Construction Documentation Sub-Slab Depressurization System Second-Phase Expansion – Building C Lockheed Martin Middle River Complex 2323 Eastern Boulevard Middle River, Maryland

Prepared for:

Lockheed Martin Corporation

Prepared by:

Tetra Tech, Inc.

September 2013

Michael Martin, P.G. Regional Manager

Mila Mark

Peter A. Rich, P.E.

Project Manager/Principal Engineer

September 06, 2013

Mr. Tom Blackman Lockheed Martin Corporation 6801 Rockledge Drive —MP CCT 246 Bethesda, Maryland 20817

Subject: Construction documentation:

Sub-Slab Depressurization System Second-Phase Expansion—Building C Middle River Complex, Middle River, Maryland

Dear Mr. Blackman:

Tetra Tech, Inc. (Tetra Tech) has completed the second-phase expansion of the sub-slab depressurization system (SSDS) operating in Building C of the Middle River Complex in Middle River, Maryland. This letter summarizes the work performed. The second-phase expansion was completed in accordance with the approved *Sub-Slab Depressurization System Expansion*, 100% *Design—Building C* report, dated March 25, 2013. The SSDS was expanded to address an additional area in the middle of the Building C basement with elevated levels of volatile organic compounds (VOCs), and to continue to address the southern basement target area. The objective is to maintain a negative pressure of 0.01-inches water column in the sub-slab target area to prevent potential vapor migration to indoor air.

The expansion activities involved the following tasks:

- Review and approval of proposed extraction-point locations during the kickoff meeting on December 04, 2012 and the follow-up meeting on January 30, 2013 with the facility tenant, MRA Systems, Inc., dba Middle River Aircraft Systems (MRAS)
- Geophysical utility clearance of proposed extraction points on January 16, 2013
- Subcontractor and equipment mobilization on April 08, 2013
- Removal of the original system blower-skid on April 18, 2013
- Installation of five vertical extraction points designated SV-30-C, SV-31-C, SV-32-C, SV-33-C, and SV-34-C, completed on April 19, 2013

- Installation of overhead polyvinyl chloride (PVC) lines to connect the new extraction wells and the original extraction wells (SV-21-C and SV-23-C) to the system, completed on April 19, 2013
- Installation of system-effluent overhead pipe and mist-eliminator pad, and completion of system discharge-stack piping modifications, completed on April 23, 2013
- Installation of replacement blower skid with heat exchanger and associated appurtenances on April 23, 2013
- Installation of post-heat-exchanger moisture separator on April 24, 2013
- Relocation and connection of the vapor-treatment units to the system, completed on April 24, 2013
- Pre-startup inspection and testing of equipment and piping on April 29, 2013
- Installation of two-inch-diameter steel bollards at three new well locations (SV-30-C, SV-31-C, and SV-32-C) on April 25, 2013
- Installation of two-inch-diameter steel bollards around the system on April 30, 2013
- Construction of frame for blower-skid soundproof enclosure on April 30, 2013
- Subcontractor demobilization on April 30, 2013
- System startup testing and balancing on May 01, 2013
- Collection of air samples from all new extraction wells (including SV-26-C, SV-27-C, SV-28-C, and SV-29-C, which were installed during the first-phase expansion) on May 02, 2013
- Installation of blower-skid soundproof enclosure, completed on May 08, 2013
- Pre-startup full-day system-test run on May 10, 2013
- Operational readiness review conference call with Lockheed Martin Corporation and CDM Smith on May 14, 2013
- Installation of additional foam board in the interior of the soundproof enclosure on May 16, 2013
- Startup of expanded system on May 16, 2013
- Shipment of the drum of waste generated during the expansion to off-site disposal on May 17, 2013

The air samples were collected from each monitoring point a few hours after the SSDS restart during start-up testing on May 02, 2013. Air samples were collected directly from each extraction well's sampling port using one-liter Summa[®] canisters. Samples were shipped to

TestAmerica in Knoxville, Tennessee for VOC analysis by United States Environmental Protection Agency (USEPA) Method TO-15; results are summarized as follows:

Summary of Analytical Detections (µ/m³) in Extraction Well Samples May 02, 2013 Sub-Slab Depressurization System Second-Phase Expansion Building C, Middle River Complex, Middle River, Maryland

Constituent				Ext	raction v	well			
	SV-26-C	SV-27-C	SV-28-C	SV-29-C	SV-30-C	SV-31-C	SV-32-C	SV-33-C	SV-34-C
cis-1,2-Dichloro- ethene	42	ND	63	16	140	10	ND	2400	ND
Ethyl-benzene	ND	ND	71	190	ND	ND	ND	ND	ND
Tetrachloroethene	ND	ND	ND		ND	ND	140	ND	ND
Toluene	9.9	10	14	17	ND	9.3	ND	ND	ND
Trichloroethene	290	400	1400	1100	480	150	4000	89000	260
1,1,2-Trichloro- 1,2,2-trifluoroethane	ND	120	ND	ND	ND	ND	440	ND	ND
Styrene	ND	ND	ND	33	ND	ND	ND	ND	ND
m-xylene and p-xylene	ND	ND	410	970	ND	ND	ND	ND	ND
o-xylene	ND	ND	190	450	ND	ND	ND	ND	ND

All concentrations are in micrograms per cubic meter (μ/m^3) .

ND-not detected

System samples (influent, mid-GAC, and effluent) were collected on May 10, 2013, approximately one week after the air samples from the extraction point samples were taken. The system samples were also collected using one-liter Summa[®] canisters and were shipped to TestAmerica in Knoxville, Tennessee for VOC analysis by USEPA Method TO-15. The analytical results are summarized in the following table. Total VOCs in the system influent increased from 117 μ/m^3 on April 08, 2013 to 3,020 μ/m^3 on May 10, 2013 after startup of the expanded system with the new extraction points.

Summary of Analytical Detections (µ/m³)
in Sub-Slab Depressurization System Samples
May 10, 2013
Building C, Middle River Complex, Middle River, Maryland

Sample	Influent	Mid-GAC	Effluent
Benzene	ND	ND	9.9
cis-1,2-Dichloroethene	120	ND	ND
Trichloroethene	2900	87	34
Total VOCs	3020	87	44

All concentrations are in micrograms per cubic meter air (μ/m^3) .

GAC— granular activated-carbon

ND- not detected

VOCs—volatile organic compounds

Additional details for the system expansion tasks are in Table 1 (in Attachment 2). The removed blower/equipment skid was transported to Tetra Tech's storage space at Martin State Airport for temporary storage, where it will remain until it is moved to its final destination at another Lockheed Martin Corporation (Lockheed Martin) project site. The wastes generated from the expansion consisted of approximately one-third drum of soil and concrete cores from the installation of the extraction points. This drum was transported on May 17, 2013 for proper off-site disposal by Clean Harbors of Baltimore, Maryland, using the same waste profile as had been used for the drum of waste soil generated during the first-phase system expansion.

Minor changes from the design documents were made in the field during the construction, as follows:

- The proposed locations for extraction wells SV-30-C, SV-33-C, and SV-31-C were offset because a second layer of concrete was encountered at each location during coring.
- The post-heat-exchanger moisture separator (MS-2) was anchored on 4×4-inch wooden posts to match skid height.
- A soundproof enclosure was constructed around the entire perimeter of the skid containing the blower with heat exchanger, rather than constructing a soundproof enclosure for the blower only; this enclosure will insulate the sound from both the blower and heat exchanger, and allow for operator access to the system switches.

During the pre-startup system inspection and testing, leaks were observed at some flex-hose connections, both moisture-separator flanges and the heat-exchanger-effluent pipe. Band clamps at the flex-hose connections were replaced with tighter clamps and bolts on the moisture-separator flanges were tightened. Leaks in the slab floor at SV-21-C, SV-23-C, and SV-34-C were detected using dry ice on May 02, 2013. These leaks, and a leak found in the seal of vapor monitoring point SV-60-C, were repaired with a pre-mixed concrete floor patch. All piping, sumps, and valves were labeled.

Tetra Tech provided on-site inspections during construction to ensure that the work complied with the design documents. Lockheed Martin's managing contractor (CDM Smith) also conducted oversight and independent inspections of the work on April 25, 2013 and May 01, 2013. Following fieldwork, the latest version of the SSDS operation and maintenance (O&M) manual was updated to include the new extraction points, the new blower skid with heat exchanger, the post-heat-exchanger moisture separator, and associated equipment manufacturer manuals and O&M procedures. As-built drawings, extraction-point construction logs, laboratory results for air samples, and the updated SSDS operation and maintenance manual are included as Attachments 3, 4, 5, and 7, respectively.

A high-water alarm in the pre-blower moisture separator (MS-1) occurred on May 16, 2013 following system startup, resulting in system shutdown on May 18, 2013. The system was

restarted on May 20, 2013 after removing approximately 50 gallons of condensate from moisture separator MS-1 and the pipe sumps (on the vacuum side). Extraction well SV-30 was temporarily closed on May 20, 2013, as it appeared to be the main condensate producer. Similar volumes of condensate were drained from the vacuum side of the system on May 23, 2013 (48 gallons) and May 28, 2013 (31 gallons). Subsequently, less than two gallons of condensate were drained on May 31, 2013, and, to date, no additional condensate requiring draining has accumulated.

To date, adequate induced-vacuum influence is being seen in most of the target zone; exceptions are vapor monitoring points 133-C, 141-C, and 126-C. Further monitoring and extraction adjustments will be made to improve vacuum influence. Figure 1 (in Attachment 1) shows the vacuum influence observed on May 20, 2013, following startup of the expanded system.

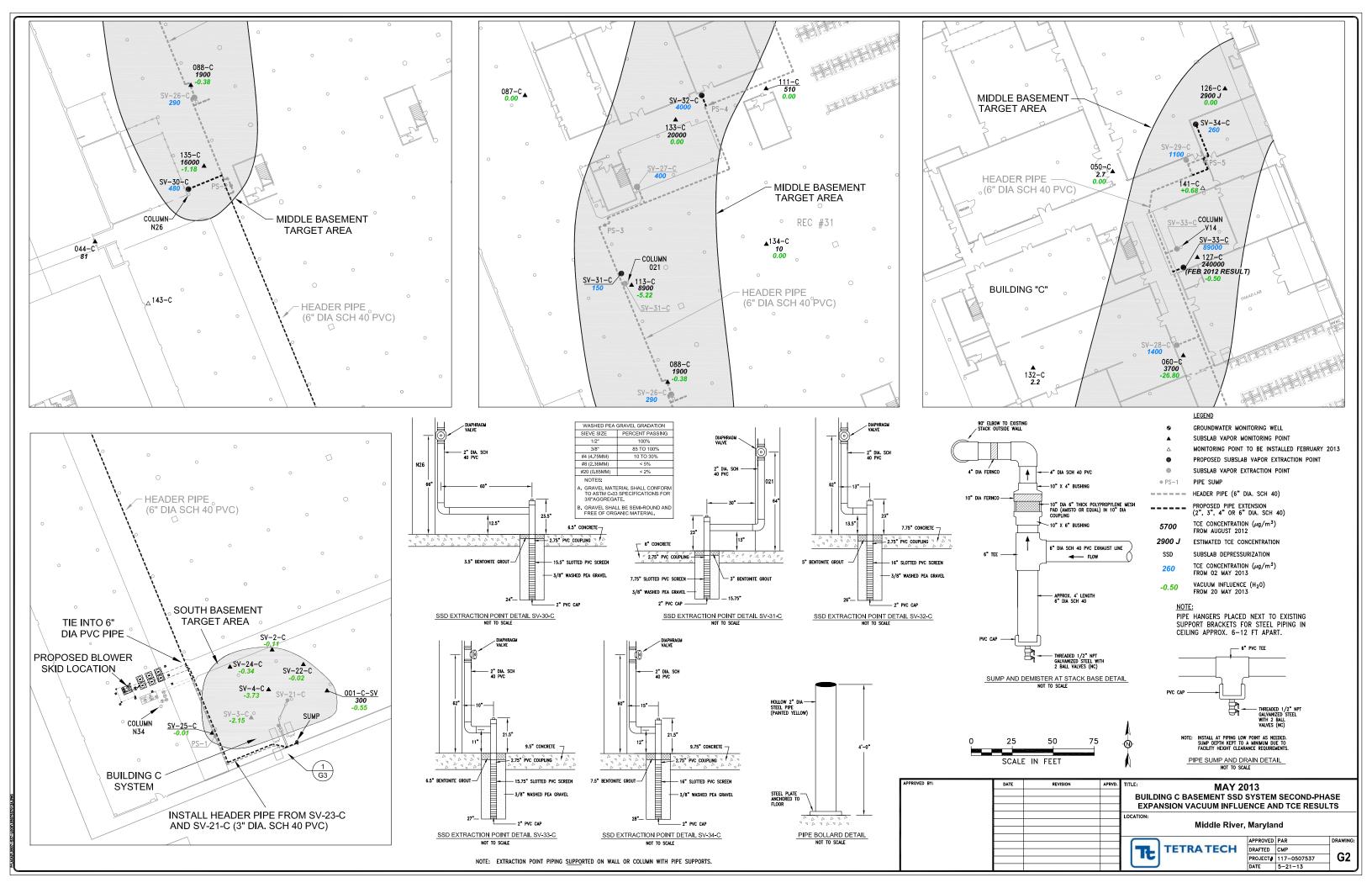
If you have any questions regarding the Building C SSDS second-phase expansion, please contact me at (410) 990-4607 or via email at peter.rich@tetratech.com.

