2021 ANNUAL GROUNDWATER MONITORING REPORT

Former Unisys Site Lake Success, New York NYSDEC Site No. 130045

Prepared for: Lockheed Martin Corporation			
Prepared by: AMEC E&E, PC			
August 2022			
Submitted to: Division of Environmental Remediation, NYSDEC Region 1			
Revision: 0			
Exic Veirstock			
Eric Weinstock, P.G. Principal Geologist			
Melm			
Stuart Pearson, P.E. Principal Engineer			

TABLE OF CONTENTS

<u>Section</u>		Page
Table of C	ontents	i
List of FIG	GURES	iii
List of TAI	BLES	iv
Appendic	es	iv
Acronyms	and Abbreviations	v
Section 1	Introduction	1-1
1.1	Site Description and Site History	1-2
1.2	Site Regulatory Background	1-4
1.3	Site Hydrogeology	1-7
1.4	Groundwater Remedial Systems	1-9
1.5	Monitoring Program Requirements	1-11
1.6	Objectives	1-12
1.7 F	Report Organization	1-12
Section 2	Field and Laboratory Procedures	2-1
2.1	Water Level Measurements	2-2
2.2	Groundwater Sampling	2-3
2.2.1	2021 Q1 Groundwater Sampling Event	2-5
2.2.2	2021 Q2 Groundwater Sampling Event	2-5
2.2.3	2021 Q3 Groundwater Sampling Event	2-6
2.2.4	2021 Q4 Groundwater Sampling Event	2-6
2.2.5	Data Validation	2-6
2.2.6	Additional Sampling	2-7
Section 3	Results	3-1
3.1	Groundwater Elevations	3-1
3.1.1	Upper Glacial Aquifer – Q2 and Q3 2021	3-3
3.1.2	Upper Magothy – Q2 and Q3 2021	3-4
3.1.3	Middle Magothy – Q2 and Q3 2021	3-4
3.1.4	Basal Magothy – Q2 and Q3 2021	3-5
3.1.5	Vertical Hydraulic Gradients	3-6

3.2	Groundwater Quality and Concentration Trends	3-7
3.2.1	Upper Glacial	3-9
3.2.2	Upper Magothy	3-9
3.2.3	Middle Magothy	3-11
3.2.4	Basal Magothy	3-13
3.2.5	Recovery Wells	3-15
3.2.6	PFAS and 1,4-Dioxane Concentrations	3-17
3.2.7	Sentinel Wells	3-18
3.2.8	Additional Wells Added in 2021	3-24
Section 4	Findings and Recommendations	4-1
4.1	Findings	4-1
4.2	Recommendations	4-3
Section 5	References	5-1

TABLE OF CONTENTS (CONTINUED)

LIST OF FIGURES

- Figure 1-1 Site Location Map
- Figure 2-1 Wells Located within a 1.5-Mile, 2-Mile, and 2.5-Mile Radius of the Former Unisys Site
- Figure 3-1 Potentiometric Surface Configuration of the Upper Glacial Aquifer April 19 thru 20, 2021
- Figure 3-2 Potentiometric Surface Configuration of the Upper Glacial Aquifer, August 9 thru 10, 2021
- Figure 3-3 Potentiometric Surface Configuration of the Upper Magothy Aquifer April 19 thru 20, 2021
- Figure 3-4 Potentiometric Surface Configuration of the Upper Magothy Aquifer, August 9 thru 10, 2021
- Figure 3-5 Potentiometric Surface Configuration of the Middle Magothy Aquifer April 19 thru 20, 2021
- Figure 3-6 Potentiometric Surface Configuration of the Middle Magothy Aquifer, August 9 thru 10, 2021
- Figure 3-7 Potentiometric Surface Configuration of the Basal Magothy Aquifer, April 19 thru 20, 2021
- Figure 3-8 Potentiometric Surface Configuration of the Basal Magothy Aquifer, August 9 thru 7, 2021
- Figure 3-9 Total Volatile Organic Compound Concentrations in Upper Glacial Aquifer, May 11 thru August 26, 2021
- Figure 3-10 Total Volatile Organic Compound Concentrations in Upper Magothy Aquifer, May 11 thru August 26, 2021
- Figure 3-11 Total Volatile Organic Compound Concentrations in Middle Magothy Aquifer, May 11 thru August 26, 2021
- Figure 3-12 Total Volatile Organic Compound Concentrations in Basal Magothy Aquifer, May 11 thru August 26, 2021
- Figure 3-13 Total Volatile Organic Compound Concentration Trends in Upper Glacial Aquifer, Updated Through November 1 thru 26, 2021 Sampling Event
- Figure 3-14 Total Volatile Organic Compound Concentration Trends in Upper Magothy Aquifer, Updated Through November 1 thru 26, 2021 Sampling Event
- Figure 3-15 Total Volatile Organic Compound Concentration Trends in Middle Magothy Aquifer, Updated Through November 1 thru 26, 2021 Sampling Event
- Figure 3-16 Total Volatile Organic Compound Concentration Trends in Basal Magothy Aquifer, Updated Through November 1 thru 26, 2021 Sampling Event
- Figure 3-17 Location of Wells Sampled Former Unisys Site May 2021
- Figure 3-18 PFOS Concentration in Q2 2021 Groundwater in ng/L
- Figure 3-19 PFOA Concentration in Q2 2021 Groundwater in ng/L
- Figure 3-20 1,4-Dioxane Concentration in Q2 2021 Groundwater in ng/L

LIST OF TABLES

- Table 1-1 Applicable or Relevant and Appropriate Requirements for Groundwater Cleanup Criteria for Volatile Organic Compounds
- Table 2-1 Groundwater Monitoring Well Network
- Table 2-2 Groundwater Sampling and Water Level Monitoring Frequency
- Table 2-3 Recovery and Diffusion Well Activity in GPM During Synoptic Groundwater Level Measurements
- Table 3-1 Synoptic Groundwater Level Measurements
- Table 3-2 Public Water Supply Well Operation Status in GPM During Synoptic Groundwater Level Measurements
- Table 3-3 Vertical Hydraulic Gradients
- Table 3-4 Volatile Organic Compound Analytical Results 2021 Annual Groundwater Monitoring Event

APPENDICES

- Appendix A—Field Data Records
- Appendix B—Data Usability Summary Reports
- Appendix C—Memorandum Groundwater Simulation Analysis of OU1 and OU2 Hydraulic Capture Zones – Supplement to 2021 Annual Groundwater Modeling Report
- Appendix D—TVOC/Time Graphs

ACRONYMS AND ABBREVIATIONS

AMEC E&E PC

ARAR Applicable or Relevant and Appropriate Requirement

AROD Amended Record of Decision

bgs below ground surface

cis-1,2-DCE cis-1,2-dichloroethene

COC contaminant of concern

DUSR Data Usability Summary Report

ft/ft feet per foot

GL Lower portion of the Glacial Aquifer

gpm gallons per minute

GWTS groundwater treatment system

HDPE high density polyethylene

IRM Interim Remedial Measure

Lockheed Martin Corporation

Loral Corporation

MI Middle portion of Magothy Aquifer

μg/L microgram per liter

ML Lower portion of Magothy Aquifer

MLWD Manhasset Lakeville Water District

msl mean sea level

MU Upper portion of Magothy Aquifer

ng/L nanograms per liter

NYSDEC New York State Department of Environmental Conservation

NYSDOH New York State Department of Health

OU operable unit

OU1 Operable Unit 1

OU2 Operable Unit 2

PCE tetrachloroethene

PFOA perfluorooctanoic acid

PFOS perfluorooctane sulfunate

Q1 2021 First Quarter

Q2 2021 Second Quarter

Q3 2021 Third Quarter

Q4 2021 Fourth Quarter

QA/QC Quality Assurance/Quality Control

RI/FS Remedial Investigation/Feasibility Study

ROD Record of Decision

RW or EW recovery well

SAP Sampling and Analysis Plan

SIM Selective Ion Monitoring

Site Former Unisys Site located in the Village of Lake Success, New York

SMP Site Management Plan

Sperry Gyroscope Company

TCE trichloroethene

TCL target compound list

TVOC total volatile organic compounds

USEPA United States Environmental Protection Agency

VOC volatile organic compound

WAGNN Water Authority of Great Neck North

SECTION 1 INTRODUCTION

On behalf of Lockheed Martin Corporation (Lockheed Martin), AMEC E&E, PC (AMEC) has prepared this Annual Groundwater Monitoring Report to provide the results of quarterly groundwater sampling activities conducted in 2021 at the former Unisys Site (i.e., the Site) located in Lake Success, New York (New York State Department of Environmental Conservation [NYSDEC] Site Number 130045). The Site is listed by NYSDEC as a Class 2, Inactive Hazardous Waste site. The quarterly groundwater monitoring activities were conducted using field sampling and analytical methods consistent with the NYSDEC-approved Site-specific Sampling and Analysis Plan (SAP) AMEC (2021b) and Quality Assurance Project Plan AMEC (2020a).

AMEC conducted four quarterly groundwater sampling events as outlined below. Synoptic groundwater level measurements were collected on April 19 to 20, 2021 (prior to the second quarter sampling event) and on August 9 to 10, 2021 (prior to the third quarter sampling event). Details of the sampling and water level measuring events are included in Section 2 of this report.

First Quarter 2021 - Consistent with the SAP (AMEC, 2021b), during the first quarterly event (Q1), groundwater samples were collected on January 27 to 29, 2021 from wells located hydraulically downgradient and north of the former Unisys Site as described in **Section 2.2.1.** These samples were analyzed for volatile organic compound (VOCs).

Second Quarter 2021 - The second quarter (Q2), groundwater samples were collected on May 11 to 19, 2021. These included the following additional wells that are not typically sampled during the Q2 sampling: 1GU, 2MI, 3GL, 3ML, 6GL, 6MI, 37MU, 47MI, 47ML, 49MI, and 49ML as described in **Section 2.2.2.** The samples were analyzed for VOCs, poly- and perfluoroalkyl substances (PFAS), and 1,4-dioxane.

Third Quarter 2021 - During the third quarter (Q3), groundwater samples were collected on August 10 to 26, 2021. As directed by the NYSDEC, the five additional wells that are not typically sampled during the third quarter were added to this sampling event. The additional wells sampled

during the Q3 sampling event were 10GL, 15GL, 15ML, 50MI, and 50ML. Results are described in Section 2.2.3.

Fourth Quarter 2021 - During the fourth quarterly (Q4) sampling event, groundwater samples were collected on November 1 to 17, 2021. As described in **Section 2.2.4**, these included the following additional wells that are not typically sampled during the Q4 sampling event: 1MI, 1ML, 3GL, 3ML, 17ML, 22ML, 29MI, 33GL, 33MI, 33ML, 37MU, 37ML, 44MU, 44MI, 47MI, 47ML, 48MI, 48ML, 49ML, 50MI, 50ML, 54GU, 54GI, and Q2604. These samples were analyzed for VOCs.

This report meets NYSDEC administrative requirements to obtain operational groundwater quality and water level data, and to assess the overall performance of the on-site (Operable Unit 1 [OU1]) and off-site (Operable Unit 2 [OU2]) groundwater treatment systems (GWTS). The 2021 quarterly monitoring results are evaluated to assess groundwater conditions in the OU1 and OU2 areas, including horizontal and vertical groundwater flow, estimated groundwater capture by the remediation pumping, groundwater quality trends, and VOC concentrations in the monitoring well network.

1.1 SITE DESCRIPTION AND SITE HISTORY

The Site is located at 1111 Marcus Avenue, Lake Success in Nassau County, New York. The former Unisys Site property is located in the Town of North Hempstead and a portion is located in the Village of Lake Success, an incorporated village within the Town of North Hempstead. The Site occupies a parcel of land approximately 90 acres in size that is bounded by Marcus Avenue to the north, Union Turnpike to the south, Lakeville Road to the west, and the Triad Business Park to the east. The Site location is shown on **Figure 1-1**.

The former Unisys Site property is fully developed, with the bulk of the property comprised of the main building (former manufacturing building), various smaller support buildings (e.g., foundry and boiler building), three recharge basins, and parking lots. The smaller buildings are located south of the main building. The Site was redeveloped for commercial use and the main building presently houses several tenants.

The Site was a former manufacturing facility of mainly electronic components for military and commercial applications. The former facility was active from 1941 through 1995, after which manufacturing activities ceased. Some assembly, integration, prototype development and testing, and engineering and administrative activities continued at the facility through 1999. The facility was originally designed and built by the United States government and was operated under contract to the Sperry Gyroscope Company (Sperry) from 1941 to 1951. In 1951, the property was sold to Sperry, which merged with Burroughs in 1986 to form the Unisys Corporation. In 1995, Loral Corporation (Loral) acquired assets of Unisys Defense Systems, a division of Unisys Corporation. In early 1996, Lockheed Martin purchased the electronics and systems integration businesses of Loral. In April 2000, iPark Lake Success LLP purchased the Site property from Lockheed Martin for redevelopment and use as a commercial space. The property is currently owned by Northwell Health (formerly Long Island Jewish Medical Center) and WRD Marcus Avenue A, LLC and is managed by KeyPoint Partners.

From 1978 to 1996, a series of on-site studies and remedial activities were undertaken to investigate and remediate reported VOC concentrations in soil and groundwater. The contaminants of concern (COC) in the groundwater at the Site are VOCs, primarily trichloroethene (TCE), cis-1,2-dichloroethene (cis-1,2-DCE), tetrachloroethene (PCE), and trichlorotrifluoroethane (Freon 113). The investigations traced the origin of the VOCs to a series of dry wells located near the southeast corner of the main building at the Site. Another groundwater plume originating from the nearby 400 Lakeville Road Site (Site No. 130176), known to contain chlorodifluoromethane (Freon 22), also extends off that site and comingles with the former Unisys Site groundwater plume.

In 1991, Unisys Corporation (previous Site owner) entered into an Administrative Order on Consent requiring the completion of a Remedial Investigation and Feasibility Study, including the implementation of interim remedial measures (IRM) for soil and groundwater. The groundwater IRM was initiated in April 1993 and consisted of pumping and treatment with granular activated carbon. Air stripping was added to the groundwater IRM treatment train in February 1995. This system was shut down in 2001, shortly before the current on-site GWTS began operation. The soil IRM was installed in January 1994 and consisted of a soil vapor extraction system in the dry well area (i.e., source area) near the southeast corner of the main building to remediate residual VOCs

in the soil. In 1998, three former dry wells were excavated to a depth of 30 feet and approximately 830 tons of VOC-impacted soil were removed and properly disposed at a permitted off-site disposal facility.

The site was divided into two Operable Units (OU) in 1995. An OU represents a portion of the Site remedy that for technical or administrative reasons can be addressed separately to eliminate or mitigate a release, threat of release, or exposure pathway resulting from the site contamination. OU1 consists of the 90-acre former Unisys Site property. OU2 is defined as the off-site area beyond the 90-acre property where VOCs in groundwater have migrated northward from the Site (OU1).

1.2 SITE REGULATORY BACKGROUND

A Record of Decision (ROD) was issued by NYSDEC for OU1 in March 1997. The selected remedial alternative targeted the Glacial aquifer, and the Upper and Middle portions of the Magothy aquifer for hydraulic control by pumping with treatment, providing capture of VOC-impacted groundwater down to a depth of approximately 270 feet below ground surface (bgs). Concentrations of VOCs in the lower Magothy were reported as typically an order of magnitude lower than in the shallower aquifer zones. The selected groundwater extraction system was intended to interdict further downward migration of contaminants. Therefore, active pumping of the lower Magothy aquifer was not proposed at the time.

A description of the elements of the selected remedy in the March 1997 OU1 ROD (NYSDEC, 1997) included the following:

- A remedial design program to verify the components of the conceptual design and provide the details necessary for the construction, operation, and maintenance, and monitoring of the remedial program. Any uncertainties identified during the Remedial Investigation/Feasibility Study (RI/FS) will be resolved.
- Based on groundwater modeling, it is estimated that a total of five extraction wells will be operated across the site extracting approximately 1,800 gallons per minute (gpm).
- The selected treatment system will be evaluated after it becomes operational to determine if additional treatment of the effluent from the air stripper is needed.

- The objective of the remedial alternative is to achieve the remedial action objectives and to prevent constituent plume migration and reduce organic compound concentrations in groundwater.
- The selected remedial alternative targets the Glacial aquifer, and the upper and intermediate zones of Magothy for hydraulic control by pumping with treatment. This provides capture of contaminated groundwater down to a depth of approximately 270 feet below grade.
- Concentrations of contaminants in the lower Magothy are typically an order of magnitude lower than in the shallower aquifer zones.
- The selected groundwater extraction system will interdict further downward migration of contaminants. Therefore, active pumping of the lower the Magothy aquifer is not proposed at this time.
- Pumping and water quality data will be monitored to determine the effects of the selected extraction system at all depths including the lower Magothy aquifer. After the selected remedial alternative becomes operational, it will be evaluated to determine if additional remedial alternatives for the lower Magothy aquifer need to be implemented. This issue will also be addressed as part of the OU2 RI/FS.
- Over time, the selected remedial alternative would be evaluated by sampling both on-site and off-site monitoring wells to determine its ability to provide hydraulic control, to meet discharge standards, and to reduce on-site groundwater concentrations to the remedial action objectives.

During subsequent design of the OU1 remedy, the results of groundwater modeling performed during design implementation indicated that operation of the five extraction wells at 1,800 gpm and discharge of the treated water on site might cause further spreading of the plume. Based on additional evaluations, the approved remedial design specified an extraction rate of 730 gpm for the on-site recovery wells and the discharge of treated groundwater at a location northeast of the Site in an area beyond the plume.

In accordance with the March 1997 ROD, as part of the OU2 RI/FS investigation, an evaluation was conducted to identify if additional remedial alternatives for the lower Magothy aquifer should be implemented. The evaluation results indicated that an upgrade of the 730 gpm OU1 groundwater remediation system was needed to improve groundwater capture from the lower (basal) Magothy aquifer to ensure complete capture of VOC-impacted groundwater related to the Site.

An amendment to the ROD was issued by NYSDEC in January 2015. The January 2015 Amendment to the Record of Decision (AROD) for OU1 amended the selected remedy for the OU1 site (NYSDEC, 2015), which includes the following changes that pertains to groundwater monitoring:

- Modification to the original pumping rate of 1,800 gpm identified in the original ROD based on the design evaluation. The current system was designed to operate at 730 gpm.
- Environmental Easement. Imposition of an institutional control in the form of an environmental easement for the controlled property that:
 - (a) restricts the use of groundwater as a source of potable or process water, without necessary water quality treatment as determined by the New York State Department of Health (NYSDOH) or County Department of Health; and
 - (b) requires compliance with the Department approved Site Management Plan.
- As part of an overall Site Management Plan (SMP), preparation of a Monitoring Plan to assess the performance and effectiveness of all operable units of the remedy. The Monitoring Plan will include, but may not be limited to:
 - o Monitoring of the groundwater to assess the performance and effectiveness of the remedy; and
 - o Monitoring of the groundwater at irrigation wells that are or that become impacted by site-related groundwater contamination; and
 - o A schedule of monitoring and frequency of submittals to NYSDEC.
- Also, as part of the SMP, preparation of an Operation and Maintenance (O&M) Plan to ensure continued operation, maintenance, monitoring, inspection, and reporting of any mechanical or physical components of the remedy. The plan includes, but is not limited to:
 - o Compliance monitoring of treatment systems to ensure proper O&M as well as providing data for any necessary permit or permit equivalent reporting.
 - o Maintaining the site access control and NYSDEC notification; and
 - o Providing the NYSDEC access to the Site and O&M records.

In December 2014, NYSDEC, in consultation with the NYSDOH issued a ROD for OU2 (NYSDEC, 2014). The OU2 ROD details the selected remedy intended to attain the remedial action objectives for the off-site area in OU2 and includes the following elements related to the groundwater monitoring program:

- The continued operation of the existing 500 gpm OU2 IRM groundwater extraction and treatment system located at the former MLWD Parkway Station adjacent to the Great Neck School property.
- The upgrade of the 730 gpm OU1 groundwater remediation system by the installation of a new 120 gpm extraction well to collect and treat an additional volume of groundwater, bringing the total system up to 850 gpm. This upgrade of the OU1 GWTS was required to improve groundwater capture from the deeper Basal Magothy zone to ensure complete capture of VOC-impacted groundwater related to the Site. Treated water is discharged back into the Magothy aquifer though a series of diffusion wells along the Northern State Parkway.
- Implementation of a Public Water Supply Protection and Mitigation Program.
- As noted above in the AROD, implementation of a SMP, including a Monitoring Plan to assess the performance and effectiveness of the remedy and O&M Plan to ensure continued operation, maintenance, monitoring, inspection, and reporting of any mechanical or physical component of the remedy, as described above.

1.3 SITE HYDROGEOLOGY

The Site and surrounding area are underlain by unconsolidated gravel, sand, silt, and clay deposits that vary in thickness and rest on southward-sloping Precambrian bedrock. Based on the information contained in the Remedial Investigation Report for OU2 (ARCADIS, 2012b) and other sources (Swarzenski, 1963; Smolensky and others, 1989; Stumm, 2001), the unconsolidated deposits near the Site consist of the following formations (listed from shallow to deep):

- Upper Glacial deposits primarily stratified outwash deposits of sand and gravel, interbedded with silts and thin clay lenses and glacial till (unsorted clay, sand, gravel, and boulders). Based on the interpretive geologic cross-sections provided in the OU2 RI Report, the contact between the Upper Glacial deposits and the underlying Magothy Formation at the former Unisys Site building is approximately 160 feet bgs.
- Magothy Formation composed primarily of fine to medium sand with silt and clay lenses, with a basal coarse sand and gravel zone. The fine-grained lenses are generally discontinuous. The soil boring log from the OU1 recovery well RW-3 located at the Site indicates that the top of the Raritan Upper Clay was encountered at approximately 390 feet bgs. Boring logs indicate that the Magothy Formation thins to the north.
- Raritan Formation, Upper Clay member predominantly clay, solid and silty, grey, red, and white colored, often variegated, with few lenses and layers of sand. Serves as a confining layer for the underlying Lloyd aquifer. Based on the interpretive geologic cross-sections provided in the OU2 RI Report, the contact between the Raritan Upper Clay member and the underlying Raritan Lloyd Sand member at the former Unisys Site building is approximately 735 feet bgs.

• Raritan Formation, Lloyd Sand member - composed of fine to coarse sand and gravel with commonly a clayey matrix. The Lloyd Sand member overlies the Precambrian bedrock. The thickness of the Lloyd Sand member on the Great Neck peninsula ranges from less than 50 feet to more than 150 feet (Stumm, 2001).

The bedrock underlying the Lloyd Sand member generally consists of muscovite-biotite schist, gneiss, and granite, with an upper clayey weathered zone (saprolite) reportedly up to 70 feet thick (Swarzenski, 1963).

The major aquifers beneath the Site are the Upper Glacial, Magothy, and Lloyd aquifers. Although these aquifers comprise the Long Island Groundwater System, the Lloyd aquifer is hydraulically isolated from the overlying aquifers by the presence of the Raritan Clay confining unit and is not impacted by VOCs related to the Site; therefore, the Lloyd aquifer is not discussed further in this report.

Concentrations of Site-related VOCs have been reported in groundwater samples collected from the Upper Glacial and Magothy Formation aquifers. The Upper Glacial aquifer is the shallowest groundwater unit and consists of Pleistocene age, unconsolidated deposits. Groundwater levels measured within the Upper Glacial aquifer are representative of water table conditions. The underlying Cretaceous-age Magothy aquifer is thicker than the Upper Glacial aquifer and contains many localized silt and/or clay lenses. The Upper Glacial and underlying Magothy aquifers are hydraulically connected beneath and near the Site; therefore, groundwater can flow from one aquifer to the other and these two aquifers function hydraulically as one aquifer.

To facilitate mapping and evaluation of hydraulic and water quality data, the Upper Glacial and Magothy aquifers beneath and near the Site have been divided into four zones, specifically the Upper Glacial aquifer and the Upper, Middle, and Basal portions of the Magothy aquifer. The aquifer zones are defined as follows:

- Upper Glacial formation from land surface (approximately 120 to 140 feet above mean sea level [msl]) to an elevation of approximately -20 feet msl
- Upper Magothy from approximately -20 to -110 feet msl
- Middle Magothy from approximately -110 to -200 feet msl
- Basal Magothy from approximately -200 feet msl to the top of the underlying Raritan Clay confining unit

1.4 GROUNDWATER REMEDIAL SYSTEMS

Both the OU1 (on-site) and OU2 (off-site) GWTS have been operating for multiple years. The goal of the OU1 GWTS is to provide hydraulic control of the Site groundwater plume and treat VOC-impacted groundwater for subsequent discharge back to groundwater. The current GWTS at OU1 began operating in August 2002 with three groundwater recovery wells (EW-1R, RW-1RS, and RW-1RD). A fourth well (RW-3) began operation in 2018. The OU1 GWTS currently consists of four groundwater recovery wells on the former Unisys Site property (EW-1R, RW-1RS, RW-1RD, and RW-3) pumping a combined nominal flow of 850 gpm to create a capture zone consistent with the March 1997 ROD and January 2015 AROD requirement to control off-site VOC migration to a depth of approximately 270 feet below ground surface.

The four OU1 on-site recovery wells are screened in different portions of the aquifers beneath the Site, as described below.

- RW-1RS shallowest of the four recovery wells, screened in the Upper Glacial aquifer (144 to 164 feet bgs [-4 to -24 feet msl]) and the Upper Magothy (172 to 202 feet bgs [-32 to -62 feet msl]). Ground surface elevation at RW-1RS is approximately 140 feet msl. Recovery well RW-1RS was installed in June 2000 replacing an older well at this location which was of similar depth.
- EW-1R screened in the Upper Magothy (195 to 225 feet bgs [-55 to -85 feet msl]). Ground surface elevation at EW-1R is approximately 140 feet msl. Recovery well EW-1R was installed in January 2017 to replace recovery well EW-1, which failed in July 2016 and was decommissioned in December 2016. Recovery well EW-1R is located approximately 20 feet north of the former EW-1 and is screened at approximately the same depth interval as EW-1.
- RW-1RD screened in the Upper and Middle Magothy (238 to 268 feet bgs [-98 to -128 feet msl]). Ground surface elevation at RW-1RD is approximately 140 feet msl. Recovery well RW-1RD was installed in May 2000.
- RW-3 screened in the Middle and Basal Magothy (300 to 385 feet bgs [-161 to -246 feet msl]). Ground surface elevation at RW-3 is approximately 139 feet msl. Recovery well RW-3 was installed in June 2017 and became operational in 2018.

Groundwater recovered by the OU1 extraction system is pumped to the OU1 GWTS. The extracted groundwater is treated in series through two vertical air stripper towers to remove dissolved VOCs to levels below their site-specific Applicable or Relevant and Appropriate Requirements (ARARs),

listed in **Table 1-1**. The treated groundwater is discharged back to the aquifer system via an array of five diffusion wells (DW-11, DW-12, DW-13, DW-14 and DW-15) that are screened in the Magothy aquifer, as described below.

- DW-11 screened in the Middle Magothy and Basal Magothy (275 to 411 feet bgs [-152 to -288 feet msl]). Ground surface elevation at DW-11 is approximately 123 feet msl. Diffusion well DW-11 was installed in June 2002 and relined in 2015.
- DW-12 screened in the Middle Magothy and Basal Magothy (308 to 396 feet bgs [-179 to -267 feet msl]). Ground surface elevation at DW-12 is approximately 129 feet msl. Diffusion well DW-12 was installed in August 2002 and relined in 2019.
- DW-13 screened in the Middle Magothy (250 to 320 feet bgs [-128 to -198 feet msl]) and the Basal Magothy (340 to 380 feet bgs [-218 to -258 feet msl]). Ground surface elevation at DW-13 is approximately 122 feet msl. Diffusion well DW-13 was installed in October 2008.
- DW-14 screened in the Middle Magothy (270 to 322 feet bgs [-135 to -187 feet msl]) and two intervals in the Basal Magothy (372 to 390 feet bgs [-237 to -255 feet msl] and 398 to 424 feet bgs [-263 to -289 feet msl]). Ground surface elevation at DW-14 is approximately 135 feet msl. Diffusion well DW-14 was installed in June 2013.
- DW-15 screened in the Middle Magothy (250 to 310 feet bgs and 320 to 350 feet bgs [-126 to -186 feet msl and -196 to -226 feet msl]) and the Basal Magothy (380 to 390 feet bgs [-256 to -266 feet bgs]). Ground surface elevation at DW-15 is approximately 124 feet msl. Diffusion well DW-15 was installed in October 2021 and began operations in December 2021.

The goal of the off-site OU2 GWTS is to recover additional contaminant mass in a "hotspot" identified in the early 2000s. As discussed in **Section 1.2** above, NYSDEC issued a ROD in December 2014 that incorporated the existing off-site groundwater extraction and treatment system into the OU2 final remedy. The OU2 system is located hydraulically downgradient (i.e., north) of the former Unisys Site and operates with one recovery well (RW-100) and three diffusion wells (DW-100, DW-101, and DW-102). At any given time, only 2 of the 3 diffusion wells are in use at any one time.

The one OU2 off-site recovery well is screened in different portions of the aquifers beneath the Site, as described below.

• RW-100 – screened at two intervals in the Upper Magothy (190 to 210 feet bgs [-33 to -53 feet msl] and 238 to 260 feet bgs [-81 to -103 feet msl]) and one interval in the Middle Magothy (276 to 324 feet bgs [-119 to -167 feet msl]). Ground surface elevation at RW-

100 is approximately 157 feet msl. Recovery well RW-100 was installed in September 2003.

Groundwater recovered at a nominal flow of 500 gpm by the OU2 GWTS is treated in series through two vertical air stripper towers to remove dissolved VOCs to levels below their site-specific ARARs, listed in **Table 1-1**. The treated groundwater is discharged back to the aquifer system via an array of three diffusion wells (DW-100, DW-101, and DW-02) that are screened in the Magothy aquifer, as described below.

- DW-100 screened in the Middle Magothy (299 to 331 feet bgs [-170 to -202 feet msl]) and the Basal Magothy (415 to 419 feet bgs [-286 to -290 feet msl]). Ground surface elevation at DW-100 is approximately 133 feet msl. Diffusion well DW-100 was installed in January 2004.
- DW-101 screened in two intervals in the Basal Magothy (333 to 383 feet bgs [-210 to -260 feet msl] and 393 to 408 feet bgs [-270 to -285 feet msl]). Ground surface elevation at DW-101 is approximately 128 feet msl. Diffusion well DW-101 was installed in November 2003 and recently cleaned in 2021.
- DW-102 screened in the Basal Magothy (365 to 413 feet bgs [-238 to -286 feet msl]). Ground surface elevation at DW-102 is approximately 127 feet msl. Diffusion well DW-102 was installed in February 2004.

1.5 MONITORING PROGRAM REQUIREMENTS

In addition to creating an effective capture zone, the remedial goals for the OU1 GWTS, as described in the March 1997 ROD and the January 2015 AROD, are to provide for attainment of Standards, Criteria, and Guidance for groundwater quality, to the extent practicable, and to mitigate the impacts of VOC-impacted groundwater to the environment at the Site. The OU2 GWTS is designed to remove contaminant mass from an area of elevated groundwater impacts, thereby minimizing potential additional impacts to public water supply wells.

The groundwater data obtained during the ongoing quarterly monitoring program are used to evaluate the effectiveness of the active OU1 and OU2 GWTS in meeting the above goals.

1.6 OBJECTIVES

The objectives of the annual groundwater monitoring program are as follows:

- Monitor on-site and off-site hydraulic conditions (i.e., collect synoptic groundwater level
 measurements, develop potentiometric surface maps, and evaluate horizontal and vertical
 gradients) to assess groundwater flow.
- Monitor on-site and off-site groundwater quality for VOCs and other select constituents, as required.
- Evaluate current groundwater quality relative to regulatory criteria and historic monitoring
 results to identify spatial and/or transient changes in groundwater quality due to remedial
 activities, groundwater flow, water supply pumping conditions, and, if identified, other
 factors.
- Provide recommendations, as appropriate, to improve the effectiveness of the groundwater monitoring program and the effectiveness of the OU1 and OU2 GWTSs.

1.7 REPORT ORGANIZATION

This report is organized as follows:

- The introduction, a summary of background information, including a description of the Site, the Site regulatory history and hydrogeology, the groundwater remedial systems, the monitoring program requirements and objectives, and the report organization are provided in **Section 1**.
- The field methods used, and laboratory analyses performed during the 2021 groundwater monitoring activities are briefly summarized in **Section 2**.
- The 2021 groundwater monitoring results, including an assessment of groundwater flow and estimated recovery well capture zones, groundwater analytical results, and VOC concentration trends are discussed in **Section 3**.
- Findings and proposed recommendations are provided in **Section 4**.

SECTION 2 FIELD AND LABORATORY PROCEDURES

As noted in **Section 1**, groundwater monitoring activities conducted in 2021 consisted of collecting synoptic groundwater level measurements prior to Q2 and Q3 groundwater sampling and conducting quarterly groundwater sampling events. Synoptic water level measurements were collected from available on-site and off-site monitoring and recovery wells associated with the OU1 GWTS and OU2 GWTS on April 19 to 20 and August 9 to 10.

Quarterly groundwater samples were collected on January 27 to 29, May 11 to 19, August 10 to 26, and November 1 to 17, 2021. Groundwater samples were collected from monitoring wells, irrigation wells, and from raw water lines prior to treatment at public supply wells located at and near the Site. The current groundwater monitoring well network was established to satisfy the objectives of the March 1997 OU1 ROD, the January 2015 OU1 AROD, and the December 2014 OU2 ROD. The location of the wells within the monitoring well network and nearby water supply and irrigation wells are provided in **Figure 2-1**. A list of the wells in the groundwater monitoring network and well construction details are provided in **Table 2-1**. Groundwater sampling and water level monitoring frequency for the wells in the groundwater monitoring network is provided in **Table 2-2**. The actual number of wells sampled or used to measure water levels for each event may vary from **Table 2-2** based on access to the wells or specific directions from the NYSDEC. The groundwater level measurement methods are described below, followed by a description of the groundwater sampling methods and the sampling conducted in 2021.

2.1 WATER LEVEL MEASUREMENTS

Synoptic groundwater level measurements were collected as shown below.

Date	Number of wells measured	Recovery and diffusion wells operating
April 19 to 20, 2021 (Q2)	128	Recovery wells: RW-1RS, EW-1R, RW-1RD, RW-3, and RW-100 Diffusion wells: DW- 11, 12, 13, 14, 100 & 102
August 9 to 10, 2021 (Q3)	129	Recovery wells: RW-1RS, EW-1R, RW-1RD, RW-3, and RW-100 Diffusion wells: DW-11, 12, 13, 14, 100 & 102

Measurements were collected from on-site and off-site monitoring wells, former supply wells, and OU1 and OU2 recovery wells and diffusion wells. The status and pumping rates of the OU1 and OU2 recovery and diffusion wells during the April and August synoptic groundwater level measurement events are summarized in **Table 2-3**.

Synoptic groundwater level measurements were collected using an electronic water level meter in accordance with the measurement procedures in the SAP (AMEC, 2021b). The depth to water at each well was measured to the nearest 0.01 feet from the surveyed measuring point identified on the well casing or, in the case of recovery wells and diffusion wells, at the well head. As the water level elevation contour maps were being prepared, potentially anomalous readings were observed at the wells in the parking lot area of the eastern portion of the Site. American Engineering and Surveying was called in to check the elevations of the well casings associated with these wells. Updated top-of-casings elevations were provided for the following wells: 2GL, 2MU, 2MI, 2ML, 8GU, 8GL, 8ML. 9GL, 35GL, 50MI, 50ML, and RW-2. The water level maps in this report include the updated top-of-casing elevations. The updated casing elevations resolved the anomalous readings mentioned above. A summary of the elevations before and after the updated survey is included below.

Well Number	Top of Casing Elev. Before	Top of Casing Elev. Updated
50MI	133.39 ft. msl	133.49 ft. msl
50ML	132.82 ft. msl	132.95 ft. msl
35GL	126.58 ft. msl	125.32 ft. msl
9GL	127.05 ft. msl	125.63 ft. msl
8ML	121.50 ft. msl	119.38 ft. msl
8GU	121.19 ft. msl	119.13 ft. msl
8GL	121.21 ft. msl	119.22 ft. msl
2MU	126.41 ft. msl	125.30 ft. msl
2ML	125.58 ft. msl	124.33 ft. msl
2MI	125.88 ft. msl	124.54 ft. msl
2GL	126.06 ft. msl	124.65 ft. msl
RW-2	128.23 ft. msl	125.30 ft. msl

2.2 GROUNDWATER SAMPLING

The 2021 quarterly groundwater monitoring program was conducted in accordance with the well list and sampling frequencies specified in the SAP. During the 2021 events, groundwater samples were collected from wells located hydraulically downgradient and north of the former Unisys Site as shown on the following tabulation.

Date	Number of Wells Sampled
January 27 through 29, 2021 (Q1)	18
May 11 through 19, 2021 (Q2)	46
August 10 through 26, 2021 (Q3)	52
November 1 through 17, 2021 (Q4)	47

Details of the wells included during each round of sampling are included in the following sections and on **Table 2-2**. The OU1 and OU2 recovery wells are not included in these totals and are discussed in section 3.2.5.

Groundwater samples were collected during the 2021 quarterly sampling events using low flow purging and sampling methods consistent with the SAP and the USEPA Low Stress (Low Flow) Purging and Sampling Procedure for the Collection of Ground Water Samples from Monitoring Wells (USEPA, 2017). During Q1, the monitoring wells were purged and sampled using dedicated QED Well WizardTM bladder pumps previously installed in the wells. Wells without dedicated pumps were purged and sampled using portable GeotechTM bladder pumps. PFAS analysis was added to the sampling list for Q2. Since the Well Wizard pumps include some TeflonTM components and low-density polyethylene tubing that are not suitable for PFAS sampling, the pumps and tubing were removed prior to sampling. The wells were then purged of three casing volumes of water using high density polyethylene (HDPE) tubing and a WaterraTM stainless steel check valve. The wells were then sampled using new HDPE tubing and Geotech stainless steel pumps which are certified by the manufacturer to be PFAS free.

Water quality indicator parameters measured during well purging (i.e., pH, temperature, specific conductance, dissolved oxygen, oxidation-reduction potential, and turbidity) were recorded on field data sheets that are provided in **Appendix A**. Groundwater grab samples were collected from active irrigation wells and public supply wells.

Groundwater samples collected during the 2021 quarterly sampling events were submitted to TestAmerica, Inc. located in Edison, New Jersey, a NYSDOH-certified laboratory, for analysis of target compound list (TCL) VOCs plus Freon 11, Freon 22, Freon 113, Freon 115, Freon 123, and Freon 152 using USEPA Methods 8260D and 524.2 (for municipal supply wells).

As directed by NYSDEC, groundwater samples were analyzed for PFAS and 1,4-dioxane from a subset of wells during Q2 using USEPA Method 537.1 and 8270E Selective Ion Monitoring (SIM), respectively. The laboratory obtained a detection limit for 1,4-dioxane of 0.2 micrograms per liter (μ g/L).

Quality Assurance/Quality Control (QA/QC) samples included trip blanks, equipment blanks, field duplicates, and matrix spike/matrix spike duplicate sets. QA/QC samples were collected at a frequency commensurate with the data validation requirements. Trip blanks accompanied samples for VOC analysis, and equipment blanks were collected at a frequency of 5% of total samples taken when non-dedicated sampling equipment (i.e., portable pumps) were used during well purging and sampling.

Additional details regarding the sampling conducted during the individual quarterly events are provided below.

2.2.1 2021 Q1 Groundwater Sampling Event

The 2021 Q1 groundwater sampling event was conducted on January 27 through 29, 2021. The wells sampled during the Q1 groundwater sampling event include 31GL, 31MI, 31ML, 43MU, 43MI, 45MU, 45MI, 46MI, 46ML, 51MI, 51ML, 52MI, 52ML, 53MI, 53ML, N5099, N4388, and N12796. Non-municipal irrigation wells N5535 and N9687 were not sampled during this event, as the wells were not operated during the winter. Municipal supply wells N12999, N13000, and N13821 were not sampled during this event, as these wells were undergoing SCADA system upgrades during the time of this event and were not operational. The wells sampled and a presentation of the results are included in Section 3.2 of this report.

2.2.2 2021 Q2 Groundwater Sampling Event

The 2021 Q2 groundwater sampling event was conducted from May 11 through 19, 2021 and included the analysis of PFAS and 1,4 dioxane along with VOCs. As directed by the NYSDEC,

some of the wells routinely sampled during the annual Q3 sampling event were included in the Q2 sampling event so that the results of the additional analyses would be available sooner. The wells were purged of three casing volumes of water using HDPE tubing and a WaterraTM stainless steel check valve. They were then sampled using new HDPE tubing and Geotech stainless steel pumps, which are certified by the manufacturer to be PFAS free. The total number of wells sampled during the Q2 sampling event is presented in Section 2.2. This includes an additional eleven wells (wells 1GU, 2MI, 3GL, 3ML, 6GL, 6MI, 37MU, 47MI, 47ML, 49MI, and 49ML).

2.2.3 2021 Q3 Groundwater Sampling Event

The 2021 Q3 annual comprehensive groundwater sampling event was conducted from August 10 through 26, 2021. The total number of wells sampled during the Q3 sampling event is presented in Section 2.2. This includes the following additional wells which were sampled as per the direction of NYSDEC: 1GU, 2MI, 3GL, 3ML, 6GL, 6MI, 37MU, 47MI, 47ML, 49MI, and 49ML.

2.2.4 2021 Q4 Groundwater Sampling Event

The 2021 Q4 annual groundwater sampling event was conducted from November 1 through 17, 2021. The total number of wells sampled during the Q4 sampling event is presented in the table in Section 2.2. The following additional wells that are not typically sampled during the Q4 sampling event were added to this round: 1MI, 1ML, 3GL, 3ML, 17ML, 22ML, 29MI, 33GL, 33MI, 33ML, 37MU, 37ML, 44MU, 44MI, 47MI, 47ML, 48MI, 48ML, 49ML, 50MI, 50ML, 54GU, 54GI and Q2604.

2.2.5 Data Validation

The groundwater analytical data generated during the 2021 quarterly sampling events were validated to assess data quality and to document the quality in an organized, systematic, and legally defensible manner. Data usability reviews of the analytical groundwater data collected during the 2021 quarterly sampling events were performed in accordance with the NYSDEC Division of Environmental Remediation Guidance DER-10, Appendix 2B for Data Usability Summary Reports (DUSR). During the DUSR review, the results were reviewed using the laboratory hardcopy deliverables to verify that results were reported and qualified correctly by the laboratory, and to evaluate QC measurements to determine the usability of results. The DUSRs are provided in **Appendix B**.

2.2.6 Additional Sampling

PFAS and 1,4-Dioxane Groundwater Sampling

As directed by NYSDEC, groundwater samples were collected for analysis of PFAS and 1,4-dioxane from some of the wells sampled during the Q2 groundwater sampling event. The ID numbers of the wells sampled for PFAS and 1,4-dioxane during the Q2 sampling event are included on **Table 2-**2. The field procedures used to prepare the wells for the collection of PFAS and 1,4 dioxane samples are included in Section 2.2. and the results are included in Section 3.2.6.

SECTION 3 RESULTS

As noted in **Section 1.3**, to facilitate mapping and the evaluation of hydraulic and water quality data, the Upper Glacial and Magothy aquifers beneath and near the Site have been divided into four zones (depth horizons), specifically the Upper Glacial aquifer and the Upper, Middle, and Basal Magothy aquifers. Generally, the groundwater flow direction is north to northwest; however, pumping by several public supply, irrigation and remediation wells in the area affects the groundwater flow direction. The water level elevation data and the groundwater analytical data from the 2021 Q2 and Q3 monitoring events are presented and discussed in this section. The discussion addresses the four aquifer zones noted above.

3.1 GROUNDWATER ELEVATIONS

The synoptic groundwater level measurements recorded during the Q2 2021 and Q3 2021 events and the resulting calculated groundwater elevations are provided in **Table 3-1**. Potentiometric surface maps prepared using the Q2 2021 and Q3 2021 groundwater elevation data are provided on **Figures 3-1** through **3-8**.

The OU1 GWTS and associated recovery wells (EW-1R, RW-1RS, RW-1RD, and RW-3) were all operational during the Q2 and Q3 2021 synoptic groundwater level measuring events. Treated groundwater was discharged to OU1 diffusion wells DW-11, DW-12, DW-13, and DW-14 continuously during the Q2 and Q3 2021 events. The recovery and diffusion well operational pumping data for 2021 is listed in **Table 2-3**.

The off-site OU2 GWTS and associated recovery well RW-100 were operating during the Q2 and Q3 2021 synoptic groundwater level measurement events. Treated groundwater was discharged to OU2 diffusion wells DW-100 and DW-102 during both the Q2 2020 and Q3 2021 synoptic groundwater level measurement events. DW-101 was off-line during both synoptic groundwater level measurement events.

The potentiometric surface maps were constructed using kriging with subsequent review and adjustments to contour lines as needed based on the Site groundwater flow and transport model and professional judgement to generate groundwater elevation contours for the four aquifer zones. The potentiometric surface elevation contour maps can be used to infer the horizontal groundwater flow direction for the specific aquifer zone presented. When the potentiometric surface maps for each aquifer zone are interpreted as a sequence of maps by depth, a generalized three-dimensional representation of the groundwater flow system can be inferred. Both the horizontal flow directions (inferred from potentiometric surface maps) and the vertical hydraulic gradients (discussed in Section 3.1.5) are used to define groundwater flow within the aquifer system based on the quantitative hydraulic head data (i.e., groundwater levels) and qualitative knowledge of other factors that can influence the groundwater system (e.g., operation of pumping wells).

As shown on **Figures 3-1** through **3-8**, five municipal water supply wells screened in the Magothy formation are located north of the Site (Water Authority of Great Neck North [WAGNN] wells N12999, N13000, N13821, and N12735 and Manhasset Lakeville Water District [MLWD] well N5099). Two additional municipal supply wells are located northwest of the Site (WAGNN wells N4388 and N12796). The pumping status of the above water supply wells during the Q2 2021 and Q3 2021 synoptic groundwater level measurement events is summarized in **Table 3-2**.

Assessment of Hydraulic Capture

AMEC evaluated the capture zones for the OU1 and OU2 recovery system based on the 2021 groundwater and remediation system data using the following approach:

- Interpretation of groundwater flow lines from potentiometric surface maps for the four aquifer zones
- Vertical hydraulic gradients calculated based on well pairs completed in adjacent aquifer zones

In addition, CDM Smith conducted groundwater flow simulation analysis using the calibrated groundwater flow and transport model approved by NYSDEC to evaluate the hydraulic capture zones created by the OU1 and OU2 groundwater remediation systems. A description of the analysis is presented in **Appendix C**. Whereas the calculated capture zones are two-dimensional

"snap-shots" in time, the simulated capture zones show potential long-term hydraulic capture and integrate three-dimensional groundwater flow.

The capture zones simulated using a transient groundwater flow field, rather than a fixed constant flow field, are believed to be more representative of potential capture, because remediation and water supply pumping is not fixed and varies over the course of a year.

The simulated hydraulic capture zones are shown on the potentiometric surface maps for Q2 2021 and Q3 2021 (**Figures 3-1** through **3-8**). The simulated capture zone shown on the figures is the lateral extent of the composite OU1 and OU2 capture zones as presented in the capture zone figures in **Appendix C**.

The horizontal extent of the simulated capture zones in the Upper Glacial and the Upper, Middle and Basal Magothy encompass the entire former Unisys Site property. The potentiometric surface maps and the simulated capture zones are discussed below by aquifer zone.

3.1.1 Upper Glacial Aquifer – Q2 and Q3 2021

Measured synoptic groundwater elevations in the Upper Glacial aquifer across OU1 and OU2 generally ranged from approximately 50 feet msl (southeast of site) to 41 feet msl (northwest of site) in both Q2 2021 and Q3 2021. The horizontal hydraulic gradient in the Upper Glacial aquifer was approximately 0.0011 feet per foot (ft/ft) based on the Q2 and Q3 2021 synoptic groundwater elevation measurement events.

The Q2 and Q3 2021 potentiometric surface maps for the Upper Glacial aquifer are provided in **Figures 3-1** and **3-2**, respectively. The direction of groundwater flow in the Upper Glacial aquifer in both figures is to the north-northwest. Pumping of the OU1 recovery wells in Q2 and Q3 2021 created a localized depression in the water table, primarily near recovery well EW-1R, which is completed in the Upper Magothy aquifer zone.

The downgradient extent of the simulated capture zones indicate that off-site Upper Glacial groundwater is captured by OU2 recovery well RW-100, which is completed in the Upper and Middle Magothy zones.

3.1.2 Upper Magothy – Q2 and Q3 2021

Measured synoptic groundwater elevations in the Upper Magothy zone across OU1 and OU2 generally ranged from approximately 50 feet msl (southeast of site) to 31 feet msl (northwest of site) in both Q2 2021 and Q3 2021. The horizontal hydraulic gradient in the Upper Magothy zone during the Q2 and Q3 2021 synoptic groundwater measurement events was approximately 0.0018 ft/ft.

The Q2 and Q3 2021 potentiometric surface maps for the Upper Magothy are provided in **Figures 3-3** and **3-4**, respectively. The horizontal direction of groundwater flow in the Upper Magothy zone is generally to the north-northwest. The westerly component of groundwater flow suggested by the contours in **Figures 3-3** and **3-4** is based on the relatively limited groundwater elevation data available west and southwest of the Site for this depth horizon. Groundwater flow model simulations, which encompass a larger area, indicate the groundwater flow direction is more to the north-northwest than suggested by the limited contours generated from the synoptic groundwater level measurement data. As shown in both **Figures 3-3** and **3-4**, the horizontal groundwater flow direction becomes more northerly further north of the Site. Note, the groundwater direction near pumping wells is not clearly illustrated in these contours due to the lack of water level measurements near active pumping wells.

As shown on all of the Upper Magothy potentiometric surface maps, pumping of the OU1 and OU2 recovery wells created localized depressions in the potentiometric surface near active recovery wells RW-1RS, RW-1RD, and RW-100, which are all partially screened in the Upper Magothy zone.

3.1.3 Middle Magothy - Q2 and Q3 2021

Measured synoptic groundwater elevations in the Middle Magothy zone across OU1 and OU2 generally ranged from approximately 50 feet msl (southeast of site) to 26 feet msl (northwest of site) in Q2 and Q3 2021 (excluding data near the diffusion wells). Higher groundwater elevations were measured near the OU1 diffusion wells during all synoptic groundwater level measurement events as seen by the measurements recorded at well MW-41MI on **Figures 3-5** and **3-6**.

The diffusion wells associated with OU1 (DW-11 through DW-15) and OU2 (DW-100 through DW-102) recharge treated groundwater to the Middle and Basal Magothy zones, and groundwater

mounding near the active diffusion wells is responsible for the westerly component of horizontal groundwater flow. Locally, the effect of the diffusion wells is to introduce treated water back into the aquifer which results in a hydraulic divide; as a result, migration of VOC impacted groundwater remains to the west of the diffusion well locations. The mounding is most visible on both of the Middle Magothy potentiometric surface maps near the OU2 diffusion wells, where high groundwater elevations associated with the recharging diffusion wells result in locally steeper hydraulic gradients and a local groundwater flow direction to the west-northwest.

The horizontal hydraulic gradient in the Middle Magothy aquifer zone during the synoptic groundwater measurement events was approximately 0.0021 ft/ft. Similar to the Upper Magothy, lower hydraulic heads are evident in all of the Middle Magothy maps near OU2 recovery well RW-100, which is screened in the Upper and Middle Magothy zones and near OU1. Lower hydraulic heads were evident in recovery well RW-1RD also screened in the Upper and Middle Magothy zones and RW-3 which is screened in the Middle and Lower Magothy zones.

3.1.4 Basal Magothy - Q2 and Q3 2021

Measured groundwater elevations in the Basal Magothy zone across OU1 and OU2 generally ranged from approximately 49 feet msl (southeast of site) to 22 feet msl (northwest of site) in Q2 and Q3 2021 and 50 feet msl (southeast of site) (excluding data near the diffusion wells). Higher groundwater elevations were measured in the wells near the OU1 and OU2 diffusion wells during all of the synoptic groundwater level measurement events because of groundwater mounding resulting from the groundwater injection at these wells.

The horizontal hydraulic gradient in the Basal Magothy aquifer zone during the 2021 synoptic groundwater measurement events was approximately 0.0025 ft/ft.

The Q2 and Q3 2021 potentiometric surface maps for the Basal Magothy are provided in **Figures 3-7** and **3-8**, respectively. Similar to the Middle Magothy, the horizontal direction of groundwater flow in the Basal Magothy zone is generally to the north-northwest, with a westerly component of groundwater flow in the area near the OU1 and OU2 diffusion wells. All of the OU1 and OU2 diffusion wells are screened partly or entirely in the Basal Magothy, and elevated hydraulic heads near the active diffusion wells, the resulting component of horizontal groundwater flow is to the west. As stated above, the diffusion wells introduce treated water back into the aquifer and create

a hydraulic divide which limits groundwater flow to the east. The zone of elevated hydraulic heads, and associated locally higher gradients, are shown on both of the Basal Magothy potentiometric surface maps. The elevated hydraulic heads are related to recharge at the OU1 and OU2 diffusion wells. Currently, the only active recovery well installed in the Basal Magothy aquifer is the RW-3 well (OU-1).

3.1.5 Vertical Hydraulic Gradients

Vertical hydraulic gradients were calculated using measured groundwater elevations at selected monitoring well pairs to assess the potential influence of local well pumping (i.e., recovery, irrigation, and water supply pumping) and, by extension, the degree of interconnection (or lack thereof) between the aquifer zones. Vertical hydraulic gradients were calculated between wells completed in the Upper Glacial aquifer and the Upper Magothy, the Upper and Middle Magothy, and the Middle and Basal Magothy. Vertical gradients were calculated for well pairs screened in the appropriate zones by subtracting the groundwater elevation in the deeper well of each pair from the groundwater elevation of the shallower well of each pair and dividing the result by the vertical distance between the midpoints of the two well screens. A positive number indicates a downward gradient, and a negative number indicates an upward gradient (**Table 3-3**).

The vertical gradients at and near the Site are generally downward (i.e., positive vertical hydraulic gradients) and there is not a significant vertical head difference near the Site, which is consistent with the conceptual site model. Active pumping wells can reverse the vertical hydraulic gradient and, at some locations, have induced upward vertical gradients which is evident in nearby monitoring well measurements. Examples include upward vertical gradients observed in well pairs 1MI and 1MI/Land 30GL and 30MI:

- Wells 1MI and 1MI/L are located approximately 150 feet from OU1 recovery well RW-1RD (**Figure 2-1**). Well, 1MI is screened in the Upper Magothy (-93 to -113 feet msl) within the same horizon as recovery well RW-1RD (-98 to -128 feet msl). The data suggests that pumping at RW-1RD induces a lower hydraulic head in 1MI, resulting in an upward vertical gradient from Middle Magothy well 1MI/L to Upper Magothy well 1MI. The four OU1 recovery wells were pumping during the Q2 and Q3 2021 synoptic events and an upward gradient was present at well pair 1MI and 1M/L (**Table 3-3**).
- Well pair 39MI/39ML is located approximately 70 feet from OU2 recovery well RW-100 (**Figures 2-1**). Well, 39MI is screened in the Middle Magothy aquifer (-144 to -154 feet msl) within the same horizon as recovery well RW-100 (lower screen interval -119 to -167

- feet msl). The data suggest that pumping at RW-100 in Q3 2021 induces a lower hydraulic head in 39MI, resulting in an upward vertical gradient from Basal Magothy well 39ML to Middle Magothy well 39MI.
- Well pair 30GL/30MI is located between the OU1 and OU2 diffusion well fields (**Figure 2-1**). OUI diffusion wells DW-11, DW-12, and DW-14, and OU2 diffusion well DW-100 and DW-102 are screened in the Middle and Basal Magothy zones. Discharge of treated groundwater at these wells increased the head at depth and in Middle Magothy well 30MI, inducing an upward vertical gradient in the well pair during Q2 and Q3 2021 measuring event.

3.2 GROUNDWATER QUALITY AND CONCENTRATION TRENDS

VOCs

The groundwater analytical results for samples collected from on-site and off-site wells monitored over a period ranging from approximately 1989 to present were used to construct trend graphs to assess VOC concentration trends over time in key monitoring wells. The trend graphs include reported concentrations of the compounds of concern (i.e., cis-1,2-DCE, PCE, TCE, and Freon 113) and total VOC (TVOC) concentration sum which includes all of the VOC concentrations detected, not just the COCs (the sum does not include concentrations of tentatively identified compounds). The graphs include markers noting the startup and shutdown dates of the OU1 Groundwater IRM, and the startup of both the OU1 and OU2 GWTSs. Individual trend graphs constructed for the wells sampled in 2021 are provided in **Appendix D**.

As noted in **Section 2**, the 2021 quarterly groundwater samples were analyzed for TCL VOCs plus selected Freon compounds. In addition, water samples sampled during Q2 2021 were also analyzed for PFAS and 1,4-dioxane during the Q2 sampling round. The VOC analytical results are presented in **Table 3-4**, including the calculated total VOC and total COC concentrations. The VOC results in **Table 3-4** are compared to the site-specific ARARs, and compound concentrations that exceed their respective ARARs are highlighted in the table.

Using the Q2 and Q3 2021 VOC results, which includes results from the Q3 comprehensive annual sampling event, iso-concentration maps were constructed to assess the distribution of TVOCs (**Figures 3-9** through **3-12**). The horizontal limits of groundwater TVOC concentrations on the iso-concentration maps are defined by the estimated 5 μ g/L iso-concentration line. This value is the ARAR for Site COCs (**Table 1-1**).

As noted in **Section 2**, groundwater grab samples before treatment were collected from WAGNN water supply wells N4388, N12796, N12999, N13000, and 13821 and MLWD water supply well N5099 during the 2021 quarterly sampling events. If the WAGNN and MLWD water supply wells were not in service during the sampling event (i.e., not operational, and actively pumping), then the wells were temporarily activated to purge several well volumes a minimum of 30 minutes prior to collecting a groundwater grab sample. The operational status of the wells during sampling has the potential to influence the concentrations detected (e.g., lower concentrations when the well is in service might reflect the capture of water that is not impacted, as well as VOC-impacted water). Accordingly, the water supply well operational history during the 2021 quarterly groundwater sampling events is as follows:

Well Number	1 st Quarter	2 nd Quarter	3 rd Quarter	4 th Quarter
N12999	Well not operable at this time	In service and pumping	In service and pumping	Activated to purge prior to sampling
N13000	Well not operable at this time	In service and pumping	In service and pumping	In service and pumping
N13821	Well not operable at this time	Activated to purge prior to sampling	Activated to purge prior to sampling	In service and pumping
N5099	In service and pumping			
N4388	Activated to purge prior to sampling	Activated to purge prior to sampling	In service and pumping	Activated to purge prior to sampling
N12796	In service and pumping			

The updated TVOC concentration trends are discussed below relative to the four aquifer zones beneath the Site and vicinity (i.e., the Upper Glacial aquifer and the Upper, Middle, and Basal Magothy). Trend graphs applicable to the four aquifer zones are included in **Appendix D** and displayed on **Figures 3-13** through **3-16** for ease of reference.

3.2.1 Upper Glacial

Ten monitoring wells screened in the Upper Glacial aquifer were sampled during 2021. Irrigation well N13221 was also sampled in 2021. Decreasing VOC concentration trends were observed at wells 1GL, 4GL, 7GL, and 29GL. The wells are mostly located near the northern portion of the Site where the active recovery wells are located. The concentration at well 16GL, located downgradient of the site, had one detection of cis-1,2-DCE at 0.43 µg/L, the concentrations of the remaining compounds were non-detect. The TVOC concentrations in well 35GL, which is located near the former dry well source area, decreased since last year, from 9,011 µg/L in 2020 to 7,212 µg/L in 2021.

The dissolved VOC plume is centered on the former Unisys Site property, where the highest concentration reported in Q2 2021 is observed in well 35GL (7,212 µg/L TVOC). Between 2000 and 2005, the VOC concentrations in this well had been decreasing. However, since 2005, the concentrations have been overall trending upward, except in the last year.

The limits of the 5 μ g/L iso-concentration line were based on reported concentrations in wells 16GL to the north (0.43 μ g/L TVOC), 8GU to the east (1.9 μ g/L TVOC), and 7GL to the west (5.1 μ g/L TVOC).

3.2.2 Upper Magothy

Sixteen monitoring wells, one irrigation well (N5535), and three water supply wells (wells N12999, N13000 and N5099) screened in the Upper Magothy were sampled during 2021. (Supply wells N12999, N13000 and N5099 are screened in both the Upper and Middle Magothy Aquifer.) Decreasing or stable VOC concentrations were observed at OU1 wells 1MI, 4MI, 8GL, 17GL, 27MI, and 28MI, and OU2 wells 14MI, 16ML, 22GL, 39MU, 45MI and 51MI.

The VOC concentrations in well 17GL, which increased during 2018 with a high TVOC concentration of 232.2 μ g/L reported on March 29, 2018, are now decreasing with a concentration of 42.3 μ g/L reported in May 2021. Well 17GL is located immediately north and hydraulically downgradient of the OU1 recovery wells.

Well 29MI decreased since last year with TVOC concentrations of 477 μ g/L in August 2020 and 370.7 μ g/L in November 2021. Vinyl Chloride in water samples from this well also decreased

from 98 μ g/L in August 2020 to 54 μ g/L in May 2021. This well is located along the northern property line on Marcus Avenue.

As shown on **Figures 3-3, 3-4, 3-5** and **3-6,** wells 17GL and 29MI are located within the combined simulated hydraulic capture zones for OU1 and OU2 GWTS; as such, groundwater model simulation results suggest that groundwater with elevated VOC concentrations near 29MI will likely be captured by the OU1 or OU2 recovery wells.

Located north of the Site and upgradient of the WAGNN Community Drive Well Field the TVOC concentration trend was generally decreasing this year in sentinel monitoring well 31GL; a TVOC concentration of $551.7 \,\mu\text{g/L}$ was measured in October 2019. It has been decreasing during the past two years and had a concentration of $94.3 \,\mu\text{g/L}$ in Q4 2021.

The TVOC concentrations in sentinel well 51MI (located north north-west of the Site) are stabilizing at about 45 μ g/L in Q4 2021 as compared to the Q4 2020 results of 35 μ g/L.

The TVOC concentration trend in well 45MU (located downgradient to the northwest of the Site) increased to about 257 μ g/L in Q4 2021 as compared to 175 μ g/L in Q4 2020.

The TVOC concentration in sentinel monitoring well 43MU (also located north of the site) is relatively low compared to 31GL (approximately 25 µg/L or less TVOC). The difference in concentrations among the northern sentinel wells noted above may be due to differences in their screen intervals. Wells 51MI and 31GL are screened at similar depth intervals (approximately -43 to -63 feet msl and -56 to -75 feet msl, respectively), but well 43MU is screened deeper (at approximately -87 to -97 feet msl).

The results indicate that TVOC concentrations in the Upper Magothy wells sampled in Q2 and Q3 2021 are generally similar to the concentrations reported for the same wells in 2020. The highest TVOC concentrations were reported in samples collected from well 29MI (490 μ g/L TVOC) located along the northern property line on Marcus Avenue, currently in the capture zone of the OU1 treatment system. The northeastern limit of the 5 μ g/L iso-concentration line was based on reported TVOC concentrations in well 51MI (29 μ g/L to 72 μ g/L).

3.2.3 Middle Magothy

Twelve monitoring wells, one irrigation well (N9687), and four water supply wells (WAGNN wells N12999, N13000, and N13821, and MLWD well N5099) screened in the Middle Magothy were sampled during 2021. (Supply wells N12999, N13000 and N5099 are screened in both the Upper and Middle Magothy Aquifer.)

The TVOC concentration trend in wells 1MI/L, 22ML, 31MI, 38MI, 39MI, 43MI, 45MI, 46MI, 52MI, and 53MI remained relatively stable over the past year. Well MW-53 MI (a sentinel well to the Supply Wells N4388 and N12796) was sampled four times in 2021 with TVOC concentrations ranging from 6.23 to 7.2 μ g/L.

The TVOC concentration trend in the raw water from MLWD supply well N5099 located north of sentinel well cluster MW-51 is decreasing (from $40.50 \mu g/L$ in Q4 2020 to $29.8 \mu g/L$ in Q4 2021) (**Figure 3-15**).

The TVOC concentrations in 43MI have varied between 37 μg/L and 62 μg/L during the past year.

WAGNN water supply wells N12999, N13000, and 13821 are partly screened in the Upper and Middle Magothy and MLWD water supply well N5099 is screened in both the Middle and Basal Magothy (primarily in the Basal Magothy). VOC concentrations were reported in the raw water from WAGNN water supply wells N12999, N13000, and N13821 in 2021 (**Table 3-4** and **Figure 3-15**).

For well N12999, cis-1,2 DCE exceeded the Site-specific ARAR of 5 μ g/L in 2020 Q3 (11 μ g/L); however, during 2021, the detections were 1.3 μ g/L or less. TVOC concentrations in N12999 ranged from 0.2 μ g/L to 2.13 μ g/L during 2021. As noted above, well N12999 was in service when sampled during Q2 and Q3 and had to be activated to purge the well prior to sampling during Q4. The well was not operational in Q1.

For well N13000, TVOC concentrations ranged from 10.72 μ g/L to 19.41 μ g/L during 2021. Concentrations of cis-1,2-DCE exceeded the Site-specific ARAR of 5 μ g/L in Q2 2021 (11 μ g/L), Q3 2021 (13 μ g/L) and Q4 2021 (7 μ g/L). As noted above, well N13000 was in service when sampled during Q2, Q3, and Q4. The well was not operational in Q1 during our sampling event.

For well N13821, the raw water TVOC concentration was from 0.21 μ g/L to 9.4 μ g/L during 2021. The highest reading, (9.4 μ g/L) was recorded in Q4 2021 when the well was actively pumping. Cis-1,2 DCE exceeded the Site-specific ARAR of 5 μ g/L in Q4 2020 (6.6 μ g/L) in well N13821. As noted above, well N13821 was in service when sampled during Q4 and had to be activated to purge the well prior to sampling during Q2 and Q3. The well was not operational in Q1.

Irrigation well N13221 was only sampled once during 2021, during Q3 2021. The TVOC concentration from that sampling event was 9.2 ug/L.

The cis-1,2-DCE concentrations reported in the raw water from MLWD supply well N5099 exceeded the Site-specific ARAR of 5 μ g/L for cis-1,2-DCE in all four quarters of 2021; Q1 (24 μ g/L), Q2 (23 μ g/L), Q3 (14 μ g/L) and Q4 (15 μ g/L). Reported TCE concentrations also exceeded the Site-specific ARAR of 5 μ g/L in 2021 Q1 (16 μ g/L), Q2 (9.4 μ g/L), Q3 (9.3 μ g/L) and Q4 (9.9 μ g/L). Furthermore, PCE exceeded the Site-specific ARAR of 5 μ g/L in 2021 Q1 (5.4 μ g/L) and Q2 (5.3 μ g/L). As noted above, well N5099 was in service when sampled during all four quarters in 2021.

Although the analytical results for the raw (untreated) water of the four water supply wells indicate low-level TVOC concentrations, both WAGNN and MLWD operate and maintain treatment systems on the above wells to ensure that the water generated and distributed to their customers does not exceed federal and/or state drinking water standards.

The results indicate that VOC concentrations in the Middle Magothy wells sampled in Q3 2021 are generally similar to the concentrations reported for the same wells in Q3 2020. The isoconcentration contours on **Figure 3-11** indicate that the elevated TVOC concentrations in the center of the plume appear to be migrating downgradient to the north-northeast, presumably in response to pumping at WAGNN supply wells N12999, N13000, and N13821 and MLWD supply well N5099, which are screened either wholly or partly in the Middle Magothy.

The highest TVOC concentrations were reported in samples collected from wells located in the center of the plume, including wells 38MI (375 μ g/L TVOC), well 46MI (693 μ g/L TVOC), and sentinel well 31MI (637 μ g/L TVOC).

The limits of the 5 μ g/L iso-concentration line were based on reported TVOC concentrations in wells N9687 to the north (0.26 μ g/L), 53MI to the northwest (7.2 μ g/L), and 22ML to the east (6.9 μ g/L). Based on the potentiometric surface maps (**Figures 3-3** and **3-7**), the eastern edge of the plume north of well 22ML is presumptively delineated given the hydraulic influence of the diffusion wells recharging treated groundwater to the Middle Magothy aquifer zone resulting in a westward groundwater flow direction, west of the diffusion wells.

3.2.4 Basal Magothy

Eleven monitoring wells and one water supply well (MLWD well N5099) screened in the Basal Magothy aquifer were sampled during 2021. WAGNN public water supply wells N4388 and N12796 (known collectively as the Watermill Lane wells) are screened in outwash sediments and are located northwest of monitoring wells 53MI and 53ML, which were installed as sentinel wells to monitor the potential migration of VOC-impacted water related to the Site to the northwest in the direction of the Watermill Lane wells. (The Magothy aquifer does not extent as far north as the Watermill Lane wells. The Watermill Lane wells are screened in Upper Glacial sediments at an elevation equivalent to the Basal Magothy aquifer identified in well 53MI and 53ML.) The reported VOC concentrations for the Basal Magothy wells in 2021 are included on **Table 3-4.**

Groundwater analytical results for WAGNN well N12796 and N4388 indicate concentrations of Freon 113 of between non-detect and 0.68 μ g/L in 2021. Results for N4388 indicate TVOC concentrations between non-detect and 0.72 μ g/L and results for N12796 indicate TVOCs concentrations between 16 μ g/L and 19 μ g/L in 2021. The Watermill Lane wells are impacted by at least one historical release that is not associated with the former Unisys site. The Stanton Cleaners Site (NYSDEC Site No. 130072; USEPA Facility ID NYD047650197), located at 110 Cutter Mill Road, Great Neck, New York, was determined to be a source of chlorinated solvent found in pumped water from these supply wells since the early 1980s. Prior to remediation, the primary contaminants of concern were PCE and its daughter products in groundwater and soil . Groundwater extracted from the Watermill Lane well field is treated by an air stripper treatment system to remove these compounds (AMEC, 2020b).

The groundwater analytical results for the 2021 samples collected from well N4388 indicate that individual COC concentrations do not exceed the applicable 5 μ g/L ARAR with the highest concentration of cis-1,2 DCE in Q3 (0.44 μ g/L), the highest concentration of TCE in Q3 (0.14

 μ g/L) and the highest concentration of PCE in Q3 (0.44 μ g/L). The results for well N12796 indicate that the highest concentration of cis-1,2 DCE was in Q2 (4.3 μ g/L); the highest concentration of TCE was in Q2 (5.5 μ g/L) and the highest concentration of PCE was in Q2 (7.9 μ g/L). TCE and PCE exceeded the ARAR of 5 μ g/L at well N12796 in 2021. Well N4388 was in service when sampled during Q3 and had to be activated to purge the well prior to sampling during Q1, Q2, and Q4. Well N12796 was in service when sampled during all four quarters in 2021.

TVOC concentrations in well 39ML decreased from 25.09 μ g/L in 2020 to 17.76 μ g/L in 2021. Well 39ML is located near recovery well RW-100. Recovery well RW-100 is screened in the Upper and Middle Magothy; therefore, stable or decreasing VOC concentrations at 39ML may be due to vertical capture of Basal Magothy groundwater near this well location.

The trend graphs for wells OU1 wells 1ML and 8ML indicate relatively consistent concentrations over time, but have shown a general decrease since approximately 2012.

The concentration trend graph for well 17ML indicates that TVOC concentrations in this well are also generally stable during 2021. The TVOC concentration trends in wells 37ML and 38MI, are also relatively stable or decreasing.

The TVOC concentration trend is generally increasing in sentinel well 31ML and monitoring well 46ML. There has been relatively little change over the past year in the concentrations of VOCs in the raw water from MLWD supply well N5099 located north of sentinel well cluster MW-51 (**Figure 3-16**). The results for well N5099, which is screened in Middle and Basal Magothy, are discussed above in **Section 3.2.3**. The increasing VOC concentrations in these monitoring wells indicates that VOC-impacted groundwater is migrating northward. The TVOC concentration trend in the past year in well 51ML is also generally stable, except for the reported cis-1,2-DCE concentrations, which had low concentration of 3.5 μ g/L in Q1 and then ranged from 29 μ g/L to 36 μ g/L in the Q1 through Q3 2021 quarterly samples.

The results indicate that the Q3 2021 TVOC concentration in Basal Magothy well 39ML is similar to the 2020 TVOC concentrations reported for this well, and the 2021 TVOC concentrations in downgradient sentinel wells 31ML and 51ML are stable compared to the TVOC concentrations reported for these wells in 2020. Similar to the Middle Magothy zone, the iso-concentration contours on **Figure 3-12** indicate that the elevated TVOC concentrations in the center of the plume

appear to be migrating downgradient to the north-northeast, along the regional groundwater flow direction and in response to pumping at WAGNN supply wells N12999 and N13000, which are screened either wholly or partly in the Middle Magothy, and MLWD supply wells N5099, N4833, and N12796, which are screened in the Basal Magothy.

The highest VOC concentrations in the Basal Magothy were reported in samples collected from wells located in the center of the plume, including well 38ML (148 μ g/L TVOC) and well 37ML (267 μ g/L TVOC), which are within the capture zone of the OU2 treatment system and downgradient sentinel well 31ML (208 μ g/L TVOC).

The limits of the 5 μ g/L iso-concentration line to the south were based on TVOC concentrations in well 50ML (0.46 μ g/L). The eastern border of the plume north of well 8ML is presumptively delineated, given the hydraulic divide established by the diffusion wells recharging treated groundwater to the Basal Magothy aquifer zone, as shown in the potentiometric surface maps (**Figures 3-7** and **3-8**). The limits of the 5 μ g/L iso-concentration line to the northwest are based on reported TVOC concentrations in well 53ML (4 μ g/L). The concentration in well 53 ML have decreased throughout 2021 starting with a TVOC value of 20.9 μ g/L in Q1 and ending with a TVOC value of 2.94 μ g/L in Q4.

3.2.5 Recovery Wells

Influent groundwater samples were collected from the four recovery wells at OU1 and the one recovery well at OU2 during 2021 as shown in the following tabulation:

		Samplin	ng Event		
Well Number	Q1	Q2	Q3	Q4	
OU1 (date sampled)	12/15/2020	03/15/2021	06/22/2021	09/15/2021	
EW-1R	Sampled	Sampled	Sampled	Sampled	
RW-1RS	Sampled	Sampled	Sampled	Sampled	
RW-1RD	Sampled	Sampled	Sampled	Sampled	
RW-3	Sampled	Sampled	Sampled	Sampled	
OU2 (date sampled)	12/15/2020	03/17/2021	06/18/2021	09/15/2021	
RW-100	Sampled	Sampled	Sampled	Sampled	

As shown in **Appendix D**, the concentration trend graphs indicate that TVOC concentrations are stabilizing or decreasing. A comparison of the data collected during the 2021 monitoring period indicates the following changes in the TVOC concentrations.

- EW-1(R) Former well EW-1 was sampled in 2016, prior to its failure, and had a TVOC concentration of 179 μg/L. Neither well EW-1 or 1R was sampled in 2017 due EW-1's failure and the drilling of its replacement, EW-1R. EW-1R was sampled in 2018, 2019, 2020, and 2021. The concentrations of TVOCs were stable between 2018 and 2020 with concentrations ranging from 121 to 151 μg/L. Most recently, the well's concentration of TVOCs decreased to 104 μg/L in September 2021.
- RW-1RS This well was not sampled during 2017 and 2018 due to maintenance issues. The concentrations of TVOCs decreased from 189.49 μg/L in April 2016 to 118 μg/L in September 2020 and, most recently, 83 μg/L in June 2021.
- RW-1RD This well was sampled in 2016, 2018, 2019, and 2020. It was not sampled in 2017 due to maintenance activities. The concentrations of TVOCs decreased from 90.94 μg/L in September 2018 to 70.4 μg/L in December 2019, and, most recently, 53 μg/L in September 2021.
- RW-3 This well was installed and placed online in 2018. The well was sampled in 2018, 2019, and 2020. The concentrations of TVOCs remained relatively stable and were 180.4 μg/L in September 2018 and 175.6 μg/L in December 2019. Most recently, the well's concentration of TVOCs decreased to 144 μg/L in September 2021.
- RW-100 This well was sampled in 2016, 2018, 2019, and 2020. It was not sampled in 2017 due to maintenance activities. The concentrations of TVOCs have decreased from 147 μg/L in April 2018 to 89.4 μg/L in December 2019. Most recently, the well's concentration of TVOCs was 65 μg/L in September 2021.

The VOC total influent concentration trend (i.e., the trend for the combined influent from EW-1, RW-1RS, RW-1RD, and RW-3) at OU1 has remained relatively stable over the last several years, and the VOC total influent concentrations at OU2 (i.e., RW-100) from September 2016 to December 2021 were also generally stable.

3.2.6 PFAS and 1,4-Dioxane Concentrations

As noted in **Section 2.2.5**, groundwater samples were collected from select wells for analysis of PFAS and 1,4-dioxane during the Q2 2021 groundwater sampling event. Under Sections 201 and 225 of the NYS Public Health Law, a groundwater standard of 1 μ g/L was established for 1,4-dioxane. Based on USEPA risk assessment results, NYSDEC directed that the analytical method detection limit for 1,4-dioxane be less than 0.35 μ g/L. NYSDEC subsequently requested that the analysis of 1,4-dioxane concentrations in groundwater samples be performed using SW-846 8270D SIM method, which achieved a method detection limit of 0.4 μ g/L.

NYSDEC requested that the analysis of PFAS concentrations in groundwater samples be performed using method 537.1. The NYSDEC has developed a groundwater standard 10 nanograms per liter (ng/L) for two of the PFAS compounds, perfluorooctanoic acid (PFOA) and perfluorooctane sulfunate (PFOS). The method detection limits of this test varied by compound and were between 1 and 5 ng/L.

In Q2 2021, PFAS was analyzed in water samples from: upgradient wells 49MI and 49ML and Site wells (from south to north) 3GL, 3ML, 2MI, 35GL, 6GL, 6MI, 1GU, 1GL, 1MI, 1ML, 29GL, 29MI, 7GL and 7ML. The off-site wells sampled (from south to north) included 47MI, 47ML, 17GL, 17ML, 22GL, 22ML, 37MU, 37ML, and 13 sentinel wells (31GL, MI & ML, 43MU & MI, 45MU & MI, 46 MI & ML, 52 MI& ML, and 53 MI & ML). Six public water supply wells – N4388, N12796, N5099, N12999, N13000, and N13821 – were included in this round of sampling. The PFAS data generated during the Q2 2021 groundwater sampling event is included in **Table 3-4** and the results for the two PFAS compounds for which there are NYS groundwater standards are displayed on **Figure 3-18** (for PFOS) and 3-19 (PFOA).

PFOS was detected in water samples from the majority of the wells sampled in Q2 2021 at concentrations ranging from 0.24 ng/L to 15.7 ng/L. It was not detected in upgradient wells 49MI and 49ML, however, the highest detection (15.7 ng/L) was in an upper glacial monitoring well

located at the upgradient boundary of the site (well 3GL). It was detected below the groundwater standard in samples from the four on-site recovery wells and the off-site recovery well at concentrations ranging from 1.15 ng/L to 8.13 ng/L. It was detected in five of the six municipal supply wells at concentrations below the groundwater standard in water samples ranging from 0.49 ng/L to 2.18 ng/L.

PFOA was also detected in water samples from the majority of the wells sampled in Q2 2021 at concentrations ranging from 0.48 ng/L to 22.80 ng/L. It was detected in upgradient well 49MI at 5.47 ng/L and an upper glacial monitoring well located at the upgradient boundary of the site (well 3GL) at 14.30 ng/L. It was detected in samples from the four on-site recovery wells and the off-site recovery at concentrations ranging from 1.46 ng/L to 13.50 ng/L. It was detected below the groundwater standard in water samples from the six municipal supply wells at concentrations ranging from 1.13 ng/L to 8.55 ng/L.

In Q2 2021, 1,4-dioxane was analyzed in water samples from the same wells listed above for PFAS analysis. The 1,4-dioxane data generated during the Q2 2021 groundwater sampling event is included in **Table 3-4** and displayed on **Figure 3-20**.

The concentration of 1,4-dioxane in the water samples from the wells sampled in Q2 2021 exceeded the groundwater standard of 1 μ g/L at only one location, Site well 35GL which had a concentration of 1.4 μ g/L, a value similar to that measured in previous sampling rounds. It was detected in two other Site monitoring wells (29MI at 0.47 μ g/L and 7ML at 0.38 μ g/L). It was not detected in the four on-site recovery wells or the upgradient wells. 1,4 dioxane was detected below the groundwater standard in water samples from several off-site monitoring wells at concentrations ranging from 0.18 μ g/L to 0.29 μ g/L. These included wells 31MI, 47ML, 45MU, 46ML, 52MI, and 52 ML. It was detected in off-site recovery well RW-100 at 0.57 μ g/L but was not detected in the six municipal supply wells.

3.2.7 Sentinel Wells

Sentinel wells are monitored upgradient of public supply wells N5099 (the Cumberland Well); N13821, N13000 and N12999 (the Community Drive Wells); and N4388 and N12796 (the Watermill Lane Wells 2A and 9) to determine if groundwater impacts are approaching levels that would lead to further action as necessary to protect the water supply. Two new sentinel wells were

installed in 2021 upgradient of public supply well N12735 and sampled in Q4 and are discussed in **Section 3.2.8**.

The tabulation below presents the site-related VOC concentrations measured in water samples collected from the designated sentinel wells in comparison with raw water data from the Cumberland public supply well during 2021 Q1, Q2, Q3 and Q4. All four of the COCs (Freon 113; cis 1,2-DCE; TCE; and PCE) were detected in sentinel wells 46MI, 46ML, 51MI, and 51ML during all four quarters of 2021. Four of the five COCs were detected in the Cumberland well (N5099) during all four quarters of 2021. There were no detections of vinyl chloride in either the sentinel wells or the supply well. The water from this well is currently being treated.

Cumberland Wells

		Q1 2021 (in µg/L)								
	46MI	46ML	51MI	51ML	N5099					
PCE	29 J	3.1 J	2.5 J	0.45 J	5.4					
TCE	100 J	17 J	7.7 J	2.7 J	16					
cis 1,2-DCE	350 J	33 J	17 J	3.5 J	24					
Vinyl Chloride	0.5 UJ	0.5 UJ			0.5 U					
Freon 113	11 J	1.7 J	1.7 J	0.48 J	2.4					

		Q2 2021 (in μg/L)								
	46MI	46ML	51MI	51ML	N5099					
PCE	35	3.7	4	3.9	3.6 J-					
TCE	110	20	14	13	9.4					
cis 1,2-DCE	340	39	51	36	14					
Vinyl Chloride	0.5 U	0.5 U			0.5 U					
Freon 113	22	2.4	2.9	2.9	1.7					

		Q3 2021 (in μg/L)									
	46MI	46ML	51MI	51ML	N5099						
PCE	44	3.8	2.4	3.4	3.3						
TCE	140	23	12	11	9.3						
cis 1,2-DCE	470	47	53	32	14						
Vinyl Chloride	0.5 U	0.5 U			0.5 U						
Freon 113	27	2.5	3	2.8	1.6						

		Q4 2021 (in µg/L)									
	46MI	46ML	51MI	51ML	N5099						
PCE	41	6.3	4.5 J-	5	3.4						
TCE	110	27	9.1 J-	13	9.9						
cis 1,2-DCE	440	54	29 J-	29	15						
Vinyl Chloride	1 U	0.5 U			0.5 U						
Freon 113	23	3.4	2 J-	2.6	1.5						

Notes:

- --: Parameter not included in analysis by prior agreement
- U: Compound not detected above the indicated method reporting limit
- J: Concentration is an estimated value
- J-: Result is less than the Reporting Limit but greater than or equal to the Method Detection Limit and the concentration is an approximate value
- UJ: Compound not detected above the indicated method reporting limit

The tabulation below presents the site related COC concentrations measured in water samples collected from the designated sentinel wells in comparison with raw water data from the Community Drive public supply well during 2021 Q1, Q2, Q3 and Q4. Freon 113; cis 1,2-DCE; TCE; and PCE were detected in four of the five of the sentinel wells (31GL, 31MI, 31ML, and 43MI) during all for quarters of 2021. Freon 113 was not detected in well 43MU in Q4 2021. All four of these same COCs were detected in well N13000 during 2021 Q2, Q3, and Q4. Well N13821 had detections of these same COCs during Q2 and Q4 2021 and Well N12999 had varying detections of these COCs during this same time period. There were no detections of Vinyl Chloride in either the sentinel wells or the supply wells. The water from these wells is currently being treated.

Community Drive Wells

				Q1 20	021 (in μg	/L)		
	31GL	31MI	31ML	43MU	43MI	N13821	N13000	N12999
PCE	19 J	27	21	2	5.6 J			
TCE	34 J	57	37	5.7	11 J			
cis 1,2-DCE	140 J	270	100	16	27 J			
Vinyl Chloride	0.5 UJ	0.5 U	0.5 U	0.5 U	0.5 UJ		-	
Freon 113	5.7 J	10	6.7	1	1.6 J			

Q2 2021 (in μg/L)								
31GL	31MI	31ML	43MU	43MI	N13821**	N13000	N12999	

PCE	18	38	8.6	1.3	3	1.1	2.1	0.5 U
TCE	36 J-	82	21	5.5	8.5	1.2	3	0.29 J
cis 1,2-DCE	150	430	64	16	25	4.8	11	0.5 U
Vinyl								
Chloride	0.5 U	0.5 U	0.5 U					
Freon 113	6.3	17	3.8	0.94	1.4	0.24 J	0.7	0.5 U

		Q3 2021 (in μg/L)								
	31GL	31MI	31ML	43MU	43MI	N13821**	N13000	N12999		
PCE	9.4	47	14	1	3.6	0.5 U	2.2	0.25 J		
TCE	22	88	36	2.5	11	0.5 U	3.5	0.58		
cis 1,2-DCE	100	470	130	6.5	35	0.5 U	13	1.3		
Vinyl Chloride	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U		
Freon 113	4	18	6.8	0.58	2.2	0.5 U	0.71	0.5 U		

		Q4 2021 (in μg/L)									
	31GL	31MI	31ML	43MU	43MI	N13821	N13000	N12999**			
PCE	8.4	42	12	0.3 J	3.7	1	1.3	0.5 U			
TCE	17	78	38	0.67	13	1.5	2.1	0.2 J			
cis 1,2-DCE	66 J-	360	140	0.51	43	6.6	7	0.5 U			
Vinyl Chloride	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U			
Freon 113	2.9	17	7.2	0.5 U	2.7	0.33 J	0.32 J	0.5 U			

- --: Well not operational; well not sampled
- U: Compound not detected above the indicated method reporting limit
- J: Concentration is an estimated value
- J-: Result is less than the Reporting Limit but greater than or equal to the Method Detection Limit and the concentration is an approximate value
- UJ: Compound not detected above the indicated method reporting limit

The tabulation below presents the site-related VOC concentrations measured in water samples collected from the designated sentinel wells in comparison with raw water data from the Watermill Lane public supply well during 2021 Q1, Q2, Q3, and Q4. The compounds cis 1,2-DCE; TCE; and

PCE were detected in sentinel wells 45MU, 45MI, 52MI, 52ML, 53MI, and 53ML during all for quarters of 2021. Freon 113 was detected in these same wells about half of the time.

These same COCs were detected in well N12796 during all four quarters of 2021. Water samples collected from well N4388 contained some, but not all of the COCs detected in well N12796. There were no detections of Vinyl Chloride in either the sentinel wells or the supply wells. The water from these wells is currently being treated.

Watermill Lane Wells

	Q1 2021 (in µg/L)									
	45MU	45MI	52MI	52ML	53MI	53ML	N4388**	N12796		
PCE	14	0.5	3.3	0.82	1 J	3.2	0.16 J	6.6 J-		
TCE	31	3.6	9.8	2.8	3.8 J	7.6	0.11 J	4.6		
cis 1,2-DCE	190	1.8	12	4.1	2.2 J	9.3	0.5 U	3.7		
Vinyl Chloride	0.5 U	0.5 U	0.5 U	0.5 U	0.5 UJ	0.5 U	0.5 U	0.5 U		
Freon 113	6.2	0.5	0.47 J	0.36 J	0.5 UJ	0.8	0.5 U	0.49 J		

	Q2 2021 (in μg/L)								
	45MU	45MI	52MI	52ML	53MI	53ML	N4388**	N12796	
PCE	16	5.4	3.2	2.7	0.86	0.32 J	0.21 J	7.9	
TCE	41	27	12	11	3.7	0.41 J	0.11 J	5.5	
cis 1,2-DCE	210	37	15	20	2.2	0.35 J	0.5 U	4.3	
Vinyl Chloride	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	
Freon 113	8.5	4.1	0.61	2.6	0.5 U	0.5 U	0.5 U	0.68	

	Q3 2021 (in μg/L)							
	45MU	45MI	52MI	52ML	53MI	53ML	N4388	N12796
PCE	21	5.4	4.1	13	1	0.63	0.44 J	7.3 J-
TCE	45	27	13	36	3.9	1.1	0.14 J	5.4 J-
cis 1,2-DCE	240	37	18	59	2.3	1.6	0.5 U	4.2
Vinyl Chloride	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Freon 113	10	4.1	0.85	5.7	0.5 U	0.5 U	0.5 U	0.65

	Q4 2021 (in μg/L)							
	45MU	45MI	52MI	52ML	53MI	53ML	N4388**	N12796
PCE	17	4.8	3.3	8.5	0.73	0.56	0.5 U	6.6
TCE	41	20	12	26	3.8	0.98	0.5 U	5
cis 1,2-DCE	190	27	15	59	1.7	1.4	0.5 U	4.1
Vinyl Chloride	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Freon 113	8.5	3	0.78	5.1	0.5 U	0.5 U	0.5 U	0.54

Notes:

- U: Compound not detected above the indicated method reporting limit
- J: Concentration is an estimated value
- J-: Result is less than the Reporting Limit but greater than or equal to the Method Detection Limit and the concentration is an approximate value
- UJ: Compound not detected above the indicated method reporting limit

3.2.8 Additional Wells Added in 2021

The following monitoring wells were added to the network of wells sampled in 2021.

54GU and 54GL – These wells, are located along Grace Avenue, north of public supply well N5099 and south of public supply well N12735. Constructed in the Fall of 2021 and screened in the Upper Glacial formation, they serve as sentinel wells for public supply well N12735. The wells were sampled as part of the Q4 2021 sampling round, and there were no detections of any of the site COCs in either well.

33GL, 33MI and 33ML – These wells are located west of the former Unisys site, along the

^{**} Pump activated to purge prior to sampling

western portion of the golf course at North Shore Towers. Well 33GL is screened from 232 to 252 feet, 33MI is screened from 290 to 310 feet, and 33ML is screened from 405 to 425 feet. The wells were sampled as part of the Q4 2021 sampling round. There were no detections of any of the site COCs in the water sample from well 33GL. The sample from 33MI had a detection of TCE at a concentration of 0.4 μ g/L. The sample from 33ML had a detection of TCE at a concentration of 0.72 μ g/L and cis 1,2 DCE at a concentration of 1 μ g/L. These detections did not exceed the groundwater standards of 5 μ g/L.

48MI and 48ML – These wells are located in the southern most parking lot of LIJ Hospital campus. Well 48MI is screened from 220 to 240 feet and 48ML is screened from 320 to 340 feet. The wells were sampled as part of the Q4 2021 sampling round, there were no detections of any of the site COCs in either well.

Q2604 – This is a supply well for the Royal Ranch Pool Club in Glen Oaks, located west of the former Unisys site. With a total depth of 210 feet, the screens are set in the upper to middle Magothy formation. The well was sampled as part of the Q4 2021 sampling round, there were no detections of any of the site COCs in this well.

44MU and 44MI – These wells are located north of LIJ Hospital campus, south of the Northern State Parkway and about 750 feet from Lakeville Road. Well 44MU is screened from 216 to 226 feet and 44MI is screened from 320 to 330 feet. The wells were sampled as part of the Q4 2021 sampling round. The concentration of COCs in well 44MU was 1.9 μ g/L in 2021, when it was last sampled on December 30, 2008 the concentration of COCs were 33.7 μ g/L. The concentration of COCs in well 44MI was 401 μ g/L, the majority of which (340 μ g/L) consisting of cis 1,2-DCE. When 44MI was last sampled on December 30, 2008 the concentration of COCs were 845 μ g/L, the majority of which (630 μ g/L) consisting of cis 1,2-DCE.

SECTION 4 FINDINGS AND RECOMMENDATIONS

4.1 FINDINGS

The main findings based on the information presented in this report are as follows:

- The primary groundwater flow directions in the aquifer zones are generally to the north and northwest. In general, the vertical groundwater head gradient is downward, which is consistent with the conceptual site model.
- Simulation results suggest that under 2021 groundwater pumping rates, the existing OU-1 groundwater extraction wells (EW-1R, RW-1RS, RW-1RD, RW-3) capture groundwater from on-Site in all four depth horizons (Upper Glacial, upper Magothy, middle Magothy, basal Magothy). The OU-2 groundwater extraction well generally captures groundwater from offsite areas between the Site and RW-100 (OU-2 groundwater extraction well) in the Upper Glacial, upper Magothy, middle Magothy depth horizons, and to a slightly lesser degree in the Basal Magothy. Well 17GL displayed an abrupt increase of TVOC concentrations during the 2017 groundwater sampling event followed by a downward or stabilized trend during the 2018, 2019, 2020, and 2021 groundwater sampling events. Prior to 2017, the concentrations were trending downward at this well.

In the Upper Glacial aquifer, TVOC concentrations are generally decreasing, with the exception of well 35GL, the well located near the area of former drywells in the source area. Based on the ongoing SVE investigation it appears that layers of solvent-impacted silty sand both above and below the current water table are contributing to groundwater contamination in the immediate area of well 35GL. A separate investigation of the source area is in progress.

- In the Upper Magothy aquifer, VOC concentrations are generally decreasing or stable for those wells located at OU1 and downgradient between OU1 and OU2 recovery well RW-100, with the exception of well 29MI. This well displayed a trend of increasing TVOCs between 2017 and 2020. The TVOC concentrations trended downward during 2021.
- In the Middle and Basal Magothy aquifer, VOC concentrations are generally decreasing or stable for those wells located in OU1 and downgradient between OU1 and OU2 recovery well RW-100.
- TVOC concentrations have stabilized or are decreasing in wells 1MI, 8GU, 17GL and 18GL in 2021. Future annual monitoring will continue to track the concentration trends at these wells. Based on model simulation results (Appendix D), these wells are located within the combined hydraulic capture zones for OU1 and OU2; therefore, it is expected

that groundwater with elevated VOC concentrations near these wells will be captured by the recovery systems.

- Monitoring wells 53MI and 53ML were installed in the summer of 2019 to serve as sentinel wells for the WAGNN Watermill Lane water supply wells located northwest of the Site and these wells have now been monitored for 12 quarters. Based on those results and the results of other wells included in the quarterly monitoring events, as shown on **Figure 3-12** the northwestern limit of the 5 μg/L iso-concentration line in the Basal Magothy now extends to the MW-53 wells and to the Watermill Lane well vicinity.
- Monitoring wells MW-54GU and 54GI (sentinel wells for supply well N12735) were installed in the Fall of 2021 and sampled during the Q4 2021 sampling round. There were no detections of any of the site COCs in either well.
- The TVOC concentration trend is generally stable in monitoring wells located to the north and northwest of the Site in the Magothy aquifer. This includes several wells defined as sentinel wells:
 - o Upper Magothy sentinel wells 51MI, and 31GL
 - o Middle Magothy sentinel well 31MI, 52MI, 53MI and monitoring well 46MI
 - o Basal Magothy sentinel well 31ML, 52ML, 53ML and monitoring well 46ML.

The TVOC concentration trends in the wells noted above are generally consistent with Site groundwater flow and solute transport simulation results.

- The 2021 quarterly monitoring results for the WAGNN water supply wells on Community Drive (N12999, N13000, and N13821); MLWD Cumberland water supply well (N5099); and Watermill Lane (N4388 and N12796) indicate the following:
 - Of the three wells in the Community Drive well field, well N13000 had the highest detections of COC. Reported concentrations in samples from well N13000 exceeding the ARAR of 5 μ g/L during 2021 was: Q2 (cis-1,2 DCE 11 μ g/L); Q3 (cis-1,2 DCE 13 μ g/L); and Q4 (cis-1,2 DCE 7 μ g/L). Freon 113 was detected in the water samples collected from the well field in 2021 at concentrations ranging from no detection to 0.71 μ g/L.
 - Reported concentrations in samples from well N5099 exceeding the ARAR of 5 μg/L during 2021 were: Q1 (PCE 5.4, TCE 16, and cis-1,2 DCE 24 μg/L); Q2 (TCE 9.4 and cis -1,2 DCE 14 μg/L); Q3 (TCE 9.3 and cis-1,2 DCE 14 μg/L); and Q4 (TCE 9.9 and cis -1,2 DCE 15 μg/L). Freon 113 was detected in the water samples collected in 2020 at concentrations ranging from 1.5 to 2.2 μg/L.
 - Reported concentrations in samples from well N12796 exceeding the ARAR of 5 μg/L during 2021 were: Q1 (TCE 6.6 μg/L); Q2 (PCE 7.9 and TCE 5.5 μg/L); Q3 (PCE 7.3 and TCE 5.4 μg/L); and Q4 (PCE 6.6 and TCE 5 μg/L). Freon 113 was

detected in the water samples collected in 2021 at concentrations ranging from 0.49 to 0.68 µg/L. Reported concentrations in samples from well N4388 showed no exceedances of the ARAR of 5 µg/L in 2021. Freon 113 was not detected in the water samples collected during all four quarters of 2021. As noted above, N12796 and N4388 have historically been impacted by at least one historical release of chlorinated VOCs that is not associated with the former Unisys site.

- The reported 1,4-dioxane concentrations for wells sampled in Q2 2021 are included in this report. The concentration in the water samples from these wells only exceeded the groundwater standard of 1 μg/L at one location, Site well 35GL which had a concentration of 1.4 μg/L. It was detected in two other Site monitoring wells (29MI at 0.47 μg/L and 7ML at 0.38 μg/L). It was not detected in the four on-site recovery wells or the upgradient wells. 1,4 dioxane was detected below the groundwater standard in water samples from several off-site monitoring wells at concentrations ranging from 0.18 μg/L to 0.29 μg/L. These included wells 31MI, 47ML, 45MU, 46ML, 52MI, and 52 ML. It was detected in off-site recovery well RW-100 at 0.57 μg/L, but was not detected in the six municipal supply wells.
- PFOS was detected in water samples from the majority of the wells sampled in Q2 2021 at concentrations ranging from 0.24 ng/L to 15.7 ng/L. It was not detected in upgradient wells 49MI and 49ML, however, the highest detection (15.7 ng/L) was in an upper glacial monitoring well located at the upgradient boundary of the site (well 3GL). It was detected below the groundwater standard in samples from the four on-site recovery wells and the off-site recovery at concentrations ranging from 1.15 ng/L to 8.13 ng/L. It was detected below the groundwater standard in water samples from five of the six municipal supply wells at concentrations ranging from 0.49 ng/L to 2.18 ng/L.
- PFOA was also detected in water samples from the majority of the wells sampled in Q2 2021 at concentrations ranging from 0.48 ng/L to 22.80 ng/L (at well 2MI). It was detected in upgradient well 49MI at 5.47 ng/L and an upper glacial monitoring well located at the upgradient boundary of the site (well 3GL) at 14.30 ng/L. It was detected in samples from the four on-site recovery wells and the off-site recovery at concentrations ranging from 1.46 ng/L to 13.50 ng/L. It was detected below the groundwater standard in water samples from the six municipal supply wells at concentrations ranging from 1.13 ng/L to 8.55 ng/L.
- Wells 33GL, 33MI, 33ML, 48MI, 48ML and Q2604 are all located west of the former Unisys Site in the vicinity of North Shore Towers and were added to the Q4 2021 sampling round. There were no detections of any of the Site COCs above groundwater standards in the water samples from any of these wells.

4.2 RECOMMENDATIONS

The recommendations based on the information presented in this report are as follows:

• Based on the past trends of Site COCs measured in the monitoring wells on and around the former Unisys Site, the following sampling frequency is recommended. The actual well

sampling and parameter list for each sampling event will be updated to incorporate additional NYSDEC and NYSDOH requirements.

- o For the sentinel wells continue quarterly sampling. If the concentrations in the water samples collected from the sentinel wells increase substantially, the concentrations should be evaluated. In addition, concentrations should be compared to the most recent groundwater model projections as presented in the January 2021 Compliance Report. If concentrations are not tracking similar to the groundwater model projections, further actions may be necessary.
- o For those wells currently sampled annually continue sampling annually. In addition, consider adding wells 2GL 2MU, 3GL, 6GL, 15ML, 44MI, 47MI, 47ML, and 50MI annually and 33GL, 33MI and 33 ML at a frequency of once every five years.
- The current operation of the recovery wells is effective in capturing the contaminant plumes identified at the Site. We recommend that the wells continue to be pumped at the current pumping rates.
- Continued sampling of well 29MI annually in 2022 is recommended to confirm the decreasing/stable TVOC concentration trend observed in the 2018 to 2020 groundwater sampling events.
- Continued sampling of well 17GL annually in 2022 is recommended to confirm the decreasing trend of TVOC concentrations reported during the 2018, 2019, 2020, and 2021 groundwater sampling events.
- Additional investigations are being performed in the area of monitoring well MW-35GL
 to better delineate the source area. Remedial alternatives to address the increasing levels of
 VOCs at this well should be evaluated.
- Groundwater results should be compared on an annual basis to the most recent groundwater
 model projected concentrations. Groundwater model updates may be conducted to address
 and evaluate deviations of measured results from simulations or incorporate new geologic,
 hydrogeologic, or pumping rate data that may significantly affect the simulations. At a
 minimum, the groundwater model should be updated at least every five years. The model
 was recently updated as part of the Compliance Report (AMEC, 2021a).

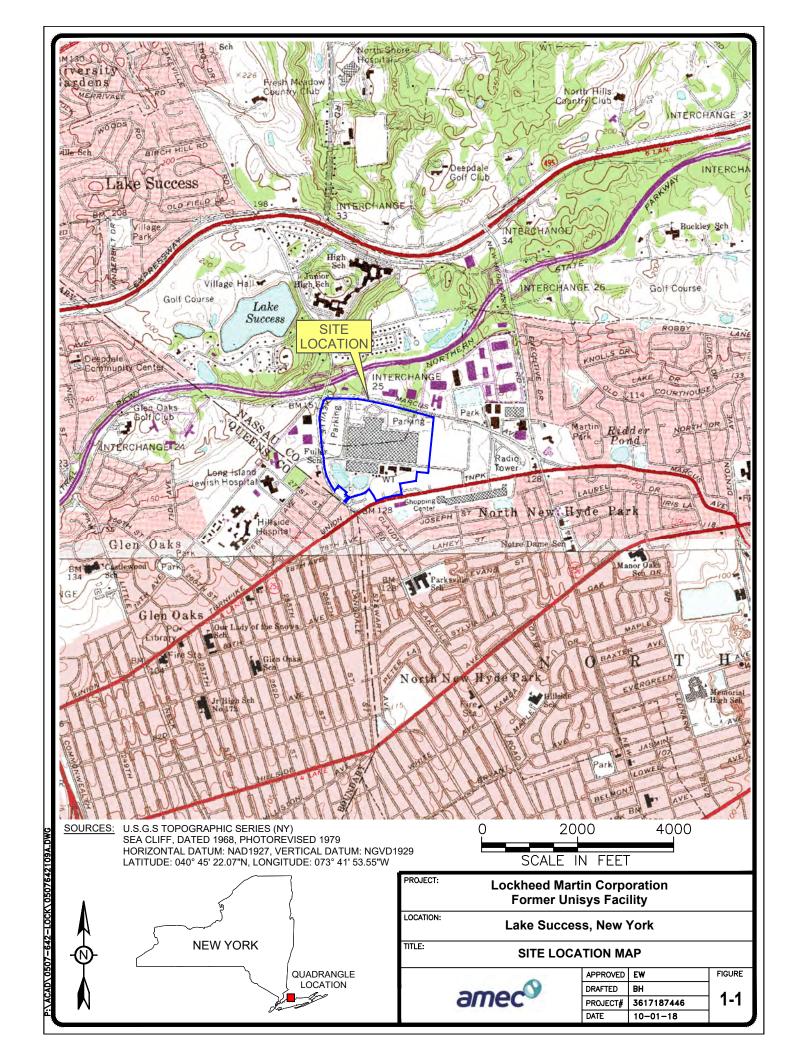
SECTION 5 REFERENCES

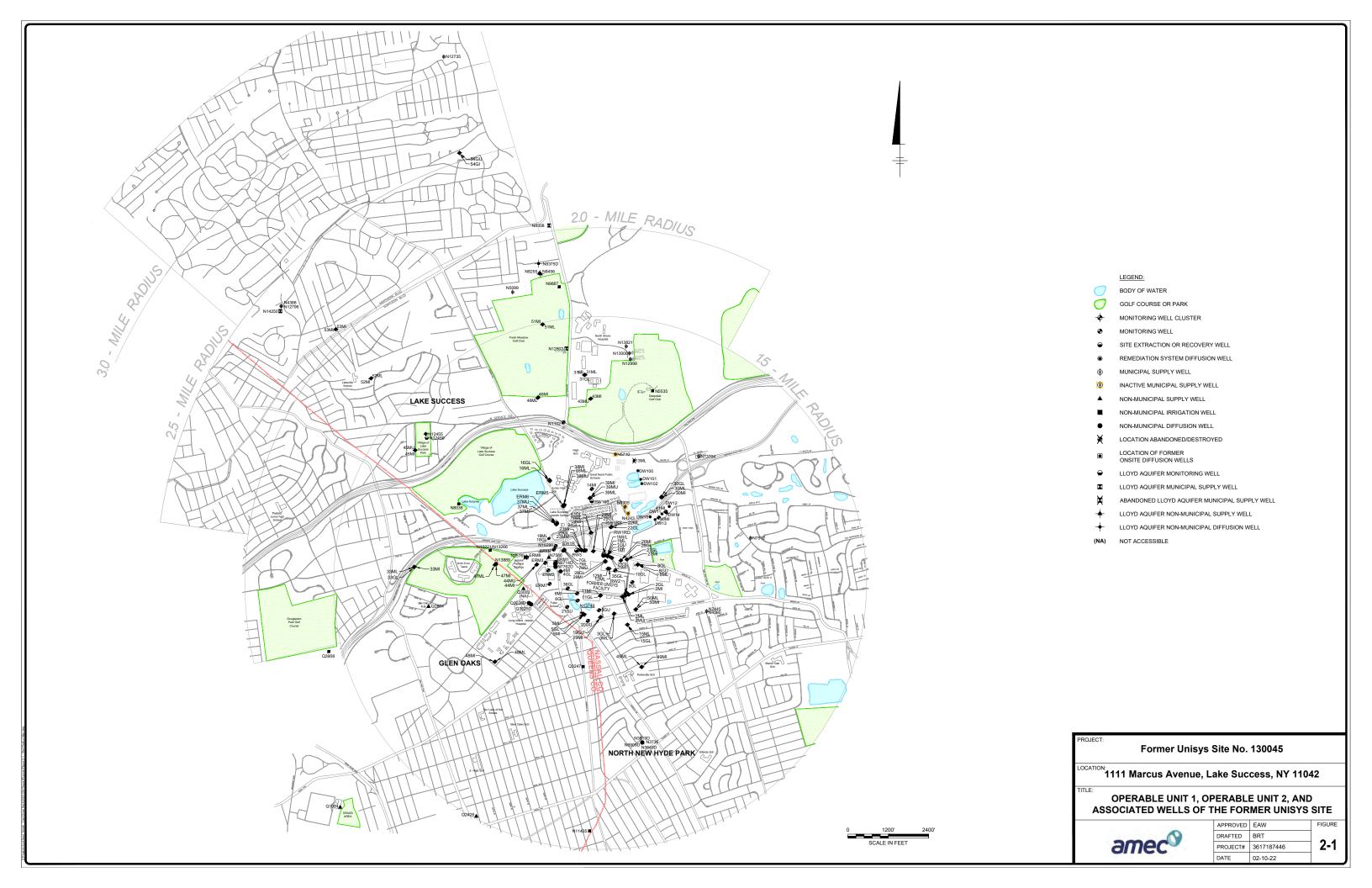
AMEC E&E, PC (AMEC), 2020a. Quality Assurance Project Plan, Former Unisys Facility, Great Neck, New York. June 2020.
, 2020b. Public Water Supply Protection and Mitigation Program, Former Unisys Facility, Great Neck, New York. Draft for Regulatory Review. October 2020.
, 2021a. 2019 Groundwater Public Water Supply Protection Compliance Report, Former Unisys Site, Lake Success, New York. January 2021.
, 2021b. Sampling and Analysis Plan, Former Unisys Facility, Great Neck, New York. April 2021.
, 2021c. Groundwater Public Water Supply Protection and Mitigation Program Compliance Report, Former Unisys Facility, Great Neck, New York. January 2021.
ARCADIS, 2012b. Remedial Investigation Report Operable Unit No. 2 for the Unisys Site, Great Neck, New York. Site No. 130045. Prepared for the Lockheed Martin Corporation. May 2012.
CDM Smith, 20221. Lockheed Martin, Great Neck, Groundwater Simulation Analysis of OU-1 and OU-2 Hydraulic Capture Zones (2021), Great Neck, New York. February 2022.
New York State Department of Environmental Conservation (NYSDEC), 1997, Record of Decision. Lockheed Martin Tactical Systems, Inc. Lake Success and Town of North Hempstead, Nassau County, Site Number 1-30-045. March 1997.
, 2014, Record of Decision, Unisys Corporation, Lake Success, Nassau County, Site Number 130045. June 2014.
Smolensky, D.A., Buxton, H.T., and Shernoff, P.K., 1989. Hydrologic Framework of Long Island, New York: U.S. Geological Survey Hydrologic Investigations Atlas HA-709, 3 sheets, scale 1:250,000.

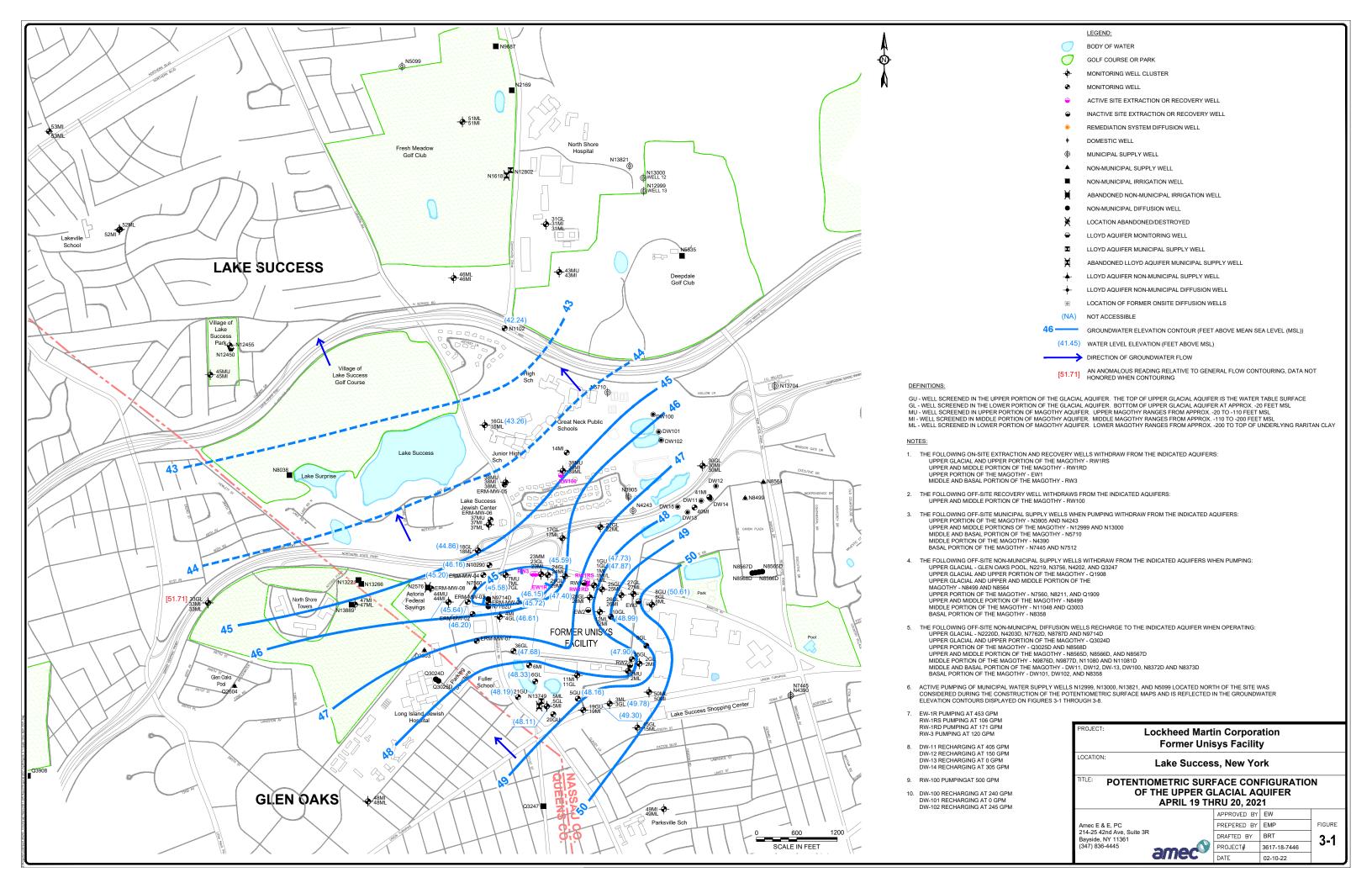
- Stumm, Frederick, 2001. Hydrogeology and Extent of Saltwater Intrusion of the Great Neck Peninsula, Great Neck, Long Island, New York: U.S. Geological Survey Water-Resources Investigations Report 99-4280, 41 p.
- Swarzenski, W.V., 1963. Hydrogeology of Northwestern Nassau and Northeastern Queens Counties, Long Island, New York: U.S. Geological Survey Water-Supply Paper 1657, 90 p.
- United States Environmental Protection Agency (USEPA), 2017. Region 1 New England Low Stress (low-flow) Purging and Sampling Procedures for the Collection of Ground Water Samples from Monitoring Wells, Revision 4, September 2017

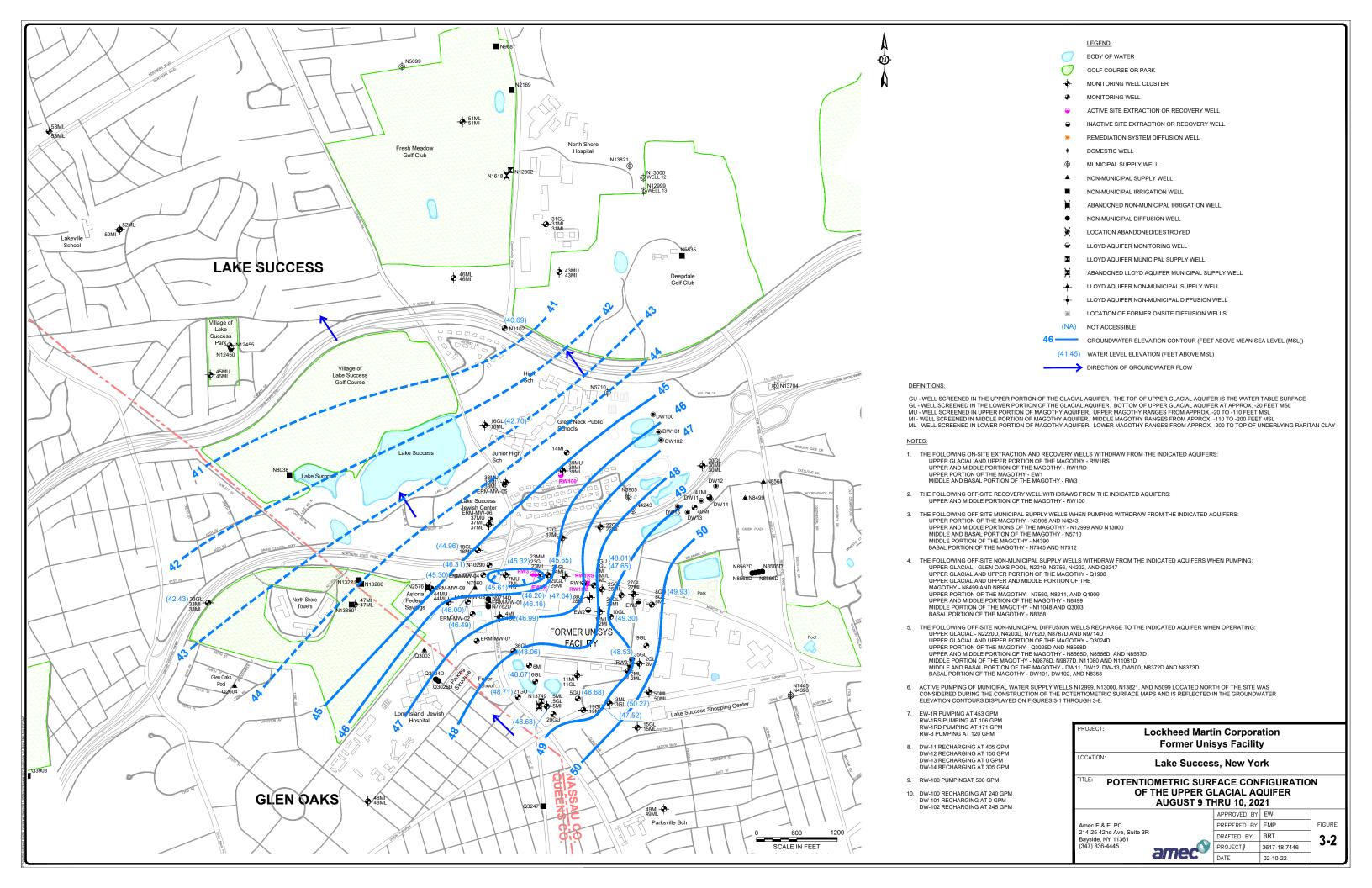
______, 2014. Technical Fact Sheet – 1,4-Dioxane. USEPA 505-F-14-011, January 2014.

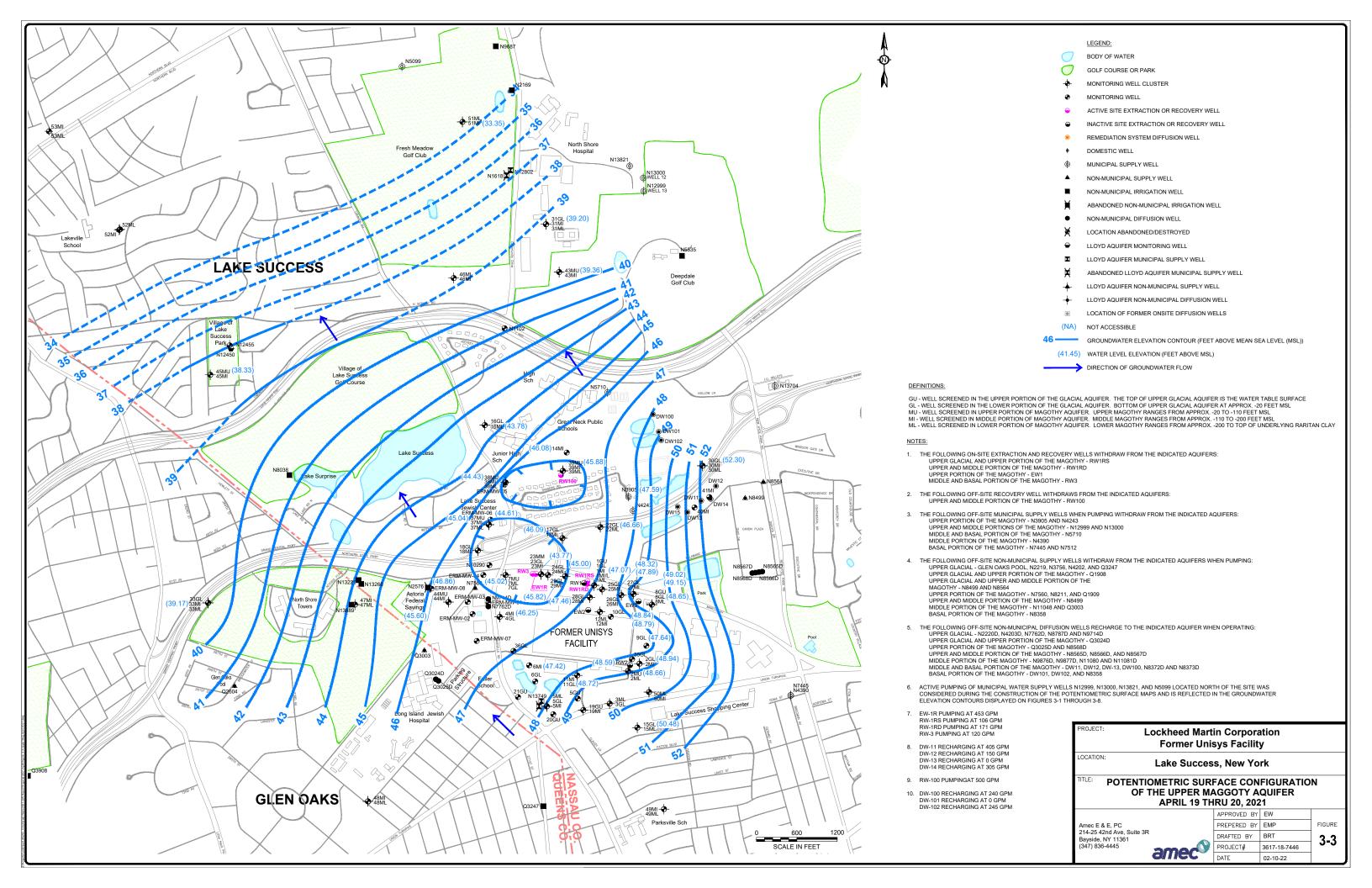
FIGURES

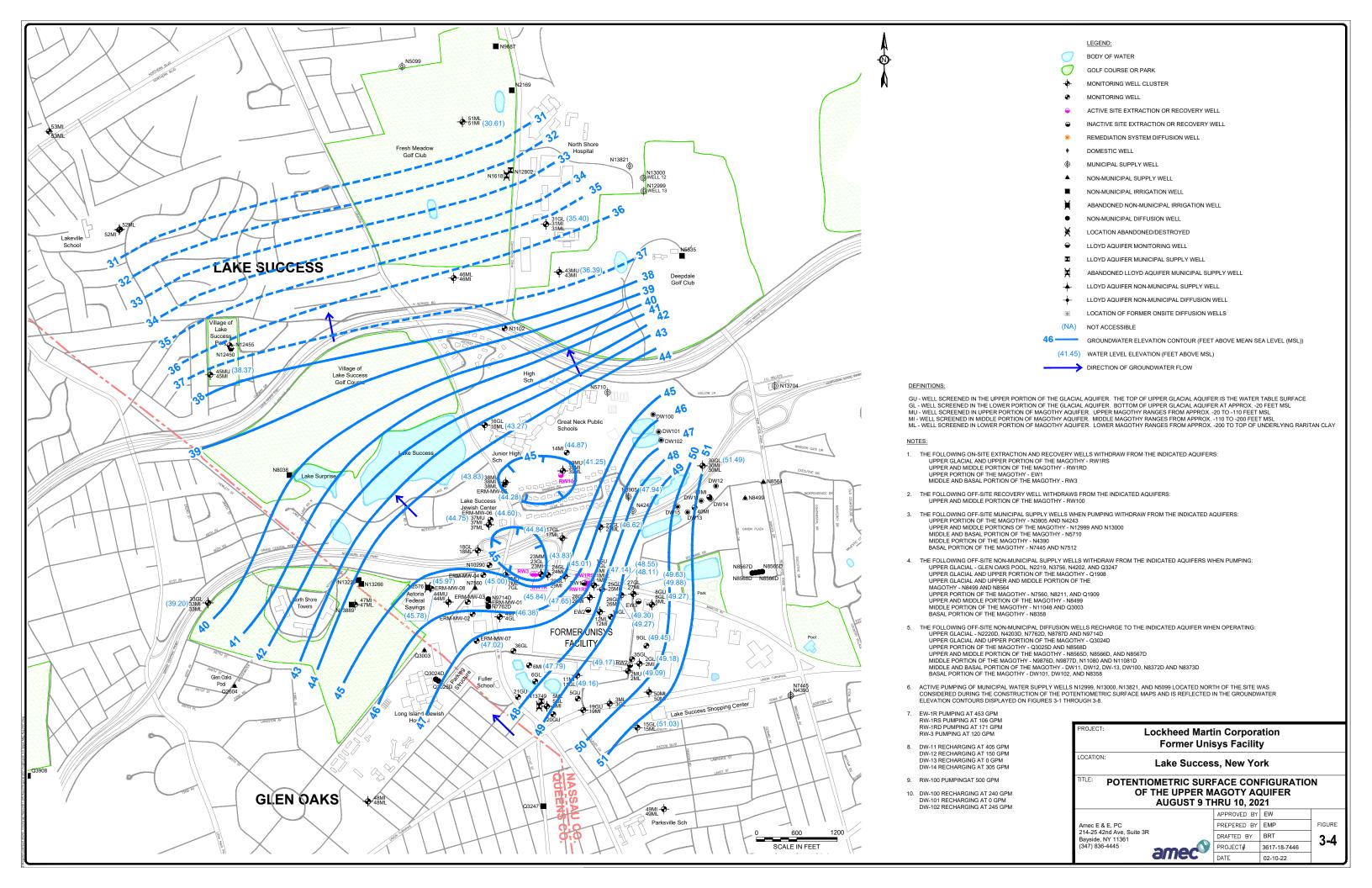

Figure 1-1 Site Location Map

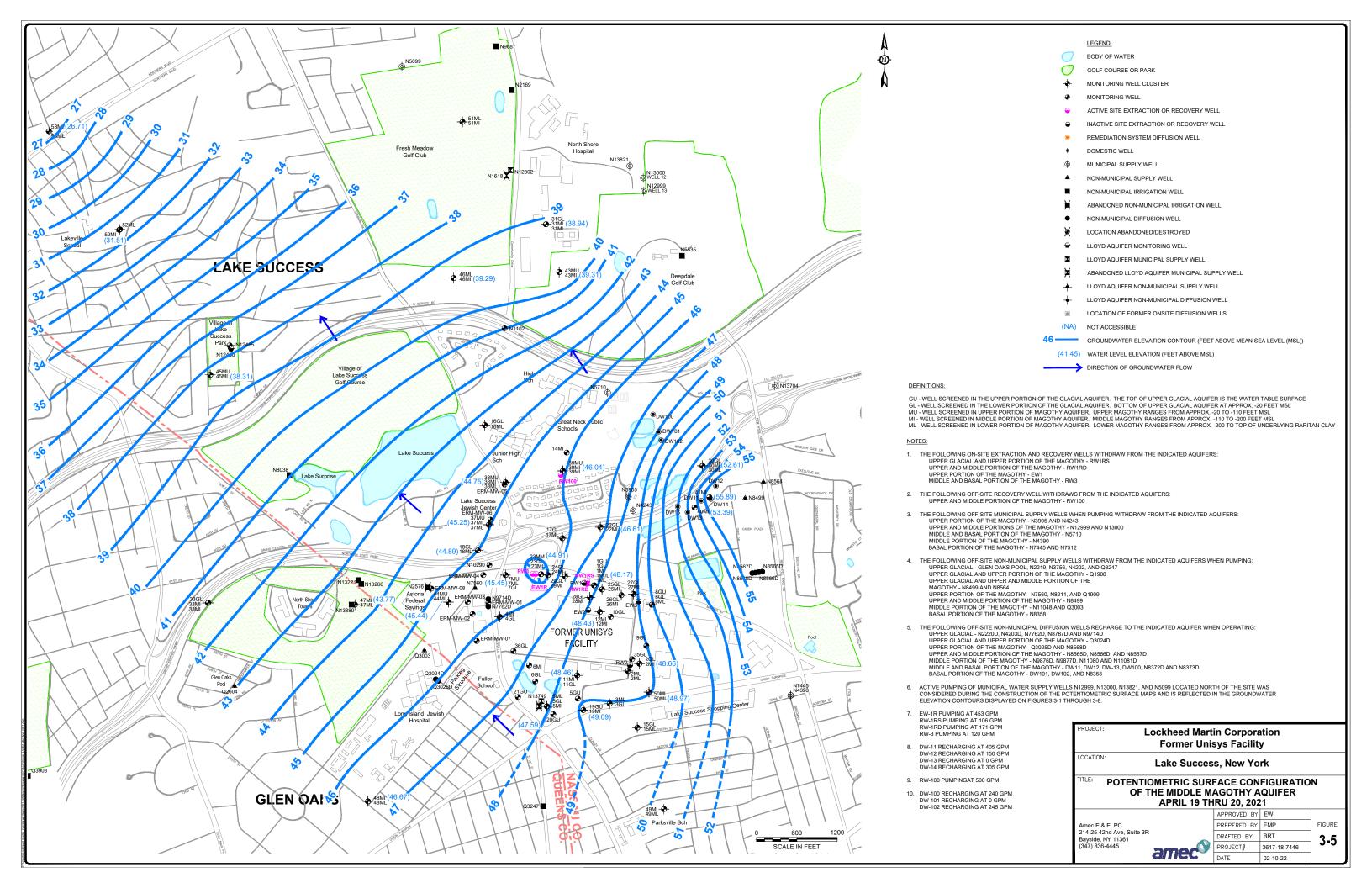

- Figure 2-1 Wells Located within a 1.5-Mile, 2-Mile, and 2.5-Mile Radius of the Former Unisys

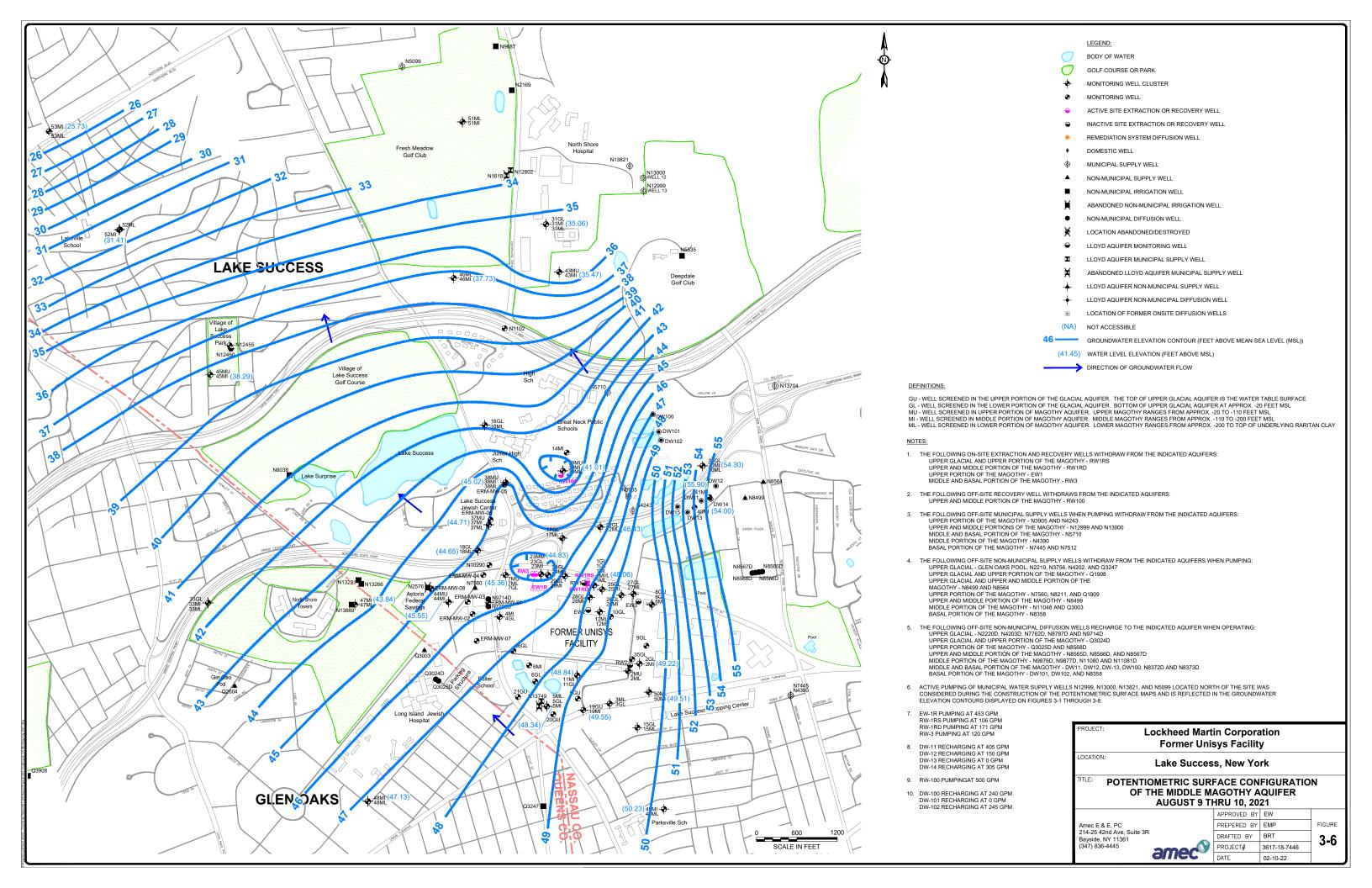

 Facility
- Figure 3-1 Potentiometric Surface Configuration of the Upper Glacial Aquifer June 8 thru 12, 2020
- Figure 3-2 Potentiometric Surface Configuration of the Upper Glacial Aquifer, August 5 thru 7, 2020
- Figure 3-3 Potentiometric Surface Configuration of the Upper Magothy Aquifer June 8 thru 12, 2020
- Figure 3-4 Potentiometric Surface Configuration of the Upper Magothy Aquifer, August 5 thru
 7, 2020
- Figure 3-5 Potentiometric Surface Configuration of the Middle Magothy Aquifer June 8 thru
 12, 2020
- Figure 3-6 Potentiometric Surface Configuration of the Middle Magothy Aquifer, August 5 thru
 7, 2020
- Figure 3-7 Potentiometric Surface Configuration of the Basal Magothy Aquifer June 8 thru 12, 2020
- Figure 3-8 Potentiometric Surface Configuration of the Basal Magothy Aquifer, August 5 thru
 7, 2020
- Figure 3-9 Total Volatile Organic Compound Concentrations in Upper Glacial Aquifer, August 3 thru 21, 2020
 - Figure 3-10 Total Volatile Organic Compound Concentrations in Upper Magothy Aquifer,

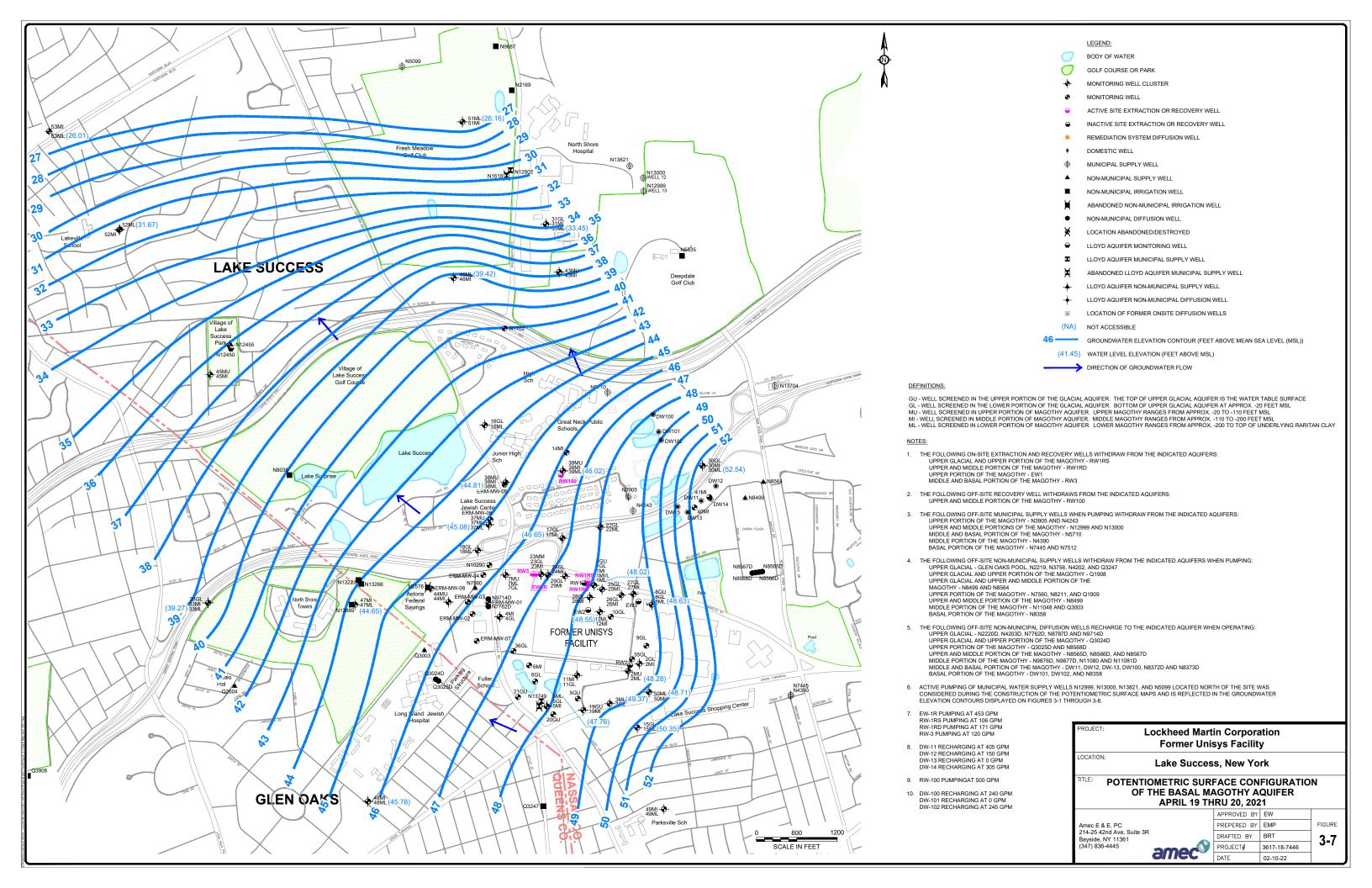

 August 3 thru 21, 2020
 - Figure 3-11 Total Volatile Organic Compound Concentrations in Middle Magothy Aquifer,
 August 3 thru 21, 2020
 - Figure 3-12 Total Volatile Organic Compound Concentrations in Basal Magothy Aquifer,
 August 3 thru 21, 2020
- Figure 3-13 Total Volatile Organic Compound Concentration Trends in Upper Glacial Aquifer,
 Updated Through October 27 thru 30, 2020 Sampling Event
 - Figure 3-14 Total Volatile Organic Compound Concentration Trends in Upper Magothy
 Aquifer, Updated Through October 27 thru 30, 2020 Sampling Event
 - Figure 3-15 Total Volatile Organic Compound Concentration Trends in Middle Magothy
 Aquifer, Updated Through October 27 thru 30, 2020 Sampling Event
 - Figure 3-16 Total Volatile Organic Compound Concentration Trends in Basal Magothy
 Aquifer, Updated Through October 27 thru 30, 2020 Sampling Event
 Figure 3-17 1,4-Dioxane Results from the Q3 2020 Sampling Event

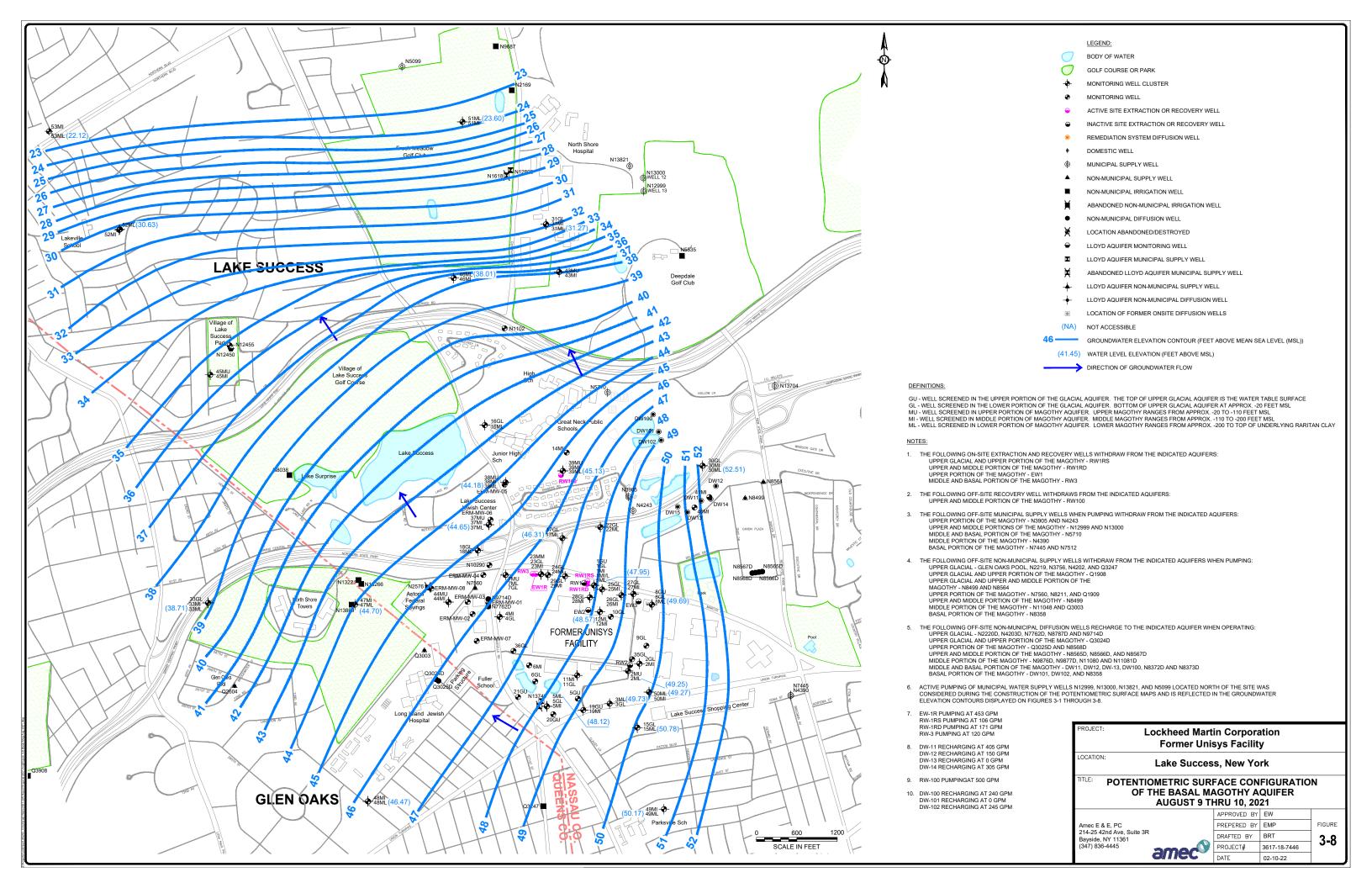

Figure 3-18 PFOS Concentration in Q2 2021 Groundwater in ng/L Figure 3-19 PFOA Concentration in Q2 2021 Groundwater in ng/L Figure 3-20 1,4-Dioxane Concentration in Q2 2021 Groundwater in ng/L

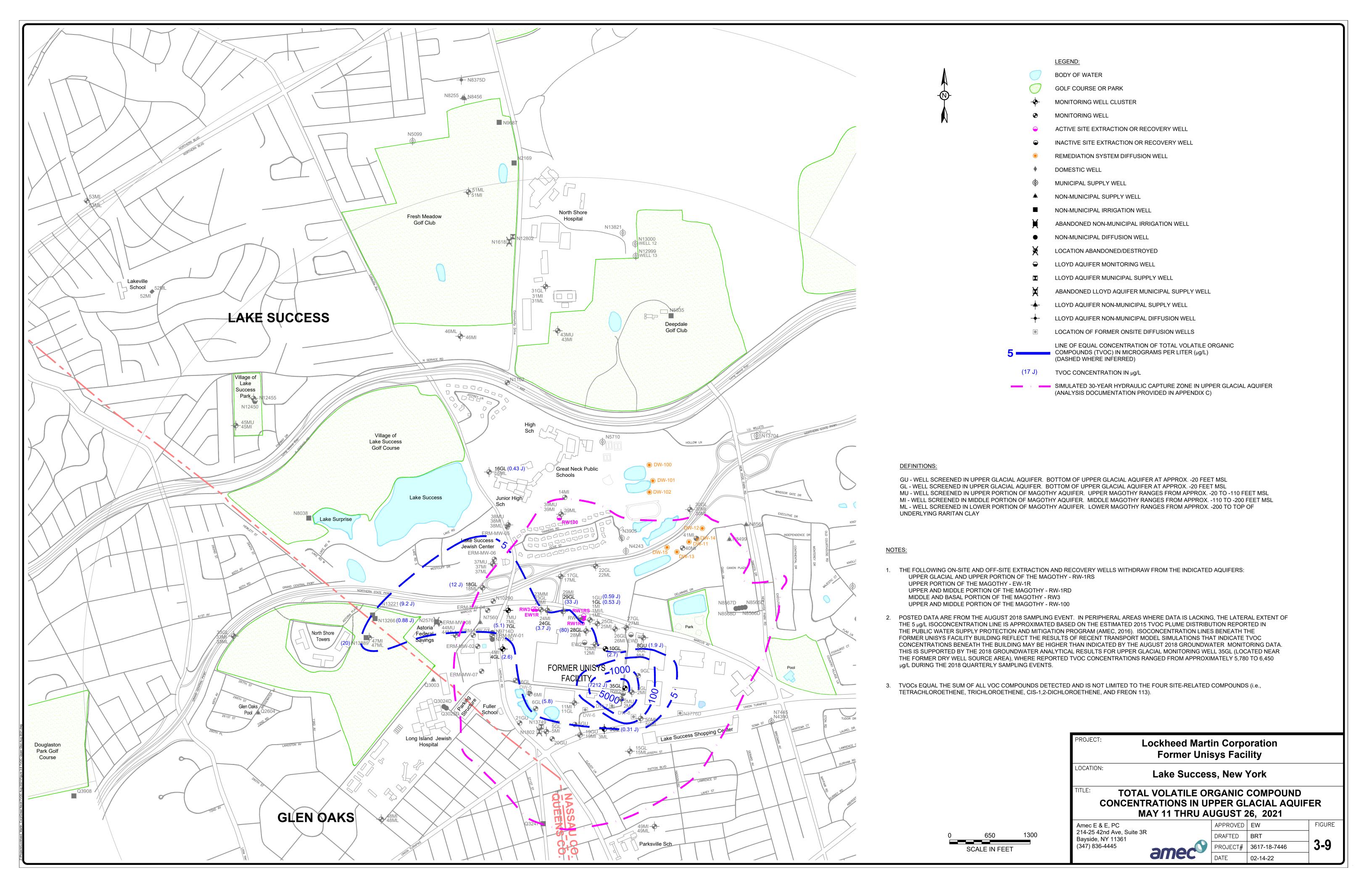


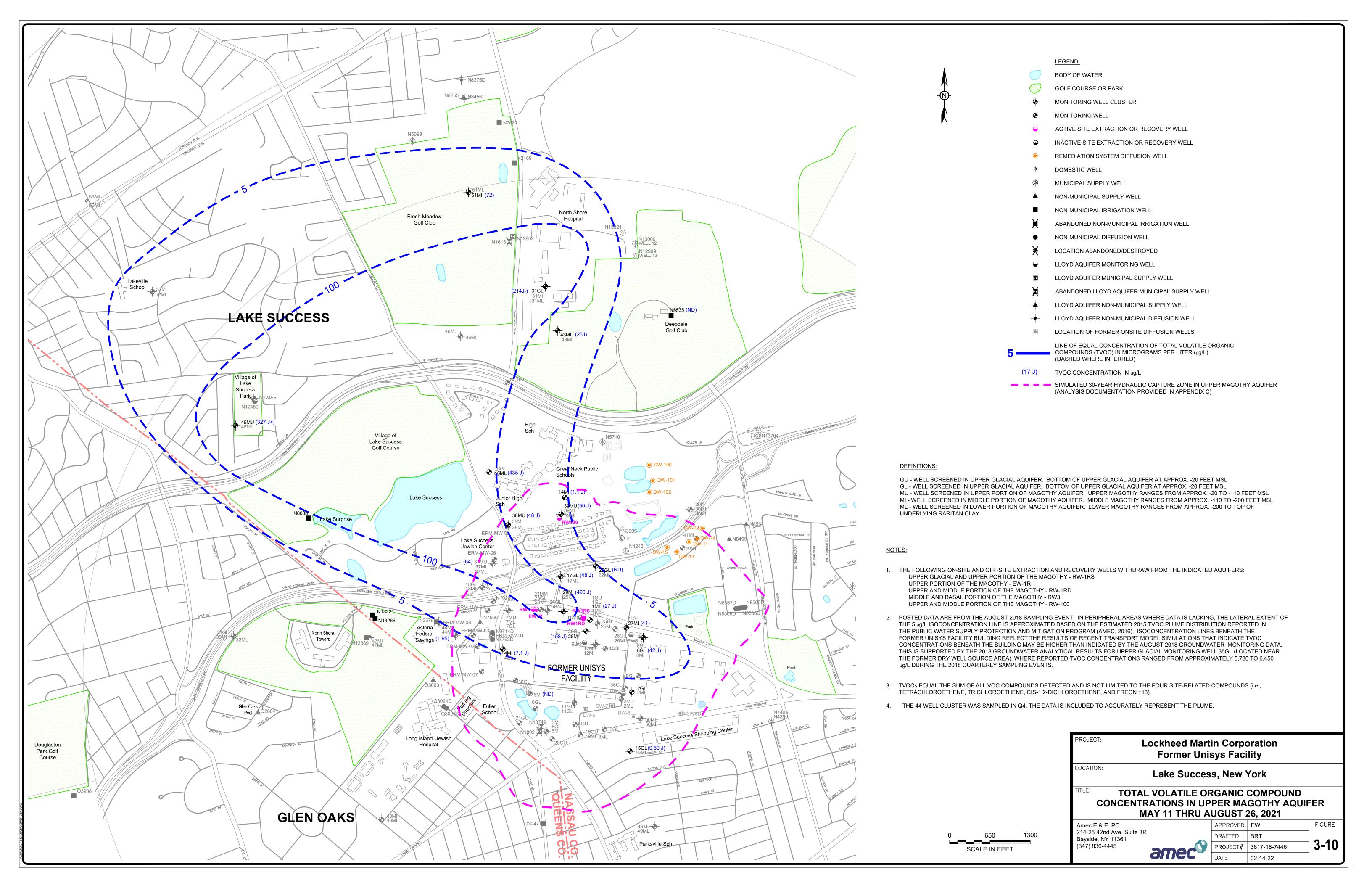


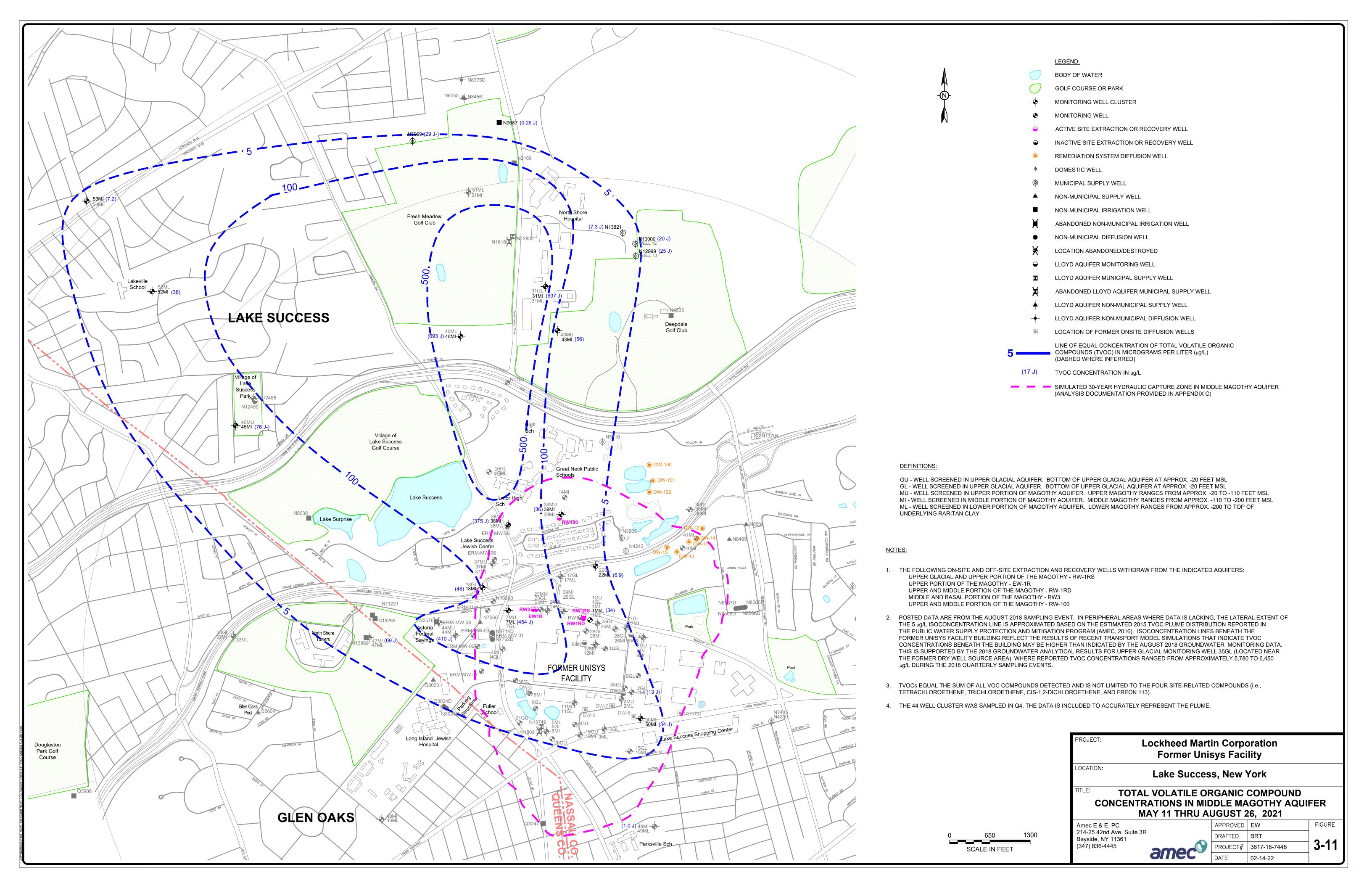


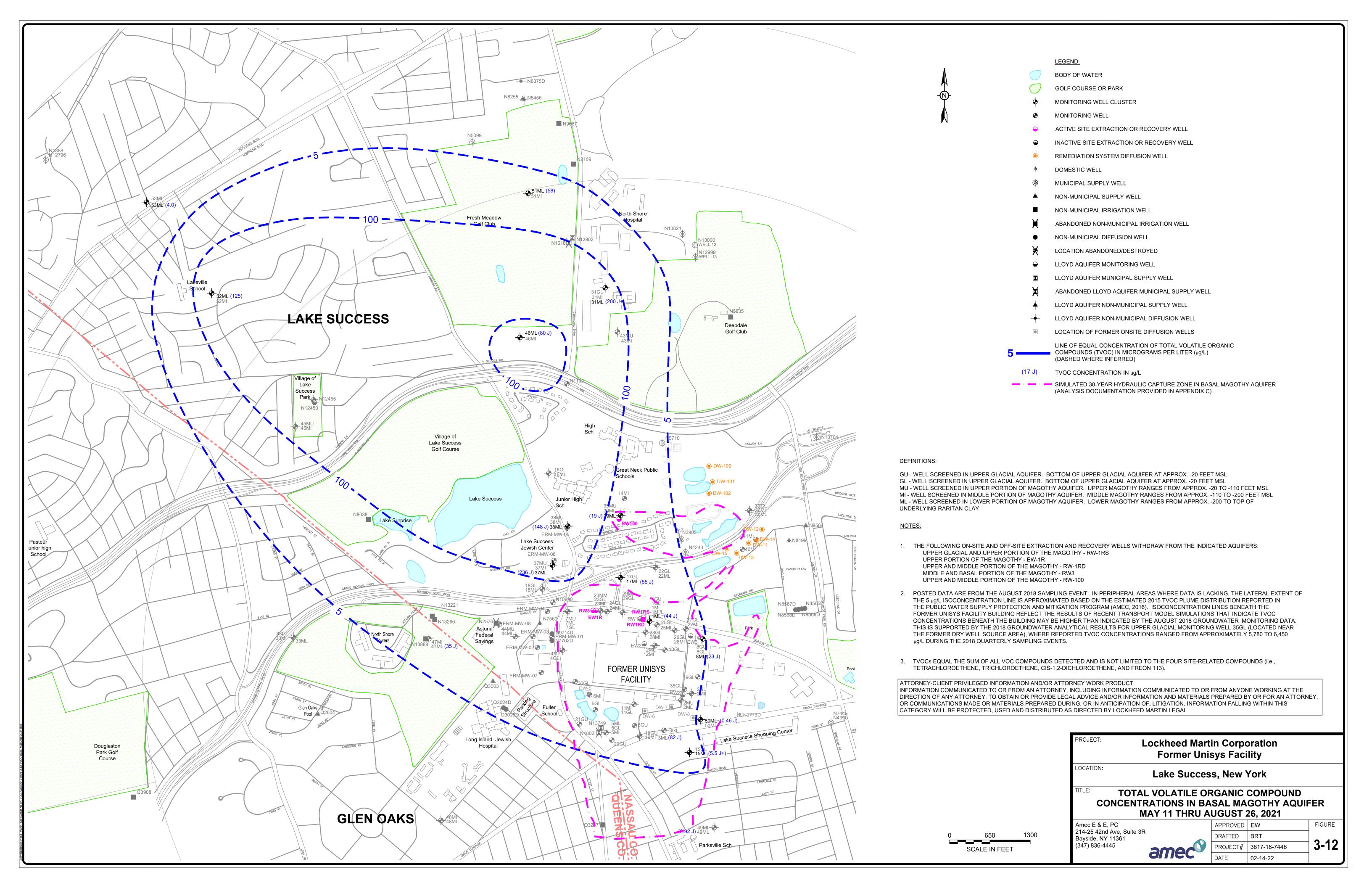


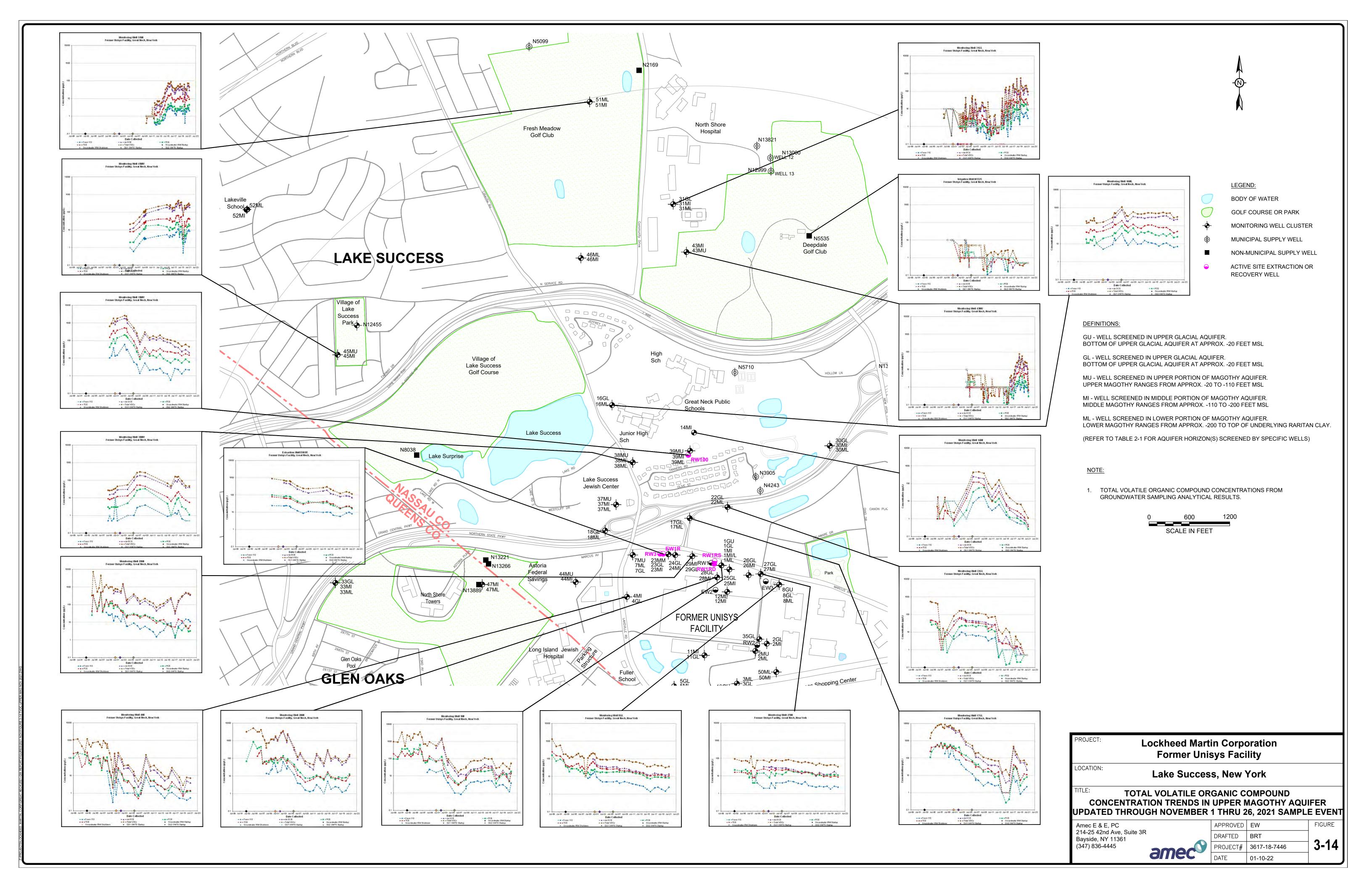


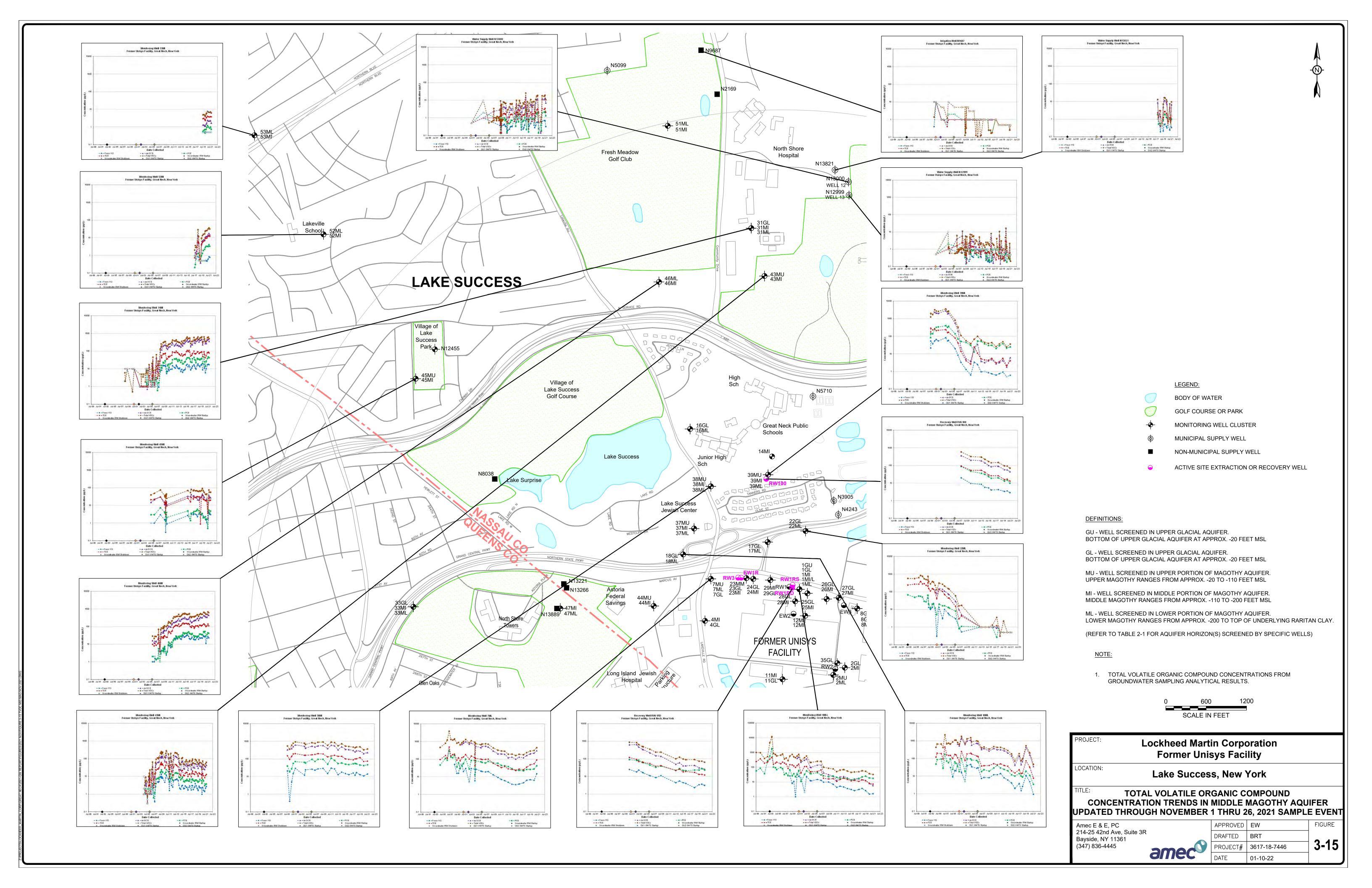


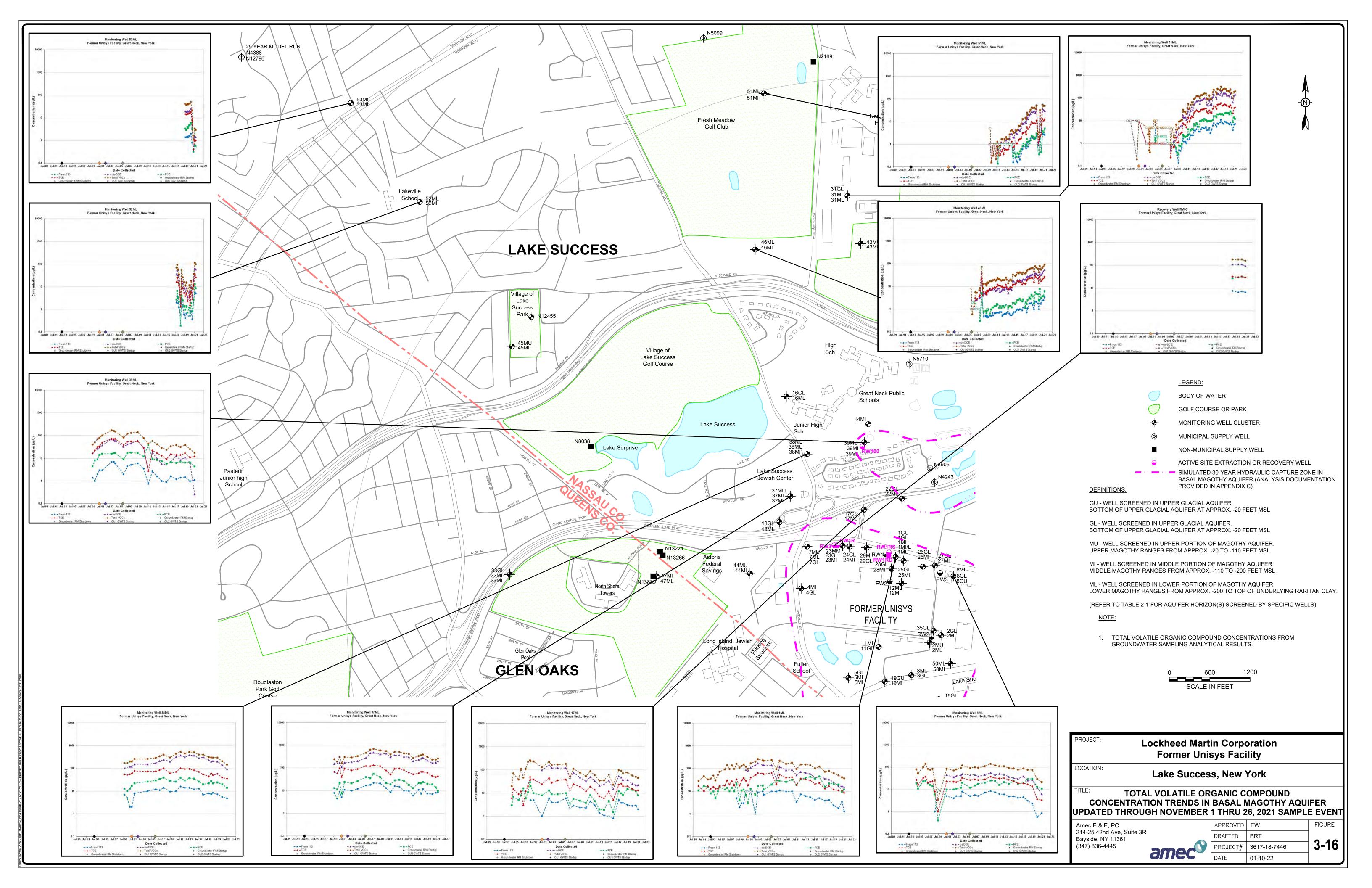


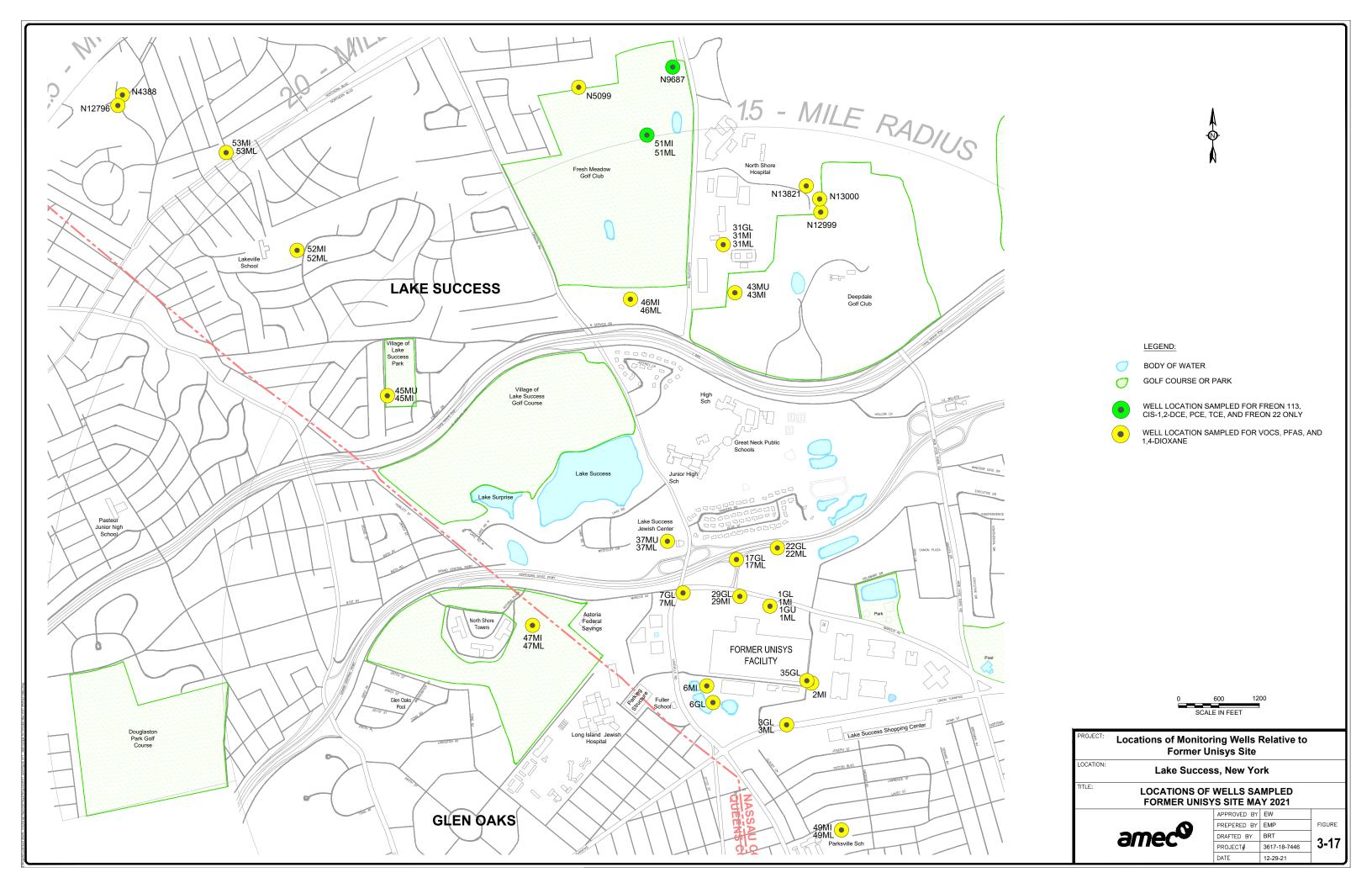


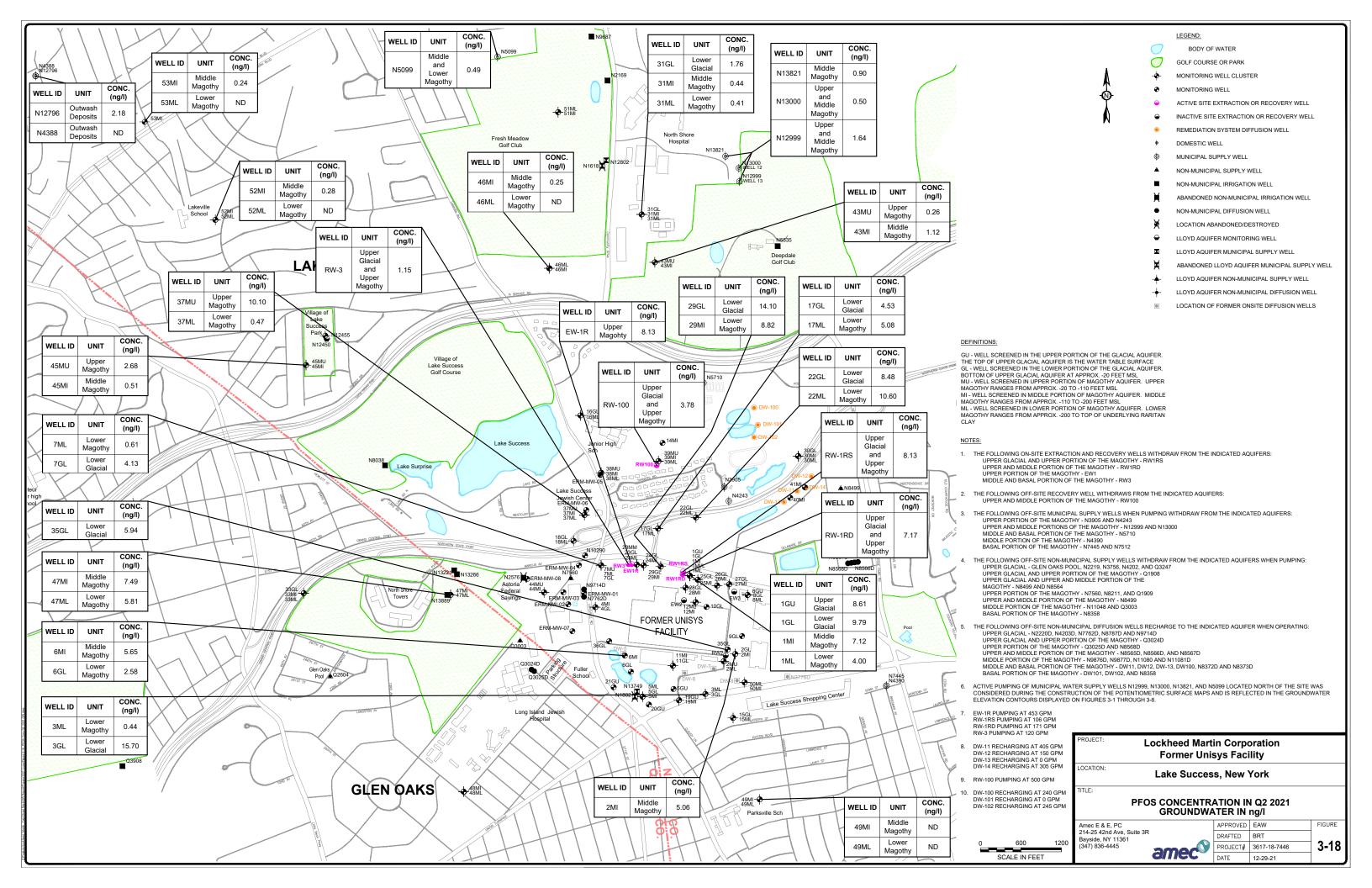


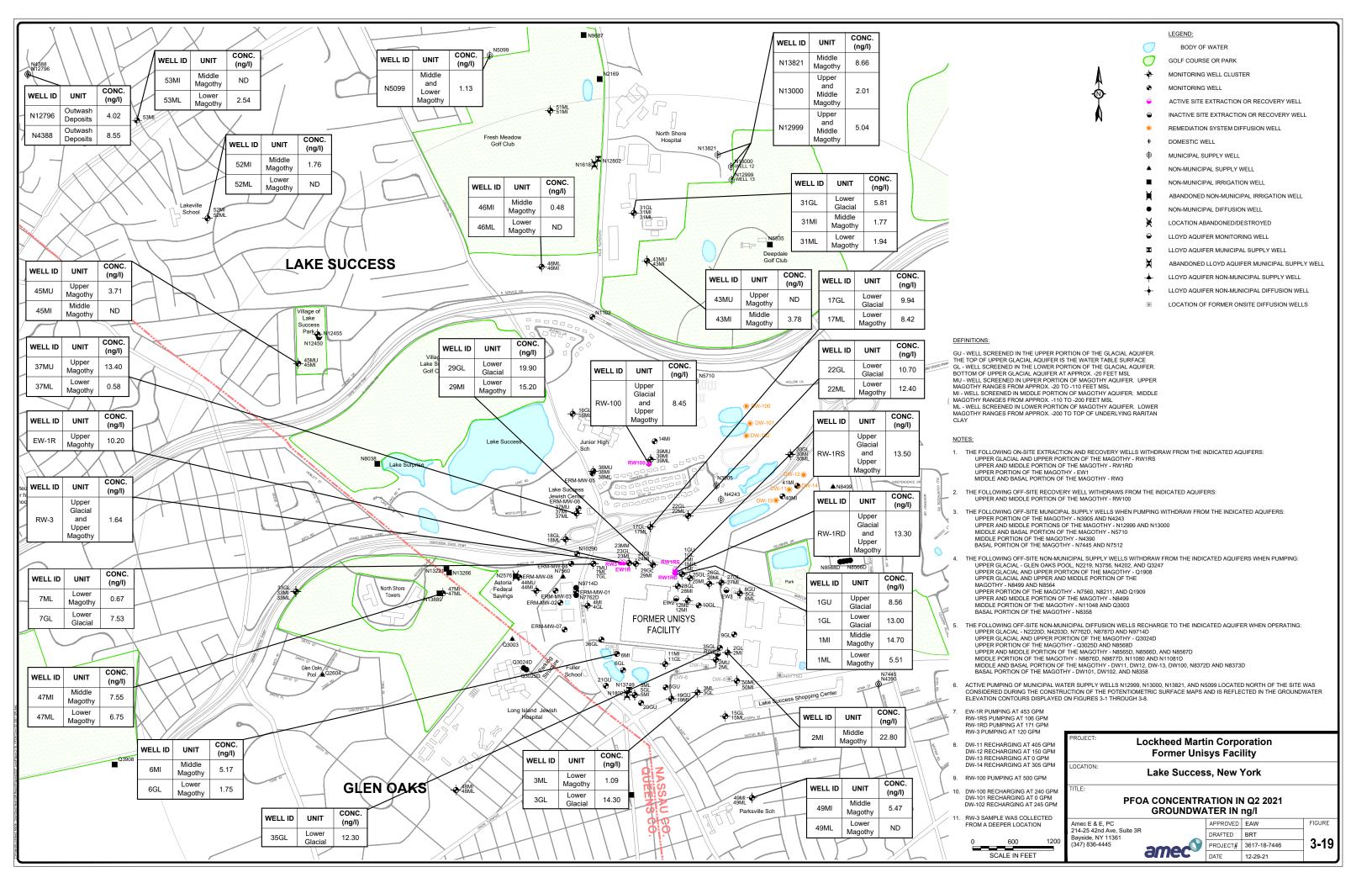


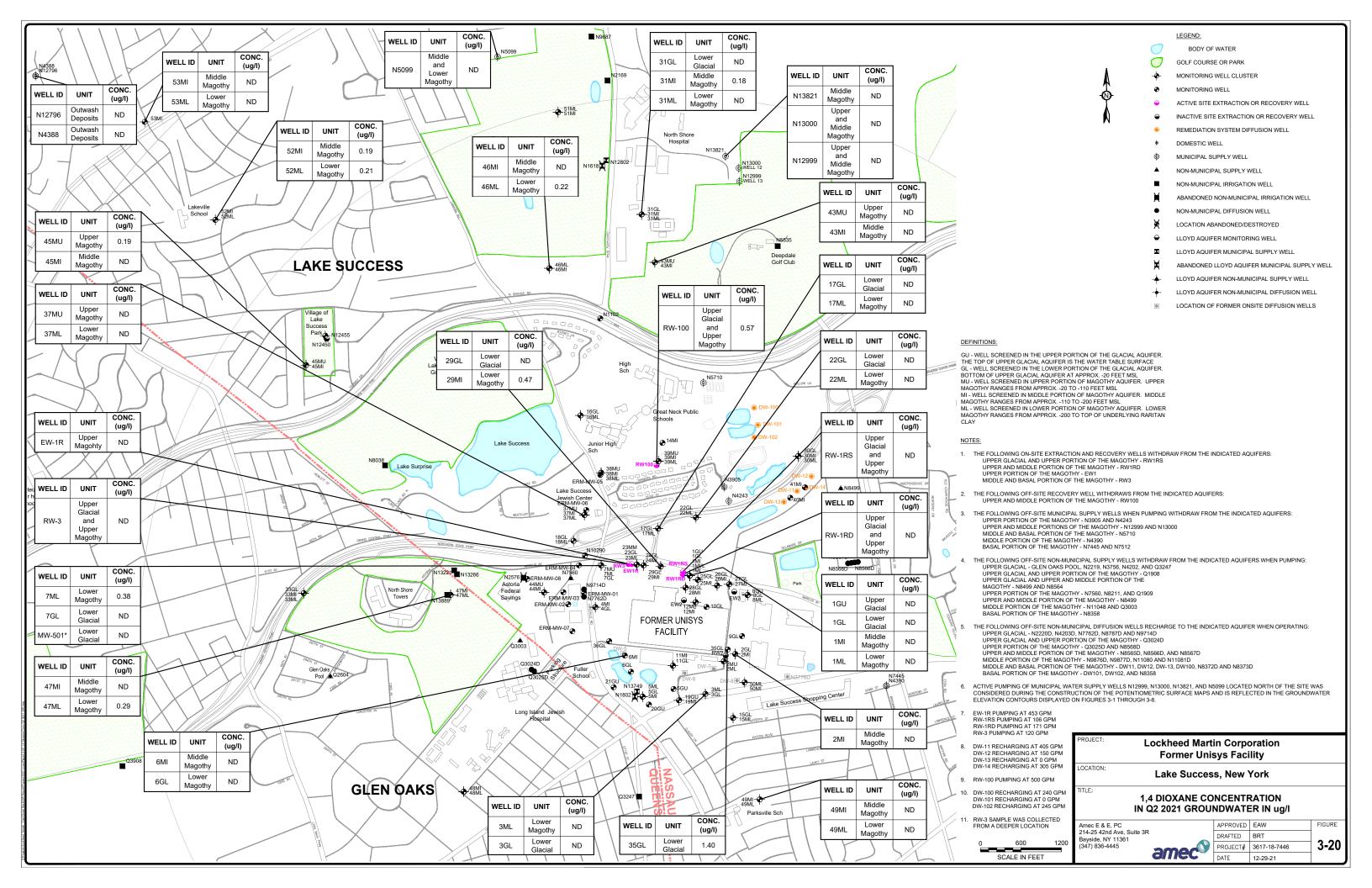












TABLES

Table 1-1 Applicable or Relevant and Appropriate Requirements for Groundwater

Cleanup Criteria for Volatile Organic Compounds

Table 2-1 Groundwater Monitoring Well Network

Table 2-2 Groundwater Sampling and Water Level Monitoring Frequency

Table 2-3 Recovery and Diffusion Well Activity in GPM During Synoptic Groundwater

Level Measurements

Table 3-1 Synoptic Groundwater Level Measurements

 Table 3-2 Public Water Supply Well Operation Status in GPM During Synoptic

Groundwater Level Measurements

Table 3-3 Vertical Hydraulic Gradients

Table 3-4 Volatile Organic Compound Analytical Results - 2020 Annual Groundwater

Monitoring Event

Table 1-1

	NY:	SDEC	USEPA	USEPA	USEPA
Parameter		ter Quality ⁽¹⁾	Maximum	Maximum	Maximum
i didilictoi	Groundwa	Guidance	Contaminant	Contaminant	Contaminant
(units in μg/L)	Standards	Values	Level (2)	Goal ⁽³⁾	Level ⁽⁴⁾
1,1,1,2-Tetrachloroethane	5				
1,1,1-Trichloroethane	5			200	200
1,1,2,2-Tetrachloroethane	5				
1,1,2-Trichloro-1,2,2-Trifluoroethane (Freon 113)	5				
1,1,2-Trichloroethane	1			3	5
1,1-Dichloroethane	5				
1,1-Dichloroethene	5			7	7
1,1-Dichloropropene	5				
1,2,3-Trichlorobenzene	5				
1,2,3-Trichloropropane	0.04				
1,2,4-Trichlorobenzene	5			70	70
1,2,4-Trimethylbenzene	5				
1,2-Dibromo-3-chloropropane	0.04			0	0.2
1,2-Dibromoethane	0.0006			0	0.05
1,2-Dichlorobenzene	3			600	600
1,2-Dichloroethane	0.6			0	5
1,2-Dichloropropane	1			0	5
1,3,5-Trimethylbenzene	5				
1,3-Dichlorobenzene	3				600
1,3-Dichloropropane	5				
1,4-Dichlorobenzene	3			75	75
1,4-Dioxane	1				
2,2-Dichloropropane	5				
2,2-Dichloro-1,1,1-trifluoroethane (Freon 123)					
2-Butanone		50			
2-Chlorotoluene	5				
2-Hexanone		50			
4-Chlorotoluene	5				
4-iso-Propyltoluene	5				
4-Methyl-2-pentanone					
Acetic acid, methyl ester					
Acetone		50			
Benzene	1			0	5
Bromobenzene	5				
Bromochloromethane	5				
Bromodichloromethane		50	100(c)	0	80
Bromoform		50	100(c)	0	80
Bromomethane	5		`		
Carbon disulfide		60			
Carbon tetrachloride	5			0	5
Chloride	250000				
Chlorobenzene	5			100	100
Chlorodifluoromethane (Freon 22)					
Chloropentafluoroethane (Freon 115)					
Chloroethane	5				
Chloroform	7		100(c)	70	80
Chloromethane	5				
cis-1,2-Dichloroethene	5			70	70
cis-1,3-Dichloropropene	0.4(a)				
Cyclohexane					
Dibromochloromethane		50	100(c)	60	80
Dibromomethane	5				
Dichlorodifluoromethane	5				
Difluoroethane (Freon 152a)					
Ethylbenzene	5			700	700
Hexachlorobutadiene	0.5				
Isopropylbenzene	5				

Prepared by: EMP

Checked by: EAW 1 of 2

Table 1-1

Applicable or Relevant and Appropriate Requirements for Groundwater Cleanup Criteria for Volatile Organic Compounds Lockheed Martin Corporation Former Unisys Site, Great Neck Lake Success, New York

		SDEC	USEPA	USEPA	USEPA
Parameter	Groundwa	ter Quality ⁽¹⁾	Maximum	Maximum	Maximum
		Guidance	Contaminant	Contaminant	Contaminant
(units in μg/L)	Standards	Values	Level (2)	Goal ⁽³⁾	Level (4)
Methyl cyclohexane					
Methyl Tertbutyl Ether		10			
Methylene chloride	5			0	5
Propylbenzene	5				
sec-Butylbenzene	5				
Styrene	5			100	100
tert-Butylbenzene	5				
Tetrachloroethene	5			0	5
Toluene	5			1000	1000
trans-1,2-Dichloroethene	5			100	100
trans-1,3-Dichloropropene	0.4(a)				
Trichloroethene	5			0	5
Trichlorofluoromethane (Freon 11)	5				
Vinyl chloride	2			0	2
Xylene, o	5			10000	10000
Xylenes (m&p)	5			10000	10000
Xylenes, Total	5(b)			10000	10000

Notes:

μg/L Micrograms per liter.

(1) New York State Department of Environmental Conservation (NYSDEC) Standards, Criteria, and Guidelines (SCGs),

(includes New York State Drinking Water Standards)

Division of Water Technical and Operational Guidance Series (TOGS). Ambient Water Quality Standards and

Guidance Values, for Protection of Class GA (groundwater) Drinking Water, reflects all addendum to criteria through June 2004.

- United States Environmental Protection Agency (USEPA). 40 CFR, Part 141, National Primary Drinking Water Regulations,
 - Section 141.12, Maximum Contaminant Levels for Total trihalomethanes, December 1998.
- USEPA 40 CFR, Part 141, National Primary Drinking Water Regulations, Section 141.50, Maximum Contaminant Levels Goals for Organic Contaminants, reflects all addendum to criteria through June 2014.
- USEPA 40 CFR, Part 141, National Primary Drinking Water Regulations, Section 141.61, Maximum Contaminant Levels for Organic Contaminants, reflects all addendum to criteria through August 2020.
- -- No drinking water standard available.
- (a) Applies to sum of cis- and trans-1,3-Dichloropropene.
- (b) Represents standard for each of the three isomers.
- (c) Sum of trihalomethanes (four parameters listed above).

The lowest of NYSDEC Groundwater Quality Standards, Guidance Values, USEPA Maximum Contaminant Goals, and USEPA Maximum Contaminant Level was selected to develop the Site-Specific Applicable or Relevant and Appropriate Requirment (ARAR) for Groundwater Cleanup Criteria for Volatile Organic Compounds.

Table 2-1
Groundwater Monitoring Well Network
Lockheed Martin Corporation
Former Unisys Site, Great Neck
Lake Success, New York

Well ID	Date Installed	Total Depth (feet bgs)	Well Diameter (inches)	X- Coordinate NAD83 ^(a)	Y- Coordinate NAD83 ^(a)	Measuring Point Elevation NAVD88 ^(b) (feet above msl)	Ground Surface Elevation (feet above msl)	Screened Interval (feet bgs)	Well Located Operable Unit (if applicable)	Well Type	Screened Aquifer
traction/Recovery Wells	<u> </u>										
EW-1R	Jan-17	240	20/12	1066758.6	215903.4	140.22	140 (*)	195 to 225	OU1	Recovery	UM
RW-1RS	Jun-00	205	12	1067491.772	215800.377	136.44	142.97 ++	144 to 164 172 to 202	OU1	Recovery	UG/UM
RW-1RD	May-00	271	12	1067481.209	215756.890	136.35	142.61	238 to 268	OU1	Recovery	UM/MM
RW-3	Jun-17	467	20/18/12	1066712.0	215903.8	134.18	139.11	300 to 385	OU1	Recovery	MM/BM
RW-100	Sep-03	329.5	12	1067084.130	217440.936	151.2	157 (*)	190 to 210 238 to 260 276 to 324	OU2	Recovery	UM/MM
onitoring Wells											
1GU	May-88	115	2	1067601.407	215725.624	141.35		105 to 115	OU1	Monitoring	UG
1GL	May-88	147	4	1067610.309	215735.516	141.44		127 to 147	OU1	Monitoring	UG
1MI	May-88	255	4	1067597.531	215733.906	141.71		235 to 255	OU1	Monitoring	UM
1MI/L	May-89	342	4	1067600.071	215744.590	141.74		322 to 342	OU1	Monitoring	MM/BM
1ML	May-91	395	4	1067591.169	215748.930	141.96		390 to 400	OU1	Monitoring	BM
2GL	May-88	147	4	1068228.987	214595.191	124.65	124.97	127 to 147	OU1	Monitoring	UM
2MU	Jul-91	185	4	1068037.240	214533.703	125.30	125.3	175 to 185	OU1	Monitoring	UM
2MI	Apr-89	250	4	1068227.859	214587.049	124.54	125.02	230 to 250	OU1	Monitoring	MM
2ML	Aug-94	447	4	1068071.623	214515.499	124.33	125	397 to 407	OU1	Monitoring	BM
3GL	May-88	149	4	1067801.474	214022.604	136.10		129 to 149	OU1	Monitoring	UG
3ML	Jul-94	350	4	1067790.277	214018.442	136.69		325 to 335	OU1	Monitoring	BM
4GL	May-88	150	4	1066206.777	215291.225	141.13		130 to 150	OU1	Monitoring	UG
4MI	Mar-89	250	4	1066207.469	215282.596	141.36		230 to 250	OU1	Monitoring	UM
5GU	Jan-92	95	4	1067346.126	214131.415	130.68		74 to 94	OU1	Monitoring	UG
5GL	Feb-89	130	4	1066904.736	213993.425	129.55		110 to 130	OU1	Monitoring	UG
5MI	Feb-89	250	4	1066915.306	213995.899	129.56		239 to 250	OU1	Monitoring	MM
5ML	Jul-94	350	4	1066865.281	213989.870	128.26		325 to 335	OU1	Monitoring	BM
6GL	Feb-89	125	4	1066709.266	214413.355	124.80		105 to 125	OU1	Monitoring	UG
6MI	Jul-91	240	4	1066696.584	214626.746	125.36		215 to 235	OU1	Monitoring	UM
7GL	Mar-89	150	4	1066310.817	215912.929	148.55		130 to 150	OU1	Monitoring	UG
7MU	Feb-14	248	4	1066297.562	215905.386	149.53		238 to 248	OU1	Monitoring	UM
7ML	Jun-94	355	4	1066309.341	215906.657	148.15		323 to 333	OU1	Monitoring	MM
8GU	Apr-89	90	4	1068505.048	215484.493	119.13	119.54	80 to 90	OU1	Monitoring	UG
8GL	Apr-89	150	4	1068498.563	215483.925	119.22	119.58	130 to 150	OU1	Monitoring	UM
8ML	Jun-94	355	4	1068500.193	215477.662	119.38	119.58	328 to 338	OU1	Monitoring	BM
9GL	Apr-89	155	4	1068335.336	214956.937	125.63	125.88	135 to 155	OU1	Monitoring	UM
10GL	Apr-89	132	4	1067833.009	215304.862	125.90		112 to 132	OU1	Monitoring	UG
11GL	May-89	140	4	1067387.897	214554.079	126.08		120 to 140	OU1	Monitoring	UM
11MI	May-89	250	4	1067390.403	214566.713	126.00		230 to 250	OU1	Monitoring	MM

Table 2-1
Groundwater Monitoring Well Network
Lockheed Martin Corporation
Former Unisys Site, Great Neck
Lake Success, New York

Well ID	Date Installed	Total Depth (feet bgs)	Well Diameter (inches)	X- Coordinate NAD83 ^(a)	Y- Coordinate NAD83 ^(a)	Measuring Point Elevation NAVD88 ^(b) (feet above msl)	Ground Surface Elevation (feet above msl)	ı	cree nter eet k	val	Well Located Operable Unit (if applicable)	Well Type	Screened Aquife
12MI	May-91	253	4	1067608.795	215362.510	131.79		243	to	253	OU1	Monitoring	MM
12ML	May-91	393	4	1067653.177	215358.513	131.84		383	to	393	OU1	Monitoring	BM
14MI	Apr-96	250	4	1067128.320	217729.493	162.49		220	to	250	OU2	Monitoring	UM
15GL	Aug-94	170	4	1068190.958	213698.124	132.57		150	to	160	Upgradient	Monitoring	UM
15ML	Aug-94	340	4	1068194.282	213692.411	132.39		328	to	338	Upgradient	Monitoring	BM
16GL	Apr-96	222	4	1065870.025	217998.611	225.32		202	to	222	OU2	Monitoring	UG
16ML	Aug-95	326	4	1065890.475	217964.712	225.80		316	to	326	OU2	Monitoring	UM
17GL	Aug-94	170	4	1067104.248	216426.967	138.48		155	to	165	OU2	Monitoring	UM
17ML	Aug-94	428	4	1067113.154	216429.151	138.03		390	to	400	OU2	Monitoring	BM
18GL	Sep-94	170	4	1065849.572	216253.969	148.85		160	to	170	OU2	Monitoring	UG
18ML	Sep-94	345	4	1065864.997	216259.072	148.07		324	to	334	OU2	Monitoring	MM
19GU	Jan-92	99	2	1067386.915	213918.916	135.34		78	to	98	OU1	Monitoring	UG
19MI	Jan-92	248	4	1067397.367	213918.116	135.63		229	to	239	OU1	Monitoring	MM
21GU	Jan-92	98	4	1066403.014	214223.048	131.62		78	to	98	OU1	Monitoring	UG
22GL	Sep-94	168	4	1067700.058	216589.380	134.94		158	to	168	OU2	Monitoring	UM
22ML	Aug-94	340	4	1067719.512	216605.378	134.59		315	to	325	OU2	Monitoring	MM
23GL	Aug-94	150	2	1066821.495	215910.361	139.22		140	to	150	OU1	Monitoring	UG
23MI	Jun-94	215	2	1066826.910	215908.150	138.22		202	to	212	OU1	Monitoring	UM
23MM	Jan-14	321	4	1066816.692	215924.765	139.76		311	to	321	OU1	Monitoring	MM
24GL	May-94	150	2	1066920.707	215897.958	139.22		139	to	149	OU1	Monitoring	UG
24MI	May-94	220	2	1066932.352	215897.927	139.33		200	to	210	OU1	Monitoring	UM
25GL	May-94	170	2	1067721.637	215682.626	134.51		159	to	169	OU1	Monitoring	UM
25MI	May-94	220	2	1067704.286	215693.312	135.58		200	to	210	OU1	Monitoring	UM
26GL	May-94	184	2	1068003.090	215605.572	130.40		174	to	184	OU1	Monitoring	UM
26MI	May-94	240	2	1067992.687	215605.528	130.73		220	to	230	OU1	Monitoring	UM
27GL	Jun-94	180	2	1068172.336	215639.711	121.28		170	to	180	OU1	Monitoring	UM
27MI	Jun-94	230	2	1068180.697	215634.101	122.22		217	to	227	OU1	Monitoring	UM
28GL	Jun-94	150	2	1067532.322	215575.634	135.83		140	to	150	OU1	Monitoring	UG
28MI	Jun-94	250	2	1067533.833	215584.068	136.52		222	to	232	OU1	Monitoring	UM
29GL	Jul-94	170	2	1067173.639	215881.761	142.52		145	to	155	OU1	Monitoring	UG
29MI	Jul-94	250	2	1067183.615	215881.220	142.50		207	to	217	OU1	Monitoring	UM
30GL	Sep-98	210	4	1069203.977	217502.185	139.18	136.13	190	to	210	Crossgradient	Monitoring	UM
30MI	Aug-98	280	4	1069204.076	217477.518	139.33	136.14	260	to	280	Crossgradient	Monitoring	MM
30ML	Aug-98	380	4	1069226.122	217487.895	139.28	136.36	360	to	380	Crossgradient	Monitoring	BM
31GL	Oct-98	200	4	1066908.543	221112.522	123.43	124.17	180	to	200	Outpost	Monitoring	UM
31MI	Oct-98	255	4	1066925.269	221113.613	124.00	124.73	235	to	255	Outpost	Monitoring	MM
31ML	Oct-98	355	4	1066927.864	221126.813	124.19	124.87	335	to	355	Outpost	Monitoring	BM
33GL	Aug-98	252	4	1061851.684	215407.741	255.21	256.55	232	to	252	Crossgradient	Monitoring	UG
33MI	Aug-98	310	4	1061859.053	215414.876	255.43	256.65	290	to	310	Crossgradient	Monitoring	UM
33ML	Aug-98	425	4	1061846.643	215411.525	255.38	256.66	405	to		Crossgradient	Monitoring	BM

Table 2-1
Groundwater Monitoring Well Network
Lockheed Martin Corporation
Former Unisys Site, Great Neck
Lake Success, New York

Well ID	Date Installed	Total Depth (feet bgs)	Well Diameter (inches)	X- Coordinate NAD83 ^(a)	Y- Coordinate NAD83 ^(a)	Measuring Point Elevation NAVD88 ^(b) (feet above msl)	Ground Surface Elevation (feet above msl)	Scre Inte (fee	erv	al	Well Located Operable Unit (if applicable)	Well Type	Screened Aquifer
35GL	Aug-98	135	2	1068155.381	214625.994	125.32	125.54	115	to	135	OU1	Monitoring	UG
36GL	Aug-98	135	2	1066416.159	214776.800	131.62	132.49	115	to	135	OU1	Monitoring	UG
37MU	Jul-99	252	4	1066085.325	216696.042	178.79	180.11	242	to	252	OU2	Monitoring	UM
37MI	Jun-99	325	4	1066080.874	216675.996	178.76	180.09	315	to	325	OU2	Monitoring	MM
37ML	Jul-99	428	4	1066082.340	216685.824	178.81	180.21	418	to	428	OU2	Monitoring	BM
38MU	Aug-99	242	4	1066283.730	217223.840	185.61	186.84	232	to	242	OU2	Monitoring	UM
38MI	Aug-99	344	4	1066317.452	217258.519	187.43	188.77	334	to	344	OU2	Monitoring	MM
38ML	Aug-99	444	4	1066306.664	217256.301	187.17	188.87	430	to	440	OU2	Monitoring	BM
39MU	Sep-99	206	4	1067084.253	217467.308	157.93	158.7	196	to	206	OU2	Monitoring	UM
39MI	Sep-99	312	4	1067070.447	217457.334	157.53	158.1	302	to	312	OU2	Monitoring	MM
39ML	Oct-99	407	4	1067076.596	217461.880	158.16	159	397	to	407	OU2	Monitoring	BM
40MI	Jun-14	300	4	1069119.126	216884.850	130.18	129.3	250	to	300	Crossgradient	Monitoring	MM
41MI	Jul-14	312	4	1069340.055	217041.832	138.61	137.8	262	to	312	Crossgradient	Monitoring	MM
43MU	Aug-14	228	4	1067094.992	220403.283	130.29	131 (*)	218	to	228	Outpost	Monitoring	UM
43MI	Aug-14	330	4	1067105.562	220405.761	130.97	131 (*)	310	to	330	Outpost	Monitoring	MM/BM
44MU	Aug-14	226	4	1065499.864	215486.452	147.57	148 (*)	216	to	226	OU2	Monitoring	UM
44MI	Aug-14	330	4	1065493.731	215478.056	147.67	148 (*)	320	to	330	OU2	Monitoring	MM
45MU	Feb-14	289	4	1061883.628	218879.564	205.25		279	to	289	OU2	Monitoring	UM
45MI	Feb-14	333	4	1061891.258	218874.958	205.83		323	to	333	OU2	Monitoring	MM
46MI	Mar-14	314	4	1065536.225	220456.307	187.12	187.49	292	to	302	Outpost	Monitoring	MM
46ML	Mar-14	400	4	1065525.169	220435.813	188.32	188.66	353	to	363	Outpost	Monitoring	BM
47MI	Feb-14	281	4	1064285.425	215484.018	192.56	191.85	264	to	279	OU2	Monitoring	MM
47ML	Feb-14	390	4	1064248.493	215478.094	192.91	193.23	368	to	388	OU2	Monitoring	BM
48MI	Mar-14	245	4	1064248.843	212589.926	121.69	121.97	220	to	240	Upgradient	Monitoring	MM
48ML	Mar-14	345	4	1064258.568	212600.604	121.50	121.76	320	to	340	Upgradient	Monitoring	BM
49MI	Apr-14	265	4	1068619.477	212440.430	125.54	126.06	240	to	260	Upgradient	Monitoring	MM
49ML	Apr-14	353	4	1068609.076	212438.940	125.62	126.09	328	to	348	Upgradient	Monitoring	BM
50MI	Jan-09	250	4	1068440.598	214148.099	133.49	133.79	225	to	245	Upgradient	Monitoring	MM
50ML	Jan-09	452	4	1068438.716	214153.980	132.95	133.3	432	to	452	Upgradient	Monitoring	BM
51MI	Dec-09	208	4	1065665.675	222622.603	142.03	140.1	183	to	203	Outpost	Monitoring	UM
51ML	Dec-09	347	4	1065675.335	222618.255	141.38	139.5	312	to	322	Outpost	Monitoring	BM
52MI	Aug-17	240	4	1060564.54	221015.40	152.38	153.28	215	to	235	Outpost	Monitoring	MM
52ML	Jul-17	325	4	1060576.73	221021.68	152.93	153.25	300	to	320	Outpost	Monitoring	BM
53MI	Jun-19	162	4	1059521.97	222474.66	85.07	85.31	137	to	157	Outpost	Monitoring	MM
53ML	Jun-19	247	4	1059520.00	222479.33	85.17	85.46	T T	to	242	Outpost	Monitoring	BM
54GU	Sep-21	160	4	1063259.69	227800.31	105.68	106.17	140	to	160	Outpost	Monitoring	UG
54GI	Sep-21	210	4	1063251.98	227795.40	105.84	106.58	190	to	210	Outpost	Monitoring	UG
RW2	-	-	4	1068137.71	214582.01	125.04	125.91	-	to	-	OU1	Monitoring/Former Recovery	UM
N3905	Jun-52	259	20/12	1068118.938	217199.608	126.42	126.23	214	to	254	OU2	Monitoring/Former Recovery	UM
N4243	Aug-53	260	20/12	1068205.583	216996.556	120.39	125.58	205	to	255	OU2	Monitoring/Former Recovery	UM
N5710	Jan-57	390	20/12	1067836.549	218757.733	166.19	175.89	325	to	385	OU2	Monitoring/Former Recovery	MM/BM

Table 2-1
Groundwater Monitoring Well Network
Lockheed Martin Corporation
Former Unisys Site, Great Neck
Lake Success, New York

Well ID	Date Installed	Total Depth (feet bgs)	Well Diameter (inches)	X- Coordinate NAD83 ^(a)	Y- Coordinate NAD83 ^(a)	Measuring Point Elevation NAVD88 ^(b) (feet above msl)	Ground Surface Elevation (feet above msl)	Screened Interval (feet bgs)	Well Located Operable Unit (if applicable)	Well Type	Screened Aquifer
Municipal Supply Wells											
N5099	Jul-55	399	20/12	1064776.429	223579.053	-	170 (*)	345 to 378 383 to 393	OU2	Active	MM/BM
N12999	-	417.0	20/12	1068275.6	221588.8	-	200 (*)	294 to 304 312 to 322 392 to 412	OU2	Active	UM MM MM
N13000	-	353.0	20/12	1068254.9	221762.1	-	220 (*)	308 to 348	OU2	Active	UM/MM
N13821	-	345.0	24/16			-	199	300 to 340	OU2	Active	UM/MM
N4388	-	160.0	-			-	40	125 to 145	OU2	Active	Outwash deposits
N12796	-	170.0	-			-	40	110 to 130	OU2	Active	Outwash deposits
Non-Municipal Diffusion Well	<u>s</u>										
DW-11	Jun-02	416.0	10	1069222.77 **	216981.69 **	127.51 +	128.05 ++	275 to 411	OU2	Diffusion from EW1R, RW1RS, RW1RD, RW3	MM/BM
DW-12	Aug-02	401.0	12/10	1069438.84 **	217205.20 **	132.53 +	134.72 ++	308 to 396	OU2	Diffusion from EW1R, RW1RS, RW1RD, RW3	MM/BM
DW-13	Oct-08	385.0	12/10	1069014.01 **	216821.17 **	125.42 +	125.50 ++	250 to 320 340 to 380	OU2	Diffusion from EW1R, RW1RS, RW1RD, RW3	MM/BM
DW-14	Jun-13	445	12/10	1069350.38 **	217035.72 **	129.6 +	134.52 **	270 to 322 372 to 390 398 to 424	OU2	Diffusion from EW1R, RW1RS, RW1RD, RW3	MM/BM
DW-100	Jan-04	424	12/10	1068502.542	218270.164	131.10	133 (*)	299 to 331 415 to 419	OU2	Diffusion from RW100	MM/BM
DW-101	Nov-03	413	12/10	1068584.881	218016.426	126.80	128 (*)	333 to 383 393 to 408	OU2	Diffusion from RW100	ВМ
DW-102	Feb-04	418	12/10	1068619.700	217888.440	126.40	127 (*)	365 to 413	OU2	Diffusion from RW100	BM
Non-Municipal Irrigation Well	S										
N9687	May-80	243	12/8	1066279.374	223585.349	-	80 (*)	203 to 243	OU2	Irrigation	MM
N5535	Nov-56	390	16/12	1068941.689	220650.865	-	250 (*)	330 to 350	Outpost	Irrigation	UM
N8038	Jun-66	295	12	1063173.545	217289.280	-	210 (*)	272 to 295	Crossgradient	Irrigation	UM
N8055	Jun-66	199	4	-	-	-	180 (*)	191 to 199		Irrigation	UG
Q2604	-	210	-	-	-	-	150 (*)	- to -	<u> </u>	-	UG
Q3908 (Douglaston Golf Course)	Jul-01	385	-	-	-	-	-	- to -		Irrigation	-
N13221 (Main)	Jun-02	281	16	1064107.336	215912.996	220 (*)	220 (*)	195 to 235 271 to 281	OU2	Irrigation	UG/UM
N13889 (Main)	Aug-11	257	14/12	1064107.336	215912.996	220 (*)	220 (*)	220 to 255	OU2	Irrigation	UG
N13266 (Jockey)	Jun-02	240	6	1064107.336	215912.996	220 (*)	220 (*)	200 to 240	OU2	Irrigation	UG
Non-Municipal Supply Wells											
N7560	Aug-64	242	6-Aug	1065848	215706	139.99	150 (*)	221 to 241		Cooling	UM

Table 2-1 Groundwater Monitoring Well Network Lockheed Martin Corporation Former Unisys Site, Great Neck Lake Success, New York

Well ID	Date Installed	Total Depth (feet bgs)	Well Diameter (inches)	X- Coordinate NAD83 ^(a)	Y- Coordinate NAD83 ^(a)	Measuring Point Elevation NAVD88 ^(b) (feet above msl)	Ground Surface Elevation (feet above msl)	Screened Interval (feet bgs)	Well Located Operable Unit (if applicable)	Well Type		
<u>Notes</u>												
bgs	below ground su	ırface			+	Determined based on field measurm	nent from the top of the	diffusion well vault	down to the water level meas	suring point in the vault		
msl	mean sea level.				(a)	X- and Y-Coordinates are referenced to NAD83 unless otherwise indicated						
-	Information not	available			(b)	Measuring point elevations are refer	renced to Nassau Count	y NAVD88; ground	surface elevations are referen	nced to Nassau County NGVI		
(*)	estimated				NAVD88	North American Vertical Datum of	1988					
**	Approximate co	approximate coordinate for the center of the diffusion well vault			NGVD29	National Geodetic Vertical Datum of 1929						
++	Surveyed elevati	ion of the top of	of the well vault		NAD83	North American Datum of 1983						

Aquifer Types

UG - Upper Glacial. Screen interval located from approximately landsurface to -24 feet relative to msl.

UM - Upper portion of the Magothy. Screen interval located from approximately -24 to -113 feet relative to msl.

MM - Middle portion of the Magothy. Screen interval located from approximately -113 to -204 feet relative to msl.

BM - Basal portion of the Magothy. Screen interval located from approximately -204 to -270 feet relative to msl.

Table 2-2 Groundwater Sampling and Water Level Monitoring Frequency Lockheed Martin Corporation Former Unisys Site, Great Neck Lake Success, New York

Well ID	Screened Aquifer	Screen Interval (feet bgs)	Included in Typical Annual Sampling Event	Included in Typical Quarterly Sampling Event	Included in Typical Synoptic Groundwater Level Measurement Event	Included in Q1 2021 Sampling Event	Included in Q2 2021 Sampling Event	Included in Q3 2021 Sampling Event	Included in Q4 2021 Sampling Event
EW1R	UM	195 - 225	X	X	X	X	X	X	X
RW1RS	UG/UM	114 - 164 172 - 202	X	X	X	X	X	X	X
RW1RD	UM/MM	238 - 268	X	X	X	X	X	X	X
RW-3	MM	300 - 385	X	X	X	X	X	X	X
RW100	UM/MM	190 - 210 238 - 260 276 - 324	Х	X	X	X	X	X	X
1GU	UG	127 - 147			X		X		
1GL	UG	127 - 147	X		X		X		
1MI	UM	235 - 255	X		X		X		X
1MI/L	MM	322 - 342	X		X			X	
1ML	BM	390 - 400	X		X		X		X
2GL	UM	127 - 147			X				
2MU	UM	175 - 185			X				
2MI	MM	230 - 250			X		X		
2ML	BM	397 - 407			X				
3GL	UG	129 - 149			X		X		X
3ML	BM	325 - 335			X		X		X
4GL	UG	130 - 150	X		X			X	
4MI	UM	230 - 250	X		X			X	
5GU	UG	74 - 94			X				
5GL	UG	110 - 130			X				
5MI	MM	239 - 250			X				
5ML	BM	325 - 335			X				
6GL	UG	105 - 125			X		X		
6MI	UM	215 - 235			X		X		
7GL	UG	130 - 150	X		X		X		
7MU	UM	238 - 248			X				
7ML	MM	323 - 333	X		X		X		

Table 2-2
Groundwater Sampling and Water Level Monitoring Frequency
Lockheed Martin Corporation
Former Unisys Site, Great Neck
Lake Success, New York

Well ID	Screened Aquifer	Screen Interval (feet bgs)	Included in Typical Annual Sampling Event	Included in Typical Quarterly Sampling Event	Included in Typical Synoptic Groundwater Level Measurement Event	Included in Q1 2021 Sampling Event	Included in Q2 2021 Sampling Event	Included in Q3 2021 Sampling Event	Included in Q4 2021 Sampling Event
8GU	UG	80 - 90	X		X			X	
8GL	UM	130 - 150	X		X			X	
8ML	BM	328 - 338	X		X			X	
9GL	UM	135 - 155			X				
10GL	UG	112 - 132			X			X	
11GL	UM	120 - 140			X				
11MI	MM	230 - 250			X				
12MI	MM	243 - 253			X				
12ML	BM	383 - 393			X				
14MI	UM	220 - 250	X		X			X	
15GL	UM	150 - 160			X			X	
15ML	BM	328 - 338			X			X	
16GL	UG	202 - 222	X		X			X	
16ML	UM	316 - 326	X		X			X	
17GL	UM	155 - 165	X		X		X		
17ML	BM	390 - 400	X		X		X		X
18GL	UG	160 - 170	X		X			X	
18ML	MM	324 - 334	X		X			X	
19GU	UG	78 - 98			X				
19MI	MM	229 - 239			X				
21GU	UG	78 - 98			X				
22GL	UM	158 - 168	X		X		X		
22ML	MM	315 - 325	X		X		X		X
23GL	UG	140 - 150			X				
23MI	UM	202 - 212			X				
23MM	MM	311 - 321			X				

Table 2-2
Groundwater Sampling and Water Level Monitoring Frequency
Lockheed Martin Corporation
Former Unisys Site, Great Neck
Lake Success, New York

Well ID	Screened Aquifer	Screen Interval (feet bgs)	Included in Typical Annual Sampling Event	Included in Typical Quarterly Sampling Event	Included in Typical Synoptic Groundwater Level Measurement Event	Included in Q1 2021 Sampling Event	Included in Q2 2021 Sampling Event	Included in Q3 2021 Sampling Event	Included in Q4 2021 Sampling Event
24GL	UG	139 - 149	X		X			X	
24MI	UM	200 - 210			X				
25GL	UM	159 - 169			X				
25MI	UM	200 - 210			X				
26GL	UM	174 - 184			X				
26MI	UM	220 - 230			X				
27GL	UM	170 - 180			X				
27MI	UM	217 - 227	X		X			X	
28GL	UG	140 - 150	X		X			X	
28MI	UM	222 - 232	X		X			X	
29GL	UG	145 - 155	X		X		X		
29MI	UM	207 - 217	X		X		X		X
30GL	UM	190 - 210			X				
30MI	MM	260 - 280			X				
30ML	BM	360 - 380			X				
31GL	UM	180 - 200	X	X	X	X	X	X	X
31MI	MM	235 - 255	X	X	X	X	X	X	X
31ML	BM	335 - 355	X	X	X	X	X	X	X
33GL	UG	232 - 252			X				X
33MI	UM	290 - 310			X				X
33ML	BM	405 - 425			X				X
35GL	UG	115 - 135	X		X		X		
36GL	UG	115 - 135			X				
37MU	UM	242 - 252			X		X		X
37MI	MM	315 - 325			X				
37ML	BM	418 - 428	X		X		X		X

Table 2-2
Groundwater Sampling and Water Level Monitoring Frequency
Lockheed Martin Corporation
Former Unisys Site, Great Neck
Lake Success, New York

Well ID	Screened Aquifer	Screen Interval (feet bgs)	Included in Typical Annual Sampling Event	Included in Typical Quarterly Sampling Event	Included in Typical Synoptic Groundwater Level Measurement Event	Included in Q1 2021 Sampling Event	Included in Q2 2021 Sampling Event	Included in Q3 2021 Sampling Event	Included in Q4 2021 Sampling Event
38MU	UM	232 - 242	X		X			X	
38MI	MM	334 - 344	X		X			X	
38ML	BM	430 - 444	X		X			X	
39MU	UM	196 - 206	X		X			X	
39MI	MM	302 - 312	X		X			X	
39ML	BM	397 - 407	X		X			X	
40MI	MM	250 - 300			X				
41MI	MM	262 - 312			X				
43MU	UM	218 - 228	X	X	X	X	X	X	X
43MI	MM	310 - 330	X	X	X	X	X	X	X
44MU	UM	216 - 226			X				X
44MI	MM	320 - 330			X				X
45MU	UM	279 - 289	X	X	X	X	X	X	X
45MI	MM	323 - 333	X	X	X	X	X	X	X
46MI	MM	292 - 302	X	X	X	X	X	X	X
46ML	BM	353 - 363	X	X	X	X	X	X	X
47MI	MM	264 - 279			X		X		X
47ML	BM	368 - 388			X		X		X
48MI	MM	220 - 240			X				X
48ML	BM	320 - 340			X				X
49MI	MM	240 - 260			X		X		
49ML	BM	328 - 348			X		X		X
50MI	MM	225 - 245			X			X	X
50ML	BM	432 - 452			X			X	X
51MI	UM	183 - 203	X	X	X	X	X	X	X
51ML	BM	312 - 322	X	X	X	X	X	X	X

Table 2-2 Groundwater Sampling and Water Level Monitoring Frequency Lockheed Martin Corporation Former Unisys Site, Great Neck Lake Success, New York

Well ID	Screened Aquifer	Screen Interval (feet bgs)	Included in Typical Annual Sampling Event	Included in Typical Quarterly Sampling Event	Included in Typical Synoptic Groundwater Level Measurement Event	Included in Q1 2021 Sampling Event	Included in Q2 2021 Sampling Event	Included in Q3 2021 Sampling Event	Included in Q4 2021 Sampling Event
52MI	UM	215 - 235	X	X	X	X	X	X	X
52ML	BM	300 - 320	X	X	X	X	X	X	X
53MI	MM	137-157	X	X	X	X	X	X	X
53ML	BM	222-242	X	X	X	X	X	X	X
54GU	UG	140 - 160	X	X	X				X
54GI	UG	190 - 210	X	X	X				X
N3905	UM	214 - 254			X				
N10290	UG	160 -165			X				
N1102	UG	Unknown			X				
RW2	UM	180 - 210			X				
ERM-MW-1	UG	169 - 179			X				
ERM-MW-2	UG	132 -142			X				
ERM-MW-3	UG	160 - 170			X				
ERM-MW-4	UG	180 - 190			X				
ERM-MW-5	UM	210 - 220			X				
ERM-MW-6	UM	187 - 197			X				
ERM-MW-7	UM	165 - 175			X				
ERM-MW-8	UM	195 - 205			X				
DW-11	MM/BM	275 - 411			X				
DW-12	MM/BM	308 - 396			X				
DW-13	MM/BM	250 - 320 340 - 380			X				
DW-14	MM/BM	270 - 322 372 - 390 398 - 424			X				
DW-100	MM/BM	299 - 331 415 - 419			X				
DW-101	BM	333 - 383 393 - 408			X				
DW-102	BM	365 - 413			X				

Table 2-2 Groundwater Sampling and Water Level Monitoring Frequency Lockheed Martin Corporation Former Unisys Site, Great Neck Lake Success, New York

Well ID	Screened Aquifer	Screen Interval (feet bgs)	Included in Typical Annual Sampling Event	Included in Typical Quarterly Sampling Event	Included in Typical Synoptic Groundwater Level Measurement Event	Included in Q1 2021 Sampling Event	Included in Q2 2021 Sampling Event	Included in Q3 2021 Sampling Event	Included in Q4 2021 Sampling Event
N12455	UG	175 - 195			X				
N12450	Lloyd Aquifer	660 - 680			X				
N5099	MM/BM	383 - 393	X	X		X	X	X	X
N12999	MM	294 - 412	X	X			X	X	X
N13000	UM/MM	308 - 348	X	X			X	X	X
N13821	UM/MM	300 - 340	X	X			X	X	X
N4388	Outwash Deposits	125 - 145	X	X		X	X	X	X
N12796	Outwash Deposits	110 - 130	X	X		X	X	X	X
N9687	MM	221 - 239	X	X			X	X	X
N5535	UM	330 - 390	X	X				X	X
N8038	UM	272 - 295	X						
N13221	UG	195 - 235 271 - 281	X					X	
N13266	UG, UM	200 - 240	X					X	
N13889	UG	220 - 255	X					X	
Q2604	UG	Unknown							X
Total	(not including rec	overy wells)	63	25	127	18	46	52	47
Tota	l (including reco	very wells)	68	30	132	23	51	57	52

Note: The actual number of wells sampled in any given quarter may vary from the typical number of wells sampled based on direction from the NYSDEC and the seasonal operation of irrigation wells.

Aquifer Types

UG - Upper Glacial. Screen interval located from approximately land surface to -24 feet relative to msl

UM - Upper portion of the Magothy. Screen interval located from approximately -24 to -113 feet relative to msl

MM - Middle portion of the Magothy. Screen interval located from approximately -113 to -204 feet relative to msl

BM - Basal portion of the Magothy. Screen interval located from approximately -204 to -270 feet relative to msl

Well added by NYSDEC Well could not be sampled

Table 2-3 Recovery and Diffusion Well Activity in GPM During Synoptic Groundwater Level Measurements Lockheed Martin Corporation

Former Unisys Site Great Neck Lake Success, New York

	April 19 Thru 20, 2021	August 9 Thru 10, 2021
Wells	Synoptic Groundwater Level	Synoptic Groundwater Level
	Measurement Event	Measurement Event
OU1 Recovery Wells (gpm)	
EW-1R	440	440
RW-1RS	180	195
RW-1RD	124	120
RW-3	125	123
OU1 Diffusion Wells (§	gpm)	
DW-11	280	280
DW-12	220	220
DW-13	180	180
DW-14	200	190
DW-15		
OU2 Recovery Well (g	pm)	

OU2 Recovery Well (gpm)						
RW-100	500	500				
OU2 Diffusion Wells (gpm)						
DW-100	240	260				
DW-101	1					
DW-102	270	230				

Notes

gpm gallons per minute

-- not pumping (recovery well) or recharging (diffusion well)

Table 3-1 Synoptic Groundwater Level Measurements Lockheed Martin Corporation Former Unisys Site Great Neck Lake Success, New York

Well ID	Screened Aquifer	Measuring Point Elevation NAVD88 ⁽¹⁾ (feet msl)	Measurement TOR - TOC	Measurement TOR/C - GS	April 19 thru 20, 2021 Depth to Water (feet below MP)	April 19 thru 20, 2021 Water Level Elevation (feet msl)	August 9 thru 10, 2021 Depth to Water (feet below MP)	August 9 thru 10, 2021 Water Level Elevation (feet msl)
4011		444.44	0.40		00.74	47.70	00.40	40.04
1GU	UG	141.44	0.48	NA 	93.71	47.73	93.43	48.01
1GL	UG	141.35	0.35	NA 	93.48	47.87	93.70	47.65
1MI	UM	141.71	0.18	NA	94.64	47.07	94.57	47.14
1MI/L	MM	141.74	0.41	NA	93.57	48.17	93.68	48.06
1ML	BM	141.96	0.47	NA	93.94	48.02	94.01	47.95
2GL	UM	124.65	0.65	NA	75.71	48.94	75.47	49.18
2MU	UM	125.30	0.41	NA	76.64	48.66	76.21	49.09
2MI	MM	124.54	0.21	NA	75.88	48.66	75.32	49.22
2ML	BM	124.33	0.62	NA	76.05	48.28	75.08	49.25
3GL	UG	136.10	0.29	NA	86.32	49.78	85.83	50.27
3ML	ВМ	136.69	0.30	NA	87.32	49.37	86.96	49.73
4GL	UG	141.13	0.52	NA	94.52	46.61	94.14	46.99
4MI	UM	141.36	0.31	NA	95.11	46.25	94.98	46.38
5GU	UG	129.84	0.70	NA	81.68	48.16	81.16	48.68
5GL	UG	126.25	0.46	NA	78.14	48.11	77.60	48.65
5MI	MM	126.03	0.58	NA	78.44	47.59	77.69	48.34
5ML	ВМ	127.22	0.64	NA	79.46	47.76	79.10	48.12
6GL	UG	124.80	0.40	NA	76.47	48.33	76.13	48.67
6MI	UM	125.36	0.75	NA	77.94	47.42	77.57	47.79
7GL	UG	148.55	0.82	NA	102.97	45.58	102.94	45.61
7MU	UM	149.53	0.45	NA	104.51	45.02	104.53	45.00
7ML	MM	148.15	0.76	NA	102.70	45.45	102.79	45.36
8GU	UG	119.13	0.23	NA	68.52	50.61	69.20	49.93
8GL	UM	119.22	0.52	NA	70.57	48.65	69.95	49.27
8ML	BM	119.38	0.40	NA	70.75	48.63	69.69	49.69
9GL	UM	125.63	0.26	NA	77.99	47.64	76.18	49.45
10GL	UG	125.90	0.45	NA	76.91	48.99	76.60	49.30
11GL	UM	126.08	0.31	NA	77.36	48.72	76.92	49.16
11MI	MM	126.00	0.49	NA	77.54	48.46	77.16	48.84

Table 3-1
Synoptic Groundwater Level Measurements
Lockheed Martin Corporation
Former Unisys Site Great Neck
Lake Success, New York

Well ID	Screened Aquifer	Measuring Point Elevation NAVD88 ⁽¹⁾ (feet msl)	Measurement TOR - TOC	Measurement TOR/C - GS	April 19 thru 20, 2021 Depth to Water (feet below MP)	April 19 thru 20, 2021 Water Level Elevation (feet msl)	August 9 thru 10, 2021 Depth to Water (feet below MP)	August 9 thru 10, 2021 Water Level Elevation (feet msl)
12MI	MM	131.79	0.29	NA	83.36	48.43	83.25	48.54
12ML	ВМ	131.84	0.34	NA	83.29	48.55	83.27	48.57
14MI	UM	162.49	NM	NM	116.41	46.08	117.62	44.87
15GL	UM	132.57	0.37	NA	82.09	50.48	81.54	51.03
15ML	ВМ	132.39	0.40	NA	82.04	50.35	81.61	50.78
16GL	UG	225.32	0.26	NA	182.06	43.26	182.62	42.70
16ML	UM	225.80	0.15	NA	182.02	43.78	182.53	43.27
17GL	UM	138.48	0.25	NA	92.39	46.09	93.64	44.84
17ML	ВМ	138.03	0.35	NA	91.38	46.65	91.72	46.31
18GL	UG	148.85	0.21	NA	103.99	44.86	103.89	44.96
18ML	MM	148.07	0.42	NA	103.18	44.89	103.42	44.65
19GU	UG	135.43	0.62	NA	86.13	49.30	85.87	49.56
19MI	MM	135.63	0.53	NA	86.54	49.09	86.08	49.55
21GU	UG	131.62	NA	NA	83.43	48.19	82.91	48.71
22GL	UM	133.79	0.42	NA	87.13	46.66	87.17	46.62
22ML	MM	134.48	0.52	NA	87.87	46.61	88.05	46.43
23GL	UG	139.22	0.24	NA	94.03	45.19	93.90	45.32
23MI	UM	138.22	0.7	NA	94.45	43.77	94.39	43.83
23MM	MM	139.76	0.28	NA	94.85	44.91	94.93	44.83
24GL	UG	139.22	0.65	NA	93.63	45.59	93.57	45.65
24MI	UM	139.33	0.53	NA	94.33	45.00	94.32	45.01
25GL	UM	134.51	0.45	NA	86.19	48.32	85.96	48.55
25MI	UM	135.58	0.32	NA	87.69	47.89	87.47	48.11
26GL	UM	130.40	0.56	NA	81.56	48.84	81.10	49.30
26MI	UM	130.73	0.33	NA	81.94	48.79	81.46	49.27

Table 3-1
Synoptic Groundwater Level Measurements
Lockheed Martin Corporation
Former Unisys Site Great Neck
Lake Success, New York

Well ID	Screened Aquifer	Measuring Point Elevation NAVD88 ⁽¹⁾ (feet msl)	Measurement TOR - TOC	Measurement TOR/C - GS	April 19 thru 20, 2021 Depth to Water (feet below MP)	April 19 thru 20, 2021 Water Level Elevation (feet msl)	August 9 thru 10, 2021 Depth to Water (feet below MP)	August 9 thru 10, 2021 Water Level Elevation (feet msl)
27GL	UM	121.28	0.52	NA	72.26	49.02	71.65	49.63
27MI	UM	122.22	0.53	NA	73.07	49.15	72.34	49.88
28GL	UG	135.83	0.61	NA	88.43	47.40	88.79	47.04
28MI	UM	136.52	0.31	NA	89.06	47.46	88.87	47.65
29GL	UG	142.52	0.56	NA	96.37	46.15	96.29	46.23
29MI	UM	142.50	0.54	NA	96.68	45.82	96.66	45.84
30GL	UM	139.18	0.43	2.49	86.88	52.30	87.69	51.49
30MI	MM	139.33	0.25	2.81	86.72	52.61	85.03	54.30
30ML	ВМ	139.28	0.42	2.48	86.74	52.54	86.77	52.51
31GL	UM	123.45	0.36	NA	84.25	39.20	88.05	35.40
31MI	MM	124.00	0.37	NA	85.06	38.94	88.94	35.06
31ML	ВМ	124.19	0.86	NA	90.74	33.45	92.92	31.27
33GL	UG	255.21	NM	NA	203.50	51.71	212.78	42.43
33MI	UM	255.43	NM	NA	216.26	39.17	216.23	39.20
33ML	ВМ	255.38	NM	NA	216.11	39.27	216.67	38.71
35GL	UG	125.32	0.20	NA	77.42	47.90	76.79	48.53
36GL	UG	131.62	0.55	NA	83.94	47.68	83.56	48.06
37MU	UM	178.79	0.36	NA	133.75	45.04	134.04	44.75
37MI	MM	178.76	0.08	NA	133.51	45.25	134.05	44.71
37ML	ВМ	178.81	0.37	NA	133.73	45.08	134.16	44.65
38MU	UM	185.61	0.24	NA	141.18	44.43	141.78	43.83
38MI	MM	187.43	0.33	NA	142.68	44.75	142.41	45.02
38ML	ВМ	187.17	0.63	NA	142.36	44.81	142.99	44.18
39MU	UM	157.93	0.55	NA	112.05	45.88	116.68	41.25
39MI	MM	157.53	0.34	NA	111.49	46.04	116.52	41.01
39ML	ВМ	158.16	0.43	NA	112.14	46.02	113.03	45.13
40MI	MM	130.18	0.09	2.31	76.79	53.39	76.18	54.00

Table 3-1 Synoptic Groundwater Level Measurements Lockheed Martin Corporation Former Unisys Site Great Neck Lake Success, New York

Well ID	Screened Aquifer	Measuring Point Elevation NAVD88 ⁽¹⁾ (feet msl)	Measurement TOR - TOC	Measurement TOR/C - GS	April 19 thru 20, 2021 Depth to Water (feet below MP)	April 19 thru 20, 2021 Water Level Elevation (feet msl)	August 9 thru 10, 2021 Depth to Water (feet below MP)	August 9 thru 10, 2021 Water Level Elevation (feet msl)
41MI	MM	138.61	0.38	NA	82.72	55.89	82.71	55.90
43MU	UM	130.29	0.41	NA NA	90.93	39.36	93.90	36.39
43MI	MM	130.97	0.39	NA NA	91.66	39.31	95.50	35.47
44MU	UM	147.57	NM	NA	101.97	45.60	101.79	45.78
44MI	MM	147.67	NM	NA	102.23	45.44	102.12	45.55
45MU	UM	205.25	NM	NA	166.92	38.33	166.88	38.37
45MI	MM	205.83	NM	NA	167.52	38.31	167.54	38.29
46MI	MM	187.12	0.53	NA	147.83	39.29	149.39	37.73
46ML	ВМ	188.32	0.55	NA	148.90	39.42	150.31	38.01
47MI	MM	191.51	NM	NA	147.74	43.77	147.67	43.84
47ML	ВМ	192.91	NM	NA	148.26	44.65	148.21	44.70
48MI	MM	121.69	0.4	NA	75.02	46.67	74.56	47.13
48ML	ВМ	121.5	0.3	NA	75.72	45.78	75.03	46.47
49MI	MM	125.54	0.62	NA	75.93	49.61	75.31	50.23
49ML	BM	125.62	0.58	NA	76.12	49.50	75.45	50.17
50MI	ММ	133.49	0.29	NA	84.52	48.97	83.98	49.51
50ML	ВМ	132.95	0.4	NA	84.24	48.71	83.68	49.27
51MI	UM	142.03	0.16	2.03	108.68	33.35	111.42	30.61
51ML	ВМ	141.38	0.57	2.33	115.22	26.16	117.78	23.60
52MI	UM	152.38	0.90	NM	120.87	31.51	120.97	31.41
52ML	ВМ	152.93	0.32	NM	121.26	31.67	122.30	30.63
53MI	MM	85.07	0.29	NA	58.36	26.71	59.34	25.73
53ML	ВМ	85.17	0.29	NA	59.16	26.01	63.05	22.12
N3905	UM	126.42	NM	NA	78.83	47.59	78.48	47.94
N4243 (2)	UM	120.39	NM	NA	NM	NM	NM	NM
N5710 (2)	MM/BM	166.19	NM	NA	NM	NM	NM	NM
N10290	UG	153	NM	NA	106.84	46.16	106.69	46.31

Table 3-1 Synoptic Groundwater Level Measurements Lockheed Martin Corporation Former Unisys Site Great Neck Lake Success, New York

Well ID	Screened Aquifer	Measuring Point Elevation NAVD88 ⁽¹⁾ (feet msl)	Measurement TOR - TOC	Measurement TOR/C - GS	April 19 thru 20, 2021 Depth to Water (feet below MP)	April 19 thru 20, 2021 Water Level Elevation (feet msl)	August 9 thru 10, 2021 Depth to Water (feet below MP)	August 9 thru 10, 2021 Water Level Elevation (feet msl)
N1102	UG	181.56	NM	NA	139.32	42.24	140.87	40.69
Q3024D	UG/UM	NM	NM	NA	NM	NM	NM	NM
Q3025D	UM	NM	NM	NA	NM	NM	NM	NM
RW2	UM	125.04	NM	NA	76.45	48.59	75.87	49.17
ERM-MW-1	UG	143.71	NM	NA	97.99	45.72	97.55	46.16
ERM-MW-2	UG	144.04	0.40	NA	97.84	46.20	97.55	46.49
ERM-MW-3	UG	143.72	0.37	NA	98.08	45.64	97.72	46.00
ERM-MW-4	UG	151.88	NM	NA	106.68	45.20	106.58	45.30
ERM-MW-5	UM	185.81	NM	NA	141.64	44.17	141.53	44.28
ERM-MW-6	UM	178.54	NM	NA	133.93	44.61	133.94	44.60
ERM-MW-7	UM	136.90	NM	NA	NM	NM	89.88	47.02
ERM-MW-8	UM	161.03	NM	NA	114.17	46.86	115.06	45.97
DW-11	MM/BM	129.21	0.3	NA	28.96	100.25	24.50	104.71
DW-12	MM/BM	135.92	+ 0.5	NA	32.73	103.19	24.69	111.23
DW-13	MM/BM	121.54	NM	4.46	25.85	95.69	18.23	103.31
DW-14	MM/BM	129.6	0.9	2.70	35.73	93.87	34.00	95.60
DW-100	MM/BM	131.1	5.3	NA	80.77	50.33	41.05	90.05
DW-101	ВМ	126.8	4.0	NA	77.09	49.71	69.52	57.28
DW-102	BM	126.4	2.5	NA	76.74	49.66	35.17	91.23
N-12455 (2-inch PVC)	UG	219.63	NM	NA	180.61	39.02	180.50	39.13
N12450 (4-inch PVC)	UG	219.69	NM	NA	208.74	10.95	217.62	2.07
RW-100	UM/MM	151.2	NM	NA	109.45	41.75	120.00	31.20
RW-1RS	UG/UM	138.33	NM	NA	99.56	38.77	96.69	41.64
RW-1RD	UM/MM	136.75	NM	NA	95.77	40.98	97.84	38.91
RW-3	MM/BM	134.18	NM	NA	92.23	41.95	92.33	41.85
EW-1R	UM	140.22	NM	NA	108.98	31.24	108.90	31.32

Total Number of Wells Measured

129

128

Table 3-1 Synoptic Groundwater Level Measurements Lockheed Martin Corporation Former Unisys Site Great Neck

~			A!1
	Lake Success	, New York	
•	•		
F	ormer Unisys Si	ite Great Neck	

Well ID Screened Aquifer Point Elevation NAVD88 (1) (feet msl) Measurement TOR - TOC TOR/C - GS	April 19 thru 20, 2021 Depth to Water (feet below MP) April 19 thru 20, 2021 Water Level Elevation (feet msl)
---	---

Notes:

MP Measuring point

NAVD 88

North American Vertical Datum of 1988

msl mean sea level
NM not measured
bgs below ground surface

Aquifer Types

UG - Upper Glacial. Screen interval located from approximately land surface to -24 feet relative to msl
UM - Upper portion of the Magothy. Screen interval located from approximately -24 to -113 feet relative to msl

MM - Middle portion of the Magothy. Screen interval located from approximately -113 to -204 feet relative to msl

BM - Basal portion of the Magothy. Screen interval located from approximately -204 to -270 feet relative to msl

(1) MP elevations referenced to Nassau County NAVD 88

(2) well is no longer gauged due to unsafe access conditions

reflects change in measurement point elevation performed by AMEC in January 2015 reflects change in measurement point elevation performed by AMEC in April 2019

reflects change in measurement point elevation performed by AMEC in November 2021

Table 3-2 — Public Water Supply Well Operation Status in GPM During Synoptic Groundwater Level Measurements

Lockheed Martin Corporation Former Unisys Facility Great Neck Lake Success, New York

Wells	April 19 Thru 20, 2021 Synoptic Groundwater Level Measurement Event	August 9 Thru 10, 2021 Synoptic Groundwater Level Measurement Event						
Water Authority of Great Neck North Wells								
Community Drive L	Community Drive Location							
N12999	in service and pumping	in service and pumping						
N13000	in service and pumping	in service and pumping						
N13821	in service and pumping	in service and pumping						
Watermill Lane Loc	ation							
N4388	in service and pumping	in service and pumping						
N12796	in service and pumping	in service and pumping						
Manhassett Lakevil	le Water District Well							
N5099	in service and pumping	in service and pumping						

Table 3-3 **Vertical Hydraulic Gradients** Lockheed Martin Corporation Former Unisys Site, Great Neck Lake Success, New York

	Moscuring Point	Well Screen	April 19 thr	u 20, 2021	August 9 thru 10, 2021		
Well Pairing Identification	Measuring Point Elevation (feet)	Midpoint Elevation (feet)	Groundwater Elevation (feet)	Vertical Gradient	Groundwater Elevation (feet)	Vertical Gradient	
Upper Glacial-Upp	er Magothy						
1GL	141.35	7	47.87	0.00741	47.65	0.00472	
1MI	141.71	-101	47.07	0.00741	47.14	0.00472	
4GL	141.13	5	46.61	0.00360	46.99	0.00610	
4MI 7GL	141.36	-95 10	46.25 45.58		46.38		
7MU	148.55 149.53	-95	45.02	0.00533	45.61 45.00	0.00581	
8GU	121.19	35	52.67		49.93		
8GL	121.21	-20	50.64	0.03691	49.27	0.01200	
16GL	225.32	15	43.26	-0.00477	42.70	-0.00523	
16ML	225.80	-94	43.78	-0.004//	43.27	-0.00525	
23GL	139.22	-5	45.19	0.02254	45.32	0.02365	
23MI	138.22	-68	43.77	0.02231	43.83	0.02303	
24GL	139.22	-4	45.59	0.00967	45.65	0.01049	
24MI 28GL	139.33 135.83	-65 -9	45.00 47.40		45.01 47.04		
28GL 28MI	136.52	-90 -90	47.46 47.46	-0.00074	47.65	-0.00753	
29GL	142.52	-7	46.15		46.23		
29MI	142.50	-69	45.82	0.00532	45.84	0.00629	
33GL	255.21	15	51.71	0.21621	48.53	0.16086	
33MI	255.43	-43	39.17	0.21621	39.20	0.10080	
Upper Magothy-I	Middle Magothy						
1MI	141.71	-101	47.07	-0.01279	47.65	-0.00477	
1M1/L	141.74	-187	48.17	0.01279	48.06	0.00177	
11GL	126.08	-1	48.72	0.00236	49.16	0.00291	
11MI 22GL	126.00 134.94	-111 -27	48.46 46.66		48.84 46.62		
22GL 22ML	134.59	-185	46.61	0.00032	46.43	0.00120	
30GL	139.18	-64	52.30		51.49		
30MI	139.33	-134	52.61	-0.00443	54.30	-0.04014	
31GL	123.43	-66	39.20	0.00401	33.83	0.00770	
31MI	123.98	-120	38.94	0.00481	33.41	0.00778	
37MU	178.79	-67	45.04	-0.00288	44.75	0.00055	
37MI	178.76	-140	45.25	-0.00200	44.71	0.00033	
39MU	157.93	-42	45.88	-0.00150	41.25	0.00224	
39MI 43MU	157.53 130.27	-149 -73	46.04 39.36		41.01 36.39		
43MU 43MI	130.27	-/3 -170	39.36 39.31	0.00052	35.47	0.00948	
44MU	147.57	-70	45.60		45.78		
44MI	147.67	-174	45.44	0.00154	45.55	0.00221	
Middle Magothy-							
1MI/L	141.74	-187	48.17	0.00229	48.01	0.00005	
1ML	141.96	-250	48.02	0.00238	47.95	0.00095	
5MI	129.56	-114.5	47.59	-0.00197	48.34	0.00254	
5ML	128.26	-201	47.76	-0.00177	48.12	0.00237	
12MI	131.79	-114	48.43	-0.00086	48.54	-0.00021	
12ML 30MI	131.84 139.33	-254 -134	48.55 52.61		48.57 54.30		
30MI 30ML	139.33 139.28	-134 -234	52.61 52.54	0.00070	54.30 52.51	0.01790	
37MI	178.76	-234	45.25		44.71		
37ML	178.81	-243	45.08	0.00165	44.65	0.00058	
39MI	157.53	-149	46.04	0.0000	41.01	0.01202	
39ML	158.16	-243	46.02	0.00021	45.13	-0.04383	

Notes:

Vertical elevations referenced to the North American Vertical Datum of 1988 (NAVD 88) For each well pair, Vertical Hydraulic Gradient is calculated as follows:

(Shallow Well GW Elev - Deep Well GW Elev) / (Shallow Well Screen Midpoint Elev - Deep Well Screen Midpoint Elev)

A positive "+" value indicates a downward hydraulic gradient. A negative "-" value indicates an upward hydraulic gradient.

Negative gradients are shaded.

Well Sample Date		1GU 5/11/2021	1GL 5/11/2021	1GL 5/11/2021	1MI 5/12/2021	1MI 11/1/2021	1MI/L 8/11/2021	1ML 5/12/2021	1ML 11/1/2021	2MI 5/19/2021	3GL 5/12/2021
Sample ID	Great Neck	MW-1GU-XX	MW-1GL-XX	MW-500	MW-1MI-XX	MW-1MI-XX	MW-1MI/L-XX	MW-1ML-XX	MW-1ML-XX	MW-2MI-XX	MW-3GL-XX
Laboratory Sample ID	ARARs	460-234681-1	460-234681-2	460-234681-23	460-234681-3	460-246843-1	460-240981-1	460-234681-4	460-246843-2	460-235115-11	460-234681-5
Sample Type		FS	FS	FD	FS	FS	FS	FS	FS	FS	FS
Analytical Method		8260D	8260D	8260D Result Qualifier	8260D	8260D	8260D	8260D	8260D	8260D	8260D
Volatile Organic Compounds (µg/L) 1,1,1,2-Tetrachloroethane	5	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier
1,1,1-Trichloroethane	5	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,1,2,2-Tetrachloroethane	5	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,1,2-Trichloro-1,2,2-Trifluoroethane (Freon 113)	5	0.5 U	0.5 U	0.5 U	1.2	3.8	1.6	3.4	1.3	0.5 U	0.5 U
1,1,2-Trichloroethane	1	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,1-Dichloroethane	5	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,1-Dichloroethene 1.1-Dichloropropene	5 5	0.5 U	0.5 U	0.5 U	0.5 U	0.41 J 	0.5 U	0.4 J	0.5 U	0.5 U	0.5 U
1,2,3-Trichlorobenzene	5			-	_	_	_		_		
1,2,3-Trichloropropane	0.04			-	-	-	-				
1,2,4-Trichlorobenzene	5	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,2,4-Trimethylbenzene	5					-					
1,2-Dibromo-3-chloropropane	0.04	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,2-Dibromoethane 1,2-Dichlorobenzene	0.0006	0.5 U 0.5 U	0.5 U 0.5 U	0.5 U 0.5 U	0.5 U 0.5 U	0.5 U 0.5 U	0.5 U 0.5 U	0.5 U 0.5 U	0.5 U 0.5 U	0.5 U 0.5 U	0.5 U 0.5 U
1,2-Dichloroethane	3 0.6	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1.2-Dichloropropane	1	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,3,5-Trimethylbenzene	5	-			-	-	-	-	-		
1,3-Dichlorobenzene	3	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,3-Dichloropropane	5					-					
1,4-Dichlorobenzene	3	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,4-Dioxane 2.2-Dichloropropane	1	0.2 UJ	0.2 UJ	0.2 UJ	0.2 UJ	_	_	0.2 U		0.2 U	0.2 U
2,2-Dichloro-1,1,1-trifluoroethane (Freon 123)	5	1 U	 1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	 1 U
2-Butanone		2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U
2-Chlorotoluene	5				-	-	-				
2-Hexanone		2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U
4-Chlorotoluene	5					-					
4-iso-Propyltoluene 4-Methyl-2-pentanone	5	 25 U	 25 U	 25 U	 25 U	 25 U	 25U	25 U	25 U	25 U	25 U
Acetic acid, methyl ester		2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U
Acetone		5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U
Benzene	1	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Bromobenzene	5					-					
Bromochloromethane	5		-	-	-	-	-				
Bromodichloromethane		0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Bromoform Bromomethane	5	0.5 U 0.5 U	0.5 U 0.5 U	0.5 U 0.5 U	0.5 U 0.5 U	0.5 U 0.5 U	0.5 U 0.5 U	0.5 U 0.5 U	0.5 U 0.5 U	0.5 U 0.5 UJ	0.5 U 0.5 U
Carbon disulfide		0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Carbon tetrachloride	5	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Chlorobenzene	5	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Chlorodifluoromethane (Freon 22)		1 U	1 U	1 U	1.1	2.3	1.3	2.2	1.4	1 U	1 U
Chloropentafluoroethane (Freon 115)		5 U	5 U	5 U	5 U	5 UJ	5 U	5 U	5 UJ	5 U	5 U
Chloroform Chloroform	5 7	0.5 U	0.5 U 0.5 U	0.5 U 0.5 U	0.5 U 0.5 U	0.5 U	0.5 U	0.5 U 0.5 U	0.5 U 0.5 U	0.5 U 0.5 U	0.5 U 0.5 U
Chloromethane	5	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
cis-1,2-Dichloroethene	5	0.5 U	0.5 U	0.5 U	14	18	5.7	17	15	1.9	0.31 J
cis-1,3-Dichloropropene	0.4	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Cyclohexane		0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Dibromochloromethane	-	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Dibromomethane Dichlorodifluoromethane	5 5	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	 0.5 U	 0.5 U	0.5 U	0.5 U
Difluoroethane (Freon 152a)	5	0.5 U	0.5 U 1 U	0.5 U 1 U	0.5 U 1 U	0.5 U 1 U	0.5 U 1 U	0.5 U	0.5 U 1 U	0.5 U 1 U	0.5 U 1 U
Ethylbenzene	5	0.5 U	0.5 U	0.5 U	0.88	0.5 U	0.5 U	0.51	0.5 U	0.5 U	0.5 U
Hexachlorobutadiene	0.5	- '		- '		-	-	-	- '	-	-
Isopropylbenzene	5	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Methyl cyclohexane	-	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Methyl Tertbutyl Ether		0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Methylene chloride	5 5	0.5 U 	0.5 U	0.5 U	0.5 U	0.5 U 	0.5 U	0.5 U	0.5 U	0.5 U 	0.5 U
Propylbenzene sec-Butylbenzene	5										
Styrene	5	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
tert-Butylbenzene	5	-	-	-	-	-	-	-	-		-
Tetrachloroethene	5	0.5 U	0.5 U	0.5 U	4.7	18	18	9.5	12	9.3	0.5 U
Toluene	5	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
trans-1,2-Dichloroethene trans-1,3-Dichloropropene	5	0.5 U	0.5 U 0.5 U	0.5 U 0.5 U	0.5 U	0.45 J 0.5 U	0.5 U 0.5 U	0.31 J 0.5 U	0.5 U 0.5 U	0.5 U 0.5 U	0.5 U 0.5 U
trans-1,3-Dichloropropene Trichloroethene	0.4 5	0.5 U 0.59	0.5 U 0.53	0.5 U 0.47 J	0.5 U 5	0.5 U 14	0.5 U 7.2	0.5 U	0.5 U 8.5	0.5 U 1.5	0.5 U 0.5 U
Trichlorofluoromethane (Freon 11)	5	0.59 0.5 U	0.53 0.5 U	0.47 J 0.5 U	0.5 U	0.5 U	7.2 0.5 U	0.5 U	0.5 U	1.5 0.5 U	0.5 U
Vinyl chloride	2	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Xylene, o	5	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Xylenes (m&p)	5	0.5 U	0.5 U	0.5 U	0.43 J	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Xylenes, Total	5	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Calculated Total VOC Detections		0.59 J	0.53 J	0.47 J	27 J	57 J	34	44 J	38 J	13 J	0.31 J

Well Sample Date		3GL 11/1/2021	3ML 5/19/2021	3ML 11/1/2021	4GL 8/10/2021	4MI 8/10/2021	4MI 8/10/2021	6GL 5/13/2021	6MI 5/13/2021	7GL 5/13/2021	7GL 5/13/2021
	Great Neck	MW-3GL-XX	MW-3ML-XX	MW-3ML-XX	MW-4GL-XX	MW-4MI-XX	MW-500	MW-6GL-XX	MW-6MI-XX	MW-7GL-XX	MW-501
Laboratory Sample ID		460-246843-3	460-235115-12	460-246843-4	460-240981-2	460-240981-3	460-240981-25	460-234681-6	460-234681-7	460-234681-8	460-234681-24
Sample Type		FS	FS	FS	FS	FS	FD	FS	FS	FS	FD
Analytical Method		8260D	8260D	8260D	8260D	8260D	8260D	8260D	8260D	8260D	8260D
Volatile Organic Compounds (µg/L)		Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier
1,1,1,2-Tetrachloroethane 1,1,1-Trichloroethane	5 5	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1.1.2.2-Tetrachloroethane	5	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,1,2-Trichloro-1,2,2-Trifluoroethane (Freon 113)	5	0.5 U	4.1	5	0.5 U	0.54	0.46 J	0.5 U	0.5 U	0.5 U	0.5 U
1,1,2-Trichloroethane	1	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,1-Dichloroethane	5	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,1-Dichloroethene	5	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,1-Dichloropropene	5				-	-	-	-	-	-	-
1,2,3-Trichlorobenzene	5		-		-	-	-	-			-
1,2,3-Trichloropropane	0.04		0.5 U	0.5 U	0.5.11	0.5.11	0.511	0.511		0.5 U	 0.5 U
1,2,4-Trichlorobenzene 1,2,4-Trimethylbenzene	5 5	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 0	0.5 U
1.2-Dibromo-3-chloropropane	0.04	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,2-Dibromoethane	0.0006	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,2-Dichlorobenzene	3	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,2-Dichloroethane	0.6	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,2-Dichloropropane	1	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,3,5-Trimethylbenzene	5		-								
1,3-Dichlorobenzene	3	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,3-Dichloropropane 1,4-Dichloropenzene	5	 0.5 U	0.5 U	 0.5 U	 0.5 U	 0.5 U	 0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,4-Dicniorobenzene 1.4-Dioxane	3 1	U.S U	0.5 U 0.2 U	U.S U	U.U U	U.S U	U.U U	0.5 U 0.2 U	0.5 U 0.2 U	0.5 U 0.2 U	0.5 U 0.2 U
2.2-Dichloropropane	5			-	_	-	_			0.2 0	0.2 0
2,2-Dichloro-1,1,1-trifluoroethane (Freon 123)		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
2-Butanone		2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U
2-Chlorotoluene	5										
2-Hexanone		2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U
4-Chlorotoluene	5										
4-iso-Propyltoluene 4-Methyl-2-pentanone	5		 25 U	25 U	 25 U	-	25 U	25 U		25 U	 25 U
Acetic acid, methyl ester	-	2.5 U 2.5 U	2.5 U	2.5 U	2.5 U	2.5 U 2.5 U	2.5 U 2.5 U	2.5 U	2.5 U 2.5 U	2.5 U	2.5 U
Acetone		5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U
Benzene	1	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Bromobenzene	5			-	-	-					
Bromochloromethane	5		-		-	-					-
Bromodichloromethane		0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Bromoform		0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Bromomethane	5	0.5 U	0.5 UJ	0.5 U	0.5 U	0.5 U	0.5 U				
Carbon disulfide Carbon tetrachloride	5	0.5 U 0.5 U	0.5 U 0.5 U	0.5 U 0.5 U	0.5 U 0.5 U	0.5 U 0.5 U	0.5 U 0.5 U	0.5 U 0.5 U	0.5 U 0.5 U	0.5 U 0.5 U	0.5 U 0.5 U
Chlorobenzene	5	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Chlorodifluoromethane (Freon 22)	_	1 U	1 U	0.78 J	1 U	1 U	1 U	1 U	1 U	1.1	1
Chloropentafluoroethane (Freon 115)		5 UJ	5 U	5 UJ	5 U	5 U	5 U	5 U	5 U	5 U	5 U
Chloroethane	5	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Chloroform	7	0.5 U	0.36 J	0.36 J	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Chloromethane	5	0.5 U	0.5 U	0.5 U	0.5 U	0.5 UJ	0.75 J	0.5 U	0.5 U	0.5 U	0.5 U
cis-1,2-Dichloroethene	5	0.28 J 0.5 U	54 0.5 U	52	0.85 0.5 U	3.9 0.5 U	4.8 0.5 U	5.2 0.5 U	0.5 U 0.5 U	2.2 0.5 U	2 0.5 U
cis-1,3-Dichloropropene Cyclohexane	0.4	0.5 U 0.5 U	0.5 U 0.5 U	0.5 U 0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Dibromochloromethane		0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Dibromomethane	5					-	-	-			
Dichlorodifluoromethane	5	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Difluoroethane (Freon 152a)		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Ethylbenzene	5	0.5 U	0.42 J	0.5 U	0.5 U	0.5 U	0.5 U				
Hexachlorobutadiene	0.5		-		-			-	-		
Isopropylbenzene	5	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Methyl cyclohexane Methyl Tertbutyl Ether	-	0.5 U 0.5 U	0.5 U 0.5 U	0.5 U 0.5 U	0.5 U 0.5 U	0.5 U 0.5 U	0.5 U 0.5 U	0.5 U 0.5 U	0.5 U 0.5 U	0.5 U	0.5 U 0.5 U
Methyl Tertbutyl Ether Methylene chloride	5	0.5 U	0.5 U	0.5 U 0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Propylbenzene	5	0.5 0				0.5 0				0.5 0	0.5 0
sec-Butylbenzene	5						-		-		
Styrene	5	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
tert-Butylbenzene	5							-			
Tetrachloroethene	5	0.5 U	6.5	9.2	0.77	1.3	1.6	0.5 U	0.5 U	0.71	0.83
Toluene	5	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
trans-1,2-Dichloroethene	5	0.5 U 0.5 U	0.62 0.5 U	0.62 0.5 U	0.5 U 0.5 U	0.5 U 0.5 U	0.5 U 0.5 U	0.5 U 0.5 U	0.5 U 0.5 U	0.5 U	0.5 U 0.5 U
trans-1,3-Dichloropropene Trichloroethene	0.4 5	0.5 U 0.5 U	0.5 U 16	0.5 U 18	0.5 U 0.94	0.5 U 1.4	0.5 U 1.8	0.5 U 0.61	0.5 U 0.5 U	0.5 U 1.1	0.5 U 1.1
Trichlorofluoromethane (Freon 11)	5	0.5 U	16 0.5 U	18 0.5 U	0.94 0.5 U	1.4 0.5 U	1.8 0.5 U	0.61 0.5 U	0.5 U	1.1 0.5 U	1.1 0.5 U
Vinyl chloride	2	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Xylene, o	5	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Xylenes (m&p)	5	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Xylenes, Total	5	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Calculated Total VOC Detections		0.28 J	82 J	86 J	2.6	7.1 J	9.4 J	5.8	0.00 U	5.1	4.9
Calculated Total COC Detections		0.28 J	81	84	2.6	7.1	8.7 J	5.8	0.00 U	4.0	3.9

Company	Well Sample Date Sample ID Laboratory Sample ID	Great Neck ARARs	7ML 5/13/2021 MW-7ML-XX 460-234681-9	8GU 8/11/2021 MW-8GU-XX 460-240981-4	8GL 8/11/2021 MW-8GL-XX 460-240981-5	8ML 8/11/2021 MW-8ML-XX 460-240981-6	10GL 8/11/2021 MW-10GL-XX 460-240981-7	14MI 8/12/2021 MW-14MI-XX 460-240981-8	15GL 8/11/2021 MW-15GL-XX 460-240981-9	15ML 8/11/2021 MW-15ML-XX 460-240981-10	16GL 8/23/2021 MW-16GL-XX 460-241789-4	16ML 8/12/2021 MW-16ML-XX 460-240981-11
10.12-10-broschoemen	Sample Type Analytical Method		FS 8260D	FS 8260D	FS 8260D	FS 8260D	FS 8260D	FS 8260D	FS 8260D	FS 8260D	FS 8260D	FS 8260D
1.51-75-75-05-05-05-05-05-05-05-05-05-05-05-05-05	Volatile Organic Compounds (µg/L)			Result Qualifier		Result Qualifier		Result Qualifier	Result Qualifier			Result Qualifier
11.23-Fine-inspectation 5					-	-	-					
1.5.2 Telemontheme												
1.52-Trient/percentage			0.0 0						0.0 0			0.0 0
1.0.0Endomenheme			0.5 U	0.5 U	0.5 U			0.5 U		0.5 U	0.5 U	
1.5.0Erioropepene												
1.3.2-Teichenbergener 0.04				0.39 J		0.5 U	0.51			0.5 U		
1.3.2-Trientemproprieme	.,					-	-					
1,54-Principriopersonemen	* **					_	_					
1.4. Friend-phenomen 5			0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U				
1.20-Decondementer		5			-	-						-
13-Delistochemome												
1.5.Delicrocombane												
1.5.Prientoprepareme												
1.3.5 Times/plemeners S												
1.5.Peint-orderentere					-	-	-	-				
1.4-Discherberere	1,3-Dichlorobenzene	3	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U				
1			-		-	-	-					
22-Dichoropropries 5												
22-Delichoro-1,1-felimoro-ethane (Preon 12)			0.38									
2 Salumone			111			-						-
2-Chroendebane												
Achientoplacemen	2-Chlorotoluene			_	_		_					_
Asso-Proprietures			2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U				
Abeliny-Spentanene				-	-	-	-					-
Acation and function											.=	.=
Acetone												
Benzene												
Bomochborzene												
Bomordormane	Bromobenzene	5	-	-	_	-	-		-			-
Bomone/stane		5										
Seconombane												
Carbon disulfide												
Carbon tetrachioride												
Coloroberance		5										
Chicopenhallucorethane (Freen 115)		5				0.5 U					0.5 U	0.5 U
Chloredrame		-										
Chloroform		- '										
Chloromethane												
cis-1,2-Dichloroethene 5 300 0.5 U 14 6.2 0.5 U 0.48 J 0.34 J 1.2 0.43 J 230 cis-1,3-Dichloropropene 0.4 0.5 U 0												
Cast 1-3-Dichloropropone O.4												
Discrimentation Discriment												
Discrimentation												
Dichlorodiflucromethane			0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U				
Diffuscree September Diffuscree Diffusor Diff			0.511	0.5.11	0.5.11	- 0.5.11		0.511	0.511	0.511	0.511	0.5.11
Ehylbenzene		-										
Hexachlorobtradiene												
Methy (cyclohexane 0.5 U												
Methyl Terbudyl Ether 0.5 U 0.5 U <td>Isopropylbenzene</td> <td>5</td> <td>0.5 U</td>	Isopropylbenzene	5	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U				
Methylene cholde 5 0.5 U												
Propylebrazene 5												
Sec-Butylbenzene 5												
Syrene					-		_	-	_		-	
Infinite			0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U				
Tetrachioreethene						-	-	-				
trans-12-Dichloroethene 5 3.3 0.5 U	Tetrachloroethene	5										
trans-1-3-Dichloropropene 0.4 0.5 U 0.5												
Trichlororbethen 5 89 0.8 11 3.3 0.79 0.37 J 0.5 U 0.67 0.5 U 48 Trichlororbethene (Freon 11) 5 0.39 J 0.5 U												
Trichlorofluoromethane (Freen 11) 5 0.39 J 0.5 U <												
Vinylichloride 2 0.5 U 0												
Xylene, o 5												
Xylenes, Total 5 1U							0.5 U	0.5 U				
Calculated Total VOC Detections 454 J 1.9 J 42 J 23 J 2.7 1.1 J 0.60 J 5.5 J+ 0.43 J 435 J												
Calculated rotal VOC Detections 454 J 1.9 J 42 J 23 J 2.7 1.1 J 0.60 J 5.5 J+ 0.43 J 435 J												
Calculated Total COC Detections 445 1.5 36 21 2.2 1.1 J 0.60 J 4.3 0.43 J 309	Calculated Total COC Detections											

Well Sample Date Sample ID Laboratory Sample ID Sample Type	Great Neck ARARs	17GL 5/13/2021 MW-17GL-XX 460-234681-10	17ML 5/13/2021 MW-17ML-XX 460-234681-11	17ML 11/1/2021 MW-17ML-XX 460-246843-5	18GL 8/13/2021 MW-18GL-XX 460-240981-12	18ML 8/13/2021 MW-18ML-XX 460-240981-13	22GL 5/13/2021 MW-22GL-XX 460-234681-12	22ML 5/13/2021 MW-22ML-XX 460-234681-13	22ML 11/1/2021 MW-22ML-XX 460-246843-6	24GL 8/11/2021 MW-24GL-XX 460-240981-14	27MI 8/16/2021 MW-27MI-XX 460-241354-1
Analytical Method		8260D	8260D	8260D	8260D	8260D	8260D	8260D	8260D	8260D	8260D
Volatile Organic Compounds (µg/L)		Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier
1,1,2-Tetrachloroethane	5			-	-		-				
1,1,1-Trichloroethane	5 5	0.5 U 0.5 U	0.5 U 0.5 U	0.5 U 0.5 U	0.5 U 0.5 U	0.5 U 0.5 U	0.5 U 0.5 U	0.5 U	0.5 U 0.5 U	0.5 U 0.5 U	0.5 U
1,1,2-Trichloro-1,2,2-Trifluoroethane (Freon 113)	5	2.2	2.9	2	0.5 U	0.93	0.5 U	0.5 U	0.5 U	0.5 U	2.3
1,1,2-Trichloroethane	1	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,1-Dichloroethane	5	0.3 J	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,1-Dichloroethene	5	1.1	0.62	0.68	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.9
1,1-Dichloropropene	5				-	-	-				-
1,2,3-Trichlorobenzene 1,2,3-Trichloropropane	5 0.04	-	-	-	-	-	-	-	-	-	-
1,2,4-Trichlorobenzene	5	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,2,4-Trimethylbenzene	5			-	-	-					-
1,2-Dibromo-3-chloropropane	0.04	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,2-Dibromoethane	0.0006	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,2-Dichlorobenzene	3	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,2-Dichloroethane 1.2-Dichloropropane	0.6	0.5 U 0.5 U	0.5 U 0.5 U	0.5 U 0.5 U	0.5 U 0.5 U	0.5 U 0.5 U	0.5 U 0.5 U	0.5 U 0.5 U	0.5 U 0.5 U	0.5 U 0.5 U	0.5 U 0.5 U
1,3,5-Trimethylbenzene	1 5	0.5 0	0.5 0	0.5 0	0.5 0	0.5 0	0.5 0	0.5 0	0.5 0	0.5 0	0.5 0
1,3-Dichlorobenzene	3	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,3-Dichloropropane	5	- '	-	- '	- "	- '	- '	- "	- "	-	'
1,4-Dichlorobenzene	3	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,4-Dioxane	1	0.2 U	0.2 U	-	-	-	0.2 U	0.2 U			-
2,2-Dichloropropane 2,2-Dichloro-1,1,1-trifluoroethane (Freon 123)	5	 1 U	 1 U	 1 U	 1 U	 1 U	 1 U	 1 U	 1 U	 1 U	 1 U
2,2-Dichloro-1,1,1-trifluoroethane (Freon 123) 2-Butanone		1 U 2.5 U	1 U 2.5 U	1 U 2.5 U	2.5 U	1 U 2.5 U	1 U 2.5 U	1 U 2.5 U	2.5 U	2.5 U	1 U 2.5 U
2-Chlorotoluene	5	2.5 0									
2-Hexanone		2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U
4-Chlorotoluene	5			-	-	-					-
4-iso-Propyltoluene	5				-						-
4-Methyl-2-pentanone		2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U
Acetic acid, methyl ester Acetone		2.5 U 5 U	2.5 U 5 U	2.5 U 5 U	2.5 U 5 U	2.5 U 5 U	2.5 U 5 U	2.5 U 6.3	2.5 U 5 U	2.5 U 5 U	2.5 U 5 U
Benzene	1	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Bromobenzene	5										-
Bromochloromethane	5										-
Bromodichloromethane		0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Bromoform	-	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Bromomethane Carbon disulfide	5	0.5 U 0.5 U	0.5 U 0.5 U	0.5 U 0.5 U	0.5 U 0.5 U	0.5 U 0.5 U	0.5 U 0.5 U	0.5 U 0.5 U	0.5 U 0.5 U	0.5 U 0.5 U	0.5 U
Carbon distillide Carbon tetrachloride	5	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Chlorobenzene	5	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Chlorodifluoromethane (Freon 22)	_	4.2	2.9	3	4.5	1 U	1 U	1 U	1 U	0.67 J	6.2
Chloropentafluoroethane (Freon 115)		5 U	5 U	5 UJ	5 U	5 U	5 U	5 U	5 UJ	5 U	5 U
Chloroethane	5	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Chloroform	7	0.5 U 0.5 U	0.5 U 0.5 U	0.5 U 0.5 U	0.88 0.5 U	0.5 U 0.5 U	0.5 U 0.5 U	0.5 U 0.5 U	0.5 U 0.5 U	0.41 J 0.5 U	0.69 0.5 U
Chloromethane cis-1,2-Dichloroethene	5 5	0.5 U	0.5 U	0.5 U	0.5 U 3.3	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U 0.47 J	0.5 U
cis-1,3-Dichloropenee	0.4	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.47 J	0.5 U
Cyclohexane		0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Dibromochloromethane		0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Dibromomethane	5	-	-	. .	<u></u>		.=	.=			
Dichlorodifluoromethane Difluoroethane (Freon 152a)	5	0.5 U	0.5 U	0.5 U 1 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U 1 U	0.5 U 1 U	0.5 U 1 U
Diffuoroethane (Freon 152a) Ethylbenzene	 5	1 U 0.5 U	1 U 0.66	1 U 0.5 U	1 U 0.5 U	1 U 0.5 U	1 U 0.5 U	1 U 0.58	1 U 0.5 U	1 U 0.5 U	1 U 0.5 U
Hexachlorobutadiene	0.5										
Isopropylbenzene	5	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Methyl cyclohexane	-	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Methyl Tertbutyl Ether		0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.37 J
Methylene chloride	5	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Propylbenzene	5 5	-	-	-		-	-	-	-	-	-
sec-Butylbenzene Styrene	5	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
tert-Butylbenzene	5										
Tetrachloroethene	5	8.1	12	8	1.7	3.4	0.5 U	0.5 U	0.5 U	0.86	11
Toluene	5	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
trans-1,2-Dichloroethene	5	0.26 J	0.28 J	0.24 J	0.33 J	0.61	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
trans-1,3-Dichloropropene	0.4	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Trichloroethene Trichlorofluoromethane (Freon 11)	5 5	11 0.5 U	13 0.5 U	13 0.5 U	1.7 0.5 U	7.7 0.5 U	0.5 U 0.5 U	0.5 U 0.5 U	0.5 U 0.5 U	1.3 0.5 U	8.7 0.5 U
Vinyl chloride	2	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Xylene, o	5	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Xylenes (m&p)	5	0.5 U	0.32 J	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Xylenes, Total	5	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Calculated Total VOC Detections		48 J	55 J	49 J	12 J	48	0.00 U	6.9	0.00 UJ	3.7 J	41
Calculated Total COC Detections		42	50	45	6.7	47	0.00 U	0.00 U	0.00 U	2.6 J	33

Well Sample Davi Sample ID Laboratory Sample ID Sample Type	Great Neck	28GL 8/13/2021 MW-28GL-XX 460-240981-15 FS	28MI 8/13/2021 MW-28MI-XX 460-240981-16 FS	29GL 5/14/2021 MW-29GL-XX 460-234681-14 FS	29MI 5/19/2021 MW-29MI-XX 460-235115-13 FS	29MI 11/2/2021 MW-29MI-XX 460-246843-7 FS	31GL 1/27/2021 MW-31GL-XX 460-227520-1 FS	31GL 5/14/2021 MW-31GL-XX 460-234681-15 FS	31GL 8/16/2021 MW-31GL-XX 460-241354-2 FS	31GL 11/2/2021 MW-31GL-XX 460-246843-8 FS	31MI 1/27/202 MW-31MI- 460-22752 FS
Analytical Method		8260D	8260D	8260D	8260D	8260D	8260D	8260D	8260D	8260D	8260D
Volatile Organic Compounds (µg/L)		Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier	Result Qu
1,1,1,2-Tetrachloroethane	5				-	-	-				
1,1,1-Trichloroethane	5	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 UJ	0.5 U	0.5 U	0.5 U	0.5 U
1,1,2,2-Tetrachloroethane	5	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 UJ	0.5 U	0.5 U	0.5 U	0.5 U
1,1,2-Trichloro-1,2,2-Trifluoroethane (Freon 113)	5	4	3.4	1.3	14	11	5.7 J	6.3	4	2.9	10
1,1,2-Trichloroethane	1	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 UJ	0.5 U	0.5 U	0.5 U	0.5 U
1,1-Dichloroethane	5	0.5 U	0.5 U	0.5 U	0.47 J	0.29 J	0.5 UJ	0.5 U	0.5 U	0.5 U	0.38 J
1,1-Dichloroethene	5	0.8	0.37 J	0.5 U	1.7	1.1	0.5 UJ	0.36 J	0.5 U	0.5 U	0.61
1,1-Dichloropropene	5		0.07 0	-	-	-		0.000	0.0 0	0.0 0	0.01
1,2,3-Trichlorobenzene	5			_	_	_					-
			-	_	_	_		-		-	
1,2,3-Trichloropropane	0.04										
1,2,4-Trichlorobenzene	5	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 UJ	0.5 U	0.5 U	0.5 U	0.5 U
1,2,4-Trimethylbenzene	5		-	-	-	-					-
1,2-Dibromo-3-chloropropane	0.04	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 UJ	0.5 U	0.5 U	0.5 U	0.5 U
1,2-Dibromoethane	0.0006	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 UJ	0.5 U	0.5 U	0.5 U	0.5 U
1,2-Dichlorobenzene	3	0.5 U	0.5 U	0.5 U	0.57	0.5 U	0.5 UJ	0.5 U	0.5 U	0.5 U	0.5 U
1,2-Dichloroethane	0.6	0.5 U	0.5 U	0.5 U	0.46 J	0.5 U	0.5 UJ	0.5 U	0.5 U	0.5 U	0.66
1,2-Dichloropropane	1	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 UJ	0.5 U	0.5 U	0.5 U	0.5 U
1,3,5-Trimethylbenzene	5				_	_					-
1,3-Dichlorobenzene	3	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 UJ	0.5 U	0.5 U	0.5 U	0.5 U
1,3-Dichloropropane	5										
1,4-Dichlorobenzene	3	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 UJ	0.5 U	0.5 U	0.5 U	0.5 U
1,4-Dioxane	1	0.5 0	0.5 0	0.5 U	0.47 J	0.5 0	0.5 05	0.5 U		0.5 0	0.50
1,4-Dioxane 2.2-Dichloropropane			-			_	_		-		_
	5			4.11							
2,2-Dichloro-1,1,1-trifluoroethane (Freon 123)		1 U	1 U	1 U	1 U	1 U	1 UJ	1 U	1 U	1 U	1 U
2-Butanone		2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 UJ	2.5 U	2.5 U	2.5 U	2.5 U
2-Chlorotoluene	5	-	-	-	-	-	-	-	-	-	-
2-Hexanone		2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 UJ	2.5 U	2.5 U	2.5 U	2.5 U
4-Chlorotoluene	5	-	-	-	-					-	-
4-iso-Propyltoluene	5	-	-	-						-	_
4-Methyl-2-pentanone		2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 UJ	2.5 U	2.5 U	2.5 U	2.5 U
Acetic acid, methyl ester		2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U.I	2.5 U	2.5 U	2.5 U	2.5 U
Acetone		5 U	5 U	5 U	5 U	5 U	5 UJ	5 U	5 U	5 U	5.2
Benzene	1	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 UJ	0.5 U	0.5 U	0.5 U	0.5 U
Bromobenzene	5	-	-	-	-						
Bromochloromethane	5				-						
Bromodichloromethane		0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 UJ	0.5 U	0.5 U	0.5 U	0.5 U
Bromoform		0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 UJ	0.5 U	0.5 U	0.5 U	0.5 U
Bromomethane	5	0.5 U	0.5 U	0.5 U	0.5 UJ	0.5 U	0.5 UJ	0.5 U	0.5 U	0.5 U	0.5 U
Carbon disulfide		0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 UJ	0.5 U	0.5 U	0.5 U	0.5 U
Carbon tetrachloride	5	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 UJ	0.5 U	0.5 U	0.5 U	0.5 U
Chlorobenzene	5	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 UJ	0.5 U	0.5 U	0.5 U	0.5 U
Chlorodifluoromethane (Freon 22)		1 U	1 U	1 U	1 U	1 U	1.5 J	1.7	1.8	1.1	3.2
Chloropentafluoroethane (Freon 115)	-	5 U	5 U	5 U	5 U	5 UJ	4 UJ	5 U	5 U	5 UJ	4 U
Chloroethane	5	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 UJ	0.5 U	0.5 U	0.5 U	0.5 U
Chloroform	7	0.5 U	0.5 U	0.57	0.5 U	0.39 J	0.42 J	0.43 J	0.5 U	0.5 U	0.61
Chloromethane	5	0.5 U	0.5 U	0.57 0.5 U	0.5 U	0.39 J	0.42 J 0.5 UJ	0.43 J	0.5 U	0.5 U	0.61 0.5 U
cis-1,2-Dichloroethene	5	58	130	24	410	350	140 J	150	100	66 J-	270
cis-1,3-Dichloropropene	0.4	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 UJ	0.5 U	0.5 U	0.5 U	0.5 U
Cyclohexane		0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 UJ	0.5 U	0.5 U	0.5 U	0.5 U
Dibromochloromethane		0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 UJ	0.5 U	0.5 U	0.5 U	0.5 U
Dibromomethane	5				-	-	-	-	-		
Dichlorodifluoromethane	5	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 UJ	0.5 U	0.5 U	0.5 U	0.5 U
Difluoroethane (Freon 152a)	-	1 U	1 U	1 U	1 U	1 U	1 UJ	1 U	1 U	1 U	1 U
Ethylbenzene	5	0.5 U	0.5 U	0.5 U	0.35 J	0.5 U	0.5 UJ	0.5 U	0.5 U	0.5 U	0.5 U
Hexachlorobutadiene	0.5	0.5 0									0.5 0
Isopropylbenzene	5	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 UJ	0.5 U	0.5 U	0.5 U	0.5 U
Methyl cyclohexane	5	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 UJ	0.5 U	0.5 U	0.5 U	0.5 U
		0.5 U									
Methyl Tertbutyl Ether			0.5 U	0.5 U	0.5 U	0.5 U	0.5 UJ	0.5 U	0.5 U	0.5 U	0.5 U
Methylene chloride	5	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 UJ	0.5 U	0.5 U	0.5 U	0.5 U
Propylbenzene	5					-	-	-	-		
sec-Butylbenzene	5	-		-	-	-	-	-			
Styrene	5	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 UJ	0.5 U	0.5 U	0.5 U	0.5 U
tert-Butylbenzene	5					-	-	-			
Tetrachloroethene	5	3.2	13	1.4	3	3.2	19 J	18	9.4	8.4	27
Toluene	5	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 UJ	0.5 U	0.5 U	0.5 U	0.5 U
trans-1,2-Dichloroethene	5	0.5 U	0.37 J	0.25 J	0.89	0.76	0.51 J	1.1	0.7	0.29 J	0.8
trans-1 3-Dichloropropene	0.4	0.5 U	0.57.5	0.25 J	0.65 0.5 U	0.76 0.5 U	0.51 J	0.5 U	0.7 0.5 U	0.25 J	0.5 U
Trichloroethene	5	5.4	11	5.6	4.5	6.5	34 J	36 J-	22	17	54
Trichlorofluoromethane (Freon 11)	5	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 UJ	0.5 U	0.5 U	0.5 U	0.5 U
Vinyl chloride	2	9	0.5 U	0.5 U	54	29	0.5 UJ	0.5 U	0.5 U	0.5 U	0.5 U
Xylene, o	5	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 UJ	0.5 U	0.5 U	0.5 U	0.5 U
Xylenes (m&p)	5	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 UJ	0.5 U	0.5 U	0.5 U	0.5 U
Xylenes, Total	5	1 U	1 U	1 U	1 U	1 U	1 UJ	1 U	1 U	1 U	1 U
			158 J	33 J	490 J	402 J	201 J	214 J-	138	96 J-	372 J
Calculated Total VOC Detections		80									

Well Sample Date Sample ID Laboratory Sample ID Sample Type	Great Neck ARARs	31MI 5/14/2021 MW-31MI-XX 460-234681-16 FS	31MI 8/16/2021 MW-31MI-XX 460-241354-3 FS	31MI 11/2/2021 MW-31MI-XX 460-246843-9 FS	31ML 1/27/2021 MW-31ML-XX 460-227520-3 FS	31ML 5/14/2021 MW-31ML-XX 460-234681-17 FS	31ML 8/16/2021 MW-31ML-XX 460-241354-4 FS	31ML 11/2/2021 MW-31ML-XX 460-246843-10 FS	33GL 11/3/2021 MW-33GL-XX 460-246843-11 FS	33MI 11/9/2021 MW-33MI-XX 460-247256-11 FS	33ML 11/3/202 MW-33ML- 460-24684 FS
Analytical Method		8260D	8260D	8260D	8260D	8260D	8260D	8260D	8260D	8260D	8260D
Volatile Organic Compounds (µg/L)		Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier	Result Qua
1,1,1,2-Tetrachloroethane	5	-		-	-	-	-				
1,1,1-Trichloroethane	5	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,1,2,2-Tetrachloroethane	5	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,1,2-Trichloro-1,2,2-Trifluoroethane (Freon 113)	5	17	18	17	6.7	3.8	6.8	7.2	0.5 U	0.5 U	0.5 U
1,1,2-Trichloroethane	1	0.26 J	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1.1-Dichloroethane	5	0.26 3	0.57	0.45 J	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,1-Dichloroethene	5	0.86	1	1	0.42 J	0.5 U	0.58	0.5	0.5 U	0.5 U	0.5 U
1,1-Dichloropropene	5				-	-	-				
1,2,3-Trichlorobenzene	5				-	-	-				
1,2,3-Trichloropropane	0.04			-	-	-				-	-
1,2,4-Trichlorobenzene	5	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,2,4-Trimethylbenzene	5			-	-	-					-
1,2-Dibromo-3-chloropropane	0.04	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,2-Dibromoethane	0.0006	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,2-Dichlorobenzene	3	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1.2-Dichloroethane	0.6	0.86	0.86	0.79	0.5 U	0.5 U	0.52	0.52	0.5 U	0.5 U	0.5 U
1,2-Dichloropropane	1	0.38 J	0.42 J	0.35 J	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
		U.30 J	U.42 J	U.35 J	0.5 U	0.5 U	U.5 U	U.U U	U.5 U	U.U U	U.5 U
1,3,5-Trimethylbenzene	5										
1,3-Dichlorobenzene	3	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,3-Dichloropropane	5				-	-					-
1,4-Dichlorobenzene	3	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,4-Dioxane	1	0.18 J	-	-	-	0.2 U			U	U	U
2,2-Dichloropropane	5		-	-	-	-					-
2,2-Dichloro-1,1,1-trifluoroethane (Freon 123)		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
2-Butanone		2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U
2-Chlorotoluene	5			_							_
2-Hexanone		2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U
4-Chlorotoluene		2.5 0	2.50	2.5 0	2.50	2.50	2.5 0	2.50	2.5 0	2.5 0	2.5 0
	5		-	-	_	-		-			
4-iso-Propyltoluene	5	-	-							-	-
4-Methyl-2-pentanone		2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U
Acetic acid, methyl ester		2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U
Acetone		5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U
Benzene	1	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Bromobenzene	5										
Bromochloromethane	5										
Bromodichloromethane	_	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Bromoform		0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Bromomethane	5	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Carbon disulfide		0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Carbon tetrachloride	5	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Chlorobenzene	5	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Chlorodifluoromethane (Freon 22)		7.7	8.1	6.5	8	5.9	11	9.3	1 U	1 U	1 U
Chloropentafluoroethane (Freon 115)		5 U	5 U	5 UJ	4 U	5 U	5 U	5 UJ	5 U	5 UJ	5 UJ
Chloroethane	5	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Chloroform	7	0.82	0.9	0.75	0.39 J	0.5 U	0.45 J	0.49 J	0.5 U	0.5 U	0.5 U
Chloromethane	5	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
cis-1,2-Dichloroethene	5	430	470	360	100	64	130	140	0.5 U	0.5 U	1
cis-1,3-Dichloropropene	0.4	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Cyclohexane		0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Dibromochloromethane		0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Dibromocnioromethane		0.5 0	0.5 0	0.5 0	0.5 0	0.5 0	0.5 0	0.5 0	0.5 0	0.5 0	0.5 0
	5	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Dichlorodifluoromethane	5										
Difluoroethane (Freon 152a)		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Ethylbenzene	5	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Hexachlorobutadiene	0.5				-	-	-	-	-		
Isopropylbenzene	5	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Methyl cyclohexane		0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Methyl Tertbutyl Ether		0.25 J	0.23 J	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Methylene chloride	5	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Propylbenzene	5		0.5 0	0.5 0	0.5 0	0.5 0	0.5 0	0.5 0			
sec-Butvlbenzene	5	_	1 -	_	1 -	1 -	_	I -	-		
Styrene	5	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
tert-Butylbenzene	5		-		-	-	-	-	-	-	-
Tetrachloroethene	5	38	47	42	21	8.6	14	12	0.5 U	0.5 U	0.5 U
Toluene	5	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
trans-1,2-Dichloroethene	5	12	1.7	1.2	0.31 J	2.7	0.55	0.48 J	0.5 U	0.5 U	0.5 U
trans-1.3-Dichloropropene	0.4	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Trichloroethene	5	82	88	78	37	21	36	38	0.5 U	0.4 J	0.72
		0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.37 J+	0.5 U	0.5 U	0.4 J	0.72 0.5 U
Trichlorofluoromethane (Freon 11)	5										
Vinyl chloride	2	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Xylene, o	5	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Xylenes (m&p)	5	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Xylenes, Total	5	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Calculated Total VOC Detections		591 J	637 J	508 J	174 J	106	200 J+	208 J	0.00 U	0.40 J	1.7 J
Calculated Total COC Detections		567	623	497	165	97	187	197	0.00 U	0.40 J	1.7

		35GL	37MU	37MU	37ML	37ML	38MU	38MI	38ML	39MU	39MU
Well Sample Date		35GL 5/12/2021	5/13/2021	11/1/2021	3/ML 5/14/2021	3/ML 11/1/2021	8/16/2021	38MI 8/25/2021	8/16/2021	8/12/2021	8/12/2021
Sample ID	Great Neck	MW-35GL-XX	MW-37MU-XX	MW-37MU-XX	MW-37ML-XX	MW-37ML-XX	MW-38MU-XX	MW-38MI-XX	MW-38ML-XX	MW-39MU-XX	MW-501
Laboratory Sample ID		460-234681-18	460-234681-19	460-246843-13	460-234681-20	460-246843-14	460-241354-5	460-241789-3	460-241354-6	460-240981-17	460-240981-26
Sample Type		FS	FS	FS	FS	FS	FS	FS	FS	FS	FD
Analytical Method		8260D	8260D	8260D	8260D	8260D Result Qualifier	8260D	8260D	8260D	8260D	8260D
Volatile Organic Compounds (µg/L) 1.1.1.2-Tetrachloroethane	5	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier
1,1,1-Trichloroethane	5	10 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,1,2,2-Tetrachloroethane	5	10 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,1,2-Trichloro-1,2,2-Trifluoroethane (Freon 113)	5	17	0.93	7.2	8.2	8.4	0.5 U	14	4.8	2.2	2
1,1,2-Trichloroethane	1	10 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,1-Dichloroethane 1,1-Dichloroethene	5 5	10 U 15	0.5 U 0.5 U	0.32 J 0.41 J	0.5 U 0.46 J	0.3 J 0.54	0.5 U 0.5 U	0.5 0.92	0.5 U 0.5 U	0.5 U 0.59	0.5 U 0.61
1,1-Dichloropropene	5		0.5 0	0.413	0.46 3	0.54	0.5 0	0.52	0.5 0	0.55	0.61
1,2,3-Trichlorobenzene	5				-						
1,2,3-Trichloropropane	0.04		-	-	-	-					-
1,2,4-Trichlorobenzene	5	10 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,2,4-Trimethylbenzene 1,2-Dibromo-3-chloropropane	5 0.04	10 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	 0.5 U
1,2-Dibromo-3-chioropropane 1,2-Dibromoethane	0.006	10 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,2-Dichlorobenzene	3	10 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,2-Dichloroethane	0.6	10	0.5 U	0.5 U	0.55	0.6	0.5 U	0.5	0.61	0.5 U	0.5 U
1,2-Dichloropropane	1	10 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,3,5-Trimethylbenzene	5										-
1,3-Dichlorobenzene 1.3-Dichloropropane	3 5	10 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1.4-Dichlorobenzene	3	10 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,4-Dioxane	1	1.4	0.2 U	U	0.2 U	U					
2,2-Dichloropropane	5		-	-	-						-
2,2-Dichloro-1,1,1-trifluoroethane (Freon 123)		20 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
2-Butanone		50 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U
2-Chlorotoluene 2-Hexanone	5	50.11	2511	25 U	25 U	2.5 U	25 U	2511	25 U	2511	25 U
4-Chlorotoluene	5									-	-
4-iso-Propyltoluene	5	-			-					-	-
4-Methyl-2-pentanone		50 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U
Acetic acid, methyl ester		50 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U
Acetone Benzene	1	100 U 10 U	5 U 0.5 U	5 U 0.5 U	5 U 0.5 U	5 U 0.5 U	5 U 0.5 U	5 U 0.5 U	5 U 0.5 U	5 U 0.5 U	5 U 0.5 U
Bromobenzene	5		0.5 0	0.5 0	0.5 0	0.5 0	0.5 0	0.5 0	0.5 0	0.5 0	0.5 0
Bromochloromethane	5			_	_	_					
Bromodichloromethane	-	10 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Bromoform		10 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Bromomethane Carbon disulfide	5	10 U 10 U	0.5 U 0.5 U	0.5 U 0.5 U	0.5 U 0.5 U	0.5 U 0.5 U	0.5 U 0.5 U	0.5 U 0.5 U	0.5 U 0.5 U	0.5 U 0.5 U	0.5 U 0.5 U
Carbon distillide Carbon tetrachloride	5	10 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Chlorobenzene	5	10 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Chlorodifluoromethane (Freon 22)		20 U	28	170	1.4	1.8	1.3	4.4	0.96 J	4.9	4.2
Chloropentafluoroethane (Freon 115)		100 U	5 U	5 UJ	5 U	5 UJ	5 U	5 U	5 U	5 U	5 U
Chloroethane Chloroform	5 7	10 U 10 U	0.5 U 0.5 U	0.5 U 0.44 J	0.5 U 0.57	0.5 U 0.63	0.5 U 0.5 U	0.5 U 0.99	0.5 U 0.65	0.5 U	0.5 U 0.5 U
Chloromethane	5	10 U	0.5 U	0.44 J 0.5 U	0.57 0.5 U	0.63 0.5 U	0.5 U	0.99 0.5 U	0.65 0.5 U	0.5 U	0.5 U
cis-1,2-Dichloroethene	5	6600	26	170	170	200	40	230	91	21	19
cis-1,3-Dichloropropene	0.4	10 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Cyclohexane		10 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Dibromochloromethane		10 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Dichlorodifluoromethane	5 5	10 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Difluoroethane (Freon 152a)	-	20 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Ethylbenzene	5	10 U	0.52	0.5 U	0.59	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Hexachlorobutadiene	0.5	-			-			-	-		
Isopropylbenzene	5	10 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Methyl cyclohexane Methyl Tertbutyl Ether	-	10 U 10 U	0.5 U 0.5 U	0.5 U	0.5 U	0.5 U 0.5 U	0.5 U 0.22 J	0.5 U 0.5 U	0.5 U	0.5 U	0.5 U 0.5 U
Methyl Tertbutyl Ether Methylene chloride	5	10 U	0.5 U	0.5 U	0.5 U	0.5 U	0.22 J 0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Propylbenzene	5						-	-	-		
sec-Butylbenzene	5	-			-	-	-	-	-	-	
Styrene	5	10 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
tert-Butylbenzene	5	52		25	14			46			6
Tetrachloroethene Toluene	5 5	52 10 U	3.1 0.5 U	25 0.5 U	0.5 U	9.9 0.5 U	1.1 0.5 U	46 0.5 U	14 0.5 U	6.2 0.5 U	6 0.5 U
trans-1,2-Dichloroethene	5	6.8 J	0.5 U	1.3	0.83	0.81	0.33 J	3.1	0.92	0.32 J	0.5 U
trans-1,3-Dichloropropene	0.4	10 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Trichloroethene	5	250	5.5	40	39	43	5.5	74	35	15	15
Trichlorofluoromethane (Freon 11)	5	10 U	0.5 U	0.5 U	0.43 J	0.57	0.5 U	0.36 J	0.5 U	0.5 U	0.5 U
Vinyl chloride Xylene, o	2	260 10 U	0.5 U 0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U 0.5 U	0.5 U	0.5 U	0.5 U 0.5 U
Xylenes (m&p)	5 5	10 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Xylenes, Total	5	20 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Calculated Total VOC Detections		7212 J	64	415 J	236 J	267 J	48 J	375 J	148 J	50 J	47
Calculated Total COC Detections		6919	36	242	231	261	47	364	145	44	42

Well		39MI	39ML	43MU	43MU	43MU	43MU	43MI	43MI	43MI	43MI
Sample Date		8/12/2021	8/12/2021	1/27/2021	5/17/2021	8/13/2021	11/3/2021	1/27/2021	1/27/2021	5/17/2021	8/13/2021
	Great Neck	MW-39MI-XX 460-240981-18	MW-39ML-XX 460-240981-19	MW-43MU-XX 460-227520-4	MW-43MU-XX 460-235115-14	MW-43MU-XX 460-240981-20	MW-43MU-XX 460-246843-15	MW-43MI-XX 460-227520-5	MW-500 460-227520-16	MW-43MI-XX 460-235115-15	MW-43MI-XX 460-240981-21
Laboratory Sample ID Sample Type	ARARS	460-240981-18 FS	460-240981-19 FS	460-22/520-4 FS	460-235115-14 FS	460-240981-20 FS	460-246643-15 FS	460-22/520-5 FS	460-22/520-16 FD	460-235115-15 FS	460-240981-21 FS
Analytical Method		8260D	8260D	8260D	8260D	8260D	8260D	8260D	8260D	8260D	8260D
Volatile Organic Compounds (µg/L)		Result Qualifier	Result Qualifier			Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier		Result Qualifier
1,1,1,2-Tetrachloroethane	5			-	-	-	-		-		-
1,1,1-Trichloroethane	5	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 UJ	0.5 U	0.5 U	0.5 U
1,1,2,2-Tetrachloroethane 1,1,2-Trichloro-1,2,2-Trifluoroethane (Freon 113)	5	0.5 U 0.61	0.5 U	0.5 U 1	0.5 U 0.94	0.5 U 0.58	0.5 U 0.5 U	0.5 UJ 1.6 J	0.5 U 1.6	0.5 U 1.4	0.5 U
1.1.2-Trichloroethane	5 1	0.61 0.5 U	1.1 0.5 U	0.5 U	0.94 0.5 U	0.58 0.5 U	0.5 U	1.6 J 0.5 UJ	1.6 0.5 U	1.4 0.5 U	2.2 0.5 U
1,1-Dichloroethane	5	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 UJ	0.5 U	0.5 U	0.5 U
1,1-Dichloroethene	5	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 UJ	0.5 U	0.5 U	0.5 U
1,1-Dichloropropene	5				-	-	-				
1,2,3-Trichlorobenzene	5			-	-	-	-				
1,2,3-Trichloropropane	0.04	0.5 U	0.5 U	0.5 U	0.5 U	 0.5 U	 0.5 U	 0.5 UJ	0.5 U	0.5 U	0.5 U
1,2,4-Trichlorobenzene 1,2,4-Trimethylbenzene	5 5	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 UJ	0.5 U	0.5 U	0.5 U
1.2-Dibromo-3-chloropropane	0.04	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U.I	0.5 U	0.5 U	0.5 U
1,2-Dibromoethane	0.0006	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 UJ	0.5 U	0.5 U	0.5 U
1,2-Dichlorobenzene	3	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 UJ	0.5 U	0.5 U	0.5 U
1,2-Dichloroethane	0.6	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 UJ	0.5 U	0.5 U	0.5 U
1,2-Dichloropropane	1	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 UJ	0.5 U	0.5 U	0.5 U
1,3,5-Trimethylbenzene 1,3-Dichlorobenzene	5	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 UJ	0.5 U	0.5 U	0.5 U
1,3-Dichloropenzene 1,3-Dichloropropane	3 5	U.U U	U.S U	U.U U	U.S U	U.U U	U.S U	0.5 UJ	U.S U	U.U U	U.S U
1,4-Dichlorobenzene	3	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 UJ	0.5 U	0.5 U	0.5 U
1,4-Dioxane	1	-		-	0.2 UJ	-	-	-	-	0.2 UJ	
2,2-Dichloropropane	5				-						-
2,2-Dichloro-1,1,1-trifluoroethane (Freon 123)		1 U	1 U	1 U	1 U	1 U	1 U	1 UJ	1 U	1 U	1 U
2-Butanone 2-Chlorotoluene	5	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 UJ	2.5 U	2.5 U	2.5 U
2-Hexanone	5	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 UJ	2.5 U	2.5 U	2.5 U
4-Chlorotoluene	5		-	-	-	-					-
4-iso-Propyltoluene	5		_							-	-
4-Methyl-2-pentanone		2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 UJ	2.5 U	2.5 U	2.5 U
Acetic acid, methyl ester		2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 UJ	2.5 U	2.5 U	2.5 U
Acetone	-	5 U	5 U 0.5 U	5 U 0.5 U	5 U 0.5 U	5 U 0.5 U	5 U 0.5 U	5 UJ 0.5 UJ	5 U 0.5 U	5 U 0.5 U	5 U 0.5 U
Benzene Bromobenzene	1 5	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U 	0.5 U 	0.5 UJ	0.5 U	0.5 U	0.5 U
Bromochloromethane	5		_	-							
Bromodichloromethane	-	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 UJ	0.5 U	0.5 U	0.5 U
Bromoform		0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 UJ	0.5 U	0.5 U	0.5 U
Bromomethane	5	0.5 U	0.5 U	0.5 U	0.5 UJ	0.5 U	0.5 U	0.5 UJ	0.5 U	0.5 UJ	0.5 U
Carbon disulfide	-	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 UJ	0.5 U	0.5 U	0.5 U
Carbon tetrachloride Chlorobenzene	5 5	0.5 U 0.5 U	0.5 U 0.5 U	0.5 U 0.5 U	0.5 U	0.5 U 0.5 U	0.5 U 0.5 U	0.5 UJ 0.5 UJ	0.5 U	0.5 U 0.5 U	0.5 U 0.5 U
Chlorodifluoromethane (Freon 22)		1 U	0.88 J	1.2	0.69 J	0.8 J	1 U	2.8 J	2.6	2.4	4
Chloropentafluoroethane (Freon 115)		5 U	5 U	4 U	5 U	5 U	5 U	4 UJ	4 U	5 U	5 U
Chloroethane	5	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 UJ	0.5 U	0.5 U	0.5 U
Chloroform	7	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 UJ	0.5 U	0.5 U	0.5 U
Chloromethane	5	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 UJ	0.5 U	0.5 U	0.5 U
cis-1,2-Dichloroethene cis-1,3-Dichloropropene	5 0.4	6.2 0.5 U	0.26 J 0.5 U	16 0.5 U	16 0.5 U	6.5 0.5 U	0.51 0.5 U	27 J 0.5 UJ	26 0.5 U	25 0.5 U	35 0.5 U
Cyclohexane	0.4	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 UJ	0.5 U	0.5 U	0.5 U
Dibromochloromethane		0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 UJ	0.5 U	0.5 U	0.5 U
Dibromomethane	5					-	-	-	-		
Dichlorodifluoromethane	5	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 UJ	0.5 U	0.5 U	0.5 U
Difluoroethane (Freon 152a)	-	1 U	1 U	1 U	1 U	1 U	1 U	1 UJ	1 U	1 U	1 U
Ethylbenzene Hexachlorobutadiene	5	0.5 U	0.5 U	0.5 U	0.45 J	0.5 U	0.5 U	0.5 UJ	0.5 U	0.5 U	0.5 U
Isopropylbenzene	0.5 5	0.511	0.5 U	0511	0.5 U	0511	 0.5 U	0.5 U.I	0.5 U	 0.5 U	0.5 U
Methyl cyclohexane		0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 UJ	0.5 U	0.5 U	0.5 U
Methyl Tertbutyl Ether		0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 UJ	0.5 U	0.5 U	0.5 U
Methylene chloride	5	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 UJ	0.5 U	0.5 U	0.5 U
Propylbenzene	5						-	-	-		
sec-Butylbenzene	5							-			
Styrene tert-Butvlbenzene	5	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 UJ	0.5 U	0.5 U	0.5 U
Tetrachloroethene	5 5	25	4.4	2	1.3	1	0.3 J	5.6 J	5.4	3	3.6
Toluene	5	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 UJ	0.5 U	0.5 U	0.5 U
trans-1,2-Dichloroethene	5	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 UJ	0.5 U	0.5 U	0.5 U
trans-1,3-Dichloropropene	0.4	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 UJ	0.5 U	0.5 U	0.5 U
Trichloroethene	5	4.1	12	5.7	5.5	2.5	0.67	11 J	10	8.5	11
Trichlorofluoromethane (Freon 11)	5	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 UJ	0.5 U	0.5 U	0.5 U
Vinyl chloride Xylene, o	2	0.5 U 0.5 U	0.5 U 0.5 U	0.5 U 0.5 U	0.5 U 0.5 U	0.5 U 0.5 U	0.5 U 0.5 U	0.5 UJ 0.5 UJ	0.5 U 0.5 U	0.5 U 0.5 U	0.5 U 0.5 U
Xylenes (m&p)	5 5	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 UJ	0.5 U	0.5 U	0.5 U
Xylenes, Total	5	1 U	1 U	1 U	1 U	1 U	1 U	1 UJ	1 U	1 U	1 U
Calculated Total VOC Detections		36	19 J	26	25 J	11 J	1.5 J	48 J	46	40 J	56
Calculated Total COC Detections		36	18 J	23	24	11	1.5 J	45 J	43	38	52

