2014 Surface Water Sampling Report Middle River Complex 2323 Eastern Boulevard Middle River, Maryland

Prepared for:

Lockheed Martin Corporation

Prepared by:

Tetra Tech, Inc.

January 2015

Michael Martin, P.G. Regional Manager

Milal Mart

Anthony Apanavage, P.G.

Project Manager

TABLE OF CONTENTS

	Section ACRONYM	IS	<u>Page</u> iii
1	INTR	RODUCTION	1-1
2	SITE	E BACKGROUND	2-1
3	INVE	ESTIGATION APPROACH AND METHODOLOGY	3-1
	3.1 SUR	FACE WATER SAMPLING	3-1
	3.1.1	Surface Water Sampling and Analyses	3-2
	3.1.2	Documentation	3-3
	3.1.3	Sample Nomenclature and Handling	3-3
	3.1.4	Equipment Decontamination	3-4
	3.1.5	Waste Management	3-4
	3.2 DAT	A MANAGEMENT	3-4
	3.2.1	Data Tracking and Control	3-5
	3.2.2	Sample Information	3-5
	3.2.3	Project Data Compilation	3-5
	3.2.4	Geographical Information System	3-5
	3.3 DAT	'A REVIEW	3-6
4	RES	SULTS	4-1
	4.1 VOL	ATILE ORGANIC COMPOUNDS	4-1
	4.2 1,4-Γ	DIOXANE	4-3
	4.3 POL	YCHLORINATED BIPHENYLS	4-3
		TER QUALITY PARAMETERS	
5	SUM	MMARY	5-1
6	REF	FERENCES	6-1

TABLE OF CONTENTS (continued)

APPENDICES

APPENDIX A—SURFACE WATER SAMPLING LOG SHEETS

APPENDIX B—DATA VALIDATION REPORT (ON CD)

APPENDIX C—CHEMICAL RESULTS DATA TABLES

APPENDIX D—RISK ESTIMATES FOR RECREATIONAL SWIMMING IN DARK HEAD COVE

LIST OF FIGURES

		<u>Page</u>
Figure 1-1	Middle River Complex Location Map	1-2
Figure 2-1	Middle River Complex Site Layout and Tax Blocks	2-4
Figure 3-1	2014 Surface Water Sampling Locations	3-8
Figure 4-1	Analytes Detected in Surface Water Samples, June 2014	4-9
	LIST OF TABLES	
		<u>Page</u>
Table 3-1	Chemical Analyses of Surface Water Samples, June 2014	3-7
Table 4-1	Statistical Summary of Analytes Detected in Surface Water Samples, June 2014	4-5
Table 4-2	Analytes Detected in Surface Water Samples, June 2014	4-6
Table 4-3	Surface Water Quality Field Measurements, June 2014	4-8

ACRONYMS

AWQC ambient water quality criteria

BTAG (USEPA) Biological Technical Advisory Group

°C degrees Celsius

cis-1,2-DCE cis-1,2-dichloroethene

COC chain of custody

COMAR Code of Maryland Regulations

DO dissolved oxygen

ESA environmental site assessment
GIS geographic information system
GLM Glenn L. Martin Company
HHRA human health risk assessment
IDW investigation-derived waste
Lockheed Martin Lockheed Martin Corporation

MDE Maryland Department of the Environment

 $\begin{array}{ll} \mu g/L & microgram(s) \ per \ liter \\ mg/L & milligram(s) \ per \ liter \\ MRC & Middle \ River \ Complex \end{array}$

mS/cm milliSiemen(s) per centimeter

mv millivolt(s)

MW monitoring well

NRWQC national recommended water quality criteria

NTU nephelometric turbidity unit(s)
ORP oxidation-reduction potential
PCB polychlorinated biphenyl
PDF portable document format

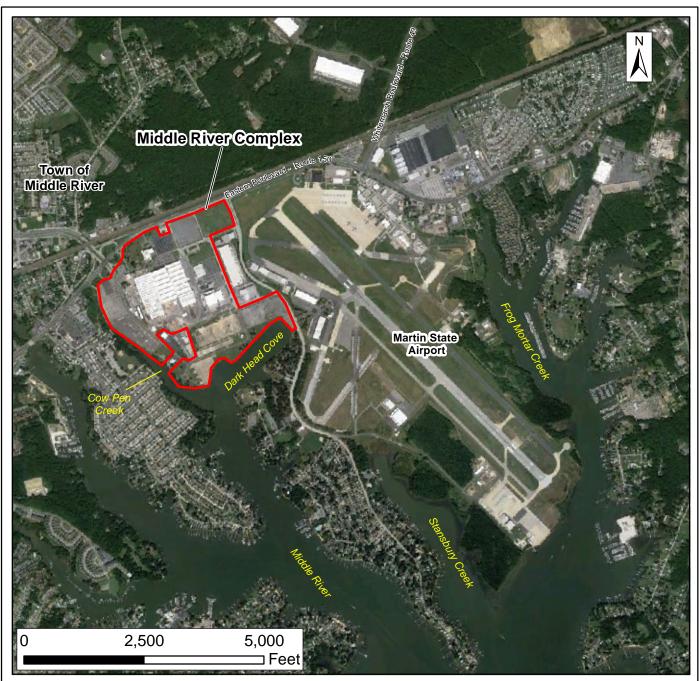
pH a measure of hydrogen-ion content indicating relative acidity or alkalinity

PM project manager

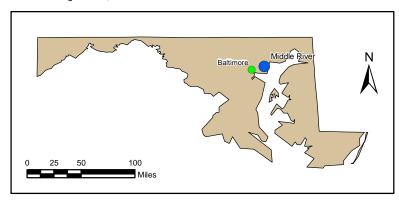
REC recognized environmental condition

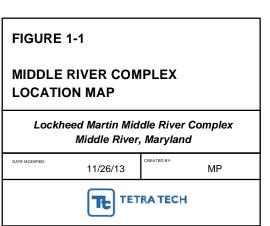
SC specific conductance

S.U. standard unit(s)
SW surface water


TCE Trichloroethene (also known as trichloroethylene)

Tetra Tech, Inc.


USEPA United States Environmental Protection Agency


VOC volatile organic compound

Section 6—References: Cites references used to compile this report.

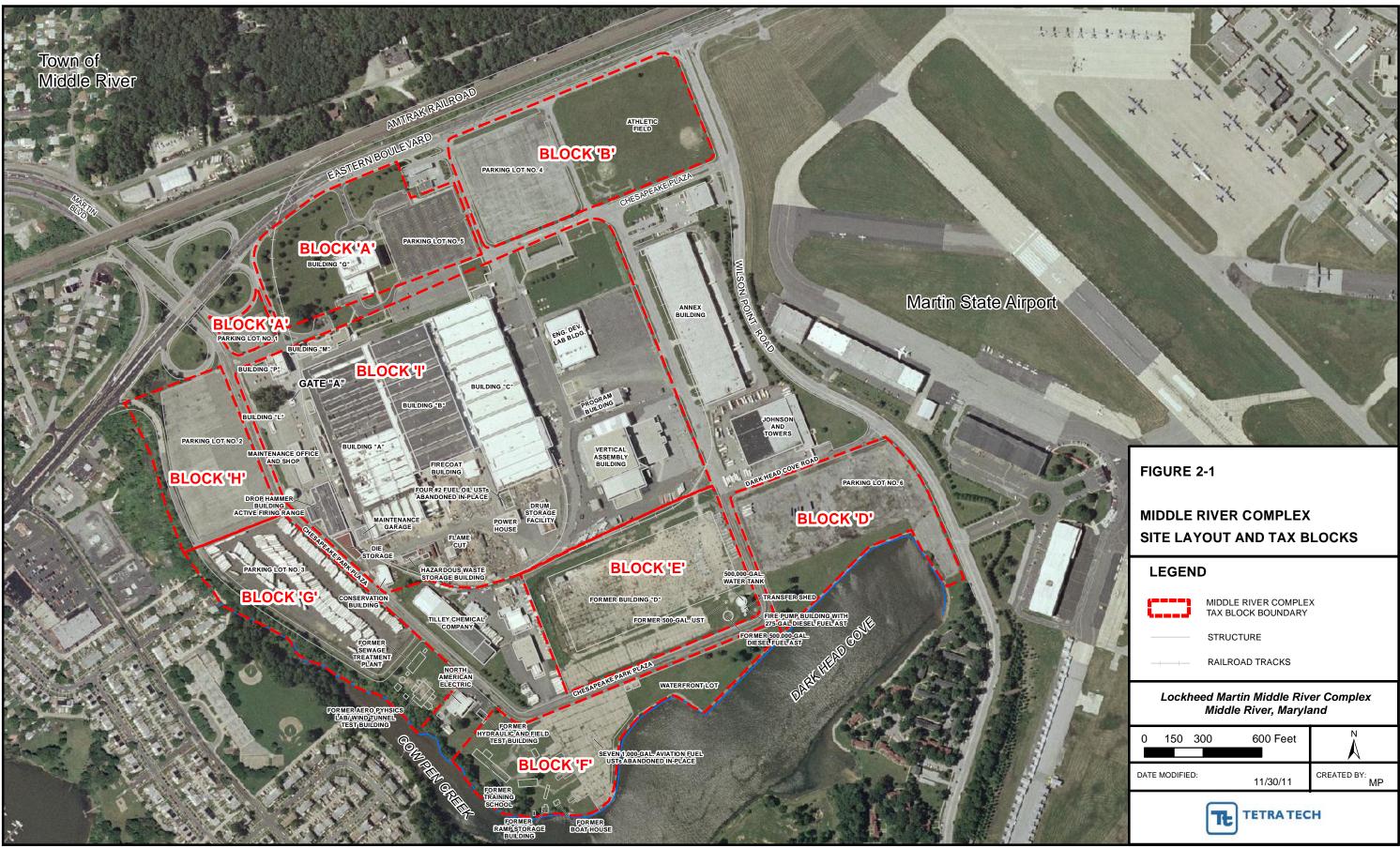
Source: Google Earth, 2013

Section 2 Site Background

The Middle River Complex (MRC), part of the Chesapeake Industrial Park, is at 2323 Eastern Boulevard in Middle River, Maryland, approximately 11.5 miles northeast of Baltimore, Maryland. The MRC comprises approximately 161 acres and includes 12 main buildings, an active industrial area and yard, perimeter parking lots, an athletic field, a vacant concrete lot, trailer storage areas, and numerous grassy spaces along its perimeter. The MRC is bounded by Eastern Boulevard (Route 150) to the north, Martin State Airport to the east, Dark Head Cove to the south, and Cow Pen Creek to the west. Figure 2-1 shows the MRC layout.

LMC Properties, Inc. (the current MRC property owner) is responsible for facility and building management and maintenance. The main tenant at the site, MRA Systems, Inc. (a subsidiary of General Electric Company), designs, manufactures, fabricates, tests, overhauls, repairs, and maintains aeronautical structures, parts, and components for military and commercial applications. Lockheed Martin Mission Systems & Training (a Lockheed Martin Corporation [Lockheed Martin] business segment) conducts engineering activities and fabricates, assembles, tests, and otherwise supports vertical-launch systems. A Lockheed Martin subsidiary, Applied NanoStructured Solutions, LLC also occupies a portion of MRC, where it researches and designs nanotechnology applications.

In 1929, the Glenn L. Martin Company (GLM) (a predecessor entity of Lockheed Martin) acquired a large parcel of undeveloped land in Middle River, Maryland to manufacture aircraft for United States government and commercial clients. In the early 1960s, GLM merged with American-Marietta Company to form Martin Marietta Corporation. Around 1975, the adjacent airport to the east (currently Martin State Airport, comprising approximately 750 acres) was transferred to the State of Maryland. In 1995, Martin Marietta Corporation merged with Lockheed to form Lockheed Martin Corporation. Shortly after the merger, General Electric Company acquired most of Lockheed Martin's aeronautical business in Middle River and a General Electric subsidiary, MRA Systems, Inc., began operations at MRC.


Numerous environmental investigations have been conducted at the Lockheed Martin MRC. These include underground storage-tank closures and abandonments, soil excavations, Phase I environmental site assessments (ESAs), and Phase II ESAs. A 2003 facility-wide Phase I ESA at the Lockheed Martin MRC identified 13 recognized environmental conditions (RECs) at the facility, associated primarily with then-current site conditions (Earth Tech, 2003). Subsequent review of historical site activities identified another 18 RECs at the facility (Tetra Tech, 2004). Many RECs are in the southern portion of the facility along the waterfront.

Soil and groundwater sampling have identified sporadic soil and groundwater contamination in environmental media underlying the facility. The MRC was previously entered into the Maryland Department of the Environment (MDE) Voluntary Cleanup Program. Studies of soil and groundwater are ongoing (Tetra Tech, 2012). Remediation of the MRC is being transitioned to the MDE Controlled Hazardous Substances regulatory framework.

Sampling of surface water and sediment adjacent to the MRC's southern and western property boundaries was first done in March 2005. Subsequent samples were collected in 2005, 2010, 2011, and 2012 to characterize surface water, to support the objectives of sediment characterization and remedy design development, and to support storm drainage investigations. The objective of the current annual sampling program is to determine the extent to which key groundwater and surface soil contaminants have been transported to surface water. Table C-2 in Appendix C summarizes detected concentrations of trichloroethene [TCE; also known as trichloroethylene], cis-12-dichloroethene [cis-12-DCE], vinyl chloride, and 1,4-dioxane (the primary chemicals of concern at the site) for sampling episodes conducted between 2012 and 2014.

Thirteen surface water samples were collected from Dark Head Cove and Cow Pen Creek in June 2013, and chemically analyzed for volatile organic compounds (VOCs). Samples collected in Cow Pen Creek were also analyzed for 1,4-dioxane. These samples were collected to evaluate VOC and 1,4-dioxane concentrations that may be emanating from stormwater outfalls or groundwater plumes. TCE was detected at low concentrations in all Dark Head Cove samples and in one of two samples collected in Cow Pen Creek (12 of 13 surface water samples), but no TCE concentration (0.35*J*–1.9*J* micrograms per liter [µg/L]) exceeded its ecological surfacewater screening level (21 µg/L), its human health consumption-of-aquatic-organism screening

level (300 μ g/L), or its site-specific swimming screening level (10 μ g/L). Acetone was detected in 11 samples, at concentrations (1.5J–9.3J μ g/L) below its ecological surface-water screening level of 1,500 μ g/L (Tetra Tech, 2013b).

Section 3 Investigation Approach and Methodology

3.1 SURFACE WATER SAMPLING

The overall objective of the 2014 surface water sampling is to provide additional and updated surface water quality data for Dark Head Cove and Cow Pen Creek. Specifically, the current goals are to determine whether:

- volatile organic compounds (VOCs) detected in groundwater are reaching Dark Head
 Cove and Cow Pen Creek through groundwater infiltration or transport through the storm drains
- 1,4-dioxane detected in groundwater is reaching Cow Pen Creek through groundwater infiltration or transport through the storm drains
- polychlorinated biphenyls (PCBs) detected in Block E soils are reaching Dark Head Cove through the storm drain system and/or are there due to contaminants present in the sediment.

Concentrations of PCBs, VOCs, and 1,4-dioxane in surface water were determined through laboratory analysis of the samples. These compounds are known contaminants at the Middle River Complex (MRC), and may migrate into the adjacent surface bodies through groundwater and surface water flow.

Thirteen surface water samples were collected from Dark Head Cove and Cow Pen Creek on June 9, 2014 (Figure 3-1). Eleven were collected in Dark Head Cove and two were collected in Cow Pen Creek. All samples were analyzed for VOCs (the primary contaminants of concern in MRC groundwater). Samples collected from Dark Head Cove were also analyzed for PCBs, whereas samples from Cow Pen Creek were also analyzed for 1,4-dioxane. Sampling was in accordance with the 2014-2015 Groundwater and Surface Water Monitoring Work Plan (Tetra Tech, Inc. [Tetra Tech], 2014a).

3.1.1 Surface Water Sampling and Analyses

Surface water samples were collected in Dark Head Cove along transects at Outfalls 005 through 009 (Figure 3-1). Two samples were collected along each transect near Outfalls 006–009: one sample per transect was collected 10-feet from shore ("A" sample) and a second was collected 50-feet from shore ("B" sample). At Outfall 005 (which has two outlets), one sample was collected at each outlet 10-feet from shore ("A1" and "A2" samples), and a single sample was collected 50-feet from shore, approximately midway between the two outlets ("B" sample). Surface water samples in Cow Pen Creek were collected near the western trichloroethene (TCE) plume. Samples were collected along the approximate centerline of the creek upstream and downstream of the estimated boundaries of the western TCE plume. Table 3-1 summarizes (by surface water sampling location) the chemical analyses conducted for the 2014 monitoring program (Tetra Tech, 2014a).

Surface water samples were collected as grab samples using direct-fill sampling techniques. All samples were collected approximately one foot below the water surface using a stainless-steel discrete-interval sampler (i.e., a "bacon bomb" sampler). The sampler was lowered to approximately one foot below the water surface, and the check valve was engaged to allow it to fill; the sampler was then brought to the surface, and the water was removed through a valve to fill laboratory-supplied containers. Laboratory-cleaned, hydrochloric-acid-preserved, 40-milliliter (mL) sample vials were used for VOC analysis; separate containers were used to collect samples for 1,4-dioxane and PCB analysis. All equipment was cleaned after each sample had been collected. The discrete-interval sampler was cleaned after each use by rinsing with potable water; no decontamination fluids other than potable water were used, so it was not necessary to collect and dispose of rinse water generated during this sampling event.

Samples were analyzed at a fixed-base laboratory for VOCs via United States Environmental Protection Agency (USEPA) Method 8260C, for 1,4-dioxane via Method 522, and for PCBs via Method 680. One duplicate VOC sample was collected. Trip blanks were provided in each cooler containing VOC samples to ensure quality assurance/quality control. Water-quality parameters, including temperature, pH (a measure of hydrogen-ion content indicating relative acidity or alkalinity), specific conductance (SC), salinity, turbidity, dissolved oxygen (DO), color, and oxidation-reduction potential (ORP), were measured at all surface water sampling locations at the time of sampling. Although listed in the work plan, hardness was not measured because

samples for hardness-dependent metals were not collected during this round. The depth of water at each sampling location was also recorded.

Tidal stages were recorded on June 9, 2014, before sampling started, using the MRC Cow Pen Creek direct-read staff gauge. The staff gauge read 4.15 feet at 10:00 a.m. Tide data for the North Point station (south of Middle River, Maryland) report high tide at 4:24 a.m., low tide at 11:26 a.m., and high tide at 4:16 p.m. Surface water samples were collected at low tide between 10:02 a.m. and 12:02 p.m., at the end of the falling limb of the tidal cycle and the beginning of its rising limb (Maryland Department of Natural Resources, 2014). All information was documented on surface water sample forms (Appendix A) and in the master site logbook.

Surface water sampling locations (horizontal locational coordinates) were surveyed using a handheld global positioning system receiver and recorded in the field logbook. Sampling locations were recorded in degrees, minutes, and seconds using geographical latitude and longitude coordinates, and have an accuracy of approximately 15 feet. Coordinates were converted to the Maryland State Plane North American Datum 1983 (feet) for use in the MRC geographical information system (GIS).

3.1.2 Documentation

A master site logbook was maintained as an overall record of field activities. Sample documentation includes completing a chain of custody (COC) form and matrix-specific sampling log sheets. A COC form is standardized to summarize and document pertinent sample information, such as sample identification and type, matrix, date and time of collection, preservation, requested analysis, and the times and dates of custody transfers. Sample custody procedures document sample acquisition and integrity. The COC form accompanies the data-validation report in Appendix B.

3.1.3 Sample Nomenclature and Handling

Surface water samples were identified with a unique sample-identification tag. Surface water samples were labeled with an "SW" prefix followed by the sample number, followed by an "A" (designating a sample collected 10 feet from the shoreline) or a "B" (designating a sample collected 50 feet from the shoreline), followed by a six-digit sampling date. For example, a surface water sample collected on June 9, 2014 from transect MRC-SW6 at the 10-foot ("A")

location was labeled MRC-SW6A-060914. The trip blank was labeled with a "TB" prefix followed by the blank's six-digit submittal date (e.g., TB-060914).

Sample handling includes field-related considerations concerning the selection of sample containers, preservatives, allowable holding times, and analyses requested. Proper custody procedures were followed throughout all phases of sample collection and handling. COC protocols used throughout sample handling ensure the evidentiary integrity of sample containers.

Sample containers were released under signature from the laboratory and accepted under signature by the sampler(s) or individual responsible for maintaining custody until the sample containers were transferred to the sampler(s). Transport containers returned to the laboratory were sealed with strapping tape and a tamper-proof custody seal. The custody seal includes the signature of the individual initially releasing the transport container, along with the date and time.

3.1.4 Equipment Decontamination

Both dedicated and disposable equipment (e.g., gloves, rope) were used for surface water sampling to minimize decontamination. The stainless-steel discrete-interval sampler (i.e., a "bacon bomb" sampler) was rinsed with distilled water before the first sample was collected and after each use.

3.1.5 Waste Management

No investigation-derived waste (IDW) was generated during this surface water sampling event. General waste (i.e., gloves, rope, etc.) was disposed of in the proper waste disposal containers at the facility.

3.2 DATA MANAGEMENT

Laboratory data-handling procedures met the requirements of the laboratory subcontract. All analytical and field data are maintained in project files. These files include copies of the COC forms, sampling log forms, sampling location maps, and documentation of laboratory quality assurance.

3.2.1 Data Tracking and Control

A cradle-to-grave sample-tracking system was used from the beginning to the end of the sampling event. This system allows for early detection of errors made in the field so adjustments can be made while the field team is still mobilized. Before field mobilization, the field operations leader coordinated and initiated sample tracking. Sample jar labels were handwritten in the field and reviewed to ensure that they were accurate and adhered to work plan requirements.

The project manager (PM) coordinated with the analytical laboratory to ensure that they were aware of the number and types of samples and analyses being submitted. On each day that samples were collected in the field, the field operations leader forwarded that day's COC forms to the PM (or designee) and the laboratory. The PM or their designee confirmed that the COC forms provided the information required by the work plan. After all requested analyses had been completed, the laboratory submitted an electronic deliverable for every sample delivery group. When all electronic deliverables had been received from the laboratory, the PM or their designee ensured that the laboratory had performed all requested analyses.

3.2.2 Sample Information

Data from field measurements were recorded using appropriate log sheets and summarized in tabular form. Raw instrument-data from the laboratory were also tabulated. The field operations leader verified field data daily; laboratory data were verified by the group supervisor and then by the laboratory's quality control/documentation department.

3.2.3 Project Data Compilation

The analytical laboratory generated a portable document format (PDF) file of the analytical data packages, as well as electronic database deliverables. The electronic data were checked against the PDF file from the laboratory and updated as required by data-qualifier flags applied during data validation. All data, such as units of measure and chemical nomenclature, are consistent with the project database.

3.2.4 Geographical Information System

Data management systems consist of a relational database and GIS used to manage environmental information pertaining to the MRC. The relational database stores chemical, geological, hydrogeological, and other environmental data collected during environmental investigations; the GIS is created from the relational database and contains subsets of the larger data pool. The GIS allows posting of environmental data onto base maps to represent the information graphically. Compiled sampling, chemical, and positional data were incorporated into the GIS.

3.3 DATA REVIEW

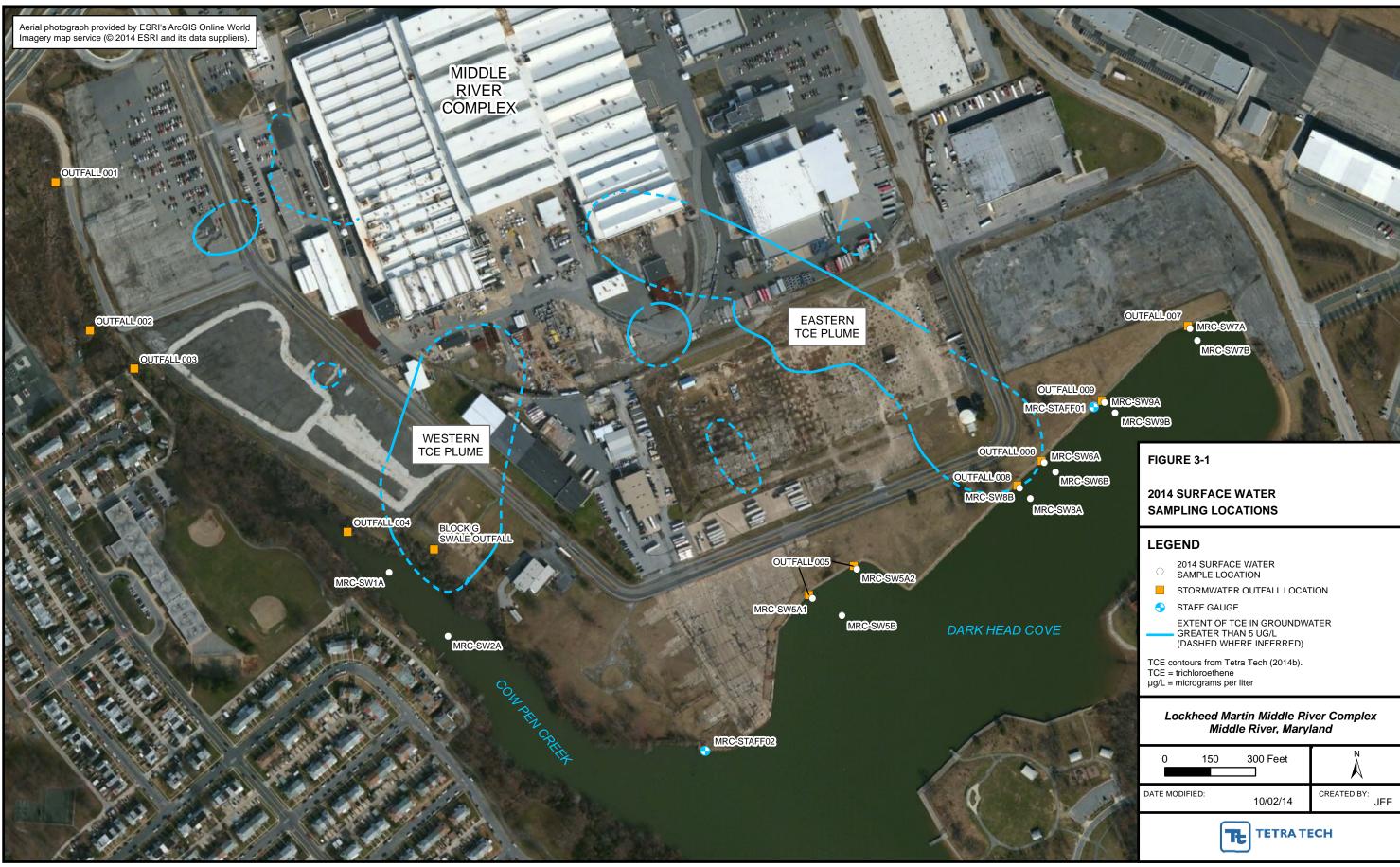
Data from the laboratory were entered into a sample database and evaluated against various screening criteria. Data validation (consisting of data completeness, holding time, calibrations, laboratory contamination, and detection limits) was completed concurrent with the data evaluation. The review was based on USEPA Region 3's *Modifications to the National Functional Guidelines for Data Review* (USEPA, 1993 and 1994) and the specifics of the analytical method used. Data from this sampling event consist of surface water sample chemical results. Appendix C contains tables of all 2014 MRC surface water sample analytical data, and includes validation qualifiers, non-detects, and analytical detection limits.

Validation of the MRC data concluded that they are acceptable for their intended uses (i.e., risk screening and risk assessment). The data qualifiers (i.e., flags) applied to the chemical results during data validation are listed below:

- J The analyte is considered present in the sample, but the value is estimated and may not meet highest accuracy or precision standards. In this program, samples were qualified with "J" because quantitation was above the method detection limit but below the laboratory reporting limit.
- U Not detected; the analyte was not detected at the reported value.
- UJ The analyte was not detected, but the quantitation or detection limit may be inaccurate or imprecise.

The first flag appears on the chemical-results tables in Section 4, and all flags appear in Appendices B and C.

Table 3-1


Chemical Analyses of Surface Water Samples, June 2014

Cow Pen Creek and Dark Head Cove

Lockheed Martin, Middle River Complex, Middle River, Maryland

Sampling location	Sample number	Distance from shore (feet)	Analytical parameters	Sampling month	Number of samples							
Dark Head Cove												
Outfall 005	SW5A1 SW5A2 SW5B	10 ⁽¹⁾ 10 ⁽¹⁾ 50	Volatile organic compounds (VOCs), polychlorinated biphenyls (PCBs) field parameters	June	1 1 1							
Outfall 006 and near the eastern trichloroethene (TCE) plume	SW6A SW6B	10 50	VOCs, PCBs, field parameters	June	1 1							
Outfall 007	SW7A SW7B	10 50	VOCs, PCBs, field parameters	June	1 1							
Outfall 008 and near eastern TCE plume	SW8A SW8B	10 50	VOCs, PCBs, field parameters	June	1 1							
Outfall 009	SW9A SW9B	10 50	VOCs, PCBs, field parameters	June	1 1							
Cow Pen Creek												
Near the western TCE plume	SW1A SW2A	Upstream downstream (both centerline)	VOCs, 1,4-dioxane, field parameters	June	1 1							

⁽¹⁾Two near-shore samples (10-feet out) were collected at Outfall 005 only. One near-shore sample was collected at the other Dark Head Cove outfalls (006–009).

Section 4 Results

Validated surface-water chemical data were used to generate a statistical summary table (Table 4-1) and a detection table (Table 4-2) listing positive detections (only) of chemical analytes in the June 2014 surface water samples. Tables 4-1 and 4-2 are based on the full data listing in Appendix C (Table C-1). Table 4-2 compares surface-water sampling results to several applicable screening criteria, including:

- United States Environmental Protection Agency (USEPA) Region 3 Biological Technical Advisory Group (BTAG) freshwater screening benchmarks (USEPA, 2006)
- USEPA Region 5 ecological screening level for 1,4-dioxane in water (USEPA, 2003)
- USEPA national recommended water quality criteria (NRWQC) for acute and chronic aquatic-organism exposures, and NRWQC for human health aquatic-organism consumption (USEPA, 2009)
- State of Maryland ambient water quality criteria (AWQC) for acute and chronic aquaticorganism-exposures, and AWQC for human health aquatic-organism-consumption (Code of Maryland Regulations, 2014)
- Site-specific screening levels for swimming (developed by Lockheed Martin Corporation [Lockheed Martin]) for current assessments of volatile organic compounds (VOCs) at Frog Mortar Creek near Martin State Airport (Tetra Tech, Inc., [Tetra Tech], 2013)

4.1 VOLATILE ORGANIC COMPOUNDS

As shown in Table 4-1, two VOCs were detected in surface water. Trichloroethene (TCE; also known as trichloroethylene), the primary VOC detected in the Middle River Complex (MRC) groundwater plumes, was detected in nine of 13 samples (69%). All nine positive detections of TCE were in Dark Head Cove; TCE was not detected in any samples collected from Cow Pen Creek. The only other VOC detected in surface water samples was carbon disulfide, found in one sample (SW5A1).

As shown in Table 4-2, all VOC concentrations are low and less than the screening criteria. All nine TCE results are "J" qualified, because the concentrations are above the method detection limit but below the laboratory practical quantitation limit.

Figure 4-1 shows the distribution of TCE in the Dark Head Cove and Cow Pen Creek samples. Detected TCE concentrations range from 0.3J micrograms per liter (μ g/L) (MRC-SW5A2) to 0.54μ g/L (MRC-SW8A). MRC-SW5A2 ($0.3J \mu$ g/L) is the only sample collected near Outfall 005 that contained a detectable concentration of TCE; this is also the lowest detected TCE concentration.

In the 2013 surface water sampling event (see Table C-2 in Appendix C), the highest TCE concentrations (1.1-1.9 μ g/L) were from samples MRC-SW5A1, MRC-SW5A2, and MRC-SW5B collected near Outfall 005. However the highest TCE concentrations detected in 2012 (0.55*J*-0.82*J* μ g/L; see Table C-2) and 2014 (0.52*J*-0.54*J* μ g/L; see Table C-2 and Figure 4-1) were in samples collected at Outfalls 006 and 008, near the eastern TCE groundwater plume. The maximum TCE concentration in 2014 (0.54*J* μ g/L at Outfall 008) is approximately one-third that of the maximum TCE concentration detected in 2013 (1.9 μ g/L at Outfall 005). Note that the distribution of the contaminants can be affected by tidal fluxes of the creek.

Carbon disulfide was detected in only one sample (0.24J µg/L in sample SW5A1) collected near the western side of Outfall 005. This carbon disulfide concentration is less than one-third the ecological surface water screening-level (0.92 µg/L).

USEPA and the State of Maryland have not established acute or chronic freshwater criteria for TCE or carbon disulfide. However, USEPA and Maryland have established a human health consumption-of-aquatic-organism criterion for TCE (equal to $300 \,\mu\text{g/L}$, when adjusted for the Maryland Department of the Environment [MDE] risk level of 1×10^{-05} [i.e., a one in 100,000 risk probability]). The BTAG ecological screening levels for TCE and carbon disulfide are $21 \,\mu\text{g/L}$ and $0.95 \,\mu\text{g/L}$, respectively. The maximum detected TCE concentration (0.54 $\,\mu\text{g/L}$) in this investigation is at least one order of magnitude (i.e., a factor of 10) lower than the lowest (i.e., most conservative) regulatory screening level, and more than 18 times less than its site-specific swimming screening-criterion (10 $\,\mu\text{g/L}$).

4.2 1,4-DIOXANE

As shown in Figure 4-1, 1,4-dioxane was detected in both samples collected from Cow Pen Creek: sample SW1A (0.235J µg/L) and sample SW2A (0.156J µg/L). The highest concentration (0.235J µg/L) is nearly six orders of magnitude (nearly 100,000 times) lower than the USEPA ecological screening level (22,000 µg/L). Sample SW1A was collected closer to the leading edge of the western 1,4-dioxane plume (i.e., well MRC-MW12A) than SW2A was, which may be the reason for the higher 1,4-dioxane concentration there.

4.3 POLYCHLORINATED BIPHENYLS

Figure 4-1 also shows the distribution of polychlorinated biphenyls (PCBs) detected in surface water samples collected in Dark Head Cove in 2014. Pentachlorobiphenyls and tetrachlorobiphenyls only **PCB** homologues are the detected in the samples. Pentachlorobiphenyls (0.012-0.015 µg/L) were detected in two of 11 samples analyzed for PCBs, and tetrachlorobiphenyls (0.0066*J*–0.024 µg/L) were detected in six of 11 samples. All detected PCB concentrations (seven samples) exceed the BTAG (0.00064 µg/L) and human health consumption-of-aquatic-organism (0.000074 µg/L) criteria. PCB concentrations at only three samples (SW5A2, SW5B, and SW6B) exceed the chronic NRWQC criterion (0.014 µg/L). The highest concentrations of tetrachlorobiphenyls were detected in samples collected near Outfall 005; lower concentrations were detected near Outfalls 006 and 008. Pentachlorobiphenyls were detected in sample MRC-SW6B (0.015 µg/L) and sample MRC-SW7A (0.012 µg/L), collected near Outfalls 006 and 007, respectively.

Appendix D provides the results of a HHRA of the PCB concentrations detected in the surface waters of Dark Head Cove assuming recreational swimming in the Cove. The assessment assumes that a swimmer is dermally exposed and also ingests a small amount of surface water while swimming. The methodology used to conduct the HHRA is similar to that used in previous HHRAs conducted for Dark Head Cove and Cow Pen Creek, and considered available MDE and USEPA risk assessment guidance. The resultant cancer and non-cancer risk estimates indicate no significant risk from exposures due to swimming in Dark Head Cove. The cancer risk estimates are less than the MDE risk management benchmark of $1x10^{-5}$ (i.e., a one-in-one hundred thousand probability of developing cancer) and do not exceed the USEPA target risk range of

1x 10⁻⁴ to 1x 10⁻⁶ (i.e., a one-in-one ten thousand to one-in-one million probability of developing cancer). The non-cancer risk estimates do not exceed a hazard index of one (i.e., adverse non-carcinogenic health effects are not anticipated as a consequence of exposure). The HHRA was conducted in a very conservative (i.e., health protective) manner. The risk estimates presented in Appendix D likely overestimate the risks incurred by human receptors swimming in Dark Head Cove. This further supports the conclusion that unacceptable risk would not be incurred as a consequence of recreational (swimming) exposure to the PCB concentrations in the surface waters of the Cove.

4.4 WATER QUALITY PARAMETERS

Field-measured water-quality parameters for each surface water sample are in Table 4-3. Data were collected for color, pH, specific conductivity (SC), temperature, turbidity, dissolved oxygen (DO), salinity, and oxidation-reduction potential (ORP). The color of the sampled surface water was uniformly greenish-brown. The pH varied from 6.38–8.07, with an average pH of 7.49. Specific conductivity ranged from 1.09–1.54 milliSiemens per centimeter (mS/cm), with an average value of 1.47 mS/cm. The average water temperature was 24.6 degrees Celsius (°C). Turbidity varied between 6.43 and 12.02 nephelometric turbidity units (NTUs), with an average value of 8.58 NTUs. DO ranged from 4.46–8.66 milligrams per liter (mg/L), with an average of 7.38 mg/L. Salinity varied from 0.03 to 0.08%, with an average of 0.072%. ORP ranged from 200 to 257 millivolts (mv), with an average value of 213.8 mv.

The pH values measured during this event are consistent with natural surface water in this region. SC is closely associated with salinity, and samples with lower salinity had an expected lower SC, and vice versa. Water temperature was lower in Cow Pen Creek samples, which also had lower salinity and SC as compared to samples from Dark Head Cove. These results may be due to runoff into the creek, or restricted water flow into or out of the creek.

Turbidity was consistent in most samples, but slightly higher in Cow Pen Creek, possibly due to the shallow depths of that creek. As expected, DO concentrations are higher in colder water samples. All DO levels are typical or perhaps on the high side of typical indicating a healthy estuarine environment. ORP values are all positive, which is consistent with an oxygen-rich environment. All parameters are typical of a tidally controlled estuarine environment.

Table 4-1

Statistical Summary of Analytes Detected in Surface Water Samples, June 2014 Cow Pen Creek and Dark Head Cove Lockheed Martin Middle River Complex, Middle River, Maryland

Chemical	Frequer detec	•	Mininum non-detect concentration	Maximum non-detect concentration	Mininum detected concentration	Maximum detected concentration	Sample with maximum detected concentration	Mean of all samples	Mean of positve detections	Standard deviation		
	number	percent	Concontration	Concentration	Concentration	Concontration	oonoona anon	Samples	detections			
Volatile organic compounds (µg/L)												
CARBON DISULFIDE	1/13	8	0.22 U	0.22 U	0.24 J	0.24 J	MRC-SW5A1-060914	0.12	0.24	0.04		
TRICHLOROETHENE	9/13	69	0.22 U	0.22 U	0.3 J	0.54 J	MRC-SW8A-060914	0.35	0.45	0.17		
Semivolatile organic compo	ınds (µg/L)											
1,4-DIOXANE	2/2	100			0.156 J	0.235 J	MRC-SW1A-060914	0.196	0.196	0.056		
Polychlorinated biphenyls (µ	Polychlorinated biphenyls (μg/L)											
PENTACHLOROBIPHENYI	2/11	18	0.0088 U	0.011 U	0.012	0.015	MRC-SW6B-060914	0.0062	0.0135	0.0037		
TETRACHLOROBIPHENYI	6/11	55	0.0054 U	0.0054 U	0.0066 J	0.024	MRC-SW5A2-060914	0.0077	0.0119	0.0069		

Footnotes:

Statistical calculations used one-half the sample quantitation limit as a proxy concentration for non-detect samples, and one-half the detection limit for B-qualified data.

J - Positive result is considered estimated

μg/L - micrograms per liter

SW - surface water

U - not detected at the concentration shown left of the letter.

-- Value not available because analyte was detected in all samples analyzed.

Table 4-2

Analytes Detected in Surface Water Samples, June 2014 Cow Pen Creek and Dark Head Cove Lockheed Martin Middle River Complex, Middle River, Maryland Page 1 of 2

LOCATION SAMPLE ID SAMPLE DATE	Recomi Ambier Quality (onal mended nt Water Criteria ⁽¹⁾ Chronic	Screening	Human Health Consumption of Organism Only ^(1,3)				MRC-SW5A1 MRC-SW5A1- 060914 6/9/2014	MRC- SW5A2 MRC- SW5A2- 6/9/2014	MRC-SW5B MRC-SW5B- 060914 6/9/2014	MRC-SW6A MRC-SW6A- 060914 6/9/2014
Volatile organic compounds (µg/	L)										
CARBON DISULFIDE	NA	NA	0.92	NA	NA			0.24 J			
TRICHLOROETHENE	NA	NA	21	300 ⁽³⁾	10				0.3 J		0.52 J
Semivolatile organic compounds	(μg/L)										
1,4-DIOXANE	NA	NA	NA	NA	NA	0.235 J	0.156 J	NA	NA	NA	NA
Polychlorinated biphenyls (μg/L)											
PENTACHLOROBIPHENYLS	NA	0.014	0.000074	$0.00064^{(3)}$	NA	NA	NA				
TETRACHLOROBIPHENYLS	NA	0.014	0.000074	$0.00064^{(3)}$	NA	NA	NA	0.011	0.024	0.016	0.0066 J

Table 4-2

Analytes Detected in Surface Water Samples, June 2014 Cow Pen Creek and Dark Head Cove Lockheed Martin Middle River Complex, Middle River, Maryland Page 2 of 2

LOCATION SAMPLE ID SAMPLE DATE	Recommon Ambier Quality		Screening	Human Health Consumption of Organism Only ^(1,3)		MRC-SW6B MRC-SW6B- 060914 6/9/2014	MRC-SW7A MRC-SW7A- 060914 6/9/2014		MRC-SW8A MRC-SW8A- 060914 6/9/2014		MRC-SW9A- 060914 6/9/2014	
Volatile organic compounds (µg/	L)											
CARBON DISULFIDE	NA	NA	0.92	NA	NA							
TRICHLOROETHENE	NA	NA	21	300 ⁽³⁾	10	0.39 J	0.44 J	0.49 J	0.54 J	0.47 J	0.45 J	0.47 J
Semivolatile organic compounds	(μg/L)											
1,4-DIOXANE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Polychlorinated biphenyls (µg/L	Polychlorinated biphenyls (μg/L)											
PENTACHLOROBIPHENYLS	NA	0.014	0.000074	$0.00064^{(3)}$	NA	0.015	0.012					
TETRACHLOROBIPHENYLS	NA	0.014	0.000074	$0.00064^{(3)}$	NA	0.0071 J			0.0066 J			

1 National Recommended Water Quality Criteria

(http://water.epa.gov/scitech/swguidance/standards/current/index.cfm); and Maryland Numerical Criteria for Toxic Substances in Surface Waters, Code of Maryland Regulations (COMAR) 26.08.02.03

(http://www.dsd.state.md.us./comar/comarhtml/26/26.08.02.03-2.htm)

- $2\ \ United \ States \ Environmental \ Protection \ Agency \ Region \ 3 \ Biological \ Technical \ Advisory \ Group \ Freshwater \ Screening \ Benchmarks.$
- 3 Carcinogenic criterion is set at incremental cancer risk of 1×10⁻⁵
- 4 Site specific screening levels developed for trichloroethene by Lockheed Martin for Frog Mortar Creek studies at Martin State Airport.

Shading indicates value exceeds a screening criterion.

- -- not detected at the method detection limit
- J result is estimated
- $\mu g/l$ micrograms per liter
- NA criterion not available (columns 2-6) or not analyzed (remaining columns).
- SW surface water


Surface Water Quality Field Measurements, June 2014
Cow Pen Creek and Dark Head Cove
Lockheed Martin Middle River Complex, Middle River, Maryland

Table 4-3

Sample No.	Color	pH (S.U.)	SC (mS/cm)	Temperature (°C)	Turbidity (NTU)	DO (mg/L)	Salinity (%)	ORP (mv)
SW1A	Gr/Br	6.38	1.09	22.86	12.02	4.56	0.05	257
SW2A	Gr/Br	6.67	1.34	24	11.67	4.46	0.07	224
SW5A1	Gr/Br	6.87	1.54	24.32	8.29	7.77	0.08	223
SW5A2	Gr/Br	7.27	1.54	24.48	7.67	7.89	0.08	214
SW5B	Gr/Br	7.55	1.53	24.4	8.31	7.64	0.08	211
SW6A	Gr/Br	7.89	1.5	25.08	7.72	8.56	0.03	206
SW6B	Gr/Br	7.88	1.51	24.79	6.72	7.45	0.08	203
SW7A	Gr/Br	7.53	1.5	25.03	9.66	8.66	0.08	214
SW7B	Gr/Br	7.65	1.52	24.91	8.84	8.25	0.08	215
SW8A	Gr/Br	8.07	1.51	25.38	6.43	7.2	0.08	203
SW8B	Gr/Br	7.94	1.49	24.88	8.6	8.02	0.07	207
SW9A	Gr/Br	7.78	1.52	24.95	7.82	7.6	0.08	202
SW9B	Gr/Br	7.9	1.5	24.74	7.85	7.85	0.08	200
Average	Gr/Br	7.49	1.47	24.6	8.58	7.38	0.072	213.8

°C degrees Celsius NTU—nephelometric turbidity unit(s) dissolved oxygen ORP— oxidation-reduction potential DO— Gr/Br greenish brown pH— hydrogen ion content (a measure of mg/Lmilligram(s) per liter acidity or alkalinity) mS/cm milliSiemen(s) per centimeter SC specific conductance

mv— millivolts S.U.— standard unit(s)

Section 5 Summary

A summary Lockheed Martin Corporation's (Lockheed Martin's) June 2014 Cow Pen Creek and Dark Head Cove surface water investigation follows:

- Thirteen surface water samples were collected from Cow Pen Creek and Dark Head Cove on June 9, 2014 and chemically analyzed for volatile organic compounds (VOCs), 1,4-dioxane (for the two Cow Pen Creek samples only), and polychlorinated biphenyls (PCBs) (for the Dark Head Cove samples only). These analyses were performed to determine if these constituents are emanating from stormwater outfalls, sediments, or groundwater plumes originating at the Middle River Complex (MRC).
- In Dark Head Cove, samples were collected along each of five transects spaced along the northern shoreline. Along four transects, one sample was collected near the shoreline ("A" sample) and a second was collected approximately 50 feet from the shoreline ("B" sample). At Outfall 005 (which has two outlets), samples were collected 10-feet offshore from each outlet, and a third sample was collected 50-feet offshore between the two outlets. Each sample was collected approximately one foot below the water surface.
- Chemical data were validated in accordance with the United States Environmental Protection Agency (USEPA) *Region III Modifications to the National Functional Guidelines for Organic Data Review* (USEPA, 1993 and 1994) and the specifics of the analytical methods used.
- Sampling results were screened against the following standards:
 - o United States Environmental Protection Agency Region 3 Biological Technical Advisory Group (BTAG) ecological freshwater screening-benchmarks
 - o United States Environmental Protection Agency Region 5 ecological screening level for 1,4-dioxane
 - United States Environmental Protection Agency national recommended water quality criteria (NRWQC) for acute and chronic aquatic-organism exposures and for human health aquatic-organism consumption
 - o State of Maryland ambient water quality criteria (AWQC) for acute and chronic aquatic-organism exposures and for human health aquatic-organism consumption
 - o Site-specific screening levels developed by Lockheed Martin Corporation for evaluating risks to recreational swimmers from exposure to volatile organic compounds in surface water

- The volatile organic compound trichloroethene (TCE; also known as trichloroethylene) was detected at low concentrations in nine of 13 surface water samples. Trichloroethene was detected at low concentrations in all but two Dark Head Cove samples. Trichloroethene was not detected in the two Cow Pen Creek samples.
- Trichloroethene concentrations did not exceed its ecological surface-water screening level, the human health consumption-of-aquatic-organism screening level, or the site-specific swimming screening level.
 - o Only one of three samples collected near Outfall 005 East (MRC-SW5B) produced detectable concentrations of trichloroethene.
 - Detected trichloroethene concentrations were relatively low (i.e., much less than ecological and human health screening levels), but were slightly higher nearer the shoreline at Outfalls 006, 008, and 005 East.
 - The area of two Dark Head Cove outfalls (Outfalls 006 and 008) are suspected to be influenced by the lower portion of the eastern trichloroethene plume that originates in Tax Block E, north of Chesapeake Park Plaza.
 - o Trichloroethene concentrations in transects near Outfalls 007 and 009 vary little with distance from the shoreline (i.e., concentrations in samples collected near the shoreline are similar to concentrations in samples collected 50 feet from the shoreline).
- The volatile organic compound carbon disulfide was detected in one sample adjacent to the Outfall 005 transect, at a low concentration. This concentration is less than one third of its ecological surface-water screening level.
- No other volatile organic compounds were detected. This contrasts with observations made in the 2013 sampling episode, during which low estimated concentrations of cis-1,2-dichloroethene were detected at three sampling locations.
- 1,4-Dioxane was detected at low concentrations in both samples collected from Cow Pen Creek. 1,4-Dioxane is likely being discharged to Cow Pen Creek from the western 1,4-dioxane groundwater plume. 1,4-Dioxane was not detected in the 2013 samples. 1,4-Dioxane was analyzed in 2014 using United Stated Environmental Protection Agency Method 522, which yields a lower detection limit (0.02 µg/L) than United States Environmental Protection Agency Method 8270D (0.47-0.48 µg/L), which was used for the 2013 samples. The 1,4-dioxane concentrations reported for the 2014 samples are less than Method 8270D detection limits (and hence would not be detected), but above the Method 522 detection limit.
- Polychlorinated biphenyls (PCBs) were analyzed for the first time in surface water using Method 680. Two homologs- (pentachlorobiphenyls and tetrachlorobiphenyls) were detected in seven of 11 samples analyzed for polychlorinated biphenyls. The highest concentrations of tetrachlorobiphenyls were detected near Outfall 005. Pentachlorobiphenyls were detected near Outfalls 006 and 007. All detected PCB concentrations (seven samples) exceed the Biological Technical Advisory Group

ecological criterion and the human health consumption-of-aquatic-organism criterion. The exceedance of the Biological Technical Advisory Group ecological criterion does not imply direct toxicity to ecological receptors; instead, it is a value that is expected to protect against adverse effects from bioaccumulation and food-chain uptake. The human health consumption-of-aquatic-organism criterion is a conservative screening level based on food-chain uptake modeling assuming organisms (fish) stay within the area of exposure. Actual risk to human populations is dependent on site-specific factors like whether the water is used for drinking, which is not the case for Dark Head Cove, and what type and how much fish is consumed and how it is prepared.

- The results of a HHRA conducted assuming that a swimmer is exposed to the polychlorinated biphenyls in the surface waters of Dark Head Cove do not exceed USEPA or MDE risk management benchmarks. The HHRA, conducted in a very conservative (i.e., health protective) manner, concludes that unacceptable risk would not be incurred as a consequence of recreational (swimming) exposure to the PCB concentrations in the surface waters of the Cove.
- The location and magnitude of trichloroethene detections in 2014 are generally consistent with those of 2012 (see Table C-2 in Appendix C). In 2012 and 2014, samples with the highest trichloroethene concentrations were collected near Outfalls 006 and 008 (i.e., the eastern trichloroethene plume discharge area), but the highest trichloroethene concentrations in 2013 were in samples collected near Outfall 005. The 2013 trichloroethene concentrations (1.5-1.9 µg/L) are also two to three times higher than the highest concentrations detected in 2012 (0.66-0.82 µg/L) and 2014 (0.52-0.54 µg/L).

This page intentionally left blank.

Section 6 References

- 1. Code of Maryland Regulations (COMAR), 2014. "Numerical Criteria for Toxic Substances in Surface Waters." COMAR Title 26, Subtitle 08, Chapter 02, Regulation 03: http://www.dsd.state.md.us/comar/comarhtml/26/26.08.02.03-2.htm.
- 2. Earth Tech, 2003. *Draft Phase I Environmental Assessment, Chesapeake Industrial Park.* Report prepared by Earth Tech, Trevose, Pennsylvania for Lockheed Martin Corporation, Bethesda, Maryland. February.
- 3. Maryland Department of Natural Resources, 2014. "Tides for North Point, Starting with June 9, 2014." Maryland Department of Natural Resources Tide Finder: http://www.dnr.state.md.us/fisheries/tides/index.asp.
- 4. Tetra Tech, Inc. (Tetra Tech), 2004. *Historical Research Report, Lockheed Martin Middle River Complex*. . Report prepared by Tetra Tech, Inc., Germantown, Maryland for Lockheed Martin Corporation, Bethesda, Maryland. August.
- 5. Tetra Tech, Inc. (Tetra Tech), 2006. Surface Water and Sediment Sampling Report. Lockheed Martin Middle River Complex. Report prepared by Tetra Tech, Inc., Germantown, Maryland for Lockheed Martin Corporation, Bethesda, Maryland. April.
- 6. Tetra Tech, Inc. (Tetra Tech), 2013a. *Groundwater Monitoring Report, March–April 2012, Lockheed Martin Middle River Complex, 2323 Eastern Boulevard, Middle River, Maryland*. Report prepared by Tetra Tech, Inc., Germantown, Maryland for Lockheed Martin Corporation, Bethesda, Maryland. July.
- 7. Tetra Tech, Inc. (Tetra Tech), 2013b. 2013 Surface Water Sampling Report, Middle River Complex, 2323 Eastern Boulevard, Middle River, Maryland. Report prepared by Tetra Tech, Inc., Germantown, Maryland for Lockheed Martin Corporation, Bethesda, Maryland. November.
- 8. Tetra Tech, Inc. (Tetra Tech), 2014. 2014-2015 Groundwater and Surface Water Monitoring Work Plan, Middle River Complex, 2323 Eastern Boulevard, Middle River, Maryland. Report prepared by Tetra Tech, Inc., Germantown, Maryland for Lockheed Martin Corporation, Bethesda, Maryland. February.
- 9. United States Environmental Protection Agency (USEPA), Region 3, 1993. *Region III Modifications to the Laboratory Data-Validation Functional Guidelines for Evaluating Inorganics Analyses*. USEPA Region 3 Central Regional Laboratory Quality Assurance Branch. April.

- 10. United States Environmental Protection Agency (USEPA), Region 3, 1994. *Region III Modifications to the National Functional Guidelines for Organic-Data Review*. USEPA Region 3 Central Regional Laboratory Quality Assurance Branch. September.
- 11. United States Environmental Protection Agency (USEPA), 2003. *Region 5 Ecological Screening Levels*. August.
- 12. United States Environmental Protection Agency (USEPA), 2006. Region III Biological Technical Advisory Group Freshwater Screening Benchmarks. July.
- 13. United States Environmental Protection Agency (USEPA), 2009. *National Recommended Water Quality Criteria*. U.S. Environmental Protection Agency, Office of Water, Office of Science and Technology:
 - http://water.epa.gov/scitech/swguidance/standards/current/index.cfm or http://water.epa.gov/scitech/swguidance/standards/current/upload/nrwqc-2009.pdf

APPENDIX A—SURFACE WATER SAMPLING LOG SHEETS	

SURFACE WATER SAMPLE LOG SHEET

Page <u>1</u> of <u>1</u>

Project Site Name: Frog Project Number - Task: [] Stream			rtar Creek,	Martin Stat	te Airport	Sample Location: Cow Per			n Creek SW	
[] Stream [] Spring [] Pond [] Lake [x] Other [] QA Sa		Tidal creek	c - estuarine	3	Type of S [x] Low [] High					
SAMPLING				name a mener		-				
Date:	6/9/2014	Color	рH	s.c.	Temp.	Turbidity	DO	Salinity	K	
Time:	1002	(Visual)	(S.U.)	(mS/cm)	(°C)	(NTU)	(mg/l)	(%)	ORP	
Depth:	1 foot		6.38	1.09	22.86	12,02	4.56	0.05	257	
Method:	Grab	Clear		1.09	22.80	12.02	4.50	0.05	257	
SAMPLE CO	LLECTION INF	ORMATIO								
TO: 1100	Analysis		Preser			Container Re			Collected	
TCL VOCs 1,4-Dioxane				pH<2 I°C		3 - 40 mL 2 - 1 L A			Yes Yes	
1,4-Dioxane			-	, 0		Z- ILA	ilibel Jais		Yes	
									1	
	••••									
			ļ							
									+	
			<u> </u>							
OBSERVAT	ONS / NOTES:				MAP:					
Circle if App						Signature(s):			
MS/MSD	Duplicate ID No.:	:				Signature(-		

[] Stream	nber - Task:	Frog Mo	lortar Creek, Martin State Airport			Sample ID No.: Sample Location: Sampled By: C.O.C. No.:		MRC-SW2A -060914 Cow Pen Creek SW S.Cameron	
[] Pond						Type of	-	- 11	
[] Lake [x] Othe	••		Tidal araak	: - estuarine			v Concentra Concentra		
	mple Type:		i idai creek	t - estuanne)	- [] mgn	Concentra	illori	
						-			
SAMPLING									
Date: Time:	6/9/2014 1013	Color (Visual)	pH (S.U.)	S.C. (mS/cm)	Temp. (°C)	Turbidity (NTU)	DO (mg/l)	Salinity (%)	ORP
Depth:	1 foot								
Method:	Grab	Clear	6.67	1.34	24	11.67	4.46	0.07	224
SAMPLE CO	LLECTION INF	ORMATIO	N:						
	Analysis		Preser			Container Re			Collected
TCL VOCs				pH<2			glass vials		Yes
1,4-Dioxane			<4	l₀C		2 - 1 L A	mber Jars		Yes
									Yes
									ļ
							- · · · · · · · · · · · · · · · · · · ·		
OBSERVAT	ONS / NOTES:				MAP:				
Circle if App	licable:					Signature	(s):		
MS/MSD	Duplicate ID No.:					Signature			İ
						1]

Project Site Name: Frog M Project Number - Task:			rtar Creek,	Martin Stat				Dark Head	MRC-SW5A1 -060914 Dark Head Cove SW S.Cameron		
[] Strea [] Sprin [] Pond	g					C.O.C. N	lo.:	S.Can	neron		
[] Lake						[x] Low Concentration					
[x] Othe	er:		Tidal creel	k - estuarine)	[] High	Concentra	ition			
[] QA S	ample Type:					-					
SAMPLING	ΝΑΤΑ ·							DATO PROPERTY OF			
Date:	6/9/2014	Color	рН	s.c.	Temp.	Turbidity	DO	Salinity			
Time:	1032	(Visual)	(S.U.)	(mS/cm)	(⁰ C)	(NTU)	(mg/l)	(%)	ORP		
Depth:	1 foot								1		
Method:	Grab	Clear	6.87	1.54	24.32	8.29	7.77	0.08	223		
SAMPLE C	OLLECTION IN	FORMATIO	N:				August 1				
	Analysis		Preser	vative		Container Re	quirements		Collected		
TCL VOCs				pH<2			glass vials		Yes		
PCBS			<4	4°C		2 - 1 L A	mber Jar		Yes		
									Yes		
				+							
									<u> </u>		
				····							
OBSERVAT	TIONS / NOTES	:		THEFT	MAP:						
Circle if Ap	plicable:	.:				Signature((s):				
	Mishings Duplicate is No										

[] Strea [] Sprin [] Pond	imber - Task: m g	Frog Mo	rtar Creek,	, Martin Stal	te Airport	Sampled C.O.C. N	Location: dd By: No.: Sample:	MRC-SW5A2 -060914 Dark Head Cove SW S.Cameron		
[] Lake		_				[x] Low Concentration				
[x] Othe	er: ample Type:	•	Tidal creek	< - estuarine)	_ [] High	Concentra	ation		
		***************************************				_				
SAMPLING						victoria il 1881 il				
Date: Time:	6/9/2014	Color	pH	S.C.	Temp. (⁰ C)	Turbidity	DO (mg/l)	Salinity	Opp	
i ime: Depth:	1041 1 foot	(Visual)	(S.U.)	(mS/cm)		(NTU)	(mg/l)	(%)	ORP	
Method:	Grab	Clear	7.27	1.54	24.48	7.67	7.89	0.08	214	
SAMPLE C	OLLECTION INF	FORMATIO			91,1657,18911					
	Analysis		Preser		Container Requirements Col					
TCL VOCs				pH<2			glass vials		Yes	
PCBS			<4	t°C		2-1LA	Amber Jar		Yes	
			 						Yes	
									1	
									igspace	
									 	
-		-							 	
OBSERVAT	IONS / NOTES:				MAP:					
				1						
				1						
				j						
				- 1						
				1						
				1						
				1					ļ	
				1						
]						
Signal of the	Nicoble:	THE STATE OF THE S	177744111111111111111111111111111111111	11211111111111111111111	THERMAN	C:	/a\-			
ircle if App						Signature((s):	J2	l	
MS/MSD	Duplicate ID No.:						/ /			
						1			İ	

[] Strear [] Spring [] Pond [] Lake [x] Othe	mber - Task: m			Martin Stat		Sample ID No.: Sample Location: Sampled By: C.O.C. No.: Type of Sample: [x] Low Concentra				
SAMPLING	ΠΑΤΑ ·									
Date:	6/9/2014	Color	рН	s.c.	Temp.	Turbidity	DO	Salinity		
Time:	1144	(Visual)	(S.U.)	(mS/cm)	(⁰ C)	(NTU)	(mg/l)	(%)	ORP	
Depth:	1 foot				*5					
Method:	Grab	Clear	7.89	1.5	25.08	7.72	8.56	0.03	206	
SAMPLE CO	DLLECTION INF	ORMATIO	N:			41.31.333				
	Analysis		Preser			Collected				
TCL VOCs				pH<2			Yes			
PCBS			<4	t₀C		2-1LA	mber Jar		Yes	
									Yes	
<u>.</u> .				- 					 	
			<u> </u>							
OBSERVAT	IONS / NOTES:				MAP:					
Circle if App	dicable:		112/11111111111111111111111111111111111	111111111111111111111		Signaturo/	'e)·			
						oignature(.əj.	_		
MS/MSD	Duplicate ID No.:					Signature(

Project Site Name: Frog M Project Number - Task:			ortar Creek, Martin State Airport				Location:	MRC-SW6B -060914 Dark Head Cove SW		
						Sampled		S.Can	neron	
[] Stream						C.O.C. N	lo.: .			
[] Spring	y					Tuno of f	Comple			
[] Pond [] Lake						Type of S		ntion		
[] Lake [x] Othe	ar·		Tidal ara-!	. anti-	Ш		Concentra			
	ample Type:		Tiual Creek	k - estuarine	. .	- li mign	Concentra	IIIOH		
						_				
SAMPLING										
Date:	6/9/2014	Color	рН	S.C.	Temp.	Turbidity	DO	Salinity		
Time:	1149	(Visual)	(S.U.)	(mS/cm)	(°C)	(NTU)	(mg/l)	(%)	ORP	
Depth: Method:	1 foot Grab	Clear	7.88	1.51	24.79	6.72	7.45	0.08	203	
	OLLECTION INI	ORMATIO	N:							
	Analysis	J. IIIIA I I O	Preser	vative		Container Re	quirements		Collected	
TCL VOCs				pH<2		3 - 40 mL			Yes	
PCBS				4°C		2-1LA	-		Yes	
2.						ñ			Yes	
	···· <u>-</u>									
u										
								_	 	
										
					12				+	
									 	
						ll .				
OBSERVAT	IONS / NOTES:		MINERENT		MAP:					
				İ						
				- 1						
				l						
									1	
Circle if App	olicable:			×		Signature(s):			
Circle if App	Dicable:					Signature(s):			

Project Site Project Nur	e Name: mber - Task:	Frog Mortar Creek, Martin State			e Airport	Sample ID No.: Sample Location: Sampled By:		MRC-SW7A -060914 Dark Head Cove SW S.Cameron	
[] Strear [] Spring [] Pond [] Lake [x] Othe	3		Tidal creek	ς - estuarine		C.O.C. N Type of ([x] Low	lo.:	ation	
	ample Type:		iluai cieer	(- estudinie	·	_ [] [] []	Concentra	LUOI1	
						-			
SAMPLING Date:	6/9/2014	Color		I sc I	Taman	Troubieller	DO I	Calinia	
Time:	1122	Color (Visual)	pH (S.U.)	S.C. (mS/cm)	Temp. (°C)	Turbidity (NTU)	DO (mg/l)	Salinity (%)	ORP
Depth:	1 foot								
Method:	Grab	Clear	7.53	1.5	25.03	9.66	8.66	0.08	214
SAMPLE CO	DLLECTION IN	FORMATIO	N:				OMETHER.		
	Analysis		Preser				Collected		
TCL VOCs			,	pH<2			Yes		
PCBS			<4	\$°C		2 - 1 L A	mber Jar		Yes
			<u> </u>	+					Yes
				+					
						·			
									
									
ORSERVAT	IONS / NOTES:			MITTER ENVIRON	MAP:				
		, , , , , , , , , , , , , , , , , , ,							
				I					
				l					
				1					
01 1 16 5						La			
Circle if App						Signature(s):		
MS/MSD	Duplicate ID No.:	:				h	_		

Page _1_ of _1_

Project Site Project Nur	Name: nber - Task:	Frog Mo	tar Creek,	Martin Stat	e Airport	Sample ID No.: MRC-SW7B - Sample Location: Dark Head Co			Cove SW
						Sampled	-	S.Cam	eron
[] Stream						C.O.C. N	lo.: .		
[] Spring	I					T 6 (Damania.		
[] Pond						Type of S	-	-4!	
[] Lake			-				Concentra		
[x] Other			lidal creek	c - estuarine)	- [] High	Concentra	Ition	
[] QA Sa	imple Type:					_			
SAMPLING	DATA:								
Date:	6/9/2014	Color	pН	s.c.	Temp.	Turbidity	DO	Salinity	
Time:	1126	(Visual)	(S.U.)	(mS/cm)	(°C)	(NTU)	(mg/l)	(%)	ORP
Depth:	1 foot	Clear	7.65	1.52	24.91	8.84	8.25	0.08	215
Method:	Grab				Literatura de la constitución de		oli (Umoral societam)		
SAMPLE CO	DLLECTION IN	FORMATIO							
TOL 1/00-	Analysis		Preser			Container Re 3 - 40 mL			Collected
TCL VOCs PCBS				pH<2 1°C			Yes Yes		
PCB3				+ -		2 - 1 L A	ilibei Jai		Yes
									163
OBSERVAT	IONS / NOTES:		111111111111111111111111111111111111111	1111-1211-1211-121111	MAP:		eresteral Decisions	(5) (8) (1) (1) (1) (1)	eran ing paggarang
OBSERVAT	IONS/NOTES:				WAP:				
				ł					
				ŀ					
				l					
				1					
				- 1					
Cirolo if Arra	licoblor	HIROSHULLIHII				Cianatura/	<u></u>		
Circle if App						j Signature(s):		
MS/MSD	Duplicate ID No.	:				/			
			<u> </u>			Signature(s):			

Project Nu	Project Site Name: Frog Me Project Number - Task: [] Stream			fortar Creek, Martin State Airport			Sample ID No.: Sample Location: Sampled By: C.O.C. No.:		A -060914 Cove SW
[] Spring [] Pond [] Lake [x] Othe	yr:		Tidal creek	ς - estuarine)	Type of S [x] Low	-		
[] QA Sa	ample Type:					-			
SAMPLING	DATA:								
Date:	6/9/2014	Color	рН	S.C.	Temp.	Turbidity	DO	Salinity	
Time:	1157	(Visual)	(S.U.)	(mS/cm)	(°C)	(NTU)	(mg/l)	(%)	ORP
Depth: Method:	1 foot Grab	Clear	8.07	1.51	25.38	6.43	7.2	0.08	203
	OLLECTION IN	FORMATIO	N.	CHANGE TO BE LEVEL			2014 - 1771 1.04		E 19 E E E E
OANIF LE C	Analysis	CHIMIATIO	Preser	vetive T		Container Re	quiremente		Collected
TCL VOCs	Allalysis		} 	pH<2			glass vials		Yes
PCBS				1°C			mber Jar		Yes
									Yes
								· · · · · · · · · · · · · · · · · · ·	<u> </u>
			 						
				i					1
OBSERVAT	IONS / NOTES:				MAP:				
Circle if App	licable:					Signature(s):		
MS/MSD	Duplicate ID No.	•				L			

Project Site Project Nur	e Name: nber - Task:	Frog Mo	lortar Creek, Martin State Airport					Dark Head	MRC-SW8B -060914 Dark Head Cove SW S.Cameron	
[] Strear	m					C.O.C. N		S.Can	neron	
[] Stream						U.U.U. N				
[] Pond	5					Type of S	Sample:			
[] Lake							Concentra	ation		
[x] Othe	r:		Tidal creek	c - estuarine	<u>.</u>		Concentra			
	ample Type:		1100/0100/	Cottanine		_ 119	00110011110			
22						_				
SAMPLING										
Date:	6/9/2014	Color	рН	S.C.	Temp.	Turbidity	DO	Salinity		
Time: Depth:	1202 1 foot	(Visual)	(S.U.)	(mS/cm)	(°C)	(NTU)	(mg/l)	(%)	ORP	
Method:	Grab	Clear	7.94	1.49	24.88	8.6	8.02	0.07	207	
	DLLECTION IN	ORMATIO	N:							
	Analysis		Preser	vative	Accordance Official	Container Re	quirements	THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TRANSPORT NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TRANSPORT NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TRANSPORT NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TRANSPORT NAMED IN COLUMN TRANS	Collected	
TCL VOCs				pH<2		3 - 40 mL			Yes	
PCBS			<4	l _c C		2 - 1 L A			Yes	
									Yes	
									ļ	
									<u> </u>	
		- · · · · · · · · · · · · · · · · · · ·								
		·							+	
										
OBSERVAT	IONS / NOTES:				MAP:					
				ļ						
				ľ						
				- 1					İ	
				ľ						
				l						
Circle if App	licable:					Signature(s):			
MS/MSD	Duplicate ID No.:					1				
						1				

[] Strear [] Spring [] Pond [] Lake [x] Othe	mber - Task: m g r: ample Type:			Martin Stat		Sample ID No.: Sample Location: Dark Head Sampled By: C.O.C. No.: Type of Sample: [x] Low Concentration [] High Concentration			Cove SW
Date:	6/9/2014	Color	рН	S.C.	Temp.	Turbidity	DO	Salinity	
Time:	1132	(Visual)	(S.U.)	(mS/cm)	(°C)	(NTU)	(mg/l)	(%)	ORP
Depth: Method:	1 foot Grab	Clear	7.78	1.52	24.95	7.82	7.6	0.08	202
	OLLECTION INF	ORMATIO	N:						
	Analysis	3. mai 10	Preser	vative		Container Re	guirements		Collected
TCL VOCs				pH<2			glass vials		Yes
PCBS			<4	l°C		2 - 1 L A	mber Jar		Yes
	<u> </u>								Yes
						-			
,				i					
OBSERVAT	IONS / NOTES:				MAP:				
Circle is A	liantela.	ummungan masa sa				Olara at a s	(a):		
Circle if App						signature((s):		
MS/MSD	Duplicate ID No.:					Signature			

[] Strear [] Spring [] Pond [] Lake [x] Othe	mber - Task: m			Martin Stat		Sample Location: Dark				
[] QA S	апріе туре.	•				-				
SAMPLING	DATA:						AUTHORIST I			
Date:	6/9/2014	Color	рH	S.C.	Temp.	Turbidity	DO	Salinity		
Time:	1137	(Visual)	(S.U.)	(mS/cm)	(°C)	(NTU)	(mg/l)	(%)	ORP	
Depth: Method:	1 foot Grab	Clear	7.9	1.5	24.74	7.85	7.85	0.08	200	
	DLLECTION INF	ORMATIO	N·		Herrich III					
OAMI EL O	Analysis	OTHINATIO	Preser	vative		Container Re	equirements	minimum in the second of the s	Collected	
TCL VOCs	Analysis			pH<2			glass vials		Yes	
PCBS	W			°C			mber Jar		Yes	
									Yes	
					10					
						· · ·		·-···	<u> </u>	
OBSERVAT	IONS / NOTES:		ngamore di	110110000000000000000000000000000000000	MAP:					
										
				:						
				•						
				- 1						
				l						
]						
				i						
Circle if App	licable:					Signature	(s):			
MS/MSD	Duplicate ID No.:						2		210	
	MS/MSD Duplicate ID No.:					J				

APPENDIX B—DATA VALIDATION REPORT											

INTERNAL CORRESPONDENCE

TO:

T. APANAVAGE

DATE:

AUGUST 25, 2014

FROM:

EDWARD SEDLMYER

COPIES:

DV FILE

SUBJECT:

ORGANIC DATA VALIDATION - VOC / 1,4-DIOXANE / PCB HOMOLOGS

LOCKHEED - MIDDLE RIVER CENTER (MRC)

SDG R1404414

SAMPLES:

14 / Aqueous / VOC

 MRC-SW1A-060914
 MRC-SW2A-060914
 MRC-SW5A1-060914

 MRC-SW5A2-060914
 MRC-SW5B-060914
 MRC-SW6A-060914

 MRC-SW6B-060914
 MRC-SW7A-060914
 MRC-SW7B-060914

 MRC-SW8A-060914
 MRC-SW9A-060914
 MRC-SW9A-060914

MRC-SW9B-060914 TB-060914

2 / Aqueous / 1,4-Dioxane

MRC-SW1A-060914

MRC-SW2A-060914

11 / Aqueous / PCB Homologs

MRC-SW5A1-060914 MRC-SW5A2-060914 MRC-SW5B-060914 MRC-SW6A-060914 MRC-SW6B-060914 MRC-SW7A-060914 MRC-SW8A-060914 MRC-SW8A-060914 MRC-SW9A-060914 MRC-SW9B-060914

<u>Overview</u>

The sample set for Lockheed – MRC, SDG R1404414 consists of thirteen (13) aqueous environmental samples and one (1) trip blank. The samples were analyzed for volatile organic compounds (VOC), 1,4-dioxane, and polychlorinated biphenyl (PCB) homologs as outlined above.

The samples were collected by Tetra Tech on June 10, 2014 and analyzed by Test America. All analyses were conducted in accordance with SW-846 Methods 8260C, EPA method 522 and 680 analytical and reporting protocols.

The data contained in this SDG were validated with regard to the following parameters: data completeness, holding times, GC/MS tuning, initial/continuing calibrations, laboratory method blank results, surrogate spike recoveries, blank spike/blank spike duplicate results, internal standard recoveries, chromatographic resolution, analyte identification, analyte quantitation, and detection limits. Areas of concern are listed below.

Major

None.

Minor

 The following contaminants were detected in the VOC method and trip blanks at the following maximum concentrations:

	<u>Maximum</u>	<u>Action</u>
<u>Analyte</u>	<u>Concentration</u>	<u>Level</u>
1,2,4-Trichlorobenzene ⁽¹⁾	0.30 ug/L	1.5 ug/L
Bromomethane ⁽¹⁾	0.38 ug/L	1.9 ug/L
Naphthalene ⁽¹⁾	0.26 ug/L	1.3 ug/L
Acetone ⁽²⁾	2.3 ug/L	23 ug/L

- 1 Maximum concentration found in preparation blank (RQ1406793-05) affecting all samples.
- 2 Maximum concentration found in TB-060914 affecting all samples.

An action level of 10X the maximum contaminant level for acetone; 5X for all other compounds have been used to evaluate sample data for blank contamination. Sample aliquot and dilution factors, if applicable, were taken into consideration when evaluating for blank contamination. Detections less than the action level were qualified (U) due to blank contamination.

- The VOC continuing calibration percent differences (%Ds) were greater than the quality control limit of 20% for 2-butanone, tert-butyl alcohol, and acetone for instrument R-MS-12 on 06/19/14 @09:40. The positive and nondetected results for the aforementioned compounds in all samples were qualified as estimated (J) and (UJ), respectively.
- Sample MRC-SW8B-060914 had low surrogate recoveries for gamma-BHC and 4,4'-DDT. The sample was re-extracted 13 days outside the seven day extraction hold time. The re-extracted results were used for validation.
- The continuing calibration %D was greater than the quality control limit of 20% for 1,4-dioxane for instrument R-MS-56 on 06/13/14 @18:04. The positive result for 1,4-dioxane in sample MRC-SW2A-060914 was qualified as estimated (J).
- The laboratory control sample (LCS) RQ1406525-04 had a percent recovery greater than the quality control limit for 1,4-dioxane. The positive results for 1,4-dioxane have been qualified as estimated for samples MRC-SW1A-060914 and MRC-SW2A-060914.
- Positive results reported below the reporting limit (RL) but above the method detection limit (MDL) for the organic analyses were qualified as estimated, (J).

Notes

Sample MRC-SW8B-060914 had low surrogate recoveries for gamma-BHC and 4,4'-DDT. The sample was re-extracted 13 days outside the recommended seven day extraction hold time. The re-extracted results were used for validation but no qualification action was taken for the exceedance of the recommended seven day extraction holding time because PCBs are extremely stable and EPA SW-846 Method 8082 does not require a holding time until extraction.

Nondetected results were reported to the MDL.

Executive Summary

Laboratory Performance: Blank contamination was noted in the VOC fraction. Continuing calibration %D noncompliances resulted in the qualification of VOC and 1,4-dioxane data. LCS/LCSD percent recovery noncompliance resulted in the qualification of 1,4-dioxane data. One PCB sample contained low surrogate recoveries but the sample was re-extracted and the surrogate recoveries improved.

Other Factors Affecting Data Quality: Positive results less than the reporting limit (RL) were qualified as estimated, due to uncertainty near the detection limit. MS/MSD percent recovery noncompliances resulted in the qualification of VOC data.

The data for these analyses were reviewed with reference to USEPA National Functional Guidelines for Organic Data Validation (June 2008). The text of this report has been formulated to address only those problem areas affecting data quality.

Tetra Tech

Edward Sedlmyer

Chemist/Data Validator

Terra Tech

Joseph A. Samchuck Data Validation Manager

Attachments:

Appendix A - Qualified Analytical Results

Appendix B - Results as Reported by the Laboratory

Appendix C – Support Documentation

Appendix A

Qualified Analytical Results

Qualifier Codes:

A = Lab Blank Contamination

B = Field Blank Contamination

C = Calibration Noncompliance (i.e., % RSDs, %Ds, ICVs, CCVs, RRFs, etc.)

C01 = GC/MS Tuning Noncompliance

D = MS/MSD Recovery Noncompliance

E = LCS/LCSD Recovery Noncompliance

F = Lab Duplicate Imprecision

G = Field Duplicate Imprecision

H = Holding Time Exceedance

I = ICP Serial Dilution Noncompliance

J = ICP PDS Recovery Noncompliance; MSA's r < 0.995

K = ICP Interference - includes ICS % R Noncompliance

L = Instrument Calibration Range Exceedance

M = Sample Preservation Noncompliance

N = Internal Standard Noncompliance

N01 = Internal Standard Recovery Noncompliance Dioxins

N02 = Recovery Standard Noncompliance Dioxins

N03 = Clean-up Standard Noncompliance Dioxins

O = Poor Instrument Performance (i.e., base-time drifting)

P = Uncertainty near detection limit (< 2 x IDL for inorganics and <CRQL for organics)

Q = Other problems (can encompass a number of issues; i.e.chromatography,interferences, etc.)

