO IO IO IO	Trichlorofluoromethane			10	QN	n	6	10	QN	n	0	10	QN	n	D
October Octo	Vinyl Acetate			10	QN	n	0	10	QN	D	0	10	QN	ח	0
Color	Vinyl Chloride			0.50	Q	n	D	0.50	Q	ר	מס	0.50	Q	n	6
ene 0.45	c-1,2-Dichloroethene			1.0	QN	n	6	1.0	QV	0	מ	1.0	QN	ח	0
0.29	c-1,3-Dichloropropene			0.50	QN	n	6	0.50	QN	n	Ö	0.50	QN	n	6
0.30	n-Butylbenzene			1.0	QN	n	O	1.0	Q	D	מ	1.0	QN	כ	O
0.21	n-Propylbenzene			1.0	QN	Ω	6	1.0	Q	ס	מ	1.0	Q	ס	O
0.21	o-Xylene			1.0	Q	n	0	1.0	2	O	מס	1.0	Q	ס	0.
0.38 1.0 ND U g 1.0 ND U g 1.0 ND U g 1.0 ND U U g 1.0 ND U U U U U U U U U U U U U U U U U U	p-IsopropyItoluene			1.0	Q	D	6	1.0	P	ח	ō	1.0	Q	כ	O
0.21	p/m-Xylene			1.0	Q	ח	6	1.0	Q	ח	מ	1.0	Q	ס	O
nne 0.29 1.0 ND U g 1.0 ND U g 1.0 ND U sene 0.31 0.50 ND U g 0.50 ND U g 0.50 ND U 0.17 1.0 ND U g 1.0 ND U g 1.0 ND U	sec-Butylbenzene			1.0	Q	n	6	1.0	Q	ס	Ö	1.0	Q	כ	O
Name	t-1,2-Dichloroethene			1.0	QN	n	б	1.0	Q	D	Ö	1.0	Q	ס	O
0.17 1.0 ND U g 1.0 ND U g 1.0 ND U	t-1,3-Dichloropropene			0.50	P	n	Ö	0.50	Q	D	0	0.50	QN	כ	O
	tert-Butylbenzene			1.0	QN	n	0	1.0	Q	D	6	1.0	QN	n	6
															V

Project: Beaumont						Accel	Table B - 5				Ī			
Extraction Method: SW5030B						FPA	Method S	Analytical Data Summary FPA Method SW8260B			1			
Analytical Method: SW8260E		5				i		2000						
Matrix: Water Units: uo/L			Environme	Environmental Samples										
		Field ID:		TT-MW2-103				TT-MW2-4D				TT-MW2-4S		
		SDG: Batch ID:		05-09-1857				05-09-1857				05-09-1857		
Parameters	MDL		Pol	Result	Validity	Comments	Pal	Result	Validity	Comments	POL	Result	Validity	Comments
1.1.2-Tetrachloroethane	0.37		1.0	Q	ס	В	1.0	2	D	0	1.0	2	D	0
1.1.1-Trichloroethane	0.32		10	9	n	0 0	10	2	n	0	1.0	QN	n	0
1,1,2,2-Tetrachloroethane	0.37		1.0	2	0	0	1.0	2	כו	0	1.0	9	0	0
1,1,2-Trichloro-1,2,2-Trifluoroethane	0.54		10	QN	n	g	10	QN	n	Б	10	Q	O	5
1,1,2-Trichloroethane	0.54		1.0	Q	n	Б	1.0	Q	n	б	1.0	Q	n	6
1,1-Dichloroethane	0.53		1.0	QN	כ	6	1.0	QN	ח	б	1.0	Q	D	6
1,1-Dichloroethene	0.31		1.0	Q.	> :	5)	1.0	2	>	5	0.1	2	o :	6
1,1-Dichloropropene	0.21		1.0	2	> :	0)	0.1	2	> :	5	1.0	2	0 :	6
1,2,3-Trichlorobenzene	0.39		0.1	2	> :	Di	0.1	2	> :	6	1.0	0	o :	6
1,2,3- I richloropropane	2.3		0.0	2 9	> =	0) (0)	2.0	2 2	> =	D (0.0	22	>=	0
1,2,4-Illemotorizene	0.30		2 .	2 5	0 =	D) 1	2.	2 2	5 =	5 0	0.	2 2	0 =	D) (
1.2,4- Immemyloenzene	0.20		0.0	25	> =	0, 0	0.0	28	> =	50 0	0.4	2 2	o =	D) (
1.2-Dibromoethane	0.84		0.0	2 2	> =	o) c	0.0	2 2	0 =	on C	100	2 2	0 =	D) C
1,2-Dichlorobenzene	0.24		1.0	2	0	0 0	1.0	2	0	D 0	1.0	9))	0
1,2-Dichloroethane	0.22		0.50	2	ס	0	0.50	Q	5	0	0.50	Q	ח	0
1,2-Dichloropropane	0.28		1.0	QN	ח	0	1.0	QN	ס	Б	1.0	QN	n	0
1,3,5-Trimethylbenzene	0.19		1.0	Q	n	Б	1.0	QN	ס	Б	1.0	Q	n	6
1,3-Dichlorobenzene	0.38		1.0	2	5	D	1.0	9	ס	6	1.0	Q	5	D
1,3-Dichloropropane	0.30		1.0	2	> :	D	1.0	2	> :	D	1.0	2	0:	6
1,4-Uichlorobenzene	0.30		1.0	2	0 :	0	0.1	2	0 :	6	1.0	2	0 :	6
2,2-Uichloropropane	0.40		0.0	2 2	5 =	0) (0	0.5	2 2	0 =	D) (0.0	22	>=	0
2-Chlorotolijane	0.24		-	2 2	0 =	o) (C	-	2 5	=	0) 0	10	2 5	0 =	D) C
2-Hexanone	1.01		0.0	2) =	D) C	10.	28	0 =	0 0	10	S		, 0
4-Chlorotoluene	0.30	7	1.0	2	n	n 0	1.0	9		D 0	1.0	2	0	0
4-Methyl-2-Pentanone	2.4		10	Q	0	0	10	9	ח	0 01	10	Q	n	0
Acetone	6.1		10	QN	n	ď	10	QN	n	Б	10	QV	n	6
Benzene	0.26		0.50	QN	n	Б	0.50	N N	n	Б	0.50	Q	n	0
Bromobenzene	0.47		0.1	9!)	6	0.1	2	> :	b	1.0	2	D	b
Bromochloromethane	0.68		0.0	2	0	6	0.	2	> :	D	1.0	2	0 :	0
Bromodichloromethane	0.27		0.0	2 9	>=	60 6	0.0	29	>=	D (0.	22	0 =	0 0
Bromomethane	20.0		2.0	2 2	0 =	0) 0	2.0	28	0 =	5 C	10	2 5	0 =	50 00
Carbon Disulfide	1.0		10	2	0	n 0	9	2	ח	n 0	9	2)	0
Carbon Tetrachloride	0.42		0.50	S	ח	0	0.50	Q	n	0	0.50	9	5	0
Chlorobenzene	0.36		1.0	Q	n	6	1.0	QN	n	5	1.0	Q	n	6
Chloroethane	0.52		1.0	Q	n	D	1.0	Q	ח	D	1.0	2	n	D
Chloroform	0.22		1.0	2	> :	Б	0.1	2	o :	Б	0.1	2	> :	0
Chloromethane	8.		10	2	0	6	10	2	0:	5)	10	2	0:	б
Uibromochloromethane	0.45		1.0	2	0	6	1.0	2		D	0.1	25	0 :	0
Distriction	0.42		0.1	25	0 =	0	0.1	25	0 =	5 0 1	0.1	22	0 =	0)
Diction of illustration	0.27		2.	2 9	> =	50	0.	2 9	0 =	50 1	0.	2 2	0 =	5) (0
Emylbenzene	0.04		0.0	25	o =	0 0	0.5	28	>=	0 0	0.0	25	>=	0) 0
Methyl L Butyl Ether (MTRE)	0.00		2	2 5	=	D) (C	0.1	2 5	=	0) (2 5	=	0 0
Methylene Chloride	2.6		000	200	0	n 0	100	22		0 0	10	S S		0 0
						0				,				

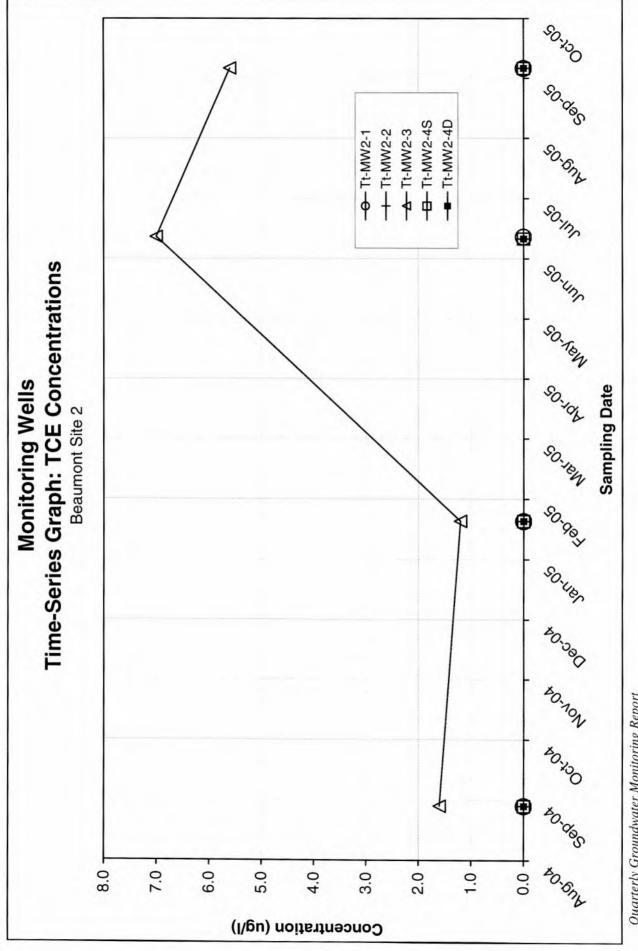
Project: Beaumont							Table B - 5	-5						
Site: 2						Analy	Analytical Data Summary	Summary						
Extraction Method: SW5030B						EPA	EPA Method SW8260B	:W8260B						
Analytical Method: SW8260B														
Matrix: Water			Environm	Environmental Samples										
Units: ug/L														
		Field ID:		TT-MW2-103				TT-MW2-4D				TT-MW2-4S		
		SDG:		05-09-1857				05-09-1857				05-09-1857		
		Batch ID:		051003L01				051003L01				051003L01		
Parameters	MDL		Pal	Result	Validity	Validity Comments	Pal	Result	Validity	Comments	Pal	Result	Validity	Validity Comments
Naphthalene	0.95		10	Q	n	0.	9	Q	n	Di	10	QV	n	מ
Styrene	0.29		1.0	Q)	0.	1.0	9	n	D	1.0	Q	כ	מ
Tetrachloroethene	0.29		1.0	Q	n	0.	1.0	9	n	D	1.0	QN	ס	0
Toluene	0.35		1.0	Q	n	6	1.0	9	n	0	1.0	Q	n	б
Trichloroethene	0.30		1.0	5.6		5	1.0	Q	n	0	1.0	QN	n	б
Trichlorofluoromethane	0.36		10	Q	n	6	10	Q	n	б	10	QN	Π	6
Vinyl Acetate	3.2		10	Q	n	Б	9	9	n	Б	10	QN	n	D
Vinyl Chloride	0.33		0.50	QN	n	6	0.50	Q	n	6	0.50	QN	n	Б
c-1,2-Dichloroethene	0.35		1.0	Q	n	0	1.0	9	ח	6	1.0	Q	ח	Б
c-1,3-Dichloropropene	0.45		0.50	Q	n	0	0.50	Q	n	6	0.50	QN	ח	6
n-Butylbenzene	0.29		1.0	Q	n	D	1.0	9	n	6	1.0	QN	ח	9
n-Propylbenzene	0.30		1.0	Q	n	Ö	1.0	9	n	0	1.0	QV	n	6
o-Xylene	0.21		1.0	Q	n	מ	1.0	9	n	D	1.0	Q	ח	6
p-Isopropyltoluene	0.21		1.0	QV	n	מ	1.0	9	כ	6	1.0	Q	ח	D
p/m-Xylene	0.38		1.0	QV	n	D	1.0	Q	n	6	1.0	QN	n	g
sec-Butylbenzene	0.21		1.0	Q	n	O	1.0	9	ח	0	1.0	Q	ס	5
t-1,2-Dichloroethene	0.29		1.0	Q	n	Ö	1.0	9	n	6	1.0	Q	ח	6
t-1,3-Dichloropropene	0.31		0.50	QN	ח	ď	0.50	QN	ח	6	0.50	QV	n	6
tert-Butylbenzene	0.17		1.0	QN	n	6	1.0	Q	כ	6	1.0	QN	n	Ö

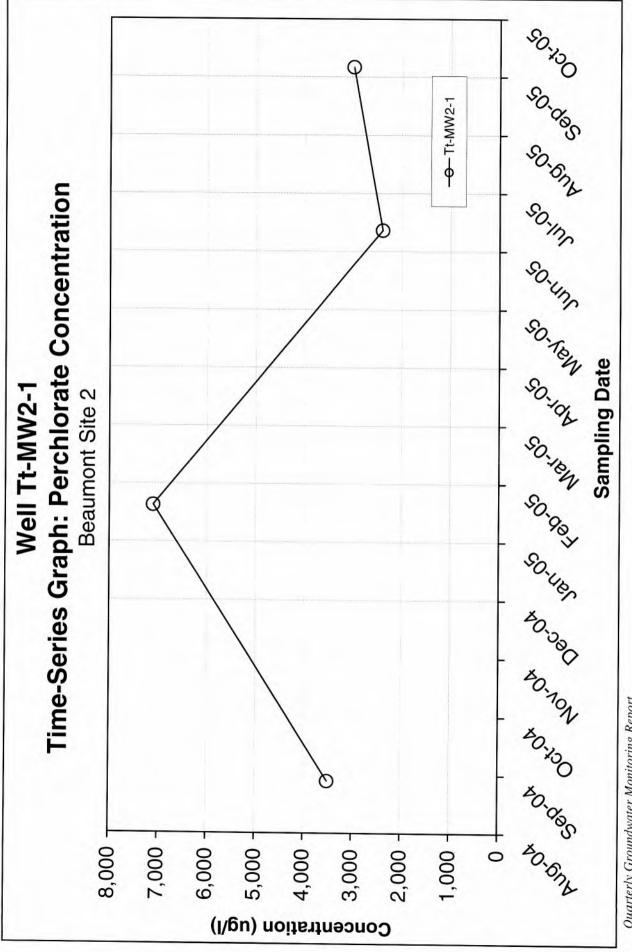


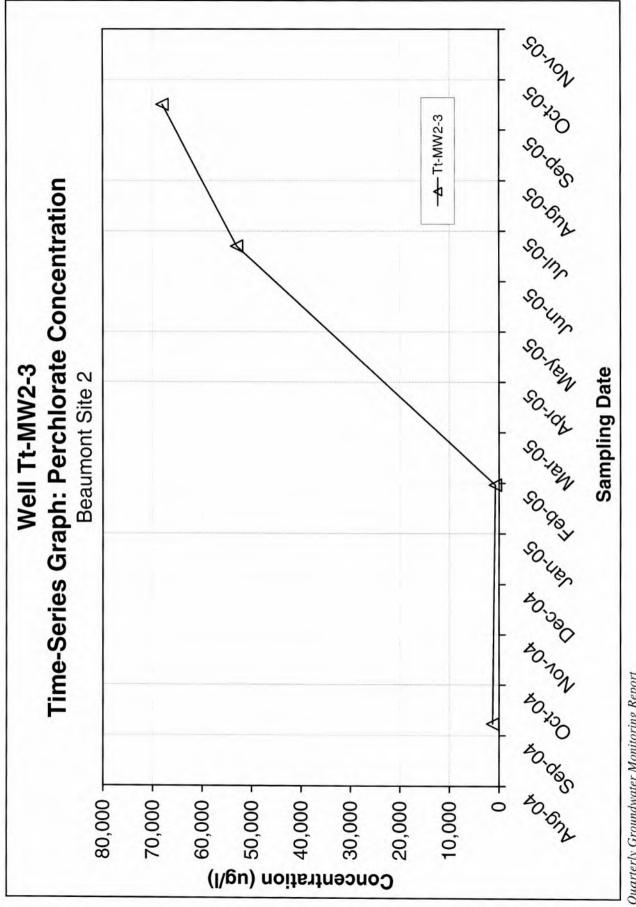
Quarterly Groundwater Monitoring report Third Quarter 2005 Beaumont Site 2