Well Sample Date	Court No ole	43MI 11/3/2021 MW-43MI-XX	44MU 11/9/2021 MW-44MU-XX	44MI 11/9/2021 MW-44MI-XX	45MU 1/29/2021 MW-45MU-XX	45MU 5/17/2021 MW-45MU-XX	45MU 8/17/2021 MW-45MU-XX	45MU 11/5/2021 MW-45MU-XX	45MI 1/28/2021 MW-45MI-XX	45MI 5/17/2021 MW-45MI-XX	45MI 8/17/2021 MW-45MI-XX
Sample ID Laboratory Sample ID	Great Neck ARARs	460-246843-16	MW-44MU-XX 460-247256-12	MW-44MI-XX 460-247256-13	460-227520-6	460-235115-16	MW-45MU-XX 460-241354-7	MW-45MU-XX 460-247256-14	MW-45MI-XX 460-227520-7	460-235115-17	MW-45MI-XX 460-241354-8
Sample Type		FS									
Analytical Method		8260D									
Volatile Organic Compounds (µg/L)		Result Qualifier									
1,1,1,2-Tetrachloroethane 1,1,1-Trichloroethane	5 5	0.5 U									
1 1 2 2-Tetrachloroethane	5	0.5 U									
1,1,2-Trichloro-1,2,2-Trifluoroethane (Freon 113)	5	2.7	0.5 U	11	6.2	8.5	10	8.5	0.5	4.1	3.2
1,1,2-Trichloroethane	1	0.5 U	0.5 U	0.23 J	0.5 U						
1,1-Dichloroethane	5	0.5 U	0.5 U	0.63	0.33 J	0.4 J	0.47 J	0.33 J	0.5 U	0.5 U	0.5 U
1,1-Dichloroethene	5	0.5 U	0.5 U	0.65	0.41 J	0.47 J	0.41 J	0.45 J	0.5 U	0.5 U	0.5 U
1,1-Dichloropropene 1.2.3-Trichlorobenzene	5 5		-	-	-	-	-	-	-	-	-
1,2,3-1 richloropenzene 1,2,3-Trichloropropane	0.04		-	-	_	-	-	-	_	-	-
1,2,4-Trichlorobenzene	5	0.5 U									
1,2,4-Trimethylbenzene	5		-	-	-					-	-
1,2-Dibromo-3-chloropropane	0.04	0.5 U									
1,2-Dibromoethane	0.0006	0.5 U									
1,2-Dichlorobenzene	3	0.5 U									
1,2-Dichloroethane 1.2-Dichloropropane	0.6	0.5 U 0.5 U	0.5 U 0.5 U	0.82 0.5 U	0.45 J 0.5 U	0.45 J 0.5 U	0.57 0.5 U	0.5 U 0.5 U	0.5 U 0.5 U	0.5 U 0.5 U	0.5 U 0.5 U
1,2-Dichloropropane 1,3,5-Trimethylbenzene	1 5	0.5 U	U.U U	U.U U	U.S U	U.S U	U.U U	U.U U	U.S U	U.U U	U.S U
1,3-Dichlorobenzene	3	0.5 U									
1,3-Dichloropropane	5		-			-					-
1,4-Dichlorobenzene	3	0.5 U									
1,4-Dioxane	1		-	-	-	0.19 J				0.21 J	-
2,2-Dichloropropane	5		-	-	-						-
2,2-Dichloro-1,1,1-trifluoroethane (Freon 123) 2-Butanone		1 U 2.5 U									
2-Butanone 2-Chlorotoluene	5	2.5 U									
2-Hexanone		2.5 U									
4-Chlorotoluene	5			-	-					-	-
4-iso-Propyltoluene	5	-	-	-	-					-	_
4-Methyl-2-pentanone		2.5 U									
Acetic acid, methyl ester		2.5 U									
Acetone		5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U
Benzene	1	0.5 U									
Bromobenzene Bromochloromethane	5	-	-	_	_	_	_	-			-
Bromodichloromethane	-	0.5 U									
Bromoform		0.5 U									
Bromomethane	5	0.5 U	0.5 U	0.5 U	0.5 U	0.5 UJ	0.5 U	0.5 U	0.5 U	0.5 UJ	0.5 U
Carbon disulfide		0.5 U									
Carbon tetrachloride	5	0.5 U	0.41 J	0.44 J							
Chlorobenzene Chlorodifluoromethane (Freon 22)	5	0.5 U 3.4	0.5 U 1 U	0.5 U 2.2	0.5 U 1.7	0.5 U	0.5 U 2.1	0.5 U 1.6	0.5 U 1 U	0.5 U 0.67 J	0.5 U 0.72 J
Chlorodifluoromethane (Freon 22) Chloropentafluoroethane (Freon 115)	-	3.4 5 UJ	1 U 5 UJ	2.2 5 UJ	1.7 4 U	1.6 5 U	2.1 5 U	1.6 5 UJ	1 U 4 U	0.67 J 5 U	0.72 J 5 U
Chloroethane	5	0.5 U	0.5 U	0.5 U	0.5 U	05U	05U	0.5 U	0.5 U	0.5 U	0.5 U
Chloroform	7	0.5 U	0.5 U	0.93	0.52	0.54	0.62	0.53	0.5 U	0.52	0.48 J
Chloromethane	5	0.5 U									
cis-1,2-Dichloroethene	5	43	0.83	340	190	210	240	190	1.8	37	30
cis-1,3-Dichloropropene	0.4	0.5 U									
Cyclohexane Dibromochloromethane		0.5 U 0.5 U									
Dibromochloromethane Dibromomethane	 5	U.5 U									
Dichlorodifluoromethane	5	0.5 U									
Difluoroethane (Freon 152a)		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Ethylbenzene	5	0.5 U	0.5 U	0.5 U	0.5 U	0.44 J	0.5 U	0.5 U	0.5 U	0.38 J	0.5 U
Hexachlorobutadiene	0.5	-							-		
Isopropylbenzene	5	0.5 U									
Methyl cyclohexane Methyl Tertbutyl Ether		0.5 U 0.5 U	0.5 U 0.22 J	0.5 U 0.5 U	0.5 U 0.5 U	0.5 U 0.5 U					
Methyl Tertbutyl Ether Methylene chloride	5	0.5 U 0.5 U	0.22 J 0.5 U	0.5 U 0.5 U	0.5 U 0.5 U	0.5 U 0.5 U					
Propvibenzene	5	0.5 0		0.5 0	0.5 0	0.5 0		0.5 0	0.5 0	0.5 0	0.5 0
sec-Butylbenzene	5							-	-		
Styrene	5	0.5 U									
tert-Butylbenzene	5						-	-	-		
Tetrachloroethene	5	3.7	0.52	9.3	14	16	21	17	0.5	5.4	3.6
Toluene	5	0.5 U									
trans-1,2-Dichloroethene trans-1.3-Dichloropropene	5 0.4	0.5 U 0.5 U	0.5 U 0.5 U	2.8 0.5 U	2.6 0.5 U	1.9 0.5 U	6.1 0.5 U	1.6 0.5 U	0.5 U 0.5 U	0.34 J 0.5 U	0.5 U 0.5 U
trans-1,3-Dichloropropene Trichloroethene	0.4 5	0.5 U	0.5 U 0.57	0.5 U 41	0.5 U	0.5 U 41	0.5 U 45	0.5 U 41	0.5 U 3.6	0.5 U 27	0.5 U 19
Trichlorofluoromethane (Freon 11)	5	0.5 U	0.57 0.5 U	0.5 U	0.5 U	0.5 U	0.38 J+	0.5 U	0.5 U	0.44 J-	0.63 J+
Vinyl chloride	2	0.5 U									
Xylene, o	5	0.5 U									
Xylenes (m&p)	5	0.5 U									
Xylenes, Total	5	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Calculated Total VOC Detections		66 J	1.9 J	410 J	247 J	281 J	327 J+	261 J	6.4	76 J-	58 J+
Calculated Total COC Detections		62	1.9	401	241	276	316	257	6.4	74	56

Well		45MI	46MI	46MI	46MI	46MI	46MI	46ML	46ML	46ML	46ML
Sample Date		11/5/2021	1/29/2021	5/14/2021	5/14/2021	8/13/2021	11/5/2021	1/29/2021	5/14/2021	8/13/2021	8/13/2021
Sample ID	Great Neck ARARs	MW-45MI-XX	MW-46MI-XX	MW-46MI-XX	MW-502	MW-46MI-XX	MW-46MI-XX	MW-46ML-XX	MW-46ML-XX	MW-46ML-XX	MW-502
Laboratory Sample ID	ARARS	460-247256-15 FS	460-227520-8 FS	460-234681-21 FS	460-234681-25 FD	460-240981-24 FS	460-247256-16 FS	460-227520-9 FS	460-234681-22 FS	460-240981-23 FS	460-240981-27 FD
Sample Type Analytical Method		8260D	8260D	8260D	8260D	8260D	8260D	8260D	8260D	8260D	8260D
Volatile Organic Compounds (µg/L)						Result Qualifier					
1,1,1,2-Tetrachloroethane	5			-	-	-	-	-	-	-	-
1,1,1-Trichloroethane	5	0.5 U	0.5 UJ	0.5 U	0.5 U	0.5 U	1 U	0.5 UJ	0.5 U	0.5 U	0.5 U
1,1,2,2-Tetrachloroethane	5	0.5 U	0.5 UJ	0.5 U	0.5 U	0.5 U	1 U	0.5 UJ	0.5 U	0.5 U	0.5 U
1,1,2-Trichloro-1,2,2-Trifluoroethane (Freon 113)	5	3	11 J	22	23	27	23	1.7 J	2.4	2.5	2.7
1,1,2-Trichloroethane 1,1-Dichloroethane	1 5	0.5 U 0.5 U	0.38 J 0.45 J	0.27 J 0.48 J	0.3 J 0.49 J	0.5 U 0.54	0.42 J 0.59 J	0.5 UJ 0.5 UJ	0.5 U 0.5 U	0.5 U	0.2 J 0.5 U
1.1-Dichloroethene	5	0.5 U	0.45 J 0.9 J	0.48 3	0.49 3	1.1	1.4	0.5 UJ	0.5 U	0.5 U	0.5 U
1,1-Dichloropropene	5	0.5 0				-	-	0.5 05			0.5 0
1.2.3-Trichlorobenzene	5										
1,2,3-Trichloropropane	0.04			-	-	_					-
1,2,4-Trichlorobenzene	5	0.5 U	0.5 UJ	0.5 U	0.5 U	0.5 U	1 U	0.5 UJ	0.5 U	0.5 U	0.5 U
1,2,4-Trimethylbenzene	5		-	-	-	-					-
1,2-Dibromo-3-chloropropane	0.04	0.5 U	0.5 UJ	0.5 U	0.5 U	0.5 U	1 U	0.5 UJ	0.5 U	0.5 U	0.5 U
1,2-Dibromoethane 1,2-Dichlorobenzene	0.0006	0.5 U 0.5 U	0.5 UJ 0.5 UJ	0.5 U 0.5 U	0.5 U 0.5 U	0.5 U 0.5 U	1 U	0.5 UJ 0.5 UJ	0.5 U 0.5 U	0.5 U	0.5 U 0.5 U
1,2-Dichlorobenzene 1,2-Dichloroethane	3 0.6	0.5 U	0.5 UJ 1.3 J	1.1	1.1	1.4	1.4	0.5 UJ 0.5 UJ	0.5 U	0.5 U	0.5 U 0.45 J
1,2-Dichloropropane	0.6	0.5 U	0.5 UJ	0.38 J	0.4 J	0.43 J	1.4 1 U	0.5 UJ	0.5 U	0.5 U	0.45 J 0.5 U
1,3,5-Trimethylbenzene	5		-	-	-	-					-
1,3-Dichlorobenzene	3	0.5 U	0.5 UJ	0.5 U	0.5 U	0.5 U	1 U	0.5 UJ	0.5 U	0.5 U	0.5 U
1,3-Dichloropropane	5	-	-	-	-			-	-	-	-
1,4-Dichlorobenzene	3	0.5 U	0.5 UJ	0.5 U	0.5 U	0.5 U	1 U	0.5 UJ	0.5 U	0.5 U	0.5 U
1,4-Dioxane	1		-	0.22	0.18 J				0.2 U		-
2,2-Dichloropropane	5										- 411
2,2-Dichloro-1,1,1-trifluoroethane (Freon 123) 2-Butanone		1 U 2.5 U	1 UJ 2.5 UJ	1 U 2.5 U	1 U 2.5 U	1 U 2.5 U	2 U 5 U	1 UJ 2.5 UJ	1 U 2.5 U	1 U 2.5 U	1 U 2.5 U
2-Butanone 2-Chlorotoluene	5	2.5 U	2.5 UJ	2.5 U	2.5 U	2.5 U	5 U	2.5 UJ	2.5 U	2.5 U	2.5 U
2-Hexanone		2.5 U	2.5 UJ	2.5 U	2.5 U	2.5 U	5 U	2.5 UJ	2.5 U	2.5 U	2.5 U
4-Chlorotoluene	5		-	-	-		-			_	-
4-iso-Propyltoluene	5	_	_							-	_
4-Methyl-2-pentanone		2.5 U	2.5 UJ	2.5 U	2.5 U	2.5 U	5 U	2.5 UJ	2.5 U	2.5 U	2.5 U
Acetic acid, methyl ester		2.5 U	2.5 UJ	2.5 U	2.5 U	2.5 U	5 U	2.5 UJ	2.5 U	2.5 U	2.5 U
Acetone		5 U	5 UJ	5 U	5 U	5 U	10 U	5 UJ	5 U	5 U	5 U
Benzene	1	0.5 U	0.5 UJ	0.5 U	0.5 U	0.5 U	1 U	0.5 UJ	0.5 U	0.5 U	0.5 U
Bromobenzene Bromochloromethane	5 5	-		-	-	-	-				
Bromodichloromethane	-	0.5 U	0.5 UJ	0.5 U	0.5 U	0.5 U	1 U	0.5 UJ	0.5 U	0.5 U	0.5 U
Bromoform	-	0.5 U	0.5 UJ	0.5 U	0.5 U	0.5 U	1 U	0.5 UJ	0.5 U	0.5 U	0.5 U
Bromomethane	5	0.5 U	0.5 UJ	0.5 U	0.5 U	0.5 U	1 U	0.5 UJ	0.5 U	0.5 U	0.5 U
Carbon disulfide		0.5 U	0.5 UJ	0.5 U	0.5 U	0.5 U	1 U	0.5 UJ	0.5 U	0.5 U	0.5 U
Carbon tetrachloride	5	0.5 U	0.5 UJ	0.5 U	0.5 U	0.5 U	1 U	0.5 UJ	0.5 U	0.5 U	0.5 U
Chlorobenzene	5	0.5 U	0.5 UJ	0.5 U	0.5 U	0.5 U	1 U	0.5 UJ	0.5 U	0.5 U	0.5 U
Chlorodifluoromethane (Freon 22)	-	1 U 5 UJ	3.1 J 4 U.I	3.3 5 U	3.7 5 U	4 5 U	3.1 10 U.I	1 J 4 U.I	1.2 5 U	1.6 5 U	1.3 5 U
Chloropentafluoroethane (Freon 115) Chloroethane	5	5 UJ 0.5 U	4 UJ 0.5 UJ	0.5 U	0.5 U	0.5 U	10 UJ 1 U	4 UJ 0.5 UJ	0.5 U	0.5 U	0.5 U
Chloroform	7	0.37 J	1.5 J	1.2	1.3	1.4	1.6	0.5 UJ	0.45 J	0.55	0.3 J
Chloromethane	5	0.5 U	0.5 UJ	0.5 U	0.5 U	0.5 U	1 U	0.5 UJ	0.5 U	0.5 U	0.5 U
cis-1,2-Dichloroethene	5	27	350 J	340	350	470	440	33 J	39	47	46
cis-1,3-Dichloropropene	0.4	0.5 U	0.5 UJ	0.5 U	0.5 U	0.5 U	1 U	0.5 UJ	0.5 U	0.5 U	0.5 U
Cyclohexane		0.5 U	0.5 UJ	0.5 U	0.5 U	0.5 U	1 U	0.5 UJ	0.5 U	0.5 U	0.5 U
Dibromochloromethane	-	0.5 U	0.5 UJ	0.5 U	0.5 U	0.5 U	1 U	0.5 UJ	0.5 U	0.5 U	0.5 U
Dibromomethane Dichlorodifluoromethane	5	0.5 U	 0.5 UJ	0.5 U	0.5 U	 0.5 U	 1 U	0.5 UJ	0.5 U	0.5 U	0.5 U
Difluoroethane (Freon 152a)	5	0.5 U 1 U	0.5 UJ 1 UJ	0.5 U 1 U	0.5 U	0.5 U	1 U 2 U	0.5 UJ 1 UJ	0.5 U	0.5 U	0.5 U 1 U
Ethylbenzene	5	0.5 U	0.5 UJ	0.33 J	0.35 J	0.5 U	2 U	0.5 UJ	0.47 J	0.5 U	0.5 U
Hexachlorobutadiene	0.5					-	-	-			
Isopropylbenzene	5	0.5 U	0.5 UJ	0.5 U	0.5 U	0.5 U	1 U	0.5 UJ	0.5 U	0.5 U	0.5 U
Methyl cyclohexane	-	0.5 U	0.5 UJ	0.5 U	0.5 U	0.5 U	1 U	0.5 UJ	0.5 U	0.5 U	0.5 U
Methyl Tertbutyl Ether		0.5 U	0.5 UJ	0.5 U	0.5 U	0.5 U	1 U	0.5 UJ	0.5 U	0.5 U	0.5 U
Methylene chloride	5	0.5 U	0.5 UJ	0.5 U	0.5 U	0.5 U	1 U	0.5 UJ	0.5 U	0.5 U	0.5 U
Propylbenzene	5 5					-		-	-		
sec-Butylbenzene Styrene	5	0.5 U	0.5 UJ	0.5 U	0.5 U	0.5 U	 1 U	0.5 UJ	0.5 U	0.5 U	 0.5 U
tert-Butvlbenzene	5	0.5 0	0.5 03	0.5 0	0.5 0	0.5 0		0.5 05	0.5 0	0.5 0	0.5 0
Tetrachloroethene	5	4.8	29 J	35	36	44	41	3.1 J	3.7	3.8	4
Toluene	5	0.5 U	0.5 UJ	0.5 U	0.5 U	0.5 U	1 U	0.5 UJ	0.5 U	0.5 U	0.5 U
trans-1,2-Dichloroethene	5	0.5 U	1.4 J	1.5	1.7	1.6	2.9	0.5 UJ	0.5 U	0.35 J	0.5 U
trans-1,3-Dichloropropene	0.4	0.5 U	0.5 UJ	0.5 U	0.5 U	0.5 U	1 U	0.5 UJ	0.5 U	0.5 U	0.5 U
Trichloroethene	5	20	100 J	110	110	140	110	17 J	20	23	23
Trichlorofluoromethane (Freon 11)	5	0.57	0.99 J	0.93	0.97	1.4	0.87 J	0.7 J	0.67	0.95	0.85
Vinyl chloride Xylene, o	2	0.5 U 0.5 U	0.5 UJ 0.5 UJ	0.5 U 0.5 U	0.5 U 0.5 U	0.5 U	1 U 1 U	0.5 UJ 0.5 UJ	0.5 U 0.5 U	0.5 U	0.5 U 0.5 U
Xylenes (m&p)	5 5	0.5 U	0.5 UJ 0.5 UJ	0.5 U	0.5 U	0.5 U	1 U	0.5 UJ 0.5 UJ	0.5 U	0.5 U	0.5 U
Xylenes, Total	5	1 U	1 UJ	1 U	1 U	1 U	2 U	1 UJ	1 U	1 U	1 U
Calculated Total VOC Detections		56 J	500 J	518 J	530 J	693 J	626 J	57 J	68 J	80 J	79 J
Calculated Total COC Detections		55	490 J	507	519	681	614	55 J	65	76	76

Second Column Col	Well		46ML	47MI	47MI	47ML	47ML	48MI	48ML	49MI	49ML	49ML
Laboratory suppose APAMS March Serregard March Mar			11/5/2021	5/17/2021	11/10/2021	5/17/2021	11/10/2021	11/4/2021	11/4/2021	5/17/2021	5/17/2021	11/8/2021
PRODUCTION PRO												MW-49ML-XX
Anapten Seption Sept		ARARs										460-247256-20 FS
Vication Opening Compression (1)												8260D
1.1.1-Trichorosthame	Volatile Organic Compounds (µg/L)											
11.2.2 Transpropries	1,1,1,2-Tetrachloroethane			-	-	-	-	-	-	-	-	-
1.1.2-Trichonovariene (Preen 113) 5												0.5 U
11.3-Tristonemane												0.5 U 0.5 U
15.0Perforementer 5												0.5 U
11.5Dischorpropropropropropropropropropropropropr		5	0.5 U	0.27 J	0.37 J	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1.2.3-Trienforonemen			0.5 U	0.5 U	0.5 U	0.35 J	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
12.3-Tielloprogramme					-	-						-
1.4.7-Infortecements					-	-						
13.4-Timeshybenzenee			0.5.11	0.5.11	0511	0511	0.511	0.511	0.511	0.5.11	0.5.11	0.5 U
1.2-Discondendered				-	-	-	-					-
13-Deficionebrame	1,2-Dibromo-3-chloropropane	0.04										0.5 U
1.2-Delichorentamen												0.5 U
1												0.5 U
1.3.5 Tendenyberazere												0.5 U 0.5 U
13-Delichoropemene			0.5 U	U.U U	U.U U	U.S U	U.U U	U.U U	U.U U	U.S U	U.S U	U.S U
1.3-Delictorprogramme			0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1.4Doxame				-	-	-					-	-
22-Delichoro-1,1-belliproceitane (Fren 123)	1,4-Dichlorobenzene				0.5 U			0.5 U	0.5 U			0.5 U
22-Delichoro-1.1-influoroethane (Freen 123)				0.2 UJ	-	0.29 J		-		0.2 UJ	0.2 UJ	-
25 U						- 411						-
2-Distribution												1 U 2 5 U
24-baranome			2.5 0	2.5 0	2.5 0	2.5 0	2.5 0	2.5 0	2.5 0	2.5 0	2.5 0	2.5 0
Asia-Propylolulemen			2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U
Abethy-Sepertanone	4-Chlorotoluene	5			-	-						-
Acetican of the property of					-						-	-
Acetene												2.5 U
Benzame												2.5 U
Bromoelhancemename												0.5 U
Bromofethroremethane					-	-	-					
Bromonembane	Bromochloromethane	5			-	-	-					
Bromomethane		-										0.5 U
Carbon idsulfide												0.5 U
Carbon tetrachloride												0.5 U 0.5 U
Chloroberzene												0.5 U
Chloropertaflucroethane (Freon 115)												0.5 U
Chlorofemane												1 U
Chloroform												5 UJ
Chloromethane												0.5 U
cs-1_2-Dichloroertenene 5 54 44 29 17 14 0.5 U									0.0 0			0.5 U
cis-1-3-Dichloropropene 0.4 0.5 U 0.5 U<												0.5 U
Dibromoethare				0.5 U								0.5 U
Dibromomethane		- 1										0.5 U
Dichlorodiffusormethane			0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Diffuscrethane (Freon 152a)		-	0.511	0511	0.5.11	0.5.11	0511	0.511	0.5.11	0.5.11	0.5.11	0.5 U
Ethylbenzene 5 0.5 U 0.4 J 0.5 U												0.5 U 1 U
Hexachlorobutadiene												0.5 U
Methyl Gydohexane 0.5 U				-		-	-	-	-			
Methyl Tertbutyl Ether												0.5 U
Methylene chloride												0.5 U
Propytherizene												0.5 U 0.5 U
Sec-Buylbenzene 5					U.5 U	0.5 U				0.5 U		0.5 U
Syrene					_	_	_		_	_		
Tetrachioroethene		-	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Toluene						-	-	-	-			
trans-1.2-Dichloroethene 5 0.3 J 0.76 0.43 J 0.55 0.5 U 0.5 U <td></td> <td>0.45 J</td>												0.45 J
trans-1.3-Dichloropropene 0.4 0.5 U 0.5												0.5 U 0.5 U
Trichloroethene 5 27 14 11 11 8.3 0.5 U 0.5 U </td <td></td> <td>0.5 U</td>												0.5 U
Trichlorofluoromethane (Freon 11) 5 1.1 0.5 U 0.												0.5 U
Vinyl chloride 2 0.5 U												0.5 U
	Vinyl chloride	2			0.5 U	0.5 U						0.5 U
1Yvlenee (MXn) E 0511 0511 0511 0511 0511 0511 0511 0511 0511 0511 0511 0511 0511												0.5 U
	Xylenes (m&p)	5	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U 1 U
Xylenes, Total		_										0.45 J
Calculated Total COC Detections 94 67 44 33 25 J 0.00 U 0.00 U 0.73 0.61												0.45 J

Well		49ML	50MI	50MI	50ML	50ML	50ML	51MI	51MI	51MI	51MI
Sample Date		11/8/2021	8/17/2021	11/17/2021	8/17/2021	11/10/2021	11/10/2021	1/28/2021	5/19/2021	8/18/2021	11/4/2021
Sample ID	Great Neck ARARs	MW-500 460-247256-30	MW-50MI-XX 460-241354-9	MW-50MI-XX 460-247613-1	MW-50ML-XX 460-241354-10	MW-50ML-XX 460-247256-21	MW-501 460-247256-31	MW-51MI-XX 460-227520-10	MW-51MI-XX 460-235115-2	MW-51MI-XX 460-241354-11	MW-51MI-XX
Laboratory Sample ID Sample Type	ARARS	460-247256-30 FD	460-241354-9 FS	460-247613-1 FS	460-241354-10 FS	460-247256-21 FS	460-247256-31 FD	FS	460-235115-2 FS	460-241354-11 FS	460-247256-22 FS
Analytical Method		8260D	8260D	8260D	8260D	8260D	8260D	8260D	8260D	8260D	8260D
Volatile Organic Compounds (µg/L)			Result Qualifier			Result Qualifier			Result Qualifier		
1,1,1,2-Tetrachloroethane	5		-	-		-	-	-	-	-	-
1,1,1-Trichloroethane	5	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U				
1,1,2,2-Tetrachloroethane 1,1,2-Trichloro-1,2,2-Trifluoroethane (Freon 113)	5	0.5 U 0.5 U	0.5 U	0.5 U	0.5 U 0.5 U	0.5 U 0.5 U	0.5 U 0.5 U	.=.	-	-	
1,1,2-Trichloroethane	5 1	0.5 U	1.4 0.5 U	1.5 0.5 U	0.5 U 0.5 U	0.5 U	0.5 U	1.7 J	2.9	3	2 J-
1.1-Dichloroethane	5	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	_	_		_
1,1-Dichloroethene	5	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U				-
1,1-Dichloropropene	5		_	_	_	_	-				
1,2,3-Trichlorobenzene	5		-								-
1,2,3-Trichloropropane	0.04		-								
1,2,4-Trichlorobenzene	5	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U			-	-
1,2,4-Trimethylbenzene	5	 0.5 U	0.5 U	 0.5 U	0.5 U	0.5 U	0.5 U			-	-
1,2-Dibromo-3-chloropropane 1,2-Dibromoethane	0.04	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U			-	-
1,2-Dipromoetnane 1,2-Dichlorobenzene	0.0006	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	-	-	_	_
1,2-Dichloroethane	0.6	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	_	_	_	_
1,2-Dichloropropane	1	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U			-	-
1,3,5-Trimethylbenzene	5	-	-	-		-	-	-	-	-	-
1,3-Dichlorobenzene	3	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U				-
1,3-Dichloropropane	5	-	-	-		-	-	-	-	-	-
1,4-Dichlorobenzene	3	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U			-	-
1,4-Dioxane	1	-	-			-	-	-	-	-	-
2,2-Dichloropropane 2,2-Dichloro-1,1,1-trifluoroethane (Freon 123)	5	 1 U	 1 U	 1 U	 1 U	 1 U	 1 U	-	-	-	-
2,2-Dichloro-1,1,1-trifluoroethane (Freon 123) 2-Butanone		1 U 2.5 U	1 U 2.5 U	1 U 2.5 U	1 U 2.5 U	1 U 2.5 U	1 U 2.5 U	-	-	_	_
2-Chlorotoluene	5	2.5 0	2.5 0	2.5 0	2.5 0	2.5 0	2.5 0	_	_	_	_
2-Hexanone		2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	-	-	-	-
4-Chlorotoluene	5	-						-	-	-	-
4-iso-Propyltoluene	5						-	-	-		
4-Methyl-2-pentanone	-	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	-	-	-	
Acetic acid, methyl ester		2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	-	-		
Acetone	-	5 U	5 U	5 U	5 U	5 U	5 U	-	-	-	
Benzene Bromobenzene	1 5	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	-	-	-	
Bromochloromethane	5			_	_	_					
Bromodichloromethane	-	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	_	_	-	
Bromoform		0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U				
Bromomethane	5	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U				
Carbon disulfide		0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U				
Carbon tetrachloride	5	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U				
Chlorobenzene	5	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U				
Chlorodifluoromethane (Freon 22) Chloropentafluoroethane (Freon 115)	-	1 U 5 UJ	1 U 5 U	1 U 5 U	1 U 5 U	1 U 5 U.I	1 U 5 U.I		1 U	0.91 J	1 UJ
Chloroethane Chloroethane	5	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	-	-		_
Chloroform	7	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	_	_	-	_
Chloromethane	5	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U				-
cis-1,2-Dichloroethene	5	0.5 U	24	21	0.46 J	0.5 U	0.5 U	17 J	51	53	29 J-
cis-1,3-Dichloropropene	0.4	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U				-
Cyclohexane		0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	-	-	-	-
Dibromochloromethane		0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	-			_
Dibromomethane Dichlorodifluoromethane	5 5	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U		-		_
Difluoroethane (Freon 152a)	5	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	-	-		_
Ethylbenzene	5	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	-	-		_
Hexachlorobutadiene	0.5										-
Isopropylbenzene	5	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	-	-	-	-
Methyl cyclohexane		0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U				-
Methyl Tertbutyl Ether	-	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	-	-	-	-
Methylene chloride	5	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	-		-	_
Propylbenzene sec-Butylbenzene	5 5	-			-					-	_
sec-Butylbenzene Styrene	5	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U			_	_
tert-Butvlbenzene	5							_	-	_	
Tetrachloroethene	5	0.42 J	3	3.9	0.5 U	0.5 U	0.5 U	2.5 J	4	2.4	4.5 J-
Toluene	5	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U		-	-	- '
trans-1,2-Dichloroethene	5	0.5 U	0.29 J	0.39 J	0.5 U	0.5 U	0.5 U		-	-	-
trans-1,3-Dichloropropene	0.4	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U		-	-	-
Trichloroethene	5	0.5 U	5.5	5.1	0.5 U	0.5 U	0.5 U	7.7 J	14	12	9.1 J-
Trichlorofluoromethane (Freon 11)	5	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	-	-	-	-
Vinyl chloride Xylene, o	2	0.5 U 0.5 U	0.5 U 0.5 U	0.5 U 0.5 U	0.5 U 0.5 U	0.5 U 0.5 U	0.5 U 0.5 U		-	-	-
Xylene, o Xylenes (m&p)	5 5	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U 0.5 U		_	_	_
Xylenes, Total	5	1 U	1 U	1 U	1 U	1 U	1 U		-	_	_
Calculated Total VOC Detections		0.42 J	34 J	32 J	0.46 J	0.00 UJ	0.00 UJ	29 J	72	71 J	45 J-
Calculated Total COC Detections		0.42 J	34	32	0.46 J	0.00 U	0.00 U	29 J	72	70	45 J-

Well Sample Date Sample ID Laboratory Sample ID Sample Type Analytical Method	Great Neck ARARs	51ML 1/28/2021 MW-51ML-XX 460-227520-11 FS 8260D	51ML 5/19/2021 MW-51ML-XX 460-235115-3 FS 8260D	51ML 8/18/2021 MW-51ML-XX 460-241354-12 FS 8260D	51ML 11/4/2021 MW-51ML-XX 460-247256-23 FS 8260D	52MI 1/28/2021 MW-52MI-XX 460-227520-12 FS 8260D	52MI 5/18/2021 MW-52MI-XX 460-235115-5 FS 8260D	52MI 8/18/2021 MW-52MI-XX 460-241354-14 FS 8260D	52MI 11/8/2021 MW-52MI-XX 460-247256-24 FS 8260D	52MI 11/8/2021 MW-502 460-247256-32 FD 8260D	52ML 1/28/2021 MW-52ML-X 460-227520- FS 8260D
Volatile Organic Compounds (µg/L)				Result Qualifier							
1,1,1,2-Tetrachloroethane	5			-	-	-	-			-	-
1,1,1-Trichloroethane	5					0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,1,2,2-Tetrachloroethane	5		-	-	-	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,1,2-Trichloro-1,2,2-Trifluoroethane (Freon 113)	5	0.48 J	2.9	2.8	2.6	0.47 J	0.61	0.85	0.78	0.81	0.36 J
1,1,2-Trichloroethane	1		-	-	-	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,1-Dichloroethane	5		-	-	-	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,1-Dichloroethene	5		-	-	-	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,1-Dichloropropene	5		-	-	-	-					-
1,2,3-Trichlorobenzene	5		-	-	-						-
1,2,3-Trichloropropane	0.04		-	-	-						
1,2,4-Trichlorobenzene	5	-	-	-	-	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,2,4-Trimethylbenzene	5	-	-	-	-					-	-
1,2-Dibromo-3-chloropropane	0.04	-	-	-	-	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,2-Dibromoethane	0.0006	-	-	-	-	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,2-Dichlorobenzene	3	-	-	-	-	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,2-Dichloroethane	0.6	-	-	-	-	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,2-Dichloropropane	1	-	-	-	-	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,3,5-Trimethylbenzene	5	_	-	-						-	-
1,3-Dichlorobenzene	3	-	-	-		0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,3-Dichloropropane	5	-	-	-					-	-	-
1,4-Dichlorobenzene	3	-	-	-		0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,4-Dioxane	1	-	-	-			0.2 U		-	-	-
2,2-Dichloropropane	5	-	-	-	-	-		-	-	-	-
2,2-Dichloro-1,1,1-trifluoroethane (Freon 123)		-	-	-	-	1 U	1 U	1 U	1 U	1 U	1 U
2-Butanone		-	-	-	-	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U
2-Chlorotoluene	5	-	-	-	-	-	-	-	-	-	-
2-Hexanone		-	-			2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U
4-Chlorotoluene	5	-	-					-	-	-	-
4-iso-Propyltoluene	5	-	-	-	-			-	-	-	-
4-Methyl-2-pentanone		-	-	-	-	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U
Acetic acid, methyl ester		-	-	-	-	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U
Acetone		-	-			5 U	2.5 U	5 U	5 U	5 U	5 U
Benzene	1	-	-	-	-	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Bromobenzene	5	-		-		-					
Bromochloromethane	5			-	-	-					
Bromodichloromethane				-	-	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Bromoform				-	-	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Bromomethane	5			-	-	0.5 U	0.5 UJ	0.5 U	0.5 U	0.5 U	0.5 U
Carbon disulfide				-	-	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Carbon tetrachloride	5			-	-	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Chlorobenzene	5			-	-	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Chlorodifluoromethane (Freon 22)			1.9	3.1	2.1	1 U	1 U	1 U	1 U	1 U	1 U
Chloropentafluoroethane (Freon 115)				-		4 U	5 U	5 U	5 UJ	5 UJ	4 U
Chloroethane	5			-	-	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Chloroform	7			-	-	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Chloromethane	5			-		0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
cis-1,2-Dichloroethene	5	3.5 J	36	32	29	12	15	18	15	18	4.1
cis-1,3-Dichloropropene	0.4		-	-	-	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Cyclohexane			-	-	-	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Dibromochloromethane			-	-	-	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Dibromomethane	5		-	-	-						
Dichlorodifluoromethane	5		-	-	-	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Difluoroethane (Freon 152a)	-		-	-	-	1 U	1 U	1 U	1 U	1 U	1 U
Ethylbenzene	5		-	-	-	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Hexachlorobutadiene	0.5		-	-	-	-					-
sopropylbenzene	5		-	-	-	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Methyl cyclohexane	-		-	-	-	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Methyl Tertbutyl Ether			-	-	-	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Methylene chloride	5		-	-	-	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Propylbenzene	5		-	-	-						-
sec-Butylbenzene	5		-	-	-					-	-
Styrene	5	-	-	-	-	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
tert-Butylbenzene	5	-	-	-	-	-	-	-	-	-	-
Tetrachloroethene	5	0.45 J	3.9	3.4	5	3.3	3.2	4.1	3.3	3.4	0.82
Toluene	5	-	-	-	-	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
trans-1,2-Dichloroethene	5		-	-		0.5 U	0.31 J	1.8	0.24 J	0.51 J	0.5 U
trans-1,3-Dichloropropene	0.4	-	-	-	-	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Trichloroethene	5	2.7 J	13	11	13	9.8	12	13	12	11	2.8
Trichlorofluoromethane (Freon 11)	5	-	-	-	-	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Vinyl chloride	2	-	-	-	-	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Xylene, o	5	-	-	-	-	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Xylenes (m&p)	5	-	-	-	-	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Xylenes, Total	5		-	-	-	1 U	1 U	1 U	1 U	1 U	1 U
Calculated Total VOC Detections Calculated Total COC Detections		7.1 J	58	52	52	26 J	31 J	38	31 J	34 J	8.1 J
		7.1 J	56	49	50	26 J	31	36	31	33	8.1 J

		52ML	52ML	52ML	53MI	53MI	53MI	53MI	53ML	53ML	53ML
Well Sample Date		5/18/2021	52ML 8/18/2021	11/8/2021	1/29/2021	53MI 5/18/2021	8/26/2021	11/10/2021	1/29/2021	5/18/2021	8/18/2021
	Great Neck	MW-52ML-XX	MW-52ML-XX	MW-52ML-XX	MW-53MI-XX	MW-53MI-XX	MW-53MI-XX	MW-53MI-XX	MW-53ML-XX	MW-53ML-XX	MW-53ML-XX
Laboratory Sample ID	ARARs	460-235115-6	460-241354-15	460-247256-25	460-227520-14	460-235115-7	460-241789-1	460-247256-26	460-227520-15	460-235115-8	460-241354-16
Sample Type		FS	FS	FS	FS	FS	FS	FS	FS	FS	FS
Analytical Method		8260D	8260D	8260D	8260D	8260D Result Qualifier	8260D	8260D	8260D	8260D	8260D
Volatile Organic Compounds (µg/L) 1.1.1.2-Tetrachloroethane	5	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier
1,1,1-Trichloroethane	5	0.5 U	0.5 U	0.5 U	0.5 UJ	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,1,2,2-Tetrachloroethane	5	0.5 U	0.5 U	0.5 U	0.5 UJ	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,1,2-Trichloro-1,2,2-Trifluoroethane (Freon 113)	5	2.6	5.7	5.1	0.5 UJ	0.5 U	0.5 U	0.5 U	0.8	0.5 U	0.5 U
1,1,2-Trichloroethane	1	0.5 U	0.5 U	0.5 U	0.5 UJ	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,1-Dichloroethane	5	0.5 U	0.5 U	0.5 U	0.5 UJ	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,1-Dichloroethene 1,1-Dichloropropene	5 5	0.5 U	0.5 U	0.5 U	0.5 UJ	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,2,3-Trichlorobenzene	5				_	-	-				
1,2,3-Trichloropropane	0.04			-	-	-	_				
1,2,4-Trichlorobenzene	5	0.5 U	0.5 U	0.5 U	0.5 UJ	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,2,4-Trimethylbenzene	5										
1,2-Dibromo-3-chloropropane	0.04	0.5 U	0.5 U	0.5 U	0.5 UJ	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,2-Dibromoethane 1.2-Dichlorobenzene	0.0006	0.5 U 0.5 U	0.5 U 0.5 U	0.5 U 0.5 U	0.5 UJ 0.5 UJ	0.5 U 0.5 U	0.5 U 0.5 U	0.5 U 0.5 U	0.5 U 0.5 U	0.5 U 0.5 U	0.5 U 0.5 U
1,2-Dichloroethane	3 0.6	0.5 U	0.54	0.46 J	0.5 UJ	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1.2-Dichloropropane	1	0.5 U	0.5 U	0.5 U	0.5 UJ	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,3,5-Trimethylbenzene	5				-	-	-				
1,3-Dichlorobenzene	3	0.5 U	0.5 U	0.5 U	0.5 UJ	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,3-Dichloropropane	5		-	.=	-		. -	<u></u>	_ -	. .	-
1,4-Dichlorobenzene 1.4-Dioxane	3	0.5 U 0.2 U	0.5 U	0.5 U	0.5 UJ	0.5 U 0.2 U	0.5 U	0.5 U	0.5 U	0.5 U 0.2 U	0.5 U
1,4-Dioxane 2.2-Dichloropropane	1 5	0.2 U		-	_	0.2 U	-			0.2 U	
2,2-Dichloro-1,1,1-trifluoroethane (Freon 123)		1 U	1 U	1 U	1 UJ	1 U	1 U	1 U	1 U	1 U	1 U
2-Butanone		2.5 U	2.5 U	2.5 U	2.5 UJ	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U
2-Chlorotoluene	5				-	-					
2-Hexanone		2.5 U	2.5 U	2.5 U	2.5 UJ	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U
4-Chlorotoluene	5	-	-	-	-	-		-			-
4-iso-Propyltoluene 4-Methyl-2-pentanone	5	25 U	25 U	25 U	2.5 U.I	25 U	25 U	25 U	25 U	25 U	25 U
Acetic acid, methyl ester		2.5 U	2.5 U	2.5 U	2.5 UJ	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U
Acetone		5 U	5 U	5 U	5 UJ	5 U	5 U	5 U	5 U	5 U	5 U
Benzene	1	0.5 U	0.5 U	0.5 U	0.5 UJ	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Bromobenzene	5				-						
Bromochloromethane	5		0.5 U				0.5 U				0.5 U
Bromodichloromethane Bromoform		0.5 U 0.5 U	0.5 U 0.5 U	0.5 U 0.5 U	0.5 UJ 0.5 UJ	0.5 U 0.5 U	0.5 U	0.5 U 0.5 U	0.5 U 0.5 U	0.5 U 0.5 U	0.5 U 0.5 U
Bromomethane	5	0.5 UJ	0.5 U	0.5 U	0.5 UJ	0.5 UJ	0.5 U	0.5 U	0.5 U	0.5 UJ	0.5 U
Carbon disulfide	-	0.5 U	0.5 U	0.5 U	0.5 UJ	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Carbon tetrachloride	5	0.5 U	0.5 U	0.5 U	0.5 UJ	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Chlorobenzene	5	0.5 U	0.5 U	0.5 U	0.5 UJ	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Chlorodifluoromethane (Freon 22) Chloropentafluoroethane (Freon 115)		1 U	1 U	1 U 5 U.I	1 UJ 4 UJ	1 U	1 U 5 U	1 U 5 U.I	1 U 4 U	1 U 5 U	1 U 5 U
Chloroethane (Freon 115) Chloroethane	 5	5 U 0.5 U	5 U 0.5 U	0.5 U	4 UJ 0.5 UJ	5 U 0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Chloroform	7	0.5 J	0.5 0	0.5 0	0.5 U.I	0.5 U	0.5 U	0.5 U	0.56	0.5 0	0.67
Chloromethane	5	0.5 U	0.5 U	0.5 U	0.5 UJ	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
cis-1,2-Dichloroethene	5	20	59	59	2.2 J	2.2	2.3	1.7	9.3	0.35 J	1.6
cis-1,3-Dichloropropene	0.4	0.5 U	0.5 U	0.5 U	0.5 UJ	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Cyclohexane		0.5 U	0.5 U	0.5 U	0.5 UJ	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Dibromochloromethane		0.5 U	0.5 U	0.5 U	0.5 UJ	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Dichlorodifluoromethane	5 5	0.5 U	0.5 U	0.5 U	0.5 LU	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Difluoroethane (Freon 152a)		1 U	1 U	1 U	1 UJ	1 U	1 U	1 U	1 U	1 U	1 U
Ethylbenzene	5	0.5 U	0.5 U	0.5 U	0.5 UJ	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Hexachlorobutadiene	0.5					-			-		
Isopropylbenzene	5	0.5 U	0.5 U	0.5 U	0.5 UJ	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Methyl cyclohexane		0.5 U	0.5 U	0.5 U	0.5 UJ	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Methyl Tertbutyl Ether Methylene chloride	 5	0.5 U 0.5 U	0.5 U 0.5 U	0.5 U 0.5 U	0.5 UJ 0.5 UJ	0.5 U 0.5 U	0.5 U 0.5 U	0.5 U 0.5 U	0.5 U 0.5 U	0.5 U 0.5 U	0.5 U 0.5 U
Propylbenzene	5	0.5 0				0.5 0	0.5 U 	U.S U	0.5 0	0.5 0	0.5 0
sec-Butylbenzene	5										
Styrene	5	0.5 U	0.5 U	0.5 U	0.5 UJ	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
tert-Butylbenzene	5		-	-				-	-		
Tetrachloroethene	5	2.7	13	8.5	1 J	0.86	1	0.73	3.2	0.32 J	0.63
Toluene trans-1,2-Dichloroethene	5 5	0.5 U 3.3	0.5 U 8.7	0.5 U 1.7	0.5 UJ 0.5 UJ	0.5 U 0.5 U	0.5 U 0.5 U	0.5 U 0.5 U	0.5 U 0.5 U	0.5 U 0.5 U	0.5 U 0.5 U
trans-1,2-Dichloroethene trans-1,3-Dichloropropene	0.4	3.3 0.5 U	8.7 0.5 U	1.7 0.5 U	0.5 UJ 0.5 UJ	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Trichloroethene	5	11	36	26	3.8 J	3.7	3.9	3.8	7.6	0.41 J	1.1
Trichlorofluoromethane (Freon 11)	5	0.46 J-	1.2	1.2	0.5 UJ	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Vinyl chloride	2	0.5 U	0.5 U	0.5 U	0.5 UJ	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Xylene, o	5	0.5 U	0.5 U	0.5 U	0.5 UJ	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Xylenes (m&p) Xylenes, Total	5 5	0.5 U 1 U	0.5 U 1 U	0.5 U 1 U	0.5 UJ 1 UJ	0.5 U 1 U	0.5 U 1 U	0.5 U 1 U	0.5 U 1 U	0.5 U 1 U	0.5 U 1 U
Calculated Total VOC Detections	5	1 U 40 J-	1 U	103 J	7.0 J	6.8 J	7.2	6.2 J	21	1 U	4.0
			114	99	7.0 J	6.8	7.2	6.2	21	•	4.0

Well Sample Date		53ML 11/8/2021	54GU 11/10/2021	54GI 11/10/2021	N05535 8/13/2021	N05535 11/5/2021	N09687 5/19/2021	N09687 8/18/2021	N09687 11/4/2021	N13221 8/16/2021	N13266 8/16/2021
Sample Date Sample ID	Great Neck	MW-53ML-XX	MW-54GU-XX	MW-54GI-XX	IW-N5535-XX	IW-N5535-XX	IW-N9687-XX	IW-N9687-XX	IW-N9687-XX	IW-N13221-XX	IW-N13266-XX
Laboratory Sample ID	ARARs	460-247256-27	460-247256-28	460-247256-29	460-240981-22	460-247256-1	460-235115-4	460-241354-13	460-247256-2	460-240981-28	460-240981-29
Sample Type		FS	FS	FS	FS	FS	FS	FS	FS	FS	FS
Analytical Method		8260D	8260D	8260D	8260D	8260D	8260D	8260D	8260D	8260D	8260D
Volatile Organic Compounds (µg/L) 1.1.1.2-Tetrachloroethane		Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier
1,1,1,2-1 etrachioroethane 1,1,1-Trichloroethane	5 5	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	-	-	-	0.5 U	0.5 U
1 1 2 2-Tetrachloroethane	5	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	_	_	_	0.5 U	0.5 U
1,1,2-Trichloro-1,2,2-Trifluoroethane (Freon 113)	5	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.55	0.5 U
1,1,2-Trichloroethane	1	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	-	-	-	0.5 U	0.5 U
1,1-Dichloroethane	5	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	-			0.5 U	0.5 U
1,1-Dichloroethene	5	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U				0.5 U	0.5 U
1,1-Dichloropropene	5				-	-	-	-	-	-	-
1,2,3-Trichlorobenzene 1,2,3-Trichloropropane	5 0.04	-	-	-	-	-	-		-	-	_
1,2,4-Trichlorobenzene	5	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	_	_	_	0.5 U	0.5 U
1,2,4-Trimethylbenzene	5			-	-	-					
1,2-Dibromo-3-chloropropane	0.04	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U				0.5 U	0.5 U
1,2-Dibromoethane	0.0006	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U				0.5 U	0.5 U
1,2-Dichlorobenzene	3	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	-	-	-	0.5 U	0.5 U
1,2-Dichloroethane	0.6	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	-			0.5 U	0.5 U
1,2-Dichloropropane 1,3,5-Trimethylbenzene	1	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	-	-		0.5 U	0.5 U
1,3,5-1 nmetnylbenzene 1 3-Dichlorobenzene	5	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	_			0.5 U	0.5 U
1,3-Dichloropropane	5						_		-		
1,4-Dichlorobenzene	3	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	_	-	-	0.5 U	0.5 U
1,4-Dioxane	1	-	-	-	-	-	-	-	-	-	-
2,2-Dichloropropane	5						-				
2,2-Dichloro-1,1,1-trifluoroethane (Freon 123)		1 U	1 U	1 U	1 U	1 U				1 U	1 U
2-Butanone 2-Chlorotoluene		2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	-	-		2.5 U	2.5 U
2-Chlorotoluene 2-Hexanone	5	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	_			2.5 U	2.5 U
4-Chlorotoluene	5	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	_	_	-	2.5 U	2.5 U
4-iso-Propyltoluene	5			_			_	_	_		-
4-Methyl-2-pentanone		2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	-			2.5 U	2.5 U
Acetic acid, methyl ester		2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	-			2.5 U	2.5 U
Acetone		5 U	5 U	5 U	5 U	5 U	-			5 U	5 U
Benzene	1	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U			-	0.5 U	0.5 U
Bromobenzene	5				-	-	-			-	-
Bromochloromethane Bromodichloromethane	5	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	-	-		0.5 U	0.5 U
Bromoform	-	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	_	-	-	0.5 U	0.5 U
Bromomethane	5	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	-			0.5 U	0.5 U
Carbon disulfide	-	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	-			0.5 U	0.5 U
Carbon tetrachloride	5	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	-			0.5 U	0.5 U
Chlorobenzene	5	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	-	-		0.5 U	0.5 U
Chlorodifluoromethane (Freon 22)		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Chloropentafluoroethane (Freon 115) Chloroethane	 5	5 UJ 0.5 U	5 UJ 0.5 U	5 UJ 0.5 U	5 U 0.5 U	5 UJ 0.5 U	_	_	-	5 U 0 5 U	5 U 0 5 U
Chloroform	7	0.5 0	0.5 U	0.5 U	0.5 U	0.5 U	_	_	-	0.36 J	0.5 U
Chloromethane	5	0.70	0.5 U	0.5 U	0.5 U	0.5 U	_	_	_	0.5 U	0.5 U
cis-1,2-Dichloroethene	5	1.4	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.26 J	0.5 U	4.9	0.52
cis-1,3-Dichloropropene	0.4	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	-	-	-	0.5 U	0.5 U
Cyclohexane		0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	-	-	-	0.5 U	0.5 U
Dibromochloromethane		0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	-	-	-	0.5 U	0.5 U
Dibromomethane Dichlorodifluoromethane	5	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	-	_	_	0.5 U	 0.5 U
Difluoroethane (Freon 152a)	5	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	_	_	_	0.5 U	0.5 U
Ethylbenzene	5	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	_	_	_	0.5 U	0.5 U
Hexachlorobutadiene	0.5	-					_	_	_	-	
Isopropylbenzene	5	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	-	-	-	0.5 U	0.5 U
Methyl cyclohexane		0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	-	-	-	0.5 U	0.5 U
Methyl Tertbutyl Ether	-	0.5 U	0.25 J	0.5 U	0.5 U	0.5 U		-	-	0.5 U	0.5 U
Methylene chloride	5	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U		-	-	0.5 U	0.5 U
Propylbenzene sec-Butylbenzene	5 5	_	-	-				-	-	-	-
Styrene	5	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U		_	_	0.5 U	0.5 U
tert-Butylbenzene	5	-	-				_	_	_	-	-
Tetrachloroethene	5	0.56	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	1.5	0.5 U
Toluene	5	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	-	-	-	0.5 U	0.5 U
trans-1,2-Dichloroethene	5	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U		-	-	0.5 U	0.5 U
trans-1,3-Dichloropropene	0.4	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U			. -	0.5 U	0.5 U
Trichloroethene	5	0.98	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	1.9	0.36 J
Trichlorofluoromethane (Freon 11)	5	0.5 U 0.5 U	0.5 U 0.5 U	0.5 U 0.5 U	0.5 U 0.5 U	0.5 U 0.5 U			-	0.5 U 0.5 U	0.5 U 0.5 U
Vinyl chloride Xylene, o	2 5	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U			-	0.5 U	0.5 U
Xylenes (m&p)	5	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U				0.5 U	0.5 U
Xylenes, Total	5	1 U	1 U	1 U	1 U	1 U				1 U	1 U
Calculated Total VOC Detections		3.7 J	0.25 J	0.00 UJ	0.00 U	0.00 UJ	0.00 U	0.26 J	0.00 U	9.2 J	0.88 J
Calculated Total COC Detections		2.9	0.00 U	0.00 U	0.00 U	0.00 U	0.00 U	0.26 J	0.00 U	8.9	0.88 J

Well		N13889 8/16/2021	Q02604 11/4/2021	N05099 1/29/2021	N05099 1/29/2021	N05099 5/18/2021	N05099 8/18/2021	N05099 11/5/2021	N04388 1/29/2021	N04388 5/18/2021	N04388 8/18/2021
Sample Date Sample ID	Great Neck	8/16/2021 IW-N13889-XX	11/4/2021 IW-Q2604-XX	1/29/2021 SW-N5099-XX	1/29/2021 SW-500	5/18/2021 SW-N5099-XX	8/18/2021 SW-N5099-XX	11/5/2021 SW-N5099-XX	1/29/2021 SW-N4388-XX	5/18/2021 SW-N4388-XX	8/18/2021 SW-N4388-XX
Laboratory Sample ID	ARARS	460-240981-30	460-246589-3	460-227520-17	460-227520-20	460-235115-9	460-241354-17	460-247256-3	460-227520-18	460-235115-10	460-241354-18
Sample Type		FS	FS	FS	FD	FS	FS	FS	FS	FS	FS
Analytical Method		8260D	8260D	524.2	524.2	524.2	524.2	524.2	524.2	524.2	524.2
Volatile Organic Compounds (µg/L)		Result Qualifier	Result Qualifier		Result Qualifier			Result Qualifier	Result Qualifier		
1,1,1,2-Tetrachloroethane 1,1,1-Trichloroethane	5	0.5 U	0.5 U	0.5 U 0.5 U	0.5 U 0.5 U	0.5 U 0.5 U	0.5 U 0.5 U	0.5 U 0.5 U	0.5 U 0.5 U	0.5 U 0.5 U	0.5 U 0.5 U
1.1.2.2-Tetrachloroethane	5 5	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,1,2-Trichloro-1,2,2-Trifluoroethane (Freon 113)	5	1.1	0.5 U	2.4	2.2	1.7	1.6	1.5	0.5 U	0.5 U	0.5 U
1.1.2-Trichloroethane	1	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,1-Dichloroethane	5	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,1-Dichloroethene	5	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,1-Dichloropropene	5			0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,2,3-Trichlorobenzene	5			0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,2,3-Trichloropropane	0.04		-	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,2,4-Trichlorobenzene	5	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,2,4-Trimethylbenzene	5			0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,2-Dibromo-3-chloropropane 1,2-Dibromoethane	0.04	0.5 U 0.5 U	0.5 U		-	-	-	-			
1,2-Dibromoetnane 1,2-Dichlorobenzene	0.0006	0.5 U	0.5 U 0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,2-Dichloropenzene 1,2-Dichloroethane	0.6	0.5 U	0.5 U	0.5 U	0.16 J	0.5 U					
1,2-Dichloropropane	0.6	0.5 U	0.5 U	0.19 J 0.5 U	0.16 J	0.5 U					
1,3,5-Trimethylbenzene	5			0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,3-Dichlorobenzene	3	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,3-Dichloropropane	5	'		0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,4-Dichlorobenzene	3	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,4-Dioxane	1					0.2 U				0.2 U	
2,2-Dichloropropane	5		-	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
2,2-Dichloro-1,1,1-trifluoroethane (Freon 123)		1 U	1 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
2-Butanone		2.5 U	2.5 U			-	-	-			
2-Chlorotoluene	5			0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
2-Hexanone 4-Chlorotoluene	-	2.5 U	2.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
4-chlorotoluene 4-iso-Propyltoluene	5 5			0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
4-Methyl-2-pentanone	5	2.5 U	2511	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 0	0.5 0	0.5 U
Acetic acid, methyl ester	-	2.5 U	2.5 U			-	-	-			
Acetone		5 U	5 U			_	_	_			
Benzene	1	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Bromobenzene	5	-		0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Bromochloromethane	5		-	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Bromodichloromethane		0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Bromoform		0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Bromomethane	5	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Carbon disulfide		0.5 U	0.5 U			-					
Carbon tetrachloride	5	0.5 U	0.5 U	0.18 J	0.18 J	0.5 U					
Chlorobenzene Chlorodifluoromethane (Freon 22)	5	0.5 U 1 U	0.5 U 1 U	0.5 U 0.5 U	0.5 U 0.5 U	0.5 U 0.5 U	0.5 U 0.4 J	0.5 U 0.43 J	0.5 U 0.5 U	0.5 U 0.5 U	0.5 U 0.5 U
Chlorodifluoromethane (Freon 22) Chloropentafluoroethane (Freon 115)	-	1 U 5 U	1 U 5 U	0.5 U 0.5 UJ	0.5 UJ	0.5 U 1 U	1 UJ	0.43 J 1 U	0.5 UJ	0.5 U 1 U	0.5 U 1 UJ
Chloroethane	5	0.5 U	05U	0.5 UJ	0.5 UJ	0.5 U	05U	05U	0.5 UJ	05U	0.5 U
Chloroform	7	2.5	0.5 U	0.28 J	0.27 J	0.18 J	0.15 J	0.15 J	0.5 U	0.13 J	0.14 J
Chloromethane	5	0.5 U	0.5 U	0.28 J	0.27 J	0.16 J	0.15 J	0.15 J	0.5 U	0.13 J	0.14 J
cis-1,2-Dichloroethene	5	10	0.5 U	24	23	14	14	15	0.5 U	0.5 U	0.5 U
cis-1,3-Dichloropropene	0.4	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Cyclohexane		0.5 U	0.5 U					-	-	-	
Dibromochloromethane		0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Dibromomethane	5	-	-	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Dichlorodifluoromethane	5	0.5 U	0.5 U	0.5 UJ	0.5 UJ	0.5 U	0.5 U	0.5 U	0.5 UJ	0.5 U	0.5 U
Diffuoroethane (Freon 152a)		1 U	1 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Ethylbenzene Hexachlorobutadiene	5	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Hexachiorobutadiene Isopropylbenzene	0.5 5	0.5 U	- 0.5 U	0.5 U 0.5 U	0.5 U 0.5 U	0.5 U 0.5 U	0.5 U 0.5 U	0.5 U 0.5 U	0.5 U 0.5 U	0.5 U 0.5 U	0.5 U 0.5 U
Methyl cyclohexane	5	0.5 U	0.5 U	U.5 U	U.5 U	0.5 U	U.5 U				
Methyl Tertbutyl Ether	-	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Methylene chloride	5	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Propylbenzene	5	-	-	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
sec-Butylbenzene	5		-	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Styrene	5	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
tert-Butylbenzene	5	-	-	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Tetrachloroethene	5	2.8	0.5 U	5.4	5.3	3.6 J-	3.3	3.4	0.16 J	0.21 J	0.44 J
Toluene	5	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
trans-1,2-Dichloroethene	5	0.5 U	0.5 U	0.13 J	0.15 J	0.17 J	0.5 U				
trans-1,3-Dichloropropene	0.4	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 UJ	0.5 U	0.5 U	0.5 U
Trichloroethene	5	3.9	0.5 U	16	16	9.4	9.3	9.9	0.11 J	0.11 J	0.14 J
Trichlorofluoromethane (Freon 11)	5	0.5 U	0.5 U	0.51	0.47 J	0.5 U	0.32 J+	0.5 U	0.5 U	0.5 U	0.5 U
Vinyl chloride	2	0.5 U 0.5 U	0.5 U	0.5 U 0.5 U	0.5 U	0.5 U 0.5 U	0.5 U 0.5 U	0.5 U 0.5 U	0.5 U 0.5 U	0.5 U 0.5 U	0.5 U 0.5 U
Xylene, o Xylenes (m&p)	5 5	0.5 U	0.5 U	0.5 U 1 U	0.5 U	0.5 U 1 U	0.5 U 1 U	0.5 U 1 U	0.5 U 1 U	0.5 U 1 U	0.5 U 1 U
Xylenes (map) Xylenes, Total	5	0.5 U	0.5 U	-							
Calculated Total VOC Detections		20	0.00 U	50 J	48 J	29 J-	29 J+	30 J	0.27 J	0.45 J	0.72 J
			0.00 U	48	47	29 J-	28	30	0.27 J	0.32 J	0.58 J

Well Sample Date		N04388 8/18/2021	N04388 11/5/2021	N12796 1/29/2021	N12796 5/18/2021	N12796 8/18/2021	N12796 11/5/2021	N12796 11/5/2021	N12999 5/18/2022	N12999 8/18/2021	N12999 11/5/2021
Sample ID	Great Neck	SW-500	SW-N4388-XX	SW-N12796-XX	SW-N12796-XX	SW-N12796-XX	SW-N12796-XX	SW-500	SW-N12999-XX	SW-N12999-XX	SW-N12999-XX
Laboratory Sample ID	ARARs	460-241354-23	460-247256-4	460-227520-19	460-235115-21	460-241354-19	460-247256-5	460-247256-9	460-235115-22	460-241354-20	460-247256-6
Sample Type		FD	FS	FS	FS	FS	FS	FD	FS	FS	FS
Analytical Method		524.2	524.2	524.2	524.2	524.2	524.2	524.2	524.2	524.2	524.2
Volatile Organic Compounds (µg/L) 1.1.1.2-Tetrachloroethane	5	Result Qualifier 0.5 U									
1,1,1-Trichloroethane	5	0.5 U									
1.1.2.2-Tetrachloroethane	5	0.5 U									
1,1,2-Trichloro-1,2,2-Trifluoroethane (Freon 113)	5	0.5 U	0.5 U	0.49 J	0.68	0.65	0.54	0.54	0.5 U	0.5 U	0.5 U
1,1,2-Trichloroethane	1	0.5 U									
1,1-Dichloroethane	5	0.5 U									
1,1-Dichloroethene	5	0.5 U									
1,1-Dichloropropene	5	0.5 U									
1,2,3-Trichlorobenzene	5	0.5 U									
1,2,3-Trichloropropane	0.04	0.5 U									
1,2,4-Trichlorobenzene 1,2,4-Trimethylbenzene	5 5	0.5 U 0.5 U									
1,2-Dibromo-3-chloropropane	0.04		0.5 0		0.5 0	0.5 0		0.5 0	0.5 0	-	0.5 0
1.2-Dibromoethane	0.0006		_	_			_	_	_		-
1,2-Dichlorobenzene	3	0.5 U									
1,2-Dichloroethane	0.6	0.5 U									
1,2-Dichloropropane	1	0.5 U									
1,3,5-Trimethylbenzene	5	0.5 U									
1,3-Dichlorobenzene	3	0.5 U									
1,3-Dichloropropane	5	0.5 U									
1,4-Dichlorobenzene	3	0.5 U									
1,4-Dioxane	1	 0.5 U	0.511	 0.5 U	0.2 U	0.5.11	0511	0511	0.2 U	0511	0.5.11
2,2-Dichloropropane	5		0.0 0		0.5 U	0.0 0	0.0 0	0.0 0	0.5 U	0.0 0	0.0 0
2,2-Dichloro-1,1,1-trifluoroethane (Freon 123) 2-Butanone		0.5 U									
2-Chlorotoluene	5	0.5 U									
2-Hexanone		0.5 0	0.5 0	0.5 0	0.5 0	0.5 0	0.5 0	0.5 0	0.5 0	0.5 0	0.5 0
4-Chlorotoluene	5	0.5 U									
4-iso-Propyltoluene	5	0.5 U									
4-Methyl-2-pentanone	-	-	-						-	-	_
Acetic acid, methyl ester		-	-								
Acetone		-	-					-	-	-	-
Benzene	1	0.5 U									
Bromobenzene	5	0.5 U									
Bromochloromethane	5	0.5 U									
Bromodichloromethane	-	0.5 U									
Bromoform		0.5 U									
Bromomethane Carbon disulfide	5	0.5 U									
Carbon distillide Carbon tetrachloride	5	0.5 U	0.5 U	0.5 U	0.22 J	0.19 J	0.5 U				
Chlorobenzene	5	0.5 U	0.5 U	0.5 U	0.22 J	0.193	0.5 U				
Chlorodifluoromethane (Freon 22)	-	0.5 U	0.5 U	0.32 J	0.5 U	0.39 J	0.37 J	0.38 J	0.5 U	0.34 J	0.5 U
Chloropentafluoroethane (Freon 115)		1 UJ	1 U	0.5 UJ	1 U	1 UJ	1 U	1 U	1 U	1 UJ	1 U
Chloroethane	5	0.5 U									
Chloroform	7	0.13 J	0.5 U	0.2 J	0.24 J	0.21 J	0.18 J	0.19 J	0.5 U	0.5 U	0.5 U
Chloromethane	5	0.5 U	0.19 J	0.5 U	0.5 U	0.5 U	0.5 U				
cis-1,2-Dichloroethene	5	0.5 U	0.5 U	3.7	4.3	4.2	4.1	4.1	0.5 U	1.3	0.5 U
cis-1,3-Dichloropropene	0.4	0.5 U									
Cyclohexane		 0.5 U	 0.5 U	 0.5 U	-		0.5 U	 0.5 U	0.5 U	 0.5 U	- 0.5 U
Dibromochloromethane Dibromomethane	5	0.5 U 0.5 U									
Dibromomethane Dichlorodifluoromethane	5	0.5 U	0.5 U	0.5 U 0.5 UJ	0.5 U						
Difluoroethane (Freon 152a)	5	0.5 U									
Ethylbenzene	5	0.5 U									
Hexachlorobutadiene	0.5	0.5 U									
Isopropylbenzene	5	0.5 U									
Methyl cyclohexane			-	-	-	-					
Methyl Tertbutyl Ether		0.5 U									
Methylene chloride	5	0.5 U									
Propylbenzene	5	0.5 U									
sec-Butylbenzene	5	0.5 U									
Styrene tort Butulhanzana	5	0.5 U 0.5 U									
tert-Butylbenzene Tetrachloroethene	5	0.5 U 0.41 J	0.5 U 0.5 U	0.5 U 6.6 J-	0.5 U 7.9	0.5 U 7.3 J-	0.5 U 6.6	0.5 U 6.9	0.5 U 0.5 U	0.5 U 0.25 J	0.5 U 0.5 U
Toluene	5	0.41 J 0.5 U	0.5 U	6.6 J- 0.5 U	7.9 0.5 U	7.3 J- 0.5 U	0.5 U	0.5 U	0.5 U	0.25 J 0.5 U	0.5 U
trans-1,2-Dichloroethene	5	0.5 U									
trans-1,3-Dichloropropene	0.4	0.5 U	0.5 UJ	0.5 U	0.5 U	0.5 U	0.5 UJ	0.5 UJ	0.5 U	0.5 U	0.5 UJ
Trichloroethene	5	0.5 U	0.5 U	4.6	5.5	5.4 J-	5	5	0.29 J	0.58	0.2 J
Trichlorofluoromethane (Freon 11)	5	0.5 U									
Vinyl chloride	2	0.5 U									
Xylene, o	5	0.5 U									
Xylenes (m&p)	5	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Xylenes, Total	5	-	-	-	-	-	-	-	-		
Calculated Total VOC Detections		0.54 J	0.00 UJ	16 J-	19 J	18 J-	17 J	17 J	0.29 J	2.5 J	0.20 J
Calculated Total COC Detections		0.41 J	0.00 U	15 J-	18	18 J-	16	17	0.29 J	2.1 J	0.20 J

Labo	Sample Date Sample ID		5/18/2021		11/5/2021	5/18/2021	5/18/2021	8/18/2021	11/5/2021
Labo		Great Neck	SW-N13000-XX	8/18/2021 SW-N13000-XX	SW-N13000-XX	SW-N13821-XX	SW-500	SW-N13821-XX	SW-N13821-XX
	ratory Sample ID	ARARs	460-235115-23	460-241354-21	460-247256-7	460-235115-24	460-235115-25	460-241354-22	460-247256-8
I	Sample Type		FS	FS	FS	FS	FD	FS	FS
An	alytical Method		524.2	524.2	524.2	524.2	524.2	524.2	524.2
Volatile Organic Compounds (ıg/L)			Result Qualifier		Result Qualifier			
1,1,1,2-Tetrachloroethane		5	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,1,1-Trichloroethane		5	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,1,2,2-Tetrachloroethane		5	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,1,2-Trichloro-1,2,2-Trifluoroethan	e (Freon 113)	5	0.7	0.71	0.32 J	0.24 J	0.24 J	0.5 U	0.33 J
1,1,2-Trichloroethane		1	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,1-Dichloroethane		5	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,1-Dichloroethene		5	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,1-Dichloropropene		5	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,2,3-Trichlorobenzene		5	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,2,3-Trichloropropane		0.04	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,2,4-Trichlorobenzene		5	0.5 U	0.5 U	0.5 U	0.5 U 0.5 U	0.5 U	0.5 U	0.5 U
1,2,4-Trimethylbenzene		5	0.5 U	0.5 U	0.5 U		0.5 U	0.5 U	0.5 U
1,2-Dibromo-3-chloropropane		0.04	-	-		-	-	-	-
1,2-Dibromoethane		0.0006	-						
1,2-Dichlorobenzene		3	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,2-Dichloroethane		0.6	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,2-Dichloropropane		1	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,3,5-Trimethylbenzene		5	0.5 U	0.5 U 0.5 U	0.5 U	0.5 U 0.5 U	0.5 U 0.5 U	0.5 U 0.5 U	0.5 U
1,3-Dichlorobenzene		3	0.5 U		0.5 U				0.5 U
1,3-Dichloropropane		5	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,4-Dichlorobenzene		3	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,4-Dioxane		1	0.2 U		. 	0.2 U	0.2 U	0511	
2,2-Dichloropropane		5	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.0 0	0.5 U
2,2-Dichloro-1,1,1-trifluoroethane (Freon 123)		0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
2-Butanone		-	-					-	-
2-Chlorotoluene		5	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
2-Hexanone			-					-	-
4-Chlorotoluene		5	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
4-iso-Propyltoluene		5	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
4-Methyl-2-pentanone									-
Acetic acid, methyl ester			-		-		-		-
Acetone			-						-
Benzene		1	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Bromobenzene		5	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Bromochloromethane		5	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Bromodichloromethane			0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Bromoform			0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Bromomethane		5	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Carbon disulfide									-
Carbon tetrachloride		5	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Chlorobenzene		5	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Chlorodifluoromethane (Freon 22)			0.5 U	0.7	0.84	0.5 U	0.5 U	0.5 U	0.5 U
Chloropentafluoroethane (Freon 1	5)		1 U	1 UJ	1 U	1 U	1 U	1 UJ	1 U
Chloroethane		5	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Chloroform		7	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Chloromethane		5	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.21 J	0.5 U
cis-1,2-Dichloroethene		5	11	13	7	4.8	4.2	0.5 U	6.6
cis-1,3-Dichloropropene		0.4	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Cyclohexane			-	-					
Dibromochloromethane			0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Dibromomethane		5	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Dichlorodifluoromethane		5	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Difluoroethane (Freon 152a)			0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Ethylbenzene		5	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Hexachlorobutadiene		0.5	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Isopropylbenzene		5	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Methyl cyclohexane			-	-	-				
Methyl Tertbutyl Ether			0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Methylene chloride		5	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Propylbenzene		5	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
sec-Butylbenzene		5	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Styrene		5	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
tert-Butylbenzene		5	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Tetrachloroethene		5	2.1	2.2	1.3	1.1	0.99	0.5 U	1
Toluene		5	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
trans-1,2-Dichloroethene		5	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
trans-1,3-Dichloropropene		0.4	0.5 U	0.5 U	0.5 UJ	0.5 U	0.5 U	0.5 U	0.5 UJ
Trichloroethene		5	3	3.5	2.1	1.2	1	0.5 U	1.5
Trichlorofluoromethane (Freon 11)		5	0.5 U	0.5 UJ	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Vinyl chloride		2	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Xylene, o		5	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Xylenes (m&p)		5	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Xylenes, Total		5	-	-	-	-			
			17	20 J	12 J	7.3 J	6.4 J	0.21 J	9.4 J
Calculated Total VOC Detections									

Table 3-4

Volatile Organic Compound Analytical Results 2021 Annual Groundwater Monitoring Event Former Unisys Site, Lake Success, New York

Notes: J	Result is less than the Reporting Limit but greater than or equal to the Method Detection Limit and the concentration is an approximate value
J-	Result is less than the Reporting Limit but greater than or equal to the Method Detection Limit and the concentration is an approximate value
J+	Result is less than the Reporting Limit but greater than or equal to the Method Detection Limit and the concentration is an approximate value
NJ	Tentatively Identified Compound
U	Compound not detected above the indicated method reporting limit
UJ	The analyte was analyzed for, but was not detected; the reported detection limit is approximate
R	Result is rejected
D	The sample results was obtained from a dilution
FS	Normal Field Sample
FD	Field Duplicate
Bold	Detected compound concentrations shown in bold text
	Shading indicates excedance of ARARs
VOC	Volatile organic compound
Total VOC	Concentrations below 100 µg/L were rounded to two significant digits. Total concentrations at 100 µg/L or above were rounded to the nearest integer
Total COCs	Total compounds of concern concentrations - PCE, TCE, cis-1,2-DCE, and Freon 113
μg/L	micrograms per liter
ARAR	Applicable or Relevant and Appropriate Requirement
	No ARAR exists for this compound
	The compound was not analyzed
	In May 2021, 1,4-dioxane was analyzed using method 8270E SIM
	Prepared by: EMP
	Checked by: EAW

APPENDICES

Appendix A – Field Data Records

Location ACTIVITY WATER LE INITIAL DEP TO WAT FINAL DEP TO WAT DRAWDOV VOLUM	Former Unisy Lake Success START 110	s, New York		FIELD SAM	DI E NI IMPED	MU	1-31GL-	v .		
MATER LE INITIAL DEP TO WAT FINAL DEP TO WAT DRAWDOV					LLE MOMBEN	,	3106	1	JOB No. 3	617187446
WATER LE INITIAL DEP TO WAT FINAL DEP TO WAT DRAWDOV	START 110				SITE TYPE				DATE	1/29/20
WATER LE INITIAL DEP TO WAT FINAL DEP TO WAT DRAWDOV		S END	17-35	SAMPLE TI	ME	12	30			
FINAL DEP TO WAT DRAWDOW VOLUM	VEL / PUMP S			REMENT POINT		PROTECTIVE			CASING / WELL	0.49
DRAWDOV VOLUM		150		P OF WELL RISER P OF PROTECTIVE	CASING (CASING STIC FROM GROU		FT.	DIFFER. WELL DIAM.	4= IN
VOLUM	1010	.47	(TOR) SCREE			AMBIENT AIR		PPM	WELL INTERGR	RITY:
	9.74		LENGT	1.4.1		NOUTH		PPM		<u> </u>
		h} or x 0.65 {4-ind		OF DRAWDOWN V		PRESSURE TO PUMP	50	PSI	CASING LOCKED COLLAR	
TOTAL VO PURG (purge vo	ED .		EAL e duration (minu	tes) x 0.00026 gal/mi		REFILL	20		DISCHARGE SETTING	10
PURGE DA	TA			SPECIFIC				URP		
TIME	DEPTH TO WATER (ft) < 0.33 ft	PURGE RATE (ml/m) ≤ 500 ml/m	TEMP. (deg. c) ≤ 3%	CONDUCTANCE (umho/cm) ≤ 3%	pH (units) ≤ 0.1 units	DISS. O2 (mg/L) ≤ 10%	TURBIDITY (ntu) ≤ 50 ntu	REDOX (mv) ≤ 10 units	С	OMMENTS
1113	86.50	Start	- Dun	2						
1130	86.48	135	13.0	0.532	6.9	7,2	2,3	199		
1140	86,48	135	13.4	0.551	6.7	3.9	1.9	198		
1145	86.48	125	13.6	0.548	6.7	3.6	1,6	197		
1150	86.48	130	13.6	0.567	6.6	4.5	819	199		
1155	86.47	130	13.5	0.659	6.6	5,4	9.2	200		
1200	86.47	130	13.5	0.695	6.6	5.7	4.4	199		
1205	86,47	125	13.6	0.702	6.6	5.9	2.8	199		
	86.47	120	13.4	0.707	6.6	5.9	2.60	199		
1215	86.47	120	13.4	0.705	6.6	6.0	1.7	199		
1220	86.47	120	13.4	0.705	6.6	6,0	2.0	200		
TYPE OF GEO	PUMP (peristalt O BLADDER DDER	tic)		NG SITY POLYETHYLEN SITY POLYETHYLEN	NE X	OF PUMP MAP Polyvinyl chlor STAINLESS S OTHER	ide		TYPE OF BLADE TEFLON Other	DER MATERIAL
Check if So			, NUI	THOD MBER EPA-8260C	ME	RVATION THOD 4 DEG. C	VOLUME REQUIRED 3 X 40 mL	SAMPLE COLLECTE	ED Check if collecte	ed
		eon 11, Freon 22 5,Freon 123, Fre		EPA-524.2	HCL /	4 DEG. C	3 X 40 mL			
Chlo Bron				EPA 4500 CL-B EPA 300.0	4 DEG		1 X 250 mL 1 X 250 mL			
Purge Obs	ervations					COMMENTS				
Purge Water Conatinerized	d (yes) no	Q. II	Number of Gallo Generated	ons <u>≈ 2.4</u>	D V	1 plicas nw-5 * 1/29/	H 30 30 1301	2	an	nec

FIELD I	DATA REC	ORD - LC	W FLOW	GROUNDWA	ATER SA	MPLING			
PROJECT	Former Unisy	s Facility		FIELD SAM	PLE NUMBE	R MW	-31M1	C-XX	JOB No. 3617187446
Location	Lake Success	s, New York			SITE TYPE	E			DATE 1/29/20
ACTIVITY	START / 2-3	35 EN	D 1430	SAMPLE TI	ME	14	10		
WATER LE	EVEL / PUMP S	SETTINGS		REMENT POINT		PROTECTIVE CASING STIC	_		CASING/WELL 0.45 FT
INITIAL DEF	PTH 87	7,23		P OF PROTECTIVE	CASING	(FROM GROU		FT	WELL .
FINAL DEF			WELL DEP (TOR)	TH (1415 TO 6	FT FT	PID AMBIENT AIR	-	PPM	DIAM. 4- IN
TO WAT		7.25	SCREE			PID WELL			WELL INTERGRITY: YES NO N/A
DRAWDO VOLU	ME 0.0		GAL	An Estate Street	FT	MOUTH		PPM	CAP CASING Z
1 7 7 0	final x 0.16 {2-inc			OF DRAWDOWN V OTAL VOLUME PUR		PRESSURE TO PUMP	50) PSI	LOCKED U
PURC	GED 4		GAL	tes) x 0.00026 gal/mi	Wilitar)	REFILL SETTING	20		DISCHARGE SETTING
PURGE DA		per minute) x tin	ne duration (minu	SPECIFIC	minter)	SETTING		0,20	SETTING
TIME	DEPTH TO WATER (ft) < 0.33 ft	PURGE RATE (ml/m) ≤ 500 ml/m	TEMP. (deg. c) ≤ 3%	CONDUCTANCE (umho/cm) ≤ 3%	pH (units) ≤ 0.1 units	DISS. O2 (mg/L) ≤ 10%	TURBIDITY (ntu) ≤ 50 ntu	REDOX (mv) ≤ 10 units	COMMENTS
1244	87.73	Sout	Durge		1.7				
1300	87.76	140	13,7	0.533	7.6	3,2	0.5	186	
1310	87.26	130	13.3	0.534	7.6	1.8	0.2	185	
1315	87.25	120	13,3	0.534	7.6	1.8	0.2	186	
1320	87.76	130	13,2	01333	7.7	1,7	0.3	186	
1325	87.26	140	13.4	0,523	7.7	1.7	0.4	184	
1330	87.75	130	13.4	0.511	7.9	1.8	1.5	180	
1335	87.76	130	13.5	0,528	8.4	1.9	3.3	173	
1340	87.25	135	13.5	0.620	9.1	2.0	1.9	167	
1345	87.75	135	13.5	0.695	9.5	2.0	1.2	163	
1350	87,25	130	13,5	0.719	9.6	2.0	1.0	160	
1400	87.25	135	13.6	0,715	9,6	2.0	1.4	159	
	NT DOCUMEN' OF PUMP	IATION	TYPE OF TUBI	NG	TYP	E OF PUMP MA	ATERIAL		TYPE OF BLADDER MATERIAL
	OPUMP (peristal	tic)	X LOW DEN	SITY POLYETHYLE	NE _	Polyvinyl chlor	ride		TEFLON
SM	CO BLADDER		HIGH DEN	ISITY POLYETHYLE	NE X	STAINLESS	STEEL	911	Other
	ADDER		OTHER_			OTHER			
and the second s	CAL PARAMET Scheduled for Collect			THOD		SERVATION METHOD	VOLUME	SAMPLE	ED Check if collected
	Cs + TIC plus, Fr on 113, Freon 11		2, US	EPA-8260C	HCL	_/4 DEG. C	3 X 40 mL		
	Cs + TIC plus, Fr on 113, Freon 11			SEPA-524.2	HCL	/4 DEG. C	3 X 40 mL		
VChl	oride	5,F1e011 125, F16	US	EPA 4500 CL-B		EG. C	1 X 250 mL		
Bro	mide		US	SEPA 300.0	4 Di	EG. C	1 X 250 mL		
Purae Oh	servations				1	COMMENTS	College	red in	s/msD
Purge Wate	er 🔿		Number of Gall	ons ≈ ⊃ ¬	14	S 31h			
Conatinerize	ed (yes) no		Generated	011		1			amec
	^	0	IA.			3164	5 Pahi	4	Office
SIGNATUR	E: Jem	Kan	7//			1	100		
	11 0	1	101						

FIELD I	TELD DATA RECORD - LOW FLOW GROUNDWATER SAMPLING											
PROJECT	Former Unisy	s Facility		FIELD SAM	PLE NUMBER	mw	-31ML-)	XX	JOB No. 3617187446			
Location	Lake Succes	s, New York			SITE TYPE				DATE //29/20			
ACTIVITY	START 093	5 EN	0 1105	SAMPLE TI	ME	110	0					
	VEL / PUMP S		MEASU	REMENT POINT		PROTECTIVE			CASING/WELL 0 112			
INITIAL DEF	PTH 80	1.24	FT TO	P OF WELL RISER P OF PROTECTIVE	CASING	CASING STIC (FROM GROU		FT	DIFFER. 0.43 FT			
FINAL DEF		1,24	WELL DEP (TOR) FT SCREE	CHISTORI	CANFT	PID AMBIENT AIR PID WELL		РРМ	WELL INTERGRITY:			
DRAWDO VOLU	0.5 2.7		GAL	213	FT	MOUTH PRESSURE		- PPM	CAP CASING LOCKED			
TOTAL V	OL. 3	3 (GAL TO T	OTAL VOLUME PUR	RGED	TO PUMP REFILL SETTING	30	101				
PURGE DA		per minute) x un	ie duration (minu	SPECIFIC	miller)	SETTING	54.	ORP	SETTING			
TIME	DEPTH TO WATER (ft) < 0.33 ft	PURGE RATE (ml/m) ≤ 500 ml/m	TEMP. (deg. c) ≤ 3%	CONDUCTANCE (umho/cm) ≤ 3%	pH (units) ≤ 0.1 units	DISS. O2 (mg/L) ≤ 10%	TURBIDITY (ntu) ≤ 50 ntu	REDOX (mv) ≤ 10 units	COMMENTS			
0948	89.24	Start	- Pura	e								
1010	89.41	175	13,6	0,205	6.6	4,5	0,2	321				
1020	89,43	196	13.6	0.200	616	5.9	0.3	213				
1025	89.43	190	13.6	0,200	6,6	6.3	0.9	210				
1030	89.42	190	13.6	00-42-00	6.6	6.5	0.3	208				
1035	89,40	190	13,6	0,200	6.6	6,6	0.4	206				
1040	89.37	195	13.6	0.199	6.6	6.7	0.6	204				
1045	89.33	205	13.6	01199	6.6	6.7	015	204				
1050	89.29	190	13.7	0.199	6.5	6.7	1.1	203				
1055	89,24	200	13.7	0.199	6.5	6.7	1.5	202				
TYPE O GEC SMC X BLA ANALYTIC Check if S VOC Frec	PUMP (peristalt CO BLADDER AL PARAMET cheduled for Collection 113, Freon 111, Freon I11, Freon III, Freon III, Freon III, Freon III, Freon III,	ERS on eon 11, Freon 22 5, Freon 123, Fre eon 11, Freon 22	HIGH DENS OTHER ME NUI S. USB on 152a USB on 152a	NG SITY POLYETHYLEN FHOD MBER EPA-8260C EPA-524.2	PRESI ME	Polyvinyl chlor STAINLESS: OTHER ERVATION THOD 4 DEG. C	ride	SAMPLE	TYPE OF BLADDER MATERIAL TEFLON Other ED Check if collected			
Purge Obs	servations	Zulelb		EPA 300.0	4 DEC	COMMENTS	1 X 250 mL		amec			
F	DRs_Blank/LF C	Callahan				7		-11	Buildy 1/21/2020			

FIELD	DATA RE	CORD - LO	OW FLOW	GROUNDW	ATER S	AMPLING	3		
PROJECT	Former Unis				MPLE NUMBE	[W	-43MU	-y X	JOB No. 3617187446
Location	Lake Succes	ss, New York			SITE TYP	EN	1111-43	MO	DATE 1/29/1.0
ACTIVITY	START OF	53 EN	in 1030	SAMPLE T	IME	1030			DATE TIPE
WATER LI	EVEL / PUMP	SETTINGS		REMENT POINT		PROTECTIV			CASING / WELL
INITIAL DE		,53		P OF WELL RISER P OF PROTECTIVE	CASING	CASING STI (FROM GRO		U FT	DIFFER. FT
FINAL DE		3,53	(TOR)	122	8 FT	AMBIENT AI	R	PPM	DIAM. 4 IN WELL INTERGRITY:
DRAWDO VOLU	ME	ch} or x 0.65 {4-in	GAL SCREE	1 [10]	FT	PID WELL MOUTH	-	РРМ	CAP CASING NO N/A
TOTAL V	OL.	2 73		OF DRAWDOWN V OTAL VOLUME PUR		PRESSURE TO PUMP REFILL	60		LOCKED COLLAR COLLAR
(purge v	olume (milliliters			es) x 0.00026 gal/mi	illiliter)	SETTING	20		DISCHARGE SETTING / C
PURGE DA	DEPTH TO WATER (ft) < 0.33 ft	PURGE RATE (ml/m) ≤ 500 ml/m	TEMP. (deg. c) ≤ 3%	SPECIFIC CONDUCTANCE (umho/cm) ≤ 3%	pH (units) ≤ 0.1 units	DISS. O2 (mg/L) ≤ 10%	TURBIDITY (ntu) ≤ 50 ntu	REDOX (mv) ≤ 10 units	COMMENTS
1000	93,53	350	11.18	0.567	7.2.7	0.67	5.76	53.3	
1005	93,52	300	11.2	0.566	7.17	0.56	4.71	60.6	
1010	93.52	300	11,3	6,575	7.06	2,86	4,13	78.8	
1015	93,53	200	11,3	0.574	7,07	4.48	3,94	89,2	1
10 20	99,53	300	11,3	0.571	7,00	5.06	4.90	97.7	/
1025	93,55	300	11,3	0.569	6,98	5,29	3.94	1021	
1030	4 3 ,53	300	11.3	0.569	6,96	5,45	5,27	107.2	Stop purging
						127.5	1 . "		- 4 7 3 3
						1			
FOLUDATE	NT DOCUMEN		-16		- 14	1 -			No.
TYPE O	F PUMP DPUMP (peristal) CO BLADDER ADDER			IG ITY POLYETHYLEN SITY POLYETHYLEI	NE _	POLYVINY CHIO	ride		YPE OF BLADDER MATERIAL TEFLON Other
ANALYTIC	AL PARAMET			0.10		La Const	- 1	_	to the
Voc	on 113, Freon 11	eon 11, Freon 22 5,Freon 123, Fre eon 11, Freon 22	2, NUM USE on 152a	HOD MBER PA-8260C	HCL	ERVATION ETHOD /4 DEG. C	VOLUME REQUIRED 3 X 40 mL	SAMPLE	D Check if collected
	on 113, Freon 11 oride	5,Freon 123, Fre		PA 4500 CL-B	4 DE	G.C	1 X 250 mL	N	
Bron	mide			PA 300.0	4 DE		1 X 250 mL		
Purge Obs	ervations					COMMENT	S		
Purge Water Conatinerize	ed (ve)s no		Number of Gallo Generated	~2.5	-	MSIA Faken	1SD S here	Sample	amec
SIGNATURE	End.	· Puc	cio		29				

FIELD	DATA REC	CORD - LC	W FLOW	GROUNDWA	ATER SA	MPLING	i		
PROJECT	Former Unis	ys Facility		FIELD SAM	IPLE NUMBER	MW	-43MI	- XX	JOB No. 3617187446
Location	Lake Succes	s, New York		7 00	SITE TYPE	MI	W-43M	II	DATE 1/29/20
ACTIVITY	START 110)5 EN	0 1145	SAMPLE T	IME	200			
WATER L	EVEL / PUMP	SETTINGS		REMENT POINT		PROTECTIVE			CASING / WELL FT
INITIAL DE TO WA		3,67	FT WELL DEP	P OF WELL RISER P OF PROTECTIVE	CASING	CASING STIC (FROM GROUPID) FT	WELL IN IN
FINAL DE TO WA		3.68	(TOR) FT SCREE	1	FT	AMBIENT AIR		PPM	WELL INTERGRITY: YES NO N/A
DRAWDO VOLU (initial -	JME 5, sinal x 0.16 (2-inc		GAL		FT OLUME	MOUTH PRESSURE	16	PPM	CASING LOCKED
TOTAL PUR	VOL.	.51	GAL O	OOISS		TO PUMP REFILL SETTING	20)	DISCHARGE SETTING
PURGE D		per minute) x tin	ne duration (minu	tes) x 0.00026 gal/m SPECIFIC	illiliter)	SETTING			SETTING
TIME	DEPTH TO WATER (ft) < 0.33 ft	PURGE RATE (ml/m) ≤ 500 ml/m	TEMP. (deg. c) ≤ 3%	CONDUCTANCE (umho/cm) ≤ 3%	pH (units) ≤ 0.1 units	DISS. O2 (mg/L) ≤ 10%	TURBIDITY (ntu) ≤ 50 ntu	REDOX (mv) ≤ 10 units	COMMENTS
1105	93,67	300	11,2	0,446	6.52	4.28	6,25	151.6	
1110	93,67	300	11.4	0,451	6.41	1.56	6.24	197.8	
1115	93.68	300	11.4	0.447	6,39	1,05	6,20	193.7	7
1120	93.68	300	11.4	9,447	6,43	2,00	6,18	190,4	!
1/25	93,64	300	11.5	0.450	6,62	6.00	5,99	199.3	
1130	93.66	350	11.4	0.551	6.65	7.45	5,85	203.4	
1135	93.67	300	11.5	0.612	6,65	2.03	5,98	2019	
1140	93,67	300	11.4	0.621	6,65	8,23	6.04	200,5	
1145	93,68	300	11.4	0.624	6.66	8,32	6,13	199.6	Stop puraina
12000			1		-				11000
00					Title W.				
					1				
TYPE	NT DOCUMEN OF PUMP OPUMP (peristal		TYPE OF TUBI	NG SITY POLYETHYLEI	_	E OF PUMP M			TYPE OF BLADDER MATERIAL TEFLON
	ICO BLADDER ADDER		HIGH DEN OTHER	SITY POLYETHYLE	NE X	STAINLESS OTHER	STEEL	_	Other
Check if	CAL PARAMET Scheduled for Collect CCs + TIC plus, Fr con 113, Freon 11	reon 11, Freon 22	2, US	THOD MBER EPA-8260C	M	ERVATION ETHOD /4 DEG. C	VOLUME REQUIRED 3 X 40 mL	SAMPLE COLLECTE	ED Check if collected
Fre	Cs + TIC plus, Freon 11		eon 152a	EPA-524.2		/ 4 DEG. C	3 X 40 mL		
□ Bro	loride omide			EPA 4500 CL-B EPA 300.0		G. C G. C	1 X 250 mL 1 X 250 mL		
				*	14				
Purge Ob	servations					COMMENT	s		
Purge Wate Conatineriz	er ed ves no	- 11	Number of Gallo Generated	4					amec
0101117110	- /112	1 - 1	11000						

FIELD I	DATA REC	ORD - LO	W FLOW	GROUNDWA	TER SA	MPLING			
PROJECT	Former Unisy	s Facility		FIELD SAM	PLE NUMBER	mes	145M	u	JOB No. 3617187446
Location	Lake Succes	s, New York			SITE TYPE				DATE 012920
ACTIVITY	START OG	30 ENI	1200	SAMPLE TI	ME	110	06		
WATER LE	VEL / PUMP S	SETTINGS		REMENT POINT		PROTECTIVE	NAME OF	1 0	SING/WELL NA FT
INITIAL DEF	TER 16	7.01		P OF WELL RISER P OF PROTECTIVE	CASING	(FROM GROUPID	JND) /V/	FT	ELL 4:0 IN
FINAL DEI	PTH TER 16	7.21	(TOR) FT SCREE	1289	FT	AMBIENT AIR		7 PPM W	ELL INTERGRITY:
DRAWDO VOLU (initial -	ME	O, 13 (GAL LENGT			MOUTH PRESSURE	NA 90	(CAP YES NO N/A CASING OCKED X
TOTAL V	GED		GAL	OTAL VOLUME PUR		TO PUMP REFILL SETTING	22	0	SCHARGE Z.O
PURGE DA		per minute) x tin	ne duration (minu	SPECIFIC 1	illiter)	SETTING			ETTING
TIME	DEPTH TO WATER (ft) < 0.33 ft	PURGE RATE (ml/m) ≤ 500 ml/m	TEMP. (deg. c) ≤ 3%	CONDUCTANCE (umbo/em) ≤ 3%	pH (units) ≤ 0.1 units	DISS. O2 (mg/L) ≤ 10%	TURBIDITY (ntu) ≤ 50 ntu	REDOX (mv) ≤ 10 units	COMMENTS
1025	167.17	150	12.2	0.409	6.18	2.53	6.26	8,3	
1030	167.20	150	12.2	0,410	6:17	1,28	7.05	-50,0	
1035	167.21	150	12.1	0,413	6,15	0.95	8,43	-59.2	
1040	167.21	150	12:0	0.408	6.09	0.80	14.7	-58.8	
1045	167.21	150	12.1	0.404	6.07	0.69	26.2	-65.7	
1050	167,21	150	12.0	0.387	5.99	0.43	31,4	-71.2	
1055	167,21	150	12.1	0.399	5.90	0.29	39,9	-70.8	
1100	167,21	150	12.2	0.402	5.87	0.27	42.6	-72.0	
1105	167.21	150	12,2	0,405	5.87	0.25	47.8	-75.1	
1106	Cour	CT 54	MPLES			9.			
WAT	ER HA	5 0157	DNCT	AMBER	TIN	7.			
	NT DOCUMEN					-			
	F PUMP	w.s.	TYPE OF TUBI			E OF PUMP M	1.00		PE OF BLADDER MATERIAL
	OPUMP (peristali	tic)		SITY POLYETHYLEN		Polyvinyl chlo STAINLESS			EFLON ther
	ADDER		OTHER_			OTHER			
Check if S			2, US	THOD MBER EPA-8260C	M	ERVATION ETHOD / 4 DEG. C	VOLUME REQUIRED 3 X 40 mL	SAMPLE COLLECTED	Check if collected
Free	on 113, Freon 11	eon 11, Freon 22 5,Freon 123, Fre		EPA-524.2	HCL	/ 4 DEG. C	3 X 40 mL		
Broi	oride mide			EPA 4500 CL-B EPA 300.0	4 DE		1 X 250 mL 1 X 250 mL		DUP COLLECTED AS MW-501
Purge Obs	servations				7	COMMENTS			
	ed ves no	EP. A	Number of Gallo Generated	2.2			AIN PUT SADBOX D/MIS-		amec

FIELD	DATA REC	CORD - LC	OW FLOW	GROUNDW	ATER SA	MPLING	3			
PROJECT	Former Unis	ys Facility		FIELD SAM	MPLE NUMBE	R	1W451	MI	JOB No.	3617187446
Location	Lake Succes	s, New York			SITE TYP	E			DATE	012920
ACTIVITY	START /2	OG EN	D 1355	SAMPLE T	IME	131	1			
WATER L	EVEL / PUMP	SETTINGS		JREMENT POINT OP OF WELL RISER		PROTECTIV			CASING / WE	
INITIAL DE TO WA	PTH /6	7.67	FT WELL DEP	P OF PROTECTIVE	CASING	CASING STI (FROM GRO	UND)	A FT	WELL	110
FINAL DE TO WA	12	7.85	(TOR) FT SCREE	30	FT	PID AMBIENT AII PID WELL	.,	A PPM	DIAM. WELL INTER	GRITY:
DRAWDO VOLU (initial -			GAL LENGT	OF DRAWDOWN V		MOUTH PRESSURE	90	FFIM	CAP CASING LOCKED	YES NO N/A
TOTAL \ PUR(GED /		GAL	OTAL VOLUME PUI		TO PUMP REFILL SETTING	22.		COLLAR DISCHARGE SETTING	8.0
PURGE DA	ATA		7,450	SPECIFIC						
TIME	DEPTH TO WATER (ft) < 0.33 ft	PURGE RATE (ml/m) ≤ 500 ml/m	TEMP. (deg. c) ≤ 3%	CONDUCTANCE (umho/cm) ≤ 3%	pH (units) ≤0.1 units	DISS. O2 (mg/L) ≤ 10%	TURBIDITY (ntu) ≤ 50 ntu	REDOX (mv) ≤ 10 units		COMMENTS
1235	167.85	150	12:0	0.184	6,52	3.56	0.78	80.3	3	
1240	167.85	150	12.1	0.182	6.53	1.71	0,80	90,5	5	
1245	167.85	150	12.1	0.179	6.0	1,44	0.82	96.7	PHO	5.50
1250	167.85	150	12.0	0,176	6,47	1.01	0.86	107.9	7	
1255	167.85	150	12,1	0.175	6,44	0,95	0.81	107.2	3	
1300	167.85	150	12.2	0.174	6,42	0.83	0.77	107,7	1	
1305	167.85	150	12.2	0,174	6.43	0,80	0.75	107.5	5	
1310	167.85	150	12.2	0.175	6,43	0,77	0.74	107.7	7	
1311	Colle	CT SA	MPLE	5						
TYPE O GEO SMO X BLA	NT DOCUMENT OF PUMP DPUMP (peristalt) CO BLADDER ADDER CAL PARAMET	(c)		NG BITY POLYETHYLEN BITY POLYETHYLEN	IE _	E OF PUMP M Polyvinyl chlo STAINLESS OTHER	ride		TYPE OF BLAI TEFLON Other	DDER MATERIAL
Check if S	cheduled for Collection Cs + TIC plus, Free on 113, Free n 115 Cs + TIC plus, Fre on 113, Free n 115	on eon 11, Freon 22, 5,Freon 123, Freo eon 11, Freon 22,	, NUM USE on 152a , USE on 152a	THOD MBER EPA-8260C EPA-524.2	HCL /	ERVATION ETHOD 4 DEG. C	VOLUME REQUIRED 3 X 40 mL 3 X 40 mL	SAMPLE	D Check if colle	ricted
Bron				EPA 300.0	4 DEC		1 X 250 mL			
Purge Obs Purge Water Conatinerize	d ves no		Number of Gallo Generated	ns 1.95	12	COMMENTS 420 B	EGIN /	PUNGE		nec

FIELD	DATA REC	CORD - LC	W FLOW	GROUNDW	ATER SAM	IPLING	;			
PROJECT	Former Unis	ys Facility		FIELD SAM	MPLE NUMBER	MU	1-46N	II-XX	JOB No.	3617187446
Location	Lake Succes	s, New York			SITE TYPE	MI	N-46,	MI	DATE	1/3\$120
ACTIVITY	START 16/	8 EN	D	SAMPLE T	IME					
WATER L	EVEL / PUMP S	SETTINGS		REMENT POINT		ROTECTIV			CASING / WE	
INITIAL DE TO WA	1 6	19,10	FT TC	P OF PROTECTIVE	CASING (F	ROM GRO		O FT	WELL	FT FT
FINAL DE TO WA		19,12	WELL DEP (TOR) FT SCREE	[20,	Z FT A	ID MBIENT AII ID WELL	3	PPM	WELL INTER	
DRAWDO VOLU	11 11 1		LENGT GAL	1 1 1 1	FT M	OUTH	// 0	РРМ	CAP CASING	YES, NO N/A
TOTAL V	/OL. [90		OTAL VOLUME PUI	RGED TO	O PUMP	40	PSI	LOCKED COLLAR DISCHARGE	7 =
(purge v	olume (milliliters			tes) x 0.00026 gal/m		ETTING	126		SETTING	10
PURGE DA	DEPTH TO WATER (ft) < 0.33 ft	PURGE RATE (ml/m) ≤ 500 ml/m	TEMP. (deg. c) ≤ 3%	SPECIFIC CONDUCTANCE (umho/cm) ≤ 3%	pH (units) ≤ 0.1 units	DISS. O2 (mg/L) ≤ 10%	TURBIDITY (ntu) ≤ 50 ntu	REDOX (mv) ≤ 10 units		COMMENTS
1630	149.10	200	12.0	0.222	6.97	7.73	107	371		
1635	149.12	200	12.0	0.27.1	6.83 4	1.11	0.71	534		
1640	149,09	200	12.1	0.221	6.685	02	0.53	75,0)	
1645	149,11	200	12.1	0,218	6.635	7.27	0.68	89.5	-	
1650	149,10	200	12.2	0,210	G.62=	738	0.52	1020		
1655	149.11	200	12.1	0,209	6.61 3	5,43	0,50	105.7	7	
1700	149.12	200	12.1	0,209	6.615	5,41	0.64	109,0)	
				3.						
	1		N =	100		-				
	1.	-								
		100								
		(w)p	T	,						
TYPE O	NT DOCUMENT OF PUMP OPUMP (peristalt		TYPE OF TUBIN	IG SITY POLYETHYLEN		F PUMP M			YPE OF BLAI	DDER MATERIAL
	CO BLADDER ADDER	,		SITY POLYETHYLE	NE X S	TAINLESS THER			Other	
Check if S	cheduled for Collections + TIC-plus, Fron 113, Freon 115	on eon 11, Freon 22	. USE	THOD MBER EPA-8260C	PRESER METI HCL/4	HOD	VOLUME REQUIRED 3 X 40 mL	SAMPLE COLLECTE	Check if colle	cted
voc	Cs + TIC plus, Fron 113, Freon 115	eon 11, Freon 22	USE	EPA-524.2	HCL/4	DEG. C	3 X 40 mL		,	
☐ Bron	oride mide			PA 4500 CL-B PA 300.0	4 DEG. 4 DEG.		1 X 250 mL 1 X 250 mL			
Purge Obs			Number of Gallo	ne 7	C	OMMENTS	3			
Conatinerize	ed (yes no		Generated							
		0			4				a r	nec
CICNATUR	funila.	Purc	(0)						35.5	

FIELD	DATA RE	CORD - L	OW FLOW	GROUNDW	ATER SA	MPLING	3				
PROJECT	Former Unis	sys Facility		FIELD SA	MPLE NUMBE	R Mh	1-46ML	-XX	JOB No.	3617187446	
Location	Lake Succes	ss, New York			SITE TYP	E MU	N-461	nL	DATE	01312	
ACTIVITY	START /6	00 EN	ND 1835	SAMPLE	TIME		806				
WATER LI	EVEL / PUMP	SETTINGS		JREMENT POINT		PROTECTIV			CASING / WE	IL A/A	
INITIAL DE	PTH TER /	50.15	FT	OP OF WELL RISER OP OF PROTECTIVE	CASING	CASING STI (FROM GRO		A FT	DIFFER. WELL	NA NA	FT
FINAL DEI	PTH TER 15	0.20	WELL DEP (TOR) FT	1363	FT	PID AMBIENT AI	R N	4 PPM	DIAM. WELL INTER	4.0 GRITY:	IN
DRAWDO VOLU	IME U,	0325 ch} or x 0.65 {4-in	GAL SCREE	н _ 10	FT	PID WELL MOUTH	N	A PPM	CAP CASING	YES NO	N/A
TOTAL V	/OL. 1	50	7.336	OF DRAWDOWN VOTAL VOLUME PU		PRESSURE TO PUMP	100	PSI	COLLAR	$=$ \times	X
(purge v	olume (milliliters	per minute) x tin	ne duration (minu	tes) x 0.00026 gal/m	nilliliter)	REFILL SETTING	23.	0	DISCHARGE SETTING	7.0	
TIME	DEPTH TO WATER (ft) < 0.33 ft	PURGE RATE (ml/m) ≤ 500 ml/m	TEMP. (deg. c) ≤ 3%	SPECIFIC CONDUCTANCE (umho/cm)	(units)	DISS. O2 (mg/L)	TURBIDITY (ntu)	REDOX (mv)		COMMENTS	
1740	150.20		12,1	≤3% O.137	≤0.1 units	≤ 10% 4,61	≤ 50 ntu	≤ 10 units	-		
1745	150,24	200	12.0	0,134	6.76	4,86	1.28	249,	_		
1750	150,20	200	12.0	0.133	6,72	5.03	1.30	248			
1755	150,20	200	12.0	0:133	6.69	5.34	290	248,			
1300	150,20	200	12.0	0.133	6.68	5.56	2,30	248,8			
1805	150,20	200	12.0	0,133	6,68	5.65	1,57	249,			
1806	Cou	ECT SA	MPLES		1						
ZY-											
-											
TYPE OF GEO	PUMP (peristalt			I <u>G</u> SITY POLYETHYLEN SITY POLYETHYLEI	NE	OF PUMP MA Polyvinyl chlor STAINLESS	ride		TYPE OF BLAI TEFLON Other	DDER MATERIAL	
	AL PARAMET	EDG	OTHER_			OTHER		-			
Check if So VOC Free	cheduled for Collections cs + TIC plus, Fre in 113, Freon 115	on eon 11, Freon 22 5,Freon 123, Fre	NUM USE on 152a	HOD MBER PA-8260C	ME	ERVATION ETHOD 4 DEG. C	VOLUME REQUIRED 3 X 40 mL	SAMPLE COLLECTE	D Check if colle	cted	
		eon 11, Freon 22 5, Freon 123, Fre		PA-524.2	HCL /	4 DEG. C	3 X 40 mL				
Chlor				PA 4500 CL-B PA 300.0	4 DEC		1 X 250 mL 1 X 250 mL	M			
			7.77				TA ZOO III.				
H											
Purge Obse	ervations					COMMENTS					
Purge Water			Number of Gallor	ns	1	725	BEGIN	PURC	AE		•
Conatinerized			Generated					1.00	20	nec	0
SIGNATURE	Ren	in Si	lei							100	•

FIELD	DATA RE	CORD - L	OW FLOW	GROUNDW	ATER SAM	PLING				
PROJECT	CLU STATE				MPLE NUMBER	Mu		II-XX	JOB No.	3617187446
Location	Lake Succe	ss, New York			SITE TYPE	MV	U-51	MI	DATE	1/30/20
ACTIVITY	START 10	10 EN	ND 1/13	SAMPLE T	111	15	V	1,	DATE	1100120
WATER L	EVEL / PUMP	SETTINGS	MEASL	UREMENT POINT	PR	ROTECTIVE			CASING / WE	76.1
INITIAL DE TO WA		0.44	FT TO	OP OF WELL RISER OP OF PROTECTIVE	R CA	SING STIC	CKUP	O FT	DIFFER.	F
FINAL DE TO WA		0.44	WELL DEP	120-		BIENT AIR		PPM	DIAM. WELL INTER	GRITY:
DRAWDO VOLU	JME	0	SCREE LENGTI	н	FT MO) WELL OUTH	_	~ РРМ	CAP CASING	YES NO N/A
TOTAL V	GED I	,43	GAL TO TO	OF DRAWDOWN V	RGED TO	ESSURE PUMP FILL	60	PSI	LOCKED	芝 三 三
		per minute) x tim	ne duration (minu	ites) x 0.00026 gal/mi		TTING	20	(2.1	DISCHARGE SETTING	10
PURGE DA	ATA DEPTH TO	PURGE	TEMP.	SPECIFIC CONDUCTANCE	1 - 1 -			- GARRIC	A	
TIME	WATER (ft) < 0.33 ft	RATE (ml/m) ≤ 500 ml/m	(deg. c) ≤ 3%	(umho/cm) ≤ 3%	(units)	ISS. O2 (mg/L) ≤ 10%	TURBIDITY (ntu) ≤ 50 ntu	REDOX (mv) ≤ 10 units		COMMENTS
1025	110,44	50	9.8	1.402	7.64 11	.06	6.89	196.5		
1030	110 42	ine	0%	1200	7 (0)1	166	6,60	197.2	-	
1035	110,72	100	100	1388	16810	166	6.55	199.6		
040	11046	100	10.9	138-	470 10	4	0000	2000	4	
1045	110.46	100	110	1,388	(92) 7	150	702	204	4	
IASO	110.47	100	11.0	1300	676 7	66	600	207.	1	
1055	110.40	imo	117	1200	0,19 1	110	6,44	210.2	2	
1100	110,48	100	11.0	1081	0.600	.73	1.09	2/3/3)	
1105	110 47	IMM	110	1300	6,070	12	7,04	215.6		
1110	11017/	100	11.0	1.389	6.55 9.	188	1115	<u> </u>		
1110	110,75	100	44	1.389	るううだ	16	7.13	240,4	/	
OUIPMEN	T DOCUMENT	TATION		1.3901	6,533	69	7.06	222,7		
TYPE OF			TYPE OF TUBING	G	TYPE OF	PUMP MAT	FEDIAL	-		. W. S. Mo. F.
	PUMP (peristaltic		X LOW DENSI	TY POLYETHYLENE	E Polyv	vinyl chlorid			YPE OF BLAD TEFLON	DDER MATERIAL
	O BLADDER DDER	Ļ		ITY POLYETHYLENE	IE X STA	INLESS ST			other	
	AL PARAMETE	- RS	OTHER		ОТН	ER				
Check if Sch	s + TIC plus, Frec n 113, Freon 115,	on 11, Freon 22.	METH NUMB USER		PRESERVA METHO HCL / 4 DE	D	VOLUME REQUIRED 3 X 40 mL	SAMPLE COLLECTED	Check if collec	ted
VOCs	s + TIC plus, Fred n 113, Freon 115,	on 11, Freon 22,	USEP	PA-524.2	HCL / 4 DE	G. C	3 X 40 mL			
Chlori	ride	1 (444) (444) (444)	USEP	PA 4500 CL-B	4 DEG. C		1 X 250 mL	right		
Bromi	ide		USEP	PA 300.0	4 DEG. C		1 X 250 mL			
urge Obse	rvations				COM	MENTS				
urge Water onatinerized	A		Number of Gallons	~175	50	MENTO				
	Emil.	1	Senerated	20,73					an	nec

FIELD DATA RECORD - LOW FLOW	W GROUNDWATER	SAMPLING		
PROJECT Former Unisys Facility	FIELD SAMPLE NUM	BER MW-51ML	- XX JOB № 3	617187446
Location Lake Success, New York	SITE T	YPE MW-514	DATE	1/30/20
ACTIVITY START 1135 END 1225	SAMPLE TIME	1225		
	SUREMENT POINT TOP OF WELL RISER	PROTECTIVE CASING STICKUP	CASING / WELL DIFFER.	O FT
	TOP OF PROTECTIVE CASING	(FROM GROUND)	FT WELL DIAM.	4 10
FINAL DEPTH TO WATER 15.86 FT (TOI	SLL FT	AMBIENT AIR PID WELL	PPM WELL INTERGE	RITY:
DRAWDOWN VOLUME 0,013 GAL LEN	GTH FT	MOUTH PRESSURE	PPM CAP VECASING LOCKED	= = =
	O TOTAL VOLUME PURGED	TO PUMP 6	PSI COLLAR DISCHARGE	
(purge volume (milliliters per minute) x time duration (m		SETTING 2	SETTING	10
PURGE DATA	SPECIFIC		REDOX (mv) C	COMMENTS
1135 115.86 200 10.3	0,210 78	7 10,84 7,08	163.7	
1140 115,87 200 12,9	0.187 7.19	1 5,83 7,31	1770	
1145 115.88 200 12.9	0,199 68	21,93 7,31	2013	
1150 115,87 200 12,8	0,188 6,7	7 1,15 7,25	198.4	
1155 115.86 200 12.9	0,188 6,6	40,927,24	197.0	
1200 115,86 200 12,8	0.187 60	0 1,93 7,30	194.9	
1205 115.87 200 12.9	0.188 6.6	04.48 7,18	195,6	
1210 115,88 200 12,8	0.188 66	25,777,11	195,5	
12/5/15/87/200 12.8	0.188 6.6	26,20 7,22	195,9	
1220 115,86 200 12.8	0.188 6.6	26,43 7,17	196.3	
1225 115,86 200. 12,8	0.188 6.6	1 6,47 7,24	196.7	
EQUIPMENT DOCUMENTATION				
TYPE OF PUMP TYPE OF TU	_	YPE OF PUMP MATERIAL	TYPE OF BLADI	DER MATERIAL
	ENSITY POLYETHYLENE X	Polyvinyl chloride STAINLESS STEEL	TEFLON Other	
X BLADDER OTHER		OTHER		
VOCs + TIC plus, Freon 11, Freon 22,	NUMBER	RESERVATION VOLUME REQUIRED 3 X 40 mL	SAMPLE COLLECTED Check if collect	ed
Freon 113, Freon 115, Freon 123, Freon 152a VOCs + TIC plus, Freon 11, Freon 22, Freon 113, Freon 115, Freon 123, Freon 152a	USEPA-524.2	HCL / 4 DEG. C 3 X 40 mL		
		DEG. C 1 X 250 mL DEG. C 1 X 250 mL		
Purge Observations		COMMENTS		
Purge Water Conatinerized (yes) no Number of G Generated SIGNATURE: Mark Purches	allons <u>~ 4</u>		an	nec

FIELD [DATA REC	ORD - LO	W FLOW	GROUNDWA	TER SA	MPLING				
PROJECT	Former Unisy	s Facility		FIELD SAMI	PLE NUMBER	MW	-52M	1-XX		617187446
Location	Lake Success	s, New York			SITE TYPE	MW	-52M	I	DATE	013020
ACTIVITY	START 161	5 END	1120	SAMPLE TII	ME	11	//		32.000 1.00	
WATER LE	VEL / PUMP S	ETTINGS		REMENT POINT P OF WELL RISER		PROTECTIVE CASING STIC		1 D	ASING / WELL DIFFER.	NA FT
INITIAL DEF	11//	,47	FT WELL DEP	P OF PROTECTIVE		(FROM GROUPID		V	VELL DIAM.	4.0 IN
FINAL DEF	1 1 1	0,56	FT (TOR) SCREE	Z33	FT	AMBIENT AIR		v	VELL INTERGR	77 70.000
DRAWDO VOLU (initial -	IME final x 0.16 {2-inc	0585 d h} or x 0.65 {4-in	Ch}) LENGTI			MOUTH PRESSURE TO PUMP	N1	-	CAP CASING _ LOCKED _ COLLAR	X X
TOTAL V PURO (purge v	GED		GAL	0,0375 tes) x 0.00026 gal/mi		REFILL SETTING	24.	O S	DISCHARGE SETTING	6.0
PURGE DA		PURGE	TEMP.	SPECIFIC CONDUCTANCE	l pH	DISS. 02	TURBIDITY	REDOX	1	
TIME	DEPTH TO WATER (ft) < 0.33 ft	RATE (ml/m)	(deg. c) ≤ 3%	(umho/cm) ≤ 3%	(units) ≤ 0.1 units	(mg/L) ≤ 10%	(ntu) ≤ 50 ntu	(mv) ≤ 10 units	C	COMMENTS
1045	120,56	200	12.6	0.307	5,86	2.36	5.75	142.1		
1050	120,56	200	12.6	0.307	5.86	2.34	5.72	143.8	1	
1055	120,56	200	12.5	0,306	5,86	2.30	3,03	148,4		
1100	120.56	200.	12,5	0,305	5,87	2.31	1.19	150,4		
1105	120,56	200.	12.4	0,303	5.88	2,29	1.02	1523	3	
1110	120,56	200	12.4	0,302	5.89	2.28	1.05	155.0	3	
1111	COLLE	CT SA	MPLE	5						
	NT DOCUMEN OF PUMP	TATION	TYPE OF TUBI	NG	TYP	E OF PUMP M	ATERIAL	т	YPE OF BLAD	DER MATERIAL
	OPUMP (peristal	tic)		SITY POLYETHYLE		Polyvinyl chlo	100000000000000000000000000000000000000		TEFLON	***********
	CO BLADDER		=	SITY POLYETHYLE	NE X	STAINLESS	STEEL		Other	
	ADDER CAL PARAMET	EDS	OTHER			OTHER				
Check if s	Scheduled for Collect Cs + TIC plus, Fr con 113, Freon 11 Cs + TIC plus, Fr	eon 11, Freon 22 5,Freon 123, Fre eon 11, Freon 22	2, <u>NU</u> 2, US eon 152a 2, US	THOD MBER EPA-8260C EPA-524.2	HCL	SERVATION METHOD ./4 DEG. C	VOLUME REQUIRED 3 X 40 mL	SAMPLE COLLECTE	D Check if collect	ed
Fre	on 113, Freon 11 Ioride	5,Freon 123, Fre		EPA 4500 CL-B	4 DE	EG. C	1 X 250 mL			
	omide		US	EPA 300.0	4 DE	EG. C	1 X 250 mL			
Purge Ob	servations					COMMENT	S			
Purge Wate	er red yes no	me /	Number of Galli Generated		10	30 BE	EGIN PU	MGE	an	nec

EIELD I	DATA REC	ORD - LC	W FL OW	GROUNDWA	ATER SA	MPI ING			
					IPLE NUMBER	ALI		L-XX	JOB No. 3617187446
Location	Lake Success			FIELD SAW	SITE TYPE	24		211	DATE 013020
	START //2		01245	SAMPLET		1	216	12	DATE CTYCZO
~	EVEL / PUMP S			REMENT POINT	IIVIL _	PROTECTIVE		C	ASING / WELL N.A ET
INITIAL DEF	PTH 12	1,40		P OF WELL RISER P OF PROTECTIVE		CASING STIC (FROM GROUPID	JND) DND	FT	VELL 40 IN
FINAL DEF	1 1 1	1.46	(TOR) FT SCREE	3.70	FT	AMBIENT AIR		PPM	WELL INTERGRITY: YES NO N/A
DRAWDO VOLU (initial - 1				OF DRAWDOWN V		MOUTH PRESSURE TO PUMP	80		CAP CASING LOCKED COLLAR
TOTAL V PURO (purge v	GED .		GAL	0.025 tes) x 0.00026 gal/m		REFILL SETTING	23,		DISCHARGE 7,0
PURGE DA	DEPTH TO WATER (ft) < 0.33 ft	PURGE RATE (ml/m) ≤ soo ml/m	TEMP. (deg. c) ≤ 3%	SPECIFIC CONDUCTANCE (umho/cm) ≤ 3%	pH (units) ≤ 0.1 units	DISS. O2 (mg/L) ≤ 10%	TURBIDITY (ntu) ≤ 50 ntu	REDOX (mv) ≤ 10 units	COMMENTS
1150	121.46	200	12,0	0,123	9,30	5.40	8,85	103.5	-
1155	121.46	200.	11.9	0,126	9.34	5.48	8.84	103,5	
1200	121.46	200	12.1	0.130	9,35	5,57	8.82	103,5	
1205	121,46	200.	12.0	0.130	9,35	5.60	8.80	103,2	2
1210	121,46	200	11.9	0,131	9.35	5,62	8.77	103,0	
1215	121.46	200.	11,9	0,131	9.36	5.66	8.71	102.8	3
1216	COUE	CT SA	MPLES						
		1							
TYPE O	NT DOCUMEN' DE PUMP OPUMP (peristalt CO BLADDER ADDER			NG SITY POLYETHYLEI SITY POLYETHYLE	NE _	E OF PUMP M Polyvinyl chlo STAINLESS OTHER	ride		YPE OF BLADDER MATERIAL TEFLON Other
Check if S	CAL PARAMET Scheduled for Collecti Cs + TIC plus, Fron 113, Freon 11 Cs + TIC plus, Fron 113, Freon 11 oride mide	eon 11, Freon 22 5,Freon 123, Fre eon 11, Freon 22	2, US eon 152a 2, US eon 152a US	THOD MBER EPA-8260C EPA-524.2 EPA 4500 CL-B EPA 300.0	M HCL HCL 4 DE	ERVATION ETHOD /4 DEG. C /4 DEG. C	VOLUME REQUIRED 3 X 40 mL 3 X 40 mL 1 X 250 mL 1 X 250 mL		D Check if collected
Purge Obs			Number of Gallo	ons	1	COMMENTS	BEGIN	Puna	
SIGNATUR	R	me s							amec

FIELD I	DATA REC	ORD - LO	W FLOW	GROUNDWA	TER SA				-		1
	Former Unisy	7. 7. 7. 7.			PLE NUMBER	1/1/4 ()	53MI	-XX	JOB No.	3617187446	
Location	Lake Success	s, New York			SITE TYPI	E			DATE	1/30/20	
ACTIVITY	START 090	SO END	1035	SAMPLE TII	SAMPLE TIME 1030						
WATER LE	EVEL / PUMP S	SETTINGS		REMENT POINT P OF WELL RISER		PROTECTIVE CASING STIC	VIID T		CASING / WELI	0.25	FT
INITIAL DE TO WA	PTH TER 58	,19		P OF PROTECTIVE						4=	IN
FINAL DE TO WA		5.21	FT (TOR)	1571	FT	AMBIENT AIR		PPM	WELL INTERG	RITY:	N/A
DRAWDO VOLU	JME .		SCREE LENGT	411	FT	MOUTH PPM			CAP CASING	-	
TOTAL VOL. 3.2 GAL				OTAL VOLUME PUP		TO PUMP	40	PSI	COLLAR DISCHARGE		\equiv
(purge volume (milliliters per minute) x time duration (n					Illiliter)	SETTING	01		SETTING	9	
PURGE D	DEPTH TO WATER (ft) < 0.33 ft	PURGE RATE (ml/m) ≤ 500 ml/m	TEMP. (deg. c) ≤ 3%	SPECIFIC CONDUCTANCE (umho/cm) ≤ 3%	pH (units) ≤ 0.1 units	DISS. O2 (mg/L) ≤ 10%	TURBIDITY (ntu) ≤ 50 ntu	PREDOX (mv) ≤ 10 units		COMMENTS	
0923	58,19	Start	Purge								
0935	58.20	200	13.7	0.253	6.5	0.8	1.3	59			
0945	58.19	210	13.8	0.253	6.5	0.6	0.9	97			
0950	58.19	215	13.8	0.254	6.5	0.6	0.5	109			
0955	58.19	215	13.8	0.254	6.5	016	0.3	119			
1000	58.20	230	13.8	0.253	6.5	0.6	0,3	126			
1005	58.22	190	13.6	01254	6.5	0.6	0.3	131			
1010	58,22	185	13.7	0.253	6.5	0.5	0.2	137	1		
1015	58.72	190	13.7	0.253	6.5	0.5	0.4	142			
1020	58.22	185	13.7	0.253	6:5	0.5	0.2	145			
1025	58,21	185	13.8	0.253	6.5	0.5	0.2	148			
EQUIPME	NT DOCUMEN	TATION									
TYPE C	OF PUMP		TYPE OF TUBI			E OF PUMP M				DER MATERIAL	
	OPUMP (peristal	tic)		SITY POLYETHYLEN SITY POLYETHYLEN		Polyvinyl chlor			TEFLON Other		
	ADDER		OTHER_	SETERMENT		OTHER					
Check if \$	CAL PARAMET Scheduled for Collect ICs + TIC plus, Fr con 113, Freon 11	ion eon 11, Freon 22	. NUI	THOD MBER EPA-8260C	N	SERVATION METHOD . / 4 DEG. C	VOLUME REQUIRED 3 X 40 mL	SAMPLE COLLECTE	ED Check if collect	cted	
□vo	Cs + TIC plus, Fr eon 113, Freon 11	eon 11, Freon 22	usi	EPA-524.2	HCL	. / 4 DEG. C	3 X 40 mL				
Chl	loride omide			EPA 4500 CL-B EPA 300.0		EG. C EG. C	1 X 250 mL 1 X 250 mL				
Purge Ob	servations					COMMENTS	5				
Purge Wate Conatineriz	er 🦳	\sim	Number of Gallo Generated	23.2		Nord	orn DLVK		an	nec	9
SIGNATUR	RE: DM	g Ran						53 ML		200	
	0 6	/	1				3			410410000	

FDRs_Blank/LF Callahan

1/21/2020

FIELD D	ATA REC	ORD - LO	W FLOW	GROUNDWA	TER SA	MPLING				
Г	Former Unisy				PLE NUMBER	Maril	53ML->	LX	JOB No. 3	617187446
Ī	Lake Succes	T. V. 10-77			SITE TYPE			= - 1)	DATE	1/30/20
ACTIVITY [START /0	35 END	1200	SAMPLE TIM	ME	1/4	15			
WATER LE	VEL / PUMP S	SETTINGS		REMENT POINT		PROTECTIVE CASING STICK	CUP C		CASING / WELL DIFFER.	0.29 FT
INITIAL DEP	PTH 6	1.14	FT TO	P OF WELL RISER P OF PROTECTIVE	CASING	(FROM GROU		FT	WELL [U s
FINAL DEP	PTH 6	1.34	WELL DEPT	242	FT)	PID AMBIENT AIR		PPM	DIAM	
DRAWDO	WN [SCREE		FT	PID WELL MOUTH		РРМ	CAP _	-
VOLUI (initial - f		2 0 (ch) or x 0.65 (4-in		OF DRAWDOWN VO		PRESSURE TO PUMP	42 PSI			
TOTAL V		5	GAL T	.08	IGED .	REFILL		701	DISCHARGE	
				tes) x 0.00026 gal/mi	lliliter)	SETTING	20		SETTING	10
PURGE DA	DEPTH TO WATER (ft) < 0.33 ft	PURGE RATE (ml/m) ≤ 500 ml/m	TEMP. (deg. c) ≤ 3%	SPECIFIC CONDUCTANCE (umho/cm) ≤ 3%	pH (units) ≤ 0.1 units	DISS. O2 (mg/L) ≤ 10%	TURBIDITY (ntu) ≤ 50 ntu	ORP REDOX (mv) ≤ 10 units		COMMENTS
1040	61.14	Start								
1055	61.19	150	13.5	0.176	604	2.9	2.2	109		
1105	61.24	155	13.6	0.176	6.4	3.1	1.6	119		
mo	61.26	160	13.6	01176	6.4	3.1	2.2	125		
1115	61,28	150	13.6	01176	6.4	3.2	1.8	129		
1120	61.30	150	13.7	0.175	6.4	3.2	1.7	131		
1125	61.32	150	13.7	0.175	6.4	3.2	1.1	133		
1130	61.33	140	13.7	0.175	6.4	3.2	1.0	137		
1135	61.34	150	13.6	0.175	6.4	3.2	0.8	139		
1140	61.34	150	13.7	0.175	6.4	3.2	0.9	140		
TYPE OF	OPUMP (peristal CO BLADDER ADDER	tic)		NG SITY POLYETHYLEN SITY POLYETHYLEN	IE	E OF PUMP MA Polyvinyl chlori STAINLESS S OTHER	de		TYPE OF BLADI TEFLON Other	DER MATERIAL
Check if So			, NUI	THOD MBER EPA-8260C	M	ERVATION ETHOD /4 DEG. C	VOLUME REQUIRED 3 X 40 mL	SAMPLE COLLECTE	ED Check if collect	ed
		eon 11, Freon 22 5,Freon 123, Fre		EPA-524.2	HCL	/ 4 DEG. C	3 X 40 mL			
Chlo	oride		USE	EPA 4500 CL-B	4 DE		1 X 250 mL			
Bron	nide		USI	EPA 300.0	4 DE	.G. C	1 X 250 mL			
Purge Obs Purge Water Conatinerize	d (yes) no	x Pald	Number of Gallo Generated	ins 1.82	5	W. BL	D TAW DO	# 53u	SZONE IN Rep	neco lwed lodes

FDRs_Blank/LF Callahan

FIELD	DATA REC	ORD - LO	W FLOW	GROUNDWA	TER SA	MPLING			
PROJECT	Former Unisy	s Facility		FIELD SAM	PLE NUMBER	W-N.	5099-	-XX	JOB No. 3617187446
Location	Lake Succes	s, New York			SITE TYPE		5099)	DATE 1/31/20
ACTIVITY	START 07	05 END	090	SAMPLE TI	ME	090	5		
	EVEL / PUMP S	SETTINGS	ТО	REMENT POINT P OF WELL RISER	2.000	PROTECTIVE	KUP	DI	SING / WELL FFER.
TO WA			WELL DEP	P OF PROTECTIVE	CASING	(FROM GROUPID	DNO)		ELL IN
FINAL DE			(TOR)		FT	AMBIENT AIR		PPM	ELL INTERGRITY:
DRAWDO			SCREE		FI	MOUTH WELL			YES NO N/A
VOLU	JME	Ch) or x 0.65 {4-inc	AL	OF DRAWDOWN V	OLUME	PRESSURE		1	CASING
TOTAL	VOL.			OTAL VOLUME PUR	RGED	TO PUMP			COLLAR
PUR (purge			e duration (minu	tes) x 0.00026 gal/m	illiliter)	REFILL SETTING			ISCHARGE ETTING
PURGE D	ATA DEPTH TO	PURGE	TEMP.	SPECIFIC CONDUCTANCE	l pH	DISS. 02	TURBIDITY	REDOX	1
TIME	WATER (ft) < 0.33 ft	RATE (ml/m) ≤500 ml/m	(deg. c) ≤ 3%	(umho/cm) ≤ 3%	(units) ≤ 0.1 units	(mg/L) ≤ 10%	(ntu) ≤ 50 ntu	(mv) ≤ 10 units	COMMENTS
6905			13.8	0.228	6,55	6.94	30,22	226.0	
W 10-			1	V. 222					
		1							
	-								
EQUIPME	NT DOCUMEN	TATION							
TYPE (OF PUMP		TYPE OF TUBI			E OF PUMP M			PE OF BLADDER MATERIAL
	OPUMP (peristal	tic)		SITY POLYETHYLEN SITY POLYETHYLEN		Polyvinyl chlo			EFLON ther
	ADDER		OTHER_	***************************************		OTHER			
Check if s	on 113, Freon 11 Cs + TIC plus, Fr		NU US on 152a US on 152a	THOD MBER EPA-8260C EPA-524.2 EPA 4500 CL-B	HCL	ERVATION ETHOD /4 DEG. C	VOLUME REQUIRED 3 X 40 mL 3 X 40 mL		Check if collected
	mide			EPA 300.0	4 DE		1 X 250 mL		
Purge Observed Water Constinerized SIGNATUR	ed yes (no)		Number of Gallo Generated	ons	h	comments Duplic ere well a	cate ctivati	Samp ed pr	amec sampling

FIELD	DATA REC	ORD - LO	W FLOW	GROUNDWA	ATER SA	MPLING			
PROJECT	Former Unisy	s Facility		FIELD SAM	PLE NUMBER	SW-		^-XX	JOB No. 3617187446
Location	Lake Success	s, New York			SITE TYPE	· \ \	4388		DATE 1/31/20
ACTIVITY	START	END		SAMPLE TI	ме	0950			
WATER L	EVEL / PUMP S	ETTINGS	_	REMENT POINT P OF WELL RISER	4	PROTECTIVE	KUP	DII	SING / WELL FTER. FT
INITIAL DE TO WA			WELL DEP	P OF PROTECTIVE	CASING	(FROM GROUPID	JND)		ELL IN
FINAL DE			(TOR)		FT	AMBIENT AIR		PPM W	ELL INTERGRITY:
DRAWDO	12,124	G	SCREE LENGT		> 5	MOUTH MOUTH			YES NO N/A CAP
	final x 0.16 {2-inc		h)) RATIO	OF DRAWDOWN V		PRESSURE TO PUMP			OCKED
	GED		AL e duration (minu	tes) x 0.00026 gal/m	illiliter)	REFILL SETTING			SCHARGE
PURGE D				SPECIFIC					
TIME	DEPTH TO WATER (ft) < 0.33 ft	PURGE RATE (ml/m) ≤ 500 ml/m	TEMP. (deg. c) ≤ 3%	CONDUCTANCE (umho/cm) ≤ 3%	pH (units) ≤ 0.1 units	DISS. O2 (mg/L) ≤ 10%	TURBIDITY (ntu) ≤ 50 ntu	REDOX (mv) ≤ 10 units	COMMENTS
0950		=>	13,7	0,365	6,58	7.55	32,27	214.5	
						•			
	NT DOCUMENT OF PUMP	1771155	TYPE OF TUBIN	NC.	TVD	OF DUMP M	ATERIAL	TV	DE OF DIADDED MATERIAL
	OPUMP (peristalt			NG SITY POLYETHYLEN		Polyvinyl chlo			PE OF BLADDER MATERIAL EFLON
	CO BLADDER	Į		SITY POLYETHYLE	NE X	STAINLESS	STEEL	Ot	her
	ADDER CAL PARAMET	ERS L	OTHER_			OTHER			
□vo	Scheduled for Collecti Cs + TIC plus, Fre	eon 11, Freon 22,	NUI USE	THOD <u>MBER</u> EPA-8260C	M	ERVATION ETHOD / 4 DEG. C	VOLUME REQUIRED 3 X 40 mL	SAMPLE COLLECTED	Check if collected
√ vo	on 113, Freon 113 Cs + TIC plus, Freon 113, Freon 113	eon 11, Freon 22,	USE	EPA-524.2	HCL	/ 4 DEG. C	3 X 40 mL	V	
√ ch	oride	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	USE	EPA 4500 CL-B	4 DE		1 X 250 mL		
	mide		USE	EPA 300.0	4 DE	G, C	1 X 250 mL		
								目	
Purge Ob	servations					COMMENTS		- (1.1. 1.00
Purge Wate Conatineriz	er ed yes (no)		Number of Gallo Generated	ns	-	145/1	usd s	amples	s taken nere
1		, ,	7	-		Hall 1	2.1		amec
	4 min	1.1	unn.		Δ	000	KCTIV.	e prior	amec
SIGNATUR	E: UTION	1 11	win	C	14	0 20	mplin	19	

FIELD	DATA REC	ORD - LOV	W FLOW	GROUNDWA	ATER SA	MPLING			
PROJECT	Former Unisy	s Facility		FIELD SAM	PLE NUMBER	SW	M2999	~XX	JOB No. 3617187446
Location	Lake Succes	s, New York			SITE TYPE	^	112990	7	DATE 1/31/20
ACTIVITY	START	END		SAMPLE TI	ME	10	50		
FINAL DE TO WA FINAL DE TO WA DRAWDO VOLI (initial - TOTAL PUR	DWN JME final x 0.16 {2-inc	G/sh) or x 0.65 {4-inct	WELL DEP' T SCREE LENGT AL RATIO	OF DRAWDOWN VOOTAL VOLUME PUR	CASING FT FT OLUME RGED	PROTECTIVE CASING STIC (FROM GROU PID AMBIENT AIR PID WELL MOUTH PRESSURE TO PUMP REFILL	JND)	PPM PPM	CASING / WELL DIFFER. FT WELL DIAM. IN WELL INTERGRITY: YES NO N/A CAP CASING CASING COLLAR DISCHARGE
		per minute) x time	duration (minu	tes) x 0.00026 gal/mi	lliliter)	SETTING			SETTING
TIME	DEPTH TO WATER (ft) < 0.33 ft	PURGE RATE (ml/m) ≤500 ml/m	TEMP. (deg. c) ≤ 3%	SPECIFIC CONDUCTANCE (umho/cm) ≤ 3%	pH (units) ≤ 0.1 units	DISS. O2 (mg/L) ≤ 10%	TURBIDITY (ntu) ≤ 50 ntu	REDOX (mv) ≤ 10 units	COMMENTS
10.50	WEXT	runnik =>	9 11.1	0,419	7.01	9,46	22,35	227.1	
TYPE GE	ENT DOCUMEN OF PUMP COPUMP (peristal MCO BLADDER LADDER			NG SITY POLYETHYLEN SITY POLYETHYLEN	NE _	Polyvinyl chlo STAINLESS	ride		TYPE OF BLADDER MATERIAL TEFLON Other
Check if	eon 113, Freon 11 OCs + TIC plus, Freon 113, Freon 11		NU US n 152a US n 152a US	THOD MBER EPA-8260C EPA-524.2 EPA 4500 CL-B EPA 300.0	HCL		VOLUME REQUIRED 3 X 40 mL 3 X 40 mL 1 X 250 mL 1 X 250 mL		ED Check if collected
Purge Ob Purge Wat Conatineria	zed yes (no)		Number of Galle Generated	nons	So	well ampli	not r	runnin	amec o

FIELD	DATA REC	CORD - LC	W FLOW	GROUNDWA	ATER SA	MPLING			
PROJECT	Former Unis	ys Facility		FIELD SAM	PLE NUMBER	SW 7	113821-	$\chi\chi$	JOB No. 3617187446
Location	Lake Succes	s, New York			SITE TYPE		N1385	2/	DATE 1/31//9
ACTIVITY	START	ENI	D	SAMPLE T	ме	[02	5		
WATER L INITIAL DE TO WA FINAL DE TO WA DRAWDO (initial TOTAL PUR	EPTH ATER EPTH ATER OWN UME final x 0.16 {2-inc} VOL. GGED volume (milliliters)	ch) or x 0.65 {4-in	MEASU FT WELL DEP' (TOR) FT SCREE LENGT GAL ch)) RATIO GAL de duration (minu	REMENT POINT P OF WELL RISER P OF PROTECTIVE TH N H OE DRAWDOWN V OTAL VOLUME PUB tes) x 0.00026 gal/m SPECIFIC	CASING FT FT OLUME RGED illiliter)	PROTECTIVI CASING STIC (FROM GRO PID AMBIENT AIF PID WELL MOUTH PRESSURE TO PUMP REFILL SETTING	CKUP UND)	PPM PSI	WELL DIAM. IN WELL INTERGRITY: YES NO N/A CAP CASING LOCKED COLLAR DISCHARGE SETTING
TIME	DEPTH TO WATER (ft)	PURGE RATE (ml/m)	TEMP. (deg. c)	(umho/cm)	pH (units)	DISS. O2 (mg/L)	TURBIDITY (ntu)	REDOX (mv)	COMMENTS
1025	< 0.33 ft	≤ 500 ml/m	13.0	0,351	≤0.1 units	≤ 10% 8,71	≤50 ntu 24,22	≤ 10 units 2063	3
TYPE GE GE SM X BI ANALYTI Check if VC Fre	ENT DOCUMEN OF PUMP EOPUMP (peristal MCO BLADDER LADDER CAL PARAMET Scheduled for Collect OCS + TIC plus, Freon 113, Freon 11 OCS + TIC plus, Freon 113, Freon 11 ocs + TIC plus, Freon 113, Freon 113, Freon 111 orde omide	TERS ion reon 11, Freon 22 5, Freon 123, Fre reon 11, Freon 22	HIGH DEN OTHER ME NU USI on 152a c, USI on 152a USI USI	NG SITY POLYETHYLEI SITY POLYETHYLE THOD MBER EPA-8260C EPA-524.2 EPA 4500 CL-B EPA 300.0	PRES MI HCL		oride	SAMPLE COLLECTE	TEFLON Other D Check if collected
Purge Ob Purge Wat Conatineriz		1 -N	Number of Gallo Generated	ons	W	comment ell a	s ctive	prior	to gampling amec

FIELD	DATA REC	ORD - LO	W FLOW	GROUNDW	ATER SA	MPLING					
PROJECT	Former Unisys	s Facility		FIELD SAM	PLE NUMBER	MW	-15-X	X	JOB No.	3617187446	
Location	Lake Success	, New York			SITE TYPE	CL	-15		DATE	1/30/20	·
ACTIVITY	START 14:0	ENI	1550	SAMPLE T	IME /	550					
FINAL DEI TO WA' FINAL DEI TO WA' DRAWDO VOLU (initial - 1	PTH TER DWN ME final x 0.16 {2-inch ZOL. GED ZOlume (milliliters p	11.22 0.27 0.6175 c 0) or x 0.65 (4-in	WELL DEPT (TOR) SCREE LENGTI Ch)) RATIO TO TO	N O	FT FT FOLUME RGED illiliter)	PROTECTIVIC CASING STIC (FROM GRO) PID AMBIENT AIR PID WELL MOUTH PRESSURE TO PUMP REFILL SETTING DISS. O2 (mg/L) ≤ 10%	CKUP C		CAP CASING LOCKED COLLAR DISCHARGE SETTING	4	FT IN N/A
1520 1525 1530 1535 1540 1545 1550	11,42 11,20 10,90 10,69 10,50 10,38 10,27	200 200 200 200 200 200 200	14.0 14.0 13.9 14.0 14.0 14.0 13.9	0,704 0,704 0,701 0,699 0,696 0,697	GII GII GIZ GIZ GIZ GIZ GIZ GIZ	7.51 7.66 7.66 7.67 7.72 7.76 7.78	2,03 1,80 4,38 4,25 5,58 5,82 5,85	86,7 109,7 129,1 132,0 139,5 145,1	3 6 8		
TYPE O	NT DOCUMENT DE PUMP OPUMP (peristaltic CO BLADDER ADDER CAL PARAMETE Scheduled for Collectio Cs + TIC plus, Free on 113, Freon 115 Oride mide	ers on 11, Freon 22 Freon 123, Freon 11, Freon 22	HIGH DENS OTHER METOLOGY NUT USE ON 152a USE ON 152a USE USE USE	NG BITY POLYETHYLEI SITY POLYETHYLE FHOD MBER EPA-8260C EPA-524.2 EPA 4500 CL-B EPA 300.0	NE X PRESE ME HCL/		ride STEEL VOLUME	SAMPLE	TEFLON Other	DDER MATERIAL	
Purge Obs Purge Water Conatinerize	ed on no	Pu	Number of Gallo Generated	ns <u>~5</u>	tu t	COMMENTS LILL SC U PUNK	mpal T	s (lvs	ar L	nec	9

FIELD	DATA RE	CORD - LC	W FLOW	GROUNDWA	ATER SA	MPLING			
PROJECT	Former Unis	sys Facility		FIELD SAM	IPLE NUMBER	mw	-18 -x	(X	JOB No. 3617187446
Location	Lake Succes	ss, New York			SITE TYPE				DATE 1/30/20
ACTIVITY	START 13	25 EN	1615	SAMPLE TI	IME	14	000		
WATER LE	EVEL / PUMP	SETTINGS	-	REMENT POINT		PROTECTIVE			CASING / WELL 0, 23 ET
INITIAL DEI		4.24	FT TO	P OF WELL RISER P OF PROTECTIVE	CASING	CASING STICE (FROM GROU		FT	WELL 112
FINAL DEI	PTH (0.38	WELL DEP (TOR)	145	145 FT, AMBIENT AIR PPM				DIAM. IN WELL INTERGRITY:
DRAWDO			SCREE	N (a)		PID WELL MOUTH		PPM	YES NO N/A
VOLU	ME		GAL		100 July 1	PRESSURE		FFIWI	CASING
	(O)	ch} or x 0.65 {4-in		OF DRAWDOWN V		TO PUMP	20	PSI	COLLAR
PURC	GED 💆		GAL	ton) × 0.00026 gal/m		REFILL SETTING	14.5		DISCHARGE SETTING 5.5
PURGE DA	31042A-447	s per minute) x tirr	ie duration (minu	tes) x 0.00026 gal/mi	minter)	SETTING	1.6	orx	
TIME	DEPTH TO WATER (ft) < 0.33 ft	PURGE RATE (ml/m) ≤500 ml/m	TEMP. (deg. c) ≤ 3%	CONDUCTANCE (umho/cm) ≤ 3%	pH (units) ≤ 0.1 units	DISS. O2 (mg/L) ≤ 10%	TURBIDITY (ntu) ≤ 50 ntu	REDOX (mv) ≤ 10 units	COMMENTS
1444	24.24	Sport	Purge						
1455	24.12	170	11.7	0.244	6.8	1,2	8,7	196	
1505	24.12	195	11.8	0.382	6.5	4.0	6.3	197	
1510	2411	200	11.9	0.489	6.3	7.3	3.9	178	
1515	2409	200	1107	0,510	6.3	8.1	1,5	18/	
1520	16.03	210	11.7	0,515	6.3	8.4	3.2	189	
1525	14.63	215	12.1	0.514	6.3	8.5	5.5	194	
1530	12.62	200	11.8	0.514	6.3	815	6.0	200	
1535	11.98	200	11.8	0.516	6.3	8,5	7.2	204	
1540	11.26	200	11.9	0.515	6.3	8.6	8.7	208	
1545	10:70	200	12.0	0.515	6.3	8.6	7.9	211	
1550	10.38	200	12.0	0.519	6.3	816	8,6	21)	
TYPE O	NT DOCUMEN OF PUMP OPUMP (perista CO BLADDER ADDER			NG SITY POLYETHYLE! SITY POLYETHYLE!	NE	POLYVINIE STAINLESS S	ide		TYPE OF BLADDER MATERIAL TEFLON Other
Check if S	the state of the s	reon 11, Freon 22	, NU US	THOD MBER EPA-8260C	ME	ERVATION ETHOD / 4 DEG. C	VOLUME REQUIRED 3 X 40 mL	SAMPLE COLLECTE	ED Check if collected
- 373		15,Freon 123, Fre reon 11, Freon 22		EPA-524.2	HCL	4 DEG. C	3 X 40 mL		
Free		15,Freon 123, Fre		EPA 4500 CL-B	4 DE	G C	1 X 250 mL		
	mide			EPA 300.0	4 DE		1 X 250 mL		
D Ob.									
Purge Obs Purge Wate Conatinerize	r 🔿	0.01	Number of Gallo Generated	31 Y		COMMENTS	Prup	2100	amec
SIGNATUR	E: Jen	flulf	1	_					

FIELD I	DATA REC	ORD - LO	W FLOW	GROUNDWA	ATER SA	MPLING			1111
PROJECT	Former Unisy	s Facility		FIELD SAM	PLE NUMBER	CI	-45		JOB No. 3617187446
Location	Lake Succes	s, New York			SITE TYPE	Mh	1-45-	XX	DATE 012920
ACTIVITY	START 15	ZO ENI	1715	SAMPLE TI	ME	160	16		
WATER LE	EVEL / PUMP S	SETTINGS		REMENT POINT P OF WELL RISER		PROTECTIVE CASING STIC	KUD [- D	ASING / WELL NA FT
INITIAL DE	- /	.20		P OF PROTECTIVE	CASING	(FROM GROU	JND)	FT W	/ELL 40 IN
FINAL DE	Control of the Contro	.44	(TOR) FT SCREE	1 75		AMBIENT AIR		N N	/ELL INTERGRITY: YES NO N/A
DRAWDO		2.0	LENGT		FT	MOUTH	NA	PPIVI	CAP X _ X
VOLU (initial -	NIVIE	ch) or x 0.65 {4-in		OF DRAWDOWN V		PRESSURE	25		OCKED _ X
TOTAL \	GED /		GAL	tes) x 0.00026 gal/m		TO PUMP REFILL SETTING	26		SCHARGE 4,0
PURGE D	C STATUS - VERNINGS	per minute) x tin	ne duration (minu	SPECIFIC	militer)	SETTING		3	LITING
TIME	DEPTH TO WATER (ft) < 0.33 ft	PURGE RATE (ml/m)	TEMP. (deg. c) ≤ 3%	CONDUCTANCE (umho/cm) ≤ 3%	pH (units) ≤0.1 units	DISS. O2 (mg/L) ≤ 10%	TURBIDITY (ntu) ≤ 50 ntu	REDOX (mv) ≤ 10 units	COMMENTS
1555	BEGIN	PURGE							
1615	1.61	150	11.1	0.369	6.61	6:37	1.49	123.7	
1620	1,59	150	11,0	0.393	8.47	6,49	1.40	126:1	
1625	1.55	150	11,1	0,392	66,	6,51	1.33	129.0	PH 6.45
1630	1,52	150	11,2	0.392	6.44	6,54	1:21	131.7	
1635	1.48	150	11.2	0.388	6,44	6,50	1.18	133,9	
1640	1,46	150	11,3	0.387	6.44	6.48	1,15	136.2	
1645	1.44	150	11.4	0.387	6,44	6.47	1,13	138.2	
1646	Cour	CT 54.	mpies						
	NT DOCUMEN OF PUMP	TATION	TYPE OF TUBI	NG	TYPE	OF PUMP M	ATERIAI	T	YPE OF BLADDER MATERIAL
	OPUMP (peristal	tic)		SITY POLYETHYLE		Polyvinyl chlo	THE THE		TEFLON
	ICO BLADDER			SITY POLYETHYLE	NE X	STAINLESS	STEEL		other
	ADDER	FRS	OTHER			OTHER			
₩VO Fre	on 113, Freon 11	reon 11, Freon 22 5,Freon 123, Fre	2, <u>NU</u> 2, US eon 152a	THOD MBER EPA-8260C	MI HCL	ERVATION ETHOD / 4 DEG. C	VOLUME REQUIRED 3 X 40 mL	SAMPLE COLLECTED	2 Check if collected
	THE RESERVE OF THE PARTY OF THE	reon 11, Freon 22 5,Freon 123, Fre		EPA-524.2	HCL	/4 DEG. C	3 X 40 mL		
Chi Bro	loride omide			EPA 4500 CL-B EPA 300.0	4 DE 4 DE		1 X 250 mL 1 X 250 mL		
								Ħ	
	77.04								
Purge Obs	servations		Number of Galle	one i a		COMMENTS	PINE	BP#	41307
	ed yes no		Generated	1.75					amec
SIGNATUR	E Re	ne P.	Anhe						200

FIELD	DATA REC	CORD - LC	W FLOW	GROUNDW	ATER SA	MPLING	3				
PROJECT	Former Unis				MPLE NUMBER	A Ai		X	JOB No.	3617187446	
Location	Lake Succes	s. New York	70.		SITE TYPE		L-45		DATE	1179/	20
ACTIVITY	START 60		1700	SAMPLE	ГТ	700			Sinz	., .,	
WATER LE	EVEL / PUMP	SETTINGS		JREMENT POINT		PROTECTIV	E		CASING / WE		
INITIAL DEI	~	79	FT	OP OF WELL RISER OP OF PROTECTIV		CASING STI (FROM GRO) FT	DIFFER. WELL	1/	FT
FINAL DEI		(0.8	WELL DEF (TOR)	145		PID AMBIENT AI	R	PPM	DIAM. WELL INTER	GRITY:	IN
DRAWDO		~	SCREE LENGT		1	PID WELL MOUTH	_	РРМ	CAP CASING	YES NO	N/A
(initial -	final x 0.16 {2-inc	ch) or x 0.65 (4-inc		OF DRAWDOWN		PRESSURE TO PUMP	20	D PSI	LOCKED	岁 二 二	_
TOTAL V PURO (purge v	GED		SAL	utes) x 0.00026 gal/r	7/	REFILL SETTING	2	a	DISCHARGE SETTING	10	
PURGE DA	ATA		Transition of	SPECIFIC		50.00					
TIME	DEPTH TO WATER (ft) < 0.33 ft	PURGE RATE (ml/m) ≤ 500 ml/m	TEMP. (deg. c) ≤ 3%	CONDUCTANCE (umho/cm) ≤ 3%	E pH (units) ≤0.1 units	DISS. O2 (mg/L) ≤ 10%	TURBIDITY (ntu) ≤ 50 ntu	REDOX (mv) ≤ 10 units		COMMENTS	The same
1605	2.08	300	12.8	0.382	6.73	7,13	14,28	182,9	1		
1610	2.77	300	12.8	0.407	G.58	6,35	16.27	183,6	5		
1615	1,60	300.	12.7	0.429	6.58	6,28	28,09	185,	2		
1620	1,40	300	12.6	0.448	6.58	6.22	37,99	186.3			
1625	1.28	200	12.6	0.448	6.58	6.18	44.93	187.8			
1630	1,12	200	12.7	0,449	6.58	6.17	83.06	1889			
1635	1.00	200	12.7	0,449	6.58	6.14	71.68	190.2	2		
1640	0.86	300	12.7	0.448	0.58	6.14	86.94	191.4			
1645	020	300	12,6	C7 449	658	610	74.95	192.4			
1650	<0.80	200	12.6	0.448	6,58	6.09	78,96	193,5	7		
1655	<0.80	200	12,5	0.448	6,58	6,09	57.08	194.6			
	(0,80	300.	12.7	O UNG		6.09	80,62	195.7			
	NT DOCUMEN		101/	10,198	16120	0,01	10010-	1 101/			
	F PUMP		TYPE OF TUBI	75		OF PUMP M				DDER MATERIAL	
	OPUMP (peristal)	tic)		SITY POLYETHYLE		Polyvinyl chlo STAINLESS			TEFLON		
	ADDER		OTHER_	SITT FOLTETHIL	ENE A	OTHER	STEEL		Other		
ANALYTIC Check if S	AL PARAMET cheduled for Collecti	on	ME NU	THOD MBER		RVATION THOD	VOLUME REQUIRED	SAMPLE	D Check if colle	cted	
Fred	on 113, Freon 11	eon 11, Freon 22, 5,Freon 123, Freo eon 11, Freon 22,	on 152a	EPA-8260C EPA-524.2		4 DEG. C	3 X 40 mL	Image: second control of the control of			
	on 113, Freon 11	5,Freon 123, Freo	on 152a	EPA 4500 CL-B	4 DEC	4 DEG. C	3 X 40 mL 1 X 250 mL				
Bron	mide			EPA 300.0	4 DEC		1 X 250 mL		例		
H											
R								目			
Purge Obs	onuations					COMMENT	6				
Purge Water			Number of Gallo	ons o		COMMENT	•				
Conatinerize	/ \/		Generated	<u>~~2</u>					ar	nec	3
SIGNATURE	E Emili	fuci	10							100	

FIELD	DATA REC	ORD - LO	W FLOW	GROUNDWA	ATER SA	MPLING			
PROJECT	Former Unisy	s Facility		FIELD SAM	IPLE NUMBE	R Mu	1-ST11-	XX	JOB No. 3617187446
Location	Lake Succes	s, New York			SITE TYP	E			DATE 1/31/20
ACTIVITY	START 112	5 ENI	1300	SAMPLE T	IME	12	45		
WATER LE	EVEL / PUMP S	SETTINGS		REMENT POINT P OF WELL RISER		PROTECTIVE CASING STIC			CASING/WELL 0.54 FT
INITIAL DEI	PTH 5	7.89		P OF PROTECTIVE	CASING	(FROM GROU) FT	usu [
FINAL DE			WELL DEP (TOR)	TH CHISTON	FT)	PID AMBIENT AIR	-	PPM	DIAM. 2= IN
TO WA		193	SCREE			PID WELL			WELL INTERGRITY: YES NO N/A
DRAWDO	75	06	LENGT		FT	MOUTH PPM			CAP CASING
	final x 0.16 {2-inc		ch}) RATIO	OF DRAWDOWN V		PRESSURE TO PUMP	40	PSI	LOCKED
TOTAL \		.8	GAL	.002	-11	REFILL	2-		DISCHARGE
(purge v	volume (milliliters			ites) x 0.00026 gal/m	illiliter)	SETTING	20		SETTING / O
PURGE DA	DEPTH TO WATER (ft) < 0.33 ft	PURGE RATE (ml/m) ≤ 500 ml/m	TEMP. (deg. c) ≤ 3%	SPECIFIC CONDUCTANCE (umho/cm) ≤ 3%	pH (units) ≤0.1 units	DISS. O2 (mg/L) ≤ 10%	TURBIDITY (ntu) ≤ 50 ntu	REDOX (mv) ≤ 10 units	COMMENTS
1153	57.89	Sound		P					
1205	57.92	225	13.30	0.716	6.5	7.8	7.4	208	
1215	57.97	235	13.5	0.950	6.2	8.4	17	216	
1220	57.93	200	13.4	0.967	6.2	8.5	16	219	
1225	57.93	200	13.4	0.976	6.2	8.5	17	222	
1230	57.93	200	13.4	0.968	6.2	8.5	14	225	
1235	57.93	200	13.4	0.970	6.2	8.5	12	227	
1240	57.93	200	13,4	0.962	6.2	8.4	12	229	
			1						
TYPE C	NT DOCUMEN OF PUMP OPUMP (peristal) CO BLADDER ADDER CAL PARAMET	tic)		NG SITY POLYETHYLEI SITY POLYETHYLE	NE _	POF PUMP MA Polyvinyl chlor STAINLESS :	ride		TYPE OF BLADDER MATERIAL TEFLON Other
Check if S	Cs + TIC plus, Fron 113, Freon 11 Cs + TIC plus, Fron 11	eon 11, Freon 22 5,Freon 123, Fre	NU 2, US on 152a	THOD MBER EPA-8260C EPA-524.2	HCI.	SERVATION METHOD ./4 DEG. C	VOLUME REQUIRED 3 X 40 mL	SAMPLE COLLECT	ED Check if collected
Fre	on 113, Freon 11 loride mide		on 152a US	EPA 4500 CL-B EPA 300.0		EG. C EG. C	1 X 250 mL 1 X 250 mL		
Purge Wate Conatinerize		0 01	Number of Galle Generated	2.8	8	COMMENTS	Vsin	W-11D	amec
SIGNATUR	E: Jemy	Kely	7		~	- 10	,,,,	•) (

FIELD	DATA REC	ORD - LO	W FLOW	GROUNDWA	ATER SA	MPLING			
PROJECT	Former Unisy	s Facility		FIELD SAM	PLE NUMBER	MW	1-11D-)	(X	JOB No. 3617187446
Location	Lake Succes	s, New York			SITE TYPE				DATE 1/31/20
ACTIVITY	START 09	OO END	1125	SAMPLE TI	ME	1	110		
WATER L	EVEL / PUMP S	SETTINGS		REMENT POINT		PROTECTIVE	VUD.		CASING/WELL D.36 FT
INITIAL DE TO WA	PTH TER 5	7,23		P OF WELL RISER P OF PROTECTIVE	- 1	(FROM GROU		FT	WELL HINDIAM.
FINAL DE TO WA	PTH 57	2,38	(TOR) SCREEN	135	FT	AMBIENT AIR		PPM	WELL INTERGRITY: YES NO N/A
DRAWDO VOLU (initial -	JME 9 (ch} or x 0.65 {4-inc	LENGTH	1/3	FT OLUME	MOUTH PRESSURE	40	PPM	CAP CASING LOCKED
TOTAL PUR	GED 5		GAL	OTAL VOLUME PUF		TO PUMP	20		DISCHARGE
PURGE D		per minute) x tim	e duration (minut	es) x 0.00026 gal/mi	illiliter)	SETTING	00		SETTING 70
TIME	DEPTH TO WATER (ft) < 0.33 ft	PURGE RATE (ml/m) ≤ 500 ml/m	TEMP. (deg. c) ≤ 3%	CONDUCTANCE (umho/cm) ≤ 3%	pH (units) ≤0.1 units	DISS. O2 (mg/L) ≤ 10%	TURBIDITY (ntu) ≤ 50 ntu	REDOX (mv) ≤ 10 units	COMMENTS
0929	57.23	Somo	Aurge	- hallo	preset	Salias			
0454	7	Stut	ruge						
1015	57.35	360	13.3	0.676	6.2	8.3	31	232	
1025	57.34	300	13.0	0.679	6.2	7.3	450	90	Raisel July 3.
1035	57.35	250	12.8	0.676	6.1	8.4	46	138	
1045	57.36	240	12.6	0.676	6-1	8.4	14	162	
1050	57.36	250	12.7	0.677	6.1	8.4	7.4	169	
1055	57.39	240	12,9	0.679	611	8.4	517	173	
1100	52.39	200	12.8	0.680	6.1	8.4	4.9	177	
1105	57.38	190	12.7	0.677	6.1	8,5	5.8	181	
TYPE (NT DOCUMEN DF PUMP OPUMP (peristal CO BLADDER ADDER	tic)		IG SITY POLYETHYLEN SITY POLYETHYLEI	NE _	E OF PUMP MA Polyvinyl chlori STAINLESS S OTHER	ide		TYPE OF BLADDER MATERIAL TEFLON Other
Check if			NUM USE	THOD MBER EPA-8260C	M	ERVATION ETHOD / 4 DEG. C	VOLUME REQUIRED 3 X 40 mL	SAMPLE COLLECTE	ED Check if collected
Fre	on 113, Freon 11	eon 11, Freon 22 5,Freon 123, Freo	on 152a	EPA-524.2		/ 4 DEG. C	3 X 40 mL		,
Chi	oride mide			EPA 4500 CL-B EPA 300.0	4 DE 4 DE		1 X 250 mL 1 X 250 mL		
Purge Ob	servations					COMMENTS	Used	WOOD	Auro
Purge Wate Conatineriz		$\bigcap \bigcap \bigcap$	Number of Gallo Generated	ns 3.9					amec
SIGNATUR	E: Jerry	hulf		_					

FIELD	DATA RE	CORD - LO	OW FLOW	GROUNDW	ATER SA	MPLING				
PROJECT	Former Unis	ys Facility		FIELD SAI	MPLE NUMBER	MW	-ST17	-XX	JOB No.	3617187446
Location	Lake Succes	ss, New York			SITE TYPE	Mu	1-ST1	7	DATE	013120
ACTIVITY	START 10	55 EN	ID 1230	SAMPLE 1	ГІМЕ	12	201			
WATER LI	EVEL / PUMP	SETTINGS		UREMENT POINT OP OF WELL RISER		PROTECTIVE	OWING T		CASING / WE	/1/ tol
TO WA		3.79	FT WELL DEF	OP OF PROTECTIVE	CASING	CASING STIC	UND)	A FT	DIFFER.	2.0
FINAL DEI		3.95	(TOR)	1140	FT	PID AMBIENT AIF	N	PPM	DIAM. WELL INTER	
DRAWDO	1 (54	104	SCREE LENGT	1 1/1	100.0	PID WELL MOUTH	N	PPM	CAP	YES NO N/A
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		ch} or x 0.65 {4-in	nch}) RATIO	OF DRAWDOWN V		PRESSURE TO PUMP		PSI	CASING LOCKED COLLAR	$X = \frac{X}{X}$
TOTAL V PURO (purge v	GED (GAL (0.0667 ites) x 0.00026 gal/m		REFILL SETTING			DISCHARGE SETTING	
PURGE DA		L pupor	1 22	SPECIFIC			Manufally			
TIME	DEPTH TO WATER (ft) < 0.33 ft	PURGE RATE (ml/m) ≤ 500 ml/m	TEMP. (deg. c) ≤ 3%	CONDUCTANCE (umho/cm) ≤ 3%	pH (units) ≤0.1 units	DISS. O2 (mg/L) ≤ 10%	TURBIDITY (ntu) ≤ 50 ntu	REDOX (mv) ≤ 10 units		COMMENTS
1135	68.95	200	12.9	0,560	6:17	7,50	1.71	162:	3	
1140	68.95	200	13.0	0,569	6.14	7.73	1.72	166.2	2	
1145	68,95	200	13.1	0.570	6.13	7.78	1.75	169.1		
1150	68.95	200	13.3	0.571	6.12	7.79	1.88	172,2	2	
1155	68.95	200	13.2	0,572	6.12	7.80	2.00	174.6	3	
1200	68.95		13.1	0.573	6.12	7.81	2.06	175.	7	
1201	Cour	CT SA	MPLE	5						
					=					
		1-1								
EQUIPMEN TYPE OF	T DOCUMENT	TATION	TYPE OF TURE	10	TVDE	05 01110 11	750			
	PUMP (peristalt	ic)	X LOW DENS	NG SITY POLYETHYLEN	the second secon	OF PUMP MA Polyvinyl chlori			TEFLON	DDER MATERIAL
	O BLADDER		HIGH DEN	SITY POLYETHYLE		STAINLESS S	STEEL		Other	
	AL PARAMETI	EDG	OTHER_			OTHER		2-6-51		
Check if So	cheduled for Collection		NUI	THOD MBER EPA-8260C	MET	RVATION THOD 4 DEG. C	VOLUME REQUIRED 3 X 40 mL	SAMPLE	D Check if colle	ricted
		Freon 123, Freon 22, Freon 22,		TDA 504.0						
		Freon 123, Fred		EPA-524.2	HCL / 4	4 DEG. C	3 X 40 mL			
▼ Chlor				PA 4500 CL-B PA 300.0	4 DEG 4 DEG		1 X 250 mL 1 X 250 mL			
						(A)	T X 200 III.			
Purge Obse Purge Water	ervations		Number of Gallo	ne	1	OMMENTS	GIN F	200	_	
Conatinerized	d yes no		Generated							. 0
			1 0		Pil	VE BI	2100	4	ar	nec
SIGNATURE	76	né s	hola							

FIELD I	DATA REC	ORD - LO	W FLOW	GROUNDWA	ATER SA	MPLING			
PROJECT	Former Unisy	s Facility		FIELD SAM	IPLE NUMBER	MW	-ST19-	XX	JOB No. 3617187446
Location	Lake Succes	s, New York			SITE TYPE	ne	V-571	9	DATE 013020
ACTIVITY	START 14	15 ENI	1550	SAMPLE TI	IME	15	26		
WATER LE	EVEL / PUMP S	SETTINGS		REMENT POINT P OF WELL RISER		PROTECTIVE	WIID -		CASING / WELL NA FT
INITIAL DE		4.98	FT WELL DEP	P OF PROTECTIVE	CASING	(FROM GROU	JND) //	A FT	WELL 2,0 IN
FINAL DEI	1 /	5,41	FT (TOR)	189	FT	AMBIENT AIR		7 PPM	WELL INTERGRITY: YES NO N/A
DRAWDO	1 1/1	2795	LENGT			MOUTH	NA	PPM	CAP X X
VOLU (initial -		ch} or x 0.65 {4-in		OF DRAWDOWN V		PRESSURE TO PUMP	50	PSI	LOCKED X
TOTAL V	GED		GAL (0.239 tes) x 0.00026 gal/m		REFILL SETTING	25.	-	DISCHARGE SETTING 5.0
PURGE DA	ATA			SPECIFIC		Date	Lucios los	7. p. 19	
TIME	DEPTH TO WATER (ft) < 0.33 ft	PURGE RATE (ml/m) ≤ 500 ml/m	TEMP. (deg. c) ≤ 3%	CONDUCTANCE (umho/cm) ≤ 3%	pH (units) ≤ 0.1 units	DISS. O2 (mg/L) ≤ 10%	TURBIDITY (ntu) ≤ 50 ntu	REDOX (mv) ≤ 10 units	COMMENTS
1500	65,41	150	12.8	0,930	6:26	4.26	13.8	156.9	7
1505	65,41	150	129	0,931	6,22	4,11	9.84	159.	
1510	65.41	150	13.0	0,933	6.19	4.09	7,51	162,3	3
1515	65.41	150	13.0	0.934	6.18	4,02	5,66	163.5	3
1520	65.41	150	13.1	0,935	6.18	3.98	4.13	165,6	
1525	65,41	150	13.1	0.936	6,17	3,93	3,90	167,2	1
1526	Cours	CT S.A.	MPLES						
							-		
					1				
-									
FOLUDATE	NT DOGUMEN	TATION							
	NT DOCUMEN OF PUMP	TATION	TYPE OF TUBI	NG	TYPE	OF PUMP M	ATERIAL		TYPE OF BLADDER MATERIAL
	OPUMP (peristal	tic)		SITY POLYETHYLE		Polyvinyl chlo			TEFLON
	CO BLADDER ADDER		OTHER	SITY POLYETHYLE	NE X	STAINLESS OTHER	STEEL		Other
ANALYTIC	CAL PARAMET			T.1.00	PDEC		VOLUME	CAMPIE	
Vo		reon 11, Freon 22 5,Freon 123, Fre	2, US	THOD <u>MBER</u> EPA-8260C	ME	ERVATION ETHOD / 4 DEG. C	VOLUME REQUIRED 3 X 40 mL	SAMPLE COLLECTE	Check if collected
□ vo	Cs + TIC plus, Fr	eon 11, Freon 22	2, US	EPA-524.2	HCL	/ 4 DEG. C	3 X 40 mL		
Chl		5,Freon 123, Fre		EPA 4500 CL-B	4 DE	G. C	1 X 250 mL	. U	•
Bro	mide		US	EPA 300.0	4 DE	G. C	1 X 250 mL		
Purge Oh	servations					COMMENTS	S		
Purge Wate	er		Number of Gallo	ons	1		BEGIN F	URGE	
Conatinerize	ed yes no		Generated						amec
	17		11						OHIEC
SIGNATUR	E /Ce	ne of	rulei						

FIELD I	DATA REC	CORD - LC	W FLOW	GROUNDWA	ATER SA	MPLING			
PROJECT	Former Unis	ys Facility		FIELD SAM	IPLE NUMBER	MW-	ST 20-	XX	JOB No. 3617187446
Location	Lake Succes	s, New York			SITE TYPE	MW	-ST20	2	DATE 013120
ACTIVITY	START 08	45 EN	0 1055	SAMPLE T	IME	10	21		
WATER LE	EVEL / PUMP S	SETTINGS		REMENT POINT P OF WELL RISER		PROTECTIVE	NAME -		ASING / WELL NA FT
INITIAL DEF	PTH TER 68	3,40		P OF PROTECTIVE	CASING	(FROM GROU	JND) /V	FT W	ELL 2.0 IN
FINAL DEI		7.11	FT (TOR)	[215]	FT	AMBIENT AIR		PPM W	ELL INTERGRITY:
DRAWDO VOLU (initial - 1	IME O	4615 ch} or x 0.65 {4-in	GAL LENGT	OF DRAWDOWN V		MOUTH PRESSURE	NA.	L	CAP X NO N/A CASING OCKED X
TOTAL V PURO (purge v	GED Z		GAL (OTAL VOLUME PUI 0, 2219 tes) x 0.00026 gal/m		TO PUMP REFILL SETTING	25.	DI	SCHARGE 5,0
PURGE DA	ATA			SPECIFIC					
TIME	DEPTH TO WATER (ft) < 0.33 ft	PURGE RATE (ml/m) ≤ 500 ml/m	TEMP. (deg. c) ≤ 3%	CONDUCTANCE (umho/cm) ≤ 3%	pH (units) ≤0.1 units	DISS. O2 (mg/L) ≤ 10%	TURBIDITY (ntu) ≤ 50 ntu	REDOX (mv) ≤ 10 units	COMMENTS
0945	69.11	200	12.5	0,706	5.86	30.0	3.67	184.8	00 8.53
0950	69.11	200	12.6	0.691	5.90	8.32	19.4	185.5	
0955	69.11	200	12.7	0.650	5.99	8:00	168	184.8	
1000	69.11	200	12.6	0.618	6,07	7.87	57.7	183.6	
1005	69.11	200	12.5	0.613	6.09	7.79	24.6	183.2	
1010	69.11	200	12.6	0.614	6.09	7.76	19.5	183.0	i
1015	69.11	200	12.5	0.615	6.09	7.74	13.7	182.6	
1020	69.11	200	12.6	0.614	6.10	7.72	9,88	182.1	
1021	COLLE	CT SA	MPLE	5					
					-				
20,000,000,000	NT DOCUMEN OF PUMP	TATION	TYPE OF TUBI	NG	TYP	E OF PUMP M	ATERIAL	TY	PE OF BLADDER MATERIAL
	OPUMP (peristal	Itic)		SITY POLYETHYLE		Polyvinyl chlo			EFLON
	CO BLADDER ADDER		OTHER	SITY POLYETHYLE	NE X	STAINLESS	STEEL		ther
ANALYTIC	CAL PARAMET				2050				
Voc		reon 11, Freon 22	2, <u>NU</u> US	THOD <u>MBER</u> EPA-8260C	M	SERVATION SETHOD ./4 DEG. C	VOLUME REQUIRED 3 X 40 mL	SAMPLE COLLECTED	Check if collected
□ vo	Cs + TIC plus, Fr	reon 11, Freon 23, Fre 15, Freon 123, Fre	z, US	EPA-524.2	HCL	/ 4 DEG. C	3 X 40 mL		
	oride mide			EPA 4500 CL-B EPA 300.0		G. C G. C	1 X 250 mL 1 X 250 mL		
				TW/WY I	7.00				
Purge Obs	servations				_	COMMENT		1	
Purge Wate Conatinerize	er ed yes no		Number of Galle Generated	ons	0	430 1	BEGIN	pulla	
			1						amec
SIGNATUR	F. R	ené 1	Jule						

FIELD	DATA REC	CORD - LC	W FLOW	GROUNDWA	ATER SA	MPLING			
PROJECT	Former Unisy	ys Facility		FIELD SAM	IPLE NUMBER	R Mh	1-21R-	XX	JOB No. 3617187446
Location	Lake Succes	s, New York			SITE TYPE	MW	-EPA-2	21R	DATE 013120
ACTIVITY	START 13	45 EN	1505	SAMPLE T	IME	14	[4]		
WATER LI	EVEL / PUMP S	SETTINGS		REMENT POINT		PROTECTIVE	NUD T	1	ASING/WELL NA FT
INITIAL DE	PTH 64	1.58		P OF WELL RISER P OF PROTECTIVE	CASING	(FROM GROUPID	JND)	FT V	NELL 2,0 IN
FINAL DE TO WA		1.68	(TOR) SCREE	[75	FT	AMBIENT AIF		PPM V	WELL INTERGRITY: YES NO N/A
DRAWDO VOLU (initial -	1 / 1		LENGT		FT OLUME	MOUTH PRESSURE	N		CAP X _ X LOCKED X X
TOTAL \	/OL.	56	GAL (OTAL VOLUME PUI 3. 042 tes) x 0.00026 gal/m	RGED	TO PUMP REFILL SETTING	24.	PSI	COLLAR Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z
PURGE DA		per minute) x un	ie duration (mind	SPECIFIC	minter)	SETTINO			SETTING C. C.
TIME	DEPTH TO WATER (ft) < 0.33 ft	PURGE RATE (ml/m) ≤ 500 ml/m	TEMP. (deg. c) ≤ 3%	CONDUCTANCE (umho/cm) ≤ 3%	pH (units) ≤0.1 units	DISS. O2 (mg/L) ≤ 10%	TURBIDITY (ntu) ≤ 50 ntu	REDOX (mv) ≤ 10 units	COMMENTS
1415	64.68	200	14.0	0.677	6,24	8.82	2.45	168.1	
1420	64.68	200	14.0	0.684	6.24	8.80	2.83	169.3	
1425	64.68	200	13.9	0.697	6.23	8.80	3.24	172.0	
1430	64.68	200	14.0	0.710	6.23	8,80	2.00	174,2	
1435	64.68	200	13.8	0.723	6.22	8.78	1.62	176:6	
1440	64.68	200	13.9	0.729	6.22	8.76	1.55	178.7	
1441	COLLE	CT SA	MPLE	5.					
		4							
TYPE C	NT DOCUMEN DF PUMP OPUMP (peristal CO BLADDER ADDER			NG SITY POLYETHYLE SITY POLYETHYLE	NE	E OF PUMP M Polyvinyl chlo STAINLESS OTHER	ride		TYPE OF BLADDER MATERIAL TEFLON Other
Check if \$ VO Fre VO Fre Child	omide	reon 11, Freon 22 5,Freon 123, Fre reon 11, Freon 22	2, NU son 152a 2, US son 152a US	THOD MBER EPA-8260C EPA-524.2 EPA 4500 CL-B EPA 300.0	HCL 4 DE	SERVATION ETHOD /4 DEG. C /4 DEG. C EG. C	3 X 40 mL 3 X 40 mL 1 X 250 mL 1 X 250 mL		D Check if collected
Purge Wate	ed (yes) no	žP.	Number of Galle Generated		14	COMMENT:	EGIN PL	IRGE	amec

FIELD	DATA RE	CORD - L	OW FLOV	V GROUNDV	VATER SA	AMPLIN	G				
PROJECT					AMPLE NUMBE		V-53M	T~VV	1	2217177112	
Location	Lake Succe	ess, New York			SITE TYP	1	M/-53		JOB No.	0 - /	100
ACTIVITY			ND 105	O SAMPLE		105	~ ~ ~ ~ ~ ~	2/4/	DATE	02/25/	20
WATER L	EVEL / PUMP	SETTINGS	MEAS	SUREMENT POINT		PROTECTI	VE VE		CASING / WE		
INITIAL DE TO WA		9.32	FT T	OP OF WELL RISE	R /E CASING	CASING ST (FROM GRO	TICKUP	O FT	DIFFER.	0	FT
FINAL DE TO WA		9.32	WELL DEF (TOR)	15:	7 FT	PID AMBIENT A	JR	РРМ	DIAM. WELL INTER	GRITY:	IN
DRAWDO VOLU	JME	0	GAL SCREI			PID WELL MOUTH	-	PPM	CAP	YES NO	N/A
TOTAL V	VOL.	nch} or x 0.65 {4-in	nch}) RATIO	O OF DRAWDOWN TOTAL VOLUME PU	VOLUME JRGED	PRESSURE TO PUMP	40) PSI	CASING LOCKED COLLAR	芝 = =	
PURO (purge v		s per minute) x tir	GAL me duration (minu	utes) x 0.00026 gal/n	nilliliter)	REFILL SETTING	20		DISCHARGE	10	
PURGE DA	ATA		The second second	SPECIFIC	illiniter)	SETTING	L 20		SETTING		
TIME	DEPTH TO WATER (ft) < 0.33 ft	PURGE RATE (ml/m) ≤ 500 ml/m	TEMP. (deg. c) ≤ 3%	CONDUCTANCE (umho/cm) ≤ 3%	pH (units) ≤0.1 units	DISS. O2 (mg/L) ≤ 10%	TURBIDITY (ntu) ≤ 50 ntu	REDOX (mv) ≤ 10 units		COMMENTS	
1022	Stant	pura	na				2001	3 10 unio			
1025	59.32	100	213.1	0,208	5,91	3.93	0.69	181.3			
030	59.31	100	12,8	0.204	5,51	1.73	1.10	160.9	1		
1035	59.32	100	12.7	0,203	5,37	1,51	0.90	160.5	-		
1040	59.33	100	12.7	0,202	5,25	1,45	0.67	162.8			-
1045	59,33	100	12.7	0,202	5,20	1,41	0.50	164.7	,		
1050	59.32	100	12.7	0,202	516	1,40	0.60	165.4	1		_
	7.72					1, 0	0100	10077			
- 1 - 1											
TYPE OF	T DOCUMENT		TYPE OF TUBIN	IG	TVDE	OF DUMP				N. 2. Te2.	
GEO	PUMP (peristalti			SITY POLYETHYLEN		OF PUMP MA Polyvinyl chlor			<u>YPE OF BLAD</u> TEFLON	DER MATERIAL	
	O BLADDER DDER	Į	HIGH DENS	SITY POLYETHYLEN		STAINLESS			Other		
	L PARAMETE	ERS	OTHER_			OTHER					
Check if Sch	heduled for Collections + TIC plus, Fre		NUM USE	HOD MBER PA-8260C	MET	RVATION THOD 4 DEG. C	VOLUME REQUIRED 3 X 40 mL	SAMPLE COLLECTED	Check if collec	ted	
VOCs	s + TIC plus, Fre	on 11, Freon 22, Freon 123, Freo	USE	PA-524.2	HCL/4	DEG. C	3 X 40 mL				
Chlori Bromi				PA 4500 CL-B PA 300.0	4 DEG.		1 X 250 mL				
			001	PA 300.0	4 DEG.	C	1 X 250 mL				
Η.											
urge Obsei	rvations				C	OMMENTS					
urge Water onatinerized	(es) no		Number of Gallon Generated	s ~1.5	Du	plica	te tal	Ken h	ere.		_
		N	scholated			4	te tal	(5), (1),	20	200	A
	Emil.	. 1	1100	-					OI I	IEC	
GNATURE:	China	11	Ma	0	1						

FIELD	DATA RE	CORD - LO	OW FLOW	GROUNDW	ATER S	AMPLING	3		
PROJECT	Former Unis				MPLE NUMBE		-53ML	$-\chi\chi$	JOB No. 3617187446
Location	Lake Succes	s, New York			SITE TYP	1/1	W-53/	ML	DATE 2/25/20
ACTIVITY	START 09	3.5 EN	ND 10000	SAMPLE T	IME	1000			
WATER LE	VEL / PUMP S	SETTINGS		JREMENT POINT	-	PROTECTIV	Street, and the second		CASING / WELL O
INITIAL DEI	PTH FER 55	3,38	FT	OP OF WELL RISER OP OF PROTECTIVE	CASING	CASING STI (FROM GRO) FT V	WELL # 2
FINAL DEF	1 / //	.41	WELL DEP (TOR)	29	2 FT	AMBIENT AII	R _	PPM	OIAM, IN
DRAWDO	1.1.1	0195	SCREE LENGT	6/ 63	FT	PID WELL MOUTH	_	PPM	CAP YES NO N/A
VOLU (initial - f	final x 0.16 {2-inc			OF DRAWDOWN V		PRESSURE	MA)	CASING LOCKED
TOTAL V		3	GAL (OTAL VOLUME PUR	RGED	TO PUMP	70	1.0	COLLAR
				ites) x 0.00026 gal/m	illiliter)	SETTING	20		DISCHARGE 6ETTING 10
PURGE DA	DEPTH TO	PURGE	TEMP.	SPECIFIC CONDUCTANCE	р	DISS. 02	TURBIDITY	REDOX	
TIME	WATER (ft) < 0.33 ft	RATE (ml/m) ≤ 500 ml/m	(deg. c) ≤ 3%	(umho/cm) ≤ 3%	(units) ≤ 0.1 units	(mg/L) ≤ 10%	(ntu) ≤ 50 ntu	(mv) ≤ 10 units	COMMENTS
0935	Star	+ pur	ing						
0940	58.38	200	13.8	0.173	6.3	2.3	1.83	100,7	7
0945	58,37	200	13.9	0.173	6,3	2.0	1.49	110,8	
0950	58,39	206	13.9	0.173	6.4	1.8	0.78	127,2	
0955	58,40	200	13.9	0.172	6.4	1.7	0.72	130.1	
1000	58,41	200	14.0	0.172	6.4	1.6	0.71	133.6	
				F					
				.					2
FOURDMEN	T DOOUBLEN	TATION							
A CONTRACTOR	F PUMP	IATION	TYPE OF TUBI	NG	TYP	E OF PUMP N	MATERIAL	Ι	YPE OF BLADDER MATERIAL
	OPUMP (peristal	tic)	=	SITY POLYETHYLE		Polyvinyl chic			TEFLON
	CO BLADDER ADDER		OTHER_	SITY POLYETHYLE	NE X	STAINLESS OTHER_	STEEL		Other
	AL PARAMET			THOD	PRES	SERVATION	VOLUME	SAMPLE	
_/	Cs + TIC plus, Fr		NU	MBER EPA-8260C	<u>N</u>	METHOD / 4 DEG. C	3 X 40 mL		Check if collected
	on 113, Freon 11 Cs + TIC plus, Fr			EPA-524.2	нсі	/4 DEG. C	3 X 40 mL		
Free	on 113, Freon 11		eon 152a						
	oride mide			EPA 4500 CL-B EPA 300.0		EG, C EG, C	1 X 250 mL 1 X 250 mL		
								昌	
Ш									
Purge Obs Purge Wate			Number of Gall	ons 7 C	1	COMMENT		malas	taken hore
Conatinerize	ed (yes no		Generated	-60	/*	13//15	SU SU	mples	taken here
	^	0							dillec
CICNATUR	E. CAMI	11	Iccio	_					

FIELD	DATA R	ECORD - LC	OW FLOW	GROUNDW	ATER S	AMPLING			
PROJECT					MPLE NUMBE	0.1		8-XX	JOB No. 3617187446
Location	Lake Succ	ess, New York			SITE TYP	E	14389		DATE 02/24/2020
ACTIVITY	START O	937 EN	D 6950	SAMPLE T	IME (3950			7572000
WATERL	EVEL / PUMI	SETTINGS		UREMENT POINT		PROTECTIVE			CASING / WELL
INITIAL DE			FT TO	OP OF WELL RISER OP OF PROTECTIVE	CASING	CASING STIC		FT	DIFFER. FT
FINAL DE			WELL DEF (TOR)	PTH	FT	PID AMBIENT AIR		PPM	DIAM. IN WELL INTERGRITY:
DRAWDO			SCREE LENGT	25.7	FI	PID WELL MOUTH		РРМ	YES NO N/A
(initial -	final x 0.16 {2-i	nch} or x 0.65 {4-in	ch}) RATIC	OF DRAWDOWN V		PRESSURE TO PUMP		PSI	CASING LOCKED COLLAR
TOTAL Y PUR	GED	rs per minute) x tim	GAL me duration (minu	utes) x 0.00026 gal/m	illiliter)	REFILL SETTING			DISCHARGE
PURGE D		vo por minute) x uni	e duration (mint	SPECIFIC	minter)	SETTING			SETTING
TIME	DEPTH TO WATER (ft) < 0.33 ft		TEMP. (deg. c) ≤ 3%	CONDUCTANCE (umho/cm) ≤ 3%	pH (units) ≤ 0.1 units	DISS. O2 (mg/L) ≤ 10%	TURBIDITY (ntu) ≤ 50 ntu	REDOX (mv) ≤ 10 units	COMMENTS
0940	_	-	14.2	0.371	6.67	8.01	1,50	186.9	
		114 - 1							
		1							
							-		
EQUIPME	NT DOCUME	NTATION							
GE	OF PUMP OPUMP (perist) CO BLADDER ADDER			<u>NG</u> SITY POLYETHYLEN SITY POLYETHYLEN	IE	E OF PUMP MA Polyvinyl chlor STAINLESS : OTHER	ide		TYPE OF BLADDER MATERIAL TEFLON Other
	CAL PARAME Scheduled for Colle		ME	THOD	PRES	ERVATION	VOLUME	SAMPLE	
		Freon 11, Freon 22, 115,Freon 123, Freo	, US	MBER EPA-8260C		ETHOD / 4 DEG. C			D Check if collected
		Freon 11, Freon 22, 115,Freon 123, Fred		EPA-524.2	HCL	/ 4 DEG. C	3 X 40 mL	\square	
	oride mide			EPA 4500 CL-B EPA 300.0	4 DE 4 DE		1 X 250 mL 1 X 250 mL		9
H								H	
Purge Obs	servations					COMMENTS	-	1	1 1
Purge Wate Conatinerize	r 6	1	Number of Gallo Generated	ons	D	uplicat	e San	ple c	amec Te and pumping
	C .	li Pu	, ,		M	SIMS	D SO	imple	diffec
SIGNATUR	E: Unw	4 HM	cero	<u> </u>		Coll	ecte	d he	re and Dumpies

FIELD	DATA REC	CORD - LC	W FLOW	GROUNDWA	ATER SA	MPLING				
PROJECT	Former Unis	ys Facility		FIELD SAM	IPLE NUMBER	MW	-4D-X	X	JOB No.	617187446
Location	Lake Succes	s, New York			SITE TYPE	C	L-40		DATE	2/24/20
ACTIVITY	START 14/	4 EN	D 1450	SAMPLE T	IME	1500				
WATER LE	PTH LO	SETTINGS	V TO	POP WELL RISER OF OF PROTECTIVE	CASING	PROTECTIVI CASING STIC (FROM GRO)	CKUP) FT	CASING / WELL DIFFER.	O FT
TO WA		157	WELL DEP (TOR)	TH 145	FT	PID AMBIENT AIR		РРМ	WELL DIAM.	4 11
DRAWDO VOLU	OWN /	12	SCREE LENGT	/ / /	FT	PID WELL MOUTH	_	РРМ	CAP CASING	
		ch} or x 0.65 {4-in	ch}) RATIO	OF DRAWDOWN V		PRESSURE TO PUMP	30	PSI	LOCKED L	$z \equiv \equiv$
TOTAL V PURO (purge v	GED		GAL	- 2.55 ites) x 0.00026 gal/mi	illiliter)	REFILL SETTING	20		DISCHARGE SETTING	10
PURGE DA	· Programme and the second			SPECIFIC		. 575 15		C.25.		
TIME	DEPTH TO WATER (ft) < 0.33 ft	PURGE RATE (ml/m) ≤ 500 ml/m	TEMP. (deg. c) ≤ 3%	CONDUCTANCE (umho/cm) ≤ 3%	pH (units) ≤ 0.1 units	DISS. O2 (mg/L) ≤ 10%	TURBIDITY (ntu) ≤ 50 ntu	REDOX (mv) ≤ 10 units	C	OMMENTS
1415	Sta	nt po	inging			773				
1420	1.41	250	12,0	0,196	7.72	7.31	3.53	168.2		
1425	1.24	250	11,9	0.201	7.54	7,15	6.85	174.7	7	
1430	1,10	250	12.0	0,210	7,31	6.96	2,29	180,5		
1435	0.90	250	11,9	0.211	7.18	7.07	2,28	184,5	5	
1440	0.89	360	11.9	0,210	7,13	7.18	3.08	185,9)	
1445	0.78	300	11,9	0,210	7.06	7,15	1,56	188.8	3	
1450	0.68	300	11.8	0,209	7.01	6,97	2.87	192,0		
								Harris Marie		
				1 - = -						
									1	
EQUIPMEN	NT DOCUMEN	TATION	2000			in a h				And the second
	OF PUMP OPUMP (peristal)	tio)	X LOW DENS	<u>ng</u> Sity polyethylen		Polyvinyl chlo			TYPE OF BLADE TEFLON	DER MATERIAL
	CO BLADDER	uc)		SITY POLYETHYLE		STAINLESS			Other	
X BL	ADDER		OTHER_			OTHER				
Check if S		eon 11, Freon 22	, NU	THOD MBER EPA-8260C	ME	ERVATION ETHOD / 4 DEG. C	VOLUME REQUIRED 3 X 40 mL	SAMPLE COLLECTE	Check if collecte	ed
□ voc	Cs + TIC plus, Fr	5,Freon 123, Fre- reon 11, Freon 22 5,Freon 123, Fre-	us.	EPA-524.2	HCL	/ 4 DEG. C	3 X 40 mL			
Chle	oride		US	EPA 4500 CL-B	4 DE		1 X 250 mL			
Bro	mide		US	EPA 300.0	4 DE	G. C	1 X 250 mL	H		
Purge Obs	servations				1	COMMENTS	S			
Purge Wate Conatinerize	1	Pur	Number of Gallo Generated	-7					an	nec®

FIELD	DATA REC	CORD - LC	W FLOW	GROUNDW	ATER SA	MPLING					
PROJECT	Former Unis	ys Facility		FIELD SAM	MPLE NUMBER	Mh	-53MI	I-XX	JOB No.	3617187446	3
Location	Lake Succes	s, New York			SITE TYPE	N	W-53	MI	DATE	03/26/	2020
ACTIVITY	START 122	5 EN	01250	SAMPLE T	IME	1300	1				
INITIAL DE TO WA' FINAL DE TO WA' DRAWDO VOLU	PTH 57 OWN ME final x 0.16 (2-inc) //OL.	7.56 7.58 013 (ch) or x 0.65 (4-in	WELL DEP (TOR) FT SCREE LENGT GAL (ch)) RATIO	13 /	FT FT /OLUME RGED	PROTECTIVIC CASING STICE (FROM GROUPID AMBIENT AIR MOUTH PRESSURE TO PUMP REFILL	CKUP	PPM PPM	CASING / WEDIFFER. WELL DIAM. WELL INTER CAP CASING LOCKED COLLAR DISCHARGE	GRITY: YES NO	IN N/A
		per minute) x tim	ne duration (minu	ites) x 0.00026 gal/m		SETTING	20		SETTING	10	14 _ 16
TIME 1230 1235 1240 1245 1250	DEPTH TO WATER (ft) <0.33 ft 57,56 57,55 6 57,55 6 57,55 6	PURGE RATE (ml/m) \$500 ml/m \$500 ml/m \$500 ml/m \$500 ml/m \$50 ml/m \$500 ml/m	TEMP. (deg. c) \$3% 14,7 14,7 14,7 14,7	SPECIFIC CONDUCTANCE (umho/cm) ≤ 3% 0.271 0.270 0.268 0.268	pH (units) ≤0.1 units G, 30 G, 28 G, 28 G, 29 G, 30	DISS. 02 (mg/L) \$10% 2:65 0.88 0.74 0.68	TURBIDITY (ntu) \$50 ntu 0.70 0.69 0.67 0.51 0.43	REDOX (mv) \$ 10 units 1761 117, 3 108, 9 111, 8		COMMENTS	
TYPE O	F PUMP DPUMP (peristalt CO BLADDER ADDER			<u>NG</u> SITY POLYETHYLEI SITY POLYETHYLE	NE	OF PUMP M Polyvinyl chlor STAINLESS	ride		TYPE OF BLA TEFLON Other	DDER MATERIA	- 7 <u>r</u>
ANALYTIC Check if S VOC Frec VOC Frec Chlch	CAL PARAMET cheduled for Collections Cs + TIC plus, Fron 113, Freon 11 Cs + TIC plus, Fron 110		ME NUI USI on 152a , USI on 152a	THOD MBER EPA-8260C EPA-524.2 EPA 4500 CL-B EPA 300.0	ME HCL /		VOLUME REQUIRED 3 X 40 mL 3 X 40 mL 1 X 250 mL 1 X 250 mL		ED Check if coll	ected	
Purge Obs Purge Water Conatinerize	ed (Ses) no	Pucc in	Number of Gallo Generated	ons ~3/4		COMMENTS S/MS	D tal	Ken h	ere 3 1	nec	9

FIELD	DATA REC	CORD - LO	OW FLOW	GROUNDW	ATER SA	MPLING	;				
PROJECT	Former Unis	ys Facility		FIELD SAM	MPLE NUMBER	R Mh	1-53M	L-XX	JOB No.	3617187446	
Location	Lake Succes	s, New York			SITE TYPE		3ML		DATE	03/26/20	120
ACTIVITY	START 3	IS EN	10 1340	SAMPLE T	IME	1345					
FINAL DEI TO WAT FINAL DEI TO WAT DRAWDO VOLU (initial - 1	PTH FER WN ME final x 0.16 (2-inc	Cr 9 / ch} or x 0.65 {4-ir	WELL DEP (TOR) FT SCREE LENGT GAL RATIO TO 1	29 N 20	2 FT	PROTECTIV CASING STI (FROM GRO PID AMBIENT AII PID WELL MOUTH PRESSURE TO PUMP REFILL SETTING	CKUP UND)	PPM PSI	CAP	4	IN N/A
PURGE DA		per minute) x tin	ne duration (minu	SPECIFIC	illiliter)	SETTING		;	SETTING	10	
TIME 3/5 320 325 330 335 340	DEPTH TO WATER (ft) <0.33 ft (0.91) CO.93 CO.97 CO.96 CO.98 CO.99	PURGE RATE (ml/m) \$500 ml/m 200 200 200 200 200	TEMP. (deg. c) \$3% 15.6 14.6 14.5 14.4 14.4 14.4	CONDUCTANCE (umho/cm) \$3% C. 186 O. 185 O. 186 O. 187 O. 187 O. 187	pH (units) \$0.1 units G.777 G.G.2 G.S.7 G.S.7 G.S.7 G.S.7	DISS. 02 (mg/L) \$10% 3,60 1,77 2,54 3,06 3,23 3,28	TURBIDITY (ntu) \$50 ntu 0,46 0.68 0.93 0.74 0.62 0.44	REDOX (mv) \$ 10 units 127.2 122,3 108.5 103.9 103.1 102.3		COMMENTS	
TYPE O GEC SMC X BL/ ANALYTIC Check if S VOC Frec VOC Frec Chlc	on 113, Freon 11 Cs + TIC plus, Fr	tic)	HIGH DEN OTHER ME NU 2, US 200 152a 2, US 201 152a US	NG SITY POLYETHYLEI SITY POLYETHYLE THOD MBER EPA-8260C EPA-524.2 EPA 4500 CL-B EPA 300.0	PRES M HCL	E OF PUMP M Polyvinyl chlo STAINLESS OTHER ERVATION ETHOD / 4 DEG. C / 4 DEG. C	STEEL VOLUME	SAMPLE COLLECTE	TEFLON Other	DER MATERIAL	
Purge Obs Purge Wate Conatinerize	ed (Pes) no	- fuc	Number of Gall Generated	ons <u>2</u>	D	comment	s ate to	iken h	ere an	nec	9

FIELD	DATA RE	CORD - LC	W FLOW	GROUNDWA	ATER SA	MPLING			
PROJECT	Former Unis	ys Facility		FIELD SAM	IPLE NUMBER	R SW-	N4388	$-\chi\chi$	JOB No. 3617187446
Location	Lake Succes	ss, New York			SITE TYP	E	14388		DATE 03/26/2020
ACTIVITY	START 093	0 ENI	0940	SAMPLE T	IME	0940)		
WATER L	EVEL / PUMP	SETTINGS		REMENT POINT P OF WELL RISER		PROTECTIV CASING STI			SING / WELL FT
INITIAL DE TO WA	PTH TER		FT TO	P OF PROTECTIVE	CASING	(FROM GRO		FT w	ELL
FINAL DE TO WA			WELL DEP (TOR)		FT	AMBIENT AII	R	PPM	AM. IN IN IN IN
DRAWDO VOLU	IME	ch} or x 0.65 {4-in	SCREE LENGT		OLUME.	PID WELL MOUTH PRESSURE			YES NO N/A CAP CASING OCKED
TOTAL	/OL.			OTAL VOLUME PUR		TO PUMP		PSI C	SCHARGE
(purge	olume (milliliters			tes) x 0.00026 gal/mi	Illiliter)	SETTING		1000	ETTING
PURGE D	DEPTH TO WATER (ft) < 0.33 ft	PURGE RATE (ml/m) ≤ 500 ml/m	TEMP. (deg. c) ≤ 3%	SPECIFIC CONDUCTANCE (umho/cm) ≤ 3%	pH (units) ≤ 0.1 units	DISS. O2 (mg/L) ≤ 10%	TURBIDITY (ntu) ≤ 50 ntu	REDOX (mv) ≤ 10 units	COMMENTS
0940		≤ 500 ml/m	16.2	0,229	7.64	6.99	0,87	170.6	
TYPE (GE SM X BL	NT DOCUMEN DF PUMP OPUMP (peristal CO BLADDER ADDER	Itic)		NG SITY POLYETHYLE! SITY POLYETHYLE	NE _	E OF PUMP N Polyvinyl chlo STAINLESS OTHER	oride	□⊤	PE OF BLADDER MATERIAL EFLON ther
Check if	on 113, Freon 11		NU US on 152a	THOD MBER EPA-8260C EPA-524.2	HCL HCL	SERVATION ETHOD /4 DEG. C	VOLUME REQUIRED 3 X 40 mL	SAMPLE COLLECTED	Check if collected
Chi	on 113, Freon 1 ² oride omide	15,Freon 123, Fre	US	EPA 4500 CL-B EPA 300.0		eg. C eg. C	1 X 250 mL 1 X 250 mL		
Purge Ob Purge Wate Conatineriz	ed yes (o)	li Ru	Number of Galle Generated	ons	1	1S/MS aken	s He Sar D San here vice av	ipies	aken here amec

FIELD	DATA REC	CORD - LO	W FLOW	GROUNDW	ATER SA	MPLING				
PROJECT	Former Unis	ys Facility		FIELD SAN	PLE NUMBER	MW	-40->	××	JOB No.	3617187446
Location	Lake Succes	s, New York			SITE TYPE		CL-4D		DATE	3/26/2020
ACTIVITY	START 11	O EN	1130	SAMPLE T	IME 1	135				
WATER LI	EVEL / PUMP S	SETTINGS		POF WELL RISER		PROTECTIVE CASING STIE			CASING / WE	LL FT
TO WA		21		P OF PROTECTIVE	CASING	(FROM GRO		- FT	WELL DIAM.	4 10
FINAL DE		52	(TOR) SCREE	175	FT	AMBIENT AII	2	PPM	WELL INTER	
DRAWDO	11.1.1	015	LENGT	н	FT	MOUTH		РРМ	CAP CASING	4
(initial -	final x 0.16 {2-inc	ch} or x 0.65 {4-inc		OF DRAWDOWN V		PRESSURE TO PUMP	20) PSI	LOCKED	$\overline{j} = \overline{z}$
TOTAL V PURO (purge v	GED []	-	GAL (0,129 tes) x 0.00026 gal/m		REFILL SETTING	2	0	DISCHARGE SETTING	10
PURGE DA	ATA			SPECIFIC						
TIME	DEPTH TO WATER (ft) < 0.33 ft	PURGE RATE (ml/m) ≤ 500 ml/m	TEMP. (deg. c) ≤ 3%	CONDUCTANCE (umho/cm) ≤ 3%	pH (units) ≤ 0.1 units	DISS. O2 (mg/L) ≤ 10%	TURBIDITY (ntu) ≤ 50 ntu	REDOX (mv) ≤ 10 units		COMMENTS
1100	P\$ 8,21	200	13.0	0.267	6.77	5,99	1.62	205,5	>	
1105	8,24	200	13,2	0.209	6.62	5.84	6.24	195.6		
1110	8.30	200	13.1	3,231	6,53	5.96	13.9	195.7		
1115	8,37	200	13.2	0,270	6.46	6.02	6.71	191,1		
1120	8.41	206	13.2	0.281	6.42	6.02	5,36	188.9	1	
1125	8.48	200	13.2	0.285	6.40	6.06	4.49	186.3	3	
1130	8.52	200	13.2	0.286	6.37	6.05	3,20	184,8		
14.34.4					-				1	
									7	
1700 I OE 11 DE	NT DOCUMEN									Access to the contract of
	OF PUMP OPUMP (peristal)		X LOW DEN	<u>NG</u> SITY POLYETHYLEI		OF PUMP M Polyvinyl chlo			TEFLON	DDER MATERIAL
	CO BLADDER			SITY POLYETHYLE		STAINLESS			Other	
	ADDER		OTHER_			OTHER		-		
Check if S	CAL PARAMET Scheduled for Collect Cs + TIC plus, Fr		NU	THOD MBER EPA-8260C	ME	RVATION THOD 4 DEG. C	VOLUME REQUIRED 3 X 40 mL	SAMPLE COLLECTE	Check if colle	ected
□ vo	Cs + TIC plus, Fr	5,Freon 123, Freon 22, 5,Freon 123, Freon 12	us	EPA-524.2	HCL /	4 DEG. C	3 X 40 mL			
Chie	oride		US	EPA 4500 CL-B	4 DEC		1 X 250 mL			
Bro	mide		08	EPA 300.0	4 DEC	s. C	1 X 250 mL			
Purge Obs	servations					COMMENT	S			
Purge Wate Conatinerize	ed (es) no		Number of Gallo Generated	ons ~ 4					ar	nec
SIGNATUR	E End	· Puc							UI.	1100

EIELD I	DATA PEC	OPD LO	W EL OW	GROUNDWA	TEP SA	MPLING					
			AA LEOM			property		XV	IOD No. Jan.	17187446	
	Former Unisy			FIELD SAM	PLE NUMBER		-3/66-	11		115/20	
	Lake Success		10.20		SITE TYPI	Name of Street, or other Designation of the Owner, where the Owner, which	2		DATE 1	11/ 40	
	START // 3		,12135	SAMPLE TI	ME	12120			A PUNIO LIMPIA		
	EVEL / PUMP 8	ETTINGS	TT10	P OF WELL RISER		CASING STIC	CKUP	D	ASING / WELL OFFER.	-	FT
INITIAL DEF	TER S	8.03	FT	P OF PROTECTIVE	CASING	(FROM GROUPID	UND)	and the same of th	VELL DIAM.	4"	IN
FINAL DEF	90 90	:05	WELL DEP	1 700	FT	AMBIENT AIR		PPM	VELL INTERGRIT	ry:	
DRAWDO			SCREE		FT	PID WELL MOUTH	_	PPM	CAP YES		N/A
VOLU	ME Che		ch)) RATIO	OF DRAWDOWN V		PRESSURE TO PUMP	60	1	CASING LOCKED COLLAR	7 1	
TOTAL V PURC (purpe v	SED 4		SAL 6	2. 06 7 7 tes) x 0.00026 gal/mi		REFILL SETTING	20		DISCHARGE	10	
PURGE DA	Name and Address of the Owner, where the Owner, which is th			SPECIFIC					1		
TIME	DEPTH TO WATER (ft) < 0.33 ft	PURGE RATE (ml/m) S NX ml/m	TEMP. (deg. c) s 3%	(umho/cm) s 3%	pH (units) ≤ 0.1 units	DISS. O2 (mg/L) s 10%	TURBIDITY (ntu) ≤ 50 ntu	REDOX (mv) ≤ 10 units	co	MMENTS	
11:55		350400		0.688	7.07		1.59	157.7			
	88.05	350400		9.685	6.97	3.34	1.37	154.6			
	88.05	350400		0,673	6.78	5.99	2.69	45×154,9	4		
		350100		9.671	6.68	6.53	2.73	153.6			
12:15	88.05	350400		0.671	6.65	6.59	2.32	152.9			
12120	88.05	250 900		0.672	6.64	6.61	1.89	152.8	* Collec	1 sample	
									1		
	NT DOCUMEN OF PUMP	TATION	TYPE OF TUBI	NG	TYP	E OF PUMP M	MATERIAL	T	YPE OF BLADDE	R MATERIAL	
	OPUMP (peristal	rtic)		SITY POLYETHYLE		Polyvinyl chlo			TEFLON Other		
	CO BLADDER ADDER		OTHER_	ISITY POLYETHYLE	NE X	OTHER	SIEEL	_	70101		
ANALYTIC	CAL PARAMET			THOD	PRES	SERVATION	VOLUME	SAMPLE			
	Scheduled for Collect Cs + TIC plus, Fi		NU	MBER EPA-8260C	N	METHOD / 4 DEG. C	3 X 40 mL	COLLECTER	Check if collected		
Fire	on 113, Freon 11	5, Freon 123, Fre	on 152a	EDA FOLO	NCI	. / 4 DEG. C	3 X 40 mL				
UVO Fre	Cs + TIC plus, Fi on 113, Freon 11	reon 11, Freon 22 15,Freon 123, Fre		EPA-524.2	Hot	74020.0			-	4	
Chi				EPA 4500 CL-B EPA 300.0		EG. C EG. C	1 X 250 mL 1 X 250 mL				
	smide										
									3		
Purge Ob	servations					COMMENT	s //	1 100	horas	-	
Purge Wate Conatineriza			Number of Gall Generated	ons 2.6	1	4/50 c	ollecten	17/3/	ansos -	TOM	9
					4	12/1		12 12 2	an	<i>iec</i>	
	1	-	-		1	16-31-6	51-M50	12:42	-		
PHATTIE	10	AND THE REAL PROPERTY.		The state of the s	/	1-11-0	21-1931	1 /4 1 1 3			

FIELD DATA RECORD - LOW FLOW O	GROUNDWATER S	AMPLING		
PROJECT Former Unisys Facility	FIELD SAMPLE NUMB	ER 31-MI	JOB No. 3617187446	
Lake Success, New York	SITE TY	PE MU-314	I DATE 6/15/20	
ACTIVITY START END	SAMPLE TIME			_
FINAL DEPTH TO WATER FINAL DEPTH TO WATER FINAL DEPTH TO WATER FINAL DEPTH TO WELL DEPTH (TOR) SCREEN LENGTH WITH (Initial - final x 0.16 {2-inch} or x 0.65 {4-inch}) RATIO CO	FT DF	PROTECTIVE CASING STICKUP (FROM GROUND) PID AMBIENT AIR PID WELL MOUTH PRESSURE TO PUMP REFILL SETTING	PPM WELL INTERGRITY:	IN N/A
PURGE DATA TIME DEPTH TO WATER (ft) RATE (ml/m) (deg. c) \$3% 0'575 88.96 300 15.2 100 89.06 300 15.0 110 89.06 300 15.0 110 89.08 300 15.0 110 89.08 300 15.0 110 89.08 300 15.0 110 89.08 300 19.0 110 89.08 300 11	SPECIFIC CONDUCTANCE (umho/cm) (units) \$3% \$0.1 units . (96 7.44) . 666 8.19 . 524 7.83 . 519 7.45	3.13 13 3.05 3.25 6.95 3.25 6.95 3.25 6.95 3.25 6.95	REDOX (mv) COMMENTS 10 units 183.7 175.1 171.2 175.4 175.9	
	G TY TY POLYETHYLENE X	PE OF PUMP MATERIAL Polyvinyl chloride STAINLESS STEEL OTHER	TYPE OF BLADDER MATERIAL TEFLON Other	
Freon 113, Freon 115,Freon 123, Freon 152a VOCs + TIC plus, Freon 11, Freon 22, Freon 113, Freon 115,Freon 123, Freon 152a Chloride USEI	BER PA-8260C HC PA-524.2 HC PA 4500 CL-B 4 E	ESERVATION VOLUME REQUIRED 3 X 40 mL CL / 4 DEG. C 3 X 40 mL DEG. C 1 X 250 mL DEG. C 1 X 250 mL		
Purge Observations Purge Water Conatinerized yes no Generated SIGNATURE:	s	COMMENTS	amec	•

237ML-,80Z

FIELD	DATA REC	ORD - LO	W FLOW	GROUNDWA	ATER SAI	MPLING					
PROJECT	Former Unisys	s Facility		FIELD SAM	IPLE NUMBER		31 ML		JOB No.	3617187445	
Location	Lake Success	, New York			SITE TYPE		J-3/4	2	DATE	06/15/	20
ACTIVITY	START 12	35 END	1330	SAMPLE T	IME						
WATER L	EPTH COL	ETTINGS	MEASUR TOP	REMENT POINT OF WELL RISER OF PROTECTIVE		PROTECTIVE CASING STIC FROM GROU	XUP		CASING / WE	ut	FT
TO WA	ATER []	,45	WELL DEPT			PID			WELL.	4	PN PN
FINAL DE		,45 ,	(TOR)	705) FT /	AMBIENT AIR		PPM	WELL INTER	GRITY:	
DRAWD	UME TY	25 6	SCREEN LENGTH	11 (1		MOUTH		PPM	CAP CASING	YES NO	NIA.
(initial -	- final x 0.16 {2-inct	h) or x 0.65 (4-inc		OF DRAWDOWN VOTAL VOLUME PUR		PRESSURE TO PUMP		PSI	COLLAR	= = :	
PUF	RGED (milliliters)		AL (minute	5, 12 es) x 0.00026 gal/m	itiliter) S	REFILL			DISCHARIGE SETTING		
PURGE I	DATA DEPTH TO 1	PURGE	I	SPECIFIC	1 1				1		
TIME	WATER (ft) < 0.33 ft	RATE (ml/m)	TEMP. (deg. c) ≤ 3%	CONDUCTANCE (umho/cm) ≤ 3%	pH (units) ≤ 0.1 units	DISS. O2 (mg/L) < 10%	TURBIDITY (ntu) ≤ 50 ntu	REDOX (mv) ≤ 10 units		COMMENTS	
(123	100	230	15.6	104	7.13	5.95	2.12	166.0			
124	0 92.10	230	156	1193	6.87	6.15	1.18	174.	3		
50 124	5 9232	230	15.5	113	6.73	6.50	2.46	[80]	7		
11/1 1	70 42:43	230	15.4	193	6.65	6.66	1.47	183.6			
150 125	592.50	230	15.5	1192	6.63	6.63	1,15	183 1	5		
1300	1 1 / !	230	15.5	192	6.62	6.61	, 57		5		
70 1305	1 1	230	15.5	-191	6,61	6.60	. 31	184.	3		
0 1318	1001	230	15.5	191	6.60	6,55	1.12	183.	6		
- 131		230	15.5	191	6.59	8.55	,41	183	3		
132	0 4 2.45	230	15.5	161.	6.54	6,53	180	183.9	MA	500 15 Du	6
									-		
	ENT DOCUMENT										
	OF PUMP EOPUMP (peristal)		X LOW DENS	<u>G</u> ITY POLYETHYLE!		OF PUMP MA Polyvinyl chlor			YPE OF BLA TEFLON	DDER MATERIAL	
	MCO BLADDER		=	TY POLYETHYLE	=	STAINLESS S		=	Other		
	BLADDER		OTHER			OTHER					
Check i	TCAL PARAMETI if Scheduled for Collecti OCs + TIC plus, Fre reon 113, Freon 118	on eon 11, Freon 22,	NUM USE	HOD IBER PA-8250C	ME	RVATION THOD 4 DEG. C	VOLUME REQUIRED 3 X 40 mL	SAMPLE COLLECTE	D Check if cold	schol	
□ v	OCs + TIC plus, Fre reon 113, Freon 118	eon 11, Freon 22,	USE	PA-524.2	HCL /	4 DEG. C	3 X 40 mL				
120	hloride romide		USE	PA 4500 CL-B PA 300.0	4 DEG 4 DEG		1 X 250 mL 1 X 250 mL	×			
								H			
Purge O	bservations					COMMENTS					
Purge Wa Conatiner	iter ized yes no		Number of Gallor Generated		D	uplica	ale to	ken	here	nec	0
SIGNATU	IRE MB								JI	1100	

FIELD	DATA RECORD - L	OW FLOW GF	COUNDWAT	FR SAMI	PLING				
	Former Unisys Facility		FIELD SAMPLE			-43MU-	xx	100 Mg /20	247497446
Location	Lake Success, New York			SITE TYPE	M	1.1-43	M		517187446
ACTIVITY	ering 187 =	ND	SAMPLE TIME	11	35	AA 1		DATE	1116100
WATER LI	EVEL / PUMP SETTINGS	MEASUREM	IENT POINT	PRO	OTECTIVE		CI	ISING / WELL	
INITIAL DE	PTH 93,89	FT TOP OF	PROTECTIVE CA	CAS	SING STIC	KUP A) FT DI	FFER.	FI
FINAL DEI	PTH 93,91	WELL DEPTH (TOR)	228	FT AMI	BIENT AIR	_	- PPM DI	AM.	y in
DRAWDO		SCREEN LENGTH	10		WELL	_		CAP YES	
	final x 0.16 (2-inch) or x 0.65 (4-i		DRAWDOWN VOLU	ME PRE	ESSURE			CASING OCKED	/ = -
TOTAL		A	L VOLUME PURGE	р то	PUMP	100		COLLAR Z	
PUR(purge v	/olume (milliliters per minute) x ti	me duration (minutes)	0.00026 gal/millilite	REF SET	TING	70		SCHARGE	10
PURGE DA	ATA		SPECIFIC				36	CITING	
TIME	DEPTH TO PURGE WATER (ft) RATE (ml/m) ≤ 0.33 ft ≤ 500 ml/m	TEMP. CC (deg. c) ≤ 3%		(units)	ISS, O2 (mg/L) ≤ 10%	TURBIDITY (ntu) ≤ 50 ntu	REDOX (mv) ≤ 10 units	CC	OMMENTS
1035	4389 600	12,45 C	,283 (192 2	58	1.47	245	Hernol	Lour psi
1040	93,87 200	12.15 0	,280 G	96 2	.79	7.41	27.9	TOU NO	and for
1045	93.89 200	12,13 0	,275 C	.95 1	42	7.19	47.3		
1050	93,91 200	1200 0	272 6	,82 4	,08	17.2	43.1		
1055	93,92 200	11,470	280 G	1755	91	15.5	59.2		
1/00	93,93 200	12,260	250 G	75 6	29	11.7	72.1		
1105	93.91 200	12.32 (1280 G	,74 G	80.	9.99	84.9		
1100	93.92 200	12.43 (280 G	·726	00	0.39	98.9		
1115	93,88 200	12,500	.280 G	696	108	7.87	108.6		
1120	93,91 200	12.70 3	180 6	66 5	XX.	4.49	166		
1125	93,89 200	12,87 0	279 (645	75	4.19	123.6		
1130	93.91 200	12,980	.280 6	615	95	3.71	179.9		
	T DOCUMENTATION				10				1
TYPE O	F PUMP PPUMP (peristaltic)	TYPE OF TUBING	DOLVETING ENE		PUMP MA			PE OF BLADD	ER MATERIAL
- Contracting	O BLADDER		POLYETHYLENE		vinyl chlorid			EFLON ther	
X BLA	ADDER	OTHER			HER	1		I ICI	
	AL PARAMETERS cheduled for Collection	METHOE)	PRESERV	ATION	VOLUME	SAMPLE		
Vvoc	s + TIC plus, Freon 11, Freon 22 n 113, Freon 115,Freon 123, Fre	NUMBER USEPA-8	3	METHO HCL / 4 D	OD	REQUIRED 3 X 40 mL	COLLECTED	Check if collected	
Freor	s + TIC plus, Freon 11, Freon 22 n 113, Freon 115, Freon 123, Fre	on 152a		HCL / 4 D	EG. C	3 X 40 mL			
Chlor Brom		USEPA 3	500 CL-B 00.0	4 DEG. C 4 DEG. C		1 X 250 mL 1 X 250 mL			
Purge Obse	rvations			CO	MMENTS				
urge Water conatinerized		Number of Gallons Generated	14			-			0
GNATURE:	Ends fue	cia						an	nec

FIELD DATA RECORD - LOW FLOW	GROUNDWATER SA	MPLING	
PROJECT Former Unisys Facility	FIELD SAMPLE NUMBER	AL ALBERT OF THE	JOB No. 3617187446
Location Lake Success, New York	SITE TYPE	11/1 1000 100	DATE 6/16/20
ACTIVITY START 1\50 END	SAMPLE TIME	1220	12/1/9
WATER LEVEL / PUMP SETTINGS MEASUR	REMENT POINT	PROTECTIVE	CASING / WELL
TO WATER 94,94 FT TOP	OF PROTECTIVE CASING	CASING STICKUP (FROM GROUND) FT	DIFFER. FT
FINAL DEPTH TO WATER 94, 97 FT (TOR)	330 FT	PID AMBIENT AIR PPM	WELL INTERGRITY:
ORAWDOWN VOLUME (initial - final x 0.16 (2-inch) or x 0.65 (4-inch)) SCREEN LENGTH RATIO C	120 m	PID WELL PPM	CAP YES, NO N/A
TOTAL VOL. (2-inch) or x 0.99 (4-inch)) RATIO C	NOT A A STORY A STORY OF THE ST	PRESSURE TO PUMP PSI	LOCKED COLLAR
PURGED GAL (purge volume (milliliters per minute) x time duration (minute	O, O J as) x 0.00026 gal/milliliter)	REFILL 20	DISCHARGE SETTING
DEPTH TO I BURGE I TEMP	SPECIFIC		,
TIME WATER (ft) RATE (ml/m) (deg. c) < 0.33 ft \$500 ml/m \$3%	CONDUCTANCE pH (units) \$3% \$0.1 units	DISS. O2 TURBIDITY REDOX (mg/L) (ntu) (mv) ≤ 10% ≤ 50 ntu ≤ 10 unit	COMMENTS
1155 94.98 300 2.10	0.312 6.22	9.00 0.61 266.1	
1200 94,93 300 12,04	72111 910	0,97 259,9	1
1205 94,89 200 12.06	0.308 6.34	3,98 1,97 266,0	
120 94.93 300 12.06	3,252 6,42	3,24 1.05 259,3	3
1215 94,97300 12.11	0. 229 6.45	3,07 0,64 255,	8
	1 4 1		
	4 1		
	17/01		
EQUIPMENT DOCUMENTATION TYPE OF PUMP TYPE OF TUBING	Type	OF DUMP HATEOUR	
		OF PUMP MATERIAL Polyvinyl chloride	TYPE OF BLADDER MATERIAL TEFLON
SMCO BLADDER HIGH DENSI X BLADDER OTHER		STAINLESS STEEL OTHER	Other
ANALYTICAL PARAMETERS			
Check if Scheduled for Collection METH NUMI VOCs + TIC plus, Freon 11, Freon 22, Freon 113, Freon 115,Freon 123, Freon 152a	BER MET	RVATION VOLUME SAMPLE REQUIRED COLLECTION OF SAMPLE REQUIRED COLLE	D Check if collected
	PA-524.2 HCL / 4	4 DEG. C 3 X 40 mL	
Chloride USEP	A 4500 CL-B 4 DEG A 300.0 4 DEG		
Bromde	A 300.0 4 DEG	1 X 250 ML	
Purge Observations		COMMENTS	
Purge Water Number of Gallons			
Conatinerized (yes) no Generated			amec
SIGNATURE Einh Puccio	Market Market		OHIEC.
SIGNATURE: WHILL I MY CHO			100

FIELD	DATA REC	ORD - LO	W FLOW	GROUNDWA	ATER SA						
PROJECT	Former Unisy	s Facility		FIELD SAM	PLE NUMBER	1/-	NSS35-	XX	JOB No.	3617187446	100
Location	Lake Success	s, New York			SITE TYPE	A	5535	5	DATE	6/16/	20
ACTIVITY	START	END		SAMPLE T	ME	125	0				
WATER L	EVEL / PUMP 8	ETTINGS		REMENT POINT P OF WELL RISER		PROTECTIVE CASING STIC			CASING / WE	11	FT
INITIAL DE			TOP	OF PROTECTIVE		(FROM GROU		FT	WELL		
TO WA			WELL DEPT	н		PIO		PPM	DIAM.		(84)
FINAL DE TO WA		1	(TOR)			AMBIENT AIR		P.F.M.	WELL INTER	YES NO	N/A
DRAWD			SCREEN			MOUTR		PPM	CAP CASING		
VOLI (initial -	- final x 0.16 (2-inc			OF DRAWDOWN V		PRESSURE			TOCKED	:	
TOTAL				STAL VOLUME PUR	RGED	TO PUMP		PSI			
	volume (millitiers		AL minute	es) x 0.00026 gat/mi		REFILL SETTING			DISCHARGE SETTING		
PURGE D				SPECIFIC				nenov	-		
TIME	DEPTH TO WATER (#)	PURGE RATE (ml/ml)	TEMP. (deg. c)	CONDUCTANCE (umho/cm)	pH (units)	DISS. 02 (mg/L)	TURSIDITY (ntu)	REDOX (mv)		COMMENTS	
	< 0.33 ft	≤ 500 mt/m	19.51	53% PLUCE	≤0.1 units	10%	0.80	10 units	1		
-			19/21	017100	10117	1.00	0.00	611	-		
-											
-											
-											
									-		
-									-		
	ENT DOCUMEN	1471044							1		
	OF PUMP		TYPE OF TUBIN	G		OF PUMP MA			TYPE OF BLAN	DOER MATERIAL	
	EOPUMP (peristalt	ic)		TTY POLYETHYLEN		Polyvinyl chlori STAINLESS S			TEFLON Other		
	MCO BLADDER LADDER		OTHER	ITY POLYETHYLE		OTHER	HEEL		Other		
ANALYTI	CAL PARAMET			100	poete	RVATION	VOLUME	SAMPLE			
/	Scheduled for Collecti DCs + TIC plus, Fri		NUN	HOD IBER PA-8250C	ME	THOO 4 DEG. C			D. Check fools	cled	
Fre	ean 113, Frean 115	5,Freori 123, Fred	n 152a	24 624 2	un i	4 DEG. C	3 X 40 mL				
Fre	OCs + TIC plus, Fre son 113, Freon 115	eon 11, Freon 22, 5,Freon 123, Freo	n 152a	PA-524.2	noc.	4000.0	3 A 40 IIIL				
1 Da	lioride		USE	PA 4500 CL-B PA 300.0	4 DEG 4 DEG		1 X 250 mL 1 X 250 mL	M			
L Bro	omide		-								
日								H			
H											
Purge Ob	servations				(COMMENTS					
Purge Wate	E (0)		Number of Gallon Generated	5							0
Constinent	ser yes (10)		20,000						ar	nec	
	91	1.00								1120	
SIGNATUR	E Myl	TIL	clig	_							

FIELD	DATA REC	CORD - LC	W FLOW	GROUNDW	ATER SA	AMPLING	3		
	Former Unis				MPLE NUMBE		W-45-1	MU-XX	JOB No. 3617187446
Location	Lake Succes	s, New York			SITE TYP	-	11-45)		DATE 6/15/2 P
ACTIVITY	START 14	00 EN	0/4:57	SAMPLE T	TME	14,50			
WATER LI	EVEL / PUMP	SETTINGS		REMENT POINT		PROTECTIV	_		CASING / WELL
TO WA	PTH 160	150	FT TO	P OF WELL RISER P OF PROTECTIVE	CASING	(FROM GRO		FT	DIFFER. FT
FINAL DEI	PTH 16	1.58	WELL DEP	28	9 FT	AMBIENT AI	R	- PPM	DIAM. IN WELL INTERGRITY:
DRAWDO		052	SCREE	/ //	FT	PID WELL MOUTH	_	PPM	CAP YES NO N/A
	14.180	ch} or x 0.65 {4-in		OF DRAWDOWN V		PRESSURE	166		CASING LOCKED
TOTAL V PURC	SED 7 -	095 (GAL C	OTAL VOLUME PUI 0 0 / 2 7 tes) x 0.00026 gal/m		TO PUMP	700	7	COLLAR DISCHARGE
PURGE DA		per (minute) x tin	e duration (minu	tes) x 0.00026 gal/m	illiliter)	SETTING			SETTING 10
TIME	DEPTH TO WATER (ft) < 0.33 ft	PURGE RATE (ml/m) ≤ soo ml/m	TEMP. (deg. c) < 3%	CONDUCTANCE (umho/cm) ≤ 3%	pH (units) ≤0,1 units	DISS. O2 (mg/L) ≤ 10%	TURBIDITY (ntu) ≤ 50 ntu	REDOX (mv) ≤ 10 units	COMMENTS
14:05	166.50	350	15.3	0.361	6.86	7.33	£1.369.6		
14:10	166.57	350	14.9	0,301	6.78	7.55	157	647	
14:15	166.59	350	14.9	0.203	6.75	4.74	23.1	38.6	
12/50	166.59	350	14.5	0,222	6.51	1.60	26.1	6.6	
14:25	166.59	350	14.4	0,380	6,33	1,32	21.)	838.2	
14:30	166.59	350	14.5	0.500	6.21	1.57	20.0	63.5	
14:35	166.58	350	14.5	0.551	6.22	2.05	19.5	78.4	
14:40	166.58	350	14.5	0.563	6.24	2.35	17.4	91.5	
14:45	166.58	350	14.6	0.575	6.26	2.42	10.9	103.2	
14:50	166.58	350	14.7	0.578	6.26	2.43	9.18	110.2	* Collect sample
EQUIPMEN	IT DOCUMEN	TATION							
TYPE O		TATION .	TYPE OF TUBIN	IG .	TYPE	OF PUMP M	ATERIAL	Т	YPE OF BLADDER MATERIAL
	PUMP (peristalt O BLADDER	ic)		TY POLYETHYLEN		Polyvinyl chlor			TEFLON
	DDER		OTHER_	SITY POLYETHYLEN	NE X	STAINLESS OTHER	STEEL		Other
Check if So	AL PARAMET	on	MET	THOD MBER		ERVATION ETHOD	VOLUME REQUIRED	SAMPLE	○ Check if collected
Freo	n 113, Freon 115	eon 11, Freon 22, 5, Freon 123, Freo	on 152a	PA-8260C	HCL	4 DEG. C	3 X 40 mL	V	
		on 11, Freon 22, 5,Freon 123, Freo		PA-524.2	HCL	4 DEG. C	3 X 40 mL		
Chlo	ride		USE	PA 4500 CL-B	4 DE		1 X 250 mL	d	
	ilue		USE	PA 300.0	4 DE	G. C	1 X 250 mL		
Purge Obse	ervations					COMMENTS	3		
Purge Water Conatinerized			Number of Gallor Generated	4.095					amec
SIGNATURE:	4	0							

FIELD	DATA RECORD -	LOW FLOW	GROUNDWA	TER SAM	MPLING			
PROJECT	Former Unisys Facility		FIELD SAMP	LE NUMBER	4	5-MI		JOB No. 3617187446
Location	Lake Success, New York	K		SITE TYPE	1	W-451	UI	DATE 86/15/20
ACTIVITY	START	END	SAMPLE TIN	IE				
INITIAL DE		V TO	REMENT POINT P OF WELL RISER P OF PROTECTIVE O	0	PROTECTIVE CASING STIC FROM GROU	KUP	FT	ASING / WELL FT
TO WA		WELL DEPT	H 333		PID			VELL 4 IN
FINAL DE TO WA		7 FT (TOR)			AMBIENT AIR		PPM	VELL INTERGRITY:
DRAWD		SCREET			NOUTH	~	РРМ	YES NO N/A CAP CASING
	final x 0.16 (2-inch) or x 0.65	4-inch)) RATIO	OF DRAWDOWN VO		PRESSURE			LOCKED
TOTAL	VOL 1.56	GAL C	OTAL VOLUME PUR		O PUMP			DISCHARGE
(purge	volume (milliliters per minute)		tes) x 0.00026 gal/milli		SETTING			ETTING
PURGE D	ATA DEPTH TO PURGE	TEMP.	SPECIFIC CONDUCTANCE	pH	DISS. 02	TURBIDITY	REDOX	
TIME	WATER (ft) RATE (mil < 0.33 ft ssoonin	m) (deg. c)	(umho/cm) ≤ 3%	(units)	(mg/L) ≤ 10%	(ntu) ≤ 50 ntu	(mv) ≤ 10 units	COMMENTS
1955	-	The second second	179	6.64	.93	,52	137.2	
1500	167.18 300		180	6,53	.93	.69	149.6	
1500	167.18 305	140	174	6.48	.61	, 66	153.4	
100	167 10 300	14.0		6.99	.66	1.35	158.3	
150	5 167.15 30	0 19.0	.172	6.72	1.13	5.2	162.2	
-								
EURIEM	ENT DOCUMENTATION							
	OF PUMP	TYPE OF TUBI			OF PUMP MA			YPE OF BLADDER MATERIAL
2000	EOPUMP (peristaltic) VICO BLADDER		SITY POLYETHYLEN		Polyvinyl chlor STAINLESS :			TEFLON Other
2000	LADDER	OTHER_	OIT CETEINTED		OTHER			
	ICAL PARAMETERS (Scheduled for Collection		THOD		RVATION	VOLUME	SAMPLE	
March 1	DCs + TIC plus, Freen 11, Free	n 22, US	MBER EPA-8260C		THOD 4 DEG. C	3 X 40 mL	COLLECTED	2 Check if collected
	eon 113, Freon 115, Freon 123 DCs + TIC plus, Freon 11, Freo		EPA-524.2	HCL/	4 DEG. C	3 X 40 mL		
R	eon 113, Freon 115, Freon 123	Freen 152a	EPA 4500 CL-B	4 DEG		1 X 250 mL	IQ1	
Delitera Di	nloride pmide		EPA 300.0	4 DEG		1 X 250 mL	-	
IB							H	
							R	
	a controller of				COMMENTS			
Purge Via	regrettions (e)	Number of Gallo	nns		e comment (3			
	zed yes no	Generated						amec
								annec
DIGNIATION	- M&							

FCRS: Blank LF Callahan 6/14/2020

FIELD I	DATA REC	CORD - LO	OW FLOW	GROUNDW	ATER S	AMPLING	3				
PROJECT	Former Unis	ys Facility		FIELD SAI	MPLE NUMBE	R Mh	1-46M	I-XX	JOB No.	3617187446	
Location	Lake Succes	ss, New York			SITE TYP		4W-46		DATE	6/15/20	
ACTIVITY	START 150	5 EN	10 154C	SAMPLE	TIME	1545					
WATER LE	VEL / PUMP	SETTINGS		POF WELL RISER		PROTECTIVE CASING STI			CASING / WE		-
INITIAL DEF		-	FT	P OF PROTECTIVE		(FROM GRO) FT	WELL DIAM.	4	N
FINAL DEF	DOM:	_	WELL DEP (TOR)	302	FT	AMBIENT AI	R	PPM	WELL INTER	GRITY:	
DRAWDO VOLUI			SCREE LENGT	-17 (-18)	FT	PID WELL MOUTH	-	PPM	CAP CASING	YES, NO N	/A
(initial - f		ch} or x 0.65 {4-in		OF DRAWDOWN V		PRESSURE TO PUMP	10	O PSI	COLLAR	Z = -V	
PURG	SED		GALne duration (minu	ites) x 0.00026 gal/m	nilliliter)	REFILL SETTING	20	21	DISCHARGE SETTING	10	
PURGE DA	DEPTH TO	PURGE	TEMP.	SPECIFIC CONDUCTANCE	pH	DISS. 02	TURBIDITY	REDOX	1		
TIME	WATER (ft) < 0.33 ft	RATE (ml/m) ≤ 500 ml/m	(deg. c) ≤ 3%	(umho/cm) ≤ 3%	(units) ≤0.1 units	(mg/L) ≤ 10%	(ntu) ≤ 50 ntu	(mv) ≤ 10 units		COMMENTS	
1505	-	200	6,94	0,397	6,97	5,51	2.15	79.4	water	King stop	red
1570	-	200	14.81	0.399	6.85	6.03	3.95	101.2		7	
1515	-	200	13,94	0.416	6.78	6.16	3.65	119.1			
1520	-	200	13,77	0,441	6.76	6,22	260	128,9			
1525	_	200	13,69	0.458	6.75	6,26	1,13	136,4			
1530	-	200	13.63	0.462	6.74	6.23	2,28	144.0			
1535	~	200	13,74	0.964	6,13	6.23	2,15	148,2	-		
1540		200	13.69	0.464	GILL	6.26	1,55	152,2			
100											
									-		
EQUIPMEN	T DOCUMENT	TATION									
TYPE OF	PUMP		TYPE OF TUBIN	Marie Control of the		E OF PUMP M	ATERIAL	I	YPE OF BLAD	DDER MATERIAL	
	PUMP (peristalti O BLADDER	ic)		SITY POLYETHYLEN		Polyvinyl chlo STAINLESS			TEFLON		
	DDER		OTHER_	ATT OCTOTION		OTHER	STEEL		Other		
	AL PARAMETE		MET	THOD	PRES	ERVATION	VOLUME	SAMPLE			
		eon 11, Freon 22, 5,Freon 123, Freo	USE	MBER PA-8260C		/4 DEG. C	REQUIRED 3 X 40 mL		Check if collect	cted	
		on 11, Freon 22, Freon 123, Freo		PA-524.2	HCL	/ 4 DEG. C	3 X 40 mL		,		
Chlori				PA 4500 CL-B PA 300.0	4 DE 4 DE		1 X 250 mL	V			
					400	.5. 0	1 X 250 mL				
H											
Purge Obse	rvations					COMMENTS					
Purge Water Conatinerized	(yes) no		Number of Gallor Generated	15 ~ 2.5	C	bstr	uction	enc	aunter	red -	
		1			1	hen	attoni	otinal	20	noco	
SIGNATURE:	En. O.	Luca	10		+	ake	ratar	1		nec	
MOINT ORE;	vine	INV.	70		,	01.00	rul	161	210		

FIELD I	DATA REC	ORD - LO	W FLOW	GROUNDWA	ATER SA	MPLING					
PROJECT	Former Unisy	s Facility		FIELD SAM	IPLE NUMBE	R MW	-46ML	-XX	JOB No.	3617187446	
Location	Lake Success	s, New York			SITE TYP	EM	W-46	ML	DATE	6/15/	20
ACTIVITY	START 33	END	1430	SAMPLE TI	IME]	935					
WATER LE	EVEL / PUMP S	SETTINGS		REMENT POINT OF WELL RISER	46.	PROTECTIVE CASING STIC			ASING / WEL	L	FT
INITIAL DEF	1 6	0.27		OF PROTECTIVE	CASING	(FROM GROU) FT W	VELL IAM.	4	IN
FINAL DEF		1.31	(TOR) SCREEN	363	FT	AMBIENT AIR		PPM	VELL INTERC	GRITY:	N/A
DRAWDO	160	026	LENGTH		FT	MOUTH		- PPM	CAP	4	
The second second	final x 0.16 {2-inc		ch}) RATIO	OF DRAWDOWN V		PRESSURE TO PUMP	100	L	LOCKED	- I	
TOTAL V	/	.99	SAL TOTAL	B. 078	NGED	REFILL			ISCHARGE	10	
(purge v	volume (milliliters			es) x 0.00026 gal/m	illiliter)	SETTING	20)	ETTING	10	
PURGE DA	ATA DEPTH TO	PURGE	TEMP.	SPECIFIC CONDUCTANCE	pH	DISS. 02	TURBIDITY	REDOX	1		
TIME	WATER (ft) < 0.33 ft	RATE (ml/m) ≤ soo ml/m	(deg. c) ≤ 3%	(umho/cm) ≤ 3%	(units) ≤0.1 units	(mg/L) ≤ 10%	(ntu) ≤ 50 ntu	(mv) ≤ 10 units		COMMENTS	
1335	150,27	200	16.89	0,245	Cin	10,07	0.77	255.8			
1340	150.29	200	17.07	0.246	6.85	8,41	0,59	247.2	2		
1345	150,25	200	17,74	0,253	6,94	6,45	0.85	2461			
1350	150.24	200.	18,01	0.269	6.96	5.69	0.57	251.0			
1355	150.29	200.	18.08	0.288	7.00	5,51	0.70	263,4			
1400	150.30	200.	18,06	0.286	7.01	5.47	0.76	267.5			
1405	150.24	200.	18,26	0.276	7.01	5,49	0.79	268,2			
1410	150,27	200	18.34	0.266	7,00	5,55	0,57	2679			
1415	150,29	208.	18.76	0,257	6,97	562	3,00	265.5			
1420	150,31	150.	16.01	0,252	6.97	5.86	0.61	264.0	turne	ed psi up :	to 125
1425	150,30	250	13.86	0.247	6.48	6.18	2,70	286,8			
1430	150.31	200	14.14	0.245	6.54	6,19	1,79	281,7	tarn	ed psi do	wn to la
EQUIPME	NT DOCUMEN	TATION							East Tax		
	OF PUMP OPUMP (peristal	tio\	TYPE OF TUBIN	<u>NG</u> SITY POLYETHYLE		Polyvinyl chlo			YPE OF BLA	DDER MATERIA	L
	ICO BLADDER	uc)		SITY POLYETHYLE		STAINLESS			Other		
X BL	ADDER		OTHER_			OTHER					
Check if S	CAL PARAMET Scheduled for Collect CS + TIC plus, Fr	ion	NUI	THOD MBER EPA-8260C	V	SERVATION METHOD L / 4 DEG. C	VOLUME REQUIRED 3 X 40 mL	SAMPLE	D Check if coll	ected	
Fre	eon 113, Freon 11 Cs + TIC plus, Fr	5,Freon 123, Free	on 152a	EPA-524.2		L/4 DEG. C	3 X 40 mL				
Fre	on 113, Freon 11		on 152a								
	loride omide			EPA 4500 CL-B EPA 300.0		EG. C EG. C	1 X 250 ml 1 X 250 ml				
Purge Obs	servations					COMMENT	S				
Purge Wate Conatinerize	er ed ves no		Number of Gallo Generated	ns ~ 2.5					aı	med	0
SIGNATUR	Elmle	· Puc	ció							,,,,,	

FIELD DATA RECORD - LOW FLOW GROUNDWATER SAMPLING										
PROJECT	Former Unisy	ys Facility		FIELD SAM	IPLE NUMBER	2 Mh	1-51-M	I-XX	JOB No.	3617187446
Location	Lake Succes	s, New York			SITE TYPE	M	h1-511	II	DATE	6/16/20
ACTIVITY	START / 4	45 ENI	15:50	SAMPLE TI	IME /	15:45				
WATER LE	EVEL / PUMP S	SETTINGS		REMENT POINT		PROTECTIV			CASING / WE	
INITIAL DEL		0.69	FT TO	P OF WELL RISER P OF PROTECTIVE		CASING STIC	4	FT	WELL DIAM.	4 IN
FINAL DEF	PTH 110	69	WELL DEPT (TOR) FT SCREE	.20	3 _{FT}	PID AMBIENT AIR PID WELL	R	PPM	WELL INTER	
DRAWDO' VOLU		. 0	LENGTH	/ / / / /	FT	MOUTH	-	PPM	CAP	
		ch) or x 0.65 (4-in		OF DRAWDOWN V		PRESSURE	160	2 801	LOCKED	7, = =
TOTAL V PURG (purge v	SED /		GAL	OTAL VOLUME PUR (tes) x 0.00026 gal/m		TO PUMP REFILL SETTING	20	2	COLLAR DISCHARGE SETTING	10
PURGE DA		per minute/ x uni	ie daration (minu	SPECIFIC SPECIFIC	illiliter)	OLITINO .				
TIME 15:00	DEPTH TO WATER (ft) < 0.33 ft	PURGE RATE (ml/m) ≤ soo ml/m	TEMP. (deg. c) ≤ 3%	CONDUCTANCE (umho/cm) ≤ 3%	pH (units) ≤0.1 units	DISS. O2 (mg/L) ≤ 10%	TURBIDITY (ntu) ≤ 50 ntu	REDOX (mv) ≤ 10 units		COMMENTS
17:00	110.70	225.	15.45	1.428	7.19	7.21	0.41	247.1		
		225	15.43	1.446	7.14	5.92	0.65	253.1		
15:10	110.69	225.	15.27	1.478	6.81	4.01	0.48	262.0		
15:15	110.69	225	15.11	1.508	6.46	2,70	0.69	272.8	7	
15:20	110.69	225	15.08	1.506	6.40	1.89	0.61	275.	3	
15:25	110.69	225	14.91	1.465	6.32	1.65	0.39	778.7		
15:30	110.69	225	14.78	1.433	6.27	2.65	0.73	278.3		
15:75	110.69	225	14.71	1.797	6,23	2.69	0.45	277.0		
15:40	116.69	525	14.69	1.386	6.22	2.64	0.33	276.)	?	
15:45	110.69	225	14.73	1.381	2.26.24	2.60	0.31	275.8	* KCa	Neil Sample
EQUIPMEN	T DOCUMEN	TATION								
TYPE O	F PUMP PUMP (peristalt		X LOW DENS	<u>IG</u> SITY POLYETHYLEN		Polyvinyl chlo			TEFLON	ADDER MATERIAL
	O BLADDER	(10)		SITY POLYETHYLE		STAINLESS			Other	17/4
	ADDER		OTHER			OTHER		_		7.7
Check if S	AL PARAMET Cheduled for Collection Cs + TIC plus, Free		NUN	THOD MBER EPA-8260C	M	ERVATION ETHOD /4 DEG. C	VOLUME REQUIRED 3 X 40 mL	SAMPLE		illected
voc	s + TIC plus, Fre	5,Freon 123, Freo eon 11, Freon 22, 5,Freon 123, Freo	USE	EPA-524.2	HCL	/ 4 DEG. C	3 X 40 mL			
Chlo	ride		USE	PA 4500 CL-B	4 DE		1 X 250 mL			
Brom	nide		USE	PA 300.0	4 DE	.G. C	1 X 250 mL			
Dungs Ct	amintle an					COMMENT	e			
Purge Observage Water			Number of Gallor	ns		COMINENT				
Conatinerized			Generated	-					a	mec
SIGNATURE	Lee	-								

6/16/2020

FIELD I	DATA REC	CORD - LC	W FLOW	GROUNDW	ATER SA	AMPLING	3				
PROJECT	Former Unisy	ys Facility		FIELD SAN	MPLE NUMBE	R Mu	1-51-MI	XX	JOB No.	3617187446	
Location	Lake Succes	s, New York			SITE TYP	E	1W-5/4	1	DATE	6/16/2	0
ACTIVITY	START /71	50 EN	014:45	SAMPLE T	IME	14,5	10				
WATER LI	EVEL / PUMP	SETTINGS		REMENT POINT		PROTECTIV			CASING / WEL	LL _	FT
INITIAL DE		6.86	TO	P OF WELL RISER P OF PROTECTIVE	CASING	(FROM GRO		FT	WELL	11	
TO WA			WELL DEP	TH 722	FT	PID AMBIENT AI	p		DIAM.	4	IN
FINAL DE	TER 116	.97	FT (TOR)		FI	PID WELL			WELL INTER	GRITY: YES NO	N/A
DRAWDO		065	SCREE LENGT		FT	MOUTH		PPM	CAP CASING	7	
VOLU (initial -	TIVIL	ch) or x 0.65 (4-in	nch}) RATIO	OF DRAWDOWN V		PRESSURE TO PUMP	8.	5 PSI	LOCKED	7 = =	
TOTAL V	4	12		0.021	RGED	REFILL			DISCHARGE		
	JED /		OAL	ites) x 0.00026 gal/m	illiliter)	SETTING	2	/1	SETTING	10	
PURGE DA	ATA DEPTH TO	PURGE	TEMP.	SPECIFIC CONDUCTANCE	pH	DISS. O2	TURBIDITY	REDOX	1	2011151170	
TIME	WATER (ft) < 0.33 ft	RATE (ml/m) ≤ 500 ml/m	(deg. c) ≤ 3%	(umho/cm) ≤ 3%	(units) ≤ 0.1 units	(mg/L) ≤ 10%	(ntu) ≤ 50 ntu	(mv) ≤ 10 units		COMMENTS	
14:00	116.87	300	14.83	9.194	7.35	10,32	0.66	208.6			
14:65	116.89	300	17.86	0.194	7.00	9.12	0.91	225,3			
19:16	116.90	700	14.76	0,211	6.68	5.72	0.37	248.8			
14:15	116.87	300	14.30	0,211	6.54	2.95	0.23	262.6			
14:20	116.87	300	14.32	0.206	6.50	1.83	0.72	264.8			
14125	116.87	300	14.43	0.200	6.42	1,33	0.15	265.9			
14:30	116.87	300	14.49	0.198	6.74	1.13	0.11	267.0	-		
14:35		300	14.60	0.197	6.71	1, 22	0.18	8267.9		/	,
14:40	116.87	300	14.61	0.199	6.30	1.18	0.12	272.1	*(0//	ect samp	1/e
										and the same	-
										1	-
	T DOCUMENT	TATION	TYPE OF TUBIN	NG.	TYP	E OF PUMP M	IATERIAL	I	YPE OF BLAD	DDER MATERIAL	
	OPUMP (peristalt	ic)		SITY POLYETHYLE		Polyvinyl chlo			TEFLON		
	O BLADDER ADDER		OTHER_	SITY POLYETHYLE	NE X	STAINLESS OTHER	SIEEL		Other		
ANALYTIC	AL PARAMETI		MET	ГНОД	PRES	ERVATION	VOLUME	SAMPLE		7190 719	
,	cheduled for Collections + TIC plus, Fre		NUN	MBER PA-8260C	<u>M</u>	ETHOD /4 DEG. C			Check if collect	cted	
Freo	n 113, Freon 115	Freon 123, Fred	on 152a								
	the second secon	eon 11, Freon 22, 5,Freon 123, Freo		PA-524.2	HCL	/ 4 DEG. C	3 X 40 mL				
Chlo				PA 4500 CL-B PA 300.0	4 DE 4 DE		1 X 250 mL 1 X 250 mL				
		2									
						1000			No. 1		
Purge Obse			Number 10 "			COMMENT	S				
Purge Water Conatinerized			Number of Gallor Generated	3.12					100000		0
									an	nec	
SIGNATURE	4		_								

FIELD	DATA REC	ORD - LO	W FLOW	GROUNDWA	ATER SA	MPLING	3		
PROJECT	Former Unisy	s Facility		FIELD SAM	IPLE NUMBE	R IW		7-XX	JOB No. 3617187446
Location	Lake Success	s, New York			SITE TYP	E	N968	7	DATE 6/16/20
ACTIVITY	START	END	_	SAMPLE T	IME	14	30		
WATER L	EVEL / PUMP S	ETTINGS	-	REMENT POINT		PROTECTIV CASING STI			ASING / WELL FT
INITIAL DE TO WA				P OF PROTECTIVE	CASING	(FROM GRO		FT	WELL
FINAL DE			WELL DEP	тн	FT	PID AMBIENT AI	R		DIAM. IN
TO WA			SCREE	N		PID WELL			WELL INTERGRITY: YES NO N/A
DRAWDO		G	LENGT		FI	MOUTH		PPM	CAP
(initial -	final x 0.16 {2-inc		h)) RATIO	OF DRAWDOWN V		PRESSURE TO PUMP			LOCKED
TOTAL		0	AL			REFILL			DISCHARGE
(purge	volume (milliters			ites) x 0.00026 gal/m	illiliter)	SETTING			SETTING
PURGE D	ATA DEPTH TO	PURGE	TEMP.	SPECIFIC CONDUCTANCE	pH	DISS. 02	TURBIDITY	REDOX	
TIME	WATER (ft) < 0.33 ft	RATE (ml/m) ≤ 500 ml/m	(deg. c) ≤ 3%	(umho/cm) ≤ 3%	(units) ≤ 0.1 units	(mg/L) ≤ 10%	(ntu) ≤ 50 ntu	(mv) ≤ 10 units	COMMENTS
_			11.8	0,279	6.61	6,55	10.7	207.4	
						The Life			
							dece.		A
-									
								10.2	
EQUIPME	NT DOCUMEN	TATION	i seal		-				
	OF PUMP OPUMP (peristal)		X LOW DEN	<u>NG</u> SITY POLYETHYLE		PE OF PUMP N			YPE OF BLADDER MATERIAL TEFLON
	1CO BLADDER			ISITY POLYETHYLE		STAINLESS			Other
	ADDER	EDE	OTHER_			OTHER_		_	
	CAL PARAMET Scheduled for Collect			THOD		SERVATION METHOD	VOLUME REQUIRED	SAMPLE COLLECTED	D. Check if collected
Fre Fre	Cs + TIC plus, Freon 11	eon 11, Freon 22 5, Freon 123, Freo	on 152a	EPA-8260C	HCI	L/4 DEG. C	3 X 40 mL		
TVO	OCs + TIC plus, Freon 113, Freon 11	eon 11, Freon 22	US	EPA-524.2	HCI	L/4 DEG. C	3 X 40 mL		
Ch		5,116011 125,1160	US	EPA 4500 CL-B		EG. C	1 X 250 mL		
Bro	omide		US	EPA 300.0	4 D	EG. C	1 X 250 mL		
H									
Purge Ob	servations					COMMENT	s		
Purge Wate			Number of Gall Generated	ons					0
									amec
	5	a fu	con						
SIGNATUR	RE: UM	- Iu	V. M.						

FIELD	DATA REC	ORD - LO	W FLOW	GROUNDWA	ATER SA	MPLING	;			
PROJECT	Former Unisy	s Facility		FIELD SAM	PLE NUMBER		52-A	1I	JOB No. 36171874	146
Location	Lake Success	s, New York			SITE TYPE	Mw	~52MJ	1-24	DATE 06/16	120
ACTIVITY	START 5	O END	030	SAMPLE T	ME					
WATER L	EVEL / PUMP S	ETTINGS		REMENT POINT P OF WELL RISER		PROTECTIV			ASING / WELL	
INITIAL DE TO WA		0.26	FT WELL DEPT	P OF PROTECTIVE	CASING	CASING STI		FT	VELL (FT
FINAL DE		30.32	(TOR)	255	FT	PID AMBIENT AII	R	PPM	VELL INTERGRITY:	IN
DRAWDO	1 1/1 /	0.39	SCREE	/ / /	Tania.	PID WELL MOUTH			CAP YES NO	N/A
(initial -	final x 0.16 {2-inch	n) or x 0.65 {4-inc	ch}) RATIO	OF DRAWDOWN V		PRESSURE		L	CASING	
TOTAL V	GED ,	79 0	AL	0.02.2		TO PUMP REFILL			COLLAR	
PURGE DA		per minute) x time	e duration (minut	tes) x 0.00026 gal/mi	lliliter)	SETTING		Si	ETTING	
TIME	DEPTH TO WATER (ft)	PURGE RATE (ml/m)	TEMP. (deg. c)	SPECIFIC CONDUCTANCE (umho/cm)	pH (units)	DISS. O2 (mg/L)	TURBIDITY (ntu)	REDOX (mv)	COMMENTS	s
090	<0.33 ft #01 20.41	≤ 500 ml/m	13,5	≤3%	≤0.1 units	≤ 10%	≤ 50 ntu	≤ 10 units		
1005	1202	775	13.5	1.017	572	1.82	9.22	1354		
1010	120.29	275	13.4	1 210	5.80	178	390	143.8		
1015	120,28	275	13.4	1,203	5.83	1-73	3.2	100.7		
1020		275	13.4	1.194	5.84	1.67	3 25	155.3		
1025	120.31	27.5	13.4	1,184	5.86	163	4.01	158.9		
FOLUBATION	T DOGUMENT	1704								
I The second second	NT DOCUMENT		TYPE OF TUBIN	IG	TYPE	OF PUMP M	ATERIAL	TY	PE OF BLADDER MATE	PIAI
	OPUMP (peristaltic	c) [=	ITY POLYETHYLEN		Polyvinyl chlo			EFLON	
	CO BLADDER ADDER	-	OTHER	SITY POLYETHYLE	VE X	STAINLESS OTHER	STEEL	01	ther	_
ANALYTIC	AL PARAMETE									
Door	cheduled for Collection Cs + TIC plus, Free on 113, Freon 115	on 11, Freon 22,	NUM USE	HOD MBER PA-8260C	ME	THOD 4 DEG. C	VOLUME REQUIRED 3 X 40 mL	SAMPLE	Check if collected	
Voc	Cs + TIC plus, Fred on 113, Freon 115,	on 11, Freon 22,	USE	PA-524.2	HCL /	4 DEG. C	3 X 40 mL			
Chlo				PA 4500 CL-B PA 300.0	4 DE0		1 X 250 mL 1 X 250 mL			
							T X 200 III.			
Purge Obs						COMMENT	S			-
Purge Water Conatinerize			Number of Gallor Generated	ns						0
									ame	C
SIGNATURE	MB									-

FIELD	DATA REC	ORD - LO	W FLOW	GROUNDWA	TER SA	MPLING					
PROJECT	Former Unisy	s Facility		FIELD SAM	PLE NUMBER		52ML-		JOB No.	3617187446	
Location	Lake Success	s, New York			SITE TYPE	M	W-521	UL	DATE	06/16/20	
ACTIVITY	START 10 5	5 END		SAMPLE TI	ME	52 N	1				
WATER L	EVEL / PUMP S	ETTINGS		REMENT POINT		PROTECTIVE CASING STIC	VIID		CASING / WEL	L	FT
INITIAL DE		1.55	ТО	P OF WELL RISER P OF PROTECTIVE	CASING	(FROM GROU		FT	WELL DIAM.	4	IN
FINAL DE		1,63	WELL DEPT (TOR)	1520	FT	PID AMBIENT AIR	-	PPM	WELL INTERC		N/A
DRAWDO		.052	SCREE! LENGTH	// /		MOUTH		PPM	CAP CASING	YES NO	N/A
	final x 0.16 {2-incl		h}) RATIO	OF DRAWDOWN VO		PRESSURE TO PUMP		PSI	COLLAR	=	
The state of the s	GED L		AL (3,0228		REFILL SETTING			DISCHARGE		
PURGE D		per minute) x tim	e duration (minut	es) x 0.00026 gal/mi	militer)	SETTING			OLITINO		
TIME	DEPTH TO WATER (ft) < 0.33 ft	PURGE RATE (ml/m)	TEMP. (deg. c) ≤ 3%	CONDUCTANCE (umho/cm) ≤ 3%	pH (units) ≤ 0.1 units	DISS. O2 (mg/L) ≤ 10%	TURBIDITY (ntu) ≤ 50 ntu	REDOX (mv) ≤ 10 units		COMMENTS	
1105	12350	≤ 500 ml/m	14,1	.158	7.3.	6.01	14.9	120,3	3		
1110	121.64	359	13.4	.136	8 015	5.68	19,6	116.	7		
1115	124.63	350	13.3	138	8.47	5.69	13.4	119.5			
1120	121.64	350	13.3	.139	8.53	5,71	13,5	120,5			
1120	-	350	13.4	.139	8,53	5.73	16.2	121.3			
1130	121.65	350	13.4	0140	8.51	5.73	120	121.7			
		1									
		4.									
					-						
EQUIPME	NT DOCUMEN	TATION		APT - AT					TARE OF BLAS	DDER MATERIAL	
	OF PUMP OPUMP (peristalt		X LOW DENS	IG SITY POLYETHYLEN		OF PUMP MA Polyvinyl chlori			TEFLON	JULIN WATERING	
	1CO BLADDER	10)		SITY POLYETHYLEN	NE X	STAINLESS S	STEEL		Other		
	ADDER	- De	OTHER_			OTHER					
Check if	CAL PARAMET Scheduled for Collecti OCs + TIC plus, Fre	on	NUM	THOD MBER EPA-8260C	ME	RVATION THOD 4 DEG. C	VOLUME REQUIRED 3 X 40 mL	COLLECTE	ED Check if collect	cted	
Fre	eon 113, Freon 115 OCs + TIC plus, Fre	5,Freon 123, Fred	n 152a	PA-524.2	HCL /	4 DEG. C	3 X 40 mL				
Fre	eon 113, Freon 115	5,Freon 123, Fred	n 152a	PA 4500 CL-B	4 DEG	6. C	1 X 250 mL	×			
Ch Bro	omide			PA 300.0	4 DEG	6. C	1 X 250 mL				
								H			
								H			
Purge Oh	servations					COMMENTS					
Purge Wate	er		Number of Gallo Generated	ns							0
Conatineriz	ed yes no								ar	nec	
	100										
SIGNATUR	E: /VD			_		4					

FIFE D DATA DECORD I OWELOW OF	OUNDAME TER	A MADILINIO		
FIELD DATA RECORD - LOW FLOW GF	ROUNDWATERS			
PROJECT Former Unisys Facility	FIELD SAMPLE NUMB			3617187446
Lake Success, New York	SITE TY	PE MW-53	MI DATE	6/16/20
ACTIVITY START 15 15 END	SAMPLE TIME	53-MI		
INITIAL DEPTH TO WATER FINAL DEPTH TO WATER FINAL DEPTH TO WATER DRAWDOWN VOLUME (initial - final x 0.16 {2-inch} or x 0.65 {4-inch}) TOTAL VOL. PURGED (purge volume (milliliters per minute) x time duration (minutes) PURGE DATA	DRAWDOWN VOLUME AL VOLUME PURGED × 0.00026 gal/milliliter) SPECIFIC ONDUCTANCE (umho/cm) < 3% < 30 6.52 < 30 6.41	2 .50 ,49 .68 4 .47 .59	CASING / WIDIFFER. FT WELL DIAM. PPM CAP CASING LOCKED COLLAR DISCHARGE SETTING REDOX (mv) \$10 units 0 6 6 1 0 7 1 23 6 0	RGRITY: YES NO N/A
SMCO BLADDER HIGH DENSIT	Y POLYETHYLENE X	YPE OF PUMP MATERIAL Polyvinyl chloride STAINLESS STEEL	TYPE OF BLA	ADDER MATERIAL
X BLADDER OTHER OTHER		OTHER		
Check if Scheduled for Collection METHON NUMBI USEPA Freon 113, Freon 115, Freon 123, Freon 152a VOCs + TIC plus, Freon 11, Freon 22, Freon 113, Freon 115, Freon 123, Freon 152a USEPA	ER A-8260C HC A-524.2 HC A 4500 CL-B 4 E	ESERVATION	SAMPLE COLLECTED Check if coll	ected
Purge Observations Purge Water Conatinerized yes no Signature: Number of Gallons Generated		COMMENTS	ar	mec

FIELD	DATA REC	ORD - LO	W FLOW	GROUNDWA	ATER SA	MPLING					
	Former Unisy				IPLE NUMBER	MW	-53ML		JOB No.	3617187446	
Location	Lake Success				SITE TYPE		1W-531	16	DATE	06/16/2	0
ACTIVITY	START 13	20 END)	SAMPLE T	IME	53 M	L				
	EVEL / PUMP S	ETTINGS		REMENT POINT P OF WELL RISER		PROTECTIVE CASING STIC		D	ASING / WE		FT
INITIAL DE TO WA		1.72	FT TO	P OF PROTECTIVE		(FROM GROI			VELL DIAM.	4	IN
FINAL DE TO WA		1.80	WELL DEPT (TOR)	1292	FT	AMBIENT AIR	2	PPM	VELL INTER	RGRITY: YES NO	N/A
DRAWDO	OWN P	052	SCREE	- / / 1 1 ARM	FT	PID WELL MOUTH		PPM	CAP	= = :	
VOLU (initial -	final x 0.16 {2-inch	h) or x 0.65 {4-inc	ch}) RATIO	OF DRAWDOWN V		PRESSURE TO PUMP			COLLAR	= = =	
TOTAL \ PUR	GED .		e duration (minut	0 , 0 288 les) x 0.00026 gal/m	illiliter)	REFILL SETTING			ISCHARGE ETTING		
PURGE D				SPECIFIC		DISC 00	TUDDIDITY	REDOX	1		
TIME	DEPTH TO WATER (ft) < 0.33 ft	PURGE RATE (ml/m) ≤ 500 ml/m	TEMP. (deg. c) ≤3%	CONDUCTANCE (umho/cm) ≤ 3%	pH (units) ≤0.1 units	DISS. O2 (mg/L) ≤ 10%	TURBIDITY (ntu) ≤ 50 ntu	(mv) ≤ 10 units		COMMENTS	
1335	3561.76	350	14.6	164	6.66	3.59	7069	134.6			
1390	11-701	350	14.6	. 164	6.51	3.86	6.51	126.0)		
1344	61.77	350	14.5	.163	6.12	3.93	6.18	128.8			
1350		350	14.5	. 163	6.36	3.93	3 067	132.7			
1351	61.81	350	14.5	.163	6.31	3.94	2000	136.1			
Vasso	0										
	4 (1)					Ta -					
LA M											
TYPE C	NT DOCUMENT OF PUMP	16.1	TYPE OF TUBIN			OF PUMP M			PE OF BLA	ADDER MATERIAL	
	OPUMP (peristaltico BLADDER	c) [SITY POLYETHYLE		STAINLESS			ther		
X BL	ADDER		OTHER_			OTHER					
Check if S	CAL PARAMETE Scheduled for Collection	n	NUN	THOD MBER PA-8260C	ME	ERVATION ETHOD / 4 DEG. C	VOLUME REQUIRED 3 X 40 mL	SAMPLE	Check if coll	lected	
Free	Cs + TIC plus, Fre on 113, Freon 115	Freon 123, Freo	n 152a	PA-524.2		4 DEG. C	3 X 40 mL				
	Cs + TIC plus, Fre on 113, Freon 115		n 152a								
Chlo	oride mide		100	PA 4500 CL-B PA 300.0	4 DE		1 X 250 mL 1 X 250 mL				
H											
Purge Obs	servations				1 1	COMMENTS	S				
Purge Water Conatinerize			Number of Gallor Generated	ns	10 191						0
Jonath Grize									16	med	
	MAR										
SIGNATURE	: NV										5.74

FDRs_Blank/LF Callahan 6/14/2020

FIELD	DATA REC	ORD - LO	W FLOW	GROUNDW	ATER SA	MPLING	1		
PROJECT	Former Unisy				APLE NUMBER	-		- VV	
Location	Lake Succes	s, New York		7 120 374	SITE TYPE		N5099 N5099	- XX	JOB No. 3617187446
ACTIVITY	START	ENI	-	SAMPLET		935	V80/1		DATE 06/15/2020
WATER L	EVEL / PUMP 8	BETTINGS	MEASU	REMENT POINT	mil L	PROTECTIV	E		CACHO (WELL
INITIAL DE TO WA			FT	P OF WELL RISER P OF PROTECTIVE	CASING	CASING STI (FROM GRO	CKUP	FT	CASING / WELL DIFFER. FT
FINAL DE TO WA			WELL DEP (TOR)	TH	FT	AMBIENT AI	R	PPM	WELL DIAM. IN
DRAWDO			SCREE		FT	PID WELL MOUTH	-	PPM	WELL INTERGRITY: YES NO N/A CAP
(initial -	final x 0.16 (2-inc	h) or x 0.65 (4-in-	TOT	OF DRAWDOWN V	OLUME RGED	PRESSURE TO PUMP		PSI	LOCKED COLLAR
(purge)	volume (milliliters	per minute) x tim	GAL ne duration (minu	tes) x 0.00026 gal/m	illiliter)	REFILL SETTING			DISCHARGE
PURGE D.	ATA DEPTH TO	PURGE		SPECIFIC		-			
TIME	WATER (ft) < 0.33 ft	RATE (ml/m) ≤ 500 ml/m	TEMP. (deg. c) ≤ 3%	CONDUCTANCE (umho/cm) ≤ 3%	pH (units) ≤ 0.1 units	DISS. O2 (mg/L) ≤ 10%	TURBIDITY (ntu) ≤ 50 ntu	REDOX (mv) ≤ 10 units	COMMENTS
			18,96	0,594	6.47	6.36	0.43	235,5	
-									
FOUIPME	NT DOCUMEN	TATION							
TYPE C	OF PUMP OPUMP (peristalt CO BLADDER ADDER	ic)		NG SITY POLYETHYLEI SITY POLYETHYLE	NE	Polyvinyl chlo STAINLESS OTHER	ride		TYPE OF BLADDER MATERIAL TEFLON Other
Check if S	CAL PARAMET Scheduled for Collection Cs + TIC plus, Front 113, Freon 113	eon 11, Freon 22,	NUI USE	THOD MBER EPA-8260C	ME	ERVATION ETHOD / 4 DEG. C	VOLUME REQUIRED 3 X 40 mL	SAMPLE COLLECTE	D Check if collected
VO	Cs + TIC plus, Fron 115	eon 11, Freon 22,	USE	EPA-524.2	HCL	4 DEG. C	3 X 40 mL		
Name and Address of the Owner, when the Owner, which the Owner,	oride mide			EPA 4500 CL-B EPA 300.0	4 DE(1 X 250 mL 1 X 250 mL		
Purge Obs Purge Water Conatinerize	d yes (no)		Number of Gallo Generated	ns	M	1		iples t	aken here amec

FIELD	DATA REC	ORD - LO	W FLOW	GROUNDWA	ATER SA	MPLING					
PROJECT	Former Unisy				IPLE NUMBER	100 x 1	N4388	-XV	JOB No.	361718744	6
Location	Lake Success	s, New York			BITE TYPE	1	14388		DATE	6/13/	
ACTIVITY	START	END		BAMPLE T	IME 3	100	1150		Onte	New York	
WATER L	EVEL / PUMP S	ETTINGS	MEASU	REMENT POINT P OF WELL RISER		PROTECTIVE			CASING / WE	LL	1
TO WA			ET WELL-DER	P OF PROTECTIVE	CABING	CASING STIC (FROM GROU		FT	WELL		FT
FINAL DE TO WA			FT (TOR)		FT	PID AMBIENT AIR		PPM	DIAM. WELL INTER		IN
DRAWDO			SCREE		FT	MOUTH		PPM	BAP	YES NO	N/A
	final x 0.16 (2-inc	h) or x 0.85 (4-inc	and the same and	OF DRAWDOWN V		PRESSURE		mai	LOCKED		
	IGED	per minute) x tim	3AL	OTAL VOLUME PUI		TO PUMP REFILL SETTING		PBI	DISCHARGE		+
PURGE D		per minute) x um	e dulation (milit	SPECIFIC	minter)	BETTING			BETTING		
TIME	DEPTH TO WATER (ft) < 0.33 ft	PURGE RATE (ml/m) ≤ 500 ml/m	TEMP, (deg. c) ≤ 3%	CONDUCTANCE (umho/cm) \$ 3%	pH (units) ≤ 0.1 units	DISS. O2 (mg/L) ≤ 10%	TURBIDITY (ntu) \$ 50 ntu	REDOX (mv) s 10 units		COMMENTS	
4			15,99	0.870	60.82	751	The same	1900	Land In Control of the Control of th		
-		-	17,80	0,907	6.66	8.01	.63	243	5		
-											
				1							
											-
EQUIPM	ENT DOCUMEN	TATION									
- prompt	OF PUMP EOPUMP (peristal	(fic)	TYPE OF TUB	NG SITY POLYETHYLE	and the second second	Folyvinyl chlor	and the same of th		TYPE OF BLAI TEFLON	DDER MATERIA	AL
s	MCO BLADDER			ISITY POLYETHYLE		STAINLESS !			Other		
	ICAL PARAMET	reps	OTHER_		-	OTHER					
Check	if Scheduled for Collect OCs + TIC plus, F	tion reon 11, Freon 22	2, NL	THOD MBER EPA-8260C	M	ERVATION ETHOD / 4 DEG. C	VOLUME REQUIRED 3 X 40 mL	SAMPLE	D Check if colle	cled	
VV	reon 113, Freon 11 OCs + TIC plus, Freon 113, Freon 1	reon 11, Freon 22	2, UE	EPA-524.2	HCL	/4 DEG. C	3 X 40 mL				
- Indiana	hloride			EPA 4500 CL-B EPA 300.0	4 DE 4 DE		1 X 250 mL 1 X 250 mL	V			
	TOTTING		00	AT 71 000.0	7 60		1 11 200 1112				
	bservations				1.1	COMMENTS	Loute	1 -	00 1	. 0.	10/10
Purge Wa Conatiner			Number of Gall Generated	ons	W	ell s	farte	x bai	or +	o sam	PH39
		1 1	7					,	ar	nec	
SIGNATI	BE GMIL	1 AV	MCCI	0							

FIELD	DATA REC	ORD - LO	W FLOW	GROUNDW	ATER SA	AMPLING	3		
PROJECT	Former Unis	ya Facility		FIELD SAM	APLE NUMBE	R SW		96-XX	JOB No. 3617187446
Location	Lake Succes	s, New York			SITE TYP		V1279	6	DATE 6/15/20
ACTIVITY	START -	EN)	SAMPLE T	IME	1130)		
WATERL	EVEL / PUMP	ETTINGS		REMENT POINT P OF WELL RISER		PROTECTIVE			CASING / WELL DIFFER FT
INITIAL DE TO WA	10.2.55			P OF PROTECTIVE	CASING	(FROM GRO		FT	WELL DIAM IN
FINAL DE TO WA			FT (TOR)		FT	AMBIENTAL	R	PPM	WELL INTERGRITY
DRAWDO	JME		SCREET		FT	MOUTH		PPM	CAP
TOTAL			TOT	OF DRAWDOWN V DTAL VOLUME PUI		PRESSURE TO PUMP		Pai	LOCKED COLLAR
PUR (purge			AL Land Land Land Land Land Land Land Lan	es) x 0.00028 gal/m	illiliter)	REFILL SETTING			DISCHARGE
PURGE D	DEPTH TO WATER (ft)	PURGE RATE (ml/m)	TEMP. (deg. c)	SPECIFIC CONDUCTANCE (umho/cm)	pH (units)	DISS. 02 (mg/L)	TURBIDITY (ntu)	REDOX (mv)	COMMENTS
	< 0.33 ft	≤ 500 ml/m	≤ 3%	≤ 3%	≤ 0.1 unita	≤ 10%	≤ 50 ntu	s 10 units	
			15,84	0,570	6.82	1.51	7,30	190.9	
TYPE G	INT DOCUMEN OF PUMP COPUMP (peristal ICO BLADDER LADDER			IG BITY POLYETHYLER BITY POLYETHYLE	NE _	E OF PUMP M Polyvinyl chlo STAINLESS OTHER	ride		YPE OF BLADDER MATERIAL TEFLON Other
Check if	CAL PARAMET Scheduled for Collect Ca + TIC plus, Fr con 113, Freon 11	eon 11, Freon 22	NUM USE	THOD MBER PA-8260C	M	ERVATION ETHOD / 4 DEG. Q	VOLUME REQUIRED 3 X 40 mL	SAMPLE	D. Check if collected
Basin Mineral	Cs + TIC plus, Freon 11			PA-524.2		/ 4 DEG. C	3 X 40 mL		
Chloride USEPA 4500 CL-B 4 DEG Bromide USEPA 300.0 4 DEG							1 X 250 mL 1 X 250 mL		
								B	
Purge Ob	servations					COMMENTS	1		
Purge Wate Conatineriz	er so		Number of Gallor Generated	na	W	4	seri	vice	and
	600	2: 1	MAGI	9	B.	am pine	1	kan	annec
SIGNATUR	E. Whit	V V	MALA	-		MADILEC	ite to	RELL	nere

FIELD	DATA REC	CORD - LO	W FLOW	GROUNDW	ATER SA	MPLING					
PROJECT	Former Unis	ys Facility		FIELD SAM	IPLE NUMBE	R SW-	N12999	9-XX	JOB No.	3617187446	
Location	Lake Succes	s, New York			SITE TYP	A /	12999		DATE	6/15/20	
ACTIVITY	START	ENI	0 —	SAMPLE T	IME	1220					
WATER	EVEL / PUMP S	SETTINGS		REMENT POINT P OF WELL RISER		PROTECTIVI			CASING / WEL	L	
INITIAL DI TO W			FT TO	P OF PROTECTIVE	CASING	CASING STIC		FT	DIFFER.		FT
FINAL DI			(TOR)		FT	AMBIENT ALE	2	PPM	WELL INTERG	BRITY:	IN
DRAWD	OWN UME		SCREE		FT	MOUTH		PPM	CAP	ES NO	N/A
	- final x 0.16 {2-inc			OF DRAWDOWN V		PRESSURE			CASING		
TOTAL				OTAL VOLUME PUR	RGED	TO PUMP		PSI	COLLAR	5 = =	
	Volume (milliliters	per minute) x tim	GAL ne duration (minu	tes) x 0.00026 gal/mi	Illiliter)	REFILL SETTING			DISCHARGE SETTING		
PURGE D	DATA DEPTH TO	PURGE	TEMP.	SPECIFIC	1 -0	1			,		
TIME	WATER (ft) < 0.33 ft	RATE (ml/m) ≤ 500 ml/m	(deg. c)	CONDUCTANCE (umho/cm)	pH (units)	DISS. O2 (mg/L)	TURBIDITY (ntu)	REDOX (mv)		COMMENTS	
-	- 0.00 II	2 500 ml/m	1483	≤ 3% 79€	≤0.1 units	≤ 10% ₹ 70	≤ 50 ntu	≤ 10 units	3		
			11100		6101	01/0	0,11	7111			
					1-11						
FOLUDAN	ENT DOCUMEN	TATION									
	OF PUMP	TATION	TYPE OF TUBIN	IG.	TYP	E OF PUMP M	ATERIAL	-	TYPE OF BLAD	DER MATERIAL	
	EOPUMP (peristal	tic)		SITY POLYETHYLEN	NE	Polyvinyl chlor	ride		TEFLON	DETCHOTI ENDIE	
	MCO BLADDER LADDER		OTHER	SITY POLYETHYLE	NE X	OTHER	STEEL		Other		
	ICAL PARAMET			ГНОР	PDEC	ERVATION	1011111				
□ vo	DCs + TIC plus, Fr eon 113, Freon 11	eon 11, Freon 22	, USE	MBER EPA-8260C	M	ETHOD / 4 DEG. C	VOLUME REQUIRED 3 X 40 mL	SAMPLE	D Check if collect	led	
V	OCs + TIC plus, Fr eon 113, Freon 11	eon 11, Freon 22	, USE	EPA-524.2	HCL	/ 4 DEG. C	3 X 40 mL	Ø	1		
	nloride omide			PA 4500 CL-B PA 300.0	4 DE		1 X 250 mL 1 X 250 mL				
Purge Ob Purge Wat	er		Number of Gallo	ne	1	COMMENTS	vice	0	1 000	200+	
Conatineriz			Generated		[17]	Ser	vice	ana	r gan	ping	0
	0 1	0							an	nec	
SIGNATUR	C. V. NUCPIA										

EIEI D	DATA REC	CORD - LO	W FLOW	GROUNDW	ATER SA	MPLING	3				
PROJECT	Former Unisy				MPLE NUMBER		13000	-XX	JOB No.	3617187446	
Location	Lake Succes				SITE TYP		V1300	00	DATE	6/15/2	0
ACTIVITY	START —	ENI ENI	D	SAMPLET	IME	1250					
	EVEL / PUMP S		MEASU	REMENT POINT		PROTECTIV	process process		CASING / WE	LL	-
INITIAL DE				P OF WELL RISER P OF PROTECTIVE	CASING	(FROM GRO	CONTRACTOR OF THE PARTY OF THE	FT	DIFFER.		
TO WA			WELL DER	TH		PID			DIAM.		IN
FINAL DE			FT (TOR)		FT	AMBIENT AI	R	PPM	WELL INTER		N/A
DRAWDO	OWN		SCREE		FT	MOUTH		РРМ	CAP	YES NO —	19/75
VOLU (initial -	IME final x 0.16 {2-inc		Ch)) RATIO	OF DRAWDOWN V	OLUME	PRESSURE		-	LOCKED	5 = =	
TOTAL			TOT	OTAL VOLUME PUI	RGED	TO PUMP		PSI			
PUR	GED	per minute) x tim	GAL enduration (minu	tes) x 0.00026 gal/m	illiliter)	REFILL SETTING			DISCHARGE SETTING		
PURGE D	ATA			SPECIFIC			Launning	Y REDOX	1		
TIME	DEPTH TO WATER (ft)	PURGE RATE (ml/m)	TEMP. (deg. c)	(umho/cm)	pH (units)	DISS. O2 (mg/L)	TURBIDIT (ntu)	(mv)		COMMENTS	
	< 0.33 ft	≤ 500 ml/m	15 19	s 3%	≤0.1 units	≤ 10%	≤ 50 ntu	≤ 10 units	1		
			10,11	0,017	0113	111	0100	4000			
FOUIPME	NT DOCUMEN	TATION									
	OF PUMP		TYPE OF TUBI			OF PUMP M				DDER MATERIAL	
	OPUMP (peristalt	tic)		SITY POLYETHYLEN		Polyvinyl chlo STAINLESS			TEFLON Other		
	ADDER		OTHER_			OTHER					
	CAL PARAMET Scheduled for Collecti		ME	THOD	PRES	ERVATION	VOLUM				
	Cs + TIC plus, Fre		200	MBER EPA-8260C		ETHOD / 4 DEG. C	3 X 40 m	ED COLLECTE	D Check if colle	cted	
/	on 113, Freon 11: Cs + TIC plus, Fre			EPA-524.2	HCL	/ 4 DEG. C	3 X 40 m		/		
	on 113, Freon 11		on 152a								
	oride mide			EPA 4500 CL-B EPA 300.0	4 DE 4 DE		1 X 250 1 X 250	The second second			
Purge Obs	servations					COMMENTS	5 1	0 01	0 1	Sandi.	10
Purge Water Conatinerized yes (no) Number of Gallons Generated						iell S	tarte	ed prio	1 to	Samplin	90
		. 0						4	ar	nec	
	0 1	1. 111	prid								
SIGNATURE	- CNAU	1 111	LU .	-							

FIELD	DATA REC	ORD - LO	W FLOW	GROUNDWA	ATER SA	MPLING			
PROJECT	Former Uniay	ra Facility		FIELD SAM	PLE NUMBE	R SW-	N/388	21-XX	JOB No. 3617187446
Location	Lake Succes	s, New York			SITE TYP		11325		DATE 6/15/20
ACTIVITY	START 4	END		SAMPLE TI	ME 4	2 123	,5		
WATER L INITIAL DE TO WA			TO	REMENT POINT P OF WELL RISER OF PROTECTIVE	CASING	PROTECTIVE CASING STIC (FROM GROU	KUP	FT	CASING / WELL DIFFER. FT
FINAL DE TO WA	РТН		WELL DEPT	H	FT	PID AMBIENT AIR		PPM	DAM IN WELL INTERGRITY:
DRAWDO	JME		SCREET LENGTH	1	FT	PID WELL MOUTH		PPM	CAP YES NO N/A CASING
TOTAL	VOL.	ch) or x 0.65 (4-ine	AL TO TO	OF DRAWDOWN VI DTAL VOLUME PUR (es) x 0.00026 gal/mi	RGED	PRESSURE TO PUMP REFILL SETTING		PGL	LOCKED COLLAR DISCHARGE SETTING
PURGE D				SPECIFIC					
TIME	DEPTH TO WATER (ft) < 0.33 ft	PURGE RATE (ml/m) s soo ml/m	TEMP. (deg. c) s 3%	CONDUCTANCE (umho/cm) ≤ 3%	pH (units) ≤ 0.1 units	DISS. O2 (mg/L) ≤ 10%	TURBIDITY (ntu) s 50 ntu	REDOX (mv) s 10 units	COMMENTS
-			6.95	0.721	7,01	814	1,71	2751	0
TYPE	ENT DOCUMEN OF PUMP EOPUMP (perista		TYPE OF TUBII	NG SITY POLYETHYLER		E OF PUMP MA			TYPE OF BLADDER MATERIAL TEFLON
SN	MCO BLADDER LADDER			SITY POLYETHYLE		STAINLESS S	STEEL		Other
Check if	eon 113, Freon 1 OCs + TIC plus, F	reon 11, Freon 22 15,Freon 123, Freor 11, Freon 22	NU USI on 152a	THOD MBER EPA-8260C EPA-524.2	HCI W	GERVATION IETHOD ./4 DEG. C	VOLUME REQUIRED 3 X 40 mL	SAMPLE	ED Check if collected
₩ Cr	eon 113, Freon 1 ¹ nloride omide	15,Freon 123, Fre	US	EPA 4500 CL-B EPA 300.0		EG. C	1 X 250 mL 1 X 250 mL	holding	
Purge Ot Purge Wat Conatineriz		· Pr	Number of Gallo	ons	1	COMMENTS NSEPV	re an	nd pe	amec

FIELD	DATA RECORD		The second second	
PROJECT	DATA RECORD - LOW FLOW G	ROUNDWATER SAM	MPLING	
Location		FIELD SAMPLE NUMBER	166	JOB No. 3617187446
ACTIVITY	Lake Success, New York	SITE TYPE		DATE 8/10/20
	START 12 25 END	SAMPLE TIME	155	
INITIAL DE	EVEL / PUMP SETTINGS MFASUREI		ROTECTIVE	CASING / WELL FT
TO WA	TER 43.68 FT 1000		ASING STICKUP ROM GROUND) FT	WELL 4 IN
FINAL DE	PTH Q2 Q7 WELL DEPTH (TOR)	147 FT AM	D MBIENT AIR PPM	DIAM.
DRAWDO	FT FT		D WELL PPM	WELL INTERGRITY: YES NO N/A CAP
VOLU	IME () 177 LENGTH		000	CASING Z = Z
TOTALV		KAVVDOVIN VOLUME	PUMP 6 PSI	COLLAR 🗸
PURG	GED 1,95 GAL Orolume (milliliters per minute) x time duration (minutes) x	093 RE	FILL ZO	DISCHARGE SETTING
PURGE DA	ATA	SPECIFIC SECURITIES	l senov	F
TIME	WATER (ft) RATE (ml/m) (deg. c)	(umho/cm) (units)	(mg/L) (ntu) (mv)	COMMENTS
1130	<0.33 ft \$500 ml/m \$3% 43.91 300 18.00 1	(CA (112 (L	\$10% \$50 ntu \$10 units	
1135	93.93 300 18:00 1	679 644	87 7.36 177.0	
1190	43.93 300. 17.8	666 6.409	42 6.56 181.	
1195	93.93 300. 18.00 1	657 6.36 9	.53 6.36 183.	0
1150	93.95 300 18.00 1	.6356.374	.78 5.34 185.	
# 1155	93.96 300 17.6 1	6366.374	,83 5.23 188.	2
1200				
EQUIPMENT	DOCUMENTATION			YPE OF BLADDER MATERIAL
TYPE OF GEOP	PUMP TYPE OF TUBING X LOW DENSITY PC			TEFLON
SMCO	BLADDER HIGH DENSITY PO			Other
ANALYTICAL	DEROTHER	ОТН		
Check if Scheo	duled for Collection METHOD NUMBER	PRESERVA METHOL	REQUIRED COLLECTE	D Check if collected
Freon 1	TIC plus, Freon 11, Freon 22, USEPA-826 13, Freon 115, Freon 123, Freon 152a			
VOCs +	TIC plus, Freon 11, Freon 22, USEPA-524. 13, Freon 115, Freon 123, Freon 152a	2 HCL/4 DE	G. C 3 X 40 mL	
Chloride Bromide	USEPA 4500		1 X 250 mL	
Biornide	002.7			
				- Committee of the Comm
Purge Observat	Number of Gallons	7 соми	MENTS	
Conatinerized (ves				
	110			ame
SIGNATURE:	MIS			THE STATE OF THE S

FIFLD	04=								_
יובבטן	DATA RECORD - LO	W FLOW GI	ROUNDWA	TER SA	MPLING	;		1	
	Former Unisys Facility		FIELD SAMP	PLE NUMBER	2	MI		000	3617187446
Location	Lake Success, New York			SITE TYPE				DATE	8/10/20
	START 1550 END		SAMPLE TIM	ME	1610			100 1100	
WATER LE	EVEL / PUMP SETTINGS	MEASURE	MENT POINT		PROTECTIVE	E		CASING / WEL	FT
TO WA	TER 4.35		F WELL RISER F PROTECTIVE O		CASING STIC (FROM GRO	UND)	- FT	WELL DIAM.	4 IN
FINAL DE TO WA	TER 199 A7	(TOR)	230) FT	AMBIENT AIR	K			ES, NO
DRAWDO VOLU (initial -	WE () 4/4	SCREEN LENGTH	20 DRAWDOWN VO	FT	MOUTH PRESSURE TO PUMP	60	PPM		並三三
TOTAL	VOL. 1 CCII	TO TOTA	. 281	GED	REFILL SETTING	2	0	DISCHARGE SETTING	10
PURGE D	ATA		SPECIFIC	рН	DISS. 02	TURBIDITY	REDOX (mv)		COMMENTS
TIME	DEPTH TO PURGE WATER (ft) RATE (ml/m) < 0.33 ft \$500 ml/m	TEMP. (deg. c) s 3%	ONDUCTANCE (umho/cm) ≤ 3%	(units) ≤ 0.1 units	(mg/L) ≤ 10%	(ntu) ≤ 50 ntu	≤ 10 units		
1550	94.96 320	18.4 .	562	6.19	5.14	7.12	164		
1555	10.	1 / -	534	6.13	5.00	145	170	3	
1600		10.7	,521	6.13	9,90	23.5	170.0		
1605	0 0 .		.517	6.10	9.87	23.1	171,0)-	
1610	15.07 320	10.		6					0.00
1017						1			
					-	1		- Jane	
								100	
			32		7-3-				
TYPE GE	EOPUMP (peristaltic) MCO BLADDER	TYPE OF TUBING X LOW DENSITY HIGH DENSITY OTHER	POLYETHYLENE POLYETHYLEN		Polyvinyl chlo STAINLESS OTHER	ride		TYPE OF BLAI TEFLON Other	DDER MATERIAL
ANALYTI Check if	CAL PARAMETERS Scheduled for Collection	METHC NUMBE	R	ME	ERVATION ETHOD / 4 DEG. C	VOLUME REQUIRED 3 X 40 mL	SAMPLE	ED Check if colle	ected
Fre	OCs + TIC plus, Freon 11, Freon 22, eon 113, Freon 115, Freon 123, Freon 123, Freon 22	n 152a USEPA	-524.2	HCL	4 DEG. C	3 X 40 mL			
Fre	OCs + TIC plus, Freon 11, Freon 22, eon 113, Freon 115, Freon 123, Freo	n 152a	4500 CL-B	4 DE	G. C	1 X 250 mL		130	
	oride ornide	USEPA		4 DE	G. C	1 X 250 mL		1	
Duran Ob	equations				COMMENT	S			
Purge Obs Purge Water Conatinerize	d es no	lumber of Gallons Generated	21.5					al	mec
be	116								

ATURE: / / / / FDRs_Blank/LF Callahan

78	FIELD DATA RECO				
	PROJECT Former Unisys Facility Lake S	ROUNDWATER	AMPLING		
	Location Lake S.	FIELD SAMPLE NUMBI	AWPLING		No. 3617187446
	ACTIVITY START SO O SING	SITE TYPE	1000	JOBI	-110100
	WATER LEVEL / PUMP SETTINGS MEASURE	SAMPLE TIME	1730	DATE	WIOIDO
	THE DEPTH	MENT POINT	PROTECTIVE	CASING /	
	TOWATER TOP O	OF WELL RISER OF PROTECTIVE CASING	CASING STICKUP (FROM GROUND)	- FT DIFFER	- F
	FINAL DEPTH TO WATER 94.35 FT (TOR)	342 FT	PID AMBIENT AIR	PPM WELL DIAM.	4 IN
	DRAWDOWN VOLUME 0,789 GAL	20 FT	PID WELL MOUTH	PPM CAP	YES NO N/A
	TOTAL VOL	DRAWDOWN VOLUME	PRESSURE TO PUMP	CASING LOCKED PSI COLLAR	7 = 7
	(purge volume (milliliters per minute) y timed	1100	REFILL 2	DISCHARG	E 10
	TIME DEPTH TO PURGE TEMP CO	SPECIFIC			
	VATER (ft) RATE (ml/m) (deg. c) 5500 ml/m 53%	DNDUCTANCE	DISS. O2 TURBIDITY (mg/L) (ntu) ≤ 10% ≤ 50 ntu	(mv) ≤ 10 units	COMMENTS
	320 17.8	829 6.31	3.87 42.4	236.7	
		000	3.94 33.6	318.5	
	1525 41.33 320 18.8	-00	329 188	183.3	
	1520 94 22 0		318 28.0	186.0	
	1/2).	865 6.11	3.01	185.6	
-					
	EQUIPMENT DOCUMENTATION				
	TYPE OF PUMP GEOPUMP (peristaltic) TYPE OF TUBING X LOW DENSITY POL		PUMP MATERIAL vinyl chloride		DER MATERIAL
	SMCO BLADDER HIGH DENSITY POL		AINLESS STEEL	Other	
	ANALYTICAL PARAMETERS	OTE	HER	_	
2	VOCs + TIC plus, Freon 11, Freon 22, USEPA-8260	PRESERVA METHO C HCL/4 DE	D REQUIRED	SAMPLE COLLECTED Check if collect	ted
	Freon 113, Freon 115, Freon 123, Freon 152a VOCs + TIC plus, Freon 11, Freon 22, USEPA-524,2		3 X 40 mL		
	Freon 113, Freon 115, Freon 123, Freon 152a	11027402	EG. C 3 X 40 mL		
	USEPA 4500 0 USEPA 300.0	CL-B 4 DEG. C 4 DEG. C	1 X 250 mL 1 X 250 mL	日	
L					
	rge Observations De Water Number of Gallons	COM	MENTS		
Co	Number of Gallons Generated Number of Gallons	5			
	110			20	200
SIGN	TURE: /VI D			dii	nec

IFIELD -	
FIELD DATA RECORD - LOW FLOW G	
PROJECT FORMER LINE	ROUNDWATER SAMPLING
	FIELD SAMPLE NUMBER
ACTIVITY START & O U	SITE TYPE DATE 8/10/20
	SAMPLE TIME WOOLD 1855
INITIAL DEPTH TOP C	EMENT POINT PROTECTIVE CASING / WELL OF WELL RISER CASING STICKUP OF PROTECTIVE CASING (FROM GROUND) FT WELL THE PROTECTIVE CASING / WELL FT THE PROTECTIVE CASING / WELL THE PROTECTIVE C
FINAL DEPTH TO WATER 94.63 FT (TOR)	Wett 4
DRAWDOWN SCREEN LENGTH	PID WELL PPM CAP CASING YES NO N/A
(initial - final x 0.16 (2-inch) or x 0.65 (4-inch)) RATIO OF	F DRAWDOWN VOLUME PRESSURE OR PRESSURE
TOTAL VOL. PURGED (purge volume (milliliters per minute) x time duration (minutes)	610 7 DISCHARGE 120
PURGE DATA	SPECIFIC SPECIFIC
WATER (ft) RATE (ml/m) (deg. c)	CONDUCTANCE PH DISS. 02 TURBIDITY REDOX (my/L) (ntu) (
1830 9461 300 18.7	357 6.16 6.19 2.96 233.0
183594.58 300 18.5	338 6.02 5.82 2.23 2278
184094,59 300 18.5	314 5.93 5.66 1.86 225.6
1845 94.62 200 18.6	136 5, 92 5, 84 2, 67 2238
18559463 300 18.5	. 129 5.91 6.44 1.97 222,3
1855 94.63 300 18.3	1396 540 6.60 5.40 22 16
	TYPE OF PUMP MATERIAL POLYETHYLENE Polyvinyl chloride TEFLON TOTHER OTHER
ANALYTICAL PARAMETERS Check if Scheduled for Collection METHOD NUMBER USEPA-8	REQUIRED COLLECTED Check if collected
Freon 113, Freon 115, Freon 123, Freon 152a VOCs + TIC plus, Freon 11, Freon 22, Freon 113, Freon 115, Freon 123, Freon 152a	524.2 HCL / 4 DEG. C 3 X 40 mL
	4500 CL-B 4 DEG. C 1 X 250 mL 300.0 4 DEG. C 1 X 250 mL
	TA 230 IIIL
Purge Observations	COMMENTS
Purge Water Conatinerized (ve) no Generated	-2
_	amec
SIGNATURE: MB	on let

FIELD DATA RECORD - LOW FLOW G PROJECT Former Unisys Facility			
PROJECT Former Unisys Facility	ROUNDWATER SAM	IPLING	3617187446
Location Lake C	FIELD SAMPLE NUMBER	261	5714/20
ACTIVITY ACTIVITY	SITE TYPE		DATE 87111
WATER LEVEL / PUMP SETTINGS MEASURE	SAMPLE TIME	225	
INITIAL DEPTH	MENT POINT PR	ROTECTIVE ASING STICKUP	CASING / WELL FT
TOWATER 75.97 FT TOPO	F PROTECTIVE CASING (FI	ROM GROUND) F	WELL 4 IN
FINAL DEPTH TO WATER 76.17 FT (TOR)	147 FT AN	MBIENT AIR PPI	WELL INTERGRITY. N/A
DRAWDOWN SCREEN LENGTH	2	O WELL PPI	-
(ITIDIAI - final x 0.16 {2-inch} or x 0.65 {4-inch}) RATIO OF		ESSURE CO PS	LOCKED Z =
PURGED GAL (purge volume (milliliters per minute) x time duration (minutes)	N7 DE	FILL ZO	DISCHARGE /O
PURGE DATA	SPECIFIC	ISS 02 TURBIDITY REDO	X
VATER (ft) RATE (ml/m) (deg. c)	(umho/cm) (units)	(mg/L) (ntu) (mv) ≤ 10%, ≤ 50 ntu ≤ 10 un	
200 Bob 300 19.6	3 3 /8	11 153 148.	3
1205 7615 300 19.1	,123 8.41	58 236 25	7
1210 76.16 300 19.0	.122 8.37	51 165 11.	h
1215 76.16 300. 18.9	0121 836 1	48 95,3 -4,9	
10.10 300 10.1	. 6 8.36	46 36.5 -19.9	1
1235 76.17 300 18.8	12 8.38.	95 11.5 31.	
EQUIPMENT DOCUMENTATION TYPE OF PLIMP TYPE OF TUBING	TYPE OF	PUMP MATERIAL	TYPE OF BLADDER MATERIAL
GEOPUMP (peristaltic) X LOW DENSITY I		vinyl chloride	TEFLON Other
OTHER	OLILITIES	HER	
ANALYTICAL PARAMETERS Check if Scheduled for Collection NUMBER	METHO	DD REQUIRED COLLECT	E Check if collected
VOCs + TIC plus, Freon 11, Freon 22, Freon 113, Freon 115, Freon 123, Freon 152a			
VOCs + TIC plus, Freon 11, Freon 22, Freon 113, Freon 115, Freon 123, Freon 152a USEPA-5	24.2 HCL / 4 DI	EG. C 3 X 40 mL	
Chloride USEPA 4		1 X 250 mL 1 X 250 mL	
Bromide USEPA 30	400.0		
	000	MENTS	
Purge Observations Purge Water Number of Gallons	-7.	IIIILITTO	60
Conatinerized (ves) no Generated			amec
112			Office
SIGNATURE:			

	FIELD	DATA			ROUNDWA*						1
-	PROJECT	Form.	CORD - LO	W FLOW G	ROUNDWA	TER SAI	MPLING				
l	Location	Lake S	sys Facility		FIELD SAMPI	LE NUMBER	36		JOB !		
4	ACTIVITY		ess, New York			SITE TYPE			DATE	6/14/	20
1	WATER L	EVEL / PUMP	O EN	D	SAMPLE TIM	E	1405				-
1	NITIAL DE	TER 8	6 54	TOP	MENT POINT OF WELL RISER OF PROTECTIVE C	,	PROTECTIVE CASING STICK FROM GROUN	(UP ND)	CASING DIFFER.	WELL	FT
	FINAL DE TO WA	PTH 40	000	WELL DEPTH			PID		WELL DIAM.	4	IN
1	DRAWDO	OWN -		SCREEN	72		AMBIENT AIR		WELL II	YES NO	N/A
	VOLU (initial -	final x 0.16 {2-in	013 ch) or x 0.65 (4-inc	Ch)) RATIO OF	DRAWDOWN VOI		PRESSURE		PPM CAP CASIN	The same of the sa	7
	PURO (purge v	GED 1	,95	TO TOT	AL VOLUME PURG	ED 1	TO PUMP	60	PSI COLL	ABCE	
PI	URGE DA	ATA Pulge	per minute) x tim	e duration (minutes) x 0.00026 gal/millil	liter)	SETTING	100	SETTI		2
	TIME	VI (0.33 A	RATE (milm)	TEMP. (deg. c)	SPECIFIC CONDUCTANCE (umho/cm)	pH (units)	DISS. O2 (mg/L)	TURBIDITY (ntu)	REDOX (mv)	COMMENTS	s
I	340	300	\$ 500 ml/m	23%	≤ 3%	≤0.1 units	≤ 10%	≤ 50 ntu	≤ 10 units		
H	345	300	86.12	23.1		6.5	704	573	1501		
1	356	300	86,54	294	0 -11	5.07	754	193	16/3		
1	355	309	86.57	241	.315	6.09	8.12	771	167.9		
	1100	300	86.57	234	. 376	6,19	8.55	52.1	170.3		
	195	300	86.56	23.9	,375	6.03	6.38	1510	1738		
			0.00	70.1	. 715	رو،م	6.00	110	1 1 20		
)			
							7 2 3	-			
		DOCUMENT	ATION								
L	GEOP	PUMP UMP (peristaltic)		YPE OF TUBING		TYPE	OF PUMP N		IY	PE OF BLADDER N	MATERIAL
		BLADDER) <u>X</u>		POLYETHYLENE POLYETHYLENE		Polyvinyl chlo		T	EFLON	- THE THE
X	BLADE	DER		OTHER_	CHETHTLEN	X	STAINLESS OTHER	STEEL	0	her	
NAL Ch	LYTICAL neck if Sched	PARAMETER duled for Collection	RS	METHO	ND.						
		TIC plus, Freor		NUMBE NUMBE	R	M	ERVATION ETHOD	VOLUM	SAMPLE COLLECTED	Ohash Maria	
	Freon 1	13, Freon 115,F	reon 123, Freon	USEPA 152a	-0260C	HCL	/4 DEG. C	3 X 40 m	IL Z	Check if collected	
	JVOCs + Freon 11	TIC plus, Freon	11, Freon 22, reon 123, Freon	USEPA	-524.2	HCL	/4 DEG. C	3 X 40 n	nL 🖂		
	Chloride		25/1/25, 1/160/1		4500 CL-B						
	Bromide	0.		USEPA			G. C	1 X 250 1 X 250			
	1,70	Dioxane					757	1 \ 250		,	
	bservat	ions					001111				
e Wa tineri		2) 00	Nur	nber of Gallons	21		COMMEN	ITS			
	/6	7110	Ger	erated	100						
						1					#