R = Surrogates Recovery Noncompliance

S = Pesticide/PCB Resolution

T = % Breakdown Noncompliance for DDT and Endrin

U = RPD between columns/detectors >40% for positive results determined via GC/HPLC

V = Non-linear calibrations; correlation coefficient r < 0.995

W = EMPC result

X = Signal to noise response drop

Y = Percent solids <30%

Z = Uncertainty at 2 standard deviations is greater than sample activity

Z1 = Tentatively Identified Compound considered presumptively present

Z2 = Tentatively Identified Compound column bleed

Z3 = Tentatively Identified Compound aldol condensate

PROJ_NO: 06247 NSAMPLE	E MRC-SW1A-060914	914	MRC-SWZA-050914		MRC-SW5A1-060914		MRC-SW5AZ-060914	
SDG: R1404414 LAB_ID	R1404414-001		R1404414-002		R1404414-003		R1404414-004	
FRACTION: OV SAMP_DATE	ATE 6/10/2014		6/10/2014		6/10/2014		6/10/2014	
MEDIA: WATER QC_TYPE	ZZ		ZZ		MN		NM	
•	UG/L		NG/L		NG/L		ng/L	
PCT_SOLIDS	IDS 0.0		0.0		0.0		0.0	
DUP_OF								
PARAMETER	RESULT	VQL QLCD	RESULT VQL	QLCD	RESULT VQL	arcd	Val	QLCD
1,1,1,2-TETRACHLOROETHANE	0.22 U		0.22 U		0.22 U		0.22 U	
1,1,1-TRICHLOROETHANE	0.36 U		0.36 U		0.36 U		0.36 U	
1,1,2,2-TETRACHLOROETHANE	0.25 U	ı	0.25 U		0.25 U		0.25 U	
1,1,2-TRICHLOROTRIFLUOROETHANE	NE 0.31 U		0.31 U		0.31 U		0.31 U	
1,1-DICHLOROETHANE	0.2 U		0.2 U		0.2 U		0.2 U	
1,1-DICHLOROETHENE	U 25.0		0.57 U		0.57 U		0.57 U	
1,1-DICHLOROPROPENE	0.29 U		0.29 U		0.29 U		0.29 U	
1,2,3-TRICHLOROBENZENE	0.82 U	ſ	0.82 U		0.82 U		0.82 U	
1,2,3-TRICHLOROPROPANE	0.7 U		U 7.0		0.7 U		U 2.0	
1,2,4-TRICHLOROBENZENE	0.23 U		0.23 U		0.23 U		0.23 U	
1,2,4-TRIMETHYLBENZENE	0.2 U		0.2 U		0.2 U		0.2 U	
1,2-DIBROMO-3-CHLOROPROPANE	0.74 U		0.74 U		0.74 U		0.74 U	
1,2-DIBROMOETHANE	0.24 U	ſ	0.24 U		0.24 U		0.24 U	
1,2-DICHLOROBENZENE	0.21 U	ſ	0.21 U		0.21 U		0.21 U	
1,2-DICHLOROETHANE	0.36 U	ſ	0.36 U		0.36 U		0.36 U	
1,2-DICHLOROPROPANE	0.2 U		0.2 U		0.2 U		0.2 U	
1,3-DICHLOROBENZENE	0.2 U	<u> </u>	0.2 U		0.2 U		0.2 U	
1,3-DICHLOROPROPANE	0.27 U	ſ	0.27 U		0.27 U		0.27 U	
1,4-DICHLOROBENZENE	0.2 U)	0.2 U		0.2 U		0.2 U	
2,2-DICHLOROPROPANE	U 27 D	ſ	0.27 U		0.27 U		0.27 U	
2-BUTANONE	U.81 UJ) C	0.81 UJ	ပ	0.81 UJ	O	0.81 UJ C	
2-CHLOROETHYL VINYL ETHER	0.44 U	ſ	0.44 U		0.44 U		0.44 U	
2-CHLOROTOLUENE	U 2.0	ſ	0.2 U		0.2 U		0.2 U	
2-HEXANONE	1.7 U	ſ	1.7 U		1.7 U		1.7 U	
4-CHLOROTOLUENE	0.24 U		0.24 U		0.24 U		0.24 U	
4-ISOPROPYLTOLUENE	0.2 U		0.2 U		0.2 U		0.2 U	
4-METHYL-2-PENTANONE	0.67 U		0.67 U		0.67 U		0.67 U	
ACETONE	2.8 U	A	1.9 U	∢	1.6 U	4	1.6 U A	
BENZENE	0.2 U		0.2 U		0.2 U		0.2 U	
BROMOBENZENE	0.28 U		0.28 U		0.28 U		0.28 U	
BROMOCHLOROMETHANE	0.32 U	_	0.32 U		0.32 U		0.32 U	
BROMODICHLOROMETHANE	0.32 U		0.32 U		0.32 U		0.32 U	
BROMOFORM	0.42		0.42		0.42 U		0.42 U	
BROMOMETHANE	0.29 U		0.29 U		0.29 U		0.29 U	
CARBON DISULFIDE	0.22 U		0.22 U		0.24 J	<u>а</u>	0.22 U	
CARBON TETRACHLORIDE	0.45 U		0.45 U		0.45 U		0.45 U	
2 0 0 0 0 0		1						8/26/2014

PROJ NO: 06247 NSAMPLE	E MRC-SW5B-060914	3-06091	4		MRC-SW6A-060914	14	MRC-SW	MRC-SW6B-060914		MRC-SW7A-060914	60914	
		305			R1404414-006		R1404414-007	-007		R1404414-008	9	
FRACTION: OV SAMP_DATE	ATE 6/10/2014				6/10/2014		6/10/2014			6/10/2014		
MEDIA: WATER QC_TYPE	NN H			1	ΣZ		NN			NN		
UNITS	NG/L				NG/L		UG/L			UG/L		
PCT_SOLIDS	LIDS 0.0				0.0		0.0	:		0.0		
DUP_OF								-				
PARAMETER	RESULT	VQL	OLCD	CD	RESULT VOL	IL QLCD	RESULT	Ζ	arcp	RESULT		arco
1,1,1,2-TETRACHLOROETHANE	0.	0.22 U			0.22 U		-	0.22 U		0.22	ם	
1,1,1-TRICHLOROETHANE	0	0.36 U			0.36 U			0.36 U		0.36	D	
1,1,2,2-TETRACHLOROETHANE	0	0.25 U			0.25 U			0.25 U		0.25 U)	
1,1,2-TRICHLOROTRIFLUOROETHANE		0.31 U			0.31 U			0.31 U		0.31 U	D	
1,1-DICHLOROETHANE		0.2 U			0.2 U			0.2 U		0.2 U	D	
1,1-DICHLOROETHENE	0	0.57 U			U 25.0			0.57 U		0.57	D	
1,1-DICHLOROPROPENE	0	0.29 U			0.29 U			0.29 U		0.29 U	D.	ļ
1,2,3-TRICHLOROBENZENE	Ö	0.82 U			0.82 U			0.82 U		0.82 U	D	
1,2,3-TRICHLOROPROPANE		0.7 U			U 7.0			0.7 U		0.7	ם	
1,2,4-TRICHLOROBENZENE	Ö	0.23 U			0.23 U			0.23 U		0.23 U	n	
1,2,4-TRIMETHYLBENZENE		0.2 U			0.2 U			0.2 U		0.2 U	n	
1,2-DIBROMO-3-CHLOROPROPANE		0.74 U			0.74 U			0.74 U		0.74 U	n	
1,2-DIBROMOETHANE	O	0.24 U			0.24 U			0.24 U		0.24 U	D.	
1,2-DICHLOROBENZENE	Ö	0.21 U			0.21 U	-		0.21 U		0.21 U	ח	
1,2-DICHLOROETHANE	Ö.	0.36 U			0.36 U			0.36 U		0.36 U	D	-
1,2-DICHLOROPROPANE		0.2 U			0.2 U			0.2 U		0.2 U	D	
1,3-DICHLOROBENZENE		0.2 U			0.2 U			0.2 U		0.2 U	n	
1,3-DICHLOROPROPANE	0	0.27 U			0.27 U			0.27 U		0.27 U	n	
1,4-DICHLOROBENZENE		0.2 U			0.2 U			0.2 U		0.2 U	n	
2,2-DICHLOROPROPANE	0	0.27 U			0.27 U			0.27 U		0.27	n	
2-BUTANONE	0	0.81 UJ	ပ		0.81 UJ	S		0.81 UJ	ပ	0.81	3	S
2-CHLOROETHYL VINYL ETHER	0	0.44 U			0.44 U			0.44 U		0.44	D	
2-CHLOROTOLUENE		0.2 U			0.2 U			0.2 U		0.2 U	n	
2-HEXANONE		1.7 U			1.7 U			1.7 U		1.7	D	
4-CHLOROTOLUENE	0	0.24 U			0.24 U			0.24 U		0.24 U	⊃	
4-ISOPROPYLTOLUENE		0.2 U			0.2 U			0.2 U		0.2 U	D.	
4-METHYL-2-PENTANONE	0	0.67 U			0.67 U			0.67 U		0.67 U	n	
ACETONE		1.3 U	∢		1.6 U	٧		1.6 U	V	1.3	1.3 UJ	S
BENZENE		0.2 U			0.2 U			0.2 U		0.2 U	D	
BROMOBENZENE	0	0.28 U			0.28 U			0.28 U		0.28 U	n	
BROMOCHLOROMETHANE	0	0.32 U			0.32 U			0.32 U		0.32 U	n	
BROMODICHLOROMETHANE	0	0.32 U			0.32 U			0.32 U		0.32 U	n	
BROMOFORM	0	0.42 U			0.42 U			0.42 U		0.42 U	n	
BROMOMETHANE	0	0.29 U			0.29 U			0.29 U		0.29 U	n	
CARBON DISULFIDE	0	0.22 U			0.22 U			0.22 U		0.22 U	D	
CARBON TETRACHLORIDE	0	0.45 U	 		0.45 U			0.45 U		0.45	n	
2 of 8		-										8/26/2014

PROJ_NO: 06247 NSAMPLE	.E MRC-SW7B-060914	30914		MRC-SW8A-060914	30914		MRC-SW8B-060914	30914	MRC-SW9A-060914	14	
SDG: R1404414 LAB_ID	R1404414-009		_	R1404414-010			R1404414-011		R1404414-012		
FRACTION: OV SAMP_DATE	ATE 6/10/2014		3	6/10/2014			6/10/2014		6/10/2014		
MEDIA: WATER QC_TYPE	ΝN			ΝM			WN		NM		
NITS	NG/L			UG/L			ng/L		UG/L		
PCT_SOLIDS	LIDS 0.0			0.0			0.0		0.0		
DUP_OF											
PARAMETER	RESULT	Val alcd		RESULT	VQL	alcd	RESULT	VQL QLCD			alco
1,1,1,2-TETRACHLOROETHANE	0.22 U	D		0.22	Э		0.22	n	0.22 U		
1,1,1-TRICHLOROETHANE	0.36 U	- -		0.36	D		0.36 U	ח	0.36 U		
1,1,2,2-TETRACHLOROETHANE	0.25 U			0.25 U	n		0.25 U))	0.25 U		
1,1,2-TRICHLOROTRIFLUOROETHANE	NE 0.31 U	n	-	0.31 U	n		0.31 U	D	0.31 U		
1,1-DICHLOROETHANE	0.2 U	n		0.2 0	n		0.2 U		0.2 U		
1,1-DICHLOROETHENE	U 25.0	n		0.57 U	ם		0.57	ם ס	0.57 U		
1,1-DICHLOROPROPENE	0.29 U	n		0.29 U	n		0.29 U	D	0.29 U		
1,2,3-TRICHLOROBENZENE	0.82 U	n		0.82 U	n		0.82 U	D	0.82 U		
1,2,3-TRICHLOROPROPANE	0.7	n		0.7 U	n		0.7	D	0.7 U		
1,2,4-TRICHLOROBENZENE	0.23 U			0.23 U	n		0.23	n	0.23 U		
1,2,4-TRIMETHYLBENZENE	0.2 U	n		0.2 U	n		0.2 U	n	0.2 U		
1,2-DIBROMO-3-CHLOROPROPANE	U 74 U	n		0.74 U	n		0.74 U	n	0.74 U		
1,2-DIBROMOETHANE	0.24 U	n		0.24 U	n		0.24 U	n	0.24 U		
1,2-DICHLOROBENZENE	0.21 U	D		0.21 U	n		0.21 U	n	0.21 U	_	
1,2-DICHLOROETHANE	0.36 U	n		0.36 U	ם כ		0.36 U	n	0.36 U		
1,2-DICHLOROPROPANE	0.2	D		0.2 U	n		0.2 0	n	0.2 U		Ī
1,3-DICHLOROBENZENE	0.2 U	_		0.2 U	ר		0.2 U	n	0.2 U		
1,3-DICHLOROPROPANE	U 27 U	n		0.27 U	n		0.27 U	D	0.27 U		
1,4-DICHLOROBENZENE	0.2	n		0.2 U	n		0.2 U	D	0.2 U		
2,2-DICHLOROPROPANE	U 72.0	n		0.27 U	n		0.27	n	0.27 U		
2-BUTANONE	0.81 UJ	о П		0.81 UJ		S	0.81 U.	o n	0.81 UJ	<u>ပ</u>	
2-CHLOROETHYL VINYL ETHER	0.44 U	n		0.44 U	n		0.44 U	ם	0.44 U		
2-CHLOROTOLUENE	0.2 U			0.2	n		0.2 U	n	0.2 U		
2-HEXANONE	U 7.1	n		1.7	n		1.7 U	ŋ	1.7 U		
4-CHLOROTOLUENE	0.24 U	n		0.24 U	Π		0.24 U	_	0.24 U		
4-ISOPROPYLTOLUENE	0.2 U	n		0.2 U	n		0.2 U	_	0.2 U		
4-METHYL-2-PENTANONE	U 79.0	_ n		0.67 U	n		0.67	n	0.67 U		
ACETONE	U 4.1	A U		1.8 U		V	1.5 U	U A	1.3 UJ	S	
BENZENE	0.2 U	n		0.2 U	n		0.2 U	n	0.2 U		
BROMOBENZENE	0.28 U)		0.28 U	n		0.28 U	U	0.28 U		
BROMOCHLOROMETHANE	0.32 U	٥		0.32 U	n		0.32 U	n	0.32 U		
BROMODICHLOROMETHANE	0.32 U	_		0.32 U	n		0.32 U	U	0.32 U		
BROMOFORM	0.42 U	רַ		0.42 U	n		0.42 U	n	0.42 U		-
BROMOMETHANE	0.29 U	n		0.29 U	n		0.29 U	D	0.29 U		
CARBON DISULFIDE	0.22 U	n		0.22 U	n		0.22 U	ם	0.22 U		
CARBON TETRACHLORIDE	0.45 U	η		0.45 U	_		0.45 U		0.45 U		
3 of 8											8/26/2014

PROJ NO: 0524/	NSAMPLE	MRC-SW9B-060914	60914		TB-060914		
SDG: R1404414	LAB_ID	R1404414-013	_		R1404414-014	4	
FRACTION: OV	SAMP_DATE	6/10/2014			6/10/2014		
MEDIA: WATER	QC_TYPE	ΣZ			Z		
	UNITS	UG/L			NG/L		
	PCT_SOLIDS	0.0			0.0		
	DUP_OF	F	Ş	20	H = 0	3	2
1 1 1 2-TETRACHI OROFTHANE	THANE	KESULI VO	칠	d d d	RESULI 0.22	, } }	GLCD
1,1,1-TRICHLOROETHANE		0.36 U) _		0.36 U	_	
1,1,2,2-TETRACHLOROETHANE	ETHANE	0.25 U	>		0.25 U	⊃	
1,1,2-TRICHLOROTRIFLUOROETHANE	UOROETHANE	0.31 U	D		0.31 U	>	
1,1-DICHLOROETHANE		0.2 U	⊃		0.2 U	n	
1,1-DICHLOROETHENE		U 73.0))		0.57	Ω	
1,1-DICHLOROPROPENE	ш	0.29 U	n		0.29 U	n	
1,2,3-TRICHLOROBENZENE	ENE	0.82 U	n		0.82 U	D	
1,2,3-TRICHLOROPROPANE	ANE	0.7 U	n		0.7	n	
1,2,4-TRICHLOROBENZENE	ENE	0.23 U	ם		0.23 U	D	
1,2,4-TRIMETHYLBENZENE	ENE	0.2	0.2 U		0.2 U	D	ļ
1,2-DIBROMO-3-CHLOROPROPANE	OPROPANE	0.74 U	ח		0.74 U)]	
1,2-DIBROMOETHANE		0.24 U	⊃		0.24 U	n .	
1,2-DICHLOROBENZENE	E	0.21 U	n		0.21 U	D	
1,2-DICHLOROETHANE		0.36 U	n		0.36 U	<u></u>	
1,2-DICHLOROPROPANE	Ш	0.2 U	D		0.2 U	D	
1,3-DICHLOROBENZENE	E	0.2	0.2 U		0.5	0.2 U	
1,3-DICHLOROPROPANE	Ш	0.27 U	_		0.27 U	_	
1,4-DICHLOROBENZENE	Ш	0.2	0.2 U		0.2	0.2 U	
2,2-DICHLOROPROPANE	E	0.27 U	_		0.27 U	_	
2-BUTANONE		0.81	0.81 UJ	၁	0.81 UJ	3	O
2-CHLOROETHYL VINYL ETHER	L ETHER	0.44 U	ם		0.44 U	D	
2-CHLOROTOLUENE		0.2	0.2 U		0.2	0.2 U	
2-HEXANONE		1.7	1.7 U		1.7	1.7 U	
4-CHLOROTOLUENE		0.24 U	0		0.24 U	O.	ļ
4-ISOPROPYLTOLUENE		0.2	0.2 U		0.2	0.2 U	
4-METHYL-2-PENTANONE	NE	0.67 U	<u> </u>		U 29:0	D	
ACETONE		1.5	1.5 U	∢	2.3	2.3 J	P P
BENZENE		0.2	0.2 U		0.2	0.2 U	
BROMOBENZENE		0.28 U	٦		0.28 U	٦ د	
BROMOCHLOROMETHANE	ANE	0.32 U)		0.32	D 3	
BROMODICHLOROMETHANE	HANE	0.32 U	D		0.32	D 3	
BROMOFORM		0.42 U	n i		0.42	O.	
BROMOMETHANE		0.29 U	n e		0.29	D 6	
CARBON DISULFIDE		0.22 U	n s		0.22	D	
					0 45 11	=	_

								1		0.000	,,000	
<u></u>	NSAMPLE	MRC-SW1A-060914		MRC-SW2A-060914	60914		MRC-SW5A1-060914	-060914		MRC-5W3AZ-000914	2-000914	
SDG: K1404414 EBACTION: OV	SAMP DATE	6/10/2014		6/10/2014			6/10/2014	,		6/10/2014		
•	1 - DA 1 L	102/01/0		107010			Alka) NAM		
MEDIA: WAIER	11PE										:	i.
	ONIS	UG/L		UG/L			UG/L			0.6/1		
S E	PCT_SOLIDS	0.0		0.0			0.0			0.0		
PARAMETER	5	RESULT VQL	QLCD	RESULT	Val	alcd	RESULT	δ	arcp	RESULT	VQL	QLCD
CHLOROBENZENE		0.29		0.29			0.29	n 6		0.2	0.29 U	
CHLORODIBROMOMETHANE		0.31 U		0.31 U	ח		0.31	n I		0.3	0.31 U	
CHLOROETHANE		0.24 U		0.24 U	_		0.24 U	4 U		0.3	0.24 U	
CHLOROFORM		0.25 U		0.25 U	ם כ		0.25 U	2 N		0.5	0.25 U	
CHLOROMETHANE		0.21 U		0.21 U	D		0.21	1 O		0.3	0.21 U	
CIS-1,2-DICHLOROETHENE		0.3 U		0.3	ב כ		0.3	0.3 U		0	0.3 U	
CIS-1,3-DICHLOROPROPENE		0.24 U		0.24	o.		0.2	0.24 U		0.3	0.24 U	
DIBROMOMETHANE		0.32 U		0.32 U	n.		0.3	0.32 U		0.3	0.32 U	
DICHLORODIFLUOROMETHANE	밀	0.46 U		0.46 U	Ω	_	0.4(0.46 U		0.0	0.46 U	
DIISOPROPYL ETHER		0.2 U		0.2 U	n		0.3	0.2 U		0		
ETHYL TERT-BUTYL ETHER		0.2 U		0.2 U	ם		0.0	0.2 U		0		
ETHYLBENZENE		0.2 U		0.2 U	ם		0.2	2 U		0	0.2 U	
HEXACHLOROBUTADIENE		0.62 U		0.62 U	n		9.0	0.62 U		0.6		
ISOPROPYLBENZENE		0.2 U		0.2 U	ם		0.	0.2 U		0	0.2 U	
M+P-XYLENES		0.33 U		0.33 U	ם		0.3	0.33 U		0	0.33 U	
METHYL TERT-BUTYL ETHER	~	0.29 U		0.29 U	ם		0.2	0.29 U		0.5	0.29 U	
METHYLENE CHLORIDE		0.32 U		0.32 U	D	ļ	0.3	0.32 U		O	0.32 U	
NAPHTHALENE		0.2 0		0.2 U	ם		0	0.2 U		0	0.2 U	
N-BUTYLBENZENE		0.21 U		0.21 U	Э		0.2	0.21 U		0	0.21 U	
N-PROPYLBENZENE		0.2 U		0.2 U	n		0	0.2 U			0.2 U	
O-XYLENE	ŀ	0.2 U		0.2 U	n		0.2	2 N			0.2 U	
SEC-BUTYLBENZENE	:	0.27 U		U 227 U	n		0.2	0.27 U		0	0.27 U	
STYRENE		0.2 U		0.2 U	Λ		0	0.2 U		0		
TERT-AMYL METHYL ETHER		0.2 U		0.2 U	n		0	0.2 U		0	0.2 U	
TERT-BUTYLBENZENE		0.2 U		0.2	D		0	0.2 U		0	0.2 U	
TERTIARY-BUTYL ALCOHOL		11 UJ	O	7	11 UJ	S		1 N	S		1 B	O
TETRACHLOROETHENE		0.3 U		0.3 U	-		o.	0.3 U			0.3 U	
TOLUENE		0.2 U		0.2	_		0	0.2 U		5	0.2 U	
TOTAL XYLENES		0.53 U		0.53 U	η		0.5	0.53 U		Ö	0.53 U	
TRANS-1,2-DICHLOROETHENE	¥	0.33 U		0.33 U	n		0.3	0.33 U		0	0.33 U	
TRANS-1,3-DICHLOROPROPENE	H.	0.2 U		0.2 U	n		0.2	2 U	-		0.2 U	
TRICHLOROETHENE		0.22 U		0.22 U	n		0.22	2 U			0.3 J	۵
TRICHLOROFLUOROMETHANE	븻	0.2 U		0.2 U	D .		0	0.2 U				
VINYL ACETATE		1.1 U		1.1	ם		-	1.1 U			1.1 U	
VINYL CHLORIDE		0.32 U		0.32	n		0.32	2 N		0	0.32 U	

PROJ NO: 06247 NSAMPLE	MRC-SW5B-060914		MRC-SW6A-060914		MRC-SW6B-060914		MRC-SW7A-060914	
•	R1404414-005		R1404414-006		R1404414-007		R1404414-008	
FRACTION: OV SAMP_DATE	TE 6/10/2014		6/10/2014		6/10/2014		6/10/2014	
MEDIA: WATER QC_TYPE	NA		ΣZ		NM		NN	
UNITS	NG/L		NG/L		UG/L		NG/L	
PCT_SOLIDS	0.0		0.0		0.0		0.0	
DUP_OF	RESI II T	Olch	RESULT VOL	OTCD	RESULT VOL	OLCD	RESULT VQL	OLCD
CHLOROBENZENE	0.29 U		0.29		0.29		0.29	
CHLORODIBROMOMETHANE	0.31 U		0.31 U		0.31 U		0.31 U	
CHLOROETHANE	0.24 U		0.24 U		0.24 U		0.24 U	
CHLOROFORM	0.25 U		0.25 U		0.25 U		0.25 U	
CHLOROMETHANE	0.21 U		0.21 U		0.21 U		0.21 U	
CIS-1,2-DICHLOROETHENE	0.3 U		0.3 U		0.3 U		0.3 U	
CIS-1,3-DICHLOROPROPENE	0.24 U		0.24 U		0.24 U		0.24 U	
DIBROMOMETHANE	0.32 U		0.32 U		0.32 U		0.32 U	
DICHLORODIFLUOROMETHANE	0.46 U		0.46 U		0.46 U		0.46 U	
DIISOPROPYL ETHER	0.2 U		0.2 U		0.2 U		0.2 U	
ETHYL TERT-BUTYL ETHER	0.2 U		0.2 U		0.2 U		0.2 U	
ETHYLBENZENE	0.2 U		0.2 U		0.2 U		0.2 U	
HEXACHLOROBUTADIENE	0.62 U		0.62 U		0.62 U		0.62 U	
ISOPROPYLBENZENE	0.2 U		0.2 U		0.2 U		0.2 U	
M+P-XYLENES	0.33 U		0.33 U		0.33 U		0.33 U	
METHYL TERT-BUTYL ETHER	0.29 U		0.29 U		0.29 U		0.29 U	
METHYLENE CHLORIDE	0.32 U		0.32 U		0.32 U		0.32 U	
NAPHTHALENE	0.2 U		0.2 U		0.2 U		0.2 U	
N-BUTYLBENZENE	0.21 U		0.21 U		0.21 U		0.21 U	
N-PROPYLBENZENE	0.2 U		0.2 U		0.2 U		0.2 U	
O-XYLENE	0.2 U		0.2 U		0.2 U		0.2 U	-
SEC-BUTYLBENZENE	0.27 U		0.27 U		0.27 U		0.27 U	
STYRENE	0.2 U		0.2 U		0.2 U		0.2 U	
TERT-AMYL METHYL ETHER	0.2 U		0.2 U		0.2 U		0.2 U	
TERT-BUTYLBENZENE	0.2 U		0.2 U		0.2 U		0.2 U	
TERTIARY-BUTYL ALCOHOL	11 UJ	C	11 UJ	O	11 UJ	S	11 UJ	S
TETRACHLOROETHENE	0.3 U		0.3 U		0.3 U		0.3 U	
TOLUENE	0.2 U		0.2 U		0.2 U		0.2 U	
TOTAL XYLENES	0.53 U		0.53 U		0.53 U		0.53 U	
TRANS-1,2-DICHLOROETHENE	0.33 U		0.33 U				0.33 U	
TRANS-1,3-DICHLOROPROPENE	0.2 U		0.2 U		0.2 U		0.2 U	
TRICHLOROETHENE	0.22 U		0.52 J	۵	0.39 J	۵	0.44	<u>م</u>
TRICHLOROFLUOROMETHANE	0.2 U		0.2 U		0.2 U		0.2 U	
VINYL ACETATE	1.1 U		1.1 U		1.1 U		1.1 U	
VINYL CHLORIDE	0.32 U		0.32 U		0.32 U		0.32 U	

	NSAMPLE	MRC-SW7B-060914	60914		MRC-SW8A-060914	4-060914		MRC-SW8B-060914		MRC-SW9A-060914	114	
	₽,	R1404414-009			R1404414-010	010		R1404414-011		K1404414-012		
FRACTION: OV SAMI	SAMP_DATE	6/10/2014			6/10/2014			6/10/2014		6/10/2014		
MEDIA: WATER QC_	QC_TYPE	ΣN			ΣZ			NM		WN		
UNITS	S-	UG/L			NG/L			UG/L		NG/L		
PCT	PCT_SOLIDS	0.0			0.0			0.0		0.0		
DUP_OF	-OF					į	100		6			
PARAMETER		RESULT	7 Z	OLCD	RESULT	VQL	arco	KESULI VQL	arcn	KESULI VOL	AL WLCD	
CHLOROBENZENE		0.29 0	o =		5 0	0.23 0		0.23 0		0.23 0		
CHLOROUIBROMOME I HANE		0.31 0	o =		5 6	0.31		0.31 0		0.54		
CHLOROETHANE		0 47.0) =			0.24.0		0.54		0.25		
CHLOROPORIM		0.23 0) =			0.23 0		0.23 0		0.21 U		
CHLOROWIE I HAINE		0.2.0	> =			2 - 6		0.3.0		03.11		
CIS-1, 2-DICHI OROPROPENE		0.24 U))		0	0.24 U		0.24 U		0.24 U		
DIBROMOMETHANE		0.32 U	n		0	0.32 U		0.32 U		0.32 U	-	
DICHLORODIFLUOROMETHANE	ш	0.46 U	n		0	0.46 U		0.46 U		0.46 U		
DIISOPROPYL ETHER		0.2 U	n			0.2 U		0.2 U		0.2 U		
ETHYL TERT-BUTYL ETHER		0.2 U	ח			0.2 U		0.2 U		0.2 U		
ETHYLBENZENE		0.2	n			0.2 U		0.2 U		0.2 U		
HEXACHLOROBUTADIENE		0.62 U	ח		0	0.62 U		0.62 U		0.62 U		
ISOPROPYLBENZENE		0.2 U	n			0.2 U		0.2 U		0.2 U		
M+P-XYLENES		0.33 U	η		0	0.33 U		0.33 U		0.33 U		
METHYL TERT-BUTYL ETHER		0.29 U			0	0.29 U		0.29 U		0.29 U		
METHYLENE CHLORIDE		0.32 U	n		0	0.32 U		0.32 U		0.32 U	-	
NAPHTHALENE		0.2 U	n			0.2 U		0.2 U		0.2 U	-	
N-BUTYLBENZENE		0.21 U	n		0	0.21 U		0.21 U		0.21 U		
N-PROPYLBENZENE		0.2 U	n			0.2 U		0.2 U		0.2 U		
O-XYLENE		0.2 U	n			0.2 U		0.2 U		0.2 U		
SEC-BUTYLBENZENE		0.27	n		0	0.27 U		0.27 U		0.27 U		
STYRENE		0.2	n			0.2 U		0.2 U		0.2 U		
TERT-AMYL METHYL ETHER		0.2	ם			0.2 U		0.2 U		0.2 U		
TERT-BUTYLBENZENE		0.2 U	ם			0.2 U		0.2 U		0.2 U		
TERTIARY-BUTYL ALCOHOL		11	11 M	ပ		11 U	O	11 UJ	၁	11 UJ	<u>၂</u>	
TETRACHLOROETHENE		0.3	0.3 U			0.3 U		0.3 U		0.3 U		
TOLUENE		0.2	0.2 U			0.2 U		0.2 U		0.2 U		
TOTAL XYLENES		0.53 U	D		0	0.53 U		0.53 U		0.53 U		
TRANS-1,2-DICHLOROETHENE		0.33 U	n		0	0.33 U		0.33 U		0.33 U		
TRANS-1,3-DICHLOROPROPENE	¥	0.2 U	n			0.2 U		0.2 U		0.2 U		
TRICHLOROETHENE		0.49	7	۵	0	0.54 J	Ь	0.47 J	۵	0.45 J	۵	
TRICHLOROFLUOROMETHANE		0.2 U	Ω			0.2 U		0.2 U		0.2 U		
VINYL ACETATE		1.1	1.1 U			1.1 U		1.1 U		1.1 U	-	
VINYL CHLORIDE		0.32 U	n		0	0.32 U		0.32 U		0.32 U		

PROJ NO: 06247	NSAMPLE	MRC-SW9B-060914	0914		TB-060914	!
SDG: R1404414	LAB_ID	R1404414-013			R1404414-014	
FRACTION: OV	SAMP_DATE	6/10/2014			6/10/2014	
MEDIA: WATER	QC_TYPE	ΣZ			ΣZ	
	UNITS	UG/L			NG/L	
	PCT_SOLIDS	0.0			0.0	
PARAMETER	DOP_OF	RESULT	O	OLCD	RESULT VOL	OFCD
CHLOROBENZENE		0.29			0.29	
CHLORODIBROMOMETHANE	TANE	0.31 U	_		0.31 U	
CHLOROETHANE		0.24 U	_		0.24 U	
CHLOROFORM		0.25 U			0.25 U	
CHLOROMETHANE		0.21 U	ם		0.21 U	
CIS-1,2-DICHLOROETHENE	.NE	0.3 U			0.3 U	
CIS-1,3-DICHLOROPROPENE	PENE	0.24 U	n		0.24 U	
DIBROMOMETHANE		0.32 U			0.32 U	
DICHLORODIFLUOROMETHANE	ETHANE	0.46 U	n		0.46 U	
DIISOPROPYL ETHER		0.2 U	n		0.2 U	
ETHYL TERT-BUTYL ETHER	HER	0.2 U	n		0.2 U	
ETHYLBENZENE		0.2 U	ח		0.2 U	
HEXACHLOROBUTADIENE	NE	0.62 U			0.62 U	-
ISOPROPYLBENZENE		0.2 U	D		0.2 U	
M+P-XYLENES		0.33 U	_ 		0.33 U	
METHYL TERT-BUTYL ETHER	THER	0.29 U	_		0.29 U	
METHYLENE CHLORIDE		0.32 U	ם ו		0.32 U	
NAPHTHALENE		0.2 U	n		0.2 U	
N-BUTYLBENZENE		0.21 U	_		0.21 U	
N-PROPYLBENZENE		0.2 U	D		0.2 U	
O-XYLENE		0.2 U	D		0.2 U	-
SEC-BUTYLBENZENE		0.27 U	D		0.27 U	
STYRENE		0.2 U			0.2 U	
TERT-AMYL METHYL ETHER	rher	0.2 U	<u></u>		0.2 U	
TERT-BUTYLBENZENE		0.2 U	n		0.2 U	
TERTIARY-BUTYL ALCOHOL	HOL	11 UJ	U) C		11 UJ	O
TETRACHLOROETHENE		0.3	n		0.3 U	
TOLUENE		0.2 U	n		0.2 U	
TOTAL XYLENES		0.53 U	n		0.53 U	
TRANS-1,2-DICHLOROETHENE	THENE	0.33 U	n		0.33 U	
TRANS-1,3-DICHLOROPROPENE	ROPENE	0.2 U	n		0.2 U	
TRICHLOROETHENE		0.47	J		0.22 U	
TRICHLOROFLUOROMETHANE	THANE	0.2 U	n		0.2 U	
VINYL ACETATE	:	1.1 U	n		1.1 U	
		11 65 0			0.32 U	

PROJ_NO: 06247	NSAMPLE	MRC-SW5A1-060914	.060914		MRC-SW5A2-060914	-060914		MRC-SW5B-060914	50914		MRC-SW6A-060914	0914	
SDG: R1404414	LAB_ID	R1404414-003	2		R1404414-004	4		R1404414-005			R1404414-006		
FRACTION: PCB	SAMP_DATE	6/10/2014			6/10/2014			6/10/2014			6/10/2014		
MEDIA: WATER	QC_TYPE	ΣZ			ΣZ			MN			NN		
	UNITS	UG/L			UG/L			NG/L			UG/L		
	PCT_SOLIDS	0.0			0.0			0.0			0.0		
	DUP_OF												
PARAMETER		RESULT	VQL	arcd	RESULT	VQL	arcp	RESULT	NOL Q	arcd	RESULT	VQL	alcd
DECACHLOROBIPHENYL		0.018 U	Ο		0.022 U	2 U		0.018	Π		0.018 U	n	
DICHLOROBIPHENYLS		0.0044 U	D		0.0054 U	t U		0.0044	Π		0.0044 U	n	
HEPTACHLOROBIPHENYLS	S	0.011 U	n		0.014 U	η 1		0.011 U	n		0.011 U	n	
HEXACHLOROBIPHENYL		0.01 U	Э		0.013 U	3 U		0.01 U	n		U 0.01	n	
NONACHLOROBIPHENYLS	6	0.019 U	Ω		0.024 U	† ↑		0.019 U	n		0.019 U	n	
OCTACHLOROBIPHENYLS		0.0084	D		0.011 U	1 D		0.0084 U	n		0.0084 U	n	
PENTACHLOROBIPHENYLS	S	0.0088	D		0.011 U	1 0		0.0088	n		0.0088 U	n	
TETRACHLOROBIPHENYLS	S	0.011			0.024	+		0.016			0.0054		Ь
TOTAL MONOCHLOROBIPHENYLS	HENYLS	0.0017 U	n.		0.0021 U	1 U		0.0017 U	n	-	0.0017 U	D	
TRICHLOROBIPHENYLS		0.0034 U	l n		0.0042 U	2 N		0.0034 U	n		0.0034 U	D	

PRO.1 NO: 06247	NSAMPI F	MRC-SW6B-060914	60914		MRC-SW7A-060914	060914		MRC-SW7B-060914	50914	 MRC-SW8A-060914	30914		
SDG: R1404414	LAB_ID	R1404414-007		-	R1404414-008	8		R1404414-009		R1404414-010			Γ
FRACTION: PCB	SAMP_DATE	6/10/2014			6/10/2014			6/10/2014		6/10/2014			Ī
MEDIA: WATER	QC_TYPE	ΣZ			ΣZ			ΣN		 ΣZ			Γ
	UNITS	UG/L			NG/L			UG/L		 UG/L			
	PCT_SOLIDS	0.0			0.0			0.0		0.0			
	DUP_OF	l											
PARAMETER		RESULT	Val	alcd	RESULT	VQL	alcd	RESULT	Val alco	RESULT	VQL	arcp	
DECACHLOROBIPHENYL		0.018	⊃		0.018	3 U		0.018	n	0.018	n		
DICHLOROBIPHENYLS		0.0044	D		0.0044	→		0.0044	n	0.0044	U		
HEPTACHLOROBIPHENYLS	S	0.011 U	D		0.011 U	0		0.011	n	0.011	U		
HEXACHLOROBIPHENYL		0.01 U	D		0.01 U	<u>۱</u>		0.01	n	0.01	n		
NONACHLOROBIPHENYLS	8	0.019	ם	:	0.019 L	n 6		0.019	n	0.019	n		
OCTACHLOROBIPHENYLS	"	0.0084 U	n		0.0084 L	4 U		0.0084	n	0.0084	U		
PENTACHLOROBIPHENYLS	S.	0.015			0.012	2		0.0088	U	0.0088 U	U		
TETRACHLOROBIPHENYLS	S	0.0054	ſ	Д.	0.0054	4 N		0.0054	n	0.0054	7	<u>م</u>	
TOTAL MONOCHLOROBIPHENYLS	HENYLS	0.0017 U	n		0.0017 U	N 2		0.0017	n	0.0017 U	n		
TRICHLOROBIPHENYLS		0.0034 U	n		0.0034 L	4 O		0.0034		0.0034 U	n		

PROJ_NO: 06247	NSAMPLE	MRC-SW8B-060914	30914		MRC-SW8B-060914A	060914A		MRC-SW9A-060914		MRC-SW9B-060914	960914	
SDG: R1404414	LAB_ID	R1404414-011			R1404414-011	_		R1404414-012		R1404414-013	8	
FRACTION: PCB	SAMP_DATE	6/10/2014			6/10/2014			6/10/2014		6/10/2014		
MEDIA: WATER	QC_TYPE	ΣZ			ΣN			MN		ΣN		
	UNITS	UG/L			UG/L			ng/L		NG/L		
	PCT_SOLIDS	0.0			0.0			0.0		0.0		
	DUP_OF											
PARAMETER		RESULT	VaL	arcd	RESULT	VQL	arcd	RESULT VQL	arcp	RESULT	VQL	arcd
DECACHLOROBIPHENYL		0.018						0.018 U		0.018 U	Ω	
DICHLOROBIPHENYLS		0.0044						0.0044 U		0.0044 U	n.	
HEPTACHLOROBIPHENYLS	S	0.011 L	_					0.011 U		0.011 U	n	
HEXACHLOROBIPHENYL		0.01 U	_					0.01 U		0.01 U	n	
NONACHLOROBIPHENYLS	6	0.019	D					0.019 U		0.019	n ·	
OCTACHLOROBIPHENYLS		0.0084 U	D					0.0084 U		0.0084	<u> </u>	
PENTACHLOROBIPHENYLS	S.				0.0088	8 0		0.0088 U		0.0088	n ı	
TETRACHLOROBIPHENYLS	S:	0.0054 U	n					0.0054 U		0.0054	⊃	
TOTAL MONOCHLOROBIPHENYLS	HENYLS	0.0017 U	n					0.0017 U		0.0017 U	n.	
TRICHLOROBIPHENYLS					0.0034	4 U		0.0034 U		0.0034 L	n	

PROJ_NO: 06247	NSAMPLE	MRC-SW1A-060914	30914		MRC-SW2A-060914	30914	
SDG: R1404414	LAB_ID	R1404414-001			R1404414-002		
FRACTION: 0S	SAMP_DATE 6/10/2014	6/10/2014			6/10/2014		
MEDIA: WATER	QC_TYPE	ΣN			NM		
	UNITS	UG/L			NG/L		
	PCT_SOLIDS 0.0	0.0			0.0		
	DUP_OF						
PARAMETER		RESULT VOL ALCD	Val	arcp	RESULT VOL OLCD	Val	arcp
1,4-DIOXANE		0.235 J	٦	Ш	0.156	ſ	CEP

Appendix B

Results as Reported by the Laboratory

Analytical Report

Client:

Tetra Tech GEO

Project:

Middle River- Lockheed Martin Corp/Surface Water 112ICO6247

Sample Matrix:

Water

Service Request: R1404414 Date Collected: 6/10/14 1002

Date Received: 6/11/14

Date Analyzed: 6/19/14 15:02

Units: µg/L Basis: NA

Sample Name:

MRC-SW1A-060914

Lab Code:

R1404414-001

Volatile Organic Compounds by GC/MS

Analytical Method: 8260C Data File Name:

 $1: \ACQUDATA\mbox{\sc msvoa}\ 12\Data\06\19\14\M6692.D\$

Analysis Lot: 397695 Instrument Name: R-MS-12

Dilution Factor: 1

CAS No.	Analyte Name	Result Q	MRL	MDL	Note
630-20-6	1,1,1,2-Tetrachloroethane	1.0 U	1.0	0.22	
71-55-6	1,1,1-Trichloroethane (TCA)	1.0 U	1.0	0.36	
79-34-5	1,1,2,2-Tetrachloroethane	1.0 U	1.0	0.25	
76-13-1	1,1,2-Trichlorotrifluoroethane	1.0 U	1.0	0.31	
75-34-3	1,1-Dichloroethane (1,1-DCA)	1. 0 U	1.0	0.20	
75-35-4	1,1-Dichloroethene (1,1-DCE)	1.0 U	1.0	0.57	
563-58-6	1,1-Dichloropropene	1.0 U	1.0	0.29	
87-61-6	1,2,3-Trichlorobenzene	1.0 U	1.0	0.82	
96-18-4	1,2,3-Trichloropropane	1.0 U	1.0	0.70	
120-82-1	1,2,4-Trichlorobenzene	1.0 U	1.0	0.23	
95-63-6	1,2,4-Trimethylbenzene	1. 0 U	1.0	0.20	
96-12-8	1,2-Dibromo-3-chloropropane (DBCP)	2.0 U	2.0	0.74	
106-93-4	1,2-Dibromoethane	1.0 U	1.0	0.24	
95-50-1	1,2-Dichlorobenzene	1. 0 U	1.0	0.21	
107-06-2	1,2-Dichloroethane	1.0 U	1.0	0.36	
78-87-5	1,2-Dichloropropane	1.0 U	1.0	0.20	
541-73-1	1,3-Dichlorobenzene	1.0 U	1.0	0.20	
142-28-9	1,3-Dichloropropane	1.0 U	1.0	0.27	
106-46-7	1,4-Dichlorobenzene	1.0 U	1.0	0.20	
594-20-7	2,2-Dichloropropane	1. 0 U	.1.0	0.27	
78-93-3	2-Butanone (MEK)	5.0 U	5.0	0.81	
110-75-8	2-Chloroethyl Vinyl Ether	1.0 U	1.0	0.44	
95-49-8	2-Chlorotoluene	1. 0 U	1.0	0.20	
591-78-6	2-Hexanone	5.0 U	5.0	1.7	
75-65-0	tert-Butyl Alcohol	40 U	40	11	
106-43-4	4-Chlorotoluene	1.0 U	1.0	0.24	
99-87 - 6	4-Isopropyltoluene	1.0 U	1.0	0.20	
108-10-1	4-Methyl-2-pentanone	5.0 U	5.0	0.67	
67-64-1	Acetone	2.8 J	5.0	1.3	
71-43-2	Benzene	1.0 U	1.0	0.20	
108-86-1	Bromobenzene	1.0 U	1.0	0.28	
74-97-5	Bromochloromethane	1.0 U		0.32	
75-27-4	Bromodichloromethane	1.0 U	1.0	0.32	
75-25-2	Bromoform	1.0 U	1.0	0.42	
74-83-9	Bromomethane	1.0 U	1.0	0.29	

Analytical Report

Client:

Tetra Tech GEO

Project:

Middle River- Lockheed Martin Corp/Surface Water 1121CO6247

Sample Matrix:

Water

Service Request: R1404414

Date Collected: 6/10/14 1002 Date Received: 6/11/14

Date Analyzed: 6/19/14 15:02

Sample Name:

MRC-SW1A-060914

Lab Code:

R1404414-001

Units: µg/L Basis: NA

Volatile Organic Compounds by GC/MS

D ---- I4 A

Analytical Method: 8260C Data File Name:

I:\ACQUDATA\msvoa12\Data\061914\M6692.D\

Analysis Lot: 397695 Instrument Name: R-MS-12

Dilution Factor: 1

Mata

CAS No.	Analyte Name	Result Q	MRL	MDL	Note
75-15-0	Carbon Disulfide	1.0 U	1.0	0.22	
56-23-5	Carbon Tetrachloride	1.0 U	1.0	0.45	
108-90-7	Chlorobenzene	1.0 U	1.0	0.29	
75-00-3	Chloroethane	1.0 U	1.0	0.24	
67-66-3	Chloroform	1.0 U	1.0	0.25	
74-87-3	Chloromethane	1.0 U	1.0	0.21	·
124-48-1	Dibromochloromethane	1.0 U	1.0	0.31	
74-95-3	Dibromomethane	1.0 U	1.0	0.32	
75-71-8	Dichlorodifluoromethane (CFC 12)	1.0 U	1.0	0.46	
75-09-2	Methylene Chloride	1.0 U	1.0	0.32	
108-20-3	Diisopropyl Ether	1. 0 U	1.0	0.20	
637-92-3	Ethyl tert-Butyl Ether	1. 0 U	1.0	0.20	
100-41-4	Ethylbenzene	1.0 U	1.0	0.20	
87-68-3	Hexachlorobutadiene	2.0 U	2.0	0.62	
98-82-8	1sopropylbenzene (Cumene)	1.0 U	1.0	0.20	
1634-04-4	. Methyl tert-Butyl Ether	1.0 U	1.0	0.29	
91-20-3	Naphthalene	1.0 U	1.0	0.20	
100-42-5	Styrene	1.0 U	1.0	0.20	
127-18-4	Tetrachloroethene (PCE)	1.0 Ü	1.0	0.30	
108-88-3	Toluene	1.0 U	1.0	0.20	
79-01-6	Trichloroethene (TCE)	1.0 U	1.0	0.22	
75-69-4	Trichlorofluoromethane (CFC 11)	1.0 U	1.0	0.20	
108-05-4	Vinyl Acetate	2.0 U	2.0	1.1	•
75-01-4	Vinyl Chloride	1.0 U	1.0	0.32	
1330-20-7	Xylenes, Total	3.0 U	3.0	0.53	
156-59-2	cis-1,2-Dichloroethene	1.0 U	1.0	0.30	
10061-01-5	cis-1,3-Dichloropropene	1.0 U	1.0	0.24	
179601-23-1	m,p-Xylenes	2.0 U	2.0	0.33	
104-51-8	n-Butylbenzene	1.0 U	1.0	0.21	
103-65-1	n-Propylbenzene	1.0 U	1.0	0.20	
95-47-6	o-Xylene	1.0 U	1.0	0.20	
135-98-8	sec-Butylbenzene	1.0 U	1.0	0.27	
994-05-8	tert-Amyl Methyl Ether	1.0 U	1.0	0.20	
98-06-6	tert-Butylbenzene	1.0 U	1.0	0.20	
156-60-5	trans-1,2-Dichloroethene	1.0 U	1.0	0.33	

Analytical Report

Client:

Tetra Tech GEO

Project:

Middle River- Lockheed Martin Corp/Surface Water 112ICO6247

Sample Matrix:

Water

Service Request: R1404414

Date Collected: 6/10/14 1002

Date Received: 6/11/14

Date Analyzed: 6/19/14 15:02

Sample Name:

MRC-SW1A-060914

Lab Code:

R1404414-001

Units: µg/L

Basis: NA

Volatile Organic Compounds by GC/MS

Analytical Method: 8260C Data File Name:

 $I: \ACQUDATA \mbox{$\mbox{$\mbox{$\mbox{$}$}} a12\Data \061914\M6692.D \end{$\mbox{$\mbox{$\mbox{$\mbox{$}$}$}} a12\Data \norm{\mbox{$\mbox{$\mbox{$}$}$}} a12\Data \norm{\mbox{$\mbox{$}$}} a12\Data \norm{\mbox{$\mbox{$\mbox{$}$}} a12\Data \norm{\mbox{$\mbox{$}$}} a12\Data \norm{\mbox{$\mbox{$\mbox{$}$}} a12\Data \norm{\mbox{$\mbox{$}$}} a12\Data \norm{\mbox{$\mbox{$\mbox{$}$}$} a12\Data \norm{\mbox{$\mbox{$\mbox{$}$}$} a12\Data \norm{\mbox{$\mbox{$\mbox{$}$}$} a12\Data \norm{\mbox{$\mbox{$\mbox{$}$}$} a12\Data \norm{\mbox{$\mbox{$\mbox{$}$}$} a12\Data \norm{\mbox{$\mbox{$\mbox{$}$}$} a12\Data \norm{\mbox{$\mb$

Analysis Lot: 397695

Instrument Name: R-MS-12

Dilution Factor: 1

CAS No.	Analyte Name		Result Q	MRL	MDL	Note
10061-02-6	trans-1,3-Dichloropropene		1.0 U	1.0	0.20	
Surrogate Name	è	%Rec	Control Limits	Date Analyzed	Q	
4-Bromofluorobe		102 104	85-122 89-119	6/19/14 15:02 6/19/14 15:02		
Toluene-d8	ottano	101	87-121	6/19/14 15:02		

Analytical Report

Client:

Tetra Tech GEO

Project:

Middle River-Lockheed Martin Corp/Surface Water 112ICO6247

Sample Matrix:

Water

Service Request: R1404414

Date Collected: 6/10/14 1013

Date Received: 6/11/14 Date Analyzed: 6/19/14 15:34

Sample Name: Lab Code:

MRC-SW2A-060914

R1404414-002

Units: µg/L Basis: NA

Volatile Organic Compounds by GC/MS

Analytical Method: 8260C Data File Name:

 $I: \ACQUDATA \mbox{\sc msvoa} 12 \Data \061914 \M6693.D \label{lem:lemond}$

Analysis Lot: 397695 Instrument Name: R-MS-12

Dilution Factor: 1

CAS No.	Analyte Name	Result	Q	MRL	MDL	Note
630-20-6	1,1,1,2-Tetrachloroethane	1.0	Ų	1.0	0.22	
71-55-6	1,1,1-Trichloroethane (TCA)	1.0		1.0	0.36	
79-34-5	1,1,2,2-Tetrachloroethane	1.0	U	1.0	0.25	
76-13-1	1,1,2-Trichlorotrifluoroethane	1.0	U	1.0	0.31	
75-34-3	1,1-Dichloroethane (1,1-DCA)	1.0		1.0	0.20	
75-35-4	1,1-Dichloroethene (1,1-DCE)	1.0	U	1.0	0.57	
563-58-6	1,1-Dichloropropene	1.0	U	1.0	0.29	
87-61-6	1,2,3-Trichlorobenzene	1.0	U	1.0	0.82	
96-18-4	1,2,3-Trichloropropane	1.0	U	1.0	0.70	
120-82-1	1,2,4-Trichlorobenzene	1.0	U	1.0	0.23	
95-63-6	1,2,4-Trimethylbenzene	1.0	U	1.0	0.20	
96-12 - 8	1,2-Dibromo-3-chloropropane (DBCP)	2.0	U	2.0	0.74	
106-93-4	1,2-Dibromoethane	1.0	U	1.0	0.24	
95-50-1	1,2-Dichlorobenzene	1.0	U	1.0	0.21	
107-06-2	1,2-Dichloroethane	1.0	U	1.0	0.36	
78-87-5	1,2-Dichloropropane	1.0	U	1.0	0.20	
541-73-1	1,3-Dichlorobenzene	1.0	U	1.0	0.20	
142-28-9	1,3-Dichloropropane	1.0	U	1.0	0.27	
106-46-7	1,4-Dichlorobenzene	1.0	U	1.0	0.20	
594-20-7	2,2-Dichloropropane	1.0	U	1.0	0.27	
78-93-3	2-Butanone (MEK)	5.0	U	5.0	0.81	
110-75-8	2-Chloroethyl Vinyl Ether	1.0	U	1.0	0.44	
95-49-8	2-Chlorotoluene	1.0	U	1.0	0.20	
591-78-6	2-Hexanone	5.0	U	5.0	1.7	
75-65-0	tert-Butyl Alcohol	40	U	40	11	
106-43-4	4-Chlorotoluene	1.0	U	1.0	0.24	
99-87-6	4-1sopropyltoluene	1.0	U	1.0	0.20	
108-10-1	4-Methyl-2-pentanone	5.0	U	5.0	0.67	
67-64-1	Acetone	1.9	J	5.0	1.3	
71-43-2	Benzene	1.0	U	1.0	0.20	
108-86-1	Bromobenzene	1.0	U	1.0	0.28	
74-97-5	Bromochloromethane	1.0	U	1.0	0.32	
75-27-4	Bromodichloromethane	1.0	U	1.0	0.32	
75-25-2	Bromoform	1.0	U	1.0	0.42	
74-83-9	Bromomethane	1.0		1.0	0.29	

Analytical Report

Client:

Tetra Tech GEO

Project:

Middle River- Lockheed Martin Corp/Surface Water 112ICO6247

Sample Matrix:

Water

Service Request: R1404414

Date Collected: 6/10/14 1013 Date Received: 6/11/14

Date Analyzed: 6/19/14 15:34

Units: µg/L Basis: NA

Sample Name: Lab Code:

MRC-SW2A-060914 R1404414-002

Volatile Organic Compounds by GC/MS

Analytical Method: 8260C Data File Name:

I:\ACQUDATA\msvoa12\Data\061914\M6693.D\

Analysis Lot: 397695 Instrument Name: R-MS-12

Dilution Factor: 1

CAS No.	Analyte Name	Result Q	MRL	MDL	Note
75-15-0	Carbon Disulfide	1.0 U	1.0	0.22	
56-23-5	Carbon Tetrachloride	1.0 U	1.0	0.45	
108-90-7	Chlorobenzene	1.0 U	1.0	0.29	
75-00-3	Chloroethane	1.0 U	1.0	0.24	
67-66-3	Chloroform	1.0 U	1.0	0.25	
74-87-3	Chloromethane	1.0 U	1.0	0.21	
124-48-1	Dibromochloromethane	1.0 U	1.0	0.31	
74-95-3	Dibromomethane	1.0 U	1.0	0.32	
75-71-8	Dichlorodifluoromethane (CFC 12)	1.0 U	1.0	0.46	
75-09-2	Methylene Chloride	1.0 U	1.0	0.32	
108-20-3	Diisopropyl Ether	1.0 U	1.0	0.20	
637-92-3	Ethyl tert-Butyl Ether	1.0 U	1.0	0.20	
100-41-4	Ethylbenzene	1.0 U	1.0	0.20	
87-68-3	Hexachlorobutadiene	2.0 U	2.0	0.62	
98-82-8	Isopropylbenzene (Cumene)	1.0 U	1.0	0.20	
1634-04-4	Methyl tert-Butyl Ether	1.0 Ü	1.0	0.29	
91-20-3	Naphthalene	1.0 U	1.0	0.20	
100-42-5	Styrene	1.0 U	1.0	0.20	
127-18-4	Tetrachloroethene (PCE)	1.0 U	1.0	0.30	
108-88-3	Toluene	1.0 U	1.0	0.20	
79-01-6	Trichloroethene (TCE)	1.0 U	1.0	0.22	
75-69-4	Trichlorofluoromethane (CFC 11)	1.0 U	1.0	0.20	
108-05-4	Vinyl Acetate	2.0 U	2.0	1.1	
75-01-4	Vinyl Chloride	1.0 U	1.0	0.32	
1330-20-7	Xylenes, Total	3.0 U	3.0	0.53	
156-59-2	cis-1,2-Dichloroethene	1.0 U	1.0	0.30	
10061-01-5	cis-1,3-Dichloropropene	1.0 U	1.0	0.24	
179601-23-1	m,p-Xylenes	2.0 U	2.0	0.33	
104-51-8	n-Butylbenzene	1.0 U	1.0	0.21	
103-65-1	n-Propylbenzene	1.0 U	1.0	0.20	
95-47-6	o-Xylene	1.0 U	1.0	0.20	
135-98-8	sec-Butylbenzene	1.0 U	1.0	0.27	
994-05-8	tert-Amyl Methyl Ether	1.0 U	1.0	0.20	
98-06-6	tert-Butylbenzene	1.0 U	1.0	0.20	
156-60-5	trans-1,2-Dichloroethene	1.0 U	1.0	0.33	

Printed 7/7/14 11:45

Form 1A

SuperSet Reference:

14-00002932567600

Analytical Report

Client:

Tetra Tech GEO

Project:

Middle River- Lockheed Martin Corp/Surface Water 112ICO6247

Sample Matrix:

Water

Service Request: R1404414

Date Collected: 6/10/14 1013

Date Received: 6/11/14

Date Analyzed: 6/19/14 15:34

Sample Name:

MRC-SW2A-060914

Lab Code:

R1404414-002

Units: µg/L Basis: NA

Volatile Organic Compounds by GC/MS

Analytical Method: 8260C

Data File Name:

1:\ACQUDATA\msvoa12\Data\061914\M6693.D\

Analysis Lot: 397695

Instrument Name: R-MS-12

Dilution Factor: 1

MDL Note Result Q MRL CAS No. **Analyte Name** 1.0 U 1.0 0.20 10061-02-6 trans-1,3-Dichloropropene

Control Date %Rec Limits Analyzed Q Surrogate Name 99 85-122 6/19/14 15:34 4-Bromofluorobenzene 103 89-119 6/19/14 15:34 Dibromofluoromethane 6/19/14 15:34 101 87-121 Toluene-d8

Analytical Report

Client:

Tetra Tech GEO

Project:

Middle River-Lockheed Martin Corp/Surface Water 112ICO6247

Sample Matrix:

Water

Service Request: R1404414 Date Collected: 6/10/14 1032

Date Received: 6/11/14

Date Analyzed: 6/19/14 16:06

Units: µg/L Basis: NA

Sample Name:

MRC-SW5A1-060914

Lab Code:

R1404414-003

Volatile Organic Compounds by GC/MS

Analytical Method: 8260C Data File Name:

I:\ACQUDATA\msvoa12\Data\061914\M6694.D\

Analysis Lot: 397695 Instrument Name: R-MS-12

10	CAS No.	Analyte Name	Result Q	MRL	MDL	Note	
79-34-5	630-20-6	1,1,1,2-Tetrachloroethane	1.0 U	1.0			
76-13-1	71-55-6	1,1,1-Trichloroethane (TCA)		1.0			
75-34-3 1,1-Dichloroethane (1,1-DCA) 1.0 U 1.0 0.20 75-35-4 1,1-Dichloroethane (1,1-DCB) 1.0 U 1.0 0.57 75-35-4 1,1-Dichloroptopene 1.0 U 1.0 0.29 87-61-6 1,2,3-Trichlorobenzene 1.0 U 1.0 0.82 96-18-4 1,2,3-Trichlorobenzene 1.0 U 1.0 0.70 120-82-1 1,2,4-Trimethylbenzene 1.0 U 1.0 0.20 96-12-8 1,2-Dibromo-3-chloroptopane (DBCP) 2.0 U 2.0 0.74 106-93-4 1,2-Dibromoethane 1.0 U 1.0 0.24 95-50-1 1,2-Dichlorobenzene 1.0 U 1.0 0.24 95-50-1 1,2-Dichlorobenzene 1.0 U 1.0 0.26 107-06-2 1,2-Dichlorobenzene 1.0 U 1.0 0.36 78-87-5 1,2-Dichlorobenzene 1.0 U 1.0 0.20 147-31-1 1,3-Dichloroptopane 1.0 U 1.0 0.20 142-28-9 1,3-Dichloroptopane 1.0 U 1.0 0.20 164-6-7 1,4-Dichlorobenzene 1.0 U 1.0 0.27 106-46-7 1,4-Dichloroptopane 1.0 U 1.0 0.27 89-3-3 2-Butanone (MEK) 5.0 U 5.0 0.81 110-75-8 2-Chlorothyl Vinyl Ether 1.0 U 1.0 0.20 191-78-8 2-Chlorothyl Vinyl Ether 1.0 U 1.0 0.20 191-78-6 2-Hexanone 5.0 U 5.0 1.7 75-65-0 tert-Butyl Alcohol 40 U 40 11 106-43-4 4-Chlorotoluene 1.0 U 1.0 0.20 108-10-1 4-Methyl-2-pentanone 5.0 U 5.0 0.67 71-43-2 Benzene 1.0 U 1.0 0.20 108-86-1 Bromobenzene 1.0 U 1.0 0.20 108-86-1 Bromobenzene 1.0 U 1.0 0.20 108-86-1 Bromobenzene 1.0 U 1.0 0.20 108-86-1 Bromobeloromethane 1.0 U 1.0 0.20 108-9-52-2 Bromoform 1.0 U 1.0 0.20	79-34-5	1,1,2,2-Tetrachloroethane	1.0 U	1.0	0.25		
75-35-4	76-13-1	1,1,2-Trichlorotrifluoroethane	1.0 U	1.0			
563-58-6 1,1-Dichloropropene 1.0 U 1.0 0.29 87-61-6 1,2,3-Trichlorobenzene 1.0 U 1.0 0.82 96-18-4 1,2,3-Trichloropropane 1.0 U 1.0 0.70 120-82-1 1,2,4-Trichlorobenzene 1.0 U 1.0 0.23 95-63-6 1,2,4-Trimethylbenzene 1.0 U 1.0 0.20 96-12-8 1,2-Dibromo-3-chloropropane (DBCP) 2.0 U 2.0 0.74 106-93-4 1,2-Dichlorobenzene 1.0 U 1.0 0.24 95-50-1 1,2-Dichlorobenzene 1.0 U 1.0 0.21 107-06-2 1,2-Dichloropropane 1.0 U 1.0 0.36 78-87-5 1,2-Dichloropropane 1.0 U 1.0 0.20 541-73-1 1,3-Dichloropropane 1.0 U 1.0 0.20 142-28-9 1,3-Dichlorobenzene 1.0 U 1.0 0.27 54-20-7 2,2-Dichloropropane 1.0 U 1.0 0.27 78-93-3 2-Butanone (MEK) 5.0 U 5.0 0.81 110-75-8 2-Chlorotolyty Vinyl Ether 1.0 U 1.0 0.44 95-49-8 2-Chloroto	75-34-3	1,1-Dichloroethane (1,1-DCA)	1.0 U				
87-61-6 1,2,3-Trichlorobenzene 1.0 U 1.0 0.70 96-18-4 1,2,3-Trichloropropane 1.0 U 1.0 0.70 120-82-1 1,2,4-Trichlorobenzene 1.0 U 1.0 0.23 95-63-6 1,2,4-Trimethylbenzene 1.0 U 1.0 0.20 96-12-8 1,2-Dibromo-3-chloropropane (DBCP) 2.0 U 2.0 0.74 106-93-4 1,2-Dichlorobenzene 1.0 U 1.0 0.24 95-50-1 1,2-Dichloropenane 1.0 U 1.0 0.36 78-87-5 1,2-Dichloropropane 1.0 U 1.0 0.20 541-73-1 1,3-Dichlorobenzene 1.0 U 1.0 0.20 541-73-1 1,3-Dichloropopane 1.0 U 1.0 0.20 142-28-9 1,3-Dichlorobenzene 1.0 U 1.0 0.27 594-20-7 2,2-Dichloropopane 1.0 U 1.0 0.27 78-93-3 2-Butanone (MEK) 5.0 U 5.0 0.81 110-75-8 2-Chlorocthyl Vinyl Ether 1.0 U 1.0 0.44 95-49-8 2-Chlorotoluene 1.0 U 1.0 0.20 99-87-6 4-Isopropyltoluene	75-35-4	1,1-Dichloroethene (1,1-DCE)	1.0 U	1.0	0.57		
96-18-4 1,2,3-Trichloropropane 1.0 U 1.0 0.70 120-82-1 1,2,4-Trichlorobenzene 1.0 U 1.0 0.23 95-63-6 1,2,4-Trimethylbenzene 1.0 U 1.0 0.20 96-12-8 1,2-Dibromo-3-chloropropane (DBCP) 2.0 U 2.0 0.74 106-93-4 1,2-Dichlorobenzene 1.0 U 1.0 0.24 95-50-1 1,2-Dichlorobenzene 1.0 U 1.0 0.21 107-06-2 1,2-Dichloropropane 1.0 U 1.0 0.36 78-87-5 1,2-Dichloropropane 1.0 U 1.0 0.20 541-73-1 1,3-Dichloropropane 1.0 U 1.0 0.20 142-28-9 1,3-Dichloropropane 1.0 U 1.0 0.27 106-46-7 1,4-Dichlorobenzene 1.0 U 1.0 0.27 78-93-3 2-Butanone (MEK) 5.0 U 5.0 0.81 110-75-8 2-	563-58-6	1,1-Dichloropropene	1.0 U	1.0	0.29		
120-82-1	87-61-6	1,2,3-Trichlorobenzene					•
95-63-6	96-18-4	1,2,3-Trichloropropane	1.0 U	1.0	0.70		
96-12-8 1,2-Dibromo-3-chloropropane (DBCP) 2.0 U 2.0 0.74 106-93-4 1,2-Dibromoethane 1.0 U 1.0 0.24 95-50-1 1,2-Dichlorobenzene 1.0 U 1.0 0.21 107-06-2 1,2-Dichloropethane 1.0 U 1.0 0.36 78-87-5 1,2-Dichloropropane 1.0 U 1.0 0.20 541-73-1 1,3-Dichloropropane 1.0 U 1.0 0.20 142-28-9 1,3-Dichloropropane 1.0 U 1.0 0.27 106-46-7 1,4-Dichloropropane 1.0 U 1.0 0.20 594-20-7 2,2-Dichloropropane 1.0 U 1.0 0.27 78-93-3 2-Butanone (MEK) 5.0 U 5.0 0.81 110-75-8 2-Chlorothyl Vinyl Ether 1.0 U 1.0 0.44 95-49-8 2-Chlorotoluene 1.0 U 1.0 0.20 591-78-6 2-Hexanone 5.0 U 5.0 1.7 75-65-0 tert-Butyl Alcohol 40 U 40 U 11 106-43-4 4-Chlorotoluene 1.0 U 1.0 0.20 108-10-1 4-Methyl-2-pentanone	120-82-1	1,2,4-Trichlorobenzene	1.0 U	1.0	0.23		
106-93-4	95-63 - 6	1,2,4-Trimethylbenzene	1.0 U	1.0			
95-50-1 1,2-Dichlorobenzene 1.0 U 1.0 0.21 107-06-2 1,2-Dichloroethane 1.0 U 1.0 0.36 78-87-5 1,2-Dichloropropane 1.0 U 1.0 0.20 541-73-1 1,3-Dichlorobenzene 1.0 U 1.0 0.20 142-28-9 1,3-Dichloropropane 1.0 U 1.0 0.27 106-46-7 1,4-Dichlorobenzene 1.0 U 1.0 0.20 594-20-7 2,2-Dichloropropane 1.0 U 1.0 0.27 78-93-3 2-Butanone (MEK) 5.0 U 5.0 0.81 110-75-8 2-Chlorotchlyl Vinyl Ether 1.0 U 1.0 0.44 95-49-8 2-Chlorotoluene 1.0 U 1.0 0.20 591-78-6 2-Hexanone 5.0 U 5.0 I.7 75-65-0 tert-Butyl Alcohol 40 U 40 II 106-43-4 4-Chlorotoluene 1.0 U 1.0 0.24 99-87-6 4-Isopropyltoluene 1.0 U 1.0 0.20 108-10-1 4-Methyl-2-pentanone 5.0 U 5.0 0.67 75-64-1 Acetone 1.6 J 5.0 I.3 <td>96-12-8</td> <td>1,2-Dibromo-3-chloropropane (DBCP)</td> <td>2.0 U</td> <td>2.0</td> <td>0.74</td> <td></td> <td></td>	96-12-8	1,2-Dibromo-3-chloropropane (DBCP)	2.0 U	2.0	0.74		
107-06-2	106-93-4	1,2-Dibromoethane	1.0 U	1.0	0.24		
78-87-5 1,2-Dichloropropane 1.0 U 1.0 0.20 541-73-1 1,3-Dichlorobenzene 1.0 U 1.0 0.20 142-28-9 1,3-Dichloropropane 1.0 U 1.0 0.27 106-46-7 1,4-Dichlorobenzene 1.0 U 1.0 0.20 594-20-7 2,2-Dichloropropane 1.0 U 1.0 0.27 78-93-3 2-Butanone (MEK) 5.0 U 5.0 0.81 110-75-8 2-Chlorotethyl Vinyl Ether 1.0 U 1.0 0.44 95-49-8 2-Chlorotoluene 1.0 U 1.0 0.20 591-78-6 2-Hexanone 5.0 U 5.0 1.7 75-65-0 tert-Butyl Alcohol 40 U 40 11 106-43-4 4-Chlorotoluene 1.0 U 1.0 0.24 99-87-6 4-Isopropyltoluene 1.0 U 1.0 0.20 108-10-1 4-Methyl-2-pentanone 5.0<	95-50-1	1,2-Dichlorobenzene		1.0			
541-73-1 1,3-Dichlorobenzene 1.0 U 1.0 0.20 142-28-9 1,3-Dichloropropane 1.0 U 1.0 0.27 106-46-7 1,4-Dichlorobenzene 1.0 U 1.0 0.20 594-20-7 2,2-Dichloropropane 1.0 U 1.0 0.27 78-93-3 2-Butanone (MEK) 5.0 U 5.0 0.81 110-75-8 2-Chloroethyl Vinyl Ether 1.0 U 1.0 0.44 95-49-8 2-Chlorotoluene 1.0 U 1.0 0.20 591-78-6 2-Hexanone 5.0 U 5.0 1.7 75-65-0 tert-Butyl Alcohol 40 U 40 II 106-43-4 4-Chlorotoluene 1.0 U 1.0 0.24 99-87-6 4-Isopropyltoluene 1.0 U 1.0 0.24 108-10-1 4-Methyl-2-pentanone 5.0 U 5.0 0.67 67-64-1 Acetone 1.6 J 5.0 I.3 71-43-2 Benzene 1.0 U 1.0 0.20 108-86-1 Bromochloromethane 1.0 U 1.0 0.32 75-27-4 Bromodichloromethane 1.0 U 1.0 0.32 75-25-2 Bromoform 1.0 U 1.0 0.42 <td>107-06-2</td> <td>1,2-Dichloroethane</td> <td>1.0 U</td> <td>1.0</td> <td>0.36</td> <td></td> <td></td>	107-06-2	1,2-Dichloroethane	1.0 U	1.0	0.36		
142-28-9 1,3-Dichloropropane 1.0 U 1.0 0.27 106-46-7 1,4-Dichlorobenzene 1.0 U 1.0 0.20 594-20-7 2,2-Dichloropropane 1.0 U 1.0 0.27 78-93-3 2-Butanone (MEK) 5.0 U 5.0 0.81 110-75-8 2-Chlorothyl Vinyl Ether 1.0 U 1.0 0.44 95-49-8 2-Chlorotoluene 1.0 U 1.0 0.20 591-78-6 2-Hexanone 5.0 U 5.0 U 1.7 75-65-0 tert-Butyl Alcohol 40 U 40 U 11 106-43-4 4-Chlorotoluene 1.0 U 1.0 0.24 99-87-6 4-Isopropyltoluene 1.0 U 1.0 0.20 108-10-1 4-Methyl-2-pentanone 5.0 U 5.0 0.67 67-64-1 Acetone 1.6 J 5.0 U 1.3 71-43-2 Benzene 1.0 U 1.0 0.20 108-86-1 Bromobenzene 1.0 U 1.0 0.32 75-27-4 Bromodichloromethane 1.0 U 1.0 0.32 75-25-2 Bromoform 1.0 U 1.0 0.42	78-87-5	1,2-Dichloropropane	1.0 U	1.0	0.20		
1.0 U 1.0 0.20	541-73-1	1,3-Dichlorobenzene	1.0 U	1.0			
594-20-7 2,2-Dichloropropane 1.0 U 1.0 0.27 78-93-3 2-Butanone (MEK) 5.0 U 5.0 0.81 110-75-8 2-Chloroethyl Vinyl Ether 1.0 U 1.0 0.44 95-49-8 2-Chlorotoluene 1.0 U 1.0 0.20 591-78-6 2-Hexanone 5.0 U 5.0 U 1.7 75-65-0 tert-Butyl Alcohol 40 U 40 U 11 106-43-4 4-Chlorotoluene 1.0 U 1.0 0.24 99-87-6 4-Isopropyltoluene 1.0 U 1.0 0.20 108-10-1 4-Methyl-2-pentanone 5.0 U 5.0 0.67 67-64-1 Acetone 1.6 J 5.0 1.3 71-43-2 Benzene 1.0 U 1.0 0.20 108-86-1 Bromobenzene 1.0 U 1.0 0.28 74-97-5 Bromochloromethane 1.0 U 1.0 0.32 75-27-4 Bromodichloromethane 1.0 U 1.0 0.32 75-25-2 Bromoform 1.0 U 1.0 0.42	142-28-9	1,3-Dichloropropane	1.0 U	1.0	0.27		
78-93-3 2-Butanone (MEK) 5.0 U 5.0 0.81 110-75-8 2-Chloroethyl Vinyl Ether 1.0 U 1.0 0.44 95-49-8 2-Chlorotoluene 1.0 U 1.0 0.20 591-78-6 2-Hexanone 5.0 U 5.0 U 75-65-0 tert-Butyl Alcohol 40 U 40 U 106-43-4 4-Chlorotoluene 1.0 U 1.0 0.24 99-87-6 4-Isopropyltoluene 1.0 U 1.0 0.20 108-10-1 4-Methyl-2-pentanone 5.0 U 5.0 0.67 67-64-1 Acetone 1.6 J 5.0 U 1.3 71-43-2 Benzene 1.0 U 1.0 0.20 108-86-1 Bromobenzene 1.0 U 1.0 0.28 74-97-5 Bromochloromethane 1.0 U 1.0 0.32 75-27-4 Bromoform 1.0 U 1.0 U 0.42	106-46-7	1,4-Dichlorobenzene	1.0 U	1.0	0.20		
110-75-8 2-Chloroethyl Vinyl Ether 1.0 U 1.0 0.44 95-49-8 2-Chlorotoluene 1.0 U 1.0 0.20 591-78-6 2-Hexanone 5.0 U 5.0 1.7 75-65-0 tert-Butyl Alcohol 40 U 40 11 106-43-4 4-Chlorotoluene 1.0 U 1.0 0.24 99-87-6 4-Isopropyltoluene 1.0 U 1.0 0.20 108-10-1 4-Methyl-2-pentanone 5.0 U 5.0 0.67 67-64-1 Acetone 1.6 J 5.0 1.3 71-43-2 Benzene 1.0 U 1.0 0.20 108-86-1 Bromobenzene 1.0 U 1.0 0.28 74-97-5 Bromochloromethane 1.0 U 1.0 0.32 75-27-4 Bromodichloromethane 1.0 U 1.0 0.32 75-25-2 Bromoform 1.0 U 1.0 0.42	594-20-7	2,2-Dichloropropane	1.0 U	1.0			
95-49-8 2-Chlorotoluene 1.0 U 1.0 0.20 591-78-6 2-Hexanone 5.0 U 5.0 U 1.7 75-65-0 tert-Butyl Alcohol 40 U 40 U 11 106-43-4 4-Chlorotoluene 1.0 U 1.0 U 0.24 99-87-6 4-Isopropyltoluene 1.0 U 1.0 U 0.20 108-10-1 4-Methyl-2-pentanone 5.0 U 5.0 U 0.67 67-64-1 Acetone 1.6 J 5.0 U 1.3 71-43-2 Benzene 1.0 U 1.0 U 0.20 108-86-1 Bromobenzene 1.0 U 1.0 U 0.32 75-27-4 Bromodichloromethane 1.0 U 1.0 U 0.32 75-25-2 Bromoform 1.0 U 1.0 U 0.42	78-93-3	2-Butanone (MEK)	5.0 U	5.0	0.81		
591-78-6 2-Hexanone 5.0 U 5.0 U 1.7 75-65-0 tert-Butyl Alcohol 40 U 40 U 11 106-43-4 4-Chlorotoluene 1.0 U 1.0 U 0.24 99-87-6 4-Isopropyltoluene 1.0 U 1.0 U 0.20 108-10-1 4-Methyl-2-pentanone 5.0 U 5.0 0.67 67-64-1 Acetone 1.6 J 5.0 1.3 71-43-2 Benzene 1.0 U 1.0 0.20 108-86-1 Bromobenzene 1.0 U 1.0 0.28 74-97-5 Bromochloromethane 1.0 U 1.0 0.32 75-27-4 Bromodichloromethane 1.0 U 1.0 0.32 75-25-2 Bromoform 1.0 U 1.0 0.42	110-75-8	2-Chloroethyl Vinyl Ether	1.0 U	1.0	0.44		
75-65-0 tert-Butyl Alcohol 40 U 40 11 106-43-4 4-Chlorotoluene 1.0 U 1.0 0.24 99-87-6 4-Isopropyltoluene 1.0 U 1.0 0.20 108-10-1 4-Methyl-2-pentanone 5.0 U 5.0 0.67 67-64-1 Acetone 1.6 J 5.0 1.3 71-43-2 Benzene 1.0 U 1.0 0.20 108-86-1 Bromobenzene 1.0 U 1.0 0.28 74-97-5 Bromochloromethane 1.0 U 1.0 0.32 75-27-4 Bromodichloromethane 1.0 U 1.0 0.32 75-25-2 Bromoform 1.0 U 1.0 0.42	95-49-8	2-Chlorotoluene	1.0 U	1.0	0.20		
106-43-4 4-Chlorotoluene 1.0 U 1.0 0.24 99-87-6 4-Isopropyltoluene 1.0 U 1.0 0.20 108-10-1 4-Methyl-2-pentanone 5.0 U 5.0 0.67 67-64-1 Acetone 1.6 J 5.0 I.3 71-43-2 Benzene 1.0 U 1.0 0.20 108-86-1 Bromobenzene 1.0 U 1.0 0.28 74-97-5 Bromochloromethane 1.0 U 1.0 0.32 75-27-4 Bromodichloromethane 1.0 U 1.0 0.32 75-25-2 Bromoform 1.0 U 1.0 0.42	591-7 8-6	2-Hexanone	5.0 U	5.0	1.7		
99-87-6 4-Isopropyltoluene 1.0 U 1.0 0.20 108-10-1 4-Methyl-2-pentanone 5.0 U 5.0 0.67 67-64-1 Acetone 1.6 J 5.0 1.3 71-43-2 Benzene 1.0 U 1.0 0.20 108-86-1 Bromobenzene 1.0 U 1.0 0.28 74-97-5 Bromochloromethane 1.0 U 1.0 0.32 75-27-4 Bromodichloromethane 1.0 U 1.0 0.32 75-25-2 Bromoform 1.0 U 1.0 0.42	75-65-0	tert-Butyl Alcohol	40 U	40			
108-10-1 4-Methyl-2-pentanone 5.0 U 5.0 0.67 67-64-1 Acetone 1.6 J 5.0 1.3 71-43-2 Benzene 1.0 U 1.0 0.20 108-86-1 Bromobenzene 1.0 U 1.0 0.28 74-97-5 Bromochloromethane 1.0 U 1.0 0.32 75-27-4 Bromodichloromethane 1.0 U 1.0 0.32 75-25-2 Bromoform 1.0 U 1.0 0.42	106-43-4	4-Chlorotoluene					
67-64-1 Acetone 1.6 J 5.0 1.3 71-43-2 Benzene 1.0 U 1.0 0.20 108-86-1 Bromobenzene 1.0 U 1.0 0.28 74-97-5 Bromochloromethane 1.0 U 1.0 0.32 75-27-4 Bromodichloromethane 1.0 U 1.0 0.32 75-25-2 Bromoform 1.0 U 1.0 0.42	99-87-6	4-Isopropyltoluene	1.0 U	1.0	0.20		
71-43-2 Benzene 1.0 U 1.0 0.20 108-86-1 Bromobenzene 1.0 U 1.0 0.28 74-97-5 Bromochloromethane 1.0 U 1.0 0.32 75-27-4 Bromodichloromethane 1.0 U 1.0 0.32 75-25-2 Bromoform 1.0 U 1.0 0.42	108-10-1	4-Methyl-2-pentanone	5.0 U	5.0			
108-86-1 Bromobenzene 1.0 U 1.0 0.28 74-97-5 Bromochloromethane 1.0 U 1.0 0.32 75-27-4 Bromodichloromethane 1.0 U 1.0 0.32 75-25-2 Bromoform 1.0 U 1.0 0.42	67-64-1	Acetone	1.6 J				
74-97-5 Bromochloromethane 1.0 U 1.0 U 0.32 75-27-4 Bromodichloromethane 1.0 U 1.0 U 0.32 75-25-2 Bromoform 1.0 U 1.0 U 0.42	71-43-2	Benzene	1.0 U	1.0	0.20		
75-27-4 Bromodichloromethane 1.0 U 1.0 U 0.32 75-25-2 Bromoform 1.0 U 1.0 U 0.42	108-86-1	Bromobenzene					
75-25-2 Bromoform 1.0 U 1.0 0.42	74-97-5	Bromochloromethane					
2.6	75-27-4	Bromodichloromethane	1.0 U	1.0	0.32		
	75-25-2	Bromoform	1.0 U	1.0	0.42		
	74-83-9	Bromomethane	1.0 U	1.0	0.29		

Analytical Report

Client:

Tetra Tech GEO

Project:

Middle River-Lockheed Martin Corp/Surface Water 112ICO6247

Sample Matrix:

Water

Service Request: R1404414 Date Collected: 6/10/14 1032

Date Received: 6/11/14

Date Analyzed: 6/19/14 16:06

Sample Name:

MRC-SW5A1-060914

Lab Code:

R1404414-003

Units: µg/L Basis: NA

Volatile Organic Compounds by GC/MS

Analytical Method: 8260C Data File Name:

I:\ACQUDATA\msvoa12\Data\061914\M6694.D\

Analysis Lot: 397695 Instrument Name: R-MS-12

CAS No.	Analyte Name	Result	Q	MRL	MDL	Note
75-15-0	Carbon Disulfide	0.24	J	1.0	0.22	
56-23-5	Carbon Tetrachloride	1.0	U	1.0	0.45	
108-90-7	Chlorobenzene	1.0	U	1.0	0.29	
75-00-3	Chloroethane	1.0	Ú	1.0	0.24	
67-66-3	Chloroform	1.0		1.0	0.25	•
74-87-3	Chloromethane	1.0	U	1.0	0.21	
124-48-1	Dibromochloromethane	1.0	U	1.0	0.31	
74-95-3	Dibromomethane	1.0		1.0	0.32	
75-71-8	Dichlorodifluoromethane (CFC 12)	1.0	U	1.0	0.46	
75-09-2	Methylene Chloride	1.0	U	1.0	0.32	
108-20-3	Diisopropyl Ether	1.0	U	1.0	0.20	
637-92-3	Ethyl tert-Butyl Ether	1.0	U	1.0	0.20	
100-41-4	Ethylbenzene	1.0	U	1.0	0.20	
87-68-3	Hexachlorobutadiene	2.0	U	2.0	0.62	
98-82-8	Isopropylbenzene (Cumene)	1.0	U	1.0	0.20	
1634-04-4	Methyl tert-Butyl Ether	1.0	U	1.0	0.29	
91-20-3	Naphthalene	1.0	U	1.0	0.20	
100-42-5	Styrene	1.0	U	1.0	0.20	
127-18-4	Tetrachloroethene (PCE)	1.0	U	1.0	0.30	
108-88-3	Toluene	1.0	U	1.0	0.20	
79-01 - 6	Trichloroethene (TCE)	1.0	U	1.0	0.22	·
75-69-4	Trichlorofluoromethane (CFC 11)	1.0	U	1.0	0.20	
108-05-4	Vinyl Acetate	2.0	U	2.0	1.1	
75-01-4	Vinyl Chloride	1.0	U	1.0	0.32	
1330-20-7	Xylenes, Total	3.0	U	3.0	0.53	
156-59-2	cis-1,2-Dichloroethene	1.0	U	1.0	0.30	
10061-01-5	cis-1,3-Dichloropropene	1.0	U	1.0	0.24	
179601-23-1	m,p-Xylenes	2.0	U	2.0	0.33	
104-51-8	n-Butylbenzene	1.0	U	1.0	0.21	
103-65-1	n-Propylbenzene	1.0	U	- 1.0	0.20	
95-47-6	o-Xylene	1.0	U	1.0	0.20	
135-98-8	sec-Butylbenzene	1.0	U	1.0	0.27	
994-05-8	tert-Amyl Methyl Ether	1.0	U	1.0	0.20	
98-06-6	tert-Butylbenzene	1.0	U	1.0	0.20	
156-60-5	trans-1,2-Dichloroethene		U	1.0	0.33	

Analytical Report

Client:

Tetra Tech GEO

Project:

Middle River- Lockheed Martin Corp/Surface Water 112ICO6247

Sample Matrix:

Water

Service Request: R1404414

Date Collected: 6/10/14 1032

Date Received: 6/11/14

Date Analyzed: 6/19/14 16:06

Units: µg/L Basis: NA

Sample Name:

MRC-SW5A1-060914

Lab Code:

R1404414-003

Volatile Organic Compounds by GC/MS

Analytical Method: 8260C

Data File Name:

I:\ACQUDATA\msvoa12\Data\061914\M6694.D\

Analysis Lot: 397695

Instrument Name: R-MS-12

CAS No.	Analyte Name	Result Q	MRL	MDL	Note	
10061-02-6	trans-1,3-Dichloropropene	1.0 U	1.0	0.20		

Surrogate Name	%Rec	Control Limits	Date Analyzed Q
4-Bromofluorobenzene	101	85-122	6/19/14 16:06
Dibromofluoromethane	104	89-119	6/19/14 16:06
Toluene-d8	101	87-121	6/19/14 16:06

Analytical Report

Client:

Tetra Tech GEO

Project:

Middle River- Lockheed Martin Corp/Surface Water 1121CO6247

Sample Matrix:

Water

Service Request: R1404414 Date Collected: 6/10/14 1041

Date Received: 6/11/14

Date Analyzed: 6/19/14 16:39

Units: µg/L Basis: NA

Sample Name:

MRC-SW5A2-060914

Lab Code:

R1404414-004

Volatile Organic Compounds by GC/MS

Analytical Method: 8260C Data File Name:

I:\ACQUDATA\msvoa12\Data\061914\M6695.D\

Analysis Lot: 397695 Instrument Name: R-MS-12

CAS No.	Analyte Name	Result Q	MRL	MDL	Note
630-20-6	1,1,1,2-Tetrachloroethane	1.0 U		0.22	
71-55-6	1,1,1-Trichloroethane (TCA)	1.0 U		0.36	
79-34-5	1,1,2,2-Tetrachloroethane	1.0 U	1.0	0.25	
76-13-1	1,1,2-Trichlorotrifluoroethane	1.0 U		0.31	
75-34-3	1,1-Dichloroethane (1,1-DCA)	1.0 U		0.20	
75-35-4	1,1-Dichloroethene (1,1-DCE)	1.0 U	1.0	0.57	
563-58-6	1,1-Dichloropropene	1.0 U	1.0	0.29	
87-61-6	1,2,3-Trichlorobenzene	1.0 U		0.82	
96-18-4	1,2,3-Trichloropropane	1.0 U	1.0	0.70	
120-82-1	1,2,4-Trichlorobenzene	1.0 U	1.0	0.23	
95-63-6	1,2,4-Trimethylbenzene	1.0 U	1.0	0.20	
96-12-8	1,2-Dibromo-3-chloropropane (DBCP)	2.0 U	2.0	0.74	
106-93-4	1,2-Dibromoethane	1.0 U	1.0	0.24	
95-50-1	1,2-Dichlorobenzene	1.0 U	1.0	0.21	
107-06-2	1,2-Dichloroethane	1.0 U	1.0	0.36	
78-87-5	1,2-Dichloropropane	1.0 U	1.0	0.20	
541-73-1	1,3-Dichlorobenzene	1.0 U	1.0	0.20	
142-28-9	1,3-Dichloropropane	1.0 U	1.0	0.27	
106-46-7	1,4-Dichlorobenzene	1.0 U	1.0	0.20	
594-20-7	2,2-Dichloropropane	1.0 U	1.0	0.27	
78-93-3	2-Butanone (MEK)	5.0 U	5.0	0.81	
110-75-8	2-Chloroethyl Vinyl Ether	1.0 U	1.0	0.44	
95-49-8	2-Chlorotoluene	1.0 U	1.0	0.20	
591-78-6	2-Hexanone	5.0 U	5.0	1.7	
75-65-0	tert-Butyl Alcohol	. 40 U	40	11	
106-43-4	4-Chlorotoluene	1.0 U	1.0	0.24	
99-87-6	4-Isopropyltoluene	1.0 U	1.0	0.20	
108-10-1	4-Methyl-2-pentanone	5.0 U	5.0	- 0.67	
67-64-1	Acetone	1.6 J	5.0	1.3	·
71-43-2	Benzene	1.0 U	1.0	0.20	
108-86-1	Bromobenzene	1.0 U	1.0	0.28	
74-97-5	Bromochloromethane	1.0 U		0.32	
75-27-4	Bromodichloromethane	1.0 U		0.32	
75-25-2	Bromoform	1.0 L	1.0	0.42	
74-83-9	Bromomethane	1.0 L		0.29	
17-03-7	Di Ollotticulatio	1.5			

Analytical Report

Client:

Tetra Tech GEO

Project:

Middle River- Lockheed Martin Corp/Surface Water 1121CO6247

Sample Matrix:

Water

Service Request: R1404414 Date Collected: 6/10/14 1041

Date Received: 6/11/14

Date Analyzed: 6/19/14 16:39

Units: µg/L Basis: NA

Sample Name:

MRC-SW5A2-060914

Lab Code:

R1404414-004

Volatile Organic Compounds by GC/MS

Analytical Method: 8260C

Data File Name:

1:\ACQUDATA\msvoa12\Data\061914\M6695.D\

Analysis Lot: 397695 Instrument Name: R-MS-12

CAS No.	Analyte Name	Result Q	MRL	MDL	Note
75-15-0	Carbon Disulfide	1.0 U	1.0	0.22	
56-23-5	Carbon Tetrachloride	1.0 U	1.0	0.45	
108-90-7	Chlorobenzene	1.0 U	1.0	0.29	
75-00-3	Chloroethane	1.0 U	1.0	0.24	
67-66-3	Chloroform	1.0 U	1.0	0.25	
74-87-3	Chloromethane	1.0 U	1.0	0.21	
124-48-1	Dibromochloromethane	1. 0 U	1.0	0.31	
74-95-3	Dibromomethane	1.0 U	1.0	0.32	
75-71-8	Dichlorodifluoromethane (CFC 12)	1.0 U	1.0	0.46	
75-09-2	Methylene Chloride	1.0 U	1.0	0.32	
108-20-3	Diisopropyl Ether	1.0 U	1.0	0.20	
637-92-3	Ethyl tert-Butyl Ether	1. 0 U	1.0	0.20	<u> </u>
100-41-4	Ethylbenzene	1.0 U	1.0	0.20	
87-68-3	Hexachlorobutadiene	2.0 U	2.0	0.62	
98-82-8	Isopropylbenzene (Cumene)	1. 0 U	1.0	0.20	
1634-04-4	Methyl tert-Butyl Ether	1.0 U	1.0	0.29	
91-20-3	Naphthalene	1.0 U	1.0	0.20	
100-42-5	Styrene	1.0 U	1.0	0.20	
127-18-4	Tetrachloroethene (PCE)	1.0 U	1.0	0.30	
108-88-3	Toluene	1.0 U	1.0	0.20	
79-01-6	Trichloroethene (TCE)	0.30 J	1.0	0.22	
75-69-4	Trichlorofluoromethane (CFC 11)	1.0 U	1.0	0.20	
108-05-4	Vinyl Acetate	2.0 U	2.0	1.1	
75-01-4	Vinyl Chloride	1.0 U	1.0	0.32	
1330-20-7	Xylenes, Total	3.0 U	3.0	0.53	
156-59-2	cis-1,2-Dichloroethene	1.0 U	1.0	0.30	
10061-01-5	cis-1,3-Dichloropropene	1.0 U	1.0	0.24	
179601-23-1	m,p-Xylenes	2.0 U	2.0	0.33	
104-51-8	n-Butylbenzene	1.0 U	1.0	0.21	
103-65-1	n-Propylbenzene	1. 0 U	1.0	0.20	·
95-47-6	o-Xylene	1.0 U	1.0	0.20	
135-98-8	sec-Butylbenzene	1.0 U	1.0	0.27	
994-05-8	tert-Amyl Methyl Ether	1.0 U	1.0	0.20	
98-06-6	tert-Butylbenzene	1.0 U	1.0	0.20	
156-60-5	trans-1,2-Dichloroethene	1.0 U	1.0	0.33	

Analytical Report

Client:

Tetra Tech GEO

Project:

Middle River- Lockheed Martin Corp/Surface Water 112ICO6247

Sample Matrix:

Water

Service Request: R1404414 Date Collected: 6/10/14 1041

Date Received: 6/11/14

Date Analyzed: 6/19/14 16:39

Sample Name:

MRC-SW5A2-060914

Lab Code:

R1404414-004

Units: µg/L Basis: NA

Volatile Organic Compounds by GC/MS

Analytical Method: 8260C

Data File Name:

I:\ACQUDATA\msvoa12\Data\061914\M6695.D\

Analysis Lot: 397695 Instrument Name: R-MS-12

Dilution Factor: 1

Result Q MRL MDL Note CAS No. Analyte Name 1.0 U 1.0 0.20 10061-02-6 trans-1,3-Dichloropropene

Surrogate Name	%Rec	Control Limits	Date Analyzed Q	2
4-Bromofluorobenzene	101	85-122	6/19/14 16:39	
Dibromofluoromethane	105	89-119	6/19/14 16:39	
Toluene-d8	102	87-121	6/19/14 16:39	

Analytical Report

Client:

Tetra Tech GEO

Project:

Middle River- Lockheed Martin Corp/Surface Water 112ICO6247

Sample Matrix:

Water

Service Request: R1404414 Date Collected: 6/10/14 1049

Date Received: 6/11/14

Date Analyzed: 6/19/14 17:11

Sample Name:

MRC-SW5B-060914

Lab Code:

R1404414-005

Units: µg/L Basis: NA

Volatile Organic Compounds by GC/MS

Analytical Method: 8260C Data File Name:

I:\ACQUDATA\msvoa12\Data\061914\M6696.D\

Analysis Lot: 397695 Instrument Name: R-MS-12

CAS No.	Analyte Name	Result Q	MRL	MDL	Note
630-20-6	1,1,1,2-Tetrachloroethane	1.0 U	1.0	0.22	
71-55-6	1,1,1-Trichloroethane (TCA)	1.0 U	1.0	0.36	
79-34-5	1,1,2,2-Tetrachloroethane	1.0 U	1.0	0.25	
76-13-1	1,1,2-Trichlorotrifluoroethane	1.0 U	1.0	0.31	
75-34-3	1,1-Dichloroethane (1,1-DCA)	1.0 U	1.0	0.20	
75-35-4	1,1-Dichloroethene (1,1-DCE)	1.0 U	1.0	0.57	
563-58-6	1,1-Dichloropropene	1.0 U	1.0	0.29	
87-61-6	1,2,3-Trichlorobenzene	1.0 U	1.0	0.82	
96-18-4	1,2,3-Trichloropropane	1.0 U	1.0	0.70	
120-82-1	1,2,4-Trichlorobenzene	1.0 U	1.0	0.23	
95-63-6	1,2,4-Trimethylbenzene	1.0 U	1.0	0.20	
96-12-8	1,2-Dibromo-3-chloropropane (DBCP)	2.0 U	2.0	0.74	
106-93-4	1,2-Dibromoethane	1.0 U	1.0	0.24	
95-50-1	1,2-Dichlorobenzene	1.0 U	1.0	0.21	
107-06-2	1,2-Dichloroethane	1.0 U	1.0	0.36	
78-87-5	1,2-Dichloropropane	1.0 U	1.0	0.20	
541-73-1	1,3-Dichlorobenzene	1.0 U	1.0	0.20	·
142-28-9	1,3-Dichloropropane	1.0 U	1.0	0.27	
106-46-7	1,4-Dichlorobenzene	1.0 U	1.0	0.20	
594-20-7	2,2-Dichloropropane	1.0 U	1.0	0.27	
78-93-3	2-Butanone (MEK)	5.0 U	5.0	0.81	
110-75-8	2-Chloroethyl Vinyl Ether	1.0 U	1.0	0.44	
95-49-8	2-Chlorotoluene	1.0 U	1.0	0.20	
591-78-6	2-Hexanone	5.0 U	5.0	1.7	
75-65-0	tert-Butyl Alcohol	40 U	40	11	
106-43-4	4-Chlorotoluene	1.0 U	1.0	0.24	
99-87-6	4-Isopropyltoluene	1.0 U	1.0	0.20	
108-10-1	4-Methyl-2-pentanone	5.0 U	5.0	0.67	
67-64-1	Acetone	1.3 J	5.0	1.3	
71-43-2	Benzene	1.0 U	1.0	0.20	
108-86-1	Вготовепие	1.0 U	1.0	0.28	
74-97-5	Bromochloromethane	1.0 U	1.0	0.32	
75-27-4	Bromodichloromethane	1.0 U	1.0	0.32	
75-25-2	Bromoform	1.0 U	1.0	0.42	
74-83-9	Bromomethane	1.0 U	1.0	0.29	

Analytical Report

Client:

Tetra Tech GEO

Project:

Middle River-Lockheed Martin Corp/Surface Water 112ICO6247

Sample Matrix:

Water

Service Request: R1404414 Date Collected: 6/10/14 1049

Date Received: 6/11/14

Date Analyzed: 6/19/14 17:11

Units: µg/L Basis: NA

Sample Name:

MRC-SW5B-060914

Lab Code:

R1404414-005

Volatile Organic Compounds by GC/MS

Analytical Method: 8260C Data File Name:

I:\ACQUDATA\msvoa12\Data\061914\M6696.D\

Analysis Lot: 397695 Instrument Name: R-MS-12

CAS No.	Analyte Name	Result Q	MRL	MDL	Note
75-15-0	Carbon Disulfide	1.0 U	1.0	0.22	
56-23-5	Carbon Tetrachloride	1.0 U	1.0	0.45	
108-90-7	Chlorobenzene	1.0 U	1.0	0.29	
75-00-3	Chloroethane	1.0 U	1.0	0.24	
67-66-3	Chloroform	1.0 U	1.0	0.25	
74-87-3	Chloromethane	1.0 U	1.0	0.21	
124-48-1	Dibromochloromethane	1.0 U	1.0	0.31	
74-95-3	Dibromomethane	1.0 U	1.0	0.32	
75-71-8	Dichlorodifluoromethane (CFC 12)	1.0 U	1.0	0.46	
75-09-2	Methylene Chloride	1.0 U	1.0	0.32	
108-20-3	Diisopropyl Ether	1.0 U	1.0	0.20	
637-92-3	Ethyl tert-Butyl Ether	1.0 U	1.0	0.20	
100-41-4	Ethylbenzene	1.0 U	1.0	0.20	
87-68-3	Hexachlorobutadiene	2.0 U	2.0	0.62	
98-82-8	Isopropylbenzene (Cumene)	1.0 U	1.0	0.20	
1634-04-4	Methyl tert-Butyl Ether	1.0 U	1.0	0.29	
91-20-3	Naphthalene	1.0 U	1.0	0.20	
100-42-5	Styrene	1.0 U	1.0	0.20	
127-18-4	Tetrachloroethene (PCE)	1.0 U	1.0	0.30	
108-88-3	Toluene	1.0 U	1.0	0,20	
79-01-6	Trichloroethene (TCE)	1.0 U	1.0	0.22	
75-69-4	Trichlorofluoromethane (CFC 11)	1.0 U	1.0	0.20	
108-05-4	Vinyl Acetate	2.0 U	2.0	1.1	
75-01-4	Vinyl Chloride	1.0 U	1.0	0.32	
1330-20-7	Xylenes, Total	3.0 U	3.0	0.53	
156-59-2	cis-1,2-Dichloroethene	1. 0 U	1.0	0.30	
10061-01-5	cis-1,3-Dichloropropene	1.0 U	1.0	0.24	
179601-23-1	m,p-Xylenes	2.0 U	2.0	0.33	
104-51-8	n-Butylbenzene	1.0 U	1.0	0.21	
103-65-1	n-Propylbenzene	1.0 U	1.0	0.20	
95-47-6	o-Xylene	1.0 U	1.0	0.20	
135-98-8	sec-Butylbenzene	1.0 U	1.0	0.27	
994-05-8	tert-Amyl Methyl Ether	1.0 U	1.0	0.20	
98-06-6	tert-Butylbenzene	1.0 U	1.0	0.20	•
156-60-5	trans-1,2-Dichloroethene	1.0 U	1.0	0.33	
150-00-5	times 1,2 Division version				

Analytical Report

Client:

Tetra Tech GEO

Project:

Middle River- Lockheed Martin Corp/Surface Water 112ICO6247

Sample Matrix:

Water

Service Request: R1404414

Date Collected: 6/10/14 1049

Date Received: 6/11/14

Date Analyzed: 6/19/14 17:11

Units: µg/L

Sample Name:

MRC-SW5B-060914

Lab Code:

R1404414-005

Basis: NA

Volatile Organic Compounds by GC/MS

Analytical Method: 8260C

Data File Name:

1:\ACQUDATA\msvoa12\Data\061914\M6696.D\

Analysis Lot: 397695

Instrument Name: R-MS-12

CAS No.	Analyte Name	Result (Q	MRL_	MDL	Note
10061-02-6	trans-1,3-Dichloropropene	1. 0 U	IJ	1.0	0.20	

Surrogate Name	%Rec	Control Limits	Date Analyzed Q
4-Bromofluorobenzene	99	85-122	6/19/14 17:11
Dibromofluoromethane	102	89-119	6/19/14 17:11
Toluene-d8	100	87-121	6/19/14 17:11

Analytical Report

Client:

Tetra Tech GEO

Project:

Middle River- Lockheed Martin Corp/Surface Water 1121CO6247

Sample Matrix:

Water

Service Request: R1404414 Date Collected: 6/10/14 1144 Date Received: 6/11/14

Date Analyzed: 6/19/14 17:44

Units: µg/L Basis: NA

Sample Name:

MRC-SW6A-060914

Lab Code:

R1404414-006

Volatile Organic Compounds by GC/MS

Analytical Method: 8260C Data File Name:

I:\ACQUDATA\msvoa12\Data\061914\M6697.D\

Analysis Lot: 397695 Instrument Name: R-MS-12

CAS No.	Analyte Name	Result Q	MRL	MDL	Note	
630-20-6	1,1,1,2-Tetrachloroethane	1.0 U	1.0	0.22		
71-55-6	1,1,1-Trichloroethane (TCA)	1.0 U	1.0	0.36		
79-34-5	1,1,2,2-Tetrachloroethane	1.0 U	1.0	0.25		
76-13-1	1,1,2-Trichlorotrifluoroethane	1.0 U	1.0	0.31		
75-34-3	1,1-Dichloroethane (1,1-DCA)	1.0 U	1.0	0.20		
75-35-4	1,1-Dichloroethene (1,1-DCE)	1.0 U	1.0	0.57		
563-58-6	1,1-Dichloropropene	1.0 U	1.0	0.29		
87-61-6	1,2,3-Trichlorobenzene	1.0 U	1.0	0.82		
96-18-4	1,2,3-Trichloropropane	1.0 U	1.0	0.70		
120-82-1	1,2,4-Trichlorobenzene	1.0 U	1.0	0.23		
95-63-6	1,2,4-Trimethylbenzene	1.0 U	1.0	0.20		
96-12-8	1,2-Dibromo-3-chloropropane (DBCP)	2.0 U	2.0	0.74		
106-93-4	1,2-Dibromoethane	1.0 U	1.0	0.24		
95-50-1	1,2-Dichlorobenzene	1. 0 U	1.0	0.21		
107-06-2	1,2-Dichloroethane	1.0 U	1.0	0.36		
78-87-5	1,2-Dichloropropane	1.0 U	1.0	0.20		
541-73-1	1,3-Dichlorobenzene	1.0 U	1.0	0.20		
142-28-9	1,3-Dichloropropane	1.0 U	1.0	0.27		
106-46-7	1,4-Dichlorobenzene	1.0 U	1.0	0.20		
594-20-7	2,2-Dichloropropane	1. 0 U	1.0	0.27		
78-93-3	2-Butanone (MEK)	5.0 U	5.0	0.81		
110-75-8	2-Chloroethyl Vinyl Ether	1.0 U	1.0	0.44		
95-49-8	2-Chlorotoluene	1. 0 U	1.0	0.20		
591-78-6	2-Hexanone	5.0 U·	5.0	1.7		
75-65-0	tert-Butyl Alcohol	40 U	40	11		
106-43-4	4-Chlorotoluene	1.0 U	1.0	0.24		
99-87-6	4-Isopropyltoluene	1.0 U	1.0	0.20		
108-10-1	4-Methyl-2-pentanone	5.0 U	5.0	0.67		
67-64-1	Acetone	1.6 J	5.0	1.3		
71-43-2	Benzene	1.0 U	1.0	0.20		
108-86-1	Bromobenzene	1.0 U	1.0	0.28		
74-97-5	Bromochloromethane	1.0 U	1.0	0.32		
75-27-4	Bromodichloromethane	1.0 U	1.0	0.32		
75-25-2	Bromoform	1.0 U	1.0	0.42	•	
74-83-9	Bromomethane	1.0 U	1.0	0.29		

Analytical Report

Client:

Tetra Tech GEO

Project:

Middle River- Lockheed Martin Corp/Surface Water 112ICO6247

Sample Matrix:

Water

Service Request: R1404414

Date Collected: 6/10/14 1144 Date Received: 6/11/14

Date Analyzed: 6/19/14 17:44

Sample Name: Lab Code:

MRC-SW6A-060914 R1404414-006

Units: µg/L Basis: NA

Volatile Organic Compounds by GC/MS

Analytical Method: 8260C

Data File Name:

I:\ACQUDATA\msvoa12\Data\061914\M6697.D\

Analysis Lot: 397695 Instrument Name: R-MS-12

75-15-0 Carbon Disulfide	CAS No.	Analyte Name	Result Q	MRL	MDL	Note
108-90-7 Chloroetnane	75-15-0	Carbon Disulfide	1.0 U	1.0	0.22	
75-00-3	56-23-5	Carbon Tetrachloride	1.0 U	1.0		
67-66-3 Chloroform 1.0 U 1.0 0.25 74-87-3 Chloromethane 1.0 U 1.0 0.21 124-48-1 Dibromochloromethane 1.0 U 1.0 0.31 74-95-3 Dibromomethane 1.0 U 1.0 0.32 75-71-8 Dichlorodifluoromethane (CFC 12) 1.0 U 1.0 0.46 75-09-2 Methylene Chloride 1.0 U 1.0 0.20 188-20-3 Diisopropyl Ether 1.0 U 1.0 0.20 637-92-3 Ethyl tert-Butyl Ether 1.0 U 1.0 0.20 190-41-4 Ethylbenzene 1.0 U 1.0 0.20 190-41-4 Ethylbenzene 1.0 U 1.0 0.20 183-88-3 Hexachlorobutadiene 2.0 U 2.0 0.62 98-82-8 Isopropylenzene (Cumene) 1.0 U 1.0 0.20 1634-04-4 Methyl tert-Butyl Ether 1.0 U 1.0 0.20 191-20-3 Naphthalene 1.0 U 1.0 0.20 191-20-3 Naphthalene 1.0 U 1.0 0.20 191-20-42-5 Styrene 1.0 U 1.0 0.20 127-18-4 Tetrachloroethene (PCE) 1.0 U 1.0 0.20 127-18-4 Tetrachloroethene (PCE) 1.0 U 1.0 0.20 175-69-4 Trichloroftheromethane (CFC 11) 1.0 U 1.0 0.20 188-83 Toluene 1.0 U 1.0 0.20 188-05-4 Vinyl Acetate 2.0 U 2.0 1.1 75-01-4 Vinyl Chloride 1.0 U 1.0 0.32 1330-20-7 Xylenes, Total 3.0 U 3.0 0.53 1366-59-2 cis-1,2-Dichloroethene 1.0 U 1.0 0.30 10061-01-5 cis-1,3-Dichloropropene 1.0 U 1.0 0.20 179-601-23-1 m,p-Xylenes 2.0 U 2.0 0.33 10061-01-5 cis-1,3-Dichloropropene 1.0 U 1.0 0.20 154-76-6 o-Xylene 1.0 U 1.0 0.20 155-98-8 sec-Butylbenzene 1.0 U 1.0 0.20 156-66 tert-Butylbenzene 1.0 U 1.0 0.20 156-66 tert-Butylbenzene 1.0 U 1.0 0.20	108-90-7	Chlorobenzene	1.0 U	1.0	0.29	
74-87-3 Chloromethane 1.0 U 1.0 0.21 124-48-1 Dibromochloromethane 1.0 U 1.0 0.31 74-95-3 Dibromochlane 1.0 U 1.0 0.32 75-71-8 Dichlorodifluoromethane (CFC 12) 1.0 U 1.0 0.46 75-09-2 Methylene Chloride 1.0 U 1.0 0.20 108-20-3 Diisopropyl Ether 1.0 U 1.0 0.20 37-92-3 Ethyl tert-Butyl Ether 1.0 U 1.0 0.20 100-41-4 Ethylbenzene 1.0 U 1.0 0.20 87-68-3 Hexachlorobutadiene 2.0 U 2.0 0.62 98-82-8 Isopropylbenzene (Cumene) 1.0 U 1.0 0.20 1634-04-4 Methyl tert-Butyl Ether 1.0 U 1.0 0.20 100-42-5 Styrene 1.0 U 1.0 0.20 100-42-5 Styrene 1.0 U 1.0 0.20 127-18-4 Tetrachloroethene (PCE) 1.0 U 1.0 0.20 127-18-4 Titchlorofluoromethane (CFC II) 1.0 U 1.0 0.20 75-69-4 Trichlorofluoromethane (CFC II)	75-00-3	Chloroethane	1.0 U	1.0	0.24	
124-48-1 Dibromochloromethane	67-66-3			1.0		
74-95-3 Dibromomethane 1.0 U 1.0 0.32 75-71-8 Dichlorodifluoromethane (CFC 12) 1.0 U 1.0 0.46 75-09-2 Methylene Chloride 1.0 U 1.0 0.32 108-20-3 Diisopropyl Ether 1.0 U 1.0 0.20 637-92-3 Ethyl tert-Butyl Ether 1.0 U 1.0 0.20 100-41-4 Ethylbenzene 1.0 U 1.0 0.20 87-68-3 Hexachlorobutadiene 2.0 U 2.0 0.62 88-8-8 Isopropylbenzene (Cumene) 1.0 U 1.0 0.20 1634-04-4 Methyl tert-Butyl Ether 1.0 U 1.0 0.29 91-20-3 Naphthalene 1.0 U 1.0 0.20 100-42-5 Styrene 1.0 U 1.0 0.20 127-18-4 Tetrachloroethene (PCE) 1.0 U 1.0 0.20 108-88-3 Toluene 1.0 U 1.0 0.20 79-01-6 Trichlorothouromethane (CFC 11) 1.0 U 1.0 0.20 75-69-4 Trichlorothouromethane (CFC 11) 1.0 U 1.0 0.20 108-05-4 Vinyl Acetate 2.0 U 2.0 1.1 75-01-4 Vinyl Chloride 1.0 U 1.0 0.32 1330-20-7 Xylenes, Total 3.0 U 3.0 0.53 156-59-2 cis-1,2-Dichloroethene 1.0 U 1.0 0.24 179601-23-1 m,p-Xylenes 2.0 U 2.0 0.33 106-51 n-Propylbenzene 1.0 U 1.0 0.20 95-47-6 o-Xylene 1.0 U 1.0 0.20 95-47-6 o-Xylene 1.0 U 1.0 0.20 98-06-6 tert-Butylbenzene 1.0 U 1.0 0.20	74-87-3	Chloromethane	1.0 U	1.0	0.21	
75-71-8 Dichlorodifluoromethane (CFC 12) 1.0 U 1.0 0.46 75-09-2 Methylene Chloride 1.0 U 1.0 0.32 108-20-3 Diisopropyl Ether 1.0 U 1.0 0.20 37-92-3 Ethyl tert-Butyl Ether 1.0 U 1.0 0.20 87-68-3 Hexachlorobutadiene 2.0 U 2.0 0.62 98-82-8 Isopropylbenzene (Cumene) 1.0 U 1.0 0.20 1634-04-4 Methyl tert-Butyl Ether 1.0 U 1.0 0.29 91-20-3 Naphthalene 1.0 U 1.0 0.29 91-20-3 Naphthalene 1.0 U 1.0 0.20 127-18-4 Tetrachloroethene (PCE) 1.0 U 1.0 0.20 127-18-4 Tetrachloroethene (TCE) 0.52 J 1.0 0.22 79-01-6 Trichloroethene (TCE) 0.52 J 1.0 0.22 18-6-9-4 Trich	124-48-1	Dibromochloromethane	1.0 U	1.0	0.31	
75-09-2 Methylene Chloride	74-95-3	Dibromomethane	1.0 U	1.0	0.32	
108-20-3	75-71-8	Dichlorodifluoromethane (CFC 12)	1.0 U	1.0	0.46	
637-92-3 Ethyl tert-Butyl Ether 1.0 U 1.0 0.20 100-41-4 Ethylbenzene 1.0 U 1.0 0.20 87-68-3 Hexachlorobutadiene 2.0 U 2.0 0.62 98-82-8 Isopropylbenzene (Cumene) 1.0 U 1.0 0.20 1634-04-4 Methyl tert-Butyl Ether 1.0 U 1.0 0.29 91-20-3 Naphthalene 1.0 U 1.0 0.20 100-42-5 Styrene 1.0 U 1.0 0.20 127-18-4 Tetrachloroethene (PCE) 1.0 U 1.0 0.30 108-88-3 Toluene 1.0 U 1.0 0.20 79-01-6 Trichloroethene (TCE) 0.52 J 1,0 0.22 75-69-4 Trichlorofluoromethane (CFC 11) 1.0 U 1.0 0.20 108-05-4 Vinyl Acetate 2.0 U 2.0 1.1 75-01-4 Vinyl Chloride 1.0<	75-09-2	Methylene Chloride	1.0 U	1.0	0.32	
100-41-4	108-20-3	Diisopropyl Ether	1.0 U	1.0	0.20	
87-68-3 Hexachlorobutadiene 2.0 U 2.0 0.62 98-82-8 Isopropylbenzene (Cumene) 1.0 U 1.0 0.20 1634-04-4 Methyl tert-Butyl Ether 1.0 U 1.0 0.29 91-20-3 Naphthalene 1.0 U 1.0 0.20 100-42-5 Styrene 1.0 U 1.0 0.20 127-18-4 Tetrachloroethene (PCE) 1.0 U 1.0 0.30 108-88-3 Toluene 1.0 U 1.0 0.20 79-01-6 Trichloroethene (TCE) 0.52 J 1,0 0.22 75-69-4 Trichlorofluoromethane (CFC 11) 1.0 U 1.0 0.20 108-05-4 Vinyl Acetate 2.0 U 2.0 1.1 75-01-4 Vinyl Chloride 1.0 U 1.0 0.32 1330-20-7 Xylenes, Total 3.0 U 3.0 0.53 156-59-2 cis-1,3-Dichloroethene 1	637-92-3	Ethyl tert-Butyl Ether	1.0 U	1.0	0.20	
98-82-8 Isopropylbenzene (Cumene) 1.0 U 1.0 0.20 1634-04-4 Methyl tert-Butyl Ether 1.0 U 1.0 0.29 91-20-3 Naphthalene 1.0 U 1.0 0.20 100-42-5 Styrene 1.0 U 1.0 0.20 127-18-4 Tetrachloroethene (PCE) 1.0 U 1.0 0.30 108-88-3 Toluene 1.0 U 1.0 0.20 79-01-6 Trichlorofluoromethane (TCE) 0.52 J 1.0 0.22 75-69-4 Trichlorofluoromethane (CFC 11) 1.0 U 1.0 0.20 108-05-4 Vinyl Acetate 2.0 U 2.0 I.1 75-01-4 Vinyl Chloride 1.0 U 1.0 0.32 1330-20-7 Xylenes, Total 3.0 U 3.0 0.53 156-59-2 cis-1,2-Dichloroethene 1.0 U 1.0 0.24 179601-23-1 m,p-Xylenes 2.0 U 2.0 0.33 104-51-8 n-Butylbenzene 1.0 U 1.0 0.20 95-47-6 o-Xylene 1.0 U 1.0 0.20 135-98-8 sec-Butylbenzene 1.0 U 1.0 0.20 </td <td>100-41-4</td> <td>Ethylbenzene</td> <td>1.0 U</td> <td>1.0</td> <td>0.20</td> <td></td>	100-41-4	Ethylbenzene	1.0 U	1.0	0.20	
1634-04-4 Methyl tert-Butyl Ether	87-68-3	Hexachlorobutadiene	2.0 U	2.0	0.62	
1634-04-4 Methyl tert-Butyl Ether	98-82-8	Isopropylbenzene (Cumene)	1.0 U	1.0	0.20	
100-42-5 Styrene	1634-04-4	Methyl tert-Butyl Ether	1.0 U	1.0	0.29	
127-18-4	91-20-3	Naphthalene	1.0 U	1.0	0.20	
108-88-3 Toluene 1.0 U 1.0 0.20 79-01-6 Trichloroethene (TCE) 0.52 J 1.0 0.22 75-69-4 Trichlorofluoromethane (CFC 11) 1.0 U 1.0 0.20 108-05-4 Vinyl Acetate 2.0 U 2.0 1.1 75-01-4 Vinyl Chloride 1.0 U 1.0 0.32 1330-20-7 Xylenes, Total 3.0 U 3.0 0.53 156-59-2 cis-1,2-Dichloroethene 1.0 U 1.0 0.30 10061-01-5 cis-1,3-Dichloropropene 1.0 U 1.0 0.24 179601-23-1 m,p-Xylenes 2.0 U 2.0 0.33 104-51-8 n-Butylbenzene 1.0 U 1.0 0.21 103-65-1 n-Propylbenzene 1.0 U 1.0 0.20 95-47-6 o-Xylene 1.0 U 1.0 0.20 95-48-8 sec-Butylbenzene 1.0 U 1.0 0.27 994-05-8 tert-Amyl Methyl Ether 1.0 U 1.0 0.20 98-06-6 tert-Butylbenzene 1.0 U 1.0 0.20 1.0 U 1.0 0.20	100-42-5	Styrene	1.0 U	1.0	0.20	
79-01-6 Trichloroethene (TCE) 0.52 J 1,0 0.22 75-69-4 Trichlorofluoromethane (CFC 11) 1.0 U 1.0 0.20 108-05-4 Vinyl Acetate 2.0 U 2.0 1.1 75-01-4 Vinyl Chloride 1.0 U 1.0 0.32 1330-20-7 Xylenes, Total 3.0 U 3.0 0.53 156-59-2 cis-1,2-Dichloroethene 1.0 U 1.0 0.30 10061-01-5 cis-1,3-Dichloropropene 1.0 U 1.0 0.24 179601-23-1 m,p-Xylenes 2.0 U 2.0 0.33 104-51-8 n-Butylbenzene 1.0 U 1.0 0.21 103-65-1 n-Propylbenzene 1.0 U 1.0 0.20 95-47-6 o-Xylene 1.0 U 1.0 0.27 994-05-8 tert-Amyl Methyl Ether 1.0 U 1.0 0.20 98-06-6 tert-Butylbenzene 1	127-18-4	Tetrachloroethene (PCE)	1.0 U	1.0	0.30	
75-69-4 Trichlorofluoromethane (CFC 11) 1.0 U 1.0 0.20 108-05-4 Vinyl Acetate 2.0 U 2.0 1.1 75-01-4 Vinyl Chloride 1.0 U 1.0 0.32 1330-20-7 Xylenes, Total 3.0 U 3.0 0.53 156-59-2 cis-1,2-Dichloroethene 1.0 U 1.0 0.30 10061-01-5 cis-1,3-Dichloropropene 1.0 U 1.0 0.24 179601-23-1 m,p-Xylenes 2.0 U 2.0 0.33 104-51-8 n-Butylbenzene 1.0 U 1.0 0.21 103-65-1 n-Propylbenzene 1.0 U 1.0 0.20 95-47-6 o-Xylene 1.0 U 1.0 0.20 135-98-8 sec-Butylbenzene 1.0 U 1.0 0.27 994-05-8 tert-Amyl Methyl Ether 1.0 U 1.0 0.20 98-06-6 tert-Butylbenzene 1.0 U 1.0 0.20	108-88-3	Toluene	1.0 U	1.0	0.20	
108-05-4 Vinyl Acetate 2.0 U 2.0 U 1.1 75-01-4 Vinyl Chloride 1.0 U 1.0 U 0.32 1330-20-7 Xylenes, Total 3.0 U 3.0 U 0.53 156-59-2 cis-1,2-Dichloroethene 1.0 U 1.0 U 0.30 10061-01-5 cis-1,3-Dichloropropene 1.0 U 1.0 U 0.24 179601-23-1 m,p-Xylenes 2.0 U 2.0 U 0.33 104-51-8 n-Butylbenzene 1.0 U 1.0 U 0.21 103-65-1 n-Propylbenzene 1.0 U 1.0 U 0.20 95-47-6 o-Xylene 1.0 U 1.0 U 0.20 135-98-8 sec-Butylbenzene 1.0 U 1.0 U 0.27 994-05-8 tert-Amyl Methyl Ether 1.0 U 1.0 U 0.20 98-06-6 tert-Butylbenzene 1.0 U 1.0 U 0.20	79-01-6	Trichloroethene (TCE)	0.52 J	1,0	0.22	
75-01-4 Vinyl Chloride 1.0 U 1.0 0.32 1330-20-7 Xylenes, Total 3.0 U 3.0 0.53 156-59-2 cis-1,2-Dichloroethene 1.0 U 1.0 0.30 10061-01-5 cis-1,3-Dichloropropene 1.0 U 1.0 0.24 179601-23-1 m,p-Xylenes 2.0 U 2.0 0.33 104-51-8 n-Butylbenzene 1.0 U 1.0 0.21 103-65-1 n-Propylbenzene 1.0 U 1.0 0.20 95-47-6 o-Xylene 1.0 U 1.0 0.20 135-98-8 sec-Butylbenzene 1.0 U 1.0 0.20 994-05-8 tert-Amyl Methyl Ether 1.0 U 1.0 0.20 98-06-6 tert-Butylbenzene 1.0 U 1.0 0.20	75-69-4	Trichlorofluoromethane (CFC 11)	1.0 U	1.0	0.20	
1330-20-7 Xylenes, Total 3.0 U 3.0 0.53 156-59-2 cis-1,2-Dichloroethene 1.0 U 1.0 0.30 10061-01-5 cis-1,3-Dichloropropene 1.0 U 1.0 0.24 179601-23-1 m,p-Xylenes 2.0 U 2.0 0.33 104-51-8 n-Butylbenzene 1.0 U 1.0 0.21 103-65-1 n-Propylbenzene 1.0 U 1.0 0.20 95-47-6 o-Xylene 1.0 U 1.0 0.20 135-98-8 sec-Butylbenzene 1.0 U 1.0 0.27 1994-05-8 tert-Amyl Methyl Ether 1.0 U 1.0 0.20 98-06-6 tert-Butylbenzene 1.0 U 1.0 0.20 1.0 U 1.0 0.20	108-05-4	Vinyl Acetate	2.0 U	2.0	1.l	
156-59-2 cis-1,2-Dichloroethene 1.0 U 1.0 0.30 10061-01-5 cis-1,3-Dichloropropene 1.0 U 1.0 0.24 179601-23-1 m,p-Xylenes 2.0 U 2.0 0.33 104-51-8 n-Butylbenzene 1.0 U 1.0 0.21 103-65-1 n-Propylbenzene 1.0 U 1.0 0.20 95-47-6 o-Xylene 1.0 U 1.0 0.20 135-98-8 sec-Butylbenzene 1.0 U 1.0 0.27 994-05-8 tert-Amyl Methyl Ether 1.0 U 1.0 0.20 98-06-6 tert-Butylbenzene 1.0 U 1.0 0.20	75-01-4	Vinyl Chloride	1.0 U	1.0	0.32	
10061-01-5 cis-1,3-Dichloropropene 1.0 U 1.0 0.24 179601-23-1 m,p-Xylenes 2.0 U 2.0 0.33 104-51-8 n-Butylbenzene 1.0 U 1.0 0.21 103-65-1 n-Propylbenzene 1.0 U 1.0 0.20 95-47-6 o-Xylene 1.0 U 1.0 0.20 135-98-8 sec-Butylbenzene 1.0 U 1.0 0.27 994-05-8 tert-Amyl Methyl Ether 1.0 U 1.0 0.20 98-06-6 tert-Butylbenzene 1.0 U 1.0 0.20	1330-20-7	Xylenes, Total	3.0 U	3.0	0.53	
179601-23-1 m,p-Xylenes 2.0 U 2.0 0.33 104-51-8 n-Butylbenzene 1.0 U 1.0 0.21 103-65-1 n-Propylbenzene 1.0 U 1.0 0.20 95-47-6 o-Xylene 1.0 U 1.0 0.20 135-98-8 sec-Butylbenzene 1.0 U 1.0 0.27 994-05-8 tert-Amyl Methyl Ether 1.0 U 1.0 0.20 98-06-6 tert-Butylbenzene 1.0 U 1.0 0.20	156-59-2	cis-1,2-Dichloroethene	1.0 U	1.0	0.30	
104-51-8 n-Butylbenzene 1.0 U 1.0 0.21 103-65-1 n-Propylbenzene 1.0 U 1.0 0.20 95-47-6 o-Xylene 1.0 U 1.0 0.20 135-98-8 sec-Butylbenzene 1.0 U 1.0 0.27 994-05-8 tert-Amyl Methyl Ether 1.0 U 1.0 0.20 98-06-6 tert-Butylbenzene 1.0 U 1.0 0.20	10061-01-5	cis-1,3-Dichloropropene	1.0 U	1.0	0.24	
104-51-8 n-Butylbenzene 1.0 U 1.0 0.21 103-65-1 n-Propylbenzene 1.0 U 1.0 0.20 95-47-6 o-Xylene 1.0 U 1.0 0.20 135-98-8 sec-Butylbenzene 1.0 U 1.0 0.27 994-05-8 tert-Amyl Methyl Ether 1.0 U 1.0 0.20 98-06-6 tert-Butylbenzene 1.0 U 1.0 0.20	179601-23-1	m,p-Xylenes	2.0 U	2.0	0.33	
95-47-6 o-Xylene 1.0 U 1.0 0.20 135-98-8 sec-Butylbenzene 1.0 U 1.0 0.27 994-05-8 tert-Amyl Methyl Ether 1.0 U 1.0 0.20 98-06-6 tert-Butylbenzene 1.0 U 1.0 0.20	104-51-8	• •	1.0 U	1.0	0.21	
135-98-8 sec-Butylbenzene 1.0 U 1.0 0.27 994-05-8 tert-Amyl Methyl Ether 1.0 U 1.0 0.20 98-06-6 tert-Butylbenzene 1.0 U 1.0 0.20	103-65-1	n-Propylbenzene	1.0 U	1.0	0.20	
135-98-8 sec-Butylbenzene 1.0 U 1.0 0.27 994-05-8 tert-Amyl Methyl Ether 1.0 U 1.0 0.20 98-06-6 tert-Butylbenzene 1.0 U 1.0 0.20	95-47-6	o-Xylene	1.0 U	1.0	0.20	
994-05-8 tert-Amyl Methyl Ether 1.0 U 1.0 0.20 98-06-6 tert-Butylbenzene 1.0 U 1.0 0.20	135-98-8	•	1.0 U	1.0	0.27	
	994-05-8	tert-Amyl Methyl Ether	1.0 U	1.0	0.20	
	98-06-6	tert-Butylbenzene	1.0 U	1.0	0.20	

Analytical Report

Client:

Tetra Tech GEO

Project:

Middle River-Lockheed Martin Corp/Surface Water 112ICO6247

Sample Matrix:

Water

Service Request: R1404414

Date Collected: 6/10/14 1144

Date Received: 6/11/14

Date Analyzed: 6/19/14 17:44

Units: µg/L

Sample Name:

MRC-SW6A-060914

Lab Code:

R1404414-006

Basis: NA

Volatile Organic Compounds by GC/MS

Analytical Method: 8260C

Data File Name:

I:\ACQUDATA\msvoa12\Data\061914\M6697.D\

Analysis Lot: 397695

Instrument Name: R-MS-12 Dilution Factor: 1

CAS No. Result Q MRL MDL Note **Analyte Name** 10061-02-6 1.0 U 1.0 0.20 trans-1,3-Dichloropropene

Surrogate Name	%Rec	Control Limits	Date Analyzed
I-Bromofluorobenzene	101	85-122	6/19/14 17:44
Dibromofluoromethane	104	89-119	6/19/14 17:44
Toluene-d8	102	87-121	6/19/14 17:44

Analytical Report

Client:

Tetra Tech GEO

Project:

Middle River- Lockheed Martin Corp/Surface Water 112ICO6247

Sample Matrix:

Water

Service Request: R1404414

Date Collected: 6/10/14 1149 Date Received: 6/11/14

Date Analyzed: 6/19/14 18:16

Units: µg/L Basis: NA

Sample Name:

MRC-SW6B-060914

Lab Code:

R1404414-007

Volatile Organic Compounds by GC/MS

Analytical Method: 8260C Data File Name:

I:\ACQUDATA\msvoa12\Data\061914\M6698.D\

Analysis Lot: 397695 Instrument Name: R-MS-12

CAS No.	Analyte Name	Result Q	MRL	MDL	Note
630-20-6	1,1,1,2-Tetrachloroethane	1.0 U	1.0	0.22	
71-55 - 6	1,1,1-Trichloroethane (TCA)	1.0 U	1.0	0.36	
79-34-5	1,1,2,2-Tetrachloroethane	1.0 U	1.0	0.25	
76-13-1	1,1,2-Trichlorotrifluoroethane	1.0 U	1.0	0.31	•
75-34-3	1,1-Dichloroethane (1,1-DCA)	1.0 U	1.0	0.20	
75-35-4	1,1-Dichloroethene (1,1-DCE)	1.0 U	1.0	0.57	
563-58-6	1,1-Dichloropropene	1.0 U	1.0	0.29	
87-61-6	1,2,3-Trichlorobenzene	1.0 U.	1.0	0.82	
96-18-4	1,2,3-Trichloropropane	1.0 U	1.0	0.70	
120-82-1	1,2,4-Trichlorobenzene	1.0 U	1.0	0.23	
95-63-6	1,2,4-Trimethylbenzene	1.0 U	1.0	0.20	
96-12-8	1,2-Dibromo-3-chloropropane (DBCP)	2.0 U	2.0	0.74	
106-93-4	1,2-Dibromoethane	1.0 U	1.0	0.24	
95-50-1	1,2-Dichlorobenzene	1.0 U	1.0	0.21	
107-06-2	1,2-Dichloroethane	1.0 U	1.0	0.36	
78-87-5	1,2-Dichloropropane	1.0 U	1.0	0.20	
541-73-1	1,3-Dichlorobenzene	1.0 U	1.0	0.20	
142-28-9	1,3-Dichloropropane	1.0 U	1.0	0.27	
106-46-7	1,4-Dichlorobenzene	1.0 U	1.0	0.20	
594-20-7	2,2-Dichloropropane	1.0 U	1.0	0.27	
78-93-3	2-Butanone (MEK)	5.0 U	5.0	0.81	
110-75-8	2-Chloroethyl Vinyl Ether	1.0 U	1.0	0.44	
95-49-8	2-Chlorotoluene	1.0 U	1.0	0.20	
591-78 - 6	2-Hexanone	5.0 U	5.0	1.7	
75-65-0	tert-Butyl Alcohol	40 U	40	11	
106-43-4	4-Chlorotoluene	1.0 U	1.0	0.24	
99-87-6	4-Isopropyltoluene	1.0 U	1.0	0.20	
108-10-1	4-Methyl-2-pentanone	5.0 U	5.0	0.67	
67-64-1	Acetone	1.6 J	5.0	1.3	
71-43-2	Benzene	1.0 U	1.0	0.20	
108-86-1	Bromobenzene	1.0 U	1.0	0.28	
74-97-5	Bromochloromethane	1.0 U	1.0	0.32	
75-27-4	Bromodichloromethane	1.0 U	1.0	0.32	
75-25-2	Bromoform	1.0 U	1.0	0.42	
74-83-9	Bromomethane	1.0 U	1.0	0.29	

Analytical Report

Client:

Tetra Tech GEO

Project:

Middle River- Lockheed Martin Corp/Surface Water 112ICO6247

Sample Matrix:

Water

Service Request: R1404414

Date Collected: 6/10/14 1149 Date Received: 6/11/14

Date Analyzed: 6/19/14 18:16

Units: µg/L Basis: NA

Sample Name: Lab Code:

MRC-SW6B-060914 R1404414-007

Volatile Organic Compounds by GC/MS

Analytical Method: 8260C

Data File Name:

I:\ACQUDATA\msvoa12\Data\061914\M6698.D\

Analysis Lot: 397695 Instrument Name: R-MS-12

CAS No.	Analyte Name	Result Q	MRL	MDL	Note
75-15-0	Carbon Disulfide	1.0 U	1.0	0.22	
56-23-5	Carbon Tetrachloride	1.0 U	1.0	0.45	
108-90-7	Chlorobenzene	1.0 U	1.0	0.29	
75-00-3	Chloroethane	1.0 U	1.0	0.24	
67-66-3	Chloroform	1.0 U	1.0	0.25	
74-87-3	Chloromethane	1.0 U	1.0	0.21	
124-48-1	Dibromochloromethane	1.0 U	1.0	0.31	
74-95-3	Dibromomethane	1.0 U	1.0	0.32	
75-71-8	Dichlorodifluoromethane (CFC 12)	1.0 U	1.0	0.46	
75-09-2	Methylene Chloride	1.0 U	1.0	0.32	
108-20-3	Diisopropyl Ether	1.0 U	1.0	0.20	
637-92-3	Ethyl tert-Butyl Ether	1. 0 U	1.0	0.20	
100-41-4	Ethylbenzene	1.0 U	1.0	0.20	
87-68-3	Hexachlorobutadiene	2.0 U	2.0	0.62	
98-82-8	Isopropylbenzene (Cumene)	1.0 U	1.0	0.20	
1634-04-4	Methyl tert-Butyl Ether	1.0 U	1.0	0.29	
91-20-3	Naphthalene	1.0 U	1.0	0.20	
100-42-5	Styrene	1.0 U	1.0	0.20	
127-18-4	Tetrachloroethene (PCE)	1.0 U	1.0	0.30	
108-88-3	Toluene	1.0 U	1.0	0.20	
79-01-6	Trichloroethene (TCE)	0.39 J	1.0	0.22	
75-69-4	Trichlorofluoromethane (CFC 11)	1.0 U	1.0	0.20	
108-05-4	Vinyl Acetate	2.0 U	2.0	1.1	
75-01-4	Vinyl Chloride	1.0 U	1.0	0.32	
1330-20-7	Xylenes, Total	3.0 U	3.0	0.53	
156-59-2	cis-1,2-Dichloroethene	1.0 U	1.0	0.30	
10061-01-5	cis-1,3-Dichloropropene	1.0 U	1.0	0.24	
179601-23-1	m,p-Xylenes	2.0 U	2.0	0.33	
104-51-8	n-Butylbenzene	1. 0 U	1.0	0.21	
103-65-1	n-Propylbenzene	1. 0 U	1.0	0.20	
95-47-6	o-Xylene	1.0 U	1.0	0.20	
135-98-8	sec-Butylbenzene	1.0 U	1.0	0.27	
994-05-8	tert-Amyl Methyl Ether	1.0 U	1.0	0.20	
98-06-6	tert-Butylbenzene	1.0 U	1.0	0.20	
156-60-5	trans-1,2-Dichloroethene	1.0 U	1.0	0.33	
	•				

Analytical Report

Client:

Tetra Tech GEO

Project:

Middle River- Lockheed Martin Corp/Surface Water 112ICO6247

Sample Matrix:

Water

Service Request: R1404414 Date Collected: 6/10/14 1149

Date Received: 6/11/14

Date Analyzed: 6/19/14 18:16

Basis: NA

Units: µg/L

Sample Name:

MRC-SW6B-060914

Lab Code:

R1404414-007

Volatile Organic Compounds by GC/MS

Analytical Method: 8260C

Data File Name:

1:\ACQUDATA\msvoa12\Data\061914\M6698.D\

Analysis Lot: 397695 Instrument Name: R-MS-12

Dilution Factor: 1

CAS No. MRL **MDL** Note **Analyte Name** Result Q 10061-02-6 trans-1,3-Dichloropropene 1.0 U 1.0 0.20

Surrogate Name	%Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	102	85-122	6/19/14 18:16	
Dibromofluoromethane	103	8 9-11 9	6/19/14 18:16	
Toluene-d8	101	87-121	6/19/14 18:16	

Analytical Report

Client:

Tetra Tech GEO

Project:

Middle River- Lockheed Martin Corp/Surface Water 112ICO6247

Sample Matrix:

Water

Service Request: R1404414

Date Collected: 6/10/14 1122 Date Received: 6/11/14

Date Analyzed: 6/19/14 18:48

Sample Name: Lab Code:

- MRC-SW7A-060914

R1404414-008

Units: µg/L Basis: NA

Volatile Organic Compounds by GC/MS

Analytical Method: 8260C

Data File Name:

I:\ACQUDATA\msvoa12\Data\061914\M6699.D\

Analysis Lot: 397695 Instrument Name: R-MS-12

CAS No.	Analyte Name	Result	Q	MRL	MDL	Note		
630-20-6	1,1,1,2-Tetrachloroethane	1.0	U	1.0	0.22			
71-55-6	1,1,1-Trichloroethane (TCA)	1.0		1.0	0.36	•		
79-34-5	1,1,2,2-Tetrachloroethane	1.0	U	1.0	0.25			
76-13-1	1,1,2-Trichlorotrifluoroethane	1.0	U	1.0	0.31			
75-34-3	1,1-Dichloroethane (1,1-DCA)	1.0		1.0	0.20			
75-35-4	1,1-Dichloroethene (1,1-DCE)	1.0	U	1.0	0.57		. <u>'</u>	
563-58-6	1,1-Dichloropropene	1.0	U	1.0	0.29			
87-61-6	1,2,3-Trichlorobenzene	1.0		1.0	0.82			
96-18-4	1,2,3-Trichloropropane	1.0	U	1.0	0.70			
120-82-1	1,2,4-Trichlorobenzene	1.0	U	1.0	0.23			
95-63-6	1,2,4-Trimethylbenzene	1.0	U	1.0	0.20			
96-12-8	1,2-Dibromo-3-chloropropane (DBCP)	2.0	U	2.0	0.74			
106-93-4	1,2-Dibromoethane	1.0	U	1.0	0.24			
95-50-1	1,2-Dichlorobenzene	1.0	U	1.0	0.21			
107-06-2	1,2-Dichloroethane	1.0	U	1.0	0.36			
78-87-5	1,2-Dichloropropane	1.0	U	1.0	0.20			
541-73-1	1,3-Dichlorobenzene	1.0	U	1.0	0.20			
142-28-9	1,3-Dichloropropane	1.0	U	1.0	0.27			
106-46-7	1,4-Dichlorobenzene	1.0	U	1.0	0.20		<u> </u>	
594-20-7	2,2-Dichloropropane	1.0	U	1.0	0.27			
78-93 - 3	2-Butanone (MEK)	5.0	U	5.0	0.81			
110-75-8	2-Chloroethyl Vinyl Ether	1.0	U	1.0	0.44		·	
95-49-8	2-Chlorotoluene	1.0		1.0	0.20			
591-78-6	2-Hexanone	5.0	U	5.0	1.7			
75-65-0	tert-Butyl Alcohol	40	U	40	11			
106-43-4	4-Chlorotoluene	1.0	U	1.0	0.24			
99-87-6	4-lsopropyltoluene	1.0	U	1.0	0.20			
108-10-1	4-Methyl-2-pentanone	5.0	U	5.0	0.67			
67-64-1	Acetone	5.0	U	5.0	1.3		•	
71-43-2	Benzene	1.0	U	1.0	0.20			
108-86-1	Bromobenzene	1.0	U	1.0	0.28			
74-97-5	Bromochloromethane	· 1.0		1.0	0.32			
75-27-4	Bromodichloromethane	1.0		1.0	0.32			
75-25-2	Bromoform	1.0	U	1.0	0.42			
74-83-9	Bromomethane	1.0		1.0	0.29			

Analytical Report

Client:

Tetra Tech GEO

Project:

Middle River- Lockheed Martin Corp/Surface Water 112ICO6247

Sample Matrix:

Water

Service Request: R1404414 Date Collected: 6/10/14 1122

Date Received: 6/11/14

Date Analyzed: 6/19/14 18:48

Sample Name: Lab Code:

MRC-SW7A-060914 R1404414-008

Units: µg/L Basis: NA

Volatile Organic Compounds by GC/MS

Analytical Method: 8260C

Data File Name:

Analysis Lot: 397695 Instrument Name: R-MS-12

CAS No.	Analyte Name	Result Q	MRL	MDL	Note
75-15-0	Carbon Disulfide	1.0 U	1.0	0.22	
56-23-5	Carbon Tetrachloride	1.0 U	1.0	0.45	
108-90-7	Chlorobenzene	1.0 U	1.0	0.29	
75-00-3	Chloroethane	1.0 U	1.0	0.24	
67-66-3	Chloroform	1.0 U	1.0	0.25	
74-87-3	Chloromethane	1.0 U	1.0	0.21	
124-48-1	Dibromochloromethane	1.0 U	1.0	0.31	
74-95-3	Dibromomethane	1.0 U	1.0	0.32	
75-71-8	Dichlorodifluoromethane (CFC 12)	1.0 U	1.0	0.46	
75-09-2	Methylene Chloride	1.0 U	1.0	0.32	
108-20-3	Diisopropyl Ether	1.0 U	1.0	0.20	
637-92-3	Ethyl tert-Butyl Ether	1.0 U	1.0	0.20	
100-41-4	Ethylbenzene	1.0 U	1.0	0.20	
87-68-3	Hexachlorobutadiene	2.0 U	2.0	0.62	
98-82-8	Isopropylbenzene (Cumene)	1.0 U	1.0	0.20	
1634-04-4	Methyl tert-Butyl Ether	1.0 U	1.0	0.29	
91-20-3	Naphthalene	1. 0 U	1.0	0.20	
100-42-5	Styrene	1.0 U	1.0	0.20	
127-18-4	Tetrachloroethene (PCE)	1.0 U	1.0	0.30	
108-88-3	Toluene	1.0 U	1.0	0.20	
79-01-6	Trichloroethene (TCE)	0.44 J	1.0	0.22	
75-69-4	Trichlorofluoromethane (CFC 11)	1.0 U	1.0	0.20	
108-05-4	Vinyl Acetate	2.0 U	2.0	1.1	
75-01-4	Vinyl Chloride	1.0 U	1.0	0.32	
1330-20-7	Xylenes, Total	3.0 U	3.0	0.53	
156-59-2	cis-1,2-Dichloroethene	1.0 U	1.0	0.30	
10061-01-5	cis-1,3-Dichloropropene	1. 0 U	1.0	0.24	
179601-23-1	m,p-Xylenes	2.0 U	2.0	0.33	
104-51-8	n-Butylbenzene	1.0 U	1.0	0.21	
103-65-1	n-Propylbenzene	1. 0 U	1.0	0.20	
95-47-6	o-Xylene	1.0 U	1.0	0.20	
135-98-8	sec-Butylbenzene	1.0 U	1.0	0.27	
994-05-8	tert-Amyl Methyl Ether	1.0 U	1.0	0.20	
98-06-6	tert-Butylbenzene	1.0 U	1.0	0.20	
156-60-5	trans-1,2-Dichloroethene	1.0 U	1.0	0.33	

Analytical Report

Client:

Tetra Tech GEO

Project:

Middle River- Lockheed Martin Corp/Surface Water 112ICO6247

Sample Matrix:

Water

Service Request: R1404414

Date Collected: 6/10/14 1122

Date Received: 6/11/14

Date Analyzed: 6/19/14 18:48

Sample Name:

MRC-SW7A-060914

Lab Code:

R1404414-008

Units: µg/L Basis: NA

Volatile Organic Compounds by GC/MS

Analytical Method: 8260C

Data File Name:

I:\ACQUDATA\msvoa12\Data\061914\M6699.D\

Analysis Lot: 397695

Instrument Name: R-MS-12

Dilution Factor: 1

Note MRL MDL CAS No. **Analyte Name** Result Q trans-1,3-Dichloropropene 1.0 U 1.0 0.20 10061-02-6

Surrogate Name	%Rec	Control Limits	Date Analyzed Q	
4-Bromofluorobenzene	102	85-122	6/19/14 18:48	
Dibromofluoromethane	104	89-119	6/19/14 18:48	
Toluene-d8	102	87-121	6/19/14 18:48	

Analytical Report

Client:

Tetra Tech GEO

Project:

Middle River- Lockheed Martin Corp/Surface Water 112ICO6247

Sample Matrix:

Water

Service Request: R1404414 Date Collected: 6/10/14 1126

Date Received: 6/11/14

Date Analyzed: 6/19/14 19:20

Sample Name:

MRC-SW7B-060914

Lab Code:

R1404414-009

Units: µg/L Basis: NA

Volatile Organic Compounds by GC/MS

Analytical Method: 8260C Data File Name:

I:\ACQUDATA\msvoa12\Data\061914\M6700.D\

Analysis Lot: 397695 Instrument Name: R-MS-12

CAS No.	Analyte Name	Result Q	MRL	MDL	Note
630-20-6	1,1,1,2-Tetrachloroethane	1.0 U	1.0	0.22	
71-55 -6	1,1,1-Trichloroethane (TCA)	1.0 U	1.0	0.36	
79-34-5	1,1,2,2-Tetrachloroethane	1.0 U	1.0	0.25	
76-13-1	1,1,2-Trichlorotrifluoroethane	1.0 U	1.0	0.31	
75-34-3	1,1-Dichloroethane (1,1-DCA)	1.0 U	1.0	0.20	
75-35-4	1,1-Dichloroethene (1,1-DCE)	1.0 U	1.0	0.57	
563-58-6	1,1-Dichloropropene	1.0 U	1.0	0.29	
87-61-6	1,2,3-Trichlorobenzene	1.0 U	1.0	0.82	
96-18-4	1,2,3-Trichloropropane	1.0 U	1.0	0.70	
120-82-1	1,2,4-Trichlorobenzene	1.0 U	1.0	0.23	
95-63-6	1,2,4-Trimethylbenzene	1.0 U	1.0	0.20	
96-12-8	1,2-Dibromo-3-chloropropane (DBCP)	2.0 U	2.0	0.74	
106-93-4	1,2-Dibromoethane	1.0 U	1.0	0.24	
95-50-1	1,2-Dichlorobenzene	1.0 U	1.0	0.21	
107-06-2	1,2-Dichloroethane	1.0 ປ	1.0	0.36	
78-87-5	1,2-Dichloropropane	1.0 U	1.0	0.20	
541-73-1	1,3-Dichlorobenzene	1.0 U	1.0	0.20	
142-28-9	1,3-Dichloropropane	1.0 U	1.0	0.27	
106-46-7	1,4-Dichlorobenzene	1.0 U	1.0	0.20	
594-20-7	2,2-Dichloropropane	1.0 U	1.0	0.27	
78-93-3	2-Butanone (MEK)	5.0 U	5.0	0.81	
110-75-8	2-Chloroethyl Vinyl Ether	1.0 U	1.0	0.44	
95-49-8	2-Chlorotoluene	1.0 U	1.0	0.20	
591-78-6	2-Hexanone	5.0 U	5.0	1.7	
75-65-0	tert-Butyl Alcohol	40 U	40	11	
106-43-4	4-Chlorotoluene	1.0 U	1.0	0.24	
99-87-6	4-lsopropyltoluene	1.0 U	1.0	0.20	
108-10-1	4-Methyl-2-pentanone	5.0 U	5.0	0.67	
67-64-1	Acetone	1.4 J	5.0	1.3	
71-43-2	Benzene	1.0 U	1.0	0.20	
108-86-1	Bromobenzene	1.0 U	1.0	0.28	
74-97-5	Bromochloromethane	1.0 U	1.0	0.32	
75-27-4	Bromodichloromethane	1.0 U	1.0	0.32	
75-25-2	Bromoform	1.0 U	1.0	0.42	
74-83-9	Bromomethane	1.0 U	1.0	0.29	

Analytical Report

Client:

Tetra Tech GEO

Project:

Middle River- Lockheed Martin Corp/Surface Water 112ICO6247

Sample Matrix:

Water

Service Request: R1404414

Date Collected: 6/10/14 1126

Basis: NA

Date Received: 6/11/14 Date Analyzed: 6/19/14 19:20

Units: µg/L

Sample Name: Lab Code:

MRC-SW7B-060914

R1404414-009

Volatile Organic Compounds by GC/MS

Analytical Method: 8260C Data File Name:

I:\ACQUDATA\msvoa12\Data\061914\M6700.D\

Analysis Lot: 397695 Instrument Name: R-MS-12

CAS No.	Analyte Name	Result Q	MRL	MDL	Note
75-15-0	Carbon Disulfide	1.0 U	1.0	0.22	
56-23-5	Carbon Tetrachloride	1.0 U	1.0	0.45	
108-90-7	Chlorobenzene	1.0 U	1.0	0.29	
75-00-3	Chloroethane	1.0 U	1.0	0.24	
67-66-3	Chloroform	1.0 U	1.0	0.25	
74-87-3	Chloromethane	1.0 U	1.0	0.21	
124-48-1	Dibromochloromethane	1.0 U	1.0	0.31	
74-95-3	Dibromomethane	1.0 U	1.0	0.32	
75-71-8	Dichlorodifluoromethane (CFC 12)	1.0 U	1.0	0.46	
75-09-2	Methylene Chloride	1.0 U	1.0	0.32	
108-20-3	Diisopropyl Ether	1.0 U	1.0	0.20	
637-92-3	Ethyl tert-Butyl Ether	1.0 U	1.0	0.20	
100-41-4	Ethylbenzene	1.0 U	1.0	0.20	
87-68-3	Hexachlorobutadiene	2.0 U	2.0	0.62	
98-82-8	Isopropylbenzene (Cumene)	1.0 U	1.0	0.20	
1634-04-4	Methyl tert-Butyl Ether	1.0 U	1.0	0.29	
91-20-3	Naphthalene	1.0 U	1.0	0.20	
100-42-5	Styrene	1.0 U	1.0	0.20	· · · · · · · · · · · · · · · · · · ·
127-18-4	Tetrachloroethene (PCE)	1.0 U	1.0	0.30	
108-88-3	Toluene	1.0 U	1.0	0.20	
79-01-6	Trichloroethene (TCE)	0.49 J	1.0	0.22	
75-69-4	Trichlorofluoromethane (CFC 11)	1.0 U	1.0	0.20	
108-05-4	Vinyl Acetate	2.0 U	2.0	1.1	
75-01-4	Vinyl Chloride	1.0 U	1.0	0.32	
1330-20-7	Xylenes, Total	3.0 U	3.0	0.53	
156-59-2	cis-1,2-Dichloroethene	1.0 U	1.0	0.30	
10061-01-5	cis-1,3-Dichloropropene	1. 0 U	1.0	0.24	
179601-23-1	m,p-Xylenes	2.0 U	2.0	0.33	
104-51-8	n-Butylbenzene	1.0 U	1.0	0.21	
103-65-1	n-Propylbenzene	1.0 U	1.0	0.20	
95-47-6	o-Xylene	1.0 U	1.0	0.20	
135-98-8	sec-Butylbenzene	1.0 U	1.0	0.27	
994-05-8	tert-Amyl Methyl Ether	1.0 U	1.0	0.20	
98-06-6	tert-Butylbenzene	1.0 U	1.0	0.20	
156-60-5	trans-1,2-Dichloroethene	1.0 U	1.0	0.33	
130 00 3	comments of the contract of th				

Analytical Report

Client:

Tetra Tech GEO

Project:

Middle River- Lockheed Martin Corp/Surface Water 112ICO6247

Sample Matrix:

Water

Service Request: R1404414 Date Collected: 6/10/14 1126

Date Received: 6/11/14

Date Analyzed: 6/19/14 19:20

Units: µg/L Basis: NA

Sample Name:

MRC-SW7B-060914

Lab Code:

R1404414-009

Volatile Organic Compounds by GC/MS

Analytical Method: 8260C

Data File Name:

I:\ACQUDATA\msvoa12\Data\061914\M6700.D\

Analysis Lot: 397695 Instrument Name: R-MS-12

Dilution Factor: 1

MDL Note CAS No. MRL **Analyte Name** Result Q 1.0 U 0.20 10061-02-6 trans-1,3-Dichloropropene 1.0

Surrogate Name	%Rec	Control Limits	Date Analyzed (2
4-Bromofluorobenzene	100	85-122	6/19/14 19:20	
Dibromofluoromethane	102	89-119	6/19/14 19:20	
Toluene-d8	101	87-121	6/19/14 19:20	

Analytical Report

Client:

Tetra Tech GEO

Project:

Middle River- Lockheed Martin Corp/Surface Water 1121CO6247

Sample Matrix:

Water

Service Request: R1404414 Date Collected: 6/10/14 1157 Date Received: 6/11/14

Date Analyzed: 6/19/14 19:53

Sample Name: Lab Code:

MRC-SW8A-060914

R1404414-010

Units: µg/L Basis: NA

Volatile Organic Compounds by GC/MS

Analytical Method: 8260C Data File Name:

1:\ACQUDATA\msvoa12\Data\061914\M6701.D\

Analysis Lot: 397695

Instrument Name: R-MS-12

Dilution Factor: 1

CAS No.	Analyte Name	Result Q	MRL	MDL	Note
630-20-6	1,1,1,2-Tetrachloroethane	1.0 U	1.0	0.22	
71-55-6	1,1,1-Trichloroethane (TCA)	1.0 U	1.0	0.36	
79-34-5	1,1,2,2-Tetrachloroethane	1.0 U	1.0	0.25	
76-13-1	1,1,2-Trichlorotrifluoroethane	1.0 U	1.0	0.31	
75-34-3	1,1-Dichloroethane (1,1-DCA)	1.0 U	1.0	0.20	
75-35-4	1,1-Dichloroethene (1,1-DCE)	1.0 U	1.0	0.57	
563-58-6	1,1-Dichloropropene	1. 0 U	1.0	0.29	
87-61-6	1,2,3-Trichlorobenzene	1.0 U	1.0	0.82	
96-18-4	1,2,3-Trichloropropane	1.0 U	1.0	0.70	
120-82-1	1,2,4-Trichlorobenzene	1.0 U	1.0	0.23	
95-63-6	1,2,4-Trimethylbenzene	1.0 U	1.0	0.20	
96-12-8	1,2-Dibromo-3-chloropropane (DBCP)	2.0 U	2.0	0.74	
106-93-4	1,2-Dibromoethane	1.0 U	1.0	0.24	
95-50-1	1,2-Dichlorobenzene	1.0 U	1.0	0.21	
107-06-2	1,2-Dichloroethane	1.0 U	1.0	0.36	
78-87-5	1,2-Dichloropropane	1.0 U	1.0	0.20	
541-73-1	1,3-Dichlorobenzene	1.0 U	1.0	0.20	•
142-28-9	1,3-Dichloropropane	1.0 U	1.0	0.27	
106-46-7	1,4-Dichlorobenzene	1.0 U	1.0	0.20	
594-20-7	2,2-Dichloropropane	1.0 U	1.0	0.27	
78-93-3	2-Butanone (MEK)	5.0 U	5.0	0.81	
110-75-8	2-Chloroethyl Vinyl Ether	1.0 U	1.0	0.44	•
95-49-8	2-Chlorotoluene	1.0 U	1.0	0.20	
591-78-6	2-Hexanone	5.0 U	5.0	1.7	
75-65-0	tert-Butyl Alcohol	40 U	40	11	
106-43-4	4-Chlorotoluene	1.0 U	1.0	0.24	
99-87-6	4-Isopropyltoluene	1. 0 U	1.0	0.20	
108-10-1	4-Methyl-2-pentanone	5.0 U	5.0	0.67	
67-64-1	Acetone	1.8 J	5.0	1.3	
71-43-2	Benzene	1.0 U	1.0	0.20	
108-86-1	Bromobenzene	1.0 U	1.0	0.28	
74-97-5	Bromochloromethane	1.0 U	1.0	0.32	
75-27-4	Bromodichloromethane	1.0 U	1.0	0.32	
75-25-2	Bromoform	1.0 U	1.0	0.42	
74-83-9	Bromomethane	1.0 U	1.0	0.29	
05 5	2, 5.1/VIII 11 11 11 11 11 11 11 11 11 11 11 11				

Printed 7/7/14 11:45

Form 1A

SuperSet Reference:

Analytical Report

Client:

Tetra Tech GEO

Project:

Middle River- Lockheed Martin Corp/Surface Water 112ICO6247

Sample Matrix:

Water

Service Request: R1404414 Date Collected: 6/10/14 1157

Date Received: 6/11/14

Basis: NA

Date Analyzed: 6/19/14 19:53 Units: µg/L

Sample Name: Lab Code:

MRC-SW8A-060914 R1404414-010

Volatile Organic Compounds by GC/MS

Analytical Method: 8260C Data File Name:

I:\ACQUDATA\msvoa12\Data\061914\M6701.D\

Analysis Lot: 397695

Instrument Name: R-MS-12 Dilution Factor: 1

CAS No.	Analyte Name	Result Q	MRL	MDL	Note
75-15-0	Carbon Disulfide	1.0 U	1.0	0.22	
56-23-5	Carbon Tetrachloride	1.0 U	1.0	0.45	
108-90-7	Chlorobenzene .	1.0 U	1.0	0.29	
75-00-3	Chloroethane	1.0 U	1.0	0.24	
67-66-3	Chloroform	1.0 U	1.0	0.25	
74-87-3	Chloromethane	1.0 U	1.0	0.21	
124-48-1	Dibromochloromethane	1.0 U	1.0	0.31	
74-95-3	Dibromomethane	1.0 U	1.0	0.32	
75-71-8	Dichlorodifluoromethane (CFC 12)	1.0 U	1.0	0.46	
75-09-2	Methylene Chloride	1.0 U	1.0	0.32	
108-20-3	Diisopropyl Ether	1.0 U	1.0	0.20	
637-92-3	Ethyl tert-Butyl Ether	1.0 U	1.0	0.20	
100-41-4	Ethylbenzene	1.0 U	1.0	0.20	
87-68-3	Hexachlorobutadiene	2.0 U	2.0	0.62	
98-82-8	Isopropylbenzene (Cumene)	1.0 U	1.0	0.20	
1634-04-4	Methyl tert-Butyl Ether	1.0 U	1.0	0.29	
91-20-3	Naphthalene	1.0 U	1.0	0.20	
100-42-5	Styrene	1.0 U	1.0	0.20	
127-18-4	Tetrachloroethene (PCE)	1.0 U	1.0	0.30	
108-88-3	Toluene	1. 0 U	1.0	0.20	
79-01-6	Trichloroethene (TCE)	0.54 J	1.0	0.22	
75-69-4	Trichlorofluoromethane (CFC 11)	1.0 U	1.0	0.20	
108-05-4	Vinyl Acetate	2.0 U	2.0	1.1	
75-01-4	Vinyl Chloride	1.0 U	1.0	0.32	
1330-20-7	Xylenes, Total	3.0 U	3.0	0.53	
156-59-2	cis-1,2-Dichloroethene	1. 0 U	1.0	0.30	
10061-01-5	cis-1,3-Dichloropropene	1.0 U	1.0	0.24	
179601-23-1	m,p-Xylenes	2.0 U	2.0	0.33	
104-51-8	n-Butylbenzene	1.0 U	1.0	0.21	
103-65-1	n-Propylbenzene	1.0 U	1.0	0.20	
95-47-6	o-Xylene	1.0 U	1.0	0.20	
135-98-8	sec-Butylbenzene	1.0 U	1.0	0.27	
994-05-8	tert-Amyl Methyl Ether	1.0 U	1.0	0.20	
98-06-6	tert-Butylbenzene	1.0 U	1.0	0.20	
156-60-5	trans-1,2-Dichloroethene	· 1.0 U	1.0	0.33	
100 00 0			=		

Analytical Report

Client:

Tetra Tech GEO

Project:

Middle River- Lockheed Martin Corp/Surface Water 1121CO6247

Sample Matrix:

Water

Service Request: R1404414

Date Collected: 6/10/14 1157

Date Received: 6/11/14 Date Analyzed: 6/19/14 19:53

Sample Name:

MRC-SW8A-060914

Lab Code:

R1404414-010

Units: µg/L Basis: NA

Volatile Organic Compounds by GC/MS

Analytical Method: 8260C Data File Name:

I:\ACQUDATA\msvoa12\Data\061914\M6701.D\

Analysis Lot: 397695

Instrument Name: R-MS-12 Dilution Factor: 1

MDL Note MRL CAS No. Result Q Analyte Name

1.0 U 1.0 0.20 10061-02-6 trans-1,3-Dichloropropene

Surrogate Name	%Rec	Control Limits	Date Analyzed	Q	
4-Bromofluorobenzene	100	85-122	6/19/14 19:53		
Dibromofluoromethane	- 103	89-119	6/19/14 19:53		
Toluene-d8	101	87-121	6/19/14 19:53	·	

Analytical Report

Client:

Tetra Tech GEO

Project:

Middle River- Lockheed Martin Corp/Surface Water 1121CO6247

Sample Matrix:

Water

Service Request: R1404414

Date Collected: 6/10/14 1202 Date Received: 6/11/14

Date Analyzed: 6/19/14 20:25

Units: µg/L Basis: NA

Sample Name: Lab Code:

MRC-SW8B-060914 R1404414-011

Volatile Organic Compounds by GC/MS

Analytical Method: 8260C

Data File Name:

1:\ACQUDATA\msvoa12\Data\061914\M6702.D\

Analysis Lot: 397695 Instrument Name: R-MS-12

CAS No.	Analyte Name	Result	Q	MRL	MDL	Note
630-20-6	1,1,1,2-Tetrachloroethane	1.0	U	1.0	0.22	
71-55-6	1,1,1-Trichloroethane (TCA)	1.0		1.0	0.36	
79-34-5	1,1,2,2-Tetrachloroethane	1.0	U	1.0	0.25	
76-13-1	1,1,2-Trichlorotrifluoroethane	1.0	U	1.0	0.31	
75-34-3	1,1-Dichloroethane (1,1-DCA)	1.0		1.0	0.20	
75-35-4	1,1-Dichloroethene (1,1-DCE)	1.0	U	1.0	0.57	
563-58-6	1,1-Dichloropropene	1.0	U	1.0	0.29	
87-61-6	1,2,3-Trichlorobenzene	1.0	U	1.0	0.82	
96-18-4	1,2,3-Trichloropropane	1.0	U	1.0	0.70	
120-82-1	1,2,4-Trichlorobenzene	1.0	U	1.0	0.23	
95-63-6	1,2,4-Trimethylbenzene	1.0	U	1.0	0.20	
96-12-8	1,2-Dibromo-3-chloropropane (DBCP)	2.0	U	2.0	0.74	
106-93-4	1,2-Dibromoethane	1,0	U	1.0	0.24	
95-50-1	1,2-Dichlorobenzene	1.0	U	1.0	0.21	
107-06-2	1,2-Dichloroethane	1.0	U	1.0	0.36	
78-87-5	1,2-Dichloropropane	1,0	U	1.0	0.20	
541-73-1	1,3-Dichlorobenzene	1.0	U	1.0	0.20	
142-28-9	1,3-Dichloropropane	1.0	U	1.0	0.27	
106-46-7	1,4-Dichlorobenzene	1.0	U	1.0	0.20	
594-20-7	2,2-Dichloropropane	1.0	U	1.0	0.27	
78-93-3	2-Butanone (MEK)	5.0	U	5.0	0.81	
110-75-8	2-Chloroethyl Vinyl Ether	1.0	U	1.0	0.44	
95-49-8	2-Chlorotoluene	1.0	\mathbf{U}	1.0	0.20	
591-78-6	2-Hexanone	5.0	U	5.0	1.7	
75-65-0	tert-Butyl Alcohol	40	U	40	11	
106-43-4	4-Chlorotoluene	1.0	U	1.0	0.24	
99-87-6	4-Isopropyltoluene	1.0	U	1.0	0.20	
108-10-1	4-Methyl-2-pentanone	5.0	U	5.0	0.67	
67-64-1	Acetone	1.5	J	5.0	1.3	
71-43-2	Benzene	1.0	U	1.0	0.20	
108-86-1	Bromobenzene	1.0	U	1.0	0.28	
74-97-5	Bromochloromethane	1.0		1.0	0.32	·
75-27-4	Bromodichloromethane	1.0		1.0	0.32	
75-25-2	Bromoform	1.0	U	1.0	0.42	
74-83-9	Bromomethane	1.0		1.0	0.29	
7-7-03-7	Digitottionary	1.0	_	• • • •		

Analytical Report

Client:

Tetra Tech GEO

Project:

Middle River-Lockheed Martin Corp/Surface Water 112ICO6247

Sample Matrix:

Water

Service Request: R1404414 **Date Collected:** 6/10/14 1202 Date Received: 6/11/14

Date Analyzed: 6/19/14 20:25

Sample Name:

MRC-SW8B-060914

Lab Code:

R1404414-011

Units: µg/L Basis: NA

Volatile Organic Compounds by GC/MS

Analytical Method: 8260C

Data File Name: 1:\ACQUDATA\msvoa12\Data\061914\M6702.D\

Analysis Lot: 397695

Instrument Name: R-MS-12

CAS No.	Analyte Name	Result	Q	MRL	MDL	Note
75-15-0	Carbon Disulfide	1.0		1.0	0.22	
56-23-5	Carbon Tetrachloride	1.0		1.0	0.45	
108-90-7	Chlorobenzene	1.0	U	1.0	0.29	
75-00-3	Chloroethane	1.0		1.0	0.24	
67-66-3	Chloroform	1.0		1.0	0.25	
74-87-3	Chloromethane	1.0	U	1.0	0.21	
124-48-1	Dibromochloromethane	1.0	U	1.0	0.31	
74-95-3	Dibromomethane	1.0		1,0	0.32	
75-71-8	Dichlorodifluoromethane (CFC 12)	1.0	U	1.0	0.46	
75-09-2	Methylene Chloride	1.0	U	1.0	0.32	
108-20-3	Diisopropyl Ether	1.0		1.0	0.20	
637-92-3	Ethyl tert-Butyl Ether	1.0	U	1.0	0.20	
100-41-4	Ethylbenzene	1.0	U	1.0	0.20	
87-68-3	Hexachlorobutadiene	2.0	U	2.0	0.62	
98-82 - 8	Isopropylbenzene (Cumene)	1.0	U	1.0	0.20	
1634-04-4	Methyl tert-Butyl Ether	1.0	U	1.0	0.29	
91-20-3	Naphthalene	1.0	U	1.0	0.20	
100-42-5	Styrene	1.0	U	0.1	0.20	<u> </u>
127-18-4	Tetrachloroethene (PCE)	1.0	U	1.0	0.30	
108-88-3	Toluene	1.0	U	1.0	0.20	
79-01-6	Trichloroethene (TCE)	0.47	J	1.0	0.22	
75-69-4	Trichlorofluoromethane (CFC 11)	1.0	U	1.0	0.20	
108-05-4	Vinyl Acetate	2.0	U	2.0	1.1	
75-01-4	Vinyl Chloride	1.0	U	1.0	0.32	
1330-20-7	Xylenes, Total	3.0	U	3.0	0.53	
156-59-2	cis-1,2-Dichloroethene	1.0	U	1.0	0.30	•
10061-01-5	cis-1,3-Dichloropropene	1.0	U	1.0	0.24	
179601-23-1	m,p-Xylenes	2.0	U	2.0	0.33	
104-51-8	n-Butylbenzene	1.0	U	1.0	0.21	
103-65-1	n-Propylbenzene	1.0	U	1.0	0.20	
95-47-6	o-Xylene	1.0	U	1.0	0.20	
135-98-8	sec-Butylbenzene	1.0		1.0	0.27	
994-05-8	tert-Amyl Methyl Ether	1.0	U	1.0	0.20	
98-06-6	tert-Butylbenzene	1.0	U	1.0	0.20	
156-60-5	trans-1,2-Dichloroethene	1.0	U	1.0	0.33	

Analytical Report

Client:

Tetra Tech GEO

Project:

Middle River-Lockheed Martin Corp/Surface Water 112ICO6247

Sample Matrix:

Water

Service Request: R1404414

Date Collected: 6/10/14 1202

Date Received: 6/11/14

Date Analyzed: 6/19/14 20:25

Units: µg/L

Sample Name:

MRC-SW8B-060914

Lab Code:

R1404414-011

Basis: NA

Volatile Organic Compounds by GC/MS

Analytical Method: 8260C

Data File Name:

I:\ACQUDATA\msvoa12\Data\061914\M6702.D\

Analysis Lot: 397695

Instrument Name: R-MS-12 Dilution Factor: 1

MRL **MDL** Note Result Q CAS No. **Analyte Name** 1.0 U 1.0 0.20 trans-1,3-Dichloropropene 10061-02-6

Surrogate Name	%Rec	Control Limits	Date Analyzed Q	
4-Bromofluorobenzene	101	85-122	6/19/14 20:25	
Dibromofluoromethane	102	89-119	6/19/14 20:25	
Toluene-d8	101	87-121	6/19/14 20:25	

Analytical Report

Client:

Tetra Tech GEO

Project:

Middle River- Lockheed Martin Corp/Surface Water 112ICO6247

Sample Matrix:

Water

Service Request: R1404414

Date Collected: 6/10/14 1132

Date Received: 6/11/14

Date Analyzed: 6/19/14 14:29

Sample Name: Lab Code:

MRC-SW9A-060914

R1404414-012

Units: µg/L Basis: NA

Volatile Organic Compounds by GC/MS

Analytical Method: 8260C Data File Name:

Analysis Lot: 397695 Instrument Name: R-MS-12

CAS No.	Analyte Name	Result	Q	MRL	MDL	Note
630-20-6	1,1,1,2-Tetrachloroethane	1.0	U	1.0	0.22	•
71-55-6	1,1,1-Trichloroethane (TCA)	1.0	U	1.0	0.36	
79-34-5	1,1,2,2-Tetrachloroethane	1.0	U	1.0	0.25	
76-13-1	1,1,2-Trichlorotrifluoroethane	1.0		1.0	0.31	
75-34-3	1,1-Dichloroethane (1,1-DCA)	1.0		1.0	0.20	
75-35-4	1,1-Dichloroethene (1,1-DCE)	1.0	<u>U</u>	1.0	0.57	
563-58-6	1,1-Dichloropropene	1.0		1.0	0.29	
87-61-6	1,2,3-Trichlorobenzene	1.0		1.0	0.82	
96-18-4	1,2,3-Trichloropropane	1.0	U	1.0	0.70	·
120-82-1	1,2,4-Trichlorobenzene	1.0		1.0	0.23	
95-63-6	1,2,4-Trimethylbenzene	1.0		1.0	0.20	
96-12-8	1,2-Dibromo-3-chloropropane (DBCP)	2.0	U	2.0	0.74	
106-93-4	1,2-Dibromoethane	1.0		1.0	0.24	
95-50-1	1,2-Dichlorobenzene	1.0		1.0	0.21	
107-06-2	1,2-Dichloroethane	1.0	U	1.0	0.36	
78-87-5	1,2-Dichloropropane	1.0		1.0	0.20	
541-73-1	1,3-Dichlorobenzene	1.0		1.0	0.20	
142-28-9	1,3-Dichloropropane	1.0	U	1.0	0.27	
106-46-7	1,4-Dichlorobenzene	1.0		1.0	0.20	
594-20-7	2,2-Dichloropropane	1.0		1.0	0.27	
78-93-3	2-Butanone (MEK)	5.0	U	5.0	0.81	
110-75-8	2-Chloroethyl Vinyl Ether	1.0		1.0	0.44	
95-49-8	2-Chlorotoluene	1.0		1.0	0.20	
591-78-6	2-Hexanone	5.0	U	5.0	1.7	
75-65-0	tert-Butyl Alcohol	40		40	11	
106-43-4	4-Chlorotoluene	1.0		1.0	0.24	
99-87-6	4-Isopropyltoluene	1.0	U	1.0	0.20	
108-10-1	4-Methyl-2-pentanone	5.0		5.0	0.67	
67-64-1	Acetone	5.0		5.0	1.3	
71-43-2	Benzene	1.0	U	1.0	0.20	
108-86-1	Bromobenzene	1.0		1.0	0.28	
74-97-5	Bromochloromethane	1.0		1.0	0.32	
75-27-4	Bromodichloromethane	1.0	U	1.0	0.32	
75-25-2	Bromoform	1.0		1.0	0.42	
74-83-9	Bromomethane	1.0	U	1.0	0.29	

Analytical Report

Client:

Tetra Tech GEO

Project:

Middle River- Lockheed Martin Corp/Surface Water 112ICO6247

Sample Matrix:

Water

Service Request: R1404414 Date Collected: 6/10/14 1132

Date Received: 6/11/14

Date Analyzed: 6/19/14 14:29

Units: µg/L Basis: NA

Sample Name:

MRC-SW9A-060914

Lab Code:

R1404414-012

Volatile Organic Compounds by GC/MS

Analytical Method: 8260C Data File Name:

I:\ACQUDATA\msvoa12\Data\061914\M6691.D\

Analysis Lot: 397695 Instrument Name: R-MS-12

75-15-0 Carbon Disulfide	CAS No.	Analyte Name	Result Q	MRL	MDL	Note
108-90-7 Chloroethane	75-15-0	Carbon Disulfide	1.0 U	1.0	0.22	
75-00-3	56-23-5	Carbon Tetrachloride				
67-66-3 Chloroform	108-90-7	Chlorobenzene	1.0 U	1.0	0.29	
74-87-3 Chloromethane 1.0 U 1.0 O 0.21 124-48-1 Dibromochloromethane 1.0 U 1.0 O 0.31 74-95-3 Dibromochloromethane (CFC 12) 1.0 U 1.0 O 0.32 75-71-8 Dichlorodifluoromethane (CFC 12) 1.0 U 1.0 O 0.46 75-09-2 Methylene Chloride 1.0 U 1.0 O 0.32 108-20-3 Diisopropyl Ether 1.0 U 1.0 O 0.20 37-92-3 Ethyl tert-Butyl Ether 1.0 U 1.0 O 0.20 100-41-4 Ethylbenzene 1.0 U 1.0 O 0.20 88-2-8 Isopropylbenzene (Cumene) 1.0 U 1.0 O 0.20 98-28-8 Isopropylbenzene (Cumene) 1.0 U 1.0 O 0.20 1634-04-4 Methyl tert-Butyl Ether 1.0 U 1.0 O 0.20 100-42-5 Styrene 1.0 U 1.0 O 0.20 127-18-4 Tetrachloroethene (PCE) 1.0 U 1.0 O 0.20 198-8-8-3 Toluene 1.0 U <td>75-00-3</td> <td>Chloroethane</td> <td>1.0 U</td> <td>1.0</td> <td></td> <td></td>	75-00-3	Chloroethane	1.0 U	1.0		
124-48-1 Dibromochloromethane						
74-95-3	74-87-3	Chloromethane	1.0 U	1.0	0.21	
75-71-8 Dichlorodifluoromethane (CFC 12) 1.0 U 1.0 0.46 75-09-2 Methylene Chloride 1.0 U 1.0 0.32 108-20-3 Diisopropyl Ether 1.0 U 1.0 0.20 37-92-3 Ethyl tert-Butyl Ether 1.0 U 1.0 0.20 87-68-3 Hexachlorobutadiene 2.0 U 2.0 0.62 98-82-8 Isopropylbenzene (Cumene) 1.0 U 1.0 0.20 1634-04-4 Methyl tert-Butyl Ether 1.0 U 1.0 0.29 91-20-3 Naphthalene 1.0 U 1.0 0.29 100-42-5 Styrene 1.0 U 1.0 0.20 127-18-4 Tetrachloroethene (PCE) 1.0 U 1.0 0.20 19-01-6 Trichloroethene (TCE) 0.45 J 1.0 0.22 75-69-4 Trichlorofuoromethane (CFC 11) 1.0 U 1.0 0.20 18-05-4 Viny	124-48-1	Dibromochloromethane	1.0 U	1.0	0.31	•
T5-09-2	74-95-3	Dibromomethane	1.0 U	1.0		
108-20-3	75-71-8	Dichlorodifluoromethane (CFC 12)	1.0 U	1.0	0.46	
637-92-3 Ethyl tert-Butyl Ether 1.0 U 1.0 0.20 100-41-4 Ethylbenzene 1.0 U 1.0 0.20 87-68-3 Hexachlorobutadiene 2.0 U 2.0 0.62 98-82-8 Isopropylbenzene (Cumene) 1.0 U 1.0 0.20 1634-04-4 Methyl tert-Butyl Ether 1.0 U 1.0 0.29 91-20-3 Naphthalene 1.0 U 1.0 0.20 100-42-5 Styrene 1.0 U 1.0 0.20 127-18-4 Tetrachloroethene (PCE) 1.0 U 1.0 0.30 108-88-3 Toluene 1.0 U 1.0 0.20 79-01-6 Trichlorofluoromethane (TCE) 0.45 J 1.0 0.22 75-69-4 Trichlorofluoromethane (CFC 11) 1.0 U 1.0 0.20 108-05-4 Vinyl Acetate 2.0 U 2.0 1.1 75-01-4 Vinyl Chloride 1.0	75-09-2	Methylene Chloride	1.0 U	1.0	0.32	
100-41-4	108-20-3	•	1.0 U	1.0	0.20	
87-68-3 Hexachlorobutadiene 2.0 U 2.0 0.62 98-82-8 Isopropylbenzene (Cumene) 1.0 U 1.0 0.20 1634-04-4 Methyl tert-Butyl Ether 1.0 U 1.0 0.29 91-20-3 Naphthalene 1.0 U 1.0 0.20 100-42-5 Styrene 1.0 U 1.0 0.20 127-18-4 Tetrachloroethene (PCE) 1.0 U 1.0 0.30 108-88-3 Toluene 1.0 U 1.0 0.20 79-01-6 Trichlorofluoromethane (CFC II) 1.0 U 1.0 0.20 75-69-4 Trichlorofluoromethane (CFC II) 1.0 U 1.0 0.20 108-05-4 Vinyl Acetate 2.0 U 2.0 1.1 75-01-4 Vinyl Chloride 1.0 U 1.0 0.32 1330-20-7 Xylenes, Total 3.0 U 3.0 0.53 156-59-2 cis-1,3-Dichloroethene	637-92-3	Ethyl tert-Butyl Ether	1.0 U	1.0	0.20	
87-68-3 Hexachlorobutadiene 2.0 U 2.0 0.62 98-82-8 Isopropylbenzene (Cumene) 1.0 U 1.0 0.20 1634-04-4 Methyl tert-Butyl Ether 1.0 U 1.0 0.29 91-20-3 Naphthalene 1.0 U 1.0 0.20 100-42-5 Styrene 1.0 U 1.0 0.20 127-18-4 Tetrachloroethene (PCE) 1.0 U 1.0 0.30 108-88-3 Toluene 1.0 U 1.0 0.20 79-01-6 Trichlorofluoromethane (CFC II) 1.0 U 1.0 0.22 75-69-4 Trichlorofluoromethane (CFC II) 1.0 U 1.0 0.20 108-05-4 Vinyl Acetate 2.0 U 2.0 1.1 75-01-4 Vinyl Chloride 1.0 U 1.0 0.32 1330-20-7 Xylenes, Total 3.0 U 3.0 0.53 156-59-2 cis-1,3-Dichloroptothene	100-41-4	Ethylbenzene	1.0 U	1.0	0.20	
1634-04-4 Methyl tert-Butyl Ether	87-68-3		2.0 U	2.0	0.62	
91-20-3	98-82-8	Isopropylbenzene (Cumene)	1.0 U	1.0	0.20	
91-20-3 Naphthalene 1.0 U 1.0 D. 0.20 100-42-5 Styrene 1.0 U 1.0 D. 0.20 127-18-4 Tetrachloroethene (PCE) 1.0 U 1.0 D. 0.30 108-88-3 Toluene 1.0 U 1.0 D. 0.20 79-01-6 Trichloroethene (TCE) 0.45 J 1.0 D. 0.22 75-69-4 Trichlorofluoromethane (CFC 11) 1.0 U 1.0 D. 0.20 108-05-4 Vinyl Acetate 2.0 U 2.0 U 1.1 75-01-4 Vinyl Chloride 1.0 U 1.0 D. 0.32 1330-20-7 Xylenes, Total 3.0 U 3.0 D. 0.53 156-59-2 cis-1,2-Dichloroethene 1.0 U 1.0 D. 0.24 179601-23-1 m,p-Xylenes 2.0 U 2.0 D. 0.33 104-51-8 n-Butylbenzene 1.0 U 1.0 D. 0.21 103-65-1 n-Propylbenzene 1.0 U 1.0 D. 0.20 95-47-6 o-Xylene 1.0 U 1.0 D. 0.20 <td>1634-04-4</td> <td>Methyl tert-Butyl Ether</td> <td>1.0 U</td> <td>1.0</td> <td>0.29</td> <td></td>	1634-04-4	Methyl tert-Butyl Ether	1.0 U	1.0	0.29	
100-42-5 Styrene 1.0 U 1.0 0.20 127-18-4 Tetrachloroethene (PCE) 1.0 U 1.0 0.30 108-88-3 Toluene 1.0 U 1.0 0.20 79-01-6 Trichloroethene (TCE) 0.45 J 1.0 0.22 75-69-4 Trichlorofluoromethane (CFC 11) 1.0 U 1.0 0.20 108-05-4 Vinyl Acetate 2.0 U 2.0 I.1 75-01-4 Vinyl Chloride 1.0 U 1.0 0.32 1330-20-7 Xylenes, Total 3.0 U 3.0 0.53 156-59-2 cis-1,2-Dichloroethene 1.0 U 1.0 0.30 10061-01-5 cis-1,3-Dichloropropene 1.0 U 1.0 0.24 179601-23-1 m,p-Xylenes 2.0 U 2.0 0.33 104-51-8 n-Butylbenzene 1.0 U 1.0 0.21 103-65-1 n-Propylbenzene 1.0 U 1.0 0.20 95-47-6 o-Xylene 1.0 U 1.0 0.20 135-98-8 sec-Butylbenzene 1.0 U 1.0 0.20 98-06-6 tert-Amyl Methyl Ether 1.0 U 1.0 0.20		•	1.0 U	1.0	0.20	
108-88-3 Toluene 1.0 U 1.0 0.20 79-01-6 Trichloroethene (TCE) 0.45 J 1.0 0.22 75-69-4 Trichlorofluoromethane (CFC 11) 1.0 U 1.0 0.20 108-05-4 Vinyl Acetate 2.0 U 2.0 I.1 75-01-4 Vinyl Chloride 1.0 U 1.0 0.32 1330-20-7 Xylenes, Total 3.0 U 3.0 0.53 156-59-2 cis-1,2-Dichloroethene 1.0 U 1.0 0.30 10061-01-5 cis-1,3-Dichloropropene 1.0 U 1.0 0.24 179601-23-1 m,p-Xylenes 2.0 U 2.0 0.33 104-51-8 n-Butylbenzene 1.0 U 1.0 0.21 103-65-1 n-Propylbenzene 1.0 U 1.0 0.20 95-47-6 o-Xylene 1.0 U 1.0 0.20 98-06-6 tert-Amyl Methyl Ether 1.0 U 1.0 0.20 98-06-6 tert-Butylbenzene 1.0 U 1.0 0.20	100-42-5	-	1.0 U	1.0	0.20	
108-88-3 Toluene 1.0 U 1.0 0.20 79-01-6 Trichloroethene (TCE) 0.45 J 1.0 0.22 75-69-4 Trichlorofluoromethane (CFC 11) 1.0 U 1.0 0.20 108-05-4 Vinyl Acetate 2.0 U 2.0 I.1 75-01-4 Vinyl Chloride 1.0 U 1.0 0.32 1330-20-7 Xylenes, Total 3.0 U 3.0 0.53 156-59-2 cis-1,2-Dichloroethene 1.0 U 1.0 0.30 10061-01-5 cis-1,3-Dichloropropene 1.0 U 1.0 0.24 179601-23-1 m,p-Xylenes 2.0 U 2.0 0.33 104-51-8 n-Butylbenzene 1.0 U 1.0 0.21 103-65-1 n-Propylbenzene 1.0 U 1.0 0.20 95-47-6 o-Xylene 1.0 U 1.0 0.20 135-98-8 sec-Butylbenzene 1.0 U 1.0 0.27 994-05-8 tert-Amyl Methyl Ether 1.0 U 1.0 0.20	127-18-4	Tetrachloroethene (PCE)	1.0 U	1.0	0.30	
75-69-4 Trichlorofluoromethane (CFC 11) 1.0 U 1.0 0.20 108-05-4 Vinyl Acetate 2.0 U 2.0 I.1 75-01-4 Vinyl Chloride 1.0 U 1.0 U 1330-20-7 Xylenes, Total 3.0 U 3.0 0.53 156-59-2 cis-1,2-Dichloroethene 1.0 U 1.0 0.30 10061-01-5 cis-1,3-Dichloropropene 1.0 U 1.0 0.24 179601-23-1 m,p-Xylenes 2.0 U 2.0 0.33 104-51-8 n-Butylbenzene 1.0 U 1.0 0.21 103-65-1 n-Propylbenzene 1.0 U 1.0 0.20 95-47-6 o-Xylene 1.0 U 1.0 0.20 135-98-8 sec-Butylbenzene 1.0 U 1.0 0.27 994-05-8 tert-Amyl Methyl Ether 1.0 U 1.0 0.20			1.0 U	1.0	0.20	
108-05-4 Vinyl Acetate 2.0 U 2.0 U 1.1 75-01-4 Vinyl Chloride 1.0 U 1.0 U 0.32 1330-20-7 Xylenes, Total 3.0 U 3.0 U 0.53 156-59-2 cis-1,2-Dichloroethene 1.0 U 1.0 U 0.30 10061-01-5 cis-1,3-Dichloropropene 1.0 U 1.0 U 0.24 179601-23-1 m,p-Xylenes 2.0 U 2.0 U 0.33 104-51-8 n-Butylbenzene 1.0 U 1.0 U 0.21 103-65-1 n-Propylbenzene 1.0 U 1.0 U 0.20 95-47-6 o-Xylene 1.0 U 1.0 U 0.20 135-98-8 sec-Butylbenzene 1.0 U 1.0 U 0.27 994-05-8 tert-Amyl Methyl Ether 1.0 U 1.0 U 0.20 98-06-6 tert-Butylbenzene 1.0 U 1.0 U 0.20	79-01-6	Trichloroethene (TCE)	0.45 J	1.0	0.22	
108-05-4 Vinyl Acetate 2.0 U 2.0 1.1 75-01-4 Vinyl Chloride 1.0 U 1.0 0.32 1330-20-7 Xylenes, Total 3.0 U 3.0 0.53 156-59-2 cis-1,2-Dichloroethene 1.0 U 1.0 0.30 10061-01-5 cis-1,3-Dichloropropene 1.0 U 1.0 0.24 179601-23-1 m,p-Xylenes 2.0 U 2.0 0.33 104-51-8 n-Butylbenzene 1.0 U 1.0 0.21 103-65-1 n-Propylbenzene 1.0 U 1.0 0.20 95-47-6 o-Xylene 1.0 U 1.0 0.20 135-98-8 sec-Butylbenzene 1.0 U 1.0 0.20 994-05-8 tert-Amyl Methyl Ether 1.0 U 1.0 0.20 98-06-6 tert-Butylbenzene 1.0 U 1.0 0.20	75-69-4	Trichlorofluoromethane (CFC 11)	1.0 U	1.0	0.20	
75-01-4 Vinyl Chloride 1.0 U 1.0 U 0.32 1330-20-7 Xylenes, Total 3.0 U 3.0 0.53 156-59-2 cis-1,2-Dichloroethene 1.0 U 1.0 0.30 10061-01-5 cis-1,3-Dichloropropene 1.0 U 1.0 0.24 179601-23-1 m,p-Xylenes 2.0 U 2.0 0.33 104-51-8 n-Butylbenzene 1.0 U 1.0 0.21 103-65-1 n-Propylbenzene 1.0 U 1.0 0.20 95-47-6 o-Xylene 1.0 U 1.0 0.20 135-98-8 sec-Butylbenzene 1.0 U 1.0 0.27 994-05-8 tert-Amyl Methyl Ether 1.0 U 1.0 0.20 98-06-6 tert-Butylbenzene 1.0 U 1.0 0.20					1.1	
156-59-2 cis-1,2-Dichloroethene 1.0 U 1.0 0.30 10061-01-5 cis-1,3-Dichloropropene 1.0 U 1.0 0.24 179601-23-1 m,p-Xylenes 2.0 U 2.0 0.33 104-51-8 n-Butylbenzene 1.0 U 1.0 0.21 103-65-1 n-Propylbenzene 1.0 U 1.0 0.20 95-47-6 o-Xylene 1.0 U 1.0 0.20 135-98-8 sec-Butylbenzene 1.0 U 1.0 0.27 994-05-8 tert-Amyl Methyl Ether 1.0 U 1.0 0.20 98-06-6 tert-Butylbenzene 1.0 U 1.0 0.20	75-01-4	•	1.0 U	1.0	0.32	
156-59-2 cis-1,2-Dichloroethene 1.0 U 1.0 0.30 10061-01-5 cis-1,3-Dichloropropene 1.0 U 1.0 0.24 179601-23-1 m,p-Xylenes 2.0 U 2.0 0.33 104-51-8 n-Butylbenzene 1.0 U 1.0 0.21 103-65-1 n-Propylbenzene 1.0 U 1.0 0.20 95-47-6 o-Xylene 1.0 U 1.0 0.20 135-98-8 sec-Butylbenzene 1.0 U 1.0 0.27 994-05-8 tert-Amyl Methyl Ether 1.0 U 1.0 0.20 98-06-6 tert-Butylbenzene 1.0 U 1.0 0.20	1330-20-7	Xylenes, Total	3.0 U	3.0	0.53	
10061-01-5 cis-1,3-Dichloropropene 1.0 U 1.0 0.24 179601-23-1 m,p-Xylenes 2.0 U 2.0 0.33 104-51-8 n-Butylbenzene 1.0 U 1.0 0.21 103-65-1 n-Propylbenzene 1.0 U 1.0 0.20 95-47-6 o-Xylene 1.0 U 1.0 0.20 135-98-8 sec-Butylbenzene 1.0 U 1.0 0.27 994-05-8 tert-Amyl Methyl Ether 1.0 U 1.0 0.20 98-06-6 tert-Butylbenzene 1.0 U 1.0 0.20				1.0	0.30	
104-51-8 n-Butylbenzene 1.0 U 1.0 0.21 103-65-1 n-Propylbenzene 1.0 U 1.0 0.20 95-47-6 o-Xylene 1.0 U 1.0 0.20 135-98-8 sec-Butylbenzene 1.0 U 1.0 0.27 994-05-8 tert-Amyl Methyl Ether 1.0 U 1.0 0.20 98-06-6 tert-Butylbenzene 1.0 U 1.0 0.20	,	· · · · · · · · · · · · · · · · · · ·	1.0 U	1.0	0.24	
104-51-8 n-Butylbenzene 1.0 U 1.0 U 0.21 103-65-1 n-Propylbenzene 1.0 U 1.0 U 0.20 95-47-6 o-Xylene 1.0 U 1.0 U 0.20 135-98-8 sec-Butylbenzene 1.0 U 1.0 U 0.27 994-05-8 tert-Amyl Methyl Ether 1.0 U 1.0 U 0.20 98-06-6 tert-Butylbenzene 1.0 U 1.0 U 0.20	179601-23-1	m.p-Xvlenes	2.0 U	2.0	0.33	
103-65-1 n-Propylbenzene 1.0 U 1.0 0.20 95-47-6 o-Xylene 1.0 U 1.0 0.20 135-98-8 sec-Butylbenzene 1.0 U 1.0 0.27 994-05-8 tert-Amyl Methyl Ether 1.0 U 1.0 0.20 98-06-6 tert-Butylbenzene 1.0 U 1.0 0.20		**		1.0	0.21	
135-98-8 sec-Butylbenzene 1.0 U 1.0 U 0.27 994-05-8 tert-Amyl Methyl Ether 1.0 U 1.0 U 0.20 98-06-6 tert-Butylbenzene 1.0 U 1.0 U 0.20		· · · · · · · · · · · · · · · · · · ·	1.0 U	1.0	0.20	
135-98-8 sec-Butylbenzene 1.0 U 1.0 U 0.27 994-05-8 tert-Amyl Methyl Ether 1.0 U 1.0 U 0.20 98-06-6 tert-Butylbenzene 1.0 U 1.0 U 0.20	95-47-6	o-Xylene	1.0 U	1.0	0.20	
994-05-8 tert-Amyl Methyl Ether 1.0 U 1.0 U 0.20 98-06-6 tert-Butylbenzene 1.0 U 1.0 U 0.20		· · · · · · · · · · · · · · · · · · ·				
98-06-6 tert-Butylbenzene I.0 U 1.0 0.20		•				
				1.0	0.20	
		•				

Analytical Report

Client:

Tetra Tech GEO

Project:

Middle River- Lockheed Martin Corp/Surface Water 112ICO6247

Sample Matrix:

Water

Service Request: R1404414

Date Collected: 6/10/14 1132 Date Received: 6/11/14

Date Analyzed: 6/19/14 14:29

Sample Name:

MRC-SW9A-060914

Lab Code:

R1404414-012

Units: µg/L

Basis: NA

Volatile Organic Compounds by GC/MS

Analytical Method: 8260C

Data File Name:

I:\ACQUDATA\msvoa12\Data\061914\M6691.D\

Analysis Lot: 397695

Instrument Name: R-MS-12

Dilution Factor: 1

Note MRL MDL CAS No. Analyte Name Result Q 1.0 U 10061-02-6 trans-1,3-Dichloropropene 1.0 0.20

Surrogate Name	%Rec	Control Limits	Date Analyzed
4-Bromofluorobenzene	101	85-122	6/19/14 14:29
Dibromofluoromethane	102	89-119	6/19/14 14:29
Toluene-d8	101	87-121	6/19/14 14:29

Analytical Report

Client:

Tetra Tech GEO

Project:

Middle River-Lockheed Martin Corp/Surface Water 112ICO6247

Sample Matrix:

Service Request: R1404414 Date Collected: 6/10/14 1137

Date Received: 6/11/14

Date Analyzed: 6/19/14 20:57

Sample Name: Lab Code:

MRC-SW9B-060914

R1404414-013

Units: µg/L Basis: NA

Volatile Organic Compounds by GC/MS

Analytical Method: 8260C Data File Name:

I:\ACQUDATA\msvoa12\Data\061914\M6703.D\

Analysis Lot: 397695 Instrument Name: R-MS-12

CAS No.	Analyte Name	Result	Q	MRL	MDL	Note		
630-20-6	1,1,1,2-Tetrachloroethane	1.0		1.0	0.22			
71-55 -6	1,1,1-Trichloroethane (TCA)	1.0		1.0	0.36			
79-34-5	1,1,2,2-Tetrachloroethane	1.0	U	1.0	0.25		<u> </u>	
76-13-1	1,1,2-Trichlorotrifluoroethane	1.0	U	1.0	0.31			
75-34-3	1,1-Dichloroethane (1,1-DCA)	1.0		1.0	0.20			
75-35-4	1,1-Dichloroethene (1,1-DCE)	1.0	U	1.0	0.57			
563-58-6	1,1-Dichloropropene	1.0	U	1.0	0.29		•	
87-61-6	1,2,3-Trichlorobenzene	1.0	U	1.0	0.82			-
96-18-4	1,2,3-Trichloropropane	1.0	U	1.0	0.70			
120-82-1	1,2,4-Trichlorobenzene	1.0	U	1.0	0.23			
95-63-6	1,2,4-Trimethylbenzene	1.0	U	1.0	0.20			
96-12-8	1,2-Dibromo-3-chloropropane (DBCP)	2.0	U	2.0	0.74			
106-93-4	1,2-Dibromoethane	1.0	U	1.0	0.24		- · · -	-
95-50-1	1,2-Dichlorobenzene	1.0	U	1.0	0.21			
107-06-2	1,2-Dichloroethane	1.0	U	1.0	0.36			
78-87-5	1,2-Dichloropropane	1.0	U	1.0	0.20			
541-73-1	1,3-Dichlorobenzene	1.0	U	1.0	0.20			
142-28-9	1,3-Dichloropropane	1.0	U	1.0	0.27			
106-46-7	1,4-Dichlorobenzene	1.0	U	1.0	0.20			
594-20-7	2,2-Dichloropropane	1.0	U	1.0	0.27			
78-93-3	2-Butanone (MEK)	5.0	U	5.0	0.81			
110-75-8	2-Chloroethyl Vinyl Ether	1.0	U	1.0	0.44			
95-49-8	2-Chlorotoluene	1.0		1.0	0.20			
591-78-6	2-Hexanone	5.0	U	5.0	1.7			
75-65-0	tert-Butyl Alcohol	40	U	40	11			
106-43-4	4-Chlorotoluene	1.0		1.0	0.24			
99-87-6	4-Isopropyltoluene	1.0	U	1.0	0.20			_
108-10-1	4-Methyl-2-pentanone	5.0	U	5.0	0.67			
67-64-1	Acetone	1.5	J	5.0	1.3		•	
71-43-2	Benzene	1.0	U	1.0	0.20		_	
108-86-1	Bromobenzene	1.0	U	1.0	0.28			
74-97-5	Bromochloromethane	1.0		1.0	0.32			
75-27-4	Bromodichloromethane	1.0	U	1.0	0.32			
75-25-2	Bromoform	1.0	U	1.0	0.42			
74-83-9	Bromomethane	1.0		1.0	0.29			

Analytical Report

Client:

Tetra Tech GEO

Project:

Middle River- Lockheed Martin Corp/Surface Water 112ICO6247

Sample Matrix:

Water

Service Request: R1404414 Date Collected: 6/10/14 1137

Date Received: 6/11/14

Date Analyzed: 6/19/14 20:57

Sample Name:

MRC-SW9B-060914

Lab Code:

R1404414-013

Units: µg/L Basis: NA

Volatile Organic Compounds by GC/MS

Analytical Method: 8260C Data File Name:

I:\ACQUDATA\msvoa12\Data\061914\M6703.D\

Analysis Lot: 397695

Instrument Name: R-MS-12

CAS No.	Analyte Name	Result Q	MRL	MDL	Note
75-15-0	Carbon Disulfide	1.0 U	1.0	0.22	
56-23-5	Carbon Tetrachloride	1.0 U	1.0	0.45	
108-90-7	Chlorobenzene	. 1.0 U	1.0	0.29	
75-00-3	Chloroethane	1.0 U	1.0	0.24	
67-66-3	Chloroform	1.0 U	1.0	0.25	
74-87-3	Chloromethane	1.0 U	1.0	0.21	
124-48-1	Dibromochloromethane	1.0 U	1.0	0.31	
74-95-3	Dibromomethane	1.0 U	1.0	0.32	
75-7 1- 8	Dichlorodifluoromethane (CFC 12)	1.0 U	1.0	0.46	
75-09-2	Methylene Chloride	1.0 U	1.0	0.32	
108-20-3	Diisopropyl Ether	1.0 U	1.0	0.20	
637-92-3	Ethyl tert-Butyl Ether	1.0 U	1.0	0.20	
100-41-4	Ethylbenzene	1.0 U	1.0	0.20	
87-68-3	Hexachlorobutadiene	2.0 U	2.0	0.62	
98-82-8	Isopropylbenzene (Cumene)	1.0 U	1.0	0.20	
1634-04-4	Methyl tert-Butyl Ether	1.0 U	1.0	0.29	
91-20-3	Naphthalene	1.0 U	1.0	0.20	
100-42-5	Styrene	1.0 U	1.0	0.20	
127-18-4	Tetrachloroethene (PCE)	1.0 U	1.0	0.30	
108-88-3	Toluene	1.0 U	1.0	0.20	
79-01-6	Trichloroethene (TCE)	0.47 J	1.0	0.22	
75-69-4	Trichlorofluoromethane (CFC 11)	1.0 U	1.0	0.20	
108-05-4	Vinyl Acetate	2.0 U	2.0	1.1	
75-01-4	Vinyl Chloride	1.0 U	1.0	0.32	
1330-20-7	Xylenes, Total	3.0 ·U	3.0	0.53	
156-59-2	cis-1,2-Dichloroethene	1.0 U	1.0	0.30	
10061-01-5	cis-1,3-Dichloropropene	1.0 U	1.0	0.24	
179601-23-1	m,p-Xylenes	2.0 U	2.0	0.33	
104-51-8	n-Butylbenzene	1.0 U	1.0	0.21	
103-65-1	n-Propylbenzene	1.0 U	1.0	0.20	
95-47-6	o-Xylene	1.0 U	1.0	0.20	
135-98-8	sec-Butylbenzene	1.0 U	1.0	0.27	
994-05-8	tert-Amyl Methyl Ether	1.0 U	1.0	0.20	
98-06-6	tert-Butylbenzene	1.0 U	1.0	0.20	
156-60-5	trans-1,2-Dichloroethene	1.0 U	1.0	0.33	

Analytical Report

Client:

Tetra Tech GEO

Project:

Middle River-Lockheed Martin Corp/Surface Water 112ICO6247

Sample Matrix:

Water

Service Request: R1404414

Date Collected: 6/10/14 1137 Date Received: 6/11/14

Date Analyzed: 6/19/14 20:57

Sample Name: Lab Code:

MRC-SW9B-060914

R1404414-013

Units: µg/L Basis: NA

Volatile Organic Compounds by GC/MS

Analytical Method: 8260C

Data File Name:

 $I: \ACQUDATA \mbox{$\mbox{$\mbox{$\mbox{$}$}} al2\Data \061914\M6703.D \end{$\mbox{$\mbox{$\mbox{$\mbox{$}$}$}} al2\Data \norm{\mbox{$\mbox{$\mbox{$}$}$} al2\Data \norm{\mbox{$\mbox{$}$}} al2\Data \norm{\mbox$

Analysis Lot: 397695

Instrument Name: R-MS-12

CAS No.	Analyte Name		Result Q	MRL	MDL	Note
10061-02-6	trans-1,3-Dichloropropene		1.0 U	1.0	0.20	
Surrogate Name	e ,	%Rec	Control Limits	Date Analyzed	Q	
4-Bromofluorobe	enzene	100	85-122	6/19/14 20:57	7	
Dibromofluorom	ethane	103	89-119	6/19/14 20:57	1	
Toluene-d8		101	87-121	6/19/14 20:57	7	

Analytical Report

Client:

Tetra Tech GEO

Project:

Middle River- Lockheed Martin Corp/Surface Water 112ICO6247

Sample Matrix:

Water

Service Request: R1404414 Date Collected: 6/10/14

Date Received: 6/11/14

Date Analyzed: 6/19/14 13:58

Sample Name: Lab Code:

TB-060914 R1404414-014 Units: µg/L Basis: NA

Volatile Organic Compounds by GC/MS

Analytical Method: 8260C Data File Name:

I:\ACQUDATA\msvoa12\Data\061914\M6690.D\

Analysis Lot: 397695

Instrument Name: R-MS-12 Dilution Factor: 1

CAS No.	Analyte Name	Result	Q	MRL	MDL	Note
630-20-6	1,1,1,2-Tetrachloroethane	1.0	U	1.0	0.22	
71-55-6	1,1,1-Trichloroethane (TCA)	1.0	U	1.0	0.36	
79-34-5	1,1,2,2-Tetrachloroethane	1.0	U	1.0	0.25	
76-13-1	1,1,2-Trichlorotrifluoroethane	1.0	U	1.0	0.31	
75-34-3	1,1-Dichloroethane (1,1-DCA)	1.0	U	1.0	0.20	
75-35-4	1,1-Dichloroethene (1,1-DCE)	1.0	U	1.0	0.57	
563-58-6	1,1-Dichloropropene	1.0	U	1.0	0.29	
87-61-6	1,2,3-Trichlorobenzene	1.0		1.0	0.82	
96-18-4	1,2,3-Trichloropropane	1.0	U	1.0	0.70	
120-82-1	1,2,4-Trichlorobenzene	1.0	Ū	1.0	0.23	
95-63-6	1,2,4-Trimethylbenzene	1.0		1.0	0.20	
96-12-8	1,2-Dibromo-3-chloropropane (DBCP)	2.0	U	2.0	0.74	
106-93-4	1,2-Dibromoethane	1.0	U	1.0	0.24	
95-50-1	1,2-Dichlorobenzene	1.0	U	1.0	0.21	
107-06-2	1,2-Dichloroethane	1.0	U	1.0	0.36	
78-87-5	1,2-Dichloropropane	1.0	U	1.0	0.20	
541-73-1	1,3-Dichlorobenzene	1.0	U	1.0	0.20	
142-28-9	1,3-Dichloropropane	1.0	U	1.0	0.27	
106-46-7	I,4-Dichlorobenzene	1.0	U	1.0	0.20	
594-20-7	2,2-Dichloropropane	1.0	U	1.0	0.27	
78-93-3	2-Butanone (MEK)	5.0	U	5.0	0.81	
110-75-8	2-Chloroethyl Vinyl Ether	1.0	U	1.0	0.44	
95-49-8	2-Chlorotoluene	1.0	U	1.0	0.20	
591-78-6	2-Hexanone	5.0	U	5.0	1.7	
75-65-0	tert-Butyl Alcohol	40	U	40	11	
106-43-4	4-Chlorotoluene	1.0	U	1.0	0.24	
99-87-6	4-Isopropyltoluene	1.0	U	1.0	0.20	
108-10-1	4-Methyl-2-pentanone	5.0	U	5.0	0.67	
67 -6 4-1	Acetone	2.3	J	5.0	1.3	
71-43-2	Benzene	1.0	U	1.0	0.20	
108-86-1	Bromobenzene	1.0	U	1.0	0.28	
74-97-5	Bromochloromethane	1.0	ับ	1.0	0.32	
75-27-4	Bromodichloromethane	1.0	ប	1.0	0.32	
75-25-2	Bromoform	1.0	U	1.0	0.42	
74-83-9	Bromomethane	1.0	U	1.0	0.29	

Analytical Report

Client:

Tetra Tech GEO

Project:

Middle River-Lockheed Martin Corp/Surface Water 112ICO6247

Sample Matrix:

Water

Service Request: R1404414 Date Collected: 6/10/14 Date Received: 6/11/14

Date Analyzed: 6/19/14 13:58

Units: µg/L Basis: NA

Sample Name: Lab Code:

TB-060914 R1404414-014

Volatile Organic Compounds by GC/MS

Analytical Method: 8260C Data File Name:

I:\ACQUDATA\msvoa12\Data\061914\M6690.D\

Analysis Lot: 397695 Instrument Name: R-MS-12

CAS No.	Analyte Name	Result	Q	MRL	MDL	Note
75-15-0	Carbon Disulfide	1.0		1.0	0.22	
56-23-5	Carbon Tetrachloride	1.0		1.0	0.45	
108-90-7	Chlorobenzene	1.0	U	1.0	0.29	
75-00-3	Chloroethane	1.0		1.0	0.24	
67-66-3	Chloroform	1.0		1.0	0.25	
74-87-3	Chloromethane	1.0	U	1.0	0.21	
124-48-1	Dibromochloromethane	1.0	U	1.0	0.31	
74-95-3	Dibromomethane	1.0		1.0	0.32	
75-71-8	Dichlorodifluoromethane (CFC 12)	1.0	U	1.0	0.46	
75-09-2	Methylene Chloride	1.0	U	1.0	0.32	•
108-20-3	Diisopropyl Ether	1.0	U	1.0	0.20	
637-92-3	Ethyl tert-Butyl Ether	1.0	U	1.0	0.20	
100-41-4	Ethylbenzene	1.0	U	1.0	0.20	
87-68-3	Hexachlorobutadiene	2.0	U	2.0	0.62	
98-82-8	Isopropylbenzene (Cumene)	1.0	U	1.0	0.20	
1634-04-4	Methyl tert-Butyl Ether	1.0	U	1.0	0.29	
91-20-3	Naphthalene	1.0	U	1.0	0.20	
100-42-5	Styrene	1.0	U	1.0	0.20	
127-18-4	Tetrachloroethene (PCE)	1.0	U	1.0	0.30	
108-88-3	Toluene	1.0	U	1.0	0.20	• -
79-01-6	Trichloroethene (TCE)	0.1	U	. 1.0	0.22	
75-69-4	Trichlorofluoromethane (CFC 11)	1.0	U	1.0	0.20	
108-05-4	Vinyl Acetate	2.0	U	2.0	1.1	
75-01-4	Vinyl Chloride	1.0	U	1.0	0.32	
1330-20-7	Xylenes, Total	3.0	U	3.0	0.53	
156-59-2	cis-1,2-Dichloroethene	1.0	U	1.0	0.30	
10061-01-5	cis-1,3-Dichloropropene	1.0	Ų	1.0	0.24	
179601-23-1	m,p-Xylenes	2.0	U	2.0	0.33	
104-51-8	n-Butylbenzene	1.0	U	1.0	0.21	
103-65-1	n-Propylbenzene	1.0	U	1.0	0.20	
95-47-6	o-Xylene	1.0	U	1.0	0.20	
135-98-8	sec-Butylbenzene	1.0	U	0.1	0.27	
994-05-8	tert-Amyl Methyl Ether	1.0	U	1.0	0.20	
98-06-6	tert-Butylbenzene	1.0	U	1.0	0.20	
156-60-5	trans-1,2-Dichloroethene	1.0		1.0	0.33	
		- 1-				

Analytical Report

Client:

Tetra Tech GEO

Project:

Middle River- Lockheed Martin Corp/Surface Water 112ICO6247

Sample Matrix:

Water

Service Request: R1404414

Date Collected: 6/10/14 Date Received: 6/11/14

Date Analyzed: 6/19/14 13:58

Units: µg/L Basis: NA

Sample Name: Lab Code:

TB-060914 R1404414-014

Volatile Organic Compounds by GC/MS

Analytical Method: 8260C

Data File Name:

1:\ACQUDATA\msvoa12\Data\061914\M6690.D\

Analysis Lot: 397695

Instrument Name: R-MS-12

CAS No.	Analyte Name	Result Q	MRL	MDL	Note	
10061-02-6	trans-1,3-Dichloropropene	1.0 U	1.0	0.20		

Surrogate Name	%Rec	Control Limits	Date Analyzed Q	
4-Bromofluorobenzene	101	85-122	6/19/14 13:58	
Dibromofluoromethane .	104	89-119	6/19/14 13:58	
Toluene-d8	. 100	87-121	6/19/14 13:58	

Analytical Report

Client:

Tetra Tech GEO

Project:

Middle River- Lockheed Martin Corp/Surface Water 1121CO6247

Sample Matrix:

Water

Service Request: R1404414 **Date Collected:** 6/10/14 1032

Date Received: 6/11/14 Date Extracted: 6/13/14

Date Analyzed: 6/23/14 19:55

Units: µg/L Basis: NA

Sample Name:

MRC-SW5A1-060914

Lab Code:

R1404414-003

Pesticides and PCBs in Water and Soil/Sediment by Gas Chromatography/Mass Spectrometry

Analytical Method: 680

Prep Method:

EPA 3510C

Data File Name:

I:\ACQUDATA\5973B\DATA\062314\DK259.D\

Analysis Lot: 398720

Extraction Lot: 210751 Instrument Name: R-MS-52

CAS No.	Analyte Name	Result Q	MRL	MDL	Note
27323-18-8	Monochlorobiphenyls, Total	0.0049 U	0.0049	0.0017	
25512-42-9	Dichlorobiphenyls, Total	0.0049 U	0.0049	0.0044	
25323-68-6	Trichlorobiphenyls, Total	0.0049 U	0.0049	0.0034	
26914-33-0	Tetrachlorobiphenyls, Total	0.011	0.0098	0.0054	
25429-29-2	Pentachlorobiphenyls, Total	0.0098 U	0.0098	0.0088	
26601-64-9	Hexachlorobiphenyls, Total	0.010 U	0.010	0.010	
28655-71-2	Heptachlorobiphenyls, Total	0.015 U	0.015	0.011	
55722-26-4	Octachlorobiphenyls, Total	0.015 U	0.015	0.0084	
53742-07-7	Nonachlorobiphenyls, Total	0.020 U	0.020	0.019	
2051-24-3	Decachlorobiphenyls, Total	0.025 U	0.025	0.018	

Surrogate Name	%Rec	Control Limits	Date Analyzed (Q	
gamma-BHC (Lindane) 4,4'-DDT	81 64	63-119 62-181	6/23/14 19:55 6/23/14 19:55		

Analytical Report

Client:

Tetra Tech GEO

Project:

Middle River- Lockheed Martin Corp/Surface Water 112ICO6247

Sample Matrix:

Water

Service Request: R1404414 Date Collected: 6/10/14 1041

Date Received: 6/11/14 Date Extracted: 6/13/14

Date Analyzed: 6/24/14 10:48

Sample Name:

MRC-SW5A2-060914

Lab Code:

R1404414-004

Units: µg/L Basis: NA

Pesticides and PCBs in Water and Soil/Sediment by Gas Chromatography/Mass Spectrometry

· Analytical Method: 680

Prep Method:

EPA 3510C

Data File Name:

I:\ACQUDATA\5973B\DATA\062414\DK268.D\

Analysis Lot: 399144

Extraction Lot: 210751 Instrument Name: R-MS-52

CAS No.	Analyte Name	Result	Q	MRL	MDL	Note
27323-18-8	Monochlorobiphenyls, Total	0.0061	U	0.0061	0.0021	
25512-42-9	Dichlorobiphenyls, Total	0.0061	U	0.0061	0.0054	
25323-68-6	Trichlorobiphenyls, Total	0.0061	U	0.0061	0.0042	
26914-33-0	Tetrachlorobiphenyls, Total	0.024		0.012	0.0066	
25429-29-2	Pentachlorobiphenyls, Total	0.012	U	0.012	0.011	
26601-64-9	Hexachlorobiphenyls, Total	0.013	U	0.013	0.013	
28655-71-2	Heptachlorobiphenyls, Total	0.018	U	0.018	0.014	
55722-26-4	Octachlorobiphenyls, Total	0.018	U	0.018	0.011	
53742-07-7	Nonachlorobiphenyls, Total	0.024	U	0.024	0.024	
2051-24-3	Decachlorobiphenyls, Total	0.030	U	0.030	0.022	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Q
gamma-BHC (Lindane)	81	63-119	6/24/14 10:48	
4,4'-DDT	72	62-181	6/24/14 10:48	

Analytical Report

Client:

Tetra Tech GEO

Project:

Middle River- Lockheed Martin Corp/Surface Water 112ICO6247

Sample Matrix:

Water

Service Request: R1404414

Date Collected: 6/10/14 1049 Date Received: 6/11/14

Date Extracted: 6/13/14 Date Analyzed: 6/24/14 11:17

Sample Name:

MRC-SW5B-060914

Lab Code:

R1404414-005

Units: µg/L Basis: NA

Pesticides and PCBs in Water and Soil/Sediment by Gas Chromatography/Mass Spectrometry

Analytical Method: 680

EPA 3510C

Prep Method: Data File Name:

I:\ACQUDATA\5973B\DATA\062414\DK269.D\

Analysis Lot: 399144

Extraction Lot: 210751 Instrument Name: R-MS-52

CAS No.	Analyte Name	Result Q	MRL	MDL	Note
27323-18-8	Monochlorobiphenyls, Total	0.0048 U	0.0048	0.0017	
25512-42-9	Dichlorobiphenyls, Total	0.0048 U	0.0048	0.0044	
25323-68-6	Trichlorobiphenyls, Total	0.0048 U	0.0048	0.0034	
26914-33-0	Tetrachlorobiphenyls, Total	0.016	0.0096	0.0054	
25429-29-2	Pentachlorobiphenyls, Total	0.0096 U	0.0096	0.0088	
26601-64-9	Hexachlorobiphenyls, Total	0.010 U	0.010	0.010	
28655-71-2	Heptachlorobiphenyls, Total	0.014 U	0.014	0.011	
55722-26-4	Octachlorobiphenyls, Total	0.014 U	0.014	0.0084	•
53742-07-7	Nonachlorobiphenyls, Total	0.019 U	0.019	0.019	
2051-24-3	Decachlorobiphenyls, Total	0.024 U	0.024	0.018	

Surrogate Name	%Rec	Control Limits	Date Analyzed (Q
gamma-BHC (Lindane)	94	63-119	6/24/14 11:17	
4,4'-DDT	73	62-181	6/24/14 11:17	

Analytical Report

Client:

Tetra Tech GEO

Project:

Middle River- Lockheed Martin Corp/Surface Water 112ICO6247

Sample Matrix:

Water

Service Request: R1404414

Date Collected: 6/10/14 1144 Date Received: 6/11/14 Date Extracted: 6/13/14

Date Analyzed: 6/24/14 12:44

Basis: NA

Units: µg/L

Sample Name:

MRC-SW6A-060914

Lab Code:

R1404414-006

Pesticides and PCBs in Water and Soil/Sediment by Gas Chromatography/Mass Spectrometry

Analytical Method: 680 Prep Method:

EPA 3510C

Data File Name:

I:\ACQUDATA\5973B\DATA\062414\DK272.D\

Analysis Lot: 399144

Extraction Lot: 210751 Instrument Name: R-MS-52

CAS No.	Analyte Name	Result	Q	MRL	MDL	Note
27323-18-8	Monochlorobiphenyls, Total	0.0047	U	0.0047	0.0017	
25512-42-9	Dichlorobiphenyls, Total	0.0047	U	0.0047	0.0044	
25323-68-6	Trichlorobiphenyls, Total	0.0047	U	0.0047	0.0034	
26914-33-0	Tetrachlorobiphenyls, Total	0.0066	J	0.0094	0.0054	
25429-29-2	Pentachlorobiphenyls, Total	0.0094	U	0.0094	0.0088	
26601-64-9	Hexachlorobiphenyls, Total	0.010	U	0.010	0.010	
28655-71-2	Heptachlorobiphenyls, Total	0.014	U	0.014	0.011	
55722-26-4	Octachlorobiphenyls, Total	0.014	U	0.014	0.0084	
53742-07-7	Nonachlorobiphenyls, Total	0.019	U	0.019	0.019	
2051-24-3	Decachlorobiphenyls, Total	0.024	U	0.024	0.018	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Q
gamma-BHC (Lindane)	89	63-119	6/24/14 12:44	
4,4'-DDT	74	62-181	6/24/14 12:44	

Analytical Report

Client:

Tetra Tech GEO

Project:

Middle River- Lockheed Martin Corp/Surface Water 1121CO6247

Sample Matrix:

Water

Service Request: R1404414 Date Collected: 6/10/14 1149

Date Received: 6/11/14 Date Extracted: 6/13/14

Date Analyzed: 6/23/14 20:54

Sample Name:

MRC-SW6B-060914

Lab Code:

R1404414-007

Units: µg/L Basis: NA

Pesticides and PCBs in Water and Soil/Sediment by Gas Chromatography/Mass Spectrometry

Analytical Method: 680

Prep Method: Data File Name: **EPA 3510C**

I:\ACQUDATA\5973B\DATA\062314\DK261.D\

Analysis Lot: 398720 Extraction Lot: 210751

Instrument Name: R-MS-52

CAS No.	Analyte Name	Result Q	MRL	MDL	Note
27323-18-8	Monochlorobiphenyls, Total	0.0047 U	0.0047	0.0017	
25512-42-9	Dichlorobiphenyls, Total	0.0047 U	0.0047	0.0044	
25323-68-6	Trichlorobiphenyls, Total	0.0047 U	0.0047	0.0034	·
26914-33-0	Tetrachlorobiphenyls, Total	0.0071 J	0.0094	0.0054	
25429-29-2	Pentachlorobiphenyls, Total	0.015	0.0094	0.0088	
26601-64-9	Hexachlorobiphenyls, Total	0.010 U	0.010	0.010	
28655-71-2	Heptachlorobiphenyls, Total	0.014 U	0.014	0.011	
55722-26-4	Octachlorobiphenyls, Total	0.014 U	0.014	0.0084	· ·
53742-07-7	Nonachlorobiphenyls, Total	0.019 U	0.019	0.019	
2051-24-3	Decachlorobiphenyls, Total	0.024 U	0.024	0.018	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Q
gamma-BHC (Lindane)	94	63-119	6/23/14 20:54	
4,4'-DDT	83	62-181	6/23/14 20:54	

Analytical Report

Client:

Tetra Tech GEO

Project:

Middle River- Lockheed Martin Corp/Surface Water 112ICO6247

Sample Matrix:

Water

Service Request: R1404414 Date Collected: 6/10/14 1122

Date Received: 6/11/14 Date Extracted: 6/13/14

Date Analyzed: 6/24/14 13:14

Units: µg/L

Sample Name: Lab Code:

MRC-SW7A-060914

R1404414-008

Basis: NA

Pesticides and PCBs in Water and Soil/Sediment by Gas Chromatography/Mass Spectrometry

Analytical Method: 680

Prep Method:

EPA 3510C

Data File Name:

I:\ACQUDATA\5973B\DATA\062414\DK273.D\

Analysis Lot: 399144

Extraction Lot: 210751 Instrument Name: R-MS-52

CAS No.	Analyte Name	Result (Q	MRL.	MDL	Note
27323-18-8	Monochlorobiphenyls, Total	0.0050	U	0.0050	0.0017	
25512-42-9	Dichlorobiphenyls, Total	0.0050	U	0.0050	0.0044	
25323-68-6	Trichlorobiphenyls, Total	0.0050	U	0.0050	0.0034	
26914-33-0	Tetrachlorobiphenyls, Total	0.010	U	0.010	0.0054	
25429-29-2	Pentachlorobiphenyls, Total	0.012		0.010	0.0088	
26601-64-9	Hexachlorobiphenyls, Total	0.010	U	0.010	0.010	
28655-71-2	Heptachlorobiphenyls, Total	0.015	U	0.015	0.011	
55722-26-4	Octachlorobiphenyls, Total	0.015	U	0.015	0.0084	
53742-07-7	Nonachlorobiphenyls, Total	0.020	U	0.020	0.019	
2051-24-3	Decachlorobiphenyls, Total	0.025	U	0.025	0.018	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Q
gamma-BHC (Lindane)	97	63-119	6/24/14 13:14	
4,4'-DDT	67	62-181	6/24/14 13:14	

Analytical Report

Client:

Tetra Tech GEO

Project:

Middle River-Lockheed Martin Corp/Surface Water 112ICO6247

Sample Matrix:

Water

Service Request: R1404414

Date Collected: 6/10/14 1126 Date Received: 6/11/14 Date Extracted: 6/13/14

Date Analyzed: 6/24/14 14:42

Basis: NA

Units: µg/L

Sample Name:

MRC-SW7B-060914

Lab Code:

R1404414-009

Pesticides and PCBs in Water and Soil/Sediment by Gas Chromatography/Mass Spectrometry

Analytical Method: 680

Prep Method:

EPA 3510C

Data File Name:

I:\ACQUDATA\5973B\DATA\062414\DK276.D\

Analysis Lot: 399144

Extraction Lot: 210751 Instrument Name: R-MS-52

Dilution Factor: 1

CAS No.	Analyte Name	Result Q	MRL	MDL	Note
27323-18-8	Monochlorobiphenyls, Total	0.0047 U	0.0047	0.0017	
25512-42-9	Dichlorobiphenyls, Total	0.0047 U	0.0047	0.0044	
25323-68-6	Trichlorobiphenyls, Total	0.0047 U	0.0047	0.0034	
26914-33-0	Tetrachlorobiphenyls, Total	0.0094 U	0.0094	0.0054	
25429-29-2	Pentachlorobiphenyls, Total	0.0094 U	0.0094	0.0088	
26601-64-9	Hexachlorobiphenyls, Total	0.010 U	0.010	0.010	•
28655-71-2	Heptachlorobiphenyls, Total	0.014 U	0.014	0.011	
55722-26-4	Octachlorobiphenyls, Total	0.014 U	0.014	0.0084	
53742-07-7	Nonachlorobiphenyls, Total	0.019 U	0.019	0.019	
2051-24-3	Decachlorobiphenyls, Total	0.024 U	0.024	0.018	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Q	
gamma-BHC (Lindane)	96	63-119	6/24/14 14:42		
4,4'-DDT	65	62-181	6/24/14 14:42		

\\alprews001\starlims\$\LIMSReps\AnalyticalReport.rpt

Analytical Report

Client:

Tetra Tech GEO

Project:

Middle River- Lockheed Martin Corp/Surface Water 112ICO6247

Sample Matrix:

Water

Service Request: R1404414

Date Collected: 6/10/14 1157 Date Received: 6/11/14

Date Extracted: 6/13/14

Date Analyzed: 6/24/14 15:12

Units: µg/L Basis: NA

Sample Name:

MRC-SW8A-060914

Lab Code:

R1404414-010

Pesticides and PCBs in Water and Soil/Sediment by Gas Chromatography/Mass Spectrometry

Analytical Method: 680

Prep Method:

EPA 3510C

Data File Name:

I:\ACQUDATA\5973B\DATA\062414\DK277.D\

Analysis Lot: 399144

Extraction Lot: 210751 Instrument Name: R-MS-52

CAS No.	Analyte Name	Result Q	MRL	MDL	Note
27323-18-8	Monochlorobiphenyls, Total	0.0047 U	0.0047	0.0017	
25512-42-9	Dichlorobiphenyls, Total	0.0047 U	0.0047	0.0044	
25323-68-6	Trichlorobiphenyls, Total	0.0047 U	0.0047	0.0034	
26914-33-0	Tetrachlorobiphenyls, Total	0.0066 J	0.0094	0.0054	
25429-29-2	Pentachlorobiphenyls, Total	0.0094 U	0.0094	0.0088	
26601-64-9	Hexachlorobiphenyls, Total	0.010 U	0.010	0.010	
28655-71-2	Heptachlorobiphenyls, Total	0.014 U	0.014	0.011	
55722-26-4	Octachlorobiphenyls, Total	0.014 U	0.014	0.0084	
53742-07-7	Nonachlorobiphenyls, Total	0.019 U	0.019	0.019	
2051-24-3	Decachlorobiphenyls, Total	0.024 U	0.024	0.018	

Surrogate Name	%Rec	Control Limits	Date Analyzed Q	
gamma-BHC (Lindane)	92	63-119	6/24/14 15:12	
4,4'-DDT	68	62-181	6/24/14 15:12	

Analytical Report

Client:

Tetra Tech GEO

Project:

Middle River- Lockheed Martin Corp/Surface Water 1121CO6247

Sample Matrix:

Water

Service Request: R1404414

Date Collected: 6/10/14 1202 Date Received: 6/11/14 Date Extracted: 6/13/14

Date Analyzed: 6/25/14 15:50

Basis: NA

Units: µg/L

Sample Name:

MRC-SW8B-060914

Lab Code:

R1404414-011

Pesticides and PCBs in Water and Soil/Sediment by Gas Chromatography/Mass Spectrometry

Analytical Method: 680 Prep Method:

Data File Name:

EPA 3510C

I:\ACQUDATA\5973B\DATA\062514\DK296.D\

Analysis Lot: 399147

Extraction Lot: 210751 Instrument Name: R-MS-52

CAS No.	Analyte Name	Result Q	MRL	MDL	Note
27323-18-8	Monochlorobiphenyls, Total	0.0047 U	0.0047	0.0017	
25512-42-9	Dichlorobiphenyls, Total	0.0047 U	0.0047	0.0044	
25323-68-6	Trichlorobiphenyls, Total	0.0061	0.0047	0.0034	
26914-33-0	Tetrachlorobiphenyls, Total	0.0061 J	0.0094	0.0054	
25429-29-2	Pentachlorobiphenyls, Total	0.018	0.0094	0.0088	
26601-64-9	Hexachlorobiphenyls, Total	0.010 U	0.010	0.010	. <u>.</u>
28655-71-2	Heptachlorobiphenyls, Total	0.014 U	0.014	0.011	
55722-26-4	Octachlorobiphenyls, Total	0.014 U	0.014	0.0084	
53742-07-7	Nonachlorobiphenyls, Total	0.019 U	0.019	0.019	
2051-24-3	Decachlorobiphenyls, Total	0.024 U	0.024	0.018	,

Surrogate Name	%Rec	Control Limits	Date Analyzed	Q
gamma-BHC (Lindane)	37 *	63-119	6/25/14 15:50	
4,4'-DDT	36 *	62-181	6/25/14 15:50	

Analytical Report

Client:

Tetra Tech GEO

Project:

Middle River- Lockheed Martin Corp/Surface Water 112ICO6247

Sample Matrix:

Water

Service Request: R1404414

Date Collected: 6/10/14 1202 Date Received: 6/11/14

Date Extracted: 6/30/14 Date Analyzed: 7/1/14 11:52

MRC-SW8B-060914

Lab Code: Run Type:

Sample Name:

R1404414-011

Reanalysis

Units: µg/L

Basis: NA

Pesticides and PCBs in Water and Soil/Sediment by Gas Chromatography/Mass Spectrometry

Analytical Method: 680 Prep Method:

Data File Name:

EPA 3510C

I:\ACQUDATA\5973B\DATA\070114\DK311.D\

Analysis Lot: 399987

Extraction Lot: 211949 Instrument Name: R-MS-52

CAS No.	Analyte Name	Result Q	MRL	MDL	Note	
27323-18-8	Monochlorobiphenyls, Total	0.0047 U	0.0047	0.0017	*	
25512-42-9	Dichlorobiphenyls, Total	0.0047 U	0.0047	0.0044	*	
25323-68-6	Trichlorobiphenyls, Total	0.0047 U	0.0047	0.0034	*	
26914-33-0	Tetrachlorobiphenyls, Total	0.0094 U	0.0094	0.0054	*	
25429-29-2	Pentachlorobiphenyls, Total	0.0094 U	0.0094	0.0088	*	
26601-64-9	Hexachlorobiphenyls, Total	0.010 U	0.010	0.010	*	
28655-71-2	Heptachlorobiphenyls, Total	0.014 U	0.014	0.011	*	
55722-26-4	Octachlorobiphenyls, Total	0.014 U	0.014	0.0084	*	
53742-07-7	Nonachlorobiphenyls, Total	0.019 U	0.019	0.019	*	
2051-24-3	Decachlorobiphenyls, Total	0.024 U	0.024	0.018	*	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Q
gamma-BHC (Lindane)	88	63-119	7/1/14 11:52	
4,4'-DDT	73	62-181	7/1/14 11:52	

Analytical Report

Client:

Tetra Tech GEO

Project:

Middle River-Lockheed Martin Corp/Surface Water 112ICO6247

Sample Matrix:

Service Request: R1404414 **Date Collected:** 6/10/14 1132 Date Received: 6/11/14

Date Extracted: 6/13/14

Date Analyzed: 6/25/14 17:47

Sample Name:

MRC-SW9A-060914

Lab Code:

R1404414-012

Units: µg/L Basis: NA

Pesticides and PCBs in Water and Soil/Sediment by Gas Chromatography/Mass Spectrometry

Analytical Method: 680

Prep Method:

EPA 3510C

Data File Name:

I:\ACQUDATA\5973B\DATA\062514\DK300.D\

Analysis Lot: 399147

Extraction Lot: 210751 Instrument Name: R-MS-52

CAS No.	Analyte Name	Result Q	MRL	MDL	Note
27323-18-8	Monochlorobiphenyls, Total	0.0047 U	0.0047	0.0017	
25512-42-9	Dichlorobiphenyls, Total	0.0047 U	0.0047	0.0044	
25323-68-6	Trichlorobiphenyls, Total	0.0047 U	0.0047	0.0034	
26914-33-0	Tetrachlorobiphenyls, Total	0.0094 U	0.0094	0.0054	
25429-29-2	Pentachlorobiphenyls, Total	0.0094 U	0.0094	0.0088	
26601-64-9	Hexachlorobiphenyls, Total	0.010 U	0.010	0.010	
28655-71-2	Heptachlorobiphenyls, Total	0.014 U	0.014	0.011	
55722-26-4	Octachlorobiphenyls, Total	0.014 U	0.014	0.0084	
53742-07-7	Nonachlorobiphenyls, Total	0.019 U	0.019	0.019	
2051-24-3	Decachlorobiphenyls, Total	0.024 U	0.024	0.018	

Surrogate Name	%Rec	Control Limits	Date Analyzed Q	
gamma-BHC (Lindane)	89	63-119	6/25/14 17:47	
4,4'-DDT	74	62-181	6/25/14 17:47	

Analytical Report

Client:

Tetra Tech GEO

Project:

Middle River- Lockheed Martin Corp/Surface Water 112ICO6247

Sample Matrix:

Water

Service Request: R1404414

Date Collected: 6/10/14 1137 Date Received: 6/11/14

Date Extracted: 6/13/14

Date Analyzed: 6/25/14 16:19

Sample Name:

MRC-SW9B-060914

Lab Code:

R1404414-013

Units: µg/L Basis: NA

Pesticides and PCBs in Water and Soil/Sediment by Gas Chromatography/Mass Spectrometry

Analytical Method: 680

Prep Method:

EPA 3510C

Data File Name:

I:\ACQUDATA\5973B\DATA\062514\DK297.D\

Analysis Lot: 399147

Extraction Lot: 210751 Instrument Name: R-MS-52

CAS No.	Analyte Name	Result Q	MRL	MDL	Note
27323-18-8	Monochlorobiphenyls, Total	0.0047 U	0.0047	0.0017	
25512-42-9	Dichlorobiphenyls, Total	0.0047 U	0.0047	0.0044	
25323 - 68-6	Trichlorobiphenyls, Total	0.0047 U	0.0047	0.0034	
26914-33-0	Tetrachlorobiphenyls, Total	0.0094 U	0.0094	0.0054	-
25429-29-2	Pentachlorobiphenyls, Total	0.0094 U	0.0094	0.0088	
26601-64-9	Hexachlorobiphenyls, Total	0.010 U	0.010	0.010	
28655-71-2	Heptachlorobiphenyls, Total	0.014 U	0.014	0.011	
55722-26-4	Octachlorobiphenyls, Total	0.014 U	0.014	0.0084	
53742-07-7	Nonachlorobiphenyls, Total	0.019 U	0.019	0.019	
2051-24-3	Decachlorobiphenyls, Total	0.024 U	0.024	0.018	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Q	
gamma-BHC (Lindane)	95	63-119	6/25/14 16:19		_
4,4'-DDT	105	62-181	6/25/14 16:19		

Analytical Report

Client:

Tetra Tech GEO

Project:

Middle River-Lockheed Martin Corp/Surface Water 112ICO6247

Sample Matrix:

Service Request: R1404414

Date Collected: 6/10/14 1002 Date Received: 6/11/14

Date Extracted: 6/13/14 Date Analyzed: 6/13/14 14:39

Units: µg/L Basis: As Received

Sample Name:

MRC-SW1A-060914

Lab Code:

R1404414-001

1,4-Dioxane by Solid Phase Extraction and GC/MS With Selected Ion Monitoring

Analytical Method: 522

Prep Method:

Method

Data File Name:

I:\ACQUDATA\5975E\data\061314\Af949.D\

Analysis Lot: 397133

Extraction Lot: 210544 Instrument Name: R-MS-56

Dilution Factor: 1

CAS No.

Analyte Name

Result Q

MRL

MDL

Note

123-91-1

1,4-Dioxane

0.235

0.200

0.0200

Date Analyzed

Q

Surrogate Name 1.4-Dioxane-d8

92

%Rec

Limits 70-130

Control

6/13/14 14:39

Analytical Report

Client:

Tetra Tech GEO

Project:

Middle River- Lockheed Martin Corp/Surface Water 1121CO6247

Sample Matrix:

Water

Service Request: R1404414

Date Collected: 6/10/14 1013

Date Received: 6/11/14 Date Extracted: 6/13/14

Date Analyzed: 6/13/14 15:16

Units: µg/L

Basis: As Received

Sample Name: .

MRC-SW2A-060914

Lab Code:

R1404414-002

1,4-Dioxane by Solid Phase Extraction and GC/MS With Selected Ion Monitoring

Analytical Method: 522

Prep Method:

Method

Data File Name:

I:\ACQUDATA\5975E\data\061314\Af951.D\

Analysis Lot: 397133

Extraction Lot: 210544 Instrument Name: R-MS-56

Dilution Factor: 1

CAS No. **Analyte Name** Result Q MRL MDL Note 0.200 0.0200 123-91-1 1,4-Dioxane 0.156 J

Control Date %Rec Limits Analyzed Q Surrogate Name 1,4-Dioxane-d8 96 70-130 6/13/14 15:16

Appendix C

Support Documentation

SDG R1404414

SORT	STINU .	NSAMPLE LAB	LAB_ID	QC_TYPE	SAMP_DATE	EXTR_DATE	ANAL_DATE	SMP_EXTR	EXTR_ANL	SMP_ANL
	PERCE	MRC-SW7	R1404414-008	Σ Z	06/10/2014	06/13/2014	06/24/2014	m	Ξ	14
	PERCE	MRC-SW9B-060914	R1404414-013	ΣZ	06/10/2014	06/13/2014	06/25/2014	က	12	15
	PERCE	MRC-SW8B-060914	R1404414-011	∑	06/10/2014	06/13/2014	06/25/2014	რ	12	15
	PERCE	MRC-SW7B-060914	R1404414-009	∑ Z	06/10/2014	06/13/2014	06/24/2014	ო	Ξ	4
	PERCE	MRC-SW9A-060914	R1404414-012	∑	06/10/2014	06/13/2014	06/25/2014	ო	12	15
	PERCE	MRC-SW6B-060914	R1404414-007	∑	06/10/2014	06/13/2014	06/23/2014	ო	10	13
	PERCE	MRC-SW6A-060914	R1404414-006	∑	06/10/2014	06/13/2014	06/24/2014	က	=	14
	PERCE	MRC-SW5B-060914	R1404414-005	N N	06/10/2014	06/13/2014	06/24/2014	ო	=	41
	PERCE	MRC-SW5A2-060914	R1404414-004	∑	06/10/2014	06/13/2014	06/24/2014	ო	Ξ	14
	PERCE	MRC-SW5A1-060914	R1404414-003	∑	06/10/2014	06/13/2014	06/23/2014	ო	10	13
	PERCE	MRC-SW8A-060914	R1404414-010	∑	06/10/2014	06/13/2014	06/24/2014	ო	=	14
	NG/L	MRC-SW5B-060914	R1404414-005	N N	06/10/2014	06/13/2014	06/24/2014	က	1	41
	NG/L	MRC-SW8A-060914	R1404414-010	∑	06/10/2014	06/13/2014	06/24/2014	က	£	14
	NG/L	MRC-SW7B-060914	R1404414-009	Σ	06/10/2014	06/13/2014	06/24/2014	က	-	14
	NG/L	MRC-SW7A-060914	R1404414-008	MZ	06/10/2014	06/13/2014	06/24/2014	က	#	14

Monday, July 21, 2014

Page 1 of 4

SORT	UNITS	NSAMPLE	LAB_ID	QC_TYPE	SAMP_DATE	EXTR_DATE	ANAL_DATE	SMP_EXTR	EXTR_ANL	SMP_ANL
	NG/L	~	R1404414-007	WN	06/10/2014	06/13/2014	06/23/2014	က	10	13
	NG/L	MRC-SW6A-060914	R1404414-006	∑	06/10/2014	06/13/2014	06/24/2014	ဧ	1	14
	NG/L	MRC-SW5A2-060914	R1404414-004	∑	06/10/2014	06/13/2014	06/24/2014	8	#	14
	NG/L	MRC-SW5A1-060914	R1404414-003	∑	06/10/2014	06/13/2014	06/23/2014	ဧ	10	5
	NG/L	MRC-SW9A-060914	R1404414-012	∑	06/10/2014	06/13/2014	06/25/2014	ဧ	12	15
	NG/L	MRC-SW8B-060914	R1404414-011	∑	06/10/2014	06/13/2014	06/25/2014	ю	12	15
	NG/L	MRC-SW9B-060914	R1404414-013	MN	06/10/2014	06/13/2014	06/25/2014	ю	12	15
	PERCE	MRC-SW2A-060914	R1404414-002	∑	06/10/2014	06/13/2014	06/13/2014	က	0	က
	PERCE	MRC-SW1A-060914	R1404414-001	M	06/10/2014	06/13/2014	06/13/2014	က	0	က
	NG/L	MRC-SW1A-060914	R1404414-001	WZ Z	06/10/2014	06/13/2014	06/13/2014	က	0	ო
	NG/L	MRC-SW2A-060914	R1404414-002	MZ	06/10/2014	06/13/2014	06/13/2014	က	0	က
۸٥	PERCE	MRC-SW2A-060914	R1404414-002	₩	06/10/2014	06/19/2014	06/19/2014	თ	0	თ
Λ0	PERCE	MRC-SW8A-060914	R1404414-010	MN	06/10/2014	06/19/2014	06/19/2014	თ	0	თ
Λ0	PERCE	MRC-SW1A-060914	R1404414-001	∑	06/10/2014	06/19/2014	06/19/2014	თ	0	თ
Λ0	PERCE	MRC-SW9B-060914	R1404414-013	∑	06/10/2014	06/19/2014	06/19/2014	6	0	တ
^ 0	PERCE	MRC-SW8B-060914	R1404414-011	∑ Z	06/10/2014	06/19/2014	06/19/2014	თ	0	თ
^ 0	PERCE	TB-060914	R1404414-014	ΣN	06/10/2014	06/19/2014	06/19/2014	o	0	თ
۸٥	PERCE	MRC-SW7B-060914	R1404414-009	™	06/10/2014	06/19/2014	06/19/2014	თ	0	თ
Monday, July 21, 2014	July 21, 2	.014							A.	Page 2 of 4

SORT	UNITS	NSAMPLE	LAB_ID	QC_TYPE	SAMP_DATE	EXTR_DATE	ANAL_DATE	SMP_EXTR	EXTR_ANL	SMP_ANL
00	PERCE	MRC-SW7A-060914	R1404414-008	ΣZ	06/10/2014	06/19/2014	06/19/2014	თ	0	6
۸٥	PERCE	MRC-SW6B-060914	R1404414-007	N Z	06/10/2014	06/19/2014	06/19/2014	6	0	6
۸٥	PERCE	MRC-SW6A-060914	R1404414-006	N N	06/10/2014	06/19/2014	06/19/2014	6	0	6
٨٥	PERCE	MRC-SW5B-060914	R1404414-005	N N	06/10/2014	06/19/2014	06/19/2014	O	0	6
۸٥	PERCE	MRC-SW5A2-060914	R1404414-004	N Z	06/10/2014	06/19/2014	06/19/2014	6	0	O.
۸٥	PERCE	MRC-SW5A1-060914	R1404414-003	∑	06/10/2014	06/19/2014	06/19/2014	6	0	6
%	PERCE	MRC-SW9A-060914	R1404414-012	∑	06/10/2014	06/19/2014	06/19/2014	6	0	6
00	NG/L	MRC-SW7A-060914	R1404414-008	N Z	06/10/2014	06/19/2014	06/19/2014	6	0	o
^ 0	nG/L	MRC-SW9B-060914	R1404414-013	N Z	06/10/2014	06/19/2014	06/19/2014	O	0	6
۸٥	NG/L	MRC-SW9A-060914	R1404414-012	∑	06/10/2014	06/19/2014	06/19/2014	თ	0	6
ΛΟ	NG/L	MRC-SW8B-060914	R1404414-011	N N	06/10/2014	06/19/2014	06/19/2014	б	0	თ
ΛΟ	NG/L	MRC-SW8A-060914	R1404414-010	N Z	06/10/2014	06/19/2014	06/19/2014	6	0	თ
۸٥	NG/L	MRC-SW7B-060914	R1404414-009	N N	06/10/2014	06/19/2014	06/19/2014	თ	0	თ
۸٥	NG/L	MRC-SW6B-060914	R1404414-007	N N	06/10/2014	06/19/2014	06/19/2014	თ	0	6
۸٥	NG/L	MRC-SW6A-060914	R1404414-006	N N	06/10/2014	06/19/2014	06/19/2014	6	0	6
۸٥	NG/L	MRC-SW5B-060914	R1404414-005	∑	06/10/2014	06/19/2014	06/19/2014	O	0	O
۸٥	NG/L	MRC-SW5A2-060914	R1404414-004	N N	06/10/2014	06/19/2014	06/19/2014	б	0	თ
00	NG/L	MRC-SW5A1-060914	R1404414-003	ΣZ	06/10/2014	06/19/2014	06/19/2014	თ	0	თ
Monday, July 21, 2014	July 21, 2!	014							Õ.	Page 3 of 4

SORT	UNITS	SORT UNITS NSAMPLE	LAB_ID	QC_TYPE	QC_TYPE SAMP_DATE	EXTR_DATE	ANAL_DATE	SMP_EXTR	SMP_EXTR EXTR_ANL SMP_ANL	SMP_ANL
۸٥	NG/L	-060914	R1404414-001	N N	06/10/2014	06/19/2014	06/19/2014	6	0	6
۸٥	NG/L	UG/L TB-060914	R1404414-014	N N	06/10/2014	06/19/2014	06/19/2014	ō	0	თ
۸٥	NG/L	UG/L MRC-SW2A-060914	R1404414-002	ΣZ	06/10/2014	06/19/2014	06/19/2014	თ	0	တ

ALS ENVIRONMENTAL

Client:

Tetra Tech

Project:

Middle River

Sample Matrix:

Service Request No.:

Date Received:

R1404414

6/11/14

CASE NARRATIVE

All analyses were performed consistent with the quality assurance program of ALS. This report contains analytical results for samples designated for Tier IV. When appropriate to the method, method blank results and Laboratory Control Samples (LCS) recoveries have been reported with each analytical test.

Sample Receipt

Fourteen water samples were received for analysis at ALS-Environmental on 6/11/14. The samples were received in good condition consistent with the accompanying chain of custody form enclosed. The samples were received between 4.1-4.7°C within the 0-6°C temperature guidelines.

Volatile Organics-8260

The Continuing Calibration Verification (CCV) standard exceeded 20% difference for 2-Butanone, tert-Butyl Alcohol and Acetone on 6/19/14. All detected concentrations for these compounds in samples associated with this CCV should be considered as estimated.

The Method Blanks contained low level hits of 1,2,4-Trichlorobenzene, Bromomethane and Naphthalene on 6/19/14. These have been flagged with a "J". All affected data has been "B" flagged appropriately.

2-Chloroethyl Vinyl Ether does not recover in preserved vials.

No other analytical or quality control problems were encountered during analysis.

Extractable Organics -680

All Surrogates for sample MRC-SW8B-060914 (R1404414-011) were outside of the control limits low and have been flagged with a "*". The sample was re-extracted for confirmation of results outside of the seven day holding time and has been flagged with a "*". Both sets of data have been reported.

Surrogate gamma-BHC (Lindane) on Method Blank (RQ1407378-01) was outside of the control limits high and has been flagged with a "*".

No other analytical or quality control problems were encountered during analysis.

Extractable Organics- 522

The low level Laboratory Control Sample was outside of the control limits high and has been flagged with a "*". Both the Laboratory Control Sample and Duplicate Laboratory Control Sample analyzed at the regular level were within limits and no data was affected.

No other analytical or quality control problems were encountered during analysis.

Date 7/7/14

ALS ASP/CLP Batching Form/Login Sheet

Client Proj #: Surface Water 112/CO6247

Batch Complete:

Date Revised:

Submission: R1404414

Diskette Requested: No

Date Due: 7/2/14

Tetra Tech GEO Client:

Date: 6/13/14

Protocol: SW846 Shipping No.:

Client Rep: DPATTON Middle River- Lockheed Martin Co Project:

Custody Seal: Present/Absent: Chain of Custody: Present/Absent:

SDG #:

CAS Job#	Client/EPA ID	Matrix	Requested Parameters	Date Sampled	Date Received	pH (Solids)	% Solids	Remarks Sample Condition
R1404414-001	MRC-SW1A-060914	Water	8260C, 522	6/10/14	6/11/14			
R1404414-002	MRC-SW2A-060914	Water	522, 8260C	6/10/14	6/11/14			
R1404414-003	MRC-SW5A1-060914	Water	8260C, 680	6/10/14	6/11/14			
R1404414-004	MRC-SW5A2-060914	Water	680, 8260C	6/10/14	6/11/14			
R1404414-005	MRC-SW5B-060914	Water	680, 8260C	6/10/14	6/11/14			
R1404414-006	MRC-SW6A-060914	Water	680, 8260C	6/10/14	6/11/14			
R1404414-007	MRC-SW6B-060914	Water	680, 8260C	6/10/14	6/11/14			
R1404414-008	MRC-SW7A-060914	Water	680, 8260C	6/10/14	6/11/14			
R1404414-009	MRC-SW7B-060914	Water	680, 8260C	6/10/14	6/11/14			
R1404414-010	MRC-SW8A-060914	Water	680, 8260C	6/10/14	6/11/14			
R1404414-011	MRC-SW8B-060914	Water	680, 8260C	6/10/14	6/11/14			
R1404414-012	MRC-SW9A-060914	Water	680, 8260C	6/10/14	6/11/14			
R1404414-013	MRC-SW9B-060914	Water	680, 8260C	6/10/14	6/11/14			
R1404414-014	TB-060914	Water	8260C	6/10/14	6/11/14			

00000

Folder Comments: TB& QC-NC; 1 invoice per month; 2CD's; **MDL U**

Printed 6/13/14 9:48

CLP Batching Form

Page

REPORT QUALIFIERS AND DEFINITIONS

- U Analyte was analyzed for but not detected. The sample quantitation limit has been corrected for dilution and for percent moisture, unless otherwise noted in the case narrative.
- J Estimated value due to either being a Tentatively Identified Compound (TIC) or that the concentration is between the MRL and the MDL. Concentrations are not verified within the linear range of the calibration. For DoD: concentration >40% difference between two GC columns (pesticides/Arclors).
- B Analyte was also detected in the associated method blank at a concentration that may have contributed to the sample result.
- E Inorganics- Concentration is estimated due to the serial dilution was outside control limits.
- E Organics- Concentration has exceeded the calibration range for that specific analysis.
- D Concentration is a result of a dilution, typically a secondary analysis of the sample due to exceeding the calibration range or that a surrogate has been diluted out of the sample and cannot be assessed.
- * Indicates that a quality control parameter has exceeded laboratory limits. Under the "Notes" column of the Form I, this qualifier denotes analysis was performed out of Holding Time.
- H Analysis was performed out of hold time for tests that have an "immediate" hold time criteria.
- # Spike was diluted out.

- + Correlation coefficient for MSA is <0.995.
- N Inorganics- Matrix spike recovery was outside laboratory limits.
- N Organics- Presumptive evidence of a compound (reported as a TIC) based on the MS library search.
- S Concentration has been determined using Method of Standard Additions (MSA).
- W Post-Digestion Spike recovery is outside control limits and the sample absorbance is <50% of the spike absorbance.
- P Concentration >40% (25% for CLP) difference between the two GC columns.
- C Confirmed by GC/MS
- Q DoD reports: indicates a pesticide/Aroclor is not confirmed (≥100% Difference between two GC columns).
- X See Case Narrative for discussion.
- MRL Method Reporting Limit. Also known as:
- LOQ Limit of Quantitation (LOQ)

 The lowest concentration at which the method analyte may be reliably quantified under the method conditions.
- MDL Method Detection Limit. A statistical value derived from a study designed to provide the lowest concentration that will be detected 99% of the time. Values between the MDL and MRL are estimated (see J qualifier).
- LOD Limit of Detection. A value at or above the MDL which has been verified to be detectable.
- ND Non-Detect. Analyte was not detected at the concentration listed. Same as U qualifier.

Rochester Lab ID # for State Certifications1

NELAP Accredited	Maine ID #NY0032	New Hampshire ID #
Connecticut ID # PH0556	Nebraska Accredited	294100 A/B
Delaware Accredited	Nevada ID # NY-00032	North Carolina #676
DoD ELAP #65817	New Jersey ID # NY004	Pennsylvania ID# 68-786
Florida ID # E87674	New York ID # 10145	Rhode Island ID # 158
Illinois ID #200047		Virginia #460167

Analyses were performed according to our laboratory's NELAP-approved quality assurance program and any applicable state or agency requirements. The test results meet requirements of the current NELAP/TNI standards or state or agency requirements, where applicable, except as noted in the laboratory case narrative provided. For a specific list of accredited analytes, refer to

http://www.alsglobal.com/en/Our-Services/Life-Sciences/Environmental/Downloads/North-America-Downloads

A	ans
(ALS) Enu	vironmental

CHAIN OF CUSTODY/LABORATORY ANALYSIS REQUEST FORM 15986

150	65 Jefferson Roa	id, Building 30	90, Suite 360) • Hoche	ester,	NY .	14623	3 +1	585 2	88 53	380 +	1 58	288	847	(tax)	ι Ρ.	AGE	_		_0-		-
Project Name MAC SW 2014	Project Nu	11751	0: -	6247					NALYS	SIS RE	QUES	TED (/	Includ	e Meti	od Nu	mber	and C	Contair	ner Pre	eservati	ve)	
Project Manager Fory Agensvag	Report CC				PRE	SER	ATIVE	1	_		<u> </u>	0	_	-	7	, 						
Company/Address 2025/ Cent	my blad.	Sh	200		82			43	/ /	_/	//	\neg	$\overline{}$	/_	$\overline{7}$			/		7	Pres 0.	servative Key NONE HCL
Project Manager Fory Agency age Company/Address 2026/ Center Comman Form	M, 2087	74			F CONTAINERS		67.07		/./	/	Seg.	2 Control of the Cont				/,	/	/,	/,	/ /	2. 3. 4. 5. 6.	HNÖ3 H2SO4 NaOH Zn. Acetate MeOH
Phone 8 301-528-300	Email	apanense	Ptotate	d.6~	BERO)	8 8			9.00 4.00 0.00								NaHSO4 Other
Sempter's Signeture		Printed Name Josh			NUMBER	1/2	3 /8				* ************************************		*		/ ,	/	/	/		/ "		ARKS/ DESCRIPTION
OCIENT SAMPLE ID	FOR OFFICE USE ONLY LAB ED	SAME		MATRIX																		
BLAC-SINA-060914		6/9/14	1002	Acr	5	3	Τ-	-	-	_		1	2					i		1		
MAC- 500 5W24-0609	W	70	1013	1	5	1 2	† –	+=			—		2								-	
MAC- SW 5A1-0609/4		}- 	1032	 	5	3	Τ-	.	Ι.	2-	-											
MAL-SW 5A2-06091	·k	1	1041	 	1	1	+	1	1/	ī	 -		/						1			
MAC-5W5B-0609/4	1	1-1-	1049	++	11	$\forall t$	+		/				/									
MAC- SW64-0609/4			1144	++	++	Ħ	1	17	"	Н										\vdash		
MAC-5U68-0609/4			1149		11	††	\top	17	1		T											
MAL- SW7A-0609/4	-	1	1/22	 - - - - - - - 	††	††	†	1/	†		1											
MAL- SW 73-0609/4	,	1	1126	 	11	††	†	1	1	1	 	/							1	<u> </u>		
MLL- Ser 8 A-0609/4		1	1157	 - - - - - - - - - 	11	11	1-7	/	1	1	17			1					•	\vdash		
MLL-508B-0601		1	1202	1	44	10	+-	1	 	4	1			:								
SPECIAL INSTRUCTIONS/COMMENTS			· · ·			<u> </u>	ή.	TURNAL		ne01	HOEME	NTC	T	DEO	ORT RE	OUR	EMEN	TS.	Τ	INV	OICE INFO	RMATION
Metals							- 1		SH (SURC						ata Only		_,,,,,_,,					
							-		(==				-			: C			PO	•		
R1404414					7		-		ıy		3 day	'	1		DUP, MS			ed)	_			
R1404414 Tetra Tech NUS.Inc.					r		-							_III. Res	suits + Q	C and C	Celibratio	en en	BILL	L TO:		
Middle River- Lockheed Martin Corp						н .		QUESTE	deg		76			Summ	aries							
THE REPORT OF THE PARTY OF THE						li							-	IV. Dat	a Validat	ion Rep	ori with	Raw De	46			
See QAPP							_						4						\vdash			
STATE WHERE SAMPLES WERE CO		MARYCA											ļ		<u> </u>			.No				
RELINQUISHED BY	RECEIVE	ED BY	RE	LINQUISHED	BY				RECE	VED B	Y			R	ELINQL	JISHEC) BY			,	RECEIVED	В
Elignature Ch	Signature &		Signature &	r6			Sign	ature/	<u>L</u>		w	1	Signa	1	L.	Z	1	1	Sign	Z.	200	15
Printed Name Josh Mills	Primad Name BLUFF CV	LABORIO	Printed Name	Glas	3	く	Print	Name	1-11	<u>۔</u> م_د	113	z/cm	Printe	distante	luce	<u> </u>	غار	<u> </u>	Print	ес Нате		lote
Firm Texty- Tech	Firm ALS		Firm 🔎	US.			Firm	AL	5				Firm	4/5					Firm	TES.		
Date/Time 6/8/14 /460	Date/Time /9/14	1330	Date/Time (/	9/14	185	0	Date	/Time	19/	14	12	50	Date/	Time	19/	14	20	6	Date	Etul	4 1	V0
Distribution: White - Lab Copy; Yellow - Return	to Originator	6/10/14	1 182	' o					7		A		(, 9 -1	y. V	20	5			7-7-	© 2012 by	ALS Group

CHAIN OF CUSTODY/LABORATORY ANALYSIS REQUEST FORM

ANALYSIS RECUESTED Include Member and Container Preservative PRISERVATIVE PRESERVATIVE PRES		Job Jellerson Ho.			OU TROCH	ester,	INY	4623	5 +1	585 2	288 5	380	+1 58	35 28	8 847	5 (fa)	() F	PAGE		<u>_</u>	_OF _2.	
Provided The Second Provided Report Residence of Second Provided Report Residence of Second Provided Report Residence of Second Provided Report Residence of Second Provided Report Residence of Second Provided Report Residence of Second Provided Report Residence of Second Provided Report Residence of Report R	MRC SW 20/4	Project Ni	Imber //>	C06247	•	1			,	NALY	SIS RI	EQUES	STED	(includ	le Met	hod N	lumbe	r and (Contai	iner Pr	eservative)	
Provided The Second Provided Report Residence of Second Provided Report Residence of Second Provided Report Residence of Second Provided Report Residence of Second Provided Report Residence of Second Provided Report Residence of Second Provided Report Residence of Second Provided Report Residence of Report R	Project Manager Fors Allenave	Report CC		-		PRE	SERV	ATIVE	1		_		0	T			1	T	Τ	T		
Provided The Second Provided Report Residence of Second Provided Report Residence of Second Provided Report Residence of Second Provided Report Residence of Second Provided Report Residence of Second Provided Report Residence of Second Provided Report Residence of Second Provided Report Residence of Report R	Company/Address	+ 21.1	11			+	T		/ 	/ 	/ 	/-	/	/ 	} ,	\vdash	+	+	}) 	Preservative	Key
Proof 3 74 525 3000 Surphy Regulatory Photo Recolors Surphy Regulatory Photo Recolors Surphy Regulatory Photo Recolors Surphy Regulatory Photo Recolors Surphy Regulatory Photo Recolors Surphy Regulatory Surphy Regulatory Surphy Recolors Surphy Recolors Surphy Regulatory Surphy Recolors Surphy Recolor	2023/ 60	HUN DING.	ore.	700		- 8	i	Ι.	. /				' /					' /	/	' /	/ / 0. NONE 1. HCL	,
CLIENT SAMPLE ID MIN TAP - GEORY 1972 Ag 5 3	Germentours	,MD, 2087	<i>y</i>	 -		CONTAIL		/ ^				(Sep	\/ <u>_</u>								3. H ₂ SO ₄ 4. NaOH 5. Zn. Acet	ate
CLIENT SAMPLE ID MIN TAP - GEORY 1972 Ag 5 3	7.0/- 52 6 - 2 - 0	Email					1/	(0 3 % /	*****	Ž /	(\$ # /	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\					′ /	/ /	/ /	/ /	7. NaHSQ4	
CLIENT SAMPLE ID MIN TAP - GEORY 1972 Ag 5 3		Sampler's	Printed Name To SL	M/1.5	ntechto	NGMB	8	9/2						18/ #/							REMARKS/	_
MIC - SUP A - OCOPI	CLIENT SAMPLE ID	FOR OFFICE USE	SAM	PLING				1		[1		1			f^{-}	\vdash	f	ſ	\vdash	ALTERNATE DESCRIPT	ION
SPECIAL INSTRUCTIONS/COMMENTS WITHOUT A STATE WHERE SAMPLES WERE COLLECTED PRINT COLLECTE			4			+	3	_	<u> </u>		2			-	-	-		┢	├	┼-		
SPECIAL INSTRUCTIONS/COMMENTS SPECIAL INSTRUCTIONS/COMMENTS TURNAROUND REQUIREMENTS TURNAROUND REQUIREMENTS TURNAROUND REQUIREMENTS TURNAROUND REQUIREMENTS TURNAROUND REQUIREMENTS TURNAROUND REQUIREMENTS TRANSPORT REQUIREMENTS TRANSPORT REQUIREMENTS TRANSPORT REQUIREMENTS TRANSPORT TO 8 TO 8 TO 8 TO 9			1		177			 _	 	_		=		 				\vdash	\vdash	┼	 	
SPECIAL INSTRUCTIONS/COMMENTS Metals TURNAROUND REQUIREMENTS RAPH (SURCH/UNGES MPPLY) 1 day 2 day 3 day 1 Readth • OC Summarine (C.C.) DIP MANADO in required III. TO: II			1		1	1	2	 -	-	-						\vdash				+-	 	
SPECIAL INSTRUCTIONS/COMMENTS TURNAROUND REQUIREMENTS INVOICE INFORMATION									1				†					 -	<u> </u>	 	· · · · · · · · · · · · · · · · · · ·	_
SPECIAL INSTRUCTIONS/COMMENTS TURNAROUND REQUIREMENTS INVOICE INFORMATION																			 	-		
SPECIAL INSTRUCTIONS/COMMENTS TURNAROUND REQUIREMENTS INVOICE INFORMATION																		<u> </u>	_	1		
SPECIAL INSTRUCTIONS/COMMENTS TURNAROUND REQUIREMENTS INVOICE INFORMATION		-					-	 	1					1				t^-		\vdash		
SPECIAL INSTRUCTIONS/COMMENTS TURNAROUND REQUIREMENTS RUTH SURCHARGES APPLY) 1 Results ORD Summarines RUTH SURCHARGES APPLY) 1 Results ORD Summarines RUTH SURCHARGES APPLY) 1 Results ORD Summarines RUTH SURCHARGES APPLY) 1 Results ORD Summarines RUTH SURCHARGES APPLY) 1 Results ORD Summarines RUTH SURCHARGES APPLY) 1 Results ORD Summarines RUTH SURGES ORD 1 Results ORD Summarines RUTH SURGES ORD 1 Results ORD Summarines RUTH SURGES ORD 1 Results ORD Summarines RUTH SURGES ORD 1 Results ORD Summarines RUTH SURGES ORD 1 Results ORD Summarines RUTH SURGES ORD 1 Results ORD Summarines RUTH SURGES ORD 1 Results ORD Summarines RUTH SURGES ORD 1 Results ORD Summarines RUTH SURGES ORD 1 Results ORD Summarines RUTH SURGES ORD 1 Results ORD Summarines RUTH SURGES ORD 1 Results ORD Summarines RUTH SURGES ORD 1 Results ORD Summarines RUTH SURGES ORD 1 Results ORD Summarines RUTH SURGES ORD 1 Results ORD Summarines RUTH SURGES ORD 1 Results ORD Summarines RUTH SURGES ORD 1 Results ORD Summarines RUTH SURGES ORD 1 Results ORD Summarines RUTH SURGES ORD 1 Results Ord Summarines RUTH SURGES ORD														_					i			_
SPECIAL INSTRUCTIONS/COMMENTS TURNAROUND REQUIREMENTS REPORT REQUIREMENTS INVOICE INFORMATION																				-		
See CAPP STATE WHERE SAMPLES WERE COLLECTED MAYLAND TECHNOLISHED BY RECEIVED BY	·																					_
Metals TURNAROUND RECUIREMENTS FRUSH (SURCHARGES APPLY) I Results - OC Survenaries (C.S. DUR MSMSD as required) III. Pesults - OC and Celtration Summaries N. Data Velidation Report with Rew Data STATE WHERE SAMPLES WERE COLLECTED FRELINQUISHED BY RECEIVED			<u> </u>				<u> </u>															
See QAPP See QAPP See QAPP REQUESTED REPORT DATE RECEIVED BY R	SPECIAL INSTRUCTIONS/COMMENTS Metals							π.										EM EN	rs		INVOICE INFORMATION	
See CAPP State where samples were collected from the point with rew Data Signature from Signa												3 day	,						~ 1	PO #	1	
See QAPP STATE WHERE SAMPLES WERE COLLECTED FIRM Y LAND RECEIVED BY RECEIVED B									-					1					•	BILL	TO:	
See QAPP STATE WHERE SAMPLES WERE COLLECTED MAYLAND RECEIVED BY R				•								_					0 810 0	ACTION GLOU	••	\vdash	····	
STATE WHERE SAMPLES WERE COLLECTED MAYLAND RECEIVED BY RELINQUISHED BY RECEIVED BY Signature Sign								l TEU	DESTEL	REPU	HI UAI	•		I—	N. Data	a Vatidat	ion Rep	ort with	Rew Dat	<u>-</u>		
PRELINQUISHED BY RECEIVED BY	See CAPP							l						1						<u> </u>		
RELINQUISHED BY RECEIVED BY R		OLLECTED /	MARYLAN	0										1	Edate		Yes		No	1		
Printed Name of Printed Name o	RELINQUISHED BY		DBY	REL	INQUISHED E	3Y				RECEN	/EO BY	,			RE	LINQU	JISHED	BY			RECEIVED BY	_
Printed Name of Printed Name o	Separative 2	Signature G		Signature 6	<u></u>			Signat	UTR.		1/2	-/		Signat	2	_	1	/		Signa	type J	_
DeterTime 6/9/14 1400 DaterTime /9/14 13 30 DaterTime 6/9/14 1850 DaterTime 6/9/14 DaterTim	Edited Name of Josh Mulls	Pripad Name (SRA	BUSIL	Printed Name	Hapa	25/-	`	Printed	Name	- <u></u>	11	<u> حصر</u> د در:	4.5	Printeg	Name	1		11 / S	2	Printe	pularre / Out	
DeterTime 6/9/14 1400 DeterTime /9/14 13 30 DeterTime 6/9/14 1850 DeterTime 6/9/14 1850 DeterTime 6/9/14 1850 DeterTime 6/9/14 2850	Ktyn ICLL	FIRM ALS		Firm A7	5	^,,,,,,		Firm	<u>1</u>	ر د	ب	<u> </u>		Firm	71	<u>,</u>	ري	ے کی	97°/	Firm		
Distribution: White - Lab Copy, Vellow - Return to Originator	Date/Time 6/9/14 1400	Date/Timey /9/14	1330			857	5	Date/11	me_ //	20/	u	16	ζŞ.	Date/Ti	me /	14/	2/2	20	ES.	Date/		
	Distribution: White - Lab Copy: Vellow - Return	to Originator			· / · ·	<u> </u>			9/	,,,,			ريء	'	-	7	•			1		

Cooler Receipt and Preservation Check Form

Project/Client	the Is	Fc	older 1	Number 72/4	1-441	<u>L</u> .		
Cooler received on		by: 🕢	С	OURIER: ALS	UPS (FEDEX V	ELOCITY CLI	ENT
1 Were Custody seals	on outside of	cooler? Y	N)	5a Perchlorate	samples l	nave required	headspace?	(Y) N (S)
2 Custody papers pro	perly complete	ed (ink, signed)?	7	Sb Did OA vi	als Alk,o	r Sulfide have	sig* bubbles?	Y N NA
3 Did all bottles arrive	in good condi	tion (unbroken)? Y	7)	6 Where did th	ne bottles	originate?	ALS/ROC	CLIENT.)
4 Circle: (Wet Ice) I	ry Ice Gel p	acks present?	7	7 Soil VOA re	eceived as	Bulk	Encore 503:	Sset (NA)
8. Temperature Readings	Date:	L/11/14 Time:			- (R)4	From	n: Temp Blank	Sample Bottle
Observed Temp (°C)	6.30	4.1	4.7	0	 -			
Correction Factor (°C)	-1.7	6.0	0.0					
Corrected Temp (°C)	4.60	4.1	4.7		_			
Within 0-6°C?	(Y)N	(P)N	ሳ (ዮ	I Y N	1.	Y- N	YN	YN
If out of Temperatu	re, note packi	ng/ice condition:	·	Ice melted	Poorl	y Packed	Same Day	Rule ·
&Client Approval to	Run Sample	s:Standing	Approv	val Client awar	e at drop-c	off Client n	otified by:	·
All samples held in sto	rage location:	R-002	by	Ø on	6/11	est at	1028	
5035 samples placed in	storage locat	ion:	by	on	-77.	at _		
	——————————————————————————————————————			,				
PC Secondary Review			in been like in		१९५४ स्थापना व्यक्तिक स्थापना क्रिकेट स्थापना क्रिकेट स्थापना क्रिकेट स्थापना क्रिकेट स्थापना क्रिकेट स्थापना स्थापना स्थापना e nim standarii in e		er endange (Editar) interset	
Cooler Breakdown:		/////Time:			D	·		
		plete (<i>i.e.</i> analysis, prese		, etc.)?	_ y	NC NC		
Did all bottl	e labels and tag	gs agree with custody pa	apers?	, etc.)?) XXX	NO NO)	
 Did all bottl Were correct 	e labels and tag t containers us	gs agree with custody paged for the tests indicated	apers? d?	1	, A.A.	NC ES NC)	(ADA)
 Did all bottl Were correct 	e labels and tag t containers us :: Cassettes / T	gs agree with custody produced for the tests indicated ubes Intact	apers? d?	sters Pressurized		NO ES NO 'edlar® Bags) Inflated	\sim
 Did all bottl Were correct Air Samples 	e labels and tag t containers us : Cassettes / T incies:	gs agree with custody pred for the tests indicated ubes Intact	apers? d?	1	Vol. Added	NC ES NC)	Yes=All samples OK
2. Did all bottl 3. Were correct 4. Air Samples Explain any discreps pH Reagent ≥12 NaOH	e labels and tag t containers us : Cassettes / T incies:	gs agree with custody produced for the tests indicated ubes Intact	apers? d? Cani	sters Pressurized	Vol.	NO ES NO 'edlar® Bags	Inflated	Yes=All samples OK
2. Did all bottl 3. Were correct 4. Air Samples Explain any discreps pH Reagent ≥12 NaOH ≤2 HNO₂	e labels and tag t containers us :: Cassettes / T uncies: Yes No	gs agree with custody produced for the tests indicated ubes Intact	apers? d? Cani	sters Pressurized	Vol.	NO ES NO 'edlar® Bags	Inflated	Yes=All samples OK No=Samples
2. Did all bottl 3. Were correct 4. Air Samples Explain any discreps pH Reagent ≥12 NaOH ≤2 HNO₃ ≤2 H₂SO₄	e labels and tag t containers us :; Cassettes / T incies: Yes No	gs agree with custody pred for the tests indicated ubes Intact Lot Received	apers? d? Cani Exp	sters Pressurized	Vol.	NO ES NO 'edlar® Bags	Inflated	Yes=All samples OK No=Samples were
2. Did all bottl 3. Were correct 4. Air Samples Explain any discreps pH Reagent ≥12 NaOH ≤2 HNO₃ ≤2 H₂SO₄ <4 NaHSO	e labels and tag t containers us c: Cassettes / T incies: Yes No	gs agree with custody pred for the tests indicated ubes Intact Lot Received	apers? d? Cani Exp	sters Pressurized	Vol.	NO ES NO 'edlar® Bags	Inflated	Yes=All samples OK No=Samples
2. Did all bottl 3. Were correct 4. Air Samples Explain any discreps pH Reagent ≥12 NaOH ≤2 HNO₃ ≤2 H₂SO₄ <4 NaHSO Residual For CN	e labels and tag t containers us c: Cassettes / T incies: Yes No	gs agree with custody pried for the tests indicated ubes Intact Lot_Received BD826/2-3/ff If +, contact PM to add Na ₂ S ₂ O ₃ (CN),	apers? d? Cani Exp	sters Pressurized	Vol.	NO ES NO 'edlar® Bags	Inflated	Yes=All samples OK No=Samples were preserved at
2. Did all bottl 3. Were correct 4. Air Samples Explain any discreps pH Reagent ≥12 NaOH ≤2 HNO₃ ≤2 H₂SO₄ <4 NaHSO Residual For CN	e labels and tag t containers us c: Cassettes / T incies: Yes No	gs agree with custody pred for the tests indicated ubes Intact Lot Received BD826/23/ff If +, contact PM to	apers? d? Cani Exp	sters Pressurized	Vol.	NO ES NO 'edlar® Bags	Inflated	Yes=All samples OK No=Samples were preserved at The lab as listed
2. Did all bottl 3. Were correct 4. Air Samples Explain any discreps pH Reagent ≥12 NaOH ≤2 HNO₃ ≤2 H₂SO₄ <4 NaHSO Residual For CN Chlorine Phenol	e labels and tag at containers us at Cassettes / Tancies: Yes No	gs agree with custody pried for the tests indicated ubes Intact Lot_Received BD\$26/2-3/ff If +, contact PM to add Na ₂ S ₂ O ₃ (CN),	apers? d? Cani Exp	Sample ID	Vol. Added	NC NC NC ediar® Bags	Inflated Final pH	Yes=All samples OK No=Samples were preserved at The lab as listed PM OK to
2. Did all bottl 3. Were correct 4. Air Samples Explain any discreps pH Reagent ≥12 NaOH ≤2 HNO₃ ≤2 H₂SO₄ <4 NaHSO Residual For CN Chlorine Phenol (-) and 522	e labels and tag t containers us :: Cassettes / T uncies: Yes No	gs agree with custody pried for the tests indicated ubes Intact Lot-Received BD226/2-3/f If +, contact PM to add Na ₂ S ₂ O ₃ (CN), ascorbic (phenol).	apers? d? Cani Exp	Sample ID **Not to be test	Vol. Added	edlar® Bags Lot Added analysis – p	Inflated Final pH H tested and	Yes=All samples OK No=Samples were preserved at The lab as listed
2. Did all bottl 3. Were correct 4. Air Samples Explain any discreps pH Reagent ≥12 NaOH ≤2 HNO₃ ≤2 H₂SO₄ <4 NaHSO Residual For CN Chlorine Phenol (-) and 522 Na₂S₂O	e labels and tag et containers us e: Cassettes / Tuncies: Yes No	gs agree with custody pred for the tests indicated ubes Intact Lot Received BD326/2-3/f If +, contact PM to add Na ₂ S ₂ O ₃ (CN), ascorbic (phenol).	apers? d? Cani Exp	Sample ID	Vol. Added	edlar® Bags Lot Added analysis – p	Inflated Final pH H tested and	Yes=All samples OK No=Samples were preserved at The lab as listed PM OK to
2. Did all bottl 3. Were correct 4. Air Samples Explain any discreps pH Reagent ≥12 NaOH ≤2 HNO₃ ≤2 H₂SO₄ <4 NaHSO Residual For CN Chlorine Phenol (-) and 522 Na₂S₂O ZnAcett HCl	e labels and tag t containers us :: Cassettes / T uncies: Yes No	gs agree with custody pred for the tests indicated ubes Intact Lot Received BDB26/23/f If +, contact PM to add Na ₂ S ₂ O ₃ (CN), ascorbic (phenol).	apers? d? Cani Exp	Sample ID **Not to be test	Vol. Added	edlar® Bags Lot Added analysis – p	Inflated Final pH H tested and	Yes=All samples OK No=Samples were preserved at The lab as listed PM OK to
2. Did all bottl 3. Were correct 4. Air Samples Explain any discreps pH Reagent ≥12 NaOH ≤2 HNO ₃ ≤2 H ₂ SO ₄ <4 NaHSO Residual For CN Chlorine Phenol (-) and 522 Na ₂ S ₂ O ZnAcett HCl	e labels and tag t containers us :: Cassettes / T uncies: Yes No	gs agree with custody pried for the tests indicated ubes Intact Lot-Received BD226/2-3/f If +, contact PM to add Na ₂ S ₂ O ₃ (CN), ascorbic (phenol).	apers? d? Cani Exp	Sample ID **Not to be test	Vol. Added	edlar® Bags Lot Added analysis – p	Inflated Final pH H tested and	Yes=All samples OK No=Samples were preserved at The lab as listed PM OK to
2. Did all bottl 3. Were correct 4. Air Samples Explain any discreps pH Reagent ≥12 NaOH ≤2 HNO₃ ≤2 H₂SO₄ <4 NaHSO Residual For CN Chlorine Phenol (-) and 522 Na₂S₂O ZnAcete HCl Bottle lot numbers: Other Comments:	e labels and tag et containers us et con	gs agree with custody pred for the tests indicated ubes Intact Lot Received BDB26/23/f If +, contact PM to add Na ₂ S ₂ O ₃ (CN), ascorbic (phenol).	apers? d? Cani Exp	sters Pressurized Sample ID **Not to be test recorded by VC	Vol. Added	edlar® Bags Lot Added analysis – preparate work	Inflated Final pH H tested and csheet	Yes=All samples OK No=Samples were preserved at The lab as listed PM OK to
2. Did all bottl 3. Were correct 4. Air Samples Explain any discreps pH Reagent ≥12 NaOH ≤2 HNO₃ ≤2 H₂SO₄ <4 NaHSO Residual For CN Chlorine Phenol (-) and 522 Na₂S₂O ZnAcete HCl Bottle lot numbers: Other Comments:	e labels and tag et containers us et con	gs agree with custody pred for the tests indicated ubes Intact Lot Received BDB26/23/f If +, contact PM to add Na ₂ S ₂ O ₃ (CN), ascorbic (phenol).	apers? d? Cani Exp	sters Pressurized Sample ID **Not to be test recorded by VC	Vol. Added	edlar® Bags Lot Added analysis – preparate work	Inflated Final pH H tested and csheet	Yes=All samples OK No=Samples were preserved at The lab as listed PM OK to
2. Did all bottl 3. Were correct 4. Air Samples Explain any discreps pH Reagent ≥12 NaOH ≤2 HNO₃ ≤2 H₂SO₄ <4 NaHSO Residual For CN Chlorine Phenol (-) and 522 Na₂S₂O ZnAcete HCl Bottle lot numbers: Other Comments:	e labels and tag et containers us et con	gs agree with custody pred for the tests indicated ubes Intact Lot Received BDB26/23/f If +, contact PM to add Na ₂ S ₂ O ₃ (CN), ascorbic (phenol).	apers? d? Cani Exp	sters Pressurized Sample ID **Not to be test recorded by VC	Vol. Added	edlar® Bags Lot Added analysis – preparate work	Inflated Final pH H tested and csheet	Yes=All samples OK No=Samples were preserved at The lab as listed PM OK to Adjust:
2. Did all bottl 3. Were correct 4. Air Samples Explain any discreps pH Reagent ≥12 NaOH ≤2 HNO₃ ≤2 H₂SO₄ <4 NaHSO Residual For CN Chlorine Phenol (-) and 522 Na₂S₂O ZnAcete HCl Bottle lot numbers: Other Comments:	e labels and tag et containers us et con	gs agree with custody pred for the tests indicated ubes Intact Lot Received BDB26/23/f If +, contact PM to add Na ₂ S ₂ O ₃ (CN), ascorbic (phenol).	apers? d? Cani Exp	sters Pressurized Sample ID **Not to be test recorded by VC	Vol. Added	edlar® Bags Lot Added analysis – preparate work	Inflated Final pH H tested and csheet	Yes=All samples OK No=Samples were preserved at The lab as listed PM OK to Adjust:

PC Secondary Review:

*significant air bubbles: VOA > 5-6 mm : WC >1 in. diameter

QA/QC Report

Client: Project: Tetra Tech GEO

Middle River- Lockheed Martin Corp/Surface Water 112ICO6247

Service Request: R1404414

Date Analyzed: 6/13/14 13:13

Tune Summary Volatile Organic Compounds by GC/MS

File ID:

I:\ACQUDATA\msvoa12\Data\061314\M6497.D\

Analytical Method:

8260C

Instrument ID:

R-MS-12

Analysis Lot:

Target Mass	Relative to Mass	Lower Limit%	Upper Limit%	Relative Abundance %	Raw Abundance	Result Pass/Fail
50	95	15	40	17.96	88496	Pass
75	95	30	60	46.42	228800	Pass
95	95	100	100	100.00	492843	Pass
96	95	5	9	6.24	30756	Pass
173	174	0	2	0.83	3219	Pass
174	95	50	120	78.43	386539	Pass
175	174	5	9	7.37	28496	Pass
176	174	95	101	96.13	371584	Pass
177	176	5	9	6.54	24288	Pass

Sample Name	Lab Code	File ID	Date Analyzed Q
Initial CalibrationICAL	0.5 ppb	I:\ACQUDATA\msvoa12\Data\061314\M6499.D\	6/13/14 14:37
Initial CalibrationICAL	1.0 ppb	I:\ACQUDATA\msvoa12\Data\061314\M6500.D\	6/13/14 15:09
Initial CalibrationICAL	2.0 ppb	I:\ACQUDATA\msvoa12\Data\061314\M6501.D\	6/13/14 15:42
Initial CalibrationICAL	5.0 ppb	I:\ACQUDATA\msvoa12\Data\061314\M6502.D\	6/13/14 16:14
Initial CalibrationICAL	20 ppb	I:\ACQUDATA\msvoa12\Data\061314\M6503.D\	6/13/14 16:46
Initial CalibrationICAL	50 ppb	I:\ACQUDATA\msvoa12\Data\061314\M6504.D\	6/13/14 17:19
Initial CalibrationICAL	100 ppb	I:\ACQUDATA\msvoz12\Data\061314\M6505.D\	6/13/14 17:51
Initial CalibrationICAL	200 ppb	I:\ACQUDATA\msvoa12\Data\061314\M6506.D\	6/13/14 18:23

XXC |14/14

Calibration ID: RC1400048 Instrument ID: R-MS-12

8260 Notes - MSHD- W001314 Column Name: 1

				· · · · · · · · · · · · · · · · · · ·	·····		•
				Min	Mean		
Analyte	Туре	Curve Fit	Weighting	RF	RF	Criteria	Result
1,1,1,2-Tetrachioroethane	Т	Average RF			0.3312	<=20	4.7
1,1,1-Trichloroethane (TCA)	T	Average RF		0.100	0.7425	<=20	6,2
1,1,2,2-Tetrachloroethane	T	Average RF		0.300	0.5662	< -2 0	5.4
1,1,2-Trichloroethane	T	Average RF		0.100	0.2285	<=20	4.4
1,1,2-Trichlorotrifluoroethane	T	Average RF		0.100	0.4199	<=20	1.7
1,1-Dichloroethane (1,1-DCA)	T	Average RF		0.200	0.8965	=20	3.6
1,1-Dichloroethene (1,1-DCE)	T	Average RF		0.100	0.3927	<=20	11.3
1.1-Dichloropropene	T	Average RF		0.100	0.3962	<=20	1.6
1,2,3-Trichlorobenzene	T	Average RF		•	0.6167	<=20	10.9
1,2,3-Trichloropropane	T	Average RF			0.1619	<=20	8.3
1,2,4-Trichlorobenzene	T	Average RF		0.200	0.7261	<≃20	4.9
1,2,4-Trimethylbenzene	T	Average RF			2,431	<=20	5.3
1,2-Dibromo-3-chloropropane (DBCP)	T	Average RF		0.050	0.1025	<=20	3.4
1,2-Dibromoethane	T	Average RF		0.100	0.2437	<=20	7.0
1,2-Dichloro-1,1,2-trifluoroethane (CFC 123		Average RF			0.5809	<=20	1,5
1,2-Dichlorobenzene	T	Average RF		0.400	1.278	<=20	2.1
1,2-Dichloroethane	T	Average RF		- 0.100	0.3640	<=20	3.1
1,2-Dichloropropane	T	Average RF		0.100	0,3329	<=20	3.7
1,3,5-Trichlorobenzene	T	Average RF			0.8305	<=20	6.6
1.3.5-Trimethylbenzene	Υ	Average RF			2.418	<=20	5.0
1,3-Dichlorobenzene	T	Average RF		0.600	1,364	<=20	3.1
1,3-Dichloropropane	T	Average RF			0.4524	<=20	1.6
1,4-Dichlorobenzene	T	Average RF		0.500	1.393	<=20	5.6
1,4-Dioxane	T	Average RF			0.002072	<=20	6.4
1-Butanol	T	Average RF			0.004952	<=20	9.4
1-Chloro-4-(trifluoromethyl)benzene	T	Average RF		•	0.4185	<=20	3.7
2,2-Dichloro-1,1,1-trifluoroethane (CFC 123	Т	Average RF			0.6622	<=20	4.7
2,2-Dichloropropane	T	Average RF			0.7868	<=20	9.0
2,3,6-Trichlorotoluene	T	Average RF			0.3666	<=20	4.9
2,4,5-Trichlorotoluene	T	Average RF			0.3902	<=20	3.7
2,4-, 2,5-, and 2,6-Dichlorotoluene Coelution	T	Average RF			1.031	<=:20	5.0
2,4-Dichlorobenzotrifluoride	T	Average RF		•	0.5290	<=20	4.6
2,5-Dichlorobenzotrifluoride	T	Average RF		,	0.5736	. <=20	3.0
2-Bromo-2-chloro-1,1,1-trifluoroethane	T	Average RF				<=20	
2-Butanone (MEK)	T	Average RF		0.05	0.1412	<=20	9.2
2-Chloro-1,3-butadiene	T	Average RF			0.8140	<=20	4.2
2-Chlorobenzotrifluoride	T	Average RF			0.8449	<=20	2.9
2-Chloroethyl Vinyl Ether	T	Average RF			0.1598	<=20	3.4
2-Chiorotoluene	T	Average RF		•	2.021	<=20	3.9
2-Hexanone	T	Average RF		0.05	0.1585	<=20	4.9
2-Methyl-1-propanol	r	Average RF			0.008422	<=20	9.8
2-Methyl-2-propanol	T	Average RF			0.03095	<=20	4.8
2-Nitropropane	T	Average RF			0.05251	<≃20	7.5
2-Propanol	T	Average RF			0.01880	<=20	5.4
3,4- and 2,3-Dichlorotoluene Coelution	T	Average RF	•		1.106	<=20	8.8
3,4-Dichlorobenzotrifluoride	T	Average RF			0.5797	<=20	4.2
3-Chloro-1-propene	T	Average RF			0.2910	<=20	6.7
3-Chlorobenzotrifluoride	T	Average RF			0.4621	<=20	3.3
3-Chlorotoluene	T	Average RF			2.109	<=20	5.1
4-Chlorotoluene	T	Average RF		•	2.390	<=20	3.8
4-Isopropyltoluene	T	Average RF			2.384	< = 20	5.6
4-Methyl-2-pentanone	T	Average RF		0.05	0,2123	<=20	5.0