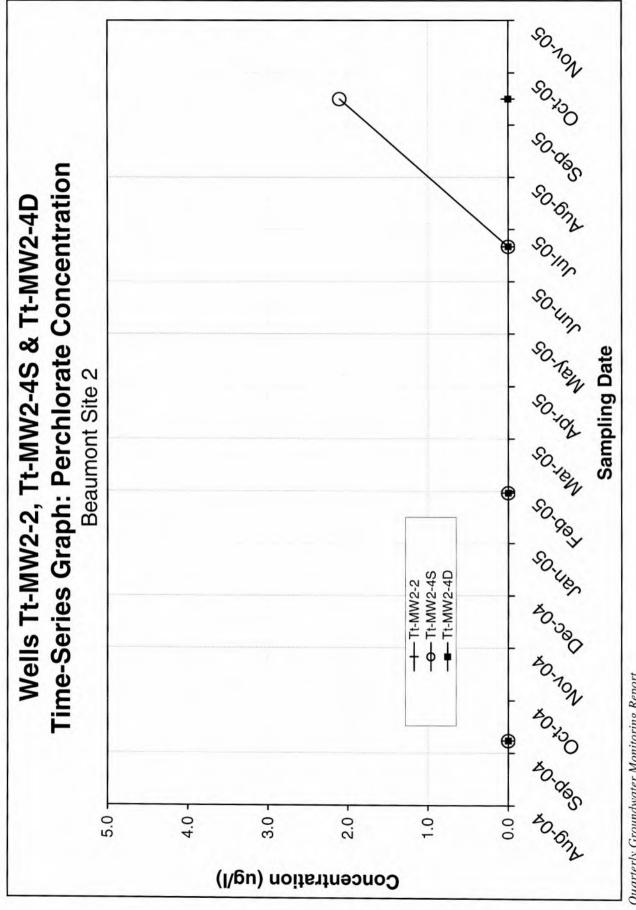


Quarterly Groundwater Monitoring Report Third Quarter 2005 Beaumont Site 2


Third Quarter 2005 Beaumont Site 2


Qaurterly Groundwater Monitoring Report Third Quarter 2005 Beaumont Site 2


Quarterly Groundwater Monitoring Report Third Quarter 2005 Beaumont Site 2


Quarterly Groundwater Monitoring Report Third Quarter 2005 Beaumont Site 2

Quarterly Groundwater Monitoring Report Third Quarter 2005 Beaumont Site 2

Quarterly Groundwater Monitoring Report Third Quarter 2005 Beaumont Site 2

Quarterly Groundwater Monitoring Report Third Quarter 2005

Beaumont Site 2

October 12, 2005

Brenda Meyer Tetra Tech, Inc. 348 West Hospitality Lane, Ste 100 San Bernardino, CA 92408-3216

Subject: Calscience Work Order No.: 05-09-1857

Client Reference: Beaumont Site 2 - 16392-01

Dear Client:

Enclosed is an analytical report for the above-referenced project. The samples included in this report were received 9/30/2005 and analyzed in accordance with the attached chain-of-custody.

Unless otherwise noted, all analytical testing was accomplished in accordance with the guidelines established in our Quality Systems Manual, applicable standard operating procedures, and other related documentation. The original report of any subcontracted analysis is provided herein, and follows the standard Calscience data package. The results in this analytical report are limited to the samples tested and any reproduction thereof must be made in its entirety.

If you have any questions regarding this report, please do not hesitate to contact the undersigned.

Sincerely,

Calscience Environmental

Laboratories, Inc. Jason Torres

Project Manager

CA-ELAP ID: 1230 · NELAP ID: 03220CA · CSDLAC ID: 10109 · SCAQMD ID: 93LA0830

7440 Lincoln Way, Garden Grove, CA 92841-1427 · TEL:(714) 895-5494 · FAX: (714) 894-7501

Tetra Tech, Inc.

348 West Hospitality Lane, Ste 100 San Bernardino, CA 92408-3216

Date Received:

09/30/05

Work Order No:

05-09-1857

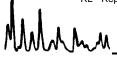
Preparation:

EPA 3005A Filt. / EPA 7470A Filt.

Method:

EPA 6010B / EPA 7470A

Units:


mg/L

Project: Beaumont Site 2 - 16392-01

Page 1 of 4

Client Sample Number				b Sample Number	Date Collected	Matrix	Date Prepared	Date Analyzed	QC Ba	tch ID
LEB-093005-GP			05-09-1	857-2	09/30/05	Aqueous	10/03/05	10/04/05	051003	L06
Comment(s): -Mercury was	s analyzed on 10/6/2	005 2:19:08	3 PM with	n batch 05	1003L05					
Parameter	Result	<u>RL</u>	<u>DF</u>	Qual	<u>Parameter</u>		Resu	ılt RL	DF	Qual
Antimony	ND	0.0150	1		Mercury		ND	0.000500) 1	
Arsenic	ND	0.0100	1		Molybdenum		ND	0.00500	1	
Barium	ND	0.0100	1		Nickel		ND	0.00500	1	
Beryllium	ND	0.00100	1		Selenium		ND	0.0150	1	
Cadmium	ND	0.00500	1		Silver		ND	0.00500	1	
Chromium	ND	0.00500	1		Thallium		ND	0.0150	1	
Cobalt	ND	0.00500	1		Vanadium		ND	0.00500	1	
Copper	ND	0.00500	1		Zinc		ND	0.0100	1	
Lead	ND	0.0100	1							
LEB-093005-B			05-09-1	857-3	09/30/05	Aqueous	10/03/05	10/04/05	051003	L06
Comment(s): -Mercury was	s analyzed on 10/6/2	005 2:29:27	7 PM with	hatch 05	10031.05					
Parameter	Result	<u>RL</u>	<u>DF</u>	Qual	Parameter		Resu	ılt RL	DF	Qual
Antimony	ND	0.0150	1	<u>Quui</u>	Mercury		ND	0.000500		<u>Quui</u>
Arsenic	ND	0.0130	1		Molybdenum		ND	0.00500	1	
Barium	ND	0.0100	1		Nickel		ND ND	0.00500	1	
Beryllium	ND	0.00100	1		Selenium		ND	0.0150	1	
Cadmium	ND	0.00500	1		Silver		ND	0.00500	1	
Chromium	ND	0.00500	1		Thallium		ND	0.0150	1	
Cobalt	ND	0.00500	1		Vanadium		ND	0.00500	1	
Copper	ND	0.00500	1		Zinc		ND	0.0100	1	
Lead	ND	0.0100	1					5.5.55	•	
TT-MW2-2			05-09-1	857-4	09/30/05	Aqueous	10/03/05	10/04/05	051003	L06
Commont(a). Morourius	a analyzad an 10/6/0	005 2:24:44	1 DM with	botob OF	10021.05	•				
Comment(s): -Mercury was Parameter	s analyzed on 10/6/20 <u>Result</u>	005 2.51.4 RL	DF	Qual	Parameter		Resu	ılt RL	<u>DF</u>	Qual
				<u> Quai</u>						<u> </u>
Antimony	ND ND	0.0150	1		Mercury		ND	0.000500		
Arsenic Barium	ND ND	0.0100 0.0100	1 1		Molybdenum Nickel		ND ND	0.00500 0.00500	1 1	
Beryllium	ND ND	0.0100	1		Selenium		ND ND	0.00500	1	
Cadmium	ND ND	0.00100	1		Silver		ND ND	0.0150	1	
Chromium	ND ND	0.00500	1		Thallium		ND ND	0.00500	1	
Cobalt	ND ND	0.00500	1		Vanadium		0.01		1	
Copper	ND	0.00500	1		Zinc		ND	0.0100	1	
Lead	ND	0.00300	1		0		ND	0.0100	1	
	.,,,	3.0100	•							

DF - Dilution Factor Qual - Qualifiers

Tetra Tech, Inc.

348 West Hospitality Lane, Ste 100 San Bernardino, CA 92408-3216

Date Received:

09/30/05

Work Order No:

05-09-1857

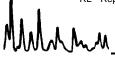
Preparation: Method:

EPA 3005A Filt. / EPA 7470A Filt. EPA 6010B / EPA 7470A

Inite:

A 00 10D / EPA /4/0/

Units:


mg/L

Project: Beaumont Site 2 - 16392-01

Page 2 of 4

Client Sample Number				o Sample lumber	Date Collected	Matrix	Date Prepared	Date Analyzed	QC Ba	tch ID
TT-MW2-4S			05-09-1	857-5	09/30/05	Aqueous	10/03/05	10/04/05	051003	L06
Comment(s): -Mercu	ry was analyzed on 10/6/2009	5 2:33:55	PM with	batch 05	1003L05					
<u>Parameter</u>	Result	<u>RL</u>	DF	Qual	<u>Parameter</u>		Resu	ılt RL	<u>DF</u>	Qual
Antimony	ND (0.0150	1		Mercury		ND	0.000500	0 1	
Arsenic		0.01	1		Molybdenum		0.00		1	
Barium		0.0100	1		Nickel		ND	0.00500	1	
Beryllium	ND (0.00100	1		Selenium		ND	0.0150	1	
Cadmium	ND (0.00500	1		Silver		ND	0.00500	1	
Chromium	ND (0.00500	1		Thallium		ND	0.0150	1	
Cobalt	ND (0.00500	1		Vanadium		0.12	4 0.005	1	
Copper		0.00500	1		Zinc		ND	0.0100	1	
Lead	ND (0.0100	1							
TT-MW2-4D			05-09-1	857-6	09/30/05	Aqueous	10/03/05	10/04/05	051003	L06
Comment(s): -Mercu	ry was analyzed on 10/6/2009	5 2:36:10	PM with	batch 05	1003L05					
<u>Parameter</u>	Result	<u>RL</u>	DF	Qual	Parameter		Resu	ılt RL	DF	Qual
Antimony		0.0150	1		Mercury		ND.	0.000500		
Arsenic		0.01	1		Molybdenum		0.00		1	
Barium		0.0100	1		Nickel		ND	0.00500	1	
Beryllium		0.00100	1		Selenium		ND	0.0150	1	
Cadmium	ND (0.00500	1		Silver		ND	0.00500	1	
Chromium	ND (0.00500	1		Thallium		ND	0.0150	1	
Cobalt	ND (0.00500	1		Vanadium		0.12	7 0.005	1	
Copper	ND (0.00500	1		Zinc		ND	0.0100	1	
Lead	ND (0.0100	1							
TT-MW2-1			05-09-1	857-7	09/30/05	Aqueous	10/03/05	10/04/05	051003	L06
Comment(s): -Mercu	ry was analyzed on 10/6/2009	5 2:38:26	PM with	batch 05	1003L05					
Parameter Parameter	Result	RL	<u>DF</u>	Qual	<u>Parameter</u>		Resu	ılt RL	DF	Qual
Antimony		0.0150	1		Mercury		ND.	0.000500		
Arsenic		0.0100	1		Molybdenum		ND	0.00500	1	
Barium	· · · · · · · · · · · · · · · · · · ·	0.01	1		Nickel		ND	0.00500	1	
Beryllium		0.00100	1		Selenium		ND	0.0150	1	
Cadmium		0.00500	1		Silver		ND	0.00500	1	
Chromium		0.005	1		Thallium		ND	0.0150	1	
Cobalt		0.00500	1		Vanadium		ND	0.00500	1	
Copper		0.00500	1		Zinc		0.01		1	
Lead		0.0100	1							

RL - Reporting Limit , DF - Dilution Factor , Qual - Qualifiers

Tetra Tech, Inc.

348 West Hospitality Lane, Ste 100 San Bernardino, CA 92408-3216

Date Received:

09/30/05

Work Order No:

05-09-1857

Preparation:

EPA 3005A Filt. / EPA 7470A Filt.