SIGNATURE: MB

amec

FIELD DATA DE			
PROJECT Former Unisys Facility	ROUNDWATER SAMPI	ING	
Location Lake C	EIELD CAMPLE AUMDED		JOB No. 3617187446
ACTIVITY CARE SUccess, New York	TICLD SAMPLE NOMBER		DATE 8/14/40
WATER EVENT	SITE TYPE	1- 1805	
WATER LEVEL / PUMP SETTINGS MEASUREM TO M	SAMPLE TIME PROTE	CTIVE	CASING / WELL FT
TO WATER 15.00 TOP O	F WELL DISED CASIN	GROUND) - FT	DIFFER.
FINAL DEDT	PID		DIAM.
WATER (TOR)	50 FT AMBIE	NT AIR PPM	WELL INTERGRITY:
DRAWDOWN SCREEN LENGTH	20 FT MOUTH		CAP 4
(Initial - final x 0.16 (2-inch) or x 0.65 (4-inch)) RATIO OF	DRAWDOWN VOLUME PRESS		LOCKED
PURGED 704	ML VOLUME PURGED TO PUI	-	COLLAR
(purge volume (milliliters per minute) v time duration (classification)	x 0.00026 gal/milliliter) REFILL SETTIN	1/4	DISCHARGE SETTING
DEPTH TO PUPCE TEMP OF	SPECIFIC	O2 TURBIDITY REDOX	
TIME WATER (ft) PURGE TEMP. (deg. c) < 3%	ONDUCTANCE pH DISS (units) (mg/ ≤ 3% ≤ 0.1 units ≤ 10	L) (ntu) (mv)	COMMENTS
1740 95 25 320 173 F	7.1 5.	1 31.2 161.3	
1745 95.61 320 174	2.30 6.06 10	23.5 165.2	
1757 96.02 320 17.1	0 ()	3 27.4 164.	}
1755 96.51 320 169	2.338 6.02 9.9	0 19.5 165.7	
1800 46.81 320 17.0	2.339 6.01 9.8	9 26.0 166.3	
1805 97.21 320 16.9	2.338 6.01 1.8	7 28.6 165.8	
EQUIPMENT DOCUMENTATION			
TYPE OF PUMP TYPE OF TUBING	TYPE OF PUN		YPE OF BLADDER MATERIAL
Constitution of the consti	POLYETHYLENE Polyvinyl	=	TEFLON Other
X BLADDER OTHER	OTHER		
ANALYTICAL PARAMETERS Check if Scheduled for Collection METHOD			D. Charle Marillanded
VOCs + TIC plus, Freon 11, Freon 22, USEPA-8		C 3 X 40 mL COLLECTE	Check if collected
Freon 113, Freon 115, Freon 123, Freon 152a VOCs + TIC plus, Freon 11, Freon 22, USEPA-5	524.2 HCL / 4 DEG.	C 3 X 40 mL	
Freon 113, Freon 115, Freon 123, Freon 152a Chloride USEPA 4	500 CL-B 4 DEG. C	1 X 250 mL	
Bromide USEPA 3		1 X 250 mL	
Purge Observations	COMME	INTS	
Purge Water Number of Gallons	0		6
Conatinerized (yes) no Generated			amec
110			Office
GIGNATURE: / / / /			

PROJECT Former Unisys Facility		A Second	
PROJECT FORMER LINE	ROUNDWATER SAM	MPLING	JOB No. 3617187446
Location Lake C	FIELD SAMPLE NUMBER	MI	JOB No. 361/18/44-0
ACTIVITY STAPS (SITE TYPE		DATE 8/11/00
WATER LEVEL / PUMP SETTINGS INITIAL DEPTH MEASUREM	SAMPLE TIME	MA MASSO 1650	
INITIAL DEPTH TOP O	MENT POINT P	POTECTIVE	CASING / WELL FT
TOP O	F WELL RISER C F PROTECTIVE CASING (F	ASING STICKUP ROM GROUND)	WELL 4 IN
FINAL DEPTH WELL DEPTH	7-0 8	ID PPN	DIAM.
WATER 95, 94 FT (TOR)		MBIENTAIN	WELL INTERGRITY: YES, NO N/A
DRAWDOWN VOLUME 8.1755 CHERTH	7 0	ID WELL PPN	CAP Z = =
(initial - final x 0 to re-		RESSURE GO PS	LOCKED
TOTAL VOL. PURGED 95 000	C VOLONIE / OTTOBE	0 7 0 0 0 0	DISCHARGE
(purge volume (milliliters per minute) v time duration (minutes)		EFILL 20	SETTING
ORGE DATA	SPECIFIC	DISS. 02 TURBIDITY REDO	X
WATER (ft) RATE (ml/m) (deg c)	(umho/cm) (units)	(mg/L) (ntu) (mv) ≤ 10% ≤ 50 ntu ≤ 10 uni	COMMENTS
<0.33 ft ≤ 500 ml/m ≤ 3%	1 57 8.19 °	100 4 61 100 v	
15.39 300 17.4	776	19. 0 . 111	
435 15 41 300 164	432 7.2	1.82 3.20 122,	4
1616	.431 7.11	1.81 3.74 121	5
110 75.93 300 168	. 431 7.03	1.77 6.92 129	7
415 95 44 300 16.9	432 6.97	4.77 5.32 126.	
750 95:17 300 16.9	100 0.11	1.77	
EQUIPMENT DOCUMENTATION			TYPE OF BLADDER MATERIAL
TYPE OF PUMP TYPE OF TUBING		F PUMP MATERIAL llyvinyl chloride	TEFLON
		TAINLESS STEEL	Other
X BLADDER OTHER	0.	THER	
ANALYTICAL PARAMETERS Check if Scheduled for Collection NUMBER			ED Check if collected
VOCs + TIC plus, Freon 11, Freon 22, USEPA-	1101 741		
Freon 113, Freon 115, Freon 123, Freon 152a VOCs + TIC plus, Freon 11, Freon 22, USEPA-	524.2 HCL / 4	DEG. C 3 X 40 mL	
Freon 113, Freon 115, Freon 123, Freon 152a	500 CL-B 4 DEG. (C 1 X 250 mL	
Chloride USEPA 3			
	CC	OMMENTS	
Purge Observations Purge Water Number of Gallons	2		0
onatinerized on Generated			amec
110			Office
SNATURE: 1015			W/0.1/0000

FIELD	DATA PEO			GROUNDWA					
PROJECT	Former	ORD - LO	W FLOW	ROUNDWA	TER SAI	MPLING			
Location	Former Unisys	s Facility		FIELD SAM	PLE NUMBER	NW	-766		JOB No. 3617187446
	Lake Success		1355		SITE TYPE	-			DATE \$ 9 19 20
WATER LE	START (2 =	50 END	13:50	SAMPLE TI	ME	1346			
INITIAL DEF	PTH [03		_ X TOP	EMENT POINT OF WELL RISER		PROTECTIVE CASING STIC	KUP 1/1	DII	SING/WELL 0, 9 FT
FINAL DEE	77.		WELL DEPTI	OF PROTECTIVE		FROM GROU		W	ELL 4 IN
TAWOI	TER US	36	(TOR)	146.9	O FT	AMBIENT AIR	NA	PPM	ELL INTERGRITY:
DRAWDO	WN O	1>	SCREEN			PID WELL MOUTH	NA	PPM	CAP YES NO N/A
(Initial - f	final x 0.16 {2-inch	n) or x 0.65 {4-inc	Ch}) RATIO C	F DRAWDOWN V	OLUME I	PRESSURE	175		CASING COCKED
PURG	OL.	7	TO TO	TAL VOLUME PUR		го римр	113		COLLAR
(purge v	olume (milliliters r	per minute) x tim	e duration (minute	es) x 0.00026 gal/mi	illiliter)	REFILL SETTING	20		SCHARGE 10
	DEPTH TO	PURGE		SPECIFIC		DIGO CO.	TURRICITY	REDOX	1
TIME	WATER (ft) < 0.33 ft	RATE (ml/m) ≤ 500 ml/m	TEMP. (deg. c) ≤ 3%	CONDUCTANCE (umho/cm) ≤ 3%	pH (units) ≤ 0.1 units	DISS. O2 (mg/L) ≤ 10%	TURBIDITY (ntu) ≤ 50 ntu	(mv) ≤ 10 units	COMMENTS
13:20	103.10	100	10-0	3,690	6-62	5-40	3.55	222.6	/
13:25	103.30	100	18-4	3.900	6.48	5-81	2.69	196-4	
13:30	103.35	100	18.4	3-928	6-45	5.90	2.03	192-5	
13:35	103.30	100	18.5	3-958	6.43	6-04	[-79	183.7	
13:40	103-30	100	18.5	3-965	6-46	6.08	1-66	175-1	
13:45		106	18.4	3.969	6.45	6-10	2.16	174.2	1
13:46	collect	sample	5						8
									10
				10					
				1211					
TYPE O	NT DOCUMENT DE PUMP OPUMP (peristalti CO BLADDER ADDER			G ITY POLYETHYLE SITY POLYETHYLE	NE	Polyvinyl chlo STAINLESS	oride	X	YPE OF BLADDER MATERIAL TEFLON Other
ANALYTIC Check if S	CAL PARAMETE Scheduled for Collection Cs + TIC plus, Free	on eon 11, Freon 22	MET NUM USE	HOD MBER PA-8260C	MI	ERVATION ETHOD / 4 DEG. C	VOLUME REQUIRE 3 X 40 mL	D COLLECTE	ED Check if collected
voo	on 113, Freon 115 Cs + TIC plus, Freon 113, Freon 115	on 11, Freon 22	USE	PA-524.2	HCL	/ 4 DEG. C	3 X 40 mL		
	oride	,, 160/1 125, F16	USE	PA 4500 CL-B		G. C	1 X 250 m 1 X 250 m		
Purge Obs Purge Water Conatinerized	d (Pe) no	n Si	Number of Gallor Generated	ns [,2	13	COMMENT 200 Begli Y Sampli	n furging finclude	es MS/MS	amec
SIGNATURE	Jon.	200	n	_					

FIELD	DATA PE	205		GROUNDW							
PROJECT.	Former Unis	ORD - LO	OW FLOW	GROUNDW	ATER SA	MPLING					
Location	Lake C.	ys Facility		FIELD SAM	MPLE NUMBER	R .4	MW-	-7ML	JOB No.	3617187446	
	Lake Succes	40			SITE TYPI	E -			DATE	8/19/20	
WATER LE	START 10:	OO EN	10 12:45	SAMPLE T	TIME	12:21					
TO WAT	TER 10-	ETTINGS 1. 15	То	P OF WELL RISER		PROTECTIVE CASING STIC (FROM GRO	CKUP ALL		CASING / WE DIFFER.	1.00	FT
FINAL DEF	TER 103	2-20	WELL DEP	TH 35:	5 FT	PID AMBIENT AIR	NA	PPM	DIAM. WELL INTER	IGRITY:	IN
DRAWDO VOLU (initial -	ME () f	13	SCREE LENGT		FT	PID WELL MOUTH	NA	РРМ	CAP CASING	YES NO	N/A
PURC	GED ()	al	TOT	OF DRAWDOWN V	RGED	PRESSURE TO PUMP	180	PSI	COLLAR	*==	=
(purge v	olume (millilitere	per minute) x tin	ne duration (minu	0 - 0 4 ites) x 0.00026 gal/m	nilliliter)	REFILL SETTING	20		DISCHARGE SETTING	10	
PURGE DA	DEPTH TO WATER (ft)	PURGE RATE (ml/m)	TEMP.	SPECIFIC CONDUCTANCE	рН	DISS. O2	TURBIDITY	REDOX (mv)		COMMENTS	1
1155	< 0.33 ft	≤ 500 ml/m	(deg. c) ≤ 3%	(umho/cm) ≤ 3%	(units) ≤ 0.1 units	(mg/L) ≤ 10%	(ntu) ≤ 50 ntu	≤ 10 units		001111111111111111111111111111111111111	1
1200	103.05	100	18.9	0.844	7.37	5.40	5.77	251-4			/
1205	103-10	100	19.0	0-843	7.03	4.69	6-66	260.6			
1210:	103.20	100	19.1	0-839	6,74	4.20	8.80	269.9		10	
1215	103.20	100	19.0	0-238	6.60	4.08	11-60	267.8		1 All	
1220	103.20	100	19.0	0-837	6-5(4.08	7-00 3-95	270.4		(18)	
1221	(0[(eC		19-2	0-836	6.50	7-0-1	3-10	2714		1	
	College	- Sampl	2							/	
									1		
					19				1/		
									1		
									1		
TYPE O GEO SMO X BLA	NT DOCUMENT OF PUMP OPUMP (peristalt) CO BLADDER ADDER	ic)		IG SITY POLYETHYLEN	NE	Polyvinyl chlor STAINLESS	ide		TEFLON Other	ODDER MATERIAL	
Check if So	AL PARAMETE cheduled for Collection Cs + TIC plus, Fre on 113, Freon 115	on 11, Freon 22	NUM USE	THOD MBER PA-8260C	ME	ERVATION ETHOD 4 DEG. C	VOLUME REQUIRED 3 X 40 mL	SAMPLE	D Check if coll	ected	
	cs + TIC plus, Fre in 113, Freon 115		on 152a	PA-524.2		4 DEG. C	3 X 40 mL				
Chlo				PA 4500 CL-B PA 300.0	4 DEC		1 X 250 mL 1 X 250 mL				
Purge Obse	0		Number of Gallon	0-91	Be	COMMENTS	119:09	at 11.	:50		6
Conatinerized SIGNATURE:		nG	Generated	<u>v 13</u>	A	rsample	include	S Dup	91	mec	

FIELD	DATA REC	ORD LO	N =1 =1	ROUNDWAT		Janes .	-		
PROJECT	Former Unisy	S Facility	N FLOW G	ROUNDWAT	ER SAN	IPLING	011	_	
Location	Lake Succes	-		FIELD SAMPL	E NUMBER	JVIW-	86U	108	
ACTIVITY	START 1 2	7	12125	-	SITE TYPE	-	1	DATI	8/20/20
WATER	LEVEL / PUMP	SETTINGS	[2:35	SAMPLE TIME EMENT POINT		12:2	1	CASMO	(ME) [0.2]
INITIAL	ATER 70,		TOP	OF WELL RISER OF PROTECTIVE C	0	ROTECTIVE CASING STICKL		CASING	
FINAL	\Cor. =		WELL DEPT			FROM GROUNT	1 1/17	WELL DIAM.	Y IN
TOV	ATER 7	7.15	(TOR)	87.35	FT	AMBIENT AIR	NA	PPM	INTERGRITY:
DRAW	DOWN O		SCREEN			PID WELL MOUTH	NA	PPM CAP	YES NO N/A
(initia	I - final x 0.16 {2-in	007 G		OF DRAWDOWN VO		PRESSURE		CASI	NG Z =
TOTA	LVOI -		TOTO	OTAL VOLUME PUR	GED	TO PUMP	100	PSI COLI	
(purg	e volume (milliliter	s per minute) x tim	GAL (minute)	0 • 0 0 8 les) × 0.00026 gal/mil	liliter)	REFILL SETTING	20	DISCH	HARGE TO
	DEDTUTO	,	· ·	SPECIFIC	anner y				
TIME	WATER (ft) < 0.33 ft	PURGE RATE (ml/m)	TEMP. (deg. c)	CONDUCTANCE (mS/cm)	pH (units)	DISS. 02 (mg/L)	TURBIDITY (ntu)	REDOX (mv)	COMMENTS
12:0		≤ 500 ml/m	20.7	0-731	≤0.1 units	1-82	≤ 50 ntu 13-22	\$ 10 units	1
12:0		110			5.68	1.68	10.00	188-7	
12:		110	20.0	0.729	5.66	1-56	14-37	191.7	
17:		110	19-5	0.730	5-65	1-48	13-09	193.5	
12-2		110	19-5	0.730	5-64	1.48	9-36	194.6	
12:3	1 0 11		moles.	0.170	15-01	10-10	1-70	1.00	
		1 30	my 100.						(90)
									P
					104				
			/		9				
									1
									/
1	MENT DOCUM	ENTATION	-						
一二	GEOPUMP (peris	staltic)	TYPE OF TU	BING NSITY POLYETHYL	-	Polyvinyl ch			YPE OF BLADDER MATERIAL TEFLON
	SMCO BLADDE			ENSITY POLYETHY		STAINLES			Other
X	BLADDER		OTHER		[OTHER_			
Contraction	YTICAL PARAN eck if Scheduled for Co			METHOD	PI	RESERVATION			
	VOCs + TIC plus		22,	NUMBER USEPA-8260C	- 1	METHOD HCL / 4 DEG. C	3 X 40 r		D Check if collected
1	Freon 113, Freon VOCs + TIC plus			USEPA-524.2		HCL / 4 DEG. 0	3 X 40	ml.	
	Freon 113, Freoi		Freon 152a						
-	Chloride Bromide			USEPA 4500 CL-B USEPA 300.0		4 DEG. C	1 X 250 1 X 250		- 3
1 -									
Purge	Observations					COMM	ENTS		1
Purge	Water nerized (es) no		Number of (Generated	Gallons 0.86		-when	tubing u	vas pull	ed out, the Bonded
Jonati						tubing	was no	+ attach	ed out, the bonded ellamec
1	P	Emi	0			wells	الما الما الما الما	ions like	on Silies
SIGNA	TURE:	mi	SIN					purging	

8/19/2020

FIELD	DATA REC	ORD - LC	OW EL OW	GROUNDW	ATED CA	MDLING		_	-		
PROJECT	Former Unisy	/s Facility	DW FLOW	GROUNDW	AIER SA	MIPLING	v-86L		JOB No.	3617187446	
	Lake Success			FIELD SAN	MPLE NUMBER		7 0 0 1		DATE	8/20/26	
	START 12:	UD	12-50		SITE TYPE	13:2	1				
WATER LE	VEL / PUMP S	ETTINGS	12 30	SAMPLE T	IME	PROTECTIV			CASING / WE	LL BSE	
INITIAL DEF	OTIL C	92	XTO	P OF WELL RISER P OF PROTECTIVE	CASING	CASING STI	OWIE -	VA FT	DIFFER. WELL	U-25	FT
FINAL DEF	PTH 71.	-00	WELL DEP (TOR)	TH 147-4	(0 FT	PID AMBIENT AI	R NA	PPM	WELL INTER	GRITY:	IN
DRAWDO VOLU	ME 0-1	05	SCREE LENGT	///	FT	PID WELL MOUTH	NA	PPM	CAP CASING	YES NO	N/A
TOTAL	final x 0.16 (2-inc	h) or x 0.65 (4-in		OF DRAWDOWN V		PRESSURE TO PUMP	100	PSI	COLLAR	- X =	
PURC	GED	1-27	GAL	0-04		REFILL	20		DISCHARGE	10	
PURGE DA	ATA	per minute) x tin	ne duration (minu	ites) x 0.00026 gal/m	illiliter)	SETTING			SETTING		
TIME	DEPTH TO WATER (ft) < 0.33 ft	PURGE RATE (ml/m) ≤ 500 ml/m	TEMP. (deg. c)	CONDUCTANCE (mS/cm) ≤ 3%	pH (units) ≤ 0.1 units	DISS. O2 (mg/L) ≤ 10%	TURBIDITY (ntu) ≤ 50 ntu	REDOX (mv) ≤ 10 units		COMMENTS	
13:00	71.00	140	13-6	0-286	6-50	4.63	15-67	1443			/
13:03	71.00	140	20-3	0-282	6.46	3.98	9.35	1427			/
13:10	71.60	140	20-1	0-281	6-43	3-72	5-41	1443		/	
13:15	71.00	140	20.0	0.281	6.42	3.52	4-94	143-8			
13:20	71-00	140	19.8	0.281	6-42	3-48	2-11	143-9		_/	
13:21	lolled	+ Sam	1185							100	
										(Jens)	
-					3	7	-		/	100	
-				-	9				+/		
									1		
-									1/		
EQUIPMEN	NT DOCUMENT	TATION							V		
GEO	OPUMP (peristalt	ic)	HIGH DEN	NG BITY POLYETHYLEN BITY POLYETHYLEN	NE	OF PUMP MA Polyvinyl chlor STAINLESS	ride	X	YPE OF BLAD TEFLON Other	DER MATERIAL	
	ADDER	ERS	OTHER			OTHER		-			
Check if S	cheduled for Collections + TIC plus, Fre	eon 11, Freon 22	, USE	THOD MBER EPA-8260C	ME	THOD 4 DEG. C	VOLUME REQUIRED 3 X 40 mL	SAMPLE	D Check if collect	ted	
□ voc	on 113, Freon 115 Cs + TIC plus, Freon 113, Freon 115	eon 11, Freon 22	, USE	EPA-524.2	HCL /	4 DEG. C	3 X 40 mL				
Chlo	oride		USE	EPA 4500 CL-B EPA 300.0	4 DEC		1 X 250 mL 1 X 250 mL				
Bron	nide		001								
								H			
Purge Obs	ervations					COMMENTS	1	1 11 -	-1-		
Purge Water Conatinerized	d (yes) no		Number of Gallor Generated	ns <u>1-3</u>	$\mathbb{B}\epsilon$	gin po	irging a	17 12:		nec	9
SIGNATURE	Das	ing S	in								

8/19/2020

LIELD	PROJECT Former Unisys Facility 100 100 100 100 100 100 100 100 100 10										
PROJECT	Former Unisy	OKD - LO	W FLOW	GROUNDWA	ATER SA	MPLING					
Location	Lake Success	s Facility		FIELD SAM	PLE NUMBER	MU	V-8ML		JOB No.	3617187446	
ACTIVITY	START ILI	Dr			SITE TYPE		-		DATE	8/20/20	
WATER LI	EVEL / PUMP S	ETTINGS EN	15:35	SAMPLE TI	ME	15-16					
INITIAL DE	DTU -	, 10	TO	P OF WELL RISER P OF PROTECTIVE		PROTECTIVE CASING STIC (FROM GROU	CKUP 11	4	CASING / WE DIFFER.	0.2 FT	
FINAL DE	PTH TER 7	2-11	WELL DEPT	TH 35		PID AMBIENT AIR	NA	PPM	WELL INTER	CRITY:	
VOLU (initial	IME 0.1	007	SCREE			PID WELL MOUTH	NA	PPM	CAP	YES NO N/A	
PUR	GED	51	TOT	OF DRAWDOWN VI	RGED	PRESSURE TO PUMP	100	PSI	CASING LOCKED COLLAR		
PURGE D	volume (milliliters	per minute) x tim	ne duration (minut	es) x 0.00026 gal/mi	Ililiter)	REFILL SETTING	10		DISCHARGE SETTING	10	
TIME	DEPTH TO WATER (ft) < 0.33 ft	PURGE RATE (ml/m)	TEMP. (deg. c)	SPECIFIC CONDUCTANCE (mS/cm)	pH (units)	DISS. O2 (mg/L)	TURBIDITY (ntu)	REDOX (mv)	1	COMMENTS	
14:20		\$ 500 ml/m	2 1 4	0-338	≤ 0.1 units	≤ 10%	≤ 50 ntu	≤ 10 units		/	
14:25	72.11	100	21-3	0-342	6-74	1-54	3-06	184.8			
14:30	72.11	100	20,8	0.346	6-76	1.15	1.58	1828		/	
14:35		100	20.3	0.338	6.78	0.98	0.91	177-6	+	10	
14.40		100	20.7	0-323	6.77	0.89	1.00	1720		10H	
14:45	72.11	100	20.5	0-307	6-75	0-83	0-94	168.4		189	
14:30	10	160	20.1	0.276	6.70	0-90	0.28	164.9	/	P	
14:35	72-11	100	20.3	0.224	6.66	t-05	0.75	161-2			
15.00		100	20.1	0-130	6.56	1-23	0.66	155.6	/		
15505		100	20.5	0.098	6-33	1-45	0.71	157.9	/		
13:10	72-11	100	19.9	0-213	6-04	2.11	4-41	1713	1		
13:13	72611	100	20.5	0-368	6.00	3.04	4.58	178.0	0/		
	NT DOCUMEN	TATION			2000						
	OPUMP (peristalt	ic)	X LOW DENS	IG SITY POLYETHYLEN		Polyvinyl chlo			TEFLON	DDER MATERIAL	
	ICO BLADDER		HIGH DEN	SITY POLYETHYLE		STAINLESS			Other		
	ADDER	EDS	OTHER_			OTHER		_			
Check if	Scheduled for Collection Cs + TIC plus, Free con 113, Freon 115	on eon 11, Freon 22	, USE	THOD MBER PA-8260C	ME	ERVATION ETHOD 4 DEG. C	VOLUME REQUIRED 3 X 40 mL	SAMPLE	ED Check if col	lected	
□ vo	Cs + TIC plus, Fre	eon 11, Freon 22	USE	PA-524.2	• HCL	4 DEG. C	3 X 40 mL				
Chi	loride omide		USE	PA 4500 CL-B PA 300.0	4 DE0		1 X 250 mL 1 X 250 mL			-	
	iriide		001								
Purge Obs	servations					COMMENT					
Purge Wate	r		Number of Gallor Generated	ns -6	14	15 Beg	in purgi	19.		0	
Conatinerize	ed (ves) no		Osnerated .		A	vell no.	+ Stable, at 15:	collet	a	mec	
	Of	me	7			Samples	at 15:	16			
SIGNATURE	Jan	mis	eller	_			1				

FIELD	PROJECT Former Union Former										
PROJECT	ATA REC	ORD - LO	W FLOW	GROUNDWA	ATER SA	MPLING		-			-
I com	or ornsy	s racility		FIELD SAM	PLE NUMBER	M	W-106L		JOB No.	3617187446	-
1	Lake Success	s, New York			SITE TYPE		-		DATE	9/19/20	
	START 16	35 END	17:35	SAMPLE TI	ME	17	:21_				
INITIAL DEP	VEL / PUMP S	20	₩ TO	REMENT POINT P OF WELL RISER P OF PROTECTIVE	CASING	PROTECTIVI CASING STIC (FROM GRO	CKUP \	A FT	CASING / WE DIFFER.	0.45	FI
FINAL DEP	ТН	710	WELL DEP	129,2	20 FT	PID AMBIENT AIR	NA	PPM	DIAM. WELL INTER	GRITY.	N
DRAWDON	ME -0.	07	SCREE		FT	PID WELL MOUTH	NA	PPM	CAP CASING	YES NO	N/A
TOTALV	final x 0.16 (2-inc	h) or x 0.65 (4-in	ch]) RATIO	OF DRAWDOWN V		PRESSURE TO PUMP	140	PSI	COLLAR	Z = =	=
PURG	GED .	.00 (GAL MINISTER	0.07 tes) x 0.00026 gal/mi	Dilliber	REFILL SETTING	20		DISCHARGE SETTING	10	
PURGE DA	ATA	per minute) x tim	ne duration (minu	SPECIFIC	militer)	SETTING					
TIME	DEPTH TO WATER (ft) < 0.33 ft	PURGE RATE (ml/m) ≤ 500 ml/m	TEMP. (deg. c) ≤ 3%	CONDUCTANCE (umho/cm) ≤ 3%	pH (units) ≤0.1 units	DISS. 02 (mg/L) \$ 10%	TURBIDITY (ntu) ≤ 50 ntu	REDOX (mv) ≤ 10 units		COMMENTS	1
16:55	77-20	110	18-8	2.500	6-74	9.30	10-00	149-6			/
17:00	77.13	110	19.3	2.485	6.58	567	4.11	153.6			/
17:05	77,20	110	101.6	2-485	6.53	3.94	3.27	153.3		/	
17:10	77.26	110	19-1	2,489	6.52	3-53	3.08	154.4		/	
17:15	77-20	1(0	19.0	2.486	6-51	3.47	2.75	134.9		10	D
17:20	77,20	110	19-0	2-487	6-51	3.33	3-84	154.9		11971	
17:21		Samp	-							RI	
			1-2							1	
									/		
				109	9				1		
				40					1		
									/		
TYPE O	NT DOCUMEN OF PUMP OPUMP (peristalt CO BLADDER ADDER		=	NG SITY POLYETHYLEN SITY POLYETHYLEN	NE _	E OF PUMP M Polyvinyl chlo STAINLESS OTHER	oride	X	TEFLON Other	ADDER MATERIAL	
Check if S	CAL PARAMET cheduled for Collecti Cs + TIC plus, Fron on 113, Freon 113	eon 11, Freon 22	. US	THOD MBER EPA-8260C	M	ERVATION ETHOD /4 DEG. C	VOLUME REQUIRED 3 X 40 mL	SAMPLE COLLECTE	D Check if col	lected	
□ voo	Cs + TIC plus, Fron 113, Freon 11	eon 11, Freon 22	y, USI	EPA-524.2	HCL	/ 4 DEG. C	3 X 40 mL				
Chic Bron				EPA 4500 CL-B EPA 300.0	4 DE 4 DE	:G. C :G. C	1 X 250 mL 1 X 250 mL				
Purge Obs	ervations		Million II.			COMMENT		,			
Purge Water Conatinerize	4	med	16	,50 BE	egin pur	ging	aı	mec	0		

FIELD	DATA REC	COPP		GROUNDW							_
PROJECT	Former Unis	JOKD - LO	OW FLOW	GROUNDW	ATER SA	MPLIN	G			T-116	
Location	Lake Succes			FIELD SAI	MPLE NUMBER	1/1	N-111,		JOB No.	3617187446	-
ACTIVITY	START (4)	7 4			SITE TYPE		y-MI		DATE	8/19/00	
WATER L	EVEL / PUMP	SETTINGS EN	11	SAMPLET	TME	0130					
INITIAL DE TO WA	PTH T	7. 49	TO	P OF WELL RISER P OF PROTECTIVE	CASING	PROTECTIVE CASING ST	ICKUP	FT			
FINAL DE TO WA	РТН Г	7.53	WELL DEP (TOR)	TH 25	O FT	PID AMBIENT A	IR	PPM	WELL DIAM.	Y Y	IN
DRAWDO	OWN O	000	SCREE LENGT			PID WELL MOUTH		PPM	CAP	YES NO	N/A
TOTAL	final x 0.16 {2-inc	ch} or x 0.65 {4-in		OF DRAWDOWN V		PRESSURE TO PUMP	80	O PSI	CASING LOCKED COLLAR	A A E	
PUR (purge	volume (milliliters	per minute) x tin	GAL me duration (minu	1.0167 tes) x 0.00026 gal/m	illiliter)	REFILL SETTING	2	0	DISCHARGE SETTING	10	
TIME	DEPTH TO WATER (ft) < 0.33 ft	PURGE RATE (ml/m) ≤ 500 ml/m	TEMP. (deg. c) ≤ 3%	SPECIFIC CONDUCTANCE (umho/cm) ≤ 3%		DISS. O2 (mg/L) ≤ 10%	TURBIDITY (ntu) ≤ 50 ntu	REDOX (mv) ≤ 10 units		COMMENTS	
10:10	117.45	300	15.3	0.613	6.41	6.71	6,5	200.			
10:15	1100- 6	200	14.9	0.6/2	6.21	6.31	6,3	197.0			
	117.57	300	14.7	0.599	6.23	6.31	7.3	193.1			
10:25	1121	360	14.5	0.591	6.23	6.74	6.7	191.6			
10:30	117.53	300	14.6	0.589	6.23	6.36	4.9	189.5	5		
-											
EQUIPME	NT DOCUMENT	TATION						-			
TYPE C	OF PUMP OPUMP (peristalt) ICO BLADDER ADDER	,		G ITY POLYETHYLEN ITY POLYETHYLEN	E X	OF PUMP MO Polyvinyl chlor STAINLESS	ride		YPE OF BLAD TEFLON Other	DER MATERIAL	
ANALYTIC	CAL PARAMETI						MOLLINAT	CAMPLE			
1	Scheduled for Collection Cs + TIC plus, Free		MET NUM		MET	RVATION HOD DEG. C	VOLUME REQUIRED 3 X 40 mL	SAMPLE	Check if collect	ed	
Free	on 113, Freon 115	Freon 123, Freo	on 152a								
	Cs + TIC plus, Fre on 113, Freon 115			PA-524.2	HCL / 4	DEG. C	3 X 40 mL				
	oride mide			PA 4500 CL-B PA 300.0	4 DEG.		1 X 250 mL 1 X 250 mL				
Purge Obs	servations		-		С	OMMENTS				-	
Purge Water Conatinerize			Number of Gallons Generated	1.56					an	nec	9
			1								

FIELD	DATA DE			GROUNDW							_
PROJECT	Forma	CORD - LO	OW FLOW	GROUNDW	ATER SA	MPLING	3				-
Location	Former Unis	ys Facility		FIELD SAM	MPLE NUMBER	R MI	N-1564	-×x	JOB No.	3617187446	0
ACTIVITY	Lake Succes	s, New York			SITE TYPE		5 GL		DATE	8/10/2	
WATER LI	START / 2:	25 EN	10 13:15	SAMPLET	IME /	13100					1
TO WA	TER 8	E. 15	TO	P OF WELL RISER P OF PROTECTIVE		PROTECTIVE CASING STI	CKUP	FT	CASING / WELL DIFFER. WELL	4	FT
FINAL DE TO WA	TER 87	2.15	WELL DEP (TOR)	170) FT	PID AMBIENT AI	R	PPM	WELL INTERC	GRITY:	N/A
VOLU (initia)	OWN IME		SCREE LENGT		FT	PID WELL MOUTH	_	PPM	CAP	NO NO	
TOTAL \			nch}) RATIO	OF DRAWDOWN V		PRESSURE TO PUMP	6	PSI	COLLAR	Z = :	=
(purge v	olume (millilitere	per minute) x tin	GAL me duration (minu	tes) x 0.00026 gal/m	illiliter)	REFILL SETTING	20	9	DISCHARGE	10	
PURGE DA	NIM.			SPECIFIC	minter)	JETTING.			1		
TIME	DEPTH TO WATER (ft) < 0.33 ft	PURGE RATE (ml/m) ≤ 500 ml/m	TEMP. (deg. c) ≤ 3%	CONDUCTANCE (umho/cm) ≤ 3%	pH (units) ≤ 0.1 units	DISS. O2 (mg/L) ≤ 10%	TURBIDITY (ntu) ≤ 50 ntu	REDOX (mv) ≤ 10 units		COMMENTS	
12140	82.15	200	240	0,337	6.91	9.47	18/4.9	186.9			
12:45	82.15	200	19.1	0.321	6.11	9.63	3.03	190.1			
12:50	82.15	200	18.3	0.318	6.07	9,22	4.92	191.8			
12155		700	18.2	0,319	6.07	9,32	5,21	192.1			
13:00	82.15	200	18.1	0.317	6.06	9.42	7,77	193.0			
					117						
FOLUBATION											
TYPE O	NT DOCUMENT OF PUMP OPUMP (peristalt CO BLADDER ADDER	ic)		IG SITY POLYETHYLEN BITY POLYETHYLEN	NE	OF PUMP M Polyvinyl chlo STAINLESS OTHER	ride		TYPE OF BLAC TEFLON Other	DDER MATERIAL	
Check if S	CS + TIC plus, Fre on 113, Freon 115	eon 11, Freon 22	, USE	HOD MBER PA-8260C	ME	ERVATION THOD 4 DEG. C	VOLUME REQUIRED 3 X 40 mL	SAMPLE COLLECTE	D Check if collect	cted	
Freo	Cs + TIC plus, Fre on 113, Freon 115		on 152a	PA-524.2		4 DEG. C	3 X 40 mL				
Bron				PA 4500 CL-B PA 300.0	4 DEC		1 X 250 mL 1 X 250 mL				
Purge Obse Purge Water Conatinerized	d yes no		Number of Gallor Generated	1.04		COMMENTS	S		an	nec	0
SIGNATURE	Ch	1									

LIELDI	DATA REC	205-		GROUNDW				- Control of the Cont	CARLES AND
PROJECT	Former Unisy	ORD - LO	OW FLOW	GROUNDW	ATER SA	MPLING			
	Lake Suc-	ys Facility		FIELD SAM	MPLE NUMBE	R ML	-15ML -	· / /	JOB No. 3617187446
ACTIVITY	Lake Succes	s, New York			SITE TYP		5 ML		DATE 8/10/20
WATER LE	VEL / Plus	10 EN	0/2:05	SAMPLE T	TIME	11:51			
INITIAL DEF	РТН Т	SETTINGS	MEASU	REMENT POINT		PROTECTIV			SING / WELL FT
		2.41	FT TO	P OF WELL RISER P OF PROTECTIVE	CASING	CASING STI		- FT	FFER.
FINAL DEF	TER 8	2.41	WELL DEP	34	0	PID		DI	AM. 4 IN
DRAWDO	WA F	-1//	FT SCREE		O FT	AMBIENT AII	2	PPM	ELL INTERGRITY: N/A
ILIOA	AAD.	_	\$ 100 A C 100 C 100		FT	PID WELL MOUTH	-		CAP
	final x 0.16 (2-inc	th) or x 0.65 (4-in	nch}) RATIO	OF DRAWDOWN V	/OLUME	PRESSURE	60	L	CASING OCKED
PURG	SED /	95				TO PUMP		701	SCHARGE /2
PURGE DA	ATA (milliliters	per minute) x tin	ne duration (minu	tes) x 0.00026 gal/m	nilliliter)	REFILL SETTING	20		SCHARGE /0
TIME	DEPTH TO WATER (ft)	PURGE	TEMP.	SPECIFIC CONDUCTANCE		DISS. 02	TURBIDITY	REDOX	
11:20	< 0.33 ft	RATE (ml/m) ≤ 500 ml/m	(deg. c) ≤ 3%	(umho/cm) ≤ 3%	(units) ≤ 0.1 units	(mg/L) ≤ 10%	(ntu) ≤ 50 ntu	(mv) ≤ 10 units	COMMENTS
11:25	82.42	250	77.0	0.303	7.79	7.93	7.92	138.4	
11:30	8 (,72	250	18.6	0. 796	6.56	4.23	3.86	147.7	
11:35	82.41	250	18.3	0.3/2	6.34	4.00	4.22	153.0	
	82.41	250	18.2	0.33/	6,27	7.09	6.6)	157,9	
11:45	82.41	250	18.0	0,323	6.20	4.38	7,36	164.0	
11:50	82.41	250	17.9	0.322	6.18	4.42	8,29	167.2	
1130	82.41	250	17.8	0.320	6,18	4.45	6.28	170.8	
EQUIPMEN	T DOCUMENT	TATION			-				
TYPE O	F PUMP		TYPE OF TUBIN	<u>IG</u>	TYPI	OF PUMP M	ATERIAL	TY	PE OF BLADDER MATERIAL
	PUMP (peristalti	ic)		SITY POLYETHYLE		Polyvinyl chlo STAINLESS			EFLON her
	DDER		OTHER_	SITT POLIETINEL		OTHER	31222		nei
The second second second second	AL PARAMETE		MET	HOD	PRES	ERVATION	VOLUME	SAMPLE	
	s + TIC plus, Fre		The second second	MBER PA-8260C	M	/ 4 DEG. C	3 X 40 mL	COLLECTED	Check if collected
100000000000000000000000000000000000000	n 113, Freon 115 s + TIC plus, Fre			PA-524.2	HCI	/ 4 DEG. C	3 X 40 mL		
Freor	n 113, Freon 115		on 152a						
Chlor	0.00			PA 4500 CL-B PA 300.0	4 DE 4 DE		1 X 250 mL 1 X 250 mL		
Purge Obse	rvations		Number of Call			COMMENTS	3		
Purge Water Conatinerized	ges no		Number of Gallon Generated	1,95					
									amec
	11	-	7						
SIGNATURE:	-			-					

FIELD DATA DE											
PROJECT Former Unisys Facility FIELD DATA RECORD - LOW FLOW GROUNDWATER SAMPLING FORMER Unisys Facility FIELD SAMPLE NUMBER Muc 16 GL = XV											
Location Lake 2	FIELD SAMPLE NUMBER	Mw-16	GL-XX	JOB No. 3617187446							
Lave Success M	SITE TYPE	11		DATE 8/14/20							
		17:05	UNIT LOTTE								
INITIAL DEDT	EMENT POINT	PROTECTIVE		CASING/WELLFT							
TO WATER 182,85 FT TOP OF WELL RISER CASING STICKUP (FROM GROUND) FT DIFFER.											
WELL DEPTH WELL DEPTH		PID		WELL 4 IN							
WATER 15:50 82.85 (TOR)	222 FT	AMBIENT AIR	PPM	ALTER ANTERCORTY							
DRAWDOWN SCREEN LENGTH	// //	PID WELL MOUTH	PPM	YES NO N/A							
(Initial - final x 0.16 (2-inch) or x 0.65 (4 inch))			77.00	CASING DELOCKED							
PURGED 0 4 C	TAL VOLUME PURGED	PRESSURE TO PUMP	200 PSI	COLLAR Z =							
(purge volume (milliliters) GAL	c) v 0 00026 gal/millilitar)	REFILL		DISCHARGE 15							
	SPECIFIC	SETTING		SETTING							
TOTAL PATE (million)	CONDUCTANCE pH (units)	Land Control of the C	RBIDITY REDOX	COMMENTS							
16:10 183 W = 500 ml/m 53%	≤ 3% ≤ 0.1 units	≤ 10% ≤	50 ntu ≤ 10 units								
16:15 187 85 200 11	0.669 6.90	,	4.3 180.1								
16:20 102 45			170.8								
16,28 100 00 -	0.648 6.97		. 6 165.6								
16130 142 00 2	0.645 6.97	1.16 66.	1								
16:35 197 95	0.646 6.97	The second secon	1.6 157.8								
11.40 102 05 - 10.	/		7.0 155.3								
1012	0.646 6.97	0.97 56									
11. 2	0.647 6.98	The second second second	7 151.0								
		0.90 46									
			7 147.9								
	0.656 6.97		1.7 147.0								
EQUIPMENT DOCUMENTATION	2.060 0.78	0.80 36	1,1 145.8								
TYPE OF PUMP TYPE OF TUBING	<u>TYPE</u>	E OF PUMP MATER	IAL	YPE OF BLADDER MATERIAL							
	TY POLYETHYLENE X	Polyvinyl chloride STAINLESS STEE		TEFLON							
X BLADDER OTHER	THE TOUTE IN TERMS	OTHER		Other							
ANALYTICAL PARAMETERS Check if Scheduled for Collection METI	HOD PRES	ERVATION	VOLUME SAMPLE								
NUM	BER ME	ETHOD R		D Check if collected							
Freon 113, Freon 115, Freon 123, Freon 152a											
VOCs + TIC plus, Freon 11, Freon 22, Freon 113, Freon 115, Freon 123, Freon 152a	PA-524.2 HCL	/4 DEG. C 3	3 X 40 mL								
	PA 4500 CL-B 4 DE PA 300.0 4 DE		X 250 mL X 250 mL								
Purge Observations		COMMENTS									
Purge Water Conatinerized yes no Generated	2.80			1							
				amec							
m.											
SIGNATURE:											

TIELD DATA PEGG						
PROJECT Former Unisys Facility Lake 9:	OW GROUNDW	ATER SAI	MPLING			
Location Lake C	FIELD SAM	MPLE NUMBER	MIL	1-16ML	-XX	JOB No. 3617187446
ACTIVITY SUCCESS, New York		SITE TYPE	1	6 ML		DATE 8/20/20
WATER LEVEL / PUMP SETTINGS	SS SAMPLE T	TIME	16:21	5		
TO WATER 182 90	MEABUREMENT POINT TOP OF WELL RISER TOP OF PROTECTIVE		PROTECTIVE CASING STIC FROM GROU	CKUP _	FT (DIFFER. WELL IN
TO WATER 18295	(TOR) 32	G FT 5	PID AMBIENT AIF		ppM [NELL INTERGRITY:
VOLUME	SCREEN 10	100	PID WELL MOUTH	-	PPM	CAP CASING — —
(initial - final x 0.16 (2-inch) or x 0.65 (4-inch)) TOTAL VOL	RATIO OF DRAWDOWN V		PRESSURE TO PUMP	120) PSI	LOCKED COLLAR
PURGED 2.76 GAL PURGE DATA	on (minutes) x 0 00026 gal/m	nilliliter) S	REFILL	30		DISCHARGE 10
DEDTIL	SPECIFIC					1
WATER (ft) RATE (ml/m) (de < 0.33 ft \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$	MP. CONDUCTANCE g. c) (umho/cm) 3% ≤ 3%	pH (units) ≤ 0.1 units	DISS. O2 (mg/L) ≤ 10%	TURBIDITY (ntu) ≤ 50 ntu	REDOX (mv) ≤ 10 units	COMMENTS
10.	3 0.560	-	5.11	2.73	202.1	
11.	1		4.59	2.83	197.7	
16:00 182.90 300 16.		-		3.11	197.0	
16:05 182.96 300 17:		-	4.57	3.45	196.5	
10 10 100 10.		-	4.50		194.9	
16:15 182.90 300 17.	-, -	-	4.51	1.89	194.2	
16:20 182.90 300 16.			4.43		193.5	
16:25 182.90 300 16.2	9 0.354	6.69	4.39	7./7	192.6	
EQUIPMENT POOLINENTATION						
GEOPUMP (peristaltic) SMCO BLADDER HI	OF TUBING W DENSITY POLYETHYLE GH DENSITY POLYETHYLE THER	NE X	OF PUMP M Polyvinyl chlo STAINLESS OTHER	ride		YPE OF BLADDER MATERIAL TEFLON Other
ANALYTICAL PARAMETERS Check if Scheduled for Collection VOCs + TIC plus, Freon 11, Freon 22, Freon 113, Freon 115, Freon 123, Freon 152a VOCs + TIC plus, Freon 11, Freon 22,	METHOD NUMBER USEPA-8260C	ME HCL /	RVATION THOD 4 DEG. C	VOLUME REQUIRED 3 X 40 mL	SAMPLE	D Check if collected
Freon 113, Freon 115, Freon 123, Freon 152a	USEPA 4500 CL-B	4 DEG		1 X 250 mL		
Bromide	USEPA 300.0	4 DEG		1 X 250 mL		
Purge Observations			COMMENTS	S		
Purge Water Conatinerized yes no General SIGNATURE	of Gallons 2.76					amec

FIELD	PATA REC			GROUNDW						
PROJECT	Former Unisy	ORD - LO	W FLOW	GROUNDW	ATER SA	MPLING	1	1.1		3617187446
I and a second		a l acility		FIELD SAN	MPLE NUMBER	110	-1166	XX	JOB No.	8/12/20
ACTIVITY	START //	11			SITE TYPE		764		DATE	2/1-1
WATER LE	VEL / PLIMP O	YO EN	012:42	SAMPLET	TIME /	2115			CASING / WE	LL FT
INITIAL DEP TO WAT	-	279	TO TO	P OF WELL RISER P OF PROTECTIVE	CASING	PROTECTIV CASING STI (FROM GRO	CKUP	→ FT	WELL DIAM.	4 IN
TO WAT		3.03	FT (TOR)	16)	FT	AMBIENT AI	R	PPM	WELL INTER	GRITY: YES NO N/A
DRAWDO! VOLUI	MF 0	1680	SCREE		FT	PID WELL MOUTH		PPM		==
TOTALV	mai x 0.16 (2-inc	th) or x 0.65 (4-in	ch}) RATIO	OF DRAWDOWN V		PRESSURE TO PUMP	6	PSI		z = =
PURG (purge v	olume (milliliters	625 (per minute) x tim		O./16 ites) x 0.00026 gal/m	- 1	REFILL SETTING	2	0	DISCHARGE SETTING	10
. OKGE DA	ATA			SPECIFIC		DISS. O2	TURBIDITY	REDOX	1	
TIME	DEPTH TO WATER (ft) < 0.33 ft	PURGE RATE (ml/m) ≤ 500 ml/m	TEMP. (deg. c) ≤ 3%	CONDUCTANCE (umho/cm) ≤ 3%	pH (units) ≤0.1 units	(mg/L) ≤ 10%	(ntu) ≤ 50 ntu	(mv) ≤ 10 unit		COMMENTS
11:50	92.74	250	20.6	0.624	6.21	1,29	15.8	128.3		
	93.02	250	21.1	0.625	6.22	0.89	3.67	127.9		
15,00	97.05	250	20.8	0.625	6.22	0.80	4.58	128.0	/	
12:05		250	21.0	0.60	6.22	0.73	2.54	127.8		
12:10	93.03	256	207	0.625	6.21	0.69	1.78	127.3	+	
12:15	97.03	250	21./	0.625	6.22	0.48	1.93	7		
TYPE O	F PUMP DPUMP (peristalt) O BLADDER			NG SITY POLYETHYLEN SITY POLYETHYLEN	NE	OF PUMP M Polyvinyl chlo STAINLESS OTHER	ride		TYPE OF BLAI TEFLON Other	DDER MATERIAL
Check if So	AL PARAMETE cheduled for Collection s + TIC plus, Fre n 113, Freon 115	on 11, Freon 22,	USE	THOD MBER EPA-8260C	ME	ERVATION THOD 4 DEG. C	VOLUME REQUIRED 3 X 40 mL	SAMPLE	ED Check if colle	cted
□ voc	s + TIC plus, Fre n 113, Freon 115	on 11, Freon 22,	USE	EPA-524.2	HCL /	4 DEG. C	3 X 40 mL			
Chlor Brom	200		10000	PA 4500 CL-B PA 300.0	4 DEC		1 X 250 mL 1 X 250 mL		*	e .
Purge Obse Purge Water Conatinerized	(xee no		Number of Gallor Generated	1.625	0	iplicas	the Sam,	ole?	ar	nec

FIELD	ATA REC	000		GROUNDW		7	f			_	
PROJECT	Former	OKD - FO	W FLOW	GROUNDW	ATER SA	MPLING					7
I an a		o racility		FIELD SAI	MPLE NUMBER	MA	1-17ML	- XX	JOB No.	3617187446	=
ACTIVITY	Lake Success		-		SITE TYPE		17 ML		DATE	9/12/20	
	START / @ I	OO ENI	0/1115	SAMPLE	ГІМЕ	11:10	7				
INITIAL DEP TO WAT	TH	ETTINGS	TO	REMENT POINT P OF WELL RISER P OF PROTECTIVE	E CASING	PROTECTIVI CASING STIC (FROM GRO	CKUP	- FT	CASING / WE DIFFER WELL		FT
FINAL DEP	Tu -		WELL DEPT	H 70	O FT	PID AMPLEMENT AND	,		DIAM.	4	IN
TO WAT		2.11	FT (TOR)		FI	AMBIENT AIR			WELL INTER	GRITY: YES NO	N/A
DRAWDON	ME	_	LENGT	10	FT	MOUTH		PPM	CAP		_
(Initial - fi	inal x 0.16 (2-inc	h} or x 0.65 {4-in	ch}) RATIO	OF DRAWDOWN		PRESSURE TO PUMP	65	PSI	LOCKED		
TOTAL VI	ED 4	29		OTAL VOLUME PU		REFILL		, , ,	DISCHARGE		
PURGE DA	olume (milliliters	per minute) x tim	ne duration (minu	tes) x 0.00026 gal/n	nilliliter)	SETTING	70	2	SETTING	10	
TIME	DEPTH TO WATER (ft) < 0.33 ft	PURGE RATE (ml/m) ≤ 500 ml/m	TEMP. (deg. c)	SPECIFIC CONDUCTANCE (umho/cm)	(units)	DISS. O2 (mg/L)	TURBIDITY (ntu) ≤ 50 ntu	REDOX (mv) ≤ 10 units	1	COMMENTS	
10:15	92.11	300	19.2	0.348	7, 29	3.29	1.47	159,9			
10120	92.19	300	19.3	9.748	6.50	0.79	2.88	160,7			
	92.19	300	19.3	0.350	6.41	2.63	1.21	159.9			
10:30	1 6, 00	300	19.4	0.750	6.36	0.53	1,93	158.6			
10175	92.20	700	19.5	0.284	6.36	0.45	1.73	108.1			
and the second	92.20	300	19.4	0.142	6.38	0.41	5.64	2.2			
10:45	92.16	300	19.5	0.130	6.32	0.40	4.22	-20.6			
10150	92.19	300	19.5	0.190	6.09	0.94	7.58	3.8			
10:55	92.13	300	19.5	0.256	5.95	1.91	10.3	30.1			
11:00	92.11	300	19.5	0.338	5.83	3.37	16.2	68.7			
11:05		300	19.5	0.343	5.82	3.51	9.38	83.4			
11:10	92.11	300	19.5	0,343	5.83	3,52	22.8	93.6			
EQUIPMEN TYPE O	T DOCUMEN	TATION	TYPE OF TUBIN	IG.	TVPE	OF PUMP M	ATERIAL	7	VDE OF BLA	DDER MATERIAL	
	PUMP (peristalt	ic)		SITY POLYETHYLE		Polyvinyl chlo			TEFLON	DUCK WATERIAL	
	O BLADDER		=	SITY POLYETHYLE	NE X	STAINLESS	STEEL		Other		
	AL PARAMET	ERS	OTHER			OTHER					
voc	cheduled for Collections + TIC plus, French 113, Freon 115	eon 11, Freon 22	NUM USE	THOD MBER EPA-8260C	ME	ERVATION ETHOD 4 DEG. C	VOLUME REQUIRED 3 X 40 mL	SAMPLE COLLECTE	D Check if coll	ected	
voc	s + TIC plus, Fre n 113, Freon 115	eon 11, Freon 22	, USE	EPA-524.2	HCL	4 DEG. C	3 X 40 mL				
Chlo				PA 4500 CL-B PA 300.0	4 DE		1 X 250 mL 1 X 250 mL				
							1 X 200 III.				
Purge Obse	ervations					COMMENT	S				
Purge Water Conatinerized			Number of Gallor Generated	y. 29					ar	nec	9
SIGNATURE	in										

FIELD	DATA REC	ORD - LC	OW FLOW	GROUNDW	ATER SA	MPLING	3		
PROJECT	Former Unisy	s Facility			MPLE NUMBER		1-186L	-XX	JOB No. 3617187446
	Lake Success				SITE TYPI		864		DATE 8/10/20
		-	016:15	SAMPLE		15:5	-		
WATER LE	EVEL / PUMP S			REMENT POINT		PROTECTIV			CASING / WELL FT
TO WAT	PTH C	3.72	TO	P OF WELL RISER P OF PROTECTIVE		(FROM GRO		FT	WELL UNIN
FINAL DEF	PTH TER /o	7.72	WELL DEP (TOR)	170) FT	AMBIENT AI	R	PPM	WELL INTERGRITY:
DRAWDO VOLU	ME	_	SCREE LENGT		FT	PID WELL MOUTH		РРМ	CAP CASING = = =
TOTAL	final x 0.16 (2-inc		nch}) RATIO	OF DRAWDOWN \ OTAL VOLUME PU		PRESSURE TO PUMP	7.		COLLAR
PUR((purge v	olume (milliliters	9. 51 per minute) x tin	GAL me duration (minu	tes) x 0.00026 gal/m	nilliliter)	REFILL SETTING	Z		DISCHARGE / 0
PURGE DA	ATA			SPECIFIC	1		Levenier	l percey	Ti and the same of
TIME	DEPTH TO WATER (ft) < 0.33 ft	PURGE RATE (ml/m) ≤ 500 ml/m	TEMP. (deg. c) ≤ 3%	CONDUCTANCE (umho/cm) ≤ 3%	pH (units) ≤ 0.1 units	DISS. O2 (mg/L) ≤ 10%	TURBIDITY (ntu) ≤ 50 ntu	REDOX (mv) ≤ 10 units	
15:10	107.76	300	20.0	0.348	6.72	2.81	16.8	113.8	
S. Co. September 1	103.75	300	19.2	0.451	6.27	2.50	18.8	119.8	
	107.72	300	19.1	0,665	6.15	5.38	10.7	177.8	
	103.72	300	19.0	0,694	6.14	5.77	12.3	150.2	
	107.72	300	19.1	0,720	6.13	6.11	5.48	157.9	
17:35		700	19.0	0.735	6.12	6.33	4.16	164.0	
15:40	103.72	360	18.9	0.747	6.12	6.51	3.60	1.60/69	. Y
15:45	103.72	300	19.1	0.760	6.12	6.68	1.30	175.0	
15:50	103.72	300	19.0	0.769	6.11	6.82	2.81	179.8	
15:55	103.72	300	19.0	0.775	6.11	6.88	1.98	181.8	
TYPE O	NT DOCUMENT F PUMP DPUMP (peristalti CO BLADDER ADDER			IG ITY POLYETHYLEN	NE	Polyvinyl chlor STAINLESS	ride		TYPE OF BLADDER MATERIAL TEFLON Other
Check if So	AL PARAMETE cheduled for Collection cs + TIC plus, Fre- in 113, Freon 115	on 11, Freon 22,	NUM USE	HOD IBER PA-8260C	ME	ERVATION ETHOD 4 DEG. C	VOLUME REQUIRED 3 X 40 mL	SAMPLE	D Check if collected
Freor	s + TIC plus, Fre n 113, Freon 115			PA-524.2	HCL/	4 DEG. C	3 X 40 mL		
Brom				PA 4500 CL-B PA 300.0	4 DEC		1 X 250 mL 1 X 250 mL		
Purge Obse	ervations					COMMENTS	3		
Purge Water Conatinerized	l (yes) no		Number of Gallon Generated	s <u>3. 51</u>					amec

FIELD	FIELD DATA RECORD - LOW FLOW GROUNDWATER SAMPLING									
DDO INC.	DATA REC	ORD - LO	W FLOW	GROUNDW	ATER SA	MPLING				
	Tormer Unisy	s Facility		200000000000000000000000000000000000000	MPLE NUMBER	R Mh	1-18-M	4	JOB No. 3617187446	
Location	Lake Success	s, New York			SITE TYPE	1	8 ML		DATE 8/10/20	
ACTIVITY	START /6	70 EN	18:66	SAMPLET	IME	181	9			
INITIAL DE	EVEL / PUMP S	ETTINGS	Property and Prope	REMENT POINT		PROTECTIV CASING STI	and the second		ASING / WELL FT	
TO WA	TER 10	3.25		P OF WELL RISER P OF PROTECTIVE		(FROM GRO		FT	NEIL U	
FINAL DE TO WA	DTU -	3.30	WELL DEP	TH 345	FT	PID AMBIENT All	R	PPM	DIAM. IN	
DRAWDO		.30	SCREE			PID WELL			VELL INTERGRITY: YES NO N/A	
VOLU	IME (), (5325	LENGT	-	FT	MOUTH			CASING Z	
TOTAL	final x 0.16 (2-inc	h) or x 0.65 {4-in	ch}) RATIO	OF DRAWDOWN V		TO PUMP	80	PSI	COLLAR = = =	
PUR	GED 4	29	GAL O	.0076 tes) x 0.00026 gal/m	alliliter)	REFILL SETTING	2		DISCHARGE /0	
PURGE D	ATA	per minute) x un	ie duration (minu	SPECIFIC	mintory			- North		
DEPTH TO										
16:45	103.30	300 ml/m	20.5	0.185	6,43	6.25	46.3	2019		
	103.29	300	20./	0.132	6.35	2.29	44.3	204.9		
16:55	103.29	300.	20.0	0.129	6.73	1.45	9.13	204.0		
17:00	103.30	300.	19.9	0.123	6.30	0,96	1.56	199.3		
17:05	107.30	300	19.8	0.122	6.28	0.81	1.91	193.5		
THE RESERVE AND ADDRESS.	103.72	700.	19.8	0.133	6.27	0.79	3.26	127.5		
17:15	107.32	360 .	19.7	0.151	6.31	0,56	2.28	105.4		
Contract of the last of the la	103.29		19.7	0.156	6.34	0.58	4.92	106.0		
The second second	103.30	300	19.6	0.164	6,37	0.65	2.97	113.5		
The same of the sa	103.30	300	19.6	0.169	6.78	0.71		125.3		
	103.30	300 .	19.5	0.180	6.40	0.88	1.49	130.1		
	103.30	300	19.4	0.191	0.77	1.13	,	110,1		
A 8 (4) (4) (4)	OF PUMP	IATION	TYPE OF TUBIN	NG	TYPE	E OF PUMP M			YPE OF BLADDER MATERIAL	
	OPUMP (peristalt	ic)		SITY POLYETHYLE		Polyvinyl chlo STAINLESS			TEFLON Other	
	ADDER		OTHER_	SITTPOLILITIEL		OTHER				
	CAL PARAMETI		MET	THOD	100000000000000000000000000000000000000	ERVATION	VOLUME	SAMPLE		
2.000	Cs + TIC plus, Fre			MBER EPA-8260C		/4 DEG. C	3 X 40 mL	COLLECTEL	D Check if collected	
Fre	on 113, Freon 115 Cs + TIC plus, Fre	Freon 123, Fred	on 152a	EPA-524.2	HCL	/ 4 DEG. C	3 X 40 mL			
	on 113, Freon 115		on 152a		4 DE	c c	1 X 250 mL			
	oride mide		7.100	PA 4500 CL-B PA 300.0	4 DE		1 X 250 mL			
								H		
								H		
						COMMENT	S			
Purge Obs			Number of Gallo	ns (/ a.c.	/		SML-	MS		
Conatinerize			Generated	4.74	4		CAAL -	MSA	amec	
	MN-18ML-MSD amec									
SICNATURE	Ca									

FIELD DATA			
PROJECT Former Unisys Facility	OUNDWATER SA	MPLING	
L Occasi	FIELD SAMPLE NUMBER	MW-226L	~XX JOB No. 3617187446
ACT LAKE Success, New York	SITE TYPE	1011	DATE 8/12/20
	SAMPLE TIME	13:35	
FINAL DEPTH	WELL RISER PROTECTIVE CASING	PROTECTIVE CASING STICKUP (FROM GROUND)	CASING / WELL FT DIFFER. WELL DIAM. PPM
TO WATER 87, 90 FT (TOR) DRAWDOWN SCREEN		AMBIENT AIR PID WELL	WELL INTERGRITY:
VOLUME O 632 5 LENGTH	1 1	MOUTH	PPM CAP CASING Z
(Middl - final x 0.16 {2-inch} or x 0.65 {4-inch}) RATIO OF D		PRESSURE TO PUMP 65	PSI COLLAR
PURGED 156	-7/	REFILL 2	DISCHARGE
(purge volume (milliliters per minute) x time duration (minutes) x	Charles and the second	SETTING	SETTING
TIME	SPECIFIC NDUCTANCE (umho/cm) pH (units) ≤ 3% ≤ 0.1 units	DISS. O2 TURBIDITY (ntu) ≤ 10% ≤ 50 ntu	REDOX -(mv) COMMENTS ≤ 10 units
13:15 87.85 700			
	0.640 6.07	5.06 42.4	116.6
13125 87.90 300 19.0 0	.640 6.06		127.7
			134.8
			139.5
13:40 87.90 200 18.9 0	639 6.05	4.64 15.8	145.3
EQUIPMENT DOCUMENTATION TYPE OF PUMP GEOPUMP (peristaltic) SMCO BLADDER HIGH DENSITY F X BLADDER OTHER	OLYETHYLENE X	OF PUMP MATERIAL Polyvinyl chloride STAINLESS STEEL OTHER	TYPE OF BLADDER MATERIAL TEFLON Other
ANALYTICAL PARAMETERS Check if Scheduled for Collection WETHOD NUMBER USEPA-82 Freon 113, Freon 115, Freon 123, Freon 152a VOCs + TIC plus, Freon 11, Freon 22, USEPA-52 USEPA-52	e60C HCL/	RVATION	SAMPLE COLLECTED Check if collected
Freon 113, Freon 115, Freon 123, Freon 152a			
Chloride USEPA 45 Bromide USEPA 30			
Purge Observations		COMMENTS	
Purge Water Number of Gallons	56 Du	plicate Sample	e a
Conatinerized no Generated /	M	plicate Sample	amec
			Office
SIGNATURE:	The state of the s	The state of the s	The state of the s

51	DATA REC	OPP 10	NA EL OVA	GROUNDW	.===						
PRIECT	Former Unisy	OKD - LC	W FLOW	GROUNDW	ATER SA	MPLING	3				7
1	Onlay	s Facility		FIELD SAF	MPLE NUMBER	R ML	- 12 M	1L-XX	JOB No.	8/12/20	
ACTIVITY	Lake Success START /4/				SITE TYPI		22 ML		DATE	8/12/	
	VEL / PUMP S	10 EN	D	SAMPLE	TIME	19	55				
INITIAL DEF	TH T	8.79 8.79	TO	P OF WELL RISER P OF PROTECTIVE	ECASING	PROTECTIVE CASING STREET (FROM GRO	CKUP	- FT	DIFFER.	7	FT
FINAL DEF	PTH S	874	WELL DEP	TH 32	S FT	PID AMBIENT AIR	R	PPM	WELL INTERG	4	IN
DRAWDO VOLU	ME	_	SCREE		FT	PID WELL MOUTH		РРМ	CAP _	NO -	N/A
TOTALV	final x 0.16 (2-inc		ch}) RATIO	OF DRAWDOWN V	/OLUME	PRESSURE TO PUMP	6.	5 PSI	LOCKED	7 = =	
PURO (purge v	olume /millilite	per minute) x tim	GAL me duration (minu	tes) x 0.00026 gal/n	oilliliter)	REFILL SETTING	7		DISCHARGE	10	
PURGEDA	NATA TALE		ie deradori (mino	SPECIFIC	minter)	SETTING			02/11/0		
	< 0.33 ft	PURGE RATE (ml/m) ≤ 500 ml/m	TEMP. (deg. c) ≤ 3%	CONDUCTANCE (umho/cm) ≤ 3%	pH (units) ≤0.1 units	DISS. O2 (mg/L) ≤ 10%	TURBIDITY (ntu) ≤ 50 ntu	REDOX (mv) ≤ 10 units	0	COMMENTS	
88.74	14.20	390	18.7	0.791	6.73	4.51	17.8	211.5			
88.74	14125	300	17.5	0.862	6.18	1.95	7.82	249.7	,		
88.74	1	300	17.7	0,807	6,26	1.53	8.22	257.7			
88.74	1,	300	17.1	0.788	6.33	1.74	13.7	148.0			
88.74	14:40	300	17.2	0.692	6.45	1.43	17.9	228.7	7		
8874	14145	306	17.1	0.671	6.19	1.49	16.2	217.1			
88.74	14:50	300	16.9	0.650	6,68	1.54	12.5	267,9			
88.74	14:51	700	16.8	0.648	6.69	1.55	11.3	206.5			
						421					
EQUIPME	NT DOCUMEN	TATION				***					
	F PUMP		TYPE OF TUBIN	The same of the sa		OF PUMP M		I	YPE OF BLADE	DER MATERIAL	
	OPUMP (peristalt	ic)		SITY POLYETHYLE SITY POLYETHYLE		Polyvinyl chlor		=	TEFLON Other		
	ADDER		OTHER_	on i i o e i e i i i i i i i i i i i i i i		OTHER	STEEL		other		
THE GOOD WAS DUTING	AL PARAMETI cheduled for Collection		MET	THOD	PRES	ERVATION	VOLUME	SAMPLE			
voc	Cs + TIC plus, Fre	eon 11, Freon 22		MBER PA-8260C		4 DEG. C			D Check if collecte	ed	
□ voo	on 113, Freon 115 Cs + TIC plus, Freon 115 on 113, Freon 115	eon 11, Freon 22	USE	EPA-524.2	HCL	/ 4 DEG. C	3 X 40 mL				
Chlo	ride	, , , , , , , , , , , , , , , , , , , ,	USE	PA 4500 CL-B	4 DE		1 X 250 mL				
Bron	nide		USE	PA 300.0	4 DE	G. C	1 X 250 mL				

			1	\$							
Purge Obse	ervations					COMMENTS	3				
Purge Water Conatinerized			Number of Gallor Generated	15 2.73		to	inded	Andrey .	Pax 761		A
	3		August 2017				suded		20	noc	9
	ch	///								166	
SIGNATURE	UN.										

FIELD	DATA REC	CORD 14	014/ 51 014	GROUNDW	VATER SA	MPLIN	G			_	
PROJECT	Former Union	OKD - LO	JW FLOW	GROUND	AMPLE NUMBER	M	W-24	64	JOB No.		-
Local	United Onlist			FIELD SA	SITE TYPE		_		DATE	8/19/2	0
ACT	Lake Succes		. /			16:	01		ĺ		
	START 14:	(20 EN				PROTECTI			CASING / W	ELL 0.6	FI
INITIAL DEF TO WAT FINAL DEF TO WAT DRAWDO	PTH 93 PTH 96	1.95 H-06	TO TO	[107-8	E CASING	CASING ST (FROM GRO PID AMBIENT A PID WELL MOUTH	DUND) N	A FT PPM	WELL INTER	4	IN N/A
VOLU (initial - 1	final x 0.16 {2-inc	ch) or x 0.65 (4-in	101	O OF DRAWDOWN VIOTAL VOLUME PU	VOLUME F	PRESSURE TO PUMP	150	PSI	CASING LOCKED COLLAR DISCHARGE	N N IO	
PURO (purge v	olume (milliliters	per minute) x tim	me duration (minu	utes) x 0.00026 gal/n		SETTING	20		SETTING	-	
TIME	DEPTH TO WATER (ft) < 0.33 ft	PURGE RATE (ml/m) \$ 500 ml/m	TEMP. (deg. c) 53%	SPECIFIC CONDUCTANCE (umho/cm) ≤ 3%	(units) ≤ 0.1 units	DISS. 02 (mg/L) \$ 10%	TURBIDITY (ntu) ≤ 50 ntu	REDOX (mv) ≤ 10 units	-	COMMENTS	/
15:40	94.01	140	18.7	3-855		5.59	84-2	140-4		/	
	1 110	140	18.2	3.4.994	- 00	6-18	47-21	142.0		/	
	94.00	140	182	5-086	-	6-66	37.81	145.4	234	14	
15:50	94.00	140	18.2	5,342	001	6-91	38.36	147.7		100	
The second second		140	18.4	5.393	0 00	6-95	24-96	148.2		19/	
10	94.00	140 San 0100	18-2	1.511	9-30	0-10			/		
16:01	collect	Samples							1		
				1	50)				1	-	
				180					/		
									/		
									1		
TYPE OF SMC	NT DOCUMENT F PUMP DPUMP (peristaltic CO BLADDER ADDER	(c) [IG IITY POLYETHYLEN BITY POLYETHYLEN	NE X ST	DF PUMP MA olyvinyl chlori TAINLESS S	de		PE OF BLAD	DER MATERIAL	
Check if So VOC Freo		on 11, Freon 22, Freon 123, Freo on 11, Freon 22,	NUM USE on 152a USE on 152a USE	PA-8260C PA-524.2 PA 4500 CL-B PA 300.0	PRESERV METH HCL / 4 I HCL / 4 I 4 DEG. C	DEG. C	VOLUME REQUIRED 3 X 40 mL 3 X 40 mL 1 X 250 mL 1 X 250 mL	SAMPLE	Check if collect	ed	
Purge Obse Purge Water Conatinerized	0		lumber of Gallons	5), }		DMMENTS 50 Beg	En parge	7.15	-11000		0
SIGNATURE:		m3			1455	30 Begs	e purging	+ubing	an	nec	

FIELD	DATA REC	OPD 10	NA EL OLL	GROUNDWA	ATED C	MDI INC			
PROJECT	Former Unisy	OKD - LC	WFLOW	GROUNDWA	AIER SA	AMPLING	4-77/	MT	JOB No. 3617187446
Ilano		3 racility		FIELD SAM	IPLE NUMBE	R	2/1	1.1	0/10
ACTIVITY	START 09	S. New York	.1 - 1-		SITE TYP				DATE S/10
WATER LE	EVEL / PUMP S	ENI	0 11:10	SAMPLE TI	IME	1046			A POLICE CANADA
TO WAT	TER 73	32	ТО	REMENT POINT P OF WELL RISER P OF PROTECTIVE	CASING	CASING STIC (FROM GRO	DIVIEW T	A FT	CASING/WELL 0.5 FT
FINAL DEF	TER	3.40	WELL DEP	230	FT	AMBIENT AIR	R NA	PPM	WELL INTERGRITY:
DRAWDO VOLU	WN D.	05	SCREE		FT	PID WELL MOUTH	·NA	РРМ	CAP CASING NO N/A
(initial -	final x 0.16 {2-incl	h) or x 0.65 (4-in	Chl) RATIO	OF DRAWDOWN V	OLUME	PRESSURE	(00		LOCKED
TOTAL V	OL T		TOT	OTAL VOLUME PUR		TO PUMP	100	PSI	COLLAR Z = =
PURO (purge v	Olume (milliliters	Per minute) x tim	GAL (7 . 03 tes) x 0.00026 gal/mi	illiliter)	REFILL SETTING	20	1/102	DISCHARGE LO
PURGE DA	ATA	por riminato) x till	ie daration (mind	SPECIFIC SPECIFIC	minus, y				
TIME	DEPTH TO WATER (ft) < 0.33 ft	PURGE RATE (ml/m) ≤ 500 ml/m	TEMP. (deg. c) ≤ 3%	CONDUCTANCE (mS/cm) ≤ 3%	pH (units) ≤ 0.1 units	DISS. O2 (mg/L) ≤ 10%	TURBIDITY (ntu) ≤ 50 ntu	REDOX (mv) ≤ 10 units	COMMENTS
1000	73.40	120	19,2	0.372	6-37	1.31	12.30	204.6	
1005	73.42	170	19.2	0.363	6-33	1-23	9-54	200.9	
1010	73.40	120	19.0	0.360	6-30	1-05	6.59	185.8	,
1015	73,40	120	18-8	0.359	6.27	0.96	6-78	176.7	
1020	73.40	120	18-8	0.360	6.23	1-38	8-97	168.4	
1030	73.40	120	18-8	0.360	6-10	3.39	2-34	173-9	Time: 1025
1030	73-40	120	18.9	0.361	6-03	5.11	3-86	178-8	
1035	73.40	120	18.7	0.361	6-01	5-90	4,20	181-6	
1040	7-340	120	18-8	0-361	6-01	6-27	4-47	183.5	DTW 73-40
1045	73-40	120	18.8	0-361	6-06	6-47	1-61	184-7	
1046	Collect	samples				6	0		
-						5			
EQUIPME	NT DOCUMENT	TATION							COS OF BLADDED MATERIAL
	OPUMP (peristalti	ic)	X LOW DENS	NG SITY POLYETHYLEN		Polyvinyl chlo			YPE OF BLADDER MATERIAL TEFLON
	CO BLADDER	,	HIGH DEN	SITY POLYETHYLE	NE X	STAINLESS	STEEL		Other
	ADDER		OTHER_			OTHER		_	
Check if S	CAL PARAMETIC Scheduled for Collection Cs + TIC plus, Free	on eon 11, Freon 22	, USE	THOD MBER EPA-8260C	M	ERVATION ETHOD / 4 DEG. C	VOLUME REQUIRED 3 X 40 mL	SAMPLE COLLECTE	D Check if collected
voo	on 113, Freon 115 Cs + TIC plus, Freon 115 on 113, Freon 115	eon 11, Freon 22	USE	EPA-524.2	HCL	/ 4 DEG. C	3 X 40 mL		
Chic Bron	oride mide			EPA 4500 CL-B EPA 300.0		EG. C	1 X 250 mL 1 X 250 mL		
Purge Obs						COMMENT		4	
Purge Water Conatinerized			Number of Gallor Generated	ns [, /	04	150 Begi	n Qurgin	9	amec
SIGNATURE	Ju	mo	32	~					

8/19/2020

FIELD	DATA REC	2000		GROUNDW							
PROJECT	Former	ORD - LO	OW FLOW	GROUNDW	ATER SA	MPLING	3	1			
DODA!	,	- delity		FIELD SAM	MPLE NUMBER	R MU	V-28 G		JOB No.	3617187446	
LIGHTY	START (0)	00			SITE TYPE				DATE	8/2/12	0
WATER LE	EVEL / PUMP S	05 EN	0 1 30	SAMPLE T	IME	1106					
TO WA	TER 88	3,85	× to	PREMENT POINT OP OF WELL RISER OP OF PROTECTIVE		PROTECTIVE CASING STI	CKUD	A FT	CASING / WE DIFFER. WELL	0.6	FT
FINAL DEF	DTU -	8-21	WELL DEP (TOR)	TH 150-3	55 FT	PID AMBIENT AI	R N	A PPM	DIAM. WELL INTER	GRITY:	IN
DRAWDO VOLU	MF C	.42	SCREE	1 ((/)	FT	PID WELL MOUTH	NA	РРМ		YES NO	N/A
TOTAL	final x 0.16 {2-inc	th) or x 0.65 (4-in	nch}) RATIO	OF DRAWDOWN V		PRESSURE TO PUMP	125	PSI	COLLAR	V	
PURC	GED _	29	-	1 22		REFILL	7.2		DISCHARGE	10	
PURGE DA	ATA (milliliters	per minute) x tin	ne duration (minu	ites) x 0.00026 gal/m	illiliter)	SETTING	20		SETTING	10	
TIME	DEPTH TO WATER (ft) < 0.33 ft	PURGE RATE (ml/m) ≤ soo ml/m	TEMP. (deg. c) ≤ 3%	SPECIFIC CONDUCTANCE (mS/cm) ≤ 3%	pH (units) ≤ 0.1 units	DISS. O2 (mg/L) ≤ 10%	TURBIDITY (ntu) ≤ 50 ntu	REDOX (mv) ≤ 10 units		COMMENTS	/
1030.	88.14	110	24.8	0-564	6.53	4.04	7.5	148.1			/
1035.	88.20	110	22-1	0-792	6.07	1-43	2.5	157.5			10
1040.	88.21	110	21.7	0-834	5.99	1-12	3.9	169.8	7	/	1
1045.	88-21	(10	21.6	6.844	5-96	0.86	6-4	178-8		100	1//
1050	88-21	10	21-3	0.845	5-96	0.73	6-7	182.2	-	1978	1
1055	88.21	110	21.5	0-844	5.95	0.64	9.6	1866		10/	
1100	88.21	10	21.6	0.845	5.95	0-59	11.0	188.4		10	
1105	88.21	110	21-7	0.845	5-95	0.57	10.7		1		
1106	Collec	+ Saiv	pies						1		
-				1					1/		
13				0					/		
EQUIPMEN	NT DOCUMENT	TATION							-	What was	
GEO	PE PUMP OPUMP (peristalti	ic)		SITY POLYETHYLEN	IE	OF PUMP M. Polyvinyl chlor STAINLESS	ride		TEFLON Other	DDER MATERIAL	
	ADDER		OTHER_	SITY POLYETHYLEN		OTHER	SIEEL		Other		
Check if S	CS + TIC plus, Fre	on	NUN	THOD MBER PA-8260C	ME	RVATION THOD 4 DEG. C	VOLUME REQUIRED 3 X 40 mL	SAMPLE COLLECTE	D Check if colle	ected	
Free	on 113, Freon 115 Cs + TIC plus, Freon 113, Freon 115	Freon 123, Freo on 11, Freon 22,	on 152a USE	PA-524.2	HCL /	4 DEG. C	3 X 40 mL				
Chlo		Freon 123, Frec	USE	PA 4500 CL-B	4 DEG		1 X 250 mL				
Brom	nide		USE	PA 300.0	4 DEG	s. C	1 X 250 mL				
Purge Obse	ervations					COMMENTS					
Purge Water Conatinerized	0		Number of Gallon Generated	1.3	10:	20 BE	egin pul	9 609			0
	0								ar	nec	
SIGNATURE:	Don	ng	w								

8/20/2020

FIELD	DATA			GROUNDW	WATER SA	MPLIN	G			
PROJECT	A REC	CORD - LO	OW FLOW	GROUNDW	VATER SA	A A	1W-28	MI	JOB No.	3617187446
Location	ormer Unisy	s Facility		FIELD SA	MPLE NUMBER	R	1W-10	7.1.4	DATE	8/21/20
ACTIVIT	Lake Succes	s, New York			SITE TYPE					
WATER	START 08	50 EN	00:01 d	SAMPLE	-	0946			CASING / WE	LL 0.3
INITIAL DEF	VEL / PUMP S		TO TO	P OF WELL RISER OP OF PROTECTIV	3	CASING ST (FROM GRO	TCKUP /	VA FT	DIFFER. WELL	4
		8.61	FT WELL DEP	TU .		PID	- 1	1A PPM	DIAM.	
FINAL DEF	TER 8	9.50	FT (TOR)	25		AMBIENT A			WELL INTER	YES NO
DRAWDO	WN -		SCREE			MOUTH	N	4 PPM	CAP	¥ = =
(initial -	ME 0.16 (2-inc	5 8 h) or x 0.65 (4-in	GAL PATIO	OF DRAWDOWN OTAL VOLUME PU	AOFOINE	PRESSURE TO PUMP	120	PSI	LOCKED	z = =
TOTAL V PURC (purge v	GED / /	al al	CAL	0 = 64 tes) x 0.00026 gal/n	1	REFILL SETTING	20		DISCHARGE	10
PURGE DA	ATA	per minute) x tin	ie duration (mise	SPECIFIC		PIGG 02	TURBIDITY	REDOX	1	
TIME	DEPTH TO WATER (ft)	PURGE RATE (ml/m)	TEMP (deg. c)	CONDUCTANCE (mS/cm) ≤ 3%	pH (units) ≤0.1 units	DISS. O2 (mg/L) ≤ 10%	(ntu) ≤ 50 ntu	(mv) ≤ 10 units		COMMENTS
0915.	<0.33 ft 89-15	\$ 500 ml/m	50-8	0.553	6-18	5.00	40-8	233.0		
0920	89-15	100	20.5	0-532	6-16	41-41	27.8	23/0		
0930	89.46	1.00	19.9	0:462	6.12	3-69	28-7	223-5		
0935	89.50	100	20.0	0-450	6-10	3-56	17-11	220.8	7	1
0940	89.50	100	20.1	0.446		3-47	20-04	215-3		m
0945	89-50	100	20.4	0-443	6,13	3-45	25-68	212-9		1/04
0946	collec		ples							1/3/
	20 11 11		1						1	/ -
				1	55)			4	1	
				100					1	
									/	
TYPE O	NT DOCUMENT OF PUMP OPUMP (peristalti CO BLADDER ADDER	1		G ITY POLYETHYLEN	NE X S	OF PUMP MA olyvinyl chlori STAINLESS S OTHER	ide	N N	PE OF BLADE EFLON ther	DER MATERIAL
Check if S	CAL PARAMETE icheduled for Collection Cs + TIC plus, Fre on 113, Freon 115 Cs + TIC plus, Fre on 113, Freon 115	on 11, Freon 22, Freon 123, Freo on 11, Freon 22,	NUN USE on 152a USE	HOD BER PA-8260C	HCL / 4	RVATION HOD DEG. C	VOLUME REQUIRED 3 X 40 mL	SAMPLE COLLECTED	Check if collecte	d
Chic	oride		USE	PA 4500 CL-B PA 300.0	4 DEG.		1 X 250 mL 1 X 250 mL	000000		
Purge Obse Purge Water Conatinerized	0		Number of Gallon: Generated	0.9		OMMENTS 05 BE	igin purg	ring	an	nec

LIELD DA	TA PEG			GROUNDW						
PROJECT Fo	Meriti	ORD - LO	W FLOW	GROUNDW	ATER SA	MPLING	3			
1 2	ke S	s Facility		FIELD SAN	MPLE NUMBER	Me.	-2966	XX	JOB No.	8617187446
ACTIVITY	Success	, New York			SITE TYPE	2 9	9 66		DATE	8/21/20
WATER LEVE	1 / Duna	S ENI	10:40	SAMPLE T	IME	10:2	0			
TO WATER	9	5 71	7 8 70	REMENT POINT P OF WELL RISER P OF PROTECTIVE	CASING	PROTECTIVE CASING STIC (FROM GRO	CKUP	FT	CASING / WELL DIFFER.	FT
FINAL DEPT			WELL DEPT	TH (==		PID			WELL DIAM.	Z 49 IN
VATER	9.	7.60	FT (TOR)	155	FT	AMBIENT AIR	R	PPM	WELL INTERGR	RITY:
DRAWDOWN VOLUME		0	SCREE	10	FT	PID WELL MOUTH		PPM		
TOTAL VOI	x 0.16 {2-inch	n) or x 0.65 {4-in	ch}) RATIO	OF DRAWDOWN V		PRESSURE TO PUMP	7	O PSI	LOCKED	
PURGER	1 2	-77		0		REFILL	2		DISCHARGE	
PURGE DATA	A (milliliters)	per minute) x tim	e duration (minu	tes) x 0.00026 gal/m	illiliter)	SETTING	20)	SETTING	10
TIME	DEPTH TO WATER (ft) < 0.33 ft	PURGE RATE (ml/m) \$ 500 ml/m	TEMP. (deg. c) ≤ 3%	SPECIFIC CONDUCTANCE (umho/cm) ≤ 3%	pH (units) ≤ 0.1 units	DISS. O2 (mg/L)	TURBIDITY (ntu) ≤ 50 ntu	REDOX (mv) ≤ 10 units		COMMENTS
9:45		300	18.2	1.025	6.87	9,53	38.0	171.5		
9:50	19.10	300	18.3	1.119	6.59	1.21	56.7	168.1		
	19.41	300	18.4	1.265	6.48	1.46	44.3	165.8	,	
10:00 9	9.60	700	18.5	1.725	6.40	1.56	77.6	166.9		
101059		300	18.6	2.659	6.25	1.65	36.5	167.8		
	19.60	300	18.6	1.777	6.31	1.58	73.2	168.1		
	19.62	100	18.7	1.388	6.29	1.59	72.8	168.6		
10:30	19.60	360	18.7	1.404	6.23	1.60	28.9	169.2		
EQUIPMENT	DOCUMENT	ATION								
TYPE OF F	PUMP UMP (peristalti BLADDER DER	c)		NG BITY POLYETHYLEI SITY POLYETHYLE	NE	Polyvinyl chlo STAINLESS	ride		TYPE OF BLADE TEFLON Other	DER MATERIAL
Check if Sche	+ TIC plus, Fre 113, Freon 115 + TIC plus, Fre	The same of the sa	USE USE USE	THOD MBER EPA-8260C	HCL HCL	ERVATION ETHOD /4 DEG. C	VOLUME REQUIRED 3 X 40 mL	SAMPLE COLLECTE	D Check if collected	ed
Chlorid	e	, red red, Field	USE	EPA 4500 CL-B EPA 300.0	4 DE		1 X 250 mL 1 X 250 mL			
Purge Observe Purge Water Conatinerized (ves no		Number of Gallor Generated	ns 7.73		COMMENT	S		an	nec

FIELD	DATA DE	2000		GROUNDW		A BADL INI	0	-		-
PROJECT	Former	CORD - LO	DW FLOW	GROUNDW	ATER S	AMPLIN	,-29MI	-V×	JOB No.	3617187446
Location	1110	yoracility		FIELD SA	MPLE NUMBE	7 100	29MI		DATE	8/21/20
ACTIVITY	Lake Succes	P. LOW	11. 4		SITE TYP	11:2	6		DATE	
WATER LE	EVEL / PUMP	45 EN	011:50	SAMPLE	TIME	PROTECTIV			CASING / WEI	
TO WA	TER 9	6.92	TU/TO	DREMENT POINT OP OF WELL RISER OP OF PROTECTIVE	E CASING	CASING ST (FROM GRO PID AMBIENT AI	ICKUP DUND)	FT PPM	DIFFER. WELL DIAM.	2 IN
DRAWDO VOLU	WN W	6.20	SCREE LENGT	N 10	FT	PID WELL MOUTH		PPM	CAP	GRITY: VES NO N/A
TOTAL V	final x 0.16 {2-inc		nch}) RATIO	OF DRAWDOWN V		PRESSURE TO PUMP	90) PSI	LOCKED	7 = =
PURO (purge v	GED /olume (milliliters	.95	GAL me duration (minu	tes) x 0.00026 gal/m	nilliliter)	REFILL SETTING	2	Q	DISCHARGE SETTING	10
PURGE DA	DEPTH TO WATER (ft)	PURGE RATE (ml/m)	TEMP. (deg. c)	SPECIFIC CONDUCTANCE (umho/cm)		DISS. O2 (mg/L)	TURBIDITY (ntu)	REDOX (mv)		COMMENTS
11:00	< 0.33 ft	≤ 500 ml/m	≤ 3%	53%	6.08	3.65	20.7	158.2		
11:05		300	18.6	0,748	6.00	0.91	8.82	137.9		
11:10	96.48	100	18.7	9.722	598	0.67	36.3	140.6		
11:15	96,20	300	18.8	0.735	5.98	0.51	12.8	154.1		
	96.20	300	18.8		5.96	0.50	5.72	158.8		
11:25		300	18.8	0.727	5.96	0.48	4.98	161.9		
									-	
									1	
TYPE OF GEO	F PUMP PUMP (peristaltic O BLADDER DDER			G ITY POLYETHYLEN ITY POLYETHYLEN	NE X	OF PUMP MA Polyvinyl chlor STAINLESS S	ide		YPE OF BLADI TEFLON Other	DER MATERIAL
Check if Sc		on 11, Freon 22, Freon 123, Freon on 11, Freon 22,	USE USE USE		ME HCL /		VOLUME REQUIRED 3 X 40 mL 3 X 40 mL 1 X 250 mL 1 X 250 mL	SAMPLE COLLECTED	2 Check if collecte	ed
Purge Obser Purge Water Conatinerized	_		umber of Gallons enerated	195		COMMENTS			an	nec

PROJECT Former Unique 5	OW EL OW	CROUNDW	ATED CA	MPLING					
	DVV FLOVV	GROUNDW	AIEK SA	MIPLING	1-30M5	- * *	JOB No.	3617187446	
Location Lake Success, New York		FIELD SAN	MPLE NUMBER		-30MI	11		0/20/2	7
START // CO			SITE TYPE		MI		DATE	0/ -9 0	
WATER LEVEL / PUMP SETTINGS	10/2/30	SAMPLE T	IME	12:10			CACINIC INF		
INITIAL DEPTH TO WATER 84.80	VTO	P OF WELL RISER P OF PROTECTIVE		PROTECTIVE CASING STIC (FROM GRO	CKUP	- FT	CASING / WE DIFFER. WELL		FT
FINAL DEPTH TO WATER 8480	WELL DEP	TH 280	O FT	PID AMBIENT AIR	R	PPM	DIAM. WELL INTER	GRITY	IN
DRAWDOWN VOLUME	SCREE	/ (F-1)		PID WELL MOUTH	_	PPM	CAP CASING	YES NO -	N/A
TOTAL VOL	nch)) RATIO	OF DRAWDOWN V		PRESSURE TO PUMP	90) PSI	LOCKED	====	
PURGED #479	GAL		Militar	REFILL	7	0	DISCHARGE SETTING	10	
(purge volume (milliliters per minute) x tir	me duration (minu	SPECIFIC	illiliter)	SETTING			3211140		
TIME	TEMP. (deg. c) ≤ 3%	CONDUCTANCE (umho/cm) ≤ 3%	pH (units) ≤ 0.1 units	DISS. O2 (mg/L) ≤ 10%	TURBIDITY (ntu) ≤ 50 ntu	REDOX (mv) ≤ 10 units		COMMENTS	
11:15 84.86 300	17.5	0,266	6.32	3.81	2.84	216.9			
11:20 84.84 300	17.5	0.252	6.19	1.69	1.19	217.4	/		
11:25 84.84 300	17.5	0,249	\$6.10	0.87	2.38	219.4			
11:30 84.83 300	17.6	0,772	6.12	5.04	7.31	228,9			
11:35 8482 300	17.8	0.712	6.48	2.17	2.27	231.2			
11:40 84.82 300	17.9	0.310	6.60	3.42	7.43	230.8			
11:45 84.81 300	18.0	0.293	6.56	5.37	12.5	231.5			
11:50 84.80 300	18.2	0.278	6.40	6.90	13.1	271.6			
11:55 84.80 300	18.2	0.272	631	7.68	10.4	270.5			
12:00 84.80 300	18.2	0.268	6.28	8.59	9.80	228.8			
12:05 84.80 300	18.2	0,265	6.18	8.77	8.75	227.8	_		
12:10 84.80 700	18.5	0.264	6.16	9.03	7.82	236.1	'		
EQUIPMENT DOCUMENTATION TYPE OF PUMP GEOPUMP (peristaltic) SMCO BLADDER X BLADDER		NG SITY POLYETHYLEN SITY POLYETHYLEN	NE	OF PUMP M. Polyvinyl chlor STAINLESS OTHER	ride		TYPE OF BLA TEFLON Other	DDER MATERIAL	
ANALYTICAL PARAMETERS Check if Scheduled for Collection VOCs + TIC plus, Freon 11, Freon 22 Freon 113, Freon 115,Freon 123, Fre	2, USE	THOD MBER EPA-8260C	ME	RVATION THOD 4 DEG. C	VOLUME REQUIRED 3 X 40 mL	SAMPLE	ED Check if colle	ected	
VOCs + TIC plus, Freon 11, Freon 22 Freon 113, Freon 115, Freon 123, Fre	2, USE	EPA-524.2	HCL /	4 DEG. C	3 X 40 mL				
Chloride Bromide		PA 4500 CL-B PA 300.0	4 DEG		1 X 250 mL 1 X 250 mL				
Purge Observations				COMMENTS	3				
Purge Water Conatinerized yes no	Number of Gallon Generated	<u>4.29</u>					ar	nec	9

FIELD	DATA REC	CORD - L	OW EL OW	GROUNDW	ATER SA	MPLING	3			
PROJECT	Former Unis	ys Facility	OW FLOW		MPLE NUMBER	MU	- HOR 301	1L-XX	JOB No.	3617187446
Location	Lake Succes	s, New York			SITE TYPE		30ML		DATE	8/20/20
ACTIVITY	START 9.	75	10/0:55	SAMPLE		0:30				
INITIAL DEF	EVEL / PUMP S	SETTINGS	MEASU	DEPORT POINT OF OF WELL RISER OF OF PROTECTIVE		PROTECTIV CASING STI (FROM GRO	CKUP	FT	CASING / WELL DIFFER. WELL	- FT
FINAL DEF	DTU	4 84	WELL DEP (TOR)	1.58	O FT	AMBIENT AI	R	PPM	WELL INTERG	
DRAWDO VOLUI (initial - 1	ME	ch) or x 0.65 (4-in	nch)) RATIO	1// 1/ 1	VOLUME RGED	PID WELL MOUTH PRESSURE TO PUMP	110	PPM	CAP CASING LOCKED	¥ = =
PURG	GED /	.95	GAL	O. / 3 rtes) x 0.00026 gal/m	ailliliter)	REFILL SETTING	2	6	DISCHARGE SETTING	10
PURGE DA	ATA	per minute) x tin	ne duration (minu	SPECIFIC	nilliliter)	SETTING				
TIME	DEPTH TO WATER (ft) < 0.33 ft	PURGE RATE (ml/m) ≤ 500 ml/m	TEMP. (deg. c) ≤ 3%	CONDUCTANCE (umho/cm) ≤ 3%	pH (units) ≤ 0.1 units	DISS. O2 (mg/L) ≤ 10%	TURBIDITY (ntu) ≤ 50 ntu	REDOX (mv) ≤ 10 units		COMMENTS
10:05	84.77	300	17.1	0.054	6.31	7.81	3.47	192.6	5	
10:10	84.81	300	16.7	0.052	5,73	5.69	2.05	209.0		
10:15	84.80	360	16.7	0.052	5.68	4.66	4.23	220,9	-	
	84.82	700	16.6	0.052	5.68	4.27	7.97	777.0		
10135	84.83	300	16.7	0052	5.67	4.19	1.85	729.		
10:30	84.84	700	16.7	0,052	5.67	4.10	2.23	230.9		
									-	
TYPE OF GEO	PUMP (peristaltion of BLADDER DDER	c) [IG SITY POLYETHYLEN SITY POLYETHYLEN	NE X	OF PUMP MAP Polyvinyl chlor STAINLESS S OTHER	ride		TEFLON Other	DER MATERIAL
Check if Sci	AL PARAMETE heduled for Collection s + TIC plus, Free n 113, Freon 115, s + TIC plus, Free	on 11, Freon 22, Freon 123, Freo on 11, Freon 22,	NUM USE on 152a USE	HOD MBER PA-8260C	HCL /	RVATION THOD 4 DEG. C	VOLUME REQUIRED 3 X 40 mL	SAMPLE	D Check if collect	ied
Freon Chlori	113, Freon 115, ide	Freon 123, Freo	on 152a USE	PA 4500 CL-B PA 300.0	4 DEG 4 DEG		1 X 250 mL 1 X 250 mL			
Purge Obse Purge Water Conatinerized			Number of Gallon Generated	s <u>1,95</u>	C	COMMENTS			an	nec

PROJECT Former Unisys Facility	CUMPINATED CA	MDUNC			
PROJECT Former Unisys Facility	ROUNDWATER SA	MPLING	1-vv	JOB No.	3617187446
Lake Success, New York	FIELD SAMPLE NUMBER	11W-316	-72	DATE	08/11/2020
ACTIVITY START IA SE	SITE TYPE				
WATER LEVEL / PUMP SETTINGS	SAMPLE TIME	1130		CASING / WE	LL FT
TO WATER 89.62 FT TOP OF	F WELL RISER	PROTECTIVE CASING STICKUP (FROM GROUND)	FT	WELL DIAM.	4 11
FINAL DEPTH TO WATER 89.62 FT (TOR)		PID AMBIENT AIR	— PPM	The state of the s	GRITY: YES, NO N/A
DRAWDOWN SCREEN LENGTH	/ A	PID WELL MOUTH	PPM	CASING	至二一
TOTAL VOI	31011100111111000	PRESSURE TO PUMP	O PSI	COLLAR	ヹ ニニ
PURGED GAL (purge volume (milliliters per minute) v time duration (minutes)	x 0.00026 gal/milliliter)	REFILL 2	0	DISCHARGE SETTING	10
ORGE DATA	SPECIFIC		1	. 1	
WATER (ft) RATE (ml/m) (deg. c)	ONDUCTANCE pH (units)	DISS. O2 TURBIDIT (mg/L) (ntu) ≤ 10% ≤ 50 ntu	Y REDO> (mv) ≤ 10 unit		COMMENTS
1055 89,62 150 19,1 C	\$3% \$0.1 units \$2.42	9.24 0.76	1287	2	
11008963150 17.6 0	.630 G.99	4.23 47	139.	9	
105 89.63 150 17.10	,608 6.83	3,75 ,23	141	3	
1115 0000 150 16.9	560 671	4019),X	143	2	
1120 9964 150 1670	690 6.52	6.06 3.36	155,	6	
1125 89.62 150 16.6 0	690 6.52	6,08 4,41	158,	-	
	010				
	3				
				-	
				-	
EQUIPMENT DOCUMENTATION					
TYPE OF PUMP TYPE OF TUBING TYPE OF TUBING		Polyvinyl chloride		TYPE OF BL	ADDER MATERIAL
	POLYETHYLENE X	STAINLESS STEEL		Other	
X BLADDER OTHER		OTHER	_		
ANALYTICAL PARAMETERS Check if Scheduled for Collection METHOL NUMBER VOCs + TIC plus, Freon 11, Freon 22, USEPA-	R ME	ERVATION VOLU ETHOD REQUI	RED COLLEC		illected
Freon 113, Freon 115, Freon 123, Freon 152a VOCs + TIC plus, Freon 11, Freon 22, USEPA-	524.2 HCL /	/ 4 DEG. C 3 X 40	nL _		+
	4500 CL-B 4 DEC				
Bromide USEPA	300.0 4 DE0	G. C 1 X 250	mL _		
Purge Observations		COMMENTS			
Purge Water Number of Gallons	~15	Ommen 10			
Conatinerized (res) no Generated	11-			2	mec
Gilli Anna					11CC
SIGNATURE: WWW WWW.					

FIELD	DATA DEC									
PROJECT	DATA RECORD - L	OW FLOW O	ROUNDWA	ATER SAM	PLING		_	_		
Location	Former Unisys Facility		FIELD SAM	IPLE NUMBER	MILL	3111	T-12	JOB No.	3617187446	
ACTIVITY	Lake Success, New York			SITE TYPE		MI MI	1-11	DATE	08/11/2	1020
WATER LE	START 1200 E	ND 1250	SAMPLE TI		1300	1011		DATE	10 9 17	
	EVEL / PUMP SETTINGS	MEASURI	EMENT POINT		OTECTIVE	101	C	ASING / WE	ii	-
10 WA	TER YOUTO	TOP	OF WELL RISER OF PROTECTIVE	CA	SING STICKU		FT FT	DIFFER.		FT
FINAL DEF	PTH QA	WELL DEPTH						WELL DIAM.	4	IN
DRAWDO	LUAID D	FT (TOR)	255	The second secon	BIENT AIR		PPM	WELL INTER	GRITY:	
VOLU	ME CI DO	SCREEN	20		WELL	-	PPM	CAP	YES NO	N/A
(initial - f	final x 0.16 {2-inch} or x 0.65 {4-	inch}) RATIO OI	F DRAWDOWN VO		ESSURE	-		CASING	之二	1
PURC	OL O OO	TO TO 1	TAL VOLUME PUR	GED TO	PUMP	60		COLLAR	Z =	
PURGE DA	Olume (millilitors	me duration (minutes	0133 3) × 0.00026 gal/mil	RE	FILL TTING	70		DISCHARGE	10	
TIME	DEPTH TO I PURCE	1	SPECIFIC	on of	111140	20		2111110		
A	WATER (ft) RATE (ml/m)	(deg. c)	CONDUCTANCE (umho/cm)	pH (units)	OISS. O2 TI	URBIDITY (ntu)	REDOX (mv)		COMMENTS	
1200	90.59 300	92.3 8	≤3%	≤ 0.1 units		≤ 50 ntu	≤ 10 units	-		_
1205	90.64 300	1/2	2,509	66/1	5,41 0	-41	129.0	4		
1210	90.72 300	10.7	2.306	8,003	,20 0	19	1329			
1215	9069 300	15,9	2,510	188 3	77/10	03	140,0			_
1280	90.68 300	13,1	3,301	1. 10/	15 1	32	144.5		-	
225	90.65 300	18,7	2021	1.102	101	83	151.0	- 1		
1230	90.63 150	175	14/3	7,44 5	00 7	77	184.1	turk	red down	nysi
1225	90.02 150	177	2.76/	7,17 4	90 6	16	161.4			
1240	90.02 150	700	1,759	1.005	277	10	63,3			
1245	90,64150	170	70156	0,700	71 10	13	163,8			
250	9065150	177	3,427	G.875	-011	20	165,8			
	10.00 150	141	0,759	0.835	1911	78	1653			
EQUIPMEN	T DOCUMENTATION									
TYPE OF	PUMP	TYPE OF TUBING		TYPE OF	PUMP MATER	RIAL	I	YPE OF BLA	DDER MATERIA	L
	PUMP (peristaltic) O BLADDER		Y POLYETHYLENE Y POLYETHYLENE		vinyl chloride			TEFLON		
X BLAI	DDER	OTHER_	POCTETHICEN		AINLESS STEE HER	EL		Other		
ANALYTICA Check if Sch	AL PARAMETERS heduled for Collection	METHO)D	PRESERV	ATION	VOLUME				-
✓ vocs	s + TIC plus, Freon 11, Freon 22 1 113, Freon 115, Freon 123, Fre	NUMBE USEPA	R	METHO HCL / 4 D	<u>DD</u>	VOLUME REQUIRED 3 X 40 mL	SAMPLE	2 Check if coll	ected	
VOCs	s + TIC plus, Freon 11, Freon 22	USEPA	-524.2	HCL/4D	EG. C	3 X 40 mL				
Chlori	113, Freon 115, Freon 123, Fred ide		4500 CL-B	4 DEG. C		1 X 250 mL				
Bromi	ide	USEPA	300.0	4 DEG. C		1 X 250 mL				
Purge Obser	rvations			1 0-	MARATA			-		
Purge Water		Number of Gallons	23	CO	MMENTS					
Conatinerized	(yes) no	Generated .								10
	C 1 1			4				91	nec	
SIGNATURE:	Emy 1	UCW	7							

FIELD DATA RECORD - LOW FLOW GR				
PROJECT FOR PROJECT FOR PROJECT	ROUNDWATER SA	AMPLING		
Location Lake C.	FIELD SAMPLE NUMBER	R MW-31M	L-XX JOB NO	3617187446
ACTIVITY START / 20 \$ (2.0)	SITE TYP	E 3IML	DATE	48/11/2020
WATER LEVEL / PUMP SETTINGS MEASUREM INITIAL DEPT.	SAMPLE TIME	1330		
TO WATER 96.67 TOP O	MENT POINT F WELL RISER F PROTECTIVE CASING	PROTECTIVE CASING STICKUP (FROM GROUND)	CASING / V DIFFER. WELL	VELL FT
FINAL DEPTH TO WATER PG. 63 FT (TOR)	355 FT	PID AMBIENT AIR	PPM DIAM. WELL INTE	ERGRITY: N/A
DRAWDOWN VOLUME (initial factor) O,065 GAI LENGTH	20 FT	PID WELL MOUTH	PPM CAP CASING	YES NO
TOTAL VOI	DRAWDOWN VOLUME	PRESSURE TO PUMP) PSI LOCKED COLLAR	マニニー
PURGED GAL (purge volume (milliliters per minute) x time duration (minutes)	0.01	REFILL 2.0	DISCHARG	GE O
	x 0.00026 gal/milliliter) SPECIFIC	SETTING		
VVATER (ft) RATE (ml/m) (deg. c)	ONDUCTANCE pH (umho/cm) (units)	DISS. O2 TURBIDITY (ntu)	(mv) ≤ 10 units	COMMENTS
1305 96.62 100 200 8	\$3% \$0.1 units	\$10% \$50 ntu	1272	
1310 96.63 100 167 0	180 7.44	6,36 1.13	147,0	
13/5 46,64 100 164 0	1.183 6.80	4,33 0.89	188.7	
1920 96.63 100 16.3 0	1180 665	4.78 1.01	182.5	
1330 0102 100 16.30	179 6.58	5.58 1.21	1775	
100 1665 00 62 0	0.179 6.86	6.120,69	17404	
	-			
	POLYETHYLENE X	E OF PUMP MATERIAL Polyvinyl chloride STAINLESS STEEL OTHER	TYPE OF B	BLADDER MATERIAL
ANALYTICAL PARAMETERS Check if Scheduled for Collection METHO		SERVATION VOLUME		
VOCs + TIC plus, Freon 11, Freon 22,	- Authorities -	ETHOD REQUIRE /4 DEG. C 3 X 40 mL	D COLLECTED Check if	collected
Freon 113, Freon 115, Freon 123, Freon 152a VOCs + TIC plus, Freon 11, Freon 22, USEPA-	524.2 HCL	/ 4 DEG. C 3 X 40 mL		
Freon 113, Freon 115, Freon 123, Freon 152a Chloride USEPA		EG. C 1 X 250 m	- Indiana	
Bromide USEPA	300.0 4 DE	EG. C 1 X 250 m		
Purge Observations		COMMENTS		
Purge Water Conatinerized (Ver) no Generated SIGNATURE: Mark Call	2/2		а	mec

FIELD	DATA REC	CORD 16		GROUNDW					
PROJECT	Former Unisy	OKD - LO	W FLOW	GROUNDW	ATER SA	MPLING	3		JOB No. 3617187446
1	71113)	3 racility			MPLE NUMBER	R M	N-350	71	JOB No. 3617187440
ACTIVITY	START L	10	12.10		SITE TYPE		. /		DATE L
WATER LE	EVEL / PUMP S	ETTINGS EN	D 13:10	SAMPLE 1	TIME	12:5	11		CASING/WELL 0,2 FT
INITIAL DE	ртн —	. / - /	X TO	REMENT POINT P OF WELL RISER		PROTECTIV CASING STI	CKUP 1/		DIFFER.
TO WAT	4/	-67	FT	P OF PROTECTIVE	ECASING	(FROM GRO	UND)		WELL 2 IN
FINAL DEL	TER 7	7.70	WELL DEP	132.	35FT	AMBIENT All	R NI	U nose	WELL INTERGRITY: N/A
DRAWDO	WN O		SCREE		FT	PID WELL MOUTH	NA		CAP L, -
VOLU (initial -	ME U - final x 0.16 {2-inc	02 h} or x 0.65 (4-in		OF DRAWDOWN V		PRESSURE			CASING LOCKED
TOTAL V	/OL T	1 7	TOT	OTAL VOLUME PU		TO PUMP	120		COLLAR
PUR((purge v	volume (milliliters	per minute) x tin	GAL ne duration (minu	0 0 <u>1</u> tes) x 0.00026 gal/m	nillifiter)	REFILL	20		DISCHARGE LO SETTING
PURGE DA	DEPTH TO			SPECIFIC				I REDOX	1
TIME	WATER (ft) < 0.33 ft	PURGE RATE (ml/m) ≤ 500 ml/m	TEMP. (deg. c) ≤ 3%	CONDUCTANCE (mS/cm) ≤ 3%	pH (units) ≤ 0.1 units	DISS. O2 (mg/L) ≤ 10%	TURBIDITY (ntu) ≤ 50 ntu	(mv) ≤ 10 units	COMMENTS
12:05	77.70	100	23.6	6-533	6-25	7.23	13.7	60-2	/
12:10.	77.70	100	23.6	0-531	6-18	6-18	19-2	61-8	1
12:15	77.70	100	23.1	0.530	6-15	1-91	22.0	59.1	1
12:20		100	23.	0.529	6.15	1.42	27.2	56-0	1
12:25	1. 10	100	23.3	0-530	6-14	1.21	30-0	542	1
12:36	77.70	100	23.4	0.531	6-13	1.09	0-7	53.1	159
12-35		100	23,4	0.53	6-13	0.99	0-0	54.0	
12:41	collec	100	23.4 mples	0.531	6-14	0.11	0.0	31,0	= /
12-11	LUTTE	7 301	riples)			
				13	200				
									1
EQUIPMEN	NT DOCUMENT	TATION			-		ATERIAL	7	YPE OF BLADDER MATERIAL
	PUMP (peristalti	ic)	TYPE OF TUBIN	IG ITY POLYETHYLE!		Polyvinyl chlo			TEFLON
	CO BLADDER			SITY POLYETHYLE		STAINLESS	STEEL		Other
	ADDER	TDC .	OTHER_			OTHER		_	
	AL PARAMETE cheduled for Collection			HOD	ME	RVATION THOD	The Annual Control of Control of Control		D Check if collected
Free	cs + TIC plus, Fre	on 11, Freon 22, Freon 123, Freo		PA-8260C	HCL/	4 DEG. C	3 X 40 mL	M	
□ voc	s + TIC plus, Fre	on 11, Freon 22,	USE	PA-524.2	HCL /	4 DEG. C	3 X 40 mL		
Chlo	Freon 113, Freon 123, Freon 152a USEPA 4500 CL-B 4 DEG. C 1 X 250 mL USEPA 300.0 4 DEG. C 1 X 250 mL								
Bron	nide 4 Dioxani	0		270 D_SiM_			2x250		
1 9 "	1 Droxon				1001		A6-		
Purge Obse	Purge Observations Number of Gallons Number of Gallons								
Purge Water Conatinerized	yes no		Number of Gallon Generated	1.2	L1	33 08	J. I. Y	19119	2000
									amec
SIGNATURE:	Don	ms	m						

8/20/2020

FIELD	DATA REC	OPP		GROUNDW					
PROJECT	Former Unisy	OKD - LC	W FLOW	GROUNDW	ATER SA	MPLING	3		7716
I v		- cromit		FIELD SAF	MPLE NUMBER	Mu	1-37/1	4-XX	JOB No. 3617187446
ACTIVITY	Lake Success	7 -			SITE TYPE	3	7 ML		DATE 8/14/10
WATER LE	START //	S) EN	13:15	SAMPLE 1	TIME	12:5	5		
INITIAL DEP	TH _		MEASU	REMENT POINT P OF WELL RISER		PROTECTIV CASING STI			CASING / WELL FT
TO WAT		4.30	FT TO	P OF PROTECTIVE	E CASING	(FROM GRO		FT	WELL 4 IN
FINAL DEF	ER /35	1,30	WELL DEPT	42	V:	PID AMBIENT AI	R	- DDM	DIAM.
DRAWDO	WN -	1-0	SCREE	N TO		PID WELL			WELL INTERGRITY: NO N/A
VOLUI (initial - f	ME [inal x 0.16 (2-inc	-	GAL	1 10	FT	MOUTH		PPM	CAP CASING Z =
TOTAL V	01			OF DRAWDOWN NOTAL VOLUME PU		PRESSURE TO PUMP	67) PSI	LOCKED Z = =
PURG	ED Y	,29				REFILL	70)	DISCHARGE /O
PURGE DA	M	per minute) x tim	ne duration (minu	es) x 0.00026 gal/n	nilliliter)	SETTING			SETTING
TIME	DEPTH TO WATER (ft) < 0.33 ft	PURGE RATE (ml/m) ≤ soo ml/m.	TEMP. (deg. c) s 3%	SPECIFIC CONDUCTANCE (umho/cm) ≤ 3%	pH (units) ≤0.1 units	DISS. O2 (mg/L) ≤ 10%	TURBIDITY (ntu) ≤ 50 ntu	REDOX (mv) ≤ 10 units	COMMENTS
	17432	300	18.9	0.276	6.17	5.67	1.71	216.6	
The second second	134.73	360	18.3	0.274	6.08	4.44	1.20	273.3	
Company of the last of the las	134.30	300	18.3	0,290	6.27	3.79	1.63	243.1	
	134.71	300	18.2	0.242	6.20	3.18	1.60	241.8	
	134.30	300	18.3	0,223	6.13	1.93	1.69	241.4	
Carlotte Control of the Control	134.36	300	18.3	0.217	6.09	1.17	1.78	240.6	
	134.30	300	18.3	0,222	0.	1.56	2.03	239.1	
	134.30	300	18.7	0,271	-	2.47	1.71	237.6	
	134.30	300	18.3	0.236	6.02	7.15	1.20	276.5	
The state of the s	134.70	300	18.4	0.242	6,00	3.99	7.21	235.1	-
The second second	134.30	300	18.3	0.247	5.99	4.68	1.39	233.9	
W. C.	134.30	300	18.3	0.251	5.98	5.45	1.22	232.7	
TYPE O		ATION	TYPE OF TUBIN	G	TYPE	OF PUMP M	ATERIAL		YPE OF BLADDER MATERIAL
	OPUMP (peristalti	ic)		ITY POLYETHYLE		Polyvinyl chlo STAINLESS			TEFLON Other
	O BLADDER ADDER		OTHER_	IIT POLTETHILE		OTHER	STEEL	_	Other
THE RESERVE AND ADDRESS OF THE PARTY OF THE	AL PARAMETE		MET	HOD	PRESE	RVATION	VOLUME	SAMPLE	
	s + TIC plus, Fre			PA-8260C		THOD 4 DEG. C	3 X 40 mL	COLLECTE	D Check if collected
	n 113, Freon 115 s + TIC plus. Fre			PA-524.2	HCL /	4 DEG. C	3 X 40 mL		
Freo	n 113, Freon 115		on 152a						
Chlo			100000	PA 4500 CL-B PA 300.0	4 DEC		1 X 250 mL 1 X 250 mL		
					-				
Purge Obser			Number of Gallon	s		COMMENTS	3		
Conatinerized			Generated	4.19					amec

PROJECT Former Ligitary 5	CUNDWATER	MDI ING				of lawy!	
PROJECT Former Unisys Facility		· Mula	8MU-X	(JOB No.	3617187446	100
Lake Success, New York	FIELD SAMPLE NUMBE		3 MV		DATE	8/1	0/20
ACTIVITY START 10'10 AM END	SAMPLE TIME	11:07	1111			P. T.	
WATER LEVEL / PUMP SETTINGS MEASUREM	ENT POINT	PROTECTIVE			CASING / WE	LL _	FT
	PROTECTIVE CASING	(FROM GROUN		FT	WELL	П	IN
FINAL DEPTH WELL DEPTH	242 FT	PID AMBIENT AIR		PPM	DIAM		
DRAWDOWN SCREEN		PID WELL				GRITY:	N/A
VOLUME - A A/2 CENGIN L	10 FT	MOUTH		PPM	CAP	士 二	-
TOTAL VOI	RAWDOWN VOLUME L VOLUME PURGED	PRESSURE TO PUMP	60	PSI	COLLAR	7 =	
	0637	REFILL SETTING	2		DISCHARGE	10	
DATA	SPECIFIC	SETTING			1		
WATER (ft) RATE (ml/m) (deg. c)	NDUCTANCE pH (umho/cm) (units)	(mg/L)	(ntu)	REDOX (mv)		COMMENTS	
10.21 142.39 300 2G.1	2.083 11 51	7.96	≤ 50 ntu	s 10 units	1		
10:26 142.72 300 194	2 200 11.00	5.36 M	128.24	3.	5		
10:31 142.95 300 194	2.197 11.5	5.03	9.05	-1.4		-	
10:36 143.14 300 19.6	2.196 11.54	5.01	8.45	-6.1			
10.41 143.25 300 19.3	2.195 11.54	5.02	11.9	-4.5	2		_
10:46 143.31 300 14.5	2.19/ 11.53	4.98	6.47	-11.8	1		100
10:50 143.34 300 19.8	2.194 11.52	4.99	6.08	-12.0			
11 01 14841 300 196	2.194 11.52	4.48	7.89	-14.0			
11:00 145:43 300 108	2.196 11.50	4,96	6.94	-14.7			
EQUIPMENT DOCUMENTATION TYPE OF PUMP TYPE OF TUBING	TYPE	OF PUMP MATE	RIAL	I	YPE OF BLAD	DER MATERIA	
GEOPUMP (peristaltic) X LOW DENSITY P		Polyvinyl chloride			TEFLON		
SMCO BLADDER HIGH DENSITY P X BLADDER OTHER		STAINLESS STE OTHER	EL		other		
ANALYTICAL PARAMETERS Check if Scheduled for Collection METHOD		RVATION	VOLUME	SAMPLE	Lader		
VOCs + TIC plus, Freon 11, Freon 22, USEPA-82			3 X 40 mL	COLLECTED	Check if collect	cted	
Freon 113, Freon 115, Freon 123, Freon 152a VOCs + TIC plus, Freon 11, Freon 22, USEPA-52	4.2 HCL/	4 DEG. C	3 X 40 mL				
Freon 113, Freon 115, Freon 123, Freon 152a Chloride USEPA 45	00 CL-B 4 DEG	C	1 X 250 mL				
Bromide USEPA 30		C	1 X 250 mL				
				H			
Purge Observations	C	OMMENTS			1		
Purge Water Conatinerized (yes) no Generated	5.51						1
					an	nec	-
SIGNATURE: MAN CHANNE							
FDRs Blank/LF Callahan						7/24/202	0

FIELD DATA RECORD - LOW FLOW G	DOUNDWATER 9	AMPLING			
PROJECT Former Unisys Facility	FIELD SAMPLE NUMB	ER M	W-38MI-	XX JOBI	No. 3617187446
Lake Success, New York	SITE TY		38-MI	DATE	8/1000
ACTIVITY START 14:37 END	SAMPLE TIME	16:	00		
WATER LEVEL / PUMP SETTINGS MEASURE	MENT POINT	PROTECTIVE		- CASING /	WELL FT
TO WATER 143.42 FT	F WELL RISER OF PROTECTIVE CASING	(FROM GROU		WELL DIAM	H IN
FINAL DEPTH TO WATER 145.68 FT (TOR)	344 FT	AMBIENT AIR		PPM WELL IN	TERGRITY NO N/A
DRAWDOWN VOLUME 1.469 GAL	JO FT	MOUTH		PPM CAP CASING	五二一一
(Initial - final x 0.16 (2-inch) or x 0.65 (4-inch)) RATIO OF	DRAWDOWN VOLUME AL VOLUME PURGED	PRESSURE TO PUMP	68	PSI COLLAR	
PURGED (purge volume (milliliters per minute) x time duration (minutes)	4185	REFILL SETTING	20	DISCHAR	
PURGE DATA	SPECIFIC		munimum. I	REDOX	
TIME WATER (ft) RATE (ml/m) (deg c)	ONDUCTANCE pH (umho/cm) (units)	DISS. O2 (mg/L)	(ntu) ≤ 50 ntu	(mv) s 10 units	COMMENTS
15:14 144, HO 300 000	\$3% \$0.1 units	3 8.39		226.1	
15:19 1441.77 300 16.7	0.320 6.50	5.05	191	821.8	
15:24 145.09 300 101	C 295 C.4	8 4.71	1.63	217.3	
15:21 145.27 300 15.9	C.294 C.4	4.57	2.01	214.4	
15:34 145.43 200 15.8	0.300 G.44	4.71	6.54 3	212.1	
15.39 145.50 300 15.8	0.347 6.30	5.83	11.4	02.1	
15:41145.56 300 15.8	0.368 6.19	1 2 10	11.1 1	900	
15:49145.G2 300 15.8	0.372 6.11	6.52	9,41 1	86.1	
15:54145.GG 300 15.8	0.372 6.14	17-11	2004 1	8212	
15:54145.08 300 15.8	0.373 6.13	6.71	6,60 1	81.8	
EQUIPMENT DOCUMENTATION					
TYPE OF PUMP TYPE OF TUBING	POLYETHYLENE	Polyvinyl chlorid		TYPE OF TEFLON	BLADDER MATERIAL
	POLYETHYLENE X	STAINLESS S		Other_	
X BLADDER OTHER		OTHER			
ANALYTICAL PARAMETERS Check if Scheduled for Collection NUMBE! VOCs + TIC plus, Freon 11, Freon 22, USEPA-	R A	SERVATION METHOD L / 4 DEG. C		SAMPLE DLLECTED Check i	f collected
Freon 113, Freon 115, Freon 123, Freon 152a VOCs + TIC plus, Freon 123, Freon 152a VOCs + TIC plus, Freon 11, Freon 22, USEPA-		L/4 DEG. C	3 X 40 mL		
Freon 113, Freon 115, Freon 123, Freon 152a		EG. C	1 X 250 mL		
Bromide USEPA		EG. C	1 X 250 mL		
				님	
Purge Observations		COMMENTS			
Purpe Water Number of Gallons	3.51				A
Conatinerized (yes) no Generated				2	mec
Minu Cuarlin				0	
SIGNATURE: /W/W CAWWW					

FIELD	DATA RECORD - LOW							
PROJECT	Former Unisys Facility	FLOW GROUNDWA	TER SAN	IPLING				
cocation	Lake Success, New York	FIELD SAME	PLE NUMBER	HIW-	38ML-	XX	JOB No.	3617187446
ACTIVITY	107. 24		SITE TYPE		8-ML		DATE	8/10/20
WATER LE	EVEL / PLIMP PET	SAMPLE TIN		13.47			-	
TO WA	PTH ALLO AND	MEASUREMENT POINT TOP OF WELL RISER	CA	SING STICKU			DIFFER.	FI
FINAL DEI		TOP OF PROTECTIVE (ROM GROUND	0)		WELL	LJ IN
10 WA	TER 145,18 FT	(TOR) 444	FT AN	BIENT AIR	-	PPM	DIAM. [WELL INTERG	PITY
DRAWDO VOLU	WN 12.15	SCREEN LENGTH		OWELL	_	PPM		ES NO NA
(Initial -	final x 0.16 (2-inch) or x 0.65 (4-inch))			ESSURE		PPIWI		マニナ
PURC	OL. G. Q	TO TOTAL VOLUME PURC	GED TO	PUMP	60) PSI		z =
(purge v	olume (milliliters per minut) GAL	(ration (minutes) x 0.00026 gal/milli	RE	FILL TTING	20	4	DISCHARGE	10
	DEPTH TO I DUPO-	SPECIFIC	JE JE				1	
TIME	WATER (ft) PURGE RATE (ml/m) < 0.33 ft ≤ soo ml/m	TEMP. CONDUCTANCE (deg. c) (umho/cm)	from the h	Imall)	(ntu)	REDOX (mv)		COMMENTS
19.00	144.02 300	26.8 0.188	7.78	9.34 1	≤ 50 ntu	1 79.2		
12:55	144.36 300	19.2 0.149		5.52 \$	2.73	198.0	5	
15.00	144.65 300	17.0 0.446	6.58	-	25	200.	3	
13.05	144.81 300	16.3 0.145		4.57	8.75	207.	5	1
13.10	144.99 300	16.6 0.146	6.39	4.38	9,95	20G.		to stupping for a
12.21	144.49 300	16.6 0.146		4.48 1	0.6	206		anempty -habto
13.20	145.04 300	16.3 0.145		4.26 1	1.9	206.	A replai	e with Follow
12.20	145.41 200	16,4 0,144	-	3.71 1	2.6	207	1	
12 44	145.14 300	16.4 0.144	1	3.48 1	1.5	208	2/4	
13:46	145.18 300	10.2 CAEC		-	7.15	210	0 0	
10.10	110,14	16,5 0,150	6.1/	דרוכ	1.1	Q10	10	
EQUIPMEN	T DOCUMENTATION						1	
TYPE OF		OF TUBING OW DENSITY POLYETHYLENE		PUMP MATER	RIAL		YPE OF BLAD	DER MATERIAL
		HIGH DENSITY POLYETHYLENE		VINUESS STEE	EL.		ther	
	DDER C	OTHER	ОТ	HER				
	neduled for Collection	METHOD NUMBER	PRESERVA		VOLUME REQUIRED (SAMPLE	Check if collect	ed
	+ TIC plus, Freon 11, Freon 22, 113, Freon 115, Freon 123, Freon 152	USEPA-8260C	HCL / 4 DI		X 40 mL		and a second	10
VOCs	+ TIC plus, Freon 11, Freon 22,	USEPA-524.2	HCL / 4 DI	EG. C	X 40 mL			
Chloric		USEPA 4500 CL-B	4 DEG. C		X 250 mL			
Bromio	de	USEPA 300.0	4 DEG. C	1	X 250 mL			
						H		
Purge Observ	vations		CON	IMENTS				
Purge Water Conatinerized (r of Gallons 3, 9						A
	0 0	1					an	nec
IGNATURE:	Mille Com	Me						
	_Blank/LF Callahan	7			-			7/24/2020

FIELD DATA RECORD - LOW FLOW GE		ADI INC		
PROJECT Former Unisys Facility		MW-39MV	JOB NO	3617187446
Lake Success, New York	FIELD SAMPLE NUMBER SITE TYPE	39·M	V DATE	8/14/20
ACTIVITY START 13:111		15:05		
THE LEVEL / PUMP SETTINGS MEASUREM	MENT POINT P	ROTECTIVE ASING STICKUP	CASING / W	/ELL FT
		FROM GROUND)	WELL	4 11
FINAL DEPTH TO WATER 119.00 ET (TOR)	(FC	MBIENT AIR	PPM WELL INTE	RGRITY: N/A
DRAWDOWN COOC LENGTH		ID WELL	PPM CAP	YES NO = =
VOLUME 0,936 GAL	DRAWDOWN VOLUME P	RESSURE 00) PSI COLLAR	Z = -
TOTAL VOL. 3 51	007	EFILL F	DISCHARG	E 10
(purge volume (milliliters per minute) x time duration (minutes) PURGE DATA	x 0.00026 gal/milliliter) S	ETTING	SETTING	
DEPTH TO PURGE TEMP. CO	SPECIFIC ONDUCTANCE PH (umho/cm) (units)	DISS. O2 TURBIDITY (mg/L) (ntu)	REDOX (mv)	COMMENTS
4 11 10 AA1 00 200 A 5 A	s 3% s 0.1 units	\$10% \$50 ntu	213.5	
14:24 117.27 300 15.1	C.857 6.03	3.97 1.34	211.4	
14:29 117:11 300 15.0	0.843 C.04	G93 C.16	204.0	
14:34 117.57 300 15.1	0.922 6.05	8.44 0.44	208.0	
14:34 117.09 300 15.1	0.436 6.07	8.34 1.12	207.0	
14:44 117.82 300 15.1	C.956 G.08	8.64 1.71	206.7	
1454177.98 300 15.1	0.963 6.08	8.79 1.G1	206.7	
14.59 118.03 300 15.2	0.971 6.08	8.92 0.54	206.6	
111504118.09 300 115,2	0.97C G.08	9,15 ().78	au6.6	
EQUIPMENT DOCUMENTATION TYPE OF PUMP. TYPE OF TUBING	TYPE	OF PUMP MATERIAL	TYPE OF B	LADDER MATERIAL
GEOPUMP (peristaltic) X LOW DENSITY		olyvinyl chloride	TEFLON Other	
SMCO BLADDER HIGH DENSITY X BLADDER OTHER		OTHER		
ANALYTICAL PARAMETERS Check if Scheduled for Collection NUMBE	AACT.	RVATION VOLUME HOD REQUIRED	SAMPLE COLLECTED Check if of	collected
VOCs + TIC plus, Freon 11, Freon 22, USEPA- Freon 113, Freon 115, Freon 123, Freon 152a	1101 14	DEG. C 3 X 40 mL		
VOCs + TIC plus, Freon 11, Freon 22, Freon 113, Freon 115, Freon 123, Freon 152a	524.2 HCL / 4	DEG. C 3 X 40 mL		
	4500 CL-B 4 DEG. 300.0 4 DEG.			
Purge Observations	4	OMMENTS		
Purge Water Conatinerized ves no Senerated Number of Gallons Generated	3.51			000
An City			9	mec
SIGNATURE: //y/W W/W/				
FDRs_Blank/LF Callahan				7/24/2020

FIELD DATA RECORD - LOW FLOW G				
	FIELD SAMPLE NUMBE	MPLING MW-39M	NI-MS JOB	NO. 3617187446
Lake Success New York	SITE TYP	30-1		E MINIO OF THE
START O'LLA A 3:114	SAMPLE TIME	12.56		
WATER LEVEL / PUMP SETTINGS	MENT POINT	PROTECTIVE	CASING DIFFER	WELL
TO WATER 116.71 FT	F WELL RISER F PROTECTIVE CASING	(FROM GROUND)	FT WELL DIAM	4 IN
FINAL DEPTH TO WATER 117.54 FT (TOR)	312 FT	AMBIENT AIR	th demand	TERGRITY NO NA
DRAWDOWN VOLUME 0.5395 GAL SCREEN LENGTH	10 FT	PID WELL MOUTH	PPM CAP	
(Initial - final x 0.16 {2-inch} or x 0.65 {4-inch}) RATIO OF	DRAWDOWN VOLUME	PRESSURE TO PUMP	O PSI COLLAR	
TOTAL VOL PURGED (purge volume (milliliters per minute) x time duration (minutes)	173	REFILL SETTING	DISCHAR	
PURGE DATA	SPECIFIC	DISS 02 TURBIDITY	REDOX	
TIME DEPTH TO PURGE TEMP. CI WATER (ft) RATE (ml/m) (deg. c) < 0.33 ft \$\leq 500 \text{ ml/m} \right \frac{5}{3}\text{ ml/m}	ONDUCTANCE pH (umho/cm) (units) < 3% < 0.1 units	DISS 02 TURBIDITY (ntu) \$ 10% \$ 50 ntu	(mv) ≤ 10 units	COMMENTS
12:15 11671 300 15.0	0.794 5.54	7.43 3.02	228.1	
12:20 116.98 300 15.0	0.569 5.76	6.42 1.61	234.4	
11.15 117.13 200 1.50	0.593 5.83	C.32 1.34	220.9	
12.30 117.24 300 15.0	0.713 5.95 0.746 G.03	8.24 0.84	0.00	
12:35 117:33 300 15:0	1 7C7 0 15	9,20 0,72	2100	
12.40 117.40 200 15.0	0.76 6.01	0.47 0.43	210.1	
12.45 117.46 300 16.0	0.181 6.13	9.59 0.45	2141	
12 55 1 17.54 300 150	0.789 6,14	9.63 0.57	214,2	
2 2 12 3 200 200			1100	
	POLYETHYLENE X	OF PUMP MATERIAL Polyvinyl chloride STAINLESS STEEL OTHER	TYPE OF E TEFLON Other	SLADDER MATERIAL
ANALYTICAL PARAMETERS Check if Scheduled for Collection METHOD	PRESE	RVATION VOLUME	SAMPLE	
VOCs + TIC plus, Freon 11, Freon 22, USEPA-8 Freon 113, Freon 115, Freon 123, Freon 152a	The state of the s	THOD REQUIRED 4 DEG. C 3 X 40 mL		collected
VOCs + TIC plus, Freon 11, Freon 22, USEPA-5 Freon 113, Freon 115, Freon 123, Freon 152a	24.2 HCL/-	4 DEG. C 3 X 40 mL		
Chloride USEPA 4 Bromide USEPA 3	100 to 10			
		1 A 250 IIIL		
Purge Observations		OMMENTS		
Purge Water Conatinerized no Generated	3.12 So	imples Taken:		
1 1	2110	I VOAS MW-39	MI-MSO =	mac
SIGNATURE / HARW GARLEN	246	L VOAS: MW-39 MW-39 M	I-MS	MEC
FDRs_Blank/LF Callahan		mw-391	XK-10	

COMMENTS CONSIDER SHOW YOR CONTINUED BY B 2011Y FRACTORY START 16:0 C END 3 34 SAMPLE TIME TO FOR STREET POINT TO WATER TO FOR SPECIFIC POINT TO WATER TO TO FOR SPECIFIC POINT TO POINT WOULD POINT TO FOR SPECIFIC POINT TO WATER TO TO FOR SPECIFIC POINT TO POINT WOULD POINT TO FOR SPECIFIC POINT TO WATER TO TO FOR SPECIFIC POINT TO POINT WOULD POINT TO FOR SPECIFIC POINT TO FOR SP	FIELD DATA RECORD - LOW FLOW GR	OUNDWATER SA	MPLING		
ACTIVITY STATE OF THE SAMPLE THE	1 Simer Unisys Facility		111M-2	ML-XX JOBN	1/10/20
WATER LEVEL PUMP SETTINGS MISS QUILDENINT POINT CASING STOCKER COMMENTS COMM	ACTR CO.	SITE TYPE		ML DATE	Of Pilong
NITTAL DEPTH TO WATER TO PWELL RISER TO WATER TO WATER TO WATER TO WATER TO WATER TO WATER TO PWELL RISER TO WATER TO PWELL RISER TO WATER TO PWELL RISER TO WATER TO WATER TO WATER TO WATER TO WATER TO WATER TO PWELL RISER TO WATER TO PUMP TO WATER TO WATER TO PUMP TO WATER TO WATE	LOLLY END 1 V. 34	SAMPLE TIME	11.)	CARING ()	WELL
AMBIENT AIR	TO WATER 13.49 FT	WELL RISER PROTECTIVE CASING	CASING STICKUP (FROM GROUND)	FT DIFFER.	H IN
DRAWDOWN CALL Cal	TO WATER 115.29 FT (TOR)	VAT	AMBIENT AIR	WELL INT	
TOTAL VOLUME PURGED CAL CONDUCTANCE	VOLUME (.17 GAL LENGTH		моитн	CASING	
Purge Data Purge TEMP COMMENTS Purge TEMP CONDUCTANCE Purge Observations Purge Of Gallons Purge Observations Purge Of Gallons Purge Observations Purge Of Gallons Purge Observations Purge Of Gallons Purge Observations Purge Of Gallons Purge Observations Purge Of Gallons Purge O	TOTAL VOL. PURGED 3. 9 GAL	2 VOLUME PURGED	REFILL	DISCHAR	1.0
TIME UPP TO PURCE Common Co	PURGE DATA	SPECIFIC		y I genox I	
15.1	TIME WATER (ft) RATE (ml/m) (deg. c)	(umho/cm) (units) ≤ 3% ≤ 0.1 units	(mg/L) (ntu)	(mv) s 10 units	COMMENTS
C D D D D D D D D D	EU CONTRACTOR CONTRACTOR	- V 1	5,55 02	7 219.1	
17.03	16:53 114:33 300 15:0		4.08 8.5	8 221.7	
17.07 14.00 300 15.0 0.344 5.87 3.99 2.25 2.50 1.713 14.08 3.00 15.1 0.369 5.80 3.28 1.96 2.33 1.723 15.11 3.00 15.1 0.302 5.81 3.76 3.07 3.31 5.87 3.24 1.60 3.24 3.15	16:58 114:54 300 15:1		9 310	334.3	
17.13	17 03 114.75 300 15.0	0		5 230.4	
17.33 15.17 300 15.1 0.38 5.83 3.51 2.83 2.25 3.51 2.85	17:13 14:98 300 15:1	0 0000		0 2211	
EQUIPMENT DOCUMENTATION TYPE OF PUMP GEOPUMP (peristaltic) SMC0 BLADDER HIGH DENSITY POLYETHYLENE SMC0 BLADDER HIGH DENSITY POLYETHYLENE Number of Gallons PRESERVATION METHOD NUMBER USEPA-524.2 HCL / 4 DEG. C 1 X 250 mL HCL / 4 DEG. C HCL / 4 DEG. C HCL / 4 DEG. C HX 250 mL PUTPE OF PUMP MATERIAL TYPE OF BLADDER MATERIAL TYPE OF BLADDER MATERIAL TYPE OF BLADDER MATERIAL TYPE OF PUMP MATER	11.20 11.11	0.342 5.81	3.46 3.0	7 131.5	
EQUIPMENT DOCUMENTATION TYPE OF PUMP GEOPUMP (peristaltic) SMCO BLADDER HIGH DENSITY POLYETHYLENE Number of Gallons NUMBER VOCs + TIC plus, Freon 11, Freon 22, USEPA-524.2 Freon 113, Freon 115, Freon 115, Freon 1123, Freon 152a Chloride USEPA 300.0 Number of Gallons OTHER TYPE OF PUMP MATERIAL TYPE OF BLADDER MATERIAL TYPE OF PUMP MATERIAL TYPE OF BLADDER MATERIAL TYPE OF PUMP MATERIAL TYPE OF BLADDER MATERIAL TYPE OF PUMP MATERIAL TYPE OF BLADDER TYPE OF PUMP MATERIAL TYPE OF BLADDER TYPE OF BLADDER TYPE OF PUMP MATERIAL TYPE OF BLADDER TYPE OF BLA	17.23 115.17 300 15.1	O. 248 5.83	310 2.8	225.0	
TYPE OF PUMP GEOPUMP (peristaltic) SMCO BLADDER HIGH DENSITY POLYETHYLENE SMED BLADDER OTHER OTHER METHOD NUMBER WOCs + TIC plus, Freon 113, Freon 123, Freon 152a WOCs + TIC plus, Freon 115, Freon 123, Freon 152a WOCs + TIC plus, Freon 115, Freon 123, Freon 152a Chloride Bromide USEPA 4500 CL-B Bromide USEPA 300.0 Number of Gallons OTHER TYPE OF PUMP MATERIAL TO HATERIAL TYPE OF PUMP MATERIAL TO HATERIAL TYPE OF BLADDER OTHER OTHER OTHER OTHER ANALYTICAL TEFLON TEFLON TEFLON TEFLON TEFLON TEFLON TEFLON TEFLON TO HATERIAL TYPE OF BLADDER TYPE OF ALABOTA TO HATERIAL TYPE OF BLADDER TO HATERIAL TO HATERIAL TYPE OF BLADDER TO HATERIAL TO HA	17 33 115. 29 300 15.1	0.381 5.87	1.G	व वयम् म	
ANALYTICAL PARAMETERS Check if Scheduled for Collection METHOD NUMBER USEPA-8260C Freon 113, Freon 115, Freon 123, Freon 152a VOCs + TIC plus, Freon 11, Freon 22, Freon 113, Freon 115, Freon 123, Freon 152a VOCs + TIC plus, Freon 11, Freon 22, Freon 113, Freon 115, Freon 123, Freon 152a Chloride Bromide USEPA 4500 CL-B USEPA 300.0 USEPA 300.0 VOLUME REQUIRED COLLECTED Check if collected 3 X 40 mL SAMPLE COLLECTED Check if collected 3 X 40 mL SAMPLE REQUIRED COLLECTED Check if collected 1 X 250 mL SAMPLE REQUIRED COLLECTED Check if collected 1 X 250 mL SAMPLE COLLECTED Check if collected 1 X 250 mL SAMPLE REQUIRED COLLECTED Check if collected 1 X 250 mL SAMPLE COLLECTED Check if	TYPE OF PUMP GEOPUMP (peristaltic) SMCO BLADDER TYPE OF TUBING X LOW DENSITY HIGH DENSITY	POLYETHYLENE	Polyvinyl chloride STAINLESS STEEL	TEFLON	
Freon 113, Freon 123, Freon 152a VOCs + TIC plus, Freon 11, Freon 22, USEPA-524.2 HCL / 4 DEG. C 3 X 40 mL Freon 113, Freon 115, Freon 123, Freon 152a Chloride USEPA 4500 CL-B 4 DEG. C 1 X 250 mL Bromide USEPA 300.0 4 DEG. C 1 X 250 mL Chloride USEPA 300.0 4 DEG. C 1 X 250 mL Number of Gallons	ANALYTICAL PARAMETERS Check if Scheduled for Collection METHOD NUMBER	<u>ME</u>	ERVATION VOLUMETHOD REQUIR	RED COLLECTED Check	if collected
Chloride USEPA 4500 CL-B 4 DEG. C 1 X 250 mL USEPA 300.0 4 DEG. C 1 X 250 mL USEPA 300.0 4 DEG. C 1 X 250 mL USEPA 300.0 COMMENTS	Freon 113, Freon 115, Freon 123, Freon 152a VOCs + TIC plus, Freon 11, Freon 22, USEPA-5	524.2 HCL	/ 4 DEG. C 3 X 40 m	nL	
Purge Water Number of Gallons 2 9	Chloride USEPA 4				
Purge Water Number of Gallons 2 9	Purge Observations		COMMENTS	H	
Generated (yes) no Generated 5.7 Ann Cumul SIGNATURE:	Purge Water Conatinerized (yes) no Number of Gallons Generated	3,9		6	mec

FIELD DATE								
FIELD DATA RECORD - LOW FLOW GROUNDWATER SAMPLING PROJECT FORMAN AND JOB NO. 3617187446								
Tormer Unisys Facility	FIELD SAMPLE NUMBER	R MW- TONI	V-XX JOB NO	08/20/200				
Lake Success, New York	SITE TYP	1111-43	MU DATE	08/201200				
ACTIVITY START 1035 END 1125	SAMPLE TIME	1130						
WATER LEVEL / PUMP SETTINGS MEASUREM	MENT POINT	PROTECTIVE	CASING / V	VELL FT				
TO WATER 95,36 FT	F WELL RISER F PROTECTIVE CASING	(FROM GROUND)	FT WELL DIAM.	4 11				
FINAL DEPTH TO WATER 95,48 FT (TOR)	228 FT	AMBIENT AIR	PPM WELL INTE	ERGRITY: NO N/A				
DRAWDOWN VOLUME SCREEN LENGTH	I O FT	MOUTH	PPM CAP CASING LOCKED	五三三				
	DRAWDOWN VOLUME	TO PUMP	PSI COLLAR	Z -				
PURGED 95 GAL (purge volume (milliliters per minute) x time duration (minutes)	× 0.00026 gal/milliliter)	REFILL SETTING	DISCHARG	SE 10				
PURGE DATA	SPECIFIC	I DISS OF L TURBUREY	REDOX					
TIME WATER (ft) RATE (ml/m) (deg. c)	ONDUCTANCE pH (umho/cm) (units) < 3% ≤ 0.1 units	DISS. O2 TURBIDITY (mg/L) (ntu) ≤ 10% ≤ 50 ntu	(mv) ≤ 10 units	COMMENTS				
1035 953C 150 173 0	289 719	9.89 266	132.8					
1040 95 49 150 153 0	2807.14	10,19 1.72	133,1					
1045 95,52 150 13,50	,277 7,09	9,72 2,38	128,7					
1050 9557 150 127 C	1.275 7.09	2,30 1.41	-1.8					
108595,55 150- 126 0	1.275 7.12	0,73 2,05	16.2					
1100 95,48 150 12,5 0	0.277 7.14	0,47 33	42,4					
1105 95,54 150 12,4 0	1,276 7,16	0.37 1.60	46,6					
111095.49 150 12,4 0	,277 7.08	0,43 7,41	53.7					
1115 95,49 150 12,50	278 6.99	3.82 9.26	67.8	250				
1120 95,48 150 126 0	1280 6.96	4,73 6,49	651					
1125 95,48 150 12,5 0	279 6.94	5,12 3,97	64,1					
EQUIPMENT DOCUMENTATION								
TYPE OF PUMP TYPE OF TUBING		E OF PUMP MATERIAL		BLADDER MATERIAL				
GEOF OWN (peristante)	POLYETHYLENE X	Polyvinyl chloride STAINLESS STEEL	Other					
SMCO BLADDER HIGH DENSITY X BLADDER OTHER	TOETE MITEENE	OTHER						
ANALYTICAL PARAMETERS Check if Scheduled for Collection METHO		SERVATION VOLUM						
VOCs + TIC plus, Freon 11, Freon 22,	R	ETHOD REQUIRE ./4 DEG. C 3 X 40 ml	- Property -	collected				
Freon 113, Freon 115, Freon 123, Freon 152a VOCs + TIC plus, Freon 11, Freon 22, USEPA-	-524.2 HCL	/ 4 DEG C 3 X 40 ml						
V Simonae		EG. C 1 X 250 n						
Bromide USEPA	300.0 4 DE	EG. C 1 X 250 n						
Purge Observations	2	COMMENTS						
Purge Water Conatinerized on Generated Number of Gallons Generated	25							
			9	mec				
Eigh & IICAM								
SIGNATURE: MAN I								

FIELD	DATA RECORD - I	0141 = 1			****			
PROJECT	Former Unisys Facility	LOW FLOW G	ROUNDWAT	ER SAMPL	ING	T-XX	JOB NO.	617187446
Location	Lake Success, New York		FIELD SAMPLE		4W-43M MW-43	MI	DATE (08/20/2020
ACTIVITY	ST 11812	END 1710	1	ITE TYPE	215			
WATER LI	EVEL / PUMP SETTINGS	1010	SAMPLE TIME MENT POINT	PROTE	CTIVE		CASING / WELL DIFFER.	- FT
INITIAL DEI	PTU	TOPO	OF WELL RISER OF PROTECTIVE CAS		GROUND)	- FT	WELL DIAM.	4 1N
FINAL DE	PTH 96.01	WELL DEPTH (TOR)	330	PID AMBIE	NT AIR	PPM	WELL INTERGRI	TY: NO N/A
DRAWDO VOLU	OWN OF OF OF	SCREEN LENGTH	20	FT PID WE		PPM	CAP LA	
(initial -	final x 0.16 (2-inch) or x 0.65 (4	GAL I-inch}) RATIO OF	DRAWDOWN VOLUM			O PSI	LOCKED	==
TOTAL V	VOL. 95	101017	0.027	REFILI	1	-1	DISCHARGE SETTING	10
PURGE DA	volume (milliliters per minute) x	time duration (minutes)	x 0.00026 gal/milliliter) SETTIN	G	0	SETTING	
TIME	DEPTH TO PURGE WATER (ft) RATE (ml/m		ONDUCTANCE (umho/cm) (u	pH DISS. units) (mg/	L) (ntu)	REDOX (mv)	co	MMENTS
1145	< 0.33 ft \$ 500 ml/m	14.0	2.271 C	90 10-	% ≤ 50 ntu	\$ 10 units		
1150	95.37 300	14.0	218	71 9.3	60.80	127.9		
1155	95.95 300	13.8 0	218 6	66 5.8	10,57	131.5		
1200	95.98 300	13,90	,2206,	60 4,0	6 0,48	160.6		
1205	95.95 300	10	100	58 3/	4 0.37	1C52	5	
1510	96,01 300	13.7 0	3,220 6.	57 2.8	2 0,75	1636		
The second second	T DOCUMENTATION	7/25 05 7 120 10		7/75 05 814			ADE OF BLADDE	DMATERIAL
TYPE OF GEO	PUMP (peristaltic)	TYPE OF TUBING X LOW DENSITY F	POLYETHYLENE	TYPE OF PUN Polyvinyl			YPE OF BLADDE	NINT ERIAL
	O BLADDER		POLYETHYLENE		SS STEEL		other	
	AL PARAMETERS	OTHER		OTHER				_
Vocs	heduled for Collection s + TIC plus, Freon 11, Freon 22		La car	METHOD HCL / 4 DEG. 0	REQUIRED	SAMPLE	Check if collected	
VOCs	113, Freon 115, Freon 123, Fre + TIC plus, Freon 11, Freon 22	USEPA-5	24.2	HCL / 4 DEG.	3 X 40 mL			
Chloric	58	on 152a USEPA 45	500 CL-B	4 DEG. C	1 X 250 mL		-	
Bromio	de	USEPA 30	00.0	4 DEG. C	1 X 250 mL			
d								
urge Observ	vations	- F		COMME	NTS			
urge Water onatinerized (Number of Gallons Generated	-2					6
		7					am	ec
	Ent - A	11 dis						
SNATURE: _	Unic Un			No. of Street, or other Persons				

FIELD	DATA REC	ORD - LC	W EL OW	GROUNDW						
PROJECT	Former Unisy	s Facility	TLOW PLOW	GROUNDW	ATER SAM	PLING				3617187446
Location	Lake Success			FIELD SAM	MPLE NUMBER	IW.	-N553	35-11	JOB No.	88/19/2020
ACTIVITY	START	-			SITE TYPE	N5	5535		DATE	05/1.72
WATER L	EVEL / PUMP S	ETTINGS	The same of the sa	SAMPLET		120			CASING / WE	
INITIAL DE	PTH		ТС	P OF WELL RISER	CA	OTECTIVE SING STICK	KUP =		DIFFER.	FT
TO WA			FT	P OF PROTECTIVE	CASING (FF	ROM GROUT	ND)	FT	WELL DIAM.	IN
FINAL DE TO WA	PTH		WELL DEP (TOR)	TH	FT AM	BIENT AIR		PPM	WELL INTER	GRITY:
DRAWDO	OWN W		SCREE			WELL	-	PPM		YES NO N/A
VOLU (initial -	JME final x 0.16 {2-inc	th) or w O or re	GAL			DUTH		FFIN	CASING	
TOTAL		117 OF X 0.65 (1-1r		OF DRAWDOWN V		PUMP		PSI	COLLAR	
	GED volume (milliliters	per minute) tie	GAL	tes) x 0.00026 gal/m	RE	FILL			DISCHARGE	
PURGE D	ATA	per minute) x un	ne duration (minu	SPECIFIC	minter) SE	TTING				
TIME	DEPTH TO WATER (ft)	PURGE RATE (ml/m)	TEMP. (deg. c)	CONDUCTANCE (umho/cm)	2	ISS. O2 (mg/L)	TURBIDITY (ntu)	REDOX (mv)		COMMENTS
1000	< 0.33 ft	≤ 500 ml/m	≤ 3%	≤ 3%	≤0.1 units	≤ 10%	≤ 50 ntu	≤ 10 units		
1020			14.3	0.557	7.508	, 85	0.42	105.0		
-										
							-			
										eh.
EQUIPME	NT DOCUMENT	TATION								
	OPUMP (peristalti	r	X LOW DENS	G ITY POLYETHYLEN		PUMP MAT			TEFLON	DDER MATERIAL
	CO BLADDER			SITY POLYETHYLEN		AINLESS ST			Other	
	ADDER		OTHER_		ОТІ	HER			_	
	CAL PARAMETE scheduled for Collection			HOD	PRESERVA METHO		VOLUME REQUIRED	SAMPLE	D Check if collect	cted
	Cs + TIC plus, Fre		USE	PA-8260C	HCL/4D	EG. C	3 X 40 mL		0	
voc	Cs + TIC plus, Fre	on 11, Freon 22,	USE	PA-524.2	HCL / 4 D	EG. C	3 X 40 mL			
Fred	on 113, Freon 115, oride	Freon 123, Freo		PA 4500 CL-B	4 DEG. C		1 X 250 mL	Ø		
Bron			USE	PA 300.0	4 DEG. C		1 X 250 mL			
Purge Obse	ervations				CON	MMENTS				
Purge Water			lumber of Gallon	s						(A)
Conatinerized	yes no	G	Generated	-					20	nec
	Const	A	1							
SIGNATURE:	- M	Pur	cnu							-

FIELD DATA RECORD - LOW FLOW GR	ROUNDWATER SA	MDUNG		
PROJECT Former Unisys Facility	FIELD SAMPLE NUMBER	144 444 4	XX JOB N	3617187446
Location Lake Success, New York	SITE TYP	115-1112	DATE	08/03/2020
ACTIVITY START 1725 END 1755	SAMPLE TIME	1800		
WATER LEVEL / PUMP SETTINGS MEASUREM	MENT POINT	PROTECTIVE	CASING / I	WELL FT
INITIAL DEPTH TOP OF TOP OF	F WELL RISER F PROTECTIVE CASING	(FROM GROUND)	FT WELL	LI W
FINAL DEPTH (TOR)	289 FT	PID AMBIENT AIR	PPM DIAM.	4 IN
DRAWDOWN SCREEN LENGTH	IO FT	PID WELL MOUTH	PPM CAP	YES NO N/A
VOLUME GAL	DRAWDOWN VOLUME	PRESSURE 1	CASING LOCKED	¥ =
TOTAL VOL 10-	L VOLUME PURGED	то РИМР	PSI COLLAR	4
(purge volume (milliliters per minute) x time duration (minutes)	x 0.00026 gal/milliliter)	REFILL 20) DISCHARG SETTING	JØ
	SPECIFIC DIDUCTANCE pH	DISS. 02 TURBIDITY	REDOX	COMMENTS
TIME WATER (ft) RATE (ml/m) (deg. c) < 0.33 ft	(umho/cm) (units) ≤ 3% ≤ 0.1 units	(mg/L) (ntu) ≤ 10% ≤ 50 ntu	(mv) ≤ 10 units	COMMENTS
1725 166.80 250 18.8 0	1.591 7.48	8,5/ 11.6	1521	
1730 66.80 250 18.1 0	588 6.92	7.96 8.97	1522	
1740 166.75 250 17.2 6	566 6.81	1185 5.85	125,0	
1745 66,79 250 17.40	.556 6.64	3,93 4,37	124,3	
1750 166.80 250 17.1 0	.564 6,57	1,85 8,09	133,9	
1755 166.80 250 17.1 0	573 6.62	1.44 4.76	131.8	
SMCO BLADDER HIGH DENSITY X BLADDER OTHER	SECTION AND ADDRESS OF THE PARTY OF THE PART	OF PUMP MATERIAL Polyvinyl chloride STAINLESS STEEL OTHER	TYPE OF BL TEFLON Other	ADDER MATERIAL
ANALYTICAL PARAMETERS Check if Scheduled for Collection WETHOD NUMBER USEPA-8 Freon 113, Freon 115, Freon 123, Freon 152a	R ME	ERVATION VOLUME THOD REQUIRED 4 DEG. C 3 X 40 mL	SAMPLE Check if or	ollected
VOCs + TIC plus, Freon 11, Freon 22, Freon 113, Freon 115, Freon 123, Freon 152a	524.2 HCL /	4 DEG. C 3 X 40 mL		
	4500 CL-B 4 DEC			
USERAS USERAS	4 DEC	3. C 1 X 250 mL		
Purge Observations		COMMENTS		
Purge Water Conatinerized Vyes no Generated Number of Gallons Generated	11			-
61	//	IS/MSD aken here	a	nec
SIGNATURE JUNE TUCCOS	1	allen here	2	1100

FIELD D	ATA REC	ORD - LC	OW FLOW	GROUNDW	ATED CA	MOLIN	0			
PROJECT	Former Unisy	s Facility						V V	JOB No.	3617187446
1.	Lake Success			FIELD SA	FIELD SAMPLE NUMBER		MW-YSMI-XX			8/3/20
1 5	START 17		0/01/0		SITE TYPE		W-451	12	DATE	-
	VEL / PUMP S			SAMPLE T	TIME	9130	-		CASING / WEL	LL FT
INITIAL DEP TO WAT	TH 16	7.16	FT WELL DEP	P OF WELL RISER OP OF PROTECTIVE 333	ECASING	PROTECTIV CASING ST (FROM GRO PID	CICKUP DUND)	- FT	DIFFER. WELL DIAM.	7 IN
TO WAT	TER 16	7.16	FT (TOR)	1//	FT	AMBIENT A	IR	PPM	WELL INTERC	PRITY NO NA
DRAWDO' VOLUI (Initial - f		ch) or x 0.65 {4-in	GAL SCREE		/OLLIME	PID WELL MOUTH PRESSURE		PPM		7=
TOTAL V	OL.	17		OTAL VOLUME PU		TO PUMP	87	PSI	Device by Solida, William	
PURC (purge v		per minute) x tin	me duration (minu	ites) x 0.00026 gal/m	nilliliter)	REFILL SETTING	20)	DISCHARGE SETTING	10
PURGE DA	ATA			SPECIFIC		02111110			-1	
TIME	DEPTH TO WATER (ft) < 0.33 ft	PURGE RATE (ml/m) ≤ 500 ml/m	TEMP. (deg. c) ≤ 3%	CONDUCTANCE (umho/cm) ≤ 3%	pH (units) ≤ 0.1 units	DISS. O2 (mg/L) ≤ 10%	TURBIDITY (ntu) ≤ 50 ntu	REDOX (mv) ≤ 10 units		COMMENTS
1:10	167.20	150	16,4	0,174	6.61	8.88		164.5	Issue	w/ control so
	167.22	150	18.1	0.177	6.40	2.73	4.90	174.0		
Part Control of the C	167.20		15.6	0.177	6, 73	2.42	2.71	180.6		
19:15	167.20	150	15.5	0.172	6.33	1.76	2.72	182.9	1	
	167.19	150	15.3	0.171		1.44	1.92	183.6		
and the second second second	167.17	150	15.2	0.171		1.49	1.77	183.7		
	167.16	150		0.173	6.35	1.38	1.81	181.0		
TYPE O GEO SMO X BLA	NT DOCUMENT F PUMP DPUMP (peristalti CO BLADDER ADDER AL PARAMETE	ic)		IG BITY POLYETHYLEN	NE X	OF PUMP M. Polyvinyl chlor STAINLESS	ride		YPE OF BLADD	DER MATERIAL
Check if So	cheduled for Collections + TIC plus, Freen 113, Freen 115 s + TIC plus, Freen 113, Freen 115 ride	on 11, Freon 22, Freon 123, Freo on 11, Freon 22,	n 152a USE On 152a USE USE	PA-8260C PA-524.2 PA 4500 CL-B PA 300.0	HCL /		VOLUME REQUIRED 3 X 40 mL 3 X 40 mL 1 X 250 mL 1 X 250 mL		Check if collecte	d
Purge Obse Purge Water Conatinerized			Number of Gallon Generated	s <u>~ </u>	114	phiat w-5	e:	130	am	nec

FIELD DATA RECORD - LOW FLOW GROUNDWATER SAMPLING								
PROJECT Former Unitarys Facility FIELD SAMPLE NUMBER MILE - 4CMT - XX JOB NO. 3617187446								
LOCATION LAW TO THE MAINTER MAINTER MAINTER TO THE								
ACTION CO.								
WATER LEVEL INC.								
MITTIAL DEPTH CASING STICKUP DIFFER								
TO WATER 49,6 FT TOP OF PROTECTIVE CASING (FROM GROUND) WELL IN								
FINAL DEPTH TO WATER 149.62 FT WELL DEPTH 302 FT AMBIENT AIR PHM WELL INTERGRITY NA								
DRAWDOWN CAP SCREEN OF HOWELL MOUTH CAP YES NO LENGTH								
(missi - final x 0 16 (2-mol) or x 0 55 (4-mol) RATIO OF DRAWDOWN VOLUME PRESSURE								
TOTAL VOL. O C A B A O T								
(burge volume (milliters per miruse) v time duration (minutes) v 0 00028 garmilliter) SETTING SETTING								
PURGE DATA SPECIFIC S								
TRIAE WATER (B) RATE (MUM) (deg. c) ((umbeloum) (units) ((mg)) ((mb)) ((mu)) (COMMENTS (33 ft 50 mm)								
1130 149.61 400 16,5 0.243 7.65 8.62 4.68 118.2								
1135 14962 400 14.4 0.238 7.24 3.28 3.68 124.2								
1140 149,61 400 14,4 0,238 6,93 4,82 0,64 1334								
1145 149,63 400. 14.4 0.240 6.76 5.21 3.66 138.2								
1150 14961 400 14.3 0.244 6.69 5.29 0.86 140.7								
1155 149.62 400 14.5 0,244 667 5,31 1.72 141.9								
EQUIPMENT DOCUMENTATION								
TYPE OF PLANE TYPE OF TUENO TYPE OF PLANE POLYMPIANE POLYMPIANE POLYMPIANE TYPE OF BLADDER MATERIAL TYPE OF BLADDER TYPE OF B								
GEOPLINE (MIGH DENSITY POLYETHTLENE & STAINLESS STEEL OTHER								
X BLADDÉR OTHER OTHER								
ANALYTICAL PARAMETERS METHOD PRESERVATION VOLUME SAMPLE NUMBERS METHOD REQUIRED COLLECTION CHARACTERS								
VOCS + TIC plus, Freon 11. Freon 22. USEF94-8280C InCL / 4 DEG. C 3 X 40 mL Freon 113. Freon 115. Freon 152s								
VOCs + TIC plus, Freon 11, Freon 22. USEFA-524.2 HCL / 4 DEG, C 3 X 46 mL Freon 113, Freon 113, Freon 152s								
Chloride USEPA 4500 CL-8 4 DEG. C 1 X 250 mL								
Bromide USEPA 300 0 4 DEG. C 1 X 250 mL								
Purge Observations COMMENTS								
Purge Visiter Constinerized (a) no Generated ~2.5 Surface of Gallons ~2.5 Authorized A								

PROJECT Former Unisys Facility				
PROJECT Former Unisys Facility	OUNDWATER SAM	IPLING		
Location Lake Success, New York	FIELD SAMPLE NUMBER	MW-46ML-	XX JOB No. 3617	187446
START (A)	SITE TYPE	MW-46M	DATE 08	107/2000
THE LEVEL / PUMP SETTINGS	SAMPLE TIME	1115		
INITIAL DEPTH TOP OF	WELL RISER C.	ROTECTIVE ASING STICKUP ROM GROUND)	CASING / WELL DIFFER	— FT
FINAL DEPTH TO WATER 150,95 FT (TOR)	302 PI		PPM WELL DIAM.	4 IN
DRAWDOWN VOLUME O. 0195 LENGTH		D WELL OUTH	PPM CAP YES	NO N/A
(initial - final x 0.16 {2-inch} or x 0.65 (4-inch)) RATIO OF D	RAWDOWN VOLUME PE	RESSURE 7	CASING LOCKED	- 7
PURGED 53 TO TOTAL	VOLUME PURGED TO	PUMP 85	PSI COLLAR Z	= =
(purge volume (milliliters per minute) x time duration (minutes) x	0.00026 gal/milliliter) RE	FILL ZO	DISCHARGE SETTING	10
TIME DEPTH TO PURGE TEMP. COI	SPECIFIC	DISS. O2 TURBIDITY (mg/L) (ntu)	REDOX COMME	ENTS
1028 150 00 00 10 10 10 10 10 10 10 10 10 10 10	≤ 3% ≤ 0.1 units		(mv) COMME ≤ 10 units	:419
035 150,98 175 17.3 (133 7.50 9	.70 1.53	1100	/
1040 150.94 175, 18.4 0	11/1 6814	39 1.72	30.2 turned a	own psi
1045 150,97 175. 190 0	144 6.81 4	129 120 1	32 2	
1050 50,93 175 19,7 0	140 681 4	139 1 31 1	33.9	
1055 150,94 175 20,1 0	134 6.83 4		35.1	
1000 150,95 175 20,3 0	130 6,84 4	57 1.29 1	362	
			20, 6	
EQUIPMENT DOCUMENTATION				
TYPE OF PUMP GEOPUMP (peristaltic) SMCO BLADDER TYPE OF TUBING X LOW DENSITY PORT OF TUBING HIGH DENSITY PORT OF TUBING	DLYETHYLENE Poly	PUMP MATERIAL vinyl chloride	TYPE OF BLADDER MA	TERIAL
X BLADDER OTHER		AINLESS STEEL HER	Other	
ANALYTICAL PARAMETERS Check if Scheduled for Collection METHOD NUMBER USEPA-82	PRESERV. METHO	DD REQUIRED CO	SAMPLE LLECTED Check if collected	
Freon 113, Freon 115, Freon 123, Freon 152a VOCs + TIC plus, Freon 11, Freon 22, USEPA-52	1102/40	EG. C 3 X 40 mL	V Sincero	
Freon 113, Freon 115, Freon 123, Freon 152a	11027410	EG. C 3 X 40 mL		
USEPA 450 USEPA 300		1 X 250 mL 1 X 250 mL		
		TA 200 IIIE		
Purge Observations				
Purge Water Number of Gallons	/ COM	MMENTS		
Generated Generated	10)			A
E. 11.1			ame	C
SIGNATURE: MILL THE STORY				

PROJECT Former Unisys Facility				
PROJECT Former Unisys Facility	OUNDWATER SA	MPLING		
Location Lake Success, New York	FIELD SAMPLE NUMBER	MW-SIMI-		
ACTIVITY START 1350	SITE TYPE	- IN 017	I DATE	08/19/2020
WATER LEVEL / PUMP SETTINGS MEASUREM	SAMPLE TIME	1430	210000	WELL C
FINAL DEPTH TO WATER 112,18 FT WELL DEPTH (TOR) PRAWDOWN VOLUME (initial - final x 0.16 (2-inch) or x 0.65 (4-inch)) TOTAL VOL TOTAL VOL TOTAL TOP OF	WELL RISER PROTECTIVE CASING 203 FT 20 FT PRAWDOWN VOLUME LVOLUME PURGED	PROTECTIVE CASING STICKUP (FROM GROUND) PID AMBIENT AIR PID WELL MOUTH PRESSURE TO PUMP POTENTIAL TO PUMP PROTECTIVE TO P	CASING / DIFFER. WELL DIAM. PPM WELL INT CAP CASING LOCKED COLLAR	TERGRITY: YES NO N/A
PURGED Q GAL (purge volume (milliliters per minute) x time duration (minutes)	0167	REFILL SETTING 20	DISCHAR	GE IO
PURGE DATA TIME DEPTH TO WATER (ft) CO.33 ft S.500 ml/m (deg. c) S.3% 1350 112, 18	SPECIFIC (MDUCTANCE (umho/cm) \$ 3% \$ 0.1 units \$ 0.1 u	DISS. 02 TURBIDITY (mg/L) (ntu)	REDOX (mv) \$ 10 units 144.7 147.3 149.0 150.2 153.9	COMMENTS
SMCO BLADDER HIGH DENSITY X BLADDER OTHER		E OF PUMP MATERIAL Polyvinyl chloride STAINLESS STEEL OTHER	TYPE OF E TEFLON Other	BLADDER MATERIAL
ANALYTICAL PARAMETERS Check if Scheduled for Collection VOCs + TIC plus, Freon 11, Freon 22, Freon 113, Freon 115, Freon 123, Freon 152a VOCs + TIC plus, Freon 11, Freon 22, Freon 113, Freon 115, Freon 123, Freon 152a Chloride Bromide USEPA USEPA	R MI 8260C HCL 524.2 HCL 4500 CL-B 4 DE	/4 DEG. C 3 X 40 mL /4 DEG. C 3 X 40 mL G. C 1 X 250 mL		collected
Purge Observations Purge Water Conatinerized (ves) no Rumber of Gallons Generated SIGNATURE: And Automatical Signatures of Gallons Signatures of Gallons Generated	21	COMMENTS	а	mec

IELD DATA DEC							
IELD DATA RECORD - LOW FLOW GR	ROUNDWATER SAI	MPLING	XX JOB NO	3617187446			
ROJECT Former Unisys Facility	FIELD SAMPLE NUMBER	MW-SIML-	DATE	08/19/2020			
Lake Success, New York	SITE TYPE	MW-51M					
CTIVITY START 300 END 1325	SAMPLE TIME	1356	CASING / V	VELL FT			
TOP O	F WELL RISER	PROTECTIVE CASING STICKUP (FROM GROUND) 3	DIFFER.				
TOWATER 118.20 FT TOPO	F PROTECTIVE CASING	(I) No. III of the last of the	WELL DIAM.	4 111			
FINAL DEPTH TIME (TOR)	322 FT	AMBIENT AIR	— PPM WELL INT	ERGRITY: N/A			
TOWATER 18,08 FT SCREEN	1 -	PID WELL	- PPM CAP	YES NO N/A			
DRAWDOWN PAR CALL		MOUTH L	CASING	文==			
(initial final v 0.46 to look) and 0.65 (4 look)) PATIO OF	DRAWDOWN VOLUME AL VOLUME PURGED	PRESSURE TO PUMP	PSI COLLAR	4			
TOTAL VOL. 195 GAI	0.04	REFILL 20	DISCHARG SETTING	SE (O)			
(purge volume (milliliters per minute) x time duration (minutes) x-0.00026 gal/milliliter) SPECIFIC		DEDOX				
DEF IN 10	CONDUCTANCE pH (umho/cm) (units)	DISS. O2 TURBIDITY (ntu)	REDOX (mv) ≤ 10 units	COMMENTS			
TIME WATER (ft) RATE (ml/m) (deg. c) < 0.33 ft \$ \$500 ml/m \$ \$ 3%	≤ 3% ≤ 0.1 units	≤ 10% ≤ 50 ntu	113.5				
1300 118,20 300 16,8 (100	10 29 1 98	125.7				
1305 118.17 300 14.5	193 151	000 119	174.7				
1310 118,15 300 19,1	1.608 1.01	276 129	18/06				
1315 118,12 500 14.9	1200 CA	1.44 0.59	181.4				
1320 18,11 300 13,9	0,208 6.70	0.982.83	177.1				
1325 118.08 300 15.4	1200	0,10					
				-			
				-			
EQUIPMENT DOCUMENTATION	TVE	PE OF PUMP MATERIAL	TYPE OF	BLADDER MATERIAL			
TYPE OF PUMP	TY POLYETHYLENE	Polyvinyl chloride	TEFLON				
GEOPUMP (peristaltic) SMCO BLADDER X LOW DENSI	TY POLYETHYLENE X	STAINLESS STEEL	Other				
X BLADDER OTHER		NOLUME.	SAMPLE				
ANALYTICAL PARAMETERS Check if Scheduled for Collection METH NUMB	BER N	METHOD REQUIRE	D COLLECTED Check	r if collected			
VOCs + TIC plus, Freon 11, Freon 22, Freon 113, Freon 115, Freon 123, Freon 152a	A-02000	1,4020.0					
USEF	PA-524.2 HCI	L / 4 DEG. C 3 X 40 ml					
Freon 113, Freon 115, Freon 123, Freon 152a	A 4000 GL-D	EG. C 1 X 250 m					
Chloride USEF	PA 300.0 4 D	DEG. C 1 X 250 H					
			H				
COMMENTS							
Purge Observations Purge Water Number of Gallon	2						
Purge Observations Purge Water Conatinerized Very no Number of Gallons 22 Generated September 1							
SIGNATURE: 4 MIL CUO				7/24/2020			
The Collaboration							

IELD DATA RE	CORD - LOW FLOW	W GROUNDW	ATER SAI	-	11000	- 1	JOB No.	3617187446	_
ROJECT Former Unis	sys Facility	FIELD SAM	MPLE NUMBER	IW-	Con	771		08/20/202	0
cation Lake Succe	ss, New York		SITE TYPE	LA	4687		DAIL L	0,10,	
CTIVITY START 10	OO END	SAMPLE T	IME /	000			ASING / WEL		FT
ATER LEVEL / PUMP		SUREMENT POINT TOP OF WELL RISER TOP OF PROTECTIVE		CASING STIC FROM GROU	KUP ND)	FT	WELL DIAM.		IN
FINAL DEPTH TO WATER	WELL D			MBIENT AIR			WELL INTERG	RITY:	N/A
DRAWDOWN VOLUME	LEN	EEN OTH	FT	MOUTH		PPM	CASING .	===	
(initial - final x 0.16 {2-i	nch) or x 8:65 (4-inch)) RA	TIO OF DRAWDOWN VO TOTAL VOLUME PU	RGED	PRESSURE TO PUMP		PSI	COLLAR		
PURAFO	GAL GAL rs per minute) x time duration (n	ninutes) x 0.00026 gal/n		REFILL SETTING			SETTING		
PURGE DATA DEPTH TO WATER (ft)	PURGE TEMP.	SPECIFIC CONDUCTANCE (umho/cm)	pH (units)	DISS. O2 (mg/L) \$ 10%	TURBIDITY (ntu) ≤ 50 ntu	REDOX (mv) ≤ 10 units		COMMENTS	
< 0.33 ft	\$ 500 ml/m \$ 3%	10.321	8,05	8,22	0.50	132,9)		
		4							_
		:							
	1								
TYPE OF PUMP GEOPUMP (peris SMCO BLADDER X BLADDER	taltic) TYPE OF T	ENSITY POLYETHYLE	ENE	OF PUMP M Polyvinyl chlo STAINLESS OTHER	ride		TYPE OF BLA	DDER MATERIAL	
ANALYTICAL PARAMI Check if Scheduled for Coll VOCs + TIC plus,	ection	METHOD NUMBER USEPA-8260C	ME	ERVATION ETHOD /4 DEG. C	VOLUME REQUIRED 3 X 40 mL	SAMPLE	ED Check if coll	ected	
Freon 113, Freon VOCs + TIC plus,	115,Freon 123, Freon 152a Freon 11, Freon 22,	USEPA-524.2	HCL	/ 4 DEG. C	3 X 40 mL				
Freon 113, Freon Chloride Bromide	115,Freon 123, Freon 152a	USEPA 4500 CL-B USEPA 300.0	4 DE 4 DE		1 X 250 ml 1 X 250 ml	=			
Purge Observations				COMMENT	S				
Purge Water Conatinerized yes	Number of Generated	Gallons					aı	mec	0
CNATURE (M	VIIVE	18							

FIELD	DATA RECORD - L	OW FLOW G	ROUNDWA	TER SAM	PLING		-	-	
PROJECT	Former Unisys Facility		FIELD SAMPL		111	T 4-	TYV	JOB No.	3617187446
Location	Lake Success, New York		T FIELD OWNER		1010	1 7	I-XX	DATE	08/04/2029
ACTIVITY	arine 1341	ND	CAMPLETAN	SITE TYPE	111	MM-00	MI	DATE L	01/10/1
WATER L	EVEL / PUMP SETTINGS		SAMPLE TIME		OTECTIVE	30	C	ASING / WELL	
INITIAL DE		V TOP C	OF WELL RISER OF PROTECTIVE CA	CA	SING STIC	CKUP -		OIFFER.	FT
TO WA	1000	WELL DEPTH	02-	PIL		0110)	V	VELL DIAM.	4 IN
FINAL DE TO WA	TER 120.71	FT (TOR)	1235		BIENT AIR		PPM	VELL INTERGR	RITY:
DRAWDO	OWN O OSO	SCREEN	20		WELL	-	PPM	CAP YE	
VOLU (initial -	final x 0.16 (2-inch) or x 0.65 (4-	GAL inch}) RATIO OF	DRAWDOWN VOL	UME PR	ESSURE	100		CASING	7
TOTAL \	/OL		AL VOLUME PURG		PUMP	65		COLLAR	Z = <u>-</u>
(purge v	volume (milliliters per minute) x t	GAL (minutes)	0028 x 0.00026 gal/millilli	RE ter) SE	FILL	20		ISCHARGE ETTING	10
PURGE DA	ATA	1	SPECIFIC				procy	1	
TIME	WATER (ft) RATE (ml/m)	(deg. c)	ONDUCTANCE (umho/cm)	(units)	ISS. O2 (mg/L)	TURBIDITY (ntu)	REDOX (mv)	C	OMMENTS
1340	120.7030 0	16.4 1	107 5	0.1 units	≤10% ¬/	≤ 50 ntu	2 AU 3		
1345	120,71 200	14.8 1	078	04 5	34	765	1069		
1350	130,74 300	145	1.609	27 6	156	6.18	146.2		
1355	120,73 300	14.5 0	602 6	270	,53	1.71	146.5		
1400	120.71 300	14.4 0	. 566 6	28 0	42	2.60	1498		
1905	120.72 300 .	14.4 0	,551 6	280	.37	8.76	153.6		
1410	120.71 306	14.4 3		28 0	33	6.59	156.2		
FOLIPMEN	T DOCUMENTATION								
TYPE OF		TYPE OF TUBING		TYPE OF	PUMP MA	TERIAL	TY	PE OF BLADD	ER MATERIAL
	PUMP (peristaltic) O BLADDER		POLYETHYLENE	Poly	vinyl chlorid	de		EFLON	ENMATERIAL
	DDER	OTHER_	POLYETHYLENE		INLESS S	TEEL	Ot	her	
	AL PARAMETERS neduled for Collection	METHOD		PRESERVA					
	+ TIC plus, Freon 11, Freon 22,	NUMBER	3	METHO HCL / 4 DI	D	VOLUME REQUIRED 3 X 40 mL	SAMPLE	Check if collected	d
	113, Freon 115, Freon 123, Freon + TIC plus, Freon 11, Freon 22.		524.2				, LV		
Freon	113, Freon 115, Freon 123, Freo	on 152a		HCL / 4 DI	EG. C	3 X 40 mL			
Chlorie Bromi		USEPA 4 USEPA 3	500 CL-B 00.0	4 DEG. C		1 X 250 mL 1 X 250 mL	M		
R						1 A 200 IIIL			
									*
urge Obser urge Water	rge Observations COMMENTS COMMENTS								
onatinerize									
	CIA . moderate amor								
GNATURE: _	Emily 1	work		100	110	Tha	1 ter	-6	intend
FDR	s_Blank/LF Callahan			11004.	eve	9 01	1 100	of h	MITEL COLLIN
									7/24/2020

FIELD DATA RECORD - LOW FLOW GI	ROUNDWATER SA	MPLING		
PROJECT Former Unisys Facility	FIELD SAMPLE NUMBER	MW-52/	UL-XX JOBN	
Lake Success, New York	SITE TYPE		52ML DATE	08/04/2020
ACTIVITY START 1435 END 1455	SAMPLE TIME	1530	CASING / \	A/ELL
INITIAL DEPOS	OF WELL RISER	PROTECTIVE CASING STICKUP	CASING /	FT
TOWATER [2308 FT]	OF PROTECTIVE CASING	(FROM GROUND)	WELL DIAM.	4 10
FINAL DEPTH TO WATER 123.11 FT (TOR)	320 FT	AMBIENT AIR	PPM WELL INT	
DRAWDOWN SCREEN LENGTH	20 FT	PID WELL	PPM CAP	YES NO
VOLUME (1) OF S GAL (initial - final x 0.16 (2-inch) or x 0.65 (4-inch)) RATIO OF	DRAWDOWN VOLUME AL VOLUME PURGED	PRESSURE TO PUMP	F PSI COLLAR	z = /
PURGED 1.43 GAL O.	0136	REFILL 7	DISCHARG SETTING	GE 10
(purge volume (milliliters per minute) x time duration (minutes) PURGE DATA) x 0.00026 gal/milliliter) SPECIFIC	SETTING		
TIME DEPTH TO PURGE TEMP. COMMENT TIME WATER (ft) RATE (ml/m) (deg. c)	CONDUCTANCE pH (umho/cm) (units)	DISS. 02 TURBIDIT (mg/L) (ntu)	Y REDOX (mv) ≤ 10 units	COMMENTS
1435 12308 275 1646 C	\$3% \$0.1 units 0.208 6.95	\$10% \$50 ntu	15,2	
1440 1.23,09 275 15,5	0.156 7.65	8166 3,67	135.3	
1445 12312 275 15.4 0		6.73 6.73	128.1	
	0.139 8.70	5.88 5.93	128.5	
1455 123,11 275, 15,2	3.138 8.81	5.50 4.31	12001	
GEOF OWN (periodicae)	Y POLYETHYLENE X	E OF PUMP MATERIAL Polyvinyl chloride STAINLESS STEEL OTHER	TYPE OF B	BLADDER MATERIAL
TWO TOUGS + TIC plus, Fredit Fr, Fredit Ez,	BER M	SERVATION	ED COLLECTED Check if	collected
TVOCS TTIC plus, TTCOTT TT, TTCOTT TT,	A-524.2 HCL	/ 4 DEG. C 3 X 40 m	nL 🗆	
Culonde		G. C 1 X 250 G. C 1 X 250	The second second	
Bromide USEP	A 300.0 4 DE	.0.0		
Russa Observations		COMMENTS		
Purge Observations Purge Water Conatinerized (yes) no	~1.5	+** 1	а	mec

FIELD	DATA RECORD - LO	OW FLOW GR	OUNDWATE	R SAMPLIN	IG		
PROJECT	Former Unisys Facility		FIELD SAMPLE I	Property	1-53MI	-XX JO	DB No. 3617187446
	Lake Success, New York				MW-53		ATE 08/04/2020
	START 1015 EN	10 1160	SAMPLE TIME	1110			
	VEL / PUMP SETTINGS	MEASUREM	ENT POINT WELL RISER	PROTECT	IVE		IG/WELL FT
TO WAT	ER 38,86	TOP OF TOP OF	PROTECTIVE CASI	CASING S		FT DIFFE	4
FINAL DEP TO WAT	ER 58.89	(TOR)	157	AMBIENT PID WELL		PPM	INTERGRITY: YES NO N/A
VOLUM	ME () MIGE	LENGTH	20 PRAWDOWN VOLUM	FT MOUTH		PPM CAS	ING
TOTAL V	OL 1.755	CAL TO TOTAL	O 1 /	DEENI	73	PSI COL	HARGE 10
PURGE DA	olume (milliliters per minute) x tin	me duration (minutes) x	SPECIFIC) SETTING		J SEII	ino [O
TIME	DEPTH TO PURGE RATE (ml/m) < 0.33 ft \$\$ \$500 ml/m\$		NDUCTANCE (umho/cm) (i	pH DISS. O units) (mg/L) 1 units ≤ 10%	2 TURBIDITY (ntu) ≤ 50 ntu	REDOX (mv) ≤ 10 units	COMMENTS
1015	58.86 150	16.6 C	. 226 6.	31 0.5	1,45	74.2	
1020	58.86 150	16.6 0	.226 G.	27 0.43	5 2,52	71,5	
1025	58,88 150	6.50	228 6.	280,4	22,94	81.6	
1030	58.89 150	16.4 0	1228 6	290.3	75.48	87.4	
1035	58,89 150	16.3 0	229 6	30 0,39	2 11	96.9	
1040	58.85 150	16,40	129 6	31 0,31	1750	1123	
1042	58.87 150	16,1	129 6	20 0 2/	400	12/7	
1050	59.00 150	162 0	270 6	30 0.30	1.34	1253	
1100	58,89 150	16.2 0	120 6	30 0.3	1.42	129.3	
1700	50,81130	10.0		, 30, 5, 5	11.10	10	
100000000000000000000000000000000000000	T DOCUMENTATION	TYPE OF TUBING		TYPE OF PUMP	MATERIAL	TYPE	OF BLADDER MATERIAL
TYPE OF	PUMP (peristaltic)		POLYETHYLENE	Polyvinyl o	hloride	TEF	
	O BLADDER	HIGH DENSITY	POLYETHYLENE	X STAINLE OTHER	SS STEEL	Other	-
ANALYTICA	AL PARAMETERS	19.00		PRESERVATION	VOLUME	SAMPLE	
TVIVOC	s + TIC plus, Freon 11, Freon 22 n 113, Freon 115,Freon 123, Fre	METHOD NUMBER 2, USEPA-8	3	METHOD HCL / 4 DEG. C	REQUIRED		heck if collected
VOC	s + TIC plus, Freon 11, Freon 23, n 113, Freon 115, Freon 123, Fre	2, USEPA-5	524.2	HCL / 4 DEG. C	3 X 40 mL		
Chlor	ride		1500 CL-B	4 DEG. C 4 DEG. C	1 X 250 mL 1 X 250 mL	-	
Brom	nde	USEPAS		700.0	1 A 200 Mil		
				1			
Purge Obse	ervations	Number of Gallons	1-	COMME	NTS		
Conatinerized	O no	Generated _	-1.5	4			amoc
	C 1 1						amec
SIGNATURE:	Emili 11	COO					

FIELD	DATA REC	ORD - LO	OW FLOW	GROUNDW	ATER SAI	MPLING					7
DDa	Former Unisy				APLE NUMBER		-53 ML	-XX	JOB No.	3617187446	4
Location	Lake Success				SITE TYPE		W-53		DATE	08/04/2020)
ACTIVITY	START 112		0 145	SAMPLE T	IME	1230					_
	EVEL / PUMP S	ETTINGS		REMENT POINT P OF WELL RISER		PROTECTIVE		-	CASING / WEI	LL F	Т
INITIAL DE TO WA	PTH C	.88		P OF PROTECTIVE		FROM GRO		FT	WELL	ч	7
FINAL DE	ртн 🕟	00	WELL DEP	7.42	FT A	MBIENT AIR	-	- PPM	DIAM.		IN)
TO WA	TER \\	-187	SCREE	N OO		PID WELL			WELL INTER	YES NO N	Α
DRAWDO	JME U.O	065	GAL			MOUTH		- PPM	CAP CASING LOCKED	7 = =	
TOTAL Y	final x 0.16 (2-inc	h) or x 0.65 {4-in	nch)) RATIO	OF DRAWDOWN V OTAL VOLUME PUI	0201110	O PUMP	45	PSI	COLLAR	Z = =	_
PUR	GED	3	GAL me duration (minu	0,005 tes) x 0.00026 gal/m		REFILL	20		DISCHARGE SETTING	10	
PURGE D	ATA	per minote/ x un		SPECIFIC			TURRINGTY	REDOX	1		
TIME	DEPTH TO WATER (ft)	PURGE RATE (ml/m)	TEMP. (deg. c)	CONDUCTANCE (umho/cm)	(units)	DISS. O2 (mg/L)	TURBIDITY (ntu) ≤ 50 ntu	(mv) ≤ 10 units	-	COMMENTS	
1125	52.8\$	250°	174	0,163	6,24	4.85	3.44	151.8			
1130	57 93	750	16.6	0.160	6,26	2.92	7,90	1520	5		
135	52.89	250.	16.0	0.160	622	2.88	7.99	133.8	3		
1140	52.89	250.	15.9	0.162	6.21:	3.35	3.14	137,5	3		
1145	52.89	250	15.8	0.163	6.22	3,51	1.76	140.8			
			1	4					-		
-											
-						-					
The second second	NT DOCUMENT	TATION	TYPE OF TUBIN	NG.	TYPE	OF PUMP M	ATERIAL	1	YPE OF BLAI	DDER MATERIAL	
	OPUMP (peristalti	c)	X LOW DENS	SITY POLYETHYLE	NE P	olyvinyl chlor	ride		TEFLON		
	CO BLADDER ADDER		OTHER_	SITY POLYETHYLE		OTHER	STEEL		Other		
ANALYTIC	CAL PARAMETI		ME	ГНОД	PRESER	RVATION	VOLUME	SAMPLE			
PVO	Cs + TIC plus, Fre	on 11, Freon 22	USE	MBER PA-8260C		HOD DEG. C	3 X 40 mL	COLLECTE	D Check if colle	cted	
100000000000000000000000000000000000000	on 113, Freon 115 Cs + TIC plus, Fre		1100	PA-524.2	HCL / 4	DEG. C	3 X 40 mL				
	on 113, Freon 115		on 152a	PA 4500 CL-B	4 DEG.	C	1 X 250 mL		,		
	mide			PA 300.0	4 DEG.		1 X 250 mL				
Purge Obs	servations				C	OMMENTS	3				
Purge Water Conatinerize			Number of Gallo Generated	ns ~ 2.5						6	A
	0	1 1							ar	nec	
SIGNATURE	Smit	i V	Mema)							
SIGNATURE	- UVVV	-		_							

FIELD	DATA REC	ORD - LO	W FLOW	GROUNDW	ATER SA	MPLING				
PROJECT	Former Unisys				MPLE NUMBER		-N132	2/-22	JOB No.	3617187446
Location	Lake Success	, New York			SITE TYPE		3221	CITA	DATE	08/07/2020
ACTIVITY	START	END)	SAMPLE T		0745				7
INITIAL DE TO WA FINAL DE TO WA DRAWDO VOLI (initial TOTAL	FINAL DEPTH TO WATER FT WELL DEPTH (IQR) FT SCREEN LENGTH VOLUME (Initial - final x 0.16 {2-inch} or x 0.65 (4-inch)) TO TAL VOL PURGED (purge volume (milliliters per minute) x time duration (minutes)				E CASING FT FT VOLUME	PID AMBIENT AIR PPN PID WELL PPN PRESSURE		PPM	CASING / WELL DIAM. WELL INTER CAP CASING LOCKED COLLAR	FT
		per minute) x tim	GAL (minut	ee) v 0 00026 gal/n	nillilites)	REFILL SETTING			DISCHARGE	
TIME	DEPTH TO WATER (ft) < 0.33 ft	PURGE RATE (ml/m) ≤ 500 ml/m	TEMP. (deg. c) s 3%	SPECIFIC CONDUCTANCE (umho/cm) ≤ 3%	pH (units) ≤0.1 units	DISS. 02 (mg/L) \$10%	TURBIDITY (ntu) \$ 50 ntu	REDOX (mv) ≤ 10 units		COMMENTS
TYPE GG GI SI X B ANALYTI Check ii	ENT DOCUMENT OF PUMP EOPUMP (peristalt MCO BLADDER LADDER ICAL PARAMET Scheduled for Collecti DCs + TIC plus, Freen 113, Freen 115 DCs + TIC plus, F	ERS on eon 11, Freon 22 5, Freon 123, Free eon 11, Freon 22	MET NUM USE ON 152a USE USE	HOD MBER PA-8260C PA-524.2 PA 4500 CL-B PA 300.0	PRESI ME HCL		ide	SAMPLE	TEFLON Other	DDER MATERIAL ected
Purge Ob Purge Wat Conatineriz	zed yes (60)	· Aug	Number of Gallor Generated	ns		COMMENTS	3		ar	nec

FIELD I	DATA REC	ORD - LO	W FLOW	ROUNDWA	ATER SA	MPLING			
The second second	Former Unisys				PLE NUMBER		-N1326	CXX	JOB No. 3617187446
Location	Lake Success	, New York			SITE TYPE		3266		DATE 08/07/2020
ACTIVITY	START	END		SAMPLE TI	ME	0748			
INITIAL DE TO WA			_ TOP	REMENT POINT OF WELL RISER OF PROTECTIVE		PROTECTIVE CASING STIC (FROM GRO)	CKUP		CASING / WELL OIFFER.
FINAL DE TO WA	3		WELL DEPT (TOR)	H		PID AMBIENT AIR		BPM	WELL INTERGRITY:
DRAWDO VOLU (initial -	UC19496	h) or x 0.65 (4-in-	SCREEN LENGTH		FT	MOUTH PRESSURE		РРМ	CAP SAING SA
TOTAL	VOL.		TOTO	es) × 0.00026 gal/m	RGED	TO PUMP		PSI	COLLAR DISCHARGE SETTING
PURGE D	ATA	per minute) x um	e duration (minute	SPECIFIC	illiliter)	SETTING			02,7,110
TIME	DEPTH TO WATER (ft) < 0.33 ft	PURGE RATE (ml/m) ≤ 500 ml/m	TEMP. (deg. c) ≤ 3%	CONDUCTANCE (umho/cm) ≤ 3%	pH (units) ≤ 0.1 units	DISS. O2 (mg/L) ≤ 10%	TURBIDITY (ntu) ≤ 50 ntu	REDOX (mv) ≤ 10 units	
0748	-		23,4	1.047	7.93	2.73	2.36	(38.7	7
-									
-									
EQUIPME	ENT DOCUMEN	TATION							
TYPE GE	OF PUMP EOPUMP (peristal) MCO BLADDER LADDER			IG SITY POLYETHYLEI SITY POLYETHYLE	NE	OF PUMP M Polyvinyl chlo STAINLESS OTHER	ride		TYPE OF BLADDER MATERIAL TEFLON Other
Check if	CAL PARAMET Scheduled for Collecti DCs + TIC plus, Freen 113, Freen 11	eon 11, Freon 22	, USE	HOD MBER PA-8260C	ME	ERVATION ETHOD 4 DEG. C	VOLUME REQUIRED 3 X 40 mL	SAMPLE	ED Check if collected
□vc Fre	OCs + TIC plus, Freen 113, Freen 11	eon 11, Freon 22	USE on 152a	PA-524.2	HCL	4 DEG. C	3 X 40 mL		
	nloride omide			PA 4500 CL-B PA 300.0	4 DE		1 X 250 mL 1 X 250 mL		
Purge Ob	servations					COMMENT	S		
Purge Wat Conatineriz	ged yes no	il 1	Number of Gallor Generated	ns					amec

FIELD	DATA REC	ORD - LOV	N FLOW	GROUNDWA	TER SA	MPLING			
	Former Unisys				PLE NUMBER		-N1388	9-24	JOB No. 3617187446
Location	Lake Success	, New York			SITE TYPE		13889		DATE 08/07/2020
ACTIVITY	START	END		SAMPLE TI	ME	075			
WATER LE	EVEL / PUMP S	ETTINGS	_	REMENT POINT		PROTECTIV	The same of the sa		SING / WELL FT
INITIAL DE TO WA	PTH	F		P OF WELL RISER P OF PROTECTIVE	CASING	(FROM GRO		FT	ELL
FINAL DE			WELL DEPT	гн	FT	PID AMBIENT All	R	PPM	AM. IN
TO WA		ı	SCREE	N		PID WELL			ELL INTERGRITY: YES NO N/A
DRAWDO	UME	G	LENGTI	The second secon	PT	MOUTH		0	CAP
	final x 0.16 {2-inc	h) or x 0.65 {4-inc		OF DRAWDOWN V		PRESSURE TO PUMP			OCKED
	RED	G	AL			REFILL			SCHARGE
PURGE D		per minute) x tim	e duration (minu	tes) x 0.00026 gal/mi	illiliter)	SETTING		30	THING
TIME	DEPTH TO WATER (ft)	PURGE RATE (ml/m)	TEMP. (deg. c)	CONDUCTANCE (umho/cm)	pH (units)	DISS. O2 (mg/L)	TURBIDITY (ntu)	REDOX (mv)	COMMENTS
0752	< 0.33 ft	≤ 500 ml/m	≤ 3%	1 209	≤ 0.1 units	≤ 10%	≤ 50 ntu	≤ 10 units	
152			23,8	1, 201	7,42	7,45	3,07	1/0/7	
FOUNDA	ENT BOOLINE	TATION							
	OF PUMP	ITATION	TYPE OF TUBI	NG	TYP	E OF PUMP N	MATERIAL	TY	PE OF BLADDER MATERIAL
	EOPUMP (peristal	Itic)		SITY POLYETHYLE		Polyvinyl chlo			EFLON
	BLADDER		OTHER_	SITT POLITE INTLE	NE A	OTHER_	SIEEL		her
	ICAL PARAMET		ME	THOD	PRES	SERVATION	VOLUME	SAMPLE	
	OCs + TIC plus, Fi		US	MBER EPA-8260C		/4 DEG. C	3 X 40 mL	COLLECTED	Check if collected
	reon 113, Freon 11 OCs + TIC plus, Fr			EPA-524.2	HCL	/ 4 DEG. C	3 X 40 mL		
FI	reon 113, Freon 11		on 152a	EPA 4500 CL-B	4.06	EG. C	1 X 250 mL	1	
	romide			EPA 300.0		G. C	1 X 250 ml		
								H	
Purge O	bservations					COMMENT	rs		
Purge Wa	ater rized yes no		Number of Galle Generated	ons					A)
- Consumor	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	^ 1							amec
	- 6.00	6.1	10						
SIGNATU	KE: WIN	IN	VU CO	Contract of the last of the la					

FIELD DATA RECORD - L	OW FLOW G	ROLINDWA	TED SA	MDLING		-	
PROJECT Former Unisys Facility	CWILOWG	7	PLE NUMBER	Page 1		- LY	JOB No. 3617187446
Location Lake Success, New York		TIELD SAMI	SITE TYPE	-LW	N8038	-	DATE 08/07/2020
ACTAITY CTART		-		093	6000		
WATER LEVEL / PUMP SETTINGS	MEASURI	SAMPLE TIP		PROTECTIVE			CASING / WELL FT
INITIAL DEPTH TO WATER FINAL DEPTH TO WATER	FT WELL DEPTH	OF WELL RISER OF PROTECTIVE	CASING	CASING STIC FROM GROU PID AMBIENT AIR	JND)	FT	WELL INTERGRITY: YES NO N/A
DRAWDOWN VOLUME (initial - final x 0.16 {2-ineft} or x 0.65 {		F DRAWDOWN VO	OLUME !	PRESSURE	-	PPM	CAP
TOTAL VOI. PURGED (purge volume (milliliters per minute):	GAL	s) × 0.00026 gal/mi		REFILL SETTING			DISCHARGE
PURGE DATA TIME	n) (deg. c) ≤ 3%	SPECIFIC CONDUCTANCE (umho/cm) ≤ 3% 9.6.55	pH (units) ≤0.1 units	DISS. O2 (mg/L) ≤ 10%	TURBIDITY (ntu) ≤ 50 ntu	REDOX (mv) ≤ 10 units	
0130	15.7	2.635	7,00	2.03	0000	1100	
			-				
EQUIPMENT DOCUMENTATION TYPE OF PUMP GEOPUMP (peristaltic) SMCO BLADDER X BLADDER ANALYTICAL PARAMETERS	HIGH DENS	TY POLYETHYLEN	NE X	OF PUMP M Polyvinyl chlo STAINLESS OTHER	ride		TYPE OF BLADDER MATERIAL TEFLON Other
Check if Scheduled for Collection VOCs + TIC plus, Freon 11, Freo Freon 113, Freon 115,Freon 123, VOCs + TIC plus, Freon 11, Freo Freon 113, Freon 115,Freon 123,	Freon 152a 122, USEF		ME HCL /	4 DEG. C		SAMPLE	D Check if collected
Chloride Bromide	USEF	PA 4500 CL-B PA 300.0	4 DEC		1 X 250 mL 1 X 250 mL		
Purge Observations Purge Water Conatinerized yes 60	Number of Gallons Generated			COMMENT	S		amec

FIEL D	DATA REC	CORD - LO	OW FLOW	GROUND	VATER S	SAMPLIN	G			
			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		AMPLE NUME	BER Sh	1- NSC	198-XX	JOB No.	3617187446
PROJECT				FIELD OF	SITETY		5099		DATE	0 8/07/2020
Location	Lake Succes			SAMPLE	Г	080	10			
ACTIVITY	START / PUMP	EN		UREMENT POINT	TIVIE	PROTECTI	VE		CASING / WE	ELL F
	EVEL / PUMP :	SETTINGS	Т	OP OF WELL RISE OP OF PROTECTIV	R	CASING ST	TICKUP	FT		
TO WA			FT		TE CASITO	PID		7.0	DIAM.	IN
FINAL DE	-0.00 (A)		WELL DE		FT	AMBIENT A	IR	PPM	WELL INTER	GRITY: VES NO N/A
TO WA			SCRE	EN F	-	PID WELL MOUTH		РРМ	CAP	YES NO NO
VOLU	ACCOUNT OF THE PERSON OF THE P		GAL		FT		-		CASING LOCKED	
(initial -	final x 0.16 (2-inc	ch) or x 0.65 (4-in	nch)) RATIO	OF DRAWDOWN TOTAL VOLUME PL	VOLUME JRGED	TO PUMP		PSI	COLLAR	
TOTAL \	GED		GAL			REFILL			DISCHARGE SETTING	
(purge)	volume (milliliters	per minute) x tin	ne duration (min	utes) x 0.00026 gal/r	milliliter)	SETTING				
PURGE D	ATA DEPTH TO	PURGE	TEMP.	SPECIFIC		DISS. 02	TURBIDITY (ntu)	REDOX (mv)		COMMENTS
TIME	WATER (ft) < 0.33 ft	RATE (ml/m) ≤ 500 ml/m	(deg. c) ≤ 3%	(umho/cm) ≤ 3%	(units) ≤ 0.1 units	(mg/L) ≤ 10%	≤ 50 ntu	≤ 10 units		
0833			15,8	0,263	8,01	7.33	2,65	118.4		
									-	
									-	
		3								
EQUIPMEN	T DOCUMENT				77/05	OF PUMP MA	TERIAL	TV	DE OF BLADE	DER MATERIAL
TYPE OF	PUMP (peristaltic	ŕ	LOW DENS	<u>G</u> ITY POLYETHYLEN		Polyvinyl chlori			EFLON	ZEIN WONT ELINETE
=	O BLADDER		HIGH DENS	ITY POLYETHYLEN	E X	STAINLESS S	TEEL		ther	
	DDER		OTHER			OTHER		-	-	
	AL PARAMETEI heduled for Collection		MET			ERVATION THOD	VOLUME REQUIRED	SAMPLE	Check if collecte	d
	s + TIC plus, Freo 1113, Freon 115,F		USE	PA-8260C		4 DEG. C	3 X 40 mL			
Vocs	+ TIC plus, Freo	n 11, Freon 22,	USE	PA-524.2	HCL /	4 DEG. C	3 X 40 mL	V		
Ereon	113, Freon 115,F	reon 123, Freon		PA 4500 CL-B	4 DEG	3. C	1 X 250 mL	rd		
Bromi				PA 300.0	4 DEC		1 X 250 mL			
lurae Ob-	nuations				1.	OMMENTO				
Purge Obser Purge Water	Vations	Nu	mber of Gallons		1	COMMENTS				
Conatinerized	yes (ng	Ge	nerated		11	Ser	vice umping		200	100
	20	0			av	nd p	umping		an	IEC
IGNATURE /	mila	Tul	Cio			,				

FIELD	FIELD DATA RECORD - LOW FLOW GROUNDWATER SAMPLING										
PROJECT	Former Unisy				PLE NUMBER		N4388	5-XX	JOB No. 3617187446		
Location	Lake Success	s, New York			SITE TYPE		14388		DATE 08/03/2020		
ACTIVITY	START 13	26 END	1330	SAMPLE TI	ME	1335					
	EVEL / PUMP S	ETTINGS		REMENT POINT OF WELL RISER		PROTECTIVE			ASING / WELL FT.		
INITIAL DE TO WA		_		OF PROTECTIVE		(FROM GRO		FT	WELL		
FINAL DE			(TOR)	Н		PID AMBIENT AIR		PPM	DIAM. IN		
TO WA			SCREE		7.00	PID-WELL			WELL INTERGRITY: YES NO N/A		
VOLU		(LENGTH		No. of the last	MOUTH		PPM	CAP		
TOTAL		n) or x 0.65 (4-in	**	OF DRAWDOWN V OTAL VOLUME PUR		PRESSURE TO PUMP			COLLAR		
PUR	GED	per minute) x tim	GAL minut	es) x 0.00026 gal/m	illiliter)	REFILL SETTING			DISCHARGE		
PURGE D	ATA			SPECIFIC				DEDOX	1		
TIME	DEPTH TO WATER (ft) < 0.33 ft	PURGE RATE (ml/m)	TEMP. (deg. c)	(umho/cm)	pH (units) ≤ 0.1 units	DISS. O2 (mg/L) ≤ 10%	TURBIDITY (ntu) ≤ 50 ntu	REDOX (mv) ≤ 10 units	COMMENTS		
1326	- 0.33 H	≤ 500 ml/m	16.	0.466	6.85	8.04	18.6	189.2			
				Cirey	0100		1/11				
			1								
			Land of the land								
-											
									-		
		+									
	NT DOCUMENT	TATION	TYPE OF TUBIN	G	TYPE	OF PUMP M	ATERIAL	I	YPE OF BLADDER MATERIAL		
GE	OPUMP (peristalti	(c)		ITY POLYETHYLEN		Polyvinyl chlor STAINLESS		=	TEFLON Other		
	CO BLADDER ADDER		OTHER_	ITY POLYETHILE		OTHER	SIEEL		Juliel		
	CAL PARAMETE			HOD		RVATION	VOLUME	SAMPLE			
Tvo	Cs + TIC plus, Fre	on 11, Freon 22,	USE	IBER PA-8260C		4 DEG. C	3 X 40 mL	COLLECTE	D Check if collected		
	on 113, Freon 115 Cs + TIC plus, Fre			PA-524.2	HCL /	4 DEG. C	3 X 40 mL				
Free	on 113, Freon 115	Freon 123, Freo		PA 4500 CL-B	4 DEC	3. C	1 X 250 mL				
	mide		USE	PA 300.0	4 DEC	3. C	1 X 250 mL				
Purge Obs	servations					COMMENTS	3		0.12		
Purge Water Conatinerize			Number of Gallor Generated	s	1	n S	ervi	ce	and" amec		
		1 1	2			Run	uping		amec		
SIGNATURE	Fin Vi	11/	1100	n		1	,)				
SIGNATURE	Carrier V	0.0							7/24/2020		

FIELD DATA DESCRI			
FIELD DATA RECORD - LOW	FLOW GROUNDWATE	R SAMPLING	
PROJECT Former Unisys Facility	FIELD SAMPLE N		JOB No. 3617187446
Lake Success, New York	SIT	ETYPE N12796	DATE 0803/2020
ACTIVITY START 358 END	40 SAMPLE TIME	1403	
WATER LEVEL / PUMP SETTINGS	MEASUREMENT POINT TOP OF WELL RISER	PROTECTIVE CASING STICKUP	CASING / WELL FT
INITIAL DEPTH TO WATER FT	TOP OF PROTECTIVE CASIN	IG (FROM GROUND)	WELL
FINAL DEPTH TO WATER FT	WELL DEPTH (TOR) FT	AMBIENT AIR	DIAM. IN WELL INTERGRITY:
DRAWDOWN	SCREEN LENGTH F	PID WELL T MOUTH P	YES NO N/A
VOLUME GAL (initial - final x 0.16 (2-inch) or x 0.65 (4-inch)		E PRESSURE	CASING
TOTAL VOL. PURGED GAL	TO TOTAL VOLUME PURGED		DISCHARGE
(purge volume (milliliters per minute) x time du	uration (minutes) x 0.00026 gal/milliliter)	REFILL SETTING	SETTING
PURGE DATA DEPTH TO PURGE	SPECIFIC TEMP. CONDUCTANCE 1	OH DISS. 02 TURBIDITY REI	DOX
TIME WATER (ft) RATE (ml/m) < 0.33 ft ≤ 500 ml/m	(deg. c) (umho/cm) (un	nits) (mg/L) (ntu) (m	nv) COMMENTS units
1358	6.3 0.3166.	99 7.82 17.6 173	5.8
EQUIPMENT DOCUMENTATION TYPE OF PUMP GEOPUMP (peristaltic) SMCO BLADDER X BLADDER	PE OF TUBING LOW DENSITY POLYETHYLENE HIGH DENSITY POLYETHYLENE OTHER	TYPE OF PUMP MATERIAL Polyvinyl chloride X STAINLESS STEEL OTHER	TYPE OF BLADDER MATERIAL TEFLON Other
ANALYTICAL PARAMETERS Check if Scheduled for Collection	METHOD		1PLE
VOCs + TIC plus, Freon 11, Freon 22,	NUMBER USEPA-8260C	METHOD REQUIRED COLLS HCL / 4 DEG. C 3 X 40 mL	ECTED Check if collected
Freon 113, Freon 115, Freon 123, Freon 1 VOCs + TIC plus, Freon 11, Freon 22, Freon 113, Freon 115, Freon 123, Freon 1	USEPA-524.2	HCL / 4 DEG. C 3 X 40 mL	
Chloride	USEPA 4500 CL-B	4 DEG. C 1 X 250 mL	
Bromide	USEPA 300.0	4 DEG. C 1 X 250 mL	
Purge Observations Purge Water Num	mber of Gallons	COMMENTS	- 1 runeina
[0]	nerated	in Service	and pumping
SIGNATURE: Emili All	Ci	Land Committee	011100

FIELD	DATA REC	ORD - LO	WFLOW	GROUNDWA	TEDEA	MDUING			
PROJECT	Former Unisy	's Facility						220	
Location	Lake Success			FIELD SAM	PLE NUMBER	The second secon	-N12		
ACTIVITY		30 END	1231	SAMPLE TI	SITE TYPE	1235	12999		DATE 08/03/2020
WATER LE	EVEL / PUMP S	ETTINGS	MEASU	REMENT POINT	WIE _	PROTECTIVE			CASING / WELL
INITIAL DEI	PTH		TO	P OF WELL RISER P OF PROTECTIVE	CASING	CASING STIC	KUP		DIFFER. FT
FINAL DE	РТН Г		WELL DEP	тн	-	PID	-		WELL DIAM. IN
TO WA	TER		FT (TOR) SCREE		FT	AMBIENT AIR		PPM	WELL INTERGRITY
DRAWDO	IME		LENGT		FT	MOUTH		PPM	YES NO N/A
	final x 0.16 (2-inc	h) or x 0.65 (4-In	ch}) RATIO	OF DRAWDOWN VO		PRESSURE TO PUMP		DCI	CASING LOCKED
TOTAL	GED		TAIL I			REFILL			COLLAR
PURGE D	ATA	per minute) x tim	e duration (minu	tes) x 0.00026 gal/mi	fliliter)	SETTING			SETTING
TIME	DEPTH TO WATER (ft)	PURGE	TEMP.	SPECIFIC CONDUCTANCE	рН	DISS. O2	TURBIDITY	REDOX	
maa	< 0.33 ft	RATE (ml/m) ≤ 500 ml/m	(deg. c) ≤ 3%	(umho/cm) ≤ 3%	(units) ≤ 0.1 units	(mg/L) ≤ 10%	(ntu) ≤ 50 ntu	(mv) ≤ 10 units	COMMENTS
1250			14,7	0.389	7.36	8,22	1.99	200,0	
			-						
-									
-									
FOUIPME	NT DOCUMEN	TATION							
TYPE C	DF PUMP		TYPE OF TUBI	NG	TYPE	OF PUMP MA	TERIAL		YPE OF BLADDER MATERIAL
	OPUMP (peristal)	tic)		SITY POLYETHYLEN		Polyvinyl chlori			TEFLON Other
	ADDER		OTHER_			OTHER			
	CAL PARAMET Scheduled for Collecti			THOD MBER		ERVATION	VOLUME	SAMPLE	D Check if collected
	Cs + TIC plus, Fron 113, Freon 113		USE	EPA-8260C		4 DEG. C	3 X 40 mL		D CHECK II COMECUED
Voc	Cs + TIC plus, Fre	eon 11, Freon 22,	USE	EPA-524.2	HCL	4 DEG. C	3 X 40 mL	V	1
Chic	on 113, Freon 115 oride	b,Freon 123, Fred		EPA 4500 CL-B	4 DE	G. C	1 X 250 mL		
Bron	mide		USE	EPA 300.0	4 DE	G. C	1 X 250 mL		
Purge Obs					6	COMMENTS		~ 1	n 1 k. hono
Purge Water Conatinerize			Number of Gallo Generated	ns	1	replic	ate	SM-	soo tanen ma
	01	1			Duplicate SW-500 taken here in service and amec				
SIGNATURE	ATURE MILL ALLCOO					001	mpin	2	3000
	DRs_Blank/LF C	allahan				Pu	mp in	9	7/24/2020

FIELD	DATA REC	ORD - LO	W FLOW	GROUNDWA	ATER SA	MPLING					
	Former Unisy				IPLE NUMBER		-N1300	O-XX	JOB No.	3617187446	
Location	Lake Success	s, New York			SITE TYPE		/13001		DATE	08/03/2	0
ACTIVITY	START 12.	50 END	1253	SAMPLE TI	ME (255					
WATERLE	EVEL / PUMP S	ETTINGS		REMENT POINT		PROTECTIVE			CASING / WE	LL	
INITIAL DEI				P OF WELL RISER P OF PROTECTIVE		(FROM GRO		FT	DIFFER.		FT
FINAL DE			WELL DEPT	Н	FT	PID AMBIENT AIR	2	PPM	DIAM.		IN
TO WA			SCREE	N		PID WELL		7,100	WELL INTER	GRITY: YES NO	N/A
VOLU	IME	_	LENGT	1	FT	MOUTH		PPM		=	
200	final x 0.16 {2-inc	h) or x 0-85 (4-in		OF DRAWDOWN VI		PRESSURE TO PUMP		PSI	LOCKED		
TOTAL	GED	no minuto) v tim	GAL	tes) x 0.00026 gal/mi		REFILL			DISCHARGE		
PURGE D		per minute) x um	e duration (minu	specific	ililiter)	SETTING			SETTING		
TIME	DEPTH TO WATER (ft)	PURGE RATE (ml/m)	TEMP. (deg. c)	CONDUCTANCE (umho/cm)	pH (units)	DISS. O2 (mg/L)	TURBIDITY (ntu)	REDOX (mv)		COMMENTS	
1250	< 0.33 ft	≤ 500 ml/m	14,8	≤ 3%	≤0.1 units	≤ 10%	≤ 50 ntu	≤ 10 units	,		
1230			1411	0./48	7,55	7.36	3,27	1001			
FOLLIDME	NT DOCUMEN	TATION									
TYPE	OF PUMP	10	TYPE OF TUBIN	NG	TYPE	OF PUMP M	ATERIAL		TYPE OF BLAI	DDER MATERIAL	
	OPUMP (peristal)	tic)		SITY POLYETHYLEN		Polyvinyl chlor			TEFLON		
	ADDER		OTHER_	SITY POLYETHYLE	NE X	OTHER_	STEEL		Other		
	CAL PARAMET Scheduled for Collecti		ME	THOD	PRESE	ERVATION	VOLUME	SAMPLE			
	Cs + TIC plus, Fr			MBER EPA-8260C		4 DEG. C	REQUIRED 3 X 40 mL		ED Check if colle	cted	
	con 113, Freon 11 Cs + TIC plus, Fre			EPA-524.2	HCL	4 DEG. C	3 X 40 mL		/		
Fre	on 113, Freon 11		on 152a						/		
	loride omide			EPA 4500 CL-B EPA 300.0	4 DEC		1 X 250 mL 1 X 250 mL				
								H			
Purge Ob:	servations					COMMENTS				-	
Purge Wate	er 🕟		Number of Gallo	ns	la	Je[] a	ctivat	led o	rion t	nec nec	lino
Conatineriza	ed yes no	2	Generated				(2)1001	The state of	2	nac	
	0.	11:1	1110	-		MSI	MSD	toke	n ho	VIEC.	
SIGNATUR	E MAN	N 9-	we	20				101101	119	6	

FIELD	DATA REC	ORD - LO	W FLOW	GROUNDWA	TER SA	MPLING			
PROJECT	Former Unisy				PLE NUMBER			1-40	JOB No. 3617187446
Location	Lake Success	, New York			SITE TYPE	1	13821		DATE 08/03/20
ACTIVITY	START 2	-13 END	1215	SAMPLE TII	ME /2	215			
INITIAL DE TO WA			TO TO	P OF WELL RISER P OF PROTECTIVE	CASING	PROTECTIVE CASING STIC (FROM GROU	KUP	FT DI	SING / WELL FT
FINAL DE TO WA DRAWDO VOLU (initial -	OWN OWN		(TOR) SCREE LENGTH	N N	FT	PID WELL MOUTH PRESSURE		PPM W	AM. IN
TOTAL	VOL.		TO TO	OTAL VOLUME PUR	RGED	TO PUMP REFILL SETTING		PSI C	SCHARGE
TIME	DEPTH TO WATER (ft) < 0.33 ft	PURGE RATE (ml/m) ≤ soo ml/m	TEMP. (deg. c) ≤ 3%	SPECIFIC CONDUCTANCE (umho/cm) ≤ 3%	pH (units) ≤0.1 units	DISS. O2 (mg/L) ≤ 10%	TURBIDITY (ntu) ≤ 50 ntu	REDOX (mv) ≤ 10 units	COMMENTS
1213			20.2	0.400	7.26	7,42	13.8	218.3	
TYPE	ENT DOCUMEN OF PUMP EOPUMP (peristal		TYPE OF TUBI	NG SITY POLYETHYLEI		E OF PUMP M Polyvinyl chlo			YPE OF BLADDER MATERIAL TEFLON
Х в	MCO BLADDER LADDER CAL PARAMET	ERS	HIGH DEN	SITY POLYETHYLE	NE X	STAINLESS OTHER	STEEL		Other
Free Ch	Scheduled for Collect DCs + TIC plus, Fr eon 113, Freon 11 DCs + TIC plus, Fr eon 113, Freon 11 aloride omide	eon 11, Freon 22 5,Freon 123, Fre eon 11, Freon 22	2, US on 152a 2, US on 152a US	THOD MBER EPA-8260C EPA-524.2 EPA 4500 CL-B EPA 300.0	HCL 4 DE	SERVATION SETHOD 1/4 DEG. C 1/4 DEG. C EG. C EG. C	VOLUME REQUIRE 3 X 40 mL 3 X 40 mL 1 X 250 m 1 X 250 m	COLLECTED	2 Check if collected
Purge Ob Purge Wate Conatineriz	zed yes (no)	Li.	Number of Gallo Generated	ans		COMMENT A SE	s PNVi	e C	amec amec

FIELD	DATA REC	ORD - LO	W FLOW	GROUNDW	ATER SA	MPLING	3				-
PROJECT	Former Unisy	s Facility		FIELD SAM	MPLE NUMBER	R 57	-CL-1	10-XX	JOB No. 3	8/3/2	0
Location	Lake Success	s, New York			SITE TYPE	ECL	-10		DATE	0/1/2	
ACTIVITY	START /3:	20 ENI	D	SAMPLE T	IME	1514	0		- 1140511		
WATER LE	EVEL / PUMP S	ETTINGS	MEASU	REMENT POINT P OF WELL RISER		PROTECTIVE CASING STI	E CKUP		CASING / WELL DIFFER.		FT
INITIAL DEI	PTH TER	1175	FT TO	P OF PROTECTIVE	CASING	(FROM GRO	UND)	— FT	WELL DIAM.	4	IN
FINAL DE TO WA		.72	WELL DEPT	14	5 FT	AMBIENT All	R	PPM	WELL INTERGR	RITY:	N/A
DRAWDO	IME -C	3445		10	FT	MOUTH		PPM	CASING S		
TOTAL	final x 0.16 {2-inc		тот	OF DRAWDOWN VOTAL VOLUME PU	RGED	PRESSURE TO PUMP	8		DISCHARGE	10	一
PUR(volume (milliliters	82 oper minute) x tim	ne duration (minut	tes) x 0.00026 gal/m	nilliliter)	REFILL	2	0	SETTING	1-	
PURGE DA	DEPTH TO WATER (ft) < 0.33 ft	PURGE RATE (ml/m)	TEMP. (deg. c) ≤ 3%	SPECIFIC CONDUCTANCE (umho/cm) ≤ 3%	pH (units) ≤0.1 units	DISS. O2 (mg/L) ≤ 10%	TURBIDITY (ntu) ≤ 50 ntu	REDOX (mv) ≤ 10 units	C	OMMENTS	100
2015:05		200	19.3	0,470	6.64	8.30	30.9	84.6			
15:10	2015	200	17.7	0.428	6.64	3,31	32.3	84.3			
15:15	20.11	200	17.4	0.503	6.38	4.90	10.7	95.0			
15:20	20,01	200	17.3	0.670	6.03	8.28	11.8	109.2			
15:25	19.96	700	17.2	0,674	600	8.60	8.61	119.8			
15:30	19.83	200	17.0	0.677	5.99	08.75	7.38	128.3			
15:35	19.77	200	16.9	0.684	6.00	8.80	7.47	131.6			
15:40	19.72	200	16.8	0.685	6.01	8.80	6,21	132.8			
15:45											
										77	
FOLUDACI	NT DOCUMENT	TATION									
TYPE O	OF PUMP OPUMP (peristalt CO BLADDER 3	ic)		IG SITY POLYETHYLEN SITY POLYETHYLE	NE	Polyvinyl chlor STAINLESS OTHER	ride		TYPE OF BLADD TEFLON Other	DER MATERIAL	
ANALYTIC	AL PARAMETI	ERS	MET	HOD	PRESI	ERVATION	VOLUME	SAMPLE			
voo	Cs + TIC plus, Fre	eon 11, Freon 22	, USE	1BER PA-8260C	ME	THOD 4 DEG. C			ED Check if collected	d	
□ voo	Cs + TIC plus, Fre on 113, Freon 115	eon 11, Freon 22,	USE	PA-524.2	HCL /	4 DEG. C	3 X 40 mL				
Chlo				PA 4500 CL-B PA 300.0	4 DE0		1 X 250 mL 1 X 250 mL				
						0011111111					
Purge Obs Purge Water			Number of Gallon	8 2. 7		COMMENTS					
Conatinerize	yes no		Generated						an	nec	9
	- 1	>		-						166	
SIGNATURE	Cle	//									

FIELD	DATA REC	ORD - LO	W FLOW	GROUNDW	ATER SA	MPLING	3				
PROJECT	Former Unisy	s Facility		FIELD SAI	MPLE NUMBER	51	- 64-45	- 0x x	JOB No.	3617187446	
Location	Lake Success	s, New York			SITE TYPE		L-45		DATE	8/4/20	
	START / Z		013:45	SAMPLE	TIME	13:35				-	
	EVEL / PUMP S	BETTINGS		REMENT POINT P OF WELL RISER		PROTECTIVE CASING STI			CASING / WEL	L _	FT
INITIAL DEI	PTH TER 3.	67		P OF PROTECTIVE		(FROM GRO		FT	WELL	y	IN
FINAL DEI	PTH 73	3.88	(TOR)	85	FT	PID AMBIENT AI	R -	- PPM	DIAM.		
DRAWDO	IVA/NI		SCREE	/ ^	-	PID WELL				ES NO	N/A
VOLU	ME 0.16 {2-inc	1365	GAL LENGT		FT	MOUTH		PPM	CASING	マーー	
TOTAL	OL C			OF DRAWDOWN \		PRESSURE TO PUMP	85	5 PSI	COLLAR	Z = =	
PURO (purge v	GED /	per minute) x tim	GAL ne duration (minu	0.195 tes) x 0.00026 gal/m	nilliliter)	REFILL SETTING	7		DISCHARGE	10	
PURGE DA	ATA			SPECIFIC				l -wear	1		
TIME	DEPTH TO WATER (ft) < 0.33 ft	PURGE RATE (ml/m) ≤ 500 ml/m	TEMP. (deg. c) ≤ 3%	CONDUCTANCE (umho/cm) ≤ 3%	pH (units) ≤ 0.1 units	DISS. O2 (mg/L) ≤ 10%	TURBIDITY (ntu) ≤ 50 ntu	REDOX (mv) ≤ 10 units		COMMENTS	
13:10	3.67	200	311	0.298	6.35	692	1.93	10 7.3			
17:15	3.70	200	20.9	0, 286	608	5.88	1.81	167.8			
13120	3.72	200	20.3	0.770	6.20	5.39	2.72	157.7			
13:25	3.79	200	20.1	0.402	6.30	5.59	1.33	163.4			
13:30	3.85	200	20.2	0.407	6.30	552	1.97	162.0			
13.35	3,88	200	20.3	0.407	6.31	5.50	142	162.4			
									+		
	NT DOCUMENT	TATION									
	F PUMP OPUMP (peristalti	r	X LOW DENS	IG ITY POLYETHYLE!		OF PUMP M Polyvinyl chlo			YPE OF BLAD	DER MATERIAL	
SMC	O BLADDER			SITY POLYETHYLE		STAINLESS			Other		
	AL PARAMETE		OTHER_			OTHER		-			
Check if So	cheduled for Collectio	on	NUN	HOD IBER		RVATION THOD	VOLUME REQUIRED	SAMPLE	D Check if collect	ted	
	s + TIC plus, Fre n 113, Freon 115			PA-8260C		4 DEG. C	3 X 40 mL		<u>D</u>		
	s + TIC plus, Fren n 113, Freon 115			PA-524.2	HCL/	4 DEG. C	3 X 40 mL				
Chlo	ride	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	USE	PA 4500 CL-B	4 DEG		1 X 250 mL				
Brom	iide		USE	PA 300.0	4 DEG	5. C	1 X 250 mL				
Purge Obse	ervations		Number of Call	. 1 -		COMMENTS	3				
Conatinerized	es no		Number of Gallon Generated	* 1.3						-	EF.
									an	nec	7
SIGNATURE	Cly	-	1								

7/24/2020

FIELD	DATA REC	CORD - LO	OW FLOW	GROUNDW	ATER S	AMPLIN	G		-	
PROJECT	Former Unis	ys Facility		FIELD SA	MPLE NUMBI	ER 57.	·CL-40	1-xx	JOB No.	3617187446
Location	Lake Succes	ss, New York			SITE TY	PE C	4-40		DATE	9/2/20
ACTIVITY	START 91	30 EN	10/1:40	SAMPLE	TIME	11:15				
WATER L	EVEL / PUMP	SETTINGS	MEASI	UREMENT POINT		PROTECTIVE CASING ST	And the second second		CASING / WE	
INITIAL DE	PTH 17	1.85	TO	OP OF WELL RISER OP OF PROTECTIVE	ECASING	(FROM GR		_ FT	WELL	4
TO WA		731	WELL DEF	тн 🗸	5 FT	PID AMBIENT A	IR -	PPM	DIAM.	
FINAL DE TO WA	TER 2	5.41	FT (TOR)			PID WELL			WELL INTER	YES NO
DRAWDO		364	SCREE LENGT		FT	MOUTH		PPM	CASING	マーニ
200 CH 20		ch) or x 0.65 (4-in	nch}) RATIO	OF DRAWDOWN V		PRESSURE TO PUMP	4/3	PSI	COLLAR	Z = =
TOTAL \ PUR(GED		GAL	O, 18 7 ites) x 0.00026 gal/m		REFILL SETTING	7	0	DISCHARGE SETTING	10
PURGE DA	The state of the s			SPECIFIC	ř 20	L pies os	TURBIDITY	REDOX	1	
TIME	DEPTH TO WATER (ft) < 0.33 ft	PURGE RATE (ml/m)	TEMP. (deg. c)	(umho/cm)	pH (units)	DISS. O2 (mg/L) ≤ 10%	(ntu) ≤ 50 ntu	(mv) ≤ 10 units		COMMENTS
10:50	24.85	300 ml/m	20.6	0.210	6.49	2.98	13.2	149.0		
10:55	25,00	300	18.5	0.209	6.31	3.16	10.2	153.6		
70055	25.16	300	17.9	0.719	6.31	4.36	11.3	155.5		
11:05	25.22	300	18.0	0,228	6.32	5.43	9,52	155.4		
11:16	25,32	300	17.9	0.229	6.32	5.52	8.31	156.2		
11:15	25.41	300	17.8	0.230	6.32	5.59	9.13	157.8		
									4	
							1		-	
									-	
EQUIPMEN	NT DOCUMEN	TATION								
TYPE O	F PUMP PUMP (peristalt	ic)	TYPE OF TUBIN	IG SITY POLYETHYLEN		OF PUMP MA			PE OF BLADE	DER MATERIAL
SMC	O BLADDER			SITY POLYETHYLEN		STAINLESS S			ther	
	AL PARAMETI	ERS	OTHER			OTHER				
Check if So	cheduled for Collection	on	NUM	HOD BER		RVATION THOD	VOLUME REQUIRED	SAMPLE COLLECTED	Check if collecte	ed
Freor	n 113, Freon 115	on 11, Freon 22, Freon 123, Freo	on 152a	PA-8260C	HCL /	4 DEG. C	3 X 40 mL			
		on 11, Freon 22, Freon 123, Freo		PA-524.2	HCL/	4 DEG. C	3 X 40 mL			
Chlor				PA 4500 CL-B PA 300.0	4 DEG		1 X 250 mL			
			002	7, 500.0	4 DEG	s. C	1 X 250 mL			
Dunn Oi					-					
Purge Obse Purge Water			Number of Gallon	\$ 105	(COMMENTS				
Conatinerized	(yes) no		Generated	1.95						- 0
									an	<i>lec</i>
SIGNATURE:	0	-								
FD	Rs_Blank/LF Ca	llahan								

ELD DATA RECORD - LOW	FLOW G	ROUNDWA	TER SAM	PLING				
OJECT Former Unisys Facility		FIELD SAMPI			MW -19		JOB No.	3617187446
Lake Success, New York			SITE TYPE				DATE	08/03/2020
TIVITY START 100 END	1140	SAMPLE TIM	E []	45				
TIAL DEPTH TO WATER CRAWDOWN VOLUME (initial - final x 0.16 (2-inch) or x 0.65 (4-inch)) TOTAL VOL. PURGED (purge volume (milliliters per minute) x time of the company o	## MEASUREMENT POINT				PPM PPM PSI REDOX (mv) \$ 10 units 174.6 172.2 171.1		RGRITY: NO N/A	
GEOPUMP (peristaltic) SMCO BLADDER X BLADDER ANALYTICAL PARAMETERS Check if Scheduled for Collection VOCs + TIC plus, Freon 11, Freon 22, Freon 113, Freon 115, Freon 123, Freon 113, Freon 113, Freon 115, Freon 123, Freon 113, Freon 115, Freon 123, Freon 113, Freon 115, Freon 123, Freon 116, Freon 123, Freon 116, Freon 123, Freon 117, Freon 123, Freon 118, Freon 123, Freon 119, Freon 123, Freon 119, Freon 123, Freon 119, Freon 123, F	MET NUM USE USE USE USE	HOD BER PA-8260C PA-524.2 PA 4500 CL-B PA 300.0	PRESEI MEI HCL/		VOLUME REQUIRED 3 X 40 mL 3 X 40 mL 1 X 250 mL	SAMPLE	TEFLON Other ED Check if co	
Purge Water	Number of Gallo Generated	ns 2.34					a	mec

FIELD	DATA RECO	RD - LO	WELOW	GROUNDW	ATER S	AMPLIN(3				
PROJECT	Former Unisys F		W FLOW		MPLE NUMBE	- TANI	1	2-XX	JOB No.	3617187446	
Location	Lake Success, N			TIELD SAI	SITE TYP		V - 1 -		DATE	8/4/	20
ACTIVITY	START 115	END	1155	SAMPLE T		1145			1		
	EVEL / PUMP SET		MEASU	REMENT POINT		PROTECTIV	/E		CASING / WEI	LL	FT
INITIAL DE TO WA	TER DE	3/18	T. TO	P OF WELL RISER P OF PROTECTIVE	CASING	CASING STI (FROM GRO PID AMBIENT AI	OUND)	FT	WELL DIAM.	2	IN
TO WA		2.57 F	SCREE			PID WELL			-AB	YES NO	N/A
VOLU (initial -			AL LENGTH	11/11/11/11		MOUTH PRESSURE TO PUMP	60	PPM PSI	LOCKED	Z =	_
TOTAL PUR (purge	1 (4	- Gi	AL C	tes) x 0.00026 gal/m		REFILL SETTING	20%	100	DISCHARGE	10	
PURGE D	DEPTH TO	PURGE ATE (ml/m)	TEMP. (deg. c) ≤ 3%	SPECIFIC CONDUCTANCE (umho/cm) ≤ 3%	pH (units) ≤ 0.1 units	DISS. O2 (mg/L) ≤ 10%	TURBIDITY (ntu) ≤ 50 ntu	REDOX (mv) ≤ 10 units		COMMENTS	
1120	-	300	19.0	.630	6.3	7.74	184	158.	5		
1125	86.51	300.	18.9	1681	5.49	8 09	15.3	164.7	1		
1130	1 1 1 1	300	18.8	1687	5.99	8.03	12.7	165.1			
1135	1	300	17.2	696	5.98	7,85	X 32	1648	>		
1140	100.01	300	20,2	.645	5.98	7.30	9 77	165	5		
1 145	865/	300,	19.7	.67/	6.00	1 300	1,11	1010			
			1								
									-		
FOUIDME	NT DOCUMENTAT	TION					-				
TYPE O	NT DOCUMENTAT		YPE OF TUBING	The state of the s		OF PUMP MA				DER MATERIAL	
	OPUMP (peristaltic) CO BLADDER	X		ITY POLYETHYLEN		Polyvinyl chlor			TEFLON Other		
X BL	ADDER		OTHER_			OTHER					
Check if S	CAL PARAMETERS Scheduled for Collection Cs + TIC plus, Freon 1 on 113, Freon 115,Fre	11, Freon 22,			ME	ERVATION ETHOD 4 DEG. C	VOLUME REQUIRED 3 X 40 mL	SAMPLE	2 Check if collect	ted	
voc	Cs + TIC plus, Freon 1	11, Freon 22,	USEF	PA-524.2	HCL /	4 DEG. C	3 X 40 mL				
Freo	on 113, Freon 115,Fre oride	on 123, Freon		PA 4500 CL-B	4 DEC	3. C	1 X 250 mL				
Bron	nide		USEF	PA 300.0	4 DEC	3. C	1 X 250 mL				
Purge Obs		P. V.				COMMENTS		ý	17		
Purge Water Conatinerized	d @ no		umber of Gallons enerated	1,95					an	nec	0
SIGNATURE		1.11									

7/24/2020

FIELD	DATA REC	ORD - LO	W FLOW	GROUNDWA	ATER SA	MPLING			
PROJECT	Former Unisys	s Facility		FIELD SAM	PLE NUMBER	EPA-	hw-29-	XX	JOB No. 3617187446
Location	Lake Success	, New York			SITE TYPE	EP	A-MW-	-29	DATE 8/4/20
ACTIVITY	START //: C	O END	12120	SAMPLE TI	ME //	1:55			
WATER LE	VEL / PUMP S	ETTINGS	MEASU	REMENT POINT P OF WELL RISER		PROTECTIVE CASING STIC	-		ASING / WELL FT
TO WAT	TER 30	0,20	FT	OF PROTECTIVE	CASING	(FROM GRO	PACKET AND THE PACKET	FT	VELL 4 IN
FINAL DEF	PTH JO	20	WELL DEPT (TOR)	1.	55 _{FT}	AMBIENT AIR	2	PPM	WELL INTERGRITY:
DRAWDO	WN		SCREET	/ (.)	FT	PID WELL MOUTH	-	PPM	CAP YES NO N/A
VOLU	ME Calnot	0.065 (4-in	Ch)) RATIO	OF DRAWDOWN V	OLUME	PRESSURE TO PUMP	50	L	CASING LOCKED COLLAR
TOTAL \ PURC	GED L		GAL -	0.0237 les) x 0.00026 gal/m	7	REFILL SETTING		0	DISCHARGE /O
PURGE D		per minute/ x un	ie duration (minu	SPECIFIC SPECIFIC	militer)	SETTING			
TIME	DEPTH TO WATER (ft) < 0.33 ft	PURGE RATE (ml/m) ≤ 500 ml/m	TEMP. (deg. c) ≤ 3%	CONDUCTANCE (umho/cm) ≤ 3%	pH (units) ≤ 0.1 units	DISS. O2 (mg/L) ≤ 10%	TURBIDITY (ntu) ≤ 50 ntu	REDOX (mv) ≤ 10 units	COMMENTS
11:20	30,26	300	16.8	0.145	6.45	7.18	3.03	108.8	
The same and the s	20.23	300	16.3	0.141	6.24	6.54	7.18	124.8	
11:30	30.20	200	16.1	0.142	6.21	5.75		130.4	
11:35	30.20	700	15.9	0.147	6.21	4.81	2.1)	137.8	
11:40	30.19	300	16.1	0.156	6.21	4.40	1.83	138.4	
11:45		200	15.9	0.344	6.18	4.66	1.71	151.1	
11:50	10.20	300	15.8	0.351	6.22	4.72	1,66	151.6	
11:53	70.20	300	15.7	0.353	6.21	4.78	1.69	152.3	
-									
-									
				-					
FOLIPME	NT DOCUMEN	TATION							
All the Control of th	OF PUMP		TYPE OF TUBI	The second second second second		E OF PUMP N			YPE OF BLADDER MATERIAL
	OPUMP (peristal)	tic)		SITY POLYETHYLE SITY POLYETHYLE		Polyvinyl chlo			TEFLON Other
	ADDER 2/0	002	OTHER_			OTHER			
	CAL PARAMET Scheduled for Collect			THOD		SERVATION	VOLUME	SAMPLE	
	Cs + TIC plus, Fr		2, US	MBER EPA-8260C		./4 DEG. C	3 X 40 mL	COLLECTE	D Check if collected
□ vo	eon 113, Freon 11 Cs + TIC plus, Fr	eon 11, Freon 2	2. US	EPA-524.2	HCL	/ 4 DEG. C	3 X 40 mL		
	eon 113, Freon 11 loride	5,Freon 125, F16		EPA 4500 CL-B		EG. C	1 X 250 ml		
Bro	omide		US	EPA 300.0	4 DE	EG. C	1 X 250 ml		
Purge Ob	servations					COMMENT	s		
Purge Wate	er red yes no		Number of Gallo Generated	ons 2.73					A
O Hadileliz									amec
	, .	-	/						311100
SIGNATUR	RE LE								

7/24/2020

FDRs_Blank/LF Callahan

FIELD	DATA REC	CORD - LO	OW FLOW	GROUNDWA	ATER S	AMPLING	3				
PROJECT	Former Unis				MPLE NUMBE		V-31GL	-XX	JOB No.	3617187446	
Location	Lake Succes	s, New York			SITE TYP		31 GL		DATE	10/27/2	020
ACTIVITY	START 13		10 1400	SAMPLE T	IME	140					
WATER LE	EVEL / PUMP S	SETTINGS		POF WELL RISER		PROTECTIVE CASING STI			ASING / WEL	L	
TO WAT	1 (/)	5.015	FT WELL DEP	P OF PROTECTIVE	and the same of	(FROM GRO		FT	IFFER. /ELL	U	FT
FINAL DEF		8.13	(TOR)	200	FT	AMBIENT AI	R	PPM	IAM. /ELL INTERG	GRITY:	IN
DRAWDO		me-2	SCREE	7	FT	PID WELL MOUTH	_	PPM	CAP	YES NO	N/A
VOLUI (initial - f	final x 0.16 {2-inc			OF DRAWDOWN V		PRESSURE	10	L	OCKED	Z = 1	1
TOTAL V		.12	GAL TO TO	OTAL VOLUME PUR	₹GED	TO PUMP	40		COLLAR	Z = :	
(purge ve	olume (milliliters			tes) x 0.00026 gal/mi	illiliter)	REFILL SETTING	2		SCHARGE ETTING	10	
PURGE DA	TA DEPTH TO	PURGE	TEMP.	SPECIFIC CONDUCTANCE	На	DISS. O2	TURBIDITY	REDOX			
TIME	WATER (ft) < 0.33 ft	RATE (ml/m) ≤ 500 ml/m	(deg. c) ≤ 3%	(mS/cm) ≤ 3%	(units) ≤ 0.1 units	(mg/L) ≤ 10%	(ntu) ≤ 50 ntu	(mv) ≤ 10 units	910	COMMENTS	
1335	88.12	400	15 34	.625	6.84	6.60	1.70	11.5	161	. \	
1340	68.13	400	1496	.648	6.79	7,17	1.13	14.6	15	7.4	
1345	88-13	400	14.89	.648	6.74	7.23	.50	16.8	15	7.6	
1350	88.13	400	14.84	.698	6.73	7.16	091	17.4	15	7.9	
1355	88.14	400	14.81	.645	6.72	7.19	-28	18.1	15	8.9	
1400	88.13	100	14.79	.643	6.73	7.23	.27	18.2	15	1.9	
							1		- 3		
EQUIPMEN	NT DOCUMENT	TATION									
TYPE O			TYPE OF TUBIN			E OF PUMP N		-		DDER MATERIAL	
	OPUMP (peristalt	ic)		SITY POLYETHYLEN SITY POLYETHYLEN		Polyvinyl chlo			EFLON ther		
X BLA	ADDER		OTHER_	D. 4 D		OTHER					
	AL PARAMET			THOD		ERVATION	VOLUME	SAMPLE			
	Cs + TIC plus, Fre		2, USE	<u>MBER</u> EPA-8260C	The second second	/4 DEG. C	3 X 40 mL	COLLECTED	Check if collec	cted	
	on 113, Freon 118 Os + TIC plus, Fre			EPA-524.2	HCL	/ 4 DEG. C	3 X 40 mL				
Fred	on 113, Freon 11	5,Freon 123, Fre		EPA 4500 CL-B	4 DE		1 X 250 mL				
	mide		7.7	EPA 300.0	4 DE		1 X 250 mL	Ž			
								H			
R											
Purge Obs	ervations					COMMENT	s				
Purge Water	•		Number of Gallo	ins ~3	λ	1S/M	+ 02	aken h	1000		•
Conatinerize	d (yes no		Generated	/	,	. 3/100	20 10	and 1	3	noc	
	1	1	Ant							ICC	
SIGNATURE	WWW	W C	MANDO								

FIELD	DATA RE	CORD - L	OW FLOW	GROUNDW	ATER SA	AMPLING	3				
PROJECT	Former Unis				IPLE NUMBE		1-31MI	-XX	JOB No.	3617187446	
Location	Lake Succes	s, New York		11	SITE TYP	21	MI		DATE	10/27/	20
ACTIVITY	START 11	0 EN	10 1220	SAMPLE T	IME	12	25				
INITIAL DEI		SETTINGS	√ TO	REMENT POINT P OF WELL RISER P OF PROTECTIVE	CASING	PROTECTIV CASING STI (FROM GRO	CKUP	FT	CASING / WEI		FT
FINAL DEI	ртн 🗔	8.95	WELL DEPT (TOR)	253	5 FT	PID AMBIENT AIR	۹	PPM	WELL DIAM. WELL INTERG	GRITY:	IN
DRAWDO VOLU (initial -	- /			OF DRAWDOWN V		PID WELL MOUTH PRESSURE		PPM	CAP CASING LOCKED	Z = =	N/A
TOTAL V PURO (purge v	GED		GAL (07-14 03-02-14 es) x 0.00026 gal/mi		TO PUMP REFILL SETTING	20	200	COLLAR DISCHARGE SETTING	7 = =	
PURGE DA		n Courte	Control of	SPECIFIC	S-5-						
TIME	DEPTH TO WATER (ft) < 0.33 ft	PURGE RATE (ml/m) ≤ 500 ml/m	TEMP. (deg. c) ≤ 3%	CONDUCTANCE (umho/cm) ≤ 3%	pH (units) ≤ 0.1 units	DISS. O2 (mg/L) ≤ 10%	TURBIDITY (ntu) ≤ 50 ntu	REDOX (mv) ≤ 10 units	off	COMMENTS	
1150	18.83	200:	17.02	.430	7.94	9.12	1.49	-507	168	6	
1155	88.92	200	16.77	.436	8.02	9.31	1.70	-54.5	169	.)	
1 700	88.92	٥٥٠	16.38	. 443	7.79	6.84	11.8	-40.6	177	. 6	
1205	88.99	200	16.20	1418	7.66	5.70	23.6	-34.)	176	.7	
1 512	88.93	200	16.09	- 446	7.66	7.58	11.8	-34.2	- 1,72	5	
1000	88.95	200	15 97	416	7.61	1.05	8.32	-35.	171	• }	
1220	60.15	200	15.4/	.448	1.74	3.63	6.44	-57.	163	· O	
		1									
		~									
TYPE O	NT DOCUMENT F PUMP DPUMP (peristalt CO BLADDER		=	G ITY POLYETHYLEN	IE _	OF PUMP M Polyvinyl chlo	ride	X	TYPE OF BLAD TEFLON Other	DDER MATERIAL	
	ADDER		OTHER_	W. Use Jean See		OTHER					
Check if S	CS + TIC plus, Fre on 113, Freon 113	on eon 11, Freon 22	NUN 2. USE	HOD IBER PA-8260C	M	ERVATION ETHOD / 4 DEG. C	VOLUME REQUIRED 3 X 40 mL	SAMPLE COLLECTE	D Check if colle	cted	
voc	Cs + TIC plus, Fre	eon 11, Freon 22	2, USE	PA-524.2	HCL	/ 4 DEG. C	3 X 40 mL				
Chlo	oride mide		USE	PA 4500 CL-B PA 300.0	4 DE 4 DE		1 X 250 mL 1 X 250 mL				
				11.55		2.12					
Burga Ob-	on attann					COMPENS			-		
Purge Obs Purge Water			Number of Gallor	ns ~1		COMMENTS	•		/		
Conatinerize	ed ves no	1	Generated		_				20	nec	y
	11.	1	Charl-	1						ICC	
SIGNATURE	= NVMMM	W.	Hutt								

FIELD	DATA REC	CORD - LO	OW FLOW	GROUNDWA	ATER SA	MPLING	;		
PROJECT	Former Unis	ys Facility		FIELD SAN	IPLE NUMBER	3	IML		JOB No. 3617187446
Location	Lake Succes	s, New York			SITE TYPE	_ M	W-31M	L	DATE 10/27/20
ACTIVITY	START 104	S EN	ID	SAMPLE T	ME	111.5	7=		
WATER LE	EVEL / PUMP S	SETTINGS		REMENT POINT P OF WELL RISER		PROTECTIVE CASING STIC			ASING / WELL
TO WAT	1 7 1	.34	FT TO	OF PROTECTIVE	CASING	(FROM GRO		FT W	VELL 4
FINAL DEF		.41	WELL DEPT (TOR)	120	FT	AMBIENT AIR	٦	PPM	NAM. IN
DRAWDO	WN O	0455	SCREEN	/ / /	FT	PID WELL MOUTH	-	PPM	CAP YES NO N/A
VOLUI (initial - f	inal x 0.16 {2-inc			OF DRAWDOWN V		PRESSURE	60	N L	CASING OCKED
TOTAL V		2.34		D. © 19		TO PUMP			COLLAR Z
				es) x 0.00026 gal/mi	lliliter)	SETTING			ETTING
PURGE DA	DEPTH TO WATER (ft)	PURGE RATE (ml/m)	TEMP. (deg. c)	SPECIFIC CONDUCTANCE (umho/cm)	pH (units)	DISS. O2 (mg/L)	TURBIDITY (ntu)	REDOX (mv)	COMMENTS
1	< 0.33 ft	≤ 500 ml/m	≤ 3%	≤ 3%	≤ 0.1 units	≤ 10%	≤ 50 ntu	≤ 10 units	O C COMMENTS
1045	91.35	300	15.02	.176	4.83	5.17	1.7/	15/	2
1050	91.39	300	19.77	17/2	4.89	6.40	2 10	74 11.	
1055	9141	300	14.21	170	5.56	6.92	2.10	68, 8	260
1005	41.42	300	1414	.170	5.82	7.29	601	70.8	2541
1110	91.41	300	1911	164	6.09	7.31	.94	51.8	236.5
1110	1111		11.11	1101	0.01	7.01	11	5"	1.5
			4						
	NT DOCUMEN	TATION	TYPE OF TUBIN	IG	TYPE	E OF PUMP N	MATERIAL	I	YPE OF BLADDER MATERIAL
	OPUMP (peristal)	tic)		ITY POLYETHYLE		Polyvinyl chlo			TEFLON
	CO BLADDER ADDER		OTHER	SITY POLYETHYLE	NE X	STAINLESS OTHER	STEEL		Other
	AL PARAMET		MET	THOD	PRES	ERVATION	VOLUME	SAMPLE	
/	Cs + TIC plus, Fr		NUM	MBER PA-8260C	M	ETHOD /4 DEG. C	REQUIRED 3 X 40 mL		Check if collected
A	on 113, Freon 11 Cs + TIC plus, Fr			PA-524.2	HCI	/4 DEG. C	3 X 40 mL		
Free	on 113, Freon 11		eon 152a					_	
▼ Chic	mide			EPA 4500 CL-B EPA 300.0		G. C G. C	1 X 250 mL 1 X 250 mL		
								A	
Purge Obs	servations					COMMENT	s		
Purge Wate	r ~			ns ~2,5		oommen.			- 0
Conatinerize	ed (yes) no		Generated		-				amec
	111	11/	Ant						UITICE
SIGNATUR	E IV'VV	WILL C	- 10/11/	1					

7/24/2020

FIELD	DATA REC	CORD - LC	W FLOW	GROUNDWA	ATER SA	AMPLING	;				
PROJECT	Former Unisy	ys Facility		FIELD SAN	MPLE NUMBER	R MW.	-43 MU	-XX	JOB No.	3617187446	
Location	Lake Succes	s, New York			SITE TYPE		4W-43	MU	DATE	10/27/2	2020
ACTIVITY	START 129	45 ENI	D 1340	SAMPLE TI	IME	1345					
WATER L	EVEL / PUMP S	SETTINGS		DREMENT POINT OP OF WELL RISER		PROTECTIVE			CASING / WEI DIFFER.	1	ST
INITIAL DE TO WA		4.76		OP OF PROTECTIVE	CASING	(FROM GROU		FT	WELL DIAM.	4	FT
FINAL DE TO WA		1.78	(TOR) FT SCREE	100	8 FT	AMBIENT AIR	R	PPM	WELL INTER	GRITY: YES, NO	N/A
DRAWDO	1 1	013	LENGT	1 / 1	FT	MOUTH		РРМ	CAP	4	N/A
(final - ii	initial x 0.16 {2-inc			OF DRAWDOWN V		PRESSURE TO PUMP	6	S PSI	CASING LOCKED COLLAR	z = :	
TOTAL \ PURG	GED .		GAL me duration (minu	0,007 Ites) x 0.00026 gal/mi	nilliliter)	REFILL SETTING	20		DISCHARGE SETTING	10	
PURGE D	ATA	d	pr .	SPECIFIC		No see a			02.7		
TIME	DEPTH TO WATER (ft) < 0.33 ft	PURGE RATE (ml/m) ≤ 500 ml/m	TEMP. (deg. c) ≤ 3%	CONDUCTANCE (mS/cm) ≤ 3%	pH (units) ≤0.1 units	DISS. O2 (mg/L) ≤ 10%	TURBIDITY (ntu) ≤ 50 ntu	REDOX (mv) ≤ 10 units		COMMENTS	
1245	94.76	120	14.11	0515	7,24	11.61	1776	120,6			
1250	94,74	120	17,35	0.496	7.14	3,03	0.71	-50			
1255	94.75	120	12,14	0.498	7.18	1.75	0.85	13.0			
1300	94,78	120:	12,05	0,496	7.17	1.39	3,02	18:9			
1305	94,77	120.	12.67	0.496	7.15	1,83	286	33.4			
13/0	94.76	120	12.03	0.495	7.10	4.33	3.43	531			
1315	94.6	120	12,05	0.491	7.06	5,40	2.88	0,0			
1320	94.54	120.	11.97	0.488	7.03	5.82	1.76	71.5	(
1325	94.74	120	12.00	0.487	7.02	6.04	2.06	80.7			
1330	94.72	120	11.94	0.488	7.00	6.13	1.73	88.8			
1335	94.77	120	11.98	7.491	0.99	6.27	1.08	93.8			
1340	94.78	120	11.99	0.493	6.98	636	1,28	97.5			
EQUIPME	NT DOCUMEN	TATION		Cill	CII	IQ. VO	11-0	1/65			
	OF PUMP		TYPE OF TUBIN	700		E OF PUMP M	0.0			DDER MATERIA	L
	OPUMP (peristalt	tic)		SITY POLYETHYLEN		Polyvinyl chlo	7 14		TEFLON Other		
	ADDER		OTHER_	51111 6212		OTHER	O'LLL		Outer		
	CAL PARAMET Scheduled for Collecti			THOD		SERVATION	VOLUME	SAMPLE			
	Cs + TIC plus, Freon 11		2, USI	MBER EPA-8260C		<u>IETHOD</u> ./4 DEG. C	REQUIRED 3 X 40 mL	COLLECTE	Check if colle Chec	ected	
Fre	Cs + TIC plus, Freon 11		eon 152a	EPA-524.2		. / 4 DEG. C	3 X 40 mL				
-	loride omide			EPA 4500 CL-B EPA 300.0		EG, C EG, C	1 X 250 mL 1 X 250 mL				
Purge Ob	servations					COMMENTS	S				
Purge Wate	er 🔊		Number of Gallo	ons ~4	r			A . 1 .	~		-
Conatineriz	zed yes no		Generated		1	Jupinco	ite /	1W-7	00	-	O
	On ,	1. 0			1+1	aken	ate 1 here			IIEC	
SIGNATUR	E Zmil	2 Tu	ccio								

FIELD	DATA REC	CORD - LC	W FLOW	GROUNDW	ATER SA	AMPLING			
PROJECT	Former Unis	ys Facility		FIELD SAN	IPLE NUMBE	R MW.	-43MI-	XX	JOB No. 3617187446
Location	Lake Succes	s, New York			SITE TYP	E M	W-43M	_	DATE 10/27/2020
ACTIVITY	START 140	90 EN	D	SAMPLE T	IME	1	425		24
WATER LE	EVEL / PUMP S	SETTINGS		REMENT POINT		PROTECTIVE			CASING / WELL
INITIAL DEF		.81	WELL DEP	P OF WELL RISER P OF PROTECTIVE	CASING	CASING STIC		- FT	WELL 4
FINAL DEF	1 -/ (1.91	FT (TOR)	23	O FT	PID AMBIENT AIR	-	PPM	DIAM. IN
DRAWDO	1 7 3	065	SCREE		FT	PID WELL MOUTH	_	РРМ	4
		ch} or x 0.65 {4-in		OF DRAWDOWN V		PRESSURE	Co	- 201	LOCKED
TOTAL V PURO (purge v	GED 0		GAL (0,056 tes) x 0.00026 gal/m		TO PUMP REFILL SETTING	20	PSI	DISCHARGE SETTING
PURGE DA		por minute) x un	ie daration (mina	SPECIFIC	minter)	SETTING			SETTING TO
TIME	DEPTH TO WATER (ft) < 0.33 ft	PURGE RATE (ml/m) ≤ 500 ml/m	TEMP. (deg. c) ≤ 3%	CONDUCTANCE (mS/cm) ≤ 3%	pH (units) ≤0.1 units	DISS. O2 (mg/L) ≤ 10%	TURBIDITY (ntu) ≤ 50 ntu	REDOX (mv) ≤ 10 units	COMMENTS
1400	94.81	180	11.95	0.397	6,81	3.62	0.32	183,4	
1405	94.92	180	11.94	0.394	6.67	2.37	0.64	180.7	7
1410	94.93	180	11.93	0.393	CiGI	2,23	0.97	176.8	}
1415	94.91	180	11.93.	0.392	6,68	7:11	0.73	176,0	2
1420	44.91	180	11.92	0.394	6.74	8.46	0.31	175,	8
	-								
						-	4.5		
-									
	0								
FOURDIES	T DOCUMEN	TATION .							
	NT DOCUMEN F PUMP	TATION	TYPE OF TUBIN	IG	TYP	E OF PUMP M	ATERIAL		TYPE OF BLADDER MATERIAL
	OPUMP (peristal	tic)		SITY POLYETHYLE		Polyvinyl chlo		x	TEFLON
	CO BLADDER ADDER		OTHER	SITY POLYETHYLE	NE X	STAINLESS OTHER	STEEL	10	Other
ANALYTIC	AL PARAMET			FUOD	- L		1/01/11/45	-	
,	cheduled for Collect	eon 11, Freon 22	NUI	THOD MBER EPA-8260C	M	SERVATION SETHOD 1/4 DEG. C	VOLUME REQUIRED 3 X 40 mL	COLLECTE	ED Check if collected
Fred	on 113, Freon 11	5,Freon 123, Fre	on 152a						
	The second secon	eon 11, Freon 22 5,Freon 123, Fre	A	EPA-524.2	HCL	./4 DEG. C	3 X 40 mL		
Chlo	oride mide			PA 4500 CL-B PA 300.0		EG. C EG. C	1 X 250 mL 1 X 250 mL		
								H	
Purge Obs	servations		and the other	1		COMMENT	S		
Purge Wate Conatinerize	ed yes no		Number of Gallo Generated	ns					1
		. 1							amec
SIGNATUR	E GiniV	· Pux	con						

FIELD	DATA	REC	CORD - LC	OW FL	ow	GROUNDW	ATER S	AMPLING	;				
PROJECT			ys Facility				MPLE NUMBE		-N55	35-XX	JOB No.	3617187446	
Location	Lake S	Succes	s, New York				SITE TYP		15538		DATE	10/27/	
ACTIVITY	START	121	O EN	D 121	5	SAMPLE T	IME	1215					
WATER L	EVEL / F	PUMP S	SETTINGS	M		REMENT POINT		PROTECTIVE			CASING / WE	LL	7
INITIAL DE				ET		P OF WELL RISER P OF PROTECTIVE	CASING	CASING STIC (FROM GROU		FT	DIFFER.		FT
FINAL DE				WELL	TOR)	ГН	FT	PID AMBIENT AIR		DDM	WELL DIAM.		IN
TO WA		_		FT	CREEN	N .	$\stackrel{\cdots}{>}$	PID WELL		PPM	WELL INTER		A1/A
DRAWDO	V. O				ENGTH		FT	MOUTH		РРМ		YES NO	N/A
(final - i	nitial x 0.1	16 {2-inc	th} or x 0.65 {4-in			OF DRAWDOWN V		PRESSURE TO PUMP		PSI	LOCKED		=
TOTAL PUR	GEB		(GAL				REFILL		FSI	DISCHARGE		
(purge	volume (m	nilliliters	per minute) x tim	ne duration	(minute	es) x 0.00026 gal/mi	Illiliter)	SETTING			SETTING		
PURGE D	DEPT	нто	PURGE	TEME		SPECIFIC CONDUCTANCE	рН	DISS. O2	TURBIDITY	REDOX	1		
TIME	< 0.3	ER (ft) 33 ft	RATE (ml/m) ≤ 500 ml/m	(deg. ≤ 3%	6	(mS/cm) ≤ 3%	(units) ≤ 0.1 units	(mg/L) ≤ 10%	(ntu) ≤ 50 ntu	(mv) ≤ 10 units		COMMENTS	
1210	-			13,8	7	1,149	7.07	10.74	1.05	84,9			
										= -			
	1						1 = 1						
	-				_								
	-				- 4								
	-												
	-												
	-												
					_								
COLUDME	NT DOC	· ····································	TION										
TYPE C	OF PUMP			TYPE OF	TUBIN	G	TYP	E OF PUMP MA	ATERIAL		TYPE OF BLA	DDER MATERIA	i.
	OPUMP (X LOW	DENS	ITY POLYETHYLEN	IE	Polyvinyl chlor	ride	x	TEFLON		
	CO BLAD ADDER	DER		HIGH OTHE		SITY POLYETHYLEN	NE X	STAINLESS :	STEEL		Other		
ANALYTIC						1100	20050		VOLUME	2114015			
_/			on eon 11, Freon 22,		NUM	HOD MBER PA-8260C	M	SERVATION SETHOD ./4 DEG. C	VOLUME REQUIRED 3 X 40 mL	D COLLECT	ED Check if colle	ected	
Fre	on 113, Fr	reon 115	Freon 123, Freo	on 152a									
			eon 11, Freon 22, 5,Freon 123, Freo		USE	PA-524.2	HCL	./4 DEG. C	3 X 40 mL				
	oride mide					PA 4500 CL-B PA 300.0		EG, C EG, C	1 X 250 ml				
					777				There is				
Purge Ob		ns						COMMENTS	,				
Purge Wate Conatinerize				Number of Generated		15	0.1				*		0
			Ä	0							ar	nec	
0.200202	6	111	1. 1	110	1	~						,,,,,	
SIGNATUR	E:	VVV	1	110	N								

FIELD	DATA REC	CORD - LO	OW FLOW	GROUNDW	ATER SA	MPLING	3		_	
PROJECT	Former Unis				MPLE NUMBER		-45MU-	-xx	JOB No.	3617187446
Location	Lake Succes	s, New York			SITE TYPE	44	MW-4	5MU	DATE	10/27/2020
ACTIVITY	START 16	876455 _{EN}	5830	SAMPLE T	IME	45	MAN M	V		7 7 7 200
WATER L	EVEL / PUMP	SETTINGS	MEASU	REMENT POINT P OF WELL RISER		PROTECTIVI	The same of the sa		CASING / WEL	
INITIAL DE TO WA		7.52	FT TO	P OF PROTECTIVE	CASING	CASING STIC (FROM GRO		FT	DIFFER. WELL [<u> </u>
FINAL DE		7.55	WELL DEPT	280	7 FT	PID AMBIENT AIF	3	PPM	DIAM. [WELL INTERG	RITY:
DRAWDO		7195	SCREE! LENGTH	1 / 1		PID WELL MOUTH		РРМ	CAP	ES NO N/A
	nitial x 0.16 {2-inc		ch}) RATIO	OF DRAWDOWN V		PRESSURE TO PUMP	60) PSI	LOCKED COLLAR	
TOTAL V	GED I		GAL C	0.0125		REFILL			DISCHARGE	
(purge v		per minute) x tim	ne duration (minut	es) x 0.00026 gal/m	illiliter)	SETTING	Do LV		SETTING	10
TIME	DEPTH TO WATER (ft)	PURGE RATE (ml/m)	TEMP. (deg. c)	SPECIFIC CONDUCTANCE (mS/cm)	(units)	DISS. O2 (mg/L)	The state of the s	1700		COMMENTS
1705	< 0.33 ft	≤ 500 ml/m	≤3% 1 5 9€	≤3%	≤0.1 units	≤ 10%	≤ 50 ntu/	≥ 10 units	1 17-	7 (
1710	167.53	200	15.23	, 487	C 81	3.06	133	2.63	179	7
1715	167.55	200	14.47	. 473	6.79	3.45	14.9	9.97	18	2.9
1720	167.55	600	1492	. 395	6.76	1.16	16.4	5.73	180	1.3
1725	167.5	7200	19.89	. 388	6.73	1.03	18.)	7.91	186	5.7
1730	1 67.5	5 200	1484	. 427	6.63	1.27	23.4	12.6	181) • 3
									1	
	NT DOCUMEN	TATION								
	F PUMP OPUMP (peristalt	ic)	X LOW DENS	<u>IG</u> ITY POLYETHYLEI		OF PUMP M. Polyvinyl chlor			<u>YPE OF BLAD</u> TEFLON	DER MATERIAL
	CO BLADDER			SITY POLYETHYLE	NE X	STAINLESS			Other	
	ADDER	ERS	OTHER_			OTHER				
Voc	cheduled for Collecti Cs + TIC plus, Fre	eon 11, Freon 22	NUN USE	HOD MBER PA-8260C	ME	RVATION THOD 4 DEG. C	VOLUME REQUIRED 3 X 40 mL	SAMPLE COLLECTE	D Check if collec	ted
□ voc	on 113, Freon 11: Cs + TIC plus, Fre	eon 11, Freon 22	use.	PA-524.2	HCL /	4 DEG. C	3 X 40 mL			
Chic	on 113, Freon 11: oride	5,Freon 123, Fre	USE	PA 4500 CL-B	4 DEG		1 X 250 mL			
Bro	mide		USE	PA 300.0	4 DEG	6. C	1 X 250 mL			
日										
Purge Obs	servations		Jan Sale	10.1042		COMMENTS	S			
Purge Wate Conatinerize			Number of Gallo Generated	ns ~1.5						0
	1	1	^						an	nec
SIGNATURI	E Midne	D. Me	Bato	2						
	V			-						

FIELD I	DATA REC	ORD - LO	W FLOW	GROUNDWA	TER SA					
PROJECT	Former Unisy	s Facility		FIELD SAM	PLE NUMBER	MW	- 45M	I-XX	JOB No. 361718	2
Location	Lake Success	s, New York			SITE TYPE	15	WT	12	DATE 10/	27/2020
ACTIVITY	START OF	\$0554NI	BY BY	SAMPLE TI	ME		830			
WATER LE	VEL / PUMP S	ETTINGS		REMENT POINT OF WELL RISER		PROTECTIVE			ASING / WELL DIFFER.	— FT
INITIAL DEP TO WAT		7.53	FT TOF	OF PROTECTIVE	CASING	(FROM GROU		FT V	WELL 7	
FINAL DEF	1 1 /	7.91	WELL DEPT (TOR) FT	000	FT	PID AMBIENT AIF		PPM	OIAM	(IN
DRAWDON VOLUM	ME O		SCREEN LENGTH	10	FT	PID WELL MOUTH		РРМ	CAP V	10 N/A
(final - in		h} or x 0.65 {4-in-	**	OF DRAWDOWN VO		PRESSURE TO PUMP	6	100	COLLAR Z	- 8 <u></u>
PURG	ED		GAL (Minute	os) x 0.00026 gal/mi		REFILL SETTING	2	0	DISCHARGE SETTING	10
PURGE DA	TA DEPTH TO	PURGE	TEMP	SPECIFIC CONDUCTANCE	1 54 1	DISS. O2	TURBIDITY	REDOX	Ť	
TIME	WATER (ft) < 0.33 ft	RATE (ml/m) ≤ 500 ml/m	TEMP. (deg. c) ≤3%	(mS/cm) ≤ 3%	pH (units) ≤ 0.1 units	(mg/L) ≤ 10%	(ntu) ≤ 50 ntu	(mv) ≤ 10 units	Q(P COMME	NTS
6:05	16/.85	200	11.28	.157	6.67	6.78	1.54	21,8	149.	
6:6	167.85	200	14.15	.162	6.56	2.41	199	26.8	214.2	
6:15	167.84	200	11.11	.159	6.55	1.88	139	47.7	1213.2	
6:50	16]4	200	14.07	1156	6.50	1.65	,75	30.0	13118	
6:25	167.91	200	19.06	.156	649	1-51	1,18	30.9	211.	
- 4						1 V 1 V 1				
			J U							
			- Y						1	
						-				
FOLUPMEN	NT DOCUMEN	TATION							1	
	F PUMP	Allon	TYPE OF TUBIN			OF PUMP M	IATERIAL		YPE OF BLADDER MA	TERIAL
	OPUMP (peristalt	tic)	=	ITY POLYETHYLEN		Polyvinyl chlo			TEFLON Other	
	O BLADDER ADDER		OTHER_	SITY POLYETHYLE		OTHER	SIEEL		Ou/CI	
and the familiar of the	AL PARAMET		MET	HOD	PRESI	ERVATION	VOLUME	SAMPLE	Alleria Tra	
Vvoc	Cs + TIC plus, Fr	eon 11, Freon 22 5,Freon 123, Fre	NUN USE	MBER PA-8260C	ME	THOD 4 DEG. C	REQUIRED 3 X 40 mL		D Check if collected	
□ voo	Cs + TIC plus, Fr	eon 11, Freon 22 5,Freon 123, Fre	e, USE	PA-524.2	HCL /	4 DEG. C	3 X 40 mL			
	oride mide			PA 4500 CL-B PA 300.0	4 DE		1 X 250 mL 1 X 250 mL	X		
	uc		USE		4 52		, ,, 200 1112			
Purge Obs				- An		COMMENT	s			
Purge Water Conatinerize			Number of Gallo Generated	ns ~ 1.5						0
1 - 2 - 2		1	^	1.5					ame	3C
	MALA	1.	but	5						
SIGNATURE	E: VVVVV	W C	· / CAN	1						

FIELD I	DATA REC	ORD - LO	W FLOW	GROUNDWA	ATER SA	MPLING					
PROJECT	Former Unisys	Facility		FIELD SAM	PLE NUMBER	Mw.	-46MI	-XX	JOB No.	3617187446	
Location	Lake Success	, New York			SITE TYPE	1	1W-461	YI	DATE	10/30/20	020
ACTIVITY	START 164	5 END		SAMPLE TI	IME	17	25				
WATER LE	EVEL / PUMP SI	ETTINGS		REMENT POINT P OF WELL RISER		PROTECTIVE			CASING / WEI DIFFER.	-L	FT
INITIAL DEI	PTH TER 140	9.95		OF PROTECTIVE	CASING	(FROM GROUPID			WELL DIAM.	4	IN
FINAL DE TO WA		9.94	(TOR)	302	FT	AMBIENT AIR	=	PPM	WELL INTER	GRITY: YES, NO	N/A
DRAWDO	OWN -O	,0065	SCREE		FT	MOUTH	_	PPM	CAP	-	
	nitial x 0.16 {2-inch		ch}) RATIO	OF DRAWDOWN V		PRESSURE TO PUMP	80	O PSI	LOCKED	- - :	V
TOTAL \ PURG	GED II		GAL	0,0039 es) x 0.00026 gal/m	P	REFILL SETTING	20	_	DISCHARGE SETTING	10	
PURGE D				SPECIFIC	Para series						
TIME	DEPTH TO WATER (ft) < 0.33 ft	PURGE RATE (ml/m) ≤ 500 ml/m	TEMP. (deg. c) ≤ 3%	CONDUCTANCE (mS/cm) ≤ 3%	pH (units) ≤ 0.1 units	DISS. O2 (mg/L) ≤ 10%	TURBIDITY (ntu) ≤ 50 ntu	REDOX (mv) ≤ 10 units		COMMENTS	
1645	149.93	1600	13.86	0.343	8.15	2.17	4,53	-151,2	2		
1650	149.92	160	13.94	0.368	7.25	1.87	1.71	-86.7	7		
1655	49.95	160	13.97	0.370	7.06	2.05	1.69	-693	3		
1700	149,95	160	13,90	0.370	6,93	2,29	1,43	-56.8	3		
1705	149,92	160	13.88	0,370	6.87	3,27	0.87	-466			
1710	149,93	160	13.83	0.371	6.82	3.52	1.17	-56.	7		
1715	149.93	160	13,80	0.371	6.81	3,59	2.38	-32	2		
1720	199,99	160	13.87	0.371	6.80	3,66	1,12	-27,	/		
EQUIPME	NT DOCUMENT	ATION									
	OF PUMP OPUMP (peristalti	o)	TYPE OF TUBIN	NG SITY POLYETHYLE		E OF PUMP M		- V		DDER MATERIAL	
	CO BLADDER	c)		SITY POLYETHYLE		Polyvinyl chlor STAINLESS		× 1	TEFLON Other		
	ADDER		OTHER_	44.7.		OTHER	0.011		•		
Check if S	CAL PARAMETE Scheduled for Collection Cs + TIC plus, Free con 113, Freon 115	on 11, Freon 22	. NUM	THOD MBER EPA-8260C	M	SERVATION ETHOD /4 DEG. C	VOLUME REQUIRED 3 X 40 mL	SAMPLE COLLECTE	Check if coll	ected	
	Cs + TIC plus, Fre			PA-524.2	HCL	/4 DEG. C	3 X 40 mL				
VChi	oride	, 116011 123, 116	USE	PA 4500 CL-B		G. C	1 X 250 mL		_		
Bro	omide		USE	PA 300.0	4 DE	EG, C	1 X 250 mL				
Ħ								Ħ			
	servations		0.770	22	- 1	COMMENTS					
Purge Wate Conatinerize	ed (es) no		Number of Gallo Generated	ns/C_	6	vater	has S	cultur		nec	0
SIGNATUR	E Ent	· fu	Ccio							IIEC	

FIELD DATA RECORD - LOW F	FLOW GROUNDWATER S	SAMPLING	
PROJECT Former Unisys Facility	FIELD SAMPLE NUME	BER MW-46ML-	JOB No. 3617187446
Location Lake Success, New York	SITE T		ML DATE 10/30/2020
ACTIVITY START 1430 END	SAMPLE TIME	1505	210110111111111111111111111111111111111
WATER LEVEL / PUMP SETTINGS INITIAL DEPTH TO WATER	MEASUREMENT POINT TOP OF WELL RISER TOP OF PROTECTIVE CASING WELL DEPTH (TOR) 3 G 3 FT SCREEN LENGTH 0 FT RATIO OF DRAWDOWN VOLUME TO TOTAL VOLUME PURGED O O S C ration (minutes) x 0.00026 gal/milliliter) SPECIFIC TEMP. CONDUCTANCE pH (units 4 G 6	its \$10% \$50 ntu 8 2.29 1.22 4 2.36 0.77 4 2.58 0.87 0 2.98 0.87 5 2.96 0.83	CASING / WELL PT WELL DIFFER. FT WELL DIAM. PPM WELL INTERGRITY: YES NO N/A PPM CAP CASING LOCKED COLLAR DISCHARGE SETTING DISCHARGE SETTING COMMENTS COMMENTS
1455 151.03 500 17 1500 150,93 500 17	2,41 0.203 6.7	33,08 1,26	200.6
EQUIPMENT DOCUMENTATION TYPE OF PUMP GEOPUMP (peristaltic) SMCO BLADDER X BLADDER ANALYTICAL PARAMETERS Check if Scheduled for Collection VOCs + TIC plus, Freon 11, Freon 22, Freon 113, Freon 115, Freon 123, Freon 15 VOCs + TIC plus, Freon 11, Freon 22, Freon 113, Freon 115, Freon 123, Freon 15 Chloride Bromide	LOW DENSITY POLYETHYLENE HIGH DENSITY POLYETHYLENE OTHER METHOD NUMBER USEPA-8260C 52a USEPA-524.2 USEPA 4500 CL-B	Polyvinyl chloride X STAINLESS STEEL OTHER RESERVATION METHOD HCL / 4 DEG. C 4 DEG. C 1 X 250 mL 1 X 250 mL	TYPE OF BLADDER MATERIAL X TEFLON Other SAMPLE COLLECTED Check if collected
	nber of Gallons _ ~ 4.5	COMMENTS	amec

10/29/2020

FIELD I	DATA REC	CORD - LC	OW FLOW	GROUNDW	ATER SA	MPLING	;				
PROJECT	Former Unisy	ys Facility		FIELD SAM	MPLE NUMBER	R MW-	-5/MI-	XX	JOB No.	3617187446	
Location	Lake Succes	ss, New York			SITE TYPE	E /	MW-51,	MI	DATE	10/29/201	20
ACTIVITY	START 102	20 EN	D	SAMPLE T	IME	1100					
INITIAL DEF TO WAT FINAL DEF TO WAT DRAWDO	PTH TER	,55	v to	[20.	3 FT	PROTECTIVI CASING STIC (FROM GRO PID AMBIENT AIR PID WELL MOUTH	ICKUP DUND)	3 FT W	CASING / WEID DIFFER. WELL DIAM. WELL INTERC	4	FT IN
TOTAL V PURG (purge vo	nitial x 0.16 {2-inc	ch) or x 0.65 {4-in	GAL TO TO	OF DRAWDOWN V TOTAL VOLUME PUR O 0 4 69 Utes) x 0.00026 gal/m	RGED	PRESSURE TO PUMP REFILL SETTING	80	PSI	CASING LOCKED COLLAR DISCHARGE SETTING	7 = =	
TIME	DEPTH TO WATER (ft) < 0.33 ft	PURGE RATE (ml/m) ≤500 ml/m	TEMP. (deg. c) ≤3%	SPECIFIC CONDUCTANCE (mS/cm) ≤ 3%	pH (units) ≤ 0.1 units	DISS. O2 (mg/L) ≤ 10%	TURBIDITY (ntu) ≤ 50 ntu	REDOX (mv) ≤ 10 units		COMMENTS	11
10'20	111.55	90.	13.74	1,397	7,09	7.61	0.94	161.0	gas	leaking bu	. 1
1023	11162	40	13,42	1,398	701	6.28	0.41	161.6	Pu	inging still	posible
10.35	111.60	40	12.3/	1.396	699	4.16	0.57	1701			
1040	111.64	40.	13.26	1,392	6.89	337	0.60	174,4			
1045	111.62	40.	13,25	1,391	6.79	2.55	0.30	177.3			
1050	111,63	40.	13,23	1,389	6.72	2,03	1,40	180.5	1 30		
1055	111,58	40	13,18	1.389	6.68	1 67	0.31	1814			
										ŧ.	
TYPE O GEC SMC X BLA	NT DOCUMEN DE PUMP OPUMP (peristalt CO BLADDER ADDER	ltic)	=	NG SITY POLYETHYLEN ISITY POLYETHYLEN	NE	E OF PUMP M Polyvinyl chlo STAINLESS OTHER	oride	ХТ	YPE OF BLAI TEFLON Other	DDER MATERIAL	
Check if S. VOC Frec VOC Frec Chic Bror	on 113, Freon 11 Cs + TIC plus, Fron 113, Freon 11 oride mide		2, USF eon 152a 2, USF eon 152a USF	ETHOD MBER EPA-8260C EPA-524.2 EPA 4500 CL-B EPA 300.0	HCL.	EG. C	3 X 40 mL 3 X 40 mL 1 X 250 mL 1 X 250 mL	COLLECTED) Check if colle	ncted	
Purge Obs Purge Water Conatinerize	er ed (Pes no	l. Pu	Number of Gallo Generated	-1		COMMENTS	S		ar	nec	9

FIELD	DATA REC	ORD - LO	W FLOW	GROUNDW	ATER SA	MPLING	}				
PROJECT	Former Unisy	s Facility		FIELD SAM	MPLE NUMBER	R MW	-51ML-	XX	JOB No. 3	617187446	
Location	Lake Success	s, New York			SITE TYPE	E 1	1W-511	ML	DATE	0/29/2	020
ACTIVITY	START 112	5 END	1145	SAMPLE T	IME	1150		h	11/1		
INITIAL DE		Ø2		JREMENT POINT OP OF WELL RISER OP OF PROTECTIVE		PROTECTIV CASING STI (FROM GRO	CKUP	FT	SING / WELL FFER.	_	FT
FINAL DE		00	WELL DEP (TOR)	TH 32	2 _{FT}	PID AMBIENT AT	R _		AM.	9	IN
DRAWDO VOL	OWN M	012	SCREE LENGT		FT	PID WELL MOUTH		РРМ	CAP CASING		N/A
(final -	initial x 0.16 {2-inc	10		OF DRAWDOWN V		PRESSURE TO PUMP	7		OCKED	$z = \frac{1}{2}$	
PUR	GED		GAL ender duration (minu	utes) x 0.00026 gal/m	nilliliter)	REFILL SETTING	20		SCHARGE ETTING	10	
PURGE D		0.25.3		SPECIFIC	1 5	Victor 6	4				
TIME	DEPTH TO WATER (ft) < 0.33 ft	PURGE RATE (ml/m) ≤ 500 ml/m	TEMP. (deg. c) ≤ 3%	CONDUCTANCE (mS/cm) ≤ 3%	pH (units) ≤ 0.1 units	DISS. O2 (mg/L) ≤ 10%	TURBIDITY (ntu) ≤ 50 ntu	REDOX (mv) ≤ 10 units		OMMENTS	
1125	111.83	280	13.21	0.229	6.85	3,72	0.64	180,5	gas 1	ea King) but
1130	NI, 94	280	13.15	0.214	6,73	1.58	1.86	186.2	fursin	o St;11	persible
1100	111.72		13/13	0.207	0.10	1,06	129	18601			
1145	111 95	280	13.12	0.205	6.65	2,88	0.41	187.8			
1173	1111.09	200.	13/16	0.603	6.61	2100	0.64	188.3	4-4		- 3
		44				- Albert			History Co.		-
	1			1598	15	(z.		7			-
		•									
								5 -			
	NT DOCUMEN	TATION						-			-
	OF PUMP EOPUMP (peristal)	ic)	TYPE OF TUBI	<u>NG</u> SITY POLYETHYLE	_	Polyvinyl chlo			PE OF BLADD EFLON	ER MATERIAL	
	MCO BLADDER	30)		ISITY POLYETHYLE		STAINLESS			ther		
	LADDER		OTHER_			OTHER					
Check if	CAL PARAMET Scheduled for Collect DCs + TIC plus, Fr	on eon 11, Freon 22	e, US	THOD IMBER EPA-8260C	M	SERVATION SETHOD 1/4 DEG. C	VOLUME REQUIRED 3 X 40 mL	SAMPLE COLLECTED	Check if collecte	d	
□vc	eon 113, Freon 11 DCs + TIC plus, Freon 113, Freon 11	eon 11, Freon 22	e, us	EPA-524.2	HCL	/ 4 DEG. C	3 X 40 mL				
Cr	nloride omide	5,F16011 125, F16	US	SEPA 4500 CL-B SEPA 300.0		EG. C	1 X 250 mL 1 X 250 mL				
	omac			LI 7 000.0	7.00		1 X 200 III.				
								H			
Purge Oh	servations					COMMENT	'S				
Purge Wat	er zed Eyes no	Purc	Number of Gall Generated	ons <u>~ 2</u>					an	nec	0

FIELD	DATA REC	ORD - LC	W FLOW	GROUNDWA	ATER SA	MPLING			
PROJECT	Former Unisy	s Facility		FIELD SAM	IPLE NUMBER	R IW-	N9687	$-\chi\chi$	JOB No. 3617187446
Location	Lake Success	s, New York			SITE TYPE		9687		DATE 10/29/2020
ACTIVITY	START	EN	D	SAMPLE T	IME	09	40	Vin.	
WATER L	EVEL / PUMP S	ETTINGS		REMENT POINT		PROTECTIVE CASING STIC			CASING / WELL DIFFER. FT
INITIAL DE TO WA		and the same of th		P OF PROTECTIVE	CASING	(FROM GROU		ET	WELL DIAM. IN
FINAL DE			(TOR)		F	AMBIENT AIR	R	РРМ	WELL INTERGRITY:
DRAWDO	OWN		SCREE LENGT		FT	PID WELL MOUTH		PPM	YES NO N/A
VOLI (final -	JME initial x 0.16 {2-inc		GAL ich}) RATIO	OF DRAWDOWN V	OLUME	PRESSURE			LOCKED
	8ED		GAL	otal volume pu		TO PUMP REFILL SETTING		PSI	DISCHARGE SETTING
PURGE D		<u> </u>		SPECIFIC					
TIME	DEPTH TO WATER (ft) < 0.33 ft	PURGE RATE (ml/m) ≤ 500 ml/m	TEMP. (deg. c) ≤ 3%	CONDUCTANCE (mS/cm) ≤ 3%	pH (units) ≤0.1 units	DISS. O2 (mg/L) ≤ 10%	TURBIDITY (ntu) ≤ 50 ntu	REDOX (mv) ≤ 10 units	COMMENTS
0940	A. 1 June .	-	13.70	0.333	6.95	7,18	20.0	174.4	
			7						
100									
					-				
			7 7 7						
EQUIPME	NT DOCUMEN	TATION							
	OF PUMP		TYPE OF TUBI	NG	TYPI	E OF PUMP M	ATERIAL		TYPE OF BLADDER MATERIAL
	OPUMP (peristalt	ic)		SITY POLYETHYLE		Polyvinyl chlo		X	TEFLON
	ADDER		OTHER_	SITY POLYETHYLE	NE X	STAINLESS OTHER	STEEL		Other
	CAL PARAMET	ERS	OINER			JOHNER	7.45		
VVV	Scheduled for Collection Cs + TIC plus, From 113, From 114	eon 11, Freon 22	NU 2, US	THOD <u>MBER</u> EPA-8260C	M	ETHOD /4 DEG. C	VOLUME REQUIRED 3 X 40 mL	SAMPLE COLLECT	Check if collected
□ vo	Cs + TIC plus, Freen 113, Freen 113	eon 11, Freon 22	2, US	EPA-524.2	HCL	/ 4 DEG. C	3 X 40 mL		
	loride			EPA 4500 CL-B		G. C	1 X 250 mL		
	omide		US	EPA 300.0	4 DE	G. C	1 X 250 mL		
Purge Oh	servations					COMMENTS	8		
Purge Wate Conatineriz	er 🕜	D. A.	Number of Gallo Generated	ons		COMMENT			amec

FIELD	DATA REC	ORD - LO	N FLOW	GROUNDWA	ATER SA	MPLING					
PROJECT	Former Unisy	s Facility		FIELD SAM	IPLE NUMBER	R MV	V-52M	I-XX	JOB No.	3617187446	
Location	Lake Success	, New York		- 41	SITE TYPE		1/1-52/	NI	DATE	10/29/20	926
ACTIVITY	START 11	5 END	1225	SAMPLE T	IME	12- 1)I	100	1	VAT:	
WATER L	EVEL / PUMP S	ETTINGS		REMENT POINT P OF WELL RISER		PROTECTIVE CASING STIC			CASING / WE	ELL	
INITIAL DE TO WA		0,70 F	WELL DEPT	P OF PROTECTIVE	CASING	(FROM GROU		FT	WELL DIAM.	4	FT
FINAL DE		0.82	(TOR)	235	FT	AMBIENT AIR		PPM	WELL INTER	GRITY:	IN
DRAWDO	1771	1	SCREE!		FT	PID WELL MOUTH	-	PPM		YES NO	N/A
VOLI (final - i	Initial x 0.16 {2-incl	G/ n} or x 0.65 {4-incl	RATIO	OF DRAWDOWN V		PRESSURE	61		CASING LOCKED		V
TOTAL	VOL. Q.	95 G		TAL VOLUME PUR	RGED	TO PUMP	4	1 .	COLLAR	-	
(purge	volume (milliliters	per minute) x time	L C	es) x 0.00026 gal/m	illiliter)	REFILL SETTING	12		DISCHARGE SETTING	10	
PURGE D	DEPTHTO	PURGE	TEMP.	SPECIFIC CONDUCTANCE	l pH	DISS. 02	TURBIDITY	REDOX	1		
TIME	< 0.33 ft	PATE (ml/m) ≤ 500 ml/m	(deg. c) ≤ 3%	(mS/cm) ≤ 3%	(units) ≤0.1 units	(mg/L) ≤ 10%	(ntu) ≤ 50 ntu	(mv) ≤ 10 units		COMMENTS	
1200	350	120.75	13.12	.289	6.50	2.56	34.9	220	9		
1205	1	120.77	13.11	.280	6.40	2.55	51.8	221	3	-	
1210		120,7	13.14	.278	6.31	251	318	220.	0		
1214		120.51	13.14	• 277	6.29	2.99	49,4	215.4	100		
120		120.82	13.19	277	4:38	203	1106	doh.	K .	A STATE OF THE STA	128
122	7-	120.82	13.15	- # sh / f	0001	9:35	520	175	7	Park Toler	
			-	200	100000		2 /	-			
					20		1			2.75	
	NT DOCUMENT								V 23.74	m1-0.07 - T-	
	OF PUMP OPUMP (peristalti	-	LOW DENS	<u>IG</u> SITY POLYETHYLEI		Polyvinyl chlo	Children .		YPE OF BLA	DDER MATERIAL	15
	ICO BLADDER	<u></u>	HIGH DEN	SITY POLYETHYLE		STAINLESS			Other		
	ADDER CAL PARAMETI	ERS	OTHER			OTHER	- 5	_			-
Check if	Scheduled for Collection OCs + TIC plus, Free	on eon 11, Freon 22,	USE	THOD MBER EPA-8260C	M	ERVATION ETHOD /4 DEG. C		SAMPLE	Check if coll	ected	
□ vc	eon 113, Freon 115 Cs + TIC plus, Fre	eon 11, Freon 22,	USE	PA-524.2	HCL	/4 DEG. C	3 X 40 mL	79			
	eon 113, Freon 115 Ioride	Freon 123, Freo		EPA 4500 CL-B	4 DE	G. C	1 X 250 mL	d			
	omide		USE	PA 300.0	4 DE	G. C	1 X 250 mL	Image: Control of the			
		(00								
Purge Ob	servations					COMMENT	S				
Purge Wat			Number of Gallo Generated	ns ~3						-	B
		1	^	1		53/	1		ar	nec	
010117-	- Millian	L.C.	Challe			1	00	\	No.		
SIGNATUR	KE: IN WOUND						0				

FIELD	DATA REC	CORD - LC	W FLOW	GROUNDWA	ATER SAI	MPLING				-	
PROJECT	Former Unisy	ys Facility		FIELD SAN	MPLE NUMBER	Mh	1-52M	L-XX	JOB No.	3617187446	1
Location	Lake Succes	s, New York			SITE TYPE	1	1W-52	2	DATE	10/29/2020	Ī
ACTIVITY	START 13	35 ENI	D 1106	SAMPLE T	IME	52 M	1				-
WATER LE	EVEL / PUMP S	SETTINGS		JREMENT POINT OP OF WELL RISER		PROTECTIVE			CASING / WEI		1
INITIAL DEI	1 1 1 1 1 1	1219	FT TO	OP OF PROTECTIVE	CASING (CASING STIC (FROM GROU		FT	DIFFER.	FT	7
FINAL DEI		22.10	WELL DEP (TOR) FT SCREE	56	O FT A	PID AMBIENT AIR		РРМ	DIAM. WELL INTER	J. 10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
DRAWDO		0715	LENGT	/ /	The state of the s	PID WELL MOUTH	_	PPM	CAP	YES NO N/A	
114,214,572		ch} or x 0.65 {4-inc	nch}) RATIO	OF DRAWDOWN V		PRESSURE	6	Ó PSI	LOCKED	$\stackrel{\checkmark}{\Rightarrow} = \stackrel{\checkmark}{\checkmark}$	-
TOTAL V		.78		0.0314		TO PUMP			COLLAR	<u> </u>	
(purge v	volume (milliliters		ie duration (minu	ites) x 0.00026 gal/mi	illiliter)	REFILL SETTING	2		DISCHARGE SETTING	10	
PURGE DA	ATA DEPTH TO	PURGE	TEMP.	SPECIFIC CONDUCTANCE	l pH [DISS. O2	TURBIDITY	REDOX	1		
TIME	WATER (ft) < 0.33 ft	RATE (ml/m) ≤ 500 ml/m	(deg. c) ≤ 3%	(mS/cm) - ≤ 3%	(units) ≤ 0.1 units	(mg/L) ≤ 10%	(ntu) ≤ 50 ntu	(mv) ≤ 10 units		COMMENTS	
10,0	122.03	350	13.50	.141	8.51	6.87	24.5	180	7		7
1045	122,05	1	13.01	140	8.33	6.38	20.5	190	5		
1050	122.09		12,95	140	8.25	5.60	13.9	199	11 -		
1055	127,09		12.93	1190	8.17	E 60	10.5	145.	0		
1900	331	1	12,91	133	8.03	5.8	4.72	194	2		-
1105						77.51			1		٦
		(×			4				
						- 1					ij
						-					
	NT DOCUMENT				29.5	4563.5				4.5	
	OF PUMP OPUMP (peristalti		X LOW DENS	<u>ng</u> Sity polyethylen		OF PUMP MA Polyvinyl chlorid			TEFLON	DDER MATERIAL	
	CO BLADDER	Ī		SITY POLYETHYLEN		STAINLESS S		=	Other		
	ADDER		OTHER_			OTHER			22.2		=1
Check if S		eon 11, Freon 22,	, USE	THOD MBER EPA-8260C	MET	RVATION THOD 4 DEG. C	VOLUME REQUIRED 3 X 40 mL	SAMPLE COLLECTE	D Check if collect	cted	
		5,Freon 123, Freo eon 11, Freon 22,		EPA-524.2	HCL /4	4 DEG. C	3 X 40 mL				
Free	on 113, Freon 115	5,Freon 123, Freo	on 152a								
	oride mide			EPA 4500 CL-B EPA 300.0	4 DEG.		1 X 250 mL 1 X 250 mL	V			
Purge Obs				2 ~	C	COMMENTS					
Purge Water Conatinerize		1.16	Number of Gallot Generated	ns ~2,5					an	nec®	
SIGNATURE	E IV WAA	WWY /	11 / 1 (MI)								- 1

FIELD DATA RECORD - LOW FLOW	GROUNDWATER SAMPLING	
PROJECT Former Unisys Facility	FIELD SAMPLE NUMBER MUI-	-53/UI-XX JOB No. 3617187446
Location Lake Success, New York	SITE TYPE 53	M = DATE 10/24/20
ACTIVITY START 1310 END 1350	SAMPLE TIME 35	
INITIAL DEPTH TO WATER FINAL DEPTH TO WATER FINAL DEPTH TO WATER DRAWDOWN VOLUME (final - initial x 0.16 {2-inch} or x 0.65 {4-inch}) TOTAL VOL. PURGED STOREGE TO TOTAL VOL. TO TOTAL VOL. TO TOTAL VOL. TO	AMBIENT AIR PID WELL MOUTH OF DRAWDOWN VOLUME TOTAL VOLUME PURGED OCOMOTOR OF A PRESSURE TO PUMP REFILL	WELL INTERGRITY: PPM WELL INTERGRITY: YES NO N/A CAP CASING LOCKED LOCKED COLLAR DISCHARGE
(purge volume (milliliters per minute) x time duration (min		SETTING / O
PURGE DATA DEPTH TO WATER (ft) RATE (ml/m) (deg. c) <3% 350 ml/m 58.78 35.0 13.77 35.5 35.0 13.72 35.5 35.0 35.0 35.0	SPECIFIC CONDUCTANCE (mS/cm) (units) (mg/L) ≤ 3% ≤ 0.1 units ≤ 10% 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	TURBIDITY (ntu) (mv) COMMENTS \$ 50 ntu \$ 10 units
SMCO BLADDER MIGH DEN ANALYTICAL PARAMETERS Check if Scheduled for Collection MI VOCs + TIC plus, Freon 11, Freon 22, Freon 113, Freon 115, Freon 123, Freon 152a VOCs + TIC plus, Freon 11, Freon 22, Freon 113, Freon 115, Freon 123, Freon 152a Chloride US	TYPE OF PUMP MA ISITY POLYETHYLENE INSITY POLY	de X TEFLON
Purge Observations Purge Water Conatinerized yes no	lons	amec

FIELD I	DATA REC	ORD - LO	OW FLOW	GROUNDWA	ATER SA	MPLING					
PROJECT	Former Unisy	s Facility		FIELD SAM	PLE NUMBER	MW	-53ML	$-\chi\chi$	JOB No.	3617187446	
Location	Lake Succes	s, New York			SITE TYPE	1	MW-53	ML	DATE	10/20	1/20
ACTIVITY	START 14	15 EN	D	SAMPLE TI	ME	53	3ML		-		1
WATER LE	VEL / PUMP S	SETTINGS		REMENT POINT		PROTECTIVE			CASING / WE	ELL _	
INITIAL DEF		1,25		P OF PROTECTIVE	CASING	(FROM GROU		FT FT	WELL	4	FT
FINAL DEF	TER 63	105	FT (TOR)	124.2	- FT	AMBIENT AIR		РРМ	DIAM. WELL INTER		IN
DRAWDO	ME U		SCREE LENGT	H L 40	FT	PID WELL MOUTH		РРМ	CAP CASING	YES NO	N/A
	nitial x 0.16 {2-inc	n} or x 0.65 {4-ir		OF DRAWDOWN VO		PRESSURE TO PUMP	60	PSI	LOCKED COLLAR	* = :	
PURG (purge v	SED [GALne duration (minu	0,286 tes) x 0.00026 gal/mi		REFILL SETTING	20	/	DISCHARGE SETTING	10	
PURGE DA		-1	6.2.2.2.	SPECIFIC		a de la colonia	The same of the	CEL SA			
TIME	DEPTH TO WATER (ft) < 0.33 ft	PURGE RATE (ml/m) ≤ 500 ml/m	TEMP. (deg. c) ≤ 3%	CONDUCTANCE (mS/cm) ≤ 3%	pH (units) ≤ 0.1 units	DISS. O2 (mg/L) ≤ 10%	TURBIDITY (ntu) ≤ 50 ntu	REDOX (mv) ≤ 10 units		COMMENTS	
1920	62.28	350	14,46	.147	646	3.24	19.1	146.	2		
1425	62,28	1-	13.71	.144	6.50	4.40	6.21	138,	5		
1930	63,01		13.61	+147	6.44	4.76	443	147.	2	4	
1435	63.05	1	13,68	0148	6.43	9.81	9.43	141.8			
TA		-			10	1					
							1				
(
						-					
									1		
									1		
EQUIPMEN	T DOCUMENT	TATION						_			-
TYPE OF	F PUMP		TYPE OF TUBI			OF PUMP M	ATERIAL		TYPE OF BL	ADDER MATERIAL	L
	PUMP (peristalti	ic)		SITY POLYETHYLEN		Polyvinyl chlor			TEFLON		
- Total	O BLADDER ADDER		OTHER_	SITY POLYETHYLEN	NE X	STAINLESS:	STEEL	ш	Other		
ANALYTIC	AL PARAMET	-0.5-5				0.010/17	1700075				
Voc	cheduled for Collections + TIC plus, Fre	eon 11, Freon 22	NUI L, USI	THOD <u>MBER</u> EPA-8260C	ME	ERVATION ETHOD 4 DEG. C	VOLUME REQUIRED 3 X 40 mL	SAMPLE	Check if col	lected	
□ voc	n 113, Freon 118	eon 11, Freon 22	, USI	EPA-524.2	HCL /	4 DEG. C	3 X 40 mL				
Preo	n 113, Freon 115 oride	5,Freon 123, Fre		EPA 4500 CL-B	4 DEG	G. C	1 X 250 mL		_		
Bron	nide		USI	EPA 300.0	4 DEC	G. C	1 X 250 mL				
H								H			
	ens is because it					. Zymność			C		
Purge Obs			Number of Oct			COMMENTS	3				
Constituenzed			Number of Gallo Generated	~2					-		0
Acres	1.									nec	
SIGNATURE	IMM	mail C	1/m	1							

	Farmar I Inio	o Engility		GROUNDWA	PLE NUMBER		N5099-	XX	JOB No. 3617187446
	Former Unisy	1/2 - 27		FIELD SAIV			V5099		10/20/200
cation	Lake Succes	s, New York		=	SITE TYPE	09	25		DATE [10/30/2020]
YTIVITY	START	END		SAMPLE TI	ME	01.	20		auto a Tari
ATER LE	EVEL / PUMP S	SETTINGS		P OF WELL RISER		PROTECTIVE CASING STIC			SING/WELL FT.
TO WAT		\	FT TO	OP OF PROTECTIVE	CASING	(FROM GROU	JND)	FT	ELL
INAL DEI			WELL DEF	тн		AMBIENT AIR		PPM	AM. IN
TO WA			SCRE			PID WELL		w	ELL INTERGRITY: YES NO N/A
DRAWDO	D-000		LENGT		FT	моитн			CAP
VOLU (final - ir		b) or x 0.65 {4-inc	h) RATIO	OF DRAWDOWN V	OLUME	PRESSURE		L	OCKED
TOTAL	101-	2.7.7.2.2.2.		TOTAL VOLUME PUI	RGED	TO PUMP			COLLAR
PURC	GED	per minute) x time	AL	utes) x 0.00026 gal/m	illiliter)	REFILL SETTING			SCHARGE ETTING
JRGE D		per minute) x uni	e delation (min	SPECIFIC					
TIME	DEPTH TO WATER (ft)	PURGE RATE (ml/m)	TEMP. (deg. c)	CONDUCTANCE (mS/cm)	pH (units)	DISS. O2 (mg/L)	TURBIDITY (ntu)	REDOX (mv)	COMMENTS
111002	< 0.33 ft	≤ 500 ml/m	≤ 3%	≤ 3%	≤0.1 units	≤ 10%	≤ 50 ntu	≤ 10 units	
936	_	-	13.65	0,423	7,22	7,90	0.84	186.5	
				1					
								-	
OUIPME	NT DOCUMEN	TATION						-	
	OF PUMP		TYPE OF TUE	SING	TYP	E OF PUMP N	IATERIAL		PE OF BLADDER MATERIAL
=	OPUMP (perista	tic)		NSITY POLYETHYLE	74.2	Polyvinyl chlo			EFLON
	CO BLADDER ADDER		OTHER	NSITY POLYETHYLE	NE X	STAINLESS OTHER	SIEEL		ther
	CAL PARAMET	FRS	OTHER_			JOHIEK			
	Scheduled for Collec			ETHOD UMBER		SERVATION METHOD	VOLUME REQUIRE		Check if collected
		reon 11, Freon 22	, Ū	SEPA-8260C		_/4 DEG. C	3 X 40 mL		
		15,Freon 123, Fre reon 11, Freon 22		SEPA-524.2	HCI	14 DEG. C	3 X 40 mL	V	
Fre	eon 113, Freon 1	15,Freon 123, Fre	on 152a				10.44	-	4
V Ch				SEPA 4500 CL-B SEPA 300.0		EG. C EG. C	1 X 250 m 1 X 250 m		
								H	
	e o nuetion =					COMMENT	s		
Purge Ob	eservations		Number of Ga	llons		COMMENT		1	1. 5. 1
Purge Ob			Number of Ga Generated	llons	l			ed pri	or to Sampling
rurge Ob	er			llons	l			d pri	or to Sampling of amec

FIELD	DATA REC	CORD - LC	W FLOW	GROUNDW	ATER SA	AMPLING	}				
PROJECT	Former Unisys Facility			FIELD SAM	MPLE NUMBE	R SW	-N4388	-Xx	JOB No. 3617187446		
Location	Lake Success, New York SITE TYPE N4388						DATE 10/30/2020				
ACTIVITY	START	ENI	D	SAMPLE T	'IME	112	0	Par .			
INITIAL DE				UREMENT POINT OP OF WELL RISER OP OF PROTECTIVE		PROTECTIV CASING STI (FROM GRO	CKUP	FT	CASING / WELL DIFFER. FT		
FINAL DE TO WA	EPTH ATER		WELL DER (TOR) FT SCREE LENGT	EN [FT	PID AMBIENT AII	R	PPM	WELL INTERGRITY: YES NO N/A CAP		
TOTAL Y	vol	ch} or x 0,65 (4-inc	GAL TO T	OF DRAWDOWN V FOTAL VOLUME PUI	RGED	PRESSURE TO PUMP REFILL SETTING			CASING LOCKED COLLAR DISCHARGE SETTING		
PURGE D		PURGE RATE (ml/m) ≤ 500 ml/m	TEMP. (deg. c) ≤ 3%	SPECIFIC CONDUCTANCE (mS/cm) ≤ 3%	pH (units) ≤ 0.1 units	DISS. O2 (mg/L) ≤ 10%	TURBIDITY (ntu) ≤ 50 ntu	REDOX (mv) ≤ 10 units	COMMENTS		
1115	-	-	13.24	0.689	6,75	8.14	0.86	173,1			
TYPE	ENT DOCUMEN OF PUMP		TYPE OF TUBI			PE OF PUMP N			TYPE OF BLADDER MATERIAL		
SM	EOPUMP (peristal MCO BLADDER LADDER	tic)		ISITY POLYETHYLE NSITY POLYETHYLE		Polyvinyl chlo STAINLESS OTHER		<u> </u>	TEFLON Other		
Check if VC Fre	CAL PARAMET Scheduled for Collect DCs + TIC plus, Freen 113, Freen 11 DCs + TIC plus, Freen 113, Freen 11 nloride omide	reon 11, Freon 22 15,Freon 123, Fre reon 11, Freon 22	2, NUS eon 152a 2, US eon 152a	ETHOD JMBER SEPA-8260C SEPA-524.2 SEPA 4500 CL-B SEPA 300.0	HCL HCL 4 DI	SERVATION METHOD L/4 DEG. C L/4 DEG. C EG. C	VOLUME REQUIREI 3 X 40 mL 3 X 40 mL 1 X 250 ml	COLLECTION OF THE PROPERTY OF	E ED Check if collected		
Purge Wat	zed yes (10)	li f	Number of Gal Generated		1	comment Activa-		ior t	amec ^o		

FIELD	DATA RE	CORD - LO	OW FLOW	GROUNDW	ATER SA	AMPLING	3		
PROJECT					MPLE NUMBE		-XX	JOB No. 3617187446	
Location	Lake Succes	ss, New York			SITE TYP	Α,	12796		DATE 10/30/2020
ACTIVITY	START	EN	ID	SAMPLE 1	TIME	1050	9		
WATER L	EVEL / PUMP	SETTINGS	ТС	JREMENT POINT OP OF WELL RISER OP OF PROTECTIVE		PROTECTIV CASING STI (FROM GRO	E CKUP	1	ASING / WELL FT
TO WA	TER		WELL DEP			PID	0140)		VELL
FINAL DE TO WA			FT (TOR)	"	FT	AMBIENT ALL	2	PPM	VELL INTERGRITY:
DRAWDO	ME		SCREE LENGT		FT	PID WELL MOUTH		РРМ	CAP
(final - ir	nitial x 0.16 {2-inc	cb) or x 0.65 {4-in		OF DRAWDOWN V		PRESSURE TO PUMP		1	LOCKED
PURC	€D	nor minuto) v tin	GAL	rtes) x 0.00026 gal/m		REFILL		p	ISCHARGE
PURGE DA		per minute) x tin	ne duration (minu	SPECIFIC	illitter)	SETTING		S	ETTING
TIME	DEPTH TO WATER (ft) < 0.33 ft	PURGE RATE (ml/m) ≤ 500 ml/m	TEMP. (deg. c) ≤ 3%	CONDUCTANCE (mS/cm) ≤ 3%	pH (units) ≤ 0.1 units	DISS. O2 (mg/L) ≤ 10%	TURBIDITY (ntu) ≤ 50 ntu	REDOX (mv) ≤ 10 units	COMMENTS
1050	-	_	13.74	0,378	6.88	8.85	1.67	1785	
								1111	
TYPE C	NT DOCUMEN F PUMP OPUMP (peristal CO BLADDER ADDER		=	NG SITY POLYETHYLE ISITY POLYETHYLE	NE _	E OF PUMP M Polyvinyl chlo STAINLESS OTHER	ride	X	YPE OF BLADDER MATERIAL TEFLON Other
Check if S			2, <u>NU</u>	THOD MBER EPA-8260C	M	SERVATION SETHOD . / 4 DEG. C	VOLUME REQUIRED 3 X 40 mL	SAMPLE COLLECTED	2 Check if collected
Vo	Cs + TIC plus, F	reon 11, Freon 2: 15,Freon 123, Fre	2, US eon 152a	EPA-524.2 EPA 4500 CL-B		./4 DEG. C	3 X 40 mL 1 X 250 mL		
Bro				EPA 300.0		EG. C	1 X 250 mL		
Purge Ob	servations					COMMENT		1. 1. 1.	
Purge Wate Conatineriz	ed yes 60	· luc	Number of Gall Generated		j	n Sei	rvice	and	amec

FIELD	DATA REC	ORD - LO	W FLOW	GROUNDWA	ATER SA	MPLING					
PROJECT	Former Unisy	ys Facility	FIELD SAM	IPLE NUMBE	R SW-		JOB No. 3617187446				
Location	Lake Success, New York				SITE TYP				DATE 10/30/2020		
ACTIVITY	START	ENI	0	SAMPLE T	IME	12	10	1,070,110			
WATER L	EVEL / PUMP	SETTINGS		JREMENT POINT OP OF WELL RISER		PROTECTIVE CASING STIC			SING / WELL		
INITIAL DE TO WA		_		OP OF PROTECTIVE	CASING	(FROM GROU		FT WE			
FINAL DE TO WA			FT (TOR)		FT	AMBIENT AIR	_	PPM	ELL INTERGRITY:		
DRAWDO	1,261.1	ي ـ	SCREE		FT	PID WELL MOUTH			YES NO N/A CAP		
(final -	initial x 0.16 {2-inc	ch} or x 0.05 {4-in		OF DRAWDOWN V		PRESSURE TO PUMP			OCKED		
TOTAL PUR	GED		GAL			REFILL		DIS	SCHARGE TTING		
PURGE D		per minute) x um	ne duration (mini	utes) x 0.00026 gal/m SPECIFIC	illiliter)	SETTING		SE	TTING		
TIME	DEPTH TO WATER (ft) < 0.33 ft	PURGE RATE (ml/m) ≤ 500 ml/m	TEMP. (deg. c) ≤ 3%	CONDUCTANCE (mS/cm) ≤ 3%	pH (units) ≤ 0.1 units	DISS. O2 (mg/L) ≤ 10%	TURBIDITY (ntu) ≤ 50 ntu	REDOX (mv) ≤ 10 units	COMMENTS		
1205		2300 mgm	12,24	0.735	6.68	6.55	0,49	178.7			
1			10.01	O. 723	0.00	6.00		1,0-1			
				1							
-											
					-						
					-						
	INT DOCUMEN OF PUMP	TATION	TYPE OF TUB	NG.	TVP	E OF PUMP MA	ATERIAL	TVI	PE OF BLADDER MATERIAL		
	OPUMP (peristal	tic)		SITY POLYETHYLE		Polyvinyl chlor			FLON		
	ICO BLADDER			ISITY POLYETHYLE	NE X	STAINLESS	STEEL	Ott	ner		
	ADDER CAL PARAMET	EDE	OTHER_			OTHER					
Check if	Scheduled for Collect CS + TIC plus, Fr eon 113, Freon 11	reon 11, Freon 22 5,Freon 123, Fre	NU US on 152a	THOD IMBER EPA-8260C	HCL HCL	SERVATION SETHOD ./4 DEG. C	VOLUME REQUIRED 3 X 40 mL	SAMPLE	Check if collected		
Fre	Cs + TIC plus, Fr eon 113, Freon 11 Ioride		on 152a	SEPA-524.2 SEPA 4500 CL-B		. / 4 DEG. C EG. C	3 X 40 mL 1 X 250 mL				
Bro	0001000			SEPA 300.0		EG. C	1 X 250 mL				
Purge Ob	servations					COMMENTS	í ·				
Purge Wate Conatineriz	er 🔊		Number of Gall Generated	ons	liv			and	9		
	01	2. Per	04'		0	umpin	0	0.7.0	amec		
SIGNATUR	E: Thus	2 Tell	co		1	7 7 11)				

FIELD	DATA REC	CORD - LO	W FLOW	GROUNDWA	ATER SA	MPLING	ì		*
PROJECT	Former Unis	ys Facility		FIELD SAM	IPLE NUMBE		-N13000		JOB No. 3617187446
Location	Lake Succes	s, New York		-3-4	SITE TYP		V13000		DATE 10/30/2020
ACTIVITY	START	ENI)	SAMPLE TI	IME	115	5		
WATER L	EVEL / PUMP S	SETTINGS	TO	JREMENT POINT OP OF WELL RISER OP OF PROTECTIVE	CASING	PROTECTIVI CASING STIC (FROM GRO	CKUP		CASING / WELL DIFFER.
TO WA			FT WELL DEP			PID			WELL DIAM.
FINAL DE			FT (TOR)		FT	AMBIENT AIR		PPM	WELL INTERGRITY:
DRAWDO VOLU (final - i	JME	ch} or x 0.65 {4-ing	SCREE LENGT Ch)) RATIO		FT OLUME	PID WELL MOUTH PRESSURE		РРМ	YES NO N/ CAP CASING LOCKED
	GED		SAL	rotal volume pur	7	TO PUMP REFILL SETTING			COLLAR DISCHARGE SETTING
PURGE D				SPECIFIC			7.50		
TIME	DEPTH TO WATER (ft) < 0.33 ft	PURGE RATE (ml/m) ≤ 500 ml/m	TEMP. (deg. c) ≤ 3%	CONDUCTANCE (mS/cm) ≤ 3%	pH (units) ≤ 0.1 units	DISS. O2 (mg/L) ≤ 10%	TURBIDITY (ntu) ≤ 50 ntu	REDOX (mv) ≤ 10 units	COMMENTS
1150			12.11	0.492	6.67	6,80	2.07	177,7	
				2-					
		-							
	NT DOCUMEN		Line ex the			A. Farence			
	OF PUMP OPUMP (peristal)		X LOW DEN	<u>NG</u> SITY POLYETHYLEN	_	Polyvinyl chlo			TYPE OF BLADDER MATERIAL TEFLON
	CO BLADDER			SITY POLYETHYLE	NE X	STAINLESS	STEEL		Other
	ADDER CAL PARAMET	FRS	OTHER			OTHER			
Free Vo	on 113, Freon 11 Cs + TIC plus, Fr on 113, Freon 11	eon 11, Freon 22, 5,Freon 123, Freo eon 11, Freon 22, 5,Freon 123, Freo	NU US on 152a	THOD MBER EPA-8260C EPA-524.2	HCL HCL	ERVATION ETHOD / 4 DEG. C	VOLUME REQUIRED 3 X 40 mL	SAMPLE COLLECTE	D Check if collected
Bro	loride omide			EPA 4500 CL-B EPA 300.0		G. C G. C	1 X 250 mL 1 X 250 mL		
	servations		i	- CONT.		COMMENTS		1.5	
Purge Wate Conatineriz			Number of Galle Generated	ons	i i	1 Se	rvice	and	pumping affice taken here
SIGNATUR	E Gin	Qi A	1100	ó	1)uplica	te Si	V-500	taken here

FIELD	DATA REC	CORD - LC	W FLOW	GROUNDW	ATER S	AMPLING			
PROJECT	Former Unis	ys Facility		FIELD SAM	MPLE NUMBE	R SW	-N138	21-XX	JOB No. 3617187446
Location	Lake Succes	s, New York		SITE TYP	E N	13821		DATE 10/30/2020	
ACTIVITY	START	ENI	D	SAMPLE T	IME		2		
WATER L		77111177	TO TO	JREMENT POINT OP OF WELL RISER OP OF PROTECTIVE		PROTECTIVE CASING STIC (FROM GRO	CKUP	FT	CASING / WELL FT
FINAL DE TO WA	EPTH ATER		WELL DEP (TOR) FT SCREE	N N	FT	PID AMBIENT AII	R	PPM V	WELL INTERGRITY: YES NO N/A
TOTAL PUR	UME initial x 0.16 {2-inc	ch} or x 0.65 {4-in	GAL TO T	OF DRAWDOWN V	RGED	PRESSURE TO PUMP		PSI	CAP CASING LOCKED COLLAR DISCHARGE
PURGE D		per minute) x tim	e duration (minu	ites) x 0.00026 gal/m SPECIFIC	illiliter)	SETTING			SETTING
TIME	DEPTH TO WATER (ft) < 0.33 ft	PURGE RATE (ml/m) ≤ 500 ml/m	TEMP. (deg. c) ≤ 3%	CONDUCTANCE (mS/cm) ≤ 3%	(units) ≤ 0.1 units		TURBIDITY (ntu) ≤ 50 ntu	REDOX (mv) ≤ 10 units	COMMENTS
1140		_	11,70	0.305	6.92	8,43	1,32	168.4	
_									
		T							
TYPE (ENT DOCUMENT OF PUMP COPUMP (peristalt ICO BLADDER LADDER		=	NG SITY POLYETHYLEI SITY POLYETHYLE	NE _	PE OF PUMP M Polyvinyl chlo STAINLESS OTHER	oride	X	YPE OF BLADDER MATERIAL TEFLON Other
Check if 4	CAL PARAMET Scheduled for Collecti CCs + TIC plus, Fre con 113, Freon 113 CCs + TIC plus, Fre con 113, Freon 113 loride omide	eon 11, Freon 22 5,Freon 123, Freo eon 11, Freon 22	ME NUI USI on 152a , USI on 152a	THOD MBER EPA-8260C EPA-524.2 EPA 4500 CL-B EPA 300.0	HCL 4 DE	SERVATION METHOD L / 4 DEG. C L / 4 DEG. C EG. C EG. C	3 X 40 mL 3 X 40 mL 1 X 250 mL 1 X 250 mL		D Check if collected
Purge Ob Purge Wate Conatineriz	ed yes fo	1. R	Number of Gallo Generated		ľ	Ve II Q	s ctivate	d pri	amec amec

Lockheed Martin Corporation Former Unisys Facility -- Great Neck Lake Success, New York AMEC E&E. PC

DATA USABILITY SUMMARY REPORT **QUARTERLY MONITORING - Q1 2021** LOCKHEED MARTIN CORPORATION FORMER UNISYS FACILITY -- GREAT NECK LAKE SUCCESS, NEW YORK

1.0 INTRODUCTION

Water samples were collected at the Lockheed Martin Corporation Former Unisvs Facility -- Great Neck Site in January 2021 and submitted to TestAmerica Laboratories, Inc., located in Edison, New Jersey (TestAmerica). Analyses were performed by TestAmerica Edison. Samples were analyzed by one or more of the following methods:

- Volatile Organic Compounds (VOCs) by USEPA Method 8260D
- VOCs by USEPA Method 524.2
- Chloride by SM 4500 CL B

A Data Usability Summary Report (DUSR) review was completed based on the New York State Department of Environmental Conservation (NYSDEC) Division of Environmental Remediation guidance (NYSDEC, 2010). Sample event information included in this DUSR is presented in the following Tables:

- Table 1 Summary of Samples and Analytical Methods
- Table 2 Summary of Analytical Results
- Table 3 Summary of Qualification Actions

A summary of table notes applicable to Tables 1, 2, and 3 is presented just before Table 1.