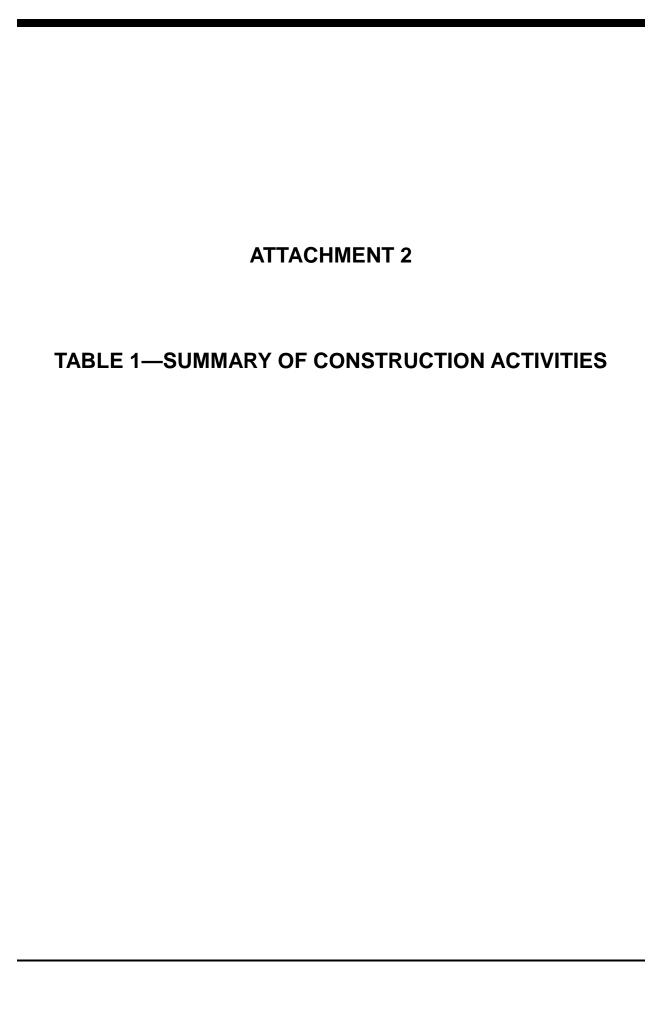
Sincerely,

Peter A. Rich, P.E.

Project Manager/Principal Engineer

Tetra Tech, Inc.


Attachments:

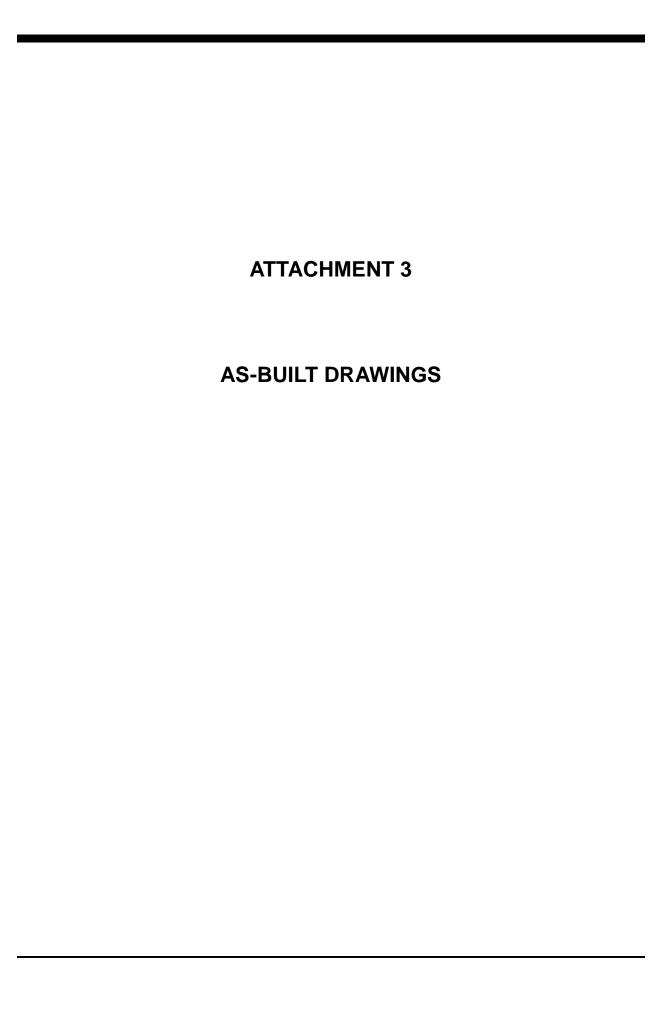

- (1) Figure 1—Vacuum Influence, May 20, 2013
- (2) Table 1—Summary of Construction Activities
- (3) "As-Built Drawings"
- (4) SV-30-C, SV-31-C, SV-32-C, SV-33-C, and SV-34-C Construction Logs
- (5) TestAmerica Analytical Report—Extraction-Well Air Sampling
- (6) "Waste Disposal Documentation"
- (7) Updated Building C Sub-Slab Depressurization System Operation and Maintenance Manual

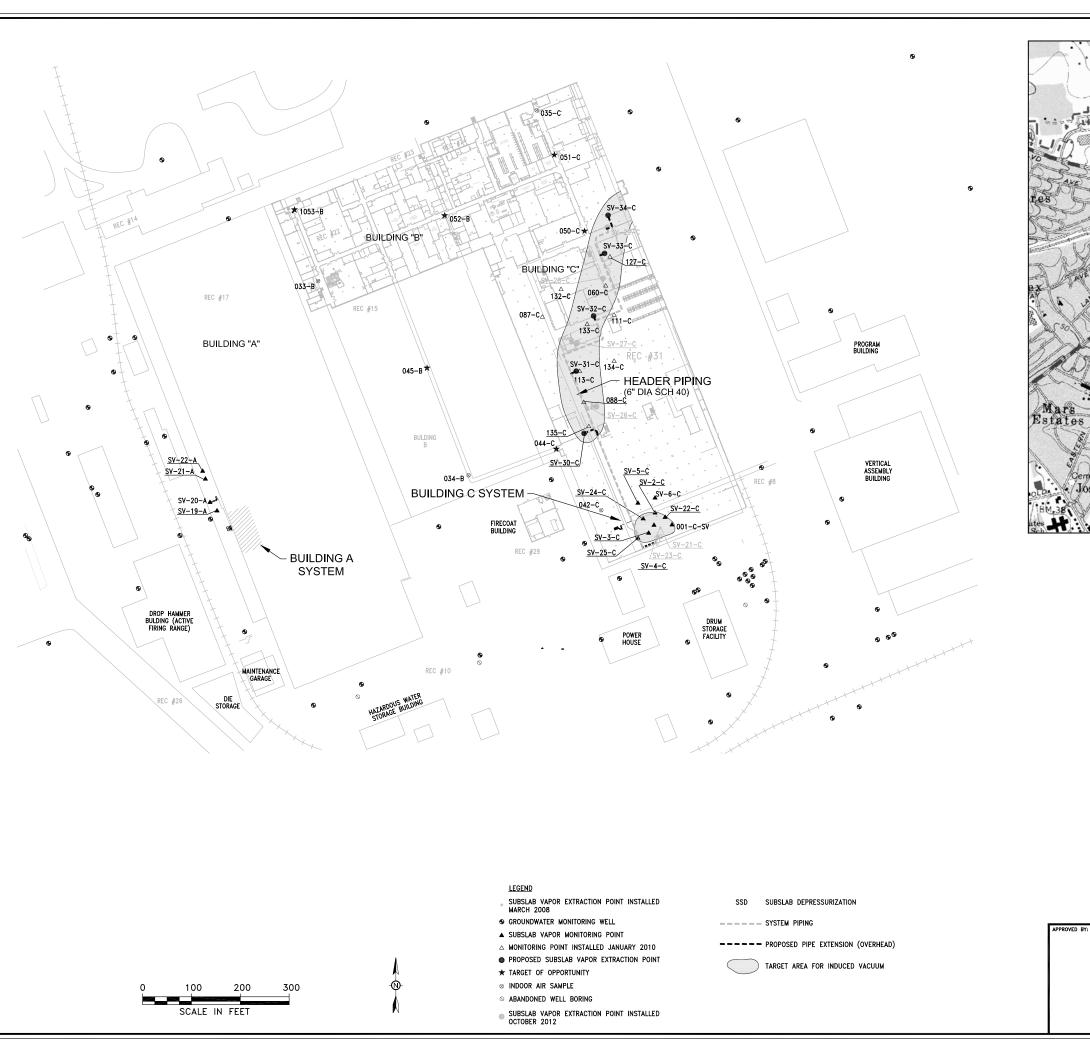
ATTACHMENT 1

FIGURE 1—VACUUM INFLUENCE

May 20, 2013

TABLE 1 Summary of Construction Activities Second-Phase Expansion of the Building C Sub-Slab Depressurization System Middle River Complex, Middle River, Maryland

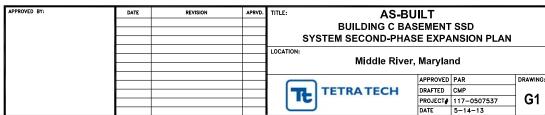

	Middle River Complex, Middle River, Maryland
Date	Building C Sub-Slab Depressurization System Expansion Activity
08 April 2013	Mobilized equipment to site.
09 April 2013	 Concrete-cored for installation of extraction wells SV-30-C, SV-31-C and SV-32-C and partially cored SV-33-C. Stopped coring due to problems with core drill.
	 Hand-augered soil boring for SV-32-C to a depth of 26 inches below grade surface (bgs).
10 April 2013	Received delivery of spare potassium permanganate zeolite unit from Siemens Industry, Inc.
	Hand-augered soil boring for SV-30-C; encountered second layer of concrete at 16 inches bgs. Concrete-cored offset location for SV-30-C.
	Concrete-cored for SV-34-C and hand-augered soil boring to a depth of 27.5 inches bgs.
	Hang-augered soil boring for SV-31-C; encountered second layer of concrete at 8 inches bgs. Need to off-set location.
11 April 2013	 Concrete-cored offset location for SV-31-C and hand-augered soil boring to a depth of 15.5 inches bgs.
	 Hand-augered soil boring for SV-30-C; encountered second layer of concrete at 16 inches bgs. Concrete-cored second offset location for SV-30-C and hang-augered soil boring to a depth of 24 inches bgs.
	 Concrete-cored for SV-33-C at planned location and offset location as a second layer of concrete was encountered at 8 inches bgs at both locations. Concrete- cored second offset location and hand-augered soil boring to a depth of 27.5 inches bgs.
	 Received delivery of 2-inch and 6-inch diameter polyvinyl chloride (PVC) pipe and pipe fittings from Harrington Industrial Plastics.
40.4: 1.0040	Received delivery of scissor lift from Volvo Rentals.
12 April 2013	 Installed extraction wells SV-30-C, SV-31-C, SV-32-C, SV-33-C, and SV-34-C. Installed valve, sample/measurement port, and 2-inch diameter PVC tie-in pipe for SV-34-C.
15 April 2013	 Installed valve, sample/measurement port, and tied-in extraction wells SV-32-C, SV-33-C, and SV-34-C to main 6-inch diameter PVC influent header pipe.
16 April 2013	 Installed valve, sample/measurement port, and tied-in extraction wells SV-30-C and SV-31-C to main header pipe.
	 Began hanging pipe supports for 3-inch diameter PVC pipe to be used to tie original extraction wells, SV-21-C and SV-23-C, to system at new location.
18 April 2013	 Installed 3-inch diameter pipe on ceiling to tie SV-21-C and SV-23-C to main header pipe.
	Received delivery of new blower skid from Gasho, Inc.
	Removed old blower skid and temporarily placed it at column O26.
	Began installing system effluent 6-inch diameter pipe on building's south wall.
19 April 2013	• Installed valve, sample/measurement port, for SV-21-C and SV-23-C and tied-in to
'	3-inch diameter manifold pipe.
	Continued installing system effluent pipe on south wall. Moved new blower skid and waper treatment units into place at column N22.
22 April 2013	 Moved new blower skid and vapor treatment units into place at column N33. Rerouted main influent header pipe from original skid location to new skid location.
	T: 1: 0: 1 !:
	• Hed-in 3-inch diameter pipe (SV-21-C and SV-23-C manifold) to main header pipe.

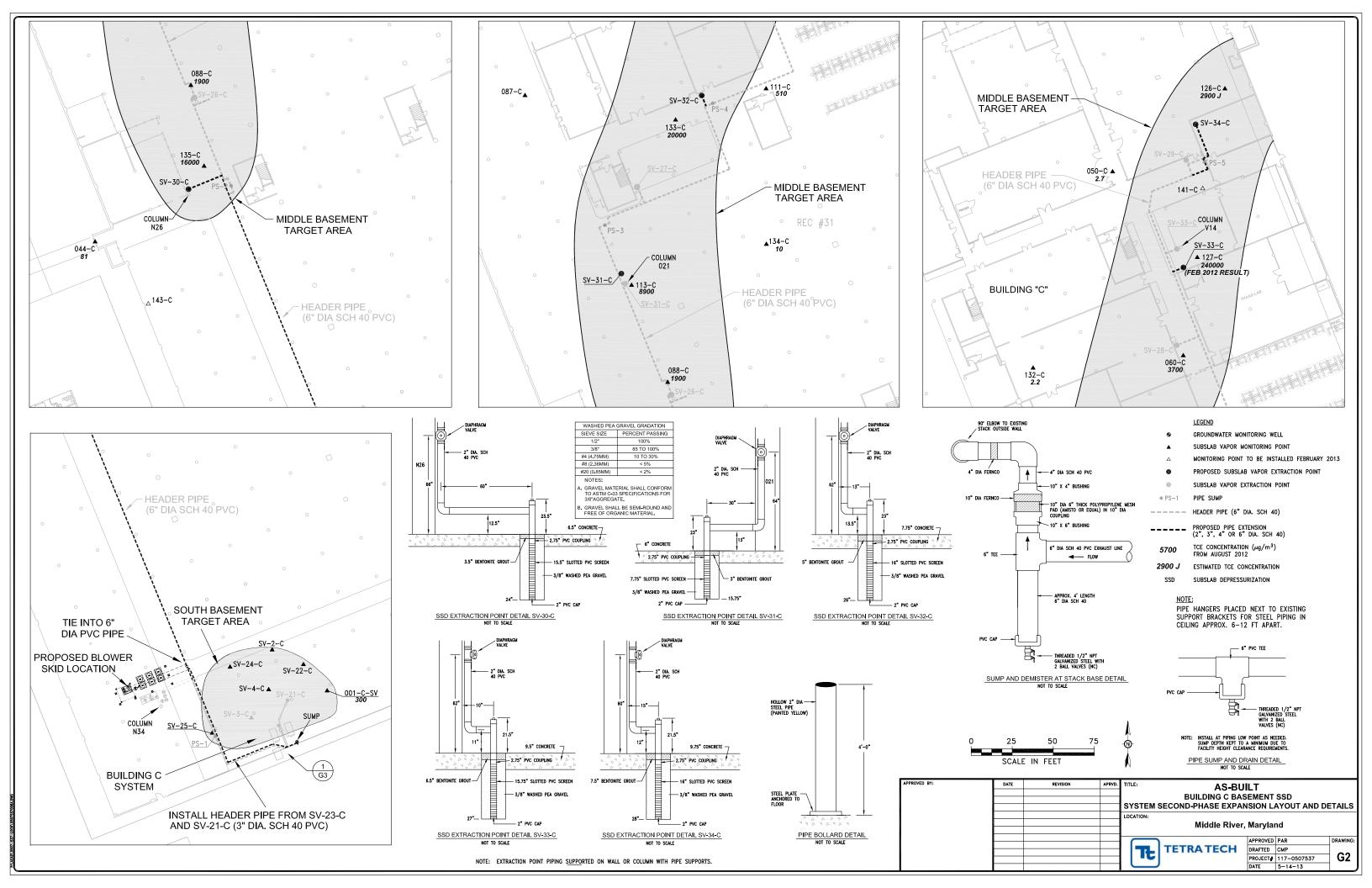

TABLE 1 Summary of Construction Activities Second-Phase Expansion of the Building C Sub-Slab Depressurization System Middle River Complex, Middle River, Maryland