Method:

EPA 6010B / EPA 7470A

Units:

mg/L

Project: Beaumont Site 2 - 16392-01

Page 3 of 4

Client Sample Number				ib Sample Number	Date Collected	Matrix	Date Prepared	Date Analyzed	QC Ba	tch ID
TT-MW2-3			05-09-1	1857-8	09/30/05	Aqueous	10/03/05	10/04/05	051003	L06
Comment(s): -Mercury was	analyzed on 10/6/2	005 2:40:43	B PM wit	h batch 05	1003L05					
Parameter Parameter	Result	<u>RL</u>	<u>DF</u>	<u>Qual</u>	<u>Parameter</u>		Resul	<u>RL</u>	<u>DF</u>	Qual
Antimony	ND	0.0150	1		Mercury		ND	0.000500	1	
Arsenic	ND	0.0100	1		Molybdenum		ND	0.00500	1	
Barium	0.104	0.01	1		Nickel		ND	0.00500	1	
Beryllium	ND	0.00100	1		Selenium		ND	0.0150	1	
Cadmium	ND	0.00500	1		Silver		ND	0.00500	1	
Chromium	ND	0.00500	1		Thallium		ND	0.0150	1	
Cobalt	ND	0.00500	1		Vanadium		ND	0.00500	1	
Copper	ND	0.00500	1		Zinc		ND	0.0100	1	
_ead	ND	0.0100	1							
TT-MW2-103			05-09-1	1857-9	09/30/05	Aqueous	10/03/05	10/04/05	051003	L06
Comment(s): -Mercury was	analyzed on 10/6/2	005 2:42:59	PM with	h batch 05	1003L05					
Comment(s): -Mercury was	s analyzed on 10/6/2 Result	005 2:42:59 <u>RL</u>	PM with	h batch 05 <u>Qual</u>	1003L05 Parameter		<u>Resul</u>	<u>RL</u>	<u>DF</u>	Qual
• • • • • • • • • • • • • • • • • • • •	•						<u>Resul</u> ND	RL 0.000500		<u>Qual</u>
<u>Parameter</u>	<u>Result</u>	<u>RL</u>	<u>DF</u>		<u>Parameter</u>					<u>Qual</u>
Parameter Antimony	Result ND	<u>RL</u> 0.0150	<u>DF</u> 1		Parameter Mercury		ND	0.000500	1	Qual
<u>Parameter</u> Antimony Arsenic	Result ND ND	<u>RL</u> 0.0150 0.0100	<u>DF</u> 1 1		Parameter Mercury Molybdenum		ND ND	0.000500 0.00500	1 1	Qual
<u>Parameter</u> Antimony Arsenic Barium	Result ND ND 0.103	<u>RL</u> 0.0150 0.0100 0.01	<u>DF</u> 1 1 1		Parameter Mercury Molybdenum Nickel		ND ND ND	0.000500 0.00500 0.00500	1 1	Qual
Parameter Antimony Arsenic Barium Beryllium	Result ND ND 0.103 ND	RL 0.0150 0.0100 0.01 0.00100	<u>DF</u> 1 1 1 1		Parameter Mercury Molybdenum Nickel Selenium		ND ND ND ND	0.000500 0.00500 0.00500 0.0150	1 1	Qual
Parameter Antimony Arsenic Barium Beryllium Cadmium	Result ND ND 0.103 ND ND	RL 0.0150 0.0100 0.01 0.00100 0.00500	DF 1 1 1 1 1		Parameter Mercury Molybdenum Nickel Selenium Silver		ND ND ND ND ND	0.000500 0.00500 0.00500 0.0150 0.00500	1 1	Qual
Parameter Antimony Arsenic Barium Beryllium Cadmium Chromium	Result ND ND 0.103 ND ND ND	RL 0.0150 0.0100 0.01 0.00100 0.00500 0.00500	DF 1 1 1 1 1		Parameter Mercury Molybdenum Nickel Selenium Silver Thallium		ND ND ND ND ND ND	0.000500 0.00500 0.00500 0.0150 0.00500 0.0150	1 1 1 1 1 1	Qual

Tetra Tech, Inc.

348 West Hospitality Lane, Ste 100 San Bernardino, CA 92408-3216

Date Received:

09/30/05

Work Order No:

05-09-1857

Preparation:

EPA 3010A Total / EPA 7470A Total

Method:

EPA 6010B / EPA 7470A

Units:

mg/L

Project: Beaumont Site 2 - 16392-01

Page 4 of 4

Client Sample Number				b Sample Number	Date Collected	Matrix	Date Prepared	Date Analyzed	QC Batch ID	
Method Blank			099-04	-008-2,133	N/A	Aqueous	10/03/05	10/04/05	051003L05	
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	<u>Qual</u>						
Mercury	ND	0.000500) 1							

Method Blank			097-01-003-5,3		4 N/A	Aqueous	10/03/05	10/04/05	051003	L06
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	Qual	<u>Parameter</u>		Result	<u>RL</u>	<u>DF</u>	<u>Qual</u>
Antimony	ND	0.0150	1		Molybdenum		ND	0.00500	1	
Arsenic	ND	0.0100	1		Nickel		ND	0.00500	1	
Barium	ND	0.0100	1		Selenium		ND	0.0150	1	
Beryllium	ND	0.00100	1		Silver		ND	0.00500	1	
Cadmium	ND	0.00500	1		Thallium		ND	0.0150	1	
Chromium	ND	0.00500	1		Vanadium		ND	0.00500	1	
Cobalt	ND	0.00500	1		Zinc		ND	0.0100	1	
Copper	ND	0.00500	1		Lead		ND	0.0100	1	

DF - Dilution Factor , (

Tetra Tech, Inc.

348 West Hospitality Lane, Ste 100 San Bernardino, CA 92408-3216

Date Received:

09/30/05

Work Order No:

05-09-1857 EPA 3010A Total / EPA 7470A Total

Preparation: Method:

EPA 6010B / EPA 7470A

Units:

mg/L

Project: Beaumont Site 2 - 16392-01

Page 1 of 4

Client Sample Number	er			b Sample Number	Date Collected	Matrix	Date Prepared	Date Analyzed	QC Ba	tch ID
LEB-093005-GP			05-09-1	1857-2	09/30/05	Aqueous	10/03/05	10/04/05	051003	L06
Comment(s): -Merce	ury was analyzed on 10/6/2	005 1:56:52	2 PM with	n batch 05	51003L05					
<u>Parameter</u>	Result	<u>RL</u>	DF	Qual	<u>Parameter</u>		Resu	ılt RL	DF	Qual
Antimony	ND	0.0150	1		Nickel		ND	0.00500	1	
Arsenic	ND	0.0100	1		Selenium		ND	0.0150	1	
Barium	ND	0.0100	1		Silver		ND	0.00500	1	
Beryllium	ND	0.00100	1		Thallium		ND	0.0150	1	
Cadmium	ND	0.00500	1		Vanadium		ND	0.00500	1	
Chromium	ND	0.00500	1		Zinc		0.01		1	
Cobalt	ND	0.00500	1		Calcium		ND	0.100	1	
Copper	ND	0.00500	1		Magnesium		ND	0.100	1	
Lead	ND	0.0100	1		Potassium		ND	0.500	1	
Mercury	ND	0.000500			Sodium		ND	0.500	1	
Molybdenum	ND	0.00500	1					0.000	•	
LEB-093005-B			05-09-1	1857-3	09/30/05	Aqueous	10/03/05	10/04/05	051003	L06
Comment(s): -Merc	ury was analyzed on 10/6/2	005 1:59:10) PM with	n batch 05	51003L05					
Parameter	Result	RL	DF	Qual	Parameter		Resu	ılt RL	DF	Qual
Antimony	ND	0.0150	1		Nickel		ND	0.00500	1	
Arsenic	ND	0.0100	1		Selenium		ND	0.0150	1	
Barium	ND	0.0100	1		Silver		ND	0.00500	1	
Beryllium	ND	0.00100	1		Thallium		ND	0.0150	1	
Cadmium	ND	0.00500	1		Vanadium		ND	0.00500	1	
Chromium	ND	0.00500	1		Zinc		ND	0.0100	1	
Cobalt	ND	0.00500	1		Calcium		ND	0.100	1	
Copper	ND	0.00500	1		Magnesium		ND	0.100	1	
Lead	ND	0.0100	1		Potassium		ND	0.500	1	
Mercury	ND	0.000500	1		Sodium		ND	0.500	1	
Molybdenum	ND	0.00500	1							
TT-MW2-2			05-09-1	1857-4	09/30/05	Aqueous	10/03/05	10/04/05	051003	L06
Comment(s): -Merce	ury was analyzed on 10/6/2	005 2:05:54	PM with	n batch 05	51003L05					
<u>Parameter</u>	Result	RL	DF	Qual	<u>Parameter</u>		Resu	ılt RL	DF	Qual
Antimony	ND.	0.0150	1		Nickel		ND	0.00500	1	
Arsenic	ND	0.0100	1		Selenium		ND	0.00500	1	
Barium		8 0.01	1		Silver		ND	0.00500	1	
Beryllium	ND	0.00100	1		Thallium		ND	0.0150	1	
Cadmium	ND	0.00500	1		Vanadium			0107 0.005	1	
Chromium	ND	0.00500	1		Zinc			0134 0.01	1	
Cobalt	ND	0.00500	1		Calcium			48 0.1	1	
Copper	ND	0.00500	1		Magnesium			07 0.1	1	
Lead	ND	0.0100	1		Potassium			813 0.5	1	
Mercury	ND	0.000500			Sodium		110	0.500	1	
Molybdenum	ND	0.00500	1		···		. 70	2.000		
•										

DF - Dilution Factor

Qual - Qualifiers

Tetra Tech, Inc. 348 West Hospitality Lane, Ste 100 San Bernardino, CA 92408-3216

Date Received: Work Order No:

09/30/05 05-09-1857

Preparation:

EPA 3010A Total / EPA 7470A Total

Method:

EPA 6010B / EPA 7470A

Units:

mg/L

Project: Beaumont Site 2 - 16392-01

Page 2 of 4

Client Sample I	Number			b Sample Number	Date Collected	Matrix	Date Prepared	Date Analyzed	QC Ba	tch ID
TT-MW2-4S			05-09-1	857-5	09/30/05	Aqueous	10/03/05	10/04/05	051003	L06
Comment(s):	-Mercury was analyzed on 10/6/20	005 2:08:05	5 PM with	n batch 05	1003L05					
<u>Parameter</u>	Result	RL	DF	Qual	<u>Parameter</u>		Res	ult RL	DF	Qual
Antimony	0.093	2 0.015	1		Nickel		0	.229 0.005	1	
Arsenic	ND	0.0100	1		Selenium		ND	0.0150	1	
Barium	1.87	0.01	1		Silver		ND	0.00500	1	
Beryllium		3 0.001	1		Thallium		ND	0.0150	1	
Cadmium	ND	0.00500	1		Vanadium			.629 0.005	1	
Chromium	0.296	0.005	1		Zinc			.795 0.01	1	
Cobalt	0.123	0.005	1		Calcium		157		1	
Copper	0.287	0.005	1		Magnesium		102	0.100	1	
Lead	0.127	0.01	1		Potassium		42		1	
Mercury	ND	0.000500			Sodium		120		1	
Molybdenum	ND	0.00500	1					0.000		
TT-MW2-4D			05-09-1	857-6	09/30/05	Aqueous	10/03/05	10/04/05	051003	L06
Comment(s):	-Mercury was analyzed on 10/6/20	005 2:10:16	6 PM with	n batch 05	1003L05					
Parameter	Result	RL	DF	Qual	Parameter		Res	ult RL	<u>DF</u>	Qual
Antimony	ND	0.0150	1		Nickel			00955 0.005	1	
Arsenic	0.0569	0.0130	1		Selenium		ND	0.0150	1	
Barium	0.0587	0.01	1		Silver		ND	0.00500	1	
Beryllium	ND	0.00100	1		Thallium		ND	0.00500	1	
Cadmium	ND	0.00500	1		Vanadium			0.0150	1	
Chromium	0.0115		1		Zinc			0.000	1	
Cobalt	0.0052		1		Calcium		6.8		1	
Copper	0.0142		1		Magnesium		4.1		1	
Lead	ND	0.0100	1		Potassium		2.5	-	1	
Mercury	ND	0.000500			Sodium		65.4		1	
Molybdenum	0.0111	0.005	1						-	
TT-MW2-1			05-09-1	857-7	09/30/05	Aqueous	10/03/05	10/04/05	051003	L06
Comment(s):	-Mercury was analyzed on 10/6/20	005 2:12:28	3 PM with	n batch 05	1003L05					
Parameter	Result	RL	DF	Qual	Parameter		Res	ult RL	DF	Qual
Antimony	ND	0.0150	1		Nickel		ND.	0.00500	1	
Arsenic	ND ND	0.0130	1		Selenium		ND	0.00500	1	
Barium	0.133	0.0100	1		Silver		ND	0.00500	1	
Beryllium	ND	0.00100	1		Thallium		ND	0.00500	1	
Cadmium	ND	0.00100	1		Vanadium			.0052 0.005	1	
Chromium		5 0.005	1		Zinc			.0149 0.01	1	
Cobalt	ND	0.00500	1		Calcium		62		1	
Copper		0.005	1		Magnesium		11	- 0	1	
Lead	ND	0.0100	1		Potassium			.42 0.5	1	
Mercury	ND	0.000500			Sodium		169		1	
Molybdenum	ND	0.00500	1				. 00	3.000		
. ,	<u>-</u>	3000	•							

DF - Dilution Factor

Qual - Qualifiers

Tetra Tech, Inc.

348 West Hospitality Lane, Ste 100 San Bernardino, CA 92408-3216

Date Received:

09/30/05

Work Order No:

05-09-1857

Preparation:

EPA 3010A Total / EPA 7470A Total

Method:

EPA 6010B / EPA 7470A

Units:

mg/L

Project: Beaumont Site 2 - 16392-01

Page 3 of 4

rojoot. Boadmont on	.0 2 10002	0 1							ı ugu	, 0 01
Client Sample Number				ıb Sample Number	Date Collected	Matrix	Date Prepared	Date Analyzed	QC Ba	tch ID
TT-MW2-3			05-09-1	1857-8	09/30/05	Aqueous	10/03/05	10/04/05	051003	L06
Comment(s): -Mercury was ana	alyzed on 10/6/200	5 2:14:40	PM wit	h batch 05	1003L05					
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	<u>Qual</u>	<u>Parameter</u>		Resu	<u>lt RL</u>	<u>DF</u>	Qual
Antimony	ND	0.0150	1		Nickel		ND	0.00500	1	
rsenic	ND	0.0100	1		Selenium		0.0	0151 0.015	1	
Barium	0.120	0.01	1		Silver		ND	0.00500	1	
Beryllium	ND	0.00100	1		Thallium		ND	0.0150	1	
Cadmium	ND	0.00500	1		Vanadium		0.0	0.005	1	
Chromium	0.0056	0.005	1		Zinc		0.0	0168 0.01	1	
Cobalt	ND	0.00500	1		Calcium		87.3	3 0.1	1	
Copper	0.0051	0.005	1		Magnesium		13.8	3 0.1	1	
_ead	ND	0.0100	1		Potassium		3.4	16 0.5	1	
Mercury	ND	0.000500	1		Sodium		187	0.500	1	
Molybdenum	ND	0.00500	1							
TT-MW2-103			05-09-1	1857-9	09/30/05	Aqueous	10/03/05	10/04/05	051003	L06
Comment(s): -Mercury was ana	alyzed on 10/6/200	5 2:16:53	PM with	h batch 05	10031 05					
Parameter	Result	RL	DF	Qual	Parameter		Resu	lt RL	DF	Qual
Antimony	ND ND	0.0150	1		Nickel		ND	0.00500	1	
Arsenic		0.0100	1		Selenium		ND	0.0150	1	
Barium		0.01	1		Silver		ND	0.00500	1	
Beryllium		0.00100	1		Thallium		ND	0.0150	1	
Cadmium		0.00500	1		Vanadium			0060 0.005	1	
Chromium	0.0059		1		Zinc			0149 0.01	1	
Cobalt		0.00500	1		Calcium		84.8		1	
Copper	0.0072		1		Magnesium		13.8		1	
_ead		0.0100	1		Potassium		3.5		1	
Mercury		0.000500	-		Sodium		181	0.500	1	
Molybdenum		0.00500	1							
Method Blank			099-04	-008-2,133	B N/A	Aqueous	10/03/05	10/04/05	051003	L05
Parameter	Result	RL	DF	Qual						
arameter	INGOUIL	IXL	<u> </u>	Quai						

DF - Dilution Factor

0.000500

Qual - Qualifiers

Mercury

Tetra Tech, Inc.