Laboratory deliverables included:

 Category B deliverables as defined in the NYSDEC Analytical Services Protocols (NYSDEC, 2005).

The DUSR review included the following evaluations as applicable. A table of the project control limits is presented in Attachment A. Applicable laboratory QC summary forms are included in Attachment B to document QC outliers associated with qualification actions.

- Lab Report Narrative Review
- Data Package Completeness and COC records (Table 1 verification)
- Sample Preservation and Holding Times
- Instrument Calibration (report narrative/lab-qualifier evaluation)
- QC Blanks
- Laboratory Control Samples (LCS)
- Matrix Spike/Matrix Spike Duplicates (MS/MSD)
- Surrogate Spikes (if applicable)
- Field Duplicates

Lockheed Martin Corporation Former Unisys Facility -- Great Neck Lake Success, New York AMEC E&E, PC

- Target Analyte Identification and Quantitation
- Raw Data (chromatograms), Calculation Checks and Transcription Verifications
- Reporting Limits
- Electronic Data Qualification and Verification

Data qualification actions are applied when necessary based on general procedures in USEPA validation guidelines (USEPA, 2014) and the judgment of the project chemist. The following laboratory or data review qualifiers are used in the final data presentation:

U = target analyte is not detected above the reported detection limit J = concentration is estimated

J- = concentration is estimated, biased low

UJ = target analyte is not detected and value is estimated

Results are interpreted to be usable as reported by the laboratory or as qualified in the following sections.

2.0 POTENTIAL DATA LIMITATIONS

Based on the DUSR review the majority of data meet the data quality objectives; however, the following potential limitations were identified:

VOCs by 524.2

Reporting limits for dichlorodifluoromethane and Freon 115 in a subset of samples were qualified estimated (UJ) based on low recovery in the associated LCS/LCSD. Qualified results are included in Table 3 with reason code LCSL.

The results for tetrachloroethene, dichlorodifluoromethane, and Freon 115 in sample SW-N12796-XX were qualified estimated (UJ/J-) based on a low percent recovery in the associated MS/MSD. The qualified results are included in Table 3 with reason code MSL.

VOCs by 8260D

A subset of samples were received with pH measurements outside the method specified criteria required for a 14-day holding time. Results for these samples were qualified estimated (UJ/J) based on samples being analyzed outside the seven-day hold time for unpreserved samples.

3.0 ADDITIONAL QC EXCEEDANCES AND OBSERVATIONS

There were no additional observations or quality control exceedances not specifically addressed above (Section 2.0) or included in Table 3.

Lockheed Martin Corporation Former Unisys Facility -- Great Neck Lake Success, New York AMEC E&E, PC

Reference:

New York State Department of Environmental Conservation (NYSDEC), 2005. "Analytical Services Protocols"; June 2005.

NYSDEC, 2010. "Technical Guidance for Site Investigation and Remediation-Appendix 2B"; DER-10; Division of Environmental Remediation; May 2010.

USEPA, 2014. "Validating Volatile Organic Compounds by Gas Chromatography/Mass Spectrometry SW-846 Method 8260B"; USEPA Region II; HW-24; Revision 4; September 2014.

Data Validator: Amber Jones

amla fonts

March 4, 2021

Reviewed by: Julie Ricardi

Julie Rivaroi

March 10, 2021

Standard Table Notes:

ng/L – nanograms per liter

μg/L – micrograms per liter

Sample Type (QC Code) Qualification Reason Codes

FS – field sample BL1 – method blank qualifier

FD – field duplicate BL2 – field or trip blank qualifier

TB – trip blank CCV – continuing calibration verification recovery outside limits

EB – equipment blank CCV%D – continuing calibration verification percent difference exceeds goal

FB – field blank CCVRRF – continuing calibration relative response factor low

CI – chromatographic interference present

Matrix DCPD – dual column percent difference exceeds limit

GW – ground water E – result exceeds calibration range

BW – blank water FD – field duplicate precision goal exceeded

TW – tap water FP – false positive interference

SV – soil vapor HT – holding time for prep or analysis exceeded

SED - sediment HTG – holding time for prep or analysis grossly exceeded

ICV – initial calibration verification recovery outside limit

<u>Units</u> ICVRRF – initial calibration verification relative response factor low

mg/L – milligrams per liter ICVRSD – initial calibration verification % relative standard deviation exceeds

goal

ISH – internal standard response greater than limit

ISL – internal standard response less than limit

mg/kg – milligrams per kilogram

LCSH – laboratory control sample recovery high μg/kg – micrograms per kilogram

LCSL – laboratory control sample recovery low μg/m³ – micrograms per cubic meter

LCSRPD – laboratory control sample/duplicate relative % difference precision

goal exceeded

Qualifiers LD – lab duplicate precision goal exceeded

U – not detected above quantitation limit MSH – matrix spike and/or MS duplicate recovery high

J – estimated quantity

MSL – matrix spike and/or MS duplicate recovery low

J+ - estimated quantity, biased high

MSRPD – matrix spike/duplicate relative % difference precision goal exceeded

J- - estimated quantity, biased low N – analyte identification is not certain

R – data unusable PEM – performance evaluation mixture exceeds limit

PM – sample percent moisture exceeds EPA guideline

<u>Fraction</u> SD – serial dilution result exceeds percent difference limit

T – total SP – sample preservation/collection does not meet method requirement

D – dissolved SSH – surrogate recovery high

N – normal SSL – surrogate recovery low

TD – dissolved concentration exceeds total

Table 1 - Summary of Samples and Analytical Methods Data Usability Summary Report Quarterly Monitoring - Q1 2021

Lockheed Martin Corporation Former Unisys Facility -- Great Neck Lake Success, New York

					Method	524.2	8260D	SM 4500 Cl- B
					Fraction	N	N	Т
SDG	Location	Field Sample ID	Sample Date Media	Lab Sample ID	QC Code	Count	Count	Count
460-227520-1	31GL	MW-31GL-XX	1/27/2021 GW	460-227520-1	FS		54	1
460-227520-1	31MI	MW-31MI-XX	1/27/2021 GW	460-227520-2	FS		54	1
460-227520-1	31ML	MW-31ML-XX	1/27/2021 GW	460-227520-3	FS		54	1
460-227520-1	43MI	MW-43MI-XX	1/27/2021 GW	460-227520-5	FS		54	1
460-227520-1	43MU	MW-43MU-XX	1/27/2021 GW	460-227520-4	FS		54	1
460-227520-1	45MI	MW-45MI-XX	1/28/2021 GW	460-227520-7	FS		54	1
460-227520-1	45MU	MW-45MU-XX	1/29/2021 GW	460-227520-6	FS		54	1
460-227520-1	46MI	MW-46MI-XX	1/29/2021 GW	460-227520-8	FS		54	1
460-227520-1	46ML	MW-46ML-XX	1/29/2021 GW	460-227520-9	FS		54	1
460-227520-1	51MI	MW-51MI-XX	1/28/2021 GW	460-227520-10	FS		4	
460-227520-1	51ML	MW-51ML-XX	1/28/2021 GW	460-227520-11	FS		4	
460-227520-1	52MI	MW-52MI-XX	1/28/2021 GW	460-227520-12	FS		54	1
460-227520-1	52ML	MW-52ML-XX	1/28/2021 GW	460-227520-13	FS		54	1
460-227520-1	53MI	MW-53MI-XX	1/29/2021 GW	460-227520-14	FS		54	1
460-227520-1	53ML	MW-53ML-XX	1/29/2021 GW	460-227520-15	FS		54	1
460-227520-1	N04388	SW-N4388-XX	1/29/2021 SW	460-227520-18	FS	61		1
460-227520-1	N05099	SW-N5099-XX	1/29/2021 SW	460-227520-17	FS	61		1
460-227520-1	N12796	SW-N12796-XX	1/29/2021 SW	460-227520-19	FS	61		1
460-227520-1	43MI	MW-500	1/27/2021 GW	460-227520-16	FD		54	1
460-227520-1	QC	QC-TB270121-XX	1/27/2021 BW	460-227520-21	ТВ	61		
460-227520-1	N05099	SW-500	1/29/2021 SW	460-227520-20	FD	61		1

Created by: WCG 3/03/2021 Checked by: ALJ 3/03/2021

Lockheed Martin Corporation Former Unisys Facility -- Great Neck Lake Success, New York

		SDG	460-22	27520-1	460-21	27520-1	460-2	27520-1	460-2	27520-1	460-2	27520-1	
	la	cation		1388		5099		5099		2796 2796		QC	
		e Date		/2021		/2021		/2021)/2021		7/2021	
	-	ple ID		388-XX	-	7-500	-	5099-XX	-	.2796-XX		70121-XX	
		C Code		:S		-500 FD		FS		FS		TB	
	Q	c Coue	ſ	-3	,	ט־	'	r 3		гэ		ID	
			Final	Final	Final	Final	Final	Final	Final	Final	Final	Final	
Method	Parameter	Unit	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	
524.2	1,1,1,2-Tetrachloroethane	UG/L	0.5	U	0.5	U	0.5	U	0.5	U	0.5	i U	
524.2	1,1,1-Trichloroethane	UG/L	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	
524.2	1,1,2,2-Tetrachloroethane	UG/L	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	
524.2	1,1,2-Trichloro-1,2,2-Trifluoroethane (Freon 113)	UG/L	0.5 U		2.2		2.4		0.49	J	0.5	U	
524.2	1,1,2-Trichloroethane	UG/L	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	
524.2	1,1-Dichloroethane	UG/L	0.5 U		0.5	U	0.5	0.5 U 0.5 U		0.5 U		U	
524.2	1,1-Dichloroethene	UG/L	0.5	U	0.5 U 0.5 U 0.5 U		0.5	U					
524.2	1,1-Dichloropropene	UG/L	0.5	U	0.5 U 0.5 U 0.5 U				0.5	U			
524.2	1,1-Difluoroethane (Freon 152a)	UG/L	0.5	U	0.5	U	0.5 U		0.5 U		0.5	U	
524.2	1,2,3-Trichlorobenzene	UG/L	0.5	U	0.5	0.5 U		U	0.5 U		0.5	U	
524.2	1,2,3-Trichloropropane	UG/L	0.5	U	0.5	U	0.5	U	0.5	U	0.5	5 U	
524.2	1,2,4-Trichlorobenzene	UG/L	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	
524.2	1,2,4-Trimethylbenzene	UG/L	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	
524.2	1,2-Dichlorobenzene	UG/L	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	
524.2	1,2-Dichloroethane	UG/L	0.5	U	0.16	J	0.19	J	0.5	U	0.5	U	
524.2	1,2-Dichloropropane	UG/L	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	
524.2	1,3,5-Trimethylbenzene	UG/L	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	
524.2	1,3-Dichlorobenzene	UG/L	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	
524.2	1,3-Dichloropropane	UG/L	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	
524.2	1,4-Dichlorobenzene	UG/L	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	
524.2	2,2-Dichloropropane	UG/L	0.5	U	0.5	U	0.5	U	0.5	U	0.5	5 U	
524.2	2-Chlorotoluene	UG/L	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	
524.2	4-Chlorotoluene	UG/L	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	
524.2	4-iso-Propyltoluene	UG/L	0.5	U	0.5 U		0.5 U		0.5 U 0.5 U		U	0.5	U
524.2	Benzene	UG/L	0.5	U	0.5 U		0.5 U		0.5 U		0.5	U	
524.2	Bromobenzene	UG/L	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	
524.2	Bromochloromethane	UG/L	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	

Lockheed Martin Corporation Former Unisys Facility -- Great Neck Lake Success, New York

		SDG	460-227520-1 NO4288		460.22	27520-1	460.2	27520-1	460.2	27520-1	460.2	27520-1				
		Location				5099		5099		27320-1 2796		27320-1 QC				
		Sample Date		/2021		/2021		/2021		/2021		//2021				
		-			-	7-500	-	-	-	72021 2796-XX		72021 70121-XX				
		Sample ID QC Code		388-XX -S		-500 FD		5099-XX FS		2796-XX FS		70121-XX TB				
		QC Code	Г	-5	r	יטי		rs		r3		IB				
			Final Final		Final	Final	Final	Final	Final	Final	Final	Final				
Method	Parameter	Unit	Result	-		Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier				
524.2	Bromodichloromethane	UG/L	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U				
524.2	Bromoform	UG/L	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U				
524.2	Bromomethane	UG/L	0.5 U		0.5 U		0.5 U		0.5	U	0.5	U				
524.2	Carbon tetrachloride	UG/L	0.5 U		0.18 J		0.18 J		0.5	U	0.5	U				
524.2	Chlorobenzene	UG/L	0.5 U		0.5 U		0.5	U	0.5	U	0.5	U				
524.2	Chlorodifluoromethane	UG/L	0.5 U		0.5	U	0.5	U	0.32	J	0.5	U				
524.2	Chloroethane	UG/L	0.5	0.5 U		U	0.5 U		0.5	U	0.5	U				
524.2	Chloroform	UG/L	0.5	U	0.27 J 0.28 J 0.2 J		0.28 J		J	0.5	U					
524.2	Chloromethane	UG/L	0.5	U	0.5 U		0.44 J		0.5 U		0.5	U				
524.2	cis-1,2-Dichloroethene	UG/L	0.5	U	23		24		3.7		0.5	U				
524.2	cis-1,3-Dichloropropene	UG/L	0.5	U	0.5	U	0.5 U		0.5 U		0.5	U				
524.2	Dibromochloromethane	UG/L	0.5	U	0.5	U	0.5 U		0.5 U 0.5 U		0.5	U				
524.2	Dibromomethane	UG/L	0.5	U	0.5	U	0.5	U	0.5	0.5 U		U		U		
524.2	Dichlorodifluoromethane	UG/L	0.5	UJ	0.5	UJ	0.5	UJ	0.5	UJ	0.5	U				
524.2	Ethylbenzene	UG/L	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U				
524.2	Freon 115	UG/L	0.5	UJ	0.5	UJ	0.5	UJ	0.5	UJ	0.5	U				
524.2	Freon 123	UG/L	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U				
524.2	Hexachlorobutadiene	UG/L	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U				
524.2	Isopropylbenzene	UG/L	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U				
524.2	Methyl Tertbutyl Ether	UG/L	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U				
524.2	Methylene chloride	UG/L	0.5		0.5		0.5		0.5		0.5					
524.2	Propylbenzene	UG/L	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U				
524.2	sec-Butylbenzene	UG/L	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U				
524.2	Styrene	UG/L	0.5	0.5 U		0.5 U				0.5 U		0.5 U		U	0.5	U
524.2	tert-Butylbenzene	UG/L	0.5	0.5 U		0.5 U		0.5 U				0.5	U			
524.2	Tetrachloroethene	UG/L	0.16		5.3		5.4		5.3 5.4 6.6 J-		J-	0.5	U			
524.2	Toluene	UG/L	0.5	0.5 U		0.5 U		0.5 U		0.5 U		J				

Table 2 - Summary of Analytical Results Data Usability Summary Report Quarterly Monitoring - Q1 2021 Lockheed Martin Corporation Former Unisys Facility -- Great Neck

Lake Success, New York

		SDG	460-227520-1		460-2	27520-1	460-2	27520-1	460-22	27520-1	460-2	27520-1
		Location	NO4	4388	N0	5099	N0	5099	N1	2796	(QC
		Sample Date	1/29	1/29/2021		1/29/2021		1/29/2021		1/29/2021		7/2021
		Sample ID	SW-N ²	SW-N4388-XX		SW-500		SW-N5099-XX		SW-N12796-XX		70121-XX
		QC Code	FS		FD		FS		FS			ТВ
			Final	Final Final		Final	Final	Final	Final	Final	Final	Final
Method	Parameter	Unit	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier
524.2	trans-1,2-Dichloroethene	UG/L	0.5	U	0.15 J		0.13 J		0.5	C	0.5	U
524.2	trans-1,3-Dichloropropene	UG/L	0.5	U	0.5	U	0.5 U		0.5 U		0.5	5 U
524.2	Trichloroethene	UG/L	0.11	J	16	•	16		4.6		0.5	5 U
524.2	Trichlorofluoromethane	UG/L	0.5	U	0.47	' J	0.51		0.5	U	0.5	5 U
524.2	Vinyl chloride	UG/L	0.5 U		0.5	U	0.5	U	0.5	U	0.5	5 U
524.2	Xylene, o	UG/L	0.5 U		0.5 U		0.5 U		0.5 U		0.5	U
524.2	Xylenes (m&p)	UG/L	1 U		1 U		1 U		1 U		1	. U

Created by: WCG 3/04/2021 Checked by: ALJ 3/04/2021

GWM_Q1_January_2021_Table_2 3 of 18

Lockheed Martin Corporation Former Unisys Facility -- Great Neck Lake Success, New York

		SDG	460-22	27520-1	460-22	27520-1	460-22	27520-1	460-22	27520-1	
	L	ocation	32	lGL	31	LMI	31	LML	43	BMI	
	Samp	le Date	1/27	/2021	1/27	/2021	1/27	//2021	1/27	/2021	
	Sar	mple ID	MW-3	1GL-XX	MW-3	1MI-XX	MW-3	1ML-XX	MW-4	3MI-XX	
	Q	C Code	1	FS	ı	-S		FS	ı	-S	
			Final	Final	Final	Final	Final	Final	Final	Final	
Method	Parameter	Unit	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	
8260D	1,1,1-Trichloroethane	UG/L	0.5	UJ	0.5	U	0.5	U	0.5	UJ	
8260D	1,1,2,2-Tetrachloroethane	UG/L	0.5	UJ	0.5	U	0.5	U	0.5	UJ	
8260D	1,1,2-Trichloro-1,2,2-Trifluoroethane (Freon 113)	UG/L	5.7	J	10		6.7		1.6	J	
8260D	1,1,2-Trichloroethane	UG/L	0.5	UJ	0.5	U	0.5	U	0.5	UJ	
8260D	1,1-Dichloroethane	UG/L	0.5	UJ	0.38	J	0.5	U	0.5	UJ	
8260D	1,1-Dichloroethene	UG/L	0.5	UJ	0.61		0.42	J	0.5	UJ	
8260D	1,1-Difluoroethane (Freon 152a)	UG/L	. 1 UJ		1 U		1 U		1	UJ	
8260D	1,2,4-Trichlorobenzene	UG/L	0.5	UJ	0.5	U	0.5	U	0.5 UJ		
8260D	1,2-Dibromo-3-chloropropane	UG/L	0.5	UJ	0.5	U	0.5	U	0.5	UJ	
8260D	1,2-Dibromoethane	UG/L	0.5	UJ	0.5	U	0.5	U	0.5	UJ	
8260D	1,2-Dichlorobenzene	UG/L	0.5	UJ	0.5	U	0.5	U	0.5	UJ	
8260D	1,2-Dichloroethane	UG/L	0.5	UJ	0.66		0.5	U	0.5	UJ	
8260D	1,2-Dichloropropane	UG/L	0.5	UJ	0.5	U	0.5	U	0.5	UJ	
8260D	1,3-Dichlorobenzene	UG/L	0.5	UJ	0.5	U	0.5	U	0.5	UJ	
8260D	1,4-Dichlorobenzene	UG/L	0.5	UJ	0.5	U	0.5	U	0.5	UJ	
8260D	2-Butanone	UG/L	2.5	UJ	2.5	U	2.5	U	2.5	UJ	
8260D	2-Hexanone	UG/L	2.5	UJ	2.5	U	2.5	U	2.5	UJ	
8260D	4-Methyl-2-pentanone	UG/L	2.5	UJ	2.5	U	2.5	U	2.5	UJ	
8260D	Acetic acid, methyl ester	UG/L	2.5	UJ	2.5	U	2.5	U	2.5	UJ	
8260D	Acetone	UG/L	5	UJ	5.2		5	U	5	UJ	
8260D	Benzene	UG/L	. 0.5 UJ		0.5 U		0.5 U 0.5 U		U	0.5 UJ	
8260D	Bromodichloromethane	UG/L	. 0.5 UJ		0.5 U		0.5 U 0.5 U		U	0.5	UJ
8260D	Bromoform	UG/L	0.5	UJ	0.5	U	0.5	U	0.5	UJ	

Lockheed Martin Corporation Former Unisys Facility -- Great Neck Lake Success, New York

		SDG	460-22	27520-1	460-22	27520-1	460-22	27520-1	460-22	27520-1		
		Location	31	LGL	31	MI	31	.ML	43	3MI		
		Sample Date	1/27	/2021	1/27	/2021	1/27	/2021	1/27	/2021		
		Sample ID	MW-3	1GL-XX	MW-3	1MI-XX	MW-3	1ML-XX	MW-4	3MI-XX		
		QC Code	ı	<u>-</u> S	F	- S	1	FS	ı	FS		
			Final	Final Final		Final	Final	Final	Final	Final		
Method	Parameter	Unit	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier		
8260D	Bromomethane	UG/L	0.5	UJ	0.5	U	0.5	U	0.5	UJ		
8260D	Carbon disulfide	UG/L	0.5	UJ	0.5	U	0.5	U	0.5	UJ		
8260D	Carbon tetrachloride	UG/L	0.5	UJ	0.5	U	0.5	U	0.5	UJ		
8260D	Chlorobenzene	UG/L	0.5	UJ	0.5	U	0.5	U	0.5	UJ		
8260D	Chlorodifluoromethane	UG/L	1.5	1.5 J			8		8		2.8	J
8260D	Chloroethane	UG/L	0.5	UJ	0.5	U	0.5	U	0.5	UJ		
8260D	Chloroform	UG/L	0.42	J	0.61		0.39 J		0.5	UJ		
8260D	Chloromethane	UG/L	0.5	UJ	0.5 U		0.5 U		0.5	UJ		
8260D	cis-1,2-Dichloroethene	UG/L	140	J	270		270 100		27	J		
8260D	cis-1,3-Dichloropropene	UG/L	0.5	UJ	0.5	0.5 U 0.5 U		U	0.5	UJ		
8260D	Cyclohexane	UG/L	0.5	UJ	0.5	U	0.5	U	0.5	UJ		
8260D	Dibromochloromethane	UG/L	0.5	UJ	0.5	U	0.5	U	0.5	UJ		
8260D	Dichlorodifluoromethane	UG/L	0.5	UJ	0.5	U	0.5	U	0.5	UJ		
8260D	Ethylbenzene	UG/L	0.5	UJ	0.5	U	0.5	U	0.5	UJ		
8260D	Freon 115	UG/L	4	UJ	4	U	4	U	4	UJ		
8260D	Freon 123	UG/L	1	UJ	1	U	1	U	1	UJ		
8260D	Isopropylbenzene	UG/L	0.5	UJ	0.5	U	0.5	U	0.5	UJ		
8260D	Methyl cyclohexane	UG/L	0.5	UJ	0.5	U	0.5	U	0.5	UJ		
8260D	Methyl Tertbutyl Ether	UG/L	0.5	UJ	0.5	U	0.5	U	0.5	UJ		
8260D	Methylene chloride	UG/L	0.5	UJ	0.5	U	0.5	U	0.5	UJ		
8260D	Styrene	UG/L	0.5	UJ	0.5	U	0.5	U	0.5	UJ		
8260D	Tetrachloroethene	UG/L	19	J	27		21		5.6	J		
8260D	Toluene	UG/L	0.5	UJ	0.5	U	0.5	U	0.5	UJ		

		SDG			460-22	27520-1	460-2	27520-1	460-22	27520-1
		Location	33	1GL	32	LMI	31	IML	43	BMI
		Sample Date	te 1/27/2021		1/27	/2021	1/27	//2021	1/27	/2021
		Sample ID	MW-31GL-XX		MW-3	1MI-XX	MW-3	1ML-XX	MW-4	3MI-XX
		QC Code	FS		FS		FS		1	=S
			Final	Final Final		Final	Final	Final	Final	Final
Method	Parameter	Unit	Result	Result Qualifier		Result Qualifier		Qualifier	Result	Qualifier
8260D	trans-1,2-Dichloroethene	UG/L	0.51	J	0.8		0.31 J		0.5	UJ
8260D	trans-1,3-Dichloropropene	UG/L	0.5	UJ	0.5 U		0.5 U 0.5		0.5	UJ
8260D	Trichloroethene	UG/L	34	J	54		37		11 J	
8260D	Trichlorofluoromethane	UG/L	0.5	UJ	0.5	U	0.5	U	0.5	UJ
8260D	Vinyl chloride	UG/L	0.5	UJ	0.5	U	0.5	U	0.5	UJ
8260D	Xylene, o	UG/L	0.5 UJ		0.5	U	0.5	U	0.5	UJ
8260D	Xylenes (m&p)	UG/L	0.5 UJ		0.5	0.5 U 0.5 U		U	0.5 UJ	
8260D	Xylenes, Total	UG/L	1 UJ		1 U		1 U		1 UJ	

Lockheed Martin Corporation Former Unisys Facility -- Great Neck Lake Success, New York

		SDG	460-22	27520-1	460-22	27520-1	460-22	7520-1	460-22	27520-1				
	L	ocation	43	BMI	43	MU	45	MI	45	MU				
	Samp	le Date	1/27	/2021	1/27	/2021	1/28	/2021	1/29	/2021				
	Sai	mple ID	MW	/-500	MW-43	3MU-XX	MW-4	5MI-XX	MW-45	5MU-XX				
	Q	C Code	F	:D	F	- S	F	:S	F	FS				
			Final	Final	Final	Final	Final	Final	Final	Final				
Method	Parameter	Unit	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier				
8260D	1,1,1-Trichloroethane	UG/L	0.5	U	0.5	U	0.5	U	0.5	U				
8260D	1,1,2,2-Tetrachloroethane	UG/L	0.5	U	0.5	U	0.5	U	0.5	U				
8260D	1,1,2-Trichloro-1,2,2-Trifluoroethane (Freon 113)	UG/L	1.6		1		0.5		6.2					
8260D	1,1,2-Trichloroethane	UG/L	0.5	U	0.5	U	0.5	U	0.5	U				
8260D	1,1-Dichloroethane	UG/L	0.5 U		0.5	U	0.5 U		0.5 U		0.33	J		
8260D	1,1-Dichloroethene	UG/L	0.5	U	0.5	U	0.5			0.5 U				J
8260D	1,1-Difluoroethane (Freon 152a)	UG/L	1	U	1 U		1 U		1	U				
8260D	1,2,4-Trichlorobenzene	UG/L	0.5	U	0.5 U		0.5 U		0.5	U				
8260D	1,2-Dibromo-3-chloropropane	UG/L	0.5	U	0.5	U	0.5	U	0.5	U				
8260D	1,2-Dibromoethane	UG/L	0.5	U	0.5	U	0.5	U	0.5	U				
8260D	1,2-Dichlorobenzene	UG/L	0.5	U	0.5	U	0.5	U	0.5	U				
8260D	1,2-Dichloroethane	UG/L	0.5	U	0.5	U	0.5	U	0.45	J				
8260D	1,2-Dichloropropane	UG/L	0.5	U	0.5	U	0.5	U	0.5	U				
8260D	1,3-Dichlorobenzene	UG/L	0.5	U	0.5	U	0.5	U	0.5	U				
8260D	1,4-Dichlorobenzene	UG/L	0.5	U	0.5	U	0.5	U	0.5	U				
8260D	2-Butanone	UG/L	2.5	U	2.5	U	2.5	U	2.5	U				
8260D	2-Hexanone	UG/L	2.5	U	2.5	U	2.5	U	2.5	U				
8260D	4-Methyl-2-pentanone	UG/L	2.5	U	2.5	U	2.5	U	2.5	U				
8260D	Acetic acid, methyl ester	UG/L	2.5	U	2.5	U	2.5	U	2.5	U				
8260D	Acetone	UG/L	5	U	5	U	5	U	5	U				
8260D	Benzene	UG/L	0.5	U	0.5	U	0.5	U	0.5	U				
8260D	Bromodichloromethane	UG/L	0.5	U	0.5	U	0.5	U	0.5	U				
8260D	Bromoform	UG/L	0.5	U	0.5	U	0.5	U	0.5	U				

Lockheed Martin Corporation Former Unisys Facility -- Great Neck Lake Success, New York

		SDG	460-22	460-227520-1 460-227520- 43MI 43MU		7520-1	460-22	27520-1	460-2	27520-1								
		Location	43	MI	43	MU	45	SMI	45	5MU								
		Sample Date	1/27,	/2021	1/27	/2021	1/28	/2021	1/29	9/2021								
		Sample ID	MW	-500	MW-43	3MU-XX	MW-4	5MI-XX	MW-4	5MU-XX								
		QC Code	F	D	F	<u>-</u> S	FS			FS								
			Final	Final Final Fi		Final	Final	Final	Final	Final								
Method	Parameter	Unit	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier								
8260D	Bromomethane	UG/L	0.5	U	0.5	U	0.5	U	0.5	U								
8260D	Carbon disulfide	UG/L	0.5	U	0.5 U		0.5	U	0.5	U								
8260D	Carbon tetrachloride	UG/L	0.5	U	0.5	U	0.5	U	0.5	U								
8260D	Chlorobenzene	UG/L	0.5	U	0.5	U	0.5	0.5 U		0.5 U		0.5 U		0.5 U		U		
8260D	Chlorodifluoromethane	UG/L	2.6		1.2		1 U		1 U		1 U		1 U		1 U		1.7	
8260D	Chloroethane	UG/L	0.5	U	0.5	U	0.5	U	0.5	U								
8260D	Chloroform	UG/L	0.5	U	0.5 U		0.5	U	0.52									
8260D	Chloromethane	UG/L	0.5	U	0.5 U		0.5 U		0.5	U								
8260D	cis-1,2-Dichloroethene	UG/L	26		16		1.8		190									
8260D	cis-1,3-Dichloropropene	UG/L	0.5	U	0.5 U		0.5 U 0.5 U		U	0.5	U							
8260D	Cyclohexane	UG/L	0.5	U	0.5	U	0.5	U	0.5	U								
8260D	Dibromochloromethane	UG/L	0.5	U	0.5	U	0.5	U	0.5	U								
8260D	Dichlorodifluoromethane	UG/L	0.5	U	0.5	U	0.5	U	0.5	U								
8260D	Ethylbenzene	UG/L	0.5	U	0.5	U	0.5	U	0.5	U								
8260D	Freon 115	UG/L	4	U	4	U	4	U	4	U								
8260D	Freon 123	UG/L	1	U	1	U	1	U	1	U								
8260D	Isopropylbenzene	UG/L	0.5	U	0.5	U	0.5	U	0.5	U								
8260D	Methyl cyclohexane	UG/L	0.5	U	0.5	U	0.5	U	0.5	U								
8260D	Methyl Tertbutyl Ether	UG/L	0.5	0.5 U		U	0.5	U	0.5	U								
8260D	Methylene chloride	UG/L	0.5 U		0.5 U		.5 U 0.5 U		0.5 U									
8260D	Styrene	UG/L	0.5	U	0.5 U		0.5 U 0.5 U		U	0.5 U								
8260D	Tetrachloroethene	UG/L	5.4		2		2 0.5			14								
8260D	Toluene	UG/L	0.5	0.5 U		0.5 U		0.5 U		U								

Lockheed Martin Corporation Former Unisys Facility -- Great Neck

Lake Success,	New York
---------------	----------

		SDG	SDG 460-227520-1		460-22	27520-1	460-22	27520-1	460-22	27520-1
		Location	43	BMI	43	MU	45	5MI	45	MU
		Sample Date	e 1/27/2021		1/27	/2021	1/28	/2021	1/29	/2021
		Sample ID	MW-500		MW-43	3MU-XX	MW-4	5MI-XX	MW-4	5MU-XX
		QC Code	FD		FS		FS		1	FS
			Final	Final Final		Final	Final	Final	Final	Final
Method	Parameter	Unit	Result	Result Qualifier		Result Qualifier		Result Qualifier		Qualifier
8260D	trans-1,2-Dichloroethene	UG/L	0.5	U	0.5 U		0.5 U		2.6	
8260D	trans-1,3-Dichloropropene	UG/L	0.5	U	0.5 U		0.5 U 0.5 U		0.5	U
8260D	Trichloroethene	UG/L	10		5.7		3.6		31	
8260D	Trichlorofluoromethane	UG/L	0.5	U	0.5	U	0.5	U	0.5	U
8260D	Vinyl chloride	UG/L	0.5	U	0.5	U	0.5	U	0.5 ι	
8260D	Xylene, o	UG/L	0.5	0.5 U		U	0.5	U	0.5	U
8260D	Xylenes (m&p)	UG/L	0.5 U		0.5 U		0.5 U 0.5 U		0.5 U	
8260D	Xylenes, Total	UG/L	1 U		1 U		1 U		1	U

Lockheed Martin Corporation Former Unisys Facility -- Great Neck Lake Success, New York

		SDG	460-22	27520-1	460-22	27520-1	460-22	27520-1	460-2	27520-1
	Le	ocation	46	SMI	46	ML	51	LMI	53	1ML
	Samp	le Date	1/29	/2021	1/29	/2021	1/28	/2021	1/28	3/2021
	Sar	mple ID	MW-4	6MI-XX	MW-4	6ML-XX	MW-5	1MI-XX	MW-5	51ML-XX
	Q	C Code	F	- S	F	S	!	FS		FS
			Final	Final	Final	Final	Final	Final	Final	Final
Method	Parameter	Unit	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier
8260D	1,1,1-Trichloroethane	UG/L	0.5	UJ	0.5	UJ				
8260D	1,1,2,2-Tetrachloroethane	UG/L	0.5	UJ	0.5 UJ					
8260D	1,1,2-Trichloro-1,2,2-Trifluoroethane (Freon 113)	UG/L	11 J		1.7 J		1.7	J	0.48	J
8260D	1,1,2-Trichloroethane	UG/L	0.38 J		0.5 UJ					
8260D	1,1-Dichloroethane	UG/L	0.45	0.45 J		UJ				
8260D	1,1-Dichloroethene	UG/L	0.9 J		0.5 UJ					
8260D	1,1-Difluoroethane (Freon 152a)	UG/L		UJ	1 UJ					
8260D	1,2,4-Trichlorobenzene	UG/L	0.5		0.5 UJ					
8260D	1,2-Dibromo-3-chloropropane	UG/L	0.5	UJ	0.5 UJ					
8260D	1,2-Dibromoethane	UG/L	0.5		0.5					
8260D	1,2-Dichlorobenzene	UG/L	0.5	UJ	0.5	UJ				
8260D	1,2-Dichloroethane	UG/L	1.3		0.5	UJ				
8260D	1,2-Dichloropropane	UG/L	0.5	UJ	0.5	UJ				
8260D	1,3-Dichlorobenzene	UG/L	0.5		0.5	UJ				
8260D	1,4-Dichlorobenzene	UG/L	0.5		0.5	UJ				
8260D	2-Butanone	UG/L	2.5	UJ	2.5	UJ				
8260D	2-Hexanone	UG/L	2.5	UJ	2.5	UJ				
8260D	4-Methyl-2-pentanone	UG/L		2.5 UJ		UJ				
8260D	Acetic acid, methyl ester	UG/L	2.5 UJ		2.5	UJ				
8260D	Acetone	UG/L	5 UJ		5 UJ					
8260D	Benzene	UG/L	. 0.5 UJ		0.5 UJ					
8260D	Bromodichloromethane	UG/L	0.5	UJ	0.5 UJ					
8260D	Bromoform	UG/L	0.5	0.5 UJ		0.5 UJ				

Lockheed Martin Corporation Former Unisys Facility -- Great Neck Lake Success, New York

		SDG	460-227520-1 46MI		460-22	7520-1	460-2	27520-1	460-2	27520-1							
		Location			46	ML	5:	1MI	5:	1ML							
		Sample Date	1/29,	/2021	1/29,	/2021	1/28	/2021	1/28	3/2021							
		Sample ID	MW-4	6MI-XX	MW-46	6ML-XX	MW-5	51MI-XX	MW-5	1ML-XX							
		QC Code	F	:S	F	:5		FS		FS							
			Final			Final	Final	Final	Final	Final							
Method	Parameter	Unit	Result	Result Qualifier		Qualifier	Result	Qualifier	Result	Qualifier							
8260D	Bromomethane	UG/L	0.5	0.5 UJ		UJ											
8260D	Carbon disulfide	UG/L	0.5	0.5 UJ		0.5 UJ											
8260D	Carbon tetrachloride	UG/L	0.5	0.5 UJ		0.5 UJ											
8260D	Chlorobenzene	UG/L	0.5	0.5 UJ		0.5 UJ											
8260D	Chlorodifluoromethane	UG/L	3.1 J		1 J												
8260D	Chloroethane	UG/L	0.5 UJ		0.5 UJ												
8260D	Chloroform	UG/L	1.5 J		0.44 J												
8260D	Chloromethane	UG/L	0.5	UJ	0.5	0.5 UJ											
8260D	cis-1,2-Dichloroethene	UG/L	350	J	33 J		17	J	3.5	J							
8260D	cis-1,3-Dichloropropene	UG/L	0.5	UJ	0.5 UJ		0.5 UJ										
8260D	Cyclohexane	UG/L	0.5	UJ	0.5	UJ											
8260D	Dibromochloromethane	UG/L	0.5	UJ	0.5	UJ											
8260D	Dichlorodifluoromethane	UG/L	0.5	UJ	0.5	UJ											
8260D	Ethylbenzene	UG/L	0.5	UJ	0.5	UJ											
8260D	Freon 115	UG/L	4	UJ	4	UJ											
8260D	Freon 123	UG/L	1	UJ	1	UJ											
8260D	Isopropylbenzene	UG/L	0.5	UJ	0.5	UJ											
8260D	Methyl cyclohexane	UG/L	0.5		0.5												
8260D	Methyl Tertbutyl Ether	UG/L	0.5 UJ		0.5	UJ											
8260D	Methylene chloride	UG/L	0.5 UJ		0.5 UJ												
8260D	Styrene	UG/L	0.5 UJ		0.5 UJ		0.5 UJ										
8260D	Tetrachloroethene	UG/L	29 J 3.1 J				3.1 J		3.1 J		3.1 J		3.1 J		J	0.45	J
8260D	Toluene	UG/L	0.5	0.5 UJ		0.5 UJ		0.5 UJ									

		SDG	460-22	27520-1	460-22	27520-1	460-22	27520-1	460-2	27520-1
		Location	46	5MI	46	SML	51	LMI	5:	1ML
		Sample Date	1/29	/2021	1/29	/2021	1/28	/2021	1/28	3/2021
		Sample ID	MW-4	6MI-XX	MW-4	6ML-XX	MW-5	1MI-XX	MW-5	51ML-XX
		QC Code	1	FS	1	FS	ſ	FS		FS
			Final Final		Final	Final	Final	Final	Final	Final
Method	Parameter	Unit	Result Qualifier		Result	Qualifier	Result	Qualifier	Result	Qualifier
8260D	trans-1,2-Dichloroethene	UG/L	1.4	. J	0.5	UJ				
8260D	trans-1,3-Dichloropropene	UG/L	0.5	UJ	0.5	UJ				
8260D	Trichloroethene	UG/L	100	J	17	J	7.7	J	2.7	J
8260D	Trichlorofluoromethane	UG/L	0.99	J	0.7	J				
8260D	Vinyl chloride	UG/L	0.5	UJ	0.5	UJ				
8260D	Xylene, o	UG/L			0.5	UJ				
8260D	Xylenes (m&p)	UG/L	0.5	UJ	0.5	UJ				
8260D	Xylenes, Total	UG/L	1	UJ	1	UJ				

Lockheed Martin Corporation Former Unisys Facility -- Great Neck Lake Success, New York

		SDG	460-22	7520-1	460-22	27520-1	460-22	7520-1	460-22	27520-1
	L	ocation	52	MI	52	.ML	53	IMI	53	BML
	Samp	le Date	1/28/	/2021	1/28	/2021	1/29	/2021	1/29	/2021
	Sar	nple ID	MW-52	2MI-XX	MW-5	2ML-XX	MW-5	3MI-XX	MW-5	3ML-XX
	Q	C Code	F	S	F	-S	F	:S	ı	FS
			Final	Final	Final	Final	Final	Final	Final	Final
Method	Parameter	Unit	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier
8260D	1,1,1-Trichloroethane	UG/L	0.5	U	0.5	U	0.5	UJ	0.5	U
8260D	1,1,2,2-Tetrachloroethane	UG/L		U	0.5	U	0.5	UJ	0.5	U
8260D	1,1,2-Trichloro-1,2,2-Trifluoroethane (Freon 113)	•		J	0.36		0.5		0.8	
8260D	1,1,2-Trichloroethane	UG/L		U	0.5		0.5		0.5	
8260D	1,1-Dichloroethane	UG/L		U	0.5	U	0.5	UJ	0.5	U
8260D	1,1-Dichloroethene	UG/L		U	0.5		0.5	UJ	0.5	U
8260D	1,1-Difluoroethane (Freon 152a)	UG/L		U		U		UJ		U
8260D	1,2,4-Trichlorobenzene	UG/L	0.5		0.5		0.5		0.5	
8260D	1,2-Dibromo-3-chloropropane	UG/L	0.5	U	0.5	U	0.5	UJ	0.5	U
8260D	1,2-Dibromoethane	UG/L	0.5		0.5		0.5		0.5	
8260D	1,2-Dichlorobenzene	UG/L	0.5		0.5		0.5		0.5	
8260D	1,2-Dichloroethane	UG/L	0.5	U	0.5	U	0.5	UJ	0.5	U
8260D	1,2-Dichloropropane	UG/L	0.5	U	0.5	U	0.5	UJ	0.5	U
8260D	1,3-Dichlorobenzene	UG/L	0.5		0.5		0.5		0.5	
8260D	1,4-Dichlorobenzene	UG/L	0.5		0.5		0.5		0.5	
8260D	2-Butanone	UG/L	2.5	U	2.5	U	2.5	UJ	2.5	U
8260D	2-Hexanone	UG/L	2.5		2.5		2.5		2.5	
8260D	4-Methyl-2-pentanone	UG/L	2.5		2.5		2.5		2.5	
8260D	Acetic acid, methyl ester	UG/L	2.5		2.5		2.5	UJ	2.5	
8260D	Acetone	UG/L		U		U		UJ		U
8260D	Benzene	UG/L	0.5		0.5		0.5		0.5	
8260D	Bromodichloromethane	UG/L	0.5	U	0.5	U	0.5	UJ	0.5	U
8260D	Bromoform	UG/L	0.5	U	0.5	U	0.5	UJ	0.5	U

Lockheed Martin Corporation Former Unisys Facility -- Great Neck Lake Success, New York

		SDG	460-227	7520-1	460-22	7520-1	460-22	7520-1	460-22	27520-1
		Location	52N	ΛI	52	ML	53	IMI	53	BML
		Sample Date	1/28/2	2021	1/28	/2021	1/29,	/2021	1/29	/2021
		Sample ID	MW-52	MI-XX	MW-5	2ML-XX	MW-5	3MI-XX	MW-5	3ML-XX
		QC Code	FS	5	F	:S	F	:S	ı	FS
			Final	Final	Final	Final	Final	Final	Final	Final
Method	Parameter	Unit	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier
8260D	Bromomethane	UG/L	0.5 เ	C	0.5	U	0.5	UJ	0.5	U
8260D	Carbon disulfide	UG/L	0.5 เ	J	0.5	U	0.5	UJ	0.5	U
8260D	Carbon tetrachloride	UG/L	0.5 เ	J	0.5	U	0.5	UJ	0.5	U
8260D	Chlorobenzene	UG/L	0.5 เ	J	0.5	U	0.5	UJ	0.5	U
8260D	Chlorodifluoromethane	UG/L	1 ເ	1 U		U	1	UJ	1	U
8260D	Chloroethane	UG/L	0.5 U		0.5	U	0.5	UJ	0.5	U
8260D	Chloroform	UG/L	0.5 U		0.5	U	0.5	UJ	0.56	
8260D	Chloromethane	UG/L	0.5 เ	0.5 U		U	0.5	UJ	0.5	U
8260D	cis-1,2-Dichloroethene	UG/L	12		4.1		2.2	J	9.3	
8260D	cis-1,3-Dichloropropene	UG/L	0.5 เ	J	0.5	U	0.5	UJ	0.5	U
8260D	Cyclohexane	UG/L	0.5 เ	J	0.5	U	0.5	UJ	0.5	U
8260D	Dibromochloromethane	UG/L	0.5 เ	J	0.5	U	0.5	UJ	0.5	U
8260D	Dichlorodifluoromethane	UG/L	0.5 เ	J	0.5	U	0.5	UJ	0.5	U
8260D	Ethylbenzene	UG/L	0.5 เ	J	0.5	U	0.5	UJ	0.5	U
8260D	Freon 115	UG/L	4 l	J	4	U	4	UJ	4	U
8260D	Freon 123	UG/L	1 ເ	J	1	U	1	UJ	1	U
8260D	Isopropylbenzene	UG/L	0.5 เ		0.5		0.5		0.5	
8260D	Methyl cyclohexane	UG/L	0.5 เ	J	0.5	U	0.5	UJ	0.5	U
8260D	Methyl Tertbutyl Ether	UG/L	0.5 เ	J	0.5	U	0.5	UJ	0.5	U
8260D	Methylene chloride	UG/L	0.5 เ	U	0.5	U	0.5	UJ	0.5	U
8260D	Styrene	UG/L	0.5 เ	U	0.5		0.5		0.5	
8260D	Tetrachloroethene	UG/L	3.3		0.82		1	J	3.2	
8260D	Toluene	UG/L	0.5 เ	J	0.5	U	0.5	UJ	0.5	U

		SDG	460-22	27520-1	460-22	27520-1	460-22	27520-1	460-22	27520-1
		Location	52	2MI	52	2ML	53	ЗМІ	53	BML
		Sample Date	1/28	/2021	1/28	/2021	1/29	/2021	1/29	/2021
		Sample ID	MW-5	2MI-XX	MW-5	2ML-XX	MW-5	3MI-XX	MW-5	3ML-XX
		QC Code	I	-S	1	FS	1	FS	I	FS
			Final Final		Final	Final	Final	Final	Final	Final
Method	Parameter	Unit	Result Qualifier		Result	Qualifier	Result	Qualifier	Result	Qualifier
8260D	trans-1,2-Dichloroethene	UG/L	0.5	U	0.5	U	0.5	UJ	0.5	U
8260D	trans-1,3-Dichloropropene	UG/L	0.5	U	0.5	U	0.5	UJ	0.5	U
8260D	Trichloroethene	UG/L	9.8		2.8		3.8	J	7.6	
8260D	Trichlorofluoromethane	UG/L	0.5	U	0.5	U	0.5	UJ	0.5	U
8260D	Vinyl chloride	UG/L	0.5	U	0.5	U	0.5	UJ	0.5	U
8260D	Xylene, o	UG/L			0.5	U	0.5	UJ	0.5	U
8260D	Xylenes (m&p)	UG/L	0.5	U	0.5	U	0.5	UJ	0.5	U
8260D	Xylenes, Total	UG/L	1	U	1	U	1	UJ	1	U

Table 2 - Summary of Analytical Results Data Usability Summary Report Quarterly Monitoring - Q1 2021 Lockheed Martin Corporation Former Unisys Facility -- Great Neck Lake Success, New York

SDO	460-2	27520-1	460-22	27520-1	460-22	27520-1	460-22	27520-1	460-22	27520-1	460-22	27520-1
Locatio	1 3	1GL	31	LMI	31	IML	43	BMI	43	BMI	43	MU
Sample Dat	1/27	//2021	1/27	/2021	1/27	/2021	1/27	/2021	1/27	/2021	1/27	/2021
Sample II	MW-3	31GL-XX	MW-3	1MI-XX	MW-3	1ML-XX	MW-4	3MI-XX	MW	/-500	MW-4	3MU-XX
QC Cod	2	FS	F	FS		FS	1	FS	F	D		FS
	Final	Final	Final	Final	Final	Final	Final	Final	Final	Final	Final	Final
Method Parameter Unit	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier
SM 4500 Cl- B Chloride MG/L	109)	125		27.5		59		59		19.5	

Table 2 - Summary of Analytical Results Data Usability Summary Report Quarterly Monitoring - Q1 2021 Lockheed Martin Corporation Former Unisys Facility -- Great Neck Lake Success, New York

Si	G 46	0-227520-1	460-22	27520-1	460-2	27520-1	460-22	27520-1	460-22	27520-1	460-22	27520-1
Locati	n	45MI	45	MU	46	6MI	46	5ML	52	2MI	52	2ML
Sample Da	te 1	/28/2021	1/29	/2021	1/29	/2021	1/29	/2021	1/28	/2021	1/28	/2021
Sample	I D M	W-45MI-XX	MW-4	5MU-XX	MW-4	I6MI-XX	MW-4	6ML-XX	MW-5	2MI-XX	MW-5	2ML-XX
QC Co	le	FS		FS		FS		FS	1	FS		FS
	Fina	l Final	Final	Final	Final	Final	Final	Final	Final	Final	Final	Final
Method Parameter Unit	Resu	lt Qualifier	Result	Qualifier								
SM 4500 Cl- B Chloride MG,	L	15	121	-	26	5	8.5		32.5		11.5	

Table 2 - Summary of Analytical Results Data Usability Summary Report Quarterly Monitoring - Q1 2021 Lockheed Martin Corporation Former Unisys Facility -- Great Neck Lake Success, New York

	SDG	460-2	27520-1	460-22	27520-1	460-22	27520-1	460-22	27520-1	460-22	27520-1	460-22	27520-1
	Location	5	ЗМІ	53	ML	NO ₄	4388	NO:	5099	NO:	5099	N12	2796
s	ample Date	1/29)/2021	1/29	/2021	1/29	/2021	1/29	/2021	1/29	/2021	1/29	/2021
Sample ID		MW-5	3MI-XX	MW-5	3ML-XX	SW-N4	4388-XX	SW	-500	SW-N5	5099-XX	SW-N1	2796-XX
QC Code			FS	F	- S		FS	F	-D		FS	F	S
		Final	Final	Final	Final	Final	Final	Final	Final	Final	Final	Final	Final
Method Param	eter Unit	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier
SM 4500 Cl- B Chloric	de MG/L	18	3	35		67.5		25		24.5		53.5	

Lockheed Martin Corporation Former Unisys Facility -- Great Neck Lake Success, New York

	1	.	,			Lake Success, INCW TOTK						
											Val	
							Lab	Lab	Final	Final	Reason	
SDG	Method			Field Sample ID			Result	Qualifier	Result	Qualifier	Code	Units
460-227520-1	8260D	460-227520-1	1 ' '		N	1,1,1-Trichloroethane	0.5		0.5		HT, SP	UG/L
460-227520-1		460-227520-1	1 ' '		N	1,1,2,2-Tetrachloroethane	0.5	U	0.5		HT, SP	UG/L
460-227520-1	1	460-227520-1			N	1,1,2-Trichloro-1,2,2-Trifluoroethane (Freon 113)	5.7		5.7		HT, SP	UG/L
460-227520-1	1	460-227520-1	1/27/2021	MW-31GL-XX	N	1,1,2-Trichloroethane	0.5		0.5		HT, SP	UG/L
460-227520-1	8260D	460-227520-1	1/27/2021	MW-31GL-XX	N	1,1-Dichloroethane	0.5	U	0.5		HT, SP	UG/L
460-227520-1	8260D	460-227520-1			N	1,1-Dichloroethene	0.5	U	0.5		HT, SP	UG/L
460-227520-1	8260D	460-227520-1	1/27/2021	MW-31GL-XX	N	1,1-Difluoroethane (Freon 152a)	1	U	1	UJ	HT, SP	UG/L
460-227520-1	8260D	460-227520-1			N	1,2,4-Trichlorobenzene	0.5	U	0.5	UJ	HT, SP	UG/L
460-227520-1	8260D	460-227520-1	1/27/2021	MW-31GL-XX	N	1,2-Dibromo-3-chloropropane	0.5	U	0.5	UJ	HT, SP	UG/L
460-227520-1	8260D	460-227520-1	1/27/2021	MW-31GL-XX	N	1,2-Dibromoethane	0.5	U	0.5	UJ	HT, SP	UG/L
460-227520-1	8260D	460-227520-1	1/27/2021	MW-31GL-XX	N	1,2-Dichlorobenzene	0.5	U	0.5	UJ	HT, SP	UG/L
460-227520-1	8260D	460-227520-1	1/27/2021	MW-31GL-XX	N	1,2-Dichloroethane	0.5	U	0.5	UJ	HT, SP	UG/L
460-227520-1	8260D	460-227520-1	1/27/2021	MW-31GL-XX	N	1,2-Dichloropropane	0.5	U	0.5	UJ	HT, SP	UG/L
460-227520-1	8260D	460-227520-1	1/27/2021	MW-31GL-XX	N	1,3-Dichlorobenzene	0.5	U	0.5	UJ	HT, SP	UG/L
460-227520-1	8260D	460-227520-1	1/27/2021	MW-31GL-XX	N	1,4-Dichlorobenzene	0.5	U	0.5	UJ	HT, SP	UG/L
460-227520-1	8260D	460-227520-1	1/27/2021	MW-31GL-XX	N	2-Butanone	2.5	U	2.5	UJ	HT, SP	UG/L
460-227520-1	8260D	460-227520-1	1/27/2021	MW-31GL-XX	N	2-Hexanone	2.5	U	2.5	UJ	HT, SP	UG/L
460-227520-1	8260D	460-227520-1	1/27/2021	MW-31GL-XX	N	4-Methyl-2-pentanone	2.5	U	2.5	UJ	HT, SP	UG/L
460-227520-1	8260D	460-227520-1	1/27/2021	MW-31GL-XX	N	Acetic acid, methyl ester	2.5	U	2.5	UJ	HT, SP	UG/L
460-227520-1	8260D	460-227520-1	1/27/2021	MW-31GL-XX	N	Acetone	5	U	5	UJ	HT, SP	UG/L
460-227520-1	8260D	460-227520-1	1/27/2021	MW-31GL-XX	N	Benzene	0.5	U	0.5	UJ	HT, SP	UG/L
460-227520-1	8260D	460-227520-1	1/27/2021	MW-31GL-XX	N	Bromodichloromethane	0.5	U	0.5	UJ	HT, SP	UG/L
460-227520-1	8260D	460-227520-1	1/27/2021	MW-31GL-XX	N	Bromoform	0.5	U	0.5	UJ	HT, SP	UG/L
460-227520-1	8260D	460-227520-1	1/27/2021	MW-31GL-XX	N	Bromomethane	0.5	U	0.5	UJ	HT, SP	UG/L
460-227520-1	8260D	460-227520-1	1/27/2021	MW-31GL-XX	N	Carbon disulfide	0.5	U	0.5	UJ	HT, SP	UG/L
460-227520-1	8260D	460-227520-1	1/27/2021	MW-31GL-XX	N	Carbon tetrachloride	0.5	U	0.5	UJ	HT, SP	UG/L
460-227520-1	8260D	460-227520-1	1/27/2021	MW-31GL-XX	N	Chlorobenzene	0.5	U	0.5	UJ	HT, SP	UG/L
460-227520-1	8260D	460-227520-1	1/27/2021	MW-31GL-XX	N	Chlorodifluoromethane	1.5		1.5	J	HT, SP	UG/L
460-227520-1	8260D	460-227520-1	1/27/2021	MW-31GL-XX	N	Chloroethane	0.5	U	0.5	UJ	HT, SP	UG/L
460-227520-1	8260D	460-227520-1	1/27/2021	MW-31GL-XX	N	Chloroform	0.42	J	0.42	J	HT, SP	UG/L
460-227520-1	8260D	460-227520-1	1/27/2021	MW-31GL-XX	N	Chloromethane	0.5	U	0.5	UJ	HT, SP	UG/L
460-227520-1	8260D	460-227520-1	1/27/2021	MW-31GL-XX	N	cis-1,2-Dichloroethene	140		140	J	HT, SP	UG/L
460-227520-1	8260D	460-227520-1	1/27/2021	MW-31GL-XX	N	cis-1,3-Dichloropropene	0.5	U	0.5	UJ	HT, SP	UG/L
	•					1						•

Created by: WCG 3/04/2021 Checked by: ALJ 3/04/2021

UG/L

HT, SP

0.5 UJ

0.5 U

Cyclohexane

460-227520-1

1/27/2021 MW-31GL-XX

460-227520-1 8260D

Lockheed Martin Corporation Former Unisys Facility -- Great Neck Lake Success, New York

											Val	
							Lab	Lab	Final	Final	Reason	
SDG	Method	Lab Sample ID	Sample Date	Field Sample ID	Fraction	Parameter Name	Result	Qualifier	Result	Qualifier	Code	Units
460-227520-1	8260D	460-227520-1	1/27/2021	MW-31GL-XX	N	Dibromochloromethane	0.5	U	0.5	UJ	HT, SP	UG/L
460-227520-1	8260D	460-227520-1	1/27/2021	MW-31GL-XX	N	Dichlorodifluoromethane	0.5	U	0.5	UJ	HT, SP	UG/L
460-227520-1	8260D	460-227520-1	1/27/2021	MW-31GL-XX	N	Ethylbenzene	0.5	U	0.5	UJ	HT, SP	UG/L
460-227520-1	8260D	460-227520-1	1/27/2021	MW-31GL-XX	N	Freon 115	4	U *+ F1	4	UJ	HT, SP	UG/L
460-227520-1	8260D	460-227520-1	1/27/2021	MW-31GL-XX	N	Freon 123	1	U	1	UJ	HT, SP	UG/L
460-227520-1	8260D	460-227520-1	1/27/2021	MW-31GL-XX	N	Isopropylbenzene	0.5	U	0.5	UJ	HT, SP	UG/L
460-227520-1	8260D	460-227520-1	1/27/2021	MW-31GL-XX	N	Methyl cyclohexane	0.5	U	0.5	UJ	HT, SP	UG/L
460-227520-1	8260D	460-227520-1	1/27/2021	MW-31GL-XX	N	Methyl Tertbutyl Ether	0.5	U	0.5	UJ	HT, SP	UG/L
460-227520-1	8260D	460-227520-1	1/27/2021	MW-31GL-XX	N	Methylene chloride	0.5	U	0.5	UJ	HT, SP	UG/L
460-227520-1	8260D	460-227520-1	1/27/2021	MW-31GL-XX	N	Styrene	0.5	U	0.5	UJ	HT, SP	UG/L
460-227520-1		460-227520-1	1/27/2021	MW-31GL-XX	N	Tetrachloroethene	19		19	J	HT, SP	UG/L
460-227520-1	8260D	460-227520-1	1/27/2021	MW-31GL-XX	N	Toluene	0.5	U	0.5	UJ	HT, SP	UG/L
460-227520-1	8260D	460-227520-1	1/27/2021	MW-31GL-XX	N	trans-1,2-Dichloroethene	0.51		0.51	J	HT, SP	UG/L
460-227520-1		460-227520-1	, ,		N	trans-1,3-Dichloropropene	0.5	U	0.5	UJ	HT, SP	UG/L
460-227520-1		460-227520-1	1/27/2021	MW-31GL-XX	N	Trichloroethene	34		34	J	HT, SP	UG/L
460-227520-1		460-227520-1	1/27/2021	MW-31GL-XX	N	Trichlorofluoromethane	0.5		0.5	UJ	HT, SP	UG/L
460-227520-1		460-227520-1			N	Vinyl chloride	0.5		0.5	UJ	HT, SP	UG/L
460-227520-1	8260D	460-227520-1			N	Xylene, o	0.5		0.5	UJ	HT, SP	UG/L
460-227520-1	8260D	460-227520-1				Xylenes (m&p)	0.5	U	0.5	UJ	HT, SP	UG/L
460-227520-1		460-227520-1	, ,		N	Xylenes, Total		U	1	UJ	HT, SP	UG/L
460-227520-1	8260D	460-227520-5			N	1,1,1-Trichloroethane	0.5		0.5		HT, SP	UG/L
460-227520-1	8260D	460-227520-5			N	1,1,2,2-Tetrachloroethane	0.5	U	0.5	UJ	HT, SP	UG/L
460-227520-1		460-227520-5			N	1,1,2-Trichloro-1,2,2-Trifluoroethane (Freon 113)	1.6		1.6		HT, SP	UG/L
460-227520-1		460-227520-5	, ,	_	N	1,1,2-Trichloroethane	0.5		0.5	UJ	HT, SP	UG/L
460-227520-1	8260D	460-227520-5			N	1,1-Dichloroethane	0.5		0.5		HT, SP	UG/L
460-227520-1	8260D	460-227520-5	, ,	_	N	1,1-Dichloroethene	0.5	U	0.5		HT, SP	UG/L
460-227520-1	8260D	460-227520-5			N	1,1-Difluoroethane (Freon 152a)		U		UJ	HT, SP	UG/L
460-227520-1	8260D	460-227520-5		_	N	1,2,4-Trichlorobenzene	0.5		0.5	UJ	HT, SP	UG/L
460-227520-1	8260D	460-227520-5			N	1,2-Dibromo-3-chloropropane	0.5		0.5		HT, SP	UG/L
460-227520-1	8260D	460-227520-5		_	N	1,2-Dibromoethane	0.5		0.5		HT, SP	UG/L
460-227520-1	8260D	460-227520-5		_	N	1,2-Dichlorobenzene	0.5		0.5		HT, SP	UG/L
460-227520-1	8260D	460-227520-5			N	1,2-Dichloroethane	0.5		0.5		HT, SP	UG/L
460-227520-1	8260D	460-227520-5		_	N	1,2-Dichloropropane	0.5	_	0.5		HT, SP	UG/L
460-227520-1	8260D	460-227520-5	1/27/2021	MW-43MI-XX	N	1,3-Dichlorobenzene	0.5	U	0.5	UJ	HT, SP	UG/L

											Val	
							Lab	Lab	Final	Final	Reason	
SDG	Method	Lab Sample ID	Sample Date	Field Sample ID	Fraction	Parameter Name	Result	Qualifier	Result	Qualifier	Code	Units
460-227520-1	8260D	460-227520-5	1/27/2021	MW-43MI-XX	N	1,4-Dichlorobenzene	0.5	U	0.5	UJ	HT, SP	UG/L
460-227520-1	8260D	460-227520-5	1/27/2021	MW-43MI-XX	N	2-Butanone	2.5	U	2.5	UJ	HT, SP	UG/L
460-227520-1	8260D	460-227520-5	1/27/2021	MW-43MI-XX	N	2-Hexanone	2.5	U	2.5	UJ	HT, SP	UG/L
460-227520-1	8260D	460-227520-5	1/27/2021	MW-43MI-XX	N	4-Methyl-2-pentanone	2.5	U	2.5	UJ	HT, SP	UG/L
460-227520-1	8260D	460-227520-5	1/27/2021	MW-43MI-XX	N	Acetic acid, methyl ester	2.5	U	2.5	UJ	HT, SP	UG/L
460-227520-1	8260D	460-227520-5	1/27/2021	MW-43MI-XX	N	Acetone	5	U	5	UJ	HT, SP	UG/L
460-227520-1	8260D	460-227520-5	1/27/2021	MW-43MI-XX	N	Benzene	0.5	U	0.5	UJ	HT, SP	UG/L
460-227520-1	8260D	460-227520-5	1/27/2021	MW-43MI-XX	N	Bromodichloromethane	0.5	U	0.5	UJ	HT, SP	UG/L
460-227520-1	8260D	460-227520-5	1/27/2021	MW-43MI-XX	N	Bromoform	0.5	U	0.5	UJ	HT, SP	UG/L
460-227520-1	8260D	460-227520-5	1/27/2021	MW-43MI-XX	N	Bromomethane	0.5	U	0.5	UJ	HT, SP	UG/L
460-227520-1	8260D	460-227520-5	1/27/2021	MW-43MI-XX	N	Carbon disulfide	0.5	U	0.5	UJ	HT, SP	UG/L
460-227520-1	8260D	460-227520-5	1/27/2021	MW-43MI-XX	N	Carbon tetrachloride	0.5	U	0.5	UJ	HT, SP	UG/L
460-227520-1	8260D	460-227520-5	1/27/2021	MW-43MI-XX	N	Chlorobenzene	0.5	U	0.5	UJ	HT, SP	UG/L
460-227520-1	8260D	460-227520-5	1/27/2021	MW-43MI-XX	N	Chlorodifluoromethane	2.8		2.8	J	HT, SP	UG/L
460-227520-1	8260D	460-227520-5	1/27/2021	MW-43MI-XX	N	Chloroethane	0.5	U	0.5	UJ	HT, SP	UG/L
460-227520-1	8260D	460-227520-5	1/27/2021	MW-43MI-XX	N	Chloroform	0.5	U	0.5	UJ	HT, SP	UG/L
460-227520-1	8260D	460-227520-5	1/27/2021	MW-43MI-XX	N	Chloromethane	0.5	U	0.5	UJ	HT, SP	UG/L
460-227520-1	8260D	460-227520-5	1/27/2021	MW-43MI-XX	N	cis-1,2-Dichloroethene	27		27	J	HT, SP	UG/L
460-227520-1	8260D	460-227520-5	1/27/2021	MW-43MI-XX	N	cis-1,3-Dichloropropene	0.5	U	0.5	UJ	HT, SP	UG/L
460-227520-1	8260D	460-227520-5	1/27/2021	MW-43MI-XX	N	Cyclohexane	0.5	U	0.5	UJ	HT, SP	UG/L
460-227520-1	8260D	460-227520-5	1/27/2021	MW-43MI-XX	N	Dibromochloromethane	0.5	U	0.5	UJ	HT, SP	UG/L
460-227520-1	8260D	460-227520-5	1/27/2021	MW-43MI-XX	N	Dichlorodifluoromethane	0.5	U	0.5	UJ	HT, SP	UG/L
460-227520-1	8260D	460-227520-5	1/27/2021	MW-43MI-XX	N	Ethylbenzene	0.5	U	0.5	UJ	HT, SP	UG/L
460-227520-1	8260D	460-227520-5	1/27/2021	MW-43MI-XX	N	Freon 115	4	U *+	4	UJ	HT, SP	UG/L
460-227520-1	8260D	460-227520-5	1/27/2021	MW-43MI-XX	N	Freon 123	1	U	1	UJ	HT, SP	UG/L
460-227520-1	8260D	460-227520-5	1/27/2021	MW-43MI-XX	N	Isopropylbenzene	0.5	U	0.5	UJ	HT, SP	UG/L
460-227520-1	8260D	460-227520-5	1/27/2021	MW-43MI-XX	N	Methyl cyclohexane	0.5	U	0.5	UJ	HT, SP	UG/L
460-227520-1	8260D	460-227520-5	1/27/2021	MW-43MI-XX	N	Methyl Tertbutyl Ether	0.5	U	0.5	UJ	HT, SP	UG/L
460-227520-1	8260D	460-227520-5	1/27/2021	MW-43MI-XX	N	Methylene chloride	0.5	U	0.5	UJ	HT, SP	UG/L
460-227520-1	8260D	460-227520-5	1/27/2021	MW-43MI-XX	N	Styrene	0.5	U	0.5	UJ	HT, SP	UG/L
460-227520-1	8260D	460-227520-5	1/27/2021	MW-43MI-XX	N	Tetrachloroethene	5.6		5.6	J	HT, SP	UG/L
460-227520-1	8260D	460-227520-5	1/27/2021	MW-43MI-XX	N	Toluene	0.5	U	0.5	UJ	HT, SP	UG/L
460-227520-1	8260D	460-227520-5	1/27/2021	MW-43MI-XX	N	trans-1,2-Dichloroethene	0.5	U	0.5	UJ	HT, SP	UG/L
460-227520-1	8260D	460-227520-5	1/27/2021	MW-43MI-XX	N	trans-1,3-Dichloropropene	0.5	U	0.5	UJ	HT, SP	UG/L

Table 3 - Summary of Qualification Actions Data Usability Summary Report

Quarterly Monitoring - Q1 2021

											Val	
							Lab	Lab	Final	Final	Reason	
SDG	Method	Lab Sample ID	Sample Date	Field Sample ID	Fraction	Parameter Name	Result	Qualifier	Result	Qualifier	Code	Units
460-227520-1	8260D	460-227520-5	1/27/2021	MW-43MI-XX	N	Trichloroethene	11		11	J	HT, SP	UG/L
460-227520-1	8260D	460-227520-5	1/27/2021	MW-43MI-XX	N	Trichlorofluoromethane	0.5	U	0.5	UJ	HT, SP	UG/L
460-227520-1	8260D	460-227520-5	1/27/2021	MW-43MI-XX	N	Vinyl chloride	0.5	U	0.5	UJ	HT, SP	UG/L
460-227520-1	8260D	460-227520-5	1/27/2021	MW-43MI-XX	N	Xylene, o	0.5	U	0.5	UJ	HT, SP	UG/L
460-227520-1	8260D	460-227520-5	1/27/2021	MW-43MI-XX	N	Xylenes (m&p)	0.5	U	0.5	UJ	HT, SP	UG/L
460-227520-1	8260D	460-227520-5	1/27/2021	MW-43MI-XX	N	Xylenes, Total	1	U	1	UJ	HT, SP	UG/L
460-227520-1	8260D	460-227520-8	1/29/2021	MW-46MI-XX	N	1,1,1-Trichloroethane	0.5	U	0.5	UJ	HT, SP	UG/L
460-227520-1	8260D	460-227520-8	1/29/2021	MW-46MI-XX	N	1,1,2,2-Tetrachloroethane	0.5	U	0.5	UJ	HT, SP	UG/L
460-227520-1	8260D	460-227520-8	1/29/2021	MW-46MI-XX	N	1,1,2-Trichloro-1,2,2-Trifluoroethane (Freon 113)	11		11	J	HT, SP	UG/L
460-227520-1	8260D	460-227520-8	1/29/2021	MW-46MI-XX	N	1,1,2-Trichloroethane	0.38	J	0.38	J	HT, SP	UG/L
460-227520-1	8260D	460-227520-8	1/29/2021	MW-46MI-XX	N	1,1-Dichloroethane	0.45	J	0.45	J	HT, SP	UG/L
460-227520-1	8260D	460-227520-8	1/29/2021	MW-46MI-XX	N	1,1-Dichloroethene	0.9		0.9	J	HT, SP	UG/L
460-227520-1	8260D	460-227520-8	1/29/2021	MW-46MI-XX	N	1,1-Difluoroethane (Freon 152a)	1	U	1	UJ	HT, SP	UG/L
460-227520-1	8260D	460-227520-8	1/29/2021	MW-46MI-XX	N	1,2,4-Trichlorobenzene	0.5	U	0.5	UJ	HT, SP	UG/L
460-227520-1	8260D	460-227520-8	1/29/2021	MW-46MI-XX	N	1,2-Dibromo-3-chloropropane	0.5	U	0.5	UJ	HT, SP	UG/L
460-227520-1	8260D	460-227520-8	1/29/2021	MW-46MI-XX	N	1,2-Dibromoethane	0.5	U	0.5	UJ	HT, SP	UG/L
460-227520-1	8260D	460-227520-8	1/29/2021	MW-46MI-XX	N	1,2-Dichlorobenzene	0.5	U	0.5	UJ	HT, SP	UG/L
460-227520-1	8260D	460-227520-8	1/29/2021	MW-46MI-XX	N	1,2-Dichloroethane	1.3		1.3	J	HT, SP	UG/L
460-227520-1	8260D	460-227520-8	1/29/2021	MW-46MI-XX	N	1,2-Dichloropropane	0.5	U	0.5	UJ	HT, SP	UG/L
460-227520-1	8260D	460-227520-8	1/29/2021	MW-46MI-XX	N	1,3-Dichlorobenzene	0.5	U	0.5	UJ	HT, SP	UG/L
460-227520-1	8260D	460-227520-8	1/29/2021	MW-46MI-XX	N	1,4-Dichlorobenzene	0.5	U	0.5	UJ	HT, SP	UG/L
460-227520-1	8260D	460-227520-8	1/29/2021	MW-46MI-XX	N	2-Butanone	2.5	U	2.5	UJ	HT, SP	UG/L
460-227520-1	8260D	460-227520-8	1/29/2021	MW-46MI-XX	N	2-Hexanone	2.5	U	2.5	UJ	HT, SP	UG/L
460-227520-1	8260D	460-227520-8	1/29/2021	MW-46MI-XX	N	4-Methyl-2-pentanone	2.5	U	2.5	UJ	HT, SP	UG/L
460-227520-1	8260D	460-227520-8	1/29/2021	MW-46MI-XX	N	Acetic acid, methyl ester	2.5	U	2.5	UJ	HT, SP	UG/L
460-227520-1	8260D	460-227520-8	1/29/2021	MW-46MI-XX	N	Acetone	5	U	5	UJ	HT, SP	UG/L
460-227520-1	8260D	460-227520-8	1/29/2021	MW-46MI-XX	N	Benzene	0.5	U	0.5	UJ	HT, SP	UG/L
460-227520-1	8260D	460-227520-8	1/29/2021	MW-46MI-XX	N	Bromodichloromethane	0.5	U	0.5	UJ	HT, SP	UG/L
460-227520-1	8260D	460-227520-8	1/29/2021	MW-46MI-XX	N	Bromoform	0.5	U	0.5	UJ	HT, SP	UG/L
460-227520-1	8260D	460-227520-8	1/29/2021	MW-46MI-XX	N	Bromomethane	0.5	U	0.5	UJ	HT, SP	UG/L
460-227520-1	8260D	460-227520-8	1/29/2021	MW-46MI-XX	N	Carbon disulfide	0.5	U	0.5	UJ	HT, SP	UG/L
460-227520-1	8260D	460-227520-8	1/29/2021	MW-46MI-XX	N	Carbon tetrachloride	0.5	U	0.5	UJ	HT, SP	UG/L
460-227520-1	8260D	460-227520-8	1/29/2021	MW-46MI-XX	N	Chlorobenzene	0.5	U	0.5	UJ	HT, SP	UG/L
460-227520-1	8260D	460-227520-8	1/29/2021	MW-46MI-XX	N	Chlorodifluoromethane	3.1		3.1	J	HT, SP	UG/L

Lockheed Martin Corporation Former Unisys Facility -- Great Neck

Lake Success, New York

					1			Ι	1		Val	
							Lab	Lab	Final	Final	Reason	
SDG	Method	Lab Sample ID	Sample Date	Field Sample ID	Fraction	Parameter Name	Result	Qualifier	Result	Qualifier	Code	Units
460-227520-1	8260D	460-227520-8	-	MW-46MI-XX	N	Chloroethane	0.5	-	0.5	-	HT, SP	UG/L
460-227520-1	8260D	460-227520-8		MW-46MI-XX	N	Chloroform	1.5		1.5		HT, SP	UG/L
460-227520-1	8260D	460-227520-8	1/29/2021	MW-46MI-XX	N	Chloromethane	0.5	U	0.5	UJ	HT, SP	UG/L
460-227520-1	8260D	460-227520-8	1/29/2021	MW-46MI-XX	N	cis-1,2-Dichloroethene	350		350	J	HT, SP	UG/L
460-227520-1	8260D	460-227520-8	1/29/2021	MW-46MI-XX	N	cis-1,3-Dichloropropene	0.5	U	0.5	UJ	HT, SP	UG/L
460-227520-1	8260D	460-227520-8	1/29/2021	MW-46MI-XX	N	Cyclohexane	0.5	U	0.5	UJ	HT, SP	UG/L
460-227520-1	8260D	460-227520-8	1/29/2021	MW-46MI-XX	N	Dibromochloromethane	0.5	U	0.5	UJ	HT, SP	UG/L
460-227520-1	8260D	460-227520-8	1/29/2021	MW-46MI-XX	N	Dichlorodifluoromethane	0.5	U	0.5	UJ	HT, SP	UG/L
460-227520-1	8260D	460-227520-8	1/29/2021	MW-46MI-XX	N	Ethylbenzene	0.5	U	0.5	UJ	HT, SP	UG/L
460-227520-1	8260D	460-227520-8	1/29/2021	MW-46MI-XX	N	Freon 115	4	U *+	4	UJ	HT, SP	UG/L
460-227520-1	8260D	460-227520-8	1/29/2021	MW-46MI-XX	N	Freon 123	1	U	1	UJ	HT, SP	UG/L
460-227520-1	8260D	460-227520-8	1/29/2021	MW-46MI-XX	N	Isopropylbenzene	0.5	U	0.5	UJ	HT, SP	UG/L
460-227520-1	8260D	460-227520-8	1/29/2021	MW-46MI-XX	N	Methyl cyclohexane	0.5	U	0.5	UJ	HT, SP	UG/L
460-227520-1	8260D	460-227520-8	1/29/2021	MW-46MI-XX	N	Methyl Tertbutyl Ether	0.5	U	0.5	UJ	HT, SP	UG/L
460-227520-1	8260D	460-227520-8	1/29/2021	MW-46MI-XX	N	Methylene chloride	0.5	U	0.5	UJ	HT, SP	UG/L
460-227520-1	8260D	460-227520-8	1/29/2021	MW-46MI-XX	N	Styrene	0.5	U	0.5	UJ	HT, SP	UG/L
460-227520-1	8260D	460-227520-8	1/29/2021	MW-46MI-XX	N	Tetrachloroethene	29		29	J	HT, SP	UG/L
460-227520-1	8260D	460-227520-8	1/29/2021	MW-46MI-XX	N	Toluene	0.5	U	0.5	UJ	HT, SP	UG/L
460-227520-1	8260D	460-227520-8	1/29/2021	MW-46MI-XX	N	trans-1,2-Dichloroethene	1.4		1.4	J	HT, SP	UG/L
460-227520-1	8260D	460-227520-8	1/29/2021	MW-46MI-XX	N	trans-1,3-Dichloropropene	0.5	U	0.5	UJ	HT, SP	UG/L
460-227520-1	8260D	460-227520-8	1/29/2021	MW-46MI-XX	N	Trichloroethene	100		100	J	HT, SP	UG/L
460-227520-1	8260D	460-227520-8	1/29/2021	MW-46MI-XX	N	Trichlorofluoromethane	0.99		0.99	J	HT, SP	UG/L
460-227520-1	8260D	460-227520-8	1/29/2021	MW-46MI-XX	N	Vinyl chloride	0.5	U	0.5	UJ	HT, SP	UG/L
460-227520-1	8260D	460-227520-8	1/29/2021	MW-46MI-XX	N	Xylene, o	0.5	U	0.5	UJ	HT, SP	UG/L
460-227520-1	8260D	460-227520-8	1/29/2021	MW-46MI-XX	N	Xylenes (m&p)	0.5	U	0.5	UJ	HT, SP	UG/L
460-227520-1	8260D	460-227520-8	1/29/2021	MW-46MI-XX	N	Xylenes, Total	1	U	1	UJ	HT, SP	UG/L
460-227520-1	8260D	460-227520-9	1/29/2021	MW-46ML-XX	N	1,1,1-Trichloroethane	0.5	U	0.5	UJ	HT, SP	UG/L
460-227520-1	8260D	460-227520-9	1/29/2021	MW-46ML-XX	N	1,1,2,2-Tetrachloroethane	0.5	U	0.5	UJ	HT, SP	UG/L
460-227520-1	8260D	460-227520-9	1/29/2021	MW-46ML-XX	N	1,1,2-Trichloro-1,2,2-Trifluoroethane (Freon 113)	1.7		1.7	J	HT, SP	UG/L
460-227520-1	8260D	460-227520-9	1/29/2021	MW-46ML-XX	N	1,1,2-Trichloroethane	0.5	U	0.5	UJ	HT, SP	UG/L
460-227520-1	8260D	460-227520-9	1/29/2021	MW-46ML-XX	N	1,1-Dichloroethane	0.5	U	0.5	UJ	HT, SP	UG/L
460-227520-1	8260D	460-227520-9	1/29/2021	MW-46ML-XX	N	1,1-Dichloroethene	0.5	U	0.5	UJ	HT, SP	UG/L
460-227520-1	8260D	460-227520-9	1/29/2021	MW-46ML-XX	N	1,1-Difluoroethane (Freon 152a)	1	U	1	UJ	HT, SP	UG/L
460-227520-1	8260D	460-227520-9	1/29/2021	MW-46ML-XX	N	1,2,4-Trichlorobenzene	0.5	U	0.5	UJ	HT, SP	UG/L

											Val	
							Lab	Lab	Final	Final	Reason	
SDG	Method	Lab Sample ID	Sample Date	Field Sample ID	Fraction	Parameter Name	Result	Qualifier	Result	Qualifier	Code	Units
460-227520-1	8260D	460-227520-9	1/29/2021	MW-46ML-XX	N	1,2-Dibromo-3-chloropropane	0.5	U	0.5	UJ	HT, SP	UG/L
460-227520-1	8260D	460-227520-9	1/29/2021	MW-46ML-XX	N	1,2-Dibromoethane	0.5	U	0.5	UJ	HT, SP	UG/L
460-227520-1	8260D	460-227520-9	1/29/2021	MW-46ML-XX	N	1,2-Dichlorobenzene	0.5	U	0.5	UJ	HT, SP	UG/L
460-227520-1	8260D	460-227520-9	1/29/2021	MW-46ML-XX	N	1,2-Dichloroethane	0.5	U	0.5	UJ	HT, SP	UG/L
460-227520-1	8260D	460-227520-9	1/29/2021	MW-46ML-XX	N	1,2-Dichloropropane	0.5	U	0.5	UJ	HT, SP	UG/L
460-227520-1	8260D	460-227520-9	1/29/2021	MW-46ML-XX	N	1,3-Dichlorobenzene	0.5	U	0.5	UJ	HT, SP	UG/L
460-227520-1	8260D	460-227520-9	1/29/2021	MW-46ML-XX	N	1,4-Dichlorobenzene	0.5	U	0.5	UJ	HT, SP	UG/L
460-227520-1	8260D	460-227520-9	1/29/2021	MW-46ML-XX	N	2-Butanone	2.5	U	2.5	UJ	HT, SP	UG/L
460-227520-1	8260D	460-227520-9	1/29/2021	MW-46ML-XX	N	2-Hexanone	2.5	U	2.5	UJ	HT, SP	UG/L
460-227520-1	8260D	460-227520-9	1/29/2021	MW-46ML-XX	N	4-Methyl-2-pentanone	2.5	U	2.5	UJ	HT, SP	UG/L
460-227520-1	8260D	460-227520-9	1/29/2021	MW-46ML-XX	N	Acetic acid, methyl ester	2.5	U	2.5	UJ	HT, SP	UG/L
460-227520-1	8260D	460-227520-9	1/29/2021	MW-46ML-XX	N	Acetone	5	U	5	UJ	HT, SP	UG/L
460-227520-1	8260D	460-227520-9	1/29/2021	MW-46ML-XX	N	Benzene	0.5	U	0.5	UJ	HT, SP	UG/L
460-227520-1	8260D	460-227520-9	1/29/2021	MW-46ML-XX	N	Bromodichloromethane	0.5	U	0.5	UJ	HT, SP	UG/L
460-227520-1	8260D	460-227520-9	1/29/2021	MW-46ML-XX	N	Bromoform	0.5	U	0.5	UJ	HT, SP	UG/L
460-227520-1	8260D	460-227520-9	1/29/2021	MW-46ML-XX	N	Bromomethane	0.5	U	0.5	UJ	HT, SP	UG/L
460-227520-1	8260D	460-227520-9	1/29/2021	MW-46ML-XX	N	Carbon disulfide	0.5	U	0.5	UJ	HT, SP	UG/L
460-227520-1	8260D	460-227520-9	1/29/2021	MW-46ML-XX	N	Carbon tetrachloride	0.5	U	0.5	UJ	HT, SP	UG/L
460-227520-1	8260D	460-227520-9	1/29/2021	MW-46ML-XX	N	Chlorobenzene	0.5	U	0.5	UJ	HT, SP	UG/L
460-227520-1	8260D	460-227520-9	1/29/2021	MW-46ML-XX	N	Chlorodifluoromethane	1		1	J	HT, SP	UG/L
460-227520-1	8260D	460-227520-9	1/29/2021	MW-46ML-XX	N	Chloroethane	0.5	U	0.5	UJ	HT, SP	UG/L
460-227520-1	8260D	460-227520-9	1/29/2021	MW-46ML-XX	N	Chloroform	0.44	J	0.44	J	HT, SP	UG/L
460-227520-1	8260D	460-227520-9	1/29/2021	MW-46ML-XX	N	Chloromethane	0.5	U	0.5	UJ	HT, SP	UG/L
460-227520-1	8260D	460-227520-9	1/29/2021	MW-46ML-XX	N	cis-1,2-Dichloroethene	33		33	J	HT, SP	UG/L
460-227520-1	8260D	460-227520-9	1/29/2021	MW-46ML-XX	N	cis-1,3-Dichloropropene	0.5	U	0.5	UJ	HT, SP	UG/L
460-227520-1	8260D	460-227520-9	1/29/2021	MW-46ML-XX	N	Cyclohexane	0.5	U	0.5	UJ	HT, SP	UG/L
460-227520-1	8260D	460-227520-9	1/29/2021	MW-46ML-XX	N	Dibromochloromethane	0.5	U	0.5	UJ	HT, SP	UG/L
460-227520-1	8260D	460-227520-9	1/29/2021	MW-46ML-XX	N	Dichlorodifluoromethane	0.5	U	0.5	UJ	HT, SP	UG/L
460-227520-1	8260D	460-227520-9	1/29/2021	MW-46ML-XX	N	Ethylbenzene	0.5	U	0.5	UJ	HT, SP	UG/L
460-227520-1	8260D	460-227520-9	1/29/2021	MW-46ML-XX	N	Freon 115	4	U *+	4	UJ	HT, SP	UG/L
460-227520-1	8260D	460-227520-9	1/29/2021	MW-46ML-XX	N	Freon 123	1	U	1	UJ	HT, SP	UG/L
460-227520-1	8260D	460-227520-9	1/29/2021	MW-46ML-XX	N	Isopropylbenzene	0.5	U	0.5	UJ	HT, SP	UG/L
460-227520-1	8260D	460-227520-9	1/29/2021	MW-46ML-XX	N	Methyl cyclohexane	0.5	U	0.5	UJ	HT, SP	UG/L
460-227520-1	8260D	460-227520-9	1/29/2021	MW-46ML-XX	N	Methyl Tertbutyl Ether	0.5	U	0.5	UJ	HT, SP	UG/L

Table 3 - Summary of Qualification Actions Data Usability Summary Report

Quarterly Monitoring - Q1 2021

											Val	
							Lab	Lab	Final	Final	Reason	
SDG	Method	Lab Sample ID	Sample Date	Field Sample ID	Fraction	Parameter Name	Result	Qualifier	Result	Qualifier	Code	Units
460-227520-1	8260D	460-227520-9	1/29/2021	MW-46ML-XX	N	Methylene chloride	0.5	U	0.5	UJ	HT, SP	UG/L
460-227520-1	8260D	460-227520-9	1/29/2021	MW-46ML-XX	N	Styrene	0.5	U	0.5	UJ	HT, SP	UG/L
460-227520-1	8260D	460-227520-9	1/29/2021	MW-46ML-XX	N	Tetrachloroethene	3.1		3.1	J	HT, SP	UG/L
460-227520-1	8260D	460-227520-9	1/29/2021	MW-46ML-XX	N	Toluene	0.5	U	0.5	UJ	HT, SP	UG/L
460-227520-1	8260D	460-227520-9	1/29/2021	MW-46ML-XX	N	trans-1,2-Dichloroethene	0.5	U	0.5	UJ	HT, SP	UG/L
460-227520-1	8260D	460-227520-9	1/29/2021	MW-46ML-XX	N	trans-1,3-Dichloropropene	0.5	U	0.5	UJ	HT, SP	UG/L
460-227520-1	8260D	460-227520-9	1/29/2021	MW-46ML-XX	N	Trichloroethene	17		17	J	HT, SP	UG/L
460-227520-1	8260D	460-227520-9	1/29/2021	MW-46ML-XX	N	Trichlorofluoromethane	0.7		0.7	J	HT, SP	UG/L
460-227520-1	8260D	460-227520-9	1/29/2021	MW-46ML-XX	N	Vinyl chloride	0.5	U	0.5	UJ	HT, SP	UG/L
460-227520-1	8260D	460-227520-9	1/29/2021	MW-46ML-XX	N	Xylene, o	0.5	U	0.5	UJ	HT, SP	UG/L
460-227520-1	8260D	460-227520-9	1/29/2021	MW-46ML-XX	N	Xylenes (m&p)	0.5	U	0.5	UJ	HT, SP	UG/L
460-227520-1	8260D	460-227520-9	1/29/2021	MW-46ML-XX	N	Xylenes, Total	1	U	1	UJ	HT, SP	UG/L
460-227520-1	8260D	460-227520-10	1/28/2021	MW-51MI-XX	N	1,1,2-Trichloro-1,2,2-Trifluoroethane (Freon 113)	1.7		1.7	J	HT, SP	UG/L
460-227520-1	8260D	460-227520-10	1/28/2021	MW-51MI-XX	N	cis-1,2-Dichloroethene	17		17	J	HT, SP	UG/L
460-227520-1	8260D	460-227520-10	1/28/2021	MW-51MI-XX	N	Tetrachloroethene	2.5		2.5	J	HT, SP	UG/L
460-227520-1	8260D	460-227520-10	1/28/2021	MW-51MI-XX	N	Trichloroethene	7.7		7.7	J	HT, SP	UG/L
460-227520-1	8260D	460-227520-11	1/28/2021	MW-51ML-XX	N	1,1,2-Trichloro-1,2,2-Trifluoroethane (Freon 113)	0.48	J	0.48	J	HT, SP	UG/L
460-227520-1	8260D	460-227520-11	1/28/2021	MW-51ML-XX	N	cis-1,2-Dichloroethene	3.5		3.5	J	HT, SP	UG/L
460-227520-1	8260D	460-227520-11	1/28/2021	MW-51ML-XX	N	Tetrachloroethene	0.45	J	0.45	J	HT, SP	UG/L
460-227520-1	8260D	460-227520-11	1/28/2021	MW-51ML-XX	N	Trichloroethene	2.7		2.7	J	HT, SP	UG/L
460-227520-1	8260D	460-227520-14	1/29/2021	MW-53MI-XX	N	1,1,1-Trichloroethane	0.5	U	0.5	UJ	HT, SP	UG/L
460-227520-1	8260D	460-227520-14	1/29/2021	MW-53MI-XX	N	1,1,2,2-Tetrachloroethane	0.5	U	0.5	UJ	HT, SP	UG/L
460-227520-1	8260D	460-227520-14	1/29/2021	MW-53MI-XX	N	1,1,2-Trichloro-1,2,2-Trifluoroethane (Freon 113)	0.5	U	0.5	UJ	HT, SP	UG/L
460-227520-1	8260D	460-227520-14	1/29/2021	MW-53MI-XX	N	1,1,2-Trichloroethane	0.5	U	0.5	UJ	HT, SP	UG/L
460-227520-1	8260D	460-227520-14	1/29/2021	MW-53MI-XX	N	1,1-Dichloroethane	0.5	U	0.5	UJ	HT, SP	UG/L
460-227520-1	8260D	460-227520-14	1/29/2021	MW-53MI-XX	N	1,1-Dichloroethene	0.5	U	0.5	UJ	HT, SP	UG/L
460-227520-1	8260D	460-227520-14	1/29/2021	MW-53MI-XX	N	1,1-Difluoroethane (Freon 152a)	1	U	1	UJ	HT, SP	UG/L
460-227520-1	8260D	460-227520-14	1/29/2021	MW-53MI-XX	N	1,2,4-Trichlorobenzene	0.5	U	0.5	UJ	HT, SP	UG/L
460-227520-1	8260D	460-227520-14	1/29/2021	MW-53MI-XX	N	1,2-Dibromo-3-chloropropane	0.5	U	0.5	UJ	HT, SP	UG/L
460-227520-1	8260D	460-227520-14	1/29/2021	MW-53MI-XX	N	1,2-Dibromoethane	0.5	U	0.5	UJ	HT, SP	UG/L
460-227520-1	8260D	460-227520-14	1/29/2021	MW-53MI-XX	N	1,2-Dichlorobenzene	0.5	U	0.5	UJ	HT, SP	UG/L
460-227520-1	8260D	460-227520-14	1/29/2021	MW-53MI-XX	N	1,2-Dichloroethane	0.5	U	0.5	UJ	HT, SP	UG/L
460-227520-1	8260D	460-227520-14	1/29/2021	MW-53MI-XX	N	1,2-Dichloropropane	0.5	U	0.5	UJ	HT, SP	UG/L
460-227520-1	8260D	460-227520-14	1/29/2021	MW-53MI-XX	N	1,3-Dichlorobenzene	0.5	U	0.5	UJ	HT, SP	UG/L

											Val	
							Lab	Lab	Final	Final	Reason	
SDG	Method	Lab Sample ID	Sample Date	Field Sample ID	Fraction	Parameter Name	Result	Qualifier	Result	Qualifier	Code	Units
460-227520-1	8260D	460-227520-14	1/29/2021	MW-53MI-XX	N	1,4-Dichlorobenzene	0.5	U	0.5	UJ	HT, SP	UG/L
460-227520-1	8260D	460-227520-14	1/29/2021	MW-53MI-XX	N	2-Butanone	2.5	U	2.5	UJ	HT, SP	UG/L
460-227520-1	8260D	460-227520-14	1/29/2021	MW-53MI-XX	N	2-Hexanone	2.5	U	2.5	UJ	HT, SP	UG/L
460-227520-1	8260D	460-227520-14	1/29/2021	MW-53MI-XX	N	4-Methyl-2-pentanone	2.5	U	2.5	UJ	HT, SP	UG/L
460-227520-1	8260D	460-227520-14	1/29/2021	MW-53MI-XX	N	Acetic acid, methyl ester	2.5	U	2.5	UJ	HT, SP	UG/L
460-227520-1	8260D	460-227520-14	1/29/2021	MW-53MI-XX	N	Acetone	5	U	5	UJ	HT, SP	UG/L
460-227520-1	8260D	460-227520-14	1/29/2021	MW-53MI-XX	N	Benzene	0.5	U	0.5	UJ	HT, SP	UG/L
460-227520-1	8260D	460-227520-14	1/29/2021	MW-53MI-XX	N	Bromodichloromethane	0.5	U	0.5	UJ	HT, SP	UG/L
460-227520-1	8260D	460-227520-14	1/29/2021	MW-53MI-XX	N	Bromoform	0.5	U	0.5	UJ	HT, SP	UG/L
460-227520-1	8260D	460-227520-14	1/29/2021	MW-53MI-XX	N	Bromomethane	0.5	U	0.5	UJ	HT, SP	UG/L
460-227520-1	8260D	460-227520-14	1/29/2021	MW-53MI-XX	N	Carbon disulfide	0.5	U	0.5	UJ	HT, SP	UG/L
460-227520-1	8260D	460-227520-14	1/29/2021	MW-53MI-XX	N	Carbon tetrachloride	0.5	U	0.5	UJ	HT, SP	UG/L
460-227520-1	8260D	460-227520-14	1/29/2021	MW-53MI-XX	N	Chlorobenzene	0.5	U	0.5	UJ	HT, SP	UG/L
460-227520-1	8260D	460-227520-14	1/29/2021	MW-53MI-XX	N	Chlorodifluoromethane	1	U	1	UJ	HT, SP	UG/L
460-227520-1	8260D	460-227520-14	1/29/2021	MW-53MI-XX	N	Chloroethane	0.5	U	0.5	UJ	HT, SP	UG/L
460-227520-1	8260D	460-227520-14	1/29/2021	MW-53MI-XX	N	Chloroform	0.5	U	0.5	UJ	HT, SP	UG/L
460-227520-1	8260D	460-227520-14	1/29/2021	MW-53MI-XX	N	Chloromethane	0.5	U	0.5	UJ	HT, SP	UG/L
460-227520-1	8260D	460-227520-14	1/29/2021	MW-53MI-XX	N	cis-1,2-Dichloroethene	2.2		2.2	J	HT, SP	UG/L
460-227520-1	8260D	460-227520-14	1/29/2021	MW-53MI-XX	N	cis-1,3-Dichloropropene	0.5	U	0.5	UJ	HT, SP	UG/L
460-227520-1	8260D	460-227520-14	1/29/2021	MW-53MI-XX	N	Cyclohexane	0.5	U	0.5	UJ	HT, SP	UG/L
460-227520-1	8260D	460-227520-14	1/29/2021	MW-53MI-XX	N	Dibromochloromethane	0.5	U	0.5	UJ	HT, SP	UG/L
460-227520-1	8260D	460-227520-14	1/29/2021	MW-53MI-XX	N	Dichlorodifluoromethane	0.5	U	0.5	UJ	HT, SP	UG/L
460-227520-1	8260D	460-227520-14	1/29/2021	MW-53MI-XX	N	Ethylbenzene	0.5	U	0.5	UJ	HT, SP	UG/L
460-227520-1	8260D	460-227520-14	1/29/2021	MW-53MI-XX	N	Freon 115	4	U *+	4	UJ	HT, SP	UG/L
460-227520-1	8260D	460-227520-14	1/29/2021	MW-53MI-XX	N	Freon 123	1	U	1	UJ	HT, SP	UG/L
460-227520-1	8260D	460-227520-14	1/29/2021	MW-53MI-XX	N	Isopropylbenzene	0.5	U	0.5	UJ	HT, SP	UG/L
460-227520-1	8260D	460-227520-14	1/29/2021	MW-53MI-XX	N	Methyl cyclohexane	0.5	U	0.5	UJ	HT, SP	UG/L
460-227520-1	8260D	460-227520-14	1/29/2021	MW-53MI-XX	N	Methyl Tertbutyl Ether	0.5	U	0.5	UJ	HT, SP	UG/L
460-227520-1	8260D	460-227520-14	1/29/2021	MW-53MI-XX	N	Methylene chloride	0.5	U	0.5	UJ	HT, SP	UG/L
460-227520-1	8260D	460-227520-14	1/29/2021	MW-53MI-XX	N	Styrene	0.5	U	0.5	UJ	HT, SP	UG/L
460-227520-1	8260D	460-227520-14	1/29/2021	MW-53MI-XX	N	Tetrachloroethene	1		1	J	HT, SP	UG/L
460-227520-1	8260D	460-227520-14	1/29/2021	MW-53MI-XX	N	Toluene	0.5	U	0.5	UJ	HT, SP	UG/L
460-227520-1	8260D	460-227520-14	1/29/2021	MW-53MI-XX	N	trans-1,2-Dichloroethene	0.5	U	0.5	UJ	HT, SP	UG/L
460-227520-1	8260D	460-227520-14	1/29/2021	MW-53MI-XX	N	trans-1,3-Dichloropropene	0.5	U	0.5	UJ	HT, SP	UG/L

											Val	
							Lab	Lab	Final	Final	Reason	
SDG	Method	Lab Sample ID	Sample Date	Field Sample ID	Fraction	Parameter Name	Result	Qualifier	Result	Qualifier	Code	Units
460-227520-1	8260D	460-227520-14	1/29/2021	MW-53MI-XX	N	Trichloroethene	3.8		3.8	J	HT, SP	UG/L
460-227520-1	8260D	460-227520-14	1/29/2021	MW-53MI-XX	N	Trichlorofluoromethane	0.5	U	0.5	UJ	HT, SP	UG/L
460-227520-1	8260D	460-227520-14	1/29/2021	MW-53MI-XX	N	Vinyl chloride	0.5	U	0.5	UJ	HT, SP	UG/L
460-227520-1	8260D	460-227520-14	1/29/2021	MW-53MI-XX	N	Xylene, o	0.5	U	0.5	UJ	HT, SP	UG/L
460-227520-1	8260D	460-227520-14	1/29/2021	MW-53MI-XX	N	Xylenes (m&p)	0.5	U	0.5	UJ	HT, SP	UG/L
460-227520-1	8260D	460-227520-14	1/29/2021	MW-53MI-XX	N	Xylenes, Total	1	U	1	UJ	HT, SP	UG/L
460-227520-1	524.2	460-227520-20	1/29/2021	SW-500	N	Dichlorodifluoromethane	0.5	U *-	0.5	UJ	LCSL	UG/L
460-227520-1	524.2	460-227520-20	1/29/2021	SW-500	N	Freon 115	0.5	U *-	0.5	UJ	LCSL	UG/L
460-227520-1	524.2	460-227520-19	1/29/2021	SW-N12796-XX	N	Dichlorodifluoromethane	0.5	U F1 *-	0.5	UJ	LCSL, MSL	UG/L
460-227520-1	524.2	460-227520-19	1/29/2021	SW-N12796-XX	N	Freon 115	0.5	U F1 *-	0.5	UJ	LCSL, MSL	UG/L
460-227520-1	524.2	460-227520-19	1/29/2021	SW-N12796-XX	N	Tetrachloroethene	6.6	F1	6.6	J-	MSL	UG/L
460-227520-1	524.2	460-227520-18	1/29/2021	SW-N4388-XX	N	Dichlorodifluoromethane	0.5	U *-	0.5	UJ	LCSL	UG/L
460-227520-1	524.2	460-227520-18	1/29/2021	SW-N4388-XX	N	Freon 115	0.5	U *-	0.5	UJ	LCSL	UG/L
460-227520-1	524.2	460-227520-17	1/29/2021	SW-N5099-XX	N	Dichlorodifluoromethane	0.5	U *-	0.5	บม	LCSL	UG/L
460-227520-1	524.2	460-227520-17	1/29/2021	SW-N5099-XX	N	Freon 115	0.5	U *-	0.5	UJ	LCSL	UG/L

ATTACHMENT A SUMMARY OF VALIDATION QC LIMITS FOR SURROGATES, SPIKES, AND DUPLICATES BASED ON THE REGION 2 VALIDATION GUIDELINES

PARAMETER	QC TEST	ANALYTE	WATER (%R)	Water (RPD)
	Surrogate	All Surrogate Compounds	80 - 120	(/
Valatilaa	LCS	All Target Compounds	70 - 130	
Volatiles	MS/MSD	All Target Compounds	70 - 130	20
	Field Duplicate	All Target Compounds		50
	LCS	All Target Analytes	80 - 120	
Incompanies	MS/MSD	All Target Analytes	75 -125	20
Inorganics	Lab Duplicate	All Target Analytes		20
	Field Duplicate	All Target Analytes		20

Notes:

LCS - Laboratory Control Sample

MS/MSD - Matrix spike/ Matrix Spike Duplicate

RPD = Relative percent difference

%R = percent recovery

QC Limits are based on USEPA Region II Data Validation Guidelines and Project QA/QC Objectives

Lockheed Martin Corporation Great Neck Site – Lake Success, New York Wood Environment & Infrastructure Solutions

> DATA USABILITY SUMMARY REPORT QUARTERLY MONITORING – Q1 2021 LOCKHEED MARTIN CORPORATION GREAT NECK SITE LAKE SUCCESS, NEW YORK

> > **ATTACHMENT B**

VOCs

NYSDEC DUSR PROJECT CHEMIST REVIEW RECORD Project: LMC Great Neck Q1 January 2021 GWM Method: 8260D **SDG(s):** 460-227520-1 Laboratory: TAL Edison, NJ **Date:** 3/2/2021 Reviewer: **Amber Jones** X NYSDEC DUSR USEPA Region II Guideline **Review Level ✓** Case Narrative Review and COC/Data Package Completeness **COMMENTS** Were problems noted? yes - see attached Are Field Sample IDs and Locations assigned correctly? YES NO (circle one) Were all the samples on the COC analyzed for the requested analyses? YES NO (circle one) 2. **I** ✓ Holding time and Sample Collection All samples were analyzed within the 14 day holding time. YES NO (circle one) see attached - subset UJ/J - HT, SP **✓ OC Blanks** Are method blanks free of contamination? YES NO (circle one) Are Trip blanks free of contamination? YES NO (circle one)no TB for 8260D Are Rinse blanks free of contamination? YES NO NA (circle one) **✓** Instrument Tuning – Data Package Narrative Review Did the laboratory narrative identify any results that were not within method criteria? YES NO (circle one) If yes, use professional judgment to evaluate data and qualify results if needed **Instrument Calibration – Data Package Narrative Review** Did the laboratory narrative identify compounds that were not within criteria in the initial and/or continuing calibration standards? YES NO (circle one) Initial Calibration %RSD = 20% (30% for 1,1-DCE, chloroform, 1,2-DCP, toluene, ethylbenzene, VC) Initial Avg RRF and Continuing RRF should be ≥ 0.05 and 0.10 for Chloromethane, 1,1-Dichloroethane, Bromoform and 0.30 for Chlorobenzene and 1,1,2,2-Tetrachloroethane Continuing Calibration %D = 20% Did the laboratory qualify results based on initial or continuing calibration exceedances? YES NO If yes to above, use professional judgment to evaluate data and qualify results if needed 6. **✓** Internal Standards – Data Package Narrative Review (Area Limits = -50% to +100%, RTs within 30 seconds of daily CCAL standard (or ICAL midpoint if samples follow ICAL) Did the laboratory narrative identify any sample internal standards that were not within criteria? YES NO (circle one) Did the laboratory qualify results based on internal standard exceedances? YES NO If yes to above, use professional judgment to evaluate data and qualify results if needed Surrogate Recovery - Region II limits (water 80-120%, soil 70-130%) Were all results within Region II limits? YES NO (circle one)

Matrix Spike - Region II limits (water and soil 70-130%, water RPD 20, soil RPD 35)

Were all results within the Region II limits? YES NO NA (circle one)

see attached - no quals

Were MS/MSDs submitted/analyzed? YES NO

Duplicates - Region II Limits (water RPD 50, soil RPD 100) Were Field Duplicates submitted/analyzed? YES NO see attached for RPD calcs Were all results within Region II limits? (soil RPD<100, water RPD<50) YES NO NA **Laboratory Control Sample Results - Region II (Water and soil 70-130%)** YES NO (circle one) see attached - no quals Were all results were within Region II control limits? 11. **✓ Reporting Limits:** Were samples analyzed at a dilution? YES NO (circle one) see attached for calculations 13. **✓** Electronic Data Review and Edits Does the EDD match the Form Is? YES NO (circle one) 14. **J** Tables and TIC Review Table 1 (Samples and Analytical Methods) **Table 2** (Analytical Results) **Table 3** (Qualification Actions) Were all tables produced and reviewed? YES NO (circle one) Table 4 (TICs) Did lab report TICs? YES NO (circle one)

CASE NARRATIVE

Client: Wood E&I Solutions Inc

Project: LMC Q1 2021 Groundwater Monitoring

Report Number: 460-227520-1

This case narrative is in the form of an exception report, where only the anomalies related to this report, method specific performance and/or QA/QC issues are discussed. If there are no issues to report, this narrative will include a statement that documents that there are no relevant data issues.

It should be noted that samples with elevated Reporting Limits (RLs) as a result of a dilution may not be able to satisfy customer reporting limits in some cases. Such increases in the RLs are unavoidable but acceptable consequence of sample dilution that enables quantification of target analytes or interferences which exceed the calibration range of the instrument.

Calculations are performed before rounding to avoid round-off errors in calculated results.

All holding times were met and proper preservation noted for the methods performed on these samples, unless otherwise detailed in the individual sections below.

RECEIPT

The samples were received on 1/29/2021 5:30 PM. Unless otherwise noted below, the samples arrived in good condition, and where required, properly preserved and on ice. The temperature of the cooler at receipt was 2.3° C.

Note: All samples which require thermal preservation are considered acceptable if the arrival temperature is within 2C of the required temperature or method specified range. For samples with a specified temperature of 4C, samples with a temperature ranging from just above freezing temperature of water to 6C shall be acceptable. Samples that are hand delivered immediately following collection may not meet these criteria, however they will be deemed acceptable according to NELAC standards, if there is evidence that the chilling process has begun, such as arrival on ice, etc.

DRINKING WATER VOLATILES (GC-MS)

Samples SW-N5099-XX (460-227520-17), SW-N4388-XX (460-227520-18), SW-N12796-XX (460-227520-19), SW-500 (460-227520-20) and QC-TB270121-XX (460-227520-21) were analyzed for drinking water volatiles (GC-MS) in accordance with EPA Method 524.2. The samples were analyzed on 02/06/2021 and 02/07/2021.

The laboratory control sample (LCS) in batch 757537 recovered outside control limits (biased low) for Dichlorodifluoromethane and Freon 115.: LCS 460-757537/3.

Dichlorodifluoromethane, Freon 115 and Tetrachloroethene failed the recovery criteria low for the matrix spike (MS) of sample SW-N12796-XX (460-227520-19) in batch 460-757537.

For the matrix spike duplicate (MSD) of sample SW-N12796-XX (460-227520-19) in batch 460-757537, Freon 115 and Tetrachloroethene failed the recovery criteria low. 1,1,2,2-Tetrachloroethane, 1,1,2-Trichloroethane and Freon 123 failed the recovery criteria high. Also, Hexachlorobutadiene exceeded the RPD limit.

Refer to the QC report for details.

No other difficulties were encountered during the volatiles analysis.

All other quality control parameters were within the acceptance limits.

VOLATILE ORGANIC COMPOUNDS (GC/MS) - (LOW LEVEL - LL)(TOTAL)

Samples MW-31GL-XX (460-227520-1), MW-31MI-XX (460-227520-2), MW-31ML-XX (460-227520-3), MW-43MU-XX (460-227520-4), MW-43MI-XX (460-227520-5), MW-45MU-XX (460-227520-6), MW-45MI-XX (460-227520-7), MW-46MI-XX (460-227520-8), MW-46ML-XX (460-227520-9), MW-51MI-XX (460-227520-10), MW-51ML-XX (460-227520-11), MW-52MI-XX (460-227520-12), MW-52ML-XX (460-227520-13), MW-53MI-XX (460-227520-14), MW-53ML-XX (460-227520-15) and MW-500 (460-227520-16) were analyzed for Volatile Organic Compounds (GC/MS) - (Low Level - LL)(Total) in accordance with EPA SW-846 Method 8260D - Low Level (LL). The samples were analyzed on 02/08/2021.

The continuing calibration verification (CCV) associated with batch 460-757658 recovered above the upper control limit for Freon 115. The samples associated with this CCV were non-detects for the affected analytes; therefore, the data have been reported. Okay

The laboratory control sample (LCS) and laboratory control sample duplicate (LCSD) for analytical batch 460-757658 recovered outside control limits for the following analyte: Freon 115. This analyte was biased high in the LCS/LCSD and was not detected in the associated samples; therefore, the data have been reported.

See attached for LCS review

axy 3/2/2021

Page 6 of 1056 02/18/2021

cis-1,2-Dichloroethene failed the recovery criteria low for the MS and MSD of sample MW-31GL-XX (460-227520-1) in batch 460-757658.

Freon 115 failed the recovery criteria high. see attached for MS/MSD review

The presence of the '4' qualifier in the data indicates analytes where the concentration in the unspiked sample exceeded four times the spiking amount.

Refer to the QC report for details.

The following samples were collected in a properly preserved vial; however, the pH was outside the required criteria when verified by the laboratory. The samples were analyzed outside the 7-day holding time specified for unpreserved samples but within the 14-day holding time specified for preserved samples: MW-31GL-XX (460-227520-1), MW-43MI-XX (460-227520-5), MW-46MI-XX (460-227520-8), MW-46ML-XX (460-227520-9), MW-51MI-XX (460-227520-10), MW-51ML-XX (460-227520-11) and MW-53MI-XX (460-227520-14).

UJ/J - HT, SP

No other difficulties were encountered during the Volatiles analysis.

All other quality control parameters were within the acceptance limits.

CHLORIDE

Samples MW-31GL-XX (460-227520-1), MW-31MI-XX (460-227520-2), MW-31ML-XX (460-227520-3), MW-43MU-XX (460-227520-4), MW-43MI-XX (460-227520-5), MW-45MU-XX (460-227520-6), MW-45MI-XX (460-227520-7), MW-46MI-XX (460-227520-8), MW-46ML-XX (460-227520-9), MW-52MI-XX (460-227520-12), MW-52ML-XX (460-227520-13), MW-53MI-XX (460-227520-14), MW-53ML-XX (460-227520-15), MW-500 (460-227520-16), SW-N5099-XX (460-227520-17), SW-N4388-XX (460-227520-18), SW-N12796-XX (460-227520-19) and SW-500 (460-227520-20) were analyzed for chloride in accordance with SM 4500 CL B. The samples were analyzed on 02/17/2021.

Samples MW-31GL-XX (460-227520-1)[2X], MW-31MI-XX (460-227520-2)[2X] and MW-45MU-XX (460-227520-6)[2X] required dilution prior to analysis. The reporting limits have been adjusted accordingly.

No difficulties were encountered during the chloride analysis.

All quality control parameters were within the acceptance limits.

axq 3/2/2021

QC Sample Results

Client: Wood E&I Solutions Inc

Project/Site: LMC Q1 2021 Groundwater Monitoring

Method: 8260D - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: MB 460-757658/7

Matrix: Water

Analysis Batch: 757658

Client Sample ID: Method Blank

Prep Type: Total/NA

Job ID: 460-227520-1

	IVID	IVID							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Freon 115	4.0	U	4.0	3.4	ug/L			02/08/21 08:40	1
Freon 152a	1.0	U	1.0	0.76	ug/L			02/08/21 08:40	1
Freon 123	1.0	U	1.0	0.20	ug/L			02/08/21 08:40	1
Freon 22	1.0	U	1.0	0.67	ug/L			02/08/21 08:40	1

MB MB Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac 1,2-Dichloroethane-d4 (Surr) 75 - 123 02/08/21 08:40 105 102 80 - 120 02/08/21 08:40 Toluene-d8 (Surr) 76 - 120 4-Bromofluorobenzene 106 02/08/21 08:40 1 77 - 124 02/08/21 08:40 Dibromofluoromethane (Surr) 108

Lab Sample ID: LCS 460-757658/3

Matrix: Water

Analysis Batch: 757658

70-130%

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Chloromethane 20.0 22.6 ug/L 113 38 - 150 Viryl chloride 20.0 22.4 ug/L 112 61 - 144 Bromomethane samples ND - no quals 20.0 26.8 ug/L 134 43 - 150 Chloroethane 20.0 24.8 ug/L 196 74 - 127 Acetone 100 95.8 ug/L 96 61 - 134 Acetone 100 95.8 ug/L 196 64 - 138 Freon 11 20.0 21.1 ug/L 106 64 - 138 Freon 11 20.0 24.3 ug/L 121 61 - 140 1,1-Dichloroethene 20.0 20.9 ug/L 105 68 - 133 1,1-Dichloroethane 20.0 20.5 ug/L 106 74 - 126 cis-1,2-Dichloroethene 20.0 20.8 ug/L 106 74 - 126 cis-1,2-Dichloroethene 20.0 20.8 ug/L 107 78 - 121 Ly-Dichloroethane		Spike	LCS	LCS				%Rec.	
Vinyl chloride 20.0 22.4 ug/L 112 61-144 Bromomethane samples ND - no quals 20.0 26.8 ug/L 134 43-150 Chloroethane 20.0 24.8 ug/L 124 50-150 Methylene Chloride 20.0 21.1 ug/L 96 74-127 Acetone 100 95.8 ug/L 106 64-138 Freon 11 20.0 24.3 ug/L 106 64-138 Freon 11 20.0 24.3 ug/L 105 68-133 1,1-Dichloroethene 20.0 20.9 ug/L 102 73-130 trans-1,2-Dichloroethene 20.0 20.5 ug/L 102 73-10 trans-1,2-Dichloroethene 20.0 20.5 ug/L 107 78-125 Clibroform 20.0 21.5 ug/L 107 78-125 L2-Dichloroethane 20.0 20.5 ug/L 105 75-121 Methyl ethyl ketone (MEK)	Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Bromomethane Samples ND - no quals 20,0 26,8 ug/L 134 43 - 150	Chloromethane	20.0	22.6		ug/L		113	38 - 150	
Chloroethane 20.0 24.8 ug/L 124 50.150 Methylene Chloride 20.0 19.1 ug/L 96 74.127 Acetone 100 95.8 ug/L 96 61.134 Carbon disulfide 20.0 21.1 ug/L 106 64.138 Freon 11 20.0 24.3 ug/L 105 68.133 1,1-Dichloroethene 20.0 20.9 ug/L 105 68.133 1,1-Dichloroethene 20.0 20.5 ug/L 106 74.126 cis-1,2-Dichloroethene 20.0 21.3 ug/L 106 74.126 cis-1,2-Dichloroethene 20.0 21.3 ug/L 107 78.125 Cis-1,2-Dichloroethene 20.0 20.8 ug/L 104 78.121 Chloroform 20.0 20.9 ug/L 107 78.125 Ly-Dichloroethane 20.0 20.9 ug/L 104 69.128 1,1,1-Trichloroethane 20.0 <td< td=""><td>Vinyl chloride</td><td>20.0</td><td>22.4</td><td></td><td>ug/L</td><td></td><td>112</td><td>61 - 144</td><td></td></td<>	Vinyl chloride	20.0	22.4		ug/L		112	61 - 144	
Methylene Chloride 20.0 19.1 ug/L 96 74 - 127 Acetone 100 95.8 ug/L 96 61 - 134 Carbon disulfide 20.0 21.1 ug/L 106 64 - 138 Freon 11 20.0 24.3 ug/L 121 61 - 140 1,1-Dichloroethene 20.0 20.9 ug/L 105 68 - 133 1,1-Dichloroethane 20.0 20.5 ug/L 102 73 - 130 trans-1,2-Dichloroethene 20.0 21.3 ug/L 104 78 - 121 Chloroform 20.0 21.5 ug/L 107 78 - 125 L2-Dichloroethane 20.0 21.5 ug/L 105 75 - 121 Methyl ethyl ketone (MEK) 100 104 ug/L 105 68 - 128 Carbon tetrachloride 20.0 21.7 ug/L 109 68 - 128 Carbon tetrachloride 20.0 21.7 ug/L 101 56 - 131 Bromodichloromethane	Bromomethane samples ND - no quals	20.0	26.8		ug/L		134	43 - 150	
Acetone 100 95.8 ug/L 96 61-134 Carbon disulfide 20.0 21.1 ug/L 106 64-138 Freon 11 20.0 24.3 ug/L 121 61-140 1,1-Dichloroethene 20.0 20.9 ug/L 105 68-133 1,1-Dichloroethene 20.0 20.5 ug/L 106 74-126 cis-1,2-Dichloroethene 20.0 20.8 ug/L 106 74-126 cis-1,2-Dichloroethene 20.0 20.8 ug/L 107 78-125 1,2-Dichloroethane 20.0 21.5 ug/L 107 78-125 1,2-Dichloroethane 20.0 21.5 ug/L 104 69-128 1,1,1-Trichloroethane 20.0 21.7 ug/L 104 69-128 1,1,1-Trichloroethane 20.0 21.7 ug/L 104 69-128 Bromodichloromethane 20.0 19.7 ug/L 101 56-131 Bromodichloromethane 20	Chloroethane	20.0	24.8		ug/L		124	50 - 150	
Carbon disulfide 20.0 21.1 ug/L 106 64 - 138 Freon 11 20.0 24.3 ug/L 121 61 - 140 1,1-Dichloroethene 20.0 20.9 ug/L 105 68 - 133 1,1-Dichloroethane 20.0 20.5 ug/L 106 74 - 126 cis-1,2-Dichloroethene 20.0 20.8 ug/L 104 78 - 125 cis-1,2-Dichloroethene 20.0 20.8 ug/L 104 78 - 125 Chloroform 20.0 21.5 ug/L 107 78 - 125 L1,1-Dichloroethane 20.0 20.9 ug/L 105 75 - 121 Methyl ethyl ketone (MEK) 100 104 ug/L 104 69 - 128 1,1,1-Trichloroethane 20.0 21.7 ug/L 109 68 - 128 Carbon tetrachloride 20.0 21.7 ug/L 101 56 - 131 Bromodichloromethane 20.0 19.3 ug/L 97 72 - 121 1,2-Dic	Methylene Chloride	20.0	19.1		ug/L		96	74 - 127	
Freon 11 20.0 24.3 ug/L 121 61-140 1,1-Dichloroethene 20.0 20.9 ug/L 105 68-133 1,1-Dichloroethane 20.0 20.5 ug/L 102 73-130 trans-1,2-Dichloroethene 20.0 21.3 ug/L 106 74-126 cis-1,2-Dichloroethene 20.0 20.8 ug/L 107 78-121 Chloroform 20.0 21.5 ug/L 107 78-125 1,2-Dichloroethane 20.0 20.9 ug/L 105 75-121 Methyl ethyl ketone (MEK) 100 104 ug/L 105 75-121 Methyl ethyl ketone (MEK) 100 104 ug/L 109 68-128 Carbon tetrachloride 20.0 21.7 ug/L 109 68-128 Carbon tetrachloride 20.0 19.3 ug/L 97 72-121 1,2-Dichloropropane 20.0 19.7 ug/L 98 76-126 cis-1,3-Dichloropropene <td>Acetone</td> <td>100</td> <td>95.8</td> <td></td> <td>ug/L</td> <td></td> <td>96</td> <td>61 - 134</td> <td></td>	Acetone	100	95.8		ug/L		96	61 - 134	
1,1-Dichloroethene 20.0 20.9 ug/L 105 68 - 133 1,1-Dichloroethane 20.0 20.5 ug/L 102 73 - 130 trans-1,2-Dichloroethene 20.0 21.3 ug/L 106 74 - 126 cis-1,2-Dichloroethene 20.0 20.8 ug/L 104 78 - 121 Chloroform 20.0 21.5 ug/L 107 78 - 125 1,2-Dichloroethane 20.0 20.9 ug/L 105 75 - 121 Methyl ethyl ketone (MEK) 100 104 ug/L 104 69 - 128 1,1,1-Tichloroethane 20.0 21,7 ug/L 109 68 - 128 Carbon tetrachloride 20.0 20.1 ug/L 101 56 - 131 Bromodichloromethane 20.0 19.3 ug/L 97 72 - 121 1,2-Dichloropropene 20.0 19.7 ug/L 98 76 - 126 cis-1,3-Dichloropropene 20.0 18.4 ug/L 92 74 - 125 Trichloroethane 20.0 18.9 ug/L 94 58 - 130	Carbon disulfide	20.0	21.1		ug/L		106	64 - 138	
1,1-Dichloroethane 20.0 20.5 ug/L 102 73 - 130 trans-1,2-Dichloroethene 20.0 21.3 ug/L 106 74 - 126 cis-1,2-Dichloroethene 20.0 20.8 ug/L 104 78 - 121 Chloroform 20.0 21.5 ug/L 107 78 - 125 Chloroform 20.0 20.9 ug/L 105 75 - 121 Methyl ethyl ketone (MEK) 100 104 ug/L 104 69 - 128 1,1,1-Trichloroethane 20.0 21.7 ug/L 109 68 - 128 Carbon tetrachloride 20.0 20.1 ug/L 101 56 - 131 Bromodichloromethane 20.0 19.3 ug/L 97 72 - 121 1,2-Dichloropropane 20.0 19.7 ug/L 98 76 - 126 cis-1,3-Dichloropropane 20.0 18.4 ug/L 92 74 - 125 Trichloroethane 20.0 18.4 ug/L 92 74 - 125 Dibromochloromethane 20.0 18.9 ug/L 93 74 - 125	Freon 11	20.0	24.3		ug/L		121	61 - 140	
trans-1,2-Dichloroethene 20.0 21.3 ug/L 106 74-126 cis-1,2-Dichloroethene 20.0 20.8 ug/L 104 78-121 Chloroform 20.0 21.5 ug/L 107 78-125 1,2-Dichloroethane 20.0 20.9 ug/L 105 75-121 Methyl ethyl ketone (MEK) 100 104 ug/L 104 69-128 1,1,1-Trichloroethane 20.0 21.7 ug/L 109 68-128 Carbon tetrachloride 20.0 20.1 ug/L 101 56-131 Bromodichloromethane 20.0 19.3 ug/L 97 72-121 1,2-Dichloropropane 20.0 19.7 ug/L 98 76-126 cis-1,3-Dichloropropene 20.0 18.4 ug/L 92 74-125 Trichloroethane 20.0 18.9 ug/L 94 58-130 1,1,2-Trichloroethane 20.0 18.5 ug/L 93 74-125 Benzene	1,1-Dichloroethene	20.0	20.9		ug/L		105	68 - 133	
cis-1,2-Dichloroethene 20.0 20.8 ug/L 104 78 - 121 Chloroform 20.0 21.5 ug/L 107 78 - 125 1,2-Dichloroethane 20.0 20.9 ug/L 105 75 - 121 Methyl ethyl ketone (MEK) 100 104 ug/L 104 69 - 128 1,1,1-Trichloroethane 20.0 21.7 ug/L 109 68 - 128 Carbon tetrachloride 20.0 20.1 ug/L 101 56 - 131 Bromodichloromethane 20.0 19.3 ug/L 97 72 - 121 1,2-Dichloropropane 20.0 19.7 ug/L 98 76 - 126 cis-1,3-Dichloropropene 20.0 18.4 ug/L 92 74 - 125 Trichloroethane 20.0 18.9 ug/L 94 58 - 130 1,1,2-Trichloroethane 20.0 18.5 ug/L 93 74 - 125 Benzene 20.0 18.5 ug/L 93 74 - 125 Berzene 20.0 17.3 ug/L 86 38 - 144 Me	1,1-Dichloroethane	20.0	20.5		ug/L		102	73 - 130	
Chloroform 20.0 21.5 ug/L 107 78-125 1,2-Dichloroethane 20.0 20.9 ug/L 105 75-121 Methyl ethyl ketone (MEK) 100 104 ug/L 104 69-128 1,1,1-Trichloroethane 20.0 21.7 ug/L 109 68-128 Carbon tetrachloride 20.0 20.1 ug/L 101 56-131 Bromodichloromethane 20.0 19.3 ug/L 97 72-121 1,2-Dichloropropane 20.0 19.7 ug/L 98 76-126 cis-1,3-Dichloropropene 20.0 18.4 ug/L 92 74-125 Trichloroethane 20.0 18.9 ug/L 101 71-121 Dibromochloromethane 20.0 18.5 ug/L 93 74-125 Benzene 20.0 18.5 ug/L 93 74-125 Bernsene 20.0 18.5 ug/L 100 78-126 Bromoform 20.0 18.5 ug/L 36 66-127 Bromoform 20.0	trans-1,2-Dichloroethene	20.0	21.3		ug/L		106	74 - 126	
1,2-Dichloroethane 20,0 20,9 ug/L 105 75 - 121 Methyl ethyl ketone (MEK) 100 104 ug/L 104 69 - 128 1,1,1-Trichloroethane 20,0 21,7 ug/L 109 68 - 128 Carbon tetrachloride 20,0 20,1 ug/L 101 56 - 131 Bromodichloromethane 20,0 19,3 ug/L 97 72 - 121 1,2-Dichloropropane 20,0 19,7 ug/L 98 76 - 126 cis-1,3-Dichloropropene 20,0 18,4 ug/L 92 74 - 125 Trichloroethene 20,0 18,9 ug/L 101 71 - 121 Dibromochloromethane 20,0 18.9 ug/L 94 58 - 130 1,1,2-Trichloroethane 20,0 18.5 ug/L 93 74 - 125 Benzene 20,0 18.5 ug/L 93 74 - 125 Bromoform 20,0 18.5 ug/L 93 66 - 127 Bromoform 20,0 17,3 ug/L 86 38 - 144 Meth	cis-1,2-Dichloroethene	20.0	20.8		ug/L		104	78 - 121	
Methyl ethyl ketone (MEK) 100 104 ug/L 104 69 - 128 1,1,1-Trichloroethane 20.0 21.7 ug/L 109 68 - 128 Carbon tetrachloride 20.0 20.1 ug/L 101 56 - 131 Bromodichloromethane 20.0 19.3 ug/L 97 72 - 121 1,2-Dichloropropane 20.0 19.7 ug/L 98 76 - 126 cis-1,3-Dichloropropene 20.0 18.4 ug/L 92 74 - 125 Trichloroethene 20.0 20.1 ug/L 101 71 - 121 Dibromochloromethane 20.0 18.9 ug/L 94 58 - 130 1,1,2-Trichloroethane 20.0 18.5 ug/L 93 74 - 125 Benzene 20.0 20.0 ug/L 100 78 - 126 trans-1,3-Dichloropropene 20.0 18.5 ug/L 93 66 - 127 Bromoform 20.0 17.3 ug/L 93 66 - 127 Bromoform 20.0 17.3 ug/L 99 74 - 127 Tetrachloroethene 100 99.1 ug/L 99 74 - 127 Tetrachloroethene 20.0 21.4 ug/L <	Chloroform	20.0	21.5		ug/L		107	78 - 125	
1,1,1-Trichloroethane 20.0 21.7 ug/L 109 68-128 Carbon tetrachloride 20.0 20.1 ug/L 101 56-131 Bromodichloromethane 20.0 19.3 ug/L 97 72-121 1,2-Dichloropropane 20.0 19.7 ug/L 98 76-126 cis-1,3-Dichloropropene 20.0 18.4 ug/L 92 74-125 Trichloroethene 20.0 20.1 ug/L 101 71-121 Dibromochloromethane 20.0 18.9 ug/L 94 58-130 1,1,2-Trichloroethane 20.0 18.5 ug/L 93 74-125 Benzene 20.0 20.0 ug/L 100 78-126 trans-1,3-Dichloropropene 20.0 18.5 ug/L 93 66-127 Bromoform 20.0 17.3 ug/L 86 38-144 Methyl isobutyl ketone (MIBK) 100 108 ug/L 108 69-128 2-Hexanone 100 99.1 ug/L 107 70-127 Tetrachloroethane<	1,2-Dichloroethane	20.0	20.9		ug/L		105	75 - 121	
Carbon tetrachloride 20.0 20.1 ug/L 101 56 - 131 Bromodichloromethane 20.0 19.3 ug/L 97 72 - 121 1,2-Dichloropropane 20.0 19.7 ug/L 98 76 - 126 cis-1,3-Dichloropropene 20.0 18.4 ug/L 92 74 - 125 Trichloroethene 20.0 20.1 ug/L 101 71 - 121 Dibromochloromethane 20.0 18.9 ug/L 94 58 - 130 1,1,2-Trichloroethane 20.0 18.5 ug/L 93 74 - 125 Benzene 20.0 20.0 ug/L 100 78 - 126 trans-1,3-Dichloropropene 20.0 18.5 ug/L 93 66 - 127 Bromoform 20.0 17.3 ug/L 86 38 - 144 Methyl isobutyl ketone (MIBK) 100 108 ug/L 108 69 - 128 2-Hexanone 100 99.1 ug/L 107 70 - 127 Tetrachloroethene 20.0 21.4 ug/L 107 70 - 127	Methyl ethyl ketone (MEK)	100	104		ug/L		104	69 - 128	
Bromodichloromethane 20.0 19.3 ug/L 97 72 - 121 1,2-Dichloropropane 20.0 19.7 ug/L 98 76 - 126 cis-1,3-Dichloropropene 20.0 18.4 ug/L 92 74 - 125 Trichloroethene 20.0 20.1 ug/L 101 71 - 121 Dibromochloromethane 20.0 18.9 ug/L 94 58 - 130 1,1,2-Trichloroethane 20.0 18.5 ug/L 93 74 - 125 Benzene 20.0 18.5 ug/L 93 66 - 127 Bromoform 20.0 17.3 ug/L 86 38 - 144 Methyl isobutyl ketone (MIBK) 100 108 ug/L 108 69 - 128 2-Hexanone 100 99.1 ug/L 99 74 - 127 Tetrachloroethene 20.0 21.4 ug/L 107 70 - 127 1,1,2,2-Tetrachloroethane 20.0 18.8 ug/L 94 63 - 139 Toluene 20.0 20.0 ug/L 100 78 - 119	1,1,1-Trichloroethane	20.0	21.7		ug/L		109	68 - 128	
1,2-Dichloropropane 20.0 19.7 ug/L 98 76-126 cis-1,3-Dichloropropene 20.0 18.4 ug/L 92 74-125 Trichloroethene 20.0 20.1 ug/L 101 71-121 Dibromochloromethane 20.0 18.9 ug/L 94 58-130 1,1,2-Trichloroethane 20.0 18.5 ug/L 93 74-125 Benzene 20.0 20.0 ug/L 100 78-126 trans-1,3-Dichloropropene 20.0 18.5 ug/L 93 66-127 Bromoform 20.0 17.3 ug/L 86 38-144 Methyl isobutyl ketone (MIBK) 100 108 ug/L 108 69-128 2-Hexanone 100 99.1 ug/L 99 74-127 Tetrachloroethene 20.0 21.4 ug/L 107 70-127 1,1,2,2-Tetrachloroethane 20.0 18.8 ug/L 94 63-139 Toluene 20.0 20.0 20.0 ug/L 100 78-119	Carbon tetrachloride	20.0	20.1		ug/L		101	56 - 131	
cis-1,3-Dichloropropene 20.0 18.4 ug/L 92 74 - 125 Trichloroethene 20.0 20.1 ug/L 101 71 - 121 Dibromochloromethane 20.0 18.9 ug/L 94 58 - 130 1,1,2-Trichloroethane 20.0 18.5 ug/L 93 74 - 125 Benzene 20.0 20.0 ug/L 100 78 - 126 trans-1,3-Dichloropropene 20.0 18.5 ug/L 93 66 - 127 Bromoform 20.0 17.3 ug/L 86 38 - 144 Methyl isobutyl ketone (MIBK) 100 108 ug/L 108 69 - 128 2-Hexanone 100 99.1 ug/L 99 74 - 127 Tetrachloroethene 20.0 21.4 ug/L 107 70 - 127 1,1,2,2-Tetrachloroethane 20.0 18.8 ug/L 94 63 - 139 Toluene 20.0 20.0 20.0 ug/L 100 78 - 119	Bromodichloromethane	20.0	19.3		ug/L		97	72 - 121	
Trichloroethene 20.0 20.1 ug/L 101 71 - 121 Dibromochloromethane 20.0 18.9 ug/L 94 58 - 130 1,1,2-Trichloroethane 20.0 18.5 ug/L 93 74 - 125 Benzene 20.0 20.0 ug/L 100 78 - 126 trans-1,3-Dichloropropene 20.0 18.5 ug/L 93 66 - 127 Bromoform 20.0 17.3 ug/L 86 38 - 144 Methyl isobutyl ketone (MIBK) 100 108 ug/L 108 69 - 128 2-Hexanone 100 99.1 ug/L 99 74 - 127 Tetrachloroethene 20.0 21.4 ug/L 107 70 - 127 1,1,2,2-Tetrachloroethane 20.0 18.8 ug/L 94 63 - 139 Toluene 20.0 20.0 ug/L 100 78 - 119	1,2-Dichloropropane	20.0	19.7		ug/L		98	76 - 126	
Dibromochloromethane 20.0 18.9 ug/L 94 58 - 130 1,1,2-Trichloroethane 20.0 18.5 ug/L 93 74 - 125 Benzene 20.0 20.0 ug/L 100 78 - 126 trans-1,3-Dichloropropene 20.0 18.5 ug/L 93 66 - 127 Bromoform 20.0 17.3 ug/L 86 38 - 144 Methyl isobutyl ketone (MIBK) 100 108 ug/L 108 69 - 128 2-Hexanone 100 99.1 ug/L 99 74 - 127 Tetrachloroethene 20.0 21.4 ug/L 107 70 - 127 1,1,2,2-Tetrachloroethane 20.0 18.8 ug/L 94 63 - 139 Toluene 20.0 20.0 ug/L 100 78 - 119	cis-1,3-Dichloropropene	20.0	18.4		ug/L		92	74 - 125	
1,1,2-Trichloroethane 20.0 18.5 ug/L 93 74 - 125 Benzene 20.0 20.0 ug/L 100 78 - 126 trans-1,3-Dichloropropene 20.0 18.5 ug/L 93 66 - 127 Bromoform 20.0 17.3 ug/L 86 38 - 144 Methyl isobutyl ketone (MIBK) 100 108 ug/L 108 69 - 128 2-Hexanone 100 99.1 ug/L 99 74 - 127 Tetrachloroethene 20.0 21.4 ug/L 107 70 - 127 1,1,2,2-Tetrachloroethane 20.0 18.8 ug/L 94 63 - 139 Toluene 20.0 20.0 20.0 ug/L 100 78 - 119	Trichloroethene	20.0	20.1		ug/L		101	71 - 121	
Benzene 20.0 20.0 ug/L 100 78 - 126 trans-1,3-Dichloropropene 20.0 18.5 ug/L 93 66 - 127 Bromoform 20.0 17.3 ug/L 86 38 - 144 Methyl isobutyl ketone (MIBK) 100 108 ug/L 108 69 - 128 2-Hexanone 100 99.1 ug/L 99 74 - 127 Tetrachloroethene 20.0 21.4 ug/L 107 70 - 127 1,1,2,2-Tetrachloroethane 20.0 18.8 ug/L 94 63 - 139 Toluene 20.0 20.0 ug/L 100 78 - 119	Dibromochloromethane	20.0	18.9		ug/L		94	58 - 130	
trans-1,3-Dichloropropene 20.0 18.5 ug/L 93 66 - 127 Bromoform 20.0 17.3 ug/L 86 38 - 144 Methyl isobutyl ketone (MIBK) 100 108 ug/L 108 69 - 128 2-Hexanone 100 99.1 ug/L 99 74 - 127 Tetrachloroethene 20.0 21.4 ug/L 107 70 - 127 1,1,2,2-Tetrachloroethane 20.0 18.8 ug/L 94 63 - 139 Toluene 20.0 20.0 ug/L 100 78 - 119	1,1,2-Trichloroethane	20.0	18.5		ug/L		93	74 - 125	
Bromoform 20.0 17.3 ug/L 86 38 - 144 Methyl isobutyl ketone (MIBK) 100 108 ug/L 108 69 - 128 2-Hexanone 100 99.1 ug/L 99 74 - 127 Tetrachloroethene 20.0 21.4 ug/L 107 70 - 127 1,1,2,2-Tetrachloroethane 20.0 18.8 ug/L 94 63 - 139 Toluene 20.0 20.0 ug/L 100 78 - 119	Benzene	20.0	20.0		ug/L		100	78 - 126	
Methyl isobutyl ketone (MIBK) 100 108 ug/L 108 69 - 128 2-Hexanone 100 99.1 ug/L 99 74 - 127 Tetrachloroethene 20.0 21.4 ug/L 107 70 - 127 1,1,2,2-Tetrachloroethane 20.0 18.8 ug/L 94 63 - 139 Toluene 20.0 20.0 ug/L 100 78 - 119	trans-1,3-Dichloropropene	20.0	18.5		ug/L		93	66 - 127	
2-Hexanone 100 99.1 ug/L 99 74 - 127 Tetrachloroethene 20.0 21.4 ug/L 107 70 - 127 1,1,2,2-Tetrachloroethane 20.0 18.8 ug/L 94 63 - 139 Toluene 20.0 20.0 ug/L 100 78 - 119	Bromoform	20.0	17.3		ug/L		86	38 - 144	
Tetrachloroethene 20.0 21.4 ug/L 107 70 - 127 1,1,2,2-Tetrachloroethane 20.0 18.8 ug/L 94 63 - 139 Toluene 20.0 20.0 ug/L 100 78 - 119	Methyl isobutyl ketone (MIBK)	100	108		ug/L		108	69 - 128	
1,1,2,2-Tetrachloroethane 20.0 18.8 ug/L 94 63 - 139 Toluene 20.0 20.0 ug/L 100 78 - 119	2-Hexanone	100	99.1		ug/L		99	74 - 127	
Toluene 20.0 20.0 ug/L 100 78 - 119	Tetrachloroethene	20.0	21.4		ug/L		107	70 - 127	
·	1,1,2,2-Tetrachloroethane	20.0	18.8		ug/L		94	63 _ 139	
Chlorobenzene 20.0 20.7 ug/L 104 80 - 119	Toluene	20.0	20.0		ug/L		100	78 ₋ 119	
	Chlorobenzene	20.0	20.7		ug/L		104	80 - 119	

uxg 3/2/2021

Eurofins TestAmerica, Edison

02/18/2021

QC Sample Results

70-130%

Client: Wood E&I Solutions Inc

Project/Site: LMC Q1 2021 Groundwater Monitoring

Method: 8260D - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: LCS 460-757658/3

Matrix: Water Analysis Batch: 757658 **Client Sample ID: Lab Control Sample**

Prep Type: Total/NA

Job ID: 460-227520-1

-	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Ethylbenzene	20.0	20.0		ug/L		100	78 - 120
Styrene	20.0	20.1		ug/L		101	75 - 127
m&p-Xylene	20.0	20.7		ug/L		104	78 - 123
o-Xylene	20.0	20.5		ug/L		103	78 - 122
Xylenes, Total	40.0	41.2		ug/L		103	78 - 122
Freon 113	20.0	23.9		ug/L		119	59_142
Methyl tert-butyl ether	20.0	21.1		ug/L		105	65_131
Cyclohexane	20.0	21.6		ug/L		108	67 - 133
1,2-Dibromoethane	20.0	19.7		ug/L		98	69 - 126
1,3-Dichlorobenzene	20.0	19.9		ug/L		100	80 - 121
1,4-Dichlorobenzene	20.0	20.4		ug/L		102	80 - 118
1,2-Dichlorobenzene	20.0	21.4		ug/L		107	79 - 122
Dichlorodifluoromethane	20.0	22.2		ug/L		111	31 - 150
1,2,4-Trichlorobenzene	20.0	19.5		ug/L		98	64 - 132
1,2-Dibromo-3-Chloropropane	20.0	17.9		ug/L		89	41 - 143
Isopropylbenzene	20.0	21.3		ug/L		107	79 - 125
Methyl acetate	40.0	37.9		ug/L		95	70 - 127
Methylcyclohexane	20.0	21.8		ug/L		109	60 - 139
Freon 115	20.0	33.4	*+	ug/L		167	10 - 150
Freon 152a samples ND - no quals	20.0	20.8		ug/L		104	10 - 150
Freon 123	20.0	21.9		ug/L		110	10 - 150
Freon 22	20.0	21.7		ug/L		108	10 - 150

LCS	LCS
-----	-----

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	103		75 - 123
Toluene-d8 (Surr)	100		80 - 120
4-Bromofluorobenzene	104		76 - 120
Dibromofluoromethane (Surr)	106		77 - 124

Lab Sample ID: LCSD 460-757658/4

Matrix: Water

Analysis Batch: 757658

Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Chloromethane	20.0	20.9		ug/L		105	38 - 150	8	30
Vinyl chloride	20.0	22.4		ug/L		112	61 - 144	0	30
Bromomethane samples ND - no quals	20.0	27.8		ug/L		139	43 _ 150	4	30
Chloroethane	20.0	25.5		ug/L		127	50 - 150	2	30
Methylene Chloride	20.0	19.5		ug/L		97	74 - 127	2	30
Acetone	100	100		ug/L		100	61 - 134	4	30
Carbon disulfide	20.0	21.8		ug/L		109	64 - 138	3	30
Freon 11	20.0	24.4		ug/L		122	61 - 140	1	30
1,1-Dichloroethene	20.0	21.8		ug/L		109	68 - 133	4	30
1,1-Dichloroethane	20.0	21.4		ug/L		107	73 - 130	5	30
trans-1,2-Dichloroethene	20.0	22.0		ug/L		110	74 - 126	3	30
cis-1,2-Dichloroethene	20.0	22.0		ug/L		110	78 _ 121	6	30
Chloroform	20.0	22.3		ug/L		112	78 - 125	4	30
1,2-Dichloroethane	20.0	21.8		ug/L		109	75 - 121	4	30

axy 3/2/2021

Eurofins TestAmerica, Edison

Page 52 of 1056

QC Sample Results

Client: Wood E&I Solutions Inc

Project/Site: LMC Q1 2021 Groundwater Monitoring

Method: 8260D - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: LCSD 460-757658/4

Matrix: Water Analysis Batch: 757658 Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Job ID: 460-227520-1

•	Spike	LCSD	LCSD		%Rec.		RPD
Analyte	Added	Result	Qualifier Unit	D %Rec	Limits	RPD	Limit
Methyl ethyl ketone (MEK)	100	109	ug/L	109	69 - 128	4	30
1,1,1-Trichloroethane	20.0	21.9	ug/L	110	68 - 128	1	30
Carbon tetrachloride	20.0	20.9	ug/L	105	56 - 131	4	30
Bromodichloromethane	20.0	19.9	ug/L	99	72 - 121	3	30
1,2-Dichloropropane	20.0	20.1	ug/L	101	76_126	2	30
cis-1,3-Dichloropropene	20.0	19.2	ug/L	96	74 _ 125	4	30
Trichloroethene	20.0	20.8	ug/L	104	71 _ 121	3	30
Dibromochloromethane	20.0	19.6	ug/L	98	58 - 130	4	30
1,1,2-Trichloroethane	20.0	19.1	ug/L	96	74 - 125	3	30
Benzene	20.0	20.7	ug/L	104	78 - 126	4	30
trans-1,3-Dichloropropene	20.0	19.1	ug/L	95	66 - 127	3	30
Bromoform	20.0	17.4	ug/L	87	38 _ 144	1	30
Methyl isobutyl ketone (MIBK)	100	113	ug/L	113	69 - 128	4	30
2-Hexanone	100	105	ug/L	105	74 _ 127	6	30
Tetrachloroethene	20.0	22.4	ug/L	112	70 - 127	4	30
1,1,2,2-Tetrachloroethane	20.0	19.1	ug/L	95	63 - 139	2	30
Toluene	20.0	20.7	ug/L	103	78 - 119	3	30
Chlorobenzene	20.0	21.4	ug/L	107	80 - 119	3	30
Ethylbenzene	20.0	20.7	ug/L	103	78 - 120	3	30
Styrene	20.0	20.7	ug/L	104	75 - 127	3	30
m&p-Xylene	20.0	20.9	ug/L	105	78 - 123	1	30
o-Xylene	20.0	21.3	ug/L	106	78 - 122	4	30
Xylenes, Total	40.0	42.2	ug/L	106	78 - 122	2	30
Freon 113	20.0	23.8	ug/L	119	59 - 142	0	30
Methyl tert-butyl ether	20.0	21.7	ug/L	109	65 - 131	3	30
Cyclohexane	20.0	21.4	ug/L	107	67 _ 133	1	30
1,2-Dibromoethane	20.0	20.5	ug/L	102	69 - 126	4	30
1,3-Dichlorobenzene	20.0	20.8	ug/L	104	80 - 121	4	30
1,4-Dichlorobenzene	20.0	21.0	ug/L	105	80 - 118	3	30
1,2-Dichlorobenzene	20.0	21.8	ug/L	109	79 - 122	2	30
Dichlorodifluoromethane	20.0	22.0	ug/L	110	31 - 150	1	30
1,2,4-Trichlorobenzene	20.0	20.2	ug/L	101	64 - 132	3	30
1,2-Dibromo-3-Chloropropane	20.0	17.5	ug/L	87	41 - 143	2	30
Isopropylbenzene	20.0	21.6	ug/L	108	79 - 125	1	30
Methyl acetate	40.0	39.6	ug/L	99	70 - 127	4	30
Methylcyclohexane	20.0	21.8	ug/L	109	60 - 139	0	30
Freon 115	20.0	34.8		174	10 - 150	4	30
Freon 152a	20.0	20.9	ug/L	105	10 - 150	1	30
Freon 123 samples ND - no quals	20.0	21.7	ug/L	109	10 - 150	1	30
Freon 22	20.0	23.1	ug/L	116	10 - 150	6	30

LCSD	LCSD
0/ 🗖	!!4

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	104		75 - 123
Toluene-d8 (Surr)	100		80 - 120
4-Bromofluorobenzene	105		76 - 120
Dibromofluoromethane (Surr)	107		77 - 124

axq 3/2/2021

Client: Wood E&I Solutions Inc

Project/Site: LMC Q1 2021 Groundwater Monitoring

Method: 8260D - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: 460-227520-1 MS

Matrix: Water

Analysis Batch: 757658

70-130% Client Sample ID: MW-31GL-XX

Prep Type: Total/NA

Job ID: 460-227520-1

Analyte	-	Sample Qualifier	Spike Added	MS Posult	MS Qualifier	Unit	D	%Rec	%Rec. Limits
Chloromethane	0.50	U Qualifier _	20.0 —	20.2	<u> </u>			101	38 - 150
Vinyl chloride	0.50		20.0	20.2		ug/L ug/L		101	38 - 150 61 - 144
Bromomethane	0.50		20.0	25.7				104	43 - 150
						ug/L			
Chloroethane Matterlana Chlorida	0.50		20.0	23.7		ug/L		119	50 ₋ 150
Methylene Chloride	0.50		20.0	18.8		ug/L		94	74 - 127
Acetone		U	100	93.3		ug/L		93	61 - 134
Carbon disulfide	0.50		20.0	19.8		ug/L		99	64 - 138
Freon 11	0.50		20.0	23.6		ug/L		118	61 - 140
1,1-Dichloroethene	0.50		20.0	20.4		ug/L		102	68 - 133
1,1-Dichloroethane	0.50	U	20.0	20.8		ug/L		104	73 - 130
trans-1,2-Dichloroethene	0.51		20.0	21.6		ug/L		105	74 - 126
cis-1,2-Dichloroethene sample >4x spik			20.0	143	4	ug/L		38	78 - 121
Chloroform - no quals	0.42	J	20.0	21.8		ug/L		107	78 - 125
1,2-Dichloroethane	0.50		20.0	21.2		ug/L		106	75 - 121
Methyl ethyl ketone (MEK)	2.5	U	100	113		ug/L		113	69 - 128
1,1,1-Trichloroethane	0.50	U	20.0	21.1		ug/L		105	68 - 128
Carbon tetrachloride	0.50	U	20.0	18.6		ug/L		93	56 - 131
Bromodichloromethane	0.50	U	20.0	18.4		ug/L		92	72 _ 121
1,2-Dichloropropane	0.50	U	20.0	19.0		ug/L		95	76 - 126
cis-1,3-Dichloropropene	0.50	U	20.0	18.1		ug/L		91	74 - 125
Trichloroethene	34		20.0	49.4		ug/L		77	71 - 121
Dibromochloromethane	0.50	U	20.0	17.7		ug/L		89	58 - 130
1,1,2-Trichloroethane	0.50	U	20.0	19.2		ug/L		96	74 - 125
Benzene	0.50	U	20.0	20.0		ug/L		100	78 - 126
trans-1,3-Dichloropropene	0.50		20.0	18.1		ug/L		91	66_127
Bromoform	0.50	U	20.0	15.7		ug/L		79	38 _ 144
Methyl isobutyl ketone (MIBK)	2.5	U	100	106		ug/L		106	69_128
2-Hexanone	2.5		100	99.0		ug/L		99	74 _ 127
Tetrachloroethene	19		20.0	37.7		ug/L		96	70 - 127
1,1,2,2-Tetrachloroethane	0.50	U	20.0	17.9		ug/L		89	63 - 139
Toluene	0.50		20.0	20.0		ug/L		100	78 - 119
Chlorobenzene	0.50		20.0	21.2		ug/L		106	80 - 119
Ethylbenzene	0.50		20.0	20.5		ug/L		103	78 - 120
Styrene	0.50		20.0	20.5				103	75 - 120 75 - 127
m&p-Xylene	0.50		20.0	20.5		ug/L		103	78 - 127
						ug/L			
o-Xylene	0.50		20.0	20.3		ug/L		101	78 - 122
Xylenes, Total	1.0	U	40.0	40.9		ug/L		102	78 - 122
Freon 113	5.7		20.0	27.2		ug/L		107	59 - 142
Methyl tert-butyl ether	0.50		20.0	21.2		ug/L		106	65 - 131
Cyclohexane	0.50		20.0	20.1		ug/L		100	67 - 133
1,2-Dibromoethane	0.50		20.0	19.9		ug/L		99	69 - 126
1,3-Dichlorobenzene	0.50		20.0	19.3		ug/L		97	80 - 121
1,4-Dichlorobenzene	0.50		20.0	19.6		ug/L		98	80 _ 118
1,2-Dichlorobenzene	0.50		20.0	20.3		ug/L		102	79 - 122
Dichlorodifluoromethane	0.50	U	20.0	21.2		ug/L		106	31 - 150
1,2,4-Trichlorobenzene	0.50	U	20.0	17.8		ug/L		89	64 - 132
1,2-Dibromo-3-Chloropropane	0.50	U	20.0	15.9		ug/L		80	41 - 143
Isopropylbenzene	0.50	U	20.0	20.9		ug/L		104	79 - 125

axg 3/2/2021

Eurofins TestAmerica, Edison

Page 54 of 1056

Client: Wood E&I Solutions Inc

Project/Site: LMC Q1 2021 Groundwater Monitoring

Method: 8260D - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: 460-227520-1 MS Matrix: Water

Analysis Batch: 757658

70-130%

Client Sample ID: MW-31GL-XX

Prep Type: Total/NA

Job ID: 460-227520-1

-	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Methyl acetate	2.5	U	40.0	37.4		ug/L		94	70 - 127	
Methylcyclohexane	0.50	U	20.0	20.0		ug/L		100	60 - 139	
Freon 115	4.0	U *+ F1	20.0	30.8	F1	ug/L		154	10 - 150	
Freon 152a bias high, sample ND -	1.0	U	20.0	20.5		ug/L		103	10 - 150	
Freon 123 no qual	1.0	U	20.0	21.8		ug/L		109	10 _ 150	
Freon 22	1.5		20.0	23.3		ug/L		109	10 _ 150	

MS MS

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	105		75 - 123
Toluene-d8 (Surr)	102		80 - 120
4-Bromofluorobenzene	107		76 - 120
Dibromofluoromethane (Surr)	107		77 - 124

Lab Sample ID: 460-227520-1 MSD

Matrix: Water

Analysis Batch: 757658

Client Sample ID: MW-31GL-XX

Prep Type: Total/NA

	•	Sample	Spike		MSD				%Rec.		RPD
Analyte		Qualifier	Added		Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Chloromethane	0.50		20.0	20.2		ug/L		101	38 - 150	0	30
Vinyl chloride	0.50		20.0	21.6		ug/L		108	61 - 144	3	30
Bromomethane	0.50	U	20.0	26.7		ug/L		133	43 _ 150	4	30
Chloroethane	0.50	U	20.0	24.8		ug/L		124	50 - 150	5	30
Methylene Chloride	0.50	U	20.0	19.3		ug/L		97	74 - 127	3	30
Acetone	5.0	U	100	96.2		ug/L		96	61 - 134	3	30
Carbon disulfide	0.50	U	20.0	20.2		ug/L		101	64 - 138	2	30
Freon 11	0.50	U	20.0	23.8		ug/L		119	61 - 140	1	30
1,1-Dichloroethene	0.50	U	20.0	21.3		ug/L		107	68 - 133	4	30
1,1-Dichloroethane	0.50	U	20.0	21.1		ug/L		105	73 - 130	1	30
trans-1,2-Dichloroethene	0.51		20.0	22.0		ug/L		108	74 - 126	2	30
cis-1,2-Dichloroethene samples >4x spik	e 140		20.0	146	4	ug/L		54	78 - 121	2	30
Chloroform - no quals	0.42	J	20.0	22.1		ug/L		108	78 - 125	1	30
1,2-Dichloroethane	0.50	U	20.0	21.5		ug/L		107	75 _ 121	1	30
Methyl ethyl ketone (MEK)	2.5	U	100	119		ug/L		119	69 - 128	5	30
1,1,1-Trichloroethane	0.50	U	20.0	21.4		ug/L		107	68 - 128	2	30
Carbon tetrachloride	0.50	U	20.0	19.6		ug/L		98	56 - 131	5	30
Bromodichloromethane	0.50	U	20.0	19.1		ug/L		96	72 - 121	4	30
1,2-Dichloropropane	0.50	U	20.0	19.6		ug/L		98	76 - 126	3	30
cis-1,3-Dichloropropene	0.50	U	20.0	18.4		ug/L		92	74 - 125	1	30
Trichloroethene	34		20.0	51.1		ug/L		86	71 - 121	3	30
Dibromochloromethane	0.50	U	20.0	18.6		ug/L		93	58 - 130	5	30
1,1,2-Trichloroethane	0.50	U	20.0	19.8		ug/L		99	74 - 125	3	30
Benzene	0.50	U	20.0	20.5		ug/L		102	78 - 126	2	30
trans-1,3-Dichloropropene	0.50	U	20.0	18.5		ug/L		92	66 - 127	2	30
Bromoform	0.50	U	20.0	15.8		ug/L		79	38 - 144	1	30
Methyl isobutyl ketone (MIBK)	2.5	U	100	112		ug/L		112	69 - 128	5	30
2-Hexanone	2.5	U	100	105		ug/L		105	74 _ 127	6	30
Tetrachloroethene	19		20.0	38.4		ug/L		99	70 - 127	2	30
1,1,2,2-Tetrachloroethane	0.50	U	20.0	19.0		ug/L		95	63 - 139	6	30

axq 3/2/2021

Eurofins TestAmerica, Edison 02/18/2021

Page 55 of 1056

Client: Wood E&I Solutions Inc. Job ID: 460-227520-1

Project/Site: LMC Q1 2021 Groundwater Monitoring

Method: 8260D - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: 460-227520-1 MSD Client Sample ID: MW-31GL-XX 70-130% **Prep Type: Total/NA**

Matrix: Water Analysis Batch: 757658

	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Toluene	0.50	U	20.0	20.1		ug/L		100	78 - 119	1	30
Chlorobenzene	0.50	U	20.0	21.5		ug/L		108	80 - 119	1	30
Ethylbenzene	0.50	U	20.0	20.5		ug/L		102	78 - 120	0	30
Styrene	0.50	U	20.0	20.6		ug/L		103	75 - 127	0	30
m&p-Xylene	0.50	U	20.0	21.1		ug/L		106	78 _ 123	2	30
o-Xylene	0.50	U	20.0	20.7		ug/L		104	78 _ 122	2	30
Xylenes, Total	1.0	U	40.0	41.8		ug/L		105	78 _ 122	2	30
Freon 113	5.7		20.0	26.6		ug/L		105	59 _ 142	2	30
Methyl tert-butyl ether	0.50	U	20.0	21.7		ug/L		109	65 _ 131	3	30
Cyclohexane	0.50	U	20.0	20.7		ug/L		104	67 - 133	3	30
1,2-Dibromoethane	0.50	U	20.0	20.6		ug/L		103	69 - 126	3	30
1,3-Dichlorobenzene	0.50	U	20.0	20.6		ug/L		103	80 - 121	6	30
1,4-Dichlorobenzene	0.50	U	20.0	20.8		ug/L		104	80 - 118	6	30
1,2-Dichlorobenzene	0.50	U	20.0	21.5		ug/L		107	79 - 122	6	30
Dichlorodifluoromethane	0.50	U	20.0	21.4		ug/L		107	31 - 150	1	30
1,2,4-Trichlorobenzene	0.50	U	20.0	20.1		ug/L		100	64 - 132	12	30
1,2-Dibromo-3-Chloropropane	0.50	U	20.0	17.7		ug/L		88	41 - 143	11	30
Isopropylbenzene	0.50	U	20.0	21.4		ug/L		107	79 - 125	3	30
Methyl acetate	2.5	U	40.0	37.6		ug/L		94	70 - 127	1	30
Methylcyclohexane	0.50	U	20.0	20.3		ug/L		102	60 - 139	2	30
Freon 115 bias high, sample ND - no	quals 4.0	U *+ F1	20.0	32.5	F1	ug/L		163	10 - 150	5	30
Freon 152a	1.0	U	20.0	22.3		ug/L		111	10 - 150	8	30
Freon 123	1.0	U	20.0	22.0		ug/L		110	10 - 150	1	30
Freon 22	1.5		20.0	24.9		ug/L		117	10 - 150	7	30

MSD MSD

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	105		75 - 123
Toluene-d8 (Surr)	102		80 - 120
4-Bromofluorobenzene	105		76 - 120
Dibromofluoromethane (Surr)	106		77 - 124

Method: SM 4500 CI-B - Chloride

Lab Sample ID: MB 460-759666/1

Matrix: Water

Analysis Batch: 759666

Client Sample ID: Method Blank

Prep Type: Total/NA

MB MB Result Qualifier MDL Unit RL Analyte D Prepared Analyzed Dil Fac Chloride 5.0 02/17/21 21:00 5.0 U 1.1 mg/L

Lab Sample ID: LCSSRM 460-759666/2

Matrix: Water

Analysis Batch: 759666

Client Sample ID: Lab Control Sample **Prep Type: Total/NA**

%Rec. Limits

Spike LCSSRM LCSSRM **Analyte** Added Result Qualifier D %Rec Unit 99.0 87.5 - 112. Chloride 85.8 84.98 mg/L 7

axq 3/2/2021

Eurofins TestAmerica, Edison

Page 56 of 1056

02/18/2021

GC/MS VOA BY INTERNAL STANDARD - INITIAL CALIBRATION DATA CURVE EVALUATION FORM VI

Job No.: 460-227520-1 Lab Name: Eurofins TestAmerica, Edison

SDG No.:

Analy Batch No.: 756624

Instrument ID: CVOAMS17			GC Col	nmn:	DB-624	:QI		0.18 (mm)		Heated Purge:	ge: (Y/N)	N (2		
Calibration Start Date: 02/02/2021	22:	59	Calibr	ation	End Date		02/03/2021	21 04:09		Calibration	ID:	83757		
ANALYTE			RRF			CURVE	ŭ	COEFFICIENT	#	MIN RRF %RSD) # MAX		# WIN	N R^2
	LVL 1 LVL 6	LVL 2 LVL 7	LVL 3 LVL 8	LVL 4	LVL 5	TYPE	М	M1 M2			%RSD	OR COD	OR	COD
Isopropyl ether	+++++	1.4367	1.4225	1.4526	1.5210 4	Ave		3912		88	3 20.0	0		
1,1-Dichloroethane	+ -	0.7041	0.7131	0.6879	0.7087	Ave		0.6655		0.2000 8.4	4 20.0	C		
Vinyl acetate	+ 0	0.3754	0.3504	0.3449	0.3456 7	Ave		0.3432		9.8	8 20.0	0		
2-Chloro-1,3-butadiene		0.2924	0.2850	0.2711	0.2893 7	Ave		0.2718		7.1	1 20.0	0		
Tert-butyl ethyl ether	+ ~	1.1419	1.1019	1.1266	1.1820 7	Ave		1.0911		7.	3 20.0	0		
2,2-Dichloropropane		0.0753	0.1211	0.1145	0.1161 A	Ave		0.1051		14.	5 20.0	0		
cis-1,2-Dichloroethene		0.3418	0.3586	0.3486	0.3512	Ave	0	0.3407		0.1000 4.	5 20.0	0		
Methyl ethyl ketone (MEK)	+++++	0.2144	0.2444	0.2232	0.2228	Ave	0	0.2237		0.0500 4.	8 20.0	C		
Ethyl acetate	+++++	0.2635	0.2230	0.2160	0.2078	Ave	0	0.2144		11.	4 20.0	0		
Methyl acrylate	+++++	0.2888	0.3605	0.3173	0.3374 7	Ave	0	0.3172		8.2	2 20.0	0		
Propionitrile	+++++	10.509	11.309	10.773	11.111 /	Ave		10.810		3.	1 20.0	0		
Chlorobromomethane	1 10	0.1576	0.1546	0.1466	0.1600 7	Ave	0	0.1515		4.	.5 20.0	0		
Tetrahydrofuran	+++++	0.3063	0.2830	0.2615	0.2628 7	Ave	0	0.2617		10.1	1 20.0	0		
Methacrylonitrile	+++++	0.1392	0.1349	0.1387	0.1466 7	Ave	0	0.1343		7.6	6 20.0	0		
Chloroform	+++++	0.6306	0.6129	0.5688	0.5821 7	Ave	0	0.5525		0.2000 12.	.0 20.0	C		
Cyclohexane	+++++	0.5170	0.4737	0.5072	0.5109 7	Ave	0	0.4799		0.1000 6.	5 20.0	C		
1,1,1-Trichloroethane	+++++	0.5684	0.5408	0.4833	0.5024 A	Ave	0	0.4915		0.1000 10.2	20.0	0		
Carbon tetrachloride	+++++	0.3998	0.4308	0.4015	0.4078	Ave	0	0.3942		0.1000 5.8	8 20.0	0		
1,1-Dichloropropene	+++++	0.4697	0.4697	0.4410		Ave	0	0.4418		5.8		0		
Isobutyl alcohol	+++++	5.6705	5.9648	6.2237	6.3859 7	Ave	9	6.0073		4.1	1 20.0	0		

Note: The M1 coefficient is the same as Ave RRF for an Ave curve type.

Data File: \\chromfs\Edison\ChromData\CVOAMS17\20210202-123638.b\T136963.D

Data File:	\\CHFOITIS\EQI	SOUICE)∠UZ-1 T	23638.D\1136			
Cox	mnound	Sig	RT (min.)	Exp RT	Dlt RT		Pospones	Cal Amt	OnCol Amt	Elogo
Cor	npound	Sig	(min.)	(min.)	(min.)	Q	Response	ug/l	ug/l	Flags
30 Methylene	Chloride	84	2.653	2.647	0.006	98	190247	50.0	45.3	
32 2-Methyl-2		59	2.708	2.708	0.000	94	195695	500.0	449.9	
33 Methyl tert	•	73	2.787	2.787	0.000	98	449872	50.0	50.0	
-	Dichloroethene	96	2.811	2.805	0.006	97	156230	50.0	48.9	
35 Acrylonitril		53	2.872	2.872	0.000	95	780241	500.0	513.7	
36 Hexane		57	2.939	2.939	0.000	95	244842	50.0	49.6	
37 Isopropyl e	ether	45	3.134	3.134	0.000	97	706852	50.0	50.3	
38 1,1-Dichlo		63	3.159	3.153	0.006	99	331394	50.0	49.3	
39 Vinyl aceta		86	3.171	3.171	0.000	100	57167	100.0	93.5	
40 2-Chloro-1		88	3.195	3.189	0.006	93	133987	50.0	48.9	
41 Tert-butyl		59	3.415	3.415	0.000	87	552186	50.0	50.1	
* 42 2-Butanon	•	46	3.592	3.585	0.007	98	445265	250.0	250.0	
43 2,2-Dichlor		97	3.604	3.598	0.006	91	53258	50.0	50.2	
44 cis-1,2-Dic	<u> </u>	96	3.622	3.616	0.006	92	170624	50.0	49.6	
45 2-Butanon		72	3.640	3.634	0.006	95	94706	250.0	237.7	
46 Ethyl aceta		70	3.646	3.646	0.000	95	34964	100.0	91.5	
47 Methyl acr		55	3.689	3.689	0.000	99	159881	50.0	49.9	
48 Propionitril		54	3.756	3.756	0.000	99	286663	500.0	484.5	
50 Tetrahydro		72	3.823	3.823	0.000	89	43458	100.0	93.2	
49 Chlorobror		128	3.823	3.823	0.000	96	76444	50.0	50.0	
51 Methacrylo		67	3.848	3.848	0.000	96	686959	500.0	506.7	
52 Chloroforn		83	3.872	3.872	0.000	97	270005	50.0	48.4	
53 Cyclohexa		84	3.988	3.988	0.000	97	230789	50.0	47.7	
54 1,1,1-Trich		97	4.000	4.000	0.000	98	235549	50.0	47.5	
	uoromethane (Surr)		4.018	4.012	0.006	96	125696	50.0	49.9	
56 Carbon tet	, ,	117	4.110	4.110	0.000	97	191988	50.0	48.3	
57 1,1-Dichlo		75	4.110	4.110	0.006	93	216038	50.0	48.5	
58 Isobutyl al		43	4.274	4.274	0.000	93	402905	1250.0	1225.4	
59 Isooctane	JOHOI	4 3	4.305	4.299	0.006	98	668181	50.0	49.7	2
60 Benzene		78	4.303	4.233	0.000	98	619524	50.0	48.2	а
	roethane-d4 (Surr)	65	4.335	4.335	0.000	96	164072	50.0	49.0	
	, ,	73	4.333	4.333	0.000	90 84	562927	50.0	51.2	
	methyl ether							50.0		
63 Isopropyl a		61	4.396	4.390 4.402	0.006	94	89595 207943		46.7	
64 1,2-Dichlor		62	4.408		0.006	96		50.0	46.7	
65 n-Heptane		100	4.476	4.469	0.007	98	33292	50.0	46.9	
* 66 Fluoroben	zene	96 50	4.591	4.585	0.006	97	504632	50.0	50.0	
67 n-Butanol		56	4.896	4.896	0.000	93	139322	1250.0	1211.3	
68 Trichloroet		95	4.914	4.914	0.000	94	150010	50.0	49.1	
69 Methylcycl		83	5.030	5.030	0.000	91	273371	50.0	50.2	а
70 Ethyl acryl		99	5.049	5.049	0.000	97	21134	50.0	49.6	
71 1,2-Dichlor	•	63	5.189	5.189	0.000	89	175527	50.0	49.1	
* 72 1,4-Dioxar		96	5.256	5.256	0.000	89	27813	1000.0	1000.0	
73 Methyl me	•	100	5.286	5.280	0.006	96	72809	100.0	97.9	
74 Dibromom		93	5.305	5.305	0.000	94	90465	50.0	46.9	
75 1,4-Dioxar		88	5.305	5.305	0.000	46	33381	1000.0	1038.7	
76 n-Propyl a		43	5.341	5.341	0.000	99	275793	50.0	49.1	
77 Dichlorobr		83	5.457	5.457	0.000	98	205450	50.0	48.8	
78 2-Nitroproเ		41	5.786	5.786	0.000	98	98161	100.0	89.2	
	hyl vinyl ether	63	5.798	5.792	0.006	96	109256	50.1	49.1	
80 Epichloroh	ydrin	57	5.890	5.884	0.006	99	358308	1000.0	994.7	
81 cis-1,3-Dic	hloropropene	75	5.939	5.939	0.000	96	268790	50.0	47.6	
82 4-Methyl-2	-pentanone (MIBK)	43	6.109	6.109	0.000	98	1018938	250.0	253.7	

Report Date: 09-Feb-2021 10:08:40 Chrom Revision: 2.3 09-Dec-2020 16:22:14

Eurofins TestAmerica, Edison Target Compound Quantitation Report

Data File: \\chromfs\Edison\ChromData\CVOAMS17\20210208-123867.b\T137241.D

Lims ID: 460-227520-A-10 Client ID: MW-51MI-XX

Sample Type: Client

Inject. Date: 08-Feb-2021 12:07:30 ALS Bottle#: 16 Worklist Smp#: 17

Purge Vol: 5.000 mL Dil. Factor: 1.0000

Sample Info: 460-227520-A-10 Misc. Info.: 460-0123867-017

Operator ID: Instrument ID: CVOAMS17

Method: \\chromfs\Edison\ChromData\CVOAMS17\20210208-123867.b\8260W_17.m

Limit Group: VOA - 8260D Water and Solid

Last Update:09-Feb-2021 10:07:32Calib Date:03-Feb-2021 04:09:30Integrator:RTEID Type:Deconvolution IDQuant Method:Internal StandardQuant By:Initial CalibrationLast ICal File:\\chromfs\Edison\ChromData\CVOAMS17\20210202-123638.b\T136973.D

Column 1: DB-624 (0.18 mm) Det: MS Quad

Process Host: CTX1612

First Level Reviewer: desais Date: 08-Feb-2021 12:28:04

							-	
Compound	Sig	RT (min.)	Exp RT (min.)	Dlt RT (min.)	Q	Response	OnCol Amt ug/l	Flags
20 1,1,2-Trichloro-1,2,2-trifluoroe	101	2.256	2.263	-0.007	93	4358	1.71	
* 31 TBA-d9 (IS)	66	2.647	2.647	0.000	98	37723	1000.0	
* 42 2-Butanone-d5	46	3.585	3.586	-0.001	99	329651	250.0	
44 cis-1,2-Dichloroethene	96	3.616	3.616	0.000	92	53361	17.3 🗸	
\$ 55 Dibromofluoromethane (Surr)	113	4.018	4.012	0.006	96	120967	53.6	
\$ 61 1,2-Dichloroethane-d4 (Surr)	65	4.335	4.329	0.006	97	158833	53.0	
* 66 Fluorobenzene	96	4.585	4.585	0.000	97	451448	50.0	
68 Trichloroethene	95	4.914	4.915	-0.001	94	21179	7.74	
* 72 1,4-Dioxane-d8	96	5.250	5.250	0.000	93	20564	1000.0	
\$ 83 Toluene-d8 (Surr)	98	6.164	6.164	0.000	97	413206	51.4	
88 Tetrachloroethene	166	6.823	6.817	0.006	93	5316	2.47	
* 94 Chlorobenzene-d5	117	7.889	7.883	0.006	91	304364	50.0	
\$ 105 4-Bromofluorobenzene	174	9.414	9.414	0.000	0	119456	52.5	
* 121 1,4-Dichlorobenzene-d4	152	10.645	10.645	0.000	98	169112	50.0	

QC Flag Legend Processing Flags

Reagents:

VOA6IS/SURR 00043 Amount Added: 5.00 Units: uL Run Reagent

axg 3/2/2021

DUSR Calculations Sheet 8260D

Sample ID: MW-51MI-XX

TC: cis-1,2-dichloroethene

ICAL Level: level 6 - STD 50

Val File Result for TC: 17

Ical Calc

Area TC	170624	1	0.3418
Area IS	504632	2	0.3586
		3	0.3486
Conc TC	50	4	0.3512
Conc IS	50	5	0.3381
		6	0.3359
RRF =	0.338116	7	0.311
		8	
		9	
		10	
		Avg RRF =	0.340743
		Std Dev =	0.015309

%RSD = 4.492774

Sample Calc

Area TC	53361	DF 1
Area IS	451448	
Conc IS	50	
Avg RRF	0.340743	

Notes:

Green = matched reported value Red = did not match reported value

Conc TC = $17.34441 \mu g/L$

axq 3/2/2021

VOCs

NYSDEC DUSR PROJECT CHEMIST REVIEW RECORD Project: LMC Great Neck Q1 January 2021 GWM Method: 524.2 Laboratory: TAL Edison, NJ **SDG(s):** 460-227520-1 Date: 3/2/2021 Reviewer: Amber Jones X NYSDEC DUSR USEPA Region II Guideline **Review Level ✓** Case Narrative Review and COC/Data Package Completeness **COMMENTS** Were problems noted? ves - see attached Are Field Sample IDs and Locations assigned correctly? YES NO (circle one) Were all the samples on the COC analyzed for the requested analyses? YES NO (circle one) **✓** Holding time and Sample Collection All samples were analyzed within the 14 day holding time. YES NO (circle one) 3. OC Blanks Are method blanks free of contamination? YES NO (circle one) Are Trip blanks free of contamination? YES NO (circle one) see attached - no quals Are Rinse blanks free of contamination? YES NO NA (circle one) **✓** Instrument Tuning – Data Package Narrative Review Did the laboratory narrative identify any results that were not within method criteria? YES NO (circle one) If yes, use professional judgment to evaluate data and qualify results if needed **Instrument Calibration – Data Package Narrative Review** Did the laboratory narrative identify compounds that were not within criteria in the initial and/or continuing calibration standards? YES NO (circle one) Initial Calibration %RSD = 20% (30% for 1,1-DCE, chloroform, 1,2-DCP, toluene, ethylbenzene, VC) Initial Avg RRF and Continuing RRF should be ≥ 0.05 and 0.10 for Chloromethane, 1,1-Dichloroethane, Bromoform and 0.30 for Chlorobenzene and 1,1,2,2-Tetrachloroethane Continuing Calibration %D = 20% Did the laboratory qualify results based on initial or continuing calibration exceedances? YES NO If yes to above, use professional judgment to evaluate data and qualify results if needed **✓** Internal Standards – Data Package Narrative Review (Area Limits = -50% to +100%, RTs within 30 seconds of daily CCAL standard (or ICAL midpoint if samples follow ICAL) Did the laboratory narrative identify any sample internal standards that were not within criteria? YES NO (circle one) Did the laboratory qualify results based on internal standard exceedances? YES NO If yes to above, use professional judgment to evaluate data and qualify results if needed Surrogate Recovery - Region II limits (water 80-120%, soil 70-130%) Were all results within Region II limits? YES NO (circle one)

Matrix Spike - Region II limits (water and soil 70-130%, water RPD 20, soil RPD 35)

Were all results within the Region II limits? YES NO NA (circle one)

see attached - subset UJ/J- MSL

Were MS/MSDs submitted/analyzed? YES NO

9. **Duplicates -** Region II Limits (water RPD 50, soil RPD 100) Were Field Duplicates submitted/analyzed? YES NO see attached for RPD calculations Were all results within Region II limits? (soil RPD<100, water RPD<50) YES NO NA 10. Laboratory Control Sample Results - Region II (Water and soil 70-130%) see attached - dichlorodifluoromethane, freon 115 -Were all results were within Region II control limits? YES NO (circle one) 11. **Reporting Limits:** Were samples analyzed at a dilution? YES NO (circle one) 12. **7** Raw Data Review and Calculation Checks see attached for calculations 13.

Electronic Data Review and Edits Does the EDD match the Form Is? YES NO (circle one) 14. **Tables and TIC Review** Table 1 (Samples and Analytical Methods) Table 2 (Analytical Results) **Table 3** (Qualification Actions) Were all tables produced and reviewed? YES NO (circle one) Table 4 (TICs) Did lab report TICs? YES NO (circle one)

CASE NARRATIVE

Client: Wood E&I Solutions Inc

Project: LMC Q1 2021 Groundwater Monitoring

Report Number: 460-227520-1

This case narrative is in the form of an exception report, where only the anomalies related to this report, method specific performance and/or QA/QC issues are discussed. If there are no issues to report, this narrative will include a statement that documents that there are no relevant data issues.

It should be noted that samples with elevated Reporting Limits (RLs) as a result of a dilution may not be able to satisfy customer reporting limits in some cases. Such increases in the RLs are unavoidable but acceptable consequence of sample dilution that enables quantification of target analytes or interferences which exceed the calibration range of the instrument.

Calculations are performed before rounding to avoid round-off errors in calculated results.

All holding times were met and proper preservation noted for the methods performed on these samples, unless otherwise detailed in the individual sections below.

RECEIPT

The samples were received on 1/29/2021 5:30 PM. Unless otherwise noted below, the samples arrived in good condition, and where required, properly preserved and on ice. The temperature of the cooler at receipt was 2.3° C.

Note: All samples which require thermal preservation are considered acceptable if the arrival temperature is within 2C of the required temperature or method specified range. For samples with a specified temperature of 4C, samples with a temperature ranging from just above freezing temperature of water to 6C shall be acceptable. Samples that are hand delivered immediately following collection may not meet these criteria, however they will be deemed acceptable according to NELAC standards, if there is evidence that the chilling process has begun, such as arrival on ice, etc.

DRINKING WATER VOLATILES (GC-MS)

Samples SW-N5099-XX (460-227520-17), SW-N4388-XX (460-227520-18), SW-N12796-XX (460-227520-19), SW-500 (460-227520-20) and QC-TB270121-XX (460-227520-21) were analyzed for drinking water volatiles (GC-MS) in accordance with EPA Method 524.2. The samples were analyzed on 02/06/2021 and 02/07/2021.

The laboratory control sample (LCS) in batch 757537 recovered outside control limits (biased low) for Dichlorodifluoromethane and Freon see attached for LCS review

Dichlorodifluoromethane, Freon 115 and Tetrachloroethene failed the recovery criteria low for the matrix spike (MS) of sample SW-N12796-XX (460-227520-19) in batch 460-757537.

see attached for MS review

For the matrix spike duplicate (MSD) of sample SW-N12796-XX (460-227520-19) in batch 460-757537, Freon 115 and Tetrachloroethene failed the recovery criteria low. 1,1,2,2-Tetrachloroethane, 1,1,2-Trichloroethane and Freon 123 failed the recovery criteria high. Also, Hexachlorobutadiene exceeded the RPD limit.

see attached for MS review

Refer to the QC report for details.

No other difficulties were encountered during the volatiles analysis.

All other quality control parameters were within the acceptance limits.

VOLATILE ORGANIC COMPOUNDS (GC/MS) - (LOW LEVEL - LL)(TOTAL)

Samples MW-31GL-XX (460-227520-1), MW-31MI-XX (460-227520-2), MW-31ML-XX (460-227520-3), MW-43MU-XX (460-227520-4), MW-43MI-XX (460-227520-5), MW-45MU-XX (460-227520-6), MW-45MI-XX (460-227520-7), MW-46MI-XX (460-227520-8), MW-46ML-XX (460-227520-9), MW-51MI-XX (460-227520-10), MW-51ML-XX (460-227520-11), MW-52MI-XX (460-227520-12), MW-52ML-XX (460-227520-13), MW-53MI-XX (460-227520-14), MW-53ML-XX (460-227520-15) and MW-500 (460-227520-16) were analyzed for Volatile Organic Compounds (GC/MS) - (Low Level - LL)(Total) in accordance with EPA SW-846 Method 8260D - Low Level (LL). The samples were analyzed on 02/08/2021.

The continuing calibration verification (CCV) associated with batch 460-757658 recovered above the upper control limit for Freon 115. The samples associated with this CCV were non-detects for the affected analytes; therefore, the data have been reported.

The laboratory control sample (LCS) and laboratory control sample duplicate (LCSD) for analytical batch 460-757658 recovered outside control limits for the following analyte: Freon 115. This analyte was biased high in the LCS/LCSD and was not detected in the associated samples; therefore, the data have been reported.

adg 3/2/2021

Page 6 of 1056 02/18/2021

Detection Summary

Client: Wood E&I Solutions Inc

Project/Site: LMC Q1 2021 Groundwater Monitoring

Client Sample ID: SW-500 (Continued)

Lab Sample ID: 460-227520-20

Job ID: 460-227520-1

Analyte	Result Qualifier	RL	MDL	Unit	Dil Fac	D Method	Prep Type
Freon 11	0.47 J	0.50	0.27	ug/L	1	524.2	Total/NA
Freon 113	2.2	0.50	0.14	ug/L	1	524.2	Total/NA
Tetrachloroethene	5.3	0.50	0.14	ug/L	1	524.2	Total/NA
trans-1,2-Dichloroethene	0.15 J	0.50	0.13	ug/L	1	524.2	Total/NA
Trichloroethene	16	0.50	0.11	ug/L	1	524.2	Total/NA
Chloride	25.0	5.0	1.1	mg/L	1	SM 4500 CI- B	Total/NA

Client Sample ID: QC-TB270121-XX

Analyte	Result Qualifier	RL	MDL Unit	Dil Fac D Method	Prep Type
Toluene	0.14 J	0.50	0.11 ug/L	1	Total/NA

samples ND - no quals

axq 3/2/2021

70-130%

Client: Wood E&I Solutions Inc

Project/Site: LMC Q1 2021 Groundwater Monitoring

Method: 524.2 - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 460-757537/3 **Matrix: Water**

Analysis Batch: 757537

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Job ID: 460-227520-1

	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Bromoform	2.00	1.85		ug/L		92	70 - 130
Bromomethane	2.00	1.78		ug/L		89	70 - 130
Carbon tetrachloride	2.00	1.60		ug/L		80	70 - 130
Chlorobenzene	2.00	1.82		ug/L		91	70 - 130
Chlorobromomethane	2.00	1.85		ug/L		92	70 - 130
Chlorodibromomethane	2.00	1.83		ug/L		91	70 - 130
Chloroethane	2.00	1.74		ug/L		87	70 - 130
Chloroform	2.00	1.82		ug/L		91	70 - 130
Chloromethane	2.00	1.77		ug/L		88	70 - 130
cis-1,2-Dichloroethene	2.00	1.87		ug/L		94	70 - 130
cis-1,3-Dichloropropene	2.00	1.88		ug/L		94	70 - 130
Dibromomethane	2.00	1.95		ug/L		98	70 - 130
Dichlorobromomethane	2.00	1.86		ug/L		93	70 - 130
Dichlorodifluoromethane UJ, LCSL	2.00	1.30	*_	ug/L		65	70 - 130
Ethylbenzene	2.00	1.85		ug/L		92	70 - 130
Freon 11	2.00	1.44		ug/L		72	70 - 130
Freon 113	2.00	1.45		ug/L		73	70 - 130
Freon 115 UJ, LCSL	2.00	1.07	*_	ug/L		53	70 - 130
Freon 123	2.00	2.14		ug/L		107	70 - 130
Freon 152a	2.00	2.06		ug/L		103	70 - 130
Freon 22	2.00	1.88		ug/L		94	70 - 130
Hexachlorobutadiene	2.00	1.98		ug/L		99	70 - 130
sopropylbenzene	2.00	1.79		ug/L		90	70 - 130
n,p-Xylene	4.00	3.51		ug/L		88	70 - 130
Methyl tert-butyl ether	2.00	1.84		ug/L		92	70 - 130
Methylene Chloride	2.00	1.92		ug/L		96	70 - 130
N-Propylbenzene	2.00	1.75		ug/L		88	70 - 130
o-Xylene	2.00	1.80		ug/L		90	70 - 130
sec-Butylbenzene	2.00	1.84		ug/L		92	70 - 130
Styrene	2.00	1.83		ug/L		91	70 - 130
tert-Butylbenzene	2.00	1.74		ug/L		87	70 - 130
Tetrachloroethene	2.00	1.77		ug/L		88	70 - 130
Toluene	2.00	1.83		ug/L		91	70 - 130
trans-1,2-Dichloroethene	2.00	1.70		ug/L		85	70 - 130
trans-1,3-Dichloropropene	2.00	1.97		ug/L		98	70 - 130
Trichloroethene	2.00	1.84		ug/L		92	70 - 130
Vinyl chloride	2.00	1.64		ug/L		82	70 - 130

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichlorobenzene-d4	103		70 - 130
4-Bromofluorobenzene	102		70 - 130

Lab Sample ID: 460-227520-19 MS

Matrix: Water

Analysis Batch: /5/53/									
	Sample S	Sample	Spike	MS	MS				%Rec.
Analyte	Result Q	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits
1,1,1,2-Tetrachloroethane	0.50 U	J -	2.00	2.25	-	ug/L		113	70 _ 130

axg 3/2/2021

Eurofins TestAmerica, Edison

Client Sample ID: SW-N12796-XX

Page 46 of 1056

Prep Type: Total/NA

Client: Wood E&I Solutions Inc

Project/Site: LMC Q1 2021 Groundwater Monitoring

Method: 524.2 - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: 460-227520-19 MS **Matrix: Water**

70-130%

Client Sample ID: SW-N12796-XX

Prep Type: Total/NA

Job ID: 460-227520-1

Analy	ysis	Batc	:h: 7	757537	•
-------	------	------	-------	--------	---

	·-	Sample	Spike	MS					%Rec.
Analyte		Qualifier	Added		Qualifier	Unit	D	%Rec	Limits
1,1,1-Trichloroethane	0.50		2.00	2.11		ug/L		106	70 _ 130
1,1,2,2-Tetrachloroethane	0.50	U F1	2.00	2.43		ug/L		121	70 - 130
1,1,2-Trichloroethane	0.50	U F1	2.00	2.53		ug/L		126	70 - 130
1,1-Dichloroethane	0.50	U	2.00	2.19		ug/L		109	70 - 130
1,1-Dichloroethene	0.50	U	2.00	1.95		ug/L		98	70 - 130
1,1-Dichloropropene	0.50	U	2.00	2.03		ug/L		102	70 _ 130
1,2,3-Trichlorobenzene	0.50	U	2.00	1.78		ug/L		89	70 _ 130
1,2,3-Trichloropropane	0.50	U	2.00	2.27		ug/L		114	70 _ 130
1,2,4-Trichlorobenzene	0.50	U	2.00	1.82		ug/L		91	70 - 130
1,2,4-Trimethylbenzene	0.50	U	2.00	2.06		ug/L		103	70 - 130
1,2-Dibromo-3-Chloropropane	0.50	U	2.00	2.05		ug/L		102	70 - 130
1,2-Dichlorobenzene	0.50	U	2.00	2.11		ug/L		106	70 - 130
1,2-Dichloroethane	0.50	U	2.00	2.13		ug/L		107	70 - 130
1,2-Dichloropropane	0.50		2.00	2.18		ug/L		109	70 - 130
1,3,5-Trimethylbenzene	0.50		2.00	2.06		ug/L		103	70 - 130
1,3-Dichlorobenzene	0.50		2.00	2.03		ug/L		101	70 - 130
1,3-Dichloropropane	0.50		2.00	2.20		ug/L		110	70 - 130
1.4-Dichlorobenzene	0.50		2.00	2.13		ug/L		106	70 - 130
2,2-Dichloropropane	0.50		2.00	1.71		ug/L		86	70 - 130
2-Chlorotoluene	0.50		2.00	2.11		ug/L		105	70 - 130
4-Chlorotoluene	0.50		2.00	2.08		ug/L		104	70 - 130
4-Isopropyltoluene	0.50		2.00	1.95		ug/L		97	70 - 130
Benzene	0.50		2.00	2.11		ug/L		105	70 - 130
Bromobenzene	0.50		2.00	2.25		ug/L		113	70 - 130
Bromoform	0.50		2.00	2.28		ug/L ug/L		114	70 - 130
Bromomethane	0.50		2.00	2.00		ug/L ug/L		100	70 - 130
	0.50			2.14					70 - 130
Carbon tetrachloride			2.00			ug/L		107	
Chlorobenzene	0.50		2.00	2.14		ug/L		107	70 <u>-</u> 130
Chlorobromomethane	0.50		2.00	2.11		ug/L		106	70 - 130
Chlorodibromomethane	0.50		2.00	2.21		ug/L		111	70 - 130
Chloroethane	0.50		2.00	2.11		ug/L		106	70 - 130
Chloroform	0.20		2.00	2.30		ug/L		105	70 - 130
Chloromethane	0.50	U	2.00	2.24		ug/L		112	70 - 130
cis-1,2-Dichloroethene	3.7		2.00	5.43		ug/L		87	70 - 130
cis-1,3-Dichloropropene	0.50		2.00	2.21		ug/L		110	70 - 130
Dibromomethane	0.50		2.00	2.09		ug/L		105	70 - 130
Dichlorobromomethane	0.50		2.00	2.17		ug/L		108	70 _ 130
Dichlorodifluoromethane UJ, MSL		U F1 *-	2.00	1.38	F1	ug/L		69	70 - 130
Ethylbenzene	0.50		2.00	2.13		ug/L		107	70 - 130
Freon 11	0.50		2.00	1.78		ug/L		89	70 _ 130
Freon 113	0.49		2.00	1.91		ug/L		71	70 - 130
Freon 115 UJ, MSL		U F1 *-	2.00	0.846	F1	ug/L		42	70 - 130
Freon 123		U F1	2.00	2.38		ug/L		119	70 - 130
Freon 152a	0.50	U	2.00	2.19		ug/L		110	70 - 130
Freon 22	0.32	J	2.00	2.28		ug/L		98	70 - 130
Hexachlorobutadiene	0.50	U F2	2.00	1,65		ug/L		82	70 - 130
sopropylbenzene	0.50	U	2.00	2,12		ug/L		106	70 - 130
m,p-Xylene	1.0	U	4.00	4.14		ug/L		104	70 - 130
Methyl tert-butyl ether	0.50		2.00	1.82		ug/L		91	70 - 130

axg 3/2/2021

Eurofins TestAmerica, Edison

02/18/2021 Page 47 of 1056

Client: Wood E&I Solutions Inc

Project/Site: LMC Q1 2021 Groundwater Monitoring

Method: 524.2 - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: 460-227520-19 MS

Analysis Batch: 757537

Matrix: Water 70-130% Client Sample ID: SW-N12796-XX

Prep Type: Total/NA

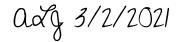
Job ID: 460-227520-1

	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Methylene Chloride	0.50	U	2.00	1.96		ug/L		98	70 - 130	
N-Propylbenzene	0.50	U	2.00	2.06		ug/L		103	70 - 130	
o-Xylene	0.50	U	2.00	2.13		ug/L		106	70 - 130	
sec-Butylbenzene	0.50	U	2.00	2.05		ug/L		103	70 - 130	
Styrene	0.50	U	2.00	2.12		ug/L		106	70 _ 130	
tert-Butylbenzene	0.50	U	2.00	2.03		ug/L		101	70 _ 130	
Tetrachloroethene J-, MSL	6.6	F1	2.00	7.29	F1	ug/L		37	70 _ 130	
Toluene	0.50	U	2.00	2.13		ug/L		106	70 - 130	
trans-1,2-Dichloroethene	0.50	U	2.00	1.96		ug/L		98	70 - 130	
trans-1,3-Dichloropropene	0.50	U	2.00	2.00		ug/L		100	70 - 130	
Trichloroethene	4.6		2.00	5.96		ug/L		70	70 - 130	
Vinyl chloride	0.50	U	2.00	1.89		ug/L		95	70 - 130	

MS MS

Surrogate %Recovery Qualifier Limits 70 - 130 1,2-Dichlorobenzene-d4 98 4-Bromofluorobenzene 100 70 - 130

Lab Sample ID: 460-227520-19 MSD


Matrix: Water

Analysis Batch: 757537

Client Sample ID: SW-N12796-XX

Prep Type: Total/NA

Sa	mple	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte R	esult	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
1,1,1,2-Tetrachloroethane	0.50		2.00	2.33		ug/L		116	70 - 130	3	30
1,1,1-Trichloroethane sample ND - no qua	Q.50	U	2.00	2.21		ug/L		111	70 - 130	5	30
1,1,2,2-Tetrachloroethane	0.50	U F1	2.00	2.63	F1	ug/L		131	70 - 130	8	30
1,1,2-Trichloroethane sample ND - no quals	0.50	U F1	2.00	2.68	F1	ug/L		134	70 - 130	6	30
1,1-Dichloroethane	0.50	U	2.00	2.25		ug/L		112	70 - 130	3	30
1,1-Dichloroethene	0.50	U	2.00	2.08		ug/L		104	70 - 130	6	30
1,1-Dichloropropene	0.50	U	2.00	2.19		ug/L		110	70 - 130	8	30
1,2,3-Trichlorobenzene sample ND, recovery	0.50	U	2.00	2.20		ug/L		110	70 - 130	21	30
1,2,3-Trichloropropane within limits - no qual	0.50	U	2.00	2.29		ug/L		114	70 - 130	1	30
1,2,4-Trichlorobenzene	0.50	U	2.00	2.16		ug/L		108	70 - 130	17	30
1,2,4-Trimethylbenzene	0.50	U	2.00	2.29		ug/L		114	70 - 130	11	30
1,2-Dibromo-3-Chloropropane	0.50	U	2.00	2.55		ug/L		128	70 - 130	22	30
1,2-Dichlorobenzene sample ND, recovery	0.50	U	2.00	2.29		ug/L		115	70 - 130	8	30
1,2-Dichloroethane within limits - no quals	0.50	U	2.00	2.23		ug/L		111	70 - 130	4	30
1,2-Dichloropropane	0.50	U	2.00	2.32		ug/L		116	70 - 130	6	30
1,3,5-Trimethylbenzene	0.50	U	2.00	2.30		ug/L		115	70 - 130	11	30
1,3-Dichlorobenzene	0.50	U	2.00	2.29		ug/L		114	70 - 130	12	30
1,3-Dichloropropane	0.50	U	2.00	2.42		ug/L		121	70 - 130	10	30
1,4-Dichlorobenzene	0.50	U	2.00	2.34		ug/L		117	70 - 130	10	30
2,2-Dichloropropane	0.50	U	2.00	1.84		ug/L		92	70 - 130	7	30
2-Chlorotoluene	0.50	U	2.00	2.26		ug/L		113	70 - 130	7	30
4-Chlorotoluene	0.50	U	2.00	2.26		ug/L		113	70 - 130	8	30
4-Isopropyltoluene	0.50	U	2.00	2.24		ug/L		112	70 - 130	14	30
Benzene	0.50	U	2.00	2.27		ug/L		114	70 - 130	8	30
Bromobenzene	0.50	U	2.00	2.31		ug/L		116	70 - 130	3	30
Bromoform	0.50	U	2.00	2.41		ug/L		121	70 - 130	6	30

Eurofins TestAmerica, Edison

Page 48 of 1056 02/18/2021

Client: Wood E&I Solutions Inc.

Project/Site: LMC Q1 2021 Groundwater Monitoring

Method: 524.2 - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: 460-227520-19 MSD

70-130%

Client Sample ID: SW-N12796-XX

Prep Type: Total/NA

Job ID: 460-227520-1

Analysis Batch: 757537

Matrix: Water

Bromomethane	Analyte	Sample Result	Sample Qualifier	Spike Added		MSD Qualifier	Unit	D	%Rec	%Rec. Limits	RPD	RPC Limi
Carbon tetrachloride 0.50 U 2.00 2.22 ug/L 111 70-130 Chlorobenzene 0.50 U 2.00 2.25 ug/L 112 70-130 Chlorobenzene 0.50 U 2.00 2.12 ug/L 106 70-130 Chlorodibromomethane 0.50 U 2.00 2.26 ug/L 113 70-130 Chlorodibromomethane 0.50 U 2.00 2.26 ug/L 113 70-130 Chlorodibromomethane 0.50 U 2.00 2.21 ug/L 111 70-130 Chlorodethane 0.50 U 2.00 2.39 ug/L 110 70-130 Chloromethane 0.50 U 2.00 2.39 ug/L 110 70-130 Chloromethane 0.50 U 2.00 2.37 ug/L 119 70-130 cis-1,2-Dichlorodethene 0.50 U 2.00 2.37 ug/L 119 70-130 cis-1,2-Dichloropropene 0.50 U 2.00 2.10 ug/L 105 70-130 cis-1,2-Dichloromethane 0.50 U 2.00 2.10 ug/L 105 70-130 Dichlorobromomethane 0.50 U 2.00 2.10 ug/L 110 70-130 Dichlorobromomethane 0.50 U 2.00 2.20 ug/L 110 70-130 Dichlorobromomethane 0.50 U 2.00 2.26 ug/L 13 70-130 Dichlorodibromethane 0.50 U 2.00 2.26 ug/L 111 70-130 Dichlorodibromethane 0.50 U 2.00 2.26 ug/L 111 70-130 Dichlorodibromethane 0.50 U 2.00 1.46 ug/L 137 70-130 Dichlorodibromethane 0.50 U 2.00 1.46 ug/L 111 70-130 Dichlorodibromethane 0.50 U 2.00 1.82 ug/L 111 70-130 Dichlorodibromethane 0.50 U 2.00 1.82 ug/L 111 70-130 Dichlorodibromethane 0.50 U 2.00 1.82 ug/L 111 70-130 Dichlorodibromethane 0.50 U 2.00 2.04 ug/L 111 70-130 Dichlorodibromethane 0.50 U 1 2.00 2.04 ug/L 111 70-130 Dichlorodibromethane 0.50 U 2.00 2.04 ug/L 111 70-130 Dichlorodibromethane 0.50 U 2.00 2.04 ug/L 111 70-130 Dichlorodibromethane 0.50 U 2.00 2.03 Ug/L 114 70-130 Dichlorodibromethane 0.50 U 2.00 2.26 Ug/L 114 70-130 Dichlorodibromethane 0.50 U 2.00 2.27 ug/L 114 70-130 Dichlorodibromethane 0.50 U 2.00 2.28 F2 ug/L 114 70-130 Dichlorodibromethane 0.50 U 2.00 2.26 ug/L 114 70-130 Dichlorodibromet						<u> </u>					7	30
Chlorobenzene 0.50 U 2.00 2.25 ug/L 112 70.130 Chlorobromomethane 0.50 U 2.00 2.12 ug/L 106 70.130 Chlorobromomethane 0.50 U 2.00 2.26 ug/L 113 70.130 Chlorocethane 0.50 U 2.00 2.26 ug/L 111 70.130 Chlorocethane 0.50 U 2.00 2.21 ug/L 111 70.130 Chlorocethane 0.50 U 2.00 2.39 ug/L 110 70.130 Chlorocethane 0.50 U 2.00 2.39 ug/L 110 70.130 cis-13-Dichlorocethene 3.7 2.00 5.56 ug/L 94 70.130 cis-13-Dichloropropene 0.50 U 2.00 2.10 ug/L 105 70.130 Dibromomethane 0.50 U 2.00 2.10 ug/L 105 70.130 Dibromomethane 0.50 U 2.00 2.26 ug/L 113 70.130 Dibromomethane 0.50 U 2.00 2.26 ug/L 113 70.130 Dibromomethane 0.50 U 2.00 2.26 ug/L 110 70.130 Dibromomethane 0.50 U 2.00 2.26 ug/L 111 70.130 Dibromomethane 0.50 U 2.00 2.26 ug/L 113 70.130 Dibromomethane 0.50 U 2.00 2.26 ug/L 113 70.130 Dibromomethane 0.50 U 2.00 2.26 ug/L 111 70.130 Dibromomethane 0.50 U 2.00 2.26 ug/L 113 70.130 Dibromomethane 0.50 U 2.00 2.26 ug/L 111 70.130 Tereon 111 0.50 U 2.00 1.82 ug/L 91 70.130 Freon 113 0.49 J 2.00 2.01 ug/L 111 70.130 Freon 115 UJ MSL UJ											4	30
Chlorobromomethane 0.50 U 2.00 2.12 ug/L 106 70-130 Chloroditromomethane 0.50 U 2.00 2.26 ug/L 111 70-130 Chlorofibromomethane 0.50 U 2.00 2.21 ug/L 111 70-130 Chloroform 0.20 J 2.00 2.39 ug/L 110 70-130 Chloroform 0.20 J 2.00 2.39 ug/L 110 70-130 Chloroform 0.50 U 2.00 2.37 ug/L 119 70-130 Chloromethane 0.50 U 2.00 5.56 ug/L 94 70-130 cis-1,3-Dichloropropene 0.50 U 2.00 5.56 ug/L 94 70-130 cis-1,3-Dichloropropene 0.50 U 2.00 2.20 ug/L 110 70-130 Chloromomethane 0.50 U 2.00 2.20 ug/L 110 70-130 Chloropropene 0.50 U 2.00 2.26 ug/L 113 70-130 Chloropropene 0.50 U 2.00 2.21 ug/L 111 70-130 Chloropropene 0.50 UF1 2.00 2.04 ug/L 77 70-130 Chloropropene 0.50 UF1 2.00 2.04 ug/L 77 70-130 Chloropropene 0.50 UF1 2.00 2.04 ug/L 111 70-130 Chloropropene 0.50 UF1 2.00 2.28 F1 ug/L 132 70-130 Chloropropene 0.50 UF1 2.00 2.28 F2 ug/L 114 70-130 Chloropropene 0.50 UF1 2.00 2.28 F2 ug/L 114 70-130 Chloropropene 0.50 U 2.00 2.27 ug/L 114 70-130 Chloropropene 0.50 U 2.00 2.27 ug/L 114 70-130 Chloropropene 0.50 U 2.00 2.26 ug/L 113 70-130 Chloropropene 0.50 U 2.00 2.26 ug/L 114 70-130 Chloropropene 0.50 U 2.00 2.22 ug/L 114 70-130 Chloropropene 0.50 U 2.00 2.22 ug/L 114 70-130 Chloropropene 0.50 U 2.00 2.22 ug/L 114 70-130 Chloropropene 0.50 U 2.											5	30
Chlorodibromomethane 0.50 U 2.00 2.26 ug/L 113 70-130 Chlorodethane 0.50 U 2.00 2.21 ug/L 111 70-130 Chlorofethane 0.50 U 2.00 2.39 ug/L 110 70-130 Chloromethane 0.50 U 2.00 2.39 ug/L 110 70-130 chloromethane 0.50 U 2.00 2.37 ug/L 119 70-130 chloromethane 0.50 U 2.00 2.37 ug/L 119 70-130 chloromethane 0.50 U 2.00 2.20 ug/L 110 70-130 Chloromethane 0.50 U 2.00 2.20 ug/L 110 70-130 Chlorodifluoromethane 0.50 U 2.00 2.26 ug/L 113 70-130 Chlorodifluoromethane 0.50 U 2.00 2.26 ug/L 113 70-130 Chlorodifluoromethane 0.50 U 2.00 2.26 ug/L 113 70-130 Chlorodifluoromethane 0.50 U 2.00 2.21 ug/L 111 70-130 Chlorodifluoromethane 0.50 U 2.00 2.24 ug/L 91 70-130 Chlorodifluoromethane 0.50 U 2.00 2.24 ug/L 91 70-130 Chlorodifluoromethane 0.50 U 2.00 2.24 ug/L 77 70-130 Chlorodifluoromethane 0.50 U 2.00 2.24 ug/L 111 70-130 Chlorodifluoromethane 0.50 U 2.00 2.24 ug/L 111 70-130 Chlorodifluoromethane 0.50 U 2.00 2.24 ug/L 111 70-130 Chlorodifluoromethane 0.50 U 2.00 2.25 ug/L 114 70-130 Chlorodifluoromethane 0.50 U 2.00 2.28 F2 ug/L 114 70-130 Chlorodifluoromethane 0.50 U 2.00 2.28 F2 ug/L 114 70-130 Chlorodifluoromethane 0.50 U 2.00 2.28 F2 ug/L 114 70-130 Chlorodifluoromethane 0.50 U 2.00 2.28 F2 ug/L 114 70-130 Chlorodifluoromethane 0.50 U 2.00 2.26 ug/L 113 70-130 Chlorodifluoromethane 0.50 U 2.00 2.26 ug/L 114 70-130 Chlorodifluoromethane 0.50 U 2.00 2.26 ug/L 113 70-130 Chlorodifluoromethane 0.50 U 2.00 2.27 ug/L 114 70-130 Chlorodifluoromethane 0.50 U 2.00 2.27 ug/L 114 70-130 Chlorodifluoromethane 0.50 U 2.00 2.27 ug/L 114 70-130 Chlo											0	30
Chloroethane 0.50 U 2.00 2.21 ug/L 111 70-130 Chloroform 0.20 J 2.00 2.39 ug/L 110 70-130 Chloroform 0.20 J 2.00 2.39 ug/L 110 70-130 Chloroform 0.20 J 2.00 2.37 ug/L 119 70-130 cis-1,2-Dichloroethene 3.7 2.00 5.56 ug/L 94 70-130 cis-1,3-Dichloropropene 0.50 U 2.00 2.10 ug/L 105 70-130 Dibromomethane 0.50 U 2.00 2.20 ug/L 110 70-130 Dibromomethane 0.50 U 2.00 2.20 ug/L 110 70-130 Dichlorobromomethane 0.50 U 2.00 2.26 ug/L 113 70-130 Dichlorobromomethane 0.50 U 2.00 2.26 ug/L 113 70-130 Dichlorobromomethane 0.50 U 71-2 2.00 1.46 ug/L 73 70-130 Dichlorobromomethane 0.50 U 71-2 2.00 1.46 ug/L 73 70-130 Dichlorobromomethane 0.50 U 71-2 2.00 1.46 ug/L 73 70-130 Dichlorobromomethane 0.50 U 71-2 2.00 1.46 ug/L 73 70-130 Dichlorobromomethane 0.50 U 71-2 2.00 1.46 ug/L 77 70-130 Dichlorobromomethane 0.50 U 71-2 2.00 1.82 ug/L 111 70-130 Dichlorobromomethane 0.50 U 71-2 2.00 1.82 ug/L 111 70-130 Dichlorobromomethane 0.50 U 71-2 2.00 1.82 ug/L 111 70-130 Dichlorobromomethane 0.50 U 71-2 2.00 0.881 F1 ug/L 132 70-130 Dichlorobromomethane 0.50 U 71-2 2.00 0.881 F1 ug/L 132 70-130 Dichlorobromomethane 0.50 U 71-2 2.00 0.881 F1 ug/L 132 70-130 Dichlorobromomethane 0.50 U 71-2 2.00 2.25 ug/L 111 70-130 Dichlorobromomethane 0.50 U 71-2 2.00 2.28 F2 ug/L 114 70-130 Dichlorobromomethane 0.50 U 71-2 2.00 2.28 F2 ug/L 114 70-130 Dichlorobromomethane 0.50 U 71-2 2.00 2.28 F2 ug/L 114 70-130 Dichlorobromomethane 0.50 U 71-2 2.00 2.28 Ug/L 111 70-130 Dichlorobromomethane 0.50 U 71-2 2.00 2.28 Ug/L 111 70-130 Dichlorobromomethane 0.50 U 71-2 2.00 2.28 Ug/L 113 70-130 Dichlorobromomethane 0.50 U 71-2 2.00 2.28 Ug/L 114 70-130 Dichlorobromomethane 0.50 U 71-2 2.00 2.29 Ug/L 114 70-130 Dichlorobromomethane 0.50 U 71-2 2.00 2.29 Ug/L 114 70-130 Dichlorobromomethane 0.50 U 71-2 2.00 2.29 Ug/L 114 70-130 Dichlorobromomethane 0.50 U 71-2 2.00 2.21 Ug/L 110 70-130 Dichlorobromomethane 0.50 U 71-2 2.00 2.21 Ug/L 114 70-130 Dichlorobromomethane 0.50 U 71-2 2.00 2.21 Ug/L 114 70-130 Dichlorobromomethane 0.50 U 71-2 2.00 2.21 Ug/L 114 70-130 Dichl	Chlorodibromomethane				2.26				113	70 - 130	2	30
Chloroform 0.20 J 2.00 2.39 ug/L 110 70 - 130 Chloromethane 0.50 U 2.00 2.37 ug/L 119 70 - 130 cis-1.2-Dichloroethene 3.7 2.00 5.56 ug/L 94 70 - 130 cis-1.3-Dichloropropene 0.50 U 2.00 2.10 ug/L 105 70 - 130 Dibromomethane 0.50 U 2.00 2.20 ug/L 110 70 - 130 Dibromomethane 0.50 U 2.00 2.26 ug/L 110 70 - 130 Dichlorobromomethane 0.50 U 2.00 2.26 ug/L 111 70 - 130 Dichlorobromomethane 0.50 U 2.00 2.26 ug/L 111 70 - 130 Dichlorobromomethane 0.50 U 2.00 2.26 ug/L 111 70 - 130 Dichlorobromomethane 0.50 U 2.00 1.46 ug/L 73 70 - 130 Dichlorobromomethane 0.50 U 2.00 1.46 ug/L 73 70 - 130 Dichlorobromomethane 0.50 U 2.00 1.82 ug/L 111 70 - 130 Dichlorobromomethane 0.50 U 2.00 1.82 ug/L 91 70 - 130 Dichlorobromomethane 0.50 U 51 - 2.00 2.04 ug/L 71 70 - 130 Dichlorobromomethane 0.50 U 51 - 2.00 2.04 ug/L 71 70 - 130 Dichlorobromomethane 0.50 U 51 - 2.00 2.63 F1 ug/L 111 70 - 130 Dichlorobromomethane 0.50 U 51 - 2.00 2.63 F1 ug/L 117 70 - 130 Dichlorobromomethane 0.50 U 51 - 2.00 2.63 F1 ug/L 117 70 - 130 Dichlorobromomethane 0.50 U 51 - 2.00 2.63 F1 ug/L 117 70 - 130 Dichlorobromomethane 0.50 U 51 - 2.00 2.35 ug/L 117 70 - 130 Dichlorobromomethane 0.50 U 51 - 2.00 2.27 ug/L 114 70 - 130 Dichlorobromomethane 0.50 U 2.00 2.27 ug/L 114 70 - 130 Dichlorobromomethane 0.50 U 2.00 2.27 ug/L 114 70 - 130 Dichlorobromomethane 0.50 U 2.00 2.26 ug/L 113 70 - 130 Dichlorobromomethane 0.50 U 2.00 2.26 ug/L 113 70 - 130 Dichlorobromomethane 0.50 U 2.00 2.26 ug/L 113 70 - 130 Dichlorobromomethane 0.50 U 2.00 2.26 ug/L 113 70 - 130 Dichlorobromomethane 0.50 U 2.00 2.26 ug/L 113 70 - 130 Dichlorobromomethane 0.50 U 2.00 2.26 ug/L 113 70 - 130 Dichlorobromomethane 0.50 U 2.00 2.26 ug/L 111 70 - 130 Dichlorobromomethane 0.50 U 2.00 2.26 ug/L 111 70 - 130 Dichlorobromomethane 0.50 U 2.00 2.26 ug/L 111 70 - 130 Dichlorobromomethane 0.50 U 2.00 2.27 ug/L 114 70 - 130 Dichlorobromomethane 0.50 U 2.00 2.27 ug/L 114 70 - 130 Dichlorobromomethane 0.50 U 2.00 2.27 ug/L 114 70 - 130 Dichlorobromomethane 0.50 U 2.00 2.27 ug/L 114 70 - 130 Dichlorobro	Chloroethane	0.50	U				-		111	70 _ 130	5	30
cis-1,2-Dichloroethene 3.7 2.00 5.56 ug/L 94 70 - 130 cis-1,2-Dichloropropene 0.50 U 2.00 2.10 ug/L 105 70 - 130 Dichlorobromomethane 0.50 U 2.00 2.20 ug/L 110 70 - 130 Dichlorodifluoromethane 0.50 U 2.00 2.21 ug/L 113 70 - 130 Ethylbenzene 0.50 U 2.00 2.21 ug/L 111 70 - 130 Freon 11 0.50 U 2.00 1.82 ug/L 91 70 - 130 Freon 113 0.49 J 2.00 2.04 ug/L 77 70 - 130 Freon 115 U,MSL 0.50 U F1 *- 2.00 0.881 F1 ug/L 44 70 - 130 Freon 123 high bias, sample ND • no quals 0.50 U F1 *- 2.00 2.63 F1 ug/L 132 70 - 130 Freon 122 high bias, sample ND • no quals 0.50 U F2	Chloroform	0.20	J	2.00	2.39		-		110	70 - 130	4	30
cis-1,3-Dichloropropene 0,50 U 2,00 2,10 ug/L 105 70 - 130 Dibromomethane 0,50 U 2,00 2,20 ug/L 110 70 - 130 Dichlorodifluoromethane 0,50 U 2,00 2,26 ug/L 113 70 - 130 Ethylbenzene 0,50 U F1**- 2,00 1,46 ug/L 111 70 - 130 Ethylbenzene 0,50 U F1**- 2,00 1,82 ug/L 91 70 - 130 Freon 113 0,50 U F1**- 2,00 2,04 ug/L 77 70 - 130 Freon 115 U,MSL 0,50 U F1**- 2,00 2,08 F1 ug/L 44 70 - 130 Freon 123 high bias, sample ND - no quals 0,50 U F1*- 2,00 2,63 F1 ug/L 117 70 - 130 Freon 123 high bias, sample ND - no quals 0,50 U F1*- 2,00 2,35 ug/L 117 70 - 130 Freon 152 <td< td=""><td>Chloromethane</td><td>0.50</td><td>U</td><td>2.00</td><td>2.37</td><td></td><td>ug/L</td><td></td><td>119</td><td>70 _ 130</td><td>6</td><td>30</td></td<>	Chloromethane	0.50	U	2.00	2.37		ug/L		119	70 _ 130	6	30
cis-1,3-Dichloropropene 0.50 U 2.00 2.10 ug/L 105 70 - 130 Dibromomethane 0.50 U 2.00 2.20 ug/L 110 70 - 130 Dichlorodifluoromethane 0.50 U 2.00 2.26 ug/L 113 70 - 130 Ethylbenzene 0.50 U F1**- 2.00 1.46 ug/L 111 70 - 130 Freon 11 0.50 U 2.00 1.82 ug/L 91 70 - 130 Freon 113 0.49 J 2.00 2.04 ug/L 77 70 - 130 Freon 115 U,J,MSL 0.50 U F1**- 2.00 0.881 F1 ug/L 44 70 - 130 Freon 123 high bias, sample ND - no quals 0.50 U F1*- 2.00 0.881 F1 ug/L 117 70 - 130 Freon 22 0.32 J 2.00 2.35 ug/L 117 70 - 130 Hexachlorobutadiene Isopropylbenzene sample ND, recovery 0.	cis-1,2-Dichloroethene	3.7		2.00	5.56		ug/L		94	70 - 130	2	30
Dichlorobromomethane 0.50 U 2.00 2.26 ug/L 113 70 - 130 Dichlorodifluoromethane 0.50 U F1 *- 2.00 1.46 ug/L 73 70 - 130 Ethylbenzene 0.50 U 2.00 2.21 ug/L 111 70 - 130 Freon 11 0.50 U 2.00 1.82 ug/L 191 70 - 130 Freon 113 0.49 J 2.00 2.04 ug/L 77 70 - 130 Freon 115 UJ, MSL 0.50 U F1 *- 2.00 0.881 F1 ug/L 44 70 - 130 Freon 129 high bias, sample ND - no quals 0.50 U 11 2.00 2.63 F1 ug/L 132 70 - 130 Freon 152a 0.50 U 2.00 2.35 ug/L 117 70 - 130 Freon 152a 0.50 U 2.00 2.35 ug/L 117 70 - 130 Freon 152a 0.50 U 2.00 2.28 F2 ug/L 114 70 - 130 Freon 152a 0.50 U 2.00 2.28 F2 ug/L 114 70 - 130 Hexachlorobutadiene sample ND, recovery 0.50 U F2 2.00 2.28 F2 ug/L 114 70 - 130 Hexachlorobutadiene within limits - no quals 0.50 U 2.00 2.27 ug/L 111 70 - 130 Methyl tert-butyl ether 0.50 U 2.00 2.26 ug/L 111 70 - 130 Methyl tert-butyl ether 0.50 U 2.00 2.26 ug/L 113 70 - 130 N-Propylbenzene 0.50 U 2.00 2.32 ug/L 116 70 - 130 N-Propylbenzene 0.50 U 2.00 2.32 ug/L 116 70 - 130 Styrene 0.50 U 2.00 2.26 ug/L 111 70 - 130 Styrene 0.50 U 2.00 2.26 ug/L 111 70 - 130 Telrachloroethene J-, MSL 6.6 F1 2.00 7.79 F1 ug/L 61 70 - 130 Telrachloroethene J-, MSL 6.6 F1 2.00 2.00 2.21 ug/L 110 70 - 130 Trichloroethene 0.50 U 2.00 2.27 ug/L 114 70 - 130 Trichloroethene 0.50 U 2.00 2.27 ug/L 114 70 - 130 Trichloroethene 0.50 U 2.00 2.27 ug/L 114 70 - 130 Trichloroethene 0.50 U 2.00 2.27 ug/L 114 70 - 130 Trichloroethene 0.50 U 2.00 2.27 ug/L 114 70 - 130 Trichloroethene 0.50 U 2.00 2.20 ug/L 105 70 - 130 Trichloroethene 0.50 U 2.00	cis-1,3-Dichloropropene	0.50	U	2.00	2.10				105	70 - 130	5	30
Dichlorodifluoromethane	Dibromomethane	0.50	U	2.00	2.20		ug/L		110	70 - 130	5	30
Ethylbenzene 0.50 U 2.00 2.21 ug/L 111 70-130 Freon 11 0.50 U 2.00 1.82 ug/L 91 70-130 Freon 113 0.49 J 2.00 2.04 ug/L 77 70-130 Freon 115 UJ, MSL 0.50 UF1*- 2.00 0.881 F1 ug/L 44 70-130 Freon 115 UJ, MSL 0.50 UF1*- 2.00 0.881 F1 ug/L 132 70-130 Freon 123 high bias, sample ND - no quals 0.50 UF1 2.00 2.63 F1 ug/L 117 70-130 Freon 122 0.50 U 2.00 2.35 ug/L 117 70-130 Freon 22 0.32 J 2.00 2.47 ug/L 107 70-130 Freon 22 0.32 J 2.00 2.47 ug/L 107 70-130 Freon 22 0.50 U 2.00 2.28 F2 ug/L 114 70-130 Within limits - no quals 0.50 U 2.00 2.27 ug/L 114 70-130 Methyl terr-butyl ether 0.50 U 2.00 1.82 ug/L 111 70-130 Methyl terr-butyl ether 0.50 U 2.00 2.10 ug/L 105 70-130 N-Propylbenzene 0.50 U 2.00 2.26 ug/L 113 70-130 O-Xylene 0.50 U 2.00 2.26 ug/L 113 70-130 Sylene 0.50 U 2.00 2.26 ug/L 113 70-130 Sylene 0.50 U 2.00 2.26 ug/L 113 70-130 Sylene 0.50 U 2.00 2.26 ug/L 113 70-130 Tetr-Butylbenzene 0.50 U 2.00 2.26 ug/L 113 70-130 Tetr-Butylbenzene 0.50 U 2.00 2.22 ug/L 116 70-130 Tetr-Butylbenzene 0.50 U 2.00 2.22 ug/L 111 70-130 Tetr-Butylbenzene 0.50 U 2.00 2.22 ug/L 110 70-130 Tetr-Butylbenzene 0.50 U 2.00 2.00 2.21 ug/L 110 70-130 Tetr-Butylbenzene 0.50 U 2.00 2.00 2.00 ug/L 110 70-130 Tetr-Butylbenzene 0.50 U 2.00 2.00 2.00 ug/L 110 70-130 Tetr-Butylbenzene 0.50 U 2.00 2.00 2.00 ug/L 110 70-130 Tetr-Butylbenzene 0.50	Dichlorobromomethane	0.50	U	2.00	2.26		ug/L		113	70 - 130	4	30
Freon 11 0.50 U 2.00 1.82 ug/L 91 70 - 130 Freon 113 0.49 J 2.00 2.04 ug/L 77 70 - 130 Freon 115 UJ, MSL 0.50 U F1** 2.00 0.881 F1 ug/L 44 70 - 130 Freon 123 high bias, sample ND - no quals 0.50 U F1 2.00 2.63 F1 ug/L 117 70 - 130 Freon 152a 0.32 J 2.00 2.47 ug/L 117 70 - 130 Freon 22 0.32 J 2.00 2.28 F2 ug/L 114 70 - 130 Hexachlorobutadiene sample ND, recovery 0.50 U F2 2.00 2.28 F2 ug/L 114 70 - 130 Hexachlorobutadiene sample ND, recovery 0.50 U F2 2.00 2.28 F2 ug/L 114 70 - 130 Webylenezene 1.0 U 4.00 4.45 ug/L 111 70 -	Dichlorodifluoromethane	0.50	U F1 *-	2.00	1.46		ug/L		73	70 - 130	5	30
Freon 113 0.49 J 2.00 2.04 ug/L 77 70 - 130 Freon 115 UJ, MSL 0.50 U F1* - 2.00 0.881 F1 ug/L 44 70 - 130 Freon 123 high bias, sample ND - no quals 0.50 U F1 2.00 2.63 F1 ug/L 132 70 - 130 Freon 152a 0.50 U F2 2.00 2.35 ug/L 117 70 - 130 Freon 22 0.32 J 2.00 2.47 ug/L 107 70 - 130 Hexachlorobutadiene sample ND, recovery 0.50 U F2 2.00 2.28 F2 ug/L 114 70 - 130 Hexachlorobutadiene sample ND, recovery 0.50 U F2 2.00 2.28 F2 ug/L 114 70 - 130 Hexachlorobutadiene sample ND, recovery 0.50 U F2 2.00 2.28 F2 ug/L 114 70 - 130 Methylene 0.50 U 2.00 2.21 ug/L 111 </td <td>Ethylbenzene</td> <td>0.50</td> <td>U</td> <td>2.00</td> <td>2.21</td> <td></td> <td>ug/L</td> <td></td> <td>111</td> <td>70 - 130</td> <td>4</td> <td>30</td>	Ethylbenzene	0.50	U	2.00	2.21		ug/L		111	70 - 130	4	30
Freon 115 UJ, MSL 0.50 U F1 *- 2.00 0.881 F1 ug/L 44 70-130 Freon 123 high bias, sample ND - no quals 0.50 U F1 2.00 2.63 F1 ug/L 132 70-130 Freon 152a 0.50 U 2.00 2.35 ug/L 117 70-130 Freon 22 0.32 J 2.00 2.47 ug/L 117 70-130 Hexachlorobutadiene Sample ND, recovery 0.50 U F2 2.00 2.28 F2 ug/L 114 70-130 Hexachlorobutadiene Sample ND, recovery 0.50 U F2 2.00 2.28 F2 ug/L 114 70-130 Isopropylbenzene within limits - no quals 0.50 U 2.00 2.27 ug/L 114 70-130 Methylene Chloride 0.50 U 2.00 1.82 ug/L 191 70-130 Methylene Chloride 0.50 U 2.00 2.26 ug/L 113 70-13	Freon 11	0.50	U	2.00	1.82		ug/L		91	70 - 130	2	30
Freon 123 high bias, sample ND - no quals 0.50 U F1 2.00 2.63 F1 ug/L 132 70 - 130 Freon 152a 0.50 U 2.00 2.35 ug/L 117 70 - 130 Freon 22 0.32 J 2.00 2.47 ug/L 107 70 - 130 Hexachlorobutadiene sample ND, recovery 0.50 U F2 2.00 2.28 F2 ug/L 114 70 - 130 Isopropylbenzene within limits - no quals 0.50 U 2.00 2.27 ug/L 114 70 - 130 Methylene Chloride 0.50 U 2.00 1.82 ug/L 91 70 - 130 N-Propylbenzene 0.50 U 2.00 2.10 ug/L 113 70 - 130 N-Propylbenzene 0.50 U 2.00 2.26 ug/L 113 70 - 130 N-Propylbenzene 0.50 U 2.00 2.32 ug/L 116 70 - 130 N-Propylbenzene 0.50 <td>Freon 113</td> <td>0.49</td> <td>J</td> <td>2.00</td> <td>2.04</td> <td></td> <td>ug/L</td> <td></td> <td>77</td> <td>70 - 130</td> <td>6</td> <td>30</td>	Freon 113	0.49	J	2.00	2.04		ug/L		77	70 - 130	6	30
Freon 123 high bias, sample ND - no quals 0.50 U F1 2.00 2.63 F1 ug/L 132 70 - 130 Freon 152a 0.50 U 2.00 2.35 ug/L 117 70 - 130 Freon 22 0.32 J 2.00 2.47 ug/L 107 70 - 130 Hexachlorobutadiene sample ND, recovery 0.50 U F2 2.00 2.28 F2 ug/L 114 70 - 130 Isopropylbenzene 1.0 U 4.00 4.45 ug/L 111 70 - 130 Methyl tert-butyl ether 0.50 U 2.00 1.82 ug/L 91 70 - 130 Methylnee Chloride 0.50 U 2.00 2.10 ug/L 91 70 - 130 N-Propylbenzene 0.50 U 2.00 2.26 ug/L 113 70 - 130 N-Propylbenzene 0.50 U 2.00 2.32 ug/L 116 70 - 130 N-Propylbenzene 0.50 U <td>Freon 115 UJ, MSL</td> <td>0.50</td> <td>U F1 *-</td> <td>2.00</td> <td>0.881</td> <td>F1</td> <td>ug/L</td> <td></td> <td>44</td> <td>70 - 130</td> <td>4</td> <td>30</td>	Freon 115 UJ, MSL	0.50	U F1 *-	2.00	0.881	F1	ug/L		44	70 - 130	4	30
Freon 152a 0.50 U 2.00 2.35 ug/L 117 70 - 130 Freon 22 0.32 J 2.00 2.47 ug/L 107 70 - 130 Hexachlorobutadiene sample ND, recovery 0.50 U F2 2.00 2.28 F2 ug/L 114 70 - 130 Isopropylbenzene within limits - no quals 0.50 U 2.00 2.27 ug/L 114 70 - 130 Methyl tert-butyl ether 0.50 U 2.00 1.82 ug/L 111 70 - 130 Methylene Chloride 0.50 U 2.00 2.10 ug/L 105 70 - 130 N-Propylbenzene 0.50 U 2.00 2.26 ug/L 113 70 - 130 o-Xylene 0.50 U 2.00 2.32 ug/L 116 70 - 130 o-Xylene 0.50 U 2.00 2.36 ug/L 118 70 - 130 sec-Butylbenzene 0.50 U 2.00 <		quals 0.50	U F1	2.00	2.63	F1	ug/L		132	70 - 130	10	30
Hexachlorobutadiene sample ND, recovery 0.50 U F2 2.00 2.28 F2 ug/L 114 70 - 130 Recovery 0.50 U 2.00 2.27 ug/L 114 70 - 130 Recovery 0.50 U 2.00 2.27 ug/L 114 70 - 130 Recovery 0.50 U 2.00 2.27 ug/L 114 70 - 130 Recovery 0.50 U 2.00 2.27 ug/L 111 70 - 130 Recovery 0.50 U 2.00 1.82 ug/L 111 70 - 130 Recovery 0.50 U 2.00 2.10 ug/L 105 70 - 130 Recovery 0.50 U 2.00 2.26 ug/L 113 70 - 130 Recovery 0.50 U 2.00 2.32 ug/L 116 70 - 130 Recovery 0.50 U 2.00 2.36 ug/L 118 70 - 130 Recovery 0.50 U 2.00 2.36 ug/L 118 70 - 130 Recovery 0.50 U 2.00 2.26 ug/L 111 70 - 130 Recovery 0.50 U 2.00 2.26 ug/L 111 70 - 130 Recovery 0.50 U 2.00 2.23 ug/L 111 70 - 130 Recovery 0.50 U 2.00 2.23 ug/L 111 70 - 130 Recovery 0.50 U 2.00 2.23 ug/L 111 70 - 130 Recovery 0.50 U 2.00 2.21 ug/L 111 70 - 130 Recovery 0.50 U 2.00 2.21 ug/L 110 70 - 130 Recovery 0.50 U 2.00 2.21 ug/L 110 70 - 130 Recovery 0.50 U 2.00 2.21 ug/L 114 70 - 130 Recovery 0.50 U 2.00 2.27 ug/L 114 70 - 130 Recovery 0.50 U 2.00 2.27 ug/L 114 70 - 130 Recovery 0.50 U 2.00 2.27 ug/L 114 70 - 130 Recovery 0.50 U 2.00 2.27 ug/L 114 70 - 130 Recovery 0.50 U 2.00 2.27 ug/L 114 70 - 130 Recovery 0.50 U 2.00 2.00 2.27 ug/L 114 70 - 130 Recovery 0.50 U 2.00 2.00 2.00 ug/L 114 70 - 130 Recovery 0.50 U 2.00 2.00 2.00 2.00 Ug/L 114 70 - 130 Recovery 0.50 U 2.00 2.00 2.00 Ug/L 114 70 - 130 Recovery 0.50 U 2.00 2.00 2.00 Ug/L 114 70 - 130 Recovery 0.50 U 2.00 2.00 2.00 Ug/L 114 70 - 130 Recovery 0.50 U 2.00 2.00 Ug/L 105 70 - 130 Recovery 0.50 U 2.00 2.00 Ug/L 105 70 - 130 Recovery 0.50 U 2.00 2.00 Ug/L		0.50	U	2.00	2.35		ug/L		117	70 - 130	7	30
Isopropy Isop				2.00	2.47		ug/L		107	70 - 130	8	30
m,p-Xylene 1.0 U 4.00 4.45 ug/L 111 70 - 130 Methyl tert-butyl ether 0.50 U 2.00 1.82 ug/L 91 70 - 130 Methylene Chloride 0.50 U 2.00 2.10 ug/L 105 70 - 130 N-Propylbenzene 0.50 U 2.00 2.26 ug/L 113 70 - 130 o-Xylene 0.50 U 2.00 2.32 ug/L 116 70 - 130 sec-Butylbenzene 0.50 U 2.00 2.36 ug/L 113 70 - 130 Styrene 0.50 U 2.00 2.26 ug/L 111 70 - 130 tert-Butylbenzene 0.50 U 2.00 2.23 ug/L 111 70 - 130 Tetrachloroethene J-, MSL 6.6 F1 2.00 7.79 F1 ug/L 61 70 - 130 Toluene 0.50 U 2.00 2.21 ug/L 110 70 - 130 trans-1,2-Dichloroethene 0.50 U 2.00 2.27 ug/L 104 70 - 130 Trichloroethene 4.6 2.00 6.30 ug/L 105 70 - 130 Vinyl chloride 0.50 U 2.00 2.09 </td <td></td> <td></td> <td></td> <td>2.00</td> <td>2.28</td> <td>F2</td> <td>ug/L</td> <td></td> <td>114</td> <td>70 - 130</td> <td>32</td> <td>30</td>				2.00	2.28	F2	ug/L		114	70 - 130	32	30
Methyl tert-butyl ether 0.50 U 2.00 1.82 ug/L 91 70 - 130 Methylene Chloride 0.50 U 2.00 2.10 ug/L 105 70 - 130 N-Propylbenzene 0.50 U 2.00 2.26 ug/L 113 70 - 130 o-Xylene 0.50 U 2.00 2.32 ug/L 116 70 - 130 sec-Butylbenzene 0.50 U 2.00 2.36 ug/L 118 70 - 130 Styrene 0.50 U 2.00 2.26 ug/L 113 70 - 130 tert-Butylbenzene 0.50 U 2.00 2.23 ug/L 111 70 - 130 Tetrachloroethene J-, MSL 6.6 F1 2.00 7.79 F1 ug/L 61 70 - 130 Toluene 0.50 U 2.00 2.21 ug/L 110 70 - 130 trans-1,2-Dichloroethene 0.50 U 2.00 2.09 ug/L 104 70 - 130 Trichloroethene 4.6 2.00 6.30 ug/L 87 70 - 130 Vinyl chloride 0.50 U 2.00 2.09 ug/L 105 70 - 130	Isopropylbenzene within limits	- no quals _{0.50}	U	2.00	2.27		ug/L		114	70 - 130	7	30
Methylene Chloride 0.50 U 2.00 2.10 ug/L 105 70 - 130 N-Propylbenzene 0.50 U 2.00 2.26 ug/L 113 70 - 130 o-Xylene 0.50 U 2.00 2.32 ug/L 116 70 - 130 sec-Butylbenzene 0.50 U 2.00 2.36 ug/L 118 70 - 130 Styrene 0.50 U 2.00 2.26 ug/L 113 70 - 130 tert-Butylbenzene 0.50 U 2.00 2.23 ug/L 111 70 - 130 Tetrachloroethene J-, MSL 6.6 F1 2.00 7.79 F1 ug/L 61 70 - 130 Toluene 0.50 U 2.00 2.21 ug/L 110 70 - 130 trans-1,2-Dichloroethene 0.50 U 2.00 2.09 ug/L 104 70 - 130 trans-1,3-Dichloropropene 0.50 U 2.00 6.30 ug/L 87 70 - 130 Vinyl chloride 0.50 U 2.00 2.09 ug/L 105 70 - 130	m,p-Xylene	1.0	U	4.00	4.45		ug/L		111		7	30
N-Propylbenzene 0.50 U 2.00 2.26 ug/L 113 70-130 o-Xylene 0.50 U 2.00 2.32 ug/L 116 70-130 sec-Butylbenzene 0.50 U 2.00 2.36 ug/L 118 70-130 Styrene 0.50 U 2.00 2.26 ug/L 113 70-130 tert-Butylbenzene 0.50 U 2.00 2.23 ug/L 111 70-130 Tetrachloroethene J-, MSL 6.6 F1 2.00 7.79 F1 ug/L 61 70-130 Toluene 0.50 U 2.00 2.21 ug/L 110 70-130 trans-1,2-Dichloroethene 0.50 U 2.00 2.00 2.21 ug/L 110 70-130 trans-1,3-Dichloropropene 0.50 U 2.00 2.27 ug/L 114 70-130 Trichloroethene 4.6 2.00 6.30 ug/L 87 70-130 Vinyl chloride 0.50 U 2.00 2.09 ug/L 105 70-130	Methyl tert-butyl ether	0.50	U	2.00					91	70 - 130	0	30
co-Xylene 0.50 U 2.00 2.32 ug/L 116 70 - 130 sec-Butylbenzene 0.50 U 2.00 2.36 ug/L 118 70 - 130 Styrene 0.50 U 2.00 2.26 ug/L 113 70 - 130 tert-Butylbenzene 0.50 U 2.00 2.23 ug/L 111 70 - 130 Tetrachloroethene J-, MSL 6.6 F1 2.00 7.79 F1 ug/L 61 70 - 130 Toluene 0.50 U 2.00 2.21 ug/L 110 70 - 130 trans-1,2-Dichloroethene 0.50 U 2.00 2.09 ug/L 104 70 - 130 trans-1,3-Dichloropropene 0.50 U 2.00 6.30 ug/L 114 70 - 130 Trichloroethene 4.6 2.00 6.30 ug/L 87 70 - 130 Vinyl chloride 0.50 U 2.00 2.09 ug/L 105 70 - 130		0.50	U	2.00	2.10		ug/L		105	70 - 130	7	30
sec-Butylbenzene 0.50 U 2.00 2.36 ug/L 118 70 - 130 Styrene 0.50 U 2.00 2.26 ug/L 113 70 - 130 tert-Butylbenzene 0.50 U 2.00 2.23 ug/L 111 70 - 130 Tetrachloroethene J-, MSL 6.6 F1 2.00 7.79 F1 ug/L 61 70 - 130 Toluene 0.50 U 2.00 2.21 ug/L 110 70 - 130 trans-1,2-Dichloroethene 0.50 U 2.00 2.09 ug/L 104 70 - 130 trans-1,3-Dichloropropene 0.50 U 2.00 6.30 ug/L 114 70 - 130 Trichloroethene 4.6 2.00 6.30 ug/L 87 70 - 130 Vinyl chloride 0.50 U 2.00 2.09 ug/L 105 70 - 130	N-Propylbenzene	0.50	U	2.00	2.26		-		113	70 - 130	9	30
Styrene 0.50 U 2.00 2.26 ug/L 113 70 - 130 tert-Butylbenzene 0.50 U 2.00 2.23 ug/L 111 70 - 130 Tetrachloroethene J-, MSL 6.6 F1 2.00 7.79 F1 ug/L 61 70 - 130 Toluene 0.50 U 2.00 2.21 ug/L 110 70 - 130 trans-1,2-Dichloroethene 0.50 U 2.00 2.09 ug/L 104 70 - 130 trans-1,3-Dichloropropene 0.50 U 2.00 2.27 ug/L 114 70 - 130 Trichloroethene 4.6 2.00 6.30 ug/L 87 70 - 130 Vinyl chloride 0.50 U 2.00 2.09 ug/L 105 70 - 130	•	0.50	U	2.00	2.32		ug/L		116	70 - 130	8	30
tert-Butylbenzene 0.50 U 2.00 2.23 ug/L 111 70 - 130 Tetrachloroethene J-, MSL 6.6 F1 2.00 7.79 F1 ug/L 61 70 - 130 Toluene 0.50 U 2.00 2.21 ug/L 110 70 - 130 trans-1,2-Dichloroethene 0.50 U 2.00 2.09 ug/L 104 70 - 130 trans-1,3-Dichloropropene 0.50 U 2.00 2.27 ug/L 114 70 - 130 Trichloroethene 4.6 2.00 6.30 ug/L 87 70 - 130 Vinyl chloride 0.50 U 2.00 2.09 ug/L 105 70 - 130	sec-Butylbenzene						ug/L		118		14	30
Tetrachloroethene J-, MSL 6.6 F1 2.00 7.79 F1 ug/L 61 70 - 130 Toluene 0.50 U 2.00 2.21 ug/L 110 70 - 130 trans-1,2-Dichloroethene 0.50 U 2.00 2.09 ug/L 104 70 - 130 trans-1,3-Dichloropropene 0.50 U 2.00 2.27 ug/L 114 70 - 130 Trichloroethene 4.6 2.00 6.30 ug/L 87 70 - 130 Vinyl chloride 0.50 U 2.00 2.09 ug/L 105 70 - 130	Styrene			2.00			_		113		6	30
Toluene 0.50 U 2.00 2.21 ug/L 110 70 - 130 trans-1,2-Dichloroethene 0.50 U 2.00 2.09 ug/L 104 70 - 130 trans-1,3-Dichloropropene 0.50 U 2.00 2.27 ug/L 114 70 - 130 Trichloroethene 4.6 2.00 6.30 ug/L 87 70 - 130 Vinyl chloride 0.50 U 2.00 2.09 ug/L 105 70 - 130		0.50	U	2.00					111	70 - 130	9	30
trans-1,2-Dichloroethene 0.50 U 2.00 2.09 ug/L 104 70 - 130 trans-1,3-Dichloropropene 0.50 U 2.00 2.27 ug/L 114 70 - 130 Trichloroethene 4.6 2.00 6.30 ug/L 87 70 - 130 Vinyl chloride 0.50 U 2.00 2.09 ug/L 105 70 - 130	Tetrachloroethene J-, MSL					F1			61		7	30
trans-1,3-Dichloropropene 0.50 U 2.00 2.27 ug/L 114 70 - 130 70 - 130 Trichloroethene 4.6 2.00 6.30 ug/L 87 70 - 130 Vinyl chloride 0.50 U 2.00 2.09 ug/L 105 70 - 130							-				4	30
Trichloroethene 4.6 2.00 6.30 ug/L 87 70 - 130 Vinyl chloride 0.50 U 2.00 2.09 ug/L 105 70 - 130	•										6	30
Vinyl chloride 0.50 U 2.00 2.09 ug/L 105 70 - 130			U						114		13	30
·							-				5	30
MSD MSD	Vinyl chloride	0.50	U	2.00	2.09		ug/L		105	70 - 130	10	30
		MSD	MSD									

%Recovery Qualifier

Surrogate Limits 1,2-Dichlorobenzene-d4 99 70 - 130 101 70 - 130 4-Bromofluorobenzene

Method: 8260D - Volatile Organic Compounds by GC/MS

Lab Sample ID: MB 460-757658/7

Matrix: Water

Analysis Batch: 757658

Client Sample ID: Method Blank Prep Type: Total/NA

MB MB Analyte Result Qualifier RL **MDL** Unit **Prepared** Analyzed Dil Fac 0.50 02/08/21 08:40 Chloromethane 0.50 U 0.40 ug/L

Eurofins TestAmerica, Edison

axg 3/2/2021

Page 49 of 1056

02/18/2021

02/18/2021

FORM VI GC/MS VOA BY INTERNAL STANDARD - INITIAL CALIBRATION DATA CURVE EVALUATION

Analy Batch No.: 757357 Job No.: 460-227520-1 Lab Name: Eurofins TestAmerica, Edison

SDG No.:

 \mathbb{Z} Calibration ID: 83781 Heated Purge: (Y/N) Calibration End Date: 02/05/2021 17:43 ID: 0.25 (mm) GC Column: Rtx-624 13:59 Calibration Start Date: 02/05/2021 Instrument ID: CVOAMS14

Calibration Files:

LEVEL:	LAB SAMPLE ID:	LAB FILE ID:
Level 1	STD05 460-757357/3	S043429.D
Level 2	STD1 460-757357/15	S043438.D
Level 3	STD2 460-757357/5	S043431.D
Level 4	SID5 460-757357/6	S043432.D
Level 5	STD20 460-757357/7	S043433.D
Level 6	STD40 460-757357/8	S043434.D

ANALYTE			RRF		CURVE	Æ	COEFFICIENT	LN	# MIN RRF	%RSD	# MAX	R^2	# MIN R^2
	LVL 1 LVL 6	LVL 2	LVL 3	LVL 4	LVL 5 TYPE	м	M1	M2			%RSD	OR COD	OR COD
Freon 115	0.0336	0.0354	0.0403	0.0389	0.0425 Ave		0.0380			8.5	20.0		
Freon 152a	0.2007	0.2043	0.2109	0.2016	0.2118 Ave		0.2059			2.2	20.0		
Dichlorodifluoromethane	0.3201	0.3102	0.2968	0.3193	0.3206 Ave		0.3118			3.2	20.0		
Freon 22	0.3013	0.2773	0.3033	0.2865	0.2959 Ave		0.2921	,		3.4	20.0		
Chloromethane	0.3611	0.3032	0.2991	0.3181	0.3026 Ave		0.3129	\		8.0	20.0		
Vinyl chloride	0.3696	0.3346	0.3197	0.3452	0.3402 Ave		0.3413			4.8	20.0		
Bromomethane	0.3413	0.2986	0.2767	0.2646	0.2614 Ave		0.2859			10.5	20.0		
Chloroethane	0.1680	0.1585	0.1581	0.1719	0.1754 Ave		0.1704			7.1	20.0		
Freon 11	0.4039	0.3880	0.3706	0.3979	0.4014 Ave		0.3955			3.7	20.0		
Diethyl ether	0.0845	0.0983	0.0832	0.0822	0.0870 Ave		0.0867			6.8	20.0		
Freon 123	0.2858	0.2882	0.3173	0.3066	0.3226 Ave		0.3053			5.0	20.0		
Freon 113	0.2494	0.2744	0.2161	0.2219	0.2358 Ave		0.2366			6.3	20.0		
1,1-Dichloroethene	0.4331	0.3750	0.3273	0.3556	0.3809 Ave		0.3731			9.4	20.0		
Acetone	0.0174	0.0225	0.0162	0.0163	0.0151 Ave		0.0169			17.9	20.0		
Methyl iodide	0.1249	0.1865	0.1181	0.1530	0.2242 Qua	-0.066	0.1729	0.0026195				1.0000	0.9900

Note: The M1 coefficient is the same as Ave RRF for an Ave curve type.

Report Date: 08-Feb-2021 14:08:04 Chrom Revision: 2.3 09-Dec-2020 16:22:14

Eurofins TestAmerica, Edison Target Compound Quantitation Report

Data File: \\chromfs\Edison\ChromData\CVOAMS14\20210205-123809.b\S043432.D

Lims ID: STD5

Client ID:

Sample Type: IC Calib Level: 4

Inject. Date: 05-Feb-2021 15:13:42 ALS Bottle#: 0 Worklist Smp#: 6

Purge Vol: 5.000 mL Dil. Factor: 1.0000

Sample Info: STD5

Misc. Info.: 460-0123809-006

Operator ID: Instrument ID: CVOAMS14

Sublist: chrom-524_14*sub7

Method: \\chromfs\Edison\ChromData\CVOAMS14\20210205-123809.b\524_14.m

Limit Group: VOA 524 ICAL

Last Update: 08-Feb-2021 14:08:03 Calib Date: 05-Feb-2021 17:43:20

Integrator:RTEID Type:RT Order IDQuant Method:Internal StandardQuant By:Initial CalibrationLast ICal File:\\chromfs\Edison\ChromData\CVOAMS14\20210205-123809.b\S043438.D

Column 1: Rtx-624 (0.25 mm) Det: MS SCAN

Process Host: CTX1672

First Level Reviewer: baronm Date: 05-Feb-2021 16:20:00

First Level Reviewer, Daronini		Date.				05-Feb-2021 10.20.00			
		RT	Exp RT	Dlt RT			Cal Amt	OnCol Amt	
Compound	Sig	(min.)	(min.)	(min.)	Q	Response	ug/l	ug/l	Flags
1 Monochloropentafluoroethane	119	1.296	1.296	0.000	78	29956	5.00	5.11	
2 1,1-Difluoroethane	51	1.412	1.406	0.006	95	155291	5.00	4.90	
3 Dichlorodifluoromethane	85	1.430	1.431	-0.001	76	245937	5.00	5.12	
4 Chlorodifluoromethane	51	1.455	1.449	0.006	46	220672	5.00	4.90	а
5 Chloromethane	50	1.601	1.601	0.000	100	245020	5.00	5.08	а
6 Vinyl chloride	62	1.693	1.693	-0.001	83	265836	5.00	5.06	
7 Bromomethane	94	1.979	1.979	0.000	99	203804	5.00	4.63	
8 Chloroethane	64	2.064	2.065	-0.001	97	132424	5.00	5.04	
9 Trichlorofluoromethane	101	2.247	2.248	-0.001	82	306412	5.00	5.03	
10 Ethyl ether	59	2.491	2.497	-0.006	98	63288	5.00	4.74	
11 1,1,1-Trifluoro-2,2-dichloroeth	a 83	2.589	2.589	0.000	50	236120	5.00	5.02	
12 1,1,2-Trichloro-1,2,2-trifluoroe	101	2.650	2.650	0.000	63	170873	5.00	4.69	
13 1,1-Dichloroethene	61	2.686	2.686	0.000	96	273883	5.00	4.77	
14 Acetone	43	2.796	2.808	-0.012	85	62706	25.0	24.1	
15 lodomethane	142	2.839	2.839	0.000	99	117839	5.00	4.50	
16 Carbon disulfide	76	2.869	2.869	0.000	99	543301	5.00	5.24	
17 3-Chloro-1-propene	76	3.009	3.010	-0.001	88	99709	5.00	4.63	
18 Methylene Chloride	84	3.131	3.132	-0.001	89	138445	5.00	4.35	
19 2-Methyl-2-propanol	59	3.223	3.253	-0.030	90	36303	100.0	87.3	М
20 Methyl tert-butyl ether	73	3.302	3.302	0.000	94	146176	5.00	4.79	
21 trans-1,2-Dichloroethene	96	3.320	3.314	0.006	97	156318	5.00	4.63	
22 Acrylonitrile	53	3.406	3.412	-0.006	81	9172	5.00	4.55	
23 1,1-Dichloroethane	63	3.717	3.717	0.000	99	284613	5.00	4.70	
24 2,2-Dichloropropane	77	4.210	4.211	-0.001	94	78020	5.00	3.66	
25 cis-1,2-Dichloroethene	96	4.235	4.235	0.000	95	161264	5.00	4.54	
26 2-Butanone (MEK)	72	4.271	4.290	-0.019	94	16502	25.0	22.6	
27 Methyl acrylate	55	4.320	4.333	-0.013	80	31518	5.00	5.00	
28 Propionitrile	54	4.412	4.442	-0.030	65	12837	25.0	22.0	
29 Chlorobromomethane	128	4.460	4.467	-0.007	92	55822	5.00	4.71	
30 Tetrahydrofuran	42	4.485	4.491	-0.006	58	18151	10.0	10.5	
-			D (200 - 1401	-0	0-40 21	2/2021	00/4	0/0004

Page 823 of 1056

axy 3/2/2021

02/18/2021

Data File: \\chromfs\Edison\ChromData\CVOAMS14\20210205-123809.b\S043432.D

Data File: \\cnromfs\Edis				5 14\202 10205-12\		Z30U9.D\3U43 ²				
Compound	Sic.	RT (min.)	Exp RT	Dlt RT		Posponos	Cal Amt	OnCol Amt	Floor	
Compound	Sig	(min.)	(min.)	(min.)	Q	Response	ug/l	ug/l	Flags	
31 Methacrylonitrile	67	4.503	4.509	-0.006	41	17016	5.00	4.69		
32 Chloroform	83	4.515	4.515	0.000	91	272994	5.00	4.61		
33 1,1,1-Trichloroethane	97	4.655	4.656	-0.001	97	270312	5.00	4.83		
34 1-Chlorobutane	56	4.759	4.759	0.000	94	308982	5.00	4.70		
35 Carbon tetrachloride	117	4.771	4.771	0.000	76	241224	5.00	4.67		
36 1,1-Dichloropropene	75	4.808	4.808	0.000	94	227916	5.00	4.70		
37 Benzene	78	5.003	5.003	0.000	96	574173	5.00	4.59		
38 1,2-Dichloroethane	62	5.100	5.101	-0.001	89	119461	5.00	4.59		
* 39 Fluorobenzene	96	5.296	5.296	0.000	98	770140	5.00	5.00		
40 Trichloroethene	95	5.643	5.643	0.000	91	164680	5.00	4.61		
41 1,2-Dichloropropane	63	5.942	5.936	0.006	89	130697	5.00	4.62		
42 Methyl methacrylate	69	6.015	6.021	-0.006	13	30258	5.00	4.02 4.77		
43 Dibromomethane	93	6.070	6.070	0.000	92	56743	5.00	4.63		
44 Dichlorobromomethane	83	6.216	6.210	0.006	99	182408	5.00	4.72		
45 2-Nitropropane	43	6.557	6.552	0.005	93	20560	10.0	9.27		
46 Chloroacetonitrile	48	6.679	6.680	-0.003	78	6087	50.0	47.8	а	
47 cis-1,3-Dichloropropene	110	6.716	6.716	0.000	93	42507	5.00	4.75	а	
48 4-Methyl-2-pentanone (MIBK)	43	6.893	6.905	-0.012	95 95	116693	25.0	24.9		
49 1,1-Dichloroacetone	43	6.948	6.948	0.000	93 78	133982	50.0	46.3		
50 Toluene	43 92	7.039	7.033	0.000	92	362462	5.00	4.66		
	92 110	7.039	7.033 7.381	0.000	92 94	29270	5.00	4.53		
51 trans-1,3-Dichloropropene	69	7.393 7.417	7.361 7.423	-0.006	94 84	60480	5.00	4.53 4.77		
52 Ethyl methacrylate	83	7.417	7.423 7.600	0.000		66988	5.00	4.77 4.57		
53 1,1,2-Trichloroethane		7.643			92		5.00	4.57 4.59		
54 Tetrachloroethene	166	7.843 7.813	7.643 7.814	0.000 -0.001	88	158840 120897		4.59 4.60		
55 1,3-Dichloropropane	76				89 71		5.00			
56 2-Hexanone	43	7.899	7.905	-0.006	71 06	66934	25.0	21.8		
57 Chlorodibromomethane	129	8.045	8.045	0.000	96	92613	5.00	4.61		
58 Ethylene Dibromide	107	8.197	8.198	-0.001	94	66835	5.00	4.60		
59 Chlorobenzene	112	8.777	8.783	-0.006	93	363654	5.00	4.65		
60 Ethylbenzene	106	8.880	8.880	0.000	97	204805	5.00	4.56		
61 1,1,1,2-Tetrachloroethane	131	8.899	8.899	0.000	46	121087	5.00	4.62		
62 m-Xylene & p-Xylene	106	9.039	9.039	0.000	99	509211	10.0	9.29		
63 o-Xylene	106	9.533	9.533	0.000	92	235617	5.00	4.59		
64 Styrene	104	9.569	9.569	0.000	92	351094	5.00	4.59		
65 Bromoform	173	9.801	9.801	0.000	70	42894	5.00	4.66		
66 Isopropylbenzene	105	9.941	9.941	0.000	96	624509	5.00	4.61		
\$ 67 4-Bromofluorobenzene	95	10.154	10.155	-0.001	79	195336	5.00	4.94		
68 Bromobenzene	156	10.301	10.301	0.000	93	117930	5.00	4.60		
69 1,1,2,2-Tetrachloroethane	83	10.349	10.350	-0.001	89	63154	5.00	4.41		
70 N-Propylbenzene	91	10.374	10.374	0.000	94	743831	5.00	4.51		
71 1,2,3-Trichloropropane	110	10.404	10.399	0.006	69	18996	5.00	4.57		
72 trans-1,4-Dichloro-2-butene	53	10.429	10.423	0.006	1	6196	5.00	5.25	а	
73 2-Chlorotoluene	91	10.490	10.490	0.000	94	421690	5.00	4.59		
74 1,3,5-Trimethylbenzene	105	10.569	10.569	0.000	92	477714	5.00	4.56		
75 4-Chlorotoluene	91	10.606	10.606	0.000	81	430528	5.00	4.55		
76 tert-Butylbenzene	119	10.868	10.868	0.000	89	395291	5.00	4.49		
77 Pentachloroethane	167	10.923	10.923	0.000	51	74111	5.00	4.51		
78 1,2,4-Trimethylbenzene	105	10.929	10.929	0.000	66	458369	5.00	4.49		
79 sec-Butylbenzene	105	11.075	11.075	0.000	99	503123	5.00	4.42		
81 4-Isopropyltoluene	119	11.215	11.209	0.006	94	443876	5.00	4.37		
80 1,3-Dichlorobenzene	146	11.209	11.215	-0.006	77	234197	5.00	4.50		
82 1,4-Dichlorobenzene	146	11.301	11.301	0.000	91	226270	5.00	4.54		
,	-					=				

> Eurofins TestAmerica, Edison Target Compound Quantitation Report

Data File: \\chromfs\Edison\ChromData\CVOAMS14\20210206-123844.b\S043506.D

Lims ID: 460-227520-A-17 Client ID: SW-N5099-XX

Sample Type: Client

Inject. Date: 07-Feb-2021 02:48:34 ALS Bottle#: 0 Worklist Smp#: 23

Purge Vol: 5.000 mL Dil. Factor: 1.0000

Sample Info: 460-227520-A-17 Misc. Info.: 460-0123844-023

Operator ID: Instrument ID: CVOAMS14

Method: \\chromfs\Edison\ChromData\CVOAMS14\20210206-123844.b\524_14.m

Limit Group: VOA 524 ICAL

Last Update: 08-Feb-2021 16:33:33 Calib Date: 05-Feb-2021 17:43:20

Integrator:RTEID Type:RT Order IDQuant Method:Internal StandardQuant By:Initial CalibrationLast ICal File:\\chromfs\Edison\ChromData\CVOAMS14\20210205-123809.b\S043438.D

Column 1: Rtx-624 (0.25 mm) Det: MS SCAN

Process Host: CTX1672

First Level Reviewer: desais Date: 08-Feb-2021 08:56:51

		RT	Exp RT	Dlt RT			OnCol Amt	
Compound	Sig	(min.)	(min.)	(min.)	Q	Response	ug/l	Flags
								/
5 Chloromethane	50	1.601	1.601	0.000	99	17741	0.4357 🗸	
9 Trichlorofluoromethane	101	2.241	2.248	-0.007	92	26319	0.5113	
12 1,1,2-Trichloro-1,2,2-trifluoroe	101	2.650	2.650	0.000	91	73921	2.40	
21 trans-1,2-Dichloroethene	96	3.320	3.321	-0.001	82	3787	0.1328	
25 cis-1,2-Dichloroethene	96	4.235	4.235	0.000	96	711811	23.7	
32 Chloroform	83	4.515	4.516	-0.001	87	13763	0.2751	
35 Carbon tetrachloride	117	4.771	4.772	-0.001	79	7780	0.1782	
38 1,2-Dichloroethane	62	5.094	5.101	-0.007	72	4132	0.1877	
* 39 Fluorobenzene	96	5.296	5.296	0.000	98	650663	5.00	
40 Trichloroethene	95	5.643	5.643	0.000	94	494435	16.4	M
54 Tetrachloroethene	166	7.643	7.637	0.006	92	158466	5.41	
\$ 67 4-Bromofluorobenzene	95	10.155	10.155	0.000	82	166923	4.99	
\$ 84 1,2-Dichlorobenzene-d4	152	11.618	11.618	0.000	84	119619	4.78	

QC Flag Legend

Processing Flags

Review Flags

M - Manually Integrated

Reagents:

VM5SUISi_00099 Amount Added: 5.00 Units: uL Run Reagent

axg 3/2/2021

DUSR Calculations Sheet

Sample ID: SW-N5099-XX

TC: chloromethane

ICAL Level: level 4 - STD 5

Val File Result for TC: 0.44 J

Ical Calc

Area TC	245020	1	0.3611
Area IS	770140	2	0.3032
		3	0.2991
Conc TC	5	4	0.3181
Conc IS	5	5	0.3026
		6	0.2931
RRF =	0.31815	7	
		8	
		9	
		10	
		Avg RRF =	0.312867
		Std Dev =	0.025032
		%RSD =	8.000761

Sample Calc

Area TC	17741	DF	1
Area IS	650663		
Conc IS	5		
Avg RRF	0.312867		

Conc TC = $0.435745 \mu g/L$

Notes:

Green = matched reported value Red = did not match reported value

axq 3/2/2021

GENERAL CHEMISTRY

NYSDEC DUSR PROJECT CHEMIST REVIEW RECORD Project: LMC Great Neck Q1 January 2021 GWM Method: SM 4500 CI-B **SDG(s):** 460-227520-1 Laboratory: TAL Edison, NJ Date: 3/2/2021 Reviewer: Amber Jones X NYSDEC DUSR Review Level **USEPA** Region II Guideline Case Narrative Review and Data Package Completeness **COMMENTS** Were problems noted? no problems notes Were all the samples on the COC analyzed for the requested analyses? YES NO (circle one) Are Field Sample IDs and Locations assigned correctly? YES NO (circle one) **✓** Holding time and Sample Collection Were all samples were all prepped and analyzed with the method holding time? YES NO **QC** Blanks Are method blanks clean? YES NO (circle one) Are Initial and continuing calibration blanks clean? YES NO (circle one) Instrument Calibration - Data Package Narrative Review Did the laboratory narrative identify analytes that were not within criteria in the initial and/or continuing calibration standards? YES NO Did the laboratory qualify results based on initial or continuing calibration exceedances? YES NO If yes to above, use professional judgment to evaluate data and qualify results if needed **Laboratory Control Sample Results** Were all results were within 80-120% limits? YES NO (circle one) **Matrix Spike** Were MS/MSDs submitted/analyzed? YES NO Were all results were within 75-125% limits? YES NO NA (circle one) **Duplicates** Were Field Duplicates submitted/analyzed? YES NO Aqueous RPD within limit? (20%) YES NO NA (circle one) Soil RPD within limit? (35%) YES NO NA (circle one) see attached for RPD calculations Lab dup RPD <20% for water, 35% for soil values > 5X the CROL (or ± CROL) YES NO NA Were both **Total and Dissolved** parameters reported? YES NO NA (circle one) If the dissolved concentration is > 20% of the total concentration then estimate (J) both results **Percent Solids** < 50% for any soil/sediment sample? YES NO NA (circle one) If yes, use professional judgment **Raw Data Review and Calculation Checks** Electronic Data Review and Edits Does the EDD match the Form Is? YES NO (circle one) **DUSR Table Review Table 1** (Samples and Analytical Methods) **Table 2** (Analytical Results) **Table 3** (Qualification Actions)

YES NO (circle one)

Were all tables produced and reviewed?

cis-1,2-Dichloroethene failed the recovery criteria low for the MS and MSD of sample MW-31GL-XX (460-227520-1) in batch 460-757658. Freon 115 failed the recovery criteria high.

The presence of the '4' qualifier in the data indicates analytes where the concentration in the unspiked sample exceeded four times the spiking amount.

Refer to the QC report for details.

The following samples were collected in a properly preserved vial; however, the pH was outside the required criteria when verified by the laboratory. The samples were analyzed outside the 7-day holding time specified for unpreserved samples but within the 14-day holding time specified for preserved samples: MW-31GL-XX (460-227520-1), MW-43MI-XX (460-227520-5), MW-46MI-XX (460-227520-8), MW-46ML-XX (460-227520-9), MW-51MI-XX (460-227520-10), MW-51ML-XX (460-227520-11) and MW-53MI-XX (460-227520-14).

No other difficulties were encountered during the Volatiles analysis.

All other quality control parameters were within the acceptance limits.

CHLORIDE

Samples MW-31GL-XX (460-227520-1), MW-31MI-XX (460-227520-2), MW-31ML-XX (460-227520-3), MW-43MU-XX (460-227520-4), MW-43MI-XX (460-227520-5), MW-45MU-XX (460-227520-6), MW-45MI-XX (460-227520-7), MW-46MI-XX (460-227520-8), MW-46ML-XX (460-227520-9), MW-52MI-XX (460-227520-12), MW-52ML-XX (460-227520-13), MW-53MI-XX (460-227520-14), MW-53ML-XX (460-227520-15), MW-500 (460-227520-16), SW-N5099-XX (460-227520-17), SW-N4388-XX (460-227520-18), SW-N12796-XX (460-227520-19) and SW-500 (460-227520-20) were analyzed for chloride in accordance with SM 4500 CL B. The samples were analyzed on 02/17/2021.

Samples MW-31GL-XX (460-227520-1)[2X], MW-31MI-XX (460-227520-2)[2X] and MW-45MU-XX (460-227520-6)[2X] required dilution prior to analysis. The reporting limits have been adjusted accordingly.

No difficulties were encountered during the chloride analysis.

All quality control parameters were within the acceptance limits.

adg 3/2/2021

General Chemistry Raw Data Report

Job ID: 460-227520-1

Batch: 759666 Method: SM 4500 CI- B					Analyst Initials: HTV Instrument: No Equipment
netiloa. OM 4300 OF D					ment. No Equipment
Lab Sample ID: MB 460-75966	6/1				Analysis Date: Feb 17, 2021 21:00 Final
Analyte	Detector	Dilution	Raw Result	Unit	Amount
Chloride	None	1	0	mg/L	100 mL
Lab Sample ID: LCSSRM 460-	759666/2				Analysis Date: Feb 17, 2021 21:00
Analyte	Detector	Dilution	Raw Result	Unit	Amount
Chloride	None		42.49	mg/L	
Lab Sample ID: MRL 460-7596	66/3				Analysis Date: Feb 17, 2021 21:00
Analyte	Detector	Dilution	Raw Result	Unit	Amount
Chloride	None	1		mg/L	100 mL
Lab Sample ID: 460-227520-D-	1				Analysis Date: Feb 17, 2021 21:00 Final
Analyte	Detector	Dilution	Raw Result	Unit	Amount
Chloride	None		54.48	mg/L	
Lab Sample ID: 460-227520-D-	1 MS				Analysis Date: Feb 17, 2021 21:00
Analyte	Detector	Dilution	Raw Result	Unit	Amount
Chloride	None		80.48	mg/L	
Lab Sample ID: 460-227520-D-	1 MSD				Analysis Date: Feb 17, 2021 21:00
Analyte	Detector	Dilution	Raw Result	Unit	Amount
Chloride	None		80.97	mg/L	
Lab Sample ID: 460-227520-D-	-2				Analysis Date: Feb 17, 2021 21:00
Analyte	Detector	Dilution	Raw Result	Unit	Amount
Chloride	None		62.48	mg/L	
Lab Sample ID: 460-227520-D-	3				Analysis Date: Feb 17, 2021 21:00
Analyte	Detector	Dilution	Raw Result	Unit	Amount
Chloride	None		27.5	mg/L	
Lab Sample ID: 460-227520-D-	4				Analysis Date: Feb 17, 2021 21:00
Analyte	Detector	Dilution	Raw Result	Unit	Amount
Chloride	None	1		mg/L	100 mL
Lab Sample ID: 460-227520-D-					Analysis Date: Feb 17, 2021 21:00
Analyte	Detector	Dilution	Raw Result	Unit	Final Amount
Chloride	None	1		mg/L	
Lab Sample ID: 460-227520-D-		•	22.10	.	Analysis Date: Feb 17, 2021 21:00
Analyte	Detector	Dilution	Raw Result	Unit	Amount
Chloride	None	2	60.48		100 mL

1B-IN INORGANIC ANALYSIS DATA SHEET GENERAL CHEMISTRY

Client Sample ID: MW-43MU-XX Lab Sample ID: 460-227520-4 Lab Name: Eurofins TestAmerica, Edison Job No.: 460-227520-1 SDG ID.: Matrix: Water Date Sampled: 01/27/2021 13:00 Reporting Basis: WET Date Received: 01/29/2021 17:30 CAS No. Analyte Result RL MDL Units С Q DIL Method

5.0

1.1 mg/L

19.5

16887-00-6 Chloride

axg 3/2/2021

SM 4500 Cl- B

Compund	Result	LabQual	Dup	LabQual RPD
1,1,2-Trichloro-1,2,2-Trifluoroethane (Freon 113)	1.6		1.6	0
Chlorodifluoromethane	2.8		2.6	7.407407
cis-1,2-Dichloroethene	27		26	3.773585
Tetrachloroethene	5.6		5.4	3.636364
Trichloroethene	11		10	9.52381
Chloride	59.0		59.0	0
				N/A

^{*} MRL used for nondetect result

Compund	Result	LabQual	Dup	LabQual	RPD
1,1,2-Trichloro-1,2,2-Trifluoroethane (Freon 113)	2.4		2.2		8.695652
1,2-Dichloroethane	0.19	J	0.16	J	17.14286
Carbon tetrachloride	0.18	J	0.18	J	0
Chloroform	0.28	J	0.27	J	3.636364
Chloromethane	0.44	J	0.50	U	12.76596
cis-1,2-Dichloroethene	24		23		4.255319
Tetrachloroethene	5.4		5.3		1.869159
trans-1,2-Dichloroethene	0.13	J	0.15	J	14.28571
Trichloroethene	16		16		0
Trichlorofluoromethane	0.51		0.47	J	8.163265
Chloride	24.5		25.0		2.020202
					N/A

^{*} MRL used for nondetect result

Lockheed Martin Corporation Former Unisys Facility -- Great Neck Lake Success, New York AMEC E&E. PC

DATA USABILITY SUMMARY REPORT QUARTERLY MONITORING – Q2 2021 LOCKHEED MARTIN CORPORATION FORMER UNISYS FACILITY -- GREAT NECK LAKE SUCCESS, NEW YORK

1.0 INTRODUCTION

Water samples were collected at the Lockheed Martin Corporation Former Unisys Facility -- Great Neck Site in May 2021 and submitted to TestAmerica Laboratories, Inc., located in Edison, New Jersey (TestAmerica). Analyses were performed by TestAmerica Edison and TestAmerica Burlington. Samples were analyzed by one or more of the following methods:

- Volatile Organic Compounds (VOCs) by USEPA Method 8260D
- VOCs by USEPA Method 524.2
- 1,4-Dioxane by USEPA Method 8270E SIM
- Per- and Polyfluorinated Alkyl Substances (PFAS) by Modified Method 537
- Chloride by SM 4500 CL B

A Data Usability Summary Report (DUSR) review was completed based on the New York State Department of Environmental Conservation (NYSDEC) Division of Environmental Remediation guidance (NYSDEC, 2010). Sample event information included in this DUSR is presented in the following Tables:

- Table 1 Summary of Samples and Analytical Methods
- Table 2 Summary of Analytical Results
- Table 3 Summary of Qualification Actions

A summary of table notes applicable to Tables 1, 2, and 3 is presented just before Table 1.

Laboratory deliverables included:

 Category B deliverables as defined in the NYSDEC Analytical Services Protocols (NYSDEC, 2005).

The DUSR review included the following evaluations as applicable. A table of the project control limits is presented in Attachment A. Applicable laboratory QC summary forms are included in Attachment B to document QC outliers associated with qualification actions.

- Lab Report Narrative Review
- Data Package Completeness and COC records (Table 1 verification)
- Sample Preservation and Holding Times
- Instrument Calibration (report narrative/lab-qualifier evaluation)
- QC Blanks
- Laboratory Control Samples (LCS)

Lockheed Martin Corporation Former Unisys Facility -- Great Neck Lake Success, New York AMEC E&E, PC

- Matrix Spike/Matrix Spike Duplicates (MS/MSD)
- Surrogate Spikes (if applicable)
- Field Duplicates
- Target Analyte Identification and Quantitation
- Raw Data (chromatograms), Calculation Checks and Transcription Verifications
- Reporting Limits
- Electronic Data Qualification and Verification

Data qualification actions are applied when necessary based on general procedures in United States Environmental Protection Agency (USEPA) validation guidelines (NYSDEC, 2019; USEPA, 2010; USEPA, 2014) and the judgment of the project chemist. The following laboratory or data review qualifiers are used in the final data presentation:

U = target analyte is not detected above the reported detection limit

J = concentration is estimated

J- = concentration is estimated, biased low

J+ = concentration is estimated, biased high

UJ = target analyte is not detected and value is estimated

Results are interpreted to be usable as reported by the laboratory or as qualified in the following sections.

2.0 POTENTIAL DATA LIMITATIONS

Based on the DUSR review the majority of data meet the data quality objectives; however, the following potential limitations were identified:

VOCs by 524.2

The result for tetrachloroethene in sample SW-N5099-XX was qualified estimated with a potential low bias (J-) based on a low percent recovery in the associated MS/MSD. The qualified result is included in Table 3 with reason code MSL.

VOCs by 8260D

The results for trichlorofluoromethane in samples MW-45MI-XX and MW-52ML-XX were qualified estimated with a potential low bias (J-) based on low percent recovery in the associated CCV. The qualified results are included in Table 3 with reason code CCV%D.

Reporting limits for bromomethane in a subset of samples were qualified estimated (UJ) based on low percent recoveries in the associated LCS/LCSDs. The qualified results are included in Table 3 with reason code LCSL.

The reporting limit for bromomethane in sample MW-47ML-XX was previously qualified estimated (UJ) due to low recovery in the associated LCS/LCSD. The reason code MSL was added to the qualified result based on low percent recovery in the MS/MSD.

The result for trichloroethene in sample MW-31GL-XX was qualified estimated with a potential low bias (J-) based on low percent recovery in the MS/MSD. The qualified result is included in Table 3 with reason code MSL.

Lockheed Martin Corporation Former Unisys Facility -- Great Neck Lake Success, New York AMEC E&E, PC

1,4-Dioxane by 8270E SIM

The results for 1,4-dioxane in a subset of samples were qualified estimated (J/UJ) based on extraction two to three days after expiration of the seven day hold time. The qualified results are included in Table 3 with reason code HT.

The result for 1,4-dioxane in sample MW-47ML-XX was previously qualified estimated (J) based on extraction outside the seven day hold time. The reason code MSRPD was added to the qualified result due to an RPD between the MS and MSD that exceeded the project limit.

The result for 1,4-dioxane in sample MW-29MI-XX was qualified estimated (J) based on an RPD between the associated LCS and LCSD that exceeded project limits. The qualified result is included in Table 3 with reason code LCSRPD.

The reporting limit for 1,4-dioxane in sample MW-1MI-XX was qualified estimated (UJ) based on low surrogate percent recovery. The qualified result is included in Table 3 with reason code SSL.

PFAS by Modified 537

Low-level detections for a subset of parameters in a number of samples were qualified as not detected (U) at the reporting limit or estimated with a high bias (J+) at the reported concentration based on contamination in the associated method blanks. The qualified results are included in Table 3 with reason code BL1.

The results for perfluorododecanoic acid (PFDoA), perfluoroctanesulfonamide (FOSA), perfluorotetradecanoic acid (PFTeDA), and perfluorotridecanoic acid (PFTrDA) in sample MW-22ML-XX were qualified estimated (J/UJ) based on low percent recovery of the associated isotope dilution standards. The qualified results are included in Table 3 with reason code ISL.

The results for PFDoA, PFTeDA, and PFTrDA in sample MW-52ML-XX were qualified estimated (UJ) based on low percent recovery of the associated isotope dilution standards. The qualified results are included in Table 3 with reason code ISL.

The reporting limit for perfluorodecanesulfonic acid (PFDS) in sample SW-N5099-XX was qualified estimated (UJ) based on low percent recovery in the MS/MSD. The qualified result is included in Table 3 with reason code MSL.

3.0 ADDITIONAL QC EXCEEDANCES AND OBSERVATIONS

The following sample IDs were recorded incorrectly on the COC and were corrected during data validation:

- MW-37MU-XX
- MW-6MI-XX

There were no additional observations or quality control exceedances not specifically addressed above (Section 2.0) or included in Table 3.

Lockheed Martin Corporation Former Unisys Facility -- Great Neck Lake Success, New York AMEC E&E, PC

Reference:

New York State Department of Environmental Conservation (NYSDEC), 2005. "Analytical Services Protocols"; June 2005.

NYSDEC, 2010. "Technical Guidance for Site Investigation and Remediation-Appendix 2B"; DER-10; Division of Environmental Remediation; May 2010.

NYSDEC, 2019. "Data Review Guidelines for Analysis of PFAS in Non-Potable Water and Solids; October 2019.

USEPA, 2010. "Validating Semivolatile Organic Compounds by Gas Chromatography/Mass Spectrometry SW-846 Method 8270D"; HW-22, Revision 5; USEPA Region II Hazardous Waste Support Branch; December 2010.

USEPA, 2014. "Validating Volatile Organic Compounds by Gas Chromatography/Mass Spectrometry SW-846 Method 8260B"; USEPA Region II; HW-24; Revision 4; September 2014.