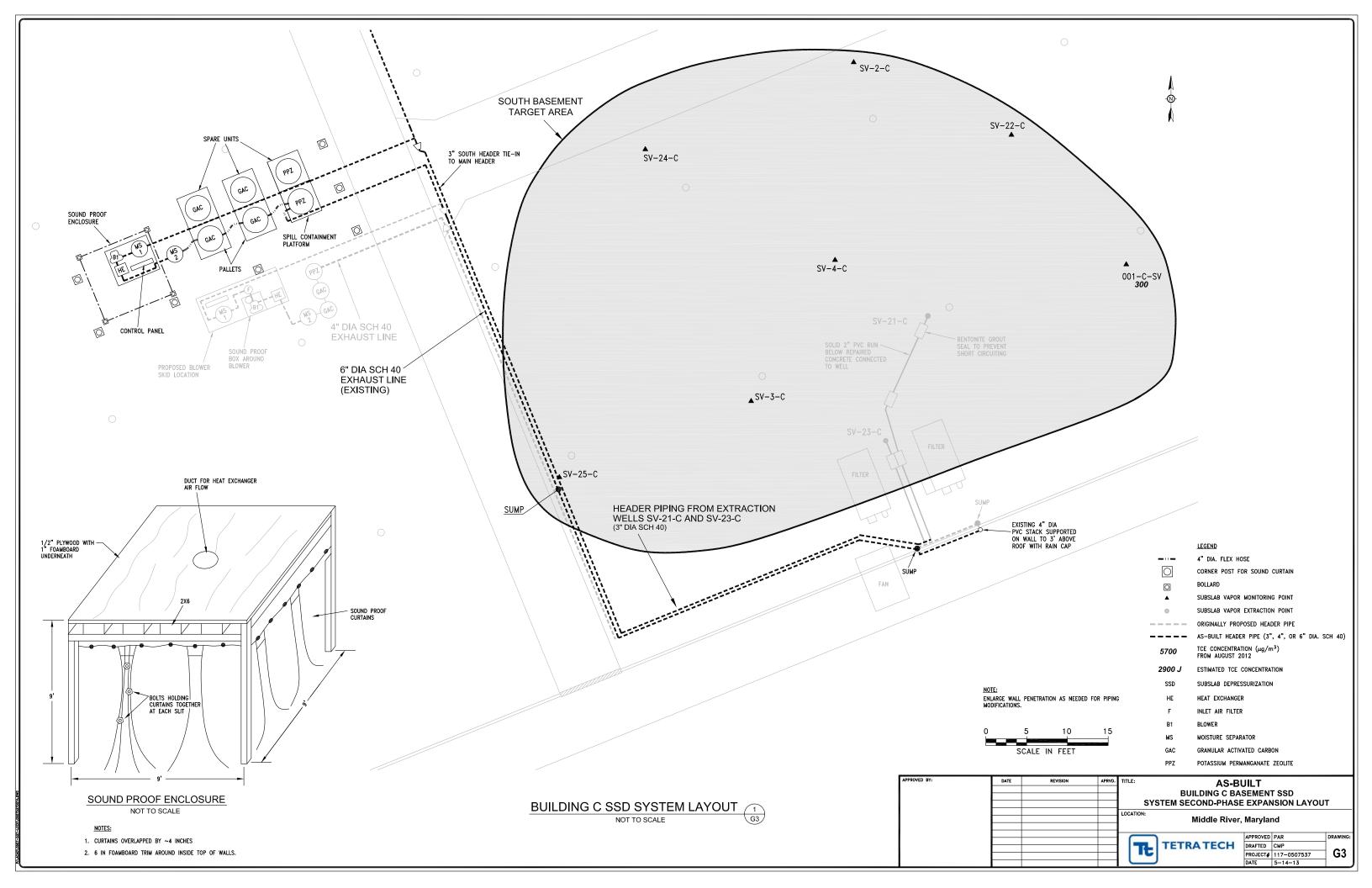

	Middle River Complex, Middle River, Maryland
Date	Building C Sub-Slab Depressurization System Expansion Activity
	• Installed system effluent pipe at new system location and tied-in to existing 6-inch diameter effluent header pipe.
23 April 2013	 Completed 4-inch and 6-inch diameter system effluent piping on south wall including installation of mist eliminator pad. Connected 4-inch diameter effluent pipe to existing exhaust stack on the south wall. Connected main influent header pipe to blower skid.
24 April 2013	 Facility (EMCOR) began electrical wiring to provide power for system. EMCOR completed electrical wiring for system power. Installed flex hose, fittings, and drains for system's vapor treatment units. Anchored post-heat exchanger moisture separator (MS-2) on 4x4 inch wood posts. Labeled moisture separators and pipe sumps. Setup level (float) switch for moisture separator MS-2. Setup phone line for autodialer.
	 Received delivery of 2-inch diameter steel bollards. Checked blower rotation direction (changed to necessary clockwise direction).
25 April 2013	 CDM Smith inspected system expansion progress. Installed 2-inch diameter bollards around SV-30-C, SV-31-C, and SV-32-C. Installed sample ports at SV-30-C, SV-31-C, SV-32-C, SV-33-C, and SV-34-C. Turned system on briefly to check for leaks at newly installed points and around system components. Cleaned up around system and removed unused equipment and supplies from site.
29 April 2013	 Scissor lift picked up by Volvo Rentals. Conducted troubleshooting of high pressure alarm (ambient air valve was open) Tested all system alarms. Began completing the Pre-Startup Equipment Inspection Checklist. Programed auto-dialer. Installed drain hose for moisture separator MS-2. Connected high level switch for MS-2 to system's control panel.
30 April 2013	 Installed 2-inch diameter steel bollards (total of 7) around system skid. Transported previous blower skid to Martin State Airport/Hangar 3 (Tetra Tech storage). Constructed frame for soundproof enclosure with 3-inch diameter galvanized steel corner posts and 1x6 wood. Replaced loose band clamps on vapor treatment units flex hoses.
01 May 2013	 CDM Smith inspected system expansion progress. Drilled holes in dilution and effluent valve handles to install valve lock-out/tag-out cable. Installed locks on new extraction wells. Labeled main influent 6-inch diameter and 3-inch manifold diameter pipe from original extraction wells with "vacuum" self-adhesive pipe markers spaced approximately every 50 feet. Installed zip ties to camlocks on hoses of vapor treatment units. Installed metal identification tags on system valves. Cut off excess all-thread on blower skid platform. Completed Pre-Startup Equipment Inspection Checklist.

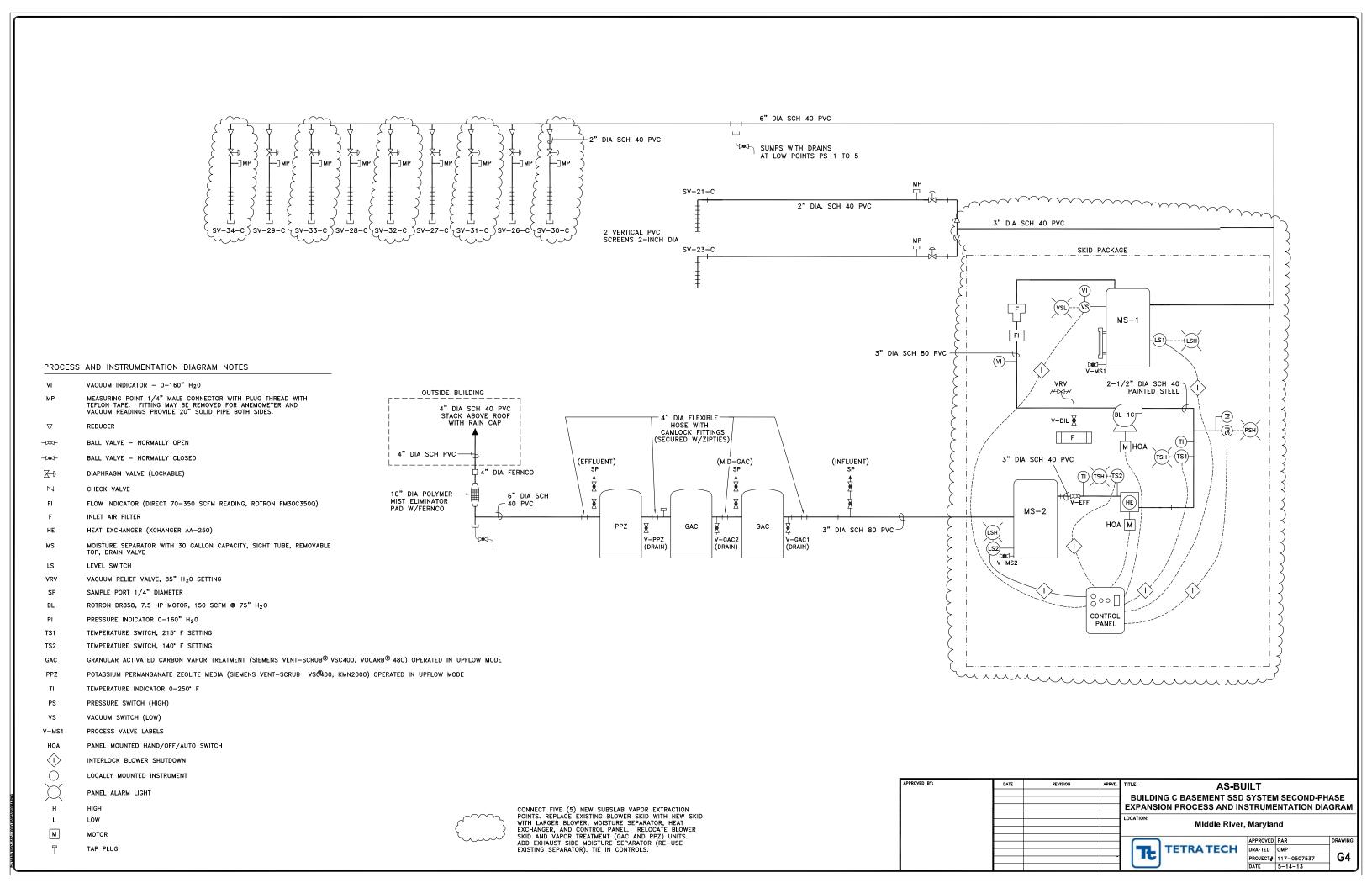
TABLE 1 Summary of Construction Activities Second-Phase Expansion of the Building C Sub-Slab Depressurization System Middle River Complex, Middle River, Maryland

	Middle River Complex, Middle River, Maryland
Date	Building C Sub-Slab Depressurization System Expansion Activity
	 Began system startup and testing: Tested new extraction wells for maximum possible flow. Opened SV-21-C, SV-23-C, SV-26-C, SV-27-C, SV-28-C, SV-29-C, and SV-30-C during testing to prevent system vacuum relief valve from opening due high vacuum. Leak observed at connection point of steel pipe and heat exchanger effluent. Left system OFF upon departure.
02 May 2013	 Leak tested floor slab using dry ice; leaks detected in floor slab at SV-21-C, SV-23-C, and SV-24-C. Patched holes found during leak test and leak in SV-60-C with concrete patch. Patched previous system vent and effluent penetrations on south wall with foam sealant/insulation.
	 Turned system ON and conducted a full round of measurements. Adjusted extraction wells to achieve higher flows: Closed SV-23-C. Possible leak detected at SV-26-C valve (to be checked during next visit). Collected vapor samples with 1-liter Summa canisters from all new extraction wells as well as wells installed during the first-phase expansion (SV-26-C through SV-34-
	C). • Left system OFF upon departure.
07 May 2013	 Retested new extraction wells for maximum possible; opened SV-21-C, SV-23-C, SV-26-C, SV-27-C, SV-28-C, and SV-29-C during testing to prevent system vacuum relief valve from opening due high vacuum. Left system OFF upon departure.
08 May 2013	• Installed soundproof enclosure around system skid using flexible noise barrier, ½-inch plywood, 2x6-inch wood beams, and 1-inch thick foam board.
09 May 2013	 Installed duct work and louver for heat exchanger fan. Set vacuum relief valve to 85 inches of water column.
10 May 2013	Conducted system test run.
14 May 2013	Conducted system Operational Readiness Review via teleconference. Reviewed draft As-Built Drawings and updated operation and maintenance manual. Copies of these documents placed on system control panel.
15 May 2013	Began installation of 1-inch thick foam board on interior sides of the soundproof enclosure.
16 May 2013	 Completed installation of 1-inch thick foam board on interior sides of the soundproof enclosure. Started system up for continuous operation.
17 May 2013	Shipped waste soil drum (from extraction well installation) for off-site disposal.