Initial Calibration - Summary Report

Calibration ID: RC1400048 . Instrument ID: R-MS-12
Column Name: 1

Analyte	Туре	Curve Fit	Weighting	Min RF	Mean RF	Criteria	Result
Acetone	T	Average RF		0.05	0.09881	<=20	1.1
Acetonitrile	T	Average RF		0.05	0.01689	<=20	4.1
Acrolein	T	Average RF			0.03774	<=20	12.9
Acrylonitrile	T	Average RF			0.1206	<=20	3.5
Benzene	T	Average RF		0.500	1.285	<=20	3.8
Bromobenzene	Ť	Average RF	•	0.500	0.7321	<=20	2.1
Bromochloromethane	T	Average RF			0.7321	<=20	3.9
Bromodichloromethane	T	Average RF		0.200	0.3973	<=20	3.1
Bromoform	T	Average RF		0.100	0.3115	<=20	4.3
Bromomethane	T	Average RF		0.100	0,2636	<=20	16.0
Carbon Disulfide	T	Average RF		0.100	1.516	<=20	9.7
Carbon Tetrachloride	T	Average RF		0.05	0.1243	< =20	11.9
Chlorobenzene	T	Average RF		0.500	0.9545	<=20	3.1
Chloroethane	Ť	Average RF		0,100	0.3700	<=20	7.9
Chloroform	Ť	Average RF		0.200	0.8431	<=20	6.5
Chloromethane	T	Average RF		0.100	0.5810	<=20	4.1
Cyclohexane	Ť	Average RF		0.100	0.3451	<=20	14.2
Cyclohexanone	Ť	Average RF		0.100	0.02767	<=20	9.4
Dibromochloromethane	Ť	Average RF		0,100	0.2867	<=20	5.7
Dibromomethane	T	Average RF		0,,,,,	0,1473	<=20	3.3
Dichlorodifluoromethane (CFC 12)	Ť	Average RF		0.100	0.5045	<=20	8.3
Dichlorofluoromethane (CFC 21)	T	Average RF		0.100	0.8818	<=20	7.1
Dichloromethane	T	Average RF		0.100	0.5147	<=20	15.5
Diethyl Ether	Ţ	Average RF		0.100	0.3887	<=20	6.0
Diisopropyl Ether	T	Average RF			1.752	<=20	5.1
Ethyl Methacrylate	. T	Average RF			0.3281	<=20	5.1
Ethyl tert-Butyl Ether	T	Average RF			1.490	<=20	3.9
Ethylbenzene	T	Average RF		0.100	0.5238	<=20	2.7
Hexachlorobutadiene	T	Average RF			0.3114	<=20	18.0
Iodomethane	T	Linear	1/X		0.4370	>=0.99	0.9981
Isopropylbenzene (Cumene)	T	Average RF		0.100	2,886	< = 20	6.2
Methacrylonitrile	T	Linear	1/X	2.100	0.1489	>=0.99	0.9994
Methyl Acetate	T	Average RF		0.100	0.2364	<=20	4.9
Methyl Methacrylate	T	Average RF		5.155	0.1654	<=20	6.8
Methyl tert-Butyl Ether	T	Average RF	•	0.100	1.152	< = 20	3.7
Methylcyclohexane	T	Average RF		. 0.100	0.3992	<=20	9.7
Naphthalene	T	Average RF		0.100	1.392	<=20	7.3
Propionitrile	· T	Average RF			0.04557	<=20	17.0
Styrene	T	Average RF		0.300	1.047	<=20	3.3
Tetrachloroethene (PCE)	T	Average RF		0.200	0.2709	<=20	3.8
Tetrahydrofuran (THF)	T	Average RF		0200	0.09777	<=20	8.2
Toluene	T	Average RF		0.400	1.361	<=20	3.9
Trichloroethene (TCE)	T	Average RF		0.200	0.3273	<=20	4.0
Trichlorofluoromethane (CFC 11)	T	Average RF		0.100	0.7177	<=20	2.5
Vinyl Acetate	T	Average RF		0:100	0.07886	<=20	8.7
Vinyl Chloride	T	Average RF		0.100	0.6376	<=20	3.5
cis-1,2-Dichloroethene	T	Average RF		0.100	0.5403	<=20	3.9
cis-1,3-Dichloropropene	T ·	Average RF		0.100	0.5023	<=20	3.7
m,p-Xylenes	T	Average RF		0.100	0.6427	<=20	3.6
n-Butyl Acetate	T	Average RF		0.100	0.4040	<=20	7.4
ic nail i uman	,	Viciality VI.			U.7UTU	20	7.4
n-Butylbenzene	T	Average RF			2.114	<=20	4.3

Initial Calibration - Summary Report

Calibration ID: RC1400048 Instrument ID: R-MS-12
Column Name: 1

		.	*** * * . *	Min	Mean		
Analyte	Туре	Curve Fit	Weighting	RF	RF	Criteria	Result
n-Propylbenzene	T	Average RF			3,379	<=20	8.8
o-Xylene	T	Average RF		0.300	0.6461	<≃20	2.0
sec-Butylbenzene	T	Average RF			2.797	<=20	6.6
tert-Amyl Methyl Ether	T	Average RF			1.288	<=20	4.6
tert-Butylbenzene	T	Average RF			1.995	<=20	4.1
trans-1,2-Dichloroethene	T	Average RF		0.100	0.4855	<=20	6.7
trans-1,3-Dichloropropene	T	Average RF	•	0.100	0.4146	<=20	3.4
trans-1,4-Dichloro-2-butene	T	Average RF			0.1778	<=20	17.1
1,2-Dichloroethane-d4	S	Average RF			0.3043	<=20	1.5
4-Bromofluorobenzene	S	Average RF			0.4652	<=20	1.4
Dibromofluoromethane	S	Average RF			0.2865	<=20	0.6
Toluene-d8	S	Average RF			1.241	<=20	0.6

Initial Calibration Verification Summary Report

xx6/14/14

Calibration ID:

RC1400048

1 1/V 12 V

Instrument ID:

R-MS-12

Column Name:

Analyte	Lab Code	Туре	Curve Fit	True Value	Cale Cone	Units	Result	Criteria
1,1,1,2-Tetrachloroethane	RC1400048-09	T	Average RF	50	46.96	ppm	-6.1	<=30
1,1,1-Trichloroethane (TCA)	RC1400048-09	T	Average RF	50	46.80	ppm	-6.4	<=30
1,1,2,2-Tetrachloroethane	RC1400048-09	T	Average RF	50	46.02	ppm	-8.0	<=30
1,1,2-Trichloroethane	RC1400048-09	T	Average RF	50	46.74	ppm	-6.5	<=30
1,1,2-Trichlorotrifluoroethane	RC1400048-09	T	Average RF	50	47.71	ppm	-4.6	<=30
1,1-Dichloroethane (1,1-DCA)	RC1400048-09	T	Average RF	50	46.32	ppm	-7.4	<=30
1,1-Dichloroethene (1,1-DCE)	RC1400048-09	T	Average RF	:50	51.17	ppm	2.3	<=30
1,1-Dichloropropene	RC1400048-09	T	Average RF	50	47.79	ppm	-4.4	<=30
1,2,3-Trichlorobenzene	RC1400048-09	T	Average RF	50	47.12	ppm	-5.8	<=30
1,2,3-Trichloropropane	RC1400048-09	T	Average RF	50	45.24	ppm	-9.5	<=30
1,2,4-Trichlorobenzene	RC1400048-09	T	Average RF	50	48.82	ppm	-2.4	<=30
1,2,4-Trimethylbenzene	RC1400048-09	Т	Average RF	50	45.86	ppm	-8.3	<=30
1,2-Dibromo-3-chloropropane (DBCP)	RC1400048-09	Т	Average RF	50	46.52	ppm	-7.0	<=30
1,2-Dibromoethane	RC1400048-09	Т	Average RF	50	46.28	ppm	-7.4	<=30
1,2-Dichloro-1,1,2-trifluoroethane (CFC 123		Т	Average RF	50	59.45	ppm	18.9	<=30
1,2-Dichlorobenzene	RC1400048-09	T	Average RF	50	46.06	ppm	-7.9	<=30
1.2-Dichloroethane	RC1400048-09	T	Average RF	50	46.14	ppm	-7.7	<=30
1,2-Dichloropropane	RC1400048-09	T	Average RF	50	47.12	ppm	-5.8	<=30
1,3,5-Trichlorobenzene	RC1400048-09	T	Average RF	50	48.51	ppm	-3.0	<=30
1,3,5-Trimethylbenzene	RC1400048-09	T	Average RF	50	45,88	ppm	-8.2	<=30
1,3-Dichlorobenzene	RC1400048-09	T	Average RF	50	46.41	ppm	-7.2	<=30
1,3-Dichloropropane	RC1400048-09	T	Average RF	50	46.74	ppm	-6.5	<=30
1,4-Dichlorobenzene	RC1400048-09	T	Average RF	50	46.11	ppm	-7.8	<=30
1,4-Dioxane	RC1400048-09	T	Average RF	1000	1044	ppm	4.4	· <=30
1-Butanol	RC1400048-09	T	Average RF	2500	2907	ppm	16.3	<=30
1-Chloro-4-(trifluoromethyl)benzene	RC1400048-09	T	Average RF	50	49.39	ppm	-1.2	<=30
2,2-Dichloro-1,1,1-trifluoroethane (CFC 123		T	Average RF	50	50.02	ppm	0.0	<=30
2,2-Dichloropropane	RC1400048-09	T	Average RF	50	46.46	ppm	-7.1	<=30
2,3,6-Trichlorotoluene	RC1400048-09	T	Average RF	50	52.44	ppm	4.9	<=30
2,4,5-Trichlorotoluene	RC1400048-09	T	Average RF	50	55.49	ppm	11.0	<=30
2,4-, 2,5-, and 2,6-Dichlorotoluene Coelution		T	Average RF	150	151.7	ppm	1,1	<=30
2,4-Dichlorobenzotrifluoride	RC1400048-09	Ť	Average RF	50	47.30	ppm	-5.4	<=30
2.5-Dichlorobenzotrifluoride	RC1400048-09	T	Average RF	50	50.74	ppm	1.5	<=30
2-Butanone (MEK)	RC1400048-09	T	Average RF	50	51.00	ppm	2.0	<=30
2-Chloro-1,3-butadiene	RC1400048-09	Ť	Average RF	50	47.81	ppm	-4.4	<=30
2-Chlorobenzotrifluoride	RC1400048-09	T	Average RF	50	48.54	. ppm	-2,9	<=30
2-Chloroethyl Vinyl Ether	RC1400048-09	T	Average RF	50	45.92	ppm	-8.2	<=30
2-Chlorotoluene	RC1400048-09	T	Average RF	50	46.13	ppm	-7.7	<=30
	RC1400048-09	T	Average RF	50	51.83	ppm	3.7	< -3 0
2-Hexanone	RC1400048-09	Ţ	Average RF	1000	1047	ppm	4.7	<=30
2-Methyl-1-propanol	RC1400048-09	T	Average RF	1000	1040	ppm	4.0	<=30
2-Methyl-2-propanol	RC1400048-09	T	Average RF	100	95.92	ppm	-4.1	<=30
2-Nitropropane	RC1400048-09	T	Average RF	1000	1102	ppm	10.2	<=30
2-Propanol			-		99.71		-0.3	<=30
3,4- and 2,3-Dichlorotoluene Coelution	RC1400048-09	T	Average RF	100 50	48.55	ppm	-0.3 -2.9	<=30
3,4-Dichlorobenzotrifluoride	RC1400048-09	T	Average RF		48.33 44.97	ppm	-10.1	<=30
3-Chloro-1-propene	RC1400048-09	T	Average RF	50	44.97 48.83	ppm	-10.1 -2.3	<=30
3-Chlorobenzotrifluoride	RC1400048-09	T	Average RF	50 50		ppm		<=30 <=30
3-Chlorotoluene	RC1400048-09	T	Average RF	50	48.54	ppm	-2.9 7.5	<=30 <=30
4-Chlorotoluene	RC1400048-09	T	Average RF	50	46.27	ppm	-7.5 5.0	
4-Isopropyltoluene	RC1400048-09	T	Average RF	50	47.03	ppm	-5.9	<=30
4-Methyl-2-pentanone	RC1400048-09	T	Average RF	50	50.47	ppm	0.9	<=30

Initial Calibration Verification Summary Report

Calibration ID:

RC1400048

Instrument ID:

R-MS-12

Column Name:

Actonamina	Analyte	Lab Code	Туре	Curve Fit	True Value	Cale Cone	Units	Result	Criteria
Arzolenie RC1400044-09 T Average RF 100 90.76 ppm -9.2 <30 Azrolenithic RC1400044-09 T Average RF 250 237.4 ppm -7.6 <30 Perusame RC1400044-09 T Average RF 50 46.20 ppm -7.6 <30 Perusame RC1400044-09 T Average RF 50 45.18 ppm -7.6 <30 Perusame RC1400044-09 T Average RF 50 45.18 ppm -7.7 <30 Perusame RC1400044-09 T Average RF 50 45.18 ppm -5.7 <30 Perusame RC1400044-09 T Average RF 50 46.61 ppm -5.7 <30 Perusame RC1400044-09 T Average RF 50 46.61 ppm -5.8 <30 Perusame RC1400044-09 T Average RF 50 45.74 ppm -5.8 <30 Perusame RC1400044-09 T Average RF 50 45.74 ppm -10.2 <30 Perusame RC1400044-09 T Average RF 50 45.74 ppm -10.2 <30 Perusame RC1400044-09 T Average RF 50 45.74 ppm -10.2 <30 Perusame RC1400044-09 T Average RF 50 45.74 ppm -10.2 <30 Perusame RC1400044-09 T Average RF 50 45.74 ppm -10.2 <30 Perusame RC1400044-09 T Average RF 50 45.74 ppm -5.9 <30 Perusame RC1400044-09 T Average RF 50 45.77 ppm -5.9 <30 Perusame RC1400044-09 T Average RF 50 45.77 ppm -5.9 <30 Perusame RC1400044-09 T Average RF 50 45.77 ppm -5.9 <30 Perusame RC1400044-09 T Average RF 50 45.77 ppm -5.6 <30 Ppm -5.10 Ppm -	Acetone	RC1400048-09	T	Average RF	50	47.89	ppm	-4.2	<=30
Acytonitrile	Acetonitrile	RC1400048-09	T	Average RF	250	245.8	ppm	-1.7	<≃30
Berusmer RC1400044-09 T Average RF 50 46.20 ppm -7.6 ~90 Romohenzore RC1400044-09 T Average RF 50 45.18 ppm -9.6 ~90 Promochlomomethane RC1400046-09 T Average RF 50 45.18 ppm -5.7 ~90 Promochlomomethane RC1400046-09 T Average RF 50 46.61 ppm -5.7 ~90 Promochlomomethane RC1400046-09 T Average RF 50 46.61 ppm -5.7 ~90 Romonethane RC1400046-09 T Average RF 50 45.47 ppm -0.1 ~90 Romonethane RC1400046-09 T Average RF 50 45.47 ppm -10.2 ~90 Romonethane RC1400046-09 T Average RF 50 45.49 ppm -1.1 ~90 Romonethane RC1400046-09 T Average RF 50 45.49 ppm -1.02 ~90 Romonethane RC1400046-09 T Average RF 50 45.49 ppm -4.6 ~90 Romonethane RC1400046-09 T Average RF 50 45.54 ppm -4.6 ~90 Romonethane RC1400046-09 T Average RF 50 45.64 ppm -4.6 ~90 Romonethane RC1400046-09 T Average RF 50 45.68 ppm -4.6 ~90 Romonethane RC1400046-09 T Average RF 50 45.68 ppm -4.6 ~90 Romonethane RC1400046-09 T Average RF 50 44.02 ppm -12.0 ~90 Romonethane RC1400046-09 T Average RF 50 44.02 ppm -12.0 ~90 Romonethane RC1400046-09 T Average RF 50 44.02 ppm -12.0 ~90 Romonethane RC1400046-09 T Average RF 50 47.68 ppm -4.6 ~90 Romonethane RC1400046-09 T Average RF 50 47.68 ppm -4.6 ~90 Romonethane RC1400046-09 T Average RF 50 47.68 ppm -4.6 ~90 Romonethane RC1400046-09 T Average RF 50 47.68 ppm -4.6 ~90 Romonethane RC1400046-09 T Average RF 50 47.50 ppm -10.0 ~90 Romonethane RC1400046-09 T Average RF 50 47.50 ppm -5.0 ~90 Romonethane RC1400046-09 T Average RF 50 47.50 ppm -5.0 ~90 Romonethane RC1400046-09 T Average RF 50 47.50 ppm -5.0 ~90 Romonethane RC1400046-09 T Average RF 50 47.50 ppm -5.4	Acrolein	RC1400048-09	T	Average RF	100	90.76	ppm	-9.2	<=30
Bromochenzme	Acrylonitrile	RC1400048-09	T	Average RF	250	237.4	ppm	-5.0	< ~ 30
Bromochichromethane	Benzene	RC1400048-09	T	Average RF	50	46.20	ppm	-7.6	<=30
Bromocicialnomenthane RC1400048-09 T Average RF 50 46.51 ppm -5.8 -5.9	Bromobenzene	RC1400048-09	T	Average RF	50	45.18	ppm	-9.6	<=30
Bromofolmomethane RC1400048-09 T Average RF 50 4651 ppm -5.8 -30 Remonstration RC1400048-09 T Average RF 50 45.47 ppm -9.1 -30 Remonstration RC1400048-09 T Average RF 50 45.47 ppm -1.1 -30 Remonstration RC1400048-09 T Average RF 50 45.47 ppm -6.9 -30 Remonstration RC1400048-09 T Average RF 50 46.54 ppm -6.9 -30 Remonstration RC1400048-09 T Average RF 50 46.54 ppm -6.9 -30 Remonstration RC1400048-09 T Average RF 50 46.54 ppm -6.9 -30 Remonstration RC1400048-09 T Average RF 50 46.54 ppm -6.9 -30 Remonstration RC1400048-09 T Average RF 50 46.54 ppm -6.9 -30 Remonstration RC1400048-09 T Average RF 50 46.54 ppm -6.9 -30 Remonstration RC1400048-09 T Average RF 50 47.56 ppm -6.1 -30 Remonstration RC1400048-09 T Average RF 50 47.56 ppm -12.0 -30 Remonstration RC1400048-09 T Average RF 50 47.56 ppm -12.0 -30 Remonstration RC1400048-09 T Average RF 50 47.56 ppm -16.6 -30 Remonstration RC1400048-09 T Average RF 50 47.56 ppm -16.6 -30 Remonstration RC1400048-09 T Average RF 50 47.56 ppm -16.1 -30 Remonstration RC1400048-09 T Average RF 50 47.56 ppm -16.1 -30 Remonstration RC1400048-09 T Average RF 50 47.56 ppm -16.1 -30 Remonstration RC1400048-09 T Average RF 50 47.56 ppm -16.1 -30 Remonstration RC1400048-09 T Average RF 50 45.57 ppm -16.1 -30 Remonstration RC1400048-09 T Average RF 50 45.57 ppm -16.1 -30 Remonstration RC1400048-09 T Average RF 50 45.57 ppm -17.0 -30 Remonstration RC1400048-09 T Average RF 50 45.57 ppm -17.0 -30 Remonstration RC1400048-09 T Average RF 50 45.57 ppm -17.0 -30 Remonstration RC1400048-09 T Average RF 50 45.57 ppm -17.0 -30 Remonstration RC1400048-0	Bromochloromethane	RC1400048-09	T .	Average RF	50	47.15	ppm	-5,7	<=30
Bromomethane RC1400048-09 T Average RF 50 53,4 ppm 9.9 3.0 3.0	Bromodichloromethane	RC1400048-09	T	Average RF	50	46.61		-6.8	<=30
Bromomethane RC1400048-09 T Average RF 50 50.5	Bromoform	RC1400048-09	T	Average RF	50	45.47	ppm	-9.1	<=30
Carbon Disulfide RCI 400048-09 T Average RF 50 44.92 ppm -10.2 ~30 Carbon Tetrachioride RCI 400048-09 T Average RF 50 46.78 ppm -6.9 ~30 Chlorochane RCI 400048-09 T Average RF 50 45.07 ppm -9.9 ~30 Chlorochane RCI 400048-09 T Average RF 50 45.07 ppm -9.9 ~30 Chlorochane RCI 400048-09 T Average RF 50 47.96 ppm -18.0 ~30 Cyclohexane RCI 400048-09 T Average RF 50 47.68 ppm -18.6 ~30 Opchloracone RCI 400048-09 T Average RF 50 47.68 ppm -16.6 ~30 Dichlorofloroconethane RCI 400048-09 T Average RF 50 47.58 ppm -18.6 ~30 Dichlorofloroconethane (CFC 21) RCI 400048-09 T Average RF 5	Bromomethane	RC1400048-09	T	Average RF	50	50.54	• • •	1.1	<=30
Carbon Temenhoride RCI 400048-09 T Average RF 50 46.54 ppm -6.9 -90 Chlorochenzene RC1400048-09 T Average RF 50 45.07 ppm -6.9 -30 Chlorochom RC1400048-09 T Average RF 50 45.68 ppm -6.6 -30 Chlorochom RC1400048-09 T Average RF 50 45.68 ppm -6.6 -30 Cyclohexane RC1400048-09 T Average RF 50 44.02 ppm -1.6 -30 Dibromochloromechane RC1400048-09 T Average RF 50 47.52 ppm -1.6 -30 Dibromochloromechane RC1400048-09 T Average RF 50 47.52 ppm -5.0 -30 Dichlorofluoromechane (CFC 12) RC1400048-09 T Average RF 50 42.30 ppm -4.6 ~30 Dichlorofluoromechane (CFC 12) RC1400048-09 T	Carbon Disulfide	RC1400048-09	Т	•	50	44.92		-10,2	<=30
Chlorochanzen	Carbon Tetrachloride	RC1400048-09	T	-	50	46.54	* -	-6.9	<=30
Chlorocthane RC1400048-09 T Average RF 50 45.07 ppm 9-9 9-30	Chiorobenzene		T	_				-6.4	<=30
Chloroform	Chloroethane		т	-					<=30
Chloromethane RC1400048-09 T Average RF 50 47.96 ppm 4.1 <30 Cyclohexane RC1400048-09 T Average RF 50 44.02 ppm 12.0 <30 Cyclohexane RC1400048-09 T Average RF 50 44.02 ppm 12.0 <30 Cyclohexane RC1400048-09 T Average RF 50 47.68 ppm 4.6 <30 Dibromochloromethane RC1400048-09 T Average RF 50 47.68 ppm 4.6 <30 Dibromochloromethane (CFC 12) RC1400048-09 T Average RF 50 47.52 ppm 5.0 <30 Dibromochloromethane (CFC 12) RC1400048-09 T Average RF 50 42.30 ppm 15.4 <30 Dichloroffluoromethane (CFC 21) RC1400048-09 T Average RF 50 44.83 ppm 10.3 <30 Dichloroffluoromethane (CFC 21) RC1400048-09 T Average RF 50 44.83 ppm 10.3 <30 Dichloromethane RC1400048-09 T Average RF 50 44.83 ppm 6.1 <30 Dichloroffluoromethane RC1400048-09 T Average RF 50 44.83 ppm 6.1 <30 Dichloroffluoromethane RC1400048-09 T Average RF 50 45.93 ppm 8.1 <30 Dichloroffluoromethane RC1400048-09 T Average RF 50 45.93 ppm 6.1 <30 Dichloroffluoromethane RC1400048-09 T Average RF 50 45.93 ppm 6.5 <30 Dichloroffluoromethane RC1400048-09 T Average RF 50 45.94 ppm 7.1 <30 Dichloroffluoromethane RC1400048-09 T Average RF 50 45.94 ppm 7.1 <30 Dichloroffluoromethane RC1400048-09 T Average RF 50 45.94 ppm 8.1 <30 Dichloroffluoromethane RC1400048-09 T Average RF 50 45.94 ppm 7.9 <30 Dichloroffluoromethane RC1400048-09 T Average RF 50 45.94 ppm 7.7 <30 Dichloroffluoromethane RC1400048-09 T Average RF 50 45.94 ppm 7.7 <30 Dichloroffluoromethane RC1400048-09 T Average RF 50 45.94 ppm 7.7 <30 Dichloroffluoromethane RC1400048-09 T Average RF 50 45.94 ppm 7.7 <30 Dichloroffluoromethane RC1400048-09 T Average RF 50 45.94 ppm 7.7 <30 Dichloroffluoromethane RC1400048				-					
Cyclohexane RC1400048-09 T Average RF 50 44.02 ppm -12.0 <30 Cyclohexanone RC1400048-09 T Average RF 1000 813.6 ppm -18.6 <30				_					
Cyclohexanone RC1400048-09 T Average RF 1000 813.6 pm -18.6 <30				_					
Dibromonethane RC1400048-09 T Average RF 50 47.68 ppm 4.6 4.69 Dibromonethane RC1400048-09 T Average RF 50 47.52 ppm 4.9 4.30 Dichlorordiluoromethane (CFC 12) RC1400048-09 T Average RF 50 42.30 ppm 4.9 4.30 Dichlorofiluoromethane (CFC 21) RC1400048-09 T Average RF 50 42.30 ppm -15.4 4.30 Dichlorofiluoromethane RC1400048-09 T Average RF 50 44.83 ppm -10.3 4.30 Dichlorofiluoromethane RC1400048-09 T Average RF 50 44.83 ppm -6.1 4.30 Dichlorofiluoromethane RC1400048-09 T Average RF 50 45.93 ppm -8.1 4.30 Dichly Ether RC1400048-09 T Average RF 50 45.93 ppm -8.1 4.30 Diby Ether RC1400048-09 T Average RF 50 45.93 ppm -2.1 4.30 Ethyl tert-Butyl Ether RC1400048-09 T Average RF 50 45.93 ppm -13.1 4.30 Ethyl tert-Butyl Ether RC1400048-09 T Average RF 50 45.76 ppm -13.1 4.30 Ethyl tert-Butyl Ether RC1400048-09 T Average RF 50 45.76 ppm -8.5 4.30 Ethyl tert-Butyl Ether RC1400048-09 T Average RF 50 45.76 ppm -8.5 4.30 Ethyl tert-Butyl Ether RC1400048-09 T Average RF 50 45.76 ppm -8.5 4.30 Ethyl tert-Butyl Ether RC1400048-09 T Average RF 50 45.76 ppm -8.5 4.30 Ethyl tert-Butyl Ether RC1400048-09 T Average RF 50 45.70 ppm -8.1 4.30 Ethyl tert-Butyl Ether RC1400048-09 T Average RF 50 45.93 ppm -8.1 4.30 Ethyl tert-Butyl Ether RC1400048-09 T Average RF 50 50.64 ppm -7.0 4.30 Ethyl tert-Butyl Ether RC1400048-09 T Average RF 50 50.64 ppm -7.0 4.30 Ethyl tert-Butyl Ether RC1400048-09 T Average RF 50 50.64 ppm -7.0 4.30 Ethyl tert-Butyl Ether RC1400048-09 T Average RF 50 50.64 ppm -7.0 4.30 Ethyl tert-Butyl Ether RC1400048-09 T Average RF 50 50.64 ppm -7.0 4.30 Ethyl tert-Butyl Ether RC1400048-09 T Average RF 50 50.64 ppm -7.0	*			-		_			
Dibromomethane RC1400048-09 T Average RF 50 47.52 ppm -5.0 <30 Dichlorodifluoromethane (CFC 21) RC1400048-09 T Average RF 50 52.43 ppm -15.4 <30 Dichlorodifluoromethane (CFC 21) RC1400048-09 T Average RF 50 52.43 ppm -15.4 <30 Dichloromethane RC1400048-09 T Average RF 50 44.83 ppm -10.3 <30 Dichloromethane RC1400048-09 T Average RF 50 44.83 ppm -6.1 <30 Dispropyl Ether RC1400048-09 T Average RF 50 45.93 ppm -6.1 <30 Dispropyl Ether RC1400048-09 T Average RF 50 45.93 ppm -6.1 <30 Dispropyl Ether RC1400048-09 T Average RF 50 45.93 ppm -6.1 <30 Dispropyl Ether RC1400048-09 T Average RF 50 45.56 ppm -6.1 <30 Dispropyl Ether RC1400048-09 T Average RF 50 45.56 ppm -6.1 <30 Dispropyl Ether RC1400048-09 T Average RF 50 45.56 ppm -6.1 <30 Dispropyl Ether RC1400048-09 T Average RF 50 45.56 ppm -6.1 <30 Dispropyl Ether RC1400048-09 T Average RF 50 45.56 ppm -6.1 <30 Dispropyl Ether RC1400048-09 T Average RF 50 45.56 ppm -8.5 <30 Dispropyl Ether RC1400048-09 T Average RF 50 45.56 ppm -8.5 <30 Dispropyl Ether RC1400048-09 T Average RF 50 45.56 ppm -8.5 <30 Dispropyl Ether RC1400048-09 T Average RF 50 45.56 ppm -8.5 <30 Dispropyl Ether RC1400048-09 T Average RF 50 45.59 ppm -8.1 <30 Dispropyl Ether RC1400048-09 T Average RF 50 45.59 ppm -8.1 <30 Dispropyl Ether RC1400048-09 T Average RF 50 45.64 ppm -7.7 <30 Dispropyl Ether RC1400048-09 T Average RF 50 45.64 ppm -7.0 <30 Dispropyl Ether RC1400048-09 T Average RF 50 45.64 ppm -7.0 <30 Dispropyl Ether RC1400048-09 T Average RF 50 45.64 ppm -7.0 <30 Dispropyl Ether RC1400048-09 T Average RF 50 45.64 ppm -7.0	•			-					
Dichlorodisfluoromethane (CFC 12) RC1400048-09 T Average RF 50 \$2.43 ppm 1.54 <30				-					
Dichlorofluoromethane (CFC 21) RC1400048-09 T Average RF 50 42.30 ppm -15.4 <-30				-					
Dichloromethane RC1400048-09 T Average RF 50 44.83 ppm -10.3 <-30				_					
Diethyl Ether RC1400048-09 T Average RF 50 46.97 ppm -6.1 <-30	· · · · · · · · · · · · · · · · · · ·	-		-					
Diispropyl Ether RC1400048-09 T Average RF 50 45.93 ppm -8.1 -30				_					
Ethyl Methacrylate RC1400048-09 T Average RF 50 48.94 ppm -2.1 <30 Ethyl Ider-Butyl Ether RC1400048-09 T Average RF 50 46.56 ppm -6.9 <30	•			_			• •		
Ethyl tert-Butyl Ether RC1400048-09 T Average RF 50 46.56 ppm -6.9 <-30	• ••			•					
Ethylbenzene RC1400048-09 T Average RF 50 43.45 ppm -13.1 <30 Hexachlorobutadiene RC1400048-09 T Average RF 50 45.76 ppm -8.5 <30	•			-					
Hexachlorobutadiene RC1400048-09 T Average RF 50 45.76 ppm -8.5 <-30	•			· -					
Linear SO 45.49 ppm -9.0 < 30	•			•					
Royard R				•					
Methacrylonitrile RC1400048-09 T Linear 50 47.30 ppm -5.4 <=30 Methyl Acetate RC1400048-09 T Average RF 50 53.03 ppm 6.1 <=30									
Methyl Acetate RC1400048-09 T Average RF 50 53.03 ppm 6.1 <=30 Methyl Methacrylate RC1400048-09 T Average RF 50 46.16 ppm -7.7 <=30	· · · · · · · · · · · · · · · · · · ·	_		_			• •		
Methyl Methacrylate RC1400048-09 T Average RF 50 46.16 ppm -7.7 <=30 Methyl tert-Butyl Ether RC1400048-09 T Average RF 50 50.64 ppm 1.3 <=30	•								
Methyl tert-Buryl Ether RC1400048-09 T Average RF 50 50.64 ppm 1.3 <=30 Methylcyclohexane RC1400048-09 T Average RF 50 46.48 ppm -7.0 <=30	· · · · · · · · · · · · · · · · · · ·			-					
Methylcyclohexane RC1400048-09 T Average RF 50 46.48 ppm -7.0 <=30 Naphthalene RC1400048-09 T Average RF 50 51.73 ppm 3.5 <=30	•			_			= =		
Naphthalene RC1400048-09 T Average RF 50 51.73 ppm 3.5 <=30 Propionitrile RC1400048-09 T Average RF 250 232.8 ppm -6.9 <=30	• •			_			•		
Propionitrile RC1400048-09 T Average RF 250 232.8 ppm -6.9 <=30 Styrene RC1400048-09 T Average RF 50 47.64 ppm -4.7 <=30				_					
Styrene RC1400048-09 T Average RF 50 47.64 ppm -4.7 <=30 Tetrachloroethene (PCE) RC1400048-09 T Average RF 50 45.79 ppm -8.4 <=30	•			•					
Tetrachloroethene (PCE) RC1400048-09 T Average RF 50 45.79 ppm -8.4 <=30 Tetrahydrofuran (THF) RC1400048-09 T Average RF 50 49.35 ppm -1.3 <=30	•								
Tetrahydrofuran (THF) RC1400048-09 T Average RF 50 49.35 ppm -1.3 <=30 Toluene RC1400048-09 T Average RF 50 46.59 ppm -6.8 <=30	•			-					
Toluene RCI400048-09 T Average RF 50 46.59 ppm -6.8 <=30 Trichloroethene (TCE) RCI400048-09 T Average RF 50 46.08 ppm -7.8 <=30				=					
Trichloroethene (TCE) RC1400048-09 T Average RF 50 46.08 ppm -7.8 <=30 Trichlorofluoromethane (CFC 11) RC1400048-09 T Average RF 50 46.64 ppm -6.7 <=30	, , ,			_					
Trichlorofluoromethane (CFC 11) RC1400048-09 T Average RF 50 46.64 ppm -6.7 <=30 Vinyl Acetate RC1400048-09 T Average RF 50 50.98 ppm 2.0 <=30				-					
Vinyl Acetate RC1400048-09 T Average RF 50 50.98 ppm 2.0 <=30 Vinyl Chloride RC1400048-09 T Average RF 50 46.85 ppm -6.3 <=30	• •								
Vinyl Chloride RC1400048-09 T Average RF 50 46.85 ppm -6.3 <=30 cis-1,2-Dichloroethene RC1400048-09 T Average RF 50 45.97 ppm -8.1 <=30	, ,			_					
cis-1,2-Dichloroethene RC1400048-09 T Average RF 50 45.97 ppm -8.1 <=30	•			-					
cis-1,3-Dichloropropene RC1400048-09 T Average RF 50 47.96 ppm -4.1 <=30 m,p-Xylenes RC1400048-09 T Average RF 100 93.70 ppm -6.3 <=30	· · ·			_					
m,p-Xylenes RC1400048-09 T Average RF 100 93.70 ppm -6.3 <=30 n-Butyl Acetate RC1400048-09 T Average RF 50 50.41 ppm 0.8 <=30	•			•					
n-Butyl Acetate RC1400048-09 T Average RF 50 50.41 ppm 0.8 <=30	• •			_					
•	:= · •			-					
n-Butylbenzene RC1400048-09 T Average RF 50 48.26 ppm -3.5 <=30	•			_					
	n-Butylbenzene	RC1400048-09	T	Average RF	50	48.26	ppm	-3.5	<=30

Initial Calibration Verification Summary Report

Calibration ID: RC1400048 Instrument ID: R-MS-12
Column Name: 1

Analyte	Lab Code	Туре	Curve Fit	True Value	Calc Conc	Units	Result	Critería
n-Heptane	RC1400048-09	T	Average RF	50	47.29	ppm	-5.4	<=30
-Propylbenzene	RC1400048-09	T	Average RF	50	46.01	ppm	-8.0	<=30
-Xylene	RC1400048-09	T	Average RF	50	45.36	ppm	-9.3	<=30
ec-Butylbenzene	RC1400048-09	T	Average RF	50	46.12	ppm	-7.8	<=30
ert-Amyl Methyl Ether	RC1400048-09	T	Average RF	50	47,61	ppm	-4.8	<=30
ert-Butylbenzene	RC1400048-09	T	Average RF	50	45.78	ppm	-8.4	<=30
ans-1,2-Dichloroethene	RC1400048-09	T	Average RF	50	46.99	ppm	-6.0	<=30
rans-1,3-Dichloropropene	RC1400048-09	T	Average RF	50	49.07	ppm	-1.9	<=30
ans-1,4-Dichloro-2-butene	RC1400048-09	T	Average RF	50	38.08	ppm	-23.8	<=30
,2-Dichloroethane-d4	RC1400048-09	S	Average RF	50	51.29	ppm	2.6	<=30
-Bromofluorobenzene	RC1400048-09	S	Average RF	50	50.65	ppm	1.3	<=30
Dibromofluoromethane	RC1400048-09	s	Average RF	50	50.79	ppm	1.6	<=30
Toluene-d8	RC1400048-09	s	Average RF	50	50.02	ppm	0,0	<= 30

QA/QC Report

Client: Project:

Tetra Tech GEO

Middle River-Lockheed Martin Corp/Surface Water 112ICO6247

Service Request: R1404414

Date Analyzed: 6/19/14 09:40

Tune Summary
Volatile Organic Compounds by GC/MS

File ID:

I:\ACQUDATA\msvoa12\Data\061914\M6682.D\

Instrument ID: R-MS-12

Analytical Method:

8260C

Analysis Lot:

Target Mass	Relative to Mass	Lower Limit%	Upper Limit%	Relative Abundance %	Raw Abundance	Result Pass/Fail
50	95	15	40	19.02	92680	Pass
75	95	30	60	50.31	245205	Pass
95	95	100	100	100.00	487402	Pass
96	95	5	9	6.62	32288	Pass
173	174	0	2	1.02	3728	Pass
174	95	50	120	75.07	365909	Pass
175	174	5	9	7.83	28640	Pass
176	174	95	101	98.29	359659	Pass
177	176	5	9	6.22	22379	Pass

Sample Name	Lab Code	File ID	Date Analyzed Q
Continuing Calibration Verification	RQ1406793-02	I:\ACQUDATA\msvoa12\Data\061914\M6683.D\	6/19/14 10:13
Lab Control Sample	RQ1406793-03	I:\ACQUDATA\msvoa12\Data\061914\M6684.D\	6/19/14 10:46
Duplicate Lab Control Sample	RQ1406793-04	I:\ACQUDATA\msvoa12\Data\061914\M6685.D\	6/19/14 11:18
Method Blank	RQ1406793-05	I:\ACQUDATA\msvoa12\Data\061914\M6687.D\	6/19/14 12:23
TB-060914	R1404414-014	I:\ACQUDATA\msvoa12\Data\061914\M6690.D\	6/19/14 13:58
MRC-SW9A-060914	R1404414-012	I:\ACQUDATA\msvoa12\Data\061914\M6691.D\	6/19/14 14:29
MRC-SW1A-060914	R1404414-001	I:\ACQUDATA\msvoa12\Data\061914\M6692.D\	6/19/14 15:02
MRC-SW2A-060914	R1404414-002	I:\ACQUDATA\msvoa12\Data\061914\M6693.D\	6/19/14 15:34
MRC-SW5A1-060914	R1404414-003	I:\ACQUDATA\msvoa12\Data\061914\M6694.D\	6/19/14 16:06
MRC-SW5A2-060914	R1404414-004	I:\ACQUDATA\msvoa12\Data\061914\M6695.D\	6/19/14 16:39
MRC-SW5B-060914	R1404414-005	I:\ACQUDATA\msvoa12\Data\061914\M6696.D\	6/19/14 17:11
MRC-SW6A-060914	R1404414-006	1:\ACQUDATA\msvoa12\Data\061914\M6697.D\	6/19/14 17:44
MRC-SW6B-060914	R1404414-007	1:\ACQUDATA\msvoa12\Data\061914\M6698.D\	6/19/14 18:16
MRC-SW7A-060914	R1404414-008	I:\ACQUDATA\msvoa12\Data\061914\M6699.D\	6/19/14 18:48
MRC-SW7B-060914	R1404414-009	I:\ACQUDATA\msvoa12\Data\061914\M6700.D\	6/19/14 19:20
MRC-SW8A-060914	R1404414-010	I:\ACQUDATA\msvoa12\Data\061914\M6701.D\	6/19/14 19:53
MRC-SW8B-060914	R1404414-011	I:\ACQUDATA\msvoa12\Data\061914\M6702.D\	6/19/14 20:25
MRC-SW9B-060914	R1404414-013	I:\ACQUDATA\msvoa12\Data\061914\M6703.D\	6/19/14 20:57

QA/QC Report

Client: Project:

Tetra Tech GEO

Middle River- Lockheed Martin Corp/Surface Water 112ICO6247

Service Request: R1404414

Date Analyzed: 6/19/14

Continuing Calibration Verification Summary Volatile Organic Compounds by GC/MS

Analytical Method: 8260C

Calibration Date: 6/13/14
Calibration ID: RC1400048

Analysis Lot: 397695 Units: ppb

File ID:

I:\ACQUDATA\msvoa12\Data\061914\M6683.D\

Analyte Name	Expected	Result	Average RF	CCV RF	%D	%Drift	Criteria	Curve Fit
1,1,1,2-Tetrachloroethane	50.0	50.8	0.3312	0.3363	1.5	NA	± 20 %	Average RF
1,1,1-Trichloroethane (TCA)	50.0	53.5	0.3312	0.3303	7.0	NA	± 20 %	Average RF
1,1,2,2-Tetrachloroethane	50.0	52.7	0.7423	0.7943	5.4	NA	± 20 %	Average RF
1,1,2-Trichlorotrifluoroethane	50.0	51.4	0.3002	0.4314	2.7	NA	± 20 %	Average RF
1,1-Dichloroethane (1,1-DCA)	50.0	53.6	0.8965	0.4514	7.2	NA	± 20 %	Average RF
1,1-Dichloroethene (1,1-DCE)	50.0	48.2	0.3927	0.3788	-3.6	NA	± 20 %	Average RF
1,1-Dichloropropene	50.0	51.3	0.3962	0.3768	2.6	NA	± 20 %	Average RF
1,2,3-Trichlorobenzene	50.0	51.6	0.5302	0.4007	3.1	NA	± 20 %	Average RF
1,2,3-Trichloropenzene	50.0	53.4	0.1619	0.0338	6.7	NA NA	± 20 %	Average RF
1,2,4-Trichlorobenzene	50.0	51.5	0.7261	0.7475	2.9	NA	± 20 %	Average RF
1,2,4-Tricmorobenzene	50.0	51.5	2.431	2.505	3.1	NA	± 20 %	Average RF
1,2-Dibromo-3-chloropropane (DBCP)	50.0	49.9	0.1025	0.1023	-0.2	NA	± 20 %	Average RF
1,2-Dibromoethane	50.0	50.9	0.1023	0.1023	1.7	NA	± 20 %	Average RF
1,2-Dichlorobenzene	50.0	49.5	1.278	1.265	-1.0	NA	± 20 %	Average RF
1,2-Dichloroethane	50.0	55.5	0.3640	0.4042	11.1	NA	± 20 %	Average RF
1,2-Dichloropropane	50.0	50.8	0.3329	0.3379	1.5	NA NA	± 20 %	Average RF
1,3-Dichlorobenzene	50.0	48.8	1.364	1.330	-2.5	NA	± 20 %	Average RF
1,3-Dichloropropane	50.0	54.4	0.4524	0.4925	8.9	NA NA	± 20 %	Average RF
1,4-Dichlorobenzene	50.0	49.1	1.393	1.368	-1.8	NA	± 20 %	Average RF
2,2-Dichloropropane	50.0	52.6	0.7868	0.8280	5.2	NA	± 20 %	Average RF
2-Butanone (MEK)	50.0	64.1	0.7303	0.1812	28.3 *	NA	± 20 %	Average RF
2-Chloroethyl Vinyl Ether	50.0	53.6	0.1598	0.1711	7.1	NA	± 20 %	Average RF
2-Chlorotoluene	50.0	52.4	2.021	2.119	4.8	NA	± 20 %	Average RF
2-Hexanone	50.0	59.6	0.1585	0.1889	19.2	NA	± 20 %	Average RF
tert-Butyl Alcohol	1000	1210	0.03095	0.1009	20.6 *	NA	± 20 %	Average RF
4-Chlorotoluene	50.0	52.4	2.390	2.503	4.7	NA	± 20 %	Average RF
4-Isopropyltoluene	50.0	50.6	2.384	2.413	1.2	NA	± 20 %	Average RF
4-Methyl-2-pentanone	50.0	55.8	0.2123	0.2369	11.6	NA	± 20 %	Average RF
Acetone	50.0	68.1	0.09881	0.1346	36.2 *	NA	± 20 %	Average RF
Benzene	50.0	50.8	1.285	1.306	1.6	NA	± 20 %	Average RF
Bromobenzene	50.0	48.4	0.7321	0.7086	-3.2	NA	± 20 %	Average RF
Bromochloromethane	50.0	51.3	0.2794	0.2869	2.7	NA	± 20 %	Average RF
Bromodichloromethane	50.0	50.8	0.3973	0.4033	1.5	NA	± 20 %	Average RF
Bromoform	50.0	47.8	0.3375	0.4033	-4.5	NA	± 20 %	Average RF
Bromomethane	50.0	45.8	0.2636	0.2417	-8.3	NA NA	± 20 %	Average RF
Carbon Disulfide	50.0	48.8	1.516	1.481	-2.3	NA	± 20 %	Average RF
Carbon Tetrachloride	50.0	51.2	0.1243	0.1272	2.3	NA	± 20 %	Average RF
Chlorobenzene	50.0	49.3	0.1243	0.1272	-1.3	NA	± 20 %	Average RF
Chloroethane	50.0	49.3 42.8	0.9343	0.3165	-14.5	NA NA	± 20 %	Average RF
Chloroform	50.0 50.0	42.8 54.2	0.8431	0.9131	8.3	NA	± 20 %	Average RF
Chololom	30.0	J4.L	0.0431	V.7131	د.ه	IVA	± 20 /0	Average Id

QA/QC Report

Client: Project:

File ID:

Tetra Tech GEO

Middle River-Lockheed Martin Corp/Surface Water 112ICO6247

Service Request: R1404414

Date Analyzed: 6/19/14

Continuing Calibration Verification Summary Volatile Organic Compounds by GC/MS

Analytical Method: 8260C

I:\ACQUDATA\msvoa12\Data\061914\M6683.D\

Calibration Date: 6/13/14 Calibration ID: RC1400048 Analysis Lot: 397695

Units: ppb

			Average	CCV				
Analyte Name	Expected	Result	RF	RF	%D	%Drift	Criteria	Curve Fit
Chloromethane	50.0	47.2	0.5810	0.5479	-5.7	NA	± 20 %	Average RF
Dibromochloromethane	50.0	51.3	0.2867	0.2940	2.5	NA	± 20 %	Average RF
Dibromomethane	50.0	53.5	0.1473	0.1578	7.1	NA	± 20 %	Average RF
Dichlorodifluoromethane (CFC 12)	50.0	52.1	0.5045	0.5256	4.2	NA	± 20 %	Average RF
Methylene Chloride	50.0	48.4	0.5147	0.4977	-3.3	NA	± 20 %	Average RF
Diisopropyl Ether	50.0	50.6	1.752	1.772	1.1	NA	± 20 %	Average RF
Ethyl tert-Butyl Ether	50.0	52.2	1.490	1.555	4.3	NA	± 20 %	Average RF
Ethylbenzene	50.0	49.6	0.5238	0.5198	-0.8	NA	± 20 %	Average RF
Hexachlorobutadiene	50.0	54.7	0.3114	0.3409	9.5	NA	± 20 %	Average RF
Isopropylbenzene (Cumene)	50.0	50.1	2.886	2.890	0.1	NA	± 20 %	Average RF
Methyl tert-Butyl Ether	50.0	57.0	1.152	1.313	14.0	NA	± 20 %	Average RF
Naphthalene	50.0	55.3	1.392	1.540	10.6	NA	± 20 %	Average RF
Styrene	50.0	50.0	1.047	1.048	0.1	NA	± 20 %	Average RF
Tetrachloroethene (PCE)	50.0	47.2	0.2709	0.2555	-5.7	NA	± 20 %	Average RF
Toluene	50.0	49.6	1.361	1.350	-0.8	NA	± 20 %	Average RF
Trichloroethene (TCE)	50.0	46.7	0.3273	0.3055	-6.6	NA	± 20 %	Average RF
Trichlorofluoromethane (CFC 11)	50.0	54.3	0.7177	0.7792	8.6	NA	± 20 %	Average RF
Vinyl Acetate	50.0	58.6	0.07886	0.09248	17.3	NA	± 20 %	Average RF
Vinyl Chloride	50.0	46.1	0.6376	0.5874	-7.9	NA	± 20 %	Average RF
Xylenes, Total	150	147	NA	NA	NA	NA	± 20 %	
cis-1,2-Dichloroethene	50.0	50.6	0.5403	0.5462	1.1	NA	± 20 %	Average RF
cis-1,3-Dichloropropene	50.0	50.9	0.5023	0.5109	1.7	NA	± 20 %	Average RF
m,p-Xylenes	100	98.7	0.6427	0.6342	-1.3	NA	± 20 %	Average RF
n-Butylbenzene	50.0	54.0	2.114	2.283	8.0	NA	± 20 %	Average RF
n-Propylbenzene	50.0	51.2	3.379	3.461	2.4	NA	± 20 %	Average RF
o-Xylene	50.0	48.2	0.6461	0.6222	-3.7	NA	± 20 %	Average RF
sec-Butylbenzene	50.0	50.6	2.797	2.828	1.1	NA	± 20 %	Average RF
tert-Amyl Methyl Ether	50.0	52.7	1.288	1.358	5.4	NA	± 20 %	Average RF
tert-Butylbenzene	50.0	49.2	1.995	1.964	-1.5	NA	± 20 %	Average RF
trans-1,2-Dichloroethene	50.0	49.9	0.4855	0.4847	-0.2	NA	± 20 %	Average RF
trans-1,3-Dichloropropene	50.0	52.5	0.4146	0.4349	4.9	NA	± 20 %	Average RF
4-Bromofluorobenzene	50.0	51.2	0.4652	0.4765	2.4	NA	± 20 %	Average RF
Dibromofluoromethane	50.0	52.9	0.2865	0.3030	5.8	NA	± 20 %	Average RF
Toluene-d8	50.0	50.7	1.241	1.258	1.3	NA	± 20 %	Average RF

Analytical Report

Client: Project: Tetra Tech GEO

Middle River- Lockheed Martin Corp/Surface Water 112ICO6247

Service Request: R1404414 Date Analyzed: 6/19/14 12:23

Sample Matrix:

Water

Method Blank Summary Volatile Organic Compounds by GC/MS

Sample Name: Lab Code:

Method Blank

Instrument ID: R-MS-12

RQ1406793-05

File ID:

I:\ACQUDATA\msvoa12\Data\061914\M6687.D\

Analytical Method:

8260C

This Method Blank applies to the following analyses:

Sample Name	Lab Code	File ID	Date Analyzed
Lab Control Sample	RQ1406793-03	I:\ACQUDATA\msvoa12\Data\061914\M6684.D\	6/19/14 10:46
Duplicate Lab Control Sample	RQ1406793-04	I:\ACQUDATA\msvoa12\Data\061914\M6685.D\	6/19/14 11:18
TB-060914	R1404414-014	1:\ACQUDATA\msvoa12\Data\061914\M6690.D\	6/19/14 13:58
MRC-SW9A-060914	R1404414-012	I:\ACQUDATA\msvoa12\Data\061914\M6691.D\	6/19/14 14:29
MRC-SW1A-060914	R1404414-001	1:\ACQUDATA\msvoa12\Data\061914\M6692.D\	6/19/14 15:02
MRC-SW2A-060914	R1404414-002	I:\ACQUDATA\msvoa12\Data\061914\M6693.D\	6/19/14 15:34
MRC-SW5A1-060914	R1404414-003	I:\ACQUDATA\msvoa12\Data\061914\M6694.D\	6/19/14 16:06
MRC-SW5A2-060914	R1404414-004	1:\ACQUDATA\msvoa12\Data\061914\M6695.D\	6/19/14 16:39
MRC-SW5B-060914	R1404414-005	1:\ACQUDATA\msvoa12\Data\061914\M6696.D\	6/19/14 17:11
MRC-SW6A-060914	R1404414-006	I:\ACQUDATA\msvoa12\Data\061914\M6697.D\	6/19/14 17:44
MRC-SW6B-060914	R1404414-007	I:\ACQUDATA\msvoa12\Data\061914\M6698.D\	6/19/14 18:16
MRC-SW7A-060914	R1404414-008	I:\ACQUDATA\msvoa12\Data\061914\M6699.D\	6/19/14 18:48
MRC-SW7B-060914	R1404414-009	I:\ACQUDATA\msvoa12\Data\061914\M6700.D\	6/19/14 19:20
MRC-SW8A-060914	R1404414-010	I:\ACQUDATA\msvoa12\Data\061914\M6701.D\	6/19/14 19:53
MRC-SW8B-060914	R1404414-011	I:\ACQUDATA\msvoa12\Data\061914\M6702.D\	6/19/14 20:25
MRC-SW9B-060914	R1404414-013	I:\ACQUDATA\msvoa12\Data\061914\M6703.D\	6/19/14 20:57

Analytical Report

Client:

Tetra Tech GEO

Project:

Middle River-Lockheed Martin Corp/Surface Water 112ICO6247

Sample Matrix:

Water

Service Request: R1404414

Date Collected: NA

Date Received: NA

Date Analyzed: 6/19/14 12:23

Units: µg/L Basis: NA

Sample Name: Lab Code:

Method Blank RQ1406793-05

Volatile Organic Compounds by GC/MS

Analytical Method: 8260C Data File Name:

I:\ACQUDATA\msvoa12\Data\061914\M6687.D\

Analysis Lot: 397695 Instrument Name: R-MS-12

Dilution Factor: 1

CAS No.	Analyte Name	Result Q	MRL	MDL	Note
630-20-6	1,1,1,2-Tetrachloroethane	1.0 U	1.0	0.22	
71-55-6	1,1,1-Trichloroethane (TCA)	1.0 U	1.0	0.36	
79-34-5	1,1,2,2-Tetrachloroethane	1.0 U	1.0	0.25	
76-13-1	1,1,2-Trichlorotrifluoroethane	1.0 U	1.0	0.31	
75-34-3	1,1-Dichloroethane (1,1-DCA)	1.0 U	1.0	0.20	
75-35-4	1,1-Dichloroethene (1,1-DCE)	1.0 U	17.0	0.57	
563-58-6	1,1-Dichloropropene	1.0 U	1.0	0.29	
87 - 61-6	1,2,3-Trichlorobenzene	1.0 U	1.0	0.82	
96-18-4	1,2,3-Trichloropropane	1.0 U	1.0	0.70	
120-82-1	1,2,4-Trichlorobenzene	0.30 J	1.0	0.23	
95-63-6	1,2,4-Trimethylbenzene	1.0 U	1.0	0.20	
96-12-8	1,2-Dibromo-3-chloropropane (DBCP)	2.0 U	2.0	0.74	
106-93-4	1,2-Dibromoethane	1.0 U	1.0	0.24	
95-50-1	1,2-Dichlorobenzene	1.0 U	1.0	0.21	
107-06-2	1,2-Dichloroethane	1.0 U	1.0	0.36	
78-87-5	1,2-Dichloropropane	1.0 U	1.0	0.20	
541-73-1	1,3-Dichlorobenzene	1.0 U	1.0	0.20	
142-28-9	1,3-Dichloropropane	1.0 U	1.0	0.27	
106-46-7	1,4-Dichlorobenzene	1.0 U	1.0	0.20	
594-20-7	2,2-Dichloropropane	1.0 U	1.0	0.27	
78-93-3	2-Butanone (MEK)	5.0 U	5.0	0.81	
110-75-8	2-Chloroethyl Vinyl Ether	1.0 U	1.0	0.44	
95-49-8	2-Chlorotoluene	1.0 U	1.0	0.20	
591-78-6	2-Hexanone	5.0 U	5.0	1.7	
75-65-0	tert-Butyl Alcohol	40 U	40	11	
106-43-4	4-Chlorotoluene	1.0 U	1.0	0.24	
99-87-6	4-lsopropyltoluene	1. 0 U	1.0	0.20	
108-10-1	4-Methyl-2-pentanone	5.0 U	5.0	0.67	
67-64-1	Acetone	5.0 U	5.0	1.3	
71-43-2	Benzene	1.0 U	1.0	0.20	
108-86-1	Bromobenzene	1.0 U	1.0	0.28	
74-97-5	Bromochloromethane	1.0 U	1.0	0.32	
75-27-4	Bromodichloromethane	1.0 U	1.0	0.32	
75-25-2	Bromoform	1.0 U	1.0	0.42	
74-83-9	Bromomethane	0.38 J	1.0	0.29	

Analytical Report

Client:

Tetra Tech GEO

Project:

Middle River-Lockheed Martin Corp/Surface Water 112ICO6247

Sample Matrix:

Water

Date Received: NA

Date Collected: NA

Sample Name: Lab Code:

Method Blank RQ1406793-05 Date Analyzed: 6/19/14 12:23

Service Request: R1404414

Units: µg/L Basis: NA

Volatile Organic Compounds by GC/MS

Analytical Method: '8260C Data File Name:

I:\ACQUDATA\msvoa12\Data\061914\M6687.D\

Analysis Lot: 397695

Dilution Factor: 1

Instrument Name: R-MS-12

CAS No.	Analyte Name	Result Q	MRL	MDL	Note
75-15-0	Carbon Disulfide	1.0 U	1.0	0.22	
56-23-5	Carbon Tetrachloride	1. 0 U	1.0	0.45	
108-90-7	Chlorobenzene	1.0 U	1.0	0.29	
75-00-3	Chloroethane	1.0 U	1.0	0.24	
67-66-3	Chloroform	1.0 U	1.0	0.25	
74-87-3	Chloromethane	1.0 U	1.0	0.21	
124-48-1	Dibromochloromethane	1.0 U	1.0	0.31	
74-95-3	Dibromomethane	1. 0 U	1.0	0.32	
75-71-8	Dichlorodifluoromethane (CFC 12)	1.0 U	1.0	0.46	
75-09-2	Methylene Chloride	1.0 U	1.0	0.32	
108-20-3	Diisopropyl Ether	1.0 U	1.0	0.20	
637-92-3	Ethyl tert-Butyl Ether	1.0 U	1.0	0.20	
100-41-4	Ethylbenzene	1.0 U	1.0	0.20	
87-68-3	Hexachlorobutadiene	2.0 U	2.0	0.62	
98-82-8	lsopropylbenzene (Cumene)	1.0 U	1.0	0.20	
1634-04-4	Methyl tert-Butyl Ether	1.0 U	1.0	0.29	
91-20-3	Naphthalene	0.26 J	1.0	0.20	
100-42-5	Styrene	1.0 U	1.0	0.20	
127-18-4	Tetrachloroethene (PCE)	1.0 U	1.0	0.30	
108-88-3	Toluene	1.0 U	1.0	0.20	
79-01-6	Trichloroethene (TCE)	1.0 U	1.0	0.22	
75-69-4	Trichlorofluoromethane (CFC 11)	1.0 U	1.0	0.20	
108-05-4	Vinyl Acetate	2.0 U	2.0	1.1	
75-01-4	Vinyl Chloride	1.0 U	1.0	0.32	
1330-20-7	Xylenes, Total	3.0 U	3.0	0.53	
156-59-2	cis-1,2-Dichloroethene	1.0 U	1.0	0.30	
10061-01-5	cis-1,3-Dichloropropene	1.0 U	1.0	0.24	
179601-23-1	m,p-Xylenes	2.0 U	2.0	0.33	
104-51-8	n-Butylbenzene	1.0 U	1.0	0.21	
103-65-1	n-Propylbenzene	1.0 U	1.0	0.20	
95-47-6	o-Xylene	1.0 U	1.0	0.20	
135-98-8	sec-Butylbenzene	1.0 U	1.0	0.27	
994-05-8	tert-Amyl Methyl Ether	1.0 U	1.0	0.20	
98-06-6	tert-Butylbenzene	1.0 U	1.0	0.20	
156-60-5	trans-1,2-Dichloroethene	1.0 U	1.0	0.33	•
.50 00 5					

Analytical Report

Client:

Tetra Tech GEO

Project:

Middle River- Lockheed Martin Corp/Surface Water 112ICO6247

Sample Matrix:

Water

Service Request: R1404414

Date Collected: NA Date Received: NA

Date Analyzed: 6/19/14 12:23

Sample Name: Lab Code:

Toluene-d8

Method Blank RQ1406793-05 Units: µg/L Basis: NA

Volatile Organic Compounds by GC/MS

Analytical Method: 8260C

Data File Name:

I:\ACQUDATA\msvoa12\Data\061914\M6687.D\

Analysis Lot: 397695

Instrument Name: R-MS-12

Dilution Factor: 1

CAS No.	Analyte Name		Result Q	MŖĹ	MDL	Note
10061-02-6	trans-1,3-Dichloropropene		1.0 U	1.0	0.20	
Surrogate Name	2	%Rec	Control Limits	Date Analyzed	Q	
4-Bromofluorobe	enzene	101	85-122	6/19/14 12:23	3	
Dibromofluorom	ethane	106	89-119	6/19/14 12:23	i	

87-121

6/19/14 12:23

102

QA/QC Report

Client:

Tetra Tech GEO

Project: Sample Matrix: Middle River- Lockheed Martin Corp/Surface Water 1121CO6247

Water

Lab Control Sample Summary

Analytical Method:

8260C

Volatile Organic Compounds by GC/MS

Units: µg/L Basis: NA

Analysis Lot: 397695

Service Request: R1404414

Date Analyzed: 6/19/14

	Lab Control Sample RQ1406793-03		Duplicate Lab Control Sample RQ1406793-04 Spike			% Rec		RPD	
Analyte Name	Result	Spike Amount	% Rec	Result	Amount	% Rec	Limits	RPD	Limit
1,1,1,2-Tetrachloroethane	20.4	20.0	102	19.3	20.0	96	79 - 119	5	30
1,1,1-Trichloroethane (TCA)	23.4	20.0	117	21.6	20.0	108	71 - 123	8	30
1,1,2,2-Tetrachloroethane	21.4	20.0	107	20.0	20.0	100	74 - 127	6	30
1,1,2-Trichlorotrifluoroethane	22.3	20.0	112	20.5	20.0	102	64 - 136	9	30
1,1-Dichloroethane (1,1-DCA)	22.8	20.0	114	21.1	20.0	106	76 - 128	8	30
1,1-Dichloroethene (1,1-DCE)	23.9	20.0	120	22.3	20.0	112	74 - 135	7	30
1,1-Dichloropropene	23.2	20.0	116	21.1	20.0	105	74 - 136	9	30
1,2,3-Trichlorobenzene	23.0	20.0	115	21.0	20.0	105	60 - 144	9	30
1,2,3-Trichloropropane	21.7	20.0	108	20.9	20.0	105	68 - 136	4	30
1,2,4-Trichlorobenzene	22.9	20.0	114	21.5	20.0	108	60 - 141	6	30
1,2,4-Trimethylbenzene	22.1	20.0	111	20.7	20.0	103	76 - 126	7	30
1,2-Dibromo-3-chloropropane (DBCP)	20.4	20.0	102	19.2	20.0	96	69 - 135	6	30
1,2-Dibromoethane	20.4	20.0	102	20.2	20.0	101	81 - 123	1	30
1,2-Dichlorobenzene	21.2	20.0	106	19.7	20.0	98	80 - 119	8	30
1,2-Dichloroethane	23.3	20.0	116	21.7	20.0	109	72 - 130	7	30
1,2-Dichloropropane	21.6	20.0	108	20.7	20.0	103	80 - 119	5	30
1,3-Dichlorobenzene	21.2	20.0	106	19.7	20.0	99	79 - 121	7	30
1,3-Dichloropropane	22.3	20.0	112	20.8	20.0	104	82 - 116	7	30
1,4-Dichlorobenzene	21.4	20.0	107	20.2	20.0	101	79 - 119	6	30
2,2-Dichloropropane	22.6	20.0	113	20.5	20.0	103	59 - 135	10	30
2-Butanone (MEK)	22.7	20.0	113	23.1	20.0	115	66 - 129	2	30
2-Chloroethyl Vinyl Ether	19.4	20.0	97	18.8	20.0	94	58 - 139	3	30
2-Chlorotoluene	22.7	. 20.0	113	21.2	20.0	106	71 - 125	7	30
2-Hexanone	21.9	20.0	109	21.0	20.0	105	61 - 131	4	30
tert-Butyl Alcohol	483	400	121	423	400	106	63 - 142	13	30
4-Chlorotoluene	23.0	20.0	115	20.9	20.0	105	73 - 127	10	30
4-Isopropyltoluene	22.6	20.0	113	20.9	20.0	104	74 - 130	8	30
4-Methyl-2-pentanone	20.0	20.0	100	20.3	20.0	102	68 - 129	2	30
Acetone	23.2	20.0	116	24.0	20.0	120	51 - 146	3	30
Benzene	21.8	20.0	109	20.4	20.0	102	76 - 118	7	30
Bromobenzene	20.7	20.0	104	19.5	20.0	98	79 - 121	6	30
Bromochloromethane	21.4	20.0	107	21.3	20.0	107	81 - 126	<1	30
Bromodichloromethane	22.0	20.0	110	20.4	20.0	102	79 - 122	7	30

Results flagged with an asterisk (*) indicate values outside control criteria.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

QA/QC Report

Client:

Tetra Tech GEO

Project:

Middle River- Lockheed Martin Corp/Surface Water 112ICO6247

Sample Matrix:

Water

Lab Control Sample Summary Volatile Organic Compounds by GC/MS

Analytical Method:

8260C

Units: µg/L Basis: NA

Analysis Lot: 397695

Service Request: R1404414

Date Analyzed: 6/19/14

		Lab Control Sample RQ1406793-03 Spike		Duplicate Lab Control Sample RQ1406793-04 Spike			% Rec		RPD
Analyte Name	Result	Amount	% Rec	Result	Amount	% Rec	Limits	RPD	Limit
Bromoform	19.3	20.0	96	18.0	20.0	90	65 - 138	7	30
Bromomethane	19.9	20.0	100	19.5	20.0	98	41 - 159	2	30
Carbon Disulfide	19.2	20.0	96	19.1	20.0	95	63 - 141	<1	30
Carbon Tetrachloride	21.9	20.0	109	19.9	20.0	99	66 - 128	10	30
Chlorobenzene	21.1	20.0	105	19.7	20.0	98	80 - 121	7	30
Chloroethane	18.6	20.0	93	17.7	20.0	88	71 - 128	5	30
Chloroform	22.7	20.0	113	21.5	20.0	107	76 - 120	6	30
Chloromethane	21.8	20.0	109	20.2	20.0	101	64 - 140	7	30
Dibromochloromethane	20.0	20.0	100	19.5	20.0	97	79 - 125	3	30
Dibromomethane	22.0	20.0	110	20.8	20.0	104	79 - 120	5	30
Dichlorodifluoromethane (CFC 12)	26.5	20.0	132	24.2	20.0	121	60 - 150	9	30
Methylene Chloride	20.7	20.0	103	19.8	20.0	99	73 - 122	4	30
Diisopropyl Ether	18.5	20.0	92	19.1	20.0	96	76 - 131	4	30
Ethyl tert-Butyl Ether	18.5	20.0	92	19.2	20.0	96	77 - 126	4	30
Ethylbenzene	19.8	20.0	99	18.3	20.0	92	76 - 120	8	30
Hexachlorobutadiene	24.7	20.0	124	21.8	20.0	109	57 - 147	13	30
Isopropylbenzene (Cumene)	22.4	20.0	112	20.8	20.0	104	76 - 126	7	30
Methyl tert-Butyl Ether	24.1	20.0	120	22.6	20.0	113	73 - 131	6	30
Naphthalene	24.1	20.0	120	22.2	20.0	111	73 - 133	- 8	30
Styrene	20.7	20.0	103	19.7	20.0	99	81 - 122	5	30
Tetrachloroethene (PCE)	20.9	20.0	105	19.4	20.0	97	69 - 124	8	30
Toluene	21.2	20.0	106	19.8	20.0	99	77 - 120	7	30
Trichloroethene (TCE)	20.6	20.0	103	19.0	20.0	95	76 - 123	8	30
Trichlorofluoromethane (CFC 11)	22.8	20.0	114	21.4	20.0	107	69 - 130	6	30
Vinyl Acetate	19.0	20.0	95	17.5	20.0	88	43 - 165	8	30
Vinyl Chloride	19.9	20.0	100	18.4	20.0	92	69 - 136	8	30
Xylenes, Total	61.9	60.0	103	58.3	60.0	97	78 - 121	6	30
cis-1,2-Dichloroethene	20.7	20.0	104	19.8	20.0	99	80 - 121	5	30
cis-1,3-Dichloropropene	21.4	20.0	107	20.3	20.0	101	77 - 125	5	30
m,p-Xylenes	41.8	40.0	104	39.3	40.0	98	78 - 123	6	30
n-Butylbenzene	23.1	20.0	116	21.5	20.0	108	69 - 135	7	30
n-Propylbenzene	22.4	20.0	112	21.0	20.0	105	76 - 125	7	30
o-Xylene	20.1	20.0	100	18.9	20.0	95	77 - 131	6	30

Results flagged with an asterisk (*) indicate values outside control criteria.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

QA/QC Report

Client: Project: Tetra Tech GEO

Middle River- Lockheed Martin Corp/Surface Water 112ICO6247

Sample Matrix:

Lab Control Sample Summary Volatile Organic Compounds by GC/MS

Analytical Method:

8260C

Units: µg/L

Basis: NA

Service Request: R1404414

Date Analyzed: 6/19/14

Analysis Lot: 397695

		Control San Q1406793-0 Spike	•	Duplicate Lab Control Sample RQ1406793-04 Spike		% Rec		RPD	
Analyte Name	Result	Amount		Result	Amount	% Rec	Limits	RPD	Limit
sec-Butylbenzene	22.3	20.0	111	20.4	20.0	102	72 - 130	9	30
tert-Amyl Methyl Ether	19.0	20.0	95	19.4	20.0	97	76 - 123	2	30
tert-Butylbenzene	21.7	20.0	108	20.2	20.0	101	73 - 124	7	30
trans-1,2-Dichloroethene	22.0	20.0	110	20.8	20.0	104	78 - 124	6	30
trans-1,3-Dichloropropene	22.2	20.0	111	20.6	20.0	103	72 - 123	7	30

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

QA/QC Report

Client: Project: Tetra Tech GEO

Middle River-Lockheed Martin Corp/Surface Water 112ICO6247

Service Request: R1404414

Date Analyzed: 6/19/14 10:13

Internal Standard Area and RT Summary Volatile Organic Compounds by GC/MS

File ID:

I:\ACQUDATA\msvoa12\Data\061914\M6683.D\

Lab Code: RQ1406793-02 Analysis Lot: 397695

Instrument ID: Analytical Method: 8260C

R-MS-12

Signal ID:

	_	1,4-Dichlorobenzene-d4		1,4-Difluorobenzene		Chlorobenzene-d5	
		<u>Area</u>	RT	Area	<u>RT</u>	Area	<u>RT</u>
	Results ==>	685,670	10.75	1,457,701	5.45	1,306,203	8.75
	Upper Limit ==>	1,371,340	11.25	2,915,402	5.95	2,612,406	9.25
	Lower Limit ==>	342,835	10.25	728,851	4.95	653,102	8.25
	ICAL Result ==>	748,434	10.75	1,534,701	5.46	1,409,806	8.75
Associated Analyses		, , , , , , , , , , , , , , , , , , ,					
Lab Control Sample	RQ1406793-03	673,028	10.75	1,472,505	5.45	1,330,087	8.75
Duplicate Lab Control Sample	RQ1406793-04	684,449	10.75	1,484,210	5.45	1,342,235	8.74
Method Blank	RQ1406793-05	651,892	10.75	1,468,303	5.45	1,313,705	8.74
TB-060914	R1404414-014	630,654	10.75	1,462,004	5.45	1,316,776	8.75
MRC-SW9A-060914	R1404414-012	632,030	10.75	1,459,529	5.46	1,309,498	8.75
MRC-SW1A-060914	R1404414-001	628,563	10.75	1,443,644	5.45	1,304,198	8.74
MRC-SW2A-060914	R1404414-002	623,689	10.75	1,442,694	5.45	1,297,287	8.74
MRC-SW5A1-060914	R1404414-003	626,946	10.75	1,424,418	5.45	1,277,146	8.75
MRC-SW5A2-060914	R1404414-004	624,804	10.75	1,426,240	5.45	1,275,014	8.75
MRC-SW5B-060914	R1404414-005	622,159	10.75	1,433,367	5.45	1,280,477	8.74
MRC-SW6A-060914	R1404414-006	617,133	10.75	1,409,784	5.45	1,276,061	8.74
MRC-SW6B-060914	R1404414-007	614,000	10.75	1,400,685	5.45	1,266,075	8.75
MRC-SW7A-060914	R1404414-008	614,634	10.75	1,383,326	5.46	1,257,330	8.74
MRC-SW7B-060914	R1404414-009	607,687	10.75	1,406,496	5.45	1,252,926	8.74
MRC-SW8A-060914	R1404414-010	610,596	10.75	1,393,829	5.45	1,256,182	8.74
MRC-SW8B-060914	R1404414-011	602,598	10.75	1,388,205	5.45	1,224,739	8.74
MRC-SW9B-060914	R1404414-013	599,022	10.75	1,375,016	5.45	1,229,068	8.75

Results flagged with an asterisk (*) indicate values outside control criteria.

QA/QC Report

Client: Project: Tetra Tech GEO

Middle River-Lockheed Martin Corp/Surface Water 112ICO6247

Service Request: R1404414 Date Analyzed: 6/19/14 10:13

Internal Standard Area and RT Summary Volatile Organic Compounds by GC/MS

File ID:

I:\ACQUDATA\msvoa12\Data\061914\M6683.D\

Instrument ID:

R-MS-12

Analytical Method: 8260C

Lab Code: RQ1406793-02

Analysis Lot: 397695

Signal ID:

	· _	Pentafluorobenzene	
	_	Area	RT
	Results ==>	890,577	4.25
	Upper Limit ==>	1,781,154	4.75
	Lower Limit ==>	445,289	3.75
	ICAL Result ==>	976,069	4.25
Associated Analyses			
Lab Control Sample	RQ1406793-03	911,981	4.25
Duplicate Lab Control Sample	RQ1406793-04	922,195	4.25
Method Blank	RQ1406793-05	906,122	4.25
TB-060914	R1404414-014	908,284	4.26
MRC-SW9A-060914	R1404414-012	891,681	4.26
MRC-SW1A-060914	R1404414-001	885,224	4.25
MRC-SW2A-060914	R1404414-002	881,901	4.25
MRC-SW5A1-060914	R1404414-003	865,780	4.25
MRC-SW5A2-060914	R1404414-004	871,127	4.26
MRC-SW5B-060914	R1404414-005	869,642	4.25
MRC-SW6A-060914	R1404414-006	872,497	4.25
. MRC-SW6B-060914	R1404414-007	853,380	4.25
MRC-SW7A-060914	R1404414-008	842,255	4.25
MRC-SW7B-060914	R1404414-009	849,523	4.25
MRC-SW8A-060914	R1404414-010	844,447	4.25
MRC-SW8B-060914	R1404414-011	834,316	4.25
MRC-SW9B-060914	R1404414-013	831,904	4.26

SAMPLE ID MRC-SW6A-060914

	1409784	IS AREA	SAMPLE CALC
	_	DILUTION	
	4793	DILUTION COMPOUND OF INTEREST, IS AMOUNT (NG) Final Volume (N	
	50	AMOUNT (NG)	
Sample Volume (ML)	ហ	Final Volume (ML)	

AVE RRF CONCENTRATION ug/L 0.3273 0.52

Trichloroethene = 0.52 ug/L

: R1404414-006|1.0 Sample

Data File: I:\ACQUDATA\MSVOA12\DATA\061914\M6697.D

Misc : TETRA 11423 T4

MRC-5WGA-060914 : 19 Jun 2014 5:44 pm Acq On

Operator : K.RUEST InstName : MSVOA-12

Quant Method: I:\ACQUDATA\MSVOA12\METHODS\W061314.M

Quant Title : MS#12 - 8260B WATERS 10mL Purge

Quant Time: Jun 19 17:59:10 2014

QLast Update : Sat Jun 14 17:33:54 2014

Response via : Initial Calibration

Compound	R.T.	QIon	Response	Conc U	nits Dev	(Min)
Internal Standards 1) Pentafluorobenzene 43) 1,4-Difluorobenzene	4.249 5.450 8.742		872497 1409784 1276061	50.00 50.00 50.00	ppb	0.00 0.00 0.00
71) d5-Chlorobenzene 86) 1,4-Dichlorobenzene-d4	10.748		617133	50.00		0.00
System Monitoring Compounds						
45) surr4,Dibrflmethane Spiked Amount 50.000	4.158 Range 89				ppb 104.16%	0.00
48) surr1,1,2-dichloroetha. Spiked Amount 50.000		65	493044 Recove	57.46	ppb 114.92%	0.00
65) SURR3, Toluene-d8 Spiked Amount 50.000	7.322 Range 87	98	1785789 Recove	51.04	ppb 102.08%	0.00
70) SURR2,BFB	9.791	95	661240	50.41	ppb	0.00
Spiked Amount 50.000	Range 85	- 122	Recove	ry =	100.82%	
Target Compounds					Qv	alue
42) Acrolein	2.000	56	296	0.45	ppb	83
15) Acetone	2.048	43	2700	1.57		87
-16) 2 Propanol	2.213	45 -	294	0.90		 59-
17) Iodomethane	2.14 6	- 142 -	350	1:60		- 97
20) Allyl Chloride	2.207	- 76	3060		-ppb#-	- 1
-35) -2-Butanone	3.579	43	 852		-ppb#-	54
54) Trichloroethene	5.834	130	4793	0.52		86
61) 2 Nitropropane	6.804	41	302		- ppb - #	40
90) Cyclohexanone	9.742	55	210	0.61	-ppb # 	60

(#) = qualifier out of range (m) = manual integration (+) = signals summed

DL 6/25/14

PESTICIDES / PCB'S QC SUMMARY

ALS Environmental - Rochester, NY 1565 Jefferson Rd, Bldg. 300, Suite 360, Rochester, NY 14623 Phone (585) 288-5380 Fax (585) 288-8475 www.alsglobal.com

QA/QC Report

Client: Project: Tetra Tech GEO

Middle River- Lockheed Martin Corp/Surface Water 1121CO6247

Service Request: R1404414

Date Analyzed: 6/23/14 12:41

Tune Summary Pesticides and PCBs in Water and Soil/Sediment by Gas Chromatography/Mass Spectrometry

File ID:

1:\ACQUDATA\5973B\DATA\062314\DK243.D\

Analytical Method:

680

Instrument ID:

R-MS-52

Analysis Lot:

398720

Target Mass	Relative to Mass	Lower Limit%	Upper Limit%	Relative Abundance %	Raw Abundance	Result Pass/Fail
51	198	30	60	39.84	212316	Pass
68	69	0.00	2	0.00	0	Pass
69	198	0.00	100	51.49	274389	Pass
70	69	0.00	2	0.48	1320	Pass
127	198	40	60	52.99	282368	Pass
197	198	0.00	1	0.00	0	Pass
198	198	100	100	100.00	532864	Pass
199	198	5	9	6.64	35387	Pass
275	198	10	30	20.55	109528	Pass
365	198	1	100	2.81	14979	Pass
441	443	0.01	100	75.53	53494	Pass
442	198	40	100	63.04	335928	Pass
443	442	17	23	21.08	70824	Pass

Sample Name	Lab Code	File ID	Date Analyzed Q
SSTD000	CAL. 00 STD	I:\ACQUDATA\5973B\DATA\062314\DK246.D\	6/23/14 13:53
SSTD00	CAL. 0 STD	1:\ACQUDATA\5973B\DATA\062314\DK247.D\	6/23/14 14:22
SSTD005	CAL. 0.5 STD	I:\ACQUDATA\5973B\DATA\062314\DK248.D\	6/23/14 14:51
SSTD010	CAL. 1.0 STD	I:\ACQUDATA\5973B\DATA\062314\DK249.D\	6/23/14 15:21
SSTD015	CAL. 1.5 STD	I:\ACQUDATA\5973B\DATA\062314\DK250.D\	6/23/14 15:50
SSTD020	CAL, 2.0 STD	I:\ACQUDATA\5973B\DATA\062314\DK251.D\	6/23/14 16:20
SSTD030	CAL. 3.0 STD	I:\ACQUDATA\5973B\DATA\062314\DK252.D\	6/23/14 16:49

14-0000293236 rev 00

Response Factor Report 5973-B

```
Method : I:\ACQUDATA\5973B\METHODS\6800623B.M (RTE Integrator)
              : 680.PCB by SIM
  Last Update : Tue Jun 24 11:41:24 2014
  Response via : Initial Calibration
  Calibration Files
                    0 =DK247.D 0.5 =DK248.D
1.5 =DK250.D 2.0 =DK251.D 3.0=JK253.J
  00 =DK246.D
  1.0
         =DK249.D
                   00 0 0.5 1.0 1.5 2.0 Avg
       Compound
                                                                     %RSD
   1) IR d10-Phenanthrene -----ISTD-----
2) IR d12-Chrysene -----ISTD-----
3) TCM Total Monochlorobip 0.670 0.965 0.921 0.984 0.946 0.864 0.881 12.47
4) TCM Total Dichlorobiphe 0.499 0.707 0.670 0.653 0.665 0.594 0.624 11.27 5) SC SURR1, gamma-BHC 0.117 0.136 0.136 0.141 0.153 0.141 0.138 7.97
6) TCM Total Trichlorobiph 0.336 0.397 0.428 0.424 0.460 0.418 0.409
                                                                   9.35
7) TCM Total Tetrachlorobi 0.241 0.291 0.268 0.285 0.275 0.252 0.265
                          0.250 0.191 0.185 0.180 0.191 0.167 0.190
8) TC RT #104 (CL5)
                                                                   15.03
9) TCM Total Pentachlorobi 0.175 0.209 0.202 0.202 0.210 0.200 0.199
                                                                  6.02
10) TCM Total Hexachlorobip 0.154 0.178 0.182 0.185 0.195 0.182 0.179
                                                                  6.95
11) TC RT #77 (CL4) 0.460 0.490 0.498 0.497 0.518 0.476 0.485
12) TCM Total Heptachlorobi 0.126 0.171 0.154 0.164 0.164 0.154 0.154
                                                                   9.64
13) SC SURR2, 4-4'-DDT 0.209 0.241 0.256 0.324 0.340 0.289 21.59# L. &
14) TCM Total Octachlorobip 0.085 0.092 0.094 0.094 0.100 0.092 0.093 4.69
15) TC
       Total Nonachlorobip 0.047 0.061 0.065 0.065 0.068 0.065 0.062 11.19
16) TCM Total Decachlorobip 0.029 0.037 0.040 0.043 0.041 0.044 0.040
                                                                   13.54
                                                            0.000
17) L1 CL1 - #1
                                                                   -1.00
                                                            0.000
                                                                   -1.00
18) L1 CL1 - #2
19) L1 CL1 - #3
                                                           0.000
                                                                   -1.00
20) L1 CL1 - #4
                                                            0.000
                                                                   -1.00
                                                            0.000
                                                                   -1.00
21) L1 CL1 - #5
                                                            0.000
22) L1 CL1 - #6
23) L1 CL1 - #7
                                                          0.000
                                                                   -1.00
24) L1 CL1 - #8
                                                            0.000
                                                                   -1.00
25) L1 CL1 - #9
                                                            0.000
                                                                   -1.00
26) L1 CL1 - #10 0.000
27) L1 MonoCB - Total 0.670 0.965 0.921 0.984 0.946 0.864 0.881
                                                            0.000
                                                                   12.47
28) L2 CL2 - #1
                                                            0.000
                                                                   -1.00
                                                            0.000
29) L2 CL2 - #2
30) L2 CL2 - #3
                                                            0.000
                                                                   -1.00
31) L2 CL2 - #4
                                                            0.000
                                                                   -1.00
                                                            0.000 \cdot -1.00
32) L2 CL2 - #5
33) L2 CL2 - #6
                                                            0.000
34) L2 CL2 - #7
                                                            0.000
                                                                   -1.00
                                                            0.000
                                                                   -1.00
35) L2 ·CL2 - #8
                                                            0.000
                                                                   -1.00
36) L2 CL2 - #9
37) L2 CL2 - #10
                                                            0.000
38) L2 DiCB - Total
                      0.499 0.707 0.670 0.653 0.665 0.594 0.624
                                                            0.000
                                                                   -1.00
39) L3 CL3 - #1
                                                             0.000
40) L3 CL3 - #2
41) L3 CL3 - #3
                                                            0.000
                                                                   -1.00
                                                           0.000
42) L3
       CL3 - #4
```

^{(#) =} Out of Range ### Number of calibration levels exceeded format ###
6800623B.M Tue Jun 24 11:45:11 2014
Page 1

Response Factor Report 5973-B Method : I:\ACQUDATA\5973B\METHODS\6800623B.M (RTE Integrator) Title : 680.PCB by SIM Last Update : Tue Jun 24 11:41:24 2014 Response via : Initial Calibration Calibration Files 00 =DK246.D 0 =DK247.D 0.5 =DK248.D 1.0 =DK249.D 1.5 =DK250.D 2.0 =DK251.D Compound 00 0 0.5 1.0 1.5 2.0 Avg %F

43) L3 CL3 - #5 0.000 -1.00 0.000 -1.00 44) L3 CL3 - #6 45) L3 CL3 - #7 0.000 -1.00 0.000 -1.00 46) L3 CL3 - #8 47) L3 CL3 - #9 0.000 -1.00 0.000 -1.00 48) L3 CL3 - #10 0.000 -1.00 49) L3 CL3 - #11 0.000 -1.00 50) L3 CL3 - #12 0.000 -1.00 51) L3 CL3 - #13 52) L3 TriCB - Total 0.336 0.397 0.428 0.424 0.460 0.418 0.409 0.000 -1.00 53) L4 CL4 - #1 54) L4 CL4 - #2 0.000 - 1.000.000 -1.00 55) L4 CL4 - #3 0.000 -1.00 56) L4 CL4 - #4 . 0.000 -1.00 57) L4 CL4 - #5 58) L4 CL4 - #6 0.000 - 1.000.000 -1.00 59) L4 CL4 - #7 0.000 -1.00 60) L4 CL4 - #8 0.000 -1.00 61) L4 CL4 - #9 0.000 -1.00 62) L4 CL4 - #10 0.000 - 1.0063) L4 CL4 - #11 0.000 -1.00 64) L4 CL4 - #12 0.000 -1.00 65) L4 CL4 - #13 66) L4 CL4 - #14 0.000 - 1.0067) L4 CL4 - #15 0.000 -1.00 68) L4 TetraCB - Total 0.241 0.291 0.268 0.285 0.275 0.252 0.265 7.52 0.000 -1.00 69) L5 CL5 - #1 0.000 -1.00 70) L5 CL5 - #2 0.000 - 1.0071) L5 CL5 - #3 0.000 -1.00 CL5 - #4 72) L5 0.000 -1.00 CL5 - #5 73) L5 0.000 -1.00 74) L5 CL5 - #6 CL5 - #7 0.000 -1.00 75) L5 0.000 -1.00 76) L5 CL5 - #8 0.000 -1.00 77) L5 CL5 - #9 78) L5 CL5 - #10 0.000 0.000 CL5 - #11 -1.0079) L5 0.000 - 1.00CL5 - #12 80) L5 0.000 -1.00 81) L5 CL5 - #13 82) L5 CL5 - #14 0.000 -1.00 0.000 -1.00 CL5 - #15 83) L5 PentaCB - Total 0.175 0.209 0.202 0.202 0.210 0.200 0.199 6.02 84) L5 0.000 -1.00 85) L6 CL6 - #1 0.000 -1.00 86) L6 CL6 - #2

(#) = Out of Range ### Number of calibration levels exceeded format ### 6800623B.M Tue Jun 24 11:45:14 2014 00487 Page 2 Method : I:\ACQUDATA\5973B\METHODS\6800623B.M (RTE Integrator)
Title : 680.PCB by SIM

Last Update : Tue Jun 24 11:41:24 2014 Response via : Initial Calibration

Calibration Files

0 =DK247.D 1.5 =DK250.D 0.5 =DK248.D 2.0 =DK251.D 00 =DK246.D 1.0 =DK249.D

		Compound	00	0	0.5	1.0	1.5	2.0	Avg	%RSD
87)	L6	CL6 - #3							0.000	-1.00
88)	L6	CL6 - #4							0.000	-1.00
89)	L6	CL6 - #5							0.000	-1.00
90)		CL6 - #6	-						0.000	-1.00
91)	L6	CL6 - #7					•		0.000	-1.00
92)	L6	CL6 - #8							0.000	-1.00
93)	L6	CL6 - #9							0.000	-1.00
94)	L6	CL6 - #10							0.000	-1.00
95)	L6	CL6 - #11							0.000	1.00
96)	L6	CL6 - #12						•	0.000	-1.00
97)	L6	CL6 - #13						•	0.000	-1.00
98)	L6	CL6 - #14		•					0.000	-1.00
99)	L6.	CL6 - #15							0.000	-1.00
100)	L6	HexaCB - Total	0.154	0.178	0.182	0.185	0.195	0.182	0.179	6.95
101)	L7	CL7 - #1	-		•		•		0.000	-1.00
102)	L7	CL7 - #2							0.000	-1.00
103)	L7 ·	CL7 - #3					•		0.000	-1.00
104)	L7	.CL7 - #4							0.000	-1.00
105)	L7	CL7 - #5							0.000	-1.00
106)	L7	CL7 - #6						•	0.000	-1.00
107)	L7	CL7 - #7							0.000	-1.00
108)	L7	CL7 - #8							0.000	-1.00
109)	L7	CL7 - #9							0.000	-1.00
110)	L7	CL7 - #10					a · = = 4	0 154	0.000	-1.00
111)	L7	HeptaCB - Total	0.126	0.171	0.154	0.164	0.164	0.154	0.154	9.64
112)	L8	CL8 - #1				•			0.000	-1.00
113)	L8	CL8 - #2					•		0.000	-1.00
114)	L8	CL8 - #3							0.000	-1.00
115)	L8	CL8 - #4			•				0.000	-1.00
116)	L8	CL8 - #5		: ,					0.000	-1.00
117)	L8	CL8 - #6							0.000	-1.00
118)	L8	CL8 - #7			•				0.000	-1.00 -1.00
119)	L8	CL8 - #8			0 004	0 004	. 100	0 000	0.000	4.69
120)	L8	OctaCB - Total	0.085	0.092	0.094	0.094	0.100	0.092		
		CL9 - #1	-						0.000	-1.00 -1.00
		CL9 - #2				•			0.000	-1.00
		CL9 - #3			•				0.000	-1.00
		CL9 - #4							0.000	-1.00
125)	ъ9.	CL9 - #5	0 047	0 061		0 065	0 060	0.065		11.19
		NonaCB - Total	0.047	0.061	0.065	0.065	0.000	0.005	0.002	-1.00
		CL10 - #1							0.000	-1.00
		CL10 - #2				• • •			0.000	-1.00
		CL10 - #3		•			•		0.000	-1.00
T30)	かりの	CL10 - #4			•		•		· · · · ·	1.00

^{(#) =} Out of Range ### Number of calibration levels exceeded format 6800623B.M Tue Jun 24 11:45:16 2014 Page 3 00488

Response Factor Report 5973-B

Method : I:\ACQUDATA\5973B\METHODS\6800623B.M (RTE Integrator)
Title : 680.PCB by SIM
Last Update : Tue Jun 24 11:41:24 2014
Response via : Initial Calibration

Calibration Files

00 =DK246.D 0 =DK247.D 0.5 =DK248.D 1.0 =DK249.D 1.5 =DK250.D 2.0 =DK251.D

Compound 00 0 0.5 1.0 1.5 2.0 Avg

131) L10 CL10 - #5

0.000 -1.00

132) L10 DecaCB - Total 0.029 0.037 0.040 0.043 0.041 0.044 0.040 13.54

^{(#) =} Out of Range ### Number of calibration levels exceeded format 6800623B.M Tue Jun 24 11:45:16 2014 Page 4

Data File : I:\ACQUDATA\5973B\DATA\062314\DK249.D Acq On : 23 Jun 2014 3:21 pm Vial: 6 Operator: J.Wu Sample : INITIAL CALIBRATION
Misc : CAL. 1.0 STD 680.PCB Inst : 5973-B Multiplr: 1.00 MS Integration Params: INTIS.P

Method : I:\ACQUDATA\5973B\METHODS\6800623B.M (RTE Integrator) Title : 680.PCB by SIM

Last Update : Tue Jun 24 11:41:24 2014 Response via : Multiple Level Calibration

Min. RRF : 0.000 Min. Rel. Area : 70% Max. R.T. Dev 0.50min

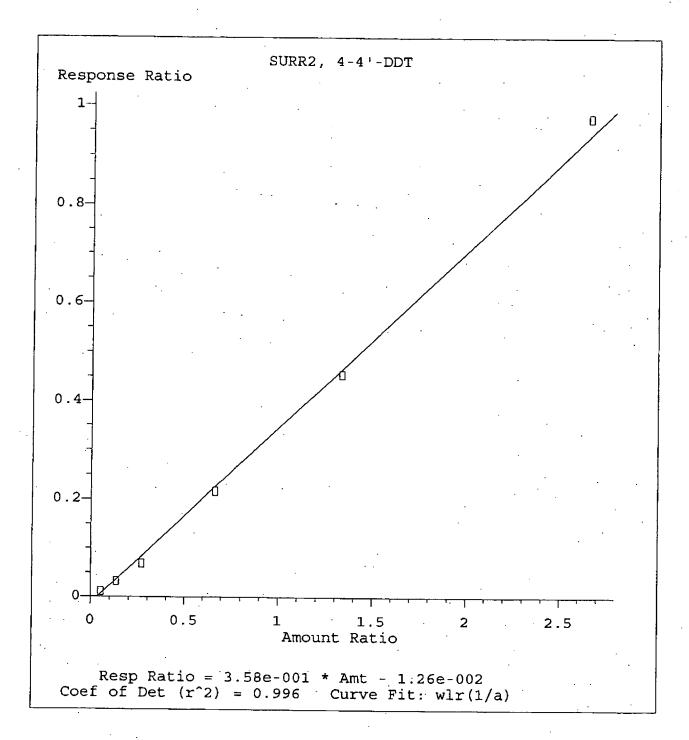
Max. RRF Dev : 20% Max. Rel. Area : 200%

		Compound	AvgRF	CCRF	%Dev Area% Dev(min)
1		d10-Phenanthrene	1.000	1.000	0.0 100 0.00
2	IR	d12-Chrysene	1.000	1.000	
3	TCM	Total Monochlorobiphenyls	0.881	0.984	0.0 100 0.00 -11.7 100 0.00
4	TCM	Total Dichlorobiphenyls	0.624	0.653	
5	SC	SURR1, gamma-BHC	0.138	0.141	
6	TCM	Total Trichlorobiphenyls	0.409	0.424	
7	TCM	Total Tetrachlorobiphenyls	0.265	0.285	
8	TC	RT #104 (CL5)	0.190	0.180	
9	TCM	Total Pentachlorobiphenyls	0.199	0.202	
10	TCM	Total Hexachlorobiphenyls	0.179	0.185	_
11	TC	RT #77 (CL4)	0.485	0.497	
12	TCM	Total Heptachlorobiphenyls	0.154	0.164	
13	SC	SURR2, 4-4'-DDT	0.289	0.256	
14	TCM	Total Octachlorobiphenyls	0.093	0.094	11.4 100 0.00
15	TC	Total Nonachlorobiphenyls R	0.062	0.065	-1.1 100 0.00
16	TCM	Total Decachlorobiphenyl	0.040	0.043	-4.8 100 0.00
17	L1	CL1 - #1	0.000	0.000	-7.5 100 0.00
18	L1	CL1 - #2	0.000		0.0 0# -8.33#
19	L1	CL1 - #3	0.000	0.000	0.0 0# -8.33#
20	L1	CL1 - #4	0.000	0.000	0.0 0# -8.33#
	L1	CL1 - #5	0.000	0.000	0.0 0# -8.33#
	L1	CL1 - #6	0.000	0.000	0.0 0# -8.33#
23	L1	CL1 - #7		0.000	0.0 0# -8.33#
	L1	CL1 - #8	0.000	0.000	0.0 0# -8.33#
	L1	CL1 - #9	0.000	0.000	0.0 0# -8.33#
	L1	CL1 - #10	0.000	0.000	0.0 0# -8.33#
.27		MonoCB - Total	0.000	0.000	0.0 0# -8.33#
28	L2	CL2 - #1	0.881	0.000	100.0# 0# -8.33#
29	L2	CL2 - #2	0.000	0.000	0.0 0# -10.39#
30	L2	CL2 - #3	0.000	0.000	0.0 0# -10.39#
31	L2	CL2 - #4	0.000	0.000	0.0 0# -10.39#
32	L2	CL2 - #5	0.000	0.000	0.0 0# -10.39#
	L2	CL2 - #6	0.000	0.000	0.0 0# -10.39#
34		CL2 - #7	0.000	0.000	0.0 0# -10.39#
35		CL2 - #8	0.000	0.000	0.0 0# -10.39#
36		CL2 - #9	0.000	0.000	0.0 0# -10.39#
37		CL2 - #10	0.000	0.000	0.0 0# -10.39#
38		DiCB - Total	0.000	0.000	0.0 0# -10.39#
39		CL3 - #1	0.624	0.000	100.0# 0# -10.39#
40		CL3 - #1	0.000	0.000	0.0 0# -11.80#
41		CL3 - #2	0.000	0.000	0.0 0# -11.80#
		CES - #3	0.000	0.000	0.0 0# -11.80#

^{(#) =} Out of Range DK249.D 6800623B.M

Data File: I:\ACQUDATA\5973B\DATA\062314\DK249A. Vial: 6 Acq On : 23 Jun 2014 3:21 pm Operator: J.Wu : INITIAL CALIBRATION Sample

Inst : 5973-B Multiplr: 1.00 Misc : CAL. 1.0 STD 680.PCB


MS Integration Params: INTIS.P

Response via : Multiple Level Calibration

Min. RRF : 0.000 Min. Rel. Area : 70% Max. R.T. Dev 0.50min

Max. RRF Dev : 20% Max. Rel. Area : 200%

	Compound	Amount	Calc.	%Dev Area	% Dev(min)
1 IR	d10-Phenanthrene	0.750	0.750	0.0 100	
2 IR	d12-Chrysene	0. 7 50	0.750	0.0 100	0.00
3 TCM	Total Monochlorobiphenyls	0.100	0.112	-12.0 100	0.00
4 TCM	Total Dichlorobiphenyls	0.100	0.105	-5.0 100	0.00
5 SC	SURR1, gamma-BHC	0.200	0.204	-2.0 100	0.00
6 TCM	Total Trichlorobiphenyls	0.100	0.104	-4.0 100	0.00
7 TCM	Total Tetrachlorobiphenyls	0.200	0.215	-7.5 100	0.00
8 TC	RT #104 (CL5)	0.200	0.190	5.0 100	0.00
9 TCM	Total Pentachlorobiphenyls	0.200	0.203	-1.5 100	0.00
10 TCM	Total Hexachlorobiphenyls	0.200	0.207	-3.5 100	0.00
11 TC	RT #77 (CL4)	0.200	0.205	-2.5 100	0.00
12 TCM	Total Heptachlorobiphenyls	0.300	0.318	-6.0 100	0.00
(13) SC	SURR2, 4-4'-DDT	0.200	0.170	15.0 100	0.00
14 TCM	Total Octachlorobiphenyls	0.300	0.304	-1.3 100	
15 TC	Total Nonachlorobiphenyls R	0.400	0.422	-5.5 100	
16 TCM	Total Decachlorobiphenyl	0.500	0.544	-8.8 100	
17 L1	CL1 - #1	0.100	0.000	. 100.0# 0	
18 L1	CL1 - #2	0.100	0.000	100.0# 0	
19 L1	CL1 - #3	0.100	0.000	100.0# 0	
20 L1	CL1 - #4	0.100	0.000	100.0# 0	
21 L1	CL1 - #5	0.100	0.000	100.0# 0	
22 L1	CL1 - #6	0.100	0.000	100.0# 0	
23 L1	CL1 - #7	0.100	0.000	100.0# 0	
24 L1	CL1 - #8	0.100	0.000	100.0# 0	
25 L1	CL1 - #9	0.100	0.000	100.0# 0	
26 L1	CL1 - #10	0.100	0.000	100.0# 0	-
27 L1	MonoCB - Total	0.100	0.000	100.0# 0	
28 L2	CL2 - #1	0.100	0.000	100.0# 0	
29 L2	CL2 - #2	0.100	0.000	100.0# 0	
30 L2	CL2 - #3	0.100	0.000	100.0# 0	
31 L2	CL2 - #4	0.100	0.000	100.0# 0	
32 L2	CL2 - #5	0.100	0.000	100.0# 0	
33 L2	CL2 - #6	0.100	0.000	100.0# 0	
· 34 L2	CL2 - #7	0.100	0.000	100.0# 0	
35 L2	CL2 - #8	0.100	0.000	100.0# 0	
36 L2	CL2 - #9	0.100	0.000	100.0# 0	
37 L2	CL2 - #10	0.100	0.000	100.0# 0	
38 L2	DiCB - Total	0.100	0.000	100.0# 0	
39 L3	CL3 - #1	0.100	0.000	100.0# 0	
40 L3	CL3 - #2	0.100	0.000	100.0# 0	**
41 L3	CL3 - #3	0.100	0.000	100.0# 0	-11.80#

Method Name: I:\ACQUDATA\5973B\METHODS\6800623B.M Calibration Table Last Updated: Mon Jun 23 17:13:26 2014

Data File: I:\ACQUDATA\5973B\DATA\062314\DK253.D Vial: 10 Acq On : 23 Jun 2014 5:19 pm Operator: J.Wu Sample : ICV
Misc : CAL. 1.0 STD 680.PCB ICV Inst : 5973-B Multiplr: 1.00

MS Integration Params: INTIS.P

Method : I:\ACQUDATA\5973B\METHODS\6800623B.M (RTE Integrator)
Title : 680.PCB by SIM
Last Update : Tue Jun 24 11:41:24 2014 #1.4.