348 West Hospitality Lane, Ste 100 San Bernardino, CA 92408-3216

Date Received:

09/30/05

Work Order No:

05-09-1857

Preparation:

EPA 3010A Total / EPA 7470A Total

Method:

EPA 6010B / EPA 7470A

Units:

mg/L

Project: Beaumont Site 2 - 16392-01

Page 4 of 4

Client Sample Number				ab Sample Number	Date Collected	Matrix	Date Prepared	Date Analyzed	QC Ba	tch ID
Method Blank			097-01	-003-5,39	4 N/A	Aqueous	10/03/05	10/04/05	051003	L06
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	Qual	<u>Parameter</u>		Res	<u>ult RL</u>	<u>DF</u>	Qual
Antimony	ND	0.0150	1		Selenium		ND	0.0150	1	
Arsenic	ND	0.0100	1		Silver		ND	0.00500	1	
Barium	ND	0.0100	1		Thallium		ND	0.0150	1	
Beryllium	ND	0.00100	1		Vanadium		ND	0.00500	1	
Cadmium	ND	0.00500	1		Zinc		ND	0.0100	1	
Chromium	ND	0.00500	1		Calcium		ND	0.100	1	
Cobalt	ND	0.00500	1		Magnesium		ND	0.100	1	
Copper	ND	0.00500	1		Potassium		ND	0.500	1	
Lead	ND	0.0100	1		Sodium		ND	0.500	1	
Molybdenum	ND	0.00500	1		Nickel		ND	0.00500	1	

Tetra Tech, Inc.

348 West Hospitality Lane, Ste 100 San Bernardino, CA 92408-3216

Date Received:

09/30/05 05-09-1857

Work Order No: Preparation:

EPA 5030B

Method: Units:

EPA 8260B ug/L

Project: Beaumont Site 2 - 16392-01

Page 1 of 10

Client Sample Number				b Sample Number	Date Collected	Matrix	Date Prepared	Date Analyzed	QC Ba	tch ID
LTB-093005			05-09-1	1857-1	09/30/05	Aqueous	10/03/05	10/03/05	051003	L01
<u>Parameter</u>	Result	RL	DF	Qual	<u>Parameter</u>		Resul	t RL	<u>DF</u>	<u>Qual</u>
Acetone	ND	10	1		1,3-Dichloropro	opane	ND	1.0	1	
Benzene	ND	0.50	1		2,2-Dichloropro		ND	1.0	1	
Bromobenzene	ND	1.0	1		1,1-Dichloropro		ND	1.0	1	
Bromochloromethane	ND	1.0	1		c-1,3-Dichlorop		ND	0.50	1	
Bromodichloromethane	ND	1.0	1		t-1,3-Dichlorop	•	ND	0.50	1	
Bromoform	ND	1.0	1		Ethylbenzene		ND	1.0	1	
Bromomethane	ND	10	1		2-Hexanone		ND	10	1	
2-Butanone	ND	10	1		Isopropylbenze	ene	ND	1.0	1	
n-Butylbenzene	ND	1.0	1		p-Isopropyltolu		ND	1.0	1	
sec-Butylbenzene	ND	1.0	1		Methylene Chlo		ND	10	1	
tert-Butylbenzene	ND	1.0	1		4-Methyl-2-Per		ND	10	1	
Carbon Disulfide	ND	10	1		Naphthalene		ND	10	1	
Carbon Tetrachloride	ND	0.50	1		n-Propylbenzer	ne	ND	1.0	1	
Chlorobenzene	ND	1.0	1		Styrene		ND	1.0	1	
Chloroethane	ND	1.0	1		1,1,1,2-Tetrach	nloroethane	ND	1.0	1	
Chloroform	ND	1.0	1		1,1,2,2-Tetrach		ND	1.0	1	
Chloromethane	ND	10	1		Tetrachloroethe		ND	1.0	1	
2-Chlorotoluene	ND	1.0	1		Toluene		ND	1.0	1	
4-Chlorotoluene	ND	1.0	1		1,2,3-Trichloro	benzene	ND	1.0	1	
Dibromochloromethane	ND	1.0	1		1,2,4-Trichloro		ND	1.0	1	
1,2-Dibromo-3-Chloropropane	ND	5.0	1		1,1,1-Trichloro		ND	1.0	1	
1,2-Dibromoethane	ND	1.0	1			-1,2,2-Trifluoroeth		10	1	
Dibromomethane	ND	1.0	1		1,1,2-Trichloro		ND	1.0	1	
1,2-Dichlorobenzene	ND	1.0	1		Trichloroethene		ND	1.0	1	
1,3-Dichlorobenzene	ND	1.0	1		Trichlorofluoro	methane	ND	10	1	
1,4-Dichlorobenzene	ND	1.0	1		1,2,3-Trichloro	propane	ND	5.0	1	
Dichlorodifluoromethane	ND	1.0	1		1,2,4-Trimethyl		ND	1.0	1	
1,1-Dichloroethane	ND	1.0	1		1,3,5-Trimethyl		ND	1.0	1	
1,2-Dichloroethane	ND	0.50	1		Vinyl Acetate		ND	10	1	
1,1-Dichloroethene	ND	1.0	1		Vinyl Chloride		ND	0.50	1	
c-1,2-Dichloroethene	ND	1.0	1		p/m-Xylene		ND	1.0	1	
t-1,2-Dichloroethene	ND	1.0	1		o-Xylene		ND	1.0	1	
1,2-Dichloropropane	ND	1.0	1		Methyl-t-Butyl E	Ether (MTBE)	ND	1.0	1	
Surrogates:	REC (%)	Control	•	Qual	Surrogates:	(REC (9		•	Qual
		Limits						Limits		
Dibromofluoromethane	96	74-140			1,2-Dichloroeth	nane-d4	98	74-146		
Toluene-d8	89	88-112			1,4-Bromofluor	robenzene	91	74-110		

09/30/05

05-09-1857

EPA 5030B

EPA 8260B

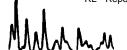
ug/L

Analytical Report

Tetra Tech, Inc.

348 West Hospitality Lane, Ste 100 San Bernardino, CA 92408-3216

Date Received:


Work Order No: Preparation:

Method:
Units:

Page 2 of 10

Project: Beaumont Site 2 - 16392-01

Client Sample Number				b Sample Number	Date Collected	Matrix	Date Prepared	Date Analyzed	QC Ba	itch ID
LEB-093005-GP			05-09-1	857-2	09/30/05	Aqueous	10/03/05	10/03/05	051003	BL01
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	Qual	<u>Parameter</u>		Resu	lt RL	<u>DF</u>	Qual
Acetone	ND	10	1		1,3-Dichloropro	opane	ND	1.0	1	
Benzene	ND	0.50	1		2,2-Dichloropro	•	ND	1.0	1	
Bromobenzene	ND	1.0	1		1,1-Dichloropro	•	ND	1.0	1	
Bromochloromethane	ND	1.0	1		c-1,3-Dichlorop	oropene	ND	0.50	1	
Bromodichloromethane	ND	1.0	1		t-1,3-Dichlorop	ropene	ND	0.50	1	
Bromoform	ND	1.0	1		Ethylbenzene	•	ND	1.0	1	
Bromomethane	ND	10	1		2-Hexanone		ND	10	1	
2-Butanone	ND	10	1		Isopropylbenze	ene	ND	1.0	1	
n-Butylbenzene	ND	1.0	1		p-Isopropyltolu	ene	ND	1.0	1	
sec-Butylbenzene	ND	1.0	1		Methylene Chlo	oride	ND	10	1	
tert-Butylbenzene	ND	1.0	1		4-Methyl-2-Per	ntanone	ND	10	1	
Carbon Disulfide	ND	10	1		Naphthalene		ND	10	1	
Carbon Tetrachloride	ND	0.50	1		n-Propylbenzer	ne	ND	1.0	1	
Chlorobenzene	ND	1.0	1		Styrene		ND	1.0	1	
Chloroethane	ND	1.0	1		1,1,1,2-Tetrach	nloroethane	ND	1.0	1	
Chloroform	ND	1.0	1		1,1,2,2-Tetrach	nloroethane	ND	1.0	1	
Chloromethane	ND	10	1		Tetrachloroethe	ene	ND	1.0	1	
2-Chlorotoluene	ND	1.0	1		Toluene		ND	1.0	1	
4-Chlorotoluene	ND	1.0	1		1,2,3-Trichloro	benzene	ND	1.0	1	
Dibromochloromethane	ND	1.0	1		1,2,4-Trichloro	benzene	ND	1.0	1	
1,2-Dibromo-3-Chloropropane	ND	5.0	1		1,1,1-Trichloro	ethane	ND	1.0	1	
1,2-Dibromoethane	ND	1.0	1		1,1,2-Trichloro	-1,2,2-Trifluoroeth	nane ND	10	1	
Dibromomethane	ND	1.0	1		1,1,2-Trichloro	ethane	ND	1.0	1	
1,2-Dichlorobenzene	ND	1.0	1		Trichloroethene	е	ND	1.0	1	
1,3-Dichlorobenzene	ND	1.0	1		Trichlorofluoro	methane	ND	10	1	
1,4-Dichlorobenzene	ND	1.0	1		1,2,3-Trichloro	propane	ND	5.0	1	
Dichlorodifluoromethane	ND	1.0	1		1,2,4-Trimethyl	lbenzene	ND	1.0	1	
1,1-Dichloroethane	ND	1.0	1		1,3,5-Trimethyl	lbenzene	ND	1.0	1	
1,2-Dichloroethane	ND	0.50	1		Vinyl Acetate		ND	10	1	
1,1-Dichloroethene	ND	1.0	1		Vinyl Chloride		ND	0.50	1	
c-1,2-Dichloroethene	ND	1.0	1		p/m-Xylene		ND	1.0	1	
t-1,2-Dichloroethene	ND	1.0	1		o-Xylene		ND	1.0	1	
1,2-Dichloropropane	ND	1.0	1		Methyl-t-Butyl E	Ether (MTBE)	ND	1.0	1	
Surrogates:	REC (%)	Control		Qual	Surrogates:		REC (_	<u>Qual</u>
		<u>Limits</u>						<u>Limits</u>		
Dibromofluoromethane	95	74-140			1,2-Dichloroeth		97	74-146		
Toluene-d8	97	88-112			1,4-Bromofluor	obenzene	92	74-110		

DF - Dilution Factor , Qual - Qualifiers

Tetra Tech, Inc.

348 West Hospitality Lane, Ste 100 San Bernardino, CA 92408-3216

Date Received:

09/30/05 Work Order No: 05-09-1857

Preparation: **EPA 5030B**

Method: **EPA 8260B** Units: ug/L

Page 3 of 10 Project: Beaumont Site 2 - 16392-01

Client Sample Number				b Sample Number	Date Collected	Matrix	Date Prepared	Date Analyzed	QC Ba	tch ID
LEB-093005-B			05-09-1	1857-3	09/30/05	Aqueous	10/03/05	10/03/05	051003	L01
<u>Parameter</u>	Result	<u>RL</u>	DF	Qual	<u>Parameter</u>		Resu	lt RL	<u>DF</u>	<u>Qual</u>
Acetone	ND	10	1		1,3-Dichloropro	opane	ND	1.0	1	
Benzene	ND	0.50	1		2,2-Dichloropro	•	ND	1.0	1	
Bromobenzene	ND	1.0	1		1,1-Dichloropro	•	ND	1.0	1	
Bromochloromethane	ND	1.0	1		c-1,3-Dichlorop	oropene	ND	0.50	1	
Bromodichloromethane	ND	1.0	1		t-1,3-Dichlorop		ND	0.50	1	
Bromoform	ND	1.0	1		Ethylbenzene	•	ND	1.0	1	
Bromomethane	ND	10	1		2-Hexanone		ND	10	1	
2-Butanone	ND	10	1		Isopropylbenze	ene	ND	1.0	1	
n-Butylbenzene	ND	1.0	1		p-Isopropyltolu	ene	ND	1.0	1	
sec-Butylbenzene	ND	1.0	1		Methylene Chlo	oride	ND	10	1	
tert-Butylbenzene	ND	1.0	1		4-Methyl-2-Per	ntanone	ND	10	1	
Carbon Disulfide	ND	10	1		Naphthalene		ND	10	1	
Carbon Tetrachloride	ND	0.50	1		n-Propylbenzer	ne	ND	1.0	1	
Chlorobenzene	ND	1.0	1		Styrene		ND	1.0	1	
Chloroethane	ND	1.0	1		1,1,1,2-Tetrach	nloroethane	ND	1.0	1	
Chloroform	ND	1.0	1		1,1,2,2-Tetrach	nloroethane	ND	1.0	1	
Chloromethane	ND	10	1		Tetrachloroethe	ene	ND	1.0	1	
2-Chlorotoluene	ND	1.0	1		Toluene		ND	1.0	1	
4-Chlorotoluene	ND	1.0	1		1,2,3-Trichloro	benzene	ND	1.0	1	
Dibromochloromethane	ND	1.0	1		1,2,4-Trichloro	benzene	ND	1.0	1	
1,2-Dibromo-3-Chloropropane	ND	5.0	1		1,1,1-Trichloro	ethane	ND	1.0	1	
1,2-Dibromoethane	ND	1.0	1		1,1,2-Trichloro	-1,2,2-Trifluoroeth	nane ND	10	1	
Dibromomethane	ND	1.0	1		1,1,2-Trichloro	ethane	ND	1.0	1	
1,2-Dichlorobenzene	ND	1.0	1		Trichloroethene	е	ND	1.0	1	
1,3-Dichlorobenzene	ND	1.0	1		Trichlorofluoro	methane	ND	10	1	
1,4-Dichlorobenzene	ND	1.0	1		1,2,3-Trichloro	propane	ND	5.0	1	
Dichlorodifluoromethane	ND	1.0	1		1,2,4-Trimethyl	lbenzene	ND	1.0	1	
1,1-Dichloroethane	ND	1.0	1		1,3,5-Trimethyl	lbenzene	ND	1.0	1	
1,2-Dichloroethane	ND	0.50	1		Vinyl Acetate		ND	10	1	
1,1-Dichloroethene	ND	1.0	1		Vinyl Chloride		ND	0.50	1	
c-1,2-Dichloroethene	ND	1.0	1		p/m-Xylene		ND	1.0	1	
t-1,2-Dichloroethene	ND	1.0	1		o-Xylene		ND	1.0	1	
1,2-Dichloropropane	ND	1.0	1		Methyl-t-Butyl E	Ether (MTBE)	ND	1.0	1	
Surrogates:	REC (%)	Control		<u>Qual</u>	Surrogates:		REC (%) Control	-	Qual
		<u>Limits</u>						<u>Limits</u>		
Dibromofluoromethane	94	74-140			1,2-Dichloroeth		97	74-146		
Toluene-d8	96	88-112			1,4-Bromofluor	robenzene	94	74-110		

DF - Dilution Factor Qual - Qualifiers

Tetra Tech, Inc.