Data Validator: Liesel Krout June 29, 2021

Reviewed by: Julie Ricardi

Julie Rimai

dusil, L'Arront

July 12, 2021

Standard Table Notes:

ng/L – nanograms per liter

μg/L – micrograms per liter

Sample Type (QC Code) Qualification Reason Codes

FS – field sample BL1 – method blank qualifier

FD – field duplicate BL2 – field or trip blank qualifier

TB – trip blank CCV – continuing calibration verification recovery outside limits

EB – equipment blank CCV%D – continuing calibration verification percent difference exceeds goal

FB – field blank CCVRRF – continuing calibration relative response factor low

CI – chromatographic interference present

Matrix DCPD – dual column percent difference exceeds limit

GW – ground water E – result exceeds calibration range

BW – blank water FD – field duplicate precision goal exceeded

TW – tap water FP – false positive interference

SV – soil vapor HT – holding time for prep or analysis exceeded

SED - sediment HTG – holding time for prep or analysis grossly exceeded

ICV – initial calibration verification recovery outside limit

<u>Units</u> ICVRRF – initial calibration verification relative response factor low

mg/L – milligrams per liter ICVRSD – initial calibration verification % relative standard deviation exceeds

goal

ISH – internal standard response greater than limit

ISL – internal standard response less than limit

mg/kg – milligrams per kilogram

LCSH – laboratory control sample recovery high

µg/kg – micrograms per kilogram

LCSL – laboratory control sample recovery low μg/m³ – micrograms per cubic meter

LCSRPD – laboratory control sample/duplicate relative % difference precision

goal exceeded

Qualifiers LD – lab duplicate precision goal exceeded

U – not detected above quantitation limit MSH – matrix spike and/or MS duplicate recovery high

J – estimated quantity

MSL – matrix spike and/or MS duplicate recovery low

J+ - estimated quantity, biased high

MSRPD – matrix spike/duplicate relative % difference precision goal exceeded

J- - estimated quantity, biased low N – analyte identification is not certain

R – data unusable PEM – performance evaluation mixture exceeds limit

PM – sample percent moisture exceeds EPA guideline

<u>Fraction</u> SD – serial dilution result exceeds percent difference limit

T – total SP – sample preservation/collection does not meet method requirement

D – dissolved SSH – surrogate recovery high

N – normal SSL – surrogate recovery low

TD – dissolved concentration exceeds total

Table 1 - Summary of Samples and Analytical Methods Data Usability Summary Report Quarterly Monitoring - Q2 2021 Lockheed Martin Corporation Former Unisys Facility -- Great Neck Lake Success, New York

						Method	8260D	524.2	8270E SIM	537 (modified)	SM 4500 Cl- B
						Fraction	N	N	N	N	Т
SDG	Location	Field Sample ID	Sample Date	Media	Lab Sample ID	QC Code	Count	Count	Count	Count	Count
460-234681-1	17GL	MW-17GL-XX	5/13/2021	GW	460-234681-10	FS	54		1	21	1
460-234681-1	17ML	MW-17ML-XX	5/13/2021	GW	460-234681-11	FS	54		1	21	1
460-234681-1	1GL	MW-1GL-XX	5/11/2021	GW	460-234681-2	FS	54		1	21	1
460-234681-1	1GL	MW-500	5/11/2021	GW	460-234681-23	FD	54		1	21	1
460-234681-1	1GU	MW-1GU-XX	5/11/2021	GW	460-234681-1	FS	54		1	21	1
460-234681-1	1MI	MW-1MI-XX	5/12/2021	GW	460-234681-3	FS	54		1	21	1
460-234681-1	1ML	MW-1ML-XX	5/12/2021	GW	460-234681-4	FS	54		1	21	1
460-234681-1	22GL	MW-22GL-XX	5/13/2021	GW	460-234681-12	FS	54		1	21	1
460-234681-1	22ML	MW-22ML-XX	5/13/2021	GW	460-234681-13	FS	54		1	21	1
460-234681-1	29GL	MW-29GL-XX	5/14/2021	GW	460-234681-14	FS	54		1	21	1
460-234681-1	31GL	MW-31GL-XX	5/14/2021	GW	460-234681-15	FS	54		1	21	1
460-234681-1	31MI	MW-31MI-XX	5/14/2021	GW	460-234681-16	FS	54		1	21	1
460-234681-1	31ML	MW-31ML-XX	5/14/2021	GW	460-234681-17	FS	54		1	21	1
460-234681-1	35GL	MW-35GL-XX	5/12/2021	GW	460-234681-18	FS	54		1	21	1
460-234681-1	37ML	MW-37ML-XX	5/14/2021	GW	460-234681-20	FS	54		1	21	1
460-234681-1	37MU	MW-37MU-XX	5/13/2021	GW	460-234681-19	FS	54		1	21	1
460-234681-1	3GL	MW-3GL-XX	5/12/2021	GW	460-234681-5	FS	54		1	21	1
460-234681-1	46MI	MW-46MI-XX	5/14/2021	GW	460-234681-21	FS	54		1	21	1
460-234681-1	46MI	MW-502	5/14/2021	GW	460-234681-25	FD	54		1	21	1
460-234681-1	46ML	MW-46ML-XX	5/14/2021	GW	460-234681-22	FS	54		1	21	1
460-234681-1	6GL	MW-6GL-XX	5/13/2021	GW	460-234681-6	FS	54		1	21	1
460-234681-1	6MI	MW-6MI-XX	5/13/2021	GW	460-234681-7	FS	54		1	21	1
460-234681-1	7GL	MW-501	5/13/2021	GW	460-234681-24	FD	54		1	21	1
460-234681-1	7GL	MW-7GL-XX	5/13/2021	GW	460-234681-8	FS	54		1	21	1
460-234681-1	7ML	MW-7ML-XX	5/13/2021	GW	460-234681-9	FS	54		1	21	1
460-234681-1	QC	QC-EB110521-01	5/11/2021	BW	460-234681-26	EB	54		1	21	1
460-234681-1	QC	QC-EB120521-XX	5/12/2021	BW	460-234681-27	EB	54		1	21	1
460-234681-1	QC	QC-TB110521-XX	5/11/2021	BW	460-234681-28	ТВ	54				
460-234681-1	QC	QC-TB120521-XX	5/12/2021	BW	460-234681-29	ТВ		61			
460-234681-1	QC	QC-TB130521-XX	5/13/2021	BW	460-234681-30	ТВ	54				
460-234681-1	QC	QC-TUBE110521-XX	5/11/2021	BW	460-234681-31	EB				21	
460-234681-1	QC	QC-TUBEDT130521-XX	5/13/2021	BW	460-234681-32	EB				21	
460-234681-1	QC	QC-TUBEWL140521-XX	5/14/2021	BW	460-234681-33	EB				21	
460-235115-1	29MI	MW-29MI-XX	5/19/2021	GW	460-235115-13	FS	54		1	21	1

Created by: WCG 06/18/2021 Checked by: LLK 06/29/2021

Table 1 - Summary of Samples and Analytical Methods Data Usability Summary Report Quarterly Monitoring - Q2 2021 Lockheed Martin Corporation Former Unisys Facility -- Great Neck Lake Success, New York

					Method	8260D	524.2	8270E SIM	537 (modified)	SM 4500 Cl- B
					Fraction	N	N	N	N	Т
SDG	Location	Field Sample ID	Sample Date Media	Lab Sample ID	QC Code	Count	Count	Count	Count	Count
460-235115-1	2MI	MW-2MI-XX	5/19/2021 GW	460-235115-11	FS	54		1	21	1
460-235115-1	3ML	MW-3ML-XX	5/19/2021 GW	460-235115-12	FS	54		1	21	1
460-235115-1	43MI	MW-43MI-XX	5/17/2021 GW	460-235115-15	FS	54		1	21	1
460-235115-1	43MU	MW-43MU-XX	5/17/2021 GW	460-235115-14	FS	54		1	21	1
460-235115-1	45MI	MW-45MI-XX	5/17/2021 GW	460-235115-17	FS	54		1	21	1
460-235115-1	45MU	MW-45MU-XX	5/17/2021 GW	460-235115-16	FS	54		1	21	1
460-235115-1	47MI	MW-47MI-XX	5/17/2021 GW	460-235115-18	FS	54		1	21	1
460-235115-1	47ML	MW-47ML-XX	5/17/2021 GW	460-235115-19	FS	54		1	21	1
460-235115-1	49MI	MW-49MI-XX	5/17/2021 GW	460-235115-20	FS	54		1	21	1
460-235115-1	49ML	MW-49ML-XX	5/17/2021 GW	460-235115-1	FS	54		1	21	1
460-235115-1	51MI	MW-51MI-XX	5/19/2021 GW	460-235115-2	FS	5				
460-235115-1	51ML	MW-51ML-XX	5/19/2021 GW	460-235115-3	FS	5				
460-235115-1	52MI	MW-52MI-XX	5/18/2021 GW	460-235115-5	FS	54		1	21	1
460-235115-1	52ML	MW-52ML-XX	5/18/2021 GW	460-235115-6	FS	54		1	21	1
460-235115-1	53MI	MW-53MI-XX	5/18/2021 GW	460-235115-7	FS	54		1	21	1
460-235115-1	53ML	MW-53ML-XX	5/18/2021 GW	460-235115-8	FS	54		1	21	1
460-235115-1	N04388	SW-N4388-XX	5/18/2021 SW	460-235115-10	FS		61	1	21	1
460-235115-1	N05099	SW-N5099-XX	5/18/2021 SW	460-235115-9	FS		61	1	21	1
460-235115-1	N09687	IW-N9687-XX	5/19/2021 GW	460-235115-4	FS	5				
460-235115-1	N12796	SW-N12796-XX	5/18/2021 SW	460-235115-21	FS		61	1	21	1
460-235115-1	N12999	SW-N12999-XX	5/18/2021 SW	460-235115-22	FS		61	1	21	1
460-235115-1	N13000	SW-N13000-XX	5/18/2021 SW	460-235115-23	FS		61	1	21	1
460-235115-1	N13821	SW-500	5/18/2021 SW	460-235115-25	FD		61	1	21	1
460-235115-1	N13821	SW-N13821-XX	5/18/2021 SW	460-235115-24	FS		61	1	21	1
460-235115-1	QC	QC-TB170521-XX	5/17/2021 BW	460-235115-26	ТВ	54				
460-235115-1	QC	QC-TB180521-XX	5/18/2021 BW	460-235115-27	ТВ		61			
460-235115-1	QC	QC-TB190521-XX	5/19/2021 BW	460-235115-28	ТВ		61			
460-235115-1	QC	QC-TUBEDT170521-XX	5/17/2021 BW	460-235115-29	EB				21	
460-235115-1	QC	QC-TUBEDT190521-XX	5/19/2021 BW	460-235115-31	EB				21	
460-235115-1	QC	QC-TUBEWL180521-XX	5/18/2021 BW	460-235115-30	EB				21	

Created by: WCG 06/18/2021 Checked by: LLK 06/29/2021

Table 2 - Summary of Analytical Results Data Usability Summary Report Quarterly Monitoring - Q2 2021

Lockheed Martin Corporation Former Unisys Facility -- Great Neck Lake Success, New York

	SDG	460-234681-1	460-235115-1	460-235115-1	460-235115-1	460-235115-1
	Location	QC	N04388	N05099	N12796	N12999
	Sample Date	5/12/2021	5/18/2021	5/18/2021	5/18/2021	5/18/2021
	Sample ID	QC-TB120521-XX	SW-N4388-XX	SW-N5099-XX	SW-N12796-XX	SW-N12999-XX
	QC Code	ТВ	FS	FS	FS	FS
		Final Final				
Method	Parameter Unit	Result Qualifier				
524.2	1,1,1,2-Tetrachloroethane UG/L	0.5 U				
524.2	1,1,1-Trichloroethane UG/L	0.5 U				
524.2	1,1,2,2-Tetrachloroethane UG/L	0.5 U				
524.2	1,1,2-Trichloro-1,2,2-Trifluoroethane (Freon 113) UG/L	0.5 U	0.5 U	1.7	0.68	0.5 U
524.2	1,1,2-Trichloroethane UG/L	0.5 U				
524.2	1,1-Dichloroethane UG/L	0.5 U				
524.2	1,1-Dichloroethene UG/L	0.5 U				
524.2	1,1-Dichloropropene UG/L	0.5 U				
524.2	1,1-Difluoroethane (Freon 152a) UG/L	0.5 U				
524.2	1,2,3-Trichlorobenzene UG/L	0.5 U				
524.2	1,2,3-Trichloropropane UG/L	0.5 U				
524.2	1,2,4-Trichlorobenzene UG/L	0.5 U				
524.2	1,2,4-Trimethylbenzene UG/L	0.5 U				
524.2	1,2-Dichlorobenzene UG/L	0.5 U				
524.2	1,2-Dichloroethane UG/L	0.5 U				
524.2	1,2-Dichloropropane UG/L	0.5 U				
524.2	1,3,5-Trimethylbenzene UG/L	0.5 U				
524.2	1,3-Dichlorobenzene UG/L	0.5 U				
524.2	1,3-Dichloropropane UG/L	0.5 U				
524.2	1,4-Dichlorobenzene UG/L	0.5 U				
524.2	2,2-Dichloropropane UG/L	0.5 U				
524.2	2-Chlorotoluene UG/L	0.5 U				
524.2	4-Chlorotoluene UG/L	0.5 U				
524.2	4-iso-Propyltoluene UG/L	0.5 U				
524.2	Benzene UG/L	0.5 U				
524.2	Bromobenzene UG/L	0.5 U				
524.2	Bromochloromethane UG/L	0.5 U				

Created by: WCG 06/29/2021 Checked by: LLK 06/29/2021

Table 2 - Summary of Analytical Results Data Usability Summary Report Quarterly Monitoring - Q2 2021

Lockheed Martin Corporation Former Unisys Facility -- Great Neck Lake Success, New York

		SDG	460-234681-1	460-235115-1	460-235115-1	460-235115-1	460-235115-1
		Location	QC	N04388	N05099	N12796	N12999
		Sample Date	5/12/2021	5/18/2021	5/18/2021	5/18/2021	5/18/2021
		Sample ID	QC-TB120521-XX	SW-N4388-XX	SW-N5099-XX	SW-N12796-XX	SW-N12999-XX
		QC Code	ТВ	FS	FS	FS	FS
		·					
			Final Final				
Method	Parameter	Unit	Result Qualifier				
524.2	Bromodichloromethane	UG/L	0.5 U				
524.2	Bromoform	UG/L	0.5 U				
524.2	Bromomethane	UG/L	0.5 U				
524.2	Carbon tetrachloride	UG/L	0.5 U	0.5 U	0.5 U	0.22 J	0.5 U
524.2	Chlorobenzene	UG/L	0.5 U				
524.2	Chlorodifluoromethane	UG/L	0.5 U				
524.2	Chloroethane	UG/L	0.5 U				
524.2	Chloroform	UG/L	0.5 U	0.13 J	0.18 J	0.24 J	0.5 U
524.2	Chloromethane	UG/L	0.5 U				
524.2	cis-1,2-Dichloroethene	UG/L	0.5 U	0.5 U	14	4.3	0.5 U
524.2	cis-1,3-Dichloropropene	UG/L	0.5 U				
524.2	Dibromochloromethane	UG/L	0.5 U				
524.2	Dibromomethane	UG/L	0.5 U				
524.2	Dichlorodifluoromethane	UG/L	0.5 U				
524.2	Ethylbenzene	UG/L	0.5 U				
524.2	Freon 115	UG/L	0.5 U	1 U	1 U	1 U	1 U
524.2	Freon 123	UG/L	0.5 U				
524.2	Hexachlorobutadiene	UG/L	0.5 U				
524.2	Isopropylbenzene	UG/L	0.5 U				
524.2	Methyl Tertbutyl Ether	UG/L	0.5 U				
524.2	Methylene chloride	UG/L	0.5 U				
524.2	Propylbenzene	UG/L	0.5 U				
524.2	sec-Butylbenzene	UG/L	0.5 U				
524.2	Styrene	UG/L	0.5 U				
524.2	tert-Butylbenzene	UG/L	0.5 U				
524.2	Tetrachloroethene	UG/L	0.5 U	0.21 J	3.6 J-	7.9	0.5 U
524.2	Toluene	UG/L	0.5 U				

Created by: WCG 06/29/2021 Checked by: LLK 06/29/2021

Table 2 - Summary of Analytical Results Data Usability Summary Report Quarterly Monitoring - Q2 2021 Martin Corporation Former Union Facility - Gr

Lockheed Martin Corporation Former Unisys Facility -- Great Neck Lake Success, New York

		SDG	460-234681-1		460-235115-1		460-235115-1		460-235115-1		460-235115-1	
		Location	QC		N04388		N05099		N12796		N12999	
		Sample Date	e Date 5/12/2021		5/18/2021		5/18/2021		5/18/2021		5/18/2021	
		Sample ID	Sample ID QC-TB120521-XX		SW-N4388-XX		SW-N5099-XX		SW-N12796-XX		SW-N12999-XX	
		QC Code	ТВ		FS		FS		FS		FS	
			Final	Final	Final	Final	Final	Final	Final	Final	Final	Final
Method	Parameter	Unit	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier
524.2	trans-1,2-Dichloroethene	UG/L	0.5 U		0.5 U		0.17 J		0.5 U		0.5 U	
524.2	trans-1,3-Dichloropropene	UG/L	0.5 U		0.5 U		0.5 U		0.5 U		0.5 U	
524.2	Trichloroethene	UG/L	0.5 U		0.11 J		9.4		5.5		0.29 J	
524.2	Trichlorofluoromethane	UG/L	0.5 U		0.5 U		0.5 U		0.5 U		0.5 U	
524.2	Vinyl chloride	UG/L	0.5 U		0.5 U		0.5 U		0.5 U		0.5 U	
524.2	Xylene, o	UG/L	0.5 U		0.5 U		0.5 U		0.5 U		0.5 U	
524.2	Xylenes (m&p)	UG/L	1 U		1 U		1 U		1 U		1 U	

Lockheed Martin Corporation Former Unisys Facility -- Great Neck Lake Success, New York

	SDG	460-235115-1	460-235115-1	460-235115-1	460-235115-1	460-235115-1
	Location	N13000	N13821	N13821	QC	QC
	Sample Date	5/18/2021	5/18/2021	5/18/2021	5/18/2021	5/19/2021
	Sample ID	SW-N13000-XX	SW-500	SW-N13821-XX	QC-TB180521-XX	QC-TB190521-XX
	QC Code	FS	FD	FS	ТВ	ТВ
		Final Final				
Method	Parameter Unit	Result Qualifier				
524.2	1,1,1,2-Tetrachloroethane UG/L	0.5 U				
524.2	1,1,1-Trichloroethane UG/L	0.5 U				
524.2	1,1,2,2-Tetrachloroethane UG/L	0.5 U				
524.2	1,1,2-Trichloro-1,2,2-Trifluoroethane (Freon 113) UG/L	0.7	0.24 J	0.24 J	0.5 U	0.5 U
524.2	1,1,2-Trichloroethane UG/L	0.5 U				
524.2	1,1-Dichloroethane UG/L	0.5 U				
524.2	1,1-Dichloroethene UG/L	0.5 U				
524.2	1,1-Dichloropropene UG/L	0.5 U				
524.2	1,1-Difluoroethane (Freon 152a) UG/L	0.5 U				
524.2	1,2,3-Trichlorobenzene UG/L	0.5 U				
524.2	1,2,3-Trichloropropane UG/L	0.5 U				
524.2	1,2,4-Trichlorobenzene UG/L	0.5 U				
524.2	1,2,4-Trimethylbenzene UG/L	0.5 U				
524.2	1,2-Dichlorobenzene UG/L	0.5 U				
524.2	1,2-Dichloroethane UG/L	0.5 U				
524.2	1,2-Dichloropropane UG/L	0.5 U				
524.2	1,3,5-Trimethylbenzene UG/L	0.5 U				
524.2	1,3-Dichlorobenzene UG/L	0.5 U				
524.2	1,3-Dichloropropane UG/L	0.5 U				
524.2	1,4-Dichlorobenzene UG/L	0.5 U				
524.2	2,2-Dichloropropane UG/L	0.5 U				
524.2	2-Chlorotoluene UG/L	0.5 U				
524.2	4-Chlorotoluene UG/L	0.5 U				
524.2	4-iso-Propyltoluene UG/L	0.5 U				
524.2	Benzene UG/L	0.5 U				
524.2	Bromobenzene UG/L	0.5 U				
524.2	Bromochloromethane UG/L	0.5 U				

Lockheed Martin Corporation Former Unisys Facility -- Great Neck Lake Success, New York

		SDG	460-235115	5_1	460-235115-1		460-23	35115-1	460-235115-1		460-2	35115-1																														
		Location	N13000	I		3113-1 8821		3821)C		2C																														
		Sample Date	5/18/202	I		/2021		/2021		/2021		/2021																														
		Sample ID	SW-N13000			-500		3821-XX		72021 80521-XX		90521-XX																														
		QC Code	5W-W15000 FS	'-^^		-500 D	l	:S		B		90321-XX TB																														
		QC Code	гэ		Г	D		-3	'	D		ID																														
			Final F	inal	Final	Final	Final	Final	Final	Final	Final	Final																														
Method	Parameter	Unit		alifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier																														
524.2	Bromodichloromethane	UG/L	0.5 U		0.5	U	0.5	U	0.5	U	0.5	5 U																														
524.2	Bromoform	UG/L	0.5 U		0.5	U	0.5	U	0.5	U	0.5	i U																														
524.2	Bromomethane	UG/L	0.5 U		0.5	0.5 U		0.5 U		U	0.5	i U																														
524.2	Carbon tetrachloride	UG/L	0.5 U		0.5	0.5 U		0.5 U		0.5 U		U	0.5	5 U																												
524.2	Chlorobenzene	UG/L	0.5 U		0.5 U		0.5 U		0.5	U	0.5	5 U																														
524.2	Chlorodifluoromethane	UG/L	0.5 U		0.5	0.5 U		0.5 U		U	0.5	5 U																														
524.2	Chloroethane	UG/L	0.5 U		0.5	0.5 U		0.5 U		0.5 U		0.5 U		0.5 U		0.5 U		0.5 U		0.5 U		0.5 U		0.5 U		0.5 U				0.5 U		U	0.5	5 U								
524.2	Chloroform	UG/L	0.5 U		0.5	0.5 U		0.5 U 0.5 U 0.5 U		0.5 U		0.5 U		0.5	5 U																											
524.2	Chloromethane	UG/L	0.5 U		0.5	U	0.5 U		0.5 U 0.5		0.5	5 U																														
524.2	cis-1,2-Dichloroethene	UG/L	11		4.2		4.8		0.5	U	0.5	5 U																														
524.2	cis-1,3-Dichloropropene	UG/L	0.5 U		0.5	U	0.5 U		0.5	U	0.5	5 U																														
524.2	Dibromochloromethane	UG/L	0.5 U		0.5	U	0.5 U		0.5 U		0.5	U	0.5	5 U																												
524.2	Dibromomethane	UG/L	0.5 U		0.5	U	0.5 U		0.5	U	0.5	5 U																														
524.2	Dichlorodifluoromethane	UG/L	0.5 U		0.5	U	0.5 U		0.5 U		0.5 U		0.5	U	0.5	5 U																										
524.2	Ethylbenzene	UG/L	0.5 U		0.5	U	0.5	U	0.5	U	0.5	5 U																														
524.2	Freon 115	UG/L	1 U		1	U	1	U	1	U	1	. U																														
524.2	Freon 123	UG/L	0.5 U		0.5	U	0.5	U	0.5	U	0.5	5 U																														
524.2	Hexachlorobutadiene	UG/L	0.5 U		0.5	U	0.5	U	0.5	U	0.5	5 U																														
524.2	Isopropylbenzene	UG/L	0.5 U		0.5	U	0.5	U	0.5	U	0.5	5 U																														
524.2	Methyl Tertbutyl Ether	UG/L	0.5 U		0.5		0.5	U	0.5		0.5	U																														
524.2	Methylene chloride	UG/L	0.5 U		0.5	U	0.5	U	0.83		0.75	i																														
524.2	Propylbenzene	UG/L	0.5 U		0.5	U	0.5	U	0.5	U	0.5	U																														
524.2	sec-Butylbenzene	UG/L	0.5 U		0.5		0.5	U	0.5	U	0.5	U																														
524.2	Styrene	UG/L	0.5 U		0.5	U	0.5 U		0.5 U		0.5	U	0.5	U																												
524.2	tert-Butylbenzene	UG/L	0.5 U		0.5 U		0.5 U		0.5 U		0.5 U		0.5 U		0.5 U		0.5	U	0.5	U																						
524.2	Tetrachloroethene	UG/L	2.1		0.99		1.1 0.5 U		U	0.5	U																															
524.2	Toluene	UG/L	0.5 U		0.5	U	0.5 U		0.2 J		0.21 J																															

		SDG	460-23	460-235115-1		460-235115-1		460-235115-1		35115-1	460-23	35115-1								
		Location	N13	N13000		3821	N13821		QC		C	QC								
		Sample Date	5/18	5/18/2021		5/18/2021		5/18/2021		5/18/2021		/2021								
		Sample ID	SW-N1	SW-N13000-XX		SW-500		SW-N13821-XX		30521-XX	QC-TB19	90521-XX								
		QC Code	F	FS		FD		FS		В	Т	В								
			Final	Final	Final	Final	Final	Final	Final	Final	Final	Final								
Method	Parameter	Unit	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier								
524.2	trans-1,2-Dichloroethene	UG/L	0.5	U	0.5	C	0.5 U		0.5	O	0.5	U								
524.2	trans-1,3-Dichloropropene	UG/L	0.5	U	0.5	U	0.5	0.5 U		U	0.5	U								
524.2	Trichloroethene	UG/L	3		1		1.2		0.5 U		0.5	U								
524.2	Trichlorofluoromethane	UG/L	0.5	U	0.5	U	0.5	U	0.5 U		0.5 U		0.5 U		0.5 U		0.5 U		0.5	U
524.2	Vinyl chloride	UG/L	0.5	U	0.5	0.5 U		U	0.5	U	0.5	U								
524.2	Xylene, o	UG/L	0.5	U	0.5 U		0.5 U		0.5 U		0.5 U		0.5 U		0.5	U	0.5	U		
524.2	Xylenes (m&p)	UG/L	1	U	1 U		1 U		1 U		1 U		1	U						

Lockheed Martin Corporation Former Unisys Facility -- Great Neck Lake Success, New York

	SDO	460-2	34681-1	460-234681-1		460-234681-1		460-2	34681-1		
	Location	1	7GL	17	7ML	1	.GL	1	.GL		
	Sample Date	5/13	3/2021	5/13	3/2021	5/11	/2021	5/11	/2021		
	Sample II	MW-	17GL-XX	MW-1	L7ML-XX	MW-	1GL-XX	MV	V-500		
	QC Code	:	FS		FS	FS			FD		
		Final	Final	Final	Final	Final	Final	Final	Final		
Method	Parameter Unit	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier		
537 (modified)	6:2 Fluorotelomer sulfonate (6:2 FTS) NG/L	1.25	J	1.14	J	4.34	J	4.14	U		
537 (modified)	8:2 Fluorotelomer sulfonate (8:2 FTS) NG/L	1.69	U	1.67	U	1.88	U	1.66	U		
537 (modified)	N-ethyl perfluorooctanesulfonamidoacetic acid (N-EtFOSAA) NG/L	4.22	U	4.18	U	4.7	U	4.14	U		
537 (modified)	N-methyl perfluorooctanesulfonamidoacetic acid (N-MeFOSA NG/L	4.22	U	4.18	U	4.7	4.7 U		U		
537 (modified)	Perfluorobutanesulfonic acid (PFBS) NG/L	0.52	J	0.56	0.56 J 2.51		2.51				
537 (modified)	Perfluorobutanoic acid (PFBA) NG/L	4.22	U	4.18 U		4.18 U 7.84 J+		7.45			
537 (modified)	Perfluorodecanesulfonic acid (PFDS) NG/L	1.69	U	1.67	1.67 U 1.88 U		U	1.66	U		
537 (modified)	Perfluorodecanoic acid (PFDA) NG/L	1.69	U	1.67 U		1.68	J	1.7			
537 (modified)	Perfluorododecanoic acid (PFDoA) NG/L	1.69	U	1.67	1.67 U 1		U	1.66	U		
537 (modified)	Perfluoroheptanesulfonic acid (PFHpS) NG/L	1.69	U	0.27	J	1.88	U	1.66	U		
537 (modified)	Perfluoroheptanoic acid (PFHpA) NG/L	2.22	:	2.46		7.55		7.19			
537 (modified)	Perfluorohexanesulfonic acid (PFHxS) NG/L	1.72	:	2.57		1.69	J	1.72			
537 (modified)	Perfluorohexanoic acid (PFHxA) NG/L	2.8	}	3.38		10		10.1			
537 (modified)	Perfluorononanoic acid (PFNA) NG/L	2.97	,	3.1		1.91		1.85			
537 (modified)	Perfluorooctanesulfonamide (FOSA) NG/L	1.69	U	1.67	U	1.88	U	1.66	U		
537 (modified)	Perfluorooctanesulfonic acid (PFOS) NG/L	4.53	1	5.08		9.79		9.21			
537 (modified)	Perfluorooctanoic acid (PFOA) NG/L	9.94		8.42		13		13.6			
537 (modified)	Perfluoropentanoic acid (PFPeA) NG/L	3.22	:	4.36		13.9		13.9			
537 (modified)	Perfluorotetradecanoic acid (PFTeDA) NG/L	1.69	U	1.67 U 1.88 U		U	1.66	U			
537 (modified)	Perfluorotridecanoic acid (PFTrDA) NG/L	1.69	U	1.67 U		1.67 U		1.88 U		1.66	U
537 (modified)	Perfluoroundecanoic acid (PFUnDA) NG/L	1.69	1.69 U		1.67 U 1.88 U		1.66	U			

GWM_Q2_May_2021_Table_2_3

	SD	3 460-2	234681-1	460-234681-1		460-234681-1		460-2	34681-1				
	Locatio	n :	1GU	1	IMI	1	ML	2	2GL				
	Sample Dat	e 5/1	1/2021	5/12	2/2021	5/12	2/2021	5/13	3/2021				
	Sample I	MW.	-1GU-XX	MW-	1MI-XX	MW-	1ML-XX	MW-2	22GL-XX				
	QC Cod	е	FS		FS		FS		FS				
		Final	Final	Final	Final	Final	Final	Final	Final				
Method	Parameter Unit	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier				
537 (modified)	6:2 Fluorotelomer sulfonate (6:2 FTS) NG/	5.03	3	8.63		2.98	J	4.61	U				
537 (modified)	8:2 Fluorotelomer sulfonate (8:2 FTS) NG/	1.75	5 U	1.65 U		1.77	U	1.85	U				
537 (modified)	N-ethyl perfluorooctanesulfonamidoacetic acid (N-EtFOSAA) NG/	4.37	7 U	4.13	U	4.42	U	4.61	U				
537 (modified)	N-methyl perfluorooctanesulfonamidoacetic acid (N-MeFOSA NG/	4.37	7 U	4.13 U		4.42	U	4.61 U					
537 (modified)	Perfluorobutanesulfonic acid (PFBS) NG/	1.84	1	0.99 J		0.99 J 0.58 J		0.51	J				
537 (modified)	Perfluorobutanoic acid (PFBA) NG/	5.24	1 J+	4.34 J+		4.34 J+ 4.42 U		4.86	J+				
537 (modified)	Perfluorodecanesulfonic acid (PFDS) NG/	. 1.75	5 U	1.65	1.65 U 1.77 U		U	1.85	U				
537 (modified)	Perfluorodecanoic acid (PFDA) NG/	1.77	7	1.65 U				1.85	U				
537 (modified)	Perfluorododecanoic acid (PFDoA) NG/	. 1.75	5 U	1.65 U		1.77	U	1.85	U				
537 (modified)	Perfluoroheptanesulfonic acid (PFHpS) NG/	. 1.75	5 U	0.25	J	1.77	U	1.85	U				
537 (modified)	Perfluoroheptanoic acid (PFHpA) NG/	4.06	5	4.14		1.57	J	2.73					
537 (modified)	Perfluorohexanesulfonic acid (PFHxS) NG/	0.85	5 J	2.17		3.72		2.07					
537 (modified)	Perfluorohexanoic acid (PFHxA) NG/	6.57	7	5.06		2.08		3.43					
537 (modified)	Perfluorononanoic acid (PFNA) NG/	1.92	L	1.18	J	2.18		1.23	J				
537 (modified)	Perfluorooctanesulfonamide (FOSA) NG/	. 1.75	5 U	1.65	U	1.77	U	1.85	U				
537 (modified)	Perfluorooctanesulfonic acid (PFOS) NG/	8.62	L	7.12		4		8.48					
537 (modified)	Perfluorooctanoic acid (PFOA) NG/	8.56	5	14.7		5.51		10.7					
537 (modified)	Perfluoropentanoic acid (PFPeA) NG/	9.17	7	5.74		2.02		3.89					
537 (modified)	Perfluorotetradecanoic acid (PFTeDA) NG/	. 1.75	5 U	1.65 U 1.77 l		U	1.85	U					
537 (modified)	Perfluorotridecanoic acid (PFTrDA) NG/	. 1.75	1.75 U		1.65 U		1.65 U		1.65 U 1		U	1.85	U
537 (modified)	Perfluoroundecanoic acid (PFUnDA) NG/	1.75	1.75 U		1.65 U 1.77 U		1.85	U					

	SC	G .	460-23	460-234681-1		460-234681-1		460-234681-1		34681-1		
	Locatio	n	22	2ML	29	9GL	3	1GL	3:	1MI		
	Sample Da	te	5/13	/2021	5/14	/2021	5/14	/2021	5/14	/2021		
	Sample	D	MW-2	2ML-XX	MW-2	29GL-XX	MW-3	31GL-XX	MW-3	B1MI-XX		
	QC Coo	le	1	FS		FS	FS			FS		
		F	inal	Final	Final	Final	Final	Final	Final	Final		
Method	Parameter Uni	: Re	esult	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier		
537 (modified)	6:2 Fluorotelomer sulfonate (6:2 FTS) NG/	L	2.84	J	1.25	J	4.34	U	4.65	U		
537 (modified)	8:2 Fluorotelomer sulfonate (8:2 FTS) NG/	L	1.74	U	1.83	U	1.74	U	1.86	U		
537 (modified)	N-ethyl perfluorooctanesulfonamidoacetic acid (N-EtFOSAA) NG/	L	4.35	U	4.58	U	4.34	U	4.65	U		
537 (modified)	N-methyl perfluorooctanesulfonamidoacetic acid (N-MeFOSA NG/	L	4.35	U	4.58 U		4.34	U	4.65	U		
537 (modified)	Perfluorobutanesulfonic acid (PFBS) NG/	L	1.04	J	3.21		0.73 J		0.73 J		0.39 J	
537 (modified)	Perfluorobutanoic acid (PFBA) NG/	L	5.33	J+	10.4		2.78 J		1.87 J			
537 (modified)	Perfluorodecanesulfonic acid (PFDS) NG/	L	1.74	U			1.83 U 1.74 U		1.86	U		
537 (modified)	Perfluorodecanoic acid (PFDA) NG/	L	1.89		1.83 U				1.86	U		
537 (modified)	Perfluorododecanoic acid (PFDoA) NG/	L	0.43	J	1.83 U		1.74	U	1.86	U		
537 (modified)	Perfluoroheptanesulfonic acid (PFHpS) NG/	L	1.74	U	0.44	J	1.74	U	1.86 U			
537 (modified)	Perfluoroheptanoic acid (PFHpA) NG/	L	4.01		7.51		0.93	J	0.62 J			
537 (modified)	Perfluorohexanesulfonic acid (PFHxS) NG/	L	2.07		4.22		1.27	J	1.89			
537 (modified)	Perfluorohexanoic acid (PFHxA) NG/	L	5.89		13.5		2.76		0.96	J		
537 (modified)	Perfluorononanoic acid (PFNA) NG/	L	2.14		1.23	J	0.7	J	1.86	U		
537 (modified)	Perfluorooctanesulfonamide (FOSA) NG/	L	1.74	UJ	1.83	U	1.74	U	1.86	U		
537 (modified)	Perfluorooctanesulfonic acid (PFOS) NG/	L	10.6		14.1		1.76		0.44	J		
537 (modified)	Perfluorooctanoic acid (PFOA) NG/	Ľ	12.4		19.9		5.81		1.77	J		
537 (modified)	Perfluoropentanoic acid (PFPeA) NG/	Ľ	7.52		19.8		3.78		0.93	J		
537 (modified)	Perfluorotetradecanoic acid (PFTeDA) NG/	Ľ	1.74	UJ	1.83 U 1.74		U	1.86	U			
537 (modified)	Perfluorotridecanoic acid (PFTrDA) NG/	Ľ	0.4	0.4 J 1.83 U		1.83 U		U	1.86	U		
537 (modified)	Perfluoroundecanoic acid (PFUnDA) NG/	L	0.79 J		1.83 U 1.74 U		1.86	U				

	co.c	460-234681-1		460-234681-1		460-234681-1		460-234681-1	
	SDG	1		35GL		37ML			
	Location	1	LML L/2024						'MU
	Sample Date	1	/2021		2/2021	· '	/2021		3/2021
	Sample ID		1ML-XX		35GL-XX		7ML-XX		7MU-XX
	QC Code		FS		FS	FS			FS
		Final Final Fina			Cin al	- Final	Cin al	Final	Cim al
Method	Parameter Unit	Final Result	Final Qualifier	Final Result	Final Qualifier	Final Result	Final Qualifier	Final Result	Final Qualifier
537 (modified)	6:2 Fluorotelomer sulfonate (6:2 FTS) NG/L			4.49		4.72		4.3	
537 (modified)	8:2 Fluorotelomer sulfonate (8:2 FTS) NG/L			1.79		1.89		1.72	
537 (modified)	N-ethyl perfluorooctanesulfonamidoacetic acid (N-EtFOSAA) NG/L			4.49		4.72		4.3	
537 (modified)	N-methyl perfluorooctanesulfonamidoacetic acid (N-MeFOSA NG/L			4.49 U		4.72 U		4.3	
537 (modified)	Perfluorobutanesulfonic acid (PFBS) NG/L	1.58		2.1		1.89 U		0.88	
537 (modified)	Perfluorobutanoic acid (PFBA) NG/L	0.9		10.1		4.72 U		4.21 J	
537 (modified)	Perfluorodecanesulfonic acid (PFDS) NG/L	1		1.79 U		1.79 U 1.89 U		1.72	
537 (modified)	Perfluorodecanoic acid (PFDA) NG/L	1.58	U	0.35 J		0.35 J 1.89 U		1.72	U
537 (modified)	Perfluorododecanoic acid (PFDoA) NG/L	1.58	U	1.79 U		1.89	U	1.72	U
537 (modified)	Perfluoroheptanesulfonic acid (PFHpS) NG/L	1.58	U	0.22 J		1.89 U		1.72	
537 (modified)	Perfluoroheptanoic acid (PFHpA) NG/L	1.58	U	4.28		1.89	U	3.76	
537 (modified)	Perfluorohexanesulfonic acid (PFHxS) NG/L	0.92	J	1.82		1.89	U	1.17	J
537 (modified)	Perfluorohexanoic acid (PFHxA) NG/L	1.58	U	7.1		1.89	U	4.98	
537 (modified)	Perfluorononanoic acid (PFNA) NG/L	1.58	U	1.43	J	1.89	U	1.82	
537 (modified)	Perfluorooctanesulfonamide (FOSA) NG/L	1.58	U	1.79	U	1.89	U	1.72	U
537 (modified)	Perfluorooctanesulfonic acid (PFOS) NG/L	0.41	J	5.94		0.47	J	10.1	
537 (modified)	Perfluorooctanoic acid (PFOA) NG/L	1.94		12.3		0.58	J	13.4	
537 (modified)	Perfluoropentanoic acid (PFPeA) NG/L	1.58	U	10.8		1.89	U	5.29	
537 (modified)	Perfluorotetradecanoic acid (PFTeDA) NG/L	1.58	U	1.79	1.79 U 1.89 U		U	J 1.72 U	
537 (modified)	Perfluorotridecanoic acid (PFTrDA) NG/L	1.58	U	1.79 U 1.89		1.89	U	1.72 U	
537 (modified)	Perfluoroundecanoic acid (PFUnDA) NG/L	1.58	1.58 U		1.79 U		1.89 U		U

	SDG	460-2	34681-1	460-234681-1		460-234681-1		460-2	34681-1		
	Location	3	3GL	4	6MI	40	6MI	46	5ML		
	Sample Date	5/12	2/2021	5/14	1/2021	5/14	1/2021	5/14	/2021		
	Sample ID	MW-	3GL-XX	MW-4	16MI-XX	MV	V-502	MW-4	6ML-XX		
	QC Code		FS		FS	FD			FS		
		Final	Final	Final	Final	Final	Final	Final	Final		
Method	Parameter Unit	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier		
537 (modified)	6:2 Fluorotelomer sulfonate (6:2 FTS) NG/L	4.86		4.28	U	4.09	U	4.35	U		
537 (modified)	8:2 Fluorotelomer sulfonate (8:2 FTS) NG/L	1.66	U	1.71 U		1.64	U	1.74	U		
537 (modified)	N-ethyl perfluorooctanesulfonamidoacetic acid (N-EtFOSAA) NG/L	4.14	· U	4.28	U	4.09	U	4.35	U		
537 (modified)	N-methyl perfluorooctanesulfonamidoacetic acid (N-MeFOSA NG/L	4.14	· U	4.28 U		4.09 U		4.35 (
537 (modified)	Perfluorobutanesulfonic acid (PFBS) NG/L	5.48		1.71 U		1.64 U		U 1.64 U		1.74	U
537 (modified)	Perfluorobutanoic acid (PFBA) NG/L	8.24	J+	1.35 J		1.35 J 1.12 J		4.35	U		
537 (modified)	Perfluorodecanesulfonic acid (PFDS) NG/L	1.66	U	1.71	1.71 U 1.64 U		U	1.74	U		
537 (modified)	Perfluorodecanoic acid (PFDA) NG/L	0.87	J	1.71 U				1.74	U		
537 (modified)	Perfluorododecanoic acid (PFDoA) NG/L	1.66	U	1.71	1.71 U 1.64		U	1.74	U		
537 (modified)	Perfluoroheptanesulfonic acid (PFHpS) NG/L	1.66	U	1.71 U		1.64	U	1.74			
537 (modified)	Perfluoroheptanoic acid (PFHpA) NG/L	4.87		1.71	U	1.64	U	1.74 U			
537 (modified)	Perfluorohexanesulfonic acid (PFHxS) NG/L	3.5		0.3	J	0.35	J	1.74	U		
537 (modified)	Perfluorohexanoic acid (PFHxA) NG/L	6.87		1.71	U	1.64	U	1.74	U		
537 (modified)	Perfluorononanoic acid (PFNA) NG/L	1.75		1.71	U	1.64	U	1.74	U		
537 (modified)	Perfluorooctanesulfonamide (FOSA) NG/L	1.66	U	1.71	U	1.64 U		1.74	U		
537 (modified)	Perfluorooctanesulfonic acid (PFOS) NG/L	15.7		0.25	J	1.64	U	1.74	U		
537 (modified)	Perfluorooctanoic acid (PFOA) NG/L	14.3		0.48	J	0.44	J	1.74	U		
537 (modified)	Perfluoropentanoic acid (PFPeA) NG/L	8.6		1.71	U	1.64	U	1.74	U		
537 (modified)	Perfluorotetradecanoic acid (PFTeDA) NG/L	1.66	U	1.71 U 1.64 l		U	1.74	U			
537 (modified)	Perfluorotridecanoic acid (PFTrDA) NG/L	1.66	U	1.71 U		1.71 U		1.64 U		1.74	U
537 (modified)	Perfluoroundecanoic acid (PFUnDA) NG/L	1.66	U	1.71 U		1		U	1.74 U		

	S	SDG 460-		460-234681-1		460-234681-1		460-234681-1		34681-1				
	Locati	ion	6	GL	6	MI	7	'GL	7	'GL				
	Sample Da	ate	5/13	/2021	5/13	/2021	5/13	3/2021	5/13	/2021				
	Sample	e ID	MW-	6GL-XX	MW-	6MI-XX	MV	V-501	MW-	7GL-XX				
	QC Co	ode	ı	FS	1	FS	FD			FS				
			Final	Final	Final	Final	Final	Final	Final	Final				
Method	Parameter Un		Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier				
537 (modified)	6:2 Fluorotelomer sulfonate (6:2 FTS) NG	3/L	4.3	U	7.56		4.05	U	0.97	J				
537 (modified)	8:2 Fluorotelomer sulfonate (8:2 FTS) NG	3/L	1.72		1.72		1.62		1.58	U				
537 (modified)	N-ethyl perfluorooctanesulfonamidoacetic acid (N-EtFOSAA) NG	3/L	4.3	U	4.3	U	4.05	U	3.94	U				
537 (modified)	N-methyl perfluorooctanesulfonamidoacetic acid (N-MeFOSA NG	3/L	4.3	U	4.3 U		4.3 U 4.05 U		3.94 U					
537 (modified)	Perfluorobutanesulfonic acid (PFBS) NG	3/L	0.82	J	1.49 J		1.49 J 1.87		2.01					
537 (modified)	Perfluorobutanoic acid (PFBA)	3/L	4.3	U	5.01 J+				5.07	J+				
537 (modified)	Perfluorodecanesulfonic acid (PFDS) NG	3/L	2.69		0.41	J	1.62	U	1.58	U				
537 (modified)	Perfluorodecanoic acid (PFDA)	3/L	1.67	J	2.01		1.62	U	1.58	U				
537 (modified)	Perfluorododecanoic acid (PFDoA) NG	3/L	1.72	U	1.72 U		1.62	U	1.58	U				
537 (modified)	Perfluoroheptanesulfonic acid (PFHpS) NG	3/L	1.72	U	1.72	U	1.62	U	1.58	U				
537 (modified)	Perfluoroheptanoic acid (PFHpA) NG	3/L	0.98	J	2.97		3.34		3.18					
537 (modified)	Perfluorohexanesulfonic acid (PFHxS) NG	3/L	1.72	U	0.54	J	0.77	J	0.75	J				
537 (modified)	Perfluorohexanoic acid (PFHxA) NG	3/L	2.67		7.8		5.13		5.3					
537 (modified)	Perfluorononanoic acid (PFNA) NG	3/L	0.91	J	1.84		1.28	J	1.06	J				
537 (modified)	Perfluorooctanesulfonamide (FOSA) NG	3/L	1.72	U	1.72	U	1.62	U	1.58	U				
537 (modified)	Perfluorooctanesulfonic acid (PFOS) NG	3/L	2.58		5.65		4.33		4.13					
537 (modified)	Perfluorooctanoic acid (PFOA)	3/L	1.75		5.17		7.16		7.53					
537 (modified)	Perfluoropentanoic acid (PFPeA) NG	3/L	3.65		11.1		6.13		6.63					
537 (modified)	Perfluorotetradecanoic acid (PFTeDA) NG	3/L	1.72	U	1.72 U 1.62 U		U	1.58	U					
537 (modified)	Perfluorotridecanoic acid (PFTrDA) NG	3/L	1.72	U	1.72 U		1.72 U		1.72 U 1		1.62	U	1.58	U
537 (modified)	Perfluoroundecanoic acid (PFUnDA) NG	3/L	1.22	1.22 J		0.42 J 1.62 U		1.58	U					

	SDG	460-234681-1		460-234681-1		460-234681-1		460-2	34681-1						
	Location	1	ML	QC		QC			QC						
	Sample Date		3/2021		./2021		L/2021								
	Sample ID	1	7ML-XX		10521-01		110521-XX		20521-XX						
	QC Code		FS		10321-01 EB	l .	EB		EB						
	QC code				LD			'	LD						
		Final Final Final		Final	Final	Final	Final	Final	Final						
Method	Parameter Unit	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier						
537 (modified)	6:2 Fluorotelomer sulfonate (6:2 FTS) NG/L	1.36	J	4.3	U	4.1	C	4.65	U						
537 (modified)	8:2 Fluorotelomer sulfonate (8:2 FTS) NG/L	1.64	U	1.72	U	1.64	U	1.86	U						
537 (modified)	N-ethyl perfluorooctanesulfonamidoacetic acid (N-EtFOSAA) NG/L	·		4.3 U		4.1 U		4.65	U						
537 (modified)	N-methyl perfluorooctanesulfonamidoacetic acid (N-MeFOSA NG/L	4.11	4.11 U		4.3 U		4.3 U		4.3 U 4.1 U		4.1 U		U		
537 (modified)	Perfluorobutanesulfonic acid (PFBS) NG/L	1.64	1.64 U		1.72 U		1.72 U		1.72 U		1.72 U 1.64 U		1.64 U		U
537 (modified)	Perfluorobutanoic acid (PFBA) NG/L	4.11	U	4.3 U		4.3 U 4.1 U		4.65	U						
537 (modified)	Perfluorodecanesulfonic acid (PFDS) NG/L	1.64	U	1.72 U				1.86	U						
537 (modified)	Perfluorodecanoic acid (PFDA) NG/L	1.64	U	1.72 U		1.72 U		1.64	U	1.86	U				
537 (modified)	Perfluorododecanoic acid (PFDoA) NG/L	1.64	U	1.72 U		1.64	U	1.86	U						
537 (modified)	Perfluoroheptanesulfonic acid (PFHpS) NG/L	1.64	U	1.72	U	1.64	U	1.86							
537 (modified)	Perfluoroheptanoic acid (PFHpA) NG/L	1.64	U	1.72	U	1.64	U	1.86	U						
537 (modified)	Perfluorohexanesulfonic acid (PFHxS) NG/L	1.64	U	1.72	U	1.64	U	1.86	U						
537 (modified)	Perfluorohexanoic acid (PFHxA) NG/L	1.64	U	1.72	U	1.64	U	1.86	U						
537 (modified)	Perfluorononanoic acid (PFNA) NG/L	1.64	U	1.72	U	1.64	U	1.86	U						
537 (modified)	Perfluorooctanesulfonamide (FOSA) NG/L	1.64	U	1.72	U	1.64	U	1.86	U						
537 (modified)	Perfluorooctanesulfonic acid (PFOS) NG/L	0.61	J	1.72	U	1.64	U	1.86	U						
537 (modified)	Perfluorooctanoic acid (PFOA) NG/L	0.67	J	1.72	U	1.64	U	1.86	U						
537 (modified)	Perfluoropentanoic acid (PFPeA) NG/L	0.45	J	1.72	U	1.64	U	1.86	U						
537 (modified)	Perfluorotetradecanoic acid (PFTeDA) NG/L	1.64	U	1.72 U		1.72 U 1.64 U		1.86	U						
537 (modified)	Perfluorotridecanoic acid (PFTrDA) NG/L	1.64	U	1.72 U		1.64	U	1.86	U						
537 (modified)	Perfluoroundecanoic acid (PFUnDA) NG/L	1.64	1.64 U		1.72 U 1.64 U		1.86	U							

	S		460-234681-1		460-234681-1		460-235115-1		35115-1		
	Locatio		QC		QC		ЭМІ		MI		
	Sample Da	1	13/2021		1/2021	l	/2021		/2021		
	Sample	D C-TUB	DT130521-λ	C-TUBEV	vL140521-X	MW-2	29MI-XX	MW-	2MI-XX		
	QC Coo	e	e EB		EB	FS			FS		
		Final	Final	Final	Final	Final	Final	Final	Final		
Method	Parameter Uni	Resul	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier		
537 (modified)	6:2 Fluorotelomer sulfonate (6:2 FTS) NG/	L 4.3	9 U	4.39	U	4.56	U	4.13	U		
537 (modified)	8:2 Fluorotelomer sulfonate (8:2 FTS) NG/	L 1.3	'6 U	1.76	U	1.82	U	1.65	U		
537 (modified)	N-ethyl perfluorooctanesulfonamidoacetic acid (N-EtFOSAA) NG/	L 4.3	9 U	4.39	U	4.56	U	4.13	U		
537 (modified)	N-methyl perfluorooctanesulfonamidoacetic acid (N-MeFOSA NG/	L 4.3	9 U	4.39 U		4.56 U		4.39 U 4.56 U		4.13	U
537 (modified)	Perfluorobutanesulfonic acid (PFBS) NG/	L 1.3	'6 U	1.76 U		1.79 J		J 1.79 J		4.44	
537 (modified)	Perfluorobutanoic acid (PFBA) NG/	L 4.3	9 U	4.39 U		4.39 U 11.6		10.4			
537 (modified)	Perfluorodecanesulfonic acid (PFDS) NG/	L 1.3	'6 U	1.76	U	1.82	U	1.65	U		
537 (modified)	Perfluorodecanoic acid (PFDA) NG/	L 1.3	'6 U	1.76 U		1.82	U	1.65	U		
537 (modified)	Perfluorododecanoic acid (PFDoA) NG/	L 1.3	1.76 U		1.76 U				U		
537 (modified)	Perfluoroheptanesulfonic acid (PFHpS) NG/	L 1.7	'6 U	1.76	U	0.27	J	0.26	J		
537 (modified)	Perfluoroheptanoic acid (PFHpA) NG/	L 1.7	'6 U	1.76	U	5.38		10.3			
537 (modified)	Perfluorohexanesulfonic acid (PFHxS) NG/	L 1.7	'6 U	1.76	U	3.18		5.63			
537 (modified)	Perfluorohexanoic acid (PFHxA) NG/	L 1.7	'6 U	1.76	U	6.45		17.7			
537 (modified)	Perfluorononanoic acid (PFNA) NG/	L 1.7	'6 U	1.76	U	1.54	J	1.45	J		
537 (modified)	Perfluorooctanesulfonamide (FOSA) NG/	L 1.7	'6 U	1.76	U	1.82	U	1.65	U		
537 (modified)	Perfluorooctanesulfonic acid (PFOS) NG/	L 1.3	'6 U	1.76	U	8.82		5.06			
537 (modified)	Perfluorooctanoic acid (PFOA) NG/	L 1.3	'6 U	1.76	U	15.2		22.8			
537 (modified)	Perfluoropentanoic acid (PFPeA) NG/	L 1.3	1.76 U 1.76 U		U	8.66		29.2			
537 (modified)	Perfluorotetradecanoic acid (PFTeDA) NG/	L 1.3	'6 U	1.76	U	1.82	U	1.65	U		
537 (modified)	Perfluorotridecanoic acid (PFTrDA) NG/	L 1.3	'6 U	1.76	U	1.82	U	1.65	U		
537 (modified)	Perfluoroundecanoic acid (PFUnDA) NG/	L 1.7	'6 U	1.76	U	1.82	U	1.65	U		

	SDG	460-2	35115-1	460-235115-1		460-235115-1		460-2	35115-1		
	Location	3	ML	4:	ЗМІ	43	BMU	4!	5MI		
	Sample Date	5/19	9/2021	5/17	//2021	5/17	//2021	5/17	//2021		
	Sample ID	MW-	3ML-XX	MW-4	I3MI-XX	MW-4	3MU-XX	MW-4	I5MI-XX		
	QC Code		FS		FS		FS		FS		
		Final	Final	Final	Final	Final	Final	Final	Final		
Method	Parameter Unit	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier		
537 (modified)	6:2 Fluorotelomer sulfonate (6:2 FTS) NG/L	4.28	U	4.56	U	1.22	J	4.45	U		
537 (modified)	8:2 Fluorotelomer sulfonate (8:2 FTS) NG/L	1.71	U	1.82	U	1.71	U	1.78	U		
537 (modified)	N-ethyl perfluorooctanesulfonamidoacetic acid (N-EtFOSAA) NG/L	4.28	U	4.56	U	4.26	U	4.45	U		
537 (modified)	N-methyl perfluorooctanesulfonamidoacetic acid (N-MeFOSA NG/L	4.28	U	4.56	U	4.26	U	4.45	U		
537 (modified)	Perfluorobutanesulfonic acid (PFBS) NG/L	0.36	J	0.24 J		0.24 J 1.71 U		1.78	U		
537 (modified)	Perfluorobutanoic acid (PFBA) NG/L	1.18	J	1.31 J		4.26 U		0.99	J		
537 (modified)	Perfluorodecanesulfonic acid (PFDS) NG/L	1.71	U			1.82 U 1.71 U		1.78	U		
537 (modified)	Perfluorodecanoic acid (PFDA) NG/L	1.71	U	1.82 U		1.82 U 1.71 U		1.78	U		
537 (modified)	Perfluorododecanoic acid (PFDoA) NG/L	1.71	U	1.82 U		1.71	U	1.78	U		
537 (modified)	Perfluoroheptanesulfonic acid (PFHpS) NG/L	1.71	U	1.82	U	1.71	U	1.78	U		
537 (modified)	Perfluoroheptanoic acid (PFHpA) NG/L	0.32	J	0.53	J	1.71	U	1.78 U			
537 (modified)	Perfluorohexanesulfonic acid (PFHxS) NG/L	1.1	J	0.88	J	1.71	U	1.78	U		
537 (modified)	Perfluorohexanoic acid (PFHxA) NG/L	0.52	J	0.62	J	1.71	U	1.78	U		
537 (modified)	Perfluorononanoic acid (PFNA) NG/L	1.71	U	0.88	J	1.71	U	1.78	U		
537 (modified)	Perfluorooctanesulfonamide (FOSA) NG/L	1.71	U	1.82	U	1.71	U	1.78	U		
537 (modified)	Perfluorooctanesulfonic acid (PFOS) NG/L	0.44	J	1.12	J	0.26	J	0.51	J		
537 (modified)	Perfluorooctanoic acid (PFOA) NG/L	1.09	J	3.78		1.71	U	1.78	U		
537 (modified)	Perfluoropentanoic acid (PFPeA) NG/L	0.58	J	0.59	J	0.4	J	1.78	U		
537 (modified)	Perfluorotetradecanoic acid (PFTeDA) NG/L	1.71	U	1.82 U 1.71 U		U	1.78	U			
537 (modified)	Perfluorotridecanoic acid (PFTrDA) NG/L	1.71	U	1.82 U		1.82 U 1.		1.71	U	1.78	U
537 (modified)	Perfluoroundecanoic acid (PFUnDA) NG/L	1.71	U	1.82 U 1.71 U		U	1.78	U			

	SDG	460-2	35115-1	460-2	35115-1	460-23	35115-1	460-2	35115-1
	Location	45	MU	4	7MI	47	7ML	49	эмі 📗
	Sample Date		7/2021	5/17	//2021	5/17	//2021	5/17	//2021
	Sample ID	MW-4	5MU-XX	MW-4	I7MI-XX	MW-4	7ML-XX	MW-4	19MI-XX
	QC Code		FS		FS		FS		FS
		Final	Final	Final	Final	Final	Final	Final	Final
Method	Parameter Unit	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier
537 (modified)	6:2 Fluorotelomer sulfonate (6:2 FTS) NG/L	4.43	U	4.38	U	4.49 U		4.33	U
537 (modified)	8:2 Fluorotelomer sulfonate (8:2 FTS) NG/L	1.77	U	1.75 U		1.8	U	1.73	U
537 (modified)	N-ethyl perfluorooctanesulfonamidoacetic acid (N-EtFOSAA) NG/L	4.43	U	4.38 U		4.49	U	4.33	U
537 (modified)	N-methyl perfluorooctanesulfonamidoacetic acid (N-MeFOSA NG/L	4.43 U		4.38 U		4.49 U		4.33	U
537 (modified)	Perfluorobutanesulfonic acid (PFBS) NG/L	0.34	J	0.31	J	1.8 U		1.73	U
537 (modified)	Perfluorobutanoic acid (PFBA) NG/L	2.43	J	2.97 J		4.49 U		4.33	U
537 (modified)	Perfluorodecanesulfonic acid (PFDS) NG/L	1.77	U	1.75	U	1.8	U	1.73	U
537 (modified)	Perfluorodecanoic acid (PFDA) NG/L	1.77	U	1.75	U	1.8	U	1.73	U
537 (modified)	Perfluorododecanoic acid (PFDoA) NG/L	1.77 U		1.75 U		1.8 U		1.73	U
537 (modified)	Perfluoroheptanesulfonic acid (PFHpS) NG/L	1.77	U	1.75 U		1.8	U	1.73	U
537 (modified)	Perfluoroheptanoic acid (PFHpA) NG/L	0.85	J	1.74 J		1.8	U	1.73	U
537 (modified)	Perfluorohexanesulfonic acid (PFHxS) NG/L	1.07	J	1.28	J	1.8	U	2.38	J+
537 (modified)	Perfluorohexanoic acid (PFHxA) NG/L	0.81	J	2.06		1.33	J	2.59	
537 (modified)	Perfluorononanoic acid (PFNA) NG/L	1.77	U	0.41	J	1.8	U	4.43	
537 (modified)	Perfluorooctanesulfonamide (FOSA) NG/L	1.77	U	1.75	U	1.8	U	1.73	U
537 (modified)	Perfluorooctanesulfonic acid (PFOS) NG/L	2.68		7.49		5.81		1.73	U
537 (modified)	Perfluorooctanoic acid (PFOA) NG/L	3.71		7.55		6.75		5.47	
537 (modified)	Perfluoropentanoic acid (PFPeA) NG/L	0.81	J	1.98		0.75	J	2.55	
537 (modified)	Perfluorotetradecanoic acid (PFTeDA) NG/L	1.77	U	1.75	U	1.8	U	1.73	U
537 (modified)	Perfluorotridecanoic acid (PFTrDA) NG/L	1.77	U	1.75	U	1.8	U	1.73	U
537 (modified)	Perfluoroundecanoic acid (PFUnDA) NG/L	1.77	U	1.75	U	1.8	U	1.73	U

	SDG	460-2	35115-1	460-2	35115-1	460-2	35115-1	460-2	35115-1
	Location		ML		2MI		2ML		3MI
	Sample Date		/2021		3/2021		3/2021		3/2021
	Sample ID	1	9ML-XX	l '	52MI-XX	· ·	2ML-XX		53MI-XX
	QC Code		FS		FS		FS		FS
		Final	Final	Final	Final	Final	Final	Final	Final
Method	Parameter Unit	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier
537 (modified)	6:2 Fluorotelomer sulfonate (6:2 FTS) NG/L	4.26	U	4.53	U	4.21 U		3.97	U
537 (modified)	8:2 Fluorotelomer sulfonate (8:2 FTS) NG/L	1.7	U	1.81 U		1.68	U	1.59	U
537 (modified)	N-ethyl perfluorooctanesulfonamidoacetic acid (N-EtFOSAA) NG/L	4.26	U	4.53 U		4.21	U	3.97	U
537 (modified)	N-methyl perfluorooctanesulfonamidoacetic acid (N-MeFOSA NG/L	4.26 U		4.53 U		4.21 U		3.97	U
537 (modified)	Perfluorobutanesulfonic acid (PFBS) NG/L	1.7	U	1.81	U	1.68 U		1.59	U
537 (modified)	Perfluorobutanoic acid (PFBA) NG/L	0.76	J	4.53	3 U 0.76 J		J	3.97	U
537 (modified)	Perfluorodecanesulfonic acid (PFDS) NG/L	1.7	U	1.81	U	1.68	1.68 U		U
537 (modified)	Perfluorodecanoic acid (PFDA) NG/L	1.7	U	1.81 U		1.68 U		1.59	U
537 (modified)	Perfluorododecanoic acid (PFDoA) NG/L	1.7 U		1.81 U		1.68 UJ		1.59	U
537 (modified)	Perfluoroheptanesulfonic acid (PFHpS) NG/L	1.7	U	1.81 U		1.68	U	1.59	U
537 (modified)	Perfluoroheptanoic acid (PFHpA) NG/L	1.7	U	0.41 J		1.68	U	1.59	U
537 (modified)	Perfluorohexanesulfonic acid (PFHxS) NG/L	1.7	U	0.3	J	1.68	U	1.59	U
537 (modified)	Perfluorohexanoic acid (PFHxA) NG/L	1.7	U	1.81	U	1.68	U	1.59	U
537 (modified)	Perfluorononanoic acid (PFNA) NG/L	1.7	U	1.81	U	1.68	U	1.59	U
537 (modified)	Perfluorooctanesulfonamide (FOSA) NG/L	1.7	U	1.81	U	1.68	U	1.59	U
537 (modified)	Perfluorooctanesulfonic acid (PFOS) NG/L	1.7	U	0.28	J	1.68	U	0.24	J
537 (modified)	Perfluorooctanoic acid (PFOA) NG/L	1.7	U	1.76	J	1.68	U	1.59	U
537 (modified)	Perfluoropentanoic acid (PFPeA) NG/L	1.7	U	1.81	U	1.68	U	1.59	U
537 (modified)	Perfluorotetradecanoic acid (PFTeDA) NG/L	1.7	U	1.81	U	1.68	UJ	1.59	U
537 (modified)	Perfluorotridecanoic acid (PFTrDA) NG/L	1.7	U	1.81	U	1.68	UJ	1.59	U
537 (modified)	Perfluoroundecanoic acid (PFUnDA) NG/L	1.7	U	1.81	U	1.68	U	1.59	U

	SDG	460-235115-1		460-2	35115-1	460-2	35115-1	460-23	35115-1
	Location		3ML		4388		5099		2796
	Sample Date		3/2021		4388 8/2021		3099 8/2021		3/2021
	Sample ID	1	3ML-XX	l '	4388-XX	· '	5099-XX	· ·	.2796-XX
	•		FS		4500-AA FS		5099-XX FS		.2790-XX FS
	QC Code		rs		F3	F3			rs
		Final	Final	Final	Final	Final	Final	Final	Final
Method	Parameter Unit	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier
537 (modified)	6:2 Fluorotelomer sulfonate (6:2 FTS) NG/L	4.48	U	4.34	U	4.41 U		4.45	U
537 (modified)	8:2 Fluorotelomer sulfonate (8:2 FTS) NG/L	1.79	U	1.74 U		1.76	U	1.78	U
537 (modified)	N-ethyl perfluorooctanesulfonamidoacetic acid (N-EtFOSAA) NG/L	4.48	U	4.34 U		4.41	U	4.45	U
537 (modified)	N-methyl perfluorooctanesulfonamidoacetic acid (N-MeFOSA NG/L	4.48	U	4.34 U		4.41 U		4.45	U
537 (modified)	Perfluorobutanesulfonic acid (PFBS) NG/L	0.84	J	1.84		0.39	0.39 J		U
537 (modified)	Perfluorobutanoic acid (PFBA) NG/L	2.45	J	3.51	J	1.02	J	4.45	U
537 (modified)	Perfluorodecanesulfonic acid (PFDS) NG/L	1.79	U	1.74	U	1.76	UJ	1.78	U
537 (modified)	Perfluorodecanoic acid (PFDA) NG/L	1.79	1.79 U		U	0.3	J	1.78	U
537 (modified)	Perfluorododecanoic acid (PFDoA) NG/L	1.79 U		1.74 U		0.37 J		1.78	U
537 (modified)	Perfluoroheptanesulfonic acid (PFHpS) NG/L	1.79	U	0.24 J		0.23	J	1.78	U
537 (modified)	Perfluoroheptanoic acid (PFHpA) NG/L	1.42	J	2.55		0.47	J	1.78	U
537 (modified)	Perfluorohexanesulfonic acid (PFHxS) NG/L	1.07	J	2.43		0.63	J	1.82	J+
537 (modified)	Perfluorohexanoic acid (PFHxA) NG/L	1.96		3.41		0.61	J	2.51	
537 (modified)	Perfluorononanoic acid (PFNA) NG/L	1.79	U	1.7	J	0.42	J	1.78	U
537 (modified)	Perfluorooctanesulfonamide (FOSA) NG/L	1.79	U	1.74	U	1.76	U	1.78	U
537 (modified)	Perfluorooctanesulfonic acid (PFOS) NG/L	1.79	U	2.74		0.49	J	2.18	J+
537 (modified)	Perfluorooctanoic acid (PFOA) NG/L	2.54		8.55		1.13	J	4.02	J+
537 (modified)	Perfluoropentanoic acid (PFPeA) NG/L	1.5	J	3.87		0.72	J	3.24	
537 (modified)	Perfluorotetradecanoic acid (PFTeDA) NG/L	1.79	U	1.74	U	1.76	U	1.78	U
537 (modified)	Perfluorotridecanoic acid (PFTrDA) NG/L	1.79	U	1.74	U	1.76	U	1.78	U
537 (modified)	Perfluoroundecanoic acid (PFUnDA) NG/L	1.79	U	1.74	U	0.32	J	1.78	U

	CD	1 400 3	25115 1	400.3	25115 1	400.3	25115 1	400.3	25115 1
	SDC		35115-1		35115-1		35115-1		35115-1
	Location		2999		3000		3821		3821
	Sample Date		3/2021	l '	3/2021	· ·	3/2021	•	/2021
	Sample II		L2999-XX	l	.3000-XX		'-500		3821-XX
	QC Code		FS		FS		FD		FS
		l							
		Final	Final	Final	Final	Final	Final	Final	Final
Method	Parameter Unit	Result	Qualifier	Result	Qualifier	Result Qualifier		Result	Qualifier
537 (modified)	6:2 Fluorotelomer sulfonate (6:2 FTS) NG/L			4.27		4.46 U		4.53	
537 (modified)	8:2 Fluorotelomer sulfonate (8:2 FTS) NG/L			1.71 U		1.78		1.81	
537 (modified)	N-ethyl perfluorooctanesulfonamidoacetic acid (N-EtFOSAA) NG/L			4.27 U		4.46		4.53	
537 (modified)	N-methyl perfluorooctanesulfonamidoacetic acid (N-MeFOSA NG/L	4.44	4.44 U		4.27 U		U	4.53	U
537 (modified)	Perfluorobutanesulfonic acid (PFBS) NG/L	1.78	U	1.71	U	1.78	U	1.81	U
537 (modified)	Perfluorobutanoic acid (PFBA) NG/L	4.44	U	4.27	U	4.46 U		4.53	U
537 (modified)	Perfluorodecanesulfonic acid (PFDS) NG/L	1.78	U	1.71	U	1.78	U	1.81	U
537 (modified)	Perfluorodecanoic acid (PFDA) NG/L	1.78	U	1.71	U	1.78 U		1.81	U
537 (modified)	Perfluorododecanoic acid (PFDoA) NG/L	1.78	1.78 U		1.71 U		1.78 U		U
537 (modified)	Perfluoroheptanesulfonic acid (PFHpS) NG/L	1.78	U	1.71	U	1.78	U	1.81	U
537 (modified)	Perfluoroheptanoic acid (PFHpA) NG/L	1.92	J+	1.71	U	1.78	U	1.81	U
537 (modified)	Perfluorohexanesulfonic acid (PFHxS) NG/L	1.78	U	1.71	U	1.78	U	1.81	U
537 (modified)	Perfluorohexanoic acid (PFHxA) NG/L	2.67		1.05	J	2.68		2.58	
537 (modified)	Perfluorononanoic acid (PFNA) NG/L	1.78	U	1.71	U	1.78	U	1.81	U
537 (modified)	Perfluorooctanesulfonamide (FOSA) NG/L	1.78	U	1.71	U	1.78	U	1.81	U
537 (modified)	Perfluorooctanesulfonic acid (PFOS) NG/L	1.78	U	1.71	U	1.78	U	1.81	U
537 (modified)	Perfluorooctanoic acid (PFOA) NG/L			2.01	J+	9.2		8.66	
537 (modified)	Perfluoropentanoic acid (PFPeA) NG/L	3.47		1.21	J	3.83		3.47	
537 (modified)	Perfluorotetradecanoic acid (PFTeDA) NG/L		U	1.71	U	1.78	U	1.81	U
537 (modified)	Perfluorotridecanoic acid (PFTrDA) NG/L		U	1.71	U	1.78	U	1.81	U
537 (modified)	Perfluoroundecanoic acid (PFUnDA) NG/L		U	1.71	U	1.78	U	1.81	

		SDG	460.23	35115-1	460.2	25115 1	460.2	25115 1
						35115-1		35115-1
		Location		QC Vanad		QC		QC
		ple Date	-	/2021	-	3/2021	1	9/2021
		•			·			T190521-X
	•	QC Code	ı	EΒ		EB		EB
			Final	Final	Final	Final	Final	Final
Method	Parameter	Unit	Result	Qualifier	Result	Qualifier	Result	Qualifier
537 (modified)	6:2 Fluorotelomer sulfonate (6:2 FTS)	NG/L	4.23		4.35		4.49	
537 (modified)	8:2 Fluorotelomer sulfonate (8:2 FTS)	NG/L	1.69		1.74	U	1.8	
537 (modified)	N-ethyl perfluorooctanesulfonamidoacetic acid (N-EtFOSAA	A) NG/L	4.23	U	4.35	U	4.49	U
537 (modified)	N-methyl perfluorooctanesulfonamidoacetic acid (N-MeFO	SA NG/L	4.23	U	4.35	U	4.49	U
537 (modified)	Perfluorobutanesulfonic acid (PFBS)	NG/L	1.69	U	1.74 U		1.8	U
537 (modified)	Perfluorobutanoic acid (PFBA)	d (PFBA) NG/L				U	4.49	U
537 (modified)	Perfluorodecanesulfonic acid (PFDS)	NG/L	1.69	U	1.74	U	1.8	U
537 (modified)	Perfluorodecanoic acid (PFDA)	NG/L	1.69	U	1.74	U	1.8	U
537 (modified)	Perfluorododecanoic acid (PFDoA)	NG/L	1.69	U	1.74	U	1.8	U
537 (modified)	Perfluoroheptanesulfonic acid (PFHpS)	NG/L	1.69	U	1.74	U	1.8	U
537 (modified)	Perfluoroheptanoic acid (PFHpA)	NG/L	1.69	U	1.74	U	1.8	U
537 (modified)	Perfluorohexanesulfonic acid (PFHxS)	NG/L	1.69	U	1.74	U	1.8	U
537 (modified)	Perfluorohexanoic acid (PFHxA)	NG/L	1.69	U	1.74	U	1.8	U
537 (modified)	Perfluorononanoic acid (PFNA)	NG/L	1.69	U	1.74	U	1.8	U
537 (modified)	Perfluorooctanesulfonamide (FOSA)	NG/L	1.69	U	1.74	U	1.8	U
537 (modified)	Perfluorooctanesulfonic acid (PFOS)	NG/L	1.69	U	1.74	U	1.8	U
537 (modified)	Perfluorooctanoic acid (PFOA)	NG/L	1.69	U	1.74	U	1.8	U
537 (modified)	Perfluoropentanoic acid (PFPeA)	NG/L	1.69	U	1.74	U	1.8	U
537 (modified)	Perfluorotetradecanoic acid (PFTeDA)	NG/L	1.69	U	1.74	U	1.8	U
537 (modified)	Perfluorotridecanoic acid (PFTrDA)	, NG/L	1.69		1.74		1.8	
537 (modified)	Perfluoroundecanoic acid (PFUnDA)	NG/L	1.69		1.74		1.8	

		SDG	460-23	34681-1	460-23	34681-1	460-23	4681-1	460-23	34681-1	460-23	34681-1
	Lo	ocation		7GL		'ML		GL		.GL		GU
	Samp	le Date	5/13	/2021	5/13	/2021	5/11,	/2021	5/11	./2021	5/11	/2021
	Sar	nple ID	MW-1	.7GL-XX	MW-1	7ML-XX	MW-1	LGL-XX	MW	V-500	MW-1	LGU-XX
	Q	C Code		FS	ı	-S	F	:S	ı	FD	F	-s
			Final	Final								
Method	Parameter	Unit	Result	Qualifier								
8260D	1,1,1-Trichloroethane	UG/L	0.5	U								
8260D	1,1,2,2-Tetrachloroethane	UG/L	0.5	U	0.5	U	0.5	U	0.5 U		0.5	U
8260D	1,1,2-Trichloro-1,2,2-Trifluoroethane (Freon 113)	UG/L	2.2		2.9		0.5	U	0.5	U	0.5	U
8260D	1,1,2-Trichloroethane	UG/L	0.5	U	0.5	U	0.5	U	0.5	, U 0		U
8260D	1,1-Dichloroethane	UG/L	0.3	J	0.5	U	0.5	U	0.5	U	0.5	U
8260D	1,1-Dichloroethene	UG/L	1.1		0.62		0.5	U	0.5	U	0.5	U
8260D	1,1-Difluoroethane (Freon 152a)	UG/L	1	U	1	U	1	U	1	U	1	U
8260D	1,2,4-Trichlorobenzene	UG/L	0.5	U	0.5	U	0.5		0.5 U		0.5	U
8260D	1,2-Dibromo-3-chloropropane	UG/L	0.5		0.5		0.5 U		0.5 U		0.5	
8260D	1,2-Dibromoethane	UG/L	0.5		0.5	U	0.5 U		0.5		0.5	U
8260D	1,2-Dichlorobenzene	UG/L	0.5		0.5		0.5		0.5		0.5	U
8260D	1,2-Dichloroethane	UG/L	0.5		0.5		0.5		0.5		0.5	
8260D	1,2-Dichloropropane	UG/L	0.5		0.5		0.5		0.5		0.5	
8260D	1,3-Dichlorobenzene	UG/L	0.5		0.5	U	0.5		0.5		0.5	U
8260D	1,4-Dichlorobenzene	UG/L	0.5		0.5		0.5		0.5		0.5	U
8260D	2-Butanone	UG/L	2.5		2.5		2.5		2.5		2.5	U
8260D	2-Hexanone	UG/L	2.5		2.5		2.5		2.5		2.5	
8260D	4-Methyl-2-pentanone	UG/L	2.5	U	2.5		2.5		2.5		2.5	
8260D	Acetic acid, methyl ester	UG/L	2.5		2.5		2.5		2.5		2.5	U
8260D	Acetone	UG/L		U		U	5		l	U		U
8260D	Benzene	UG/L	0.5		0.5		0.5		0.5		0.5	
8260D	Bromodichloromethane	UG/L	0.5		0.5		0.5		0.5		0.5	
8260D	Bromoform	UG/L	0.5	U								

		SDG	460-2	34681-1	460-23	34681-1	460-23	4681-1	460-23	34681-1	460-23	34681-1		
		Location		7GL		ML		GL		.GL		GU		
		Sample Date		3/2021		/2021		/2021		./2021		/2021		
		Sample ID	-	L7GL-XX		7ML-XX		LGL-XX	1	V-500	1	LGU-XX		
		QC Code		FS		-S		:S	ı	FD	ı	-s		
		`												
			Final	Final										
Method	Parameter	Unit	Result	Qualifier										
8260D	Bromomethane	UG/L	0.5	U										
8260D	Carbon disulfide	UG/L	0.5	U	0.5	U	0.5	U	0.5 U		0.5	U		
8260D	Carbon tetrachloride	UG/L	0.5	U	0.5	U	0.5 U		0.5	U	0.5	U		
8260D	Chlorobenzene	UG/L	0.5	U										
8260D	Chlorodifluoromethane	UG/L	4.2		2.9		1	U	1	U	1	U		
8260D	Chloroethane	UG/L	0.5	U										
8260D	Chloroform	UG/L	0.5	U										
8260D	Chloromethane	UG/L	0.5	U	0.5 U		0.5	U	0.5 U		0.5	U		
8260D	cis-1,2-Dichloroethene	UG/L	21		22		0.5	U	0.5 U		0.5	U		
8260D	cis-1,3-Dichloropropene	UG/L	0.5		0.5		0.5 U		0.5 U		0.5	U		
8260D	Cyclohexane	UG/L	0.5	U	0.5	U	0.5	U	0.5 U		0.5	U		
8260D	Dibromochloromethane	UG/L	0.5	U	0.5	U	0.5	0.5 U		0.5 U		U	0.5	U
8260D	Dichlorodifluoromethane	UG/L	0.5		0.5	U	0.5		0.5		0.5			
8260D	Ethylbenzene	UG/L	0.5	U	0.66		0.5	U	0.5	U	0.5	U		
8260D	Freon 115	UG/L	5	U	5	U	5	U	5	U	5	U		
8260D	Freon 123	UG/L		U	1		1		l	U	1			
8260D	Isopropylbenzene	UG/L	0.5		0.5		0.5		0.5		0.5			
8260D	Methyl cyclohexane	UG/L	0.5		0.5	U	0.5		0.5	U	0.5	U		
8260D	Methyl Tertbutyl Ether	UG/L	0.5		0.5		0.5		0.5		0.5			
8260D	Methylene chloride	UG/L	0.5		0.5		0.5		0.5		0.5			
8260D	Styrene	UG/L	0.5		0.5	U	0.5		0.5		0.5			
8260D	Tetrachloroethene	UG/L	8.1		12		0.5		0.5		0.5			
8260D	Toluene	UG/L	0.5	U										

		SDG			460-2	34681-1	460-2	34681-1	460-2	34681-1	460-23	34681-1
		Location	1	7GL	1	7ML	1	.GL	1	.GL	1	GU
		Sample Date	5/13	3/2021	5/13	3/2021	5/11	/2021	5/11	/2021	5/11	./2021
		Sample ID	-	17GL-XX	· ·	.7ML-XX	· ·	1GL-XX	MW-500		_	1GU-XX
		QC Code		FS		FS		FS	FD			FS
		200000										-
			Final Final		Final	Final	Final	Final	Final	Final	Final	Final
Method	Parameter	Unit	Result Qualifier		Result	Result Qualifier		Qualifier	Result	Qualifier	Result	Qualifier
8260D	trans-1,2-Dichloroethene	UG/L	0.26	J	0.28 J		0.5 U		0.5 U		0.5	U
8260D	trans-1,3-Dichloropropene	UG/L	0.5	U	0.5 U		0.5 U		0.5 U		0.5	U
8260D	Trichloroethene	UG/L	11		13		0.53		0.47	0.47 J		
8260D	Trichlorofluoromethane	UG/L	0.5	U	0.5	U	0.5 U		0.5	U	0.5	U
8260D	Vinyl chloride	UG/L	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U
8260D	Xylene, o	UG/L	1		0.5	U	0.5	U	0.5	U	0.5	U
8260D	Xylenes (m&p)	UG/L			0.32 J		0.5 U		0.5 U		0.5	U
8260D	Xylenes, Total	UG/L	1	U	1 U		1 U		1 U		1 U	

		SDG	460-23	34681-1	460-23	34681-1	460-23	4681-1	460-23	34681-1	460-23	34681-1
	Lo	ocation		MI		ML		:GL		2ML		9GL
	Samp	le Date	5/12	/2021	5/12	/2021	5/13	/2021	5/13	3/2021	5/14	/2021
	Sar	nple ID	MW-	1MI-XX	MW-1	ML-XX	MW-2	2GL-XX	MW-2	2ML-XX	MW-2	9GL-XX
	Q	C Code	1	FS	ı	:s	F	:S		FS	F	-s
			Final	Final								
Method	Parameter	Unit	Result	Qualifier								
8260D	1,1,1-Trichloroethane	UG/L	0.5	U	0.5	U	0.5	U	0.5	U	0.5 U	
8260D	1,1,2,2-Tetrachloroethane	UG/L	0.5	U								
8260D	1,1,2-Trichloro-1,2,2-Trifluoroethane (Freon 113)	UG/L	1.2		3.4		0.5	U	0.5	U	1.3	
8260D	1,1,2-Trichloroethane	UG/L	0.5	U								
8260D	1,1-Dichloroethane	UG/L	0.5	U								
8260D	1,1-Dichloroethene	UG/L	0.5	U	0.4	J	0.5	U	0.5	U	0.5	U
8260D	1,1-Difluoroethane (Freon 152a)	UG/L	1	U	1	U	1	U	1	U	1	U
8260D	1,2,4-Trichlorobenzene	UG/L	0.5	U	0.5	U	0.5		0.5	U	0.5	U
8260D	1,2-Dibromo-3-chloropropane	UG/L	0.5		0.5		0.5		0.5		0.5	
8260D	1,2-Dibromoethane	UG/L	0.5		0.5	U	0.5		0.5		0.5	U
8260D	1,2-Dichlorobenzene	UG/L	0.5	U								
8260D	1,2-Dichloroethane	UG/L	0.5		0.5		0.5		0.5		0.5	
8260D	1,2-Dichloropropane	UG/L	0.5		0.5		0.5		0.5		0.5	
8260D	1,3-Dichlorobenzene	UG/L	0.5		0.5	U	0.5		0.5		0.5	U
8260D	1,4-Dichlorobenzene	UG/L	0.5		0.5		0.5		0.5		0.5	U
8260D	2-Butanone	UG/L	2.5		2.5		2.5		2.5		2.5	U
8260D	2-Hexanone	UG/L	2.5		2.5		2.5		2.5		2.5	
8260D	4-Methyl-2-pentanone	UG/L	2.5	U	2.5		2.5		2.5		2.5	
8260D	Acetic acid, methyl ester	UG/L	2.5		2.5		2.5		2.5		2.5	
8260D	Acetone	UG/L		U		U	5		6.3		5	
8260D	Benzene	UG/L	0.5		0.5		0.5		0.5		0.5	
8260D	Bromodichloromethane	UG/L	0.5		0.5		0.5		0.5		0.5	
8260D	Bromoform	UG/L	0.5	U								

		SDG	460-2	34681-1	460-23	34681-1	460-23	34681-1	460-23	34681-1	460-23	34681-1
		Location		.MI		ML		:GL		2ML		9GL
		Sample Date		./2021		/2021		/2021		3/2021		/2021
		Sample ID	-	1MI-XX		ML-XX		2GL-XX	· ·	2ML-XX	· ·	9GL-XX
		QC Code		FS		S S		:S	l	FS		-S
		QC COUC		1 3	'	5	•	3	·	1 3	'	5
			Final	Final								
Method	Parameter	Unit	Result	Qualifier								
8260D	Bromomethane	UG/L	0.5	U								
8260D	Carbon disulfide	UG/L	0.5	U	0.5	U	0.5	U	0.5 U		0.5	U
8260D	Carbon tetrachloride	UG/L	0.5	U								
8260D	Chlorobenzene	UG/L	0.5	U								
8260D	Chlorodifluoromethane	UG/L	1.1		2.2		1	U	1	U	1	U
8260D	Chloroethane	UG/L	0.5	U								
8260D	Chloroform	UG/L	0.5	U	0.5	U	0.5	U	0.5	U	0.57	
8260D	Chloromethane	UG/L	0.5	U	0.5 U		0.5	U	0.5	0.5 U		U
8260D	cis-1,2-Dichloroethene	UG/L	14		17		0.5 U		0.5 U		24	
8260D	cis-1,3-Dichloropropene	UG/L	0.5	U	0.5	U	0.5 U		0.5 U		0.5	U
8260D	Cyclohexane	UG/L	0.5	U								
8260D	Dibromochloromethane	UG/L	0.5	U								
8260D	Dichlorodifluoromethane	UG/L	0.5	U								
8260D	Ethylbenzene	UG/L	0.88		0.51		0.5	U	0.58		0.5	U
8260D	Freon 115	UG/L	5	U	5	U	5	U	5	U	5	U
8260D	Freon 123	UG/L	1	U	1	U	1	U	1	U	1	U
8260D	Isopropylbenzene	UG/L	0.5	U								
8260D	Methyl cyclohexane	UG/L	0.5	U								
8260D	Methyl Tertbutyl Ether	UG/L	0.5	U								
8260D	Methylene chloride	UG/L	0.5	U								
8260D	Styrene	UG/L	0.5	U								
8260D	Tetrachloroethene	UG/L	4.7		9.5		0.5	U	0.5	U	1.4	
8260D	Toluene	UG/L	0.5	U								

		SDG			460-2	34681-1	460-2	34681-1	460-23	34681-1	460-23	34681-1
		Location	1	.MI	1	.ML	2	2GL	22	2ML	29	9GL
		Sample Date	5/12	2/2021	5/12	2/2021	5/13	3/2021	5/13/2021		5/14	1/2021
		Sample ID	MW-	1MI-XX	MW-	1ML-XX	MW-2	22GL-XX	MW-22ML-XX		MW-2	29GL-XX
		QC Code		FS		FS		FS		FS	1	FS
			Final Final									
			Final Final		Final	Final	Final	Final	Final	Final	Final	Final
Method	Parameter	Unit	Result Qualifier		Result Qualifier		Result Qualifier		Result	Qualifier	Result	Qualifier
8260D	trans-1,2-Dichloroethene	UG/L	0.5	U	0.31 J		0.5 U		0.5 U		0.25	J
8260D	trans-1,3-Dichloropropene	UG/L	0.5	U	0.5	U	0.5 U		0.5	0.5 U		U
8260D	Trichloroethene	UG/L	5		11		0.5 U		0.5 U		5.6	
8260D	Trichlorofluoromethane	UG/L	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U
8260D	Vinyl chloride	UG/L	0.5	U	0.5	U	0.5 U		0.5	U	0.5	U
8260D	Xylene, o	UG/L	0.5 U		0.5	U	0.5	U	0.5	U	0.5	U
8260D	Xylenes (m&p)	UG/L	0.43 J		0.5 U		0.5 U		0.5 U		0.5	U
8260D	Xylenes, Total	UG/L	1	U	1 U		1 U		1 U		1 U	

		SDG	460-23	34681-1	460-23	34681-1	460-23	4681-1	460-23	34681-1	460-23	34681-1		
	L	ocation		1GL		.MI		ML		5GL		'ML		
		le Date		/2021		/2021	5/14	/2021		2/2021		/2021		
	-	nple ID	-	31GL-XX		1MI-XX		1ML-XX		B5GL-XX	1	7ML-XX		
		C Code		FS	ı	-S	F	S		FS	l f	-s		
			Final	Final	Final	Final	Final	Final	Final	Final	Final	Final		
Method	Parameter	Unit	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier		
8260D	1,1,1-Trichloroethane	UG/L	0.5	U	0.5	U	0.5	U	10	U	0.5 U			
8260D	1,1,2,2-Tetrachloroethane	UG/L	0.5	U	0.5	U	0.5	U	10 U		0.5	U		
8260D	1,1,2-Trichloro-1,2,2-Trifluoroethane (Freon 113)	UG/L	6.3		17		3.8		17		8.2			
8260D	1,1,2-Trichloroethane	UG/L	0.5	U	0.26	J	0.5	U	10 U		10 U		0.5	U
8260D	1,1-Dichloroethane	UG/L	0.5	U	0.57		0.5	U	10	U	0.5	U		
8260D	1,1-Dichloroethene	UG/L	0.36	J	0.86		0.5	U	15		0.46	J		
8260D	1,1-Difluoroethane (Freon 152a)	UG/L	1	U	1	U	1	U	20	U	1	U		
8260D	1,2,4-Trichlorobenzene	UG/L	0.5	U	0.5	U	0.5	U	10	U	0.5	U		
8260D	1,2-Dibromo-3-chloropropane	UG/L	0.5		0.5 U		0.5 U		10 U		0.5	U		
8260D	1,2-Dibromoethane	UG/L	0.5		0.5 U		0.5 U		10	U	0.5	U		
8260D	1,2-Dichlorobenzene	UG/L	0.5	U	0.5 U		0.5 U		10 U		0.5	U		
8260D	1,2-Dichloroethane	UG/L	0.5		0.86		0.5		10		0.55			
8260D	1,2-Dichloropropane	UG/L	0.5		0.38		0.5		10	U	0.5	U		
8260D	1,3-Dichlorobenzene	UG/L	0.5		0.5	U	0.5		10	U	0.5	U		
8260D	1,4-Dichlorobenzene	UG/L	0.5		0.5		0.5		10	U	0.5	U		
8260D	2-Butanone	UG/L	2.5		2.5		2.5		50	U	2.5	U		
8260D	2-Hexanone	UG/L	2.5		2.5		2.5		50		2.5			
8260D	4-Methyl-2-pentanone	UG/L	2.5	U	2.5		2.5		50	U	2.5			
8260D	Acetic acid, methyl ester	UG/L	L 2.5 U 2.5 U 50 U			2.5								
8260D	Acetone	UG/L		U		U	5		100			U		
8260D	Benzene	UG/L	0.5		0.5		0.5		10		0.5			
8260D	Bromodichloromethane	UG/L	0.5		0.5		0.5		10		0.5			
8260D	Bromoform	UG/L	0.5	U	0.5	U	0.5	U	10	U	0.5	U		

Created by: WCG 06/29/2021 Checked by: LLK 06/29/2021

GWM_Q2_May_2021_Table_2_3

		SDG	460-23	34681-1	460-23	34681-1	460-23	34681-1	460-2	34681-1	460-23	34681-1
		Location	33	1GL	33	1MI	31	ML	3.	5GL	37	7ML
		Sample Date	5/14	/2021	5/14	/2021	5/14	/2021	5/12	2/2021	5/14	/2021
		Sample ID	MW-3	1GL-XX	MW-3	31MI-XX	MW-3	1ML-XX	MW-3	35GL-XX	MW-3	7ML-XX
		QC Code	1	FS		FS	F	-S		FS	1	FS
			Final	Final								
Method	Parameter	Unit	Result	Qualifier								
8260D	Bromomethane	UG/L	0.5	U	0.5	U	0.5	U	10	U	0.5	U
8260D	Carbon disulfide	UG/L	0.5	U	0.5	U	0.5	U	10	U	0.5	U
8260D	Carbon tetrachloride	UG/L	0.5	U	0.5	U	0.5	U	10	U	0.5	U
8260D	Chlorobenzene	UG/L	0.5	U	0.5	U	0.5	U	10	U	0.5	U
8260D	Chlorodifluoromethane	UG/L	1.7		7.7		5.9		20	U	1.4	
8260D	Chloroethane	UG/L			0.5	U	0.5	U	10	U	0.5	U
8260D	Chloroform	UG/L	0.43 J		0.82		0.5	U	10	U	0.57	
8260D	Chloromethane	UG/L			0.5	U	0.5	U	10	U	0.5	U
8260D	cis-1,2-Dichloroethene	UG/L	150		430		64		6,600		170	
8260D	cis-1,3-Dichloropropene	UG/L	0.5		0.5	U	0.5		10	U	0.5	U
8260D	Cyclohexane	UG/L	0.5	U	0.5	U	0.5	U	10	U	0.5	U
8260D	Dibromochloromethane	UG/L	0.5	U	0.5	U	0.5	U	10	U	0.5	U
8260D	Dichlorodifluoromethane	UG/L	0.5	U	0.5	U	0.5	U	10	U	0.5	U
8260D	Ethylbenzene	UG/L	0.5	U	0.5	U	0.5	U	10	U	0.59	
8260D	Freon 115	UG/L	5	U	5	U	5	U	100	U	5	U
8260D	Freon 123	UG/L	1	U	1	U	1	U	20	U	1	U
8260D	Isopropylbenzene	UG/L	0.5	U	0.5	U	0.5	U	10	U	0.5	U
8260D	Methyl cyclohexane	UG/L	0.5	U	0.5	U	0.5	U	10	U	0.5	U
8260D	Methyl Tertbutyl Ether	UG/L	0.5		0.25	J	0.5	U	10	U	0.5	U
8260D	Methylene chloride	UG/L	0.5	U	0.5	U	0.5	U	10	U	0.5	U
8260D	Styrene	UG/L	0.5	U	0.5	U	0.5	U	10	U	0.5	U
8260D	Tetrachloroethene	UG/L	18		38		8.6		52		14	
8260D	Toluene	UG/L	0.5	U	0.5	U	0.5	U	10	U	0.5	U

		SDG	460-2	34681-1	460-2	34681-1	460-2	34681-1	460-2	34681-1	460-23	34681-1
		Location		1GL		1MI		1ML		5GL		7ML
		Sample Date		1/2021		1/2021	_	1/2021		2/2021		/2021
		•	•	•	· ·	•	· ·	•	·		· ·	·
		Sample ID		31GL-XX		31MI-XX		B1ML-XX		35GL-XX	· ·	37ML-XX
		QC Code		FS		FS		FS		FS		FS
			Final Final		Final	Final	Final	Final	Final	Final	Final	Final
Method	Parameter	Unit	Result Qualifier		Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier
8260D	trans-1,2-Dichloroethene	UG/L	1.1		12		2.7		6.8	J	0.83	
8260D	trans-1,3-Dichloropropene	UG/L	0.5	U	0.5	U	0.5	U	10	U	0.5	U
8260D	Trichloroethene	UG/L	36	J-	82		21		250		39	
8260D	Trichlorofluoromethane	UG/L	0.5	U	0.5	U	0.5	U	10	U	0.43	J
8260D	Vinyl chloride	UG/L	0.5	U	0.5	U	0.5	U	260		0.5	U
8260D	Xylene, o	UG/L			0.5	U	0.5	U	10	U	0.5	U
8260D	Xylenes (m&p)	UG/L			0.5	U	0.5	U	10	U	0.5	U
8260D	Xylenes, Total	UG/L	1	U	1	U	1	U	20	U	1	U

		SDG	460-23	34681-1	460-2	34681-1	460-23	34681-1	460-23	34681-1	460-23	34681-1
	Lo	ocation		MU		GL		SMI .		5MI		SML
	Samp	le Date	5/13	/2021	5/12	2/2021	5/14	/2021	5/14	/2021	5/14	/2021
	Sar	nple ID	MW-3	7MU-XX	MW-	3GL-XX	MW-4	6MI-XX	MV	V-502	MW-4	6ML-XX
	Q	C Code		-S		FS	F	:S	1	FD		FS
			Final	Final								
Method	Parameter	Unit	Result	Qualifier								
8260D	1,1,1-Trichloroethane	UG/L	0.5	U								
8260D	1,1,2,2-Tetrachloroethane	UG/L	0.5	U								
8260D	1,1,2-Trichloro-1,2,2-Trifluoroethane (Freon 113)	UG/L	0.93		0.5		22		23		2.4	
8260D	1,1,2-Trichloroethane	UG/L	0.5	U	0.5	U	0.27	J	0.3	J	0.5	U
8260D	1,1-Dichloroethane	UG/L	0.5	U	0.5	U	0.48	J	0.49	J	0.5	U
8260D	1,1-Dichloroethene	UG/L			0.5	U	0.89		0.88		0.5	U
8260D	1,1-Difluoroethane (Freon 152a)	UG/L	1 U		1	U	1	U	1	U	1	U
8260D	1,2,4-Trichlorobenzene	UG/L	0.5	U								
8260D	1,2-Dibromo-3-chloropropane	UG/L	0.5	U								
8260D	1,2-Dibromoethane	UG/L	0.5	U								
8260D	1,2-Dichlorobenzene	UG/L	0.5	U								
8260D	1,2-Dichloroethane	UG/L	0.5	U	0.5	U	1.1		1.1		0.5	U
8260D	1,2-Dichloropropane	UG/L	0.5	U	0.5	U	0.38	J	0.4	J	0.5	U
8260D	1,3-Dichlorobenzene	UG/L	0.5	U								
8260D	1,4-Dichlorobenzene	UG/L	0.5	U								
8260D	2-Butanone	UG/L	2.5	U								
8260D	2-Hexanone	UG/L	2.5		2.5		2.5		2.5		2.5	
8260D	4-Methyl-2-pentanone	UG/L	2.5		2.5	U	2.5	U	2.5	U	2.5	U
8260D	Acetic acid, methyl ester	UG/L	2.5		2.5		2.5		2.5		2.5	
8260D	Acetone	UG/L	5	U	5	U	5	U	5	U	5	U
8260D	Benzene	UG/L	0.5	U								
8260D	Bromodichloromethane	UG/L	0.5	U								
8260D	Bromoform	UG/L	0.5	U								

		SDG	460-2	34681-1	460-23	34681-1	460 <u>-</u> 23	4681-1	460-2	34681-1	460-23	34681-1
		Location		'MU		GL		MI		54081-1 5MI		SML
		Sample Date		/2021		/2021		/2021		1/2021	· ·	/2021
		Sample ID	-	7MU-XX		3GL-XX		6MI-XX	· ·	V-5021		6ML-XX
		QC Code		FS		-SGL-XX		:S		V-302 FD		FS
		QC Code		гэ	'	-3	ŗ	3	'	ט	'	-3
			Final	Final	Final	Final	Final	Final	Final	Final	Final	Final
Method	Parameter	Unit	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier
8260D	Bromomethane	UG/L	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U
8260D	Carbon disulfide	UG/L	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U
8260D	Carbon tetrachloride	UG/L	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U
8260D	Chlorobenzene	UG/L	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U
8260D	Chlorodifluoromethane	UG/L	28		1	U	3.3		3.7		1.2	
8260D	Chloroethane	UG/L	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U
8260D	Chloroform	UG/L	0.5 U		0.5	U	1.2		1.3		0.45	J
8260D	Chloromethane	UG/L	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U
8260D	cis-1,2-Dichloroethene	UG/L	26		0.31	J	340		350		39	
8260D	cis-1,3-Dichloropropene	UG/L	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U
8260D	Cyclohexane	UG/L	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U
8260D	Dibromochloromethane	UG/L	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U
8260D	Dichlorodifluoromethane	UG/L	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U
8260D	Ethylbenzene	UG/L	0.52		0.5	U	0.33	J	0.35	J	0.47	J
8260D	Freon 115	UG/L	5	U	5	U	5	U	5	U	5	U
8260D	Freon 123	UG/L	1	U	1	U	1	U	1	U	1	U
8260D	Isopropylbenzene	UG/L	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U
8260D	Methyl cyclohexane	UG/L	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U
8260D	Methyl Tertbutyl Ether	UG/L	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U
8260D	Methylene chloride	UG/L	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U
8260D	Styrene	UG/L	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U
8260D	Tetrachloroethene	UG/L	3.1		0.5	U	35		36		3.7	
8260D	Toluene	UG/L	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U

			460-234681-1									
		SDG	460-2	34681-1	460-2	34681-1	460-2	34681-1	460-2	34681-1	460-2	34681-1
		Location	37	7MU	3	3GL	40	6MI	40	6MI	46	5ML
		Sample Date	5/13	3/2021	5/12	2/2021	5/14	/2021	5/14	1/2021	5/14	1/2021
		Sample ID	MW-3	7MU-XX	MW-	-3GL-XX	MW-4	16MI-XX	MV	V-502	MW-4	6ML-XX
		QC Code		FS		FS		FS		FD		FS
			Final Final		Final	Final	Final	Final	Final	Final	Final	Final
Method	Parameter	Unit	Result Qualifier		Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier
8260D	trans-1,2-Dichloroethene	UG/L	0.5	U	0.5	U	1.5		1.7		0.5	U
8260D	trans-1,3-Dichloropropene	UG/L	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U
8260D	Trichloroethene	UG/L	5.5		0.5	U	110		110		20	
8260D	Trichlorofluoromethane	UG/L	0.5	U	0.5	U	0.93		0.97		0.67	
8260D	Vinyl chloride	UG/L	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U
8260D	Xylene, o	UG/L	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U
8260D	Xylenes (m&p)	UG/L	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U
8260D	Xylenes, Total	UG/L	1	U	1	. U	1	U	1	U	1	U

		SDG	460-23	34681-1	460-23	34681-1	460-23	34681-1	460-23	34681-1	460-23	34681-1
	Lo	ocation	6	GL	6	MI	7	GL	7	'GL	7	ML
	Samp	le Date	5/13	/2021	5/13	/2021	5/13	/2021	5/13	3/2021	5/13	3/2021
	Sar	nple ID	MW-	6GL-XX	MW-	6MI-XX	MW	'-501	MW-	7GL-XX	MW-7	7ML-XX
	Q	C Code	1	=S		FS	F	D		FS		FS
			Final	Final								
Method	Parameter	Unit	Result	Qualifier								
8260D	1,1,1-Trichloroethane	UG/L	0.5	U								
8260D	1,1,2,2-Tetrachloroethane	UG/L	0.5	U								
8260D	1,1,2-Trichloro-1,2,2-Trifluoroethane (Freon 113)	UG/L	0.5	U	0.5	U	0.5	U	0.5	U	15	
8260D	1,1,2-Trichloroethane	UG/L	0.5	U								
8260D	1,1-Dichloroethane	UG/L	0.5	U	0.5	U	0.5	U	0.5	U	0.47	J
8260D	1,1-Dichloroethene	UG/L			0.5	U	0.5	U	0.5	U	0.68	
8260D	1,1-Difluoroethane (Freon 152a)	UG/L	1 U		1	U	1	U	1	U	1	U
8260D	1,2,4-Trichlorobenzene	UG/L	0.5	U								
8260D	1,2-Dibromo-3-chloropropane	UG/L	0.5	U								
8260D	1,2-Dibromoethane	UG/L	0.5	U								
8260D	1,2-Dichlorobenzene	UG/L	0.5	U								
8260D	1,2-Dichloroethane	UG/L	0.5	U	0.5	U	0.5	U	0.5	U	0.78	
8260D	1,2-Dichloropropane	UG/L	0.5	U								
8260D	1,3-Dichlorobenzene	UG/L	0.5	U								
8260D	1,4-Dichlorobenzene	UG/L	0.5	U								
8260D	2-Butanone	UG/L	2.5	U								
8260D	2-Hexanone	UG/L	2.5	U								
8260D	4-Methyl-2-pentanone	UG/L	2.5	U								
8260D	Acetic acid, methyl ester	UG/L	2.5		2.5		2.5		2.5		2.5	
8260D	Acetone	UG/L	5	U	5	U	5	U	5	U	5	U
8260D	Benzene	UG/L	0.5	U								
8260D	Bromodichloromethane	UG/L	0.5	U								
8260D	Bromoform	UG/L	0.5	U								

		SDG	460-2	34681-1	460-23	34681-1	460-23	34681-1	460-23	34681-1	460-23	34681-1
		Location		GL		MI		GL		'GL		ML
		Sample Date		/2021		/2021		/2021		3/2021		/2021
		Sample ID	-	6GL-XX		5MI-XX	-	/-501	· ·	7GL-XX		7ML-XX
		QC Code		FS		:S		D		FS		FS
		25 55 85		. •				_		. •		
			Final	Final								
Method	Parameter	Unit	Result	Qualifier								
8260D	Bromomethane	UG/L	0.5	U								
8260D	Carbon disulfide	UG/L	0.5	U								
8260D	Carbon tetrachloride	UG/L	0.5	U								
8260D	Chlorobenzene	UG/L	0.5	U								
8260D	Chlorodifluoromethane	UG/L	1	U	1	U	1		1.1		2	
8260D	Chloroethane	UG/L			0.5	U	0.5	U	0.5	U	0.5	U
8260D	Chloroform	UG/L	0.5 U		0.5	U	0.5	U	0.5	U	0.97	
8260D	Chloromethane	UG/L	0.5	U								
8260D	cis-1,2-Dichloroethene	UG/L	5.2		0.5	U	2		2.2		300	
8260D	cis-1,3-Dichloropropene	UG/L	0.5	U								
8260D	Cyclohexane	UG/L	0.5	U								
8260D	Dibromochloromethane	UG/L	0.5	U								
8260D	Dichlorodifluoromethane	UG/L	0.5	U								
8260D	Ethylbenzene	UG/L	0.5	U								
8260D	Freon 115	UG/L	5	U	5	U	5	U	5	U	5	U
8260D	Freon 123	UG/L	1	U	1	U	1	U	1	U	1	U
8260D	Isopropylbenzene	UG/L	0.5	U								
8260D	Methyl cyclohexane	UG/L	0.5	U								
8260D	Methyl Tertbutyl Ether	UG/L	0.5		0.5	U	0.5		0.5		0.5	U
8260D	Methylene chloride	UG/L	0.5	U								
8260D	Styrene	UG/L	0.5	U								
8260D	Tetrachloroethene	UG/L	0.5	U	0.5	U	0.83		0.71		41	
8260D	Toluene	UG/L	0.5	U								

		SDG	460-2	34681-1	460-2	34681-1	460-2	34681-1	460-23	34681-1	460-23	34681-1
		Location	ϵ	GL .	ϵ	SMI	7	'GL	7	'GL	7	ML
		Sample Date	5/13	3/2021	5/13	3/2021	5/13	3/2021	5/13	3/2021	5/13	3/2021
		Sample ID	MW-	6GL-XX	MW-	6MI-XX	MV	V-501	MW-	7GL-XX	MW-	7ML-XX
		QC Code		FS		FS		FD		FS		FS
				Final Final								
			Final Final		Final	Final	Final	Final	Final	Final	Final	Final
Method	Parameter	Unit	Result Qualifier		Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier
8260D	trans-1,2-Dichloroethene	UG/L	0.5	U	0.5	U	0.5	U	0.5	U	3.3	
8260D	trans-1,3-Dichloropropene	UG/L	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U
8260D	Trichloroethene	UG/L	0.61		0.5	U	1.1		1.1		89	
8260D	Trichlorofluoromethane	UG/L	0.5	U	0.5	U	0.5	U	0.5	U	0.39	J
8260D	Vinyl chloride	UG/L	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U
8260D	Xylene, o	UG/L			0.5	U	0.5	U	0.5	U	0.5	U
8260D	Xylenes (m&p)	UG/L	0.5 U		0.5	U	0.5	U	0.5	U	0.5	U
8260D	Xylenes, Total	UG/L	1	U	1	U	1	U	1	U	1	U

		SDG	460-23	34681-1	460-23	34681-1	460-23	4681-1	460-23	34681-1	460-23	35115-1
	Lo	cation		QC		QC		QC		QC		MI
		le Date		/2021		/2021		/2021		3/2021		/2021
	•	nple ID	=	10521-XX	-	10521-01		20521-XX	-	30521-XX	· ·	9MI-XX
		C Code		ГВ		В		ΞB		ТВ		FS
			Final	Final								
Method	Parameter	Unit	Result	Qualifier								
8260D	1,1,1-Trichloroethane	UG/L	0.5	U								
8260D	1,1,2,2-Tetrachloroethane	UG/L	0.5	U								
8260D	1,1,2-Trichloro-1,2,2-Trifluoroethane (Freon 113)	UG/L	0.5	U	0.5	U	0.5	U	0.5	U	14	
8260D	1,1,2-Trichloroethane	UG/L	0.5	U								
8260D	1,1-Dichloroethane	UG/L	0.5	U	0.5	U	0.5	U	0.5	U	0.47	J
8260D	1,1-Dichloroethene	UG/L	0.5	U	0.5	U	0.5	U	0.5	U	1.7	
8260D	1,1-Difluoroethane (Freon 152a)	UG/L	L 1 U		1	U	1	U	1	U	1	U
8260D	1,2,4-Trichlorobenzene	UG/L	0.5	U								
8260D	1,2-Dibromo-3-chloropropane	UG/L	0.5	U								
8260D	1,2-Dibromoethane	UG/L	0.5	U								
8260D	1,2-Dichlorobenzene	UG/L	0.5	U	0.5	U	0.5	U	0.5	U	0.57	
8260D	1,2-Dichloroethane	UG/L	0.5	U	0.5	U	0.5	U	0.5	U	0.46	J
8260D	1,2-Dichloropropane	UG/L	0.5	U								
8260D	1,3-Dichlorobenzene	UG/L	0.5	U								
8260D	1,4-Dichlorobenzene	UG/L	0.5	U								
8260D	2-Butanone	UG/L	2.5	U								
8260D	2-Hexanone	UG/L	2.5		2.5		2.5		2.5		2.5	
8260D	4-Methyl-2-pentanone	UG/L	2.5	U								
8260D	Acetic acid, methyl ester	UG/L	2.5		2.5		2.5		2.5		2.5	
8260D	Acetone	UG/L		U		U	5			U		U
8260D	Benzene	UG/L	0.5		0.5		0.5		0.5		0.5	U
8260D	Bromodichloromethane	UG/L	0.5	U								
8260D	Bromoform	UG/L	0.5	U								

		SDG	460-2	34681-1	460-23	34681-1	460-23	4681-1	460-23	34681-1	460-23	35115-1
		Location		QC		QC)4001-1)(C	l	QC		9MI
		Sample Date		/2021		/2021		/2021	l	3/2021		/2021
		Sample ID	-	10521-XX	-	10521-01		20521-XX	1	30521-XX		9MI-XX
		QC Code		ТВ		:B		:B	1	70321-XX ТВ		FS
		QC Code		ID		. Б		.Б		ID	'	-3
			Final	Final	Final	Final	Final	Final	Final	Final	Final	Final
Method	Parameter	Unit	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier
8260D	Bromomethane	UG/L	0.5	U	0.5	U	0.5	U	0.5	U	0.5	UJ
8260D	Carbon disulfide	UG/L	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U
8260D	Carbon tetrachloride	UG/L	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U
8260D	Chlorobenzene	UG/L	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U
8260D	Chlorodifluoromethane	UG/L	1	U	1	U	1	U	1	U	1	U
8260D	Chloroethane	UG/L			0.5	U	0.5	U	0.5	U	0.5	U
8260D	Chloroform	UG/L	L 0.5 U		0.5	U	0.5	U	0.5	U	0.5	U
8260D	Chloromethane	UG/L	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U
8260D	cis-1,2-Dichloroethene	UG/L	0.5	U	0.5	U	0.5	U	0.5	U	410	
8260D	cis-1,3-Dichloropropene	UG/L	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U
8260D	Cyclohexane	UG/L	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U
8260D	Dibromochloromethane	UG/L	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U
8260D	Dichlorodifluoromethane	UG/L	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U
8260D	Ethylbenzene	UG/L	0.5	U	0.5	U	0.5	U	0.5	U	0.35	J
8260D	Freon 115	UG/L	5	U	5	U	5	U	5	U	5	U
8260D	Freon 123	UG/L	1	U	1	U	1	U	1	U	1	U
8260D	Isopropylbenzene	UG/L	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U
8260D	Methyl cyclohexane	UG/L	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U
8260D	Methyl Tertbutyl Ether	UG/L	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U
8260D	Methylene chloride	UG/L	0.33	J	0.44	J	0.46	J	0.74		0.5	U
8260D	Styrene	UG/L	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U
8260D	Tetrachloroethene	UG/L	0.5	U	0.5	U	0.5	U	0.5	U	3	
8260D	Toluene	UG/L	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U

		SDG	460-2	34681-1	460-2	34681-1	460-2	34681-1	460-2	34681-1	460-23	35115-1
		Location	(QC		QC	(QC	(QC	29	ЭМІ
		Sample Date	5/11	/2021	5/11	L/2021	5/12	2/2021	5/13	3/2021	5/19)/2021
		Sample ID	QC-TB1	10521-XX	QC-EB1	10521-01	QC-EB1	20521-XX	QC-TB1	30521-XX	MW-2	29MI-XX
		QC Code		ТВ		EB		EB		ТВ		FS
			Final Final		Final	Final	Final	Final	Final	Final	Final	Final
Method	Parameter	Unit	Result Qualifier		Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier
8260D	trans-1,2-Dichloroethene	UG/L	0.5	U	0.5	U	0.5	U	0.5	U	0.89	
8260D	trans-1,3-Dichloropropene	UG/L	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U
8260D	Trichloroethene	UG/L	0.5	U	0.5	U	0.5	U	0.5	U	4.5	
8260D	Trichlorofluoromethane	UG/L	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U
8260D	Vinyl chloride	UG/L	0.5	U	0.5	U	0.5	U	0.5	U	54	
8260D	Xylene, o	UG/L	1		0.5	U	0.5	U	0.5	U	0.5	U
8260D	Xylenes (m&p)	UG/L			0.5	U	0.5	U	0.5	U	0.5	U
8260D	Xylenes, Total	UG/L	1	U	1	U	1	U	1	U	1	U

		SDG	460-23	35115-1	460-23	35115-1	460-23	5115-1	460-2	35115-1	460-23	35115-1
	L	ocation		MI		ML		MI		smu		5MI
		le Date		/2021		/2021	5/17	/2021		/2021		/2021
	-	nple ID	-	2MI-XX		BML-XX		3MI-XX	-	3MU-XX		5MI-XX
		C Code		FS		-S		:S		FS		-S
			Final	Final								
Method	Parameter	Unit	Result	Qualifier								
8260D	1,1,1-Trichloroethane	UG/L	0.5	U								
8260D	1,1,2,2-Tetrachloroethane	UG/L	0.5	U								
8260D	1,1,2-Trichloro-1,2,2-Trifluoroethane (Freon 113)	UG/L	0.5	U	4.1		1.4		0.94		4.1	
8260D	1,1,2-Trichloroethane	UG/L	0.5	U								
8260D	1,1-Dichloroethane	UG/L	0.5	U								
8260D	1,1-Dichloroethene	UG/L	0.5	U								
8260D	1,1-Difluoroethane (Freon 152a)	UG/L	L 1 U		1	U	1	U	1	U	1	U
8260D	1,2,4-Trichlorobenzene	UG/L	0.5	U								
8260D	1,2-Dibromo-3-chloropropane	UG/L	0.5	U								
8260D	1,2-Dibromoethane	UG/L	0.5		0.5	U	0.5		0.5		0.5	U
8260D	1,2-Dichlorobenzene	UG/L	0.5	U								
8260D	1,2-Dichloroethane	UG/L	0.5	U								
8260D	1,2-Dichloropropane	UG/L	0.5	U								
8260D	1,3-Dichlorobenzene	UG/L	0.5	U								
8260D	1,4-Dichlorobenzene	UG/L	0.5		0.5		0.5		0.5		0.5	U
8260D	2-Butanone	UG/L	2.5		2.5		2.5		2.5		2.5	U
8260D	2-Hexanone	UG/L	2.5		2.5		2.5		2.5		2.5	
8260D	4-Methyl-2-pentanone	UG/L	2.5	U	2.5		2.5		2.5		2.5	
8260D	Acetic acid, methyl ester	UG/L	2.5		2.5		2.5		2.5		2.5	
8260D	Acetone	UG/L		U		U	5			U	5	
8260D	Benzene	UG/L	0.5		0.5		0.5		0.5		0.5	
8260D	Bromodichloromethane	UG/L	0.5		0.5		0.5		0.5		0.5	
8260D	Bromoform	UG/L	0.5	U								

Created by: WCG 06/29/2021 Checked by: LLK 06/29/2021

GWM_Q2_May_2021_Table_2_3

		SDG	460.2	35115-1	460.23	35115-1	460.22	5115-1	460.2	35115-1	160.23	35115-1
		Location		MI MI		ML		MI MI		33113-1		53113-1 5MI
		Sample Date		/2021		/2021	_	/2021		//2021		/2021
		Sample ID	-	-					· ·	3MU-XX		5MI-XX
		- 1		2MI-XX		BML-XX		3MI-XX		_		
		QC Code		FS	'	-S	r	:5		FS	'	FS
			Final	Final								
Method	Parameter	Unit	Result	Qualifier								
8260D	Bromomethane	UG/L	0.5	UJ								
8260D	Carbon disulfide	UG/L	0.5	U								
8260D	Carbon tetrachloride	UG/L	0.5	U	0.5	U	0.5	U	0.5	U	0.41	J
8260D	Chlorobenzene	UG/L	0.5	U								
8260D	Chlorodifluoromethane	UG/L	1	U	1	U	2.4		0.69	J	0.67	J
8260D	Chloroethane	UG/L	0.5	U								
8260D	Chloroform	UG/L	0.5	U	0.36	J	0.5	U	0.5	U	0.52	
8260D	Chloromethane	UG/L	0.5	U								
8260D	cis-1,2-Dichloroethene	UG/L	1.9		54		25		16		37	
8260D	cis-1,3-Dichloropropene	UG/L	0.5	U								
8260D	Cyclohexane	UG/L	0.5	U								
8260D	Dibromochloromethane	UG/L	0.5	U								
8260D	Dichlorodifluoromethane	UG/L	0.5	U								
8260D	Ethylbenzene	UG/L	0.5	U	0.42	J	0.5	U	0.45	J	0.38	J
8260D	Freon 115	UG/L	5	U	5	U	5	U	5	U	5	U
8260D	Freon 123	UG/L	1	U	1	U	1	U	1	U	1	U
8260D	Isopropylbenzene	UG/L	0.5	U								
8260D	Methyl cyclohexane	UG/L	0.5	U								
8260D	Methyl Tertbutyl Ether	UG/L	0.5		0.5	U	0.5		0.5		0.5	U
8260D	Methylene chloride	UG/L	0.5	U								
8260D	Styrene	UG/L	0.5	U								
8260D	Tetrachloroethene	UG/L	9.3		6.5		3		1.3		5.4	
8260D	Toluene	UG/L	0.5	U								

Created by: WCG 06/29/2021 Checked by: LLK 06/29/2021

GWM_Q2_May_2021_Table_2_3

		SDG	460-2	35115-1	460-2	35115-1	460-2	35115-1	460-2	35115-1	460-23	35115-1
		Location			3	ML	4:	3МІ	43	BMU	45	5MI
		Sample Date	5/19)/2021	5/19)/2021	5/17	7/2021	5/17	//2021	5/17	//2021
		Sample ID	MW-	2MI-XX	MW-	3ML-XX	MW-4	13MI-XX	MW-4	3MU-XX	MW-4	15MI-XX
		QC Code		FS								
			Final	Final								
Method	Parameter	Unit	Result	Qualifier								
8260D	trans-1,2-Dichloroethene	UG/L	0.5	U	0.62		0.5	U	0.5	U	0.34	J
8260D	trans-1,3-Dichloropropene	UG/L	0.5	U								
8260D	Trichloroethene	UG/L	1.5		16		8.5		5.5		27	
8260D	Trichlorofluoromethane	UG/L	0.5	U	0.5	U	0.5	U	0.5	U	0.44	J-
8260D	Vinyl chloride	UG/L	0.5	U								
8260D	Xylene, o	UG/L	0.5	U								
8260D	Xylenes (m&p)	UG/L	0.5	U								
8260D	Xylenes, Total	UG/L	1	U	1	U	1	U	1	U	1	U

		SDG	460-23	35115-1	460-2	35115-1	460-23	5115-1	460-23	35115-1	460-23	35115-1
	Lo	ocation	45	MU	4	7MI	47	ML	49	ЭМІ	49	ML
	Samp	le Date	5/17	/2021	5/17	/2021	5/17,	/2021	5/17	//2021	5/17	/2021
	Sar	nple ID	MW-4	5MU-XX	MW-4	7MI-XX	MW-4	7ML-XX	MW-4	I9MI-XX	MW-4	9ML-XX
	Q	C Code	ı	=S		FS	F	S		FS	F	=S
			Final	Final								
Method	Parameter	Unit	Result	Qualifier								
8260D	1,1,1-Trichloroethane	UG/L	0.5	U								
8260D	1,1,2,2-Tetrachloroethane	UG/L	0.5	U								
8260D	1,1,2-Trichloro-1,2,2-Trifluoroethane (Freon 113)	UG/L	8.5		4.2		3		0.5	U	0.5	U
8260D	1,1,2-Trichloroethane	UG/L	0.5	U								
8260D	1,1-Dichloroethane	UG/L	0.4	J	0.27	J	0.5	U	0.5	U	0.5	U
8260D	1,1-Dichloroethene	UG/L	0.47	J	0.5	U	0.35	J	0.5	U	0.5	U
8260D	1,1-Difluoroethane (Freon 152a)	UG/L	1	U	1	U	1	U	1	U	1	U
8260D	1,2,4-Trichlorobenzene	UG/L	0.5	U								
8260D	1,2-Dibromo-3-chloropropane	UG/L	0.5	U								
8260D	1,2-Dibromoethane	UG/L	0.5	U								
8260D	1,2-Dichlorobenzene	UG/L	0.5	U								
8260D	1,2-Dichloroethane	UG/L	0.45	J	0.5	U	0.5	U	0.5	U	0.5	U
8260D	1,2-Dichloropropane	UG/L	0.5	U								
8260D	1,3-Dichlorobenzene	UG/L	0.5	U								
8260D	1,4-Dichlorobenzene	UG/L	0.5	U								
8260D	2-Butanone	UG/L	2.5	U								
8260D	2-Hexanone	UG/L	2.5		2.5		2.5		2.5		2.5	
8260D	4-Methyl-2-pentanone	UG/L	2.5	U								
8260D	Acetic acid, methyl ester	UG/L	2.5		2.5		2.5		2.5		2.5	U
8260D	Acetone	UG/L	5	U	5	U	5	U	5	U	5	U
8260D	Benzene	UG/L	0.5	U								
8260D	Bromodichloromethane	UG/L	0.5	U								
8260D	Bromoform	UG/L	0.5	U								

Created by: WCG 06/29/2021 Checked by: LLK 06/29/2021

		SDG	460-23	35115-1	460-2	35115-1	460-23	35115-1	460-23	35115-1	460-23	35115-1
		Location		MU		7MI		ML		9MI		9ML
		Sample Date		/2021		/2021		/2021		//2021	5/17	/2021
		Sample ID		5MU-XX	-	7MI-XX	-	7ML-XX		, I9MI-XX		9ML-XX
		QC Code		FS		FS	F	:S		FS		FS
		,										
			Final	Final	Final	Final	Final	Final	Final	Final	Final	Final
Method	Parameter	Unit	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier
8260D	Bromomethane	UG/L	0.5	UJ	0.5	UJ	0.5	UJ	0.5	UJ	0.5	UJ
8260D	Carbon disulfide	UG/L	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U
8260D	Carbon tetrachloride	UG/L	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U
8260D	Chlorobenzene	UG/L	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U
8260D	Chlorodifluoromethane	UG/L	1.6		0.77	J	1	U	1	U	1	U
8260D	Chloroethane	UG/L	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U
8260D	Chloroform	UG/L	0.54		0.5	U	0.5	U	0.5	U	0.5	U
8260D	Chloromethane	UG/L	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U
8260D	cis-1,2-Dichloroethene	UG/L	210		44		17		0.5	U	0.5	U
8260D	cis-1,3-Dichloropropene	UG/L	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U
8260D	Cyclohexane	UG/L	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U
8260D	Dibromochloromethane	UG/L	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U
8260D	Dichlorodifluoromethane	UG/L	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U
8260D	Ethylbenzene	UG/L	0.44	J	0.46	J	0.65		0.5	U	0.31	J
8260D	Freon 115	UG/L	5	U	5	U	5	U	5	U	5	U
8260D	Freon 123	UG/L	1	U	1	U	1	U	1	U	1	U
8260D	Isopropylbenzene	UG/L	0.5		0.5		0.5		0.5		0.5	
8260D	Methyl cyclohexane	UG/L	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U
8260D	Methyl Tertbutyl Ether	UG/L	0.5		0.5		0.5		0.24		0.5	
8260D	Methylene chloride	UG/L	0.5		0.5		0.5		0.5		0.5	
8260D	Styrene	UG/L	0.5		0.5	U	0.5	U	0.5		0.5	
8260D	Tetrachloroethene	UG/L	16		5		1.9		0.73		0.61	
8260D	Toluene	UG/L	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U

Created by: WCG 06/29/2021 Checked by: LLK 06/29/2021

		SDG			460-2	35115-1	460-2	35115-1	460-2	35115-1	460-2	35115-1
		Location			4	7MI	4	7ML	49	9МІ	49	9ML
		Sample Date	5/17	7/2021	5/17	7/2021	5/17	7/2021	5/17	7/2021	5/17	//2021
		Sample ID	MW-4	5MU-XX	MW-4	17MI-XX	MW-4	7ML-XX	MW-4	19MI-XX	MW-4	9ML-XX
		QC Code		FS								
			Final	Final								
Method	Parameter	Unit	Result	Qualifier								
8260D	trans-1,2-Dichloroethene	UG/L	1.9		0.76		0.55		0.5	U	0.5	U
8260D	trans-1,3-Dichloropropene	UG/L	0.5	U								
8260D	Trichloroethene	UG/L	41		14		11		0.5	U	0.5	U
8260D	Trichlorofluoromethane	UG/L	0.5	U								
8260D	Vinyl chloride	UG/L	0.5	U								
8260D	Xylene, o	UG/L	0.5	U								
8260D	Xylenes (m&p)	UG/L	0.5	U								
8260D	Xylenes, Total	UG/L	1	U	1	U	1	U	1	U	1	U

		SDG	460-23	35115-1	460-2	35115-1	460-23	35115-1	460-23	35115-1	460-23	35115-1
	Lo	ocation	51	MI	5:	LML	52	2MI	52	2ML	53	3МІ
	Samp	le Date	5/19	/2021	5/19	/2021	5/18	/2021	5/18	/2021	5/18	3/2021
	Sar	nple ID	MW-5	1MI-XX	MW-5	1ML-XX	MW-5	2MI-XX	MW-5	2ML-XX	MW-5	53MI-XX
	Q	C Code	1	=S		FS	F	=S		FS		FS
			Final	Final								
Method	Parameter	Unit	Result	Qualifier								
8260D	1,1,1-Trichloroethane	UG/L					0.5	U	0.5	U	0.5	U
8260D	1,1,2,2-Tetrachloroethane	UG/L					0.5	U	0.5	U	0.5	U
8260D	1,1,2-Trichloro-1,2,2-Trifluoroethane (Freon 113)	UG/L	2.9		2.9		0.61		2.6		0.5	U
8260D	1,1,2-Trichloroethane	UG/L					0.5	U	0.5	U	0.5	U
8260D	1,1-Dichloroethane	UG/L					0.5	U	0.5	U	0.5	U
8260D	1,1-Dichloroethene	UG/L					0.5	U	0.5	U	0.5	U
8260D	1,1-Difluoroethane (Freon 152a)	UG/L					1	U	1	U	1	U
8260D	1,2,4-Trichlorobenzene	UG/L					0.5	U	0.5	U	0.5	U
8260D	1,2-Dibromo-3-chloropropane	UG/L					0.5	U	0.5	U	0.5	U
8260D	1,2-Dibromoethane	UG/L					0.5	U	0.5	U	0.5	U
8260D	1,2-Dichlorobenzene	UG/L					0.5	U	0.5	U	0.5	U
8260D	1,2-Dichloroethane	UG/L					0.5	U	0.5	U	0.5	U
8260D	1,2-Dichloropropane	UG/L					0.5	U	0.5	U	0.5	U
8260D	1,3-Dichlorobenzene	UG/L					0.5	U	0.5	U	0.5	U
8260D	1,4-Dichlorobenzene	UG/L					0.5	U	0.5	U	0.5	U
8260D	2-Butanone	UG/L					2.5	U	2.5	U	2.5	U
8260D	2-Hexanone	UG/L					2.5	U	2.5	U	2.5	U
8260D	4-Methyl-2-pentanone	UG/L					2.5	U	2.5	U	2.5	U
8260D	Acetic acid, methyl ester	UG/L					2.5	U	2.5	U	2.5	U
8260D	Acetone	UG/L					5	U	5	U	5	U
8260D	Benzene	UG/L					0.5	U	0.5	U	0.5	U
8260D	Bromodichloromethane	UG/L					0.5	U	0.5	U	0.5	U
8260D	Bromoform	UG/L					0.5	U	0.5	U	0.5	U

Created by: WCG 06/29/2021 Checked by: LLK 06/29/2021

		SDG	460-23	35115-1	460-2	35115-1	460-23	35115-1	460-2	35115-1	460-23	35115-1
		Location	5:	1MI		lML		2MI	52	2ML		змі
		Sample Date	5/19	/2021	5/19	/2021	5/18	/2021	5/18	3/2021	5/18	3/2021
		Sample ID		51MI-XX	· ·	1ML-XX		2MI-XX	MW-5	2ML-XX	· ·	53MI-XX
		QC Code		FS		FS	F	- S		FS		FS
			Final	Final	Final	Final	Final	Final	Final	Final	Final	Final
Method	Parameter	Unit	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier
8260D	Bromomethane	UG/L					0.5	UJ	0.5	UJ	0.5	UJ
8260D	Carbon disulfide	UG/L					0.5	U	0.5	U	0.5	U
8260D	Carbon tetrachloride	UG/L					0.5		0.5		0.5	
8260D	Chlorobenzene	UG/L					0.5	U	0.5	U	0.5	U
8260D	Chlorodifluoromethane	UG/L	1	U	1.9		1	U	1	U	1	U
8260D	Chloroethane	UG/L					0.5	U	0.5	U	0.5	U
8260D	Chloroform	UG/L					0.5	U	0.42	J	0.5	U
8260D	Chloromethane	UG/L					0.5	U	0.5	U	0.5	U
8260D	cis-1,2-Dichloroethene	UG/L	51		36		15		20		2.2	
8260D	cis-1,3-Dichloropropene	UG/L					0.5		0.5		0.5	
8260D	Cyclohexane	UG/L					0.5	U	0.5	U	0.5	U
8260D	Dibromochloromethane	UG/L					0.5	U	0.5	U	0.5	U
8260D	Dichlorodifluoromethane	UG/L					0.5		0.5		0.5	
8260D	Ethylbenzene	UG/L					0.5	U	0.5	U	0.5	U
8260D	Freon 115	UG/L					5	U	5	U	5	U
8260D	Freon 123	UG/L					1	U	1	U	1	U
8260D	Isopropylbenzene	UG/L					0.5		0.5		0.5	
8260D	Methyl cyclohexane	UG/L					0.5		0.5	U	0.5	U
8260D	Methyl Tertbutyl Ether	UG/L					0.5		0.5		0.5	
8260D	Methylene chloride	UG/L					0.5		0.5		0.5	
8260D	Styrene	UG/L					0.5	U	0.5		0.5	
8260D	Tetrachloroethene	UG/L	4		3.9		3.2		2.7		0.86	
8260D	Toluene	UG/L					0.5	U	0.5	U	0.5	U

Created by: WCG 06/29/2021 Checked by: LLK 06/29/2021

		SDG	460-2	35115-1	460-2	35115-1	460-2	35115-1	460-2	35115-1	460-23	35115-1
		Location		1MI		1ML		2MI		2ML		3MI
		Sample Date	_	9/2021		9/2021	_	3/2021		3/2021		3/2021
		Sample ID	-	51MI-XX		51ML-XX	-	52MI-XX		52ML-XX	_	3MI-XX
		•			_				_		_	
		QC Code		FS								
			Final	Final								
Method	Parameter	Unit	Result	Qualifier								
8260D	trans-1,2-Dichloroethene	UG/L					0.31	J	3.3		0.5	U
8260D	trans-1,3-Dichloropropene	UG/L					0.5	U	0.5	U	0.5	U
8260D	Trichloroethene	UG/L	14		13		12		11		3.7	
8260D	Trichlorofluoromethane	UG/L					0.5	U	0.46	J-	0.5	U
8260D	Vinyl chloride	UG/L					0.5	U	0.5	U	0.5	U
8260D	Xylene, o	UG/L					0.5	U	0.5	U	0.5	U
8260D	Xylenes (m&p)	UG/L					0.5	U	0.5	U	0.5	U
8260D	Xylenes, Total	UG/L					1	U	1	U	1	U

		60.0	460.0	25445.4	460.0	25445.4	460.0	25445.4
		SDG		35115-1		35115-1		35115-1
		cation		BML (2004)		9687		QC
		le Date		3/2021	-	9/2021	-	//2021
		nple ID	_	3ML-XX		9687-XX		70521-XX
	Q	C Code		FS		FS		ТВ
			Fi1	r:l	ril	Et a a l	rin al	Et a a l
			Final	Final	Final	Final	Final	Final
	Parameter	Unit	Result 0.5	Qualifier	Result	Qualifier	Result	Qualifier
8260D	1,1,1-Trichloroethane	UG/L					0.5	
8260D	1,1,2,2-Tetrachloroethane						0.5	
8260D	1,1,2-Trichloro-1,2,2-Trifluoroethane (Freon 113)	•			0.5	U	0.5	_
8260D	1,1,2-Trichloroethane	UG/L	0.5				0.5	
8260D	1,1-Dichloroethane	UG/L	0.5				0.5	
8260D	1,1-Dichloroethene	UG/L	0.5 U				0.5	
8260D	1,1-Difluoroethane (Freon 152a)	UG/L	1 U				1	U
8260D	1,2,4-Trichlorobenzene	UG/L	0.5 U				0.5	U
8260D	1,2-Dibromo-3-chloropropane	UG/L	0.5 U				0.5	U
8260D	1,2-Dibromoethane	UG/L	0.5	U			0.5	U
8260D	1,2-Dichlorobenzene	UG/L	0.5	U			0.5	U
8260D	1,2-Dichloroethane	UG/L	0.5	U			0.5	U
8260D	1,2-Dichloropropane	UG/L	0.5	U			0.5	U
8260D	1,3-Dichlorobenzene	UG/L	0.5	U			0.5	U
8260D	1,4-Dichlorobenzene	UG/L	0.5	U			0.5	U
8260D	2-Butanone	UG/L	2.5	U			2.5	U
8260D	2-Hexanone	UG/L	2.5	U			2.5	U
8260D	4-Methyl-2-pentanone	UG/L	2.5	U			2.5	U
8260D	Acetic acid, methyl ester	UG/L	2.5	U			2.5	U
8260D	Acetone	UG/L	5	U			5	U
8260D	Benzene	UG/L	0.5	U			0.5	U
8260D	Bromodichloromethane						0.5	U
8260D	Bromoform	UG/L					0.5	U

		SDG	460.22	35115-1	460.2	35115-1	460.22	35115-1
		Location		3ML (2021		9687	1	QC /2024
		Sample Date		/2021	-	9/2021	1	/2021
		Sample ID		3ML-XX		9687-XX	1	70521-XX
		QC Code	· ·	FS		FS		ГВ
					Et a a l	Final	ria al	
0.0 - 411	Paramatan.	11	-	Oualifier	-	-	Final	Final
		Unit	Result	-,	Result	Qualifier	Result	Qualifier
8260D	Bromomethane	UG/L	0.5				0.5	
8260D	Carbon disulfide	UG/L	0.5				0.5	
8260D	Carbon tetrachloride	UG/L	0.5				0.5	
8260D	Chlorobenzene	UG/L	0.5		_		0.5	
8260D	Chlorodifluoromethane	UG/L		U	1	U	1	U
8260D	Chloroethane	UG/L	0.5	U			0.5	
8260D	Chloroform	UG/L	0.6				0.5	
8260D	Chloromethane	UG/L	0.5				0.5	
8260D	cis-1,2-Dichloroethene	UG/L	0.35		0.5	U	0.5	
8260D	cis-1,3-Dichloropropene	UG/L	0.5				0.5	
8260D	Cyclohexane	UG/L	0.5				0.5	
8260D	Dibromochloromethane	UG/L	0.5				0.5	
8260D	Dichlorodifluoromethane	UG/L	0.5				0.5	
8260D	Ethylbenzene	UG/L	0.5	U			0.5	U
8260D	Freon 115	UG/L	5	U			5	U
8260D	Freon 123	UG/L	1	U			1	U
8260D	Isopropylbenzene	UG/L	0.5	U			0.5	U
8260D	Methyl cyclohexane	UG/L	0.5	U			0.5	U
8260D	Methyl Tertbutyl Ether	UG/L	0.5	U			0.5	U
8260D	Methylene chloride	UG/L	0.5	U			0.71	
8260D	Styrene	UG/L	0.5	U			0.5	U
8260D	Tetrachloroethene	UG/L	0.32	J	0.5	U	0.5	U
8260D	Toluene	UG/L	0.5	U			0.5	U

		SDG	SDG 460-23511		460-2	35115-1	460-2	35115-1
		Location	53	3ML	N0	9687	(QC
		Sample Date	5/18	3/2021	5/19	9/2021	5/17	//2021
		Sample ID	MW-5	3ML-XX	IW-NS	9687-XX	QC-TB1	70521-XX
		QC Code		FS		FS		ТВ
			Final	Final	Final	Final	Final	Final
Method	Parameter	Unit	Result Qualifier		Result	Qualifier	Result	Qualifier
8260D	trans-1,2-Dichloroethene	UG/L	0.5	U			0.5	U
8260D	trans-1,3-Dichloropropene	UG/L	0.5	U			0.5	U
8260D	Trichloroethene	UG/L	0.41	J	0.5	U	0.5	U
8260D	Trichlorofluoromethane	UG/L	0.5	U			0.5	U
8260D	Vinyl chloride	UG/L	0.5	U			0.5	U
8260D	Xylene, o	UG/L	L 0.5 U				0.5	U
8260D	Xylenes (m&p)	UG/L	L 0.5 U				0.5	U
8260D	Xylenes, Total	UG/L	. 1 U				1 U	

GWM_Q2_May_2021_Table_2_3

Quarterly Monitoring - Q2 2021

Lockheed Martin Corporation Former Unisys Facility -- Great Neck

Lake Success, New York

	SDG	460-23	34681-1	460-23	34681-1	460-23	34681-1	460-23	34681-1	460-23	34681-1	460-23	34681-1
	Location	17	7GL	17	7ML	1	lGL	1	GL	1	GU	1	MI
	Sample Date	5/13	/2021	5/13	3/2021	5/11	L/2021	5/11	./2021	5/11	./2021	5/12	/2021
	Sample ID	MW-1	L7GL-XX	MW-1	.7ML-XX	MW-	1GL-XX	MW	V-500	MW-:	1GU-XX	MW-	1MI-XX
	QC Code		FS		FS		FS	ı	-D		FS		FS
		Final	Final										
Method	Parameter Unit	Result	Qualifier										
8270E SIM	1,4-Dioxane UG/L	0.2	. U	0.2	. U	0.2	2 UJ	0.2	. UJ	0.2	. UJ	0.2	UJ

Quarterly Monitoring - Q2 2021

	SDG	460-23	34681-1	460-23	34681-1	460-23	34681-1	460-23	34681-1	460-23	34681-1	460-23	34681-1
	Location	11	ML	22	2GL	22	!ML	29	GL	31	lGL	31	IMI
	Sample Date	5/12	/2021	5/13	/2021	5/13	/2021	5/14	/2021	5/14	/2021	5/14	/2021
	Sample ID	MW-1	LML-XX	MW-2	2GL-XX	MW-2	2ML-XX	MW-2	9GL-XX	MW-3	1GL-XX	MW-3	1MI-XX
	QC Code	F	-s	F	FS .	F	=S	I	-S	F	=S	ı	FS
		Final	Final										
Method	Parameter Unit	Result	Qualifier										
8270E SIM	1,4-Dioxane UG/L	0.2	U	0.18	J								

Quarterly Monitoring - Q2 2021

	SDG	460-23	34681-1	460-23	34681-1	460-23	34681-1	460-23	34681-1	460-23	34681-1	460-23	34681-1
	Location	31	IML	35	5GL	37	'ML	37	MU	3	GL	46	5MI
	Sample Date	5/14	/2021	5/12	/2021	5/14	/2021	5/13	/2021	5/12	/2021	5/14	/2021
	Sample ID	MW-3	1ML-XX	MW-3	5GL-XX	MW-3	7ML-XX	MW-3	7MU-XX	MW-	3GL-XX	MW-4	6MI-XX
	QC Code	1	FS	ı	FS .	ı	FS		FS	ı	=S	ı	-S
		Final	Final										
Method	Parameter Unit	Result	Qualifier										
8270E SIM	1,4-Dioxane UG/L	0.2	U	1.4		0.2	U	0.2	U	0.2	U	0.22	·

Quarterly Monitoring - Q2 2021

	SDG	460-23	34681-1	460-23	34681-1	460-23	34681-1	460-23	34681-1	460-23	34681-1	460-23	34681-1
	Location	46	5MI	46	SML	6	GL	6	MI	7	GL	7	GL
	Sample Date	5/14	/2021	5/14	/2021	5/13	/2021	5/13	/2021	5/13	/2021	5/13	/2021
	Sample ID	MW	/-502	MW-4	6ML-XX	MW-	6GL-XX	MW-6	5MI-XX	MW	/-501	MW-	7GL-XX
	QC Code	F	:D	ı	-S	ſ	-S	ſ	-S	F	:D	F	-S
		Final	Final										
Method	Parameter Unit	Result	Qualifier										
8270E SIM	1,4-Dioxane UG/L	0.18	J	0.2	U								

Quarterly Monitoring - Q2 2021

${\bf Lockheed\ Martin\ Corporation\ Former\ Unisys\ Facility --\ Great\ Neck}$

Lake Success, New York

	SDC	460-2	34681-1	460-23	34681-1	460-23	34681-1	460-2	35115-1	460-23	35115-1	460-23	35115-1
	Location	n 7	ML	(QC	(QC	29	ЭМІ	2	MI	3	ML
	Sample Date	5/13	3/2021	5/11	./2021	5/12	2/2021	5/19	/2021	5/19	/2021	5/19	/2021
	Sample II	MW-	7ML-XX	QC-EB1	10521-01	QC-EB1	20521-XX	MW-2	29MI-XX	MW-	2MI-XX	MW-3	BML-XX
	QC Code	2	FS	[EB		EB		FS		FS	ı	FS
		Final	Final										
Method	Parameter Unit	Result	Qualifier										
8270E SIM	1,4-Dioxane UG/L	0.38	3	0.2	. U	0.2	2 U	0.47	' J	0.2	. U	0.2	U

Quarterly Monitoring - Q2 2021

Lockheed Martin Corporation Former Unisys Facility -- Great Neck

Lake Success, New York

	SDG	460-23	35115-1	460-23	35115-1	460-23	35115-1	460-2	35115-1	460-23	35115-1	460-23	35115-1
	Location	43	3МІ	43	MU	45	5MI	45	SMU	47	7MI	47	ML
	Sample Date	5/17	//2021	5/17	//2021	5/17	7/2021	5/17	//2021	5/17	//2021	5/17	/2021
	Sample ID	MW-4	13MI-XX	MW-4	3MU-XX	MW-4	15MI-XX	MW-4	5MU-XX	MW-4	7MI-XX	MW-4	7ML-XX
	QC Code		FS										
		Final	Final										
Method	Parameter Unit	Result	Qualifier										
8270E SIM	1,4-Dioxane UG/L	0.2	2 UJ	0.2	. UJ	0.21	LJ	0.19) J	0.2	. UJ	0.29	J

Quarterly Monitoring - Q2 2021

	SDG	460-23	35115-1	460-23	35115-1	460-23	35115-1	460-23	35115-1	460-23	35115-1	460-23	35115-1
	Location	49	9MI	49	ML	52	2MI	52	2ML	53	3MI	53	BML
	Sample Date	5/17	/2021	5/17	/2021	5/18	3/2021	5/18	/2021	5/18	/2021	5/18	/2021
	Sample ID	MW-4	9MI-XX	MW-4	9ML-XX	MW-5	2MI-XX	MW-5	2ML-XX	MW-5	3MI-XX	MW-5	3ML-XX
	QC Code	ı	-S		FS	ı	FS	!	FS		FS	ı	-S
		Final	Final										
Method	Parameter Unit	Result	Qualifier										
8270E SIM	1,4-Dioxane UG/L	0.2	UJ	0.2	. UJ	0.2	! U	0.2	U	0.2	U	0.2	U

Quarterly Monitoring - Q2 2021

	SDG	460-23	35115-1	460-23	35115-1	460-23	35115-1	460-23	35115-1	460-23	35115-1	460-23	35115-1
	Location	NO4	4388	NO:	5099	N12	2796	N1	2999	N1:	3000	N13	3821
	Sample Date	5/18	/2021	5/18	/2021	5/18	/2021	5/18	/2021	5/18	/2021	5/18	/2021
	Sample ID	SW-N4	1388-XX	SW-N5	6099-XX	SW-N1	2796-XX	SW-N1	2999-XX	SW-N1	.3000-XX	SW	-500
	QC Code	F	FS	F	:S	ı	FS	1	FS	1	FS	F	:D
		Final	Final										
Method	Parameter Unit	Result	Qualifier										
8270E SIM	1,4-Dioxane UG/L	0.2	U										

		SDG	460-23	35115-1
	L	ocation	N1:	3821
	Samp	le Date	5/18	/2021
	Sa	mple ID	SW-N1	3821-XX
	C	QC Code	1	-s
			Final	Final
Method	Parameter	Unit	Result	Qualifier
8270E SIM	1,4-Dioxane	UG/L	0.2	U

Quarterly Monitoring - Q2 2021

		SDG	460-23	34681-1	460-23	34681-1	460-23	34681-1	460-23	34681-1	460-23	34681-1	460-23	34681-1
	Lo	cation	17	7GL	17	ML	1	GL	1	GL	1	GU	1	MI
	Sampl	e Date	5/13	/2021	5/13	/2021	5/11	/2021	5/11	/2021	5/11	/2021	5/12	/2021
	Sample II		MW-1	.7GL-XX	MW-1	7ML-XX	MW-	1GL-XX	MW	/-500	MW-1	LGU-XX	MW-	1MI-XX
	Q	C Code	I	FS	1	FS	1	FS	F	:D	1	FS	F	-s
			Final	Final										
Method	Parameter	Unit	Result	Qualifier										
SM 4500 Cl- B	Chloride	MG/L	125		76.5		375		375		375		95	

Quarterly Monitoring - Q2 2021

		SDG	460-23	34681-1	460-23	34681-1	460-23	34681-1	460-23	34681-1	460-23	34681-1	460-23	34681-1
	Loc	cation	1	ML	22	2GL	22	2ML	29	9GL	31	1GL	31	IMI
	Sample	Date	5/12	/2021	5/13	/2021	5/13	/2021	5/14	/2021	5/14	/2021	5/14	/2021
	Sam	ple ID	MW-1	LML-XX	MW-2	2GL-XX	MW-2	2ML-XX	MW-2	9GL-XX	MW-3	31GL-XX	MW-3	1MI-XX
	QC	Code	1	FS	F	FS	ı	FS		-S	ı	FS	F	-s
			Final	Final										
Method	Parameter l	Jnit	Result	Qualifier										
SM 4500 Cl- B	Chloride N	MG/L	98		170		208	-	360		114		88	

Quarterly Monitoring - Q2 2021

	SDG	460-2	34681-1	460-23	34681-1	460-23	34681-1	460-23	34681-1	460-23	34681-1	460-23	34681-1
	Location	33	1ML	35	5GL	37	7ML	37	'MU	3	GL	46	5MI
Sa	mple Date	5/14	1/2021	5/12	/2021	5/14	/2021	5/13	/2021	5/12	/2021	5/14	/2021
	Sample ID	MW-3	31ML-XX	MW-3	5GL-XX	MW-3	7ML-XX	MW-3	7MU-XX	MW-	3GL-XX	MW-4	6MI-XX
	QC Code		FS	1	FS		FS		FS	1	FS	F	-s
		Final	Final										
Method Parame	eter Unit	Result	Qualifier										
SM 4500 Cl- B Chlorid	e MG/L	41	_	194		34.5)	327	1	98		27.5	

Quarterly Monitoring - Q2 2021

		SDG	460-23	34681-1	460-23	34681-1	460-23	34681-1	460-23	34681-1	460-23	34681-1	460-23	34681-1
	L	ocation	46	5MI	46	ML	6	GL	6	MI	7	GL	7	GL
	Samp	le Date	5/14	/2021	5/14	/2021	5/13	/2021	5/13	/2021	5/13	/2021	5/13	/2021
	Sai	mple ID	MW	/-502	MW-4	6ML-XX	MW-	6GL-XX	MW-6	5MI-XX	MW	/-501	MW-7	7GL-XX
	C	(C Code	F	:D	F	:S	ı	FS	ı	-S	F	-D	F	:s
			Final	Final										
Method	Parameter	Unit	Result	Qualifier										
SM 4500 Cl- B	Chloride	MG/L	27		11		137		262		800		730	

Quarterly Monitoring - Q2 2021

		SDG	460-23	34681-1	460-23	34681-1	460-23	34681-1	460-23	35115-1	460-23	35115-1	460-23	35115-1
	Loc	ation	7	ML	QC		QC		29MI		2MI		3ML	
Sample Date		Date	5/13/2021		5/11/2021		5/12/2021		5/19/2021		5/19/2021		5/19/2021	
Sample ID		MW-7ML-XX		QC-EB110521-01		QC-EB1	20521-XX	MW-2	9MI-XX	MW-2MI-XX		MW-3	BML-XX	
	QC	Code		-s	E	В	ı	EB	ı	- S	F	FS	F	-s
			Final	Final	Final	Final	Final	Final	Final	Final	Final	Final	Final	Final
Method	Parameter U	Init	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier
SM 4500 Cl- B Chloride MG/L		89		5	U	5	i U	190		135		38.5		

Quarterly Monitoring - Q2 2021

	S	DG	460-23	35115-1	460-23	35115-1	460-2	35115-1	460-23	35115-1	460-23	35115-1	460-23	35115-1
	Location		43MI		43MU		45MI		45MU		47MI		47	'ML
Sample Date		ate	5/17/2021		5/17/2021		5/17/2021		5/17/2021		5/17/2021		5/17/2021	
	Sample	ID	MW-4	3MI-XX	MW-4	3MU-XX	MW-4	I5MI-XX	MW-4	5MU-XX	MW-4	7MI-XX	MW-4	7ML-XX
	QC Co	de	FS		FS			FS		FS	FS		FS	
			Final											
Method	Parameter Uni	t	Result	Qualifier										
SM 4500 Cl- B	Chloride MG	/L	39		18.5		16.5)	122		81		57.5	

Table 2 - Summary of Analytical Results Data Usability Summary Report Quarterly Monitoring - Q2 2021

Lockheed Martin Corporation Former Unisys Facility -- Great Neck

Lake Success, New York

		SDG	460-23	35115-1	460-23	35115-1	460-23	35115-1	460-23	35115-1	460-23	35115-1	460-23	5115-1
	Location		49MI		49ML		52	52MI		52ML		53MI		ML
Sample Date		le Date	5/17/2021		5/17/2021		5/18/2021		5/18/2021		5/18/2021		5/18/2021	
Sample ID		MW-4	9MI-XX	MW-4	9ML-XX	MW-5	2MI-XX	MW-5	2ML-XX	MW-53MI-XX		MW-53ML-XX		
	Q	C Code	FS		FS		F	FS	1	-S	FS		FS	
			Final	Final	Final	Final	Final							
Method	Parameter	Unit	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier
SM 4500 Cl- B Chloride MG/L		56		17.5		26		10.5		15		41		

Table 2 - Summary of Analytical Results Data Usability Summary Report Quarterly Monitoring - Q2 2021

Lockheed Martin Corporation Former Unisys Facility -- Great Neck Lake Success, New York

Final

Qualifier

Final

Result

87

Final

Qualifier

Final

Result

40.5

Final

Qualifier

Final

Result

86

Final

Qualifier

SDG	460-235115-1	460-235115-1	460-235115-1	460-235115-1	460-235115-1	460-235115-1
Location	N04388	N05099	N12796	N12999	N13000	N13821
Sample Date	5/18/2021	5/18/2021	5/18/2021	5/18/2021	5/18/2021	5/18/2021
Sample ID	SW-N4388-XX	SW-N5099-XX	SW-N12796-XX	SW-N12999-XX	SW-N13000-XX	SW-500
QC Code	FS	FS	FS	FS	FS	FD

Final

Result

49

Final

Qualifier

Final

Result

82

Parameter Unit

MG/L

Method

SM 4500 Cl- B Chloride

Final

Qualifier

Final

Result

25

Created by: WCG 06/29/2021 GWM_Q2_May_2021_Table_2_3 Page 67 of 68 Checked by: LLK 06/29/2021

		SDG	460-23	35115-1			
	L	ocation	N13821				
	Samp	le Date	5/18	/2021			
	Sa	mple ID	SW-N1	3821-XX			
	C	QC Code		-S			
			Final	Final			
Method	Parameter	r Unit	Result	Qualifier			
SM 4500 Cl- B	Chloride	MG/L	86				

Table 3 - Summary of Qualification Actions Data Usability Summary Report Quarterly Monitoring - Q2 2021 Martin Corporation Former Unisys Facility -- Grea

	Ι		Γ	Ι							Val	
							Lab	Lab	Final	Final	Reason	
SDG	Method	Lab Sample ID	Sample Date	Field Sample ID	Fraction	Parameter Name	Result	Qualifier	· ·	Qualifier	Code	Units
460-235115-1	524.2		<u> </u>	SW-N5099-XX	N	Tetrachloroethene		F1	3.6		MSL	UG/L
460-234681-1	537 (modified)	460-234681-10	5/13/2021	MW-17GL-XX	N	Perfluorobutanoic acid (PFBA)	3.46	J B	4.22	U	BL1	NG/L
460-234681-1	537 (modified)	460-234681-11	5/13/2021	MW-17ML-XX	N	Perfluorobutanoic acid (PFBA)	3.54	. J B	4.18	U	BL1	NG/L
460-234681-1	537 (modified)	460-234681-2	5/11/2021	MW-1GL-XX	N	Perfluorobutanoic acid (PFBA)	7.84	В	7.84	J+	BL1	NG/L
460-234681-1	537 (modified)	460-234681-1	5/11/2021	MW-1GU-XX	N	Perfluorobutanoic acid (PFBA)	5.24	В	5.24	J+	BL1	NG/L
460-234681-1	537 (modified)	460-234681-3	5/12/2021	MW-1MI-XX	N	Perfluorobutanoic acid (PFBA)	4.34	В	4.34	J+	BL1	NG/L
460-234681-1	537 (modified)	460-234681-4	5/12/2021	MW-1ML-XX	N	Perfluorobutanoic acid (PFBA)	2.42	J B	4.42	U	BL1	NG/L
460-234681-1	537 (modified)	460-234681-12	5/13/2021	MW-22GL-XX	N	Perfluorobutanoic acid (PFBA)	4.86	В	4.86	J+	BL1	NG/L
460-234681-1	537 (modified)	460-234681-13	5/13/2021	MW-22ML-XX	N	Perfluorobutanoic acid (PFBA)	5.33	В	5.33	J+	BL1	NG/L
460-234681-1	537 (modified)	460-234681-13	5/13/2021	MW-22ML-XX	N	Perfluorododecanoic acid (PFDoA)	0.43	J	0.43	J	ISL	NG/L
460-234681-1	537 (modified)	460-234681-13	5/13/2021	MW-22ML-XX	N	Perfluorooctanesulfonamide (FOSA)	1.74	U	1.74	UJ	ISL	NG/L
460-234681-1	537 (modified)	460-234681-13	5/13/2021	MW-22ML-XX	N	Perfluorotetradecanoic acid (PFTeDA)	1.74	U	1.74	UJ	ISL	NG/L
460-234681-1	537 (modified)	460-234681-13	5/13/2021	MW-22ML-XX	N	Perfluorotridecanoic acid (PFTrDA)	0.4	J	0.4	J	ISL	NG/L
460-234681-1	537 (modified)	460-234681-5	5/12/2021	MW-3GL-XX	N	Perfluorobutanoic acid (PFBA)	8.24	В	8.24	J+	BL1	NG/L
460-234681-1	537 (modified)	460-234681-6	5/13/2021	MW-6GL-XX	N	Perfluorobutanoic acid (PFBA)	2.15	J B	4.3	U	BL1	NG/L
460-234681-1	537 (modified)	460-234681-7	5/13/2021	MW-6MI-XX	N	Perfluorobutanoic acid (PFBA)	5.01	. В	5.01	J+	BL1	NG/L
460-234681-1	537 (modified)	460-234681-8	5/13/2021	MW-7GL-XX	N	Perfluorobutanoic acid (PFBA)	5.07	В	5.07	J+	BL1	NG/L
460-234681-1	537 (modified)	460-234681-9	5/13/2021	MW-7ML-XX	N	Perfluorobutanoic acid (PFBA)	1.18	J B	4.11	U	BL1	NG/L
460-235115-1	537 (modified)	460-235115-19	5/17/2021	MW-47ML-XX	N	Perfluorobutanesulfonic acid (PFBS)	0.45	J B	1.8	U	BL1	NG/L
460-235115-1	537 (modified)	460-235115-19	5/17/2021	MW-47ML-XX	N	Perfluorobutanoic acid (PFBA)	1.81	J B	4.49	U	BL1	NG/L
460-235115-1	537 (modified)	460-235115-19	5/17/2021	MW-47ML-XX	N	Perfluorodecanoic acid (PFDA)	0.3	J B	1.8	U	BL1	NG/L
460-235115-1	537 (modified)	460-235115-19	5/17/2021	MW-47ML-XX	N	Perfluoroheptanesulfonic acid (PFHpS)	0.3	J B	1.8	U	BL1	NG/L
460-235115-1		460-235115-19	5/17/2021	MW-47ML-XX	N	Perfluoroheptanoic acid (PFHpA)	1.06	J B	1.8	U	BL1	NG/L
460-235115-1	537 (modified)	460-235115-19	5/17/2021	MW-47ML-XX	1	Perfluorohexanesulfonic acid (PFHxS)	1.36	J B	1.8	U	BL1	NG/L
460-235115-1		460-235115-19	5/17/2021	MW-47ML-XX	1	Perfluorononanoic acid (PFNA)	0.37	J B	1.8		BL1	NG/L
460-235115-1	537 (modified)	460-235115-20	5/17/2021	MW-49MI-XX	N	Perfluorobutanesulfonic acid (PFBS)	0.76	J B	1.73	U	BL1	NG/L
460-235115-1		460-235115-20	5/17/2021	MW-49MI-XX	N	Perfluorobutanoic acid (PFBA)	2.91	J B	4.33	U	BL1	NG/L
460-235115-1	537 (modified)	460-235115-20	5/17/2021	MW-49MI-XX	N	Perfluoroheptanoic acid (PFHpA)	1.41	J B	1.73	U	BL1	NG/L
460-235115-1		460-235115-20	5/17/2021	MW-49MI-XX	N	Perfluorohexanesulfonic acid (PFHxS)	2.38	В	2.38	J+	BL1	NG/L
460-235115-1		460-235115-20	5/17/2021	MW-49MI-XX	N	Perfluorooctanesulfonic acid (PFOS)	1.27	J B	1.73	U	BL1	NG/L
460-235115-1	537 (modified)	460-235115-6	5/18/2021	MW-52ML-XX	N	Perfluorododecanoic acid (PFDoA)	1.68	U	1.68	UJ	ISL	NG/L
460-235115-1	537 (modified)	460-235115-6	5/18/2021	MW-52ML-XX	N	Perfluorotetradecanoic acid (PFTeDA)	1.68	U	1.68	UJ	ISL	NG/L
460-235115-1	537 (modified)	460-235115-6	5/18/2021	MW-52ML-XX	N	Perfluorotridecanoic acid (PFTrDA)	1.68	U	1.68	UJ	ISL	NG/L
460-235115-1	537 (modified)	460-235115-25	5/18/2021	SW-500	N	Perfluorobutanesulfonic acid (PFBS)	0.51	J B	1.78	U	BL1	NG/L

Table 3 - Summary of Qualification Actions Data Usability Summary Report Quarterly Monitoring - Q2 2021 Lockheed Martin Corporation Former Unisys Facility -- Great Neck

Lake Success, New York

											Val	
							Lab	Lab	Final	Final	Reason	
SDG	Method	Lab Sample ID	Sample Date	Field Sample ID	Fraction	Parameter Name	Result	Qualifier	Result	Qualifier	Code	Units
460-235115-1	537 (modified)	460-235115-25	5/18/2021	SW-500	N	Perfluorobutanoic acid (PFBA)	2.63	J B	4.46	U	BL1	NG/L
460-235115-1	537 (modified)	460-235115-25	5/18/2021	SW-500	N	Perfluoroheptanoic acid (PFHpA)	1.34	J B	1.78	U	BL1	NG/L
460-235115-1	537 (modified)	460-235115-25	5/18/2021	SW-500	N	Perfluorohexanesulfonic acid (PFHxS)	0.74	J B	1.78	U	BL1	NG/L
460-235115-1	537 (modified)	460-235115-25	5/18/2021	SW-500	N	Perfluorononanoic acid (PFNA)	1.18	J B	1.78	U	BL1	NG/L
460-235115-1	537 (modified)	460-235115-25	5/18/2021	SW-500	N	Perfluorooctanesulfonic acid (PFOS)	0.89	J B	1.78	U	BL1	NG/L
460-235115-1	537 (modified)	460-235115-21	5/18/2021	SW-N12796-XX	N	Perfluorobutanesulfonic acid (PFBS)	0.84	J B	1.78	U	BL1	NG/L
460-235115-1	537 (modified)	460-235115-21	5/18/2021	SW-N12796-XX	N	Perfluorobutanoic acid (PFBA)	2.02	J B	4.45	U	BL1	NG/L
460-235115-1	537 (modified)	460-235115-21	5/18/2021	SW-N12796-XX	N	Perfluoroheptanoic acid (PFHpA)	1.67	J B	1.78	U	BL1	NG/L
460-235115-1	537 (modified)	460-235115-21	5/18/2021	SW-N12796-XX	N	Perfluorohexanesulfonic acid (PFHxS)	1.82	В	1.82	J+	BL1	NG/L
460-235115-1	537 (modified)	460-235115-21	5/18/2021	SW-N12796-XX	N	Perfluorononanoic acid (PFNA)	0.57	J B	1.78	U	BL1	NG/L
460-235115-1	537 (modified)	460-235115-21	5/18/2021	SW-N12796-XX	N	Perfluorooctanesulfonic acid (PFOS)	2.18	В	2.18	J+	BL1	NG/L
460-235115-1	537 (modified)	460-235115-21	5/18/2021	SW-N12796-XX	N	Perfluorooctanoic acid (PFOA)	4.02	В	4.02	J+	BL1	NG/L
460-235115-1	537 (modified)	460-235115-22	5/18/2021	SW-N12999-XX	N	Perfluorobutanesulfonic acid (PFBS)	0.48	J B	1.78	U	BL1	NG/L
460-235115-1	537 (modified)	460-235115-22	5/18/2021	SW-N12999-XX	N	Perfluorobutanoic acid (PFBA)	3.02	J B	4.44	U	BL1	NG/L
460-235115-1	537 (modified)	460-235115-22	5/18/2021	SW-N12999-XX	N	Perfluoroheptanoic acid (PFHpA)	1.92	В	1.92	J+	BL1	NG/L
460-235115-1	537 (modified)	460-235115-22	5/18/2021	SW-N12999-XX	N	Perfluorohexanesulfonic acid (PFHxS)	1.38	J B	1.78	U	BL1	NG/L
460-235115-1	537 (modified)	460-235115-22	5/18/2021	SW-N12999-XX	N	Perfluorononanoic acid (PFNA)	1.41	J B	1.78	U	BL1	NG/L
460-235115-1	537 (modified)	460-235115-22	5/18/2021	SW-N12999-XX	N	Perfluorooctanesulfonic acid (PFOS)	1.64	J B	1.78	U	BL1	NG/L
460-235115-1	537 (modified)	460-235115-23	5/18/2021	SW-N13000-XX	N	Perfluorobutanesulfonic acid (PFBS)	0.41	J B	1.71	U	BL1	NG/L
460-235115-1	537 (modified)	460-235115-23	5/18/2021	SW-N13000-XX	N	Perfluorobutanoic acid (PFBA)	1.69	J B	4.27	U	BL1	NG/L
460-235115-1	537 (modified)	460-235115-23	5/18/2021	SW-N13000-XX	N	Perfluoroheptanoic acid (PFHpA)	0.63	J B	1.71	U	BL1	NG/L
460-235115-1	537 (modified)	460-235115-23	5/18/2021	SW-N13000-XX	N	Perfluorohexanesulfonic acid (PFHxS)	0.74	J B	1.71	U	BL1	NG/L
460-235115-1	537 (modified)	460-235115-23	5/18/2021	SW-N13000-XX	N	Perfluorononanoic acid (PFNA)	0.37	J B	1.71	U	BL1	NG/L
460-235115-1	537 (modified)	460-235115-23	5/18/2021	SW-N13000-XX	N	Perfluorooctanesulfonic acid (PFOS)	0.5	J B	1.71	U	BL1	NG/L
460-235115-1	537 (modified)	460-235115-23	5/18/2021	SW-N13000-XX	N	Perfluorooctanoic acid (PFOA)	2.01	В	2.01	J+	BL1	NG/L
460-235115-1	537 (modified)	460-235115-24	5/18/2021	SW-N13821-XX	N	Perfluorobutanesulfonic acid (PFBS)	0.61	J B	1.81	U	BL1	NG/L
460-235115-1	537 (modified)	460-235115-24	5/18/2021	SW-N13821-XX	N	Perfluorobutanoic acid (PFBA)	2.52	J B	4.53	U	BL1	NG/L
460-235115-1	537 (modified)	460-235115-24	5/18/2021	SW-N13821-XX	N	Perfluoroheptanoic acid (PFHpA)	1.38	J B	1.81	U	BL1	NG/L
460-235115-1	537 (modified)	460-235115-24	5/18/2021	SW-N13821-XX	N	Perfluorohexanesulfonic acid (PFHxS)	0.75	J B	1.81	U	BL1	NG/L
460-235115-1	537 (modified)	460-235115-24	5/18/2021	SW-N13821-XX	N	Perfluorononanoic acid (PFNA)	1.15	J B	1.81	U	BL1	NG/L
460-235115-1	537 (modified)	460-235115-24	5/18/2021	SW-N13821-XX	N	Perfluorooctanesulfonic acid (PFOS)	0.9	J B	1.81	U	BL1	NG/L
460-235115-1	537 (modified)	460-235115-9	5/18/2021	SW-N5099-XX	N	Perfluorodecanesulfonic acid (PFDS)	1.76	U	1.76	UJ	MSL	NG/L
460-234681-1	8260D	460-234681-15	5/14/2021	MW-31GL-XX	N	Trichloroethene	36	F1	36	J-	MSL	UG/L
460-235115-1	8260D	460-235115-13	5/19/2021	MW-29MI-XX	N	Bromomethane	0.5	U	0.5	UJ	LCSL	UG/L

Table 3 - Summary of Qualification Actions Data Usability Summary Report Quarterly Monitoring - Q2 2021 d Martin Corporation Former Unisys Facility -- Great

											Val	
							Lab	Lab	Final	Final	Reason	
SDG	Method	Lab Sample ID	Sample Date	Field Sample ID	Fraction	Parameter Name	Result	Qualifier	Result	Qualifier	Code	Units
460-235115-1	8260D	460-235115-11	5/19/2021	MW-2MI-XX	N	Bromomethane	0.5	U	0.5	UJ	LCSL	UG/L
460-235115-1	8260D	460-235115-12	5/19/2021	MW-3ML-XX	N	Bromomethane	0.5	U	0.5	UJ	LCSL	UG/L
460-235115-1	8260D	460-235115-15	5/17/2021	MW-43MI-XX	N	Bromomethane	0.5	U	0.5	UJ	LCSL	UG/L
460-235115-1	8260D	460-235115-14	5/17/2021	MW-43MU-XX	N	Bromomethane	0.5	U	0.5	UJ	LCSL	UG/L
460-235115-1	8260D	460-235115-17	5/17/2021	MW-45MI-XX	N	Bromomethane	0.5	U	0.5	UJ	LCSL	UG/L
460-235115-1	8260D	460-235115-17	5/17/2021	MW-45MI-XX	N	Trichlorofluoromethane	0.44	J	0.44	J-	CCV%D	UG/L
460-235115-1	8260D	460-235115-16	5/17/2021	MW-45MU-XX	N	Bromomethane	0.5	U	0.5	UJ	LCSL	UG/L
460-235115-1	8260D	460-235115-18	5/17/2021	MW-47MI-XX	N	Bromomethane	0.5	U	0.5	UJ	LCSL	UG/L
460-235115-1	8260D	460-235115-19	5/17/2021	MW-47ML-XX	N	Bromomethane	0.5	U	0.5	UJ	LCSL, MSL	UG/L
460-235115-1	8260D	460-235115-20	5/17/2021	MW-49MI-XX	N	Bromomethane	0.5	U	0.5	UJ	LCSL	UG/L
460-235115-1	8260D	460-235115-1	5/17/2021	MW-49ML-XX	N	Bromomethane	0.5	U	0.5	UJ	LCSL	UG/L
460-235115-1	8260D	460-235115-5	5/18/2021	MW-52MI-XX	N	Bromomethane	0.5	U	0.5	UJ	LCSL	UG/L
460-235115-1	8260D	460-235115-6	5/18/2021	MW-52ML-XX	N	Bromomethane	0.5	U	0.5	UJ	LCSL	UG/L
460-235115-1	8260D	460-235115-6	5/18/2021	MW-52ML-XX	N	Trichlorofluoromethane	0.46	J	0.46	J-	CCV%D	UG/L
460-235115-1	8260D	460-235115-7	5/18/2021	MW-53MI-XX	N	Bromomethane	0.5		0.5	UJ	LCSL	UG/L
460-235115-1	8260D	460-235115-8	5/18/2021	MW-53ML-XX	N	Bromomethane	0.5	U	0.5	UJ	LCSL	UG/L
460-234681-1	8270E SIM	460-234681-2	5/11/2021	MW-1GL-XX	N	1,4-Dioxane	0.2	UН	0.2	UJ	HT	UG/L
460-234681-1	8270E SIM	460-234681-1	5/11/2021	MW-1GU-XX	N	1,4-Dioxane	0.2	UН	0.2	UJ	HT	UG/L
460-234681-1	8270E SIM	460-234681-3	5/12/2021	MW-1MI-XX	N	1,4-Dioxane	0.2	U	0.2	UJ	SSL	UG/L
460-234681-1	8270E SIM	460-234681-23	5/11/2021	MW-500	N	1,4-Dioxane	0.2	UН	0.2	UJ	HT	UG/L
460-235115-1	8270E SIM	460-235115-13	5/19/2021	MW-29MI-XX	N	1,4-Dioxane	0.47	*1	0.47	J	LCSRPD	UG/L
460-235115-1	8270E SIM	460-235115-15	5/17/2021	MW-43MI-XX	N	1,4-Dioxane	0.2	UН	0.2	UJ	HT	UG/L
460-235115-1	8270E SIM	460-235115-14	5/17/2021	MW-43MU-XX	N	1,4-Dioxane	0.2	UН	0.2	UJ	HT	UG/L
460-235115-1	8270E SIM	460-235115-17	5/17/2021	MW-45MI-XX	N	1,4-Dioxane	0.21	Н	0.21	J	HT	UG/L
460-235115-1	8270E SIM	460-235115-16	5/17/2021	MW-45MU-XX	N	1,4-Dioxane	0.19	J H	0.19	J	HT	UG/L
460-235115-1	8270E SIM	460-235115-18	5/17/2021	MW-47MI-XX	N	1,4-Dioxane	0.2	UН	0.2	UJ	HT	UG/L
460-235115-1	8270E SIM	460-235115-19	5/17/2021	MW-47ML-XX	N	1,4-Dioxane	0.29	H F2	0.29	J	HT, MSRPD	UG/L
460-235115-1	8270E SIM	460-235115-20	5/17/2021	MW-49MI-XX	N	1,4-Dioxane	0.2	UН	0.2	UJ	HT	UG/L
460-235115-1	8270E SIM	460-235115-1	5/17/2021	MW-49ML-XX	N	1,4-Dioxane	0.2	UН	0.2	UJ	HT	UG/L

ATTACHMENT A SUMMARY OF VALIDATION QC LIMITS FOR SURROGATES, SPIKES, AND DUPLICATES BASED ON THE REGION 2 VALIDATION GUIDELINES

DADAMETED	00 7507	ANALVEE	WATER	Water
PARAMETER	QC TEST	ANALYTE	(%R)	(RPD)
	Surrogate	All Surrogate Compounds	80 - 120	
Volatiles	LCS	All Target Compounds	70 - 130	
voiatiles	MS/MSD	All Target Compounds	70 - 130	20
	Field Duplicate	All Target Compounds		50
	Surrogate	All Surrogate Compounds	Lab Limits	
1.4 Dioyana	LCS	All Target Compounds	Lab Limits	
1,4-Dioxane	MS/MSD	All Target Compounds	Lab Limits	Lab Limits
	Field Duplicate	All Target Compounds		50
	Surrogate (1)	All Surrogate Compounds	50 - 150	
Per- and Polyfluorinated Alkyl	LCS	All Target Compounds	70 - 130	
Substances (PFAS)	MS/MSD	All Target Compounds	70 - 130	30
	Field Duplicate	All Target Compounds		30
	LCS	All Target Analytes	80 - 120	
Inorganics-Metals	MS/MSD	All Target Analytes	75 -125	20
morganics-inetals	Lab Duplicate	All Target Analytes		20
	Field Duplicate	All Target Analytes		20

Notes:

(1) For PFAS, surrogate = extracted isotope dilution standard

LCS = Laboratory Control Sample

MS/MSD = Matrix spike/ Matrix Spike Duplicate

RPD = Relative percent difference

%R = percent recovery

QC Limits are based on USEPA Region II Data Validation Guidelines and Project QA/QC Objectives

Lockheed Martin Corporation Great Neck Site – Lake Success, New York Wood Environment & Infrastructure Solutions

> DATA USABILITY SUMMARY REPORT QUARTERLY MONITORING – Q2 2021 LOCKHEED MARTIN CORPORATION GREAT NECK SITE LAKE SUCCESS, NEW YORK

> > **ATTACHMENT B**

VOCs

NYSDEC DUSR PROJECT CHEMIST REVIEW RECORD

Project: LMC Great Neck GWM Q2 2021

Method: 8260D

Laboratory: TAL Edison, NJ SDG(s): 460-234681-1 and 460-235115-1

Date: 06/24/2021 Reviewer: Liesel Krout

Review Level X NYSDEC DUSR USEPA Region II Guideline

1. ✓ Case Narrative Review and COC/Data Package Completeness

COMMENTS

Were problems noted? yes - see attached for quals

Are Field Sample IDs and Locations assigned correctly? YES NO (circle one)

Were all the samples on the COC analyzed for the requested analyses? YES NO (circle one) corrected to

2. ✓ Holding time and Sample Collection

All samples were analyzed within the 14 day holding time. YES NO (circle one)

to MW-6ML-XX

in TED:

sample IDs corrected

-MW-6MI-XX corrected

-MW-37MU-XX

MW-37GU-XX

✓ QC Blanks

Are method blanks free of contamination? YES NO (circle one)

Are Trip blanks free of contamination? YES NO (circle one) MeCl contamination in TBs - see attached - no quals

Are Rinse blanks free of contamination? YES NO NA (circle one) MeCl contamination in EBs - see attached - no quals

4. ✓ Instrument Tuning – Data Package Narrative Review

Did the laboratory narrative identify any results that were not within method criteria? YES NO (circle one)

If yes, use professional judgment to evaluate data and qualify results if needed

5. ✓ Instrument Calibration – Data Package Narrative Review

Did the laboratory narrative identify compounds that were not within criteria in the initial and/or continuing calibration standards? YES NO (circle one)

Initial Calibration %RSD = 20% (30% for 1,1-DCE, chloroform, 1,2-DCP, toluene, ethylbenzene, VC) Initial Avg RRF and Continuing RRF should be \geq 0.05 and 0.10 for Chloromethane, 1,1-Dichloroethane, Bromoform and 0.30 for Chlorobenzene and 1,1,2,2-Tetrachloroethane

Continuing Calibration %D = 20%

Did the laboratory qualify results based on initial or continuing calibration exceedances? YES NO If yes to above, use professional judgment to evaluate data and qualify results if needed

6. ✓ Internal Standards – Data Package Narrative Review

(Area Limits = -50% to +100%, RTs within 30 seconds of daily CCAL standard (or ICAL midpoint if samples follow ICAL)

Did the laboratory narrative identify any sample internal standards that were not within criteria? YES NO (circle one)

Did the laboratory qualify results based on internal standard exceedances? YES NO If yes to above, use professional judgment to evaluate data and qualify results if needed

7. Surrogate Recovery - Region II limits (water 80-120%, soil 70-130%)

Were all results within Region II limits? YES NO (circle one)

8. **Matrix Spike** - Region II limits (water and soil 70-130%, water RPD 20, soil RPD 35)

Were MS/MSDs submitted/analyzed? YES NO

see attached for quals

Were all results within the Region II limits? YES NO NA (circle one)

9. **Juplicates -** Region II Limits (water RPD 50, soil RPD 100) Were Field Duplicates submitted/analyzed? YES NO Were all results within Region II limits? (soil RPD<100, water RPD<50) YES NO NA 10. **∠** Laboratory Control Sample Results - Region II (Water and soil 70-130%) see attached for quals Were all results were within Region II control limits? YES NO (circle one) 11. ✓ **Reporting Limits:** Were samples analyzed at a dilution? YES NO (circle one) MW-35GL-XX 12. ✓ Raw Data Review and Calculation Checks see attached 13. ✓ Electronic Data Review and Edits Does the EDD match the Form Is? YES NO (circle one) **14.** ✓ **Tables and TIC Review** Table 1 (Samples and Analytical Methods)
 Table 2 (Analytical Results)
 Table 3 (Qualification Actions)

YES NO (circle one)

YES NO (circle one)

Were all tables produced and reviewed?

Did lab report TICs?

Table 4 (TICs)

(460-234681-17), MW-35GL-XX (460-234681-18), MW-37GU-XX (460-234681-19), MW-37ML-XX (460-234681-20), MW-46MI-XX (460-234681-21), MW-46ML-XX (460-234681-22), MW-500 (460-234681-23), MW-501 (460-234681-24), MW-502 (460-234681-25), QC-EB110521-01 (460-234681-26) and QC-EB120521-XX (460-234681-27) were analyzed for Semivolatile Organic Compounds (GC-MS) - Selected Ion Mode (SIM) - DKQP - 1,4 Dioxane in accordance with 8270E SIM. The samples were prepared on 05/19/2021 and 05/20/2021 and analyzed on 05/20/2021 and 05/21/2021.

Nitrobenzene-d5 failed the surrogate recovery criteria low for MW-1MI-XX (460-234681-3).

1,4-Dioxane exceeded the RPD limit for the MSD of sample MW-1MI-XXMSD (460-234681-3) in batch 460-779372.

Refer to the QC report for details.

No other difficulties were encountered during the Semivolatile Organic Compounds (GC-MS) - Selected Ion Mode (SIM) - DKQP - 1,4 Dioxane analysis.

All other quality control parameters were within the acceptance limits.

VOLATILE ORGANIC COMPOUNDS (GC/MS) - (LOW LEVEL - LL)(TOTAL)

Samples MW-1GU-XX (460-234681-1), MW-1GL-XX (460-234681-2), MW-1MI-XX (460-234681-3), MW-1ML-XX (460-234681-4), MW-3GL-XX (460-234681-5), MW-6GL-XX (460-234681-6), MW-6ML-XX (460-234681-7), MW-7GL-XX (460-234681-8), MW-7ML-XX (460-234681-9), MW-17GL-XX (460-234681-10), MW-17ML-XX (460-234681-11), MW-22GL-XX (460-234681-12), MW-22ML-XX (460-234681-13), MW-29GL-XX (460-234681-14), MW-31GL-XX (460-234681-15), MW-31MI-XX (460-234681-16), MW-31ML-XX (460-234681-17), MW-35GL-XX (460-234681-18), MW-37GU-XX (460-234681-19), MW-37ML-XX (460-234681-20), MW-46MI-XX (460-234681-21), MW-46ML-XX (460-234681-22), MW-500 (460-234681-23), MW-501 (460-234681-24), MW-502 (460-234681-25), QC-EB110521-01 (460-234681-26), QC-EB120521-XX (460-234681-27), QC-TB110521-XX (460-234681-28) and QC-TB130521-XX (460-234681-30) were analyzed for Volatile Organic Compounds (GC/MS) - (Low Level - LL)(Total) in accordance with EPA SW-846 Method 8260D - Low Level (LL). The samples were analyzed on 05/20/2021 and 05/21/2021.

The CCV analyzed in batch 460-779084 was outside the method criteria for the following analytes: Freon 115 (biased high);

Dichlorodifluoromethane (biased low). A CCV standard at or below the reporting limit (RL) was analyzed with the affected samples and found to be acceptable. As indicated in the reference method, sample analysis may proceed; however, any detection for the affected analytes is considered estimated.

Samples ND - no quals

The CCV analyzed in batch 460-779357 was outside the method criteria for Dichlorodifluoromethane. A CCV standard at or below the reporting limit (RL) was analyzed with the affected samples and found to be acceptable. As indicated in the reference method, sample analysis may proceed; however, any detection for the affected analyte is considered estimated.

Samples ND - no quals

cis-1,2-Dichloroethene and Trichloroethene failed the recovery criteria low for the MS of sample MW-31GL-XX (460-234681-15) in batch 460-779357. cis-1,2-Dichloroethene failed the recovery criteria low for the MSD of sample MW-31GL-XX (460-234681-15) in batch 460-779357.

see attached for MS/MSD review

The presence of the '4' qualifier in the data indicates analytes where the concentration in the unspiked sample exceeded four times the spiking amount.

Refer to the QC report for details.

The following sample was diluted to bring the concentration of target analytes within the calibration range: MW-35GL-XX (460-234681-18). Elevated reporting limits (RLs) are provided.

No other difficulties were encountered during the Volatiles analysis.

okay

All other quality control parameters were within the acceptance limits.

PER- AND POLYFLUOROALKYL SUBSTANCES (PFAS)

Samples MW-1GU-XX (460-234681-1), MW-1GL-XX (460-234681-2), MW-1MI-XX (460-234681-3), MW-1ML-XX (460-234681-4), MW-3GL-XX (460-234681-5), MW-6GL-XX (460-234681-6), MW-6ML-XX (460-234681-7), MW-7GL-XX (460-234681-8), MW-7ML-XX (460-234681-9), MW-17GL-XX (460-234681-10), MW-17ML-XX (460-234681-11), MW-22GL-XX (460-234681-12), MW-22ML-XX (460-234681-13), MW-29GL-XX (460-234681-14), MW-31GL-XX (460-234681-15), MW-31MI-XX (460-234681-16), MW-31ML-XX (460-234681-17), MW-35GL-XX (460-234681-18), MW-37GU-XX (460-234681-19), MW-37ML-XX (460-234681-20), MW-46MI-XX (460-234681-21), MW-46ML-XX (460-234681-22), MW-500 (460-234681-23), MW-501 (460-234681-24), MW-502 (460-234681-25), QC-EB110521-01 (460-234681-26), QC-EB120521-XX (460-234681-27), QC-TUBE110521-XX (460-234681-31), QC-TUBEDT130521-XX (460-234681-32) and QC-TUBEWL140521-XX (460-234681-33) were analyzed for Per- and Polyfluoroalkyl Substances (PFAS) in accordance with PFC. The samples were prepared on 05/24/2021 and analyzed on 05/24/2021 and 05/25/2021.

The method blank for preparation batch 200-167188 and analytical batch 200-167216 contained Perfluorobutanoic acid (PFBA) above the method detection limit. This target analyte concentration was less than half the reporting limit (1/2 RL); therefore, re-extraction and re-analysis of samples was not performed.

Refer to the QC report for details.

LLK 06/24/2021

MW-45MU-XX (460-235115-16), MW-45MI-XX (460-235115-17), MW-47MI-XX (460-235115-18), MW-47ML-XX (460-235115-19), MW-49MI-XX (460-235115-20), SW-N12796-XX (460-235115-21), SW-N12999-XX (460-235115-22), SW-N13000-XX (460-235115-23), SW-N13821-XX (460-235115-24) and SW-500 (460-235115-25) were analyzed for Semivolatile Organic Compounds (GC-MS) - Selected Ion Mode (SIM) - DKQP - 1,4 Dioxane (DISSOLVED) in accordance with 8270E SIM. The samples were prepared on 05/25/2021 and 05/26/2021 and analyzed on 05/26/2021 and 05/27/2021.

The RPD of the laboratory control sample (LCS) and laboratory control sample duplicate (LCSD) for preparation batch 460-780273 and analytical batch 460-780371 recovered outside control limits for 1,4-Dioxane.

1,4-Dioxane exceeded the RPD limit for the MSD of sample MW-47ML-XX (460-235115-19) in batch 460-780497.

Refer to the QC report for details.

No other difficulties were encountered during the Semivolatile Organic Compounds (GC-MS) - Selected Ion Mode (SIM) - DKQP - 1,4 Dioxane (DISSOLVED) analysis.

All other quality control parameters were within the acceptance limits.

VOLATILE ORGANIC COMPOUNDS (GC/MS) - (LOW LEVEL - LL)(TOTAL)

Samples MW-49ML-XX (460-235115-1), MW-51MI-XX (460-235115-2), MW-51ML-XX (460-235115-3), IW-N9687-XX (460-235115-4), MW-52MI-XX (460-235115-5), MW-52ML-XX (460-235115-6), MW-53MI-XX (460-235115-7), MW-53ML-XX (460-235115-8), MW-2MI-XX (460-235115-11), MW-3ML-XX (460-235115-12), MW-29MI-XX (460-235115-13), MW-43MU-XX (460-235115-14), MW-43MI-XX (460-235115-15), MW-45MU-XX (460-235115-16), MW-45MI-XX (460-235115-17), MW-47MI-XX (460-235115-18), MW-47ML-XX (460-235115-19), MW-49MI-XX (460-235115-20) and QC-TB170521-XX (460-235115-26) were analyzed for Volatile Organic Compounds (GC/MS) - (Low Level - LL)(Total) in accordance with EPA SW-846 Method 8260D - Low Level (LL). The samples were analyzed on 05/28/2021 and 05/29/2021.

The continuing calibration verification (CCV) analyzed in batch 460-780881 was outside the method criteria for the following analytes:

Freon 115 (bias high) and Freon 11 (bias low). A CCV standard at or below the reporting limit (RL) was analyzed with the affected samples and found to be acceptable. As indicated in the reference method, sample analysis may proceed; however, any detection for the affected analytes is considered estimated. trichlorofluoromethane (Freon 11) results below RL in MW-45MI-XX and MW-52ML-XX were qualified J- with reason code CCV%D

The CCV associated with batch 460-781142 recovered above the upper control limit for Freon 115, Chloromethane and Methyl acetate. The samples associated with this CCV were non-detects for the affected analytes; therefore, the data have been reported.

Refer to the QC report for details.

samples ND - no quals

No other difficulties were encountered during the Volatiles analysis.

All other quality control parameters were within the acceptance limits.

PER- AND POLYFLUOROALKYL SUBSTANCES (PFAS)

Samples MW-49ML-XX (460-235115-1), MW-52MI-XX (460-235115-5), MW-52ML-XX (460-235115-6), MW-53MI-XX (460-235115-7), MW-53ML-XX (460-235115-8), SW-N5099-XX (460-235115-9), SW-N4388-XX (460-235115-10), MW-2MI-XX (460-235115-11), MW-3ML-XX (460-235115-12), MW-29MI-XX (460-235115-13), MW-43MU-XX (460-235115-14), MW-43MI-XX (460-235115-15), MW-45MU-XX (460-235115-16), MW-45MI-XX (460-235115-17), MW-47MI-XX (460-235115-18), MW-47ML-XX (460-235115-19), MW-49MI-XX (460-235115-20), SW-N12796-XX (460-235115-21), SW-N12999-XX (460-235115-22), SW-N13000-XX (460-235115-23), SW-N13821-XX (460-235115-24), SW-500 (460-235115-25), QC-TUBEDT170521-XX (460-235115-29), QC-TUBEDT190521-XX (460-235115-30) and QC-TUBEDT190521-XX (460-235115-31) were analyzed for Per- and Polyfluoroalkyl Substances (PFAS) in accordance with PFC. The samples were prepared on 05/27/2021 and 05/28/2021 and analyzed on 05/28/2021.

The method blank for preparation batch 200-167393 and analytical batch 200-167399 contained Perfluorobutanoic acid (PFBA), Perfluorobutanesulfonic acid (PFBS), Perfluorohexanesulfonic acid (PFHxS), Perfluoroheptanoic acid (PFHpA), Perfluoroheptanoic acid (PFHpA), Perfluorooctanoic acid (PFDA), Perfluorooctanoic acid (PFDA), Perfluorodecanoic acid (PFDA), Perfluorodecano

Refer to the QC report for details.

13C2 PFDoA and 13C2 PFTeDA Isotope Dilution Analyte (IDA) recoveries associated with the following sample are below the method recommended limit: MW-52ML-XX (460-235115-6). Generally, data quality is not considered affected if the IDA signal-to-noise ratio is greater than 10:1, which is achieved for all IDA in the sample.

No other difficulties were encountered during the PFAS analysis.

All other quality control parameters were within the acceptance limits.

CHLORIDE

XXX 06/24/2021

Client: Wood E&I Solutions Inc

Project/Site: LMC Q2 2021 Groundwater Monitoring

Client Sample ID: MW-501 Lab Sample ID: 460-234681-24

Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
2.0		0.50	0.22	ug/L	1	_	8260D	Total/NA
1.0		1.0	0.67	ug/L	1		8260D	Total/NA
0.83		0.50	0.25	ug/L	1		8260D	Total/NA
1.1		0.50	0.31	ug/L	1		8260D	Total/NA
5.10		4.05	0.72	ng/L	1		537 (modified)	Total/NA
6.13		1.62	0.38	ng/L	1		537 (modified)	Total/NA
5.13		1.62	0.37	ng/L	1		537 (modified)	Total/NA
3.34		1.62	0.19	ng/L	1		537 (modified)	Total/NA
7.16		1.62	0.34	ng/L	1		537 (modified)	Total/NA
1.28	J	1.62	0.23	ng/L	1		537 (modified)	Total/NA
1.87		1.62	0.20	ng/L	1		537 (modified)	Total/NA
0.77	J	1.62	0.24	ng/L	1		537 (modified)	Total/NA
4.33		1.62	0.24	ng/L	1		537 (modified)	Total/NA
800		100	21.6	mg/L	20		SM 4500 CI- B	Total/NA
	2.0 1.0 0.83 1.1 5.10 6.13 5.13 3.34 7.16 1.28 1.87 0.77 4.33	1.0 0.83 1.1 5.10 6.13 5.13 3.34 7.16 1.28 J 1.87 0.77 J 4.33	2.0 0.50 1.0 1.0 0.83 0.50 1.1 0.50 5.10 4.05 6.13 1.62 5.13 1.62 3.34 1.62 7.16 1.62 1.28 J 1.62 1.87 1.62 0.77 J 1.62 4.33 1.62	2.0 0.50 0.22 1.0 1.0 0.67 0.83 0.50 0.25 1.1 0.50 0.31 5.10 4.05 0.72 6.13 1.62 0.38 5.13 1.62 0.37 3.34 1.62 0.19 7.16 1.62 0.34 1.28 J 1.62 0.23 1.87 1.62 0.20 0.77 J 1.62 0.24 4.33 1.62 0.24	2.0 0.50 0.22 ug/L 1.0 1.0 0.67 ug/L 0.83 0.50 0.25 ug/L 1.1 0.50 0.31 ug/L 5.10 4.05 0.72 ng/L 6.13 1.62 0.38 ng/L 5.13 1.62 0.37 ng/L 3.34 1.62 0.19 ng/L 7.16 1.62 0.34 ng/L 1.28 J 1.62 0.23 ng/L 1.87 1.62 0.20 ng/L 0.77 J 1.62 0.24 ng/L 4.33 1.62 0.24 ng/L	2.0 0.50 0.22 ug/L 1 1.0 1.0 0.67 ug/L 1 0.83 0.50 0.25 ug/L 1 1.1 0.50 0.31 ug/L 1 5.10 4.05 0.72 ng/L 1 6.13 1.62 0.38 ng/L 1 5.13 1.62 0.37 ng/L 1 3.34 1.62 0.19 ng/L 1 7.16 1.62 0.34 ng/L 1 1.28 J 1.62 0.23 ng/L 1 1.87 1.62 0.20 ng/L 1 0.77 J 1.62 0.24 ng/L 1 4.33 1.62 0.24 ng/L 1	2.0 0.50 0.22 ug/L 1 1.0 1.0 0.67 ug/L 1 0.83 0.50 0.25 ug/L 1 1.1 0.50 0.31 ug/L 1 5.10 4.05 0.72 ng/L 1 6.13 1.62 0.38 ng/L 1 5.13 1.62 0.37 ng/L 1 3.34 1.62 0.19 ng/L 1 7.16 1.62 0.34 ng/L 1 1.28 J 1.62 0.23 ng/L 1 1.87 1.62 0.20 ng/L 1 0.77 J 1.62 0.24 ng/L 1 4.33 1.62 0.24 ng/L 1	2.0 0.50 0.22 ug/L 1 8260D 1.0 1.0 0.67 ug/L 1 8260D 0.83 0.50 0.25 ug/L 1 8260D 1.1 0.50 0.31 ug/L 1 8260D 5.10 4.05 0.72 ng/L 1 537 (modified) 6.13 1.62 0.38 ng/L 1 537 (modified) 5.13 1.62 0.37 ng/L 1 537 (modified) 3.34 1.62 0.19 ng/L 1 537 (modified) 7.16 1.62 0.34 ng/L 1 537 (modified) 1.28 J 1.62 0.23 ng/L 1 537 (modified) 1.87 1.62 0.20 ng/L 1 537 (modified) 0.77 J 1.62 0.24 ng/L 1 537 (modified) 4.33 1.62 0.24 ng/L 1 537 (modified)

Client Sample ID: MW-502

Lab Sample ID: 460-234681-25

Job ID: 460-234681-1

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D Method	Prep Type
1,1,2-Trichloroethane	0.30	J	0.50	0.20	ug/L		8260D	Total/NA
1,1-Dichloroethane	0.49	J	0.50	0.26	ug/L	1	8260D	Total/NA
1,1-Dichloroethene	0.88		0.50	0.26	ug/L	1	8260D	Total/NA
1,2-Dichloroethane	1.1		0.50	0.43	ug/L	1	8260D	Total/NA
1,2-Dichloropropane	0.40	J	0.50	0.35	ug/L	1	8260D	Total/NA
Chloroform	1.3		0.50	0.33	ug/L	1	8260D	Total/NA
cis-1,2-Dichloroethene	350		0.50	0.22	ug/L	1	8260D	Total/NA
Ethylbenzene	0.35	J	0.50	0.30	ug/L	1	8260D	Total/NA
Freon 11	0.97		0.50	0.32	ug/L	1	8260D	Total/NA
Freon 113	23		0.50	0.31	ug/L	1	8260D	Total/NA
Freon 22	3.7		1.0	0.67	ug/L	1	8260D	Total/NA
Tetrachloroethene	36		0.50	0.25	ug/L	1	8260D	Total/NA
trans-1,2-Dichloroethene	1.7		0.50	0.24	ug/L	1	8260D	Total/NA
Trichloroethene	110		0.50	0.31	ug/L	1	8260D	Total/NA
1,4-Dioxane	0.18	J	0.20	0.17	ug/L	1	8270E SIM	Total/NA
Perfluorobutanoic acid (PFBA)	1.12	J	4.09	0.73	ng/L	1	537 (modified)	Total/NA
Perfluorooctanoic acid (PFOA)	0.44	J	1.64	0.35	ng/L	1	537 (modified)	Total/NA
Perfluorohexanesulfonic acid (PFHxS)	0.35	J	1.64	0.25	ng/L	1	537 (modified)	Total/NA
Chloride	27.0		5.0	1.1	mg/L	1	SM 4500 CI- B	Total/NA

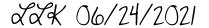
Client Sample ID: QC-EB110521-01

1		h (Cama		7. /	C	1 71) <i>A C</i>	204	1 26
1	ᆫᆀ	D i	Samp	іе п	J: 4	ŀΟι	J-Z.	34t	וסכ	1-20

Analyte		Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type	
Methylene Chloride	samples ND - no quals	0.44	J	0.50	0.32	ug/L	1		8260D	Total/NA	_

Client Sample ID: QC-EB120521-XX

Lab Sample ID: 460-234681-27


Analyte	Result Qualifier	RL	MDL Unit	Dil Fac D Method	Prep Type
Methylene Chloride samples ND - no quals	0.46 J	0.50	0.32 ug/L	1	Total/NA

Client Sample ID: QC-TB110521-XX

Lab Sample ID: 460-234681-28

Analyte	I	Result Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Methylene Chloride	samples ND - no quals	0.33 J	0.50	0.32	ug/L	1		8260D	 Total/NA

This Detection Summary does not include radiochemical test results.

Eurofins TestAmerica, Edison 06/09/2021

Page 20 of 3279

Client: Wood E&I Solutions Inc Job ID: 460-234681-1

Project/Site: LMC Q2 2021 Groundwater Monitoring

Client Sample ID: QC-TB1205	21-XX				Lab Samp	ole ID: 46	0-234681-29
No Detections.							
Client Sample ID: QC-TB1305	21-XX				Lab Samp	ole ID: 46	0-234681-30
Analyte	Result Qualifier	RL	MDL	Unit	Dil Fac D	Method	Prep Type
Methylene Chloride samples ND - no quals	0.74	0.50	0.32	ug/L		8260D	Total/NA
Client Sample ID: QC-TUBE11	10521-XX				Lab Samp	ole ID: 46	0-234681-31
No Detections.							
Client Sample ID: QC-TUBED	T130521-XX				Lab Samp	ole ID: 46	0-234681-32

No Detections.

No Detections.

XXX 06/24/2021

Client Sample ID: QC-TUBEWL140521-XX

Lab Sample ID: 460-234681-33

Client: Wood E&I Solutions Inc

Project/Site: LMC Q2 2021 Groundwater Monitoring

Client Sample ID: SW-N13000-XX (Continued)

Lab Sample ID: 460-235115-23

Job ID: 460-235115-1

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Perfluorohexanoic acid (PFHxA)	1.05	J	1.71	0.39	ng/L	1	_	537 (modified)	Total/NA
Perfluoroheptanoic acid (PFHpA)	0.63	JВ	1.71	0.20	ng/L	1		537 (modified)	Total/NA
Perfluorooctanoic acid (PFOA)	2.01	В	1.71	0.36	ng/L	1		537 (modified)	Total/NA
Perfluorononanoic acid (PFNA)	0.37	JB	1.71	0.24	ng/L	1		537 (modified)	Total/NA
Perfluorobutanesulfonic acid (PFBS)	0.41	JB	1.71	0.21	ng/L	1		537 (modified)	Total/NA
Perfluorohexanesulfonic acid (PFHxS)	0.74	JB	1.71	0.26	ng/L	1		537 (modified)	Total/NA
Perfluorooctanesulfonic acid (PFOS)	0.50	JB	1.71	0.25	ng/L	1		537 (modified)	Total/NA
Chloride	40.5		5.0	1.1	mg/L	1		SM 4500 CI- B	Total/NA

Client Sample ID: SW-N13821-XX

Lab Sample ID: 460-235115-24

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
cis-1,2-Dichloroethene	4.8		0.50	0.14	ug/L	1	_	524.2	Total/NA
Freon 113	0.24	J	0.50	0.14	ug/L	1		524.2	Total/NA
Tetrachloroethene	1.1		0.50	0.14	ug/L	1		524.2	Total/NA
Trichloroethene	1.2		0.50	0.11	ug/L	1		524.2	Total/NA
Perfluorobutanoic acid (PFBA)	2.52	JB	4.53	0.81	ng/L	1		537 (modified)	Total/NA
Perfluoropentanoic acid (PFPeA)	3.47		1.81	0.43	ng/L	1		537 (modified)	Total/NA
Perfluorohexanoic acid (PFHxA)	2.58		1.81	0.41	ng/L	1		537 (modified)	Total/NA
Perfluoroheptanoic acid (PFHpA)	1.38	JB	1.81	0.22	ng/L	1		537 (modified)	Total/NA
Perfluorooctanoic acid (PFOA)	8.66	В	1.81	0.38	ng/L	1		537 (modified)	Total/NA
Perfluorononanoic acid (PFNA)	1.15	JВ	1.81	0.25	ng/L	1		537 (modified)	Total/NA
Perfluorobutanesulfonic acid (PFBS)	0.61	JB	1.81	0.23	ng/L	1		537 (modified)	Total/NA
Perfluorohexanesulfonic acid (PFHxS)	0.75	JB	1.81	0.27	ng/L	1		537 (modified)	Total/NA
Perfluorooctanesulfonic acid (PFOS)	0.90	JB	1.81	0.26	ng/L	1		537 (modified)	Total/NA
Chloride	86.0		10.0	2.2	mg/L	2		SM 4500 CI- B	Total/NA

Client Sample ID: SW-500

Lab Sample ID: 460-235115-25

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
cis-1,2-Dichloroethene	4.2	- 	0.50	0.14	ug/L	1	_	524.2	Total/NA
Freon 113	0.24	J	0.50	0.14	ug/L	1		524.2	Total/NA
Tetrachloroethene	0.99		0.50	0.14	ug/L	1		524.2	Total/NA
Trichloroethene	1.0		0.50	0.11	ug/L	1		524.2	Total/NA
Perfluorobutanoic acid (PFBA)	2.63	JB	4.46	0.80	ng/L	1		537 (modified)	Total/NA
Perfluoropentanoic acid (PFPeA)	3.83		1.78	0.42	ng/L	1		537 (modified)	Total/NA
Perfluorohexanoic acid (PFHxA)	2.68		1.78	0.40	ng/L	1		537 (modified)	Total/NA
Perfluoroheptanoic acid (PFHpA)	1.34	JB	1.78	0.21	ng/L	1		537 (modified)	Total/NA
Perfluorooctanoic acid (PFOA)	9.20	В	1.78	0.38	ng/L	1		537 (modified)	Total/NA
Perfluorononanoic acid (PFNA)	1.18	JВ	1.78	0.25	ng/L	1		537 (modified)	Total/NA
Perfluorobutanesulfonic acid (PFBS)	0.51	JB	1.78	0.22	ng/L	1		537 (modified)	Total/NA
Perfluorohexanesulfonic acid (PFHxS)	0.74	JB	1.78	0.27	ng/L	1		537 (modified)	Total/NA
Perfluorooctanesulfonic acid (PFOS)	0.89	JВ	1.78	0.26	ng/L	1		537 (modified)	Total/NA
Chloride	86.0		10.0	2.2	mg/L	2		SM 4500 CI- B	Total/NA

Client Sample ID: QC-TB170521-XX

Lab Sample ID: 460-235115-26

_					
Analyte	Result Qualifier	RL	MDL Unit	Dil Fac D Method	Prep Type
Methylene Chloride	0.71	0.50	0.32 ug/L	1	Total/NA

samples ND - no quals

LXK 06/24/2021

This Detection Summary does not include radiochemical test results.

Eurofins TestAmerica, Edison 06/11/2021

Spike

20.0

20.0

20.0

20.0

20.0

20.0

20.0

20.0

20.0

20.0

40.0

20.0

20.0

20.0

20.0

20.0

Added

Client: Wood E&I Solutions Inc

Project/Site: LMC Q2 2021 Groundwater Monitoring

Method: 8260D - Volatile Organic Compounds by GC/MS (Continued)

Sample Sample

 $0.\overline{50}$ \overline{U}

0.50 U

2.5 U

0.50 U

1.0 U

1.0 U

1.1

Result Qualifier

Lab Sample ID: 460-234681-3 MS

Analysis Batch: 779084

Matrix: Water

Methyl tert-butyl ether

1,2-Dibromoethane

1,3-Dichlorobenzene

1,4-Dichlorobenzene

1,2-Dichlorobenzene

Dichlorodifluoromethane

1,2,4-Trichlorobenzene

Isopropylbenzene

Methylcyclohexane

Methyl acetate

Freon 152a

Freon 123

Freon 22

1,2-Dibromo-3-Chloropropane

Analyte

Cyclohexane

70-130

Unit

ug/L

MS MS

19.7

20.8

19.4

18.3

18.3

18.5

17.6

16.2

16.0

17.2

39.5

19.7

29.2

20.0

19.7

21.3

Result Qualifier

Client Sample ID: MW-1MI-XX Prep Type: Total/NA

Job ID: 460-234681-1

		%Rec.
D	%Rec	Limits
	99	65 - 131
	104	67 - 133
	97	69 - 126
	92	80 - 121
	92	80 - 118
	93	79 - 122
	88	31 - 150
	81	64 - 132
	80	41 - 143
	86	79 - 125
	99	70 - 127
	99	60 - 139
	146	10 - 150
	100	10 - 150

10 - 150

10 - 150

99

101

IS

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	99		75 - 123
Toluene-d8 (Surr)	102		80 - 120
4-Bromofluorobenzene	107		76 - 120
Dibromofluoromethane (Surr)	100		77 - 124

Lab Sample ID: 460-234681-3 MSD

Freon 115 high bias and sample ND - no qual_{5.0} U

Matrix: Water

Analysis Batch: 779084

Client Sample ID: MW-1MI-XX Prep Type: Total/NA

Analysis Batch: 779084											
	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Chloromethane	0.50	U	20.0	22.4		ug/L		112	38 - 150	4	30
Vinyl chloride	0.50	U	20.0	18.7		ug/L		93	61 - 144	1	30
Bromomethane	0.50	U	20.0	18.2		ug/L		91	43 - 150	5	30
Chloroethane	0.50	U	20.0	22.7		ug/L		113	50 - 150	3	30
Methylene Chloride	0.50	U	20.0	19.5		ug/L		98	74 - 127	1	30
Acetone	5.0	U	100	79.7		ug/L		80	61 - 134	3	30
Carbon disulfide	0.50	U	20.0	20.5		ug/L		103	64 - 138	1	30
Freon 11	0.50	U	20.0	18.6		ug/L		93	61 - 140	0	30
1,1-Dichloroethene	0.50	U	20.0	20.0		ug/L		100	68 - 133	4	30
1,1-Dichloroethane	0.50	U	20.0	22.3		ug/L		111	73 - 130	4	30
trans-1,2-Dichloroethene	0.50	U	20.0	20.0		ug/L		100	74 - 126	1	30
cis-1,2-Dichloroethene	14		20.0	36.0		ug/L		111	78 - 121	0	30
Chloroform	0.50	U	20.0	20.8		ug/L		104	78 - 125	1	30
1,2-Dichloroethane	0.50	U	20.0	18.9		ug/L		94	75 - 121	2	30
Methyl ethyl ketone (MEK)	2.5	U	100	104		ug/L		104	69 - 128	1	30
1,1,1-Trichloroethane	0.50	U	20.0	20.3		ug/L		101	68 - 128	1	30
Carbon tetrachloride	0.50	U	20.0	19.2		ug/L		96	56 - 131	0	30
Bromodichloromethane	0.50	U	20.0	19.1		ug/L		95	72 - 121	0	30
1,2-Dichloropropane	0.50	U	20.0	20.0		ug/L		100	76 - 126	0	30
cis-1,3-Dichloropropene	0.50	U	20.0	19.9		ug/L		100	74 - 125	1	30

XXX 06/24/2021

Eurofins TestAmerica, Edison

Page 112 of 3279

Client: Wood E&I Solutions Inc Job ID: 460-234681-1

Project/Site: LMC Q2 2021 Groundwater Monitoring

Method: 8260D - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: 460-234681-3 MSD

Matrix: Water Analysis Batch: 779084 70-130

Client Sample ID: MW-1MI-XX

Prep Type: Total/NA

•	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Trichloroethene	5.0		20.0	28.3		ug/L		116	71 - 121	2	30
Dibromochloromethane	0.50	U	20.0	19.6		ug/L		98	58 - 130	1	30
1,1,2-Trichloroethane	0.50	U	20.0	21.0		ug/L		105	74 - 125	0	30
Benzene	0.50	U	20.0	20.3		ug/L		101	78 - 126	1	30
trans-1,3-Dichloropropene	0.50	U	20.0	19.3		ug/L		97	66 - 127	1	30
Bromoform	0.50	U	20.0	20.1		ug/L		100	38 - 144	1	30
Methyl isobutyl ketone (MIBK)	2.5	U	100	93.1		ug/L		93	69 - 128	3	30
2-Hexanone	2.5	U	100	88.7		ug/L		89	74 - 127	3	30
Tetrachloroethene	4.7		20.0	28.2		ug/L		118	70 - 127	0	30
1,1,2,2-Tetrachloroethane	0.50	U	20.0	20.0		ug/L		100	63 - 139	0	30
Toluene	0.50	U	20.0	20.3		ug/L		102	78 - 119	0	30
Chlorobenzene	0.50	U	20.0	19.1		ug/L		95	80 - 119	0	30
Ethylbenzene	0.88		20.0	19.2		ug/L		92	78 - 120	1	30
Styrene	0.50	U	20.0	17.7		ug/L		88	75 - 127	2	30
m&p-Xylene	0.43	J	20.0	18.4		ug/L		90	78 - 123	1	30
o-Xylene	0.50	U	20.0	17.9		ug/L		89	78 - 122	1	30
Xylenes, Total	1.0	U	40.0	36.3		ug/L		91	78 - 122	0	30
Freon 113	1.2		20.0	22.5		ug/L		107	59 - 142	1	30
Methyl tert-butyl ether	0.50	U	20.0	20.0		ug/L		100	65 - 131	1	30
Cyclohexane	0.50	U	20.0	20.2		ug/L		101	67 - 133	3	30
1,2-Dibromoethane	0.50	U	20.0	19.5		ug/L		98	69 - 126	1	30
1,3-Dichlorobenzene	0.50	U	20.0	18.0		ug/L		90	80 - 121	2	30
1,4-Dichlorobenzene	0.50	U	20.0	18.5		ug/L		92	80 - 118	1	30
1,2-Dichlorobenzene	0.50	U	20.0	18.6		ug/L		93	79 - 122	0	30
Dichlorodifluoromethane	0.50	U	20.0	17.8		ug/L		89	31 - 150	1	30
1,2,4-Trichlorobenzene	0.50	U	20.0	17.1		ug/L		86	64 - 132	6	30
1,2-Dibromo-3-Chloropropane	0.50	U	20.0	16.1		ug/L		80	41 - 143	1	30
Isopropylbenzene	0.50	U	20.0	17.3		ug/L		87	79 - 125	1	30
Methyl acetate	2.5	U	40.0	40.1		ug/L		100	70 - 127	1	30
Methylcyclohexane	0.50	U	20.0	19.5		ug/L		97	60 - 139	1	30
Freon 115 high bias and sample NE	o - no qual 5.0	U	20.0	26.5		ug/L		132	10 - 150	10	30
Freon 152a	1.0	U	20.0	19.9		ug/L		100	10 - 150	1	30
Freon 123	1.0	U	20.0	19.7		ug/L		98	10 - 150	0	30
Freon 22	1.1		20.0	21.1		ug/L		100	10 - 150	1	30

MSD MSD

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	99		75 - 123
Toluene-d8 (Surr)	105		80 - 120
4-Bromofluorobenzene	107		76 - 120
Dibromofluoromethane (Surr)	101		77 - 124

Lab Sample ID: MB 460-779357/7

Matrix: Water

Analysis Batch: 779357

Client Sample ID: Method Blank Prep Type: Total/NA

MB MB Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac 1,1-Dichloroethene 0.50 U 0.50 0.26 ug/L 05/21/21 08:46 1,1-Dichloroethane 0.50 U 0.50 0.26 ug/L 05/21/21 08:46

XXX 06/24/2021

Eurofins TestAmerica, Edison

Page 113 of 3279

Client: Wood E&I Solutions Inc

Project/Site: LMC Q2 2021 Groundwater Monitoring

Method: 8260D - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: LCS 460-779357/3

Matrix: Water

Analysis Batch: 779357

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Job ID: 460-234681-1

	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Methyl tert-butyl ether	20.0	20.2		ug/L		101	65 - 131
Dichlorodifluoromethane	20.0	17.7		ug/L		89	31 - 150
1,2,4-Trichlorobenzene	20.0	17.5		ug/L		88	64 - 132
Methylene Chloride	20.0	19.7		ug/L		98	74 - 127
1,2-Dibromo-3-Chloropropane	20.0	18.6		ug/L		93	41 - 143
o-Xylene	20.0	17.7		ug/L		88	78 - 122
Isopropylbenzene	20.0	17.6		ug/L		88	79 - 125
Styrene	20.0	17.9		ug/L		90	75 - 127
Methyl acetate	40.0	45.5		ug/L		114	70 - 127
Tetrachloroethene	20.0	21.1		ug/L		106	70 - 127
Methylcyclohexane	20.0	20.3		ug/L		101	60 - 139
Toluene	20.0	20.1		ug/L		101	78 ₋ 119
trans-1,2-Dichloroethene	20.0	19.8		ug/L		99	74 - 126
Freon 115	20.0	27.8		ug/L		139	10 - 150
trans-1,3-Dichloropropene	20.0	19.7		ug/L		98	66 - 127
Freon 152a	20.0	19.7		ug/L		98	10 - 150
Trichloroethene	20.0	19.3		ug/L		96	71 - 121
Freon 123	20.0	19.3		ug/L		96	10 - 150
Vinyl chloride	20.0	18.3		ug/L		91	61 - 144
Freon 22	20.0	19.5		ug/L		97	10 - 150
Xylenes, Total	40.0	35.6		ug/L		89	78 - 122

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	100		75 - 123
4-Bromofluorobenzene	110		76 - 120
Toluene-d8 (Surr)	103		80 - 120
Dibromofluoromethane (Surr)	102		77 - 124

Lab Sample ID: 460-234681-15 MS

Matrix: Water

Client Sample ID: MW-31GL-XX Prep Type: Total/NA

Analysis Batch: 779357		70-130								
Sa	mple	Sample	Spike	MS	MS				%Rec.	
Analyte R	esult	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Chloromethane	0.50	U	20.0	20.8		ug/L		104	38 - 150	
Vinyl chloride	0.50	U	20.0	17.6		ug/L		88	61 - 144	
Bromomethane	0.50	U	20.0	14.5		ug/L		73	43 - 150	
Chloroethane	0.50	U	20.0	20.6		ug/L		103	50 - 150	
Methylene Chloride	0.50	U	20.0	19.5		ug/L		98	74 - 127	
Acetone	5.0	U	100	79.9		ug/L		80	61 - 134	
Carbon disulfide	0.50	U	20.0	19.3		ug/L		97	64 - 138	
Freon 11	0.50	U	20.0	17.8		ug/L		89	61 - 140	
1,1-Dichloroethene	0.36	J	20.0	19.0		ug/L		93	68 - 133	
1,1-Dichloroethane	0.50	U	20.0	20.2		ug/L		101	73 - 130	
trans-1,2-Dichloroethene	1.1		20.0	19.7		ug/L		93	74 - 126	
cis-1,2-Dichloroethene sample > 4x spike	150		20.0	157	4	ug/L		11	78 - 121	
Chloroform - no qual	0.43	J	20.0	20.8		ug/L		102	78 - 125	
1,2-Dichloroethane	0.50	U	20.0	19.3		ug/L		97	75 - 121	
Methyl ethyl ketone (MEK)	2.5	U	100	104		ug/L		104	69 - 128	

XXX 06/24/2021

Eurofins TestAmerica, Edison 06/09/2021

Client: Wood E&I Solutions Inc

Project/Site: LMC Q2 2021 Groundwater Monitoring

Method: 8260D - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: 460-234681-15 MS

Matrix: Water Analysis Batch: 779357 Client Sample ID: MW-31GL-XX

Job ID: 460-234681-1

70-130 Prep Type: Total/NA

•	-	Sample	Spike	_	MS				%Rec.
Analyte		Qualifier	Added		Qualifier	Unit	_ D	%Rec	Limits
1,1,1-Trichloroethane	0.50		20.0	19.2		ug/L		96	68 - 128
Carbon tetrachloride	0.50	U	20.0	18.5		ug/L		92	56 - 131
Bromodichloromethane	0.50	U	20.0	19.0		ug/L		95	72 - 121
1,2-Dichloropropane	0.50	U	20.0	19.7		ug/L		99	76 - 126
cis-1,3-Dichloropropene	0.50	U	20.0	19.2		ug/L		96	74 - 125
Trichloroethene J-	36	F1	20.0	49.4	F1	ug/L		65	71 - 121
Dibromochloromethane	0.50	U	20.0	20.0		ug/L		100	58 - 130
1,1,2-Trichloroethane	0.50	U	20.0	21.2		ug/L		106	74 - 125
Benzene	0.50	U	20.0	19.3		ug/L		97	78 - 126
trans-1,3-Dichloropropene	0.50	U	20.0	19.3		ug/L		96	66 - 127
Bromoform	0.50	U	20.0	20.7		ug/L		103	38 - 144
Methyl isobutyl ketone (MIBK)	2.5	U	100	96.2		ug/L		96	69 - 128
2-Hexanone	2.5	U	100	91.4		ug/L		91	74 - 127
Tetrachloroethene	18		20.0	36.8		ug/L		93	70 - 127
1,1,2,2-Tetrachloroethane	0.50	U	20.0	20.9		ug/L		105	63 - 139
Toluene	0.50	U	20.0	19.5		ug/L		98	78 - 119
Chlorobenzene	0.50	U	20.0	19.3		ug/L		97	80 - 119
Ethylbenzene	0.50	U	20.0	18.4		ug/L		92	78 - 120
Styrene	0.50	U	20.0	17.7		ug/L		89	75 - 127
m&p-Xylene	0.50	U	20.0	17.9		ug/L		90	78 - 123
o-Xylene	0.50	U	20.0	18.0		ug/L		90	78 - 122
Xylenes, Total	1.0	U	40.0	35.9		ug/L		90	78 - 122
Freon 113	6.3		20.0	23.7		ug/L		87	59 - 142
Methyl tert-butyl ether	0.50	U	20.0	20.2		ug/L		101	65 - 131
Cyclohexane	0.50	U	20.0	20.5		ug/L		103	67 - 133
1,2-Dibromoethane	0.50	U	20.0	19.9		ug/L		99	69 - 126
1,3-Dichlorobenzene	0.50	U	20.0	18.2		ug/L		91	80 - 121
1,4-Dichlorobenzene	0.50	U	20.0	18.0		ug/L		90	80 - 118
1,2-Dichlorobenzene	0.50	U	20.0	18.8		ug/L		94	79 - 122
Dichlorodifluoromethane	0.50	U	20.0	16.5		ug/L		83	31 - 150
1,2,4-Trichlorobenzene	0.50	U	20.0	17.8		ug/L		89	64 - 132
1,2-Dibromo-3-Chloropropane	0.50	U	20.0	18.9		ug/L		94	41 - 143
Isopropylbenzene	0.50	U	20.0	17.6		ug/L		88	79 - 125
Methyl acetate	2.5	U	40.0	42.8		ug/L		107	70 - 127
Methylcyclohexane	0.50	U	20.0	20.9		ug/L		104	60 - 139
Freon 115 high bias, sample ND	- no qual 5.0	U	20.0	29.2		ug/L		146	10 - 150
Freon 152a	1.0	U	20.0	18.5		ug/L		92	10 - 150
Freon 123	1.0	U	20.0	18.4		ug/L		92	10 - 150
Freon 22	1.7		20.0	18.7		ug/L		85	10 - 150

ИS	MS

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	99		75 - 123
Toluene-d8 (Surr)	102		80 - 120
4-Bromofluorobenzene	110		76 - 120
Dibromofluoromethane (Surr)	101		77 - 124

XXX 06/24/2021

Client: Wood E&I Solutions Inc

Project/Site: LMC Q2 2021 Groundwater Monitoring

Method: 8260D - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: 460-234681-15 MSD

Matrix: Water

Analysis Batch: 779357

Client Sample ID: MW-31GL-XX

70-130 **Prep Type: Total/NA**

Job ID: 460-234681-1

Analyte	Result	Sample Qualifier	Spike Added		MSD Qualifier	Unit	D	%Rec	%Rec. Limits	RPD	RPD Limit
Chloromethane	0.50	U	20.0	21.7		ug/L		109	38 - 150	4	30
Vinyl chloride	0.50	U	20.0	17.8		ug/L		89	61 - 144	1	30
Bromomethane	0.50	U	20.0	14.7		ug/L		74	43 - 150	1	30
Chloroethane	0.50	U	20.0	20.1		ug/L		100	50 - 150	3	30
Methylene Chloride	0.50	U	20.0	19.9		ug/L		99	74 - 127	2	30
Acetone	5.0	U	100	79.5		ug/L		80	61 - 134	0	30
Carbon disulfide	0.50	U	20.0	20.0		ug/L		100	64 - 138	3	30
Freon 11	0.50	U	20.0	17.9		ug/L		89	61 - 140	1	30
1,1-Dichloroethene	0.36	J	20.0	20.0		ug/L		98	68 - 133	5	30
1,1-Dichloroethane	0.50	U	20.0	21.2		ug/L		106	73 - 130	5	30
trans-1,2-Dichloroethene	1.1		20.0	20.2		ug/L		95	74 - 126	2	30
cis-1,2-Dichloroethene $sample > 4x$	150		20.0	160	4	ug/L		25	78 - 121	2	30
Chloroform blank - no qu	0.43	J	20.0	21.3		ug/L		104	78 - 125	2	30
1,2-Dichloroethane	0.50	U	20.0	19.2		ug/L		96	75 - 121	1	30
Methyl ethyl ketone (MEK)	2.5	U	100	108		ug/L		108	69 - 128	4	30
1,1,1-Trichloroethane	0.50	U	20.0	19.9		ug/L		99	68 - 128	4	30
Carbon tetrachloride	0.50	U	20.0	19.0		ug/L		95	56 - 131	3	30
Bromodichloromethane	0.50	U	20.0	19.3		ug/L		96	72 - 121	1	30
1,2-Dichloropropane	0.50	U	20.0	19.9		ug/L		99	76 - 126	1	30
cis-1,3-Dichloropropene	0.50	U	20.0	20.0		ug/L		100	74 - 125	4	30
Trichloroethene	36	F1	20.0	50.5		ug/L		71	71 - 121	2	30
Dibromochloromethane	0.50	U	20.0	20.0		ug/L		100	58 - 130	0	30
1,1,2-Trichloroethane	0.50	U	20.0	21.8		ug/L		109	74 - 125	3	30
Benzene	0.50	U	20.0	20.0		ug/L		100	78 - 126	3	30
trans-1,3-Dichloropropene	0.50	U	20.0	19.7		ug/L		99	66 - 127	2	30
Bromoform	0.50	U	20.0	21.6		ug/L		108	38 - 144	4	30
Methyl isobutyl ketone (MIBK)	2.5	U	100	93.6		ug/L		94	69 - 128	3	30
2-Hexanone	2.5	U	100	90.4		ug/L		90	74 - 127	1	30
Tetrachloroethene	18		20.0	37.5		ug/L		96	70 - 127	2	30
1,1,2,2-Tetrachloroethane	0.50	U	20.0	21.5		ug/L		108	63 - 139	3	30
Toluene	0.50	U	20.0	20.4		ug/L		102	78 - 119	4	30
Chlorobenzene	0.50	U	20.0	19.7		ug/L		98	80 - 119	2	30
Ethylbenzene	0.50	U	20.0	19.1		ug/L		96	78 - 120	4	30
Styrene	0.50	U	20.0	18.1		ug/L		90	75 - 127	2	30
m&p-Xylene	0.50	U	20.0	18.3		ug/L		91	78 - 123	2	30
o-Xylene	0.50	U	20.0	18.0		ug/L		90	78 - 122	0	30
Xylenes, Total	1.0	U	40.0	36.2		ug/L		91	78 - 122	1	30
Freon 113	6.3		20.0	24.7		ug/L		92	59 - 142	4	30
Methyl tert-butyl ether	0.50	U	20.0	20.4		ug/L		102	65 - 131	1	30
Cyclohexane	0.50	U	20.0	19.7		ug/L		99	67 - 133	4	30
1,2-Dibromoethane	0.50	U	20.0	20.0		ug/L		100	69 - 126	1	30
1,3-Dichlorobenzene	0.50	U	20.0	18.2		ug/L		91	80 - 121	0	30
1,4-Dichlorobenzene	0.50	U	20.0	18.8		ug/L		94	80 - 118	4	30
1,2-Dichlorobenzene	0.50	U	20.0	18.9		ug/L		95	79 - 122	1	30
Dichlorodifluoromethane	0.50	U	20.0	16.5		ug/L		82	31 - 150	0	30
1,2,4-Trichlorobenzene	0.50	U	20.0	17.7		ug/L		88	64 - 132	0	30
1,2-Dibromo-3-Chloropropane	0.50	U	20.0	18.7		ug/L		94	41 - 143	1	30
Isopropylbenzene	0.50	U	20.0	17.7		ug/L		89	79 - 125	0	30

XXX 06/24/2021

Eurofins TestAmerica, Edison

Page 118 of 3279

Client: Wood E&I Solutions Inc Job ID: 460-234681-1

Project/Site: LMC Q2 2021 Groundwater Monitoring

Client Sample ID: MW-31GL-XX Lab Sample ID: 460-234681-15 MSD **Matrix: Water** Prep Type: Total/NA 70-130

Analysis Batch: 779357

	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Methyl acetate	2.5	U	40.0	42.3		ug/L		106	70 - 127	1	30
Methylcyclohexane	0.50	U	20.0	19.0		ug/L		95	60 - 139	10	30
Freon 115 high bias, sample ND	no qual 5.0	U	20.0	27.2		ug/L		136	10 - 150	7	30
Freon 152a	1.0	U	20.0	18.8		ug/L		94	10 - 150	2	30
Freon 123	1.0	U	20.0	19.0		ug/L		95	10 - 150	3	30
Freon 22	1.7		20.0	19.5		ug/L		89	10 - 150	4	30

MSD MSD

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	98		75 - 123
Toluene-d8 (Surr)	104		80 - 120
4-Bromofluorobenzene	109		76 - 120
Dibromofluoromethane (Surr)	100		77 - 124

Method: 8270E SIM - 1,4-Dioxane (GC/MS SIM)

Lab Sample ID: MB 460-779053/1-A **Client Sample ID: Method Blank Matrix: Water Prep Type: Total/NA Prep Batch: 779053**

Analysis Batch: 779205

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,4-Dioxane	0.20	U	0.20	0.17	ug/L		05/19/21 21:38	05/20/21 12:40	1

MB MB

MR MR

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
Nitrobenzene-d5	91	54 - 134	05/19/21 21:38	05/20/21 12:40	1

Lab Sample ID: MB 460-779053/1-A	Client Sample ID: Wethod Blank
Matrix: Water	Prep Type: Total/NA
Analysis Batch: 779268	Prep Batch: 779053

MB MB Analyte Result Qualifier RL **MDL** Unit Prepared **Analyzed** Dil Fac 1,4-Dioxane 05/19/21 21:38 05/20/21 20:58 0.20 U 0.20 0.17 ug/L

MB MB

Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac 54 - 134 05/19/21 21:38 05/20/21 20:58 Nitrobenzene-d5 78

Lab Sample ID: LCS 460-779053/2-A

Matrix: Water Prep Type: Total/NA **Analysis Batch: 779205 Prep Batch: 779053** Spike LCS LCS %Rec.

Added Result Qualifier Unit Limits Analyte 1,4-Dioxane 0.800 0.198 J ug/L 10 - 120

LCS LCS

Limits Surrogate %Recovery Qualifier Nitrobenzene-d5 54 - 134

XXX 06/24/2021

Client Sample ID: Lab Control Sample

Client: Wood E&I Solutions Inc

Project/Site: LMC Q2 2021 Groundwater Monitoring

Method: 8260D - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: LCS 460-780881/4

Matrix: Water

Analysis Batch: 780881

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Job ID: 460-235115-1

	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Ethylbenzene	20.0	19.5		ug/L		98	78 - 120
Styrene	20.0	18.4		ug/L		92	75 - 127
m&p-Xylene	20.0	19.3	ı	ug/L		97	78 - 123
o-Xylene	20.0	18.6	ı	ug/L		93	78 - 122
Xylenes, Total	40.0	37.9		ug/L		95	78 - 122
Freon 113	20.0	19.7	(ug/L		98	59 - 142
Methyl tert-butyl ether	20.0	20.8	ı	ug/L		104	65 - 131
Cyclohexane	20.0	20.5		ug/L		103	67 - 133
1,2-Dibromoethane	20.0	20.5	(ug/L		103	69 - 126
1,3-Dichlorobenzene	20.0	19.1	(ug/L		96	80 - 121
1,4-Dichlorobenzene	20.0	19.1		ug/L		96	80 - 118
1,2-Dichlorobenzene	20.0	19.6	(ug/L		98	79 - 122
Dichlorodifluoromethane	20.0	18.0	(ug/L		90	31 - 150
1,2,4-Trichlorobenzene	20.0	17.9		ug/L		89	64 - 132
1,2-Dibromo-3-Chloropropane	20.0	17.4	(ug/L		87	41 - 143
sopropylbenzene	20.0	18.6	(ug/L		93	79 - 125
Methyl acetate	40.0	46.5		ug/L		116	70 - 127
Methylcyclohexane	20.0	20.0	(ug/L		100	60 - 139
Freon 115	20.0	27.9	ı	ug/L		140	10 - 150
Freon 152a	20.0	23.0		ug/L		115	10 - 150
Freon 123	20.0	20.3	ı	ug/L		102	10 - 150
Freon 22	20.0	19.3	(ug/L		96	10 - 150

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	101		75 - 123
Toluene-d8 (Surr)	110		80 - 120
4-Bromofluorobenzene	101		76 - 120
Dibromofluoromethane (Surr)	101		77 - 124

Lab Sample ID: 460-235115-19 MS

Matrix: Water

Analysis Batch: 780881

Client Sample ID: MW-47ML-XX **Prep Type: Total/NA**

Sample Sample Spike MS MS %Rec. Result Qualifier Added Result Qualifier Analyte Unit %Rec Limits 0.50 Ū 20.0 38 - 150 Chloromethane 23.7 ug/L 119 Vinyl chloride 0.50 U 20.0 20.7 ug/L 104 61 - 144 Bromomethane UJ 0.50 U 20.0 12.1 ug/L 61 43 - 150 Chloroethane 0.50 U 20.0 17.1 ug/L 86 50 - 150 Methylene Chloride 0.50 U 20.0 20.9 ug/L 105 74 - 127 Acetone 5.0 U 100 78.3 ug/L 78 61 - 134 Carbon disulfide 0.50 U 20.0 21.7 ug/L 108 64 - 138 Freon 11 0.50 U 20.0 15.3 ug/L 77 61 - 140 1,1-Dichloroethene 0.35 J 20.0 20.5 ug/L 101 68 - 133 20.0 1,1-Dichloroethane 0.50 U 22.8 ug/L 114 73 - 130 20.0 74 - 126 trans-1.2-Dichloroethene 0.55 19.9 ug/L 97 cis-1,2-Dichloroethene 17 20.0 37.4 ug/L 101 78 - 121 Chloroform 0.50 U 20.0 21.0 ug/L 105 78 - 125 1,2-Dichloroethane 93 75 - 121 0.50 U 20.0 18.6 ug/L

70-130

XXX 06/24/2021

Eurofins TestAmerica, Edison

Page 99 of 3252

Client: Wood E&I Solutions Inc

Project/Site: LMC Q2 2021 Groundwater Monitoring

Method: 8260D - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: 460-235115-19 MSD

Matrix: Water

70-130

Client Sample ID: MW-47ML-XX

Prep Type: Total/NA

Job ID: 460-235115-1

Analysis Batch: 780881	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte		Qualifier	Added		Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Chloromethane	0.50		20.0	24.5		ug/L		122	38 - 150	3	30
Vinyl chloride	0.50	U	20.0	20.7		ug/L		104	61 - 144	0	30
Bromomethane UJ	0.50		20.0	12.9		ug/L		65	43 - 150	7	30
Chloroethane	0.50	U	20.0	17.5		ug/L		87	50 - 150	2	30
Methylene Chloride	0.50	U	20.0	21.1		ug/L		105	74 - 127	1	30
Acetone	5.0	U	100	80.5		ug/L		81	61 - 134	3	30
Carbon disulfide	0.50	U	20.0	22.1		ug/L		110	64 - 138	2	30
Freon 11	0.50		20.0	15.2		ug/L		76	61 - 140	1	30
1,1-Dichloroethene	0.35		20.0	20.6		ug/L		101	68 - 133	0	30
1,1-Dichloroethane	0.50		20.0	22.9		ug/L		115	73 - 130		30
trans-1,2-Dichloroethene	0.55		20.0	20.5		ug/L		100	74 - 126	3	30
cis-1,2-Dichloroethene	17		20.0	36.6		ug/L		97	78 - 121	2	30
Chloroform	0.50		20.0	21.1		ug/L		106	78 - 125	. . 1	30
1,2-Dichloroethane	0.50		20.0	18.8		ug/L		94	75 - 121	1	30
Methyl ethyl ketone (MEK)	2.5		100	106		ug/L		106	69 - 128	3	30
1,1,1-Trichloroethane	0.50		20.0	18.9		ug/L		95	68 - 128	0	30
Carbon tetrachloride	0.50		20.0	17.6		ug/L		88	56 - 131	2	30
Bromodichloromethane	0.50		20.0	19.6		ug/L		98	72 - 121	2	30
1,2-Dichloropropane	0.50		20.0	22.5		ug/L		112	76 - 126	3	30
cis-1,3-Dichloropropene	0.50		20.0	21.0		ug/L		105	74 - 125	1	30
Trichloroethene	11	O	20.0	29.9		ug/L		96	71 - 121	1	30
Dibromochloromethane	0.50		20.0	19.5		ug/L ug/L		98	58 - 130		30
1,1,2-Trichloroethane	0.50		20.0	23.0		-		115	74 - 125	2	30
Benzene	0.50		20.0	23.0		ug/L ug/L		109	74 - 125 78 - 126	1	30
	0.50		20.0	20.4					66 - 127	2	30
trans-1,3-Dichloropropene	0.50		20.0	18.9		ug/L		102 94	38 - 144	4	30
Bromoform Methyl icebutyl ketene (MIRK)	2.5			96.6		ug/L			69 ₋ 128		
Methyl isobutyl ketone (MIBK)			100			ug/L		97		2	30
2-Hexanone	2.5 1.9	U	100	89.4		ug/L		89	74 ₋ 127 70 ₋ 127	0	30
Tetrachloroethene			20.0	20.5		ug/L		93		2	30
1,1,2,2-Tetrachloroethane	0.50		20.0	25.4		ug/L		127	63 - 139	2	30
Toluene	0.50		20.0	21.0		ug/L		105	78 ₋ 119	0	30
Chlorobenzene	0.50	U	20.0	19.6		ug/L		98	80 - 119	1	30
Ethylbenzene	0.65		20.0	19.6		ug/L		95	78 - 120		30
Styrene	0.50		20.0	18.5		ug/L		92	75 - 127	1	30
m&p-Xylene	0.50		20.0	19.0		ug/L		95	78 - 123	1	30
o-Xylene	0.50		20.0	18.6		ug/L		93	78 - 122		30
Xylenes, Total	1.0	U	40.0	37.7		ug/L		94	78 - 122	0	30
Freon 113	3.0		20.0	20.7		ug/L		89	59 - 142	5	30
Methyl tert-butyl ether	0.50		20.0	21.0		ug/L		105	65 - 131	1	30
Cyclohexane	0.50		20.0	20.2		ug/L		101	67 - 133	2	30
1,2-Dibromoethane	0.50		20.0	20.7		ug/L		104	69 - 126	3	30
1,3-Dichlorobenzene	0.50		20.0	18.7		ug/L		94	80 - 121	0	30
1,4-Dichlorobenzene	0.50		20.0	19.0		ug/L		95	80 - 118	0	30
1,2-Dichlorobenzene	0.50		20.0	19.4		ug/L		97	79 - 122	0	30
Dichlorodifluoromethane	0.50	U	20.0	17.5		ug/L		88	31 - 150	4	30
1,2,4-Trichlorobenzene	0.50	U	20.0	17.4		ug/L		87	64 - 132	4	30
1,2-Dibromo-3-Chloropropane	0.50	U	20.0	18.6		ug/L		93	41 - 143	1	30
Isopropylbenzene	0.50	U	20.0	18.3		ug/L		91	79 - 125	0	30

XXX 06/24/2021

Eurofins TestAmerica, Edison

Page 101 of 3252

0

1 4.210526

Sample ID:	MW-1GL-XX/MW-500
Jampic ID.	IVIVV IOL AMINIVI JOO

Sample ID:	MM-1GI	XX/MW-5	00				
Compund	Result	LabQual	DF	Dup	LabQual	DF	RPD
Trichloroethene	0.53			1 0.47	J		1 12
Sample ID:	MW-7GL	-XX/MW-5	01				
Compund	Result	LabQual	DF	Dup	LabQual	DF	RPD
Chlorodifluoromethane	1.1			1 1.0			1 9.52381
cis-1,2-Dichloroethene	2.2			1 2.0			1 9.52381
Tetrachloroethene	0.71			1 0.83			1 15.58442
Trichloroethene	1.1			1 1.1			1 0
Sample ID:	MW-46N	ЛІ-XX/MW-	502				
Compund	MW-46N	л-хх/МW- LabQual		Dup	LabQual	DF	RPD
·	Result	·		Dup 1 23	LabQual	DF	RPD 1 4.444444
Compund	Result	·		•	LabQual J	DF	
Compund 1,1,2-Trichloro-1,2,2-Trifluoroet	Result h 22	LabQual		1 23		DF	1 4.444444
Compund 1,1,2-Trichloro-1,2,2-Trifluoroet 1,1,2-Trichloroethane	Result h 22 0.27	LabQual		1 23 1 0.30	J	DF	 4.444444 10.52632
Compund 1,1,2-Trichloro-1,2,2-Trifluoroet 1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethene 1,2-Dichloroethane	Result h 22 0.27 0.48	LabQual		1 23 1 0.30 1 0.49	J	DF	 4.444444 10.52632 2.061856
Compund 1,1,2-Trichloro-1,2,2-Trifluoroet 1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethene 1,2-Dichloroethane 1,2-Dichloropropane	Result h 22 0.27 0.48 0.89	LabQual		1 23 1 0.30 1 0.49 1 0.88 1 1.1 1 0.40	J	DF	1 4.44444 1 10.52632 1 2.061856 1 1.129944 1 0 1 5.128205
Compund 1,1,2-Trichloro-1,2,2-Trifluoroet 1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethene 1,2-Dichloroethane 1,2-Dichloropropane Chlorodifluoromethane	Result h 22 0.27 0.48 0.89 1.1 0.38 3.3	LabQual J		1 23 1 0.30 1 0.49 1 0.88 1 1.1 1 0.40 1 3.7	J	DF	1 4.444444 1 10.52632 1 2.061856 1 1.129944 1 0 1 5.128205 1 11.42857
Compund 1,1,2-Trichloro-1,2,2-Trifluoroet 1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,2-Dichloroethane 1,2-Dichloropropane Chlorodifluoromethane Chloroform	Result h 22 0.27 0.48 0.89 1.1 0.38 3.3 1.2	LabQual J		1 23 1 0.30 1 0.49 1 0.88 1 1.1 1 0.40 1 3.7 1 1.3	J	DF	1 4.44444 1 10.52632 1 2.061856 1 1.129944 1 0 1 5.128205 1 11.42857 1 8
Compund 1,1,2-Trichloro-1,2,2-Trifluoroet 1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethene 1,2-Dichloroethane 1,2-Dichloropropane Chlorodifluoromethane Chloroform cis-1,2-Dichloroethene	Result h 22 0.27 0.48 0.89 1.1 0.38 3.3 1.2 340	LabQual J J		1 23 1 0.30 1 0.49 1 0.88 1 1.1 1 0.40 1 3.7 1 1.3 1 350]	DF	1 4.44444 1 10.52632 1 2.061856 1 1.129944 1 0 1 5.128205 1 11.42857 1 8 1 2.898551
Compund 1,1,2-Trichloro-1,2,2-Trifluoroet 1,1,2-Trichloroethane 1,1-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloropropane Chlorodifluoromethane Chloroform cis-1,2-Dichloroethene Ethylbenzene	Result h 22 0.27 0.48 0.89 1.1 0.38 3.3 1.2 340 0.33	LabQual J		1 23 1 0.30 1 0.49 1 0.88 1 1.1 1 0.40 1 3.7 1 1.3 1 350 1 0.35	J	DF	1 4.444444 1 10.52632 1 2.061856 1 1.129944 1 0 1 5.128205 1 11.42857 1 8 1 2.898551 1 5.882353
Compund 1,1,2-Trichloro-1,2,2-Trifluoroet 1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethene 1,2-Dichloroethane 1,2-Dichloropropane Chlorodifluoromethane Chloroform cis-1,2-Dichloroethene	Result h 22 0.27 0.48 0.89 1.1 0.38 3.3 1.2 340	LabQual J J		1 23 1 0.30 1 0.49 1 0.88 1 1.1 1 0.40 1 3.7 1 1.3 1 350]	DF	1 4.44444 1 10.52632 1 2.061856 1 1.129944 1 0 1 5.128205 1 11.42857 1 8 1 2.898551

1 110

1 0.97

XXX 06/24/2021

110

0.93

Trichloroethene

Trichlorofluoromethane

Client: Wood E&I Solutions Inc

Project/Site: LMC Q2 2021 Groundwater Monitoring

Method: 8260D - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: LCS 460-779357/3

Matrix: Water

Analysis Batch: 779357

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Job ID: 460-234681-1

70-130

	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier I	Unit	D	%Rec	Limits
Methyl tert-butyl ether	20.0	20.2		ug/L		101	65 - 131
Dichlorodifluoromethane	20.0	17.7	l	ug/L		89	31 - 150
1,2,4-Trichlorobenzene	20.0	17.5	ι	ug/L		88	64 - 132
Methylene Chloride	20.0	19.7	ι	ug/L		98	74 - 127
1,2-Dibromo-3-Chloropropane	20.0	18.6	ι	ug/L		93	41 - 143
o-Xylene	20.0	17.7	ι	ug/L		88	78 - 122
Isopropylbenzene	20.0	17.6	Ι	ug/L		88	79 - 125
Styrene	20.0	17.9	ι	ug/L		90	75 - 127
Methyl acetate	40.0	45.5	ι	ug/L		114	70 - 127
Tetrachloroethene	20.0	21.1		ug/L		106	70 - 127
Methylcyclohexane	20.0	20.3	ι	ug/L		101	60 - 139
Toluene	20.0	20.1	ι	ug/L		101	78 - 119
trans-1,2-Dichloroethene	20.0	19.8	(ug/L		99	74 - 126
Freon 115 high bias, samples ND - no quals	20.0	27.8	ι	ug/L		139	10 - 150
trans-1,3-Dichloropropene	20.0	19.7	ι	ug/L		98	66 - 127
Freon 152a	20.0	19.7	(ug/L		98	10 - 150
Trichloroethene	20.0	19.3	ι	ug/L		96	71 - 121
Freon 123	20.0	19.3	ι	ug/L		96	10 - 150
Vinyl chloride	20.0	18.3	Ι	ug/L		91	61 - 144
Freon 22	20.0	19.5	ι	ug/L		97	10 - 150
Xylenes, Total	40.0	35.6	l	ug/L		89	78 - 122

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	100		75 - 123
4-Bromofluorobenzene	110		76 - 120
Toluene-d8 (Surr)	103		80 - 120
Dibromofluoromethane (Surr)	102		77 - 124

Lab Sample ID: 460-234681-15 MS

Matrix: Water

Analysis Batch: 779357

Client Sample ID: MW-31GL-XX
Prep Type: Total/NA

Analysis Baton. 110001	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Chloromethane	0.50	U	20.0	20.8		ug/L		104	38 - 150	
Vinyl chloride	0.50	U	20.0	17.6		ug/L		88	61 - 144	
Bromomethane	0.50	U	20.0	14.5		ug/L		73	43 - 150	
Chloroethane	0.50	U	20.0	20.6		ug/L		103	50 - 150	
Methylene Chloride	0.50	U	20.0	19.5		ug/L		98	74 - 127	
Acetone	5.0	U	100	79.9		ug/L		80	61 - 134	
Carbon disulfide	0.50	U	20.0	19.3		ug/L		97	64 - 138	
Freon 11	0.50	U	20.0	17.8		ug/L		89	61 - 140	
1,1-Dichloroethene	0.36	J	20.0	19.0		ug/L		93	68 - 133	
1,1-Dichloroethane	0.50	U	20.0	20.2		ug/L		101	73 - 130	
trans-1,2-Dichloroethene	1.1		20.0	19.7		ug/L		93	74 - 126	
cis-1,2-Dichloroethene	150		20.0	157	4	ug/L		11	78 - 121	
Chloroform	0.43	J	20.0	20.8		ug/L		102	78 - 125	
1,2-Dichloroethane	0.50	U	20.0	19.3		ug/L		97	75 - 121	
Methyl ethyl ketone (MEK)	2.5	U	100	104		ug/L		104	69 - 128	

LLK 06/24/2021

Eurofins TestAmerica, Edison

Page 116 of 3279

Client: Wood E&I Solutions Inc

Project/Site: LMC Q2 2021 Groundwater Monitoring

Method: 8260D - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: MB 460-780881/8

Matrix: Water

Analysis Batch: 780881

Client Sample ID: Method Blank

Prep Type: Total/NA

Job ID: 460-235115-1

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Freon 115	5.0	U	5.0	3.4	ug/L			05/28/21 09:05	1
Freon 152a	1.0	U	1.0	0.76	ug/L			05/28/21 09:05	1
Freon 123	1.0	U	1.0	0.20	ug/L			05/28/21 09:05	1
Freon 22	1.0	U	1.0	0.67	ug/L			05/28/21 09:05	1
					-				

MB MB Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac 1,2-Dichloroethane-d4 (Surr) 75 - 123 05/28/21 09:05 101 80 - 120 Toluene-d8 (Surr) 109 05/28/21 09:05 1 100 76 - 120 05/28/21 09:05 4-Bromofluorobenzene 1 Dibromofluoromethane (Surr) 99 77 - 124 05/28/21 09:05

Lab Sample ID: LCS 460-780881/4

Matrix: Water

Analysis Batch: 780881

Client Sample ID: Lab Control Sample Prep Type: Total/NA

70-130

•	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Chloromethane	20.0	23.2		ug/L		116	38 - 150	
Vinyl chloride	20.0	20.6		ug/L		103	61 - 144	
Bromomethane _{UJ}	20.0	13.4		ug/L		67	43 - 150	
Chloroethane	20.0	18.2		ug/L		91	50 - 150	
Methylene Chloride	20.0	20.8		ug/L		104	74 - 127	
Acetone	100	85.9		ug/L		86	61 - 134	
Carbon disulfide	20.0	22.2		ug/L		111	64 - 138	
Freon 11	20.0	14.7		ug/L		74	61 - 140	
1,1-Dichloroethene	20.0	20.6		ug/L		103	68 - 133	
1,1-Dichloroethane	20.0	23.7		ug/L		119	73 - 130	
trans-1,2-Dichloroethene	20.0	20.2		ug/L		101	74 - 126	
cis-1,2-Dichloroethene	20.0	20.9		ug/L		105	78 - 121	
Chloroform	20.0	21.0		ug/L		105	78 - 125	
1,2-Dichloroethane	20.0	18.7		ug/L		94	75 - 121	
Methyl ethyl ketone (MEK)	100	109		ug/L		109	69 - 128	
1,1,1-Trichloroethane	20.0	19.1		ug/L		95	68 - 128	
Carbon tetrachloride	20.0	17.7		ug/L		88	56 - 131	
Bromodichloromethane	20.0	19.6		ug/L		98	72 - 121	
1,2-Dichloropropane	20.0	22.0		ug/L		110	76 - 126	
cis-1,3-Dichloropropene	20.0	22.2		ug/L		111	74 - 125	
Trichloroethene	20.0	19.9		ug/L		99	71 - 121	
Dibromochloromethane	20.0	19.8		ug/L		99	58 - 130	
1,1,2-Trichloroethane	20.0	23.2		ug/L		116	74 - 125	
Benzene	20.0	22.0		ug/L		110	78 - 126	
trans-1,3-Dichloropropene	20.0	21.0		ug/L		105	66 - 127	
Bromoform	20.0	19.3		ug/L		97	38 - 144	
Methyl isobutyl ketone (MIBK)	100	94.4		ug/L		94	69 - 128	
2-Hexanone	100	90.5		ug/L		90	74 - 127	
Tetrachloroethene	20.0	19.3		ug/L		96	70 - 127	
1,1,2,2-Tetrachloroethane	20.0	24.0		ug/L		120	63 - 139	
Toluene	20.0	21.1		ug/L		105	78 - 119	
Chlorobenzene	20.0	19.8		ug/L		99	80 - 119	

Eurofins TestAmerica, Edison

Page 98 of 3252

Client: Wood E&I Solutions Inc

Project/Site: LMC Q2 2021 Groundwater Monitoring

Method: 8260D - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: LCS 460-780881/4

Matrix: Water

Analysis Batch: 780881

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Job ID: 460-235115-1

70-130

•	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Ethylbenzene	20.0	19.5		ug/L		98	78 - 120
Styrene	20.0	18.4		ug/L		92	75 - 127
m&p-Xylene	20.0	19.3		ug/L		97	78 - 123
o-Xylene	20.0	18.6		ug/L		93	78 - 122
Xylenes, Total	40.0	37.9		ug/L		95	78 - 122
Freon 113	20.0	19.7		ug/L		98	59 - 142
Methyl tert-butyl ether	20.0	20.8		ug/L		104	65 - 131
Cyclohexane	20.0	20.5		ug/L		103	67 - 133
1,2-Dibromoethane	20.0	20.5		ug/L		103	69 - 126
1,3-Dichlorobenzene	20.0	19.1		ug/L		96	80 - 121
1,4-Dichlorobenzene	20.0	19.1		ug/L		96	80 - 118
1,2-Dichlorobenzene	20.0	19.6		ug/L		98	79 - 122
Dichlorodifluoromethane	20.0	18.0		ug/L		90	31 - 150
1,2,4-Trichlorobenzene	20.0	17.9		ug/L		89	64 - 132
1,2-Dibromo-3-Chloropropane	20.0	17.4		ug/L		87	41 - 143
Isopropylbenzene	20.0	18.6		ug/L		93	79 - 125
Methyl acetate	40.0	46.5		ug/L		116	70 - 127
Methylcyclohexane	20.0	20.0		ug/L		100	60 - 139
Freon 115 high bias, samples ND - no quals	20.0	27.9		ug/L		140	10 - 150
Freon 152a	20.0	23.0		ug/L		115	10 - 150
Freon 123	20.0	20.3		ug/L		102	10 - 150
Freon 22	20.0	19.3		ug/L		96	10 - 150

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	101		75 - 123
Toluene-d8 (Surr)	110		80 - 120
4-Bromofluorobenzene	101		76 - 120
Dibromofluoromethane (Surr)	101		77 - 124

Lab Sample ID: 460-235115-19 MS

Matrix: Water

Analysis Batch: 780881

Client Sample ID: MW-47ML-XX
Prep Type: Total/NA

	Sample	Sample	Spike	MS	MS				%Rec.
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits
Chloromethane	0.50	U	20.0	23.7		ug/L		119	38 - 150
Vinyl chloride	0.50	U	20.0	20.7		ug/L		104	61 - 144
Bromomethane	0.50	U	20.0	12.1		ug/L		61	43 - 150
Chloroethane	0.50	U	20.0	17.1		ug/L		86	50 - 150
Methylene Chloride	0.50	U	20.0	20.9		ug/L		105	74 - 127
Acetone	5.0	U	100	78.3		ug/L		78	61 - 134
Carbon disulfide	0.50	U	20.0	21.7		ug/L		108	64 - 138
Freon 11	0.50	U	20.0	15.3		ug/L		77	61 - 140
1,1-Dichloroethene	0.35	J	20.0	20.5		ug/L		101	68 - 133
1,1-Dichloroethane	0.50	U	20.0	22.8		ug/L		114	73 - 130
trans-1,2-Dichloroethene	0.55		20.0	19.9		ug/L		97	74 - 126
cis-1,2-Dichloroethene	17		20.0	37.4		ug/L		101	78 - 121
Chloroform	0.50	U	20.0	21.0		ug/L		105	78 - 125
1,2-Dichloroethane	0.50	U	20.0	18.6		ug/L		93	75 - 121

XXX 06/24/2021

Eurofins TestAmerica, Edison

Page 99 of 3252

Client: Wood E&I Solutions Inc Job ID: 460-235115-1

Project/Site: LMC Q2 2021 Groundwater Monitoring

Method: 8260D - Volatile Organic Compounds by GC/MS (Continued)

MB MB

Lab Sample ID: MB 460-781142/8

Matrix: Water

Analysis Batch: 781142

Client Sample ID: Method Blank

Prep Type: Total/NA

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Toluene	0.50	U	0.50	0.38	ug/L			05/29/21 09:01	1
Chlorobenzene	0.50	U	0.50	0.38	ug/L			05/29/21 09:01	1
Ethylbenzene	0.50	U	0.50	0.30	ug/L			05/29/21 09:01	1
Styrene	0.50	U	0.50	0.42	ug/L			05/29/21 09:01	1
m&p-Xylene	0.50	U	0.50	0.30	ug/L			05/29/21 09:01	1
o-Xylene	0.50	U	0.50	0.36	ug/L			05/29/21 09:01	1
Xylenes, Total	1.0	U	1.0	0.65	ug/L			05/29/21 09:01	1
Freon 113	0.50	U	0.50	0.31	ug/L			05/29/21 09:01	1
Methyl tert-butyl ether	0.50	U	0.50	0.22	ug/L			05/29/21 09:01	1
Cyclohexane	0.50	U	0.50	0.32	ug/L			05/29/21 09:01	1
1,2-Dibromoethane	0.50	U	0.50	0.50	ug/L			05/29/21 09:01	1
1,3-Dichlorobenzene	0.50	U	0.50	0.34	ug/L			05/29/21 09:01	1
1,4-Dichlorobenzene	0.50	U	0.50	0.33	ug/L			05/29/21 09:01	1
1,2-Dichlorobenzene	0.50	U	0.50	0.21	ug/L			05/29/21 09:01	1
Dichlorodifluoromethane	0.50	U	0.50	0.31	ug/L			05/29/21 09:01	1
1,2,4-Trichlorobenzene	0.50	U	0.50	0.37	ug/L			05/29/21 09:01	1
1,2-Dibromo-3-Chloropropane	0.50	U	0.50	0.38	ug/L			05/29/21 09:01	1
Isopropylbenzene	0.50	U	0.50	0.34	ug/L			05/29/21 09:01	1
Methyl acetate	2.5	U	2.5	0.79	ug/L			05/29/21 09:01	1
Methylcyclohexane	0.50	U	0.50	0.71	ug/L			05/29/21 09:01	1
Freon 115	5.0	U	5.0	3.4	ug/L			05/29/21 09:01	1
Freon 152a	1.0	U	1.0	0.76	ug/L			05/29/21 09:01	1
Freon 123	1.0	U	1.0	0.20	ug/L			05/29/21 09:01	1
Freon 22	1.0	U	1.0	0.67	ug/L			05/29/21 09:01	1

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	101		75 - 123		05/29/21 09:01	1
Toluene-d8 (Surr)	110		80 - 120		05/29/21 09:01	1
4-Bromofluorobenzene	100		76 - 120		05/29/21 09:01	1
Dibromofluoromethane (Surr)	101		77 - 124		05/29/21 09:01	1

Lab Sample ID: LCS 460-781142/4

Matrix: Water

Analysis Batch: 781142

Client Sample ID: Lab Control Sample Prep Type: Total/NA

70-130

			70-1	130			
Spike	LCS	LCS				%Rec.	
Added	Result	Qualifier	Unit	D	%Rec	Limits	
20.0	25.0		ug/L		125	38 - 150	
20.0	21.2		ug/L		106	61 - 144	
20.0	13.4		ug/L		67	43 - 150	
20.0	17.5		ug/L		88	50 - 150	
20.0	21.6		ug/L		108	74 - 127	
100	82.1		ug/L		82	61 - 134	
20.0	22.8		ug/L		114	64 - 138	
20.0	16.3		ug/L		82	61 - 140	
20.0	21.0		ug/L		105	68 - 133	
20.0	22.9		ug/L		115	73 - 130	
20.0	20.3		ug/L		102	74 - 126	
20.0	21.4		ug/L		107	78 - 121	
	Added 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0	Added Result 20.0 25.0 20.0 21.2 20.0 13.4 20.0 21.6 100 82.1 20.0 22.8 20.0 16.3 20.0 22.9 20.0 20.3	Added Result Qualifier 20.0 25.0 20.0 21.2 20.0 13.4 20.0 17.5 20.0 21.6 100 82.1 20.0 22.8 20.0 16.3 20.0 21.0 20.0 22.9 20.0 20.3	Spike LCS LCS Added Result Qualifier Unit 20.0 25.0 ug/L 20.0 21.2 ug/L 20.0 13.4 ug/L 20.0 21.6 ug/L 20.0 21.6 ug/L 20.0 82.1 ug/L 20.0 22.8 ug/L 20.0 16.3 ug/L 20.0 21.0 ug/L 20.0 22.9 ug/L 20.0 20.3 ug/L	Added Result Qualifier Unit D 20.0 25.0 ug/L ug/L 20.0 21.2 ug/L ug/L 20.0 13.4 ug/L ug/L 20.0 21.6 ug/L ug/L 20.0 21.6 ug/L ug/L 20.0 22.8 ug/L 20.0 16.3 ug/L 20.0 21.0 ug/L 20.0 22.9 ug/L 20.0 20.3 ug/L	Spike LCS LCS Added Result Qualifier Unit D %Rec 20.0 25.0 ug/L 125 20.0 21.2 ug/L 106 20.0 13.4 ug/L 67 20.0 17.5 ug/L 88 20.0 21.6 ug/L 108 100 82.1 ug/L 82 20.0 22.8 ug/L 114 20.0 21.0 ug/L 82 20.0 21.0 ug/L 105 20.0 22.9 ug/L 115 20.0 20.3 ug/L 102	Spike LCS LCS %Rec. Added Result Qualifier Unit D %Rec Limits 20.0 25.0 ug/L 125 38 - 150 20.0 21.2 ug/L 106 61 - 144 20.0 13.4 ug/L 67 43 - 150 20.0 17.5 ug/L 88 50 - 150 20.0 21.6 ug/L 108 74 - 127 100 82.1 ug/L 82 61 - 134 20.0 22.8 ug/L 114 64 - 138 20.0 16.3 ug/L 82 61 - 140 20.0 21.0 ug/L 105 68 - 133 20.0 22.9 ug/L 115 73 - 130 20.0 20.3 ug/L 102 74 - 126

XXX 06/24/2021

Eurofins TestAmerica, Edison

Page 103 of 3252

Client: Wood E&I Solutions Inc

Project/Site: LMC Q2 2021 Groundwater Monitoring

Method: 8260D - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: LCS 460-781142/4

Matrix: Water

Analysis Batch: 781142

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Job ID: 460-235115-1

70-130

Analyte	Spike Added		LCS Qualifier Unit	D %Rec	%Rec. Limits
Chloroform	20.0	21.2	ug/L		78 - 125
1,2-Dichloroethane	20.0	18.8	ug/L	94	75 - 121
Methyl ethyl ketone (MEK)	100	109	ug/L	109	69 - 128
1,1,1-Trichloroethane	20.0	19.3	ug/L	97	68 - 128
Carbon tetrachloride	20.0	17.9	ug/L	90	56 - 131
Bromodichloromethane	20.0	19.5	ug/L	98	72 - 121
1,2-Dichloropropane	20.0	22.6	ug/L	113	76 - 126
cis-1,3-Dichloropropene	20.0	22.5	ug/L	113	74 - 125
Trichloroethene	20.0	20.4	ug/L	102	71 - 121
Dibromochloromethane	20.0	19.8	ug/L	99	58 - 130
1,1,2-Trichloroethane	20.0	23.2	ug/L	116	74 ₋ 125
Benzene	20.0	22.3	ug/L	111	78 ₋ 126
rans-1,3-Dichloropropene	20.0	21.2	ug/L	106	66 - 127
Bromoform	20.0	18.9	ug/L	95	38 - 144
Methyl isobutyl ketone (MIBK)	100	96.4	ug/L	96	69 - 128
2-Hexanone	100	90.1	ug/L	90	74 - 127
Tetrachloroethene	20.0	19.3	ug/L	96	70 - 127
1,1,2,2-Tetrachloroethane	20.0	24.4	ug/L	122	63 - 139
Toluene	20.0	21.2	ug/L	106	78 - 119
Chlorobenzene	20.0	20.1	ug/L	100	80 - 119
Ethylbenzene	20.0	19.6	ug/L	98	78 ₋ 120
Styrene	20.0	19.1	ug/L	95	75 - 127
m&p-Xylene	20.0	19.4	ug/L	97	78 ₋ 123
p-Xylene	20.0	19.0	ug/L	95	78 ₋ 122
Xylenes, Total	40.0	38.5	ug/L	96	78 - 122
Freon 113	20.0	21.2	ug/L	106	59 - 142
Methyl tert-butyl ether	20.0	21.2	ug/L	106	65 - 131
Cyclohexane	20.0	21.8	ug/L	109	67 - 133
1,2-Dibromoethane	20.0	20.3	ug/L	101	69 - 126
1,3-Dichlorobenzene	20.0	19.4	ug/L	97	80 - 121
1,4-Dichlorobenzene	20.0	19.2	ug/L	96	80 - 118
1,2-Dichlorobenzene	20.0	19.8	ug/L	99	79 - 122
Dichlorodifluoromethane	20.0	20.4	ug/L	102	31 - 150
1,2,4-Trichlorobenzene	20.0	18.5	ug/L	92	64 - 132
1,2-Dibromo-3-Chloropropane	20.0	19.2	ug/L	96	41 - 143
sopropylbenzene	20.0	19.0	ug/L	95	79 - 125
Methyl acetate	40.0	49.2	ug/L	123	70 - 127
Methylcyclohexane	20.0	21.1	ug/L	105	60 - 139
Freon 115 high bias, samples ND - no quals	20.0	28.3	ug/L	141	10 - 150
Freon 152a	20.0	23.1	ug/L	116	10 - 150
Freon 123	20.0	20.6	ug/L	103	10 - 150
Freon 22	20.0	19.2	ug/L	96	10 - 150

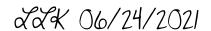
	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	101		75 - 123
Toluene-d8 (Surr)	109		80 - 120
4-Bromofluorobenzene	101		76 - 120
Dibromofluoromethane (Surr)	100		77 - 124

XXX 06/24/2021

Client: Wood E&I Solutions Inc

Project/Site: LMC Q2 2021 Groundwater Monitoring

Method: 8260D - Volatile Organic Compounds by GC/MS (Continued)


Lab Sample ID: LCSD 460-781142/5

Matrix: Water Analysis Batch: 781142 **Client Sample ID: Lab Control Sample Dup**

Prep Type: Total/NA

Job ID: 460-235115-1

	Spike	LCSD	LCSD				%Rec.		RPI
Analyte	Added		Qualifier	Unit	D	%Rec	Limits	RPD	Limi
Chloromethane	20.0	23.6		ug/L		118	38 - 150	6	3
Vinyl chloride	20.0	19.5		ug/L		97	61 - 144	9	3
Bromomethane UJ	20.0	12.8		ug/L		64	43 - 150	4	3
Chloroethane	20.0	16.5		ug/L		82	50 - 150	6	3
Methylene Chloride	20.0	21.0		ug/L		105	74 - 127	3	3
Acetone	100	82.2		ug/L		82	61 - 134	0	3
Carbon disulfide	20.0	21.2		ug/L		106	64 - 138	7	3
Freon 11	20.0	15.6		ug/L		78	61 - 140	5	3
1,1-Dichloroethene	20.0	19.7		ug/L		99	68 - 133	6	3
1,1-Dichloroethane	20.0	22.1		ug/L		111	73 - 130	4	3
trans-1,2-Dichloroethene	20.0	19.3		ug/L		96	74 - 126	5	3
cis-1,2-Dichloroethene	20.0	20.2		ug/L		101	78 - 121	6	3
Chloroform	20.0	20.4		ug/L		102	78 - 125	4	3
1,2-Dichloroethane	20.0	18.6		ug/L		93	75 - 121	1	3
Methyl ethyl ketone (MEK)	100	108		ug/L		108	69 - 128	1	3
1,1,1-Trichloroethane	20.0	18.4		ug/L		92	68 - 128	5	3
Carbon tetrachloride	20.0	16.9		ug/L		84	56 - 131	6	3
Bromodichloromethane	20.0	18.8		ug/L		94	72 - 121	4	3
1,2-Dichloropropane	20.0	21.5		ug/L		107	76 - 126	5	3
cis-1,3-Dichloropropene	20.0	20.9		ug/L		104	74 - 125	8	3
Trichloroethene	20.0	19.2		ug/L		96	71 - 121	6	3
Dibromochloromethane	20.0	19.4		ug/L		97	58 - 130	2	3
1,1,2-Trichloroethane	20.0	22.5		ug/L		113	74 - 125	3	3
Benzene	20.0	20.9		ug/L		105	78 - 126	6	3
trans-1,3-Dichloropropene	20.0	20.3		ug/L		101	66 - 127	4	3
Bromoform	20.0	18.3		ug/L		91	38 - 144	3	3
Methyl isobutyl ketone (MIBK)	100	95.0		ug/L		95	69 - 128	1	3
2-Hexanone	100	89.0		ug/L		89	74 - 127	1	3
Tetrachloroethene	20.0	17.9		ug/L		90	70 - 127	7	3
1,1,2,2-Tetrachloroethane	20.0	24.1		ug/L		121	63 - 139	1	3
Toluene	20.0	20.3		ug/L		101	78 - 119	5	3
Chlorobenzene	20.0	18.9		ug/L		95	80 - 119	6	3
Ethylbenzene	20.0	18.5		ug/L		92	78 - 120	6	3
Styrene	20.0	18.0		ug/L		90	75 - 127	6	3
m&p-Xylene	20.0	18.3		ug/L		92	78 - 123	6	3
o-Xylene	20.0	17.8		ug/L		89	78 - 122	7	3
Xylenes, Total	40.0	36.2		ug/L		90	78 - 122	6	3
Freon 113	20.0	20.0		ug/L		100	59 - 142	6	3
Methyl tert-butyl ether	20.0	20.9		ug/L		105	65 - 131	1	3
Cyclohexane	20.0	20.1		ug/L		100	67 - 133	8	3
1,2-Dibromoethane	20.0	20.4		ug/L		102	69 - 126	1	3
1,3-Dichlorobenzene	20.0	18.1		ug/L		90	80 - 121	7	3
1,4-Dichlorobenzene	20.0	18.6		ug/L		93	80 - 118	3	3
1,2-Dichlorobenzene	20.0	18.9		ug/L		95	79 - 122	4	3
Dichlorodifluoromethane	20.0	19.0		ug/L		95	31 - 150	7	3
1,2,4-Trichlorobenzene	20.0	17.6		ug/L		88	64 - 132		3
1,2-Dibromo-3-Chloropropane	20.0	18.7		ug/L		93	41 - 143	3	3
Isopropylbenzene	20.0	17.7		ug/L		88	79 - 125	7	3

Eurofins TestAmerica, Edison

Page 105 of 3252

Client: Wood E&I Solutions Inc Job ID: 460-235115-1

Project/Site: LMC Q2 2021 Groundwater Monitoring

Method: 8260D - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: LCSD 460-781142/5

Client Sample ID: Lab Control Sample Dup **Prep Type: Total/NA**

Matrix: Water

Analysis Batch: 781142

		Spike	LCSD	LCSD				%Rec.		RPD
Analyte		Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Methyl acetate		40.0	48.8		ug/L		122	70 - 127	1	30
Methylcyclohexan	ne	20.0	19.6		ug/L		98	60 - 139	7	30
Freon 115	high bias, samples ND - no quals	20.0	26.9		ug/L		134	10 - 150	5	30
Freon 152a		20.0	21.3		ug/L		106	10 - 150	8	30
Freon 123		20.0	19.3		ug/L		96	10 - 150	7	30
Freon 22		20.0	18.0		ug/L		90	10 - 150	7	30

LCSD LCSD

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	101		75 - 123
Toluene-d8 (Surr)	110		80 - 120
4-Bromofluorobenzene	100		76 - 120
Dibromofluoromethane (Surr)	102		77 - 124

Method: 8270E SIM - 1,4-Dioxane (GC/MS SIM)

Lab Sample ID: MB 460-780273/1-A

Matrix: Water

Analysis Batch: 780371

Client Sample ID: Method Blank Prep Type: Total/NA

Prep Batch: 780273

Analyte Result Qualifier RL **MDL** Unit **Prepared** Analyzed Dil Fac 1,4-Dioxane 0.20 05/25/21 22:06 05/26/21 09:16 0.20 U 0.17 ug/L

MB MB

MB MB

Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac Nitrobenzene-d5 54 - 134 05/25/21 22:06 05/26/21 09:16 70

Lab Sample ID: LCS 460-780273/2-A

Lab Sample ID: LCSD 460-780273/3-A

Matrix: Water

Analysis Batch: 780371

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Prep Batch: 780273

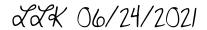
Spike LCS LCS %Rec. Added Analyte Result Qualifier Unit %Rec Limits 0.800 1,4-Dioxane 0.181 J ug/L 23 10 - 120

LCS LCS

Surrogate %Recovery Qualifier Limits Nitrobenzene-d5 72 54 - 134

Matrix: Water

Analysis Batch: 780371


Client Sample ID: Lab Control Sample Dup **Prep Type: Total/NA**

Prep Batch: 780273

Spike LCSD LCSD %Rec. RPD Added Result Qualifier Unit Limits RPD Limit Analyte %Rec 1,4-Dioxane 0.800 0.252 *1 ug/L 32 10 - 120 33

LCSD LCSD

Surrogate Limits %Recovery Qualifier Nitrobenzene-d5 70 54 - 134

Page 106 of 3252

VOCs

NYSDEC DUSR PROJECT CHEMIST REVIEW RECORD

Project: LMC Great Neck GWM Q2 2021

Method: 524.2

Laboratory: TAL Edison, NJ **SDG(s):** 460-234681-1 and 460-235115-1

Date: 06/24/2021 Reviewer: Liesel Krout

Review Level X NYSDEC DUSR USEPA Region II Guideline

1. ✓ Case Narrative Review and COC/Data Package Completeness

COMMENTS

Were problems noted? yes - see attached

Are Field Sample IDs and Locations assigned correctly? YES NO (circle one) refer to 8260D checklist Were all the samples on the COC analyzed for the requested analyses? YES NO (circle one)

2. ✓ Holding time and Sample Collection

All samples were analyzed within the 14 day holding time. YES NO (circle one)

✓ QC Blanks

Are method blanks free of contamination? YES NO (circle one)

Are Trip blanks free of contamination? YES NO (circle one) see attached

Are Rinse blanks free of contamination? YES NO NA (circle one)

4. ✓ Instrument Tuning – Data Package Narrative Review

Did the laboratory narrative identify any results that were not within method criteria? YES NO (circle one)

If yes, use professional judgment to evaluate data and qualify results if needed

5. ✓ Instrument Calibration – Data Package Narrative Review

Did the laboratory narrative identify compounds that were not within criteria in the initial and/or continuing calibration standards? YES NO (circle one)

Initial Calibration %RSD = 20% (30% for 1,1-DCE, chloroform, 1,2-DCP, toluene, ethylbenzene, VC) Initial Avg RRF and Continuing RRF should be ≥ 0.05 and 0.10 for Chloromethane, 1,1-Dichloroethane, Bromoform and 0.30 for Chlorobenzene and 1,1,2,2-Tetrachloroethane

Continuing Calibration %D = 20%

Did the laboratory qualify results based on initial or continuing calibration exceedances? YES NO If yes to above, use professional judgment to evaluate data and qualify results if needed

6. ✓ Internal Standards – Data Package Narrative Review

(Area Limits = -50% to +100%, RTs within 30 seconds of daily CCAL standard (or ICAL midpoint if samples follow ICAL)

Did the laboratory narrative identify any sample internal standards that were not within criteria? YES NO (circle one)

Did the laboratory qualify results based on internal standard exceedances? YES NO If yes to above, use professional judgment to evaluate data and qualify results if needed

7. **Surrogate Recovery** - Region II limits (water 80-120%, soil 70-130%)

Were all results within Region II limits? YES NO (circle one)

8. **Matrix Spike** - Region II limits (water and soil 70-130%, water RPD 20, soil RPD 35)

Were MS/MSDs submitted/analyzed? YES NO

Were all results within the Region II limits? YES NO NA (circle one) see attached

9. **V Duplicates -** Region II Limits (water RPD 50, soil RPD 100) Were Field Duplicates submitted/analyzed? YES NO Were all results within Region II limits? (soil RPD<100, water RPD<50) YES NO NA 10. **∠ Laboratory Control Sample Results -** Region II (Water and soil 70-130%) Were all results were within Region II control limits? YES NO (circle one) see attached - no quals 11. **Reporting Limits:** Were samples analyzed at a dilution? YES NO (circle one) 12. **✓** Raw Data Review and Calculation Checks see attached 13. Lectronic Data Review and Edits Does the EDD match the Form Is? YES NO (circle one) **14.** ✓ **Tables and TIC Review** Table 1 (Samples and Analytical Methods) Table 2 (Analytical Results) **Table 3** (Qualification Actions) Were all tables produced and reviewed? YES NO (circle one)

YES NO (circle one)

Did lab report TICs?

Table 4 (TICs)

CASE NARRATIVE

Client: Wood E&I Solutions Inc

Project: LMC Q2 2021 Groundwater Monitoring

Report Number: 460-234681-1

This case narrative is in the form of an exception report, where only the anomalies related to this report, method specific performance and/or QA/QC issues are discussed. If there are no issues to report, this narrative will include a statement that documents that there are no relevant data issues.

It should be noted that samples with elevated Reporting Limits (RLs) as a result of a dilution may not be able to satisfy customer reporting limits in some cases. Such increases in the RLs are unavoidable but acceptable consequence of sample dilution that enables quantification of target analytes or interferences which exceed the calibration range of the instrument.

Calculations are performed before rounding to avoid round-off errors in calculated results.

All holding times were met and proper preservation noted for the methods performed on these samples, unless otherwise detailed in the individual sections below.

RECEIPT

The samples were received on 5/17/2021 5:00 PM. Unless otherwise noted below, the samples arrived in good condition, and where required, properly preserved and on ice. The temperatures of the 7 coolers at receipt time were 1.5° C, 1.5° C, 2.0° C, 2.0° C, 2.0° C and 2.0° C.

Receipt Exceptions

The PFAS analytical list was not identified on the Chain-of-Custody (COC); the samples are logged in for the 21 analyte list, as was provided with the original order specification.

Due to an internal laboratory tracking error, the following samples were extracted for 1,4-Dioxane outside of the 7-calendar day hold time: MW-1GU-XX (460-234681-1), MW-1GL-XX (460-234681-2), MW-500 (460-234681-23) and QC-EB110521-01 (460-234681-26).

Note: All samples which require thermal preservation are considered acceptable if the arrival temperature is within 2C of the required temperature or method specified range. For samples with a specified temperature of 4C, samples with a temperature ranging from just above freezing temperature of water to 6C shall be acceptable. Samples that are hand delivered immediately following collection may not meet these criteria, however they will be deemed acceptable according to NELAC standards, if there is evidence that the chilling process has begun, such as arrival on ice, etc.

DRINKING WATER VOLATILES (GC-MS)

Sample QC-TB120521-XX (460-234681-29) was analyzed for drinking water volatiles (GC-MS) in accordance with EPA Method 524.2. The sample was analyzed on 05/20/2021.

- The continuing calibration verification (CCV) associated with batch 460-779085 recovered outside acceptance criteria, low biased, for Freon 115. A reporting limit (RL) standard was analyzed, and the target analyte was detected. Since the associated samples were non-detect for this analyte, the data have been reported. okay samples ND
- The laboratory control sample (LCS) and laboratory control sample duplicate (LCSD) for analytical batch 460-779085 recovered outside control limits for the following analytes: cis-1,3-Dichloropropene (biased low); Freon 152, Freon 22, Freon 123 and Freon 115 (biased high). These analytes were biased high in the LCS and were not detected in the associated samples; therefore, the data have been reported. cis-1,3-Dichloropropene failed the recovery criteria low for LCS 460-779085/3; Freon 115 and Freon 152a failed the recovery criteria high. Freon 115, Freon 123, Freon 152a and Freon 22 failed the recovery criteria high for LCSD 460-779085/4.

see attached for LCS review

✓ The RPD of the LCS and LCSD for analytical batch 460-779085 recovered outside control limits for the following analytes: cis-1,3-Dichloropropene and Freon 115.
see attached for LCS review

Refer to the QC report for details.

No other difficulties were encountered during the volatiles analysis.

All other quality control parameters were within the acceptance limits.

SEMIVOLATILE ORGANIC COMPOUNDS (GC-MS) - SELECTED ION MODE (SIM) - DKQP - 1,4 DIOXANE

Samples MW-1GU-XX (460-234681-1), MW-1GL-XX (460-234681-2), MW-1MI-XX (460-234681-3), MW-1ML-XX (460-234681-4), MW-3GL-XX (460-234681-5), MW-6GL-XX (460-234681-6), MW-6ML-XX (460-234681-7), MW-7GL-XX (460-234681-8), MW-7ML-XX (460-234681-9), MW-17GL-XX (460-234681-10), MW-17ML-XX (460-234681-11), MW-22GL-XX (460-234681-12), MW-22ML-XX (460-234681-13), MW-29GL-XX (460-234681-14), MW-31GL-XX (460-234681-15), MW-31MI-XX (460-234681-16), MW-31ML-XX

XXX 06/24/2021

Page 7 of 3279

06/09/2021

CASE NARRATIVE

Client: Wood E&I Solutions Inc

Project: LMC Q2 2021 Groundwater Monitoring

Report Number: 460-235115-1

This case narrative is in the form of an exception report, where only the anomalies related to this report, method specific performance and/or QA/QC issues are discussed. If there are no issues to report, this narrative will include a statement that documents that there are no relevant data issues.

It should be noted that samples with elevated Reporting Limits (RLs) as a result of a dilution may not be able to satisfy customer reporting limits in some cases. Such increases in the RLs are unavoidable but acceptable consequence of sample dilution that enables quantification of target analytes or interferences which exceed the calibration range of the instrument.

Calculations are performed before rounding to avoid round-off errors in calculated results.

All holding times were met and proper preservation noted for the methods performed on these samples, unless otherwise detailed in the individual sections below.

RECEIPT

The samples were received on 5/21/2021 7:30 PM. Unless otherwise noted below, the samples arrived in good condition, and where required, properly preserved and on ice. The temperatures of the 3 coolers at receipt time were 2.5° C, 2.8° C and 3.0° C.

Receipt Exceptions

The PFAS analytical list was not identified on the Chain-of-Custody (COC); the samples are logged in for the 21 analyte list, as was provided with the original order specification.

Due to an internal laboratory tracking error, the following samples were extracted for 1,4-Dioxane outside of the 7-calendar day hold time: MW-49ML-XX (460-235115-1), MW-43MU-XX (460-235115-14), MW-43MI-XX (460-235115-15), MW-45MU-XX (460-235115-16), MW-45MI-XX (460-235115-17), MW-47MI-XX (460-235115-18), MW-47ML-XX (460-235115-19), MW-47ML-XX (460-235115-19[MSD]), MW-47ML-XX (460-235115-19[MSD]) and MW-49MI-XX (460-235115-20).

Note: All samples which require thermal preservation are considered acceptable if the arrival temperature is within 2C of the required temperature or method specified range. For samples with a specified temperature of 4C, samples with a temperature ranging from just above freezing temperature of water to 6C shall be acceptable. Samples that are hand delivered immediately following collection may not meet these criteria, however they will be deemed acceptable according to NELAC standards, if there is evidence that the chilling process has begun, such as arrival on ice, etc.

DRINKING WATER VOLATILES (GC-MS)

Samples SW-N5099-XX (460-235115-9), SW-N4388-XX (460-235115-10), SW-N12796-XX (460-235115-21), SW-N12999-XX (460-235115-22), SW-N13000-XX (460-235115-23), SW-N13821-XX (460-235115-24), SW-500 (460-235115-25), QC-TB180521-XX (460-235115-27) and QC-TB190521-XX (460-235115-28) were analyzed for drinking water volatiles (GC-MS) in accordance with EPA Method 524.2. The samples were analyzed on 05/28/2021.

✓ cis-1,2-Dichloroethene, Tetrachloroethene and Trichloroethene failed the recovery criteria low for the matrix spike (MS) of sample SW-N5099-XX (460-235115-9) in batch 460-780884. Freon 152a failed the recovery criteria high.

see attached for MS review

For the matrix spike duplicate (MSD) of sample SW-N5099-XX (460-235115-9) in batch 460-780884, cis-1,2-Dichloroethene and Trichloroethene failed the recovery criteria low. Freon 115, Freon 123, Freon 152a and Freon 22 failed the recovery criteria high. Also, Freon 22 exceeded the RPD limit. see attached for MS review

The presence of the '4' qualifier in the data indicates analytes where the concentration in the unspiked sample exceeded four times the spiking amount.

Refer to the QC report for details.

No other difficulties were encountered during the volatiles analysis.

All other quality control parameters were within the acceptance limits.

SEMIVOLATILE ORGANIC COMPOUNDS (GC-MS) - SELECTED ION MODE (SIM) - DKQP - 1,4 DIOXANE (DISSOLVED)

Samples MW-49ML-XX (460-235115-1), MW-52MI-XX (460-235115-5), MW-52ML-XX (460-235115-6), MW-53MI-XX (460-235115-7), MW-53ML-XX (460-235115-8), SW-N5099-XX (460-235115-9), SW-N4388-XX (460-235115-10), MW-2MI-XX (460-235115-11), MW-3ML-XX (460-235115-12), MW-29MI-XX (460-235115-13), MW-43MU-XX (460-235115-14), MW-43MI-XX (460-235115-15),

XXX 06/24/2021

Page 7 of 3252 06/11/2021

Client: Wood E&I Solutions Inc

No Detections.

Project/Site: LMC Q2 2021 Groundwater Monitoring

Client Sample ID: QC-TB18052	21-XX					Lab San	nple	ID: 46	0-235115-27
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D Me	ethod	Prep Type
Methylene Chloride samples ND - no quals	0.83		0.50	0.42	ug/L	1	52	4.2	Total/NA
Toluene samples ND - no quals	0.20	J)	0.50	0.11	ug/L	1	52	4.2	Total/NA
Client Sample ID: QC-TB1905	21-XX					Lab San	nple	ID: 46	0-235115-28
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D Me	ethod	Prep Type
Methylene Chloride samples ND - no quals	0.75		0.50	0.42	ug/L	1	52	4.2	Total/NA
Toluene samples ND - no quals	0.21	J	0.50	0.11	ug/L	1	52	4.2	Total/NA
Client Sample ID: QC-TUBED	Γ1705	21-XX				Lab San	nple	ID: 46	0-235115-29
No Detections.									
Client Sample ID: QC-TUBEW	L1805	521-XX				Lab San	nple	ID: 46	0-235115-30
No Detections.									
Client Sample ID: QC-TUBED	Г1905	21-XX				Lab San	nple	ID: 46	0-235115-31

22K 06/24/2021

This Detection Summary does not include radiochemical test results.

Job ID: 460-235115-1

Client: Wood E&I Solutions Inc

Project/Site: LMC Q2 2021 Groundwater Monitoring

Method: 524.2 - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: 460-235115-9 MS Matrix: Water

Analysis Batch: 780884 70-130

Client Sample ID: SW-N5099-XX Prep Type: Total/NA

Job ID: 460-235115-1

Analysis Batch: 780884	amnla	Sample	Spike	MS	MS	70-130			%Rec.	
	•	Qualifier	Added		Qualifier	Unit	D	%Rec	Limits	
1,1,1-Trichloroethane	0.50		2.00	2.00		ug/L	_ =	100	70 - 130	
1,1,2,2-Tetrachloroethane	0.50		2.00	1.75		ug/L		88	70 - 130	
1,1,2-Trichloroethane	0.50		2.00	1.93		ug/L		96	70 - 130	
1,1-Dichloroethane	0.50		2.00	1.90		ug/L		95	70 - 130	
1,1-Dichloroethene	0.50		2.00	1.99		ug/L		99	70 - 130	
1,1-Dichloropropene	0.50		2.00	1.90		ug/L		95	70 - 130	
1,2,3-Trichlorobenzene	0.50		2.00	2.18		ug/L		109	70 - 130	
1,2,3-Trichloropropane	0.50		2.00	1.86		ug/L		93	70 - 130	
1,2,4-Trichlorobenzene	0.50		2.00	2.00		ug/L		100	70 - 130	
1,2,4-Trimethylbenzene	0.50		2.00	1.70		ug/L		85	70 - 130 70 - 130	
1,2-Dibromo-3-Chloropropane	0.50		2.00	2.10		ug/L		105	70 - 130 70 - 130	
1,2-Dishorio-3-Chioroproparie	0.50		2.00	1.97		ug/L ug/L		99	70 - 130	
1,2-Dichloroethane	0.50		2.00	2.06				103	70 - 130 70 - 130	
	0.50			1.85		ug/L			70 - 130 70 - 130	
1,2-Dichloropropane			2.00			ug/L		92		
1,3,5-Trimethylbenzene	0.50		2.00	1.75		ug/L		88	70 ₋ 130 70 ₋ 130	
1,3-Dichlorobenzene	0.50		2.00	1.93		ug/L		97		
1,3-Dichloropropane	0.50		2.00	1.83		ug/L		92	70 - 130	
1,4-Dichlorobenzene	0.50		2.00	1.87		ug/L		94	70 - 130	
2,2-Dichloropropane	0.50		2.00	2.09		ug/L		104	70 - 130	
2-Chlorotoluene	0.50		2.00	1.76		ug/L		88	70 - 130	
4-Chlorotoluene	0.50		2.00	1.72		ug/L		86	70 - 130	
4-Isopropyltoluene	0.50		2.00	1.80		ug/L		90	70 - 130	
Benzene	0.50		2.00	1.92		ug/L		96	70 - 130	
Bromobenzene	0.50		2.00	1.91		ug/L		96	70 - 130	
Bromoform	0.50		2.00	1.87		ug/L		93	70 - 130	
Bromomethane	0.50		2.00	1.92		ug/L		96	70 - 130	
Carbon tetrachloride	0.50		2.00	2.26		ug/L		113	70 - 130	
Chlorobenzene	0.50	U	2.00	1.81		ug/L		90	70 - 130	
Chlorobromomethane	0.50	U	2.00	1.99		ug/L		99	70 - 130	
Chlorodibromomethane	0.50	U	2.00	1.89		ug/L		94	70 - 130	
Chloroethane	0.50	U	2.00	1.87		ug/L		93	70 - 130	
Chloroform	0.18	J	2.00	2.26		ug/L		104	70 - 130	
Chloromethane	0.50	U	2.00	1.70		ug/L		85	70 - 130	
cis-1,2-Dichloroethene sample > 4x spike	14		2.00	13.5	4	ug/L		-37	70 - 130	
cis-1,3-Dichloropropene no qual	0.50	U	2.00	1.84		ug/L		92	70 - 130	
Dibromomethane	0.50	U	2.00	2.04		ug/L		102	70 - 130	
Dichlorobromomethane	0.50	U	2.00	2.01		ug/L		100	70 - 130	
Dichlorodifluoromethane	0.50	U	2.00	1.84		ug/L		92	70 - 130	
Ethylbenzene	0.50	U	2.00	1.74		ug/L		87	70 - 130	
Freon 11	0.50	U	2.00	1.94		ug/L		97	70 - 130	
Freon 113	1.7		2.00	3.26		ug/L		77	70 - 130	
Freon 115		U F1	2.00	2.40		ug/L		120	70 - 130	
Freon 123		U F1	2.00	2.48		ug/L		124	70 - 130	
Freon 152a sample ND - no qual		U F1	2.00	2.65	F1	ug/L		133	70 - 130	
Freon 22		U F1 F2	2.00	2.07		ug/L		104	70 - 130	
Hexachlorobutadiene	0.50		2.00	2.17		ug/L ug/L		109	70 - 130 70 - 130	
Isopropylbenzene	0.50		2.00	1.71		ug/L		85	70 - 130	
m,p-Xylene	1.0		4.00	3.48		ug/L ug/L		87	70 - 130	
Methyl tert-butyl ether	0.50	U	2.00	1.99		ug/L		99	70 - 130	

XXX 06/24/2021

Eurofins TestAmerica, Edison

Page 94 of 3252

Client: Wood E&I Solutions Inc

Project/Site: LMC Q2 2021 Groundwater Monitoring

Method: 524.2 - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: 460-235115-9 MS Matrix: Water

Analysis Batch: 780884

Client Sample ID: SW-N5099-XX

Job ID: 460-235115-1

Prep Type: Total/NA

D %Rec 109	Limits
109	70 100
	70 - 130
83	70 - 130
79	70 - 130
91	70 - 130
83	70 - 130
85	70 - 130
67	70 - 130
91	70 - 130
85	70 - 130
79	70 - 130
-8	70 - 130
91	70 - 130
	79 91 83 85 67 91 85 79

MS MS

Surrogate	%Recovery Qualifier	Limits
1,2-Dichlorobenzene-d4	110	70 - 130
4-Bromofluorobenzene	94	70 - 130

Lab Sample ID: 460-235115-9 MSD

Matrix: Water

Analysis Batch: 780884

Client Sample ID: SW-N5099-XX

Prep Type: Total/NA

Analysis Batch: 780884	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	-	Qualifier	Added	_	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
1,1,1,2-Tetrachloroethane	0.50	U	2.00	2.19		ug/L		110	70 - 130	10	30
1,1,1-Trichloroethane	0.50	U	2.00	2.21		ug/L		110	70 - 130	10	30
1,1,2,2-Tetrachloroethane	0.50	U	2.00	2.09		ug/L		105	70 - 130	18	30
1,1,2-Trichloroethane	0.50	U	2.00	2.22		ug/L		111	70 - 130	14	30
1,1-Dichloroethane	0.50	U	2.00	2.26		ug/L		113	70 - 130	17	30
1,1-Dichloroethene	0.50	U	2.00	2.10		ug/L		105	70 - 130	5	30
1,1-Dichloropropene	0.50	U	2.00	2.10		ug/L		105	70 - 130	10	30
1,2,3-Trichlorobenzene	0.50	U	2.00	2.38		ug/L		119	70 - 130	9	30
1,2,3-Trichloropropane	0.50	U	2.00	2.28		ug/L		114	70 - 130	20	30
1,2,4-Trichlorobenzene	0.50	U	2.00	2.27		ug/L		113	70 - 130	13	30
1,2,4-Trimethylbenzene	0.50	U	2.00	1.89		ug/L		94	70 - 130	11	30
1,2-Dibromo-3-Chloropropane	0.50	U	2.00	2.48		ug/L		124	70 - 130	17	30
1,2-Dichlorobenzene	0.50	U	2.00	2.14		ug/L		107	70 - 130	8	30
1,2-Dichloroethane	0.50	U	2.00	2.31		ug/L		116	70 - 130	11	30
1,2-Dichloropropane	0.50	U	2.00	2.03		ug/L		102	70 - 130	10	30
1,3,5-Trimethylbenzene	0.50	U	2.00	1.84		ug/L		92	70 - 130	5	30
1,3-Dichlorobenzene	0.50	U	2.00	2.12		ug/L		106	70 - 130	9	30
1,3-Dichloropropane	0.50	U	2.00	1.99		ug/L		99	70 - 130	8	30
1,4-Dichlorobenzene	0.50	U	2.00	2.08		ug/L		104	70 - 130	11	30
2,2-Dichloropropane	0.50	U	2.00	2.20		ug/L		110	70 - 130	5	30
2-Chlorotoluene	0.50	U	2.00	1.96		ug/L		98	70 - 130	11	30
4-Chlorotoluene	0.50	U	2.00	2.00		ug/L		100	70 - 130	15	30
4-Isopropyltoluene	0.50	U	2.00	2.00		ug/L		100	70 - 130	11	30
Benzene	0.50	U	2.00	2.16		ug/L		108	70 - 130	12	30
Bromobenzene	0.50	U	2.00	2.04		ug/L		102	70 - 130	7	30
Bromoform	0.50	U	2.00	2.12		ug/L		106	70 - 130	13	30

XXX 06/24/2021

Eurofins TestAmerica, Edison

Page 95 of 3252

Client: Wood E&I Solutions Inc Job ID: 460-235115-1 Project/Site: LMC Q2 2021 Groundwater Monitoring

Spike

MSD MSD

Method: 524.2 - Volatile Organic Compounds (GC/MS) (Continued)

Sample Sample

Lab Sample ID: 460-235115-9 MSD

Matrix: Water Analysis Batch: 780884 70-130

									,		–
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Bromomethane	0.50	U	2.00	2.08		ug/L		104	70 - 130	8	30
Carbon tetrachloride	0.50	U	2.00	2.46		ug/L		123	70 - 130	8	30
Chlorobenzene	0.50	U	2.00	2.00		ug/L		100	70 - 130	10	30
Chlorobromomethane	0.50	U	2.00	2.13		ug/L		106	70 - 130	7	30
Chlorodibromomethane	0.50	U	2.00	2.08		ug/L		104	70 - 130	9	30
Chloroethane	0.50	U	2.00	2.10		ug/L		105	70 - 130	12	30
Chloroform	0.18	J	2.00	2.42		ug/L		112	70 - 130	7	30
Chloromethane	0.50	U	2.00	1.84		ug/L		92	70 - 130	8	30
cis-1,2-Dichloroethene sample ? 4? spil	ke - 14		2.00	15.0	4	ug/L		35	70 - 130	10	30
cis-1,3-Dichloropropene	0.50	U	2.00	2.13		ug/L		107	70 - 130	15	30
Dibromomethane	0.50	U	2.00	2.30		ug/L		115	70 - 130	12	30
Dichlorobromomethane	0.50	U	2.00	2.21		ug/L		110	70 - 130	9	30
Dichlorodifluoromethane	0.50	U	2.00	1.75		ug/L		88	70 - 130	5	30
Ethylbenzene	0.50	U	2.00	1.91		ug/L		95	70 - 130	9	30
Freon 11	0.50	U	2.00	2.17		ug/L		109	70 - 130	11	30
Freon 113	1.7		2.00	3.53		ug/L		90	70 - 130	8	30
Freon 115 sample ND - no qual	1.0	U F1	2.00	2.70	F1	ug/L		135	70 - 130	12	30
Freon 123 sample ND - no qual	0.50	U F1	2.00	2.65	F1	ug/L		133	70 - 130	7	30
Freon 152a sample ND - no qual	0.50	U F1	2.00	2.95	F1	ug/L		148	70 - 130	11	30
Freon 22 sample ND - no qual	0.50	U F1 F2	2.00	2.89	F1 F2	ug/L		144	70 - 130	33	30
Hexachlorobutadiene	0.50	U	2.00	2.37		ug/L		118	70 - 130	9	30
Isopropylbenzene	0.50	U	2.00	1.88		ug/L		94	70 - 130	10	30
m,p-Xylene	1.0	U	4.00	3.71		ug/L		93	70 - 130	6	30
Methyl tert-butyl ether	0.50	U	2.00	2.20		ug/L		110	70 - 130	10	30
Methylene Chloride	0.50	U	2.00	2.19		ug/L		110	70 - 130	1	30
N-Propylbenzene	0.50	U	2.00	1.84		ug/L		92	70 - 130	10	30
o-Xylene	0.50	U	2.00	1.79		ug/L		90	70 - 130	12	30
sec-Butylbenzene	0.50	U	2.00	1.99		ug/L		100	70 - 130	9	30
Styrene	0.50	U	2.00	1.75		ug/L		88	70 - 130	6	30
tert-Butylbenzene	0.50	U	2.00	1.86		ug/L		93	70 - 130	9	30
Tetrachloroethene	3.6	F1	2.00	5.10		ug/L		77	70 - 130	4	30
Toluene	0.50	U	2.00	2.07		ug/L		104	70 - 130	13	30
trans-1,2-Dichloroethene	0.17	J	2.00	2.11		ug/L		97	70 - 130	11	30
trans-1,3-Dichloropropene	0.50	U	2.00	1.92		ug/L		96	70 - 130	20	30

MSD MSD

9.4

0.50 U

Surrogate %Recovery Qualifier Limits 1,2-Dichlorobenzene-d4 114 70 - 130 93 70 - 130 4-Bromofluorobenzene

Method: 8260D - Volatile Organic Compounds by GC/MS

Lab Sample ID: MB 460-780881/8

sample 2 42 spike -

no quals

Matrix: Water

Trichloroethene

Vinyl chloride

Analysis Batch: 780881

Client Sample ID: Method Blank **Prep Type: Total/NA**

70 - 130

70 - 130

107

30

30

11

16

Client Sample ID: SW-N5099-XX

%Rec.

Prep Type: Total/NA

RPD

Dil Fac Analyzed

MB MB Analyte Result Qualifier RL **MDL** Unit D **Prepared** Chloromethane 0.50 0.40 ug/L 05/28/21 09:05

2.00

2.00

10.3 4

2.14

ug/L

ug/L

XXX 06/24/2021

Eurofins TestAmerica, Edison

Page 96 of 3252

06/11/2021

Sample ID: SW-N13821-XX/SW-500

Compund	Result	LabQual	DF	Dup	LabQual	DF	I	RPD
1,1,2-Trichloro-1,2,2-Trifluoroeth	0.24	J		1 0.24	J		1	0
cis-1,2-Dichloroethene	4.8			1 4.2			1	13.33333
Tetrachloroethene	1.1			1 0.99			1	10.52632
Trichloroethene	1.2			1 1.0			1	18.18182

XXX 06/24/2021

Client: Wood E&I Solutions Inc

Project/Site: LMC Q2 2021 Groundwater Monitoring

Method: 524.2 - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 460-779085/3 LCS only associate with TB - no quals **Matrix: Water**

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Job ID: 460-234681-1

Analysis Batch: 779085

-	Spike	LCS	LCS	70-130			%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Bromoform	2.00	1.52		ug/L		76	70 - 130
Bromomethane	2.00	1.94		ug/L		97	70 - 130
Carbon tetrachloride	2.00	1.85		ug/L		93	70 - 130
Chlorobenzene	2.00	1.71		ug/L		85	70 - 130
Chlorobromomethane	2.00	1.86		ug/L		93	70 - 130
Chlorodibromomethane	2.00	1.59		ug/L		80	70 - 130
Chloroethane	2.00	1.94		ug/L		97	70 - 130
Chloroform	2.00	1.94		ug/L		97	70 - 130
Chloromethane	2.00	2.03		ug/L		102	70 - 130
cis-1,2-Dichloroethene	2.00	1.90		ug/L		95	70 - 130
cis-1,3-Dichloropropene	2.00	1.34	*-	ug/L		67	70 - 130
Dibromomethane	2.00	1.73		ug/L		86	70 - 130
Dichlorobromomethane	2.00	1.81		ug/L		90	70 - 130
Dichlorodifluoromethane	2.00	1.84		ug/L		92	70 - 130
Ethylbenzene	2.00	1.66		ug/L		83	70 - 130
Freon 11	2.00	1.57		ug/L		79	70 - 130
Freon 113	2.00	2.01		ug/L		100	70 - 130
Freon 115	2.00	4.05	*+	ug/L		203	70 - 130
Freon 123	2.00	2.50		ug/L		125	70 - 130
Freon 152a	2.00	3.05	*+	ug/L		153	70 - 130
Freon 22	2.00	2.42		ug/L		121	70 - 130
Hexachlorobutadiene	2.00	1.47		ug/L		73	70 - 130
Isopropylbenzene	2.00	1.59		ug/L		80	70 - 130
m,p-Xylene	4.00	3.14		ug/L		78	70 - 130
Methyl tert-butyl ether	2.00	1.92		ug/L		96	70 - 130
Methylene Chloride	2.00	1.82		ug/L		91	70 - 130
N-Propylbenzene	2.00	1.60		ug/L		80	70 - 130
o-Xylene	2.00	1.50		ug/L		75	70 - 130
sec-Butylbenzene	2.00	1.57		ug/L		79	70 - 130
Styrene	2.00	1.53		ug/L		76	70 - 130
tert-Butylbenzene	2.00	1.50		ug/L		75	70 - 130
Tetrachloroethene	2.00	1.70		ug/L		85	70 - 130
Toluene	2.00	1.60		ug/L		80	70 - 130
trans-1,2-Dichloroethene	2.00	1.71		ug/L		85	70 - 130
trans-1,3-Dichloropropene	2.00	1.56		ug/L		78	70 - 130
Trichloroethene	2.00	1.87		ug/L		93	70 - 130
Vinyl chloride	2.00	1.87		ug/L		93	70 - 130

LCS LCS

Surrogate	%Recovery Qualifier	Limits
1,2-Dichlorobenzene-d4	98	70 - 130
4-Bromofluorobenzene	94	70 - 130

Lab Sample ID: LCSD 460-779085/4

Matrix: Water

Analysis Batch: 779085

Client Sample ID:	Lab Control Sample Dup	
	Pron Type: Total/NA	

	Spike	LCSD				%Rec.		RPD	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
1,1,1,2-Tetrachloroethane	2.00	2.08		ug/L		104	70 - 130	18	30

XXX 06/24/2021

Eurofins TestAmerica, Edison 06/09/2021

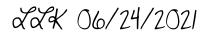
Client: Wood E&I Solutions Inc

Project/Site: LMC Q2 2021 Groundwater Monitoring

Method: 524.2 - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCSD 460-779085/4

Matrix: Water


Analysis Batch: 779085

Client Sample ID: Lab Control Sample Dup
Prep Type: Total/NA

Job ID: 460-234681-1

70-130

Analysis batch: 779005	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added		Qualifier	Unit	D	%Rec	Limits	RPD	Limit
1,1,1-Trichloroethane	2.00	2.17		ug/L		109	70 - 130	19	30
1,1,2,2-Tetrachloroethane	2.00	2.24		ug/L		112	70 - 130	22	30
1,1,2-Trichloroethane	2.00	2.36		ug/L		118	70 - 130	18	30
1,1-Dichloroethane	2.00	2.27		ug/L		114	70 - 130	15	30
1,1-Dichloroethene	2.00	2.10		ug/L		105	70 - 130	23	30
1,1-Dichloropropene	2.00	2.11		ug/L		106	70 - 130	16	30
1,2,3-Trichlorobenzene	2.00	1.79		ug/L		89	70 - 130	17	30
1,2,3-Trichloropropane	2.00	2.40		ug/L		120	70 - 130	13	30
1,2,4-Trichlorobenzene	2.00	1.89		ug/L		95	70 - 130	13	30
1,2,4-Trimethylbenzene	2.00	1.77		ug/L		89	70 - 130	19	30
1,2-Dibromo-3-Chloropropane	2.00	1.88		ug/L		94	70 - 130	17	30
1,2-Dichlorobenzene	2.00	2.05		ug/L		103	70 - 130	20	30
1,2-Dichloroethane	2.00	2.27		ug/L		114	70 - 130	17	30
1,2-Dichloropropane	2.00	2.31		ug/L		116	70 - 130	14	30
1,3,5-Trimethylbenzene	2.00	1.85		ug/L		92	70 - 130	23	30
1,3-Dichlorobenzene	2.00	1.90		ug/L		95	70 - 130	18	30
1,3-Dichloropropane	2.00	2.14		ug/L		107	70 - 130	14	30
1,4-Dichlorobenzene	2.00	1.91		ug/L		96	70 - 130	13	30
2,2-Dichloropropane	2.00	2.13		ug/L		107	70 - 130	15	30
2-Chlorotoluene	2.00	1.83		ug/L		92	70 - 130	13	30
4-Chlorotoluene	2.00	1.74		ug/L		87	70 - 130	15	30
4-Isopropyltoluene	2.00	1.72		ug/L		86	70 - 130	16	30
Benzene	2.00	2.19		ug/L		109	70 - 130	20	30
Bromobenzene	2.00	1.81		ug/L		91	70 - 130	12	30
Bromoform	2.00	1.80		ug/L		90	70 - 130	17	30
Bromomethane	2.00	2.24		ug/L		112	70 - 130	14	30
Carbon tetrachloride	2.00	2.15		ug/L		108	70 - 130	15	30
Chlorobenzene	2.00	2.01		ug/L		100	70 - 130	16	30
Chlorobromomethane	2.00	2.06		ug/L		103	70 - 130	10	30
Chlorodibromomethane	2.00	2.03		ug/L		101	70 - 130	24	30
Chloroethane	2.00	2.25		ug/L		113	70 - 130	15	30
Chloroform	2.00	2.24		ug/L		112	70 - 130	14	30
Chloromethane	2.00	2.40		ug/L		120	70 - 130	17	30
cis-1,2-Dichloroethene	2.00	2.40		ug/L ug/L		110	70 - 130	15	30
cis-1,3-Dichloropropene	2.00	2.20	*1	ug/L ug/L		110	70 - 130	49	30
Dibromomethane	2.00	1.94		ug/L ug/L		97	70 - 130	12	30
Dichlorobromomethane	2.00	2.17		ug/L ug/L		108	70 - 130 70 - 130	18	30
Dichlorodifluoromethane	2.00	2.17		ug/L ug/L		104	70 - 130 70 - 130	12	30
								12	
Ethylbenzene	2.00	1.88		ug/L		94	70 - 130		30
Freon 11	2.00	1.91		ug/L		96	70 ₋ 130	20	30
Freon 113	2.00	2.24	+. +4	ug/L		112	70 - 130	11	30
Freen 103	2.00		*+ *1	ug/L		325	70 - 130	46	30
Freen 153	2.00	3.08		ug/L		154	70 - 130	21	30
Freon 152a	2.00	3.37		ug/L		169	70 - 130	10	30
Freon 22	2.00	3.11	^+	ug/L		(155)	70 - 130	25	30
Hexachlorobutadiene	2.00	1.74		ug/L		87	70 - 130	17	30
Isopropylbenzene	2.00	1.89		ug/L		95	70 - 130		30
m,p-Xylene	4.00	3.64		ug/L		91	70 - 130	15	30
Methyl tert-butyl ether	2.00	2.25		ug/L		112	70 - 130	16	30

Eurofins TestAmerica, Edison

Page 107 of 3279

SVOC

NYSDEC DUSR PROJECT CHEMIST REVIEW RECORD

Project: LMC Great Neck GWM Q2 2021

Method: 8270E SIM

Laboratory: TAL Edison, NJ SDG(s): 460-234681-1 and 460-235115-1

Date: 06/24/2021 Reviewer: Liesel Krout

Review Level X NYSDEC DUSR USEPA Region II Guideline

1. ✓ Case Narrative Review and Data Package Completeness COMMENTS

Were problems noted? see attached

Were all the samples on the COC analyzed for the requested analyses? YES NO (circle one)

Are Field Sample IDs and Locations assigned correctly? YES NO (circle one) refer to VOCs checklist

2. ✓ Holding time and Sample Collection

Soil: 14 days from collection to extraction; 40 days from extraction to analysis Water: 7 days from collection to extraction; 40 days from extraction to analysis Hold time met for all samples? YES NO (circle one) see narratives, attached

3. **✓ QC** Blanks

Are method blanks free of contamination? YES NO (circle one)
Are Rinse blanks free of contamination? YES NO NA (circle one)

4. ✓ Instrument Tuning – Data Package Narrative Review

Did the laboratory narrative identify any results that were not within method criteria? YES NO (circle one)

If yes, use professional judgment to evaluate data and qualify results if needed

5. Internal Standards – Data Package Narrative Review

(Area Limits = -50% to +100%, RTs within 30 seconds of daily CCAL standard (or ICAL midpoint if samples follow ICAL))

Did the laboratory narrative identify any sample internal standards that were not within criteria? YES NO (circle one)

Did the laboratory qualify results based on internal standard exceedances? YES NO If yes to above, use professional judgment to evaluate data and qualify results if needed

6. ✓ Instrument Calibration – Data Package Narrative Review

Did the laboratory narrative identify compounds that were not within criteria in the initial and/or continuing calibration standards? YES NO (circle one)

Control Limits (Region II HW-22): Initial Calibration %RSD = 15%, Continuing Calibration %D = 20% Average RRF should be ≥ 0.05 (or reject NDs, J detects or use professional judgment to J/UJ)

Did the laboratory qualify results based on initial or continuing calibration exceedances? YES

If yes to above, use professional judgment to evaluate data and qualify results if needed

7. Surrogate Recovery (water and soli limits: Base/Neutral 50-140%, Acid 30-140%)

lab limits for 1,4-Dioxane

Were all results within limits? YES NO (circle one)

Were any recoveries < 10%? (Reject fraction compounds if recoveries are < 10%)

8. Matrix Spike (water & seil limits. Base/Neutral 50-140%, Acid 30-140%) (RPD soil-35, water-20) lab limits for 1,4-Dioxane Were MS/MSDs submitted/analyzed? YES NO

Were all results within limits? YES NO NA (circle one) see attached

9. ✓ **Duplicates** (RPD limits = water:50, soil:100)
Were Field Duplicates submitted/analyzed? YES NO
Were RPDs within criteria? YES NO NA (circle one)

see attached for RPD calcs for detections

10.

Laboratory Control Sample Results (water & soil limits: Base/Neutral 50-140%, Acid 30-140%)

Were all results within limits? YES NO (circle one)

lab limits for 1,4-Dioxane

see attached

11. ✓ Raw Data Review and Calculation Checks

see attached

12. ✓ Electronic Data Review and Edits

Does the EDD match the Form Is? YES NO (circle one)

13. **L** Tables and TIC Review

 Table 1 (Samples and Analytical Methods)

 Table 2 (Analytical Results)

Table 3 (Qualification Actions)

Were all tables produced and reviewed? YES NO (circle one)

 Table 4 (TICs)
 Did lab report TICs?
 YES
 NO
 (circle one)

CASE NARRATIVE

Client: Wood E&I Solutions Inc

Project: LMC Q2 2021 Groundwater Monitoring

Report Number: 460-234681-1

This case narrative is in the form of an exception report, where only the anomalies related to this report, method specific performance and/or QA/QC issues are discussed. If there are no issues to report, this narrative will include a statement that documents that there are no relevant data issues.

It should be noted that samples with elevated Reporting Limits (RLs) as a result of a dilution may not be able to satisfy customer reporting limits in some cases. Such increases in the RLs are unavoidable but acceptable consequence of sample dilution that enables quantification of target analytes or interferences which exceed the calibration range of the instrument.

Calculations are performed before rounding to avoid round-off errors in calculated results.

All holding times were met and proper preservation noted for the methods performed on these samples, unless otherwise detailed in the individual sections below.

RECEIPT

The samples were received on 5/17/2021 5:00 PM. Unless otherwise noted below, the samples arrived in good condition, and where required, properly preserved and on ice. The temperatures of the 7 coolers at receipt time were 1.5° C, 1.5° C, 2.0° C, 2.0° C, 2.0° C, 2.0° C, 2.0° C C and 2.0° C.

Receipt Exceptions

The PFAS analytical list was not identified on the Chain-of-Custody (COC); the samples are logged in for the 21 analyte list, as was provided with the original order specification.

Due to an internal laboratory tracking error, the following samples were extracted for 1,4-Dioxane outside of the 7-calendar day hold time: MW-1GU-XX (460-234681-1), MW-1GL-XX (460-234681-2), MW-500 (460-234681-23) and QC-EB110521-01 (460-234681-26).

UJ all non-QC samples

Note: All samples which require thermal preservation are considered acceptable if the arrival temperature is within 2C of the required temperature or method specified range. For samples with a specified temperature of 4C, samples with a temperature ranging from just above freezing temperature of water to 6C shall be acceptable. Samples that are hand delivered immediately following collection may not meet these criteria, however they will be deemed acceptable according to NELAC standards, if there is evidence that the chilling process has begun, such as arrival on ice, etc.

DRINKING WATER VOLATILES (GC-MS)

Sample QC-TB120521-XX (460-234681-29) was analyzed for drinking water volatiles (GC-MS) in accordance with EPA Method 524.2. The sample was analyzed on 05/20/2021.

The continuing calibration verification (CCV) associated with batch 460-779085 recovered outside acceptance criteria, low biased, for Freon 115. A reporting limit (RL) standard was analyzed, and the target analyte was detected. Since the associated samples were non-detect for this analyte, the data have been reported.

The laboratory control sample (LCS) and laboratory control sample duplicate (LCSD) for analytical batch 460-779085 recovered outside control limits for the following analytes: cis-1,3-Dichloropropene (biased low); Freon 152, Freon 22, Freon 123 and Freon 115 (biased high). These analytes were biased high in the LCS and were not detected in the associated samples; therefore, the data have been reported. cis-1.3-Dichloropropene failed the recovery criteria low for LCS 460-779085/3; Freon 115 and Freon 152a failed the recovery criteria high. Freon 115, Freon 123, Freon 152a and Freon 22 failed the recovery criteria high for LCSD 460-779085/4.

The RPD of the LCS and LCSD for analytical batch 460-779085 recovered outside control limits for the following analytes: cis-1,3-Dichloropropene and Freon 115.

Refer to the QC report for details.

No other difficulties were encountered during the volatiles analysis.

All other quality control parameters were within the acceptance limits.

SEMIVOLATILE ORGANIC COMPOUNDS (GC-MS) - SELECTED ION MODE (SIM) - DKQP - 1,4 DIOXANE

Samples MW-1GU-XX (460-234681-1), MW-1GL-XX (460-234681-2), MW-1MI-XX (460-234681-3), MW-1ML-XX (460-234681-4), MW-3GL-XX (460-234681-5), MW-6GL-XX (460-234681-6), MW-6ML-XX (460-234681-7), MW-7GL-XX (460-234681-8), MW-7ML-XX (460-234681-9), MW-17GL-XX (460-234681-10), MW-17ML-XX (460-234681-11), MW-22GL-XX (460-234681-12), MW-22ML-XX (460-234681-13), MW-29GL-XX (460-234681-14), MW-31GL-XX (460-234681-15), MW-31MI-XX (460-234681-16), MW-31ML-XX

XXX 06/24/2021

Page 7 of 3279

(460-234681-17), MW-35GL-XX (460-234681-18), MW-37GU-XX (460-234681-19), MW-37ML-XX (460-234681-20), MW-46MI-XX (460-234681-21), MW-46ML-XX (460-234681-22), MW-500 (460-234681-23), MW-501 (460-234681-24), MW-502 (460-234681-25), QC-EB110521-01 (460-234681-26) and QC-EB120521-XX (460-234681-27) were analyzed for Semivolatile Organic Compounds (GC-MS) - Selected Ion Mode (SIM) - DKQP - 1,4 Dioxane in accordance with 8270E SIM. The samples were prepared on 05/19/2021 and 05/20/2021 and analyzed on 05/20/2021 and 05/21/2021.

√ Nitrobenzene-d5 failed the surrogate recovery criteria low for MW-1MI-XX (460-234681-3).

see attached for surrogate recovery review

√ 1,4-Dioxane exceeded the RPD limit for the MSD of sample MW-1MI-XXMSD (460-234681-3) in batch 460-779372.

see MS review attached

Refer to the QC report for details.

No other difficulties were encountered during the Semivolatile Organic Compounds (GC-MS) - Selected Ion Mode (SIM) - DKQP - 1,4 Dioxane analysis.

All other quality control parameters were within the acceptance limits.

