Deep Groundwater Investigation Report Lockheed Martin Middle River Complex 2323 Eastern Boulevard Middle River, Maryland

Prepared for:

Lockheed Martin Corporation

Prepared by:

Tetra Tech, Inc.

October 4, 2010

Michael Mart

Michael Martin, P.G. Regional Manager

forthern for the

Anthony Apanavage, P.G. Project Manager

TABLE OF CONTENTS

Section Page				
ACRONYMS				
1				
2	S		ESCRIPTION	
2	.1		DLE RIVER COMPLEX HISTORY	
2	.2	MIDI	DLE RIVER COMPLEX CHARACTERISTICS	
	2.2	2.1	Current and Surrounding Land Use	
	2.2	2.2	Physiography	
	2.2	2.3	Hydrology	
	2.2	2.4	Soils	
	2.2	2.5	Regional Geology	
	2.2	2.6	Regional Hydrogeology	
	2.2	2.7	Groundwater Flow	
2	.3	Chem	nicals of Concern	
3	IN	VES	TIGATION APPROACH AND METHODOLOGY	3-1
3	.1	WEL	L LOCATIONS	
3	.2	FIEL	D METHODOLOGY	
	3.2	2.1	Mobilization/Demobilization	
	3.2	2.2	Site Access, Permits, and Utility Clearance	
	3.2	2.3	Borehole Drilling	
	3.2	2.4	Soil Sampling and Analysis	
	3.2	2.5	Well Installation	
	3.2	2.6	Well Development	
	3.2	2.7	Synoptic Water-Levels	
	3.2	2.8	Groundwater Sampling	
	3.2	2.9	Surveying	
	3.2	2.10	Equipment Decontamination	
	3.2	2.11	Waste Management	
	3.2	2.12	General Sampling Procedures, Sample Nomenclature, and Handling	
	3.2	2.13	Documentation	
3	.3	LAB	ORATORY ANALYSES	
3	.4	DAT	A VALIDATION	

4	R	ESUL	TS	4-1
	4.1	SOIL	DATA	4-1
	4.2	GROU	JNDWATER DATA	4-3
	4.	2.1	Groundwater-Level Data	4-3
	4.	2.2	Groundwater Chemical Data	4-3
5	S	SUMM/	ARY AND CONCLUSIONS	5-1
6	R	EFER	ENCES	6-1

APPENDICES

- APPENDIX A— DIG PERMITS
- APPENDIX B— GEOPHYSICAL SURVEY REPORT
- APPENDIX C— SOIL BORING AND WELL CONSTRUCTION LOGS
- APPENDIX D— WELL DEVELOPMENT LOGS
- APPENDIX E— WELL-PURGE RECORDS AND SAMPLING RECORD SHEETS
- APPENDIX F— WELL SURVEY REPORT
- APPENDIX G— PURGE RECORDS AND SAMPLING RECORD SHEETS
- APPENDIX H— CHEMICAL ANALYTICAL RESULTS
- APPENDIX I— DATA-VALIDATION REPORTS

LIST OF FIGURES

Figure 1-1	Middle River Complex Location Map	1-3
Figure 2-1	Site Location Map	2-9
Figure 2-2	Groundwater Monitoring Well Locations	. 2-10
Figure 3-1	Deep Groundwater Monitoring Well Locations	. 3-14
Figure 4-1	Geologic Cross-Section Locations	. 4-11
Figure 4-2	Geologic Cross-Section A-A'	. 4-12
Figure 4-3	Geologic Cross-Section B-B'	. 4-13
Figure 4-4	Geologic Cross-Section C-C'	. 4-14
Figure 4-5	Groundwater-Elevation Contour Map—Deep Confined-Aquifer Wells, June 2010	. 4-15

Page

LIST OF TABLES

<u>Page</u>

Table 3-1	Soil Sample Collection Depths	3-12
Table 3-2	Monitoring Well Screen Depth	3-12
Table 3-3	Laboratory Analyses for Soil, Groundwater, and IDW Samples	3-13
Table 4-1	Geotechnical Result for Soil Samples	4-6
Table 4-2	Deep Well Groundwater Depths and Elevations	4-7
Table 4-3	Analytes Detected in Groundwater—Well Borehole Samples, May 2010	4-8
Table 4-4	Analytes Detected in Groundwater—Monitoring Well Samples, June 2010	4-9

This page intentionally left blank.

ACRONYMS

ASTM	American Society for Testing and Materials International
COC	chemical(s) of concern
ft/day	feet per day
ft/year	feet per year
GLM	Glenn L. Martin Company
g/d/ft	gallons per day per foot
gpm	gallons per minute
HASP	health and safety plan
IDW	investigation derived waste
Κ	hydraulic conductivity
Lockheed Martin	Lockheed Martin Corporation
MDE	Maryland Department of the Environment
MRAS	Middle River Aircraft Systems
MRC	Middle River Complex
MSL	mean sea level
NAVD88	North American Vertical Datum 1988
NPDES	National Pollutant Discharge Elimination System
PCE	tetrachloroethene
PVC	polyvinyl chloride
SVOC	semivolatile organic compound
TCE	trichloroethene
TCLP	Toxicity Characteristic Leaching Procedure
Tetra Tech	Tetra Tech, Inc.
USEPA	United States Environmental Protection Agency
VOC	volatile organic compound

This page intentionally left blank.

Section 1 Introduction

On behalf of Lockheed Martin Corporation (Lockheed Martin), Tetra Tech Inc. (Tetra Tech) prepared this *Deep Groundwater Investigation Report* for the Lockheed Martin Middle River Complex (MRC), located in Middle River, Maryland (Figure 1-1). The investigation sought to obtain sufficient environmental data to evaluate whether chemical contaminants identified in groundwater at the MRC are present beneath the surficial-aquifer zones investigated to date. Before this deep well investigation, chemical contaminants in groundwater had been characterized to a maximum depth of approximately 80 feet below grade in the surficial aquifer at the MRC. This report details the procedures associated with and results from borehole drilling and the installation of four deep groundwater monitoring wells and related tasks, such as pre-drilling activities, geotechnical analyses of soil samples, groundwater-level measurements, chemical analyses of groundwater samples, well surveying, and management of investigation derived wastes (IDW).

The deep groundwater investigation was initially designed to specifically accomplish the following:

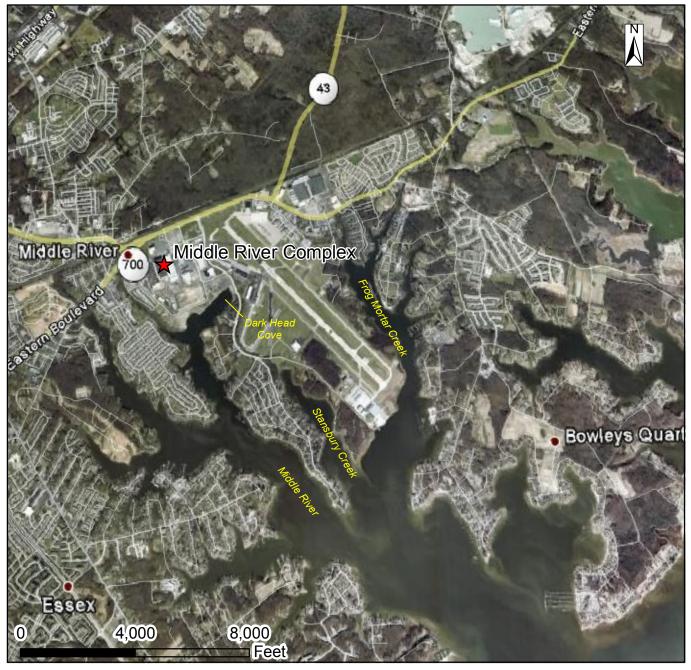
- Investigate whether contaminants identified in shallow groundwater at the MRC have migrated vertically through the regional confining layer (i.e., the Arundel Formation) to an underlying, regionally extensive aquifer (the Patuxent Formation) potentially used for drinking water
- Evaluate groundwater flow direction in the deeper aquifer at the MRC beneath the clay confining-unit (the Arundel Formation)
- Evaluate groundwater quality in a deeper, confined, water bearing geologic unit at the MRC
- Define the hydrogeologic characteristics of the deeper, confined water bearing geologic unit at the MRC

To address these objectives, four deep groundwater-monitoring wells were proposed for installation in the first permeable zone identified beneath the base of the Arundel Formation. The

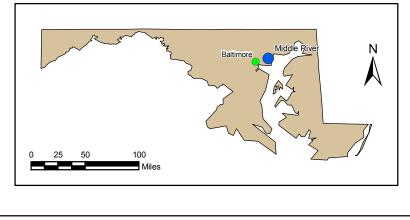
first borehole (MW93D) documented 73 feet of dense clay and an additional 14 feet of clay (with two interlayer sand/silt/clay zones in between) at depths of 189–291 feet below grade. Sand was encountered below the clay at depths of 291–316 feet below grade (drilling was stopped at 316 feet below grade). The Lockheed Martin study team modified the field program based on the thickness, high density, and low permeability of the clay in the MW93D boring at depths of 189–291 feet (considered the Arundel Formation). The team decided to install the new deep wells in the sand rich permeable materials immediately overlying the thick clay at that depth in that location. Deep wells installed at the top of the thick-clay zone will enable evaluation of the presence of chemical contaminants beneath the surficial aquifer and the possibility that, if found, they may affect the aquifer below the Arundel Formation. Accordingly, the new deep wells were installed at depths of 189 feet (MW93D), 196 feet (MW94D), 214 feet (MW95D), and 189 feet (MW96D).

This report is organized as follows:

Section 2—Site Description: Briefly describes the site history, subsurface conditions, and previous investigations


<u>Section 3—Investigation Approach and Methodology</u>: Presents the technical approach to the deep groundwater investigation program and describes the field methodologies employed

<u>Section 4—Results</u>: Presents details of the findings of the investigation program


Section 5—Summary: Briefly summarizes the investigation program

Section 6-References: Cites references used to compile this report

Source: Google Earth Pro, 2008

FIGURE 1-1 MIDDLE RIVER COMPLEX LOCATION MAP			
			Lockheed Martin Middle River Complex Middle River, Maryland
DATE MODIFIED:	9/3/10	CREATED BY:	

This page intentionally left blank.

Section 2 Site Description

The MRC is at 2323 Eastern Boulevard in Middle River, Maryland, approximately 11.5 miles northeast of downtown Baltimore, Maryland. The MRC is part of the Chesapeake Industrial Park and is comprised of approximately 161 acres, including 12 main buildings, an active industrial area, perimeter parking lots, an athletic field, a concrete covered vacant lot, a trailer and parts storage lot, and numerous grassy areas along its perimeter. The MRC is bounded by Eastern Boulevard (Route 150) to the north, Dark Head Cove to the south, Cow Pen Creek to the west, and Wilson Point Road and Martin State Airport to the east. The area layout is shown in Figure 2-1. Currently, Lockheed Martin's primary activities at the MRC include facility and building management and maintenance. The MRC has two main tenants: Middle River Aircraft Systems (MRAS) (a General Electric subsidiary that designs, manufactures, fabricates, tests, overhauls, repairs, and maintains aeronautical structures, parts, and components for military and commercial applications), and Mission Systems & Sensors—Littoral Ships & Systems (a Lockheed Martin subsidiary that fabricates, assembles, tests, and supports vertical-launch systems.

2.1 MIDDLE RIVER COMPLEX HISTORY

In 1929, the Glenn L. Martin Company (GLM), a predecessor firm of Lockheed Martin, acquired a large parcel of undeveloped land in Middle River, Maryland to manufacture aircraft for United States government and commercial clients. In the early 1960s, GLM merged with American Marietta Company to form Martin Marietta Corporation. Around 1975, the adjacent western airport (Martin State Airport), approximately 750 acres, was transferred to the State of Maryland. In the mid-1990s, Martin Marietta Corporation merged with Lockheed to form Lockheed Martin Corporation, with its principal subsidiary specializing in construction and testing of new ordnance for United States government and commercial clients. Shortly after the merger, General Electric acquired most of Lockheed Martin's aeronautical business in Middle River and began operating as MRAS.

2.2 MIDDLE RIVER COMPLEX CHARACTERISTICS

2.2.1 Current and Surrounding Land Use

The MRC is an industrial facility, and its surrounding area primarily consist of commercial, industrial, and residential facilities. Six facilities, comprising the remaining portion of the Chesapeake Industrial Park, are adjacent to MRC. These include Tilley Chemical Company, Inc. (a distributor of food- and pharmaceutical-chemicals); North American Electric, Inc. (an industrial and commercial electrical contractor); Johnson and Towers (a heavy-duty automotive and boat repair and maintenance company); Poly-Seal Corp. (a flexible packaging producer); Exxon (a gasoline filling station and convenience store); and the Middle River Post Office. Residential developments are on the opposite shores of Cow Pen Creek, Dark Head Cove, and Dark Head Creek, and north of Eastern Boulevard (Route 150).

2.2.2 Physiography

The MRC is in the Western Shore of the Coastal Plain Physiographic Province, which is generally characterized by low relief. MRC topography is gently sloping, ranging from sea level to 32 feet above mean sea level (MSL) (Cassell, July 1977). The topography slopes from Eastern Boulevard to the southwest and south towards Cow Pen Creek and Dark Head Cove.

2.2.3 Hydrology

The MRC is at the junction of Cow Pen Creek and Dark Head Cove. Both surface water bodies discharge into Dark Head Creek, a tributary to Middle River, which is a tributary to Chesapeake Bay. The MRC is approximately 3.24 miles (17,100 feet) upstream of Chesapeake Bay.

The MRC has no surface water bodies on-site. Excluding areas immediately adjacent to Cow Pen Creek and Dark Head Creek, surface-water runoff discharges from the facility via storm drains. Lockheed Martin maintains a State of Maryland National Pollution Discharge Elimination System (NPDES) permit (Permit No.: 00-DP-0298, NPDES No.: MD0002852), issued by the Maryland Department of the Environment (MDE) Industrial Discharge Permits Division, Water Management Administration. The permit covers storm-water discharges from the entire property rather than from individual tenants.

2.2.4 Soils

Soils underlying the MRC have been mapped by the United States Department of Agriculture Soil Conservation Service as Mattapex-Urban Land Complex and Sassafras-Urban Land Complex. Mattapex-Urban Land soils consist of deep, well drained, silty soils, the original texture of which has been disturbed, graded over, or otherwise altered. Sassafras-Urban Land soils consist of deep, well drained sandy soils, the original texture of which has been disturbed, graded over, or otherwise altered. Site characterization studies indicate that fine-grained (e.g., silt and clay) soils with low permeabilities make up most MRC soils.

2.2.5 Regional Geology

Geologic mapping of Baltimore County shows that the MRC is underlain by the Potomac Group, a Cretaceous age interbedded gravel, sand, silt, and clay unit from zero to 800 feet thick. The Potomac Group is comprised of three units: the Raritan and Patapsco Formations, the Arundel Formation, and the Patuxent Formation. The Raritan and Patapsco Formations range up to 400 feet thick and are composed of a gray, brown, and red variegated silt and clay unit with lenses of sand and few gravels. The Arundel Formation is composed of dark gray and maroon lignitic clays and ranges from 25 to 200 feet thick. The Patuxent Formation is described as a white or light gray to orange brown, moderately sorted sand unit with quartz gravels, silts, and clays and ranges up to 250 feet thick.

Geologic logging and well installations before the deep groundwater investigation were focused on the surficial aquifer to a maximum depth of approximately 80 feet below grade. Groundwater contaminants at the MRC detected at concentrations above Maryland groundwater standards have been limited to depths up to approximately 35 feet below grade. However, lower concentrations of some volatile organic compounds (VOCs) have been detected at concentrations below groundwater standards at wells installed to 50 feet. Therefore, for this investigation, deep wells were installed to evaluate whether these contaminants were present below the lower surficial-aquifer zone monitored to date.

For data evaluation and correlation, the surficial aquifer was divided into the upper, intermediate, and lower surficial-aquifer zones. Monitoring wells installed in the upper surficial-aquifer zone are designated as "A" wells (e.g., MW17A), whereas the intermediate and lower surficial-aquifer zones are monitored by "B" and "C" wells, respectively. The upper, intermediate, and lower

surficial-aquifer wells are typically installed to depths of 20, 30, and 70 feet below grade at the MRC. Deep wells installed for this investigation are designated with a "D" (i.e., MW96D).

Lithologic logging of the soils beneath the MRC identified a very heterogeneous stratigraphy. The underlying soils are composed primarily of silty sands, fine-grained to medium grained sands, silty clays, clayey silts, and plastic clay, with the primary lithology being clay to silty clay. Waterfront areas have historically been backfilled to their present elevation. Soils from fill areas are similar in appearance and composition to soils considered native to the MRC.

Lithology data collected for the groundwater investigation were used to construct geologic cross sections (Tetra Tech, Inc., May 2006). Overall, the results of the groundwater investigation indicate complex arrangements of predominantly clay, silty clay, silt, and clayey silt, with smaller, more permeable zones of silty sand and sand. Well locations are shown in Figure 2-2.

Thick sequences of low permeability clay, silty clay, clayey silt, and silt are found in the northern two thirds of the MRC. These clayey and silty materials extend from well MW02 to the area between wells MW48 and MW27. In the northern portion of the site, clay was encountered in the first 20 feet at well MW02, thickening to more than 30 feet to the south at well MW57 (near Building C). In the area between wells MW02 and MW48, clay, clayey silt, and silt extend 80 to 95 feet below grade to elevations of 50 to 70 feet below MSL. A review of boring logs indicates that this thick upper zone of clayey material terminates to the south along an east west line roughly formed by wells MW48, MW21/MW58, and MW11. Two 10-foot-thick silty sand units were reported for MW02 at elevations of 10 to 40 feet below MSL. However, these sandy units do not appear to be contiguous with sandy units observed farther to the south.

Interbedded sands, silty sands, sandy silts, and silts were encountered south of Buildings A, B, and C. Several feet of sandy and silty materials were encountered overlying the shallow clay at wells MW05, MW55, and MW57. These sandy and silty materials thicken to the south/southeast in the area of wells MW57, MW48, MW27, and MW37. The sandy materials are 70 to 75 feet thick in the area from well MW48 to well MW37 (near Cow Pen Creek) and overlie a lower clay confining-unit present at 55 to 62 feet below MSL.

In the southwestern portion of the MRC, silty sands and sandy silts were encountered in the upper several feet near wells MW12 to MW56 to the northeast. Silty sand and sandy silt were

also encountered southwest of MW58 at elevations ranging from five feet above MSL to 12 feet below MSL, and southwest of MW21, with a top surface elevation of 50 feet below MSL. The lowest sandy unit appears to be contiguous with the silty and sandy units northeast of MW14 (lower portions of logs for wells MW21 and MW57). Each of the sandy units is separated by upper and lower clay/clayey silt units ranging from seven to 34 feet thick.

The materials described above are underlain by the Arundel Formation, a regionally extensive, thick, dense-clay confining-unit. It is a massive, impermeable unit underlying the MRC and surrounding area. The Arundel Formation outcrops northwest of the MRC and dips and thickens to the southeast. Within a few miles downdip of the outcrop area, the Arundel Formation generally corresponds to a zone of clay and sand lenses separating two predominantly sandy zones in the Potomac Group (Vroblesky and Fleck, 1991). The Arundel Formation has been mapped as far east as Cambridge, Maryland and has been reported as more than 600 feet thick in that area. Studies by Vroblesky and Fleck (1991) and Chapelle (1985) conclude that the Arundel Formation is probably 50 to 125 feet thick beneath the MRC, with a basal (i.e., bottom) altitude of approximately 200 feet below MSL. Therefore, the depth to the base of the Arundel Formation at the MRC probably ranges from 210 to 230 feet below grade.

Below the Arundel Formation is the Patuxent Formation. The Patuxent Formation is considered a multi-aquifer unit due to various interbedded sand and silt/clay layers and the rapid changes in deposited material types over short distances. Permeable, sand rich units range from bounded sand-sheets to isolated sand bodies (Glaser, 1969). Vroblesky and Fleck (1991) and Chapelle (1985) indicate that the altitude of the top of the Patuxent Formation at the MRC and nearby is approximately 200 feet below MSL. Therefore, the depth to the top of the Patuxent Formation in the MRC area probably ranges from 210 to 230 feet below grade.

2.2.6 Regional Hydrogeology

Sand and gravel zones in the unconsolidated surficial deposits, when present, may form an unconfined or water-table aquifer system (Bennett and Meyer, 1952). The water table at MRC generally conforms to the shape of the land surface, with the highest water levels in the interior land areas and the lowest levels at approximately the surface water elevations along the shoreline.

The Patuxent Formation is the most important water bearing formation in the Baltimore area. Industrial wells in the southeastern part of the area, specifically Curtis Bay and Sparrows Point, yield from 500 to 900 gallons per minute (gpm). Transmissivities and storage coefficients in confined portions of the aquifer in these industrialized areas average about 50,000 gallons per day per foot (g/d/ft) and 0.00026, respectively. The Patapsco Formation is also an important water-bearing formation in industrialized Baltimore, where it is separated by clay into a lower and an upper aquifer by the Patapsco Confining Unit. The lower aquifer yields as much as 500 to 750 gpm to industrial wells, with an estimated transmissivity of 25,000 g/d/ft. The upper aquifer yields quantities of water similar to industrial wells and, because it is thicker than the lower aquifer, it likely has a higher overall transmissivity. Stratigraphic mapping by Vroblesky and Fleck (1991) and discussions in Chapelle (1985) indicate that the Patapsco Confining Unit may not extend to the MRC area.

Previous investigations at the MRC show that groundwater is encountered at depths ranging from less than one foot to nearly 18 feet below grade. In the northern portion of the MRC, groundwater is found in silts, clays, and sand lenses in the subsurface. Low-permeability clays and silty clays overlie and underlie the more permeable silty or sandy zones or lenses. In these areas, recharge from precipitation is probably low, and groundwater is under hydraulically confined conditions. Groundwater velocity is relatively low, because the subsurface is primarily composed of silts and clays.

To the southeast, groundwater preferentially flows to the southeast in sandy strata, which extend from MW55 and MW57 to the thicker sandy material at wells MW27 and MW37. Approximately 65 to 70 feet of saturated sandy material lies above the lower confining-clay in this area. Groundwater is probably hydraulically unconfined or partially confined because of the absence of an overlying hydraulic clay-barrier in most areas. Confined conditions may exist locally wherever clay is at the surface. The lower portion of the aquifer in the area of wells MW34 and MW37 is divided by silt and silty clay at 20 to 30 feet below MSL. Deeper groundwater may be hydraulically confined in this area.

To the southwest, shallow groundwater flows in the sandy and silty materials extending from wells MW21 to MW12 and Cow Pen Creek. Approximately 13 to 18 feet of saturated sandy material is in this area. Groundwater is probably hydraulically confined by clay barriers above

and below this unit. The upper sandy unit is separated from the lower sandy unit by approximately 35 feet of clay and clayey silt. The lower sandy unit occurs at approximately 50 feet below MSL and is at least 17 feet thick in the area of well MW12. It thins to the northeast at well MW14. Groundwater in this lower sandy unit is hydraulically confined due to the thick, overlying clay unit and the underlying clay of the Arundel Formation.

Single well permeability tests (i.e., slug tests) were conducted in 28 wells selected to represent hydrogeologic variability across the site. Slug tests were performed on 16 shallow (A) wells, five intermediate (B) wells, and seven deep (C) wells. Low average hydraulic-conductivity (K) values were reported for the shallow wells, ranging from 0.0027 feet per day (ft/day) at MW57 to 1.25 ft/day at MW66A. The arithmetic average K for the shallow wells is 0.22 ft/day; the geometric mean K is 0.07 ft/day. These results are consistent with published permeabilities of sand and silt mixtures (Spitz and Moreno, 1996; Halford and Kuniansky, 2002) reported for these locations. Lower hydraulic conductivities are reported for shallow wells to the south (MW55A through MW62A) and west (MW52A through MW54A, and MW64A). Maximum K values for shallow wells (0.99 to 1.25 ft/day) were reported in the southernmost portion of the MRC at wells MW65A and MW66A, where sand rich materials are present. Except for data from these two wells, values range from 0.0027 to 0.3 ft/day (a much narrower range).

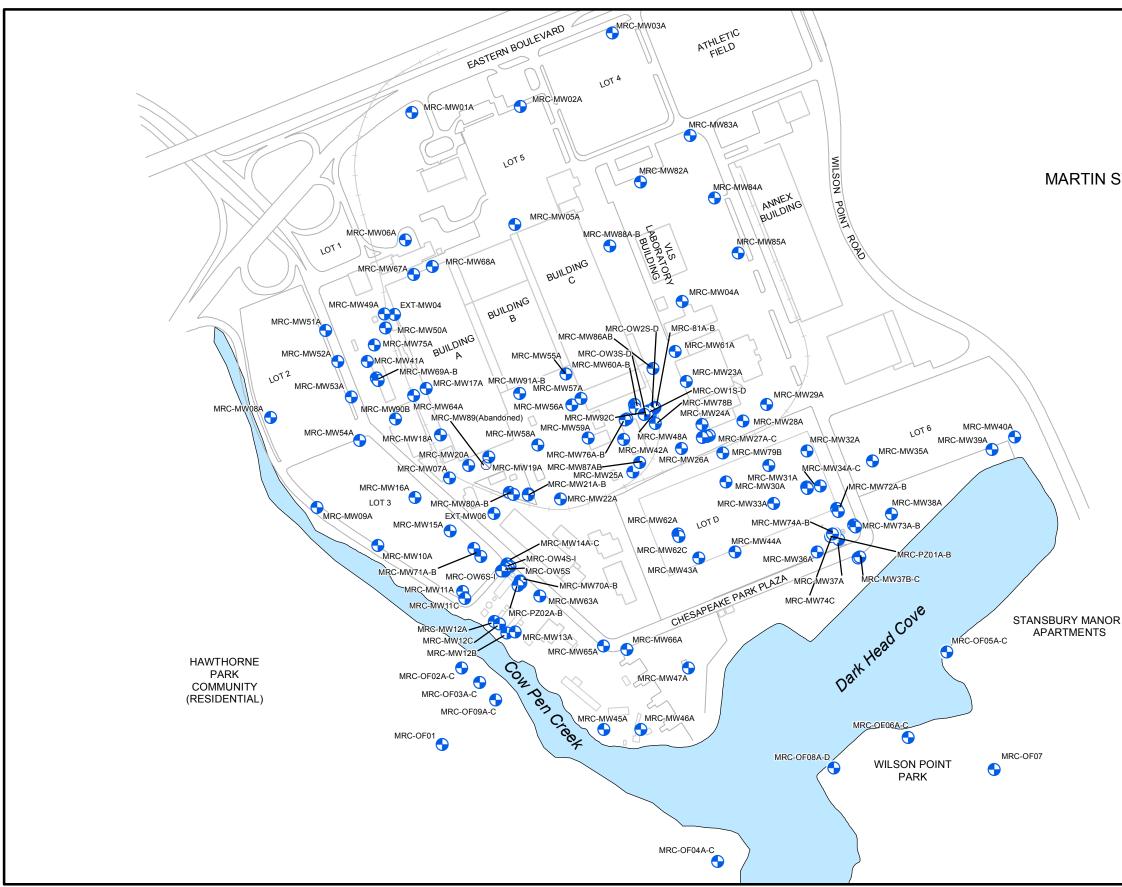
Except for MW27B, K values for the intermediate wells are more consistent than those for the shallow wells, with an arithmetic average of 0.48 ft/day and a geometric mean of 0.22 ft/day. The B well permeabilities are consistent with published lower values for clean sand or typical values of sand and silt mixtures. Except for well MW37C, K values for the deep wells range from 0.35 to 9.16 ft/day. The average K of the deeper wells (3.82 ft/day) is approximately $10 \times$ the average K value for the shallow and intermediate zones. The geometric mean K for deep wells is 0.89 ft/day; eliminating the low permeability at MW37C, the geometric mean K is 3.02 ft/day.

2.2.7 Groundwater Flow

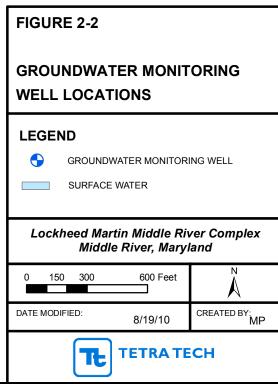
For shallow wells, depths to groundwater range from approximately less than one foot below grade near the shoreline (MW08 through MW10, MW15, MW40, and MW47) to 14 to 18 feet below grade at the central and northern portion of the MRC (MW05, MW01, and MW02), west of Building A (MW49 and MW50), and south of Building C (MW42 and MW60). Depth to

groundwater in the deepest wells ranges from less than one foot at MW11C to 13.50 feet at MW27C. The groundwater level and flow results for the deep wells are provided in section 4.2

Groundwater flows radially from the hydraulically upgradient northern portion of the MRC at Eastern Boulevard to the southeast, south, and southwest toward Dark Head Cove and Cow Pen Creek. The sandy zones act as preferential pathways for the transport of contaminants in groundwater, which may have their source upgradient in the clay rich materials. Previous groundwater-level measurements indicate that horizontal hydraulic gradients for shallow wells at the site range from 0.033 to 0.0033 feet per feet. Using the range of K values of 0.0027 to 1.25 ft/day estimated for the shallow wells, and a typical range of effective porosities for silt/sand of 0.20 to 0.30, the average linear groundwater velocity in the shallow surficial-aquifer probably ranges from 0.01 to 75 feet per year (ft/year). Excluding the two outlier K values, average linear velocity ranges from 0.01 to 18 ft/year.


2.3 Chemicals of Concern

Previous environmental investigations at the MRC (part of MDE's Voluntary Cleanup Program) identified two main groundwater plumes of volatile organic compounds (VOCs), one of which also contains 1, 4-dioxane. These plumes are in the southern portion of the MRC, south of the operating MRAS facility. A western plume of VOCs and 1,4-dioxane extends southwesterly from the Building A area to Cow Pen Creek. The eastern VOC plume extends southeasterly from the Building C area to Dark Head Cove. Details of the groundwater flow system and associated contamination are found in the *Site Characterization Report: Lockheed Martin Middle River Complex (Tetra Tech, May 2006)*. Additional details are presented in the annual groundwater monitoring reports prepared after each groundwater-sampling event (Tetra Tech, 2008, 2009, and 2010).



Map Document: (K:\GProject\middle_river\Maps\Tax Blocks_26Jan10.mxd) 1/26/2010 -- 10:53:39 AM

MARTIN STATE AIRPORT

Map Document: (K:\GProject\middle_river\Maps\Middle River Groundwater Monitoring Locs Aug2010.mxd) 8/19/2010 -- 1:08:02 PM

Section 3 Investigation Approach and Methodology

The objective of the deep groundwater investigation was to obtain sufficient environmental data to evaluate whether chemical contaminants identified in shallow groundwater at the MRC are present beneath the surficial-aquifer zones investigated to date. Chemical contaminants of concern in groundwater had previously been characterized to a maximum depth of 80 feet below grade within the surficial aquifer in what has been termed the (C) zone. This section details the procedures used for borehole drilling, installation of four deep groundwater-monitoring wells, and associated tasks such as pre-drilling activities, geotechnical analyses of soil samples, well surveying, groundwater-level measurements, management of IDW, and chemical analyses of groundwater samples.

To address these objectives, four deep groundwater-monitoring wells were proposed for installation in the first permeable zone identified beneath the base of the Arundel Formation. The results of the first borehole (MW93D) indicate that 73 feet of dense dry clay and an additional 14 feet of clay (with two, thin, interlayer sand/silt/clay zones) lie 189-291 feet below grade. Twenty-five feet of fine- and medium grained sand were encountered below the thick clay sequence at 291-316 feet below grade. The Lockheed Martin study team modified the field program due to the overall thickness and density of the clay and the substantial depth of drilling required to reach the underlying sandy zone at 291 feet, choosing to install wells in the sand unit directly above the thick clay sequence encountered at depths of 179–189 feet below grade.

The deep wells installed at the shallower sand unit achieved the objective of monitoring deep-groundwater quality beneath the surficial aquifer and of assessing the possibility that the MRC site could contaminate the deeper aquifer below the Arundel Formation, without resorting to extensive drilling through nearly 100 feet of dense clay. The potential for creating hydrologic

pathways between the shallow and deep aquifers was thus avoided by not drilling and installing wells through the Arundel Formation into the deeper regional aquifer.

3.1 WELL LOCATIONS

The orientation of the deep wells helped determine groundwater flow direction and provided monitoring of both upgradient and downgradient groundwater quality. Figure 3-1 shows the locations of the deep groundwater-monitoring wells installed at the MRC. The direction of groundwater flow in the confined aquifer above the Arundel Formation was assessed by surveying the wells and measuring the depth to groundwater to construct a groundwater-contour map. Four deep groundwater-monitoring wells were installed at the MRC, were located as follows (and as approved by Lockheed Martin):

- Background well (MW93D)—north of the operating facilities in the southwestern corner of Parking Lot 4, north of E Building. This was the first well boring advanced.
- Mid-site well (MW94D)—midway between the eastern TCE plume and western TCE plume deep wells, near the center of the MRC
- Western TCE plume well (MW95D)— southeast of the western TCE plume
- Eastern TCE plume well (MW96D)—east of the eastern TCE plume

3.2 FIELD METHODOLOGY

3.2.1 Mobilization/Demobilization

Tetra Tech procured the required subcontractors and began mobilization/demobilization in the week of April 26, 2010, including:

- Coordinating with Lockheed Martin facilities personnel
- Obtaining utility clearance in the proposed well-boring locations using a private utilitylocating firm, along with calling Miss Utility
- Mobilizing drilling subcontractors, equipment and materials to the site
- Implementing a site health and safety plan (HASP)
- Demobilizing equipment and materials from the site (at work completion)
- General site cleanup and trash removal when the work was finished

• Surface restoration at work completion

The field operations leader coordinated mobilization/demobilization, including equipment inventories to ensure equipment availability, purchasing and leasing equipment as required, and staging equipment for efficient loading and transport to the site and after each field activity.

Before field operations, appropriate Tetra Tech personnel became familiar with the MRC *Deep Groundwater Investigation HASP* and the respective "Safe Work Permits" included therein. Tetra Tech conducted mandatory health and safety tailgate meetings before each day's fieldwork. Subcontractors present for that day's field activities were included in the meeting, and also attended MRC health and safety training for contractor. The Tetra Tech site health and safety officer documented the topics covered and personnel in attendance at these sessions.

3.2.2 Site Access, Permits, and Utility Clearance

Utility clearance work and associated documentation conformed to the provisions of Lockheed Martin's *Remediation Contractor's ESH Handbook, Revision 1*. Tetra Tech obtained all required permits necessary to conduct the proposed field activities before any intrusive field activities related to this investigation began, in addition to completing all required utility clearance activities, including:

- Notifying the underground utility-location center ("Miss Utility," 1-800-257-7777, <u>www.missutility.net</u>). The Miss Utility clearance notification is provided in Appendix A.
- Reviewing county engineering and utility maps
- Completing the corporate staff procedure CS-28 "Digging Project" form and obtained the required signatures. Approved digging forms are provided in Appendix A.
- Obtaining the necessary permits from the state of Maryland (e.g., state well permits)
- Using a private utility-locating firm to identify any subsurface utilities/anomalies. The private utility-locating report is provided in Appendix B.

Well-boring locations were cleared for subsurface utilities in advance of all intrusive field activities. In addition to securing a Miss Utility ticket, a private utility-locating service (Enviroscan, Inc. of Lancaster, Pennsylvania) was used to mark any underground utilities and anomalies. The survey looked for any metallic and non-metallic utilities or anomalies. The private utility-locating firm used typical utility-locating equipment representing the best available technology, including a Fisher TW-6 electromagnetic pipe and cable locator/tracer, a Radiodetection Cable Avoidance Tool and Genny pipe and cable locator/tracer, a Radiodetection RD4000 multi-frequency pipe and cable tracer, and a GSSI SIR-2000 ground-penetrating radar system. All utilities within a 30-foot radius of each designated well were located using the appropriate technology and the ground surface was marked with paint of standardized utility colors. Tetra Tech obtained the required government permits for well installation (e.g., a state of Maryland well permit from the Baltimore County Health Department) before all drilling activities. Tetra Tech applied for these permits concurrently with preparing the work plan, to facilitate timely permit approval.

3.2.3 Borehole Drilling

Four boreholes were advanced and four wells were installed, one at each of four locations MW93D, MW94D, MW95D, and MW96D at the MRC (see Figure 3-1). The well boreholes were drilled using a truck mounted rotasonic drilling rig. Each borehole was advanced using a six-inch drill rod and a seven-inch override-casing configuration. The boreholes were continuously sampled to characterize soil lithology using a 10-foot-long core barrel. A licensed professional geologist experienced in drilling techniques, soil logging, and well installation logged the soil samples.

At MW93D, which was the only borehole advanced through the Arundel Formation clay into an underlying sand unit, a 10-inch-diameter override casing was advanced several feet into the first thick-clay layer encountered beneath the surficial aquifer (i.e., 12 feet of clay was encountered at 112–124 feet below grade at MW93D). The integrity of the water-tight seal between the surficial aquifer and outer casing was tested before advancing the borehole below the temporary casing by pumping standing water from the casing using a submersible pump. This test determined whether groundwater from the surficial aquifer would seep beneath the casing or through the casing joints. The casing seal tested tight, and this first temporary casing remained in place to seal off groundwater in the overlying formation. The well borehole was constructed below the temporary casing and confining unit by advancing a second, smaller diameter steel casing through the annulus of the larger diameter temporary outer casing (i.e., telescoping the borehole). Soil was continuously sampled with the drilling core until the target depth was reached.

Soil cuttings and cleaning rinsate were collected in new or refurbished 55-gallon drums and stored in the fenced area of Lot D at the MRC, similar to what was done in previous investigations. IDW drums were removed after each drilling day and before moving to the next location. Tetra Tech expedited the characterization, sampling, and removal of all IDW from the site to minimize the length of time the IDW was to be staged on-site.

3.2.4 Soil Sampling and Analysis

A licensed professional geologist experienced in drilling techniques, soil logging, and well installation supervised these deep-groundwater investigation tasks. Upon reaching the clay of the Arundel Formation, soil samples from the base of the surficial aquifer were analyzed for total VOCs using the Color-TecTM methodology. If total VOC concentrations were greater than 1 milligram per kilogram, the boring was not to be advanced further at that location and another location was to be identified. However, VOCs were not detected using the field-test kits and drilling continued at each of the four original soil-boring locations.

Attempts were made to collect undisturbed geotechnical samples (e.g., Shelby tubes) from the dense clay material considered of the Arundel Formation at MW93D. However, the Shelby tubes collapsed and only a limited sample volume could be collected. Several Shelby tubes were attempted at MW93D to provide sufficient sample volume for the analyses. The tubes collapsed and could not be retrieved by means of the rods used to push the tubes, but instead had to be retrieved from the four inch drilling core once drilling resumed. Subsequently, a DenisonTM soil sampling barrel was used in the remaining wells to obtain samples for laboratory analyses.

A DenisonTM sampler is a large diameter, double-tube-core barrel consisting of a rotating outer barrel with cutting teeth on the bottom and an inner barrel with a smooth cutting-shoe. The DenisonTM sampler is designed to capture cohesive soils, soft rock, cemented soils, and soils containing gravel that cannot be obtained using typical push type samplers, such as a Shelby tube. In the DenisonTM sampler, soil is captured in a thin walled, brass inner-barrel similar to that of a Shelby tube.

Soil samples for geotechnical analyses were also collected from the sand rich formation materials at each of the four deep wells. The MW93D sample was collected from a thick sand rich zone at 296–316 feet below grade to provide grain size information for the permeable

material immediately below the deep clay layer. Soil samples from wells MW94D, MW95D, and MW96D were collected from the sandy-formation materials found along the depth intervals screened for these wells. At MW94D, a second sample of sand rich material was collected at a depth of 120–126 feet below grade to provide grain size information for a permeable zone overlying the well's target zone-depth. The sand samples were composites of the material found along the depth intervals listed below. Soil samples were collected at the depths listed in Table 3-1.

Clay soil samples were analyzed for grain size with a hydrometer (ASTM Method D422) as well as for moisture content (ASTM method D2216), Atterberg limits (ASTM method D4318), and vertical permeability (ASTM method D6035-02). Sand samples were analyzed for grain size only (ASTM method D422).

3.2.5 Well Installation

All groundwater-monitoring wells were constructed of two-inch-inside diameter Schedule 80, polyvinyl chloride (PVC) casing with 10 feet of continuous-slot stainless-steel wire-wrap screen. The slot size (i.e., opening size) of the screens was 0.01-inch, based on the presence of fine to medium sand in the monitored formation at each location. Clean, washed, #1 silica-sand was placed in the annulus from the bottom of the borehole to three feet above the top of the screen. Following placement of the sand pack, the well was redeveloped by surging, to settle the sand pack around the screen. Depth to sand was measured using a weighted fiberglass tape. A three-foot thick layer of #0 fine-sand was placed on top of the sand pack. The remaining annulus was backfilled with two to three feet of bentonite pellets and bentonite-slurry grout to the ground surface. The grout was allowed to set for 24 hours before beginning well development.

Each well surface was completed by installing a flush mount steel well-cover. Well covers were set in concrete and surrounded by a two foot by two foot concrete pad flush with the ground surface. The screened intervals for the wells are listed in Table 3-2.

A licensed professional geologist experienced in drilling techniques, soil logging, and well installation supervised and observed these tasks. Boring logs and well construction diagrams are provided in Appendix C.

3.2.6 Well Development

The new monitoring wells were developed on May 18–19, 2010 by air-lift pumping and surging using PVC casing and an air compressor to remove fines and sediment from the sand pack and well screen. Development continued until field parameters such as pH, conductivity, temperature, and turbidity stabilized. Stabilization was considered to have been achieved when three consecutive readings were within ± 0.1 for pH and $\pm 3\%$ for conductivity. Purge water from well development was collected in 55-gallon steel drums and staged on-site for proper characterization and disposal. Well development records are provided in Appendix D.

3.2.7 Synoptic Water-Levels

Groundwater levels were measured at the four new wells on June 28, 2010 using an electronic water-level meter with gradations to 0.01 foot. Water-level data provide information on groundwater flow characteristics in the deep confined-aquifer and were used to construct a groundwater-contour map for the deep confined-aquifer.

3.2.8 Groundwater Sampling

During drilling of the deep wells, groundwater samples were collected at MW94D, MW95D, and MW96D to screen for VOCs in the upper surficial-aquifer zone. Samples were collected from the sandy zone at depths ranging from 63 to 76 feet below grade, which represent the (C) or lower surficial-aquifer zone currently monitored at the MRC. Samples were collected by drilling to the target depth and pulling the drill casing back slightly to allow fresh groundwater to fill the sonic casing. Samples were then collected using Teflon[®] tubing and a peristaltic pump or a bailer after purging the borehole for several minutes.

Groundwater samples were collected from each of the new monitoring wells on June 10–11, 2010. Sampling was conducted using low flow-purging methods via a submersible pump. Groundwater was withdrawn at flow rates near 100 milliliters per minute. The groundwater quality parameters of pH, temperature, conductivity, oxygen reduction potential, dissolved oxygen, and turbidity were monitored using a Horiba U-22 water-quality meter and recorded every five minutes. Purging continued until these parameters stabilized. Stabilization was considered achieved when three consecutive readings were within ± 0.1 standard unit for pH,

 $\pm 3\%$ for conductivity, ± 10 millivolts for oxygen reduction potential, and $\pm 10\%$ for turbidity. All purged water was collected in 55-gallon, steel drums, which were staged in the fenced area of Lot D. Well purging and sampling records are provided in Appendix E.

3.2.9 Surveying

Subsequent to the well installation, a professional field-surveying company (Murphy Geomatics, Inc. of Raleigh, North Carolina) was contracted to provide horizontal and vertical coordinates for each new well location. A qualified, Maryland licensed, land-surveying crew chief and crew performed the survey. Surveyed locations were accurate to the nearest 0.01 foot for vertical elevations using the NAVD88 and 0.1 foot horizontal coordinates in the North American Vertical Datum 1983 at the top of the well casings. A permanent mark was placed at the surveyed point of each well. Flush mount cover elevations were surveyed with a vertical accuracy of 0.1 foot. A Tetra Tech geologist was on-site to conduct site safety briefings and familiarize the survey crew with site features and task requirements before surveying. The survey report is provided in Appendix F.

3.2.10 Equipment Decontamination

Drilling equipment at each boring location was cleaned using a high-pressure steam cleaner as the rods and casing were removed from the borehole. Decontamination water was collected in the recirculation basin and was pumped into 55-gallon drums for storage. Drilling equipment was also cleaned before beginning work, between drilling locations, and at the conclusion of the drilling program. During groundwater sampling, reusable groundwater-level measuring and sampling equipment (e.g., water-level meter, pumps, and wire) were decontaminated before and after each use. Dedicated and disposable equipment (such as pump tubing) was used for groundwater purging and sampling. All decontamination fluids were collected in U.S. Department of Transportation approved 55-gallon steel drums, which were stored at a central staging area at the facility's Lot D pending waste-profile sampling results.

3.2.11 Waste Management

Soil cuttings, decontamination fluids, well-development water, and well-purge water were collected as IDW in U.S. Department of Transportation approved 55-gallon steel drums. The drums were stored at a central staging area on the facility's Lot D pending waste profile

sampling results. Tetra Tech sampled the IDW for Toxicity Characteristics Leaching Procedure (TCLP) organic and inorganic analyses, corrosivity, ignitability, and reactive sulfide and reactive cyanide and submitted these samples to TestAmerica, Inc., of North Canton, Ohio for analysis under an expedited turn-around schedule, to reduce the period drums were staged at the MRC. Upon receipt of these analytical data, the IDW was removed from the MRC by Envirite, Inc., a state licensed waste transporter, and properly disposed of as non-hazardous waste at a Lockheed Martin approved off-site waste-treatment facility, in accordance with federal, state, and local regulations.

3.2.12 General Sampling Procedures, Sample Nomenclature, and Handling

Each soil and groundwater sample was given a unique sample identification consisting of the soil-boring or well name and depth (for soil) or sampling date (for groundwater) (e.g., MRC-MW93D-196' would be a soil sample from 196 feet deep, and MRC-MW93D-061010 would be a groundwater sample collected on June 10, 2010). Trip blanks were labeled with a "TB" prefix followed by a six digit submittal date (e.g., TB061010). Sample handling includes field related considerations concerning selection of sample containers, preservatives, allowable holding times and analyses requested.

Proper custody procedures were followed throughout all phases of sample collection and handling. Chain of custody protocols were used throughout sample handling to establish the evidentiary integrity of sample containers. These protocols demonstrate that the samples were handled and transferred in a manner that would eliminate (or detect) possible tampering. Sample containers were released under signature from the laboratory and were accepted under signature by the sampler or responsible individual who maintains custody until the sample containers were transferred to the sampling team. Groundwater samples were released under signature from the sampling team and were accepted under signature by the laboratory. Transport containers returning to the laboratory were sealed with strapping tape and a tamper resistant custody seal. The custody seal shows the signature of the individual releasing the transport container, along with the date and time.

3.2.13 Documentation

Core samples retrieved during drilling operations were described and lithologic logs were completed by a licensed professional geologist experienced in soil-core logging. All field notes were recorded in a hardbound field logbook. Sample documentation, including chain of custody reports and matrix specific sampling-log sheets are provided in the data-validation reports.

3.3 LABORATORY ANALYSES

Table 3-3 lists the geotechnical and chemical analyses/methods used in this investigation. Soil samples collected for geotechnical analyses were analyzed by Findling, Inc. of Baltimore, Maryland for grain size (ASTM method D422), moisture content (ASTM method D2216), Atterberg limits (ASTM method D4318), and vertical permeability (ASTM method D6035-02). Laboratory results sheets for the geotechnical analyses are provided in Appendix G.

Groundwater samples collected during drilling were analyzed for USEPA VOCs using SW846 Method 8260. Groundwater samples from wells were analyzed for USEPA VOCs using SW846 Method 8260, SVOCs and 1,4-dioxane using SW846 Method 8270B, and for unfiltered and filtered metals using USEPA SW846 Method 6010. TestAmerica Laboratories Inc. of North Canton, Ohio analyzed the groundwater samples. If measured turbidity was greater than 10 nephalometric turbidity-units, the sample was also analyzed for dissolved (i.e., filtered) metals using USEPA SW846 Method 6010.

Selection of these analytes is based on contaminants of concern identified in surficial-aquifer groundwater monitoring. Tables of the chemical analytical results appear in Appendix H. Duplicate samples were collected at a rate of 1:10 (i.e., 10%). Matrix-spike and matrix-spike duplicate samples were collected on a 1:20 basis (i.e., 5%). Trip blanks were submitted at a rate of one per cooler of VOCs per day. Soil and groundwater IDW were analyzed for TCLP organics/inorganics, corrosivity, ignitability and reactivity using the methods shown in Table 3-3.

3.4 DATA VALIDATION

Data validation entails having a party independent of the analytical laboratory review the analytical data to ensure that specific criteria are met. These criteria are concerned with specifications that are not sample dependent; they specify performance requirements that should be fully under a laboratory's control. For organic data-analyses, specific validation areas include blanks, performance-evaluation-standard materials, and instrument-performance checks. For inorganic data-analyses, specific validation areas include blanks, calibration standards, laboratory-control standards, and interference-check standards.

Chemical data were supplied by the laboratory as hard-copy reports and electronic databases. Following the investigation, chemical data were validated in accordance with established USEPA protocols to assess data reliability and accuracy. The review was based on the USEPA Region 3 *Modifications to the National Functional Guidelines for Data Review* (USEPA, 1993 and 1994) and the specifics of the analytical method employed. Data-validation reports for COC are provided as Appendix I (on compact disc).

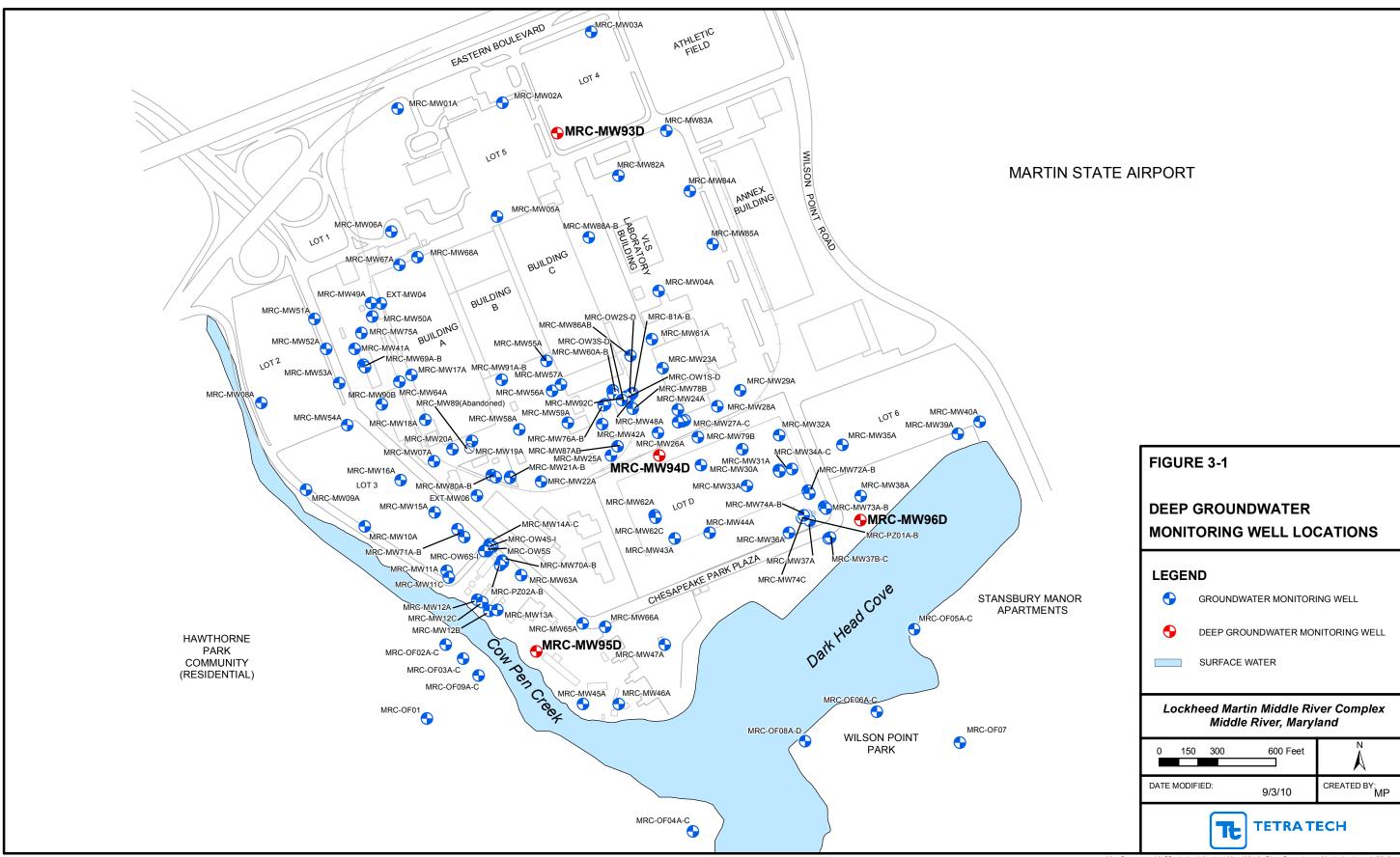
Table 3-1

Soil Sample Collection Depths Deep Groundwater Investigation Lockheed Martin, Middle River Complex, Middle River, Maryland

Well ID	Clay samples (feet below grade)	Sand samples (feet below grade)
MW93D	196	296–316
MW94D	206	120–126 and 186–196
MW95D	196–198	200–216
MW96D	216–220	186–190

Table 3-2

Monitoring Well Screen Depth Deep Groundwater Investigation Lockheed Martin, Middle River Complex, Middle River, Maryland


Well ID	Screen depth (feet below grade)	Screen elevation feet (NAVD88 [°])
MW93D	179–189	-154 to -164
MW94D	186–196	-163 to -173
MW95D	204–214	-194 to -204
MW96D	179–189	-172 to -182

*NAVD88—North American Vertical Datum of 1988

Table 3-3

Analyte	Analytical Method		
Soil			
Grain size (with hydrometer)	ASTM D422		
Moisture content	ASTM D2216		
Atterberg limits	ASTM D4318		
Vertical-permeability test	ASTM D6035-02		
Groundwater			
VOCs	SW 846 Method 8260B		
SVOCs and 1,4-dioxane	SW 846 Method 8270C		
Total metals	SW 846 Method 6010C		
Dissolved metals	SW 846 Method 6010C		
IDW			
TCLP organics/inorganics	TCLP extraction (soil) and 8260B/8270C/8081A/8151A/6010B/7470A		
Corrosivity	Water-150.1, soil 9045C		
Ignitability (flashpoint)	Water-1010, soil section 7.1.2		
Reactive sulfide/reactive cyanide	Total sulfides-9030B/9034, cyanide-9012A		

Laboratory Analyses for Soil, Groundwater, and IDW Samples Deep Groundwater Investigation Lockheed Martin, Middle River Complex, Middle River, Maryland

Map Document: (K:\GProject\middle_river\Maps\Middle River Groundwater Monitoring Locs Jul2010.mxd) 7/6/2010 - 4:17:02 PM

Section 4 Results

4.1 SOIL DATA

Boring logs for the newly installed wells updated existing geologic cross-sections and helped evaluate deep geology at the site. Figure 4-1 shows the locations of the geologic cross-sections. Figures 4-2 through 4-4 are generalized geologic cross-sections showing the materials encountered during the drilling of the deep wells.

As shown in Figure 4-2, the lithologic data for MW93D, MW94D, and MW96D indicate clay up to 50 feet thick underlying the surficial aquifer at 15 to 60 feet below MSL at well MW93D, and 60 to 110 feet below MSL at MW94D and MW96D. Below this clay zone is a series of thinner, alternating layers of sand and clay. Seventy-three feet of continuous clay were encountered at MW93D, beginning at an elevation of 164 feet below MSL and ending at an elevation of approximately 237 feet below MSL.

Directly overlying the 73 feet of clay is seven feet of sand followed by 11 feet of overlying clay and sand layers (clay thickness totaling eight feet) from 146 feet below MSL to 157 feet below MSL. Below the 73-feet-thick clay layer is 14 feet of silty and clayey fine sand followed by 15 feet of clay from 251 to 266 feet below MSL. The thickness of the deep clay and interlayer sand/silt (123 feet) is consistent with the Arundel Formation's 50 to 125 feet thickness in this area, as reported by Chapelle (1985) and Vroblesky and Fleck (1991). However, the basal altitude of the clay (at 266 feet below MSL) was somewhat lower than the altitude of 200 feet below MSL reported by Chapelle (1985) and Vroblesky and Fleck (1991).

Well boreholes MW94D through MW96D were not drilled through the entire Arundel Formation but were instead drilled 16 to 20 feet into the clay zones encountered at altitudes similar to the 73-feet-thick continuous clay layer logged at well MW93D. The top surfaces of multiple deep clay layers were encountered at altitudes of 128, 148, and 174 feet below MSL at well MW94D at the center of the MRC (see also Figure 4-4). Clay layers were likewise encountered at altitudes of 142 and 183 feet below MSL at MW96D, at the southern end of the MRC adjacent to Dark Head Cove.

Figure 4-3 also indicates geologic sequences at well MW95D similar to those of MW93D. Similar to MW93D, the lithology at MW95D shows primarily clay from the ground surface to 50 feet below MSL, followed by a thick sand zone (split by clay and silt layers) from approximately 60 feet below MSL to approximately 140 feet below MSL. At MW95D, somewhat continuous clay is encountered at approximately 150 feet below MSL to 226 feet below MSL. However, a 14-feet-thick sand layer was encountered in MW95D from approximately 190–204 feet below MSL. At all MRC deep-well locations, thick clay layers are present above and below the sand units monitored by the deep wells. The sand zones monitored by the deep wells are therefore considered hydraulically confined.

Clay samples from the four well-boreholes were sent to a geotechnical laboratory for grain size analyses, measurement of moisture content, Atterberg limits, and vertical-permeability testing. These samples were collected beneath the top of the continuous clay zone of the Arundel Formation. Sand samples from each of the well boreholes were also sent to a geotechnical laboratory for grain-size analysis. The results of these tests are shown in Table 4-1. Moisture content, soil classifications, soil descriptions, Atterberg Limits, grain size distributions, and permeabilities are all consistent for the four clay-soil samples.

The clay at MW94D had the highest plasticity index, at 43, followed by MW95D, at 34. All clay samples were classified as CH soils, indicating that they are inorganic clays of high plasticity with a liquid limit greater than 50, and that more than 50% of the material is fines (i.e., silt and clay). Sand content for these samples ranges from 4.8% at MW93D to 12.6% at MW94D. Vertical permeabilities of the four samples are of the same order of magnitude, ranging from 2.1×10^{-08} centimeters per second to 8.2×10^{-08} centimeters per second.

Results for the sand samples show that the formation material where the wells were screened typically consists of more than 90% sand. Fine sand (grain sizes of 0.075 to 0.425 millimeter) was the predominant size by weight for all sand samples (i.e., 53.0 to 83.4% fine sand). Coefficients of uniformity were all less than six; coefficients of curvature were greater than one and less than three. This indicates that the samples were poorly graded (i.e., the samples did not contain a wide assortment of grain sizes). Fine gravel (grain size of 4.75 to 19 millimeters) was

present in the 186–196-foot sample at MW94D. Fines content (i.e., combined silt and clay fractions) are between 5–12%, which would classify these samples as silty sand.

4.2 GROUNDWATER DATA

The following section contains groundwater-elevation data obtained from water-level measurements in deep confined-aquifer monitoring. Analytical data related to monitoring-well sampling are also presented and discussed below.

4.2.1 Groundwater-Level Data

Table 4-2 summarizes the June 28, 2010 groundwater-level measurements and computed static groundwater-elevations for the MRC deep wells. Figure 4-5 shows the June 28, 2010 groundwater-elevation contour map for the deep wells. Static groundwater-levels measured in the deep confined-aquifer wells were reported at depths ranging from the top of the PVC well casing (approximately 0.3-feet below grade) at MW96D near Dark Head Cove to approximately 12-feet below grade at MW94D, in the central portion of the MRC. As shown in Figure 4-5, groundwater in the deep confined-aquifer flows southeast from the upgradient area of well MW93D area toward wells MW94D and MW96D. Groundwater hydraulic-gradients range from 0.0024 between wells MW93D and MW94D to 0.0058 between wells MW94D and MW96D.

4.2.2 Groundwater Chemical Data

4.2.2.1 Borehole Groundwater Samples

Groundwater samples were collected at MW94D, MW95D, and MW96D during drilling of the deep wells to screen for VOCs in the lower surficial-aquifer (C) zone at depths ranging from 63 to 76 feet below grade. Analytical results are summarized in Table 4-3 and compared against Maryland groundwater standards (MDE, 2008). Sampling data do not indicate the presence of target VOCs such as TCE, PCE, and TCE-degradation products, but instead only indicate several VOCs at trace to low concentrations. These are considered artifacts of the laboratory analysis or are from potable water used during drilling. All VOC concentrations are substantially less than Maryland groundwater standards.

As shown in Table 4-3, one chlorinated VOC (1,2-dichloroethane) was detected at a low concentration in one sample (MW94D [72ft]). However, this result is qualified as being present in laboratory control-blanks (i.e., data validation "B" qualifier); therefore, this concentration is

considered an artifact of the laboratory analysis. Target VOCs (such as TCE, PCE and TCE-degradation products) were not detected in the well-borehole samples. Two VOCs (2-butanone and acetone) are common laboratory contaminants that may also be artifacts of the laboratory analyses. The three remaining VOCs detected are trihalomethanes (bromodichloromethane, chlorodibromomethane and chloroform) typically associated with potable water treated via chlorination. These VOC detections are likely the result of water used to aid in borehole drilling. All VOC concentrations are less than Maryland groundwater standards.

4.2.2.2 Monitoring Well Groundwater Samples

Groundwater samples were collected from each of the new monitoring wells on June 10–11, 2010 and analyzed at an off-site laboratory for VOCs, SVOCs, 1,4-dioxane and metals. Analytical results are summarized in Table 4-4 and compared against Maryland groundwater standards (MDE, 2008). Sampling data do not indicate the presence of target VOCs such as TCE, PCE and TCE-degradation products, but instead only indicate trace to low concentrations of several VOCs and two SVOCs that are considered artifacts of the laboratory analyses or are from potable water used during drilling. All VOC and SVOC concentrations are less than Maryland groundwater standards. 1-4-Dioxane was not detected in any samples. Several concentrations of metals exceed groundwater standards, as discussed below.

As shown in Table 4-4, targeted VOCs such as TCE, PCE, and TCE degradation products were not detected in the well groundwater-samples. Results for two VOCs and one SVOC [acetone methylene chloride and bis(2-ethylhexl)phthalate], are qualified as being present in laboratory control-blanks (i.e., data validation "B" qualifier); therefore, these concentrations are considered artifacts of the laboratory analyses. Toluene, 2-butanone, and butyl-benzyl-phthalate (an SVOC) are also common laboratory contaminants. The consistently low concentrations of these analytes (slightly above detection limits) indicate that these detections may also be artifacts of the laboratory analyses. Several of the remaining VOCs detected are trihalomethanes (bromodichloromethane, chlorodibromomethane, chloroform, and chlormethane) typically associated with potable water treated via chlorination. These detections of VOCs are likely the result of water used in borehole drilling. All VOC concentrations are less than Maryland groundwater standards. For well MW93D, unfiltered and filtered groundwater concentrations of seven metals (arsenic, beryllium, chromium, iron, lead, manganese, and vanadium) exceed groundwater standards. For wells MW94D and MW95D, only concentrations of iron, manganese, vanadium, and the unfiltered lead concentration for MW95D exceed groundwater standards. All metal concentrations (filtered and unfiltered) for well MW96D are less than groundwater standards.