SITE LOCATION MAP

ATTACHMENT 4

CONSTRUCTION LOGS

SV-30-C, SV-31-C, SV-32-C, SV-33-C, SV-34-C

COCATION 2022 EASTERN BOULEVARD MODE RIVER MARTH AND PARTY OF PARTY O	Pi	ROJE	CT:			SECON	D-PHASE	RESSURIZATION SYSTEM EXPANSION DLE RIVER COMPLEX	JOB NO. 117-0507537 DRILLING METHO		CLIENT: LOCKHEED N	IARTIN CORPOR	RATION	
	LO	CATIO	ON:		2323 EA	STERN BOUL			OPERATOR: #N/A					4
### PRINT OF THE P	WELL SCREE	N : 2-IN	NCH DIA	A. SCH.	40 PVC, 0.0	020 INCH SLOTT	ED							
SAUGHER SAUG											CO		DRIL	LING
### PREMIND AND THE PRITECTION WITH THE PRITEC							AL \A/ATER	2		INCHES	N/L . #N/A F/L .	#NI/A		
	SEAL/GROUT	: 10 0.	Z. BEIN	ONITE,	00 LBS. C	UNCRETE, ~1 G	AL. WATER	τ			N/L: #N/A E/L:	#IN/A		
1	NOTE: SUB-SI	LAB VA	POR E	XTRACT	TION WELL									1711/2010
1								1						
2 3 NIA		DEPTH (INCHES)	SAMPLE INTERVAL	RECOVERY (INCHES)	BLOW COUNT "N"	MOISTURE CONTENT	PID READING (ppm)	Si	URFACE CONDIT	IONS: CONCRETE		USCS	WELL INSTA	LLATION
8 8 9 9 10 10 11 12 N/A N/A N/A N/A N/A 13 13 14 15 15 16 16 17 17 18 18 19 20 21 22 22 23 24 19 19 19 19 19 19 19 19 19 19 19 19 19		2 3 4 5				N/A	N/A		CONC	RETE		N/A		
		8 9 10 11 12 13 14 15 16 17 18 19 20 21	N/A	N/A	N/A	MOIST	0.0	BROWN, CLAYEY	SAND, SOME	SILT, FINE-GRAIN	IED, COMPACT	SC		
FND OF RORING = 24 0 INCHES		24												

PROJECT:		SECON	D-PHASE	RESSURIZATION SYSTEM EXPANSION DLE RIVER COMPLEX	JOB NO. 117-0507537 DRILLING METHO	WELL NUMBER SV-31-C D: HAND AUGER	CLIENT: LOCK	HEED MARTII	N CORPOR	ATION	
LOCATION:			2122	MIDDLE RIVER MARYLAND 0	COMPANY: S&ST OPERATOR: #N// SAMPLING METH	1					SHEET 1 OF 1
WELL SCREEN: 2-INCH DIA. S	CH. 40 PVC, 0.0	020 INCH SLOTT	ED								
RISER: 2-INCH DIA. SCH. 40 P						RA TECH/DAWN MONIC	0				LING
FILTER PACK: 3/8-INCH WASH					WELL DEPTH: 15	75 INCHES				START	FINISH
SEAL/GROUT: 10 OZ. BENTON	ITE, 60 LBS. C	ONCRETE, ~1 G	AL. WATER	₹	DATUM: #N/A PERMIT NO.: #N/A		N/L : #N/A	E/L: #N/A		DATE 4/11/2013	DATE 4/11/2013
NOTE: SUB-SLAB VAPOR EXTE	RACTION WELL	-			GROUND ELEVAT					4/11/2013	4/11/2013
DEPTH (INCHES) SAMPLE INTERVAL	RECOVERY (INCHES) BLOW COUNT "N"	MOISTURE CONTENT	PID READING (ppm)	s	URFACE CONDIT	TIONS: CONCRETE	BENTONITE GROI PEA GRAV	UT	JSCS	WELL INSTAI	LLATION
1 2 3 4 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6		N/A	N/A		CONC	RETE		,	N/A		CASING
7 8 N/A N 9 10 11 12 13 14	8 N/A N/A N/A N/A MOIST 11 0.0 RED-BROWN, YELLOW-E				-BROWN, SANDY SILTY CLAY , MOTTLED, SOFT, LOW PLASTICITY				CL		SCREEN END CAP
15		WET		END OF BO							

PROJE	CT:		SECON	D-PHASE	RESSURIZATION SYSTEM EXPANSION DLE RIVER COMPLEX	JOB NO. 117-0507537 DRILLING METHO	WELL NUMBER SV-32-C D: HAND AUGER	CLIENT: LOCKHEED	MARTIN CORPO	RATION	
LOCAT	ION:	2323 E	ASTERN BOUL	.EVARD, I 2122	MIDDLE RIVER MARYLAND 0	COMPANY: S&S OPERATOR: #N/ SAMPLING METH	A				SHEET 1 OF 1
ELL SCREEN: 2-I SER: 2-INCH DIA				ΓED		LOGGED BY: TE	FRA TECH/DAWN MONIC	0		DRII	LING
LTER PACK: 3/8-	INCH WASH	HED PEA GRA	VEL			WELL DEPTH: 26				START	FINISH
AL/GROUT: 10 C	OZ. BENTON	NTE, 60 LBS. (CONCRETE, ~1 G	AL. WATER	8	DATUM: #N/A PERMIT NO.: #N/	A	N/L: #N/A E/L:	#N/A	DATE 4/9/2013	DATE 4/9/2013
OTE: SUB-SLAB V	APOR EXTR	RACTION WEL	L			GROUND ELEVA	TION: #N/A				
DEPTH (INCHES)	SAMPLE INTERVAL	RECOVERY (INCHES) BLOW COUNT "N"	MOISTURE CONTENT	PID READING (ppm)	s	SURFACE CONDI	TIONS: CONCRETE	BENTONITE GROUT PEA GRAVEL	USCS	WELL INSTAI	LLATION
1 2 3 4 5 6 6 7			N/A	N/A		CONG	CRETE		N/A	+	CASING
10 11 12 13 14 15 16 17 18 19 20 21 22 23	N/A N	I/A N/A	SLIGHT	0.2	RED-BROWN, CREAN SILT,		EASING WITH DEP		CL		SCREEN
24				0.0	RED-BROWN, YELLO		REAM, Clay , mott Ticity	LED, STIFF, LOW			END CAP

PROJECT:	SECON	D-PHASE	ESSURIZATION SYSTEM EXPANSION DLE RIVER COMPLEX	JOB NO. 117-0507537 DRILLING METH	WELL NUMBER SV-32-C OD: HAND AUGER	CLIENT: LOCE	KHEED MARTIN CORPOR		
LOCATION:	2323 EASTERN BOUL	EVARD, N 21220	MIDDLE RIVER MARYLAND	COMPANY: S&S TECHNOLOGIES OPERATOR: #N/A SAMPLING METHOD: #N/A					
WELL SCREEN: 2-INCH DIA. SCH.	40 PVC, 0.020 INCH SLOTT	ED		SAMPLING MET	IOD. #IVA				1 OF 1
RISER: 2-INCH DIA. SCH. 40 PVC, S	SOLID CASING			LOGGED BY: TE	TRA TECH/DAWN MONIC	0		DRII	LING
FILTER PACK: 3/8-INCH WASHED	PEA GRAVEL			WELL DEPTH: 2	6.0 INCHES			START	FINISH
SEAL/GROUT: 10 OZ. BENTONITE,	60 LBS. CONCRETE, ~1 G	AL. WATER		DATUM: #N/A		N/L: #N/A	E/L: #N/A	DATE	DATE
				PERMIT NO.: #N	/A			4/9/2013	4/9/2013
NOTE: SUB-SLAB VAPOR EXTRACT	TION WELL			GROUND ELEVA	TION: #N/A				
DEPTH (INCHES) SAMPLE INTERVAL RECOVERY (INCHES)	BLOW COUNT 'N' MOISTURE CONTENT	PID READING (ppm)	s	URFACE COND	TIONS: CONCRETE	BENTONITE GRO		WELL INSTA	LLATION
26									
		-	END OF BO	ORING = 26.0 I	NCHES		•		

PROJECT:	SECON	D-PHASE EXP	ANSION	JOB NO. WELL NUM 117-0507537 SV-33-C DRILLING METHOD: HAND AUGE		IARTIN CORPOR	RATION	
LOCATION:	2323 EASTERN BOUL		LE RIVER MARYLAND	COMPANY: S&S TECHNOLOGIES OPERATOR: #N/A SAMPLING METHOD: #N/A				SHEET 1 OF 1
WELL SCREEN: 2-INCH DIA. SCH. RISER: 2-INCH DIA. SCH. 40 PVC, S FILTER PACK: 3/8-INCH WASHED SEAL/GROUT: 10 OZ. BENTONITE,	SOLID CASING PEA GRAVEL			LOGGED BY: TETRA TECH/DAWN WELL DEPTH: 27.0 INCHES DATUM: #N/A	MONICO N/L: #N/A E/L:	#N/A	DRIL START DATE	LING FINISH DATE
NOTE: SUB-SLAB VAPOR EXTRACT	TION WELL			PERMIT NO.: #N/A Ground Elevation: #N/A			4/11/2013	4/11/2013
DEPTH (INCHES) SAMPLE INTERVAL RECOVERY (INCHES)	BLOW COUNT 'N MOISTURE CONTENT	PID READING (ppm)	SU	IRFACE CONDITIONS: CONCR	ETE BENTONITE GROUT PEA GRAVEL	USCS	WELL INSTAL	LLATION
1 2 3 4 5 6 6 7 8 8 9	N/A	N/A		CONCRETE		N/A		CASING
10			l	JNKNOWN BLACK MATERIA	AL			
11 12 13 N/A N/A 14 15 16 17 18 19 20 21 22 23	N/A SLIGHT MOIST	4.0)-BROWN, LIGHT GR	AY, YELLOW-BROWN, CLA PLASTICITY	Y, MOTTLED, HARD, LOW	CL		SCREEN

PROJECT:		SECONI	D-PHASE	ESSURIZATION SYSTEM EXPANSION DLE RIVER COMPLEX	JOB NO. 117-0507537 DRILLING METH	WELL NUMBER SV-33-C DD: HAND AUGER	CLIENT: LOCK	HEED MARTIN CORPOR	ATION	
LOCATION:	2323 EAST	TERN BOUL		IIDDLE RIVER MARYLAND	ND COMPANY: S&S TECHNOLOGIES OPERATOR: #N/A					
			21220)	SAMPLING METH					SHEET 1 OF 1
WELL SCREEN: 2-INCH DIA. SCH.	40 PVC, 0.020	0 INCH SLOTT	ED							
RISER: 2-INCH DIA. SCH. 40 PVC,	SOLID CASING	G			LOGGED BY: TE	TRA TECH/DAWN MONIC	00		DRII	LING
FILTER PACK: 3/8-INCH WASHED	-			WELL DEPTH: 2	7.0 INCHES			START	FINISH	
SEAL/GROUT: 10 OZ. BENTONITE	, 60 LBS. CON	ICRETE, ~1 G	AL. WATER		DATUM: #N/A		N/L: #N/A	E/L: #N/A	DATE	DATE
					PERMIT NO.: #N				4/11/2013	4/11/2013
NOTE: SUB-SLAB VAPOR EXTRAC	TION WELL				GROUND ELEVA	TION: #N/A				
DEPTH (INCHES) SAMPLE INTERVAL RECOVERY (INCHES)	BLOW COUNT "N"	MOISTURE CONTENT	PID READING (ppm)			TIONS: CONCRETE	BENTONITE GROI PEA GRAVI		WELL INSTA	LLATION
26				<u>הבט-טה</u>	OVVIV, CERT, I	IAND, EUW I EAJ II	OII I		1	END CAP

PROJECT:		BUILDING C SUB-SLAB DEPRESSURIZATION SYSTEM SECOND-PHASE EXPANSION LOCKHEED MARTIN MIDDLE RIVER COMPLEX			JOB NO. WELL NUMBER CLIENT: LOCKHEED MARTIN CORPORATION 117-0507537 SV-34-C DRILLING METHOD: HAND AUGER											
LOCAT	TION:	2323 EA	2323 EASTERN BOULEVARD, MIDDLE RIVER MARYLAND 21220			COMPANY: S&S OPERATOR: #N/ SAMPLING METH	1				SHEET					
WELL SCREEN: 2-INCH DIA. SCH. 40 PVC, 0.020 INCH SLOTT RISER: 2-INCH DIA. SCH. 40 PVC, SOLID CASING FILTER PACK: 3/8-INCH WASHED PEA GRAVEL SEALIGROUT: 10 OZ. BENTONITE, 60 LBS. CONCRETE, -1 G					R	LOGGED BY: TETRA TECH/DAWN MONICO WELL DEPTH: 28.0 INCHES DATUM: #N/A N/L: #N/A E/L: #N/A				START DATE 4/10/2013	ILLING FINISH DATE					
OTE: SUB-SLAB V	/APOR EXTRA	CTION WELL	=			PERMIT NO.: #N				1110/2010	4/10/201					
DEPTH (INCHES)	SAMPLE INTERVAL RECOVERY (INCHES)	BLOW COUNT "N"	MOISTURE CONTENT	PID READING (ppm)	s	SURFACE CONDITIONS: CONCRETE BENTONITE GROUT PEA GRAVEL							USCS		ELL INSTALLATION	
1 2 3 4 5 6 7 8 9			N/A	N/A		CONG	RETE		N/A	-	CASING					
10 11 12 13 14 N/A N/A 15 16 17 18 19 20 21 22 23 24 25			MOIST	0.0	RED-BROWN, YELLOW PLASTICI		Y CLAY, MOTTLED		CL		SCREEN					