348 West Hospitality Lane, Ste 100 San Bernardino, CA 92408-3216

Date Received:

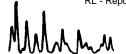
Work Order No: Preparation:

EPA 5030B EPA 8260B

Units:

Method:

ug/L


05-09-1857

09/30/05

Project: Beaumont Site 2 - 16392-01

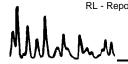
Page 4 of 10

Client Sample Number				b Sample Number	Date Collected	Matrix	Date Prepared	Date Analyzed	QC Ba	tch ID
TT-MW2-2			05-09-1	857-4	09/30/05	Aqueous	10/03/05	10/03/05	051003	L01
Parameter Parameter	Result	RL	DF	Qual	<u>Parameter</u>		Resul	t RL	<u>DF</u>	<u>Qual</u>
Acetone	ND	10	1		1,3-Dichloropro	opane	ND	1.0	1	
Benzene	ND	0.50	1		2,2-Dichloropro		ND	1.0	1	
Bromobenzene	ND	1.0	1		1,1-Dichloropro		ND	1.0	1	
Bromochloromethane	ND	1.0	1		c-1,3-Dichlorop		ND	0.50	1	
Bromodichloromethane	ND	1.0	1		t-1,3-Dichlorop	•	ND	0.50	1	
Bromoform	ND	1.0	1		Ethylbenzene		ND	1.0	1	
Bromomethane	ND	10	1		2-Hexanone		ND	10	1	
2-Butanone	ND	10	1		Isopropylbenze	ene	ND	1.0	1	
n-Butylbenzene	ND	1.0	1		p-Isopropyltolu		ND	1.0	1	
sec-Butylbenzene	ND	1.0	1		Methylene Chlo		ND	10	1	
tert-Butylbenzene	ND	1.0	1		4-Methyl-2-Per		ND	10	1	
Carbon Disulfide	ND	10	1		Naphthalene		ND	10	1	
Carbon Tetrachloride	ND	0.50	1		n-Propylbenzer	ne	ND	1.0	1	
Chlorobenzene	ND	1.0	1		Styrene		ND	1.0	1	
Chloroethane	ND	1.0	1		1,1,1,2-Tetrach	nloroethane	ND	1.0	1	
Chloroform	ND	1.0	1		1,1,2,2-Tetrach	nloroethane	ND	1.0	1	
Chloromethane	ND	10	1		Tetrachloroethe	ene	ND	1.0	1	
2-Chlorotoluene	ND	1.0	1		Toluene		ND	1.0	1	
4-Chlorotoluene	ND	1.0	1		1,2,3-Trichloro	benzene	ND	1.0	1	
Dibromochloromethane	ND	1.0	1		1,2,4-Trichloro	benzene	ND	1.0	1	
1,2-Dibromo-3-Chloropropane	ND	5.0	1		1,1,1-Trichloro		ND	1.0	1	
1,2-Dibromoethane	ND	1.0	1		1,1,2-Trichloro	-1,2,2-Trifluoroeth	ane ND	10	1	
Dibromomethane	ND	1.0	1		1,1,2-Trichloro	ethane	ND	1.0	1	
1,2-Dichlorobenzene	ND	1.0	1		Trichloroethene	е	ND	1.0	1	
1,3-Dichlorobenzene	ND	1.0	1		Trichlorofluoro	methane	ND	10	1	
1,4-Dichlorobenzene	ND	1.0	1		1,2,3-Trichloro	propane	ND	5.0	1	
Dichlorodifluoromethane	ND	1.0	1		1,2,4-Trimethy	lbenzene	ND	1.0	1	
1,1-Dichloroethane	ND	1.0	1		1,3,5-Trimethy	lbenzene	ND	1.0	1	
1,2-Dichloroethane	ND	0.50	1		Vinyl Acetate		ND	10	1	
1,1-Dichloroethene	ND	1.0	1		Vinyl Chloride		ND	0.50	1	
c-1,2-Dichloroethene	ND	1.0	1		p/m-Xylene		ND	1.0	1	
t-1,2-Dichloroethene	ND	1.0	1		o-Xylene		ND	1.0	1	
1,2-Dichloropropane	ND	1.0	1		Methyl-t-Butyl I	Ether (MTBE)	ND	1.0	1	
Surrogates:	REC (%)	Control Limits		<u>Qual</u>	Surrogates:		<u>REC (9</u>	<u>%)</u> <u>Control</u> Limits		<u>Qual</u>
Dibromofluoromethane	95	74-140			1,2-Dichloroeth	nane-d4	99	74-146		
Toluene-d8	98	88-112			1,4-Bromofluor		93	74-140		

Tetra Tech, Inc.

348 West Hospitality Lane, Ste 100 San Bernardino, CA 92408-3216

Date Received:


09/30/05 Work Order No: 05-09-1857

Preparation: **EPA 5030B** Method: **EPA 8260B**

Units: ug/L

Page 5 of 10 Project: Beaumont Site 2 - 16392-01

Client Sample Number				b Sample Number	Date Collected	Matrix	Date Prepared	Date Analyzed	QC Ba	itch ID
TT-MW2-4S			05-09-1	1857-5	09/30/05	Aqueous	10/03/05	10/03/05	051003	BL01
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	Qual	<u>Parameter</u>		Resi	<u>ılt RL</u>	<u>DF</u>	<u>Qual</u>
Acetone	ND	10	1		1,3-Dichloropro	opane	ND	1.0	1	
Benzene	ND	0.50	1		2,2-Dichloropro	pane	ND	1.0	1	
Bromobenzene	ND	1.0	1		1,1-Dichloropro	pene	ND	1.0	1	
Bromochloromethane	ND	1.0	1		c-1,3-Dichlorop	oropene	ND	0.50	1	
Bromodichloromethane	ND	1.0	1		t-1,3-Dichlorop	ropene	ND	0.50	1	
Bromoform	ND	1.0	1		Ethylbenzene		ND	1.0	1	
Bromomethane	ND	10	1		2-Hexanone		ND	10	1	
2-Butanone	ND	10	1		Isopropylbenze	ene	ND	1.0	1	
n-Butylbenzene	ND	1.0	1		p-Isopropyltolu	ene	ND	1.0	1	
sec-Butylbenzene	ND	1.0	1		Methylene Chlo	oride	ND	10	1	
tert-Butylbenzene	ND	1.0	1		4-Methyl-2-Per	ntanone	ND	10	1	
Carbon Disulfide	ND	10	1		Naphthalene		ND	10	1	
Carbon Tetrachloride	ND	0.50	1		n-Propylbenzer	ne	ND	1.0	1	
Chlorobenzene	ND	1.0	1		Styrene		ND	1.0	1	
Chloroethane	ND	1.0	1		1,1,1,2-Tetrach	nloroethane	ND	1.0	1	
Chloroform	ND	1.0	1		1,1,2,2-Tetrach	nloroethane	ND	1.0	1	
Chloromethane	ND	10	1		Tetrachloroethe	ene	ND	1.0	1	
2-Chlorotoluene	ND	1.0	1		Toluene		ND	1.0	1	
4-Chlorotoluene	ND	1.0	1		1,2,3-Trichloro	benzene	ND	1.0	1	
Dibromochloromethane	ND	1.0	1		1,2,4-Trichloro	benzene	ND	1.0	1	
1,2-Dibromo-3-Chloropropane	ND	5.0	1		1,1,1-Trichloro	ethane	ND	1.0	1	
1,2-Dibromoethane	ND	1.0	1		1,1,2-Trichloro	-1,2,2-Trifluoroeth	nane ND	10	1	
Dibromomethane	ND	1.0	1		1,1,2-Trichloro		ND	1.0	1	
1,2-Dichlorobenzene	ND	1.0	1		Trichloroethene	е	ND	1.0	1	
1,3-Dichlorobenzene	ND	1.0	1		Trichlorofluoro	methane	ND	10	1	
1,4-Dichlorobenzene	ND	1.0	1		1,2,3-Trichloro	propane	ND	5.0	1	
Dichlorodifluoromethane	ND	1.0	1		1,2,4-Trimethy	lbenzene	ND	1.0	1	
1,1-Dichloroethane	ND	1.0	1		1,3,5-Trimethy	lbenzene	ND	1.0	1	
1,2-Dichloroethane	ND	0.50	1		Vinyl Acetate		ND	10	1	
1,1-Dichloroethene	ND	1.0	1		Vinyl Chloride		ND	0.50	1	
c-1,2-Dichloroethene	ND	1.0	1		p/m-Xylene		ND	1.0	1	
t-1,2-Dichloroethene	ND	1.0	1		o-Xylene		ND	1.0	1	
1,2-Dichloropropane	ND	1.0	1		Methyl-t-Butyl I	Ether (MTBE)	ND	1.0	1	
Surrogates:	REC (%)	Control Limits		<u>Qual</u>	Surrogates:	,	REC	(%) Control Limits	-	<u>Qual</u>
Dibromofluoromethane	98	74-140			1,2-Dichloroeth	nane-d4	103	74-146		
Toluene-d8	96	88-112			1,4-Bromofluor	robenzene	92	74-110		

DF - Dilution Factor Qual - Qualifiers

Tetra Tech, Inc.

348 West Hospitality Lane, Ste 100 San Bernardino, CA 92408-3216

Date Received:

Work Order No: Preparation:

Method: Units: 05-09-1857 EPA 5030B

09/30/05

EPA 8260B ug/L

Project: Beaumont Site 2 - 16392-01

Page 6 of 10

Client Sample Number				b Sample Number	Date Collected	Matrix	Date Prepared	Date Analyzed	QC Ba	atch ID
TT-MW2-4D			05-09-1	857-6	09/30/05	Aqueous	10/03/05	10/03/05	051003	3L01
Parameter	Result	RL	DF	Qual	Parameter		Resu	lt RL	DF	Qual
Acetone	ND	10	1		1,3-Dichloropro	ppane	ND	1.0	1	
Benzene	ND	0.50	1		2,2-Dichloropro	•	ND	1.0	1	
Bromobenzene	ND	1.0	1		1,1-Dichloropro	•	ND	1.0	1	
Bromochloromethane	ND	1.0	1		c-1,3-Dichlorop	•	ND	0.50	1	
Bromodichloromethane	ND	1.0	1		t-1,3-Dichlorop	•	ND	0.50	1	
Bromoform	ND	1.0	1		Ethylbenzene		ND	1.0	1	
Bromomethane	ND	10	1		2-Hexanone		ND	10	1	
2-Butanone	ND	10	1		Isopropylbenze	ene	ND	1.0	1	
n-Butylbenzene	ND	1.0	1		p-Isopropyltolu	ene	ND	1.0	1	
sec-Butylbenzene	ND	1.0	1		Methylene Chlo		ND	10	1	
tert-Butylbenzene	ND	1.0	1		4-Methyl-2-Pen	ntanone	ND	10	1	
Carbon Disulfide	ND	10	1		Naphthalene		ND	10	1	
Carbon Tetrachloride	ND	0.50	1		n-Propylbenzer	ne	ND	1.0	1	
Chlorobenzene	ND	1.0	1		Styrene		ND	1.0	1	
Chloroethane	ND	1.0	1		1,1,1,2-Tetrach	nloroethane	ND	1.0	1	
Chloroform	ND	1.0	1		1,1,2,2-Tetrach	nloroethane	ND	1.0	1	
Chloromethane	ND	10	1		Tetrachloroethe	ene	ND	1.0	1	
2-Chlorotoluene	ND	1.0	1		Toluene		ND	1.0	1	
4-Chlorotoluene	ND	1.0	1		1,2,3-Trichlorol	benzene	ND	1.0	1	
Dibromochloromethane	ND	1.0	1		1,2,4-Trichlorol	benzene	ND	1.0	1	
1,2-Dibromo-3-Chloropropane	ND	5.0	1		1,1,1-Trichloro	ethane	ND	1.0	1	
1,2-Dibromoethane	ND	1.0	1		1,1,2-Trichloro-	-1,2,2-Trifluoroeth	ane ND	10	1	
Dibromomethane	ND	1.0	1		1,1,2-Trichloro	ethane	ND	1.0	1	
1,2-Dichlorobenzene	ND	1.0	1		Trichloroethene	Э	ND	1.0	1	
1,3-Dichlorobenzene	ND	1.0	1		Trichlorofluoror	methane	ND	10	1	
1,4-Dichlorobenzene	ND	1.0	1		1,2,3-Trichloro	propane	ND	5.0	1	
Dichlorodifluoromethane	ND	1.0	1		1,2,4-Trimethyl	lbenzene	ND	1.0	1	
1,1-Dichloroethane	ND	1.0	1		1,3,5-Trimethyl	lbenzene	ND	1.0	1	
1,2-Dichloroethane	ND	0.50	1		Vinyl Acetate		ND	10	1	
1,1-Dichloroethene	ND	1.0	1		Vinyl Chloride		ND	0.50	1	
c-1,2-Dichloroethene	ND	1.0	1		p/m-Xylene		ND	1.0	1	
t-1,2-Dichloroethene	ND	1.0	1		o-Xylene		ND	1.0	1	
1,2-Dichloropropane	ND	1.0	1		Methyl-t-Butyl E	Ether (MTBE)	ND	1.0	1	
Surrogates:	REC (%)	<u>Control</u>		<u>Qual</u>	Surrogates:		REC (_	-	<u>Qual</u>
		<u>Limits</u>						<u>Limits</u>		
Dibromofluoromethane	99	74-140			1,2-Dichloroeth		104	74-146		
Toluene-d8	96	88-112			1,4-Bromofluor	obenzene	92	74-110		

DF - Dilution Factor , Qual - Qualifiers

Tetra Tech, Inc.