VOLATILE ORGANIC COMPOUNDS (GC/MS) - (LOW LEVEL - LL)(TOTAL)

Samples MW-1GU-XX (460-234681-1), MW-1GL-XX (460-234681-2), MW-1MI-XX (460-234681-3), MW-1ML-XX (460-234681-4), MW-3GL-XX (460-234681-5), MW-6GL-XX (460-234681-6), MW-6ML-XX (460-234681-7), MW-7GL-XX (460-234681-8), MW-7ML-XX (460-234681-9), MW-17GL-XX (460-234681-10), MW-17ML-XX (460-234681-11), MW-22GL-XX (460-234681-12), MW-22ML-XX (460-234681-13), MW-29GL-XX (460-234681-14), MW-31GL-XX (460-234681-15), MW-31MI-XX (460-234681-16), MW-31ML-XX (460-234681-17), MW-35GL-XX (460-234681-18), MW-37GU-XX (460-234681-19), MW-37ML-XX (460-234681-20), MW-46MI-XX (460-234681-21), MW-46ML-XX (460-234681-22), MW-500 (460-234681-23), MW-501 (460-234681-24), MW-502 (460-234681-25), QC-EB110521-01 (460-234681-26), QC-EB120521-XX (460-234681-27), QC-TB110521-XX (460-234681-28) and QC-TB130521-XX (460-234681-30) were analyzed for Volatile Organic Compounds (GC/MS) - (Low Level - LL)(Total) in accordance with EPA SW-846 Method 8260D - Low Level (LL). The samples were analyzed on 05/20/2021 and 05/21/2021.

The CCV analyzed in batch 460-779084 was outside the method criteria for the following analytes: Freon 115 (biased high); Dichlorodifluoromethane (biased low). A CCV standard at or below the reporting limit (RL) was analyzed with the affected samples and found to be acceptable. As indicated in the reference method, sample analysis may proceed; however, any detection for the affected analytes is considered estimated.

The CCV analyzed in batch 460-779357 was outside the method criteria for Dichlorodifluoromethane. A CCV standard at or below the reporting limit (RL) was analyzed with the affected samples and found to be acceptable. As indicated in the reference method, sample analysis may proceed; however, any detection for the affected analyte is considered estimated.

cis-1,2-Dichloroethene and Trichloroethene failed the recovery criteria low for the MS of sample MW-31GL-XX (460-234681-15) in batch 460-779357. cis-1,2-Dichloroethene failed the recovery criteria low for the MSD of sample MW-31GL-XX (460-234681-15) in batch 460-779357.

The presence of the '4' qualifier in the data indicates analytes where the concentration in the unspiked sample exceeded four times the spiking amount.

Refer to the QC report for details.

The following sample was diluted to bring the concentration of target analytes within the calibration range: MW-35GL-XX (460-234681-18). Elevated reporting limits (RLs) are provided.

No other difficulties were encountered during the Volatiles analysis.

All other quality control parameters were within the acceptance limits.

PER- AND POLYFLUOROALKYL SUBSTANCES (PFAS)

Samples MW-1GU-XX (460-234681-1), MW-1GL-XX (460-234681-2), MW-1MI-XX (460-234681-3), MW-1ML-XX (460-234681-4), MW-3GL-XX (460-234681-5), MW-6GL-XX (460-234681-6), MW-6ML-XX (460-234681-7), MW-7GL-XX (460-234681-8), MW-7ML-XX (460-234681-9), MW-17GL-XX (460-234681-10), MW-17ML-XX (460-234681-11), MW-22GL-XX (460-234681-12), MW-22ML-XX (460-234681-13), MW-29GL-XX (460-234681-14), MW-31GL-XX (460-234681-15), MW-31MI-XX (460-234681-16), MW-31ML-XX (460-234681-17), MW-35GL-XX (460-234681-18), MW-37GU-XX (460-234681-19), MW-37ML-XX (460-234681-20), MW-46MI-XX (460-234681-21), MW-46ML-XX (460-234681-22), MW-500 (460-234681-23), MW-501 (460-234681-24), MW-502 (460-234681-25), QC-EB110521-01 (460-234681-26), QC-EB120521-XX (460-234681-27), QC-TUBE110521-XX (460-234681-31), QC-TUBEDT130521-XX (460-234681-32) and QC-TUBEWL140521-XX (460-234681-33) were analyzed for Per- and Polyfluoroalkyl Substances (PFAS) in accordance with PFC. The samples were prepared on 05/24/2021 and analyzed on 05/24/2021 and 05/25/2021.

The method blank for preparation batch 200-167188 and analytical batch 200-167216 contained Perfluorobutanoic acid (PFBA) above the method detection limit. This target analyte concentration was less than half the reporting limit (1/2 RL); therefore, re-extraction and re-analysis of samples was not performed.

Refer to the QC report for details.

XXX 06/24/2021

Page 8 of 3279 06/09/2021

CASE NARRATIVE

Client: Wood E&I Solutions Inc

Project: LMC Q2 2021 Groundwater Monitoring

Report Number: 460-235115-1

This case narrative is in the form of an exception report, where only the anomalies related to this report, method specific performance and/or QA/QC issues are discussed. If there are no issues to report, this narrative will include a statement that documents that there are no relevant data issues.

It should be noted that samples with elevated Reporting Limits (RLs) as a result of a dilution may not be able to satisfy customer reporting limits in some cases. Such increases in the RLs are unavoidable but acceptable consequence of sample dilution that enables quantification of target analytes or interferences which exceed the calibration range of the instrument.

Calculations are performed before rounding to avoid round-off errors in calculated results.

All holding times were met and proper preservation noted for the methods performed on these samples, unless otherwise detailed in the individual sections below.

RECEIPT

The samples were received on 5/21/2021 7:30 PM. Unless otherwise noted below, the samples arrived in good condition, and where required, properly preserved and on ice. The temperatures of the 3 coolers at receipt time were 2.5° C, 2.8° C and 3.0° C.

Receipt Exceptions

The PFAS analytical list was not identified on the Chain-of-Custody (COC); the samples are logged in for the 21 analyte list, as was provided with the original order specification.

Due to an internal laboratory tracking error, the following samples were extracted for 1,4-Dioxane outside of the 7-calendar day hold time: MW-49ML-XX (460-235115-1), MW-43MU-XX (460-235115-14), MW-43MI-XX (460-235115-15), MW-45MU-XX (460-235115-16), MW-45MI-XX (460-235115-17), MW-47MI-XX (460-235115-18), MW-47ML-XX (460-235115-19), MW-47ML-XX (460-235115-19[MSD]), MW-47ML-XX (460-235115-19[MSD]) and MW-49MI-XX (460-235115-20).

J/UJ all non-QC samples

Note: All samples which require thermal preservation are considered acceptable if the arrival temperature is within 2C of the required temperature or method specified range. For samples with a specified temperature of 4C, samples with a temperature ranging from just above freezing temperature of water to 6C shall be acceptable. Samples that are hand delivered immediately following collection may not meet these criteria, however they will be deemed acceptable according to NELAC standards, if there is evidence that the chilling process has begun, such as arrival on ice, etc.

DRINKING WATER VOLATILES (GC-MS)

Samples SW-N5099-XX (460-235115-9), SW-N4388-XX (460-235115-10), SW-N12796-XX (460-235115-21), SW-N12999-XX (460-235115-22), SW-N13000-XX (460-235115-23), SW-N13821-XX (460-235115-24), SW-500 (460-235115-25), QC-TB180521-XX (460-235115-27) and QC-TB190521-XX (460-235115-28) were analyzed for drinking water volatiles (GC-MS) in accordance with EPA Method 524.2. The samples were analyzed on 05/28/2021.

cis-1,2-Dichloroethene, Tetrachloroethene and Trichloroethene failed the recovery criteria low for the matrix spike (MS) of sample SW-N5099-XX (460-235115-9) in batch 460-780884. Freon 152a failed the recovery criteria high.

For the matrix spike duplicate (MSD) of sample SW-N5099-XX (460-235115-9) in batch 460-780884, cis-1,2-Dichloroethene and Trichloroethene failed the recovery criteria low. Freon 115, Freon 123, Freon 152a and Freon 22 failed the recovery criteria high. Also, Freon 22 exceeded the RPD limit.

The presence of the '4' qualifier in the data indicates analytes where the concentration in the unspiked sample exceeded four times the spiking amount.

Refer to the QC report for details.

No other difficulties were encountered during the volatiles analysis.

All other quality control parameters were within the acceptance limits.

SEMIVOLATILE ORGANIC COMPOUNDS (GC-MS) - SELECTED ION MODE (SIM) - DKQP - 1,4 DIOXANE (DISSOLVED)

Samples MW-49ML-XX (460-235115-1), MW-52MI-XX (460-235115-5), MW-52ML-XX (460-235115-6), MW-53MI-XX (460-235115-7), MW-53ML-XX (460-235115-8), SW-N5099-XX (460-235115-9), SW-N4388-XX (460-235115-10), MW-2MI-XX (460-235115-11), MW-3ML-XX (460-235115-12), MW-29MI-XX (460-235115-13), MW-43MU-XX (460-235115-14), MW-43MI-XX (460-235115-15),

XXX 06/24/2021

Page 7 of 3252 06/11/2021

MW-45MU-XX (460-235115-16), MW-45MI-XX (460-235115-17), MW-47MI-XX (460-235115-18), MW-47ML-XX (460-235115-19), MW-49MI-XX (460-235115-20), SW-N12796-XX (460-235115-21), SW-N12999-XX (460-235115-22), SW-N13000-XX (460-235115-23), SW-N13821-XX (460-235115-24) and SW-500 (460-235115-25) were analyzed for Semivolatile Organic Compounds (GC-MS) - Selected Ion Mode (SIM) - DKQP - 1,4 Dioxane (DISSOLVED) in accordance with 8270E SIM. The samples were prepared on 05/25/2021 and 05/26/2021 and on 05/26/2021 and 05/27/2021.

✓ The RPD of the laboratory control sample (LCS) and laboratory control sample duplicate (LCSD) for preparation batch 460-780273 and analytical batch 460-780371 recovered outside control limits for 1,4-Dioxane.

 see attached for LCS review

see attached for LC3 revier

✓ 1,4-Dioxane exceeded the RPD limit for the MSD of sample MW-47ML-XX (460-235115-19) in batch 460-780497.

Refer to the QC report for details.

No other difficulties were encountered during the Semivolatile Organic Compounds (GC-MS) - Selected Ion Mode (SIM) - DKQP - 1,4 Dioxane (DISSOLVED) analysis.

All other quality control parameters were within the acceptance limits.

VOLATILE ORGANIC COMPOUNDS (GC/MS) - (LOW LEVEL - LL)(TOTAL)

Samples MW-49ML-XX (460-235115-1), MW-51MI-XX (460-235115-2), MW-51ML-XX (460-235115-3), IW-N9687-XX (460-235115-4), MW-52MI-XX (460-235115-5), MW-52ML-XX (460-235115-6), MW-53MI-XX (460-235115-7), MW-53ML-XX (460-235115-8), MW-2MI-XX (460-235115-11), MW-3ML-XX (460-235115-12), MW-29MI-XX (460-235115-13), MW-43MU-XX (460-235115-14), MW-43MI-XX (460-235115-15), MW-45MU-XX (460-235115-16), MW-45MI-XX (460-235115-17), MW-47MI-XX (460-235115-18), MW-47ML-XX (460-235115-19), MW-49MI-XX (460-235115-20) and QC-TB170521-XX (460-235115-26) were analyzed for Volatile Organic Compounds (GC/MS) - (Low Level - LL)(Total) in accordance with EPA SW-846 Method 8260D - Low Level (LL). The samples were analyzed on 05/28/2021 and 05/29/2021.

The continuing calibration verification (CCV) analyzed in batch 460-780881 was outside the method criteria for the following analytes: Freon 115 (bias high) and Freon 11 (bias low). A CCV standard at or below the reporting limit (RL) was analyzed with the affected samples and found to be acceptable. As indicated in the reference method, sample analysis may proceed; however, any detection for the affected analytes is considered estimated.

The CCV associated with batch 460-781142 recovered above the upper control limit for Freon 115, Chloromethane and Methyl acetate. The samples associated with this CCV were non-detects for the affected analytes; therefore, the data have been reported.

Refer to the QC report for details.

No other difficulties were encountered during the Volatiles analysis.

All other quality control parameters were within the acceptance limits.

PER- AND POLYFLUOROALKYL SUBSTANCES (PFAS)

Samples MW-49ML-XX (460-235115-1), MW-52MI-XX (460-235115-5), MW-52ML-XX (460-235115-6), MW-53MI-XX (460-235115-7), MW-53ML-XX (460-235115-8), SW-N5099-XX (460-235115-9), SW-N4388-XX (460-235115-10), MW-2MI-XX (460-235115-11), MW-3ML-XX (460-235115-12), MW-29MI-XX (460-235115-13), MW-43MU-XX (460-235115-14), MW-43MI-XX (460-235115-15), MW-45MU-XX (460-235115-16), MW-45MI-XX (460-235115-17), MW-47MI-XX (460-235115-18), MW-47ML-XX (460-235115-19), MW-49MI-XX (460-235115-20), SW-N12796-XX (460-235115-21), SW-N12999-XX (460-235115-22), SW-N13000-XX (460-235115-23), SW-N13821-XX (460-235115-24), SW-500 (460-235115-25), QC-TUBEDT170521-XX (460-235115-29), QC-TUBEWL180521-XX (460-235115-30) and QC-TUBEDT190521-XX (460-235115-31) were analyzed for Per- and Polyfluoroalkyl Substances (PFAS) in accordance with PFC. The samples were prepared on 05/27/2021 and 05/28/2021 and analyzed on 05/28/2021.

The method blank for preparation batch 200-167393 and analytical batch 200-167399 contained Perfluorobutanoic acid (PFBA), Perfluorobutanesulfonic acid (PFBS), Perfluorobexanesulfonic acid (PFHxS), Perfluorobeptanoic acid (PFHpA), Perfluorobeptanesulfonic acid (PFHpS), Perfluorooctanoic acid (PFOA), Perfluorooctanoic acid (PFOA), Perfluorodecanoic acid (PFDA), Perfluoro

Refer to the QC report for details.

13C2 PFDoA and 13C2 PFTeDA Isotope Dilution Analyte (IDA) recoveries associated with the following sample are below the method recommended limit: MW-52ML-XX (460-235115-6). Generally, data quality is not considered affected if the IDA signal-to-noise ratio is greater than 10:1, which is achieved for all IDA in the sample.

No other difficulties were encountered during the PFAS analysis.

All other quality control parameters were within the acceptance limits.

CHLORIDE

LLK 06/24/2021

Page 8 of 3252 06/11/2021

Client: Wood E&I Solutions Inc Job ID: 460-234681-1

Project/Site: LMC Q2 2021 Groundwater Monitoring

Lab Sample ID: LCS 460-7	779053/2-A					Clie	nt Sar	nple ID	: Lab Cor	itrol Sa	mple
Matrix: Water									Prep Ty		
Analysis Batch: 779268									Prep Ba	tch: 77	79053
-			Spike	LCS	LCS				%Rec.		
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits		
1,4-Dioxane			0.800	0.172	J	ug/L		22	10 - 120		
	1.09	LCS									
Surrogate	%Recovery		Limits								
Nitrobenzene-d5	79	- Qualifici	<u> 54 - 134</u>								
- -											
Lab Sample ID: LCSD 460	-779053/3- <mark>A</mark>	1				lient Sa	mple	ID: Lab	Control		
Matrix: Water									Prep Ty	pe: Tot	al/NA
Analysis Batch: 779205									Prep Ba	atch: 77	79053
			Spike	LCSD	LCSD				%Rec.		RPD
Analyte			Added		Qualifier	Unit	D	%Rec	Limits	RPD	Limit
1,4-Dioxane			0.800	0.225		ug/L		28	10 - 120	13	30
	LCSD	LCSD									
Surrogate	%Recovery	Qualifier	Limits								
Nitrobenzene-d5	95		54 - 134								
· •											
Lab Sample ID: LCSD 460)-779053/3-A	1			(lient Sa	imple	ID: Lab	Control		
Matrix: Water									Prep Ty	-	
Analysis Batch: 779268									Prep Ba	itch: 77	
			Spike	LCSD	_		_		%Rec.		RPD
Analyte			Added		Qualifier	Unit	D	%Rec	Limits	RPD	Limit
1,4-Dioxane			0.800	0.170	J	ug/L		21	10 - 120	1	30
	LCSD	LCSD									
Surrogate	%Recovery	Qualifier	Limits								
Nitrobenzene-d5	79		54 - 134								
Lab Sample ID: 460-23468	24 2 MC						_	liont S	ample ID:	R/I\A/ 4 R	/II VV
Matrix: Water) 1-3 IVI3							ilelit 3	Prep Ty		
Analysis Batch: 779205									Prep Ba	•	
Alialysis Dalcil. 113203	0	Sample	Spike	MC	MS				%Rec.	ittii. 11	3033
	Samnie				1110						
Analyte	•	•		_	Qualifier	Unit	D	%Rec	l imits		
Analyte 1.4-Dioxane	Result	Qualifier	Added	Result	Qualifier		<u>D</u>	%Rec 63	10 - 120		
Analyte 1,4-Dioxane	0.20	Qualifier U		_	Qualifier	Unit ug/L	<u>D</u>	63	10 - 120		
1,4-Dioxane	Result 0.20	Qualifier U	0.800	Result	Qualifier		<u>D</u>				
1,4-Dioxane Surrogate	Result 0.20 MS %Recovery	Qualifier U	Added 0.800	Result	Qualifier		<u>D</u>				
1,4-Dioxane	Result 0.20	Qualifier U	0.800	Result	Qualifier		<u>D</u>				
1,4-Dioxane Surrogate Nitrobenzene-d5	Result 0.20 MS %Recovery 102	Qualifier U	Added 0.800	Result	Qualifier			63	10 - 120		WI-XX
1,4-Dioxane Surrogate Nitrobenzene-d5 Lab Sample ID: 460-23468	Result 0.20 MS %Recovery 102	Qualifier U	Added 0.800	Result	Qualifier			63	10 - 120 ample ID:		
1,4-Dioxane Surrogate Nitrobenzene-d5 Lab Sample ID: 460-23468 Matrix: Water	Result 0.20 MS %Recovery 102	Qualifier U	Added 0.800	Result	Qualifier			63	10 - 120 ample ID: Prep Ty	pe: Tot	al/NA
1,4-Dioxane Surrogate Nitrobenzene-d5 Lab Sample ID: 460-23468	Result 0.20 MS %Recovery 102 81-3 MSD	Qualifier U MS Qualifier	Added 0.800	Result				63	10 - 120 ample ID:	pe: Tot	al/NA
1,4-Dioxane Surrogate Nitrobenzene-d5 Lab Sample ID: 460-23468 Matrix: Water	Result 0.20 MS %Recovery 102 81-3 MSD	Qualifier U	0.800 Limits 54 - 134	Result 0.501				63	ample ID: Prep Ty Prep Ba	pe: Tot	al/NA 79053
1,4-Dioxane Surrogate Nitrobenzene-d5 Lab Sample ID: 460-23468 Matrix: Water Analysis Batch: 779372	Result 0.20 MS %Recovery 102 81-3 MSD	Qualifier U MS Qualifier Sample Qualifier	Added 0.800 Limits 54 - 134 Spike	Result 0.501	MSD Qualifier	ug/L	C	63	ample ID: Prep Ty Prep Ba %Rec.	pe: Totatch: 77	al/NA 79053 RPD
1,4-Dioxane Surrogate Nitrobenzene-d5 Lab Sample ID: 460-23468 Matrix: Water Analysis Batch: 779372 Analyte	Result 0.20 MS %Recovery 102 81-3 MSD Sample Result 0.20	Qualifier U MS Qualifier Sample Qualifier U	Added 0.800 Limits 54 - 134 Spike Added	MSD Result 0.356	MSD Qualifier	ug/L Unit ug/L	C	63	ample ID: Prep Ty Prep Ba %Rec. Limits	pe: Totatch: 77	al/NA 79053 RPD Limit
1,4-Dioxane Surrogate Nitrobenzene-d5 Lab Sample ID: 460-23468 Matrix: Water Analysis Batch: 779372 Analyte	Result 0.20 MS %Recovery 102 81-3 MSD Sample Result 0.20	Qualifier U MS Qualifier Sample Qualifier U MSD	Added 0.800 Limits 54 - 134 Spike Added	MSD Result 0.356	MSD Qualifier F2	ug/L Unit ug/L	C	63	ample ID: Prep Ty Prep Ba %Rec. Limits	pe: Totatch: 77	al/NA 79053 RPD Limit

XXX 06/24/2021

Eurofins TestAmerica, Edison

Page 120 of 3279

Client: Wood E&I Solutions Inc Job ID: 460-235115-1

Project/Site: LMC Q2 2021 Groundwater Monitoring

Method: 8260D - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: LCSD 460-781142/5

Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

Matrix: Water

Analysis Batch: 781142

	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Methyl acetate	40.0	48.8		ug/L		122	70 - 127	1	30
Methylcyclohexane	20.0	19.6		ug/L		98	60 - 139	7	30
Freon 115	20.0	26.9		ug/L		134	10 - 150	5	30
Freon 152a	20.0	21.3		ug/L		106	10 - 150	8	30
Freon 123	20.0	19.3		ug/L		96	10 - 150	7	30
Freon 22	20.0	18.0		ug/L		90	10 - 150	7	30

LCSD LCSD

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	101		75 - 123
Toluene-d8 (Surr)	110		80 - 120
4-Bromofluorobenzene	100		76 - 120
Dibromofluoromethane (Surr)	102		77 - 124

Method: 8270E SIM - 1,4-Dioxane (GC/MS SIM)

Lab Sample ID: MB 460-780273/1-A

Matrix: Water

Analysis Batch: 780371

Client Sample ID: Method Blank Prep Type: Total/NA

Prep Batch: 780273

 Analyte
 Result 1,4-Dioxane
 Qualifier 0.20
 RL U.20
 MDL Unit ug/L ug/L ug/L
 D Unit ug/L 05/25/21 22:06
 Analyzed 05/26/21 09:16
 D Dil Fac 0.20

MB MB

MB MB

 Surrogate
 %Recovery Nitrobenzene-d5
 Qualifier Qualifier
 Limits Limits
 Prepared 05/25/21 22:06
 Analyzed 05/26/21 09:16
 Dil Fac 05/25/21 22:06

Lab Sample ID: LCS 460-780273/2-A

Matrix: Water

Analysis Batch: 780371

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Prep Batch: 780273

 Analyte
 Added 1,4-Dioxane
 Result 0.800
 Qualifier 0.181
 Unit 0 ug/L
 D where 23 ug/L
 Limits 23 ug/L

LCS LCS

 Surrogate
 %Recovery
 Qualifier
 Limits

 Nitrobenzene-d5
 72
 54 - 134

Lab Sample ID: LCSD 460-780273/3-A

Matrix: Water

Surrogate

Nitrobenzene-d5

Analysis Batch: 780371

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA
Prep Batch: 780273

Prep Batch: 780273 %Rec. RPD

LCSD LCSD Spike Added Result Qualifier Limits RPD Limit Analyte Unit %Rec 1,4-Dioxane 0.800 0.252 *1 32 10 - 120 ug/L

LCSD LCSD

 %Recovery
 Qualifier
 Limits

 70
 54 - 134

result in MW-29MI-XX qualified J remaining samples ND - no quals

XXX 06/24/2021

Eurofins TestAmerica, Edison

Page 106 of 3252

Client: Wood E&I Solutions Inc Job ID: 460-235115-1

Project/Site: LMC Q2 2021 Groundwater Monitoring

Method: 8270E SIM - 1,4-Dioxane (GC/MS SIM) (Continued)

Lab Sample ID: 460-235115-19 MS

Matrix: Water

Client Sample ID: MW-47ML-XX

Prep Type: Total/NA

Analysis Batch: 780497

Sample Sample Spike MS MS

Prep Batch: 780374

%Rec.

 Analyte
 Result 1,4-Dioxane
 Qualifier 0.29
 H F2
 0.800
 0.795
 H H Ug/L
 Unit ug/L
 D %Rec of MRec of

MS MS

Surrogate%RecoveryQualifierLimitsNitrobenzene-d59554 - 134

Lab Sample ID: 460-235115-19 MSD Client Sample ID: MW-47ML-XX

Matrix: Water

Analysis Batch: 780497

Sample Sample Spike MSD MSD Prep Batch: 780374

RPD %Rec. RPD

Result Qualifier Added Result Qualifier Unit Limits Limit Analyte %Rec 0.29 H F2 1,4-Dioxane 0.800 0.584 HF2 ug/L 37 10 - 120 31

MSD MSD reason code MSRPD added to J qualified result

Surrogate %Recovery Qualifier Limits

Nitrobenzene-d5 93 <u>78/4ccovery Quarter</u> <u>Firming</u> 54 - 134

Method: 537 (modified) - Fluorinated Alkyl Substances

Lab Sample ID: MB 200-167370/1-A

Client Sample ID: Method Blank

Matrix: Water Prep Type: Total/NA
Analysis Batch: 167395 Prep Batch: 167370

, , , , , , , , , , , , , , , , , , , ,	MB	МВ							
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorobutanoic acid (PFBA)	5.00	U	5.00	0.89	ng/L		05/27/21 19:34	05/28/21 15:20	1
Perfluoropentanoic acid (PFPeA)	2.00	U	2.00	0.47	ng/L		05/27/21 19:34	05/28/21 15:20	1
Perfluorohexanoic acid (PFHxA)	2.00	U	2.00	0.45	ng/L		05/27/21 19:34	05/28/21 15:20	1
Perfluoroheptanoic acid (PFHpA)	2.00	U	2.00	0.24	ng/L		05/27/21 19:34	05/28/21 15:20	1
Perfluorooctanoic acid (PFOA)	2.00	U	2.00	0.42	ng/L		05/27/21 19:34	05/28/21 15:20	1
Perfluorononanoic acid (PFNA)	2.00	U	2.00	0.28	ng/L		05/27/21 19:34	05/28/21 15:20	1
Perfluorodecanoic acid (PFDA)	2.00	U	2.00	0.30	ng/L		05/27/21 19:34	05/28/21 15:20	1
Perfluoroundecanoic acid (PFUnA)	2.00	U	2.00	0.34	ng/L		05/27/21 19:34	05/28/21 15:20	1
Perfluorododecanoic acid (PFDoA)	2.00	U	2.00	0.39	ng/L		05/27/21 19:34	05/28/21 15:20	1
Perfluorotridecanoic acid (PFTriA)	2.00	U	2.00	0.43	ng/L		05/27/21 19:34	05/28/21 15:20	1
Perfluorotetradecanoic acid (PFTeA)	2.00	U	2.00	0.63	ng/L		05/27/21 19:34	05/28/21 15:20	1
Perfluorobutanesulfonic acid (PFBS)	2.00	U	2.00	0.25	ng/L		05/27/21 19:34	05/28/21 15:20	1
Perfluorohexanesulfonic acid (PFHxS)	2.00	U	2.00	0.30	ng/L		05/27/21 19:34	05/28/21 15:20	1
Perfluoroheptanesulfonic Acid (PFHpS)	2.00	U	2.00	0.23	ng/L		05/27/21 19:34	05/28/21 15:20	1
Perfluorooctanesulfonic acid (PFOS)	2.00	U	2.00	0.29	ng/L		05/27/21 19:34	05/28/21 15:20	1
Perfluorodecanesulfonic acid (PFDS)	2.00	U	2.00	0.31	ng/L		05/27/21 19:34	05/28/21 15:20	1
Perfluorooctanesulfonamide (PFOSA)	2.00	U	2.00	0.58	ng/L		05/27/21 19:34	05/28/21 15:20	1
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	5.00	U	5.00	0.90	ng/L		05/27/21 19:34	05/28/21 15:20	1
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	5.00	U	5.00	0.74	ng/L		05/27/21 19:34	05/28/21 15:20	1
1H,1H,2H,2H-perfluorooctanesulfonic acid (6:2)	5.00	U	5.00	1.10	ng/L		05/27/21 19:34	05/28/21 15:20	1
1H,1H,2H,2H-perfluorodecanesulfonic acid (8:2)	2.00	U	2.00	0.39	ng/L		05/27/21 19:34	05/28/21 15:20	1

XXX 06/24/2021

Eurofins TestAmerica, Edison

Page 108 of 3252

Prep Type: Total/NA

Surrogate Summary

Client: Wood E&I Solutions Inc Job ID: 460-234681-1

Project/Site: LMC Q2 2021 Groundwater Monitoring

Method: 8260D - Volatile Organic Compounds by GC/MS (Continued)

Matrix: Water Prep Type: Total/NA

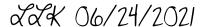
Percent Surrogat	te Recovery (/	Acceptance I	Limits)
------------------	----------------	--------------	---------

		DCA	BFB	DBFM	TOL		
Lab Sample ID	Client Sample ID	(75-123)	(76-120)	(77-124)	(80-120)		
MB 460-779084/7	Method Blank	99	108	99	102		
MB 460-779357/7	Method Blank	100	110	102	101		

Surrogate Legend

DCA = 1,2-Dichloroethane-d4 (Surr)

BFB = 4-Bromofluorobenzene


DBFM = Dibromofluoromethane (Surr)

TOL = Toluene-d8 (Surr)

Method: 8270E SIM - 1,4-Dioxane (GC/MS SIM)

Matrix: Water Prep Type: Total/NA

			Percent Surrogate Recovery (Acceptance Limits)
		NBZ	
Lab Sample ID	Client Sample ID	(54-134)	
460-234681-1	MW-1GU-XX	84	
460-234681-2	MW-1GL-XX	86	
460-234681-3	MW-1MI-XX UJ	50 S1-	
460-234681-3 MS	MW-1MI-XX	102	
460-234681-3 MSD	MW-1MI-XX	98	
460-234681-4	MW-1ML-XX	92	
460-234681-5	MW-3GL-XX	92	
460-234681-6	MW-6GL-XX	54	
460-234681-7	MW-6ML-XX	84	
460-234681-8	MW-7GL-XX	81	
460-234681-9	MW-7ML-XX	68	
460-234681-10	MW-17GL-XX	83	
460-234681-11	MW-17ML-XX	84	
460-234681-12	MW-22GL-XX	84	
460-234681-13	MW-22ML-XX	75	
460-234681-14	MW-29GL-XX	78	
460-234681-15	MW-31GL-XX	79	
460-234681-15 MS	MW-31GL-XX	76	
460-234681-15 MSD	MW-31GL-XX	68	
460-234681-16	MW-31MI-XX	86	
460-234681-17	MW-31ML-XX	82	
460-234681-18	MW-35GL-XX	103	
460-234681-19	MW-37GU-XX	90	
460-234681-20	MW-37ML-XX	89	
460-234681-21	MW-46MI-XX	87	
460-234681-22	MW-46ML-XX	86	
460-234681-23	MW-500	90	
460-234681-24	MW-501	62	
460-234681-25	MW-502	82	
460-234681-26	QC-EB110521-01	73	
460-234681-27	QC-EB120521-XX	98	
LCS 460-779053/2-A	Lab Control Sample	85	
LCS 460-779053/2-A	Lab Control Sample	79	
LCS 460-779167/2-A	Lab Control Sample	79	
LCSD 460-779053/3-A	Lab Control Sample Dup	95	
LCSD 460-779053/3-A	Lab Control Sample Dup	79	

Eurofins TestAmerica, Edison

Page 99 of 3279

Sample ID: MW-46MI-XX/MW-502

CompundResultLabQualDFDupLabQualDFRPD1,4-Dioxane0.221 0.18J1 20

XXX 06/24/2021

PFAS

NYSDEC DUSR PROJECT CHEMIST REVIEW RECORD

Project: LMC Great Neck GWM Q2 2021

Method: 537 Modified

Laboratory: TAL Edison, NJ SDG(s): 460-234681-1, 460-235115-1

Date: 06/25/2021 Reviewer: Liesel Krout

Review Level X NYSDEC DUSR

USEPA Region II Guideline

COMMENTS

Were problems noted? see attached

Were all the samples on the COC analyzed for the requested analyses? YES NO (circle one)

Are Field Sample IDs and Locations assigned correctly? YES NO (circle one) refer to VOCs checklist

2. **✓** Holding time and Sample Collection

Water: 14 days from collection to extraction; 28 days from extraction to analysis Hold time met for all samples? YES NO (circle one)

✓ QC Blanks

Are method blanks free of contamination? YES NO (circle one)

Are rinse blanks free of contamination? YES NO NA (circle one) see attached for quals Are field reagent blanks free of contamination? YES NO NA (circle one)

4. ✓ Instrument Tuning – Data Package Narrative Review

Did the laboratory narrative identify any results that were not within method criteria? YES NO (circle one)

If yes, use professional judgment to evaluate data and qualify results if needed

5. Internal Standards – Data Package Narrative Review

(Area Limits = -50% to +100%, RTs within 30 seconds of daily CCAL standard (or ICAL midpoint if samples follow ICAL))

Did the laboratory narrative identify any sample internal standards that were not within criteria? YES NO (circle one)

Did the laboratory qualify results based on internal standard exceedances? YES NO If yes to above, use professional judgment to evaluate data and qualify results if needed

6. ✓ Instrument Calibration – Data Package Narrative Review

Did the laboratory narrative identify compounds that were not within criteria in the initial and/or continuing calibration standards? YES NO (circle one)

Initial Calibration %RSD = 15%, Continuing Calibration %D = 20%

Did the laboratory qualify results based on initial or continuing calibration exceedances? YES

If yes to above, use professional judgment to evaluate data and qualify results if needed

7. Surrogate Recovery (Extracted Isotope Dilution Standards) (50-150)

Were all results within limits? YES NO (circle one)
Were any recoveries < 10%? (use professional judgment)

see attached

8. **✓ Matrix Spike** (70-130)

Were MS/MSDs submitted/analyzed? YES NO

Were all results within limits? YES NO NA (circle one) see attached

9. **✓ Duplicates** (RPD limits = water 30)

Were Field Duplicates submitted/analyzed? YES NO

see attached for RPD Calcs

Were RPDs within criteria? YES NO NA (circle one)

10. **✓ Laboratory Control Sample Results** (70-130)

Were all results within limits? YES NO (circle one)

11. ✓ Raw Data Review and Calculation Checks

see attached

12. ✓ Electronic Data Review and Edits

Does the EDD match the Form Is? YES NO (circle one)

13. **✓** Tables

Table 1 (Samples and Analytical Methods)

 Table 2 (Analytical Results)

 Table 3 (Qualification Actions)

Were all tables produced and reviewed? YES NO (circle one)

(460-234681-17), MW-35GL-XX (460-234681-18), MW-37GU-XX (460-234681-19), MW-37ML-XX (460-234681-20), MW-46MI-XX (460-234681-21), MW-46ML-XX (460-234681-22), MW-500 (460-234681-23), MW-501 (460-234681-24), MW-502 (460-234681-25), QC-EB110521-01 (460-234681-26) and QC-EB120521-XX (460-234681-27) were analyzed for Semivolatile Organic Compounds (GC-MS) - Selected Ion Mode (SIM) - DKQP - 1,4 Dioxane in accordance with 8270E SIM. The samples were prepared on 05/19/2021 and 05/20/2021 and analyzed on 05/20/2021 and 05/21/2021.

Nitrobenzene-d5 failed the surrogate recovery criteria low for MW-1MI-XX (460-234681-3).

1,4-Dioxane exceeded the RPD limit for the MSD of sample MW-1MI-XXMSD (460-234681-3) in batch 460-779372.

Refer to the QC report for details.

No other difficulties were encountered during the Semivolatile Organic Compounds (GC-MS) - Selected Ion Mode (SIM) - DKQP - 1,4 Dioxane analysis.

All other quality control parameters were within the acceptance limits.

VOLATILE ORGANIC COMPOUNDS (GC/MS) - (LOW LEVEL - LL)(TOTAL)

Samples MW-1GU-XX (460-234681-1), MW-1GL-XX (460-234681-2), MW-1MI-XX (460-234681-3), MW-1ML-XX (460-234681-4), MW-3GL-XX (460-234681-5), MW-6GL-XX (460-234681-6), MW-6ML-XX (460-234681-7), MW-7GL-XX (460-234681-8), MW-7ML-XX (460-234681-9), MW-17GL-XX (460-234681-10), MW-17ML-XX (460-234681-11), MW-22GL-XX (460-234681-12), MW-22ML-XX (460-234681-13), MW-29GL-XX (460-234681-14), MW-31GL-XX (460-234681-15), MW-31MI-XX (460-234681-16), MW-31ML-XX (460-234681-17), MW-35GL-XX (460-234681-18), MW-37GU-XX (460-234681-19), MW-37ML-XX (460-234681-20), MW-46MI-XX (460-234681-21), MW-46ML-XX (460-234681-22), MW-500 (460-234681-23), MW-501 (460-234681-24), MW-502 (460-234681-25), QC-EB110521-01 (460-234681-26), QC-EB120521-XX (460-234681-27), QC-TB110521-XX (460-234681-28) and QC-TB130521-XX (460-234681-30) were analyzed for Volatile Organic Compounds (GC/MS) - (Low Level - LL)(Total) in accordance with EPA SW-846 Method 8260D - Low Level (LL). The samples were analyzed on 05/20/2021 and 05/21/2021.

The CCV analyzed in batch 460-779084 was outside the method criteria for the following analytes: Freon 115 (biased high); Dichlorodifluoromethane (biased low). A CCV standard at or below the reporting limit (RL) was analyzed with the affected samples and found to be acceptable. As indicated in the reference method, sample analysis may proceed; however, any detection for the affected analytes is considered estimated.

The CCV analyzed in batch 460-779357 was outside the method criteria for Dichlorodifluoromethane. A CCV standard at or below the reporting limit (RL) was analyzed with the affected samples and found to be acceptable. As indicated in the reference method, sample analysis may proceed; however, any detection for the affected analyte is considered estimated.

cis-1,2-Dichloroethene and Trichloroethene failed the recovery criteria low for the MS of sample MW-31GL-XX (460-234681-15) in batch 460-779357. cis-1,2-Dichloroethene failed the recovery criteria low for the MSD of sample MW-31GL-XX (460-234681-15) in batch 460-779357.

The presence of the '4' qualifier in the data indicates analytes where the concentration in the unspiked sample exceeded four times the spiking amount.

Refer to the QC report for details.

The following sample was diluted to bring the concentration of target analytes within the calibration range: MW-35GL-XX (460-234681-18). Elevated reporting limits (RLs) are provided.

No other difficulties were encountered during the Volatiles analysis.

All other quality control parameters were within the acceptance limits.

PER- AND POLYFLUOROALKYL SUBSTANCES (PFAS)

Samples MW-1GU-XX (460-234681-1), MW-1GL-XX (460-234681-2), MW-1MI-XX (460-234681-3), MW-1ML-XX (460-234681-4), MW-3GL-XX (460-234681-5), MW-6GL-XX (460-234681-6), MW-6ML-XX (460-234681-7), MW-7GL-XX (460-234681-8), MW-7ML-XX (460-234681-9), MW-17GL-XX (460-234681-10), MW-17ML-XX (460-234681-11), MW-22GL-XX (460-234681-12), MW-22ML-XX (460-234681-13), MW-29GL-XX (460-234681-14), MW-31GL-XX (460-234681-15), MW-31MI-XX (460-234681-16), MW-31ML-XX (460-234681-17), MW-35GL-XX (460-234681-18), MW-37GU-XX (460-234681-19), MW-37ML-XX (460-234681-20), MW-46MI-XX (460-234681-21), MW-46ML-XX (460-234681-22), MW-500 (460-234681-23), MW-501 (460-234681-24), MW-502 (460-234681-25), QC-EB110521-01 (460-234681-26), QC-EB120521-XX (460-234681-27), QC-TUBE110521-XX (460-234681-31), QC-TUBEDT130521-XX (460-234681-32) and QC-TUBEWL140521-XX (460-234681-33) were analyzed for Per- and Polyfluoroalkyl Substances (PFAS) in accordance with PFC. The samples were prepared on 05/24/2021 and analyzed on 05/24/2021 and 05/25/2021.

The method blank for preparation batch 200-167188 and analytical batch 200-167216 contained Perfluorobutanoic acid (PFBA) above the method detection limit. This target analyte concentration was less than half the reporting limit (1/2 RL); therefore, re-extraction and re-analysis of samples was not performed.

see attached for MB review

Refer to the QC report for details.

XXX 06/24/2021

13C2 PFDoA and 13C2 PFTeDA Isotope Dilution Analyte (IDA) recoveries associated with the following sample are below the method ✓ recommended limit: MW-22ML-XX (460-234681-13). Generally, data quality is not considered affected if the IDA signal-to-noise ratio is greater than 10:1, which is achieved for all IDA in the sample. okay

No other difficulties were encountered during the PFAS analysis.

All other quality control parameters were within the acceptance limits.

CHLORIDE

Samples MW-1GU-XX (460-234681-1), MW-1GL-XX (460-234681-2), MW-1MI-XX (460-234681-3), MW-1ML-XX (460-234681-4), MW-3GL-XX (460-234681-5), MW-6GL-XX (460-234681-6), MW-6ML-XX (460-234681-7), MW-7GL-XX (460-234681-8), MW-7ML-XX (460-234681-9), MW-17GL-XX (460-234681-10), MW-17ML-XX (460-234681-11), MW-22GL-XX (460-234681-12), MW-22ML-XX (460-234681-13), MW-29GL-XX (460-234681-14), MW-31GL-XX (460-234681-15), MW-31MI-XX (460-234681-16), MW-31ML-XX (460-234681-17), MW-35GL-XX (460-234681-18), MW-37GU-XX (460-234681-19), MW-37ML-XX (460-234681-20), MW-46MI-XX (460-234681-21), MW-46ML-XX (460-234681-22), MW-500 (460-234681-23), MW-501 (460-234681-24), MW-502 (460-234681-25), QC-EB110521-01 (460-234681-26) and QC-EB120521-XX (460-234681-27) were analyzed for chloride in accordance with SM 4500 CL B. The samples were analyzed on 05/25/2021, 06/01/2021 and 06/07/2021.

Samples MW-1GU-XX (460-234681-1)[5X], MW-1GL-XX (460-234681-2)[5X], MW-1MI-XX (460-234681-3)[2X], MW-1ML-XX (460-234681-4)[2X], MW-3GL-XX (460-234681-5)[2X], MW-6GL-XX (460-234681-6)[2X], MW-6ML-XX (460-234681-7)[4X], MW-7GL-XX (460-234681-8)[20X], MW-7ML-XX (460-234681-9)[2X], MW-17GL-XX (460-234681-10)[2X], MW-22GL-XX (460-234681-12)[4X], MW-22ML-XX (460-234681-13)[4X], MW-29GL-XX (460-234681-14)[5X], MW-31GL-XX (460-234681-15)[2X], MW-31MI-XX (460-234681-16)[2X], MW-35GL-XX (460-234681-18)[4X], MW-37GU-XX (460-234681-19)[5X], MW-500 (460-234681-23)[5X] and MW-501 (460-234681-24)[20X] required dilution prior to analysis. The reporting limits have been adjusted accordingly.

No difficulties were encountered during the chloride analysis.

All quality control parameters were within the acceptance limits.

XXX 06/24/2021

MW-45MU-XX (460-235115-16), MW-45MI-XX (460-235115-17), MW-47MI-XX (460-235115-18), MW-47ML-XX (460-235115-19), MW-49MI-XX (460-235115-20), SW-N12796-XX (460-235115-21), SW-N12999-XX (460-235115-22), SW-N13000-XX (460-235115-23), SW-N13821-XX (460-235115-24) and SW-500 (460-235115-25) were analyzed for Semivolatile Organic Compounds (GC-MS) - Selected Ion Mode (SIM) - DKQP - 1,4 Dioxane (DISSOLVED) in accordance with 8270E SIM. The samples were prepared on 05/25/2021 and 05/26/2021 and on 05/26/2021 and 05/27/2021.

The RPD of the laboratory control sample (LCS) and laboratory control sample duplicate (LCSD) for preparation batch 460-780273 and analytical batch 460-780371 recovered outside control limits for 1,4-Dioxane.

1,4-Dioxane exceeded the RPD limit for the MSD of sample MW-47ML-XX (460-235115-19) in batch 460-780497.

Refer to the QC report for details.

No other difficulties were encountered during the Semivolatile Organic Compounds (GC-MS) - Selected Ion Mode (SIM) - DKQP - 1,4 Dioxane (DISSOLVED) analysis.

All other quality control parameters were within the acceptance limits.

VOLATILE ORGANIC COMPOUNDS (GC/MS) - (LOW LEVEL - LL)(TOTAL)

Samples MW-49ML-XX (460-235115-1), MW-51MI-XX (460-235115-2), MW-51ML-XX (460-235115-3), IW-N9687-XX (460-235115-4), MW-52MI-XX (460-235115-5), MW-52ML-XX (460-235115-6), MW-53MI-XX (460-235115-7), MW-53ML-XX (460-235115-8), MW-2MI-XX (460-235115-11), MW-3ML-XX (460-235115-12), MW-29MI-XX (460-235115-13), MW-43MU-XX (460-235115-14), MW-43MI-XX (460-235115-15), MW-45MU-XX (460-235115-16), MW-45MI-XX (460-235115-17), MW-47MI-XX (460-235115-18), MW-47ML-XX (460-235115-19), MW-49MI-XX (460-235115-20) and QC-TB170521-XX (460-235115-26) were analyzed for Volatile Organic Compounds (GC/MS) - (Low Level - LL)(Total) in accordance with EPA SW-846 Method 8260D - Low Level (LL). The samples were analyzed on 05/28/2021 and 05/29/2021.

The continuing calibration verification (CCV) analyzed in batch 460-780881 was outside the method criteria for the following analytes: Freon 115 (bias high) and Freon 11 (bias low). A CCV standard at or below the reporting limit (RL) was analyzed with the affected samples and found to be acceptable. As indicated in the reference method, sample analysis may proceed; however, any detection for the affected analytes is considered estimated.

The CCV associated with batch 460-781142 recovered above the upper control limit for Freon 115, Chloromethane and Methyl acetate. The samples associated with this CCV were non-detects for the affected analytes; therefore, the data have been reported.

Refer to the QC report for details.

No other difficulties were encountered during the Volatiles analysis.

All other quality control parameters were within the acceptance limits.

PER- AND POLYFLUOROALKYL SUBSTANCES (PFAS)

Samples MW-49ML-XX (460-235115-1), MW-52MI-XX (460-235115-5), MW-52ML-XX (460-235115-6), MW-53MI-XX (460-235115-7), MW-53ML-XX (460-235115-8), SW-N5099-XX (460-235115-9), SW-N4388-XX (460-235115-10), MW-2MI-XX (460-235115-11), MW-3ML-XX (460-235115-12), MW-29MI-XX (460-235115-13), MW-43MU-XX (460-235115-14), MW-43MI-XX (460-235115-15), MW-45MU-XX (460-235115-16), MW-45MI-XX (460-235115-17), MW-47MI-XX (460-235115-18), MW-47ML-XX (460-235115-19), MW-49MI-XX (460-235115-20), SW-N12796-XX (460-235115-21), SW-N12999-XX (460-235115-22), SW-N13000-XX (460-235115-23), SW-N13821-XX (460-235115-24), SW-500 (460-235115-25), QC-TUBEDT170521-XX (460-235115-29), QC-TUBEWL180521-XX (460-235115-30) and QC-TUBEDT190521-XX (460-235115-31) were analyzed for Per- and Polyfluoroalkyl Substances (PFAS) in accordance with PFC. The samples were prepared on 05/27/2021 and 05/28/2021 and analyzed on 05/28/2021.

The method blank for preparation batch 200-167393 and analytical batch 200-167399 contained Perfluorobutanoic acid (PFBA), Perfluorobutanesulfonic acid (PFBS), Perfluorohexanesulfonic acid (PFHxS), Perfluoroheptanoic acid (PFHpA), Perfluoroheptanesulfonic Acid (PFHpS), Perfluorooctanoic acid (PFOA), Perfluorooctanesulfonic acid (PFOS), Perfluorononanoic acid (PFNA), Perfluorodecanoic acid (PFDA), Perfluorodecanoic acid (PFDA), Perfluorodecanoic acid (PFDA), Perfluorodecanoic acid (PFDA) and Perfluorodecanoic acid (PFDA) above the method detection limit. This target analyte concentration was less than half the reporting limit (1/2 RL); therefore, re-extraction and re-analysis of samples was not performed.

Refer to the QC report for details.

13C2 PFDoA and 13C2 PFTeDA Isotope Dilution Analyte (IDA) recoveries associated with the following sample are below the method recommended limit: MW-52ML-XX (460-235115-6). Generally, data quality is not considered affected if the IDA signal-to-noise ratio is greater than 10:1, which is achieved for all IDA in the sample.

No other difficulties were encountered during the PFAS analysis.

All other quality control parameters were within the acceptance limits.

CHLORIDE

LXK 06/24/2021

Client: Wood E&I Solutions Inc Job ID: 460-234681-1

Project/Site: LMC Q2 2021 Groundwater Monitoring

Lab Sample ID: 460-234681-15 MSD

Method: 537 (modified) - Fluorinated Alkyl Substances (Continued)

Matrix: Water

Analysis Batch: 167215

Sample Sample Spike MSD MSD Prep Type: Total/NA

Prep Batch: 167184

RPD

Rec. RPD

Result Qualifier Added Result Qualifier Unit Limits Limit Analyte %Rec 1H,1H,2H,2H-perfluorodecanesul 1.74 U 33.7 32.26 40 - 160 2 ng/L 96

fonic acid (8:2)

	MSD	MSD		
Isotope Dilution	%Recovery	Qualifier	Limits	
1802 PFHxS	91		50 - 150	
13C4 PFHpA	96		50 ₋ 150	
13C4 PFOA	99		50 - 150	
13C4 PFOS	92		50 - 150	
13C5 PFNA	94		50 ₋ 150	
13C4 PFBA	92		25 - 150	
13C2 PFHxA	94		50 - 150	
13C2 PFDA	92		50 ₋ 150	
13C2 PFUnA	91		50 ₋ 150	
13C2 PFDoA	79		50 - 150	
13C8 FOSA	80		25 - 150	
13C5 PFPeA	95		25 - 150	
13C2 PFTeDA	83		50 ₋ 150	
d3-NMeFOSAA	104		50 ₋ 150	
d5-NEtFOSAA	100		50 - 150	
M2-6:2 FTS	94		25 - 150	
M2-8:2 FTS	105		25 - 150	
13C3 PFBS	90		50 ₋ 150	

Lab Sample ID: MB 200-167188/1-A

Matrix: Water

Analysis Batch: 167216

Client Sample ID: Method Blank

Client Sample ID: MW-31GL-XX

Prep Type: Total/NA Prep Batch: 167188

-	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorobutanoic acid (PFBA) subset U	J/J+ 0.950	J	5.00	0.89	ng/L		05/24/21 09:52	05/24/21 21:41	1
Perfluoropentanoic acid (PFPeA)	2.00	U	2.00	0.47	ng/L		05/24/21 09:52	05/24/21 21:41	1
Perfluorohexanoic acid (PFHxA)	2.00	U	2.00	0.45	ng/L		05/24/21 09:52	05/24/21 21:41	1
Perfluoroheptanoic acid (PFHpA)	2.00	U	2.00	0.24	ng/L		05/24/21 09:52	05/24/21 21:41	1
Perfluorooctanoic acid (PFOA)	2.00	U	2.00	0.42	ng/L		05/24/21 09:52	05/24/21 21:41	1
Perfluorononanoic acid (PFNA)	2.00	U	2.00	0.28	ng/L		05/24/21 09:52	05/24/21 21:41	1
Perfluorodecanoic acid (PFDA)	2.00	U	2.00	0.30	ng/L		05/24/21 09:52	05/24/21 21:41	1
Perfluoroundecanoic acid (PFUnA)	2.00	U	2.00	0.34	ng/L		05/24/21 09:52	05/24/21 21:41	1
Perfluorododecanoic acid (PFDoA)	2.00	U	2.00	0.39	ng/L		05/24/21 09:52	05/24/21 21:41	1
Perfluorotridecanoic acid (PFTriA)	2.00	U	2.00	0.43	ng/L		05/24/21 09:52	05/24/21 21:41	1
Perfluorotetradecanoic acid (PFTeA)	2.00	U	2.00	0.63	ng/L		05/24/21 09:52	05/24/21 21:41	1
Perfluorobutanesulfonic acid (PFBS)	2.00	U	2.00	0.25	ng/L		05/24/21 09:52	05/24/21 21:41	1
Perfluorohexanesulfonic acid (PFHxS)	2.00	U	2.00	0.30	ng/L		05/24/21 09:52	05/24/21 21:41	1
Perfluoroheptanesulfonic Acid (PFHpS)	2.00	U	2.00	0.23	ng/L		05/24/21 09:52	05/24/21 21:41	1
Perfluorooctanesulfonic acid (PFOS)	2.00	U	2.00	0.29	ng/L		05/24/21 09:52	05/24/21 21:41	1
Perfluorodecanesulfonic acid (PFDS)	2.00	U	2.00	0.31	ng/L		05/24/21 09:52	05/24/21 21:41	1
Perfluorooctanesulfonamide (PFOSA)	2.00	U	2.00	0.58	ng/L		05/24/21 09:52	05/24/21 21:41	1
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	5.00	U	5.00	0.90	ng/L		05/24/21 09:52	05/24/21 21:41	1
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	5.00	U	5.00	0.74	ng/L		05/24/21 09:52	05/24/21 21:41	1

XXX 06/24/2021

Eurofins TestAmerica, Edison

Page 126 of 3279

Client: Wood E&I Solutions Inc Job ID: 460-235115-1

Project/Site: LMC Q2 2021 Groundwater Monitoring

Method: 537 (modified) - Fluorinated Alkyl Substances (Continued)

Lab Sample ID: 460-235115-9 MSD

Matrix: Water

Analysis Batch: 167395

Client Sample ID: SW-N5099-XX

Prep Type: Total/NA Prep Batch: 167370

	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Perfluorotridecanoic acid	1.76	U	35.0	33.02		ng/L		94	40 - 160	4	20
(PFTriA)											
Perfluorotetradecanoic acid	1.76	U	35.0	34.42		ng/L		98	40 - 160	9	20
(PFTeA)											
Perfluorobutanesulfonic acid	0.39	J	30.9	32.38		ng/L		104	40 - 160	1	20
(PFBS)											
Perfluorohexanesulfonic acid	0.63	J	31.8	31.41		ng/L		97	40 - 160	7	20
(PFHxS)	0.00		00.0	05.47		,,		400	40 400	•	00
Perfluoroheptanesulfonic Acid	0.23	J	33.3	35.47		ng/L		106	40 - 160	2	30
(PFHpS) Perfluorooctanesulfonic acid	0.49		32.4	33.30		n a /I		101	40 - 160	4	20
(PFOS)	0.49	J	32.4	33.30		ng/L		101	40 - 100	4	20
Perfluorodecanesulfonic acid	1.76		33.7	29.76		ng/L		88	40 - 160	27	30
(PFDS)	1.70	O	55.1	20.70		iig/L		00	40 - 100	21	30
Perfluorooctanesulfonamide	1.76	U	35.0	34.59		ng/L		99	40 - 160	3	30
(PFOSA)		_									
N-methylperfluorooctanesulfona	4.41	U	35.0	34.33		ng/L		98	40 - 160	8	20
midoacetic acid (NMeFOSAA)						Ü					
N-ethylperfluorooctanesulfonami	4.41	U	35.0	31.79		ng/L		91	40 - 160	1	20
doacetic acid (NEtFOSAA)											
1H,1H,2H,2H-perfluorooctanesulf	4.41	U	33.1	36.66		ng/L		111	40 - 160	5	30
onic acid (6:2)											
1H,1H,2H,2H-perfluorodecanesul	1.76	U	33.5	35.24		ng/L		105	40 - 160	6	30
fonic acid (8:2)											

MSD MSD

Isotope Dilution	%Recovery	Qualifier	Limits				
1802 PFHxS	91		50 - 150				
13C4 PFHpA	98		50 ₋ 150				
13C4 PFOA	99		50 ₋ 150				
13C4 PFOS	90		50 ₋ 150				
13C5 PFNA	101		50 ₋ 150				
13C4 PFBA	96		25 - 150				
13C2 PFHxA	102		50 ₋ 150				
13C2 PFDA	101		50 ₋ 150				
13C2 PFUnA	88		50 ₋ 150				
13C2 PFDoA	76		50 ₋ 150				
13C8 FOSA	77		25 - 150				
13C5 PFPeA	96		25 - 150				
13C2 PFTeDA	77		50 - 150				
d3-NMeFOSAA	100		50 ₋ 150				
d5-NEtFOSAA	98		50 ₋ 150				
M2-6:2 FTS	93		25 - 150				
M2-8:2 FTS	100		25 - 150				
13C3 PFBS	89		50 ₋ 150				

Lab Sample ID: MB 200-167393/1-A

Matrix: Water

Analysis Batch: 167399

Client Sample ID: Method Blank Prep Type: Total/NA

Prep Batch: 167393

		MB	MB							
Analyte		Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorobutanoic acid (PFBA)	U at RL	0.951	J	5.00	0.89	ng/L		05/28/21 12:58	05/28/21 19:04	1
Perfluoropentanoic acid (PFPeA)		2.00	U	2.00	0.47	ng/L		05/28/21 12:58	05/28/21 19:04	1

LXK 06/24/2021

Eurofins TestAmerica, Edison

Page 112 of 3252

06/11/2021

Client: Wood E&I Solutions Inc

Project/Site: LMC Q2 2021 Groundwater Monitoring

Method: 537 (modified) - Fluorinated Alkyl Substances (Continued)

Lab Sample ID: MB 200-167393/1-A **Client Sample ID: Method Blank Matrix: Water Prep Type: Total/NA**

Analysis Batch: 167399								Prep Batch:	
-		MB				_		-	
Analyte		Qualifier	RL		Unit	<u>D</u>	Prepared	Analyzed	Dil Fac
Perfluorohexanoic acid (PFHxA)	2.00		2.00		ng/L			05/28/21 19:04	
Perfluoroheptanoic acid (PFHpA) U/J+	0.427		2.00		ng/L			05/28/21 19:04	1
Perfluorooctanoic acid (PFOA) J+ subset	0.424		2.00		ng/L			05/28/21 19:04	1
Perfluorononanoic acid (PFNA) U at RL su			2.00		ng/L			05/28/21 19:04	
Perfluorodecanoic acid (PFDN)at RL MW-			2.00		ng/L			05/28/21 19:04	1
Perfluoroundecanoic acid (PFUnA) no qua			2.00		ng/L			05/28/21 19:04	1
Perfluorododecanoic acid (PFDoA) ample			2.00		ng/L			05/28/21 19:04	1
Perfluorotridecanoic acid (PFTriA) no qual			2.00		ng/L			05/28/21 19:04	1
Perfluorotetradecanoic acid (PFTeA)	2.00		2.00		ng/L			05/28/21 19:04	1
Perfluorobutanesulfonic acid (PFBS) U			2.00	0.25	ng/L		05/28/21 12:58	05/28/21 19:04	1
Perfluorohexanesulfonic acid (PFHxS)	U/J+ <mark>0.453</mark>	J	2.00	0.30	ng/L		05/28/21 12:58	05/28/21 19:04	1
Perfluoroheptanesulfonic Acid (PFHpS) MW-47ML-XX	0.279 U at RL	J	2.00	0.23	ng/L		05/28/21 12:58	05/28/21 19:04	1
Perfluorooctanesulfonic acid (PFOS) U/J+		J	2.00	0.29	ng/L		05/28/21 12:58	05/28/21 19:04	1
Perfluorodecanesulfonic acid (PFDS) san	0.341	J	2.00	0.31	ng/L		05/28/21 12:58	05/28/21 19:04	1
Perfluorooctanesulfonamide (PFOSA) noc	quals 2.00	U	2.00	0.58	ng/L		05/28/21 12:58	05/28/21 19:04	1
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	5.00	U	5.00	0.90	ng/L		05/28/21 12:58	05/28/21 19:04	1
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	5.00	U	5.00	0.74	ng/L		05/28/21 12:58	05/28/21 19:04	1
1H,1H,2H,2H-perfluorooctanesulfonic acid (6:2)	5.00	U	5.00	1.10	ng/L		05/28/21 12:58	05/28/21 19:04	1
1H,1H,2H,2H-perfluorodecanesulfonic acid (8:2)	2.00	U	2.00	0.39	ng/L		05/28/21 12:58	05/28/21 19:04	1
,	MB	MB							
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1802 PFHxS	85		50 - 150				05/28/21 12:58	05/28/21 19:04	
13C4 PFHpA	87		50 ₋ 150				05/28/21 12:58	05/28/21 19:04	1
13C4 PFOA	92		50 ₋ 150				05/28/21 12:58	05/28/21 19:04	1
13C4 PFOS	84		50 - 150				05/28/21 12:58	05/28/21 19:04	1
13C5 PFNA	90		50 ₋ 150				05/28/21 12:58	05/28/21 19:04	1
13C4 PFBA	87		25 - 150					05/28/21 19:04	1
13C2 PFHxA	92		50 - 150				05/28/21 12:58	05/28/21 19:04	1
13C2 PFDA	92		50 ₋ 150					05/28/21 19:04	1
13C2 PFUnA	89		50 - 150					05/28/21 19:04	1
13C2 PFDoA	81		50 - 150					05/28/21 19:04	
13C8 FOSA	71		25 - 150					05/28/21 19:04	1
13C5 PFPeA	88		25 ₋ 150					05/28/21 19:04	1
13C2 PFTeDA	79		50 - 150					05/28/21 19:04	
d3-NMeFOSAA	104		50 - 150					05/28/21 19:04	1
d5-NEtFOSAA	98		50 - 150					05/28/21 19:04	1
M2-6:2 FTS	92		25 - 150					05/28/21 19:04	
M2-8:2 FTS	92		25 - 150 25 - 150					05/28/21 19:04	1
WL 0.2110	90		20-100				00/20/21 12.00	00/20/21 19.04	

XXX 06/24/2021

13C3 PFBS

05/28/21 12:58 05/28/21 19:04

Job ID: 460-235115-1

50 - 150

84

Isotope Dilution Summary

Client: Wood E&I Solutions Inc Job ID: 460-234681-1

Project/Site: LMC Q2 2021 Groundwater Monitoring

Method: 537 (modified) - Fluorinated Alkyl Substances (Continued)

Matrix: Water Prep Type: Total/NA

	50-150		Perce	ent Isotope	Dilution Re	ecovery (Ad	cceptance L	imits)	
		PFUnA	PFDoA	PFOSA	PFPeA	PFTDA	-	d5NEFOS	M262FTS
Lab Sample ID	Client Sample ID	(50-150)	(50-150)	(25-150)	(25-150)	(50-150)	(50-150)	(50-150)	(25-150)
460-234681-7	MW-6ML-XX	$\frac{(60.100)}{92}$	83	79	94	84	95	106	107
460-234681-8	MW-7GL-XX	90	88	80	92	86	102	105	103
460-234681-9	MW-7ML-XX	90	85	80	98	85	99	101	97
460-234681-10	MW-17GL-XX	90	88	82	92	83	101	98	92
460-234681-11	MW-17ML-XX	88	80	79	97	81	95	95	93
460-234681-12	MW-22GL-XX	98	86	82	96	88	101	107	96
460-234681-13	MW-22ML-XX	50	29 *5- ₁	29)	UJ 90	18 *5-	J/UJ 54	51	92
460-234681-14	MW-29GL-XX	88	81	80	95	81	100	98	106
460-234681-15	MW-31GL-XX	86	84	82	99	78	99	105	100
460-234681-15 MS	MW-31GL-XX	89	80	82 82	9 9 97	78 79	98	103	99
	MW-31GL-XX	91	79		95	83	104	100	99
460-234681-15 MSD				80		os 79			
460-234681-16	MW-31MI-XX	89	85	84	101		105	102	104
460-234681-17	MW-31ML-XX	94	88	82	101	81	104	99	102
460-234681-18	MW-35GL-XX	76	76	73	86	74	85	88	94
460-234681-19	MW-37GU-XX	90	86	80	99	83	104	101	96
460-234681-20	MW-37ML-XX	81	75	73	95	79	95	98	98
460-234681-21	MW-46MI-XX	90	85	84	99	84	101	101	102
460-234681-22	MW-46ML-XX	88	83	83	96	85	100	96	96
460-234681-23	MW-500	96	95	85	101	87	112	103	103
460-234681-24	MW-501	84	78	74	79	76	94	94	82
460-234681-25	MW-502	86	84	81	100	85	101	104	96
460-234681-26	QC-EB110521-01	97	92	75	101	84	102	106	98
460-234681-27	QC-EB120521-XX	108	106	77	101	90	112	110	99
460-234681-31	QC-TUBE110521-XX	98	89	79	96	84	114	114	102
460-234681-32	QC-TUBEDT130521-XX	104	113	84	98	92	106	106	104
460-234681-33	QC-TUBEWL140521-XX	96	94	74	99	80	104	92	91
LCS 200-167184/2-A	Lab Control Sample	102	91	82	102	86	113	106	111
LCS 200-167188/2-A	Lab Control Sample	100	90	75	100	84	110	109	97
MB 200-167184/1-A	Method Blank	94	90	78	100	83	102	102	105
MB 200-167188/1-A	Method Blank	97	92	77	101	84	104	112	99
			Porce	nt leaton	Dilution Pa	covery (A	cceptance L	imite)	
		M282FTS	C3PFBS	iii isotope	5 Dilution IX	covery (A	cceptance L	iiiiitə)	
Lab Sample ID	Client Sample ID	(25-150)	(50-150)						
,,,,,,,,,,,	- 	_ ` /	```						
460-234681-1 460-234681-2	MW-1GU-XX MW-1GL-XX	105 105	98 92						
		115							
460-234681-3	MW-1MI-XX		94						
460-234681-3 MS	MW-1MI-XX	102	96						
460-234681-3 MSD	MW-1MI-XX	109	95						
460-234681-4	MW-1ML-XX	105	90						
460-234681-5	MW-3GL-XX	107	95						
460-234681-6	MW-6GL-XX	112	95						
460-234681-7	MW-6ML-XX	110	95			4411	01-12	7/200	21
460-234681-8	MW-7GL-XX	106	91		C	X CX 9X	06/2	81 LUI	<u> </u>
460-234681-9	MW-7ML-XX	101	92						
460-234681-10	MW-17GL-XX	104	86						
460-234681-11	MW-17ML-XX	101	92						
460-234681-12	MW-22GL-XX	98	95						
460-234681-13	MW-22ML-XX	80	83						
460-234681-14	MW-29GL-XX	100	92						
	MW-31GL-XX		91						

Eurofins TestAmerica, Edison 06/09/2021

Isotope Dilution Summary

Client: Wood E&I Solutions Inc

Project/Site: LMC Q2 2021 Groundwater Monitoring

Method: 537 (modified) - Fluorinated Alkyl Substances

Matrix: Water Prep Type: Total/NA

			Perce	ent Isotope	Dilution Re	covery (Ac	ceptance L	imits)	
		PFHxS	C4PFHA	PFOA	PFOS	PFNA	PFBA	PFHxA	PFDA
Lab Sample ID	Client Sample ID	(50-150)	(50-150)	(50-150)	(50-150)	(50-150)	(25-150)	(50-150)	(50-150)
460-235115-1	MW-49ML-XX	90	93	102	93	102	94	96	103
460-235115-5	MW-52MI-XX	92	97	105	95	101	94	101	102
460-235115-6	MW-52ML-XX	89	89	95	86	90	92	95	84
460-235115-7	MW-53MI-XX	101	103	108	100	104	98	104	106
460-235115-8	MW-53ML-XX	94	100	101	94	99	95	102	105
460-235115-9	SW-N5099-XX	90	101	100	94	96	94	99	99
460-235115-9 MS	SW-N5099-XX	91	97	97	91	101	95	99	105
460-235115-9 MSD	SW-N5099-XX	91	98	99	90	101	96	102	101
460-235115-10	SW-N4388-XX	94	100	101	91	98	97	103	95
460-235115-11	MW-2MI-XX	91	98	99	93	103	92	101	103
460-235115-12	MW-3ML-XX	95	99	99	92	96	95	103	101
460-235115-13	MW-29MI-XX	95	97	105	101	100	85	97	102
460-235115-14	MW-43MU-XX	90	95	99	89	95	92	96	96
460-235115-15	MW-43MI-XX	97	99	104	99	103	98	103	101
460-235115-16	MW-45MU-XX	96	99	103	93	102	100	100	100
460-235115-17	MW-45MI-XX	94	98	101	94	99	95	100	102
460-235115-18	MW-47MI-XX	91	99	100	98	103	95	102	103
460-235115-19	MW-47ML-XX	88	93	94	91	93	95	94	89
460-235115-19 MS	MW-47ML-XX	95	98	100	96	101	95	98	98
460-235115-19 MSD	MW-47ML-XX	97	99	99	94	103	97	104	98
460-235115-20	MW-49MI-XX	93	97	100	89	100	90	98	93
460-235115-21	SW-N12796-XX	91	95	100	91	96	91	97	90
460-235115-22	SW-N12999-XX	90	94	98	91	96	93	96	88
460-235115-23	SW-N13000-XX	88	95	95	88	95	89	98	95
460-235115-24	SW-N13821-XX	88	99	99	88	98	91	98	98
460-235115-25	SW-500	89	95	95	89	98	87	94	91
460-235115-29	QC-TUBEDT170521-XX	92	102	100	94	100	103	106	106
460-235115-30	QC-TUBEWL180521-XX	92	98	98	94	94	98	97	102
460-235115-31	QC-TUBEDT190521-XX	88	92	96	89	93	92	95	99
LCS 200-167370/2-A	Lab Control Sample	93	101	99	99	100	99	99	105
LCS 200-167393/2-A	Lab Control Sample	95	98	101	95	100	98	102	104
MB 200-167370/1-A	Method Blank	96	98	102	97	101	97	103	105
MB 200-167393/1-A	Method Blank	85	87	92	84	90	87	92	92
			Perce	ent Isotone	Dilution Re	covery (Ac	centance I	imits)	
	50-150	PFlin∆	PFDoA	PFOSA	PFP _e Δ		d3NMFOS		M262ET

	FO 1FO	Percent Isotope Dilution Recovery (Acceptance Limits)							
	50-150	PFUnA	PFDoA	PFOSA	PFPeA	PFTDA	d3NMFOS	d5NEFOS	M262FTS
Lab Sample ID	Client Sample ID	(50-150)	(50-150)	(25-150)	(25-150)	(50-150)	(50-150)	(50-150)	(25-150)
460-235115-1	MW-49ML-XX	92	88	79	98	84	104	99	95
460-235115-5	MW-52MI-XX	96	87	84	99	89	102	103	95
460-235115-6	MW-52ML-XX	56	43 *5-	UJ 83	100	37 *5-	UJ 70	56	98
460-235115-7	MW-53MI-XX	94	88	88	101	90	112	104	103
460-235115-8	MW-53ML-XX	94	91	85	99	87	106	108	100
460-235115-9	SW-N5099-XX	86	76	81	101	77	95	97	106
460-235115-9 MS	SW-N5099-XX	82	66	78	97	69	90	83	97
460-235115-9 MSD	SW-N5099-XX	88	76	77	96	77	100	98	93
460-235115-10	SW-N4388-XX	79	61	80	98	60	88	84	99
460-235115-11	MW-2MI-XX	96	83	81	97	84	103	95	102
460-235115-12	MW-3ML-XX	86	76	81	97	79	98	100	100
460-235115-13	MW-29MI-XX	97	87	82	94	92	116	113	102
460-235115-14	MW-43MU-XX	85	78	86	93	80	95	103	90

LXK 06/28/2021

Eurofins TestAmerica, Edison

Page 88 of 3252

06/11/2021

Job ID: 460-235115-1

Client: Wood E&I Solutions Inc Job ID: 460-235115-1

Project/Site: LMC Q2 2021 Groundwater Monitoring

Method: 537 (modified) - Fluorinated Alkyl Substances (Continued)

Lab Sample ID: 460-23511	5-9 MS						Clie	ent San	nple ID: SW-N5099-XX
Matrix: Water					70-130				Prep Type: Total/NA
Analysis Batch: 167395									Prep Batch: 167370
	Sample	Sample	Spike	MS	MS				%Rec.
Analyte		Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits
Perfluorooctanesulfonic acid (PFOS)	0.49	J	31.4	32.14		ng/L		101	40 - 160
Perfluorodecanesulfonic acid UJ (PFDS)	1.76	U	32.6	22.59		ng/L		69	40 - 160
Perfluorooctanesulfonamide (PFOSA)	1.76	U	33.8	33.70		ng/L		100	40 - 160
N-methylperfluorooctanesulfona midoacetic acid (NMeFOSAA)	4.41	U	33.8	31.74		ng/L		94	40 - 160
N-ethylperfluorooctanesulfonami doacetic acid (NEtFOSAA)	4.41	U	33.8	31.59		ng/L		93	40 - 160
1H,1H,2H,2H-perfluorooctanesulf onic acid (6:2)	4.41	U	32.0	34.81		ng/L		109	40 - 160
1H,1H,2H,2H-perfluorodecanesul fonic acid (8:2)	1.76	U	32.4	33.34		ng/L		103	40 - 160
,	MS	MS							
Isotope Dilution	%Recovery	Qualifier	Limits						
1802 PFHxS	91		50 - 150						
13C4 PFHpA	97		50 - 150						
13C4 PFOA	97		50 - 150						
13C4 PFOS	91		50 - 150						
13C5 PFNA	101		50 ₋ 150						
13C4 PFBA	95		25 - 150						
13C2 PFHxA	99		50 ₋ 150						
13C2 PFDA	105		50 ₋ 150						
13C2 PFUnA	82		50 ₋ 150						
13C2 PFDoA	66		50 - 150						
13C8 FOSA	78		25 - 150						
13C5 PFPeA	97		25 - 150						
13C2 PFTeDA	69		50 ₋ 150						
d3-NMeFOSAA	90		50 ₋ 150						
d5-NEtFOSAA	83		50 ₋ 150						
M2-6:2 FTS	97		25 - 150						
M2-8:2 FTS	101		25 - 150						

Lab Sample ID: 460-235115-9 MSD

89

Matrix: Water

13C3 PFBS

Analysis Batch: 167395

Client Sample ID: SW-N5099-XX

Prep Type: Total/NA Prep Batch: 167370

_	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Perfluorobutanoic acid (PFBA)	1.02	J	35.0	34.26		ng/L		95	40 - 160	1	30
Perfluoropentanoic acid (PFPeA)	0.72	J	35.0	37.09		ng/L		104	40 - 160	7	30
Perfluorohexanoic acid (PFHxA)	0.61	J	35.0	35.04		ng/L		99	40 - 160	2	20
Perfluoroheptanoic acid (PFHpA)	0.47	J	35.0	37.09		ng/L		105	40 - 160	8	20
Perfluorooctanoic acid (PFOA)	1.13	J	35.0	36.83		ng/L		102	40 - 160	4	20
Perfluorononanoic acid (PFNA)	0.42	J	35.0	34.75		ng/L		98	40 - 160	1	20
Perfluorodecanoic acid (PFDA)	0.30	J	35.0	35.40		ng/L		100	40 - 160	11	20
Perfluoroundecanoic acid	0.32	J	35.0	36.00		ng/L		102	40 - 160	6	20
(PFUnA)											
Perfluorododecanoic acid	0.37	J	35.0	36.19		ng/L		102	40 - 160	3	20
(PFDoA)											

50 - 150

LLK 06/28/2021

Eurofins TestAmerica, Edison

Page 111 of 3252

Sample ID: MW-1GL-XX/MW-500

Compund	Result	LabQual DF	Dup	LabQual DF	RPD
6:2 Fluorotelomer sulfonate (6:2	4.34	J	1 4.14	U	1 4.716981
Perfluorobutanesulfonic acid (PFE	2.51		1 2.53		1 0.793651
Perfluorobutanoic acid (PFBA)	7.84	В	1 7.45		1 5.101373
Perfluorodecanoic acid (PFDA)	1.68	J	1 1.70		1 1.183432
Perfluoroheptanoic acid (PFHpA)	7.55		1 7.19		1 4.884668
Perfluorohexanesulfonic acid (PFI	1.69	J	1 1.72		1 1.759531
Perfluorohexanoic acid (PFHxA)	10.0		1 10.1		1 0.995025
Perfluorononanoic acid (PFNA)	1.91		1 1.85		1 3.191489
Perfluorooctanesulfonic acid (PFC	9.79		1 9.21		1 6.105263
Perfluorooctanoic acid (PFOA)	13.0		1 13.6		1 4.511278
Perfluoropentanoic acid (PFPeA)	13.9		1 13.9		1 0

Sample ID: MW-7GL-XX/MW-501

Compund	Result	LabQual I	DF	Dup	LabQual	DF	RPD	. Di
6:2 Fluorotelomer sulfonate (6:2	4.05	U		1 0.97	J		1 (122.7092)	< RL - no quals
Perfluorobutanesulfonic acid (PF	E 1.87			1 2.01			1 7.216495	
Perfluorobutanoic acid (PFBA)	5.10			1 5.07	В		1 0.589971	
Perfluoroheptanoic acid (PFHpA)	3.34			1 3.18			1 4.907975	
Perfluorohexanesulfonic acid (PF	10.77	J		1 0.75	J		1 2.631579	
Perfluorohexanoic acid (PFHxA)	5.13			1 5.30			1 3.259827	
Perfluorononanoic acid (PFNA)	1.28	J		1 1.06	J		1 18.80342	
Perfluorooctanesulfonic acid (PFG	4.33			1 4.13			1 4.728132	
Perfluorooctanoic acid (PFOA)	7.16			1 7.53			1 5.03744	
Perfluoropentanoic acid (PFPeA)	6.13			1 6.63			1 7.836991	

Sample ID: MW-46MI-XX/MW-502

Compund	Result	LabQual DF	Dup	LabQual DF	RPD
Perfluorobutanoic acid (PFBA)	1.35	J	1 1.12	J	1 18.62348
Perfluorohexanesulfonic acid (Pl	10.30	J	1 0.35	J	1 15.38462
Perfluorooctanesulfonic acid (PF	C0.25	J	1 1.64	U	1 (147.0899) < RL - no
Perfluorooctanoic acid (PFOA)	0.48	J	1 0.44	J	1 8.695652 quals

Sample ID: SW-N13821-XX/SW-500

Compund	Result	LabQual DF	Dup	LabQual DF	RPD
Perfluorobutanesulfonic acid (PFI	0.61	J B	1 0.51	J B	1 17.85714
Perfluorobutanoic acid (PFBA)	2.52	J B	1 2.63	J B	1 4.271845
Perfluoroheptanoic acid (PFHpA)	1.38	J B	1 1.34	J B	1 2.941176

LLK 06/28/2021

Perfluorohexanesulfonic acid (PFI 0.75	J B	1 0.74	J B	1 1.342282
Perfluorohexanoic acid (PFHxA) 2.58		1 2.68		1 3.802281
Perfluorononanoic acid (PFNA) 1.15	J B	1 1.18	J B	1 2.575107
Perfluorooctanesulfonic acid (PFC 0.90	J B	1 0.89	J B	1 1.117318
Perfluorooctanoic acid (PFOA) 8.66	В	1 9.20	В	1 6.047032
Perfluoropentanoic acid (PFPeA) 3.47		1 3.83		1 9.863014

LLK 06/28/2021

GENERAL CHEMISTRY

NYSDEC DUSR PROJECT CHEMIST REVIEW RECORD **Project:** Liesel Krout Method: 4500 CI-B Laboratory: TAL Edison, NJ **SDG(s):** 460-234681-1, 460-235115-1 Date: 06/28/2021 Reviewer: Liesel Krout X NYSDEC DUSR **Review Level USEPA** Region II Guideline **COMMENTS** Were problems noted? no - see attached Were all the samples on the COC analyzed for the requested analyses? YES NO (circle one) Are Field Sample IDs and Locations assigned correctly? YES NO (circle one) refer to VOCs checklist **✓** Holding time and Sample Collection Were all samples were all prepped and analyzed with the method holding time? YES NO 3. ✓ **QC** Blanks Are method blanks clean? YES NO (circle one) Are Initial and continuing calibration blanks clean? YES NO (circle one) NA - no CCBs 4. ✓ Instrument Calibration - Data Package Narrative Review Did the laboratory narrative identify analytes that were not within criteria in the initial and/or continuing calibration standards? YES NO Did the laboratory qualify results based on initial or continuing calibration exceedances? YES NO If yes to above, use professional judgment to evaluate data and qualify results if needed 5. ✓ **Laboratory Control Sample Results** Were all results were within 80-120% limits? YES NO (circle one) 6. ✓ Matrix Spike Were MS/MSDs submitted/analyzed? YES NO Were all results were within 75-125% limits? YES NO NA (circle one) 7. **√ Duplicates** Were Field Duplicates submitted/analyzed? YES NO Aqueous RPD within limit? (20%) YES NO NA (circle one) YES NO NA (circle one) Soil RPD within limit? (35%) Lab dup RPD <20% for water, 35% for soil values > 5X the CRQL (or \pm CRQL) YES NO NA Were both **Total and Dissolved** parameters reported? YES NO NA (circle one) If the dissolved concentration is > 20% of the total concentration then estimate (J) both results **Percent Solids** < 50% for any soil/sediment sample? YES NO NA (circle one) If yes, use professional judgment 10. ✓ Raw Data Review and Calculation Checks 11. Lectronic Data Review and Edits Does the EDD match the Form Is? YES NO (circle one) 12. **J DUSR Table Review Table 1** (Samples and Analytical Methods) **Table 2** (Analytical Results)

YES NO (circle one)

Table 3 (Qualification Actions)

Were all tables produced and reviewed?

13C2 PFDoA and 13C2 PFTeDA Isotope Dilution Analyte (IDA) recoveries associated with the following sample are below the method recommended limit: MW-22ML-XX (460-234681-13). Generally, data quality is not considered affected if the IDA signal-to-noise ratio is greater than 10:1, which is achieved for all IDA in the sample.

No other difficulties were encountered during the PFAS analysis.

All other quality control parameters were within the acceptance limits.

CHLORIDE

Samples MW-1GU-XX (460-234681-1), MW-1GL-XX (460-234681-2), MW-1MI-XX (460-234681-3), MW-1ML-XX (460-234681-4), MW-3GL-XX (460-234681-5), MW-6GL-XX (460-234681-6), MW-6ML-XX (460-234681-7), MW-7GL-XX (460-234681-8), MW-7ML-XX (460-234681-9), MW-17GL-XX (460-234681-10), MW-17ML-XX (460-234681-11), MW-22GL-XX (460-234681-12), MW-22ML-XX (460-234681-13), MW-29GL-XX (460-234681-14), MW-31GL-XX (460-234681-15), MW-31MI-XX (460-234681-16), MW-31ML-XX (460-234681-17), MW-35GL-XX (460-234681-18), MW-37GU-XX (460-234681-19), MW-37ML-XX (460-234681-20), MW-46MI-XX (460-234681-21), MW-46ML-XX (460-234681-22), MW-500 (460-234681-23), MW-501 (460-234681-24), MW-502 (460-234681-25), QC-EB110521-01 (460-234681-26) and QC-EB120521-XX (460-234681-27) were analyzed for chloride in accordance with SM 4500 CL B. The samples were analyzed on 05/25/2021, 06/01/2021 and 06/07/2021.

Samples MW-1GU-XX (460-234681-1)[5X], MW-1GL-XX (460-234681-2)[5X], MW-1MI-XX (460-234681-3)[2X], MW-1ML-XX (460-234681-4)[2X], MW-3GL-XX (460-234681-5)[2X], MW-6GL-XX (460-234681-6)[2X], MW-6ML-XX (460-234681-7)[4X], MW-7GL-XX (460-234681-8)[20X], MW-7ML-XX (460-234681-9)[2X], MW-17GL-XX (460-234681-10)[2X], MW-22GL-XX (460-234681-12)[4X], MW-22ML-XX (460-234681-13)[4X], MW-29GL-XX (460-234681-14)[5X], MW-31GL-XX (460-234681-15)[2X], MW-31MI-XX (460-234681-16)[2X], MW-35GL-XX (460-234681-18)[4X], MW-37GU-XX (460-234681-19)[5X], MW-500 (460-234681-23)[5X] and MW-501 (460-234681-24)[20X] required dilution prior to analysis. The reporting limits have been adjusted accordingly.

No difficulties were encountered during the chloride analysis.

All quality control parameters were within the acceptance limits.

XXX 06/28/2021

Samples MW-49ML-XX (460-235115-1), MW-52MI-XX (460-235115-5), MW-52ML-XX (460-235115-6), MW-53MI-XX (460-235115-7), MW-53ML-XX (460-235115-8), SW-N5099-XX (460-235115-9), SW-N4388-XX (460-235115-10), MW-2MI-XX (460-235115-11), MW-3ML-XX (460-235115-12), MW-29MI-XX (460-235115-13), MW-43MU-XX (460-235115-14), MW-43MI-XX (460-235115-15), MW-45MU-XX (460-235115-16), MW-45MI-XX (460-235115-17), MW-47MI-XX (460-235115-18), MW-47ML-XX (460-235115-19), MW-49MI-XX (460-235115-20), SW-N12796-XX (460-235115-21), SW-N12999-XX (460-235115-22), SW-N13000-XX (460-235115-23), SW-N13821-XX (460-235115-24) and SW-500 (460-235115-25) were analyzed for chloride in accordance with SM 4500 CL B. The samples were analyzed on 06/09/2021.

Samples SW-N4388-XX (460-235115-10)[2X], MW-2MI-XX (460-235115-11)[2X], MW-29MI-XX (460-235115-13)[4X], MW-45MU-XX (460-235115-16)[2X], MW-47MI-XX (460-235115-18)[2X], SW-N12999-XX (460-235115-22)[2X], SW-N13821-XX (460-235115-24)[2X] and SW-500 (460-235115-25)[2X] required dilution prior to analysis. The reporting limits have been adjusted accordingly.

okav

No difficulties were encountered during the chloride analysis.

All quality control parameters were within the acceptance limits.

XXX 06/28/2021

Sample ID:	MW-1GL-XX/MW-500		
Compund Chloride	Result LabQual DF 375	Dup LabQual 5 375	DF RPD 5 0
Sample ID:	MW-7GL-XX/MW-501		
Compund Chloride	Result LabQual DF 730	Dup LabQual 20 800	DF RPD 20 9.150327
Sample ID:	MW-46MI-XX/MW-502		
Compund Chloride	Result LabQual DF 27.5	Dup LabQual	DF RPD 1 1.834862
Sample ID:	SW-N13821-XX/SW-500		
Compund Chloride	Result LabQual DF 27.5	Dup LabQual	DF RPD 1 1.834862

LLK 06/28/2021

DATA USABILITY SUMMARY REPORT QUARTERLY MONITORING – Q3 2021 LOCKHEED MARTIN CORPORATION FORMER UNISYS FACILITY -- GREAT NECK LAKE SUCCESS, NEW YORK

1.0 INTRODUCTION

Water samples were collected at the Lockheed Martin Corporation Former Unisys Facility -- Great Neck Site in August 2021 and submitted to TestAmerica Laboratories, Inc., located in Edison, New Jersey (TestAmerica). Analyses were performed by TestAmerica Edison. Samples were analyzed by one or more of the following methods:

- Volatile Organic Compounds (VOCs) by USEPA Method 8260D
- VOCs by USEPA Method 524.2
- Chloride by SM 4500 CL B

A Data Usability Summary Report (DUSR) review was completed based on the New York State Department of Environmental Conservation (NYSDEC) Division of Environmental Remediation guidance (NYSDEC, 2010). Sample event information included in this DUSR is presented in the following Tables:

- Table 1 Summary of Samples and Analytical Methods
- Table 2 Summary of Analytical Results
- Table 3 Summary of Qualification Actions

A summary of table notes applicable to Tables 1, 2, and 3 is presented just before Table 1.

Laboratory deliverables included:

 Category B deliverables as defined in the NYSDEC Analytical Services Protocols (NYSDEC, 2005).

The DUSR review included the following evaluations as applicable. A table of the project control limits is presented in Attachment A. Applicable laboratory QC summary forms are included in Attachment B to document QC outliers associated with qualification actions.

- Lab Report Narrative Review
- Data Package Completeness and COC records (Table 1 verification)
- Sample Preservation and Holding Times
- Instrument Calibration (report narrative/lab-qualifier evaluation)
- QC Blanks
- Laboratory Control Samples (LCS)
- Matrix Spike/Matrix Spike Duplicates (MS/MSD)
- Surrogate Spikes (if applicable)
- Field Duplicates

Lockheed Martin Corporation Former Unisys Facility -- Great Neck Lake Success, New York AMEC E&E, PC

- Target Analyte Identification and Quantitation
- Raw Data (chromatograms), Calculation Checks and Transcription Verifications
- Reporting Limits
- Electronic Data Qualification and Verification

Data qualification actions are applied when necessary based on general procedures in United States Environmental Protection Agency (USEPA) validation guidelines (USEPA, 2014) and the judgment of the project chemist. The following laboratory or data review qualifiers are used in the final data presentation:

U = target analyte is not detected above the reported detection limit

J = concentration is estimated

J- = concentration is estimated, biased low

J+ = concentration is estimated, biased high

UJ = target analyte is not detected and value is estimated

Results are interpreted to be usable as reported by the laboratory or as qualified in the following sections.

2.0 POTENTIAL DATA LIMITATIONS

Based on the DUSR review the majority of data meet the data quality objectives; however, the following potential limitations were identified:

VOCs by 524.2

Reporting limits for Freon 115 in a subset of samples were qualified as estimated (UJ) based on a low percent recovery in the associated LCS/LCSD. The relative percent difference between LCS and LCSD results for Freon 115 exceeded laboratory control limits. The qualified results are included in Table 3 with reason code LCSL and LCSRPD.

The result for trichlorofluoromethane in sample SW-N5099-XX was qualified as estimated with potential high bias (J+) based on a high percent recovery in the associated LCS/LCSD. The qualified result is included in Table 3 with reason code LCSH.

The results for trichloroethene and tetrachloroethene in sample SW-N12796-XX were qualified estimated with a potential low bias (J-) based on low percent recoveries in the associated MS/MSD. Qualified results are included in Table 3 with reason code MSL.

The reporting limit for Freon 115 in sample SW-N12796-XX was previously qualified estimated (UJ) due to low recovery in the associated LCS\LCSD and an RPD that exceeded project limits. The MS associated with sample SW-N12796-XX had a low percent recovery. The MSD associated with sample SW-N12796-XX had a high percent recovery. The RPD between the MS and MSD exceeded project limits. The reason codes MSL, MSH, and MSRPD were added to the qualified result for Freon 115 in sample SW-N12796-XX.

Lockheed Martin Corporation Former Unisys Facility -- Great Neck Lake Success, New York AMEC E&E. PC

VOCs by 8260D

Equipment blank QC-EB-110821-01 associated with sample MW-14MI-XX had a detection of acetone above the reporting limit (9.0 ug/L). The result for acetone in sample MW-14MI-XX was qualified as not detected (U) at the reported concentration. The qualified result is included in Table 3 with reason code BL2.

Results for trichlorofluoromethane in a subset of samples were qualified as estimated with potential high bias (J+) based on a high percent recovery in the associated LCS/LCSD. The qualified result is included in Table 3 with reason code LCSH.

The result for chlorodifluoromethane in sample MW-15ML-XX was qualified as estimated with potential high bias (J+) based on a high percent recovery in the associated MS/MSD. The relative percent difference for chlorodifluoromethane between the MS and MSD exceeded project control limits. The qualified results are included in Table 3 with reason code MSH and MSRPD.

Results for chloromethane in sample MW-4MI-XX and associated field duplicate MW-500 were qualified as estimated (J/UJ) based on inconsistent results. The qualified results are included in Table 3 with reason code FD.

3.0 ADDITIONAL QC EXCEEDANCES AND OBSERVATIONS

Comparison of initially reported sample results for MW-46MI-XX and MW-46ML-XX with historical data as well as the associated field duplicate MW-502 indicated that samples MW-46MI-XX and MW-46ML-XX were switched at some point prior to final reporting of laboratory results. Based on historical data for locations 46MI and 46ML and August 2021 results for associated field duplicate MW-502, the laboratory sample IDs for MW-46MI-XX and MW-46ML-XX were revised and results reported as indicated in Table 1.

There were no additional observations or quality control exceedances not specifically addressed above (Section 2.0) or included in Table 3.

Reference:

New York State Department of Environmental Conservation (NYSDEC), 2005. "Analytical Services Protocols"; June 2005.

NYSDEC, 2010. "Technical Guidance for Site Investigation and Remediation-Appendix 2B"; DER-10; Division of Environmental Remediation; May 2010.

USEPA, 2014. "Validating Volatile Organic Compounds by Gas Chromatography/Mass Spectrometry SW-846 Method 8260B"; USEPA Region II; HW-24; Revision 4; September 2014.

Lockheed Martin Corporation Former Unisys Facility -- Great Neck Lake Success, New York AMEC E&E, PC

Julie Rivaroi

Data Validator: Amber Jones **September 23, 2021**

Reviewed by: Julie Ricardi

October 4, 2021

Revised by: Julie Ricardi

Julie Rivaroi Reviewed by: Chris Ricardi October 8, 2021

GWM_Q3_August_2021_DUSR_Revised_10-8-21

October 8, 2021

Standard Table Notes:

ng/L – nanograms per liter

μg/L – micrograms per liter

Sample Type (QC Code) Qualification Reason Codes

FS – field sample BL1 – method blank qualifier

FD – field duplicate BL2 – field or trip blank qualifier

TB – trip blank CCV – continuing calibration verification recovery outside limits

EB – equipment blank CCV%D – continuing calibration verification percent difference exceeds goal

FB – field blank CCVRRF – continuing calibration relative response factor low

CI – chromatographic interference present

Matrix DCPD – dual column percent difference exceeds limit

GW – ground water E – result exceeds calibration range

BW – blank water FD – field duplicate precision goal exceeded

TW – tap water FP – false positive interference

SV – soil vapor HT – holding time for prep or analysis exceeded

SED - sediment HTG – holding time for prep or analysis grossly exceeded

ICV – initial calibration verification recovery outside limit

<u>Units</u> ICVRRF – initial calibration verification relative response factor low

mg/L – milligrams per liter ICVRSD – initial calibration verification % relative standard deviation exceeds

goal

ISH – internal standard response greater than limit

ISL – internal standard response less than limit

mg/kg – milligrams per kilogram

LCSH – laboratory control sample recovery high

µg/kg – micrograms per kilogram

LCSL – laboratory control sample recovery low μg/m³ – micrograms per cubic meter

LCSRPD – laboratory control sample/duplicate relative % difference precision

goal exceeded

Qualifiers LD – lab duplicate precision goal exceeded

U – not detected above quantitation limit MSH – matrix spike and/or MS duplicate recovery high

J – estimated quantity

MSL – matrix spike and/or MS duplicate recovery low

J+ - estimated quantity, biased high

MSRPD – matrix spike/duplicate relative % difference precision goal exceeded

J- - estimated quantity, biased low N – analyte identification is not certain

R – data unusable PEM – performance evaluation mixture exceeds limit

PM – sample percent moisture exceeds EPA guideline

<u>Fraction</u> SD – serial dilution result exceeds percent difference limit

T – total SP – sample preservation/collection does not meet method requirement

D – dissolved SSH – surrogate recovery high

N – normal SSL – surrogate recovery low

TD – dissolved concentration exceeds total

Table 1 - Summary of Samples and Analytical Methods Data Usability Summary Report Quarterly Monitoring - Q3 2021 Lockheed Martin Corporation Former Unisys Facility -- Great Neck Lake Success, New York

						Method	8260D	524.2	SM 4500 Cl- B
						Fraction	N	N	Т
SDG	Location	Field Sample ID	Sample Date	Media	Lab Sample ID	QC Code	Count	Count	Count
460-240981-1	10GL	MW-10GL-XX	8/11/2021	GW	460-240981-7	FS	54		
460-240981-1	14MI	MW-14MI-XX	8/12/2021	GW	460-240981-8	FS	54		
460-240981-1	15GL	MW-15GL-XX	8/11/2021	GW	460-240981-9	FS	54		
460-240981-1	15ML	MW-15ML-XX	8/11/2021	GW	460-240981-10	FS	54		
460-240981-1	16ML	MW-16ML-XX	8/12/2021	GW	460-240981-11	FS	54		
460-240981-1	18GL	MW-18GL-XX	8/13/2021	GW	460-240981-12	FS	54		
460-240981-1	18ML	MW-18ML-XX	8/13/2021	GW	460-240981-13	FS	54		
460-240981-1	1MI-L	MW-1MI/L-XX	8/11/2021	GW	460-240981-1	FS	54		
460-240981-1	24GL	MW-24GL-XX	8/11/2021	GW	460-240981-14	FS	54		
460-240981-1	28GL	MW-28GL-XX	8/13/2021	GW	460-240981-15	FS	54		
460-240981-1	28MI	MW-28MI-XX	8/13/2021	GW	460-240981-16	FS	54		
460-240981-1	39MI	MW-39MI-XX	8/12/2021	GW	460-240981-18	FS	54		
460-240981-1	39ML	MW-39ML-XX	8/12/2021	GW	460-240981-19	FS	54		
460-240981-1	39MU	MW-39MU-XX	8/12/2021	GW	460-240981-17	FS	54		
460-240981-1	39MU	MW-501	8/12/2021	GW	460-240981-26	FD	54		
460-240981-1	43MI	MW-43MI-XX	8/13/2021	GW	460-240981-21	FS	54		1
460-240981-1	43MU	MW-43MU-XX	8/13/2021	GW	460-240981-20	FS	54		1
460-240981-1	46MI	MW-46MI-XX	8/13/2021	GW	460-240981-24	FS	54		1
460-240981-1	46ML	MW-46ML-XX	8/13/2021	GW	460-240981-23	FS	54		1
460-240981-1	46ML	MW-502	8/13/2021	GW	460-240981-27	FD	54		1
460-240981-1	4GL	MW-4GL-XX	8/10/2021	GW	460-240981-2	FS	54		
460-240981-1	4MI	MW-4MI-XX	8/10/2021	GW	460-240981-3	FS	54		
460-240981-1	4MI	MW-500	8/10/2021	GW	460-240981-25	FD	54		
460-240981-1	8GL	MW-8GL-XX	8/11/2021	GW	460-240981-5	FS	54		
460-240981-1	8GU	MW-8GU-XX	8/11/2021	GW	460-240981-4	FS	54		
460-240981-1	8ML	MW-8ML-XX	8/11/2021	GW	460-240981-6	FS	54		
460-240981-1	N05535	IW-N5535-XX	8/13/2021	GW	460-240981-22	FS	54		1
460-240981-1	N13221	IW-N13221-XX	8/16/2021	GW	460-240981-28	FS	54		

Created by: WCG 9/17/2021 Edited 9/22/2021 Checked by: ALJ 9/23/2021 Revised 10/8/2021 Checked by: JAR 10/8/2021

Table 1 - Summary of Samples and Analytical Methods Data Usability Summary Report Quarterly Monitoring - Q3 2021 Lockheed Martin Corporation Former Unisys Facility -- Great Neck Lake Success, New York

						Method	8260D	524.2	SM 4500 Cl- B
						Fraction	N	N	Т
SDG	Location	Field Sample ID	Sample Date	Media	Lab Sample ID	QC Code	Count	Count	Count
460-240981-1	N13266	IW-N13266-XX	8/16/2021	GW	460-240981-29	FS	54		
460-240981-1	N13889	IW-N13889-XX	8/16/2021	GW	460-240981-30	FS	54		
460-240981-1	QC	QC-EB100821-01	8/10/2021	BW	460-240981-31	EB	54		
460-240981-1	QC	QC-EB110821-01	8/11/2021	BW	460-240981-32	EB	54		1
460-240981-1	QC	QC-EB120821-01	8/12/2021	BW	460-240981-33	EB	54		
460-240981-1	QC	QC-TB110821-XX	8/11/2021	BW	460-240981-34	EB	54		
460-241354-1	27MI	MW-27MI-XX	8/16/2021	GW	460-241354-1	FS	54		
460-241354-1	31GL	MW-31GL-XX	8/16/2021	GW	460-241354-2	FS	54		1
460-241354-1	31MI	MW-31MI-XX	8/16/2021	GW	460-241354-3	FS	54		1
460-241354-1	31ML	MW-31ML-XX	8/16/2021	GW	460-241354-4	FS	54		1
460-241354-1	38ML	MW-38ML-XX	8/16/2021	GW	460-241354-6	FS	54		
460-241354-1	38MU	MW-38MU-XX	8/16/2021	GW	460-241354-5	FS	54		
460-241354-1	45MI	MW-45MI-XX	8/17/2021	GW	460-241354-8	FS	54		1
460-241354-1	45MU	MW-45MU-XX	8/17/2021	GW	460-241354-7	FS	54		1
460-241354-1	50MI	MW-50MI-XX	8/17/2021	GW	460-241354-9	FS	54		
460-241354-1	50ML	MW-50ML-XX	8/17/2021	GW	460-241354-10	FS	54		
460-241354-1	51MI	MW-51MI-XX	8/18/2021	GW	460-241354-11	FS	5		
460-241354-1	51ML	MW-51ML-XX	8/18/2021	GW	460-241354-12	FS	5		
460-241354-1	52MI	MW-52MI-XX	8/18/2021	GW	460-241354-14	FS	54		1
460-241354-1	52ML	MW-52ML-XX	8/18/2021	GW	460-241354-15	FS	54		1
460-241354-1	53ML	MW-53ML-XX	8/18/2021	GW	460-241354-16	FS	54		1
460-241354-1	N04388	SW-500	8/18/2021	GW	460-241354-23	FD		61	1
460-241354-1	N04388	SW-N4388-XX	8/18/2021	GW	460-241354-18	FS		61	1
460-241354-1	N05099	SW-N5099-XX	8/18/2021	GW	460-241354-17	FS		61	1
460-241354-1	N09687	IW-N9687-XX	8/18/2021	GW	460-241354-13	FS	5		
460-241354-1	N12796	SW-N12796-XX	8/18/2021	GW	460-241354-19	FS		61	1
460-241354-1	N12999	SW-N12999-XX	8/18/2021	GW	460-241354-20	FS		61	1
460-241354-1	N13000	SW-N13000-XX	8/18/2021	GW	460-241354-21	FS		61	1

Created by: WCG 9/17/2021 Edited 9/22/2021 Checked by: ALJ 9/23/2021 Revised 10/8/2021 Checked by: JAR 10/8/2021

Table 1 - Summary of Samples and Analytical Methods Data Usability Summary Report Quarterly Monitoring - Q3 2021 Lockheed Martin Corporation Former Unisys Facility -- Great Neck Lake Success, New York

						Method	8260D	524.2	SM 4500 Cl- B
						Fraction	N	N	Т
SDG	Location	Field Sample ID	Sample Date	Media	Lab Sample ID	QC Code	Count	Count	Count
460-241354-1	N13821	SW-N13821-XX	8/18/2021	GW	460-241354-22	FS		61	1
460-241354-1	QC	QC-TB160821-XX	8/16/2021	BW	460-241354-24	ТВ		61	
460-241789-1	16GL	MW-16GL-XX	8/23/2021	GW	460-241789-4	FS	54		
460-241789-1	38MI	MW-38MI-XX	8/25/2021	GW	460-241789-3	FS	54		
460-241789-1	53MI	MW-53MI-XX	8/26/2021	GW	460-241789-1	FS	54		1
460-241789-1	QC	QC-TB260821-XX	8/26/2021	BW	460-241789-2	ТВ	54		

Table 2 - Summary of Analytical Results Data Usability Summary Report Quarterly Monitoring - Q3 2021

Lockheed Martin Corporation Former Unisys Facility -- Great Neck Lake Success, New York

		SDG		460-241354-1		460-241354-1		460-241354-1		11354-1				
	Le	Location		N04388		1388	N05099		N12	2796				
	Samp	le Date	8/18,	/2021	8/18	/2021	8/18	/2021	8/18	/2021				
	Sar	nple ID	SW-	-500	SW-N4	1388-XX	SW-N5	6099-XX	SW-N1	2796-XX				
	Q	C Code	F	D	FS		F	FS		-S				
			Final	Final	Final	Final	Final	Final	Final	Final				
Method	Parameter	Unit	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier				
524.2	1,1,1,2-Tetrachloroethane	UG/L	0.5	U	0.5 U		0.5 U		0.5 U					
524.2	1,1,1-Trichloroethane	UG/L	0.5	U	0.5	U	0.5	U	0.5 U					
524.2	1,1,2,2-Tetrachloroethane	UG/L	0.5	U	0.5	U	0.5	U	0.5	U				
524.2	1,1,2-Trichloro-1,2,2-Trifluoroethane (Freon 113)	UG/L	0.5	U	0.5	U	1.6		0.65					
524.2	1,1,2-Trichloroethane	UG/L	0.5	U	0.5 U		0.5 U		0.5 U					
524.2	1,1-Dichloroethane	UG/L	0.5	U	0.5 U		0.5 U		0.5 U					
524.2	1,1-Dichloroethene	UG/L	0.5	U	0.5 U		0.5 U		0.5 U					
524.2	1,1-Dichloropropene	UG/L	0.5	U	0.5 U		0.5 U		0.5 U					
524.2	1,1-Difluoroethane (Freon 152a)	UG/L	0.5	U	0.5 U		0.5 U		0.5 U					
524.2	1,2,3-Trichlorobenzene	UG/L	0.5	U	0.5 U		0.5 U		0.5	U				
524.2	1,2,3-Trichloropropane	UG/L	0.5	U	0.5	U	0.5 U		0.5	U				
524.2	1,2,4-Trichlorobenzene	UG/L	0.5	U	0.5	.5 U 0.5 U		U	0.5	U				
524.2	1,2,4-Trimethylbenzene	UG/L	0.5	U	0.5	U	0.5	U	0.5	U				
524.2	1,2-Dichlorobenzene	UG/L	0.5	U	0.5	U	0.5	U	0.5	U				
524.2	1,2-Dichloroethane	UG/L	0.5	U	0.5	U	0.5	U	0.5	U				
524.2	1,2-Dichloropropane	UG/L	0.5	U	0.5	U	0.5	U	0.5	U				
524.2	1,3,5-Trimethylbenzene	UG/L	0.5	U	0.5	U	0.5	U	0.5	U				
524.2	1,3-Dichlorobenzene	UG/L	0.5	U	0.5	U	0.5	U	0.5	U				
524.2	1,3-Dichloropropane	UG/L	0.5	U	0.5	0.5 U		0.5 U		5 U 0.5 U		U	0.5	U
524.2	1,4-Dichlorobenzene	UG/L	0.5	U	0.5	0.5 U		0.5 U		0.5 U		0.5 U		
524.2	2,2-Dichloropropane	UG/L	0.5	U	0.5	0.5 U 0.5 U		U	0.5	U				
524.2	2-Chlorotoluene	UG/L	0.5	U	0.5 U		0.5 U		0.5	U				

Table 2 - Summary of Analytical Results Data Usability Summary Report Quarterly Monitoring - Q3 2021

Lockheed Martin Corporation Former Unisys Facility -- Great Neck Lake Success, New York

		SDG	460-24	1354-1	354-1 460-241354-1		460-241354-1		460-241354-1					
		Location	N04	388	N04388 N05099		N12	2796						
		Sample Date	8/18/	2021	8/18	/2021	8/18	/2021	8/18	/2021				
		Sample ID	SW-	500	SW-N4	388-XX	SW-N5099-XX		SW-N1	2796-XX				
		QC Code	FI)	F	<u>-</u> S	FS		F	-S				
			Final	Final	Final	Final	Final	Final	Final	Final				
Method	Parameter	Unit	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier				
524.2	4-Chlorotoluene	UG/L	0.5	U	0.5 U		0.5	U	0.5 U					
524.2	4-iso-Propyltoluene	UG/L	0.5	U	0.5 U		0.5	U	0.5	U				
524.2	Benzene	UG/L	0.5	U	0.5	U	0.5	U	0.5	U				
524.2	Bromobenzene	UG/L	0.5	U	0.5	U	0.5	U	0.5	U				
524.2	Bromochloromethane	UG/L	0.5	U	0.5 U		0.5 U		0.5 U					
524.2	Bromodichloromethane	UG/L	0.5	U	0.5 U		0.5 U		0.5	U				
524.2	Bromoform	UG/L	0.5	U	0.5 U		0.5 U		0.5 U					
524.2	Bromomethane	UG/L	0.5	U	0.5 U		0.5 U		0.5 U					
524.2	Carbon tetrachloride	UG/L	0.5	U	0.5 U		0.5 U		0.19 J					
524.2	Chlorobenzene	UG/L	0.5	U	0.5 U		0.5 U		0.5 U					
524.2	Chlorodifluoromethane	UG/L	0.5	U	0.5 U		0.4 J		0.39 J					
524.2	Chloroethane	UG/L	0.5	U	0.5	U	U 0.5 U		0.5 U					
524.2	Chloroform	UG/L	0.13	J	0.14	J	0.15	J	0.21	J				
524.2	Chloromethane	UG/L	0.5	U	0.5	U	0.5	U	0.5	U				
524.2	cis-1,2-Dichloroethene	UG/L	0.5	U	0.5	U	14		4.2					
524.2	cis-1,3-Dichloropropene	UG/L	0.5	U	0.5	U	0.5	U	0.5	U				
524.2	Dibromochloromethane	UG/L	0.5	U	0.5	U	0.5	U	0.5	U				
524.2	Dibromomethane	UG/L	0.5	0.5 U		0.5 U		0.5 U 0.5 U		U	0.5	U		
524.2	Dichlorodifluoromethane	UG/L	0.5	U	0.5	0.5 U		0.5 U		.5 U 0.5 U		U	0.5	U
524.2	Ethylbenzene	UG/L	0.5	U	0.5 U		0.5	0.5 U		U				
524.2	Freon 115	UG/L	1	UJ	1	1 UJ 1 UJ		UJ	1	UJ				
524.2	Freon 123	UG/L	0.5	U	0.5 U		0.5 U		0.5	U				

Table 2 - Summary of Analytical Results

Data Usability Summary Report

Quarterly Monitoring - Q3 2021

Lockheed Martin Corporation Former Unisys Facility -- Great Neck

Lake Success, New York

		SDG	G 460-241354-1		460-241354-1		460-241354-1		460-241354-1				
		Location	N04	1388	N04388		N05099		N12	2796			
		Sample Date	8/18/2021		8/18/2021		8/18/2021		8/18/2021				
		Sample ID	SW	-500	SW-N4388-XX		SW-N5099-XX		SW-N12796-XX				
		QC Code	FD		FS		FS		FS				
			Final	Final	Final	Final	Final	Final	Final	Final			
Method	Parameter	Unit	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier			
524.2	Hexachlorobutadiene	UG/L	0.5	U	0.5 U		0.5 U		0.5 U				
524.2	Isopropylbenzene	UG/L	0.5	U	0.5	U	0.5	U	0.5 U				
524.2	Methyl Tertbutyl Ether	UG/L	0.5 U		0.5 U		0.5 U		0.5 U				
524.2	Methylene chloride	UG/L	0.5 U		0.5 U		0.5 U		0.5 U				
524.2	Propylbenzene	UG/L	0.5 U		0.5 U		0.5 U		0.5 U				
524.2	sec-Butylbenzene	UG/L	0.5	U	0.5 U		0.5 U		0.5 U				
524.2	Styrene	UG/L	0.5	U	0.5 U		0.5 U		0.5 U				
524.2	tert-Butylbenzene	UG/L	0.5	U	0.5	U	0.5 U		0.5 U				
524.2	Tetrachloroethene	UG/L	0.41	J	0.44	J	3.3		7.3 J-				
524.2	Toluene	UG/L	0.5	U	0.5	U	0.5	U	0.5	U			
524.2	trans-1,2-Dichloroethene	UG/L	0.5	U	0.5	U	0.5	U	0.5	U			
524.2	trans-1,3-Dichloropropene	UG/L	0.5	U	0.5	U	0.5	U	0.5	U			
524.2	Trichloroethene	UG/L	0.5 U		0.14	J	9.3		5.4	J-			
524.2	Trichlorofluoromethane	UG/L	0.5 U		0.5	0.5 U		0.5 U 0.32 J+		J+	0.5	U	
524.2	Vinyl chloride	UG/L	0.5	U	0.5	0.5 U		0.5 U		0.5 U		0.5 U	
524.2	Xylene, o	UG/L	0.5	U	0.5 U		0.5 U		0.5 U				
524.2	Xylenes (m&p)	UG/L	1	U	1 U		1 U		1 U				

Table 2 - Summary of Analytical Results Data Usability Summary Report Quarterly Monitoring - Q3 2021

Lockheed Martin Corporation Former Unisys Facility -- Great Neck Lake Success, New York

	SDG		460-241354-1		460-241354-1		460-241354-1		460-241354-1			
	Lo	ocation	N12	999	N13000		N13821		C	QC		
	Samp	le Date	8/18/	2021	8/18	/2021	8/18	8/18/2021		/2021		
	Sar	nple ID	SW-N12	2999-XX	SW-N13000-XX		SW-N13821-XX		QC-TB16	50821-XX		
	Q	C Code	F	S	FS		FS		Т	В		
			Final	Final	Final	Final	Final	Final	Final	Final		
Method	Parameter	Unit	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier		
524.2	1,1,1,2-Tetrachloroethane	UG/L	0.5	U	0.5	U	0.5	U	0.5 U			
524.2	1,1,1-Trichloroethane	UG/L	0.5	U	0.5	U	0.5	U	0.5	U		
524.2	1,1,2,2-Tetrachloroethane	UG/L	0.5	U	0.5	U	0.5	U	0.5	U		
524.2	1,1,2-Trichloro-1,2,2-Trifluoroethane (Freon 113)	UG/L	0.5	U	0.71		0.5	U	0.5	U		
524.2	1,1,2-Trichloroethane	UG/L	0.5	U	0.5 U		0.5 U		0.5	U		
524.2	1,1-Dichloroethane	UG/L	0.5	U	0.5	U	0.5 U		0.5	U		
524.2	1,1-Dichloroethene	UG/L	0.5	0.5 U		U	0.5 U		0.5	U		
524.2	1,1-Dichloropropene	UG/L	0.5	U	0.5 U		0.5 U		0.5	U		
524.2	1,1-Difluoroethane (Freon 152a)	UG/L	0.5	U	0.5 U		0.5 U		0.5 U			
524.2	1,2,3-Trichlorobenzene	UG/L	0.5	U	0.5 U		0.5 U		0.5	U		
524.2	1,2,3-Trichloropropane	UG/L	0.5	U	0.5	U	0.5 U		0.5	U		
524.2	1,2,4-Trichlorobenzene	UG/L	0.5	U	0.5	U	0.5 U		0.5	U		
524.2	1,2,4-Trimethylbenzene	UG/L	0.5	U	0.5	U	0.5	U	0.5	U		
524.2	1,2-Dichlorobenzene	UG/L	0.5	U	0.5	U	0.5	U	0.5	U		
524.2	1,2-Dichloroethane	UG/L	0.5	U	0.5	U	0.5	U	0.5	U		
524.2	1,2-Dichloropropane	UG/L	0.5	U	0.5	U	0.5	U	0.5	U		
524.2	1,3,5-Trimethylbenzene	UG/L	0.5	U	0.5	U	0.5	U	0.5	U		
524.2	1,3-Dichlorobenzene	UG/L	0.5	U	0.5	U	0.5	U	0.5	U		
524.2	1,3-Dichloropropane	UG/L	0.5	U	0.5	0.5 U		0.5 U		U	0.5	U
524.2	1,4-Dichlorobenzene	UG/L	0.5	U	0.5	0.5 U		0.5 U		0.5 U		U
524.2	2,2-Dichloropropane	UG/L	0.5	U	0.5 U		0.5	0.5 U		U		
524.2	2-Chlorotoluene	UG/L	0.5	U	0.5 U		0.5 U 0.5 U		0.5	U		

Table 2 - Summary of Analytical Results Data Usability Summary Report Quarterly Monitoring - Q3 2021

Lockheed Martin Corporation Former Unisys Facility -- Great Neck Lake Success, New York

		SDG	460-24	1354-1	460-24	1354-1	460-24	1354-1	460-24	11354-1
		Location	N12	999	N13	3000	N13	3821	C	QC
		Sample Date	8/18/	2021	8/18	/2021	8/18	/2021	8/16	/2021
		Sample ID	SW-N12	2999-XX	SW-N1	3000-XX	SW-N1	3821-XX	QC-TB1	50821-XX
		QC Code	F	S	ſ	S	F	S	7	ТВ
			Final	Final	Final	Final	Final	Final	Final	Final
Method	Parameter	Unit	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier
524.2	4-Chlorotoluene	UG/L	0.5	U	0.5	U	0.5	U	0.5	U
524.2	4-iso-Propyltoluene	UG/L	0.5	U	0.5	U	0.5	U	0.5	U
524.2	Benzene	UG/L	0.5	U	0.5	U	0.5	U	0.5	U
524.2	Bromobenzene	UG/L	0.5	U	0.5	U	0.5	U	0.5	U
524.2	Bromochloromethane	UG/L	0.5	U	0.5	U	0.5	U	0.5	U
524.2	Bromodichloromethane	UG/L	0.5	U	0.5	U	0.5	U	0.5	U
524.2	Bromoform	UG/L	0.5	U	0.5	U	0.5	U	0.5	U
524.2	Bromomethane	UG/L	0.5	U	0.5	U	0.5	U	0.5	U
524.2	Carbon tetrachloride	UG/L	0.5	U	0.5	U	0.5	U	0.5	U
524.2	Chlorobenzene	UG/L	0.5	U	0.5	U	0.5	U	0.5	U
524.2	Chlorodifluoromethane	UG/L	0.34	J	0.7		0.5	U	0.5	U
524.2	Chloroethane	UG/L	0.5	U	0.5	U	0.5	U	0.5	U
524.2	Chloroform	UG/L	0.5	U	0.5	U	0.5	U	0.5	U
524.2	Chloromethane	UG/L	0.5	U	0.5	U	0.21	J	0.5	U
524.2	cis-1,2-Dichloroethene	UG/L	1.3		13		0.5	U	0.5	U
524.2	cis-1,3-Dichloropropene	UG/L	0.5	U	0.5	U	0.5	U	0.5	U
524.2	Dibromochloromethane	UG/L	0.5	U	0.5	U	0.5	U	0.5	U
524.2	Dibromomethane	UG/L	0.5	U	0.5	U	0.5	U	0.5	U
524.2	Dichlorodifluoromethane	UG/L	0.5	U	0.5	U	0.5	U	0.5	U
524.2	Ethylbenzene	UG/L	0.5	U	0.5	U	0.5	U	0.5	U
524.2	Freon 115	UG/L	1	UJ	1	UJ	1	UJ	1	U
524.2	Freon 123	UG/L	0.5	U	0.5	U	0.5	U	0.5	U

Table 2 - Summary of Analytical Results

Data Usability Summary Report

Quarterly Monitoring - Q3 2021

Lockheed Martin Corporation Former Unisys Facility -- Great Neck

Lake Success, New York

		SDG	460-24	125/11	460.24	11354-1	460.24	11354-1	460.24	1354-1
		Location	N12			3000		3821		QC
		Sample Date	8/18/	2021	8/18	/2021	8/18	/2021	8/16	/2021
		Sample ID	SW-N12	2999-XX	SW-N1	3000-XX	SW-N1	3821-XX	QC-TB16	50821-XX
		QC Code	F	S	1	FS	ſ	-S	T	В
			Final	Final	Final	Final	Final	Final	Final	Final
Method	Parameter	Unit	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier
524.2	Hexachlorobutadiene	UG/L	0.5	U	0.5	U	0.5	U	0.5	U
524.2	Isopropylbenzene	UG/L	0.5	U	0.5	U	0.5	U	0.5	U
524.2	Methyl Tertbutyl Ether	UG/L	0.5	U	0.5	U	0.5	U	0.5	U
524.2	Methylene chloride	UG/L	0.5	U	0.5	U	0.5	U	0.5	U
524.2	Propylbenzene	UG/L	0.5	U	0.5	U	0.5	U	0.5	U
524.2	sec-Butylbenzene	UG/L	0.5	U	0.5	U	0.5	U	0.5	U
524.2	Styrene	UG/L	0.5	U	0.5	U	0.5	U	0.5	U
524.2	tert-Butylbenzene	UG/L	0.5	U	0.5	U	0.5	U	0.5	U
524.2	Tetrachloroethene	UG/L	0.25	J	2.2		0.5	U	0.5	U
524.2	Toluene	UG/L	0.5	U	0.5	U	0.5	U	0.5	U
524.2	trans-1,2-Dichloroethene	UG/L	0.5	U	0.5	U	0.5	U	0.5	U
524.2	trans-1,3-Dichloropropene	UG/L	0.5	U	0.5	U	0.5	U	0.5	U
524.2	Trichloroethene	UG/L	0.58		3.5		0.5	U	0.5	U
524.2	Trichlorofluoromethane	UG/L	0.5	U	0.5	U	0.5	U	0.5	U
524.2	Vinyl chloride	UG/L	0.5	U	0.5	U	0.5	U	0.5	U
524.2	Xylene, o	UG/L	0.5	U	0.5	U	0.5	U	0.5	U
524.2	Xylenes (m&p)	UG/L	1	U	1	U	1	U	1	U

		SDG	460-24	0981-1	460-24	10981-1	460-24	10981-1	460-24	10981-1	460-24	40981-1
	L	ocation	10)GL	14	IMI	15	GL	15	ML	16	5ML
	Samp	le Date	8/11	/2021	8/12	/2021	8/11	/2021	8/11	/2021	8/12	2/2021
	Sai	mple ID	MW-1	0GL-XX	MW-1	4MI-XX	MW-1	5GL-XX	MW-1	5ML-XX	MW-1	.6ML-XX
	C	QC Code	F	:S	F	- S	F	-S	F	-S		FS
			Final	Final	Final	Final	Final	Final	Final	Final	Final	Final
Method	Parameter	Unit	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier
8260D	1,1,1-Trichloroethane	UG/L	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U
8260D	1,1,2,2-Tetrachloroethane	UG/L	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U
8260D	1,1,2-Trichloro-1,2,2-Trifluoroethane (Freon 113)	UG/L	0.71		0.5	U	0.5	U	0.6		7	'
8260D	1,1,2-Trichloroethane	UG/L	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U
8260D	1,1-Dichloroethane	UG/L	0.5	U	0.5	U	0.5	U	0.5	U	0.42	. J
8260D	1,1-Dichloroethene	UG/L	0.51		0.5	U	0.5	U	0.5	U	0.54	+
8260D	1,1-Difluoroethane (Freon 152a)	UG/L	1	U	1	U	1	U	1	U	1	LU
8260D	1,2,4-Trichlorobenzene	UG/L	0.5	U	0.5	U	0.5	U	0.5	U	0.5	, U
8260D	1,2-Dibromo-3-chloropropane	UG/L	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U
8260D	1,2-Dibromoethane	UG/L	0.5	U	0.5	U	0.5	U	0.5	U	0.5	, U
8260D	1,2-Dichlorobenzene	UG/L	0.5	U	0.5	U	0.5	U	0.5	U	0.5	, U
8260D	1,2-Dichloroethane	UG/L	0.5	U	0.5	U	0.5	U	0.5	U	0.48	; J
8260D	1,2-Dichloropropane	UG/L	0.5	U	0.5	U	0.5	U	0.5	U	0.5	Ü
8260D	1,3-Dichlorobenzene	UG/L	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U
8260D	1,4-Dichlorobenzene	UG/L	0.5	U	0.5	U	0.5	U	0.5	U	0.5	, U
8260D	2-Butanone	UG/L	2.5	U	2.5	U	2.5	U	2.5	U	2.5	5 U
8260D	2-Hexanone	UG/L	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U
8260D	4-Methyl-2-pentanone	UG/L	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U
8260D	Acetic acid, methyl ester	UG/L	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U
8260D	Acetone	UG/L	5	U	5.2	U	5	U	5	U	5	5 U
8260D	Benzene	UG/L	0.5	U	0.5	U	0.5	U	0.5	U	0.5	5 U
8260D	Bromodichloromethane	UG/L	0.5	U	0.5	U	0.5	U	0.5	U	0.5	Ü
8260D	Bromoform	UG/L	0.5	U	0.5	U	0.5	U	0.5	U	0.5	Ü
8260D	Bromomethane	UG/L	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U

		SDG	460-240981-1	460-240981-1	460-240981-1	460-240981-1	460-240981-1
		Location	10GL	14MI	15GL	15ML	16ML
		Sample Date	8/11/2021	8/12/2021	8/11/2021	8/11/2021	8/12/2021
		Sample ID	MW-10GL-XX	MW-14MI-XX	MW-15GL-XX	MW-15ML-XX	MW-16ML-XX
		QC Code	FS	FS	FS	FS	FS
		•	Final Final				
Method	Parameter	Unit	Result Qualifier				
8260D	Carbon disulfide	UG/L	0.5 U				
8260D	Carbon tetrachloride	UG/L	0.5 U				
8260D	Chlorobenzene	UG/L	0.5 U				
8260D	Chlorodifluoromethane	UG/L	1 U	1 U	1 U	0.7 J+	120
8260D	Chloroethane	UG/L	0.5 U				
8260D	Chloroform	UG/L	0.5 U	0.5 U	0.5 U	0.5 U	0.52
8260D	Chloromethane	UG/L	0.5 U	0.5 U	0.5 U	0.48 J	0.5 U
8260D	cis-1,2-Dichloroethene	UG/L	0.5 U	0.48 J	0.34 J	1.2	230
8260D	cis-1,3-Dichloropropene	UG/L	0.5 U				
8260D	Cyclohexane	UG/L	0.5 U				
8260D	Dibromochloromethane	UG/L	0.5 U				
8260D	Dichlorodifluoromethane	UG/L	0.5 U				
8260D	Ethylbenzene	UG/L	0.5 U				
8260D	Freon 115	UG/L	5 U	5 U	5 U	5 U	5 U
8260D	Freon 123	UG/L	1 U	1 U	1 U	1 U	1 U
8260D	Isopropylbenzene	UG/L	0.5 U				
8260D	Methyl cyclohexane	UG/L	0.5 U				
8260D	Methyl Tertbutyl Ether	UG/L	0.5 U				
8260D	Methylene chloride	UG/L	0.5 U				
8260D	Styrene	UG/L	0.5 U				
8260D	Tetrachloroethene	UG/L	0.66	0.26 J	0.26 J	1.8	24
8260D	Toluene	UG/L	0.5 U				
8260D	trans-1,2-Dichloroethene	UG/L	0.5 U	0.5 U	0.5 U	0.5 U	3.6
8260D	trans-1,3-Dichloropropene	UG/L	0.5 U				
8260D	Trichloroethene	UG/L	0.79	0.37 J	0.5 U	0.67	48
8260D	Trichlorofluoromethane	UG/L	0.5 U				
8260D	Vinyl chloride	UG/L	0.5 U				

		CD.C	460.27	10001 1	460.34	10001 1	460.24	10001 1	460.24	10001 1	460.24	10001 1
		SDG	460-24	10981-1	460-24	10981-1	460-24	10981-1	460-24	10981-1	460-24	10981-1
		Location	10)GL	14	lMI	15	GL .	15	ML	16	5ML
		Sample Date	8/11	/2021	8/12	/2021	8/11	/2021	8/11	/2021	8/12	/2021
		Sample ID	MW-1	0GL-XX	MW-1	4MI-XX	MW-1	5GL-XX	MW-1	5ML-XX	MW-1	6ML-XX
		QC Code	F	S	F	FS	F	-S	FS		F	=S
			Final	Final								
Method	Parameter	Unit	Result	Qualifier								
8260D	Xylene, o	UG/L	0.5	U								
8260D	Xylenes (m&p)	UG/L	0.5	U								
8260D	Xylenes, Total	UG/L	1	U	1	U	1	U	1	U	1	U

		SDG	460-24	0981-1	460-24	10981-1	460-24	10981-1	460-24	40981-1	460-2	40981-1
	Lo	ocation	18	GL	18	ML	1N	∕II-L	24	4GL	2	8GL
	Samp	le Date	8/13/	2021	8/13	/2021	8/11	/2021	8/11	/2021	8/13	3/2021
	Sar	nple ID	MW-18	3GL-XX	MW-1	8ML-XX	MW-1	MI/L-XX	MW-2	24GL-XX	MW-2	28GL-XX
	Q	C Code	F	S	ſ	-S	F	-S	ſ	FS		FS
			Final	Final								
Method	Parameter	Unit	Result	Qualifier								
8260D	1,1,1-Trichloroethane	UG/L	0.5	U	0.5	U	0.5	U	0.5	i U	0.5	i U
8260D	1,1,2,2-Tetrachloroethane	UG/L	0.5	U	0.5	U	0.5	U	0.5	i U	0.5	i U
8260D	1,1,2-Trichloro-1,2,2-Trifluoroethane (Freon 113)	UG/L	0.5	U	0.93		1.6		0.5	i U	4	ļ.
8260D	1,1,2-Trichloroethane	UG/L	0.5	U	0.5	U	0.5	U	0.5	i U	0.5	5 U
8260D	1,1-Dichloroethane	UG/L	0.5	U	0.5	U	0.5	U	0.5	i U	0.5	5 U
8260D	1,1-Dichloroethene	UG/L	0.5	U	0.5	U	0.5	U	0.5	i U	0.8	3
8260D	1,1-Difluoroethane (Freon 152a)	UG/L	1	U	1	U	1	U	1	. U	1	LU
8260D	1,2,4-Trichlorobenzene	UG/L	0.5	U	0.5	U	0.5	U	0.5	5 U	0.5	5 U
8260D	1,2-Dibromo-3-chloropropane	UG/L			0.5	U	0.5	U	0.5 U		0.5	5 U
8260D	1,2-Dibromoethane	UG/L	0.5	U	0.5	U	0.5	U	0.5 U		0.5	5 U
8260D	1,2-Dichlorobenzene	UG/L	0.5	U	0.5 U		0.5 U		0.5 U		0.5	5 U
8260D	1,2-Dichloroethane	UG/L	0.5	U	0.5 U		0.5 U		0.5 U		0.5	5 U
8260D	1,2-Dichloropropane	UG/L	0.5	U	0.5	U	0.5	U	0.5	5 U	0.5	5 U
8260D	1,3-Dichlorobenzene	UG/L	0.5	U	0.5	U	0.5	U	0.5	5 U	0.5	5 U
8260D	1,4-Dichlorobenzene	UG/L	0.5	U	0.5	U	0.5	U	0.5	5 U	0.5	5 U
8260D	2-Butanone	UG/L	2.5	U	2.5	U	2.5	U	2.5	5 U	2.5	5 U
8260D	2-Hexanone	UG/L	2.5	U	2.5	U	2.5	U	2.5	5 U	2.5	5 U
8260D	4-Methyl-2-pentanone	UG/L	2.5	U	2.5	U	2.5	U	2.5	5 U	2.5	5 U
8260D	Acetic acid, methyl ester	UG/L	2.5	U	2.5	U	2.5	U	2.5	5 U	2.5	5 U
8260D	Acetone	UG/L	5	U	5	U	5	U	5	5 U	5	5 U
8260D	Benzene	UG/L	0.5	U	0.5	U	0.5	U	0.5	5 U	0.5	5 U
8260D	Bromodichloromethane	UG/L	0.5	U	0.5	U	0.5	U	0.5	5 U	0.5	5 U
8260D	Bromoform	UG/L	0.5	U	0.5	U	0.5	U	0.5	5 U	0.5	5 U
8260D	Bromomethane	UG/L	0.5	U	0.5	U	0.5	U	0.5	i U	0.5	i U

		SDG	460-240981-1	460-240981-1	460-240981-1	460-240981-1	460-240981-1
		Location	18GL	18ML	1MI-L	24GL	28GL
	•	Sample Date	8/13/2021	8/13/2021	8/11/2021	8/11/2021	8/13/2021
		Sample ID	MW-18GL-XX	MW-18ML-XX	MW-1MI/L-XX	MW-24GL-XX	MW-28GL-XX
		QC Code	FS	FS	FS	FS	FS
		,	Final Final				
Method	Parameter	Unit	Result Qualifier				
8260D	Carbon disulfide	UG/L	0.5 U				
8260D	Carbon tetrachloride	UG/L	0.5 U				
8260D	Chlorobenzene	UG/L	0.5 U				
8260D	Chlorodifluoromethane	UG/L	4.5	1 U	1.3	0.67 J	1 U
8260D	Chloroethane	UG/L	0.5 U				
8260D	Chloroform	UG/L	0.88	0.5 U	0.5 U	0.41 J	0.5 U
8260D	Chloromethane	UG/L	0.5 U				
8260D	cis-1,2-Dichloroethene	UG/L	3.3	35	5.7	0.47 J	58
8260D	cis-1,3-Dichloropropene	UG/L	0.5 U				
8260D	Cyclohexane	UG/L	0.5 U				
8260D	Dibromochloromethane	UG/L	0.5 U				
8260D	Dichlorodifluoromethane	UG/L	0.5 U				
8260D	Ethylbenzene	UG/L	0.5 U				
8260D	Freon 115	UG/L	5 U	5 U	5 U	5 U	5 U
8260D	Freon 123	UG/L	1 U	1 U	1 U	1 U	1 U
8260D	Isopropylbenzene	UG/L	0.5 U				
8260D	Methyl cyclohexane	UG/L	0.5 U				
8260D	Methyl Tertbutyl Ether	UG/L	0.5 U				
8260D	Methylene chloride	UG/L	0.5 U				
8260D	Styrene	UG/L	0.5 U				
8260D	Tetrachloroethene	UG/L	1.7	3.4	18	0.86	3.2
8260D	Toluene	UG/L	0.5 U				
8260D	trans-1,2-Dichloroethene	UG/L	0.33 J	0.61	0.5 U	0.5 U	0.5 U
8260D	trans-1,3-Dichloropropene	UG/L	0.5 U				
8260D	Trichloroethene	UG/L	1.7	7.7	7.2	1.3	5.4
8260D	Trichlorofluoromethane	UG/L	0.5 U				
8260D	Vinyl chloride	UG/L	0.5 U	0.5 U	0.5 U	0.5 U	9

		SDG	460-24	10981-1	460-24	40981-1	460-24	10981-1	460-24	10981-1	460-24	40981-1
		Location	18	3GL	18	BML	11	∕II-L	24	lGL	28	3GL
		Sample Date	8/13	/2021	8/13	/2021	8/11	/2021	8/11	/2021	8/13	/2021
		Sample ID	MW-1	8GL-XX	MW-1	8ML-XX	MW-1	MI/L-XX	MW-2	4GL-XX	MW-2	28GL-XX
	QC Code		F	-S	ı	FS	ı	-S	FS		F	FS
			Final	Final								
Method	Parameter	Unit	Result	Qualifier								
8260D	Xylene, o	UG/L	0.5	U								
8260D	Xylenes (m&p)	UG/L	0.5	U								
8260D	Xylenes, Total	UG/L	1 U		1 U		1 U		1 U		1 U	

		SDG	460-24	0981-1	460-24	10981-1	460-24	10981-1	460-24	40981-1	460-2	40981-1
	Lo	ocation	28	MI	39)MI	39	ML	39	MU	39)MU
	Samp	le Date	8/13,	/2021	8/12	/2021	8/12	/2021	8/12	/2021	8/12	2/2021
	Sar	nple ID	MW-2	3MI-XX	MW-3	9MI-XX	MW-3	9ML-XX	MW-3	9MU-XX	MV	V-501
	Q	C Code	F	S	F	- S	F	-S	1	FS	1	FD
			Final	Final	Final	Final	Final	Final	Final	Final	Final	Final
Method	Parameter	Unit	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier
8260D	1,1,1-Trichloroethane	UG/L	0.5	U	0.5	U	0.5	U	0.5	i U	0.5	5 U
8260D	1,1,2,2-Tetrachloroethane	UG/L	0.5	U	0.5	U	0.5	U	0.5	5 U	0.5	5 U
8260D	1,1,2-Trichloro-1,2,2-Trifluoroethane (Freon 113)	UG/L	3.4		0.61		1.1		2.2	<u>)</u>	2	2
8260D	1,1,2-Trichloroethane	UG/L	0.5	U	0.5	U	0.5	U	0.5	5 U	0.5	5 U
8260D	1,1-Dichloroethane	UG/L	0.5	U	0.5	U	0.5	U	0.5	5 U	0.5	5 U
8260D	1,1-Dichloroethene	UG/L	0.37	J	0.5	U	0.5	U	0.59)	0.61	L
8260D	1,1-Difluoroethane (Freon 152a)	UG/L	1	U	1	U	1	U	1	. U	1	LU
8260D	1,2,4-Trichlorobenzene	UG/L	0.5	U	0.5	U	0.5	U	0.5	5 U	0.5	5 U
8260D	1,2-Dibromo-3-chloropropane	UG/L			0.5	0.5 U		U	0.5 U		0.5	5 U
8260D	1,2-Dibromoethane	UG/L	0.5	U	0.5 U		0.5	U	0.5 U		0.5	5 U
8260D	1,2-Dichlorobenzene	UG/L	0.5	U	0.5	0.5 U		0.5 U		0.5 U		5 U
8260D	1,2-Dichloroethane	UG/L	0.5	U	0.5	U	0.5	U	0.5	5 U	0.5	5 U
8260D	1,2-Dichloropropane	UG/L	0.5	U	0.5	U	0.5	U	0.5	5 U	0.5	5 U
8260D	1,3-Dichlorobenzene	UG/L	0.5	U	0.5	U	0.5	U	0.5	5 U	0.5	5 U
8260D	1,4-Dichlorobenzene	UG/L	0.5	U	0.5	U	0.5	U	0.5	5 U	0.5	5 U
8260D	2-Butanone	UG/L	2.5	U	2.5	U	2.5	U	2.5	5 U	2.5	5 U
8260D	2-Hexanone	UG/L	2.5	U	2.5	U	2.5	U	2.5	5 U	2.5	5 U
8260D	4-Methyl-2-pentanone	UG/L	2.5	U	2.5	U	2.5	U	2.5	5 U	2.5	5 U
8260D	Acetic acid, methyl ester	UG/L	2.5	U	2.5	U	2.5	U	2.5	5 U	2.5	5 U
8260D	Acetone	UG/L	5	U	5	U	5	U	5	5 U	5	5 U
8260D	Benzene	UG/L	0.5	U	0.5	U	0.5	U	0.5	5 U	0.5	5 U
8260D	Bromodichloromethane	UG/L	0.5	U	0.5	U	0.5	U	0.5	5 U	0.5	5 U
8260D	Bromoform	UG/L	0.5	U	0.5	U	0.5	U	0.5	5 U	0.5	5 U
8260D	Bromomethane	UG/L	0.5	U	0.5	U	0.5	U	0.5	i U	0.5	i U

		SDG	460-24	0981-1	460-24	40981-1	460-24	0981-1	460-24	10981-1	460-24	10981-1
		Location	28			9MI		ML		MU		MU
	Sa	mple Date	8/13/			/2021		/2021		/2021		/2021
	-	Sample ID	MW-28		-	9MI-XX		9ML-XX	-	9MU-XX		/-501
		QC Code	F			FS		S		-S		D.
			Final	Final								
Method	Parameter	Unit	Result	Qualifier								
8260D	Carbon disulfide	UG/L	0.5	U								
8260D	Carbon tetrachloride	UG/L	0.5	U								
8260D	Chlorobenzene	UG/L	0.5	U								
8260D	Chlorodifluoromethane	UG/L	1	U	1	. U	0.88	J	4.9		4.2	
8260D	Chloroethane	UG/L	0.5	U								
8260D	Chloroform	UG/L	0.5	U								
8260D	Chloromethane	UG/L	0.5	U								
8260D	cis-1,2-Dichloroethene	UG/L	130		6.2	<u>.</u>	0.26	J	21		19	
8260D	cis-1,3-Dichloropropene	UG/L	0.5	U								
8260D	Cyclohexane	UG/L	0.5	U								
8260D	Dibromochloromethane	UG/L	0.5	U	0.5	U	0.5 U		0.5 U		0.5	U
8260D	Dichlorodifluoromethane	UG/L	0.5	U								
8260D	Ethylbenzene	UG/L	0.5	U								
8260D	Freon 115	UG/L	5	U	5	U	5	U	5	U	5	U
8260D	Freon 123	UG/L	1	U	1	. U	1	U	1	U	1	U
8260D	Isopropylbenzene	UG/L	0.5	U								
8260D	Methyl cyclohexane	UG/L	0.5	U								
8260D	Methyl Tertbutyl Ether	UG/L	0.5	U								
8260D	Methylene chloride	UG/L	0.5	U								
8260D	Styrene	UG/L	0.5	U								
8260D	Tetrachloroethene	UG/L	13		25	,	4.4		6.2		6	
8260D	Toluene	UG/L	0.5	U								
8260D	trans-1,2-Dichloroethene	UG/L	0.37	J	0.5	U	0.5	U	0.32	J	0.5	U
8260D	trans-1,3-Dichloropropene	UG/L	0.5	U								
8260D	Trichloroethene	UG/L	11		4.1		12		15		15	
8260D	Trichlorofluoromethane	UG/L	0.5	U								
8260D	Vinyl chloride	UG/L	0.5	U								

		SDG	460-24	10981-1	460-24	10981-1	460-24	10981-1	460-24	10981-1	460-24	10981-1
		Location	28	BMI	39	9MI	39	ML	39	MU	39	MU
		Sample Date	8/13	/2021	8/12	/2021	8/12	/2021	8/12	/2021	8/12	/2021
		Sample ID	MW-2	8MI-XX	MW-3	9MI-XX	MW-3	9ML-XX	MW-39	9MU-XX	MW	/-501
		QC Code	F	=S	ı	FS	F	-S	F	-S	F	:D
			Final	Final								
Method	Parameter	Unit	Result	Qualifier								
8260D	Xylene, o	UG/L	0.5	U	0.5	U	0.5 U		0.5 U		0.5	U
8260D	Xylenes (m&p)	UG/L	0.5	U								
8260D	Xylenes, Total	UG/L	1	U	1	U	1	U	1	U	1	U

		SDG	460-24	0981-1	460-24	10981-1	460-24	10981-1	460-24	40981-1	460-2	40981-1
	Lo	ocation	43	MI	43	MU	46	SMI	46	SML	46	5ML
	Samp	le Date	8/13/	/2021	8/13	/2021	8/13	/2021	8/13	/2021	8/13	3/2021
	Sar	nple ID	MW-43	3MI-XX	MW-43	3MU-XX	MW-4	6MI-XX	MW-4	6ML-XX	MW	V-502
	Q	C Code	F	S	F	-S	F	-S	1	FS		FD
			Final	Final								
Method	Parameter	Unit	Result	Qualifier								
8260D	1,1,1-Trichloroethane	UG/L	0.5	U	0.5	U	0.5	U	0.5	U	0.5	5 U
8260D	1,1,2,2-Tetrachloroethane	UG/L	0.5	U	0.5	U	0.5	U	0.5	U	0.5	5 U
8260D	1,1,2-Trichloro-1,2,2-Trifluoroethane (Freon 113)	UG/L	2.2		0.58		27		2.5	1	2.7	7 ј
8260D	1,1,2-Trichloroethane	UG/L	0.5	U	0.5	U	0.5	U	0.5	U	0.2	<u>2</u> J
8260D	1,1-Dichloroethane	UG/L	0.5	U	0.5	U	0.54		0.5	U	0.5	5 U
8260D	1,1-Dichloroethene	UG/L	0.5	U	0.5	U	1.1		0.5	U	0.5	5 U
8260D	1,1-Difluoroethane (Freon 152a)	UG/L	1	U	1	U	1	U	1	. U	1	LU
8260D	1,2,4-Trichlorobenzene	UG/L	0.5	U	0.5	U	0.5	U	0.5	U	0.5	5 U
8260D	1,2-Dibromo-3-chloropropane	UG/L	0.5 U		0.5	U	0.5	U	0.5	U	0.5	5 U
8260D	1,2-Dibromoethane	UG/L	0.5	U	0.5 U		0.5	U	0.5 U		0.5	5 U
8260D	1,2-Dichlorobenzene	UG/L	0.5	U	0.5	U	0.5 U		0.5 U		0.5	5 U
8260D	1,2-Dichloroethane	UG/L	0.5	U	0.5	U	1.4		0.5	U	0.45	5 J
8260D	1,2-Dichloropropane	UG/L	0.5	U	0.5	U	0.43	J	0.5	U	0.5	5 U
8260D	1,3-Dichlorobenzene	UG/L	0.5	U	0.5	U	0.5	U	0.5	U	0.5	5 U
8260D	1,4-Dichlorobenzene	UG/L	0.5	U	0.5	U	0.5	U	0.5	U	0.5	5 U
8260D	2-Butanone	UG/L	2.5	U	2.5	U	2.5	U	2.5	U	2.5	5 U
8260D	2-Hexanone	UG/L	2.5	U	2.5	U	2.5	U	2.5	U	2.5	5 U
8260D	4-Methyl-2-pentanone	UG/L	2.5	U	2.5	U	2.5	U	2.5	U	2.5	5 U
8260D	Acetic acid, methyl ester	UG/L	2.5		2.5	U	2.5	U	2.5	U	2.5	5 U
8260D	Acetone	UG/L	5	U	5	U	5	U	5	U	5	5 U
8260D	Benzene	UG/L	0.5	U	0.5	U	0.5	U	0.5	U	0.5	5 U
8260D	Bromodichloromethane	UG/L	0.5		0.5		0.5		0.5			5 U
8260D	Bromoform	UG/L	0.5	U	0.5	U	0.5	U	0.5	U	0.5	5 U
8260D	Bromomethane	UG/L	0.5	U	0.5	U	0.5	U	0.5	U	0.5	5 U

		SDG	460-240981-1	460-240981-1	460-240981-1	460-240981-1	460-240981-1
		Location	43MI	43MU	46MI	46ML	46ML
		Sample Date	8/13/2021	8/13/2021	8/13/2021	8/13/2021	8/13/2021
		Sample ID	MW-43MI-XX	MW-43MU-XX	MW-46MI-XX	MW-46ML-XX	MW-502
		QC Code	FS	FS	FS	FS	FD
			Final Final				
Method	Parameter	Unit	Result Qualifier				
8260D	Carbon disulfide	UG/L	0.5 U				
8260D	Carbon tetrachloride	UG/L	0.5 U				
8260D	Chlorobenzene	UG/L	0.5 U				
8260D	Chlorodifluoromethane	UG/L	4	0.8 J	4	1.6	1.3
8260D	Chloroethane	UG/L	0.5 U				
8260D	Chloroform	UG/L	0.5 U	0.5 U	1.4	0.55	0.43 J
8260D	Chloromethane	UG/L	0.5 U				
8260D	cis-1,2-Dichloroethene	UG/L	35	6.5	470	47	46
8260D	cis-1,3-Dichloropropene	UG/L	0.5 U				
8260D	Cyclohexane	UG/L	0.5 U				
8260D	Dibromochloromethane	UG/L	0.5 U				
8260D	Dichlorodifluoromethane	UG/L	0.5 U				
8260D	Ethylbenzene	UG/L	0.5 U				
8260D	Freon 115	UG/L	5 U	5 U	5 U	5 U	5 U
8260D	Freon 123	UG/L	1 U	1 U	1 U	1 U	1 U
8260D	Isopropylbenzene	UG/L	0.5 U				
8260D	Methyl cyclohexane	UG/L	0.5 U				
8260D	Methyl Tertbutyl Ether	UG/L	0.5 U				
8260D	Methylene chloride	UG/L	0.5 U				
8260D	Styrene	UG/L	0.5 U				
8260D	Tetrachloroethene	UG/L	3.6	1	44	3.8	4
8260D	Toluene	UG/L	0.5 U				
8260D	trans-1,2-Dichloroethene	UG/L	0.5 U	0.5 U	1.6	0.35 J	0.5 U
8260D	trans-1,3-Dichloropropene	UG/L	0.5 U				
8260D	Trichloroethene	UG/L	11	2.5	140	23	23
8260D	Trichlorofluoromethane	UG/L	0.5 U	0.5 U	1.4	0.95	0.85
8260D	Vinyl chloride	UG/L	0.5 U				

					460.040004.4							
		SDG	460-240981-1		460-240981-1		460-240981-1		460-240981-1		460-24	10981-1
		Location	43	43MI		MU	46MI		46ML		46	5ML
		Sample Date	8/13	/2021	8/13	/2021	8/13	/2021	8/13/2021		8/13	/2021
		Sample ID			MW-4	3MU-XX	MW-4	6MI-XX	MW-4	6ML-XX	MW	/-502
		QC Code	FS		ı	FS	!	FS	ı	-S	F	:D
			Final Final		Final	Final	Final	Final	Final	Final	Final	Final
Method	Parameter	Unit	Result	Qualifier	Result Qualifier		Result Qualifier		Result Qualifier		Result	Qualifier
8260D	Xylene, o	UG/L	0.5 U		0.5	U	0.5 U		0.5 U		0.5 เ	
8260D	Xylenes (m&p)	UG/L	0.5 U		0.5 U		0.5 U		0.5 U		0.5	U
8260D	Xylenes, Total	UG/L	1 U		1 U		1 U		1 U		1 U	

		SDG	460-24	0981-1	460-24	10981-1	460-24	10981-1	460-24	10981-1	460-24	10981-1
	L	ocation	4	GL	4	MI	4	MI	8	GL	8	GU
	Samp	le Date	8/10	/2021	8/10	/2021	8/10	/2021	8/11	/2021	8/11	/2021
	Sai	mple ID	MW-4	IGL-XX	MW-4	4MI-XX	MW	/-500	MW-8	8GL-XX	MW-8	3GU-XX
	C	QC Code	F	S	1	FS	F	D	ı	FS		-s
			Final	Final	Final	Final	Final	Final	Final	Final	Final	Final
Method	Parameter	Unit	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result Qualifier		Result	Qualifier
8260D	1,1,1-Trichloroethane	UG/L	0.5	U	0.5	U	0.5 U		0.5 U		0.5	U
8260D	1,1,2,2-Tetrachloroethane	UG/L	0.5	U	0.5	U	0.5 U		0.5	U	0.5	U
8260D	1,1,2-Trichloro-1,2,2-Trifluoroethane (Freon 113)	UG/L	0.5	U	0.54		0.46 J		2.5		0.5	U
8260D	1,1,2-Trichloroethane	UG/L	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U
8260D	1,1-Dichloroethane	UG/L	0.5	U	0.5	U	0.5	U	0.28	J	0.5	U
8260D	1,1-Dichloroethene	UG/L	0.5	U	0.5	U	0.5	U	0.98		0.39	J
8260D	1,1-Difluoroethane (Freon 152a)	UG/L	1	U	1 U		1 U		1	U	1	U
8260D	1,2,4-Trichlorobenzene	UG/L	0.5	U	0.5	0.5 U		0.5 U		0.5 U		U
8260D	1,2-Dibromo-3-chloropropane	UG/L	L 0.5 U		0.5 U		0.5	U	0.5 U		0.5	U
8260D	1,2-Dibromoethane	UG/L	0.5	U	0.5 U		0.5 U		0.5 U		0.5	U
8260D	1,2-Dichlorobenzene	UG/L	0.5	U	0.5 U		0.5 U		0.5 U		0.5	U
8260D	1,2-Dichloroethane	UG/L	0.5	U	0.5	U	0.5 U		0.5	U	0.5	U
8260D	1,2-Dichloropropane	UG/L	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U
8260D	1,3-Dichlorobenzene	UG/L	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U
8260D	1,4-Dichlorobenzene	UG/L	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U
8260D	2-Butanone	UG/L	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U
8260D	2-Hexanone	UG/L	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U
8260D	4-Methyl-2-pentanone	UG/L	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U
8260D	Acetic acid, methyl ester	UG/L	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U
8260D	Acetone	UG/L	5	U	5	U	5	U	5	U	5	U
8260D	Benzene	UG/L	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U
8260D	Bromodichloromethane	UG/L	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U
8260D	Bromoform	UG/L	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U
8260D	Bromomethane	UG/L	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U

			450.0	10001.1	460.0	10001 1	460.0		460.0	10004 4	460.0	10001.1
		SDG		10981-1		40981-1		10981-1		10981-1		10981-1
		Location		GL		MI		MI		GL		GU
		ple Date	-	/2021	-	/2021	-	/2021	-	/2021	-	/2021
		ample ID		4GL-XX		4MI-XX		/-500		3GL-XX		3GU-XX
		QC Code		=S		FS .		D.		=S		FS .
			Final	Final								
Method		Unit	Result	Qualifier								
8260D	Carbon disulfide	UG/L	0.5		0.5		0.5		0.5		0.5	
8260D	Carbon tetrachloride	UG/L	0.5		0.5		0.5		0.5		0.5	
8260D	Chlorobenzene	UG/L	0.5		0.5		0.5 U		0.5		0.5	
8260D	Chlorodifluoromethane	UG/L		U		. U	1 U		4.5			U
8260D	Chloroethane	UG/L	0.5		0.5		0.5 U		0.5		0.5	
8260D	Chloroform	UG/L	0.5		0.5		0.5 U		0.5		0.5	
8260D	Chloromethane	UG/L			0.5 UJ		0.75 J		0.5		0.5	
8260D	cis-1,2-Dichloroethene	UG/L			3.9		4.8		14		0.5	
8260D	cis-1,3-Dichloropropene	UG/L	0.5	U	0.5	U	0.5	U	0.5	U	0.5	
8260D	Cyclohexane	UG/L	0.5	U	0.5 U		0.5	U	0.5 U		0.5	U
8260D	Dibromochloromethane	UG/L			0.5 U		0.5	U	0.5 U		0.5	U
8260D	Dichlorodifluoromethane	UG/L	0.5	U	0.5 U		0.5 U		0.5 U		0.5	U
8260D	Ethylbenzene	UG/L	0.5	U	0.5	U	0.5 U		0.5 U		0.5	U
8260D	Freon 115	UG/L	5	U	5	U	5	U	5	U	5	U
8260D	Freon 123	UG/L	1	U	1	. U	1	U	1	U	1	U
8260D	Isopropylbenzene	UG/L	0.5	U								
8260D	Methyl cyclohexane	UG/L	0.5	U								
8260D	Methyl Tertbutyl Ether	UG/L	0.5	U								
8260D	Methylene chloride	UG/L	0.5	U								
8260D	Styrene	UG/L	0.5	U								
8260D	Tetrachloroethene	UG/L	0.77		1.3	}	1.6		8.5		0.66	
8260D	Toluene	UG/L	0.5	U								
8260D	trans-1,2-Dichloroethene	UG/L	0.5	U	0.5	U	0.5	U	0.36	J	0.5	U
8260D	trans-1,3-Dichloropropene	UG/L	0.5	U								
8260D	Trichloroethene	UG/L	0.94		1.4		1.8		11		0.8	
8260D	Trichlorofluoromethane	UG/L	0.5		0.5		0.5		0.5	U	0.5	
8260D	Vinyl chloride	UG/L	0.5		0.5		0.5		0.5		0.5	

		SDG	460-240981-1		460-240981-1		460-240981-1		460-240981-1		460-24	40981-1
		Location	4	GL	4	MI	4MI		8GL		80	GU
		Sample Date	8/10	/2021	8/10	/2021	8/10	/2021	8/11/2021		8/11	/2021
		Sample ID	MW-4GL-XX		MW-4	4MI-XX	MW	/-500	MW-8GL-XX		KX MW-8GU	
		QC Code	FS		ı	FS	F	:D	F	-S	F	FS
			Final Final		Final	Final	Final	Final	Final	Final	Final	Final
Method	Parameter	Unit	Result	Qualifier	Result	Result Qualifier		Result Qualifier		Result Qualifier		Qualifier
8260D	Xylene, o	UG/L	0.5 U		0.5	U	0.5 U		0.5	U	0.5	U
8260D	Xylenes (m&p)	UG/L	0.5 U		0.5 U		0.5 U		0.5 U		0.5	U
8260D	Xylenes, Total	UG/L	1 U		1 U		1 U		1 U		1 U	

		SDG	460-24	0981-1	460-24	40981-1	460-24	10981-1	460-24	40981-1	460-24	40981-1
	Lo	cation	81	ML	NO:	5535	N13	3221	N1:	3266	N1:	3889
	Samp	le Date	8/11	/2021	8/13	/2021	8/16	/2021	8/16	5/2021	8/16	5/2021
	San	nple ID	MW-8	BML-XX	IW-N5	5535-XX	IW-N1	3221-XX	IW-N1	3266-XX	IW-N1	3889-XX
	Q	C Code	F	:5	ı	FS	ı	FS	1	FS		FS
			Final	Final	Final	Final	Final	Final	Final	Final	Final	Final
Method	Parameter	Unit	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier
8260D	1,1,1-Trichloroethane	UG/L	0.5	U	0.5	U	0.5 U		0.5 U		0.5	U
8260D	1,1,2,2-Tetrachloroethane	UG/L	0.5	U	0.5	U	0.5 U		0.5	5 U	0.5	U
8260D	1,1,2-Trichloro-1,2,2-Trifluoroethane (Freon 113)	UG/L	0.85		0.5	U	0.55		0.5	5 U	1.1	L
8260D	1,1,2-Trichloroethane	UG/L	0.5	U	0.5	U	0.5	U	0.5 U		0.5	U
8260D	1,1-Dichloroethane	UG/L	0.5	U	0.5	U	0.5	U	0.5	5 U	0.5	U
8260D	1,1-Dichloroethene	UG/L	0.5	U	0.5	U	0.5	U	0.5	5 U	0.5 U	
8260D	1,1-Difluoroethane (Freon 152a)	UG/L	1	U	1	. U	1	U	1	. U	1	LU
8260D	1,2,4-Trichlorobenzene	UG/L	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U
8260D	1,2-Dibromo-3-chloropropane	UG/L	0.5	U	0.5	U	0.5 U		0.5 U		0.5	; U
8260D	1,2-Dibromoethane	UG/L	0.5	U	0.5 U		0.5 U		0.5 U		0.5	; U
8260D	1,2-Dichlorobenzene	UG/L	0.5	U	0.5 U		0.5 U		0.5 U		0.5	; U
8260D	1,2-Dichloroethane	UG/L	0.5	U	0.5	U	0.5 U		0.5 U		0.5	; U
8260D	1,2-Dichloropropane	UG/L	0.5	U	0.5	U	0.5	U	0.5	U	0.5	; U
8260D	1,3-Dichlorobenzene	UG/L	0.5		0.5		0.5		0.5		0.5	
8260D	1,4-Dichlorobenzene	UG/L	0.5	U	0.5	U	0.5	U	0.5	U	0.5	; U
8260D	2-Butanone	UG/L	2.5	U	2.5	U	2.5	U	2.5	U	2.5	; U
8260D	2-Hexanone	UG/L	2.5	U	2.5	U	2.5	U	2.5	U	2.5	Ü
8260D	4-Methyl-2-pentanone	UG/L	2.5	U	2.5	U	2.5	U	2.5	U	2.5	; U
8260D	Acetic acid, methyl ester	UG/L	2.5	U	2.5	U	2.5	U	2.5		2.5	
8260D	Acetone	UG/L	5	U	5	U	5	U	5	5 U	5	5 U
8260D	Benzene	UG/L	0.5	U	0.5	U	0.5	U	0.5	5 U	0.5	i U
8260D	Bromodichloromethane	UG/L	0.5	U	0.5	U	0.5	U	0.5	5 U	0.5	Ü
8260D	Bromoform	UG/L	G/L 0.5 U		0.5	U	0.5	U	0.5	U	0.5	i U
8260D	Bromomethane	UG/L	0.5	U	0.5	U	0.5	U	0.5	5 U	0.5	5 U

		SDG	460-240981-1	460-240981-1	460-240981-1	460-240981-1	460-240981-1
		Location	8ML	N05535	N13221	N13266	N13889
		Sample Date	8/11/2021	8/13/2021	8/16/2021	8/16/2021	8/16/2021
		Sample ID	MW-8ML-XX	 IW-N5535-XX	IW-N13221-XX	IW-N13266-XX	IW-N13889-XX
		QC Code	FS	FS	FS	FS	FS
		•	Final Final				
Method	Parameter	Unit	Result Qualifier				
8260D	Carbon disulfide	UG/L	0.5 U				
8260D	Carbon tetrachloride	UG/L	0.5 U				
8260D	Chlorobenzene	UG/L	0.5 U				
8260D	Chlorodifluoromethane	UG/L	0.85 J	1 U	1 U	1 U	1 U
8260D	Chloroethane	UG/L	0.5 U				
8260D	Chloroform	UG/L	0.5 U	0.5 U	0.36 J	0.5 U	2.5
8260D	Chloromethane	UG/L	0.68	0.5 U	0.5 U	0.5 U	0.5 U
8260D	cis-1,2-Dichloroethene	UG/L	6.2	0.5 U	4.9	0.52	10
8260D	cis-1,3-Dichloropropene	UG/L	0.5 U				
8260D	Cyclohexane	UG/L	0.5 U				
8260D	Dibromochloromethane	UG/L	0.5 U				
8260D	Dichlorodifluoromethane	UG/L	0.5 U				
8260D	Ethylbenzene	UG/L	0.5 U				
8260D	Freon 115	UG/L	5 U	5 U	5 U	5 U	5 U
8260D	Freon 123	UG/L	1 U	1 U	1 U	1 U	1 U
8260D	Isopropylbenzene	UG/L	0.5 U				
8260D	Methyl cyclohexane	UG/L	0.5 U				
8260D	Methyl Tertbutyl Ether	UG/L	0.5 U				
8260D	Methylene chloride	UG/L	0.5 U				
8260D	Styrene	UG/L	0.5 U				
8260D	Tetrachloroethene	UG/L	11	0.5 U	1.5	0.5 U	2.8
8260D	Toluene	UG/L	0.5 U				
8260D	trans-1,2-Dichloroethene	UG/L	0.5 U				
8260D	trans-1,3-Dichloropropene	UG/L	0.5 U				
8260D	Trichloroethene	UG/L	3.3	0.5 U	1.9	0.36 J	3.9
8260D	Trichlorofluoromethane	UG/L	0.5 U				
8260D	Vinyl chloride	UG/L	0.5 U				

					T									
		SDG	460-240981-1		460-240981-1		460-240981-1		460-240981-1		460-24	10981-1		
		Location	81	8ML		5535	N13221		N13266		N13	3889		
		Sample Date	8/11	/2021	8/13	/2021	8/16	/2021	8/16/2021		8/16	/2021		
		Sample ID	MW-8ML-XX		IW-N5	IW-N5535-XX		3221-XX	IW-N13266-XX		IW-N13	3889-XX		
		QC Code	FS		1	FS	1	FS	F	=S	F	FS		
			Final Final		Final	Final	Final	Final	Final	Final	Final	Final		
Method	Parameter	Unit	Result	Qualifier	Result	Result Qualifier		Result Qualifier		Result Qualifier		Qualifier		
8260D	Xylene, o	UG/L	0.5 U		0.5 U		0.5 U		0.5 U		0.5	U		
8260D	Xylenes (m&p)	UG/L	0.5 U		0.5 U		0.5 U		0.5 U 0.5 U		0.5 U		0.5	U
8260D	Xylenes, Total	UG/L	1 U		1 U		1 U		1 U		1 U			

		SDG	460-24	0981-1	460-24	40981-1	460-24	10981-1	460-24	10981-1	460-24	41354-1
	Lo	cation	C	(C	(QC	(QC	C	QC	27	7MI
	Samp	le Date	8/10,	/2021	8/11	/2021	8/11	/2021	8/12	/2021	8/16	5/2021
	Sar	nple ID	QC-EB10	00821-01	QC-TB1	10821-XX	QC-EB1	10821-01	QC-EB1	20821-01	MW-2	27MI-XX
	Q	C Code	E	В	l l	EB	l l	В	E	В		FS
			Final	Final	Final	Final	Final	Final	Final	Final	Final	Final
Method	Parameter	Unit	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier
8260D	1,1,1-Trichloroethane	UG/L	0.5	U	0.5	U	0.5 U		0.5 U		0.5	U
8260D	1,1,2,2-Tetrachloroethane	UG/L	0.5	U	0.5	U	0.5 U		0.5 U		0.5	, U
8260D	1,1,2-Trichloro-1,2,2-Trifluoroethane (Freon 113)	UG/L	0.5	U	0.5	U	0.5 U		0.5	U	2.3	j
8260D	1,1,2-Trichloroethane	UG/L	0.5	U	0.5	U	0.5	U	0.5	U	0.5	, U
8260D	1,1-Dichloroethane	UG/L	0.5 U		0.5 U		0.5 U		0.5 U		0.5	, U
8260D	1,1-Dichloroethene	UG/L	0.5	0.5 U		0.5 U		0.5 U		0.5 U)
8260D	1,1-Difluoroethane (Freon 152a)	UG/L	1	U	1	. U	1	U	1	U	1	U
8260D	1,2,4-Trichlorobenzene	UG/L	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U
8260D	1,2-Dibromo-3-chloropropane	UG/L	0.5	U	0.5 U		0.5	U	0.5 U		0.5	U
8260D	1,2-Dibromoethane	UG/L	0.5	U	0.5 U		0.5 U		0.5 U		0.5	U
8260D	1,2-Dichlorobenzene	UG/L	0.5	U	0.5	0.5 U		0.5 U		0.5 U		5 U
8260D	1,2-Dichloroethane	UG/L	0.5	U	0.5	U	0.5 U		0.5 U		0.5	· U
8260D	1,2-Dichloropropane	UG/L	0.5	U	0.5	U	0.5	U	0.5	U	0.5	· U
8260D	1,3-Dichlorobenzene	UG/L	0.5		0.5		0.5		0.5		0.5	
8260D	1,4-Dichlorobenzene	UG/L	0.5		0.5		0.5		0.5		0.5	
8260D	2-Butanone	UG/L	2.5		2.5		2.5		2.5		2.5	
8260D	2-Hexanone	UG/L	2.5		2.5		2.5		2.5		2.5	
8260D	4-Methyl-2-pentanone	UG/L	2.5		2.5		2.5		2.5		2.5	
8260D	Acetic acid, methyl ester	UG/L	2.5		2.5		2.5		2.5	U	2.5	
8260D	Acetone	UG/L		U		U		U	9			5 U
8260D	Benzene	UG/L	0.5		0.5		0.5		0.5		0.5	
8260D	Bromodichloromethane	UG/L	0.5		0.5	U	0.5		0.5		0.5	
8260D	Bromoform	UG/L	i/L 0.5 U		0.5	U	0.5	U	0.5	U	0.5	U
8260D	Bromomethane	UG/L	0.5	U	0.5	U	0.5	U	0.5	U	0.5	, U

		SDG	460-240981-1	460-240981-1	460-240981-1	460-240981-1	460-241354-1
		Location	QC	QC	QC	QC	27MI
		Sample Date	8/10/2021	8/11/2021	8/11/2021	8/12/2021	8/16/2021
		Sample ID	QC-EB100821-01	QC-TB110821-XX	QC-EB110821-01	QC-EB120821-01	MW-27MI-XX
		QC Code	EB	EB	EB	EB	FS
		,	Final Final				
Method	Parameter	Unit	Result Qualifier				
8260D	Carbon disulfide	UG/L	0.5 U	0.5 U	0.5 U	1.4	0.5 U
8260D	Carbon tetrachloride	UG/L	0.5 U				
8260D	Chlorobenzene	UG/L	0.5 U				
8260D	Chlorodifluoromethane	UG/L	1 U	1 U	1 U	1 U	6.2
8260D	Chloroethane	UG/L	0.5 U				
8260D	Chloroform	UG/L	0.5 U	0.5 U	0.5 U	0.5 U	0.69
8260D	Chloromethane	UG/L	0.5 U				
8260D	cis-1,2-Dichloroethene	UG/L	0.5 U	0.5 U	0.5 U	0.5 U	11
8260D	cis-1,3-Dichloropropene	UG/L	0.5 U				
8260D	Cyclohexane	UG/L	0.5 U				
8260D	Dibromochloromethane	UG/L	0.5 U				
8260D	Dichlorodifluoromethane	UG/L	0.5 U				
8260D	Ethylbenzene	UG/L	0.5 U				
8260D	Freon 115	UG/L	5 U	5 U	5 U	5 U	5 U
8260D	Freon 123	UG/L	1 U	1 U	1 U	1 U	1 U
8260D	Isopropylbenzene	UG/L	0.5 U				
8260D	Methyl cyclohexane	UG/L	0.5 U				
8260D	Methyl Tertbutyl Ether	UG/L	0.5 U	0.5 U	0.5 U	0.5 U	0.37 J
8260D	Methylene chloride	UG/L	0.48 J	0.5 U	0.37 J	0.5 U	0.5 U
8260D	Styrene	UG/L	0.5 U				
8260D	Tetrachloroethene	UG/L	0.5 U	0.5 U	0.5 U	0.5 U	11
8260D	Toluene	UG/L	0.5 U				
8260D	trans-1,2-Dichloroethene	UG/L	0.5 U				
8260D	trans-1,3-Dichloropropene	UG/L	0.5 U				
8260D	Trichloroethene	UG/L	0.5 U	0.5 U	0.5 U	0.5 U	8.7
8260D	Trichlorofluoromethane	UG/L	0.5 U				
8260D	Vinyl chloride	UG/L	0.5 U				

		SDC	460-240981-1		460-240981-1		460-240981-1		460-240981-1		460.27	11254.1
		SDG	460-24	10981-1	460-24	40981-1	460-24	10981-1	400-240961-1		460-24	11354-1
		Location		QC		QC	QC		QC		27	7MI
		Sample Date	8/10	/2021	8/11	/2021	8/11/2021		8/12/2021		8/16	/2021
		Sample ID	QC-EB100821-01		QC-TB1	10821-XX	QC-EB110821-01		QC-EB120821-01		01 MW-27MI	
		QC Code	EB		E	ЕВ	E	В	E	В	F	FS
			Final Final		Final Final		Final	Final	Final	Final	Final	Final
Method	Parameter	Unit	Result	Qualifier	Result	Result Qualifier		Result Qualifier		Result Qualifier		Qualifier
8260D	Xylene, o	UG/L	0.5 U		0.5	U	0.5 U		0.5 U		0.5	
8260D	Xylenes (m&p)	UG/L	0.5 U		0.5 U		0.5 U		0.5 U		0.5	U
8260D	Xylenes, Total	UG/L	1 U		1 U		1 U		1 U		1 U	

			460-24	1354-1	460-24	1354-1	460-24	1354-1	460-24	41354-1	460-2	41354-1
	Lo	ocation	310	GL	31	.MI	31	ML	38	BML	38	BMU
	Samp	le Date	8/16/	2021	8/16	/2021	8/16	/2021	8/16	/2021	8/16	5/2021
	Sar	nple ID	MW-31	LGL-XX	MW-3	1MI-XX	MW-3	1ML-XX	MW-3	8ML-XX	MW-3	8MU-XX
	Q	C Code	F:	S	ſ	-S	F	-S	1	FS		FS
			Final	Final								
Method	Parameter	Unit	Result	Qualifier								
8260D	1,1,1-Trichloroethane	UG/L	0.5	U	0.5	U	0.5	U	0.5 U		0.5	i U
8260D	1,1,2,2-Tetrachloroethane	UG/L	0.5	U	0.5	U	0.5 U		0.5	U	0.5	5 U
8260D	1,1,2-Trichloro-1,2,2-Trifluoroethane (Freon 113)	UG/L	4		18		6.8		4.8	}	0.5	5 U
8260D	1,1,2-Trichloroethane	UG/L	0.5	U	0.5	U	0.5 U		0.5	U	0.5	5 U
8260D	1,1-Dichloroethane	UG/L	0.5	U	0.57		0.5	U	0.5	U	0.5	5 U
8260D	1,1-Dichloroethene	UG/L	0.5	0.5 U		1		0.58		0.5 U		i U
8260D	1,1-Difluoroethane (Freon 152a)	UG/L	1	U	1 U		1 U		1 U		1	U
8260D	1,2,4-Trichlorobenzene	UG/L	0.5	U	0.5	U	0.5	U	0.5	U	0.5	5 U
8260D	1,2-Dibromo-3-chloropropane	UG/L	0.5	U	0.5 U		0.5	U	0.5 U		0.5	5 U
8260D	1,2-Dibromoethane	UG/L	0.5	U	0.5 U		0.5 U		0.5 U		0.5	5 U
8260D	1,2-Dichlorobenzene	UG/L	0.5	U	0.5 U		0.5 U		0.5 U		0.5	5 U
8260D	1,2-Dichloroethane	UG/L	0.5	U	0.86		0.52		0.61		0.5	5 U
8260D	1,2-Dichloropropane	UG/L	0.5	U	0.42	J	0.5	U	0.5	U	0.5	5 U
8260D	1,3-Dichlorobenzene	UG/L	0.5	U	0.5	U	0.5	U	0.5	U	0.5	5 U
8260D	1,4-Dichlorobenzene	UG/L	0.5	U	0.5	U	0.5	U	0.5	U	0.5	5 U
8260D	2-Butanone	UG/L	2.5	U	2.5	U	2.5	U	2.5	U	2.5	5 U
8260D	2-Hexanone	UG/L	2.5	U	2.5	U	2.5	U	2.5	U	2.5	5 U
8260D	4-Methyl-2-pentanone	UG/L	2.5	U	2.5	U	2.5	U	2.5	U	2.5	5 U
8260D	Acetic acid, methyl ester	UG/L	2.5	U	2.5	U	2.5	U	2.5	U	2.5	5 U
8260D	Acetone	UG/L	5	U	5	U	5	U	5	U	5	5 U
8260D	Benzene	UG/L	0.5	U	0.5	U	0.5	U	0.5	U	0.5	5 U
8260D	Bromodichloromethane	UG/L	0.5	U	0.5	U	0.5	U	0.5	U	0.5	5 U
8260D	Bromoform	UG/L	0.5	U	0.5	U	0.5	U	0.5	U	0.5	5 U
8260D	Bromomethane	UG/L	0.5	U	0.5	U	0.5	U	0.5	U	0.5	i U

		SDG	460-241354-1	460-241354-1	460-241354-1	460-241354-1	460-241354-1
		Location	31GL	31MI	31ML	38ML	38MU
		Sample Date	8/16/2021	8/16/2021	8/16/2021	8/16/2021	8/16/2021
		Sample ID	MW-31GL-XX	MW-31MI-XX	MW-31ML-XX	MW-38ML-XX	MW-38MU-XX
		QC Code	FS	FS	FS	FS	FS
		,	Final Final				
Method	Parameter	Unit	Result Qualifier				
8260D	Carbon disulfide	UG/L	0.5 U				
8260D	Carbon tetrachloride	UG/L	0.5 U				
8260D	Chlorobenzene	UG/L	0.5 U				
8260D	Chlorodifluoromethane	UG/L	1.8	8.1	11	0.96 J	1.3
8260D	Chloroethane	UG/L	0.5 U				
8260D	Chloroform	UG/L	0.5 U	0.9	0.45 J	0.65	0.5 U
8260D	Chloromethane	UG/L	0.5 U				
8260D	cis-1,2-Dichloroethene	UG/L	100	470	130	91	40
8260D	cis-1,3-Dichloropropene	UG/L	0.5 U				
8260D	Cyclohexane	UG/L	0.5 U				
8260D	Dibromochloromethane	UG/L	0.5 U				
8260D	Dichlorodifluoromethane	UG/L	0.5 U				
8260D	Ethylbenzene	UG/L	0.5 U				
8260D	Freon 115	UG/L	5 U	5 U	5 U	5 U	5 U
8260D	Freon 123	UG/L	1 U	1 U	1 U	1 U	1 U
8260D	Isopropylbenzene	UG/L	0.5 U				
8260D	Methyl cyclohexane	UG/L	0.5 U				
8260D	Methyl Tertbutyl Ether	UG/L	0.5 U	0.23 J	0.5 U	0.5 U	0.22 J
8260D	Methylene chloride	UG/L	0.5 U				
8260D	Styrene	UG/L	0.5 U				
8260D	Tetrachloroethene	UG/L	9.4	47	14	14	1.1
8260D	Toluene	UG/L	0.5 U				
8260D	trans-1,2-Dichloroethene	UG/L	0.7	1.7	0.55	0.92	0.33 J
8260D	trans-1,3-Dichloropropene	UG/L	0.5 U				
8260D	Trichloroethene	UG/L	22	88	36	35	5.5
8260D	Trichlorofluoromethane	UG/L	0.5 U	0.5 U	0.37 J+	0.5 U	0.5 U
8260D	Vinyl chloride	UG/L	0.5 U				

					1							
		SDG	460-241354-1		460-241354-1		460-241354-1		460-24	11354-1	460-24	41354-1
		Location	31	31GL		LMI	31	.ML	38	BML	38	MU
		Sample Date	8/16	/2021	8/16	/2021	8/16	/2021	8/16	/2021	8/16	/2021
		Sample ID	MW-3	MW-31GL-XX		1MI-XX	MW-3	1ML-XX	MW-3	8ML-XX	MW-38	8MU-XX
		QC Code	F	FS		FS		FS	F	=S	F	FS
			Final	Final Final		Final	Final	Final	Final	Final	Final	Final
Method	Parameter	Unit	Result	Qualifier	Result Qualifier		Result Qualifier		Result	Qualifier	Result	Qualifier
8260D	Xylene, o	UG/L	0.5 U		0.5 U		0.5 U		0.5	U	0.5	U
8260D	Xylenes (m&p)	UG/L	0.5 U		0.5 U		0.5 U		0.5	U	0.5	U
8260D	Xylenes, Total	UG/L	1 U		1 U		1 U		1	U	1	U

		SDG	460-24	1354-1	460-24	460-241354-1		1354-1	460-24	41354-1	460-2	41354-1
	Lo	ocation	45	MI	45	MU	50	IMI	50	ML	5	1MI
	Samp	le Date	8/17	/2021	8/17	/2021	8/17	/2021	8/17	/2021	8/18	3/2021
	Sar	nple ID	MW-4	5MI-XX	MW-45	5MU-XX	MW-5	0MI-XX	MW-5	0ML-XX	MW-5	51MI-XX
	Q	C Code	F	:S	F	- S	F	-S	ı	FS		FS
			Final	Final	Final	Final	Final	Final	Final	Final	Final	Final
Method	Parameter	Unit	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier
8260D	1,1,1-Trichloroethane	UG/L	0.5	U	0.5	U	0.5	U	0.5	U		
8260D	1,1,2,2-Tetrachloroethane	UG/L	0.5	U	0.5	U	0.5	U	0.5	U		
8260D	1,1,2-Trichloro-1,2,2-Trifluoroethane (Freon 113)	UG/L	3.2		10		1.4		0.5	U	3	3
8260D	1,1,2-Trichloroethane	UG/L	0.5	U	0.5	U	0.5	U	0.5	U		
8260D	1,1-Dichloroethane	UG/L	0.5	U	0.47	J	0.5	U	0.5	U		
8260D	1,1-Dichloroethene	UG/L	0.5	U	0.41	J	0.5	U	0.5	U		
8260D	1,1-Difluoroethane (Freon 152a)	UG/L	1	U	1	U	1	U	1	. U		
8260D	1,2,4-Trichlorobenzene	UG/L	0.5 U		0.5	U	0.5	U	0.5	U		
8260D	1,2-Dibromo-3-chloropropane	UG/L	0.5 U		0.5	U	0.5	U	0.5	U		
8260D	1,2-Dibromoethane	UG/L	0.5 U		0.5	U	0.5	U	0.5	U		
8260D	1,2-Dichlorobenzene	UG/L	0.5	U	0.5 U		0.5	U	0.5	U		
8260D	1,2-Dichloroethane	UG/L	0.5	U	0.57		0.5 U		0.5	U		
8260D	1,2-Dichloropropane	UG/L	0.5	U	0.5	U	0.5	U	0.5	U		
8260D	1,3-Dichlorobenzene	UG/L	0.5	U	0.5	U	0.5	U	0.5	U		
8260D	1,4-Dichlorobenzene	UG/L	0.5	U	0.5	U	0.5	U	0.5	U		
8260D	2-Butanone	UG/L	2.5	U	2.5	U	2.5	U	2.5	U		
8260D	2-Hexanone	UG/L	2.5	U	2.5	U	2.5	U	2.5	U		
8260D	4-Methyl-2-pentanone	UG/L	2.5	U	2.5	U	2.5	U	2.5	U		
8260D	Acetic acid, methyl ester	UG/L	2.5	U	2.5	U	2.5	U	2.5	U		
8260D	Acetone	UG/L	5 U		5	U	5	U	5	U		
8260D	Benzene	UG/L			0.5 U		0.5 U		0.5	U		
8260D	Bromodichloromethane	UG/L	0.5	U	0.5	U	0.5	U	0.5	U		
8260D	Bromoform	UG/L	0.5		0.5	U	0.5	U	0.5	U		
8260D	Bromomethane	UG/L	0.5 U		0.5 U		0.5 U		0.5	U		

		SDG			460-24	1354-1	460-24	1354-1	460-24	1354-1	460-24	11354-1
		Location	45MI		451	MU	50	MI	50	ML	53	LMI
		Sample Date	8/17/2021		8/17,	/2021	8/17,	/2021	8/17	/2021	8/18	/2021
		Sample ID	MW-45MI-X			5MU-XX		OMI-XX		0ML-XX	-	1MI-XX
		QC Code	FS			<u>-</u> S		S		:S		FS
			Final Fir	nal	Final	Final	Final	Final	Final	Final	Final	Final
Method	Parameter	Unit	Result Qua	lifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier
8260D	Carbon disulfide	UG/L	0.5 U		0.5	U	0.5	U	0.5	U		
8260D	Carbon tetrachloride	UG/L	0.44 J		0.5	U	0.5	U	0.5	U		
8260D	Chlorobenzene	UG/L	0.5 U		0.5	U	0.5	U	0.5	U		
8260D	Chlorodifluoromethane	UG/L	0.72 J		2.1		1	U	1	U	0.91	J
8260D	Chloroethane	UG/L	0.5 U		0.5	U	0.5	U	0.5	U		
8260D	Chloroform	UG/L	0.48 J		0.62		0.5	U	0.5	U		
8260D	Chloromethane	UG/L	0.5 U		0.5	U	0.5	U	0.5	U		
8260D	cis-1,2-Dichloroethene	UG/L	30		240		24		0.46	J	53	
8260D	cis-1,3-Dichloropropene	UG/L	0.5 U		0.5	U	0.5	U	0.5	U		
8260D	Cyclohexane	UG/L	0.5 U		0.5 U		0.5	U	0.5	U		
8260D	Dibromochloromethane	UG/L	0.5 U		0.5 U		0.5	U	0.5	U		
8260D	Dichlorodifluoromethane	UG/L	0.5 U			0.5 U		U	0.5	U		
8260D	Ethylbenzene	UG/L	0.5 U		0.5 U		0.5 U		0.5	U		
8260D	Freon 115	UG/L	5 U		5 U		5 U		5	U		
8260D	Freon 123	UG/L	1 U		1	U	1	U	1	U		
8260D	Isopropylbenzene	UG/L	0.5 U		0.5	U	0.5	U	0.5	U		
8260D	Methyl cyclohexane	UG/L	0.5 U		0.5	U	0.5	U	0.5	U		
8260D	Methyl Tertbutyl Ether	UG/L	0.5 U		0.5	U	0.5	U	0.5	U		
8260D	Methylene chloride	UG/L	0.5 U		0.5	U	0.5	U	0.5	U		
8260D	Styrene	UG/L	0.5 U		0.5	U	0.5	U	0.5	U		
8260D	Tetrachloroethene	UG/L	3.6		21		3		0.5	U	2.4	
8260D	Toluene	UG/L	0.5 U		0.5		0.5	U	0.5	U		
8260D	trans-1,2-Dichloroethene	UG/L	0.5 U		6.1		0.29	J	0.5	U		
8260D	trans-1,3-Dichloropropene	UG/L	0.5 U		0.5	U	0.5	U	0.5	U		
8260D	Trichloroethene	UG/L	19		45		5.5		0.5	U	12	
8260D	Trichlorofluoromethane	UG/L	0.63 J+		0.38	J+	0.5	U	0.5	U		
8260D	Vinyl chloride	UG/L	0.5 U		0.5 U		0.5 U		0.5	U		

			I									
		SDG	460-241354-1		460-241354-1		460-241354-1		460-24	1354-1	460-24	41354-1
		Location	45	SMI .	45	MU	50	IMI	50	ML	51	1MI
		Sample Date	8/17	/2021	8/17	/2021	8/17	/2021	8/17	/2021	8/18	3/2021
		Sample ID	MW-45MI-XX		MW-4	5MU-XX	MW-5	0MI-XX	MW-5	0ML-XX	MW-5	51MI-XX
		QC Code	FS		FS		FS		ı	-S	ı	FS
			Final	Final Final		Final	Final	Final	Final	Final	Final	Final
Method	Parameter	Unit	Result	Qualifier	Result Qualifier		Result Qualifier		Result	Qualifier	Result	Qualifier
8260D	Xylene, o	UG/L	0.5 U		0.5	U	0.5 U		0.5	U		
8260D	Xylenes (m&p)	UG/L	0.5 U		0.5 U		0.5 U		0.5	U		
8260D	Xylenes, Total	UG/L	1 U		1 U		1 U		1	U		

		SDG	460-24	1354-1	460-24	11354-1	460-24	11354-1	460-24	41354-1	460-2	41354-1
	Le	ocation	51	ML	52	2MI	52	:ML	53	BML	NO	9687
	Samp	le Date	8/18	/2021	8/18	/2021	8/18	/2021	8/18	/2021	8/18	3/2021
	Sar	mple ID	MW-5	1ML-XX	MW-5	2MI-XX	MW-5	2ML-XX	MW-5	3ML-XX	IW-N9	9687-XX
	q	C Code	F	-S	ſ	FS	ſ	-s	1	FS		FS
			Final	Final								
Method	Parameter	Unit	Result	Qualifier								
8260D	1,1,1-Trichloroethane	UG/L			0.5	U	0.5	U	0.5	U		
8260D	1,1,2,2-Tetrachloroethane	UG/L			0.5	U	0.5	U	0.5	U		
8260D	1,1,2-Trichloro-1,2,2-Trifluoroethane (Freon 113)	UG/L	2.8		0.85		5.7		0.5	U	0.5	5 U
8260D	1,1,2-Trichloroethane	UG/L			0.5	U	0.5	U	0.5	U		
8260D	1,1-Dichloroethane	UG/L			0.5	U	0.5	U	0.5	U		
8260D	1,1-Dichloroethene	UG/L			0.5	U	0.5	U	0.5	U		
8260D	1,1-Difluoroethane (Freon 152a)	UG/L			1	U	1	U	1	. U		
8260D	1,2,4-Trichlorobenzene	UG/L			0.5	U	0.5	U	0.5	U		
8260D	1,2-Dibromo-3-chloropropane	UG/L			0.5	U	0.5	U	0.5	U		
8260D	1,2-Dibromoethane	UG/L				U	0.5	U	0.5	U		
8260D	1,2-Dichlorobenzene	UG/L			0.5 U		0.5	U	0.5	U		
8260D	1,2-Dichloroethane	UG/L			0.5	U	0.54		0.5	U		
8260D	1,2-Dichloropropane	UG/L			0.5	U	0.5	U	0.5	U		
8260D	1,3-Dichlorobenzene	UG/L			0.5	U	0.5	U	0.5	U		
8260D	1,4-Dichlorobenzene	UG/L			0.5	U	0.5	U	0.5	U		
8260D	2-Butanone	UG/L			2.5	U	2.5	U	2.5	U		
8260D	2-Hexanone	UG/L			2.5	U	2.5	U	2.5	U		
8260D	4-Methyl-2-pentanone	UG/L			2.5	U	2.5	U	2.5	U		
8260D	Acetic acid, methyl ester	UG/L			2.5	U	2.5	U	2.5	U		
8260D	Acetone	UG/L			5	U	5	U	5	U		
8260D	Benzene	UG/L			0.5	U	0.5 U		0.5	U		
8260D	Bromodichloromethane	UG/L			0.5	U	0.5	U	0.5	U		
8260D	Bromoform	UG/L			0.5	U	0.5	U	0.5	U		
8260D	Bromomethane	UG/L			0.5 U		0.5 U		0.5	U		

		SDG	1		460-24	11354-1	460-24	1354-1	460-24	11354-1	460-2	41354-1
		Location	51	ML	52	2MI		ML	53	ML	N0	9687
		Sample Date	8/18	/2021	8/18	/2021	8/18	/2021	8/18	/2021	8/18	3/2021
		Sample ID	MW-5	1ML-XX		2MI-XX	MW-5	2ML-XX	MW-5	3ML-XX	IW-NS	9687-XX
		QC Code	F	=S	F	=S	F	:S	F	=S		FS
			Final	Final								
Method	Parameter	Unit	Result	Qualifier								
8260D	Carbon disulfide	UG/L				0.5 U		U	0.5	U		
8260D	Carbon tetrachloride	UG/L			0.5	U	0.5	U	0.5	U		
8260D	Chlorobenzene	UG/L			0.5	U	0.5	U	0.5	U		
8260D	Chlorodifluoromethane	UG/L	3.1		1	U	1	U	1	U	1	L U
8260D	Chloroethane	UG/L			0.5	U	0.5	U	0.5	U		
8260D	Chloroform	UG/L			0.5	U	0.7		0.67			
8260D	Chloromethane	UG/L			0.5	U	0.5	U	0.5	U		
8260D	cis-1,2-Dichloroethene	UG/L	32		18		59		1.6		0.26	5 J
8260D	cis-1,3-Dichloropropene	UG/L			0.5	0.5 U		U	0.5	U		
8260D	Cyclohexane	UG/L				0.5 U		U	0.5	U		
8260D	Dibromochloromethane	UG/L			0.5 U		0.5	U	0.5	U		
8260D	Dichlorodifluoromethane	UG/L			0.5	0.5 U		U	0.5	U		
8260D	Ethylbenzene	UG/L			0.5	U	0.5	0.5 U		U		
8260D	Freon 115	UG/L			5	U	5 U		5	U		
8260D	Freon 123	UG/L			1	U	1	U	1	U		
8260D	Isopropylbenzene	UG/L			0.5	U	0.5	U	0.5	U		
8260D	Methyl cyclohexane	UG/L			0.5	U	0.5	U	0.5	U		
8260D	Methyl Tertbutyl Ether	UG/L			0.5	U	0.5	U	0.5	U		
8260D	Methylene chloride	UG/L			0.5	U	0.5	U	0.5	U		
8260D	Styrene	UG/L			0.5	U	0.5	U	0.5	U		
8260D	Tetrachloroethene	UG/L	3.4		4.1		13		0.63		0.5	5 U
8260D	Toluene	UG/L			0.5	U	0.5	U	0.5	U		
8260D	trans-1,2-Dichloroethene	UG/L			1.8		8.7		0.5	U		
8260D	trans-1,3-Dichloropropene	UG/L			0.5	U	0.5	U	0.5	U		
8260D	Trichloroethene	UG/L	11		13		36		1.1		0.5	5 U
8260D	Trichlorofluoromethane	UG/L			0.5	U	1.2		0.5	U		
8260D	Vinyl chloride	UG/L			0.5	U	0.5 U		0.5	U		

		SDG	460-241354-1		460-241354-1		460-241354-1		460-24	11354-1	460-24	11354-1
		Location	51	51ML		:MI	52	:ML	53	ML	NOS	9687
		Sample Date	8/18	/2021	8/18	/2021	8/18	/2021	8/18	/2021	8/18	/2021
		Sample ID	MW-51ML-XX		MW-5	2MI-XX	MW-5	2ML-XX	MW-5	3ML-XX	IW-N9	687-XX
		QC Code	FS		FS		ı	-s	F	-S	ı	FS
			Final	Final Final		Final	Final	Final	Final	Final	Final	Final
Method	Parameter	Unit	Result	Qualifier	Result Qualifier		Result Qualifier		Result	Qualifier	Result	Qualifier
8260D	Xylene, o	UG/L	·		0.5 U		0.5 U		0.5	U		
8260D	Xylenes (m&p)	UG/L			0.5 U		0.5 U		0.5	U		
8260D	Xylenes, Total	UG/L			1 U		1 U		1	U		

	SD. Locatio		460-24	1789-1	460-24	11789-1	460-24	11789-1	460-24	1789-1		
	L	ocation	16	GL	38	BMI	53	BMI	C	QC		
	Samp	le Date	8/23,	/2021	8/25	/2021	8/26	/2021	8/26	/2021		
	Sai	nple ID	MW-1	6GL-XX	MW-3	8MI-XX	MW-5	3MI-XX	Blank(QC	-TB260821		
	C	C Code	F	S	F	-S	F	=S	1	ТВ		
			Final	Final	Final	Final	Final	Final	Final	Final		
Method	Parameter	Unit	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier		
8260D	1,1,1-Trichloroethane	UG/L	0.5	O	0.5	U	0.5	U	0.5	U		
8260D	1,1,2,2-Tetrachloroethane	UG/L	0.5	U	0.5	U	0.5	U	0.5	U		
8260D	1,1,2-Trichloro-1,2,2-Trifluoroethane (Freon 113)	UG/L	0.5	U	14		0.5	U	0.5	U		
8260D	1,1,2-Trichloroethane	UG/L	0.5	U	0.5	U	0.5	U	0.5	U		
8260D	1,1-Dichloroethane	UG/L	0.5	U	0.5		0.5	U	0.5	U		
8260D	1,1-Dichloroethene	UG/L	0.5	U	0.92		0.5	U	0.5	U		
8260D	1,1-Difluoroethane (Freon 152a)	UG/L	1	U	1	U	1	U	1	U		
8260D	1,2,4-Trichlorobenzene	UG/L	0.5 U		0.5	U	0.5	U	0.5	U		
8260D	1,2-Dibromo-3-chloropropane	UG/L	0.5	0.5 U		U	0.5	U	0.5	U		
8260D	1,2-Dibromoethane	UG/L	0.5	U	0.5	U	0.5	U	0.5	U		
8260D	1,2-Dichlorobenzene	UG/L	0.5 U		0.5	U	0.5	U	0.5	U		
8260D	1,2-Dichloroethane	UG/L	0.5	U	0.5		0.5	U	0.5	U		
8260D	1,2-Dichloropropane	UG/L	0.5	U	0.5	U	0.5	U	0.5	U		
8260D	1,3-Dichlorobenzene	UG/L	0.5	U	0.5	U	0.5	U	0.5	U		
8260D	1,4-Dichlorobenzene	UG/L	0.5	U	0.5	U	0.5	U	0.5	U		
8260D	2-Butanone	UG/L	2.5	U	2.5	U	2.5	U	2.5	U		
8260D	2-Hexanone	UG/L	2.5	U	2.5	U	2.5	U	2.5	U		
8260D	4-Methyl-2-pentanone	UG/L	2.5	U	2.5	U	2.5	U	2.5	U		
8260D	Acetic acid, methyl ester	UG/L	2.5	U	2.5	U	2.5	U	2.5	U		
8260D	Acetone	UG/L	5	U	5	U	5	U	5	U		
8260D	Benzene	UG/L	0.5	U	0.5	U	0.5	U	0.5	U		
8260D	Bromodichloromethane	UG/L			0.5 U				0.5	U	0.5	U
8260D	Bromoform	UG/L	0.5	U	0.5	U	0.5	U	0.5	U		
8260D	Bromomethane	UG/L	0.5	U	0.5	U	0.5	U	0.5	U		

		SDG	460-24	1789-1	460-24	1789-1	460-24	1789-1	460-24	11789-1
		Location	16	GL	38	BMI	53	BMI	C	QC
		Sample Date	8/23,	/2021	8/25	/2021	8/26	/2021	8/26	/2021
		Sample ID	MW-1	6GL-XX	MW-3	8MI-XX	MW-5	3MI-XX	Blank(QC	-TB260821
		QC Code	F	S	F	:S	F	-S	1	ГВ
			Final	Final	Final	Final	Final	Final	Final	Final
Method	Parameter	Unit	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier
8260D	Carbon disulfide	UG/L	0.5	U	0.5	U	0.5	U	0.5	U
8260D	Carbon tetrachloride	UG/L	0.5	U	0.5	U	0.5	U	0.5	U
8260D	Chlorobenzene	UG/L	0.5	U	0.5	U	0.5	U	0.5	U
8260D	Chlorodifluoromethane	UG/L	1	U	4.4		1	U	1	U
8260D	Chloroethane	UG/L	0.5	U	0.5	U	0.5	U	0.5	U
8260D	Chloroform	UG/L	0.5	U	0.99		0.5	U	0.5	U
8260D	Chloromethane	UG/L	0.5	U	0.5	U	0.5	U	0.5	U
8260D	cis-1,2-Dichloroethene	UG/L	0.43	J	230		2.3		0.5	U
8260D	cis-1,3-Dichloropropene	UG/L	0.5 U		0.5	U	0.5	U	0.5	U
8260D	Cyclohexane	UG/L	0.5	U	0.5	U	0.5	U	0.5	U
8260D	Dibromochloromethane	UG/L			0.5	U	0.5	U	0.5	U
8260D	Dichlorodifluoromethane	UG/L	0.5	U	0.5	U	0.5	U	0.5	U
8260D	Ethylbenzene	UG/L	0.5	U	0.5	U	0.5	U	0.5	U
8260D	Freon 115	UG/L	5	U	5	U	5	U	5	U
8260D	Freon 123	UG/L	1	U	1	U	1	U	1	U
8260D	Isopropylbenzene	UG/L	0.5		0.5		0.5		0.5	
8260D	Methyl cyclohexane	UG/L	0.5		0.5		0.5	U	0.5	U
8260D	Methyl Tertbutyl Ether	UG/L	0.5		0.5		0.5		0.5	
8260D	Methylene chloride	UG/L	0.5	U	0.5	U	0.5	U	0.5	U
8260D	Styrene	UG/L	0.5	U	0.5	U	0.5	U	0.5	U
8260D	Tetrachloroethene	UG/L	0.5	U	46		1		0.5	U
8260D	Toluene	UG/L	0.5		0.5	U	0.5	U	0.5	U
8260D	trans-1,2-Dichloroethene	UG/L	0.5		3.1		0.5		0.5	
8260D	trans-1,3-Dichloropropene	UG/L	0.5		0.5		0.5		0.5	
8260D	Trichloroethene	UG/L	0.5	U	74		3.9		0.5	U
8260D	Trichlorofluoromethane	UG/L	0.5	U	0.36	J	0.5	U	0.5	U
8260D	Vinyl chloride	UG/L			0.5 U		0.5 U		0.5	U

		SDG	460-241789-1		460-241789-1		460-24	11789-1	460-24	1789-1
		Location	16	GL .	38	BMI	53	BMI	C	QC
		Sample Date	8/23	/2021	8/25	/2021	8/26	/2021	8/26	/2021
		Sample ID	ple ID MW-16GL-XX		MW-3	8MI-XX	MW-5	3MI-XX	Blank(QC	-TB260821-
		QC Code	Code FS		F	-S	F	FS	1	ТВ
			Final	Final	Final	Final	Final	Final	Final	Final
Method	Parameter	Unit	Result	Result Qualifier		Result Qualifier		Qualifier	Result	Qualifier
8260D	Xylene, o	UG/L	0.5	U	0.5 U		0.5	U	0.5	U
8260D	Xylenes (m&p)	UG/L	0.5 U		0.5 U		0.5	U	0.5	U
8260D	Xylenes, Total	UG/L	1 U		1 U		1	U	1	U

Table 2 - Summary of Analytical Results Data Usability Summary Report Quarterly Monitoring - Q3 2021

Lockheed Martin Corporation Former Unisys Facility -- Great Neck

Lake Success, New York

		SDG	460-240981-1		460-24	40981-1	460-24	10981-1	460-24	40981-1	460-24	10981-1
	Loc	ation	43	BMI	43	MU	46	5MI	46	SML	46	ML
	Sample	Date	8/13	/2021	8/13	/2021	8/13	/2021	8/13	/2021	8/13	/2021
	Sample II		MW-4	3MI-XX	MW-43	3MU-XX	MW-4	6MI-XX	MW-4	6ML-XX	MW	/-502
	QC Code		FS		ı	FS	1	FS	ı	FS	F	:D
			Final	Final	Final	Final	Final	Final	Final	Final	Final	Final
Method	Parameter Unit		Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier
SM 4500 Cl- B	Chloride MG/	L	15.5		12.5		29.4		9		8.5	

Table 2 - Summary of Analytical Results Data Usability Summary Report

Quarterly Monitoring - Q3 2021

Lockheed Martin Corporation Former Unisys Facility -- Great Neck Lake Success, New York

SDG		460-24	10981-1	460-240981-1		460-24	11354-1	460-241354-1		460-241354-1		
Location		NO5	5535	QC		31GL		31MI		31	.ML	
Sample Date		8/13	/2021	8/11/2021 8/16/2021		8/16/2021		8/16/2021				
Sample ID		IW-N5	IW-N5535-XX QC-EB110821-01 MW-31GL-XX MW-31MI-XX		1MI-XX	MW-31ML-XX						
	QC Code		F	-S	I	EB	1	FS	ı	FS		S
			Final	Final	Final	Final	Final	Final	Final	Final	Final	Final
Method Parameter Unit		Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	
SM 4500 Cl- B	SM 4500 Cl- B Chloride MG/L		1,440	_	5	5 U		100		75.5		

Table 2 - Summary of Analytical Results **Data Usability Summary Report**

Quarterly Monitoring - Q3 2021

Lockheed Martin Corporation Former Unisys Facility -- Great Neck Lake Success, New York

SDG		460-24	11354-1	460-241354-1		460-24	41354-1	460-241354-1		460-241354-1		
Location		45	45MI		45MU		2MI	52ML		53ML		
Sample Date		8/17	/2021	8/17/2021 8/18/2021		8/18/2021		8/18/2021				
Sample ID		MW-4	5MI-XX	MW-4	5MU-XX	MW-52MI-XX MW-52ML-XX		MW-5	3ML-XX			
	QC Code		F	- S	1	FS	1	FS	FS		FS	
			Final	Final	Final	Final	Final	Final	Final	Final	Final	Final
Method Parameter Unit		Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	
SM 4500 Cl- B	SM 4500 Cl- B Chloride MG/L		13.5		121		31 12			45		

Table 2 - Summary of Analytical Results Data Usability Summary Report Quarterly Monitoring - Q3 2021

Lockheed Martin Corporation Former Unisys Facility -- Great Neck

Lake Success, New York

		SDG	460-24	1354-1	460-24	41354-1	460-24	41354-1	460-24	41354-1	460-24	11354-1
Location		N04388		N04388		NO:	5099	N12796		N12	2999	
	Sa	mple Date	8/18	/2021	8/18	/2021	8/18	/2021	8/18	/2021	8/18	/2021
		Sample ID	SW	-500	SW-N4	4388-XX	SW-N5	5099-XX	SW-N1	2796-XX	SW-N1	2999-XX
		QC Code	F	:D	ı	FS	1	FS	ı	FS	í	S
			Final	Final	Final	Final	Final	Final	Final	Final	Final	Final
Method	Parameter	Unit	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier
SM 4500 Cl- B	SM 4500 Cl- B Chloride MG/L		88	·	90	90 26.5 50			70			

Table 2 - Summary of Analytical Results Data Usability Summary Report Quarterly Monitoring - Q3 2021 Lockheed Martin Corporation Former Unisys Facility -- Great Neck Lake Success, New York

	SDG			11354-1	460-24	11354-1	460-241789-1		
Location		N13000		N13	3821	53MI			
Sample Date		8/18/2021		8/18	/2021	8/26/2021			
Sample ID		SW-N13000-XX		SW-N1	3821-XX	MW-5	3MI-XX		
		QC Code	FS		F	- S	ı	FS	
		Final	Final	Final	Final	Final	Final		
Method Parameter Unit		Result Qualifier		Result Qualifier		Result	Qualifier		
SM 4500 Cl- B	Chloride	MG/L	45	_	9.5		16		

Table 3 - Summary of Qualification Actions Data Usability Summary Report Quarterly Monitoring - Q3 2021

Lockheed Martin Corporation Former Unisys Facility -- Great Neck Lake Success, New York

							Lab	Lab	Final	Final		\Box
SDG	Method	Lab Sample ID	Sample Date	Field Sample ID	Fraction	Parameter Name	Result	Qualifier	Result	Qualifier	Val Reason Code	Units
460-240981-1	8260D	460-240981-8	8/12/2021	MW-14MI-XX	N	Acetone	5.2		5.2	U	BL2	UG/L
460-240981-1	8260D	460-240981-10	8/11/2021	MW-15ML-XX	N	Chlorodifluoromethane	0.7	J F2	0.7	J+	MSH, MSRPD	UG/L
460-240981-1	8260D	460-240981-3	8/10/2021	MW-4MI-XX	N	Chloromethane	0.5	U	0.5	UJ	FD	UG/L
460-240981-1	8260D	460-240981-25	8/10/2021	MW-500	N	Chloromethane	0.75		0.75	J	FD	UG/L
460-241354-1	8260D	460-241354-4	8/16/2021	MW-31ML-XX	N	Trichlorofluoromethane	0.37	J	0.37	J+	LCSH	UG/L
460-241354-1	8260D	460-241354-8	8/17/2021	MW-45MI-XX	N	Trichlorofluoromethane	0.63		0.63	J+	LCSH	UG/L
460-241354-1	8260D	460-241354-7	8/17/2021	MW-45MU-XX	N	Trichlorofluoromethane	0.38	J	0.38	J+	LCSH	UG/L
460-241354-1	524.2	460-241354-23	8/18/2021	SW-500	N	Freon 115	1	U *- *1	1	UJ	LCSL, LCSRPD	UG/L
460-241354-1	524.2	460-241354-17	8/18/2021	SW-N5099-XX	N	Freon 115	1	U *- *1	1	UJ	LCSL, LCSRPD	UG/L
460-241354-1	524.2	460-241354-17	8/18/2021	SW-N5099-XX	N	Trichlorofluoromethane	0.32	J *+	0.32	J+	LCSH	UG/L
											LCSL, LCSRPD, MSL,	
460-241354-1	524.2	460-241354-19	8/18/2021	SW-N12796-XX	N	Freon 115	1	U F1 F2 *-	1	UJ	MSH, MSRPD	UG/L
460-241354-1	524.2	460-241354-19	8/18/2021	SW-N12796-XX	N	Trichloroethene	5.4	F1	5.4	J-	MSL	UG/L
460-241354-1	524.2	460-241354-19	8/18/2021	SW-N12796-XX	N	Tetrachloroethene	7.3	F1	7.3	J-	MSL	UG/L
460-241354-1	524.2	460-241354-20	8/18/2021	SW-N12999-XX	N	Freon 115	1	U *- *1	1	UJ	LCSL, LCSRPD	UG/L
460-241354-1	524.2	460-241354-21	8/18/2021	SW-N13000-XX	N	Freon 115	1	U *- *1	1	UJ	LCSL, LCSRPD	UG/L
460-241354-1	524.2	460-241354-22	8/18/2021	SW-N13821-XX	N	Freon 115	1	U *- *1	1	UJ	LCSL, LCSRPD	UG/L
460-241354-1	524.2	460-241354-18	8/18/2021	SW-N4388-XX	N	Freon 115	1	U *- *1	1	UJ	LCSL, LCSRPD	UG/L

ATTACHMENT A

SUMMARY OF VALIDATION QC LIMITS FOR SURROGATES, SPIKES, AND DUPLICATES BASED ON THE REGION 2 VALIDATION GUIDELINES

PARAMETER	QC TEST	ANALYTE	WATER	Water
PARAMETER	QC 1E31	ANALTIE	(%R)	(RPD)
	Surrogate	All Surrogate Compounds	80 - 120	
Volatiles	LCS	All Target Compounds	70 - 130	
voiatiles	MS/MSD	All Target Compounds	70 - 130	20
	Field Duplicate	All Target Compounds		50
	LCS	All Target Analytes	80 - 120	
Inorganica Matala	MS/MSD	All Target Analytes	75 -125	20
Inorganics-Metals	Lab Duplicate	All Target Analytes		20
	Field Duplicate	All Target Analytes		20

Notes:

LCS = Laboratory Control Sample

MS/MSD = Matrix spike/ Matrix Spike Duplicate

RPD = Relative percent difference

%R = percent recovery

QC Limits are based on USEPA Region II Data Validation Guidelines and Project QA/QC Objectives

Lockheed Martin Corporation Great Neck Site – Lake Success, New York Wood Environment & Infrastructure Solutions

> DATA USABILITY SUMMARY REPORT QUARTERLY MONITORING – Q3 2021 LOCKHEED MARTIN CORPORATION GREAT NECK SITE LAKE SUCCESS, NEW YORK

> > **ATTACHMENT B**

VOCs

NYSDEC DUSR PROJECT CHEMIST REVIEW RECORD

Project: LMC Great Neck Q3 GWM

Method: 8260D

SDG(s): 460-241789-1, 460-241354-1, 460-240981-1 Laboratory: TAL Edison, NJ

Date: 9/16/2021 Reviewer: Amber Jones

X NYSDEC DUSR Review Level **USEPA** Region II Guideline

☑ Case Narrative Review and COC/Data Package Completeness

COMMENTS

Were problems noted? yes, see attached

Are Field Sample IDs and Locations assigned correctly? YES NO (circle one)

Were all the samples on the COC analyzed for the requested analyses? YES NO (circle one) send revised report

2. Molding time and Sample Collection

All samples were analyzed within the 14 day holding time. YES NO (circle one)

N9687-XX - asked lab to sample SW-5099-XX changed to SW-N5099-XX in TED

Freon 22 - missing from

samples MW-51MI-XX,

MW-51ML-XX, and IW-

3. 🔽 OC Blanks

Are method blanks free of contamination? YES NO (circle one)

Are Trip blanks free of contamination? YES NO (circle one)

see attached - acetone - MW-14MI-XX - U @ sample result - BL2

Are Rinse blanks free of contamination? YES NO NA (circle one)

4. 🗹 Instrument Tuning – Data Package Narrative Review

Did the laboratory narrative identify any results that were not within method criteria? YES NO

If yes, use professional judgment to evaluate data and qualify results if needed

5. Instrument Calibration – Data Package Narrative Review

Did the laboratory narrative identify compounds that were not within criteria in the initial and/or continuing calibration standards? YES NO (circle one)

Initial Calibration %RSD = 20% (30% for 1,1-DCE, chloroform, 1,2-DCP, toluene, ethylbenzene, VC) Initial Avg RRF and Continuing RRF should be ≥ 0.05 and 0.10 for Chloromethane, 1,1-Dichloroethane, Bromoform and 0.30 for Chlorobenzene and 1,1,2,2-Tetrachloroethane

Continuing Calibration %D = 20%

Did the laboratory qualify results based on initial or continuing calibration exceedances? YES NO If yes to above, use professional judgment to evaluate data and qualify results if needed

6. ☑ Internal Standards – Data Package Narrative Review

(Area Limits = -50% to +100%, RTs within 30 seconds of daily CCAL standard (or ICAL midpoint if samples follow ICAL)

Did the laboratory narrative identify any sample internal standards that were not within criteria? YES NO (circle one)

Did the laboratory qualify results based on internal standard exceedances? YES NO If yes to above, use professional judgment to evaluate data and qualify results if needed

7. Zi Surrogate Recovery - Region II limits (water 80-120%, soil 70-130%)

Were all results within Region II limits? YES NO (circle one)

8. Matrix Spike - Region II limits (water and soil 70-130%, water RPD 20, soil RPD 35)

see attached - MW-15ML-XX - freon 22 - J+, MSH, MSRPD Were MS/MSDs submitted/analyzed? YES NO

Were all results within the Region II limits? YES NO NA (circle one)

9. Duplicates - Region II Limits (water RPD 50, soil RPD 100)

Were Field Duplicates submitted/analyzed? YES NO

MW-4MI-XX/MW-500 - chloromethane - UJ/J, FD

Were all results within Region II limits? (soil RPD<100, water RPD<50) YES NO NA

10. Laboratory Control Sample Results - Region II (Water and soil 70-130%) see attached for quals - Freon 11 - subset J+,

LCSH

Were all results were within Region II control limits? YES NO (circle one)

11. Reporting Limits: Were samples analyzed at a dilution? YES NO (circle one)

12. Raw Data Review and Calculation Checks

see attached for calculations

13. Electronic Data Review and Edits

Does the EDD match the Form Is? YES NO (circle one)

14. **Z** Tables and TIC Review

Table 1 (Samples and Analytical Methods)

Table 2 (Analytical Results)

Table 3 (Qualification Actions)

Were all tables produced and reviewed? YES NO (circle one)

Table 4 (TICs) Did lab report TICs? YES NO (circle one)

CASE NARRATIVE

Client: Wood E&I Solutions Inc

Project: LMC Q3 2021 Groundwater Monitoring

Report Number: 460-241789-1

This case narrative is in the form of an exception report, where only the anomalies related to this report, method specific performance and/or QA/QC issues are discussed. If there are no issues to report, this narrative will include a statement that documents that there are no relevant data issues.

It should be noted that samples with elevated Reporting Limits (RLs) as a result of a dilution may not be able to satisfy customer reporting limits in some cases. Such increases in the RLs are unavoidable but acceptable consequence of sample dilution that enables quantification of target analytes or interferences which exceed the calibration range of the instrument.

Calculations are performed before rounding to avoid round-off errors in calculated results.

All holding times were met and proper preservation noted for the methods performed on these samples, unless otherwise detailed in the individual sections below.

RECEIPT

The samples were received on 08/26/2021; the samples arrived in good condition, properly preserved and on ice. The temperature of the coolers at receipt was 1.5 C.

Note: All samples which require thermal preservation are considered acceptable if the arrival temperature is within 2C of the required temperature or method specified range. For samples with a specified temperature of 4C, samples with a temperature ranging from just above freezing temperature of water to 6C shall be acceptable. Samples that are hand delivered immediately following collection may not meet these criteria, however they will be deemed acceptable according to NELAC standards, if there is evidence that the chilling process has begun, such as arrival on ice, etc.

VOLATILE ORGANIC COMPOUNDS (GC/MS) - (LOW LEVEL - LL)(TOTAL)

Samples MW-53MI-XX (460-241789-1), Trip Blank(QC-TB260821-XX) (460-241789-2), MW-38MI-XX (460-241789-3) and MW-16GL-XX (460-241789-4) were analyzed for Volatile Organic Compounds (GC/MS) - (Low Level - LL)(Total) in accordance with EPA SW-846 Method 8260D - Low Level (LL). The samples were analyzed on 08/31/2021 and 09/01/2021.

Freon 115 failed the recovery criteria high for LCS 460-799027/4. Freon 115 failed the recovery criteria high for LCS 460-799165/3. Freon 115 failed the recovery criteria high for LCSD 460-799165/4. Refer to the QC report for details.

See attached for LCS review

No other difficulties were encountered during the Volatiles analysis.

All other quality control parameters were within the acceptance limits.

CHLORIDE

Sample MW-53MI-XX (460-241789-1) was analyzed for chloride in accordance with SM 4500 CL B. The samples were analyzed on 09/15/2021.

No difficulties were encountered during the chloride analysis.

All quality control parameters were within the acceptance limits.

Client: Wood E&I Solutions Inc

Analysis Batch: 799027

Project/Site: LMC Q3 2021 Groundwater Monitoring

Method: 8260D - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: LCS 460-799027/4

Matrix: Water

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Job ID: 460-241789-1

	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Toluene	20.0	19.5		ug/L		98	78 - 119
Chlorobenzene	20.0	19.8		ug/L		99	80 - 119
Ethylbenzene	20.0	19.7		ug/L		98	78 - 120
Styrene	20.0	19.9		ug/L		99	75 - 127
m&p-Xylene	20.0	19.8		ug/L		99	78 - 123
o-Xylene	20.0	20.1		ug/L		100	78 - 122
Xylenes, Total	40.0	39.9		ug/L		100	78 - 122
Freon 113 biased high, samples ND - no quals	20.0	26.5		ug/L		133	59 - 142
Methyl tert-butyl ether	20.0	22.2		ug/L		111	65 - 131
Cyclohexane	20.0	24.8		ug/L		124	67 - 133
1,2-Dibromoethane	20.0	20.8		ug/L		104	69 - 126
1,3-Dichlorobenzene	20.0	20.3		ug/L		101	80 - 121
1,4-Dichlorobenzene	20.0	19.8		ug/L		99	80 - 118
1,2-Dichlorobenzene	20.0	19.7		ug/L		99	79 - 122
Dichlorodifluoromethane	20.0	18.9		ug/L		95	31 - 150
1,2,4-Trichlorobenzene	20.0	20.3		ug/L		102	64 - 132
1,2-Dibromo-3-Chloropropane	20.0	19.5		ug/L		97	41 - 143
Isopropylbenzene	20.0	20.9		ug/L		105	79 - 125
Methyl acetate	40.0	45.3		ug/L		113	70 - 127
Methylcyclohexane biased high, samples ND - no quals	20.0	26.3		ug/L		132	60 - 139
Freon 115	20.0	43.5	*+	ug/L		217	10 - 150
Freon 152a biased high, samples ND - no quals	20.0	22.9		ug/L		114	10 - 150
Freon 123	20.0	22.9		ug/L		115	10 - 150
Freon 22	20.0	23.9		ug/L		119	10 - 150

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	94		75 - 123
Toluene-d8 (Surr)	93		80 - 120
4-Bromofluorobenzene	106		76 - 120
Dibromofluoromethane (Surr)	107		77 - 124

Lab Sample ID: LCSD 460-799027/5

Matrix: Water

Analysis Batch: 799027

Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

/ maryolo Batom / 0002/									
-	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Chloromethane	20.0	19.2		ug/L		96	38 - 150	4	30
Vinyl chloride	20.0	22.4		ug/L		112	61 - 144	3	30
Bromomethane	20.0	18.5		ug/L		92	43 - 150	1	30
Chloroethane	20.0	19.0		ug/L		95	50 - 150	1	30
Methylene Chloride	20.0	19.6		ug/L		98	74 - 127	5	30
Acetone	100	96.3		ug/L		96	61 - 134	2	30
Carbon disulfide	20.0	21.9		ug/L		110	64 - 138	3	30
Freon 11	20.0	24.4		ug/L		122	61 - 140	1	30
1,1-Dichloroethene	20.0	21.3		ug/L		107	68 - 133	5	30
1,1-Dichloroethane	20.0	21.3		ug/L		107	73 - 130	2	30
trans-1,2-Dichloroethene	20.0	21.4		ug/L		107	74 - 126	6	30
cis-1,2-Dichloroethene	20.0	21.2		ug/L		106	78 - 121	6	30

Eurofins TestAmerica, Edison

Client: Wood E&I Solutions Inc

Analysis Batch: 799027

Project/Site: LMC Q3 2021 Groundwater Monitoring

Method: 8260D - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: LCSD 460-799027/5

Matrix: Water 70-130

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Job ID: 460-241789-1

Analyte	Spike Added	_	LCSD Qualifier	Unit	D	%Rec	%Rec. Limits	RPD	RPD Limit
Chloroform	20.0	20.1		ug/L		100	78 - 125	5	30
1,2-Dichloroethane	20.0	20.0		ug/L		100	75 - 121	4	30
Methyl ethyl ketone (MEK)	100	85.3		ug/L		85	69 - 128	8	30
1,1,1-Trichloroethane	20.0	22.2		ug/L		111	68 - 128	2	30
Carbon tetrachloride	20.0	23.0		ug/L		115	56 - 131	1	30
Bromodichloromethane	20.0	21.6		ug/L		108	72 - 121	0	30
1,2-Dichloropropane	20.0	20.5		ug/L		103	76 - 126	4	30
cis-1,3-Dichloropropene	20.0	19.0		ug/L		95	74 - 125	1	30
Trichloroethene	20.0	20.9		ug/L		104	71 - 121	1	30
Dibromochloromethane	20.0	20.2		ug/L		101	58 - 130	3	30
1,1,2-Trichloroethane	20.0	17.1		ug/L		85	74 - 125	8	30
Benzene	20.0	19.6		ug/L		98	78 - 126	1	30
trans-1,3-Dichloropropene	20.0	19.3		ug/L		96	66 - 127	0	30
Bromoform	20.0	20.8		ug/L		104	38 - 144	6	30
Methyl isobutyl ketone (MIBK)	100	100		ug/L		100	69 - 128	3	30
2-Hexanone	100	98.9		ug/L		99	74 - 127	3	30
Tetrachloroethene	20.0	22.6		ug/L		113	70 - 127	1	30
1,1,2,2-Tetrachloroethane	20.0	18.1		ug/L		90	63 - 139	5	30
Toluene	20.0	19.2		ug/L		96	78 - 119	2	30
Chlorobenzene	20.0	19.7		ug/L		99	80 - 119	0	30
Ethylbenzene	20.0	19.2		ug/L		96	78 - 120	2	30
Styrene	20.0	19.4		ug/L		97	75 - 127	2	30
m&p-Xylene	20.0	20.1		ug/L		100	78 - 123	1	30
o-Xylene	20.0	19.4		ug/L		97	78 - 122	3	30
Xylenes, Total	40.0	39.4		ug/L		99	78 - 122	1	30
Freon 113	20.0	24.9		ug/L		125	59 - 142	6	30
Methyl tert-butyl ether	20.0	21.1		ug/L		105	65 - 131	5	30
Cyclohexane	20.0	24.1		ug/L		121	67 - 133	3	30
1,2-Dibromoethane	20.0	19.9		ug/L		100	69 - 126	4	30
1,3-Dichlorobenzene	20.0	19.7		ug/L		98	80 - 121	3	30
1,4-Dichlorobenzene	20.0	19.4		ug/L		97	80 - 118	2	30
1,2-Dichlorobenzene	20.0	19.1		ug/L		96	79 - 122	3	30
Dichlorodifluoromethane	20.0	18.8		ug/L		94	31 - 150	1	30
1,2,4-Trichlorobenzene	20.0	19.8		ug/L		99	64 - 132	3	30
1,2-Dibromo-3-Chloropropane	20.0	19.2		ug/L		96	41 - 143	1	30
Isopropylbenzene	20.0	20.6		ug/L		103	79 - 125	2	30
Methyl acetate	40.0	45.0		ug/L		113	70 - 127	- 1	30
Methylcyclohexane	20.0	25.6		ug/L		128	60 - 139	3	30
Freon 115 biased high, samples ND - no quals	20.0	34.5	*+	ug/L		173	10 - 150	23	30
Freon 152a	20.0	21.6		ug/L		108	10 - 150	6	30
Freon 123	20.0	22.1		ug/L		111	10 - 150	4	30
Freon 22	20.0	22.1		ug/L		110	10 - 150	8	30

	LCSD	LCSD	
Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	93		75 - 123
Toluene-d8 (Surr)	97		80 - 120
4-Bromofluorobenzene	110		76 - 120
Dibromofluoromethane (Surr)	106		77 - 124

Client: Wood E&I Solutions Inc

Project/Site: LMC Q3 2021 Groundwater Monitoring

Method: 8260D - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: LCS 460-799165/3

Matrix: Water Analysis Batch: 799165

associated with sample MW-38MI-XX

70-130

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Job ID: 460-241789-1

	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Toluene	20.0	18.4		ug/L		92	78 - 119
Chlorobenzene	20.0	19.0		ug/L		95	80 - 119
Ethylbenzene	20.0	18.9		ug/L		94	78 - 120
Styrene	20.0	18.7		ug/L		94	75 - 127
m&p-Xylene	20.0	19.1		ug/L		96	78 - 123
o-Xylene	20.0	18.7		ug/L		93	78 - 122
Xylenes, Total	40.0	37.8		ug/L		95	78 - 122
Freon 113	20.0	23.8		ug/L		119	59 - 142
Methyl tert-butyl ether	20.0	20.2		ug/L		101	65 - 131
Cyclohexane	20.0	22.4		ug/L		112	67 - 133
1,2-Dibromoethane	20.0	20.1		ug/L		100	69 - 126
1,3-Dichlorobenzene	20.0	19.2		ug/L		96	80 - 121
1,4-Dichlorobenzene	20.0	19.1		ug/L		96	80 - 118
1,2-Dichlorobenzene	20.0	19.1		ug/L		95	79 - 122
Dichlorodifluoromethane	20.0	16.5		ug/L		83	31 - 150
1,2,4-Trichlorobenzene	20.0	19.1		ug/L		96	64 - 132
1,2-Dibromo-3-Chloropropane	20.0	18.6		ug/L		93	41 - 143
Isopropylbenzene	20.0	19.9		ug/L		99	79 - 125
Methyl acetate	40.0	43.1		ug/L		108	70 - 127
Methylcyclohexane	20.0	23.7		ug/L		119	60 - 139
Freon 115 biased high, sample ND - no quals	20.0	33.9	*+	ug/L		169	10 - 150
Freon 152a	20.0	22.0		ug/L		110	10 - 150
Freon 123	20.0	21.4		ug/L		107	10 - 150
Freon 22	20.0	22.0		ug/L		110	10 - 150

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	93		75 - 123
Toluene-d8 (Surr)	94		80 - 120
4-Bromofluorobenzene	110		76 - 120
Dibromofluoromethane (Surr)	105		77 - 124

Lab Sample ID: LCSD 460-799165/4

Matrix: Water

Analysis Batch: 799165

Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Chloromethane	20.0	20.7		ug/L		104	38 - 150	5	30
Vinyl chloride	20.0	21.4		ug/L		107	61 - 144	6	30
Bromomethane	20.0	21.4		ug/L		107	43 - 150	4	30
Chloroethane	20.0	20.8		ug/L		104	50 - 150	5	30
Methylene Chloride	20.0	21.0		ug/L		105	74 - 127	5	30
Acetone	100	99.1		ug/L		99	61 - 134	2	30
Carbon disulfide	20.0	22.5		ug/L		112	64 - 138	7	30
Freon 11	20.0	24.2		ug/L		121	61 - 140	8	30
1,1-Dichloroethene	20.0	21.5		ug/L		108	68 - 133	9	30
1,1-Dichloroethane	20.0	22.1		ug/L		111	73 - 130	6	30
trans-1,2-Dichloroethene	20.0	22.1		ug/L		110	74 - 126	5	30
cis-1,2-Dichloroethene	20.0	22.9		ug/L		115	78 - 121	8	30

Eurofins TestAmerica, Edison

Client: Wood E&I Solutions Inc

Analysis Batch: 799165

Project/Site: LMC Q3 2021 Groundwater Monitoring

Method: 8260D - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: LCSD 460-799165/4

Matrix: Water

70-130

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Job ID: 460-241789-1

•	Spike	LCSD	LCSD			%Rec.		RPE
Analyte	Added	Result	Qualifier Uni	t D'	%Rec	Limits	RPD	Limi
Chloroform	20.0	21.7	ug/l		109	78 - 125	7	30
1,2-Dichloroethane	20.0	20.7	ug/l	<u>-</u>	104	75 - 121	3	30
Methyl ethyl ketone (MEK)	100	88.0	ug/l	_	88	69 - 128	1	30
1,1,1-Trichloroethane	20.0	23.2	ug/l	_	116	68 - 128	6	30
Carbon tetrachloride	20.0	23.7	ug/l	_	119	56 - 131	6	30
Bromodichloromethane	20.0	22.2	ug/l	_	111	72 - 121	5	30
1,2-Dichloropropane	20.0	21.6	ug/l	_	108	76 - 126	5	30
cis-1,3-Dichloropropene	20.0	19.4	ug/l	_	97	74 - 125	3	30
Trichloroethene	20.0	21.5	ug/l	_	108	71 - 121	6	30
Dibromochloromethane	20.0	21.7	ug/l	_	108	58 - 130	3	30
1,1,2-Trichloroethane	20.0	17.9	ug/l	_	89	74 - 125	2	30
Benzene	20.0	19.7	ug/l	_	99	78 - 126	3	30
trans-1,3-Dichloropropene	20.0	19.7	ug/l	_	98	66 - 127	3	30
Bromoform	20.0	21.4	ug/l	_	107	38 - 144	2	30
Methyl isobutyl ketone (MIBK)	100	105	ug/l	_	105	69 - 128	1	30
2-Hexanone	100	101	ug/l	_	101	74 - 127	1	30
Tetrachloroethene	20.0	23.3	ug/l	_	116	70 - 127	6	30
1,1,2,2-Tetrachloroethane	20.0	18.2	ug/l	_	91	63 - 139	3	30
Toluene	20.0	19.7	ug/l	_	98	78 - 119	6	30
Chlorobenzene	20.0	20.0	ug/l		100	80 - 119	5	30
Ethylbenzene	20.0	19.6	ug/l	_	98	78 - 120	4	30
Styrene	20.0	20.3	ug/l	_	102	75 - 127	8	30
m&p-Xylene	20.0	20.0	ug/l	_	100	78 - 123	5	30
o-Xylene	20.0	20.2	ug/l	_	101	78 - 122	8	30
Xylenes, Total	40.0	40.2	ug/l	-	100	78 - 122	6	30
Freon 113	20.0	25.2	ug/l	_	126	59 - 142	6	30
Methyl tert-butyl ether	20.0	21.7	ug/l	_	108	65 - 131	7	30
Cyclohexane	20.0	23.5	ug/l	_	118	67 - 133	5	30
1,2-Dibromoethane	20.0	20.5	ug/l	_	102	69 - 126	2	30
1,3-Dichlorobenzene	20.0	19.8	ug/l	_	99	80 - 121	3	30
1,4-Dichlorobenzene	20.0	19.9	ug/l	_	100	80 - 118	4	30
1,2-Dichlorobenzene	20.0	19.4	ug/l	_	97	79 - 122	2	30
Dichlorodifluoromethane	20.0	17.3	ug/l	_	87	31 - 150	5	30
1,2,4-Trichlorobenzene	20.0	20.2	ug/l	_	101	64 - 132	5	30
1,2-Dibromo-3-Chloropropane	20.0	18.3	ug/l	_	91	41 - 143	2	30
Isopropylbenzene	20.0	21.4	ug/l	_	107	79 - 125	7	30
Methyl acetate	40.0	43.6	ug/l	_	109	70 - 127	1	30
Methylcyclohexane	20.0	24.7	ug/l	_	123	60 - 139	4	30
Freon 115 biased high, sample ND - no quals	20.0	44.8	*+ ug/l	_	224	10 - 150	28	30
Freon 152a	20.0	23.7	ug/l	-	119	10 - 150	7	30
Freon 123	20.0	22.7	ug/l	_	114	10 - 150	6	30
Freon 22	20.0	22.9	ug/l		114	10 - 150	4	30

	LCSD	LCSD	
Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	97		75 - 123
Toluene-d8 (Surr)	92		80 - 120
4-Bromofluorobenzene	109		76 - 120
Dibromofluoromethane (Surr)	106		77 - 124

CASE NARRATIVE

Client: Wood E&I Solutions Inc

Project: LMC Q3 2021

Report Number: 460-241354-1

This case narrative is in the form of an exception report, where only the anomalies related to this report, method specific performance and/or QA/QC issues are discussed. If there are no issues to report, this narrative will include a statement that documents that there are no relevant data issues.

It should be noted that samples with elevated Reporting Limits (RLs) as a result of a dilution may not be able to satisfy customer reporting limits in some cases. Such increases in the RLs are unavoidable but acceptable consequence of sample dilution that enables quantification of target analytes or interferences which exceed the calibration range of the instrument.

Calculations are performed before rounding to avoid round-off errors in calculated results.

All holding times were met and proper preservation noted for the methods performed on these samples, unless otherwise detailed in the individual sections below.

RECEIPT

The samples were received on 08/20/2021; the samples arrived in good condition, properly preserved and on ice. The temperature of the coolers at receipt was 1.5 C.

Note: All samples which require thermal preservation are considered acceptable if the arrival temperature is within 2C of the required temperature or method specified range. For samples with a specified temperature of 4C, samples with a temperature ranging from just above freezing temperature of water to 6C shall be acceptable. Samples that are hand delivered immediately following collection may not meet these criteria, however they will be deemed acceptable according to NELAC standards, if there is evidence that the chilling process has begun, such as arrival on ice, etc.

DRINKING WATER VOLATILES (GC-MS)

Samples SW-5099-XX (460-241354-17), SW-N4388-XX (460-241354-18), SW-N12796-XX (460-241354-19), SW-N12999-XX (460-241354-20), SW-N13000-XX (460-241354-21), SW-N13821-XX (460-241354-22), SW-500 (460-241354-23) and QC-TB160821-XX (460-241354-24) were analyzed for drinking water volatiles (GC-MS) in accordance with EPA Method 524.2. The samples were analyzed on 08/29/2021.

Freon 115 failed the recovery criteria low for LCS 460-798696/16. Bromomethane failed the recovery criteria high. For LCSD 460-798696/17, Freon 115 failed the recovery criteria low. Bromomethane and Freon 11 failed the recovery criteria high. Also, Freon 115 exceeded the RPD limit. Refer to the QC report for details.

Freon 115, Tetrachloroethene and Trichloroethene failed the recovery criteria low for the MS of sample SW-N12796-XXMS (460-241354-19) in batch 460-798696. Bromomethane failed the recovery criteria high.

Bromomethane, Freon 11 and Freon 115 failed the recovery criteria high for the MSD of sample SW-N12796-XXMSD (460-241354-19) in batch 460-798696. Freon 115 exceeded the RPD limit.

Refer to the QC report for details.

No other difficulties were encountered during the volatiles analysis.

All other quality control parameters were within the acceptance limits.

VOLATILE ORGANIC COMPOUNDS (GC/MS) - (LOW LEVEL - LL)(TOTAL)

Samples MW-27MI-XX (460-241354-1), MW-31GL-XX (460-241354-2), MW-31MI-XX (460-241354-3), MW-31ML-XX (460-241354-4), MW-38MU-XX (460-241354-5), MW-38ML-XX (460-241354-6), MW-45MU-XX (460-241354-7), MW-45MI-XX (460-241354-8), MW-50MI-XX (460-241354-9), MW-50ML-XX (460-241354-10), MW-51MI-XX (460-241354-11), MW-51ML-XX (460-241354-12), IW-N9687-XX (460-241354-13), MW-52MI-XX (460-241354-14), MW-52ML-XX (460-241354-15) and MW-53ML-XX (460-241354-16) were analyzed for Volatile Organic Compounds (GC/MS) - (Low Level - LL)(Total) in accordance with EPA SW-846 Method 8260D - Low Level (LL). The samples were analyzed on 08/27/2021, 08/31/2021 and 09/01/2021.

Freon 115 failed the recovery criteria high for LCS 460-798361/3. Freon 115 failed the recovery criteria high for LCS 460-799027/4. Freon 115 failed the recovery criteria high for LCS 460-799165/3. Freon 115 failed the recovery criteria high for LCSD 460-799165/4. Refer to the QC report for details.

See attached for LCS review

cis-1,2-Dichloroethene failed the recovery criteria low for the MS of sample MW-31GL-XXMS (460-241354-2) in batch 460-798361. see attached for MS/MSD_review

For the MSD of sample MW-31GL-XXMSD (460-241354-2) in batch 460-798361, cis-1,2-Dichloroethene failed the recovery criteria low. 1,1,1-Trichloroethane, Carbon tetrachloride, Freon 11 and Freon 115 failed the recovery criteria high. Also, Freon 115 exceeded the RPD limit.

The presence of the '4' qualifier in the data indicates analytes where the concentration in the unspiked sample exceeded four times the spiking amount.

No other difficulties were encountered during the Volatiles analysis.

All other quality control parameters were within the acceptance limits.

CHLORIDE

Samples MW-31GL-XX (460-241354-2), MW-31MI-XX (460-241354-3), MW-31ML-XX (460-241354-4), MW-45MU-XX (460-241354-7), MW-45MI-XX (460-241354-8), MW-52MI-XX (460-241354-14), MW-52ML-XX (460-241354-15), MW-53ML-XX (460-241354-16), SW-5099-XX (460-241354-17), SW-N4388-XX (460-241354-18), SW-N12796-XX (460-241354-19), SW-N12999-XX (460-241354-20), SW-N13000-XX (460-241354-21), SW-N13821-XX (460-241354-22) and SW-500 (460-241354-23) were analyzed for chloride in accordance with SM 4500 CL B. The samples were analyzed on 09/13/2021 and 09/15/2021.

Samples MW-31GL-XX (460-241354-2)[10X], MW-45MU-XX (460-241354-7)[2X], SW-N4388-XX (460-241354-18)[2X] and SW-500 (460-241354-23)[2X] required dilution prior to analysis. The reporting limits have been adjusted accordingly.

No difficulties were encountered during the chloride analysis.

All quality control parameters were within the acceptance limits.

Client: Wood E&I Solutions Inc Job ID: 460-241354-1 Project/Site: LMC Q3 2021

Method: 8260D - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: LCS 460-798361/3 70-130 **Matrix: Water**

Freon 22

Analysis Batch: 798361							Trop Typo: Totalina
	Spike		LCS				%Rec.
Analyte	Added		Qualifier	Unit	D	%Rec	Limits
Freon 11 subset J+, LCSH	20.0	27.5		ug/L		138	61 - 140
1,1-Dichloroethene	20.0	20.5		ug/L		103	68 - 133
1,1-Dichloroethane	20.0	21.0		ug/L		105	73 - 130
trans-1,2-Dichloroethene	20.0	21.6		ug/L		108	74 - 126
cis-1,2-Dichloroethene	20.0	22.2		ug/L		111	78 - 121
Chloroform	20.0	22.3		ug/L		111	78 - 125
1,2-Dichloroethane	20.0	21.7		ug/L		108	75 - 121
Methyl ethyl ketone (MEK)	100	93.3		ug/L		93	69 - 128
1,1,1-Trichloroethane	20.0	24.8		ug/L		124	68 - 128
Carbon tetrachloride	20.0	24.8		ug/L		124	56 - 131
Bromodichloromethane	20.0	22.7		ug/L		114	72 - 121
1,2-Dichloropropane	20.0	20.3		ug/L		101	76 - 126
cis-1,3-Dichloropropene	20.0	19.8		ug/L		99	74 - 125
Trichloroethene	20.0	21.3		ug/L		106	71 - 121
Dibromochloromethane	20.0	22.8		ug/L		114	58 - 130
1,1,2-Trichloroethane	20.0	18.1		ug/L		90	74 - 125
Benzene	20.0	19.1		ug/L		95	78 - 126
trans-1,3-Dichloropropene	20.0	19.9		ug/L		100	66 - 127
Bromoform	20.0	21.8		ug/L		109	38 - 144
Methyl isobutyl ketone (MIBK)	100	109		ug/L		109	69 - 128
2-Hexanone	100	107		ug/L		107	74 - 127
Tetrachloroethene	20.0	21.2		ug/L		106	70 - 127
1,1,2,2-Tetrachloroethane	20.0	19.0		ug/L		95	63 - 139
Toluene	20.0	19.2		ug/L		96	78 - 119
Chlorobenzene	20.0	20.2		ug/L		101	80 - 119
Ethylbenzene	20.0	19.9		ug/L		100	78 - 120
Styrene	20.0	20.3		ug/L		102	75 - 127
m&p-Xylene	20.0	20.2		ug/L		101	78 - 123
o-Xylene	20.0	20.4		ug/L		102	78 - 122
Xylenes, Total	40.0	40.5		ug/L		101	78 - 122
Freon 113	20.0	24.0		ug/L		120	59 - 142
Methyl tert-butyl ether	20.0	22.3		ug/L		112	65 - 131
Cyclohexane	20.0	22.9		ug/L		115	67 - 133
1.2-Dibromoethane	20.0	21.3		ug/L		107	69 - 126
1,3-Dichlorobenzene	20.0	19.6		ug/L		98	80 - 121
1,4-Dichlorobenzene	20.0	19.5		ug/L		97	80 - 118
1,2-Dichlorobenzene	20.0	19.9		ug/L		99	79 - 122
Dichlorodifluoromethane	20.0	19.4		ug/L		97	31 - 150
1,2,4-Trichlorobenzene	20.0	18.3		ug/L ug/L		91	64 - 132
1,2-Dibromo-3-Chloropropane	20.0	20.8		ug/L ug/L		104	41 - 143
Isopropylbenzene	20.0	20.6		_		104	41 - 143 79 - 125
				ug/L			
Methyl acetate	40.0	44.9		ug/L		112	70 - 127
Methylcyclohexane Freon 115 biased high, associated samples ND - no quals	20.0	23.7	*.	ug/L		119	60 - 139
11001110	20.0	38.8	+	ug/L		194	10 - 150
Freon 152a	20.0	19.8		ug/L		99	10 - 150
Freon 123	20.0	21.6		ug/L		108	10 - 150

10 - 150

110

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

22.0

ug/L

20.0

Client: Wood E&I Solutions Inc

Project/Site: LMC Q3 2021

Job ID: 460-241354-1

70-130

Method: 8260D - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: LCS 460-798361/3

Matrix: Water

Analysis Batch: 798361

Client Sample ID: Lab Control Sample Prep Type: Total/NA

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	107		75 - 123
Toluene-d8 (Surr)	98		80 - 120
4-Bromofluorobenzene	110		76 - 120
Dibromofluoromethane (Surr)	119		77 - 124

Lab Sample ID: 460-241354-2 MS

Matrix: Water

Analysis Batch: 798361

Client Sample ID: MW-31GL-XX

Prep Type: Total/NA

Sa	ample	Sample	Spike	MS	MS				%Rec.
Analyte F	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits
Chloromethane	0.50	U	20.0	20.0		ug/L		100	38 - 150
Vinyl chloride	0.50	U	20.0	21.5		ug/L		107	61 - 144
Bromomethane	0.50	U	20.0	20.4		ug/L		102	43 - 150
Chloroethane	0.50	U	20.0	19.8		ug/L		99	50 - 150
Methylene Chloride	0.50	U	20.0	20.2		ug/L		101	74 - 127
Acetone	5.0	U	100	110		ug/L		110	61 - 134
Carbon disulfide	0.50	U	20.0	21.2		ug/L		106	64 - 138
Freon 11 biased high, sample ND - no qua	ls0.50	U F1	20.0	28.1		ug/L		140	61 - 140
1,1-Dichloroethene	0.50	U	20.0	20.4		ug/L		102	68 - 133
1,1-Dichloroethane	0.50	U	20.0	22.0		ug/L		110	73 - 130
trans-1,2-Dichloroethene	0.70		20.0	21.0		ug/L		102	74 - 126
cis-1,2-Dichloroethene sample result >4x	100		20.0	102	4	ug/L		5	78 - 121
Chloroform spike - no quals	0.50	U	20.0	22.5		ug/L		113	78 - 125
1,2-Dichloroethane	0.50	U	20.0	22.3		ug/L		111	75 - 121
Methyl ethyl ketone (MEK)	2.5	U	100	101		ug/L		101	69 - 128
1,1,1-Trichloroethane	0.50	U F1	20.0	25.4		ug/L		127	68 - 128
Carbon tetrachloride	0.50	U F1	20.0	25.4		ug/L		127	56 - 131
Bromodichloromethane	0.50	U	20.0	22.6		ug/L		113	72 - 121
1,2-Dichloropropane	0.50	U	20.0	20.9		ug/L		104	76 - 126
cis-1,3-Dichloropropene	0.50	U	20.0	20.1		ug/L		100	74 - 125
Trichloroethene	22		20.0	41.1		ug/L		96	71 - 121
Dibromochloromethane	0.50	U	20.0	23.6		ug/L		118	58 - 130
1,1,2-Trichloroethane	0.50	U	20.0	19.5		ug/L		97	74 - 125
Benzene	0.50	U	20.0	20.3		ug/L		102	78 - 126
trans-1,3-Dichloropropene	0.50	U	20.0	21.0		ug/L		105	66 - 127
Bromoform	0.50	U	20.0	23.7		ug/L		118	38 - 144
Methyl isobutyl ketone (MIBK)	2.5	U	100	116		ug/L		116	69 - 128
2-Hexanone	2.5	U	100	115		ug/L		115	74 - 127
Tetrachloroethene	9.4		20.0	31.7		ug/L		112	70 - 127
1,1,2,2-Tetrachloroethane	0.50	U	20.0	20.9		ug/L		105	63 - 139
Toluene	0.50	U	20.0	20.8		ug/L		104	78 - 119
Chlorobenzene	0.50	U	20.0	20.8		ug/L		104	80 - 119
Ethylbenzene	0.50	U	20.0	21.0		ug/L		105	78 - 120
Styrene	0.50	U	20.0	21.0		ug/L		105	75 - 127
m&p-Xylene	0.50		20.0	20.6		ug/L		103	78 - 123
o-Xylene	0.50	U	20.0	21.6		ug/L		108	78 - 122
Xylenes, Total	1.0		40.0	42.2		ug/L		105	78 - 122
Freon 113	4.0		20.0	27.3		ug/L		117	59 - 142

Client: Wood E&I Solutions Inc

Project/Site: LMC Q3 2021

Job ID: 460-241354-1

Method: 8260D - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: 460-241354-2 MS

Matrix: Water

Client Sample ID: MW-31GL-XX

70-130

Prep Type: Total/NA

Analysis Batch: 798361

	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Methyl tert-butyl ether	0.50	U -	20.0	22.4		ug/L		112	65 - 131	
Cyclohexane	0.50	U	20.0	23.4		ug/L		117	67 - 133	
1,2-Dibromoethane	0.50	U	20.0	21.9		ug/L		110	69 - 126	
1,3-Dichlorobenzene	0.50	U	20.0	21.2		ug/L		106	80 - 121	
1,4-Dichlorobenzene	0.50	U	20.0	21.1		ug/L		106	80 - 118	
1,2-Dichlorobenzene	0.50	U	20.0	21.9		ug/L		109	79 - 122	
Dichlorodifluoromethane	0.50	U	20.0	20.6		ug/L		103	31 - 150	
1,2,4-Trichlorobenzene	0.50	U	20.0	19.6		ug/L		98	64 - 132	
1,2-Dibromo-3-Chloropropane	0.50	U	20.0	21.7		ug/L		109	41 - 143	
Isopropylbenzene	0.50	U	20.0	22.3		ug/L		112	79 - 125	
Methyl acetate	2.5	U	40.0	44.8		ug/L		112	70 - 127	
Methylcyclohexane	0.50	U	20.0	24.3		ug/L		122	60 - 139	
Freon 115	5.0	U F2 F1 * +	20.0	19.8		ug/L		99	10 - 150	
Freon 152a	1.0	U	20.0	19.8		ug/L		99	10 - 150	
Freon 123	1.0	U	20.0	22.0		ug/L		110	10 - 150	
Freon 22	1.8		20.0	27.0		ug/L		126	10 - 150	
	MS	MS								
Surrogate	%Recovery	Qualifier	Limits							

 Surrogate
 %Recovery
 Qualifier
 Limits

 1,2-Dichloroethane-d4 (Surr)
 100
 75 - 123

 Toluene-d8 (Surr)
 101
 80 - 120

 4-Bromofluorobenzene
 109
 76 - 120

 Dibromofluoromethane (Surr)
 110
 77 - 124

Lab Sample ID: 460-241354-2 MSD

Matrix: Water

Analysis Batch: 798361

Client Sample ID: MW-	31GL-XX
Prep Type:	Total/NA

•	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Chloromethane	0.50	U	20.0	20.6		ug/L		103	38 - 150	3	30
Vinyl chloride	0.50	U	20.0	21.1		ug/L		106	61 - 144	2	30
Bromomethane	0.50	U	20.0	19.1		ug/L		96	43 - 150	7	30
Chloroethane	0.50	U	20.0	18.4		ug/L		92	50 - 150	7	30
Methylene Chloride	0.50	U	20.0	20.9		ug/L		105	74 - 127	4	30
Acetone	5.0	U	100	93.9		ug/L		94	61 - 134	16	30
Carbon disulfide	0.50	U	20.0	22.6		ug/L		113	64 - 138	6	30
Freon 11 biased high, sample ND -	no qua0s50	U F1	20.0	28.5	F1	ug/L		143	61 - 140	2	30
1,1-Dichloroethene	0.50	U	20.0	22.4		ug/L		112	68 - 133	9	30
1,1-Dichloroethane	0.50	U	20.0	22.0		ug/L		110	73 - 130	0	30
trans-1,2-Dichloroethene	0.70		20.0	22.5		ug/L		109	74 - 126	7	30
cis-1,2-Dichloroethene sample result	t >4x 100		20.0	107	4	ug/L		32	78 - 121	5	30
Chloroform spike - no qu	als 0.50	U	20.0	22.7		ug/L		113	78 - 125	1	30
1,2-Dichloroethane	0.50	U	20.0	22.9		ug/L		115	75 - 121	3	30
Methyl ethyl ketone (MEK)	2.5	U	100	87.6		ug/L		88	69 - 128	15	30
1,1,1-Trichloroethane biased high, sa	mple 0.50	U F1	20.0	26.1	F1	ug/L		131	68 - 128	3	30
Carbon tetrachloride ND no quals		U F1	20.0	26.6	F1	ug/L		133	56 - 131	5	30
Bromodichloromethane	0.50	U	20.0	23.7		ug/L		119	72 - 121	5	30
1,2-Dichloropropane	0.50	U	20.0	20.9		ug/L		105	76 - 126	0	30
cis-1,3-Dichloropropene	0.50	U	20.0	19.8		ug/L		99	74 - 125	1	30

Eurofins TestAmerica, Edison

Page 58 of 1113

Client: Wood E&I Solutions Inc Job ID: 460-241354-1 Project/Site: LMC Q3 2021

Method: 8260D - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: LCS 460-799027/4 **Matrix: Water**

Analysis Batch: 799027

associated with sample MW-53ML-XX

70-130

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

_	Spike	LCS	LCS		%Rec.	
Analyte	Added	Result	Qualifier Unit	D %Rec	Limits	
Styrene	20.0	19.9	ug/L	99	75 - 127	
m&p-Xylene	20.0	19.8	ug/L	99	78 - 123	
o-Xylene	20.0	20.1	ug/L	100	78 - 122	
Xylenes, Total	40.0	39.9	ug/L	100	78 - 122	
Freon 113 biased high, sample ND - no quals	20.0	26.5	ug/L	133	59 - 142	
Methyl tert-butyl ether	20.0	22.2	ug/L	111	65 - 131	
Cyclohexane	20.0	24.8	ua/l	124	67 - 133	

Methyl tert-butyl ether	20.0	22.2	ug/L	111	65 - 131
Cyclohexane	20.0	24.8	ug/L	124	67 - 133
1,2-Dibromoethane	20.0	20.8	ug/L	104	69 - 126
1,3-Dichlorobenzene	20.0	20.3	ug/L	101	80 - 121
1,4-Dichlorobenzene	20.0	19.8	ug/L	99	80 - 118
1,2-Dichlorobenzene	20.0	19.7	ug/L	99	79 - 122
Dichlorodifluoromethane	20.0	18.9	ug/L	95	31 - 150
1,2,4-Trichlorobenzene	20.0	20.3	ug/L	102	64 - 132
1,2-Dibromo-3-Chloropropane	20.0	19.5	ug/L	97	41 - 143
Isopropylbenzene	20.0	20.9	ug/L	105	79 - 125
Methyl acetate	40.0	45.3	ug/L	113	70 - 127
Methylcyclohexane biased high, sample ND - no quals	20.0	26.3	ug/L	132	60 - 139
Freon 115 biased high, sample ND - no quals	20.0	43.5 *+	ug/L	217	10 - 150
Freon 152a	20.0	22.9	ug/L	114	10 - 150

20.0

20.0

22.9

23.9

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	94		75 - 123
Toluene-d8 (Surr)	93		80 - 120
4-Bromofluorobenzene	106		76 - 120
Dibromofluoromethane (Surr)	107		77 - 124

Lab Sample ID: LCSD 460-799027/5

Matrix: Water

Freon 123

Freon 22

Analysis Batch: 799027

Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

115

119

10 - 150

10 - 150

ug/L

ug/L

	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Chloromethane	20.0	19.2		ug/L		96	38 - 150	4	30
Vinyl chloride	20.0	22.4		ug/L		112	61 - 144	3	30
Bromomethane	20.0	18.5		ug/L		92	43 - 150	1	30
Chloroethane	20.0	19.0		ug/L		95	50 - 150	1	30
Methylene Chloride	20.0	19.6		ug/L		98	74 - 127	5	30
Acetone	100	96.3		ug/L		96	61 - 134	2	30
Carbon disulfide	20.0	21.9		ug/L		110	64 - 138	3	30
Freon 11	20.0	24.4		ug/L		122	61 - 140	1	30
1,1-Dichloroethene	20.0	21.3		ug/L		107	68 - 133	5	30
1,1-Dichloroethane	20.0	21.3		ug/L		107	73 - 130	2	30
trans-1,2-Dichloroethene	20.0	21.4		ug/L		107	74 - 126	6	30
cis-1,2-Dichloroethene	20.0	21.2		ug/L		106	78 - 121	6	30
Chloroform	20.0	20.1		ug/L		100	78 - 125	5	30
1,2-Dichloroethane	20.0	20.0		ug/L		100	75 - 121	4	30
Methyl ethyl ketone (MEK)	100	85.3		ug/L		85	69 - 128	8	30

Eurofins TestAmerica, Edison

Page 62 of 1113

Client: Wood E&I Solutions Inc

Job ID: 460-241354-1

Project/Site: LMC Q3 2021

Method: 8260D - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: LCSD 460-799027/5

Matrix: Water

Freon 22

70-130

Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

Analysis Batch: 799027 LCSD LCSD **RPD** Spike %Rec. Added **RPD** Result Qualifier Unit D %Rec Limits Limit Analyte 20.0 68 - 128 1,1,1-Trichloroethane 22.2 ug/L 111 2 30 Carbon tetrachloride 20.0 23.0 ug/L 115 56 - 131 1 30 108 30 Bromodichloromethane 20.0 21.6 ug/L 72 - 121 0 20.0 20.5 103 76 - 126 4 30 1,2-Dichloropropane ug/L cis-1,3-Dichloropropene 20.0 19.0 ug/L 95 74 - 125 1 30 104 30 Trichloroethene 20.0 20.9 ug/L 71 - 1211 Dibromochloromethane 20.0 20.2 ug/L 101 58 - 130 3 30 20.0 85 74 - 125 8 30 1,1,2-Trichloroethane 17.1 ug/L 98 78 - 126 1 30 Benzene 20.0 19.6 ug/L 0 20.0 96 30 trans-1,3-Dichloropropene 19.3 ug/L 66 - 127**Bromoform** 20.0 20.8 ug/L 104 38 - 1446 30 Methyl isobutyl ketone (MIBK) 100 100 ug/L 100 69 - 128 3 30 2-Hexanone 100 98.9 99 74 - 127 3 30 ug/L Tetrachloroethene 20.0 22.6 ug/L 113 70 - 127 1 30 1.1.2.2-Tetrachloroethane 20.0 18.1 90 63 - 139 5 30 ug/L 2 Toluene 20.0 19.2 ug/L 96 78 - 11930 Chlorobenzene 20.0 197 ug/L 99 80 - 1190 30 Ethylbenzene 20.0 19.2 96 78 - 120 2 30 ug/L 2 20.0 97 75 - 127 30 Styrene 19.4 ug/L 20.0 78 - 123 30 m&p-Xylene 20.1 ug/L 100 1 3 30 o-Xylene 20.0 19.4 ug/L 97 78 - 122 Xylenes, Total 40.0 39.4 ug/L 99 78 - 1221 30 Freon 113 20.0 24.9 ug/L 125 59 - 142 6 30 20.0 21.1 ug/L 105 65 - 131 5 30 Methyl tert-butyl ether 3 Cyclohexane 20.0 24.1 ug/L 121 67 - 13330 20.0 19.9 ug/L 100 69 - 126 4 30 1,2-Dibromoethane 1.3-Dichlorobenzene 20.0 19.7 ug/L 98 80 - 121 3 30 2 30 1.4-Dichlorobenzene 20.0 19.4 ug/L 97 80 - 118 20.0 79 - 122 3 30 1,2-Dichlorobenzene 19.1 ug/L 96 20.0 31 - 150 30 Dichlorodifluoromethane 18.8 ug/L 94 1 1,2,4-Trichlorobenzene 20.0 19.8 ug/L 99 64 - 132 3 30 1,2-Dibromo-3-Chloropropane 20.0 19.2 ug/L 96 41 - 143 1 30 20.0 20.6 103 2 30 Isopropylbenzene ug/L 79 - 125Methyl acetate 40.0 45.0 113 70 - 127 1 30 ug/L 3 20.0 25.6 128 30 Methylcyclohexane ug/L 60 - 139Freon 115 biased high, sample ND - no quals 20.0 34.5 *+ ug/L 173 10 - 150 23 30 20.0 6 30 Freon 152a 21.6 ug/L 108 10 - 150Freon 123 4 20.0 22.1 ug/L 111 10 - 150 30

LCSD LCSD

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	93		75 - 123
Toluene-d8 (Surr)	97		80 - 120
4-Bromofluorobenzene	110		76 - 120
Dibromofluoromethane (Surr)	106		77 - 124

20.0

22.1

ug/L

110

10 - 150

8

30

Client: Wood E&I Solutions Inc

Job ID: 460-241354-1

Project/Site: LMC Q3 2021

Method: 8260D - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: LCS 460-799165/3

Matrix: Water

Client Sample ID: Lab Control Sample

70-130

Prep Type: Total/NA

Analysis Batch: 799165

	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Toluene	20.0	18.4		ug/L		92	78 - 119
Chlorobenzene	20.0	19.0		ug/L		95	80 - 119
Ethylbenzene	20.0	18.9		ug/L		94	78 - 120
Styrene	20.0	18.7		ug/L		94	75 - 127
m&p-Xylene	20.0	19.1		ug/L		96	78 - 123
o-Xylene	20.0	18.7		ug/L		93	78 - 122
Xylenes, Total	40.0	37.8		ug/L		95	78 - 122
Freon 113	20.0	23.8		ug/L		119	59 - 142
Methyl tert-butyl ether	20.0	20.2		ug/L		101	65 - 131
Cyclohexane	20.0	22.4		ug/L		112	67 - 133
1,2-Dibromoethane	20.0	20.1		ug/L		100	69 - 126
1,3-Dichlorobenzene	20.0	19.2		ug/L		96	80 - 121
1,4-Dichlorobenzene	20.0	19.1		ug/L		96	80 - 118
1,2-Dichlorobenzene	20.0	19.1		ug/L		95	79 - 122
Dichlorodifluoromethane	20.0	16.5		ug/L		83	31 - 150
1,2,4-Trichlorobenzene	20.0	19.1		ug/L		96	64 - 132
1,2-Dibromo-3-Chloropropane	20.0	18.6		ug/L		93	41 - 143
Isopropylbenzene	20.0	19.9		ug/L		99	79 - 125
Methyl acetate	40.0	43.1		ug/L		108	70 - 127
Methylcyclohexane	20.0	23.7		ug/L		119	60 - 139
Freon 115 biased high, sample ND - no quals	20.0	33.9	*+	ug/L		169	10 - 150
Freon 152a	20.0	22.0		ug/L		110	10 - 150
Freon 123	20.0	21.4		ug/L		107	10 - 150
Freon 22	20.0	22.0		ug/L		110	10 - 150

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	93		75 - 123
Toluene-d8 (Surr)	94		80 - 120
4-Bromofluorobenzene	110		76 - 120
Dibromofluoromethane (Surr)	105		77 - 124

Lab Sample ID: LCSD 460-799165/4

Matrix: Water

Analysis Batch: 799165

Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

7 maryolo Batom 100 100									
-	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Chloromethane	20.0	20.7		ug/L		104	38 - 150	5	30
Vinyl chloride	20.0	21.4		ug/L		107	61 - 144	6	30
Bromomethane	20.0	21.4		ug/L		107	43 - 150	4	30
Chloroethane	20.0	20.8		ug/L		104	50 - 150	5	30
Methylene Chloride	20.0	21.0		ug/L		105	74 - 127	5	30
Acetone	100	99.1		ug/L		99	61 - 134	2	30
Carbon disulfide	20.0	22.5		ug/L		112	64 - 138	7	30
Freon 11	20.0	24.2		ug/L		121	61 - 140	8	30
1,1-Dichloroethene	20.0	21.5		ug/L		108	68 - 133	9	30
1,1-Dichloroethane	20.0	22.1		ug/L		111	73 - 130	6	30
trans-1,2-Dichloroethene	20.0	22.1		ug/L		110	74 - 126	5	30
cis-1,2-Dichloroethene	20.0	22.9		ug/L		115	78 - 121	8	30

Eurofins TestAmerica, Edison

Page 66 of 1113

Client: Wood E&I Solutions Inc

Project/Site: LMC Q3 2021

Job ID: 460-241354-1

Method: 8260D - Volatile Organic Compounds by GC/MS (Continued)

70-130

Lab Sample ID: LCSD 460-799165/4

Matrix: Water

Analysis Batch: 799165

Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

,	Spike		D LCSD			%Rec.	RPD	
Analyte			It Qualifier	Unit	D %Rec	Limits	RPD	Limit
Chloroform		20.0 21	.7	ug/L	109	78 - 125	7	30
1,2-Dichloroethane		20.0 20	.7	ug/L	104	75 - 121	3	30
Methyl ethyl ketone (MEK)		100 88	.0	ug/L	88	69 - 128	1	30
1,1,1-Trichloroethane		20.0 23	.2	ug/L	116	68 - 128	6	30
Carbon tetrachloride		20.0 23	.7	ug/L	119	56 - 131	6	30
Bromodichloromethane		20.0 22	.2	ug/L	111	72 - 121	5	30
1,2-Dichloropropane		20.0 21	.6	ug/L	108	76 - 126	5	30
cis-1,3-Dichloropropene		20.0 19	.4	ug/L	97	74 - 125	3	30
Trichloroethene		20.0 21	.5	ug/L	108	71 - 121	6	30
Dibromochloromethane		20.0 21	.7	ug/L	108	58 - 130	3	30
1,1,2-Trichloroethane		20.0 17	.9	ug/L	89	74 - 125	2	30
Benzene		20.0 19	.7	ug/L	99	78 - 126	3	30
trans-1,3-Dichloropropene		20.0 19	.7	ug/L	98	66 - 127	3	30
Bromoform		20.0 21	.4	ug/L	107	38 - 144	2	30
Methyl isobutyl ketone (MIBK)		100 10)5	ug/L	105	69 - 128	1	30
2-Hexanone		100 10)1	ug/L	101	74 - 127	1	30
Tetrachloroethene		20.0 23	.3	ug/L	116	70 - 127	6	30
1,1,2,2-Tetrachloroethane		20.0 18	.2	ug/L	91	63 - 139	3	30
Toluene		20.0 19	.7	ug/L	98	78 - 119	6	30
Chlorobenzene		20.0 20	.0	ug/L	100	80 - 119	5	30
Ethylbenzene		20.0 19	.6	ug/L	98	78 - 120	4	30
Styrene		20.0 20	.3	ug/L	102	75 - 127	8	30
m&p-Xylene		20.0 20	.0	ug/L	100	78 - 123	5	30
o-Xylene		20.0 20	.2	ug/L	101	78 - 122	8	30
Xylenes, Total		40.0 40	.2	ug/L	100	78 - 122	6	30
Freon 113		20.0 25	.2	ug/L	126	59 - 142	6	30
Methyl tert-butyl ether		20.0 21	.7	ug/L	108	65 - 131	7	30
Cyclohexane		20.0 23	.5	ug/L	118	67 - 133	5	30
1,2-Dibromoethane		20.0 20	.5	ug/L	102	69 - 126	2	30
1,3-Dichlorobenzene		20.0 19	.8	ug/L	99	80 - 121	3	30
1,4-Dichlorobenzene		20.0 19	.9	ug/L	100	80 - 118	4	30
1,2-Dichlorobenzene		20.0 19	.4	ug/L	97	79 - 122	2	30
Dichlorodifluoromethane		20.0 17	.3	ug/L	87	31 - 150	5	30
1,2,4-Trichlorobenzene		20.0 20	.2	ug/L	101	64 - 132	5	30
1,2-Dibromo-3-Chloropropane		20.0 18	.3	ug/L	91	41 - 143	2	30
Isopropylbenzene		20.0 21	.4	ug/L	107	79 - 125	7	30
Methyl acetate		40.0 43	.6	ug/L	109	70 - 127	1	30
Methylcyclohexane		20.0 24	.7	ug/L	123	60 - 139	4	30
Freon 115 biased high, samples ND - no	quals	20.0 44	.8 *+	ug/L	224	10 - 150	28	30
Freon 152a		20.0 23	.7	ug/L	119	10 - 150	7	30
Freon 123		20.0 22	.7	ug/L	114	10 - 150	6	30
Freon 22		20.0 22	٥	ug/L	114	10 - 150	4	30

	LCSD	LCSD	
Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	97		75 - 123
Toluene-d8 (Surr)	92		80 - 120
4-Bromofluorobenzene	109		76 - 120
Dibromofluoromethane (Surr)	106		77 - 124

CASE NARRATIVE

Client: Wood E&I Solutions Inc

Project: LMC Q3 2021 Groundwater Monitoring

Report Number: 460-240981-1

This case narrative is in the form of an exception report, where only the anomalies related to this report, method specific performance and/or QA/QC issues are discussed. If there are no issues to report, this narrative will include a statement that documents that there are no relevant data issues.

It should be noted that samples with elevated Reporting Limits (RLs) as a result of a dilution may not be able to satisfy customer reporting limits in some cases. Such increases in the RLs are unavoidable but acceptable consequence of sample dilution that enables quantification of target analytes or interferences which exceed the calibration range of the instrument.

Calculations are performed before rounding to avoid round-off errors in calculated results.

All holding times were met and proper preservation noted for the methods performed on these samples, unless otherwise detailed in the individual sections below.

RECEIPT

The samples were received on 08/16/2021; the samples arrived in good condition, properly preserved and on ice. The temperature of the coolers at receipt was 1.5 C.

Note: All samples which require thermal preservation are considered acceptable if the arrival temperature is within 2C of the required temperature or method specified range. For samples with a specified temperature of 4C, samples with a temperature ranging from just above freezing temperature of water to 6C shall be acceptable. Samples that are hand delivered immediately following collection may not meet these criteria, however they will be deemed acceptable according to NELAC standards, if there is evidence that the chilling process has begun, such as arrival on ice, etc.

VOLATILE ORGANIC COMPOUNDS (GC/MS) - (LOW LEVEL - LL)(TOTAL)

Samples MW-1MI/L-XX (460-240981-1), MW-4GL-XX (460-240981-2), MW-4MI-XX (460-240981-3), MW-8GU-XX (460-240981-4), MW-8GL-XX (460-240981-5), MW-8ML-XX (460-240981-6), MW-10GL-XX (460-240981-7), MW-14MI-XX (460-240981-8), MW-15GL-XX (460-240981-9), MW-15ML-XX (460-240981-10), MW-16ML-XX (460-240981-11), MW-18GL-XX (460-240981-12), MW-18ML-XX (460-240981-13), MW-24GL-XX (460-240981-14), MW-28GL-XX (460-240981-15), MW-28MI-XX (460-240981-16), MW-39MU-XX (460-240981-17), MW-39MI-XX (460-240981-18), MW-39ML-XX (460-240981-19), MW-43MU-XX (460-240981-20), MW-43MI-XX (460-240981-21), IW-N5535-XX (460-240981-22), MW-46MI-XX (460-240981-23), MW-46ML-XX (460-240981-24), MW-500 (460-240981-25), MW-501 (460-240981-26), MW-502 (460-240981-27), IW-N13221-XX (460-240981-28), IW-N13266-XX (460-240981-32), IW-N13889-XX (460-240981-30), QC-EB100821-01 (460-240981-31), QC-EB110821-01 (460-240981-32), QC-EB120821-01 (460-240981-33) and QC-TB110821-XX (460-240981-34) were analyzed for Volatile Organic Compounds (GC/MS) - (Low Level - LL)(Total) in accordance with EPA SW-846 Method 8260D - Low Level (LL). The samples were analyzed on 08/17/2021, 08/18/2021 and 08/19/2021.

The continuing calibration verification (CCV) associated with batch 460-796611 recovered above the upper control limit for Freon 11, Freon 113 and Freon 115. The samples associated with this CCV were non-detects for the affected analytes; therefore, the data have been reported. samples ND - no guals

The laboratory control sample (LCS) and / or laboratory control sample duplicate (LCSD) for analytical batch 460-796611 recovered outside control limits for the following analyte: Freon 115. This analyte was biased high in the LCS/LCSD and was not detected in the associated samples; therefore, the data have been reported.

See attached for LCS review

The RPD of the laboratory control sample (LCS) and laboratory control sample duplicate (LCSD) for analytical batch 460-796611 recovered outside control limits for the following analyte: Freon 115. see attached for LCS review

The continuing calibration verification (CCV) associated with batch 460-796886 recovered above the upper control limit for Vinyl chloride.

The samples associated with this CCV were non-detects for the affected analytes; therefore, the data have been reported. samples MD - no quals

The continuing calibration verification (CCV) associated with batch 460-796695 recovered above the upper control limit for Freon 115. The samples associated with this CCV were non-detects for the affected analytes; therefore, the data have been reported. samples ND - no quals

The laboratory control sample (LCS) for analytical batch 460-796695 recovered outside control limits for the following analyte: Freon 115. This analyte was biased high in the LCS and was not detected in the associated samples; therefore, the data have been reported. see attached for

LCS review

Freon 115 failed the recovery criteria high for LCS 460-796611/4. Freon 115 failed the recovery criteria high for LCS 460-796695/5. Freon 115 failed the recovery criteria high for LCSD 460-796611/5. Freon 115 exceeded the RPD limit. Refer to the QC report for details. see attached for LCS review

Detection Summary

Client: Wood E&I Solutions Inc

Project/Site: LMC Q3 2021 Groundwater Monitoring

Client Sample ID: IW-N1326	66-XX					Lab Sam	ple ID: 46	60-240981-29
 Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac [Method	Prep Type
cis-1,2-Dichloroethene	0.52		0.50	0.22	ug/L		8260D	Total/NA
Trichloroethene	0.36	J	0.50	0.31	ug/L	1	8260D	Total/NA
Client Sample ID: IW-N1388	39-XX					Lab Sam	ple ID: 46	60-240981-30
 Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac [) Method	Prep Type
cis-1,2-Dichloroethene	10		0.50	0.22	ug/L		8260D	Total/NA
Chloroform	2.5		0.50	0.33	ug/L	1	8260D	Total/NA
Trichloroethene	3.9		0.50	0.31	ug/L	1	8260D	Total/NA
Tetrachloroethene	2.8		0.50	0.25	ug/L	1	8260D	Total/NA
Freon 113	1.1		0.50	0.31	ug/L	1	8260D	Total/NA
Client Sample ID: QC-EB10	0821-01					Lab Sam	ple ID: 46	60-240981-31
Analyte samples ND - no quals	Result	Qualifier	RL	MDL	Unit	Dil Fac [Method	Prep Type
Methylene Chloride	0.48	J	0.50	0.32	ug/L	1	8260D	Total/NA
Client Sample ID: QC-EB11	0821-01					Lab Sam	ple ID: 46	60-240981-32
Analyte samples ND - no quals	Result	Qualifier	RL	MDL	Unit	Dil Fac [) Method	Prep Type
Methylene Chloride	0.37	J	0.50	0.32	ug/L		8260D	Total/NA
Client Sample ID: QC-EB12	0821-01					Lab Sam	ple ID: 46	60-240981-33
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac [Method	Prep Type
Acetone MW-14MI-XX - U @ sample res	sult - BL2 9.0		5.0	4.4	ug/L		8260D	Total/NA
Carbon disulfide samples ND - no quals	1.4		0.50	0.82	ug/L	1	8260D	Total/NA
Client Sample ID: QC-TB11	0821-XX					Lab Sam	ple ID: 46	60-240981-34

No Detections.

This Detection Summary does not include radiochemical test results.

Job ID: 460-240981-1

Client: Wood E&I Solutions Inc

Project/Site: LMC Q3 2021 Groundwater Monitoring

Method: 8260D - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: LCS 460-796611/4 Matrix: Water

Analysis Batch: 796611

70-130

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Job ID: 460-240981-1

	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Toluene	20.0	19.0		ug/L		95	78 - 119
Chlorobenzene	20.0	18.8		ug/L		94	80 - 119
Ethylbenzene	20.0	19.4		ug/L		97	78 - 120
Styrene	20.0	19.5		ug/L		97	75 - 127
m&p-Xylene	20.0	19.1		ug/L		96	78 - 123
o-Xylene	20.0	19.6		ug/L		98	78 - 122
Xylenes, Total	40.0	38.7		ug/L		97	78 - 122
Freon 113	20.0	22.9		ug/L		114	59 - 142
Methyl tert-butyl ether	20.0	20.1		ug/L		101	65 - 131
Cyclohexane	20.0	23.8		ug/L		119	67 - 133
1,2-Dibromoethane	20.0	19.8		ug/L		99	69 - 126
1,3-Dichlorobenzene	20.0	18.7		ug/L		94	80 - 121
1,4-Dichlorobenzene	20.0	19.1		ug/L		96	80 - 118
1,2-Dichlorobenzene	20.0	18.6		ug/L		93	79 - 122
Dichlorodifluoromethane	20.0	23.2		ug/L		116	31 - 150
1,2,4-Trichlorobenzene	20.0	18.4		ug/L		92	64 - 132
1,2-Dibromo-3-Chloropropane	20.0	18.1		ug/L		91	41 - 143
Isopropylbenzene	20.0	20.2		ug/L		101	79 - 125
Methyl acetate	40.0	40.6		ug/L		102	70 - 127
Methylcyclohexane	20.0	25.1		ug/L		126	60 - 139
Freon 115 biased high, samples ND - no quals	20.0	37.1	*+	ug/L		185	10 - 150
Freon 152a	20.0	22.5		ug/L		112	10 - 150
Freon 123	20.0	21.1		ug/L		106	10 - 150
Freon 22	20.0	25.6		ug/L		128	10 - 150

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	106		75 - 123
Toluene-d8 (Surr)	101		80 - 120
4-Bromofluorobenzene	97		76 - 120
Dibromofluoromethane (Surr)	104		77 - 124

Lab Sample ID: LCSD 460-796611/5

Matrix: Water

Analysis Batch: 796611

Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

7 maryolo Batom 7 000 11									
	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Chloromethane	20.0	20.2		ug/L		101	38 - 150	7	30
Vinyl chloride	20.0	23.9		ug/L		120	61 - 144	3	30
Bromomethane	20.0	19.8		ug/L		99	43 - 150	2	30
Chloroethane	20.0	18.5		ug/L		93	50 - 150	2	30
Methylene Chloride	20.0	19.2		ug/L		96	74 - 127	0	30
Acetone	100	88.8		ug/L		89	61 - 134	3	30
Carbon disulfide	20.0	20.6		ug/L		103	64 - 138	0	30
Freon 11	20.0	24.6		ug/L		123	61 - 140	1	30
1,1-Dichloroethene	20.0	19.5		ug/L		98	68 - 133	3	30
1,1-Dichloroethane	20.0	19.9		ug/L		99	73 - 130	2	30
trans-1,2-Dichloroethene	20.0	20.3		ug/L		101	74 - 126	1	30
cis-1,2-Dichloroethene	20.0	20.1		ug/L		101	78 - 121	1	30

Eurofins TestAmerica, Edison

Page 64 of 1054

Client: Wood E&I Solutions Inc

Lab Sample ID: LCSD 460-796611/5

Project/Site: LMC Q3 2021 Groundwater Monitoring

Method: 8260D - Volatile Organic Compounds by GC/MS (Continued)

letilod. 0200D - Volatile Organic Compounds by GC/WG (Continued)

70-130

Analysis Batch: 796611

Matrix: Water

Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

Job ID: 460-240981-1

Analysis Baton: 199011	Spike	LCSD		- ~-	%Rec.		RPD
Analyte	Added		Qualifier Unit	D %Rec	Limits	RPD	Limit
Chloroform	20.0	20.6	ug/L	103	78 - 125		30
1,2-Dichloroethane	20.0	20.4	ug/L	102	75 - 121	4	30
Methyl ethyl ketone (MEK)	100	81.7	ug/L	82	69 - 128	4	30
1,1,1-Trichloroethane	20.0	21.8	ug/L	109	68 - 128	3	30
Carbon tetrachloride	20.0	20.3	ug/L	101	56 - 131	8	30
Bromodichloromethane	20.0	21.4	ug/L	107	72 - 121	1	30
1,2-Dichloropropane	20.0	19.5	ug/L	97	76 - 126	1	30
cis-1,3-Dichloropropene	20.0	19.4	ug/L	97	74 - 125	1	30
Trichloroethene	20.0	19.8	ug/L	99	71 - 121	3	30
Dibromochloromethane	20.0	18.7	ug/L	93	58 - 130	1	30
1,1,2-Trichloroethane	20.0	18.5	ug/L	92	74 - 125	1	30
Benzene	20.0	19.8	ug/L	99	78 - 126	1	30
trans-1,3-Dichloropropene	20.0	20.5	ug/L	103	66 - 127	2	30
Bromoform	20.0	18.7	ug/L	94	38 - 144	2	30
Methyl isobutyl ketone (MIBK)	100	100	ug/L	100	69 - 128	1	30
2-Hexanone	100	97.4	ug/L	97	74 - 127	1	30
Tetrachloroethene	20.0	19.7	ug/L	99	70 - 127	0	30
1,1,2,2-Tetrachloroethane	20.0	20.2	ug/L	101	63 - 139	3	30
Toluene	20.0	18.9	ug/L	95	78 - 119	1	30
Chlorobenzene	20.0	19.1	ug/L	95	80 - 119	1	30
Ethylbenzene	20.0	19.2	ug/L	96	78 - 120	1	30
Styrene	20.0	19.6	ug/L	98	75 - 127	1	30
m&p-Xylene	20.0	19.3	ug/L	96	78 - 123	1	30
o-Xylene	20.0	19.2	ug/L	96	78 - 122	2	30
Xylenes, Total	40.0	38.5	ug/L	96	78 - 122	1	30
Freon 113	20.0	23.8	ug/L	119	59 - 142	4	30
Methyl tert-butyl ether	20.0	20.7	ug/L	104	65 - 131	3	30
Cyclohexane	20.0	23.2	ug/L	116	67 - 133	3	30
1,2-Dibromoethane	20.0	19.6	ug/L	98	69 - 126	1	30
1,3-Dichlorobenzene	20.0	18.5	ug/L	93	80 - 121	1	30
1,4-Dichlorobenzene	20.0	18.7	ug/L	94	80 - 118	2	30
1,2-Dichlorobenzene	20.0	18.2	ug/L	91	79 - 122	2	30
Dichlorodifluoromethane	20.0	20.7	ug/L	104	31 - 150	11	30
1,2,4-Trichlorobenzene	20.0	18.4	ug/L	92	64 - 132	0	30
1,2-Dibromo-3-Chloropropane	20.0	18.5	ug/L	92	41 - 143	2	30
Isopropylbenzene	20.0	20.1	ug/L	100	79 - 125	0	30
Methyl acetate	40.0	43.3	ug/L	108	70 - 127	6	30
Methylcyclohexane	20.0	24.8	ug/L	124	60 - 139	sample1	30
Freon 115 biased high, samples ND - no quals	20.0	51.8	_	259	10 - 150		30
Freon 152a	20.0	21.4	ug/L	107	10 - 150		30
Freon 123	20.0	21.0	ug/L	105	10 - 150	1	30
Freon 22	20.0	23.9	ug/L	120	10 - 150	7	30
			J			-	

	LCSD	LCSD	
Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	104		75 - 123
Toluene-d8 (Surr)	98		80 - 120
4-Bromofluorobenzene	96		76 - 120
Dibromofluoromethane (Surr)	104		77 - 124

Client: Wood E&I Solutions Inc

Project/Site: LMC Q3 2021 Groundwater Monitoring

Method: 8260D - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: LCS 460-796695/5

Matrix: Water Analysis Batch: 796695 70-130

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Job ID: 460-240981-1

	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Toluene	20.0	20.0		ug/L		100	78 - 119
Chlorobenzene	20.0	20.1		ug/L		101	80 - 119
Ethylbenzene	20.0	19.1		ug/L		95	78 - 120
Styrene	20.0	20.2		ug/L		101	75 - 127
m&p-Xylene	20.0	19.3		ug/L		96	78 - 123
o-Xylene	20.0	19.8		ug/L		99	78 - 122
Xylenes, Total	40.0	39.1		ug/L		98	78 - 122
Freon 113	20.0	20.0		ug/L		100	59 - 142
Methyl tert-butyl ether	20.0	21.3		ug/L		107	65 - 131
Cyclohexane	20.0	19.8		ug/L		99	67 - 133
1,2-Dibromoethane	20.0	21.3		ug/L		107	69 - 126
1,3-Dichlorobenzene	20.0	19.7		ug/L		98	80 - 121
1,4-Dichlorobenzene	20.0	19.9		ug/L		100	80 - 118
1,2-Dichlorobenzene	20.0	19.3		ug/L		97	79 - 122
Dichlorodifluoromethane	20.0	19.0		ug/L		95	31 - 150
1,2,4-Trichlorobenzene	20.0	19.2		ug/L		96	64 - 132
1,2-Dibromo-3-Chloropropane	20.0	20.3		ug/L		102	41 - 143
Isopropylbenzene	20.0	20.2		ug/L		101	79 - 125
Methyl acetate	40.0	43.8		ug/L		109	70 - 127
Methylcyclohexane	20.0	21.0		ug/L		105	60 - 139
Freon 115 high bias, sample ND - no quals	20.0	37.6	*+	ug/L		188	10 - 150
Freon 152a	20.0	20.2		ug/L		101	10 - 150
Freon 123	20.0	20.0		ug/L		100	10 - 150
Freon 22	20.0	22.2		ug/L		111	10 - 150

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	103		75 - 123
Toluene-d8 (Surr)	102		80 - 120
4-Bromofluorobenzene	94		76 - 120
Dibromofluoromethane (Surr)	101		77 - 124

Lab Sample ID: LCSD 460-796695/6

Matrix: Water

Analysis Batch: 796695

Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

7 maryolo Batom 7 00000									
-	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Chloromethane	20.0	20.0		ug/L		100	38 - 150	10	30
Vinyl chloride	20.0	19.5		ug/L		98	61 - 144	10	30
Bromomethane	20.0	17.9		ug/L		90	43 - 150	13	30
Chloroethane	20.0	16.6		ug/L		83	50 - 150	12	30
Methylene Chloride	20.0	19.0		ug/L		95	74 - 127	8	30
Acetone	100	87.2		ug/L		87	61 - 134	8	30
Carbon disulfide	20.0	19.0		ug/L		95	64 - 138	7	30
Freon 11	20.0	19.1		ug/L		96	61 - 140	12	30
1,1-Dichloroethene	20.0	17.1		ug/L		85	68 - 133	11	30
1,1-Dichloroethane	20.0	19.7		ug/L		99	73 - 130	9	30
trans-1,2-Dichloroethene	20.0	19.4		ug/L		97	74 - 126	2	30
cis-1,2-Dichloroethene	20.0	19.4		ug/L		97	78 - 121	6	30

Eurofins TestAmerica, Edison

Client: Wood E&I Solutions Inc

Project/Site: LMC Q3 2021 Groundwater Monitoring

Method: 8260D - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: LCSD 460-796695/6

Matrix: Water Analysis Batch: 796695 **Client Sample ID: Lab Control Sample Dup**

Prep Type: Total/NA

Job ID: 460-240981-1

•	Spike	LCSD	LCSD			%Rec.		RPD	
Analyte	Added	Added Result C		nit D	%Rec	Limits	RPD	Limit	
Chloroform	20.0	19.7	ug	/L	98	78 - 125	6	30	
1,2-Dichloroethane	20.0	20.9	ug	/L	105	75 - 121	2	30	
Methyl ethyl ketone (MEK)	100	79.4	ug	/L	79	69 - 128	12	30	
1,1,1-Trichloroethane	20.0	19.9	ug	/L	99	68 - 128	5	30	
Carbon tetrachloride	20.0	18.6	ug	/L	93	56 - 131	11	30	
Bromodichloromethane	20.0	20.8	ug	/L	104	72 - 121	5	30	
1,2-Dichloropropane	20.0	19.6	ug	/L	98	76 - 126	7	30	
cis-1,3-Dichloropropene	20.0	19.3	ug	/L	96	74 - 125	9	30	
Trichloroethene	20.0	19.0	ug	/L	95	71 - 121	6	30	
Dibromochloromethane	20.0	19.1	ug	/L	95	58 - 130	7	30	
1,1,2-Trichloroethane	20.0	18.1	ug	/L	90	74 - 125	6	30	
Benzene	20.0	19.5	ug	/L	97	78 - 126	9	30	
trans-1,3-Dichloropropene	20.0	20.1	ug	/L	101	66 - 127	8	30	
Bromoform	20.0	17.9	ug	/L	90	38 - 144	10	30	
Methyl isobutyl ketone (MIBK)	100	97.4	ug	/L	97	69 - 128	8	30	
2-Hexanone	100	93.2	ug	/L	93	74 - 127	10	30	
Tetrachloroethene	20.0	18.1	ug	/L	91	70 - 127	8	30	
1,1,2,2-Tetrachloroethane	20.0	19.5	ug	/L	98	63 - 139	10	30	
Toluene	20.0	18.5	ug	/L	93	78 - 119	8	30	
Chlorobenzene	20.0	18.4	ug	/L	92	80 - 119	9	30	
Ethylbenzene	20.0	18.5	ug	/L	93	78 - 120	3	30	
Styrene	20.0	18.6	ug	/L	93	75 - 127	8	30	
m&p-Xylene	20.0	18.0	ug	/L	90	78 - 123	7	30	
o-Xylene	20.0	18.5	ug	/L	93	78 - 122	7	30	
Xylenes, Total	40.0	36.5	ug	/L	91	78 - 122	7	30	
Freon 113	20.0	18.7	ug	/L	94	59 - 142	7	30	
Methyl tert-butyl ether	20.0	20.7	ug	/L	104	65 - 131	3	30	
Cyclohexane	20.0	18.1	ug	/L	90	67 - 133	9	30	
1,2-Dibromoethane	20.0	20.2	ug	/L	101	69 - 126	6	30	
1,3-Dichlorobenzene	20.0	17.7	ug		89	80 - 121	11	30	
1,4-Dichlorobenzene	20.0	17.6	ug	/L	88	80 - 118	13	30	
1,2-Dichlorobenzene	20.0	17.5	ug		87	79 - 122	10	30	
Dichlorodifluoromethane	20.0	16.2	ug		81	31 - 150	16	30	
1,2,4-Trichlorobenzene	20.0	16.9	ug		85	64 - 132	12	30	
1,2-Dibromo-3-Chloropropane	20.0	18.6	ug		93	41 - 143	9	30	
Isopropylbenzene	20.0	18.8	ug		94	79 - 125	7	30	
Methyl acetate	40.0	43.6	ug		109	70 - 127	0	30	
Methylcyclohexane	20.0	19.7	ug		98	60 - 139	7	30	
Freon 115 biased high, samples ND - no quals	20.0	28.7	ug		144	10 - 150	27	30	
Freon 152a	20.0	19.6	ug		98	10 - 150	3	30	
Freon 123	20.0	18.1	ug		91	10 - 150	10	30	
Freon 22	20.0	20.7	ug		104	10 - 150	7	30	

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	107		75 - 123
Toluene-d8 (Surr)	102		80 - 120
4-Bromofluorobenzene	ga		76 120

LCSD LCSD

Dibromofluoromethane (Surr) 104 77 - 124

Client: Wood E&I Solutions Inc

Project/Site: LMC Q3 2021 Groundwater Monitoring

Method: 8260D - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: LCS 460-796886/5 Matrix: Water

70-130

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Job ID: 460-240981-1

Analysis Batch: 796886

	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Toluene	20.0	19.6		ug/L		98	78 - 119
Chlorobenzene	20.0	19.9		ug/L		99	80 - 119
Ethylbenzene	20.0	19.6		ug/L		98	78 - 120
Styrene	20.0	20.4		ug/L		102	75 - 127
m&p-Xylene	20.0	20.1		ug/L		100	78 - 123
o-Xylene	20.0	19.7		ug/L		99	78 - 122
Xylenes, Total	40.0	39.8		ug/L		99	78 - 122
Freon 113	20.0	19.9		ug/L		100	59 - 142
Methyl tert-butyl ether	20.0	22.5		ug/L		113	65 - 131
Cyclohexane	20.0	19.4		ug/L		97	67 - 133
1,2-Dibromoethane	20.0	21.0		ug/L		105	69 - 126
1,3-Dichlorobenzene	20.0	19.1		ug/L		95	80 - 121
1,4-Dichlorobenzene	20.0	19.2		ug/L		96	80 - 118
1,2-Dichlorobenzene	20.0	19.5		ug/L		98	79 - 122
Dichlorodifluoromethane	20.0	18.0		ug/L		90	31 - 150
1,2,4-Trichlorobenzene	20.0	19.3		ug/L		97	64 - 132
1,2-Dibromo-3-Chloropropane	20.0	20.9		ug/L		104	41 - 143
Isopropylbenzene	20.0	20.0		ug/L		100	79 - 125
Methyl acetate	40.0	49.0		ug/L		123	70 - 127
Methylcyclohexane	20.0	20.3		ug/L		102	60 - 139
Freon 115 samples ND, biased high - no quals	20.0	26.2		ug/L		131	10 - 150
Freon 152a	20.0	20.5		ug/L		103	10 - 150
Freon 123	20.0	20.2		ug/L		101	10 - 150
Freon 22	20.0	21.2		ug/L		106	10 - 150

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	110		75 - 123
Toluene-d8 (Surr)	103		80 - 120
4-Bromofluorobenzene	105		76 - 120
Dibromofluoromethane (Surr)	109		77 - 124

Lab Sample ID: LCSD 460-796886/6

Matrix: Water

Analysis Batch: 796886

Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

Spike	LCSD	LCSD				%Rec.		RPD
Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
20.0	19.3		ug/L		97	38 - 150	9	30
20.0	17.4		ug/L		87	61 - 144	21	30
20.0	19.0		ug/L		95	43 - 150	0	30
20.0	18.2		ug/L		91	50 - 150	8	30
20.0	20.6		ug/L		103	74 - 127	4	30
100	95.9		ug/L		96	61 - 134	5	30
20.0	18.1		ug/L		90	64 - 138	13	30
20.0	18.1		ug/L		91	61 - 140	16	30
20.0	16.6		ug/L		83	68 - 133	14	30
20.0	19.7		ug/L		98	73 - 130	11	30
20.0	18.0		ug/L		90	74 - 126	14	30
20.0	19.3		ug/L		97	78 - 121	10	30
	Added 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.	Added Result 20.0 19.3 20.0 17.4 20.0 19.0 20.0 18.2 20.0 20.6 100 95.9 20.0 18.1 20.0 18.1 20.0 16.6 20.0 19.7 20.0 18.0	Added Result Qualifier 20.0 19.3 Qualifier 20.0 17.4 Qualifier 20.0 19.0 Qualifier 20.0 19.0 Qualifier 20.0 18.2 Qualifier 20.0 18.2 Qualifier 20.0 18.1 Qualifier	Added Result Qualifier Unit 20.0 19.3 ug/L 20.0 17.4 ug/L 20.0 19.0 ug/L 20.0 18.2 ug/L 20.0 20.6 ug/L 100 95.9 ug/L 20.0 18.1 ug/L 20.0 18.1 ug/L 20.0 16.6 ug/L 20.0 19.7 ug/L 20.0 18.0 ug/L	Added Result Qualifier Unit D 20.0 19.3 ug/L ug/L 20.0 17.4 ug/L ug/L 20.0 19.0 ug/L ug/L 20.0 18.2 ug/L ug/L 20.0 20.6 ug/L ug/L 20.0 18.1 ug/L ug/L 20.0 18.1 ug/L ug/L 20.0 16.6 ug/L ug/L 20.0 19.7 ug/L ug/L 20.0 18.0 ug/L ug/L	Added Result Qualifier Unit D %Rec 20.0 19.3 ug/L 97 20.0 17.4 ug/L 87 20.0 19.0 ug/L 95 20.0 18.2 ug/L 91 20.0 20.6 ug/L 96 20.0 18.1 ug/L 90 20.0 18.1 ug/L 91 20.0 16.6 ug/L 91 20.0 19.7 ug/L 98 20.0 18.0 ug/L 90	Added Result Qualifier Unit D %Rec Limits 20.0 19.3 ug/L 97 38 - 150 20.0 17.4 ug/L 87 61 - 144 20.0 19.0 ug/L 95 43 - 150 20.0 18.2 ug/L 91 50 - 150 20.0 20.6 ug/L 103 74 - 127 100 95.9 ug/L 96 61 - 134 20.0 18.1 ug/L 90 64 - 138 20.0 18.1 ug/L 91 61 - 140 20.0 16.6 ug/L 83 68 - 133 20.0 19.7 ug/L 98 73 - 130 20.0 18.0 ug/L 90 74 - 126	Added Result Qualifier Unit D %Rec Limits RPD 20.0 19.3 ug/L 97 38 - 150 9 20.0 17.4 ug/L 87 61 - 144 21 20.0 19.0 ug/L 95 43 - 150 0 20.0 18.2 ug/L 91 50 - 150 8 20.0 20.6 ug/L 103 74 - 127 4 100 95.9 ug/L 96 61 - 134 5 20.0 18.1 ug/L 90 64 - 138 13 20.0 18.1 ug/L 91 61 - 140 16 20.0 16.6 ug/L 83 68 - 133 14 20.0 19.7 ug/L 98 73 - 130 11 20.0 18.0 ug/L 90 74 - 126 14

Eurofins TestAmerica, Edison

Client: Wood E&I Solutions Inc

Project/Site: LMC Q3 2021 Groundwater Monitoring

Method: 8260D - Volatile Organic Compounds by GC/MS (Continued)

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Job ID: 460-240981-1

Matrix: Water	
Analysis Petah, 706006	

Lab Sample ID: LCSD 460-796886/6

70-130

Analysis Batch: 796886		70-130							
		Spike		LCSD			%Rec.		RPD
Analyte		Added		Qualifier	Unit	D %Rec	Limits	RPD	Limit
Chloroform		20.0	20.0		ug/L	100	78 - 125	6	30
1,2-Dichloroethane		20.0	21.3		ug/L	106	75 - 121	6	30
Methyl ethyl ketone (MEK)		100	89.5		ug/L	90	69 - 128		30
1,1,1-Trichloroethane		20.0	18.7		ug/L	94	68 - 128	16	30
Carbon tetrachloride		20.0	17.5		ug/L	87	56 - 131	11	30
Bromodichloromethane		20.0	21.3		ug/L	106	72 - 121	4	30
1,2-Dichloropropane		20.0	20.0		ug/L	100	76 - 126	8	30
cis-1,3-Dichloropropene		20.0	20.2		ug/L	101	74 - 125	0	30
Trichloroethene		20.0	17.7		ug/L	88	71 - 121	9	30
Dibromochloromethane		20.0	19.8		ug/L	99	58 - 130	3	30
1,1,2-Trichloroethane		20.0	19.1		ug/L	95	74 - 125	1	30
Benzene		20.0	19.1		ug/L	95	78 - 126	7	30
trans-1,3-Dichloropropene		20.0	20.6		ug/L	103	66 - 127	4	30
Bromoform		20.0	18.9		ug/L	94	38 - 144	2	30
Methyl isobutyl ketone (MIBK)		100	102		ug/L	102	69 - 128	5	30
2-Hexanone		100	98.8		ug/L	99	74 - 127	7	30
Tetrachloroethene		20.0	16.6		ug/L	83	70 - 127	15	30
1,1,2,2-Tetrachloroethane		20.0	19.8		ug/L	99	63 - 139	7	30
Toluene		20.0	18.0		ug/L	90	78 ₋ 119	9	30
Chlorobenzene		20.0	18.2		ug/L	91	80 - 119	9	30
Ethylbenzene		20.0	17.7		ug/L	89	78 - 120	10	30
Styrene		20.0	18.7		ug/L	93	75 - 127	9	30
m&p-Xylene		20.0	18.6		ug/L	93	78 - 123	8	30
o-Xylene		20.0	18.9		ug/L	94	78 - 122	4	30
Xylenes, Total		40.0	37.5		ug/L	94	78 - 122	6	30
Freon 113		20.0	17.6		ug/L	88	59 - 142	12	30
Methyl tert-butyl ether		20.0	22.0		ug/L	110	65 - 131	2	30
Cyclohexane		20.0	17.4		ug/L	87	67 - 133	11	30
1,2-Dibromoethane		20.0	20.6		ug/L	103	69 - 126	2	30
1,3-Dichlorobenzene		20.0	17.7		ug/L	88	80 - 121	8	30
1,4-Dichlorobenzene		20.0	17.7		ug/L	88	80 - 118	8	30
1,2-Dichlorobenzene		20.0	17.8		ug/L	89	79 - 122	9	30
Dichlorodifluoromethane		20.0	16.3		ug/L	81	31 - 150	10	30
1,2,4-Trichlorobenzene		20.0	17.4		ug/L	87	64 - 132	11	30
1,2-Dibromo-3-Chloropropane		20.0	17.7		ug/L	89	41 - 143	16	30
Isopropylbenzene		20.0	18.0		ug/L	90	79 - 125	10	30
Methyl acetate		40.0	44.1		ug/L	110	70 - 127	11	30
Methylcyclohexane		20.0	17.5		ug/L	88	60 - 139	15	30
	ples ND - no quals	20.0	29.7		ug/L	148		13	30
Freon 152a		20.0	17.7		ug/L	88	10 - 150	15	30
Freon 123		20.0	17.5		ug/L	88	10 - 150	14	30
Freon 22		20.0	17.9		ug/L	90	10 - 150	17	30
Surrogate	LCSD LCSD %Recovery Quality								
1,2-Dichloroethane-d4 (Surr)	%Recovery Quality	75 - 123							
Taluana de (Sum)	106	70 - 123							

 7.2-Diction octivate - 44 (Surr)
 70
 73 - 123

 Toluene-d8 (Surr)
 106
 80 - 120

 4-Bromofluorobenzene
 104
 76 - 120

 Dibromofluoromethane (Surr)
 110
 77 - 124

Eurofins TestAmerica, Edison

Client: Wood E&I Solutions Inc Job ID: 460-240981-1 Project/Site: LMC Q3 2021 Groundwater Monitoring

Method: 8260D - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: 460-240981-10 MS

Matrix: Water Analysis Batch: 796886

70-130

Client Sample ID: MW-15ML-XX

Prep Type: Total/NA

Sample	Sample	Spike	MS	MS				%Rec.
Analyte Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits
Methyl acetate 2.5	U	40.0	47.0		ug/L		117	70 - 127
Methylcyclohexane 0.50	U	20.0	22.3		ug/L		111	60 - 139
Freon 115 biased high, sample ND - no quals 5.0	U F1	20.0	29.8		ug/L		149	10 - 150
Freon 152a 1.0	U	20.0	23.4		ug/L		117	10 - 150
Freon 123 1.0	U	20.0	21.0		ug/L		105	10 - 150
Freon 22 J+, MSH 0.70	J F2	20.0	28.8		ug/L		140	10 - 150

MS MS

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	104		75 - 123
Toluene-d8 (Surr)	103		80 - 120
4-Bromofluorobenzene	104		76 - 120
Dibromofluoromethane (Surr)	104		77 - 124

Lab Sample ID: 460-240981-10 MSD

Matrix: Water

Client Sample ID: MW-15ML-XX **Prep Type: Total/NA**

Analysis Batch: 796886											
	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte		Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Chloromethane	0.48	J	20.0	21.9		ug/L		107	38 - 150	11	30
Vinyl chloride	0.50	U	20.0	20.5		ug/L		103	61 - 144	19	30
Bromomethane	0.50	U	20.0	19.7		ug/L		99	43 - 150	21	30
Chloroethane	0.50	U	20.0	18.8		ug/L		94	50 - 150	21	30
Methylene Chloride	0.50	U	20.0	20.2		ug/L		101	74 - 127	9	30
Acetone	5.0	U	100	94.2		ug/L		94	61 - 134	16	30
Carbon disulfide	0.50	U	20.0	20.5		ug/L		102	64 - 138	11	30
Freon 11	0.50	U	20.0	21.4		ug/L		107	61 - 140	13	30
1,1-Dichloroethene	0.50	U	20.0	18.4		ug/L		92	68 - 133	13	30
1,1-Dichloroethane	0.50	U	20.0	22.1		ug/L		110	73 - 130	8	30
trans-1,2-Dichloroethene	0.50	U	20.0	20.9		ug/L		104	74 - 126	7	30
cis-1,2-Dichloroethene	1.2		20.0	22.4		ug/L		106	78 - 121	7	30
Chloroform	0.50	U	20.0	22.0		ug/L		110	78 - 125	9	30
1,2-Dichloroethane	0.50	U	20.0	22.6		ug/L		113	75 - 121	6	30
Methyl ethyl ketone (MEK)	2.5	U	100	91.2		ug/L		91	69 - 128	8	30
1,1,1-Trichloroethane	0.50	U	20.0	21.3		ug/L		107	68 - 128	15	30
Carbon tetrachloride	0.50	U	20.0	20.3		ug/L		101	56 - 131	11	30
Bromodichloromethane	0.50	U	20.0	22.8		ug/L		114	72 - 121	6	30
1,2-Dichloropropane	0.50	U	20.0	22.2		ug/L		111	76 - 126	6	30
cis-1,3-Dichloropropene	0.50	U	20.0	21.5		ug/L		108	74 - 125	7	30
Trichloroethene	0.67		20.0	20.9		ug/L		101	71 - 121	10	30
Dibromochloromethane	0.50	U	20.0	20.7		ug/L		104	58 - 130	8	30
1,1,2-Trichloroethane	0.50	U	20.0	19.9		ug/L		99	74 - 125	7	30
Benzene	0.50	U	20.0	20.7		ug/L		104	78 - 126	12	30
trans-1,3-Dichloropropene	0.50	U	20.0	22.2		ug/L		111	66 - 127	9	30
Bromoform	0.50	U	20.0	20.4		ug/L		102	38 - 144	2	30
Methyl isobutyl ketone (MIBK)	2.5	U	100	108		ug/L		108	69 - 128	14	30
2-Hexanone	2.5	U	100	107		ug/L		107	74 - 127	12	30
Tetrachloroethene	1.8		20.0	20.8		ug/L		95	70 - 127	13	30
1,1,2,2-Tetrachloroethane	0.50	U	20.0	24.3		ug/L		121	63 - 139	3	30

Eurofins TestAmerica, Edison

Page 75 of 1054

Client: Wood E&I Solutions Inc Job ID: 460-240981-1

Project/Site: LMC Q3 2021 Groundwater Monitoring

Method: 8260D - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: 460-240981-10 MSD **Matrix: Water**

Analysis Batch: 796886

Client Sample ID: MW-15ML-XX 70-130

Prep Type: Total/NA

	Sample Samp	le Spike	MSD	MSD				%Rec.		RPD
Analyte	Result Quali	fier Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Toluene	0.50 U	20.0	20.2		ug/L		101	78 - 119	12	30
Chlorobenzene	0.50 U	20.0	19.9		ug/L		100	80 - 119	12	30
Ethylbenzene	0.50 U	20.0	19.9		ug/L		100	78 - 120	9	30
Styrene	0.50 U	20.0	20.4		ug/L		102	75 - 127	12	30
m&p-Xylene	0.50 U	20.0	20.1		ug/L		100	78 - 123	12	30
o-Xylene	0.50 U	20.0	20.8		ug/L		104	78 - 122	10	30
Xylenes, Total	1.0 U	40.0	40.9		ug/L		102	78 - 122	11	30
Freon 113	0.60	20.0	18.9		ug/L		92	59 - 142	15	30
Methyl tert-butyl ether	0.50 U	20.0	22.5		ug/L		112	65 - 131	3	30
Cyclohexane	0.50 U	20.0	19.0		ug/L		95	67 - 133	13	30
1,2-Dibromoethane	0.50 U	20.0	21.1		ug/L		105	69 - 126	13	30
1,3-Dichlorobenzene	0.50 U	20.0	21.2		ug/L		106	80 - 121	5	30
1,4-Dichlorobenzene	0.50 U	20.0	20.3		ug/L		101	80 - 118	8	30
1,2-Dichlorobenzene	0.50 U	20.0	20.9		ug/L		105	79 - 122	4	30
Dichlorodifluoromethane	0.50 U	20.0	18.3		ug/L		91	31 - 150	15	30
1,2,4-Trichlorobenzene	0.50 U	20.0	21.1		ug/L		106	64 - 132	1	30
1,2-Dibromo-3-Chloropropane	0.50 U	20.0	22.3		ug/L		111	41 - 143	3	30
Isopropylbenzene	0.50 U	20.0	20.6		ug/L		103	79 - 125	13	30
Methyl acetate	2.5 U	40.0	45.1		ug/L		113	70 - 127	4	30
Methylcyclohexane	0.50 U	20.0	19.4		ug/L		97	60 - 139	13	30
Freon 115 biased high, sample ND - no	o quals 5.0 UF1	20.0	32.9	F1	ug/L		164	10 - 150	10	30
Freon 152a	1.0 U	20.0	21.1		ug/L		106	10 - 150	10	30
Freon 123	1.0 U	20.0	19.0		ug/L		95	10 - 150	10	30
Freon 22 MSRPD	0.70 JF2	20.0	21.1	F2	ug/L		102	10 - 150	31	30

MSD MSD

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	110		75 - 123
Toluene-d8 (Surr)	98		80 - 120
4-Bromofluorobenzene	99		76 - 120
Dibromofluoromethane (Surr)	104		77 - 124

Lab Sample ID: 460-240981-12 MS

Matrix: Water

Analysis Batch: 796886

Client Sample ID: MW-18GL-XX Prep Type: Total/NA

Analysis Balch: 790000	Sample	Sample	Spike	MS	MS				%Rec.
Analyte	•	Qualifier	Added	_	Qualifier	Unit	D	%Rec	Limits
Chloromethane	0.50	U	20.0	23.2		ug/L		116	38 - 150
Vinyl chloride	0.50	U	20.0	23.3		ug/L		116	61 - 144
Bromomethane	0.50	U	20.0	22.1		ug/L		110	43 - 150
Chloroethane	0.50	U	20.0	20.4		ug/L		102	50 - 150
Methylene Chloride	0.50	U	20.0	21.3		ug/L		107	74 - 127
Acetone	5.0	U	100	99.2		ug/L		99	61 - 134
Carbon disulfide	0.50	U	20.0	22.6		ug/L		113	64 - 138
Freon 11	0.50	U	20.0	24.0		ug/L		120	61 - 140
1,1-Dichloroethene	0.50	U	20.0	20.6		ug/L		103	68 - 133
1,1-Dichloroethane	0.50	U	20.0	22.7		ug/L		113	73 - 130
trans-1,2-Dichloroethene	0.33	J	20.0	21.7		ug/L		107	74 - 126
cis-1,2-Dichloroethene	3.3		20.0	24.4		ug/L		106	78 - 121

Eurofins TestAmerica, Edison

Page 76 of 1054

Client: Wood E&I Solutions Inc

Project/Site: LMC Q3 2021 Groundwater Monitoring

Method: 8260D - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: 460-240981-12 MS Client Sample ID: MW-18GL-XX Matrix: Water Prep Type: Total/NA 70-130

Analysis Batch: 796886	Sample	Sample	Spike	MS	MS				%Rec.
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits
Chloroform	0.88		20.0	23.2		ug/L		112	78 - 125
1,2-Dichloroethane	0.50	U	20.0	23.0		ug/L		115	75 - 121
Methyl ethyl ketone (MEK)	2.5	U	100	94.5		ug/L		94	69 - 128
I,1,1-Trichloroethane	0.50	U	20.0	23.2		ug/L		116	68 - 128
Carbon tetrachloride	0.50	U	20.0	22.4		ug/L		112	56 - 131
Bromodichloromethane	0.50	U	20.0	23.4		ug/L		117	72 - 121
1,2-Dichloropropane	0.50	U	20.0	22.6		ug/L		113	76 - 126
cis-1,3-Dichloropropene	0.50	U	20.0	21.3		ug/L		106	74 - 125
Trichloroethene	1.7		20.0	23.3		ug/L		108	71 - 121
Dibromochloromethane	0.50	U	20.0	21.8		ug/L		109	58 - 130
1,1,2-Trichloroethane	0.50		20.0	19.8		ug/L		99	74 - 125
Benzene	0.50		20.0	21.5		ug/L		108	78 - 126
rans-1,3-Dichloropropene	0.50		20.0	22.4		ug/L		112	66 - 127
Bromoform	0.50		20.0	20.9		ug/L		105	38 - 144
Methyl isobutyl ketone (MIBK)	2.5		100	113		ug/L		113	69 - 128
2-Hexanone	2.5		100	110		ug/L		110	74 - 127
Tetrachloroethene	1.7	-	20.0	21.9		ug/L		101	70 - 127
1,1,2,2-Tetrachloroethane	0.50	U	20.0	23.1		ug/L ug/L		115	63 - 139
Toluene	0.50		20.0	21.1		ug/L		106	78 - 119
Chlorobenzene	0.50		20.0	20.7		ug/L		100	80 - 119
Ethylbenzene	0.50		20.0	21.2		ug/L ug/L		104	78 - 120
Styrene	0.50		20.0	21.0		ug/L		105	75 - 127
n&p-Xylene	0.50		20.0	20.9		ug/L		105	78 - 123
p-Xylene	0.50		20.0	20.9		ug/L ug/L		110	78 - 122
Sylenes, Total	1.0		40.0	42.9				107	78 - 122
Freon 113	0.50		20.0	22.9		ug/L		114	78 - 122 59 - 142
	0.50			22.8		ug/L			65 - 131
Methyl tert-butyl ether			20.0			ug/L		114	
Cyclohexane	0.50		20.0	22.8		ug/L		114	67 - 133
1,2-Dibromoethane	0.50		20.0	21.7		ug/L		108	69 - 126
1,3-Dichlorobenzene	0.50		20.0	20.4		ug/L		102	80 - 121
I,4-Dichlorobenzene	0.50		20.0	20.3		ug/L		102	80 - 118
1,2-Dichlorobenzene	0.50		20.0	20.4		ug/L		102	79 - 122
Dichlorodifluoromethane	0.50		20.0	20.7		ug/L		103	31 - 150
1,2,4-Trichlorobenzene	0.50		20.0	19.3		ug/L		97	64 - 132
1,2-Dibromo-3-Chloropropane	0.50		20.0	21.3		ug/L		106	41 - 143
sopropylbenzene	0.50		20.0	22.1		ug/L		111	79 - 125
Methyl acetate	2.5		40.0	45.3		ug/L		113	70 - 127
Methylcyclohexane	0.50		20.0	23.4		ug/L		117	60 - 139
Freon 115 biased high, sample ND			20.0	30.8	F1	ug/L		154	10 - 150
Freon 152a	1.0		20.0	24.4		ug/L		122	10 - 150
Freon 123	1.0	U	20.0	22.7		ug/L		114	10 - 150
reon 22	4.5		20.0	28.0		ug/L		118	10 - 150
	Me	MS							
Surrogate	МЗ %Recovery		Limits						
,2-Dichloroethane-d4 (Surr)	70 Recovery	- Quantitet	75 ₋ 123						
	103		75 - 123 80 - 120						
Toluene-d8 (Surr)									
4-Bromofluorobenzene Dibromofluoromethane (Surr)	101 105		76 - 120 77 - 124						

Job ID: 460-240981-1

Client: Wood E&I Solutions Inc Job ID: 460-240981-1

Project/Site: LMC Q3 2021 Groundwater Monitoring

Method: 8260D - Volatile Organic	Compounds by (GC/MS (C	Continued)
----------------------------------	----------------	----------	------------

Lab Sample ID: 460-240981-12 MSD Client Sample ID: MW-18GL-XX **Prep Type: Total/NA**

Matrix: Water

Analysis Batch: 796886

	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Methyl acetate	2.5	U	40.0	41.8		ug/L		104	70 - 127	8	30
Methylcyclohexane	0.50	-	20.0	20.9		ug/L		104	60 - 139	12	30
Freon 115 biased high, sample ND	- no quals _{5.0}	U F1	20.0	38.5	F1	ug/L		192	10 - 150	22	30
Freon 152a	1.0	U	20.0	20.8		ug/L		104	10 - 150	16	30
Freon 123	1.0	U	20.0	19.5		ug/L		97	10 - 150	15	30
Freon 22	4.5		20.0	26.7		ug/L		111	10 - 150	5	30

MSD MSD

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	102		75 - 123
Toluene-d8 (Surr)	99		80 - 120
4-Bromofluorobenzene	98		76 - 120
Dibromofluoromethane (Surr)	100		77 - 124

Method: SM 4500 CI-B - Chloride

Lab Sample ID: MB 460-799688/1 **Client Sample ID: Method Blank** Prep Type: Total/NA

Matrix: Water

Analysis Batch: 799688

MB MB

Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Chloride	2.50 J	5.0	1.1 mg/L			09/03/21 15:46	1

Lab Sample ID: LCSSRM 460-799688/2

Matrix: Water

Analysis Batch: 799688

•	Spike	LCSSRM	LCSSRM				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Chloride	85.8	84.97		mg/L		99.0	87.5 - 112.	
							7	

Lab Sample ID: MRL 460-799688/3

Matrix: Water

Analysis Batch: 799688

	Spike	MRL	MRL			%Rec.	
Analyte	Added	Result	Qualifier	Unit	D %Rec	Limits	
Chloride	5 00	6 98		ma/l	140	50 - 150	

Lab Sample ID: 460-240981-20 MS Client Sample ID: MW-43MU-XX Prep Type: Total/NA

Matrix: Water

Analysis Batch: 799688

•	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Chloride	12.5	R	25.0	37 40		ma/l		100	90 - 110	

Lab Sample ID: 460-240981-20 MSD

Matrix: Water

Analysis Batch: 799688

	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Chloride	12.5	В	25.0	37.40		mg/L		100	90 - 110	0	10

Eurofins TestAmerica, Edison

Client Sample ID: MW-43MU-XX

Client Sample ID: Lab Control Sample

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Type: Total/NA

Page 79 of 1054

Prep Type: Total/NA

09/07/2021

GC/MS VOA BY INTERNAL STANDARD - INITIAL CALIBRATION DATA CURVE EVALUATION FORM VI

Analy Batch No.: 794329 Job No.: 460-240981-1 Lab Name: Eurofins TestAmerica, Edison

SDG No.:

Instrument ID: CVOAMS7

Heated Purge: (Y/N) Calibration End Date: 08/04/2021 12:55 0.25 (mm) ID: GC Column: Rtx-624 Calibration Start Date: 08/04/2021 08:27

 \mathbb{Z}

Calibration Start Date: 08/04/2021	2021 08:27	Calibr	ation	End Dat	Date: 08	08/04/2021	021 12:55	Calibration	ID:	86780	
ANALYTE		RRF			CURVE		COEFFICIENT	# MIN RRF %	%RSD # MAX		# MIN R^2
	LVL 1 LVL 2 LVL 6 LVL 7	LVL 3	LVL 4	LVL 5	TYPE	В	M1 M2		%RSD	SD OR COD	OR COD
trans-1,2-Dichloroethene	+++++ 0.6353 0.5348 0.5599	3 0.5161 9 0.6156	0.4610	0.5106	Ave		0.547	0.1000 1	11.2 20	20.0	
Acrylonitrile	0.2196 0.2405 0.2817 0.2665	0.2377 0.2482	0.2469	0.2610	Ave		0.250		7.7	20.0	
Hexane	+++++ 0.7829 0.6911 0.5404	9 0.7030 04 0.5923	0.6630	0.6755	Ave		0.664		11.8	20.0	
Isopropyl ether	1.6921 1.7327	1.5959 1.7955	1.5191	1.6306	Ave		1.661		5.5	20.0	
1,1-Dichloroethane	+++++ 0.9255 0.9814 1.0299	55 0.9732 39 1.0626	0.9123	0.9823	Ave		0.981	0.2000	5.4	20.0	
Vinyl acetate	1.0662 1.0940	1.2839	1.0553	1.1148	Ave		1.132	T-1	10.4	20.0	
2-Chloro-1,3-butadiene	+++++ 0.6251 0.5134 0.5148	0.5311 0.5339	0.4661	0.5133	Ave		0.531		9.2	20.0	
Tert-butyl ethyl ether	1.6495 1.6402	1.3171 12 1.7597	1.4654	1.5793	Ave		1.563		9.2	20.0	
2,2-Dichloropropane	+++++ 0.2651 0.1741 0.1668	51 0.2433 58 0.1769	0.1918	0.1778	Ave		0.199	<u></u>	19.4	20.0	
cis-1,2-Dichloroethene	+++++ 0.5563 0.5829 0.6036	3 0.5728 36 0.6652	0.5181	0.5642	Ave		0.580	0.1000	7.9 <	20.0	
Ethyl acetate	0.6851 0.6711	0.4949	0.6617	0.6707	Ave		0.654		11.9	20.0	
Methyl ethyl ketone (MEK)	0.7086 0.7313	0.9744	0.6502	0.7029	Ave		0.743	0.0500 1	14.9	20.0	
Methyl acrylate	+++++ 0.5688 0.5682 0.5219	38 0.5090 9 0.6042	0.4896	0.5342	Ave		0.542		7.4 20	20.0	
Propionitrile	++++ 26.364 23.686 22.545	54 25.397 15 18.248	22.406	24.680	Ave		23.33	П	11.4	20.0	
Tetrahydrofuran	+++++ 0.9194 0.7751 0.7223	04 0.8536 0.6402	0.8196	0.8089	Ave		0.791	<u></u>	11.5	20.0	
Chlorobromoethane	+++++ 0.3089 0.2490 0.2552	39 0.2268 52 0.2684	0.2373	0.2470	Ave		0.256	T-1	10.4	20.0	
Methacrylonitrile	0.3199 0.3091	.5 0.2642 31 0.2840	0.2845	0.2975	Ave		0.291		6.4	20.0	
Chloroform	+++++ 0.9966 0.8543 0.8861	56 0.7991 51 0.9646	0.7905	0.8438	Ave		0.876	0.2000	9.0	20.0	

Data File: \\chromfs\Edis	son\Cr				304-13	2807.b\V05446			
	<u> </u>	RT	Exp RT	Dlt RT		Б	Cal Amt	OnCol Amt	-
Compound	Sig	(min.)	(min.)	(min.)	Q	Response	ug/l	ug/l	Flags
00.14 .1 .1 .011 .11	0.4	0.050	0.000	0.044	00	000047	50.0	47.0	
29 Methylene Chloride	84	2.658	2.669	-0.011	90	293047	50.0	47.2	
31 2-Methyl-2-propanol	59	2.692	2.692	0.000	99	342423	500.0	471.1	
32 Methyl tert-butyl ether	73	2.783	2.795	-0.012	98	862735	50.0	50.8	
33 trans-1,2-Dichloroethene	96	2.829	2.829	0.000	94	291510	50.0	48.8	
35 Acrylonitrile	53	2.875	2.886	-0.011	92	1535681	500.0	562.8	
36 Hexane	57	2.955	2.955	0.000	91	376743	50.0	52.0	
37 Isopropyl ether	45	3.126	3.126	0.000	97	922403	50.0	50.9	
38 1,1-Dichloroethane	63	3.172	3.172	0.000	61	534982	50.0	50.0	
40 Vinyl acetate	86	3.172	3.172	0.000	100	144902	100.0	94.1	
39 2-Chloro-1,3-butadiene	88	3.218	3.218	0.000	88	279876	50.0	48.3	
41 Tert-butyl ethyl ether	59	3.412	3.412	0.000	89	899197	50.0	52.8	
* 42 2-Butanone-d5	46	3.606	3.606	0.000	97	339773	250.0	250.0	
43 2,2-Dichloropropane	97	3.618	3.618	0.000	95	94906	50.0	43.7	
45 cis-1,2-Dichloroethene	96	3.652	3.652	0.000	46	317750	50.0	50.2	
44 2-Butanone (MEK)	72	3.652	3.652	0.000	96	240769	250.0	238.3	
47 Ethyl acetate	70	3.652	3.652	0.000	93	93106	100.0	104.8	
46 Methyl acrylate	55	3.709	3.709	0.000	100	309714	50.0	52.4	
48 Propionitrile	54	3.778	3.778	0.000	99	572801	500.0	507.6	
50 Tetrahydrofuran	72	3.858	3.869	-0.011	86	105346	100.0	98.0	
49 Chlorobromomethane	128	3.869	3.869	0.000	91	135728	50.0	48.6	
54 Methacrylonitrile	67	3.881	3.881	0.001	91	1744051	500.0	548.7	
51 Chloroform	83	3.915	3.915	0.000	98	465702	50.0	48.7	
53 Cyclohexane	84	4.041	4.041	0.000	88	431473	50.0	49.4	
55 1,1,1-Trichloroethane	97	4.041	4.052	-0.011	98	385582	50.0	50.2	
		4.041	4.052	0.000		149323	50.0	48.6	
\$ 56 Dibromofluoromethane (Surr)					96 06				
57 Carbon tetrachloride	117	4.166	4.166	0.000	96	300932	50.0	49.6	
58 1,1-Dichloropropene	75 42	4.189	4.201	-0.012	99	405293	50.0	48.7	
61 Isobutyl alcohol	43	4.303	4.315	-0.012	96	510653	1250.0	1394.0	
64 Isooctane	57	4.349	4.349	0.000	99	742773	50.0	52.6	
59 Benzene	78	4.383	4.383	0.000	96	1283789	50.0	52.7	
\$ 60 1,2-Dichloroethane-d4 (Surr)		4.406	4.406	0.000	93	149469	50.0	45.9	
66 Isopropyl acetate	61	4.429	4.429	0.000	96	159226	50.0	53.8	
62 Tert-amyl methyl ether	73	4.441	4.441	0.000	92	892503	50.0	50.7	
63 1,2-Dichloroethane	62	4.475	4.486	-0.011	95	309629	50.0	48.0	
65 n-Heptane	100	4.532	4.532	0.000	89	63205	50.0	47.3	
* 67 Fluorobenzene	96	4.669	4.681	-0.012	99	545120	50.0	50.0	
70 n-Butanol	56	4.989	5.001	-0.012	84	175019	1250.0	1477.0	
69 Trichloroethene	95	5.035	5.035	0.000	99	291623	50.0	48.7	
71 Ethyl acrylate	99	5.149	5.161	-0.012	96	51053	50.0	55.0	
72 Methylcyclohexane	83	5.161	5.161	0.000	76	457620	50.0	52.0	
73 1,2-Dichloropropane	63	5.332	5.332	0.000	94	302640	50.0	48.9	
* 68 1,4-Dioxane-d8	96	5.401	5.401	0.000	44	29132	1000.0	1000.0	
74 Methyl methacrylate	100	5.412	5.412	0.000	87	205850	100.0	108.4	
78 1,4-Dioxane	88	5.458	5.458	0.000	26	68981	1000.0	959.7	
77 n-Propyl acetate	43	5.469	5.469	0.000	97	468964	50.0	49.9	
75 Dibromomethane	93	5.469	5.481	-0.012	95	164191	50.0	49.8	
76 Dichlorobromomethane	93 83	5.629	5.641	-0.012	99	338247	50.0	50.5	
	აა 41						100.0		
34 2-Nitropropane		5.984	5.984	0.000	95 07	166112		102.8	
79 2-Chloroethyl vinyl ether	63	5.995	5.995	0.000	97	212082	50.1	53.2	
80 Epichlorohydrin	57	6.109	6.109	0.000	99	804678	1000.0	1081.4	
81 cis-1,3-Dichloropropene	75	6.166	6.166	0.000	88	490681	50.0	52.4	
84 4-Methyl-2-pentanone (MIBK)	43	6.338	6.338	0.000	95	1626986	250.0	267.6	

Report Date: 25-Aug-2021 20:22:41 Chrom Revision: 2.3 13-May-2021 07:57:40

Eurofins TestAmerica, Edison Target Compound Quantitation Report

Data File: \\chromfs\Edison\ChromData\CVOAMS7\20210817-133395.b\\V06135.D

Lims ID: 460-240981-A-28 Client ID: IW-N13221-XX

Sample Type: Client

Inject. Date: 18-Aug-2021 05:07:30 ALS Bottle#: 76 Worklist Smp#: 27

Purge Vol: 5.000 mL Dil. Factor: 1.0000

Sample Info: 460-240981-A-28 Misc. Info.: 460-0133395-027

Operator ID: Instrument ID: CVOAMS7

Method: \\chromfs\Edison\ChromData\CVOAMS7\20210817-133395.b\8260W_7.m

Limit Group: VOA - 8260D Water and Solid

Last Update:25-Aug-2021 20:22:41Calib Date:04-Aug-2021 12:55:30Integrator:RTEID Type:Deconvolution IDQuant Method:Internal StandardQuant By:Initial CalibrationLast ICal File:\\chromfs\Edison\ChromData\CVOAMS7\20210804-132807.b\V05452.D

Column 1: Rtx-624 (0.25 mm) Det: MS Quad

Process Host: CTX1624

First Level Reviewer: starzecm Date: 18-Aug-2021 09:54:33

T II St ECVCIT (CVICWCI: Starzecili				ato.		10 / tug 202	21 00.04.00	
Compound	Sig	RT (min.)	Exp RT (min.)	Dlt RT (min.)	Q	Response	OnCol Amt ug/l	Flags
18 112TCTFE	101	2.258	2.258	0.000	89	3326	0.5479	
* 28 TBA-d9 (IS)	66	2.635	2.635	0.000	100	72501	1000.0	
* 42 2-Butanone-d5	46	3.595	3.606	-0.011	100	485838	250.0	
45 cis-1,2-Dichloroethene	96	3.652	3.652	0.000	97	42442	4.94 🗸	
51 Chloroform	83	3.903	3.903	0.000	92	4604	0.3551	
\$ 56 Dibromofluoromethane (Surr)	113	4.064	4.063	0.001	96	223434	53.6	
\$ 60 1,2-Dichloroethane-d4 (Surr)	65	4.406	4.406	0.000	95	240695	54.5	
* 67 Fluorobenzene	96	4.669	4.669	0.000	99	739759	50.0	
69 Trichloroethene	95	5.035	5.035	0.000	90	15513	1.91	
* 68 1,4-Dioxane-d8	96	5.401	5.401	0.000	93	39811	1000.0	
\$ 82 Toluene-d8 (Surr)	98	6.429	6.429	0.000	99	1061928	51.3	
88 Tetrachloroethene	166	7.195	7.195	0.000	91	10122	1.51	
* 94 Chlorobenzene-d5	117	8.338	8.338	0.000	87	565519	50.0	
\$ 105 4-Bromofluorobenzene	174	9.573	9.573	0.000	0	238898	50.2	
* 106 1,4-Dichlorobenzene-d4	152	10.590	10.590	0.000	96	256939	50.0	

QC Flag Legend

Processing Flags

Reagents:

8260ISNEW_00119 Amount Added: 1.00 Units: uL Run Reagent 8260SURR250_00220 Amount Added: 1.00 Units: uL Run Reagent

FORM I GC/MS VOA ORGANICS ANALYSIS DATA SHEET

Lab Name: Eurofins TestAmerica, Edison	Job No.: 460-240981-1
SDG No.:	
Client Sample ID: IW-N13221-XX	Lab Sample ID: 460-240981-28
Matrix: Water	Lab File ID: V06135.D
Analysis Method: 8260D	Date Collected: 08/16/2021 06:50
Sample wt/vol: 5(mL)	Date Analyzed: 08/18/2021 05:07
Soil Aliquot Vol:	Dilution Factor: 1
Soil Extract Vol.:	GC Column: Rtx-624 ID: 0.25(mm)
% Moisture:	Level: (low/med) Low

Units: ug/L

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
74-87-3	Chloromethane	0.50	U	0.50	0.40
75-01-4	Vinyl chloride	0.50	U	0.50	0.17
74-83-9	Bromomethane	0.50	U	0.50	0.55
75-00-3	Chloroethane	0.50	U	0.50	0.32
75-09-2	Methylene Chloride	0.50	U	0.50	0.32
67-64-1	Acetone	5.0	U	5.0	4.4
75-15-0	Carbon disulfide	0.50	U	0.50	0.82
75-69-4	Freon 11	0.50	U	0.50	0.32
75-35-4	1,1-Dichloroethene	0.50	U	0.50	0.26
75-34-3	1,1-Dichloroethane	0.50	U	0.50	0.26
156-60-5	trans-1,2-Dichloroethene	0.50	U	0.50	0.24
156-59-2	cis-1,2-Dichloroethene	4.9	/	0.50	0.22
67-66-3	Chloroform	0.36	J	0.50	0.33
107-06-2	1,2-Dichloroethane	0.50	U	0.50	0.43
78-93-3	Methyl ethyl ketone (MEK)	2.5	U	2.5	1.9
71-55-6	1,1,1-Trichloroethane	0.50	U	0.50	0.24
56-23-5	Carbon tetrachloride	0.50	U	0.50	0.21
75-27-4	Bromodichloromethane	0.50	U	0.50	0.34
78-87-5	1,2-Dichloropropane	0.50	U	0.50	0.35
10061-01-5	cis-1,3-Dichloropropene	0.50	U	0.50	0.22
79-01-6	Trichloroethene	1.9		0.50	0.31
124-48-1	Dibromochloromethane	0.50	U	0.50	0.28
79-00-5	1,1,2-Trichloroethane	0.50	U	0.50	0.20
71-43-2	Benzene	0.50	U	0.50	0.20
10061-02-6	trans-1,3-Dichloropropene	0.50	U	0.50	0.22
75-25-2	Bromoform	0.50	U	0.50	0.54
108-10-1	Methyl isobutyl ketone (MIBK)	2.5	U	2.5	1.3
591-78-6	2-Hexanone	2.5	U	2.5	1.1
127-18-4	Tetrachloroethene	1.5		0.50	0.25
79-34-5	1,1,2,2-Tetrachloroethane	0.50	U	0.50	0.37
108-88-3	Toluene	0.50	U	0.50	0.38
108-90-7	Chlorobenzene	0.50	U	0.50	0.38
100-41-4	Ethylbenzene	0.50	U	0.50	0.30
100-42-5	Styrene	0.50	U	0.50	0.42
179601-23-1	m&p-Xylene	0.50	U	0.50	0.30
95-47-6	o-Xylene	0.50	U	0.50	0.36

Analysis Batch No.: 796695

DUSR Calculations Sheet

Sample ID: IW-N13221-XX

TC: cis-1,2-dichloroethene

ICAL Level: STD 50

Val File Result for TC: 4.9

Ical Calc

Area TC	317750	1	0.5563
Area IS	545120	2	0.5728
		3	0.5181
Conc TC	50	4	0.5642
Conc IS	50	5	0.5829
		6	0.6036
RRF =	0.582899	7	0.6652
		8	
		9	
		10	
		Avg RRF =	0.580443
		Std Dev =	0.045676
		%RSD =	7 869175

Sample Calc

Area TC	42442	DF	1
Area IS	739759		
Conc IS	50		
Avg RRF	0.580443		
Conc TC =	4.942152 μg/L	Conc TC =	4.942152

Notes:

Green = matched reported value Red = did not match reported value

VOCs

NYSDEC DUSR PROJECT CHEMIST REVIEW RECORD Project: LMC Great Neck Q3 GWM **Method:** 524.2 460-241354-1 Laboratory: TAL - Edison, NJ SDG(s): Date: 9/17/2021 Reviewer: Amber Jones X NYSDEC DUSR Review Level **USEPA** Region II Guideline **✓** Case Narrative Review and COC/Data Package Completeness **COMMENTS** Were problems noted? yes, see attached Are Field Sample IDs and Locations assigned correctly? YES NO (circle one) Were all the samples on the COC analyzed for the requested analyses? YES NO (circle one) 2. Molding time and Sample Collection All samples were analyzed within the 14 day holding time. YES NO (circle one) 3. 🔽 QC Blanks Are method blanks free of contamination? YES NO (circle one) Are Trip blanks free of contamination? YES NO (circle one) Are Rinse blanks free of contamination? YES NO NA (circle one) 4. 🌠 Instrument Tuning – Data Package Narrative Review Did the laboratory narrative identify any results that were not within method criteria? YES NO If yes, use professional judgment to evaluate data and qualify results if needed 5. Instrument Calibration – Data Package Narrative Review Did the laboratory narrative identify compounds that were not within criteria in the initial and/or continuing calibration standards? YES NO (circle one) Initial Calibration %RSD = 20% (30% for 1,1-DCE, chloroform, 1,2-DCP, toluene, ethylbenzene, VC) Initial Avg RRF and Continuing RRF should be ≥ 0.05 and 0.10 for Chloromethane, 1,1-Dichloroethane, Bromoform and 0.30 for Chlorobenzene and 1,1,2,2-Tetrachloroethane Continuing Calibration %D = 20% Did the laboratory qualify results based on initial or continuing calibration exceedances? YES NO If yes to above, use professional judgment to evaluate data and qualify results if needed 6. VI Internal Standards – Data Package Narrative Review (Area Limits = -50% to +100%, RTs within 30 seconds of daily CCAL standard (or ICAL midpoint if samples follow ICAL) Did the laboratory narrative identify any sample internal standards that were not within criteria? YES NO (circle one) Did the laboratory qualify results based on internal standard exceedances? YES NO If yes to above, use professional judgment to evaluate data and qualify results if needed 7. **V** Surrogate Recovery - Region II limits (water 80-120%, soil 70-130%) Were all results within Region II limits? YES NO (circle one) 8. Watrix Spike - Region II limits (water and soil 70-130%, water RPD 20, soil RPD 35)

Were all results within the Region II limits? YES NO NA (circle one)

Were MS/MSDs submitted/analyzed? YES NO

SW-N12796-XX - see attached for guals

9. **Duplicates -** Region II Limits (water RPD 50, soil RPD 100) see attached for RPD calculations - no quals Were Field Duplicates submitted/analyzed? YES NO Were all results within Region II limits? (soil RPD<100, water RPD<50) YES NO NA see attached - subset UJ, LCSL, LCSRPD; 10. Laboratory Control Sample Results - Region II (Water and soil 70-130%)

See allactied - Subset 03, 2052, 20
SW-5099-XX - freon 11 - J+, LCSH Were all results were within Region II control limits? YES NO (circle one) 11. Reporting Limits: Were samples analyzed at a dilution? YES NO (circle one) 12. Maw Data Review and Calculation Checks see attached for calculations 13. Electronic Data Review and Edits Does the EDD match the Form Is? YES NO (circle one) 14. Tables and TIC Review Table 1 (Samples and Analytical Methods) Table 2 (Analytical Results) **Table 3** (Qualification Actions) Were all tables produced and reviewed? YES NO (circle one)

YES NO (circle one)

Did lab report TICs?