Response via : Multiple Level Calibration

Min. RRF : 0.000 Min. Rel. Area : 70% Max. R.T. Dev 0.50min

Max. RRF Dev: 20% Max. Rel. Area: 200%

1 IR d10-Phenanthrene 1.000 1.000 0.0 98 0.00 2 IR d12-Chrysene 1.000 1.000 0.0 94 0.01 3 TCM Total Monochlorobiphenyls 0.881 0.921 -4.5 88 0.01 4 TCM Total Dichlorobiphenyls 0.624 0.661 -5.9 95 0.00 5 SC SURR1, gamma-BHC 0.138 0.002 98.6# 1# -0.14 6 TCM Total Trichlorobiphenyls 0.409 0.454 -11.0 101 0.00 7 TCM Total Tetrachlorobiphenyls 0.265 0.262 1.1 87 0.00	
2 IR d12-Chrysene 1.000 1.000 0.0 94 0.01 3 TCM Total Monochlorobiphenyls 0.881 0.921 -4.5 88 0.01 4 TCM Total Dichlorobiphenyls 0.624 0.661 -5.9 95 0.00 5 SC SURR1, gamma-BHC 0.138 0.002 98.6# 1# -0.14 6 TCM Total Trichlorobiphenyls 0.409 0.454 -11.0 101 0.00	
3 TCM Total Monochlorobiphenyls 0.881 0.921 -4.5 88 0.01 4 TCM Total Dichlorobiphenyls 0.624 0.661 -5.9 95 0.00 5 SC SURR1, gamma-BHC 0.138 0.002 98.6# 1# -0.14 6 TCM Total Trichlorobiphenyls 0.409 0.454 -11.0 101 0.00	
4 TCM Total Dichlorobiphenyls 0.624 0.661 -5.9 95 0.00 5 SC SURR1, gamma-BHC 0.138 0.002 98.6# 1# -0.14 6 TCM Total Trichlorobiphenyls 0.409 0.454 -11.0 101 0.00	
5 SC SURR1, gamma-BHC 0.138 0.002 98.6# 1# -0.14 6 TCM Total Trichlorobiphenyls 0.409 0.454 -11.0 101 0.00	
6 TCM Total Trichlorobiphenyls 0.409 0.454 -11.0 101 0.00	
8 TC RT #104 (CL5) 0.190 0.184 3.2 96 0.00	
9 TCM Total Pentachlorobiphenyls 0.199 0.201 -1.0 94 0.00	
10 TCM Total Hexachlorobiphenyls 0.179 0.174 2.8 88 0.00	
11 TC RT #77 (CL4) 0.485 0.501 -3.3 95 0.00	
12 TCM Total Heptachlorobiphenyls 0.154 0.157 -1.9 90 0.00	
13 SC SURR2, 4-4'-DDT 0.289 0.000 100.0# 0# -0.02	
14 TCM Total Octachlorobiphenyls 0.093 0.091 2.2 92 0.00	
15 TC Total Nonachlorobiphenyls R 0.062 0.065 -4.8 94 0.01	
16 TCM Total Decachlorobiphenyl 0.040 0.042 -5.0 92 0.00	
17 L1 CL1 - #1 0.000 0.000 0.0 0# -8.33#	Ł
18 L1 CL1 - #2 0.000 0.000 0.0 0# -8.33#	Ļ
19 L1 CL1 - #3 0.000 0.000 0.0 0# -8.33#	L ,
20 L1 CL1 - #4 0.000 0.000 0.0 0# -8.33#	L
21 L1 CL1 - #5 0.000 0.000 0.0 0# -8.33#	į
22 L1 CL1 - #6 0.000 0.000 0.0 0# -8.33#	:
23 L1 CL1 - #7 0.000 0.000 0.0 0# -8.33#	:
24 L1 CL1 - #8 0.000 0.000 0.0 0# -8.33#	
25 L1 CL1 - #9 0.000 0.000 0.0 0# -8.33#	
26 L1 CL1 - #10 0.000 0.000 0.0 0# -8.33#	
27 L1 MonoCB - Total 0.881 0.000 100.0# 0# -8.33#	:
28 L2 CL2 - #1 0.000 0.000 0.0 0# -10.39	
29 L2 CL2 - #2 0.000 0.000 0.0 0# -10.39	#
30 L2 CL2 - #3 0.000 0.000 0.0 0# -10.39	
31 L2 CL2 - #4 0.000 0.000 0.0 0# -10.39	
32 L2 CL2 - #5 0.000 0.000 0.0 0# ~10.39	
33 L2 CL2 - #6 0.000 0.000 0.0 0# -10.39	
34 L2 CL2 - #7 0.000 0.000 0.0 0# -10.39	
35 L2 CL2 - #8 0.000 0.000 0.0 0# -10.39	#
36 L2 CL2 - #9 0.000 0.000 0.0 0# -10.39	#
37 L2 CL2 - #10 0.000 0.000 0.0 0# -10.39	
38 L2 DiCB - Total 0.624 0.000 100.0# 0# -10.39	
39 L3 CL3 - #1 0.000 0.000 0.0 0# -11.80	
40 L3 CL3 - #2 0.000 0.000 0.0 0# -11.80	
41 L3 CL3 - #3 0.000 0.000 0.0 0# -11.80	#

QA/QC Report

Client: Project: Tetra Tech GEO

Middle River- Lockheed Martin Corp/Surface Water 112ICO6247

Service Request: R1404414

Date Analyzed: 6/23/14 17:45

Tune Summary Pesticides and PCBs in Water and Soil/Sediment by Gas Chromatography/Mass Spectrometry

File ID: Instrument 1D: I:\ACQUDATA\5973B\DATA\062314\DK254.D\

R-MS-52

Analytical Method:

680

Analysis Lot:

398720

Target Mass	Relative to Mass	Lower Limit%	Upper Limit%	Relative Abundance %	Raw Abundance	Result Pass/Fail
51	198	30	60	37.94	175499	Pass
68	69	0.00	2	2.17	4927	N/A
69	198	0.00	100	49.12	227216	Pass
70	69	0.00	2	0.35	784	Pass
127	198	40	60	51.04	236096	Pass
197	198	0.00	1	0.00	0	Pass
198	198	100	100	100.00	462549	Pass
199	198	5	9	7.04	32552	Pass
275	198	10	30	23.37	108107	Pass
365	198	1	100	3.19	14741	Pass
44]	443	0.01	100	78.75	59616	Pass
442	198	40	100	79.72	368725	Pass
443	442	17	23	20.53	75699	Pass

Sample Name	Lab Code	File ID	Date Analyzed Q
Continuing Calibration Verification	RQ1407158-10	I:\ACQUDATA\5973B\DATA\062314\DK255.D\	6/23/14 17:58
Method Blank	RQ1406528-01	I:\ACQUDATA\5973B\DATA\062314\DK256.D\	6/23/14 18:27
Lab Control Sample	RQ1406528-02	1:\ACQUDATA\5973B\DATA\062314\DK257.D\	6/23/14 18:57
Duplicate Lab Control Sample	RQ1406528-03	I:\ACQUDATA\5973B\DATA\062314\DK258.D\	6/23/14 19:26
MRC-SW5A1-060914	R1404414-003	I:\ACQUDATA\5973B\DATA\062314\DK259.D\	6/23/14 19:55
MRC-SW6B-060914	R1404414-007	I:\ACQUDATA\5973B\DATA\062314\DK261.D\	6/23/14 20:54
Continuing Cal. VerificationCCVA	RQ1407158-11	: I:\ACQUDATA\5973B\DATA\062314\DK265.D\	6/23/14 22:50

Vial: 2 Data File : I:\ACQUDATA\5973B\DATA\062314\DK255.D Acq On : 23 Jun 2014 5:58 pm Operator: J.Wu Sample : CCV Misc : CAL. 1.0 STD 680.PCB LCV Inst : 5973-B Multiplr: 1.00

MS Integration Params: INTIS.P

Method : I:\ACQUDATA\5973B\METHODS\6800623B.M (RTE Integrator)
Title : 680.PCB by SIM

#13 N.R. Last Update : Tue Jun 24 11:41:24 2014

Response via : Multiple Level Calibration

Min. RRF : 0.000 Min. Rel. Area : 70% Max. R.T. Dev 0.50min

Max. RRF Dev: 20% Max. Rel. Area: 200%

	•	Compound	AvgRF	CCRF	%Dev Area% Dev(min)
1	IR	d10-Phenanthrene	1.000	1.000	0.0 100 0.00
2	IR	d12-Chrysene	1.000	1.000	0.0 99 0.01
3	TCM'	Total Monochlorobiphenyls	0.881	0.930	-5.6 93 0.01
4	TCM	Total Dichlorobiphenyls	0.624	0.667	-6.9 101 0.00
5	SC	SURR1, gamma-BHC	0.138	0.140	-1.4 98 0.00
6	TCM	Total Trichlorobiphenyls	0.409	0.427	-4.4 100 0.00
7	TCM	Total Tetrachlorobiphenyls	0.265	0.272	-2.6 95 0.00
8	TC	RT #104 (CL5)	0.190	0.180	5.3 99 0.00
9	TCM	Total Pentachlorobiphenyls	0.199	0.200	-0.5 98 0.00
10	TCM	Total Hexachlorobiphenyls	0.179	0.192	-7.3 102 0.00
11	TC	RT #77 (CL4)	0.485	0.456	6.0 91 0.00
12	TCM	Total Heptachlorobiphenyls	0.154	0.167	-8.4 101 0.00
13	SC .	SURR2, 4-4'-DDT	0.289	0.252	12.8 97 0.00
14	•	Total Octachlorobiphenyls	0.093	0.092	1.1 97 0.00
	TC	Total Nonachlorobiphenyls R	0.062	0.068	-9.7 102 0.00
	TCM	Total Decachlorobiphenyl	0.040	0.043	-7.5 98 0.00
	L1	CL1 - #1	0.000	0.930	0.0 0# 0.01
18	L1	CL1 - #2	0.000	0.948	0.0 0# 0.01
	L1	CL1 - #3	0.000	0.948	0.0 0# 0.01
	L1	CL1 - #4	0.000	0.948	0.0 0# 0.01
	L1	CL1 - #5	0.000	0.948	0.0 0# 0.01
22	L1	CL1 - #6	0.000	0.948	0.0 0# 0.01
	L1	CL1 - #7	0.000	0.948	0.0 0# 0.01
	L1	CL1 - #8	0.000	0.948	0.0 0# 0.01
	L1	CL1 - #9	0.000	0.948	0.0 0# 0.01
26	L1	CL1 - #10	0.000	0.948	0.0 0# 0.01
27	L1	MonoCB - Total	0.881	9.464	-974.2# 951# -0.14
	$L2^{-1}$	CL2 - #1	0.000	0.676	0.0 0# 0.00
	L2	CL2 - #2	0.000	0.676	0.0 0# 0.00
	L2	CL2 - #3	0.000	0.676	0.0 0# 0.00
		CL2 - #4	0.000	0.676	0.0 0# 0.00
	L2	CL2 - #5	0.000	0.676	0.0 0# 0.00
	L2	CL2 - #6	0.000	0.676	0.0 0# 0.00
34	L2	CL2 - #7	0.000	0.676	0.0 0# 0.00
	L2	CL2 - #8	0.000	0.676	0.0 0# 0.00
	L2	CL2 - #9	0.000		0.0 0# 0.00
	L2	CL2 - #10	0.000	0.676	0.0 0# 0.00
		DiCB - Total	0.624	6.761	-983.5# 1023# -0.12
		CL3 - #1	0.000	0.430	0.0 0# 0.00
		CL3 - #2	0.000		0.0 0# 0.00
		CL3 - #3	0.000		0.0 0# 0.00

(#) = Out of Range

DK255.D 6800623B.M Tue Jun 24 12:16:07 2014

Page 1

Vial: 2 Operator: J.Wu Data File : I:\ACQUDATA\5973B\DATA\062314\DK255.D Acq On : 23 Jun 2014 5:58 pm Inst : 5973-B Sample : CCV
Misc : CAL. 1.0 STD 680.PCB IQV : CCV

MS Integration Params: INTIS.P

Method : I:\ACQUDATA\5973B\METHODS\6800623B.M (RTE Integrator)
Title : 680.PCB by SIM

Last Update : Tue Jun 24 11:41:24 2014 #13 L.R.

Response via : Multiple Level Calibration

Min. RRF : 0.000 Min. Rel. Area : 70% Max. R.T. Dev 0.50min

Max. RRF Dev : 20% Max. Rel. Area : 200%

	Compound	Amount	Calc.	%Dev Area% Dev(min)
1 IR	d10-Phenanthrene	0.750	0.750	0.0 100 0.00
2 IR	d12-Chrysene	0.750	0.750	0.0 99 0.01
3 TCM	-	0.100	0.106	-6.0 93 0.01
4 TCM		0.100	0.107	-7.0 101 0.00
5 SC	SURR1, gamma-BHC	0.200	0.203	-1.5 98 0.00
6 TCM		0.100	0.105	-5.0 100 0.00
7 TCM		0.200	0.205	-2.5 95 0.00
8 TC	RT #104 (CL5)	0.200	0.190	5.0 99 0.00
9 TCM	Total Pentachlorobiphenyls	0.200	0.201	-0.5 98 0.00
10 TCM		0.200	0.214	-7.0 102 0.00
11 TC	RT #77 (CL4)	0.200	0.188	6.0 91 0.00
1-2 TCM	Total Heptachlorobiphenyls	0.300	0.325	-8.3 101 0.00
(13) sc	SURR2, 4-4'-DDT	0.200	0.167	16.5 97 0.00
14 TCM	Total Octachlorobiphenyls	0.300	0.298	0.7 97 0.00
15 TC	Total Nonachlorobiphenyls R	0.400	0:437	-9.2 102 0.00
16 TCM	Total Decachlorobiphenyl	0.500	0.541	-8.2 98 0.00
17 L1	CL1 - #1	0.100	0.000	100.0# 0 0.01
18 L1	CL1 - #2	0.100	0.000	100.0# 0 0.01
19 L1	CL1 - #3	0.100	0.000	100.0# 0 0.01
20 L1	CL1 - #4	0.100	0.000	100.0# 0 0.01
21 L1	CL1 - #5	0.100	0.000	100.0# 0 0.01
22 L1	CL1 - #6	0.100	0.000	100.0# 0 0.01
23 L1	CL1 - #7	0.100	0.000	100.0# 0 0.01
24 L1	CL1 - #8	0.100	0.000	100.0# 0 0.01
25 L1	CL1 - #9	0.100	0.000	100.0# 0 0.01
26 L1	CL1 - #10	0.100	0.000	100.0# 0 0.01
27 L1	MonoCB - Total	0.100	1.074	-974.0# 951 -0.14
28 L2	CL2 - #1	0,100	0.000	100.0# 0 0.00
29 L2	CL2 - #2	0.100	0.000	100.0# 0 0.00
30 L2	CL2 - #3	0.100	0.000	100.0# 0 0.00
31 L2	CL2 - #4	0.100	0.000	100.0# 0 0.00
32 L2	CL2 - #5	0.100	0.000	100.0# 0 0.00
33 L2	CL2 - #6	0.100	0.000	100.0# 0 0.00
34 L2	CL2 - #7	0.100	0.000	100.0# 0 0.00
35 L2	CL2 - #8	0.100	0.000	100.0# 0 0.00
36 L2	CL2 - #9	0.100	0.000	100.0# 0 0.00
37 L2	CL2 - #10	0.100	0.000	100.0# 0 0.00
38 L2	DiCB - Total	0.100	1.083	-983.0# 1023 -0.12
39 L3	CL3 - #1	0.100	0.000	100.0# 0 0.00
40 L3	CL3 - #2	0.100	0.000	100.0# 0 0.00
41 L3	CL3 - #3	0.100	0.000	100.0# 0 0.00
				

^{(#) =} Out of Range DK255.D 6800623B.M Tue Jun 24 12:15:53 2014

Vial: 9 Data File: I:\ACQUDATA\5973B\DATA\062314\DK265.D Acq On : 23 Jun 2014 10:50 pm Operator: J.Wu Sample : FINAL CHECK
Misc : CAL. 1.0 STD 680.PCB Inst : 5973-B Multiplr: 1.00

MS Integration Params: INTIS.P

Method : I:\ACQUDATA\5973B\METHODS\6800623B.M (RTE Integrator)
Title : 680.PCB by SIM

#13 L.R. Last Update : Tue Jun 24 11:41:24 2014

Response via : Multiple Level Calibration

Min. RRF : 0.000 Min. Rel. Area : 70% Max. R.T. Dev 0.50min

Max. RRF Dev: 20% Max. Rel. Area: 200%

		Compound	AvgRF	CCRF	%Dev Ar	cea% Dev(min)
1 IR	₹	d10-Phenanthrene	1.000	1.000	0.0	92 0.00
2 IR		d12-Chrysene	1.000	1.000	0.0	.95 0.01
3. TC	M	Total Monochlorobiphenyls	0.881	0.910	-3.3	87 0.00
4 TC	CM	Total Dichlorobiphenyls	0.624	0.605	3.0	88 0.00
5 SC	2	SURR1, gamma-BHC	0.138	0.131	5.1	88 0.00
6 TC	M	Total Trichlorobiphenyls	0.409	0.419	-2.4	94 0.00
7 TC		Total Tetrachlorobiphenyls	0.265	0.254	4.2	84 0.00
8 TC		RT #104 (CL5)	0.190	0.170	10.5	89 0.00
9 TC		Total Pentachlorobiphenyls	0.199	0.200	-0.5	94 0.00
10 TC		Total Hexachlorobiphenyls	0.179	0.183	-2.2	94 0.00
11 TC		RT #77 (CL4)	0.485	0.498	-2.7	95 0.00
12 TC		Total Heptachlorobiphenyls	0.154	0.160	-3.9	93 0.00
13 SC		SURR2, 4-4'-DDT	0.289	0.160	44.6#∜	59# 0.00
14 TC		Total Octachlorobiphenyls	0.093	0.095	-2.2	96 0.00
15 TC		Total Nonachlorobiphenyls R	0.062	0.067	-8.1	96 0.00
16 TC		Total Decachlorobiphenyl	0.040	0.044	-10.0	96 0.00
17 L1		CL1 - #1	0.000	0.000	0.0	0# -8.33#
18 L1		CL1 - #2	0.000	0.000	0.0	0# -8.33#
19 L1		CL1 - #3	0.000	0.000	0.0	0# -8.33#
20 L1		CL1 - #4	0.000	0.000	0.0	0# -8.33#
21 L1		CL1 - #5	0.000	0.000	0.0	0# -8.33#
22 L1		CL1 - #6	0.000	0.000	0.0	0# -8.33#
23 L1		CL1 - #7	0.000	0.000	0.0	0# -8.33#
24 L1		CL1 - #8	0.000	0.000	0.0	0# -8.33#
25 L1		CL1 - #9	0.000	0.000	0.0	0# -8.33#
26 L1		CL1 - #10	0.000	0.000	0.0	0# -8.33#
27 L1		MonoCB - Total	0.881	0.000	100.0#	0# -8.33#
28 L2		CL2 - #1	0.000	0.000	0.0	0# -10.39#
29 L2		CL2 - #2	0.000	0.000	0.0	0# -10.39#
30 L2		CL2 - #3	0.000	0.000	0.0	0# -10.39#
31 L2		CL2 - #4	0.000	0.000	0.0	0# -10.39#
32 L2		CL2 - #5	0.000	0.000	0.0	0# -10.39#
33 L2		CL2 - #6	0.000	0.000	0.0	0# -10.39#
34 L2		CL2 - #7	0.000	0.000	0.0	0# -10.39#
35 L2		CL2 - #8	0.000	0.000	. 0.0	0# -10.39#
36 L2		CL2 - #9	0.000	0.000	0.0	0# -10.39#
37 L2		CL2 - #10	0.000	0.000		0# -10.39#
38 L2		DiCB - Total	0.624	0.000	100.0#	
39 L3		CL3 - #1	0.000	0.000	0.0	0# -11.80#
40 L3		CL3 - #2	0.000	0.000	0.0	
41 L3	3	CL3 - #3	0.000	0.000	0.0	0# -11.80#

Vial: 9 Data File : I:\ACQUDATA\5973B\DATA\062314\DK265.D Acq On : 23 Jun 2014 10:50 pm Operator: J.Wu Sample : FINAL CHECK
Misc : CAL. 1.0 STD 680.PCB Inst : 5973-B Multiplr: 1.00

MS Integration Params: INTIS.P

Method : I:\ACQUDATA\5973B\METHODS\6800623B.M (RTE Integrator)
Title : 680.PCB by SIM

#13 L.R. Last Update : Tue Jun 24 11:41:24 2014

Response via : Multiple Level Calibration

Min. RRF : 0.000 Min. Rel. Area : 70% Max. R.T. Dev 0.50min

Max. RRF Dev: 20% Max. Rel. Area: 200%

		Compound	Amount	Calc.	%Dev A	rea%	Dev(min)
1	IR	d10-Phenanthrene	0.750	0.750	0.0	92	0.00
2	IR	d12-Chrysene	0.750	0.750	0.0	95	0.01
3	TCM	Total Monochlorobiphenyls	0.100	0.103	-3.0	87	0.00
4	TCM	Total Dichlorobiphenyls	0.100	0.097	3.0	88	0.00
5	SC	SURR1, gamma-BHC	0.200	0.190	5.0	88	0.00
6	TCM	Total Trichlorobiphenyls	0.100	0.103	-3.0	94	0.00
7	TCM	Total Tetrachlorobiphenyls	0.200	0.192	4.0	84	0.00
8	TC	RT #104 (CL5)	0.200	0.179	10.5	89	0.00
9	TCM	Total Pentachlorobiphenyls	0.200	0.201	-0.5	94	0.00
10	TCM	Total Hexachlorobiphenyls	0.200	0.205	-2.5	94	0.00
11	TC	RT #77 (CL4)	0.200	0.206	-3.0	95	0.00
1-2	TCM	Total Heptachlorobiphenyls	0.300	0.312	-4.0	93	0.00
(1)	SC	SURR2, 4-4'-DDT	0.200	0.116	42.0#	59	0.00
14	TCM	Total Octachlorobiphenyls	0.300	0.308	-2.7	96	0.00
15	TC	Total Nonachlorobiphenyls R	0.400	0.430	-7.5	96	0.00
16	TCM	Total Decachlorobiphenyl	0.500	0.554	-10.8	96	0.00
17	L1	CL1 - #1	0.100	0.000	100.0#	0	-8.33#
18	L1	CL1 - #2	0.100	0.000	100.0#	0	-8.33#
19	L1	CL1 - #3	0.100	0.000	100.0#	0	-8.33#
20	L1	CL1 - #4	0.100	0.000	100.0#	0	-8.33#
21	L1	CL1 - #5	0.100	0.000	100.0#	0	-8.33#
22	L1	CL1 - #6	0.100	0.000	100.0#	0	-8.33#
23	L1	CL1 - #7	0.100	0.000	100.0#	0	-8.33#
24	L1	CL1 - #8	0.100	0.000	100.0#	0	-8.33#
25	Ĺ1	CL1 - #9	0.100	0.000	100.0#	0	-8.33#
26	L1	CL1 - #10	0.100	0.000	100.0#	0	-8.33#
27	L1	MonoCB - Total	0.100	0.000	100.0#	0	-8.33#
28	L2	CL2 - #1	0.100	0.000	100.0#	0	-10.39#
29	L2	CL2 - #2	0.100	0.000	100.0#	0	-10.39#
30	L2	CL2 - #3	0.100	0.000	100.0#	0	-10.39#
31	L2	CL2 - #4	0.100	0.000	100.0#	0	-10.39#
32	L2	CL2 - #5	0.100	0.000	100.0#	0	-10.39#
33	L2	CL2 - #6	0.100	0.000	100.0#	0	-10.39#
	L2	CL2 - #7	0.100	0.000	100.0#	0	-10.39#
35	L2	.CL2 - #8	0.100	0.000	100.0#	0	-10.39#
36	L2	CL2 - #9	0.100	0.000	100.0#	0	-10.39#
3 7	L2	CL2 - #10	0.100	0.000	100.0#		
38	L2	DiCB - Total	0.100	0.000	100.0#		,
		CL3 - #1	0.100	0.000	100.0#		
		CL3 - #2	0.100	0.000	100.0#		
41	L3	CL3 - #3	0.100	0.000	100.0#	0	-11.80#
						-	

QA/QC Report

Client: Project: Tetra Tech GEO

Middle River- Lockheed Martin Corp/Surface Water 1121CO6247

Service Request: R1404414

Date Analyzed: 6/24/14 10:01

Tune Summary

Pesticides and PCBs in Water and Soil/Sediment by Gas Chromatography/Mass Spectrometry

File ID: Instrument ID: I:\ACQUDATA\5973B\DATA\062414\DK266.D\

Analytical Method:

680

R-MS-52

Analysis Lot:

399144

Target Mass	Relative to Mass	Lower Limit%	Upper Limit%	Relative Abundance %	Raw Abundance	Result Pass/Fail
51	198	30	60	39.82	190235	Pass
68	69	0.00	2	0.54	1307	Pass
69	198	0.00	100	50.37	240636	Pass
70	69	0.00	2	0.47	1131	Pass
127	198	40	60	52.23	249517	Pass
197	198	0.00	1	0.00	0	Pass
198	198	100	100	100.00	477717	Pass
199	198	5	9	7.34	35043	Pass
275	198	10	30	, 22.46	107312	Pass
365	198	1	100	3.15	15066	Pass
441	443	0.01	100	85.13	61208	Pass
442	198	40	100	76.94	367552	Pass
443	442	17	23	19.56	71901	Pass

Sample Name	Lab Code	File ID	Date Analyzed Q
Continuing Calibration Verification	RQ1407295-02	I:\ACQUDATA\5973B\DATA\062414\DK267.D\	6/24/14 10:14
MRC-SW5A2-060914	R1404414-004	I:\ACQUDATA\5973B\DATA\062414\DK268.D\	6/24/14 10:48
MRC-SW5B-060914	R1404414-005	1:\ACQUDATA\5973B\DATA\062414\DK269.D\	6/24/14 11:17
MRC-SW6A-060914	R1404414-006	I:\ACQUDATA\5973B\DATA\062414\DK272.D\	6/24/14 12:44
MRC-SW7A-060914	R1404414-008	I:\ACQUDATA\5973B\DATA\062414\DK273.D\	6/24/14 13:14
MRC-SW7B-060914	R1404414-009	I:\ACQUDATA\5973B\DATA\062414\DK276.D\	6/24/14 14:42
MRC-SW8A-060914	R1404414-010	I:\ACQUDATA\5973B\DATA\062414\DK277.D\	6/24/14 15:12
Continuing Cal. VerificationCCVA	RQ1407295-03	I:\ACQUDATA\5973B\DATA\062414\DK287.D\	6/24/14 20:05

Vial: 1 Data File : I:\ACQUDATA\5973B\DATA\062414\DK267.D Acq On : 24 Jun 2014 10:14 am Sample : CCV Misc : CAL, 1.0 STD 680.PCB Operator: J.Wu Inst : 5973-B Multiplr: 1.00

MS Integration Params: INTIS.P

Method : I:\ACQUDATA\5973B\METHODS\6800623B.M (RTE Integrator)
Title : 680.PCB by SIM

Last Update : Tue Jun 24 11:41:24 2014 #17 F.R.

Response via : Multiple Level Calibration

Min. RRF : 0.000 Min. Rel. Area : 70% Max. R.T. Dev 0.50min

Max. RRF Dev : 20% Max. Rel. Area : 200%

		Compound	AvgRF	CCRF	%Dev A	rea%	Dev(min)
1	IR	d10-Phenanthrene	1.000	1.000	0.0	114	0.00
2	IR	d12-Chrysene	1.000	1.000	0.0	115	0.01
3.	TCM	Total Monochlorobiphenyls	0.881	0.867	1.6	102	0.00
4	TCM	Total Dichlorobiphenyls	0.624	0.614	1.6	108	0.00
5	SC	SURR1, gamma-BHC	0.138	0.123	10.9	101	0.00
6	TCM	Total Trichlorobiphenyls	0.409	0.422	-3.2	115	-0.01
7	TCM	Total Tetrachlorobiphenyls	0.265	0.259	2.3	105	.0.00
8	TC	RT #104 (CL5)	0.190	0.175	7.9	112	0.00
9	TCM	Total Pentachlorobiphenyls	0.199	0.212	-6.5	121	0.00
10	TCM	Total Hexachlorobiphenyls	0.179	0.190	-6.1	118	0.00
11	TC	RT #77 (CL4)	0.485	0.521	-7.4	121	0.00
12	TCM	Total Heptachlorobiphenyls	0.154	0.167	-8.4	117	0.00
13	SC	SURR2, 4-4'-DDT	0.289	0.240	17.0	108	0.00
14	TCM	Total Octachlorobiphenyls	0.093	0.092	1.1	113	0.00
15	TC	Total Nonachlorobiphenyls R	0.062	0.063	-1.6	110	002
16	TCM	Total Decachlorobiphenyl	0.040	0.039	2.5	105	0.00
17	L1	CL1 - #1	0.000	0.000	0.0	0#	-8.33#
18	L1	CL1 - #2	0.000	0.000	0.0	0#	-8.33#
19	L1	CL1 - #3	0.000	0.000	0.0	0#	-8.33#
20	L1	CL1 - #4	0.000	0.000	0.0	0#	-8.33#
21	L1	CL1 - #5	0.000	0.000	0.0	0#	-8.33#
22	L1	CL1 - #6	0.000	0.000	0.0	0#	-8.33#
23	Ĺ1	CL1 - #7	0.000	0.000	0.0	0#	-8.33#
24	L1	CL1 - #8	0.000	0.000	0.0	0#	-8.33#
25	L1	CL1 - #9	0.000	0.000	0.0	0#	-8.33#
26	L1	CL1 - #10	0.000	0.000	0.0	0#	-8.33#
27	L1	MonoCB - Total	0.881	0.000	100.0#	0#	-8.33#
28	L2	CL2 - #1	0.000	0.000	0.0	0#	-10.39#
29	L2	CL2 - #2	0.000	0.000	0.0	0#	-10.39#
30	L2	CL2 - #3	0.000	0.000	0.0	0#	-10.39#
31	L2	CL2 - #4	0.000	0.000	0.0	0#	-10.39#
32	L2	CL2 - #5	0.000	0.000	0.0	0#	-10.39#
33	L2	CL2 - #6	0.000	0.000	0.0	0#	-10.39#
	L2	CL2 - #7	0.000	0.000	0.0	0#	-10.39#
35	L2	CL2 - #8	0.000	0.000	0.0	0#	-10.39#
	L2	CL2 - #9	0.000	0.000	0.0		-10.39#
37	L2	CL2 - #10	0.000	0.000	0.0	0#	-10.39#
38	L2	DiCB - Total	0.624	0.000	100.0#		-10.39#
	L3	CL3 - #1	0.000	0.000	0.0	0#	-11.80#
40	L3	CL3 - #2	0.000	0.000	0.0	0#	-11.80#
41	L3	CL3 - #3	0.000	0.000	0.0	0#	-11.80#

^{(#) =} Out of Range

Data File : I:\ACQUDATA\5973B\DATA\062414\DK267.D Vial: 1 Operator: J.Wu Acq On : 24 Jun 2014 10:14 am Sample : CCV Misc : CAL. 1.0 STD 680.PCB Inst : 5973-B Multiplr: 1.00

MS Integration Params: INTIS.P

Method : I:\ACQUDATA\5973B\METHODS\6800623B.M (RTE Integrator)
Title : 680.PCB by SIM

Last Update : Tue Jun 24 11:41:24 2014 #OLR.

Response via : Multiple Level Calibration

Min. RRF : 0.000 Min. Rel. Area : 70% Max. R.T. Dev 0.50min

Max. RRF Dev : 20% Max. Rel. Area : 200%

	Compound	Amount	Calc.	%Dev A	Area%	Dev(min)
1 IR	d10-Phenanthrene	0.750	0.750	0.0	114	0.00
2 IR	d12-Chrysene	0.750	0.750	0.0	115	0.01
3 TCM		0.100	0.098	2.0	102	0.00
4 TCM	Total Dichlorobiphenyls	0.100	0.098	2.0	108	0.00
5 SC	SURR1, gamma-BHC	0.200	0.179	10.5	101	0.00
6 TCM	Total Trichlorobiphenyls	0.100	0.103	-3.0	115	-0.01
7 TCM	Total Tetrachlorobiphenyls	0.200	0.195	2.5	105	0.00
8 TC	RT #104 (CL5)	0.200	0.185	7.5	112	0.00
9 TCM	Total Pentachlorobiphenyls	0.200	0.213	-6.5	121	0.00
10 TCM	Total Hexachlorobiphenyls	0.200	0.213	-6.5	118	0.00
11 TC	RT #77 (CL4)	0.200	0.215	-7.5	121	0.00
12_TCM	Total Heptachlorobiphenyls	0.300	0.324	-8.0	117	0.00
(13/SC	SURR2, 4-4'-DDT	0.200	0.161	19.5	108	0.00
14 TCM	Total Octachlorobiphenyls	0.300	0.299	0.3	113	0.00
15 TC	Total Nonachlorobiphenyls R	0.400	0.404	-1.0	110	0.02
16 TCM	Total Decachlorobiphenyl	0.500	0.494	1.2	105	0.00
17 L1	CL1 - #1	0.100	0.000	100.0#	0	-8.33#
18 L1	CL1 - #2	0.100	0.000	100.0#	0	-8.33#
19 L1	CL1 - #3	0.100	0.000	100.0#	0	-8.33#
20 L1	CL1 - #4	0.100	0.000	100.0#	0	-8.33#
21 L 1	CL1 - #5	0.100	0.000	100.0#	0	-8.33#
22 L 1	CL1 - #6	0.100	0.000	100.0#	0	-8.33#
23 L1	CL1 - #7	0.100	0.000	100.0#	0	-8.33#
24 L1	CL1 - #8	0.100	0.000	. 100.0#	. 0	-8.33#
25 L1	CL1 - #9	0.100	0.000	100.0#	0	-8.33#
26 L1	CL1 - #10	0.100	0.000	100.0#	0	-8.33#
27 L1	MonoCB - Total	0.100	0.000	100.0#	. 0	-8.33#
28 L2	CL2 - #1	0.100	0.000	100.0#	0	-10.39#
29 L2	CL2 - #2	0.100	0.000	100.0#	0	-10.39#
30 L2	CL2 - #3	0.100	0.000	100.0#	0	-10.39#
31 L2	CL2 - #4	0.100	0.000	100.0#	0	-10.39#
32 L2	CL2 - #5	0.100	0.000	100.0#	0	-10.39#
33 L2	CL2 - #6	0.100	0.000	100.0#	0	-10.39#
34 L2	CL2 - #7	0.100	0.000	100.0#	0	-10.39#
35 L2	CL2 - #8	0.100	0.000	100.0#	0	-10.39#
36 L2	CL2 - #9	0.100	0.000	100.0#	0	-10.39#
37 L2	CL2 - #10	0.100	0.000	100.0#	0	-10.39#
38 L2	DiCB - Total	0.100	0.000	100.0#	0	
39 L3	CL3 - #1	0.100	0.000	100.0#	0	-11.80#
40 L3	CL3 - #2	0.100	0.000	100.0#	. 0	-11.80#
41 L3	CL3 - #3	0.100	0.000	100.0#	0	-11.80#

(#) = Out of Range DK267.D 6800623B.M Tue Jun 24 17:20:43 2014

البري

Data File : I:\ACQUDATA\5973B\DATA\062414\DK287.D Vial: 14 Acq On : 24 Jun 2014 8:05 pm Sample : FINAL CHECK Operator: J.Wu

Inst : 5973-B Misc : CAL. 1.0 STD 680.PCB Multiplr: 1.00

MS Integration Params: INTIS.P

Method : I:\ACQUDATA\5973B\METHODS\6800623B.M (RTE Integrator)
Title : 680.PCB by SIM

Last Update : Tue Jun 24 11:41:24 2014 Response via : Multiple Level Calibration

Min. RRF : 0.000 Min. Rel. Area : 70% Max. R.T. Dev 0.50min Max. RRF Dev : 20% Max. Rel. Area : 200%

科131人人

	Compound	AvgRF	CCRF	%Dev A	Area% Dev(min)
1 IR	d10-Phenanthrene	1.000	1.000	0.0	97 0.00
2 IR	d12-Chrysene	1.000	1.000	0.0	94 0.01
3 TCM	Total Monochlorobiphenyls	0.881	0.950	-7.8	91 0.00
4 TCM	Total Dichlorobiphenyls	0.624	0.670	-7.4	96 0.00
5 SC	SURR1, gamma-BHC	0.138	0.126	8.7	84 0.00
6 TCM	Total Trichlorobiphenyls	0.409	0.441	-7.8	98 0.00
7 TCM 8 TC	Total Tetrachlorobiphenyls	0.265 0.190	0.269	-1.5	
8 TC 9 TCM	RT #104 (CL5) Total Pentachlorobiphenyls	0.190	0.183 0.207	3.7 -4.0	95 0.00 96 0.00
10 TCM	Total Hexachlorobiphenyls	0.179	0.186	-3.9	94 0.00
10 TCM	RT #77 (CL4)	0.485	0.518	-6.8	98 0.00
12 TCM	Total Heptachlorobiphenyls	0.154	0.166	-7.8	95 0.00
13 SC	SURR2, 4-4'-DDT	0.289	0.116	59.9#	42# 0.02
14 TCM	Total Octachlorobiphenyls	0.093	0.092	1.1	92 0.00
15 TC	Total Nonachlorobiphenyls R	0.062	0.062	0.0	89 0.01
16 TCM	Total Decachlorobiphenyl	0.040	0.041	-2.5	89 0.00
17 L1	CL1 - #1	0.000	0.000	0.0	0# -8.33#
18 L1	CL1 - #2	0.000	0.000	0.0	0# -8.33#
19 Ll	CL1 - #3	0.000	0.000	0.0	0# -8.33#
20 L1	CL1 - #4	0.000	0.000	0.0	0# -8.33#
21 L1	CL1 - #5	0.000	0.000	0.0	0# -8.33#
22 L1	CL1 - #6	0.000	0.000	0.0	0# -8.33#
23 L1	CL1 - #7	0.000	0.000	0.0	0# -8.33#
24 Ll	CL1 - #8	0.000	0.000	0.0	0# -8.33#
25 L1	CL1 - #9	0.000	0.000	0.0	0# -8.33#
26 L1	CL1 - #10	0.000	0.000	0.0	0# -8.33#
27 L1	MonoCB - Total	0.881	0.000	100.0#	0# -8.33#
28 L2 29 L2	CL2 - #1	0.000	0.000	0.0	0# -10.39#
30 L2	CL2 - #2 CL2 - #3	0.000 0.000	0.000 0.000	0.0 0.0	0# -10.39# 0# -10.39#
30 h2	CL2 - #4	0.000	0.000	0.0	0# -10.39#
32 L2	CL2 - #5	0.000	0.000	0.0	0# -10.39#
33 L2	CL2 - #6	0.000	0.000	0.0	0# -10.39#
34 L2	CL2 - #7	0.000	0.000	0.0	0# -10.39#
35 L2	CL2 - #8	0.000	0.000	0.0	0# -10.39#
36 L2	CL2 - #9	0.000	0.000	0.0	0# -10.39#
37 L2	CL2 - #10	0.000	0.000	0.0	0# -10.39#
38 L2	DiCB - Total	0.624	0.000	100.0#	0# -10.39#
39 L3	CL3 - #1	0.000	0.000	0.0	0# -11.80#
40 L3	CL3 - #2	0.000	0.000	0.0	0# -11.80#
41 L3	CL3 - #3	0.000	0.000	0.0	0# -11.80#
42 L3	CL3 - #4	0.000	0.000	0.0	0# -11.80#
43 L3	CL3 - #5	0.000	0.000	0.0	0# -11.80#
44 L3	CL3 - #6	0.000	0.000	0.0	0# -11.80#
45 L3	CL3 - #7	0.000	0.000	0.0	0# -11.80#
46 L3	CL3 - #8	0.000	0.000	0.0	0# -11.80#
47 L3	CL3 - #9	0.000	0.000	0.0	0# -11.80#
48 L3	CL3 - #10	0.000	0.000	0.0	0# -11.80#
49 L3 50 L3	CL3 - #11 CL3 - #12	0.000 0.000	0.000 0.000	0.0 0.0	0# -11.80# 0# -11.80#
20 D2	CTO ATC				

^{(#) =} Out of Range

J~

Data File: I:\ACQUDATA\5973B\DATA\062414\DK287.D Vial: 14 Operator: J.Wu

Acq On : 24 Jun 2014 8:05 pm
Sample : FINAL CHECK
Misc : CAL. 1.0 STD 680.PCB Inst : 5973-B Multiplr: 1.00

MS Integration Params: INTIS.P

Method : I:\ACQUDATA\5973B\METHODS\6800623B.M (RTE Integrator)
Title : 680.PCB by SIM
Last Update : Tue Jun 24 11:41:24 2014 #13 L.K #13 L.R.

Response via : Multiple Level Calibration

Min. RRF : 0.000 Min. Rel. Area : 70% Max. R.T. Dev 0.50min Max. RRF Dev : 20% Max. Rel. Area : 200%

	Compound	Amount	Calc.	%Dev Ar	ea%	Dev(min)
1 IR 2 IR	d10-Phenanthrene d12-Chrysene	0.750 0.750	0.750 0.750	0.0	97 94	0.00 0.01
3 TCM	Total Monochlorobiphenyls	0.100	0.108	-8.0	91	0.00
4 TCM	Total Dichlorobiphenyls	0.100	0.107	-7.0	96	0.00
5 SC	SURR1, gamma-BHC	0.200	0.182	9.0	84	0.00
6 TCM	Total Trichlorobiphenyls	0.100	0.108	-8.0	98	0.00
7 TCM	Total Tetrachlorobiphenyls	0.200	0.203	-1.5	89	0.00
8 TC	RT #104 (CL5)	0.200	0.193	3.5	95	0.00
9 TCM	Total Pentachlorobiphenyls	0.200	0.208	-4.0	96	0.00
10 TCM	Total Hexachlorobiphenyls	0.200	0.208	-4.0 -7.0	94	0.00
11 TC 12 TCM	RT #77 (CL4)	0.200 0.300	0.214 0.323	-7.0 -7.7	98 95	0.00 0.00
13 TCM (13) SC	Total Heptachlorobiphenyls SURR2, 4-4'-DDT	0.200	0.323	54.5#	42	0.00
14 TCM	Total Octachlorobiphenyls	0.300	0.297	1.0	92	0.00
15 TC	Total Nonachlorobiphenyls R	0.400	0.399	0.3	89	0.01
16 TCM	Total Decachlorobiphenyl	0.500	0.517	-3.4	89	0.00
17 L1	CL1 - #1	0.100	0.000	100.0#	0	-8.33#
18 L1	CL1 - #2	0.100	0.000	100.0#	0	-8.33#
19 L1	CL1 - #3	0.100	0.000	100.0#	0	-8.33#
20 L1	CL1 - #4	0.100	0.000	100.0#	0	-8.33#
21 L1	CL1 - #5	0.100	0.000	100.0#	0	-8.33#
22 L1	CL1 - #6	0.100	0.000	100.0#	0	-8.33#
23 L1	CL1 - #7	0.100	0.000	100.0#	0	-8.33#
24 L1	CL1 - #8	0.100	0.000	100.0#	0	-8.33#
25 L1 26 L1	CL1 - #9 CL1 - #10	0.100 0.100	0.000 0.000	100.0# 100.0#	0	-8.33# -8.33#
26 L1 27 L1	MonoCB - Total	0.100	0.000	100.0#	0	-8.33#
28 L2	CL2 - #1	0.100	0.000	100.0#	ő	-10.39#
29 L2	CL2 - #2	0.100	0.000	100.0#	Ö	-10.39#
30 L2	CL2 - #3	0.100	0.000	100.0#	0	-10.39#
31 L2	CL2 - #4	0.100	0.000	100.0#	0	-10.39#
32 L2	CL2 - #5	0.100	0.000	100.0#	0	-10.39#
33 L2	CL2 - #6	0.100	0.000	100.0#	0	-10.39#
34 L2	CL2 - #7	0.100	0.000	100.0#	0	-10.39#
35 L2	CL2 - #8	0.100	0.000	100.0#	0	-10.39#
36 L2	CL2 - #9	0.100	0.000	100.0#	0	-10.39#
37 L2	CL2 - #10	0.100	0.000	100.0# 100.0#	0	-10.39# -10.39#
38 L2 39 L3	DiCB - Total CL3 - #1	0.100 0.100	0.000 0.000	100.0#	0	-10.39#
40 L3	CL3 - #1 CL3 - #2	0.100	0.000	100.0#	0	-11.80#
41 L3	CL3 - #3	0.100	0.000	100.0#	Ö	-11.80#
42 L3	CL3 - #4	0.100	0.000	100.0#	ō	-11.80#
43 L3	CL3 - #5	0.100	0.000	100.0#	0	-11.80#
44 L3	CL3 - #6	0.100	0.000	100.0#	0	-11.80#
45 L3	CL3 - #7	0.100	0.000	100.0#	0	-11.80#
46 L3	CL3 - #8	0.100	0.000	100.0#	0	-11.80#
47 L3	CI:3 - #9	0.100	0.000	100.0#	0	-11.80#
48 L3	CL3 - #10	0.100	0.000	100.0#	0	-11.80#
49 L3	CL3 - #11	0.100	0.000	100.0#	0	-11.80#
50 L3	CL3 - #12	0.100	0.000	100.0#	0 	-11.80#

QA/QC Report

Client: Project: Tetra Tech GEO

Middle River- Lockheed Martin Corp/Surface Water 112ICO6247

Service Request: R1404414

Date Analyzed: 6/25/14 14:34

Tune Summary

Pesticides and PCBs in Water and Soil/Sediment by Gas Chromatography/Mass Spectrometry

File ID:

1:\ACQUDATA\5973B\DATA\062514\DK291.D\

Analytical Method:

680

Instrument ID:

R-MS-52

Analysis Lot:

399147

Target Mass	Relative to Mass	Lower Limit%	Upper Limit%	Relative Abundance %	Raw Abundance	Result Pass/Fail
51	198	30	60	38.33	183975	Pass
68	69	0.00	2	1.82	4253	Pass
69	198	0.00	100	48.82	234317	Pass
70	69	0.00	2	0.55	1300	Pass
127	198	40	60	51.38	246621	Pass
197	198	0.00	1	0.00	0	Pass
198	198	100	100	100.00	479957	Pass
199	198	5	9	6.91	33179	Pass
275	198	10	30	22.28	106912	Pass
365	198	1	100	3.43	16459	Pass
441	443	0.01	100	81.84	57901	Pass
442	198	40	100	77.90	373867	Pass
443	442	17	23	18.92	70747	Pass

Sample Name	Lab Code	File ID	Date Analyzed Q
Continuing Calibration Verification	RQ1407298-02	I:\ACQUDATA\5973B\DATA\062514\DK292.D\	6/25/14 14:47
MRC-SW8B-060914	R1404414-011	I:\ACQUDATA\5973B\DATA\062514\DK296.D\	6/25/14 15:50
MRC-SW9B-060914	R1404414-013	I:\ACQUDATA\5973B\DATA\062514\DK297.D\	6/25/14 16:19
MRC-SW9A-060914	R1404414-012	I:\ACQUDATA\5973B\DATA\062514\DK300.D\	6/25/14 17:47
Continuing Cal. VerificationCCVA	RQ1407298-03	I:\ACQUDATA\5973B\DATA\062514\DK303.D\	6/25/14 19:15

Vial: 1 Data File : I:\ACQUDATA\5973B\DATA\062514\DK292.D Acq On : 25 Jun 2014 2:47 pm Operator: J.Wu

Sample : CCV Misc : CAL. 1.0 STD 680.PCB Inst : 5973-B Multiplr: 1.00

MS Integration Params: INTIS.P

Response via: Multiple Level Calibration

Min. RRF : 0.000 Min. Rel. Area : 70% Max. R.T. Dev 0.50min

Max. RRF Dev: 20% Max. Rel. Area: 200%

	Compound	AvgRF	CCRF	%Dev Area% Dev(min)
1 IR	d10-Phenanthrene	1.000	1.000	0.0 110 0.00
2 IR	d12-Chrysene	1.000	1.000	0.0 116 0.00
3 TCM	Total Monochlorobiphenyls	0.881	0.842	4.4 99 0.00
4 TCM	Total Dichlorobiphenyls	0.624	0.625	-0.2 111 -0.02
5 SC	SURR1, gamma-BHC	0.138	0.147	-6.5 121 0.00
6 TCM	Total Trichlorobiphenyls	0.409	0.427	-4.4 117 -0.02
7 TCM	Total Tetrachlorobiphenyls	0.265	0.270	-1.9 110 -0.02
8 TC	RT #104 (CL5)	0.190	0.173	8.9 112 -0.01
9 TCM	Total Pentachlorobiphenyls	0.199	0.212	-6.5 122 0.00
10 TCM	Total Hexachlorobiphenyls	0.179	0.186 0.506	-3.9 116 -0.01 -4.3 118 -0.01
11 TC	RT #77 (CL4)	0.485 0.154	0.164	-4.3 116 -0.01 -6.5 116 0.00
12 TCM 13 SC	Total Heptachlorobiphenyls SURR2, 4-4'-DDT	0.134	0.164	-24.6# 163 0.00
13 SC 14 TCM	Total Octachlorobiphenyls	0.283	0.093	0.0 116 0.00
15 TC	Total Nonachlorobiphenyls R	0.062	0.059	4.8 104 0.00
16 TCM	Total Decachlorobiphenyl	0.040	0.036	10.0 96 -0.01
17 L1	CL1 - #1	0.000	0.000	0.0 0# -8.33#
18 L1	CL1 - #2	0.000	0.000	0.0 0# -8.33#
19 L1	CL1 - #3	0.000	0.000	0.0 0# -8.33#
20 L1	CL1 - #4	0.000	0.000	0.0 0# -8.33#
21 L1	CL1 - #5	0.000	0.000	0.0 0# -8.33#
22 L1	CL1 - #6	0.000	0.000	0.0 0# -8,33#
23 L1	CL1 - #7	0.000	0.000	0.0 0# -8.33#
24 L1	CL1 - #8	0.000	0.000	0.0 0# -8.33#
25 L1	CL1 - #9	0.000	0.000	0.0 0# -8.33#
26 L1	CL1 - #10	0.000	0.000	0.0 0# -8.33#
27 L1	MonoCB - Total	0.881	0.000	100.0# 0# -8.33#
28 L2	CL2 - #1	0.000	0.000	0.0 0# -10.39#
29 L2	CL2 - #2	0.000	0.000	0.0 0# -10.39#
30 L2	CL2 - #3	0.000	0.000	0.0 0# -10.39#
31 L2	CL2 - #4	0.000	0.000	0.0 0# -10.39#
32 L2	CL2 - #5	0.000	0.000	0.0 0# -10.39#
33 L2	CL2 - #6	0.000	0.000	0.0 0# -10.39#
34 L2	CL2 - #7	0.000	0.000	0.0 0# -10.39# 0.0 0# -10.39#
35 L2 36 L2	CL2 - #8 CL2 - #9	0.000 0.000	0.000 0.000	0.0 0# -10.39#
36 L2	CL2 - #9 CL2 - #10	0.000	0.000	0.0 0# -10.39#
38 L2	DiCB - Total	0.624	0.000	100.0# 0# -10.39#
39 L3	CL3 - #1	0.000	0.000	0.0 0# -11.80#
40 L3	CL3 - #2	0.000	0.000	0.0 0# -11.80#
41 L3	CL3 - #3	0.000	0.000	0.0 0# -11.80#
42 L3	CL3 - #4	0.000	0.000	0.0 0# -11.80#
43 L3	CL3 - #5	0.000	0.000	0.0 0# -11.80#
44 L3	CL3 - #6	0.000	0.000	0.0 0# -11.80#
45 L3	CL3 - #7	0.000	0.000	0.0 0# -11.80#
46 L3	CL3 - #8	0.000	0.000	0.0 0# -11.80#
47 L3	CL3 - #9	0.000	0.000	0.0 0# -11.80#
48 L3	CL3 - #10	0.000	0.000	0.0 0# -11.80#
49 L3	CL3 - #11	0.000	0.000	0.0 0# -11.80#
50 L3	CL3 - #12	0.000	0.000	0.0 0# -11.80# \

Data File : I:\ACQUDATA\5973B\DATA\062514\DK292.D Vial: 1 Acq On : 25 Jun 2014 2:47 pm Operator: J.Wu Sample : CCV Misc : CAL. 1.0 STD 680.PCB Inst : 5973-B Multiplr: 1.00

MS Integration Params: INTIS.P

Method : I:\ACQUDATA\5973B\METHODS\6800623B.M (RTE Integrator)
Title : 680.PCB by SIM \$17 L.R.

Last Update : Tue Jun 24 11:41:24 2014 Response via : Multiple Level Calibration

Min. RRF : 0.000 Min. Rel. Area : 70% Max. R_sT. Dev 0.50min

Max. RRF Dev: 20% Max. Rel. Area: 200%

	Compound	Amount	Calc.	%Dev	Area%	Dev(min)
1 IR	d10-Phenanthrene	0.750	0.750	0.0	110	0.00
2 IR	d12-Chrysene	0.750	0.750	0.0	116	0.00
3 TCM 4 TCM	Total Monochlorobiphenyls	0.100 0.100	0.096 0.100	4.0	99 111	0.00
4 TCM 5 SC	Total Dichlorobiphenyls SURR1, gamma-BHC	0.200	0.100	0.0 -6.5	121	-0.02 0.00
6 TCM	Total Trichlorobiphenyls	0.100	0.104	-4.0	117	-0.02
7 TCM	Total Tetrachlorobiphenyls	0.200	0.204	-2.0	110	-0.02
8 TC	RT #104 (CL5)	0.200	0.183	8.5	112	-0.01
9 TCM	Total Pentachlorobiphenyls	0.200	0.213	-6.5	122	0.00
10 TCM	Total Hexachlorobiphenyls	0.200	0.208	-4.0	116	-0.01
11 TC	RT #77 (CL4)	0.200	0.209	-4.5	118	-0.01
12 TCM	Total Heptachlorobiphenyls	0.300	0.318	-6.0	116	0.00
(13) sc	SURR2, 4-4'-DDT	0.200	0.228	-14.0	163	0.00
14 TCM	Total Octachlorobiphenyls	0.300	0.303	-1.0	116	0.00
15 TC	Total Nonachlorobiphenyls R	0.400	0.379	5.3	104	0.00
16 TCM	Total Decachlorobiphenyl	0.500 0.100	0.452 0.000	9.6	96 • 0	-0.01 -8.33#
17 L1 18 L1	CL1 - #1. CL1 - #2	0.100	0.000	100.0#		-8.33#
19 L1	CL1 - #3	0.100	0.000	100.0#		-8.33#
20 L1	CL1 - #4	0.100	0.000	100.0#		-8.33#
21 L1	CL1 - #5	0.100	0.000	100.0#		-8.33#
22 L1	CL1 - #6	0.100	0.000	100.0#		-8.33#
23 L1	CL1 - #7	0.100	0.000	100.0#		-8.33#
24 L1	CL1 - #8	0.100	0.000	100.0#	0	-8.33#
25 L1	CL1 - #9	0.100	0.000	100.0#		-8.33#
26 L1	CL1 - #10	0.100	0.000	100.0#		-8.33#
27 L1	MonoCB - Total	0.100	0.000	100.0#		-8.33#
28 L2	CL2 - #1	0.100	0.000	100.0#		-10.39#
29 L2	CL2 - #2	0.100	0.000	100.0#		-10.39#
30 L2 31 L2	CL2 - #3 CL2 - #4	0.100 0.100	0.000 0.000	100.0# 100.0#		-10.39# -10.39#
32 L2	CL2 - #4 CL2 - #5	0.100	0.000	100.0		-10.39#
33 L2	CL2 - #6	0.100	0.000	100.0		-10.39#
34 L2	CL2 - #7	0.100	0.000	100.0		-10.39#
35 L2	CL2 - #8	0.100	0.000	100.0		-10.39#
36 L2	CL2 - #9	0.100	0.000	100.0		-10.39#
37 L2	CL2 - #10	0.100	0.000	100.0#	ŧ 0	-10.39#
38 L2	DiCB - Total	0.100	0.000	100.0		-10.39#
39 L3	CL3 - #1	0.100	0.000	100.0		-11.80#
40 L3	CL3 - #2	0.100	0.000	100.0		-11.80#
41 L3	CL3 - #3	0.100	0.000	100.0		-11.80#
42 L3	CL3 - #4	0.100	0.000	100.0		-11.80#
43 L3	CL3 - #5	0.100	0.000	100.0		-11.80#
44 L3 45 L3	CL3 - #6 CL3 - #7	0.100 0.100	0.000 0.000	100.0# 100.0#		-11.80# -11.80#
46 L3	CL3 - #8	0.100	0.000	100.0		-11.80#
47 L3	CL3 - #9	0.100	0.000	100.0		-11.80#
48 L3	CL3 - #10	0.100	0.000	100.0		-11.80#
49 L3	CL3 - #11	0.100	0.000	100.0		-11.80#
50 L3	CL3 - #12	0.100	0.000	100.0		-11.80#

5~

Data File : I:\ACQUDATA\5973B\DATA\062514\DK303.D Vial: 8
Acq On : 25 Jun 2014 7:15 pm Operator: J.Wu Acq On : 25 Jun 2014 7:15 pm Sample : FINAL CHECK
Misc : CAL. 1.0 STD 680.PCB Inst : 5973-B Multiplr: 1.00

MS Integration Params: INTIS.P

Method : I:\ACQUDATA\5973B\METHODS\6800623B.M (RTE Integrator)
Title : 680.PCB by SIM
Last Update : Tue Jun 24 11:41:24 2014 #13 L.K.

Response via : Multiple Level Calibration

Min. RRF : 0.000 Min. Rel. Area : 70% Max. R.T. Dev 0.50min

Max. RRF Dev : 20% Max. Rel. Area : 200%

		Compound	Amount	Calc.	%Dev	Area%	Dev(min)
7	IR	d10-Phenanthrene	0.750	0.750	0.0	94	0.00
2	IR	d12-Chrysene	0.750	0.750	0.0	101	0.00
3	TCM.	Total Monochlorobiphenyls	0.100	0.094	6.0	85	0.00
4	TCM	Total Dichlorobiphenyls	0.100	0.098	2.0	94	-0.02
5	SC	SURR1, gamma-BHC	0.200	0.194	3.0	96	0.00
6	TCM	Total Trichlorobiphenyls	0.100	0.106	-6.0	103	-0.02
7	TCM	Total Tetrachlorobiphenyls	0.200	0.190	5.0	89	0.00
8	TC	RT #104 (CL5)	0.200	0.178	11.0	94	-0.01
9	TCM	Total Pentachlorobiphenyls	0.200	0.206	-3.0	102	0.00
10	TCM	Total Hexachlorobiphenyls	0.200	0.205	-2.5	99	-0.01
11	TC	RT #77 (CL4)	0.200	0.203	-1.5	99	-0.01
12	TCM	Total Heptachlorobiphenyls	0.300	0.303	-1.0	96	0.00
13	SC	SURR2, 4-4'-DDT	0.200	0.184	8.0	111	0.00
14	TCM	Total Octachlorobiphenyls	0.300	0.291	3.0	96	0.00
15	TC	Total Nonachlorobiphenyls R	0.400	0.426	-6.5	101	0.00
16	TCM	Total Decachlorobiphenyl	0.500	0.544	-8.8	101	-0.02
17	L1	CL1 - #1	0.100	0.000	100.0#	. 0	-8.33#
18	L1	CL1 - #2	0.100	0.000	100.0#	0	-8.33#
	L1	CL1 - #3	0.100	0.000	100.0#	0	-8.33#
20	L1	CL1 - #4	0.100	0.000	100.0#	. 0	-8.33#
	L1	CL1 - #5	0.100	0.000	100.0#	0	-8.33#
22	L1	CL1 - #6	0.100	0.000	100.0#	0	-8.33#
23	L1	CL1 - #7	0.100	0.000	100.0#	0	-8.33#
24	L1	CL1 - #8	0.100	0.000	100.0#	0	-8.33#
25	L1	CL1 - #9	0.100	0.000	100.0#	0	-8.33#
26	L1	CL1 - #10	0.100	0.000	100.0#	0	-8.33#
27	L1	MonoCB - Total	0.100	0.000	100.0#	0	-8.33#
28	L2 "	CL2 - #1	0.100	0.000	100.0#	0	-10.39#
29	L2	CL2 - #2	0.100	0.000	100.0#	0	-10.39#
30	L2	CL2 - #3	0.100	0.000	100.0#	0	-10.39#
31	L2	CL2 - #4	0.100	0.000	100.0#	0	-10.39#
32	L2	CL2 - #5	0.100	0.000	100.0#	0	-10.39#
33	L2	CL2 - #6	0.100	0.000	100.0#	0	-10.39#
34	L2	CL2 - #7	0.100	0.000	100.0#	0	-10.39#
	L2	CL2 - #8	0.100	0.000	100.0#		-10.39#
36	L2	CL2 - #9	0.100	0.000	100.0#	0	-10.39#
37	L2	CL2 - #10	0.100	0.000	100.0#	0	-10.39#
38	L2	DiCB - Total	0.100	0.000	100.0#		-10.39#
39	L3	CL3 - #1	0.100	0.000	100.0#		-11.80#
40	L3	CL3 - #2	0.100	0.000	100.0#		-11.80#
41	L3	CL3 - #3	0.100	0.000	100.0#	0	-11.80#
							

^{(#) =} Out of Range

Data File : I:\ACQUDATA\5973B\DATA\062514\DK303.D Vial: 8 Acq On : 25 Jun 2014 7:15 pm Operator: J.Wu Sample : FINAL CHECK
Misc : CAL. 1.0 STD 680.PCB Inst : 5973-B Multiplr: 1.00

MS Integration Params: INTIS.P

Method : I:\ACQUDATA\5973B\METHODS\6800623B.M (RTE Integrator)
Title : 680.PCB by SIM

#13 L.R. Last Update : Tue Jun 24 11:41:24 2014

Response via : Multiple Level Calibration

Min. RRF : 0.000 Min. Rel. Area : 70% Max. R.T. Dev 0.50min

Max. RRF Dev : 20% Max. Rel. Area : 200%

		Compound	AvgRF	CCRF	%Dev 1	Area% Dev(min)
1	IR	d10-Phenanthrene	1.000	1.000	0.0	94 0.00
	IR	d12-Chrysene	1.000	1.000	0.0	101 0.00
	TCM	Total Monochlorobiphenyls	0.881	0.828	6.0	85 0.00
	TCM	Total Dichlorobiphenyls	0.624	0.611	2.1	94 -0.02
	SC	SURR1, gamma-BHC	0.138	0.134	2.9	96 0.00
6	TCM	Total Trichlorobiphenyls	0.409	0.435	-6.4	103 -0.02
	TCM	Total Tetrachlorobiphenyls	0.265	0.252	4.9	89 0.00
8	TC	RT #104 (CL5)	0.190	0.169	11.1	94 -0.01
	TCM	Total Pentachlorobiphenyls	0.199	0.204	-2.5	102 0.00
	TCM	Total Hexachlorobiphenyls	0.179	0.183	-2.2	99 -0.01
	TC	RT #77 (CL4)	0.485	0.491	-1.2	99 -0.01
	TCM	Total Heptachlorobiphenyls	0.154	0.156	-1.3	96 0.00
(1)	SC	SURR2, 4-4'-DDT	0.289	0.282	2.4	111 0.00
	TCM:	Total Octachlorobiphenyls	0.093	0.090	3.2	96 0.00
	TC	Total Nonachlorobiphenyls R	0.062	0.066	-6.5	101 0.00
	TCM	Total Decachlorobiphenyl	0.040	0.043	-7.5	101 -0.02
17		CL1 - #1	0.000	0.000	0.0	0# -8.33#
18		CL1 - #2	0.000	0.000	0.0	0# -8.33#
19		CL1 - #3	0.000	0.000	0.0	0# -8.33#
20	L1	CL1 - #4	0.000	0.000	0.0	0# -8.33#
21	L1	CL1 - #5	0.000	0.000	0.0	0# -8.33#
22	L1	CL1 - #6	0.000	0.000	0.0	0# -8.33#
23	L1	CL1 - #7	0.000	0.000	0.0	0# -8.33#
24	L1	CL1 - #8	0.000	0.000	0.0	0# -8.33#
25	L1	CL1 - #9	0.000	0.000	0.0	0# -8.33#
26	L1	CL1 - #10	0.000	0.000	0.0	0# -8.33#
27	L1	MonoCB - Total	0.881	0.000	100.0#	
28	L2	CL2 - #1	0.000	0.000	0.0	0# -10.39#
29	L2	CL2 - #2	0.000	0.000	0.0	0# -10.39#
30	L2	CL2 - #3	0.000	0.000	0.0	0# -10.39#
31	L2	CL2 - #4	0.000	0.000	0.0	0# -10.39#
32	L2	CL2 - #5	0.000	0.000	0.0	0# -10.39#
33	L2	CL2 - #6	0.000	0.000	0.0	0# -10.39#
34	L2	CL2 - #7	0.000	0.000	0.0	0# -10.39#
35	L2	CL2 - #8	0.000	0.000	0.0	0# -10.39#
36	L2	CL2 - #9	0.000	0.000	0.0	0# -10.39#
37	L2	- · · · · · · · · · · · · · · · · · · ·	0.000	0.000	0.0	0# -10.39#
38	L2	DiCB - Total	0.624	0.000	100.0#	
39	L3	CL3 - #1	0.000	0.000	0.0	0# -11.80#
40	L3		0.000	0.000	0.0	0# -11.80#
41	L3	CL3 - #3	0.000	0.000	0.0	0# -11.80#

^{(#) =} Out of Range DK303.D 6800623B.M

QA/QC Report

Client: Project:

Tetra Tech GEO

Middle River- Lockheed Martin Corp/Surface Water 1121CO6247

Service Request: R1404414

Date Analyzed: 7/1/14 09:08

Tune Summary

Pesticides and PCBs in Water and Soil/Sediment by Gas Chromatography/Mass Spectrometry

File ID:

I:\ACQUDATA\5973B\DATA\070114\DK305.D\

Instrument ID: R-MS-52

Analytical Method:

680

Analysis Lot:

399987

Target Mass	Relative to Mass	Lower Limit%	Upper Limit%	Relative Abundance %	Raw Abundance	Result Pass/Fail
51	198	30	60	40.52	194410	Pass
68	69	0.00	2	1.48	3498	Pass
69	198	0.00	100	49.25	236294	Pass
70	69	0.00	2	0.15	348	Pass
127	198	40	60	51.41	246613	Pass
197	198	0.00	. 1	0.00	0	Pass
198	198	100	100	100.00	479744	Pass
. 199	198	5	9	6.61	31728	Pass
275	198	10	30	21.70	104120	Pass
365	198	1	100	3.11	14934	Pass
441	443	0.01	100	88.21	57760	Pass
442	198	40	100	72.87	349611	Pass
443	442	17	23	18.73	65483	Pass

Sample Name	Lab Code	File ID	Date Analyzed Q
Continuing Calibration Verification	RQ1407579-02	1:\ACQUDATA\5973B\DATA\070114\DK306.D\	7/1/14 09:24
Method Blank	RQ1407378-01	I:\ACQUDATA\5973B\DATA\070114\DK307.D\	7/1/14 09:55
Lab Control Sample	RQ1407378-02	J:\ACQUDATA\5973B\DATA\070114\DK309.D\	7/1/14 10:53
Duplicate Lab Control Sample	RQ1407378-03	I:\ACQUDATA\5973B\DATA\070114\DK310.D\	7/1/14 11:23
MRC-SW8B-060914RE	R1404414-011	I:\ACQUDATA\5973B\DATA\070114\DK311.D\	7/1/14 11:52
Continuing Cal. VerificationCCVA	RQ1407579-03	I:\ACQUDATA\5973B\DATA\070114\DK314.D\	7/1/14 13:21

Vial: 1 Data File: I:\ACQUDATA\5973B\DATA\070114\DK306.D Acq On : 1 Jul 2014 9:24 am Operator: J.Wu Sample : CCV
Misc : CAL. 1.0 STD 680.PCB Inst : 5973-B Multiplr: 1.00

MS Integration Params: INTIS.P

Method : I:\ACQUDATA\5973B\METHODS\6800623B.M (RTE Integrator)
Title : 680.PCB by SIM

#13 L.R. Last Update : Tue Jun 24 11:41:24 2014

Response via : Multiple Level Calibration

Min. RRF : 0.000 Min. Rel. Area : 70% Max. R.T. Dev 0.50min

Max. RRF Dev: 20% Max. Rel. Area: 200%

	Compound	AvgRF	CCRF	%Dev Area% Dev(min)
1 IR	d10-Phenanthrene	1.000	1.000	. 0.0 111 0.00
2 IR	d12-Chrysene	1.000	1.000	0.0 121 0.00
3 TCM		0.881	0.823	6.6 101 0.00
4 TCM	, <u> </u>	0.624	0.609	2.4 112 -0.02
5 SC	SURR1, gamma-BHC	0.138	0.136	1.4 117 0.00
6 TCM		0.409	0.407	0.5 116 -0.02
7 TCM		0.265	0.251	5.3 107 -0.02
8 TC	RT #104 (CL5)	0.190	0.166	12.6 111 -0.01
9 TCM		0.199	0.201	-1.0 120 0.00
10 TCM		0.179	0.182	-1.7 119 0.00
11 TC	RT #77 (CL4)	0.485	0.456	6.0 111 0.00
12 TCM		0.154	0.153	0.6 113 0.00
13 SC	SURR2, 4-4'-DDT	0.289	0.344	-19.0 162 0.00
14 TCM		0.093	0.090	3.2 116 0.00
15 TC	Total Nonachlorobiphenyls R	0.062	0.065	-4.8 120 0.00
16 TCM		0.040	0.040	0.0 112 -0.01
17 L1	CL1 - #1	0.000	0.000	0.0 0# -8.33#
18 L1	CL1 - #2	0.000	0.000	0.0 0# -8.33#
19 Ll	CL1 - #3	0.000	0.000	0.0 0# -8.33#
20 L1	CL1 - #4	0.000	0.000	0.0 0# -8.33#
21 L1	CL1 - #5	0.000	0.000	0.0 0# -8.33#
22 L1	CL1 - #6	0.000	0.000	0.0 0# -8.33#
23 L1	CL1 - #7	0.000	0.000	0.0 0# -8.33#
24 L1	CL1 - #8	0.000	0.000	0.0 0# -8.33#
25 L1	CL1 - #9	0.000	0.000	0.0 0# -8.33#
26 L1	CL1 - #10	0.000	0.000	0.0 0# -8.33#
27 L1	MonoCB - Total	0.881	0.000	100.0# 0# -8.33#
28 L2	CL2 - #1	0.000	0.000	0.0 0# -10.39#
29 L2	CL2 - #2	0.000	0.000	0.0 0# -10.39#
30 L2	CL2 - #3	0.000	0.000	0.0 0# -10.39#
31 L2	CL2 - #4	0.000	0.000	0.0 0# -10.39#
32 L2	CL2 - #5	0.000	0.000	0.0 0# -10.39#
33 L2	CL2 - #6	0.000	0.000	0.0 0# -10.39#
34 L2	CL2 - #7	0.000	0.000	0.0 0# -10.39#
35 L 2	CL2 - #8	0.000	0.000	0.0 0# -10.39#
36 L2	CL2 - #9	0.000	0.000	0.0 0# -10.39#
37 L2	CL2 - #10	0.000	0.000	0.0 0# -10.39#
38 L2	DiCB - Total	0.624	0.000	100.0# 0# -10.39#
39 L3	CL3 - #1	0.000	0.000	0.0 0# -11.80#
40 L3	CL3 - #2	0.000	0.000	0.0 0# -11.80#
41 L3	CL3 - #3	0.000	0.000	0.0 0# -11.80#

^{(#) =} Out of Range

Vial: 1 Data File: I:\ACQUDATA\5973B\DATA\070114\DK306.D Acq On : 1 Jul 2014 9:24 am Operator: J.Wu Sample : CCV Misc : CAL. 1.0 STD 680.PCB Inst : 5973-B Multiplr: 1.00

MS Integration Params: INTIS.P

Method : I:\ACQUDATA\5973B\METHODS\6800623B.M (RTE Integrator)
Title : 680.PCB by SIM

#13 L.R. Last Update : Tue Jun 24 11:41:24 2014

Response via : Multiple Level Calibration

Min. RRF : 0.000 Min. Rel. Area : 70% Max. R.T. Dev 0.50min

Max. RRF Dev : 20% Max. Rel. Area : 200%

	Compound	Amount	Calc.	%Dev Area% Dev(mir	1)
1 IR	d10-Phenanthrene	0.750	0.750	0.0 111 0.00	
2 IR	d12-Chrysene	0.750	0.750	0.0 121 0.00	
3 TCM	Total Monochlorobiphenyls	0.100	0.093	7.0 101 0.00	
4 TCM	Total Dichlorobiphenyls	0.100	0.097	3.0 112 -0.02	
5 SC	SURR1, gamma-BHC	0.200	0.198	1.0 117 0.00	
6 TCM	Total Trichlorobiphenyls	0.100	0.100	0.0 116 -0.02	
7 TCM	Total Tetrachlorobiphenyls	0.200	0.190	5.0 107 -0.02	
8 TC	RT #104 (CL5)	0.200	0.175	12.5 111 -0.01	
9 TCM	Total Pentachlorobiphenyls	0.200	0.202	-1.0 120 0.00	
10 TCM	Total Hexachlorobiphenyls	0.200	0.204	-2.0 119 0.00	
11 TC	RT #77 (CL4)	0.200	0.188	6.0 111 0.00	
12 TCM	Total Heptachlorobiphenyls	0.300	0.298	0.7 113 0.00	
13 SC	SURR2, 4-4'-DDT	0.200	0.219	-9.5 162 0.00	
14 TCM	Total Octachlorobiphenyls	0.300	0.293	2.3 116 0.00	
15 TC	Total Nonachlorobiphenyls R	0.400	0.419	-4.7 120 0.00	
16 TCM	Total Decachlorobiphenyl	0.500	0.505	-1.0 112 -0.01	
17 L1	CL1 - #1	0.100	0.000	100.0# 0 -8.33#	
18 L1	CL1 - #2	0.100	0.000	100.0# 0 -8.33#	
19 L1	CL1 - #3	0.100	0.000	100.0# 0 -8.33#	
20 L1	CL1 - #4	0.100	0.000	100.0# 0 -8.33#	
21 L1	CL1 - #5	0.100	0.000	100.0# 0 -8.33#	
22 L1	CL1 - #6	0.100	0.000	100.0# 0 -8.33#	
23 L1	CL1 - #7	0.100	0.000	100.0# 0 -8.33#	
24 L1	CL1 - #8	0.100	0.000	100.0# 0 -8.33#	
25 L1	CL1 - #9	0.100	0.000	100.0# 0 -8.33#	
26 L1	CL1 - #10	0.100	0.000	100.0# 0 -8.33#	
27 L1	MonoCB - Total	0.100	0.000	100.0# 0 -8.33#	
28 L2	CL2 - #1	0.100	0.000	100.0# 0 -10.39#	
29 L2	CL2 - #2	0.100	0.000	100.0# 0 -10.39#	
30 L2	CL2 - #3	0.100	0.000	100.0# 0 -10.39#	
31 L2	CL2 - #4	0.100	0.000	100.0# 0 -10.39#	
32 L2,	CL2 - #5	0.100	0.000	100.0# 0 -10.39#	
33 L2	CL2 - #6	0.100	0.000	100.0# 0 -10.39#	
34 L2	CL2 - #7	0.100	0.000	100.0# 0 -10.39#	
35 L2	CL2 - #8	0.100	0.000	100.0# 0 -10.39#	
36 L2	CL2 - #9	0.100	0.000	100.0# 0 -10.39#	
37 L2	CL2 - #10	0.100	0.000	100.0# 0 -10.39#	
38 L2	DiCB - Total	0.100	0.000	100.0# 0 -10.39#	
39 L3	CL3 - #1	0.100	0.000	100.0# 0 -11.80#	
	CL3 - #2	0.100		100.0# 0 -11.80#	
41 L3	CL3 - #3	0.100	0.000	100.0# 0 -11.80#	ř

Vial: 7 Data File: I:\ACQUDATA\5973B\DATA\070114\DK314.D Acq On : 1 Jul 2014 1:21 pm Operator: J.Wu Sample : FINAL CHECK
Misc : CAL. 1.0 STD 680.PCB Inst : 5973-B Multiplr: 1.00

MS Integration Params: INTIS.P

Method : I:\ACQUDATA\5973B\METHODS\6800623B.M (RTE Integrator)
Title : 680.PCB by SIM
Last Update : Tue Jun 24 11:41:24 2014