348 West Hospitality Lane, Ste 100 San Bernardino, CA 92408-3216

Date Received:

09/30/05 05-09-1857

Work Order No: Preparation:

EPA 5030B

Method:

EPA 8260B ug/L

Units:

Page 7 of 10

Project: Beaumont Site 2 - 16392-01

Client Sample Number				b Sample Number	Date Collected	Matrix	Date Prepared	Date Analyzed	QC Ba	itch ID
TT-MW2-1			05-09- 1	1857-7	09/30/05	Aqueous	10/03/05	10/03/05	051003	BL01
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	Qual	<u>Parameter</u>		Resu	ılt RL	<u>DF</u>	Qual
Acetone	ND	10	1		1,3-Dichloropro	opane	ND	1.0	1	
Benzene	ND	0.50	1		2,2-Dichloropro	pane	ND	1.0	1	
Bromobenzene	ND	1.0	1		1,1-Dichloropro	pene	ND	1.0	1	
Bromochloromethane	ND	1.0	1		c-1,3-Dichlorop		ND	0.50	1	
Bromodichloromethane	ND	1.0	1		t-1,3-Dichlorop		ND	0.50	1	
Bromoform	ND	1.0	1		Ethylbenzene	•	ND	1.0	1	
Bromomethane	ND	10	1		2-Hexanone		ND	10	1	
2-Butanone	ND	10	1		Isopropylbenze	ene	ND	1.0	1	
n-Butylbenzene	ND	1.0	1		p-Isopropyltolu	ene	ND	1.0	1	
sec-Butylbenzene	ND	1.0	1		Methylene Chlo	oride	ND	10	1	
tert-Butylbenzene	ND	1.0	1		4-Methyl-2-Per	ntanone	ND	10	1	
Carbon Disulfide	ND	10	1		Naphthalene		ND	10	1	
Carbon Tetrachloride	ND	0.50	1		n-Propylbenzer	ne	ND	1.0	1	
Chlorobenzene	ND	1.0	1		Styrene		ND	1.0	1	
Chloroethane	ND	1.0	1		1,1,1,2-Tetrach	nloroethane	ND	1.0	1	
Chloroform	ND	1.0	1		1,1,2,2-Tetrach		ND	1.0	1	
Chloromethane	ND	10	1		Tetrachloroethe		ND	1.0	1	
2-Chlorotoluene	ND	1.0	1		Toluene		ND	1.0	1	
4-Chlorotoluene	ND	1.0	1		1,2,3-Trichloro	benzene	ND	1.0	1	
Dibromochloromethane	ND	1.0	1		1,2,4-Trichloro		ND	1.0	1	
1,2-Dibromo-3-Chloropropane	ND	5.0	1		1,1,1-Trichloro		ND	1.0	1	
1,2-Dibromoethane	ND	1.0	1		1.1.2-Trichloro	-1,2,2-Trifluoroeth	ane ND	10	1	
Dibromomethane	ND	1.0	1		1,1,2-Trichloro		ND	1.0	1	
1,2-Dichlorobenzene	ND	1.0	1		Trichloroethene		ND	1.0	1	
1,3-Dichlorobenzene	ND	1.0	1		Trichlorofluoro	methane	ND	10	1	
1,4-Dichlorobenzene	ND	1.0	1		1,2,3-Trichloro	propane	ND	5.0	1	
Dichlorodifluoromethane	ND	1.0	1		1,2,4-Trimethyl		ND	1.0	1	
1.1-Dichloroethane	ND	1.0	1		1,3,5-Trimethyl		ND	1.0	1	
1,2-Dichloroethane	ND	0.50	1		Vinyl Acetate		ND	10	1	
1,1-Dichloroethene	ND	1.0	1		Vinyl Chloride		ND	0.50	1	
c-1.2-Dichloroethene	ND	1.0	1		p/m-Xylene		ND	1.0	1	
t-1,2-Dichloroethene	ND	1.0	1		o-Xylene		ND	1.0	1	
1,2-Dichloropropane	ND	1.0	1		Methyl-t-Butyl B	Ether (MTBE)	ND	1.0	1	
Surrogates:	REC (%)	Control Limits	•	<u>Qual</u>	Surrogates:		REC (-	Qual
Dibromofluoromethane	95	74-140			1,2-Dichloroeth	nane-d4	100	74-146		
Toluene-d8	98 98	88-112			1,4-Bromofluor		93	74-140		
i diddiid-dd	30	00-112			1,4-01011011001	ODGI IZGI IG	33	74-110		

09/30/05

05-09-1857

Analytical Report

Tetra Tech, Inc.

348 West Hospitality Lane, Ste 100 San Bernardino, CA 92408-3216

Date Received:

Work Order No: Preparation:

EPA 5030B Method: **EPA 8260B** Units:

ug/L

Project: Beaumont Site 2 - 16392-01

Page 8 of 10

Client Sample Number				b Sample Number	Date Collected	Matrix	Date Prepared	Date Analyzed	QC Ba	tch ID
TT-MW2-3			05-09-1	1857-8	09/30/05	Aqueous	10/03/05	10/03/05	051003	L01
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	Qual	<u>Parameter</u>		Resu	ılt RL	<u>DF</u>	<u>Qual</u>
Acetone	ND	10	1		1,3-Dichloropro	pane	ND	1.0	1	
Benzene	ND	0.50	1		2,2-Dichloropro		ND	1.0	1	
Bromobenzene	ND	1.0	1		1,1-Dichloropro		ND	1.0	1	
Bromochloromethane	ND	1.0	1		c-1,3-Dichlorop	ropene	ND	0.50	1	
Bromodichloromethane	ND	1.0	1		t-1,3-Dichlorop	ropene	ND	0.50	1	
Bromoform	ND	1.0	1		Ethylbenzene	·	ND	1.0	1	
Bromomethane	ND	10	1		2-Hexanone		ND	10	1	
2-Butanone	ND	10	1		Isopropylbenze	ene	ND	1.0	1	
n-Butylbenzene	ND	1.0	1		p-Isopropyltolu	ene	ND	1.0	1	
sec-Butylbenzene	ND	1.0	1		Methylene Chlo		ND	10	1	
tert-Butylbenzene	ND	1.0	1		4-Methyl-2-Per	ntanone	ND	10	1	
Carbon Disulfide	ND	10	1		Naphthalene		ND	10	1	
Carbon Tetrachloride	ND	0.50	1		n-Propylbenzer	ne	ND	1.0	1	
Chlorobenzene	ND	1.0	1		Styrene		ND	1.0	1	
Chloroethane	ND	1.0	1		1,1,1,2-Tetrach	nloroethane	ND	1.0	1	
Chloroform	ND	1.0	1		1,1,2,2-Tetrach	nloroethane	ND	1.0	1	
Chloromethane	ND	10	1		Tetrachloroethe	ene	ND	1.0	1	
2-Chlorotoluene	ND	1.0	1		Toluene		ND	1.0	1	
4-Chlorotoluene	ND	1.0	1		1,2,3-Trichloro	benzene	ND	1.0	1	
Dibromochloromethane	ND	1.0	1		1,2,4-Trichloro	benzene	ND	1.0	1	
1,2-Dibromo-3-Chloropropane	ND	5.0	1		1,1,1-Trichloro	ethane	ND	1.0	1	
1,2-Dibromoethane	ND	1.0	1		1,1,2-Trichloro	-1,2,2-Trifluoroeth	ane ND	10	1	
Dibromomethane	ND	1.0	1		1,1,2-Trichloro	ethane	ND	1.0	1	
1,2-Dichlorobenzene	ND	1.0	1		Trichloroethene	Э	5.6	1.0	1	
1,3-Dichlorobenzene	ND	1.0	1		Trichlorofluoro	methane	ND	10	1	
1,4-Dichlorobenzene	ND	1.0	1		1,2,3-Trichloro	propane	ND	5.0	1	
Dichlorodifluoromethane	ND	1.0	1		1,2,4-Trimethyl	lbenzene	ND	1.0	1	
1,1-Dichloroethane	ND	1.0	1		1,3,5-Trimethyl	lbenzene	ND	1.0	1	
1,2-Dichloroethane	ND	0.50	1		Vinyl Acetate		ND	10	1	
1,1-Dichloroethene	ND	1.0	1		Vinyl Chloride		ND	0.50	1	
c-1,2-Dichloroethene	ND	1.0	1		p/m-Xylene		ND	1.0	1	
t-1,2-Dichloroethene	ND	1.0	1		o-Xylene		ND	1.0	1	
1,2-Dichloropropane	ND	1.0	1		Methyl-t-Butyl E	Ether (MTBE)	ND	1.0	1	
Surrogates:	REC (%)	Control Limits		<u>Qual</u>	Surrogates:	, ,	REC (%) <u>Control</u> Limits	-	Qual
Dibromofluoromethane	98	74-140			1,2-Dichloroeth	nane-d4	104	74-146		
Toluene-d8	97	88-112			1,4-Bromofluor		92	74-110		

Tetra Tech, Inc.

348 West Hospitality Lane, Ste 100 San Bernardino, CA 92408-3216

Date Received: Work Order No: Preparation:

05-09-1857 **EPA 5030B**

09/30/05

Method:

EPA 8260B

Units:

ug/L

Project: Beaumont Site 2 - 16392-01

Page 9 of 10

Client Sample Number				b Sample Number	Date Collected	Matrix	Date Prepared	Date Analyzed	QC Ba	tch ID
TT-MW2-103			05-09-1	857-9	09/30/05	Aqueous	10/03/05	10/03/05	051003	L01
Parameter	Result	RL	DF	Qual	<u>Parameter</u>		Resu	t RL	<u>DF</u>	<u>Qual</u>
Acetone	ND	10	1		1,3-Dichloropro	opane	ND	1.0	1	
Benzene	ND	0.50	1		2,2-Dichloropro		ND	1.0	1	
Bromobenzene	ND	1.0	1		1,1-Dichloropro		ND	1.0	1	
Bromochloromethane	ND	1.0	1		c-1,3-Dichlorop		ND	0.50	1	
Bromodichloromethane	ND	1.0	1		t-1,3-Dichlorop	•	ND	0.50	1	
Bromoform	ND	1.0	1		Ethylbenzene		ND	1.0	1	
Bromomethane	ND	10	1		2-Hexanone		ND	10	1	
2-Butanone	ND	10	1		Isopropylbenze	ene	ND	1.0	1	
n-Butylbenzene	ND	1.0	1		p-Isopropyltolu		ND	1.0	1	
sec-Butylbenzene	ND	1.0	1		Methylene Chlo		ND	10	1	
tert-Butylbenzene	ND	1.0	1		4-Methyl-2-Per		ND	10	1	
Carbon Disulfide	ND	10	1		Naphthalene		ND	10	1	
Carbon Tetrachloride	ND	0.50	1		n-Propylbenzer	ne	ND	1.0	1	
Chlorobenzene	ND	1.0	1		Styrene		ND	1.0	1	
Chloroethane	ND	1.0	1		1,1,1,2-Tetrach	nloroethane	ND	1.0	1	
Chloroform	ND	1.0	1		1,1,2,2-Tetrach	nloroethane	ND	1.0	1	
Chloromethane	ND	10	1		Tetrachloroethe	ene	ND	1.0	1	
2-Chlorotoluene	ND	1.0	1		Toluene		ND	1.0	1	
4-Chlorotoluene	ND	1.0	1		1,2,3-Trichloro	benzene	ND	1.0	1	
Dibromochloromethane	ND	1.0	1		1,2,4-Trichloro	benzene	ND	1.0	1	
1,2-Dibromo-3-Chloropropane	ND	5.0	1		1,1,1-Trichloro		ND	1.0	1	
1,2-Dibromoethane	ND	1.0	1		1,1,2-Trichloro	-1,2,2-Trifluoroeth	nane ND	10	1	
Dibromomethane	ND	1.0	1		1,1,2-Trichloro	ethane	ND	1.0	1	
1,2-Dichlorobenzene	ND	1.0	1		Trichloroethene	е	5.6	1.0	1	
1,3-Dichlorobenzene	ND	1.0	1		Trichlorofluoro	methane	ND	10	1	
1,4-Dichlorobenzene	ND	1.0	1		1,2,3-Trichloro	propane	ND	5.0	1	
Dichlorodifluoromethane	ND	1.0	1		1,2,4-Trimethyl	lbenzene	ND	1.0	1	
1,1-Dichloroethane	ND	1.0	1		1,3,5-Trimethyl	lbenzene	ND	1.0	1	
1,2-Dichloroethane	ND	0.50	1		Vinyl Acetate		ND	10	1	
1,1-Dichloroethene	ND	1.0	1		Vinyl Chloride		ND	0.50	1	
c-1,2-Dichloroethene	ND	1.0	1		p/m-Xylene		ND	1.0	1	
t-1,2-Dichloroethene	ND	1.0	1		o-Xylene		ND	1.0	1	
1,2-Dichloropropane	ND	1.0	1		Methyl-t-Butyl E	Ether (MTBE)	ND	1.0	1	
Surrogates:	REC (%)	Control Limits		<u>Qual</u>	Surrogates:		<u>REC (</u> 9	<u>%)</u> <u>Control</u> Limits		<u>Qual</u>
Dibromofluoromethane	99	74-140			1,2-Dichloroeth	nane-d4	106	74-146		
Toluene-d8	96	88-112			1,4-Bromofluor		92	74-110		

DF - Dilution Factor Qual - Qualifiers

Tetra Tech, Inc.

348 West Hospitality Lane, Ste 100 San Bernardino, CA 92408-3216

Date Received:

09/30/05 Work Order No: 05-09-1857

Preparation: **EPA 5030B** Method: **EPA 8260B**

Units: ug/L

Project: Beaumont Site 2 - 16392-01

Page 10 of 10

Client Sample Number				b Sample Number	Date Collected	Matrix	Date Prepared	Date Analyzed	QC Ba	tch ID
Method Blank			099-10-	-006-15,8	342 N/A	Aqueous	10/03/05	10/03/05	051003	L01
<u>Parameter</u>	Result	RL	DF	Qual	<u>Parameter</u>		Resu	lt RL	DF	<u>Qual</u>
Acetone	ND	10	1		1,3-Dichloropro	opane	ND	1.0	1	
Benzene	ND	0.50	1		2,2-Dichloropro	•	ND	1.0	1	
Bromobenzene	ND	1.0	1		1,1-Dichloropro	•	ND	1.0	1	
Bromochloromethane	ND	1.0	1		c-1,3-Dichloro		ND	0.50	1	
Bromodichloromethane	ND	1.0	1		t-1,3-Dichlorop	•	ND	0.50	1	
Bromoform	ND	1.0	1		Ethylbenzene		ND	1.0	1	
Bromomethane	ND	10	1		2-Hexanone		ND	10	1	
2-Butanone	ND	10	1		Isopropylbenze	ene	ND	1.0	1	
n-Butylbenzene	ND	1.0	1		p-Isopropyltolu		ND	1.0	1	
sec-Butylbenzene	ND	1.0	1		Methylene Chl		ND	10	1	
tert-Butylbenzene	ND	1.0	1		4-Methyl-2-Per		ND	10	1	
Carbon Disulfide	ND	10	1		Naphthalene		ND	10	1	
Carbon Tetrachloride	ND	0.50	1		n-Propylbenze	ne	ND	1.0	1	
Chlorobenzene	ND	1.0	1		Styrene		ND	1.0	1	
Chloroethane	ND	1.0	1		1,1,1,2-Tetracl	nloroethane	ND	1.0	1	
Chloroform	ND	1.0	1		1,1,2,2-Tetracl		ND	1.0	1	
Chloromethane	ND	10	1		Tetrachloroeth	ene	ND	1.0	1	
2-Chlorotoluene	ND	1.0	1		Toluene		ND	1.0	1	
4-Chlorotoluene	ND	1.0	1		1,2,3-Trichloro	benzene	ND	1.0	1	
Dibromochloromethane	ND	1.0	1		1,2,4-Trichloro		ND	1.0	1	
1,2-Dibromo-3-Chloropropane	ND	5.0	1		1,1,1-Trichloro		ND	1.0	1	
1,2-Dibromoethane	ND	1.0	1		1,1,2-Trichloro	-1,2,2-Trifluoroeth	nane ND	10	1	
Dibromomethane	ND	1.0	1		1,1,2-Trichloro	ethane	ND	1.0	1	
1,2-Dichlorobenzene	ND	1.0	1		Trichloroethen	е	ND	1.0	1	
1,3-Dichlorobenzene	ND	1.0	1		Trichlorofluoro	methane	ND	10	1	
1,4-Dichlorobenzene	ND	1.0	1		1,2,3-Trichloro	propane	ND	5.0	1	
Dichlorodifluoromethane	ND	1.0	1		1,2,4-Trimethy	lbenzene	ND	1.0	1	
1,1-Dichloroethane	ND	1.0	1		1,3,5-Trimethy	lbenzene	ND	1.0	1	
1,2-Dichloroethane	ND	0.50	1		Vinyl Acetate		ND	10	1	
1,1-Dichloroethene	ND	1.0	1		Vinyl Chloride		ND	0.50	1	
c-1,2-Dichloroethene	ND	1.0	1		p/m-Xylene		ND	1.0	1	
t-1,2-Dichloroethene	ND	1.0	1		o-Xylene		ND	1.0	1	
1,2-Dichloropropane	ND	1.0	1		Methyl-t-Butyl	Ether (MTBE)	ND	1.0	1	
Surrogates:	<u>REC (%)</u>	Control Limits		<u>Qual</u>	Surrogates:	, ,	REC (S	<u>%)</u> <u>Control</u> Limits		<u>Qual</u>
Dibromofluoromethane	96	74-140			1,2-Dichloroeth	nane-d4	98	74-146		
Toluene-d8	96	88-112			1,4-Bromofluoi		92	74-140		