Table 4 (TICs)

CASE NARRATIVE

Client: Wood E&I Solutions Inc

Project: LMC Q3 2021

Report Number: 460-241354-1

This case narrative is in the form of an exception report, where only the anomalies related to this report, method specific performance and/or QA/QC issues are discussed. If there are no issues to report, this narrative will include a statement that documents that there are no relevant data issues.

It should be noted that samples with elevated Reporting Limits (RLs) as a result of a dilution may not be able to satisfy customer reporting limits in some cases. Such increases in the RLs are unavoidable but acceptable consequence of sample dilution that enables quantification of target analytes or interferences which exceed the calibration range of the instrument.

Calculations are performed before rounding to avoid round-off errors in calculated results.

All holding times were met and proper preservation noted for the methods performed on these samples, unless otherwise detailed in the individual sections below.

RECEIPT

The samples were received on 08/20/2021; the samples arrived in good condition, properly preserved and on ice. The temperature of the coolers at receipt was 1.5 C.

Note: All samples which require thermal preservation are considered acceptable if the arrival temperature is within 2C of the required temperature or method specified range. For samples with a specified temperature of 4C, samples with a temperature ranging from just above freezing temperature of water to 6C shall be acceptable. Samples that are hand delivered immediately following collection may not meet these criteria, however they will be deemed acceptable according to NELAC standards, if there is evidence that the chilling process has begun, such as arrival on ice, etc.

DRINKING WATER VOLATILES (GC-MS)

Samples SW-5099-XX (460-241354-17), SW-N4388-XX (460-241354-18), SW-N12796-XX (460-241354-19), SW-N12999-XX (460-241354-20), SW-N13000-XX (460-241354-21), SW-N13821-XX (460-241354-22), SW-500 (460-241354-23) and QC-TB160821-XX (460-241354-24) were analyzed for drinking water volatiles (GC-MS) in accordance with EPA Method 524.2. The samples were analyzed on 08/29/2021.

Freon 115 failed the recovery criteria low for LCS 460-798696/16. Bromomethane failed the recovery criteria high. For LCSD 460-798696/17, Freon 115 failed the recovery criteria low. Bromomethane and Freon 11 failed the recovery criteria high. Also, Freon 115 exceeded the RPD limit. Refer to the QC report for details. see attached for LCS review

Freon 115, Tetrachloroethene and Trichloroethene failed the recovery criteria low for the MS of sample SW-N12796-XXMS (460-241354-19) in batch 460-798696. Bromomethane failed the recovery criteria high.

see attached for MS review

Bromomethane, Freon 11 and Freon 115 failed the recovery criteria high for the MSD of sample SW-N12796-XXMSD (460-241354-19) in batch 460-798696. Freon 115 exceeded the RPD limit.

Refer to the QC report for details.

No other difficulties were encountered during the volatiles analysis.

All other quality control parameters were within the acceptance limits.

VOLATILE ORGANIC COMPOUNDS (GC/MS) - (LOW LEVEL - LL)(TOTAL)

Samples MW-27MI-XX (460-241354-1), MW-31GL-XX (460-241354-2), MW-31MI-XX (460-241354-3), MW-31ML-XX (460-241354-4), MW-38MU-XX (460-241354-5), MW-38ML-XX (460-241354-6), MW-45MU-XX (460-241354-7), MW-45MI-XX (460-241354-8), MW-50MI-XX (460-241354-9), MW-50ML-XX (460-241354-10), MW-51MI-XX (460-241354-11), MW-51ML-XX (460-241354-12), IW-N9687-XX (460-241354-13), MW-52MI-XX (460-241354-14), MW-52ML-XX (460-241354-15) and MW-53ML-XX (460-241354-16) were analyzed for Volatile Organic Compounds (GC/MS) - (Low Level - LL)(Total) in accordance with EPA SW-846 Method 8260D - Low Level (LL). The samples were analyzed on 08/27/2021, 08/31/2021 and 09/01/2021.

Freon 115 failed the recovery criteria high for LCS 460-798361/3. Freon 115 failed the recovery criteria high for LCS 460-799027/4. Freon 115 failed the recovery criteria high for LCS 460-799165/3. Freon 115 failed the recovery criteria high for LCSD 460-799165/4. Refer to the QC report for details.

Client: Wood E&I Solutions Inc
Project/Site: LMC Q3 2021

Job ID: 460-241354-1

Method: 524.2 - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 460-798696/16 Matrix: Water Analysis Batch: 798696		70-130		Clie	nt Sample ID	Prep Type: Total/NA
Analyte	Spike Added		LCS Qualifier	Unit	D %Rec	%Rec. Limits
Bromoform	2.00	1.94		ug/L	97	70 - 130
Bromomethane biased high, samples ND - no qua	als 2.00	2.92	*+	ug/L	146	70 - 130
Carbon tetrachloride	2.00	2.11		ug/L	105	70 - 130
Chlorobenzene	2.00	2.07		ug/L	104	70 - 130
Chlorobromomethane	2.00	2.06		ug/L	103	70 - 130
Chlorodibromomethane	2.00	1.93		ug/L	97	70 - 130
Chloroethane	2.00	2.29		ug/L	114	70 - 130
Chloroform	2.00	2.01		ug/L	100	70 - 130
Chloromethane	2.00	2.07		ug/L	104	70 - 130
cis-1,2-Dichloroethene	2.00	2.22		ug/L	111	70 - 130
cis-1,3-Dichloropropene	2.00	1.96		ug/L	98	70 - 130
Dibromomethane	2.00	2.01		ug/L	101	70 - 130
Dichlorobromomethane	2.00	2.00		ug/L	100	70 - 130
Dichlorodifluoromethane	2.00	2.09		ug/L	105	70 - 130
Ethylbenzene	2.00	1.99		ug/L	100	70 - 130
Freon 11	2.00	2.43		ug/L	122	70 - 130
Freon 113	2.00	2.03		ug/L	102	70 - 130
Freon 115 UJ, LCSL	2.00	0.537	I *_	ug/L	27	70 - 130
Freon 123	2.00	2.15	0 -	ug/L ug/L	108	70 - 130 70 - 130
Freon 152a	2.00	2.04		ug/L ug/L	102	70 - 130 70 - 130
Freon 22	2.00	1.97		ug/L	98	70 - 130
Hexachlorobutadiene	2.00	2.22		ug/L ug/L	111	70 - 130 70 - 130
Isopropylbenzene	2.00	2.00		ug/L ug/L	100	70 - 130 70 - 130
m,p-Xylene	4.00	3.95		ug/L	99	70 - 130
Methyl tert-butyl ether	2.00	1.85		ug/L ug/L	92	70 - 130 70 - 130
Methylene Chloride	2.00	2.17		ug/L ug/L	108	70 - 130 70 - 130
N-Propylbenzene	2.00	1.85		ug/L ug/L	92	70 - 130
o-Xylene	2.00	1.03		ug/L ug/L	98	70 - 130 70 - 130
sec-Butylbenzene	2.00	1.90		ug/L ug/L	95	70 - 130 70 - 130
	2.00	1.90			98	70 - 130
Styrene	2.00	2.03		ug/L	102	70 - 130 70 - 130
tert-Butylbenzene Tetrachloroethene				ug/L		70 - 130 70 - 130
	2.00	2.03		ug/L	101	
Toluene	2.00	1.98		ug/L	99	70 - 130
trans-1,2-Dichloroethene	2.00	1.93		ug/L	97	70 - 130
trans-1,3-Dichloropropene	2.00	1.83		ug/L	91	70 - 130
Trichloroethene	2.00	2.08		ug/L	104	70 - 130
Vinyl chloride	2.00	2.45		ug/L	123	70 - 130
LCS L Surrogate %Recovery Q						
1,2-Dichlorobenzene-d4 101	70 - 130					
	70 - 130					

Matrix: Water Prep Type: Total/NA Analysis Batch: 798696 LCSD LCSD Spike **RPD** %Rec. Analyte Added Result Qualifier Unit D %Rec Limits RPD Limit 1,1,1,2-Tetrachloroethane 2.00 2.03 ug/L 102 70 - 130 2

Eurofins TestAmerica, Edison

Client: Wood E&I Solutions Inc

Project/Site: LMC Q3 2021

Job ID: 460-241354-1

Method: 524.2 - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCSD 460-798696/17 Matrix: Water 70-130

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Analysis Batch: 798696

		%Rec.	RPD
D %Re	Unit D %Rec	Limits RPI	D Limit
9	ug/L 99	70 - 130	3 30
10	ug/L 102	70 - 130	1 30
10	ug/L 106	70 - 130	0 30
9	ug/L 98	70 - 130	5 30
10	ug/L 104	70 - 130	1 30
10	ug/L 103	70 - 130	1 30
9	ug/L 94	70 - 130	4 30
11	ug/L 112	70 - 130	2 30
10	ug/L 100	70 - 130	4 30
9	ug/L 93	70 - 130	3 30
10	ug/L 102	70 - 130	9 30
9	ug/L 99	70 - 130	1 30
10	ug/L 105	70 - 130	2 30
10	ug/L 103	70 - 130	1 30
9	ug/L 98	70 - 130	1 30
9	ug/L 99	70 - 130	2 30
10	ug/L 100		2 30
10	ug/L 100	70 - 130	4 30
9	ug/L 90	70 - 130	6 30
	ug/L 104		2 30
	ug/L 100		1 30
	ug/L 97		2 30
	ug/L 99		3 30
	ug/L 102		2 30
	ug/L 98		0 30
	ug/L 150		3 30
	ug/L 105		0 30
	ug/L 101		2 30
	ug/L 103		0 30
	ug/L 102		5 30
	ug/L 122		6 30
	ug/L 99		2 30
	ug/L 114		9 30
	ug/L 103		8 30
	ug/L 99		0 30
	ug/L 98		3 30
	ug/L 95		5 30
	ug/L 120	70 - 130 13	
	ug/L 103		3 30
	ug/L 134	70 - 130 10	
	ug/L 104		3 30
	ug/L 66	70 - 130	
	ug/L 108		0 30
	ug/L 102		0 30
	ug/L 102 ug/L 96		3 30
	ug/L 96		5 30 5 30
	=		
			0 30
	ug/L ug/L ug/L	101 98 91	98 70 - 130

Eurofins TestAmerica, Edison

Client: Wood E&I Solutions Inc Job ID: 460-241354-1 Project/Site: LMC Q3 2021

Method: 524.2 - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: 460-241354-19 MS **Matrix: Water**

Analysis Batch: 798696

70-130

Client Sample ID: SW-N12796-XX

Prep Type: Total/NA

Analyte	•	Sample Qualifier	Spike Added		MS Qualifier	Unit	D	%Rec	%Rec. Limits	
	ample ND -0.50		2.00 —	2.62		ug/L	_ =	131	70 - 130	—
Carbon tetrachlorideno quals	0.19		2.00	2.02		ug/L ug/L		104	70 - 130	
Chlorobenzene	0.19		2.00	2.20		ug/L ug/L		104	70 - 130 70 - 130	
Chlorobromomethane	0.50		2.00	2.07		ug/L ug/L		104	70 - 130 70 - 130	
Chlorodibromomethane	0.50		2.00	2.10		ug/L ug/L		100	70 - 130	
Chloroethane	0.50		2.00	2.03		ug/L ug/L		119	70 - 130 70 - 130	
Chloroform	0.30		2.00	2.33		_		101	70 - 130 70 - 130	
Chloromethane	0.50		2.00	1.96		ug/L		98	70 - 130	
***************************************	4.2	U	2.00	5.81		ug/L ug/L		96 79	70 - 130 70 - 130	
cis-1,2-Dichloroethene			2.00	2.04		-			70 - 130 70 - 130	
cis-1,3-Dichloropropene	0.50					ug/L		102		
Dibromomethane	0.50		2.00	1.99		ug/L		99	70 - 130	
Dichlorobromomethane	0.50		2.00	2.03		ug/L		101	70 - 130	
Dichlorodifluoromethane	0.50		2.00	2.13		ug/L		106	70 - 130	
Ethylbenzene	0.50		2.00	1.93		ug/L		97	70 - 130	
Freon 11		U F1 *+	2.00	2.52		ug/L		126	70 - 130	
Freon 113	0.65		2.00	2.54		ug/L		95	70 - 130	
Freon 115 UJ, MSL	1.0	U F1 F2 *- *1	2.00	1.10	F1	ug/L		55	70 - 130	
Freon 123	0.50		2.00	2.29		ug/L		114	70 - 130	
Freon 152a	0.50	U	2.00	1.98		ug/L		99	70 - 130	
Freon 22	0.39	J	2.00	2.21		ug/L		91	70 - 130	
Hexachlorobutadiene	0.50	U	2.00	2.24		ug/L		112	70 - 130	
Isopropylbenzene	0.50	U	2.00	2.01		ug/L		101	70 - 130	
m,p-Xylene	1.0	U	4.00	3.97		ug/L		99	70 - 130	
Methyl tert-butyl ether	0.50	U	2.00	1.95		ug/L		98	70 - 130	
Methylene Chloride	0.50	U	2.00	1.83		ug/L		92	70 - 130	
N-Propylbenzene	0.50	U	2.00	1.88		ug/L		94	70 - 130	
o-Xylene	0.50	U	2.00	1.87		ug/L		93	70 - 130	
sec-Butylbenzene	0.50	U	2.00	1.84		ug/L		92	70 - 130	
Styrene	0.50	U	2.00	1.95		ug/L		98	70 - 130	
tert-Butylbenzene	0.50	U	2.00	1.96		ug/L		98	70 - 130	
Tetrachloroethene J-, MSL	7.3	F1	2.00	8.45	F1	ug/L		58	70 - 130	
Toluene	0.50	U	2.00	1.99		ug/L		100	70 - 130	
trans-1,2-Dichloroethene	0.50	U	2.00	2.03		ug/L		101	70 - 130	
trans-1,3-Dichloropropene	0.50	U	2.00	2.07		ug/L		103	70 - 130	
Trichloroethene J-, MSL	5.4	F1	2.00	6.75	F1	ug/L		68	70 - 130	
Vinyl chloride	0.50	U	2.00	2.30		ug/L		115	70 - 130	
	MS	MS								
Surrogate	%Recovery	Qualifier	Limits							
1,2-Dichlorobenzene-d4	100		70 - 130							

Lab Sample ID: 460-241354-19 MSD

96

Matrix: Water

4-Bromofluorobenzene

Analysis Batch: 798696

, , , , , , , , , , , , , , , , , , , ,	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
1,1,1,2-Tetrachloroethane	0.50	U	2.00	2.13		ug/L		106	70 - 130	2	30
1 1 1-Trichloroethane	0.50	U	2 00	2 28		ua/l		114	70 - 130	7	30

70 - 130

Eurofins TestAmerica, Edison

Client Sample ID: SW-N12796-XX

Page 52 of 1113

Prep Type: Total/NA

Client: Wood E&I Solutions Inc Job ID: 460-241354-1 Project/Site: LMC Q3 2021

Method: 524.2 - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: 460-241354-19 MSD Matrix: Water

70-130

Client Sample ID: SW-N12796-XX

Prep Type: Total/NA

Analysis Batch: 798696											
	•	Sample	Spike	MSD					%Rec.		RPD
Analyte		Qualifier	Added		Qualifier	Unit	D	%Rec	Limits	RPD	Limit
1,1,2,2-Tetrachloroethane	0.50		2.00	2.21		ug/L		111	70 - 130	10	30
1,1,2-Trichloroethane	0.50		2.00	2.27		ug/L		114	70 - 130	9	30
1,1-Dichloroethane	0.50		2.00	2.19		ug/L		110	70 - 130	1	30
1,1-Dichloroethene	0.50		2.00	2.45		ug/L		123	70 - 130	7	30
1,1-Dichloropropene	0.50	U	2.00	2.27		ug/L		114	70 - 130	3	30
1,2,3-Trichlorobenzene	0.50		2.00	2.05		ug/L		103	70 - 130	17	30
1,2,3-Trichloropropane	0.50		2.00	2.23		ug/L		111	70 - 130	7	30
1,2,4-Trichlorobenzene	0.50	U	2.00	2.01		ug/L		100	70 - 130	11	30
1,2,4-Trimethylbenzene	0.50	U	2.00	2.04		ug/L		102	70 - 130	8	30
1,2-Dibromo-3-Chloropropane	0.50	U	2.00	2.11		ug/L		105	70 - 130	7	30
1,2-Dichlorobenzene	0.50	U	2.00	2.13		ug/L		107	70 - 130	9	30
1,2-Dichloroethane	0.50	U	2.00	2.28		ug/L		114	70 - 130	7	30
1,2-Dichloropropane	0.50	U	2.00	2.12		ug/L		106	70 - 130	1	30
1,3,5-Trimethylbenzene	0.50	U	2.00	2.12		ug/L		106	70 - 130	10	30
1,3-Dichlorobenzene	0.50	U	2.00	2.08		ug/L		104	70 - 130	5	30
1,3-Dichloropropane	0.50	U	2.00	2.20		ug/L		110	70 - 130	0	30
1,4-Dichlorobenzene	0.50	U	2.00	2.21		ug/L		110	70 - 130	9	30
2,2-Dichloropropane	0.50	U	2.00	2.05		ug/L		102	70 - 130	6	30
2-Chlorotoluene	0.50	U	2.00	2.27		ug/L		113	70 - 130	8	30
4-Chlorotoluene	0.50	U	2.00	2.11		ug/L		106	70 - 130	4	30
4-Isopropyltoluene	0.50	U	2.00	2.10		ug/L		105	70 - 130	8	30
Benzene	0.50	U	2.00	2.20		ug/L		110	70 - 130	4	30
Bromobenzene	0.50	U	2.00	2.15		ug/L		107	70 - 130	3	30
Bromoform	0.50	U	2.00	2.02		ug/L		101	70 - 130	1	30
Bromomethane sample ND - no quals	0.50	U F1 *+	2.00	2.96	F1	ug/L		148	70 - 130	12	30
Carbon tetrachloride	0.19	J	2.00	2.40		ug/L		111	70 - 130	6	30
Chlorobenzene	0.50	U	2.00	2.19		ug/L		110	70 - 130	6	30
Chlorobromomethane	0.50	U	2.00	2.16		ug/L		108	70 - 130	0	30
Chlorodibromomethane	0.50		2.00	2.15		ug/L		108	70 - 130	5	30
Chloroethane	0.50		2.00	2.48		ug/L		124	70 - 130	4	30
Chloroform	0.21		2.00	2.34		ug/L		106	70 - 130	5	30
Chloromethane	0.50		2.00	2.18		ug/L		109	70 - 130	11	30
cis-1,2-Dichloroethene	4.2	_	2.00	5.98		ug/L		87	70 - 130	3	30
cis-1,3-Dichloropropene	0.50	U	2.00	2.07		ug/L		104	70 - 130	2	30
Dibromomethane	0.50		2.00	2.09		ug/L		105	70 - 130	5	30
Dichlorobromomethane	0.50		2.00	2.13		ug/L		106	70 - 130	5	30
Dichlorodifluoromethane	0.50		2.00	2.27		ug/L		114	70 - 130	7	30
Ethylbenzene	0.50		2.00	2.20		ug/L		110	70 - 130	13	30
Freon 11 biased high, samples ND - no o			2.00	2.69	F1	ug/L		134	70 - 130	6	30
Freon 113	0.65		2.00	2.68		ug/L		101	70 - 130	5	30
Freon 115 biased low in MS - UJ - MSL MSH, MSRPD		U F1 F2 *- *1	2.00		F1 F2	ug/L		163	70 - 130	99	30
Freon 123	0.50		2.00	2.36		ug/L		118	70 - 130	3	30
Freon 152a	0.50		2.00	2.16		ug/L		108	70 - 130	9	30
Freon 22	0.39		2.00	2.42		ug/L		102	70 - 130	9	30
Hexachlorobutadiene	0.50		2.00	2.40		ug/L		120	70 - 130	7	30
Isopropylbenzene	0.50		2.00	2.18		ug/L		109	70 - 130	8	30
m,p-Xylene	1.0		4.00	4.29		ug/L		107	70 - 130	8	30
Methyl tert-butyl ether	0.50		2.00	2.02		ug/L		101	70 - 130	3	30

Eurofins TestAmerica, Edison

09/16/2021

FORM VI GC/MS VOA BY INTERNAL STANDARD - INITIAL CALIBRATION DATA CURVE EVALUATION

Analy Batch No.: 798696 Job No.: 460-241354-1 Lab Name: Eurofins TestAmerica, Edison

SDG No.:

 \mathbb{Z} Calibration ID: 87046 Heated Purge: (Y/N) 12:34 ID: 0.25 (mm) Calibration End Date: 08/29/2021 GC Column: Rtx-624 07:15 Calibration Start Date: 08/29/2021 Instrument ID: CVOAMS15

ANALYTE			RRF		כנ	CURVE	COEFFICIENT	ENT	# MIN RRF %RSD	# MAX		# MIN R^2
	LVL 1 LVL 6	LVL 2	LVL 3	LVL 4	IVL 5 T	TYPE	B M1	M2		%RSD	OR COD	OR COD
Methyl iodide	0.1631	0.2465	0.2107	0.2344	0.2695 AT	Ave	0.234		18.4	20.0		
Carbon disulfide	0.9602	1.1984	0.9433	0.8199	0.8023 Ave	<i>J</i> e	0.928		15.8	20.0		
Allyl chloride	0.1495	0.2400	0.1944	0.1806	0.1895 Ave	. Je	0.191		15.3	20.0		
Methylene Chloride	0.5864	0.3329	0.2819	0.2538	0.2755 Li	Lin 0	0.093 0.260				0.9990	0.9900
TBA	0.0457	0.0328	0.0312	0.0256	0.0249 Li	Lin 0	0.188 0.024				0.9950	0066.0
Acrylonitrile	0.0862	0.1481	0.1076	0.1155	0.1146 Ave	<i>J</i> e	0.11		17.4	20.0		
trans-1,2-Dichloroethene	0.3447	0.2620	0.2605	0.2449	0.2757 Ave	<i>J</i> e	0.274		13.0	20.0		
Methyl tert-butyl ether	0.5507	0.9530	0.7135	0.7003	0.7311 Ave	<i>J</i> e	0.727		17.7	20.0		
1,1-Dichloroethane	0.5906	0.4528	0.4713	0.4476	0.4983 Ave	<i>J</i> e	0.489		10.8	20.0		
2,2-Dichloropropane	0.5183	0.3982	0.3845	0.3646	0.4287 Ave	. Je	0.416		13.0	20.0		
ois-1,2-Dichloroethene	0.4009	0.2614	0.2832	0.2716	0.3045 Ave	<i>J</i> e	0.302	>	16.8	20.0		
2-Butanone	0.0309	0.0283	0.0319	0.0309	0.0323 Ave	<i>J</i> e	0.031		N. N.	20.0		
Ethyl Cyanide	0.0452	0.0356	0.0435	0.0407	0.0409 Ave	<i>J</i> e	0.041		6.7	20.0		
Methyl acrylate	0.2307	0.3367	0.2731	0.2626	0.2817 Ave	Je.	0.279		12.6	20.0		
Methacrylonitrile	0.0873	0.1491	0.1129	0.1140	0.1238 Ave	<i>J</i> e	0.118		17.0	20.0		
Chlorobromomethane	0.1464	0.1167	0.1274	0.1133	0.1309 Ave	<i>J</i> e	0.125		o. o	20.0		
Tetrahydrofuran	0.0890	0.0938	0.0862	0.0768	0.0792 Ave	<i>7</i> e	0.084		7.8	20.0		
Chloroform	0.5704	0.4206	0.4468	0.4279	0.4873 Ave	Je Je	0.469		11.8	20.0		

Report Date: 30-Aug-2021 20:10:15 Chrom Revision: 2.3 13-May-2021 07:57:40

Eurofins TestAmerica, Edison Target Compound Quantitation Report

Data File: \\chromfs\Edison\ChromData\CVOAMS15\20210829-133888.b\T54730.D

Lims ID: STD5

Client ID:

Sample Type: IC Calib Level: 4

Inject. Date: 29-Aug-2021 07:57:40 ALS Bottle#: 0 Worklist Smp#: 6

Purge Vol: 5.000 mL Dil. Factor: 1.0000

Sample Info: STD5

Misc. Info.: 460-0133888-006

Operator ID: Instrument ID: CVOAMS15

Sublist: chrom-524DW_15*sub2

Method: \\chromfs\Edison\ChromData\CVOAMS15\20210829-133888.b\524DW_15.m

Limit Group: VOA 524 ICAL

Last Update: 30-Aug-2021 20:10:15 Calib Date: 29-Aug-2021 12:34:37

Integrator:RTEID Type:RT Order IDQuant Method:Internal StandardQuant By:Initial CalibrationLast ICal File:\\chromfs\Edison\ChromData\CVOAMS15\20210829-133888.b\T54739.D

Column 1: Rtx-624 (0.25 mm) Det: MS SCAN

Process Host: CTX1613

First Level Reviewer: desais Date: 29-Aug-2021 09:37:55

First Level Neviewer, desais			Date.				29-Aug-2021 09.37.33			
		RT	Exp RT	Dlt RT			Cal Amt	OnCol Amt		
Compound	Sig	(min.)	(min.)	(min.)	Q	Response	ug/l	ug/l	Flags	
1 Monochloropentafluoroethane		0.585	0.566	0.019	31	2289	5.00	4.36	а	
2 1,1-Difluoroethane	65	0.634	0.633	0.001	90	13208	5.00	5.60		
3 Dichlorodifluoromethane	85	0.640	0.639	0.001	60	19052	5.00	5.02		
4 Chlorodifluoromethane	67	0.652	0.651	0.001	97	4730	5.00	5.36		
5 Chloromethane	50	0.719	0.719	0.000	80	21765	5.00	5.17		
6 Vinyl chloride	62	0.756	0.755	0.001	83	24333	5.00	5.50		
7 Bromomethane	94	0.884	0.883	0.001	97	8586	5.00	6.00		
8 Chloroethane	64	0.920	0.926	-0.006	96	12936	5.00	5.37		
9 Trichlorofluoromethane	101	1.030	1.029	0.001	86	26530	5.00	5.36		
10 Ethyl ether	59	1.158	1.157	0.001	78	18092	5.00	4.67		
11 1,1,1-Trifluoro-2,2-dichloroeth	a 83	1.188	1.188	0.000	89	39453	5.00	5.88	а	
13 1,1-Dichloroethene	61	1.255	1.261	-0.006	89	30285	5.00	4.46		
12 1,1,2-Trichloro-1,2,2-trifluoroe	101	1.262	1.261	0.001	63	16969	5.00	4.32		
14 Acetone	43	1.286	1.286	0.000	88	34112	25.0	22.5		
15 lodomethane	142	1.329	1.328	0.001	98	21285	5.00	5.00		
16 Carbon disulfide	76	1.359	1.359	0.000	98	74458	5.00	4.41		
17 3-Chloro-1-propene	76	1.432	1.432	0.000	91	16404	5.00	4.73		
18 Methylene Chloride	84	1.493	1.493	0.000	86	23052	5.00	4.52		
19 2-Methyl-2-propanol	59	1.566	1.560	0.006	98	46467	100.0	95.7		
22 Acrylonitrile	53	1.627	1.627	0.000	61	10491	5.00	5.05		
21 trans-1,2-Dichloroethene	96	1.640	1.639	0.001	66	22239	5.00	4.46		
20 Methyl tert-butyl ether	73	1.646	1.645	0.001	96	63598	5.00	4.81		
23 1,1-Dichloroethane	63	1.877	1.877	0.000	99	40647	5.00	4.57		
24 2,2-Dichloropropane	77	2.243	2.243	0.000	73	33113	5.00	4.38		
25 cis-1,2-Dichloroethene	96	2.243	2.243	0.000	88	24662	5.00	4.50		
26 2-Butanone (MEK)	72	2.261	2.261	0.000	99	14044	25.0	24.7		
28 Propionitrile	54	2.304	2.304	0.000	83	18474	25.0	24.7	а	
27 Methyl acrylate	55	2.335	2.334	0.000	67	23853	5.00	4.70		
31 Methacrylonitrile	67	2.408	2.407	0.001	76	10351	5.00	4.82		
29 Chlorobromomethane	128	2.408	2.407	0.001	85	10293	5.00	4.52		
			Daga (00E -£ 444	10			00/4	0/0004	

Data File: \\chromfs\Edison\ChromData\CVOAMS15\20210829-133888.b\T54730.D									
	RT Exp F						Cal Amt	OnCol Amt	
Compound	Sig	(min.)	(min.)	(min.)	Q	Response	ug/l	ug/l	Flags
									_
30 Tetrahydrofuran	42	2.444	2.444	0.000	43	13955	10.0	9.12	
32 Chloroform	83	2.475	2.474	0.001	85	38857	5.00	4.56	
33 1,1,1-Trichloroethane	97	2.597	2.596	0.001	90	32382	5.00	4.49	
34 1-Chlorobutane	56	2.688	2.688	0.000	95	44376	5.00	4.64	
35 Carbon tetrachloride	117	2.719	2.724	-0.005	87	26737	5.00	4.45	
36 1,1-Dichloropropene	75	2.725	2.724	0.001	96	28820	5.00	4.40	
37 Benzene	78	2.883	2.883	0.000	95	86410	5.00	4.55	
38 1,2-Dichloroethane	62	2.901	2.901	0.000	89	26794	5.00	4.65	
* 39 Fluorobenzene	96	3.121	3.121	0.000	98	90817	5.00	5.00	
40 Trichloroethene	95	3.450	3.450	0.000	90	22084	5.00	4.49	
41 1,2-Dichloropropane	63	3.651	3.651	0.000	91	21897	5.00	4.57	
43 Dibromomethane	93	3.755	3.761	-0.006	95	13589	5.00	4.44	
42 Methyl methacrylate	69	3.828	3.828	0.000	82	15260	5.00	4.93	
44 Dichlorobromomethane	83	3.938	3.937	0.001	95	28384	5.00	4.55	
45 2-Nitropropane	43	4.182	4.181	0.001	98	12436	10.0	9.55	
46 Chloroacetonitrile	48	4.285	4.291	-0.006	84	10089	50.0	50.0	
47 cis-1,3-Dichloropropene	110	4.426	4.425	0.001	85	7652	5.00	4.73	
49 1,1-Dichloroacetone	83	4.615	4.614	0.001	99	6157	50.0	53.3	
48 4-Methyl-2-pentanone (MIBK)		4.633	4.632	0.001	96	40870	25.0	24.5	
50 Toluene	92	4.785	4.785	0.000	93	50368	5.00	4.52	
51 trans-1,3-Dichloropropene	110	5.090	5.090	0.000	92	7224	5.00	4.61	
52 Ethyl methacrylate	69	5.273	5.279	-0.006	84	27141	5.00	4.87	а
53 1,1,2-Trichloroethane	83	5.291	5.291	0.000	90	15717	5.00	4.46	
54 Tetrachloroethene	166	5.432	5.431	0.001	89	19359	5.00	4.38	
55 1,3-Dichloropropane	76	5.486	5.486	0.000	88	31848	5.00	4.63	
56 2-Hexanone	43	5.675	5.675	0.000	94	65868	25.0	24.1	
57 Chlorodibromomethane	129	5.761	5.760	0.001	96	19997	5.00	4.74	
58 Ethylene Dibromide	107	5.864	5.864	0.000	97	19251	5.00	4.60	
59 Chlorobenzene	112	6.559	6.559	0.000	93	49322	5.00	4.51	
61 1,1,1,2-Tetrachloroethane	131	6.706	6.705	0.001	91	17085	5.00	4.56	
60 Ethylbenzene	106	6.767	6.766	0.001	97	26027	5.00	4.39	
62 m-Xylene & p-Xylene	106	6.950	6.949	0.001	99	65898	10.0	9.02	
63 o-Xylene	106	7.510	7.510	0.000	92	31610	5.00	4.53	
64 Styrene	104	7.541	7.540	0.001	93	50519	5.00	4.53	
65 Bromoform	173	7.748	7.748	0.000	93	13083	5.00	4.73	
66 Isopropylbenzene	105	8.102	8.101	0.001	96	73422	5.00	4.39	
\$ 67 4-Bromofluorobenzene	95	8.291	8.290	0.001	85	33865	5.00	4.98	
68 Bromobenzene	156	8.455	8.455	0.000	97	19203	5.00	4.58	
69 1,1,2,2-Tetrachloroethane	83	8.620	8.620	0.000	87	25660	5.00	4.60	
71 1,2,3-Trichloropropane	110	8.620	8.620	0.000	85	7018	5.00	4.59	
72 trans-1,4-Dichloro-2-butene	53	8.711	8.717	-0.006	86	7807	5.00	4.97	
70 N-Propylbenzene	91	8.754	8.754	0.000	98	89336	5.00	4.30	
73 2-Chlorotoluene	91	8.803	8.802	0.001	72	60257	5.00	4.76	
75 4-Chlorotoluene	91	8.992	8.991	0.001	98	55954	5.00	4.51	
74 1,3,5-Trimethylbenzene	105	9.071	9.065	0.001	78	57317	5.00	4.47	
77 Pentachloroethane	167	9.528	9.528	0.000	85	12395	5.00	4.47	
76 tert-Butylbenzene	91	9.565	9.564	0.000	82	31412	5.00	4.09	
78 1,2,4-Trimethylbenzene	91 105	9.565	9.564 9.650	-0.001	62 67	55559	5.00 5.00	4.39 4.34	
	105	9.044	9.830	-0.005	98	65216	5.00 5.00	4.3 4 4.38	
79 sec-Butylbenzene									
80 1,3-Dichlorobenzene	146	10.004	10.003	0.001	90	32652	5.00	4.39	
82 1,4-Dichlorobenzene	146	10.162	10.162	0.000	93	33457	5.00	4.39	
81 4-Isopropyltoluene	119	10.211	10.211	0.000	82	52976	5.00	4.37	

Report Date: 01-Sep-2021 12:09:34 Chrom Revision: 2.3 13-May-2021 07:57:40

Eurofins TestAmerica, Edison Target Compound Quantitation Report

Data File: \\chromfs\Edison\ChromData\CVOAMS15\20210829-133888.b\T54747.D

Lims ID: 460-241354-A-19 Client ID: SW-N12796-XX

Sample Type: Client

Inject. Date: 29-Aug-2021 15:36:29 ALS Bottle#: 0 Worklist Smp#: 23

Purge Vol: 5.000 mL Dil. Factor: 1.0000

Sample Info: 460-241354-A-19 Misc. Info.: 460-0133888-023

Operator ID: Instrument ID: CVOAMS15

Limit Group: VOA 524 ICAL

Last Update: 01-Sep-2021 08:31:03 Calib Date: 29-Aug-2021 12:34:37

Integrator:RTEID Type:RT Order IDQuant Method:Internal StandardQuant By:Initial CalibrationLast ICal File:\\chromfs\Edison\ChromData\CVOAMS15\20210829-133888.b\T54739.D

Column 1: Rtx-624 (0.25 mm) Det: MS SCAN

Process Host: CTX1660

First Level Reviewer: desais Date: 30-Aug-2021 06:50:43

_	T II St ECVCIT TO VICWCI. UCSUIS		D	atc.	30-Aug-2021 00.30.43				
			RT	Exp RT	Dlt RT			OnCol Amt	
	Compound	Sig	(min.)	(min.)	(min.)	Q	Response	ug/l	Flags
	4 Chlorodifluoromethane	67	0.652	0.651	0.001	53	334	0.3850	
	12 1,1,2-Trichloro-1,2,2-trifluoroe	101	1.268	1.261	0.007	83	2506	0.6481	
	25 cis-1,2-Dichloroethene	96	2.243	2.243	0.000	92	22876	4.24 🗸	
	32 Chloroform	83	2.475	2.474	0.001	71	1769	0.2111	
	35 Carbon tetrachloride	117	2.725	2.724	0.001	69	1110	0.1877	
7	* 39 <mark>Fluorobenzene</mark>	96	3.121	3.121	0.000	99	89330	5.00	
	40 Trichloroethene	95	3.450	3.450	0.000	95	26062	5.39	
	54 Tetrachloroethene	166	5.431	5.431	0.000	90	31688	7.29	
,	\$ 67 4-Bromofluorobenzene	95	8.291	8.290	0.001	85	32343	4.83	
,	\$ 84 1,2-Dichlorobenzene-d4	152	10.711	10.717	-0.006	80	29121	4.98	

QC Flag Legend
Processing Flags

Reagents:

VM5SUISi5PPM_00006 Amount Added: 5.00 Units: uL Run Reagent

FORM I GC/MS VOA ORGANICS ANALYSIS DATA SHEET

Lab Name: Eurofins TestAmerica, Edison	Job No.: 460-241354-1								
SDG No.:									
Client Sample ID: SW-N12796-XX	Lab Sample ID: 460-241354-19								
Matrix: Water	Lab File ID: T54747.D								
Analysis Method: 524.2	Date Collected: 08/18/2021 10:10								
Sample wt/vol: 5(mL)	Date Analyzed: 08/29/2021 15:36								
Soil Aliquot Vol:	Dilution Factor: 1								
Soil Extract Vol.:	GC Column: Rtx-624 ID: 0.25(mm)								
% Moisture:	Level: (low/med) Low								

Units: ug/L

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
630-20-6	1,1,1,2-Tetrachloroethane	0.50	U	0.50	0.12
71-55-6	1,1,1-Trichloroethane	0.50	U	0.50	0.17
79-34-5	1,1,2,2-Tetrachloroethane	0.50	U	0.50	0.15
79-00-5	1,1,2-Trichloroethane	0.50	U	0.50	0.090
75-34-3	1,1-Dichloroethane	0.50	U	0.50	0.14
75-35-4	1,1-Dichloroethene	0.50	U	0.50	0.19
563-58-6	1,1-Dichloropropene	0.50	U	0.50	0.18
87-61-6	1,2,3-Trichlorobenzene	0.50	U	0.50	0.10
96-18-4	1,2,3-Trichloropropane	0.50	U	0.50	0.14
120-82-1	1,2,4-Trichlorobenzene	0.50	U	0.50	0.10
95-63-6	1,2,4-Trimethylbenzene	0.50	U	0.50	0.10
95-50-1	1,2-Dichlorobenzene	0.50	U	0.50	0.11
107-06-2	1,2-Dichloroethane	0.50	U	0.50	0.11
78-87-5	1,2-Dichloropropane	0.50	U	0.50	0.11
108-67-8	1,3,5-Trimethylbenzene	0.50	U	0.50	0.12
541-73-1	1,3-Dichlorobenzene	0.50	U	0.50	0.090
142-28-9	1,3-Dichloropropane	0.50	U	0.50	0.090
106-46-7	1,4-Dichlorobenzene	0.50	U	0.50	0.090
594-20-7	2,2-Dichloropropane	0.50	U	0.50	0.15
95-49-8	2-Chlorotoluene	0.50	U	0.50	0.10
106-43-4	4-Chlorotoluene	0.50	U	0.50	0.11
99-87-6	4-Isopropyltoluene	0.50	U	0.50	0.13
71-43-2	Benzene	0.50	U	0.50	0.11
108-86-1	Bromobenzene	0.50	U	0.50	0.070
75-25-2	Bromoform	0.50	U	0.50	0.080
74-83-9	Bromomethane	0.50	U F1 *+	0.50	0.31
56-23-5	Carbon tetrachloride	0.19	J	0.50	0.17
108-90-7	Chlorobenzene	0.50	U	0.50	0.10
74-97-5	Chlorobromomethane	0.50	U	0.50	0.10
124-48-1	Chlorodibromomethane	0.50	U	0.50	0.15
75-00-3	Chloroethane	0.50	U	0.50	0.23
67-66-3	Chloroform	0.21	J	0.50	0.12
74-87-3	Chloromethane	0.50	U	0.50	0.18
156-59-2	cis-1,2-Dichloroethene	4.2	/	0.50	0.14
10061-01-5	cis-1,3-Dichloropropene	0.50	U	0.50	0.18

Analysis Batch No.: 798696

GENERAL CHEMISTRY

NYSDEC DUSR PROJECT CHEMIST REVIEW RECORD Project: LMC Great Neck Q3 GWM Method: SM 4500 CI B Laboratory: TAL - Edison, NJ **SDG(s):** 460-241789-1, 460-241354-1, 460-240981-1 Date: 9/16/2021 Reviewer: Amber Jones X NYSDEC DUSR Review Level **USEPA** Region II Guideline 1. 🔽 **Case Narrative Review and Data Package Completeness COMMENTS** Were problems noted? see attached - no problems noted Were all the samples on the COC analyzed for the requested analyses? YES NO (circle one) Are Field Sample IDs and Locations assigned correctly? YES NO (circle one) **Holding time and Sample Collection** Were all samples were all prepped and analyzed with the method holding time? YES NO **QC** Blanks Are method blanks clean? YES NO (circle one) see attached - no quals Are Initial and continuing calibration blanks clean? YES NO (circle one) N/A - no ICB/CCB Instrument Calibration - Data Package Narrative Review Did the laboratory narrative identify analytes that were not within criteria in the initial and/or continuing calibration standards? YES NO Did the laboratory qualify results based on initial or continuing calibration exceedances? YES NO If yes to above, use professional judgment to evaluate data and qualify results if needed **Laboratory Control Sample Results** Were all results were within 80-120% limits? YES NO (circle one) see attached - no quals **Matrix Spike** Were MS/MSDs submitted/analyzed? YES NO Were all results were within 75-125% limits? YES NO NA (circle one) 7. **Duplicates** Were Field Duplicates submitted/analyzed? YES NO see attached - MW-46ML-XX/MW-502 - J, FD Agueous RPD within limit? (20%) YES NO NA (circle one) YES NO NA (circle one) Soil RPD within limit? (35%) Lab dup RPD <20% for water, 35% for soil values > 5X the CRQL (or \pm CRQL) YES NO NA Were both **Total and Dissolved** parameters reported? YES NO NA (circle one) If the dissolved concentration is > 20% of the total concentration then estimate (J) both results **Percent Solids** < 50% for any soil/sediment sample? YES NO NA (circle one) If yes, use professional judgment 10. **Raw Data Review and Calculation Checks** see attached Electronic Data Review and Edits Does the EDD match the Form Is? YES NO (circle one) 12. **DUSR Table Review Table 1** (Samples and Analytical Methods) Table 2 (Analytical Results) **Table 3** (Qualification Actions) Were all tables produced and reviewed? YES NO (circle one)

Clien t: Wood E&I Solumbn s Inc Job ID: 460-241789-1

ProjetSie: LMC Q32021 Groun dwaetr Monitoring

Method:	SM 4500	CI- B - (Chloride
---------	---------	-----------	----------

Lab Sample ID: MB 460-801435/1 Client Sample ID: Method Blank Prep Type: Total/NA

Matrix: Water

Analysis Batch: 801435

MB MB

Result Qualifier RL **MDL** Unit D Prepared Analyzed Dil Fac Analyte 50 Chloride 5.0 U 1.1 m gL 09/15/21 15:44

Lab Sample ID: LCSSRM 460-801435/2 **Client Sample ID: Lab Control Sample** Prep Type: Total/NA

Matrix: Water

Analysis Batch: 801435

Spike LCSSRM LCSSRM %Rec. Analyte Added Result Qualifier Unit %Rec Limits Chloride 858 84.97 990 87.5 - 112. mgL 7

Lab Sample ID: MRL 460-801435/3 **Client Sample ID: Lab Control Sample Prep Type: Total/NA**

Matrix: Water

Analysis Batch: 801435

Spike MRL MRL %Rec. Added Result Qualifier Unit %Rec Limits Analyte D 5.00 14140 50 Chloride 698 mgL - 150

Lab Sample ID: 460-241354-D-19 MS **Client Sample ID: Matrix Spike** Prep Type: Total/NA

Matrix: Water

Analysis Batch: 801435

Sample Sample Spike MS MS %Rec. Result Qualifier Added Analyte Result Qualifier Unit D %Rec Limits 250 Chloride 500 F1 m gL 100 90

Lab Sample ID: 460-241354-D-19 MSD Client Sample ID: Matrix Spike Duplicate

Matrix: Water

Analysis Batch: 801435

MSD MSD **RPD** Sample Sample **Spike** %Rec Analyte Result Qualifier Added Result Qualifier Unit %Rec Limits Limit Chloride 500 F1 250 m gL 3000 100 90 - 110

Prep Type: Total/NA

cis-1,2-Dichloroethene failed the recovery criteria low for the MS of sample MW-31GL-XXMS (460-241354-2) in batch 460-798361.

For the MSD of sample MW-31GL-XXMSD (460-241354-2) in batch 460-798361, cis-1,2-Dichloroethene failed the recovery criteria low. 1,1,1-Trichloroethane, Carbon tetrachloride, Freon 11 and Freon 115 failed the recovery criteria high. Also, Freon 115 exceeded the RPD limit

The presence of the '4' qualifier in the data indicates analytes where the concentration in the unspiked sample exceeded four times the spiking amount.

No other difficulties were encountered during the Volatiles analysis.

All other quality control parameters were within the acceptance limits.

CHLORIDE

Samples MW-31GL-XX (460-241354-2), MW-31MI-XX (460-241354-3), MW-31ML-XX (460-241354-4), MW-45MU-XX (460-241354-7), MW-45MI-XX (460-241354-8), MW-52MI-XX (460-241354-14), MW-52ML-XX (460-241354-15), MW-53ML-XX (460-241354-16), SW-5099-XX (460-241354-17), SW-N4388-XX (460-241354-18), SW-N12796-XX (460-241354-19), SW-N12999-XX (460-241354-20), SW-N13000-XX (460-241354-21), SW-N13821-XX (460-241354-22) and SW-500 (460-241354-23) were analyzed for chloride in accordance with SM 4500 CL B. The samples were analyzed on 09/13/2021 and 09/15/2021.

Samples MW-31GL-XX (460-241354-2)[10X], MW-45MU-XX (460-241354-7)[2X], SW-N4388-XX (460-241354-18)[2X] and SW-500 (460-241354-23)[2X] required dilution prior to analysis. The reporting limits have been adjusted accordingly.

No difficulties were encountered during the chloride analysis.

All quality control parameters were within the acceptance limits.

Client: Wood E&I Solutions Inc. Job ID: 460-241354-1

Project/Site: LMC Q3 2021

Method: SM 4500 CI-B - Chloride

Lab Sample ID: MB 460-801034/1 Client Sample ID: Method Blank Prep Type: Total/NA

Matrix: Water

Analysis Batch: 801034

MB MB

Result Qualifier RL **MDL** Unit Prepared Analyzed Dil Fac Analyte D 5.0 09/13/21 17:05 Chloride 5.0 U 1.1 mg/L

Lab Sample ID: LCSSRM 460-801034/2 **Client Sample ID: Lab Control Sample** Prep Type: Total/NA

Matrix: Water

Analysis Batch: 801034

Spike LCSSRM LCSSRM %Rec **Analyte** Added Result Qualifier Unit %Rec Limits Chloride 85.8 79.90 93.1 87.5 - 112. mg/L

Lab Sample ID: MRL 460-801034/3 **Client Sample ID: Lab Control Sample Prep Type: Total/NA**

Matrix: Water

Analysis Batch: 801034

Spike MRL MRL %Rec. Added Result Qualifier %Rec Limits Analyte Unit D 5.00 Chloride 6.99 mg/L 140 50 - 150 okay - outside scope of review

Lab Sample ID: 460-241354-2 MS Client Sample ID: MW-31GL-XX Prep Type: Total/NA

Matrix: Water

Analysis Batch: 801034

Sample Sample Spike MS MS %Rec. Result Qualifier Added Analyte Result Qualifier Unit %Rec Limits Chloride 100 F1 250 364.9 mg/L 106 90 - 110

Lab Sample ID: 460-241354-2 MSD Client Sample ID: MW-31GL-XX Prep Type: Total/NA

Matrix: Water

Analysis Batch: 801034

MSD MSD **RPD** Sample Sample Spike %Rec Analyte Result Qualifier Added Result Qualifier Unit %Rec Limits **RPD** Limit Chloride 100 F1 250 364.9 106 mg/L 90 - 110

Lab Sample ID: MB 460-801435/1 Client Sample ID: Method Blank Prep Type: Total/NA

Matrix: Water

Analysis Batch: 801435

MB MB

Analyte Result Qualifier RL **MDL** Unit **Prepared** Analyzed Dil Fac Chloride 5.0 U 5.0 1.1 mg/L 09/15/21 15:44

Lab Sample ID: LCSSRM 460-801435/2 **Client Sample ID: Lab Control Sample** Prep Type: Total/NA

Matrix: Water

Analysis Batch: 801435

Spike LCSSRM LCSSRM %Rec. %Rec Limits Analyte Added Result Qualifier Unit Chloride 85.8 84.97 mg/L 99.0 87.5 - 112.

7

Client: Wood E&I Solutions Inc Job ID: 460-241354-1

Method: SM 4500 CI- B - Chloride (Continued)

Lab Sample ID: MRL 460-801435/3	Client Sample ID: Lab Control Sample
Matrix: Water	Prep Type: Total/NA

Analysis Batch: 801435

Project/Site: LMC Q3 2021

Spike MRL MRL %Rec.

Analyte okay - outside scope of review Added Result Qualifier Unit D MRec Limits

Chloride 5.00 6.98 mg/L 140 50 - 150

Lab Sample ID: 460-241354-19 MS Client Sample ID: SW-N12796-XX

Matrix: Water Prep Type: Total/NA

Analysis Batch: 801435

Sample Sample **Spike** MS MS %Rec. Analyte Result Qualifier Added Result Qualifier Unit %Rec Limits Chloride 50.0 F1 250 299.9 100 90 - 110 mg/L

Lab Sample ID: 460-241354-19 MSD Client Sample ID: SW-N12796-XX

Matrix: Water Prep Type: Total/NA

Analysis Batch: 801435

Sample Sample Spike MSD MSD %Rev

Spike **RPD** Sample Sample %Rec. Analyte Result Qualifier Added Result Qualifier Unit %Rec Limits **RPD** Limit Chloride 50.0 F1 250 300.0 mg/L 100 90 - 110

Freon 115 failed the recovery criteria high for the MS/MSD of sample MW-18GL-XXMS (460-240981-12) in batch 460-796886.

Refer to the QC report for details.

No other difficulties were encountered during the Volatiles analysis.

All other quality control parameters were within the acceptance limits.

CHLORIDE

Samples MW-43MU-XX (460-240981-20), MW-43MI-XX (460-240981-21), IW-N5535-XX (460-240981-22), MW-46MI-XX (460-240981-23), MW-46ML-XX (460-240981-24), MW-502 (460-240981-27) and QC-EB110821-01 (460-240981-32) were analyzed for chloride in accordance with SM 4500 CL B. The samples were analyzed on 09/03/2021.

The method blank for 799688 contained Chloride above the method detection limit. This target analyte concentration was less than the reporting limit (RL); therefore, re-extraction and/or re-analysis of samples was not performed.

see attached for MB review

Chloride was detected in method blank MB 460-799688/1 at a level that was above the method detection limit but below the reporting limit. The value should be considered an estimate, and has been flagged. If the associated sample reported a result above the MDL and/or RL, the result has been flagged. Refer to the QC report for details.

Sample IW-N5535-XX (460-240981-22)[10X] required dilution prior to analysis. The reporting limits have been adjusted accordingly. okay

No other difficulties were encountered during the chloride analysis.

All other quality control parameters were within the acceptance limits.

Client: Wood E&I Solutions Inc Job ID: 460-240981-1

Project/Site: LMC Q3 2021 Groundwater Monitoring

Method: 8260D - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: 460-240981-12 MSD Client Sample ID: MW-18GL-XX **Prep Type: Total/NA**

Matrix: Water

Analysis Batch: 796886

	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Methyl acetate	2.5	U	40.0	41.8		ug/L		104	70 - 127	8	30
Methylcyclohexane	0.50	U	20.0	20.9		ug/L		104	60 - 139	12	30
Freon 115	5.0	U F1	20.0	38.5	F1	ug/L		192	10 - 150	22	30
Freon 152a	1.0	U	20.0	20.8		ug/L		104	10 - 150	16	30
Freon 123	1.0	U	20.0	19.5		ug/L		97	10 - 150	15	30
Freon 22	4.5		20.0	26.7		ug/L		111	10 - 150	5	30

MSD MSD

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	102		75 - 123
Toluene-d8 (Surr)	99		80 - 120
4-Bromofluorobenzene	98		76 - 120
Dibromofluoromethane (Surr)	100		77 - 124

Method: SM 4500 CI-B - Chloride

Lab Sample ID: MB 460-799688/1 **Client Sample ID: Method Blank Prep Type: Total/NA**

Matrix: Water

Analysis Batch: 799688

MB MB samples >2x blk - no quals

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	2.50	J	5.0	1.1	mg/L			09/03/21 15:46	1

Lab Sample ID: LCSSRM 460-799688/2

Matrix: Water

Analysis Batch: 799688

ı	-	Spike	LCSSRM	LCSSRM				%Rec.	
	Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
	Chloride	 85.8	84.97		mg/L		99.0	87.5 - 112.	
П								7	

Lab Sample ID: MRL 460-799688/3 **Client Sample ID: Lab Control Sample**

Matrix: Water

Analysis Batch: 799688

_	Spike	MRL	MRL				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Chloride okay - outside scope of review	5.00	6.98		mg/L		140	50 - 150	

Lab Sample ID: 460-240981-20 MS Client Sample ID: MW-43MU-XX

Matrix: Water

Analysis Batch: 799688

	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Chloride	12.5		25.0	37 40		ma/l		100	90 _ 110	

Lab Sample ID: 460-240981-20 MSD

Matrix: Water

Analysis Ratch: 799688

Alialysis Dalcii. 199000											
	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Chloride	12.5	В	25.0	37.40		mg/L		100	90 - 110	0	10

Eurofins TestAmerica, Edison

Client Sample ID: MW-43MU-XX

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Type: Total/NA

Prep Type: Total/NA

Prep Type: Total/NA

Page 79 of 1054

09/07/2021

General Chemistry Raw Data Report

Job ID: 460-240981-1

Batch: 799688					Analyst Initials: RAK
Method: SM 4500 CI- B					Instrument: No Equipment
Lab Sample ID: MB 460-799688/1					Analysis Date: Sep 03, 2021 15:46
Analyte	Detector	Dilution	Raw Result	Unit	Amount
Chloride	None	1	2.495		100 mL
Lab Sample ID: LCSSRM 460-799	688/2				Analysis Date: Sep 03, 2021 15:46 Final
Analyte	Detector	Dilution	Raw Result	Unit	Amount
Chloride	None	1	84.97	mg/L	100 mL
Lab Sample ID: MRL 460-799688/	3				Analysis Date: Sep 03, 2021 15:46 Final
Analyte	Detector	Dilution	Raw Result	Unit	Amount
Chloride	None	1	6.98	mg/L	100 mL
Lab Sample ID: 460-240981-D-32					Analysis Date: Sep 03, 2021 15:46 Final
Analyte	Detector	Dilution	Raw Result	Unit	Amount
Chloride	None	1	0	mg/L	100 mL
Lab Sample ID: 460-240981-D-20					Analysis Date: Sep 03, 2021 15:46 Final
Analyte	Detector	Dilution	Raw Result	Unit	Amount
Chloride	None	1	12.5	mg/L 🗸	100 mL
Lab Sample ID: 460-240981-D-20	MS				Analysis Date: Sep 03, 2021 15:46 Final
Analyte	Detector	Dilution	Raw Result	Unit	Amount
Chloride	None	1	37.4	mg/L	100 mL
Lab Sample ID: 460-240981-D-20	MSD				Analysis Date: Sep 03, 2021 15:46 Final
Analyte	Detector	Dilution	Raw Result	Unit	Amount
Chloride	None	1	37.4	mg/L	100 mL
Lab Sample ID: 460-240981-D-21					Analysis Date: Sep 03, 2021 15:46
Analyte	Detector	Dilution	Raw Result	Unit	Amount
Chloride	None	1	15.46	mg/L	100 mL
Lab Sample ID: 460-240981-D-22					Analysis Date: Sep 03, 2021 15:46
Analyte	Detector	Dilution	Raw Result	Unit	Amount
Chloride	None	10	144	mg/L	100 mL
Lab Sample ID: 460-240981-D-23					Analysis Date: Sep 03, 2021 15:46
Analyte	Detector	Dilution	Raw Result	Unit	Amount
Chloride	None	1	8.98	mg/L	100 mL
Lab Sample ID: 460-240981-D-24					Analysis Date: Sep 03, 2021 15:46
Analyte	Detector	Dilution	Raw Result	Unit	Amount
Chloride	None	1		mg/L	100 mL

1B-IN INORGANIC ANALYSIS DATA SHEET GENERAL CHEMISTRY

Client Sample ID: MW-43MU-XX	Lab Sample ID: 460-240981-20
Lab Name: Eurofins TestAmerica, Edison	Job No.: 460-240981-1
SDG ID.:	
Matrix: Water	Date Sampled: 08/13/2021 10:35
Reporting Basis: WET	Date Received: 08/16/2021 18:00

CAS No.	Analyte	Result	RL	MDL	Units	С	Q	DIL	Method
16887-00-6	Chloride	12.5	5.0	1.1	mg/L		В	1	SM 4500 Cl- B

Lockheed Martin Corporation Former Unisys Site -- Great Neck Lake Success, New York AMEC E&E. PC

DATA USABILITY SUMMARY REPORT QUARTERLY MONITORING – Q4 2021 LOCKHEED MARTIN CORPORATION FORMER UNISYS SITE -- GREAT NECK LAKE SUCCESS, NEW YORK

1.0 INTRODUCTION

Water samples were collected at the Lockheed Martin Corporation Former Unisys Site -Great Neck Site in November 2021 and submitted to TestAmerica Laboratories, Inc.,
located in Edison, New Jersey (TestAmerica). Analyses were performed by
TestAmerica Edison (volatile organic compounds [VOCs] and chloride) and TestAmerica
Savannah (bromide). Samples were analyzed by one or more of the following methods:

- VOCs by USEPA Method 8260D
- VOCs by USEPA Method 524.2
- Chloride by SM 4500 CL B
- Bromide by USEPA Method 300.0

A Data Usability Summary Report (DUSR) review was completed based on the New York State Department of Environmental Conservation (NYSDEC) Division of Environmental Remediation guidance (NYSDEC, 2010). Sample event information included in this DUSR is presented in the following Tables:

- Table 1 Summary of Samples and Analytical Methods
- Table 2 Summary of Analytical Results
- Table 3 Summary of Qualification Actions

A summary of table notes applicable to Tables 1, 2, and 3 is presented just before Table 1.

Laboratory deliverables included:

 Category B deliverables as defined in the NYSDEC Analytical Services Protocols (NYSDEC, 2005).

The DUSR review included the following evaluations as applicable. A table of the project control limits is presented in Attachment A. Applicable laboratory QC summary forms are included in Attachment B to document QC outliers associated with qualification actions.

- Lab Report Narrative Review
- Data Package Completeness and COC records (Table 1 verification)
- Sample Preservation and Holding Times
- Instrument Calibration (report narrative/lab-qualifier evaluation)
- QC Blanks
- Laboratory Control Samples (LCS)
- Matrix Spike/Matrix Spike Duplicates (MS/MSD)

Lockheed Martin Corporation Former Unisvs Site -- Great Neck Lake Success. New York AMEC E&E, PC

- Surrogate Spikes (if applicable)
- Field Duplicates
- Target Analyte Identification and Quantitation
- Raw Data (chromatograms), Calculation Checks and Transcription Verifications
- Reporting Limits
- Electronic Data Qualification and Verification

Data qualification actions are applied when necessary based on general procedures in United States Environmental Protection Agency (USEPA) validation guidelines (USEPA, 2014) and the judgment of the project chemist. The following laboratory or data review qualifiers are used in the final data presentation:

U = target analyte is not detected above the reported detection limit J = concentration is estimated

J- = concentration is estimated, biased low

UJ = target analyte is not detected and value is estimated

Results are interpreted to be usable as reported by the laboratory or as qualified in the following sections.

2.0 POTENTIAL DATA LIMITATIONS

Based on the DUSR review the majority of data meet the data quality objectives; however, the following potential limitations were identified:

VOCs by 524.2

Reporting limits for trans-1,3-dichloropropene in a subset of samples were qualified as estimated (UJ) based on a low percent recovery in the associated LCS/LCSD. The qualified results are included in Table 3 with reason code LCSL.

VOCs by 8260D

The results for trans-1,2-dichloroethene in sample MW-52MI-XX and its associated field duplicate MW-502 were qualified estimated (J) based on a relative percent difference that exceeded projects limits. Qualified results are included in Table 3 with reason code FD.

Reporting limits for Freon 115 in a number of samples were qualified as estimated (UJ) based on a low percent recovery in the associated LCS/LCSD. The qualified results are included in Table 3 with reason code LCSL.

The result for cis-1,2-dichloroethene in sample MW-31GL-XX was qualified estimated with a potential low bias (J-) based on low percent recoveries in the associated MS/MSD. Qualified results are included in Table 3 with reason code MSL.

The result for Freon 115 in sample MW-33MI-XX was qualified estimated (UJ) based on a low recovery in the associated MS/MSD. The relative percent difference between the MS and MSD exceeded laboratory control limits. Qualified results are included in Table 3 with reason codes MSL and MSRPD.

Lockheed Martin Corporation Former Unisys Site -- Great Neck Lake Success, New York AMEC E&E, PC

The results for all parameters in sample MW-51MI-XX were qualified as estimated or estimated with potential low bias (J-/UJ) due to a low percent recovery in one of the associated surrogates. The qualified results are included in Table 3 with reason code SSL.

3.0 ADDITIONAL QC EXCEEDANCES AND OBSERVATIONS

There were no additional observations or quality control exceedances not specifically addressed above (Section 2.0) or included in Table 3.

Reference:

amen fonts

Julie Rivaroi

New York State Department of Environmental Conservation (NYSDEC), 2005. "Analytical Services Protocols"; June 2005.

NYSDEC, 2010. "Technical Guidance for Site Investigation and Remediation-Appendix 2B"; DER-10; Division of Environmental Remediation; May 2010.

USEPA, 2014. "Validating Volatile Organic Compounds by Gas Chromatography/Mass Spectrometry SW-846 Method 8260B"; USEPA Region II; HW-24; Revision 4; September 2014.

Data Validator: Amber Jones December 8, 2021

Reviewed by: Julie Ricardi December 14, 2021

GWM Q4 November 2021 DUSR Final

Standard Table Notes:

ng/L – nanograms per liter

μg/L – micrograms per liter

Sample Type (QC Code) Qualification Reason Codes

FS – field sample BL1 – method blank qualifier

FD – field duplicate BL2 – field or trip blank qualifier

TB – trip blank CCV – continuing calibration verification recovery outside limits

EB – equipment blank CCV%D – continuing calibration verification percent difference exceeds goal

FB – field blank CCVRRF – continuing calibration relative response factor low

CI – chromatographic interference present

Matrix DCPD – dual column percent difference exceeds limit

GW – ground water E – result exceeds calibration range

BW – blank water FD – field duplicate precision goal exceeded

TW – tap water FP – false positive interference

SV – soil vapor HT – holding time for prep or analysis exceeded

SED - sediment HTG – holding time for prep or analysis grossly exceeded

ICV – initial calibration verification recovery outside limit

<u>Units</u> ICVRRF – initial calibration verification relative response factor low

mg/L – milligrams per liter ICVRSD – initial calibration verification % relative standard deviation exceeds

goal

ISH – internal standard response greater than limit

ISL – internal standard response less than limit

mg/kg – milligrams per kilogram

LCSH – laboratory control sample recovery high

µg/kg – micrograms per kilogram

LCSL – laboratory control sample recovery low μg/m³ – micrograms per cubic meter

LCSRPD – laboratory control sample/duplicate relative % difference precision

goal exceeded

Qualifiers LD – lab duplicate precision goal exceeded

U – not detected above quantitation limit MSH – matrix spike and/or MS duplicate recovery high

J – estimated quantity

MSL – matrix spike and/or MS duplicate recovery low

J+ - estimated quantity, biased high MSRPD – matrix spike/duplicate relative % difference precision goal exceeded

J- - estimated quantity, biased low N – analyte identification is not certain

R – data unusable PEM – performance evaluation mixture exceeds limit

PM – sample percent moisture exceeds EPA guideline

<u>Fraction</u> SD – serial dilution result exceeds percent difference limit

T – total SP – sample preservation/collection does not meet method requirement

D – dissolved SSH – surrogate recovery high

N – normal SSL – surrogate recovery low

TD – dissolved concentration exceeds total

Table 1 - Summary of Samples and Analytical Methods
Data Usability Summary Report
Quarterly Monitoring - Q4 2021
Lockheed Martin Corporation Unisys Site -- Great Neck
Lake Success, New York

						Method	524.2	8260D	SM 4500 Cl- B	300.0
						Fraction	N	N	Т	N
SDG	Location	Field Sample ID	Sample Date	Media	Lab Sample ID	QC Code	Count	Count	Count	Count
460-246843-1	17ML	MW-17ML-XX	11/1/2021	GW	460-246843-5	FS		54		
460-246843-1	1MI	MW-1MI-XX	11/1/2021	GW	460-246843-1	FS		54		
460-246843-1	1ML	MW-1ML-XX	11/1/2021	GW	460-246843-2	FS		54		
460-246843-1	22ML	MW-22ML-XX	11/1/2021	GW	460-246843-6	FS		54		
460-246843-1	29MI	MW-29MI-XX	11/2/2021	GW	460-246843-7	FS		54		
460-246843-1	31GL	MW-31GL-XX	11/2/2021	GW	460-246843-8	FS		54	1	1
460-246843-1	31MI	MW-31MI-XX	11/2/2021	GW	460-246843-9	FS		54	1	1
460-246843-1	31ML	MW-31ML-XX	11/2/2021	GW	460-246843-10	FS		54	1	1
460-246843-1	33GL	MW-33GL-XX	11/3/2021	GW	460-246843-11	FS		54		
460-246843-1	33ML	MW-33ML-XX	11/3/2021	GW	460-246843-12	FS		54		
460-246843-1	37ML	MW-37ML-XX	11/1/2021	GW	460-246843-14	FS		54		
460-246843-1	37MU	MW-37MU-XX	11/1/2021	GW	460-246843-13	FS		54		
460-246843-1	3GL	MW-3GL-XX	11/1/2021	GW	460-246843-3	FS		54		
460-246843-1	3ML	MW-3ML-XX	11/1/2021	GW	460-246843-4	FS		54		
460-246843-1	43MI	MW-43MI-XX	11/3/2021	GW	460-246843-16	FS		54	1	1
460-246843-1	43MU	MW-43MU-XX	11/3/2021	GW	460-246843-15	FS		54	1	1
460-246843-1	QC	QC-EB011121-01	11/1/2021	BW	460-246843-17	EB		54	1	1
460-246843-1	QC	QC-EB021121-01	11/2/2021	BW	460-246843-18	EB		54		
460-246843-1	QC	QC-EB031121-XX	11/3/2021	BW	460-246843-19	EB		54		
460-246843-1	QC	QC-TB011121-XX	11/1/2021	BW	460-246843-20	TB		54		
460-247256-1	33MI	MW-33MI-XX	11/9/2021	GW	460-247256-11	FS		54		
460-247256-1	44MI	MW-44MI-XX	11/9/2021	GW	460-247256-13	FS		54		
460-247256-1	44MU	MW-44MU-XX	11/9/2021	GW	460-247256-12	FS		54		
460-247256-1	45MI	MW-45MI-XX	11/5/2021	GW	460-247256-15	FS		54	1	1
460-247256-1	45MU	MW-45MU-XX	11/5/2021	GW	460-247256-14	FS		54	1	1
460-247256-1	46MI	MW-46MI-XX	11/5/2021	GW	460-247256-16	FS		54	1	1
460-247256-1	46ML	MW-46ML-XX	11/5/2021	GW	460-247256-17	FS		54	1	1
460-247256-1	47MI	MW-47MI-XX	11/10/2021	GW	460-247256-18	FS		54		

Created By: WCG 12/02/2021 Checked By: ALJ 12/06/2021

Table 1 - Summary of Samples and Analytical Methods
Data Usability Summary Report
Quarterly Monitoring - Q4 2021
Lockheed Martin Corporation Unisys Site -- Great Neck
Lake Success, New York

						Method	524.2	8260D	SM 4500 Cl- B	300.0
						Fraction	N	N	Т	N
SDG	Location	Field Sample ID	Sample Date	Media	Lab Sample ID	QC Code	Count	Count	Count	Count
460-247256-1	47ML	MW-47ML-XX	11/10/2021	GW	460-247256-19	FS		54		
460-247256-1	49ML	MW-49ML-XX	11/8/2021	GW	460-247256-20	FS		54		
460-247256-1	49ML	MW-500	11/8/2021	GW	460-247256-30	FD		54		
460-247256-1	50ML	MW-501	11/10/2021	GW	460-247256-31	FD		54		
460-247256-1	50ML	MW-50ML-XX	11/10/2021	GW	460-247256-21	FS		54		
460-247256-1	51MI	MW-51MI-XX	11/4/2021	GW	460-247256-22	FS		5		
460-247256-1	51ML	MW-51ML-XX	11/4/2021	GW	460-247256-23	FS		5		
460-247256-1	52MI	MW-502	11/8/2021	GW	460-247256-32	FD		54	1	1
460-247256-1	52MI	MW-52MI-XX	11/8/2021	GW	460-247256-24	FS		54	1	1
460-247256-1	52ML	MW-52ML-XX	11/8/2021	GW	460-247256-25	FS		54	1	1
460-247256-1	53MI	MW-53MI-XX	11/10/2021	GW	460-247256-26	FS		54	1	1
460-247256-1	53ML	MW-53ML-XX	11/8/2021	GW	460-247256-27	FS		54	1	1
460-247256-1	54GI	MW-54GI-XX	11/10/2021	GW	460-247256-29	FS		54	1	1
460-247256-1	54GU	MW-54GU-XX	11/10/2021	GW	460-247256-28	FS		54	1	1
460-247256-1	N04388	SW-N4388-XX	11/5/2021	SW	460-247256-4	FS	61		1	1
460-247256-1	N05099	SW-N5099-XX	11/5/2021	SW	460-247256-3	FS	61		1	1
460-247256-1	N05535	IW-N5535-XX	11/5/2021	GW	460-247256-1	FS		54	1	1
460-247256-1	N09687	IW-N9687-XX	11/4/2021	GW	460-247256-2	FS		5		
460-247256-1	N12796	SW-500	11/5/2021	SW	460-247256-9	FD	61		1	1
460-247256-1	N12796	SW-N12796-XX	11/5/2021	SW	460-247256-5	FS	61		1	1
460-247256-1	N12999	SW-N12999-XX	11/5/2021	SW	460-247256-6	FS	61		1	1
460-247256-1	N13000	SW-N13000-XX	11/5/2021	SW	460-247256-7	FS	61		1	1
460-247256-1	N13821	SW-N13821-XX	11/5/2021	SW	460-247256-8	FS	61		1	1
460-247256-1	QC	QC-TB041121-XX	11/4/2021	BW	460-247256-10	ТВ	61			
460-247613-1	50MI	MW-50MI-XX	11/17/2021	GW	460-247613-1	FS		54		
460-247613-1	QC	QC-TB171121-XX	11/17/2021	BW	460-247613-2	ТВ		54		
460-246589-1	48MI	MW-48MI-XX	11/4/2021	GW	460-246589-1	FS		54		
460-246589-1	48ML	MW-48ML-XX	11/4/2021	GW	460-246589-2	FS		54		

Created By: WCG 12/02/2021 Checked By: ALJ 12/06/2021

Table 1 - Summary of Samples and Analytical Methods Data Usability Summary Report Quarterly Monitoring - Q4 2021 Lockheed Martin Corporation Unisys Site -- Great Neck Lake Success, New York

						Method	524.2	8260D	SM 4500 Cl- B	300.0
						Fraction	N	N	Т	N
SDG	Location	Field Sample ID	Sample Date	Media	Lab Sample ID	QC Code	Count	Count	Count	Count
460-246589-1	Q2604	IW-Q2604-XX	11/4/2021	BW	460-246589-3	FS		54		
460-246589-1	QC	QC-TB031121-XX	11/4/2021	BW	460-246589-4	ТВ		54		

Table 2 - Summary of Analytical Results Data Usability Summary Report Quarterly Monitoring - Q4 2021

Lockheed Martin Corporation Former Unisys Site -- Great Neck Lake Success, New York

			460-24	17256-1	460-24	7256-1	460-24	47256-1	460-24	47256-1
		Location	N04	4388	N05	5099	N1:	2796	N1:	2796
		Sample Date	11/5	/2021	11/5,	/2021	11/5	/2021	11/5	/2021
		Sample ID	SW-N4	1388-XX	SW-N5	099-XX	SW	'-500	SW-N1	2796-XX
		QC Code	F	=S	F	:S	F	-D	1	FS
			Final	Final	Final	Final	Final	Final	Final	Final
Method	Parameter	Unit	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier
524.2	1,1,1,2-Tetrachloroethane	UG/L	0.5	U	0.5	U	0.5	U	0.5	U
524.2	1,1,1-Trichloroethane	UG/L	0.5 U		0.5 U		0.5	U	0.5	U
524.2	1,1,2,2-Tetrachloroethane	UG/L	0.5 U		0.5 U		0.5	U	0.5	U
524.2	1,1,2-Trichloro-1,2,2-Trifluoroethane (Freon 113)	UG/L	0.5 U		1.5		0.54		0.54	ļ
524.2	1,1,2-Trichloroethane	UG/L	0.5 U		0.5 U		0.5	U	0.5	U
524.2	1,1-Dichloroethane	UG/L	0.5	0.5 U		0.5 U		U	0.5	U
524.2	1,1-Dichloroethene	UG/L	0.5	U	0.5 U		0.5	U	0.5	U
524.2	1,1-Dichloropropene	UG/L	0.5	U	0.5 U		0.5 U		0.5	U
524.2	1,1-Difluoroethane (Freon 152a)	UG/L	0.5	U	0.5 U		0.5 U		0.5	U
524.2	1,2,3-Trichlorobenzene	UG/L	0.5	U	0.5 U		0.5 U		0.5	U
524.2	1,2,3-Trichloropropane	UG/L	0.5	U	0.5	U	0.5	U	0.5	U
524.2	1,2,4-Trichlorobenzene	UG/L	0.5	U	0.5	U	0.5 U		0.5 U	
524.2	1,2,4-Trimethylbenzene	UG/L	0.5	U	0.5	U	0.5	U	0.5	U
524.2	1,2-Dichlorobenzene	UG/L	0.5	U	0.5	U	0.5	U	0.5	U
524.2	1,2-Dichloroethane	UG/L	0.5	U	0.5	U	0.5	U	0.5	U
524.2	1,2-Dichloropropane	UG/L	0.5	U	0.5	U	0.5	U	0.5	U
524.2	1,3,5-Trimethylbenzene	UG/L	0.5	U	0.5	U	0.5	U	0.5	U
524.2	1,3-Dichlorobenzene	UG/L	0.5	U	0.5	U	0.5	U	0.5	U
524.2	1,3-Dichloropropane	UG/L	0.5	U	0.5	U	0.5	U	0.5	U
524.2	1,4-Dichlorobenzene	UG/L	0.5	U	0.5	U	0.5	U	0.5	U
524.2	2,2-Dichloropropane	UG/L	0.5	U	0.5	U	0.5 U		0.5 U	
524.2	2-Chlorotoluene	UG/L	0.5	U	0.5 U		0.5 U 0.5 U		0.5 U	
524.2	4-Chlorotoluene	UG/L	0.5	U	0.5 U		0.5 U 0.5 U		0.5 U	
524.2	4-iso-Propyltoluene	UG/L	0.5	U	0.5 U		0.5 U		0.5	U

Created By: WCG 12/7/2021 Checked By: ALJ 12/8/2021

Table 2 - Summary of Analytical Results Data Usability Summary Report Quarterly Monitoring - Q4 2021 Lockheed Martin Corporation Former Unisys Site -- Great Neck

Lake Success, New York

		SDG	460-247256-1	460-247256-1	460-247256-1	460-247256-1		
		Location	N04388	N05099	N12796	N12796		
		Sample Date	11/5/2021	11/5/2021	11/5/2021	11/5/2021		
		Sample ID	SW-N4388-XX	SW-N5099-XX	SW-500	SW-N12796-XX		
		QC Code	FS	FS	FD	FS		
			Final Final	Final Final	Final Final	Final Final		
Method	Parameter	Unit	Result Qualifie	r Result Qualifier	Result Qualifier	Result Qualifier		
524.2	Benzene	UG/L	0.5 U	0.5 U	0.5 U	0.5 U		
524.2	Bromobenzene	UG/L	0.5 U	0.5 U	0.5 U	0.5 U		
524.2	Bromochloromethane	UG/L	0.5 U	0.5 U	0.5 U	0.5 U		
524.2	Bromodichloromethane	UG/L	0.5 U	0.5 U	0.5 U	0.5 U		
524.2	Bromoform	UG/L	0.5 U	0.5 U	0.5 U	0.5 U		
524.2	Bromomethane	UG/L	0.5 U	0.5 U	0.5 U	0.5 U		
524.2	Carbon tetrachloride	UG/L	0.5 U	0.5 U	0.5 U	0.5 U		
524.2	Chlorobenzene	UG/L	0.5 U	0.5 U	0.5 U	0.5 U		
524.2	Chlorodifluoromethane	UG/L	0.5 U	0.43 J	0.38 J	0.37 J		
524.2	Chloroethane	UG/L	0.5 U	0.5 U	0.5 U	0.5 U		
524.2	Chloroform	UG/L	0.5 U	0.15 J	0.19 J	0.18 J		
524.2	Chloromethane	UG/L	0.5 U	0.5 U	0.5 U	0.19 J		
524.2	cis-1,2-Dichloroethene	UG/L	0.5 U	15	4.1	4.1		
524.2	cis-1,3-Dichloropropene	UG/L	0.5 U	0.5 U	0.5 U	0.5 U		
524.2	Dibromochloromethane	UG/L	0.5 U	0.5 U	0.5 U	0.5 U		
524.2	Dibromomethane	UG/L	0.5 U	0.5 U	0.5 U	0.5 U		
524.2	Dichlorodifluoromethane	UG/L	0.5 U	0.5 U	0.5 U	0.5 U		
524.2	Ethylbenzene	UG/L	0.5 U	0.5 U	0.5 U	0.5 U		
524.2	Freon 115	UG/L	1 U	1 U	1 U	1 U		
524.2	Freon 123	UG/L	0.5 U	0.5 U	0.5 U	0.5 U		
524.2	Hexachlorobutadiene	UG/L	0.5 U	0.5 U	0.5 U	0.5 U		
524.2	Isopropylbenzene	UG/L	0.5 U	0.5 U	0.5 U	0.5 U		
524.2	Methyl Tertbutyl Ether	UG/L	0.5 U	0.5 U	0.5 U	0.5 U		
524.2	Methylene chloride	UG/L	0.5 U	0.5 U	0.5 U	0.5 U		

Created By: WCG 12/7/2021 Checked By: ALJ 12/8/2021

Table 2 - Summary of Analytical Results

Data Usability Summary Report

Quarterly Monitoring - Q4 2021

Lockheed Martin Corporation Former Unisys Site -- Great Neck

Lake Success, New York

		SDG	460-24	17256-1	460-24	17256-1	460-24	17256-1	460-24	7256-1
		Location	NO4	4388	NO:	5099	N12	2796	N12	2796
		Sample Date	11/5	/2021	11/5	/2021	11/5	/2021	11/5	/2021
		Sample ID	SW-N4	1388-XX	SW-N5	5099-XX	SW-500		SW-N1	2796-XX
		QC Code	F	FS	FS		FD		F	S
			Final	Final	Final	Final	Final	Final	Final	Final
Method	Parameter	Unit	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier
524.2	Propylbenzene	UG/L	0.5	0.5 U		U	0.5	U	0.5	U
524.2	sec-Butylbenzene	UG/L	0.5	0.5 U		U	0.5	U	0.5	U
524.2	Styrene	UG/L	0.5	U	0.5 U		0.5 U		0.5	U
524.2	tert-Butylbenzene	UG/L	0.5	U	0.5 U		0.5 U		0.5	U
524.2	Tetrachloroethene	UG/L	0.5	U	3.4		6.9		6.6	
524.2	Toluene	UG/L	0.5	U	0.5 U		0.5 U		0.5	U
524.2	trans-1,2-Dichloroethene	UG/L	0.5	U	0.5	U	0.5 U		0.5 U	
524.2	trans-1,3-Dichloropropene	UG/L	0.5	UJ	0.5	UJ	0.5	UJ	0.5	UJ
524.2	Trichloroethene	UG/L	0.5	U	9.9		5		5	
524.2	Trichlorofluoromethane	UG/L	0.5	U	0.5	U	0.5	U	0.5	U
524.2	Vinyl chloride	UG/L	0.5 U		0.5 U		0.5 U		0.5	U
524.2	Xylene, o	UG/L	0.5 U		0.5 U		0.5 U		0.5 U	
524.2	Xylenes (m&p)	UG/L	1	U	1 U		1 U		1	U

Table 2 - Summary of Analytical Results Data Usability Summary Report Quarterly Monitoring - Q4 2021

Lockheed Martin Corporation Former Unisys Site -- Great Neck Lake Success, New York

		SDG	460-24	7256-1	460-24	7256-1	460-2	47256-1	460-24	17256-1
		Location	N12	999	N13	3000	N1	3821	C	QC
		Sample Date	11/5/	'2021	11/5,	/2021	11/5	5/2021	11/4	/2021
		Sample ID	SW-N12	2999-XX	SW-N13	3000-XX	SW-N1	.3821-XX	QC-TB04	41121-XX
		QC Code	F	S	F	:S		FS	Т	В
			Final	Final	Final	Final	Final	Final	Final	Final
Method	Parameter	Unit	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier
524.2	1,1,1,2-Tetrachloroethane	UG/L	0.5		0.5	U	0.5	5 U	0.5	U
524.2	1,1,1-Trichloroethane	UG/L	0.5 U		0.5 U		0.5	5 U	0.5	U
524.2	1,1,2,2-Tetrachloroethane	UG/L	0.5 U		0.5	U	0.5	5 U	0.5	U
524.2	1,1,2-Trichloro-1,2,2-Trifluoroethane (Freon 113)	UG/L	0.5 U		0.32		0.33		0.5	U
524.2	1,1,2-Trichloroethane	UG/L	0.5 U		0.5	U	0.5	5 U	0.5	U
524.2	1,1-Dichloroethane	UG/L	0.5 U		0.5 U		0.5	5 U	0.5	U
524.2	1,1-Dichloroethene	UG/L		0.5 U		0.5 U		5 U	0.5	U
524.2	1,1-Dichloropropene	UG/L	0.5		0.5 U		0.5 U		0.5	U
524.2	1,1-Difluoroethane (Freon 152a)	UG/L	0.5		0.5 U		0.5 U		0.5	U
524.2	1,2,3-Trichlorobenzene	UG/L	0.5	U	0.5 U		0.5 U		0.5	U
524.2	1,2,3-Trichloropropane	UG/L	0.5		0.5	U	0.5 U		0.5	U
524.2	1,2,4-Trichlorobenzene	UG/L	0.5		0.5			5 U	0.5 U	
524.2	1,2,4-Trimethylbenzene	UG/L	0.5		0.5			5 U	0.5	U
524.2	1,2-Dichlorobenzene	UG/L	0.5		0.5			5 U	0.5	
524.2	1,2-Dichloroethane	UG/L	0.5		0.5	U	0.5	5 U	0.5	U
524.2	1,2-Dichloropropane	UG/L	0.5		0.5	U	0.5	5 U	0.5	U
524.2	1,3,5-Trimethylbenzene	UG/L	0.5	U	0.5	U	0.5	5 U	0.5	U
524.2	1,3-Dichlorobenzene	UG/L	0.5		0.5			5 U	0.5	U
524.2	1,3-Dichloropropane	UG/L	0.5	U	0.5	U	0.5	5 U	0.5	U
524.2	1,4-Dichlorobenzene	UG/L	0.5		0.5	U	0.5	5 U	0.5	U
524.2	2,2-Dichloropropane	UG/L	0.5	U	0.5	0.5 U		0.5 U		U
524.2	2-Chlorotoluene	UG/L	0.5		0.5	U	0.5	5 U	0.5	U
524.2	4-Chlorotoluene	UG/L	0.5 U		0.5 U		0.5 U 0.5 U		0.5 U	
524.2	4-iso-Propyltoluene	UG/L	0.5 U		0.5 U		0.5 U		0.5	U

Created By: WCG 12/7/2021 Checked By: ALJ 12/8/2021

Table 2 - Summary of Analytical Results Data Usability Summary Report Quarterly Monitoring - Q4 2021

Lockheed Martin Corporation Former Unisys Site -- Great Neck Lake Success, New York

		SDG	460-247256-1	460-247256-1	460-247256-1	460-247256-1
		Location	N12999	N13000	N13821	QC
		Sample Date	11/5/2021	11/5/2021	11/5/2021	11/4/2021
		Sample ID	SW-N12999-XX	SW-N13000-XX	SW-N13821-XX	QC-TB041121-XX
		QC Code	FS	FS	FS	ТВ
			Final Fina	I Final Final	Final Final	Final Final
Method	Parameter	Unit	Result Qualif	ier Result Qualifie	r Result Qualifier	Result Qualifier
524.2	Benzene	UG/L	0.5 U	0.5 U	0.5 U	0.5 U
524.2	Bromobenzene	UG/L	0.5 U	0.5 U	0.5 U	0.5 U
524.2	Bromochloromethane	UG/L	0.5 U	0.5 U	0.5 U	0.5 U
524.2	Bromodichloromethane	UG/L	0.5 U	0.5 U	0.5 U	0.5 U
524.2	Bromoform	UG/L	0.5 U	0.5 U	0.5 U	0.5 U
524.2	Bromomethane	UG/L	0.5 U	0.5 U	0.5 U	0.5 U
524.2	Carbon tetrachloride	UG/L	0.5 U	0.5 U	0.5 U 0.5 U	
524.2	Chlorobenzene	UG/L	0.5 U	0.5 U	0.5 U	0.5 U
524.2	Chlorodifluoromethane	UG/L	0.5 U	0.84	0.5 U	0.5 U
524.2	Chloroethane	UG/L	0.5 U	0.5 U	0.5 U	0.5 U
524.2	Chloroform	UG/L	0.5 U	0.5 U	0.5 U	0.5 U
524.2	Chloromethane	UG/L	0.5 U	0.5 U	0.5 U	0.5 U
524.2	cis-1,2-Dichloroethene	UG/L	0.5 U	7	6.6	0.5 U
524.2	cis-1,3-Dichloropropene	UG/L	0.5 U	0.5 U	0.5 U	0.5 U
524.2	Dibromochloromethane	UG/L	0.5 U	0.5 U	0.5 U	0.5 U
524.2	Dibromomethane	UG/L	0.5 U	0.5 U	0.5 U	0.5 U
524.2	Dichlorodifluoromethane	UG/L	0.5 U	0.5 U	0.5 U	0.5 U
524.2	Ethylbenzene	UG/L	0.5 U	0.5 U	0.5 U	0.5 U
524.2	Freon 115	UG/L	1 U	1 U	1 U	1 U
524.2	Freon 123	UG/L	0.5 U	0.5 U	0.5 U	0.5 U
524.2	Hexachlorobutadiene	UG/L	0.5 U	0.5 U	0.5 U	0.5 U
524.2	Isopropylbenzene	UG/L	0.5 U	0.5 U	0.5 U	0.5 U
524.2	Methyl Tertbutyl Ether	UG/L	0.5 U	0.5 U	0.5 U	0.5 U
524.2	Methylene chloride	UG/L	0.5 U	0.5 U	0.5 U	0.5 U

Table 2 - Summary of Analytical Results

Data Usability Summary Report

Quarterly Monitoring - Q4 2021

Lockheed Martin Corporation Former Unisys Site -- Great Neck

Lake Success, No	ew York
------------------	---------

		SDG	460-24	17256-1	460-24	17256-1	460-24	17256-1	460-24	17256-1
		Location	N12	2999	N13	3000	N1:	3821	C	QC
		Sample Date	11/5	/2021	11/5	11/5/2021 11/5/2021		/2021	11/4	/2021
		Sample ID	SW-N1	SW-N12999-XX		3000-XX	SW-N1	3821-XX	QC-TB04	11121-XX
		QC Code	ı	FS		FS	ı	FS	Т	В
			Final	Final	Final	Final	Final	Final	Final	Final
Method	Parameter	Unit	Result	Result Qualifier		Qualifier	Result	Qualifier	Result	Qualifier
524.2	Propylbenzene	UG/L	0.5	U	0.5 U		0.5	U	0.5	U
524.2	sec-Butylbenzene	UG/L	0.5	U	0.5	U	0.5	U	0.5	U
524.2	Styrene	UG/L	0.5	U	0.5	U	0.5 U		0.5 U	
524.2	tert-Butylbenzene	UG/L	0.5	U	0.5	U	0.5 U		0.5	U
524.2	Tetrachloroethene	UG/L	0.5	U	1.3			0.5	U	
524.2	Toluene	UG/L	0.5	U	0.5	U	0.5	U	0.5	U
524.2	trans-1,2-Dichloroethene	UG/L	0.5	U	0.5	U	0.5	U	0.5	U
524.2	trans-1,3-Dichloropropene	UG/L	0.5	UJ	0.5	UJ	0.5	UJ	0.5	U
524.2	Trichloroethene	UG/L	0.2	J	2.1		1.5		0.5	U
524.2	Trichlorofluoromethane	UG/L	0.5	U	0.5	U	0.5	U	0.5	U
524.2	Vinyl chloride	UG/L	0.5	U	0.5	0.5 U 0.5 U		U	0.5	U
524.2	Xylene, o	UG/L	0.5	U	0.5 U		0.5 U		0.5	U
524.2	Xylenes (m&p)	UG/L	1	U	1	U	1	U	1	U

		SDG	460-246	843-1	460-24	16843-1	460-24	6843-1	460-24	16843-1																
	ı	ocation	17N	1L	1	MI	11	ΜL	22	ML																
	Sam	ple Date	11/1/2	2021	11/1	/2021	11/1,	/2021	11/1	/2021																
	Sa	mple ID	MW-17	VIL-XX	MW-1	LMI-XX	MW-1	.ML-XX	MW-2	2ML-XX																
		QC Code	FS		ı	- S	FS		F	FS																
			Final	Final	Final	Final	Final	Final	Final	Final																
Method	Parameter	Unit	Result	Qualifier	Result Qualifier		Result	Qualifier	Result	Qualifier																
8260D	1,1,1-Trichloroethane	UG/L	0.5 L	J	0.5	U	0.5	U	0.5	U																
8260D	1,1,2,2-Tetrachloroethane	UG/L	0.5 L	J	0.5	U	0.5	U	0.5	U																
8260D	1,1,2-Trichloro-1,2,2-Trifluoroethane (Freon 113)	UG/L	2		3.8		3.8		3.8		1.3		0.5	U												
8260D	1,1,2-Trichloroethane	UG/L	0.5 L	J	0.5 U		0.5 U		0.5 U		0.5 U		0.5 U		0.5 U		0.5 U		0.5 U		0.5 U		0.5	U	0.5	U
8260D	1,1-Dichloroethane	UG/L	0.5 L	J	0.5 U		0.5 U		0.5 U		0.5 U		0.5 U		0.5 U		0.5 U		0.5 U		0.5	U	0.5	U		
8260D	1,1-Dichloroethene	UG/L	0.68		0.41	0.41 J		0.41 J		J 0.5 U		U	0.5													
8260D	1,1-Difluoroethane (Freon 152a)	UG/L	1 L	J	1	1 U		1 U		U																
8260D	1,2,4-Trichlorobenzene	UG/L	0.5 L	J	0.5 U		0.5	U	0.5	U																
8260D	1,2-Dibromo-3-chloropropane	UG/L	0.5 L	J	0.5 U		0.5	U	0.5	U																
8260D	1,2-Dibromoethane	UG/L	0.5 L	J	0.5	0.5 U		0.5 U		U	0.5	U														
8260D	1,2-Dichlorobenzene	UG/L	0.5 L	J	0.5	0.5 U		0.5 U 0.5 U		U	0.5	U														
8260D	1,2-Dichloroethane	UG/L	0.5 L	J	0.5	0.5 U		0.5 U 0.5 U		U	0.5	U														
8260D	1,2-Dichloropropane	UG/L	0.5 L	J	0.5	U	0.5	U	0.5	U																
8260D	1,3-Dichlorobenzene	UG/L	0.5 L	J	0.5	U	0.5	U	0.5	U																
8260D	1,4-Dichlorobenzene	UG/L	0.5 L	J	0.5	0.5 U		0.5 U		U	0.5	U														
8260D	2-Butanone	UG/L	2.5 L	J	2.5	2.5 U		2.5 U		U	2.5	U														
8260D	2-Hexanone	UG/L	2.5 L	J	2.5	U	2.5	U	2.5	U																
8260D	4-Methyl-2-pentanone	UG/L	2.5 L	J	2.5	U	2.5	U	2.5	U																
8260D	Acetic acid, methyl ester	UG/L	2.5 L	J	2.5 U		2.5 U		2.5 U 2.5 U		2.5	U														
8260D	Acetone	UG/L	5 L	J	5 U		5 U		5 U 5 U		5	U														
8260D	Benzene	UG/L	0.5 L	J	0.5 U		0.5 U		0.5 U 0.5 U		0.5	U														

Lake	Success,	Ν	lew	Υ	orl	<
------	----------	---	-----	---	-----	---

		SDG	460-246843-1	460-246843-1	460-246843-1	460-246843-1
		Location	17ML	1MI	1ML	22ML
		Sample Date	11/1/2021	11/1/2021	11/1/2021	11/1/2021
		Sample ID	MW-17ML-XX	MW-1MI-XX	MW-1ML-XX	MW-22ML-XX
		QC Code	FS	FS	FS	FS
			Final Final	Final Final	Final Final	Final Final
Method	Parameter	Unit	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier
8260D	Bromodichloromethane	UG/L	0.5 U	0.5 U	0.5 U	0.5 U
8260D	Bromoform	UG/L	0.5 U	0.5 U	0.5 U	0.5 U
8260D	Bromomethane	UG/L	0.5 U	0.5 U	0.5 U	0.5 U
8260D	Carbon disulfide	UG/L	0.5 U	0.5 U	0.5 U	0.5 U
8260D	Carbon tetrachloride	UG/L	0.5 U	0.5 U	0.5 U	0.5 U
8260D	Chlorobenzene	UG/L	0.5 U	0.5 U 0.5 U		0.5 U
8260D	Chlorodifluoromethane	UG/L	3			1 U
8260D	Chloroethane	UG/L	0.5 U	0.5 U		
8260D	Chloroform	UG/L	0.5 U	0.5 U 0.5 U		0.5 U
8260D	Chloromethane	UG/L	0.5 U	0.5 U	0.5 U	0.5 U
8260D	cis-1,2-Dichloroethene	UG/L	22	18	15	0.5 U
8260D	cis-1,3-Dichloropropene	UG/L	0.5 U	0.5 U	0.5 U	0.5 U
8260D	Cyclohexane	UG/L	0.5 U	0.5 U	0.5 U	0.5 U
8260D	Dibromochloromethane	UG/L	0.5 U	0.5 U	0.5 U	0.5 U
8260D	Dichlorodifluoromethane	UG/L	0.5 U	0.5 U	0.5 U	0.5 U
8260D	Ethylbenzene	UG/L	0.5 U	0.5 U	0.5 U	0.5 U
8260D	Freon 115	UG/L	5 UJ	5 UJ 5 UJ		5 UJ
8260D	Freon 123	UG/L	1 U	1 U	1 U	1 U
8260D	Isopropylbenzene	UG/L	0.5 U	0.5 U	0.5 U	0.5 U
8260D	Methyl cyclohexane	UG/L	0.5 U	0.5 U	0.5 U	0.5 U
8260D	Methyl Tertbutyl Ether	UG/L	0.5 U	0.5 U	0.5 U 0.5 U	
8260D	Methylene chloride	UG/L	0.5 U 0.5 U 0.5 U		0.5 U	0.5 U
8260D	Styrene	UG/L	0.5 U	0.5 U	0.5 U	0.5 U
8260D	Tetrachloroethene	UG/L	8	18 12		0.5 U

		SDG	460-24	6843-1	460-24	16843-1	460-24	46843-1	460-24	16843-1						
		Location	17	ML	1	MI	1ML		22	ML						
		Sample Date	11/1/2021		11/1/2021		11/1/2021		11/1	/2021						
		Sample ID	D MW-17ML-XX		MW-1MI-XX		MW-1	LML-XX	MW-2	2ML-XX						
		QC Code	F	FS		-S	1	FS	ı	FS						
			Final	Final Final		Final	Final	Final	Final	Final						
Method	Parameter	Unit	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier						
8260D	Toluene	UG/L	0.5	U	0.5	U	0.5 U		0.5	U						
8260D	trans-1,2-Dichloroethene	UG/L	0.24	J	0.45	J	0.5 U		0.5	U						
8260D	trans-1,3-Dichloropropene	UG/L	0.5	U	0.5	U	0.5 U		0.5	U						
8260D	Trichloroethene	UG/L	13		14		8.5		0.5	U						
8260D	Trichlorofluoromethane	UG/L	0.5	U	0.5	U	0.5	U	0.5	U						
8260D	Vinyl chloride	UG/L	0.5	U	0.5	0.5 U		U	0.5	U						
8260D	Xylene, o	UG/L	0.5	U	0.5	0.5 U		0.5 U 0.5 U		U	0.5	U				
8260D	Xylenes (m&p)	UG/L	0.5	U	0.5	0.5 U		0.5 U		0.5 U		0.5 U 0.5 U		U	0.5	U
8260D	Xylenes, Total	UG/L	1	U	1	U	J 1 U		1	U						

		SDG	460-24	6843-1	460-24	16843-1	460-24	6843-1	460-24	16843-1						
	ı	Location	29	MI	31	lGL	31	.MI	31	.ML						
	Sam	ple Date	11/2/	2021	11/2	/2021	11/2,	/2021	11/2	/2021						
	Sa	mple ID	MW-29	MI-XX	MW-3	1GL-XX	MW-3	1MI-XX	MW-3	1ML-XX						
		QC Code	F	S	F	-S	S FS		1	-s						
			Final	Final	Final	Final	Final	Final	Final	Final						
Method	Parameter	Unit	Result	Qualifier	Result Qualifier		Result	Qualifier	Result	Qualifier						
8260D	1,1,1-Trichloroethane	UG/L	0.5	U	0.5	U	0.5	U	0.5	U						
8260D	1,1,2,2-Tetrachloroethane	UG/L	0.5	U	0.5	U	0.5	U	0.5	U						
8260D	1,1,2-Trichloro-1,2,2-Trifluoroethane (Freon 113)	UG/L	11		2.9		17		7.2							
8260D	1,1,2-Trichloroethane	UG/L	0.5	U	0.5	U	0.5	U	0.5	U						
8260D	1,1-Dichloroethane	UG/L	0.29	J	0.5 U		0.5 U		0.5 U		0.45	J	0.5	U		
8260D	1,1-Dichloroethene	UG/L	1.1		0.5	0.5 U		0.5 U		1		1 0.5				
8260D	1,1-Difluoroethane (Freon 152a)	UG/L	1	U	1	1 U		1 U 1 U		U	1	U				
8260D	1,2,4-Trichlorobenzene	UG/L	0.5	U	0.5 U				0.5	U						
8260D	1,2-Dibromo-3-chloropropane	UG/L	0.5	0.5 U		U	0.5 U		0.5	U						
8260D	1,2-Dibromoethane	UG/L	0.5	U	0.5	0.5 U		U	0.5	U						
8260D	1,2-Dichlorobenzene	UG/L	0.5	U	0.5	U	0.5	U	0.5	U						
8260D	1,2-Dichloroethane	UG/L	0.5	U	0.5	U	0.79		0.52							
8260D	1,2-Dichloropropane	UG/L	0.5	U	0.5	U	0.35	J	0.5	U						
8260D	1,3-Dichlorobenzene	UG/L	0.5	U	0.5	U	0.5	U	0.5	U						
8260D	1,4-Dichlorobenzene	UG/L	0.5	U	0.5	0.5 U		0.5 U		U	0.5	U				
8260D	2-Butanone	UG/L	2.5	U	2.5	2.5 U		2.5 U		2.5 U		2.5 U		U	2.5	U
8260D	2-Hexanone	UG/L	2.5	U	2.5	U	2.5	U	2.5	U						
8260D	4-Methyl-2-pentanone	UG/L	2.5	2.5 U		2.5 U 2.5 U		U	2.5	U						
8260D	Acetic acid, methyl ester	UG/L	2.5	U	2.5 U		2.5 U 2.5 U		2.5	U						
8260D	Acetone	UG/L	5	U	5 U		5 U		5 U 5 U		5	U				
8260D	Benzene	UG/L	0.5	U	0.5	0.5 U 0.5 U		0.5	U							

		SDG	460-246	843-1	460-24	6843-1	460-24	16843-1	460-24	6843-1						
		Location	29N	/ II	31	.GL	31	LMI	31	ML						
		Sample Date	11/2/2	2021	11/2,	/2021	11/2	/2021	11/2	/2021						
		Sample ID	MW-291	MI-XX	MW-3	1GL-XX	MW-3	1MI-XX	MW-3:	1ML-XX						
		QC Code	FS		F	:S	F	=S	F	:S						
			Final	Final	Final	Final	Final	Final	Final	Final						
Method	Parameter	Unit	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier						
8260D	Bromodichloromethane	UG/L	0.5 L	J	0.5	U	0.5	U	0.5	U						
8260D	Bromoform	UG/L	0.5 L	J	0.5	U	0.5	U	0.5	U						
8260D	Bromomethane	UG/L	0.5 L	J	0.5	U	0.5	U	0.5	U						
8260D	Carbon disulfide	UG/L	0.5 L	J	0.5	U	0.5	U	0.5	U						
8260D	Carbon tetrachloride	UG/L	0.5 L	J	0.5	U	0.5	U	0.5	U						
8260D	Chlorobenzene	UG/L	0.5 L	J	0.5	U	0.5	U	0.5	U						
8260D	Chlorodifluoromethane	UG/L	1 L	J	1.1	1.1 6.5		6.5								
8260D	Chloroethane	UG/L	0.5 L	J	0.5	U	0.5 U		0.5	U						
8260D	Chloroform	UG/L	0.39 J		0.5	U	0.75		0.49	J						
8260D	Chloromethane	UG/L	0.5 L	J	0.5	U	0.5 U		0.5	U						
8260D	cis-1,2-Dichloroethene	UG/L	350		66	J-	360		140							
8260D	cis-1,3-Dichloropropene	UG/L	0.5 L	J	0.5	U	0.5	U	0.5 U							
8260D	Cyclohexane	UG/L	0.5 L	J	0.5	U	0.5	U	0.5	U						
8260D	Dibromochloromethane	UG/L	0.5 L	J	0.5	U	0.5	U	0.5	U						
8260D	Dichlorodifluoromethane	UG/L	0.5 L	J	0.5	U	0.5	U	0.5	U						
8260D	Ethylbenzene	UG/L	0.5 L	J	0.5	U	0.5	U	0.5	U						
8260D	Freon 115	UG/L	5 L	JJ	5	UJ	5	UJ	5	UJ						
8260D	Freon 123	UG/L	1 L	J	1	U	1 U		1	U						
8260D	Isopropylbenzene	UG/L	0.5 L	J	0.5	U	0.5	U	0.5	U						
8260D	Methyl cyclohexane	UG/L	0.5 L	J	0.5	U	0.5	U	0.5	U						
8260D	Methyl Tertbutyl Ether	UG/L	0.5 L	J	0.5 U		0.5	U	0.5 U							
8260D	Methylene chloride	UG/L	0.5 L	J	0.5 U		0.5 U		0.5 U		0.5 U		0.5 U 0.5 U		0.5	U
8260D	Styrene	UG/L	0.5 L	J	0.5 U		0.5 U		0.5 U		0.5	U				
8260D	Tetrachloroethene	UG/L	3.2		8.4				12							

		SDG	460-24	6843-1	460-24	16843-1	460-24	46843-1	460-24	16843-1
		Location	29	MI	31	lGL	31	LMI	31	.ML
		Sample Date	11/2	/2021	11/2/2021		11/2/2021		11/2	/2021
		Sample ID	MW-29MI-XX		MW-31GL-XX		MW-31MI-XX		MW-3	1ML-XX
		QC Code	F	FS FS		FS	FS		F	FS
			Final	Final Final		Final	Final	Final	Final	Final
Method	Parameter	Unit	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier
8260D	Toluene	UG/L	0.5	U	0.5	U	0.5 U		0.5 U	
8260D	trans-1,2-Dichloroethene	UG/L	0.76		0.29	J	1.2		0.48 J	
8260D	trans-1,3-Dichloropropene	UG/L	0.5	U	0.5	U	0.5 U		0.5	U
8260D	Trichloroethene	UG/L	6.5		17	,	78	}	38	
8260D	Trichlorofluoromethane	UG/L	0.5	U	0.5	U	0.5	U	0.5	U
8260D	Vinyl chloride	UG/L	29		0.5	0.5 U		U	0.5	U
8260D	Xylene, o	UG/L	0.5	U	0.5 U		0.5 U 0.5 U		0.5	U
8260D	Xylenes (m&p)	UG/L	0.5	U	0.5 U		0.5 U 0.5		0.5	U
8260D	Xylenes, Total	UG/L	1	U	1	U	1 U		1	U

		SDG	460-246	843-1	460-24	16843-1	460-24	6843-1	460-24	16843-1																				
	l	ocation	33G	ìL	33	BML	37	ML	37	MU																				
	Samı	ple Date	11/3/2	2021	11/3	/2021	11/1,	/2021	11/1	/2021																				
	Sa	mple ID	MW-33	GL-XX	MW-3	3ML-XX	MW-3	7ML-XX	MW-3	7MU-XX																				
		QC Code	FS		ı	-S	FS		F	FS																				
			Final	Final	Final	Final	Final	Final	Final	Final																				
Method	Parameter	Unit	Result	Qualifier	Result Qualifier		Result	Qualifier	Result	Qualifier																				
8260D	1,1,1-Trichloroethane	UG/L	0.5 L	J	0.5	U	0.5	U	0.5	U																				
8260D	1,1,2,2-Tetrachloroethane	UG/L	0.5 L	J	0.5	U	0.5	U	0.5	U																				
8260D	1,1,2-Trichloro-1,2,2-Trifluoroethane (Freon 113)	UG/L	0.5 L	J	0.5	U	8.4		7.2																					
8260D	1,1,2-Trichloroethane	UG/L	0.5 L	J	0.5 U		0.5 U		0.5 U		0.5 U		0.5 U		0.5 U		0.5 U		0.5 U		0.5 U		0.5	U	0.5	U				
8260D	1,1-Dichloroethane	UG/L	0.5 L	J	0.5 U		0.5 U		0.5 U		0.5 U		0.5 U		0.5 U		0.5 U		0.5 U		0.5 U		0.5 U		0.5 U		0.3	J	0.32	. J
8260D	1,1-Dichloroethene	UG/L	0.5 L	J	0.5 U		0.5 U 0.54		0.41	. J																				
8260D	1,1-Difluoroethane (Freon 152a)	UG/L	1 L	J	1 U		1	U	1	U																				
8260D	1,2,4-Trichlorobenzene	UG/L	0.5 L	J	0.5 U		0.5	U	0.5	U																				
8260D	1,2-Dibromo-3-chloropropane	UG/L	0.5 L	J	0.5 U		0.5	U	0.5	U																				
8260D	1,2-Dibromoethane	UG/L	0.5 L	J	0.5	0.5 U		0.5 U 0.5		U	0.5	U																		
8260D	1,2-Dichlorobenzene	UG/L	0.5 L	J	0.5	0.5 U 0.5 U		U	0.5	U																				
8260D	1,2-Dichloroethane	UG/L	0.5 L	J	0.5	U	0.6		0.5	U																				
8260D	1,2-Dichloropropane	UG/L	0.5 L	J	0.5	U	0.5	U	0.5	U																				
8260D	1,3-Dichlorobenzene	UG/L	0.5 L	J	0.5	0.5 U		0.5 U 0.5 U		U	0.5	U																		
8260D	1,4-Dichlorobenzene	UG/L	0.5 L	J	0.5	0.5 U		U	0.5	U																				
8260D	2-Butanone	UG/L	2.5 L	J	2.5	2.5 U		2.5 U		2.5 U		U	2.5	U																
8260D	2-Hexanone	UG/L	2.5 L	J	2.5	U	2.5	U	2.5	U																				
8260D	4-Methyl-2-pentanone	UG/L	2.5 L	J	2.5	2.5 U 2.5 U		U	2.5	U																				
8260D	Acetic acid, methyl ester	UG/L	2.5 L	J	2.5 U		2.5 U		2.5 U 2.5 U		2.5	U																		
8260D	Acetone	UG/L	5 L	J	5 U		5 U 5 U		5	U																				
8260D	Benzene	UG/L	0.5 L	J	0.5 U		0.5	U	0.5	U																				

		SDG	460-246843-1	460-246843-1	460-246843-1	460-246843-1
		Location	33GL	33ML	37ML	37MU
				11/3/2021	11/1/2021	11/1/2021
		Sample Date	11/3/2021	MW-33ML-XX	MW-37ML-XX	MW-37MU-XX
		Sample ID	MW-33GL-XX			
		QC Code	FS Final Final	FS Final Final	FS Final Final	FS Final Final
Method	Parameter	Unit	Result Qualifie		Result Qualifier	Result Qualifier
8260D	Bromodichloromethane	UG/L	0.5 U	0.5 U	0.5 U	0.5 U
8260D	Bromoform	UG/L	0.5 U	0.5 U	0.5 U	0.5 U
8260D	Bromomethane	UG/L	0.5 U	0.5 U	0.5 U	0.5 U
8260D	Carbon disulfide	UG/L	0.5 U	0.5 U	0.5 U	0.5 U
8260D	Carbon tetrachloride	UG/L	0.5 U	0.5 U	0.5 U	0.5 U
8260D	Chlorobenzene	UG/L	0.5 U	0.5 U	0.5 U	0.5 U
8260D	Chlorodifluoromethane	UG/L	1 U	1 U	1 U 1.8	
8260D	Chloroethane	UG/L	0.5 U	0.5 U	0.5 U	0.5 U
8260D	Chloroform	UG/L	0.5 U	0.5 U	0.63	0.44 J
8260D	Chloromethane	UG/L	0.5 U	0.5 U	0.5 U	0.5 U
8260D	cis-1,2-Dichloroethene	UG/L	0.5 U	1	1 200	
8260D	cis-1,3-Dichloropropene	UG/L	0.5 U	0.5 U	0.5 U	0.5 U
8260D	Cyclohexane	UG/L	0.5 U	0.5 U	0.5 U	0.5 U
8260D	Dibromochloromethane	UG/L	0.5 U	0.5 U	0.5 U	0.5 U
8260D	Dichlorodifluoromethane	UG/L	0.5 U	0.5 U	0.5 U	0.5 U
8260D	Ethylbenzene	UG/L	0.5 U	0.5 U	0.5 U	0.5 U
8260D	Freon 115	UG/L	5 U	5 UJ	5 UJ	5 UJ
8260D	Freon 123	UG/L	1 U	1 U	1 U	1 U
8260D	Isopropylbenzene	UG/L	0.5 U	0.5 U	0.5 U	0.5 U
8260D	Methyl cyclohexane	UG/L	0.5 U	0.5 U	0.5 U	0.5 U
8260D	Methyl Tertbutyl Ether	UG/L	0.5 U	0.5 U	0.5 U	0.5 U
8260D	Methylene chloride	UG/L	0.5 U	0.5 U	0.5 U	0.5 U
8260D	Styrene	UG/L	0.5 U	0.5 U	0.5 U	0.5 U 25
8260D	Tetrachloroethene	UG/L	0.5 U	0.5 U		

		SDG	460-24	6843-1	460-24	16843-1	460-24	16843-1	460-246843-1	
		Location	33	GL	33	BML	37	'ML	37	MU
		Sample Date	11/3/2021		11/3/2021		11/1/2021		11/1	/2021
		Sample ID	MW-3	3GL-XX	MW-33ML-XX		MW-37ML-XX		MW-3	7MU-XX
		QC Code			FS		FS		F	:S
			Final Final		Final	Final	Final	Final	Final	Final
Method	Parameter	Unit	Result Qualifier		Result	Qualifier	Result	Qualifier	Result	Qualifier
8260D	Toluene	UG/L	0.5	U	0.5 U		0.5 U		0.5 U	
8260D	trans-1,2-Dichloroethene	UG/L	0.5	U	0.5 U		0.81		1.3	
8260D	trans-1,3-Dichloropropene	UG/L	0.5	U	0.5	0.5 U 0.5 U		0.5	U	
8260D	Trichloroethene	UG/L	0.5	U	0.72		43		40	
8260D	Trichlorofluoromethane	UG/L	0.5	U	0.5	U	0.57	,	0.5	U
8260D	Vinyl chloride	UG/L	0.5	U	0.5	U	0.5	U	0.5	U
8260D	Xylene, o	UG/L	0.5 U		0.5	U	0.5	U	0.5	U
8260D	Xylenes (m&p)	UG/L	0.5 U		0.5 U		0.5 U 0.5 U		0.5	U
8260D	Xylenes, Total	UG/L	1 U		1 U		1 U		1	U

		SDG	460-246	843-1	460-24	16843-1	460-24	6843-1	460-24	16843-1						
	ı	ocation	3GL	_	31	ML	43	IMI	43	MU						
	Samı	ple Date	11/1/2	021	11/1	/2021	11/3,	/2021	11/3	/2021						
	Sa	mple ID	MW-3G	L-XX	MW-3	BML-XX	MW-4	3MI-XX	MW-43	зми-хх						
		QC Code	FS		F	- S	F	S	F	-S						
			Final	Final	Final	Final	Final	Final	Final	Final						
Method	Parameter	Unit	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier						
8260D	1,1,1-Trichloroethane	UG/L	0.5 U	J	0.5	U	0.5	U	0.5	U						
8260D	1,1,2,2-Tetrachloroethane	UG/L	0.5 U	J	0.5	U	0.5	U	0.5	U						
8260D	1,1,2-Trichloro-1,2,2-Trifluoroethane (Freon 113)	UG/L	0.5 U	J	5		2.7		0.5	U						
8260D	1,1,2-Trichloroethane	UG/L	0.5 U	J	0.5 U 0.5 U		0.5	U								
8260D	1,1-Dichloroethane	UG/L	0.5 U	J	0.5 U		0.5 U		0.5	U	0.5	U				
8260D	1,1-Dichloroethene	UG/L	0.5 U	J	0.5	0.5 U		0.5 U		0.5 U		0.5 U		0.5 U		U
8260D	1,1-Difluoroethane (Freon 152a)	UG/L	1 U	1 U 1		1 U		1 U		1 U		U				
8260D	1,2,4-Trichlorobenzene	UG/L	0.5 U	J	0.5	U	0.5	U	0.5	U						
8260D	1,2-Dibromo-3-chloropropane	UG/L	0.5 U	J	0.5	U	0.5	0.5 U		U						
8260D	1,2-Dibromoethane	UG/L	0.5 U	J	0.5	0.5 U 0.5 U		U	0.5	U						
8260D	1,2-Dichlorobenzene	UG/L	0.5 U	J	0.5	U	0.5	U	0.5	U						
8260D	1,2-Dichloroethane	UG/L	0.5 U	J	0.5	U	0.5	U	0.5	U						
8260D	1,2-Dichloropropane	UG/L	0.5 U	J	0.5	U	0.5	U	0.5	U						
8260D	1,3-Dichlorobenzene	UG/L	0.5 U	J	0.5	U	0.5	U	0.5	U						
8260D	1,4-Dichlorobenzene	UG/L	0.5 U	J	0.5	U	0.5	U	0.5	U						
8260D	2-Butanone	UG/L	2.5 U	J	2.5	U	2.5	U	2.5	U						
8260D	2-Hexanone	UG/L	2.5 U	J	2.5	U	2.5	U	2.5	U						
8260D	4-Methyl-2-pentanone	UG/L	2.5 U	J	2.5	U	2.5	U	2.5	U						
8260D	Acetic acid, methyl ester	UG/L	2.5 U	J	2.5	U	2.5	U	2.5	U						
8260D	Acetone	UG/L	5 U	J	5	U	5	U	5	U						
8260D	Benzene	UG/L	0.5 U	J	0.5	U	0.5	U	0.5	U						

		SDG	460-246843-1		460-24	16843-1	460-24	16843-1	460-24	46843-1										
		Location	3GL		3	ML	43	BMI	43	MU										
		Sample Date	11/1/2021		11/1	/2021	11/3	/2021	11/3	/2021										
		Sample ID	MW-3GL-XX		MW-3	3ML-XX	MW-4	3MI-XX	MW-4:	3MU-XX										
		QC Code	FS		ı	FS	F	-S	1	FS										
			Final Fina	l	Final	Final	Final	Final	Final	Final										
Method	Parameter	Unit	Result Qualif	ier	Result	Qualifier	Result	Qualifier	Result	Qualifier										
8260D	Bromodichloromethane	UG/L	0.5 U		0.5	U	0.5	U	0.5	U										
8260D	Bromoform	UG/L	0.5 U		0.5	U	0.5	U	0.5	U										
8260D	Bromomethane	UG/L	0.5 U		0.5 U		0.5	U	0.5	U										
8260D	Carbon disulfide	UG/L	0.5 U		0.5 U		0.5	U	0.5	U										
8260D	Carbon tetrachloride	UG/L	0.5 U		0.5 U		0.5 U		0.5 U		0.5	U	0.5	U						
8260D	Chlorobenzene	UG/L	0.5 U		0.5 U		0.5 U		0.5 U		0.5 U		0.5 U				0.5 U		0.5	U
8260D	Chlorodifluoromethane	UG/L	1 U		0.78 J		3.4		0.78 J 3.4		1	. U								
8260D	Chloroethane	UG/L	0.5 U		0.5	0.5 U		0.5 U		U	0.5	U								
8260D	Chloroform	UG/L	0.5 U		0.36	0.36 J		U	0.5	U										
8260D	Chloromethane	UG/L	0.5 U		0.5	0.5 U				U	0.5	U								
8260D	cis-1,2-Dichloroethene	UG/L	0.28 J		52		43		0.51											
8260D	cis-1,3-Dichloropropene	UG/L	0.5 U		0.5	0.5 U		0.5 U		0.5 U 0.5 U		U	0.5	U						
8260D	Cyclohexane	UG/L	0.5 U		0.5	0.5 U		0.5 U 0.5 U		U	0.5	U								
8260D	Dibromochloromethane	UG/L	0.5 U		0.5	U	0.5	U	0.5	U										
8260D	Dichlorodifluoromethane	UG/L	0.5 U		0.5	U	0.5	U	0.5	U										
8260D	Ethylbenzene	UG/L	0.5 U		0.5	U	0.5	U	0.5	U										
8260D	Freon 115	UG/L	5 UJ		5	UJ	5	UJ	5	U										
8260D	Freon 123	UG/L	1 U		1	U	1	U	1	. U										
8260D	Isopropylbenzene	UG/L	0.5 U		0.5	U	0.5	U	0.5	U										
8260D	Methyl cyclohexane	UG/L	0.5 U		0.5	U	0.5		0.5	U										
8260D	Methyl Tertbutyl Ether	UG/L	0.5 U		0.5 U		0.5 U		0.5 U		0.5	U	0.5	U						
8260D	Methylene chloride	UG/L	0.5 U		0.5 U		0.5 U		0.5 U 0.5 U		U	0.5	U							
8260D	Styrene	UG/L	0.5 U		0.5 U		0.5 U		0.5 U 0.5 U		U	0.5	U							
8260D	Tetrachloroethene	UG/L	0.5 U		9.2	9.2			0.3 J											

		SDG	460-24	6843-1	460-24	16843-1	460-24	16843-1	460-24	16843-1
		Location	3	GL	3	ML	43	BMI	43	MU
		Sample Date	11/1	/2021	11/1/2021		11/3/2021		11/3	/2021
		Sample ID	MW-3	BGL-XX	MW-3	BML-XX	MW-43MI-XX		MW-43	3MU-XX
		QC Code			FS		FS		F	S
			Final Final		Final	Final	Final	Final	Final	Final
Method	Parameter	Unit	Result Qualifier		Result	Qualifier	Result	Qualifier	Result	Qualifier
8260D	Toluene	UG/L	0.5	U	0.5 U		0.5 U		0.5	U
8260D	trans-1,2-Dichloroethene	UG/L	0.5	U	0.62		0.5 U		0.5 U 0.5 U	
8260D	trans-1,3-Dichloropropene	UG/L	0.5	U	0.5	U	0.5	U	0.5	U
8260D	Trichloroethene	UG/L	0.5	U	18		13		0.67	
8260D	Trichlorofluoromethane	UG/L	0.5	U	0.5	U	0.5	U	0.5 U	
8260D	Vinyl chloride	UG/L	0.5	U	0.5	U	0.5 U		0.5	U
8260D	Xylene, o	UG/L	0.5 U		0.5	U	0.5	U	0.5	U
8260D	Xylenes (m&p)	UG/L	0.5 U		0.5 U		0.5 U 0.5 U		0.5	U
8260D	Xylenes, Total	UG/L	1 U		1 U		1 U		1	U

		SDG	460-246	5843-1	460-24	16843-1	460-24	16843-1	3-1 460-24684															
	ı	Location	Q	С	C	QC	C	QC	(QC														
	Sam	ple Date	11/1/2	2021	11/1	/2021	11/2,	/2021	11/3	/2021														
	Sa	mple ID	QC-TB011	1121-XX	QC-EB0	11121-01	QC-EB02	21121-01	QC-EB0	31121-XX														
		QC Code	TE	3	E	В	Е	В	ſ	В														
			Final	Final	Final	Final	Final	Final	Final	Final														
Method	Parameter	Unit	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier														
8260D	1,1,1-Trichloroethane	UG/L	0.5 (U	0.5	U	0.5	U	0.5	U														
8260D	1,1,2,2-Tetrachloroethane	UG/L	0.5 (U	0.5 U		0.5 U		0.5 U		0.5 U		0.5 U		0.5 U		0.5 U		0.5 U		0.5	0.5 U		U
8260D	1,1,2-Trichloro-1,2,2-Trifluoroethane (Freon 113)	UG/L	0.5 (U	0.5	U	0.5	U	0.5	U														
8260D	1,1,2-Trichloroethane	UG/L	0.5 (U	0.5	U	0.5	U	0.5	U														
8260D	1,1-Dichloroethane	UG/L	0.5 (U	0.5	U	0.5	U	0.5	U														
8260D	1,1-Dichloroethene	UG/L	0.5 (U	0.5	U	0.5	U	0.5	U														
8260D	1,1-Difluoroethane (Freon 152a)	UG/L	1 (U			U	1	U															
8260D	1,2,4-Trichlorobenzene	UG/L	0.5	U	0.5	U	0.5	U	0.5	U														
8260D	1,2-Dibromo-3-chloropropane	UG/L	0.5	U	0.5 U 0.5 U		0.5	U																
8260D	1,2-Dibromoethane	UG/L	0.5	U	0.5	U	0.5 U		0.5	U														
8260D	1,2-Dichlorobenzene	UG/L	0.5 (U	0.5	U	0.5	U	0.5	U														
8260D	1,2-Dichloroethane	UG/L	0.5 (U	0.5	U	0.5	U	0.5	U														
8260D	1,2-Dichloropropane	UG/L	0.5 (U	0.5	U	0.5	U	0.5	U														
8260D	1,3-Dichlorobenzene	UG/L	0.5 (0.5	U	0.5		0.5															
8260D	1,4-Dichlorobenzene	UG/L	0.5 (U	0.5	U	0.5	U	0.5	U														
8260D	2-Butanone	UG/L	2.5 (U	2.5	U	2.5	U	2.5	U														
8260D	2-Hexanone	UG/L	2.5 (U	2.5	U	2.5	U	2.5	U														
8260D	4-Methyl-2-pentanone	UG/L	2.5 (U	2.5	U	2.5		2.5	U														
8260D	Acetic acid, methyl ester	UG/L	2.5 (U	2.5	U	2.5	U	2.5	U														
8260D	Acetone	UG/L	5.8		5	U	4.4	J	5	U														
8260D	Benzene	UG/L	0.5 (U	0.5	U	0.5	U	0.5	U														

	and oddocoo, item is	
SDG	460-246843-1	

		SDG	460-246843-1	460-246843-1	460-246843-1	460-246843-1
		Location	QC	QC	QC	QC
		Sample Date	11/1/2021	11/1/2021	11/2/2021	11/3/2021
		Sample ID	QC-TB011121-XX	QC-EB011121-01	QC-EB021121-01	QC-EB031121-XX
		QC Code	ТВ	EB	EB	EB
			Final Final	Final Final	Final Final	Final Final
Method	Parameter	Unit	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier
8260D	Bromodichloromethane	UG/L	0.5 U	0.5 U	0.5 U	0.5 U
8260D	Bromoform	UG/L	0.5 U	0.5 U	0.5 U	0.5 U
8260D	Bromomethane	UG/L	0.5 U	0.5 U	0.5 U	0.5 U
8260D	Carbon disulfide	UG/L	0.5 U	0.5 U	0.5 U	0.5 U
8260D	Carbon tetrachloride	UG/L	0.5 U	0.5 U	0.5 U	0.5 U
8260D	Chlorobenzene	UG/L	0.5 U	0.5 U	0.5 U	0.5 U
8260D	Chlorodifluoromethane	UG/L	1 U	1 U	1 U	1 U
8260D	Chloroethane	UG/L	0.5 U	0.5 U	0.5 U	0.5 U
8260D	Chloroform	UG/L	0.5 U	0.5 U		
8260D	Chloromethane	UG/L	0.5 U	0.5 U	0.5 U	0.5 U
8260D	cis-1,2-Dichloroethene	UG/L	0.5 U	0.5 U	1.5	0.5 U
8260D	cis-1,3-Dichloropropene	UG/L	0.5 U	0.5 U	0.5 U	0.5 U
8260D	Cyclohexane	UG/L	0.5 U	0.5 U	0.5 U	0.5 U
8260D	Dibromochloromethane	UG/L	0.5 U	0.5 U	0.5 U	0.5 U
8260D	Dichlorodifluoromethane	UG/L	0.5 U	0.5 U	0.5 U	0.5 U
8260D	Ethylbenzene	UG/L	0.5 U	0.5 U	0.5 U	0.5 U
8260D	Freon 115	UG/L	5 UJ	5 U	5 U	5 U
8260D	Freon 123	UG/L	1 U	1 U	1 U	1 U
8260D	Isopropylbenzene	UG/L	0.5 U	0.5 U	0.5 U	0.5 U
8260D	Methyl cyclohexane	UG/L	0.5 U	0.5 U	0.5 U	0.5 U
8260D	Methyl Tertbutyl Ether	UG/L	0.5 U	0.5 U	0.5 U	0.5 U
8260D	Methylene chloride	UG/L	0.5 U	0.43 J 0.49 J		0.48 J
8260D	Styrene	UG/L	0.5 U	0.5 U 0.5 U		0.5 U
8260D	Tetrachloroethene	UG/L	0.5 U	0.5 U	0.5 U	0.5 U

		SDG	460-24	6843-1	460-24	16843-1	460-24	46843-1	460-24	46843-1
		Location	C	(C	C	QC	QC		(QC
		Sample Date	11/1	/2021	11/1/2021		11/2/2021		11/3	3/2021
		Sample ID	QC-TB02	L1121-XX	QC-EB0	11121-01	QC-EB021121-01		QC-EB0	31121-XX
		QC Code			EB		EB		E	EB
			Final Final		Final	Final	Final	Final	Final	Final
Method	Parameter	Unit	Result Qualifier		Result Qualifier		Result Qualifier		Result	Qualifier
8260D	Toluene	UG/L	0.5	U	0.5 U		0.5 U		0.5	U
8260D	trans-1,2-Dichloroethene	UG/L	0.5	U	0.5 U		0.5	U	0.5	, U
8260D	trans-1,3-Dichloropropene	UG/L	0.5	U	0.5 U		0.5 U 0.5 U		0.5	, U
8260D	Trichloroethene	UG/L	0.5	U	0.5	0.5 U 0.5 U		U	0.5	, U
8260D	Trichlorofluoromethane	UG/L	0.5	U	0.5	U	0.5 U		0.5	, U
8260D	Vinyl chloride	UG/L	0.5	U	0.5	0.5 U 0.5 U		U	0.5	, U
8260D	Xylene, o	UG/L	0.5 U		0.5	0.5 U 0.5 U		U	0.5	, U
8260D	Xylenes (m&p)	UG/L	0.5	U	0.5 U		0.5 U 0.5 U		0.5	, U
8260D	Xylenes, Total	UG/L	1 U		1 U		1 U		1	. U

		SDG	460-2472	256-1	460-24	17256-1	460-24	7256-1	460-247256-					
	ı	ocation	33M	II	44	IMI	44	MU	45	5MI				
	Samı	ple Date	11/9/2	021	11/9	/2021	11/9,	/2021	11/5	/2021				
	Sa	mple ID	MW-33N	∕II-XX	MW-4	4MI-XX	MW-44	₽MU-XX	MW-4	5MI-XX				
		QC Code	FS	FS FS		- S	FS		F	FS				
			Final	Final	Final	Final	Final	Final	Final	Final				
Method	Parameter	Unit	Result (Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier				
8260D	1,1,1-Trichloroethane	UG/L	0.5 U		0.5	U	0.5	U	0.5	U				
8260D	1,1,2,2-Tetrachloroethane	UG/L	0.5 U	l	0.5	U	0.5	U	0.5	U				
8260D	1,1,2-Trichloro-1,2,2-Trifluoroethane (Freon 113)	UG/L	0.5 U	l	11		0.5	U	3					
8260D	1,1,2-Trichloroethane	UG/L	0.5 U	l	0.23	J	0.5	U	0.5	U				
8260D	1,1-Dichloroethane	UG/L	0.5 U	l	0.63		0.5	U	0.5	U				
8260D	1,1-Dichloroethene	UG/L	0.5 U	0.5 U		0.65		0.65		0.65 0.5 U		0.5 U		U
8260D	1,1-Difluoroethane (Freon 152a)	UG/L	1 U	1 U		1 U		U	1	U				
8260D	1,2,4-Trichlorobenzene	UG/L	0.5 U	l	0.5	U	0.5	U	0.5 U					
8260D	1,2-Dibromo-3-chloropropane	UG/L	0.5 U	l	0.5	U	0.5	0.5 U		U				
8260D	1,2-Dibromoethane	UG/L	0.5 U	l	0.5	U	0.5	U	0.5	U				
8260D	1,2-Dichlorobenzene	UG/L	0.5 U	l	0.5	U	0.5	U	0.5	U				
8260D	1,2-Dichloroethane	UG/L	0.5 U	l	0.82		0.5	U	0.5	U				
8260D	1,2-Dichloropropane	UG/L	0.5 U	l	0.5	U	0.5	U	0.5	U				
8260D	1,3-Dichlorobenzene	UG/L	0.5 U	l	0.5	U	0.5	U	0.5	U				
8260D	1,4-Dichlorobenzene	UG/L	0.5 U	l	0.5	U	0.5	U	0.5	U				
8260D	2-Butanone	UG/L	2.5 U	l	2.5	U	2.5	U	2.5	U				
8260D	2-Hexanone	UG/L	2.5 U	l	2.5	U	2.5	U	2.5	U				
8260D	4-Methyl-2-pentanone	UG/L	2.5 U	l	2.5	U	2.5	U	2.5	U				
8260D	Acetic acid, methyl ester	UG/L	2.5 U	l	2.5	U	2.5 U		2.5	U				
8260D	Acetone	UG/L	5 U	l	5	U	5	U	5	U				
8260D	Benzene	UG/L	0.5 U		0.5	U	0.5	U	0.5	U				

	SDG	460-247	7256-1	460-24	7256-1	460-247256-1		460-24	17256-1																																										
	Location	331	ΜI	44	IMI	44	MU	45	5MI																																										
	Sample Date	11/9/	2021	11/9	/2021	11/9	/2021	11/5	/2021																																										
	Sample ID	MW-33	MI-XX	MW-4	4MI-XX	MW-44	4MU-XX	MW-4	5MI-XX																																										
	QC Code	FS	5	F	S	F	-S	F	=S																																										
		Final	Final	Final	Final	Final	Final	Final	Final																																										
Parameter	Unit	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier																																										
Bromodichloromethane	UG/L	0.5	U	0.5	U	0.5	U	0.5	U																																										
Bromoform	UG/L	0.5	U	0.5 U		0.5	U	0.5	U																																										
Bromomethane	UG/L	0.5 U		0.5	U	0.5	U	0.5	U																																										
Carbon disulfide	UG/L	0.5	U	0.5 U		0.5	U	0.5	U																																										
Carbon tetrachloride	UG/L	0.5	U	0.5 U		0.5 U		0.5 U		0.5 U		0.5 U		0.5	U																																				
Chlorobenzene	UG/L	0.5	U	0.5 U		0.5 U 0.5 U		U	0.5	U																																									
Chlorodifluoromethane	UG/L	1	U	2.2		1	U	1	U																																										
Chloroethane	UG/L	0.5	U	0.5	0.5 U				U	0.5	U																																								
Chloroform	UG/L	0.5	U	0.93		0.5	U	0.37 J																																											
Chloromethane	UG/L	0.5	U	0.5	U	0.5	U	0.5 U																																											
cis-1,2-Dichloroethene	UG/L	0.5	U	340		0.83		27																																											
cis-1,3-Dichloropropene	UG/L	0.5	U	0.5	U	0.5	U	0.5	U																																										
Cyclohexane	UG/L	0.5	U	0.5 U		0.5 U		0.5 U		0.5 U		0.5 U		0.5 U		0.5 U 0.5		0.5	U																																
Dibromochloromethane	UG/L	0.5	U	0.5 U		0.5 U		0.5 U		0.5 U		0.5 U		0.5 U		0.5	U	0.5	U																																
Dichlorodifluoromethane	UG/L	0.5	0.5 U 0.5 U		0.5 U 0.5 U		0.5 U		U	0.5	U																																								
Ethylbenzene	UG/L	0.5	U	0.5	U	0.5	U	0.5	U																																										
Freon 115	UG/L	5	UJ	5 UJ		5 UJ		5 UJ		5 UJ		5 UJ		5 UJ		5 UJ		5 UJ		5 UJ		5 UJ		5	UJ	5	UJ																								
Freon 123	UG/L	1	U	1 U		1 U		1 U		1 U		1 U		1 U		1 U		1 U		1 U		1 U		1 U		1 U		1 U		1 U		1 U		1 U		1 U		1 U		1 U		1 U		1 U		1 U		1	U	1	U
Isopropylbenzene	UG/L	0.5 U		0.5 U		0.5 U		0.5 U		0.5 U		0.5 U		0.5 U 0.5 U		U	0.5	U																																	
Methyl cyclohexane	UG/L	0.5	U	0.5 U		0.5 U		0.5 U		0.5 U		0.5 U		0.5 U 0.5 U		U	0.5	U																																	
	Bromodichloromethane Bromoform Bromomethane Carbon disulfide Carbon tetrachloride Chlorobenzene Chlorodifluoromethane Chloroethane Chloroform Chloromethane cis-1,2-Dichloroethene cis-1,3-Dichloropropene Cyclohexane Dibromochloromethane Dichlorodifluoromethane Ethylbenzene Freon 115 Freon 123 Isopropylbenzene	Location Sample Date Sample ID QC Code Parameter Bromodichloromethane Bromoform Bromomethane Carbon disulfide Carbon tetrachloride Chlorobenzene Chlorodifluoromethane UG/L Chlorodethane Chloroform Chloroethane UG/L Chloromethane UG/L Cyclohexane UG/L Dibromochloromethane UG/L Dichlorodifluoromethane UG/L Freon 115 Freon 123 UG/L Isopropylbenzene	Location Sample Date 11/9/2 Sample ID MW-33 MW-33 Result	Location Sample Date Sample Date Sample ID 11/9/2021 Agr Parameter Unit Final Final Parameter Unit Result Qualifier Bromodichloromethane UG/L 0.5 U Bromoform UG/L 0.5 U Bromomethane UG/L 0.5 U Bromomethane UG/L 0.5 U Carbon disulfide UG/L 0.5 U Carbon disulfide UG/L 0.5 U Carbon disulfide UG/L 0.5 U Chlorobenzene UG/L 0.5 U Chlorobenzene UG/L 0.5 U Chlorodifluoromethane UG/L 0.5 U Chloroform UG/L 0.5 U Chloromethane UG/L 0.5 U Cis-1,2-Dichloroethene UG/L 0.5 U cis-1,2-Dichloropropene UG/L 0.5 U Cyclohexane UG/L<	Location Sample Date 11/9/2021 11/9	Location Sample Date Sample ID MW-33MI-XX MW-44MI-XX MW-44MI-XX MW-34MI-XX MW-3	Location Sample Date Sample ID Sample ID MW-33MI-XX MW-44MI-XX MW-44 MI-XX MU-X-X MI-XX MU-X-X MI-XX MU-X-X MI-XX MU-X-X MI-XX MU-X-X MI-XX MU-X-X MU-X-X MU-X-X MU-X-X MU-X-X	Location Sample Date MW-33MI-XX MW-44MI-XX MW-44MI-X	Location Sample Date Sample Date Sample Date Sample Date Sample Date Dat																																										

Created By: WCG 12/7/2021 Checked By: ALJ 12/8/2021

0.5 U

0.5 U

0.5 U

4.8

0.5 U

9.3

0.5 U

0.5 U

0.5 U

0.52

UG/L

UG/L

UG/L

UG/L

Styrene

Methyl Tertbutyl Ether

Methylene chloride

Tetrachloroethene

8260D

8260D

8260D

8260D

		SDG	460-24	7256-1	460-24	17256-1	460-24	17256-1	460-24	17256-1
		Location	33	MI	44	lMI	44	MU	45	SMI
		Sample Date	11/9	/2021	11/9/2021		11/9/2021		11/5	/2021
		Sample ID	MW-3	3MI-XX	MW-4	4MI-XX	MW-44MU-XX		MW-4	5MI-XX
		QC Code			FS		FS		F	S
			Final Final		Final	Final	Final	Final	Final	Final
Method	Parameter	Unit	Result Qualifier		Result Qualifier		Result Qualifier		Result	Qualifier
8260D	Toluene	UG/L	0.5	U	0.5 U		0.5 U		0.5	U
8260D	trans-1,2-Dichloroethene	UG/L	0.5	U	2.8		0.5	5 U 0.5		U
8260D	trans-1,3-Dichloropropene	UG/L	0.5	U	0.5 U		0.5 U 0.5		0.5	U
8260D	Trichloroethene	UG/L	0.4	J	41		0.57		20	
8260D	Trichlorofluoromethane	UG/L	0.5	U	0.5	U	0.5 U		0.57	
8260D	Vinyl chloride	UG/L	0.5	U	0.5	U	0.5	U	0.5	
8260D	Xylene, o	UG/L	0.5 U		0.5	0.5 U 0.5 U		U	0.5	U
8260D	Xylenes (m&p)	UG/L	0.5 U		0.5 U		0.5 U 0.5 U		0.5	U
8260D	Xylenes, Total	UG/L	1 U		1 U		1 U 1 U		1	U

		SDG	460-247	7256-1	460-24	17256-1	460-24	7256-1	460-247256-1							
	ı	ocation	45N	ЛU	46	5MI	46	ML	47	7МІ						
	Samı	ple Date	11/5/	2021	11/5	/2021	11/5,	/2021	11/10	0/2021						
	Sa	mple ID	MW-45	MU-XX	MW-4	6MI-XX	MW-40	6ML-XX	MW-4	7MI-XX						
		QC Code	FS	FS FS		FS		F	FS							
			Final	Final	Final	Final	Final	Final	Final	Final						
Method	Parameter	Unit	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier						
8260D	1,1,1-Trichloroethane	UG/L	0.5	U	1	U	0.5	U	0.5	U						
8260D	1,1,2,2-Tetrachloroethane	UG/L	0.5	U	1	U	0.5	U	0.5	U						
8260D	1,1,2-Trichloro-1,2,2-Trifluoroethane (Freon 113)	UG/L	8.5		23		3.4		2							
8260D	1,1,2-Trichloroethane	UG/L	0.5	U	0.42	J	0.5	U	0.5	U						
8260D	1,1-Dichloroethane	UG/L	0.33	J	0.59 J		0.59 J		0.59 J		0.5	U	0.37	J		
8260D	1,1-Dichloroethene	UG/L	0.45	J	1.4		0.5	U	0.5	U						
8260D	1,1-Difluoroethane (Freon 152a)	UG/L	1	1 U		2 U		2 U		2 U		2 U		1 U		U
8260D	1,2,4-Trichlorobenzene	UG/L	0.5	U	1	U	0.5	U	0.5	U						
8260D	1,2-Dibromo-3-chloropropane	UG/L	0.5	U	1	U	0.5	U	0.5	U						
8260D	1,2-Dibromoethane	UG/L	0.5	U	1	U	0.5	U	0.5	U						
8260D	1,2-Dichlorobenzene	UG/L	0.5	U	1	U	0.5	U	0.5	U						
8260D	1,2-Dichloroethane	UG/L	0.5	U	1.4		0.5	U	0.5	U						
8260D	1,2-Dichloropropane	UG/L	0.5	U	1	U	0.5	U	0.5	U						
8260D	1,3-Dichlorobenzene	UG/L	0.5	U	1	U	0.5	U	0.5	U						
8260D	1,4-Dichlorobenzene	UG/L	0.5	U	1	U	0.5	U	0.5	U						
8260D	2-Butanone	UG/L	2.5	U	5	U	2.5	U	2.5	U						
8260D	2-Hexanone	UG/L	2.5	U	5	U	2.5	U	2.5	U						
8260D	4-Methyl-2-pentanone	UG/L	2.5	U	5	U	2.5	U	2.5	U						
8260D	Acetic acid, methyl ester	UG/L	2.5	U	5 U 2.5 U		2.5	U								
8260D	Acetone	UG/L	5	U	10	U	5	U	5	U						
8260D	Benzene	UG/L	0.5	U	1	U	0.5	U	0.5	U						

		SDG	460-24725	6-1	460-24	17256-1	460-24	17256-1	460-24	17256-1										
		Location	45MU		46	5MI	46	ML	47	7MI										
		Sample Date	11/5/202	1	11/5	/2021	11/5	/2021	11/10	0/2021										
		Sample ID	MW-45MU	-XX	MW-4	6MI-XX	MW-4	6ML-XX	MW-4	7MI-XX										
		QC Code	FS		F	-S	F	-S	FS											
			Final F	inal	Final	Final	Final	Final	Final	Final										
Method	Parameter	Unit	Result Qu	ıalifier	Result	Qualifier	Result	Qualifier	Result	Qualifier										
8260D	Bromodichloromethane	UG/L	0.5 U		1	U	0.5	U	0.5	U										
8260D	Bromoform	UG/L	0.5 U		1	U	0.5	U	0.5	U										
8260D	Bromomethane	UG/L	0.5 U		1 U		0.5	U	0.5	U										
8260D	Carbon disulfide	UG/L	0.5 U		1 U		0.5	U	0.5	U										
8260D	Carbon tetrachloride	UG/L	0.5 U		1 U		0.5	U	0.5	U										
8260D	Chlorobenzene	UG/L	0.5 U		1 U		1 U		1 U		1 U		1 U		1 U		0.5	U	0.5	U
8260D	Chlorodifluoromethane	UG/L	1.6		3.1		3.1 1.5		1.4											
8260D	Chloroethane	UG/L	0.5 U		1 U		1 U 0.5 U		0.5	U										
8260D	Chloroform	UG/L	0.53		1.6	1.6		1.6			0.5	U								
8260D	Chloromethane	UG/L	0.5 U		1 U		0.5	U	0.5	U										
8260D	cis-1,2-Dichloroethene	UG/L	190		440		54		29											
8260D	cis-1,3-Dichloropropene	UG/L	0.5 U		1	1 U		1 U 0.5 U		U	0.5	U								
8260D	Cyclohexane	UG/L	0.5 U		1	U	0.5	U	0.5	U										
8260D	Dibromochloromethane	UG/L	0.5 U		1	U	0.5	U	0.5	U										
8260D	Dichlorodifluoromethane	UG/L	0.5 U		1	U	0.5	U	0.5	U										
8260D	Ethylbenzene	UG/L	0.5 U		1	U	0.5	U	0.5	U										
8260D	Freon 115	UG/L	5 UJ		10	UJ	UJ 5 UJ		5	UJ										
8260D	Freon 123	UG/L	1 U		2	U	1	U	1	. U										
8260D	Isopropylbenzene	UG/L	0.5 U		1	U	0.5	U	0.5	U										
8260D	Methyl cyclohexane	UG/L	0.5 U		1	U	0.5	U	0.5	U										
8260D	Methyl Tertbutyl Ether	UG/L	0.22 J	J 1 U		U	0.5	U	0.5	U										
8260D	Methylene chloride	UG/L	0.5 U		1 U		1 U 0.5 U		0.5 U											
8260D	Styrene	UG/L	0.5 U		1 U		1 U 0.5 U		U	0.5	U									
8260D	Tetrachloroethene	UG/L	17		41		6.3		2.2											

		SDG	460-24	7256-1	460-24	17256-1	460-24	17256-1	460-24	17256-1
		Location	45	MU	46	5MI	46	ML	47	MI
		Sample Date	11/5,	/2021	11/5	/2021	11/5	/2021	11/10	0/2021
		Sample ID	MW-45	MU-XX	MW-4	6MI-XX	MW-46ML-XX		MW-4	7MI-XX
		QC Code	F	FS		FS		FS		=S
			Final Final		Final	Final	Final	Final	Final	Final
Method	Parameter	Unit	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier
8260D	Toluene	UG/L	0.5	0.5 U		1 U		0.5 U		U
8260D	trans-1,2-Dichloroethene	UG/L	1.6		2.9		0.3 J		0.43	J
8260D	trans-1,3-Dichloropropene	UG/L	0.5	U	1 U		0.5 U		0.5	U
8260D	Trichloroethene	UG/L	41		110)	27		11	
8260D	Trichlorofluoromethane	UG/L	0.5	U	0.87	' J	1.1		0.5	U
8260D	Vinyl chloride	UG/L	0.5	U	1	. U	0.5	U	0.5	U
8260D	Xylene, o	UG/L	0.5 U		1	. U	0.5	U	0.5	U
8260D	Xylenes (m&p)	UG/L	0.5 U		1 U		1 U 0.5 U		0.5	U
8260D	Xylenes, Total	UG/L	1 U		2 U		2 U 1 U		1	U

				256-1	460-24	17256-1	460-24	7256-1	460-24	17256-1				
	ı	ocation	47N	ΛL	49	ML	49	ML	50	ML				
	Samı	ple Date	11/10/	2021	11/8	/2021	11/8,	/2021	11/10	0/2021				
	Sa	mple ID	MW-471	ML-XX	MW-4	9ML-XX	MW	-500	MW	/-501				
		QC Code	FS	;	ı	-S	F	D	F	-D				
			Final	Final	Final	Final	Final	Final	Final	Final				
Method	Parameter	Unit	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier				
8260D	1,1,1-Trichloroethane	UG/L	0.5 เ	J	0.5	U	0.5	U	0.5	U				
8260D	1,1,2,2-Tetrachloroethane	UG/L	0.5 เ	J	0.5	U	0.5 U		0.5	U				
8260D	1,1,2-Trichloro-1,2,2-Trifluoroethane (Freon 113)	UG/L	0.45 J		0.5 U		0.5 U		0.5	U				
8260D	1,1,2-Trichloroethane	UG/L	0.5 เ	J	0.5 U		0.5 U		0.5	U				
8260D	1,1-Dichloroethane	UG/L	0.5 U		0.5 U		0.5	U	0.5	U				
8260D	1,1-Dichloroethene	UG/L	0.5 U		0.5 U		0.5 U		0.5	U				
8260D	1,1-Difluoroethane (Freon 152a)	UG/L	1 l	J	1 U		1	U	1	U				
8260D	1,2,4-Trichlorobenzene	UG/L	0.5 เ	J	0.5 U		0.5 U 0.5 U		0.5	U				
8260D	1,2-Dibromo-3-chloropropane	UG/L	0.5 เ	J	0.5 U		0.5	U	0.5	U				
8260D	1,2-Dibromoethane	UG/L	0.5 เ	J	0.5	0.5 U		0.5 U		0.5 U		U	0.5	U
8260D	1,2-Dichlorobenzene	UG/L	0.5 เ	J	0.5	0.5 U 0.5 U		U	0.5	U				
8260D	1,2-Dichloroethane	UG/L	0.5 เ	J	0.5	U	0.5	U	0.5	U				
8260D	1,2-Dichloropropane	UG/L	0.5 เ	J	0.5	U	0.5	U	0.5	U				
8260D	1,3-Dichlorobenzene	UG/L	0.5 เ	J	0.5	U	0.5	U	0.5	U				
8260D	1,4-Dichlorobenzene	UG/L	0.5 เ	J	0.5	U	0.5	U	0.5	U				
8260D	2-Butanone	UG/L	2.5 l	J	2.5	U	2.5	U	2.5	U				
8260D	2-Hexanone	UG/L	2.5 l	J	2.5	U	2.5	U	2.5	U				
8260D	4-Methyl-2-pentanone	UG/L	2.5 l	J	2.5	U	2.5	U	2.5	U				
8260D	Acetic acid, methyl ester	UG/L	2.5 l	J	2.5 U		2.5 U		2.5	U	2.5	U		
8260D	Acetone	UG/L	5 l	J	5 U		5 U		5 U 5 U		5	U		
8260D	Benzene	UG/L	0.5 U		0.5 U		0.5 U 0.5 U		0.5	U				

SDG	460-247256-1	460-247256-1	460-247256-1	460-247256-1
Location	47ML	49ML	49ML	50ML
Sample Date	11/10/2021	11/8/2021	11/8/2021	11/10/2021
Sample ID	MW-47ML-XX	MW-49ML-XX	MW-500	MW-501
QC Code	FS FS	FS	FD	FD
	Final Final	Final Final	Final Final	Final Final
	1	l		l

		Location	47N	ΛL	49	ML	49	ML	50ML									
		Sample Date	11/10/	2021	11/8,	/2021	11/8,	/2021	11/10	0/2021								
		Sample ID	MW-47	ML-XX	MW-49	9ML-XX	MW	'-500	MW	/-501								
		QC Code	FS	;	F	:S	F	:D	F	D								
			Final	Final	Final	Final	Final	Final	Final	Final								
Method	Parameter	Unit	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier								
8260D	Bromodichloromethane	UG/L	0.5 (J	0.5	U	0.5	U	0.5	U								
8260D	Bromoform	UG/L	0.5 เ	J	0.5	U	0.5	U	0.5	U								
8260D	Bromomethane	UG/L	0.5 เ	J	0.5	U	0.5	U	0.5	U								
8260D	Carbon disulfide	UG/L	0.5 เ			.5 U 0.5 U		0.5	U									
8260D	Carbon tetrachloride	UG/L	0.5 เ	0.5 U 0.5 U		0.5 U		0.5	U									
8260D	Chlorobenzene	UG/L	0.5 l	J	0.5 U		0.5 U 0.5 U		0.5	U								
8260D	Chlorodifluoromethane	UG/L	1 (J	1 U		1 U		1	U	1	U						
8260D	Chloroethane	UG/L	0.5 เ	0.5 U 0.5 U 0.5 U		U	0.5	U										
8260D	Chloroform	UG/L	0.5 เ	J	0.5	0.5 U 0.5 U		0.5										
8260D	Chloromethane	UG/L	0.5 l	J	0.5	U	0.5 U		0.5	U								
8260D	cis-1,2-Dichloroethene	UG/L	14		0.5	U	0.5	U	0.5	U								
8260D	cis-1,3-Dichloropropene	UG/L	0.5 เ	J	0.5	U	0.5	U	0.5	U								
8260D	Cyclohexane	UG/L	0.5 เ	J	0.5	0.5 U		0.5 U		U	0.5	U						
8260D	Dibromochloromethane	UG/L	0.5 l	J	0.5	U	0.5	U	0.5	U								
8260D	Dichlorodifluoromethane	UG/L	0.5 เ	J	0.5	U	0.5	U	0.5	U								
8260D	Ethylbenzene	UG/L	0.5 เ	J	0.5 U		0.5 U		0.5 U		0.5 U		0.5 U		0.5	U	0.5	U
8260D	Freon 115	UG/L	5 l	JJ	5	UJ	5	UJ	5	UJ								
8260D	Freon 123	UG/L	1 (J	1	U	1	U	1	U								
8260D	Isopropylbenzene	UG/L	0.5 l	J	0.5	U	0.5	U	0.5	U								
8260D	Methyl cyclohexane	UG/L	0.5 เ	J	0.5	U	0.5	U	0.5	U								
8260D	Methyl Tertbutyl Ether	UG/L	0.5 เ	J	0.5 U 0.5 U		0.5	U										
8260D	Methylene chloride	UG/L	0.5 เ	J	0.5 U		0.5 U		0.5 U 0.5 U		0.5	U						
8260D	Styrene	UG/L	0.5 เ	J	0.5 U 0.5 U		0.5	U										
8260D	Tetrachloroethene	UG/L	1.9		0.45	J	0.42	J	0.5	U								

		SDG	460-24	7256-1	460-24	17256-1	460-24	17256-1	460-24	17256-1
		Location	47	ML	49	ML	49	ML	50)ML
		Sample Date	11/10	/2021	11/8	/2021	11/8	/2021	11/10	0/2021
		Sample ID	MW-4	7ML-XX	MW-4	9ML-XX	MW-500		MW	/-501
		QC Code	F	FS		FS		FD		D □
			Final			Final	Final	Final	Final	Final
Method	Parameter	Unit	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier
8260D	Toluene	UG/L	0.5	0.5 U		0.5 U		0.5 U		U
8260D	trans-1,2-Dichloroethene	UG/L	0.5	U	0.5 U		0.5 U		0.5	U
8260D	trans-1,3-Dichloropropene	UG/L	0.5	U	0.5 U		5 U 0.5 U		0.5	U
8260D	Trichloroethene	UG/L	8.3		0.5	U	0.5 U		0.5 U	
8260D	Trichlorofluoromethane	UG/L	0.5	U	0.5	U	0.5	0.5 U 0.5		U
8260D	Vinyl chloride	UG/L	0.5	U	0.5	U	0.5	U	0.5	U
8260D	Xylene, o	UG/L	0.5 U		0.5	U	0.5	U	0.5	U
8260D	Xylenes (m&p)	UG/L	0.5 U		0.5 U		0.5 U 0.5 U		0.5	U
8260D	Xylenes, Total	UG/L	1 U		1 U		1 U 1 U		1	U

		SDG	460-24	7256-1	460-24	17256-1	460-24	17256-1	460-24	17256-1
	ı	ocation	501	ML	51	lMI	51	ML	52	2MI
	Samı	ple Date	11/10	/2021	11/4	/2021	11/4	/2021	11/8	/2021
	Sa	mple ID	MW-50	ML-XX	MW-5	1MI-XX	MW-5	1ML-XX	MW	/-502
		QC Code	F	S	ı	-S	F	-S	F	-D
			Final	Final	Final	Final	Final	Final	Final	Final
Method	Parameter	Unit	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier
8260D	1,1,1-Trichloroethane	UG/L	0.5	U					0.5	U
8260D	1,1,2,2-Tetrachloroethane	UG/L	0.5	U					0.5	U
8260D	1,1,2-Trichloro-1,2,2-Trifluoroethane (Freon 113)	UG/L	0.5	U	2 J-		2.6		0.81	
8260D	1,1,2-Trichloroethane	UG/L	0.5 U						0.5	U
8260D	1,1-Dichloroethane	UG/L	0.5 U						0.5	U
8260D	1,1-Dichloroethene	UG/L	0.5 U						0.5	U
8260D	1,1-Difluoroethane (Freon 152a)	UG/L	1	U					1	U
8260D	1,2,4-Trichlorobenzene	UG/L	0.5	U					0.5	U
8260D	1,2-Dibromo-3-chloropropane	UG/L	0.5	U					0.5	U
8260D	1,2-Dibromoethane	UG/L	0.5	U					0.5	U
8260D	1,2-Dichlorobenzene	UG/L	0.5	U					0.5	U
8260D	1,2-Dichloroethane	UG/L	0.5	U					0.5	U
8260D	1,2-Dichloropropane	UG/L	0.5	U					0.5	U
8260D	1,3-Dichlorobenzene	UG/L	0.5	U					0.5	U
8260D	1,4-Dichlorobenzene	UG/L	0.5	U					0.5	U
8260D	2-Butanone	UG/L	2.5	U					2.5	U
8260D	2-Hexanone	UG/L	2.5	U					2.5	U
8260D	4-Methyl-2-pentanone	UG/L	2.5	U					2.5	U
8260D	Acetic acid, methyl ester	UG/L	2.5	U					2.5	U
8260D	Acetone	UG/L	5	U					5	U
8260D	Benzene	UG/L	0.5 U						0.5	U

		SDG 460-247256-1 460-247256-1		460-247256-1		460-247256-1				
		Location	501			1MI		IML (2024		2MI
		Sample Date	11/10,			4/2021	-	/2021	· ·	3/2021
		Sample ID	MW-50			51MI-XX		1ML-XX		V-502
		QC Code	F:			FS .		FS		FD =: .
Method	Parameter	Unit	Final Result	Final Qualifier	Final Result	Final Qualifier	Final Result	Final Qualifier	Final Result	Final Qualifier
8260D	Bromodichloromethane	UG/L	0.5		ricsare	Qualifier	resure	Quanner	0.5	
8260D	Bromoform	UG/L	0.5						0.5	
8260D	Bromomethane	UG/L	0.5						0.5	
8260D	Carbon disulfide	UG/L		0.5 U					0.5	
8260D	Carbon tetrachloride	UG/L	0.5 U						0.5	U
8260D	Chlorobenzene	UG/L	0.5	0.5 U					0.5	U
8260D	Chlorodifluoromethane	UG/L	1	1 U		1 UJ		2.1		. U
8260D	Chloroethane	UG/L	0.5	0.5 U						i U
8260D	Chloroform	UG/L	0.5	U					0.5	, U
8260D	Chloromethane	UG/L	0.5	U					0.5	, U
8260D	cis-1,2-Dichloroethene	UG/L	0.5	U	29	9 J-	29)	18	;
8260D	cis-1,3-Dichloropropene	UG/L	0.5	U					0.5	, U
8260D	Cyclohexane	UG/L	0.5	U					0.5	, U
8260D	Dibromochloromethane	UG/L	0.5	U					0.5	, U
8260D	Dichlorodifluoromethane	UG/L	0.5	U					0.5	, U
8260D	Ethylbenzene	UG/L	0.5	U					0.5	U
8260D	Freon 115	UG/L	5	UJ					5	S UJ
8260D	Freon 123	UG/L	1	U					1	. U
8260D	Isopropylbenzene	UG/L	0.5	U					0.5	U
8260D	Methyl cyclohexane	UG/L	0.5	U					0.5	U
8260D	Methyl Tertbutyl Ether	UG/L	0.5						0.5	
8260D	Methylene chloride	UG/L	0.5						0.5	· U
8260D	Styrene	UG/L	0.5	U					0.5	· U
8260D	Tetrachloroethene	UG/L	0.5	U	4.!	5 J-	5	1	3.4	·

Lake Success, New York

		SDG	460-24	17256-1	460-24	47256-1	460-24	17256-1	460-24	17256-1
		Location	50	ML	5:	1MI	51	LML	52	2MI
		Sample Date	11/10)/2021	11/4/2021		11/4/2021		11/8	/2021
		Sample ID	MW-5	0ML-XX	MW-51MI-XX		MW-51ML-XX		MW	/-502
		QC Code	F	FS		FS		FS	F	-D
			Final	Final Final		Final	Final	Final	Final	Final
Method	Parameter	Unit	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier
8260D	Toluene	UG/L	0.5	0.5 U						U
8260D	trans-1,2-Dichloroethene	UG/L	0.5	U					0.51	. J
8260D	trans-1,3-Dichloropropene	UG/L	0.5	0.5 U					0.5	U
8260D	Trichloroethene	UG/L	0.5	U	9.1	L J-	J- 13		11	
8260D	Trichlorofluoromethane	UG/L	0.5	U					0.5	U
8260D	Vinyl chloride	UG/L	0.5	U					0.5	U
8260D	Xylene, o	UG/L	0.5 U						0.5	U
8260D	Xylenes (m&p)	UG/L	0.5 U						0.5	U
8260D	Xylenes, Total	UG/L	1 U						1	. U

		SDG	460-24	7256-1	460-24	17256-1	460-24	7256-1	460-24	17256-1																										
	ı	Location	52	MI	52	!ML	53	MI	53	BML																										
	Sam	ple Date	11/8/	2021	11/8	/2021	11/10)/2021	11/8	/2021																										
	Sa	mple ID	MW-52	2MI-XX	MW-5	2ML-XX	MW-5	3MI-XX	MW-5	3ML-XX																										
		QC Code	F	S	ı	=S	F	:S	ı	FS																										
			Final	Final	Final	Final	Final	Final	Final	Final																										
Method	Parameter	Unit	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier																										
8260D	1,1,1-Trichloroethane	UG/L	0.5	U	0.5	U	0.5 U		0.5	U																										
8260D	1,1,2,2-Tetrachloroethane	UG/L	0.5	U	0.5	U	0.5 U		0.5	U																										
8260D	1,1,2-Trichloro-1,2,2-Trifluoroethane (Freon 113)	UG/L	0.78			5.1		U	0.5	U																										
8260D	1,1,2-Trichloroethane	UG/L	0.5	0.5 U		0.5 U		U	0.5	U																										
8260D	1,1-Dichloroethane	UG/L	0.5 U		0.5 U		0.5	U	0.5	U																										
8260D	1,1-Dichloroethene	UG/L	0.5 U		0.5 U		0.5 U		0.5	U																										
8260D	1,1-Difluoroethane (Freon 152a)	UG/L	1	U	1 U 1 U		1 U		1	U																										
8260D	1,2,4-Trichlorobenzene	UG/L	0.5	U	0.5 U		0.5 U		0.5	U	0.5	U																								
8260D	1,2-Dibromo-3-chloropropane	UG/L	0.5	U	0.5 U		0.5 U		0.5	U	0.5	U																								
8260D	1,2-Dibromoethane	UG/L	0.5	U	0.5	0.5 U		0.5 U		U	0.5	U																								
8260D	1,2-Dichlorobenzene	UG/L	0.5	U	0.5	0.5 U		0.5 U 0.5 U		U	0.5	U																								
8260D	1,2-Dichloroethane	UG/L	0.5	U	0.46	J	0.5	U	0.5	U																										
8260D	1,2-Dichloropropane	UG/L	0.5	U	0.5	U	0.5	U	0.5	U																										
8260D	1,3-Dichlorobenzene	UG/L	0.5	U	0.5	U	0.5	U	0.5	U																										
8260D	1,4-Dichlorobenzene	UG/L	0.5	U	0.5	U	0.5	U	0.5	U																										
8260D	2-Butanone	UG/L	2.5	U	2.5	U	2.5	U	2.5	U																										
8260D	2-Hexanone	UG/L	2.5	U	2.5	U	2.5	U	2.5	U																										
8260D	4-Methyl-2-pentanone	UG/L	2.5	U	2.5	2.5 U		2.5 U 2.5		U	2.5	U																								
8260D	Acetic acid, methyl ester	UG/L	2.5	U	2.5 U		2.5 U		2.5 U		2.5 U		2.5 U		2.5 U		2.5 U		2.5 U		2.5 U		2.5 U		2.5 U		2.5 U		2.5 U		2.5 U		2.5	U	2.5	U
8260D	Acetone	UG/L	5	U	5 U		5 U		5 U 5 U		5	U																								
8260D	Benzene	UG/L	0.5 U		0.5 U		0.5 U 0.5 U		0.5 U																											

· ·	Lake Success, New Tol	N.	
SDG	460-247256-1	460-247256-1	460-2
Location	52MI	52ML	5
Sample Date	11/8/2021	11/8/2021	11/1

		SDG	460-247	256-1	460-24	7256-1	460-24	17256-1	460-24	17256-1		
		Location	52N	ΛI	52	ML	53	BMI	53	ML		
		Sample Date	11/8/2	2021	11/8,	/2021	11/10)/2021	11/8	/2021		
		Sample ID	MW-52	MI-XX	MW-52	2ML-XX	MW-5	3MI-XX	MW-5	3ML-XX		
		QC Code	FS		F	S	F	-S	F	-s		
			Final	Final	Final	Final	Final	Final	Final	Final		
Method	Parameter	Unit	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier		
8260D	Bromodichloromethane	UG/L	0.5 เ	J	0.5	U	0.5	U	0.5	U		
8260D	Bromoform	UG/L	0.5 เ	0.5 U		U	0.5	U	0.5	U		
8260D	Bromomethane	UG/L	0.5 เ	J	0.5 U		0.5 U 0.5		0.5 U		U	
8260D	Carbon disulfide	UG/L	0.5 เ	J	0.5 U		0.5	U	0.5	U		
8260D	Carbon tetrachloride	UG/L	0.5 เ	J	0.5 U		0.5	U	0.5	U		
8260D	Chlorobenzene	UG/L	0.5 เ	J	0.5 U		0.5	U	0.5	U		
8260D	Chlorodifluoromethane	UG/L	1 l	J	1 U		1	U	1	U		
8260D	Chloroethane	UG/L	0.5 เ	J	0.5	U	0.5	0.5 U		U		
8260D	Chloroform	UG/L	0.5 เ	J	0.6	0.6		0.6 0.5 U		U	0.78	
8260D	Chloromethane	UG/L	0.5 เ	J	0.5	U	0.5	U	0.5	U		
8260D	cis-1,2-Dichloroethene	UG/L	15		59		1.7		1.4			
8260D	cis-1,3-Dichloropropene	UG/L	0.5 เ	J	0.5	U	0.5		0.5 U			
8260D	Cyclohexane	UG/L	0.5 เ	J	0.5	U	0.5	U	0.5	U		
8260D	Dibromochloromethane	UG/L	0.5 เ		0.5		0.5		0.5			
8260D	Dichlorodifluoromethane	UG/L	0.5 เ	J	0.5	U	0.5		0.5	U		
8260D	Ethylbenzene	UG/L	0.5 เ	J	0.5	U	0.5	U	0.5	U		
8260D	Freon 115	UG/L	5 l	JJ	5	UJ	5	UJ	5	UJ		
8260D	Freon 123	UG/L	1 l	J	1	U	1	U	1	U		
8260D	Isopropylbenzene	UG/L	0.5 เ	J	0.5	U	0.5	U	0.5	U		
8260D	Methyl cyclohexane	UG/L	0.5 เ		0.5		0.5		0.5			
8260D	Methyl Tertbutyl Ether	UG/L	0.5 เ		0.5		0.5		0.5			
8260D	Methylene chloride	UG/L	0.5 เ		0.5 U		0.5 U				0.5 U	
8260D	Styrene	UG/L	0.5 เ	J	0.5 U		0.5 U 0.5 U		0.5 U			
8260D	Tetrachloroethene	UG/L	3.3		8.5		0.73		0.56			

		SDG	460-247256-1		460-247256-1		460-247256-1		460-247256-1	
		Location	52MI		52ML		53MI		53ML	
		Sample Date	11/8/2021		11/8/2021		11/10/2021		11/8/2021	
		Sample ID	MW-52MI-XX		MW-52ML-XX		MW-53MI-XX		MW-5	3ML-XX
		QC Code	FS		FS		FS		FS	
			Final Final		Final	Final	Final	Final	Final	Final
Method	Parameter	Unit	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier
8260D	Toluene	UG/L	0.5 U		0.5 U		0.5 U		0.5 U	
8260D	trans-1,2-Dichloroethene	UG/L	0.24 J		1.7		0.5 U		0.5 U	
8260D	trans-1,3-Dichloropropene	UG/L	0.5 U		0.5 U		0.5 U		0.5 U	
8260D	Trichloroethene	UG/L	12		26		3.8		0.98	
8260D	Trichlorofluoromethane	UG/L	0.5 U		1.2		0.5 U		0.5 U	
8260D	Vinyl chloride	UG/L	0.5 U		0.5 U		0.5 U		0.5 U	
8260D	Xylene, o	UG/L	0.5 U		0.5 U		0.5 U		0.5 U	
8260D	Xylenes (m&p)	UG/L	0.5 U		0.5 U		0.5 U		0.5 U	
8260D	Xylenes, Total	UG/L	1	U	1 U		1 U		1	U

		SDG			460-24	17256-1	460-24	17256-1	460-247256-1	
	I	Location	54GI		54GU		N05535		N09687	
	Sam	ple Date	11/10/2021		11/10/2021		11/5/2021		11/4/2021	
		mple ID	MW-54GI-XX		MW-54GU-XX		IW-N5535-XX		IW-N9687-XX	
		QC Code	FS		FS		FS			FS
			Final	Final Final		Final	Final	Final	Final	Final
Method	Parameter	Unit	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier
8260D	1,1,1-Trichloroethane	UG/L	0.5	U	0.5 U		0.5 U			
8260D	1,1,2,2-Tetrachloroethane	UG/L	0.5	U	0.5 U		0.5	U		
8260D	1,1,2-Trichloro-1,2,2-Trifluoroethane (Freon 113)	UG/L	0.5	U	0.5 U		0.5 U		0.5	U
8260D	1,1,2-Trichloroethane	UG/L	0.5	U	0.5 U		0.5 U			
8260D	1,1-Dichloroethane	UG/L	0.5	U	0.5	U	0.5	U		
8260D	1,1-Dichloroethene	UG/L	0.5	U	0.5 U		0.5 U			
8260D	1,1-Difluoroethane (Freon 152a)	UG/L	1 U		1 U		1 U			
8260D	1,2,4-Trichlorobenzene	UG/L	0.5	U	0.5 U		0.5 U			
8260D	1,2-Dibromo-3-chloropropane	UG/L	0.5	U	0.5 U		0.5 U			
8260D	1,2-Dibromoethane	UG/L	0.5	U	0.5	U	0.5 U			
8260D	1,2-Dichlorobenzene	UG/L	0.5	U	0.5	U	0.5 U			
8260D	1,2-Dichloroethane	UG/L	0.5	U	0.5 U		0.5 U			
8260D	1,2-Dichloropropane	UG/L	0.5	U	0.5	U	0.5 U			
8260D	1,3-Dichlorobenzene	UG/L	0.5	U	0.5 U		0.5 U			
8260D	1,4-Dichlorobenzene	UG/L	0.5	U	0.5 U		0.5 U			
8260D	2-Butanone	UG/L	2.5 U		2.5 U		2.5	U		
8260D	2-Hexanone	UG/L	2.5 U		2.5 U		2.5 U 2.5 U			
8260D	4-Methyl-2-pentanone	UG/L	2.5 U		2.5 U		2.5 U			
8260D	Acetic acid, methyl ester	UG/L	2.5	U	2.5	U	2.5 U			
8260D	Acetone	UG/L	5	U	5 U		5 U			
8260D	Benzene	UG/L	0.5	0.5 U		0.5 U		0.5 U		

		SDG	460-24725	6-1	460-247256-1		460-24	17256-1	460-2	47256-1		
		Location	54GI		54GU		N05535		N0	9687		
		Sample Date	11/10/202	21	11/10)/2021	11/5/2021		11/4	1/2021		
		Sample ID	MW-54GI-	XX	MW-54GU-XX		IW-N5535-XX		IW-NS	9687-XX		
		QC Code	FS		FS		FS			FS		
			Final F	inal	Final Final		Final	Final	Final	Final		
Method	Parameter	Unit	Result Qu	ıalifier	Result	Qualifier	Result	Qualifier	Result	Qualifier		
8260D	Bromodichloromethane	UG/L	0.5 U		0.5	U	0.5	U				
8260D	Bromoform	UG/L	0.5 U		0.5	U	0.5	U				
8260D	Bromomethane	UG/L	0.5 U		0.5	U	0.5	U				
8260D	Carbon disulfide	UG/L	0.5 U		0.5	U	0.5 U					
8260D	Carbon tetrachloride	UG/L	0.5 U		0.5	U	0.5 U					
8260D	Chlorobenzene	UG/L	0.5 U		0.5 U		0.5 U					
8260D	Chlorodifluoromethane	UG/L	1 U		1	1 U		1 U		ιU		
8260D	Chloroethane	UG/L	0.5 U		0.5 U		0.5 U					
8260D	Chloroform	UG/L	0.5 U		0.5	0.5 U		0.5 U				
8260D	Chloromethane	UG/L	0.5 U		0.5	U	0.5 U					
8260D	cis-1,2-Dichloroethene	UG/L	0.5 U		0.5 U		0.5 U		0.5	5 U		
8260D	cis-1,3-Dichloropropene	UG/L	0.5 U		0.5	U	0.5 U					
8260D	Cyclohexane	UG/L	0.5 U		0.5	U	0.5 U					
8260D	Dibromochloromethane	UG/L	0.5 U		0.5	U	0.5 U					
8260D	Dichlorodifluoromethane	UG/L	0.5 U		0.5	U	0.5 U					
8260D	Ethylbenzene	UG/L	0.5 U		0.5	U	0.5 U					
8260D	Freon 115	UG/L	5 UJ		5 UJ		5 UJ					
8260D	Freon 123	UG/L	1 U		1 U		1	U				
8260D	Isopropylbenzene	UG/L	0.5 U		0.5 U		5 U 0.5 U					
8260D	Methyl cyclohexane	UG/L	0.5 U		0.5 U		0.5 U 0.5 U					
8260D	Methyl Tertbutyl Ether	UG/L	0.5 U		0.25 J		0.25 J 0.5 U					
8260D	Methylene chloride	UG/L	0.5 U		0.5 U		0.5 U		0.5 U 0.5 U			
8260D	Styrene	UG/L	0.5 U		0.5 U		0.5 U		0.5 U 0.5 U			
8260D	Tetrachloroethene	UG/L	0.5 U		0.5	0.5 U		J 0.5 U		5 U		

		SDG	460-247256-1		460-247256-1		460-247256-1		460-247256-1	
		Location	54GI		54GU		N05535		N09687	
		Sample Date	11/10/2021		11/10/2021		11/5/2021		11/4/2021	
		Sample ID	MW-54GI-XX		MW-54GU-XX		IW-N5535-XX		IW-N9687-XX	
		QC Code	FS		FS		FS		FS	
			Final Final		Final	Final	Final	Final	Final	Final
Method	Parameter	Unit	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier
8260D	Toluene	UG/L	0.5 U		0.5 U		0.5 U			
8260D	trans-1,2-Dichloroethene	UG/L	0.5	U	0.5 U		0.5 U			
8260D	trans-1,3-Dichloropropene	UG/L	0.5	U	0.5 U		0.5 U			
8260D	Trichloroethene	UG/L	0.5	U	0.5 U		0.5 U		0.5 U	
8260D	Trichlorofluoromethane	UG/L	0.5	0.5 U		0.5 U		0.5 U		
8260D	Vinyl chloride	UG/L	0.5 U		0.5 U		0.5 U			
8260D	Xylene, o	UG/L	0.5 U		0.5 U		0.5 U			
8260D	Xylenes (m&p)	UG/L	0.5 U		0.5 U		0.5 U			
8260D	Xylenes, Total	UG/L	1 U		1 U		1 U			

		SDG		613-1	460-247613-1		460-246589-1		460-246589-1		
	ı	ocation	50M	11	QC		48MI		48	ML	
	Samı	ple Date	11/17/2021		11/17/2021		11/4/2021		11/4/2021		
	Sa	Sample ID		MW-50MI-XX		QC-TB171121-XX		MW-48MI-XX		8ML-XX	
		QC Code	FS		7	ГВ	F	:S	F	-s	
			Final Final		Final	Final	Final	Final	Final	Final	
Method	Parameter	Unit	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	
8260D	1,1,1-Trichloroethane	UG/L	0.5 U	J	0.5 U		0.5 U		0.5 U		
8260D	1,1,2,2-Tetrachloroethane	UG/L	0.5 U	J	0.5 U		0.5 U		0.5 U		
8260D	1,1,2-Trichloro-1,2,2-Trifluoroethane (Freon 113)	UG/L	1.5		0.5	U	0.5 U		0.5 U		
8260D	1,1,2-Trichloroethane	UG/L	0.5 U	J	0.5 U		0.5 U		0.5 U		
8260D	1,1-Dichloroethane	UG/L	0.5 U	J	0.5 U		0.5 U		0.5	U	
8260D	1,1-Dichloroethene	UG/L	0.5 U	0.5 U		0.5 U		0.5 U		U	
8260D	1,1-Difluoroethane (Freon 152a)	UG/L	1 U	1 U		1 U		1 U		U	
8260D	1,2,4-Trichlorobenzene	UG/L	0.5 U	0.5 U		0.5 U		0.5 U		U	
8260D	1,2-Dibromo-3-chloropropane	UG/L	0.5 U	J	0.5 U		0.5 U		0.5 U		
8260D	1,2-Dibromoethane	UG/L	0.5 U	J	0.5	0.5 U 0.5 U		U	0.5 U		
8260D	1,2-Dichlorobenzene	UG/L	0.5 U	J	0.5	U	0.5 U		0.5 U		
8260D	1,2-Dichloroethane	UG/L	0.5 U	J	0.5 U		0.5 U		0.5 U		
8260D	1,2-Dichloropropane	UG/L	0.5 U	J	0.5 U		0.5 U		0.5 U		
8260D	1,3-Dichlorobenzene	UG/L	0.5 U	J	0.5 U		0.5 U		0.5 U		
8260D	1,4-Dichlorobenzene	UG/L	0.5 U	J	0.5 U		0.5 U		0.5 U		
8260D	2-Butanone	UG/L	2.5 U		2.5 U		2.5 U		2.5 U		
8260D	2-Hexanone	UG/L	2.5 U		2.5 U		2.5 U 2.5 U		2.5 U		
8260D	4-Methyl-2-pentanone	UG/L	2.5 U		2.5 U		2.5 U 2.5 U		2.5	U	
8260D	Acetic acid, methyl ester	UG/L	2.5 U		2.5 U		U 2.5 U		2.5 U		
8260D	Acetone	UG/L	5 U	J	5 U		5	5 U		U	
8260D	Benzene	UG/L	0.5 U	0.5 U		0.5 U		U 0.5 U		0.5 U	

Table 2 - Summary of Analytical Results **Data Usability Summary Report** Quarterly Monitoring - Q4 2021 Lockheed Martin Corporation Former Unisys Site -- Great Neck

Lake Success, New York

		SDG	460-247613-1	460-247613-1	460-246589-1	460-246589-1
		Location	50MI	QC	400-240389-1 48MI	48ML
		Sample Date	11/17/2021	11/17/2021	11/4/2021	11/4/2021
		-			· ·	
		Sample ID	MW-50MI-XX	QC-TB171121-XX	MW-48MI-XX	MW-48ML-XX
		QC Code	FS Final	TB Final Final	FS Final	FS Final
Method	Parameter	Unit	Final Final Result Qualifie		Final Final Result Qualifier	Final Final Result Qualifier
8260D	Bromodichloromethane	UG/L	0.5 U	0.5 U	0.5 U	0.5 U
8260D	Bromoform	UG/L	0.5 U	0.5 U	0.5 U	0.5 U
8260D	Bromomethane	UG/L	0.5 U	0.5 U	0.5 U	0.5 U
8260D	Carbon disulfide	UG/L	0.5 U	0.5 U	0.5 U	0.5 U
8260D	Carbon tetrachloride	UG/L	0.5 U	0.5 U	0.5 U	0.5 U
8260D	Chlorobenzene	UG/L	0.5 U	0.5 U 0.5 U		0.5 U
8260D	Chlorodifluoromethane	UG/L	1 U	1 U	1 U	1 U
8260D	Chloroethane	UG/L	0.5 U	0.5 U	0.5 U	0.5 U
8260D	Chloroform	UG/L	0.5 U	0.5 U	0.5 U	0.5 U
8260D	Chloromethane	UG/L	0.5 U	0.5 U	0.5 U	0.5 U
8260D	cis-1,2-Dichloroethene	UG/L	21	0.5 U	0.5 U	0.5 U
8260D	cis-1,3-Dichloropropene	UG/L	0.5 U	0.5 U	0.5 U	0.5 U
8260D	Cyclohexane	UG/L	0.5 U	0.5 U	0.5 U	0.5 U
8260D	Dibromochloromethane	UG/L	0.5 U	0.5 U	0.5 U	0.5 U
8260D	Dichlorodifluoromethane	UG/L	0.5 U	0.5 U	0.5 U	0.5 U
8260D	Ethylbenzene	UG/L	0.5 U	0.5 U	0.5 U	0.5 U
8260D	Freon 115	UG/L	5 U	5 U	5 U	5 U
8260D	Freon 123	UG/L	1 U	1 U	1 U	1 U
8260D	Isopropylbenzene	UG/L	0.5 U	0.5 U	0.5 U	0.5 U
8260D	Methyl cyclohexane	UG/L	0.5 U	0.5 U	0.5 U	0.5 U
8260D	Methyl Tertbutyl Ether	UG/L	0.5 U	0.5 U	0.5 U	0.5 U
8260D	Methylene chloride	UG/L	0.5 U	0.5 U	0.5 U	0.5 U
8260D	Styrene	UG/L	0.5 U	0.5 U	0.5 U	0.5 U
8260D	Tetrachloroethene	UG/L	3.9	0.5 U	0.5 U	0.5 U

Created By: WCG 12/7/2021 Checked By: ALJ 12/8/2021

Table 2 - Summary of Analytical Results Data Usability Summary Report Quarterly Monitoring - Q4 2021 Lockheed Martin Corporation Former Unisys Site -- Great Neck Lake Success, New York

		SDG	460-24	7613-1	460-24	17613-1	460-24	16589-1	460-24	16589-1
		Location	50	MI	C	QC	48	BMI	48	ML
		Sample Date	11/17	//2021	11/17/2021		11/4/2021		11/4	/2021
		Sample ID	MW-5	0MI-XX	QC-TB17	71121-XX	MW-4	8MI-XX	MW-4	8ML-XX
		QC Code	F	:S	7	ГВ	F	-S	F	-s
			Final	Final	Final	Final	Final	Final	Final	Final
Method	Parameter	Unit	Result Qualifier		Result Qualifier		Result Qualifier		Result	Qualifier
8260D	Toluene	UG/L	0.5	U	0.5 U		0.5 U		0.5	U
8260D	trans-1,2-Dichloroethene	UG/L	i/L 0.39 J		0.5	U	0.5 U		0.5	U
8260D	trans-1,3-Dichloropropene	UG/L	0.5 U		0.5 U		0.5	U	0.5	U
8260D	Trichloroethene	UG/L	5.1		0.5 U		0.5	U	0.5	U
8260D	Trichlorofluoromethane	UG/L	0.5	U	0.5	U	0.5	U	0.5	U
8260D	Vinyl chloride	UG/L	0.5	U	0.5	U	0.5	0.5 U		U
8260D	Xylene, o	UG/L	0.5	U	0.5	U	0.5	0.5 U		U
8260D	Xylenes (m&p)	UG/L	0.5 U		0.5 U		0.5 U		0.5	U
8260D	Xylenes, Total	UG/L	1 U		1 U		1 U		1	U

Table 2 - Summary of Analytical Results

Data Usability Summary Report

Quarterly Monitoring - Q4 2021

Lockheed Martin Corporation Former Unisys Site -- Great Neck

Lake Success, New York

		SDG	460-24	6589-1	460-24	l6589-1
	1	ocation	С	QC	Q2	604
	Sam	ple Date	11/4,	/2021	11/4	/2021
	Sa	mple ID	QC-TB03	31121-XX	IW-Q2	604-XX
		QC Code	Т	В	F	S
			Final	Final	Final	Final
Method	Parameter	Unit	Result	Qualifier	Result	Qualifier
8260D	1,1,1-Trichloroethane	UG/L	0.5	U	0.5	U
8260D	1,1,2,2-Tetrachloroethane	UG/L	0.5	U	0.5	U
8260D	1,1,2-Trichloro-1,2,2-Trifluoroethane (Freon 113)	UG/L	0.5	U	0.5	U
8260D	1,1,2-Trichloroethane	UG/L	0.5	U	0.5	U
8260D	1,1-Dichloroethane	UG/L	0.5	U	0.5	U
8260D	1,1-Dichloroethene	UG/L	0.5	U	0.5	U
8260D	1,1-Difluoroethane (Freon 152a)	UG/L	1	U	1	U
8260D	1,2,4-Trichlorobenzene	UG/L	0.5	U	0.5	U
8260D	1,2-Dibromo-3-chloropropane	UG/L	0.5	U	0.5	U
8260D	1,2-Dibromoethane	UG/L	0.5	U	0.5	U
8260D	1,2-Dichlorobenzene	UG/L	0.5	U	0.5	U
8260D	1,2-Dichloroethane	UG/L	0.5	U	0.5	U
8260D	1,2-Dichloropropane	UG/L	0.5	U	0.5	U
8260D	1,3-Dichlorobenzene	UG/L	0.5	U	0.5	U
8260D	1,4-Dichlorobenzene	UG/L	0.5	U	0.5	U
8260D	2-Butanone	UG/L	2.5	U	2.5	U
8260D	2-Hexanone	UG/L	2.5	U	2.5	U
8260D	4-Methyl-2-pentanone	UG/L	2.5	U	2.5	U
8260D	Acetic acid, methyl ester	UG/L	2.5	U	2.5	U
8260D	Acetone	UG/L	5	U	5	U
8260D	Benzene	UG/L	0.5	U	0.5	U

Table 2 - Summary of Analytical Results Data Usability Summary Report Quarterly Monitoring - Q4 2021 Lockheed Martin Corporation Former Unisys Site -- Great Neck Lake Success, New York

		SDG	460-24	6589-1	460-24	16589-1
		Location	Q	С	Q2	604
		Sample Date	11/4/	2021	11/4	/2021
		Sample ID	QC-TB03	1121-XX	IW-Q2	.604-XX
		QC Code	TI	3		=S
			Final	Final	Final	Final
Method	Parameter	Unit	Result	Qualifier	Result	Qualifier
8260D	Bromodichloromethane	UG/L	0.5	U	0.5	U
8260D	Bromoform	UG/L	0.5	U	0.5	U
8260D	Bromomethane	UG/L	0.5	U	0.5	U
8260D	Carbon disulfide	UG/L	0.5 U		0.5	U
8260D	Carbon tetrachloride	UG/L	0.5 U		0.5	U
8260D	Chlorobenzene	UG/L	0.5 U		0.5	U
8260D	Chlorodifluoromethane	UG/L	1 U		1	U
8260D	Chloroethane	UG/L	0.5 U		0.5	U
8260D	Chloroform	UG/L	0.5	0.5 U		U
8260D	Chloromethane	UG/L	0.5	0.5 U		U
8260D	cis-1,2-Dichloroethene	UG/L	0.5	U	0.5	U
8260D	cis-1,3-Dichloropropene	UG/L	0.5	U	0.5	U
8260D	Cyclohexane	UG/L	0.5	U	0.5	U
8260D	Dibromochloromethane	UG/L	0.5	U	0.5	U
8260D	Dichlorodifluoromethane	UG/L	0.5	U	0.5	U
8260D	Ethylbenzene	UG/L	0.5	U	0.5	U
8260D	Freon 115	UG/L	5	U	5	U
8260D	Freon 123	UG/L	1	U	1	U
8260D	Isopropylbenzene	UG/L	0.5	U	0.5	U
8260D	Methyl cyclohexane	UG/L	0.5	U	0.5	U
8260D	Methyl Tertbutyl Ether	UG/L	0.5	U	0.5	U
8260D	Methylene chloride	UG/L	0.5	U	0.5	U
8260D	Styrene	UG/L	0.5	U	0.5	U
8260D	Tetrachloroethene	UG/L	0.5	U	0.5	U

Table 2 - Summary of Analytical Results

Data Usability Summary Report

Quarterly Monitoring - Q4 2021

Lockheed Martin Corporation Former Unisys Site -- Great Neck

Lake Success, New York

		SDG	460-24	46589-1	460-24	46589-1
		Location		QC	Q2	2604
		Sample Date	11/4	/2021	11/4	/2021
		Sample ID	QC-TB0	31121-XX	IW-Q2	2604-XX
		QC Code	-	ГВ	1	FS
			Final	Final	Final	Final
Method	Parameter	Unit	Result	Qualifier	Result	Qualifier
8260D	Toluene	UG/L	0.5	U	0.5	U
8260D	trans-1,2-Dichloroethene	UG/L	0.5	U	0.5	U
8260D	trans-1,3-Dichloropropene	UG/L	0.5	0.5 U		U
8260D	Trichloroethene	UG/L	0.5	U	0.5	U
8260D	Trichlorofluoromethane	UG/L	0.5	U	0.5	U
8260D	Vinyl chloride	UG/L	0.5	U	0.5	U
8260D	Xylene, o	UG/L	0.5	U	0.5	U
8260D	Xylenes (m&p)	UG/L	0.5	U	0.5	U
8260D	Xylenes, Total	UG/L	1	. U	1	. U

Table 2 - Summary of Analytical Results Data Usability Summary Report Quarterly Monitoring - Q4 2021 Lockheed Martin Corporation Former Unisys Site -- Great Neck

Lake Success, New York

		SDG	460-24	16843-1	460-24	6843-1	460-24	16843-1	460-24	16843-1	460-24	46843-1	460-24	16843-1	460-24	17256-1
		Location	31	lGL	31	.MI	31	.ML	43	BMI	43	MU	C	QC	45	iMI .
	Sam	ple Date	11/2	/2021	11/2,	/2021	11/2	/2021	11/3	/2021	11/3	/2021	11/1	/2021	11/5	/2021
Sample ID		MW-3	1GL-XX	MW-3	1MI-XX	MW-3	1ML-XX	MW-4	3MI-XX	MW-4	3MU-XX	QC-EB0	11121-01	MW-4	5MI-XX	
	QC Code		ſ	-S	F	S	ı	-S	F	-S	I	FS	E	В	ı	S
			Final	Final	Final	Final	Final	Final								
Method	Parameter	Unit	Result	Qualifier	Result	Qualifier	Result	Qualifier								
300	300 Bromide MG/L		0.2		0.16		0.05	U	0.05	C	0.05 U		0.05 U		0.043	J
SM 4500 CI- B	Chloride	MG/L	114		70.5		19.5		13.5		5	U	5	U	12	

Table 2 - Summary of Analytical Results Data Usability Summary Report Quarterly Monitoring - Q4 2021 Lockheed Martin Corporation Former Unisys Site -- Great Neck Lake Success, New York

		SDG	460-24	47256-1	460-24	7256-1	460-24	17256-1	460-24	7256-1	460-24	17256-1	460-24	7256-1	460-24	17256-1
		Location	45	MU	46	MI	46	ML	52	!MI	52	!MI	52	ML	53	BMI
	Sam	ple Date	11/5	/2021	11/5,	/2021	11/5	/2021	11/8	/2021	11/8	/2021	11/8	/2021	11/10	0/2021
Sample ID		MW-4	5MU-XX	MW-4	6MI-XX	MW-4	6ML-XX	MW	/-502	MW-5	2MI-XX	MW-5	2ML-XX	MW-5	3MI-XX	
	QC Code			FS	F	:S	F	=S	F	:D	F	=S	F	S	F	-s
			Final	Final												
Method	Method Parameter Unit		Result	Qualifier												
300 Bromide MG/L		0.26		0.12		0.046	J	0.12		0.12		0.037	J	0.086		
SM 4500 CI- B	Chloride	MG/L	120)	36.5		7.5		25		25		11.5		15.5	

Table 2 - Summary of Analytical Results Data Usability Summary Report Quarterly Monitoring - Q4 2021 Lockheed Martin Corporation Former Unisys Site -- Great Neck

Lake	Success,	New	York

		SDG	460-2	47256-1	460-24	17256-1	460-24	17256-1	460-24	17256-1	460-24	17256-1	460-24	17256-1	460-24	17256-1
		Location	53	3ML	54	1GI	54	·GU	N04	1388	NO5	5099	NO!	5535	N12	2796
	Sam	ple Date	11/8	3/2021	11/10)/2021	11/10)/2021	11/5	/2021	11/5	/2021	11/5	/2021	11/5	/2021
Sample ID		MW-5	3ML-XX	MW-5	4GI-XX	MW-5	4GU-XX	SW-N4	1388-XX	SW-N5	5099-XX	IW-N5	535-XX	SW	-500	
QC Code			FS	F	S	F	=S	F	-S	F	S	ı	-S	F	:D	
			Final	Final	Final	Final	Final	Final	Final	Final	Final	Final	Final	Final	Final	Final
Method	Parameter	Unit	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier
300	Bromide	MG/L	0.037	7 Ј	0.049	J	0.13		0.092		0.095		0.21		0.11	
SM 4500 CI- B	Chloride	MG/L	46	5	9		46.5		68.5		27		137		52.5	

Table 2 - Summary of Analytical Results Data Usability Summary Report Quarterly Monitoring - Q4 2021 Lockheed Martin Corporation Former Unisys Site -- Great Neck Lake Success, New York

		SDG	460-24	17256-1	460-24	47256-1	460-24	47256-1	460-24	17256-1
	1	Location	N12	2796	N1:	2999	N1:	3000	N13	3821
	Sam	ple Date	11/5	/2021	11/5	/2021	11/5	/2021	11/5	/2021
	Sample II			2796-XX	SW-N1	2999-XX	SW-N1	3000-XX	SW-N1	3821-XX
QC Code			ı	<u>-</u> S		FS	1	FS	ı	- S
			Final	Final	Final	Final	Final	Final	Final	Final
Method	Method Parameter Unit		Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier
300 Bromide MG/L		0.1		0.15		0.11		0.11	•	
SM 4500 Cl- B Chloride MG/L		52		90		52	!	45		

Table 3 - Summary of Qualification Actions Data Usability Summary Report Quarterly Monitoring - Q4 2021 Lockheed Martin Corporation Former Unisys Site -- Great Neck Lake Success, New York

	1		ı	ı	1				Г		Γ	
							Lab	Lab	Final	Final	Val Reason	
SDG	Method	Lab Sample ID	Sample Date	Field Sample ID	Fraction	Parameter Name	Result	Qualifier	Result	Qualifier	Code	Units
	8260D	460-246843-5	11/1/2021	MW-17ML-XX	N	Freon 115		U		UJ	LCSL	UG/L
	8260D	460-246843-1	11/1/2021	MW-1MI-XX	N N	Freon 115		U	1	UJ	LCSL	UG/L
	8260D	460-246843-2	11/1/2021	MW-1ML-XX	N N	Freon 115		U	1	UJ	LCSL	UG/L
	8260D	460-246843-6	11/1/2021	MW-22ML-XX	N	Freon 115		U	1	UJ	LCSL	UG/L
	8260D	460-246843-7	11/2/2021	MW-29MI-XX	1	Freon 115		U	1	UJ	LCSL	UG/L
	8260D	460-246843-8	11/2/2021	MW-31GL-XX	N	cis-1,2-Dichloroethene	66		66		MSL	UG/L
	8260D	460-246843-8	11/2/2021	MW-31GL-XX	l _N	Freon 115		U	1	UJ	LCSL	UG/L
	8260D	460-246843-9	11/2/2021	MW-31MI-XX	N	Freon 115		U	5	UJ	LCSL	UG/L
	8260D	460-246843-10	11/2/2021	MW-31ML-XX	N	Freon 115		U	1	UJ	LCSL	UG/L
	8260D	460-246843-12	11/3/2021	MW-33ML-XX	N	Freon 115		U	5	UJ	LCSL	UG/L
460-246843-1	8260D	460-246843-14	11/1/2021	MW-37ML-XX	N	Freon 115	5	U	5	UJ	LCSL	UG/L
460-246843-1	8260D		11/1/2021	MW-37MU-XX	N	Freon 115		U	5	UJ	LCSL	UG/L
460-246843-1	8260D	460-246843-3	11/1/2021	MW-3GL-XX	N	Freon 115		U	5	UJ	LCSL	UG/L
460-246843-1	8260D	460-246843-4	11/1/2021	MW-3ML-XX	N	Freon 115	5	U	5	UJ	LCSL	UG/L
460-246843-1	8260D	460-246843-16	11/3/2021	MW-43MI-XX	N	Freon 115	5	U	5	UJ	LCSL	UG/L
460-246843-1	8260D	460-246843-20	11/1/2021	QC-TB011121-XX	N	Freon 115	5	U	5	UJ	LCSL	UG/L
460-247256-1	8260D	460-247256-1	11/5/2021	IW-N5535-XX	N	Freon 115	5	U	5	UJ	LCSL	UG/L
											LCSL, MSL,	
460-247256-1	8260D	460-247256-11	11/9/2021	MW-33MI-XX	N	Freon 115	5	U	5	UJ	MSRPD	UG/L
460-247256-1	8260D	460-247256-13	11/9/2021	MW-44MI-XX	N	Freon 115	5	U	5	UJ	LCSL	UG/L
460-247256-1	8260D	460-247256-12	11/9/2021	MW-44MU-XX	N	Freon 115	5	U	5	UJ	LCSL	UG/L
460-247256-1	8260D	460-247256-15	11/5/2021	MW-45MI-XX	N	Freon 115	5	U	5	UJ	LCSL	UG/L
460-247256-1	8260D	460-247256-14	11/5/2021	MW-45MU-XX	N	Freon 115		U	5	UJ	LCSL	UG/L
460-247256-1	8260D	460-247256-16	11/5/2021	MW-46MI-XX	N	Freon 115	10		10	UJ	LCSL	UG/L
460-247256-1	8260D	460-247256-17	11/5/2021	MW-46ML-XX	N	Freon 115		U	5	UJ	LCSL	UG/L
460-247256-1	8260D	460-247256-18	11/10/2021	MW-47MI-XX	N	Freon 115		U	5	UJ	LCSL	UG/L
	8260D	460-247256-19	11/10/2021	MW-47ML-XX	N	Freon 115		U	1	UJ	LCSL	UG/L
460-247256-1	8260D		11/8/2021	MW-49ML-XX	N	Freon 115		U		UJ	LCSL	UG/L
	8260D	460-247256-30	11/8/2021	MW-500	N	Freon 115		U	1	UJ	LCSL	UG/L
460-247256-1	8260D		11/10/2021	MW-501	N	Freon 115		U	5	UJ	LCSL	UG/L
	8260D		11/8/2021	MW-502	N	Freon 115	_	U	5	UJ	LCSL	UG/L
	8260D		11/8/2021	MW-502	N	trans-1,2-Dichloroethene	0.51		0.51		FD	UG/L
460-247256-1	8260D	460-247256-21	11/10/2021	MW-50ML-XX	N	Freon 115	5	U	5	UJ	LCSL	UG/L

Table 3 - Summary of Qualification Actions Data Usability Summary Report Quarterly Monitoring - Q4 2021 Lockheed Martin Corporation Former Unisys Site -- Great Neck Lake Success, New York

							Lab	Lab	Final	Final	Val Reason	
SDG	Method	Lab Sample ID	Sample Date	Field Sample ID	Fraction	Parameter Name	Result	Qualifier	Result	Qualifier	Code	Units
460-24725	5-1 8260D	460-247256-22	11/4/2021	MW-51MI-XX	N	1,1,2-Trichloro-1,2,2-Trifluoroethane (Freon 113)	2		2	J-	SSL	UG/L
460-24725	5-1 8260D	460-247256-22	11/4/2021	MW-51MI-XX	N	Chlorodifluoromethane	1	U	1	UJ	SSL	UG/L
460-24725	5-1 8260D	460-247256-22	11/4/2021	MW-51MI-XX	N	cis-1,2-Dichloroethene	29		29	J-	SSL	UG/L
460-24725	5-1 8260D	460-247256-22	11/4/2021	MW-51MI-XX	N	Tetrachloroethene	4.5		4.5	J-	SSL	UG/L
460-24725	5-1 8260D	460-247256-22	11/4/2021	MW-51MI-XX	N	Trichloroethene	9.1		9.1	J-	SSL	UG/L
460-24725	5-1 8260D	460-247256-24	11/8/2021	MW-52MI-XX	N	Freon 115	5	U	5	UJ	LCSL	UG/L
460-24725	5-1 8260D	460-247256-24	11/8/2021	MW-52MI-XX	N	trans-1,2-Dichloroethene	0.24	J	0.24	J	FD	UG/L
460-24725	5-1 8260D	460-247256-25	11/8/2021	MW-52ML-XX	N	Freon 115	5	U	5	UJ	LCSL	UG/L
460-24725	5-1 8260D	460-247256-26	11/10/2021	MW-53MI-XX	N	Freon 115	5	U	5	UJ	LCSL	UG/L
460-24725	5-1 8260D	460-247256-27	11/8/2021	MW-53ML-XX	N	Freon 115	5	U	5	UJ	LCSL	UG/L
460-24725	5-1 8260D	460-247256-29	11/10/2021	MW-54GI-XX	N	Freon 115	5	U	5	UJ	LCSL	UG/L
460-24725	5-1 8260D	460-247256-28	11/10/2021	MW-54GU-XX	N	Freon 115	5	U	5	UJ	LCSL	UG/L
460-24725	5-1 524.2	460-247256-9	11/5/2021	SW-500	N	trans-1,3-Dichloropropene	0.5	U	0.5	UJ	LCSL	UG/L
460-24725	5-1 524.2	460-247256-5	11/5/2021	SW-N12796-XX	N	trans-1,3-Dichloropropene	0.5	U	0.5	UJ	LCSL	UG/L
460-24725	5-1 524.2	460-247256-6	11/5/2021	SW-N12999-XX	N	trans-1,3-Dichloropropene	0.5	U	0.5	UJ	LCSL	UG/L
460-24725	5-1 524.2	460-247256-7	11/5/2021	SW-N13000-XX	N	trans-1,3-Dichloropropene	0.5	U	0.5	UJ	LCSL	UG/L
460-24725	5-1 524.2	460-247256-8	11/5/2021	SW-N13821-XX	N	trans-1,3-Dichloropropene	0.5	U	0.5	UJ	LCSL	UG/L
460-24725	5-1 524.2	460-247256-4	11/5/2021	SW-N4388-XX	N	trans-1,3-Dichloropropene	0.5	U	0.5	UJ	LCSL	UG/L
460-24725	5-1 524.2	460-247256-3	11/5/2021	SW-N5099-XX	N	trans-1,3-Dichloropropene	0.5	U	0.5	UJ	LCSL	UG/L

ATTACHMENT A

SUMMARY OF VALIDATION QC LIMITS FOR SURROGATES, SPIKES, AND DUPLICATES BASED ON THE REGION 2 VALIDATION GUIDELINES

PARAMETER	QC TEST	ANALYTE	WATER	Water
PARAMETER	QC 1E31	ANALTIE	(%R)	(RPD)
	Surrogate	All Surrogate Compounds	80 - 120	
Volatiles	LCS	All Target Compounds	70 - 130	
voiatiles	MS/MSD	All Target Compounds	70 - 130	20
	Field Duplicate	All Target Compounds		50
	LCS	All Target Analytes	80 - 120	
Inorganica Matala	MS/MSD	All Target Analytes	75 -125	20
Inorganics-Metals	Lab Duplicate	All Target Analytes		20
	Field Duplicate	All Target Analytes		20

Notes:

(1) For PFAS, surrogate = extracted isotope dilution standard

LCS = Laboratory Control Sample

MS/MSD = Matrix spike/ Matrix Spike Duplicate

RPD = Relative percent difference

%R = percent recovery

QC Limits are based on USEPA Region II Data Validation Guidelines and Project QA/QC Objectives

Lockheed Martin Corporation Great Neck Site – Lake Success, New York Wood Environment & Infrastructure Solutions

> DATA USABILITY SUMMARY REPORT QUARTERLY MONITORING – Q4 2021 LOCKHEED MARTIN CORPORATION GREAT NECK SITE LAKE SUCCESS, NEW YORK

> > **ATTACHMENT B**

VOCs

NYSDEC DUSR PROJECT CHEMIST REVIEW RECORD Project: LMC Great Neck GWM Q4 Method: 8260D **SDG(s):** 460-246589-1, 460-246843-1, 460-247613-1 Laboratory: TAL Edison, NJ Date: 11/30/2021 Reviewer: Amber Jones X NYSDEC DUSR Review Level **USEPA** Region II Guideline **☑** Case Narrative Review and COC/Data Package Completeness **COMMENTS** Were problems noted? yes -see attached 460-246843-1: MW-48LI-XX Are Field Sample IDs and Locations assigned correctly? YES NO (circle one) revised to MW-48ML-XX Were all the samples on the COC analyzed for the requested analyses? YES NO (circle one) 460-246589-1, 460-246843-1 - 8260 -2. Molding time and Sample Collection 57 compounds instead of 54 were All samples were analyzed within the 14 day holding time. YES NO (circle one) reported - 1,2,3-trichlorobenzene, 1,4-dioxane, and bromochloromethane 3. 🗹 OC Blanks - results refuse flagged in TED Are method blanks free of contamination? YES NO (circle one) Are Trip blanks free of contamination? YES NO (circle one) see attached - no quals Are Rinse blanks free of contamination? YES NO NA (circle one) 4. 🗹 Instrument Tuning – Data Package Narrative Review Did the laboratory narrative identify any results that were not within method criteria? YES NO If yes, use professional judgment to evaluate data and qualify results if needed 5. Instrument Calibration – Data Package Narrative Review Did the laboratory narrative identify compounds that were not within criteria in the initial and/or continuing calibration standards? YES NO (circle one) Initial Calibration %RSD = 20% (30% for 1,1-DCE, chloroform, 1,2-DCP, toluene, ethylbenzene, VC) Initial Avg RRF and Continuing RRF should be ≥ 0.05 and 0.10 for Chloromethane, 1,1-Dichloroethane, Bromoform and 0.30 for Chlorobenzene and 1,1,2,2-Tetrachloroethane Continuing Calibration %D = 20% Did the laboratory qualify results based on initial or continuing calibration exceedances? YES NO If yes to above, use professional judgment to evaluate data and qualify results if needed 6. ✓ Internal Standards – Data Package Narrative Review (Area Limits = -50% to +100%, RTs within 30 seconds of daily CCAL standard (or ICAL midpoint if samples follow ICAL) Did the laboratory narrative identify any sample internal standards that were not within criteria? YES NO (circle one) Did the laboratory qualify results based on internal standard exceedances? YES NO If yes to above, use professional judgment to evaluate data and qualify results if needed 7. **Surrogate Recovery -** Region II limits (water 80-120%, soil 70-130%) 460-247256-1 - MW-51MI-XX - J-, SSL Were all results within Region II limits? YES NO (circle one)

see attached - cis-1,2-dichloromethane -MW-31GL-XX - J-, MSL Were all results within the Region II limits? YES NO NA (circle one) MW-33MI-XX - Freon 115 - UJ, MSL, MSRPD

MW-22ML-XX, MW-31GL-XX

8. Matrix Spike - Region II limits (water and soil 70-130%, water RPD 20, soil RPD 35)

Were MS/MSDs submitted/analyzed? YES NO

9. **Duplicates -** Region II Limits (water RPD 50, soil RPD 100) MW-52MI-XX/MW-502 - trans-1,2-Dichloroethene - J, FD Were Field Duplicates submitted/analyzed? YES NO Were all results within Region II limits? (soil RPD<100, water RPD<50) YES NO NA 10. **☑ Laboratory Control Sample Results** - Region II (Water and soil 70-130%) Were all results were within Region II control limits? YES NO (circle one) see attached - UJ, LCSL 11. **Z** Reporting Limits: Were samples analyzed at a dilution? YES NO (circle one) MW-46MI-XX (2x) - elevated RLs for ND 12. Maw Data Review and Calculation Checks see attached for calculations 13. Z Electronic Data Review and Edits Does the EDD match the Form Is? YES NO (circle one) 14. **Z** Tables and TIC Review

 Table 1 (Samples and Analytical Methods)

 Table 2 (Analytical Results) Table 3 (Qualification Actions) Were all tables produced and reviewed? YES NO (circle one)

YES NO (circle one)

Table 4 (TICs)

Did lab report TICs?

11/17/2021

GC/MS VOA BY INTERNAL STANDARD - INITIAL CALIBRATION DATA CURVE EVALUATION FORM VI

Analy Batch No.: 808628 Job No.: 460-246589-1 Edison Eurofins TestAmerica, Lab Name:

SDG No.:

10:18 Calibration End Date: 10/22/2021 07:50 Calibration Start Date: 10/22/2021

 \mathbb{Z}

0.18 (mm)

ID:

GC Column: DB-624

CVOAMS15

Instrument ID:

Calibration ID: 87742 Heated Purge: (Y/N)

> Files Calibration

i Di LAB FILE T56942.D T56943.D T56944.D T56945.D T56948.D T56949.D T56947.D LAB SAMPLE ID: STD8 460-808628/2 STD05 460-808628/3 STD1 460-808628/4 STD5 460-808628/5 STD200 460-808628/8 STD500 460-808628/9 STD20 460-808628/6 STD50 460-808628/7 9 / Level Level Level LEVEL: Level Level Level Level Level

ANALYTE		RRF		CURVE	O ,	COEFFICIENT	ENT	# MIN RRF	%RSD #	MAX	R^2	# MIN R^2
	LVL 1 LVL 2 LVL 6 LVL 7	LVL 3 LVL 8	LVL 4	LVL 5 TYPE	В	M1	M2			%RSD	OR COD	OR COD
Freon 115	0.0105 0.0084	+++++	0600.0	0.0099 Ave		0.009			0.0	20.0		
Chlorotrifluoroethene	+++++ 0.1015 0.0886 0.0864	0.0849	0.0827	0.0866 Ave		0.087			7.5	20.0		
Freon 152a	++++ 0.2015 0.1243 0.1256	0.1171	0.1263	0.1236 QuaF		0.128	-0.000014				1.0000	0.9900
Dichlorodifluoromethane	+++++ 0.2945 0.2540 0.3377	0.2482	0.2374	0.2495 Ave		0.277		0.1000	14.3	20.0		
Chlorodifluoromethane	++++ 0.0495 0.0511	0.0710	0.0458	0.0484 Ave		0.051			16.7	20.0		
Chloromethane	++++ 0.3254 0.2721 0.3417	0.2974	0.2586	0.2570 Ave		0.301	>	0.1000	13.7	20.0		
Vinyl chloride	++++ 0.3416 0.2943 0.3272	0.3028	0.2819	0.2817 Ave		0.306		0.1000	7.4	20.0		
Butadiene	0.2606 0.3158 0.2651 0.2943	0.2754	0.2561	0.2529 Ave		0.274			7.8	20.0		
Bromomethane	++++ 1.5035 0.4344 0.7208	0.8723	0.9691	0.6982 QuaF		0.802	-0.000576	0.1000			0.9940	0.9900
Chloroethane	++++ 1.3850 0.8643 1.1470	1.3032	1.2854	1.1356 Ave		1.186		0.1000	15.6	20.0		
Dichlorofluoromethane	++++ 0.4085 0.4351	0.3970	0.4277	0.4189 Ave		0.416			ω. 0	20.0		
Freon 11	++++ 0.3088 0.3591	0.3455	0.3342	0.3208 Ave		0.337		0.1000	o.	20.0		
Pentane	++++ 0.0468 0.0318 0.0334	0.0419	0.0352	0.0320 Ave		0.035			19.2	20.0		

Note: The M1 coefficient is the same as Ave RRF for an Ave curve type.

Report Date: 22-Oct-2021 14:24:20 Chrom Revision: 2.3 22-Sep-2021 15:38:46

Eurofins TestAmerica, Edison Target Compound Quantitation Report

Data File: \\chromfs\Edison\ChromData\CVOAMS15\20211022-136419.b\T56944.D

Lims ID: STD1

Client ID:

Sample Type: IC Calib Level: 2

Inject. Date: 22-Oct-2021 08:32:41 ALS Bottle#: 0 Worklist Smp#: 4

Purge Vol: 5.000 mL Dil. Factor: 1.0000

Sample Info: STD1

Misc. Info.: 460-0136419-004

Operator ID: Instrument ID: CVOAMS15

Sublist: chrom-8260W_15*sub18

Method: \\chromfs\Edison\ChromData\CVOAMS15\20211022-136419.b\8260W_15.m

Limit Group: VOA - 8260D Water and Solid

Last Update: 22-Oct-2021 14:24:20 Calib Date: 22-Oct-2021 10:18:19

Integrator:RTEID Type:RT Order IDQuant Method:Internal StandardQuant By:Initial CalibrationLast ICal File:\\chromfs\Edison\ChromData\CVOAMS15\20211022-136419.b\T56949.D

Column 1 : DB-624 (0.18 mm) Det: MS Quad

Process Host: CTX1602

First Level Reviewer: desais Date: 22-Oct-2021 09:45:15

First Level Reviewer: desais			D	ate:		22-Oct-202	1 09:45:15		
		RT	Exp RT	Dlt RT			Cal Amt	OnCol Amt	
Compound	Sig	(min.)	(min.)	(min.)	Q	Response	ug/l	ug/l	Flags
3 Chlorotrifluoroethene	116	0.627	0.621	0.006	52	990	1.00	0.9707	
2 1,1-Difluoroethane	65	0.633	0.628	0.005	74	1365	1.00	0.9147	M
4 Dichlorodifluoromethane	85	0.639	0.640	-0.001	77	2893	1.00	0.8951	
5 Chlorodifluoromethane	67	0.652	0.646	0.006	68	828	1.00	1.37	
6 Chloromethane	50	0.713	0.713	0.000	71	3467	1.00	0.9863	
7 Vinyl chloride	62	0.749	0.749	0.000	70	3529	1.00	0.9888	
8 Butadiene	54	0.767	0.762	0.005	94	3210	1.00	1.00	
9 Bromomethane	94	0.877	0.877	0.000	76	1346	1.00	1.09	M
10 Chloroethane	64	0.920	0.914	0.006	86	2011	1.00	1.10	
11 Dichlorofluoromethane	67	0.999	0.999	0.000	83	4628	1.00	0.9527	
12 Trichlorofluoromethane	101	1.023	1.024	-0.001	81	4027	1.00	1.02	
13 Pentane	72	1.060	1.060	0.000	92	976	2.00	2.37	
14 Ethanol	46	1.109	1.115	-0.006	56	724	40.0	41.1	
15 Ethyl ether	59	1.152	1.152	0.000	52	2597	1.00	1.07	
16 1,2-Dichloro-1,1,2-trifluoroeth	na 117	1.158	1.158	0.000	75	2980	1.00	1.12	
17 2-Methyl-1,3-butadiene	53	1.164	1.158	0.006	85	2715	1.00	1.08	
18 1,1,1-Trifluoro-2,2-dichloroet	ha 83	1.182	1.182	0.000	82	4311	1.00	0.9717	M
19 Acrolein	56	1.206	1.207	-0.001	91	2615	4.06	4.42	
20 1,1-Dichloroethene	96	1.255	1.249	0.006	87	2559	1.00	0.9297	
21 1,1,2-Trichloro-1,2,2-trifluoro	e 101	1.255	1.255	0.000	59	2609	1.00	0.9894	
22 Acetone	43	1.280	1.280	0.000	85	5116	5.00	5.01	M
23 lodomethane	142	1.322	1.323	-0.001	87	2089	1.00	0.8561	
24 Carbon disulfide	76	1.353	1.353	0.000	99	9298	1.00	1.00	
25 Isopropyl alcohol	45	1.353	1.353	0.000	37	2722	10.0	11.4	
26 Acetonitrile	40	1.420	1.414	0.006	84	2114	10.0	9.58	
27 3-Chloro-1-propene	76	1.426	1.426	0.000	92	1841	1.00	0.9326	
28 Methyl acetate	43	1.438	1.438	0.000	97	3821	2.00	1.85	
29 Cyclopentene	67	1.469	1.463	0.006	96	7524	1.00	1.04	
30 Methylene Chloride	84	1.487	1.487	0.000	33	3499	1.00	1.07	
* 31 TBA-d9 (IS)	66	1.511	1.512	-0.001	98	56928	1000.0	1000.0	

Data File:

Data File: \\chromfs\Edi	son\Cl				022-1	36419.b\T5694			
		RT	Exp RT	Dlt RT		_	Cal Amt	OnCol Amt	
Compound	Sig	(min.)	(min.)	(min.)	Q	Response	ug/l	ug/l	Flags
00.0 Mail. 1.0	- 0	4 554	4 554	0.000	40	4000	10.0	44.0	
32 2-Methyl-2-propanol	59	1.554	1.554	0.000	40	4326	10.0	11.2	
33 Acrylonitrile	53	1.615	1.615	0.000	95	11721	10.0	10.1	
34 trans-1,2-Dichloroethene	96	1.633	1.627	0.006	70	3102	1.00	0.9773	
35 Methyl tert-butyl ether	73	1.633	1.633	0.000	94	8387	1.00	0.9714	
36 Hexane	57	1.792	1.792	0.000	91	3188	1.00	0.9785	
37 1,1-Dichloroethane	63	1.865	1.865	0.000	83	5256	1.00	0.9343	
38 Vinyl acetate	86	1.907	1.908	-0.001	99	1164	2.00	1.63	
39 2-Chloro-1,3-butadiene	88	1.926	1.920	0.006	67	2970	1.00	1.00	
40 Isopropyl ether	45	1.926	1.920	0.006	76	8798	1.00	0.9884	
41 Tert-butyl ethyl ether	59	2.151	2.152	-0.001	90	8516	1.00	0.9432	
* 42 2-Butanone-d5	46	2.206	2.207	0.000	78	385783	250.0	250.0	
44 2,2-Dichloropropane	97	2.231	2.231	0.000	47	1320	1.00	1.13	а
43 cis-1,2-Dichloroethene	96	2.231	2.231	0.000	25	3271	1.00	0.9458	
45 2-Butanone (MEK)	43	2.249	2.249	0.000	49	4949	5.00	3.78	
46 Propionitrile	54	2.292	2.286	0.006	72	4396	10.0	9.74	а
47 Ethyl acetate	70	2.304	2.304	0.000	94	661	2.00	1.64	
48 Methyl acrylate	55	2.322	2.322	0.000	76	3528	1.00	1.04	
50 Methacrylonitrile	67	2.389	2.389	0.000	89	13010	10.0	9.83	
49 Chlorobromomethane	128	2.395	2.396	-0.001	44	1331	1.00	0.9497	
51 Tetrahydrofuran	72	2.438	2.432	0.006	61	921	2.00	1.85	
52 Chloroform	83	2.462	2.456	0.006	86	5205	1.00	0.9373	
\$ 53 Dibromofluoromethane (Surr)		2.572	2.572	0.000	95	148661	50.0	50.3	
54 1,1,1-Trichloroethane	97	2.584	2.584	0.000	27	4944	1.00	1.01	
55 Cyclohexane	84	2.627	2.621	0.006	86	3777	1.00	0.9125	
56 Carbon tetrachloride	117	2.706	2.706	0.000	85	4184	1.00	1.02	
57 1,1-Dichloropropene	75	2.712	2.713	-0.001	87	4463	1.00	0.9847	
\$ 58 1,2-Dichloroethane-d4 (Surr)	65	2.822	2.822	0.000	92	178050	50.0	51.7	
59 Isobutyl alcohol	43	2.871	2.859	0.012	40	2937	25.0	25.8	а
60 Benzene	78	2.871	2.865	0.006	95	12228	1.00	0.9887	
61 1,2-Dichloroethane	62	2.883	2.883	0.000	69	4276	1.00	1.04	
62 Isooctane	57	2.962	2.956	0.006	82	5769	1.00	1.01	а
63 Isopropyl acetate	61	2.980	2.981	-0.001	90	1242	1.00	1.01	
64 Tert-amyl methyl ether	73	2.987	2.987	0.000	74	8467	1.00	0.9510	
* 65 Fluorobenzene	96	3.108	3.109	-0.001	98	582823	50.0	50.0	
66 n-Heptane	43	3.133	3.133	0.000	38	2255	1.00	0.9255	а
67 Trichloroethene	95	3.432	3.432	0.000	83	3711	1.00	1.07	
68 n-Butanol	56	3.499	3.456	0.043	65	954	25.0	9.23	
69 Ethyl acrylate	55	3.596	3.590	0.006	89	6660	1.00	0.9718	
70 Methylcyclohexane	83	3.602	3.603	-0.001	81	3790	1.00	0.9635	
71 1,2-Dichloropropane	63	3.633	3.633	0.000	78	3084	1.00	0.9607	
72 Dibromomethane	93	3.742	3.737	0.005	22	1925	1.00	0.9536	
* 73 1,4-Dioxane-d8	96	3.742	3.743	-0.001	30	42531	1000.0	1000.0	
74 1,4-Dioxane	88	3.803	3.798	0.005	30	2361	50.0	50.1	
75 Methyl methacrylate	100	3.810	3.810	0.000	85	1616	2.00	1.86	
76 n-Propyl acetate	43	3.895	3.889	0.006	92	3913	1.00	0.9410	
77 Dichlorobromomethane	83	3.919	3.920	-0.001	89	4069	1.00	0.9688	
78 2-Nitropropane	41	4.163	4.163	0.000	92	1683	2.00	2.04	
79 2-Chloroethyl vinyl ether	106	4.291	4.285	0.006	73	468	1.00	0.8626	
80 Epichlorohydrin	57	4.322	4.316	0.006	86	5138	20.0	17.6	
81 cis-1,3-Dichloropropene	75	4.407	4.401	0.006	71	5056	1.00	0.9889	
82 4-Methyl-2-pentanone (MIBK)		4.614	4.615	-0.001	95	13135	5.00	4.43	
\$ 83 Toluene-d8 (Surr)	98	4.687	4.688	-0.001	99	552678	50.0	50.9	
ψ 00 TOIUETIE-UO (SUIT)	30	4.00/	4.000	-0.001	33	JJ2U/0	30.0	30.3	

Report Date: 05-Nov-2021 09:58:48 Chrom Revision: 2.3 22-Sep-2021 15:38:46

Eurofins TestAmerica, Edison Target Compound Quantitation Report

Data File: \\chromfs\Edison\ChromData\CVOAMS15\20211105-137155.b\T57742.D

Lims ID: LCS

Client ID:

Sample Type: LCS

Inject. Date: 05-Nov-2021 09:21:30 ALS Bottle#: 0 Worklist Smp#: 3

Purge Vol: 5.000 mL Dil. Factor: 1.0000

Sample Info: LCS

Misc. Info.: 460-0137155-003

Operator ID: Instrument ID: CVOAMS15

Method: \\chromfs\Edison\ChromData\CVOAMS15\20211105-137155.b\8260W_15.m

Limit Group: VOA - 8260D Water and Solid

Last Update: 05-Nov-2021 09:58:36 Calib Date: 22-Oct-2021 10:18:19

Integrator:RTEID Type:RT Order IDQuant Method:Internal StandardQuant By:Initial CalibrationLast ICal File:\\chromfs\Edison\ChromData\CVOAMS15\20211022-136419.b\T56949.D

Column 1: DB-624 (0.18 mm) Det: MS Quad

Process Host: CTX1668

First Level Reviewer: starzecm Date: 05-Nov-2021 09:58:47

First Level Reviewer: starzecm			D	ate:		05-Nov-202	21 09:58:47		
		RT	Exp RT	Dlt RT			Cal Amt	OnCol Amt	
Compound	Sig	(min.)	(min.)	(min.)	Q	Response	ug/l	ug/l	Flags
1 Monochloropentafluoroethane		0.591	0.591	0.000	0	2578	20.0	23.8	
3 Chlorotrifluoroethene	116	0.627	0.627	0.000	0	23499	20.0	23.1	
2 1,1-Difluoroethane	65	0.633	0.633	0.000	0	32034	20.0	21.6	
4 Dichlorodifluoromethane	85	0.640	0.640	0.000	0	71155	20.0	22.1	
5 Chlorodifluoromethane	67	0.652	0.652	0.000	0	13052	20.0	21.7	
6 Chloromethane	50	0.713	0.713	0.000	0	69541	20.0	19.9 🗸	
7 Vinyl chloride	62	0.749	0.749	0.000	0	76846	20.0	21.6	
8 Butadiene	54	0.768	0.761	0.007	0	70647	20.0	22.2	
9 Bromomethane	94	0.877	0.877	0.000	0	19354	20.0	16.1	
10 Chloroethane	64	0.920	0.920	0.000	0	35633	20.0	19.8	
11 Dichlorofluoromethane	67	0.999	0.999	0.000	0	111662	20.0	23.1	
12 Trichlorofluoromethane	101	1.024	1.024	0.000	0	94284	20.0	24.1	
13 Pentane	72	1.060	1.060	0.000	0	21248	40.0	51.8	
14 Ethanol	46	1.115	1.115	0.000	0	14556	800.0	833.0	
15 Ethyl ether	59	1.152	1.152	0.000	0	50031	20.0	20.7	
16 1,2-Dichloro-1,1,2-trifluoroeth	a117	1.158	1.158	0.000	0	58615	20.0	22.1	
17 2-Methyl-1,3-butadiene	53	1.158	1.158	0.000	0	59635	20.0	23.7	
18 1,1,1-Trifluoro-2,2-dichloroeth	na 83	1.182	1.182	0.000	0	105885	20.0	24.0	
19 Acrolein	56	1.206	1.207	0.000	0	22396	40.6	38.2	
20 1,1-Dichloroethene	96	1.249	1.249	0.000	0	63054	20.0	23.0	
21 1,1,2-Trichloro-1,2,2-trifluoroe	e 101	1.255	1.255	0.000	0	68224	20.0	26.0	
22 Acetone	43	1.280	1.280	0.000	0	92326	100.0	92.1	
23 Iodomethane	142	1.322	1.322	0.000	0	58016	20.0	23.9	
24 Carbon disulfide	76	1.353	1.353	0.000	0	212638	20.0	22.9	
25 Isopropyl alcohol	45	1.353	1.353	0.000	0	39755	200.0	169.3	
26 Acetonitrile	40	1.414	1.414	0.000	0	46698	200.0	215.6	
27 3-Chloro-1-propene	76	1.426	1.426	0.000	0	47817	20.0	24.3	
28 Methyl acetate	43	1.438	1.438	0.000	0	92787	40.0	45.2	
29 Cyclopentene	67	1.469	1.469	0.000	0	174780	20.0	24.2	
30 Methylene Chloride	84	1.487	1.487	0.000	0	67019	20.0	20.6	
* 31 TBA-d9 (IS)	66	1.511	1.511	0.000	0	56446	1000.0	1000.0	
\ - /			5	077 (00)	•				7/0004

Data File:

Sig RT
32 2-Methyl-2-propanol 59 1.554 1.554 0.000 0 69342 200.0 181.7 33 Acrylonitrile 53 1.615 1.615 0.000 0 259448 200.0 225.6 34 trans-1,2-Dichloroethene 96 1.633 1.627 0.006 0 68092 20.0 21.6 35 Methyl ter-butyl ether 73 1.633 1.633 0.000 0 183199 20.0 21.3 36 Hexane 57 1.792 0.000 0 87679 20.0 27.0 37 1,1-Dichloroethane 63 1.865 1.865 0.000 0 127525 20.0 22.8 38 Vinyl acetate 86 1.908 1.908 0.000 0 29353 40.0 41.9 39 2-Chloro-1,3-butadiene 88 1.920 1.920 0.000 0 67404 20.0 22.8 40 Isopropyl ether 45 1.920 1.920 0.000 0 67404 20.0 22.8 41 Tert-butyl ethyl ether 59 2.151 2.151 0.000 0 197604 20.0 22.2 41 Tert-butyl ethyl ether 59 2.151 2.151 0.000 0 191600 20.0 21.3 42 2-Butanone-d5 46 2.206 0.000 0 378734 250.0 250.0 44 2,2-Dichloroethene 96 2.231 2.231 0.000 0 24674 20.0 21.2 43 cis-1,2-Dichloroethene 96 2.231 2.231 0.000 0 72477 20.0 21.1 45 2-Butanone (MEK) 43 2.249 2.000 0 142781 100.0 111.0 46 Propionitrile 54 2.286 2.286 0.000 0 142781 100.0 111.0 46 Propionitrile 54 2.286 2.286 0.000 0 15617 40.0 39.6 48 Methyl acrylate 55 2.322 2.322 0.000 0 70228 20.0 22.8 50 Methacrylonitrile 67 2.389 2.389 0.000 0 29411 200.0 221.9 49 Chlorobromomethane 128 2.395 2.389 0.000 0 29411 200.0 221.9 49 Chlorobromomethane (Surr) 113 2.572 2.572 0.000 0 117760 20.0 21.3 \$53 Dibromofluoromethane (Surr) 113 2.572 2.572 0.000 0 116346 50.0 49.8 54 1,1,1-Trichloroethane 97 2.584 2.584 0.000 0 101744 20.0 21.8 55 Olchoroform 84 2.621 2.621 0.000 0 98290 20.0 23.9 56 Carbon tetrachloride 117 2.706 2.706 0.000 0 98290 20.0 23.9 56 Carbon tetrachloride 117 2.706 2.706 0.000 0 59026 500.0 50.0 59 Isobutyl alcohol 43 2.859 2.859 0.000 0 59026 500.0 52.8 60 Benzene 78 2.865 2.865 0.000 95 150495 20.0 26.5 a 63 Isopropyl acetate 61 2.981 2.987 0.000 0 183038 20.0 21.7 64 Tert-myl methyl ether 73 2.987 2.000 0 183038 20.0 20.7 65 Fluorobenzene 96 3.102 3.103 0.000 0 580099 50.0 50.0
33 Acrylonitrile 53 1.615 1.615 0.000 0 259448 20.0 22.6 34 trans-1,2-Dichloroethene 96 1.633 1.627 0.006 0 68092 20.0 21.6 35 Methyl tert-butyl ether 73 1.633 1.637 0.000 0 183199 20.0 21.3 36 Hexane 57 1.792 1.792 0.000 0 87679 20.0 27.0 37 1,1-Dichloroethane 63 1.865 1.865 0.000 0 127525 20.0 22.8 38 Vinyl acetate 86 1.908 1.908 0.000 0 0 29353 40.0 41.9 39 2-Chloro-1,3-butadiene 88 1.920 1.920 0.000 0 67404 20.0 22.8 40 lsopropyl ether 45 1.920 1.920 0.000 0 197084 20.0 22.2 41 Tert-butyl ethyl ether 59 2.151 2.151 0.000 0 191600 20.0 21.3 42 2-Butanone-d5 46 2.206 2.206 0.000 0 378734 250.0 250.0 44 22-Dichloropropane 97 2.231 2.231 0.000 0 24674 20.0 21.2 43 cis-1,2-Dichloroethene 96 2.231 2.231 0.000 0 72477 20.0 21.1 45 2-Butanone (MEK) 43 2.249 2.249 0.000 0 142781 100.0 111.0 46 Propionitrile 54 2.286 2.286 0.000 0 12674 20.0 22.5 5 47 Ethyl acetate 70 2.304 2.304 0.000 0 10946 200.0 225.5 47 Ethyl acetate 70 2.304 2.304 0.000 0 70228 20.0 20.8 50 Methacrylonitrile 67 2.389 2.389 0.000 0 29459 20.0 21.1 51 Tetrahydrofuran 72 2.432 2.432 2.432 0.000 0 70228 20.0 21.1 51 Tetrahydrofuran 72 2.432 2.432 2.432 0.000 0 116617 40.0 39.6 45 41.1-Trichloroethane (Surr) 113 2.572 2.572 0.000 0 117760 20.0 21.3 55 Olionforomethane (Surr) 113 2.572 2.572 0.000 0 117760 20.0 21.3 55 Olionforomethane (Surr) 113 2.572 2.572 0.000 0 117760 20.0 21.3 55 Olionforomethane (Surr) 12 2.712 2.712 0.000 0 117479 50.0 50.0 59 1.50 59 1.
33 Acrylonitrile 53 1.615 1.615 0.000 0 259448 200.0 22.6 34 trans-1,2-Dichloroethene 96 1.633 1.627 0.006 0 68092 20.0 21.6 35 Methyl tert-butyl ether 73 1.633 1.633 0.000 0 183199 20.0 21.3 36 Hexane 57 1.792 1.792 0.000 0 87679 20.0 27.0 37 1,1-Dichloroethane 63 1.865 1.865 0.000 0 127525 20.0 22.8 38 Vinyl acetate 86 1.908 1.908 0.000 0 0 29353 40.0 41.9 39 2-Chloro-1,3-butadiene 88 1.920 1.920 0.000 0 67404 20.0 22.8 40 Isopropyl ether 45 1.920 1.920 0.000 0 197084 20.0 22.2 41 Tert-butyl ethyl ether 59 2.151 2.151 0.000 0 197084 20.0 22.2 41 Tert-butyl ethyl ether 59 2.151 2.151 0.000 0 197084 20.0 22.2 43 cis-1,2-Dichloroethane 97 2.231 2.231 0.000 0 24674 20.0 21.2 43 cis-1,2-Dichloroethene 96 2.231 2.231 0.000 0 24674 20.0 21.1 45 2-Butanone (MEK) 43 2.249 2.249 0.000 0 142781 100.0 111.0 46 Propionitrile 54 2.286 2.304 0.000 0 124781 100.0 111.0 46 Propionitrile 54 2.286 2.304 0.000 0 109946 200.0 225.5 47 Ethyl acetate 70 2.304 2.304 0.000 0 109946 200.0 225.5 47 Ethyl acetate 70 2.304 2.304 0.000 0 70228 20.0 20.8 50 Methacrylonitrile 67 2.389 2.389 0.000 0 19368 40.0 39.6 48 Methyl acrylate 55 2.322 2.322 0.000 0 70228 20.0 20.8 50 Methacrylonitrile 67 2.389 2.389 0.000 0 176728 20.0 21.1 51 Tetrahydrofuran 72 2.432 2.432 0.000 0 176760 20.0 21.3 55 Olioroform 83 2.456 2.456 0.000 0 176760 20.0 21.3 55 Olioroform 83 2.456 2.456 0.000 0 176760 20.0 21.3 55 Olioroformethane (Surr) 113 2.572 2.572 0.000 0 176760 20.0 23.9 56 Carbon tetrachloride 117 2.706 2.706 0.000 0 176749 50.0 49.8 54 1,1,1-Trichloroethane 84 2.621 2.621 0.000 0 177479 50.0 50.0 59 15 0.00 22.4 55 15 12.000 1 177479 50.0 50.0 59 15 0.000 59 15 0.000 50 177479 50.0 50.0 59 15 0.000 59 15 0.000 50 177479 50.0 50.0 59 15 0.000 59 15 0.000 50 1774 56 11.2-Dichloroethane 62 2.883 2.883 0.000 0 10044 20.0 22.4 55 15 12.2-Dichloroethane 62 2.883 2.883 0.000 0 10044 20.0 22.4 55 15 12.2-Dichloroethane 62 2.883 2.883 0.000 0 10044 20.0 22.4 55 15 12.2-Dichloroethane 62 2.883 2.883 0.000 0 177479 50.0 50.0 50.0 59 15 0.000 59 15 0.000 59 15
34 trans-1,2-Dichloroethene 96 1.633 1.627 0.006 0 68092 20.0 21.6 35 Methyl tert-butyl ether 73 1.633 1.633 0.000 0 183199 20.0 21.3 36 Hexane 57 1.792 1.792 0.000 0 87679 20.0 27.0 37 1,1-Dichloroethane 63 1.865 1.865 0.000 0 127525 20.0 22.8 38 Vinyl acetate 86 1.908 1.900 0.000 0 29353 40.0 41.9 39 2-Chloro-1,3-butadiene 88 1.920 1.920 0.000 0 67404 20.0 22.8 40 Isopropyl ether 45 1.920 1.920 0.000 0 197084 20.0 22.2 41 Tert-butyl ethyl ether 59 2.151 2.151 0.000 0 378734 250.0 250.0 42 2-Butanone-deleme 46 2.226 2.209 0.000 0 72477
35 Methyl tert-butyl ether 73 1.633 1.633 0.000 0 183199 20.0 21.3 36 Hexane 57 1.792 0.000 0 87679 20.0 27.0 27.0 37 1,1-Dichloroethane 63 1.865 1.865 0.000 0 127525 20.0 22.8 38 Vinyl acetate 86 1.908 1.908 0.000 0 29353 40.0 41.9 39 2-Chloro-1,3-butadiene 88 1.920 1.920 0.000 0 67404 20.0 22.8 40 lsopropyl ether 45 1.920 1.920 0.000 0 67404 20.0 22.2 41 Tert-butyl ethyl ether 59 2.151 2.151 0.000 0 191600 20.0 21.3 42 2-Butanone-d5 46 2.206 2.206 0.000 0 378734 250.0 250.0 44 2,2-Dichloropropane 97 2.231 2.231 0.000 0 72477 20.0 21.1 45 2-Butanone (MEK) 43 2.249 2.249 0.000 0 72477 20.0 21.1 45 2-Butanone (MEK) 43 2.249 2.249 0.000 0 190546 20.0 22.5 47 Ethyl acetate 70 2.304 2.304 0.000 0 100546 20.0 22.5 5 48 Methyl acrylate 55 2.322 2.322 0.000 0 100546 20.0 22.5 5 48 Methyl acrylate 55 2.322 2.322 0.000 0 70228 20.0 20.8 50 Methacrylonitrile 67 2.339 2.389 0.000 0 19546 20.0 22.1 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
36 Hexane 57 1.792 1.792 0.000 0 87679 20.0 27.0 37 1,1-Dichloroethane 63 1.865 1.865 0.000 0 127525 20.0 22.8 38 Vinyl acetate 86 1.908 1.908 0.000 0 29353 40.0 41.9 39 2-Chloro-1,3-butadiene 88 1.920 1.920 0.000 0 67404 20.0 22.8 40 Isopropyl ether 45 1.920 1.920 0.000 0 67404 20.0 22.8 41 Isopropyl ether 59 2.151 2.151 0.000 0 197084 20.0 22.2 41 Tert-butyl ethyl ether 59 2.151 2.151 0.000 0 197084 20.0 22.2 41 Tert-butyl ethyl ether 59 2.151 2.151 0.000 0 378734 250.0 250.0 44 2,2-Dichloropropane 97 2.231 2.231 0.000 0 378734 250.0 250.0 44 2,2-Dichloropropane 97 2.231 2.231 0.000 0 724674 20.0 21.2 43 cis-1,2-Dichloroethene 96 2.231 2.231 0.000 0 72477 20.0 21.1 45 2-Butanone (MEK) 43 2.249 2.249 0.000 0 72477 20.0 21.1 45 2-Butanone (MEK) 43 2.249 2.249 0.000 0 100946 200.0 225.5 47 Ethyl acetate 70 2.304 2.304 0.000 0 15617 40.0 39.6 48 Methyl acrylate 55 2.322 2.322 0.000 0 70228 20.0 20.8 50 Methacrylonitrile 67 2.339 2.339 0.000 0 29459 20.0 20.8 50 Methacrylonitrile 67 2.339 2.389 0.000 0 29459 20.0 20.8 50 Methacrylonitrile 67 2.339 2.389 0.000 0 29459 20.0 21.1 51 Tetrahydrofuran 72 2.432 2.432 0.000 0 117760 20.0 21.3 \$5 Cyclohexane 84 2.621 2.621 0.000 0 166173 20.0 21.3 \$5 Cyclohexane 84 2.621 2.621 0.000 0 166173 20.0 21.8 55 Cyclohexane 84 2.621 2.621 0.000 0 106173 20.0 21.8 55 Cyclohexane 75 2.712 2.712 0.000 0 101244 20.0 22.4 \$5 81,2-Dichloroethane 48 2.885 2.885 0.000 0 101244 20.0 22.4 \$5 81,2-Dichloroethane 62 2.883 2.883 0.000 0 83130 20.0 21.5 61,1-Dichloroethane 62 2.883 2.883 0.000 0 5000 5000 5000 5000 5000 5000
37 1,1-Dichloroethane 63 1.865 1.865 0.000 0 127525 20.0 22.8 38 Vinyl acetate 86 1.908 1.900 0 29353 40.0 41.9 39 2-Chloro-1,3-butadiene 88 1.920 1.920 0.000 0 67404 20.0 22.8 40 Isopropyl ether 45 1.920 1.920 0.000 0 197084 20.0 22.2 41 Tert-butyl ethyl ether 59 2.151 2.151 0.000 0 191600 20.0 21.3 * 42 2-Butanone-d5 46 2.206 2.206 0.000 0 378734 250.0 250.0 44 2,2-Dichlororeptane 96 2.231 2.231 0.000 0 72477 20.0 21.1 45 2-Butanone (MEK) 43 2.249 2.249 0.000 0 142781 100.0 111.0 46 Propionitrile 54 2.286 2.286 0.000 0 15617 40.0
38 Vinyl acetate 86 1.908 1.908 0.000 0 29353 40.0 41.9 39 2-Chloro-1,3-butadiene 88 1.920 1.920 0.000 0 67404 20.0 22.8 40 Isopropyl ether 45 1.920 1.920 0.000 0 197084 20.0 22.2 41 Tert-butyl ethyl ether 59 2.151 2.151 0.000 0 191600 20.0 21.3 * 42 2-Butanone-d5 46 2.206 2.206 0.000 0 378734 250.0 250.0 44 2,2-Dichloropropane 97 2.231 2.231 0.000 0 24674 20.0 21.2 43 cis-1,2-Dichloroethene 96 2.231 2.231 0.000 0 72477 20.0 21.1 45 2-Butanone (MEK) 43 2.249 2.249 0.000 0 72477 20.0 21.1 46 Propionitrile 54 2.286 2.286 0.000 0 142781 100.0 111.0 46 Propionitrile 54 2.286 2.286 0.000 0 15617 40.0 39.6 48 Methyl acrylate 55 2.322 2.322 0.000 0 75028 20.0 20.8 50 Methacrylonitrile 67 2.389 2.389 0.000 0 792471 20.0 221.9 49 Chlorobromomethane 128 2.395 2.389 0.000 0 292411 200.0 221.9 49 Chlorobromomethane 128 2.395 2.389 0.000 0 29459 20.0 20.8 52 Chloroform 83 2.456 2.456 0.000 0 117760 20.0 21.3 \$ 53 Dibromofluoromethane (Surr) 113 2.572 2.572 0.000 0 1166173 20.0 21.8 55 Cyclohexane 84 2.621 2.621 0.000 0 166173 20.0 21.8 55 Cyclohexane 84 2.621 2.621 0.000 0 86231 20.0 21.8 55 Cyclohexane 75 2.712 2.712 0.000 0 101244 20.0 22.4 \$ 58 1,2-Dichloroethane 4(Surr) 65 2.822 2.822 0.000 0 79081 20.0 21.2 57 1,1-Dichloropropene 75 2.712 2.712 0.000 0 101244 20.0 22.4 \$ 58 1,2-Dichloroethane 62 2.883 2.883 0.000 0 59026 500.0 50.0 59 Isobutyl alcohol 43 2.859 2.859 0.000 0 171479 50.0 50.0 59 Isobutyl alcohol 43 2.859 2.859 0.000 0 59026 500.0 522.8 60 Benzene 75 2.956 2.956 0.000 96 270814 20.0 21.5 61 1,2-Dichloroethane 67 2.987 2.987 0.000 0 183036 20.0 20.7 * 65 Fluorobenzene 96 3.102 3.103 0.000 0 183036 20.0 20.7
39 2-Chloro-1,3-butadiene
40 Isopropyl ether
* 41 Tert-buryl ethyl ether
* 42 2-Butanone-d5
44 2,2-Dichloropropane 97 2.231 2.231 0.000 0 24674 20.0 21.2 43 cis-1,2-Dichloroethene 96 2.231 2.231 0.000 0 72477 20.0 21.1 45 2-Butanone (MEK) 43 2.249 2.249 0.000 0 142781 100.0 111.0 46 Propionitrile 54 2.286 2.286 0.000 0 100946 200.0 225.5 47 Ethyl acetate 70 2.304 2.304 0.000 0 15617 40.0 39.6 48 Methyl acrylate 55 2.322 2.322 0.000 0 70228 20.0 20.8 50 Methacrylonitrile 67 2.389 2.389 0.000 0 29459 20.0 221.9 49 Chlorobromomethane 128 2.395 2.389 0.000 0 19368 40.0 39.6 52 Chloroform 83 2.456 0.000 0 117760 20.0 21.3 \$ 53 Dibromofluoromethane (Surr) 113 2.572 2.572 0.
43 cis-1,2-Dichloroethene 96 2.231 2.231 0.000 0 72477 20.0 21.1 45 2-Butanone (MEK) 43 2.249 2.249 0.000 0 142781 100.0 111.0 46 Propionitirile 54 2.286 2.286 0.000 0 100946 200.0 225.5 47 Ethyl acetate 70 2.304 2.304 0.000 0 15617 40.0 39.6 48 Methyl acrylate 55 2.322 2.322 0.000 0 70228 20.0 20.8 50 Methacrylonitrile 67 2.389 2.389 0.000 0 29459 20.0 221.9 49 Chloroformomethane 128 2.395 2.389 0.000 0 29459 20.0 21.1 51 Tetrahydrofuran 72 2.432 2.432 0.000 0 19368 40.0 39.6 52 Chloroform 83 2.456 2.456 0.000 0 117760 20.0 21.3 \$5 Dibromofiluoromethane (Surr) 113 2.572 2.572<
45 2-Butanone (MEK)
46 Propionitrile 54 2.286 2.286 0.000 0 100946 200.0 225.5 47 Ethyl acetate 70 2.304 2.304 0.000 0 15617 40.0 39.6 48 Methyl acrylate 55 2.322 2.322 0.000 0 70228 20.0 20.8 50 Methacrylonitrile 67 2.389 2.389 0.000 0 292411 200.0 221.9 49 Chloroformomethane 128 2.395 2.389 0.006 0 29459 20.0 21.1 51 Tetrahydrofuran 72 2.432 2.000 0 19368 40.0 39.6 52 Chloroform 83 2.456 2.456 0.000 0 117760 20.0 21.3 \$53 Dibromofluoromethane (Surr) 113 2.572 2.572 0.000 0 146346 50.0 49.8 54 1,1,1-Trichloroethane 97 2.584 2.584 0.000 0 106173 20.0
47 Ethyl acetate 70 2.304 2.304 0.000 0 15617 40.0 39.6 48 Methyl acrylate 55 2.322 2.322 0.000 0 70228 20.0 20.8 50 Methacrylonitrile 67 2.389 2.389 0.000 0 292411 200.0 221.9 49 Chlorobromomethane 128 2.395 2.389 0.006 0 29459 20.0 21.1 51 Tetrahydrofuran 72 2.432 2.432 0.000 0 19368 40.0 39.6 52 Chloroform 83 2.456 2.456 0.000 0 117760 20.0 21.3 \$ 53 Dibromofluoromethane (Surr) 113 2.572 2.572 0.000 0 146346 50.0 49.8 54 1,1,1-Trichloroethane 97 2.584 2.584 0.000 0 106173 20.0 21.8 55 Cyclohexane 84 2.621 2.621 0.000 0 86231 20.0 23.9 56 Carbon tetrachloride 117 2.706 2.706<
48 Methyl acrylate 55 2.322 2.322 0.000 0 70228 20.0 20.8 50 Methacrylonitrile 67 2.389 2.389 0.000 0 292411 200.0 221.9 49 Chlorobromomethane 128 2.395 2.389 0.006 0 29459 20.0 21.1 51 Tetrahydrofuran 72 2.432 2.432 0.000 0 19368 40.0 39.6 52 Chloroform 83 2.456 2.456 0.000 0 117760 20.0 21.3 \$ 53 Dibromofluoromethane (Surr) 113 2.572 2.572 0.000 0 146346 50.0 49.8 54 1,1,1-Trichloroethane 97 2.584 2.584 0.000 0 106173 20.0 21.8 55 Cyclohexane 84 2.621 2.621 0.000 0 98290 20.0 23.9 56 Carbon tetrachloride 117 2.706 2.706 0.000 0 101244
50 Methacrylonitrile 67 2.389 2.389 0.000 0 292411 200.0 221.9 49 Chlorobromomethane 128 2.395 2.389 0.006 0 29459 20.0 21.1 51 Tetrahydrofuran 72 2.432 2.432 0.000 0 19368 40.0 39.6 52 Chloroform 83 2.456 2.456 0.000 0 117760 20.0 21.3 \$ 53 Dibromofluoromethane (Surr) 113 2.572 2.572 0.000 0 146346 50.0 49.8 54 1,1,1-Trichloroethane 97 2.584 2.584 0.000 0 106173 20.0 21.8 55 Cyclohexane 84 2.621 2.621 0.000 0 98290 20.0 23.9 56 Carbon tetrachloride 117 2.706 2.706 0.000 0 86231 20.0 21.2 57 1,1-Dichloroethane-d4 (Surr) 65 2.822 2.822 0.000 0
49 Chlorobromomethane 128 2.395 2.389 0.006 0 29459 20.0 21.1 51 Tetrahydrofuran 72 2.432 2.432 0.000 0 19368 40.0 39.6 52 Chloroform 83 2.456 2.456 0.000 0 117760 20.0 21.3 \$ 53 Dibromofluoromethane (Surr) 113 2.572 2.572 0.000 0 146346 50.0 49.8 54 1,1,1-Trichloroethane 97 2.584 2.584 0.000 0 106173 20.0 21.8 55 Cyclohexane 84 2.621 2.621 0.000 0 98290 20.0 23.9 56 Carbon tetrachloride 117 2.706 2.706 0.000 0 86231 20.0 21.2 57 1,1-Dichloropropene 75 2.712 2.712 0.000 0 101244 20.0 22.4 \$ 58 1,2-Dichloroethane-d4 (Surr) 65 2.822 2.822 0.000 0 171479 50.0 50.0 59 Isobutyl alcohol 43 2.865
51 Tetrahydrofuran 72 2.432 2.432 0.000 0 19368 40.0 39.6 52 Chloroform 83 2.456 2.456 0.000 0 117760 20.0 21.3 \$ 53 Dibromofluoromethane (Surr) 113 2.572 2.572 0.000 0 146346 50.0 49.8 54 1,1,1-Trichloroethane 97 2.584 2.584 0.000 0 106173 20.0 21.8 55 Cyclohexane 84 2.621 2.621 0.000 0 98290 20.0 23.9 56 Carbon tetrachloride 117 2.706 2.706 0.000 0 86231 20.0 21.2 57 1,1-Dichloroppropene 75 2.712 2.712 0.000 0 101244 20.0 22.4 \$ 58 1,2-Dichloroethane-d4 (Surr) 65 2.822 2.822 0.000 0 171479 50.0 50.0 59 Isobutyl alcohol 43 2.859 2.859 0.000 0 59026 500.0 522.8 60 Benzene 78 2.865
52 Chloroform 83 2.456 2.456 0.000 0 117760 20.0 21.3 \$ 53 Dibromofluoromethane (Surr) 113 2.572 2.572 0.000 0 146346 50.0 49.8 54 1,1,1-Trichloroethane 97 2.584 2.584 0.000 0 106173 20.0 21.8 55 Cyclohexane 84 2.621 2.621 0.000 0 98290 20.0 23.9 56 Carbon tetrachloride 117 2.706 2.706 0.000 0 86231 20.0 21.2 57 1,1-Dichloropropene 75 2.712 2.712 0.000 0 101244 20.0 22.4 \$ 58 1,2-Dichloroethane-d4 (Surr) 65 2.822 2.822 0.000 0 171479 50.0 50.0 59 Isobutyl alcohol 43 2.859 2.859 0.000 0 59026 500.0 522.8 60 Benzene 78 2.865 2.865 0.000 96 270814 20.0 21.5 61 1,2-Dichloroethane 62 2.883
\$ 53 Dibromofluoromethane (Surr) 113
54 1,1,1-Trichloroethane 97 2.584 2.584 0.000 0 106173 20.0 21.8 55 Cyclohexane 84 2.621 2.621 0.000 0 98290 20.0 23.9 56 Carbon tetrachloride 117 2.706 2.706 0.000 0 86231 20.0 21.2 57 1,1-Dichloropropene 75 2.712 2.712 0.000 0 101244 20.0 22.4 \$ 58 1,2-Dichloroethane-d4 (Surr) 65 2.822 2.822 0.000 0 171479 50.0 50.0 59 Isobutyl alcohol 43 2.859 2.859 0.000 0 59026 500.0 522.8 60 Benzene 78 2.865 2.865 0.000 96 270814 20.0 21.5 61 1,2-Dichloroethane 62 2.883 2.883 0.000 0 83130 20.0 20.3 62 Isooctane 57 2.956 2.956 0.000 95 150495 20.0 26.5 a 63 Isopropyl acetate 61 2.981
55 Cyclohexane 84 2.621 2.621 0.000 0 98290 20.0 23.9 56 Carbon tetrachloride 117 2.706 2.706 0.000 0 86231 20.0 21.2 57 1,1-Dichloropropene 75 2.712 2.712 0.000 0 101244 20.0 22.4 \$ 58 1,2-Dichloroethane-d4 (Surr) 65 2.822 2.822 0.000 0 171479 50.0 50.0 59 Isobutyl alcohol 43 2.859 2.859 0.000 0 59026 500.0 522.8 60 Benzene 78 2.865 2.865 0.000 96 270814 20.0 21.5 61 1,2-Dichloroethane 62 2.883 2.883 0.000 0 83130 20.0 20.3 62 Isooctane 57 2.956 2.956 0.000 95 150495 20.0 26.5 a 63 Isopropyl acetate 61 2.981 2.987 0.000 0 183036 20.0 20.7 * 65 Fluorobenzene 96 3.102
55 Cyclohexane 84 2.621 2.621 0.000 0 98290 20.0 23.9 56 Carbon tetrachloride 117 2.706 2.706 0.000 0 86231 20.0 21.2 57 1,1-Dichloropropene 75 2.712 2.712 0.000 0 101244 20.0 22.4 \$ 58 1,2-Dichloroethane-d4 (Surr) 65 2.822 2.822 0.000 0 171479 50.0 50.0 59 Isobutyl alcohol 43 2.859 2.859 0.000 0 59026 500.0 522.8 60 Benzene 78 2.865 2.865 0.000 96 270814 20.0 21.5 61 1,2-Dichloroethane 62 2.883 2.883 0.000 0 83130 20.0 20.3 62 Isooctane 57 2.956 2.956 0.000 95 150495 20.0 26.5 a 63 Isopropyl acetate 61 2.981 2.987 0.000 0 26393 20.0 21.7 * 65 Fluorobenzene 96 3.102
56 Carbon tetrachloride 117 2.706 2.706 0.000 0 86231 20.0 21.2 57 1,1-Dichloropropene 75 2.712 2.712 0.000 0 101244 20.0 22.4 \$ 58 1,2-Dichloroethane-d4 (Surr) 65 2.822 2.822 0.000 0 171479 50.0 50.0 59 Isobutyl alcohol 43 2.859 2.859 0.000 0 59026 500.0 522.8 60 Benzene 78 2.865 2.865 0.000 96 270814 20.0 21.5 61 1,2-Dichloroethane 62 2.883 2.883 0.000 0 83130 20.0 20.3 62 Isooctane 57 2.956 2.956 0.000 95 150495 20.0 26.5 a 63 Isopropyl acetate 61 2.981 2.981 0.000 0 26393 20.0 21.7 64 Tert-amyl methyl ether 73 2.987 2.987 0.000 0
57 1,1-Dichloropropene 75 2.712 2.712 0.000 0 101244 20.0 22.4 \$ 58 1,2-Dichloroethane-d4 (Surr) 65 2.822 2.822 0.000 0 171479 50.0 50.0 59 Isobutyl alcohol 43 2.859 2.859 0.000 0 59026 500.0 522.8 60 Benzene 78 2.865 2.865 0.000 96 270814 20.0 21.5 61 1,2-Dichloroethane 62 2.883 2.883 0.000 0 83130 20.0 20.3 62 Isooctane 57 2.956 2.956 0.000 95 150495 20.0 26.5 a 63 Isopropyl acetate 61 2.981 2.981 0.000 0 26393 20.0 21.7 64 Tert-amyl methyl ether 73 2.987 2.987 0.000 0 183036 20.0 20.7 * 65 Fluorobenzene 96 3.102 3.103 0.000 0 580099 50.0 50.0
\$ 58 1,2-Dichloroethane-d4 (Surr) 65
59 Isobutyl alcohol 43 2.859 2.859 0.000 0 59026 500.0 522.8 60 Benzene 78 2.865 2.865 0.000 96 270814 20.0 21.5 61 1,2-Dichloroethane 62 2.883 2.883 0.000 0 83130 20.0 20.3 62 Isooctane 57 2.956 2.956 0.000 95 150495 20.0 26.5 a 63 Isopropyl acetate 61 2.981 2.981 0.000 0 26393 20.0 21.7 64 Tert-amyl methyl ether 73 2.987 2.987 0.000 0 183036 20.0 20.7 * 65 Fluorobenzene 96 3.102 3.103 0.000 0 580099 50.0 50.0
60 Benzene 78 2.865 2.865 0.000 96 270814 20.0 21.5 61 1,2-Dichloroethane 62 2.883 2.883 0.000 0 83130 20.0 20.3 62 Isooctane 57 2.956 2.956 0.000 95 150495 20.0 26.5 a 63 Isopropyl acetate 61 2.981 2.981 0.000 0 26393 20.0 21.7 64 Tert-amyl methyl ether 73 2.987 2.987 0.000 0 183036 20.0 20.7 * 65 Fluorobenzene 96 3.102 3.103 0.000 0 580099 50.0 50.0
61 1,2-Dichloroethane 62 2.883 2.883 0.000 0 83130 20.0 20.3 62 Isooctane 57 2.956 2.956 0.000 95 150495 20.0 26.5 a 63 Isopropyl acetate 61 2.981 2.981 0.000 0 26393 20.0 21.7 64 Tert-amyl methyl ether 73 2.987 2.987 0.000 0 183036 20.0 20.7 * 65 Fluorobenzene 96 3.102 3.103 0.000 0 580099 50.0 50.0
62 Isooctane 57 2.956 2.956 0.000 95 150495 20.0 26.5 a 63 Isopropyl acetate 61 2.981 2.981 0.000 0 26393 20.0 21.7 64 Tert-amyl methyl ether 73 2.987 2.987 0.000 0 183036 20.0 20.7 * 65 Fluorobenzene 96 3.102 3.103 0.000 0 580099 50.0 50.0
63 Isopropyl acetate 61 2.981 2.981 0.000 0 26393 20.0 21.7 64 Tert-amyl methyl ether 73 2.987 2.987 0.000 0 183036 20.0 20.7 * 65 Fluorobenzene 96 3.102 3.103 0.000 0 580099 50.0 50.0
64 Tert-amyl methyl ether 73 2.987 2.987 0.000 0 183036 20.0 20.7 * 65 Fluorobenzene 96 3.102 3.103 0.000 0 580099 50.0 50.0
* 65 Fluorobenzene 96 3.102 3.103 0.000 0 580099 50.0 50.0
66 n-Heptane 43 3.133 3.133 0.000 0 66670 20.0 27.5
67 Trichloroethene 95 3.432 3.432 0.000 0 72776 20.0 21.0
68 n-Butanol 56 3.456 3.456 0.000 0 39672 500.0 389.9
69 Ethyl acrylate 55 3.590 3.590 0.000 0 157714 20.0 23.1
70 Methylcyclohexane 83 3.602 3.602 0.000 0 98863 20.0 25.3
• •
72 Dibromomethane 93 3.737 3.737 -0.001 57 41158 20.0 20.5
* 73 1,4-Dioxane-d8 96 3.743 3.743 0.000 0 43125 1000.0 1000.0
74 1,4-Dioxane 88 3.791 3.791 0.000 0 19093 400.0 399.7
75 Methyl methacrylate 100 3.810 3.810 0.000 0 35364 40.0 40.9
76 n-Propyl acetate 43 3.889 3.889 0.000 0 86952 20.0 21.0
77 Dichlorobromomethane 83 3.919 3.919 0.000 0 84823 20.0 20.3
78 2-Nitropropane 41 4.163 4.163 0.000 0 29853 40.0 36.4
79 2-Chloroethyl vinyl ether 106 4.285 4.285 0.000 0 10119 20.0 18.7
<i>, ,</i>
80 Epichlorohydrin 57 4.316 4.316 0.000 0 133127 400.0 463.4
80 Epichlorohydrin 57 4.316 4.316 0.000 0 133127 400.0 463.4 81 cis-1,3-Dichloropropene 75 4.401 4.401 0.000 0 108678 20.0 20.8
80 Epichlorohydrin 57 4.316 4.316 0.000 0 133127 400.0 463.4

FORM I GC/MS VOA ORGANICS ANALYSIS DATA SHEET

Lab Name: Eurofins TestAmerica, Edison	Job No.: 460-246589-1					
SDG No.:						
Client Sample ID:	Lab Sample ID: LCS 460-811539/	3				
Matrix: Water	Lab File ID: T57742.D					
Analysis Method: 8260D	Date Collected:					
Sample wt/vol: 5(mL)	Date Analyzed: 11/05/2021 09:	21				
Soil Aliquot Vol:	Dilution Factor: 1					
Soil Extract Vol.:	GC Column: DB-624 ID:	0.18 (mm)				
% Moisture:	Level: (low/med) Low					
Analysis Batch No.: 811539	Units: ug/L					

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
71-55-6	1,1,1-Trichloroethane	21.8		0.50	0.24
79-34-5	1,1,2,2-Tetrachloroethane	20.3		0.50	0.37
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethan e	26.0		0.50	0.31
79-00-5	1,1,2-Trichloroethane	20.5		0.50	0.20
75-34-3	1,1-Dichloroethane	22.8		0.50	0.26
75-35-4	1,1-Dichloroethene	23.0		0.50	0.26
87-61-6	1,2,3-Trichlorobenzene	21.2		0.50	0.36
120-82-1	1,2,4-Trichlorobenzene	20.8		0.50	0.37
96-12-8	1,2-Dibromo-3-Chloropropane	18.0		0.50	0.38
95-50-1	1,2-Dichlorobenzene	20.0		0.50	0.21
107-06-2	1,2-Dichloroethane	20.3		0.50	0.43
78-87-5	1,2-Dichloropropane	21.4		0.50	0.35
541-73-1	1,3-Dichlorobenzene	20.2		0.50	0.34
106-46-7	1,4-Dichlorobenzene	20.3		0.50	0.33
123-91-1	1,4-Dioxane	400		25	28
78-93-3	2-Butanone (MEK)	111		2.5	1.9
591-78-6	2-Hexanone	94.5		2.5	1.1
108-10-1	4-Methyl-2-pentanone (MIBK)	99.9		2.5	1.3
67-64-1	Acetone	92.1		5.0	4.4
71-43-2	Benzene	21.5		0.50	0.20
75-25-2	Bromoform	18.3		0.50	0.54
74-83-9	Bromomethane	16.1		0.50	0.55
75-15-0	Carbon disulfide	22.9		0.50	0.82
56-23-5	Carbon tetrachloride	21.2		0.50	0.21
108-90-7	Chlorobenzene	20.4		0.50	0.38
74-97-5	Chlorobromomethane	21.1		0.50	0.41
124-48-1	Chlorodibromomethane	19.1		0.50	0.28
75-45-6	Chlorodifluoromethane	21.7		1.0	0.67
75-00-3	Chloroethane	19.8		0.50	0.32
67-66-3	Chloroform	21.3		0.50	0.33
74-87-3	Chloromethane	19.9	✓	0.50	0.40
156-59-2	cis-1,2-Dichloroethene	21.1		0.50	0.22
10061-01-5	cis-1,3-Dichloropropene	20.8		0.50	0.22
110-82-7	Cyclohexane	23.9		0.50	0.32
75-27-4	Dichlorobromomethane	20.3		0.50	0.34

DUSR Calculations Sheet

Sample ID: LCS

TC: chloromethane

ICAL Level: std 1

Val File Result for TC:

Ical Calc

Area TC	3467	1	0.3254
Area IS	582823	2	0.2974
		3	0.2586
Conc TC	1	4	0.257
Conc IS	50	5	0.2721
		6	0.3417
RRF =	0.297432	7	0.3588
		8	
		9	
		10	
		Avg RRF =	0.301571
		Std Dev =	0.041175
		%RSD =	13.65352

Sample Calc

Area TC	69541	DF	1
Area IS	580099		
Conc IS	50		
Avg RRF	0.301571		

Conc TC = $19.87553 \mu g/L$ Conc TC = 19.87553

Notes:

Green = matched reported value Red = did not match reported value

Client: Wood E&I Solutions Inc

Project/Site: LMC Q4 2021 GW Monitoring

Method: 8260D - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: LCS 460-812406/3 **Matrix: Water**

associated with lab samples 1-10, 12-14 16-20

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Job ID: 460-246843-1

Analysis Batch: 812406

	Spike	LCS	LCS				%Rec.
Analyte	Added	Result		Unit	D	%Rec	Limits
Chlorodifluoromethane	20.0	23.1		ug/L		115	10 - 150
Chloroethane	20.0	21.0		ug/L		105	50 - 150
Chloroform	20.0	20.7		ug/L		103	78 - 125
Chloromethane	20.0	19.9		ug/L		99	38 - 150
cis-1,2-Dichloroethene	20.0	20.7		ug/L		104	78 - 121
cis-1,3-Dichloropropene	20.0	20.8		ug/L		104	74 - 125
Cyclohexane	20.0	19.9		ug/L		99	67 - 133
Dichlorobromomethane	20.0	20.8		ug/L		104	72 - 121
Dichlorodifluoromethane	20.0	19.4		ug/L		97	31 - 150
Ethylbenzene	20.0	20.4		ug/L		102	78 - 120
Ethylene Dibromide	20.0	20.9		ug/L		104	69 - 126
Freon 11	20.0	23.3		ug/L		117	61 - 140
Freon 123	20.0	23.7		ug/L		118	10 - 150
Isopropylbenzene	20.0	19.8		ug/L		99	79 - 125
Methyl acetate	40.0	47.7		ug/L		119	70 - 127
Methyl tert-butyl ether	20.0	21.9		ug/L		109	65 - 131
Methylcyclohexane	20.0	20.4		ug/L		102	60 - 139
Methylene Chloride	20.0	21.2		ug/L		106	74 - 127
m-Xylene & p-Xylene	20.0	19.9		ug/L		99	78 - 123
o-Xylene	20.0	19.5		ug/L		97	78 - 122
Styrene	20.0	19.3		ug/L		97	75 - 127
Tetrachloroethene	20.0	20.8		ug/L		104	70 - 127
Toluene	20.0	20.6		ug/L		103	78 - 119
trans-1,2-Dichloroethene	20.0	22.0		ug/L		110	74 - 126
trans-1,3-Dichloropropene	20.0	20.5		ug/L		102	66 - 127
Trichloroethene	20.0	20.5		ug/L		103	71 - 121
Vinyl chloride	20.0	21.9		ug/L		109	61 - 144
Freon 115 associated samples UJ, LCSL	20.0	13.4		ug/L		67	10 - 150
Freon 152a	20.0	23.0		ug/L		115	10 - 150

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4	105		75 - 123
Bromofluorobenzene	96		76 - 120
Dibromofluoromethane (Surr)	103		77 - 124
Toluene-d8	100		80 - 120

Lab Sample ID: 460-246843-6 MS

Matrix: Water

Analysis Batch: 812406

Client Sample ID: MW-22ML-XX Prep Type: Total/NA

-	Sample	Sample	Spike	MS	MS				%Rec.
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits
1,1,1-Trichloroethane	0.50	U	20.0	20.3		ug/L		102	68 - 128
1,1,2,2-Tetrachloroethane	0.50	U	20.0	20.8		ug/L		104	63 - 139
1,1,2-Trichloro-1,2,2-trifluoroetha	0.50	U	20.0	19.5		ug/L		98	59 - 142
ne									
1,1,2-Trichloroethane	0.50	U	20.0	21.3		ug/L		106	74 - 125
1,1-Dichloroethane	0.50	U	20.0	21.6		ug/L		108	73 - 130
1,1-Dichloroethene	0.50	U	20.0	21.7		ug/L		108	68 - 133
1,2,3-Trichlorobenzene	0.50	U	20.0	19.9		ug/L		99	53 - 144

Eurofins TestAmerica, Edison

Page 45 of 907

Client: Wood E&I Solutions Inc

Job ID: 460-246843-1 Project/Site: LMC Q4 2021 GW Monitoring

Method: 8260D - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: 460-246843-8 MS

Matrix: Water

Analysis Batch: 812406

Client Sample ID: MW-31GL-XX

Prep Type: Total/NA

	Sample	Sample	Spike	MS	MS				%Rec.
Analyte		Qualifier	Added		Qualifier	Unit	D	%Rec	Limits
Bromomethane	0.50	U	20.0	23.4		ug/L		117	43 - 150
Carbon disulfide	0.50	U	20.0	21.6		ug/L		108	64 - 138
Carbon tetrachloride	0.50	U	20.0	20.3		ug/L		102	56 - 131
Chlorobenzene	0.50	U	20.0	20.1		ug/L		101	80 - 119
Chlorobromomethane	0.50	U	20.0	22.0		ug/L		110	73 - 126
Chlorodibromomethane	0.50	U	20.0	19.7		ug/L		98	58 - 130
Chlorodifluoromethane	1.1		20.0	23.1		ug/L		110	10 - 150
Chloroethane	0.50	U	20.0	23.0		ug/L		115	50 - 150
Chloroform J-, MSL	0.50	U	20.0	21.4		ug/L		107	78 - 125
Chloromethane	0.50	U	20.0	19.2		ug/L		96	38 - 150
cis-1,2-Dichloroethene	66	F1	20.0	79.9	F1	ug/L		69	78 - 121
cis-1,3-Dichloropropene	0.50	U	20.0	20.5		ug/L		103	74 - 125
Cyclohexane	0.50	U	20.0	21.2		ug/L		106	67 - 133
Dichlorobromomethane	0.50	U	20.0	21.1		ug/L		106	72 - 121
Dichlorodifluoromethane	0.50	U	20.0	20.3		ug/L		101	31 - 150
Ethylbenzene	0.50	U	20.0	20.6		ug/L		103	78 - 120
Ethylene Dibromide	0.50	U	20.0	20.4		ug/L		102	69 - 126
Freon 11	0.50	U	20.0	23.1		ug/L		116	61 - 140
Freon 123	1.0	U	20.0	24.8		ug/L		124	10 - 150
Isopropylbenzene	0.50	U	20.0	19.6		ug/L		98	79 - 125
Methyl acetate	2.5	U	40.0	38.6		ug/L		97	70 - 127
Methyl tert-butyl ether	0.50	U	20.0	21.1		ug/L		105	65 - 131
Methylcyclohexane	0.50	U	20.0	22.0		ug/L		110	60 - 139
Methylene Chloride	0.50	U	20.0	21.0		ug/L		105	74 - 127
m-Xylene & p-Xylene	0.50	U	20.0	19.6		ug/L		98	78 - 123
o-Xylene	0.50	U	20.0	19.6		ug/L		98	78 - 122
Styrene	0.50	U	20.0	19.3		ug/L		96	75 - 127
Tetrachloroethene	8.4		20.0	27.7		ug/L		97	70 - 127
Toluene	0.50	U	20.0	20.8		ug/L		104	78 - 119
trans-1,2-Dichloroethene	0.29	J	20.0	22.4		ug/L		111	74 - 126
trans-1,3-Dichloropropene	0.50	U	20.0	20.1		ug/L		100	66 - 127
Trichloroethene	17		20.0	35.6		ug/L		95	71 - 121
Vinyl chloride	0.50	U	20.0	21.0		ug/L		105	61 - 144
Freon 115	5.0		20.0	23.5		ug/L		117	10 - 150
Freon 152a	1.0	U	20.0	23.3		ug/L		117	10 - 150
	MS	MS							

99 75 - 123 1,2-Dichloroethane-d4 Bromofluorobenzene 97 76 - 120

Dibromofluoromethane (Surr) 105 77 - 124 Toluene-d8 100 80 - 120

%Recovery Qualifier

Lab Sample ID: 460-246843-8 MSD

Matrix: Water

Surrogate

Analysis Batch: 812406

	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
1,1,1-Trichloroethane	0.50	U	20.0	21.0		ug/L	<u></u>	105	68 - 128	1	30

Limits

Eurofins TestAmerica, Edison

Client Sample ID: MW-31GL-XX

Prep Type: Total/NA

Client: Wood E&I Solutions Inc

Project/Site: LMC Q4 2021 GW Monitoring

Method: 8260D - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: 460-246843-8 MSD

Matrix: Water

Analysis Batch: 812406

Client Sample ID: MW-31GL-XX

Prep Type: Total/NA

Job ID: 460-246843-1

	-	Sample	Spike		MSD				%Rec.		RPD
Analyte		Qualifier	Added		Qualifier	Unit	D	%Rec	Limits	RPD	Limit
1,1,2,2-Tetrachloroethane	0.50	U	20.0	21.5		ug/L		107	63 - 139	2	30
1,1,2-Trichloro-1,2,2-trifluoroetha	2.9		20.0	24.6		ug/L		109	59 - 142	1	30
ne 1,1,2-Trichloroethane	0.50		20.0	21.7		ug/L		108	74 - 125	3	30
1,1-Dichloroethane	0.50		20.0	22.7		ug/L ug/L		113	73 - 130	3	30
1,1-Dichloroethene	0.50		20.0	23.0		ug/L ug/L		115	68 ₋ 133	2	30
1,2,3-Trichlorobenzene	0.50		20.0	23.3		ug/L ug/L		116	53 - 144	7	30
1,2,4-Trichlorobenzene	0.50		20.0	23.3		ug/L ug/L		111	64 - 132	3	30
1,2-Dibromo-3-Chloropropane	0.50		20.0	17.7		ug/L ug/L		88	41 - 143	2	30
1,2-Dichlorobenzene	0.50		20.0	21.1		ug/L		106	79 - 122	5	30
1,2-Dichloroethane	0.50		20.0	20.6		ug/L ug/L		103	75 - 122 75 - 121	4	30
1,2-Dichloropropane	0.50		20.0	22.0		ug/L ug/L		110	76 - 121	6	30
1,3-Dichlorobenzene	0.50		20.0	20.9				105	80 - 121	3	30
•	0.50		20.0	20.9		ug/L			80 - 121	3 4	30
1,4-Dichlorobenzene	25		400	402		ug/L		104	70 - 116		
1,4-Dioxane						ug/L		100		1	30
2-Butanone (MEK)	2.5		100	109		ug/L		109	69 - 128	4	30
2-Hexanone	2.5		100	101		ug/L		101	74 - 127	3	30
4-Methyl-2-pentanone (MIBK)	2.5		100	108		ug/L		108	69 - 128	6	30
Acetone	5.0		100	87.0		ug/L		87	61 - 134	4	30
Benzene	0.50		20.0	21.3		ug/L		107	78 - 126	1	30
Bromoform	0.50		20.0	19.4		ug/L		97	38 - 144	4	30
Bromomethane	0.50		20.0	24.6		ug/L		123	43 - 150	5	30
Carbon disulfide	0.50		20.0	22.2		ug/L		111	64 - 138	3	30
Carbon tetrachloride	0.50		20.0	20.4		ug/L		102	56 - 131	0	30
Chlorobenzene	0.50		20.0	20.9		ug/L		104	80 - 119	4	30
Chlorobromomethane	0.50		20.0	22.2		ug/L		111	73 - 126	1	30
Chlorodibromomethane	0.50	. U	20.0	20.0		ug/L		100	58 - 130	2	30
Chlorodifluoromethane	1.1		20.0	22.4		ug/L		106	10 - 150	3	30
Chloroethane	0.50		20.0	25.4		ug/L		127	50 - 150	10	30
Chloroform	0.50		20.0	21.5		ug/L		107	78 - 125	0	30
Chloromethane J-, MSL	0.50		20.0	19.5		ug/L		97	38 - 150	1	30
cis-1,2-Dichloroethene		F1	20.0	79.0	F1	ug/L		65	78 - 121	1	30
cis-1,3-Dichloropropene	0.50		20.0	21.5		ug/L		108	74 - 125	5	30
Cyclohexane	0.50		20.0	21.1		ug/L		105	67 - 133	1	30
Dichlorobromomethane	0.50		20.0	21.7		ug/L		108	72 - 121	3	30
Dichlorodifluoromethane	0.50		20.0	19.9		ug/L		99	31 - 150	2	30
Ethylbenzene	0.50		20.0	20.9		ug/L		104	78 - 120	2	30
Ethylene Dibromide	0.50	U	20.0	21.2		ug/L		106	69 - 126	4	30
Freon 11	0.50	U	20.0	23.4		ug/L		117	61 - 140	1	30
Freon 123	1.0	U	20.0	24.2		ug/L		121	10 - 150	2	30
Isopropylbenzene	0.50	U	20.0	20.2		ug/L		101	79 - 125	3	30
Methyl acetate	2.5	U	40.0	37.3		ug/L		93	70 - 127	4	30
Methyl tert-butyl ether	0.50	U	20.0	21.5		ug/L		107	65 - 131	2	30
Methylcyclohexane	0.50	U	20.0	21.7		ug/L		108	60 - 139	1	30
Methylene Chloride	0.50	U	20.0	21.3		ug/L		106	74 - 127	1	30
m-Xylene & p-Xylene	0.50	U	20.0	20.3		ug/L		101	78 - 123	3	30
o-Xylene	0.50		20.0	20.3		ug/L		101	78 - 122	4	30
Styrene	0.50	U	20.0	20.0		ug/L		100	75 - 127	4	30
Tetrachloroethene	8.4		20.0	28.2		ug/L		99	70 - 127	2	30

Eurofins TestAmerica, Edison

Detection Summary

Client: Wood E&I Solutions Inc

Project/Site: LMC Q4 2021 GW Monitoring

Client Sample ID: MW-33ML-XX	Lab Sample ID: 460-246843-12
------------------------------	------------------------------

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
cis-1,2-Dichloroethene	1.0		0.50	0.22	ug/L	1	_	8260D	Total/NA
Trichloroethene	0.72		0.50	0.31	ug/L	1		8260D	Total/NA

Client Sample ID: MW-37MU-XX

Lab Sample ID: 460-246843-13

Job ID: 460-246843-1

Analyte	Result C	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
1,1,2-Trichloro-1,2,2-trifluoroethane	7.2		0.50	0.31	ug/L	1	_	8260D	Total/NA
1,1-Dichloroethane	0.32 J	J	0.50	0.26	ug/L	1		8260D	Total/NA
1,1-Dichloroethene	0.41 J	J	0.50	0.26	ug/L	1		8260D	Total/NA
Chlorodifluoromethane	170		1.0	0.67	ug/L	1		8260D	Total/NA
Chloroform	0.44 J	J	0.50	0.33	ug/L	1		8260D	Total/NA
cis-1,2-Dichloroethene	170		0.50	0.22	ug/L	1		8260D	Total/NA
Tetrachloroethene	25		0.50	0.25	ug/L	1		8260D	Total/NA
trans-1,2-Dichloroethene	1.3		0.50	0.24	ug/L	1		8260D	Total/NA
Trichloroethene	40		0.50	0.31	ug/L	1		8260D	Total/NA

Client Sample ID: MW-37ML-XX

Lab Sample ID: 460-246843-14

Analyte	Result Qualifie	r RL	MDL	Unit	Dil Fac	D	Method	Prep Type
1,1,2-Trichloro-1,2,2-trifluoroethane	8.4	0.50	0.31	ug/L	1	_	8260D	Total/NA
1,1-Dichloroethane	0.30 J	0.50	0.26	ug/L	1		8260D	Total/NA
1,1-Dichloroethene	0.54	0.50	0.26	ug/L	1		8260D	Total/NA
1,2-Dichloroethane	0.60	0.50	0.43	ug/L	1		8260D	Total/NA
Chlorodifluoromethane	1.8	1.0	0.67	ug/L	1		8260D	Total/NA
Chloroform	0.63	0.50	0.33	ug/L	1		8260D	Total/NA
cis-1,2-Dichloroethene	200	0.50	0.22	ug/L	1		8260D	Total/NA
Freon 11	0.57	0.50	0.32	ug/L	1		8260D	Total/NA
Tetrachloroethene	9.9	0.50	0.25	ug/L	1		8260D	Total/NA
trans-1,2-Dichloroethene	0.81	0.50	0.24	ug/L	1		8260D	Total/NA
Trichloroethene	43	0.50	0.31	ug/L	1		8260D	Total/NA

Client Sample ID: MW-43MU-XX

Lab Sample ID: 460-246843-15

Analyte	Result Qualifier	RL	MDL Unit	Dil Fac D	Method	Prep Type
cis-1,2-Dichloroethene	0.51	0.50	0.22 ug/L		8260D	Total/NA
Tetrachloroethene	0.30 J	0.50	0.25 ug/L	1	8260D	Total/NA
Trichloroethene	0.67	0.50	0.31 ug/L	1	8260D	Total/NA

Client Sample ID: MW-43MI-XX

Lab Sample ID: 460-246843-16

Analyte	Result Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
1,1,2-Trichloro-1,2,2-trifluoroethane	2.7	0.50	0.31	ug/L		_	8260D	Total/NA
Chlorodifluoromethane	3.4	1.0	0.67	ug/L	1		8260D	Total/NA
cis-1,2-Dichloroethene	43	0.50	0.22	ug/L	1		8260D	Total/NA
Tetrachloroethene	3.7	0.50	0.25	ug/L	1		8260D	Total/NA
Trichloroethene	13	0.50	0.31	ug/L	1		8260D	Total/NA
Chloride	13.5	5.0	1.1	mg/L	1		SM 4500 CI- B	Total/NA

Client Sample ID: QC-EB011121-01

Lab Sample ID: 460-246843-17

associated wit Analyte	h samples collected on	11/01 Result Qualifier	RL	MDL Unit	Dil Fac D	Method	Prep Type
Methylene Chloride	samples ND	0.43 J	0.50	0.32 ug/L		8260D	Total/NA

This Detection Summary does not include radiochemical test results.