Response via : Multiple Level Calibration

Min. RRF : 0.000 Min. Rel. Area : 70% Max. R.T. Dev 0.50min

Max. RRF Dev : 20% Max. Rel. Area : 200%

1 IR d10-Phenanthrene		Compound	AvgRF	CCRF	%Dev Area% Dev(min)
2 IR dl2-Chrysene 1.000 1.000 0.0 126 0.00 4 TCM Total Monochlorobiphenyls 0.881 0.844 4.2 108 0.00 4 TCM Total Dichlorobiphenyls 0.624 0.635 -1.8 123 -0.02 5 SC SURR1, gamma-BHC 0.138 0.138 0.0 124 0.00 6 TCM Total Trichlorobiphenyls 0.409 0.420 -2.7 125 -0.02 7 TCM Total Tetrachlorobiphenyls 0.265 0.249 6.0 110 -0.02 8 TC RT #104 (CL5) 0.190 0.171 10.0 120 -0.01 9 TCM Total Pentachlorobiphenyls 0.199 0.205 -3.0 128 0.00 10 TCM Total Hexachlorobiphenyls 0.179 0.189 -5.6 129 -0.01 11 TC RT #77 (CL4) 0.485 0.497 -2.5 126 -0.01 12 TCM Total Heptachlorobiphenyls 0.154 0.166 -7.8 128 0.00 13 SC SURR2, 4-4'-DDT 0.289 0.283 2.1 140 0.00 14 TCM Total Decachlorobiphenyls 0.93 0.97 -4.3 131 0.00 15 TC Total Decachlorobiphenyls 0.062 0.065 -4.8 126 0.00 15 TC Total Decachlorobiphenyls 0.040 0.043 -7.5 127 -0.02 17 L1 CL1 #1 0.000 0.000 0.000 0.000 0.00 0.68.33# 18 L1 CL1 #3 0.000 0.0	1 IR	d10-Phenanthrene	1.000	1.000	0.0 118 -0.02
TCM			1.000	1.000	0.0 126 0.00
4 TCM Total Dichlorobiphenyls			0.881	0.844	4.2 108 0.00
5 SC SURR1, gamma-BHC			0.624	0.635	
6 TCM Total Trichlorobiphenyls 0.409 0.420 -2.7 125 -0.02 8 TCM Total Tetrachlorobiphenyls 0.265 0.249 6.0 110 -0.02 8 TC RT #104 (CL5) 0.190 0.171 10.0 120 -0.01 9 TCM Total Pentachlorobiphenyls 0.199 0.205 -3.0 128 0.00 110 TCM Total Hexachlorobiphenyls 0.179 0.189 -5.6 129 -0.01 1 TC RT #77 (CL4) 0.485 0.497 -2.5 126 -0.01 1 TC RT #77 (CL4) 0.166 -7.8 128 0.00 13 SC SURR2, 4-4'-DDT 0.289 0.283 2.1 140 0.00 14 TCM Total Heptachlorobiphenyls 0.154 0.166 -7.8 128 0.00 14 TCM Total Octachlorobiphenyls 0.093 0.097 -4.3 131 0.00 15 TC Total Nonachlorobiphenyls 0.093 0.097 -4.3 131 0.00 15 TC Total Nonachlorobiphenyls 0.094 0.065 -4.8 126 0.00 17 L1 CL1 - #1 0.000 0.000 0.000 0.0 0# -8.33# 18 L1 CL1 - #2 0.000 0.000 0.000 0.0 0# -8.33# 20 L1 CL1 - #4 0.000 0.000 0.000 0.0 0# -8.33# 21 L1 CL1 - #5 0.000 0.000 0.000 0.0 0# -8.33# 22 L1 CL1 - #6 0.000 0.000 0.0 0.0 0# -8.33# 23 L1 CL1 - #8 0.000 0.000 0.0 0.0 0# -8.33# 24 L1 CL1 - #8 0.000 0.000 0.0 0.0 0# -8.33# 25 L1 CL1 - #1 0.000 0.000 0.000 0.0 0# -8.33# 25 L1 CL1 - #1 0.000 0.000 0.000 0.0 0# -8.33# 26 L1 CL1 - #1 0.000 0.000 0.000 0.0 0# -8.33# 26 L1 CL1 - #1 0.000 0.000 0.000 0.0 0# -8.33# 26 L1 CL1 - #1 0.000 0.000 0.000 0.0 0# -8.33# 26 L1 CL1 - #1 0.000 0.000 0.000 0.0 0# -8.33# 26 L1 CL1 - #1 0.000 0.000 0.000 0.0 0# -8.33# 26 L1 CL1 - #1 0.000 0.000 0.000 0.0 0# -8.33# 27 L1 MONOCB - Total 0.881 0.000 0.000 0.0 0# -8.33# 28 L2 CL2 - #1 0.000 0.000 0.0 0.0 0# -10.39# 31 L2 CL2 - #4 0.000 0.000 0.0 0.0 0# -10.39# 31 L2 CL2 - #6 0.000 0.000 0.0 0.0 0# -10.39# 31 L2 CL2 - #6 0.000 0.000 0.0 0.0 0# -10.39# 31 L2 CL2 - #6 0.000 0.000 0.0 0.0 0# -10.39# 31 L2 CL2 - #1 0.000 0.000 0.0 0.0 0# -10.39# 31 L2 CL2 - #1 0.000 0.000 0.0 0.0 0# -10.39# 31 L2 CL2 - #1 0.000 0.000 0.0 0.0 0# -10.39# 31 L2 CL2 - #1 0.000 0.000 0.0 0.0 0# -10.39# 31 L2 CL2 - #1 0.000 0.000 0.0 0.0 0# -10.39# 31 L2 CL2 - #6 0.000 0.000 0.0 0.0 0# -10.39# 31 L2 CL2 - #1 0.000 0.000 0.000 0.0 0# -10.39# 31 L2 CL2 - #1 0.000 0.000 0.000 0.0 0# -10.39# 31 L2 CL2 - #1 0.000 0.000 0.000 0.0 0# -10.			0.138	0.138	
8 TC RT #104 (CL5)	6 TCM		0.409	0.420	
9 TCM Total Pentachlorobiphenyls 0.199 0.205 -3.0 128 0.00 10 TCM Total Hexachlorobiphenyls 0.179 0.189 -5.6 129 -0.01 11 TC RT #77 (CL4) 0.485 0.497 -2.5 126 -0.01 12 TCM Total Hexachlorobiphenyls 0.154 0.166 -7.8 128 0.00 13 SC SURR2, 4-4'-DDT 0.289 0.283 2.1 140 0.00 14 TCM Total Octachlorobiphenyls 0.093 0.097 -4.3 131 0.00 15 TC Total Nonachlorobiphenyls 0.062 0.065 -4.8 126 0.00 16 TCM Total Decachlorobiphenyls 0.040 0.043 -7.5 127 -0.02 17 L1 CL1 - #1 0.000 0.000 0.000 0.0 0# -8.33# 18 L1 CL1 - #2 0.000 0.000 0.000 0.0 0# -8.33# 19 L1 CL1 - #3 0.000 0.000 0.000 0.0 0# -8.33# 12 L1 CL1 - #4 0.000 0.000 0.000 0.0 0# -8.33# 12 L1 CL1 - #6 0.000 0.000 0.000 0.0 0# -8.33# 12 L1 CL1 - #8 0.000 0.000 0.000 0.0 0# -8.33# 12 L1 CL1 - #8 0.000 0.000 0.000 0.0 0# -8.33# 12 L1 CL1 - #9 0.000 0.000 0.00 0.0 0# -8.33# 12 L1 CL1 - #9 0.000 0.000 0.0 0# -8.33# 12 L1 CL1 - #10 0.000 0.000 0.0 0# -8.33# 12 L1 CL1 - #10 0.000 0.000 0.0 0# -8.33# 12 L1 CL1 - #10 0.000 0.000 0.0 0# -8.33# 12 L1 CL1 - #10 0.000 0.000 0.0 0# -8.33# 12 L1 CL1 - #10 0.000 0.000 0.0 0# -8.33# 12 L1 CL1 - #10 0.000 0.000 0.0 0# -8.33# 12 L1 CL1 - #10 0.000 0.000 0.0 0# -8.33# 12 CL2 - #1 0.000 0.000 0.000 0.0 0# -8.33# 12 CL2 - #1 0.000 0.000 0.000 0.0 0# -8.33# 12 CL2 - #2 0.000 0.000 0.0 0# -8.33# 12 CL2 - #2 0.000 0.000 0.0 0# -10.39# 13 L2 CL2 - #6 0.000 0.000 0.0 0# -10.39# 13 L2 CL2 - #6 0.000 0.000 0.0 0# -10.39# 13 L2 CL2 - #6 0.000 0.000 0.0 0# -10.39# 13 L2 CL2 - #8 0.000 0.000 0.0 0# -10.39# 13 L2 CL2 - #10 0.000 0.000 0.0 0# -10.39# 13 L2 CL2 - #10 0.000 0.000 0.0 0# -10.39# 13 L2 CL2 - #10 0.000 0.000 0.0 0# -10.39# 13 L2 CL2 - #10 0.000 0.000 0.0 0# -10.39# 13 L2 CL2 - #10 0.000 0.000 0.000 0.0 0# -10.39# 13 L2 CL2 - #10 0.000 0.000 0.000 0.0 0# -10.39# 13 L2 CL2 - #10 0.000 0.000 0.000 0.0 0# -10.39# 13 L2 CL2 - #10 0.000 0.000 0.000 0.0 0# -10.39# 13 L2 CL2 - #10 0.000 0.000 0.000 0.0 0# -10.39# 13 L2 CL2 - #10 0.000 0.000 0.000 0.0 0# -110.39# 13 L2 CL2 - #10 0.000 0.000 0.000 0.0 0# -110.39# 13 L2 CL2 - #10 0.000 0.000 0.000 0.0	7 TCM	Total Tetrachlorobiphenyls	0.265	0.249	
10 TCM Total Hexachlorobiphenyls 0.179 0.189 -5.6 129 -0.01 11 TC RT #77 (CL4) 0.485 0.497 -2.5 126 -0.01 12 TCM Total Heptachlorobiphenyls 0.154 0.166 -7.8 128 0.00 13 SC SURR2, 4-4'-DDT 0.289 0.283 2.1 140 0.00 14 TCM Total Octachlorobiphenyls 0.062 0.065 -4.8 126 0.00 15 TC Total Nonachlorobiphenyls 0.062 0.065 -4.8 126 0.00 16 TCM Total Decachlorobiphenyl 0.040 0.043 -7.5 127 -0.02 17 L1 CL1 - #1 0.000 0.000 0.000 0.0 0# -8.33# 18 L1 CL1 - #2 0.000 0.000 0.0 0# -8.33# 20 L1 CL1 - #4 0.000 0.000 0.0 0# -8.33# 21 L1 CL1 - #5 0.000 0.000 0.0 0# -8.33# 22 L1 CL1 - #8 0.000 0.000 0.0 0# -8.33#	8 TC	RT #104 (CL5)	0.190	0.171	
11 TC RT #77 (CL4)	9 TCM	Total Pentachlorobiphenyls	0.199		
TCM	10 TCM	Total Hexachlorobiphenyls	0.179		
13 SC SURR2, 4-4'-DDT 0.289 0.283 2.1 140 0.00 14 TCM Total Octachlorobiphenyls 0.093 0.097 -4.3 131 0.00 15 TC Total Nonachlorobiphenyls R 0.062 0.065 -4.8 126 0.00 16 TCM Total Decachlorobiphenyl 0.040 0.043 -7.5 127 -0.02 17 L1 CL1 - #1 0.000 0.000 0.000 0.0 0# -8.33# 18 L1 CL1 - #2 0.000 0.000 0.0 0# -8.33# 19 L1 CL1 - #3 0.000 0.000 0.0 0# -8.33# 20 L1 CL1 - #4 0.000 0.000 0.000 0.0 0# -8.33# 21 L1 CL1 - #6 0.000 0.000 0.000 0.0 0# -8.33# 22 L1 CL1 - #6 0.000 0.000 0.0 0# -8.33# 23 L1 CL1 - #7 0.000 0.000 0.0 0# -8.33# 24 L1 CL1 - #8 0.000 0.000 0.0 0# -8.33# 25 L1 CL1 - #8 0.000 0.000 0.0 0# -8.33# 26 L1 CL1 - #1 0 0.000 0.000 0.0 0# -8.33# 27 L1 MonoCB - Total 0.881 0.000 0.0 0# -8.33# 28 L2 CL2 - #1 0.000 0.000 0.0 0# -8.33# 29 L2 CL2 - #4 0.000 0.000 0.0 0# -10.39# 31 L2 CL2 - #4 0.000 0.000 0.0 0# -10.39# 33 L2 CL2 - #6 0.000 0.000 0.0 0# -10.39# 34 L2 CL2 - #6 0.000 0.000 0.0 0# -10.39# 35 L2 CL2 - #6 0.000 0.000 0.0 0# -10.39# 36 L2 CL2 - #7 0.000 0.000 0.0 0# -10.39# 37 L2 CL2 - #8 0.000 0.000 0.0 0# -10.39# 38 L2 CL2 - #9 0.000 0.000 0.0 0# -10.39# 39 L3 CL3 - #1 0.000 0.000 0.0 0# -10.39# 39 L3 CL3 - #1 0.000 0.000 0.0 0# -10.39# 39 L3 CL3 - #1 0.000 0.000 0.0 0# -10.39# 39 L3 CL3 - #1 0.000 0.000 0.0 0# -11.80#	11 TC				
14 TCM Total Octachlorobiphenyls 0.093 0.097 -4.3 131 0.00 15 TC Total Nonachlorobiphenyls R 0.062 0.065 -4.8 126 0.00 16 TCM Total Decachlorobiphenyl 0.040 0.043 -7.5 127 -0.02 17 L1 CL1 - #1 0.000 0.000 0.000 0.0 0.0 -8.33# 18 L1 CL1 - #2 0.000 0.000 0.0 0.0 0.0 -8.33# 20 L1 CL1 - #3 0.000 0.000 0.00 0.0 0.0 0.0 -8.33# 21 L1 CL1 - #5 0.000 0.000 0.00 0.0 0.0 0.0 -8.33# 22 L1 CL1 - #6 0.000 0.000 0.0 0.0 0.0 0.0 0.0 0.0 0.833# 23 L1 CL1 - #7 0.000 0.000 0.0 0.0 0.0 0.0 0.0 0.0 0.0 -8.33# 25 L1	12 TCM				
15 TC Total Nonachlorobiphenyls R 0.062 0.065 -4.8 126 0.00 16 TCM Total Decachlorobiphenyl 0.040 0.043 -7.5 127 -0.02 17 L1 CL1 - #1 0.000 0.000 0.00 0.0 0# -8.33# 18 L1 CL1 - #2 0.000 0.000 0.00 0.0 0# -8.33# 19 L1 CL1 - #3 0.000 0.000 0.00 0.0 0# -8.33# 20 L1 CL1 - #4 0.000 0.000 0.00 0.0 0# -8.33# 21 L1 CL1 - #5 0.000 0.000 0.00 0.0 0# -8.33# 22 L1 CL1 - #6 0.000 0.000 0.00 0.0 0# -8.33# 22 L1 CL1 - #7 0.000 0.000 0.00 0.0 0# -8.33# 23 L1 CL1 - #8 0.000 0.000 0.00 0.0 0# -8.33# 25 L1 CL1 - #9 0.000 0.000 0.0 0# -8.33# 26 L1 CL1 - #9 0.000 0.000 0.0 0# -8.33# 26 L1 CL1 - #10 0.000 0.000 0.0 0# -8.33# 28 L2 CL2 - #1 0.000 0.000 0.00 0.0 0# -8.33# 29 L2 CL2 - #2 0.000 0.000 0.00 0.0 0# -8.33# 29 L2 CL2 - #2 0.000 0.000 0.00 0.0 0# -10.39# 29 L2 CL2 - #4 0.000 0.000 0.00 0.0 0# -10.39# 29 L2 CL2 - #4 0.000 0.000 0.00 0.0 0# -10.39# 29 L2 CL2 - #6 0.000 0.000 0.00 0.0 0# -10.39# 29 L2 CL2 - #6 0.000 0.000 0.00 0.0 0# -10.39# 25 L2 CL2 - #8 0.000 0.000 0.00 0.0 0# -10.39# 25 L2 CL2 - #8 0.000 0.000 0.00 0.0 0# -10.39# 25 L2 CL2 - #8 0.000 0.000 0.00 0.0 0# -10.39# 25 L2 CL2 - #8 0.000 0.000 0.00 0.0 0# -10.39# 25 L2 CL2 - #8 0.000 0.000 0.00 0.0 0# -10.39# 25 L2 CL2 - #7 0.000 0.000 0.00 0.0 0# -10.39# 25 L2 CL2 - #8 0.000 0.000 0.00 0.0 0# -10.39# 25 L2 CL2 - #8 0.000 0.000 0.00 0.0 0# -10.39# 25 L2 CL2 - #8 0.000 0.000 0.000 0.0 0# -10.39# 25 L2 CL2 - #8 0.000 0.000 0.000 0.0 0# -10.39# 25 L2 CL2 - #8 0.000 0.000 0.000 0.0 0# -10.39# 25 L2 CL2 - #8 0.000 0.000 0.000 0.0 0# -10.39# 25 L2 CL2 - #9 0.000 0.000 0.000 0.0 0# -10.39# 25 L2 CL2 - #9 0.000 0.000 0.000 0.0 0# -10.39# 25 L2 CL2 - #10 0.000 0.000 0.000 0.0 0# -10.39# 25 L2 CL2 - #10 0.000 0.000 0.000 0.0 0# -10.39# 25 L2 CL2 - #10 0.000 0.000 0.000 0.0 0# -10.39# 25 L2 CL2 - #10 0.000 0.000 0.000 0.0 0# -10.39# 25 L2 CL2 - #10 0.000 0.000 0.000 0.0 0# -10.39# 25 L2 CL2 - #10 0.000 0.000 0.000 0.0 0# -10.39# 25 L2 CL2 - #10 0.000 0.000 0.000 0.0 0# -11.80#	13 SC	SURR2, 4-4'-DDT			
16 TCM Total Decachlorobiphenyl 0.040 0.043 -7.5 127 -0.02 17 L1 CL1 - #1 0.000 0.000 0.00 0.0 0# -8.33# 18 L1 CL1 - #2 0.000 0.000 0.0 0.0 0# -8.33# 19 L1 CL1 - #3 0.000 0.000 0.0 0# -8.33# 20 L1 CL1 - #5 0.000 0.000 0.0 0# -8.33# 21 L1 CL1 - #5 0.000 0.000 0.0 0# -8.33# 22 L1 CL1 - #6 0.000 0.000 0.0 0# -8.33# 23 L1 CL1 - #7 0.000 0.000 0.0 0# -8.33# 24 L1 CL1 - #8 0.000 0.000 0.0 0# -8.33# 25 L1 CL1 - #9 0.000 0.000 0.0 0# -8.33# 26 L1 CL1 - #9 0.000 0.000 0.0 0# -8.33# 26 L1 CL1 - #10 0.000 0.000 0.0 0# -8.33# 28 L2 CL2 - #1 0.000 0.000 0.0 0# -8.33# 29 L2 CL2 - #1 0.000 0.000 0.0 0# -10.39# 30 L2 CL2 - #3 0.000 0.000 0.0 0# -10.39# 31 L2 CL2 - #6 0.000 0.000 0.0 0# -10.39# 33 L2 CL2 - #6 0.000 0.000 0.0 0# -10.39# 34 L2 CL2 - #8 0.000 0.000 0.0 0# -10.39# 35 L2 CL2 - #8 0.000 0.000 0.0 0# -10.39# 36 L2 CL2 - #9 0.000 0.000 0.0 0# -10.39# 36 L2 CL2 - #10 0.000 0.000 0.0 0# -10.39# 37 L2 CL2 - #9 0.000 0.000 0.0 0# -10.39# 38 L2 DiCB - Total 0.624 0.000 0.0 0# -10.39# 39 L3 CL3 - #1 0.000 0.000 0.0 0# -11.80# 40 L3 CL3 - #2 0.000 0.000 0.0 0# -11.80#	14 TCM	Total Octachlorobiphenyls			* *
17 L1 CL1 - #1 0.000 0.000 0.00 0# -8.33# 18 L1 CL1 - #2 0.000 0.000 0.0 0# -8.33# 19 L1 CL1 - #3 0.000 0.000 0.0 0# -8.33# 20 L1 CL1 - #4 0.000 0.000 0.0 0# -8.33# 21 L1 CL1 - #5 0.000 0.000 0.0 0# -8.33# 22 L1 CL1 - #6 0.000 0.000 0.0 0# -8.33# 23 L1 CL1 - #6 0.000 0.000 0.0 0# -8.33# 24 L1 CL1 - #8 0.000 0.000 0.0 0# -8.33# 25 L1 CL1 - #8 0.000 0.000 0.0 0# -8.33# 26 L1 CL1 - #9 0.000 0.000 0.0 0# -8.33# 26 L1 CL1 - #10 0.000 0.000 0.0 0# -8.33# 27 L1 MonoCB - Total 0.881 0.000 100.0# 0# -8.33# 28 L2 CL2 - #1 0.000 0.000 0.0 0# -10.39# 30 L2 CL2 - #2 0.000 0.000 0.0 0# -10.39# 31 L2 CL2 - #4 0.000 0.000 0.0 0# -10.39# 32 L2 CL2 - #5 0.000 0.000 0.0 0# -10.39# 33 L2 CL2 - #6 0.000 0.000 0.0 0# -10.39# 34 L2 CL2 - #8 0.000 0.000 0.0 0# -10.39# 35 L2 CL2 - #8 0.000 0.000 0.0 0# -10.39# 36 L2 CL2 - #8 0.000 0.000 0.0 0# -10.39# 36 L2 CL2 - #8 0.000 0.000 0.0 0# -10.39# 37 L2 CL2 - #8 0.000 0.000 0.0 0# -10.39# 38 L2 D1CB - Total 0.000 0.000 0.0 0# -10.39# 39 L3 CL3 - #1 0.000 0.000 0.0 0# -10.39# 39 L3 CL3 - #1 0.000 0.000 0.0 0# -10.39# 39 L3 CL3 - #1 0.000 0.000 0.0 0# -10.39# 39 L3 CL3 - #1 0.000 0.000 0.0 0# -11.80# 40 L3 CL3 - #2 0.000 0.000 0.0 0# -11.80#	15 TC	Total Nonachlorobiphenyls R			
18 L1 CL1 - #2	16 TCM	Total Decachlorobiphenyl			
19 L1 CL1 - #3	17 L1				
20 L1 CL1 - #4	18 L1	CL1 - #2			
21 L1 CL1 - #5	19 Ll	CL1 - #3			and the second of the second o
22 L1 CL1 - #6	20 L1	CL1 - #4			
23 L1 CL1 - #7 24 L1 CL1 - #8 25 L1 CL1 - #9 26 L1 CL1 - #10 27 L1 MonoCB - Total 28 L2 CL2 - #1 29 L2 CL2 - #2 30 L2 CL2 - #3 31 L2 CL2 - #4 31 L2 CL2 - #5 32 L2 CL2 - #6 33 L2 CL2 - #6 34 L2 CL2 - #6 35 L2 CL2 - #7 36 L2 CL2 - #7 37 L2 CL2 - #8 38 L2 CL2 - #8 39 L2 CL2 - #8 30 L2 CL2 - #8 30 L2 CL2 - #8 31 L2 CL2 - #6 32 L2 CL2 - #7 33 L2 CL2 - #7 34 L2 CL2 - #8 35 L2 CL2 - #8 36 L2 CL2 - #8 37 L2 CL2 - #9 38 L2 D1CB - Total 39 L3 CL3 - #1 40 L3 CL3 - #1 40 L3 CL3 - #1 40 L3 CL3 - #2 0.000 0.000 0.	21 Ll	CL1 - #5			
24 L1 CL1 - #8 0.000 0.000 0.000 0.0 0 0 0 0 0 0 0 0 0	22 L1				
25 L1 CL1 - #9	23 L1				•
26 L1 CL1 - #10					
27 L1 MonoCB - Total					
28 L2 CL2 - #1 0.000 0.000 0.0 0# -10.39# 29 L2 CL2 - #2 0.000 0.000 0.0 0# -10.39# 30 L2 CL2 - #3 0.000 0.000 0.0 0# -10.39# 31 L2 CL2 - #4 0.000 0.000 0.0 0# -10.39# 32 L2 CL2 - #5 0.000 0.000 0.0 0# -10.39# 33 L2 CL2 - #6 0.000 0.000 0.0 0# -10.39# 34 L2 CL2 - #6 0.000 0.000 0.0 0# -10.39# 35 L2 CL2 - #7 0.000 0.000 0.0 0# -10.39# 35 L2 CL2 - #8 0.000 0.000 0.0 0# -10.39# 36 L2 CL2 - #8 0.000 0.000 0.0 0# -10.39# 36 L2 CL2 - #9 0.000 0.000 0.0 0# -10.39# 37 L2 CL2 - #10 0.000 0.000 0.0 0# -10.39# 38 L2 DiCB - Total 0.624 0.000 100.0# 0# -10.39# 39 L3 CL3 - #1 0.000 0.000 0.0 0# -11.80# 40 L3 CL3 - #2 0.000 0.000 0.0 0# -11.80#					
29 L2 CL2 - #2 30 L2 CL2 - #3 31 L2 CL2 - #4 32 L2 CL2 - #5 33 L2 CL2 - #6 34 L2 CL2 - #7 35 L2 CL2 - #7 36 L2 CL2 - #8 37 L2 CL2 - #8 38 L2 CL2 - #8 39 L3 CL2 - #9 30 L0000 0.0000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000					The state of the s
30 L2 CL2 - #3 31 L2 CL2 - #4 31 L2 CL2 - #4 32 L2 CL2 - #5 33 L2 CL2 - #6 34 L2 CL2 - #7 35 L2 CL2 - #8 36 L2 CL2 - #8 37 L2 CL2 - #9 38 L2 CL2 - #9 39 L3 CL3 - #1 40 L3 CL3 - #1 40 L3 CL3 - #2 40 .000 0.000 0.000 0.00 0# -10.39# 40 .000 0.000 0.000 0.00 0# -10.39# 40 .000 0.000 0.000 0.00 0# -10.39# 40 .000 0.000 0.000 0.00 0# -10.39# 40 .000 0.000 0.000 0.00 0# -10.39# 40 .000 0.000 0.000 0.00 0# -10.39# 40 .000 0.000 0.000 0.00 0# -11.80# 40 .000 0.000 0.000 0.00 0# -11.80#					
31 L2 CL2 - #4 0.000 0.000 0.00 0 0 0 0 0 0 0 0 0 0 0					
32 L2 CL2 - #5 0.000 0.000 0.00 0 0# -10.39# 31 L2 CL2 - #6 0.000 0.000 0.00 0 0# -10.39# 32 L2 CL2 - #7 0.000 0.000 0.00 0 0# -10.39# 33 L2 CL2 - #8 0.000 0.000 0.00 0 0# -10.39# 35 L2 CL2 - #8 0.000 0.000 0.00 0 0# -10.39# 36 L2 CL2 - #9 0.000 0.000 0.00 0 0# -10.39# 37 L2 CL2 - #10 0.000 0.000 0.00 0# -10.39# 38 L2 DiCB - Total 0.624 0.000 100.0# 0# -10.39# 39 L3 CL3 - #1 0.000 0.000 0.00 0 0# -11.80# 40 L3 CL3 - #2					
33 L2 CL2 - #6 34 L2 CL2 - #7 35 L2 CL2 - #8 36 L2 CL2 - #9 37 L2 CL2 - #10 38 L2 DiCB - Total 39 L3 CL3 - #1 40 L3 CL3 - #2 0.000 0.000 0.000 0.0 0# -10.39# 0.000 0.000 0.000 0.0 0# -10.39# 0.000 0.000 0.000 0.0 0# -10.39# 0.000 0.000 0.000 0.0 0# -10.39# 0.000 0.000 0.000 0.0 0# -11.80#		•			
34 L2 CL2 - #7 35 L2 CL2 - #8 36 L2 CL2 - #9 37 L2 CL2 - #10 38 L2 DiCB - Total 39 L3 CL3 - #1 40 L3 CL3 - #2 0.000 0.000 0.000 0.0 0# -10.39# 0.000 0.000 0.000 0.0 0# -10.39# 0.000 0.000 0.000 0.0 0# -10.39# 0.624 0.000 100.0# 0# -10.39# 0.000 0.000 0.00 0# -11.80#					
35 L2 CL2 - #8 0.000 0.000 0.0 0# -10.39# 36 L2 CL2 - #9 0.000 0.000 0.0 0# -10.39# 37 L2 CL2 - #10 0.000 0.000 0.0 0# -10.39# 38 L2 DiCB - Total 0.624 0.000 100.0# 0# -10.39# 39 L3 CL3 - #1 0.000 0.000 0.0 0# -11.80# 40 L3 CL3 - #2 0.000 0.000 0.0 0# -11.80#					
36 L2 CL2 - #9 0.000 0.000 0.0 0# -10.39# 37 L2 CL2 - #10 0.000 0.000 0.0 0# -10.39# 38 L2 DiCB - Total 0.624 0.000 100.0# 0# -10.39# 39 L3 CL3 - #1 0.000 0.000 0.0 0# -11.80# 40 L3 CL3 - #2 0.000 0.000 0.0 0# -11.80#					
37 L2 CL2 - #10 0.000 0.000 0.0 0# -10.39# 38 L2 DiCB - Total 0.624 0.000 100.0# 0# -10.39# 39 L3 CL3 - #1 0.000 0.000 0.0 0# -11.80# 40 L3 CL3 - #2 0.000 0.000 0.0 0# -11.80#					· · · · · · · · · · · · · · · · · · ·
38 L2 DiCB - Total 0.624 0.000 100.0# 0# -10.39# 39 L3 CL3 - #1 0.000 0.000 0.0 0# -11.80# 40 L3 CL3 - #2 0.000 0.000 0.0 0# -11.80#					
39 L3 CL3 - #1 0.000 0.000 0.0 0# -11.80# 40 L3 CL3 - #2 0.000 0.000 0.0 0# -11.80#					**
40 L3 CL3 - #2 0.000 0.000 0.0 0# -11.80#					**
		•			***
41 L3 CL3 - #3 0.000 0.000 0.0 0# -11.80#		· ·			
	41 L3	CL3 - #3	0.000	0.000	0.0 0# -11.80#

Data File : I:\ACQUDATA\5973B\DATA\070114\DK314.D Vial: 7 Acq On : 1 Jul 2014 1:21 pm Sample : FINAL CHECK Misc : CAL. 1.0 STD 680.PCB Operator: J.Wu Inst : 5973-B Multiplr: 1.00

MS Integration Params: INTIS.P

Method : I:\ACQUDATA\5973B\METHODS\6800623B.M (RTE Integrator)
Title : 680.PCB by SIM

#13 L.R.

Last Update : Tue Jun 24 11:41:24 2014 Response via : Multiple Level Calibration

Min. RRF : 0.000 Min. Rel. Area : 70% Max. R.T. Dev 0.50min

Max. RRF Dev : 20% Max. Rel. Area : 200%

1 IR		Compound	Amount	Calc.	%Dev	Area%	Dev(min)
2 IR d12-Chrysene 0.750 0.750 0.0 126 0.00 3 TCM Total Monochlorobiphenyls 0.100 0.096 4.0 108 0.00 4 TCM Total Dichlorobiphenyls 0.100 0.102 -2.0 123 -0.02 5 SC SURR1, gamma-BHC 0.200 0.201 -0.5 124 0.00 6 TCM Total Trichlorobiphenyls 0.200 0.183 6.0 110 -0.02 7 TCM Total Tetrachlorobiphenyls 0.200 0.188 6.0 110 -0.02 8 TC RT #104 (CL5) 0.200 0.188 6.0 110 -0.02 9 TCM Total Pentachlorobiphenyls 0.200 0.206 -3.0 128 0.00 10 TCM Total Hexachlorobiphenyls 0.200 0.212 -6.0 129 -0.01 11 TC RT #77 (CL4) 0.200 0.212 -6.0 129 -0.01 12 TCM Total Heptachlorobiphenyls 0.300 0.324 -8.0 128 0.00 13 SC SURR2, 4-4'-DDT 0.200 0.185 7.5 140 0.00 14 TCM Total Heptachlorobiphenyls 0.300 0.324 -8.0 128 0.00 15 TC Total Nonachlorobiphenyls 0.300 0.315 -5.0 131 0.00 15 TC Total Nonachlorobiphenyls 0.400 0.421 -5.2 126 0.00 16 TCM Total Decachlorobiphenyls 0.400 0.421 -5.2 126 0.00 17 L1 CL1 #1 0.100 0.000 100.0# 0 -8.33# 18 L1 CL1 #2 0.100 0.000 100.0# 0 -8.33# 20 L1 CL1 #3 0.100 0.000 100.0# 0 -8.33# 21 L1 CL1 #5 0.100 0.000 100.0# 0 -8.33# 22 L1 CL1 #6 0.100 0.000 100.0# 0 -8.33# 23 L1 CL1 #8 0.100 0.000 100.0# 0 -8.33# 25 L1 CL1 #10 0.100 0.000 100.0# 0 -8.33# 25 L1 CL1 #10 0.100 0.000 100.0# 0 -8.33# 26 L1 CL1 #10 0.100 0.000 100.0# 0 -8.33# 27 L1 MonocB Total 0.100 0.000 100.0# 0 -8.33# 28 L2 CL2 #1 0.100 0.000 100.0# 0 -10.39# 30 L2 CL2 #2 0.100 0.000 100.0# 0 -10.39# 31 L2 CL2 #8 0.100 0.000 100.0# 0 -10.39# 33 L2 CL2 #8 0.100 0.000 100.0# 0 -10.39# 34 L2 CL2 #10 0.100 0.000 100.0# 0 -10.39# 35 L2 CL2 #10	1 IR	d10-Phenanthrene	0.750	0.750	0.0	118	-0.02
3 TCM Total Monochlorobiphenyls 0.100 0.096 4.0 108 0.00 4 TCM Total Dichlorobiphenyls 0.200 0.201 -2.0 123 -0.02 5 SC SURRI, gamma-BHC 0.200 0.201 -0.5 124 0.00 6 TCM Total Trichlorobiphenyls 0.100 0.103 -3.0 125 -0.02 7 TCM Total Tetrachlorobiphenyls 0.200 0.188 6.0 110 -0.02 8 TC RT #104 (CL5) 0.200 0.188 6.0 110 -0.02 8 TC RT #104 (CL5) 0.200 0.180 10.0 120 -0.01 9 TCM Total Pentachlorobiphenyls 0.200 0.206 -3.0 128 0.00 10 TCM Total Hexachlorobiphenyls 0.200 0.206 -3.0 128 0.00 10 TCM Total Hexachlorobiphenyls 0.200 0.212 -6.0 129 -0.01 11 TC RT #77 (CL4) 0.200 0.205 -2.5 126 -0.01 11 TC RT #77 (CL4) 0.200 0.205 -2.5 126 -0.01 11 TC RT #77 (CL4) 0.200 0.205 -2.5 126 -0.01 11 TC RT #77 (TCAL) 0.200 0.185 -5.0 128 0.00 113 TCM Total Heptachlorobiphenyls 0.300 0.315 -5.0 131 0.00 115 TC Total Nonachlorobiphenyls 0.300 0.315 -5.0 131 0.00 115 TC Total Decachlorobiphenyls 0.300 0.315 -5.0 131 0.00 115 TC Total Decachlorobiphenyls 0.500 0.548 -9.6 127 -0.02 17 L1 CL1 - #1 0.100 0.000 100.0# 0 -8.33# 19 L1 CL1 - #3 0.100 0.000 100.0# 0 -8.33# 19 L1 CL1 - #4 0.100 0.000 100.0# 0 -8.33# 19 L1 CL1 - #5 0.100 0.000 100.0# 0 -8.33# 12 L1 CL1 - #8 0.100 0.000 100.0# 0 -8.33# 12 L1 CL1 - #8 0.100 0.000 100.0# 0 -8.33# 12 L1 CL1 - #8 0.100 0.000 100.0# 0 -8.33# 12 L1 CL1 - #8 0.100 0.000 100.0# 0 -8.33# 12 L2 CL2 - #1 0.100 0.000 100.0# 0 -8.33# 12 L2 CL2 - #2 0.100 0.000 100.0# 0 -8.33# 12 L2 CL2 - #5 0.100 0.000 100.0# 0 -10.39# 12 L2 CL2 - #5 0.100 0.000 100.0# 0 -10.39# 13 L2 CL2 - #5 0.100 0.000 100.0# 0 -10.39# 13 L2 CL2 - #5 0.100 0.000 100.0# 0 -10.39# 13 L2 CL2 - #1 0.100 0.000 100.0# 0 -10.39# 13 L2 CL2 - #1 0.100 0.000 100.0# 0 -10.39# 13 L2 CL2 - #1 0.100 0.000 100.0# 0 -10.39# 13 L2 CL2 - #1 0.100 0.000 100.0# 0 -10.39# 13 L2 CL2 - #1 0.100 0.000 100.0# 0 -10.39# 13 L2 CL2 - #1 0.100 0.000 100.0# 0 -10.39# 13 L2 CL2 - #1 0.100 0.000 100.0# 0 -10.39# 13 L2 CL2 - #1 0.100 0.000 100.0# 0 -10.39# 13 L2 CL2 - #1 0.100 0.000 100.0# 0 -10.39# 13 L2 CL2 - #1 0.100 0.000 100.0# 0 -10.39# 13 L2 CL2 - #1 0.100 0.000 10							
4 TCM Total Dichlorobiphenyls					4.0	108	0.00
S C SURR1, gamma-BHC 0.200 0.201 -0.5 124 0.00					-2.0	123	-0.02
6 TCM Total Trichlorobiphenyls 0.100 0.103 -3.0 125 -0.02 7 TCM Total Tetrachlorobiphenyls 0.200 0.188 6.0 110 -0.02 8 TC RT #104 (CL5) 0.200 0.200 0.180 10.0 120 -0.01 9 TCM Total Pentachlorobiphenyls 0.200 0.206 -3.0 128 0.00 10 TCM Total Hexachlorobiphenyls 0.200 0.212 -6.0 129 -0.01 11 TC RT #77 (CL4) 0.200 0.205 -2.5 126 -0.01 12 TCM Total Heptachlorobiphenyls 0.300 0.324 -8.0 128 0.00 128 SC SURR2, 4-4'-DDT 0.200 0.185 7.5 140 0.00 14 TCM Total Octachlorobiphenyls 0.300 0.315 -5.0 131 0.00 15 TC Total Nonachlorobiphenyls R 0.400 0.421 -5.2 126 0.00 16 TCM Total Decachlorobiphenyls R 0.400 0.421 -5.2 126 0.00 17 L1 CL1 - #1 0.100 0.500 0.548 -9.6 127 -0.02 17 L1 CL1 - #1 0.100 0.000 100.0# 0 -8.33# 18 L1 CL1 - #2 0.100 0.000 100.0# 0 -8.33# 19 L1 CL1 - #3 0.100 0.000 100.0# 0 -8.33# 20 L1 CL1 - #4 0.100 0.000 100.0# 0 -8.33# 21 L1 CL1 - #5 0.100 0.000 100.0# 0 -8.33# 22 L1 CL1 - #8 0.100 0.000 100.0# 0 -8.33# 23 L1 CL1 - #8 0.100 0.000 100.0# 0 -8.33# 24 L1 CL1 - #8 0.100 0.000 100.0# 0 -8.33# 25 L1 CL1 - #8 0.100 0.000 100.0# 0 -8.33# 26 L1 CL1 - #8 0.100 0.000 100.0# 0 -8.33# 26 L1 CL1 - #8 0.100 0.000 100.0# 0 -8.33# 26 L1 CL1 - #8 0.100 0.000 100.0# 0 -8.33# 26 L1 CL1 - #10 0.100 0.000 100.0# 0 -8.33# 27 L1 MonoCB - Total 0.100 0.000 100.0# 0 -8.33# 27 L1 CL1 - #10 0.100 0.000 100.0# 0 -8.33# 28 L2 CL2 - #1 0.100 0.000 100.0# 0 -10.39# 29 L2 CL2 - #2 0.100 0.000 100.0# 0 -10.39# 29 L2 CL2 - #6 0.100 0.000 100.0# 0 -10.39# 21 L2 CL2 - #6 0.100 0.000 100.0# 0 -10.39# 21 L2 CL2 - #6 0.100 0.000 100.0# 0 -10.39# 21 L2 CL2 - #6 0.100 0.000 100.0# 0 -10.39# 21 L2 CL2 - #6 0.100 0.000 100.0# 0 -10.39# 21 L2 CL2 - #6 0.100 0.000 100.0# 0 -10.39# 21 L2 CL2 - #8 0.100 0.000 100.0# 0 -10.39# 21 L2 CL2 - #6 0.100 0.000 100.0# 0 -10.39# 21 L2 CL2 - #10 0.100 0.000 100.0# 0 -10.39# 21 L2 CL2 - #10 0.100 0.000 100.0# 0 -10.39# 21 L2 CL2 - #10 0.100 0.000 100.0# 0 -10.39# 21 L2 CL2 - #10 0.100 0.000 100.0# 0 -10.39# 21 L2 CL2 - #10 0.100 0.000 100.0# 0 -10.39# 21 L2 CL2 - #10 0.100 0.000 100.0# 0 -10.39# 21 L2 CL2 -					-0.5	124	0.00
7 TCM Total Tetrachlorobiphenyls 0.200 0.188 6.0 110 -0.02 8 TC RT #104 (CL5) 0.200 0.180 10.0 120 -0.01 9 TCM Total Pentachlorobiphenyls 0.200 0.212 -6.0 129 -0.01 11 TC RT #77 (CL4) 0.200 0.212 -6.0 129 -0.01 12 TCM Total Hexachlorobiphenyls 0.300 0.324 -8.0 128 0.00 13 SC SURR2, 4-4'-DDT 0.200 0.185 7.5 140 0.00 15 TC Total Nonachlorobiphenyls 0.300 0.315 -5.0 131 0.00 15 TC Total Nonachlorobiphenyls 0.400 0.421 -5.2 126 0.00 16 TCM Total Decachlorobiphenyl 0.500 0.548 -9.6 127 -0.02 17 L1 CL1 - #1 0.100 0.000 100.0# 0.8.33# 18 L1 CL1 - #3 0.100 0.000 100.0# 0.8.33#					-3.0	125	-0.02
8 TC RT #104 (CL5)					6.0	110	-0.02
9 TCM Total Pentachlorobiphenyls 0.200 0.206 -3.0 128 0.00 10 TCM Total Hexachlorobiphenyls 0.200 0.212 -6.0 129 -0.01 11 TC RT #77 (CL4) 0.200 0.205 -2.5 126 -0.01 12 TCM Total Heptachlorobiphenyls 0.300 0.324 -8.0 128 0.00 128 SC SURR2, 4-4'-DDT 0.200 0.185 7.5 140 0.00 14 TCM Total Octachlorobiphenyls 0.300 0.315 -5.0 131 0.00 15 TC Total Nonachlorobiphenyls R 0.400 0.421 -5.2 126 0.00 16 TCM Total Decachlorobiphenyls R 0.400 0.421 -5.2 126 0.00 16 TCM Total Decachlorobiphenyl 0.500 0.548 -9.6 127 -0.02 17 L1 CL1 - #1 0.100 0.000 100.0# 0 -8.33# 19 L1 CL1 - #3 0.100 0.000 100.0# 0 -8.33# 20 L1 CL1 - #3 0.100 0.000 100.0# 0 -8.33# 21 L1 CL1 - #5 0.100 0.000 100.0# 0 -8.33# 22 L1 CL1 - #6 0.100 0.000 100.0# 0 -8.33# 23 L1 CL1 - #6 0.100 0.000 100.0# 0 -8.33# 25 L1 CL1 - #9 0.100 0.000 100.0# 0 -8.33# 25 L1 CL1 - #9 0.100 0.000 100.0# 0 -8.33# 26 L1 CL1 - #9 0.100 0.000 100.0# 0 -8.33# 28 L2 CL2 - #1 0.100 0.000 100.0# 0 -8.33# 28 L2 CL2 - #2 0.100 0.000 100.0# 0 -8.33# 28 L2 CL2 - #4 0.100 0.000 100.0# 0 -8.33# 31 L2 CL2 - #5 0.100 0.000 100.0# 0 -10.39# 31 L2 CL2 - #5 0.100 0.000 100.0# 0 -10.39# 31 L2 CL2 - #6 0.100 0.000 100.0# 0 -10.39# 31 L2 CL2 - #8 0.100 0.000 100.0# 0 -10.39# 31 L2 CL2 - #8 0.100 0.000 100.0# 0 -10.39# 31 L2 CL2 - #8 0.100 0.000 100.0# 0 -10.39# 31 L2 CL2 - #8 0.100 0.000 100.0# 0 -10.39# 31 L2 CL2 - #8 0.100 0.000 100.0# 0 -10.39# 31 L2 CL2 - #8 0.100 0.000 100.0# 0 -10.39# 31 L2 CL2 - #8 0.100 0.000 100.0# 0 -10.39# 31 L2 CL2 - #8 0.100 0.000 100.0# 0 -10.39# 31 L2 CL2 - #8 0.100 0.000 100.0# 0 -10.39# 31 L2 CL2 - #8 0.100 0.000 100.0# 0 -10.39# 31 L2 CL2 - #8 0.100 0.000 100.0# 0 -10.39# 31 L2 CL2 - #8 0.100 0.000 100.0# 0 -10.39# 31 L2 CL2 - #10 0.100 0.000 100.0# 0 -10.39# 31 L2 CL2 - #8 0.100 0.000 100.0# 0 -10.39# 31 L2 CL2 - #8 0.100 0.000 100.0# 0 -10.39# 31 L2 CL2 - #10 0.100 0.000 100.0# 0 -10.39# 31 L2 CL2 - #10 0.100 0.000 100.0# 0 -10.39# 31 L2 CL2 - #10 0.100 0.000 100.0# 0 -10.39# 31 L2 CL2 - #10 0.100 0.000 0.000 100.0# 0 -10.39# 31 L2 CL2 - #10 0.100 0.000 0.000 100.0					10.0	120	-0.01
10 TCM				0.206	-3.0	128	0.00
TCM			0.200	0.212	-6.0	129	-0.01
13 SC SURR2, 4-4'-DDT 0.200 0.185 7.5 140 0.00 14 TCM Total Octachlorobiphenyls 0.300 0.315 -5.0 131 0.00 15 TC Total Nonachlorobiphenyls R 0.400 0.421 -5.2 126 0.00 16 TCM Total Decachlorobiphenyl 0.500 0.548 -9.6 127 -0.02 17 L1 CL1 #1 0.100 0.000 100.0# 0 -8.33# 18 L1 CL1 #2 0.100 0.000 100.0# 0 -8.33# 19 L1 CL1 #3 0.100 0.000 100.0# 0 -8.33# 20 L1 CL1 #4 0.100 0.000 100.0# 0 -8.33# 21 L1 CL1 #5 0.100 0.000 100.0# 0 -8.33# 22 L1 CL1 #6 0.100 0.000 100.0# 0 -8.33# 23 L1 CL1 #8 0.100 0.000 100.0# 0 -8.33# 24 L1 CL1 #8 0.100 0.000 100.0# 0 -8.33# 25 L1 CL1 #8 0.100 0.000 100.0# 0 -8.33# 25 L1 CL1 #10 0.100 0.000 100.0# 0 -8.33# 26 L1 CL1 #10 0.100 0.000 100.0# 0 -8.33# 27 L1 MonoCB Total 0.100 0.000 100.0# 0 -8.33# 29 L2 CL2 #2 0.100 0.000 100.0# 0 -10.39# 30 L2 CL2 #3 0.100 0.000 100.0# 0 -10.39# 31 L2 CL2 #6 0.100 0.000 100.0# 0 -10.39# 33 L2 CL2 #8 0.100 0.000 100.0# 0 -10.39# 34 L2 CL2 #8 0.100 0.000 100.0# 0 -10.39# 35 L2 CL2 #8 0.100 0.000 100.0# 0 -10.39# 36 L2 CL2 #8 0.100 0.000 100.0# 0 -10.39# 37 L2 CL2 #9 0.100 0.000 100.0# 0 -10.39# 38 L2 DICB Total 0.100 0.000 100.0# 0 -10.39# 39 L3 CL3 #1 0.100 0.000 100.0# 0 -10.39# 40 L3 CL3 #1 0.100 0.000 100.0# 0 -11.80# 40 L3 CL3 #1 0.100 0.000 100.0# 0 -11.80#	11 TC	RT #77 (CL4)	0.200	0.205	-2.5		-0.01
Total Nonachlorobiphenyls R 0.300 0.315 -5.0 131 0.00 15 TC Total Nonachlorobiphenyls R 0.400 0.421 -5.2 126 0.00 16 TCM Total Decachlorobiphenyl 0.500 0.548 -9.6 127 -0.02 17 L1 CL1 - #1 0.100 0.000 100.0# 0 -8.33# 18 L1 CL1 - #2 0.100 0.000 100.0# 0 -8.33# 20 L1 CL1 - #3 0.100 0.000 100.0# 0 -8.33# 21 L1 CL1 - #5 0.100 0.000 100.0# 0 -8.33# 22 L1 CL1 - #6 0.100 0.000 100.0# 0 -8.33# 23 L1 CL1 - #6 0.100 0.000 100.0# 0 -8.33# 24 L1 CL1 - #8 0.100 0.000 100.0# 0 -8.33# 25 L1 CL1 - #8 0.100 0.000 100.0# 0 -8.33# 25 L1 CL1 - #9 0.100 0.000 100.0# 0 -8.33# 25 L1 CL1 - #9 0.100 0.000 100.0# 0 -8.33# 26 L1 CL1 - #10 0.100 0.000 100.0# 0 -8.33# 27 L1 MonoCB - Total 0.100 0.000 100.0# 0 -8.33# 28 L2 CL2 - #1 0.100 0.000 100.0# 0 -8.33# 29 L2 CL2 - #2 0.100 0.000 100.0# 0 -8.33# 31 L2 CL2 - #4 0.100 0.000 100.0# 0 -10.39# 32 L2 CL2 - #6 0.100 0.000 100.0# 0 -10.39# 33 L2 CL2 - #8 0.100 0.000 100.0# 0 -10.39# 34 L2 CL2 - #8 0.100 0.000 100.0# 0 -10.39# 35 L2 CL2 - #8 0.100 0.000 100.0# 0 -10.39# 36 L2 CL2 - #8 0.100 0.000 100.0# 0 -10.39# 37 L2 CL2 - #8 0.100 0.000 100.0# 0 -10.39# 38 L2 DICB - Total 0.100 0.000 100.0# 0 -10.39# 39 L3 CL3 - #1 0.100 0.000 100.0# 0 -10.39# 39 L3 CL3 - #1 0.100 0.000 100.0# 0 -10.39# 39 L3 CL3 - #1 0.100 0.000 100.0# 0 -10.39# 39 L3 CL3 - #1 0.100 0.000 100.0# 0 -10.39# 39 L3 CL3 - #1 0.100 0.000 100.0# 0 -10.39# 39 L3 CL3 - #1 0.100 0.000 100.0# 0 -10.39# 39 L3 CL3 - #1 0.100 0.000 100.0# 0 -10.39# 39 L3 CL3 - #1 0.100 0.000 100.0# 0 -11.80#		Total Heptachlorobiphenyls	0.300				
15 TC Total Nonachlorobiphenyls R	13) sc	SURR2, 4-4'-DDT	0.200	0.185			
16 TCM Total Decachlorobiphenyl	14 TCM	Total Octachlorobiphenyls	0.300	0.315			
17 L1 CL1 - #1	15 TC	Total Nonachlorobiphenyls R	0.400				
18 L1 CL1 - #2	16 TCM	Total Decachlorobiphenyl	0.500	0.548			
19 L1 CL1 - #3 20 L1 CL1 - #4 20 L1 CL1 - #4 21 L1 CL1 - #5 22 L1 CL1 - #6 23 L1 CL1 - #6 24 L1 CL1 - #8 25 L1 CL1 - #8 26 L1 CL1 - #9 27 L1 CL1 - #9 28 L2 CL2 - #1 29 L2 CL2 - #4 20 L1 CL2 - #6 20 L1 CL2 - #6 20 L1 CL2 - #6 20 L1 CL3 - #3 20 L1 CL1 - #8 21 L1 CL1 - #8 22 L1 CL1 - #8 23 L2 CL2 - #4 24 L1 CL1 - #9 25 L2 CL2 - #4 26 L2 CL2 - #4 27 L1 CL2 - #6 28 L2 CL2 - #4 38 L2 CL2 - #6 38 L2 CL2 - #6 38 L2 CL2 - #6 38 L2 CL2 - #8 39 L2 CL2 - #8 30 L2 CL2 - #8 30 L2 CL2 - #8 31 L2 CL2 - #8 31 L2 CL2 - #8 32 L2 CL2 - #8 33 L2 CL2 - #8 34 L2 CL2 - #8 35 L2 CL2 - #8 36 L2 CL2 - #8 37 L2 CL2 - #8 38 L2 CL2 - #8 39 L3 CL3 - #1 39 L3 CL3 - #1 39 L3 CL3 - #1 39 L3 CL3 - #1 39 L3 CL3 - #1 39 L3 CL3 - #1 39 L3 CL3 - #1 39 L3 CL3 - #1 39 L3 CL3 - #1 39 L3 CL3 - #1 39 L3 CL3 - #1 39 L3 CL3 - #1 30 L3 CL3 - #1 30 L3 CL3 - #1 30 L3 CL3 - #2 30 L3 CL3 - #2 30 L3 CL3 - #2 30 L3 CL3 - #2 30 L3 CL3 - #2 30 L3 CL3 - #1 30 L3 CL3 - #2 30 L3 CL3 - #1	17 L1	CL1 - #1	0.100				
20 L1 CL1 - #4	18 L1	CL1 - #2					
21 L1 CL1 - #5 0.100 0.000 100.0# 0 -8.33# 22 L1 CL1 - #6 0.100 0.000 100.0# 0 -8.33# 23 L1 CL1 - #7 0.100 0.000 100.0# 0 -8.33# 24 L1 CL1 - #8 0.100 0.000 100.0# 0 -8.33# 25 L1 CL1 - #10 0.100 0.000 100.0# 0 -8.33# 26 L1 CL1 - #10 0.100 0.000 100.0# 0 -8.33# 27 L1 MonoCB - Total 0.100 0.000 100.0# 0 -8.33# 28 L2 CL2 - #1 0.100 0.000 100.0# 0 -8.33# 29 L2 CL2 - #2 0.100 0.000 100.0# 0 -10.39# 30 L2 CL2 - #3 0.100 0.000 100.0# 0 -10.39# 31 L2 CL2 - #4 0.100 0.000 100.0# 0 -10.39# 32 L2 CL2 - #5 0.100 0.000 100.0# 0 -10.39# 34 L2 CL2 - #8 0.100 0.000 100.0# 0 -10.39# 35 L2 CL2 -	19 L1	CL1 - #3					
22 L1 CL1 - #6 0.100 0.000 100.0# 0 -8.33# 23 L1 CL1 - #7 0.100 0.000 100.0# 0 -8.33# 24 L1 CL1 - #8 0.100 0.000 100.0# 0 -8.33# 25 L1 CL1 - #9 0.100 0.000 100.0# 0 -8.33# 26 L1 CL1 - #10 0.100 0.000 100.0# 0 -8.33# 27 L1 MonoCB - Total 0.100 0.000 100.0# 0 -8.33# 28 L2 CL2 - #1 0.100 0.000 100.0# 0 -8.33# 28 L2 CL2 - #1 0.100 0.000 100.0# 0 -8.33# 29 L2 CL2 - #1 0.100 0.000 100.0# 0 -10.39# 30 L2 CL2 - #2 0.100 0.000 100.0# 0 -10.39# 31 L2 CL2 - #4 0.100 0.000 100.0# 0 -10.39# 32 L2 CL2 - #5 0.100 0.000 100.0# 0 -10.39# 34 L2 CL2 - #7 0.100 0.000 100.0# 0 -10.39# 35 L2 CL2 -							
23 L1 CL1 - #7							
24 L1 CL1 - #8 0.100 0.000 100.0# 0 -8.33# 25 L1 CL1 - #9 0.100 0.000 100.0# 0 -8.33# 26 L1 CL1 - #10 0.100 0.000 100.0# 0 -8.33# 27 L1 MonoCB - Total 0.100 0.000 100.0# 0 -8.33# 28 L2 CL2 - #1 0.100 0.000 100.0# 0 -10.39# 29 L2 CL2 - #2 0.100 0.000 100.0# 0 -10.39# 30 L2 CL2 - #3 0.100 0.000 100.0# 0 -10.39# 31 L2 CL2 - #4 0.100 0.000 100.0# 0 -10.39# 32 L2 CL2 - #5 0.100 0.000 100.0# 0 -10.39# 34 L2 CL2 - #6 0.100 0.000 100.0# 0 -10.39# 34 L2 CL2 - #8 0.100 0.000 100.0# 0 -10.39# 36 L2 CL2 - #9 0.100 0.000 100.0# 0 -10.39# 37 L2 CL2 - #10 0.100 0.000 100.0# 0 -10.39# 38 L2 D							
25 L1 CL1 - #9							
26 L1 CL1 - #10							
27 L1 MOnoCB - Total 0.100 0.000 100.0# 0 -8.33# 28 L2 CL2 - #1 0.100 0.000 100.0# 0 -10.39# 29 L2 CL2 - #2 0.100 0.000 100.0# 0 -10.39# 30 L2 CL2 - #3 0.100 0.000 100.0# 0 -10.39# 31 L2 CL2 - #4 0.100 0.000 100.0# 0 -10.39# 32 L2 CL2 - #6 0.100 0.000 100.0# 0 -10.39# 34 L2 CL2 - #7 0.100 0.000 100.0# 0 -10.39# 35 L2 CL2 - #8 0.100 0.000 100.0# 0 -10.39# 36 L2 CL2 - #9 0.100 0.000 100.0# 0 -10.39# 37 L2 CL2 - #10 0.100 0.000 100.0# 0 -10.39# 39 L3 CL3 - #1 0.100 0.000 100.0# 0 -11.80# 40 L3 CL3 - #2 0.100 0.000 100.0# 0 -11.80#							
28 L2 CL2 - #1 0.100 0.000 100.0# 0 -10.39# 29 L2 CL2 - #2 0.100 0.000 100.0# 0 -10.39# 30 L2 CL2 - #3 0.100 0.000 100.0# 0 -10.39# 31 L2 CL2 - #4 0.100 0.000 100.0# 0 -10.39# 32 L2 CL2 - #5 0.100 0.000 100.0# 0 -10.39# 33 L2 CL2 - #6 0.100 0.000 100.0# 0 -10.39# 34 L2 CL2 - #7 0.100 0.000 100.0# 0 -10.39# 35 L2 CL2 - #8 0.100 0.000 100.0# 0 -10.39# 36 L2 CL2 - #9 0.100 0.000 100.0# 0 -10.39# 37 L2 CL2 - #10 0.100 0.000 100.0# 0 -10.39# 38 L2 DiCB - Total 0.100 0.000 100.0# 0 -10.39# 39 L3 CL3 - #1 0.100 0.000 100.0# 0 -11.80# 40 L3 CL3 - #2 0.100 0.000 100.0# 0 -11.80#							
29 L2 CL2 - #2 0.100 0.000 100.0# 0 -10.39# 30 L2 CL2 - #3 0.100 0.000 100.0# 0 -10.39# 31 L2 CL2 - #4 0.100 0.000 100.0# 0 -10.39# 32 L2 CL2 - #5 0.100 0.000 100.0# 0 -10.39# 33 L2 CL2 - #6 0.100 0.000 100.0# 0 -10.39# 34 L2 CL2 - #7 0.100 0.000 100.0# 0 -10.39# 35 L2 CL2 - #8 0.100 0.000 100.0# 0 -10.39# 36 L2 CL2 - #9 0.100 0.000 100.0# 0 -10.39# 37 L2 CL2 - #10 0.100 0.000 100.0# 0 -10.39# 38 L2 DiCB - Total 0.100 0.000 100.0# 0 -10.39# 39 L3 CL3 - #1 0.100 0.000 100.0# 0 -11.80# 40 L3 CL3 - #2 0.100 0.000 100.0# 0 -11.80#							
30 L2 CL2 - #3 31 L2 CL2 - #4 31 L2 CL2 - #4 32 L2 CL2 - #5 33 L2 CL2 - #6 34 L2 CL2 - #7 35 L2 CL2 - #7 36 L2 CL2 - #8 37 L2 CL2 - #8 38 L2 CL2 - #8 39 L3 CL3 - #1 40 L3 CL3 - #1 40 L3 CL3 - #2 40 .100 0.000 100.0# 0 -10.39# 0.100 0.000 100.0# 0 -10.39# 0.100 0.000 100.0# 0 -10.39# 0.100 0.000 100.0# 0 -10.39# 0.100 0.000 100.0# 0 -10.39# 0.100 0.000 100.0# 0 -10.39# 0.100 0.000 100.0# 0 -10.39# 0.100 0.000 100.0# 0 -10.39#							
31 L2 CL2 - #4 0.100 0.000 100.0# 0 -10.39# 32 L2 CL2 - #5 0.100 0.000 100.0# 0 -10.39# 33 L2 CL2 - #6 0.100 0.000 100.0# 0 -10.39# 34 L2 CL2 - #7 0.100 0.000 100.0# 0 -10.39# 35 L2 CL2 - #8 0.100 0.000 100.0# 0 -10.39# 36 L2 CL2 - #9 0.100 0.000 100.0# 0 -10.39# 37 L2 CL2 - #10 0.100 0.000 100.0# 0 -10.39# 38 L2 DiCB - Total 0.100 0.000 100.0# 0 -10.39# 39 L3 CL3 - #1 0.100 0.000 100.0# 0 -11.80# 40 L3 CL3 - #2 0.100 0.000 100.0# 0 -11.80#							
32 L2 CL2 - #5 32 L2 CL2 - #6 33 L2 CL2 - #6 34 L2 CL2 - #7 35 L2 CL2 - #8 36 L2 CL2 - #9 37 L2 CL2 - #9 38 L2 DiCB - Total 39 L3 CL3 - #1 40 L3 CL3 - #2 0.100 0.000 100.0# 0 -10.39# 0.100 0.000 100.0# 0 -10.39# 0.100 0.000 100.0# 0 -10.39# 0.100 0.000 100.0# 0 -10.39# 0.100 0.000 100.0# 0 -10.39#							
33 L2 CL2 - #6							
34 L2 CL2 - #7 0.100 0.000 100.0# 0 -10.39# 35 L2 CL2 - #8 0.100 0.000 100.0# 0 -10.39# 36 L2 CL2 - #9 0.100 0.000 100.0# 0 -10.39# 37 L2 CL2 - #10 0.100 0.000 100.0# 0 -10.39# 38 L2 DiCB - Total 0.100 0.000 100.0# 0 -10.39# 39 L3 CL3 - #1 0.100 0.000 100.0# 0 -11.80# 40 L3 CL3 - #2 0.100 0.000 100.0# 0 -11.80#							
35 L2 CL2 - #8 0.100 0.000 100.0# 0 -10.39# 36 L2 CL2 - #9 0.100 0.000 100.0# 0 -10.39# 37 L2 CL2 - #10 0.100 0.000 100.0# 0 -10.39# 38 L2 DiCB - Total 0.100 0.000 100.0# 0 -10.39# 39 L3 CL3 - #1 0.100 0.000 100.0# 0 -11.80# 40 L3 CL3 - #2 0.100 0.000 100.0# 0 -11.80#							
36 L2 CL2 - #9 0.100 0.000 100.0# 0 -10.39# 37 L2 CL2 - #10 0.100 0.000 100.0# 0 -10.39# 38 L2 DiCB - Total 0.100 0.000 100.0# 0 -10.39# 39 L3 CL3 - #1 0.100 0.000 100.0# 0 -11.80# 40 L3 CL3 - #2 0.100 0.000 100.0# 0 -11.80#							
37 L2 CL2 - #10 0.100 0.000 100.0# 0 -10.39# 38 L2 DiCB - Total 0.100 0.000 100.0# 0 -10.39# 39 L3 CL3 - #1 0.100 0.000 100.0# 0 -11.80# 40 L3 CL3 - #2 0.100 0.000 100.0# 0 -11.80#							
38 L2 DiCB - Total 0.100 0.000 100.0# 0 -10.39# 39 L3 CL3 - #1 0.100 0.000 100.0# 0 -11.80# 40 L3 CL3 - #2 0.100 0.000 100.0# 0 -11.80#							
39 L3 CL3 - #1 0.100 0.000 100.0# 0 -11.80# 40 L3 CL3 - #2 0.100 0.000 100.0# 0 -11.80#							
40 L3 CL3 - #2 0.100 0.000 100.0# 0 -11.80#							
41 L3 CL3 - #3 0.100 0.000 100.0# 0 -11.80#							
	41 L3	СБЗ - #З	0.100	0.000	T00.0#	+ U	- II.8U拼

(#) = Out of Range

DK314.D 6800623B.M Wed Jul 02 14:11:26 2014

Page 1 00561

Analytical Report

Client:

Tetra Tech GEO

Project:

Middle River- Lockheed Martin Corp/Surface Water 112ICO6247

Service Request: R1404414 Date Analyzed: 6/23/14 18:27

Sample Matrix: Water

Date Extracted: 6/13/14

Method Blank Summary

Pesticides and PCBs in Water and Soil/Sediment by Gas Chromatography/Mass Spectrometry

Sample Name:

Method Blank

Instrument ID:

R-MS-52

Lab Code:

RQ1406528-01

File ID:

I:\ACQUDATA\5973B\DATA\062314\DK256.D\

Analytical Method:

680

Prep Method:

EPA 3510C

This Method Blank applies to the following analyses:

Sample Name	Lab Code	File ID	Date Analyzed
Lab Control Sample	RQ1406528-02	I:\ACQUDATA\5973B\DATA\062314\DK257.D\	6/23/14 18:57
Duplicate Lab Control Sample	RQ1406528-03	1:\ACQUDATA\5973B\DATA\062314\DK258.D\	6/23/14 19:26
MRC-SW5A1-060914	R1404414-003	I:\ACQUDATA\5973B\DATA\062314\DK259.D\	6/23/14 19:55
MRC-SW6B-060914	R1404414-007	1:\ACQUDATA\5973B\DATA\062314\DK261.D\	6/23/14 20:54
MRC-SW5A2-060914	R1404414-004	1:\ACQUDATA\5973B\DATA\062414\DK268.D\	6/24/14 10:48
MRC-SW5B-060914	R1404414-005	I:\ACQUDATA\5973B\DATA\062414\DK269.D\	6/24/14 11:17
MRC-SW6A-060914	R1404414-006	I:\ACQUDATA\5973B\DATA\062414\DK272.D\	6/24/14 12:44
MRC-SW7A-060914	R1404414-008	I:\ACQUDATA\5973B\DATA\062414\DK273.D\	6/24/14 13:14
MRC-SW7B-060914	R1404414-009	I:\ACQUDATA\5973B\DATA\062414\DK276.D\	6/24/14 14:42
MRC-SW8A-060914	R1404414-010	I:\ACQUDATA\5973B\DATA\062414\DK277.D\	6/24/14 15:12
MRC-SW8B-060914	R1404414-011	I:\ACQUDATA\5973B\DATA\062514\DK296.D\	6/25/14 15:50
MRC-SW9B-060914	R1404414-013	1:\ACQUDATA\5973B\DATA\062514\DK297.D\	6/25/14 16:19
MRC-SW9A-060914	R1404414-012	I:\ACQUDATA\5973B\DATA\062514\DK300.D\	6/25/14 17:47

Analytical Report

Client:

Tetra Tech GEO

Project:

Middle River-Lockheed Martin Corp/Surface Water 112ICO6247

Sample Matrix:

Water

Service Request: R1404414

Date Collected: NA Date Received: NA

Date Extracted: 6/13/14 Date Analyzed: 6/23/14 18:27

Units: µg/L

Sample Name: Lab Code:

Method Blank RQ1406528-01

Basis: NA

Pesticides and PCBs in Water and Soil/Sediment by Gas Chromatography/Mass Spectrometry

Analytical Method: 680

Prep Method:

EPA 3510C

Data File Name:

I:\ACQUDATA\5973B\DATA\062314\DK256.D\

Analysis Lot: 398720 Extraction Lot: 210751

Instrument Name: R-MS-52

Dilution Factor: 1

CAS No.	Analyte Name	Result	Q	MRL	MDL	Note
27323-18-8	Monochlorobiphenyls, Total	0.0050	U	0.0050	0.0017	
25512-42-9	Dichlorobiphenyls, Total	0.0050	U	0.0050	0.0044	
25323-68-6	Trichlorobiphenyls, Total	0.0050	U	0.0050	0.0034	
26914-33-0	Tetrachlorobiphenyls, Total	0.010	U	0.010	0.0054	
25429-29-2	Pentachlorobiphenyls, Total	0.010	U	0.010	0.0088	
26601-64-9	Hexachlorobiphenyls, Total	0.010	U	0.010	0.010	
28655-71-2	Heptachlorobiphenyls, Total	0.015	U	0.015	0.011	
55722-26-4	Octachlorobiphenyls, Total	0.015	U	0.015	0.0084	
53742-07-7	Nonachlorobiphenyls, Total	0.020	U	0.020	0.019	
2051-24-3	Decachlorobiphenyls, Total	0.025	U	0.025	0.018	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Q	
gamma-BHC (Lindane)	90	63-119	6/23/14 18:27		
4,4'-DDT	108	62-181	6/23/14 18:27		

QA/QC Report

Client:

Tetra Tech GEO

Project:

Middle River- Lockheed Martin Corp/Surface Water 112ICO6247

Date Analyzed: 6/23/14

Service Request: R1404414

Sample Matrix:

Water

Lab Control Sample Summary

Pesticides and PCBs in Water and Soil/Sediment by Gas Chromatography/Mass Spectrometry

Analytical Method: Prep Method:

680

EPA 3510C

Units: µg/L Basis: NA

Extraction Lot: 210751

		Control San Q1406528-0 Spike	•		e Lab Contr Q1406528-0 Spike)3	% Rec		RPD
Analyte Name	Result	Amount	% Rec	Result	Amount	% Rec	Limits	RPD	Limit
Monochlorobiphenyls, Total	0.170	0.250	68	0.180	0.250	72	34 - 137	6	30
Dichlorobiphenyls, Total	0.185	0.250	74	0.185	0.250	74	37 - 139	<1	30
Trichlorobiphenyls, Total	0.190	0.250	76	0.190	0.250	76	10 - 173	<1	30
Tetrachlorobiphenyls, Total	0.355	0.500	71	0.350	0.500	70	14 - 153	1	30
Pentachlorobiphenyls, Total	0.420	0.500	84	0.420	0.500	84	10 - 180	<1	30
Hexachlorobiphenyls, Total	0.405	0.500	81	0.420	0.500	84	11 - 160	4	30
Heptachlorobiphenyls, Total	0.615	0.750	82	0.590	0.750	79	53 - 120	4	30
Octachlorobiphenyls, Total	0.605	0.750	81	0.580	0.750	77	57 - 125	4	30
Decachlorobiphenyls, Total	1.12	1.25	90	0.925	1.25	74	29 - 162	19	30

Results flagged with an asterisk (*) indicate values outside control criteria.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Analytical Report

Client:

Tetra Tech GEO

Project:

Middle River- Lockheed Martin Corp/Surface Water 112ICO6247

Service Request: R1404414
Date Analyzed: 7/1/14 09:55

Sample Matrix:

Water

Date Extracted: 6/30/14

Method Blank Summary

Pesticides and PCBs in Water and Soil/Sediment by Gas Chromatography/Mass Spectrometry

Sample Name:

Method Blank

Instrument ID:

R-MS-52

Lab Code:

RQ1407378-01

File ID:

1:\ACQUDATA\5973B\DATA\070114\DK307.D\

Analytical Method:

l: 680

Prep Method:

EPA 3510C

This Method Blank applies to the following analyses:

Sample Name	Lab Code	File ID	Date Analyzed
Lab Control Sample	RQ1407378-02	I:\ACQUDATA\5973B\DATA\070114\DK309.D\	7/1/14 10:53
Duplicate Lab Control Sample	RQ1407378-03	I:\ACQUDATA\5973B\DATA\070114\DK310.D\	7/1/14 11:23
MRC-SW8B-060914RE	R1404414-011	I:\ACQUDATA\5973B\DATA\070114\DK311.D\	7/1/14 11:52

Analytical Report

Client:

Tetra Tech GEO

Project:

Middle River- Lockheed Martin Corp/Surface Water 1121CO6247

Sample Matrix:

Water

Service Request: R1404414

Date Collected: NA Date Received: NA Date Extracted: 6/30/14 Date Analyzed: 7/1/14 09:55

> Units: µg/L Basis: NA

Sample Name: Lab Code:

Method Blank RQ1407378-01

Pesticides and PCBs in Water and Soil/Sediment by Gas Chromatography/Mass Spectrometry

Analytical Method: 680

Prep Method:

EPA 3510C

Data File Name:

I:\ACQUDATA\5973B\DATA\070114\DK307.D\

Analysis Lot: 399987

Extraction Lot: 211949 Instrument Name: R-MS-52

Dilution Factor: 1

CAS No.	Analyte Name	Result Q	MRL	MDL	Note
27323-18-8	Monochlorobiphenyls, Total	0.0050 U	0.0050	0.0017	
25512-42-9	Dichlorobiphenyls, Total	0.0050 U	0.0050	0.0044	
25323-68-6	Trichlorobiphenyls, Total	0.0050 U	0.0050	0.0034	
26914-33-0	Tetrachlorobiphenyls, Total	0.010 U	0.010	0.0054	
25429-29-2	Pentachlorobiphenyls, Total	0.010 U	0.010	0.0088	
26601-64-9	Hexachlorobiphenyls, Total	0.010 U	0.010	0.010	
28655-71-2	Heptachlorobiphenyls, Total	0.015 U	0.015	0.011	
55722-26-4	Octachlorobiphenyls, Total	0.015 U	0.015	0.0084	
53742-07-7	Nonachlorobiphenyls, Total	0.020 U	0.020	0.019	
2051-24-3	Decachlorobiphenyls, Total	0.025 U	0.025	0.018	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Q_
gamma-BHC (Lindane)	127 *	63-119	7/1/14 09:55	
4.4'-DDT	107	62-181	7/1/14 09:55	

QA/QC Report

Client: Project: Tetra Tech GEO

Middle River- Lockheed Martin Corp/Surface Water 112ICO6247

Service Request: R1404414

Date Analyzed: 7/1/14

Sample Matrix:

Lab Control Sample Summary

Pesticides and PCBs in Water and Soil/Sediment by Gas Chromatography/Mass Spectrometry

Analytical Method:

Prep Method:

EPA 3510C

Units: µg/L

Basis: NA

Extraction Lot: 211949

		Control Sat Q1407378-0 Spike	•	Duplicate Lab Control Sample RQ1407378-03 Spike		% Rec		RPD	
Analyte Name	Result	Amount	% Rec	Result	Amount	% Rec	Limits	RPD	Limit
Monochlorobiphenyls, Total	0.165	0.250	66	0.170	0.250	68	34 - 137	3	30
Dichlorobiphenyls, Total	0.180	0.250	72	0.175	0.250	70	37 - 139	3	30
Trichlorobiphenyls, Total	0.180	0.250	72	0.185	0.250	74	10 - 173	3	30
Tetrachlorobiphenyls, Total	0.320	0.500	64	0.335	0.500	67	14 - 153	5	30
Pentachlorobiphenyls, Total	0.415	0.500	83	0.430	0.500	86	10 - 180	4	30
Hexachlorobiphenyls, Total	0.410	0.500	82	0.410	0.500	82	11 - 160	<1	30
Heptachlorobiphenyls, Total	0.600	0.750	80	0.620	0.750	83	53 - 120	3	30
Octachlorobiphenyls, Total	0.625	0.750	83	0.615	0.750	82	57 - 125	2	30
Decachlorobiphenyls, Total	1.07	1.25	86	1.08	1.25	86	29 - 162	< <u>l</u>	30

Results flagged with an asterisk (*) indicate values outside control criteria.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

QA/QC Report

Client: Project: Tetra Tech GEO

Middle River- Lockheed Martin Corp/Surface Water 1121CO6247

Service Request: R1404414

Date Analyzed: 6/23/14 17:58

Internal Standard Area and RT Summary Pesticides and PCBs in Water and Soil/Sediment by Gas Chromatography/Mass Spectrometry

File ID:

I:\ACQUDATA\5973B\DATA\062314\DK255.D\

Instrument ID: R-MS-52

Analytical Method: 680

Lab Code: RQ1407158-10

Analysis Lot: 398720

Signal ID:

•	_	Phenanthrene-d10		Chrysene-c	112
		Area	<u>RT</u>	Area	RT
	Results ==>	240,014	11.21	204,393	16.94
	Upper Limit ==>	360,021	11.71	306,590	17.44
	Lower Limit ==>	168,010	10.71	143,075	16.44
	ICAL Result ==>	241,097	11.22	206,686	16.92
Associated Analyses					
Method Blank	RQ1406528-01	212,710	11.21	194,805	16.92
Lab Control Sample	RQ1406528-02	210,146	11.22	194,062	16.92
Duplicate Lab Control Sample	RQ1406528-03	210,460	11.21	189,545	16.92
MRC-SW5A1-060914	R1404414-003	207,045	11.21	198,214	16.92
MRC-SW6B-060914	R1404414-007	200,151	11.21	187,418	16.92
Continuing Cal. Verification	RQ1407158-11	220,775	11.22	195,646	16.94

QA/QC Report

Client: Project: Tetra Tech GEO

Middle River- Lockheed Martin Corp/Surface Water 112ICO6247

Service Request: R1404414

Date Analyzed: 6/24/14 10:14

Internal Standard Area and RT Summary Pesticides and PCBs in Water and Soil/Sediment by Gas Chromatography/Mass Spectrometry

File ID:

1:\ACQUDATA\5973B\DATA\062414\DK267.D\

Instrument ID:

R-MS-52

Analytical Method: 680

Lab Code: RQ1407295-02

Analysis Lot: 399144

Signal ID:

		Phenanthrene-d10		Chrysene-d12	
		Area	<u>ŔT</u>	Area	<u>RT</u>
	Results ==>	275,311	11.22	238,207	16.94
•	Upper Limit ==>	412,967	11.72	357,311	17.44
	Lower Limit ==>	192,718	10.72	166,745	16.44
	ICAL Result ==>	241,097	11.22	206,686	16.92
Associated Analyses					
MRC-SW5A2-060914	R1404414-004	223,946	11.22	203,035	16.92
MRC-SW5B-060914	R1404414-005	238,121	11.21	208,093	16.92
MRC-SW6A-060914	R1404414-006	238,460	11.21	218,271	16.92
MRC-SW7A-060914	R1404414-008	222,559	11.22	192,755	16.94
MRC-SW7B-060914	R1404414-009	219,517	11.21	193,027	16.92
MRC-SW8A-060914	R1404414-010	236,786	11.21	215,998	16.94
Continuing Cal. Verification	RQ1407295-03	234,647	11.21	193,866	16.94

QA/QC Report

Client: Project: Tetra Tech GEO

Middle River- Lockheed Martin Corp/Surface Water 112ICO6247

Service Request: R1404414

Date Analyzed: 6/25/14 14:47

Internal Standard Area and RT Summary Pesticides and PCBs in Water and Soil/Sediment by Gas Chromatography/Mass Spectrometry

File ID:

Instrument ID:

R-MS-52

Analytical Method: 680

1:\ACQUDATA\5973B\DATA\062514\DK292.D\ Lab Code: RQ1407298-02

Analysis Lot: 399147

Signal ID:

	_	Phenanthrene-d10		Chrysene-di	12
		Area	<u>RT</u>	Area	<u>RT</u>
	Results ==>	264,763 '	11.21	239,878	16.92
	Upper Limit ==>	397,145	11.71	359,817	17.42
•	Lower Limit ==>	185,334	10.71	167,915	16.42
	ICAL Result ==>	241,097	11.22	206,686	16.92
Associated Analyses					
MRC-SW8B-060914	R1404414-011	215,228	11.20	192,392	16.92
MRC-SW9B-060914	R1404414-013	204,028	11.20	199,031	16.92
MRC-SW9A-060914	R1404414-012	218,179	11.20	210,786	16.92
Continuing Cal. Verification	RQ1407298-03	227,118 -	11.21	207,777 r	16.92

QA/QC Report

Client: Project: Tetra Tech GEO

Middle River- Lockheed Martin Corp/Surface Water 112ICO6247

Service Request: R1404414 Date Analyzed: 7/1/14 09:24

Internal Standard Area and RT Summary Pesticides and PCBs in Water and Soil/Sediment by Gas Chromatography/Mass Spectrometry

File ID:

I:\ACQUDATA\5973B\DATA\070114\DK306.D\

Lab Code: RQ1407579-02

Instrument ID: Analytical Method: 680

R-MS-52

Analysis Lot: 399987

Signal ID:

	_	Phenanthrene-d10		Chrysene-d	112
		Area	RT	Area	RT
	Results ==>	268,558	11.21	249,349	16.92
	Upper Limit ==>	402,837	11.71	374,024	17.42
	Lower Limit ==>	187,991	10.71	174,544	16.42
	ICAL Result ==>	241,097	11.22	206,686	16.92
Associated Analyses					
Method Blank	RQ1407378-01	201,420	11.21	185,001	16.92
Lab Control Sample	RQ1407378-02	219,694	11.21	203,369	16.92
Duplicate Lab Control Sample	RQ1407378-03	203,799	11.20	188,931	16.92
MRC-SW8B-060914	R1404414-011	233,508	11.20	230,264	16.92
Continuing Cal. Verification	RQ1407579-03	283,687	11.20	261,023	16.92

 $\verb|\alprews001| starlims $$\LIMSReps \ Internal Standard Summary.pt \\$

Preparation Information Benchsheet

Prep Run#: 210751

Team:

Semivoa GCMS/DMURPHY

Prep WorkFlow: OrgExtAq(7) Prep Method: EPA 3510C

Status: Prepped

Prep Date/Time: 6/13/14 06:57 AM

7	Lab Code	Client ID	B#	Amt. Ext.	Method /Test	рH	AE	BN	Final Vol	Sample Desc. (Initial/Final)	SpikeAmt./Inv. ID	Comments
1	RQ1406528-01 .	МВ	+	1000mL	680/Pest PCB	6			0.50mL	clear-colorless	0.5000 mL/68689	
2	RQ1406528-02	LCS	1	1000mL	680/Pest PCB	6			0.50mL	clear-colorless	0.5000 mL/68669; 0.5000 mL/68689	
3	RQ1406528-03	DLCS	T	1000mL	680/Pest PCB	6			0.50mL	clear-colorless	0.5000 mL/68689; 0.5000 mL/68669	
4	R1404414-003	MRC-SW5A1-060914	.06	1020mL	680/Pest PCB	7			0.50mL	yellow-cloudy	0.5000 mL/68689	IV. 6/44 Str.
5	R1404414-004	MRC-SW5A2-060914	.05	820ml	680/Pest PCB	7	T		0.50mL	yellow-cloudy	0.5000 mL/68689	1
6	R1404414-005	MRC-SW5B-060914	.06	1040mL	680/Pest PCB	7	十一		0.50mL	yellow-cloudy	0.5000 mL/68689	
7	R1404414-006	MRC-SW6A-060914	.05	1060mL	680/Pest PCB	7	十		0.50mL	yellow-cloudy	0.5000 mL/68689	1 - L
8	R1404414-007	MRC-SW6B-060914	.06	1060mL	680/Pest PCB	7	\vdash		0.50mL	yellow-cloudy	0.5000 mL/68689	s#·
9	R1404414-008	MRC-SW7A-060914	.05	1000mL	680/Pest PCB	7	1	T	0.50mL	yellow-cloudy	0.5000 mL/68689	1
10	R1404414-009	MRC-SW7B-060914	.06	1060mL	680/Pest PCB	7	†		0.50mL	yellow-cloudy	0.5000 mL/68689	
11	R1404414-010	MRC-SW8A-060914	.05	1060mL	680/Pest PCB	7	T	\Box	0.50mL	yellow-cloudy	0.5000 mL/68689	1
12	R1404414-011	MRC-SW8B-060914	.06	1060mL	680/Pest PCB	7	t^-	П	0.50mL	yellow-cloudy	0.5000 mL/68689	1
13	R1404414-012 ,	MRC-SW9A-060914	.05	1060mL	680/Pest PCB	7	 	H	0.50mL	yellow-cloudy	0.5000 mL/68689	1
14	R1404414-013	MRC-SW9B-060914	.05	1060mL	680/Pest PCB	7	†	+	0.50mL	yellow-cloudy	10.5000 mL/68689	

Spiking Solutions

Name: 680 Matrix Spike 0.5-2.0 ug/mL

680 PCB Surrogate 1 ug/mL

Inventory ID

Inventory ID

68689

Logbook Ref:

Logbook Ref:

Expires On: 09/20/2014

Expires On: 09/20/2014

Preparation Materials

Eppendorf Pipette Repeater

EXT #14 (61350)

(70845)

2mL Graduated Vials

(71402)

Dichloromethane (Methylene Chloride) 99.9% MeCl2

canister (71374)

Prepared Sodium Sulfate

Na2SO4 Preparation Steps

Step: Extraction Started: 6/13/14 06:57

6/13/14 14:49 DMURPHY

Step: Started: Finished:

Comments

By:

Concentration 6/13/14 17:05 6/13/14 18:15

SGOLBERG

Step: Started: Finished: Final Volume 6/13/14 20:21 6/13/14 20:21 SGOLBERG

By:

Comments

Comments

Finished:

By:

Comments:

Printed 6/13/14 20:21

Preparation Information Benchsheet

Page 1

SAMPLE ID MRC-SW5A1-060914

AVE RRF CONCENTRATION PPB	0.2650 0.011	
NILUTION COMPOUND OF INTEREST / IS AMOUNT (NG) Final Extract Volume (UL)	500	Sample Volume (ML) 1020
ST / IS AMOUNT (NG)	0.75	Amt. inj 1
COMPOUND OF INTERE	1585	
DILUTION	_	
SAMPLE CALC IS AREA	207045	

Tetrachlorobiphenyl = 0.235 ug/L

Data File: I:\ACQUDATA\5973B\DATA\062314\DK259.D

Inst : 5973-B Multiplr: 1.00

Vial: 6

Operator: J.Wu

Acq On : 23 Jun 2014 , 7:55 pm Sample : R1404414-003 | 1.0 MRC SW5A1-0607 | Misc : 06/13/2014 1.0 TetraTech 680.pcb

MS Integration Params: INTIS.P

Quant Results File: 6800623B.RES Quant Time: Jun 24 14:37 2014

Quant Method : I:\ACQUDATA\5...\6800623B.M (RTE Integrator)

: 680.PCB by SIM

Last Update : Tue Jun 24 11:41:24 2014 Response via : Initial Calibration

DataAcq Meth: 680

Internal Standards	R.T. QIon	Response C	onc Units Dev(Min)
1) d10-Phenanthrene 2) d12-Chrysene	11.21 188 16.92 240	207045 198214	0.75 ppm 0.00 0.75 ppm 0.00
System Monitoring Compounds 5) SURR1, gamma-BHC Spiked Amount 1.000 13) SURR2, 4-4'-DDT Spiked Amount 1.000	10.97 219 Range 63 - 119 16.07 235 Range 62 - 181	58345	
Target Compounds 68) TetraCB - Total 100) HexaCB - Total	12.06 292 14.86 360	1585m جي/ 200m	Qvalue 0.023 ppm 0.004 ppm #

^{(#) =} qualifier out of range (m) = manual integration DK259.D 6800623B.M Tue Jun 24 14:43:01 2014

QA/QC Report

Client: Project: Tetra Tech GEO

Middle River- Lockheed Martin Corp 1121CO6247

Service Request: R1404414

Date Analyzed: 5/2/14 09:52

Tune Summary 1,4-Dioxane by Solid Phase Extraction and GC/MS With Selected Ion Monitoring

File ID:

I:\ACQUDATA\5975E\data\050214\Af625.D\

Analytical Method:

522

Instrument ID:

R-MS-56

Analysis Lot:

393191

Target Mass	Relative to Mass	Lower Limit%	Upper Limit%	Relative Abundance %	Raw Abundance	Result Pass/Fail
173	174	0	2	0.00	0	Pass
174	95	50	120	74.76	45403	Pass
175	174	5	9	7.72	3505	Pass
176	174	95	101	95.51	43363	Pass
177	176	5	9	6.47	2805	Pass
50	95	15	40	16.50	10021	Pass
75	95	30	60	45.23	27469	Pass
95	95	100	100	100.00	60728	Pass
96	95	5	9	6.97	4230	Pass

Sample Name	Lab Code	File ID	Date Analyzed Q
Initial Calibration	RQ1405292-02	I:\ACQUDATA\5975E\data\050214\Af629.D\	5/2/14 11:21
Initial Calibration	RQ1405292-03	I:\ACQUDATA\5975E\data\050214\Af630.D\	5/2/14 11:39
Initial Calibration	RQ1405292-04	I:\ACQUDATA\5975E\data\050214\Af631.D\	5/2/14 11:58
Initial Calibration	RQ1405292-05	I:\ACQUDATA\5975E\data\050214\Af632.D\	5/2/14 12:17
Initial Calibration	RQ1405292-06	I:\ACQUDATA\5975E\data\050214\Af633.D\	5/2/14 12:36
Initial Calibration	RQ1405292-07	I:\ACQUDATA\5975E\data\050214\Af634.D\	5/2/14 12:55
Initial Calibration	RQ1405292-08	I:\ACQUDATA\5975E\data\050214\Af635.D\	5/2/14 13:14
Initial Calibration	RQ1405292-09	1:\ACQUDATA\5975E\data\050214\Af636.D\	5/2/14 13:42

Response ractor Report 1919 E

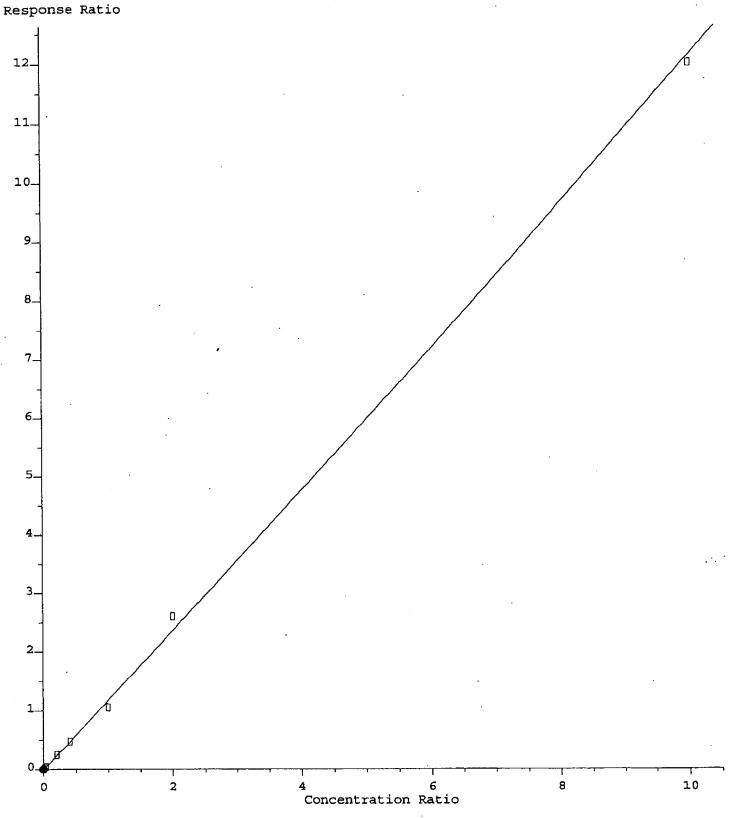
Method Path : I:\ACQUDATA\5975E\METHODS\

Method File : SDIOX050214.M : 8270 BNA ANALYSIS Title

Last Update : Mon May 05 07:43:33 2014 Response Via : Initial Calibration

Calibration Files
2 =Af629.D 10 =Af630.D 20 =Af631.D 100 =Af632.D 200 =Af633.D 500 =Af634.D 1000=Af635.D 5000=Af636.D

Compound 2 10 20 100 200 20 100 200 500 1000 5000 Avg %RSD


-----ISTD-----

6.67

8.37

(#) = Out of Range

Page: 1

QA/QC Report

Client: Project: Tetra Tech GEO

Middle River- Lockheed Martin Corp/Surface Water 1121CO6247

Service Request: R1404414

Date Analyzed: 6/13/14 10:49

Tune Summary 1,4-Dioxane by Solid Phase Extraction and GC/MS With Selected Ion Monitoring

File ID:

Instrument ID:

1:\ACQUDATA\5975E\data\061314\Af938.D\

R-MS-56

Analytical Method:

522

Analysis Lot:

397133

Target Mass	Relative to Mass	Lower Limit%	Upper Limit%	Relative Abundance %	Raw Abundance	Result Pass/Fail
173	174	0	2	0.00	0	Pass
174	95	50	120	76.98	34568	Pass
175	174	5	9	7.89	2726	Pass
176	174	95	101	98.87	34176	Pass
177	176	5	9	7.37	2520	Pass
50	95	15	40	15.17	6810	Pass
75	95	30	60	43.74	19640	Pass
95	95	100	100	100.00	44904	Pass
96	95	5	9	6.45	2895	Pass

Sample Name	Lab Code	File ID	Date Analyzed	Q
Continuing Calibration Verification	RQ1406578-02	1:\ACQUDATA\5975E\data\061314\Af939.D\	6/13/14 11:22	_
Method Blank	RQ1406525-01	I:\ACQUDATA\5975E\data\061314\Af940.D\	6/13/14 11:55	
Lab Control Sample	RQ1406525-02	1:\ACQUDATA\5975E\data\061314\Af941.D\	6/13/14 12:13	
Duplicate Lab Control Sample	RQ1406525-03	I:\ACQUDATA\5975E\data\061314\Af942.D\	6/13/14 12:32	
Lab Control Sample	RQ1406525-04	I:\ACQUDATA\5975E\data\061314\Af943.D\	6/13/14 12:50	
MRC-SW1A-060914	R1404414-001	I:\ACQUDATA\5975E\data\061314\Af949.D\	6/13/14 14:39	
Continuing Calibration Verification	RQ1406578-03	I:\ACQUDATA\5975E\data\061314\Af950.D\	6/13/14 14:58	
MRC-SW2A-060914	R1404414-002	I:\ACQUDATA\5975E\data\061314\Af951.D\	6/13/14 15:16	
Continuing Cal. VerificationCCVA	RQ1406578-04	I:\ACQUDATA\5975E\data\061314\Af960.D\	6/13/14 18:04	
Continuing Calibration Verification	RQ1406578-05	I:\ACQUDATA\5975E\data\061314\Af961.D\	6/13/14 19:55	
Continuing Cal. VerificationCCVA	RQ1406578-06	1:\ACQUDATA\5975E\data\061314\Af967.D\	6/13/14 21:13	

SuperSet Reference:

14-0000293236 rev 00

Data Path : I:\ACQUDATA\5975E\data\050214\

Data File : Af637.D

Acq On : 2 May 2014 2:01 pm Operator : m.pedro

Sample : icv Misc : initial cal

ALS Vial : 17 Sample Multiplier: 1

Quant Time: May 05 07:44:00 2014

Quant Method: I:\ACQUDATA\5975E\METHODS\SDIOX050214.M

Quant Title : 8270 BNA ANALYSIS QLast Update : Mon May 05 07:43:33 2014

Response via : Initial Calibration

Min. RRF : 0.050 Min. Rel. Area : 50% Max. R.T. Dev 0.50min

Max. RRF Dev : 20% Max. Rel. Area : 200%

•	Compound	Amount Calc.	%Dev Area%	Dev(min)
1 IR	d8-THF	500.000 500.000	0.0 98	-0.02
2 T	1,4-Dioxane	200.000 171.335	14.3 83	0.00
3 S	SURR,1,4-DIOXANE-d8	200.000 188.714	5.6 91	0.00