Table 4-1

Geotechnical Results for Soil Samples Deep Groundwater Investigation Lockheed Martin Martin State Middle River Complex, Maryland

		Depth Below	Moisture	Unified Soil Classification		Atterberg Limits							Average Hydraulic	
Sample ID	Sample Date	Grade (Feet)	Content (Percent)	System (USCS)	Description	Plastic Limit	Liquid Limit	Plasticity Index	Cobbles (Percent)	Gravel (Percent)	Sand (Percent)	Silt ⁽¹⁾ (Percent)	Clay ⁽¹⁾ (Percent)	Permability cm/sec
MW93D 196'	4/28/2010	196	17.1	СН	Reddish brown with white fat CLAY	27	54	27	0.0	0.0	4.8	37.0	58.2	8.2E-08
MW94D 206'	5/6/2010	206	15.6	CH	Orange brown with red fat CLAY	25	68	43	0.0	0.0	12.6	27.5	59.9	2.1E-08
MW95D 196'-198'	5/11/2010	196-198	15.4	СН	Reddish brown with orange and purple fat CLAY	22	56	34	0.0	0.0	11.0	33.0	56.0	3.4E-08
MW96D 216'-220'	5/17/2010	216-220	13.0	СН	Reddish brown with orange and white fat CLAY	27	54	27	0.0	0.0	5.0	46.1	48.9	7.4E-08
MW93D 296'-316'	5/3/2010	296-316	18.8	SP-SM	Brown silty SAND	NA	NA	NA	0.0	0.0	90.4	9.6	(1)	NA
MW94D 120'-126'	5/6/2010	120-126	17.8		Light gray silty SAND	NA	NA	NA	0.0	0.0	94.9	5.1	(1)	NA
MW94D 186'-196'	5/6/2010	186-196	14.0	SP-SM	Brown silty SAND	NA	NA	NA	0.0	1.0	91.3	7.7	(1)	NA
MW95D 200'-216'	5/12/2010	200-216	14.4	SM	Brown and gray silty SAND	NA	NA	NA	0.0	0.0	88.8	11.2	(1)	NA
MW96D 186'-190'	5/14/2010	186-190	19.9	SM	Light gray silty SAND	NA	NA	NA	0.0	0.0	91.2	8.8	(1)	NA

CH = Inorganic clays of high plasticity, gravelly clays, sandy clays, silty, clays, lean clays. Liquid Limit greater than 50. More than 50% of material are fines (silt and clay).

NA = Not analyzed.

1 For sand samples, silt and clay are reported as percent fines, which includes both silt and clay fractions. For sand samples, value in the Silt column is the "percent fines" content (i.e., both silt and clay).

Table 4-2Deep Well Groundwater Depths and ElevationsLockheed Martin, Middle River Complex, Middle River, Maryland

		June 28, 2010			
Well ID	Well elevation (ft NAVD) ^{1,2}	Depth to water (ft) ²	Groundwater elevation (ft NAVD) ¹		
MW93D	24.99	9.80	15.19		
MW94D	22.91	11.82	11.09		
MW95D	10.23	1.82	8.41		
MW96D	6.30	0.003	6.30		

¹North American Vertical Datum of 1988

²Reference top of PVC well casing.

³Groundwater flowed out of the casing top. Actual potentiometric surface may be higher.

Table 4-3 Analyes Detected in Groundwater - Well Borehole Samples, May 2010 Deep Groundwater Investigation Lockheed Martin Middle River Complex, Middle River, Maryland

SAMPLE ID: LABORATORY ID: SAMPLE DATE: LOCATION: VOLATILES (ug/L)	MDE GROUNDWATER CRITERIA	MRC-MW94D(72ft) A0E060602001 5/5/2010 MRC-MW94D	MRC-MW95D(63ft) A0E110505001 5/10/2010 MRC-MW95D	MRC-MW95D(76ft) A0E110505002 5/10/2010 MRC-MW95D	MRC-MW96D (65ft) A0E140486002 5/13/2010 MRC-MW96D
1,2-DICHLOROETHANE	5	0.24 B			
2-BUTANONE	700		0.82 J	0.99 J	
ACETONE	550	2.2 J	3.9 J	4.6 J	3.4 J
BROMODICHLOROMETHANE	80		3.6	3.7	5.4
CHLORODIBROMOMETHANE	80		0.41 J	0.41 J	0.76 J
CHLOROFORM	80		22	27	23

MDE - Maryland Department of the Environment, June 2008.

-- - Not detected at listed detection limit.

B - Laboratory blank contamination.

J - Positive result is considered estimated as a result of technical noncompliance.

ug/l - micrograms per liter.

Table 4-4

Analytes Detected in Groundwater - Monitoring Well Samples, June 2010 Deep Groundwater Investigation Lockheed Martin Middle River Complex, Middle River, Maryland Page 1 of 2

SAMPLE ID: LABORATORY ID: SAMPLE DATE: LOCATION:	MDE GROUNDWATER CRITERIA	MRC-MW93D- 061010 A0F110578002 6/10/2010 MRC-MW93D	MRC-MW94D- 061010 A0F110578003 6/10/2010 MRC-MW94D	MRC-95D-061110 A0F120439002 6/11/2010 MRC-95D	MRC-96D-061110 A0F120439001 6/11/2010 MRC-96D
VOLATILES (ug/L)					
2-BUTANONE	700	1.5 J		1.4 J	
4-METHYL-2-PENTANONE	630	0.67 J			
ACETONE	550	17 B	11 B	20 B	3.8 B
BROMODICHLOROMETHANE	80		0.23 J	0.31 J	
CARBON DISULFIDE	100	0.71 J			
CHLORODIBROMOMETHANE	80			0.37 J	
CHLOROFORM	80	8.8	10	19	0.19 J
CHLOROMETHANE	19			0.36 J	
METHYLENE CHLORIDE	5	0.47 B	0.54 B	0.58 B	
TOLUENE	1000	0.22 J	0.21 J	0.28 J	
SEMIVOLATILES (ug/L)					
BIS(2-ETHYLHEXYL)PHTHALATE	6	1.9 B	2.1 B		2.1 B
BUTYL BENZYL PHTHALATE		1.1	1.1		
INORGANICS (ug/L)					
ANTIMONY	6	0.42 B	0.18 B	0.28 B	
ARSENIC	10	26.1	4.1 J	7.5 K	
BARIUM	2000	515	133	209	9
BERYLLIUM	4	6.7	1.3	2.3	0.11 B
CADMIUM	5	0.49 J	0.12 B	0.17 B	
CHROMIUM	100	143	28.1	72.9	0.51 B
COBALT		10	2.6	5.5	2.4
COPPER	1300	59.9	13.1	24.6	2.2 B
IRON	300	66400	18100	40900	202
LEAD	15	78.2	14.5	30.2	
MANGANESE	50	522	214	262	12.6
MERCURY	2	0.13 J			
MOLYBDENUM		20	5.2	14.1	
NICKEL	73	40.4	20.4	21.3	3.9 K
SELENIUM	50	6.6	0.96 J	3.2 J	
SILVER	100	0.15 J			
THALLIUM	2	0.49 B	0.14 B	0.21 B	
VANADIUM	3.7	107	28.9	53.2	0.45 J
ZINC	5000	145	35.5	66.8	10.9 B
INORGANICS FILTERED (ug/L)					
ANTIMONY	6	0.32 B	0.13 B	0.35 B	0.2 B
ARSENIC	10	20.5	1.2 J	2.8 J	
BARIUM	2000	399	43.7	11.2	7.6
BERYLLIUM	4	5.4	0.28 B		0.085 B
CADMIUM	5	0.38 B	0.028 B		0.031 B
CHROMIUM	100	108	6.4	0.89 B	0.17 B
COBALT		8	0.76 J	0.039 B	2.2
COPPER	1300	47.4	4.5 B	2.5 B	1.7 B
IRON	300	51300	4400	47.2 B	73.4 B
LEAD	15	63.3	3		

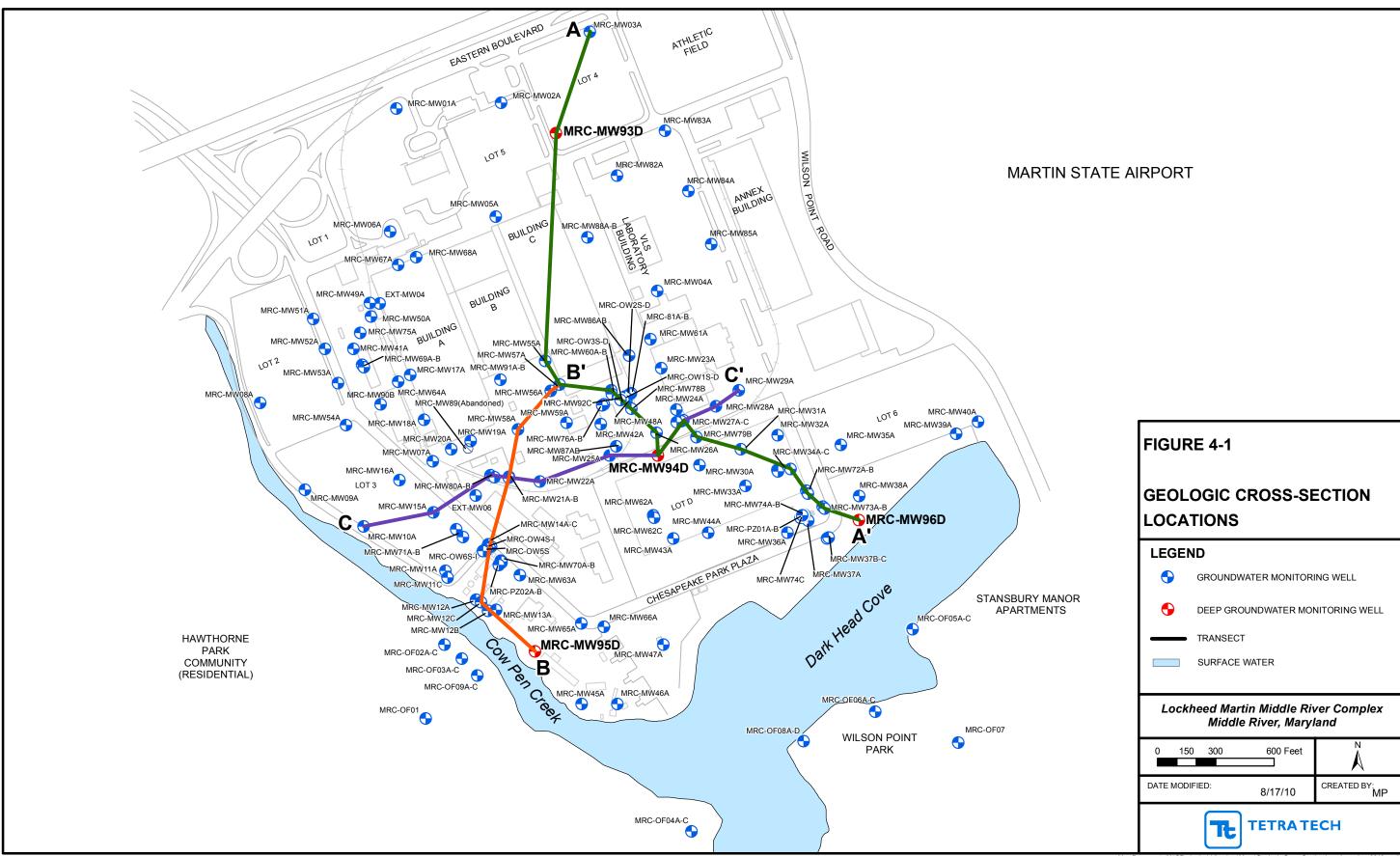
Table 4-4

Analytes Detected in Groundwater - Monitoring Well Samples, June 2010 Deep Groundwater Investigation Lockheed Martin Middle River Complex, Middle River, Maryland Page 2 of 2

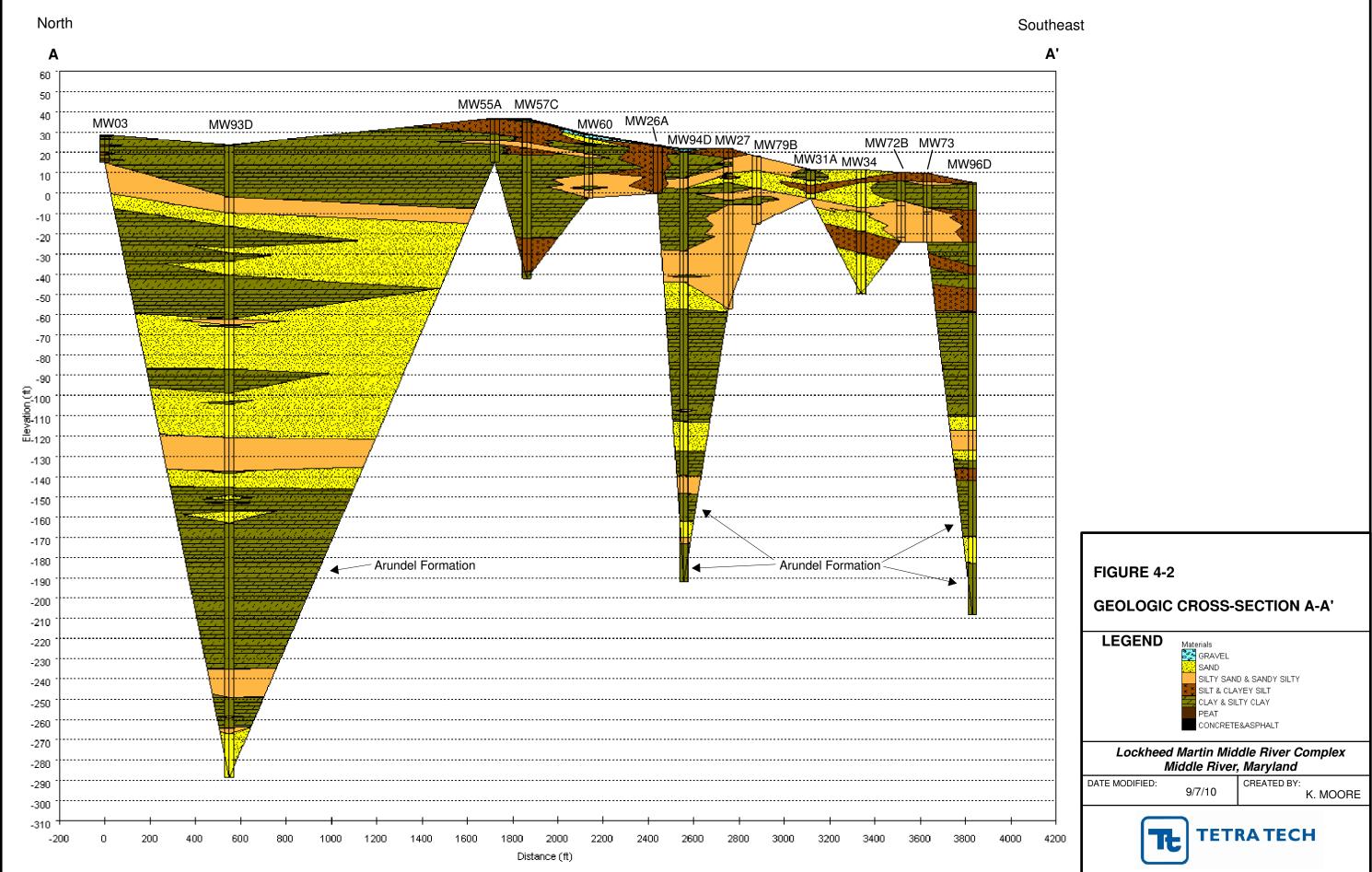
SAMP LABORATO SAMPLE LOCA	RY ID: GROUNDWA		MRC-MW94D- 061010 A0F110578003 6/10/2010 MRC-MW94D	MRC-95D-061110 A0F120439002 6/11/2010 MRC-95D	MRC-96D-061110 A0F120439001 6/11/2010 MRC-96D
MANGANESE	50	377	75.6	0.17 B	11.1
MOLYBDENUM		22.5	3.8	15.4	0.31 B
NICKEL	73	32.8	7	0.45 B	3.5 K
SELENIUM	50	4.5 J	0.4 B	0.5 B	0.18 B
SILVER	100	0.088 J			
THALLIUM	2	0.34 B			0.24 B
VANADIUM	3.7	80.8	6.5 J	6.2 J	
ZINC	5000	118	14.5 B	4.9 B	11.3 B

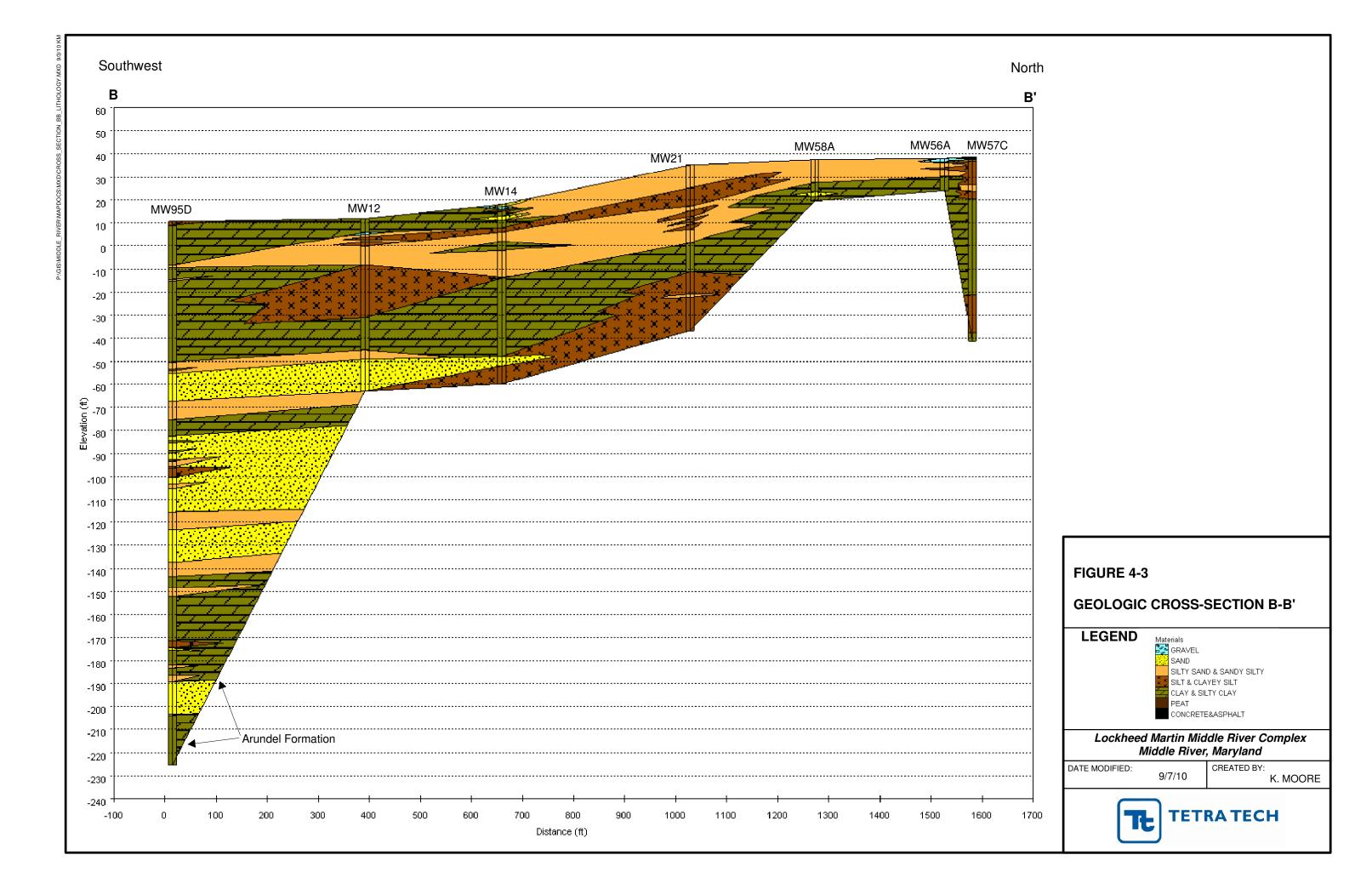
MDE - Maryland Department of the Environment, June 2008.

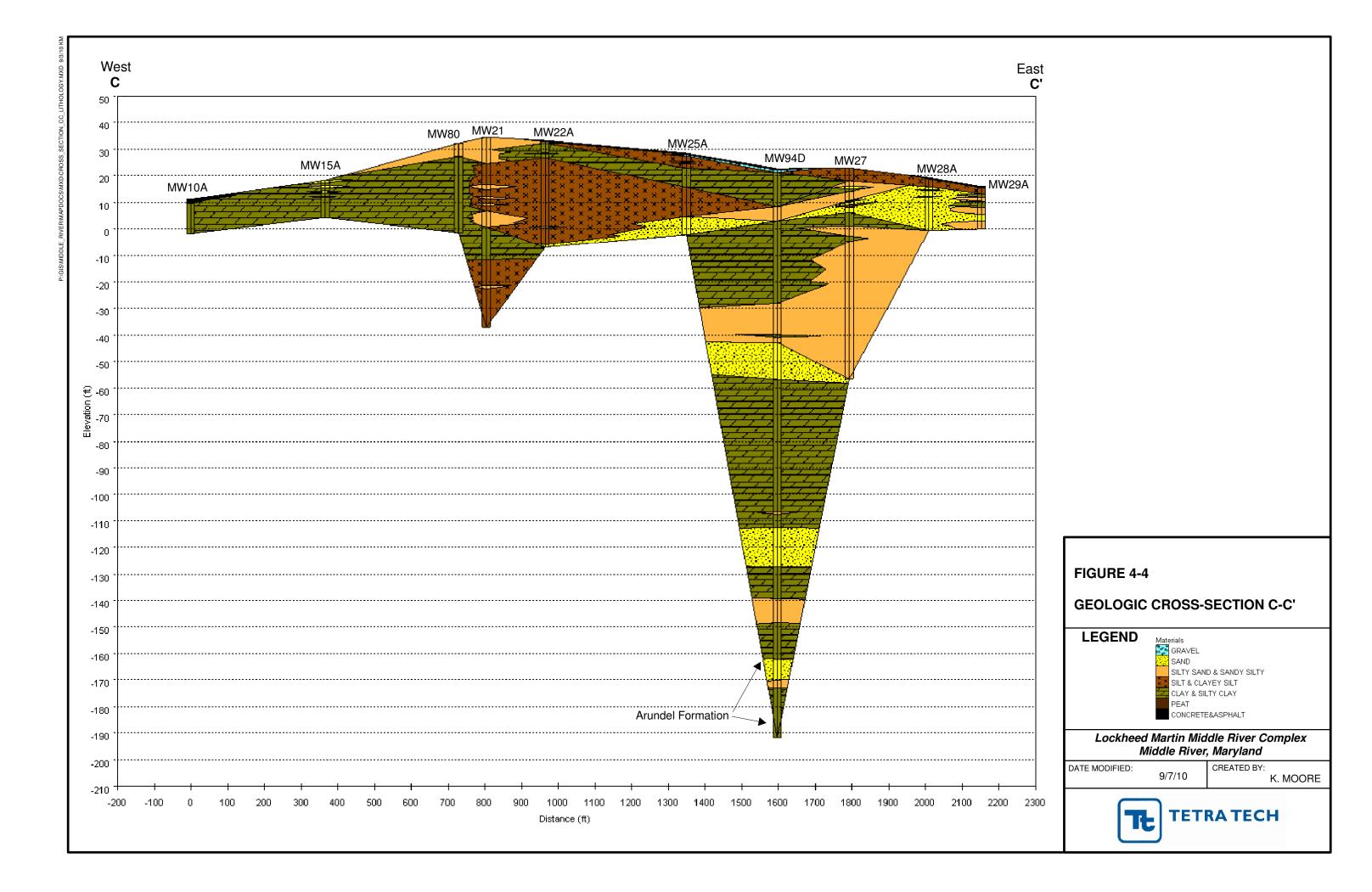
-- - Not detected at listed detection limit.

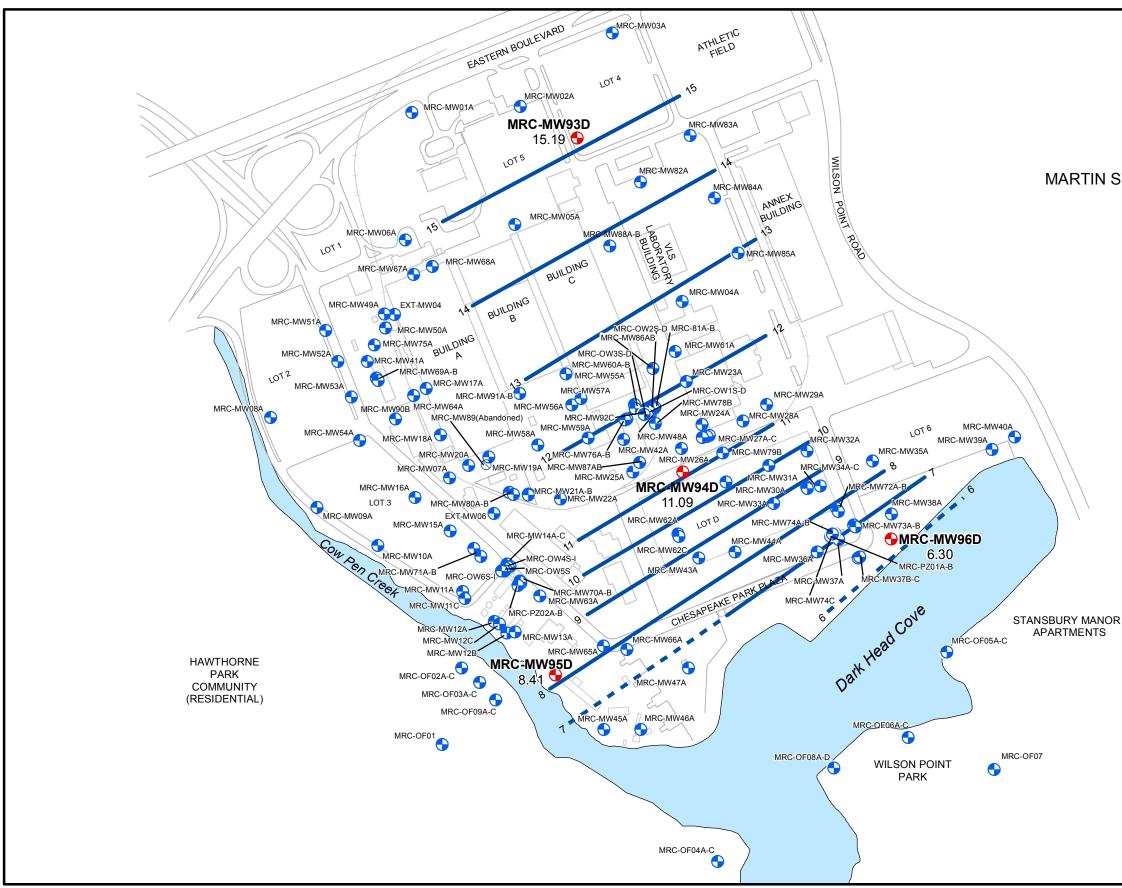

B - Laboratory blank contamination.

J - Positive result is considered estimated as a result of technical noncompliance.

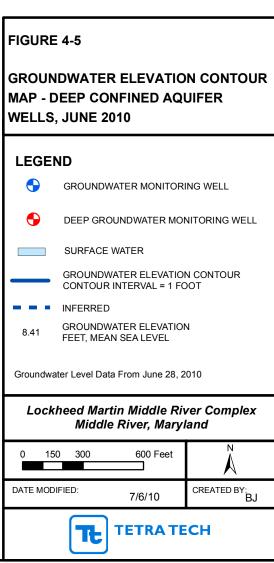

k - Positive result is considered to be biased high as a result of technical noncompliance.


Grey shaded concentrations exceed criteria.


ug/l - micrograms per liter.



Map Document: (K:\GProject\middle_river\Maps\Geologic Cross Section Locations_Aug 2010.mxd) 8/17/2010 -- 11:12:29 AM



MARTIN STATE AIRPORT

Map Document: (K:GProject\middle_river\Maps\Middle River Groundwater Monitoring Locs Jul2010 Fig 3-2.mxd) 7/6/2010 – 3:20:41 PM This page intentionally left blank.

Section 5 Summary and Conclusions

The following summarizes the scope of the MRC deep groundwater investigation:

- Four deep soil borings were advanced to depths ranging from 216 to 316 feet below grade using the rotasonic drilling method. Soil was continuously cored at each borehole to record lithologic descriptions. Four clay soil samples and five sand samples from the deep borings were collected and submitted to a laboratory for geotechnical analyses.
- Groundwater samples were collected from the boreholes during the drilling of wells MW94D through MW96D at depths ranging from 63 to 76 feet below grade to screen for the presence of VOCs at the (C) level being monitored in the surficial aquifer at the MRC.
- Four two-inch inside diameter monitoring wells were installed to monitor groundwater levels and groundwater quality in the deep confined-aquifer beneath the lower surficial-aquifer and above the Arundel Formation. Well-bottom completion depths range from 189 to 214 feet below grade.
- Groundwater samples were collected from the newly installed wells on June 10–11, 2010 and analyzed for VOCs, SVOCs, 1,4-dioxane, and unfiltered and filtered metals.

The MRC deep groundwater investigation found:

- A series of alternating sand and silt aquifers and clay aquitards beneath the surficial aquifer. Lithologic data indicate the presence of clay up to 50 feet thick underlying the surficial aquifer at 15 to 60 feet below MSL at MW93D, and 60 to 110 feet below MSL at MW94D and MW96D.
- At the deepest boring drilled (to 316 feet below grade at MW93D), 73 feet of continuous clay were encountered, beginning at an elevation of 164 feet below MSL and ending at an elevation of approximately 237 feet below MSL. Directly overlying the clay is seven feet of sand followed by 11 feet of overlying clay and sand layers (clay thickness totaling eight feet), from 146 feet below MSL to 157 feet below MSL. Below the 73-feet thick clay layer is 14 feet of silty and clayey fine–sand, followed by 15 feet of clay from 251 to 266 feet below MSL.
- The total thickness of the deep clay and interlayer sand/silt (123 feet) is consistent with the Arundel Formation's 50 to 125 feet thickness for the area reported by Chapelle (1985) and Vroblesky and Fleck (1991). However, the basal altitude of the clay (266 feet below MSL) is somewhat lower than the altitude of 200 feet below MSL reported by Chapelle (1985) and Vroblesky and Fleck (1991).

- Permeability tests on the Arundel Formation clay at elevations ranging from 170 to 213 feet below MSL indicate low vertical-permeabilities of 2.1×10^{-08} to 8.2×10^{-08} centimeters per second.
- Groundwater in the deep aquifer (which is hydraulically confined above and below by thick clay layers) flows southeasterly from well MW93D (in the northern boundary of the MRC) towards well MW96D (to the south and adjacent to Dark Head Cove). Groundwater quality in the lower confined-aquifer would be effectively monitored by downgradient wells MW94D, MW95D, and MW96D. Groundwater elevations for these wells indicate that horizontal hydraulic-gradients in the deep confined-aquifer range from 0.0024 to 0.0058 feet per feet.
- Chlorinated VOCs and VOC-degradation products detected in surficial-aquifer groundwater at the MRC were not detected in the borehole groundwater-samples collected at (C)-level depths during drilling. VOCs detected in the borehole groundwater-samples are common laboratory contaminants, or are constituents of potable water used during borehole drilling. Concentrations of the VOCs detected are less than Maryland groundwater standards.
- Chlorinated VOCs, VOC-degradation products, and the SVOC 1,4-dioxane detected in surficial-aquifer groundwater at the MRC were not detected in the deep-well groundwater samples. VOCs and SVOCs detected in deep well samples are common laboratory contaminants or are constituents of potable water used during borehole drilling. Concentrations of the VOCs and SVOCs detected are less than Maryland groundwater standards.
- For well MW93D, unfiltered and filtered groundwater concentrations of seven metals (arsenic, beryllium, chromium, iron, lead, manganese, and vanadium) exceed state groundwater standards. For wells MW94D and MW95D, only concentrations of iron, manganese, and vanadium, and the unfiltered lead concentration for MW95D, exceed groundwater standards. All metal concentrations (filtered and unfiltered) for well MW96D are less than groundwater standards.

The MRC deep groundwater investigation reached the following conclusions:

- Two intervals of clay approximately 50 feet or more thick are below all or most of the surficial aquifer at the MRC. Extensive clay units preclude vertical migration of dissolved groundwater contamination.
- An upward gradient exists from the surface water at the adjacent Dark Head Cove, to the shallow wells at MRC, to the deep wells screened above the Arundel Formation. Upward vertical gradients will serve to preclude downward vertical migration of dissolved groundwater contamination.
- Groundwater samples from the four wells screened at the top of the Arundel Formation do not exhibit the chemicals of concern present in shallow groundwater at the MRC. The absence of these chemicals indicates that site-related contamination has not reached the base of the Patapsco Formation and the top of the Arundel Formation at MRC. Because

site-related contaminants are not present at the top of the Arundel Formation they could not contaminate the deeper aquifers below the Arundel Formation.

• The additional study objective to characterize the Patuxent Formation is not necessary because the installation of wells at the top of the Arundel Formation conclusively determined that the MRC site has not contaminated deeper aquifers below the Arundel Formation.

This page intentionally left blank.

Section 6 References

- 1. Bennett, R. R. and Meyer, R. R., 1952. *Geology and Groundwater Resources of the Baltimore Area. Bulletin 4.* State of Maryland, Department of Geology, Mines, and Water Resources. Baltimore, Maryland.
- Chapelle, F. M., 1985. "Hydrogeology, Digital Solute Transport Simulation, and Geochemistry of the Lower Cretaceous Aquifer System Near Baltimore, Maryland." *Maryland Geological Survey Report of Investigations No. 43*. Maryland Geological Survey. Baltimore, Maryland. 120 pp.
- 3. Cassell, J. R., 1977. Drainage Area Map—"Existing Storm-Water Drains, Chesapeake Park Plaza/Dark Head Cove Road." Sheet A1 of 7. July.
- 4. Earth Tech, Inc., 2003. Draft Phase I Environmental Assessment, Chesapeake Industrial Park. February.
- 5. Earth Engineering and Science, Inc., 1988. Groundwater Chromium Investigation Technical Memorandum, Martin Marietta Baltimore Aerospace. September.
- 6. Glaser, J. D., 1969. "Petrology and Origin of Potomac and Magothy (Cretaceous) Sediments, Middle Atlantic Coastal Plain." *Maryland Geological Survey Reports of Investigations No. 11*. Maryland Geological Survey, Baltimore, Maryland. 102 pp.
- Halford, K. J. and E. L. Kuniansky, 2002. "Documentation of Spreadsheets for the Analysis of Aquifer Test and Slug Test Data." U.S. Geological Survey Open File Report 02-197, Carson City, Nevada. 51 pp. http://water.usgs.gov/pubs/of/ofr02197
- 8. MDE (Maryland Department of the Environment, 2008. *Cleanup Standards for Soil and Groundwater, Interim Final Guidance (Update No. 2.1).* June.
- 9. Reinhardt, J., 1977. "Geologic Map of the Middle River Quadrangle, Maryland." Maryland Geological Survey, Baltimore, Maryland.
- 10. Spitz, K., and J. Moreno, 1996. A Practical Guide to Groundwater and Solute Transport *Modeling*. John Wiley and Sons, Inc., New York.
- 11. Tetra Tech (Tetra Tech, Inc.), 2006. *Site Characterization Report, Revision 1.0, Lockheed Martin Middle River Complex, Middle River, Maryland.* Tetra Tech, Inc., Germantown, Maryland, on behalf of Lockheed Martin Corporation, Bethesda, Maryland. May.

- 12. Tetra Tech (Tetra Tech, Inc.), 2008. Groundwater Response Action Plan, Lockheed Martin Middle River Complex, Middle River, Maryland. Tetra Tech, Inc., Germantown, Maryland, on behalf of Lockheed Martin Corporation, Bethesda, Maryland. April.
- 13. Tetra Tech (Tetra Tech, Inc.), 2009. *Groundwater Monitoring Report July–August 2008, Lockheed Martin Middle River Complex, Middle River, Maryland.* Tetra Tech, Inc., Germantown, Maryland, on behalf of Lockheed Martin Corporation, Bethesda, Maryland. May.
- 14. Tetra Tech (Tetra Tech, Inc.), 2010. *Groundwater Monitoring Report July–August 2009, Lockheed Martin Middle River Complex, Middle River, Maryland.* Tetra Tech, Inc., Germantown, Maryland, on behalf of Lockheed Martin Corporation, Bethesda, Maryland. January.
- 15. Vroblesky, D. A. and W. B. Fleck, 1991. "Hydrogeologic Framework of the Coastal Plain of Maryland, Delaware, and the District of Columbia, Regional Aquifer System Analysis-Northern Atlantic Coastal Plain," U.S. Geological Survey Professional Paper 1404-E. U.S. Government Printing Office, Washington, D.C. 45 pp.
- 16. USEPA (U.S. Environmental Protection Agency), Region III, 1993. Region III Modifications to the Laboratory Data Validation Functional Guidelines for Evaluating Inorganics Analyses. April.
- 17. USEPA (U.S. Environmental Protection Agency), Region III, 1994. Region III Modifications to the National Functional Guidelines for Organic Data Review. September.

APPENDIX A—DIG PERMITS

LOCKHEED MARTIN A

Dig Permit

See Enterprise Operations Procedure EO-28, Digging Projects, for instructions.

Date	Proje	ct Manager						
April 23, 2010	Steve	Steve Thompson/Tom Blackman (Lockheed Martin)						
	Tony	Tony Apanavage/Dev Murali (Tetra Tech)						
Building/Location	L		······					
Middle River Complex								
Purpose of excavation								
Installation of four deep wells. T installation will be by rotosonic m	he total dept iethods using	h of the proposed m) the 6-inch by 7-inc	onitoring wells will range h drill rod/override casing	from 220 to 2 set-up. No e	40 ft bgs. Drilling for well xcavation is required.			
Company/LM organization perfor	ming dig							
Tetra Tech								
Planned dig date		Duration	······································	Start time	}			
April 26, 2010		3 weeks		0730				
Expected depth		Width		Length				
Up to 240 feet bgs		7 inches		N/A				
Underground utilities identified?	Overhead	utilities?	Electrical lines?	L	Gas lines?			
🛛 Yes 🔲 No	Ves 🗆	No 🖾 N/A	🖾 Yes 🗖 No					
Sewer?	Water?	*****	Telecommunication	s?	Other? Specify:			
🛛 Yes 🗌 No	🛛 Yes 🗆	No	Yes 🗆 No 🖾 N/	/A	Yes No			
Site-specific or customer utility lo	cating requir	ements completed?	1					
🛛 Yes 🗌 No 🗌 N/A								
Sketch of dig project (or attach d	rawing)							
See Attached								
A private utility locating contracto within a radius of 50 feet has bee letter indicating clearing of these MW95D and MW96D) is also end The field mobilization will occur o drilling location will be barricaded Miss Utility was called in to check 10167431, and 10167438. The N	n cleared for locations by closed. A rot n April 26, 20 for public ac the location	Subsurface utilities Enviroscan is enclos asonic drill rig will be 010 and drilling will b ccess/parking with 10 s for utilities. Miss U	and clearly marked with r sed. A figure showing the e used to advance the bou begin on April 27, 2010 at 00 feet of the well location tillity issued three tickets (elevant colors monitoring w rings. MW93D. The on April 26, 2	to identify the type of utilities. A vell locations (MW 93D, MW94D, e working area surrounding the 2010 evening.			
reports are enclosed.	-							
		<u></u>						
-		Date	Customer		Date			
Project Manager Tony Apanavage		Date April 23, 2010	Customer		Date			
Tony Apanavage		April 23,	Customer Customer		Date			
-		April 23, 2010						
Tony Apanavage Telecommunications		April 23, 2010 Date	Customer		Date			

Kolberg, Fred

From: Sent: To: Subject: TicketCheck@managetickets.com Tuesday, April 20, 2010 1:40 PM Brenner, Samantha Ticket Check Status for MD Ticket 10167425

Ticket Number:10167425Location:2323 EASTERN BLVD MIDDLE RIVER, MD

As of 04/20/2010 13:39:45, participating facility owners have responded to Ticket Check as follows:

District Code	Status
AT&T TRANSMISSION	Clear/No conflict
BGE ELECTRIC-UTILIQUEST	Clear/No conflict
BGE GAS-UTILIQUEST	Clear/No conflict
BCTY DPW - OCCLS	Clear/No conflict
COMCAST - UTILIQUEST	Clear/No conflict
COMCAST- FIBER/UTILIQUEST	Clear/No conflict
MCI	Clear/No conflict
QWEST COMMUNICATIONS	Clear/No conflict
VERIZON - OCCLS	Clear/No conflict

To review this ticket in its entirety, visit Search and Status® on <u>www.managetickets.com</u>. Please direct all questions and concerns to your one call center.

Kolberg, Fred

From:	TicketCheck@managetickets.com
Sent:	Tuesday, April 20, 2010 1:43 PM
To:	Brenner, Samantha
Subject:	Ticket Check Status for MD Ticket 10167431

Ticket Number:10167431Location:2323 EASTERN BLVD MIDDLE RIVER, MD

As of 04/20/2010 13:43:19, participating facility owners have responded to Ticket Check as follows:

District Code	Status
AT&T TRANSMISSION	Clear/No conflict
BGE ELECTRIC-UTILIQUEST	Clear/No conflict
BGE GAS-UTILIQUEST	Clear/No conflict
BCTY DPW - OCCLS	Clear/No conflict
COMCAST - UTILIQUEST	Clear/No conflict
COMCAST- FIBER/UTILIQUEST	Clear/No conflict
MCI	Clear/No conflict
QWEST COMMUNICATIONS	Clear/No conflict
VERIZON - OCCLS	Clear/No conflict

To review this ticket in its entirety, visit Search and Status® on <u>www.managetickets.com</u>. Please direct all questions and concerns to your one call center.

Kolberg, Fred

From:	TicketCheck@managetickets.com
Sent:	Tuesday, April 20, 2010 1:43 PM
To:	Brenner, Samantha
Subject:	Ticket Check Status for MD Ticket 10167438

Ticket Number:10167438Location:2323 EASTERN BLVD MIDDLE RIVER, MD

As of 04/20/2010 13:43:14, participating facility owners have responded to Ticket Check as follows:

District Code	Status
AT&T TRANSMISSION	Clear/No conflict
BGE ELECTRIC-UTILIQUEST	Marked
BGE GAS-UTILIQUEST	Marked
BCTY DPW - OCCLS	Clear/No conflict
COMCAST - UTILIQUEST	Clear/No conflict
MCI	Clear/No conflict
QWEST COMMUNICATIONS	Clear/No conflict
VERIZON - OCCLS	Clear/No conflict

To review this ticket in its entirety, visit Search and Status® on <u>www.managetickets.com</u>. Please direct all questions and concerns to your one call center.

APPENDIX B—GEOPHYSICAL SURVEY REPORT

Final Report Geophysical Survey Utility/Structure Clearance for 4 Proposed Drilling Locations Deep Well Investigation Middle River, MD Enviroscan Project Number 041003

Prepared for: Tetra Tech NUS, Inc. Prepared By: Enviroscan, Inc. May 5, 2010

May 5, 2010

Mr. Dev Murali **Tetra Tech NUS, Inc.** 20251 Century Boulevard Suite 200 Germantown, MD 20874-7114

> RE: Geophysical Survey Utility/Structure Clearance for 4 Proposed Drilling Locations Deep Well Investigation Middle River, MD Enviroscan Project Number 041003

Dear Mr. Murali:

Pursuant to the specifications of our proposal, dated April 2, 2010, Enviroscan, Inc. conducted a subsurface utility survey at the above-referenced site on April 20, 2010. The purpose of the survey was to clear four proposed deep well locations.

Methods

The utility survey was completed using standard and/or routinely accepted practices of the geophysical industry and equipment representing the best available technology, including:

- a Radiodetection RD8000 Multi-Frequency pipe and cable tracer;
- a Radiodetection C.A.T. and Genny pipe and cable locator/tracer;
- a Fisher TW-6 electromagnetic (EM) pipe and cable locator/tracer;
- a GSSI SIR-2000 ground penetrating radar (GPR) system.

The principles of these techniques are detailed below.

Mr. Murali May 5, 2010 Page 2

RD8000

Utility tracing was conducted using a Radiodetection RD8000 digital cable and pipe tracer. The transmitter can be directly coupled to exposed portions of a metallic pipe, cable, or wire or indirectly (inductively) to a subsurface metallic utility of known location/orientation. The transmitter remains stationary and energizes the metallic utility at a frequency selected by the operator (512 Hz, 8 kHz, 33 kHz, or 65 kHz), which is received at the ground surface by the digital locator. When the transmitter is directly coupled to the metallic utility, the digital receiver can also calculate the depth of the utility to an accuracy of $\pm 10\%$ of the actual depth of the utility. Please note the close proximity to bends in the traced line or poor signal strength can result in erroneous depth estimations.

C.A.T. and Genny

The survey areas were also scanned with a Radiodetection C.A.T. and Genny pipe and cable locator and tracer. In Power mode, the C.A.T. detects the 50 to 60 Hertz (Hz) electromagnetic field generated by live power cables and other metallic utilities to which a live line is grounded. In Radio mode, the C.A.T. detects buried conductors (cables or metallic pipes) as they conduct and re-transmit commercial broadcast radio energy. In Genny mode, the C.A.T. detects signal generated by the Genny transmitter. The Genny transmitter can be coupled directly (conductively) to exposed portions of a metallic pipe, cable, or wire or inductively to a subsurface metallic utility with known location and orientation.

<u>TW-6</u>

In order to detect unknown utilities, Enviroscan employed a Fisher TW-6 pipe and cable locator and tracer. In pipe and cable search mode, the TW-6 is essentially a deep-sensing metal detector that detects any highly electrically conductive materials (e.g. metals) by creating an electromagnetic field with a transmitting coil. A receiving coil at a fixed separation from the transmitter measures the field strength. As the instrument is swept along the ground surface, subsurface metallic bodies distort the transmitted field. The change in field strength/orientation is sensed by the receiver, setting off an audible alarm and/or causing deflection of an analog meter. The TW-6 can nominally detect a 2-inch metal pipe to a depth of 8 feet and a 10-inch metal pipe to a depth of 14 feet.

Mr. Murali May 5, 2010 Page 3

In pipe and cable tracing mode, the TW-6 transmitter can be coupled directly (conductively) to exposed portions of a metallic pipe, cable, or wire or inductively to a subsurface metallic utility with known location and orientation. The transmitter remains stationary and energizes or excites the metallic utility to be traced with an 81.92-kilohertz signal that can be traced at the ground surface using the mobile TW-6 receiver wand or probe.

<u>GPR</u>

GPR systems produce cross-sectional images of subsurface features and layers by continuously emitting pulses of radar-frequency energy from a scanning antenna as it is towed along a survey profile. The radar pulses are reflected by interfaces between materials with differing dielectric properties. The reflections return to the antenna and are displayed on a video monitor as a continuous cross section in real time. Since the electrical properties of metal are distinctly different from soil and backfill materials, metallic pipes and other structures commonly produce dramatic and characteristic reflections. Fiberglass, plastic, concrete, and terra-cotta pipes and structures also produce recognizable, but less dramatic reflections. Scanning was performed using a GSSI SIR-2000 GPR controller with an internal hard drive and a color display, and both a high-frequency, high-resolution 500 megaHertz (MHz) antenna or transducer, and a lower frequency deep-penetrating 200 MHz transducer.

Results Summary

The utility clearance survey results are represented in the accompanying field maps. The field maps show the borings with relevant nearby utilities. MW-93D and MW-94D both had utilities nearby. MW-95D and MW-96D were clear of utilities. The locations of the wells after utility clearance are as follows, in Maryland State Plane Grid NAD83 Datum:

MW-93D	1472930	607263.1
MW-94D	1473453	605608
MW-95D	1472821	604598.3
MW-96D	1474495	605265.3

Mr. Murali May 5, 2010 Page 4

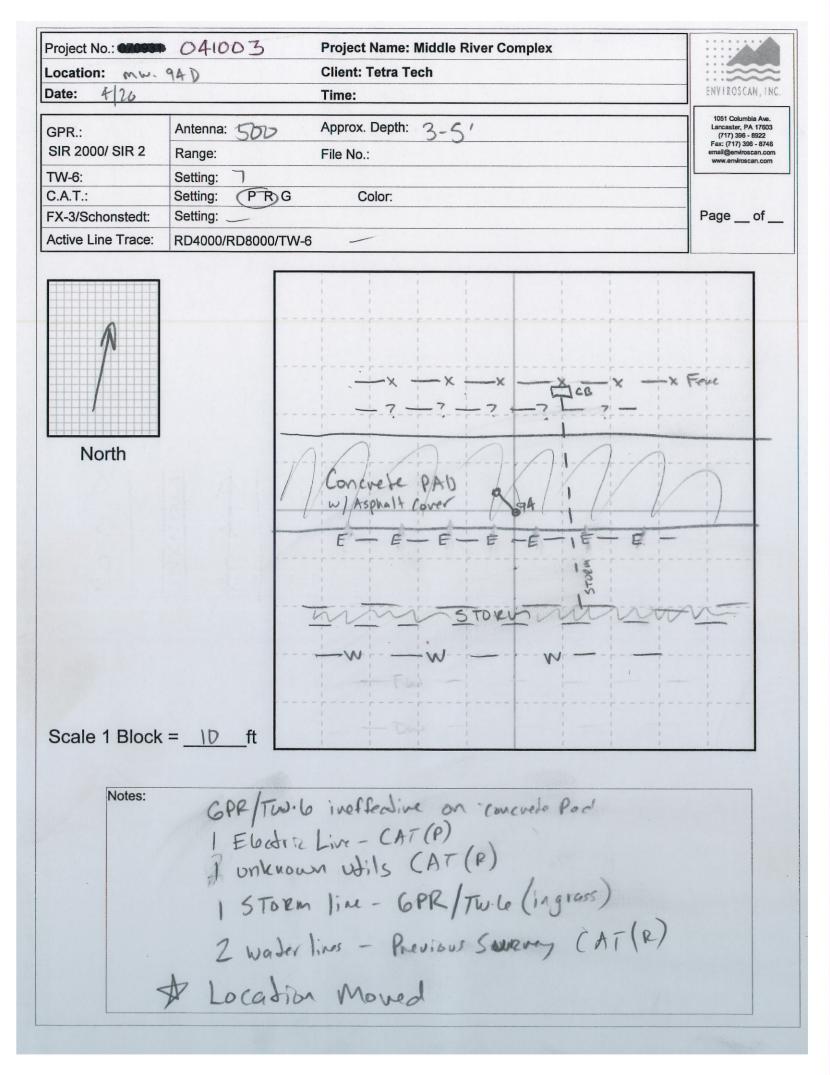
Limitations

The above-referenced geophysical survey was completed using standard and/or routinely accepted practices of the geophysical industry and equipment representing the best available technology. Enviroscan does not accept responsibility for survey limitations due to inherent technological limitations or unforeseen site-specific conditions. However, we make every effort to identify and notify the client of such limitations or conditions. In particular, please note the following specific limitations and recommendations:

- Enviroscan's field markings should be considered accurate to within approximately +/-18 inches for single lines. In contrast, since electromagnetic tracing of duct banks provides only a centerline, the bank itself may extend for 2 to 3 feet beyond the marked trace.
- The completion of this survey does not relieve any party of applicable legal obligations to notify the appropriate One-Call center prior to digging or drilling.

We appreciate this opportunity to have worked with you. If you have any questions, please do not hesitate to contact me.

Sincerely, **Enviroscan, Inc.**


William E. Steinhart III, M.Sc., P.G. Principal Geophysicist

Technical Review By: **Enviroscan, Inc.**

Felicia Kegel Bechtel, M.Sc., P.G. President

enc.: Field Notes

Project No.: 070984	041003	Project Name: Middle River Complex	
Location: MW.9		Client: Tetra Tech	
Date:		Time:	ENVIROSCAN, INC.
GPR.: SIR 2000/ SIR 2 TW-6: C.A.T.: FX-3/Schonstedt:	Antenna: 500 Range: 40 Setting: 7 Setting: P R G Setting: -	Approx. Depth: 1 - 2' File No.: Color:	1051 Columbia Ave. Lancaster, PA 17603 (717) 396 - 8922 Fax: (717) 396 - 8746 email@enviroscan.com www.enviroscan.com
Active Line Trace:	RD4000/RD8000/TW-6	6	
North		ROAD TERMIZ	
Scale 1 Block	= <u>10</u> ft		
Notes:		etive due to day rich soils	

Project No.: 070931	041003	Project Name: Middle River Complex			
Location: MW.95		Client: Tetra Tech			
Date: A 16	Y	Time:	ENVIROSCAN, INC.		
GPR.: SIR 2000/ SIR 2	Antenna: 000 Range: 40 K	Approx. Depth: 3-5 File No.:	1051 Columbia Ave. Lancaster, PA 17603 (717) 396 - 8922 Fax: (717) 396 - 8746 email@envfroscan.com www.envfroscan.com		
TW-6:	Setting: 7				
C.A.T.:	Setting: PRG	Color:	David		
FX-3/Schonstedt:	Setting:		Page of		
Active Line Trace:	RD4000/RD8000/TW-6				
North Scale 1 Block	= ft	CLEAR			
Codic 1 Diook	······································		1		
Notes:	Cſ	EAR			

Project No.: 070930	041003	Project Name: Middle River Complex	
Location: MW.96.D		Client: Tetra Tech	
Date:		Time:	ENVIROSCAN, INC.
GPR.:	Antenna: SIB	Approx. Depth: 2-3	1051 Columbia Ave. Lancaster, PA 17603 (717) 396 - 8922
SIR 2000/ SIR 2	Range: 40	File No.:	Fax: (717) 396 - 8746 email@enviroscan.com www.enviroscan.com
TW-6:	Setting: 7		
C.A.T.:	Setting: PRG	Color:	_
FX-3/Schonstedt:	Setting:		Page of
Active Line Trace:	RD4000/RD8000/TW-	6	
North Scale 1 Block Notes:		CLEAR	

APPENDIX C—SOIL BORING AND WELL CONSTRUCTION LOGS

	PROJEC	T:		I	LOCKHEED	D MARTIN, M	ATER INVESTIGATION MIDDLE RIVER COMPLEX	JOB NO. WELL NUMBER CLIENT: 112/C02720 MW-93D LOCKHEED MARTIN COI DRILLING METHOD: ROTOSONIC 7 INCH DIA BY 10-FOOT STEEL R					
1	LOCATIO	N:				2323 EAS	/ER COMPLEX TERN BLVD	COMPANY: BOART LONGYEAR OPERATOR: BRIAN HUNSBERGER OVERATOR: CONTRACTOR CONTR					
WELL SCREE	N·		10 51 0				ER, MARYLAND EL AT 179' - 189'	SAMPLING METHOD: CONTINUOUS 4-INCH BY 10-FOOT STEEL SONIC	CORE				
RISER:				READED SO			LEATING	LOGGED BY: FRED KOLBERG		DRIL	LING		
FILTER PACK		TYPE I SII						BORING DEPTH: 316 FEET		START	FINISH		
SEAL:		MEDIUM B	BENTONI	TE CHIPS				DATUM:		DATE	DATE		
GROUT:		CEMENT/	BENTON	ITE SLURRY	GROUT			PERMIT NO.		4/27/2010	5/3/2010		
				e	F								
	£	ERVAL	NCHES	ollectio	ONTEN	ING	SL	JRFACE CONDITIONS:		WELL INST	FALLATION		
	DEPTH (II)	SAMPLE INTERVAL	ERY (I	Tube C ocation	IRE CC	PID READING (ppm)		Asphalt parking lot	USCS	GROUT			
	0	SAMP	RECOVERY (INCHES)	Shelby Tube Collection Location	MOISTURE CONTENT	DID				BENTONITE			
			_		_	0.6	SAND: fine grained sand with	Material Description h some silt, loose, dark brown to black	SM	SANDPACK			
					_	0.0	÷	ry fine sand, variegated light gray 5YR7/1, yellow red 5YR5/6, grades to re					
	2	0-6			Dry	0.6	yellow 7.5YR6/6						
	4	0											
					Moist	0.6	CLAY: clay as above increasi	ing fine sand, stiff, dark brown 7.5YR3/3					
	6			-			CLAV: clay with trace silt/ yer	ry fine sand, very stiff, variegated gray, red, yellow, as above					
							CEAT. day with trace site ver	y nine sanu, very still, vallegateu gray, reu, yellow, as above					
	8												
	10												
		6-16											
	12	Ŷ											
						Dry	0.6			CL			
	14			I									
	16												
	18												
	20	16-26							CLAY: clay with some very fir	ne sand, soft, dark brown 7.5YR3/3, reddish yellow 7.5YR 6/8			
	22	16											
						0.6							
	24												
	26				Moist								
	20				Moist			with much clay. Clayey sand, poorly graded, medium dense, variegated,					
	28						brownish yellow, yellowish re	d, strong brown					
						0.7			SC				
_	30	26-36											
MW-93D	32	26-											
MM						0.7	SAND: very fine -fine sand, a	as above but yellow, poorly graded, medium dense, yellow 10YR7/6	SM				
	34						SAND: fine grained sand with	h trace fines, poorly graded, very loose, very pale brown 10YR7/3					
	36												
	30				Wet								
	38					0.6			SP				
	\vdash												
	40	\$											
	42	36-		Ī			CLAY: clay with little or no s	silt/ or very fine grained sand, very stiff to hard, light reddish brown 5YR6/4	light				
								reddish brown 2.5YR6/4, light gray					
	44												
	46												
	10	Π			Dry	0.6			CL				
	48												
	50	46-56											
	52	46		ŀ			CAND CLASS 1 11						
	┝─┤				Wet	0.9	SAND: fine sand with some fi	ines, poorly graded, loose, pink 7.5YR8/3	SP				
	54			ŀ			CLAY: clay, no sand/silt, very	y stiff, light reddish brown, light gray					
	56				Dry	0.6	,		CL				
	50	Γ			DIY	0.0			UL				
	58			ŀ			SAND: fine , medium arained	d sand with gravels present, graded or bimodal, quartz gravels up to 2 inch					
								kish-white 7.5YR8/2, 60-65 (ft) is very pale brown 10YR8/3					
	60	56-66							CWI				
	62	56			Moist	0.6			SW/ SP				
	62 ¹¹³ WOISt 0.0					l I	1						
	64												

	PROJECT: DEEP GROUNDWATER INVESTIGATION LOCKHEED MARTIN, MIDDLE RIVER COMPLEX JOB NO. 112/02/20 WELL NUMBER MMV-3D CLIENT: LOCKHEED MARTIN CORP. BETHESDA, MARYLAN DRILLING METHOD: MIDDLE RIVER COMPLEX DRILLING METHOD: ROTOSONIC 7 INCH DIA BY 10-FOOT STEEL RODS: SONIC BUTTON BIT LOCATION: 2323 EASTERN BLVD DOPERATOR: BRIAN HUNSBERGER							112/C02720 MW-93D LOCKHEED MARTIN CORP, BETHESDA, MARYLAND DRILLING METHOD: ROTOSONIC 7 INCH DIA. BY 10-FOOT STEEL RODS: SONIC BUTTON BIT	
	LOCATIO	ON:				2323 EAS			
WELL SCREE							EL AT 179' - 189'		
RISER:					OLID PVC C	ASING			DRILLING
FILTER PACK SEAL:			SILICA SA	ITE CHIPS				BORING DEPTH: 316 FEET STAF DATUM: DAT DAT	
GROUT:				NITE SLURF				PERMIT NO. 4/27/2	
GROUT.		CEMEN	TIBENTO	VITE SLOKP	(T GROUT				5/3/2010
		٩٢	ES)	fou	INT		su	FACE CONDITIONS: WELL	INSTALLATION
	DEPTH (II)	SAMPLE INTERVAL	RECOVERY (INCHES)	Shelby Tube Collection Location	MOISTURE CONTENT	PID READING (ppm)			ROUT
	DE	SAMPL	RECOVE	Shelby T	MOISTUI	ICIId		Material Description SANC	
	66						CLAY: clay with no silt/sand,	rd, variegated red 10YR4/6, white 10YR8/1	
	68								
	70								
	72	66-76							
	74								
	76					0.6		сь	
	78 Dry				Dry				
	82	76-86							
	84								
	86								
	88							and with much fines, clayey sand, sandy clay, poorly graded, medium stiff,	
	90					0.6	white 5YR8/1	sc	
	92	96-98				0.6	SAND: very fine - fine graine	rd, variegated red 10YR4/6, white 10YR8/1 CL CL	
	94						5YR8/1		
	96				Wet	0.6		SP/ SM	
MW-93D	98								
MM	100								
	102	96-106					SAND: fine- medium grained loose, white 5YR8/1, pinkish	ind with little/ no fines, poorly graded, slightly coarser sand at 109-112 feet, lite SYR8/2 (109-112 feet)	
	104								
	106					0.6		sp	
	108								
	110	9							
	112	106-116			Moist to				
	114				Wet	0.6	CLAY: clay with some very fi	grained sand/silt, sandy clay, very stiff to hard, white 5YR8/1	
	116								
	118						CLAY: clay with some very fi	grained sand/silt, sandy clay, very hard, white 5YR8/1	
	120 122 122 124 0.6 0.6					0.6			
						0.0			
	124				Wet	0.6	SAND: fine grained sand with	ttle or no fines, poorly graded, loose, white 5YR8/1 and pinkish-white 5YR8/2	
					wet	0.6	SAND: fine grained sand with	ome fines, poorly graded, loose, white 5YR8/1	
	128	l			Dry	0.6	CLAY: clay with fine grained	nd, sandy clay, very stiff, white 5YR8/1 CL	
	130						SAND: fine grained sand with	ttle or no fines, poorly graded, loose, white 5YR8/1	

I	PROJEC	:T:			LOCKHEEI	D MARTIN, N	ITER INVESTIGATION	JOB NO. 112IC02720 DRILLING METHO		CLIENT: LOCKHEED MARTIN CORP, BET 7 INCH DIA. BY 10-FOOT STEEL RODS; SI				
I	LOCATIO	DN:				2323 EAS	/ER COMPLEX .TERN BLVD ER, MARYLAND	COMPANY: OPERATOR: SAMPLING METH	BOART LONGYEAR BRIAN HUNSBERGER	S 4-INCH BY 10-FOOT STEEL SONIC CORE				
WELL SCREEN	N:	JOHNS	ON 10 SLC))T (0.01-INC			EL AT 179' - 189'	SAMPLING MET	IOD: CONTINUOU	3 4-INCH BY 10-FOOT STEEL SONIC CORE				
RISER:					OLID PVC C			LOGGED BY:	FRED KOLBE	RG		DRILLING		
FILTER PACK:			SILICA SAI					BORING DEPTH:	316 FEET			START	FINISH	
SEAL:				ITE CHIPS				DATUM:				DATE	DATE	
GROUT:		CEMEN	T/BENTO	NITE SLURR	RY GROUT			PERMIT NO.				4/27/2010	5/3/2010	
			10	s	E								TALLATION	
	8	ERVA	TYN NHI THAWS SURFACE CONDITIONS: SYNCHY SUBJECT CONDITIO							WELL INS	TALLATION			
	DEPTH (()	SAMPLE INTERVAI	/ERY (Tube (Locafic	URE C	PID READING (ppm)		Asphalt parking lot			USCS	GROUT		
]	SAME	RECON	Shelby Tube Collection Location	MOISTURE CONTENT	Ы			Material Description			BENTONITE		
	-								Material Description			SANDPACK		
	132													
	134	36				0.6								
		126-136												
	136						SAND: fine grained sand with	little or no fines	noorly graded loose white	e 5YR8/1, mixed with pinkish-white	-			
	5YR8/2					o ritori, mixed with pintion white								
	138										SP			
	140 0													
	\vdash	136-146				0.6								
	142	₽												
	144													
	146				Wet		SAND: fine-medium grained :	sand with some f	ines, poorly graded, mediun	n dense, 7.5YR7/2, 2 feet of				
	148						2.5YR6/4 at 150-152 feet							
		146-156				0.6								
	152													
	154										SP/			
											SM			
	156						SAND: fine-medium grained :	sand with some f	ines, poorly graded, mediun	n dense, pinkish-white 7.5YR8/2	-			
	158													
					0.9									
	160	99				0.9								
	162	156-166												
G						0.7				20/2	01			
MW-93D	164				Dry	0.7	CLAY: clay with trace fine gra SAND: fine grained sand with				CL			
Z	166					0.17	SAND: fine grained sand with				-			
	100						-	-						
	168				Moist	0.8					SP			
	170	176												
	172	166-					CLAY: clay with trace fine gra	ained sand/silt, h	ard, pinkish-white 7.5YR8/2					
					Dry	0.8					CL			
	174				-									
	176				Moist	1.1	SAND: fine grained sand with	little or no fines	, poorly graded, loose, pinki	sh-white 7.5YR8/2	CD .			
	1/0				Moist		a				SP			
	178				Dry	1.1	CLAY: clay with fine grained : SAND: fine grained sand with			sh white 7.5VD8/2	CL SP			
	-					-	CLAY: clay with fine grained :			STEWRING 7.31 NO/2	or ()			
	180	176-186				0.6			J		CL			
	182	176-				L								
	\vdash				Moist					y graded, loose, medium dense (186 186 feet), red 10YR4/8 (186-189	r i			
	184				IVIUIST		feet) feet), while 51 R8/1, brow	man-yellow IUY	180-0, iigin ieu 1080/0 (185-	100 ICCU, ICU IUTR4/0 (100-107				
	186 0.6								SP/ SM					
											JWI			
	188													
		ŀ					CLAY: clav and silt_trace.com	id extremely bar	d varienated reddish.vollow	7.5YR6/8, white 7.5YR8/1, red		Ш		
	190	196					10R4/8, all red 190-193 feet	ia, caremely Hal	a, vancyateu reudisir-yellow					
	192	186-196												
		ŀ												
	194													
	10/	ł												
	196													