LOCKHEED MARTIN MIDDLE RIVER COMPLEX DRILLING	JOB NO. WELL NUMBER CLIENT: LOCKHEED MARTIN CORPORATION 117-0507537 SV-34-C DRILLING METHOD: HAND AUGER					
COMPANY	COMPANY: S&S TECHNOLOGIES					
LOCATION: 2323 EASTERN BOULEVARD, MIDDLE RIVER MARYLAND OPERATO	OR: #N/A SHEET					
	NG METHOD: #N/A 1 OF 1					
WELL SCREEN: 2-INCH DIA. SCH. 40 PVC, 0.020 INCH SLOTTED						
	D BY: TETRA TECH/DAWN MONICO DRILLING					
	EPTH: 28.0 INCHES START FINISH					
SEAL/GROUT: 10 OZ. BENTONITE, 60 LBS. CONCRETE, ~1 GAL. WATER DATUM: #						
PERMIT N						
NOTE: SUB-SLAB VAPOR EXTRACTION WELL GROUND	D ELEVATION: #N/A					
BLOW COUNT "N" MOISTURE CONTENT PID READING (ppm))	CONDITIONS: CONCRETE WELL INSTALLATION USCS BENTONITE GROUT PEA GRAVEL					
26 27 28	END CAP					
END OF BORING =	= 28 0 INCHES					

ATTACHMENT 5 TESTAMERICA ANALYTICAL REPORT— **EXTRACTION-WELL AIR SAMPLING**

Client Sample ID: SV-30-C

GC/MS Volatiles

Lot-Sample # H3E080423 - 001	Work Order #		M0R0C1AA	Matrix: AIR
Date Sampled: 05/02/2013 Prep Date: 05/10/2013 Prep Batch #: 3133018	Anal	Received: ysis Date	05/08/2013 05/11/2013	
Dilution Factor.: 124.78	Meth	10d:	TO-15	
PARAMETER	RESULTS (ppb(v/v))	REPORTIN LIMIT (ppl		REPORTING LIMIT (ug/m3)
Benzene	ND	25	ND	80
Benzyl chloride	ND	50	ND	260
Bromomethane	ND	25	ND	97
Carbon tetrachloride	ND	25	ND	160
Chlorobenzene	ND	25	ND	110
Chloroethane	ND	25	ND	66
Chloroform	ND	25	ND	120
Chloromethane	ND	62	ND	130
1,2-Dibromoethane (EDB)	ND	25	ND	190
1,2-Dichlorobenzene	ND	25	ND	150
1,3-Dichlorobenzene	ND	25	ND	150
1,4-Dichlorobenzene	ND	25	ND	150
Dichlorodifluoromethane	ND	25	ND	120
1,1-Dichloroethane	ND	25	ND	100
1,2-Dichloroethane	ND	25	ND	100
cis-1,2-Dichloroethene	35	25	140	99
1,1-Dichloroethene	ND	25	ND	99
1,2-Dichloropropane	ND	25	ND	120
cis-1,3-Dichloropropene	ND 25		ND	110
trans-1,3-Dichloropropene	ND 25		ND	110
1,2-Dichloro-1,1,2,2-tetrafluoroeth	ND 25		ND	170
ane				
Ethylbenzene	ND	25	ND	110
Hexachlorobutadiene	ND	120	ND	1300
Methylene chloride	ND 62		ND	220
Styrene	ND 25		ND	110
1,1,2,2-Tetrachloroethane	ND	25	ND	170
Tetrachloroethene	ND	25	ND	170
Toluene	ND	25	ND	94
1,2,4-Trichlorobenzene	ND	120	ND	930
1,1,1-Trichloroethane	ND	25	ND	140
1,1,2-Trichloroethane	ND	25	ND	140
Trichloroethene	90 ND	25 25	480	130
Trichlorofluoromethane	ND	25	ND	140
1,1,2-Trichloro-1,2,2-trifluoroetha	ND	25	ND	190
ne 1,2,4-Trimethylbenzene	ND	25	ND	120
1,3,5-Trimethylbenzene	ND ND	25	ND ND	120
Vinyl chloride	ND ND	25	ND ND	64
, myr emoride	ND	23	ND	0-1

TO-14_rev5.rpt Rev 1.0.9 09/01/2011

Client Sample ID: SV-30-C

GC/MS Volatiles

Lot-Sample # H3E080423 - 001		Work Order # M0R0C1AA				Matrix: AIR		
PARAMETER		RESULTS (ppb(v/v))	REPORTI LIMIT (p		RESULTS (ug/m3)	REPORTII LIMIT (ug		
m-Xylene & p-Xylene		ND	25		ND	110		
o-Xylene		ND	25	1	ND	110		
			PERCENT			LABORATORY CONTROL		
SURROGATE		RECOVERY				LIMITS (%)		
4-Bromofluorobenzene			102			60 - 140		

 $The \ 'Result' \ in \ ug/m3 \ is \ calculated \ using \ the \ following \ equation: \ Amount \ Found (before \ rounding)* (Molecular \ Weight/24.45)$

Client Sample ID: SV-26-C

GC/MS Volatiles

Lot-Sample # H3E080423 - 002		Work Order #	M0R0D1A	A	Matrix:	AIR
Date Sampled: 05/02/2013 Prep Date: 05/09/2013 Prep Batch #: 3130012		Date Received: Analysis Date	05/08/2013 05/10/2013			
Dilution Factor.: 10		Method:	TO-15			
PARAMETER	RESULTS (ppb(v/v))	REPORTI LIMIT (pp		RESULTS (ug/m3)	REPORT LIMIT (u	
Benzene	ND	2.0		ND	6.4	
Benzyl chloride	ND ND	4.0		ND ND	21	
Bromomethane	ND ND	2.0		ND ND	7.8	
Carbon tetrachloride	ND ND	2.0		ND	13	
Chlorobenzene	ND ND	2.0		ND	9.2	
Chloroethane	ND ND	2.0		ND ND	5.3	
Chloroform	ND ND	2.0		ND	9.8	
Chloromethane	ND ND	5.0		ND	10	
1,2-Dibromoethane (EDB)	ND ND	2.0		ND ND	15	
1,2-Dichlorobenzene	ND ND	2.0		ND	12	
1,3-Dichlorobenzene	ND	2.0		ND	12	
1,4-Dichlorobenzene	ND	2.0	ND		12	
Dichlorodifluoromethane	ND	2.0		ND	9.9	
1,1-Dichloroethane	ND	2.0	ND		8.1	
1,2-Dichloroethane	ND	2.0		ND	8.1	
cis-1,2-Dichloroethene	11	2.0		42	7.9	
1,1-Dichloroethene	ND	2.0		ND	7.9	
1,2-Dichloropropane	ND	2.0		ND	9.2	
cis-1,3-Dichloropropene	ND	2.0		ND	9.1	
trans-1,3-Dichloropropene	ND	2.0		ND	9.1	
1,2-Dichloro-1,1,2,2-tetrafluoroeth	ND 2.0			ND	14	
ane						
Ethylbenzene	ND	2.0		ND	8.7	
Hexachlorobutadiene	ND	10		ND	110	
Methylene chloride	ND	5.0		ND	17	
Styrene	ND	2.0		ND	8.5	
1,1,2,2-Tetrachloroethane	ND	2.0		ND	14	
Tetrachloroethene	ND	2.0		ND	14	
Toluene	2.6	2.0		9.9	7.5	
1,2,4-Trichlorobenzene	ND	10		ND	74	
1,1,1-Trichloroethane	ND	2.0		ND	11	
1,1,2-Trichloroethane	ND	2.0		ND	11	
Trichloroethene	54	2.0		290	11	
Trichlorofluoromethane	ND	2.0		ND	11	
1,1,2-Trichloro-1,2,2-trifluoroetha	ND	2.0		ND	15	
ne	ND	2.0		NID	0.0	
1,2,4-Trimethylbenzene	ND	2.0		ND	9.8	
1,3,5-Trimethylbenzene	ND	2.0		ND	9.8	
Vinyl chloride	ND	2.0		ND	5.1	

TO-14_rev5.rpt Rev 1.0.9 09/01/2011

Client Sample ID: SV-26-C

GC/MS Volatiles

Lot-Sample # H3E080423 - 002			Work Order #	M0R0D1A	A	Matrix:	AIR
PARAMETER		RESULTS (ppb(v/v))	REPORTI		RESULTS (ug/m3)	REPORTI LIMIT (ug	
m-Xylene & p-Xylene o-Xylene		ND ND	2.0 2.0		ND ND	8.7 8.7	
SURROGATE			PERCENT RECOVERY			LABORATORY CONTROL LIMITS (%)	7
4-Bromofluorobenzene			96			60 - 140	

 $The \ 'Result' \ in \ ug/m3 \ is \ calculated \ using \ the \ following \ equation: \ Amount \ Found (before \ rounding)* (Molecular \ Weight/24.45)$

Client Sample ID: SV-31-C

GC/MS Volatiles

Lot-Sample #	H3E080423 - 003		Work Order #	M0R0E1A	A	Matrix:	AIR
Date Sampled: 05/02/2013 Prep Date: 05/09/2013 Prep Batch #: 3130012			Date Received: Analysis Date	05/08/2013 05/10/2013			
Dilution Factor.:	10		Method:	TO-15			
PARAMETER		RESULTS (ppb(v/v))	REPORTII LIMIT (pp		RESULTS (ug/m3)	REPORT LIMIT (u	
Benzene		ND	2.0		ND	6.4	
Benzyl chloride		ND	4.0		ND	21	
Bromomethane		ND	2.0		ND	7.8	
Carbon tetrachloride	e	ND	2.0		ND	13	
Chlorobenzene		ND	2.0		ND	9.2	
Chloroethane		ND	2.0		ND	5.3	
Chloroform		ND	2.0		ND	9.8	
Chloromethane		ND	5.0		ND	10	
1,2-Dibromoethane	(EDB)	ND	2.0		ND	15	
1,2-Dichlorobenzen		ND	2.0		ND	12	
1,3-Dichlorobenzen		ND	2.0		ND	12	
1,4-Dichlorobenzen		ND	2.0		ND	12	
Dichlorodifluorome		ND	2.0		ND	9.9	
1,1-Dichloroethane		ND	2.0		ND	8.1	
1,2-Dichloroethane		ND	2.0		ND	8.1	
cis-1,2-Dichloroeth	ene	2.5	2.0		10.0	7.9	
1,1-Dichloroethene		ND	2.0		ND	7.9	
1,2-Dichloropropan	e	ND	2.0		ND	9.2	
cis-1,3-Dichloropro	pene	ND	2.0		ND	9.1	
trans-1,3-Dichlorop	ropene	ND	2.0		ND	9.1	
1,2-Dichloro-1,1,2,2	2-tetrafluoroeth	ND 2.0			ND	14	
ane							
Ethylbenzene		ND	2.0		ND	8.7	
Hexachlorobutadier	ne	ND	10		ND	110	
Methylene chloride		ND	5.0		ND	17	
Styrene		ND	2.0		ND	8.5	
1,1,2,2-Tetrachloroe	ethane	ND	2.0		ND	14	
Tetrachloroethene		ND	2.0		ND	14	
Toluene		2.5	2.0		9.3	7.5	
1,2,4-Trichlorobenz	ene	ND	10		ND	74	
1,1,1-Trichloroetha	ne	ND	2.0		ND	11	
1,1,2-Trichloroethan	ne	ND	2.0		ND	11	
Trichloroethene		29	2.0		150	11	
Trichlorofluoromethane		ND	2.0		ND	11	
1,1,2-Trichloro-1,2,2-trifluoroetha		ND	2.0		ND	15	
ne		NID	2.0		ND	2.2	
1,2,4-Trimethylbenz		ND	2.0		ND	9.8	
1,3,5-Trimethylbenz	zene	ND	2.0		ND	9.8	
Vinyl chloride		ND	2.0		ND	5.1	

TO-14_rev5.rpt Rev 1.0.9 09/01/2011

Client Sample ID: SV-31-C

GC/MS Volatiles

Lot-Sample #	H3E080423 - 003		Work Order #	M0R0E1AA	Matri	x: AIR	
PARAMETER		RESULTS (ppb(v/v))	REPORTI LIMIT (pp		SULTS (m3)	REPORTING LIMIT (ug/m3)	
m-Xylene & p-Xylene o-Xylene		ND ND	2.0 2.0	ND ND		8.7 8.7	
SURROGATE			PERCENT RECOVERY		CON	BORATORY NTROL IITS (%)	
4-Bromofluorobenzene		97		60	60 - 140		

 $The \ 'Result' \ in \ ug/m3 \ is \ calculated \ using \ the \ following \ equation: \ Amount \ Found (before \ rounding)* (Molecular \ Weight/24.45)$