SPCC's out = 0 CCC's out = 0 (#) = Out of Range

Data Path : I:\ACQUDATA\5975E\data\061314\

Data File : Af939.D

: 13 Jun 2014 11:22 am Acq On

Operator : m.pedro Sample : ccv

: ccv .002ppm Misc

ALS Vial : 4 Sample Multiplier: 1

Quant Time: Jun 13 11:47:03 2014

Quant Method: I:\ACQUDATA\5975E\METHODS\SDIOX050214.M

Quant Title : 8270 BNA ANALYSIS

QLast Update : Mon May 05 07:43:33 2014

Response via: Initial Calibration

Min. RRF : 0.050 Min. Rel. Area : 50% Max. R.T. Dev 0.50min

Max. RRF Dev: 20% Max. Rel. Area: 200%

	Compound	Amount Calc.	<pre>%Dev Area% Dev(min)</pre>
1 IR	d8-THF	500.000 500.000	0.0 86 -0.01
2 T	1,4-Dioxane	2.000 1.980	1.0 84 0.04
3 S	SURR,1,4-DIOXANE-d8	2.000 1.831	8.5 79 0.04

(#) = Out of Range SPCC's out = 0 CCC's out = 0

PARTORES CONCENTRATING CREEDS REPORT

Data Path : I:\ACQUDATA\5975E\data\061314\

Data File : Af950.D

Acq On : 13 Jun 2014 2:58 pm Operator : m.pedro Sample : ccv.2ppm

Misc : ccv .2ppm
ALS Vial : 15 Sample Multiplier: 1

Quant Time: Jun 13 19:26:26 2014

Quant Method: I:\ACQUDATA\5975E\METHODS\SDIOX050214.M

Quant Title : 8270 BNA ANALYSIS

QLast Update: Mon May 05 07:43:33 2014

Response via : Initial Calibration

Min. RRF : 0.050 Min. Rel. Area : 50% Max. R.T. Dev 0.50min

Max. RRF Dev : 20% Max. Rel. Area : 200%

	Compound	Amount Calc.	%Dev Area% Dev(min)
1 IR 2 T	d8-THF 1,4-Dioxane	500.000 500.000 200.000 226.207	0.0 77 -0.02 -13.1 86 -0.01
3 S	SURR, 1, 4-DIOXANE-d8	200.000 226.922	-13.5 85 -0.01

(#) = Out of Range SPCC's out = 0 CCC's out = 0

Data Path : I:\ACQUDATA\5975E\data\061314\

Data File: Af960.D

Acq On : 13 Jun 2014 6:04 pm

Operator : m.pedro Sample : ccv 1.0ppm Misc : ccv 1.0ppm

ALS Vial : 25 Sample Multiplier: 1

Quant Time: Jun 13 19:26:48 2014

Quant Method: I:\ACQUDATA\5975E\METHODS\SDIOX050214.M

Quant Title : 8270 BNA ANALYSIS

QLast Update: Mon May 05 07:43:33 2014

Response via : Initial Calibration

Min. RRF : 0.050 Min. Rel. Area : 50% Max. R.T. Dev 0.50min

Max. RRF Dev: 20% Max. Rel. Area: 200%

	Compound	Amount Calc.	%Dev Area% Dev(min)
1 IR	d8-THF	500.000 500.000	0.0 76 -0.02
2 T	1,4-Dioxane	1000.000 1216.778	-21.7# 84 -0.03
3 S	SURR,1,4-DIOXANE-d8	1000.000 1224.027	-22.4# 84 -0.02

SPCC's out = 0 CCC's out = 0 (#) = Out of Range

Evaluace continuing carrotation Rebott

Data Path: I:\ACQUDATA\5975E\data\061314\

Data File : Af961.D

Acq On : 13 Jun 2014 7:55 pm Operator : m.pedro

Sample : ccv
Misc : ccv .002ppm
ALS Vial : 4 Sample Multiplier: 1

Quant Time: Jun 13 20:07:33 2014

Quant Method: I:\ACQUDATA\5975E\METHODS\SDIOX050214.M

Quant Title : 8270 BNA ANALYSIS

QLast Update : Mon May 05 07:43:33 2014

Response via : Initial Calibration

Min. RRF : 0.050 Min. Rel. Area : 50% Max. R.T. Dev 0.50min

Max. RRF Dev : 20% Max. Rel. Area : 200%

	Compound	Amount Calc.	%Dev Area%	Dev(min)
1 IR 2 T 3 S	d8-THF 1,4-Dioxane SURR,1,4-DIOXANE-d8	500.000 500.000 2.000 2.078 2.000 2.112	0.0 84 -3.9 88 -5.6 88	

(#) = Out of Range SPCC's out = 0 CCC's out = 0 minument committees committees website

Data Path : I:\ACQUDATA\5975E\data\061314\

Data File : Af967.D

Acq On : 13 Jun 2014 9:13 pm
Operator : m.pedro
Sample : ccv.2ppm
Misc : ccv.2ppm
ALS Vial : 15 Sample Multiplier: 1

Quant Time: Jun 13 21:19:46 2014

Quant Method: I:\ACQUDATA\5975E\METHODS\SDIOX050214.M Quant Title: 8270 BNA ANALYSIS QLast Update: Mon May 05 07:43:33 2014

Response via : Initial Calibration

Min. RRF : 0.050 Min. Rel. Area : 50% Max. R.T. Dev 0.50min

Max. RRF Dev: 20% Max. Rel. Area: 200%

	Compound	Amount Calc.	%Dev Area% Dev(m	in)
1 IR	d8-THF	500.000 500.000	0.0 78 0.0	0
2 T	1,4-Dioxane	200.000 222.472	-11.2 86 0.0	
3 S	SURR,1,4-DIOXANE-d8	200.000 221.824	-10.9 85 0.0	

(#) = Out of Range SPCC's out = 0 CCC's out = 0

Analytical Report

Client:

Tetra Tech GEO

Project:

Middle River- Lockheed Martin Corp/Surface Water 1121CO6247

Sample Matrix:

Water

Date Analyzed: 6/13/14 11:55

Date Extracted: 6/13/14

Service Request: R1404414

Method Blank Summary

1,4-Dioxane by Solid Phase Extraction and GC/MS With Selected Ion Monitoring

Sample Name:

Method Blank

Instrument ID:

R-MS-56

Lab Code:

RQ1406525-01

File ID:

I:\ACQUDATA\5975E\data\061314\Af940.D\

Analytical Method: Prep Method:

522

Method

This Method Blank applies to the following analyses:

Sample Name	Lab Code	File ID	Date Analyzed		
Lab Control Sample	RQ1406525-02	I:\ACQUDATA\5975E\data\061314\Af941.D\	6/13/14 12:13		
Duplicate Lab Control Sample	RQ1406525-03	I:\ACQUDATA\5975E\data\061314\Af942.D\	6/13/14 12:32		
Lab Control Sample	RQ1406525-04	I:\ACQUDATA\5975E\data\061314\Af943.D\	6/13/14 12:50		
MRC-SW1A-060914	R1404414-001	I:\ACQUDATA\5975E\data\061314\Af949.D\	6/13/14 14:39		
MRC-SW2A-060914	R1404414-002	1:\ACQUDATA\5975E\data\061314\Af951.D\	6/13/14 15:16		

Analytical Report

Client:

Tetra Tech GEO

Project:

Middle River- Lockheed Martin Corp/Surface Water 112ICO6247

Sample Matrix:

Water

Service Request: R1404414

Date Collected: NA Date Received: NA Date Extracted: 6/13/14

Date Analyzed: 6/13/14 11:55

Units: µg/L

Basis: As Received

Sample Name: Lab Code:

Method Blank RQ1406525-01

1,4-Dioxane by Solid Phase Extraction and GC/MS With Selected Ion Monitoring

Analytical Method: 522

Prep Method:

Method

Data File Name:

I:\ACQUDATA\5975E\data\061314\Af940.D\

Analysis Lot: 397133

Extraction Lot: 210544 Instrument Name: R-MS-56

Dilution Factor: 1

CAS No. **Analyte Name** Result Q MRL MDL Note 0.200 U 0.200 0.0200 123-91-1 1,4-Dioxane

Control Date %Rec Limits Analyzed Q Surrogate Name 6/13/14 11:55 1,4-Dioxane-d8 106 70-130

QA/QC Report

Client:

Tetra Tech GEO

Project:

Middle River- Lockheed Martin Corp/Surface Water 112ICO6247

Service Request: R1404414 Date Analyzed: 6/13/14

Sample Matrix:

Water

Lab Control Sample Summary

1,4-Dioxane by Solid Phase Extraction and GC/MS With Selected Ion Monitoring

Analytical Method:

522

Units: µg/L

Basis: As Received

Extraction Lot: 210544

Prep Method:

Method

Lab Control Sample

Duplicate Lab Control Sample

	RQ1406525-02 Spike			RQ1406525-03 Spike			% Rec	RPD	
Analyte Name	Result	Amount	% Rec	Result	Amount	% Rec	Limits	RPD	Limit
1,4-Dioxane	10.2	10.1	101	10.6	10.1	105	70 - 130	3	30

Results flagged with an asterisk (*) indicate values outside control criteria.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

QA/QC Report

Client:

Tetra Tech GEO

Middle River- Lockheed Martin Corp/Surface Water 112ICO6247

Service Request: R1404414

Date Analyzed: 6/13/14

Project: Sample Matrix:

Water

Lab Control Sample Summary

1,4-Dioxane by Solid Phase Extraction and GC/MS With Selected Ion Monitoring

Analytical Method:

Prep Method:

522

Method

Units: µg/L

Basis: As Received

Extraction Lot: 210544

Lab Control Sample

RQ1406525-04

Spike Amount % Rec

Analyte Name

Result 0.0560 % Rec

Limits

1,4-Dioxane

0.0405

70 - 130 138

Results flagged with an asterisk (*) indicate values outside control criteria.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

QA/QC Report

Client: Project: Tetra Tech GEO

Middle River- Lockheed Martin Corp/Surface Water 1121CO6247

Service Request: R1404414

Date Analyzed: 6/13/14 11:22

Internal Standard Area and RT Summary 1,4-Dioxane by Solid Phase Extraction and GC/MS With Selected Ion Monitoring

49,772

2.81

File ID:

I:\ACQUDATA\5975E\data\061314\Af939.D\

Instrument ID:

Associated Analyses

Method Blank

Lab Control Sample

Lab Control Sample

MRC-SW1A-060914

Duplicate Lab Control Sample

R-MS-56

R1404414-001

Analysis Lot: 397133

Lab Code: RQ1406578-02

Signal ID:

Analytical Method: 522

Tetrahydrofuran-d8 <u>RT</u> <u>Area</u> 48,604 2.82 Results ==> Upper Limit ==> 63,185 3.32 Lower Limit ==> 34,023 2.32 ICAL Result ==> 62,687 2.84 46,842 2.83 RQ1406525-01 47,370 2.81 RQ1406525-02 46,925 RQ1406525-03 2.83 48,858 2.83 RQ1406525-04

QA/QC Report

Client: Project: Tetra Tech GEO

Middle River- Lockheed Martin Corp/Surface Water 112ICO6247

Service Request: R1404414

Date Analyzed: 6/13/14 14:58

Internal Standard Area and RT Summary 1,4-Dioxane by Solid Phase Extraction and GC/MS With Selected Ion Monitoring

File ID:

I:\ACQUDATA\5975E\data\061314\Af950.D\

Instrument ID:

R-MS-56

Analytical Method: 522

Lab Code: RQ1406578-03

Analysis Lot: 397133

Signal ID:

•	_	Tetrahydrofuran-d8		
		Area	<u>RT</u>	
	Results ==>	48,023	2.81	
	Upper Limit ==>	62,430	3.31	
•	Lower Limit ==>	33,616	2.31	
	ICAL Result ==>	62,687	2.84	
Associated Analyses				
MRC-SW2A-060914	R1404414-002	48,301	2.81	
Continuing Cal. Verification	RQ1406578-04	43,014	2.82	

Preparation Information Benchsheet

Prep Run#: 210544

Semivoa GCMS/LPRUNOSKE

Prep WorkFlow: OrgExt SPE Aq28

Prep Method: Method

Status: Prepped

Prep Date/Time: 6/13/14 08:30 AM

ı	Lab Code	Client ID	B#	Amt. Ext.	Method /Test	pH	AE	BN	Final Vol	Sample Desc. (Initial/Final)	SpikeAmt./Inv. ID	Comments
1	RQ1406525-01	МВ	T	100mL	522/1,4-Dioxane FP	7	×	T	2.00mL		200.0000 uL/69135; 10.0000 uL/69806	
2	RQ1406525-02	LCS		100mL	522/1,4-Dioxane FP	7	×		2.00mL		200.0000 uL/69716; 10.0000 uL/69806; 200.0000 uL/69135	
3	RQ1406525-03	DLCS		100mL	522/1,4-Dioxane FP	7	×		2.00mL		200.0000 uL/69135; 200.0000 uL/69716; 10.0000 uL/69806	
4	RQ1406525-04	ics		100mL	522/1,4-Dioxane FP	<4			2.00mL		1.0000 mL/68909; 200.0000 uL/69135; 10.0000 uL/69806	
5	R1404353-001	MRC-MW-14A-060414	.01	100mL	522/1,4-Dioxane FP	<4			2.00mL		200.0000 uL/69135; 10.0000 uL/69806	
6	R1404353-002	MRC-MW-14C-060414	.07	100mL	522/1,4-Dioxane FP	4		Τ	2.00mL		10.0000 uL/69806; 200.0000 uL/69135	
7	R1404353-003	MRC-MW-14B-060514	.01	100mL	522/1,4-Dioxane FP	<4		Т	2.00mL		10.0000 uL/69806; 200.0000 uL/69135	
8	R1404353-009	MRC-MW-17A-060514	.06	100mL	522/1,4-Dioxane FP	4			2.00mL		10.0000 uL/69806; 200.0000 uL/69135	
9	R1404353-012	MRC-EXT-06-060514	.07	100mL	522/1,4-Dioxane FP	<4		T	2.00mL		200.0000 uL/69135; 10.0000 uL/69806	<u> </u>
10	R1404414-001	MRC-SW1A-060914	.05	100mL	522/1,4-Dioxane FP	<4			2.00mL		200.0000 uL/69135; 10.0000 uL/69806	
11	R1404414-002	MRC-SW2A-060914	.05	100mL	522/1,4-Dioxane FP	<4		Π	2.00mL		10.0000 uL/69806; 200.0000 uL/69135	

Spiking Solutions

Name:

Name:

Name:

EPA 522 MDL Spike 4ppb Name:

1,4-Dioxane-d8 1ppm Surr. Std.

EPA 522 LCS Spike 5ppm

SVOA Tetrahydrofuran-D8 100ppm

Inventory ID 68909

Inventory ID

Inventory ID

Inventory ID

69135

69716

69806

Logbook Ref: Logbook Ref:

Logbook Ref:

Logbook Ref:

08/05/2014 Expires On:

10/07/2014 Expires On:

Expires On: 08/05/2014

Expires On: 07/30/2014

Preparation Materials

Method 522 400mg charcoal Method 522 400mg charcoal filters
Dichloromethane (Methylene Chloride) 99.9% MeCl2
Prepared Sodium Sulfate
Na2SO4

G
G
G (70422)

(70845)

canister (70650)

Eppendorf Pipette Repeater

EXT #13 (41092)

Water Deionized H2O

DI System (2262)

(55717)

Sodium Bisulfate Monohydrate

Methanol Purge & Trap MeOH

64288 (64288)

RG

Printed 6/13/14 10:33

Preparation Information Benchsheet

Page

SAMPLE ID MRC-SW1A-060914

		49772	IS AREA	SAMPLE CALC
		_	DILUTION	
A WITE III	Amt ini	1374 0.5	DILUTION COMPOUND OF INTEREST IS AMOUNT (NG) Final Extract Vol	
	Sample Volume (MI.)	2000	NG) Final Extract Volume (UL)	
		1.1800		U
		0.23	AVE RRF CONCENTRATION PPB	

1,4-Dioxane = 0.235 ug/L

Quantitation Report (QT Reviewed)

Data Path : I:\ACQUDATA\5975E\data\061314\

Data File : Af949.D

Acq On : 13 Jun 2014 2:39 pm

Operator : m.pedro

MRC-SWIA-060914 Sample : r1404414-001

Misc : 06/13/14 522

Sample Multiplier: 1 ALS Vial : 14

Quant Time: Jun 13 19:26:25 2014

Quant Method: I:\ACQUDATA\5975E\METHODS\SDIOX050214.M

Quant Title : 8270 BNA ANALYSIS

QLast Update : Mon May 05 07:43:33 2014

Response via : Initial Calibration

Compound	R.T.	QIon	Response	Conc U	nits	Dev(Min)
Internal Standards 1) d8-THF	2.808	46	49772	500.00	PPB	-0.03
System Monitoring Compounds 3) SURR,1,4-DIOXANE-d8 Spiked Amount 100.000	3.859 Range 70	• -	9160 Recove	91.89 ry =		0.00
Target Compounds 2) 1,4-Dioxane	3.923	88	1374	11.77	PPB	Qvalue 96

(#) = qualifier out of range (m) = manual integration (+) = signals summed

APPENDIX (C—CHEMICA	AL RESULTS	S DATA TAB	LES	

CHEMICAL RESULTS FOR SURFACE WATER SAMPLES - DARK HEAD COVE AND COW PEN CREEK, JUNE 2014 LOCKHEED MARTIN MIDDLE RIVER COMPLEX, MIDDLE RIVER, MARYLAND PAGE 1 OF 4

TABLE C-1

LOCATION	MRC-SW1A	MRC-SW2A	MRC-SW5A1	MRC-SW5A2	MRC-SW5B	MRC-SW6A	MRC-SW6B	MRC-SW7A
SAMPLE ID	MRC-SW1A-060914	MRC-SW2A-060914	MRC-SW5A1-060914	MRC-SW5A2-	MRC-SW5B-060914	MRC-SW6A-060914	MRC-SW6B-060914	MRC-SW7A-060914
SAMPLE DATE	20140610	20140610	20140610	20140610	20140610	20140610	20140610	20140610
VOLATILES (UG/L)								
1,1,1,2-TETRACHLOROETHANE	0.22 U	0.22 U	0.22 U	0.22 U	0.22 U	0.22 U	0.22 U	0.22 U
1.1.1-TRICHLOROETHANE	0.36 U	0.36 U	0.36 U	0.36 U	0.36 U	0.36 U	0.36 U	0.36 U
1,1,2,2-TETRACHLOROETHANE	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U
1.1.2-TRICHLOROTRIFLUOROETHANE	0.31 U	0.31 U	0.31 U	0.31 U	0.31 U	0.31 U	0.31 U	0.31 U
1.1-DICHLOROETHANE	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U
1,1-DICHLOROETHENE	0,57 U	0.57 U	0.57 U	0.57 U	0.57 U	0.57 U	0.57 U	0.57 U
1.1-DICHLOROPROPENE	0.29 U	0.29 U	0.29 U	0.29 U	0.29 U	0,29 U	0.29 U	0.29 U
1.2.3-TRICHLOROBENZENE	0.82 U	0.82 U	0.82 U	0.82 U	0.82 U	0.82 U	0.82 U	0.82 U
1.2.3-TRICHLOROPROPANE	0.7 U	0.7 U	0.7 U	0.7 U	0.7 U	0.7 U	0.7 U	0.7 U
1.2.4-TRICHLOROBENZENE	0,23 U	0.23 U	0.23 U	0.23 U	0.23 U	0,23 U	0.23 U	0.23 U
1,2,4-TRIMETHYLBENZENE	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U
1,2-DIBROMO-3-CHLOROPROPANE	0.74 U	0.74 U	0.74 U	0.74 U	0.74 U	0.74 U	0.74 U	0.74 U
1,2-DIBROMOETHANE	0.24 U	0.24 U	0.24 U	0.24 U	0.24 U	0.24 U	0.24 U	0.24 U
1.2-DICHLOROBENZENE	0.21 U	0.21 U	0.21 U	0.21 U	0.21 U	0.21 U	0.21 U	0.21 U
1,2-DICHLOROETHANE	0.36 U	0.36 U	0.36 U	0.36 U	0.36 U	0.36 U	0.36 U	0.36 U
1,2-DICHLOROPROPANE	0.2 U	0,2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U
1,3-DICHLOROBENZENE	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U
1,3-DICHLOROPROPANE	0.27 U	0.27 U	0.27 U	0.27 U	0.27 U	0.27 U	0.27 U	0.27 U
1,4-DICHLOROBENZENE	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U
2.2-DICHLOROPROPANE	0.27 U	0.27 U	0.27 U	0.27 U	0.27 U	0.27 U	0.27 U	0.27 U
2-BUTANONE	0.81 UJ	0.81 UJ	0.81 UJ	0.81 UJ	0.81 UJ	0.81 UJ	0.81 UJ	0.81 UJ
2-CHLOROETHYL VINYL ETHER	0.44 U	0.44 U	0.44 U	0.44 U	0.44 U	0.44 U	0.44 U	0.44 U
2-CHLOROTOLUENE	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U
2-HEXANONE	1.7 U	1.7 U	1.7 U	1.7 U	1.7 U	1.7 U	1.7 U	1.7 U
4-CHLOROTOLUENE	0.24 U	0.24 U	0.24 U	0.24 U	0.24 U	0.24 U	0.24 U	0.24 U
4-ISOPROPYLTOLUENE	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U
4-METHYL-2-PENTANONE	0.67 U	0.67 U	0.67 U	0.67 U	0.67 U	0.67 U	0.67 U	0.67 U
ACETONE	2.8 U	1.9 U	1.6 U	1.6 U	1.3 U	1.6 U	1.6 U	1.3 UJ
BENZENE	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U
BROMOBENZENE	0.28 U	0.28 U	0.28 U	0.28 U	0.28 U	0.28 U	0.28 U	0.28 U
BROMOCHLOROMETHANE	0.32 U	0.32 U	0.32 U	0.32 U	0.32 U	0.32 U	0.32 U	0.32 U
BROMODICHLOROMETHANE	0.32 U	0.32 U	0.32 U	0.32 U	0.32 U	0.32 U	0.32 U	0.32 U
BROMOFORM	0.42 U	0.42 U	0.42 U	0.42 U	0.42 U	0.42 U	0.42 U	0.42 U
BROMOMETHANE	0.29 U	0.29 U	0.29 U	0.29 U	0.29 U	0.29 U	0.29 U	0.29 U
CARBON DISULFIDE	0.22 U	0.22 U	0.24 J	0.22 U	0.22 U	0.22 U	0.22 U	0.22 U
CARBON TETRACHLORIDE	0.45 U	0.45 U	0.45 U	0.45 U	0.45 U	0.45 U	0.45 U	0.45 U
CHLOROBENZENE	0.29 U	0.29 U	0.29 U	0.29 U	0.29 U	0.29 U	0.29 U	0.29 U
CHLORODIBROMOMETHANE	0.31 U	0.31 U	0.31 U	0.31 U	0.31 U	0.31 U	0.31 U	0.31 U
CHLOROETHANE	0.24 U	0.24 U	0.24 U	0.24 U	0.24 U	0.24 U	0.24 U	0.24 U
CHLOROFORM	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U
CHLOROMETHANE	0.21 U	0.21 U	0.21 U	0.21 U	0.21 U	0.21 U	0.21 U	0.21 U
CIS-1,2-DICHLOROETHENE	0.3 U	0.3 U	0.3 U	0.3 U	0.3 U	0.3 U	0.3 U	0.3 U

CHEMICAL RESULTS FOR SURFACE WATER SAMPLES - DARK HEAD COVE AND COW PEN CREEK, JUNE 2014 LOCKHEED MARTIN MIDDLE RIVER COMPLEX, MIDDLE RIVER, MARYLAND

TABLE C-1

PAGE 2 OF 4

LOCATION	MRC-SW1A	MRC-SW2A	MRC-SW5A1	MRC-SW5A2	MRC-SW5B	MRC-SW6A	MRC-SW6B	MRC-SW7A
SAMPLE ID	MRC-SW1A-060914	MRC-SW2A-060914		MRC-SW5A2-	MRC-SW5B-060914		MRC-SW6B-060914	
SAMPLE DATE	20140610	20140610	20140610	20140610	20140610	20140610	20140610	20140610
CIS-1.3-DICHLOROPROPENE	0.24 U	0.24 U	0.24 U	0.24 U	0.24 U	0.24 U	0.24 U	0.24 U
DIBROMOMETHANE	0.32 U	0.32 U	0.32 U	0.32 U	0.32 U	0.32 U	0.32 U	0.32 U
DICHLORODIFLUOROMETHANE	0.46 U	0.46 U	0.46 U	0.46 U	0.46 U	0.46 U	0.46 U	0.46 U
DIISOPROPYL ETHER	0.2 U	0.2 U	0.2 U	0,2 U	0.2 U	0.2 U	0.2 U	0.2 U
ETHYL TERT-BUTYL ETHER	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U
ETHYLBENZENE	0,2 U	0.2 U	0.2 U	0,2 U	0.2 U	0.2 U	0.2 U	0.2 U
HEXACHLOROBUTADIENE	0.62 U	0.62 U	0.62 U	0.62 U	0.62 U	0.62 U	0.62 U	0.62 U
ISOPROPYLBENZENE	0,2 U	0.2 U	0.2 U	0,2 U	0,2 U	0.2 U	0.2 U	0.2 U
M+P-XYLENES	0.33 U	0.33 U	0.33 U	0.33 U	0.33 U	0.33 U	0.33 U	0.33 U
METHYL TERT-BUTYL ETHER	0.29 U	0.29 U	0.29 U	0.29 U	0.29 U	0.29 U	0.29 U	0.29 U
METHYLENE CHLORIDE	0.32 U	0.32 U	0.32 U	0.32 U	0.32 U	0.32 U	0.32 U	0.32 U
NAPHTHALENE	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U
N-BUTYLBENZENE	0.21 U	0.21 U	0.21 U	0.21 U	0.21 U	0.21 U	0.21 U	0.21 U
N-PROPYLBENZENE	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U
O-XYLENE	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U
SEC-BUTYLBENZENE	0.27 U	0.27 U	0.27 U	0.27 U	0.27 U	0.27 U	0.27 U	0.27 U
STYRENE	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U
TERT-AMYL METHYL ETHER	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U
TERT-BUTYLBENZENE	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U
TERTIARY-BUTYL ALCOHOL	11 UJ	11 UJ	11 UJ	11 UJ	11 UJ	11 UJ	11 UJ	11 UJ
TETRACHLOROETHENE	0.3 U	0.3 U	0.3 U	0.3 U	0.3 U	0.3 U	0.3 U	0.3 U
TOLUENE	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U
TOTAL XYLENES	0.53 U	0.53 U	0.53 U	0.53 U	0.53 U	0.53 U	0.53 U	0.53 U
TRANS-1,2-DICHLOROETHENE	0.33 U	0.33 U	0.33 U	0.33 U	0.33 U	0.33 U	0.33 U	0.33 U
TRANS-1,3-DICHLOROPROPENE	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U
TRICHLOROETHENE	0.22 U	0.22 U	0.22 U	0.3 J	0.22 U	0.52 J	0.39 J	0.44 J
TRICHLOROFLUOROMETHANE	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U
VINYL ACETATE	1.1 U	1.1 U	1.1 U	1.1 U	1.1 U	1.1 U	1.1 U	1.1 U
VINYL CHLORIDE	0.32 U	0.32 U	0.32 U	0.32 U	0.32 U	0.32 U	0.32 U	0.32 U
SEMIVOLATILES (UG/L)								
1,4-DIOXANE	0.235 J	0.156 J	NA	NA	NA	NA	NA	NA
POLYCHLORINATED BIPHENYLS (UG/L)								
DECACHLOROBIPHENYL	NA	NA	0.018 U	0.022 U	0.018 U	0.018 U	0.018 U	0.018 U
DICHLOROBIPHENYLS	NA	NA	0.0044 U	0.0054 U	0.0044 U	0.0044 U	0.0044 U	0.0044 U
HEPTACHLOROBIPHENYLS	NA	NA	0.011 U	0.014 U	0.011 U	0.011 U	0.011 U	0.011 U
HEXACHLOROBIPHENYL	NA	NA	0.01 U	0.013 U	0.01 U	0.01 U	0.01 U	0.01 U
NONACHLOROBIPHENYLS	NA	NA	0.019 U	0.024 U	0.019 U	0.019 U	0.019 U	0.019 U
OCTACHLOROBIPHENYLS	NA	NA	0.0084 U	0.011 U	0.0084 U	0.0084 U	0.0084 U	0.0084 U
PENTACHLOROBIPHENYLS	NA	NA	0.0088 U	0.011 U	0.0088 U	0.0088 U	0.015	0.012
TETRACHLOROBIPHENYLS	NA	NA	0.011	0.024	0.016	0.0066 J	0.0071 J	0.0054 U
TOTAL MONOCHLOROBIPHENYLS	NA	NA	0.0017 U	0.0021 U	0.0017 U	0.0017 U	0.0017 U	0.0017 U
TRICHLOROBIPHENYLS	NA	NA	0.0034 U	0.0042 U	0.0034 U	0.0034 U	0.0034 U	0.0034 U

CHEMICAL RESULTS FOR SURFACE WATER SAMPLES - DARK HEAD COVE AND COW PEN CREEK, JUNE 2014 LOCKHEED MARTIN MIDDLE RIVER COMPLEX, MIDDLE RIVER, MARYLAND PAGE 3 OF 4

TABLE C-1

LOCATION	MRC-SW7B	MRC-SW8A	MRC-SW8B	MRC-SW9A	MRC-SW9B		
SAMPLE ID	MRC-SW7B-060914	MRC-SW8A-060914	MRC-SW8B-060914	MRC-SW9A-060914	MRC-SW9B-060914		
SAMPLE DATE	20140610	20140610	20140610	20140610	20140610		
VOLATILES (UG/L)	20110020	20110010	201.0020	20110010	202 10010		
1.1.1.2-TETRACHLOROETHANE	0.22 U						
1.1.1-TRICHLOROETHANE	0.36 U						
1.1.2.2-TETRACHLOROETHANE	0.25 U						
1.1.2-TRICHLOROTRIFLUOROETHANE	0.31 U						
1.1-DICHLOROFTHANE	0.2 U						
1,1-DICHLOROETHENE	0.57 U						
1.1-DICHLOROPROPENE	0.29 U						
1.2.3-TRICHLOROBENZENE	0.82 U						
1.2.3-TRICHLOROPROPANE	0.7 U						
1.2.4-TRICHLOROBENZENE	0.23 U						
1.2.4-TRIMETHYLBENZENE	0.2 U						
1,2-DIBROMO-3-CHLOROPROPANE	0.74 U						
1,2-DIBROMO-3-CHEOROPROPAINE 1,2-DIBROMOETHANE	0.74 U	0.74 U	0.74 U	0.74 U	0.74 U		
1,2-DICHLOROBENZENE	0.24 U						
1,2-DICHLOROBENZENE 1,2-DICHLOROETHANE	0.21 U						
1,2-DICHLOROPTHANE 1.2-DICHLOROPROPANE	0.36 U						
1,2-DICHLOROPROPAINE 1.3-DICHLOROBENZENE	0.2 U						
1,3-DICHLOROBENZENE 1,3-DICHLOROPROPANE	0.2 U						
1,4-DICHLOROBENZENE	0.27 U						
,							
2,2-DICHLOROPROPANE	0.27 U						
2-BUTANONE	0.81 UJ						
2-CHLOROETHYL VINYL ETHER	0.44 U						
2-CHLOROTOLUENE	0.2 U						
2-HEXANONE	1.7 U						
4-CHLOROTOLUENE	0.24 U						
4-ISOPROPYLTOLUENE	0.2 U						
4-METHYL-2-PENTANONE	0.67 U						
ACETONE	1.4 U	1.8 U	1.5 U	1.3 UJ	1.5 U		
BENZENE	0.2 U						
BROMOBENZENE	0.28 U						
BROMOCHLOROMETHANE	0.32 U						
BROMODICHLOROMETHANE	0.32 U						
BROMOFORM	0.42 U						
BROMOMETHANE	0.29 U						
CARBON DISULFIDE	0.22 U						
CARBON TETRACHLORIDE	0.45 U						
CHLOROBENZENE	0.29 U						
CHLORODIBROMOMETHANE	0.31 U						
CHLOROETHANE	0.24 U						
CHLOROFORM	0.25 U						
CHLOROMETHANE	0.21 U						
CIS-1,2-DICHLOROETHENE	0.3 U						

TABLE C-1

CHEMICAL RESULTS FOR SURFACE WATER SAMPLES - DARK HEAD COVE AND COW PEN CREEK, JUNE 2014 LOCKHEED MARTIN MIDDLE RIVER COMPLEX, MIDDLE RIVER, MARYLAND PAGE 4 OF 4

LOCATION	MRC-SW7B	MRC-SW8A	MRC-SW8B	MRC-SW9A	MRC-SW9B
	MRC-SW7B-060914			MRC-SW9A-060914	
SAMPLE ID		MRC-SW8A-060914			
SAMPLE DATE CIS-1,3-DICHLOROPROPENE	20140610 0.24 U	20140610 0.24 U	20140610 0.24 U	20140610 0.24 U	20140610 0.24 U
DIBROMOMETHANE	0.24 U				
	0.32 U 0.46 U	0.32 U 0.46 U		0.32 U 0.46 U	0.32 U 0.46 U
DICHLORODIFLUOROMETHANE DIISOPROPYL FTHER	0.46 U	0.46 U	0.46 U 0.2 U	0.46 U	0.46 U
ETHYL TERT-BUTYL ETHER	0.2 U				
ETHYLBENZENE	0.2 U				
HEXACHLOROBUTADIENE	0.62 U				
ISOPROPYLBENZENE	0.2 U				
M+P-XYLENES	0.33 U				
METHYL TERT-BUTYL ETHER	0.29 U				
METHYLENE CHLORIDE	0.32 U				
NAPHTHALENE	0.2 U				
N-BUTYLBENZENE	0.21 U				
N-PROPYLBENZENE	0.2 U				
O-XYLENE	0.2 U				
SEC-BUTYLBENZENE	0.27 U				
STYRENE	0.2 U				
TERT-AMYL METHYL ETHER	0.2 U				
TERT-BUTYLBENZENE	0.2 U				
TERTIARY-BUTYL ALCOHOL	11 UJ				
TETRACHLOROETHENE	0.3 U				
TOLUENE	0.2 U				
TOTAL XYLENES	0.53 U				
TRANS-1,2-DICHLOROETHENE	0.33 U				
TRANS-1,3-DICHLOROPROPENE	0.2 U				
TRICHLOROETHENE	0.49 J	0.54 J	0.47 J	0.45 J	0.47 J
TRICHLOROFLUOROMETHANE	0.2 U				
VINYL ACETATE	1.1 U				
VINYL CHLORIDE	0.32 U				
SEMIVOLATILES (UG/L)					
1,4-DIOXANE	NA	NA	NA	NA	NA
POLYCHLORINATED BIPHENYLS (UG/L)					
DECACHLOROBIPHENYL	0.018 U				
DICHLOROBIPHENYLS	0.0044 U				
HEPTACHLOROBIPHENYLS	0.011 U				
HEXACHLOROBIPHENYL	0.01 U				
NONACHLOROBIPHENYLS	0.019 U				
OCTACHLOROBIPHENYLS	0.0084 U				
PENTACHLOROBIPHENYLS	0.0088 U				
TETRACHLOROBIPHENYLS	0.0054 U	0.0066 J	0.0054 U	0.0054 U	0.0054 U
TOTAL MONOCHLOROBIPHENYLS	0.0034 U	0.0017 U	0.0034 U	0.0034 U	0.0034 U
					0.000
TRICHLOROBIPHENYLS	0.0034 U				

J - Positive result is considered estimated as a result of technical noncompliance.

MRC - Middle River Complex

NA - not analyzed

SW - surface water

U - Not detected at the detection limit shown left of the letter.

UG/L - micrograms per liter (i.e., parts per billion)

UJ -The analyte was not detected. However, the quantitation or detection limit may be inaccurate or imprecise.

Table C-2

Primary VOC and 1,4-Dioxane Results for Surface Water Samples, 2012-2014 Cow Pen Creek and Dark Head Cove Lockheed Martin Middle River Complex, Middle River, Maryland

	Trichloroethene	cis-1,2-Dichloroethene	Vinyl chloride	1,4-Dioxane
Location/Date	(μg/L)	(μg/L)	(μg/L)	(μg/L)
Cow Pen Creek				
SW1A				
2014 (June)				0.235 J
2013 (June)	0.33 J			
2012 (June)				NA
SW2A				
2014 (June)				0.156 J
2013 (June)				
2012 (June)				NA
Dark Head Cove				
SW5A1				
2014 (June)				NA
2013 (June)	1.1	0.17 J		NA
2012 (June)	0.17 J			NA
SW5A2				
2014 (June)	0.3 J			NA
2013 (June)	1.9	0.26 J		NA
2012 (June)	0.19 J			NA
SW5B				
2014 (June)				NA
2013 (June)	1.5	0.35 J		NA
2012 (June)	0.19 J			NA
SW6A				
2014 (June)	0.52 J			NA
2013 (June)	0.46 J			NA
2012 (June)	0.55 J			NA
SW6B				
2014 (June)	0.39 J			NA
2013 (June)	0.81 J			NA
2012 (June)	0.63 J			NA
SW7A				
2014 (June)	0.44 J			NA
2013 (June)	0.7 J			NA
2012 (June)				NA
SW7B				
2014 (June)	0.49 J			NA
2013 (June)	0.51 J			NA
2012 (June)	0.32 J			NA
SW8A				
2014 (June)	0.54 J			NA
2013 (June)	0.65 J			NA
2012 (June)	0.66 J			NA
SW8B				
2014 (June)	0.47 J			NA
2013 (June)	0.65 J			NA
2013 (June)	0.82 J			NA NA
SW9A	0.02 3			IVA
2014 (June)	0.45 J			NA
2014 (June)	0.43 J			NA NA
2013 (June)	0.82 J			NA NA
` '	0.55 J			IVA
3014 (luno)	0.47 !			**
2014 (June)	0.47 J			
2013 (June)	0.35 J			NA NA
2012 (June)	0.34 J	NA not analyzed		NA

-- not detected

NA - not analyzed

J - estimated concentration

VOC - volatile organic compound

μg/L - micrograms per liter

APPENDIX D—RISK EST			AL SWIMMING IN
	DARK HEAD	COVE	

Memorandum

To: Michael Martin, P.G. Tetra Tech

From: Edmund Crouds

Edmund Crouch

Date: November 18, 2014

Subject: Risk estimates for recreational swimming in Dark Head Cove

As requested, we have evaluated risk estimates for recreational contact with water containing dissolved PCBs in the water column at Dark Head Cove. These risk estimates are conservative, in that they address the activity associated with the greatest level of exposure — that is, swimming — and make very conservative exposure assumptions for exposure time, duration and contact rates in the absence of site-specific measurements. In particular, we assume:

- The measurements represent dissolved PCBs in the water column (*i.e.*, the samples include no contaminated sediment). The samples were not filtered and the total PCB values reported may include some component of suspended sediment which would result in an overestimation of dissolved PCB concentrations.
- The measurements are representative of the water in Dark Head Cove where recreational swimming might occur. The samples were collected off the Middle River Complex outfalls where the concentrations would be expected to be the highest in the cove.
- The recreational swimmer is in the water for 4 hours/day, 70 days/year, for 6 years as a child and 20 years as an adult.
- The tetrachlorobiphenyls and pentachlorobiphenyls detected have an ingestion carcinogenic potency equal to the highest current estimate for the most carcinogenic tested PCB mixture. Other cancer potency values are available which would result in lower estimated potential risk.
- The tetrachlorobiphenyls and pentachlorobiphenyls detected have an ingestion reference dose (RfD) equal to that of Aroclor 1254, the lowest among PCB mixtures that have assigned RfDs.
- Cancer potency and RfD are the same for dermal exposure as for ingestion exposure.

The recreational activity exposure assumptions of 4 hours/day and 70 days/year were initially introduced in the January 2006 *Revised Human Risk Assessment for Martin State Airport* prepared for Lockheed Martin by Tetra Tech. In the subsequent April 2006 report *Surface Water and Sediment Sampling Report Lockheed Martin Middle River Complex* prepared by Tetra Tech, the 70

Michael Martin, P.G., Tetra Tech November 18, 2014 Page 2

day/year exposure frequency assumption was used for swimming exposures, but with a 2 hours/day exposure time. It is important to note for a recreational swimming exposure scenario, adjusting the exposure time from four hours to two hours does not reduce the cancer or noncancer risk by a factor of two. For ingestion of surface water, the risk estimate scales linearly with the daily exposure time; while for dermal contact with surface water, the risk estimate is a sub-linear function of the daily exposure time. In other words, for dermal exposure absorption continues even after the exposure time in the water has ended.

With the stated site-specific exposure assumptions, and using other default exposure assumptions from the Regional Screening Level (RSL) table (EPA 2014a), together with the dermal exposure methodology described in the Risk Assessment Guidance for Superfund, Volume 1E, and the estimated 95 percent upper confidence limit (95% UCL) of the mean of the measurements as exposure point concentrations, the lifetime risk estimates are:

 $\begin{array}{ll} \text{Incidental water ingestion} & 1.7 \times 10^{-8} \\ \text{Dermal absorption} & 4.9 \times 10^{-6} \\ \end{array}$

with highest hazard quotients (for children)

Incidental water ingestion 0.003 Dermal absorption 0.47

The calculations documenting these estimates are included in the accompanying workbook *Dark Head Cove Swimming PCBs.xlsx*, which also contains references for the values of all parameters used.

Modifying the daily exposure period to 2 hours/day halves the incidental water ingestion lifetime risk estimate and reduces the dermal absorption estimate to 3.2×10^{-6} , with similar effects on the hazard quotients (0.0014 and 0.30).

There are considerable uncertainties in these estimates that have been resolved in a conservative direction. As noted, the samples were not filtered, allowing potential incorporation of contaminated sediment, which would not contribute to dermal absorption — the dermal absorption calculation assumes dissolved PCBs. Two observations support the likelihood of sediment incorporation in the samples — the lack of detection of the more soluble (lower chlorinated) homologs, and the analysis of sample MRC-SW8B. This sample as originally tested contained a higher total PCB content than any other sample; but those results were rejected because of low recovery of the spike surrogates. Re-extraction and re-analysis of the sample produced non-detect results, suggesting that the first extraction included contaminated sediment (that may also have contributed to the low surrogate recovery) that was missing from the second.

The default ingestion rate of 50 ml/hour assumed for both children and adults as presented in EPA's RSL Risk-Based Concentration Table Equations for a recreational user exposed to surface water may be a conservative assumption for this evaluation. The Exposure Factors Handbook (EPA 2011) recommends a swimming water ingestion rate of 50 ml/hour for children under 18, but

Michael Martin, P.G., Tetra Tech November 18, 2014 Page 3

a value of 21 ml/hour for adults which likely contributes to an overestimation of risk for the adult population swimming in Dark Head Cove. Further, the 50 ml/hour value is based on mean ingestion rates derived from swimming pool studies, while results from seawater ingestion studies indicate lower mean values for children (31 ml/hour), men (27 ml/hour and women (18 ml/hour) (EPA 2011). Dark Head Cove averages approximately 2% salt content, closer to seawater than the fresh water of swimming pools. Therefore, the use of the EPA default surface water ingestion rate likely overestimates ingestion risk.

There are additional uncertainties related to dermal risk estimates. In general, chemical specific permeability coefficients (Kp) are used to estimate dermal absorption of a chemical from water. A Kp is a predicted value obtained from a regression equation using a chemical-specific octanol-water coefficient (Kow) and molecular weight (MW). However, for some chemicals, the Kow value or the MW may be too high or too low (outside the effective prediction domain) and the estimated Kp using the regression is uncertain. For PCBs, both the Kow and MW values are high outside of effective prediction domain resulting in an uncertain predicted Kp value that is combined with a theoretical correction factor (EPA 2004).

The assignment of the highest (most conservative) carcinogenic and noncarcinogenic toxicity values measured for any PCB mixtures for the combinations of PCB homologs measured here (where only tetrachlorobiphenyls and pentachlorobiphenyls were detected) likely overestimates risk calculations

Even with the use of conservative assumptions, the resultant risk estimates lie below the MDE threshold of 1×10^{-5} lifetime increased cancer risk and hazard quotient of 1.0, and within the EPA's range 1×10^{-6} to 1×10^{-4} and hazard quotient of 1.0, indicating no significant risk from exposures due to swimming in Dark Head Cove.

References

- Schets FM, Schijven JF, de Roda Husman AM. (2011). Exposure assessment for swimmers in bathing waters and swimming pools. Water Res 45(7):2392–2400. doi: 10.1016/j.watres.2011.01.025.
- U.S. EPA (2004). Risk Assessment Guidance for Superfund, Volume 1: Human Health Evaluation Manual (Part E, Supplemental Guidance for Dermal Risk Assessment) Final. EPA/540/R/99/005, OSWER 9285.7-02EP, July 2004.
- U.S. EPA (2011). Exposure Factors Handbook: 2011 Edition. EPA/600/R-09/052F, September 2011. Available at http://www.epa.gov/ncea/efh/pdfs/efh-complete.pdf.
- U.S. EPA (2014a). Regional Screening Level (RSL) Summary Table May 2014. Available at http://www.epa.gov/reg3hwmd/risk/human/rb-concentration_table/
- U.S. EPA (2014b). Integrated Risk Information System (IRIS), online database. Available at http://www.epa.gov/iris/

Lifetime risk estimate Child hazard quotient

Adult hazard quotient

Copy the relevant two columns from here (ranges I9:J27 or L9:M27) to the active location at D9:E27.

F.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,					Upper 6	end estimate used	Alternativ	ve estimate that could be used, taking better account of measurements.
Exposure parar	neters	Unit	Value	Source	Value	Source	Value	Source
Water ingestion	n rate while swimming							
	Child	ml/hr		50 EPA 2014		50 EPA 2014	28.6153	Schets et al. (2011); EFH Table 3-92. Mean value (ratio of means for ingestion volume and duration) for 8 seawater. (5) Schets et al. (2011); EFH Table 3-92. Mean value (ratio of means for ingestion volume and duration) for
	Adults	ml/hr		50 EPA 2014		50 EPA 2014	31.1707	3 seawater. Average of men and women. (5)
Activity factors	(common to children and a	dults)						
	Daily events	events/day		1 (2)(3)		1 (2)(3)		1 (2)(3)
	Event duration child	hr/event		4 (3)(4)		4 (3)(4)	1.08333	3 Schets et al. (2011); EPA (2011) (EFH) Table 3-92. Mean value, seawater. (5)
	Event duration adult	hr/event		4 (3)(4)		4 (3)(4)		7 Schets et al. (2011); EPA (2011) (EFH) Table 3-92. Mean value, seawater, average of men & women. (5)
	Annual number of days	days/yr		70 (2)(3)		70 (2)(3)	7	0 (2)(3)
Exposure perio	· · · · · · · · · · · · · · · · · · ·					,		
	Child	yr		6 EPA 2014 (Resident exposure duration - chil	ld	6 EPA 2014		6 EPA 2014
	Adult	yr		20 EPA 2014 (Resident exposure duration -adu		20 EPA 2014	5.	7 EFH 2011, Table 16-108 mean value of residence time.
Body weight				·				
	Child	kg		15 EPA 2014		15 EPA 2014	1.	5 EPA 2014
	Adult	kg		80 EPA 2014		80 EPA 2014	8	0 EPA 2014
Skin surface are	ea	_						
	Child	cm^2	63	378 EPA 2014	63	378 EPA 2014	637	8 EPA 2014
	Adult	cm^2	209	900 EPA 2014	209	900 EPA 2014	2090	0 EPA 2014
Averaging time	for carcinogens							
	Lifetime	yr		70 EPA 2014		70 EPA 2014	7	0 EPA 2014
		days	2556	57.5				
PCB-specific								
	Potency	kg-d/mg		2 IRIS 2014; upper bound, high risk & persiste	nce; assu	med equal for ingestion &	dermal ex	cposure
	RfD	mg/kg-d	2.00E	-05 IRIS 2014; Aroclor 1254				
Ingestion								
	Total PCB concentration	mg/ml	2.35E	-08 See sheet PCBs. Sum of ProUCL95 recomme	nded UCL	.95 estimates for tetra- &	penta-chlo	probiphenyl
	Child dose-rate during exp	o mg/kg-d	6.01E	-08				
	Adult dose-rate during exp	oc mg/kg-d	1.13E	-08				
	Lifetime average dose-rate	e mg/kg-d	8.36E	2-09				
	Lifetime risk estimate		1.7E	<mark>-08</mark> Non-mutagenic so no early life adjustment t	to potenc	у.		
	Child hazard quotient		0.0	<mark>003</mark>				
	Adult hazard quotient		0.0	006				
Dermal absorpt	tion							
5 ci iliai ab301 pi		vemg/cm^2-eve	er 1.16F	-07 See sheet PCBs for calculation of DA event	for each h	nomolog.		
	Adult absorbed dose per e	•		-07 See sheet PCBs for calculation of DA event		•		
	Child dose-rate during exp		9.47E	-	. 5. 240171			
	Adult dose-rate during exp		5.82E					
	Lifetime average dose rate		2.47E					
		סיי וסיי. כ	4.05					

4.9E-06 Non-mutagenic so no early life adjustment to potency.

0.47 0.29 Total risk 5.0E-06
Hazard index 0.48

References

- (1) Recreational user is a local resident who swims in Dark Head Cove, with the assumption that the entire body is exposed to surface water.
- (2) Exposure assumption was employed in the 2006 HHRA for Dark Head Cove in Surface Water and Sediment Sampling Report Lockheed Martin Middle River Complex prepared by Tetra Tech.
- (3) Exposure assumption in the 2006 Revised Human Risk Assessment for Martin State Airport prepared for Lockheed Martin by Tetra Tech.
- (4) The dermal risk estimate is sub-linear in event duration, while the ingestion estimate is linear, for exposure to dissolved PCBs in water. The 2006 HHRA for Dark Head Cove used a 2 hr event duration, but the risk estimate for dermal exposure to PCBs from sediments in that HHRA is independent of event duration.
- (5) Schets et al. (2011) state that frequency of bathing, duration of bathing, and swallowed volume were effectively uncorrelated.

IRIS 2014 Integrated Risk Information System at http://www.epa.gov/iris/subst/0294.htm

EPA 2011. Exposure Factors Handbook: 2011 Edition. EPA/600/R-09/052F, September 2011. Available at http://www.epa.gov/ncea/efh/pdfs/efh-complete.pdf.

EPA 2014. Regional Screening Table - User's Guide Table 1 at http://www.epa.gov/reg3hwmd/risk/human/rb-concentration_table/usersguide.htm

Schets FM, Schijven JF, de Roda Husman AM. Exposure assessment for swimmers in bathing waters and swimming pools. Water Res. 2011 Mar;45(7):2392–2400. doi: 10.1016/j.watres.2011.01.025.

Correlations for logKow and log S_WL using Table 21 of Li N, Wania F, Lei YD, Daly GL. A Comprehensive and Critical Compilation, Evaluation, and Selection of Physical—Chemical Property Data for Selected Polychlorinated Biphenyls. J Phys Chem Ref Data 2003;32(4):1545–1590.

Estimate Kp using RAGS 1E equation 3.8, ignoring possibility of being outside effective prediction domain (EPD)

Then follow RAGS 1E Appendix A, setting FA to the nearest 0.1 (rounded up) from Exhibit A-5 of RAGS 1E

RAGS 1E. U.S. EPA 2004. Risk Assessment Guidance for Superfund, Volume 1: Human Health Evaluation Manual (Part E, Supplemental Guidance for Dermal Risk Assessment) Final. EPA/540/R/99/005, OSWER 9285.7-02EP, July 2004.

Calculation of DA_event for each homolog

	Child Adult	Effective Prediction Domain for Kp
	Li et al (20(RAGS 1E Eq. 3.8 RAGS 1E Appendix A	Boundary 1 Boundary 2
	MW logKow logKp Kp/cm/hr B l_sc/cm Dsc/cm^2/tau_event/c b t* FA (from E) Conc./mg/\(\text{\pma}\) DA_event/mg/DA_event/mg/cm2-event	EPD_low Actual EPD_high EPD_low Actual EPD_high Inside or outside EPD
Tetrachlorobiphenyl	291.99 6.108273 -0.40368 0.394745 2.59434 1.00E-03 3.67E-08 4.53934 2.687078 5.537589 18.94638 0.9 1.24E-08 5.18845E-08 5.19E-08	-0.06831 0.492043 0.5577 -0.301 0.194038 0.1758 Outside
Pentachlorobiphenyl	326.43 6.545661 -0.30787 0.492185 3.420188 1.00E-03 2.36E-08 7.077123 3.495599 8.942716 30.21214 0.8 1.11E-08 6.42733E-08 6.43E-08	-0.06831 0.534182 0.5577 -0.301 0.201027 0.1758 Outside
	Tot derma 1.16158E-07 1.16E-07	

Solubility check; are the measurements consistent with dissolved PCBs? Solubility estimates from Li et al (2003) see above

 Temperature
 20 C

 Gas_Constant
 8.314462 J/K/mol
 Solubility (sub-cooled Typical values
 Approx solubility (solid)

 MW
 logS_WL
 S_WL/mol, ug/L
 DeltaS_fus/J/K/mol
 multiplier ug/L

 Tetrachlorobiphenyl
 291.99 -3.43825 0.000365 106.4437
 56 87 0.214519 22.83424 MM

Tetrachlorobiphenyl 291.99 -3.43825 0.000365 106.4437 56 87 0.214519 22.83424 Measurements are far below solubility so may represent dissolved PCBs

Pentachlorobiphenyl 326.43 -3.96174 0.000109 35.64955 56 100 0.15913 5.672902

Check of typical values for DeltaS_fus and T_m; values as given by Li et al (2003) see above:

 DeltaS_fus,T_m/C

 2,5,2',5'-tetrachlorobiphenyl
 46.1
 86.5

 2,3,4,5-tetrachlorobiphenyl
 69.1
 90

 2,4,5,2',5'-pentachlorobiphenyl
 53.6
 77

 2,3,4,3',4'-pentachlorobiphenyl
 56
 117

 2,4,5,3',4'-pentachlorobiphenyl
 56
 110

Measurements in Dark Head Cove only

Approximate DL by 1/2 the lowest measured value.

Treat J values as accurate enough for this evaluation.

Date 6/9/2014	Input file fo	or ProUCL5	(data colun	nns in microgram/I	iter)
	Tetra	D_Tetra	Penta	D_Penta	
MRC-SW5A1	0.011	1	0.0088	0	
MRC-SW5A2	0.024	1	0.011	0	
MRC-SW5B	0.016	1	0.0088	0	
MRC-SW6A	0.0066	1	0.0088	0	
MRC-SW6B	0.0071	1	0.015	1	
MRC-SW7A	0.0054	0	0.012	1	
MRC-SW7B	0.0054	0	0.0088	0	
MRC-SW8A	0.0066	1	0.0088	0	
MRC-SW8B	0.0054	0	0.0088	0	
MRC-SW9A	0.0054	0	0.0088	0	
MRC-SW9B	0.0054	0	0.0088	0	
ProUCL5 suggested UCL95	0.0124		0.0111	microgram/liter	See sheet 'ProUCL5.0 Output'.
ProUCL5 suggested UCL95	1.24E-08		1.11E-08	mg/ml	

	Α	В	С	D	Е	F	G	Н	I	ı	K	
1		I D	1 (_ U	_		Sets with No		1	1 ,		
2												
3		User Sele	ected Options									
	D	ate/Time of C		11/10/2014 5	:14:31 PM							
4			From File	WorkSheet.x								
5		Eı	ull Precision	OFF	.13							
6			e Coefficient	95%								
7	Nivershaa											
8	Number	of Bootstrap	Operations	2000								
9												
10	Tetra											
11												
12							Statistics					
13			Tota	al Number of (11			Numb		Observations	6
14				Numb	er of Detects	6				Number o	f Non-Detects	5
15			!	Number of Dis	tinct Detects	5			Num	ber of Distinc	t Non-Detects	1
16				Min	imum Detect	0.0066				Minimu	m Non-Detect	0.0054
17				Max	imum Detect	0.024				Maximu	m Non-Detect	0.0054
18				Varia	ance Detects	4.8650E-5				Percen	t Non-Detects	45.45%
19				N	lean Detects	0.0119					SD Detects	0.00697
20				Ме	dian Detects	0.00905					CV Detects	0.587
21				Skew	ness Detects	1.276				Ku	rtosis Detects	0.826
22				Mean of Log	gged Detects	-4.561				SD of Lo	ogged Detects	0.538
23												
24					Norr	nal GOF Tes	t on Detects	Only				
25				Shapiro Wilk		0.825			Shapiro W	lk GOF Test		
26				Shapiro Wilk (0.788		Detected Data	-		gnificance Leve	اد
27				<u> </u>	Test Statistic	0.254				GOF Test		
28				5% Lilliefors (0.362	Г	Detected Data			gnificance Leve	<u>.</u>
29								nificance Lev				
30								,,,,,,				
31			Kanla	n-Meier (KM)	Statistics us	ing Normal (ritical Values	s and other N	nnarametri	c UCI s		
32			Таріа		Mean	0.00894	This are the same of		onparamen.		Error of Mean	0.00188
					SD	0.0057					M (BCA) UCL	0.0121
33				05%	6 KM (t) UCL	0.0124			05% KM		ootstrap) UCL	0.0119
34					KM (z) UCL	0.0124			ootstrap t UCL	0.0174		
35				90% KM Che		0.012					ebyshev UCL	0.0174
36				90% KM Che	•	0.0146					ebyshev UCL	0.0171
37				77.370 KIVI CHE	bysnev UCL	0.0207				33 /0 KIVI CII	enysilev UCL	0.0277
38					Com 001	Tosto s= D	stantad Oh	motions O-1				
39							elected ODSE	rvations Only		-U 00= =		
40					Test Statistic	0.494				rling GOF Te		
41					Critical Value	0.7	Detect				5% Significance) Level
42					Test Statistic	0.284				Smirnoff GOI		
43					Critical Value	0.333				istributed at 5	5% Significance) Level
44				Detecte	d data appea	r Gamma Di	stributed at 5	% Significand	ce Level			
45												
46					Gamma	Statistics or	Detected Da	ata Only				
47			-		k hat (MLE)	4.065		-		star (bias co	orrected MLE)	2.144
48				The	eta hat (MLE)	0.00292		orrected MLE)	0.00554			
49					nu hat (MLE)	48.78				nu star (b	ias corrected)	25.72
50			N	MLE Mean (bia	as corrected)	0.0119				MLE Sd (b	ias corrected)	0.00812
51							I					
55	95	5% Gamma A	Approximate k	(M-UCL (use v	when n>=50)	0.0127		95% Gam	ma Adjusted	KM-UCL (us	e when n<50)	0.0134
56						i	I					
56												

	Α		В			С		D		E	T	F		G		Н			ī		J			K		L
57									Ga	mma RO			sing lı	_	No		ects						ı		_	
58					C	ROS	may	not be	used v	vhen data	set has	s > 50%	% NDs	with m	any	tied o	bserv	ations	s at n	nultip	ole DLs	5				
59								GROS	may r	ot be use	ed when	kstar	of dete	ected da	ata is	s smal	ll such	as <	0.1							
60							For	such si	tuatior	s, GROS	method	d tends	s to yie	ld inflat	ted v	values	of UC	CLs a	nd B	TVs						
61			F	For g	amn	na dist	ribute	d dete	cted d	ata, BTV	s and U	CLs ma	ay be	comput	ed u	ısing g	jamma	a dist	ributi	ion o	n KM e	estir	mate	s		
62										Minimu	n 0.0	066												Mea	an	0.011
63										Maximu	n 0.0)24												Media	an	0.01
64										S	D 0.0	0503												C	V	0.456
65									k	hat (MLE	6.	966								k sta	ar (bias	s co	rrect	ted ML	E)	5.127
66									Theta	hat (MLE	0.0	0158							The	ta sta	ar (bias	s co	rrect	ted ML	E)	0.00215
67									nu	hat (MLE	153	.3									nu sta	r (bi	ias c	orrecte	d)	112.8
68							MLE	Mean	(bias	corrected	d) 0.0)11								N	ILE Sc	d (bi	ias c	orrecte	d)	0.00487
69																		P	Adjus	ted L	evel o	f Si	gnific	cance (β)	0.0278
70				App	roxi	mate (Chi S	quare \	/alue (112.79, 0	1) 89	.27					P	Adjust	ted C	hi S	quare \	Valu	ue (1	12.79,	β)	85.87
71		ć	95% G	amm	na Ap	proxi	mate	UCL (u	ise wh	en n>=5(0.0	139				95	5% Ga	amma	a Adjı	usted	d UCL	(use	e wh	en n<5	0)	0.0145
72																										
73		Lognorn										st on E	Detect	ed Obs	erva	ations	Only									
74							Sh	apiro V	Vilk Te	st Statist	с 0.	862						Shap	iro W	Vilk C	GOF T	est				
75						59	% Sha	piro W	/ilk Cri	tical Valu	е 0.	788		De	etec	ted Da	ata ap	pear	Logn	orma	al at 59	% Si	ignifi	cance	Leve	el
76								Lillief	ors Te	st Statist	c 0.	264						Lill	iefors	s GC	F Tes	t				
77							5%	Lilliefo	ors Cri	tical Valu	е 0.	362		De	etec	ted Da	ata ap	pear	Logn	orma	al at 59	% Si	ignifi	cance	Leve	el
78		Detected Da										Logno	ormal a	at 5% S	Signi	ificanc	e Lev	/el								
79																										
80		Lognormal ROS Statistics Using Imputed Non-Detects																								
81								Mean	in Oriç	jinal Scal	e 0.0	0755					Mean in Log Scale -5.27									
82								SD	in Oriç	jinal Scal	e 0.0	0703										SD) in L	og Sca	le	0.952
83			9	5% t	UCL	. (assı	ımes	norma	lity of	ROS data	a) 0.0)114							959	% Pε	ercentil	le B	oots	trap U0	CL	0.0111
84							95	% BC/	A Boot	strap UC	L 0.0)119		95% Bootstrap t UCL 0.0								0.0141				
85								95% H	-UCL (Log ROS	6) 0.0)193														
86																									•	
87				ι	UCL	s usin	g Log	norma	l Disti	ibution a	nd KM I	Estima	ites w	nen De	tect	ed dat	a are	Logr	orm	ally [Distrib	utec	d			
88										n (logged	′	361											`	KM -Lo	٠,	0.0122
89									KM S	D (logged	d) 0.	49							959	% Cr	itical H	l Va	ılue (KM-Lo	g)	2.163
90					KI	M Star	ndard	Error o	of Mea	n (logged	d) 0.162															
91																										
92												DL/2 S	Statisti	cs												
93						DL/	2 Nor											DL/2	Log-	-Trar	nsform					
94										jinal Scal		0771									М			og Sca		-5.176
95									`	jinal Scal		0688												og Sca		0.803
96								•		normality	1)115										95%	% H-	Stat U0	CL	0.0152
97						D	L/2 is	not a	recom	mended	method	I, provi	ided fo	or comp	aris	sons a	nd his	storic	al re	ason	ıs					
98																										
99										Nonpara																
100								Dete	ected	Data app	ear Nor	mal Di	stribu	ted at 5	» S	signific	cance	Leve	əi							
101													LIC:													
102									OEO' :	(N.A. /±\ + + + =			UCL	to Use				050	/ 1/1 -	I / D					N .	0.0440
103									95% K	(M (t) UC	L 0.0)124					- 1	95%	o KM	(Pe	centile	9 R0	otsti	rap) U(-L	0.0119
104			Notes	C	100±;	one =-	مححا.	na +h -	ام مام مد	on of - o	E0/ LIO	oro =	roviid -	d to be	n sk	0.110.5	to sal	OC+ II	20	oct -	nnra	ict-	OEO	CLICI		
105																										
106	Recommendations are based upon data size, data distribution, and skewness. These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006).																									
107		ы																							n	
108		Н	Jweve	ı, sın	iiuiat	ions r	esults	wiii nc	or cove	r all Rea	DIJOVV	uata Se	es; for	auuiti0	ııal I	ırısıgnı	ı uıe u	ser n	ıay W	varit	io cons	SUIT	a Sta	usucia	11.	
109																										

	Α	В	С	D	Е	F	G	Н	Ī	l	К	1
110	Penta				_	'					I.	
111												
112												
113			Tot	al Number of	Observations	11		Observations	4			
114					er of Detects	2					Non-Detects	9
115				Number of Dis		2			Numb		Non-Detects	2
116					imum Detect	0.012					n Non-Detect	0.0088
117					imum Detect	0.015					n Non-Detect	0.011
118				Vari	ance Detects	4.5000E-6				Percent	Non-Detects	81.82%
119					Mean Detects	0.0135					SD Detects	0.00212
120					dian Detects	0.0135					CV Detects	0.157
121					ness Detects	N/A				Kur	tosis Detects	N/A
122					gged Detects	-4.311					gged Detects	0.158
123											33	
124					Warning: [Data set has	only 2 Detec	ted Values.				
125				This is not e				le statistics a	nd estimates			
126												
127												
128					Norr	mal GOF Tes	t on Detects	Only				
129						nough Data to		<u> </u>				
130												
131			Kapla	n-Meier (KM)	Statistics us	ing Normal C	ritical Value	s and other N	onparametri	UCLs		
132					Mean	0.00965					Error of Mean	8.1967E-4
133					SD	0.00192					M (BCA) UCL	N/A
134				95%	6 KM (t) UCL	0.0111	95% KM (Percentile Bootstrap) UCL					N/A
135					KM (z) UCL	0.011	95% KM Bootstrap t UCL					
136				90% KM Che	. ,	0.0121	95% KM Chebyshev UCL					
137			Ç	7.5% KM Che	-	0.0148	99% KM Chebyshev UCL					
138						313.13						0.0178
139					Gamma GOF	Tests on De	etected Obse	ervations Only	,			
140						nough Data to						
141						.oug Duta to						
141					Gamma	a Statistics or	Detected D	ata Only				
-					k hat (MLE)					star (bias co	rrected MLF)	N/A
143 144				The	eta hat (MLE)					star (bias co		N/A
145					nu hat (MLE)	322.7				,	as corrected)	N/A
146			-	MLE Mean (bi		N/A					as corrected)	N/A
147			·			*				00 (5)		
148					Gamn	na Kaplan-M	eier (KM) St	atistics				
149		Gamma Kaplan-Meier (KM) Statistics k hat (KM) 25.22 nu hat (KM) 554.9						554.9				
150					- ()				Adiuste	ed Level of Sig	, ,	0.0278
151		Ar	proximate Ch	i Square Valu	e (554.94. α)	501.3			-	i Square Valu		493
152		•	•	•	. ,	0.0107		95% Gam		•	(','	0.0109
153												
154												
155									•			
156												
157				L	ognormal RC	S Statistics	Using Imput	ed Non-Detec	ts			
158					Original Scale	0.0069	s Using Imputed Non-Detects Mean in Log Scale -5.098					-5.095
159					Original Scale							0.505
160		95%	t UCL (assun		-	0.00894						0.00875
161			(400411	95% BCA B		0.00909					otstrap t UCL	0.0104
-					L (Log ROS)	0.00986				00 /0 00	0.011 ap 1 00L	0.0104
162				JJ /0 1 I-UC	L (LUG INUS)	0.00300						

	Α	В	С	D	Е	F	G	Н	I	J	K	L	
163													
164		DL/2 Statistics											
165	DL/2 Normal DL/2 Log-Transformed												
166				Mean in C	Original Scale	0.00615				Mear	n in Log Scale	-5.203	
167				SD in (Original Scale	0.00371				SE) in Log Scale	0.449	
168			95% t	UCL (Assum	es normality)	0.00818				959	% H-Stat UCL	0.00821	
169			DL/2	2 is not a rec	ommended m	ethod, provi	ded for comp	arisons and	historical rea	sons			
170													
171	Nonparametric Distribution Free UCL Statistics												
172				Data do	not follow a D	iscernible D	istribution at	5% Significa	nce Level				
173													
174						Suggested	UCL to Use						
175				959	% KM (t) UCL	0.0111			9	5% KM (% Bo	ootstrap) UCL	N/A	
176				Wai	ning: One or	more Recor	mended UC	L(s) not avail	lable!				
177													
178		Note: Sug	gestions rega	rding the sele	ection of a 95%	% UCL are pr	ovided to help	the user to	select the mos	st appropriate	95% UCL.		
179				Recommend	dations are ba	sed upon dat	ta size, data d	listribution, a	nd skewness.				
180		These re	commendatio	ns are based	upon the resi	ults of the sim	nulation studie	es summarize	ed in Singh, M	laichle, and L	ee (2006).		
181		However, sir	mulations resi	ults will not co	over all Real V	Vorld data se	ts; for addition	nal insight the	e user may wa	ant to consult	a statistician.		
182	-	-		-		-	-	-	-	-			

Inputs for ProUCL

	Tetrachlorobiphenyl	Pentachlorobiphenyl
MRC-SW5A1	0.011	0.0088 U
MRC-SW5A2	0.024	0.011 U
MRC-SW5B	0.016	0.0088 U
MRC-SW6A	0.0066 J	0.0088 U
MRC-SW6B	0.0071 J	0.015
MRC-SW7A	0.0054 U	0.012
MRC-SW7B	0.0054 U	0.0088 U
MRC-SW8A	0.0066 J	0.0088 U
MRC-SW8B	0.0054 U	0.0088 U
MRC-SW9A	0.0054 U	0.0088 U
MRC-SW9B	0.0054 U	0.0088 U

Appendix A, Qualified Analytical Results

Decachlorobiphenyls, 1

1 TOTAL MONOCHLORO 2 DICHLOROBIPHENYLS 3 TRICHLOROBIPHENYLS 4 TETRACHLOROBIPHEN' 5 PENTACHLOROBIPHEN' 6 HEXACHLOROBIPHENY 7 HEPTACHLOROBIPHENY 9 NONACHLOROBIPHENY 10 DECACHLOROBIPHENY	MRC-SW5A1-060914 0.0017 U 0.0044 U 0.0034 U 0.011 0.0088 U 0.01 U 0.011 U 0.0084 U 0.019 U 0.018 U	MRC-SW5A2-060914 0.0021 U 0.0054 U 0.0042 U 0.024 0.011 U 0.013 U 0.014 U 0.011 U 0.024 U 0.024 U	MRC-SW5B-060914 0.0017 U 0.0044 U 0.0034 U 0.016 0.0088 U 0.01 U 0.011 U 0.0084 U 0.019 U 0.018 U	MRC-SW6A-060914 0.0017 U 0.0044 U 0.0034 U 0.0054 J 0.0088 U 0.01 U 0.011 U 0.0084 U 0.019 U 0.018 U	MRC-SW6B-060914 0.0017 U 0.0044 U 0.0034 U 0.0054 J 0.015 0.01 U 0.011 U 0.0084 U 0.019 U 0.018 U	MRC-SW7A-060914 0.0017 U 0.0044 U 0.0034 U 0.0054 U 0.012 0.01 U 0.011 U 0.0084 U 0.019 U 0.018 U	MRC-SW7B-060914 0.0017 U 0.0044 U 0.0034 U 0.0054 U 0.0088 U 0.01 U 0.011 U 0.0084 U 0.019 U 0.018 U	MRC-SW8A-060914 0.0017 U 0.0044 U 0.0034 U 0.0054 J 0.0088 U 0.01 U 0.011 U 0.0084 U 0.019 U 0.018 U	, , ,	x A separates these two MRC-SW8B-060914 0.0017 U 0.0044 U 0.0054 U 0.011 U 0.0084 U 0.019 U 0.018 U	o entries in this way MRC-SW9A-060914 0.0017 U 0.0044 U 0.0054 U 0.0088 U 0.01 U 0.011 U 0.0084 U 0.019 U 0.018 U	MRC-SW9B-060914 0.0017 U 0.0044 U 0.0034 U 0.0054 U 0.0088 U 0.01 U 0.011 U 0.0084 U 0.019 U 0.018 U
Reconstruction from Ap	ppendix B								First extraction, QC fa	iil 2nd extraction		
	•	MRC-SW5A2-060914	MRC-SW5B-060914	MRC-SW6A-060914	MRC-SW6B-060914	MRC-SW7A-060914	MRC-SW7B-060914	MRC-SW8A-060914	MRC-SW8B-060914		MRC-SW9A-060914	MRC-SW9B-060914
Monochlorobiphenyls,	0.0017 U	0.0021 U	0.0017 U	0.0017 U	0.0017 U	0.0017 U	0.0017 U	0.0017 U	0.0017 U	0.0017 U	0.0017 U	0.0017 U
Dichlorobiphenyls, Tot	0.0044 U	0.0054 U	0.0044 U	0.0044 U	0.0044 U	0.0044 U	0.0044 U	0.0044 U	0.0044 U	0.0044 U	0.0044 U	0.0044 U
Trichlorobiphenyls, To	0.0034 U	0.0042 U	0.0034 U	0.0034 U	0.0034 U	0.0034 U	0.0034 U	0.0034 U	0.0061	0.0034 U	0.0034 U	0.0034 U
Tetrachlorobiphenyls,	0.011	0.024	0.016	0.0066 J	0.0071 J	0.0054 U	0.0054 U	0.0066 J	0.0061 J	0.0054 U	0.0054 U	0.0054 U
Pentachlorobiphenyls,	0.0088 U	0.011 U	0.0088 U	0.0088 U	0.015	0.012	0.0088 U	0.0088 U	0.018	0.0088 U	0.0088 U	0.0088 U
Hexachlorobiphenyls, -	0.01 U	0.013 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U
Heptachlorobiphenyls,	0.011 U	0.014 U	0.011 U	0.011 U	0.011 U	0.011 U	0.011 U	0.011 U	0.011 U	0.011 U	0.011 U	0.011 U
Octachlorobiphenyls, 1	0.0084 U	0.011 U	0.0084 U	0.0084 U	0.0084 U	0.0084 U	0.0084 U	0.0084 U	0.0084 U	0.0084 U	0.0084 U	0.0084 U
Nonachlorobiphenyls,	0.019 U	0.024 U	0.019 U	0.019 U	0.019 U	0.019 U	0.019 U	0.019 U	0.019 U	0.019 U	0.019 U	0.019 U
Decachlorobiphenyls, 7	0.018 U	0.022 U	0.018 U	0.018 U	0.018 U	0.018 U	0.018 U	0.018 U	0.018 U	0.018 U	0.018 U	0.018 U
Check for differences between App												
Monochlorobiphenyls,									1	1		
Dichlorobiphenyls, Tot									1	1		
Trichlorobiphenyls, To									1	1 1	1	
Tetrachlorobiphenyls,				1	1			1	1	 1		
Pentachlorobiphenyls,									1	1 1	1	
Hexachlorobiphenyls, -									1	1		
Heptachlorobiphenyls,									1	1		
Octachlorobiphenyls, 1									1	_ 1		
Nonachlorobiphenyls,									1	1		
Describber bishes in the									4			

Appendix B, Results as reported by the Laboratory

	December 1 According to the control				
	Disast same	Extracted from th	• •	MDI	Reconstruct Appendix A entries
	Direct copy	Result Q	MRL	MDL	NADO CIMENA OCCOMA
Name all laurabinda and a Tatal	MRC-SW5A1-060914	0.0040.11	0.0040	0.0017	MRC-SW5A1-060914
Monochlorobiphenyls, Total	0.0049 U 0.0049 0.0017	0.0049 U	0.0049	0.0017	0.0017 U
Dichlorobiphenyls, Total	0.0049 U 0.0049 0.0044	0.0049 U	0.0049	0.0044	0.0044 U
Trichlorobiphenyls, Total	0.0049 U 0.0049 0.0034	0.0049 U	0.0049	0.0034	0.0034 U
Tetrachlorobiphenyls, Total	0.011 0.0098 0.0054	0.011	0.0098		0.011
Pentachlorobiphenyls, Total	0.0098 U 0.0098 0.0088	0.0098 U	0.0098		0.0088 U
Hexachlorobiphenyls, Total	0.010 U 0.010 0.010	0.01 U	0.01		0.01 U
Heptachlorobiphenyls, Total	0.015 U 0.015 0.011	0.015 U	0.015		0.011 U
Octachlorobiphenyls, Total	0.015 U 0.015 0.0084	0.015 U	0.015		0.0084 U
Nonachlorobiphenyls, Total	0.020 U 0.020 0.019	0.02 U	0.02		0.019 U
Decachlorobiphenyls, Total	0.025 U 0.025 0.018	0.025 U	0.025	0.018	0.018 U
	MRC-SW5A2-060914				MRC-SW5A2-060914
Monochlorobiphenyls, Total	0.0061 U 0.0061 0.0021	0.0061 U	0.0061	0.0021	0.0021 U
Dichlorobiphenyls, Total	0.0061 U 0.0061 0.0054	0.0061 U	0.0061		0.0054 U
Trichlorobiphenyls, Total	0.0061 U 0.0061 0.0042	0.0061 U	0.0061		0.0042 U
Tetrachlorobiphenyls, Total	0.024 0.012 0.0066	0.024	0.012		0.024
Pentachlorobiphenyls, Total	0.012 U 0.012 0.011	0.012 U	0.012		0.011 U
Hexachlorobiphenyls, Total	0.013 U 0.013 0.013	0.013 U	0.013		0.013 U
Heptachlorobiphenyls, Total	0.018 U 0.018 0.014	0.018 U	0.018		0.014 U
Octachlorobiphenyls, Total	0.018 U 0.018 0.011	0.018 U	0.018		0.011 U
Nonachlorobiphenyls, Total	0.024 U 0.024 0.024	0.024 U	0.024		0.024 U
Decachlorobiphenyls, Total	0.030 U 0.030 0.022	0.03 U	0.03	0.022	0.022 U
	MRC-SW5B-060914				MRC-SW5B-060914
Monochlorobiphenyls, Total	0.0048 U 0.0048 0.0017	0.0048 U	0.0048	0.0017	0.0017 U
Dichlorobiphenyls, Total	0.0048 U 0.0048 0.0044	0.0048 U	0.0048	0.0044	0.0044 U
Trichlorobiphenyls, Total	0.0048 U 0.0048 0.0034	0.0048 U	0.0048	0.0034	0.0034 U
Tetrachlorobiphenyls, Total	0.016 0.0096 0.0054	0.016	0.0096	0.0054	0.016
Pentachlorobiphenyls, Total	0.0096 U 0.0096 0.0088	0.0096 U	0.0096	0.0088	0.0088 U
Hexachlorobiphenyls, Total	0.010 U 0.010 0.010	0.01 U	0.01	0.01	0.01 U
Heptachlorobiphenyls, Total	0.014 U 0.014 0.011	0.014 U	0.014	0.011	0.011 U
Octachlorobiphenyls, Total	0.014 U 0.014 0.0084	0.014 U	0.014	0.0084	0.0084 U
Nonachlorobiphenyls, Total	0.019 U 0.019 0.019	0.019 U	0.019	0.019	0.019 U
Decachlorobiphenyls, Total	0.024 U 0.024 0.018	0.024 U	0.024	0.018	0.018 U
	MRC-SW6A-060914				MRC-SW6A-060914
Monochlorobiphenyls, Total	0.0047 U 0.0047 0.0017	0.0047 U	0.0047	0.0017	0.0017 U
Dichlorobiphenyls, Total	0.0047 U 0.0047 0.0044	0.0047 U	0.0047	0.0044	0.0044 U
richlorobiphenyls, Total	0.0047 U 0.0047 0.0034	0.0047 U	0.0047	0.0034	0.0034 U
etrachlorobiphenyls, Total	0.0066 J 0.0094 0.0054	0.0066 J	0.0094	0.0054	0.0066 J
Pentachlorobiphenyls, Total	0.0094 U 0.0094 0.0088	0.0094 U	0.0094	0.0088	0.0088 U
Hexachlorobiphenyls, Total	0.010 U 0.010 0.010	0.01 U	0.01	0.01	0.01 U
Heptachlorobiphenyls, Total	0.014 U 0.014 0.011	0.014 U	0.014	0.011	0.011 U
Octachlorobiphenyls, Total	0.014 U 0.014 0.0084	0.014 U	0.014	0.0084	0.0084 U
Nonachlorobiphenyls, Total	0.019 U 0.019 0.019	0.019 U	0.019	0.019	0.019 U
Decachlorobiphenyls, Total	0.024 U 0.024 0.018	0.024 U	0.024	0.018	0.018 U
	MRC-SW6B-060914				MRC-SW6B-060914
Monochlorobiphenyls, Total	0.0047 U 0.0047 0.0017	0.0047 U	0.0047	0.0017	0.0017 U
Dichlorobiphenyls, Total	0.0047 U 0.0047 0.0044	0.0047 U	0.0047	0.0044	0.0044 U
Trichlorobiphenyls, Total	0.0047 U 0.0047 0.0034	0.0047 U	0.0047	0.0034	0.0034 U
Tetrachlorobiphenyls, Total	0.0071 J 0.0094 0.0054	0.0071 J	0.0094	0.0054	0.0071 J
Pentachlorobiphenyls, Total	0.015 0.0094 0.0088	0.015	0.0094	0.0088	0.015
•	0.010 U 0.010 0.010				

Heptachlorobiphenyls, Total	0.014 U 0.014 0.011	0.014 U	0.014	0.011	0.011 U
Octachlorobiphenyls, Total	0.014 U 0.014 0.0084	0.014 U	0.014	0.0084	0.0084 U
Nonachlorobiphenyls, Total	0.019 U 0.019 0.019	0.019 U	0.019	0.019	0.019 U
Decachlorobiphenyls, Total	0.024 U 0.024 0.018	0.024 U	0.024	0.018	0.018 U
	MRC-SW7A-060914				MRC-SW7A-060914
Monochlorobiphenyls, Total	0.0050 U 0.0050 0.0017	0.005 U	0.005	0.0017	0.0017 U
Dichlorobiphenyls, Total	0.0050 U 0.0050 0.0044	0.005 U	0.005	0.0044	0.0044 U
Trichlorobiphenyls, Total	0.0050 U 0.0050 0.0034	0.005 U	0.005	0.0034	0.0034 U
Tetrachlorobiphenyls, Total	0.010 U 0.010 0.0054	0.01 U	0.01	0.0054	0.0054 U
Pentachlorobiphenyls, Total	0.012 0.010 0.0088	0.012	0.01	0.0088	0.012
Hexachlorobiphenyls, Total	0.010 U 0.010 0.010	0.01 U	0.01	0.01	0.01 U
Heptachlorobiphenyls, Total	0.015 U 0.015 0.011	0.015 U	0.015	0.011	0.011 U
Octachlorobiphenyls, Total	0.015 U 0.015 0.0084	0.015 U	0.015	0.0084	0.0084 U
Nonachlorobiphenyls, Total	0.020 U 0.020 0.019	0.02 U	0.02	0.019	0.019 U
Decachlorobiphenyls, Total	0.025 U 0.025 0.018	0.025 U	0.025	0.018	0.018 U
Maria de la colicio de la Tartal	MRC-SW7B-060914	0.0047.11	0.0047	0.0047	MRC-SW7B-060914
Monochlorobiphenyls, Total	0.0047 U 0.0047 0.0017	0.0047 U	0.0047	0.0017	0.0017 U
Dichlorobiphenyls, Total	0.0047 U 0.0047 0.0044	0.0047 U	0.0047	0.0044	0.0044 U
Trichlorobiphenyls, Total	0.0047 U 0.0047 0.0034	0.0047 U	0.0047	0.0034	0.0034 U
Tetrachlorobiphenyls, Total	0.0094 U 0.0094 0.0054	0.0094 U	0.0094	0.0054	0.0054 U
Pentachlorobiphenyls, Total	0.0094 U 0.0094 0.0088	0.0094 U	0.0094	0.0088	0.0088 U
Hexachlorobiphenyls, Total	0.010 U 0.010 0.010 0.014 U 0.014 0.011	0.01 U 0.014 U	0.01 0.014	0.01 0.011	0.01 U 0.011 U
Heptachlorobiphenyls, Total	0.014 U 0.014 0.011 0.014 U 0.014 0.0084	0.014 U	0.014	0.011	0.011 U 0.0084 U
Octachlorobiphenyls, Total Nonachlorobiphenyls, Total	0.014 U 0.014 0.0084 0.019 U 0.019 0.019	0.014 U	0.014	0.0084	0.0084 U
Decachlorobiphenyls, Total	0.019 U 0.019 0.019 0.024 U 0.024 0.018	0.019 U	0.019	0.019	0.019 U
Decacillorobiphenyis, Total	MRC-SW8A-060914	0.024 0	0.024	0.016	MRC-SW8A-060914
Monochlorobiphenyls, Total	0.0047 U 0.0047 0.0017	0.0047 U	0.0047	0.0017	0.0017 U
Dichlorobiphenyls, Total	0.0047 U 0.0047 0.0017 0.0047 U 0.0047 0.0044	0.0047 U	0.0047	0.0017	0.0017 U
Trichlorobiphenyls, Total	0.0047 U 0.0047 0.0044 0.0047 U 0.0047 0.0034	0.0047 U	0.0047	0.0044	0.0044 U
Tetrachlorobiphenyls, Total	0.0066 J 0.0094 0.0054	0.0047 C	0.0047	0.0054	0.0066 J
Pentachlorobiphenyls, Total	0.0094 U 0.0094 0.0088	0.0000 J 0.0094 U	0.0094	0.0034	0.0088 U
Hexachlorobiphenyls, Total	0.010 U 0.010 0.010	0.01 U	0.01	0.01	0.01 U
Heptachlorobiphenyls, Total	0.014 U 0.014 0.011	0.014 U	0.014	0.011	0.011 U
Octachlorobiphenyls, Total	0.014 U 0.014 0.0084	0.014 U	0.014	0.0084	0.0084 U
Nonachlorobiphenyls, Total	0.019 U 0.019 0.019	0.019 U	0.019	0.019	0.019 U
Decachlorobiphenyls, Total	0.024 U 0.024 0.018	0.024 U	0.024	0.018	0.018 U
	MRC-SW8B-060914	****		*****	MRC-SW8B-060914
Monochlorobiphenyls, Total	0.0047 U 0.0047 0.0017	0.0047 U	0.0047	0.0017	0.0017 U
Dichlorobiphenyls, Total	0.0047 U 0.0047 0.0044	0.0047 U	0.0047	0.0044	0.0044 U
Trichlorobiphenyls, Total	0.0061 0.0047 0.0034	0.0061	0.0047	0.0034	0.0061
Tetrachlorobiphenyls, Total	0.0061 J 0.0094 0.0054	0.0061 J	0.0094	0.0054	0.0061 J
Pentachlorobiphenyls, Total	0.018 0.0094 0.0088	0.018	0.0094	0.0088	0.018
Hexachlorobiphenyls, Total	0.010 U 0.010 0.010	0.01 U	0.01	0.01	0.01 U
Heptachlorobiphenyls, Total	0.014 U 0.014 0.011	0.014 U	0.014	0.011	0.011 U
Octachlorobiphenyls, Total	0.014 U 0.014 0.0084	0.014 U	0.014	0.0084	0.0084 U
Nonachlorobiphenyls, Total	0.019 U 0.019 0.019	0.019 U	0.019	0.019	0.019 U
Decachlorobiphenyls, Total	0.024 U 0.024 0.018	0.024 U	0.024	0.018	0.018 U
	MRC-SW8B-060914				MRC-SW8B-060914
Monochlorobiphenyls, Total	0.0047 U 0.0047 0.0017	0.0047 U	0.0047	0.0017	0.0017 U
Dichlorobiphenyls, Total	0.0047 U 0.0047 0.0044	0.0047 U	0.0047	0.0044	0.0044 U
Trichlorobiphenyls, Total	0.0047 U 0.0047 0.0034	0.0047 U	0.0047	0.0034	0.0034 U
Tetrachlorobiphenyls, Total	0.0094 U 0.0094 0.0054	0.0094 U	0.0094	0.0054	0.0054 U
Pentachlorobiphenyls, Total	0.0094 U 0.0094 0.0088	0.0094 U	0.0094	0.0088	0.0088 U
Hexachlorobiphenyls, Total	0.010 U 0.010 0.010	0.01 U	0.01	0.01	0.01 U
Heptachlorobiphenyls, Total	0.014 U 0.014 0.011	0.014 U	0.014	0.011	0.011 U
Octachlorobiphenyls, Total	0.014 U 0.014 0.0084	0.014 U	0.014	0.0084	0.0084 U
Nonachlorobiphenyls, Total	0.019 U 0.019 0.019	0.019 U	0.019	0.019	0.019 U
Decachlorobiphenyls, Total	0.024 U 0.024 0.018	0.024 U	0.024	0.018	0.018 U
	MRC-SW9A-060914				MRC-SW9A-060914

Monochlorobiphenyls, Total	0.0047 U 0.0047 0.0017	0.0047 U	0.0047	0.0017	0.0017 U
Dichlorobiphenyls, Total	0.0047 U 0.0047 0.0044	0.0047 U	0.0047	0.0044	0.0044 U
Trichlorobiphenyls, Total	0.0047 U 0.0047 0.0034	0.0047 U	0.0047	0.0034	0.0034 U
Tetrachlorobiphenyls, Total	0.0094 U 0.0094 0.0054	0.0094 U	0.0094	0.0054	0.0054 U
Pentachlorobiphenyls, Total	0.0094 U 0.0094 0.0088	0.0094 U	0.0094	0.0088	0.0088 U
Hexachlorobiphenyls, Total	0.010 U 0.010 0.010	0.01 U	0.01	0.01	0.01 U
Heptachlorobiphenyls, Total	0.014 U 0.014 0.011	0.014 U	0.014	0.011	0.011 U
Octachlorobiphenyls, Total	0.014 U 0.014 0.0084	0.014 U	0.014	0.0084	0.0084 U
Nonachlorobiphenyls, Total	0.019 U 0.019 0.019	0.019 U	0.019	0.019	0.019 U
Decachlorobiphenyls, Total	0.024 U 0.024 0.018	0.024 U	0.024	0.018	0.018 U
	MRC-SW9B-060914				MRC-SW9B-060914
Monochlorobiphenyls, Total	0.0047 U 0.0047 0.0017	0.0047 U	0.0047	0.0017	0.0017 U
Dichlorobiphenyls, Total	0.0047 U 0.0047 0.0044	0.0047 U	0.0047	0.0044	0.0044 U
Trichlorobiphenyls, Total	0.0047 U 0.0047 0.0034	0.0047 U	0.0047	0.0034	0.0034 U
Tetrachlorobiphenyls, Total	0.0094 U 0.0094 0.0054	0.0094 U	0.0094	0.0054	0.0054 U
Pentachlorobiphenyls, Total	0.0094 U 0.0094 0.0088	0.0094 U	0.0094	0.0088	0.0088 U
Hexachlorobiphenyls, Total	0.010 U 0.010 0.010	0.01 U	0.01	0.01	0.01 U
Heptachlorobiphenyls, Total	0.014 U 0.014 0.011	0.014 U	0.014	0.011	0.011 U
Octachlorobiphenyls, Total	0.014 U 0.014 0.0084	0.014 U	0.014	0.0084	0.0084 U
Nonachlorobiphenyls, Total	0.019 U 0.019 0.019	0.019 U	0.019	0.019	0.019 U
Decachlorobiphenyls, Total	0.024 U 0.024 0.018	0.024 U	0.024	0.018	0.018 U

Errors in the data package: Appendix B -SDG R1404414 - LOCKHEED MARTIN MRC - Proj. 06247.pdf Corrected in ProUCL input.

Tetrachlorobiphenyls

NSAMPLE	MRC-SW6A-060914	MRC-SW6B-060914	MRC-SW8A-060914
LAB_ID	R1404414-006	R1404414-007	R1404414-010
Appendix A (Qualified results)	14	15	15
RESULT (J qualified)	0.0054	0.0054	0.0054
Appendix B (Lab results) page	64	65	68
RESULT (J-qualified)	0.0066	0.0071	0.0066
MDL	0.0054	0.0054	0.0054