Р	PROJEC	T:			DEEP (GROUNDWA D MARTIN, N	TER INVESTIGATION IIDDLE RIVER COMPLEX	JOB NO. WELL NUMBER CLIENT: 112/C02720 MW-93D LOCKHEED MARTIN CORP, BETHESDA, MARYLAND					
LOCATION:							ER COMPLEX	DRILLING METHOD: ROTOSONIC 7 INCH DIA. BY 10-FOOT STEEL RODS: SONIC BUTTON BIT COMPANY: BOART LONGYEAR					
L	OCATIO	DN:					TERN BLVD	OPERATOR: BRIAN HUNSBERGER					
2					1		R, MARYLAND	SAMPLING METHOD: CONTINUOUS 4-INCH BY 10-FOOT STEEL SONIC CORE					
WELL SCREEN	l:	JOHNS	ON 10 SLC	DT (0.01-INC	:H) 304 STA	INLESS STE	EL AT 179' - 189'						
RISER:				READED SO	OLID PVC C	ASING		LOGGED BY: FRED KOLBERG DRILL					
FILTER PACK:			SILICA SAI					BORING DEPTH: 316 FEET START	FINISH				
SEAL:				ITE CHIPS				DATUM: DATE	DATE				
GROUT:		CEMEN	T/BENTON	NITE SLURR	RY GROUT			PERMIT NO. 4/27/2010	5/3/2010				
	1			_		1							
	0	RVAL	RECOVERY (INCHES)	Shelby Tube Collection Location	MOISTURE CONTENT	9	5	JRFACE CONDITIONS: WELL INSTA	ALLATION				
	DEPTH (II)	E INTE	RY (IN	ube Cc ocation	ZE CO	PID READING (ppm)		Asphalt parking lot USCS GROUT					
	DE	SAMPLE INTERVAL	COVE	elby T Lo	INTSIC	IDI		BENTONITE					
		0,	22	òs	2			Material Description SANDPACK					
	198					0.6							
	200	90											
		196-206											
	202												
	204												
	206					<u> </u>	CLAV: clay with no condicite	extremely hard, variegated red 10YR4/6, white 7.5YR8/1					
							GERT. Gay WILLING SallQ/SII	exitementy hand, valicitation for the twiller 7.51 K0/1					
	208												
	210	,9											
		206-216											
	212	20											
	214												
	216												
	218												
	000												
	220	216-226				0.(
	222	216				0.6							
	224												
	224												
	226				Dry			CL					
93D	228												
MW-93D													
~	230	36											
		226-236											
	232	2											
	234	ľ											
	234												
	236					<u> </u>	01.0X						
		ŀ				0.6	CLAY: clay with some silt/ v	ry fine grained sand, extremely hard, variegated red 10YR4/6, white 7.5YR8/1					
	238					4.5							
	240					45.0	1						
	240	236-246						extremely hard, Reddish yellow 7.5YR8/6 and light gray 7.5N7 (249-251 feet),					
	242	236-				0.6	light gray 7.5N7 to white 7.5						
	-72					0.0							
	244					7.0							
						7.8							
	246												
	240												
	248												
	250	\$											
		246-256											
	252	24(
	\vdash					0.6							
	254					0.0							
	251												
	256												
	258												
	1				l	1							

PROJECT:		CT:			LOCKHEEL	D MARTIN, N	TER INVESTIGATION 112/C02720 MW-93D LOCKHEED MARTIN CORP, BET INDUE RIVER COMPLEX DRILLING METHOD: ROTOSONIC 7 INCH DIA. BY 10-FOOT STEEL RODS: S						
LOCATION:				I		ER COMPLEX COMPANY: BOART LONGYEAR							
l	LOCATI	ON:					TERN BLVD OPERATOR: BRIAN HUNSBERGER						
WELL SCREEN: JOHNSON 10 S RISER: SCHEDULE 80			ON 10 SL	T (0.01.INC									
	N.						LOGGED BY: FRED KOLBERG		DRIL	LING			
FILTER PACK:	:	TYPE I S	SILICA SA	ND			BORING DEPTH: 316 FEET		START	FI			
SEAL:				NITE CHIPS			DATUM:		DATE	D.			
GROUT:		CEMENT/BENTONITE SLURRY GROUT PERMIT NO.							4/27/2010	5/3			
	1			c .	F								
	æ	SAMPLE INTERVAL	RECOVERY (INCHES)	Shelby Tube Collection Location	MOISTURE CONTENT	SING	SURFACE CONDITIONS:		WELL INS				
	DEPTH (II)	LE IN	/ERY (Tube (Locafic	URE O	PID READING (ppm)	Asphalt parking lot	USCS					
	SAMF		RECON	Shelby	MOIST	JId	Material Description		BENTONITE				
	-						waterial Description		SANDPACE				
	260	266											
	262	256-266											
	202	ļ					SAND: very fine-fine grained sand/silt with much fines, poorly graded, some clayey sand layers present,						
	264 266						medium dense, white 5YR8/1						
		1											
	268												
		ł				.4,.5,.3		SM/ ML					
	270	276											
	272	266-276											
	2/2												
	274				Wet								
	276												
	270						CLAY: clay with trace silt, hard, light gray 7.5YRN7						
	278												
		ł											
	280	276-286			0.3		CL						
	282												
		ł											
	284												
	286	Ī		Moist 0.3 SAND: very fine grained sand and silt with some clay, sandy clay layers present, hard, variegated, reddish-brown 2.5YR5/4. light gray 7.5YRN7, red 2.5YR48			SM/ ML						
۵	200		1				CLAY: clay with some fine grained sand, stiff, very pale brown 10YR8/3						
MW-93D	288	1											
W		ł			1	0.6		CL					
	290	296			1								
	292	286-296			1		SAND: fine grained sand with much clay, clayey sand, stiff/medium dense, very pale brown 10YR8/3						
	272	ļ			1	0.6		SC					
	294						SAND: fine-medium grained sand with some fines, poorly graded, several 1 inch diameter ironstone present,		Π				
		ł				0.6	Isarub. Internetatan graneti sand with some nites, poorly graded, several i inch diameter ironstone present, loose, reddish-yellow 7.5YR7/6	SM					
	296		1				SAND: fine-medium grained sand with little or no fines, poorly graded, occasional .5 inch to 1.5 inch ironstone						
	298	1			1		gravels present, loose, light reddish-brown 2.5YR6/4, yellow 10YR8/6 weak red 10R4/4, white 10YR8/1						
	<u> </u>	┨			1								
	300	306			1	0.1							
	302	296-3			Dry	0.6							
		ļ			1								
	304												
	306	1											
	306		1				SAND: fine-medium grained sand with little or no fines, poorly graded, occasional .5 inch to 1.5 inch ironstone	SP					
	308						gravels present, loose, light reddish-brown 2.5YR6/4, yellow 10YR8/6 weak red 10R4/4, white 10YR8/1						
	-	ł											
	310	-316				<i></i>							
	312	306-0				0.6							
	012	ł			1								
	314												
	H	ł											
	316												

APPENDIX D—WELL DEVELOPMENT LOGS

Site: Middle Riven center	Depth to Bottom (ft.):/89	_ Project Name: _	LockHeed M	Martin
Well: MAC-MW 930	_ Static Water Level Before (ft.): 10.35	_ Project Number:		720-0200.1
Date Installed: <u>5-4-10</u>	_ Static Water Level After (ft.):	_Site Geologist: _	Feed to	16 eng/WALT PryDr
Date Developed: 5-19-10	_ Screen Length (ft.):/0′	_ Drilling Co.:	Bonet Long	yean
Dev. Method: Are	_ Specific Capacity:	_		1
Pump Type: <u>/'' PVC</u> pipe	_Casing ID (in.): 2 " AL			

Time	Estimated Sediment Thickness	Cumulative Water Volume	Water Level Readings (Ft. below TOC)	Temperature (Degrees C)	pН	Specific Conductance (Units/ <u>ws/cm</u>)	Turbidity (NTU)	Remarks (odor, color, etc.)
	(Ft.)	(Gal.)			0 11			
1536		L		14.63	9.66	0.818	> 999	Brown NO odon
1541				14.85	8.91	0.339	> 999	
1546				14.75	8.17	0.154	> 999	
1551				14.46	7.70	0.051	> 999	
1556				14.75	7.39	6.050	> 999	
1601				14.76	6.95	0.046	> 999	
1611				14.71	6.25	0.044	> 999	
1621				14.16	6.41	0.039	> 999	4
1631				13.83	6.37	0.037	724	Cloudy Water
1641				14,31	6.20	6.032	637	-
1651		V		14.30	6.09	6.032	478	J
1656		350 gellows		14.24	5.99	0.030	379	

Tetra Tech NUS, Inc. MONITORING WELL DEVELOPMENT RECORD

Page _/_ of __ /

Site: Middle Riven Centen	_ Depth to Bottom (ft.):/95.0	Project Name:	LockHeed	Martin
Well: MRC-MW 940	_ Static Water Level Before (ft.): _//. &o	Project Number:		2720 - 0200.1
Date Installed: <u>5-7-1</u>	_ Static Water Level After (ft.):	Site Geologist:	Fred	Kolbeng/WALT Pryor
Date Developed: 5-18-10	_Screen Length (ft.): // /	_ Drilling Co.:	Bonet	Long Year
Dev. Method: 🗛 🛌	_ Specific Capacity:			· · ·
Pump Type: <u>II pvc pipe</u>	_Casing ID (in.):2 // P/L			

Time	Estimated Sediment Thickness (Ft.)	Cumulative Water Volume (Gal.)	Water Level Readings (Ft. below TOC)	Temperature (Degrees C)	рН	Specific Conductance (Units <i>restca</i>)	Turbidity (NTU)	Remarks (odor, color, etc.)
1331		١		15.42	5.94	0.407	>999	Brown no adon
1336				15.39	6.54	0.130	> 999	
1341				15.04	5.86	6.052	457	Cloudy water
1346				15.15	5.21	6.050	> 999	
1351				15.17	5.11	0.039	229	
1356				15.00	5.41	0.033	360	
1401				15.00	5.95	0.032	257	
1406				15.05	5.99	0.033	343	
1416				14.75	5.91	0.029	/0/	
1421				14.88	5.91	0.028	135-	/
1426		J		14.93	5.79	0.028	119	\checkmark
1431		300 gullows		14.70	5.55	0.027	84.0	Slighty Cloudy
				MH-14 - 12 - 14 - 14 - 14 - 14 - 14 - 14 -				

Site: Middle Riven Center	Depth to Bottom (ft.): 215.0	Project Name:	LackHeed Mantin
Well: MAC- MW 950	_Static Water Level Before (ft.): _/.75	_ Project Number:	112ZCO 2720 - 0200:1
Date Installed: <u>5-12-10</u>	_ Static Water Level After (ft.):	_Site Geologist: _	Fried Kolbens/WALT pryor
Date Developed: <u>5-18-10</u>	_Screen Length (ft.): _10'	_ Drilling Co.:	Bonet Long Yean
Dev. Method:	_ Specific Capacity:	_	F 77
Pump Type: 1" Puc pipe	Casing ID (in.): Z " PVC		

Time	Estimated Sediment Thickness (Ft.)	Cumulative Water Volume (Gal.)	Water Level Readings (Ft. below TOC)	Temperature (Degrees C)	pН	Specific Conductance (Units	Turbidity (NTU)	Remarks (odor, color, etc.)
1742		1		14.57	9.97	0.514	>999	Beaun, Ne Edon
1747				14.18	9.00	0.(27	781	Beaux, NU colon Cloudy pinten
1752				14.23	8.18	0,10(549	
1757				14.15	7.27	0.084	377	
1802				14.08	6.69	0.072	118	
1807				14.13	6.55	0.071	151	\checkmark
1812				14.13	6.32	0.065	44	Slighty Cloudy
1817		4		13.97	6.25	0.056	32	
1822		250 gallon		13.84	6.17	0.056	30	L
		-						

Tetra Tech NUS, Inc. MONITORING WELL DEVELOPMENT RECORD

Page ____ of ____

•

Site: Middle Riven Center	Depth to Bottom (ft.): 189.0	Project Name:	LockHeed Martin
Well: MRC. MW 960	Static Water Level Before (ft.): Top of A	Project Number:	112IC 02720 - 0200.1
Date Installed: 5-18-10		Site Geologist:	Face Kabenc
Date Developed: 5-19-10	_ Screen Length (ft.): _/ 0!	Drilling Co.:	Boket Long Year
Dev. Method: A.	_ Specific Capacity:	_	• 1
Pump Type: <u>i" pvc pipe</u>	_Casing ID (in.): <i>Z ''</i>		

Time	Estimated Sediment Thickness (Ft.)	Cumulative Water Volume (Gal.)	Water Level Readings (Ft. below TOC)	Temperature (Degrees C)	pН	Specific Conductance (Units	Turbidity (NTU)	Remarks (odor, color, etc.)
0755				16.09	5.95	0.469	> 999	Brown No odun
0400				15.64	6.36	0.209	> 999	
0805				15.03	6.31	0.084	> 999	J
0815				14.98	5.85	0.039	795	Cloudy Water
0 825				14.72	5.67	0.032	348	
0835				14.80	5.81	0.030	364	
0845				14.76	5.85	0.028	284	
0850		V		14.72	5.89	0.026	Z10	
0955		300 gallow	\$	14.80	5.90	0.025	157	6

EQUIPMENT CALIBRATION LOG

PROJECT NAME :	LackHeed Mantin	INSTRUMENT NAME/MODEL:	Honiba U-22
SITE NAME:	Middle Riven	MANUFACTURER:	
PROJECT No.:	112 ICO 2720 - 0200.1	SERIAL NUMBER:	9023014

Date of Calibration	Instrument I.D. Number	Person Performing Calibration	Instrument Pre- calibration	Post- calibration	Instrument Pre- calibration	Post- calibration	Calibration Standard (Lot No.)	Remarks and Comments
5-18-10	9023014	WEP		4.00	21931/23944145/2	4.00	P900175	Cal or
			Cand Timb	4.41 0-0		4.47		
			Do	6.37		6.51		
			Tenp Sal	18.57		18.48		
				0.2		18.48 0.2		
			Opp	25%		253		
5-19-10	9023014	NEP	рH	4.00		4.00		
1			cond	4.29		4.49		
			Tral	3.9		0.0 9.62		
			Do	7.00		9.62		
			Temp Sal	17.29		17.31		
	4		On D	335		328		
			7					
							ļ	
			2					
			166					
ļ								
L			L					

APPENDIX E— WELL-PURGE RECORDS AND SAMPLING RECORD SHEETS

T Ł	

GROUNDWATER SAMPLE LOG SHEET

							Page	<u>of</u>
Project Site Name: Project No.:	Mid	dle le	lisen (Contex	Sample Sample	Location: d By:	MAC-MUJ93D-06M	
 Domestic Well Data Monitoring Well Data Other Well Type: QA Sample Type: 					_ [] Low	No.: Sample: Concentr Concent		
SAMPLING DATA:						alle Stella		
Date: 6-10-10	Color	pH	S.C.	Temp.	Turbidity	DO	Salinity	Other
Time: 1023	(Visual)	(S.U.)	(mS/cm)	(⁰ C)	(NTU)	(mg/l)	(%)	ONP
Method: Whele pump	Cludy	10.99	0.733	18.64	> 999	0.00	0-1	-282
PURGE DATA:	T							
Date: 6-10-10 Method: Whick pump	Volume	рН	S.C.	Temp.	Turbidity	DO	Salinity	Other
Monitor Reading (ppm): 0.0								
Well Casing Diameter & Material								
Type: 2" PN		5	re l	ow I	low p	unce		
Total Well Depth (TD):								
Static Water Level (WL): 9.40			Dat	x 5	hert			
One Casing Volume(gal/L):								
Start Purge (hrs): 0946								
End Purge (hrs): 1019								
Total Purge Time (min): 92								
Total Vol. Purged (a)L): 10.5								
SAMPLE COLLECTION INFORMA	TION:		ak jakangan					
Analysis	A	Preser			Container Re	quirements		Collected
VOCS			KI .		3 - 30			K
Svocs		I4			2 - 1L	Ambers		V
14 Proxant		IG		2	2-12	Amben;		~
Total metals		Har		/	- 520	MI Pol		
Diss metals		Hr	63	/	- 500	m1 Pol	4	
OBSERVATIONS / NOTES:								Series Streamster
UBSERVATIONS / NOTES:								
					a:			
Circle if Applicable:	NUMBER OF NO				Signature(s)			
MS/MSD Duplicate ID No.:					h.	le z		

|--|

GROUNDWATER SAMPLE LOG SHEET

							Page	e of	
Project Site Nam Project No.: [] Domestic W		delle k	iven (rter	Sample Sample Sample C.O.C.	Location: d By:	Mrc-pr 940-66/11 mw 940 1P		
Domestic W Monitoring V Other Well	Vell Data Гуре:				Type of [] Low	Sample: Concentra Concentra		5	
SAMPLING DATA:						Contractory			
Date: 6-10-10	Color	pH	S.C.	Temp.	Turbidity	DO	Salinity	Other	
Time: 1503	(Visual)	(S.U.)	(mS/cm)	(⁰ C)	(NTU)	(mg/l)	(%)	ONP	
Method: What p	un Cloudy	6.45	0.346	12.49	909	0.00	0-0	-68	
PURGE DATA:		1898243					(Constraints and Constraints		
Date: 6-10-10		рН	S.C.	Temp.	Turbidity	DO	Salinity	Other	
	aimp				-	-		ļ	
Monitor Reading (ppm):	0.0								
Well Casing Diameter &			-						
Type: 2" PVC			see	Las F	Var 1	angle		-	
Total Well Depth (TD):	9					-			
Static Water Level (WL)	11.45		Dat	x 5%	let				
One Casing Volume(gal/	′L):								
Start Purge (hrs):	326								
End Purge (hrs):	158								
Total Purge Time (min):	92								
Total Vol. Purged (gal/)	: 15.0				1				
SAMPLE COLLECTION	INFORMATION:	C. 1. 1. 22	lasa, Nora-		ALCONTRACT.				
Analys	ls	Prese	rvative		Container Re	quirements	5a - 60 -	Collected	
Vacs		H	d		3- 40			~	
SUDES		I			2 - 12	Amben			
14 Pickane		IC			2-12	Ambens		~	
Total metals		Ho				ml Pol		2	
piss metals		How	3		1 - 500	NI Rly	/		
OBSERVATIONS / NOT	'ES:								
Circle if Applicable:					Signature(s)	:	0.000		
MS/MSD Duplie	cate ID No.:					IL			
	1.0724993					War	HZ_		

GROUNDWATER SAMPLE LOG SHEET

,

Project Site Name: Project No.: [] Domestic Well Data [] Other Well Type: [] QA Sample Type:	M.de	tie R	iven C	enter	Sample				
Monitoring Well Data						D No.: Location:	mac-p	MRC-MW 950-0611 MW 950	
U QA Sample Type	Mint Movember and a social s				C.O.C. Type of [] Low [] Higi				
SAMPLING DATA:									
Date: 6-11-10	Color	pН	S.C.	Temp.	Turbidity	DO	Salinity	Other	
Time: 092.8	(Visual)	(S.U.)	(mS/cm)	(⁰ C)	(NTU)	(mg/l)	(%)	URP	
Method: Phake pump PURGE DATA:	Cloudy	11.24	1.00	15.94	> 899	0-00	0.1	-288	
					1			-	
Date: 6-11-10	Volume	рН	S.C.	Temp.	Turbidity	DO	Salinity	Other	
Method: Whale pump									
Monitor Reading (ppm): O.O			-						
Well Casing Diameter & Material		J	See	Low	Flow	ping	P		
Type: 2ª PVC						7 3		1	
Total Well Depth (TD):	T			2 ha	Shee	7		1	
Static Water Level (WL): 1.55			-1	<u>q</u>	2.00				
Dne Casing Volume(gal/L):									
Start Purge (hrs): 0752									
End Purge (hrs): 0923									
Total Vol. Purged (gal/2): 3.0 SAMPLE COLLECTION INFORMATIO		<u> </u>							
Analysis	/M.	Preserv			O and allow a Da				
WCS		Hel			$\frac{\text{Container Re}}{3 - 40}$		•	Collected	
JVOC5		 IG			<u>z - 40</u> Z - 12		S		
1,4 Diokane		IGE			$\frac{c}{2 - R}$	Ambens			
Total metile		Harv				nl Poly		/	
Diss metals		Nor			- 500		7		
							<i>(</i>		
BSERVATIONS / NOTES:									

T Ł	Tetra 1
------------	---------

GROUNDWATER SAMPLE LOG SHEET

							Page	of	-
Project Site Name: Project No.:	MRC	OHRID				Location:	mrc-m DRC DLM	W96D-00	611K
 Domestic Well Data Monitoring Well Data Other Well Type: QA Sample Type: 					Sampleo C.O.C. I Type of [] Low [] High				
SAMPLING DATA:									1
Date: 6-11-10	Color	pH	S.C.	Temp.	Turbidity	DO	Salinity	Other	1
Time: DYS	(Visual)	(S.U.)	(mS/cm)	(°C)	(NTU)	(mg/l)	(%)		1
Method: Lon Flo-	alec!	4,66	0.113	15,87	3.54	9.87	OH .	269	ł > _
PURGE DATA:	<u></u>	·	1.1.1		1	1		1.1.1.1	1
Date: 6/11/10	Volume	pH	S.C.	Temp.	Turbidity	DO	Salinity	Other	ł
Method: Low Flow			0.0	10					4
Monitor Reading (ppm): NIA		<u> </u>	1ºC	lan	F Jug	V			4
Well Casing Diameter & Material	· · · · · · ·				1999 - Contra - Contr	<u>~</u>			4
Type: 2" PVC		V		$-\Lambda$	10	11			4
Total Well Depth (TD): 199		P	UIS	- 12	NE	CUNE	elî.		
Static Water Level (WL): 0,01			0						
One Casing Volume(gal/L): うりろ						-			1
Start Purge (hrs): 1145	,								
End Purge (hrs): 1300						5			
Total Purge Time (min): 75									
Total Vol. Purged (gaVL): 69									
SAMPLE COLLECTION INFORMA	TION:		100.0em		16 173	en skeinen		1	
Analysis	and a second	Preser	vative	1. set 14	Container Re	quirements		Collected	5.2
Vac	<u> 18</u>	HC	1	3-40	mL glas	ssvile		11	배고 작품
SYCC.		-	-	3-11	amber	glass	bottles	V	6
1.4-Dioxou	pe	TIN		P-IL	amber	anostic	battle	1	1
lotal mete	Dolate	ΠΛ	103	1.20	1 12	lastic	bottle		
DISSOIVEDI	netals		-	1.20	Jin p	MONTL.	HOUL	V	
								•	
······································									
A									
							and the second sec		
OBSERVATIONS / NOTES:					5 10 10				
Circle if Applicable:					Signature(s):	_		1	
MS/MSD Duplicate ID No.					61	5 . 101	1 n.I		
					Ma	11/ 9	1 4/1/1	MILI	

Middle River Center

WELL ID.: DATE:

MRC-MW 931)-061010 6-10-10

Time	Water Level	Flow	pН	S. Cond.	Turb.	DO	Temp.	ORP	Salinity	Comments
(Hrs.)	(Ft. below TOC)	(mL/Min.)	(S.U.)	(mS/cm)	(NTU)	(mg/L)	(Celcius)	mV	% or ppt	
0846	9.40		·	·		-		~	<u> </u>	Initial, No oden
0848	10.50	700	11.69	2.31	>999	0.98	18.40	-43	0.1	Brown Water
0853	9.70	300	11.62	2.13	> 999	0.00	18.20	-108	0-1	1
0858	9.70	300	11.34	1.84	> 999	0.00	17.81	-171	0.1	
0908	9.70	300	11.00	1.28	> 989	0-00	18.39	- 217	0-1	
0918	9.70	300	10.96	2.27	2999	0.00	18.97	-241	0.1	
0928	9,70	300	11.00	2.27	2898	0-00	18.89	-253	0.1	
0938	9,70	300	11.12	1.85	>999	0.00	19.35	-267	0.1	
0948	9.70	300	11.18	1.96	> 899	0.00	18.65	- 271	0.1	
0958	9.70	300	11.01	1.02	>999	0.00	17.41	-271	0.1	
1008	9.70	300	10.99	0.731	>989	0.00	18.66	- 274	0.1	
1013	9,70	300	10.94	0.735	> 899	0.00	18.47	-779	0.(
1018	9.70	300	14,99	6.733	>999	0.00	18.64	~282	0~ (9
							1	11		
		La M	para	meter	. d.	d n		stab.1.	2.0	
									- (
		att	ch 9	0 prin	San	pline	terin	- Ane	Louk De	an .
					0	0			/-	
									·	
										· ·
	•									

SIGNATURE(S): New

PAGE OF

Middle Kisen Center

WELL ID.: DATE:

MAC- MW 84D-061010 6-10-10

Time	Water Level	Flow	pН	S. Cond.	Turb.	DO	Temp.	ORP	Salinity	Comments
(Hrs.)	(Ft. below TOC)		(S.U.)	(mS/cm)	(NTU)	(mg/L)	(Celcius)	m٧	% or ppt	
1326	11.85)	-	~		1	~	-	-	Initial , No ada
1328	11.00	700	9.57	0.222	2989	0.30	17.37	-96	0.0	Cloudy Water
1333	11.60	300	8.87	0.498	>899	0.00	17.43	- 96	0.0	· ·
1338	11.55	300	8.31	0.972	> 999	0.00	17.45	- 99	0.0	
1348	11.60	300	7.41	2.13	> 999	0.00	18.12	- 76	6.1	
1358	11.55	300	7.19	1.67	7999	0.00	17.53	-71	0.1	
1408	11.60	300	6.91	0,824	>889	0-00	17.03	- 66	9.1	
1418	11.60	300	6.73	0.561	>899	0.00	17.38	-65	0.0	
1428	11.60	300	6-62	0.481	980	0-00	17.28	-67	0.0	C
1438	11.60	30	6.55	0.436	940	0.00	17.20	-69	0.0	
1448	Nee	300	6.48	0.369	940	0.00	17.68	-69	0.0	
1453	11.60	300	6.46	0.360	920	0.00	17.16	-69	0.0	
1458	11.60	300	6.45	0.740	209	0,00	17.49	-68	0.0	4
	£ 161	1 0	1		/		11			
	- pen	Juna	meters	did	Not	24	6.1.21	after	2 90 min	
	6	Sampli	- Bes	to p	ne f	ant a	den -			
			1.0			/				
				1						
				je je						
-										
					(c)			***		

SIGNATURE(S): Nat 2

PAGE_OF_2

Midelli Kives Centa

WELL ID.: DATE: .

MAC- MIN 95D-061110 6-11-10

Time	Water Level	Flow	pН	S. Cond.	Turb.	DO	Temp.	ORP	Salinity	Comments
(Hrs.)	(Ft. below TOC)	(mL/Min.)	(S.U.)	(mS/cm)	(NTU)	(mg/L)	(Celcius)	m۷	% or ppt	
0752	1.55				-				/	Initial, No oder
0753	1,65	7.0	11.02	2.06	60.6	5.92	16.13	~12	0.1	Slighty Cloudy
0758	1.60	300	12.02	1.98	243	3.39	15.94	- 82	0.1	Cloudy Water
0803	1.55	300	12.04	2.89	684	3.59	16.66	-181	0.1	
6813	1.55	300	11.84	3.29	901	3.37	16.89	- 241	0.2	¥
0823	1.55	300	11.75	3.12	>999	2.06	16.10	- 751	0.2	Cloudy Nater
0 833	1.55	300	11.69	2.62	> 999	1.74	16.58	-256	0-1	1
0843	1.1155	700	11.69	2.79	> 989	0.98	15.08	- 265-	0.1	
0 853	1.65	3-0	11.61	1.51	>989	0.19	15.76	- 276	0.1	
0903	1.65	300	11.68	1.15	> १११	0-11	15.81	- 289	0.1	
0913	1.65	300	11.69	1.12	>999	0.00	15.87	-292	0-1	
0918	1.65	300	11.71	1.09	7999	0.00	15.86	- 291	Q. (
0923	1.65	300	11.74	1.10	>999	0.00	15.94	- 298	0.1	¥
									ā.	
			1							
		- pe	1 Jan	ameter	s 5	La Solo	21 -		<u> </u>	
ļ			- 50	pline	Accin	15			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
				5	. 0					
									ć	
										· · · · · · · · · · · · · · · · · · ·
							,			

SIGNATURE(S): ____

Ve

PAGE 2 OF 2

PROJECT SITE NAME: PROJECT NUMBER:

MRC.	
112ICONIO	

1. . .

WELL ID.; DATE:

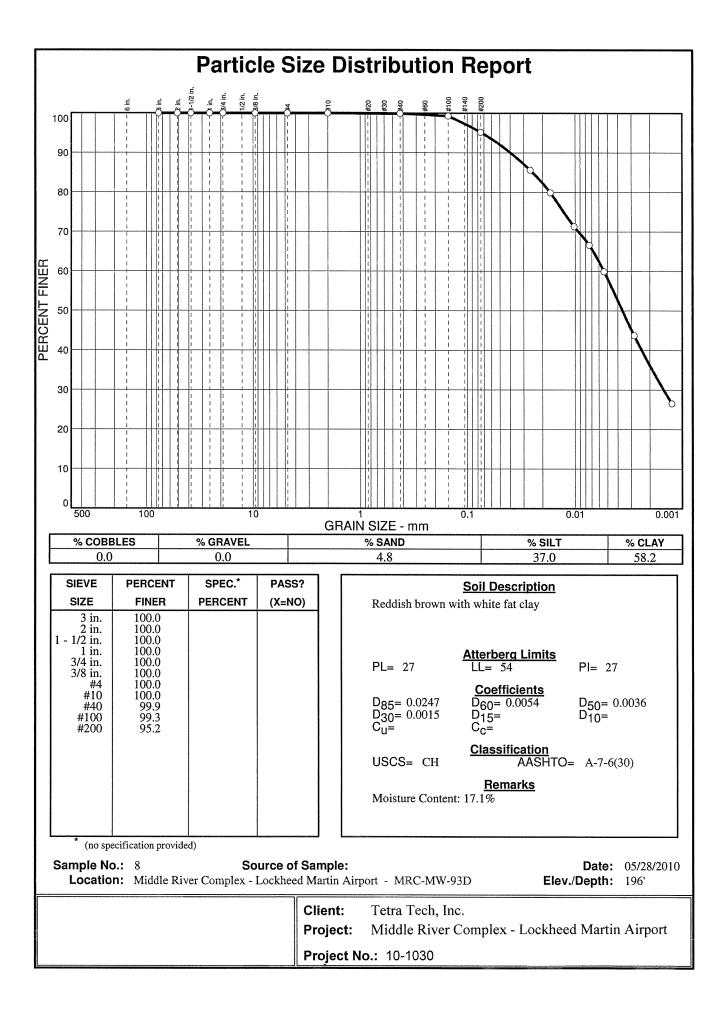
MRC - MW96D - 06110

Time	Water Level	Flow	pН	S. Cond.	Turb.	DO	Temp.	ORP	Salinity	Comments
(Hrs.)			(S.U.)	(mS/cm)	(NTU)	(mg/L)	(Celcius)	m٧	% or ppt	
1145	-0.33		~	-	·		-2-)	WE is up to second purface
1150	-0,33	300	9.05	0.037	29.7	6.06	15.94	140	6.0	
1155	-0.33	300	8.45	0.043	12.6	5,65	15,86	165	0.0	
100	-0.33	300	1.27	0.058	90	5,06	15.86	199	CiO	
1203	-0,72	300	6.59	0.067	8.28	5,05	16.02	218	0.0	1
1210	~0.37	300	6.17	0.0%	608	Siol	15.93	773	60	
1215	-0.33	300	5.62	0.084	4.99	4.86	16.03	236	0,0	
1220	-0.33	340	5.30	0.103	489	4194	16,07	241	0,0	
1225	-0,33	300	4.98	0,111	4,69	5.02	15,84	221	0.0	
236	-0.33	300	4.78	0,122	439	5,25	15,82	200	0.0	
1335	-033	300	4.61	0128	3,92	5,36	15.72	20	0,0	
Ha	~37	306	4.68	Cilzz	3120	14.89	15,75	268	0.0	
245	-0.33	300	4,66	0113	3,54	4,87	15.87	269	0,0	
591	pling									
	r J								1	
						1		- Arg		
	a									
		1			- 1,00					
					046221					
										······································
	~~~~									
		(	1							

SIGNATURE(S):

## APPENDIX F-WELL SURVEY REPORT

#### Table F-1


#### Monitoring Well Survey Results, June 2010 Deep Groundwater Investigation Lockheed Martin Middle River Complex, Middle River, Maryland

	Monitoring Wells - Lockheed Martin Site June 2010												
	Horizontal Datum= Maryland State Plane Coordinates NAD83												
Vertical Datum=NAVD88													
Well ID	Well ID         Northing (Y)         Easting (X)         Elevation (Ground)         Elevation (Riser)         Elevation (Top of Casing)												
MW 93D	607266.04	1472928.67	-	24.99	25.27								
MW 94D	605610.90	1473452.80	-	22.91	23.22								
MW 95D	604602.27	1472820.42	-	10.23	10.45								
MW 96D	605277.69	1474488.35	-	6.30	6.64								

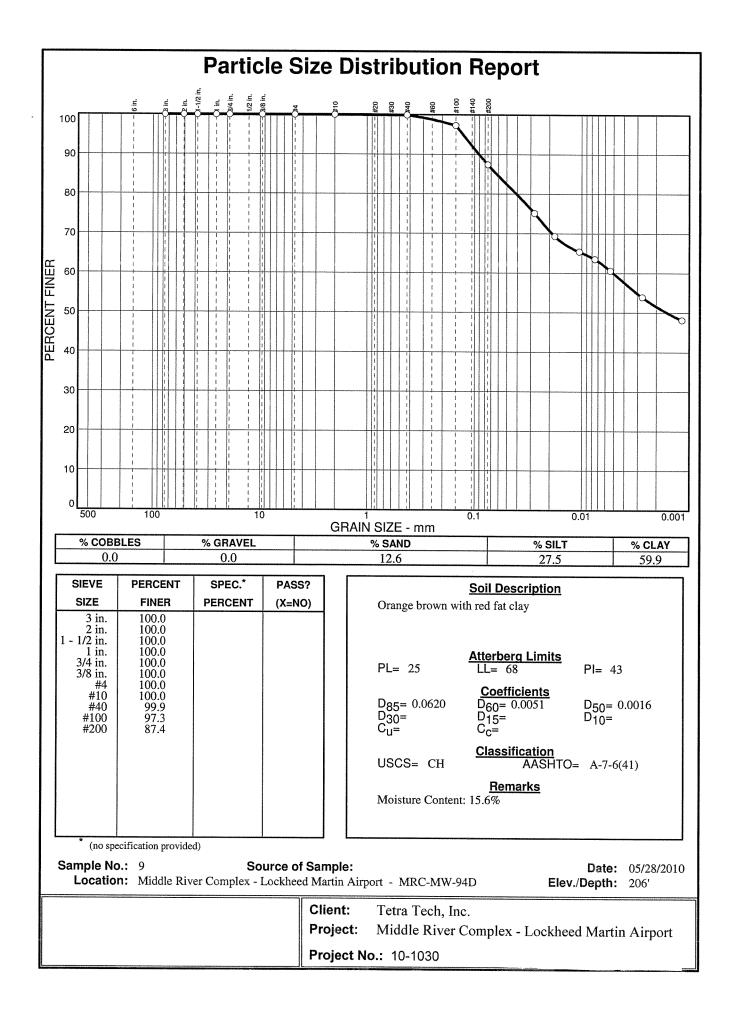
#### APPENDIX G—PURGE RECORDS AND SAMPLING RECORD SHEETS

	LETTER OF TRANSMITTAL
	FINDLING, INC. 3401 Carlins Park Drive, Baltimore, MD 21215 Phone: 410-367-1400 Fax: 410-466-6867
	DATE: 06/10/10 JOB No. 10-1036
то:_	Mr. Tony Apanavage RE: Lab Test Results
COMPANY:	Tetra Tech, Inc Middle River Complex - Lockheed Martin Airport
ADDRESS:	20251 Century Boulevard, Suite 200
CITY, STATE, ZIP: _	Germantown, MD 20874-7114
We Are Sending	You:     X     ENCLOSED     UNDER SEPARATE COVER     VIA:       X     US MAIL     MESSENGER       FedEx     UPS     OTHER
The Following: REPORT X LAB RESULTS PROFILE	PLANS PHOTOGRAPHS   SKETCHES SPECIFICATIONS   SUBMITTALS DRAWINGS
No. DATE	COPIES DESCRIPTION
1 06/10/10	1     Lab Test Results (sample Date 05-19-10)
	NSMITTED AS INDICATED BELOW:
	APPROVED AS IS SUBMIT COPIES FOR APPROVAL
FOR APPROVAL	APPROVED WITH CORRECTIONS CORRECTED
FOR YOUR USE	RETURNED WITH CORRECTIONS RETURNED AFTER LOAN TO US RESUBMIT COPIES FOR APPROVAL
REMARKS:	
COPY:	signed: M. Surendra
	SIGNED: M. AMMAAA M. Suri Surendra, Ph.D., P.E. Chief Engineer

Chain of Custody Record		Temperature Drinking Wa				e	ST	A					410 FIN 3401	.367.1400 OLING, I, Carlins P nore, Md 2
TAL-4124 (1007) Client <u>Tetra Tech, Inc.</u> Address <u>20251 Century Blvd, Sc</u> City <u>Germantown</u> Project Name and Location (State) Location (State)	01te 200:	Project Manage Tory Telephone Num 301.57		de)/Fax	9C Number 01,233,823	10	YUEC U			Date 5 ab Numb	/, 8/) D er -	>	Chain of Custody I	Vumber
Contract/Purchase Order/Quote No. Deep Ground 1122027	lwater Invest	Site Contact Frel Carrier/Waybill N/A	Kolber	Lab	Contact Containers & Preservatives	• • •	15422-514		D61	sis (Attac pace is i	ch list if needed)		Special	Instructions/ Ins of Receipt
Sample I.D. No. and Description (Containers for each sample may be combined on one line) MRC-MW93D 196' -MRC-MW94-D 206' 5[6[10	,	me JA 30 <b>4</b> 0	X X Soil	X X Unpres	H2SO4 HNO3 HCI NaOH	NaOH	\     \     \     \     \     \     \     \     \     \     \     \     \     \     \     \     \     \     \     \     \     \     \     \     \     \     \     \     \     \     \     \     \     \     \     \     \     \     \     \     \     \     \     \     \     \     \     \     \     \     \     \     \     \     \     \     \     \     \     \     \     \     \     \     \     \     \     \     \     \     \     \     \     \     \     \     \     \     \     \     \     \     \     \     \     \     \     \     \     \     \     \     \     \     \     \     \     \     \     \     \     \     \     \     \     \     \     \     \     \     \     \     \     \     \     \     \     \     \     \     \     \     \     \     \     \     \     \     \     \     \     \     \     \     \     \     \     \     \     \     \     \     \     \     \     \     \     \     \     \     \     \     \     \     \     \     \     \     \     \     \     \     \     \     \     \     \     \     \     \     \     \     \     \     \     \     \     \     \     \     \     \     \     \     \     \     \     \     \     \     \     \     \     \     \     \     \     \     \     \     \     \     \     \     \     \     \     \     \     \     \     \     \     \     \     \     \     \     \     \     \     \     \     \     \     \     \     \     \     \     \     \     \     \     \     \     \     \     \     \     \     \     \     \     \     \     \     \     \     \     \     \     \     \     \     \     \     \     \     \     \     \     \     \     \     \     \     \     \     \     \     \     \     \     \     \     \     \     \     \     \     \     \     \     \     \     \     \     \     \     \     \     \     \     \     \     \     \     \     \     \     \     \     \     \     \     \     \     \     \     \     \     \     \     \     \     \     \     \     \     \     \     \     \     \     \     \     \     \     \     \     \     \     \     \     \     \     \     \     \		1 / rev					
	5/11/10 123	3D +30		X X X X										
MRC-MW94D 186'-196' MRC-MW95D 200'-216' MRC-MW96D 186'-190'	5/6/10 12. 5/12/10 11:	30 3 <i>5</i>		X X										
MRC - MW 16D 186-770 MRC - MW94D 120'-126'	5/14/10 1115 5/6/10 83			X										
· · · ·	Poison B Uni		Die Disposal Return To Cliei		Disposal By Lab			For		Months	(A fee may longer that		essed if samples are	retained
Turn Around Time Required 24 Hours 1. Relinquished By 2. Relinquished By 2. Relinquished By		] Other Date 5/19/10		0	QC Requirements (		Ca						Date 5/19/00	Time 16:45 4
2. Heinquished By 3. Relinquished By Comments	-	Date	Time Time		2. Fleceived By 3. Received By								Date	Time Time



			FLEXIBLE	WALL PERM	MEAMETER	2						
PROJECT :	08589A		BEFORE '	FEST			BEFO	RE TEST	ING		AFTER	TESTING
JOB NO.	Middle Rive	er Complex	AVE. LENG	ГH	2.60		CAN		P69		CAN	
SAMPLE	MRC-MW-93D		AVE. DIAM	ETER	4.242		WET+CAN		117.5	•	WET+CA	N
CHAMBER	2A		AREA		91.2		DRY+CAN		107.2		DRY+CA	N
			AFTER 7	FEST			CAN WT.		46.9	i i	CAN WT	·.
			AVE. LENG	ГН			% MOIST	•	17.1%		% MOIS	т.
			AVE. DIAM	ETER			SAM. WT	•	1304.0		SAM. W	Τ.
CTRL-D FOR			AREA				DRY DEN	•	115.3	PCF	DRY DE	N.
DATE AND	FIME											
		LOWER	UPPER		LOWER	UPPER	AVE					
		BURETTE	BURETTE	CELL	CAP	CAP	PRESS.	GRAD	FLOW	FLOW	AVE	
DATE	TIME	READING	READING	PRESS.	PRESS.	PRESS.	DIF.	i	IN	OUT	FLOW	PERMEABILITY
06/02	02:53 PM	22.1	28.8	55.0	52.0	50.0	2.1	22.36				
06/03	08:00 AM	31.5	19.6	55.0	52.0	50.0	2.0	20.88	9.4	9.2	9.3	7.93E-08
06/03	11:39 AM	33.5	17.8	55.0	52.0	50.0	1.8	19.09	2.0	1.8	1.9	8.31E-08
06/03	04:16 PM	35.9	15.5	55.0	52.0	50.0	1.7	18.41	2.4	2.3	2.4	8.42E-08
06/04	08:23 AM	43.4	8.2	55.0	52.0	50.0	1.6	16.85	7.5	7.3	7.4	8.30E-08

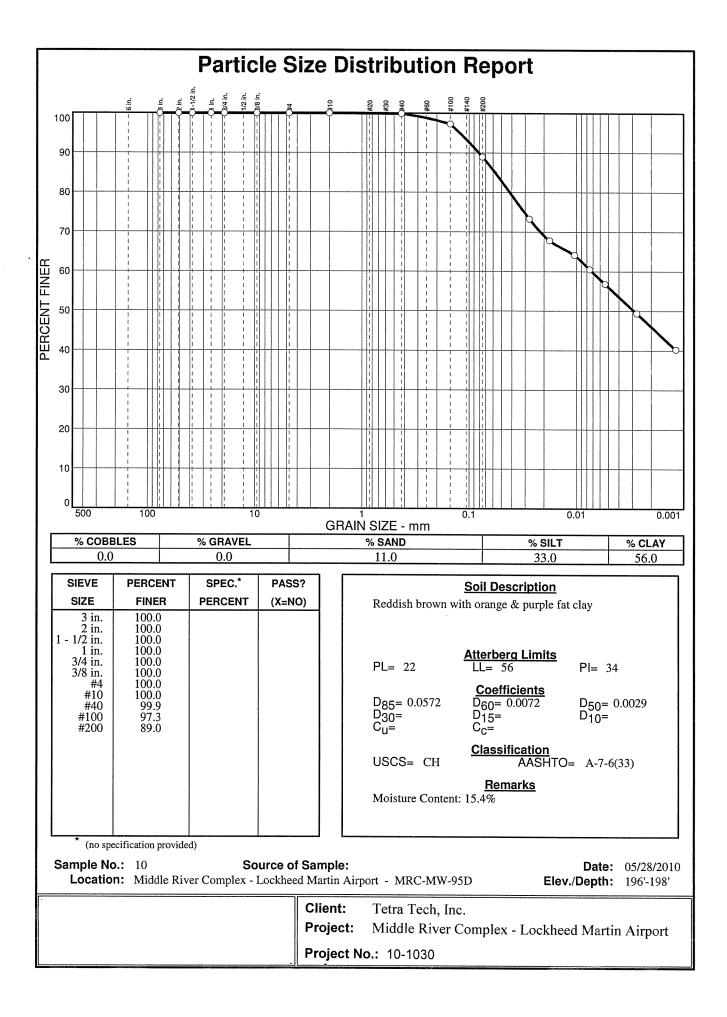

Average Permeability 8.2E-08 cm/sec

Tested per ASTM D5084 Method A Permeant: Deaired Tap Water

Client: Tetra Tech, Inc.

Project: Middle River Complex - Lockheed Martin Airport

Project No.: 10-1030




			FLEXIBLE	WALL PERI	MEAMETER	ζ						
PROJECT:	08589A		BEFORE				BEFO	RE TESTI	NG		AFTER	TESTING
JOB NO.	Middle Riv	er Complex	AVE. LENG	TH	2.74		CAN		P12		CAN	
SAMPLE	MRC-MW-94D		AVE. DIAM	ETER	2.825		WET+CAN		183.6	5	WET+CA	N
CHAMBER	1C		AREA		40.4		DRY+CAN		165.2	2	DRY+CA	N
			AFTER	TEST			CAN WT.		46.9	)	CAN WI	
			AVE. LENG	TH			% MOIST	•	15.6%	ĩ	% MOIS	т.
			AVE. DIAM	ETER			SAM. WT	•	607.7		SAM. W	'T.
CTRL-D FO			AREA				DRY DEN	•	116.6	PCF	DRY DE	IN.
DATE AND	TIME											
		LOWER	UPPER		LOWER	UPPER	AVE					
		BURETTE	BURETTE	CELL	CAP	CAP	PRESS.	GRAD	FLOW	FLOW	AVE	
DATE	TIME	READING	READING	PRESS.	PRESS.		DIF.	i	IN	OUT	FLOW	PERMEABILITY
06/02	07:42 AM	3.8	45.5	55.0	52.0	50.0	2.6	26.54				
06/02	02:51 PM	4.4	45.0	55.0	52.0	50.0	2.6	26.45	0.6	0.5	0.6	2.00E-08
06/03	07:58 AM	5.8	43.7	55.0	52.0	50.0	2.6	26.16	1.4	1.3	1.4	2.07E-08
06/03	04:14 PM	6.5	43.0	55.0	52.0	50.0	2.6	25.85	0.7	0.7	0.7	2.25E-08
06/04	08:22 AM	7.8	41.7	55.0	52.0	50.0	2.5	25.55	1.3	1.3	1.3	2.17E-08

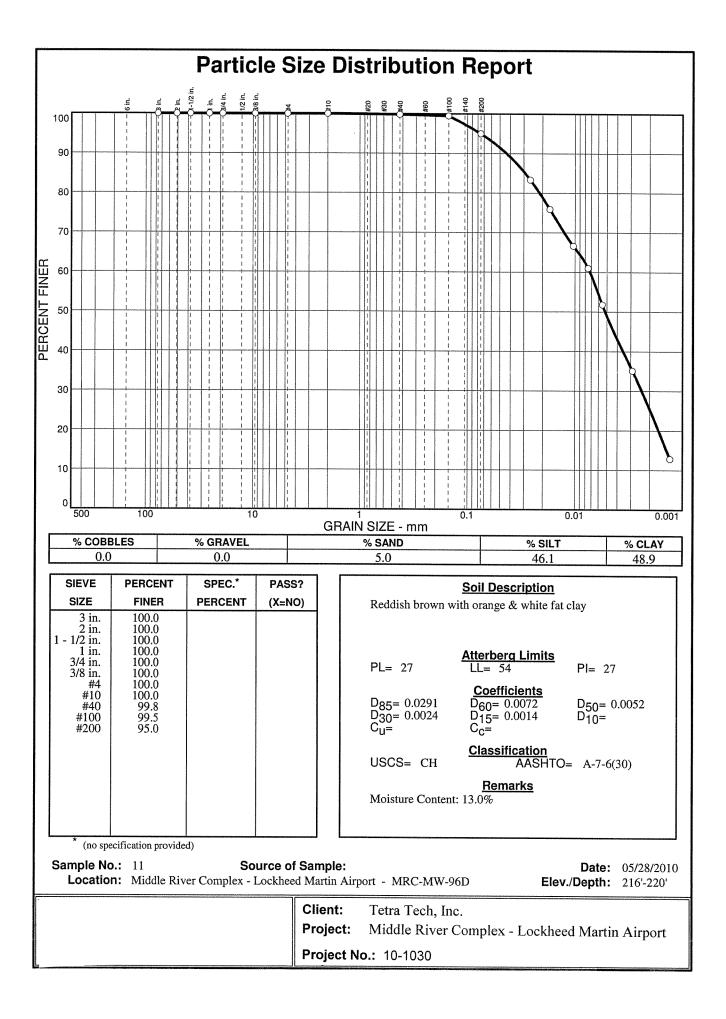
Average Permeability 2.1E-08 cm/sec

Tested per ASTM D5084 Method A Permeant: Deaired Tap Water

Client:Tetra Tech, Inc.Project:Middle River Complex - Lockheed Martin AirportProject No.:10-1030



			FLEXIBLE	WALL PER	MEAMETEI	R						
PROJECT:	08589A		BEFORE	TEST			BEFO	RE TESTI	NG		AFTER	TESTING
JOB NO.	Middle Rive	er Complex	AVE. LENC	TH	1.82		CAN		P28		CAN	
SAMPLE	MRC-MW-95D		AVE. DIAM	ETER	2.763		WET+CAN		213.9	1	WET+CA	N
CHAMBER	1A		AREA		38.7		DRY+CAN		191.5		DRY+CA	N
			AFTER	TEST			CAN WT.		46.2		CAN WI	
			AVE. LENG	TH			% MOIST	٠	15.4%	•	% MOIS	т.
			AVE. DIAM	ETER			SAM. WT	•	387.8		SAM. W	T.
CTRL-D FO			AREA				DRY DEN	•	117.5	PCF	DRY DE	N.
DATE AND	FIME											
		LOWER	UPPER		LOWER	UPPER	AVE					
		BURETTE	BURETTE	CELL	CAP	CAP	PRESS.	GRAD	FLOW	FLOW	AVE	
DATE	TIME	READING	READING	PRESS.	PRESS.	PRESS.	DIF.	i	IN	OUT	FLOW	PERMEABILITY
06/01	04:18 PM	2.7	46.3	55.0	52.0	50.0	2.7	40.49				
06/02	07:43 AM	5.6	43.5	55.0	52.0	50.0	2.6	39.84	2.9	2.8	2.9	3.33E-08
06/02	02:52 PM	7.0	42.2	55.0	52.0	50.0	2.5	38.88	1.4	1.3	1.4	3.49E-08
06/03	07:59 AM	10.1	39.1	55.0	52.0	50.0	2.5	37.86	3.1	3.1	3.1	3.43E-08
06/03	04:15 PM	11.6	37.6	55.0	52.0	50.0	2.4	36.81	1.5	1.5	1.5	3.54E-08


Average Permeability 3.4E-08 cm/sec

Tested per ASTM D5084 Method A Permeant: Deaired Tap Water

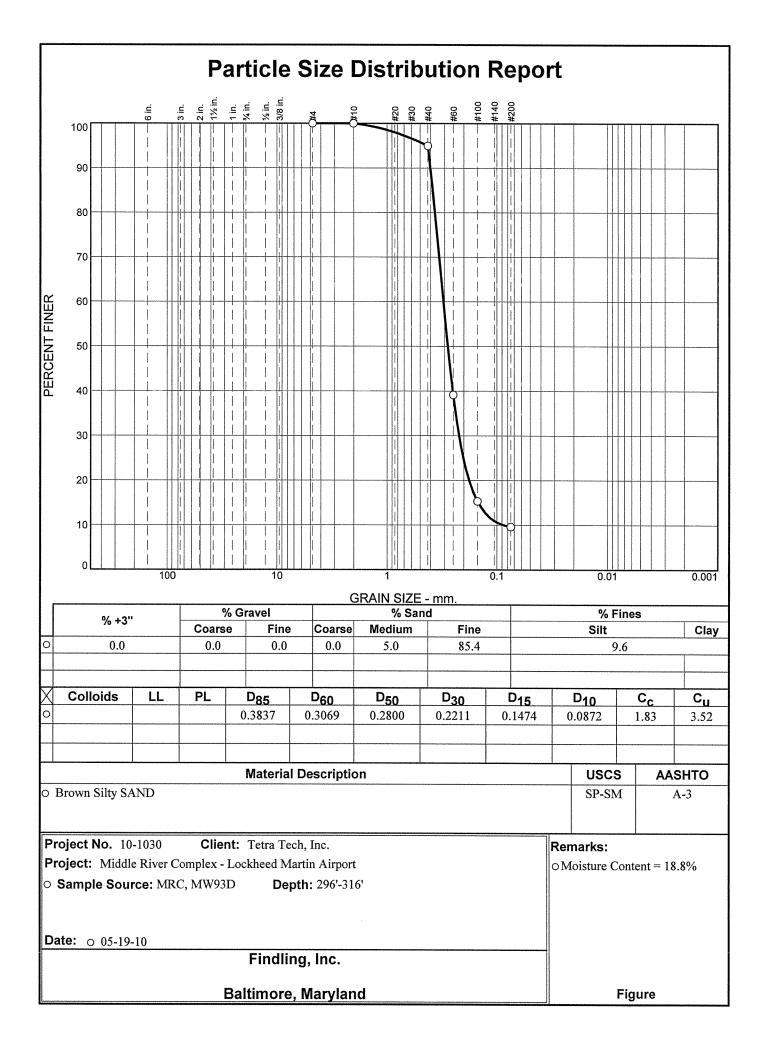
Client: Tetra Tech, Inc.

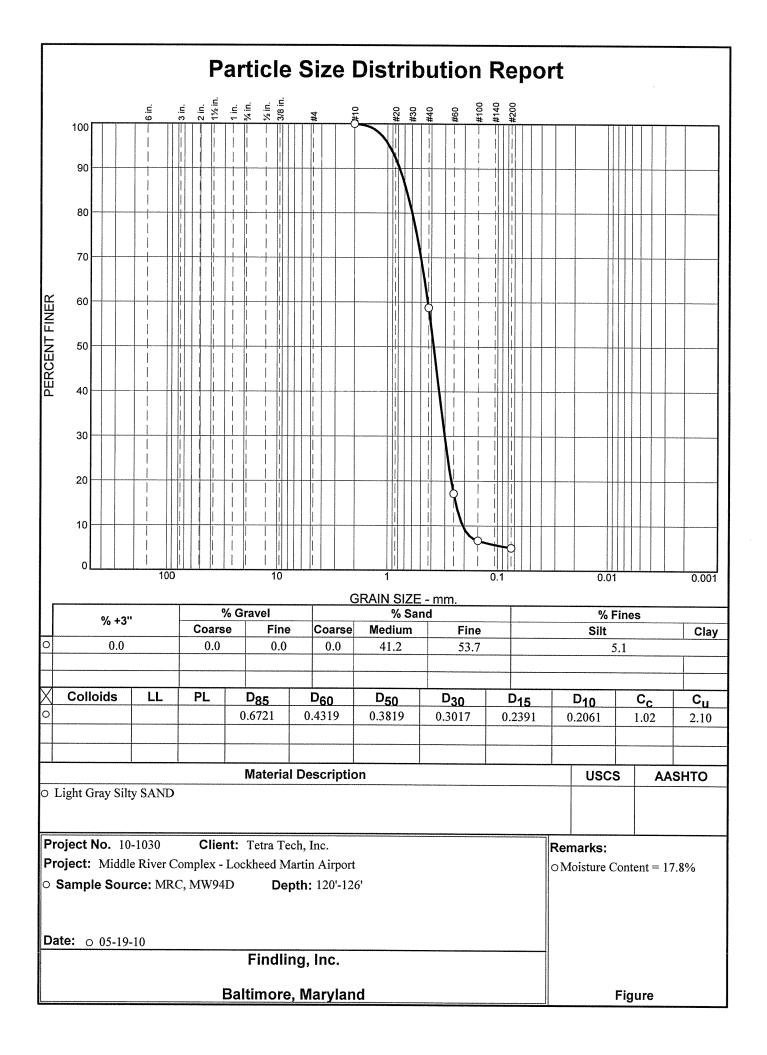
**Project:** Middle River Complex - Lockheed Martin Airport

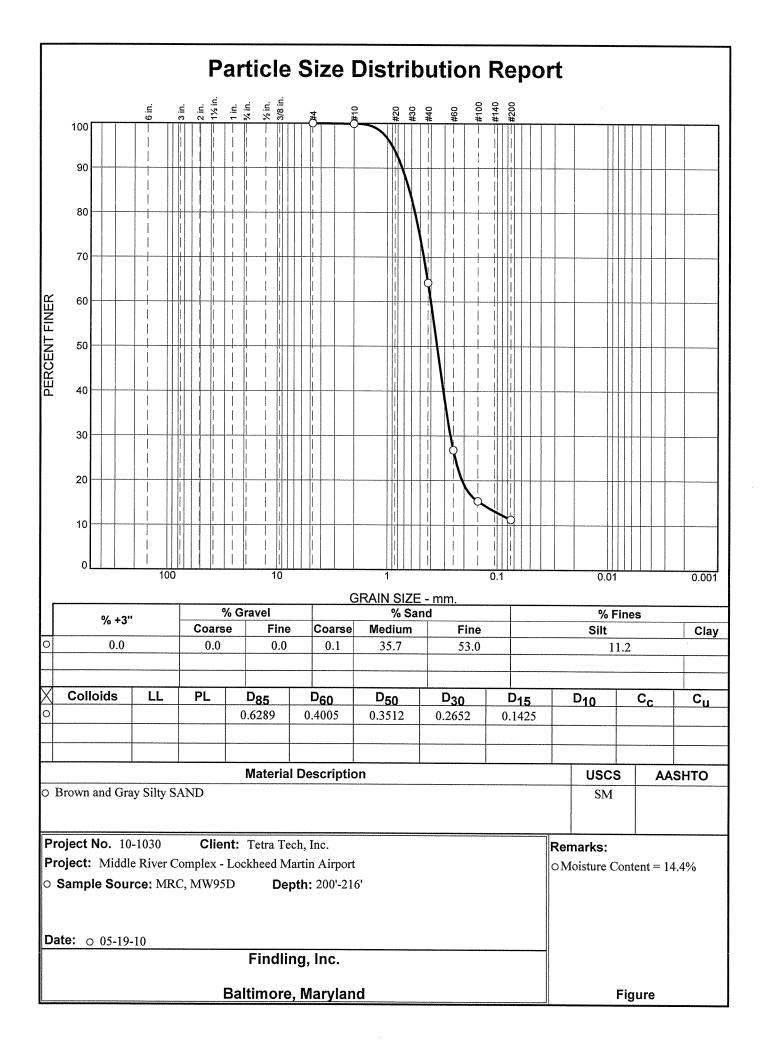
Project No.: 10-1030

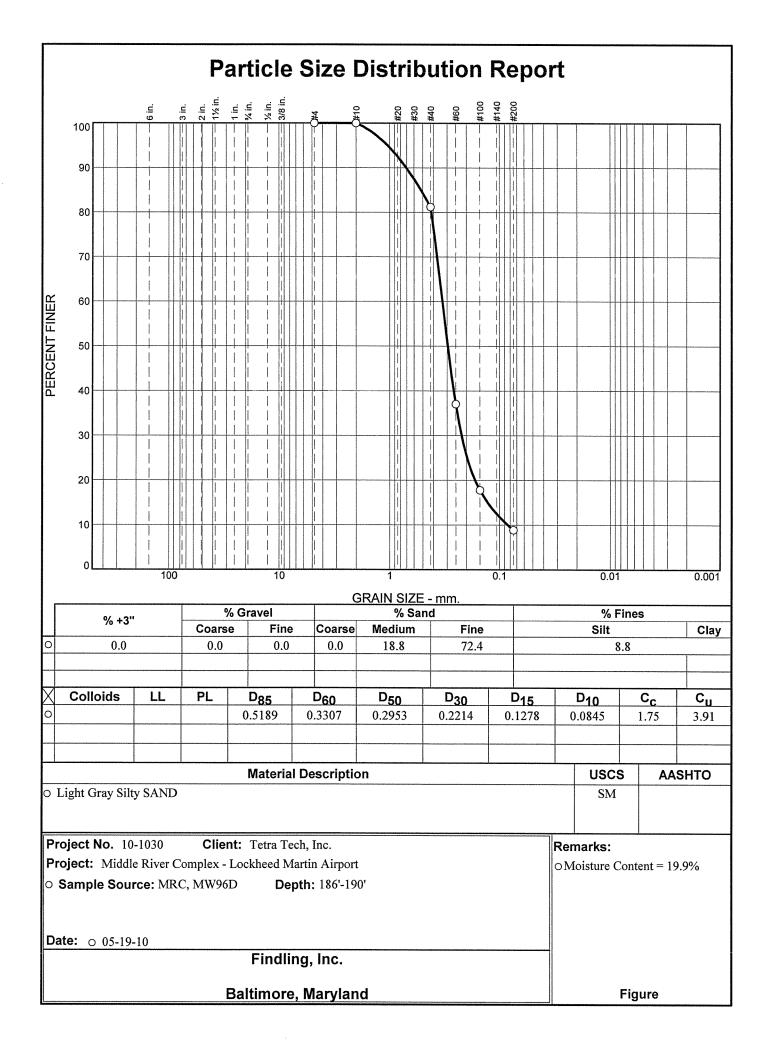


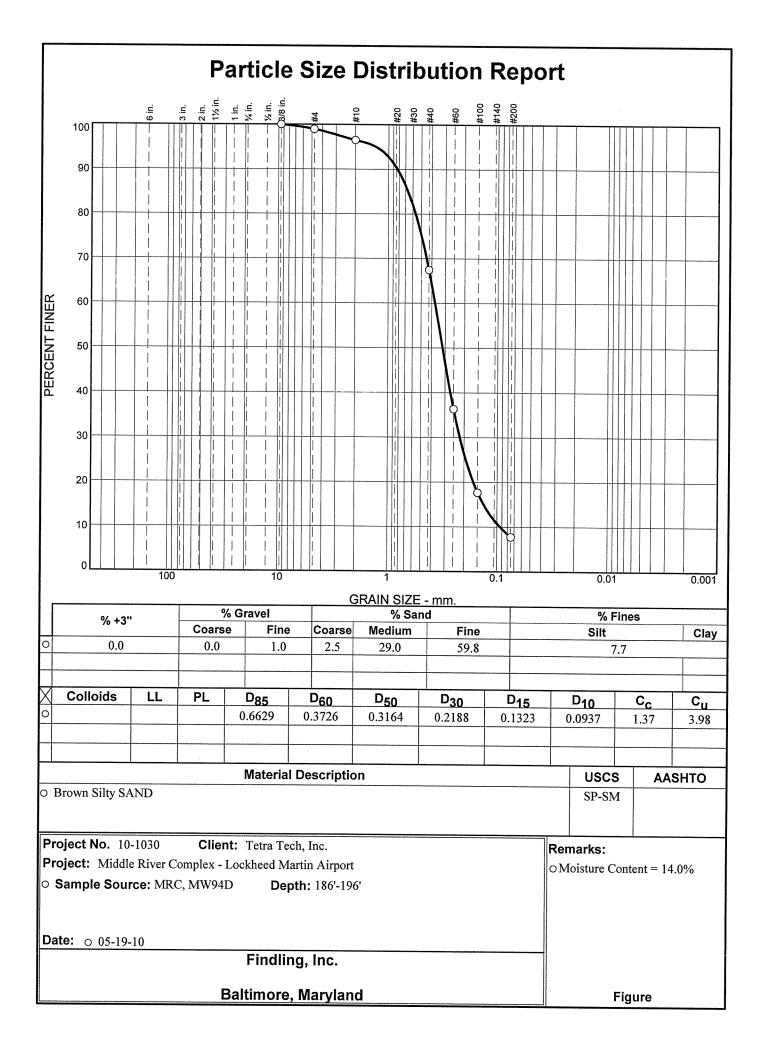
			FLEXIBLE	WALL PE	RMEAMETEI	R						
PROJECT:	08589A		BEFORE				BEFO	RE TESTI	ING		AFTER	TESTING
JOB NO.	Middle Riv	er Complex	AVE. LENG	TH	2.20		CAN		P65		CAN	
SAMPLE	MRC-MW-96D		AVE. DIAM	ETER	2.831		WET+CAN	•	226.2		WET+CA	N
CHAMBER	1		AREA		40.6		DRY+CAN		205.6		DRY+CA	N
			AFTER	TEST			CAN WT.		47.1		CAN WT	<b>'.</b>
			AVE. LENG	TH			% MOIST	•	13.0%		% MOIS	т.
			AVE. DIAM	ETER			SAM. WT	•	523.6		SAM. W	т.
CTRL-D FO			AREA				DRY DEN	•	127.2	PCF	DRY DE	Ν.
DATE AND	FIME											
		LOWER	UPPER		LOWER	UPPER	AVE					
		BURETTE	BURETTE	CELL	CAP	CAP	PRESS.	GRAD	FLOW	FLOW	AVE	
DATE	TIME	READING	READING	PRESS.	PRESS.	PRESS.	DIF.	i	IN	OUT	FLOW	PERMEABILITY
06/01	04:20 PM	4.0	45.5	55.0	52.0	50.0	2.6	32.97				
06/02	07:45 AM	9.4	40.1	55.0	52.0	50.0	2.5	31.95	5.4	5.4	5.4	7.50E-08
06/02	02:54 PM	11.8	37.7	55.0	52.0	50.0	2.4	30.48	2.4	2.4	2.4	7.53E-08
06/03	08:01 AM	17.1	32.5	55.0	52.0	50.0	2.3	29.03	5.3	5.2	5.3	7.23E-08
06/03	04:17 PM	19.5	30.1	55.0	52.0	50.0	2.2	27.59	2.4	2.4	2.4	7.20E-08


Average Permeability 7.4E-08 cm/sec


Tested per ASTM D5084 Method A Permeant: Deaired Tap Water


Client: Tetra Tech, Inc.


Project: Middle River Complex - Lockheed Martin Airport


Project No.: 10-1030











# APPENDIX H—CHEMICAL ANALYTICAL RESULTS

# TABLE ANALYTICAL RESULTS FOR GROUNDWATER - DEEP WELLS DURING DRILLING LOCKHEED MARTIN MIDDLE RIVER COMPLEX MIDDLE RIVER, MARYLAND

# PAGE 1 OF 4

SAMPLE ID:	MRC-MW94D(72ft)	MRC-MW95D(63ft)	MRC-MW95D(76ft)	MRC-MW96D (65ft)
LABORATORY ID:	A0E060602001	A0E110505001	A0E110505002	A0E140486002
SAMPLE DATE:	5/5/2010	5/10/2010	5/10/2010	5/13/2010
LOCATION:	MRC-MW94D	MRC-MW95D	MRC-MW95D	MRC-MW96D
VOLATILES (ug/L)				
1,1,1,2-TETRACHLOROETHANE	0.23 U	0.23 U	0.23 U	0.23 U
1,1,1-TRICHLOROETHANE	0.22 U	0.22 U	0.22 U	0.22 U
1,1,2,2-TETRACHLOROETHANE	0.18 U	0.18 U	0.18 U	0.18 U
1,1,2-TRICHLOROTRIFLUOROETHANE	0.28 U	0.28 U	0.28 U	0.28 U
1,1-DICHLOROETHANE	0.15 U	0.15 U	0.15 U	0.15 U
1,1-DICHLOROETHENE	0.19 U	0.19 U	0.19 U	0.19 U
1,1-DICHLOROPROPENE	0.13 U	0.13 U	0.13 U	0.13 U
1,2,3-TRICHLOROBENZENE	0.17 U	0.17 U	0.17 U	0.17 U
1,2,3-TRICHLOROPROPANE	0.43 U	0.43 U	0.43 U	0.43 U
1,2,3-TRIMETHYLBENZENE	0.0059 U	0.0059 U	0.0059 U	0.0059 U
1,2,4-TRICHLOROBENZENE	0.15 U	0.15 U	0.15 U	0.15 U
1,2,4-TRIMETHYLBENZENE	0.12 U	0.12 U	0.12 U	0.12 U
1,2-DIBROMO-3-CHLOROPROPANE	0.67 U	0.67 U	0.67 U	0.67 U
1,2-DIBROMOETHANE	0.24 U	0.24 U	0.24 U	0.24 U
1,2-DICHLOROBENZENE	0.13 U	0.13 U	0.13 U	0.13 U
1,2-DICHLOROETHANE	0.24 B	0.22 U	0.22 U	0.22 U
1,2-DICHLOROPROPANE	0.18 U	0.18 U	0.18 U	0.18 U
1,3-DICHLOROBENZENE	0.14 U	0.14 U	0.14 U	0.14 U
1,3-DICHLOROPROPANE	0.16 U	0.16 U	0.16 U	0.16 U
1,4-DICHLOROBENZENE	0.13 U	0.13 U	0.13 U	0.13 U
2,2-DICHLOROPROPANE	0.13 U	0.13 U	0.13 U	0.13 U
2-BUTANONE	0.57 U	0.82 J	0.99 J	0.57 U
2-CHLOROETHYL VINYL ETHER	0.99 U	0.99 UR	0.99 U	0.99 UR
2-CHLOROTOLUENE	0.11 U	0.11 U	0.11 U	0.11 U

# TABLE ANALYTICAL RESULTS FOR GROUNDWATER - DEEP WELLS DURING DRILLING LOCKHEED MARTIN MIDDLE RIVER COMPLEX MIDDLE RIVER, MARYLAND

# PAGE 2 OF 4

-

SAMPLE ID	MRC-MW94D(72ft)	MRC-MW95D(63ft)	MRC-MW95D(76ft)	MRC-MW96D (65ft)
LABORATORY ID	A0E060602001	A0E110505001	A0E110505002	A0E140486002
SAMPLE DATE	5/5/2010	5/10/2010	5/10/2010	5/13/2010
LOCATION	MRC-MW94D	MRC-MW95D	MRC-MW95D	MRC-MW96D
2-HEXANONE	0.41 U	0.41 U	0.41 U	0.41 U
4-CHLOROTOLUENE	0.18 U	0.18 U	0.18 U	0.18 U
4-ISOPROPYLTOLUENE	0.12 U	0.12 U	0.12 U	0.12 U
4-METHYL-2-PENTANONE	0.32 U	0.32 U	0.32 U	0.32 U
ACETONE	2.2 J	3.9 J	4.6 J	3.4 J
BENZENE	0.13 U	0.13 U	0.13 U	0.13 U
BROMOBENZENE	0.13 U	0.13 U	0.13 U	0.13 U
BROMOCHLOROMETHANE	0.29 U	0.29 U	0.29 U	0.29 U
BROMODICHLOROMETHANE	0.15 U	3.6	3.7	5.4
BROMOFORM	0.64 U	0.64 U	0.64 U	0.64 U
BROMOMETHANE	0.41 U	0.41 U	0.41 U	0.41 U
CARBON DISULFIDE	0.13 U	0.13 U	0.13 U	0.13 U
CARBON TETRACHLORIDE	0.13 U	0.13 U	0.13 U	0.13 U
CHLOROBENZENE	0.15 U	0.15 U	0.15 U	0.15 U
CHLORODIBROMOMETHANE	0.18 U	0.41 J	0.41 J	0.76 J
CHLOROETHANE	0.29 UJ	0.29 U	0.29 U	0.29 U
CHLOROFORM	0.16 U	22	27	23
CHLOROMETHANE	0.3 U	0.3 U	0.3 U	0.3 U
CIS-1,2-DICHLOROETHENE	0.17 U	0.17 U	0.17 U	0.17 U
CIS-1,3-DICHLOROPROPENE	0.14 U	0.14 U	0.14 U	0.14 U
DIBROMOMETHANE	0.28 U	0.28 U	0.28 U	0.28 U
DICHLORODIFLUOROMETHANE	0.31 U	0.31 U	0.31 U	0.31 U
DIISOPROPYL ETHER	1.5 U	1.5 U	1.5 U	1.5 U
ETHYL TERT-BUTYL ETHER	0.11 U	0.11 U	0.11 U	0.11 U
ETHYLBENZENE	0.17 U	0.17 U	0.17 U	0.17 U

# TABLE ANALYTICAL RESULTS FOR GROUNDWATER - DEEP WELLS DURING DRILLING LOCKHEED MARTIN MIDDLE RIVER COMPLEX MIDDLE RIVER, MARYLAND

# PAGE 3 OF 4

-

-----

SAMPLE ID:	MRC-MW94D(72ft)	MRC-MW95D(63ft)	MRC-MW95D(76ft)	MRC-MW96D (65ft)
LABORATORY ID:	A0E060602001	A0E110505001	A0E110505002	A0E140486002
SAMPLE DATE:	5/5/2010	5/10/2010	5/10/2010	5/13/2010
LOCATION:	MRC-MW94D	MRC-MW95D	MRC-MW95D	MRC-MW96D
HEXACHLOROBUTADIENE	0.3 U	0.3 U	0.3 U	0.3 U
ISOPROPYLBENZENE	0.13 U	0.13 U	0.13 U	0.13 U
M+P-XYLENES	0.24 U	0.24 U	0.24 U	0.24 U
METHYL TERT-BUTYL ETHER	0.17 U	0.17 U	0.17 U	0.17 U
METHYLENE CHLORIDE	0.33 U	0.33 U	0.33 U	0.33 U
NAPHTHALENE	0.24 U	0.24 U	0.24 U	0.24 U
N-BUTYLBENZENE	0.12 U	0.12 U	0.12 U	0.12 U
N-PROPYLBENZENE	0.14 U	0.14 U	0.14 U	0.14 U
O-XYLENE	0.14 U	0.14 U	0.14 U	0.14 U
SEC-BUTYLBENZENE	0.13 U	0.13 U	0.13 U	0.13 U
STYRENE	0.11 U	0.11 U	0.11 U	0.11 U
TERT-AMYL METHYL ETHER	0.067 U	0.067 UJ	0.067 UJ	0.067 UJ
TERT-BUTYLBENZENE	0.13 U	0.13 U	0.13 U	0.13 U
TERTIARY-BUTYL ALCOHOL	3.9 UR	3.9 UR	3.9 UR	3.9 UR
TETRACHLOROETHENE	0.29 U	0.29 U	0.29 U	0.29 U
TOLUENE	0.13 U	0.13 U	0.13 U	0.13 U
TOTAL XYLENES	0.28 U	0.28 U	0.28 U	0.28 U
TRANS-1,2-DICHLOROETHENE	0.19 U	0.19 U	0.19 U	0.19 U
TRANS-1,3-DICHLOROPROPENE	0.19 U	0.19 U	0.19 U	0.19 U
TRICHLOROETHENE	0.17 U	0.17 U	0.17 U	0.17 U
TRICHLOROFLUOROMETHANE	0.21 U	0.21 U	0.21 U	0.21 U
VINYL ACETATE	0.19 U	0.19 U	0.19 U	0.19 U
VINYL CHLORIDE	0.22 U	0.22 U	0.22 U	0.22 U

# TABLE ANALYTICAL RESULTS FOR GROUNDWATER - DEEP WELLS DURING DRILLING LOCKHEED MARTIN MIDDLE RIVER COMPLEX MIDDLE RIVER, MARYLAND PAGE 4 OF 4

SAMPLE ID:	MRC-MW94D(72ft)	MRC-MW95D(63ft)	MRC-MW95D(76ft)	MRC-MW96D (65ft)
LABORATORY ID:	A0E060602001	A0E110505001	A0E110505002	A0E140486002
SAMPLE DATE:	5/5/2010	5/10/2010	5/10/2010	5/13/2010
LOCATION:	MRC-MW94D	MRC-MW95D	MRC-MW95D	MRC-MW96D

U - Not detected at listed detection limit.

UJ - Nondetected value considered to be estimated as a result of technical noncompliance.

UL - Nondetected value considered to be biased low as a result of technical noncompliance.

UR - Nondetected value rejected as a result of technical noncompliance.

B - Laboratory blank contamination.

J - Positive result is considered estimated as a result of technical noncompliance.

L - Positive result is considered to be biased low as a result of technical noncompliance.

k - Positive result is considered to be biased high as a result of technical noncompliance.

ug/l - micrograms per liter.

# Chemical Analytical Results for Groundwater - Monitoring Wells, June 2010 Deep Groundwater Investigation Lockheed Martin Middle River Complex, Middle River, Maryland Page 1 of 6

SAMPLE ID: LABORATORY ID: SAMPLE DATE: LOCATION:	MRC-MW93D-061010 A0F110578002 6/10/2010 MRC-MW93D	MRC-MW94D-061010 A0F110578003 6/10/2010 MRC-MW94D	MRC-95D-061110 A0F120439002 6/11/2010 MRC-95D	MRC-96D-061110 A0F120439001 6/11/2010 MRC-96D
VOLATILES (ug/L)				
1,1,1,2-TETRACHLOROETHANE	0.23 U	0.23 U	0.23 U	0.23 U
1,1,1-TRICHLOROETHANE	0.22 U	0.22 U	0.22 U	0.22 U
1,1,2,2-TETRACHLOROETHANE	0.18 U	0.18 U	0.18 U	0.18 U
1,1,2-TRICHLOROTRIFLUOROETHANE	0.28 U	0.28 U	0.28 U	0.28 U
1,1-DICHLOROETHANE	0.15 U	0.15 U	0.15 U	0.15 U
1,1-DICHLOROETHENE	0.19 U	0.19 U	0.19 U	0.19 U
1,1-DICHLOROPROPENE	0.13 U	0.13 U	0.13 U	0.13 U
1,2,3-TRICHLOROBENZENE	0.17 U	0.17 U	0.17 U	0.17 U
1,2,3-TRICHLOROPROPANE	0.43 U	0.43 U	0.43 U	0.43 U
1,2,3-TRIMETHYLBENZENE	0.0059 U	0.0059 U	0.0059 U	0.0059 U
1,2,4-TRICHLOROBENZENE	0.15 U	0.15 U	0.15 U	0.15 U
1,2,4-TRIMETHYLBENZENE	0.12 U	0.12 U	0.12 U	0.12 U
1,2-DIBROMO-3-CHLOROPROPANE	0.67 U	0.67 U	0.67 U	0.67 U
1,2-DIBROMOETHANE	0.24 U	0.24 U	0.24 U	0.24 U
1,2-DICHLOROBENZENE	0.13 U	0.13 U	0.13 U	0.13 U
1,2-DICHLOROETHANE	0.22 U	0.22 U	0.22 U	0.22 U
1,2-DICHLOROPROPANE	0.18 U	0.18 U	0.18 U	0.18 U
1,3-DICHLOROBENZENE	0.14 U	0.14 U	0.14 U	0.14 U
1,3-DICHLOROPROPANE	0.16 U	0.16 U	0.16 U	0.16 U
1,4-DICHLOROBENZENE	0.13 U	0.13 U	0.13 U	0.13 U
2,2-DICHLOROPROPANE	0.13 U	0.13 U	0.13 U	0.13 U
2-BUTANONE	1.5 J	0.57 U	1.4 J	0.57 U
2-CHLOROETHYL VINYL ETHER	0.99 U	0.99 U	0.99 U	0.99 U
2-CHLOROTOLUENE	0.11 U	0.11 U	0.11 U	0.11 U
2-HEXANONE	0.41 U	0.41 U	0.41 U	0.41 U
4-CHLOROTOLUENE	0.18 U	0.18 U	0.18 U	0.18 U
4-ISOPROPYLTOLUENE	0.12 U	0.12 U	0.12 U	0.12 U
4-METHYL-2-PENTANONE	0.67 J	0.32 U	0.32 U	0.32 U
ACETONE	17 B	11 B	20 B	3.8 B
BENZENE	0.13 U	0.13 U	0.13 U	0.13 U
BROMOBENZENE	0.13 U	0.13 U	0.13 U	0.13 U
BROMOCHLOROMETHANE	0.29 U	0.29 U	0.29 U	0.29 U

# Chemical Analytical Results for Groundwater - Monitoring Wells, June 2010 Deep Groundwater Investigation Lockheed Martin Middle River Complex, Middle River, Maryland Page 2 of 6

SAMPLE ID: LABORATORY ID: SAMPLE DATE: LOCATION:	MRC-MW93D-061010 A0F110578002 6/10/2010 MRC-MW93D	MRC-MW94D-061010 A0F110578003 6/10/2010 MRC-MW94D	MRC-95D-061110 A0F120439002 6/11/2010 MRC-95D	MRC-96D-061110 A0F120439001 6/11/2010 MRC-96D
BROMODICHLOROMETHANE	0.15 U	0.23 J	0.31 J	0.15 U
BROMOFORM	0.64 U	0.64 U	0.64 U	0.64 U
BROMOMETHANE	0.41 U	0.41 U	0.41 U	0.41 U
CARBON DISULFIDE	0.71 J	0.13 U	0.13 U	0.13 U
CARBON TETRACHLORIDE	0.13 U	0.13 U	0.13 U	0.13 U
CHLOROBENZENE	0.15 U	0.15 U	0.15 U	0.15 U
CHLORODIBROMOMETHANE	0.18 U	0.18 U	0.37 J	0.18 U
CHLOROETHANE	0.29 U	0.29 U	0.29 U	0.29 U
CHLOROFORM	8.8	10	19	0.19 J
CHLOROMETHANE	0.3 U	0.3 U	0.36 J	0.3 U
CIS-1,2-DICHLOROETHENE	0.17 U	0.17 U	0.17 U	0.17 U
CIS-1,3-DICHLOROPROPENE	0.14 U	0.14 U	0.14 U	0.14 U
DIBROMOMETHANE	0.28 U	0.28 U	0.28 U	0.28 U
DICHLORODIFLUOROMETHANE	0.31 U	0.31 U	0.31 U	0.31 U
DIISOPROPYL ETHER	1.5 U	1.5 U	1.5 U	1.5 U
ETHYL TERT-BUTYL ETHER	0.11 U	0.11 U	0.11 U	0.11 U
ETHYLBENZENE	0.17 U	0.17 U	0.17 U	0.17 U
HEXACHLOROBUTADIENE	0.3 U	0.3 U	0.3 U	0.3 U
ISOPROPYLBENZENE	0.13 U	0.13 U	0.13 U	0.13 U
M+P-XYLENES	0.24 U	0.24 U	0.24 U	0.24 U
METHYL TERT-BUTYL ETHER	0.17 U	0.17 U	0.17 U	0.17 U
METHYLENE CHLORIDE	0.47 B	0.54 B	0.58 B	0.33 U
NAPHTHALENE	0.24 U	0.24 U	0.24 U	0.24 U
N-BUTYLBENZENE	0.12 U	0.12 U	0.12 U	0.12 U
N-PROPYLBENZENE	0.14 U	0.14 U	0.14 U	0.14 U
O-XYLENE	0.14 U	0.14 U	0.14 U	0.14 U
SEC-BUTYLBENZENE	0.13 U	0.13 U	0.13 U	0.13 U
STYRENE	0.11 U	0.11 U	0.11 U	0.11 U
TERT-AMYL METHYL ETHER	0.067 U	0.067 U	0.067 U	0.067 U
TERT-BUTYLBENZENE	0.13 U	0.13 U	0.13 U	0.13 U
TERTIARY-BUTYL ALCOHOL	3.9 UR	3.9 UR	3.9 UR	3.9 UR

# Chemical Analytical Results for Groundwater - Monitoring Wells, June 2010 Deep Groundwater Investigation Lockheed Martin Middle River Complex, Middle River, Maryland Page 3 of 6

SAMPLE ID: LABORATORY ID: SAMPLE DATE: LOCATION:	MRC-MW93D-061010 A0F110578002 6/10/2010 MRC-MW93D	MRC-MW94D-061010 A0F110578003 6/10/2010 MRC-MW94D	MRC-95D-061110 A0F120439002 6/11/2010 MRC-95D	MRC-96D-061110 A0F120439001 6/11/2010 MRC-96D
TETRACHLOROETHENE	0.29 U	0.29 U	0.29 U	0.29 U
TOLUENE	0.22 J	0.21 J	0.28 J	0.13 U
TOTAL XYLENES	0.28 U	0.28 U	0.28 U	0.28 U
TRANS-1,2-DICHLOROETHENE	0.19 U	0.19 U	0.19 U	0.19 U
TRANS-1,3-DICHLOROPROPENE	0.19 U	0.19 U	0.19 U	0.19 U
TRICHLOROETHENE	0.17 U	0.17 U	0.17 U	0.17 U
TRICHLOROFLUOROMETHANE	0.21 U	0.21 U	0.21 U	0.21 U
VINYL ACETATE	0.19 U	0.19 U	0.19 U	0.19 U
VINYL CHLORIDE	0.22 U	0.22 U	0.22 U	0.22 U
SEMIVOLATILES (ug/L)				
1,1-BIPHENYL	0.8 U	0.8 U	0.8 U	0.8 U
1,4-DIOXANE	0.49 U	0.49 U	0.49 U	0.49 U
2,2'-OXYBIS(1-CHLOROPROPANE)	0.4 U	0.4 U	0.4 U	0.4 U
2,4,5-TRICHLOROPHENOL	0.3 U	0.3 U	0.3 U	0.3 U
2,4,6-TRICHLOROPHENOL	0.8 U	0.8 U	0.8 U	0.8 U
2,4-DICHLOROPHENOL	0.8 U	0.8 U	0.8 U	0.8 U
2,4-DIMETHYLPHENOL	0.8 U	0.8 U	0.8 U	0.8 U
2,4-DINITROPHENOL	2.4 U	2.4 U	2.4 U	2.4 U
2,4-DINITROTOLUENE	0.27 U	0.27 U	0.27 U	0.27 U
2,6-DINITROTOLUENE	0.8 U	0.8 U	0.8 U	0.8 U
2-CHLORONAPHTHALENE	0.1 U	0.1 U	0.1 U	0.1 U
2-CHLOROPHENOL	0.29 U	0.29 U	0.29 U	0.29 U
2-METHYLNAPHTHALENE	0.1 U	0.1 U	0.1 U	0.1 U
2-METHYLPHENOL	0.8 U	0.8 U	0.8 U	0.8 U
2-NITROANILINE	0.8 U	0.8 U	0.8 U	0.8 U
2-NITROPHENOL	0.28 U	0.28 U	0.28 U	0.28 U
3,3'-DICHLOROBENZIDINE	0.37 U	0.37 U	0.37 U	0.37 U
3-NITROANILINE	0.28 U	0.28 U	0.28 U	0.28 U
4,6-DINITRO-2-METHYLPHENOL	2.4 U	2.4 U	2.4 U	2.4 U
4-BROMOPHENYL PHENYL ETHER	0.8 U	0.8 U	0.8 U	0.8 U
4-CHLORO-3-METHYLPHENOL	0.8 U	0.8 U	0.8 U	0.8 U
4-CHLOROANILINE	0.8 U	0.8 U	0.8 U	0.8 U

# Chemical Analytical Results for Groundwater - Monitoring Wells, June 2010 Deep Groundwater Investigation Lockheed Martin Middle River Complex, Middle River, Maryland Page 4 of 6

SAMPLE ID: LABORATORY ID: SAMPLE DATE: LOCATION:	MRC-MW93D-061010 A0F110578002 6/10/2010 MRC-MW93D	MRC-MW94D-061010 A0F110578003 6/10/2010 MRC-MW94D	MRC-95D-061110 A0F120439002 6/11/2010 MRC-95D	MRC-96D-061110 A0F120439001 6/11/2010 MRC-96D
4-CHLOROPHENYL PHENYL ETHER	0.3 U	0.3 U	0.3 U	0.3 U
4-METHYLPHENOL	0.8 U	0.8 U	0.8 U	0.8 U
4-NITROANILINE	0.8 U	0.8 U	0.8 U	0.8 U
4-NITROPHENOL	2.4 U	2.4 U	2.4 U	2.4 U
ACENAPHTHENE	0.1 U	0.1 U	0.1 U	0.1 U
ACENAPHTHYLENE	0.1 U	0.1 U	0.1 U	0.1 U
ACETOPHENONE	0.34 U	0.34 U	0.34 U	0.34 U
ANTHRACENE	0.1 U	0.1 U	0.1 U	0.1 U
ATRAZINE	0.34 U	0.34 U	0.34 U	0.34 U
BENZALDEHYDE	0.39 U	0.39 U	0.39 U	0.39 U
BENZO(A)ANTHRACENE	0.1 U	0.1 U	0.1 U	0.1 U
BENZO(A)PYRENE	0.1 U	0.1 U	0.1 U	0.1 U
BENZO(B)FLUORANTHENE	0.1 U	0.1 U	0.1 U	0.1 U
BENZO(G,H,I)PERYLENE	0.1 U	0.1 U	0.1 U	0.1 U
BENZO(K)FLUORANTHENE	0.1 U	0.1 U	0.1 U	0.1 U
BIS(2-CHLOROETHOXY)METHANE	0.32 U	0.32 U	0.32 U	0.32 U
BIS(2-CHLOROETHYL)ETHER	0.1 U	0.1 U	0.1 U	0.1 U
BIS(2-ETHYLHEXYL)PHTHALATE	1.9 B	2.1 B	0.8 U	2.1 B
BUTYL BENZYL PHTHALATE	1.1	1.1	0.8 U	0.8 U
CAPROLACTAM	0.8 U	0.8 U	0.8 U	0.8 U
CARBAZOLE	0.28 U	0.28 U	0.28 U	0.28 U
CHRYSENE	0.1 U	0.1 U	0.1 U	0.1 U
DIBENZO(A,H)ANTHRACENE	0.1 U	0.1 U	0.1 U	0.1 U
DIBENZOFURAN	0.1 U	0.1 U	0.1 U	0.1 U
DIETHYL PHTHALATE	0.6 U	0.6 U	0.6 U	0.6 U
DIMETHYL PHTHALATE	0.29 U	0.29 U	0.29 U	0.29 U
DI-N-BUTYL PHTHALATE	0.67 U	0.67 U	0.67 U	0.67 U
DI-N-OCTYL PHTHALATE	0.8 U	0.8 U	0.8 U	0.8 U
FLUORANTHENE	0.1 U	0.1 U	0.1 U	0.1 U
FLUORENE	0.1 U	0.1 U	0.1 U	0.1 U
HEXACHLOROBENZENE	0.1 U	0.1 U	0.1 U	0.1 U
HEXACHLOROBUTADIENE	0.27 U	0.27 U	0.27 U	0.27 U

# Chemical Analytical Results for Groundwater - Monitoring Wells, June 2010 Deep Groundwater Investigation Lockheed Martin Middle River Complex, Middle River, Maryland Page 5 of 6

SAMPLE ID: LABORATORY ID: SAMPLE DATE: LOCATION:	MRC-MW93D-061010 A0F110578002 6/10/2010 MRC-MW93D	MRC-MW94D-061010 A0F110578003 6/10/2010 MRC-MW94D	MRC-95D-061110 A0F120439002 6/11/2010 MRC-95D	MRC-96D-061110 A0F120439001 6/11/2010 MRC-96D
HEXACHLOROCYCLOPENTADIENE	0.8 U	0.8 U	0.8 U	0.8 U
HEXACHLOROETHANE	0.8 U	0.8 U	0.8 U	0.8 U
INDENO(1,2,3-CD)PYRENE	0.1 U	0.1 U	0.1 U	0.1 U
ISOPHORONE	0.27 U	0.27 U	0.27 U	0.27 U
NAPHTHALENE	0.1 U	0.1 U	0.1 U	0.1 U
NITROBENZENE	0.04 U	0.04 U	0.04 U	0.04 U
N-NITROSODIMETHYLAMINE	0.31 U	0.31 U	0.31 U	0.31 U
N-NITROSO-DI-N-PROPYLAMINE	0.8 U	0.8 U	0.8 U	0.8 U
N-NITROSODIPHENYLAMINE	0.31 U	0.31 U	0.31 U	0.31 U
PENTACHLOROPHENOL	2.4 U	2.4 U	2.4 U	2.4 U
PHENANTHRENE	0.1 U	0.1 U	0.1 U	0.1 U
PHENOL	0.6 U	0.6 U	0.6 U	0.6 U
PYRENE	0.1 U	0.1 U	0.1 U	0.1 U
INORGANICS (ug/L)				
ANTIMONY	0.42 B	0.18 B	0.28 B	0.027 U
ARSENIC	26.1	4.1 J	7.5 K	0.16 U
BARIUM	515	133	209	9
BERYLLIUM	6.7	1.3	2.3	0.11 B
CADMIUM	0.49 J	0.12 B	0.17 B	0.025 U
CHROMIUM	143	28.1	72.9	0.51 B
COBALT	10	2.6	5.5	2.4
COPPER	59.9	13.1	24.6	2.2 B
IRON	66400	18100	40900	202
LEAD	78.2	14.5	30.2	0.019 U
MANGANESE	522	214	262	12.6
MERCURY	0.13 J	0.1 U	0.1 U	0.1 U
MOLYBDENUM	20	5.2	14.1	0.27 U
NICKEL	40.4	20.4	21.3	3.9 K
SELENIUM	6.6	0.96 J	3.2 J	0.13 U
SILVER	0.15 J	0.015 UL	0.015 UL	0.015 U
THALLIUM	0.49 B	0.14 B	0.21 B	0.13 U
VANADIUM	107	28.9	53.2	0.45 J
ZINC	145	35.5	66.8	10.9 B

# Chemical Analytical Results for Groundwater - Monitoring Wells, June 2010 Deep Groundwater Investigation Lockheed Martin Middle River Complex, Middle River, Maryland Page 6 of 6

SAMPLE ID: LABORATORY ID: SAMPLE DATE: LOCATION:	MRC-MW93D-061010 A0F110578002 6/10/2010 MRC-MW93D	MRC-MW94D-061010 A0F110578003 6/10/2010 MRC-MW94D	MRC-95D-061110 A0F120439002 6/11/2010 MRC-95D	MRC-96D-061110 A0F120439001 6/11/2010 MRC-96D
INORGANICS FILTERED (ug/L)				
ANTIMONY	0.32 B	0.13 B	0.35 B	0.2 B
ARSENIC	20.5	1.2 J	2.8 J	0.16 U
BARIUM	399	43.7	11.2	7.6
BERYLLIUM	5.4	0.28 B	0.0059 U	0.085 B
CADMIUM	0.38 B	0.028 B	0.025 U	0.031 B
CHROMIUM	108	6.4	0.89 B	0.17 B
COBALT	8	0.76 J	0.039 B	2.2
COPPER	47.4	4.5 B	2.5 B	1.7 B
IRON	51300	4400	47.2 B	73.4 B
LEAD	63.3	3	0.019 U	0.019 U
MANGANESE	377	75.6	0.17 B	11.1
MERCURY	0.1 U	0.1 U	0.1 U	0.1 U
MOLYBDENUM	22.5	3.8	15.4	0.31 B
NICKEL	32.8	7	0.45 B	3.5 K
SELENIUM	4.5 J	0.4 B	0.5 B	0.18 B
SILVER	0.088 J	0.015 U	0.015 U	0.015 U
THALLIUM	0.34 B	0.13 U	0.13 U	0.24 B
VANADIUM	80.8	6.5 J	6.2 J	0.43 U
ZINC	118	14.5 B	4.9 B	11.3 B

U - Not detected at listed detection limit.

UJ - Nondetected value considered to be estimated as a result of technical noncompliance.

UL - Nondetected value considered to be biased low as a result of technical noncompliance.

UR - Nondetected value rejected as a result of technical noncompliance.

B - Laboratory blank contamination.

J - Positive result is considered estimated as a result of technical noncompliance.

L - Positive result is considered to be biased low as a result of technical noncompliance.

k - Positive result is considered to be biased high as a result of technical noncompliance.

ug/l - micrograms per liter.

# **APPENDIX I—DATA-VALIDATION REPORTS**



Tetra Tech NUS

# **INTERNAL CORRESPONDENCE**

TO:	A. APANAVAGE		DATE:	JULY 13, 2010
FROM:	EDWARD SEDLMYE	2	COPIES:	DV FILE
SUBJECT:	ORGANIC DATA VAL MRC DEEP WELL SDG 0E06602	IDATION- VOC		
SAMPLES:	1/Soil/VOC			
	MRC-MW95D (214ft)			
	4/Aqueous/VOC			
	MRC-MW94D(72ft) MRC-MW96D(65ft)	MRC-MW95D(6	3ft) N	1RC-MW95D(76)

#### **Overview**

The sample set for MRC Deep Well, SDG 0E06602 consists of one (1) soil and four (4) aqueous environmental samples. All samples were analyzed for Target Compound List (TCL) volatile organic compounds (VOC).

The samples were collected by Tetra Tech on May 5, 10, and 13, 2010 and analyzed by Test America (North Canton). All analyses were conducted in accordance with SW-846 Method 8260B analytical and reporting protocols.

The data contained in this SDG were validated with regard to the following parameters: data completeness, holding times, GC/MS tuning, initial/continuing calibrations, laboratory method blank results, surrogate spike recoveries, blank spike/blank spike duplicate results, internal standard recoveries, chromatographic resolution, compound identification, compound quantitation, and detection limits. Areas of concern are listed below.

### <u>Major</u>

- All aqueous and soil VOC initial calibration and continuing calibration relative response factors (RRFs) were less than the 0.05 quality control limit for tert-butyl alcohol. The non-detected results reported for tert-butyl alcohol were rejected (UR).
- The aqueous VOC continuing calibration analyzed on 5/18/10 @ 11:26 on instrument a3ux11 had an RRF less than the 0.05 quality control limit for 2-chloroethyl vinyl ether. The associated sample MRC-MW95D(63ft) had a non-detected result reported for 2-chloroethyl vinyl ether and was rejected (UR).
- The aqueous VOC continuing calibration analyzed on 5/26/10 @10:46 on instrument a3ux11 had an RRF less than the 0.05 quality control limit for 2-chloroethyl vinyl ether. The associated sample MRC-MW96D(65ft) had a non-detected result reported for 2-chloroethyl vinyl ether and was rejected (UR).

• The following compounds were detected in the aqueous method blanks at the maximum concentration indicated below:

Compound	Concentration	Action Level
Hexachlorobutadiene	0.42 ug/L	2.1 ug/L
Naphthalene	0.32 ug/L	1.6 ug/L
1,2,3-Trichlorobenzene	0.42 ug/L	2.1 ug/L
1,2,4-Trichlorobenzene	0.24 ug/L	1.2 ug/L
1,2-Dichloroethane	0.28 ug/L	1.4 ug/L

An action level of 5X the maximum contaminant concentration was established for hexachlorobutadiene, naphthalene, 1,2,3-trichlorobenzene, 1,2,4-trichlorobenzene, and 1,2-dichloroethane to evaluate laboratory contamination. Dilution factors and sample aliquots were taken into consideration during the application of all action levels. Positive result for 1,2-dichloroethane below the blank action level was qualified (B) as a result of blank contamination in sample MRC-MW94D(72ft).

 The following compounds were detected in the soil method blank at the maximum concentration indicated below:

Compound	Concentration	Action Level
Naphthalene	0.36 ug/kg	1.8 ug/kg
1,2,4-Trichlorobenzene	0.32 ug/kg	1.6 ug/kg
Methylene chloride	0.80 ug/kg	8 ug/kg
Acetone	9.0 ug/kg	90 ug/kg
2-Hexanone	0.64 ug/kg	3.2 ug/kg
Toluene	0.82 ug/kg	4.1 ug/kg

An action level of 10X the maximum contaminant concentration was established for methylene chloride and acetone; 5X for naphthalene, 1,2,3-trichlorobenzene, 1,2,4-trichlorobenzene, 1,2-dichloroethane, and 2-hexanone to evaluate laboratory contamination. Dilution factors, percent solids, and sample aliquots were taken into consideration during the application of all action levels. Positive results for naphthalene, methylene chloride, acetone, 2-hexanone, and toluene below the blank action level were qualified (B) as a result of blank contamination.

- The aqueous VOC continuing calibration % D was greater than the quality control limit of 50% for chloroethane for instrument a3ux11 on 05/13/10 @ 11:37. The nondetected chloroethane result for sample MRC-MW94D(72ft) was qualified as estimated (UJ).
- The aqueous VOC continuing calibration % D was greater than the quality control limit of 50% for tert-amy methyl ether for instrument a3ux11 on 05/18/10 @ 11:50. The nondetected tert-amy methyl ether result for sample MRC-MW95D(63ft) was qualified as estimated (UJ).
- The aqueous VOC continuing calibration % D was greater than the quality control limit of 50% for tert-amy methyl ether for instrument a3ux11 on 05/18/10 @ 11:50. The nondetected tert-amy methyl ether result for sample MRC-MW95D(63ft) was qualified as estimated (UJ).
- The aqueous VOC continuing calibration % D was greater than the quality control limit of 50% for tert-amy methyl ether for instrument a3ux11 on 05/19/10 @ 12:31. The nondetected tert-

amy methyl ether result for sample MRC-MW95D(76ft) was qualified as estimated (UJ).

• The aqueous VOC continuing calibration % D was greater than the quality control limit of 50% for tert-amy methyl ether for instrument a3ux11 on 05/26/10 @ 11:10. The nondetected tert-amy methyl ether result for sample MRC-MW96D(65ft) was qualified as estimated (UJ).

#### <u>Notes</u>

The aqueous VOC continuing calibration % Ds were greater than the quality control limit of 25% but less than 50% for bromomethane, trichlorofluoromethane, methylene chloride, vinyl acetate, 2-chloroethyl vinyl ether, bromoform, naphthalene, dichlorofluoromethane, and tert-butylbenzene, and tert-amy methyl ether for instrument a3ux11 on 05/13/10 @ 11:37. The associated sample, MRC-MW94D(72ft), had non-detects for the aforementioned compounds and no data qualification was necessary.

The aqueous VOC continuing calibration % Ds were greater than the quality control limit of 25% but less than 50% for chloromethane, methyl tert-butyl ether, bromoform, 1,2,4-trichlorobenzene, naphthalene, and tert-butylbenzene for instrument a3ux11 on 05/18/10 @ 11:26. The associated sample, MRC-MW95D(63ft), had non-detects for the aforementioned compounds and no data qualification was necessary.

The aqueous VOC continuing calibration % Ds were greater than the quality control limit of 25% but less than 50% for chloromethane, trichlorofluoromethane, methyl tert-butyl ether, vinyl acetate, 2-chloroethyl vinyl ether, 1,2,4-trichlorobenzene, hexachlorobutaadiene, naphthalene, 1,2,3-trichlorobenzene, and tert-butylbenzene for instrument a3ux11 on 05/19/10 @ 12:08. The associated sample, MRC-MW95D(76), had non-detects for the aforementioned compounds and no data qualification was necessary.

The aqueous VOC continuing calibration % Ds were greater than the quality control limit of 25% but less than 50% for chloromethane, bromomethane, chloroethane, acetone, carbon disulfide, methylene chloride, methyl tert-butyl ether, vinyl acetate, bromoform, 1,2,4-trichlorobenzene, hexachlorobutaadiene, naphthalene, 1,2,3-trichlorobenzene, and tert-butylbenzene for instrument a3ux11 on 05/26/10 @ 10:46. The associated sample, MRC-MW96D(65ft), had non-detects for the aforementioned compounds and no data qualification was necessary.

The soil VOC continuing calibration % Ds were greater than the quality control limit of 25% but less than 50% for carbon disulfide, tert-butylbenzene, and tert-amy methyl ether for instrument a3ux14 on 05/18/10 @ 10:52. The associated sample, MRC-MW95D (214ft), had non-detects for the aforementioned compounds and no data qualification was necessary.

The matrix spike / matrix spike duplicate (MS/MSD) associated with preparation batches 0139112 and 0140083 had relative percent differences (RPDs) greater the laboratory control limit for 1,1-dichloroethene. The MS and MSD had acceptable recoveries. This sample was not a Tetra Tech sample and no action was taken on this basis.

#### Executive Summary

**Laboratory Performance:** The VOC compound tert-butyl alcohol was rejected in all samples due to a poor response factor. Chloroethane and tert-amy methyl ether were qualified in several samples due to a continuing calibration %D greater than 50%. The VOC compound 2-chloroethyl vinyl ether was rejected in two samples due to a poor response factor. Blank contamination for the VOC fraction resulted in the qualification of data.

#### Other Factors Affecting Data Quality: None.

The data for these analyses were reviewed with reference to Region III modifications to U.S. EPA National Functional Guidelines for Organic Data Validation (Sept. 1994). The text of this report has been formulated to address only those problem areas affecting data quality.

and

Tetra Tech NUS Edward SedImyer Chemist/Data Validator

Zetra Tech NUS Joseph A. Samchuck Quality Assurance Officer

Attachments: Appendix A – Qualified Analytical Results Appendix B – Results as Reported by the Laboratory Appendix C – Support Documentation

# Appendix A

**Qualified Analytical Results** 

#### **Data Validation Qualifier Codes:**

- A = Lab Blank Contamination
- B = Field Blank Contamination
- C = Calibration Noncompliance (e.g. % RSDs, %Ds, ICVs, CCVs, RRFs, etc.)
- C01 = GC/MS Tuning Noncompliance
- D = MS/MSD Recovery Noncompliance
- E = LCS/LCSD Recovery Noncompliance
- F = Lab Duplicate Imprecision
- G = Field Duplicate Imprecision
- H = Holding Time Exceedance
- I = ICP Serial Dilution Noncompliance
- J = GFAA PDS GFAA MSA's r < 0.995 / ICP PDS Recovery Noncompliance
- K = ICP Interference includes ICS % R Noncompliance
- L = Instrument Calibration Range Exceedance
- M = Sample Preservation Noncompliance
- N = Internal Standard Noncompliance.
- N01 = Internal Standard Recovery Noncompliance Dioxins
- N02 = Recovery Standard Noncompliance Dioxins
- N03 = Clean-up Standard Noncompliance Dioxins
- O = Poor Instrument Performance (e.g. base-line drifting)
- P = Uncertainty near detection limit (< 2 x IDL for inorganics and <CRQL for organics)
- Q = Other problems (can encompass a number of issues; e.g. chromatography, interferences, etc.)
- R = Surrogates Recovery Noncompliance
- S = Pesticide/PCB Resolution
- T = % Breakdown Noncompliance for DDT and Endrin
- U = % Difference between columns/detectors >25% for positive results determined via GC/HPLC
- V = Non-linear calibrations; correlation coefficient r < 0.995
- W = EMPC result
- X = Signal to noise response drop
- Y = Percent solids <30%
- Z = Uncertainty at 2 sigma deviation is greater than sample activity

PROJ_NO: 02720	NSAMPLE	MRC-MW94D	(72ft)		MRC-MW95D	(63ft)		MRC-MW95D	76ft)		MRC-MW96D	(65ft)	
SDG: 0E06602	LAB_ID	A0E06060200	1		A0E11050500	1		A0E11050500	2	•••••••••••••••••••••••••••••••••••••••	A0E14048600		
FRACTION: OV	SAMP_DATE	5/5/2010			5/10/2010			5/10/2010			5/13/2010		
MEDIA: WATER	QC_TYPE	NM			NM			NM			NM		
	UNITS	UG/L			UG/L			UG/L			UG/L		
	PCT_SOLIDS	0.0			0.0			0.0			0.0		
	DUP_OF												
PARAMETER		RESULT	VQL	QLCD	RESULT	VQL	QLCD	RESULT	VQL	QLCD	RESULT	VQL	QLCD
1,1,1,2-TETRACHLOROE	THANE	0.23	U		0.23	U		0.23	U	····	0.23	U	
I,1,1-TRICHLOROETHAN	NE	0.22	U		0.22	U		0.22	U		0.22		
1,1,2,2-TETRACHLOROE	THANE	0.18	U		0.18	U		0.18	U		0.18		
,1,2-TRICHLOROTRIFL	JOROETHANE	0.28	U		0.28	U		0.28	U		0.28	U	
,1-DICHLOROETHANE		0.15	U		0.15	U		0.15	U		0.15		
,1-DICHLOROETHENE		0.19	U		0.19	U		0.19		-	0.19		-
,1-DICHLOROPROPEN	=	0.13	U		0.13	U		0.13			0.13		
,2,3-TRICHLOROBENZE	INE	0.17	U		0.17	U		0.17			0.17		
,2,3-TRICHLOROPROP	ANE	0.43	U		0.43			0.43			0.43		
,2,3-TRIMETHYLBENZE	NE	0.0059	U		0.0059	U	-	0.0059		-	0.0059		
,2,4-TRICHLOROBENZE	INE	0.15	U		0.15	U		0.15			0.15		
,2,4-TRIMETHYLBENZE	NE	0.12	υ		0.12	U		0.12		-	0.12		
,2-DIBROMO-3-CHLORO	OPROPANE	0.67	U		0.67	U		0.67		_	0.67		
,2-DIBROMOETHANE		0.24	U		0.24	U		0.24			0.24		
,2-DICHLOROBENZENE		0.13	U		0.13	U		0.13			0.13		
,2-DICHLOROETHANE		0.24	В	A	0.22	U	1	0.22			0.22		
,2-DICHLOROPROPANE	E .	0.18	U		0.18	U		0.18			0.18		
,3-DICHLOROBENZENE		0.14	U		0.14	U		0.14			0.14		
,3-DICHLOROPROPANE		0.16	U		0.16	U		0.16			0.16		
,4-DICHLOROBENZENE		0.13	U		0.13	U		0.13			0.13		
2,2-DICHLOROPROPANE		0.13	U		0.13	U		0.13			0.13		
-BUTANONE		0.57	U		0.82	J	P	0.99	J	Р	0.57		
-CHLOROETHYL VINYL	ETHER	0.99	U		0.99	UR	С	0.99	U		0.99		С
-CHLOROTOLUENE		0.11	U		0.11	U		0.11	U		0.11		
-HEXANONE		0.41	U		0.41	U		0.41	U		0.41		
-CHLOROTOLUENE		. 0.18	U	-	0.18	U	•	0.18	U		0.18		
-ISOPROPYLTOLUENE		0.12	U		0.12	U		0.12	U		0.12		
-METHYL-2-PENTANON	E	0.32	U		0.32		1	0.32			0.32		
CETONE		2.2	J	P	3.9		P	4.6		P	3.4		P
BENZENE		0.13	U		0.13		-	0.13			0.13		
ROMOBENZENE		0.13	U		0.13			0.13			0.13		
ROMOCHLOROMETHA	NE	0.29	U		0.29		1	0.29			0.29		
ROMODICHLOROMETH	IANE	0.15			3.6			3.7			5.4		
BROMOFORM		0.64			0.64	U		0.64	U		0.64		
ROMOMETHANE	, ,	0.41		<u> </u>	0.41			0.41		+	0.41		
CARBON DISULFIDE		0.13		+	0.13			0.13			0.13		

PROJ_NO: 02720	NSAMPLE	MRC-MW94D	(72ft)		MRC-MW95D	(63ft)		MRC-MW95D	(76ft)		MRC-MW96D	(65ft)	
SDG: 0E06602	LAB_ID	A0E06060200	1		A0E11050500		<u> </u>	A0E11050500	·		A0E14048600		
FRACTION: OV	SAMP_DATE	5/5/2010			5/10/2010			5/10/2010			5/13/2010		
MEDIA: WATER	QC_TYPE	NM			NM			NM			NM		
	UNITS	UG/L			UG/L	-		UG/L		· · ·	UG/L		
	PCT_SOLIDS	0.0			0.0			0.0			0.0		
	DUP_OF												
PARAMETER		RESULT	VQL	QLCD	RESULT	VQL	QLCD	RESULT	VQL	QLCD	RESULT	VQL	QLCD
CARBON TETRACHLORI	DE	0.13	U		0.13	U		0.13	U		0.13	U	
CHLOROBENZENE		0.15	U		0.15	U		0.15	U		0.15		
CHLORODIBROMOMETH	ANE	0.18	ບ		0.41	J	Р	0.41	J	Р	0.76		Р
CHLOROETHANE		0.29	IJ	С	0.29	U		0.29	U	·····	0.29		
CHLOROFORM		0.16	U		22			27			23		
CHLOROMETHANE		0.3	U		0.3	U		0.3	U		0.3	U	
CIS-1,2-DICHLOROETHE	NE	0.17	U		0.17	U		0.17			0.17		
CIS-1,3-DICHLOROPROP	ENE	0.14	U		0.14	U		0.14	U		0.14	U	
DIBROMOMETHANE		0.28	U		0.28	U		0.28		1	0.28		
DICHLORODIFLUOROME	THANE	0.31	U		0.31	U		0.31	U		0.31		
DIISOPROPYL ETHER		1.5	U		1.5	υ		1.5	U		1.5	U	
ETHYL TERT-BUTYL ETH	ER	0.11	U		0.11	U		0.11	U .		0.11		
ETHYLBENZENE		0.17	U		0.17	U		0.17	U		0.17	U	
HEXACHLOROBUTADIEN	IE	0.3	U		0.3	U		0.3	U		0.3	U	
SOPROPYLBENZENE		0.13	U		0.13	υ		0.13	U		0.13	U	
M+P-XYLENES		0.24	U		0.24	υ		0.24	U		0.24	υ	
METHYL TERT-BUTYL ET	HER	0.17	U		0.17	U		0.17	U		0.17	U	
METHYLENE CHLORIDE		0.33	U		0.33	U		0.33	U		0.33	U	
NAPHTHALENE		0.24	U		0.24	U		0.24	U		0.24	U	
N-BUTYLBENZENE		0.12	U		0.12	บ		0.12	U		0.12	U	
N-PROPYLBENZENE		0.14	U		0.14	U		0.14	υ		0.14	U	
O-XYLENE		0.14	U		0.14	U		0.14	U		0.14	U	
SEC-BUTYLBENZENE		0.13	U		0.13	U		0.13	U		0.13	U	
STYRENE		0.11	U		0.11	U		0.11	U		0.11	U	
TERT-AMYL METHYL ETH	IER	0.067	U		0.067	UJ	С	0.067	UJ	С	0.067	IJ	С
TERT-BUTYLBENZENE		0.13	U		0.13	U		0.13	U	1	0.13	U	
TERTIARY-BUTYL ALCOH	IOL	3.9		С	3.9	UR	C	3.9	UR	С	3.9	UR	С
TETRACHLOROETHENE		0.29	U		0.29	U		0.29	U		0.29	υ	
TOLUENE		0.13	U		0.13	U.		0.13	U		0.13	U	
TOTAL XYLENES		0.28	U		0.28	U		0.28	U		0.28	U	-
TRANS-1,2-DICHLOROET	HENE	0.19	U		0.19	U		0.19	U		0.19	U	
TRANS-1,3-DICHLOROPF	OPENE	0.19	U		0.19	U		0.19	U		0.19	U	
TRICHLOROETHENE		0.17	U		0.17	U		0.17	U		0.17		
TRICHLOROFLUOROMET	HANE	0.21	U		0.21	U		0.21	U		0.21	U	1
VINYL ACETATE		0.19	U		0.19	U		0.19	U		0.19		
VINYL CHLORIDE		0.22	11		0.22	11	1	0.22		1	0.22		

PROJ_NO: 02720	NSAMPLE	MRC-MW95D		
SDG: 0E06602	LAB_ID	A0E14048600		
FRACTION: OV	SAMP_DATE	5/13/2010		
MEDIA: SOIL	QC_TYPE	NM		
	UNITS	UG/KG		
	PCT_SOLIDS	86.0		
	DUP_OF			
PARAMETER		RESULT	VQL	QLCD
1,1,1,2-TETRACHLOROET	HANE	0.72	U	
1,1,1-TRICHLOROETHANE		0.65	U	
1,1,2,2-TETRACHLOROET	HANE	0.39	U	
1,1,2-TRICHLOROTRIFLUC	DROETHANE	1.5	U	
1,1-DICHLOROETHANE		0.42	U	
1,1-DICHLOROETHENE		0.6	U	
1,1-DICHLOROPROPENE		0.35	U	
1,2,3-TRICHLOROBENZEN	E	0.44	U	
1,2,3-TRICHLOROPROPAN		1	U	
1,2,3-TRIMETHYLBENZEN	E	0.2	U	
1,2,4-TRICHLOROBENZEN	E	0.31		
1,2,4-TRIMETHYLBENZEN	Ξ	0.75	0.75 U	
1,2-DIBROMO-3-CHLOROF	1.5	U		
1,2-DIBROMOETHANE	1,2-DIBROMOETHANE			
1,2-DICHLOROBENZENE		0.42	U	
1,2-DICHLOROETHANE		0.39	U	
1,2-DICHLOROPROPANE		0.8	U	
1,3-DICHLOROBENZENE		0.41	U	
1,3-DICHLOROPROPANE		0.39	U	
1,4-DICHLOROBENZENE		0.77	U	
2,2-DICHLOROPROPANE		1.1	U	
2-BUTANONE		27		
2-CHLOROETHYL VINYL E	THER	1.6	U	
2-CHLOROTOLUENE		0.46	U	
2-HEXANONE		7.7	В	A
4-CHLOROTOLUENE		0.48	U	
4-ISOPROPYLTOLUENE		0.24		
4-METHYL-2-PENTANONE		0.63	U	
ACETONE		64	_	A
BENZENE		0.52		Р
BROMOBENZENE		0.82	U	
BROMOCHLOROMETHAN	Ε	0.82	U	
BROMODICHLOROMETHA	NE	0.33	U	
BROMOFORM		0.38	υ	
BROMOMETHANE		0.63	U	
CARBON DISULFIDE		0.51	U	
1 of 2				

¹ of 2

PROJ_NO: 02720	NSAMPLE			MRC-MW95D (214ft)				
SDG: 0E06602	LAB_ID	A0E14048600						
FRACTION: OV	SAMP_DATE	5/13/2010						
MEDIA: SOIL	QC_TYPE	NM						
	UNITS	UG/KG						
	PCT_SOLIDS	86.0						
	DUP_OF							
PARAMETER	· · · · ·	RESULT	VQL	QLCD				
CARBON TETRACHLORID	E	0.43	U					
CHLOROBENZENE	5	0.38	U					
CHLORODIBROMOMETHA	NE	0.64	U					
CHLOROETHANE		1	U					
CHLOROFORM		0.34	υ					
CHLOROMETHANE		0.48	υ					
CIS-1,2-DICHLOROETHEN	E	0.42	U					
CIS-1,3-DICHLOROPROPE	NE	0.39	U					
DIBROMOMETHANE		0.73	U					
DICHLORODIFLUOROMET	HANE	0.58	U					
DIISOPROPYL ETHER		1.7	U					
ETHYL TERT-BUTYL ETHE	R	0.26	U					
ETHYLBENZENE		0.41	J	Р				
HEXACHLOROBUTADIENE	1.4	U	·					
ISOPROPYLBENZENE	0.19	U						
M+P-XYLENES		1.4	U					
METHYL TERT-BUTYL ETH	IER	0.5	U					
METHYLENE CHLORIDE		0.99	В	Α				
NAPHTHALENE		0.37	В	Α				
N-BUTYLBENZENE		0.35	J ·	Р				
N-PROPYLBENZENE		0.46	U					
O-XYLENE		0.59	J,	Р				
SEC-BUTYLBENZENE		0.21	U					
STYRENE		0.17	U					
TERT-AMYL METHYL ETHI	ER	0.43	U					
TERT-BUTYLBENZENE		0.34	U					
TERTIARY-BUTYL ALCOH	OL .	8.8	UR	С				
TETRACHLOROETHENE		0.6	U					
TOLUENE		1.6	В	A				
TOTAL XYLENES		1.5	J ·	Р				
TRANS-1,2-DICHLOROETH	IENE	0.48	U					
TRANS-1,3-DICHLOROPRO	OPENE	0.63	U					
TRICHLOROETHENE		0.49	U					
TRICHLOROFLUOROMETH	HANE	0.39	U					
VINYL ACETATE		0.29	U					
VINYL CHLORIDE		0.45						
2 of 2								

7/12/2010

# <u>Appendix B</u>

Results as Reported by the Laboratory

# Client Sample ID: MRC-MW94D(72ft)

# GC/MS Volatiles

Lot-Sample #: A0E060602-001	Work Order #: L05K41AA	Matrix WATER
Date Sampled: 05/05/10 12:45	Date Received: 05/06/10	
<b>Prep Date:</b> 05/13/10	Analysis Date: 05/13/10	
Prep Batch #: 0135112		
Dilution Factor: 1	Initial Wgt/Vol: 5 mL	Final Wgt/Vol: 5 mL
	Method: SW846 8260B	-

		REPORTI	NG	
PARAMETER	RESULT	LIMIT	UNITS	MDL
Acetone	2.2 J	5.0	ug/L	1.1
Bromobenzene	ND	1.0	ug/L	0.13
Bromochloromethane	ND	1.0	ug/L	0.29
Bromodichloromethane	ND	1.0	ug/L	0.15
2-Butanone	ND	5.0	ug/L	0.57
n-Butylbenzene	ND	1.0	ug/L	0.12
sec-Butylbenzene	ND .	1.0	ug/L	0.13
tert-Butylbenzene	ND	1.0	ug/L	0.13
Carbon disulfide	ND	1.0	ug/L	0.13
Dibromochloromethane	ND	1.0	ug/L	0.18
1,2-Dibromo-3-chloro-	ND	2.0	ug/L	0.67
propane			_	
2-Chloroethyl vinyl ether	ND	5.0	ug/L	0.99
2-Chlorotoluene	ND	1.0	ug/L	0.11
4-Chlorotoluene	ND	1.0	ug/L	0.18
1,2-Dibromoethane	ND	1.0	ug/L	0.24
Dibromomethane	ND	1.0	ug/L	0.28
1,2-Dichlorobenzene	ND	1.0	ug/L	0.13
1,3-Dichlorobenzene	ND	1.0	ug/L	0.14
1,4-Dichlorobenzene	ND	1.0	ug/L	0.13
Dichlorodifluoromethane	ND	1.0	ug/L	0.31
cis-1,2-Dichloroethene	ND	1.0	ug/L	0.17
trans-1,2-Dichloroethene	ND	1.0	ug/L	0.19
1,3-Dichloropropane	ND	1.0	ug/L	0.16
2,2-Dichloropropane	ND	1.0	ug/L	0.13
1,1-Dichloropropene	ND	1.0	ug/L	0.13
Trichlorofluoromethane	ND	1.0	ug/L	0.21
Hexachlorobutadiene	ND	1.0	ug/L	0.30
2-Hexanone	ND	5.0	ug/L	0.41
Isopropylbenzene	ND	1.0	ug/L	0.13
p-Isopropyltoluene	ND	1.0	ug/L	0.12
tert-Butyl alcohol	ND	20	ug/L	3.9
4-Methyl-2-pentanone	ND	5.0	ug/L	0.32
Naphthalene	ND	1.0	ug/L	0.24
n-Propylbenzene	ND	1.0	ug/L	0.14
Styrene	ND	1.0	ug/L	0.11
1,1,1,2-Tetrachloroethane	ND	1.0	ug/L	0.23
1,2,3-Trichlorobenzene	ND	1.0	ug/L	0.17

(Continued on next page)

# Client Sample ID: MRC-MW94D(72ft)

#### GC/MS Volatiles

Lot-Sample #...: A0E060602-001 Work Order #...: L05K41AA Matrix...... WATER

		REPORTING	5	
PARAMETER	RESULT	LIMIT	UNITS	MDL
1,2,4-Trichloro-	ND	1.0	ug/L	0.15
benzene			2	-
1,2,3-Trichloropropane	ND	1.0	uq/L	0.43
1,1,2-Trichloro-	ND	1.0	ug/L	0.28
1,2,2-trifluoroethane			- , _	
1,2,4-Trimethylbenzene	ND	1.0	ug/L	0.12
Vinyl acetate	ND	2.0	ug/L	0.19
o-Xylene	ND	1.0	ug/L	0.14
Xylenes (total)	ND	2.0	ug/L	0.28
Methyl tert-butyl ether	ND	5.0	ug/L	0.17
m-Xylene & p-Xylene	ND	2.0	ug/L	0.24
1,2,3-Trimethylbenzene	ND	5.0	ug/L	0.0059
Diisopropyl Ether (DIPE)	ND	5.0	ug/L	1.5
Ethyl-t-Butyl Ether (ETBE)	ND	5.0	ug/L	0.11
Tert-amyl methyl ether (TAME)	ND	5.0	ug/L	0.067
Benzene	ND	1.0	ug/L	0.13
Bromoform	ND	1.0	ug/L	0.64
Bromomethane	ND	1.0	ug/L	0.41
Carbon tetrachloride	ND	1.0	ug/L	0.13
Chlorobenzene	ND	1.0	ug/L	0.15
Chloroethane	ND	1.0	ug/L	0.29
Chloroform	ND	1.0	ug/L	0.16
Chloromethane	ND	1.0	ug/L ug/L	0.30
1,1-Dichloroethane	ND	1.0	ug/L	0.15
1,2-Dichloroethane	0.24 J,B	1.0	ug/L	0.22
1,1-Dichloroethene	ND	1.0	ug/L	0.19
1,2-Dichloropropane	ND	1.0	ug/L	0.18
cis-1,3-Dichloropropene	ND	1.0	ug/L ug/L	0.14
trans-1,3-Dichloropropene	ND	1.0	ug/L	0.19
Ethylbenzene	ND	1.0	ug/L	0.17
Methylene chloride	ND	1.0	ug/L	0.33
1,1,2,2-Tetrachloroethane	ND	1.0	ug/L	0.18
Tetrachloroethene	ND	1.0	ug/L	0.29
Toluene	ND	1.0	ug/L ug/L	0.13
1,1,1-Trichloroethane	ND	1.0	ug/L ug/L	0.22
Trichloroethene	ND	1.0	ug/L ug/L	0.17
Vinyl chloride	ND	1.0	ug/L ug/L	0.22
		1.0	ug/L	0.22
	PERCENT	RECOVERY		
SURROGATE	RECOVERY	LIMITS		
Dibromofluoromethane	95	(73 - 122)	-	
1,2-Dichloroethane-d4	98	(61 - 128)		
Toluene-d8	98	(76 - 110)		
4-Bromofluorobenzene	85	(74 - 116)		

(Continued on next page)

# Client Sample ID: MRC-MW94D(72ft)

#### GC/MS Volatiles

Lot-Sample #...: A0E060602-001 Work Order #...: L05K41AA

Matrix..... WATER

NOTE (S):

J Estimated result. Result is less than RL.

B Method blank contamination. The associated method blank contains the target analyte at a reportable level.

#### MRC-MW94D(72ft)

#### GC/MS Volatiles

Lot-Sample #: A0E060602-001 Work Order	#:	L0.