Tetra Tech, Inc. 348 West Hospitality Lane, Ste 100 San Bernardino, CA 92408-3216 Date Received:

09/30/05

Work Order No:

05-09-1857

Project: Beaumont Site 2 - 16392-01

Page 1 of 3

Client Sample Number		Lab S	ample Num	nber Date Collect		Matrix		
LEB-093005-GP		05-0	9-1857-2	09/30/		Aqueous		
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	<u>Qual</u>	<u>Units</u>	Date Prepared	Date Analyzed	Method
Solids, Total Dissolved	2.0	1.0	1		mg/L	N/A	10/06/05	EPA 160.1
Chloride	ND	1.0	1		mg/L	N/A	10/01/05	EPA 300.0
Nitrate (as N)	ND	0.10	1		mg/L	N/A	10/01/05	EPA 300.0
Sulfate	1.1	1.0	1		mg/L	N/A	10/01/05	EPA 300.0
Perchlorate	ND	2.0	1		ug/L	N/A	10/05/05	EPA 314.0
Bicarbonate (as CaCO3)	ND	1.0	1		mg/L	N/A	10/06/05	SM 2320B
Carbonate (as CaCO3)	ND	1.0	1		mg/L	N/A	10/06/05	SM 2320B
LEB-093005-B		05-0	9-1857-3	09/30/	05 A	Aqueous		
<u>Parameter</u>	<u>Result</u>	<u>RL</u>	<u>DF</u>	Qual	<u>Units</u>	Date Prepared	Date Analyzed	<u>Method</u>
Solids, Total Dissolved	4.0	1.0	1		mg/L	N/A	10/06/05	EPA 160.1
Chloride	ND	1.0	1		mg/L	N/A	10/01/05	EPA 300.0
Nitrate (as N)	ND	0.10	1		mg/L	N/A	10/01/05	EPA 300.0
Sulfate	1.1	1.0	1		mg/L	N/A	10/01/05	EPA 300.0
Perchlorate	ND	2.0	1		ug/L	N/A	10/05/05	EPA 314.0
Bicarbonate (as CaCO3)	1.5	1.0	1		mg/L	N/A	10/06/05	SM 2320B
Carbonate (as CaCO3)	ND	1.0	1		mg/L	N/A	10/06/05	SM 2320B
TT-MW2-2		05-0	9-1857-4	09/30/	05 A	Aqueous		
Parameter Parameter	Result	<u>RL</u>	<u>DF</u>	Qual	<u>Units</u>	Date Prepared	Date Analyzed	Method
	290	1.0	1		mg/L	N/A	10/06/05	EPA 160.1
Solids, Total Dissolved		40	10		mg/L	N/A	10/03/05	EPA 300.0
•	47	10						
Chloride	47 ND	0.10	1		mg/L	N/A	10/01/05	EPA 300.0
Chloride Nitrate (as N)						N/A N/A	10/01/05 10/03/05	EPA 300.0 EPA 300.0
Solids, Total Dissolved Chloride Nitrate (as N) Sulfate Perchlorate	ND	0.10	1		mg/L			
Chloride Nitrate (as N) Sulfate	ND 39	0.10 10	1 10		mg/L mg/L	N/A	10/03/05	EPA 300.0

RL - Reporting Limit

DF - Dilution Factor

Qual - Qualifiers

Tetra Tech, Inc. 348 West Hospitality Lane, Ste 100 San Bernardino, CA 92408-3216

Date Received:

09/30/05

Work Order No:

05-09-1857

Project: Beaumont Site 2 - 16392-01

Page 2 of 3

Client Sample Number		Lab S	Sample Num	nber Da Colle		Matrix		
TT-MW2-4S		05-0	9-1857-5	09/3	0/05 A	Aqueous		
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	<u>Qual</u>	<u>Units</u>	Date Prepared	Date Analyzed	<u>Method</u>
Solids, Total Dissolved	310	1.0	1		mg/L	N/A	10/06/05	EPA 160.1
Chloride	36	10	10		mg/L	N/A	10/03/05	EPA 300.0
Nitrate (as N)	0.38	0.1	1		mg/L	N/A	10/01/05	EPA 300.0
Sulfate	51	10	10		mg/L	N/A	10/03/05	EPA 300.0
Perchlorate	2.1	2.0	1		ug/L	N/A	10/05/05	EPA 314.0
Bicarbonate (as CaCO3)	100	5.0	1		mg/L	N/A	10/06/05	SM 2320B
Carbonate (as CaCO3)	8.0	1.0	1		mg/L	N/A	10/06/05	SM 2320B
TT-MW2-4D		05-0	9-1857-6	09/3	0/05 A	Aqueous		
<u>Parameter</u>	Result	RL	<u>DF</u>	<u>Qual</u>	<u>Units</u>	Date Prepared	Date Analyzed	Method
Solids, Total Dissolved	260	1.0	1		mg/L	N/A	10/06/05	EPA 160.1
Chloride	22	5	5		mg/L	N/A	10/06/05	EPA 300.0
Nitrate (as N)	ND	0.10	1		mg/L	N/A	10/01/05	EPA 300.0
Sulfate	32	5	5		mg/L	N/A	10/06/05	EPA 300.0
Perchlorate	ND	2.0	1		ug/L	N/A	10/05/05	EPA 314.0
Bicarbonate (as CaCO3)	46	1.0	1		mg/L	N/A	10/06/05	SM 2320B
Carbonate (as CaCO3)	24	1.0	1		mg/L	N/A	10/06/05	SM 2320B
TT-MW2-1		05-0	9-1857-7	09/3	n/n5 A	Aqueous		
11-101442-1		03-0	13-1037-7	03/3	0/03 F			
<u>Parameter</u>	<u>Result</u>	<u>RL</u>	<u>DF</u>	Qual	<u>Units</u>	Date Prepared	Date Analyzed	<u>Method</u>
Out to Take I Discoulated	0.40					. <u> </u>	40/00/07	EDA 400.4
Solids, Total Dissolved	640	1.0	1		mg/L	N/A	10/06/05	EPA 160.1
Chloride	160	50	50		mg/L	N/A	10/01/05	EPA 300.0
litrate (as N)	8.7	1.0	10		mg/L	N/A	10/02/05	EPA 300.0
Sulfate	44	10	10		mg/L	N/A	10/02/05	EPA 300.0
Perchlorate	3000	200	100		ug/L	N/A	10/05/05	EPA 314.0
Ricarbonate (as CaCO3)	180 ND	5.0	1		mg/L	N/A	10/06/05	SM 2320B
Carbonate (as CaCO3)	ND	1.0	1		mg/L	N/A	10/06/05	SM 2320B

DF - Dilution Factor

Qual - Qualifiers

Tetra Tech, Inc. 348 West Hospitality Lane, Ste 100 San Bernardino, CA 92408-3216

Date Received:

Work Order No:

05-09-1857

09/30/05

Project: Beaumont Site 2 - 16392-01

Page 3 of 3

Client Sample Number		Lab S	ample Nun		ate	Matrix		
TT-MW2-3		05-0	9-1857-8	09/3	olcu	queous		
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	<u>Qual</u>	<u>Units</u>	Date Prepared	Date Analyzed	<u>Method</u>
Solids, Total Dissolved	720	1.0	1		mg/L	N/A	10/06/05	EPA 160.1
Chloride	290	50	50		mg/L	N/A	10/03/05	EPA 300.0
Nitrate (as N)	12	1	10		mg/L	N/A	10/01/05	EPA 300.0
Sulfate	51	10	10		mg/L	N/A	10/01/05	EPA 300.0
Perchlorate	68000	10000	5000		ug/L	N/A	10/05/05	EPA 314.0
Bicarbonate (as CaCO3)	86	1.0	1		mg/L	N/A	10/06/05	SM 2320B
Carbonate (as CaCO3)	ND	1.0	1		mg/L	N/A	10/06/05	SM 2320B
TT-MW2-103		05-0	9-1857-9	09/3	0/05 A	queous		
<u>Parameter</u>	<u>Result</u>	<u>RL</u>	<u>DF</u>	<u>Qual</u>	<u>Units</u>	Date Prepared	Date Analyzed	<u>Method</u>
Solids, Total Dissolved	700	1.0	1		mg/L	N/A	10/06/05	EPA 160.1
Dollas, Total Dissolved	700				1119/ =			
Chloride	290	50	50		ma/l	N/A	10/04/05	FPA 300 0
	290 12	50 1	50 10		mg/L mg/l	N/A N/A	10/04/05 10/01/05	EPA 300.0 EPA 300.0
Nitrate (as N)	12	1	10		mg/L	N/A	10/01/05	EPA 300.0
Nitrate (as N) Sulfate	12 49	1 10	10 10		mg/L mg/L	N/A N/A	10/01/05 10/01/05	EPA 300.0 EPA 300.0
Chloride Nitrate (as N) Sulfate Perchlorate Bicarbonate (as CaCO3)	12 49 67000	1 10 10000	10		mg/L mg/L ug/L	N/A N/A N/A	10/01/05 10/01/05 10/05/05	EPA 300.0 EPA 300.0 EPA 314.0
Nitrate (as N) Sulfate Perchlorate Bicarbonate (as CaCO3)	12 49	1 10	10 10 5000		mg/L mg/L	N/A N/A	10/01/05 10/01/05	EPA 300.0 EPA 300.0
Nitrate (as N) Sulfate	12 49 67000 94	1 10 10000 1.0	10 10 5000 1	N/	mg/L mg/L ug/L mg/L mg/L	N/A N/A N/A N/A	10/01/05 10/01/05 10/05/05 10/06/05	EPA 300.0 EPA 300.0 EPA 314.0 SM 2320B
Nitrate (as N) Sulfate Perchlorate Bicarbonate (as CaCO3) Carbonate (as CaCO3)	12 49 67000 94	1 10 10000 1.0	10 10 5000 1	N/	mg/L mg/L ug/L mg/L mg/L	N/A N/A N/A N/A N/A	10/01/05 10/01/05 10/05/05 10/06/05	EPA 300.0 EPA 300.0 EPA 314.0 SM 2320B
Nitrate (as N) Sulfate Perchlorate Bicarbonate (as CaCO3) Carbonate (as CaCO3) Method Blank	12 49 67000 94	1 10 10000 1.0	10 10 5000 1	N/ Qual	mg/L mg/L ug/L mg/L mg/L	N/A N/A N/A N/A N/A	10/01/05 10/01/05 10/05/05 10/06/05	EPA 300.0 EPA 300.0 EPA 314.0 SM 2320B
Nitrate (as N) Sulfate Perchlorate Bicarbonate (as CaCO3) Carbonate (as CaCO3)	12 49 67000 94 ND	1 10 10000 1.0 1.0	10 10 5000 1 1		mg/L mg/L ug/L mg/L mg/L	N/A N/A N/A N/A N/A	10/01/05 10/01/05 10/05/05 10/06/05 10/06/05	EPA 300.0 EPA 300.0 EPA 314.0 SM 2320B SM 2320B
Nitrate (as N) Sulfate Perchlorate Bicarbonate (as CaCO3) Carbonate (as CaCO3) Method Blank Parameter Chloride	12 49 67000 94 ND <u>Result</u>	1 10 10000 1.0 1.0	10 10 5000 1 1 1		mg/L mg/L ug/L mg/L mg/L Mg/L mg/L Mg/L	N/A N/A N/A N/A N/A N/A N/A N/A N/A	10/01/05 10/01/05 10/05/05 10/06/05 10/06/05 Date Analyzed 10/01/05	EPA 300.0 EPA 300.0 EPA 314.0 SM 2320B SM 2320B
Nitrate (as N) Sulfate Perchlorate Bicarbonate (as CaCO3) Carbonate (as CaCO3) Method Blank Parameter	12 49 67000 94 ND	1 10 10000 1.0 1.0	10 10 5000 1 1		mg/L mg/L ug/L mg/L mg/L	N/A N/A N/A N/A N/A N/A Date Prepared	10/01/05 10/01/05 10/05/05 10/06/05 10/06/05	EPA 300.0 EPA 300.0 EPA 314.0 SM 2320B SM 2320B

DF - Dilution Factor

Qual - Qualifiers

Tetra Tech, Inc. 348 West Hospitality Lane, Ste 100 San Bernardino, CA 92408-3216 Date Received: Work Order No: Preparation: Method: 09/30/05 05-09-1857 EPA 3010A Total EPA 6010B

Project Beaumont Site 2 - 16392-01

Quality Control Sample ID	Matrix	Instrument	Date Prepared		Date Analyzed	MS/MSD Batch Number	
TT-MW2-1	Aqueous	ICP 3300	10/03/05		10/04/05	051003S06	
<u>Parameter</u>	MS %REC	MSD %REC	%REC CL	<u>RPD</u>	RPD CL	<u>Qualifiers</u>	
Antimony	107	106	80-120	1	0-20		
Arsenic	112	113	80-120	1	0-20		
Barium	107	108	80-120	0	0-20		
Beryllium	104	106	80-120	2	0-20		
Cadmium	103	104	80-120	1	0-20		
Chromium	106	107	80-120	0	0-20		
Cobalt	104	105	80-120	1	0-20		
Copper	103	105	80-120	2	0-20		
Lead	104	105	80-120	1	0-20		
Molybdenum	107	107	80-120	0	0-20		
Nickel	106	106	80-120	1	0-20		
Selenium	106	110	80-120	3	0-20		
Silver	113	113	80-120	0	0-20		
Thallium	105	105	80-120	0	0-20		
Vanadium	102	103	80-120	1	0-20		
Zinc	107	109	80-120	2	0-20		
Calcium	4X	4X	80-120	4X	0-20	Q	
Magnesium	4X	4X	80-120	4X	0-20	Q	
Potassium	108	114	80-120	3	0-20		
Sodium	4X	4X	80-120	4X	0-20	Q	

All Marie

Tetra Tech, Inc. 348 West Hospitality Lane, Ste 100 San Bernardino, CA 92408-3216 Date Received: Work Order No: Preparation: Method: 09/30/05 05-09-1857 EPA 7470A Total EPA 7470A