Client Sample ID: SV-27-C

GC/MS Volatiles

Lot-Sample # H3E080423 - 004		Work Order #	M0R0F1AA	Matrix AIR
Date Sampled: 05/02/2013 Prep Date: 05/09/2013 Prep Batch #: 3130012		Date Received: Analysis Date	05/08/2013 05/10/2013	
Dilution Factor.: 10		Method:	TO-15	
PARAMETER	RESULTS (ppb(v/v))	REPORTI LIMIT (pp		REPORTING LIMIT (ug/m3)
Benzene	ND	2.0	ND	6.4
Benzyl chloride	ND	4.0	ND	21
Bromomethane	ND	2.0	ND	7.8
Carbon tetrachloride	ND	2.0	ND	13
Chlorobenzene	ND	2.0	ND	9.2
Chloroethane	ND	2.0	ND	5.3
Chloroform	ND	2.0	ND	9.8
Chloromethane	ND	5.0	ND	10
1,2-Dibromoethane (EDB)	ND	2.0	ND	15
1,2-Dichlorobenzene	ND	2.0	ND	12
1,3-Dichlorobenzene	ND	2.0	ND	12
1,4-Dichlorobenzene	ND	2.0	ND	12
Dichlorodifluoromethane	ND	2.0	ND	9.9
1,1-Dichloroethane	ND	2.0	ND	8.1
1,2-Dichloroethane	ND	2.0	ND	8.1
cis-1,2-Dichloroethene	ND	2.0	ND	7.9
1,1-Dichloroethene	ND	2.0	ND	7.9
1,2-Dichloropropane	ND	2.0	ND	9.2
cis-1,3-Dichloropropene	ND	2.0	ND	9.1
trans-1,3-Dichloropropene	ND	2.0	ND	9.1
1,2-Dichloro-1,1,2,2-tetrafluoroeth	ND	2.0	ND	14
ane				
Ethylbenzene	ND	2.0	ND	8.7
Hexachlorobutadiene	ND	10	ND	110
Methylene chloride	ND	5.0	ND	17
Styrene	ND	2.0	ND	8.5
1,1,2,2-Tetrachloroethane	ND	2.0	ND	14
Tetrachloroethene	ND	2.0	ND	14
Toluene	2.7	2.0	10	7.5
1,2,4-Trichlorobenzene	ND	10	ND	74
1,1,1-Trichloroethane	ND	2.0	ND	11
1,1,2-Trichloroethane	ND	2.0	ND	11
Trichloroethene	75	2.0	400	11
Trichlorofluoromethane	ND	2.0	ND	11
1,1,2-Trichloro-1,2,2-trifluoroet	16	2.0	120	15
hane	1115	• •		
1,2,4-Trimethylbenzene	ND	2.0	ND	9.8
1,3,5-Trimethylbenzene	ND	2.0	ND	9.8
Vinyl chloride	ND	2.0	ND	5.1

TO-14_rev5.rpt Rev 1.0.9 09/01/2011

Client Sample ID: SV-27-C

Lot-Sample #	H3E080423 - 004		Work Order #	M0R0F1A	A	Matrix:	AIR
PARAMETER		RESULTS (ppb(v/v))	REPORTI LIMIT (p		RESULTS (ug/m3)	REPORT LIMIT (u	
m-Xylene & p-X	Zylene	ND	2.0		ND	8.7	
o-Xylene		ND	2.0		ND	8.7	
			PERCENT			LABORATOR' CONTROL	Y
SURROGATE			RECOVERY		_	LIMITS (%)	
4-Bromofluorob	enzene		98			60 - 140	

 $The \ 'Result' \ in \ ug/m3 \ is \ calculated \ using \ the \ following \ equation: \ Amount \ Found (before \ rounding)* (Molecular \ Weight/24.45)$

Client Sample ID: SV-32-C

GC/MS Volatiles

Lot-Sample #	I3E080423 - 005		Work Order#	M0R0G1A	A	Matrix:	AIR
Date Sampled: Prep Date: Prep Batch #:	05/02/2013 05/09/2013 3130012		Date Received: Analysis Date	05/08/2013 05/10/2013			
Dilution Factor.:	66.91		Method:	TO-15			
PARAMETER		RESULTS (ppb(v/v))	REPORTII LIMIT (pp		RESULTS (ug/m3)	REPORT LIMIT (
Benzene		ND	13		ND	43	
Benzyl chloride		ND	27		ND	140	
Bromomethane		ND	13		ND	52	
Carbon tetrachloride		ND	13		ND	84	
Chlorobenzene		ND	13		ND	62	
Chloroethane		ND	13		ND	35	
Chloroform		ND	13		ND	65	
Chloromethane		ND	33		ND	69	
1,2-Dibromoethane (EDB)	ND	13		ND	100	
1,2-Dichlorobenzene		ND	13		ND	80	
1,3-Dichlorobenzene		ND	13		ND	80	
1,4-Dichlorobenzene		ND	13		ND	80	
Dichlorodifluorometh	hane	ND	13		ND	66	
1,1-Dichloroethane		ND	13		ND	54	
1,2-Dichloroethane		ND	13		ND	54	
cis-1,2-Dichloroether	ne	ND	13		ND	53	
1,1-Dichloroethene		ND	13		ND	53	
1,2-Dichloropropane		ND	13		ND	62	
cis-1,3-Dichloroprop		ND	13		ND	61	
trans-1,3-Dichloropro		ND	13		ND	61	
1,2-Dichloro-1,1,2,2- ane	-	ND	13		ND	94	
Ethylbenzene		ND	13		ND	58	
Hexachlorobutadiene	•	ND	67		ND	710	
Methylene chloride		ND	33		ND	120	
Styrene		ND	13		ND	57	
1,1,2,2-Tetrachloroet	hane	ND	13		ND	92	
Tetrachloroethene		21	13		140	91	
Toluene		ND	13		ND	50	
1,2,4-Trichlorobenze	ne	ND	67		ND	500	
1,1,1-Trichloroethane	e	ND	13		ND	73	
1,1,2-Trichloroethane	e	ND	13		ND	73	
Trichloroethene		740	13		4000	72	
Trichlorofluorometha	ane	ND	13		ND	75	
1,1,2-Trichloro-1,2,2	2-trifluoroet	57	13		440	100	
hane							
1,2,4-Trimethylbenze		ND	13		ND	66	
1,3,5-Trimethylbenze	ene	ND	13		ND	66	
Vinyl chloride		ND	13		ND	34	

Client Sample ID: SV-32-C

Lot-Sample #	H3E080423 - 005		Work Order #	M0R0G1	AA	Matrix: AIR
PARAMETER		RESULTS (ppb(v/v))	REPORTI LIMIT (pp		RESULTS (ug/m3)	REPORTING LIMIT (ug/m3)
m-Xylene & p-X o-Xylene	Kylene	ND ND	13 13		ND ND	58 58
SURROGATE			PERCENT RECOVERY			LABORATORY CONTROL LIMITS (%)
4-Bromofluorob	enzene	<u> </u>	96		_	60 - 140

 $The \ 'Result' \ in \ ug/m3 \ is \ calculated \ using \ the \ following \ equation: \ Amount \ Found (before \ rounding)* (Molecular \ Weight/24.45)$

Client Sample ID: SV-28-C

GC/MS Volatiles

Lot-Sample #	I3E080423 - 006		Work Order #	M0R0H1A	AA	Matrix:	AIR
Date Sampled: Prep Date: Prep Batch #: Dilution Factor.:	05/02/2013 05/09/2013 3130012 16.67		Date Received: Analysis Date Method:	05/08/2013 05/10/2013 TO-15			
PARAMETER	10.07	RESULTS (ppb(v/v))	REPORTII LIMIT (pp	NG	RESULTS (ug/m3)	REPORT. LIMIT (u	
		(PPO(1/1))			(ug/iii3)		
Benzene		ND	3.3		ND	11	
Benzyl chloride		ND	6.7		ND	35	
Bromomethane		ND	3.3		ND	13	
Carbon tetrachloride		ND	3.3		ND	21	
Chlorobenzene		ND	3.3		ND	15	
Chloroethane		ND	3.3		ND	8.8	
Chloroform		ND	3.3		ND	16	
Chloromethane		ND	8.3		ND	17	
1,2-Dibromoethane (EDB)	ND	3.3		ND	26	
1,2-Dichlorobenzene		ND	3.3		ND	20	
1,3-Dichlorobenzene		ND	3.3		ND	20	
1,4-Dichlorobenzene		ND	3.3		ND	20	
Dichlorodifluorometl	hane	ND	3.3		ND	16	
1,1-Dichloroethane		ND	3.3		ND	13	
1,2-Dichloroethane		ND	3.3		ND	13	
cis-1,2-Dichloroethe	ne	16	3.3		63	13	
1,1-Dichloroethene		ND	3.3		ND	13	
1,2-Dichloropropane		ND	3.3		ND	15	
cis-1,3-Dichloroprop	ene	ND	3.3		ND	15	
trans-1,3-Dichloropro	opene	ND	3.3		ND	15	
1,2-Dichloro-1,1,2,2-	-tetrafluoroeth	ND	3.3		ND	23	
ane							
Ethylbenzene		16	3.3		71	14	
Hexachlorobutadiene)	ND	17		ND	180	
Methylene chloride		ND	8.3		ND	29	
Styrene		ND	3.3		ND	14	
1,1,2,2-Tetrachloroet	hane	ND	3.3		ND	23	
Tetrachloroethene		ND	3.3		ND	23	
Toluene		3.6	3.3		14	13	
1,2,4-Trichlorobenze		ND	17		ND	120	
1,1,1-Trichloroethane		ND	3.3		ND	18	
1,1,2-Trichloroethane	e	ND	3.3		ND	18	
Trichloroethene		270	3.3		1400	18	
Trichlorofluorometha		ND	3.3		ND	19	
1,1,2-Trichloro-1,2,2	-trifluoroetha	ND	3.3		ND	26	
ne 1,2,4-Trimethylbenze	ana	ND	3.3		ND	16	
1,3,5-Trimethylbenze		ND ND	3.3 3.3		ND ND		
Vinyl chloride	5116					16 8.5	
vinyi cinoriae		ND	3.3		ND	8.5	

Client Sample ID: SV-28-C

Lot-Sample #	H3E080423 - 006		Work Order #	M0R0H1	IAA	Matrix:	AIR
PARAMETER		RESULTS (ppb(v/v))	REPORT LIMIT (p		RESULTS (ug/m3)	REPORT LIMIT (u	
m-Xylene & p-Y o-Xylene	Xylene	95 43	3.3 3.3		410 190	14 14	
SURROGATE			PERCENT RECOVERY		<u> </u>	LABORATOR' CONTROL LIMITS (%)	Y
4-Bromofluorob	enzene		102			60 - 140	

 $The \ 'Result' \ in \ ug/m3 \ is \ calculated \ using \ the \ following \ equation: \ Amount \ Found (before \ rounding)* (Molecular \ Weight/24.45)$

Client Sample ID: SV-33-C

GC/MS Volatiles

Lot-Sample # H3E080423 - 007		Work Order#	M0R0J1AA	Matrix: AIR	
Date Sampled: 05/02/2013 Prep Date 05/10/2013		Date Received: Analysis Date	05/08/2013 05/10/2013		
Prep Batch #: 3133018		·			
Dilution Factor.: 1160.06		Method:	TO-15		
DADAMETER	RESULTS	REPORTIN			
PARAMETER	(ppb(v/v))	LIMIT (ppt	$\frac{(ug/m)}{(ug/m)}$	3) LIMIT (ug/m3)	_
Benzene	ND	230	ND	740	
Benzyl chloride	ND	460	ND	2400	
Bromomethane	ND	230	ND	900	
Carbon tetrachloride	ND	230	ND	1500	
Chlorobenzene	ND	230	ND	1100	
Chloroethane	ND	230	ND	610	
Chloroform	ND	230	ND	1100	
Chloromethane	ND	580	ND	1200	
1,2-Dibromoethane (EDB)	ND	230	ND	1800	
1,2-Dichlorobenzene	ND	230	ND	1400	
1,3-Dichlorobenzene	ND	230	ND	1400	
1,4-Dichlorobenzene	ND	230	ND	1400	
Dichlorodifluoromethane	ND	230	ND	1100	
1,1-Dichloroethane	ND	230	ND	940	
1,2-Dichloroethane	ND	230	ND	940	
cis-1,2-Dichloroethene	600	230	2400	920	
1,1-Dichloroethene	ND	230	ND	920	
1,2-Dichloropropane	ND	230	ND	1100	
cis-1,3-Dichloropropene	ND	230	ND	1100	
trans-1,3-Dichloropropene	ND	230	ND	1100	
1,2-Dichloro-1,1,2,2-tetrafluoroeth	ND	230	ND	1600	
ane					
Ethylbenzene	ND	230	ND	1000	
Hexachlorobutadiene	ND	1200	ND	12000	
Methylene chloride	ND	580	ND	2000	
Styrene	ND	230	ND	990	
1,1,2,2-Tetrachloroethane	ND	230	ND	1600	
Tetrachloroethene	ND	230	ND	1600	
Toluene	ND	230	ND	870	
1,2,4-Trichlorobenzene	ND	1200	ND	8600	
1,1,1-Trichloroethane	ND	230	ND	1300	
1,1,2-Trichloroethane	ND	230	ND	1300	
Trichloroethene	17000	230	8900		
Trichlorofluoromethane	ND ND	230	ND	1300	
1,1,2-Trichloro-1,2,2-trifluoroetha ne	ND	230	ND	1800	
ne 1,2,4-Trimethylbenzene	ND	230	ND	1100	
1,3,5-Trimethylbenzene	ND	230	ND	1100	
Vinyl chloride	ND	230	ND	590	
, myr emonae	ND	230	ND	370	

Client Sample ID: SV-33-C

Lot-Sample #	H3E080423 - 007		Work Order #	M0R0J1A	AA	Matrix: AIR	
PARAMETER		RESULTS (ppb(v/v))	REPORT LIMIT (p		RESULTS (ug/m3)	REPORTING LIMIT (ug/m3)	
m-Xylene & p-X o-Xylene	Kylene	ND ND	230 230		ND ND	1000 1000	
SURROGATE			PERCENT RECOVERY		_	LABORATORY CONTROL LIMITS (%)	_
4-Bromofluorob	enzene		102			60 - 140	

 $The \ 'Result' \ in \ ug/m3 \ is \ calculated \ using \ the \ following \ equation: \ Amount \ Found (before \ rounding)* (Molecular \ Weight/24.45)$