----------------------------------------	----	-----

)5K41AA Matrix: WATER

MASS SPECTROMETER/DATA SYSTEM (MSDS) TENTATIVELY IDENTIFIED COMPOUNDS

		ESTIMATED	RETENTION	
PARAMETER	CAS #	RESULT	TIME	UNITS
Freon 22		ND N	I	ug/L
None				ug/L

# NOTE (S):

M: Result was measured against nearest internal standard assuming a response factor of 1.

#### Client Sample ID: MRC-MW95D(63ft)

#### GC/MS Volatiles

Lot-Sample #: A0E110505-001	Work Order #: L1CNA1AA	Matrix WG
Date Sampled: 05/10/10 12:45	Date Received: 05/11/10	
Prep Date: 05/18/10	Analysis Date: 05/18/10	
Prep Batch #: 0139112		
Dilution Factor: 1	Initial Wgt/Vol: 5 mL	Final Wgt/Vol: 5 mL
	Method SW846 8260B	_

REPORTING PARAMETER RESULT LIMIT UNITS MDL Acetone 3.9 J 5.0 ug/L 1.1 Bromobenzene ND 1.0 ug/L 0.13 Bromochloromethane ND 1.0 0.29 ug/L Bromodichloromethane 3.6 1.0 ug/L 0.15 2-Butanone 0.82 J 5.0 uq/L 0.57 n-Butylbenzene ND 1.0 ug/L 0.12 sec-Butylbenzene ND 1.0 0.13 uq/L tert-Butylbenzene NÐ 1.0 uq/L 0.13 Carbon disulfide ND 1.0 uq/L 0.13 Dibromochloromethane 0.41 J 1.0 uq/L 0.18 1,2-Dibromo-3-chloro-ND 2.0 ug/L 0.67 propane 2-Chloroethyl vinyl ether ND 5.0 uq/L 0.99 2-Chlorotoluene ND 1.0 ug/L 0.11 4-Chlorotoluene ND 1.0 0.18 ug/L 1,2-Dibromoethane ND 1.0 ug/L 0.24 Dibromomethane ND 1.0 ug/L 0.28 1,2-Dichlorobenzene ND 1.0 ug/L 0.13 1,3-Dichlorobenzene ND 1.0 ug/L 0.14 1,4-Dichlorobenzene ND 1.0 ug/L 0.13 Dichlorodifluoromethane ND 1.0 ug/L 0.31 cis-1,2-Dichloroethene ND 1.0 ug/L 0.17 trans-1,2-Dichloroethene ND 1.0 ug/L 0.19 1,3-Dichloropropane ND 1.0 ug/L 0.16 2,2-Dichloropropane ND 1.0 ug/L 0.13 1,1-Dichloropropene ND 1.0 0.13 ug/L Trichlorofluoromethane ND 1.0 uq/L 0.21 Hexachlorobutadiene ND 1.0 ug/L 0.30 2-Hexanone ND 5.0 ug/L 0.41 Isopropylbenzene ND 1.0 uq/L 0.13 p-Isopropyltoluene ND 1.0 ug/L 0.12 tert-Butyl alcohol ND 20 ug/L 3.9 4-Methyl-2-pentanone ND 5.0 ug/L 0.32 Naphthalene ND 1.0 ug/L 0.24 n-Propylbenzene ND 1.0 ug/L 0.14 Styrene ND 1.0 uq/L 0.11 1,1,1,2-Tetrachloroethane ND 1.0 ug/L 0.23 1,2,3-Trichlorobenzene ND 1.0 ug/L 0.17

(Continued on next page)

# Client Sample ID: MRC-MW95D(63ft)

#### GC/MS Volatiles

Lot-Sample #...: A0E110505-001 Work Order #...: L1CNA1AA

Matrix..... WG

		REPORTI	NG	
PARAMETER	RESULT	LIMIT	UNITS	MDL
1,2,4-Trichloro-	ND	1.0	ug/L	0.15
benzene			2	
1,2,3-Trichloropropane	ND	1.0	ug/L	0.43
1,1,2-Trichloro-	ND	1.0	ug/L	0.28
1,2,2-trifluoroethane			5.	
1,2,4-Trimethylbenzene	ND	1.0	ug/L	0.12
Vinyl acetate	ND	2.0	ug/L	0.19
o-Xylene	ND	1.0	ug/L	0.14
Xylenes (total)	ND	2.0	ug/L	0.28
Methyl tert-butyl ether	ND	5.0	ug/L	0.17
m-Xylene & p-Xylene	ND	2.0	ug/L	0.24
1,2,3-Trimethylbenzene	ND	5.0	ug/L	0.0059
Diisopropyl Ether (DIPE)	ND	5.0	ug/L	1.5
Ethyl-t-Butyl Ether (ETBE)	ND	5.0	ug/L	0.11
Tert-amyl methyl ether (TAME)	ND	5.0	ug/L	0.067
Benzene	ND	1.0	ug/L	0.13
Bromoform	ND	1.0	ug/L	0.64
Bromomethane	ND	1.0	ug/L ug/L	0.84
Carbon tetrachloride	ND	1.0	ug/L	
Chlorobenzene	ND	1.0	ug/L	0.13
Chloroethane	ND	1.0	-	0.15
Chloroform	22	1.0	ug/L	0.29
Chloromethane	ND	1.0	ug/L	0.16
1,1-Dichloroethane	ND	1.0	ug/L	0.30
1,2-Dichloroethane	ND	1.0	ug/L	0.15
1,1-Dichloroethene	ND	1.0	ug/L	0.22
1,2-Dichloropropane	ND	1.0	ug/L	0.19
cis-1,3-Dichloropropene	ND	1.0	ug/L	0.18
trans-1, 3-Dichloropropene	ND		ug/L	0.14
Ethylbenzene	ND	1.0	ug/L	0.19
Methylene chloride	ND	1.0	ug/L	0.17
1,1,2,2-Tetrachloroethane	ND	1.0	ug/L	0.33
Tetrachloroethene	ND	1.0	ug/L	0.18
Toluene		1.0	ug/L	0.29
1,1,1-Trichloroethane	ND	1.0	ug/L	0.13
Trichloroethene	ND	1.0	ug/L	0.22
Vinyl chloride	ND	1.0	ug/L	0.17
vinyi enioride	ND	1.0	ug/L	0.22
SUDDOCAME	PERCENT	RECOVERY	7	
SURROGATE	RECOVERY	LIMITS		
Dibromofluoromethane	100	(73 - 12		
1,2-Dichloroethane-d4	95	(61 - 12		
Toluene-d8	95	(76 - 11		
4-Bromofluorobenzene	84	(74 - 11	6)	

#### NOTE (S):

J Estimated result. Result is less than RL.

#### MRC-MW95D(63ft)

#### GC/MS Volatiles

Lot-Sample #: A0E110505-001 Work Order #: L1CNA1AA

Matrix: WG

MASS SPECTROMETER/DATA SYSTEM (MSDS) TENTATIVELY IDENTIFIED COMPOUNDS

		ESTIMATED	RETENTION	
PARAMETER	CAS #	RESULT	TIME	UNITS
Isopropyl Alcohol	67-63-0	2.5 NJ M	3.0587	ug/L
Freon 22		ND M	I	ug/L

#### NOTE(S):

M: Result was measured against nearest internal standard assuming a response factor of 1.

# Client Sample ID: MRC-MW95D(76ft)

#### GC/MS Volatiles

Lot-Sample #:	A0E110505-002	Work Order #:	L1CNK1AA	Matrix WG	G
Date Sampled:	05/10/10 14:00	Date Received:	05/11/10		
Prep Date:	05/19/10	Analysis Date:	05/19/10		
Prep Batch #:	0140083				
Dilution Factor:	1	<pre>Initial Wgt/Vol:</pre>	5 mL	Final Wgt/Vol: 5	mL
		Method:	SW846 8260B	_	

		REPORTIN	1G		
PARAMETER	RESULT	LIMIT	UNITS	MDL	
Acetone	4.6 J	5.0	ug/L	1.1	
Bromobenzene	ND	1.0	ug/L	0.13	
Bromochloromethane	ND	1.0	ug/L	0.29	
Bromodichloromethane	3.7	1.0	ug/L	0.15	
2-Butanone	0.99 J	5.0	ug/L	0.57	
n-Butylbenzene	ND	1.0	ug/L	0.12	
sec-Butylbenzene	ND	1.0	ug/L	0.13	
tert-Butylbenzene	ND	1.0	ug/L	0.13	
Carbon disulfide	ND	1.0	ug/L	0.13	
Dibromochloromethane	0.41 J	1.0	ug/L	0.18	
1,2-Dibromo-3-chloro-	ND	2.0	ug/L	0.67	
propane					
2-Chloroethyl vinyl ether	ND	5.0	ug/L	0.99	
2-Chlorotoluene	ND	1.0	ug/L	0.11	
4-Chlorotoluene	ND	1.0	ug/L	0.18	
1,2-Dibromoethane	ND	1.0	ug/L	0.24	
Dibromomethane	ND	1.0	ug/L	0.28	
1,2-Dichlorobenzene	ND	1.0	ug/L	0.13	
1,3-Dichlorobenzene	ND	1.0	ug/L	0.14	
1,4-Dichlorobenzene	ND	1.0	ug/L	0.13	
Dichlorodifluoromethane	ND	1.0	ug/L	0.31	
cis-1,2-Dichloroethene	ND	1.0	ug/L	0.17	
trans-1,2-Dichloroethene	ND	1.0	ug/L	0.19	
1,3-Dichloropropane	ND	1.0	ug/L	0.16	
2,2-Dichloropropane	ND	1.0	ug/L	0.13	
1,1-Dichloropropene	ND	1.0	ug/L	0.13	
Trichlorofluoromethane	ND	1.0	ug/L	0.21	
Hexachlorobutadiene	ND	1.0	ug/L	0.30	
2-Hexanone	ND	5.0	ug/L	0.41	
Isopropylbenzene	ND	1.0	ug/L	0.13	
p-Isopropyltoluene	ND	1.0	ug/L	0.12	
tert-Butyl alcohol	ND	20	ug/L	3.9	
4-Methyl-2-pentanone	ND	5.0	ug/L	0.32	
Naphthalene	ND	1.0	ug/L	0.24	
n-Propylbenzene	ND	1.0	ug/L	0.14	
Styrene	ND	1.0	ug/L	0.11	
1,1,1,2-Tetrachloroethane	ND	1.0	ug/L	0.23	
1,2,3-Trichlorobenzene	ND	1.0	ug/L	0.17	

(Continued on next page)

•

.

# Client Sample ID: MRC-MW95D(76ft)

#### GC/MS Volatiles

Lot-Sample #...: A0E110505-002 Work Order #...: L1CNK1AA

Matrix..... WG

		REPORTING			
PARAMETER	RESULT	LIMIT	UNITS	MDL	
1,2,4-Trichloro-	ND	1.0	ug/L	0.15	
benzene					
1,2,3-Trichloropropane	ND	1.0	ug/L	0.43	
1,1,2-Trichloro-	ND	1.0	ug/L	0.28	
1,2,2-trifluoroethane					
1,2,4-Trimethylbenzene	ND	1.0	ug/L	0.12	
Vinyl acetate	ND	2.0	ug/L	0.19	
o-Xylene	ND	1.0	ug/L	0.14	
Xylenes (total)	ND	2.0	ug/L	0.28	
Methyl tert-butyl ether	ND	5.0	ug/L	0.17	
m-Xylene & p-Xylene	ND	2.0	ug/L	0.24	
1,2,3-Trimethylbenzene	ND	5.0	ug/L	0.0059	
Diisopropyl Ether (DIPE)	ND	5.0	ug/L	1.5	
Ethyl-t-Butyl Ether (ETBE)	ND	5.0	ug/L	0.11	
Tert-amyl methyl ether (TAME)	ND	5.0	ug/L	0.067	
Benzene	ND	1.0	ug/L	0.13	
Bromoform	ND	1.0	ug/L	0.64	
Bromomethane	ND	1.0	ug/L	0.41	
Carbon tetrachloride	ND	1.0	ug/L	0.13	
Chlorobenzene	ND	1.0	ug/L	0.15	
Chloroethane	ND	1.0	ug/L	0.29	
Chloroform	27	1.0	ug/L	0.16	
Chloromethane	ND	1.0	ug/L	0.30	
1,1-Dichloroethane	ND	1.0	ug/L	0.15	
1,2-Dichloroethane	ND	1.0	ug/L	0.22	
1,1-Dichloroethene	ND	1.0	ug/L	0.19	
1,2-Dichloropropane	ND	1.0	ug/L	0.18	
cis-1,3-Dichloropropene	ND	1.0	ug/L	0.14	
trans-1,3-Dichloropropene	ND	1.0	ug/L	0.19	
Ethylbenzene	ND	1.0	ug/L	0.17	
Methylene chloride	ND	1.0	ug/L	0.33	
1,1,2,2-Tetrachloroethane	ND	1.0	ug/L	0.18	
Tetrachloroethene	ND	1.0	ug/L	0.29	
Toluene	ND	1.0	ug/L	0.13	
1,1,1-Trichloroethane	ND	1.0	ug/L	0.22	
Trichloroethene	ND	1.0	ug/L	0.17	
Vinyl chloride	ND	1.0	ug/L	0.22	
	PERCENT	RECOVERY			
SURROGATE	RECOVERY	LIMITS			
Dibromofluoromethane	92	(73 - 122			
1,2-Dichloroethane-d4	91	(61 - 128			
Toluene-d8	95	(76 - 110			
4-Bromofluorobenzene	89	(74 - 116	5)		

NOTE (S):

J Estimated result. Result is less than RL.

#### MRC-MW95D(76ft)

#### GC/MS Volatiles

Lot-Sample #: A0E110505-002

Work Order #: L1CNK1AA Matrix: WG

MASS SPECTROMETER/DATA SYSTEM (MSDS) TENTATIVELY IDENTIFIED COMPOUNDS

		ESTIMATED	RETENTION	
PARAMETER	CAS #	RESULT	TIME	UNITS
Isopropyl Alcohol	67-63-0	1.7 NJ	м 3.0589	ug/L
Freon 22		ND	М	ug/L

# NOTE(S):

M: Result was measured against nearest internal standard assuming a response factor of 1.

# Client Sample ID: MRC-MW96D (65ft)

## GC/MS Volatiles

Lot-Sample #:	A0E140486-002	Work Order #:	L1H6H1AA	Matrix:	WG
Date Sampled:	05/13/10 14:45	Date Received:	05/14/10		
Prep Date:	05/26/10	Analysis Date:	05/26/10		
Prep Batch #:	0147259				
Dilution Factor:	1	<pre>Initial Wgt/Vol:</pre>	5 mL	Final Wgt/Vol:	5 mL
		Method:	SW846 8260B		

		REPORTIN	IG	
PARAMETER	RESULT	LIMIT	UNITS	MDL
Acetone	3.4 J	5.0	ug/L	1.1
Bromobenzene	ND	1.0	ug/L	0.13
Bromochloromethane	ND	1.0	ug/L	0.29
Bromodichloromethane	5.4	1.0	ug/L	0.15
2-Butanone	ND	5.0	ug/L	0.57
n-Butylbenzene	ND	1.0	ug/L	0.12
sec-Butylbenzene	ND	1.0	ug/L	0.13
tert-Butylbenzene	ND	1.0	ug/L	0.13
Carbon disulfide	ND	1.0	ug/L	0.13
Dibromochloromethane	0.76 J	1.0	ug/L	0.18
1,2-Dibromo-3-chloro-	ND	2.0	ug/L	0.67
propane				
2-Chloroethyl vinyl ether	ND	5.0	ug/L	0.99
2-Chlorotoluene	ND	1.0	ug/L	0.11
4-Chlorotoluene	ND	1.0	ug/L	0.18
1,2-Dibromoethane	ND	1.0	ug/L	0.24
Dibromomethane	ND	1.0	ug/L	0.28
1,2-Dichlorobenzene	ND	1.0	ug/L	0.13
1,3-Dichlorobenzene	ND	1.0	ug/L	0.14
1,4-Dichlorobenzene	ND	1.0	ug/L	0.13
Dichlorodifluoromethane	ND	1.0	ug/L	0.31
cis-1,2-Dichloroethene	ND	1.0	ug/L	0.17
trans-1,2-Dichloroethene	ND	1.0	ug/L	0.19
1,3-Dichloropropane	ND	1.0	ug/L	0.16
2,2-Dichloropropane	ND	1.0	ug/L	0.13
1,1-Dichloropropene	ND	1.0	ug/L	0.13
Trichlorofluoromethane	ND	1.0	ug/L	0.21
Hexachlorobutadiene	ND	1.0	ug/L	0.30
2-Hexanone	ND	5.0	ug/L	0.41
Isopropylbenzene	ND	1.0	ug/L	0.13
p-Isopropyltoluene	ND	1.0	ug/L	0.12
tert-Butyl alcohol	ND	20	ug/L	3.9
4-Methyl-2-pentanone	ND	5.0	ug/L	0.32
Naphthalene	ND	1.0	ug/L	0.24
n-Propylbenzene	ND	1.0	ug/L	0.14
Styrene	ND	1.0	ug/L	0.11
1,1,1,2-Tetrachloroethane	ND	1.0	ug/L	0.23
1,2,3-Trichlorobenzene	ND	1.0	ug/L	0.17

(Continued on next page)

## Client Sample ID: MRC-MW96D (65ft)

## GC/MS Volatiles

Lot-Sample #...: A0E140486-002 Work Order #...: L1H6H1AA

Matrix..... WG

PARAMETER         RESULT         LIMIT         UNITS         MDL           1,2,4-Trichloro- benzene         ND         1.0         ug/L         0.15           1,2,3-Trichloropropane         ND         1.0         ug/L         0.43           1,1,2-Trichloro- 1,2,2-trifubroethane         ND         1.0         ug/L         0.28           1,2,2-trifubroethane         ND         1.0         ug/L         0.12           vinyl acetate         ND         1.0         ug/L         0.12           o-Xylene         ND         1.0         ug/L         0.12           wethyl tert-butyl ether         ND         2.0         ug/L         0.14           1,2,3-Trimethylbenzene         ND         2.0         ug/L         0.28           Methyl tert-butyl ether         ND         5.0         ug/L         0.059           Disopropyl Ether (DIPE)         ND         5.0         ug/L         0.667           Benzene         ND         1.0         ug/L         0.64           Bromoform         ND         1.0         ug/L         0.64           Bromoform         ND         1.0         ug/L         0.13           Bromoform         ND         1.0			REPORTIN	G	
1, 2, 4-Trichloro- benzeme       ND       1.0       ug/L       0.15         1, 2, 3-Trichloropropane       ND       1.0       ug/L       0.43         1, 1, 2-Trichloro- ND       ND       1.0       ug/L       0.28         1, 2, 2-trifluoroethane       ND       1.0       ug/L       0.12         Vinyl acetate       ND       1.0       ug/L       0.12         O-Xylene       ND       1.0       ug/L       0.14         Xylenes (total)       ND       2.0       ug/L       0.28         Methyl tert-butyl ether       ND       5.0       ug/L       0.24         1, 2, 3-Trimethylbenzene       ND       5.0       ug/L       0.24         1, 2, 3-Trimethylbenzene       ND       5.0       ug/L       0.0059         Disopropyl Ether (DTPE)       ND       5.0       ug/L       0.667         Benzene       ND       1.0       ug/L       0.61         Bromoform       ND       1.0       ug/L       0.41         Chloroethane       ND       1.0       ug/L       0.43         Chorobenzene       ND       1.0       ug/L       0.667         Bracene       ND       1.0       ug/L <th>PARAMETER</th> <th>RESULT</th> <th>LIMIT</th> <th>UNITS</th> <th>MDL</th>	PARAMETER	RESULT	LIMIT	UNITS	MDL
1,2,3-Trichloropropane       ND       1.0       ug/L       0.43         1,1,2-Trichloro-       ND       1.0       ug/L       0.28         1,2,2-trifluoroethane       ND       1.0       ug/L       0.12         Vinyl acetate       ND       1.0       ug/L       0.12         Vinyl acetate       ND       1.0       ug/L       0.14         Xylenes       ND       1.0       ug/L       0.28         Methyl tert-butyl ether       ND       2.0       ug/L       0.28         Methyl tert-butyl ether       ND       5.0       ug/L       0.24         1,2,3-Trimethylbenzene       ND       5.0       ug/L       0.0059         Diisopropyl Ether (DTPE)       ND       5.0       ug/L       0.11         Pertamyl methyl ether (TAME)       ND       5.0       ug/L       0.61         Bromoform       ND       1.0       ug/L       0.64         Bromoform       ND       1.0       ug/L       0.64         Bromoform       ND       1.0       ug/L       0.64         Bromoform       ND       1.0       ug/L       0.29         Chlorobenzene       ND       1.0       ug/L <td< td=""><td>1,2,4-Trichloro-</td><td>ND</td><td>1.0</td><td>ug/L</td><td></td></td<>	1,2,4-Trichloro-	ND	1.0	ug/L	
1,1,2-Trichloro-       ND       1.0       ug/L       0.28         1,2,4-Trimethylbenzene       ND       1.0       ug/L       0.12         Vinyl acetate       ND       1.0       ug/L       0.13         o-Xylene       ND       1.0       ug/L       0.14         Xylenes (total)       ND       2.0       ug/L       0.14         Xylenes total)       ND       2.0       ug/L       0.28         Methyl tert-butyl ether       ND       5.0       ug/L       0.24         1,2,3-Trimethylbenzene       ND       5.0       ug/L       0.0059         Disopropyl Ether (DIPE)       ND       5.0       ug/L       0.11         Tert-amyl methyl ether (TAME)       ND       5.0       ug/L       0.667         Benzene       ND       1.0       ug/L       0.13         Bromoform       ND       1.0       ug/L       0.13         Chlorobenzene       ND       1.0       ug/L       0.13         Chlorobenzene       ND       1.0       ug/L       0.15         Chlorobenzene       ND       1.0       ug/L       0.15         Chlorobenzene       ND       1.0       ug/L       0.15 </td <td></td> <td></td> <td></td> <td></td> <td></td>					
1,2,2-trifluoroethane       ND       1.0       ug/L       0.12         1,2,4-Trimethylbenzene       ND       2.0       ug/L       0.19         o-Xylene       ND       2.0       ug/L       0.14         Xylenes (total)       ND       2.0       ug/L       0.14         Xylenes (total)       ND       2.0       ug/L       0.28         Methyl tert-butyl ether       ND       5.0       ug/L       0.24         1,2,3-Trimethylbenzene       ND       5.0       ug/L       0.25         Diisopropyl Ether (DIPE)       ND       5.0       ug/L       0.15         Ethyl-t-Butyl Ether (ETBE)       ND       5.0       ug/L       0.13         Bromoefnam       ND       1.0       ug/L       0.41         Carbon tetrachloride       ND       1.0       ug/L       0.13         Bromoethane       ND       1.0       ug/L       0.29         Chloroform       23       1.0       ug/L       0.29         Chloroform       23       1.0       ug/L       0.29         Chloroform       23       1.0       ug/L       0.15         1,2-Dichloroethane       ND       1.0       ug/L       <		ND	1.0	ug/L	0.43
1,2,4-Trimethylbenzene         ND         1.0         ug/L         0.12           Vinyl acetate         ND         2.0         ug/L         0.19           o-Xylene         ND         1.0         ug/L         0.14           Xylenes (total)         ND         2.0         ug/L         0.28           Methyl tert-butyl ether         ND         2.0         ug/L         0.24           1,2,3-Trimethylbenzene         ND         2.0         ug/L         0.24           1,2,3-Trimethylbenzene         ND         5.0         ug/L         0.0059           Diisopropyl Ether (DIPE)         ND         5.0         ug/L         0.11           Tert-amyl methyl ether (TAME)         ND         5.0         ug/L         0.667           Benzene         ND         1.0         ug/L         0.41           Chlorothane         ND         1.0         ug/L         0.15           Chlorothane         ND         1.0         ug/L         0.16           Chlorothane         ND         1.0         ug/L         0.16           Chlorothane         ND         1.0         ug/L         0.12           1,2-Dichloroethane         ND         1.0         ug/L<		ND	1.0	ug/L	0.28
Vinyl acetate         ND         2.0         ug/L         0.19 $o^-Xylene$ ND         1.0         ug/L         0.14           Nylenes (total)         ND         2.0         ug/L         0.28           Methyl tert-butyl ether         ND         2.0         ug/L         0.24           1,2,3-Trimethylbenzene         ND         2.0         ug/L         0.0059           Disopropyl Ether (DIPE)         ND         5.0         ug/L         0.11           Tert-anyl methyl ether (TAME)         ND         5.0         ug/L         0.13           Bromoform         ND         1.0         ug/L         0.14           Chlorobenzene         ND         1.0         ug/L         0.14           Chlorobenzene         ND         1.0         ug/L         0.15           Chlorobenzene         ND         1.0         ug/L         0.29           Chlorobenzene         ND         1.0         ug/L         0.29           Chlorobenzene         ND         1.0         ug/L         0.29           Chlorobenzene         ND         1.0         ug/L         0.15           1,1-Dichloroethane         ND         1.0         ug/L					
o-Xylene         ND         1.0 $ug/L$ 0.14           Xylenes (total)         ND         2.0 $ug/L$ 0.28           Methyl tert-butyl ether         ND         5.0 $ug/L$ 0.24           1,2,3-Trimethylbenzene         ND         5.0 $ug/L$ 0.24           1,2,3-Trimethylbenzene         ND         5.0 $ug/L$ 0.0059           Diisopropyl Ether (DTEP)         ND         5.0 $ug/L$ 0.11           Tert-amyl methyl ether (TAME)         ND         5.0 $ug/L$ 0.667           Benzene         ND         1.0 $ug/L$ 0.13           Bromoform         ND         1.0 $ug/L$ 0.14           Carbon tetrachloride         ND         1.0 $ug/L$ 0.13           Chlorobenzene         ND         1.0 $ug/L$ 0.14           Chlorobenzene         ND         1.0 $ug/L$ 0.15           Chlorobenzene         ND         1.0 $ug/L$ 0.16           Chlorobenzene         ND         1.0 $ug/L$ 0.12           Chlorobenzene         ND         1		ND		ug/L	0.12
Xylenes (total)       ND       2.0       ug/L       0.28         Methyl tert-butyl ether       ND       5.0       ug/L       0.17         m-Xylene & p-Xylene       ND       2.0       ug/L       0.24         1,2,3-Trimethylbenzene       ND       5.0       ug/L       0.0059         Diisopropyl Ether (DIEE)       ND       5.0       ug/L       0.11         Tert-anyl methyl ether (TAME)       ND       5.0       ug/L       0.667         Benzene       ND       1.0       ug/L       0.13         Bromoform       ND       1.0       ug/L       0.13         Chlorobethane       ND       1.0       ug/L       0.13         Chlorobethane       ND       1.0       ug/L       0.16         Chlorobethane       ND       1.0       ug/L       0.22         (1-1-Dichoroethane       ND       1.0       ug/L       0.29         Chloroform       23       1.0       ug/L       0.22         (1-1-Dichoroethane       ND       1.0       ug/L       0.15         (1, -Dichloroptopane       ND       1.0       ug/L       0.16         Chloroform       1.0       ug/L       0.14		ND	2.0	ug/L	0.19
Methyl tert-butyl ether       ND       5.0       ug/L       0.17         m=Xylene & p=Xylene       ND       2.0       ug/L       0.24         1,2,3-Trimethylbenzene       ND       5.0       ug/L       0.24         1,2,3-Trimethylbenzene       ND       5.0       ug/L       0.26         Diisopropyl Ether (DIPE)       ND       5.0       ug/L       0.11         Tert-amyl methyl ether (TAME)       ND       5.0       ug/L       0.11         Tert-amyl methyl ether (TAME)       ND       5.0       ug/L       0.11         Bromomethane       ND       1.0       ug/L       0.41       0.64         Bromomethane       ND       1.0       ug/L       0.15       0.15         Chlorobenzene       ND       1.0       ug/L       0.15       0.16         Chlorobenzene       ND       1.0       ug/L       0.30       0.1       1.1       0.15       0.16         Chlorobenzene       ND       1.0       ug/L       0.30       0.1       0.10       0.15       0.16         Chlorobethane       ND       1.0       ug/L       0.12       0.15       0.15       0.1       0.19       0.1       0.19 <td< td=""><td></td><td>ND</td><td>1.0</td><td>ug/L</td><td>0.14</td></td<>		ND	1.0	ug/L	0.14
m-Xylene & p-Xylene         ND         2.0         ug/L         0.24           1,2,3-Trimethylbenzene         ND         5.0         ug/L         0.0059           Disopropyl Ether (DTPE)         ND         5.0         ug/L         0.11           Tert-amyl methyl ether (TAME)         ND         5.0         ug/L         0.667           Benzene         ND         1.0         ug/L         0.64           Bromomethane         ND         1.0         ug/L         0.41           Carbon tetrachloride         ND         1.0         ug/L         0.41           Chlorobenzene         ND         1.0         ug/L         0.41           Chloroform         23         1.0         ug/L         0.29           Chlorobenzene         ND         1.0         ug/L         0.30           1,1-Dichloroethane         ND         1.0         ug/L         0.22           Chloroform         23         1.0         ug/L         0.30           1,2-Dichloroethane         ND         1.0         ug/L         0.30           1,2-Dichloropropane         ND         1.0         ug/L         0.32           1,2-Dichloropropane         ND         1.0		ND	2.0	ug/L	0.28
1,2,3-Trimethylbenzene       ND       5.0       ug/L       0.0059         Diisopropyl Ether (DIPE)       ND       5.0       ug/L       1.5         Ethyl-t-Butyl Ether (ETBE)       ND       5.0       ug/L       0.11         Tert-amyl methyl ether (TAME)       ND       5.0       ug/L       0.11         Pert-amyl methyl ether (TAME)       ND       5.0       ug/L       0.13         Bromomethane       ND       1.0       ug/L       0.64         Bromomethane       ND       1.0       ug/L       0.13         Chlorobenzene       ND       1.0       ug/L       0.13         Chloroform       23       1.0       ug/L       0.15         Chloroform       23       1.0       ug/L       0.30         1,1-Dichloroethane       ND       1.0       ug/L       0.16         Chloropthane       ND       1.0       ug/L       0.19         1,2-Dichloropthane       ND       1.0       ug/L       0.19         1,2-Dichloropropane       ND       1.0       ug/L       0.19         1,2-Dichloropropene       ND       1.0       ug/L       0.19         1,2-Dichloropropene       ND       1.0	—	ND	5.0	ug/L	0.17
Disopropyl Ether (DIPE)         ND         5.0         ug/L         1.5           Ethyl-t-Butyl Ether (ETBE)         ND         5.0         ug/L         0.11           Tert-amyl methyl ether (TAME)         ND         5.0         ug/L         0.11           Benzene         ND         1.0         ug/L         0.13           Bromomethane         ND         1.0         ug/L         0.41           Carbon tetrachloride         ND         1.0         ug/L         0.13           Chlorobenzene         ND         1.0         ug/L         0.13           Chlorobenzene         ND         1.0         ug/L         0.29           Chloroform         23         1.0         ug/L         0.30           1,1-Dichloroethane         ND         1.0         ug/L         0.29           Chloroform         23         1.0         ug/L         0.22           1,1-Dichloroethane         ND         1.0         ug/L         0.19           1,2-Dichloropthane         ND         1.0         ug/L         0.18           cis-1,3-Dichloropropene         ND         1.0         ug/L         0.17           Methylene chloride         ND         1.0 <td< td=""><td></td><td>ND</td><td>2.0</td><td>ug/L</td><td>0.24</td></td<>		ND	2.0	ug/L	0.24
Ethyl-t-Butyl Ether (ETBE)       ND       5.0       ug/L       0.11         Tert-amyl methyl ether (TAME)       ND       5.0       ug/L       0.067         Benzene       ND       1.0       ug/L       0.13         Bromoform       ND       1.0       ug/L       0.41         Carbon tetrachloride       ND       1.0       ug/L       0.41         Carbon tetrachloride       ND       1.0       ug/L       0.13         Chlorobenzene       ND       1.0       ug/L       0.15         Chloroform       23       1.0       ug/L       0.29         Chloroftane       ND       1.0       ug/L       0.30         1,1-Dichloroethane       ND       1.0       ug/L       0.22         1,1-Dichloroethane       ND       1.0       ug/L       0.15         1,2-Dichloropropane       ND       1.0       ug/L       0.19         1,2-Dichloropropane       ND       1.0       ug/L       0.14         trans-1,3-Dichloropropene       ND       1.0       ug/L       0.19         Ethylbenzene       ND       1.0       ug/L       0.33       1,1,2,2-Tetrachloroethane       ND       1.0       ug/L <td< td=""><td>-</td><td>ND</td><td>5.0</td><td>ug/L</td><td>0.0059</td></td<>	-	ND	5.0	ug/L	0.0059
Tert-amyl methyl ether (TAME)       ND       5.0       ug/L       0.067         Benzene       ND       1.0       ug/L       0.13         Bromoform       ND       1.0       ug/L       0.41         Carbon tetrachloride       ND       1.0       ug/L       0.13         Chlorobenzene       ND       1.0       ug/L       0.13         Chlorobenzene       ND       1.0       ug/L       0.15         Chloroform       23       1.0       ug/L       0.29         Chloromethane       ND       1.0       ug/L       0.30         1,1-Dichloroethane       ND       1.0       ug/L       0.30         1,1-Dichloroethane       ND       1.0       ug/L       0.15         1,2-Dichloroptopane       ND       1.0       ug/L       0.19         1,2-Dichloropropane       ND       1.0       ug/L       0.19         1,2-Dichloropropane       ND       1.0       ug/L       0.19         1,2-Dichloropropane       ND       1.0       ug/L       0.17         Methylene chloride       ND       1.0       ug/L       0.33         1,1,2,2-Tetrachloroethane       ND       1.0       ug/L		ND	5.0	ug/L	1.5
Benzene         ND         1.0         ug/L         0.13           Bromoform         ND         1.0         ug/L         0.64           Bromomethane         ND         1.0         ug/L         0.41           Carbon tetrachloride         ND         1.0         ug/L         0.13           Chlorobenzene         ND         1.0         ug/L         0.15           Chlorobenzene         ND         1.0         ug/L         0.16           Chlorobenzene         ND         1.0         ug/L         0.15           1.2-Dichloropethane         ND         1.0         ug/L         0.18           cis-1, 3-Dichloropropane         ND         1.0         ug/L         0.19           Ethylbene chloride         ND         1.0         ug/L         0.18		ND	5.0	ug/L	0.11
Bromoform         ND         1.0         ug/L         0.13           Bromomethane         ND         1.0         ug/L         0.41           Carbon tetrachloride         ND         1.0         ug/L         0.13           Chlorobenzene         ND         1.0         ug/L         0.13           Chlorobenzene         ND         1.0         ug/L         0.29           Chloroform         23         1.0         ug/L         0.30           1,1-Dichloroethane         ND         1.0         ug/L         0.30           1,1-Dichloroethane         ND         1.0         ug/L         0.15           1,2-Dichloroethane         ND         1.0         ug/L         0.19           1,2-Dichloroptopane         ND         1.0         ug/L         0.18           cis-1,3-Dichloropropene         ND         1.0         ug/L         0.19           1,2-Dichloropropene         ND         1.0         ug/L         0.19           thylenzene         ND         1.0         ug/L         0.19           Ethylbenzene         ND         1.0         ug/L         0.33           1,1,2,2-Tetrachloroethane         ND         1.0         ug/L		ND	5.0	ug/L	0.067
Bromomethane         ND         1.0         ug/L         0.41           Carbon tetrachloride         ND         1.0         ug/L         0.41           Carbon tetrachloride         ND         1.0         ug/L         0.13           Chlorobenzene         ND         1.0         ug/L         0.29           Chloroform         23         1.0         ug/L         0.30           1,1-Dichloroethane         ND         1.0         ug/L         0.30           1,1-Dichloroethane         ND         1.0         ug/L         0.30           1,1-Dichloroethane         ND         1.0         ug/L         0.22           1,1-Dichloroethane         ND         1.0         ug/L         0.19           1,2-Dichloropropane         ND         1.0         ug/L         0.18           cis-1,3-Dichloropropene         ND         1.0         ug/L         0.19           Ethylbenzene         ND         1.0         ug/L         0.33           1,1,2,2-Tetrachloroethane         ND         1.0         ug/L         0.33           1,1,2,2-Tetrachloroethane         ND         1.0         ug/L         0.33           1,1,2,2-Tetrachloroethane         ND         1		ND	1.0	ug/L	0.13
Carbon tetrachloride         ND         1.0         ug/L         0.113           Chlorobenzene         ND         1.0         ug/L         0.13           Chlorobenzene         ND         1.0         ug/L         0.13           Chlorobenzene         ND         1.0         ug/L         0.13           Chlorobenzene         ND         1.0         ug/L         0.29           Chlorobenzene         ND         1.0         ug/L         0.30           1,1-Dichlorobethane         ND         1.0         ug/L         0.15           1,2-Dichlorobethane         ND         1.0         ug/L         0.19           1,2-Dichloropropane         ND         1.0         ug/L         0.19           trans-1,3-Dichloropropene         ND         1.0         ug/L         0.17           Methylene chloride         ND         1.0         ug/L         0.33           1,1,2,2-Tetrachloroethane         ND         1.0         ug/L </td <td></td> <td>ND</td> <td>1.0</td> <td>ug/L</td> <td>0.64</td>		ND	1.0	ug/L	0.64
Chlorobenzene         ND         1.0         ug/L         0.15           Chloroethane         ND         1.0         ug/L         0.29           Chloroform         23         1.0         ug/L         0.16           Chloromethane         ND         1.0         ug/L         0.30           1,1-Dichloroethane         ND         1.0         ug/L         0.19           1,2-Dichloroptopane         ND         1.0         ug/L         0.18           cis-1,3-Dichloropropene         ND         1.0         ug/L         0.19           trans-1,3-Dichloropropene         ND         1.0         ug/L         0.19           Ethylbenzene         ND         1.0         ug/L         0.18           Tetrachloroethane         ND         1.0         ug/L         0.29           Toluene         ND         1.0         ug/L         0.22           Trichloroethane         ND         1.0         ug/L		ND	1.0	ug/L	0.41
Chloroethane       ND       1.0       ug/L       0.13         Chloroform       23       1.0       ug/L       0.16         Chloromethane       ND       1.0       ug/L       0.30         1,1-Dichloroethane       ND       1.0       ug/L       0.30         1,1-Dichloroethane       ND       1.0       ug/L       0.15         1,2-Dichloroethane       ND       1.0       ug/L       0.12         1,1-Dichloroethane       ND       1.0       ug/L       0.12         1,2-Dichloroptopane       ND       1.0       ug/L       0.18         cis-1,3-Dichloropropane       ND       1.0       ug/L       0.19         Ethylbenzene       ND       1.0       ug/L       0.17         Methylene chloride       ND       1.0       ug/L       0.33         1,1,2,2-Tetrachloroethane       ND       1.0       ug/L       0.33         1,1,2,2-Tetrachloroethane       ND       1.0       ug/L       0.29         Toluene       ND       1.0       ug/L       0.22         Toluene       ND       1.0       ug/L       0.22         Trichloroethane       ND       1.0       ug/L       0.22		ND	1.0	ug/L	0.13
Chloroform         23         1.0         ug/L         0.16           Chloromethane         ND         1.0         ug/L         0.30           1,1-Dichloroethane         ND         1.0         ug/L         0.15           1,2-Dichloroethane         ND         1.0         ug/L         0.12           1,1-Dichloroethane         ND         1.0         ug/L         0.15           1,2-Dichloroethane         ND         1.0         ug/L         0.19           1,2-Dichloroethane         ND         1.0         ug/L         0.19           1,2-Dichloropropane         ND         1.0         ug/L         0.14           cis-1,3-Dichloropropene         ND         1.0         ug/L         0.19           Ethylbenzene         ND         1.0         ug/L         0.17           Methylene chloride         ND         1.0         ug/L         0.33           1,1,2,2-Tetrachloroethane         ND         1.0         ug/L         0.29           Toluene         ND         1.0         ug/L         0.29           Toluene         ND         1.0         ug/L         0.22           Trichloroethane         ND         1.0         ug/L	· · · · · · · · · · · · · · · · · · ·	ND	1.0	ug/L	0.15
Chloromethane         ND         1.0         ug/L         0.30           1,1-Dichloroethane         ND         1.0         ug/L         0.30           1,2-Dichloroethane         ND         1.0         ug/L         0.15           1,2-Dichloroethane         ND         1.0         ug/L         0.22           1,1-Dichloroethane         ND         1.0         ug/L         0.19           1,2-Dichloropropane         ND         1.0         ug/L         0.18           cis-1,3-Dichloropropene         ND         1.0         ug/L         0.14           trans-1,3-Dichloropropene         ND         1.0         ug/L         0.14           trans-1,3-Dichloropropene         ND         1.0         ug/L         0.17           Methylene chloride         ND         1.0         ug/L         0.33           1,1,2,2-Tetrachloroethane         ND         1.0         ug/L         0.29           Toluene         ND         1.0         ug/L         0.29           Toluene         ND         1.0         ug/L         0.22           Trichloroethane         ND         1.0         ug/L         0.22           Trichloroethene         ND         1.0		ND	1.0	ug/L	0.29
1,1-Dichloroethane       ND       1.0       ug/L       0.15         1,2-Dichloroethane       ND       1.0       ug/L       0.12         1,1-Dichloroethane       ND       1.0       ug/L       0.22         1,1-Dichloroethane       ND       1.0       ug/L       0.19         1,2-Dichloropropane       ND       1.0       ug/L       0.18         cis-1,3-Dichloropropene       ND       1.0       ug/L       0.14         trans-1,3-Dichloropropene       ND       1.0       ug/L       0.19         Ethylbenzene       ND       1.0       ug/L       0.17         Methylene chloride       ND       1.0       ug/L       0.33         1,1,2.2-Tetrachloroethane       ND       1.0       ug/L       0.29         Toluene       ND       1.0       ug/L       0.29         Toluene       ND       1.0       ug/L       0.22         Trichloroethane       ND       1.0       ug/L       0.22         Trichloroethane       ND       1.0       ug/L       0.22         Trichloroethane       ND       1.0       ug/L       0.22         Vinyl chloride       ND       1.0       ug/L		23	1.0	ug/L	0.16
1,2-DichloroethaneND1.0ug/L0.221,1-DichloroetheneND1.0ug/L0.191,2-DichloropropaneND1.0ug/L0.18cis-1,3-DichloropropeneND1.0ug/L0.14trans-1,3-DichloropropeneND1.0ug/L0.19EthylbenzeneND1.0ug/L0.17Methylene chlorideND1.0ug/L0.331,1,2,2-TetrachloroethaneND1.0ug/L0.29TolueneND1.0ug/L0.29TolueneND1.0ug/L0.22TrichloroetheneND1.0ug/L0.22TrichloroetheneND1.0ug/L0.22TrichloroetheneND1.0ug/L0.22SURROGATEPERCENTRECOVERYLIMITSDibromofluoromethane98(73 - 122)		ND	1.0	ug/L	0.30
1,1-DichloroetheneND1.0ug/L0.121,2-DichloropropaneND1.0ug/L0.18cis-1,3-DichloropropeneND1.0ug/L0.14trans-1,3-DichloropropeneND1.0ug/L0.19EthylbenzeneND1.0ug/L0.17Methylene chlorideND1.0ug/L0.331,1,2,2-TetrachloroethaneND1.0ug/L0.29TolueneND1.0ug/L0.29TolueneND1.0ug/L0.22TrichloroetheneND1.0ug/L0.22TrichloroetheneND1.0ug/L0.22TrichloroetheneND1.0ug/L0.22SURROGATEPERCENTRECOVERYLIMITSDibromofluoromethane98 $(73 - 122)$		ND	1.0	ug/L	0.15
1,2-DichloropropaneND1.0ug/L0.18cis-1,3-DichloropropeneND1.0ug/L0.14trans-1,3-DichloropropeneND1.0ug/L0.19EthylbenzeneND1.0ug/L0.17Methylene chlorideND1.0ug/L0.331,1,2,2-TetrachloroethaneND1.0ug/L0.18TetrachloroetheneND1.0ug/L0.29TolueneND1.0ug/L0.131,1,1-TrichloroethaneND1.0ug/L0.22TrichloroetheneND1.0ug/L0.22Vinyl chlorideND1.0ug/L0.22SURROGATEPERCENTRECOVERYLIMITSDibromofluoromethane98 $(73 - 122)$		ND	1.0	ug/L	0.22
cis-1,3-Dichloropropene       ND       1.0       ug/L       0.14         trans-1,3-Dichloropropene       ND       1.0       ug/L       0.19         Ethylbenzene       ND       1.0       ug/L       0.17         Methylene chloride       ND       1.0       ug/L       0.33         1,1,2,2-Tetrachloroethane       ND       1.0       ug/L       0.33         1,1,2,2-Tetrachloroethane       ND       1.0       ug/L       0.29         Toluene       ND       1.0       ug/L       0.13         1,1,1-Trichloroethane       ND       1.0       ug/L       0.22         Trichloroethene       ND       1.0       ug/L       0.22         Vinyl chloride       ND       1.0       ug/L       0.22         SURROGATE       PERCENT       RECOVERY       LIMITS         Dibromofluoromethane       98       (73 - 122)       Image: 1000000000000000000000000000000000000		ND	1.0	ug/L	0.19
trans-1,3-DichloropropeneND1.0ug/L0.19EthylbenzeneND1.0ug/L0.17Methylene chlorideND1.0ug/L0.331,1,2,2-TetrachloroethaneND1.0ug/L0.18TetrachloroetheneND1.0ug/L0.29TolueneND1.0ug/L0.131,1,1-TrichloroethaneND1.0ug/L0.22TrichloroetheneND1.0ug/L0.22TrichloroetheneND1.0ug/L0.22Vinyl chlorideND1.0ug/L0.22SURROGATEPERCENTRECOVERYLIMITSDibromofluoromethane98 $(73 - 122)$		ND	1.0	ug/L	0.18
EthylbenzeneND1.0ug/L0.17Methylene chlorideND1.0ug/L0.331,1,2,2-TetrachloroethaneND1.0ug/L0.18TetrachloroetheneND1.0ug/L0.29TolueneND1.0ug/L0.131,1,1-TrichloroethaneND1.0ug/L0.22TrichloroetheneND1.0ug/L0.22TrichloroetheneND1.0ug/L0.22Vinyl chlorideND1.0ug/L0.22SURROGATEPERCENTRECOVERYLIMITSDibromofluoromethane98 $(73 - 122)$		ND	1.0	ug/L	0.14
Methylene chlorideND1.0ug/L0.331,1,2,2-TetrachloroethaneND1.0ug/L0.18TetrachloroetheneND1.0ug/L0.29TolueneND1.0ug/L0.131,1,1-TrichloroethaneND1.0ug/L0.22TrichloroetheneND1.0ug/L0.22Vinyl chlorideND1.0ug/L0.22PERCENTSURROGATEPERCENTRECOVERYDibromofluoromethane98(73 - 122)		ND	1.0	ug/L	0.19
1,1,2,2-TetrachloroethaneND1.0ug/L0.18TetrachloroetheneND1.0ug/L0.29TolueneND1.0ug/L0.131,1,1-TrichloroethaneND1.0ug/L0.22TrichloroetheneND1.0ug/L0.17Vinyl chlorideND1.0ug/L0.22PERCENTSURROGATEPERCENTRECOVERYDibromofluoromethane98 $(73 - 122)$	-	ND	1.0	ug/L	0.17
TetrachloroetheneND1.0ug/L0.29TolueneND1.0ug/L0.131,1,1-TrichloroethaneND1.0ug/L0.22TrichloroetheneND1.0ug/L0.17Vinyl chlorideND1.0ug/L0.22PERCENTSURROGATEPERCENTRECOVERYDibromofluoromethane98(73 - 122)		ND	1.0	ug/L	0.33
TolueneND1.0ug/L0.251,1,1-TrichloroethaneND1.0ug/L0.131,1,1-TrichloroethaneND1.0ug/L0.22TrichloroetheneND1.0ug/L0.17Vinyl chlorideND1.0ug/L0.22PERCENTSURROGATEPERCENTRECOVERYDibromofluoromethane98(73 - 122)		ND	1.0	ug/L	0.18
1,1,1-TrichloroethaneND1.0ug/L0.13TrichloroetheneND1.0ug/L0.22Vinyl chlorideND1.0ug/L0.17Vinyl chlorideND1.0ug/L0.22PERCENTRECOVERYRECOVERYDibromofluoromethane98(73 - 122)		ND	1.0	ug/L	0.29
TrichloroetheneND1.0ug/L0.17Vinyl chlorideND1.0ug/L0.22SURROGATEPERCENTRECOVERYLIMITSDibromofluoromethane98(73 - 122)		ND	1.0	ug/L	0.13
Vinyl chlorideND1.0ug/L0.22SURROGATEPERCENTRECOVERYLIMITSDibromofluoromethane98(73 - 122)		ND	1.0	ug/L	0.22
PERCENTRECOVERYSURROGATERECOVERYDibromofluoromethane98(73 - 122)		ND	1.0	ug/L	0.17
SURROGATERECOVERYLIMITSDibromofluoromethane98(73 - 122)	Vinyl chloride	ND	1.0	ug/L	0.22
SURROGATERECOVERYLIMITSDibromofluoromethane98(73 - 122)					
Dibromofluoromethane 98 (73 - 122)	CUDDOCAME				
(10 122)		·			
1,2-Dichloroethane-d4 91 (61 - 128)			•	,	
Toluene-d8 96 (76 - 110)				,	
4-Bromofluorobenzene 83 (74 - 116)	4-DIOMOIIMOLODENZENE	రవ	(74 - 116	))	

## NOTE (S):

J Estimated result. Result is less than RL.

## MRC-MW96D (65ft)

## GC/MS Volatiles

Lot-Sample #: A0E140486-002	Work Order #: L1H6H1AA	Matrix: WG
-----------------------------	------------------------	------------

MASS SPECTROMETER/DATA SYSTEM (MSDS) .TENTATIVELY IDENTIFIED COMPOUNDS

		ESTIMATED	RETENTION	
PARAMETER	CAS #	RESULT	TIME	UNITS
Unknown		2.4 J M	3.0588	ug/L

#### NOTE(S):

M: Result was measured against nearest internal standard assuming a response factor of 1.

## Client Sample ID: MRC-MW95D (214ft)

## GC/MS Volatiles

Lot-Sample #: A0E1404	86-001 Work Order #:	L1H521AC Matrix	<b>x:</b> WG	
Date Sampled: 05/13/1	0 11:00 Date Received:	05/14/10		
Prep Date: 05/18/1	0 Analysis Date:	05/18/10		
Prep Batch #: 0139136				
Dilution Factor: 1	Initial Wgt/Vol:	5 g Final	Wgt/Vol: 5 mI	
<b>% Moisture:</b> 14	Method	SW846 8260B		

		REPORTING		
PARAMETER	RESULT	LIMIT	UNITS	MDL
Bromobenzene	ND	5.8	ug/kg	0.82
Bromochloromethane	ND	5.8	ug/kg	0.82
n-Butylbenzene	0.35 J	5.8	ug/kg	0.27
sec-Butylbenzene	ND	5.8	ug/kg	0.21
tert-Butylbenzene	ND	5.8	ug/kg	0.34
1,2-Dibromo-3-chloro-	ND	12	ug/kg	1.5
propane				
2-Chloroethyl vinyl ether	ND	12	ug/kg	1.6
2-Chlorotoluene	ND	5.8	ug/kg	0.46
4-Chlorotoluene	ND	5.8	ug/kg	0.48
1,2-Dibromoethane	ND	5.8	ug/kg	0.58
Dibromomethane	ND	5.8	ug/kg	0.73
1,2-Dichlorobenzene	ND	5.8	ug/kg	0.42
1,3-Dichlorobenzene	ND	5.8	ug/kg	0.41
1,4-Dichlorobenzene	ND	5.8	ug/kg	0.77
Dichlorodifluoromethane	ND	5.8	ug/kg	0.58
cis-1,2-Dichloroethene	ND	5.8	ug/kg	0.42
trans-1,2-Dichloroethene	ND	5.8	ug/kg	0.48
1,3-Dichloropropane	ND	5.8	ug/kg	0.39
2,2-Dichloropropane	ND	5.8	ug/kg	1.1
1,1-Dichloropropene	ND	5.8	ug/kg	0.35
Trichlorofluoromethane	ND	5.8	ug/kg	0.39
Hexachlorobutadiene	ND	5.8	ug/kg	1.4
Isopropylbenzene	ND	5.8	ug/kg	0.19
p-Isopropyltoluene	ND	5.8	ug/kg	0.24
tert-Butyl alcohol	ND	120	ug/kg	8.8
Naphthalene	0.37 J,B	5.8	ug/kg	0.22
n-Propylbenzene	ND	5.8	ug/kg	0.46
1,1,1,2-Tetrachloroethane	ND	5.8	ug/kg	0.72
1,2,3-Trichlorobenzene	ND	5.8	ug/kg	0.44
1,2,4-Trichloro-	ND	5.8	ug/kg	0.31
benzene				
1,2,3-Trichloropropane	ND	5.8	ug/kg	1.0
1,1,2-Trichloro-	ND	5.8	ug/kg	1.5
1,2,2-trifluoroethane				
1,2,4-Trimethylbenzene	ND	5.8	ug/kg	0.75
Vinyl acetate	ND	12	ug/kg	0.29
o-Xylene	0.59 J	5.8	ug/kg	0.41

(Continued on next page)

## Client Sample ID: MRC-MW95D (214ft)

## GC/MS Volatiles

Lot-Sample #...: A0E140486-001 Work Order #...: L1H521AC Matrix..... WG

.

		REPORTIN	IG		
PARAMETER	RESULT	LIMIT	UNITS	MDL	
Methyl tert-butyl ether	ND	12	ug/kg	0.50	-
m-Xylene & p-Xylene	ND	12	ug/kg	1.4	
1,2,3-Trimethylbenzene	ND	5.8	ug/kg	0.20	
Diisopropyl Ether (DIPE)	ND	12	ug/kg	1.7	
Ethyl-t-Butyl Ether (ETBE)	ND	5.8	ug/kg	0.26	
Tert-amyl methyl ether (TAME)	ND	5.8	ug/kg	0.43	
Chloromethane	ND	5.8	ug/kg	0.48	
Bromomethane	ND	5.8	ug/kg	0.63	
Vinyl chloride	ND	5.8	ug/kg	0.45	
Chloroethane	ND	5.8	ug/kg	1.0	
Methylene chloride	0.99 J,B	5.8	ug/kg	0.78	
Acetone	64 B	12	ug/kg	7.3	
Carbon disulfide	ND	5.8	ug/kg	0.51	
1,1-Dichloroethene	ND	5.8	ug/kg	0.60	
1,1-Dichloroethane	ND	5.8	ug/kg	0.42	
Chloroform	ND	5.8	ug/kg	0.34	
1,2-Dichloroethane	ND	5.8	ug/kg	0.39	
2-Butanone	27	12	ug/kg	1.6	
1,1,1-Trichloroethane	ND	5.8	ug/kg	0.65	
Carbon tetrachloride	ND	5.8	ug/kg	0.43	
Bromodichloromethane	ND	5.8	ug/kg	0.33	
1,2-Dichloropropane	ND	5.8	ug/kg	0.80	
cis-1,3-Dichloropropene	ND	5.8	ug/kg	0.39	
Trichloroethene	ND	5.8	ug/kg	0.49	
Dibromochloromethane	ND	5.8	ug/kg	0.64	
Benzene	0.52 J	5.8	ug/kg	0.27	
trans-1,3-Dichloropropene	ND	5.8	ug/kg	0.63	
Bromoform	ND	5.8	ug/kg	0.38	
4-Methyl-2-pentanone	ND	12	ug/kg	0.63	
2-Hexanone	7.7 J,B	12	ug/kg	0.73	
Tetrachloroethene	ND	5.8	ug/kg	0.60	
1,1,2,2-Tetrachloroethane	ND	5.8	ug/kg	0.39	
Toluene	1.6 J,B	5.8	ug/kg	0.31	
Chlorobenzene	ND	5.8	ug/kg	0.38	
Ethylbenzene	0.41 J	5.8	ug/kg	0.30	
Styrene	ND	5.8	ug/kg	0.17	
Xylenes (total)	1.5 J	12	ug/kg	0.78	
- · ·			57 5		
	PERCENT	RECOVERY			
SURROGATE	RECOVERY	LIMITS			
Dibromofluoromethane	90	(59 - 13	8)		
1,2-Dichloroethane-d4	109	(61 - 13			
Toluene-d8	102	(60 - 14			
4-Bromofluorobenzene	90	(47 - 15			
		, 10	- ,		

(Continued on next page)

## Client Sample ID: MRC-MW95D (214ft)

#### GC/MS Volatiles

Lot-Sample #...: A0E140486-001 Work Order #...: L1H521AC

Matrix..... WG

NOTE (S):

Results and reporting limits have been adjusted for dry weight.

J Estimated result. Result is less than RL.

B Method blank contamination. The associated method blank contains the target analyte at a reportable level.

#### MRC-MW95D (214ft)

#### GC/MS Volatiles

Lot-Sample #: A0E140486-001 Work Order #: L1H521AC Matrix: WG

MASS SPECTROMETER/DATA SYSTEM (MSDS) TENTATIVELY IDENTIFIED COMPOUNDS

		ESTIMATED	RETENTIC	N .
PARAMETER	CAS #	RESULT	TIME	UNITS
Acetaldehyde	75-07-0	9.7 NJ	M 1.6534	ug/kg
Butanal	123-72-8	8.1 NJ	M 5.1205	ug/kg
Heptanal	111 <del>-</del> 71-7	12 NJ	M 10.066	ug/kg
Hexanal, 2-ethyl-	123-05-7	57 NJ	M 10.646	ug/kg
2-Octanone	111-13-7	6.9 NJ	M 11.072	ug/kg
1-Hexanol, 2-ethyl-	104-76-7	49 NJ	M 11.462	ug/kg
Freon 22		ND	M	ug/kg

#### NOTE(S):

,

M: Result was measured against nearest internal standard assuming a response factor of 1.

# Appendix C

Support Documentation



**SDG** 0E06602

SORT	UNITS	NSAMPLE	LAB_ID	QC_TYPE	SAMP_DATE	EXTR_DATE	ANAL_DATE	SMP_EXTR	EXTR_ANL	SMP_ANL
OV	UG/KG	MRC-MW95D (214ft)	A0E140486001	NM	05/13/2010	05/18/2010	05/18/2010	5	0	5
OV	UG/L	MRC-MW96D (65ft)	A0E140486002	NM	05/13/2010	05/26/2010	05/26/2010	13	0	13
OV	UG/L	MRC-MW95D(76ft)	A0E110505002	NM	05/10/2010	05/19/2010	05/19/2010	9	. 0	9
OV	UG/L	MRC-MW95D(63ft)	A0E110505001	NM	05/10/2010	05/18/2010	05/18/2010	8	0	8
OV	UG/L	MRC-MW94D(72ft)	A0E060602001	NM	05/05/2010	05/13/2010	05/13/2010	8	0	8

Thursday, July 01, 2010

Page 1 of 1



THE LEADER IN ENVIRONMENTAL TESTING

# ANALYTICAL REPORT

PROJECT NO. 112IC02720

MIDDLE RIVER COMPLEX-DEEP WELL

SDG #: 0E06602

Lot(s): A0E060602, A0E110505, A0E140486

Tony Apanavage

Tetra Tech NUS Inc 20251 Century Blvd Suite 200 Germantown, MD 20874

TESTAMERICA LABORATORIES, INC.

Patinep O'Meara

Approved for release. Patrick O'Meara Project Manager 6/3/2010 6:06 PM

Patrick J. O'Meara Project Manager patrick.omeara@testamericainc.com

June 03, 2010

TestAmerica Laboratories, Inc.TestAmerica North Canton4101 Shuffel Street NW, North Canton, OH44720Tel (330)497-9396Fax (330)497-0772www.testamericainc.com

Shelao

## CASE NARRATIVE 0E06602

The following report contains the analytical results for one solid sample and four water samples submitted to TestAmerica North Canton by Tetra Tech NUS, Inc from the Middle River Complex-Deep Well Site, project number 112IC02720. The samples were received May 06, 2010, May 11, 2010 and May 14, 2010, according to documented sample acceptance procedures.

This SDG consists of (3) laboratory ID's: A0E060602, A0E110505 and A0140486.

TestAmerica utilizes USEPA approved methods in all analytical work. The samples presented in this report were analyzed for the parameter(s) listed on the analytical methods summary page in accordance with the method(s) indicated. Preliminary results were provided to Kelly Carper and Tony Apanavage on May 17, 2010, May 22, 2010 and on May 28, 2010. A summary of QC data for these analyses is included at the back of the report.

TestAmerica North Canton attests to the validity of the laboratory data generated by TestAmerica facilities reported herein. All analyses performed by TestAmerica facilities were done using established laboratory SOPs that incorporate QA/QC procedures described in the applicable methods. TestAmerica's operations groups have reviewed the data for compliance with the laboratory QA/QC plan, and data have been found to be compliant with laboratory protocols unless otherwise noted below.

All solid sample results are reported on an "as received" basis unless otherwise indicated by a dry weight adjustment footnote at the bottom of the analytical report page. The list of parameters which are never reported on a dry weight basis is included on the Sample Summary.

The test results in this report meet all NELAP requirements for parameters for which accreditation is required or available. Any exceptions to NELAP requirements are noted in this report. Pursuant to NELAP, this report may not be reproduced, except in full, without the written approval of the laboratory.

All parameters were evaluated to the method detection limit and include qualified results where applicable.