Eurofins TestAmerica, Edison

Detection Summary

Client: Wood E&I Solutions Inc

samples ND - no quals

Acetone

Job ID: 460-246843-1 Project/Site: LMC Q4 2021 GW Monitoring

Client Sample ID: QC-EB0211	21-01				Lab Sam	ple ID: 46	0-246843-18	
 associated with samples collected o Analyte 		Qualifier	RL	MDL	Unit	Dil Fac D	Method	Prep Type
Acetone samples ND	4.4	J	5.0	4.4	ug/L		8260D	Total/NA
cis-1,2-Dichloroethene >5x blk - no quals	1.5		0.50	0.22	ug/L	1	8260D	Total/NA
Methylene Chloride samples ND	0.49	J	0.50	0.32	ug/L	1	8260D	Total/NA
Client Sample ID: QC-EB0311	21-XX					Lab Sam	ple ID: 46	0-246843-19
Analyte associated with samples collected	on 11/03 Result	Qualifier	RL	MDL	Unit	Dil Fac D	Method	Prep Type
Methylene Chloride samples ND	0.48	J	0.50	0.32	ug/L	1	8260D	Total/NA
Client Sample ID: QC-TB0111	21-XX					Lab Sam	ple ID: 46	0-246843-20
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac D	Method	Prep Type

5.0

5.8

4.4 ug/L

1 8260D

Total/NA

Client: Wood E&I Solutions Inc

Project/Site: LMC Q4 2021 Groundwater Monitoring

Method: 8260D - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: MB 460-814571/8

Matrix: Water

Analysis Batch: 814571

Client Sample ID: Method Blank

Prep Type: Total/NA

Job ID: 460-247613-1

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Methyl acetate	2.5	U	2.5	0.79	ug/L			11/21/21 10:56	1
Methylcyclohexane	0.50	U	0.50	0.71	ug/L			11/21/21 10:56	1
Freon 115	5.0	U	5.0	3.4	ug/L			11/21/21 10:56	1
Freon 152a	1.0	U	1.0	0.76	ug/L			11/21/21 10:56	1
Freon 123	1.0	U	1.0	0.20	ug/L			11/21/21 10:56	1
Freon 22	1.0	U	1.0	0.67	ug/L			11/21/21 10:56	1

MB MB Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac 75 - 123 103 1,2-Dichloroethane-d4 (Surr) 11/21/21 10:56 Toluene-d8 (Surr) 88 80 - 120 11/21/21 10:56 1 4-Bromofluorobenzene 102 76 - 120 11/21/21 10:56 1 Dibromofluoromethane (Surr) 104 77 - 124 11/21/21 10:56

70-130

Lab Sample ID: LCS 460-814571/4

Matrix: Water

Analysis Batch: 814571

Client Sample ID: Lab Control Sample Prep Type: Total/NA

	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Chloromethane	20.0	21.4		ug/L		107	38 - 150
Vinyl chloride	20.0	21.3		ug/L		107	61 - 144
Bromomethane biased high, sample ND - no quals	20.0	26.3		ug/L		132	43 - 150
Chloroethane	20.0	23.1		ug/L		116	50 - 150
Methylene Chloride	20.0	19.9		ug/L		99	74 - 127
Acetone	100	98.6		ug/L		99	61 - 134
Carbon disulfide	20.0	19.7		ug/L		98	64 - 138
Freon 11	20.0	24.8		ug/L		124	61 - 140
1,1-Dichloroethene	20.0	20.9		ug/L		104	68 - 133
1,1-Dichloroethane	20.0	20.6		ug/L		103	73 - 130
trans-1,2-Dichloroethene	20.0	20.5		ug/L		102	74 - 126
cis-1,2-Dichloroethene	20.0	20.7		ug/L		104	78 - 121
Chloroform	20.0	21.2		ug/L		106	78 - 125
1,2-Dichloroethane	20.0	20.1		ug/L		100	75 - 121
Methyl ethyl ketone (MEK)	100	103		ug/L		103	69 - 128
1,1,1-Trichloroethane	20.0	21.5		ug/L		107	68 - 128
Carbon tetrachloride	20.0	21.8		ug/L		109	56 - 131
Bromodichloromethane	20.0	20.9		ug/L		105	72 - 121
1,2-Dichloropropane	20.0	19.3		ug/L		97	76 - 126
cis-1,3-Dichloropropene	20.0	18.9		ug/L		94	74 - 125
Trichloroethene	20.0	20.6		ug/L		103	71 - 121
Dibromochloromethane	20.0	20.5		ug/L		103	58 - 130
1,1,2-Trichloroethane	20.0	19.5		ug/L		97	74 - 125
Benzene	20.0	18.5		ug/L		92	78 - 126
trans-1,3-Dichloropropene	20.0	19.0		ug/L		95	66 - 127
Bromoform	20.0	20.9		ug/L		104	38 - 144
Methyl isobutyl ketone (MIBK)	100	95.0		ug/L		95	69 - 128
2-Hexanone	100	95.4		ug/L		95	74 - 127
Tetrachloroethene	20.0	21.4		ug/L		107	70 - 127
1,1,2,2-Tetrachloroethane	20.0	17.6		ug/L		88	63 - 139

Eurofins TestAmerica, Edison

Page 13 of 382

Client: Wood E&I Solutions Inc

Project/Site: LMC Q4 2021 Groundwater Monitoring

Method: 8260D - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: LCS 460-814571/4

Matrix: Water

Analysis Batch: 814571

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Job ID: 460-247613-1

	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Toluene	20.0	18.7		ug/L		94	78 - 119
Chlorobenzene	20.0	20.0		ug/L		100	80 - 119
Ethylbenzene	20.0	19.8		ug/L		99	78 - 120
Styrene	20.0	19.2		ug/L		96	75 - 127
m&p-Xylene	20.0	19.4		ug/L		97	78 - 123
o-Xylene	20.0	19.5		ug/L		97	78 - 122
Xylenes, Total	40.0	38.9		ug/L		97	78 - 122
Freon 113	20.0	19.8		ug/L		99	59 - 142
Methyl tert-butyl ether	20.0	19.8		ug/L		99	65 - 131
Cyclohexane	20.0	18.3		ug/L		92	67 - 133
1,2-Dibromoethane	20.0	20.2		ug/L		101	69 - 126
1,3-Dichlorobenzene	20.0	20.3		ug/L		101	80 - 121
1,4-Dichlorobenzene	20.0	20.1		ug/L		100	80 - 118
1,2-Dichlorobenzene	20.0	20.3		ug/L		101	79 - 122
Dichlorodifluoromethane	20.0	24.2		ug/L		121	31 - 150
1,2,4-Trichlorobenzene	20.0	20.8		ug/L		104	64 - 132
1,2-Dibromo-3-Chloropropane	20.0	17.6		ug/L		88	41 - 143
Isopropylbenzene	20.0	19.8		ug/L		99	79 - 125
Methyl acetate	40.0	40.6		ug/L		101	70 - 127
Methylcyclohexane	20.0	18.4		ug/L		92	60 - 139
Freon 115	20.0	15.0		ug/L		75	10 - 150
Freon 152a	20.0	20.7		ug/L		103	10 - 150
Freon 123	20.0	21.0		ug/L		105	10 - 150
Freon 22	20.0	22.6		ug/L		113	10 - 150

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	103		75 - 123
Toluene-d8 (Surr)	89		80 - 120
4-Bromofluorobenzene	101		76 - 120
Dibromofluoromethane (Surr)	102		77 - 124

70-130

Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

Analysis Batch: 814571

Matrix: Water

Lab Sample ID: LCSD 460-814571/5

Analysis Buton: 614071									
	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Chloromethane	20.0	23.2		ug/L		116	38 - 150	8	30
Vinyl chloride	20.0	23.4		ug/L		117	61 - 144	9	30
Bromomethane biased high, sample ND - no quals	20.0	27.9		ug/L		140	43 - 150	6	30
Chloroethane	20.0	24.6		ug/L		123	50 - 150	6	30
Methylene Chloride	20.0	22.1		ug/L		110	74 - 127	10	30
Acetone	100	107		ug/L		107	61 - 134	8	30
Carbon disulfide	20.0	21.6		ug/L		108	64 - 138	9	30
Freon 11 biased high, sample ND - no quals	20.0	26.6		ug/L		133	61 - 140	7	30
1,1-Dichloroethene	20.0	23.1		ug/L		115	68 - 133	10	30
1,1-Dichloroethane	20.0	21.5		ug/L		107	73 - 130	4	30
trans-1,2-Dichloroethene	20.0	22.9		ug/L		115	74 - 126	11	30
cis-1,2-Dichloroethene	20.0	22.7		ug/L		114	78 - 121	9	30

Eurofins TestAmerica, Edison

Page 14 of 382

Client: Wood E&I Solutions Inc

Project/Site: LMC Q4 2021 Groundwater Monitoring

Method: 8260D - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: LCSD 460-814571/5 Matrix: Water

70-130

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Job ID: 460-247613-1

Analy	/sis	Batch	: 814	571
-------	------	--------------	-------	-----

Analyse	Spike Added		LCSD	nit D	9/ D oo	%Rec.	DDD	RPD Limit
Analyte Chloroform	20.0 —	23.1		nit <u>D</u> g/L	%Rec 116	78 - 125	RPD 9	30
1,2-Dichloroethane	20.0	22.8		9/ ⊑ g/L	114	75 - 121	13	30
Methyl ethyl ketone (MEK)	100	113	_	g/∟ g/L	113	69 - 128	10	30
1,1,1-Trichloroethane	20.0	23.7		9/ - 9/L	118	68 - 128	10	30
Carbon tetrachloride	20.0	23.7	-	g/∟ g/L	119	56 - 131	8	30
Bromodichloromethane	20.0	23.5	_	g/∟ g/L	117	72 - 121	11	30
1,2-Dichloropropane	20.0	21.7		g/	109	76 - 126	12	30
cis-1,3-Dichloropropene	20.0	20.9		g/∟ g/L	105	74 - 125	10	30
Trichloroethene	20.0	22.7		g/∟ g/L	113	71 - 121	10	30
Dibromochloromethane	20.0	22.5		9′ ⊑ g/L	112	58 - 130	9	30
1,1,2-Trichloroethane	20.0	21.5	-	g/L	108	74 - 125	10	30
Benzene	20.0	20.8		g/∟ g/L	104	78 - 126	12	30
trans-1,3-Dichloropropene	20.0	20.0		9/	105	66 - 127	10	30
Bromoform	20.0	23.8		g/L	119	38 - 144	13	30
Methyl isobutyl ketone (MIBK)	100	107		g/∟ g/L	107	69 - 128	12	30
2-Hexanone	100	108		9/ - 3/L	108	74 - 127	13	30
Tetrachloroethene	20.0	23.9		g/∟ g/L	119	70 - 127	11	30
1,1,2,2-Tetrachloroethane	20.0	19.7		g/∟ g/L	98	63 - 139	11	30
Toluene	20.0	21.1		9/ - g/L	105	78 - 119	12	30
Chlorobenzene	20.0	22.1	-	g/L	110	80 - 119	10	30
Ethylbenzene	20.0	21.8		g, ∟ g/L	109	78 - 120	10	30
Styrene	20.0	21.3		9/ - g/L	106	75 - 127	11	30
m&p-Xylene	20.0	21.3	-	g/L	107	78 - 123	10	30
o-Xylene	20.0	21.6		₉ , _ g/L	108	78 - 122	11	30
Xylenes, Total	40.0	43.0		9/ — g/L	107	78 - 122	10	30
Freon 113	20.0	21.9	-	g/L	110	59 - 142	10	30
Methyl tert-butyl ether	20.0	22.4		g/L	112	65 - 131	12	30
Cyclohexane	20.0	19.9		y. g/L	99	67 - 133	8	30
1,2-Dibromoethane	20.0	22.5		g/L	113	69 - 126	11	30
1,3-Dichlorobenzene	20.0	22.4		g/L	112	80 - 121	10	30
1,4-Dichlorobenzene	20.0	22.1		y g/L	110	80 - 118	10	30
1,2-Dichlorobenzene	20.0	22.6	_	g/L	113	79 - 122	11	30
Dichlorodifluoromethane biased high, sample ND - no quals	20.0	26.9		g/L	134	31 - 150	11	30
1,2,4-Trichlorobenzene	20.0	23.0		y y/L	115	64 - 132	10	30
1,2-Dibromo-3-Chloropropane	20.0	20.1	-	g/L	100	41 - 143	13	30
Isopropylbenzene	20.0	22.0	-	g/L	110	79 - 125	10	30
Methyl acetate	40.0	45.1		y. g/L	113	70 - 127	11	30
Methylcyclohexane	20.0	20.1	-	g/L	100	60 - 139	9	30
Freon 115	20.0	16.7	-	g/L	83	10 - 150	10	30
Freon 152a	20.0	23.0		y	115	10 - 150	10	30
Freon 123	20.0	22.3	_	g/L	112	10 - 150	6	30
Freon 22	20.0	24.7	_	g/L	124	10 - 150	9	30

LCSD	LCSD

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	94		75 - 123
Toluene-d8 (Surr)	88		80 - 120
4-Bromofluorobenzene	99		76 - 120
Dibromofluoromethane (Surr)	99		77 - 124

CASE NARRATIVE

Client: Wood E&I Solutions Inc

Project: LMC Q4 2021 Groundwater Monitoring

Report Number: 460-247256-1

This case narrative is in the form of an exception report, where only the anomalies related to this report, method specific performance and/or QA/QC issues are discussed. If there are no issues to report, this narrative will include a statement that documents that there are no relevant data issues.

It should be noted that samples with elevated Reporting Limits (RLs) as a result of a dilution may not be able to satisfy customer reporting limits in some cases. Such increases in the RLs are unavoidable but acceptable consequence of sample dilution that enables quantification of target analytes or interferences which exceed the calibration range of the instrument.

Calculations are performed before rounding to avoid round-off errors in calculated results.

All holding times were met and proper preservation noted for the methods performed on these samples, unless otherwise detailed in the individual sections below.

RECEIPT

The samples were received on 11/11/2021; the samples arrived in good condition, properly preserved and on ice. The temperature of the coolers at receipt was 2.0 C.

Note: All samples which require thermal preservation are considered acceptable if the arrival temperature is within 2C of the required temperature or method specified range. For samples with a specified temperature of 4C, samples with a temperature ranging from just above freezing temperature of water to 6C shall be acceptable. Samples that are hand delivered immediately following collection may not meet these criteria, however they will be deemed acceptable according to NELAC standards, if there is evidence that the chilling process has begun, such as arrival on ice, etc.

DRINKING WATER VOLATILES (GC-MS)

Samples SW-N5099-XX (460-247256-3), SW-N4388-XX (460-247256-4), SW-N12796-XX (460-247256-5), SW-N12999-XX (460-247256-6), SW-N13000-XX (460-247256-7), SW-N13821-XX (460-247256-8), SW-500 (460-247256-9) and QC-TB041121-XX (460-247256-10) were analyzed for drinking water volatiles (GC-MS) in accordance with EPA Method 524.2. The samples were analyzed on 11/18/2021 and 11/19/2021.

Bromomethane failed the recovery criteria high for LCS 460-813964/21. Bromomethane, Freon 115 and Freon 152a failed the recovery criteria high for LCS 460-814181/4. Freon 115 failed the recovery criteria high for LCS 460-814366/7. Bromomethane and Freon 115 failed the recovery criteria high for LCSD 460-813964/22. Freon 115 exceeded the RPD limit. Bromomethane failed the recovery criteria high for LCSD 460-814181/5. Freon 115 exceeded the RPD limit. Refer to the QC report for details.

Freon 115 failed the recovery criteria high for the MS of sample SW-N4388-XXMS (460-247256-4) in batch 460-814366.

Bromomethane exceeded the RPD limit for the MSD of sample SW-N4388-XXMSD (460-247256-4) in batch 460-814366.

Refer to the QC report for details.

No other difficulties were encountered during the volatiles analysis.

All other quality control parameters were within the acceptance limits.

VOLATILE ORGANIC COMPOUNDS (GC/MS) - (LOW LEVEL - LL)(TOTAL)

Samples IW-N5535-XX (460-247256-1), IW-N9687-XX (460-247256-2), MW-33MI-XX (460-247256-11), MW-44MU-XX (460-247256-12), MW-44MI-XX (460-247256-13), MW-45MI-XX (460-247256-14), MW-45MI-XX (460-247256-15), MW-46MI-XX (460-247256-16), MW-46ML-XX (460-247256-17), MW-47MI-XX (460-247256-18), MW-47ML-XX (460-247256-19), MW-49ML-XX (460-247256-20), MW-50ML-XX (460-247256-21), MW-51MI-XX (460-247256-22), MW-51ML-XX (460-247256-23), MW-52MI-XX (460-247256-24), MW-52ML-XX (460-247256-25), MW-53MI-XX (460-247256-26), MW-53ML-XX (460-247256-27), MW-54GU-XX (460-247256-28), MW-54GI-XX (460-247256-29), MW-500 (460-247256-30), MW-501 (460-247256-31) and MW-502 (460-247256-32) were analyzed for Volatile Organic Compounds (GC/MS) - (Low Level - LL)(Total) in accordance with EPA SW-846 Method 8260D - Low Level (LL). The samples were analyzed on 11/15/2021 and 11/19/2021.

Page 5 of 1911

Freon 115 exceeded the RPD limit for the MSD of sample MW-33MI-XXMSD (460-247256-11) in batch 460-814571.

see attached for MS/MSD review

Freon 115 exceeded the RPD limit for the MSD of sample MW-33MI-XXMSD (460-247256-11) in batch 460-814571.

Client: Wood E&I Solutions Inc

Project/Site: LMC Q4 2021 Groundwater Monitoring

Method: 8260D - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: LCS 460-813321/4

Matrix: Water
Analysis Batch: 813321 associated with lab samples 2, 11 - 15,

70-130

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

%Rec.

Job ID: 460-247256-1

17 - 26	Spike	LCS	LCS			%Rec.
Analyte	Added	Result	Qualifier U	nit D	%Rec	Limits
Methyl tert-butyl ether	20.0	22.1	uç	g/L	111	65 - 131
Cyclohexane	20.0	19.7	uç	j/L	98	67 - 133
1,2-Dibromoethane	20.0	23.0	uç	g/L	115	69 - 126
1,3-Dichlorobenzene	20.0	21.6	uç	g/L	108	80 - 121
1,4-Dichlorobenzene	20.0	21.0	uç	g/L	105	80 - 118
1,2-Dichlorobenzene	20.0	21.6	uç	g/L	108	79 - 122
Dichlorodifluoromethane	20.0	16.1	uç	g/L	80	31 - 150
1,2,4-Trichlorobenzene	20.0	22.9	uç	j/L	114	64 - 132
1,2-Dibromo-3-Chloropropane	20.0	19.8	uç	g/L	99	41 - 143
Isopropylbenzene	20.0	22.1	uç	g/L	110	79 - 125
Methyl acetate	40.0	48.2	uç	g/L	120	70 - 127
Methylcyclohexane	20.0	18.9	uç	g/L	94	60 - 139
Freon 115 UJ, LCSL	20.0	10.6	uç	g/L	53	10 - 150
Freon 152a	20.0	21.6	uç	J/L	108	10 - 150
Freon 123	20.0	23.5	uç	g/L	118	10 - 150
Freon 22	20.0	22.5	uç	g/L	113	10 - 150

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	101		75 - 123
Toluene-d8 (Surr)	101		80 - 120
4-Bromofluorobenzene	97		76 - 120
Dibromofluoromethane (Surr)	96		77 - 124

Lab Sample ID: LCSD 460-813321/5

Matrix: Water

Analysis Batch: 813321

Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Chloromethane	20.0	17.2		ug/L		86	38 - 150	11	30
Vinyl chloride	20.0	19.2		ug/L		96	61 - 144	9	30
Bromomethane	20.0	22.4		ug/L		112	43 - 150	14	30
Chloroethane	20.0	22.0		ug/L		110	50 - 150	0	30
Methylene Chloride	20.0	20.3		ug/L		101	74 - 127	4	30
Acetone	100	92.0		ug/L		92	61 - 134	2	30
Carbon disulfide	20.0	21.1		ug/L		106	64 - 138	6	30
Freon 11	20.0	21.8		ug/L		109	61 - 140	8	30
1,1-Dichloroethene	20.0	21.3		ug/L		107	68 - 133	8	30
1,1-Dichloroethane	20.0	20.6		ug/L		103	73 - 130	12	30
trans-1,2-Dichloroethene	20.0	21.1		ug/L		106	74 - 126	7	30
cis-1,2-Dichloroethene	20.0	20.3		ug/L		102	78 - 121	7	30
Chloroform	20.0	20.4		ug/L		102	78 - 125	8	30
1,2-Dichloroethane	20.0	20.2		ug/L		101	75 - 121	6	30
Methyl ethyl ketone (MEK)	100	109		ug/L		109	69 - 128	2	30
1,1,1-Trichloroethane	20.0	20.7		ug/L		104	68 - 128	7	30
Carbon tetrachloride	20.0	20.7		ug/L		104	56 - 131	6	30
Bromodichloromethane	20.0	20.0		ug/L		100	72 - 121	9	30
1,2-Dichloropropane	20.0	20.8		ug/L		104	76 - 126	5	30
cis-1,3-Dichloropropene	20.0	20.9		ug/L		105	74 - 125	12	30

Eurofins TestAmerica, Edison

Page 78 of 1911

Client: Wood E&I Solutions Inc

Project/Site: LMC Q4 2021 Groundwater Monitoring

Method: 8260D - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: LCSD 460-813321/5

Matrix: Water

Analysis Batch: 813321 70-130 Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Job ID: 460-247256-1

·	70-130	.						a. –		
Analysta		Spike Added		LCSD Qualifier	Unit	D	%Rec	%Rec. Limits	RPD	RPD Limit
Analyte Trichloroethene		20.0 —	20.2	Qualifier	ug/L		101	71 - 121	- RPD	30
Dibromochloromethane		20.0	20.2		ug/L		101	58 - 130	10	30
1,1,2-Trichloroethane		20.0	21.4		ug/L		107	74 - 125	9	30
Benzene		20.0	20.9		ug/L		107	74 - 125 78 - 126	14	30
trans-1,3-Dichloropropene		20.0	20.9		ug/L ug/L		104	66 - 127	! ** . 11	30
Bromoform		20.0	19.9		ug/L ug/L		100	38 - 144	9	30
Methyl isobutyl ketone (MIBK)		100	102		ug/L		100	69 - 128	3	30
2-Hexanone		100	98.6				99	74 - 127	6	30
Tetrachloroethene		20.0	21.1		ug/L ug/L		106	74 - 127 70 - 127	11	30
1,1,2,2-Tetrachloroethane		20.0	20.6		ug/L		103	63 - 139	5	30
Toluene		20.0	20.8		ug/L ug/L		103	78 - 119	10	30
Chlorobenzene		20.0	20.8		ug/L ug/L		104	80 ₋ 119	4	30
Ethylbenzene		20.0	20.2		ug/L ug/L		101	78 ₋ 120	4	30
Styrene		20.0	19.0		ug/L ug/L		95	76 - 120 75 - 127	411	30
m&p-Xylene		20.0	19.0		ug/L ug/L		99	78 - 127 78 - 123	9	30
		20.0	19.9		-		99 98	76 - 123 78 - 122	10	30
o-Xylene Xylenes, Total		40.0	39.5		ug/L			78 - 122		30
Freon 113		20.0	20.3		ug/L		99	70 - 122 59 - 142	9	30
		20.0	20.3		ug/L		101 104	65 ₋ 131	1 6	30
Methyl tert-butyl ether		20.0	19.0		ug/L		95	67 - 133	3	30
Cyclohexane					ug/L			69 ₋ 126		
1,2-Dibromoethane		20.0 20.0	20.9 20.5		ug/L		104	80 - 121	10	30
1,3-Dichlorobenzene					ug/L		103		5	30
1,4-Dichlorobenzene		20.0	20.3		ug/L		102	80 - 118	3	30
1,2-Dichlorobenzene		20.0	20.4		ug/L		102	79 ₋ 122	5	30
Dichlorodifluoromethane		20.0	16.2		ug/L		81	31 - 150	1	30
1,2,4-Trichlorobenzene		20.0	21.8		ug/L		109	64 - 132	5	30
1,2-Dibromo-3-Chloropropane		20.0	19.3		ug/L		96	41 - 143	2	30
Isopropylbenzene		20.0	19.9		ug/L		99	79 - 125	1 <u>1</u>	30
Methyl acetate		40.0	44.9		ug/L		112	70 - 127	7	30
Methylcyclohexane		20.0	19.7		ug/L		99	60 - 139	4	30
Freon 115 UJ, LCSL		20.0	11.0		ug/L		55	10 - 150	3	30
Freon 152a		20.0	19.9		ug/L		99	10 - 150	8	30
Freon 123		20.0	21.4		ug/L		107	10 - 150	9	30
Freon 22		20.0	20.1		ug/L		100	10 - 150	12	30

	LCSD	LCSD	
Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	96		75 - 123
Toluene-d8 (Surr)	95		80 - 120

4-Bromofluorobenzene 91 76 - 120 Dibromofluoromethane (Surr) 95 77 - 124

Lab Sample ID: MB 460-814183/23

Matrix: Water

Analysis Batch: 814183

Client Sample ID: Method Blank
Prep Type: Total/NA

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloromethane	0.50	U	0.50	0.40	ug/L			11/19/21 15:38	1
Vinyl chloride	0.50	U	0.50	0.17	ug/L			11/19/21 15:38	1

Eurofins TestAmerica, Edison

Page 79 of 1911

Client: Wood E&I Solutions Inc

Project/Site: LMC Q4 2021 Groundwater Monitoring

Method: 8260D - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: LCS 460-814183/20

Matrix: Water Analysis Batch: 814183 associated with lab samples **Client Sample ID: Lab Control Sample**

Job ID: 460-247256-1

Prep Type: Total/NA 70-130

•	1, 16, 27 - 32	Spike	LCS	LCS				%Rec.
Analyte		Added	Result	Qualifier	Unit	D	%Rec	Limits
Styrene		20.0	21.5		ug/L		107	75 - 127
m&p-Xylene		20.0	21.8		ug/L		109	78 - 123
o-Xylene		20.0	22.1		ug/L		110	78 - 122
Xylenes, Total		40.0	43.9		ug/L		110	78 - 122
Freon 113		20.0	24.6		ug/L		123	59 - 142
Methyl tert-butyl ether		20.0	22.7		ug/L		113	65 - 131
Cyclohexane		20.0	22.7		ug/L		114	67 - 133
1,2-Dibromoethane		20.0	20.9		ug/L		104	69 - 126
1,3-Dichlorobenzene		20.0	21.9		ug/L		109	80 - 121
1,4-Dichlorobenzene		20.0	21.3		ug/L		107	80 - 118
1,2-Dichlorobenzene		20.0	21.6		ug/L		108	79 - 122
Dichlorodifluoromethane		20.0	23.4		ug/L		117	31 - 150
1,2,4-Trichlorobenzene		20.0	20.6		ug/L		103	64 - 132
1,2-Dibromo-3-Chloropropane		20.0	18.7		ug/L		94	41 - 143
Isopropylbenzene		20.0	21.8		ug/L		109	79 - 125
Methyl acetate		40.0	47.3		ug/L		118	70 - 127
Methylcyclohexane		20.0	22.4		ug/L		112	60 - 139
Freon 115 UJ, LCSL		20.0	12.8		ug/L		64	10 - 150
Freon 152a		20.0	22.5		ug/L		113	10 - 150
Freon 123		20.0	24.4		ug/L		122	10 - 150
Freon 22		20.0	22.6		ug/L		113	10 - 150

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	99		75 - 123
Toluene-d8 (Surr)	99		80 - 120
4-Bromofluorobenzene	101		76 - 120
Dibromofluoromethane (Surr)	104		77 - 124

Lab Sample ID: LCSD 460-814183/21

Matrix: Water

Analysis Batch: 814183

Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Chloromethane	20.0	26.0		ug/L		130	38 - 150	5	30
Vinyl chloride	20.0	22.8		ug/L		114	61 - 144	5	30
Bromomethane	20.0	23.8		ug/L		119	43 - 150	8	30
Chloroethane	20.0	23.6		ug/L		118	50 - 150	9	30
Methylene Chloride	20.0	23.2		ug/L		116	74 - 127	1	30
Acetone	100	93.3		ug/L		93	61 - 134	0	30
Carbon disulfide	20.0	23.6		ug/L		118	64 - 138	2	30
Freon 11	20.0	22.0		ug/L		110	61 - 140	2	30
1,1-Dichloroethene	20.0	24.7		ug/L		123	68 - 133	3	30
1,1-Dichloroethane	20.0	22.7		ug/L		113	73 - 130	0	30
trans-1,2-Dichloroethene	20.0	23.4		ug/L		117	74 - 126	0	30
cis-1,2-Dichloroethene	20.0	23.6		ug/L		118	78 - 121	0	30
Chloroform	20.0	23.2		ug/L		116	78 - 125	1	30
1,2-Dichloroethane	20.0	21.7		ug/L		108	75 - 121	1	30
Methyl ethyl ketone (MEK)	100	101		ug/L		101	69 - 128	0	30

Eurofins TestAmerica, Edison

Page 82 of 1911

Client: Wood E&I Solutions Inc

Project/Site: LMC Q4 2021 Groundwater Monitoring

Method: 8260D - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: LCSD 460-814183/21

Matrix: Water 70-130

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Job ID: 460-247256-1

Analy	ysis	Batc	h: 8′	14183
-------	------	------	-------	-------

A	Spike		LCSD		_	a. =	%Rec.		RPD
Analyte	Added		Qualifier	Unit	D	%Rec	Limits	RPD 0	Limit
1,1,1-Trichloroethane	20.0	22.6		ug/L		113	68 - 128	. .	30
Carbon tetrachloride	20.0	22.4		ug/L		112	56 - 131	1	30
Bromodichloromethane	20.0	21.2		ug/L		106	72 - 121	1	30
1,2-Dichloropropane	20.0	21.6		ug/L		108	76 - 126	2	30
cis-1,3-Dichloropropene	20.0	20.1		ug/L		100	74 - 125	0	30
Trichloroethene	20.0	19.6		ug/L		98	71 - 121	0	30
Dibromochloromethane	20.0	21.3		ug/L		106	58 - 130	1	30
1,1,2-Trichloroethane	20.0	20.7		ug/L		103	74 - 125	0	30
Benzene	20.0	21.3		ug/L		107	78 - 126	1	30
trans-1,3-Dichloropropene	20.0	20.1		ug/L		101	66 - 127	1	30
Bromoform	20.0	21.1		ug/L		105	38 - 144	2	30
Methyl isobutyl ketone (MIBK)	100	114		ug/L		114	69 - 128	3	30
2-Hexanone	100	110		ug/L		110	74 - 127	2	30
Tetrachloroethene	20.0	21.9		ug/L		109	70 - 127	2	30
1,1,2,2-Tetrachloroethane	20.0	22.1		ug/L		110	63 - 139	5	30
Toluene	20.0	20.8		ug/L		104	78 - 119	0	30
Chlorobenzene	20.0	22.1		ug/L		110	80 - 119	1	30
Ethylbenzene	20.0	22.0		ug/L		110	78 - 120	1	30
Styrene	20.0	21.9		ug/L		109	75 - 127	2	30
m&p-Xylene	20.0	22.1		ug/L		110	78 - 123	1	30
o-Xylene	20.0	22.4		ug/L		112	78 - 122	1	30
Xylenes, Total	40.0	44.4		ug/L		111	78 - 122	1	30
Freon 113	20.0	24.7		ug/L		123	59 - 142	0	30
Methyl tert-butyl ether	20.0	22.9		ug/L		114	65 - 131	1	30
Cyclohexane	20.0	23.0		ug/L		115	67 - 133	1	30
1,2-Dibromoethane	20.0	20.8		ug/L		104	69 - 126	0	30
1,3-Dichlorobenzene	20.0	22.3		ug/L		112	80 - 121	2	30
1,4-Dichlorobenzene	20.0	21.9		ug/L		109	80 - 118	3	30
1,2-Dichlorobenzene	20.0	22.2		ug/L		111	79 - 122	3	30
Dichlorodifluoromethane	20.0	22.8		ug/L		114	31 - 150	3	30
1,2,4-Trichlorobenzene	20.0	21.2		ug/L		106	64 - 132	3	30
1,2-Dibromo-3-Chloropropane	20.0	19.8		ug/L		99	41 - 143	6	30
Isopropylbenzene	20.0	22.2		ug/L		111	79 - 125	2	30
Methyl acetate	40.0	47.1		ug/L		118	70 - 127	0	30
Methylcyclohexane	20.0	22.4		ug/L		112	60 - 139	0	30
Freon 115 UJ, LCSL	20.0	12.7		ug/L		64	10 - 150	1	30
Freon 152a	20.0	23.1		ug/L		116	10 - 150		30
Freon 123	20.0	24.3		ug/L ug/L		121	10 - 150	3 1	30
Freon 22	20.0	24.3				114	10 - 150	0	30
FIEUII ZZ	∠0.0	22.1		ug/L		114	10 - 150	U	30

LCSD LCSD

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	98		75 - 123
Toluene-d8 (Surr)	99		80 - 120
4-Bromofluorobenzene	101		76 - 120
Dibromofluoromethane (Surr)	104		77 - 124

Client: Wood E&I Solutions Inc

Project/Site: LMC Q4 2021 Groundwater Monitoring

Method: 8260D - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: MB 460-814571/8

Matrix: Water

Client Sample ID: Method Blank

Prep Type: Total/NA

Job ID: 460-247256-1

Analysis Batch: 814571		
	MB	MB

	1410	1410							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Methyl acetate	2.5	U	2.5	0.79	ug/L			11/21/21 10:56	1
Methylcyclohexane	0.50	U	0.50	0.71	ug/L			11/21/21 10:56	1
Freon 115	5.0	U	5.0	3.4	ug/L			11/21/21 10:56	1
Freon 152a	1.0	U	1.0	0.76	ug/L			11/21/21 10:56	1
Freon 123	1.0	U	1.0	0.20	ug/L			11/21/21 10:56	1
Freon 22	1.0	U	1.0	0.67	ug/L			11/21/21 10:56	1

MB MB

Surrogate	%Recovery	Qualifier	Limits	Prepare	ed Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	103		75 - 123		11/21/21 10:56	1
Toluene-d8 (Surr)	88		80 - 120		11/21/21 10:56	1
4-Bromofluorobenzene	102		76 - 120		11/21/21 10:56	1
Dibromofluoromethane (Surr)	104		77 - 124		11/21/21 10:56	1

Lab Sample ID: LCS 460-814571/4

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Matrix: Water

Analysis Batch: 814571 associated with MS/MSD only - no quals

70-130

Analysis Baton. 514571	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Chloromethane	20.0	21.4		ug/L		107	38 - 150
Vinyl chloride	20.0	21.3		ug/L		107	61 - 144
Bromomethane	20.0	26.3		ug/L		132	43 - 150
Chloroethane	20.0	23.1		ug/L		116	50 - 150
Methylene Chloride	20.0	19.9		ug/L		99	74 - 127
Acetone	100	98.6		ug/L		99	61 - 134
Carbon disulfide	20.0	19.7		ug/L		98	64 - 138
Freon 11	20.0	24.8		ug/L		124	61 - 140
1,1-Dichloroethene	20.0	20.9		ug/L		104	68 - 133
1,1-Dichloroethane	20.0	20.6		ug/L		103	73 - 130
trans-1,2-Dichloroethene	20.0	20.5		ug/L		102	74 - 126
cis-1,2-Dichloroethene	20.0	20.7		ug/L		104	78 - 121
Chloroform	20.0	21.2		ug/L		106	78 - 125
1,2-Dichloroethane	20.0	20.1		ug/L		100	75 - 121
Methyl ethyl ketone (MEK)	100	103		ug/L		103	69 - 128
1,1,1-Trichloroethane	20.0	21.5		ug/L		107	68 - 128
Carbon tetrachloride	20.0	21.8		ug/L		109	56 - 131
Bromodichloromethane	20.0	20.9		ug/L		105	72 - 121
1,2-Dichloropropane	20.0	19.3		ug/L		97	76 - 126
cis-1,3-Dichloropropene	20.0	18.9		ug/L		94	74 - 125
Trichloroethene	20.0	20.6		ug/L		103	71 - 121
Dibromochloromethane	20.0	20.5		ug/L		103	58 - 130
1,1,2-Trichloroethane	20.0	19.5		ug/L		97	74 - 125
Benzene	20.0	18.5		ug/L		92	78 - 126
trans-1,3-Dichloropropene	20.0	19.0		ug/L		95	66 - 127
Bromoform	20.0	20.9		ug/L		104	38 - 144
Methyl isobutyl ketone (MIBK)	100	95.0		ug/L		95	69 - 128
2-Hexanone	100	95.4		ug/L		95	74 - 127
Tetrachloroethene	20.0	21.4		ug/L		107	70 - 127
1,1,2,2-Tetrachloroethane	20.0	17.6		ug/L		88	63 - 139

Client: Wood E&I Solutions Inc

Project/Site: LMC Q4 2021 Groundwater Monitoring

Method: 8260D - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: LCS 460-814571/4

Matrix: Water

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Job ID: 460-247256-1

Analysis Batch: 814571 associated with MS/MSD only - no quals

	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Toluene	20.0	18.7		ug/L		94	78 - 119
Chlorobenzene	20.0	20.0		ug/L		100	80 - 119
Ethylbenzene	20.0	19.8		ug/L		99	78 - 120
Styrene	20.0	19.2		ug/L		96	75 - 127
m&p-Xylene	20.0	19.4		ug/L		97	78 - 123
o-Xylene	20.0	19.5		ug/L		97	78 - 122
Xylenes, Total	40.0	38.9		ug/L		97	78 - 122
Freon 113	20.0	19.8		ug/L		99	59 - 142
Methyl tert-butyl ether	20.0	19.8		ug/L		99	65 - 131
Cyclohexane	20.0	18.3		ug/L		92	67 - 133
1,2-Dibromoethane	20.0	20.2		ug/L		101	69 - 126
1,3-Dichlorobenzene	20.0	20.3		ug/L		101	80 - 121
1,4-Dichlorobenzene	20.0	20.1		ug/L		100	80 - 118
1,2-Dichlorobenzene	20.0	20.3		ug/L		101	79 - 122
Dichlorodifluoromethane	20.0	24.2		ug/L		121	31 - 150
1,2,4-Trichlorobenzene	20.0	20.8		ug/L		104	64 - 132
1,2-Dibromo-3-Chloropropane	20.0	17.6		ug/L		88	41 - 143
Isopropylbenzene	20.0	19.8		ug/L		99	79 - 125
Methyl acetate	40.0	40.6		ug/L		101	70 - 127
Methylcyclohexane	20.0	18.4		ug/L		92	60 - 139
Freon 115	20.0	15.0		ug/L		75	10 - 150
Freon 152a	20.0	20.7		ug/L		103	10 - 150
Freon 123	20.0	21.0		ug/L		105	10 - 150
Freon 22	20.0	22.6		ug/L		113	10 - 150

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	103		75 - 123
Toluene-d8 (Surr)	89		80 - 120
4-Bromofluorobenzene	101		76 - 120
Dibromofluoromethane (Surr)	102		77 - 124

Lab Sample ID: LCSD 460-814571/5

Matrix: Water

Analysis Batch: 814571

Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

7 maryolo Batolli o 1-107 i									
-	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Chloromethane	20.0	23.2		ug/L		116	38 - 150	8	30
Vinyl chloride	20.0	23.4		ug/L		117	61 - 144	9	30
Bromomethane	20.0	27.9		ug/L		140	43 - 150	6	30
Chloroethane	20.0	24.6		ug/L		123	50 - 150	6	30
Methylene Chloride	20.0	22.1		ug/L		110	74 - 127	10	30
Acetone	100	107		ug/L		107	61 - 134	8	30
Carbon disulfide	20.0	21.6		ug/L		108	64 - 138	9	30
Freon 11	20.0	26.6		ug/L		133	61 - 140	7	30
1,1-Dichloroethene	20.0	23.1		ug/L		115	68 - 133	10	30
1,1-Dichloroethane	20.0	21.5		ug/L		107	73 - 130	4	30
trans-1,2-Dichloroethene	20.0	22.9		ug/L		115	74 - 126	11	30
cis-1,2-Dichloroethene	20.0	22.7		ug/L		114	78 - 121	9	30

Eurofins TestAmerica, Edison

Page 86 of 1911

Client: Wood E&I Solutions Inc

Project/Site: LMC Q4 2021 Groundwater Monitoring

Method: 8260D - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: LCSD 460-814571/5
Matrix: Water associ

associated with MS/MSD only - no quals

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Job ID: 460-247256-1

Analysis Batch: 814571

Analyte	Spike Added		LCSD Qualifier	Unit	D	%Rec	%Rec. Limits	RPD	RPD Limit
Chloroform		23.1	Qualifier	ug/L		116	78 ₋ 125	9	30
1,2-Dichloroethane	20.0	22.8		ug/L		114	75 - 121	13	30
Methyl ethyl ketone (MEK)	100	113		ug/L ug/L		113	69 - 128	10	30
1,1,1-Trichloroethane	20.0	23.7		ug/L		118	68 - 128	10	30
Carbon tetrachloride	20.0	23.7		ug/L		119	56 - 131	8	30
Bromodichloromethane	20.0	23.5		ug/L		117	72 - 121	11	30
1,2-Dichloropropane	20.0	21.7		ug/L		109	76 - 126	12	30
cis-1,3-Dichloropropene	20.0	20.9		ug/L		105	74 - 125	10	30
Trichloroethene	20.0	22.7		ug/L		113	71 - 121	10	30
Dibromochloromethane	20.0	22.5		ug/L		112	58 - 130	9	30
1,1,2-Trichloroethane	20.0	21.5		ug/L		108	74 - 125	10	30
Benzene	20.0	20.8		ug/L		104	78 - 126	12	30
trans-1,3-Dichloropropene	20.0	20.9		ug/L		105	66 - 127	10	30
Bromoform	20.0	23.8		ug/L		119	38 - 144	13	30
Methyl isobutyl ketone (MIBK)	100	107		ug/L		107	69 - 128	12	30
2-Hexanone	100	108		ug/L		108	74 - 127	13	30
Tetrachloroethene	20.0	23.9		ug/L		119	70 - 127	11	30
1,1,2,2-Tetrachloroethane	20.0	19.7		ug/L		98	63 - 139	11	30
Toluene	20.0	21.1		ug/L		105	78 - 119	12	30
Chlorobenzene	20.0	22.1		ug/L		110	80 - 119	10	30
Ethylbenzene	20.0	21.8		ug/L		109	78 - 120	10	30
Styrene	20.0	21.3		ug/L		106	75 - 127	11	30
m&p-Xylene	20.0	21.3		ug/L		107	78 - 123	10	30
o-Xylene	20.0	21.6		ug/L		108	78 - 122	11	30
Xylenes, Total	40.0	43.0		ug/L		107	78 - 122	10	30
Freon 113	20.0	21.9		ug/L		110	59 - 142	10	30
Methyl tert-butyl ether	20.0	22.4		ug/L		112	65 - 131	12	30
Cyclohexane	20.0	19.9		ug/L		99	67 - 133	8	30
1,2-Dibromoethane	20.0	22.5		ug/L		113	69 - 126	11	30
1,3-Dichlorobenzene	20.0	22.4		ug/L		112	80 - 121	10	30
1,4-Dichlorobenzene	20.0	22.1		ug/L		110	80 - 118	10	30
1,2-Dichlorobenzene	20.0	22.6		ug/L		113	79 - 122	11	30
Dichlorodifluoromethane	20.0	26.9		ug/L		134	31 - 150	11	30
1,2,4-Trichlorobenzene	20.0	23.0		ug/L		115	64 - 132	10	30
1,2-Dibromo-3-Chloropropane	20.0	20.1		ug/L		100	41 - 143	13	30
Isopropylbenzene	20.0	22.0		ug/L		110	79 - 125	10	30
Methyl acetate	40.0	45.1		ug/L		113	70 - 127	11	30
Methylcyclohexane	20.0	20.1		ug/L		100	60 - 139	9	30
Freon 115	20.0	16.7		ug/L		83	10 - 150	10	30
Freon 152a	20.0	23.0		ug/L		115	10 - 150	10	30
Freon 123	20.0	22.3		ug/L		112	10 - 150	6	30
Freon 22	20.0	24.7		ug/L		124	10 - 150	9	30

LCSD	LCSD

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	94		75 - 123
Toluene-d8 (Surr)	88		80 - 120
4-Bromofluorobenzene	99		76 - 120
Dibromofluoromethane (Surr)	99		77 - 124

Client: Wood E&I Solutions Inc

Project/Site: LMC Q4 2021 Groundwater Monitoring

Method: 8260D - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: 460-247256-11 MS

Matrix: Water

Analysis Batch: 814571

Client Sample ID: MW-33MI-XX

Prep Type: Total/NA

Job ID: 460-247256-1

	-	Sample	Spike		MS		_	a. =	%Rec.	
Analyte		Qualifier	Added		Qualifier	Unit	D	%Rec	Limits	
Chloromethane	0.50		20.0	21.5		ug/L		107	38 - 150	
Vinyl chloride	0.50		20.0	22.1		ug/L		111	61 - 144	
Bromomethane biased high, sample N			20.0	22.4		ug/L		112	43 - 150	
Chloroethane no quals	0.50		20.0	26.8		ug/L		134	50 - 150	
Methylene Chloride	0.50		20.0	20.0		ug/L		100	74 - 127	
Acetone	5.0		100	93.9		ug/L		94	61 - 134	
Carbon disulfide	0.50		20.0	20.8		ug/L		104	64 - 138	
Freon 11	0.50		20.0	25.9		ug/L		129	61 - 140	
1,1-Dichloroethene	0.50		20.0	22.1		ug/L		110	68 - 133	
1,1-Dichloroethane	0.50	U	20.0	19.6		ug/L		98	73 - 130	
trans-1,2-Dichloroethene	0.50	U	20.0	21.0		ug/L		105	74 - 126	
cis-1,2-Dichloroethene	0.50	U	20.0	21.5		ug/L		107	78 - 121	
Chloroform	0.50	U	20.0	21.2		ug/L		106	78 - 125	
1,2-Dichloroethane	0.50	U	20.0	19.8		ug/L		99	75 - 121	
Methyl ethyl ketone (MEK)	2.5	U	100	104		ug/L		104	69 - 128	
1,1,1-Trichloroethane	0.50	U	20.0	21.7		ug/L		108	68 - 128	
Carbon tetrachloride	0.50	U	20.0	21.9		ug/L		109	56 - 131	
Bromodichloromethane	0.50	U	20.0	20.5		ug/L		103	72 - 121	
1,2-Dichloropropane	0.50	U	20.0	19.4		ug/L		97	76 - 126	
cis-1,3-Dichloropropene	0.50	U	20.0	18.6		ug/L		93	74 - 125	
Trichloroethene	0.40	J	20.0	20.5		ug/L		100	71 - 121	
Dibromochloromethane	0.50	U	20.0	20.0		ug/L		100	58 - 130	
I,1,2-Trichloroethane	0.50	U	20.0	18.7		ug/L		93	74 - 125	
Benzene	0.50	U	20.0	19.0		ug/L		95	78 - 126	
rans-1,3-Dichloropropene	0.50	U	20.0	18.2		ug/L		91	66 - 127	
Bromoform	0.50		20.0	20.4		ug/L		102	38 - 144	
Methyl isobutyl ketone (MIBK)	2.5	U	100	95.9		ug/L		96	69 - 128	
2-Hexanone	2.5	U	100	92.8		ug/L		93	74 - 127	
Tetrachloroethene	0.50	U	20.0	21.3		ug/L		107	70 - 127	
1,1,2,2-Tetrachloroethane	0.50	U	20.0	17.7		ug/L		88	63 - 139	
Toluene	0.50	U	20.0	18.9		ug/L		95	78 - 119	
Chlorobenzene	0.50	U	20.0	20.0		ug/L		100	80 - 119	
Ethylbenzene	0.50	U	20.0	19.8		ug/L		99	78 - 120	
Styrene	0.50	U	20.0	18.9		ug/L		95	75 - 127	
m&p-Xylene	0.50	U	20.0	19.0		ug/L		95	78 - 123	
o-Xylene	0.50		20.0	19.2		ug/L		96	78 - 122	
Xylenes, Total	1.0		40.0	38.2		ug/L		96	78 - 122	
Freon 113	0.50		20.0	21.0		ug/L		105	59 - 142	
Methyl tert-butyl ether	0.50		20.0	19.6		ug/L		98	65 - 131	
Cyclohexane	0.50		20.0	19.1		ug/L		95	67 - 133	
I,2-Dibromoethane	0.50		20.0	19.7		ug/L		98	69 - 126	
,3-Dichlorobenzene	0.50		20.0	19.7		ug/L		98	80 - 121	
,4-Dichlorobenzene	0.50		20.0	19.6		ug/L		98	80 - 118	
1,2-Dichlorobenzene	0.50		20.0	19.7		ug/L		99	79 - 122	
Dichlorodifluoromethane	0.50		20.0	23.4		ug/L		117	31 - 150	
1,2,4-Trichlorobenzene	0.50		20.0	18.8		ug/L		94	64 - 132	
1,2-Dibromo-3-Chloropropane	0.50		20.0	16.1		ug/L ug/L		81	41 - 143	
sopropylbenzene	0.50		20.0	19.5		ug/L ug/L		97	79 ₋ 125	

Client: Wood E&I Solutions Inc

Project/Site: LMC Q4 2021 Groundwater Monitoring

Method: 8260D - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: 460-247256-11 MS

Matrix: Water

Analysis Batch: 814571

Client Sample ID: MW-33MI-XX

Prep Type: Total/NA

Job ID: 460-247256-1

_	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Methyl acetate	2.5	U	40.0	36.5		ug/L		91	70 - 127	
Methylcyclohexane	0.50	U	20.0	18.4		ug/L		92	60 - 139	
Freon 115 UJ, MSL	5.0	U	20.0	6.17		ug/L		31	10 - 150	
Freon 152a	1.0	U	20.0	17.1		ug/L		85	10 - 150	
Freon 123	1.0	U	20.0	21.9		ug/L		109	10 - 150	
Freon 22	1.0	U	20.0	20.1		ug/L		100	10 - 150	

MS MS

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	100		75 - 123
Toluene-d8 (Surr)	88		80 - 120
4-Bromofluorobenzene	101		76 - 120
Dibromofluoromethane (Surr)	100		77 - 124

Lab Sample ID: 460-247256-11 MSD Client Sample ID: MW-33MI-XX Prep Type: Total/NA

Matrix: Water

Analysis Batch: 814571

Analysis Batch: 814571											
	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte		Qualifier	Added		Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Chloromethane	0.50	U	20.0	22.0		ug/L		110	38 - 150	2	30
Vinyl chloride	0.50	U	20.0	21.9		ug/L		109	61 - 144	1	30
Bromomethane	0.50	U	20.0	24.3		ug/L		122	43 - 150	8	30
Chloroethane	0.50	U	20.0	25.0		ug/L		125	50 - 150	7	30
Methylene Chloride	0.50	U	20.0	19.4		ug/L		97	74 - 127	3	30
Acetone	5.0	U	100	92.6		ug/L		93	61 - 134	1	30
Carbon disulfide	0.50		20.0	21.0		ug/L		105	64 - 138	1	30
Freon 11 biased high, sample ND	- no qual _{9.50}	U	20.0	26.5		ug/L		132	61 - 140	2	30
1,1-Dichloroethene	0.50	U	20.0	21.9		ug/L		109	68 - 133	1	30
1,1-Dichloroethane	0.50	U	20.0	20.6		ug/L		103	73 - 130	5	30
trans-1,2-Dichloroethene	0.50	U	20.0	20.9		ug/L		105	74 - 126	0	30
cis-1,2-Dichloroethene	0.50	U	20.0	20.5		ug/L		103	78 - 121	4	30
Chloroform	0.50	U	20.0	20.6		ug/L		103	78 - 125	3	30
1,2-Dichloroethane	0.50	U	20.0	20.8		ug/L		104	75 - 121	5	30
Methyl ethyl ketone (MEK)	2.5	U	100	105		ug/L		105	69 - 128	1	30
1,1,1-Trichloroethane	0.50	U	20.0	21.5		ug/L		107	68 - 128	1	30
Carbon tetrachloride	0.50	U	20.0	22.0		ug/L		110	56 - 131	0	30
Bromodichloromethane	0.50	U	20.0	20.2		ug/L		101	72 - 121	2	30
1,2-Dichloropropane	0.50	U	20.0	19.0		ug/L		95	76 - 126	2	30
cis-1,3-Dichloropropene	0.50	U	20.0	17.9		ug/L		90	74 - 125	3	30
Trichloroethene	0.40	J	20.0	20.6		ug/L		101	71 - 121	1	30
Dibromochloromethane	0.50	U	20.0	19.8		ug/L		99	58 - 130	1	30
1,1,2-Trichloroethane	0.50	U	20.0	18.6		ug/L		93	74 - 125	0	30
Benzene	0.50	U	20.0	18.7		ug/L		93	78 - 126	2	30
trans-1,3-Dichloropropene	0.50	U	20.0	18.0		ug/L		90	66 - 127	1	30
Bromoform	0.50	U	20.0	20.1		ug/L		101	38 - 144	2	30
Methyl isobutyl ketone (MIBK)	2.5	U	100	97.4		ug/L		97	69 - 128	1	30
2-Hexanone	2.5	U	100	96.9		ug/L		97	74 - 127	4	30
Tetrachloroethene	0.50	U	20.0	21.3		ug/L		107	70 - 127	0	30
1,1,2,2-Tetrachloroethane	0.50	U	20.0	18.5		ug/L		92	63 - 139	5	30

Eurofins TestAmerica, Edison

Page 89 of 1911

Client: Wood E&I Solutions Inc Job ID: 460-247256-1

Project/Site: LMC Q4 2021 Groundwater Monitoring

Method: 8260D - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: 460-247256-11 MSD Client Sample ID: MW-33MI-XX **Prep Type: Total/NA**

Matrix: Water

Analysis Batch: 814571

_	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Toluene	0.50	U	20.0	18.8		ug/L		94	78 - 119	1	30
Chlorobenzene	0.50	U	20.0	19.6		ug/L		98	80 - 119	2	30
Ethylbenzene	0.50	U	20.0	19.4		ug/L		97	78 - 120	2	30
Styrene	0.50	U	20.0	18.5		ug/L		92	75 - 127	2	30
m&p-Xylene	0.50	U	20.0	19.2		ug/L		96	78 - 123	1	30
o-Xylene	0.50	U	20.0	19.0		ug/L		95	78 - 122	1	30
Xylenes, Total	1.0	U	40.0	38.3		ug/L		96	78 - 122	0	30
Freon 113	0.50	U	20.0	21.7		ug/L		108	59 - 142	3	30
Methyl tert-butyl ether	0.50	U	20.0	19.3		ug/L		96	65 - 131	2	30
Cyclohexane	0.50	U	20.0	19.3		ug/L		97	67 - 133	1	30
1,2-Dibromoethane	0.50	U	20.0	19.7		ug/L		99	69 - 126	0	30
1,3-Dichlorobenzene	0.50	U	20.0	19.9		ug/L		100	80 - 121	1	30
1,4-Dichlorobenzene	0.50	U	20.0	19.8		ug/L		99	80 - 118	1	30
1,2-Dichlorobenzene	0.50	U	20.0	20.1		ug/L		100	79 - 122	2	30
Dichlorodifluoromethane	0.50	U	20.0	24.4		ug/L		122	31 - 150	4	30
1,2,4-Trichlorobenzene	0.50	U	20.0	20.8		ug/L		104	64 - 132	10	30
1,2-Dibromo-3-Chloropropane	0.50	U	20.0	17.9		ug/L		89	41 - 143	10	30
Isopropylbenzene	0.50	U	20.0	19.5		ug/L		97	79 - 125	0	30
Methyl acetate	2.5	U	40.0	37.3		ug/L		93	70 - 127	2	30
Methylcyclohexane	0.50	U	20.0	19.2		ug/L		96	60 - 139	4	30
Freon 115 UJ, MSL, MSRPD	5.0	U	20.0	8.62	F2	ug/L		43	10 - 150	33	30
Freon 152a	1.0	U	20.0	17.0		ug/L		85	10 - 150	0	30
Freon 123	1.0	U	20.0	22.3		ug/L		111	10 - 150	2	30
Freon 22	1.0	U	20.0	20.6		ug/L		103	10 - 150	3	30

MSD	MSD
-----	-----

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	101		75 - 123
Toluene-d8 (Surr)	88		80 - 120
4-Bromofluorobenzene	99		76 - 120
Dibromofluoromethane (Surr)	99		77 - 124

Method: 300.0-1993 R2.1 - Anions, Ion Chromatography

Lab Sample ID: MB 680-695510/2

Matrix: Water

Analysis Batch: 695510

Client Sample ID: Method Blank Prep Type: Total/NA

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

-	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Bromide	0.050	U	0.050	0.025	mg/L			11/21/21 00:22	1

Lab Sample ID: LCS 680-695510/3

Matrix: Water

Analysis Batch: 695510								
	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Bromide	0.500	0.531		mg/L		106	90 - 110	

Surrogate Summary

Client: Wood E&I Solutions Inc

Project/Site: LMC Q4 2021 Groundwater Monitoring

Method: 524.2 - Volatile Organic Compounds (GC/MS)

Matrix: Water Prep Type: Total/NA

				ent Surrogate Recovery (Ac
		DCZ	BFB	
Lab Sample ID	Client Sample ID	(70-130)	(70-130)	
460-247256-3	SW-N5099-XX	105	101	
460-247256-4	SW-N4388-XX	99	101	
460-247256-4 MS	SW-N4388-XX	100	102	
460-247256-4 MSD	SW-N4388-XX	103	103	
460-247256-5	SW-N12796-XX	101	101	
460-247256-6	SW-N12999-XX	105	104	
460-247256-7	SW-N13000-XX	102	103	
460-247256-8	SW-N13821-XX	105	106	
460-247256-9	SW-500	103	102	
460-247256-10	QC-TB041121-XX	106	106	
LCS 460-813964/21	Lab Control Sample	105	106	
LCS 460-814181/4	Lab Control Sample	103	101	
LCS 460-814366/7	Lab Control Sample	105	104	
LCSD 460-813964/22	Lab Control Sample Dup	101	103	
LCSD 460-814181/5	Lab Control Sample Dup	102	103	
MB 460-813964/25	Method Blank	110	107	
MB 460-814181/8	Method Blank	105	103	
MB 460-814366/11	Method Blank	105	108	
Surrogate Legend				
DCZ = 1,2-Dichlorober				

Method: 8260D - Volatile Organic Compounds by GC/MS

Matrix: Water Prep Type: Total/NA

	80-120		Pe	ercent Surro	gate Recovery (Acce	ptance Limits)
		DCA	TOL	BFB	DBFM	
Lab Sample ID	Client Sample ID	(75-123)	(80-120)	(76-120)	(77-124)	
460-247256-1	IW-N5535-XX	101	100	101	105	
460-247256-2	IW-N9687-XX	97	94	91	97	
460-247256-11	MW-33MI-XX	100	95	90	100	
460-247256-11 MS	MW-33MI-XX	100	88	101	100	
460-247256-11 MSD	MW-33MI-XX	101	88	99	99	
460-247256-12	MW-44MU-XX	97	95	90	96	
460-247256-13	MW-44MI-XX	98	94	91	96	
160-247256-14	MW-45MU-XX	98	95	91	97	
160-247256-15	MW-45MI-XX	99	94	91	99	
160-247256-16	MW-46MI-XX	99	102	101	101	
460-247256-17	MW-46ML-XX	101	95	90	99	
60-247256-18	MW-47MI-XX	98	94	90	98	
160-247256-19	MW-47ML-XX	98	95	90	95	
160-247256-20	MW-49ML-XX	98	95	83	96	
460-247256-21	MW-50ML-XX	100	93	97	97	
460-247256-22	MW-51MI-XX UJ/J-, SSL	100	95	79	95	
460-247256-23	MW-51ML-XX	94	95	90	91	
460-247256-24	MW-52MI-XX	96	95	83	97	
460-247256-25	MW-52ML-XX	108	91	90	105	
460-247256-26	MW-53MI-XX	84	95	90	82	
460-247256-27	MW-53ML-XX	99	101	101	105	

Eurofins TestAmerica, Edison

Job ID: 460-247256-1

VOCs

NYSDEC DUSR PROJECT CHEMIST REVIEW RECORD

Project: LMC Great Neck Q4 GWM

Method: 524.2

Laboratory: TAL Edison, NJ SDG(s): 460-24256-1

Date: 12/6/2021

Reviewer: Amber Jones

Review Level X NYSDEC DUSR USEPA Region II Guideline

1. ☑ Case Narrative Review and COC/Data Package Completeness

COMMENTS

Were problems noted? yes, see attached

Are Field Sample IDs and Locations assigned correctly? YES NO (circle one)

Were all the samples on the COC analyzed for the requested analyses? YES NO (circle one)

2. Molding time and Sample Collection

All samples were analyzed within the 14 day holding time. YES NO (circle one)

3. 🗹 QC Blanks

Are method blanks free of contamination? YES NO (circle one)

Are Trip blanks free of contamination? YES NO (circle one)

Are Rinse blanks free of contamination? YES NO NA (circle one)

4. ✓ Instrument Tuning – Data Package Narrative Review

Did the laboratory narrative identify any results that were not within method criteria? YES NO (circle one)

If yes, use professional judgment to evaluate data and qualify results if needed

5. ✓ Instrument Calibration – Data Package Narrative Review

Did the laboratory narrative identify compounds that were not within criteria in the initial and/or continuing calibration standards? YES NO (circle one)

Initial Calibration %RSD = 20% (30% for 1,1-DCE, chloroform, 1,2-DCP, toluene, ethylbenzene, VC) Initial Avg RRF and Continuing RRF should be \geq 0.05 and 0.10 for Chloromethane, 1,1-Dichloroethane, Bromoform and 0.30 for Chlorobenzene and 1,1,2,2-Tetrachloroethane

Continuing Calibration %D = 20%

Did the laboratory qualify results based on initial or continuing calibration exceedances? YES NO If yes to above, use professional judgment to evaluate data and qualify results if needed

6. ☑ Internal Standards – Data Package Narrative Review

(Area Limits = -50% to +100%, RTs within 30 seconds of daily CCAL standard (or ICAL midpoint if samples follow ICAL)

Did the laboratory narrative identify any sample internal standards that were not within criteria? YES NO (circle one)

Did the laboratory qualify results based on internal standard exceedances? YES NO If yes to above, use professional judgment to evaluate data and qualify results if needed

7. Surrogate Recovery - Region II limits (water 80-120%, soil 70-130%)

Were all results within Region II limits? YES NO (circle one)

8. Matrix Spike - Region II limits (water and soil 70-130%, water RPD 20, soil RPD 35)

Were MS/MSDs submitted/analyzed? YES NO

see attached - no quals

Were all results within the Region II limits? YES NO NA (circle one)

€.	$ \leq $	Duplicates - Region II Limits (water RPD 50, soil RPD 100) SW-N12796-XX/SW-500 - see attached for RPD calcs MW-49ML-XX/MW-500, MW-50ML-XX/ MW-501 below RL
		Were Field Duplicates submitted/analyzed? YES NO
		Were all results within Region II limits? (soil RPD<100, water RPD<50) YES NO NA
10.	ď	Laboratory Control Sample Results - Region II (Water and soil 70-130%) see attached - no quals
		Were all results were within Region II control limits? YES NO (circle one)
11.		Reporting Limits: Were samples analyzed at a dilution? YES NO (circle one)
12.	ď	Raw Data Review and Calculation Checks see attached for calculations
13.	✓	Electronic Data Review and Edits Does the EDD match the Form Is? YES NO (circle one)
14.	ď	Tables and TIC Review Table 1 (Samples and Analytical Methods) Table 2 (Analytical Results) Table 3 (Qualification Actions) Were all tables produced and reviewed? YES NO (circle one)
		Table 4 (TICs) Did lab report TICs? YES NO (circle one)

CASE NARRATIVE

Client: Wood E&I Solutions Inc

Project: LMC Q4 2021 Groundwater Monitoring

Report Number: 460-247256-1

This case narrative is in the form of an exception report, where only the anomalies related to this report, method specific performance and/or QA/QC issues are discussed. If there are no issues to report, this narrative will include a statement that documents that there are no relevant data issues.

It should be noted that samples with elevated Reporting Limits (RLs) as a result of a dilution may not be able to satisfy customer reporting limits in some cases. Such increases in the RLs are unavoidable but acceptable consequence of sample dilution that enables quantification of target analytes or interferences which exceed the calibration range of the instrument.

Calculations are performed before rounding to avoid round-off errors in calculated results.

All holding times were met and proper preservation noted for the methods performed on these samples, unless otherwise detailed in the individual sections below.

RECEIPT

The samples were received on 11/11/2021; the samples arrived in good condition, properly preserved and on ice. The temperature of the coolers at receipt was 2.0 C.

Note: All samples which require thermal preservation are considered acceptable if the arrival temperature is within 2C of the required temperature or method specified range. For samples with a specified temperature of 4C, samples with a temperature ranging from just above freezing temperature of water to 6C shall be acceptable. Samples that are hand delivered immediately following collection may not meet these criteria, however they will be deemed acceptable according to NELAC standards, if there is evidence that the chilling process has begun, such as arrival on ice, etc.

DRINKING WATER VOLATILES (GC-MS)

Samples SW-N5099-XX (460-247256-3), SW-N4388-XX (460-247256-4), SW-N12796-XX (460-247256-5), SW-N12999-XX (460-247256-6), SW-N13000-XX (460-247256-7), SW-N13821-XX (460-247256-8), SW-500 (460-247256-9) and QC-TB041121-XX (460-247256-10) were analyzed for drinking water volatiles (GC-MS) in accordance with EPA Method 524.2. The samples were analyzed on 11/18/2021 and 11/19/2021.

Bromomethane failed the recovery criteria high for LCS 460-813964/21. Bromomethane, Freon 115 and Freon 152a failed the recovery criteria high for LCS 460-814181/4. Freon 115 failed the recovery criteria high for LCS 460-814366/7. Bromomethane and Freon 115 failed the recovery criteria high for LCSD 460-813964/22. Freon 115 exceeded the RPD limit. Bromomethane failed the recovery criteria high for LCSD 460-814181/5. Freon 115 exceeded the RPD limit. Refer to the QC report for details. see attached for LCS review

Freon 115 failed the recovery criteria high for the MS of sample SW-N4388-XXMS (460-247256-4) in batch 460-814366.

see attached for MS/MSD

Bromomethane exceeded the RPD limit for the MSD of sample SW-N4388-XXMSD (460-247256-4) in batch 460-814366.

Refer to the QC report for details.

No other difficulties were encountered during the volatiles analysis.

All other quality control parameters were within the acceptance limits.

VOLATILE ORGANIC COMPOUNDS (GC/MS) - (LOW LEVEL - LL)(TOTAL)

Samples IW-N5535-XX (460-247256-1), IW-N9687-XX (460-247256-2), MW-33MI-XX (460-247256-11), MW-44MU-XX (460-247256-12), MW-44MI-XX (460-247256-13), MW-45MI-XX (460-247256-14), MW-45MI-XX (460-247256-15), MW-46MI-XX (460-247256-16), MW-46ML-XX (460-247256-17), MW-47MI-XX (460-247256-18), MW-47ML-XX (460-247256-19), MW-49ML-XX (460-247256-20), MW-50ML-XX (460-247256-21), MW-51MI-XX (460-247256-22), MW-51ML-XX (460-247256-23), MW-52MI-XX (460-247256-24), MW-52ML-XX (460-247256-25), MW-53MI-XX (460-247256-26), MW-53ML-XX (460-247256-27), MW-54GU-XX (460-247256-28), MW-54GI-XX (460-247256-29), MW-500 (460-247256-30), MW-501 (460-247256-31) and MW-502 (460-247256-32) were analyzed for Volatile Organic Compounds (GC/MS) - (Low Level - LL)(Total) in accordance with EPA SW-846 Method 8260D - Low Level (LL). The samples were analyzed on 11/15/2021 and 11/19/2021.

Freon 115 exceeded the RPD limit for the MSD of sample MW-33MI-XXMSD (460-247256-11) in batch 460-814571.

Freon 115 exceeded the RPD limit for the MSD of sample MW-33MI-XXMSD (460-247256-11) in batch 460-814571.

Client: Wood E&I Solutions Inc

Project/Site: LMC Q4 2021 Groundwater Monitoring

Method: 524.2 - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 460-813964/21

associated with TB only 70-130

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Job ID: 460-247256-1

Matrix: Water

Analysis Batch: 813964

	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Bromoform	2.00	1.78		ug/L		89	70 - 130
Bromomethane	2.00	3.71	*+	ug/L		186	70 - 130
Carbon tetrachloride	2.00	1.82		ug/L		91	70 - 130
Chlorobenzene	2.00	1.97		ug/L		99	70 - 130
Chlorobromomethane	2.00	1.89		ug/L		94	70 - 130
Chlorodibromomethane	2.00	1.83		ug/L		91	70 - 130
Chloroethane	2.00	2.21		ug/L		110	70 - 130
Chloroform	2.00	1.93		ug/L		97	70 - 130
Chloromethane	2.00	2.38		ug/L		119	70 - 130
cis-1,2-Dichloroethene	2.00	1.85		ug/L		92	70 - 130
cis-1,3-Dichloropropene	2.00	1.77		ug/L		89	70 - 130
Dibromomethane	2.00	2.04		ug/L		102	70 - 130
Dichlorobromomethane	2.00	1.84		ug/L		92	70 - 130
Dichlorodifluoromethane	2.00	2.16		ug/L		108	70 - 130
Ethylbenzene	2.00	1.84		ug/L		92	70 - 130
Freon 11	2.00	2.09		ug/L		105	70 - 130
Freon 113	2.00	1.52		ug/L		76	70 - 130
Freon 115	2.00	1.74		ug/L		87	70 - 130
Freon 123	2.00	2.59		ug/L		130	70 - 130
Freon 152a	2.00	2.56		ug/L		128	70 - 130
Freon 22	2.00	2.48		ug/L		124	70 - 130
Hexachlorobutadiene	2.00	2.49		ug/L		125	70 - 130
Isopropylbenzene	2.00	1.95		ug/L		98	70 - 130
m,p-Xylene	4.00	3.75		ug/L		94	70 - 130
Methyl tert-butyl ether	2.00	1.92		ug/L		96	70 - 130
Methylene Chloride	2.00	1.92		ug/L		96	70 - 130
N-Propylbenzene	2.00	1.86		ug/L		93	70 - 130
o-Xylene	2.00	1.86		ug/L		93	70 - 130
sec-Butylbenzene	2.00	1.96		ug/L		98	70 - 130
Styrene	2.00	1.86		ug/L		93	70 - 130
tert-Butylbenzene	2.00	1.98		ug/L		99	70 - 130
Tetrachloroethene	2.00	1.80		ug/L		90	70 - 130
Toluene	2.00	1.87		ug/L		93	70 - 130
trans-1,2-Dichloroethene	2.00	2.02		ug/L		101	70 - 130
trans-1,3-Dichloropropene	2.00	1.74		ug/L		87	70 - 130
Trichloroethene	2.00	1.88		ug/L		94	70 - 130
Vinyl chloride	2.00	2.08		ug/L		104	70 - 130

LCS LCS

Surrogate	%Recovery Qualifier	Limits
1,2-Dichlorobenzene-d4	105	70 - 130
4-Bromofluorobenzene	106	70 - 130

Lab Sample ID: LCSD 460-813964/22

Matrix: Water

Analysis Batch: 813964								
	Spike	LCSD L	.CSD			%Rec.		RPD
Analyte	Added	Result Q	Qualifier Un	nit D	%Rec	Limits	RPD	Limit
1 1 1 2-Tetrachloroethane	2.00	1 94	ua/	/I	97	70 - 130		30

Eurofins TestAmerica, Edison

Client Sample ID: Lab Control Sample Dup

Page 63 of 1911

Prep Type: Total/NA

Client: Wood E&I Solutions Inc

Project/Site: LMC Q4 2021 Groundwater Monitoring

Method: 524.2 - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCSD 460-813964/22 **Matrix: Water**

Analysis Batch: 813964

associated with TB only

70-130

Client Sample ID: Lab Control Sample Dup

Job ID: 460-247256-1

Prep Type: Total/NA

	Spike		LCSD				%Rec.		RPD
Analyte	Added		Qualifier	Unit	D	%Rec	Limits	RPD	Limit
1,1,1-Trichloroethane	2.00	1.87		ug/L		93	70 - 130	1	30
1,1,2,2-Tetrachloroethane	2.00	2.09		ug/L		105	70 - 130	7	30
1,1,2-Trichloroethane	2.00	1.97		ug/L		99	70 - 130	6	30
1,1-Dichloroethane	2.00	1.95		ug/L		97	70 - 130	3	30
1,1-Dichloroethene	2.00	1.93		ug/L		97	70 - 130	3	30
1,1-Dichloropropene	2.00	1.96		ug/L		98	70 - 130	3	30
1,2,3-Trichlorobenzene	2.00	2.32		ug/L		116	70 - 130	5	30
1,2,3-Trichloropropane	2.00	2.06		ug/L		103	70 - 130	0	30
1,2,4-Trichlorobenzene	2.00	2.17		ug/L		108	70 - 130	1	30
1,2,4-Trimethylbenzene	2.00	2.02		ug/L		101	70 - 130	6	30
1,2-Dibromo-3-Chloropropane	2.00	2.06		ug/L		103	70 - 130	11	30
1,2-Dichlorobenzene	2.00	2.01		ug/L		100	70 - 130	1	30
1,2-Dichloroethane	2.00	1.87		ug/L		94	70 - 130	9	30
1,2-Dichloropropane	2.00	1.96		ug/L		98	70 - 130	2	30
1,3,5-Trimethylbenzene	2.00	2.00		ug/L		100	70 - 130	2	30
1,3-Dichlorobenzene	2.00	2.00		ug/L		100	70 - 130	2	30
1,3-Dichloropropane	2.00	1.97		ug/L		98	70 - 130	4	30
1,4-Dichlorobenzene	2.00	2.08		ug/L		104	70 - 130	8	30
2,2-Dichloropropane	2.00	1.71		ug/L		86	70 - 130	7	30
2-Chlorotoluene	2.00	2.04		ug/L		102	70 - 130	4	30
4-Chlorotoluene	2.00	2.01		ug/L		101	70 - 130	4	30
4-Isopropyltoluene	2.00	1.99		ug/L		99	70 - 130	3	30
Benzene	2.00	1.92		ug/L		96	70 - 130	4	30
Bromobenzene	2.00	2.05		ug/L		103	70 - 130	9	30
Bromoform	2.00	1.93		ug/L		97	70 - 130	8	30
Bromomethane	2.00	2.94	*+	ug/L		147	70 - 130	23	30
Carbon tetrachloride	2.00	1.97		ug/L		99	70 - 130	8	30
Chlorobenzene	2.00	2.02		ug/L		101	70 - 130	2	30
Chlorobromomethane	2.00	1.92		ug/L		96	70 - 130	2	30
Chlorodibromomethane	2.00	1.95		ug/L		97	70 - 130	6	30
Chloroethane	2.00	2.25		ug/L		113	70 - 130	2	30
Chloroform	2.00	1.99		ug/L		99	70 - 130	3	30
Chloromethane	2.00	2.26		ug/L		113	70 - 130	5	30
cis-1.2-Dichloroethene	2.00	1.88		ug/L ug/L		94	70 - 130	1	30
cis-1,3-Dichloropropene	2.00	1.84		ug/L ug/L		92	70 - 130 70 - 130	4	30
Dibromomethane	2.00	1.04					70 - 130	3	30
				ug/L		99			
Dichlorodiffugrant the ma	2.00	1.81		ug/L		91	70 - 130	1	30
Dichlorodifluoromethane	2.00	1.90		ug/L		95	70 - 130	13	30
Ethylbenzene	2.00	1.98		ug/L		99	70 - 130	8	30
Freon 11	2.00	1.94		ug/L		97	70 - 130	7	30
Freon 113	2.00	1.71		ug/L		86	70 - 130	12	30
Freon 115	2.00		*+ *1	ug/L		228	70 - 130	90	30
Freon 123	2.00	2.17		ug/L		108	70 - 130	18	30
Freon 152a	2.00	2.24		ug/L		112	70 - 130	13	30
Freon 22	2.00	2.12		ug/L		106	70 - 130	16	30
Hexachlorobutadiene	2.00	2.24		ug/L		112	70 - 130	11	30
Isopropylbenzene	2.00	2.03		ug/L		102	70 - 130	4	30
m,p-Xylene	4.00	4.03		ug/L		101	70 - 130	7	30
Methyl tert-butyl ether	2.00	2.00		ug/L		100	70 - 130	4	30

Eurofins TestAmerica, Edison

Page 64 of 1911

Client: Wood E&I Solutions Inc

Project/Site: LMC Q4 2021 Groundwater Monitoring

Method: 524.2 - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 460-814181/4 **Matrix: Water**

Analysis Batch: 814181

70-130

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Job ID: 460-247256-1

Analyte	Spike Added		LCS Qualifier	Unit	D	%Rec	%Rec. Limits	
1,1,2-Trichloroethane	2.00	1.65		ug/L		83	70 - 130	
1,1-Dichloroethane	2.00	1.84		ug/L		92	70 - 130	
1,1-Dichloroethene	2.00	1.88		ug/L		94	70 - 130	
1,1-Dichloropropene	2.00	1.89		ug/L		95	70 - 130	
1,2,3-Trichlorobenzene	2.00	1.91		ug/L		96	70 - 130	
1,2,3-Trichloropropane	2.00	1.73		ug/L		86	70 - 130	
1,2,4-Trichlorobenzene	2.00	1.91		ug/L		96	70 - 130	
1,2,4-Trimethylbenzene	2.00	1.84		ug/L		92	70 - 130	
1,2-Dibromo-3-Chloropropane	2.00	1.96		ug/L		98	70 - 130	
1,2-Dichlorobenzene	2.00	1.83		ug/L		92	70 - 130	
1,2-Dichloroethane	2.00	1.84		ug/L		92	70 - 130	
1,2-Dichloropropane	2.00	1.71		ug/L		85	70 - 130	
1,3,5-Trimethylbenzene	2.00	1.86		ug/L		93	70 - 130	
1,3-Dichlorobenzene	2.00	1.86		ug/L		93	70 - 130	
1,3-Dichloropropane	2.00	1.78		ug/L		89	70 - 130	
1,4-Dichlorobenzene	2.00	1.87		ug/L		93	70 - 130	
2,2-Dichloropropane	2.00	1.84		ug/L		92	70 - 130	
2-Chlorotoluene	2.00	1.82		ug/L		91	70 - 130	
4-Chlorotoluene	2.00	1.87		ug/L		93	70 - 130	
4-Isopropyltoluene	2.00	1.94		ug/L		97	70 - 130	
Benzene	2.00	1.74		ug/L		87	70 - 130	
Bromobenzene	2.00	1.93		ug/L		97	70 - 130	
Bromoform	2.00	1.72		ug/L		86	70 - 130	
Bromomethane biased high, samples ND - no quals	2.00	2.93	*+	ug/L		147	70 - 130	
Carbon tetrachloride	2.00	1.99		ug/L		100	70 - 130	
Chlorobenzene	2.00	1.79		ug/L		89	70 - 130	
Chlorobromomethane	2.00	2.01		ug/L		100	70 - 130	
Chlorodibromomethane	2.00	1.85		ug/L		92	70 - 130	
Chloroethane	2.00	2.49		ug/L		125	70 - 130	
Chloroform	2.00	1.81		ug/L		91	70 - 130	
Chloromethane	2.00	2.25		ug/L		112	70 - 130	
cis-1,2-Dichloroethene	2.00	1.96		ug/L		98	70 - 130 70 - 130	
cis-1,3-Dichloropropene	2.00	1.93		ug/L ug/L		97	70 - 130 70 - 130	
Dibromomethane	2.00	1.82		ug/L		91	70 - 130	
Dichlorobromomethane	2.00	1.78		ug/L		89	70 - 130 70 - 130	
Dichlorodifluoromethane	2.00	2.15		ug/L		108	70 - 130 70 - 130	
Ethylbenzene	2.00	1.88		ug/L		94	70 - 130	
Freon 11	2.00	2.05				103	70 - 130 70 - 130	
Freon 113	2.00	1.83		ug/L		92	70 - 130 70 - 130	
blased high, samples ND - no quals			* .	ug/L				
Freon 115 Freon 123	2.00	3.61	т	ug/L		180	70 ₋ 130	
	2.00	2.48 2.66	*_	ug/L		124	70 ₋ 130	
Freon 152a biased high, samples ND - no quals Freon 22	2.00		т	ug/L		133	70 - 130	
	2.00	2.39		ug/L		119	70 ₋ 130	
Hexachlorobutadiene	2.00	1.81		ug/L		90	70 ₋ 130	
Isopropylbenzene	2.00	1.88		ug/L		94	70 - 130	
m,p-Xylene	4.00	3.78		ug/L		94	70 ₋ 130	
Methyl tert-butyl ether	2.00	1.80		ug/L		90	70 - 130	
Methylene Chloride	2.00	1.82		ug/L		91	70 - 130	
N-Propylbenzene	2.00	1.98		ug/L		99	70 - 130	

Eurofins TestAmerica, Edison

Client: Wood E&I Solutions Inc

Project/Site: LMC Q4 2021 Groundwater Monitoring

Method: 524.2 - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 460-814181/4

Matrix: Water Analysis Batch: 814181 Client Sample ID: Lab Control Sample

Job ID: 460-247256-1

		Spike	LCS	LCS				%Rec.
Analyte		Added	Result	Qualifier	Unit	D	%Rec	Limits
o-Xylene		2.00	1.84		ug/L		92	70 - 130
sec-Butylbenzene		2.00	2.01		ug/L		100	70 - 130
Styrene		2.00	1.79		ug/L		89	70 - 130
tert-Butylbenzene		2.00	1.90		ug/L		95	70 - 130
Tetrachloroethene		2.00	2.01		ug/L		101	70 - 130
Toluene		2.00	1.80		ug/L		90	70 - 130
trans-1,2-Dichloroethene	associated samples UJ, LCSL	2.00	1.88		ug/L		94	70 - 130
trans-1,3-Dichloropropene	20000.a.ca capioo 00, 2002	2.00	1.58		ug/L		79	70 - 130
Trichloroethene		2.00	1.92		ug/L		96	70 - 130
Vinyl chloride		2.00	2.05		ug/L		102	70 - 130

LCS LCS

 Surrogate
 %Recovery
 Qualifier
 Limits

 1,2-Dichlorobenzene-d4
 103
 70 - 130

 4-Bromofluorobenzene
 101
 70 - 130

Lab Sample ID: LCSD 460-814181/5

Matrix: Water

Analysis Batch: 814181

Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

Alialysis Dalcil. 014101									
	Spike	LCSD	-				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
1,1,1,2-Tetrachloroethane	2.00	1.81		ug/L		91	70 - 130	3	30
1,1,1-Trichloroethane	2.00	2.04		ug/L		102	70 - 130	4	30
1,1,2,2-Tetrachloroethane	2.00	1.84		ug/L		92	70 - 130	0	30
1,1,2-Trichloroethane	2.00	1.75		ug/L		88	70 - 130	6	30
1,1-Dichloroethane	2.00	1.98		ug/L		99	70 - 130	7	30
1,1-Dichloroethene	2.00	1.97		ug/L		98	70 - 130	4	30
1,1-Dichloropropene	2.00	1.92		ug/L		96	70 - 130	2	30
1,2,3-Trichlorobenzene	2.00	2.08		ug/L		104	70 - 130	9	30
1,2,3-Trichloropropane	2.00	1.70		ug/L		85	70 - 130	2	30
1,2,4-Trichlorobenzene	2.00	1.89		ug/L		95	70 - 130	1	30
1,2,4-Trimethylbenzene	2.00	1.91		ug/L		95	70 - 130	3	30
1,2-Dibromo-3-Chloropropane	2.00	1.92		ug/L		96	70 - 130	2	30
1,2-Dichlorobenzene	2.00	1.85		ug/L		93	70 - 130	1	30
1,2-Dichloroethane	2.00	1.89		ug/L		94	70 - 130	3	30
1,2-Dichloropropane	2.00	1.93		ug/L		97	70 - 130	12	30
1,3,5-Trimethylbenzene	2.00	1.97		ug/L		98	70 - 130	6	30
1,3-Dichlorobenzene	2.00	1.88		ug/L		94	70 - 130	1	30
1,3-Dichloropropane	2.00	1.86		ug/L		93	70 - 130	4	30
1,4-Dichlorobenzene	2.00	1.87		ug/L		93	70 - 130	0	30
2,2-Dichloropropane	2.00	1.89		ug/L		95	70 - 130	3	30
2-Chlorotoluene	2.00	2.04		ug/L		102	70 - 130	11	30
4-Chlorotoluene	2.00	1.85		ug/L		93	70 - 130	1	30
4-Isopropyltoluene	2.00	2.06		ug/L		103	70 - 130	6	30
Benzene	2.00	1.92		ug/L		96	70 - 130	10	30
Bromobenzene	2.00	1.92		ug/L		96	70 - 130	0	30
Bromoform	2.00	1.75		ug/L		87	70 - 130	2	30
Bromomethane biased high, samples ND - no quals	2.00	3.14	*+	ug/L		157	70 - 130	7	30
Carbon tetrachloride	2.00	2.15		ug/L		107	70 - 130	7	30

Eurofins TestAmerica, Edison

Page 68 of 1911

Client: Wood E&I Solutions Inc

Project/Site: LMC Q4 2021 Groundwater Monitoring

Method: 524.2 - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCSD 460-814181/5 Matrix: Water

Analysis Batch: 814181

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Job ID: 460-247256-1

•	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Chlorobenzene	2.00	1.92		ug/L		96	70 - 130	7	30
Chlorobromomethane	2.00	1.89		ug/L		95	70 - 130	6	30
Chlorodibromomethane	2.00	1.79		ug/L		89	70 - 130	3	30
Chloroethane	2.00	2.50		ug/L		125	70 - 130	0	30
Chloroform	2.00	1.87		ug/L		93	70 - 130	3	30
Chloromethane	2.00	2.28		ug/L		114	70 - 130	1	30
cis-1,2-Dichloroethene	2.00	1.89		ug/L		95	70 - 130	3	30
cis-1,3-Dichloropropene	2.00	1.77		ug/L		89	70 - 130	9	30
Dibromomethane	2.00	1.89		ug/L		94	70 - 130	4	30
Dichlorobromomethane	2.00	1.80		ug/L		90	70 - 130	1	30
Dichlorodifluoromethane	2.00	2.20		ug/L		110	70 - 130	2	30
Ethylbenzene	2.00	1.88		ug/L		94	70 - 130	0	30
Freon 11	2.00	2.17		ug/L		108	70 - 130	5	30
Freon 113	2.00	1.82		ug/L		91	70 - 130	1	30
Freon 115 sample ND - no quals	2.00	1.56	*1	ug/L		78	70 - 130	79	30
Freon 123	2.00	2.40		ug/L		120	70 - 130	3	30
Freon 152a	2.00	2.52		ug/L		126	70 - 130	5	30
Freon 22	2.00	2.58		ug/L		129	70 - 130	8	30
Hexachlorobutadiene	2.00	1.93		ug/L		97	70 - 130	7	30
Isopropylbenzene	2.00	1.98		ug/L		99	70 - 130	5	30
m,p-Xylene	4.00	3.85		ug/L		96	70 - 130	2	30
Methyl tert-butyl ether	2.00	1.80		ug/L		90	70 - 130	0	30
Methylene Chloride	2.00	1.87		ug/L		94	70 - 130	3	30
N-Propylbenzene	2.00	1.94		ug/L		97	70 - 130	2	30
o-Xylene	2.00	2.00		ug/L		100	70 - 130	8	30
sec-Butylbenzene	2.00	2.01		ug/L		100	70 - 130	0	30
Styrene	2.00	1.83		ug/L		92	70 - 130	2	30
tert-Butylbenzene	2.00	2.03		ug/L		101	70 - 130	6	30
Tetrachloroethene	2.00	2.05		ug/L		103	70 - 130	2	30
Toluene	2.00	1.89		ug/L		95	70 - 130	5	30
trans-1,2-Dichloroethene	2.00	1.87		ug/L		94	70 - 130	0	30
trans-1,3-Dichloropropene	2.00	1.76		ug/L		88	70 - 130	11	30
Trichloroethene	2.00	1.97		ug/L		99	70 - 130	3	30
Vinyl chloride	2.00	2.10		ug/L		105	70 - 130	2	30

	LCSD	LCSD	
Surrogate	%Recovery	Qualifier	Limits
1,2-Dichlorobenzene-d4	102		70 - 130
4-Bromofluorobenzene	103		70 130

Lab Sample ID: MB 460-814366/11

Matrix: Water

Analysis Batch: 814366

Client Sample ID: Method Blank Prep Type: Total/NA

		MB	МВ							
	Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
	1,1,1,2-Tetrachloroethane	0.50	U	0.50	0.12	ug/L			11/19/21 22:45	1
ı	1,1,1-Trichloroethane	0.50	U	0.50	0.17	ug/L			11/19/21 22:45	1
ı	1,1,2,2-Tetrachloroethane	0.50	U	0.50	0.15	ug/L			11/19/21 22:45	1
	1,1,2-Trichloroethane	0.50	U	0.50	0.090	ug/L			11/19/21 22:45	1

Eurofins TestAmerica, Edison

Page 69 of 1911

Client: Wood E&I Solutions Inc

Project/Site: LMC Q4 2021 Groundwater Monitoring

Method: 524.2 - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 460-814366/7

Matrix: Water associated with MS/MSD only **Analysis Batch: 814366**

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Job ID: 460-247256-1

•	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Chlorodibromomethane	2.00	1.91		ug/L		95	70 - 130
Chloroethane	2.00	2.29		ug/L		114	70 - 130
Chloroform	2.00	1.94		ug/L		97	70 - 130
Chloromethane	2.00	2.31		ug/L		115	70 - 130
cis-1,2-Dichloroethene	2.00	2.10		ug/L		105	70 - 130
cis-1,3-Dichloropropene	2.00	1.96		ug/L		98	70 - 130
Dibromomethane	2.00	1.89		ug/L		95	70 - 130
Dichlorobromomethane	2.00	1.95		ug/L		97	70 - 130
Dichlorodifluoromethane	2.00	2.05		ug/L		102	70 - 130
Ethylbenzene	2.00	1.98		ug/L		99	70 - 130
Freon 11	2.00	2.06		ug/L		103	70 - 130
Freon 113	2.00	1.80		ug/L		90	70 - 130
Freon 115	2.00	3.01	*+	ug/L		150	70 - 130
Freon 123	2.00	2.00		ug/L		100	70 - 130
Freon 152a	2.00	2.09		ug/L		105	70 - 130
Freon 22	2.00	1.64		ug/L		82	70 - 130
Hexachlorobutadiene	2.00	1.77		ug/L		88	70 - 130
sopropylbenzene	2.00	2.06		ug/L		103	70 - 130
m,p-Xylene	4.00	4.17		ug/L		104	70 - 130
Methyl tert-butyl ether	2.00	1.95		ug/L		98	70 - 130
Methylene Chloride	2.00	2.04		ug/L		102	70 - 130
N-Propylbenzene	2.00	1.95		ug/L		97	70 - 130
o-Xylene	2.00	2.02		ug/L		101	70 - 130
sec-Butylbenzene	2.00	2.06		ug/L		103	70 - 130
Styrene	2.00	1.99		ug/L		99	70 - 130
ert-Butylbenzene	2.00	2.06		ug/L		103	70 - 130
Tetrachloroethene	2.00	2.04		ug/L		102	70 - 130
Toluene	2.00	1.99		ug/L		100	70 - 130
rans-1,2-Dichloroethene	2.00	1.92		ug/L		96	70 - 130
rans-1,3-Dichloropropene	2.00	1.74		ug/L		87	70 - 130
Trichloroethene	2.00	2.08		ug/L		104	70 - 130
√inyl chloride	2.00	2.17		ug/L		109	70 - 130

LCS LCS

Surrogate	%Recovery Q	ualifier	Limits
1,2-Dichlorobenzene-d4	105		70 - 130
4-Bromofluorobenzene	104		70 - 130

Lab Sample ID: 460-247256-4 MS

Matrix: Water

Analysis Batch: 814366

Client Sample ID: SW-N4388-XX

Prep Type: Total/NA

	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,1,1,2-Tetrachloroethane	0.50	U	2.00	1.81		ug/L		90	70 - 130	
1,1,1-Trichloroethane	0.50	U	2.00	2.10		ug/L		105	70 - 130	
1,1,2,2-Tetrachloroethane	0.50	U	2.00	1.94		ug/L		97	70 - 130	
1,1,2-Trichloroethane	0.50	U	2.00	1.90		ug/L		95	70 - 130	
1,1-Dichloroethane	0.50	U	2.00	2.04		ug/L		102	70 - 130	
1,1-Dichloroethene	0.50	U	2.00	2.10		ug/L		105	70 - 130	

Client: Wood E&I Solutions Inc

Project/Site: LMC Q4 2021 Groundwater Monitoring

Method: 524.2 - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: 460-247256-4 MS

Matrix: Water

Analysis Batch: 814366

Client Sample ID: SW-N4388-XX

Prep Type: Total/NA

Job ID: 460-247256-1

	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,1-Dichloropropene	0.50	U	2.00	2.01		ug/L	_	100	70 - 130	
1,2,3-Trichlorobenzene	0.50	U	2.00	1.85		ug/L		93	70 - 130	
1,2,3-Trichloropropane	0.50	U	2.00	1.83		ug/L		92	70 - 130	
1,2,4-Trichlorobenzene	0.50	U	2.00	1.88		ug/L		94	70 - 130	
1,2,4-Trimethylbenzene	0.50	U	2.00	1.91		ug/L		96	70 - 130	
1,2-Dibromo-3-Chloropropane	0.50	U	2.00	1.80		ug/L		90	70 - 130	
1,2-Dichlorobenzene	0.50	U	2.00	1.92		ug/L		96	70 - 130	
1,2-Dichloroethane	0.50	U	2.00	2.06		ug/L		103	70 - 130	
1,2-Dichloropropane	0.50	U	2.00	1.94		ug/L		97	70 - 130	
1,3,5-Trimethylbenzene	0.50	U	2.00	1.93		ug/L		97	70 - 130	
1,3-Dichlorobenzene	0.50		2.00	1.93		ug/L		97	70 - 130	
1,3-Dichloropropane	0.50		2.00	1.97		ug/L		99	70 - 130	
1,4-Dichlorobenzene	0.50		2.00	1.90		ug/L		95	70 - 130	
2,2-Dichloropropane	0.50		2.00	2.01		ug/L		100	70 - 130	
2-Chlorotoluene	0.50		2.00	1.91		ug/L		95	70 - 130	
4-Chlorotoluene	0.50		2.00	1.94		ug/L		97	70 - 130	
4-Isopropyltoluene	0.50		2.00	1.97		ug/L		98	70 - 130	
Benzene	0.50		2.00	1.94		ug/L		97	70 - 130	
Bromobenzene	0.50		2.00	2.03		ug/L		101	70 - 130	
Bromoform	0.50		2.00	1.73				87	70 - 130 70 - 130	
Bromomethane		U *+ F2	2.00	2.60		ug/L		130	70 - 130 70 - 130	
	0.50			2.00		ug/L			70 - 130	
Carbon tetrachloride			2.00			ug/L		101		
Chlorobenzene	0.50		2.00	1.94		ug/L		97	70 - 130	
Chlorobromomethane	0.50		2.00	1.89		ug/L		95	70 - 130	
Chlorodibromomethane	0.50		2.00	1.90		ug/L		95	70 - 130	
Chloroethane	0.50		2.00	2.35		ug/L		117	70 - 130	
Chloroform	0.50		2.00	2.06		ug/L		103	70 - 130	
Chloromethane	0.50		2.00	2.20		ug/L		110	70 - 130	
cis-1,2-Dichloroethene	0.50		2.00	1.90		ug/L		95	70 - 130	
cis-1,3-Dichloropropene	0.50		2.00	1.70		ug/L		85	70 - 130	
Dibromomethane	0.50		2.00	1.89		ug/L		94	70 - 130	
Dichlorobromomethane	0.50		2.00	1.86		ug/L		93	70 - 130	
Dichlorodifluoromethane	0.50	U	2.00	2.22		ug/L		111	70 - 130	
Ethylbenzene	0.50		2.00	1.92		ug/L		96	70 - 130	
Freon 11	0.50	U	2.00	2.29		ug/L		115	70 - 130	
Freon 113	0.50	U	2.00	2.07		ug/L		104	70 - 130	
Freon 113 biased high, sample NI	1.0 quais	U *1 *+ F1	2.00	3.32	F1	ug/L		166	70 - 130	
Freon 123	0.50	U	2.00	2.05		ug/L		102	70 - 130	
Freon 152a	0.50	U *+	2.00	2.14		ug/L		107	70 - 130	
Freon 22	0.50	U	2.00	1.92		ug/L		96	70 - 130	
Hexachlorobutadiene	0.50	U	2.00	1.88		ug/L		94	70 - 130	
Isopropylbenzene	0.50	U	2.00	2.01		ug/L		101	70 - 130	
m,p-Xylene	1.0	U	4.00	3.92		ug/L		98	70 - 130	
Methyl tert-butyl ether	0.50		2.00	1.86		ug/L		93	70 - 130	
Methylene Chloride	0.50		2.00	1.96		ug/L		98	70 - 130	
N-Propylbenzene	0.50		2.00	2.04		ug/L		102	70 - 130	
o-Xylene	0.50		2.00	2.01		ug/L		100	70 - 130	
sec-Butylbenzene	0.50		2.00	1.98		ug/L		99	70 - 130	
Styrene	0.50		2.00	1.80		ug/L		90	70 - 130	

Eurofins TestAmerica, Edison

Client: Wood E&I Solutions Inc

Project/Site: LMC Q4 2021 Groundwater Monitoring

Method: 524.2 - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: 460-247256-4 MS

Matrix: Water

Analysis Batch: 814366

Client Sample ID: SW-N4388-XX

Prep Type: Total/NA

Job ID: 460-247256-1

-	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
tert-Butylbenzene	0.50	U	2.00	1.91		ug/L		95	70 - 130	
Tetrachloroethene	0.50	U	2.00	2.26		ug/L		113	70 - 130	
Toluene	0.50	U	2.00	2.01		ug/L		101	70 - 130	
trans-1,2-Dichloroethene	0.50	U	2.00	2.07		ug/L		104	70 - 130	
trans-1,3-Dichloropropene	0.50	U	2.00	1.79		ug/L		89	70 - 130	
Trichloroethene	0.50	U	2.00	2.07		ug/L		103	70 - 130	
Vinyl chloride	0.50	U	2.00	2.15		ug/L		108	70 - 130	

MS MS

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichlorobenzene-d4	100		70 - 130
4-Bromofluorobenzene	102		70 - 130

Lab Sample ID: 460-247256-4 MSD

Matrix: Water

Client Sample ID: SW-N4388-XX Prep Type: Total/NA

Analysis Batch: 814366 RPD = 20 RPD Sample Sample Spike MSD MSD %Rec. Analyte Result Qualifier Added Result Qualifier Unit D %Rec Limits **RPD** Limit 1,1,1,2-Tetrachloroethane 0.50 U 2.00 2.02 ug/L 101 70 - 130 11 1,1,1-Trichloroethane 0.50 U 2.00 30 2.30 ug/L 115 70 - 1309 1.1.2.2-Tetrachloroethane 0.50 U 2.00 1.96 ug/L 98 70 - 1301 30 95 70 - 130 0 1,1,2-Trichloroethane 0.50 U 2.00 1.90 ug/L 30 1,1-Dichloroethane 0.50 U 2.00 2.11 105 70 - 130 3 30 ug/L 1,1-Dichloroethene 0.50 U 2.00 2.24 ug/L 112 70 - 1307 30 30 1,1-Dichloropropene 0.50 U 2.00 2.31 116 70 - 13014 ug/L 1,2,3-Trichlorobenzene 0.50 U 2.00 2.13 ug/L 106 70 - 130 14 30 70 - 130 30 1,2,3-Trichloropropane 0.50 U 2.00 1.84 ug/L 92 0 1,2,4-Trichlorobenzene 0.50 U 2.00 2.13 ug/L 107 70 - 13013 30 1,2,4-Trimethylbenzene 0.50 U 2.00 2.10 ug/L 105 70 - 130 10 30 2.00 85 5 30 1,2-Dibromo-3-Chloropropane 0.50 U 1.71 ug/L 70 - 1301,2-Dichlorobenzene 0.50 U 2.00 2.08 ug/L 104 70 - 1308 30 1,2-Dichloroethane 0.50 U 2.00 2.09 105 70 - 130 2 30 ug/L 1,2-Dichloropropane 0.50 U 2.00 2.05 ug/L 102 70 - 130 6 30 2.00 105 70 - 130 9 30 1,3,5-Trimethylbenzene 0.50 U 2.11 ug/L 7 1,3-Dichlorobenzene 0.50 U 2.00 2.07 ug/L 103 70 - 13030 5 2.00 104 70 - 13030 1,3-Dichloropropane 0.50 U 2.07 ug/L 1,4-Dichlorobenzene 0.50 U 2.00 2.10 ug/L 105 70 - 130 10 30 2,2-Dichloropropane 0.50 U 2.00 2.15 ug/L 107 70 - 130 7 30 2-Chlorotoluene 2.00 2.22 111 70 - 130 15 30 0.50 U ug/L 8 4-Chlorotoluene 0.50 U 2.00 2.10 ug/L 105 70 - 130 30 2.00 107 70 - 130 9 30 4-Isopropyltoluene 0.50 U 2.15 ug/L Benzene 0.50 U 2.00 2.05 ug/L 102 70 - 1305 30 Bromobenzene 0.50 U 2.00 2.09 ug/L 104 70 - 130 3 30 0.50 U 2.00 95 70 - 130 10 30 **Bromoform** 1.91 ug/L sample ND - no quals 2.00 86 40 30 Bromomethane 0.50 U*+F2 1.73 F2 ug/L 70 - 130Carbon tetrachloride 0.50 U 2.00 2.22 ug/L 111 70 - 1309 30 Chlorobenzene 0.50 U 2.00 2.10 ug/L 105 70 - 130 8 30 Chlorobromomethane 0.50 U 2.00 2.12 ug/L 106 70 - 130 12 30 Chlorodibromomethane 0.50 U 2.00 1.92 ug/L 96 70 - 130 1 30

Eurofins TestAmerica, Edison

Client: Wood E&I Solutions Inc Job ID: 460-247256-1

Project/Site: LMC Q4 2021 Groundwater Monitoring

Method: 524.2 - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: 460-247256-4 MSD **Matrix: Water**

Analysis Batch: 814366

Client Sample ID: SW-N4388-XX

Prep Type: Total/NA 70-130

Analysis Batch: 814366	Sample	Sample	Spike	MSD	MSD		70 10	,,	%Rec.	RPD = 20	RPD
Analyte	•	Qualifier	Added		Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Chloroethane	0.50		2.00	2.35	<u> </u>	ug/L	=	117	70 - 130	0	30
Chloroform	0.50		2.00	2.15		ug/L		108	70 - 130	4	30
Chloromethane			2.00	2.37		ug/L		119	70 - 130	8	30
cis-1,2-Dichloroethene	0.50 - no quals 0.50	U	2.00	2.02		ug/L		101	70 - 130	6	30
cis-1,3-Dichloropropene	0.50		2.00	2.13		ug/L		106	70 - 130	22	30
Dibromomethane	0.50	U	2.00	2.11		ug/L		105	70 - 130	11	30
Dichlorobromomethane	0.50	U	2.00	2.01		ug/L		101	70 - 130	8	30
Dichlorodifluoromethane	0.50	U	2.00	2.26		ug/L		113	70 - 130	2	30
Ethylbenzene	0.50	U	2.00	2.04		ug/L		102	70 - 130	6	30
Freon 11	0.50	U	2.00	2.28		ug/L		114	70 - 130	0	30
Freon 113 sample ND - no quals	0.50	U	2.00	2.25		ug/L		112	70 - 130	8	30
Freon 115	1.0	U *1 *+ F1	2.00	2.53		ug/L		127	70 - 130	27	30
Freon 123	0.50	U	2.00	2.16		ug/L		108	70 - 130	5	30
Freon 152a	0.50	U *+	2.00	2.15		ug/L		108	70 - 130	1	30
Freon 22	0.50	U	2.00	2.25		ug/L		112	70 - 130	16	30
Hexachlorobutadiene	0.50	U	2.00	2.09		ug/L		105	70 - 130	11	30
Isopropylbenzene	0.50	U	2.00	2.19		ug/L		109	70 - 130	9	30
m,p-Xylene	1.0	U	4.00	4.29		ug/L		107	70 - 130	9	30
Methyl tert-butyl ether	0.50	U	2.00	2.02		ug/L		101	70 - 130	8	30
Methylene Chloride	0.50	U	2.00	2.12		ug/L		106	70 - 130	8	30
N-Propylbenzene	0.50	U	2.00	2.10		ug/L		105	70 - 130	3	30
o-Xylene	0.50	U	2.00	2.17		ug/L		109	70 - 130	8	30
sec-Butylbenzene	0.50	U	2.00	2.26		ug/L		113	70 - 130	13	30
Styrene	0.50	U	2.00	2.02		ug/L		101	70 - 130	12	30
tert-Butylbenzene	0.50	U	2.00	2.20		ug/L		110	70 - 130	14	30
Tetrachloroethene	0.50	U	2.00	2.44		ug/L		122	70 - 130	8	30
Toluene	0.50	U	2.00	2.03		ug/L		102	70 - 130	1	30
trans-1,2-Dichloroethene	0.50	U	2.00	2.04		ug/L		102	70 - 130	1	30
trans-1,3-Dichloropropene	0.50	U	2.00	1.84		ug/L		92	70 - 130	3	30
Trichloroethene	0.50	U	2.00	2.07		ug/L		104	70 - 130	0	30
Vinyl chloride	0.50	U	2.00	2.22		ug/L		111	70 - 130	3	30
		MSD									
Surrogate	%Recovery	Qualifier	Limits								
1,2-Dichlorobenzene-d4	103		70 - 130								

Method: 8260D - Volatile Organic Compounds by GC/MS

103

Lab Sample ID: MB 460-813321/8

Matrix: Water

4-Bromofluorobenzene

Analysis Batch: 813321

Client Sample ID: Method Blank Prep Type: Total/NA

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloromethane	0.50	U	0.50	0.40	ug/L			11/15/21 08:22	1
Vinyl chloride	0.50	U	0.50	0.17	ug/L			11/15/21 08:22	1
Bromomethane	0.50	U	0.50	0.55	ug/L			11/15/21 08:22	1
Chloroethane	0.50	U	0.50	0.32	ug/L			11/15/21 08:22	1
Methylene Chloride	0.50	U	0.50	0.32	ug/L			11/15/21 08:22	1
Acetone	5.0	U	5.0	4.4	ug/L			11/15/21 08:22	1

70 - 130

Eurofins TestAmerica, Edison

Page 75 of 1911

12/02/2021

FORM VI GC/MS VOA BY INTERNAL STANDARD - INITIAL CALIBRATION DATA CURVE EVALUATION

Job No.: 460-247256-1 Lab Name: Eurofins TestAmerica, Edison

Analy Batch No.: 813964

SDG No.:

Instrument ID: CVOAMS15

ID: 0.25 (mm)

GC Column: Rtx-624

Z Heated Purge: (Y/N)

CURVE CURVE CURVE CURVE CURVE CURVE CO.2439 O.1761 O.3142 O.3355 Lin -0.20 O.9663 I.1831 I.1268 O.7839 Ave O.1992 O.2029 O.1831 O.1831 O.1897 Ave O.2788 O.2773 O.2377 Ave O.0337 O.0237 Ave O.0337 O.0237 O.0237 Ave O.0337 O.0237 O.0237 Ave O.0337 O.0230 O.2772 O.7127 Ave O.2596 O.2472 O.2866 O.2534 Ave O.7630 O.7300 O.7272 O.7127 Ave O.7630 O.7300 O.7272 O.7127 Ave O.3205 O.4775 O.4450 Ave O.3205 O.4775 O.4489 Ave O.3205 O.0409 O.0335 Ave O.0326 O.0409 O.0335 Ave O.0326 O.0409 O.0335 Ave O.03265 O.2401 O.2517 O.2489 Ave O.1209 O.1368 O.1368 O.0469 O.0858 O.0669 Ave O.1501 O.1368 O.0858 O.0669 Ave O.0795 O.0858 O.0858 O.0659 O.0771 Ave O.5296 O.5456 O.5411 O.4771 Ave O.5296 O.5456 O.5411 O.4771 Ave O.5296 O.5456 O.5411 O.4771 Ave O.5296 O.5456 O.5456 O.5441 O.4771 Ave O.5596 O.5456 O.5441 O.4771 O.4771 Ave O.5596 O.5456 O.5441 O.4771 O.4771 Ave O.5596 O.54456 O.5441 O.4771 O.4771 O.5401 O.54401 O.54401 O.44501 O.44	Calibration Start Date: 11/18/2021	1 07:08		Calibra	ration E	End Dat	Date: 11	11/18/2021	021 13:56	Cali	Calibration ID	88122	22		
1011 101	ANALYTE		1	3RF			CURVE		COEFFICIENT	# WIN	RRF %RSD #		R^2	# W	MIN R^2
disulfide 0.1708 0.2439 0.1761 0.3142 0.3355 Lin -0.20 0.8014 disulfide 0.8074 0.8074 0.8063 1.1268 0.7839 Ave 0.1052 0.1052 0.1831 0.1897 Ave 0.1052 0.1052 0.2029 0.1831 0.1897 Ave 0.286 0.286 0.2868 0.2873 0.2440 Ave 0.028 0.028 0.1052 0.2027 0.0277 0.0237 Ave 0.0228 0.1052 0.1593 0.1159 0.1071 0.0965 Ave 0.1028 0.1028 0.1159 0.1071 0.0965 Ave 0.1028 0.1897 0.1290 0.1071 0.0965 Ave 0.1028 0.1897 0.130 0.1072 0.1727 0.1475 Ave 0.1028 0.1897 0.230 0.475 Ave 0.1028 0.286 0.5472 0.5302 0.475 Ave 0.1028 0.286 0.5939 0.1897 Ave 0.1029 0.1891 0.2596 0.2909 0.1297 0.2902 0.2465 0.2909 0.29		1 9	2	3	4		TYPE	В				%RSD (OR COD	0	OR COD
disulfide 0.865 0.9663 1.1831 1.1268 0.7839 Ave chloride 0.887 0.1832 0.273 0.1831 0.1897 Ave chloride 0.1836 0.1992 0.2029 0.1831 0.1897 Ave chloride 0.1838 0.2788 0.2773 0.2440 Ave chloride 0.0288 0.0288 0.2888 0.2773 0.2440 Ave chloride 0.0288 0.0288 0.153 0.1071 0.0955 Ave chlorocthene 0.028 0.153 0.1159 0.1071 0.0955 Ave chlorocthene 0.2887 0.7800 0.7300 0.7272 0.7127 Ave chlorocthene 0.6887 0.7630 0.7300 0.7272 0.7127 Ave chlorocthene 0.6887 0.7630 0.7300 0.7272 0.7127 Ave chlorocthene 0.5536 0.4834 0.4532 0.4775 0.4450 Ave chlorocthene 0.5536 0.4834 0.4532 0.4775 0.4450 Ave chlorocthene 0.5536 0.3388 0.0469 0.0330 0.0280 Ave chlorocthene 0.0338 0.0338 0.0469 0.0338 0.0335 Ave chlorocthene 0.0338 0.0348 0.0469 0.0409 0.0335 Ave chlorocthene 0.0348 0.0356 0.2401 0.2517 0.2489 Ave chlorocthene 0.0348 0.0360 0.1121 0.1113 0.1062 Ave chlorocthene 0.0348 0.0360 0.1211 0.1113 0.1062 Ave chlorocthene 0.0348 0.0368 0.0469 0.0469 0.0469 0.0469 0.0338 0.0288 Ave chlorocthene 0.0348 0.0368 0.0469 0.0	iodide		68			3355	Lin	-0.20	0.353				1.0000		0.9900
chloride 0.1626 0.1992 0.2029 0.1831 0.1897 Ave 0.288 0.273 0.2440 Ave 0.2683 0.2788 0.2773 0.22440 Ave 0.0282 0.0282 0.02773 0.0237 Ave 0.0282 0.0387 0.0237 0.0237 Ave 0.0288 0.1028 0.1071 0.0968 Ave 0.0288 0.1159 0.1071 0.0968 Ave 0.0288 0.1089 0.1159 0.1071 0.0968 Ave 0.0288 0.0288 0.0290 0.2990 0.12986 0.2990 0.	disulfide		Н			.7839	Ave		0.978		16.6	20.0			
ene Chloride 0.3463 0.2788 0.2838 0.2773 0.2440 Ave 0.2683 0.0228 0.0228 0.0237 0.0232 Ave 0.0228 0.0337 0.0232 0.0277 0.0237 Ave 0.0228 0.0308 0.1153 0.1159 0.1071 0.0965 Ave 0.1024 0.1024 0.1024 0.1024 0.1024 0.1024 Ave 0.2786 0.2786 0.2786 0.2734 Ave 0.2786 0.2786 0.2786 0.2734 Ave 0.2786 0.2786 0.2792 0.1717 Ave 0.2786 0.2786 0.2792 0.1717 Ave 0.2786 0.2795 0.2792 0.1717 Ave 0.2798 0.2980 0.4745 Ave 0.2598 0.2897 0.1893 0.1727 0.1717 Ave 0.2598 0.2992 0.2795 0.2795 0.2795 Ave 0.2598 0.0335 0.0335 0.0335 Ave 0.0331 0.0356 0.0378 0.0330 0.0280 Ave 0.0331 0.0356 0.2795 0.2797 0.2287 0.2387 0.0338 0.0489 0.0489 0.0489 0.0335 Ave 0.0336 0.0288 0.0488 0.0489 0.0489 0.0335 Ave 0.0336 0.02468 0.0289 0.1209 0.1121 0.1113 0.1062 Ave 0.1131 0.1062 Ave 0.1131 0.1062 Ave 0.1131 0.1062 Ave 0.1131 0.1138 0.1232 Ave 0.1131 0.1368 0.1237 Ave 0.1237 Ave 0.1231 Ave 0.1231 Ave 0.1231 Ave 0.1231 Ave 0.1241 0.171 Ave 0.1271 Ave 0	chloride	0				.1897	Ave		0.188		7.7	20.0			
nitrile 0.0282 0.0337 0.0277 0.0277 Ave nitrile 0.028 0.1153 0.1159 0.1071 0.0965 Ave 1,2-Dichloroethene 0.3115 0.2932 0.2902 0.2866 0.2534 Ave chloroethane 0.3115 0.2932 0.2902 0.7272 0.7127 Ave chloroethane 0.6195 0.5296 0.5472 0.4745 Ave chloropropane 0.6195 0.5296 0.5472 0.4745 Ave chloropropane 0.6195 0.5296 0.5472 0.4745 Ave chloropropane 0.6196 0.0348 0.4834 0.4532 0.4475 Ave none 0.031 0.0326 0.0378 0.0386 0.0469 0.0409 0.0489 cyanide 0.0356 0.2265 0.2401 0.2188 0.1062 Ave rylonitrile 0.0359 0.1209 0.1121 0.1162 Ave rylonitrile 0.1328	Chloride					-	Ave		0.283		12.0	20.0			
nitrile 0.0980 0.1153 0.1159 0.1071 0.0965 Ave 1,2-Dichloroethene 0.1024 0.2932 0.2902 0.2866 0.2534 Ave tert-butyl ether 0.6887 0.7630 0.7300 0.7272 0.7127 Ave chloroethane 0.6887 0.7630 0.7302 0.4745 Ave chloropropane 0.6195 0.5296 0.5472 0.5302 0.4745 Ave chloropropane 0.4617 0.3477 0.3205 0.4775 0.4450 Ave chloropropane 0.5536 0.4834 0.4532 0.4755 Ave chloropropane 0.5536 0.4834 0.4532 0.4755 Ave chloropropane 0.3516 0.3205 0.0330 0.0280 Ave chloropropane 0.0313 0.0326 0.0378 0.0409 0.0489 Ave cylonide 0.0348 0.2265 0.2401 0.2113 Ave bromomethane 0.1528						-	Ave		0.026		15.9	20.0			
1,2-Dichloroethene							Ave		0.105		7.9	20.0			
tert-butyl ether 0.6887 0.7630 0.7300 0.7272 0.7127 Ave chloroethane 0.6195 0.5296 0.5472 0.5302 0.4745 Ave chloroethane 0.5536 0.4834 0.4532 0.4775 0.4450 Ave chloroethene 0.5536 0.4834 0.4532 0.4775 0.4450 Ave chloroethene 0.2980 0.0351 0.0326 0.0378 0.0330 0.0280 Ave chone 0.0351 0.0326 0.0378 0.0330 0.0280 Ave chloroethene 0.0351 0.0326 0.0378 0.0335 Ave chloroethane 0.0360 0.2265 0.2401 0.2517 0.2489 Ave chloroethane 0.0859 0.1209 0.1121 0.1113 0.1062 Ave chloroethane 0.1528 0.1501 0.1368 0.1368 0.1332 Ave chloromethane 0.1528 0.1501 0.1368 0.1368 0.1332 Ave chloromethane 0.0772 0.0795 0.0880 0.0858 0.0669 Ave chloromethane 0.0772 0.0795 0.0880 0.0858 0.0669 Ave chloromethane 0.0772 0.0795 0.0880 0.0858 0.0669 Ave chloromethane 0.06779 0.05296 0.5241 0.4771 Ave chloromethane 0.06779 0.05296 0.5241 0.4771 Ave							Ave		0.285		6.7	20.0			
chloroethane 0.6195 0.5296 0.5472 0.5302 0.4745 Ave chloropropane 0.5033 0.4834 0.4832 0.4475 0.4450 Ave 2-Dichloroethene 0.2360 0.3477 0.3205 0.0305 0.2796 Ave none 0.0351 0.0326 0.0378 0.0469 0.0409 0.0280 Ave cyanide 0.0360 0.2265 0.2469 0.0469 0.0409 0.0335 Ave acrylate 0.2468 0.1209 0.1121 0.1113 0.1062 Ave rylonitrile 0.0859 0.1209 0.1368 0.1368 0.1368 Ave promomethane 0.1328 0.0689 0.1501 0.1368 0.1368 Ave dormomethane 0.0772 0.0795 0.0880 0.0669 Ave form 0.0679 0.5456 0.5456 0.5451 0.4771 Ave	tert-butyl ether						Ave		0.727		ж Э.	20.0			
chloropropane 0.5536 0.4834 0.4532 0.4775 O.4450 Ave 2-Dichloroethene 0.3516 0.3477 0.3205 0.0330 0.0278 Ave none 0.0351 0.0352 0.0378 0.0330 0.0280 Ave cyanide 0.0348 0.0388 0.0469 0.0409 0.0335 Ave acrylate 0.2486 0.2265 0.2401 0.2517 0.2489 Ave rylonitrile 0.0859 0.1209 0.1131 0.1132 Ave bromomethane 0.1528 0.1501 0.1368 0.0669 Ave o.0772 0.0772 0.0795 0.0858 0.0669 Ave form 0.6777 0.5296 0.5456 0.5241 0.4771 Ave				5472			Ave		0.535		0.6	20.0			
2-Dichloroethene 0.3516 0.3477 0.3205 0.3095 0.2796 Ave none 0.0351 0.0378 0.0330 0.0280 Ave cyanide 0.0348 0.0388 0.0469 0.0435 Ave acrylate 0.2436 0.2265 0.2401 0.2517 0.2489 Ave rylonitrile 0.0859 0.1209 0.1121 0.1113 0.1062 Ave bromomethane 0.1528 0.1501 0.1368 0.0669 Ave o.0772 0.0795 0.0880 0.0858 0.0669 Ave form 0.6157 0.5296 0.5241 0.4771 Ave						-	Ave		0.479		8.2	20.0			
none 0.0351 0.0326 0.0378 0.0330 0.0280 Ave Cyanide 0.0348 0.0388 0.0469 0.0409 0.0335 Ave acrylate 0.2468 0.2265 0.2401 0.2517 0.2489 Ave rylonitrile 0.0859 0.1209 0.1121 0.1113 0.1062 Ave bromomethane 0.1528 0.1501 0.1368 0.1368 0.1232 Ave ydrofuran 0.0772 0.0795 0.0880 0.0858 0.0669 Ave form 0.6157 0.5296 0.5241 0.4771 Ave						_	Ave		0.317		9.8	20.0			
Cyanide 0.0348 0.0388 0.0469 0.0409 0.0335 Ave acrylate 0.2436 0.2265 0.2401 0.2517 0.2489 Ave rylonitrile 0.0859 0.1209 0.1121 0.1113 0.1062 Ave bromomethane 0.1528 0.1501 0.1368 0.1232 Ave 0.1268 0.0772 0.0772 0.0795 0.0880 0.0669 Ave form 0.6157 0.5296 0.5456 0.5241 0.4771 Ave							Ave		0.033		10.1	20.0			
e 0.2436 0.2265 0.2401 0.2517 0.2489 Ave 0.2468 0.0859 0.1209 0.1121 0.1113 0.1062 Ave 0.11528 0.1568 0.1368 0.1368 0.1232 Ave 0.1268 0.0772 0.0795 0.0880 0.0858 0.0669 Ave 0.0679 0.0677 0.5296 0.5456 0.5241 0.4771 Ave	Cyanide						Ave		0.038		12.8	20.0			
e 0.1859 0.1209 0.1121 0.1113 0.1062 Ave 0.1131 0.1528 0.1528 0.1501 0.1368 0.1368 0.1232 Ave 0.1268 0.0772 0.0795 0.0880 0.0858 0.0669 Ave 0.0679 0.0679 0.05296 0.5241 0.4771 Ave	acrylate						Ave		0.243		3.7	20.0			
ane 0.1528 0.1501 0.1368 0.1232 Ave 0.1268 0.0772 0.0795 0.0880 0.0858 0.0669 Ave 0.0679 0.0679 0.5296 0.5241 0.4771 Ave							Ave		0.108		11.0	20.0			
0.0772 0.0795 0.0858 0.0669 Ave 0.0679 0.5296 0.5241 0.4771 Ave						-	Ave		0.137		8.7	20.0			
0.6157 0.5296 0.5456 0.5241 0.4771 Ave							Ave		0.077		11.4	20.0			
		0.6157 0.5 0.5040	96	9 9			Ave		0.532		8.8	20.0			

Report Date: 21-Nov-2021 11:07:02 Chrom Revision: 2.3 22-Sep-2021 15:38:46

Eurofins TestAmerica, Edison Target Compound Quantitation Report

Data File: \\chromfs\Edison\ChromData\CVOAMS15\20211119-137835.b\T58335.D

Lims ID: 460-247256-A-8 Client ID: SW-N13821-XX

Sample Type: Client

Inject. Date: 19-Nov-2021 11:19:24 ALS Bottle#: 0 Worklist Smp#: 14

Purge Vol: 5.000 mL Dil. Factor: 1.0000

Sample Info: 460-247256-A-8 Misc. Info.: 460-0137835-014

Operator ID: Instrument ID: CVOAMS15

Method: \\chromfs\Edison\ChromData\CVOAMS15\20211119-137835.b\524DW_15.m

Limit Group: VOA 524 ICAL

Last Update: 21-Nov-2021 11:04:33 Calib Date: 19-Nov-2021 03:28:42

Integrator:RTEID Type:RT Order IDQuant Method:Internal StandardQuant By:Initial CalibrationLast ICal File:\\chromfs\Edison\ChromData\CVOAMS15\20211118-137823.b\T58317.D

Column 1: Rtx-624 (0.25 mm) Det: MS SCAN

Process Host: CTX1642

First Level Reviewer: desais Date: 19-Nov-2021 12:55:05

Compound	Sig	RT (min.)	Exp RT (min.)	Dlt RT (min.)	Q	Response	OnCol Amt	Flage
Compound	Sig	(111111.)	(111111.)	(111111.)	Q	nesponse	ug/l	Flags
12 1,1,2-Trichloro-1,2,2-trifluoroe	101	1.273	1.272	0.000	67	1444	0.3252	
25 cis-1,2-Dichloroethene	96	2.248	2.248	0.000	91	35137	6.58 🗸	
* 39 Fluorobenzene	96	3.114	3.113	0.001	98	84203	5.00	
40 Trichloroethene	95	3.443	3.443	0.000	89	7103	1.47	
54 Tetrachloroethene	166	5.412	5.412	0.000	84	4013	1.02	
\$ 67 4-Bromofluorobenzene	95	8.265	8.265	0.000	81	38526	5.32	
\$ 84 1,2-Dichlorobenzene-d4	152	10.685	10.685	0.000	83	31729	5.25	

QC Flag Legend

Processing Flags

Reagents:

VM5SUISi5PPM_00007 Amount Added: 5.00 Units: uL Run Reagent

FORM I GC/MS VOA ORGANICS ANALYSIS DATA SHEET

Lab Name: Eurofins TestAmerica, Edison	Job No.: 460-247256-1					
SDG No.:						
Client Sample ID: SW-N13821-XX	Lab Sample ID: 460-247256-8					
Matrix: Water	Lab File ID: T58335.D					
Analysis Method: 524.2	Date Collected: 11/05/2021 10:35					
Sample wt/vol: 5(mL)	Date Analyzed: 11/19/2021 11:19					
Soil Aliquot Vol:	Dilution Factor: 1					
Soil Extract Vol.:	GC Column: Rtx-624 ID: 0.25(mm)					
% Moisture:	Level: (low/med) Low					

Units: ug/L

CAS NO. COMPOUND NAME Q RLMDL RESULT 630-20-6 1,1,1,2-Tetrachloroethane 0.50 0.50 0.12 IJ 71-55-6 1,1,1-Trichloroethane 0.50 0.50 0.17 79-34-5 1,1,2,2-Tetrachloroethane 0.50 0.50 0.15 79-00-5 1,1,2-Trichloroethane 0.50 0.50 0.090 75-34-3 1,1-Dichloroethane 0.50 0.50 IJ 0.14 75-35-4 0.50 0.50 0.19 1,1-Dichloroethene 563-58-6 0.50 0.50 0.18 1,1-Dichloropropene 87-61-6 1,2,3-Trichlorobenzene 0.50 U 0.50 0.10 0.50 96-18-4 1,2,3-Trichloropropane IJ 0.50 0.14 120-82-1 1,2,4-Trichlorobenzene 0.50 U 0.50 0.10 95-63-6 1,2,4-Trimethylbenzene 0.50 U 0.50 0.10 95-50-1 1,2-Dichlorobenzene 0.50 0.50 0.11 107-06-2 1,2-Dichloroethane 0.50 U 0.50 0.11 78-87-5 0.50 0.50 0.11 1,2-Dichloropropane 108-67-8 1,3,5-Trimethylbenzene 0.50 0.50 0.12 0.50 541-73-1 0.50 0.090 1,3-Dichlorobenzene IJ 142-28-9 0.50 0.50 0.090 1,3-Dichloropropane 106-46-7 1,4-Dichlorobenzene 0.50 U 0.50 0.090 594-20-7 0.50 2,2-Dichloropropane U 0.50 0.15 0.50 0.10 95-49-8 2-Chlorotoluene U 0.50 106-43-4 4-Chlorotoluene 0.50 U 0.50 0.11 99-87-6 4-Isopropyltoluene 0.50 U 0.50 0.13 71-43-2 Benzene 0.50 0.50 0.11 IJ 108-86-1 Bromobenzene 0.50 0.50 0.070 75-25-2 Bromoform 0.50 0.50 0.080 74-83-9 Bromomethane 0.50 U 0.50 0.31 56-23-5 Carbon tetrachloride 0.50 IJ 0.50 0.17 108-90-7 Chlorobenzene 0.50 0.50 0.10 74-97-5 0.50 0.50 0.10 Chlorobromomethane 124-48-1 0.50 Chlorodibromomethane U 0.50 0.15 0.50 75-00-3 Chloroethane IJ 0.50 0.23 67-66-3 Chloroform 0.50 U 0.50 0.12 74-87-3 Chloromethane 0.50 0.50 0.18 156-59-2 cis-1,2-Dichloroethene 6.6 0.50 0.14 10061-01-5 cis-1,3-Dichloropropene 0.50 U 0.50 0.18 Dibromomethane 0.50 74-95-3 0.50 0.10

Analysis Batch No.: 814181

DUSR Calculations Sheet

Sample ID: SW-N13821-XX

TC: cis-1,2-Dichloroethene

ICAL Level: std 1

Val File Result for TC: 6.6

Ical Calc

Area TC	6716	1	0.3516
Area IS	96585	2	0.3477
		3	0.3205
Conc TC	1	4	0.3095
Conc IS	5	5	0.2796
		6	0.298
RRF =	0.347673	7	
		8	
		9	
		10	
		Avg RRF =	0.317817
		Std Dev =	0.028156
		%RSD =	8 859315

Sample Calc

Area TC	35137	DF 1
Area IS	84203	
Conc IS	5	
Avg RRF	0.317817	

Conc TC = $6.564935 \mu g/L$ Conc TC = 6.564935

Notes:

Green = matched reported value Red = did not match reported value SW-N12796-XX/SW-500

Sample ID:

Compund 1,1,2-Trichloro-1,2,2-Trifluoroethane (Freon 113) cis-1,2-Dichloroethene Tetrachloroethene Trichloroethene	Result 0.54 4.1 6.6 5.0	LabQual	Dup 0.54 4.1 6.9 5.0	LabQual	RPD 0 0 4.44444	
Chloride Bromide	52.0 0.10		52.5 0.11		0.956938 9.52381	
Sample ID: Compund 1,1,2-Trichloro-1,2,2-Trifluoroethane (Freon 113) cis-1,2-Dichloroethene Tetrachloroethene trans-1,2-Dichloroethene Trichloroethene	MW-52MI- Result 0.78 15 3.3 0.24	MW-52MI-XX/MW-502 Result LabQual C 0.78 C 15 3.3 3	72 Dup 0.81 18 3.4 0.51	LabQual	RPD 3.773585 18.18182 2.985075 72 8.695652	J, FD

GENERAL CHEMISTRY

NYSDEC DUSR PROJECT CHEMIST REVIEW RECORD Project: LMC Great Neck Q4 GWM Method: SM 4500, 300.0 Laboratory: TAL Edison, NJ **SDG(s):** 460-246843-1, 460-247256-1 Date: 11/22/2021 Reviewer: Amber Jones X NYSDEC DUSR Review Level **USEPA** Region II Guideline Case Narrative Review and Data Package Completeness **COMMENTS** Were problems noted? no - see attached Were all the samples on the COC analyzed for the requested analyses? YES NO (circle one) Are Field Sample IDs and Locations assigned correctly? YES NO (circle one) **Holding time and Sample Collection** Were all samples were all prepped and analyzed with the method holding time? YES NO \square 3. **QC** Blanks Are method blanks clean? YES NO (circle one) Are Initial and continuing calibration blanks clean? YES NO (circle one) No ICB/CCB \checkmark Instrument Calibration - Data Package Narrative Review Did the laboratory narrative identify analytes that were not within criteria in the initial and/or continuing calibration standards? YES NO Did the laboratory qualify results based on initial or continuing calibration exceedances? YES NO If yes to above, use professional judgment to evaluate data and qualify results if needed **5. ⊻ Laboratory Control Sample Results** Were all results were within 80-120% limits? YES NO (circle one) \square' **Matrix Spike** MW-31GL-XX Were MS/MSDs submitted/analyzed? YES NO Were all results were within 75-125% limits? YES NO NA (circle one) 7. **Duplicates** Were Field Duplicates submitted/analyzed? YES NO Agueous RPD within limit? (20%) YES NO NA (circle one) Soil RPD within limit? (35%) YES NO NA (circle one) Lab dup RPD <20% for water, 35% for soil values > 5X the CRQL (or \pm CRQL) YES NO NA \checkmark Were both **Total and Dissolved** parameters reported? YES NO NA (circle one) 8. If the dissolved concentration is > 20% of the total concentration then estimate (J) both results \mathbf{M} 9. **Percent Solids** < 50% for any soil/sediment sample? YES NO NA (circle one) If yes, use professional judgment 10. **Y Raw Data Review and Calculation Checks** see attached 11. 🗹 Electronic Data Review and Edits Does the EDD match the Form Is? YES NO (circle one) 12. **DUSR Table Review Table 1** (Samples and Analytical Methods) **Table 2** (Analytical Results) **Table 3** (Qualification Actions)

YES NO (circle one)

Were all tables produced and reviewed?

CASE NARRATIVE

Client: Wood E&I Solutions Inc

Project: LMC Q4 2021 GW Monitoring

Report Number: 460-246843-1

This case narrative is in the form of an exception report, where only the anomalies related to this report, method specific performance and/or QA/QC issues are discussed. If there are no issues to report, this narrative will include a statement that documents that there are no relevant data issues.

It should be noted that samples with elevated Reporting Limits (RLs) as a result of a dilution may not be able to satisfy customer reporting limits in some cases. Such increases in the RLs are unavoidable but acceptable consequence of sample dilution that enables quantification of target analytes or interferences which exceed the calibration range of the instrument.

Calculations are performed before rounding to avoid round-off errors in calculated results.

All holding times were met and proper preservation noted for the methods performed on these samples, unless otherwise detailed in the individual sections below.

RECEIPT

The samples were received on 11/04/2021; the samples arrived in good condition, properly preserved and on ice. The temperature of the coolers at receipt was 3.0 C.

Note: All samples which require thermal preservation are considered acceptable if the arrival temperature is within 2C of the required temperature or method specified range. For samples with a specified temperature of 4C, samples with a temperature ranging from just above freezing temperature of water to 6C shall be acceptable. Samples that are hand delivered immediately following collection may not meet these criteria, however they will be deemed acceptable according to NELAC standards, if there is evidence that the chilling process has begun, such as arrival on ice, etc.

VOLATILE ORGANIC COMPOUNDS (GC/MS) - (LOW LEVEL - LL)(TOTAL)

Samples MW-1MI-XX (460-246843-1), MW-1ML-XX (460-246843-2), MW-3GL-XX (460-246843-3), MW-3ML-XX (460-246843-4), MW-17ML-XX (460-246843-5), MW-22ML-XX (460-246843-6), MW-29MI-XX (460-246843-7), MW-31GL-XX (460-246843-8), MW-31MI-XX (460-246843-9), MW-31ML-XX (460-246843-10), MW-33GL-XX (460-246843-11), MW-33ML-XX (460-246843-12), MW-37MU-XX (460-246843-13), MW-37ML-XX (460-246843-14), MW-43MU-XX (460-246843-15), MW-43MI-XX (460-246843-16), QC-EB011121-01 (460-246843-17), QC-EB021121-01 (460-246843-18), QC-EB031121-XX (460-246843-19) and QC-TB011121-XX (460-246843-20) were analyzed for Volatile Organic Compounds (GC/MS) - (Low Level - LL)(Total) in accordance with EPA SW-846 Method 8260D - Low Level (LL). The samples were analyzed on 11/10/2021, 11/11/2021 and 11/12/2021.

cis-1,2-Dichloroethene failed the recovery criteria low for the MS of sample MW-31GL-XXMS (460-246843-8) in batch 460-812406.

cis-1,2-Dichloroethene failed the recovery criteria low for the MSD of sample MW-31GL-XXMSD (460-246843-8) in batch 460-812406.

No other difficulties were encountered during the Volatiles analysis.

All other quality control parameters were within the acceptance limits.

CHLORIDE

Samples MW-31GL-XX (460-246843-8), MW-31MI-XX (460-246843-9), MW-31ML-XX (460-246843-10), MW-43MU-XX (460-246843-15), MW-43MI-XX (460-246843-16) and QC-EB011121-01 (460-246843-17) were analyzed for chloride in accordance with SM 4500 CL B. The samples were analyzed on 11/10/2021.

Sample MW-31GL-XX (460-246843-8)[2X] required dilution prior to analysis. The reporting limits have been adjusted accordingly.

No difficulties were encountered during the chloride analysis.

All quality control parameters were within the acceptance limits.

ANIONS, ION CHROMATOGRAPHY

Samples MW-31GL-XX (460-246843-8), MW-31MI-XX (460-246843-9), MW-31ML-XX (460-246843-10), MW-43MU-XX (460-246843-15), MW-43MI-XX (460-246843-16) and QC-EB011121-01 (460-246843-17) were analyzed for Anions, Ion Chromatography in accordance with EPA Method 300.0 28D Anions by Ion Chromatograph (Low Level - LL). The samples were analyzed on 11/16/2021.

No difficulties were encountered during the Anions, Ion Chromatography analysis.

Client Sample Results

Client: Wood E&I Solutions Inc Job ID: 460-246843-1

Project/Site: LMC Q4 2021 GW Monitoring

Method: 8260D - Volatile Organic Compounds by GC/MS (Continued)

Method: 300.0-1993 R2.1 - Anions, Ion Chromatography

Client Sample ID: MW-31GL-XX Lab Sample ID: 460-246843-8

Date Collected: 11/02/21 11:45 Matrix: Water Date Received: 11/04/21 20:00

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Freon 152a	1.0	U	1.0	0.76	ug/L			11/10/21 10:31	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4	103		75 - 123					11/10/21 10:31	1
Bromofluorobenzene	96		76 - 120					11/10/21 10:31	1
Dibromofluoromethane (Surr)	106		77 - 124					11/10/21 10:31	1
Toluene-d8	99		80 - 120					11/10/21 10:31	1

method: 000.0-1000 RE: 1 - Anio	,	ii oiiiatogi aj	Jily						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Bromide	0.20		0.050	0.025	mg/L			11/16/21 16:58	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	114	✓	10.0	2.2	mg/L			11/10/21 10:30	2

Client Sample ID: MW-31MI-XX

Date Collected: 11/02/21 10:35

Lab Sample ID: 460-246843-9

Matrix: Water

Date Received: 11/04/21 20:00

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	0.50	U	0.50	0.24	ug/L			11/10/21 13:00	1
1,1,2,2-Tetrachloroethane	0.50	U	0.50	0.37	ug/L			11/10/21 13:00	1
1,1,2-Trichloro-1,2,2-trifluoroetha	17		0.50	0.31	ug/L			11/10/21 13:00	1
ne									
1,1,2-Trichloroethane	0.50	U	0.50		ug/L			11/10/21 13:00	1
1,1-Dichloroethane	0.45	J	0.50	0.26	-			11/10/21 13:00	1
1,1-Dichloroethene	1.0		0.50	0.26	ug/L			11/10/21 13:00	1
1,2,3-Trichlorobenzene	0.50	U	0.50	0.36	ug/L			11/10/21 13:00	1
1,2,4-Trichlorobenzene	0.50	U	0.50	0.37	ug/L			11/10/21 13:00	1
1,2-Dibromo-3-Chloropropane	0.50	U	0.50	0.38	ug/L			11/10/21 13:00	1
1,2-Dichlorobenzene	0.50	U	0.50	0.21	ug/L			11/10/21 13:00	1
1,2-Dichloroethane	0.79		0.50	0.43	ug/L			11/10/21 13:00	1
1,2-Dichloropropane	0.35	J	0.50	0.35	ug/L			11/10/21 13:00	1
1,3-Dichlorobenzene	0.50	U	0.50	0.34	ug/L			11/10/21 13:00	1
1,4-Dichlorobenzene	0.50	U	0.50	0.33	ug/L			11/10/21 13:00	1
1,4-Dioxane	25	U	25	28	ug/L			11/10/21 13:00	1
2-Butanone (MEK)	2.5	U	2.5	1.9	ug/L			11/10/21 13:00	1
2-Hexanone	2.5	U	2.5	1.1	ug/L			11/10/21 13:00	1
4-Methyl-2-pentanone (MIBK)	2.5	U	2.5	1.3	ug/L			11/10/21 13:00	1
Acetone	5.0	U	5.0		ug/L			11/10/21 13:00	
Benzene	0.50	U	0.50		ug/L			11/10/21 13:00	1
Bromoform	0.50	U	0.50		ug/L			11/10/21 13:00	1
Bromomethane	0.50	U	0.50		ug/L			11/10/21 13:00	1
Carbon disulfide	0.50	U	0.50		ug/L			11/10/21 13:00	1
Carbon tetrachloride	0.50	U	0.50		ug/L			11/10/21 13:00	1
Chlorobenzene	0.50	U	0.50	0.38				11/10/21 13:00	1
Chlorobromomethane	0.50	U	0.50		ug/L			11/10/21 13:00	1
Chlorodibromomethane	0.50		0.50		ug/L			11/10/21 13:00	1
Chlorodifluoromethane	6.5		1.0		ug/L			11/10/21 13:00	· · · · · · · · · · · · · · · · · · ·

Eurofins TestAmerica, Edison

Page 24 of 907

1B-IN INORGANIC ANALYSIS DATA SHEET GENERAL CHEMISTRY

Lab Sample ID: 460-246843-8 Client Sample ID: MW-31GL-XX Lab Name: Eurofins TestAmerica, Edison Job No.: 460-246843-1 SDG ID.: Matrix: Water Date Sampled: 11/02/2021 11:45 Date Received: 11/04/2021 20:00 Reporting Basis: WET CAS No. Analyte Result RL MDL Units С Q DIL Method 114 / 10.0 2.2 mg/L 16887-00-6 Chloride 2 SM 4500 Cl- B

Sample MW-46MI-XX (460-247256-16)[2X] required dilution prior to analysis. The reporting limits have been adjusted accordingly.

No other difficulties were encountered during the Volatiles analysis.

All other quality control parameters were within the acceptance limits.

CHLORIDE

Samples IW-N5535-XX (460-247256-1), SW-N5099-XX (460-247256-3), SW-N4388-XX (460-247256-4), SW-N12796-XX (460-247256-5), SW-N12999-XX (460-247256-6), SW-N13000-XX (460-247256-7), SW-N13821-XX (460-247256-8), SW-500 (460-247256-9), MW-45MU-XX (460-247256-14), MW-45MI-XX (460-247256-15), MW-46MI-XX (460-247256-16), MW-46ML-XX (460-247256-17), MW-52MI-XX (460-247256-24), MW-52ML-XX (460-247256-25), MW-53MI-XX (460-247256-26), MW-53ML-XX (460-247256-27), MW-54GU-XX (460-247256-28), MW-54GI-XX (460-247256-29) and MW-502 (460-247256-32) were analyzed for chloride in accordance with SM 4500 CL B. The samples were analyzed on 11/26/2021.

Samples IW-N5535-XX (460-247256-1)[2X], SW-N12999-XX (460-247256-6)[2X] and MW-45MU-XX (460-247256-14)[2X] required dilution prior to analysis. The reporting limits have been adjusted accordingly.

No difficulties were encountered during the chloride analysis.

All quality control parameters were within the acceptance limits.

ANIONS, ION CHROMATOGRAPHY

Samples IW-N5535-XX (460-247256-1), SW-N5099-XX (460-247256-3), SW-N4388-XX (460-247256-4), SW-N12796-XX (460-247256-5), SW-N12999-XX (460-247256-6), SW-N13000-XX (460-247256-7), SW-N13821-XX (460-247256-8), SW-500 (460-247256-9), MW-45MU-XX (460-247256-14), MW-45MI-XX (460-247256-15), MW-46MI-XX (460-247256-16), MW-46ML-XX (460-247256-17), MW-52MI-XX (460-247256-24), MW-52ML-XX (460-247256-25), MW-53MI-XX (460-247256-26), MW-53ML-XX (460-247256-27), MW-54GU-XX (460-247256-28), MW-54GI-XX (460-247256-29) and MW-502 (460-247256-32) were analyzed for Anions, Ion Chromatography in accordance with EPA Method 300.0_28D Anions by Ion Chromatograph (Low Level - LL). The samples were analyzed on 11/21/2021.

No difficulties were encountered during the Anions, Ion Chromatography analysis.

All quality control parameters were within the acceptance limits.

Appendix C - Memorandum Groundwater Simulation Analysis of OU1 and OU2 Hydraulic Capture Zones Supplement to 2021 Groundwater Modeling Update (CDM Smith, 2022)

Lockheed Martin, Great Neck Groundwater Simulation Analysis of OU-1 and OU-2 Hydraulic Capture Zones (2021)

Supplement to 2021 Annual Groundwater Monitoring Report

February 2022

Lockheed Martin, Great Neck

Groundwater Simulation Analysis of OU-1 and OU-2 Hydraulic Capture Zones (2021)

Introduction

Quarterly monitoring is conducted at the former Unisys facility (the Site) located in Lake Success, New York (New York State Department of Environmental Conservation [NYSDEC] Site Number 130045) to assess groundwater conditions in the Operable Unit No. 1 (OU-1) and Operable Unit No. 2 (OU-2) areas, including horizontal and vertical groundwater flow, estimated groundwater capture, groundwater quality trends, and volatile organic compound (VOC) concentrations in the sentinel monitoring well network.

This report is a supplement to the *2021 Annual Groundwater Monitoring Report* and presents the groundwater flow model simulation analysis that was performed to estimate hydraulic capture zones created by the OU-1 and OU-2 groundwater remediation systems based on 2021 pumping rates, regional recharge, and other groundwater withdrawal pumping rates.

The average pumping rates in 2021 at OU-1 remediation wells RW-1RS, RW-1RD, EW-1R, and RW-3 in 2021 were approximately 144 gpm, 114 gpm, 403 gpm, and 152 gpm, respectively. There were occasional periods when one or more wells were not in operation, typically due to maintenance shutdowns or significant weather events. Groundwater recovered by the OU-1 GWTS is treated and discharged back to the aquifer system via five diffusion wells (wells DW-11, DW-12, DW-13, DW-14, and DW-15, which began receiving water in December 2021).

The average pumping rate at OU-2 remediation well RW-100 was approximately 457 gpm. Similar to OU-1, there were periods when well RW-100 was not operating due to weather or scheduled maintenance. Groundwater recovered by the OU-2 extraction system is treated and discharged back to the aquifer system via three diffusion wells (wells DW-100, DW-101, and DW-102).

Groundwater flow simulation analysis was performed to evaluate the potential hydraulic capture zones associated with the OU-1 and OU-2 groundwater remediation systems operating at 2021 pumping rates.

Model Background

A groundwater flow and solute transport model was developed as part of the OU-2 Remedial Investigation (RI) and Feasibility Study (FS) for the former Unisys site. The groundwater flow model was based on the stratigraphy and hydrogeologic properties represented in the Nassau County regional model (NCRM) and supplemented with local data from site investigations. The RI/FS groundwater flow model was used to simulate transient groundwater flow conditions from 1940 to 2007 to demonstrate that the model could reasonably represent observed groundwater heads and gradients and temporal water level variations due to changes in pumping and recharge. The groundwater flow and solute transport model was applied to evaluate current and potential future groundwater flow and site-related total volatile organic compound (TVOC) transport in the vicinity

of the Site and potential groundwater plume impacts to downgradient receptors. TVOC is defined as the sum of tetrachloroethene (PCE), trichloroethene (TCE), cis-1,2-dichloroethene (cis-1,2-DCE), vinyl chloride, and trichlorotrifluoroethane (Freon 113) groundwater concentrations. The development and application of the groundwater flow and solute transport model is described in detail in an appendix to the OU-2 RI and FS reports (Remedial Investigation Report. Operable Unit No. 2 for the Unisys Site. Great Neck New York. Site No. 130045; ARCADIS, May 2012 and Feasibility Study. Operable Unit No. 2 for the Unisys Site. Great Neck New York. Site No. 130045; ARCADIS, May 2012).

The groundwater flow model is periodically updated and refined to supplement annual reporting and analysis of groundwater quality trends. As described in *Groundwater Model Update for 2019 Groundwater Public Water Supply Protection and Mitigation Program Compliance Report* (CDM Smith, January 2021), groundwater model updates and refinements were completed to incorporate new information collected during the installation and sampling at monitoring well clusters 52 and 53. As part of the evaluation completed for the *2021 Annual Groundwater Monitoring Report*, the transient groundwater flow simulation period for the model was extended through 2021.

OU-1 and OU-2 Hydraulic Capture Zone Simulations

The basis for the capture zone simulations is a one-year transient groundwater flow simulation incorporating average monthly groundwater pumping and recharge fluxes for 2021. Remediation, water supply, irrigation and cooling water pumping based on 2021 pumping records was used if these data were available from site records, the NYSDEC Freedom of Information Act (FOIA) information portal or nearby water districts (Water Authority of Great Neck North, WAGNN, and Manhasset Lakeville Water District (MLWD). If 2021 pumping records for the nearby pumping wells were not yet available, pumping data from 2020 were used.

The one-year transient groundwater flow simulation was repeated 30 times to create a 30-year transient groundwater flow field, which was used for the OU-1 and OU-2 capture zone simulations. The simulated OU-1 and OU-2 capture zones are shown in Figures 1 through 4. Capture zone areas, indicated by the square symbols, are color-coded by extraction well. The symbols represent the starting locations of "particles" that are extracted by the OU-1 and OU-2 remediation extraction wells.

Simulation results suggest that under 2021 groundwater pumping rates, the existing OU-1 groundwater extraction wells (EW-1R, RW-1RS, RW-1RD, RW-3) capture groundwater from on-Site in all four depth horizons (Upper Glacial, upper Magothy, middle Magothy, basal Magothy). The OU-2 groundwater extraction well generally captures groundwater from offsite areas between the Site and RW-100 (OU-2 groundwater extraction well) in the Upper Glacial, upper Magothy, middle Magothy depth horizons, and to a slightly lesser degree in the basal Magothy. The simulated 2021 capture zones are generally similar to those presented in previous annual reports, although some differences in capture zone extent are noted year to year because of differences in pumping at the remediation wells and other nearby pumping wells.

References

ARCADIS, 2012. Remedial Investigation Report. Operable Unit No. 2 for the Unisys Site. Great Neck New York. Site No. 130045; May 2012

ARCADIS, 2012. Feasibility Study. Operable Unit No. 2 for the Unisys Site. Great Neck New York. Site No. 130045; May 2012

CDM Smith, 2021. Groundwater Model Update for 2019 Groundwater Public Water Supply Protection and Mitigation Program Compliance Report; January 2021

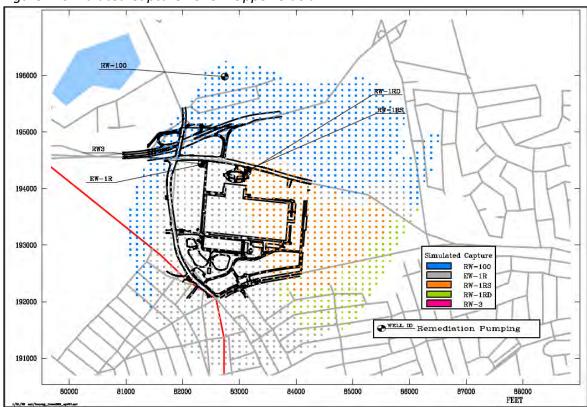
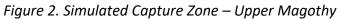
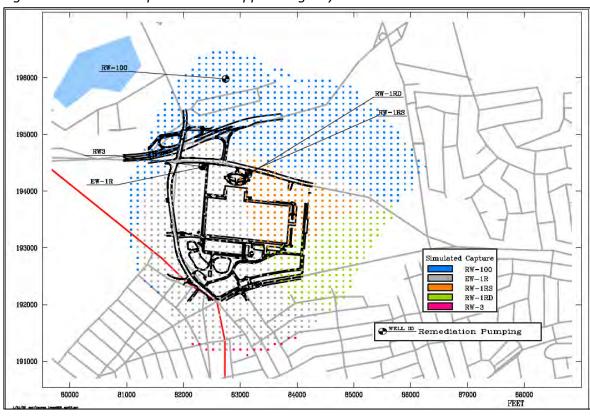




Figure 1. Simulated Capture Zone – Upper Glacial

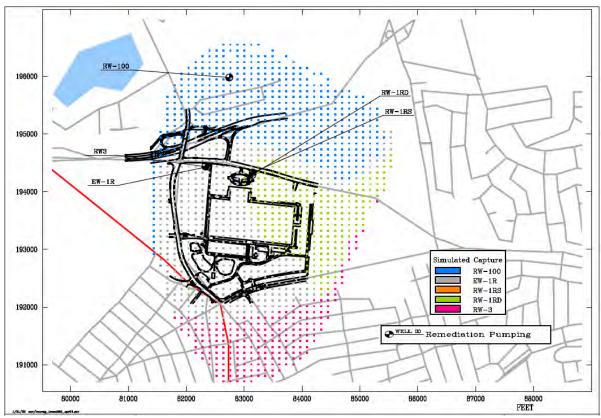
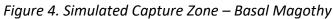
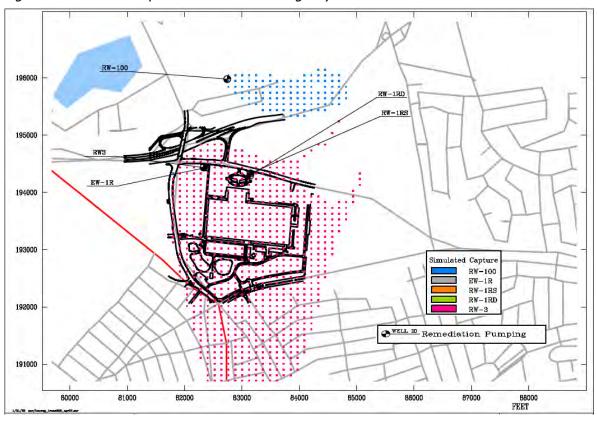
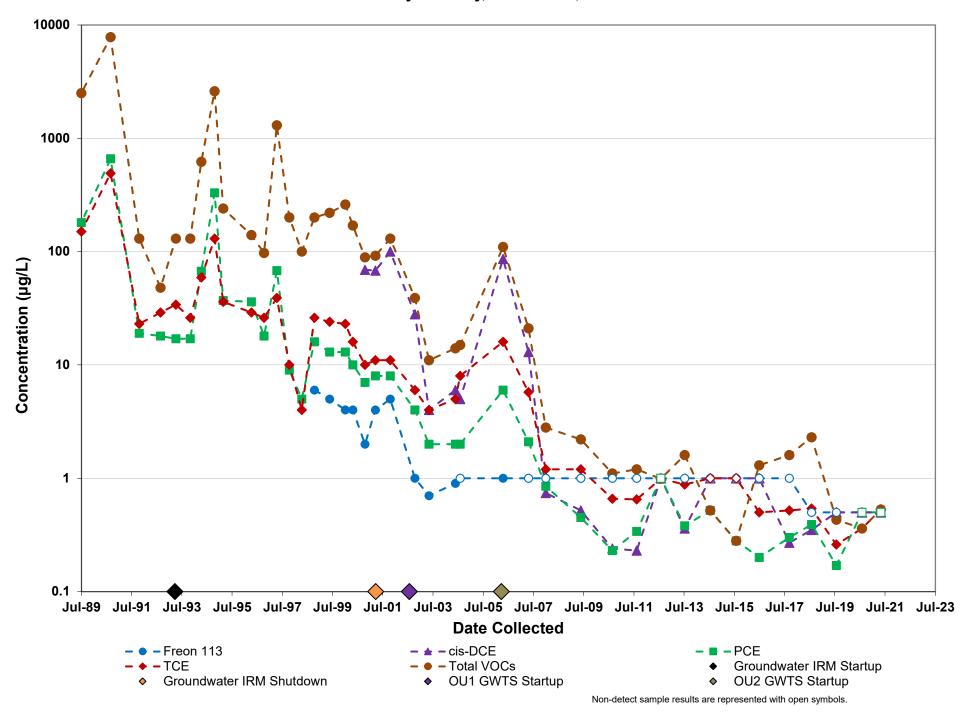
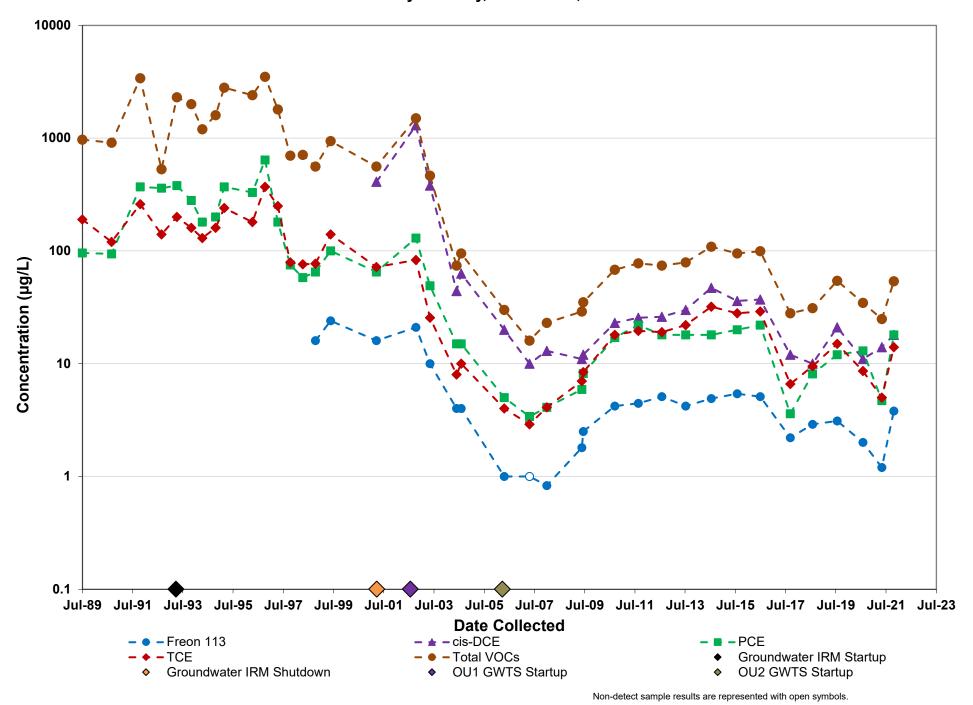
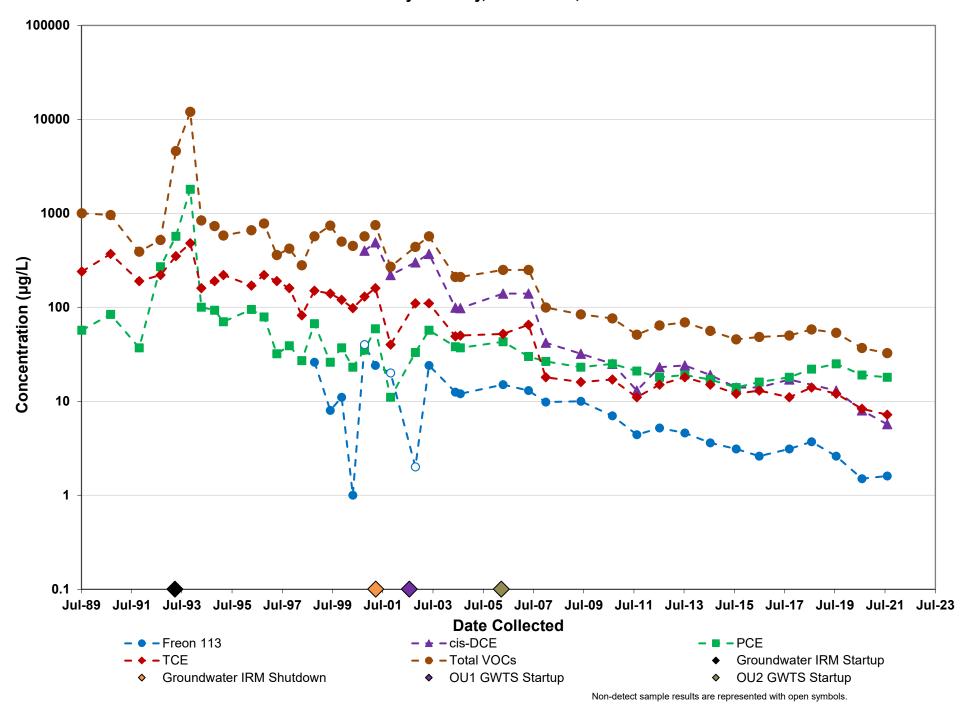
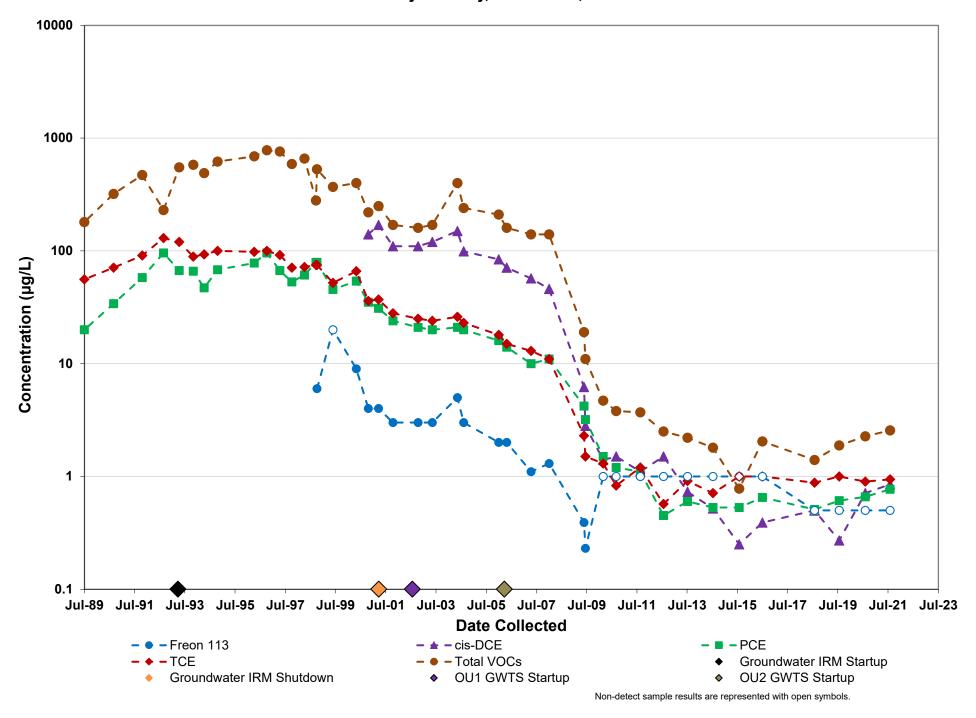




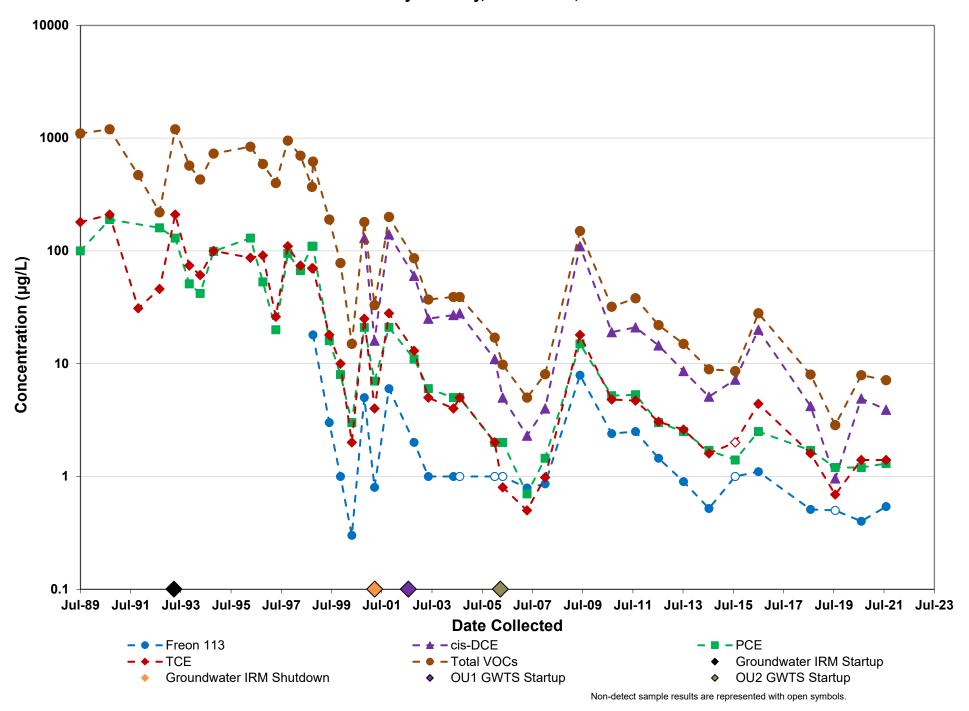
Figure 3. Simulated Capture Zone – Middle Magothy

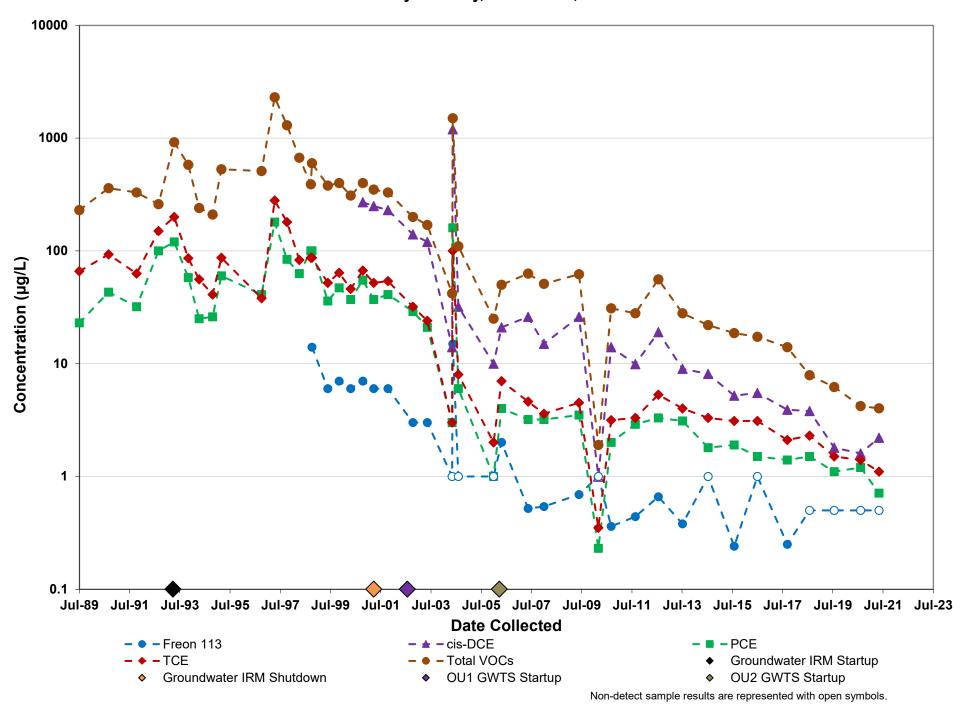


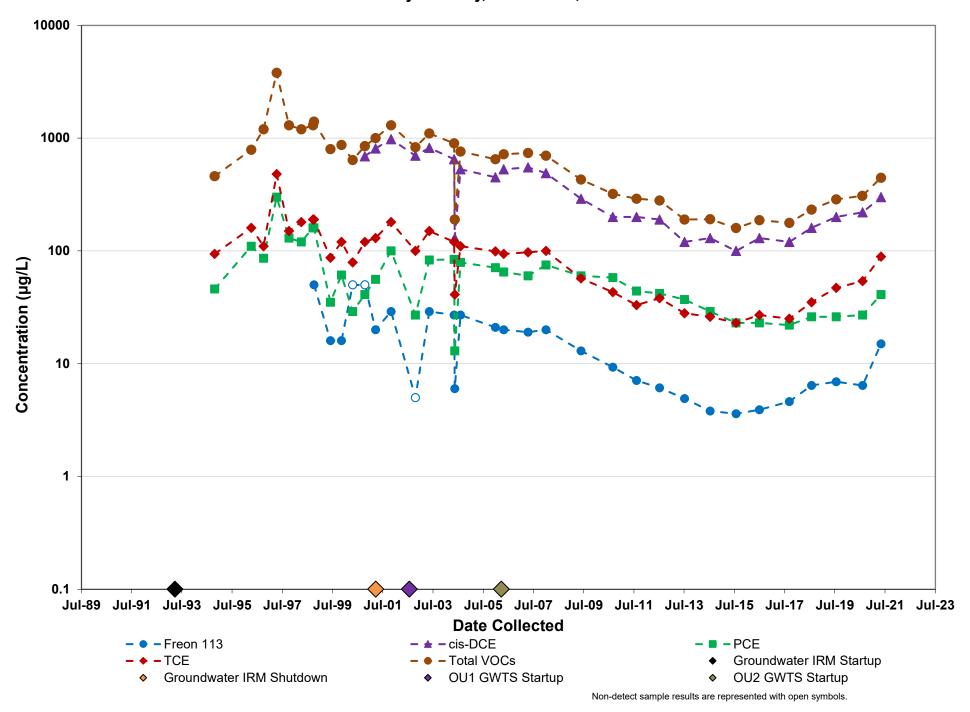


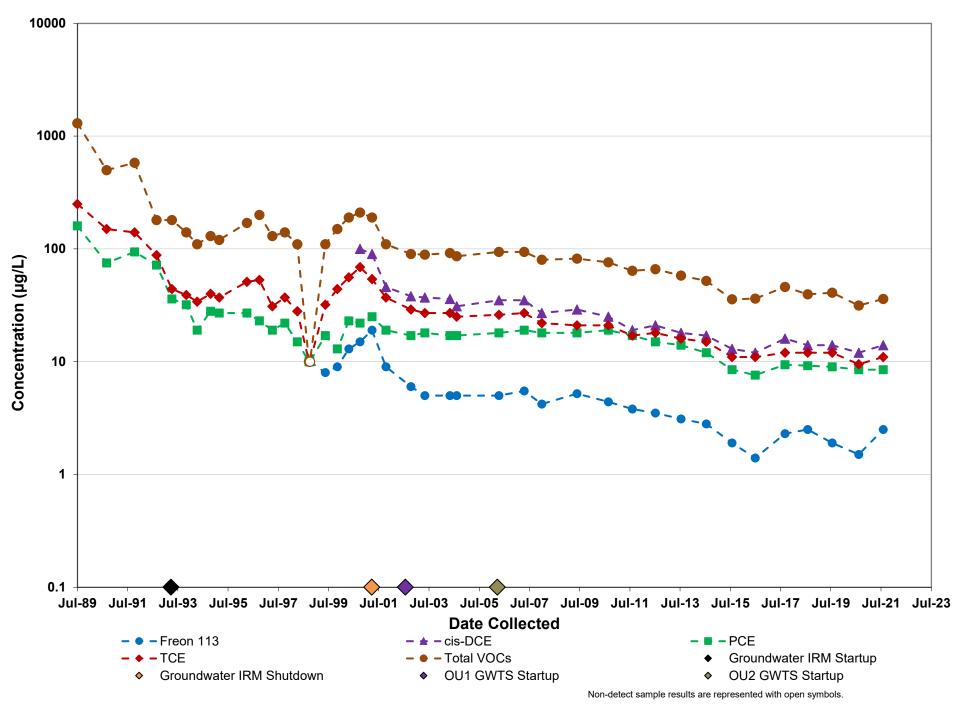

Monitoring Well 1GL Former Unisys Facility, Great Neck, New York

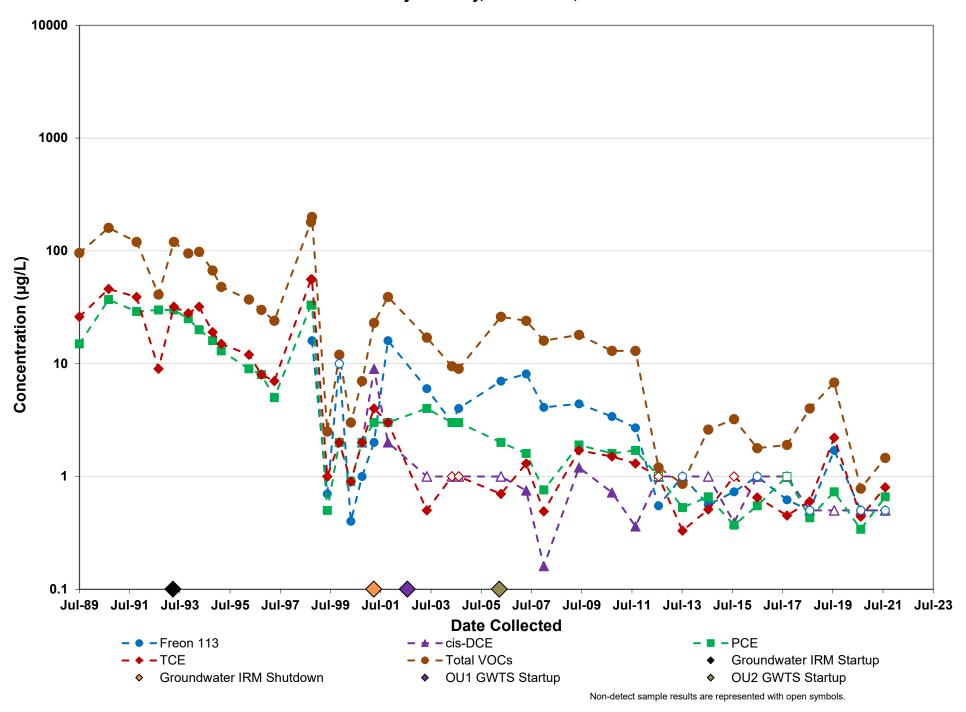

Monitoring Well 1MI Former Unisys Facility, Great Neck, New York

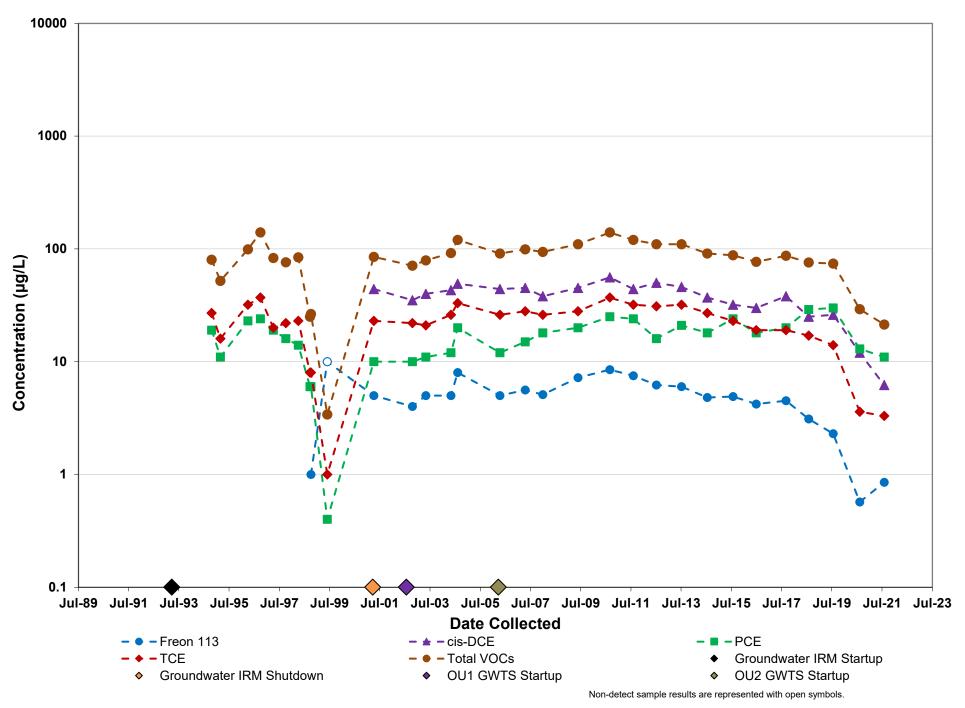

Monitoring Well 1MI-L Former Unisys Facility, Great Neck, New York

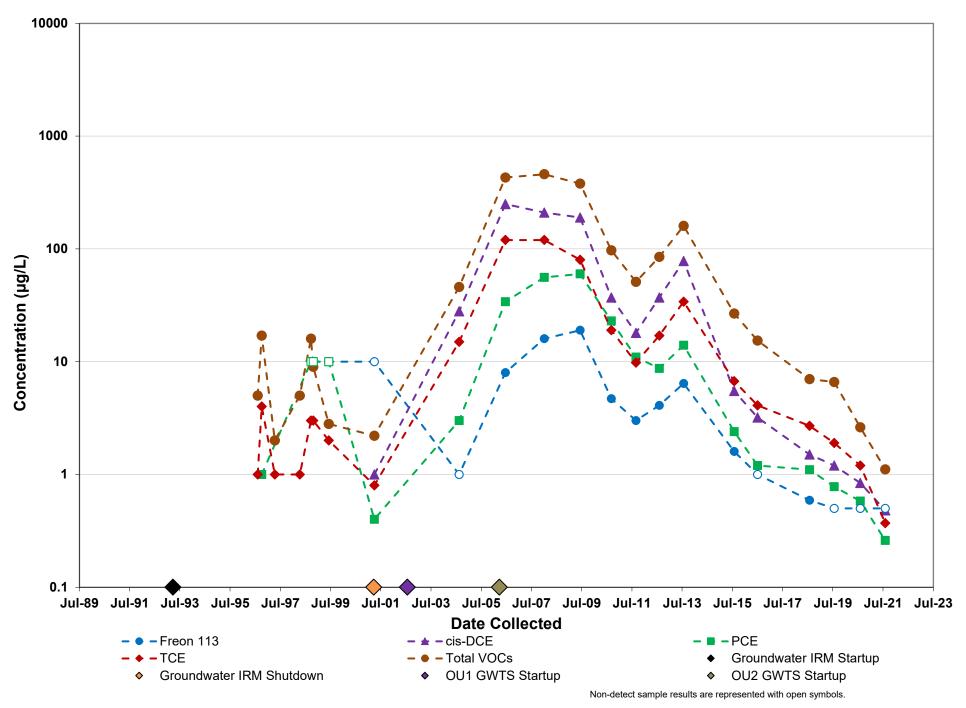

Monitoring Well 4GL Former Unisys Facility, Great Neck, New York


Monitoring Well 4MI Former Unisys Facility, Great Neck, New York

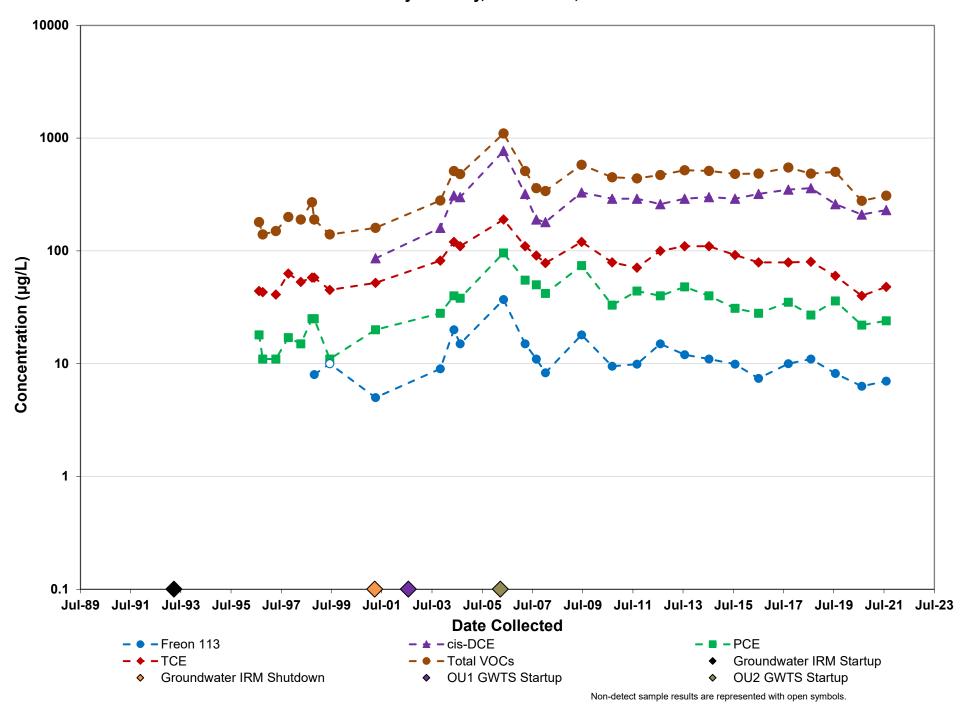

Monitoring Well 7GL Former Unisys Facility, Great Neck, New York

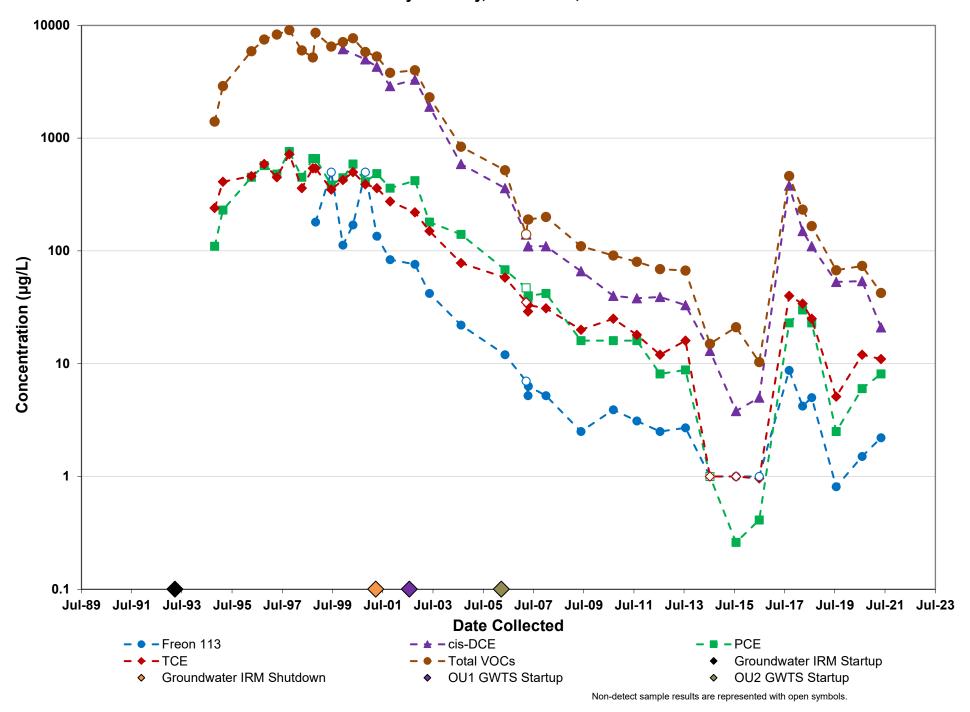

Monitoring Well 7ML Former Unisys Facility, Great Neck, New York

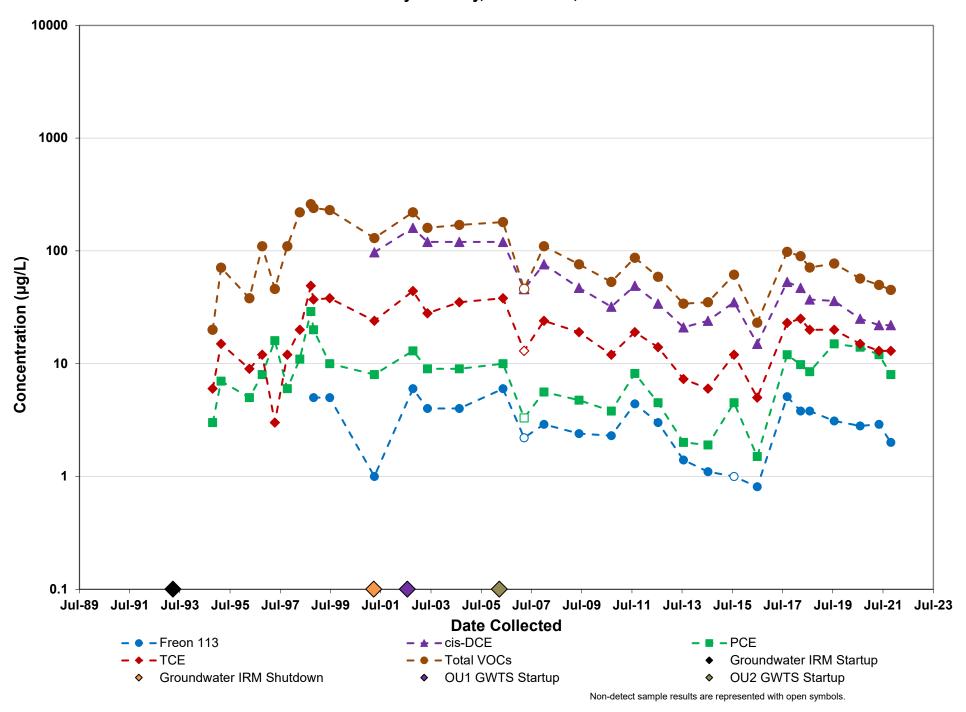

Monitoring Well 8GL Former Unisys Facility, Great Neck, New York

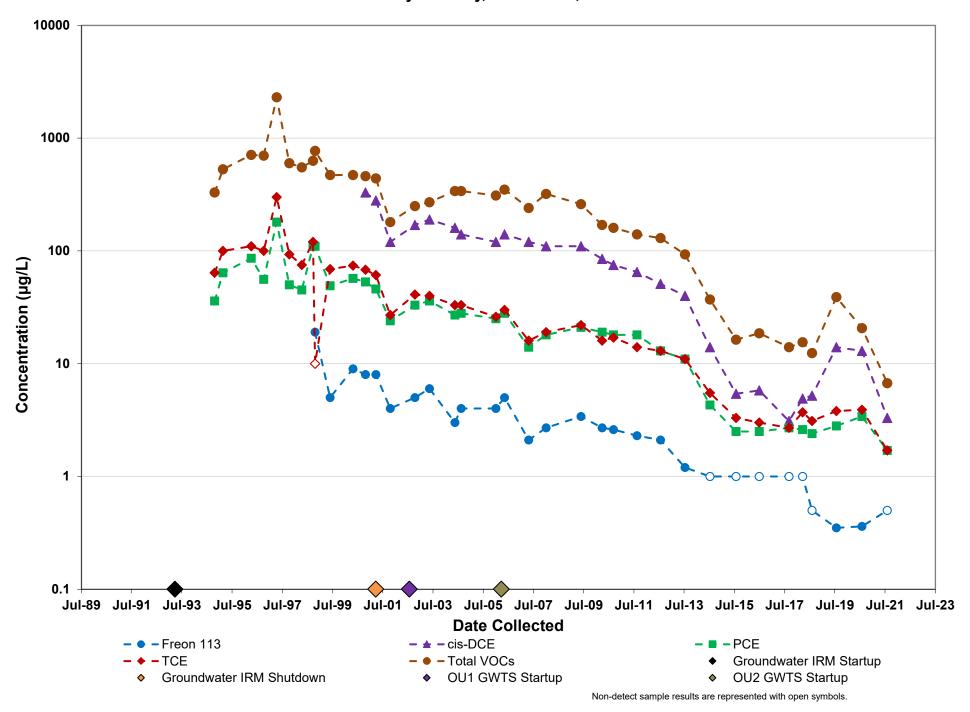

Monitoring Well 8GU Former Unisys Facility, Great Neck, New York

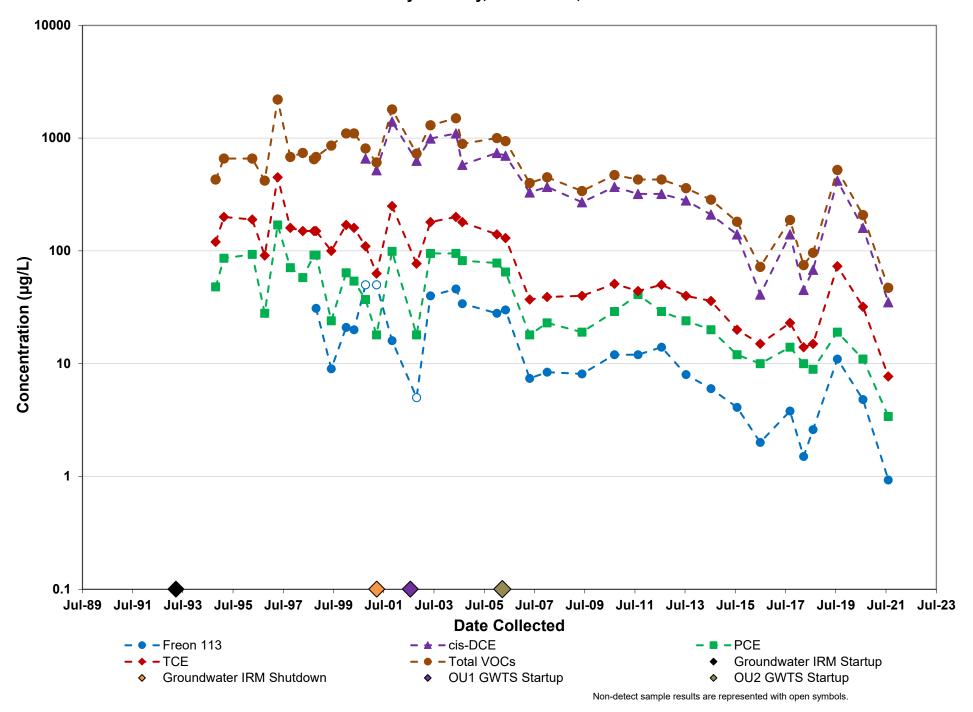
Monitoring Well 8ML Former Unisys Facility, Great Neck, New York

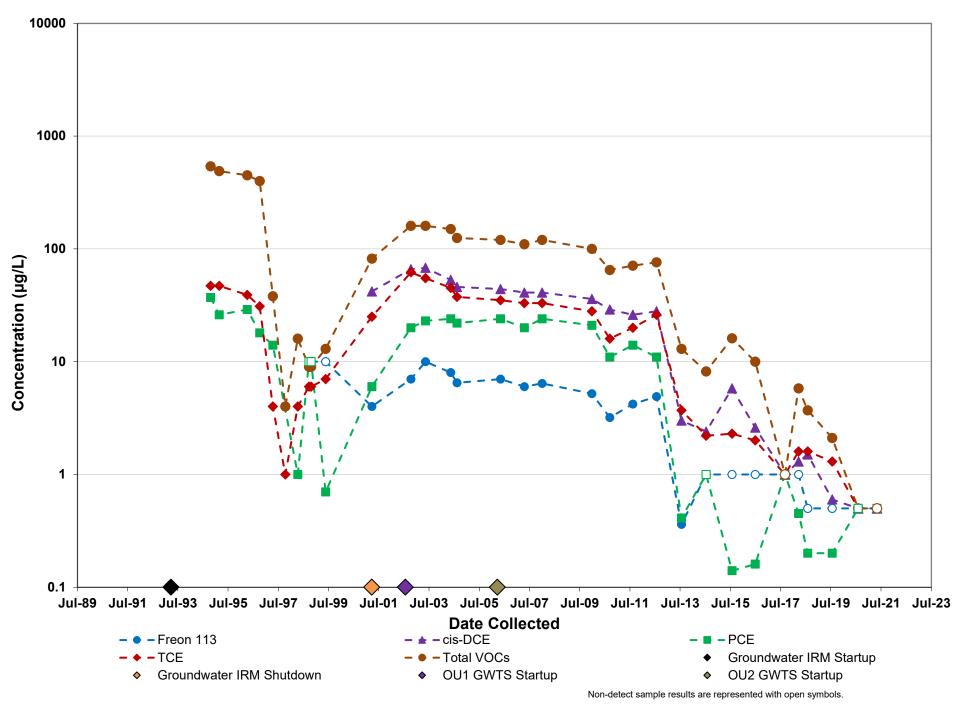

Monitoring Well 14MI Former Unisys Facility, Great Neck, New York

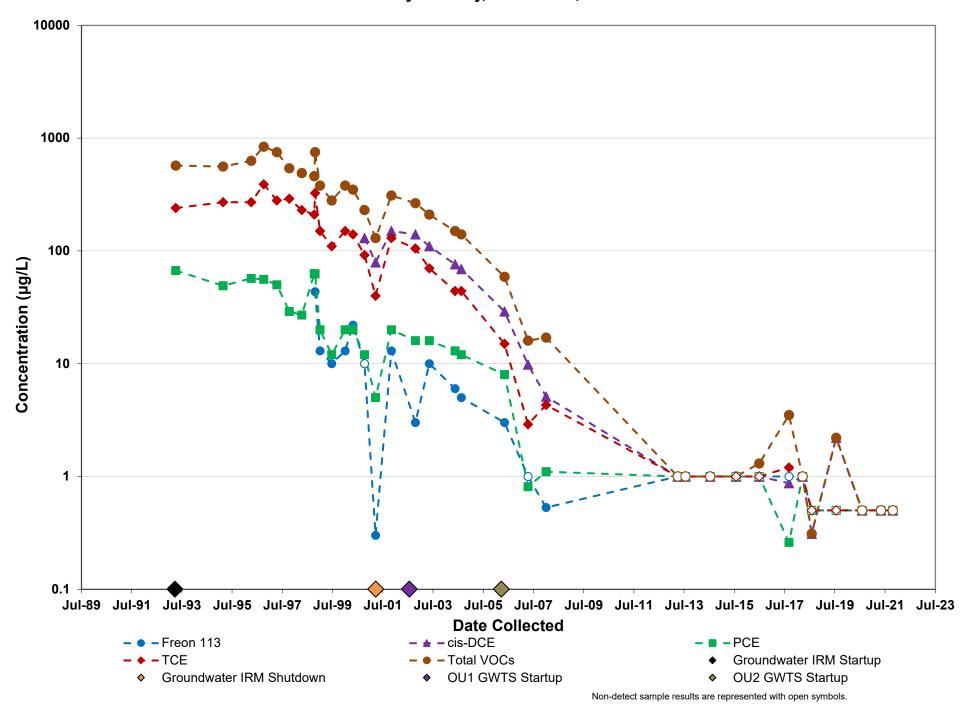

Monitoring Well 16GL Former Unisys Facility, Great Neck, New York

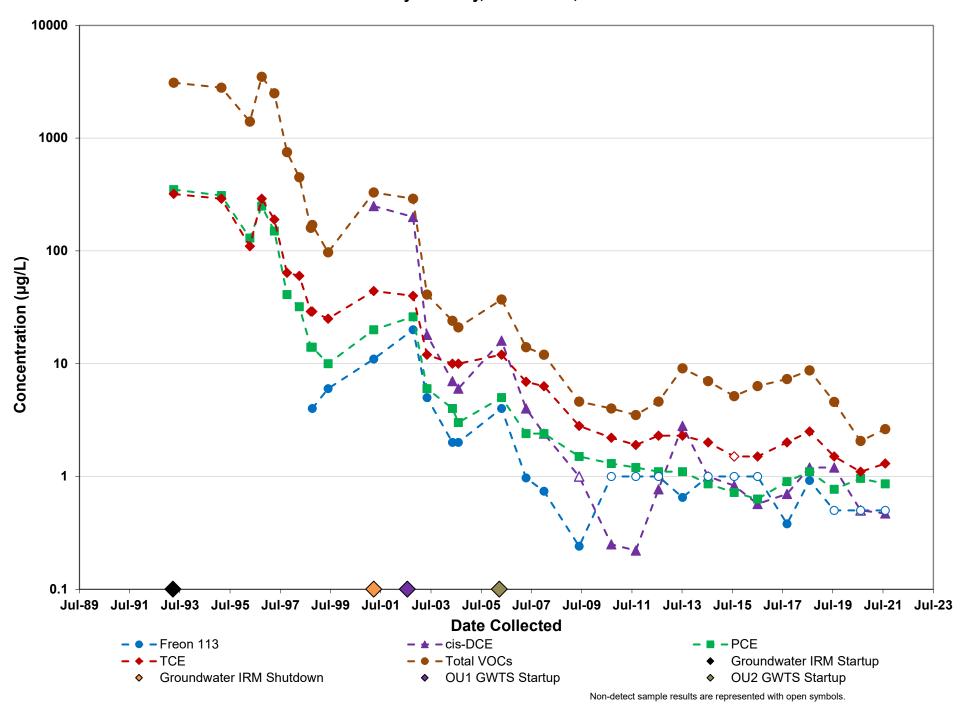

Monitoring Well 16ML Former Unisys Facility, Great Neck, New York


Monitoring Well 17GL Former Unisys Facility, Great Neck, New York

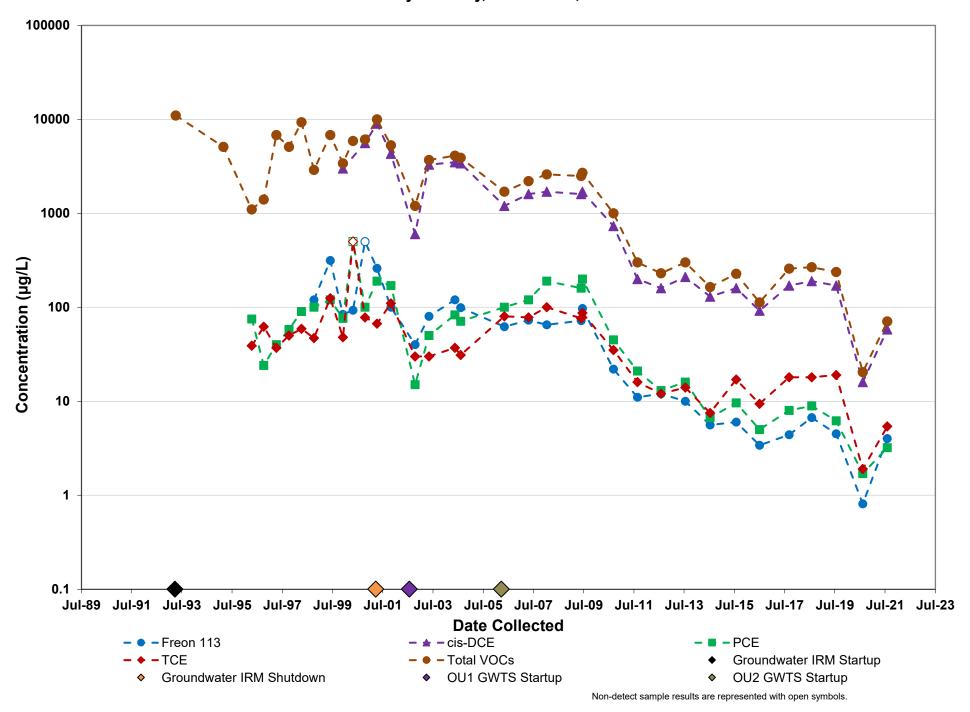

Monitoring Well 17ML Former Unisys Facility, Great Neck, New York

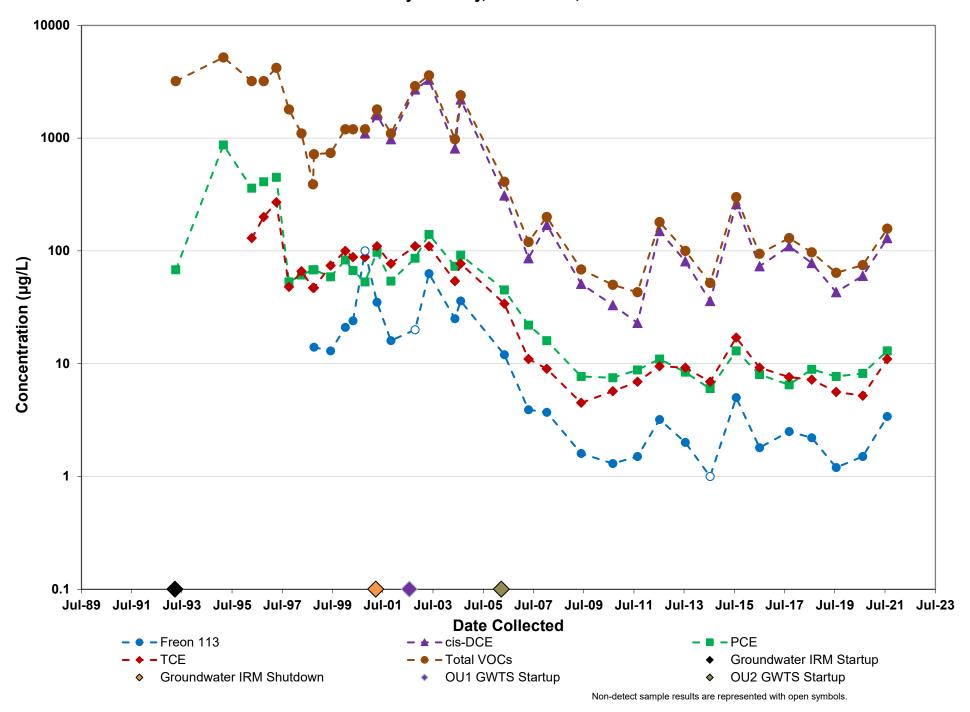

Monitoring Well 18GL Former Unisys Facility, Great Neck, New York

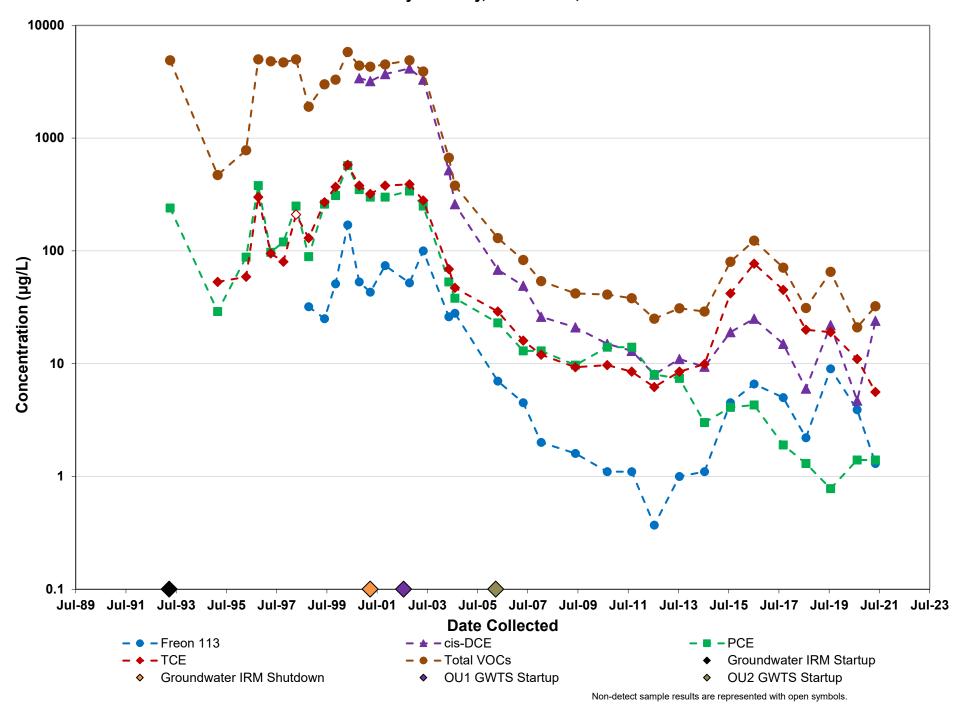

Monitoring Well 18ML Former Unisys Facility, Great Neck, New York

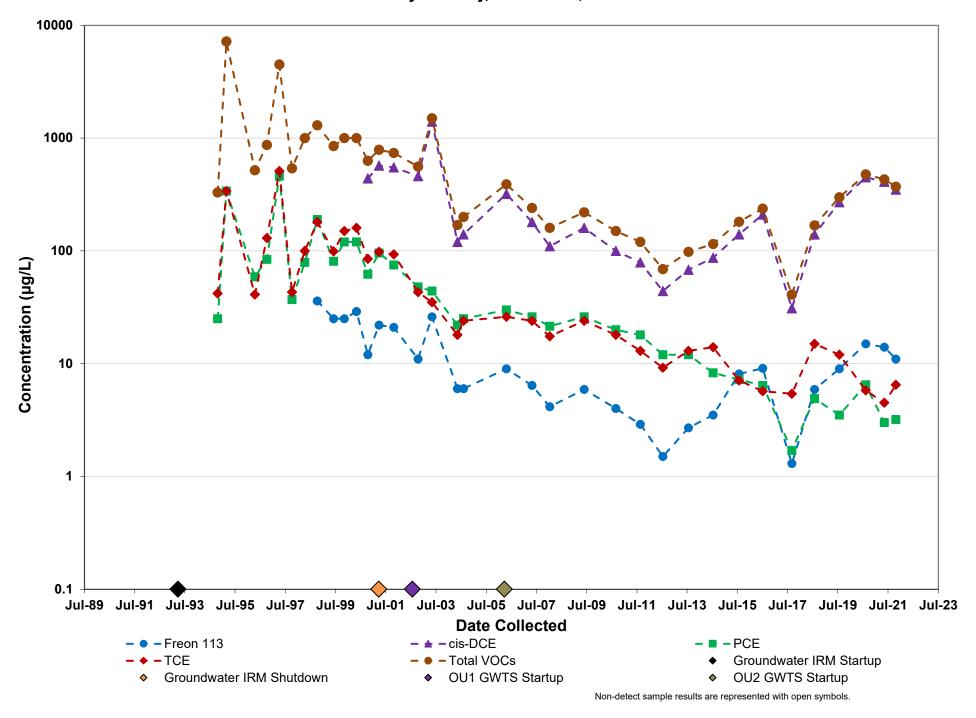

Monitoring Well 22GL Former Unisys Facility, Great Neck, New York

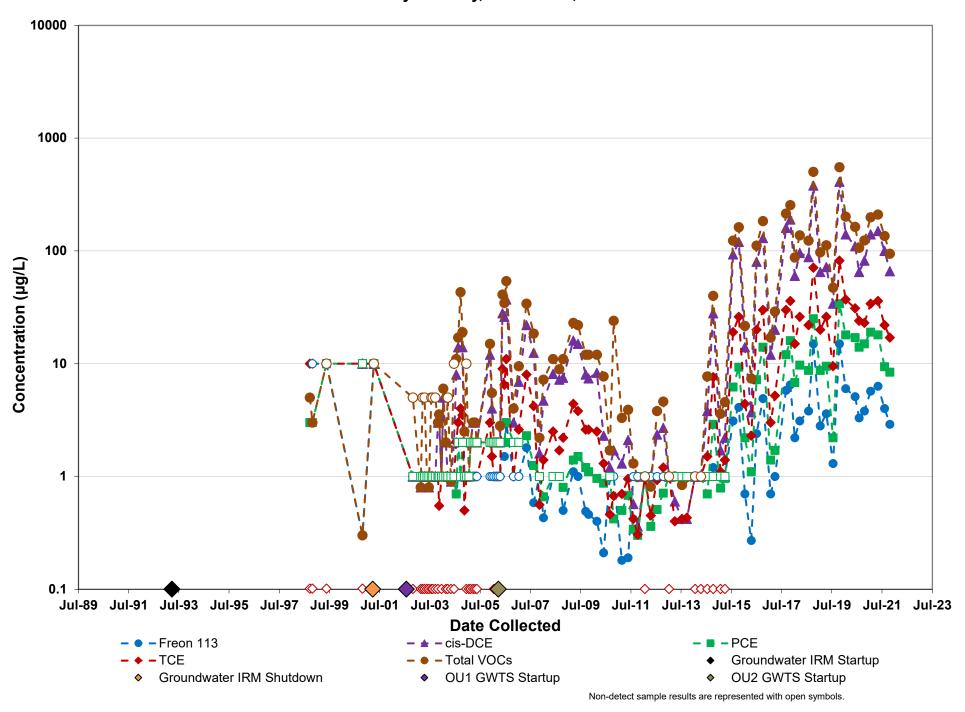
Monitoring Well 22ML Former Unisys Facility, Great Neck, New York

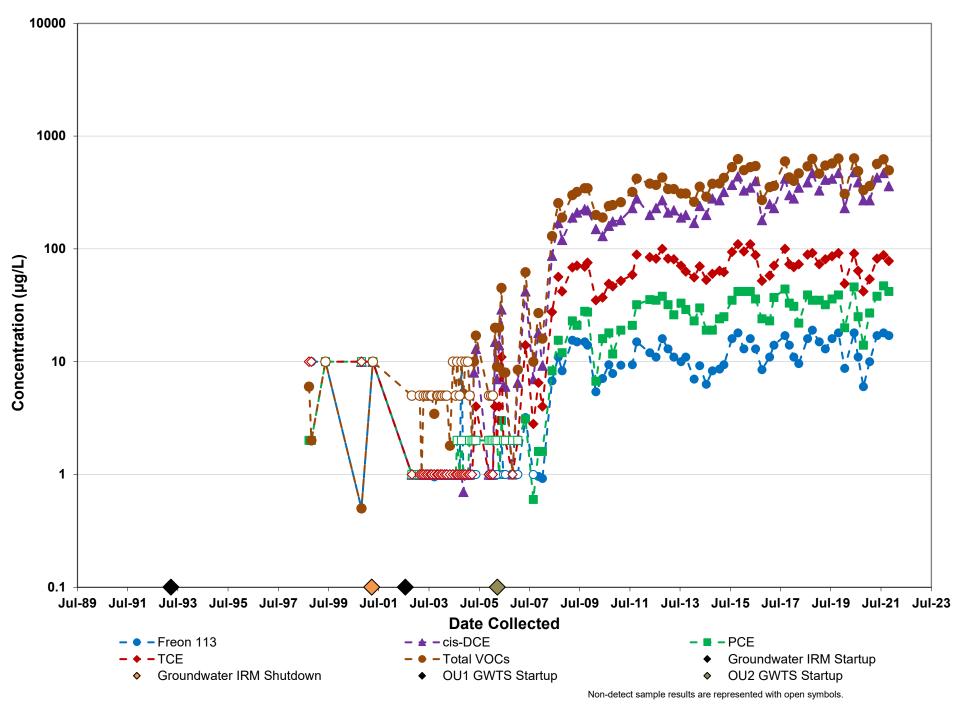

Monitoring Well 24GL Former Unisys Facility, Great Neck, New York

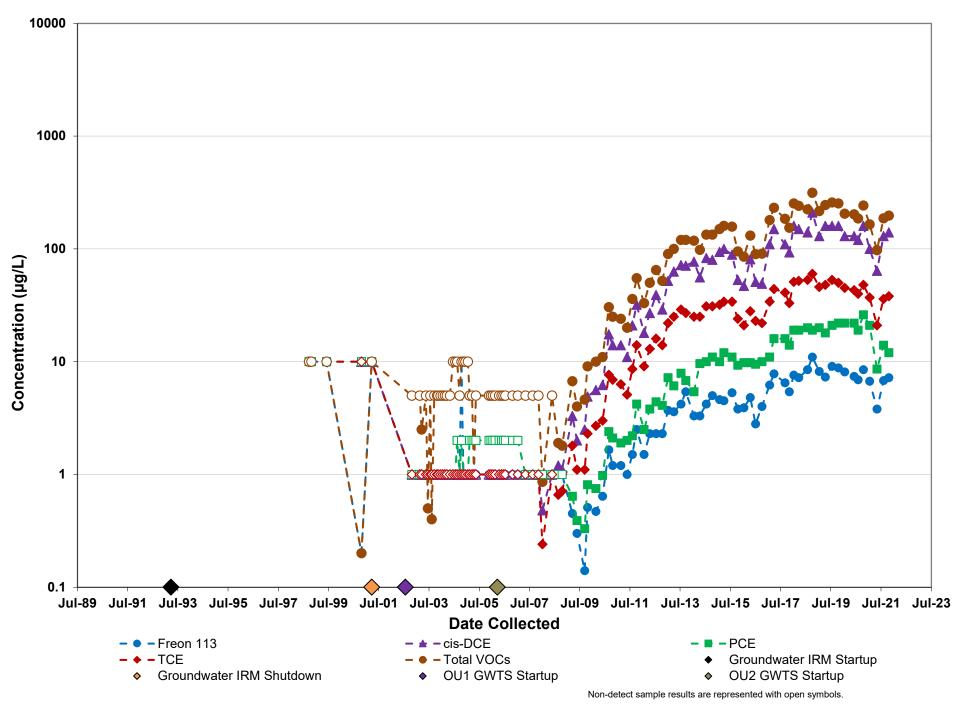

Monitoring Well 27MI Former Unisys Facility, Great Neck, New York

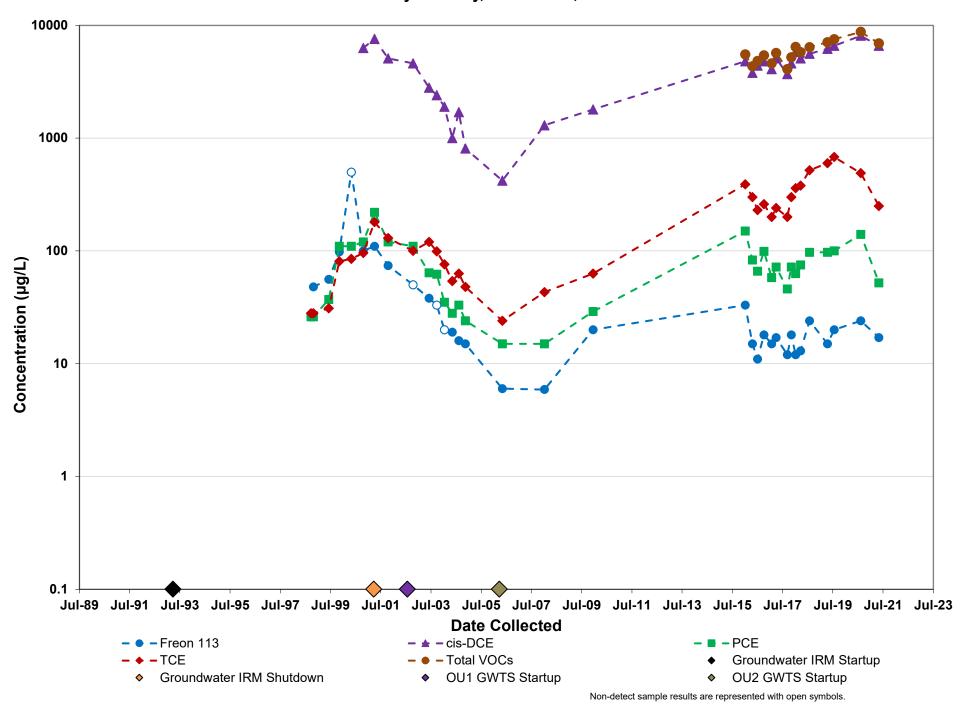

Monitoring Well 28GL Former Unisys Facility, Great Neck, New York

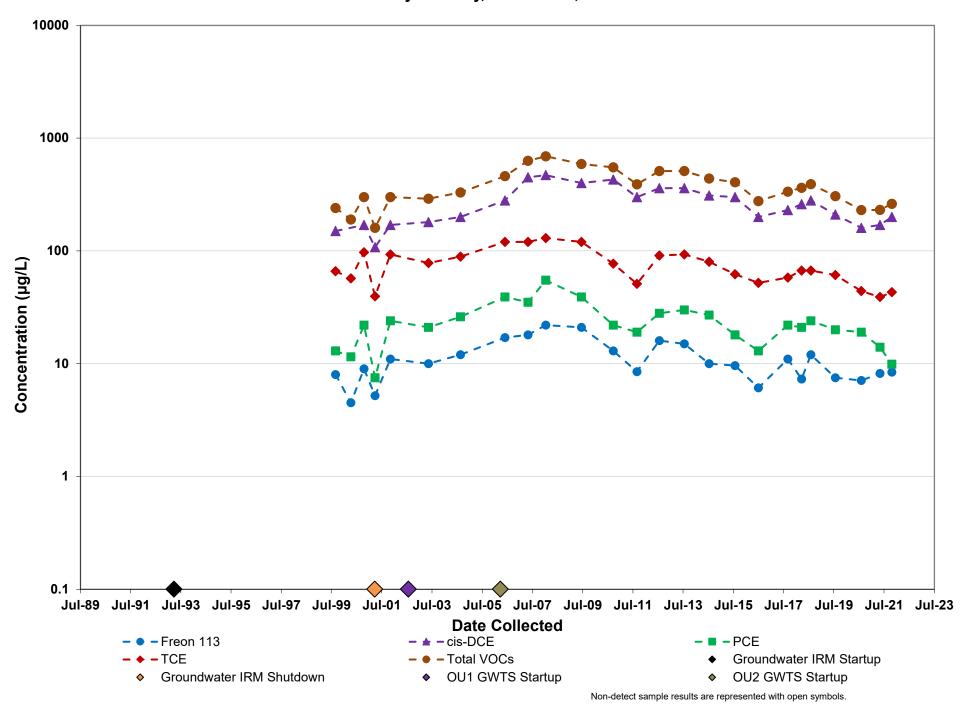

Monitoring Well 28MI Former Unisys Facility, Great Neck, New York

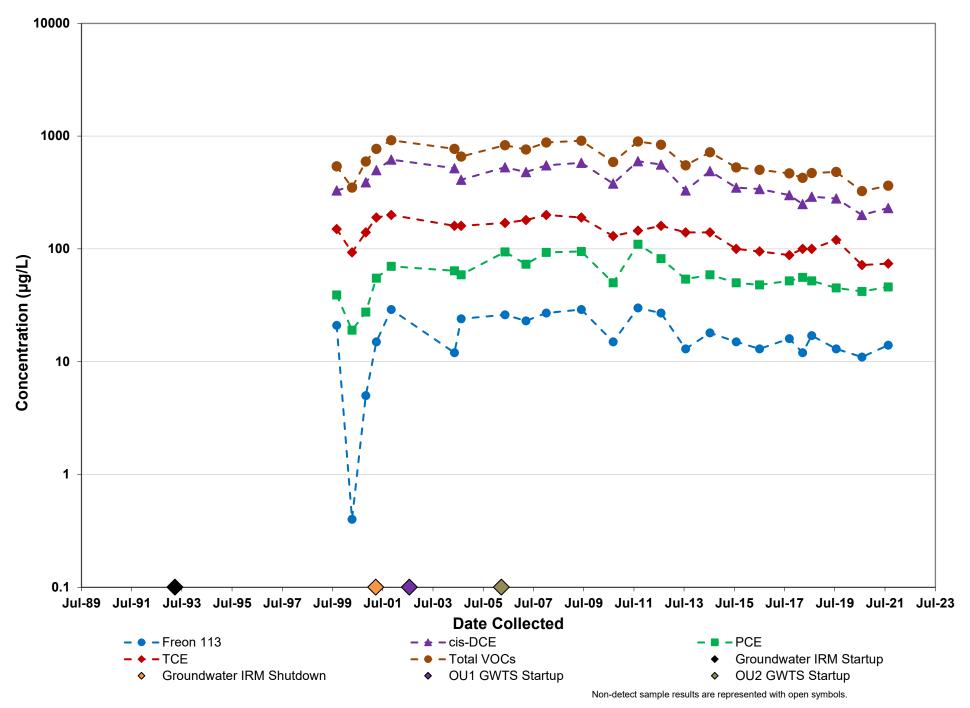

Monitoring Well 29GL Former Unisys Facility, Great Neck, New York

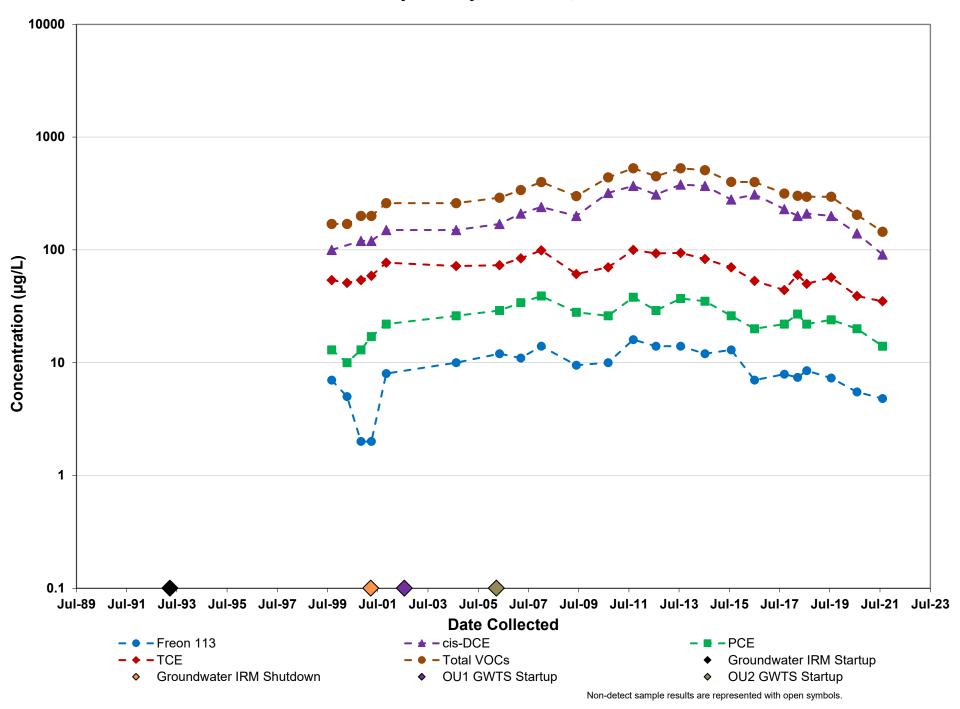

Monitoring Well 29MI Former Unisys Facility, Great Neck, New York

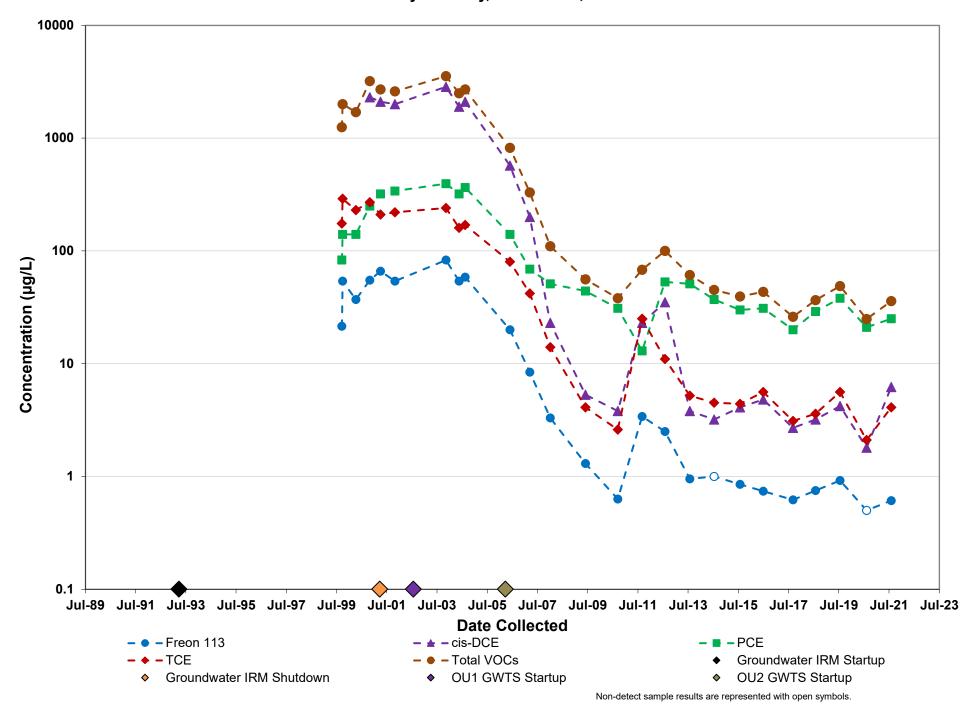

Monitoring Well 31GL Former Unisys Facility, Great Neck, New York

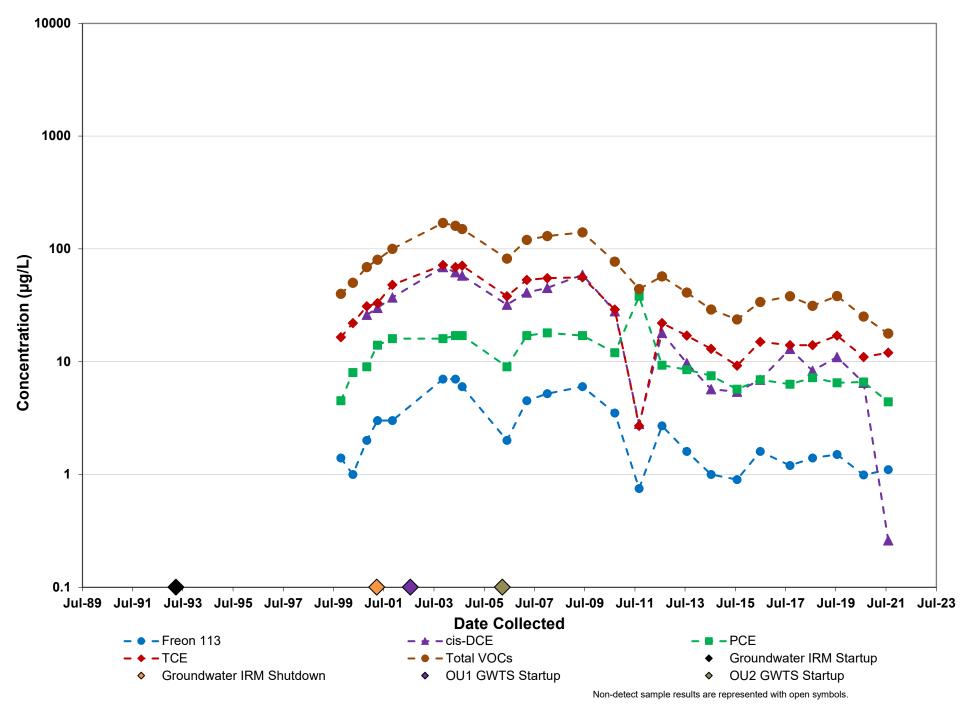

Monitoring Well 31MI Former Unisys Facility, Great Neck, New York

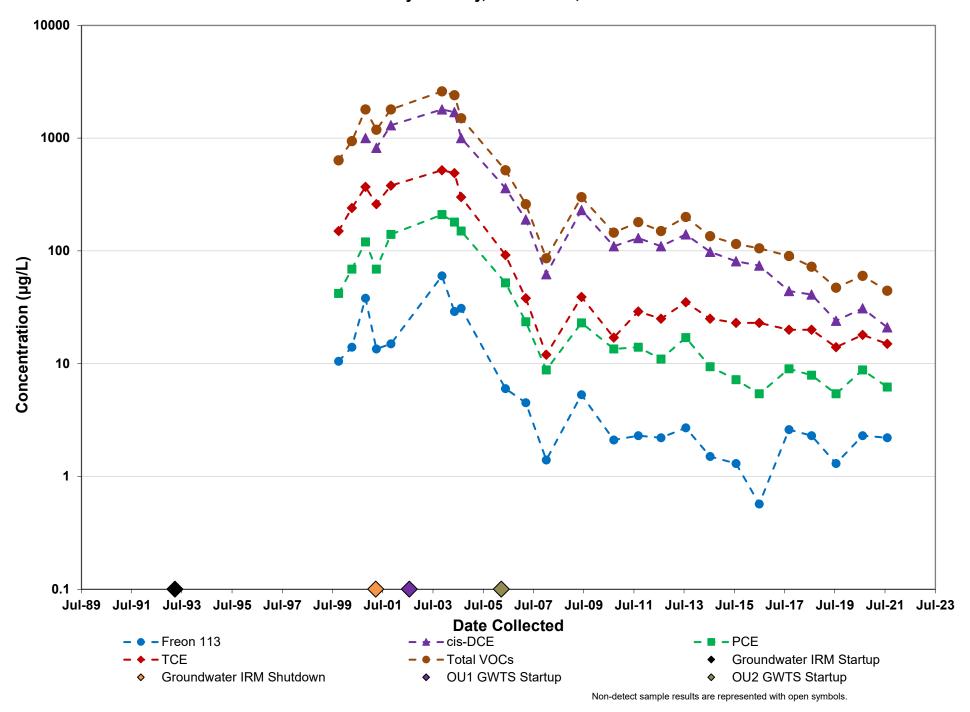

Monitoring Well 31ML Former Unisys Facility, Great Neck, New York

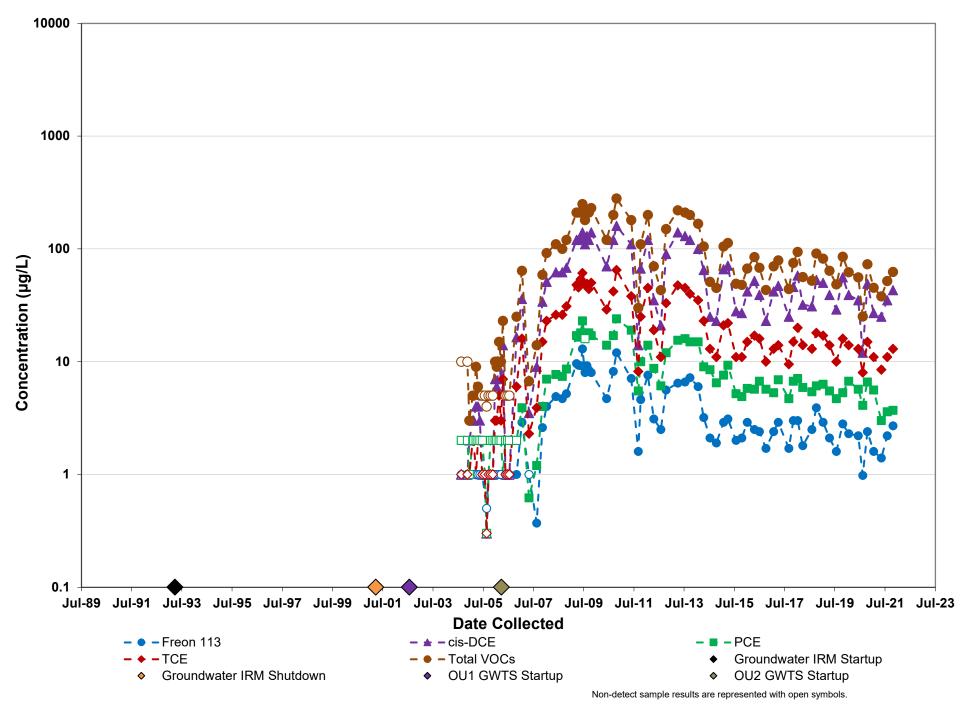

Monitoring Well 35GL Former Unisys Facility, Great Neck, New York

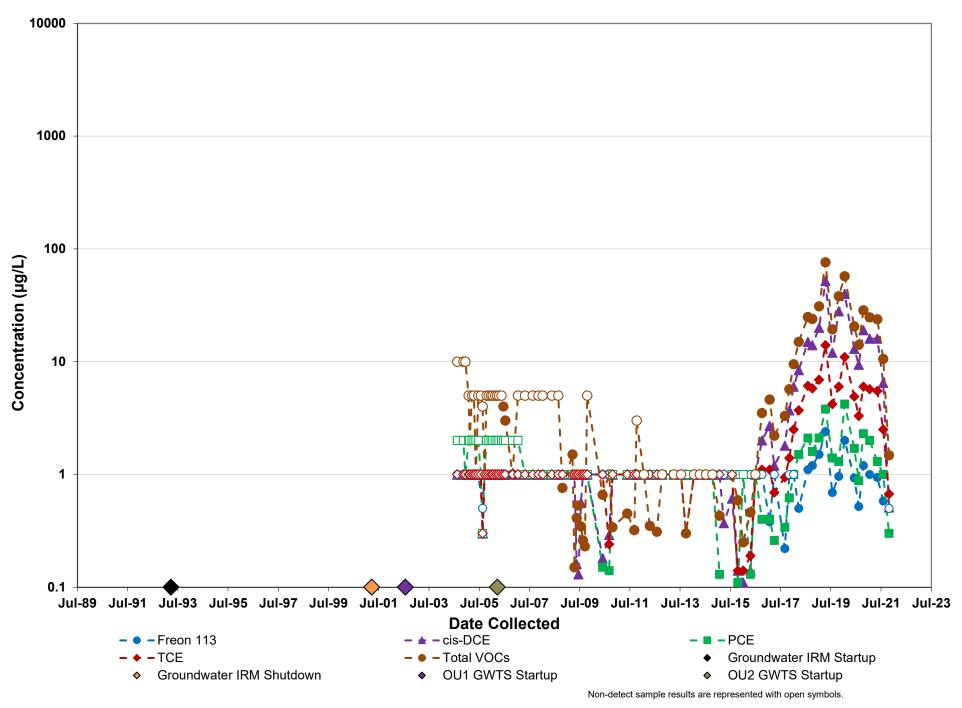

Monitoring Well 37ML Former Unisys Facility, Great Neck, New York

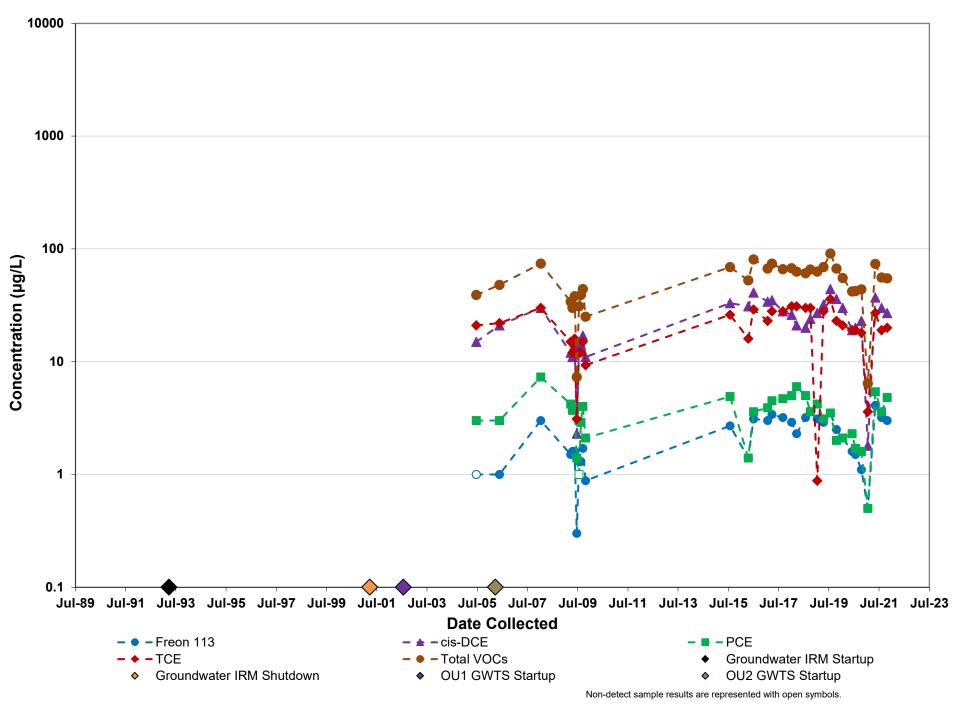

Monitoring Well 38MI Former Unisys Facility, Great Neck, New York

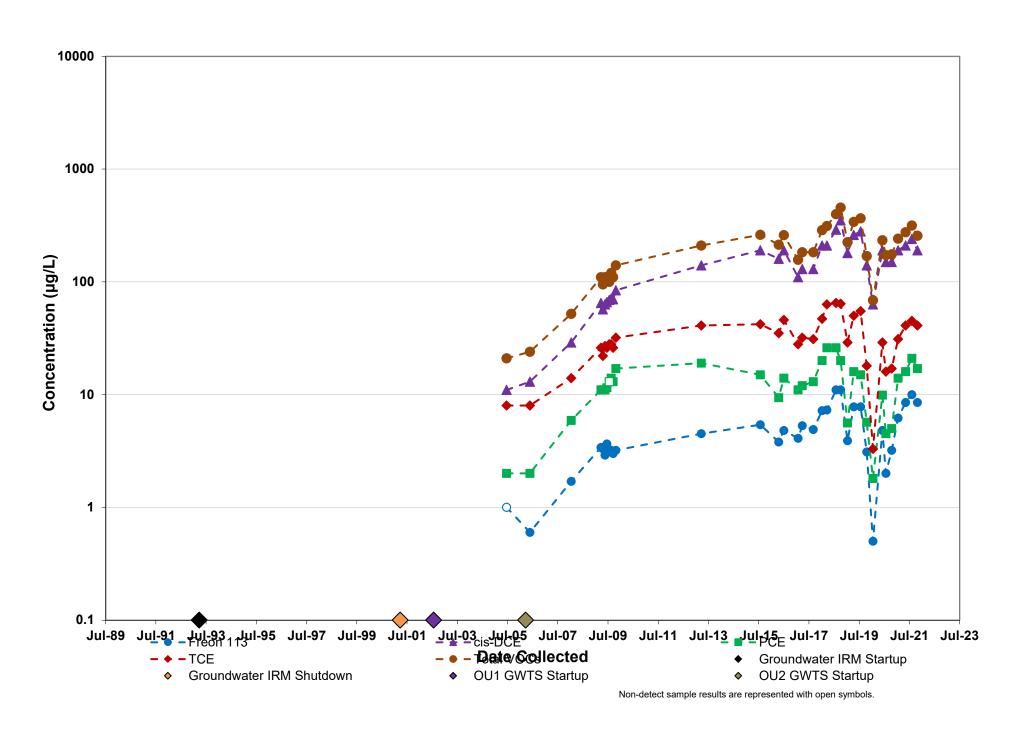

Monitoring Well 38ML Former Unisys Facility, Great Neck, New York

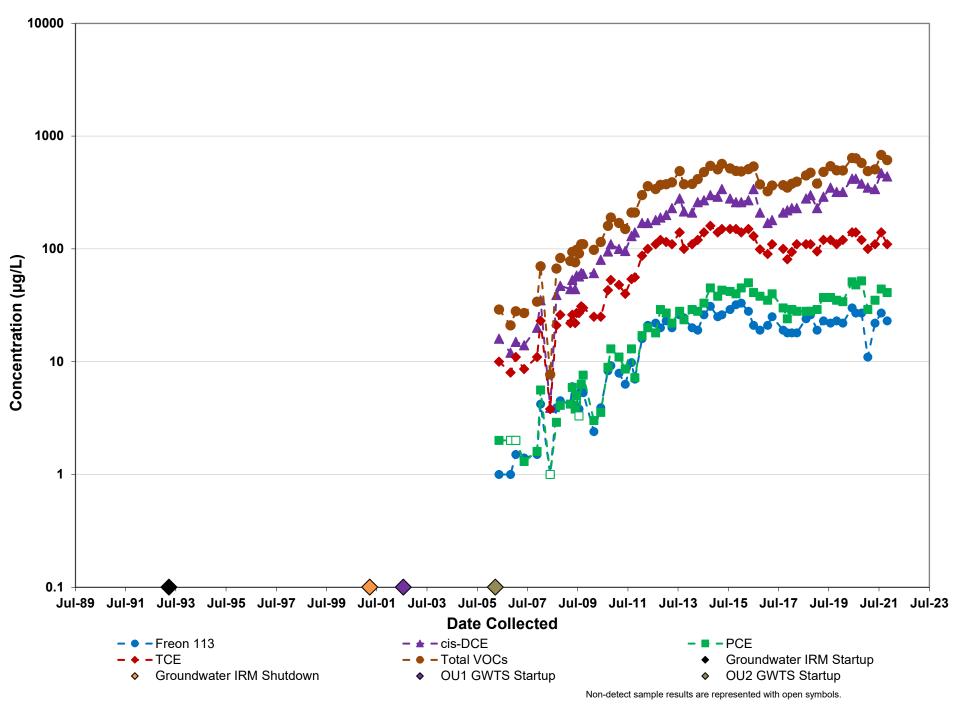

Monitoring Well 39MI Former Unisys Facility, Great Neck, New York

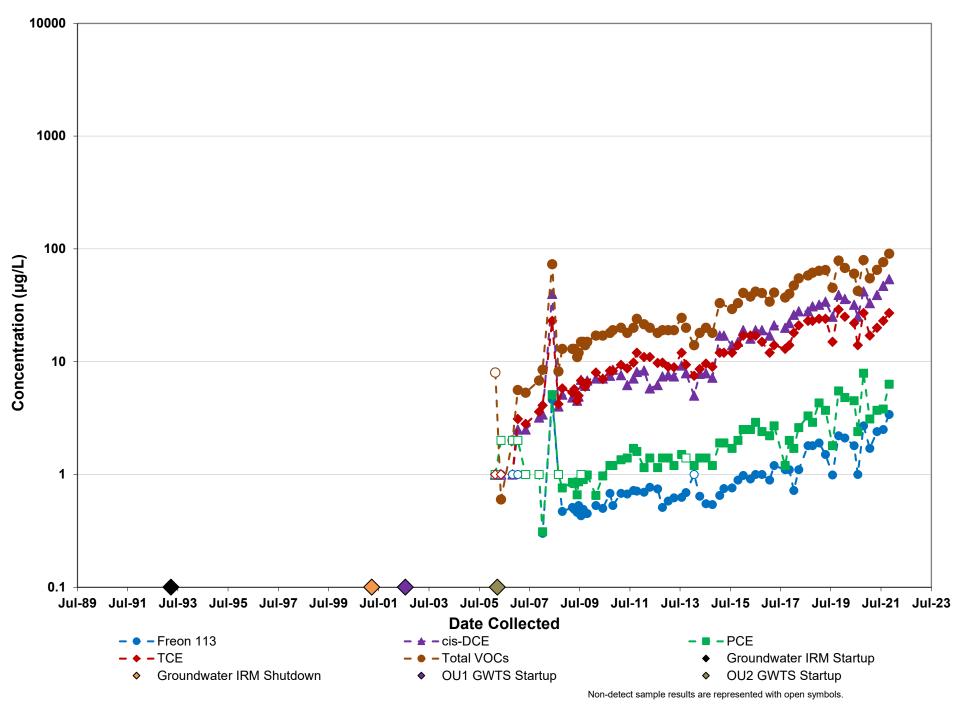

Monitoring Well 39ML Former Unisys Facility, Great Neck, New York

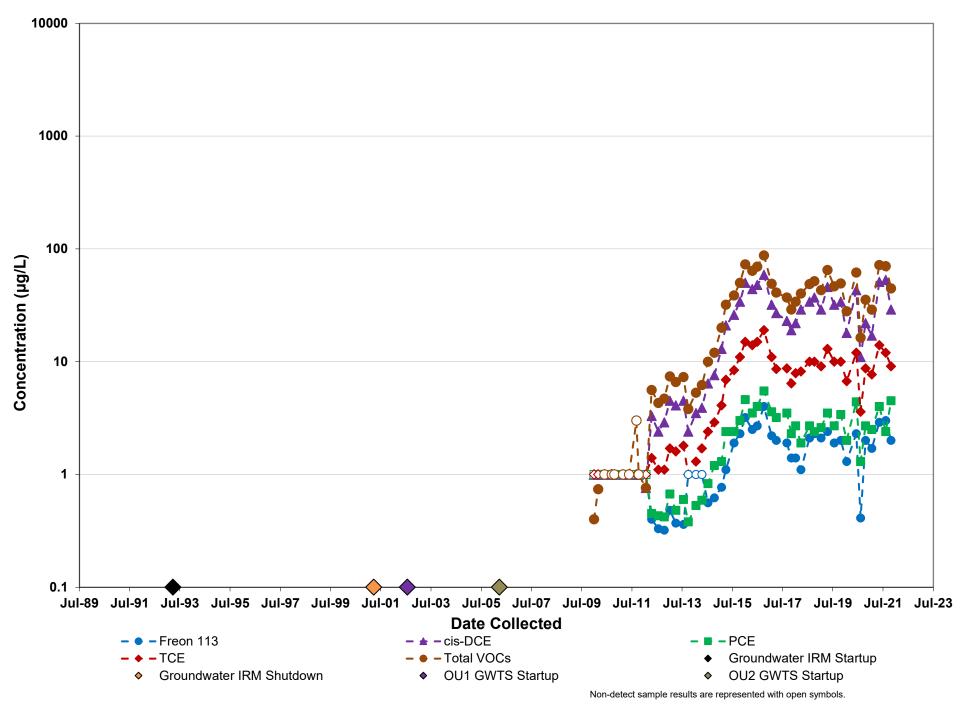

Monitoring Well 39MU Former Unisys Facility, Great Neck, New York

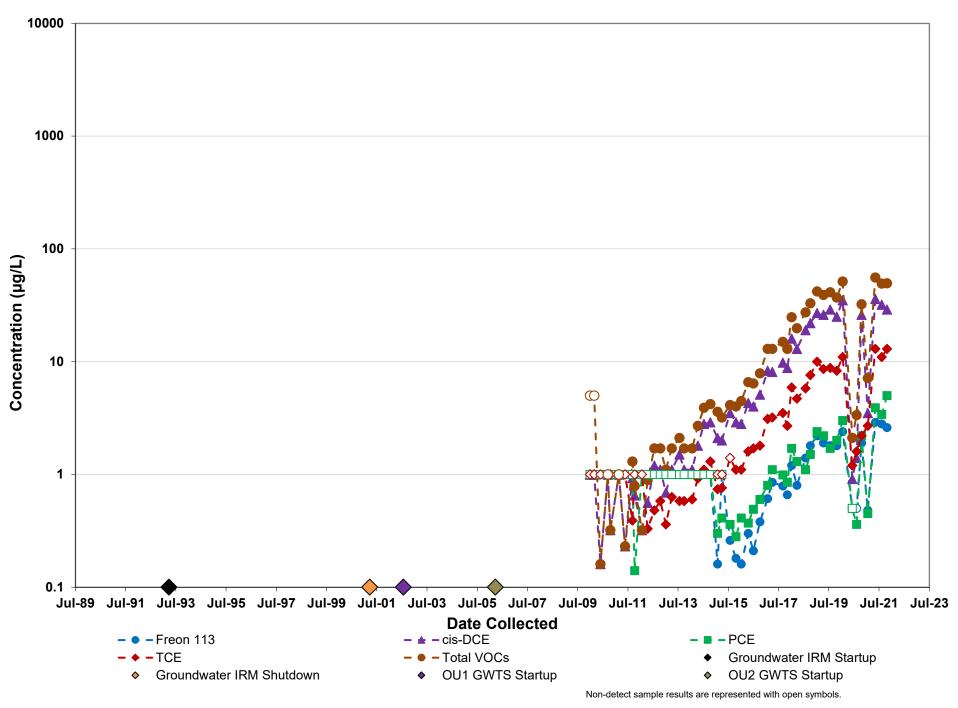

Monitoring Well 43MI Former Unisys Facility, Great Neck, New York

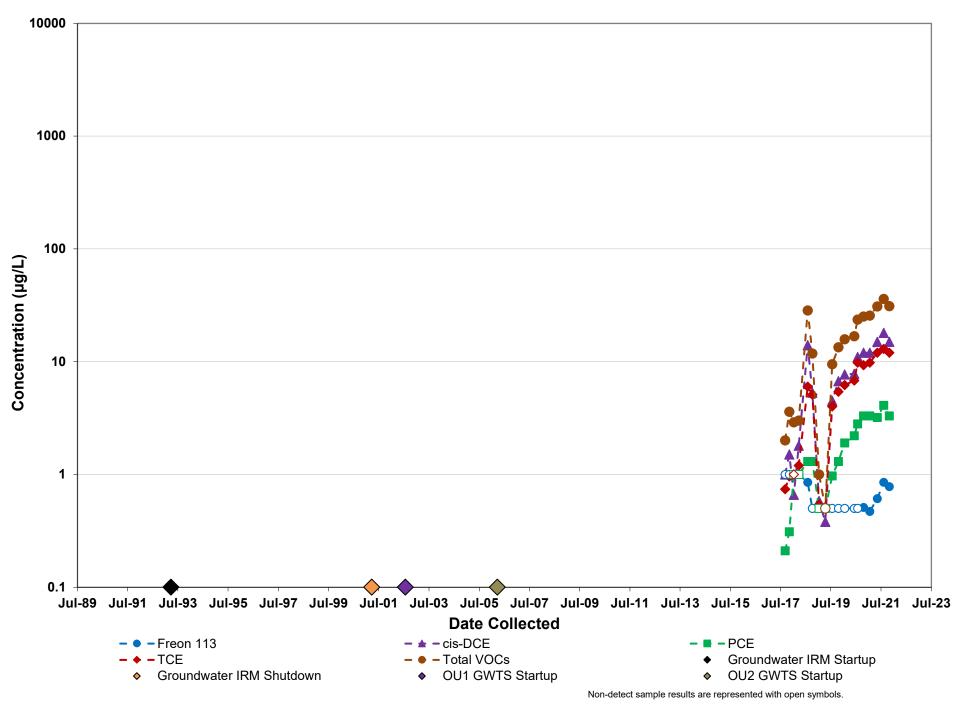

Monitoring Well 43MU Former Unisys Facility, Great Neck, New York

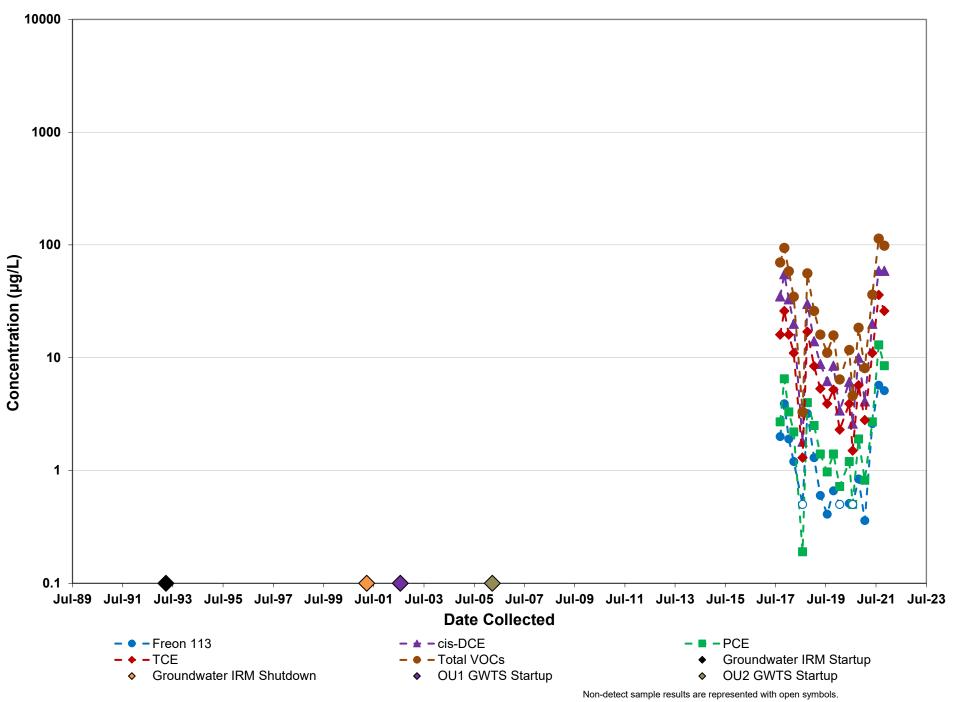

Monitoring Well 45MI Former Unisys Facility, Great Neck, New York

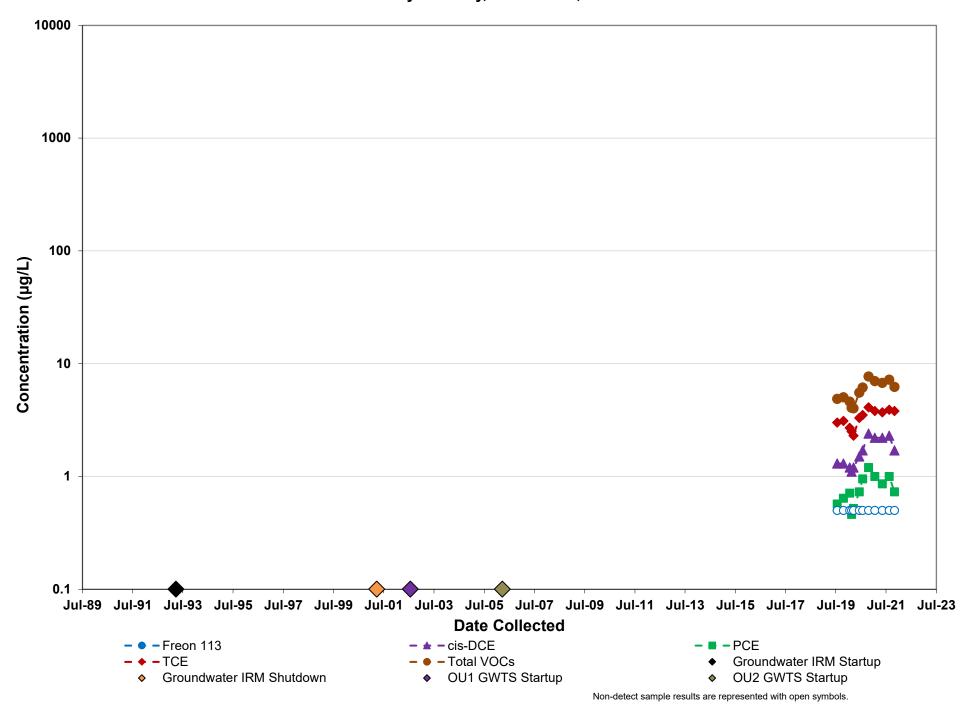

Monitoring Well 45MU Former Unisys Facility, Great Neck, New York

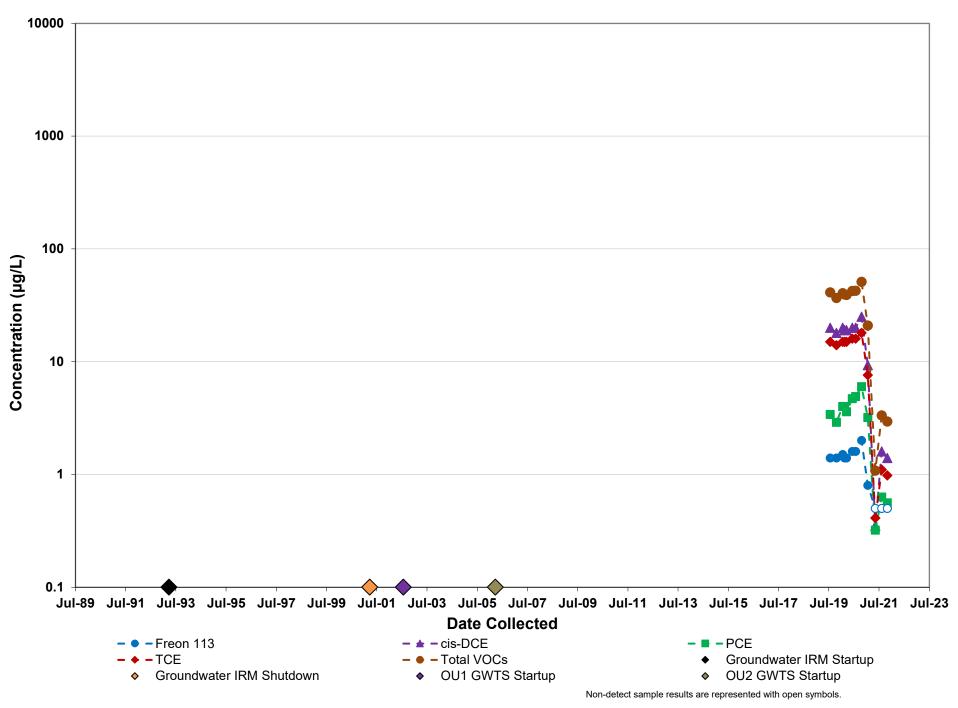

Monitoring Well 46MI Former Unisys Facility, Great Neck, New York

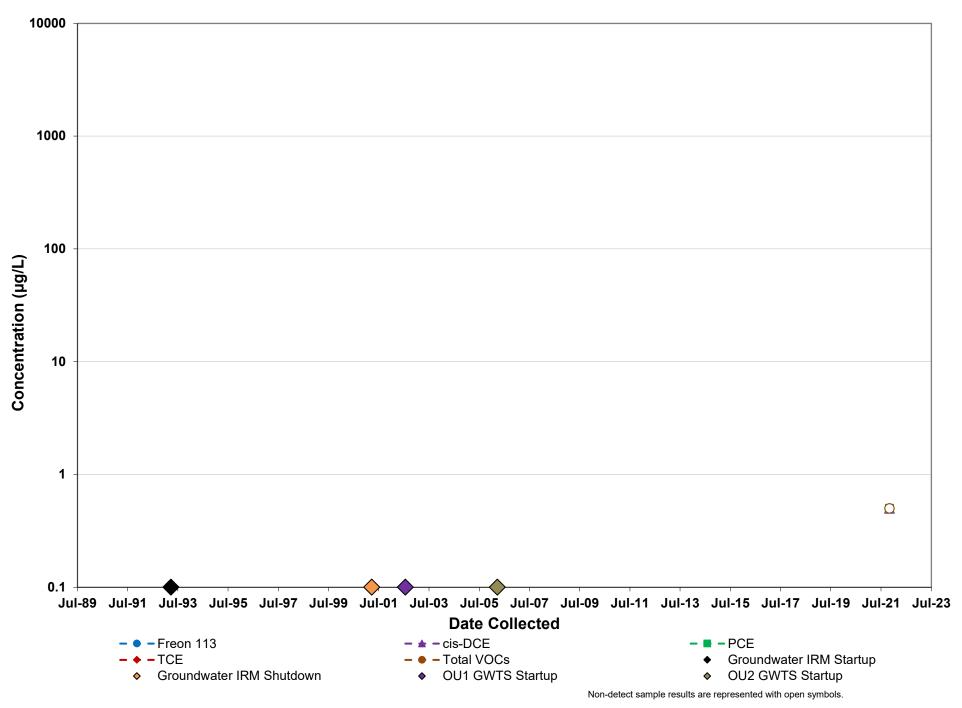

Monitoring Well 46ML Former Unisys Facility, Great Neck, New York

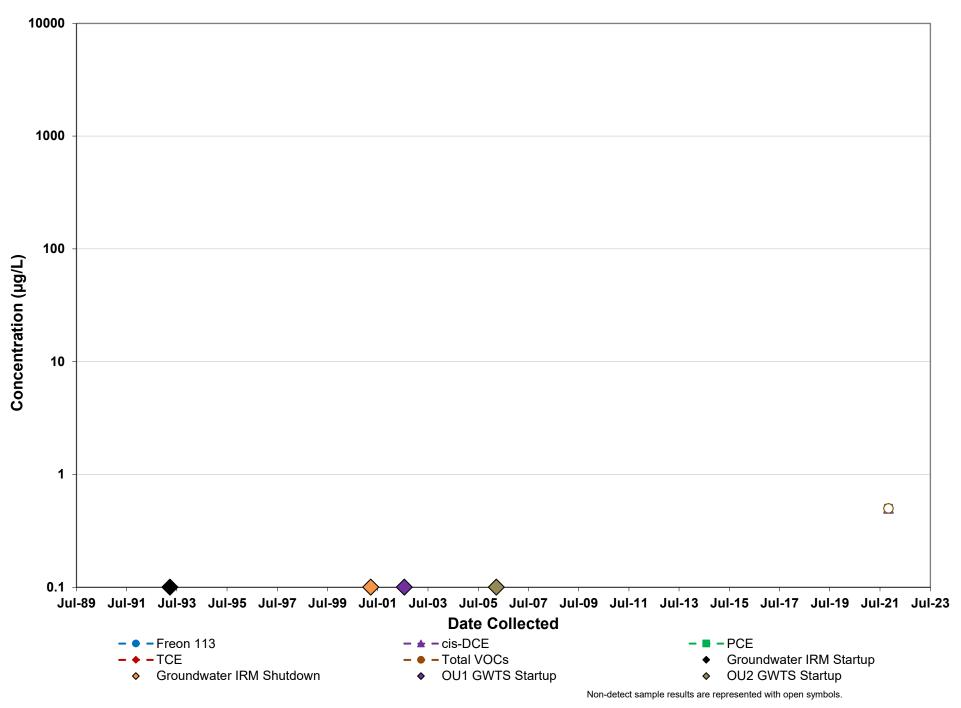

Monitoring Well 51MI Former Unisys Facility, Great Neck, New York

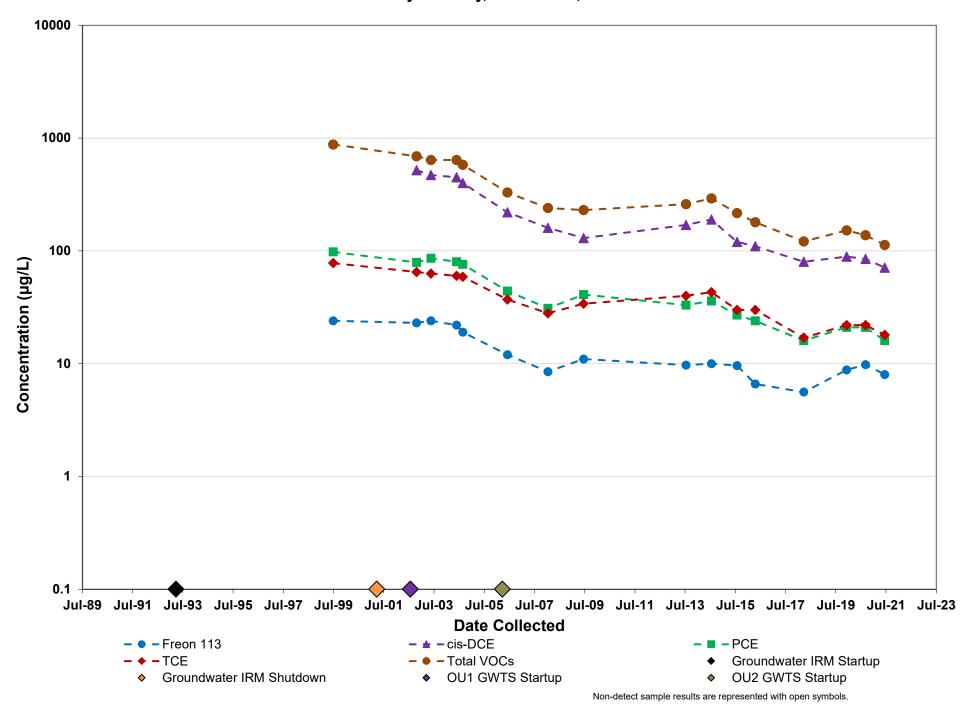

Monitoring Well 51ML Former Unisys Facility, Great Neck, New York

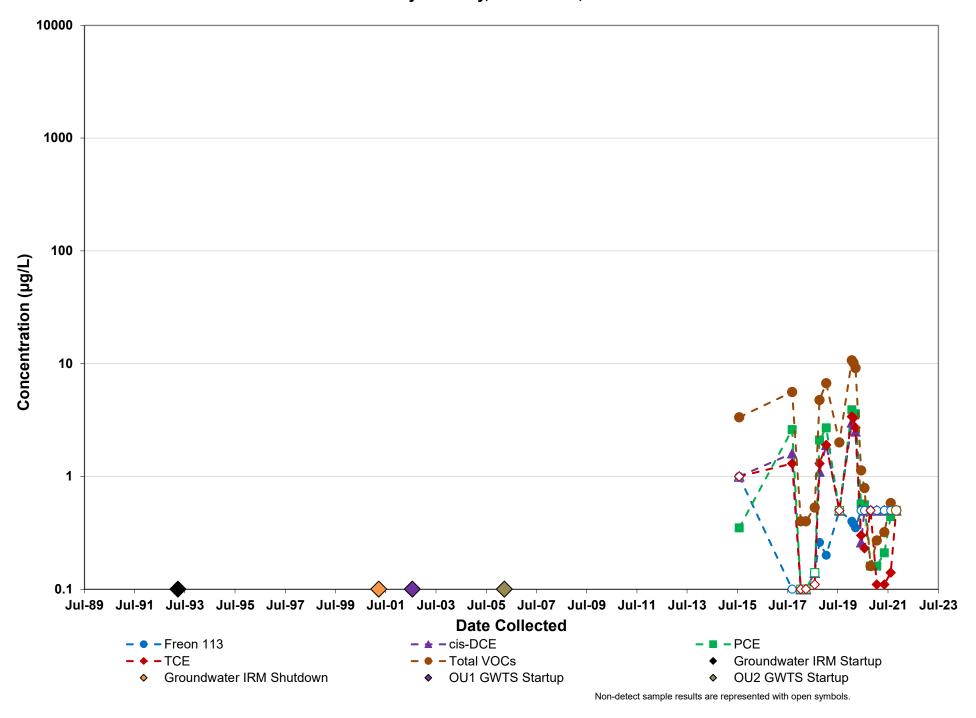

Monitoring Well 52MI Former Unisys Facility, Great Neck, New York

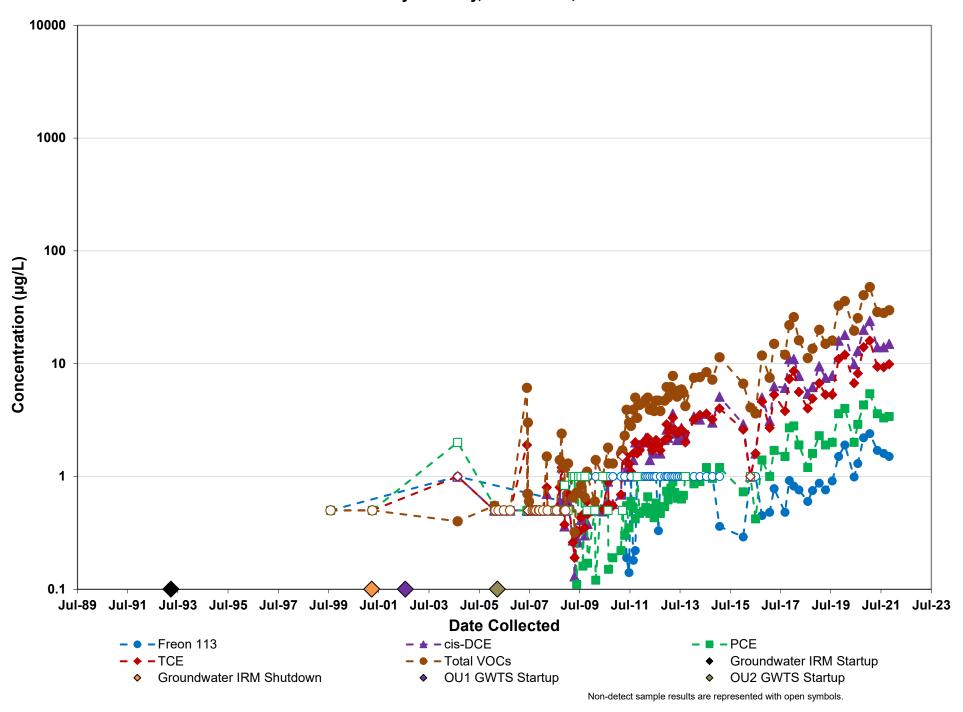

Monitoring Well 52ML Former Unisys Facility, Great Neck, New York

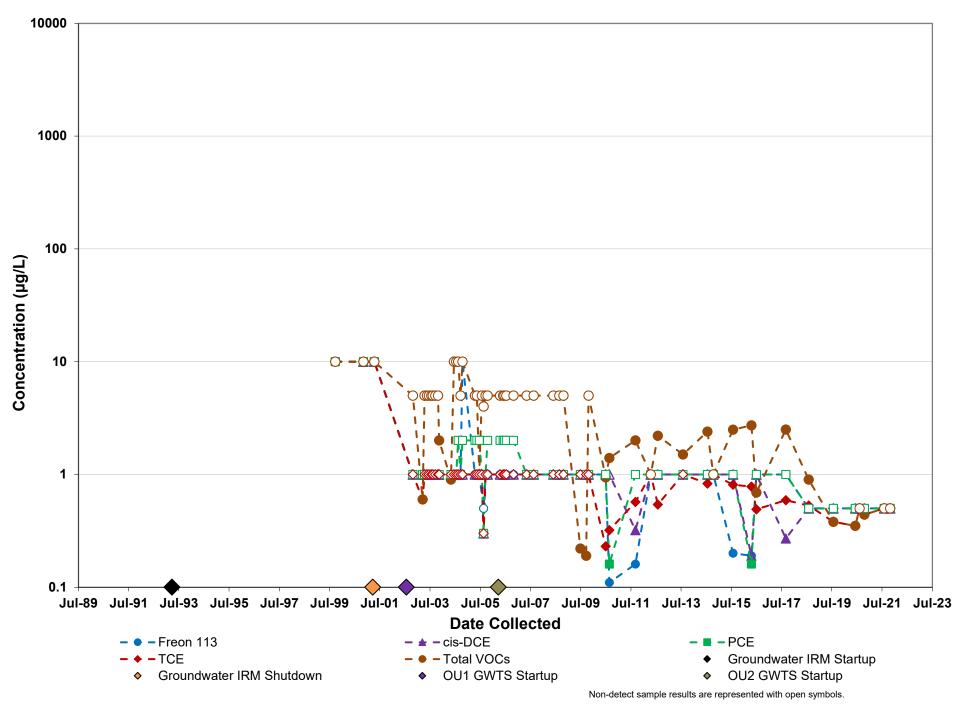

Monitoring Well 53MI Former Unisys Facility, Great Neck, New York

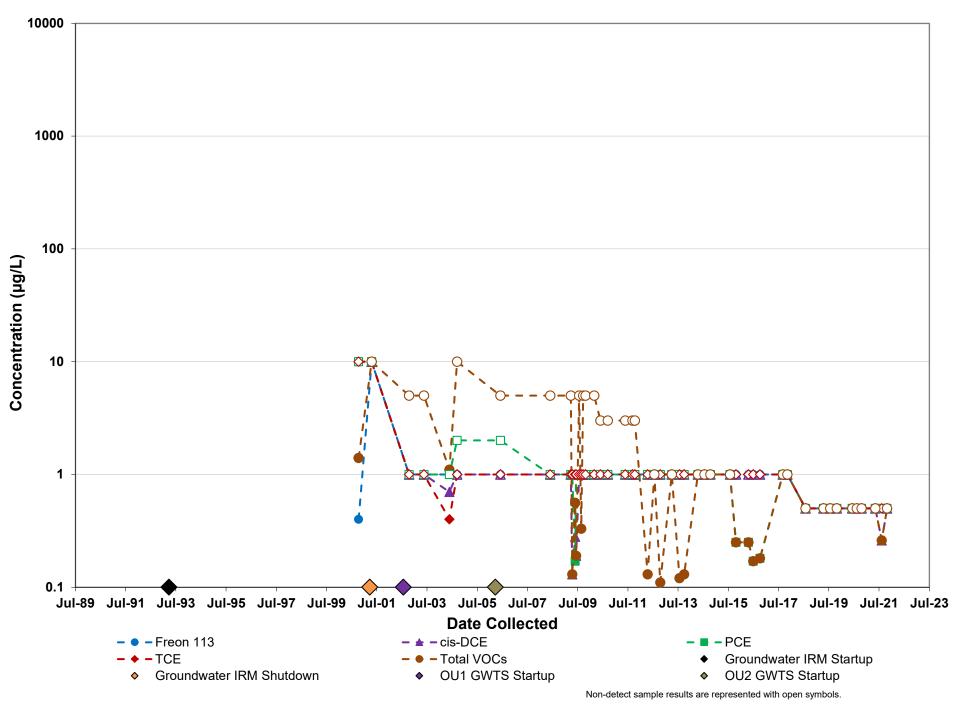

Monitoring Well 53ML Former Unisys Facility, Great Neck, New York

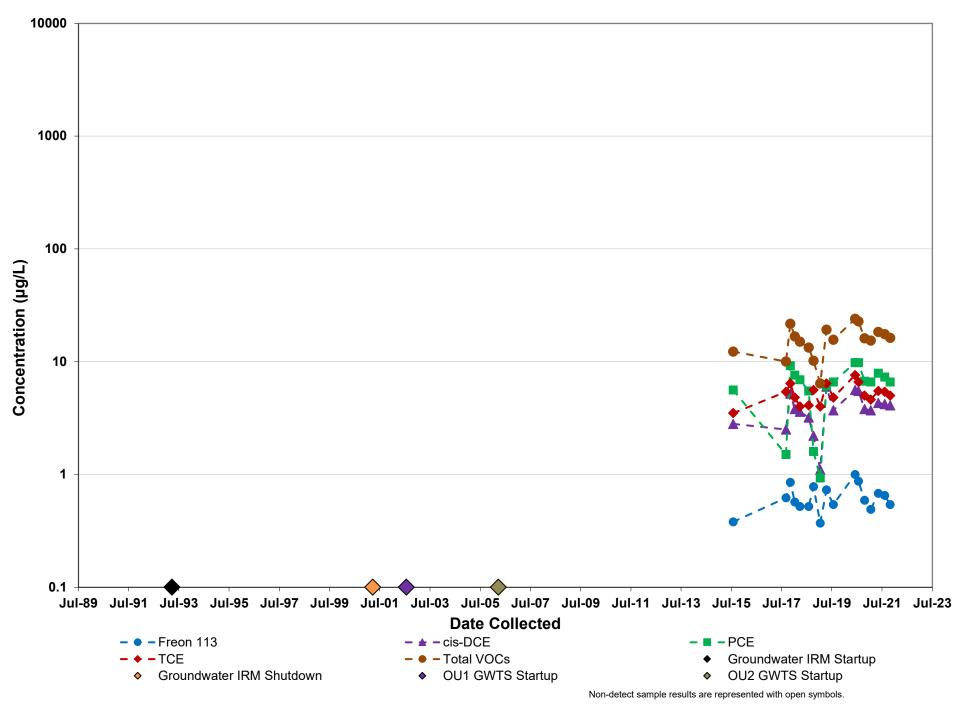

Monitoring Well 54GI Former Unisys Facility, Great Neck, New York

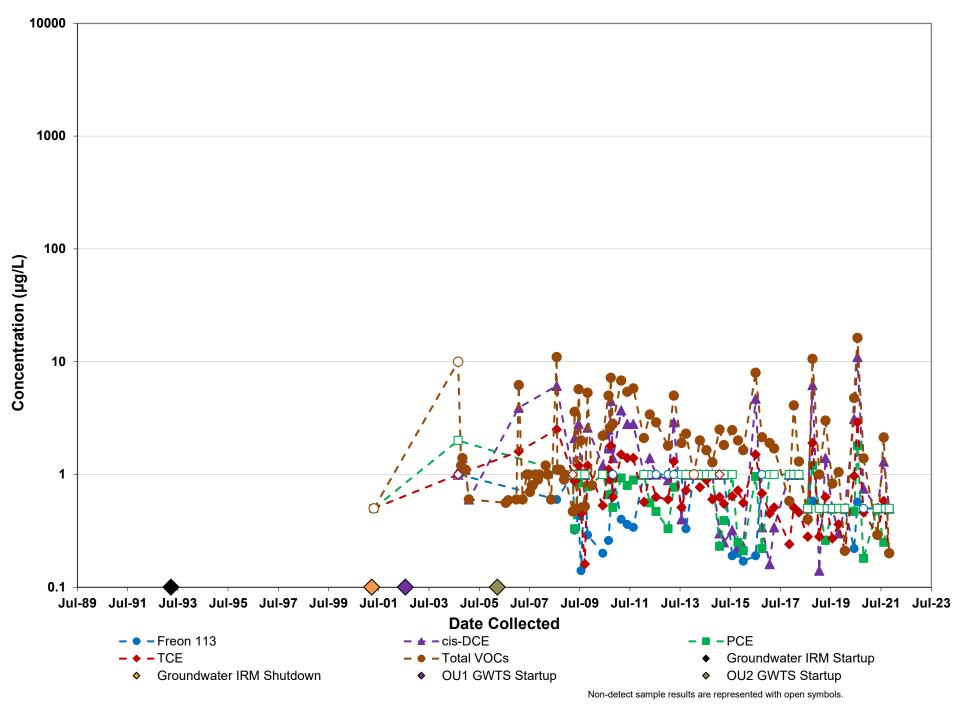

Monitoring Well 54GU Former Unisys Facility, Great Neck, New York

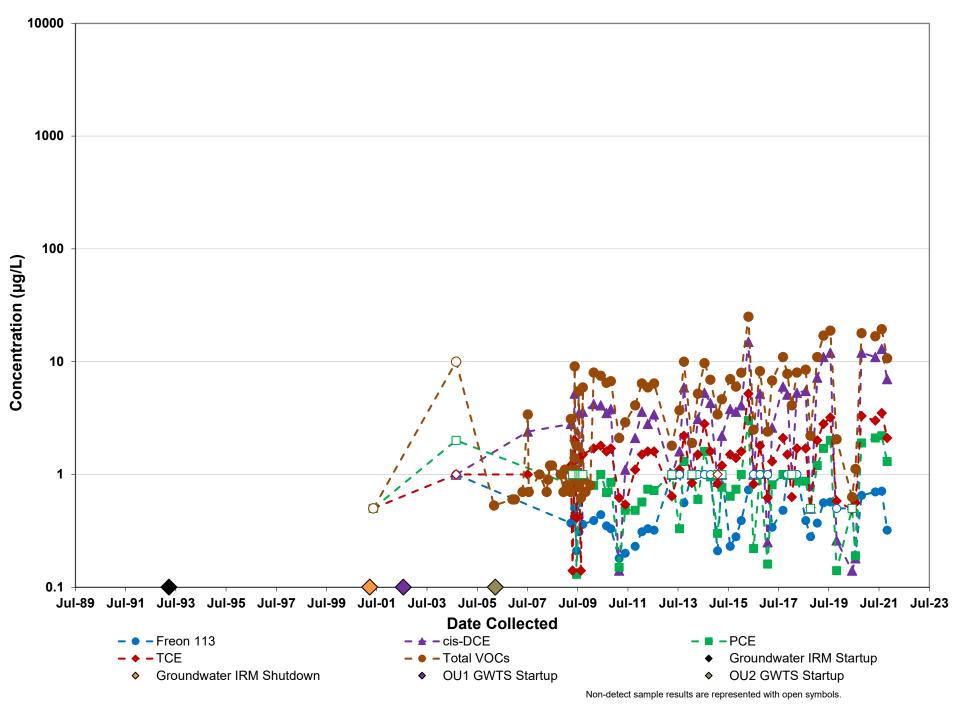

Extraction Well EW1R
Former Unisys Facility, Great Neck, New York


Public Supply Well N4388 Former Unisys Facility, Great Neck, New York

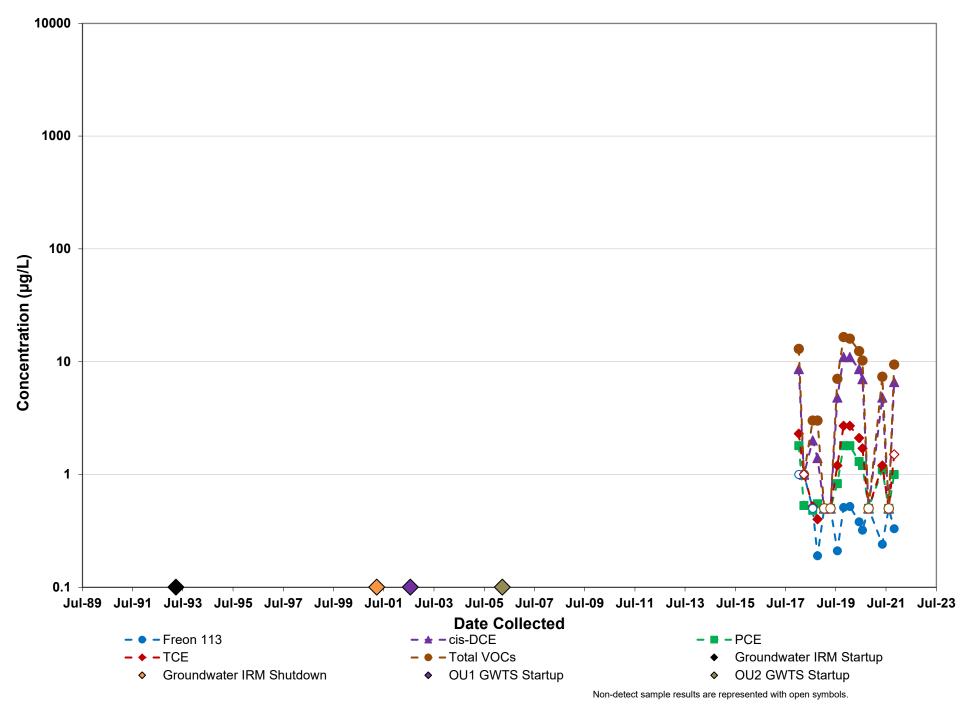

Water Supply Well N5099 Former Unisys Facility, Great Neck, New York

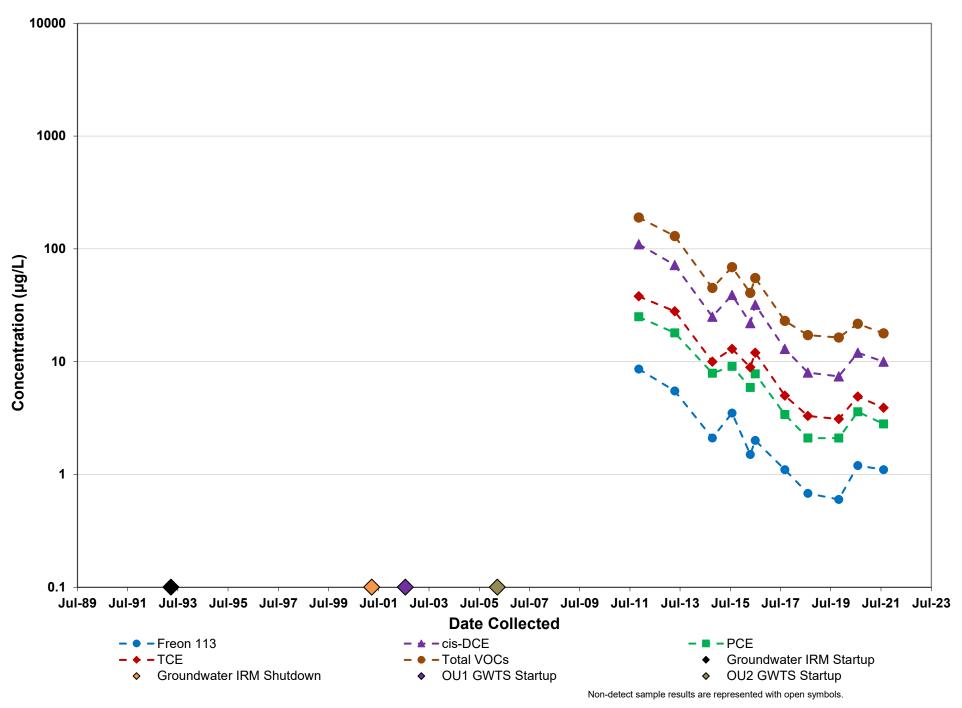

Irrigation Well N5535 Former Unisys Facility, Great Neck, New York

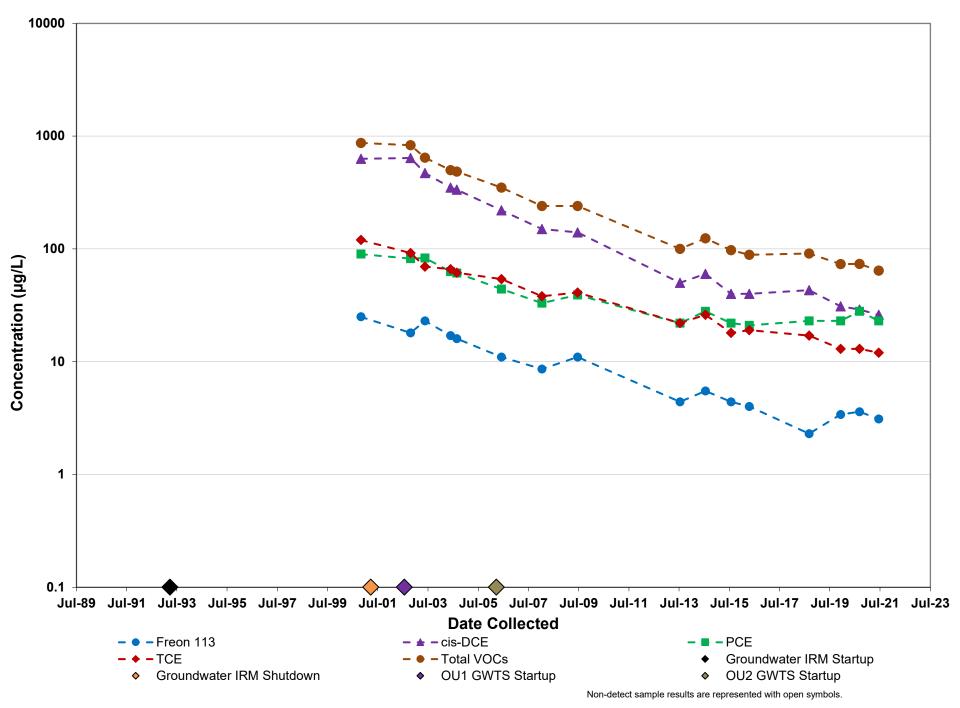

Irrigation Well N9687 Former Unisys Facility, Great Neck, New York

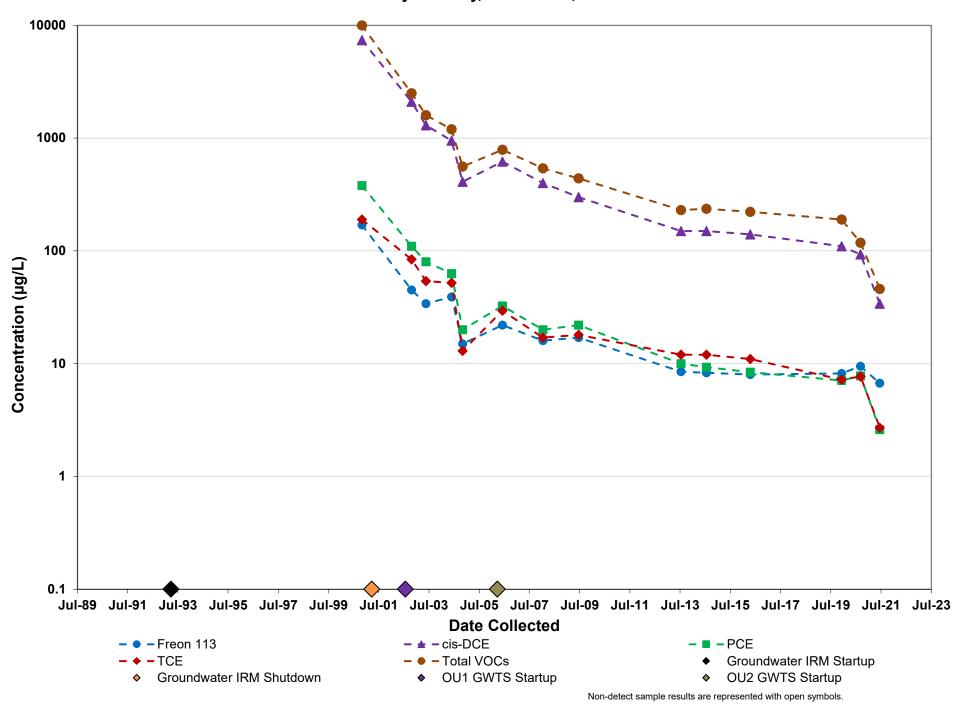

Monitoring Well N12796 Former Unisys Facility, Great Neck, New York

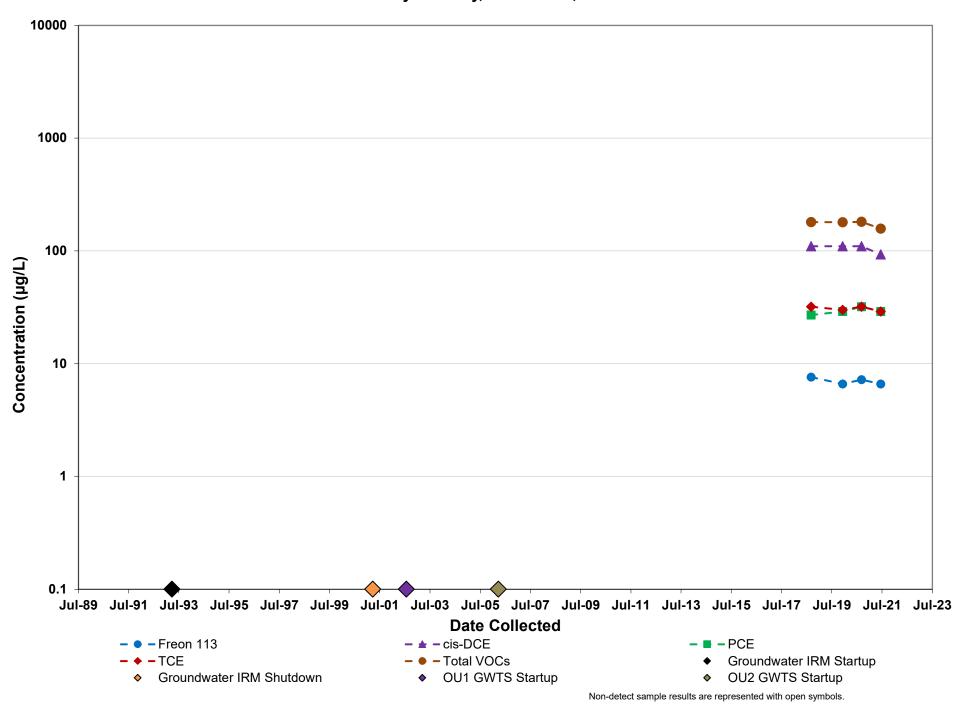

Water Supply Well N12999 Former Unisys Facility, Great Neck, New York

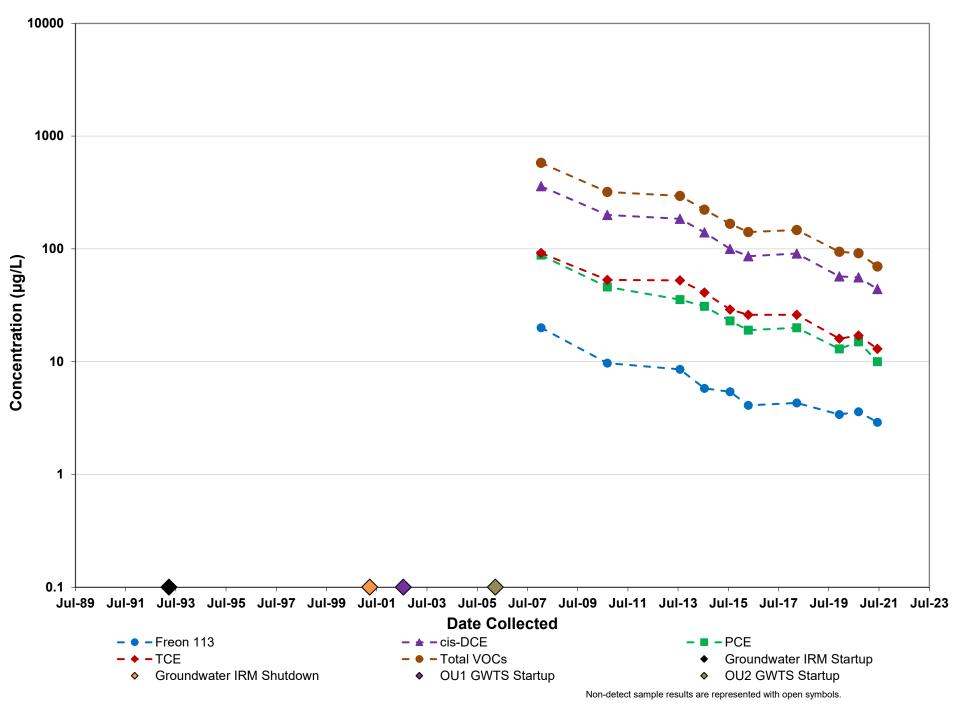

Water Supply Well N13000 Former Unisys Facility, Great Neck, New York


Irrigation Well N13221
Former Unisys Facility, Great Neck, New York


Water Supply Well N13821 Former Unisys Facility, Great Neck, New York


Irrigation Well N13889 Former Unisys Facility, Great Neck, New York


Recovery Well RW-1RD Former Unisys Facility, Great Neck, New York


Recovery Well RW-1RS
Former Unisys Facility, Great Neck, New York

Recovery Well RW-3 Former Unisys Facility, Great Neck, New York

Recovery Well RW-100 Former Unisys Facility, Great Neck, New York