Project Beaumont Site 2 - 16392-01

Quality Control Sample ID	Matrix Instrument		Date Prepared		Date Analyzed	MS/MSD Batch Number
TT-MW2-1	Aqueous	Mercury	10/03/05		10/04/05	051003S05
<u>Parameter</u>	MS %REC	MSD %REC	%REC CL	<u>RPD</u>	RPD CL	Qualifiers
Mercury	108	107	71-134	1	0-14	

MMMM_

Tetra Tech, Inc. 348 West Hospitality Lane, Ste 100 San Bernardino, CA 92408-3216 Date Received: Work Order No: Preparation: Method: 09/30/05 05-09-1857 EPA 5030B EPA 8260B

Project Beaumont Site 2 - 16392-01

Quality Control Sample ID	Matrix	Instrument	Date Prepared		Date Analyzed	MS/MSD Batch Number	
TT-MW2-1	Aqueou	us GC/MS M	10/03/05		10/03/05	051003S01	
<u>Parameter</u>	MS %REC	MSD %REC	%REC CL	<u>RPD</u>	RPD CL	Qualifiers	
Benzene	107	107	88-118	0	0-7		
Carbon Tetrachloride	102	103	67-145	0	0-11		
Chlorobenzene	103	104	88-118	0	0-7		
1,2-Dichlorobenzene	103	102	86-116	1	0-8		
1,1-Dichloroethene	84	83	70-130	0	0-25		
Toluene	104	107	87-123	3	0-8		
Trichloroethene	107	105	79-127	2	0-10		
Vinyl Chloride	103	106	69-129	3	0-13		
Methyl-t-Butyl Ether (MTBE)	97	94	71-131	3	0-13		
Tert-Butyl Alcohol (TBA)	99	100	36-168	1	0-45		
Diisopropyl Ether (DIPE)	104	100	81-123	3	0-9		
Ethyl-t-Butyl Ether (ETBE)	97	95	72-126	2	0-12		
Tert-Amyl-Methyl Ether (TAME)	98	97	72-126	0	0-12		
Ethanol	104	105	53-149	0	0-31		

RPD - Relative Percent Difference ,
7440 Lincoln

CL - Control Limit

Tetra Tech, Inc. 348 West Hospitality Lane, Ste 100 San Bernardino, CA 92408-3216 Date Received: Work Order No:

05-09-1857

Project: Beaumont Site 2 - 16392-01

Matrix:	Aqueous
---------	---------

<u>Parameter</u>	<u>Method</u>	Quality Control Sample ID	<u>Date</u> <u>Analyzed</u>	<u>Date</u> Extracted	MS% REC	MSD % REC	%REC CL	<u>RPD</u>	RPD CL	Qualifiers
Chloride	EPA 300.0	TT-MW2-1	10/01/05	N/A	98	101	56-134	2	0-3	
Nitrate (as N)	EPA 300.0	TT-MW2-1	10/01/05	N/A	95	93	58-142	2	0-6	
Sulfate	EPA 300.0	TT-MW2-1	10/01/05	N/A	96	94	49-133	2	0-3	
Perchlorate	EPA 314.0	TT-MW2-1	10/05/05	N/A	107	106	80-120	0	0-15	

Quality Control - Duplicate

Tetra Tech, Inc. 348 West Hospitality Lane, Ste 100 San Bernardino, CA 92408-3216

Date Received: Work Order No:

05-09-1857

Project: Beaumont Site 2 - 16392-01

Matrix: Aqueous								
<u>Parameter</u>	Method	QC Sample ID	Date Analyzed	Sample Conc	DUP Conc	<u>RPD</u>	RPD CL	Qualifiers
Alkalinity, Total (as CaCO3)	SM 2320B	TT-MW2-1	10/06/05	180	180	1	0-25	
Bicarbonate (as CaCO3)	SM 2320B	TT-MW2-1	10/06/05	180	180	0	0-25	
Carbonate (as CaCO3)	SM 2320B	TT-MW2-1	10/06/05	ND	ND	NA	0-25	
Hydroxide (as CaCO3)	SM 2320B	TT-MW2-1	10/06/05	ND	ND	NA	0-25	
Solids, Total Dissolved	EPA 160.1	05-10-0072-2	10/06/05	4400	4400	0	0-25	

N/A

alscience nvironmental Quality Control - Laboratory Control Sample aboratories, Inc.

Tetra Tech, Inc. 348 West Hospitality Lane, Ste 100 San Bernardino, CA 92408-3216 Date Received: Work Order No: Preparation: Method:

05-09-1857 EPA 3010A Total EPA 6010B

Project: Beaumont Site 2 - 16392-01

Quality Control Sample ID	Matrix	Instrument	Date Analyzed	Lab File	ID LC	LCS Batch Number	
097-01-003-5,394	Aqueous	ICP 3300	10/04/05	051003-l-	06	051003L06	
<u>Parameter</u>		Conc Added	Conc Recovered	LCS %Rec	%Rec CL	Qualifiers	
Antimony		0.500	0.507	101	80-120		
Arsenic		0.500	0.532	106	80-120		
Barium		0.500	0.540	108	80-120		
Beryllium		0.500	0.485	97	80-120		
Cadmium		0.500	0.516	103	80-120		
Chromium		0.500	0.523	105	80-120		
Cobalt		0.500	0.533	107	80-120		
Copper		0.500	0.488	98	80-120		
Lead		0.500	0.528	106	80-120		
Molybdenum		0.500	0.516	103	80-120		
Nickel		0.500	0.540	108	80-120		
Selenium		0.500	0.471	94	80-120		
Silver		0.250	0.260	104	80-120		
Thallium		0.500	0.521	104	80-120		
Vanadium		0.500	0.491	98	80-120		
Zinc		0.500	0.523	105	80-120		
Calcium		0.500	0.525	105	80-120		
Magnesium		0.500	0.509	102	80-120		
Potassium		5.00	5.35	107	80-120		
Sodium		5.00	5.12	102	80-120		

N/A

alscience nvironmental Quality Control - Laboratory Control Sample aboratories, Inc.

Tetra Tech, Inc. 348 West Hospitality Lane, Ste 100 San Bernardino, CA 92408-3216 Date Received: Work Order No: Preparation: Method:

05-09-1857 EPA 7470A Total EPA 7470A

Project: Beaumont Site 2 - 16392-01

Quality Control Sample ID	Matrix	Instrument	Instrument Date Analyzed			LCS Batch Number		
099-04-008-2,133	Aqueous Mercury		10/04/05	051003-I-05.icp		051003L05		
<u>Parameter</u>		Conc Added	Conc Recovered	LCS %Rec %Re		Qualifiers		
Mercury		0.0100	0.0107	107	90-122			

RPD - Relative Percent Difference ,
7440 Lincoln

CL - Control Limit

Quality Control - LCS/LCS Duplicate

Tetra Tech, Inc. 348 West Hospitality Lane, Ste 100 San Bernardino, CA 92408-3216 Date Received: Work Order No: Preparation: Method:

05-09-1857 EPA 5030B EPA 8260B

N/A

Project: Beaumont Site 2 - 16392-01

Quality Control Sample ID	Matrix	Instrument	Date Prepared	Date Analyz		LCS/LCSD Bate Number	ch
099-10-006-15,842	Aqueous	GC/MS M	10/03/05	10/03/0	5	051003L01	
<u>Parameter</u>	LCS %RE	C LCSD %	<u>%REC</u> <u>%R</u>	EC CL	RPD	RPD CL	Qualifiers
Benzene	106	106	84	4-120	0	0-8	
Carbon Tetrachloride	108	108	6	3-147	0	0-10	
Chlorobenzene	103	102	89	9-119	1	0-7	
1,2-Dichlorobenzene	104	105	89	9-119	0	0-9	
1,1-Dichloroethene	102	100	7	7-125	2	0-16	
Toluene	105	105	8	3-125	0	0-9	
Trichloroethene	106	107	89	9-119	0	0-8	
Vinyl Chloride	98	98	6:	3-135	0	0-13	
Methyl-t-Butyl Ether (MTBE)	104	103	82	2-118	2	0-13	
Tert-Butyl Alcohol (TBA)	103	107	40	6-154	4	0-32	
Diisopropyl Ether (DIPE)	106	104	8	1-123	2	0-11	
Ethyl-t-Butyl Ether (ETBE)	103	101	74	4-122	2	0-12	
Tert-Amyl-Methyl Ether (TAME)	103	104	70	6-124	1	0-10	
Ethanol	109	113	60	0-138	3	0-32	

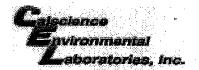
Quality Control - LCS/LCS Duplicate

Tetra Tech, Inc. 348 West Hospitality Lane, Ste 100 San Bernardino, CA 92408-3216 Date Received: Work Order No:

N/A 05-09-1857

Project: Beaumont Site 2 - 16392-01

Matrix: Aqueous										
<u>Parameter</u>	<u>Method</u>	Quality Control Sample ID	<u>Date</u> Extracted	<u>Date</u> <u>Analyzed</u>	LCS % REC	LCSD % REC	%REC CL	RPD	RPD CL	<u>Qual</u>
Chloride	EPA 300.0	099-05-118-2,994	N/A	10/01/05	97	96	81-111	1	0-5	
Nitrate (as N)	EPA 300.0	099-05-118-2,994	N/A	10/01/05	97	96	87-111	0	0-12	
Sulfate	EPA 300.0	099-05-118-2,994	N/A	10/01/05	100	101	89-107	1	0-13	
Perchlorate	EPA 314.0	099-05-203-326	N/A	10/04/05	92	95	85-115	3	0-15	


Glossary of Terms and Qualifiers

Work Order Number: 05-09-1857

<u>Qualifier</u>	<u>Definition</u>
*	See applicable analysis comment.
1	Surrogate compound recovery was out of control due to a required sample dilution, therefore, the sample data was reported without further clarification.
2	Surrogate compound recovery was out of control due to matrix interference. The associated method blank surrogate spike compound was in control and, therefore, the sample data was reported without further clarification.
3	Recovery of the Matrix Spike or Matrix Spike Duplicate compound was out of control due to matrix interference. The associated LCS and/or LCSD was in control and, therefore, the sample data was reported without further clarification.
4	The MS/MSD RPD was out of control due to matrix interference. The LCS/LCSD RPD was in control and, therefore, the sample data was reported without further clarification.
5	The PDS/PDSD associated with this batch of samples was out of control due to a matrix interference effect. The associated batch LCS/LCSD was in control and, hence, the associated sample data was reported with no further corrective action required.
Α	Result is the average of all dilutions, as defined by the method.
В	Analyte was present in the associated method blank.
С	Analyte presence was not confirmed on primary column.
E	Concentration exceeds the calibration range.
Н	Sample received and/or analyzed past the recommended holding time.
J	Analyte was detected at a concentration below the reporting limit and above the laboratory method detection limit. Reported value is estimated.
N	Nontarget Analyte.
ND	Parameter not detected at the indicated reporting limit.
Q	Spike recovery and RPD control limits do not apply resulting from the parameter concentration in the sample exceeding the spike concentration by a factor of four or greater.
U	Undetected at the laboratory method detection limit.
Χ	% Recovery and/or RPD out-of-range.
Z	Analyte presence was not confirmed by second column or GC/MS analysis.

			2 ~	•							rage 33 or 3
CHAIN OF CUSTODY RECORD	PAGE LOF	TURN-AROUND TIME	M TOS, MO3, SO H CO3, CO3, Ma	6/0	boiler & B	30,mpled who, be	omialo demicin		PRESERVATIVES: (Water Only) HCL NaOH NR (None required) H ₂ SO ₄	TOTAL NUMBER OF CONTAINERS ON THIS CHAIN OF CUSTODY: 8λ	METHOD OF SHIPMENT/SHIPMENT NO. Special Shipping/Handling/Storage Requirements:
2	65	,	РКЕЅЕКУАТІУЕ						ERVAT	NUMBE OF CU	40D OF S
S	DATE 9/30/05		CONTAINER TYPE HUMBER OF CONTAINERS	U. 0	000	60	2 d 6	00	PRESERVATIVES HCL NR (None required)	TOTAL	METHC Special
S	6 3		BAYT XIRTAM						1	10	1 0 0
	DAT		DERED/UNFILTERED						eeve tle/Jar	6.23	17.1ME
CHA	(420)	PARAMETERS							SB - Brass Sleeve	9/25/05T	9/20/5 9/30/5 9/30/5
SHIP TO: Cal Saveura			200 0088 21-15 - 10-15 - 10-15 11-15 - 10-15 - 10-15		X X X X X X X X X X X X X X X X X X X	××××××××××××××××××××××××××××××××××××××		X x X	TYPE: CONTAINER TYPE: G - Glass Bottle/Jar	TETRA TECH, INC.	COMPANY COMPANY COMPANY Canary = Laboratory
	348 W. Hospitaniy Lane, Suite 100 San Bernardino, California 92408 Telephone: (909) 381-1674 FAX: (909) 889-1391	CLIENT: LMC	Bankut Site 2 SER Brenda Mayor 92-01 Mayor 12-01 DATE TIME	178-09305 913015 600	LEB-09306-6 (630	1311	TT-MW2-4D 1030	3 1936	FILTERING: MATRIX TYPE: FILTERED	BEHNOUISHED BK SIGNATURE	RECEIVED BY RELINQUISHED BY TAMAN H BAY EH RECEIVED BY RECEIVED BY DISTRIBUTION: White and Pink = Tetra Tech, Inc. Canan

WORK ORDER #:

05-09-1997

Cooler _ 1 _ of _ 2

SAMPLE RECEIPT FORM

CLIENT: TETRA TECH	DATE: 09/30/05
TEMPERATURE - SAMPLES RECEIVED BY:	
CALSCIENCE COURIER: Chilled, cooler with temperature blank provided. Chilled, cooler without temperature blank. Chilled and placed in cooler with wet ice. Ambient and placed in cooler with wet ice. Ambient temperature. Compared to the cooler with the cooler with wet ice. Cooler with wet ice. Cooler	LABORATORY (Other than Calscience Courier): °C Temperature blank. °C IR thermometer. Ambient temperature.
	midel
CUSTODY SEAL INTACT: Sample(s):	
Chain-Of-Custody document(s) received with samples	
Received two (2) that trip blank with lot wo 0964.	

WORK ORDER #:

05-00-000

Cooler a of a

SAMPLE RECEIPT FORM

CLIENT: TETRA TECH	DATE: 09/30/05
TEMPERATURE - SAMPLES RECEIVED BY:	
CALSCIENCE COURIER: Chilled, cooler with temperature blank provided. Chilled, cooler without temperature blank. Chilled and placed in cooler with wet ice. Ambient and placed in cooler with wet ice. Ambient temperature. Comperature blank.	LABORATORY (Other than Calscience Courier): °C Temperature blank. _°C IR thermometer. Ambient temperature.
CUSTODY SEAL INTACT:	
Sample(s): Cooler: No (Not Intact) :	Not Applicable (N/A):
SAMPLE CONDITION:	
Chain-Of-Custody document(s) received with samples	
COMMENTS:	