Please refer to the Quality Control Elements Narrative following this case narrative for additional quality control information.

If you have any questions, please call the Project Manager, Patrick J. O'Meara, at 330-497-9396.

3

# **CASE NARRATIVE (continued)**

This report is sequentially paginated. The final page of the report is labeled as "END OF REPORT."

## SUPPLEMENTAL QC INFORMATION

## SAMPLE RECEIVING

The temperatures of the coolers upon sample receipt were 2.2, 3.4 and 4.0°C.

## **GC/MS VOLATILES**

The sample(s) that contained concentrations of target analyte(s) at a reportable level in the associated Method Blank(s) were flagged with "B". All target analytes in the Method Blank must be below the reporting limit (RL) or the associated sample(s) must be ND with the exception of common laboratory contaminants.

The sample(s) that contain results between the MDL and the RL were flagged with "J". There is a possibility of false positive or mis-identification at these quantitation levels. In analytical methods requiring confirmation of the analyte reported, confirmation was performed only down to the standard reporting limit (SRL). The acceptance criteria for QC samples may not be met at these quantitation levels.

The matrix spike/matrix spike duplicate(s) for batch(es) 0139112 and 0140083 had RPD's outside acceptance limits. However, since the associated method blank(s) and laboratory control sample(s) were in control, no corrective action was necessary.

2-Chloroethyl-vinyl ether cannot be reliably recovered in an acid preserved sample.

The Acetone reporting limits is lower than our standard reporting limit, but is supported by the laboratory's MDL. However, there are no standards in the calibration curve low enough to support this value.

## **GENERAL CHEMISTRY**

The analytical results met the requirements of the laboratory's QA/QC program.

## **QUALITY CONTROL ELEMENTS NARRATIVE**

TestAmerica conducts a quality assurance/quality control (QA/QC) program designed to provide scientifically valid and legally defensible data. Toward this end, several types of quality control indicators are incorporated into the QA/QC program, which is described in detail in QA Policy, QA-003. These indicators are introduced into the sample testing process to provide a mechanism for the assessment of the analytical data. Program or agency specific requirements take precedence over the requirements listed in this narrative.

#### **QC BATCH**

Environmental samples are taken through the testing process in groups called QUALITY CONTROL BATCHES (QC batches). A QC batch contains up to twenty environmental samples of a similar matrix (water, soil) that are processed using the same reagents and standards. TestAmerica North Canton requires that each environmental sample be associated with a QC batch.

Several quality control samples are included in each QC batch and are processed identically to the twenty environmental samples.

For SW846/RCRA methods, QC samples include a METHOD BLANK (MB), a LABORATORY CONTROL SAMPLE (LCS) and, where appropriate, a MATRIX SPIKE/MATRIX SPIKE DUPLICATE (MS/MSD) pair or a MATRIX SPIKE/SAMPLE DUPLICATE (MS/DU) pair. If there is insufficient sample to perform an MS/MSD or an MS/DU, then a LABORATORY CONTROL SAMPLE DUPLICATE (LCSD) is included in the QC batch.

For 600 series/CWA methods, QC samples include a METHOD BLANK (MB), a LABORATORY CONTROL SAMPLE (LCS) and, where appropriate, a MATRIX SPIKE (MS). An MS is prepared and analyzed at a 10% frequency for GC Methods and at a 5% frequency for GC/MS methods.

#### LABORATORY CONTROL SAMPLE

The Laboratory Control Sample is a QC sample that is created by adding known concentrations of a full or partial set of target analytes to a matrix similar to that of the environmental samples in the QC batch. Multi peak responders may not be included in the target spike list due to co-clution. The LCS analyte recovery results are used to monitor the analytical process and provide evidence that the laboratory is performing the method within acceptable guidelines. All control analytes indicated by a bold type in the LCS must meet acceptance criteria. Failure to meet the established recovery guidelines requires the repreparation and reanalysis of all samples in the QC batch. Comparison of only the failed parameters from the first batch are evaluated. The only exception to the rework requirement is that if the LCS recoveries are biased high and the associated sample is ND (non-detected) for the parameter(s) of interest, the batch is acceptable.

At times, a Laboratory Control Sample Duplicate (LCSD) is also included in the QC batch. An LCSD is a QC sample that is created and handled identically to the LCS. Analyte recovery data from the LCSD is assessed in the same way as that of the LCS. The LCSD recoveries, together with the LCS recoveries, are used to determine the reproducibility (precision) of the analytical system. Precision data are expressed as relative percent differences (RPDs). If the RPD fails for an LCS/LCSD and yet the recoveries are within acceptance criteria, the batch is still acceptable.

#### METHOD BLANK

The Method Blank is a QC sample consisting of all the reagents used in analyzing the environmental samples contained in the QC batch. Method Blank results are used to determine if interference or contamination in the analytical system could lead to the reporting of false positive data or elevated analyte concentrations. All target analytes must be below the reporting limits (RL) or the associated sample(s) must be ND except under the following circumstances:

• Common organic contaminants may be present at concentrations up to 5 times the reporting limits. Common metals contaminants may be present at concentrations up to 2 times the reporting limit, or the reported blank concentration must be twenty fold less than the concentration reported in the associated environmental samples. (See common laboratory contaminants listed in the table.)

Volatile (GC or GC/MS)	Semivolatile (GC/MS)	Metals ICP-MS	Metals ICP Trace
Methylene Chloride,	Phthalate Esters	Copper, Iron, Zinc,	Copper, Iron, Zinc, Lead
Acetone, 2-Butanone		Lead, Calcium,	
		Magnesium, Potassium,	
		Sodium, Barium,	
		Chromium, Manganese	

## **QUALITY CONTROL ELEMENTS NARRATIVE (continued)**

- Organic blanks will be accepted if compounds detected in the blank are present in the associated samples at levels 10 times the blank level. Inorganic blanks will be accepted if elements detected in the blank are present in the associated samples at 20 times the blank level.
- Blanks will be accepted if the compounds/elements detected are not present in any of the associated environmental samples.

Failure to meet these Method Blank criteria requires the repreparation and reanalysis of all samples in the QC batch.

#### MATRIX SPIKE/MATRIX SPIKE DUPLICATE

A Matrix Spike and a Matrix Spike Duplicate are a pair of environmental samples to which known concentrations of a full or partial set of target analytes are added. The MS/MSD results are determined in the same manner as the results of the environmental sample used to prepare the MS/MSD. The analyte recoveries and the relative percent differences (RPDs) of the recoveries are calculated and used to evaluate the effect of the sample matrix on the analytical results. Due to the potential variability of the matrix of each sample, the MS/MSD results may not have an immediate bearing on any samples except the one spiked; therefore, the associated batch MS/MSD may not reflect the same compounds as the samples contained in the analytical report. When these MS/MSD results fail to meet acceptance criteria, the data is evaluated. If the LCS is within acceptance criteria, the batch is considered acceptable.

For certain methods, a Matrix Spike/Sample Duplicate (MS/DU) may be included in the QC batch in place of the MS/MSD. For the parameters (i.e. pH, ignitability) where it is not possible to prepare a spiked sample, a Sample Duplicate may be included in the QC batch. However, a Sample Duplicate is less likely to provide usable precision statistics depending on the likelihood of finding concentrations below the standard reporting limit. When the Sample Duplicate result fails to meet acceptance criteria, the data is evaluated.

For certain methods (600 series methods/CWA), a Matrix Spike is required in place of a Matrix Spike/Matrix Spike Duplicate (MS/MSD) or Matrix Spike/Sample Duplicate (MS/DU).

The acceptance criteria do not apply to samples that are diluted.

#### SURROGATE COMPOUNDS

In addition to these batch-related QC indicators, each organic environmental and QC sample is spiked with surrogate compounds. Surrogates are organic chemicals that behave similarly to the analytes of interest and that are rarely present in the environment. Surrogate recoveries are used to monitor the individual performance of a sample in the analytical system.

If surrogate recoveries are biased high in the LCS, LCSD, or the Method Blank, and the associated sample(s) are ND, the batch is acceptable. Otherwise, if the LCS, LCSD, or Method Blank surrogate(s) fail to meet recovery criteria, the entire sample batch is reprepared and reanalyzed. If the surrogate recoveries are outside criteria for environmental samples, the samples will be reprepared and reanalyzed unless there is objective evidence of matrix interference or if the sample dilution is greater than the threshold outlined in the associated method SOP.

The acceptance criteria do not apply to samples that are diluted. All other surrogate recoveries will be reported.

For the GC/MS BNA methods, the surrogate criterion is that two of the three surrogates for each fraction must meet acceptance criteria. The third surrogate must have a recovery of ten percent or greater.

For the Pesticide and PCB methods, the surrogate criterion is that one of two surrogate compounds must meet acceptance criteria. The second surrogate must have a recovery of 10% or greater.



#### **TestAmerica Certifications and Approvals:**

The laboratory is certified for the analytes listed on the documents below. These are available upon-request. California (#01144CA), Connecticut (#PH-0590), Florida (#E87225),

Illinois (#200004), Kansas (#E10336), Minnesota (#39-999-348), New Jersey (#OH001), New York (#10975), Nevada (#OH-000482008A), OhioVAP (#CL0024), Pennsylvania (#008), West Virginia (#210), Wisconsin (#999518190),NAVY, ARMY, USDA Soil Permit

N:\QAQC\Customer Service\Narrative - Combined RCRA CWA 032609.doc

# ANALYTICAL METHODS SUMMARY

## 0E06602

PARAMETER		ANALYTICAL METHOD
	idue as Percent Solids Organics by GC/MS	MCAWW 160.3 MOD SW846 8260B
Reference	s:	
MCAWW	"Methods for Chemical Analysis of Water EPA-600/4-79-020, March 1983 and subsequ	
SW846	"Test Methods for Evaluating Solid Waste Methods", Third Edition, November 1986 a	-

.

# SAMPLE SUMMARY

#### 0E06602 : A0E060602

WO # SAMPLE# CLIENT SAMPLE ID	SAMPLED DATE	SAMP TIME
L05K4 001 MRC-MW94D(72')	05/05/10	12 <b>:</b> 45
NOTE (S):		

- The analytical results of the samples listed above are presented on the following pages.

- All calculations are performed before rounding to avoid round-off errors in calculated results.

- Results noted as "ND" were not detected at or above the stated limit.

- This report must not be reproduced, except in full, without the written approval of the laboratory.

- Results for the following parameters are never reported on a dry weight basis: color, corrosivity, density, flashpoint, ignitability, layers, odor,

paint filter test, pH, porosity pressure, reactivity, redox potential, specific gravity, spot tests, solids, solubility, temperature, viscosity, and weight.

(Continued on next page)

# SAMPLE SUMMARY

#### 0E06602 : A0E110505

WO # SAMPLE	CLIENT SAMPLE ID	SAMPLED DATE	SAMP TIME
L1CNA 001	MRC-MW95D(63')	05/10/10	
L1CNK 002	MRC-MW95D(76')	05/10/10	

#### NOTE (S):

- The analytical results of the samples listed above are presented on the following pages.

- All calculations are performed before rounding to avoid round-off errors in calculated results.

- Results noted as "ND" were not detected at or above the stated limit.

- This report must not be reproduced, except in full, without the written approval of the laboratory.

- Results for the following parameters are never reported on a dry weight basis: color, corrosivity, density, flashpoint, ignitability, layers, odor,

paint filter test, pH, porosity pressure, reactivity, redox potential, specific gravity, spot tests, solids, solubility, temperature, viscosity, and weight.

(Continued on next page)

# SAMPLE SUMMARY

## 0E06602 : A0E140486

WO # SAMPLE	# CLIENT SAMPLE ID	SAMPLED DATE	SAMP TIME
L1H52 001	MRC-MW95D (214')	05/13/10	
L1H6H 002	MRC-MW96D (65')	05/13/10	

#### NOTE (S):

- The analytical results of the samples listed above are presented on the following pages.

- All calculations are performed before rounding to avoid round-off errors in calculated results.

- Results noted as "ND" were not detected at or above the stated limit.

- This report must not be reproduced, except in full, without the written approval of the laboratory.

- Results for the following parameters are never reported on a dry weight basis: color, corrosivity, density, flashpoint, ignitability, layers, odor,

paint filter test, pH, porosity pressure, reactivity, redox potential, specific gravity, spot tests, solids, solubility, temperature, viscosity, and weight.

# Chain of Custody Record

Temperature on Receipt _____



Drinking Water? Yes 🗆 No 🗙

THE LEADER IN ENVIRONMENTAL TESTING

Client		Project	Manad	ger		·						,		·····	Date					hain of	Custodi	Number	
Tetratech NUS		Der		-	ĩ										515110					Chain of Custody Number 154783			3
Address		Telepho	ne Nu	ımber (A	irea Co		/Fax Number								Lab Number					<u>4</u>		100	<u>.</u>
30251 Century Blvd.	~ ~ ~	(30	)	528	5-2	56	3					•								Page _	-1	of	1
ا ب ا ا ا	ip Code	Site Col	ntact			La	5 Cont	tact						Analy									
Project Name and Location (State)	<u> </u>	Fred	ΙK	albe	pro							•	<u> </u>	more s	pace	s neel	aea)						
		CarrierA	waybi	III NUMD	er 🞝							2											
Middle River Complex		<u>I</u>					- JA			· · ·		R										l Instruc	
Project # Rending, Charge	by Ildrel	いれる	7	Matri	x				tainer. ervati			1									onalti	ons of R	eceipt
Sample I.D. No. and Description		-		ST		es.	3	8		I 23		5											
Containers for each sample may be combined on one line	) Date	Time .	¥i.	Aqueo Sed.	Soil	Unpre	H2SO4	CONH	HCI	NaOH ZnAc/	NaC.	Ч		ł									
1RC-MW94D(721)	515110	1245		X					3		ŀ	Y										-	
		19 C					┼╾╼┼	7	-			<b>^</b>	+ +							<u> </u>			
· · · · · · · · · · · · · · · · · · ·						_	$\left  \right $				+		+			_				ļ			
					· .	-						· · ·			<u> </u>  -		<del> </del>		_			······································	
						_									· .					<u> </u>		<u> </u>	
								ς.				_											÷
							+			_		_	+										
						_														•		·	
						1																	· · ·
						+	+				+ - +		+						_				
																				1			
												}											
ossible Hazard Identification		1	San	mple Dis	posal		<u> </u>						<u> </u>		I	14	tee m	av he -		l Ind if eer	nnlee o	e retained	 1
Non-Hazard 🔲 Flammable 🗍 Skin Irritant	Poison B	Unknown		Return	To Clie	ent						rchive .	For		Month			an 1 n			, pios ai	, , , , , , , , , , , , , , , , , , , ,	
	<b>a</b> [7] <b>a</b>	·						Requ	uireme	ents (S	pecity)												
	Days 🗌 21 Day	s 🗌 Othe	er	71-		·	1.0	00-/	und P.		~	/	,,	1						0-4			
$\hat{\mathbf{A}}$			-15				<i>1. H</i>	ecen	ved By	, <b>4</b>		) /	ST 1	q b		_				Date	6/	Time	
		E le			1/1 1/2	13	1			4	-up	-7	75	$\mu$		- <b>/</b>				5/	5///	カン・	·077
Ralinguished By AMUNULI	la	5/5	<u>У/ (</u>		ne	<u> </u>	2. RI	eceiv	vean											Date.	arr-6	Time	
	lo	Date	5/10 5/10	$\frac{1}{L}$	1    '	0 10	2. Ri	eceiv <b>^</b>	N/c	H	1~	Vi	1 4	en	~e⁄	1 t	ET,	Ane	RE	Datej C	12	Time	1972
Radinguished By And Mult	2		5//0	$O \mid L$ $O \mid L$ Tin	1:4	6pm	2. Ri 3. Ri	V	N/c	H	h	Ki		en	~e⁄	1 1	57/	Ane	The k	Date Date Date	1201	Time O Time	0920
Ratinguished By Multure	<u>}</u>	Date 5/5	5//0 5//0		1:4	Opm		V	N/c	H	h	Ki		en	~@⁄	1 1	57/	Ane	RK	Date Date	1201	Time 0 Time	0920
Ratinguished By Autor Multure		Date 5/5	5//0		1:4	Opm		V	N/c	ett.	h	Ki		en	~@/	1 +	St/	Ant	Re	Date Date	1/201	Time 0 Time	0920

Olione ID	pH	Date Initials
Client ID		
13COO)2ZN/NaOH, Wh	aftended prinevel(s). Nitric Acid Lot# 121709-HNO3, Sulfuric Acid Lot# 12170 HOH; Hydrochloric Acid Lot# 092006-HCl; Sodium Hydroxide and Zinc Acetate Lot at time was preservative added to sample(s)?	ot# 100108-
droxide Lot# 100108 _N	mended pH-level(s). Nitric Acid Lot# 121709-HNO3, Sulfuric Acid Lot# 121709-HNO3, Sulfuric Acid Lot# 121700	
Ceiving to meet rocom	Were further preserve	d in Samala
mple(s)		
SAMPLE PRESERV	/ATION	liameter (Notify Da
mple(s)	Were received in	D broken e-
mple(s)_	were received after the recommended hold	ing time had evoiro
mple(s)		
SAMPLE CONDITI	DN	
······································		
· .		
		•
ie ienoming usoropar		
he following discrepar	icies popurodi	
4. CHAIN OF CUSTO	I mort 5/6	
oncerning		/oice Mail T Other
ontacted PM	Were VOAs on the COC?	
3. Was a trip blank or		No []
2. Sufficient quantity		
1. Were air bubbles >	e(s) used for the test(s) indicated? 6 mm in any VOA vials? Yes ↓	No H
0. Were correct both		
Were semplo(a) of		No
		No 🗍
	et Ice K Blue Ice Dry Ice Water None	
COOLANT: W	IR S Other	
METHOD		s/temps
6. Cooler temperatu	used: Bubble Wrap $\square$ Foam $\square$ None $\square$ Other $P4$	TH RAG
5. Packing material	papers signed in the appropriate place? Yes I No I Relinquished Yes I Yes I	
4. Were the custody	rs accompany the sample(s)? Yes 🕅 No 🗌 Relinguished	by client? Yes A
3. Did custody nana	TS accompany the sample (s)? Yes K	No The second
2. Shippers' packing	slip attached to the cooler(s)?	<u> </u>
If YES, are there	any exceptions? Yes	No 🗹
Were custody se		
Were custody se	als on the outside of cooler(s) signed and dated?	
If YES, Quantity	Intact? Yes K	NO NA TI
1. Were custody se	# Multiple Coolers [] Foam Box [] Client Cooler [ als on the outside of the cooler(s)? Yes [% No	Other
TestAmerica Cooler	# Vicini Diop On L VestAmerica Courier	Other
	DHL FAS Stetson Client Drop Off Multiple By:	(Signature)
FedEx 🕅 UPS 🗌		Vh HALL
Client Cooler Received on FedEx 🕅 UPS 🗌		TA-IL II

. 

19

Client ID	Cooler Receipt Form/Narrative Facility <u>pH</u>		
	<u>– µп</u>	Date	Initials
		+	
		+	
			+
			+
		<u> </u>	
· · · · · · · · · · · · · · · · · · ·		<u> </u> '	<u> </u>
		[]	·
		·	[
······································			
· · · · · · · · · · · · · · · · · · ·			
			3
<u>Cooler #</u>			<u> </u>
	Temp. °C	Method	Coolant
·			
· · · · · · · · · · · · · · · · · · ·			
· · · · · · · · · · · · · · · · · · ·			
n a constantino de la			·······
			· · · · · · · · · · · · · · · · · · ·
Iscrepancies Cont'd			
		· · · · · · · · · · · · · · · · · · ·	
			[
and the second se			

North Canton

SOP: NC-SC-0005, Sample Receiving N:\QAQC\WARRATJIV\TesUMmerica\Cooler Receipt TesUMmerica\COOLER_TestAmerica_Rev 66 033108.doc

Chain of	Tempe	erature on Receip.		TestA	merica	21
Custody Record	Drinkin	ng Water? Yes⊡			ENVIRONMENTAL TESTING	
Client Tetratech NUS Address 20251 Century Blvd	Telephol	Manager Murcali ne Number (Area Cod			Date 5110110 Lab Number	Chain of Custody Number 154118
City City State Zip Code MD Project Name and Location (State)	Sile Con Dawi	1)528-30 Markrew Waybill Number	Lah Contact		Analysis (Attach list if more space is needed)	Of
Contract/Purchase Order/Quote No.		Matrix	Containers o Preservative			Special Instructions/ Conditions of Receipt
Sample I.D. No. and Description (Containers for each sample may be combined on one line)		Air Aqueous Sed. Soii	Unpres. H2SO4 HNO3 HCI NaOH	ZIACY NaOH TCLJ		
$\frac{MRC-MW95D(63')}{MRC-MW95D(76')} = 51010$	) <i>1245</i> 1400	X     X	2	X		
Possible Hazard Identification         X       Non-Hazard         Image: Flammable       Skin Irritant         Image: Poison B		Sample Disposal	Disposal By La	b Archive For _	(A tee may be as Months longer than 1 mo	ssessed if samples are retained
Turn Around Time Required       24 Hours     48 Hours     7 Days     14 Days     21 L       1. Reinquished By     14 Days     14 Days     14 Days     14 Days	Days 🗌 Othe	er Time	OC Requirements			Date, Time
2. Helinguished By Paul Deulernd	5/10 Date 5/16	10 1600	2. Received By	Will		<u>310110</u> 1529 Date, Time of 5711/10 1000 H
3. Relinquished By	Date	Time	3. Received By	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	Date Time 0
DISTRIBUTION: WHITE - Returned to Client with Report; CANARY - Sta	vs with the Sampl	le; PINK - Field Copy				N N N

.

Number:       ADE 100 SDS         Sy:       (Signature)         a Courier       Other         a Courier       Other         nt Cooler       Other         ?       Yes         No       NA         Yes       No         Understand       Yes         No       Independent?         Yes       No         Yes       No         Inquished by client?       Yes         Yes       No         Tiple coolers/temps       Independent?
A Courier       (Signature)         a Courier       Other         nt Cooler       Other         ?       Yes         No       NA         Yes       No
A Courier       (Signature)         a Courier       Other         nt Cooler       Other         ?       Yes         No       NA         Yes       No
a Courier Other Other
<pre>t Cooler Other ? Yes No Other NA OTHER ? Yes No OTHER NO NA OTHER ? Yes No OTHER ? Y</pre>
? Yes No No NA Pres No No NA Pres No No NA Pres No No Pres No Pres No Pres No Pres No Pres No Pres No Pres No No Pres N
Yes No NA Yes No Yes No Yes No C elinquished by client? Yes No C Yes No C
Yes I No I Yes No I elinquished by client? Yes No I Yes I No I
Yes I No I Yes No I elinquished by client? Yes No I Yes I No I
Yes No C elinquished by client? Yes No C Yes No C
elinquished by client? Yes 🖄 No 🗌 Yes 🖄 No 🗌
elinquished by client? Yes 🖄 No 🗌 Yes 🖄 No 🗌
Yes X No
· · ·
tiple coolers/temps
Yes 🛛 No 🗌
Yes 🕅 No 🗍
Yes 🗌 No 🔲 NA 🕅
Yes 🛃 No 🛛 🚬 🍐
Yes 📋 No 🕅 NA 🗌
Yes 🕅 No. 🗌
the COC? Yes 🛛 No 🗌
a Verbal 🗌 Voice Mail 🗌 Other 🗌
<u>iniyildali başadıllaştalı bile adarbi Venedilli</u>
nmended holding time had expired.
nmended holding time had expired. ere received in a broken container.
nmended holding time had expired. ere received in a broken container. ble >6 mm in diameter. (Notify PM)
nmended holding time had expired. ere received in a broken container. ble >6 mm in diameter. (Notify PM)
nmended holding time had expired. ere received in a broken container. ble >6 mm in diameter. (Notify PM)
nmended holding time had expired. ere received in a broken container. ble >6 mm in diameter. (Notify PM) ther preserved in Sample Acid Lot# 121709-H2SO4: Sodium
nmended holding time had expired. ere received in a broken container. ble >6 mm in diameter. (Notify PM)
nmended holding time had expired. ere received in a broken container. ble >6 mm in diameter. (Notify PM) ther preserved in Sample Acid Lot# 121709-H ₂ SO ₄ ; Sodium d Zinc Acetate Lot# 100108-
nmended holding time had expired. ere received in a broken container. ble >6 mm in diameter. (Notify PM) ther preserved in Sample Acid Lot# 121709-H2SO4: Sodium
nmended holding time had expired. ere received in a broken container. ble >6 mm in diameter. (Notify PM) ther preserved in Sample Acid Lot# 121709-H ₂ SO ₄ ; Sodium d Zinc Acetate Lot# 100108-
nmended holding time had expired. ere received in a broken container. ble >6 mm in diameter. (Notify PM) ther preserved in Sample Acid Lot# 121709-H ₂ SO ₄ ; Sodium d Zinc Acetate Lot# 100108-
nmended holding time had expired. ere received in a broken container. ble >6 mm in diameter. (Notify PM) ther preserved in Sample Acid Lot# 121709-H ₂ SO ₄ ; Sodium d Zinc Acetate Lot# 100108-
nmended holding time had expired. ere received in a broken container. ble >6 mm in diameter. (Notify PM) ther preserved in Sample Acid Lot# 121709-H ₂ SO ₄ ; Sodium d Zinc Acetate Lot# 100108-
nmended holding time had expired. ere received in a broken container. ble >6 mm in diameter. (Notify PM) ther preserved in Sample Acid Lot# 121709-H ₂ SO ₄ ; Sodium d Zinc Acetate Lot# 100108-
nmended holding time had expired. ere received in a broken container. ble >6 mm in diameter. (Notify PM) ther preserved in Sample Acid Lot# 121709-H ₂ SO ₄ ; Sodium d Zinc Acetate Lot# 100108-
bl

. . . . . .

and the second second

· · · · ·

SOP: NC-SC-0005, Sample Receiving N:\QAQC\WARRATIVE\TestAmerica\Cooler Receipt TestAmerica\COOLER_TestAmerica_Rev 76_022510.doc

· · · · · ·

Chain of		Temp	orat	ure	n Re	oroli	nt				•	Te	25	;†/	4	Υ	)E	Pl	<i>.</i> 10	$\Box$	C				
Custody Record																•									
al-4124 (1007)		Drinki	_		r? \	es[		NO [		÷		THE	LEA	DER		IVIRO	DNM	ENT	AL 1	ſEŜŢ	ING	,			
Cilipt TEtra Tech ms Address Zollst Centing Blud City Genmanteur MD Zip Code		Project Teleph	t Man	ager	K	. d i	160		<u>s</u>								Date	<u>ب</u>	13	-1	6	Cha	ain of Custor 15	^{dy Numbe} 432	
Address 20251 Century Blud		3	<u> • ()</u>	<u>)                                    </u>	er (Are 52		- 3	à (	53								Lab N					Pa	ge[	, of	1
City Genmanteur State Zip Code		Site Co			ny o	n	Lat	5 Cor	ntact							Analy									
Project Name and Location (State)		Carriel	/Way	ıbill Nu	ımber																		Spar	ial Instru	untions
Contract/Purchase Order/Quote Nc.			[	M	atrix						ers & ative:		- 91	3										itions of	
Sample I.D. No. and Description Dat	te	Time	Air	Aqueous	Sed. Soil		Unpres.	H2SO4	HNO3	HCI	NaOH	ZnAc/ NaOH	Ĩ	Į											
MAC-MH 950 (214') 5-13	-10 1	100			>	<	X						>	<							-				
MRC - MW 960 (65') J	1	445		X						X			Y	<											
									ļ					_		_									
									ļ											_					·
						-		. 											_						······
					_	<u>.</u>		ļ																	
			L					ļ .						_			<u> </u>					_↓			
								ļ														<b> </b>			
					_				ļ				_	_											
					_				· ·													╞╼┽			
Possible Hazard Identification		·			Dispo			<b>_</b>																	
Non-Hazard 🗌 Flammable 🗌 Skin Irritant 🗌 Poison	n B 🗌	Unknowi		•	•		nt				By La			chive F	or		Mon	ths			r be as n 1 mo		l if samples	are retaine	ed.
Turn Around Time Required	21 Days	[] <i>Oti</i>	her						: Req	uiren	nents	(Spe	city)												
1. Relinquished By		Date		-10	Time	600	 ン	1. F	Rece	ived l	5y 1	Rul	1	les	les	Ĺ							3/13/	Time	m
2. Relinguished By		S-1	<u>-</u> -2'	10	Time			2. F	9ece	ived I	<u>}</u>	T.	Ŵ	D	X								14/10	Time 0 9	
3. Relinquished By		Date			Time			3. F	Pece.	ived	gy gy												ale	Time	
Comments		L						J	-								·					L			
DISTRIBUTION: WHITE - Returned to Client with Report; CANARY -	Stavs with	the San	nole:	PINK	- Field	T Cod		·. ·																	· •.··

ź

TestAmerica Cooler	Receipt Form/Narrative	Lot Number: ADE140486
North Canton Facili	ty	121121
Client Tot.	ratoch Project	By: JLMCH
Cooler Received on		(= - <u>3</u> /
	FAS Stetson Client Drop Off Tes	
TestAmerica Cooler #	<u>741- 879</u> Multiple Coolers 🔲 Foam Box 🗌	Client Cooler D Other
1. Were custody seals o	n the outside of the cooler(s)? Yes 🛛 No 🗌	Intact? Yes 🗌 No 🛄 NA 🗌
If YES, Quantity		
Were custody seals o	n the outside of cooler(s) signed and dated?	Yes 👌 No 🔲 NA 🗌
Were custody seals o	in the bottle(s)?	Yes 🗋 No 🖄
If YES, are there any		<b>N</b>
	attached to the cooler(s)?	Yes 🕅 No 🗌
	ccompany the sample(s)? Yes 🕅 No 🗌	Relinquished by client? Yes 🖾 No 🗔
	pers signed in the appropriate place?	Yes 🛛 No 🗌
	d: Bubble Wrap 🔀 Foam 🗌 None 🔲 🤇	
	pon _v receipt <u>4.0</u> °C See back of form	for multiple coolers/temps
	R 🕅 Other 🗌	
	ce 🗹 Blue Ice 🗌 Dry Ice 🔲 Water 🗌	None
	n good condition (Unbroken)?	Yes 🕅 No 🗌
8. Could all bottle labels	be reconciled with the COC?	Yes 🗹 No 🗌
9. Were sample(s) at the	e correct pH upon receipt?	Yes 🔲 No 🗔 NA 🕱
10. Were correct bottle(s)	used for the test(s) indicated?	Yes 🕅 No 🗌
11. Were air bubbles >6 r	mm in any VOA vials?	Yes 🗌 No 🗹 NA 🗌
12. Sufficient quantity rec	eived to perform indicated analyses?	Yes 📉 No 🗌
13. Was a trip blank pres	ent in the cooler(s)? Yes 🗌 No 🕱 Were V(	DAs on the COC? Yes 🕱 No 🗌
Contacted PM	Date by	via Verbal 🗌 Voice Mail 🗍 Other 🗌
Concerning	· ·	
14. CHAIN OF CUSTOD	$\mathbf{Y}$	
The following discrepanci	es occurred:	
· · · · · · · · · · · · · · · · · · ·	······································	······································
	······································	·
15. SAMPLE CONDITIO		
Sample(s)	were received after tr	ne recommended holding time had expired.
Sample(s)		were received in a broken container.
Sample(s)		vith bubble >6 mm in diameter. (Notify PM)
16. SAMPLE PRESERV		
Sample(s)		were further preserved in Sample
Receiving to meet recoming	mended pH level(s). Nitric Acid Lot# 121709-HNO3;	Sulfuric Acid Lot# 121709-H ₂ SO ₄ ; Sodium
GUTUXIUU LOU# 100108 -Na( CH2COO)27N/N≥OH \Nh	OH; Hydrochloric Acid Lot# 092006-HCl; Sodium Hydro at time was preservative added to sample(s)?	oxide and Linc Acetate Lot# 100108-
Client ID		
	На	<u>Date</u> <u>Initials</u>

<u>Client ID</u>	pH	Date	Initials
·····			initiats
· · · · · · · · · · · · · · · · · · ·			
		······································	
		· · · · · · · · · · · · · · · · · · ·	
		· · · · · · · · · · · · ·	
		·	
Cooler #	Temp. °C	Method	Coolant
·		· · · · · · · · · · · · · · · · · · ·	
The second s			
in the second		the second se	·····
epancies Cont'd:			

. N 1 405

!

### 5A VOLATILE ORGANIC GC/MS TUNING AND MASS CALIBRATION - BROMOFLUOROBENZENE (BFB)

Lab Name: NORTH CANTON	Contract:	
Lab Code: TALCAN Case N	o.: SAS No.:	SDG No.: 0E06602
Lab File ID: BFB302	BFB	Injection Date: 03/26/10
Instrument ID: A3UX11	BFB	Injection Time: 1224
Matrix:(soil/water) WATER	Level:(low/med) LOW	Column:(pack/cap) CAP

	% RELATIVE
m/e   ION ABUNDANCE CRITERIA	ABUNDANCE
	============
50   15.0 - 40.0% of mass 95	16.2
75   30.0 - 60.0% of mass 95	45.6
95   Base Peak, 100% relative abundance	1100.0
96   5.0 - 9.0% of mass 95	6.8
173   Less than 2.0% of mass 174	0.0 ( 0.0)1
174   50.0 - 100.0% of mass 95	93.0
175   5.0 - 9.0% of mass 174	6.5 ( 7.0)1
176   Greater than 95.0%, but less than 101.0% of mass 174	90.9 ( 97.8)1
177   5.0 - 9.0% of mass 176	6.1 ( 6.7)21
	1
1-Value is % of mass 174 2-Value is % of mass	ass 176

THIS TUNE APPLIES TO THE FOLLOWING SAMPLES, MS, MSD, BLANKS, AND STANDARDS:

EPA	LAB	   LAB	I DATE	TIME
SAMPLE NO.	SAMPLE ID	FILE ID	ANALYZED	ANALYZED
,	=   ==================================	,	= ====================================	ANALIZED
01 VSTD040			03/26/10	1247
02 VSTD020	100NG-IC	UXJ7674	03/26/10	1311
03 VSTD010	50NG-IC			
•		UXJ7675	03/26/10	1334
04 VSTD005	25NG-IC	UXJ7676	03/26/10	1358
05 VSTD002	10NG-IC	UXJ7677	03/26/10	1422
06 VSTD001	5NG-IC	UXJ7678	03/26/10	1445
07 VSTD040	200NG-A9IC	UXJ7680	03/26/10	1532
08 VSTD020	100NG-A9IC	UXJ7681	03/26/10	1556
09 VSTD010	50NG-A9IC	UXJ7682	03/26/10	1620
10 VSTD005	25NG-A9IC	UXJ7683	03/26/10	1644
11 VSTD002	10NG-A9IC	UXJ7684	03/26/10	1707
12 VSTD001	5NG-A9IC	UXJ7685	03/26/10	1731
13	1		1	
14	-			·····
151				
16	_ ·			
17		' <u></u>		·
18	- ·	(	· · /	'
191	- ' <u>————</u> I	'	_ ' ' '	·
201	- ' <u></u>	'	- ' ' ' ' '	
21	_ '	· '	_ ' ' ' 	I
221	_ !		-   <u></u>	1
۷۷	_	I	_ I	

page 1 of 1

## Report Date : 29-Mar-2010 08:06

## TestAmerica North Canton

## INITIAL CALIBRATION DATA

<pre>Start Cal Date : 29-OCT-2009 16:58 End Cal Date : 26-MAR-2010 17:31 Quant Method : ISTD Origin : Disabled Target Version : 4.14 Integrator : HP RTE Method file : \\cansvr11\dd\chem\MSV\a3ux11.i\remote\8260LLUX11.m Last Edit : 29-Mar-2010 08:05 evans1 Curve Type : Average</pre>
----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

### Calibration File Names:

Level 1: \\cansvr11\dd\chem\MSV\a3ux11.i\J00326A-IC.b\UXJ7685.D Level 2: \\cansvr11\dd\chem\MSV\a3ux11.i\J00326A-IC.b\UXJ7684.D Level 3: \\cansvr11\dd\chem\MSV\a3ux11.i\J00326A-IC.b\UXJ7683.D Level 4: \\cansvr11\dd\chem\MSV\a3ux11.i\J00326A-IC.b\UXJ7682.D Level 5: \\cansvr11\dd\chem\MSV\a3ux11.i\J00326A-IC.b\UXJ7681.D Level 6: \\cansvr11\dd\chem\MSV\a3ux11.i\J00326A-IC.b\UXJ7680.D

		. <u></u>						~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
	5.000	10.000	25.000	50.000	100.000	200.000	!	
Compound	Level 1	Level 2	Level 3	Level 4	Level 5	Level 6	RRF	% RSD
	========	========		********	===========		======= :	
8 Dichlorodifluoromethane	0.24762				0.20587	0.21432	0.22291	8.67
9 Chloromethane	0.52774	0.46866	0.42020	0.38838	0.41563	0.42775	0.44139	11.24
10 Vinyl Chloride	0.40411	0.40067	0.39515	0.39627	0.39626	0.40244	0.39915	0.94
11 Bromomethane	0.09957	0.13022	0.08763	0.09007	0.10173	0.10747	0.10278	14.93
12 Chloroethane	0.12640	0.11512	0.11269	0.08488	0.09334	0.10037	0.10547	14.56
13 Trichlorofluoromethane	0.14745	0.15766	0.17556	0.20368	0.20774		0.18944	19.08
14 Dichlorofluoromethane	0.35941	0.17874	0.22290	0.23448	0.27841	0.30033	0.26238	24.37
15 Acrolein	0.04852	0.04946	0.04758	0.04487	0.04644	-	0.04706	3.79
16 Acetone	0.16760	0.13681	0.10986	0.09737	0.11454	0.09671	0.12048	22.68
17 1,1-Dichloroethene	0.33468	0.31997	0.28983	0.28220	0.29371		0.30193	6.83
18 Freon-113	0.27537	0.21732	0.21183	0.23178	0.21784		0.22869	10.43
19 Iodomethane	0.41281	0.41485	0.39522	0.34637	0.38111		0.38582	7.04
20 Carbon Disulfide	0.85926	0.81827	0.81414	0.79392	0.87176	0.87194	0.83821	4.0
21 Methylene Chloride	0.47734	0.40116	0.32302	0.27744	0.29235	0.27824		23.7
22 Acetonitrile	0.07523	0.05429	0.04232	0.03549	0.03436	0.03203		36.3
23 Acrylonitrile	0.18232	0.14714	0.13513	0.12185	0.12355	0.11887	0.13814	17.4
24 Methyl tert-butyl ether	0.51415	0.48688	0.45786	0.43211	0.45393	0.40954	0.45908	8.1
25 trans-1,2-Dichloroethene	0.40723	0.36352	0.36057	0.33060	0.35661	0.35140	0.36166	6.9
26 Hexane	0.11429	0.08758	0.08392	0.09781	0.08505	0.08673	0.09256	12.6
27 Vinvl acetate	0.48461	0.55937	0.52069	0.47772	0.52316	0.55175	0.51955	6.4
28 1,1-Dichloroethane	0.59795	0.59388	0.58124	0.53939	0.59516	0.58633	0.58233	3.7
29 tert-Butyl Alcohol	0.02499	0.02380	0.02357	0.02140	0.02231	0.02074	0.02280	
30 2-Butanone	0.17265	0.15794	0.15304	0.13954	0.14434	0.13573	0.15054	9.0
31 1,2-Dichloroethene (total)	0.41539	0.38418	0.38203	0.34892	0.37826	0.37234	0:38019	5.6
32 cis-1,2-dichloroethene	0.42355	0.40483	0.40350	0.36723	0.39990	0.39328	0.39872	4.6
33 2,2-Dichloropropane	0.31079	0.29357	0.29430	0.27622	0.30078	0.28640	0.29368	4.0
34 Bromochloromethane	0.20063	•	0.19464	0.18667	0.20315	0.19745	0.19774	3.2
35 Chloroform	0.61075	•		0.54539	0.59844	0.59071	0.58973	3.9
	1	1		1		ll		

## TestAmerica North Canton

## INITIAL CALIBRATION DATA

Start Cal Date : 29-OCT-2009 16:58 End Cal Date : 26-MAR-2010 17:31 Quant Method : ISTD Origin : Disabled Target Version : 4.14 Integrator : HP RTE Method file : \\cansvr11\dd\chem\MSV\a3ux11.i\remote\8260LLUX11.m Last Edit : 29-Mar-2010 08:05 evansl Curve Type : Average

	5.000	10.000	25.000	50.000	100.000	200.000		
	5.000	Level 2	Level 3	Level 4		Level 6	RRF	% RSD
Compound						===============		
36 Tetrahydrofuran	0.11906	0.11160	0.09767		0.09323	0.08974	0.10006	12.42
37 1,1,1-Trichloroethane	0.45069	0.42791	0.42476			0.42448	0.42801	3.43
37 1,1,1-Trichloropene	0.51415	0.47658				0.48535	0.48370	3.49
38 1,1-Dichiolopiopene 39 Carbon Tetrachloride	0.37578			0.35095		0.37462	0.36359	3.63
40 1,2-Dichloroethane	0.45475						0.44319	3.69
41 Benzene	1.54950		•			1.53917	1.51454	3,95
41 Benzene 42 Trichloroethene	0.43124					0.41312	0.41228	3.50
42 1,2-Dichloropropane	0.36113					0.36515	0.36068	3.04
43 1,2-Dichioropropane 44 1,4-Dioxane	0.00288		0.00310			0.00283	0.00295	3.96
44 1,4-DIOXANE 45 Dibromomethane	0.22084						0.20740	4.35
45 Dibromomethane 46 Bromodichloromethane	0.39046					0.44867	0.41328	6.44
46 Bromodichioromethane 47 2-Chloroethyl vinyl ether	0.21825					0.20016	0.20543	4.56
47 2-Chloroethyl Vinyl ether 48 cis-1,3-Dichloropropene	0.50963					0.60360	0.55000	7.37
	0.29603					0.27994	0.28797	3.01
49 4-Methyl-2-pentanone 50 Toluene	2.13616					2.13065	2.08998	3.79
50 Toluene 51 trans-1,3-Dichloropropene	0.57954						0.63419	7.76
	0.64010					•	0.62471	3.85
52 Ethyl Methacrylate 53 1.1.2-Trichloroethane	0.41833					0.40378	0.40779	3.40
	0.73291					•	0.72631	3.78
54 1,3-Dichloropropane 55 Tetrachloroethene	0.45443					0.43243	0.43185	3.77
	0.25634					0.23985	0.25272	5.43
56 2-Hexanone 57 Dibromochloromethane	0.32188					•	0.38381	14.34
	0.41323					0.41381	0.41014	3.52
58 1,2-Dibromoethane	1.38923					•	1.36090	4.15
59 Chlorobenzene	0.42478					0.47363	0.44380	5.46
60 1,1,1,2-Tetrachloroethane	0.74659					0.75768	0.73734	3.27
61 Ethylbenzene	0.92247						0.92287	3.73
62 m + p-Xylene	0.92247						0.90821	3.64
63 Xylenes (total)	0.90542						0.87889	3.50
64 Xylene-o	1.51072						. 1.53890	4.54
65 Styrene	0.14403						0.21969	27.85
66 Bromoform	2.32375				•	•	2.25700	3.70
67 Isopropylbenzene	0.90280				1	•	0.94058	4.45
68 1,1,2,2-Tetrachloroethane	0.90280	•		•			•	40.64
69 1,4-Dichloro-2-butene	•							2.70
70 1,2,3-Trichloropropane	0.28109	•	•	1	•	•	•	4.94
71 Bromobenzene	1.15641	1.14296	1.122/0	1 1.01313	T.T.2.2.4.4	1	1	I

# Report Date : 29-Mar-2010 08:06

# TestAmerica North Canton

# INITIAL CALIBRATION DATA

Start Cal Date	:	29-OCT-2009 16:58
End Cal Date	:	26-MAR-2010 17:31
Quant Method	:	ISTD
Origin	:	Disabled
Target Version	:	4.14
Integrator	:	HP RTE
Method file	:	\\cansvrll\dd\chem\MSV\a3ux11.i\remote\8260LLUX11.m
Last Edit	:	29-Mar-2010 08:05 evansl
Curve Type	:	Average

-	· · · · · · · · · · · · · · · · · · ·	5.000	10.000	25.000	50.000	100.000	200.000	I	1	1
1	Compound	Level 1	Level 2	Level 3	Level 4	Level 5	Level 6	RRF	% RSD	1
 						===========			=============	l
1-	72 n-Propylbenzene	1.19002								1
i	73 2-Chlorotoluene	1.06644	1.01572	0.99323	0.96120	1.03056	1.10844	1.02926	5.098	]
1	74 1.3.5-Trimethylbenzene	3.45380	3.36422	3.35224	3.22859	3.50420	3.78566	3.44812	5.526	I
i	75 4-Chlorotoluene	1.09899	1.09455	1.05270	1.00671	1.08519	1.17163	1.08496	5.042	I
i	76 tert-Butylbenzene	3.11371	2.98330	2.95975	2.86756	3.05159	3.22201	3.03299	4.112	ł
ì	77 1,2,4-Trimethylbenzene	3.55814		3.37368	3.24077	3.51923	3.63990	3.46483	j 4.100	1
1	78 sec-Butylbenzene	4.17199	4.00370	3.93475	3.87365	4.08345	4.18146	4.04150	3.117	l
ì	79 4-Isopropyltoluene	3.38180	3.22794	3.21728	3.12342	3.29004	3.14158	3.23034	2.969	I
i i	80 1,3-Dichlorobenzene	2.04943	2.01867	1.95782	1.87357	2.02775	2.05894	1.99770	3.523	ŀ
1	81 1,4-Dichlorobenzene	2.11132	2.05428	1.98227	1.88750	2.05266	2.03183	2.01998	3.816	I
Ì	82 n-Butylbenzene	2.32796	2.25698	2.22517	2.17103	2.23697	1.85538	2.17891	7.640	1
	83 1,2-Dichlorobenzene	1.79435	. 1.74340	1.74306	1.62548	1.75416	1.59346	1.70898	4.681	1
1	84 1.2-Dibromo-3-chloropropane	0.06977	0.07816	0.08675	0.08255	0.08779	0.08424	j 0.08154	8.219	Ļ
	85 1,2,4-Trichlorobenzene	0.71541	0.71116	0.68221	0.62911	0.67269	0.70622	0.68613	4.761	1
1	86 Hexachlorobutadiene	0.33874	, 0.32308	0.30007	0.28630	0.29545	0.31428	0.30965	6.273	ŀ
ł	87 Naphthalene	1.45662	1.44781	1.43673	1.34270	1.41811	1.44641	1.42473	2.967	1
Ť	88 1,2,3-Trichlorobenzene	0.63329		0.60948	0.56399	0.59821	0.59860	0.60730	4.538	4
÷	89 Ethyl Ether	0.30907	0.28912	0.30427	0.28043	0.30496	0.28258	0.29507	4.244	.1
1	90 Ethanol	. +++++	+++++	+++++	+++++	+++++	+++++	+++++	+++++	<-
	91 3-Chloropropene	0.14120	0.13250	0.14482	0.13465	0.14993	0.14387	0.14116	4.645	4
1	92 Isopropyl Ether	0.30884	0.28555	0.30762	0.28775	0.31544	0.30069	0.30098	4.009	4
÷	93 2-Chloro-1,3-butadiene	0.53575		0.51936	0.50688	0.52446	0.51892	0.51812	2.281	.
i	94 Propionitrile	0.05120	0.04473	0.04688	0.04418	0.04614	0.04407	0.04620	5.827	1
1	95 Ethyl Acetate	0.31289	0.30890	0.29638	0.27640	0.29720	0.28328	0.29584	4.777	1
1	96 Methacrylonitrile	0.21695	0.19860	0.20511	0.19028	0.20249	0.19171	0.20086	4.879	1
	97 Isobutanol	0.01173	•	0.01079	0.01025	0.01092	0.01043	0.01069	5.686	1
i	98 Cyclohexane	0.72973	0.58254	0.57835	0.62139	0.58454	0.59182	0.61473	9.504	ŧ١
-	99 n-Butanol	0.01027		0.00944	0.00896	0.00989	0.00929	0.00952	5.011	-   < -
I I	100 Methyl Methacrylate	0.30960	0.27369	0.28877	0.27021	0.29574	0.28172	0.28662	5.119	)
i	101 2-Nitropropane	. 0.07463	0.06865	0.07297	0.07237	0.07964	0.07783	0.07435	5.330	)
1	102 Chloropicrin		,   +++++	+++++	+++++	} +++++	+++++	+++++	+++++	<-
1	103 Cyclohexanone	0.04352	0.03210	0.02796	0.02917	0.02784	0.02838	0.03149	19.361	•
ì	104 Pentachloroethane	+++++	+++++	+++++	+++++	+++++	+++++	+++++	+++++	<-
1	105 Benzyl Chloride	+++++	`   +++++	+++++	+++++	+++++	+++++	++++++	+++ <b>+</b> +	<-
1	134 Thiophene	+++++	,   +++++	+++++	+++++	+++++	+++++	+++++	+++++	<-
,	135 Crotononitrile(1st Isomer)	,   +++++	+++++	+++++	+++++	+++++	+++++	+++++	+++++	<-
I		1	I				1	_l	<u> </u>	_
1	the second se									

93

# Report Date : 29-Mar-2010 08:06

# TestAmerica North Canton

# INITIAL CALIBRATION DATA

			5.000	10.000	25.000	50.000	100.000	200.000			ł
1	0-		5.000     Level 1	Level 2	_25.000	Level 4	Level 5	Level 6	RRF	% RSD	i
		mpound				•			=======		j.
]=			, ,			+++++	+++++	+++++	+++++ <b> </b>	++++	<
		Crotononitrile (2nd Isomer)	+++++	+++++	+++++		+++++	+++++	· ··· ·	+++++	<
1		Total Crotononitrile	+++++	+++++	****	+++++	+++++	+++++	+++++	+++++	1<
1		Paraldehyde	+++++	++++	+++++	+++++			+++++	+++++	<
1		3,3,5-Trimethylcyclohexanone	+++++	+++++	+++++	+++++	+++++	+++++		+++++	<-
ļ	140	1-Chlorohexane	+++++	++++	+++++	+++++	+++++	+++++	+++++     • • • • • • • • •	6.251	
	141	1,3,5-Trichlorobenzene	0.72133	0.73483	•						•
I	143	Methyl Acetate	0.46222	0.33093	0.28010	0.25279	•				
ł	144	Methylcyclohexane	0.76174	0.60801	0.59802	0.67484	0.60907	0.62156			
	145	Dimethoxymethane	+++++	++++	+++++	+++++	+++++	+++++	+++++	+++++	<
1	146	2-Methylnaphthalene	+++++	++++	++++	+++++	+++++	+++++	+++++	+++++	
1	147	Tetrahydrothiophene	+++++	+++++	+++++	+++++	+++++	+++++	+++++	+++++	<
T	148	1,4-Dichlorobutane	+++++	++++	+++++	+++++	+++++	+++++	+++++	+++++	<
Ì	149	Ethyl Acrylate	+++++	++++	+++++	+++++	+++++	+++++	+++++	++++	<
ł	150	Vinyl Acetate-86	0.05732	0.06850	0.06340	0.06016	0.06548	0.06870	0.06393	7.143	1
i	151	1,3-Butadiene	+++++	+++++	++++	+++++	+++++	+++++	+++++	+++++	<
i	152	n-Heptane	+++++	+++++	++++	+++++	+++++	+++++	+++++	+++++	<
i		t-Butyl ethyl ether	0.55066	0.51371	0.53796	0.49300	0.53069	0.49692	0.52049	4.446	;
i		t-Amyl methyl ether	0.62396	0.56890	0.61420	0.56722	0.60880	0.56921	0.59205	4.446	1
i		1,2,3-Trimethylbenzene	3.28005	3.00595	3.23607	3.04022	3.29018	3.20950	3.17699	3.879	
1-							====== <b>=</b> =====			***********	-
15		Dibromofluoromethane	0.33365	0.32281	0.30608	0.28625	0.32451	0.31451	0.31463	5.328	3
15	-	1,2-Dichloroethane-d4	0.43964		•	•	0.39504	0.37739	0.39468	7.157	1
15		Toluene-d8	1.87294	1.80582			,	1.74559	1.76192	5.239	)
		Bromofluorobenzene	0.69222	0.66973	•	•			0.64241	5.925	5 ] .
\$		PLOHOLINOLODEUZEUE	1 0.09222	0.00015	0.00041	1			1	÷	1
	_					I	I	·	·		- '

Data File: \\cansvrl1\dd\chem\MSV\a3uxl1.i\J00326A-IC.b\UXJ7686.D Report Date: 29-Mar-2010 08:12

## TestAmerica North Canton

RECOVERY REPORT

Client SDG: SDGa01304 Fraction: VOA

Operator: 43582 SampleType: METHSPIKE Quant Type: ISTD

Sublist File: 4-8260+IX.sub Method File: \\cansvr11\dd\chem\MSV\a3ux11.i\J00326A-IC.b\8260LLUX11.m Misc Info: J00326A-IC,8260LLUX11,,43582,3

	· · · · · · · · · · · · · · · · · · ·	CONC	CONC	8	
SPIK	E COMPOUND	ADDED	RECOVERED	RECOVERED	LIMITS
		ug/L	ug/L		
	7 1,1-Dichloroethene	10.000	10.700	107.00	45-155
	2 Trichloroethene	10.000	9.739	97.39	45-155
5	9 Chlorobenzene	10.000	9.651	96.51	45-155
	0 Toluene	10.000	9.693	96.93	45-155
4	1 Benzene	10.000	9.890	98.90	45-155
	6 Acetone	20.000	16.213	81.06	45-155
2	0 Carbon Disulfide	10.000	10.494	104.94	45-155
	9 Chloromethane	10.000	10.007	100.07	45-155
	l Bromomethane	10.000	10.219	102.19	45-155
1	) Vinyl Chloride	10,000	9.636	96.36	45-155
	2 Chloroethane	10.000	10.534	105.34	45-155
2	1 Methylene Chloride	10.000	10.091	100.91	45-155
2	3 1,1-Dichloroethane	10.000	10.223	102.23	45-155
M 31	1 1,2-Dichloroethene	20.000	19.995	99.97	45-155
3!	5 Chloroform	10.000	9.944	99.44	45-155
4	0 1,2-Dichloroethane	10.000	10.227	102.27	45-155
30	) 2-Butanone	20.000	18.592	92.96	45-155
3'	7 1,1,1-Trichloroeth	10.000	9.816	98.16	45-155
3.	9 Carbon Tetrachlori	10.000	9.422	94.22	45-155
46	5 Bromodichlorometha	10.000	9.929	99.29	45-155
43	3 1,2-Dichloropropan	10.000	9.809	98.09	45-155
48	3 cis-1,3-Dichloropr	10.000	9.752	97.52	45-155
54	1,3-Dichloropropan	10.000	9.729	97.29	45-155
	7 Dibromochlorometha	10.000	9.397	93.97	45-155
53	3 1,1,2-Trichloroeth	10.000	9.513	95.13	45-155
	L trans-1,3-Dichloro	10.000	9.732	97.32	45-155
66	5 Bromoform	10.000	8.095	80.95	45-155
49	9 4-Methyl-2-pentano	20.000	19.665	98.32	45-155
56	2-Hexanone	20.000	19.182	95.91	45-155
55	5 Tetrachloroethene	10.000	9.702	97.02	45-155
68	3 1,1,2,2-Tetrachlor	10.000	9.510	95.10	45-155
	Ethylbenzene	10.000	9.634	96.34	45-155
	5 Styrene	10.000	9.539	95.39	45-155
	3 Xylenes (total)	30.000	29.198	97.33	45-155
	cis-1,2-dichloroet	10.000	9.784	97.84	45-155
	trans-1,2-Dichloro	10.000	10.211	102.11	45-155
	B Dichlorodifluorome	10.000	8.255	82.55	45-155
	3 Trichlorofluoromet	10.000	9.536	95.36	45-155
	) 1,2,3-Trichloropro	10.000	10.424	104.25	45-155
	B Freon-113	10.000	10.896	108.96	45-155
			· · · · · · · · · · · · · · · · · · ·		

Client Name:

Level: LOW

Lab Smp Id: ICV

Data Type: MS DATA

Sample Matrix: LIQUID

SpikeList File: DOD-ck.spk

Data File: \\cansvr11\dd\chem\MSV\a3ux11.i\J00326A-IC.b\UXJ7686.D Report Date: 29-Mar-2010 08:12

			CONC	CONC	olo	
	SPIKE	COMPOUND	ADDED	RECOVERED	RECOVERED	LIMITS
			ug/L	ug/L		
				_		
	24	Methyl tert-butyl	10.000	9.764	97.64	45-155
		1,2-Dibromoethane	10.000	9.783	97.83	45-155
		Isopropylbenzene	10.000	9.563	95.63	45-155
		1,3-Dichlorobenzen	10.000	9.494	94.94	45-155
		1,4-Dichlorobenzen	10.000	9.577	95.77	45-155
		1,2-Dichlorobenzen	10.000	9.568	95.68	45-155
		1,2-Dibromo-3-chlo	10.000	9.466	94.66	45-155
		1,2,4-Trichloroben	10.000	9.299	92.99	45-155
		Cyclohexane	10.000	8.389	83.89	45-155
1		Methyl Acetate	10.000	8.761	87.61	45-155
		Methylcyclohexane	10.000	8.381	83.81	45-155
		Bromobenzene	10.000	9.449	94.49	45-155
	34	Bromochloromethane	10.000	9.791	97.91	45-155
	82	n-Butylbenzene	10.000	9.720	97.20	45-155
		sec-Butylbenzene	10.000	9.244	92.44	45-155
		tert-Butylbenzene	10.000	9.473	94.73	45-155
		2-Chlorotoluene	10.000	9.333	.93.33	45-155
	75	4-Chlorotoluene	10.000	9.308	93.08	45-155
	45	Dibromomethane	10.000	10.041	100.41	45-155
	33	2,2-Dichloropropan	10.000	9.479	94.79	45-155
ł		1,1-Dichloropropen	10.000	9.936	99.36	45-155
	86	Hexachlorobutadien	10.000	7.557	75.57	45-155
	19	Iodomethane	10.000	9.827	98.27	45-155
1	. 92	Isopropyl Ether	10.000	10.222	102.22	45-155
		4-Isopropyltoluene	10.000	9.674	96.74	45-155
	87	Naphthalene	10.000	8.947	89.47	45-155
		n-Propylbenzene	10.000	9.566	95.66	45-155
	60	1,1,1,2-Tetrachlor	10.000	9.727	97.27	45-155
	88	1,2,3-Trichloroben	10.000	8.755	87.55	45-155
	77	1,2,4-Trimethylben	10.000	9.711	97.11	45-155
		1,3,5-Trimethylben	10.000	9.419	94.19	45-155
		Vinyl Acetate-86	10.000	12.424	124.24	45-155
		m + p-Xylene	20.000	19.366	96.83	45-155
	64	Xylene-o	10.000	9.832	98.32	45-155
		. –				

SURROGATE COMPOUND	CONC ADDED ug/L	CONC RECOVERED ug/L	% RECOVERED	LIMITS
<ul> <li>\$ 4 Dibromofluorometha</li> <li>\$ 5 1,2-Dichloroethane</li> <li>\$ 6 Toluene-d8</li> <li>\$ 7 Bromofluorobenzene</li> </ul>	10.000	9.096	90.96	73-122
	10.000	9.031	90.31	61-128
	10.000	9.305	93.05	76-110
	10.000	9.959	99.59	74-116

5A VOLATILE ORGANIC GC/MS TUNING AND MASS CALIBRATION - BROMOFLUOROBENZENE (BFB)

Lab Name: NORTH CANTON	Contract:	
Lab Code: TALCAN Case N	O.: SAS No.:	SDG No.: 0E06602
Lab File ID: BFB364	BFB	Injection Date: 05/13/10
Instrument ID: A3UX11	BFB	Injection Time: 1101
Matrix:(soil/water) WATER	Level:(low/med) LOW	Column:(pack/cap) CAP

	% RELATIVE
m/e   ION ABUNDANCE CRITERIA	ABUNDANCE
===== ================================	============
50   15.0 - 40.0% of mass 95	18.6
75   30.0 - 60.0% of mass 95	48.1
95   Base Peak, 100% relative abundance	100.0
96   5.0 - 9.0% of mass 95	7.0
173   Less than 2.0% of mass 174	0.5 ( 0.5)1
174   50.0 - 100.0% of mass 95	91.9
175   5.0 - 9.0% of mass 174	6.4 ( 7.0)1
176   Greater than 95.0%, but less than 101.0% of mass 174	88.8 ( 96.7)1
177   5.0 - 9.0% of mass 176	6.0 ( 6.7)2]
1-Value is % of mass 174 2-Value is % of ma	ass 176

THIS TUNE APPLIES TO THE FOLLOWING SAMPLES, MS, MSD, BLANKS, AND STANDARDS:

EPA	LAB	LAB	DATE	TIME
SAMPLE NO.	SAMPLE ID	FILE ID	ANALYZED	ANALYZED
=======================================	======================================	=   ===================================	===============	===========
01 VSTD010	50NG-CC	UXJ9380	05/13/10	1137
02 VSTD010	50NG-A9CC	UXJ9381	05/13/10	1201
03 L1K53CHK	L1K531AC	UXJ9382	05/13/10	1225
04 L1K53CKDUP	L1K531AD	UXJ9383	05/13/10	1248
05 L1K53BLK	L1K531AA	UXJ9384	05/13/10	1312
06 MRC-MW94D(72	LO5K41AA	UXJ9402	05/13/10	2109
07	l			
08]		_1		
091				
10	l			
11				
121	l			
13	I			
14	l			
151	]			
16	1			
17				
18				
19		 		
20				· .
21			'	·
22		_ · /		'

page 1 of 1

1/87 Rev.

58

# Data File: \\cansvr11\dd\chem\MSV\a3ux11.i\J00513A.b\UXJ9380.D Report Date: 13-May-2010 14:13

TestAmerica North Canton

## CONTINUING CALIBRATION COMPOUNDS

Instrument ID: a3ux11.i	Injection Date: 13-MAY-2010 11:3	
Lab File ID: UXJ9380.D	Init. Cal. Date(s): 29-0CT-2009	26-MAR-2010
Analysis Type: WATER		17:31
Lab Sample ID: 50NG-CC	Quant Type: ISTD	
Method: \\cansvr11\dd\chem\	MSV\a3ux11.i\J00513A.b\8260LLUX11	. m
		• • • •

I	1 <u></u> 1	I.	CCAL   MIN	I I	MAX	l