Client Sample ID: SV-29-C

Lot-Sample # H3E080423 - 008		Work Order #	M0R0K1AA	Matrix: AIR
Date Sampled: 05/02/2013 Prep Date: 05/09/2013		Date Received: Analysis Date	05/08/2013 05/10/2013	
Prep Batch #: 3130012 Dilution Factor.: 16.67		Method:	TO-15	
PARAMETER	RESULTS (ppb(v/v))	REPORTII LIMIT (pp		REPORTING LIMIT (ug/m3)
Benzene	ND	3.3	ND	11
Benzyl chloride	ND	6.7	ND	35
Bromomethane	ND	3.3	ND	13
Carbon tetrachloride	ND	3.3	ND	21
Chlorobenzene	ND	3.3	ND	15
Chloroethane	ND	3.3	ND	8.8
Chloroform	ND	3.3	ND	16
Chloromethane	ND	8.3	ND	17
1,2-Dibromoethane (EDB)	ND	3.3	ND	26
1,2-Dichlorobenzene	ND	3.3	ND	20
1,3-Dichlorobenzene	ND	3.3	ND	20
1,4-Dichlorobenzene	ND	3.3	ND	20
Dichlorodifluoromethane	ND	3.3	ND	16
1,1-Dichloroethane	ND	3.3	ND	13
1,2-Dichloroethane	ND	3.3	ND	13
cis-1,2-Dichloroethene	3.9	3.3	16	13
1,1-Dichloroethene	ND	3.3	ND	13
1,2-Dichloropropane	ND	3.3	ND	15
cis-1,3-Dichloropropene	ND	3.3	ND	15
trans-1,3-Dichloropropene	ND	3.3	ND	15
1,2-Dichloro-1,1,2,2-tetrafluoroeth	ND	3.3	ND	23
ane				
Ethylbenzene	44	3.3	190	14
Hexachlorobutadiene	ND	17	ND	180
Methylene chloride	ND	8.3	ND	29
Styrene	7.7	3.3	33	14
1,1,2,2-Tetrachloroethane	ND	3.3	ND	23
Tetrachloroethene	ND	3.3	ND	23
Toluene	4.6	3.3	17 ND	13
1,2,4-Trichlorobenzene	ND	17	ND	120
1,1,1-Trichloroethane	ND	3.3	ND	18
1,1,2-Trichloroethane	ND	3.3	ND	18
Trichloroethene Trichlorofluoromethene	200 ND	3.3	1100	18
Trichlorofluoromethane	ND ND	3.3	ND ND	19
1,1,2-Trichloro-1,2,2-trifluoroetha ne	ND	3.3	ND	26
1,2,4-Trimethylbenzene	ND	3.3	ND	16
1,3,5-Trimethylbenzene	ND	3.3	ND	16
Vinyl chloride	ND	3.3	ND	8.5

Client Sample ID: SV-29-C

Lot-Sample #	H3E080423 - 008		Work Order #	M0R0K1	AA	Matrix:	AIR
PARAMETER		RESULTS (ppb(v/v))	REPORT LIMIT (p		RESULTS (ug/m3)	REPOR LIMIT	
m-Xylene & p-X o-Xylene	Kylene	220 100	3.3 3.3		970 450	14 14	
SURROGATE			PERCENT RECOVERY		_	LABORATO CONTROL LIMITS (%)	RY
4-Bromofluorob	enzene		92			60 - 140	

 $The \ 'Result' \ in \ ug/m3 \ is \ calculated \ using \ the \ following \ equation: \ Amount \ Found (before \ rounding)* (Molecular \ Weight/24.45)$

Client Sample ID: SV-34-C

GC/MS Volatiles

Lot-Sample # H3E080423 - 009		Work Order #	M0R0L1AA	Matrix: AIR
Date Sampled: 05/02/2013 Prep Date: 05/10/2013 Prep Batch #: 3133018		Date Received: Analysis Date	05/08/2013 05/11/2013	
Dilution Factor.: 55.44		Method:	TO-15	
PARAMETER	RESULTS (ppb(v/v))	REPORTII LIMIT (pp		REPORTING LIMIT (ug/m3)
Benzene Benzyl chloride	ND ND	11 22	ND ND	35 110
Bromomethane	ND	11	ND	43
Carbon tetrachloride	ND	11	ND	70
Chlorobenzene	ND	11	ND	51
Chloroethane	ND	11	ND	29
Chloroform	ND	11	ND	54
Chloromethane	ND	28	ND	57
1,2-Dibromoethane (EDB)	ND	11	ND	85
1,2-Dichlorobenzene	ND	11	ND	67
1,3-Dichlorobenzene	ND	11	ND	67
1,4-Dichlorobenzene	ND	11	ND	67
Dichlorodifluoromethane	ND	11	ND	55
1,1-Dichloroethane	ND	11	ND	45
1,2-Dichloroethane	ND	11	ND	45
cis-1,2-Dichloroethene	ND	11	ND	44
1,1-Dichloroethene	ND	11	ND	44
1,2-Dichloropropane	ND	11	ND	51
cis-1,3-Dichloropropene	ND	11	ND	50
trans-1,3-Dichloropropene	ND	11	ND	50
1,2-Dichloro-1,1,2,2-tetrafluoroeth	ND	11	ND	78
ane Ethylbenzene	ND	11	ND	48
Hexachlorobutadiene	ND	55	ND	590
Methylene chloride	ND	28	ND	96
Styrene	ND	11	ND	47
1,1,2,2-Tetrachloroethane	ND	11	ND	76
Tetrachloroethene	ND	11	ND	75
Toluene	ND	11	ND	42
1,2,4-Trichlorobenzene	ND	55	ND	410
1,1,1-Trichloroethane	ND	11	ND	60
1,1,2-Trichloroethane	ND	11	ND	60
Trichloroethene	49	11	260	60
Trichlorofluoromethane	ND	11	ND	62
1,1,2-Trichloro-1,2,2-trifluoroetha ne	ND	11	ND	85
1,2,4-Trimethylbenzene	ND	11	ND	55
1,3,5-Trimethylbenzene	ND	11	ND	55
Vinyl chloride	ND	11	ND	28

Client Sample ID: SV-34-C

Lot-Sample #	H3E080423 - 009		Work Order #	M0R0L1A	AA	Matrix:	AIR
PARAMETER		RESULTS (ppb(v/v))	REPORTI LIMIT (p		RESULTS (ug/m3)	REPORT LIMIT (u	
m-Xylene & p-X	Kylene	ND	11		ND	48	
o-Xylene		ND	11		ND	48	
			PERCENT			LABORATOR' CONTROL	Y
SURROGATE			RECOVERY		_	LIMITS (%)	
4-Bromofluorob	enzene		103			60 - 140	

 $The \ 'Result' \ in \ ug/m3 \ is \ calculated \ using \ the \ following \ equation: \ Amount \ Found (before \ rounding)* (Molecular \ Weight/24.45)$

Client Sample ID: INTRA-LAB BLANK

GC/MS Volatiles

		GC/MB VO	iaures	
Lot-Sample # H3E10000	0 - 012B	Work Order #	M0TEH1AA	Matrix: AIR
Prep Date: 05/09	2/2013 2/2013	Date Received: Analysis Date	05/08/2013 05/10/2013	
Prep Batch #: 31300 Dilution Factor.: 1	012	Method:	TO-15	
PARAMETER	RESULTS (ppb(v/v))	REPORTII LIMIT (pp		REPORTING LIMIT (ug/m3)
Benzene	ND	0.20	ND	0.64
Benzyl chloride	ND	0.40	ND	2.1
Bromomethane	ND	0.20	ND	0.78
Carbon tetrachloride	ND	0.20	ND	1.3
Chlorobenzene	ND	0.20	ND	0.92
Chloroethane	ND	0.20	ND	0.53
Chloroform	ND	0.20	ND	0.98
Chloromethane	ND	0.50	ND	1.0
1,2-Dibromoethane (EDB)	ND	0.20	ND	1.5
1,2-Dichlorobenzene	ND	0.20	ND	1.2
1,3-Dichlorobenzene	ND	0.20	ND	1.2
1,4-Dichlorobenzene	ND	0.20	ND	1.2
Dichlorodifluoromethane	ND	0.20	ND	0.99
1,1-Dichloroethane	ND	0.20	ND	0.81
1,2-Dichloroethane	ND	0.20	ND	0.81
cis-1,2-Dichloroethene	ND	0.20	ND	0.79
1,1-Dichloroethene	ND	0.20	ND	0.79
1,2-Dichloropropane	ND	0.20	ND	0.92
cis-1,3-Dichloropropene	ND	0.20	ND	0.91
trans-1,3-Dichloropropene	ND	0.20	ND	0.91
1,2-Dichloro-1,1,2,2-tetrafluor	oeth ND	0.20	ND	1.4
ane Ethylbenzene	ND	0.20	ND	0.87
Hexachlorobutadiene	ND	1.0	ND	11
Methylene chloride	ND	0.50	ND	1.7
Styrene	ND	0.20	ND	0.85
1,1,2,2-Tetrachloroethane	ND	0.20	ND	1.4
Tetrachloroethene	ND	0.20	ND	1.4
Toluene	ND	0.20	ND	0.75
1,2,4-Trichlorobenzene	ND	1.0	ND	7.4
1,1,1-Trichloroethane	ND	0.20	ND	1.1
1,1,2-Trichloroethane	ND	0.20	ND	1.1
Trichloroethene	ND	0.20	ND	1.1
Trichlorofluoromethane	ND	0.20	ND	1.1
1,1,2-Trichloro-1,2,2-trifluoroe	etha ND	0.20	ND	1.5
ne				
1,2,4-Trimethylbenzene	ND	0.20	ND	0.98
1,3,5-Trimethylbenzene	ND	0.20	ND	0.98
	3 ***	0.00	3.775	0 = 4

TO-14_rev5.rpt Rev 1.0.9 09/01/2011

ND

0.51

0.20

ND

Vinyl chloride

Client Sample ID: INTRA-LAB BLANK

Lot-Sample # H3E100000 - 01		Work Order # M0TEH1AA			Matrix: AIR		
PARAMETER		RESULTS (ppb(v/v))	REPORTI		RESULTS (ug/m3)	REPORTING LIMIT (ug/m3)	
m-Xylene & p-X	Yylene	ND	0.20		ND	0.87	
o-Xylene		ND	0.20		ND	0.87	
			PERCENT			LABORATORY CONTROL	
SURROGATE			RECOVERY			LIMITS (%)	
4-Bromofluorobenzene		95			60 - 140		

 $The \ 'Result' \ in \ ug/m3 \ is \ calculated \ using \ the \ following \ equation: \ Amount \ Found (before \ rounding)* (Molecular \ Weight/24.45)$

Client Sample ID: CHECK SAMPLE

GC/MS Volatiles

05/08/2013

05/09/2013

Lot-Sample # H3E100000 - 012C Work Order # M0TEH1AC Matrix.....: AIR

Prep Batch #....: 3130012

Dilution Factor.: 1 **Method.....:** TO-15

Dilution Factor.: 1						
PARAMETER	SPIKE AMOUNT (ppb(v/v))	MEASURED AMOUNT (ppb(v/v))	SPIKE AMOUNT (ug/m3)	MEASURED AMOUNT (ug/m3)	PERCENT RECOVERY	RECOVERY LIMITS
Benzene	5.00	4.40	16	14.1	88	70 - 130
Benzyl chloride	5.00	3.88	26	20.1	78	70 - 130
Bromomethane	5.00	5.23	19	20.3	105	70 - 130
Carbon tetrachloride	5.00	5.55	31	34.9	111	70 - 130
Chlorobenzene	5.00	4.51	23	20.8	90	70 - 130
Chloroethane	5.00	5.40	13	14.2	108	70 - 130
Chloroform	5.00	4.56	24	22.3	91	70 - 130
Chloromethane	5.00	5.30	10	11.0	106	60 - 140
1,2-Dibromoethane (EDB)	5.00	4.56	38	35.0	91	70 - 130
1,2-Dichlorobenzene	5.00	4.40	30	26.5	88	70 - 130
1,3-Dichlorobenzene	5.00	4.32	30	26.0	86	70 - 130
1,4-Dichlorobenzene	5.00	4.11	30	24.7	82	70 - 130
Dichlorodifluoromethane	5.00	5.15	25	25.5	103	60 - 140
1,1-Dichloroethane	5.00	4.69	20	19.0	94	70 - 130
1,2-Dichloroethane	5.00	4.73	20	19.1	95	70 - 130
cis-1,2-Dichloroethene	5.00	4.38	20	17.4	88	70 - 130
1,1-Dichloroethene	5.00	4.16	20	16.5	83	70 - 130
1,2-Dichloropropane	5.00	4.87	23	22.5	97	70 - 130
cis-1,3-Dichloropropene	5.00	4.59	23	20.9	92	70 - 130
trans-1,3-Dichloropropene	5.00	4.61	23	20.9	92	70 - 130
1,2-Dichloro-1,1,2,2-tetrafluo roethane	5.00	5.07	35	35.5	101	60 - 140
Ethylbenzene	5.00	4.41	22	19.1	88	70 - 130
Hexachlorobutadiene	5.00	4.02	53	42.8	80	60 - 140
Methylene chloride	5.00	4.18	17	14.5	84	70 - 130
Styrene	5.00	4.51	21	19.2	90	70 - 130
1,1,2,2-Tetrachloroethane	5.00	4.61	34	31.6	92	70 - 130
Tetrachloroethene	5.00	4.63	34	31.4	93	70 - 130
Toluene	5.00	4.46	19	16.8	89	70 - 130
1,2,4-Trichlorobenzene	5.00	3.60	37	26.7	72	60 - 140
1,1,1-Trichloroethane	5.00	4.66	27	25.4	93	70 - 130
1,1,2-Trichloroethane	5.00	4.72	27	25.7	94	70 - 130
Trichloroethene	5.00	4.51	27	24.2	90	70 - 130
Trichlorofluoromethane	5.00	5.21	28	29.2	104	60 - 140
1,1,2-Trichloro-1,2,2-trifluoro ethane	5.00	4.33	38	33.2	87	70 - 130
1,2,4-Trimethylbenzene	5.00	4.50	25	22.1	90	70 - 130
1,3,5-Trimethylbenzene	5.00	4.42	25	21.7	88	70 - 130

Client Sample ID: CHECK SAMPLE

Lot-Sample # H3E100000 - 012C		Work Or	der# M0T	EH1AC	Matrix	: AIR	
PARAMETER		SPIKE AMOUNT (ppb(v/v))	MEASURED AMOUNT (ppb(v/v))	SPIKE AMOUNT (ug/m3)	MEASURED AMOUNT (ug/m3)	PERCENT RECOVERY	RECOVERY LIMITS
Vinyl chloride		5.00	5.29	13	13.5	106	70 - 130
m-Xylene & p-Xy	lene	10.0	9.01	43	39.1	90	70 - 130
o-Xylene		5.00	4.53	22	19.7	91	70 - 130
SURROGATE		PERCE RECOV			LABOR CONTR LIMITS	OL	
4-Bromofluorobenzene			100			60 - 14	0