COMPOUND	RRF / AMOUNT	RF50	RRF50   RRF	%D / %DRIFT	%D / %DRIFT	CURVE TYPE
\$ 4 Dibromofluoromethane	i 0.31463	0.29928	0.29928 0.010			
\$ 51,2-Dichloroethane-d4	0.39468	0.385791	0.3857910.010	· · · · · ·		
\$ 6 Toluene-d8	1.76192	1.753271	1.753270.010			
\$ 7 Bromofluorobenzene	0.64241	0.620021			50.00000	
8 Dichlorodifluoromethane	0.22291	0.21853	0.6200210.010		50.00000	
9 Chloromethane	0.44139	0.45114	0.21853 0.010		50.00000	
10 Vinyl Chloride	0.39915	0.43114	0.4511410.100	· · · · · · · · · · · · ·	50.00000	
11 Bromomethane	0.10278		0.4451110.010		20.00000	
12 Chloroethane	0.10547	0.143291	0.14329 0.010		50.00000	
13 Trichlorofluoromethane	50.00000	0.19683	0.1968310.010			
15 Acrolein		65.492961	0.29268 0.010			
16 Acetone		0.058121	0.0581210.010		50.00000	5
17 1,1-Dichloroethene	1 1001	1061	0.11270 0.010	· · · · · ·	0.000e+000	
18 Freon-113	0.30193	0.31565	0.3156510.010		20.00000	
19 Iodomethane	0.228691	0.228551	0.22855 0.010		50.00000	
	0.385821	0.51253	0.5125310.010		50.00000	Averaged
20 Carbon Disulfide	0.83821	0.90131	0.90131 0.010		50.00000	,
21 Methylene Chloride	1 50.00001	66.41756	0.38553 0.010			
22 Acetonitrile	1 5001	6301	0.0440610.010	-25.94620	0.000e+000	Wt Linear
23 Acrylonitrile	1 1001	1111	0.13781 0.010	-11.22752	0.000e+000	Wt Linear
24 Methyl tert-butyl ether	0.45908	0.377791	0.3777910.010	17.70561	50.00000	Averaged
25 trans-1,2-Dichloroethene	0.361661	0.37277	0.37277 0.010	-3.07401	50.000001	Averaged
26 Hexane	I 0.092561	0.077861	0.07786 0.010	15.889841	20.000001	Averaged.
27 Vinyl acetate	0.51955	0.65530	0.65530 0.010	26.12805	50.000001	Averaged
28 1,1-Dichloroethane	0.582331	0.631581	0.63158/0.100/	-8.457541	50.00000	Averaged
29 tert-Butyl Alcohol	0.022801	0_016541->	0.01654 0.010	27.48097	50.000001	Averaged
30 2-Butanone	0.15054	0.16022	0.16022 0.010	-6.428621	50.000001	Averaged
M 31 1,2-Dichloroethene (total)	0.380191	0.37779	0.37779 0.010	0.62908	50.000001	Averaged
32 cis-1,2-dichloroethene	0.398721	0.382821	0.3828210.0101	3.987971	50.000001	Averaged
33 2,2-Dichloropropane	0.29368	0.280061	0.28006 0.010	4.636881	50.000001	Averaged [
34 Bromochloromethane	0.19774	0.18817	0.18817/0.010/	4.842331	50.000001	Averaged
35 Chloroform	0.58973	0.616071	0.61607 0.010	-4.46690	20.000001	Averaged]
36 Tetrahydrofuran	0.100061	0.089951	0.0899510.0101		50.000001	Averaged
37 1,1,1-Trichloroethane	0.42801	0.428091	0.42809 0.010	-0.01904	50.000001	Averaged
38 1,1-Dichloropropene	0.48370	0.49878	0.4987810.0101	-3.118221	50.000001	Averaged
9 Carbon Tetrachloride	0.363591	0.360741	0.36074 0.010	0.78315	50.000001	Averaged
10 1,2-Dichloroethane	0.44319	0.482321	0.4823210.0101	-8.82961	50.000001	Averaged
1 Benzene	1.51454	1.602291	1.60229[0.010]	-5.79356	50.000001	Averaged
2 Trichloroethene	0.41228	0.386051	0.3860510.0101	6.36361	50.000001	
3 1,2-Dichloropropane	0.36068	0.39106	0.39106 0.010	-8.42186	20.000001	Averaged
4 1,4-Dioxane	0.002951	0.002401	0.00240 0.010			Averaged!
5 Dibromomethane	0.20740	0.209561	0.2095610.0101	18.81239	50.000001	Averaged
6 Bromodichloromethane	0.41328	0.40215		-1.04215	50.000001	Averaged
7 2-Chloroethyl vinyl ether	0.20543		0.40215 0.010	2.693021	50.000001	Averaged
. a shioroechyr vinyr echer	0.20543	0.122931	0.1229310.0101	40.15770	50.00000	Averaged

## Data File: \\cansvrl1\dd\chem\MSV\a3ux11.i\J00513A.b\UXJ9380.D Report Date: 13-May-2010 14:13

TestAmerica North Canton

## CONTINUING CALIBRATION COMPOUNDS

Instrument ID: a3ux11.i	Injection Date: 13-MAY-2010 11	L:37
Lab File ID: UXJ9380.D	Init. Cal. Date(s): 29-OCT-200	
Analysis Type: WATER	Init. Cal. Times: 16:58	
Lab Sample ID: 50NG-CC	Quant Type: ISTD	
Method: \\cansvr11\dd\chem\	SV\a3ux11.i\J00513A.b\8260LLUX	<11.m

	I I	T	CCAL   MIN	I	MAX I	
COMPOUND	RRF / AMOUNT	RF50		%D / %DRIFT		
48 cis-1,3-Dichloropropene	······································	0.49693	0.49693[0.010]	9.649951		
49 4-Methyl-2-pentanone	0.28797	0.289381	0.2893810.0101	-0.49085	50.000001	
50 Toluene	2.089981	2.29121	2.29121 0.010	-9.628701		2
51 trans-1,3-Dichloropropene	0.63419	0.577261	0.5772610.0101	8.976731	20.000001	2
52 Ethyl Methacrylate	0.62471	0.58691	0.58691 0.010	6.049741	50.000001	
53 1,1,2-Trichloroethane	0.40779	0.44189	0.44189 0.010	-8.36150	50.000001	
54 1,3-Dichloropropane	0.726311	0.806261	0.8062610.0101	-11.00779	50.000001	-
55 Tetrachloroethene	0.43185	0.432661	0.43266[0.010]	-0.18773	50.000001	
56 2-Hexanone	0.252721	0.26077	0.26077[0.010]	-3.18484	50.000001	-
57 Dibromochloromethane	0.38381	0.368481	0.3684810.0101	3.99415,	50.000001	-
58 1,2-Dibromoethane	0.41014	0.41411	0.41411/0.010/	-0.967391	50.000001	-
59 Chlorobenzene	1.36090	1.44636	1.44636 0.300	-6.27948	50.000001	
60 1,1,1,2-Tetrachloroethane	0.44380	0.446421	0.44642 0.010	-0.58964	50.000001	-
61 Ethylbenzene	0.737341	0.77945	0.7794510.0101	-5.710221	20.000001	2
62 m + p-Xylene	0.92287	0.986691	0.98669 0.010	-6.91526	50.000001	-
M 63 Xylenes (total)	0.90821	0.966551	0.96655 0.010	-6.42305	50.000001	2
64 Xylene-o	0.878891	0.926261	0.9262610.0101	-5.389381	50.000001	
65 Styrene	1.538901	1.59869	1.59869[0.010]	-3.885061	50.000001	-
66 Bromoform	1 50.000001	36.008101	0.18795 0.100	and the second s		-
67 Isopropylbenzene	2.25700	2.305821	2.30582[0.010]	-2.16309	50.000001	Average
68 1,1,2,2-Tetrachloroethane	0.94058	1.00035	1.0003510.3001	-6.35431	50.000001	Average
69 1,4-Dichloro-2-butene	50.00000	39.91026	0.11734[0.010]		0.000e+000	-
70 1,2,3-Trichloropropane	0.28315	0.28527	0.28527 0.010	-0.74940]	50.000001	
71 Bromobenzene	1.14977	1.09861	1.09861 0.010	4.448901	50.000001	,
72 n-Propylbenzene	1.17421	1.132221	1.13222 0.010	3.576341	50.000001	Averaged
73 2-Chlorotoluene	1.029261	1.01315	1.01315 0.010	1.56543	50.000001	Average
74 1,3,5-Trimethylbenzene	3.448121	3.409461	3.4094610.0101	1.12128	50.000001	Averaged
75 4-Chlorotoluene	1.08496	1.06441	1.06441 0.010	1.89423	50.000001	Averaged
76 tert-Butylbenzene	3.03299	3.217921	3.21792 0.010	~6.097211	50.000001	Averaged
77 1,2,4-Trimethylbenzene	3.464831	3.520721	3.5207210.0101	-1.61298	50.000001	Averaged
78 sec-Butylbenzene	4.04150	3.98161	3.98161[0.010]	1,48181	50.000001	Averaged
79 4-Isopropyltoluene	3.230341	3.294821	3.29482 0.010	-1.99587]	50.000001	Averaged
80 1,3-Dichlorobenzene	1 1.997701	2.009671	2.0096710.0101	-0.59914	50.000001	Averaged
81 1,4-Dichlorobenzene	2.01998	2.07151	2.07151 0.010	-2.551391	50,000001	Averaged
82 n-Butylbenzene	2.17891	2.546901	2.54690[0.010]	-16.88853	50.000001	Averaged
33 1,2-Dichlorobenzene	1.708981	1.86143	1.8614310.0101	-8.920341	50.000001	Averaged
34 1,2-Dibromo-3-chloropropane	0.08154	0.078801	0.07880/0.010/	3.35960	50.000001	Averaged
85 1,2,4-Trichlorobenzene	0.68613	0.534621	0.53462 0.010	22.082491	50.000001	Averaged
86 Hexachlorobutadiene	0.309651	0.242641	0.2426410.0101	21.640421	50.000001	Averaged
37 Naphthalene	1.42473	1.04782	1.04782 0.010	26.45460	50.000001	Averaged
38 1,2,3-Trichlorobenzene	0.60730	0.482821	0.48282 0.010	20.49723	50.00000	Averaged
98 Cyclohexane	0.61473	0.634221	0.6342210.0101	-3.170081	50.000001	Averaged
143 Methyl Acetate	100	107	0.2792110.0101		0.000e+0001	

# Data File: \\cansvrl1\dd\chem\MSV\a3ux11.i\J00513A.b\UXJ9380.D Report Date: 13-May-2010 14:13

TestAmerica North Canton

Instrument ID: a3ux11.i	Injection Date: 13-MAY-2010 11	:37
Lab File ID: UXJ9380.D	Init. Cal. Date(s): 29-OCT-200	
Analysis Type: WATER	Init. Cal. Times: 16:58	17:31
Lab Sample ID: 50NG-CC	Quant Type: ISTD	11.01
Method: \\cansvr11\dd\chem\	ISV\a3ux11.i\J00513A.b\8260LLUX	11.m

I	ł	. 1	I	CCAL	MIN	J	MAX I	
I COMPOUND	IRRE	7 / AMOUNTI	RF50	RRF50	RRF  8	D / %DRIFT %D	/ %DRIFT(C	URVE TYPE
	==== ===							
1144 Methylcyclohexane	1	0.64554	0.582481	0.5824	810.010	9.769041	50.000001	Averaged
141 1,3,5-Trichlorobenzene	T	0.708771	0.56041	0.5604	110.0101	20.93186	50.000001	Averaged
1150 Vinyl Acetate~86	F	0.063931	0.071481	0.0714	8 0.010	-11.80390(	50.000001	Averaged
	!	t	I		1 1	1	1	

# Data File: \\cansvrl1\dd\chem\MSV\a3uxl1.i\J00513A.b\UXJ9381.D Report Date: 13-May-2010 12:17

TestAmerica North Canton

Instrument ID: a3ux11.i	Injection Date: 13-	MAY-2010 12:0	1
	Init. Cal. Date(s):		
	Init. Cal. Times:		17:31
Lab Sample ID: 50NG-A9CC	Ouant Type: ISTD		
Method: \\cansvrll\dd\chem\M	4SV\a3ux11.i\J00513A	.b\8260LLUX11	.m

I	1			CCAL   MIN		MAX	
I COMPOUND	RR		RF50	RRF50   RRF	%D / %DRIFT	&D / %DRIFT	CURVE TYPE
				======= ====	=========================		=========
14 Dichlorofluoromethane	1	50.000001	71.84846	0.37746 0.010	-43.696921	0.000e+000	Quadratic
89 Ethyl Ether	1	0.295071	0.299351	0.2993510.0101	-1.450121	50.00000	
91 3-Chloropropene	I.	0.14116;	0.15363	0.15363 0.010	-8.831921	50.00000	
92 Isopropyl Ether	1	0.300981	0.286851	0.2868510.0101	4.693131	50.00000	
193 2-Chloro-1,3-butadiene	1	0.518121	0.50108	0.5010810.0101	-	50.00000	
194 Propionitrile	1	0.046201	0.043161	0.0431610.0101		50.000001	
95 Ethyl Acetate	I	0.29584]	0.279891	0.2798910.0101	5.392391	50.000001	
196 Methacrylonitrile	1	0.200861	0.191791	0.19179 0.010		50.000001	
197 Isobutanol	1	0.010691	0.012121	0.01212 0.010	-13.383291		
199 n-Butanol		0.009521	0.007651	0.0076510.0101		50.000001	
103 Cyclohexanone		5001	4061	0.02372 0.010	19.602001	50.000001	<u> </u>
1100 Methyl Methacrylate	1	0.286621	0,249981			0.000e+000	
101 2-Nitropropane	1	0.074351		0.24998 0.010	12.784541	50.00000	Averaged
1155 t-Butyl ethyl ether			0.053951	0.05395 0.010	1	50.000001	Averaged
	1	0.52049	0.37912	0.37912 0.010	27, 16031	50.000001	Averaged
1156 t-Amyl methyl ether	I	0.59205	0.32721	0.32721 0.010	44.731911	50.00000	Averaged
157 1,2,3-Trimethylbenzene	1	3.176991	3.433901	3.4339010.0101	-8.08631	50.00000	Averaged
l	I	I	I	II	J		1

BLANK WORKORDER NO.

ł

| L1K531AA

1

SDG Number:0E06602

Lot Number: A0E060602

Time Analyzed: 13:12

Level: (low/med) LOW

Date Extracted:05/13/10

Extraction Method: 5030B

SW846 8260B METHOD BLANK SUMMARY

Lab Name: TestAmerica Laboratories, Inc.

Lab Code: TALCAN

Lab File ID: UXJ9384.D

Date Analyzed: 05/13/10

Matrix: WATER

GC Column: DB 624 ID: .18

Instrument ID: UX11

THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES, LCS, LCSD, MS , MSD:

====================================	L02271AA L02271AC L02271AD L05K41AA L1K531AC		FILE ID  ====================================	05/13/10     05/13/10     05/13/10	15:38 22:20
1   INTRA-LAB_QC                 2   LAB_MS/MSD                 3   LAB_MS/MSD                 4   MRC-MW94D (72')                 5   CHECK_SAMPLE                 6   DUPLICATE_CHECK                 7                   8	L02271AA L02271AC L02271AD L05K41AA L1K531AC	S D	UXJ9388.D  UXJ9405.D  UXJ9406.D	05/13/10     05/13/10     05/13/10	15:38 22:20
2   LAB MS/MSD	L02271AC L02271AD L05K41AA L1K531AC	D	UXJ9405.D UXJ9406.D	05/13/10     05/13/10	22:20
3   LAB MS/MSD                 4   MRC-MW94D (72')                 5   CHECK SAMPLE                 6   DUPLICATE CHECK                 7                   8	L02271AD L05K41AA L1K531AC	D	UXJ9406.D	05/13/10	
4   MRC-MW94D(72')	L05K41AA L1K531AC		·	A Anna and a state of the second seco	22.42
5   CHECK SAMPLE             6   DUPLICATE CHECK             7               8	L1K531AC	<u>с</u>	UXJ9402.D	1 OF (12 /10 )	22:43
6 DUPLICATE CHECK		С		1 05/13/10	21:09
711	L1K531AD	~	UXJ9382.D	05/13/10	12:25
811		L	UXJ9383.D	05/13/10	12:48
			1		
911			1	1	
			1		
0				1	
1					
21					
31					
4					
5.					
6			1		
7			·		
81					
91				11	1
01					
1				1	
2			1	1	
31	· · · ·			1	
4			 	·	
51			l	1 1	,
61			',,,_,_,_,_,	- ' '	/
7	····		1	1	'
8			 	'' 	' 
91			·	- ' ' 	י ۱
01				· · · · · · · · · · · · · · · · · · ·	·'

#### COMMENTS:

52

### METHOD BLANK REPORT

### GC/MS Volatiles

Client Lot #: 0E06602	Work Order #: L1K531AA	Matrix WATER
MB Lot-Sample #: A0E150000-112		
	Prep Date: 05/13/10	Final Wgt/Vol: 5 mL
Analysis Date: 05/13/10	Prep Batch #: 0135112	
Dilution Factor: 1	Initial Wgt/Vol: 5 mL	

		REPORTIN	3	
PARAMETER	RESULT	LIMIT	UNITS	METHOD
Acetone	ND	5.0	ug/L	SW846 8260B
Bromodichloromethane	ND	1.0	ug/L	SW846 8260B
2-Butanone	ND	5.0	ug/L	SW846 8260B
Carbon disulfide	ND	1.0	ug/L	SW846 8260B
Dibromochloromethane	ND	1.0	ug/L	SW846 8260B
1,2-Dibromo-3-chloro- propane	ND	2.0	ug/L	SW846 8260B
1,2-Dibromoethane	ND	1.0	uq/L	SW846 8260B
1,2-Dichlorobenzene	ND	1.0	ug/L	SW846 8260B
1,3-Dichlorobenzene	ND	1.0	ug/L	SW846 8260B
1,4-Dichlorobenzene	ND	1.0	ug/L	SW846 8260B
Dichlorodifluoromethane	ND	1.0	ug/L	SW846 8260B
cis-1,2-Dichloroethene	ND	1.0	ug/L	SW846 8260B
trans-1,2-Dichloroethene	ND	1.0	ug/L	SW846 8260B
Trichlorofluoromethane	ND	1.0	ug/L	SW846 8260B
2-Hexanone	ND	5.0	ug/L	SW846 8260B
Isopropylbenzene	ND	1.0	ug/L	SW846 8260B
4-Methyl-2-pentanone	ND	5.0	ug/L	SW846 8260B
Styrene	ND	1.0	ug/L	SW846 8260B
1,2,4-Trichloro-	0.23 J	1.0	ug/L	SW846 8260B
benzene				
1,1,2-Trichloro-	ND	1.0	ug/L	SW846 8260B
1,2,2-trifluoroethane				
Xylenes (total)	ND	2.0	ug/L	SW846 8260B
Methyl tert-butyl ether	ND	5.0	ug/L	SW846 8260B
Bromochloromethane	ND	1.0	ug/L	SW846 8260B
Dibromomethane	ND	1.0	ug/L	SW846 8260B
1,1,1,2-Tetrachloroethane	ND	1.0	ug/L	SW846 8260B
1,2,3-Trichloropropane	ND	1.0	ug/L	SW846 8260B
Vinyl acetate	ND	2.0	ug/L	SW846 8260B
o-Xylene	ND	1.0	ug/L	SW846 8260B
m-Xylene & p-Xylene	ND	2.0	ug/L	SW846 8260B
Bromobenzene	ND	1.0	ug/L	SW846 8260B
n-Butylbenzene	ND	1.0	ug/L [.]	SW846 8260B
sec-Butylbenzene	ND	1.0	ug/L	SW846 8260B
tert-Butylbenzene	ND	1.0	ug/L	SW846 8260B
2-Chloroethyl vinyl ether	ND	5.0	ug/L	SW846 8260B
2-Chlorotoluene	ND	1.0	ug/L	SW846 8260B
4-Chlorotoluene	ND	1.0	ug/L	SW846 8260B
1,3-Dichloropropane	ND	1.0	ug/L	SW846 8260B
2,2-Dichloropropane	ND	1.0	ug/L	SW846 8260B

(Continued on next page)

### METHOD BLANK REPORT

### GC/MS Volatiles

Client I	ot i	ŧ:	0E06602
----------	------	----	---------

Work Order #...: L1K531AA

Matrix..... WATER

PARAMETERRESULTLIMITUNITSMETHOD1.1-DichloropropeneND1.0ug/LSW8468260BHexachlorobutadiene0.39 J1.0ug/LSW8468260Bp-IsopropyltolueneND1.0ug/LSW8468260Btert-Butyl alcoholND20ug/LSW8468260Bn-Propylbenzene0.31 J1.0ug/LSW8468260Bn-PropylbenzeneND1.0ug/LSW8468260B1,2,3-Trichlorobenzene0.42 J1.0ug/LSW8468260B1,2,4-TrimethylbenzeneND5.0ug/LSW8468260B1,2,3-TrimethylbenzeneND5.0ug/LSW8468260BDisopropyl Ether (DIPE)ND5.0ug/LSW8468260BBenzeneND1.0ug/LSW8468260BBeronformND1.0ug/LSW8468260BBromomethaneND1.0ug/LSW8468260BChlorobenzeneND1.0ug/LSW8468260BChlorobenzeneND1.0ug/LSW8468260BChlorobenzeneND1.0ug/LSW8468260BChlorobenzeneND1.0ug/LSW8468260BChlorobenzeneND1.0ug/LSW8468260BChlorobenzeneND1.0ug/LSW8468260BChlorobenzeneND1.0ug/LSW8468260B
Hexachlorobutadiene0.39 J1.0ug/LSW846 8260Bp-IsopropyltolueneND1.0ug/LSW846 8260Btert-Butyl alcoholND20ug/LSW846 8260BNaphthalene0.31 J1.0ug/LSW846 8260Bn-PropylbenzeneND1.0ug/LSW846 8260B1,2,3-Trichlorobenzene0.42 J1.0ug/LSW846 8260B1,2,4-TrimethylbenzeneND5.0ug/LSW846 8260B1,2,3-TrimethylbenzeneND5.0ug/LSW846 8260B1,2,3-TrimethylbenzeneND5.0ug/LSW846 8260BEthyl-t-Butyl Ether (DIPE)ND5.0ug/LSW846 8260BBenzeneND1.0ug/LSW846 8260BBromoformND1.0ug/LSW846 8260BBromoformND1.0ug/LSW846 8260BCarbon tetrachlorideND1.0ug/LSW846 8260BChlorobenzeneND1.0ug/LSW846 8260BChlorobenzeneND1.0ug/LSW846 8260BChlorobenzeneND1.0ug/LSW846 8260B1,1-DichloroethaneND1.0ug/LSW846 8260B1,2-DichloroethaneND1.0ug/LSW846 8260B1,2-DichloropropeneND1.0ug/LSW846 8260B1,2-DichloroethaneND1.0ug/LSW846 8260B1,2-DichloroethaneND1.0ug/LSW846 8260B1,2-Dichloropropene </th
Hexachlorobutadiene0.39 J1.0ug/LSW8468260Bp-IsopropyltolueneND1.0ug/LSW8468260Btert-Butyl alcoholND20ug/LSW8468260BNaphthalene0.31 J1.0ug/LSW8468260Bn-PropylbenzeneND1.0ug/LSW8468260B1,2,3-Trichlorobenzene0.42 J1.0ug/LSW8468260B1,2,4-TrimethylbenzeneND5.0ug/LSW8468260B1,2,3-TrimethylbenzeneND5.0ug/LSW8468260B1,2,3-TrimethylbenzeneND5.0ug/LSW8468260BEthyl-t-Butyl Ether (DIPE)ND5.0ug/LSW8468260BBenzeneND1.0ug/LSW8468260BBromoformND1.0ug/LSW8468260BBromoformND1.0ug/LSW8468260BChlorobenzeneND1.0ug/LSW8468260BChlorobenzeneND1.0ug/LSW8468260BChlorobenhaneND1.0ug/LSW8468260B1,1-DichloroethaneND1.0ug/LSW8468260B1,1-DichloroethaneND1.0ug/LSW8468260B1,2-DichloropropaneND1.0ug/LSW8468260B1,2-DichloroethaneND1.0ug/LSW8468260B1,2-DichloroethaneND1.0<
p-Isopropyltoluene         ND         1.0         ug/L         SW846         8260B           tert-Butyl alcohol         ND         20         ug/L         SW846         8260B           Naphthalene         0.31 J         1.0         ug/L         SW846         8260B           n-Propylbenzene         ND         1.0         ug/L         SW846         8260B           1,2,3-Trichlorobenzene         0.42 J         1.0         ug/L         SW846         8260B           1,2,4-Trimethylbenzene         ND         5.0         ug/L         SW846         8260B           1,2,3-Trimethylbenzene         ND         5.0         ug/L         SW846         8260B           Ethyl-t-Butyl Ether (DIPE)         ND         5.0         ug/L         SW846         8260B           Benzene         ND         1.0         ug/L         SW846         8260B           Bromoform         ND         1.0         ug/L         SW846         8260B           Carbon tetrachloride         ND         1.0         ug/L         SW846         8260B           Chlorobenzene         ND         1.0         ug/L         SW846         8260B           Chlorobethane         ND         1.0
Naphthalene         0.31 J         1.0         ug/L         SW846         8260B           n-Propylbenzene         ND         1.0         ug/L         SW846         8260B           1,2,3-Trichlorobenzene         0.42 J         1.0         ug/L         SW846         8260B           1,2,4-Trimethylbenzene         ND         1.0         ug/L         SW846         8260B           1,2,3-Trimethylbenzene         ND         5.0         ug/L         SW846         8260B           1,2,3-Trimethylbenzene         ND         5.0         ug/L         SW846         8260B           Disopropyl Ether (DIPE)         ND         5.0         ug/L         SW846         8260B           Ethyl-t-Butyl Ether (ETBE         ND         5.0         ug/L         SW846         8260B           Benzene         ND         1.0         ug/L         SW846         8260B           Bromoform         ND         1.0         ug/L         SW846         8260B           Carbon tetrachloride         ND         1.0         ug/L         SW846         8260B           Chlorobenzene         ND         1.0         ug/L         SW846         8260B           Chlorobenzene         ND         1
Naphthalene         0.31 J         1.0         ug/L         SW846         8260B           n-Propylbenzene         ND         1.0         ug/L         SW846         8260B           1,2,3-Trichlorobenzene         0.42 J         1.0         ug/L         SW846         8260B           1,2,4-Trimethylbenzene         ND         1.0         ug/L         SW846         8260B           1,2,3-Trimethylbenzene         ND         5.0         ug/L         SW846         8260B           1,2,3-Trimethylbenzene         ND         5.0         ug/L         SW846         8260B           Disopropyl Ether (DIPE)         ND         5.0         ug/L         SW846         8260B           Ethyl-t-Butyl Ether (ETBE         ND         5.0         ug/L         SW846         8260B           Benzene         ND         1.0         ug/L         SW846         8260B           Bromoform         ND         1.0         ug/L         SW846         8260B           Carbon tetrachloride         ND         1.0         ug/L         SW846         8260B           Chlorobenzene         ND         1.0         ug/L         SW846         8260B           Chlorobenzene         ND         1
n-Propylbenzene         ND         1.0         ug/L         SW846         8260B           1,2,3-Trichlorobenzene         0.42 J         1.0         ug/L         SW846         8260B           1,2,4-Trimethylbenzene         ND         1.0         ug/L         SW846         8260B           1,2,3-Trimethylbenzene         ND         5.0         ug/L         SW846         8260B           Diisopropyl Ether (DIPE)         ND         5.0         ug/L         SW846         8260B           Ethyl-t-Butyl Ether (ETBE         ND         5.0         ug/L         SW846         8260B           Benzene         ND         1.0         ug/L         SW846         8260B           Bromoform         ND         1.0         ug/L         SW846         8260B           Bromomethane         ND         1.0         ug/L         SW846         8260B           Chlorobenzene         ND         1.0         ug/L         SW846         8260B           Chlorobenzene         ND         1.0         ug/L         SW846         8260B           Chlorobethane         ND         1.0         ug/L         SW846         8260B           Chlorobethane         ND         1.0 <t< td=""></t<>
1,2,3-Trichlorobenzene         0.42 J         1.0         ug/L         SW846         8260B           1,2,4-Trimethylbenzene         ND         1.0         ug/L         SW846         8260B           1,2,3-Trimethylbenzene         ND         5.0         ug/L         SW846         8260B           Diisopropyl Ether (DIPE)         ND         5.0         ug/L         SW846         8260B           Ethyl-t-Butyl Ether (ETBE         ND         5.0         ug/L         SW846         8260B           Benzene         ND         5.0         ug/L         SW846         8260B           Bromoform         ND         1.0         ug/L         SW846         8260B           Bromomethane         ND         1.0         ug/L         SW846         8260B           Carbon tetrachloride         ND         1.0         ug/L         SW846         8260B           Chlorobenzene         ND         1.0         ug/L         SW846         8260B           Chlorobethane         ND         1.0         ug/L         SW846         8260B           Chlorobethane         ND         1.0         ug/L         SW846         8260B           1,1-Dichloroethane         ND         1.0
1,2,4-Trimethylbenzene       ND       1.0       ug/L       SW846 8260B         1,2,3-Trimethylbenzene       ND       5.0       ug/L       SW846 8260B         Diisopropyl Ether (DIPE)       ND       5.0       ug/L       SW846 8260B         Ethyl-t-Butyl Ether (ETBE       ND       5.0       ug/L       SW846 8260B         Benzene       ND       1.0       ug/L       SW846 8260B         Bromoform       ND       1.0       ug/L       SW846 8260B         Bromomethane       ND       1.0       ug/L       SW846 8260B         Carbon tetrachloride       ND       1.0       ug/L       SW846 8260B         Chlorobenzene       ND       1.0       ug/L       SW846 8260B         Chloroform       ND       1.0       ug/L       SW846 8260B         Chlorobenzene       ND       1.0       ug/L       SW846 8260B         Chloroform       ND       1.0       ug/L       SW846 8260B         Chlorobenzene       ND       1.0       ug/L       SW846 8260B         Chloroform       ND       1.0       ug/L       SW846 8260B         1,1-Dichloroethane       ND       1.0       ug/L       SW846 8260B         1,
1,2,3-Trimethylbenzene       ND       5.0       ug/L       SW846 8260B         Diisopropyl Ether (DIPE)       ND       5.0       ug/L       SW846 8260B         Ethyl-t-Butyl Ether (ETBE       ND       5.0       ug/L       SW846 8260B         Tert-amyl methyl ether (T       ND       5.0       ug/L       SW846 8260B         Benzene       ND       1.0       ug/L       SW846 8260B         Bromoform       ND       1.0       ug/L       SW846 8260B         Bromomethane       ND       1.0       ug/L       SW846 8260B         Carbon tetrachloride       ND       1.0       ug/L       SW846 8260B         Chlorobenzene       ND       1.0       ug/L       SW846 8260B         Chloroform       ND       1.0       ug/L       SW846 8260B         Chloroform       ND       1.0       ug/L       SW846 8260B         Chlorofethane       ND       1.0       ug/L       SW846 8260B         1,1-Dichloroethane       ND       1.0       ug/L       SW846 8260B         1,2-Dichloroethane       ND       1.0       ug/L       SW846 8260B         1,2-Dichloroethane       ND       1.0       ug/L       SW846 8260B      <
Diisopropyl Ether (DIPE)ND5.0ug/LSW846 8260BEthyl-t-Butyl Ether (ETBEND5.0ug/LSW846 8260BTert-amyl methyl ether (TND5.0ug/LSW846 8260BBenzeneND1.0ug/LSW846 8260BBromoformND1.0ug/LSW846 8260BBromomethaneND1.0ug/LSW846 8260BCarbon tetrachlorideND1.0ug/LSW846 8260BChlorobenzeneND1.0ug/LSW846 8260BChlorobentaneND1.0ug/LSW846 8260BChlorobentaneND1.0ug/LSW846 8260BChlorobentaneND1.0ug/LSW846 8260BChlorobethaneND1.0ug/LSW846 8260BChlorobethaneND1.0ug/LSW846 8260B1,1-DichloroethaneND1.0ug/LSW846 8260B1,2-DichloroptopaneND1.0ug/LSW846 8260B1,2-DichloropropaneND1.0ug/LSW846 8260B1,2-DichloropropaneND1.0ug/LSW846 8260Btrans-1,3-DichloropropeneND1.0ug/LSW846 8260BEthylbenzeneND1.0ug/LSW846 8260BMethylene chlorideND1.0ug/LSW846 8260B
Ethyl-t-Butyl Ether (ETBE       ND       5.0       ug/L       SW846       8260B         Tert-amyl methyl ether (T       ND       5.0       ug/L       SW846       8260B         Benzene       ND       1.0       ug/L       SW846       8260B         Bromoform       ND       1.0       ug/L       SW846       8260B         Bromomethane       ND       1.0       ug/L       SW846       8260B         Carbon tetrachloride       ND       1.0       ug/L       SW846       8260B         Chlorobenzene       ND       1.0       ug/L       SW846       8260B         Chloroethane       ND       1.0       ug/L       SW846       8260B         Chloroform       ND       1.0       ug/L       SW846       8260B         Chloroform       ND       1.0       ug/L       SW846       8260B         Chloroform       ND       1.0       ug/L       SW846       8260B         1,1-Dichloroethane       ND       1.0       ug/L       SW846       8260B         1,2-Dichloropthane       ND       1.0       ug/L       SW846       8260B         1,2-Dichloroptopane       ND       1.0       ug/L
Benzene         ND         1.0         ug/L         SW846         8260B           Bromoform         ND         1.0         ug/L         SW846         8260B           Bromomethane         ND         1.0         ug/L         SW846         8260B           Carbon tetrachloride         ND         1.0         ug/L         SW846         8260B           Chlorobenzene         ND         1.0         ug/L         SW846         8260B           Chloroethane         ND         1.0         ug/L         SW846         8260B           Chloroform         ND         1.0         ug/L         SW846         8260B           Chloroform         ND         1.0         ug/L         SW846         8260B           Chloromethane         ND         1.0         ug/L         SW846         8260B           1,1-Dichloroethane         ND         1.0         ug/L         SW846         8260B           1,2-Dichloroethane         ND         1.0         ug/L         SW846         8260B           1,2-Dichloropropane         ND         1.0         ug/L         SW846         8260B           cis-1,3-Dichloropropene         ND         1.0         ug/L         SW846<
BromoformND1.0ug/LSW8468260BBromomethaneND1.0ug/LSW8468260BCarbon tetrachlorideND1.0ug/LSW8468260BChlorobenzeneND1.0ug/LSW8468260BChloroethaneND1.0ug/LSW8468260BChloroformND1.0ug/LSW8468260BChloroformND1.0ug/LSW8468260BChloromethaneND1.0ug/LSW8468260B1,1-DichloroethaneND1.0ug/LSW8468260B1,2-Dichloroethane0.281.0ug/LSW8468260B1,2-DichloroptopaneND1.0ug/LSW8468260B1,2-DichloropropaneND1.0ug/LSW8468260Btrans-1,3-DichloropropeneND1.0ug/LSW8468260BEthylbenzeneND1.0ug/LSW8468260BMethylene chlorideND1.0ug/LSW8468260B
BromomethaneND1.0ug/LSW8468260BCarbon tetrachlorideND1.0ug/LSW8468260BChlorobenzeneND1.0ug/LSW8468260BChloroethaneND1.0ug/LSW8468260BChloroformND1.0ug/LSW8468260BChloromethaneND1.0ug/LSW8468260BChloromethaneND1.0ug/LSW8468260B1,1-DichloroethaneND1.0ug/LSW8468260B1,2-DichloroethaneND1.0ug/LSW8468260B1,2-DichloroethaneND1.0ug/LSW8468260B1,2-DichloropropaneND1.0ug/LSW8468260Bcis-1,3-DichloropropeneND1.0ug/LSW8468260Btrans-1,3-DichloropropeneND1.0ug/LSW8468260BEthylbenzeneND1.0ug/LSW8468260BMethylene chlorideND1.0ug/LSW8468260B
Bromomethane         ND         1.0         ug/L         SW846         8260B           Carbon tetrachloride         ND         1.0         ug/L         SW846         8260B           Chlorobenzene         ND         1.0         ug/L         SW846         8260B           Chloroethane         ND         1.0         ug/L         SW846         8260B           Chloroform         ND         1.0         ug/L         SW846         8260B           Chloromethane         ND         1.0         ug/L         SW846         8260B           1,1-Dichloroethane         ND         1.0         ug/L         SW846         8260B           1,2-Dichloroethane         ND         1.0         ug/L         SW846         8260B           1,2-Dichloroethane         ND         1.0         ug/L         SW846         8260B           1,2-Dichloropthane         ND         1.0         ug/L         SW846         8260B           1,2-Dichloroptopane         ND         1.0         ug/L         SW846         8260B           cis-1,3-Dichloropropene         ND         1.0         ug/L         SW846         8260B           trans-1,3-Dichloropropene         ND         1.0
Carbon tetrachlorideND1.0ug/LSW8468260BChlorobenzeneND1.0ug/LSW8468260BChloroethaneND1.0ug/LSW8468260BChloroformND1.0ug/LSW8468260BChloromethaneND1.0ug/LSW8468260B1,1-DichloroethaneND1.0ug/LSW8468260B1,2-DichloroethaneND1.0ug/LSW8468260B1,1-DichloroethaneND1.0ug/LSW8468260B1,2-DichloroethaneND1.0ug/LSW8468260B1,2-DichloropropaneND1.0ug/LSW8468260Bcis-1,3-DichloropropeneND1.0ug/LSW8468260Btrans-1,3-DichloropropeneND1.0ug/LSW8468260BEthylbenzeneND1.0ug/LSW8468260BMethylene chlorideND1.0ug/LSW8468260B
ChlorobenzeneND1.0ug/LSW8468260BChloroethaneND1.0ug/LSW8468260BChloroformND1.0ug/LSW8468260BChloromethaneND1.0ug/LSW8468260B1,1-DichloroethaneND1.0ug/LSW8468260B1,2-Dichloroethane0.28 J1.0ug/LSW8468260B1,2-DichloroptheneND1.0ug/LSW8468260B1,2-DichloroptheneND1.0ug/LSW8468260B1,2-DichloroptheneND1.0ug/LSW8468260B1,3-DichloroptopeneND1.0ug/LSW8468260Btrans-1,3-DichloroptopeneND1.0ug/LSW8468260BEthylbenzeneND1.0ug/LSW8468260BMethylene chlorideND1.0ug/LSW8468260B
ChloroformND1.0ug/LSW8468260BChloromethaneND1.0ug/LSW8468260B1,1-DichloroethaneND1.0ug/LSW8468260B1,2-Dichloroethane0.28 J1.0ug/LSW8468260B1,1-DichloroethaneND1.0ug/LSW8468260B1,2-DichloroethaneND1.0ug/LSW8468260B1,2-DichloropropaneND1.0ug/LSW8468260Bcis-1,3-DichloropropeneND1.0ug/LSW8468260Btrans-1,3-DichloropropeneND1.0ug/LSW8468260BEthylbenzeneND1.0ug/LSW8468260BMethylene chlorideND1.0ug/LSW8468260B
ChloromethaneND1.0ug/LSW8468260B1,1-DichloroethaneND1.0ug/LSW8468260B1,2-Dichloroethane0.28 J1.0ug/LSW8468260B1,1-DichloroethaneND1.0ug/LSW8468260B1,2-DichloroptopaneND1.0ug/LSW8468260B1,2-DichloropropaneND1.0ug/LSW8468260Bcis-1,3-DichloropropeneND1.0ug/LSW8468260Btrans-1,3-DichloropropeneND1.0ug/LSW8468260BEthylbenzeneND1.0ug/LSW8468260BMethylene chlorideND1.0ug/LSW8468260B
1,1-DichloroethaneND1.0ug/LSW8468260B1,2-Dichloroethane0.28 J1.0ug/LSW8468260B1,1-DichloroetheneND1.0ug/LSW8468260B1,2-DichloropropaneND1.0ug/LSW8468260Bcis-1,3-DichloropropeneND1.0ug/LSW8468260Btrans-1,3-DichloropropeneND1.0ug/LSW8468260BEthylbenzeneND1.0ug/LSW8468260BMethylene chlorideND1.0ug/LSW8468260B
1,2-Dichloroethane0.28 J1.0ug/LSW8468260B1,1-DichloroetheneND1.0ug/LSW8468260B1,2-DichloropropaneND1.0ug/LSW8468260Bcis-1,3-DichloropropeneND1.0ug/LSW8468260Btrans-1,3-DichloropropeneND1.0ug/LSW8468260BEthylbenzeneND1.0ug/LSW8468260BMethylene chlorideND1.0ug/LSW8468260B
1,2-Dichloroethane         0.28 J         1.0         ug/L         SW846         8260B           1,1-Dichloroethene         ND         1.0         ug/L         SW846         8260B           1,2-Dichloropropane         ND         1.0         ug/L         SW846         8260B           cis-1,3-Dichloropropene         ND         1.0         ug/L         SW846         8260B           trans-1,3-Dichloropropene         ND         1.0         ug/L         SW846         8260B           Ethylbenzene         ND         1.0         ug/L         SW846         8260B           Methylene chloride         ND         1.0         ug/L         SW846         8260B
1,2-DichloropropaneND1.0ug/LSW8468260Bcis-1,3-DichloropropeneND1.0ug/LSW8468260Btrans-1,3-DichloropropeneND1.0ug/LSW8468260BEthylbenzeneND1.0ug/LSW8468260BMethylene chlorideND1.0ug/LSW8468260B
cis-1,3-DichloropropeneND1.0ug/LSW8468260Btrans-1,3-DichloropropeneND1.0ug/LSW8468260BEthylbenzeneND1.0ug/LSW8468260BMethylene chlorideND1.0ug/LSW8468260B
trans-1,3-DichloropropeneND1.0ug/LSW8468260BEthylbenzeneND1.0ug/LSW8468260BMethylene chlorideND1.0ug/LSW8468260B
EthylbenzeneND1.0ug/LSW8468260BMethylene chlorideND1.0ug/LSW8468260B
Methylene chloride ND 1.0 ug/L SW846 8260B
1,1,2,2-Tetrachloroethane ND 1.0 ug/L SW846 8260B
Tetrachloroethene ND 1.0 ug/L SW846 8260B
Toluene ND 1.0 ug/L SW846 8260B
1,1,1-Trichloroethane ND 1.0 ug/L SW846 8260B
Trichloroethene ND 1.0 ug/L SW846 8260B
Vinyl chloride ND 1.0 ug/L SW846 8260B
PERCENT RECOVERY
SURROGATE RECOVERY LIMITS
Dibromofluoromethane 92 (73 - 122)
1,2-Dichloroethane-d4 94 (61 - 128)
Toluene-d8 100 (76 - 110)
4-Bromofluorobenzene 89 (74 - 116)

### NOTE (S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

J Estimated result. Result is less than RL.

## Tetra Tech NUS, Inc

## Method Blank Report

### GC/MS Volatiles

Lot-Sample #: A0E150000-112 B Work Order #: L1K531AA Matrix: WATER

MASS SPECTROMETER/DATA SYSTEM (MSDS) TENTATIVELY IDENTIFIED COMPOUNDS

			ESTIMATED	RETENTION	
PARAMETER	CAS	#	RESULT	TIME	UNITS
None					ug/L

### SW846 8260B CHECK SAMPLE RECOVERY

Lab Name: TestAmerica Laboratories, Inc. Client: Tetra Tech NUS, Inc

Lab Code: TALCAN

Lot #: A0E150000

SDG No: 0E06602

WO #: L1K531AC BATCH: 0135112

	SPIKE	SAMPLE		QC	1
	ADDED	CONCENT.	90	LIMITS	1
COMPOUND	(ug/L )	(ug/L )	REC	REC	QUAL
=======================================	=== ===================================	== ====================================	=   =====   =		
1,1-Dichloroethene	10	9.9	99	63- 130	)
Trichloroethene	10	8.3	83	75- 122	2
Benzene	10	9.7	97	80- 116	5
Toluene	10	9.9	1 99 1	74- 119	)
Chlorobenzene	10	9.5	95	76- 117	· · · · · · · · · · · · · · · · · · ·

NOTES(S):

* Values outside of QC limits

Spike Recovery: <u>0</u> out of <u>5</u> outside limits

COMMENTS:

FORM III

32

5A VOLATILE ORGANIC GC/MS TUNING AND MASS CALIBRATION - BROMOFLUOROBENZENE (BFB)

Lab Name: NORTH CANTON	Contract:	
Lab Code: TALCAN Case N	SAS No.:	SDG No.: 0E06602
Lab File ID: BFB372	BFB	Injection Date: 05/18/10
Instrument ID: A3UX11	BFB	Injection Time: 1104
Matrix:(soil/water) WATER	Level:(low/med) LOW	Column:(pack/cap) CAP

	% RELATIVE
m/e   ION ABUNDANCE CRITERIA	ABUNDANCE
===== ===============================	========
50   15.0 - 40.0% of mass 95	15.9
75   30.0 - 60.0% of mass 95	44.6
95   Base Peak, 100% relative abundance	100.0
96   5.0 - 9.0% of mass 95	7.0
173   Less than 2.0% of mass 174	0.0 ( 0.0)1
174   50.0 - 100.0% of mass 95	98.4
175   5.0 - 9.0% of mass 174	6.7 ( 6.8)1
176   Greater than 95.0%, but less than 101.0% of mass 174	96.4 ( 98.0)1
177   5.0 - 9.0% of mass 176	6.5 ( 6.7)2
	l
1-Value is % of mass 174 2-Value is % of ma	ass 176

THIS TUNE APPLIES TO THE FOLLOWING SAMPLES, MS, MSD, BLANKS, AND STANDARDS:

I EPA	LAB	LAB	DATE	TIME
SAMPLE NO.	SAMPLE ID	FILE ID	ANALYZED	ANALYZED
=======================================	-   ===================================	=   ==== <b>==</b> ============		========
01 VSTD010	50NG-CC	UXJ9543	05/18/10	1126
02 VSTD010	50NG-A9CC	UXJ9544	05/18/10	1150
03 L1PKACHK	L1PKA1AC	UXJ9545	05/18/10	1214
04 L1PKACKDUP	L1PKA1AD	UXJ9546	05/18/10	1238
05 L1PKABLK	L1PKA1AA	UXJ9547	05/18/10	1301
06 MRC-MW95D(63	L1CNA1AA	UXJ9567	05/18/10	2055
071	1	ł	1	
08				
091				
10		]		
11!				
12				
13				
14			1	I
151	1			'
16	1	- ·		I
17		- '	'	I
18			· ·	ı
191	1	1	' '	
201	- ' <u></u>	- ' <u></u>	' <u></u> ' 	I
21	· · <u></u>	- ' <u></u>	'' 	· 1
221	- ' <u></u>	- ' 	'' ]	I
	·	· '	''	I

page 1 of 1

North Canton

# Data File: \\cansvrll\dd\chem\MSV\a3uxl1.i\J00518A.b\UXJ9543.D Report Date: 18-May-2010 12:25

TestAmerica North Canton

Instrument ID: a3ux11.i	Injection Date: 18-MAY-2010 11:2	6
Lab File ID: UXJ9543.D	Init. Cal. Date(s): 29-OCT-2009	26-MAR-2010
Analysis Type: WATER	Init. Cal. Times: 16:58	17:31
Lab Sample ID: 50NG-CC	Quant Type: ISTD	
Method: \\cansvrll\dd\chem\N	4SV\a3ux11.i\J00518A.b\8260LLUX11	.m

	1 <u> </u>	1	CCAL   MIN	I	MAX I	
COMPOUND	RRF / AMOUNT	RF50		%D / %DRIFT∣		
-						
\$ 4 Dibromofluoromethane	0.31463	0.299451	0.29945[0.010]	4.82651	50.00000	
\$ 51,2-Dichloroethane-d4	0.394681	0.36217	0.36217 0.010	8.23771	50.00000	Average
\$ 6 Toluene-d8	1.76192	1.63293	1.63293 0.010	7.320901	50.000001	Average
\$ 7 Bromofluorobenzene	0.64241	0.65704	0.65704 0.010	-2.27797	50.000001	Average
8 Dichlorodifluoromethane	0.22291	0.206791	0.20679 0.010	7.228191	50.000001	Average
9 Chloromethane	0.441391	0.318921	0.31892 0.100	27.74793	50.000001	Average
10 Vinyl Chloride	0.399151	0.355231	0.35523 0.010	11.002041	20.00000	Average
11 Bromomethane	I 0.10278	0.090941	0.09094 0.010	11.524131	50.00000	Average
12 Chloroethane	[ 0.10547]	0.13121	0.13121 0.010	-24.41302!	50.00000	Average
13 Trichlorofluoromethane	50.00000	55.95741	0.24797 0.010	-11.91482	0.000e+000]	Wt Linea:
15 Acrolein	0.04706	0.03628	0.03628 0.010	22.90144	50.00000	Averaged
16 Acetone	100;	81.428291	0.08777 0.010	18.57171	0.000e+0001	Wt Linea:
17 1,1-Dichloroethene	0.30193	0.274401	0.27440 0.010	9.11969	20.000001	Average
18 Freon-113	0.228691	0.220661	0.22066 0.010	3.51372	50.000001	Averaged
19 Iodomethane	0.385821	0.487671	0.48767 0.010	-26.398491	50.000001	Averaged
20 Carbon Disulfide	0.83821	0.734981	0.73498 0.010	12.315591	50.00000	Average
21 Methylene Chloride	50.00000	56.701491	0.33230 0.010	-13.402991	0.000e+0001	Wt Linea
22 Acetonitrile	1 5001	4791	0.03458 0.010	4.29113	0.000e+000	Wt Linea
23 Acrylonitrile	1001	85.235181	0.10710 0.010	14.76482	0.000e+0001	Wt Linea
24 Methyl tert-butyl ether	0.45908	0.290471	0.2904710.0101		50.000001	Average
25 trans-1,2-Dichloroethene	0.36166	0.336441	0.3364410.0101	6.972291	50.000001	Average
26 Hexane	0.092561	0.083301	0.08330 0.010	10.009071	20.000001	Averaged
27 Vinyl acetate	0.51955	0.458621	0.45862 0.010	11.726881	50.000001	Average
28 1,1-Dichloroethane	0.582331	0.600881	0.6008810.1001	-3.18564	50.000001	Average
29 tert-Butyl Alcohol	0.022801	0.01348	0.01348 0.010	40.88758	50.000001	Average
30 2-Butanone	0.15054	0.138501	0.13850[0.010]	7.996871	50.000001	Average
M 31 1,2-Dichloroethene (total)	0.38019	0.36378	0.3637810.0101	4.316551	50.000001	Averaged
32 cis-1,2-dichloroethene	0.398721	0.39111	0.39111 0.010	1.90765	50.000001	Averaged
33 2,2-Dichloropropane	0.293681	0.262271	0.26227 0.010	10.69514	50.000001	Averaged
34 Bromochloromethane	0.19774	0.19793	0.19793[0.010]	-0.096621	50.000001	Average
35 Chloroform	0.58973	0.599811	0.59981 0.010	-1.70914	20.000001	-
36 Tetrahydrofuran	0.10006	0.08450	0.08450(0.010)			Average
37 1,1,1-Trichloroethane	0.42801	0.423051		15.55715	50.000001	Average
			0.4230510.0101	1.156951	50.000001	Average
38 1,1-Dichloropropene	0.483701	0.481621	0.48162 0.010	0.42971	50.000001	Average
39 Carbon Tetrachloride	0.363591	0.367691	0.36769 0.010	~1.12705	50.000001	Average
40 1,2-Dichloroethane	0.443191	0.452971	0.4529710.0101	-2.20867	50.000001	Average
41 Benzene	1.51454	1.553461	1.5534610.0101	-2.56941	50.00000	Average
42 Trichloroethene	0.41228	0.41474	0.41474 0.010	-0.59650	50.00000	Average
43 1,2-Dichloropropane	0.360681	0.37456	0.37456 0.010	-3.847081	20.000001	Average
44 1,4-Dioxane	0.002951	0.002631	0.00263 0.010	10.77238;	50.00000	Average
45 Dibromomethane	0.207401	0.20753	0.20753 0.010	-0.063681	50.000001	Averaged
46 Bromodichloromethane	0.41328	0.393321	0.3933210.0101	4.82957	50.000001	Averaged
47 2-Chloroethyl vinyl ether	0.20543	0.04479	0.0447910.0101	78.19450	50.00000	Averaged

# Data File: \\cansvr11\dd\chem\MSV\a3ux11.i\J00518A.b\UXJ9543.D Report Date: 18-May-2010 12:25

### TestAmerica North Canton

### CONTINUING CALIBRATION COMPOUNDS

Instrument ID: a3ux11.i	Injection Date: 18-MAY-2010	11:26
Lab File ID: UXJ9543.D	Init. Cal. Date(s): 29-OCT-	2009 26-MAR-2010
Analysis Type: WATER	Init. Cal. Times: 16:58	17:31
Lab Sample ID: 50NG-CC	Quant Type: ISTD	
Method: \\cansvr11\dd\chem\B	1SV\a3ux11.i\J00518A.b\8260L	LUX11.m

				I
	RF50			
0.55000	0.47811	0.47811 0.010	13.07004  50.00	
0.28797	0.25905	0.25905 0.010	10.04154  50.00	-
2.08998	2.11247			-
0.63419	0.51382	0.51382 0.010		-
0.62471	0.52956	0.5295610.0101		
0.40779	0.41109			-
0.72631	0.724711			
0.43185	0.448751	0.44875 0.010		-
0.252721	0.21481			
0.38381	0.34654			
0.41014	0.39478	- · · ·		-
1.36090	1.40765			-
0.44380				
0.73734				-
0.922871				2
0.90821				
0.87889				-
1.538901	1.700351			
50.000001				
2.25700	2.435801			
0.94058	0.91891			2
50.00000				
1.14977	1.08788			-
1.17421	1.10421			
1.02926	0.985021			
3.448121				
1.08496				
				-
				-
				-
				2
,,				
				-
				-
				-
I 100	84.734681	0.22572 0.010	15.26532  0.000e+	000  Wt Linea
	I         0.55000            I         0.28797            I         2.08998            I         0.63419            I         0.62471            I         0.40779            I         0.42631            I         0.43185            I         0.44380            I         0.73734            I         0.90821            I         0.87889            I         53890            I         0.38315            I         1.49771            I         1.7421            I         0.02926            I         3.03299            I         3.44812	I RRF / AMOUNT         RF50       I         I       0.55000         0.47811           I       0.28797         0.25905           I       2.08998         2.11247           I       0.63419         0.51382           I       0.62471         0.52956           I       0.62471         0.52956           I       0.40779         0.41109           I       0.72631         0.72471           I       0.43185         0.44875           I       0.25272         0.21481           I       0.43185         0.34654           I       0.41014         0.39478           I       0.41014         0.39478           I       0.4380         0.46129           I       0.73734         0.80325           I       0.90821         1.01992           I       0.90821         1.01992           I       0.90821         1.03581           I       0.90821         1.01992           I       0.90821         1.01992           I       0.90821         1.01992           I       0.90821         1.03581           I       0.94058	IRRF / AMOUNT         RF50         RRF50         RRF50         RRF50           I         0.55000         0.478111         0.478111         0.0101           I         0.287971         0.259051         0.259051         0.0101           I         0.634191         0.513821         0.513821         0.0101           I         0.624711         0.529561         0.529561         0.0101           I         0.624711         0.529561         0.724711         0.0101           I         0.624711         0.529561         0.724711         0.0101           I         0.624711         0.724711         0.724711         0.0101           I         0.431851         0.448751         0.0101           I         0.431851         0.448751         0.0101           I         0.431851         0.346541         0.30251         0.0101           I         0.430301         1.407651         1.407651         0.30251         0.0101           I         0.443801         0.461291         0.461291         0.0101           I         0.908211         1.019921         1.019921         0.0101           I         0.908211         1.019921         0.908110	IRRF / AMOUNTI         RF50         IRRF 50         IRRF 50

.

# Data File: \\cansvrll\dd\chem\MSV\a3uxll.i\J00518A.b\UXJ9543.D Report Date: 18-May-2010 12:25

TestAmerica North Canton

Instrument ID: a3ux11.i	Injection Date: 18-MAY-2010 1	1:26
Lab File ID: UXJ9543.D	Init. Cal. Date(s): 29-OCT-20	)9 26-MAR-2010
Analysis Type: WATER	Init. Cal. Times: 16:58	17:31
	Quant Type: ISTD	
Method: \\cansvrll\dd\chem\N	SV\a3ux11.i\J00518A.b\8260LLU	X11.m

	· · ·	· · · · · · · · · · · · · · · · · · ·						
I	11	I	I.	CCAL	MIN	I.	MAX I	1
COMPOUND	RRI	F / AMOUNTI	RF50	RRF50	RRF  8	D / %DRIFT %D	/ %DRIFT C	URVE TYPE
			======== =		!!-		==================	
1144 Methylcyclohexane	1	0.645541	0.604321	0.60	432 0.010	6.384591	50:000001	Averaged
141 1,3,5-Trichlorobenzene	I.	0.70877	0.600121	0.60	012 0.010	15.32888	50.000001	Averaged!
150 Vinyl Acetate-86	1	0.06393	0.05312	0.05	312 0.010	16.90423	50.000001	Averaged
I	I	i	I		1 1	I	1	E

# Data File: \\cansvrl1\dd\chem\MSV\a3ux11.i\J00518A.b\UXJ9544.D Report Date: 18-May-2010 12:06

# TestAmerica North Canton

Instrument ID: a3ux11.i	Injection Date: 18-MAY-2010 11:5	0
Lab File ID: UXJ9544.D	Init. Cal. Date(s): 29-OCT-2009	26-MAR-2010
Analysis Type: WATER	Init. Cal. Times: 16:58	17:31
Lab Sample ID: 50NG-A9CC	Quant Type: ISTD	
Method: \\cansvr11\dd\chem\N	MSV\a3ux11.i\J00518A.b\8260LLUX11	. m

t · · ·	١	I	I	CCAL   MIN	1	MAX	
COMPOUND	RR	F / AMOUNTI	RF50	RRF50   RRF	%D / %DRIFT %	D / %DRIFT	CURVE TYPE
======================================		*********	=======================				
14 Dichlorofluoromethane	I	50.000001	57.383631	0.2959010.0101			Quadratic
89 Ethyl Ether	1	0.29507	0.320211	0.32021 0.010		50.00000	
191 3-Chloropropene	I	0.14116;	0.14871	0.1487110.0101	-5.352051	50.00000	-
92 Isopropyl Ether	1	0.300981	0.286741	0.28674 0.010	4.73021	50.00000	
193 2-Chloro-1,3-butadiene	1	0.51812;	0.47359	0.4735910.0101	8.594751	50.00000	5.
94 Propionitrile	L	0.046201	0.04686	0.0468610.0101	-1.43655	50.000001	5
95 Ethyl Acetate	I.	0.29584	0.27575	0.27575 0.010	6.792411	50.000001	-
96 Methacrylonitrile	I	0.200861	0.19832]	0.19832 0.010	1.264721	50.000001	
97 Isobutanol	I.	0.01069	0.00970	0.00970 0.010	9.230891	50.000001	-
99 n-Butanol	1	0.009521	0.007621	0.0076210.0101	19.94369	50.000001	Averaged
103 Cyclohexanone	I	500	5691	0.03276 0.010	~13.88796)	0.000e+0001	
100 Methyl Methacrylate	1	0.286621	0.252021	0.2520210.0101	12.07305	50.000001	
101 2-Nitropropane	I	0.074351	0.064061	0.06406 0.010	13.84708	50.000001	-
155 t-Butyl ethyl ether	I.	0.52049	0.27496	0.27496 0.010	47.173311	50.000001	Averaged
156 t-Amyl methyl ether	I.	0.592051	0.22138	0.22138/0.010/	62.607901>		Averaged <
157 1,2,3-Trimethylbenzene	1	3.17699	3.392831	3.39283 0.010	-6.793611	50.000001	Averaged
	1		1	1 1	1		

BLANK WORKORDER NO.

| L1PKA1AA

L

T

1

1

ł

SW846 8260B METHOD BLANK SUMMARY

Lab Name: TestAmerica Laboratories, Inc.

Lab Code: TALCAN

Lab Code: TALCAN	SDG Number:0E06602
Lab File ID: UXJ9547.D	Lot Number: A0E110505
Date Analyzed: 05/18/10	Time Analyzed: 13:01
Matrix: WATER	Date Extracted:05/18/10
GC Column: DB 624 ID: .18	Extraction Method: 5030B
Instrument ID: UX11	Level:(low/med) LOW

THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES, LCS, LCSD, MS , MSD:

1	SAMPLE	LAB	DATE	TIME
CLIENT ID.	WORK ORDER #	FILE ID	ANALYZED	ANALYZED
=======================================	=   ===================================	======================================	=================	==============
01   INTRA-LAB QC	LO4PL1AA	UXJ9548.D	05/18/10	13:25
02 LAB MS/MSD	L04PL1CA S	UXJ9570.D	05/18/10	22:06
03 LAB MS/MSD	LO4PL1CC D	UXJ9571.D	05/18/10	22:29
04   MRC-MW95D(63')	L1CNA1AA	UXJ9567.D	05/18/10	20:55
05 CHECK SAMPLE	L1PKA1AC C	UXJ9545.D	_05/18/10	12:14
06 DUPLICATE CHECK	L1PKA1AD L	UXJ9546.D	05/18/10	12:38
07	_	I		I
081	_	1		
091	<u> </u>	l	11	
10	_ I	l		!
11/	<u> </u>	I	ll	
12	<u> </u>		ll	
13	_			!
14	_	I	ll	
15	l		ll	1
161	_		ll	
17			ll	1
18	_l		۱۱	
19	.! <u></u>	l	ll	
20	l		II	I
21	_l	I	II	1
221	_	I		· · · · ·
231	l			I
24				
251	۱ <u></u>	l	l1	
261	l	l	ll	
27	l	l	l1	
28			l <u> </u>	
291	l	I	ll	
301	I		II	

COMMENTS:

#### METHOD BLANK REPORT

#### GC/MS Volatiles

Client Lot #: 0E06602 MB Lot-Sample #: A0E190000-112	Work Order #: L1PKA1AA	Matrix: WATER
Analysis Date: 05/18/10	<pre>Prep Date: 05/18/10 Prep Batch #: 0139112</pre>	<pre>Final Wgt/Vol: 5 mL</pre>

Initial Wqt/Vol: 5 mL

REPORTING PARAMETER METHOD RESULT LIMIT UNITS 5.0 Acetone ND uq/L SW846 8260B 2-Butanone ND 5.0 uq/L SW846 8260B Carbon disulfide ND 1.0 SW846 8260B ug/L 1,2-Dibromoethane ND 1.0 SW846 8260B uq/L 1,2-Dichlorobenzene ND 1.0 uq/L SW846 8260B 1.3-Dichlorobenzene ND 1.0 uq/L SW846 8260B 1,4-Dichlorobenzene ND 1.0 uq/L SW846 8260B cis-1,2-Dichloroethene ND 1.0 SW846 8260B uq/L trans-1,2-Dichloroethene ND 1.0 ug/L SW846 8260B Hexachlorobutadiene 0.40 J 1.0 SW846 8260B uq/L 1,1,1,2-Tetrachloroethane 1.0 ND ug/L SW846 8260B 1,2,4-Trichloro-SW846 8260B 0.22 J 1.0 ug/L henzene Bromobenzene ND 1.0 SW846 8260B uq/L Bromochloromethane ND 1.0 SW846 8260B ug/L Bromodichloromethane ND 1.0 ug/L SW846 8260B n-Butylbenzene ND 1.0 ug/L SW846 8260B sec-Butylbenzene 1.0 ND ug/L SW846 8260B tert-Butylbenzene ND 1.0 ug/L SW846 8260B Dibromochloromethane ND 1.0 ug/L SW846 8260B 2-Chlorotoluene ND 1.0 SW846 8260B uq/L 4-Chlorotoluene ND 1.0 uq/L SW846 8260B Dibromomethane 1.0 ND uq/L SW846 8260B Dichlorodifluoromethane 1.0 ND SW846 8260B ug/L 1,3-Dichloropropane 1.0 ND ug/L SW846 8260B 2,2-Dichloropropane ND 1.0 ug/L SW846 8260B 1,1-Dichloropropene ND 1.0 ug/L SW846 8260B Trichlorofluoromethane ND 1.0 ug/L SW846 8260B Isopropylbenzene ND 1.0 ug/L SW846 8260B p-Isopropyltoluene 1.0 ND ug/L SW846 8260B n-Propylbenzene ND 1.0 SW846 8260B ug/L Styrene ND 1.0 SW846 8260B ug/L 1,2,3-Trichloropropane ND 1.0 uq/L SW846 8260B 1,2,4-Trimethylbenzene ND 1.0 ug/L SW846 8260B o-Xylene ND 1.0 uq/L SW846 8260B m-Xylene & p-Xylene ND 2.0 uq/L SW846 8260B 1,2-Dibromo-3-chloro-ND 2.0 ug/L SW846 8260B propane 2-Chloroethyl vinyl ether ND 5.0 ug/L SW846 8260B 2-Hexanone ND 5.0 ug/L SW846 8260B tert-Butyl alcohol ND 20 uq/L SW846 8260B