 $The \ 'Result' \ in \ ug/m3 \ is \ calculated \ using \ the \ following \ equation: \ Amount \ Found (before \ rounding)* (Molecular \ Weight/24.45)$

Client Sample ID: INTRA-LAB BLANK

GC/MS Volatiles

Lot-Sample # H3E130000 - 018	В	Work Order#	M0TP81AA	Matrix: AIR
05/06/2013 Prep Date: 05/10/2013 Prep Batch #: 3133018		Date Received: Analysis Date	05/09/2013 05/10/2013	
Dilution Factor.: 1		Method:	TO-15	
PARAMETER	RESULTS (ppb(v/v))	REPORTI LIMIT (pp		REPORTING LIMIT (ug/m3)
Benzene	ND	0.20	ND	0.64
Benzyl chloride	ND	0.40	ND	2.1
Bromomethane	ND	0.20	ND	0.78
Carbon tetrachloride	ND	0.20	ND	1.3
Chlorobenzene	ND	0.20	ND	0.92
Chloroethane	ND ND	0.20	ND ND	0.53
Chloroform	ND ND	0.20	ND ND	0.98
Chloromethane	ND ND	0.20	ND ND	1.0
1,2-Dibromoethane (EDB)	ND ND	0.30	ND ND	1.5
1,2-Dichlorobenzene	ND ND	0.20	ND ND	1.5
•				
1,3-Dichlorobenzene	ND ND	0.20	ND	1.2 1.2
1,4-Dichlorobenzene	ND	0.20	ND	
Dichlorodifluoromethane	ND	0.20	ND	0.99
1,1-Dichloroethane	ND	0.20	ND	0.81
1,2-Dichloroethane	ND	0.20	ND	0.81
cis-1,2-Dichloroethene	ND	0.20	ND	0.79
1,1-Dichloroethene	ND	0.20	ND	0.79
1,2-Dichloropropane	ND	0.20	ND	0.92
cis-1,3-Dichloropropene	ND	0.20	ND	0.91
trans-1,3-Dichloropropene	ND	0.20	ND	0.91
1,2-Dichloro-1,1,2,2-tetrafluoroeth	ND	0.20	ND	1.4
ane Ethylbenzene	ND	0.20	ND	0.87
Hexachlorobutadiene	ND	1.0	ND	11
Methylene chloride	ND	0.50	ND ND	1.7
Styrene	ND	0.20	ND ND	0.85
1,1,2,2-Tetrachloroethane	ND ND	0.20	ND ND	1.4
Tetrachloroethene	ND ND	0.20	ND ND	1.4
Toluene	ND ND	0.20	ND ND	0.75
1,2,4-Trichlorobenzene	ND ND	1.0	ND ND	7.4
1,1,1-Trichloroethane	ND ND	0.20	ND ND	7.4 1.1
1,1,2-Trichloroethane	ND ND	0.20	ND ND	1.1
Trichloroethene				
	ND ND	0.20	ND ND	1.1
Trichlorofluoromethane	ND ND	0.20	ND ND	1.1
1,1,2-Trichloro-1,2,2-trifluoroetha	ND	0.20	ND	1.5
ne 1,2,4-Trimethylbenzene	ND	0.20	ND	0.98
1,3,5-Trimethylbenzene	ND ND	0.20	ND ND	0.98
1,5,5-111111cmy10cmzene	ND	0.20	ND	0.56

TO-14_rev5.rpt Rev 1.0.9 09/01/2011

ND

0.51

0.20

ND

Vinyl chloride

Client Sample ID: INTRA-LAB BLANK

Lot-Sample # H3E130000 - 01		Work Order # M0TP81AA			AA	Matrix: AIR		
PARAMETER		RESULTS (ppb(v/v))	REPORT LIMIT (p		RESULTS (ug/m3)	REPORTING LIMIT (ug/m3)		
m-Xylene & p-X o-Xylene	Zylene	ND ND	0.20 0.20		ND ND	0.87 0.87		
SURROGATE			PERCENT RECOVERY			LABORATORY CONTROL LIMITS (%)		
4-Bromofluorob	enzene	_	99		_	60 - 140		

 $The \ 'Result' \ in \ ug/m3 \ is \ calculated \ using \ the \ following \ equation: \ Amount \ Found (before \ rounding)* (Molecular \ Weight/24.45)$

Client Sample ID: CHECK SAMPLE

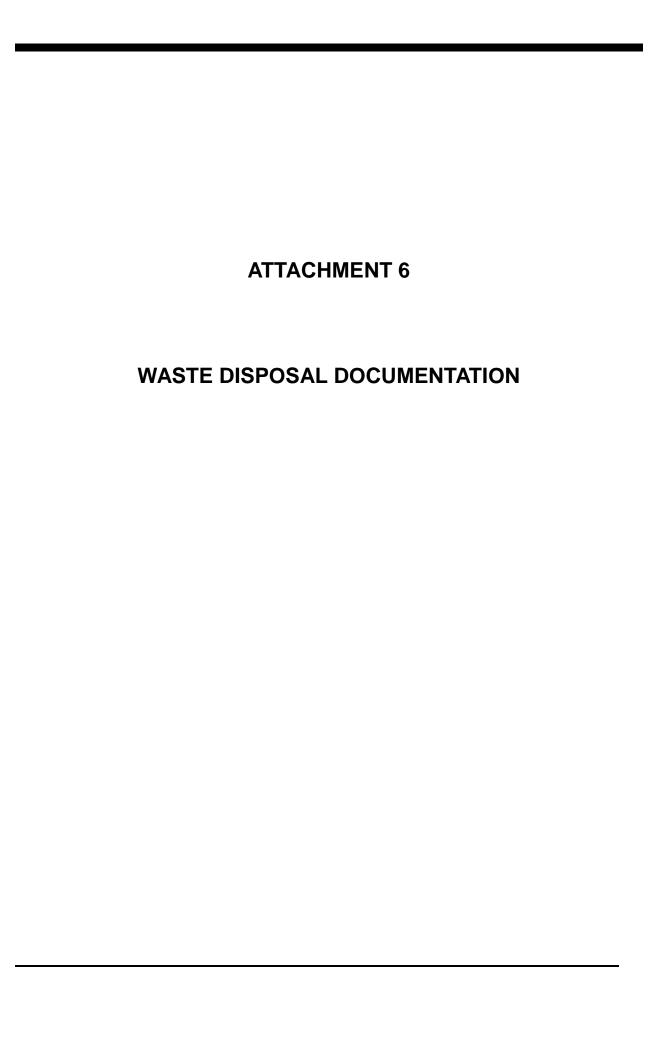
GC/MS Volatiles

Lot-Sample # H3E130000 - 018C Work Order # M0TP81AC Matrix.....: AIR

 05/06/2013
 Date Received..:
 05/09/2013

 Prep Date......:
 05/10/2013
 Analysis Date...
 05/10/2013

Prep Batch #....: 3133018

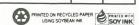

Dilution Factor.: 1 Method...... TO-15

Dilution Factor.: 1						
PARAMETER	SPIKE AMOUNT (ppb(v/v))	MEASURED AMOUNT (ppb(v/v))	SPIKE AMOUNT (ug/m3)	MEASURED AMOUNT (ug/m3)	PERCENT RECOVERY	RECOVERY LIMITS
Benzene	5.00	3.83	16	12.2	77	70 - 130
Benzyl chloride	5.00	4.23	26	21.9	85	70 - 130
Bromomethane	5.00	4.10	19	15.9	82	70 - 130
Carbon tetrachloride	5.00	4.86	31	30.6	97	70 - 130
Chlorobenzene	5.00	4.02	23	18.5	80	70 - 130
Chloroethane	5.00	3.80	13	10.0	76	70 - 130
Chloroform	5.00	3.95	24	19.3	79	70 - 130
Chloromethane	5.00	3.66	10	7.56	73	60 - 140
1,2-Dibromoethane (EDB)	5.00	4.21	38	32.3	84	70 - 130
1,2-Dichlorobenzene	5.00	4.22	30	25.4	84	70 - 130
1,3-Dichlorobenzene	5.00	4.22	30	25.4	84	70 - 130
1,4-Dichlorobenzene	5.00	4.21	30	25.3	84	70 - 130
Dichlorodifluoromethane	5.00	4.54	25	22.5	91	60 - 140
1,1-Dichloroethane	5.00	3.94	20	15.9	79	70 - 130
1,2-Dichloroethane	5.00	3.87	20	15.6	77	70 - 130
cis-1,2-Dichloroethene	5.00	4.14	20	16.4	83	70 - 130
1,1-Dichloroethene	5.00	4.34	20	17.2	87	70 - 130
1,2-Dichloropropane	5.00	3.80	23	17.6	76	70 - 130
cis-1,3-Dichloropropene	5.00	4.27	23	19.4	85	70 - 130
trans-1,3-Dichloropropene	5.00	4.51	23	20.5	90	70 - 130
1,2-Dichloro-1,1,2,2-tetrafluo roethane	5.00	4.68	35	32.7	94	60 - 140
Ethylbenzene	5.00	3.98	22	17.3	80	70 - 130
Hexachlorobutadiene	5.00	4.08	53	43.5	82	60 - 140
Methylene chloride	5.00	4.03	17	14.0	81	70 - 130
Styrene	5.00	4.00	21	17.0	80	70 - 130
1,1,2,2-Tetrachloroethane	5.00	3.91	34	26.8	78	70 - 130
Tetrachloroethene	5.00	4.07	34	27.6	81	70 - 130
Toluene	5.00	3.84	19	14.5	77	70 - 130
1,2,4-Trichlorobenzene	5.00	5.27	37	39.1	105	60 - 140
1,1,1-Trichloroethane	5.00	4.17	27	22.8	83	70 - 130
1,1,2-Trichloroethane	5.00	3.88	27	21.2	78	70 - 130
Trichloroethene	5.00	4.28	27	23.0	86	70 - 130
Trichlorofluoromethane	5.00	4.38	28	24.6	88	60 - 140
1,1,2-Trichloro-1,2,2-trifluoro	5.00	4.26	38	32.7	85	70 - 130
ethane		4.04		40 =		- 0 400
1,2,4-Trimethylbenzene	5.00	4.01	25	19.7	80	70 - 130
1,3,5-Trimethylbenzene	5.00	3.99	25	19.6	80	70 - 130

Client Sample ID: CHECK SAMPLE

Lot-Sample # H3E130000 - 018C		- 018C	Work Ord	ler# M0T	P81AC	Matrix: AIR			
PARAMETER		SPIKE AMOUNT (ppb(v/v))	MEASURED AMOUNT (ppb(v/v))	SPIKE AMOUNT (ug/m3)	MEASURED AMOUNT (ug/m3)	PERCENT RECOVERY	RECOVERY LIMITS		
Vinyl chloride		5.00	3.89	13	9.93	78	70 - 130		
m-Xylene & p-X	ylene	10.0	7.82	43	34.0	78	70 - 130		
o-Xylene		5.00	3.98	22	17.3	80	70 - 130		
SURROGATE			PERCENT RECOVERY			LABORATORY CONTROL LIMITS (%)			
4-Bromofluorobenzene			102			60 - 14	40		

 $The \ 'Result' \ in \ ug/m3 \ is \ calculated \ using \ the \ following \ equation: \ Amount \ Found (before \ rounding)* (Molecular \ Weight/24.45)$



CF14

NON-HAZARDOUS WASTE MANIFEST

5360

D45233766 (Form designed for use on elite (12 pitch) typewriter) 1. Generator's US EPA ID No. **NON-HAZARDOUS** Manifest 2. Page 1 Document No. **WASTE MANIFEST** of 3. Generator's Name and Mailing Address Fits Address : Lockheed Martin Corporation 195 Chacapaako Park Dia 195 Chesaueake Park Plaza Middle River, MD 21220 4. Generator's Phone (VII) 21)220 5. Transporter 1 Company Name 6. US EPA ID Number A. State Transporter's ID B. Transporter 1 Phone OROR COT HAT 7. Transporter 2 Company Name US EPA ID Number 8. C. State Transporter's ID D. Transporter 2 Phone 9. Designated Facility Name and Site Address 10. US EPA ID Number E. State Facility's ID Spring Grove Resource Recovery Inc. 0HD000816629 F. Facility's Phone 4879 Spring Grove Avenue Cincinnati, OH 45232 11. WASTE DESCRIPTION 12. Containers 13. Total Unit No. Туре Wt./Vol. NON DOT REGULATED MATERIAL GENER b. NON DOT REGULATED, (PURGE WATER) C. AT 0 R d. G. Additional Descriptions for Materials Listed Above H. Handling Codes for Wastes Listed Above 11aCH604786 - : 11b.CH295975 15. Special Handling Instructions and Additional Information EMERGENCY PHONE #: (800) 483-3718 **GENERATOR: Lookheed Martin Corporation** 16. GENERATOR'S CERTIFICATION: I hereby certify that the contents of this shipment are fully and accurately described and are in all respects in proper condition for transport. The materials described on this manifest are not subject to federal hazardous waste regulations. Date Printed/Typed Name Signature Month Day Year 17. Transporter 1 Acknowledgement of Receipt of Materials TRANSPORTER Date Printed/Typed Name Signature Month Day Year 18. Transporter 2 Acknowledgement of Receipt of Materials Date Printed/Typed Name Signature Day Month Year 19. Discrepancy Indication Space F ACI 20. Facility Owner or Operator; Certification of receipt of the waste materials covered by this manifest, except as noted in item 19. L T Date Printed/Typed Name Signature Month Day Year Y

ATTACHMENT 7
UPDATED OPERATION AND MAINTENANCE MANUAL
(PROVIDED SEPARATELY)