(Continued on next page)

Dilution Factor: 1

#### METHOD BLANK REPORT

### GC/MS Volatiles

**Client Lot #...:** 0E06602

Work Order #...: L1PKA1AA

Matrix..... WATER

		REPORTI	NG			
PARAMETER	RESULT	LIMIT	UNITS	METHOD		
4-Methyl-2-pentanone	ND	5.0	ug/L	SW846 8260B		
Naphthalene	0.29 J	1.0	ug/L	SW846 8260B		
1,2,3-Trichlorobenzene	0.42 J	1.0	ug/L	SW846 8260B		
1,1,2-Trichloro-	ND	1.0	ug/L	SW846 8260B		
1,2,2-trifluoroethane						
Vinyl acetate	ND	2.0	ug/L	SW846 8260B		
Xylenes (total)	ND	2.0	ug/L	SW846 8260B		
Methyl tert-butyl ether	ND	5.0	ug/L	SW846 8260B		
1,2,3-Trimethylbenzene	ND	5.0	ug/L	SW846 8260B		
Diisopropyl Ether (DIPE)	ND	5.0	ug/L	SW846 8260B		
Ethyl-t-Butyl Ether (ETBE	ND	5.0	ug/L	SW846 8260B		
Tert-amyl methyl ether (T	ND	5.0	ug/L	SW846 8260B		
Benzene	ND	1.0	ug/L	SW846 8260B		
Bromoform	ND	1.0	ug/L	SW846 8260B		
Bromomethane	ND	1.0	ug/L	SW846 8260B		
Carbon tetrachloride	ND	1.0	ug/L	SW846 8260B		
Chlorobenzene	ND	1.0	ug/L	SW846 8260B		
Chloroethane	ND	1.0	ug/L	SW846 8260B		
Chloroform	ND	1.0	ug/L	SW846 8260B		
Chloromethane	ND	1.0	ug/L	SW846 8260B		
1,1-Dichloroethane	ND	1.0	ug/L	SW846 8260B		
1,2-Dichloroethane	ND	1.0	ug/L	SW846 8260B		
1,1-Dichloroethene	ND	1.0	ug/L	SW846 8260B		
1,2-Dichloropropane	ND	1.0	ug/L	SW846 8260B		
cis-1,3-Dichloropropene	ND	1.0	ug/L	SW846 8260B		
trans-1,3-Dichloropropene	ND	1.0	ug/L	SW846 8260B		
Ethylbenzene	ND	1.0	ug/L	SW846 8260B		
Methylene chloride	ND	1.0	ug/L	SW846 8260B		
1,1,2,2-Tetrachloroethane	ND	1.0	ug/L	SW846 8260B		
Tetrachloroethene	ND	1.0	ug/L	SW846 8260B		
Toluene	ND	1.0	ug/L	SW846 8260B		
1,1,1-Trichloroethane	ND	1.0	ug/L	SW846 8260B		
Trichloroethene	ND	1.0	ug/L	SW846 8260B		
Vinyl chloride	ND	1.0	ug/L	SW846 8260B		
	PERCENT	RECOVERY	(			
SURROGATE	RECOVERY	LIMITS				
Dibromofluoromethane	92	(73 - 12	22)			
1,2-Dichloroethane-d4	91	(61 - 12				
Toluene-d8	95	(76 - 11	LO)			
4-Bromofluorobenzene	85	(74 - 11	L6)			

### NOTE (S) :

Calculations are performed before rounding to avoid round-off errors in calculated results.

J Estimated result. Result is less than RL.

## Tetra Tech NUS, Inc

### Method Blank Report

### GC/MS Volatiles

Lot-Sample #: A0E190000-112 B Work Order #: L1PKA1AA Matrix: WATER

MASS SPECTROMETER/DATA SYSTEM (MSDS) TENTATIVELY IDENTIFIED COMPOUNDS

		ESTIMATED	RETENTION	ſ
PARAMETER	CAS #	RESULT	TIME	UNITS
None				mg/L

### SW846 8260B CHECK SAMPLE RECOVERY

Lab Name: TestAmerica Laboratories, Inc. Client: Tetra Tech NUS, Inc

Lab Code: TALCAN

Lot #: A0E190000

SDG No: 0E06602

WO #: L1PKA1AC BATCH: 0139112

	SPIKE	SAMPLE		QC	[
· ·	ADDED	CONCENT.	00	LIMITS	
COMPOUND	(ug/L )	(ug/L )	REC	REC	QUAL
======================================	=== ===================================	==== ==================================	==   =====   =	==========	======================================
1,1-Dichloroethene	1 10	10	100	63- 130	1
Trichloroethene	10	9.3	93	75- 122	
Benzene	10	10	104	80- 116	
Toluene	10	10	103	74- 119	
Chlorobenzene	10	9.9	1 99 1	76- 117	

NOTES(S):

* Values outside of QC limits

Spike Recovery: ____0 out of ____5 outside limits

COMMENTS:

FORM III

34

### SW846 8260B CHECK SAMPLE DUPLICATE RECOVERY

Lab Name: TestAmerica Laboratories, Inc. Client: Tetra Tech NUS, Inc

Lab Code: TALCAN

SDG No: 0E06602

Lot #: A0E190000

#### WO #: L1PKA1AD BATCH: 0139112

	SPIKE	SAMPLE		QC	
	ADDED	CONCENT.	9	LIMITS	1
COMPOUND	(ug/L )	(ug/L )	REC	REC	QUAL
=====================================	=== ===================================	=== ===================================	==   =====   =		=========
1,1-Dichloroethene	10	9.9	99	63- 130	
Trichloroethene	10	9.7	97	75- 122	1
Benzene	10	10	101	80- 116	 
Toluene	10	10	102	74- 119	
Chlorobenzene	10	9.9	99	76- 117	

#### NOTES(S):

* Values outside of QC limits

Spike Recovery: ____0 out of ____5 outside limits

COMMENTS:

FORM III

#### SW846 8260B MATRIX SPIKE/MATRIX SPIKE DUPLICATE RECOVERY

Lab Name: TestAmerica Laboratories, Inc. Client: Tetra Tech NUS, Inc

Lab Code: TALCAN

Matrix Spike ID: LAB MS/MSD

Lot #: A0E060493

SDG No: 0E06602

WO #: L04PL1CA BATCH: 0139112

	SPIKE	SAMPLE	MS	MS		
	ADDED	CONCENT.	CONCENT.	010	LIMITS	
COMPOUND	(ug/L )	(ug/L )	(ug/L )	REC .	REC Q	UAL
1,1-Dichloroethene	==== =================================	<b>===</b> =================================	2600	=====    77	62- 130	
Trichloroethene	3300	1400	4500	93	62- 130	
Benzene	13300	230	3700	102	78- 118	
Toluene	13300	ND	3300	100	70- 119	
Chlorobenzene	13300	550	3800	97	76- 117	

NOTES (S) :

# Column to be used to flag recovery and RPD values with an asterisk * Values outside of QC limits

RPD: <u>0</u> out of <u>0</u> outside limits Spike Recovery: <u>0</u> out of <u>5</u> outside limits

COMMENTS:

#### SW846 8260B MATRIX SPIKE/MATRIX SPIKE DUPLICATE RECOVERY

Lab Name: TestAmerica Laboratories, Inc. Client: Tetra Tech NUS, Inc

Lab Code: TALCAN

Matrix Spike ID: LAB MS/MSD

Lot #: A0E060493

SDG No: 0E06602

WO #: L04PL1CC BATCH: 0139112

	SPIKE	MSD	MSD				
	ADDED	CONCENT.	90	00	QC	LIMITS	
COMPOUND	(ug/L )	(ug/L )	REC	RPD	RPD	REC	QUAL
	=== ===================================	-   =======	=====	====	=== ===		====   =========
1,1-Dichloroethene	3300	3700	112	37	*  2	0  62-	130 p
Trichloroethene	13300	4400	91	1.2	2	01 62-	130
Benzene	3300	13600	100	12.0	2	0  78-	118
Toluene	3300	3300	98	1.1	2	0  70-	119
Chlorobenzene	3300	3800	96	10.86	2	0  76-	1171

#### NOTES(S):

p Relative percent difference (RPD) is outside stated control limits.

# Column to be used to flag recovery and RPD values with an asterisk * Values outside of QC limits

RPD: <u>1</u> out of <u>5</u> outside limits Spike Recovery: <u>0</u> out of <u>5</u> outside limits

COMMENTS:

FORM III

5A VOLATILE ORGANIC GC/MS TUNING AND MASS CALIBRATION - BROMOFLUOROBENZENE (BFB)

Lab Name: NORTH CANTON	Contract:	
Lab Code: TALCAN Case N	SAS No.:	SDG No.: 0E06602
Lab File ID: BFB374	BFB	Injection Date: 05/19/10
Instrument ID: A3UX11	BFB	Injection Time: 1145
Matrix:(soil/water) WATER	Level:(low/med) LOW	Column:(pack/cap) CAP

   m/e   ION ABUNDANCE CRITERIA	% RELATIVE     ABUNDANCE
===== ================================	
50   15.0 - 40.0% of mass 95	15.0
75   30.0 - 60.0% of mass 95	45.5
95   Base Peak, 100% relative abundance	1100.0
96   5.0 - 9.0% of mass 95	7.2
173   Less than 2.0% of mass 174	0.3(0.3)1
174   50.0 - 100.0% of mass 95	99.1
175   5.0 - 9.0% of mass 174	7.2(7.3)1
176   Greater than 95.0%, but less than 101.0% of mass 174	96 4 ( 97 2)11
177   5.0 - 9.0% of mass 176	6.3 ( 6.6)2
	0.5 ( 0.0)21
1-Value is % of mass 174 2-Value is % of mass	ass 176

THIS TUNE APPLIES TO THE FOLLOWING SAMPLES, MS, MSD, BLANKS, AND STANDARDS:

	<u> </u>			
EPA	LAB	LAB	DATE	TIME
SAMPLE NO.	SAMPLE ID	FILE ID	ANALYZED	ANALYZED
============	======================================	======================================	===========	========
	50NG-CC	UXJ9572	05/19/10	1208
02 VSTD010	50NG-A9CC	UXJ9573	05/19/10	1231
03 L1RNQCHK	L1RNQ1AC	UXJ9574	05/19/10	1255
04 L1RNQCKDUP	L1RNQ1AD	UXJ9575	05/19/10	1319
05 L1RNQBLK		UXJ9576	05/19/10	1342
06 MRC-MW95D(76	L1CNK1AA	UXJ9587 I	05/19/10	1836
07	1		00/10/10	1000
08		l /	[	
091		''   	I	l
10		· /	I	
11		''	· [	
12	 	' <u></u> /	I	
13		۱ ۱	I	I
14	·	۱ <u></u> ۱	I	
151	·	ا ا	I	
16	·	۱ <u> </u>		
171	·			
18		[	/	[
19				I
201			l	
201	[			
22	l	1		
221			1	. 1

page 1 of 1

# Data File: \\cansvrll\dd\chem\MSV\a3uxll.i\J00519A.b\UXJ9572.D Report Date: 19-May-2010 14:28

### TestAmerica North Canton

Instrument ID: a3ux11.i	Inject	ion Date: 19-1	MAY-2010 12:0	8
Lab File ID: UXJ9572.D	Init.	Cal. Date(s):	29-OCT-2009	26-MAR-2010
Analysis Type: WATER	Init.	Cal. Times:	16:58	17:31
Lab Sample ID: 50NG-CC	Quant	Type: ISTD		
Method: \\cansvr11\dd\chem\	MSV\a3u	x11.i\J00519A	.b\8260LLUX11	.m

	I I	I	CCAL   MIN	1 1	MAX I	
COMPOUND	RRF / AMOUNT	RF50 I		%D / %DRIFT		
<pre>\$ 4 Dibromofluoromethane</pre>	0.31463	0.29546	0.29546 0.010		50.000001	
\$ 5 1,2-Dichloroethane-d4	0.394681	0.354371	0.35437 0.010			
\$ 6 Toluene-d8	1.76192	1.67541	1.67541 0.010			2
\$ 7 Bromofluorobenzene	0.64241	0.594391	0.5943910.010			-
8 Dichlorodifluoromethane	0.22291	0.22530	0.2253010.010			-
9 Chloromethane	0.44139	0.30656	0.3065610.100		50.000001	
10 Vinyl Chloride	0.399151	0.32113	0.32113 0.010		20.000001	-
11 Bromomethane	0.10278	0.08421	0.08421 0.010		50.000001	-
12 Chloroethane	0.10547	0.100831	0.1008310.010		50.000001	2
13 Trichlorofluoromethane	50.00000	62.866441	0.2803610.010		0.000e+000	-
15 Acrolein	0.04706	0.03140	0.0314010.010		50.000001	
16 Acetone	1 100	81.022021	0.0873610.010			2
17 1,1-Dichloroethene	0.30193	0.26385	0.26385 0.010		0.000e+000	
18 Freon-113	0.22869				20.000001	
19 Iodomethane		0.227221	0.22722 0.010		50.000001	-
20 Carbon Disulfide		-	0.40176 0.010		50.000001	-
	0.83821	0.644121	0.6441210.010		50.000001	-
21 Methylene Chloride	50.00000	50.40151	0.2977810.010		0.000e+000	
22 Acetonitrile	1 5001	. 372	0.0278910.010		0.000e+0001	
23 Acrylonitrile	1 1001	78.91396	0.09963 0.010		0.000e+000	
24 Methyl tert-butyl ether	0.459081	0.25024	0.25024 0.010		50.000001	,
25 trans-1,2-Dichloroethene	0.36166	0.308521	0.30852 0.010		50.00000	-
26 Hexane	0.09256	0.087931	0.08793 0.010		20.00000	
27 Vinyl acetate	0.51955	0.37531	0.3753110.010		50.00000	-
28 1,1-Dichloroethane	0.582331	0 548731	0.54873 0.100	5.769421	50.00000	Average
29 tert-Butyl Alcohol	0.022801	0.01158	0.01158 0.010	49.223421	50.000001	Average
30 2-Butanone	0.150541	0.134041	0.13404 0.010	10.959481	50.00000	Average
4 31 1,2-Dichloroethene (total)	0.38019	0.335431	0.3354310.010	11.77230	50.00000	Averaged
32 cis-1,2-dichloroethene	0.398721	0.36234	0.3623410.010	9.12360	50.000001	Averaged
33 2,2-Dichloropropane	0.293681	0.22619	0.22619 0.010	22.980281	50.000001	Averaged
34 Bromochloromethane	0.19774	0.18729	0.18729 0.010	5.285011	50.000001	Average
35 Chloroform	0.589731	0.556581	0.55658 0.010	5.620891	20.00000	Average
36 Tetrahydrofuran	0.10006	0.11343	0.11343 0.010	-13.35729	50.00000	Average
37 1,1,1-Trichloroethane	0.42801	0.38365	0.3836510.010	10.36416	50.000001	Average
38 1,1-Dichloropropene	0.483701	0.45936	0.45936 0.010	5.030771	50.00000	Average
39 Carbon Tetrachloride	0.363591	0.34214	0.34214 0.010	5.900471	50.000001	Average
10 1,2-Dichloroethane	0.44319	0.416801	0.41680 0.010	5.95468	50.000001	Average
11 Benzene	1.51454	1.456011	1.4560110.010	3.86488	50.000001	Average
12 Trichloroethene	0.41228	0.39236	0.3923610.010	4.83235	50.000001	Average
13 1,2-Dichloropropane	1 0.360681	0.34146	0.34146 0.010	5.328561	20.00000	Average
14 1,4-Dioxane	0.002951	0.002221	0.0022210.010		50.000001	Average
15 Dibromomethane	0 207401	0.194781	0.19478 0.010		50.000001	Average
16 Bromodichloromethane	0.41328	0.36737	0.36737 0.010		50.000001	Averaged
17 2-Chloroethyl vinyl ether	0.20543	0.06143	0.0614310.010		50.000001	Averaged

# Data File: \\cansvrll\dd\chem\MSV\a3ux11.i\J00519A.b\UXJ9572.D Report Date: 19-May-2010 14:28

### TestAmerica North Canton

Instrument ID: a3ux11.i	Injection Date: 19-MAY-2010 12:0	
Lab File ID: UXJ9572.D	Init. Cal. Date(s): 29-0CT-2009	26-MAR-2010
Analysis Type: WATER	Init. Cal. Times: 16:58	17:31
Lab Sample ID: 50NG-CC	Ouant Type: ISTD	
Method: \\cansvrll\dd\chem\	MSV\a3ux11.i\J00519A.b\8260LLUX11	.m

1	I I	I	CCAL   MIN	1	MAX	I
COMPOUND	RRF / AMOUNT	RF50	RRF50   RRF	%D / %DRIFT	%D / %DRIFT	CURVE TYPE
48 cis-1,3-Dichloropropene	==== =================================		0.4541410.010			
49 4-Methyl-2-pentanone	0.28797	0.236791	0.23679 0.010			
50 Toluene	2.08998	2.049891	2.0498910.010			
51 trans-1,3-Dichloropropene	0.63419	0.51535	0.51535 0.010			
52 Ethyl Methacrylate	0.62471	0.50964	0.50964/0.010			
53 1,1,2-Trichloroethane	0.40779	0.396361	0.3963610.010			-
54 1,3-Dichloropropane	0.72631	0.690381	0.6903810.010			-
55 Tetrachloroethene	0.43185	0.441291	0.44129 0.010			-
56 2-Hexanone	0.25272	0.19700	0.1970010.010			
57 Dibromochloromethane	0.38381	0.35736	0.3573610.010			
58 1,2-Dibromoethane	0.41014	0.38218	0.38218 0.010			5
59 Chlorobenzene	1.360901	1.31548	1.3154810.300		-	2
60 1,1,1,2-Tetrachloroethane	0.44380	0.41985	0.41985 0.010			
61 Ethylbenzene	0.73734	0.71381	0.71381(0.010			2
62 m + p-Xylene	0.92287	0.89723	0.89723 0.010			
M 63 Xylenes (total)	0.90821	0.88185	0.88185 0.010			-
64 Xylene-o	0.87889	0.85108	0.85108 0.010			
65 Styrene	1.53890	1.453291	1.45329(0.010)			
66 Bromoform	50.00000	37.990961	0.19961 0.100			5
67 Isopropylbenzene	2.25700	2.11660	2.1166010.0101		0.000e+0001	
68 1,1,2,2-Tetrachloroethane	0.940581	0.848371				Averaged
69 1,4-Dichloro-2-butene	1 50.000001		0.8483710.3001			Averaged
70 1,2,3-Trichloropropane	0.28315	46.723321	0.14154 0.010		0.000e+000	
71 Bromobenzene	1 1.14977	0.249801	0.24980 0.010	-	50.000001	Averaged
72 n-Propylbenzene	1.17421	1.028851	1.02885(0.010)		50.00000	Averaged
73 2-Chlorotoluene	1 11 12	1.03176	1.03176 0.010		50.000001	Averaged
74 1,3,5-Trimethylbenzene	1.02926    3.44812	0.929301	0.92930 0.010	•	50.00000	Averaged
75 4-Chlorotoluene		3.011261	3.0112610.0101		50.000001	Averaged
76 tert-Butylbenzene		0.979381	0.9793810.0101		50.000001	Averaged
77 1,2,4-Trimethylbenzene		2.608581	2.60858 0.010		50.000001	Averaged
78 sec-Butylbenzene	· · · · · · · · · · · ·	3.104621	3.10462 0.010		50.00000	Averaged
79 4-Isopropyltoluene	4.04150	3.543461	3.5434610.0101		50.00001	Averaged
30 1,3-Dichlorobenzene	3.23034	3.001091	3.00109 0.010		50.000001	Averaged
31 1,4-Dichlorobenzene	1 1.997701	1.86351	1.86351 0.010	6.717201	50.000001	Averaged
32 n-Butylbenzene	2.01998!	1.91118/	1.91118 0.010	5.38578	50.000001	Averaged
-	2.17891	2.296741	2.2967410.0101	-5.40737[	50.000001	Averaged
33 1,2-Dichlorobenzene	1.708981	1.73909	1.73909 0.010	-1.76166	50.000001	Averaged
4 1,2-Dibromo-3-chloropropane	0.08154	0.10134	0.10134/0.010/	-24.280661	50.00000	Averaged
35 1,2,4-Trichlorobenzene	0.68613	0.46873	0.46873 0.010	31.68443	50.000001	Averaged
6 Hexachlorobutadiene	0.309651	0.21918;	0.21918 0.010	29-21774	50.000001	Averaged
7 Naphthalene	1 1.42473	0.909581	0.90958 0.010	36.15792	50.00000	Averaged
8 1,2,3-Trichlorobenzene	0.607301	0.438741	0.43874 0.010	27-75597	50.000001	Averaged
8 Cyclohexane	0.61473	0.61123	0.61123 0.010	0.569921	50.000001	Averaged
43 Methyl Acetate	1 1001	78.432481	0.2104210.0101	21.56752	0.000e+000	Wt Linearl

# Data File: \\cansvrll\dd\chem\MSV\a3ux11.i\J00519A.b\UXJ9572.D Report Date: 19-May-2010 14:28

TestAmerica North Canton

Instrument ID: a3ux11.i	Injection Date: 19-MAY-2010 12	:08
Lab File ID: UXJ9572.D	Init. Cal. Date(s): 29-OCT-200	) 26-MAR-2010
Analysis Type: WATER	Init. Cal. Times: 16:58	17:31
Lab Sample ID: 50NG-CC	Quant Type: ISTD	
Method: \\cansvr11\dd\chem\I	4SV\a3ux11.i\J00519A.b\8260LLUX	11.m

		I	1	CCAL	MIN		MAX I	
COMPOUND	IRR	- F / AMOUNTI	RF50	RRF50	ŘRF   %	D / %DRIFT %D	/ %DRIFT C	URVE TYPE
					==   ===== { =		===================	
144 Methylcyclohexane	I	0.645541	0.62008	0.620	08 0.010	3.943391	50.000001	Averaged
141 1,3,5-Trichlorobenzene	I	0.70877	0.655621	0.655	62 0.010	7.49786	50.000001	Averaged
150 Vinyl Acetate-86	I.	0.063931	0.044851	0.044	8510.010	29.84674	50.000001	Averaged
	1	1	I		E I	1	1	1

# Data File: \\cansvrl1\dd\chem\MSV\a3ux11.i\J00519A.b\UXJ9573.D Report Date: 19-May-2010 12:47

TestAmerica North Canton

Instrument ID: a3ux11.i	Injection Date: 19-MAY-201	0 12:31
Lab File ID: UXJ9573.D	Init. Cal. Date(s): 29-001	
Analysis Type: WATER	Init. Cal. Times: 16:58	
Lab Sample ID: 50NG-A9CC	Quant Type: ISTD	
Method: \\cansvr11\dd\chem\N	4SV\a3ux11.i\J00519A.b\8260	)LLUX11.m

		· · · · · · · · · · · · · · · · · · ·		CCAL   MIN		MAX	
I COMPOUND	RR	F / AMOUNTI	RF50	RRF50   RRF  %	D / %DRIFT1%1		CURVE TYPE
					•		
114 Dichlorofluoromethane	1	50.000001	48.314111	0.24569 0.010			Quadratic
89 Ethyl Ether	1	0.295071	0.22884	0.2288410.0101	22.444561	50.000001	
91 3-Chloropropene	1	0.14116	0.12143	0.12143/0.010/	13.97607	50.000001	<b>_</b>
92 Isopropyl Ether	1	0.30098	0.273251	0.27325 0.010	9.21285	50.000001	
193 2-Chloro-1,3-butadiene	1	0.51812)	0.44546	0.44546 0.010	14.02447	50.000001	
194 Propionitrile	1	0.046201	0.03954	0.03954(0.010)	14.42138	50.000001	Averaged
95 Ethyl Acetate	I.	0.29584	0.237441	0.23744 0.010	19.740351	50.000001	Averaged
96 Methacrylonitrile	I	0.200861	0.17013	0.17013 0.010	15.29998	50.000001	Averaged
197 Isobutanol	1	0.010691	0.009171	0.0091710.0101	14.19918	50.000001	Averaged <
99 n-Butanol	1	0.009521	0.00714	0.00714 0.010	25.000281	50.000001	Averaged <
103 Cyclohexanone	1	5001	421(	0.02456 0.010	15.718321 (	0.000e+0001	Wt Linear
1100 Methyl Methacrylate	1	0.286621	0.22197	0.2219710.0101	22.555591	50.000001	Averaged
101 2-Nitropropane	I.	0.074351	0.04945	0.0494510.0101	33.491971	50.000001	Averaged
155 t-Butyl ethyl ether	1	0.520491	0.277491	0.27749 0.010	46.68721	50.000001	Averaged
1156 t-Amyl methyl ether	F	0.592051	0.22736		61.59844	50.000001	Averaged <
157 1,2,3-Trimethylbenzene	I	3.176991	3.204541	3.2045410.0101	-0.867161	50.000001	Averaged
I <u></u>		1	i	1 1			1

BLANK WORKORDER NO.

| L1RNQ1AA

ł

T

1

1

SW846 8260B METHOD BLANK SUMMARY

Lab Name: TestAmerica Laboratories, Inc.

Lab Code: TALCAN

Lab Code: TALCAN		SDG Number:0E06602
Lab File ID: UXJ9576.D	Lot Number: A0E110505	
Date Analyzed: 05/19/10	)	Time Analyzed: 13:42
Matrix: WATER		Date Extracted:05/19/10
GC Column: DB 624	ID: .18	Extraction Method: 5030B
Instrument ID: UX11		Level:(low/med) LOW

THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES, LCS, LCSD, MS , MSD:

	SAMPLE	LAB	DATE	TIME
CLIENT ID.	WORK ORDER #	FILE ID	ANALYZED	ANALYZED
======================================	======================================	======================================	==================	========
01   <u>MRC-MW95D(76')</u>	L1CNK1AA	UXJ9587.D	05/19/10	18:36
02 INTRA-LAB QC	L1ERD1AA	UXJ9588.D	05/19/10	19:00
03 LAB MS/MSD	L1ERD1AC S	UXJ9593.D	05/19/10	20:58
04 LAB MS/MSD	L1ERD1AD D	UXJ9594.D	05/19/10	21:22
05 CHECK SAMPLE	LIRNQIAC C	<u>UXJ9574.</u> D	05/19/10	12:55
06 DUPLICATE CHECK	L1RNQ1AD L	UXJ9575.D	05/19/10	13:19
07	l	I	l	]
081			ll	
091				
10				
11		l		
12				
13				
141			۱۱	1
15			ll	
16				
17	·,	I		
18				1
19			۱۱	I
20		l	۱۱	
21		l	اا	ł
22				I
23		·		
241			ll	I
2511			۱۱	
26			۱۱	
27				1
2811		l	!!	[
291		l	۱۱	
3011		l		

COMMENTS:

## METHOD BLANK REPORT

### GC/MS Volatiles

Client Lot #: 0E06602	Work Order #: L1RNQ1AA	Matrix WATER
MB Lot-Sample #: A0E200000-083		
	Prep Date: 05/19/10	Final Wgt/Vol: 5 mL
Analysis Date: 05/19/10	Prep Batch #: 0140083	-
Dilution Factor: 1	Initial Wgt/Vol: 5 mL	

		REPORTING			
PARAMETER	RESULT	LIMIT	UNITS	METHOD	
n-Butylbenzene	ND	1.0	uq/L	SW846 8260B	
sec-Butylbenzene	ND	1.0	ug/L	SW846 8260B	
tert-Butylbenzene	ND	1.0	ug/L	SW846 8260B	
Isopropylbenzene	ND	1.0	uq/L	SW846 8260B	
p-Isopropyltoluene	ND	1.0	ug/L	SW846 8260B	
Naphthalene	0.32 J	1.0	ug/L	SW846 8260B	
n-Propylbenzene	ND	1.0	uq/L	SW846 8260B	
1,2,4-Trimethylbenzene	ND	1.0	ug/L	SW846 8260B	
o-Xylene	ND	1.0	ug/L	SW846 8260B	
Xylenes (total)	ND	2.0	ug/L	SW846 8260B	
Methyl tert-butyl ether	ND	5.0	ug/L	SW846 8260B	
m-Xylene & p-Xylene	ND	2.0	ug/L	SW846 8260B	
Acetone	ND	5.0	uq/L	SW846 8260B	
Bromodichloromethane	ND	1.0	ug/L	SW846 8260B	
2-Butanone	ND	5.0	ug/L	SW846 8260B	
Carbon disulfide	ND	1.0	ug/L	SW846 8260B	
Dibromochloromethane	ND	1.0	ug/L	SW846 8260B	
2-Hexanone	ND	5.0	ug/L	SW846 8260B	
4-Methyl-2-pentanone	ND	5.0	ug/L	SW846 8260B	
Styrene	ND	1.0	ug/L	SW846 8260B	
Bromobenzene	ND	1.0	ug/L	SW846 8260B	
Bromochloromethane	ND	1.0	uq/L	SW846 8260B	
1,2-Dibromo-3-chloro-	ND	2.0	ug/L	SW846 8260B	
propane			5.		
2-Chloroethyl vinyl ether	ND	5.0	uq/L	SW846 8260B	
2-Chlorotoluene	ND	1.0	ug/L	SW846 8260B	
4-Chlorotoluene	ND	1.0	ug/L	SW846 8260B	
1,2-Dibromoethane	ND	1.0	uq/L	SW846 8260B	
Dibromomethane	ND	1.0	ug/L	SW846 8260B	
1,2-Dichlorobenzene	ND	1.0	ug/L	SW846 8260B	
1,3-Dichlorobenzene	ND	1.0	ug/L	SW846 8260B	
1,4-Dichlorobenzene	ND	1.0	ug/L	SW846 8260B	
Dichlorodifluoromethane	ND	1.0	ug/L	SW846 8260B	
cis-1,2-Dichloroethene	ND	1.0	uq/L	SW846 8260B	
trans-1,2-Dichloroethene	ND	1.0	ug/L	SW846 8260B	
1,3-Dichloropropane	ND	1.0	ug/L	SW846 8260B	
2,2-Dichloropropane	ND	1.0	uq/L	SW846 8260B	
1,1-Dichloropropene	ND	1.0	ug/L	SW846 8260B	
Trichlorofluoromethane	ND	1.0	uq/L	SW846 8260B	
Hexachlorobutadiene	0.42 J	1.0	uq/L	SW846 8260B	
tert-Butyl alcohol	ND	20	ug/L	SW846 8260B	
			-		

(Continued on next page)

#### METHOD BLANK REPORT

#### GC/MS Volatiles

Work Order #...: L1RNQ1AA

Matrix.	-	-	•	•	•	•	•	•	:	WATER
---------	---	---	---	---	---	---	---	---	---	-------

		REPORTI		
PARAMETER	RESULT	LIMIT	UNITS	METHOD
1,1,1,2-Tetrachloroethane	ND	1.0	ug/L	SW846 8260B
1,2,3-Trichlorobenzene	0.38 J	1.0	uq/L	SW846 8260B
1,2,4-Trichloro-	0.24 J	1.0	uq/L	SW846 8260B
benzene				
1,2,3-Trichloropropane	ND	1.0	ug/L	SW846 8260B
1,1,2-Trichloro-	ND	1.0	ug/L	SW846 8260B
1,2,2-trifluoroethane			2	
Vinyl acetate	ND	2.0	ug/L	SW846 8260B
1,2,3-Trimethylbenzene	ND	5.0	ug/L	SW846 8260B
Diisopropyl Ether (DIPE)	ND	5.0	ug/L	SW846 8260B
Ethyl-t-Butyl Ether (ETBE	ND	5.0	ug/L	SW846 8260B
Tert-amyl methyl ether (T	ND	5.0	ug/L	SW846 8260B
Benzene	ND	1.0	ug/L	SW846 8260B
Bromoform	ND	1.0	ug/L	SW846 8260B
Bromomethane	ND	1.0	ug/L	SW846 8260B
Carbon tetrachloride	ND	1.0	ug/L	SW846 8260B
Chlorobenzene	ND	1.0	ug/L	SW846 8260B
Chloroethane	ND	1.0	ug/L	SW846 8260B
Chloroform	ND	1.0	uq/L	SW846 8260B
Chloromethane	ND	1.0	ug/L	SW846 8260B
1,1-Dichloroethane	ND	1.0	ug/L	SW846 8260B
1,2-Dichloroethane	ND	1.0	ug/L	SW846 8260B
1,1-Dichloroethene	ND	1.0	uq/L	SW846 8260B
1,2-Dichloropropane	ND	1.0	ug/L	SW846 8260B
cis-1,3-Dichloropropene	ND	1.0	uq/L	SW846 8260B
trans-1,3-Dichloropropene	ND	1.0	ug/L	SW846 8260B
Ethylbenzene	ND	1.0	uq/L	SW846 8260B
Methylene chloride	ND	1.0	ug/L	SW846 8260B
1,1,2,2-Tetrachloroethane	ND	1.0	ug/L	SW846 8260B
Tetrachloroethene	ND	1.0	ug/L	SW846 8260B
Toluene	ND	1.0	ug/L	SW846 8260B
1,1,1-Trichloroethane	ND	1.0	ug/L	SW846 8260B
Trichloroethene	ND	1.0	ug/L	SW846 8260B
Vinyl chloride	ND	1.0	ug/L	SW846 8260B
	PERCENT	RECOVERY	7	
SURROGATE	RECOVERY	LIMITS	L	
Dibromofluoromethane	90	$\frac{11M115}{(73 - 12)}$	221	
1,2-Dichloroethane-d4	87	(73 - 12) (61 - 12)		
Toluene-d8	95	(01 - 12) (76 - 11)		
4-Bromofluorobenzene	87	(76 - 1)	,	
. Promotingtobelizelle	07	(/4 - 1)	)	

#### NOTE (S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

J Estimated result. Result is less than RL.

**Client Lot #...:** 0E06602

### Tetra Tech NUS, Inc

### Method Blank Report

#### GC/MS Volatiles

Lot-Sample #: A0E200000-083 B Work Order #: L1RNQ1AA Matrix: WATER

MASS SPECTROMETER/DATA SYSTEM (MSDS) TENTATIVELY IDENTIFIED COMPOUNDS

		ESTIMATED	RETENTION	J
PARAMETER	CAS #	RESULT	TIME	UNITS
None				ug/L

#### SW846 8260B CHECK SAMPLE RECOVERY

Lab Name: TestAmerica Laboratories, Inc. Client: Tetra Tech NUS, Inc

Lab Code: TALCAN

Lot #: A0E200000

SDG No: 0E06602

WO #: L1RNQ1AC BATCH: 0140083

	SPIKE	SAMPLE		QC	
	ADDED	CONCENT	. 9	LIMITS	1
COMPOUND	(ug/L )	(ug/L )	REC	REC	QUAL
	=== ===================================				= ==========
1,1-Dichloroethene	10	9.4	94	63- 130	1
Trichloroethene	10	9.2	92	75- 122	
Benzene	10	9.7	97	80- 116	
Toluene	10	9.8	98	74- 119	
Chlorobenzene	10	9.7	97	76- 117	

#### NOTES(S):

*	Values	outside	of	QC	limits
					•

Spike Recovery: _____0 out of ____5 outside limits

COMMENTS:

FORM III

#### SW846 8260B CHECK SAMPLE DUPLICATE RECOVERY

Lab Name: TestAmerica Laboratories, Inc. Client: Tetra Tech NUS, Inc

Lab Code: TALCAN

Lot #: A0E200000

SDG No: 0E06602

WO #: L1RNQ1AD BATCH: 0140083

	SPIKE		SAMPLE			Q	С	1
	ADDED		CONCENT.		00	LIM	ITS	
COMPOUND	(ug/L )		(ug/L )		REC	RE	С	QUAL
		==== ==	=======================================	==   =	==== =			======================================
1,1-Dichloroethene	10	1	9.3		93	63-	130	
Trichloroethene	10	1	8.6	1	86	75-	122	
Benzene	10		9.1		91	80-	116	
Toluene	10	1	9.1	1	91	74-	119	]
Chlorobenzene	1 10		9.0	1	90	76-	117	1

#### NOTES(S):

* Values outside of QC limits

Spike Recovery: _____0 out of ____5 outside limits

COMMENTS:

#### SW846 8260B MATRIX SPIKE/MATRIX SPIKE DUPLICATE RECOVERY

Lab Name: TestAmerica Laboratories, Inc. Client: Tetra Tech NUS, Inc

SDG No: 0E06602

Lab Code: TALCAN

Matrix Spike ID: LAB MS/MSD

Lot #: A0E120565

WO #: L1ERD1AC BATCH: 0140083

ł	SPIKE	SAMPLE	MS	MS		
1	ADDED	CONCENT.	CONCENT.	010	LIMITS	
COMPOUND	(ug/L )	(ug/L )	(ug/L )	REC	REC	QUAL
		=   ==========	<u>======</u>	======		=========
1,1-Dichloroethene	110	ND	7.3	73	62- 130	1
Trichloroethene	10	0.84	8.7	79	62- 130	
Benzene	10	ND	19.8	98	78- 118	
Toluene	10	ND	10	102	70- 119	1
Chlorobenzene	110	ND	9.4	94	76- 117	}

#### NOTES(S):

# Column to be used to flag recovery and RPD values with an asterisk * Values outside of QC limits

RPD:0out of0outside limitsSpike Recovery:0out of5outside limits

COMMENTS:

FORM III

#### SW846 8260B MATRIX SPIKE/MATRIX SPIKE DUPLICATE RECOVERY

Lab Name: TestAmerica Laboratories, Inc. Client: Tetra Tech NUS, Inc

Lab Code: TALCAN

Matrix Spike ID: LAB MS/MSD

Lot #: A0E120565

WO #: L1ERD1AD BATCH: 0140083

SDG No: 0E06602

	SPIKE	MSD	MSD				1	
l	ADDED	CONCENT.	90	90	QC	LIMITS	I	
COMPOUND	(ug/L )	(ug/L )	REC	RPD	RPD	REC	ļ	QUAL
=====================================	=== ==========	=========	=====	=====	==   ====	======	====	
1,1-Dichloroethene	10	11	109	40	*  20	62-	130	р
Trichloroethene	110	8.7	79	10.29	20	62-	130	
Benzene	110	19.6	96	1.1	20	78-	118	
Toluene	10	110	100	2.4	20	70-	119	
Chlorobenzene	10	19.5	95	0.93	20	76-	117	

NOTES (S):

p Relative percent difference (RPD) is outside stated control limits.

# Column to be used to flag recovery and RPD values with an asterisk * Values outside of QC limits RPD: <u>1</u> out of <u>5</u> outside limits Spike Recovery: <u>0</u> out of <u>5</u> outside limits

COMMENTS:

47

5A VOLATILE ORGANIC GC/MS TUNING AND MASS CALIBRATION - BROMOFLUOROBENZENE (BFB)

Lab Name: NORTH CANTON	Contract:	
Lab Code: TALCAN Case No.:	SAS No.:	SDG No.: 0E06602
Lab File ID: BFB381	BFB	Injection Date: 05/26/10
Instrument ID: A3UX11	BFB	Injection Time: 1021
Matrix:(soil/water) WATER Level	:(low/med) LOW	Column:(pack/cap) CAP

   m/e	ION ABUNDANCE CRITERIA	% RELATIVE
		ABUNDANCE
		==================
1 50 1	15.0 - 40.0% of mass 95	15.2
75	30.0 - 60.0% of mass 95	45.6
95	Base Peak, 100% relative abundance	100.0
96	5.0 - 9.0% of mass 95	7.2
173	Less than 2.0% of mass 174	0.3 ( 0.3)1
174	50.0 - 100.0% of mass 95	95.6
175	5.0 - 9.0% of mass 174	6.7 (7.0)1
176	Greater than 95.0%, but less than 101.0% of mass 174	93.0 ( 97.2)1
177	5.0 - 9.0% of mass 176	6.2 ( 6.7)2
		, _
	1-Value is % of mass 174 2-Value is % of mass	ass 176

THIS TUNE APPLIES TO THE FOLLOWING SAMPLES, MS, MSD, BLANKS, AND STANDARDS:

EPA	LAB	LAB	DATE	TIME
SAMPLE NO.	SAMPLE ID	FILE ID	ANALYZED	ANALYZED
============	======================================	=   ===================================	=======	========
01 VSTD010	50NG-CC	UXJ9766	05/26/10	1046
02 VSTD010	50NG-A9CC	UXJ9767	05/26/10	1110
03 L1578CHK	L15781AC	UXJ9768	05/26/10	1134
04 L1578CKDUP	L15781AD	UXJ9769	05/26/10	1157 I
05 L1578BLK	L15781AA	UXJ9770	05/26/10	1221
06 MRC-MW96D (6	L1H6H1AA	UXJ9771	05/26/10	1245
07	1			
081	1	_ · ·	' <u></u> ' 	······································
091			' '   	! !
10	 I	_ ' '	ا ا	I
111	', 	_ ' '	ا <u></u> ا	1
12	·	_ ' '	ا <u></u> ا	·
131	'	_!	I	
14	 	_	I	l
15	۱ ۱	_ ]		
161	l			
171	,,	_	(	
		_!		
18			ļ	
19		_		]
201		_		
21		_		
22		_ I		

page 1 of 1

North Canton

61

# Data File: \\cansvrll\dd\chem\MSV\a3ux11.i\J00526A.b\UXJ9766.D Report Date: 26-May-2010 12:13

TestAmerica North Canton

Instrument ID: a3ux11.i	Injecti	ion Date: 26-N	MAY-2010 10:4	6
Lab File ID: UXJ9766.D	Init. (	Cal. Date(s):	29-0CT-2009	26-MAR-2010
Analysis Type: WATER	Init. (	Cal. Times:	16:58	17:31
Lab Sample ID: 50NG-CC	Quant 1	Type: ISTD		
Method: \\cansvrll\dd\chem\l	4SV\a3u≯	x11.i\J00526A.	.b\8260LLUX11	.m

	11	I	CCAL .   MIN	1	MAX	1 1
COMPOUND	RRF / AMOUNT	RF50 [		%D / %DRIFT		
\$ 4 Dibromofluoromethane	0.31463					
<pre>\$ 5 1,2-Dichloroethane-d4</pre>			0.30309 0.010		50.00000	
\$ 6 Toluene-d8		0.369701	0.36970 0.010		50.00000	
	1.76192	1.72913	1.7291310.010		50.00000	
\$ 7 Bromofluorobenzene	0.64241	0.597691	0.5976910.0101		50.00000	
8 Dichlorodifluoromethane	0.22291	0.233481	0.2334810.0101		50.00000	
9 Chloromethane	0.44139	0.280801	0.28080 0.100	and the second se	50.00000	,
10 Vinyl Chloride	0.39915	0.34965	0.3496510.0101		20.00000	
11 Bromomethane	0.102781	0.063551	0.06355 0.010			
12 Chloroethane	0.10547	0.04892	0.04892 0.010		50.00000	3
13 Trichlorofluoromethane	50.00000	53.527641	0.23658 0.010		0.000e+000	
15 Acrolein	0.04706	0.03603	0.0360310.0101		50.00000	, <u>,</u>
16 Acetone	100	73.01980	0.07939[0.010]	26,98020P	0.000e+000	Wt Linear
17 1,1-Dichloroethene	0.30193	0.26378	0.26378 0.010	12.63646	20.00000	Averaged
18 Freon-113	0.228691	0.223361	0.22336 0.010	2.33013	50.00000	Averaged
19 Iodomethane	0.385821	0.426551	0.42655 0.010	-10.558501	50.00000	Averaged
20 Carbon Disulfide	0.83821!	0.62268	0.62268 0.010	25.71291	50.00000	Averaged
21 Methylene Chloride	50.000001	62.79147	0.36566 0.010	25_582951	0.000e+000	Wt Linear
22 Acetonitrile	500	4591	0.03336 0.010	8.180721	0.000e+000	Wt Linear
23 Acrylonitrile	100	101	0.1259810.0101	-1.21320	0.000e+000	Wt Linear
24 Methyl tert-butyl ether	0.45908	0.30922!	0.30922 0.010	32.642221	50.00000	Averaged
25 trans-1,2-Dichloroethene	0.36166	0.353381	0.35338 0.010	2.28715	50.00000	Averaged
26 Hexane	0.092561	0.08264	0.08264 0.010	10.72308	20.00000	Averaged
27 Vinyl acetate	0.519551	0.38085	0.38085 0.010	26.69668	50.00000	Averaged
28 1,1-Dichloroethane	0.582331	0.58095	0.58095 0.100	0.23602	50.00000	Averaged
29 tert-Butyl Alcohol	0.02280	0.01317D	0.0131710.0101	42.23719	50.00000	Averaged
30 2-Butanone	0.15054	0.130911	0.13091[0.010]	13.04211	50.00000	Averaged
M 31 1,2-Dichloroethene (total)	0.38019	0.362081	0.36208[0.010]	4.76282	50.00000	Averaged
32 cis-1,2-dichloroethene	0.39872	0.37077	0.3707710.0101		50.00000	2
33 2,2-Dichloropropane	0.29368	0.250321	0.25032 0.010		50.00000	-
34 Bromochloromethane	0.19774	0.19173	0.19173[0.010]	3.03748	50.00000	-
35 Chloroform	0.58973	0.595571	0.59557[0.010]		20.00000	-
36 Tetrahydrofuran	0.10006	0.07862	0.07862(0.010)	21.43016	50.00000	-
37 1,1,1-Trichloroethane	0.42801	0.415401	0.41540 0.010		50.00000	-
38 1,1-Dichloropropene	0.48370	0.47748	0.47748 0.010	1.28569	50.00000	-
39 Carbon Tetrachloride	0.363591	0.362331	0.36233[0.010]	0.34613	50.00000	,
40 1,2-Dichloroethane	0.44319	0.43608	0.43608[0.010]	1.60401	50.00000	-
41 Benzenè	1.51454	1.54060	1.5406010.0101	-1.720501	50.000001	
42 Trichloroethene	0.41228	0.39739	0.3973910.0101	3.61361	50.00000	
42 1,2-Dichloropropane						2
	0.36068	0.369631	0.3696310.0101	-2.48021	20.000001	2
44 1,4-Dioxane	0.002951	0.002161	0.00216 0.010	26.81113	50.000001	,
45 Dibromomethane	0.20740	0.210591	0.21059 0.010	-1.53905	50.00000	-
46 Bromodichloromethane	0.41328	0.37792	0.37792 0.010		50.000001	
47 2-Chloroethyl vinyl ether	0.205431	0.04860	0.04860 0.010	76.34126	50.00000	Averaged

# Data File: \\cansvrl1\dd\chem\MSV\a3ux11.i\J00526A.b\UXJ9766.D Report Date: 26-May-2010 12:13

TestAmerica North Canton

Instrument ID: a3ux11.i	Injection Date: 26-MAY-2010 10:46	
Lab File ID: UXJ9766.D	Init. Cal. Date(s): 29-OCT-2009 26-MA	R-2010
Analysis Type: WATER	Init. Cal. Times: 16:58 17:31	-
Lab Sample ID: 50NG-CC	Quant Type: ISTD	
Method: \\cansvrll\dd\chem\N	ISV\a3ux11.i\J00526A.b\8260LLUX11.m	

I COMPOUND	t1	1	CCAL   MIN	1	MAX	1 1
	RRF / AMOUNT	RF50 I		%D / %DRIFT		
48 cis-1,3-Dichloropropene	0.550001	0.44351	0.44351 0.010			-
149 4-Methyl-2-pentanone	0.287971	0.23422	0.23422 0.010	18.66585		· ·
50 Toluene	2.08998	2.23253	2.23253 0.010	-6.82065		
<pre> 51 trans-1,3-Dichloropropene</pre>	0.63419	0.49207	0.49207 0.010	22.409651	50.00000	Averaged
52 Ethyl Methacrylate	0.62471	0.53280	0.5328010.0101	14.71141	50.00000	Averaged
53 1,1,2-Trichloroethane	0.407791	0.44610	0.44610 0.010	-9.39454	50.00000	Averaged
<pre>154 1,3-Dichloropropane</pre>	0.72631	0.75951	0.75951 0.010	-4.57134	50.00000	Averaged
155 Tetrachloroethene	0.43185	0.468061	0.46806 0.010	-8.38530	50.00000	Averaged
156 2-Hexanone	0.252721	0.20748	0.20748 0.010	17.90211	50.00000	Averaged
157 Dibromochloromethane	0.38381	0.34452	0.34452 0.010	10.23660	50.00000	Averaged
58 1,2-Dibromoethane	0.41014	0.41658	0.4165810.010	-1.568061	50.00000	Averaged
59 Chlorobenzene	1.36090	1.42034	1.4203410.3001	-4.367221	50.00000	Averaged
60 1,1,1,2-Tetrachloroethane	0.44380	0.437241	0.43724 0.010	1.47882	50.00000	Averaged
61 Ethylbenzene	0.73734	0.768631	0.76863 0.010	-4.24361	20.00000	Averaged
62 m + p-Xylene	0.922871	0.977541	0.97754 0.010	-5.92404	50.00000	Averaged
<pre>IM 63 Xylenes (total)</pre>	0.90821	0.95851	0.95851 0.010	-5.53795]	50.00000	Averaged
164 Xylene-o	0.87889	0.92044	0.92044 0.010	-4.72715	50.00000	Averaged
165 Styrene	1.53890	1.59316	1.5931610.0101	-3.525631	50.00000	Averaged
66 Bromoform	50.000001	33.212331	0.17151 0.100	33.57535	0.000e+000	Wt Linear
67 Isopropylbenzene	2.257001	2.26277	2.2627710.0101	-0.25557	50.00000	
68 1,1,2,2-Tetrachloroethane	0.940581	0.938791	0.93879 0.300	0.19072	50.00000	Averaged
69 1,4-Dichloro-2-butene	50.00000	26.453781	0.07087 0.010	47.092451	0.000e+000	
170 1,2,3-Trichloropropane	0.28315	0.276961	0.27696 0.010	2.186571	50.00000	
71 Bromobenzene	1.14977	1.05836	1.05836[0.010]	7.949541	50.000001	2
72 n-Propylbenzene	1.17421	1.07637	1.0763710.0101	8.332681	50.000001	
73 2-Chlorotoluene	1.02926	0.965961	0.96596 0.010	6.14994	50.000001	2
74 1,3,5-Trimethylbenzene	3.44812	3.17903	3.17903 0.010	7.80381	50.000001	2
75 4-Chlorotoluene	1.08496	1.02954	1.02954/0.010/	5.107921	50.000001	
176 tert-Butylbenzene	3.03299	2.676021	2.67602 0.010	11.76970	50.000001	
77 1,2,4-Trimethylbenzene	3.46483	3.263001	3.26300 0.010	5.825291	50.000001	-
78 sec-Butylbenzene	4.04150	3.80467	3.8046710.0101	5.85978	50.000001	
79 4-Isopropyltoluene	1 3.230341	3.17114	3.17114 0.010	1.83279	50.000001	
80 1,3-Dichlorobenzene	1 1.99770	1.986581	1.98658[0.010]			
181 1,4-Dichlorobenzene				0.556451	50.000001	
		2.03175	2.03175 0.010	-0.582731	50.000001	
182 n-Butylbenzene	2.17891	2.528911	2.52891 0.010	-16.062731	50.000001	,
83 1,2-Dichlorobenzene	1.70898	1.87278	1.87278 0.010	-9.584171	50.000001	
84 1,2-Dibromo-3-chloropropane	0.08154	0.094861	0.09486 0.010	-16.336621	50.000001	
85 1,2,4-Trichlorobenzene	0.68613	0.430051	0.4300510.0101	37-32195	50.000001	
86 Hexachlorobutadiene	0.309651	0.22472	0.2247210.0101	27-427897	50.000001	-
187 Naphthalene	1.42473	0.82151	0.82151(0.010)	42.33905	50.00000	-
88 1,2,3-Trichlorobenzene	0.60730	0.426571	0.42657 0.010	29.759631	> 50.000001	Averaged
98 Cyclohexane	0.61473	0.61942	0.61942 0.010	-0.76357	50.000001	Averaged
143 Methyl Acetate	100	101[	0.26426 0.010	-0.61277	0.000e+000!	Wt Linear

## Data File: \\cansvrll\dd\chem\MSV\a3uxl1.i\J00526A.b\UXJ9766.D Report Date: 26-May-2010 12:13

### TestAmerica North Canton

Instrument ID: a3ux11.i	Injec	tion Date: 26-1	MAY-2010 10:4	6
Lab File ID: UXJ9766.D	Init.	Cal. Date(s):	29-OCT-2009	26-MAR-2010
Analysis Type: WATER		Cal. Times:		17:31
Lab Sample ID: 50NG-CC	Quant	Type: ISTD		
Method: \\cansvr11\dd\chem\N	MSV\a3	ux11.i\J00526A	.b\8260LLUX11	.m

1	۱		1	CCAL	I MIN I	1	MAX I	F
[ COMPOUND	RRI	7 / AMOUNTI	RF50	RRF50	RRF 1	D / %DRIFT %D	/ %DRIFT 0	CURVE TYPE
	=====   ===				==== ==== =		======== :	=======
144 Methylcyclohexane	ł	0.645541	0.65409	0.65	540910.0101	-1.324351	50.000001	Averaged
141 1,3,5-Trichlorobenzene	T	0.70877	0.78621	0.78	8621 0.010	-10.926221	50.000001	Averaged
150 Vinyl Acetate-86	1	0.063931	0.047961	0.04	796 0.010	24.98316	50.00000]	Averaged
1	I	tt_	1		1 1	1	t	1

## Data File: \\cansvrl1\dd\chem\MSV\a3ux11.i\J00526A.b\UXJ9767.D Report Date: 26-May-2010 11:26

TestAmerica North Canton

Instrument ID: a3ux11.i	Injection Date: 26-MAY-2010 11:1	0
Lab File ID: UXJ9767.D	Init. Cal. Date(s): 29-OCT-2009	26-MAR-2010
Analysis Type: WATER	Init. Cal. Times: 16:58	17:31
Lab Sample ID: 50NG-A9CC	Quant Type: ISTD	
Method: \\cansvr11\dd\chem\]	4SV\a3ux11.i\J00526A.b\8260LLUX11	. m
•		

I	I	t	ł	CCAL	MIN	1 1	MAX	1
I COMPOUND	RR	F / AMOUNTI	RF50	RRF50	RRF	%D / %DRIFT	%D / %DRIFT	CURVE TYPE!
		**======= ==		==================		======	=======	==============
114 Dichlorofluoromethane	1	50.000001	43.40401	0.21878	0.010	13.19197	0.000e+000	Quadratic
89 Ethyl Ether	Ţ	0.29507	0.28944	0.28944	0.010	1.909571	50.00000	Averaged
91 3-Chloropropene	1	0.14116	0.15183	0.15183	0.010	-7.558114	50.00000	Averaged
92 Isopropyl Ether	I.	0.300981	0.296601	0.29660	0.010	1.45590;	50.00000	Averaged
193 2-Chloro-1,3-butadiene	1	0.51812	0.489641	0.48964	0.010	5.496841	50.00000	Averaged
194 Propionitrile	I.	0.046201	0.04241	0.04241	0.010	8.205851	50.00000	Averaged
95 Ethyl Acetate	I.	0.29584	0.25625	0.256251	0.010	13.38401	50.00000	Averaged
96 Methacrylonitrile	1	0.200861	0.18082	0.18082	0.010	9.976041	50.00000	Averaged
197 Isobutanol	I.	0.01069	0.01067	0.010671	0.010	0.229221	50.00000	Averaged
99 n-Butanol	1	0.009521	0.007061	0.00706	0.010	25.844581	50.00000	Averaged <
103 Cyclohexanone	L	5001	3441	0.02030	0.010	31.10311	0.000e+000	Wt Linear
100 Methyl Methacrylate	1	0.286621	0.224541	0.22454	0.010	21.66001	50.00000	Averaged
1101 2-Nitropropane	1	0.074351	0.050661	0.050661	0.010	31.86160	50.000001	Averaged
1155 t-Butyl ethyl ether	I.	0.52049	0.24743	0.24743;	0.010	52.46195	50.00000	Averaged <
156 t-Amyl methyl ether	I.	0.59205	0.19595	0.195951	0.010	66.90381	50.00000	Averaged <
157 1,2,3-Trimethylbenzene	1	3.17699	3.57543	3.57543	0.010	-12.54124	50.00000	Averaged
I	i i	I	1	I			1	

BLANK WORKORDER NO.

| L15781AA

1

1

ł

SW846 8260B METHOD BLANK SUMMARY

Lab Name: TestAmerica Laboratories, Inc.

Lab Code: TALCAN

Lab Code: TALCAN	SDG Number:0E06602
Lab File ID: UXJ9770.D	Lot Number: A0E140486
Date Analyzed: 05/26/10	Time Analyzed: 12:21
Matrix: WATER	Date Extracted:05/26/10
GC Column: DB 624 ID: .18	Extraction Method: 5030B
Instrument ID: UX11	Level:(low/med) LOW

THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES, LCS, LCSD, MS , MSD:

	SAMPLE	•	LAB	DATE	TIME
CLIENT ID.	WORK ORDE		FILE ID	ANALYZED	ANALYZED I
	======================================	====	======================================		
01  <u>MRC-MW96D</u> (65')	L1H6H1AA		UXJ9771.D	05/26/10	12:45
02 INTRA-LAB QC	L1P6T1AP		UXJ9776.D	05/26/10	14:43
03  <u>LAB_MS/MSD</u>	L1P6T1AQ	S	UXJ9791.D	05/26/10	
0.4   LAB MS/MSD	L1P6T1AR	D	UXJ9792.D	05/26/10	21:01
05  <u>CHECK SAMPLE</u>	L15781AC	С	UXJ9768.D	05/26/10	11:34
06 DUPLICATE CHECK	L15781AD	L	UXJ9769.D	05/26/10	11:57
071			1		
081			1		
091				1	
10			1		i
11			1		
12					!
13					i
14			1		
15					·
16			1	1	'
17					·
18					
19					i
2011					
21		_	1		
221					
231					·
24					
2511					·
261					
27					(
281					I
29				·	
3011					

COMMENTS:

### METHOD BLANK REPORT

### GC/MS Volatiles

Client Lot #: 0E06602 MB Lot-Sample #: A0E270000-259	Work Order #: L15781AA	Matrix WATER
Analysis Date: 05/26/10 Dilution Factor: 1	<pre>Prep Date: 05/26/10 Prep Batch #: 0147259 Initial Wgt/Vol: 5 mL</pre>	Final Wgt/Vol: 5 mL

		REPORTI	NG			
PARAMETER	RESULT	LIMIT	UNITS	METHOD		
Acetone	ND	5.0	ug/L	SW846 8260B		
Bromobenzene	ND	1.0	ug/L	SW846 8260B		
Bromochloromethane	ND	1.0	uq/L	SW846 8260B		
Bromodichloromethane	ND	1.0	ug/L	SW846 8260B		
2-Butanone	ND	5.0	ug/L	SW846 8260B		
n-Butylbenzene	ND	1.0	ug/L	SW846 8260B		
sec-Butylbenzene	ND	1.0	uq/L	SW846 8260B		
tert-Butylbenzene	ND	1.0	ug/L	SW846 8260B		
Carbon disulfide	ND	1.0	ug/L	SW846 8260B		
Dibromochloromethane	ND	1.0	ug/L	SW846 8260B		
1,2-Dibromo-3-chloro-	ND	2.0	ug/L	SW846 8260B		
propane			-			
2-Chloroethyl vinyl ether	ND	5.0	ug/L	SW846 8260B		
2-Chlorotoluene	ND	1.0	ug/L	SW846 8260B		
4-Chlorotoluene	ND	1.0	uq/L	SW846 8260B		
1,2-Dibromoethane	ND	1.0	ug/L	SW846 8260B		
Dibromomethane	ND	1.0	ug/L	SW846 8260B		
1,2-Dichlorobenzene	ND	1.0	ug/L	SW846 8260B		
1,3-Dichlorobenzene	ND	1.0	uq/L	SW846 8260B		
1,4-Dichlorobenzene	ND	1.0	ug/L	SW846 8260B		
Dichlorodifluoromethane	ND	1.0	ug/L	SW846 8260B		
cis-1,2-Dichloroethene	ND	1.0	ug/L	SW846 8260B		
trans-1,2-Dichloroethene	ND	1.0	ug/L	SW846 8260B		
1,3-Dichloropropane	ND	1.0	ug/L	SW846 8260B		
2,2-Dichloropropane	ND	1.0	ug/L	SW846 8260B		
1,1-Dichloropropene	ND	1.0	ug/L	SW846 8260B		
Trichlorofluoromethane	ND	1.0	ug/L	SW846 8260B		
Hexachlorobutadiene	ND	1.0	ug/L	SW846 8260B		
2-Hexanone	ND	5.0	ug/L	SW846 8260B		
Isopropylbenzene	ND	1.0	ug/L	SW846 8260B		
p-Isopropyltoluene	ND	1.0	ug/L	SW846 8260B		
tert-Butyl alcohol	ND	20	ug/L	SW846 8260B		
4-Methyl-2-pentanone	ND	5.0	ug/L	SW846 8260B		
Naphthalene	0.27 J	1.0	ug/L	SW846 8260B		
n-Propylbenzene	ND	1.0	ug/L	SW846 8260B		
Styrene	ND	1.0	ug/L	SW846 8260B		
1,1,1,2-Tetrachloroethane	ND	1.0	ug/L	SW846 8260B		
1,2,3-Trichlorobenzene	0.40 J	1.0	ug/L	SW846 8260B		
1,2,4-Trichloro-	0.23 J	1.0	ug/L	SW846 8260B		
benzene		•	-			
1,2,3-Trichloropropane	ND	1.0	ug/L	SW846 8260B		

(Continued on next page)

### METHOD BLANK REPORT

### GC/MS Volatiles

Client Lot #...: 0E06602

Work Order #...: L15781AA

Matrix..... WATER

		REPORTI	NG			
PARAMETER	RESULT	LIMIT	UNITS	METHOD		
1,1,2-Trichloro-	ND	1.0	ug/L	SW846 8260B		
1,2,2-trifluoroethane			-			
1,2,4-Trimethylbenzene	ND	1.0	ug/L	SW846 8260B		
Vinyl acetate	ND	2.0	ug/L	SW846 8260B		
o-Xylene	ND	1.0	ug/L	SW846 8260B		
Xylenes (total)	ND	2.0	ug/L	SW846 8260B		
Methyl tert-butyl ether	ND	5.0	ug/L	SW846 8260B		
m-Xylene & p-Xylene	ND	2.0	ug/L	SW846 8260B		
1,2,3-Trimethylbenzene	ND	5.0	ug/L	SW846 8260B		
Diisopropyl Ether (DIPE)	ND	5.0	ug/L	SW846 8260B		
Ethyl-t-Butyl Ether (ETBE	ND.	5.0	uq/L	SW846 8260B		
Tert-amyl methyl ether (T	ND	5.0	ug/L	SW846 8260B		
Benzene	ND	1.0	ug/L	SW846 8260B		
Bromoform	ND	1.0	uq/L	SW846 8260B		
Bromomethane	ND	1.0	ug/L	SW846 8260B		
Carbon tetrachloride	ND	1.0	ug/L	SW846 8260B		
Chlorobenzene	ND	1.0	uq/L	SW846 8260B		
Chloroethane	ND	1.0	ug/L	SW846 8260B		
Chloroform	ND .	1.0	uq/L	SW846 8260B		
Chloromethane	ND	1.0	ug/L	SW846 8260B		
1,1-Dichloroethane	ND	1.0	ug/L	SW846 8260B		
1,2-Dichloroethane	ND	1.0	ug/L	SW846 8260B		
1,1-Dichloroethene	ND	1.0	ug/L	SW846 8260B		
1,2-Dichloropropane	ND	1.0	ug/L	SW846 8260B		
cis-1,3-Dichloropropene	ND	1.0	ug/L	SW846 8260B		
trans-1,3-Dichloropropene	ND	1.0	ug/L	SW846 8260B		
Ethylbenzene	ND	1.0	ug/L	SW846 8260B		
Methylene chloride	ND	1.0	ug/L	SW846 8260B		
1,1,2,2-Tetrachloroethane	ND	1.0	ug/L	SW846 8260B		
Tetrachloroethene	ND	1.0	uq/L	SW846 8260B		
Toluene	ND	1.0	ug/L	SW846 8260B		
1,1,1-Trichloroethane	ND	1.0	ug/L	SW846 8260B		
Trichloroethene	ND	1.0	uq/L	SW846 8260B		
Vinyl chloride	ND	1.0	ug/L	SW846 8260B		
	PERCENT	RECOVERY	č			
SURROGATE	RECOVERY	LIMITS				
Dibromofluoromethane	93	(73 - 12	22)			
1,2-Dichloroethane-d4	89	(61 - 12				
Toluene-d8	97	(76 - 11	LO)			
4-Bromofluorobenzene	84	(74 - 11	6)			

#### NOTE (S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

J Estimated result. Result is less than RL.

### Tetra Tech NUS, Inc

## Method Blank Report

### GC/MS Volatiles

Lot-Sample #: A0E270000-259 B Work Order #: L15781AA Matrix: WATER

MASS SPECTROMETER/DATA SYSTEM (MSDS) TENTATIVELY IDENTIFIED COMPOUNDS

		ESTIMATED	RETENTION	
PARAMETER	CAS #	RESULT	TIME	UNITS
None				ug/L

#### SW846 8260B CHECK SAMPLE RECOVERY

Lab Name: TestAmerica Laboratories, Inc. Client: Tetra Tech NUS, Inc

Lab Code: TALCAN

Lot #: A0E270000

### SDG No: 0E06602

WO #: L15781AC BATCH: 0147259

	SPIKE	SAMPLE		QC	
	ADDED	CONCENT	. %	LIMITS	1
COMPOUND	(ug/L )	(ug/L )	REC	REC	QUAL
=====================================	=== =================	=== ===================================	==== ===== =		==========
1,1-Dichloroethene	10	11	105	63- 130	l
Trichloroethene	10	9.1	91	75- 122	1
Benzene	10	1 9.9	99	80- 116	
Toluene	10	10	101	74- 119	
Chlorobenzene	10	9.8	98	76- 117	

NOTES (S) :

* Values outside of QC limits

Spike Recovery: ____0 out of ____5 outside limits

COMMENTS:

FORM III

### SW846 8260B CHECK SAMPLE DUPLICATE RECOVERY

Lab Name: TestAmerica Laboratories, Inc. Client: Tetra Tech NUS, Inc

Lab Code: TALCAN

SDG No: 0E06602

Lot #: A0E270000

WO #: L15781AD BATCH: 0147259

     COMPOUND	SPIKE ADDED (ug/L )	SAMPLE CONCENT. (ug/L )	% REC	QC LIMITS REC	    QUAL
=====================================	==== ==================================	====   ================================	==   =====   =	=============	==========
1,1-Dichloroethene	10	11	113	63- 130	
Trichloroethene	10	9.3	93	75- 122	
Benzene	10	10	102	80- 116	
Toluene	10	11	105	74- 119	
Chlorobenzene	10	10	101	76- 117	

NOTES(S):

* Values outside of QC limits

Spike Recovery: ____0 out of ____5 outside limits

COMMENTS:

41

#### SW846 8260B MATRIX SPIKE/MATRIX SPIKE DUPLICATE RECOVERY

Lab Name: TestAmerica Laboratories, Inc. Client: Tetra Tech NUS, Inc

Lab Code: TALCAN

Matrix Spike ID: LAB MS/MSD

Lot #: A0E190483

WO #: L1P6T1AQ

SDG No: 0E06602

BATCH: 0147259

	SPIKE	SAMPLE	MS	MS		
	ADDED	CONCENT.	CONCENT.	olo	LIMITS	
COMPOUND	(ug/L )	(ug/L )	(ug/L )	REC	REC	QUAL
		=======	=======	=====	===============	
1,1-Dichloroethene	10	ND	9.5	95	62- 130	
Trichloroethene	110	ND	8.8	88	62- 130	
Benzene	10	ND	9.8	98	78- 118	
Toluene	10	ND	9.9	99	70- 119	
Chlorobenzene	10	ND	9.5	95	76- 117	

NOTES(S):

# Column to be used to flag recovery and RPD values with an asterisk * Values outside of QC limits

RPD: ____0 out of ____0 outside limits Spike Recovery: 0 out of 5 outside limits

COMMENTS:

50

#### SW846 8260B MATRIX SPIKE/MATRIX SPIKE DUPLICATE RECOVERY

Lab Name: TestAmerica Laboratories, Inc. Client: Tetra Tech NUS, Inc

Lab Code: TALCAN

Matrix Spike ID: LAB MS/MSD

Lot #: A0E190483

SDG No: 0E06602

WO #: L1P6T1AR BATCH: 0147259

1	SPIKE	MSD	MSD				1
1	ADDED	CONCENT.	90	00	QC L	IMITS	
COMPOUND	(ug/L )	(ug/L )	REC	RPD	RPD	REC	QUAL
== <b>===</b> ===============================		=======	=====	=====	=   ====   =		==== ==================================
1,1-Dichloroethene	110	11	114	18	20	62-	130
Trichloroethene	110	8.8	.88	0.12	20	62-	130
Benzene	10	9.7	97	1.8	20	78-	118
Toluene	10	9.7	97	12.0	201	70-	119
Chlorobenzene	10	9.3	93	1.6	201	76-	117

NOTES (S) :

# Column to be used to flag recovery and RPD values with an asterisk * Values outside of QC limits

RPD: 0 out of 5 outside limits Spike Recovery: 0 out of 5 outside limits

COMMENTS:

FORM III

5A VOLATILE ORGANIC GC/MS TUNING AND MASS CALIBRATION - BROMOFLUOROBENZENE (BFB)

Lab Name: NORTH CAN	TON	Contr	act:	
Lab Code: TALCAN	Case No	o.: SAS	No.:	SDG No.: 0E06602
Lab File ID: BFB144	16		BFB	Injection Date: 04/29/10
Instrument ID: A3UX	14		BFB	Injection Time: 1938
Matrix:(soil/water)	SOIL	Level:(low/med)	LOW	Column:(pack/cap) CAP

   m/e  ======	ION ABUNDANCE CRITERIA	% RELATIVE     ABUNDANCE
96   173   174     175     176		30.2                 44.2                 100.0                 6.9                 0.0       (       0.0)1         86.5                 6.6       (       7.7)1         83.4       (       96.4)1         5.3       (       6.4)2
' <u></u> '	1-Value is % of mass 174 2-Value is % of mass	 ass 176

THIS TUNE APPLIES TO THE FOLLOWING SAMPLES, MS, MSD, BLANKS, AND STANDARDS:

EPA	LAB	l Lab	DATE	TIME
SAMPLE NO.	SAMPLE ID	FILE ID	ANALYZED	ANALYZED
)1 VSTD200	= ====================================	== ====================================	1	===========
02/VSTD100	500NG-IC	1149598	04/29/10	2022
03 VSTD050	250NG-IC		04/29/10	2043
04/VSTD020	100NG-IC	149599	04/29/10	2105
)5 VSTD010		149600	04/29/10	2127
)6 VSTD005	50NG-IC	149601	04/29/10	2149
	25NG-IC	149602	04/29/10	2210
)7 VSTD002	110NG-IC	149603	04/29/10	2232
08 VSTD001	5NG-IC	149604	04/29/10	2254
9 VSTD200	1000NG-GCIC	149605	04/29/10	2315
0 VSTD100	500NG-GCIC	149606	04/29/10	2337
1 VSTD050	250NG-GCIC	149607	04/29/10	2359
2 VSTD050	100NG-GCIC	149608	04/30/10	0021
3 VSTD010	50NG-GCIC	149609	04/30/10	0043
4 VSTD005	25NG-GCIC	1149610	04/30/10	0104
5 VSTD002	10NG-GCIC	149611	04/30/10	0126
6 VSTD001	5NG-GCIC	149612	04/30/10	0148
7 VSTD200	1000NG-A9IC	149613	04/30/10	0210
8 VSTD100	500NG-A9IC	149614	04/30/10	0210
9 VSTD050	250NG-A9IC	149615	04/30/10	0251
0 VSTD020	100NG-A9IC	1149616	04/30/10	0255
1/VSTD010	50NG-A9IC	149617	04/30/10	
2   VSTD005	,	1 1 1 2 0 1 7	1 04/20/10 1	0337

page 1 of 2

5A VOLATILE ORGANIC GC/MS TUNING AND MASS CALIBRATION - BROMOFLUOROBENZENE (BFB)

Lab Name: NORTH CAN	TON	Cont	ract:	
Lab Code: TALCAN	Case N	Jo.: SAS	6 No.:	SDG No.: 0E06602
Lab File ID: BFB144	16		BFB	Injection Date: 04/29/10
Instrument ID: A3UX	14		BFB	Injection Time: 1938
Matrix:(soil/water)	SOIL	Level:(low/med	l) LOW	Column:(pack/cap) CAP

	% RELATIVE   ABUNDANCE
75   30.0 - 60.0% of mass 95	30.2  44.2
96   5.0 - 9.0% of mass 95	100.0  6.9
173   Less than 2.0% of mass 174    174   50.0 - 120.0% of mass 95	0.0 ( 0.0)1
175   5.0 - 9.0% of mass 174    176   Greater than 95.0%, but less than 101.0% of mass 174	6.6 ( 7.7)1  83.4 ( 96.4)1
177   5.0 - 9.0% of mass 176     1-Value is % of mass 174 2-Value is % of mas	5.3 ( 6.4)2

THIS TUNE APPLIES TO THE FOLLOWING SAMPLES, MS, MSD, BLANKS, AND STANDARDS:

EPA	LAB	LAB	   DATE	
SAMPLE NO.	SAMPLE ID	FILE ID		TIME
======================================	,		ANALYZED	ANALYZED
1	· · · · · ·	=   ===================================	1	1
01/VSTD002	10NG-A9IC	149619	04/30/10	0420
02 VSTD001	5NG-A9IC	149620	04/30/10	0442
031	l			
04			I	
05				
061	l			
07				
081		_ `	' <u></u> ' 	
091	·		' ' '	
10		- ' <u></u>	۱۱	
111	1	_ '	!!	
121	۱ <u></u>	-	ا ا ۱	
131	 	_ !	l l	
14			ا <u></u> ا	
151	l	_ [		
			!	
16	[	_		
17			l	
18				
191	I			
20				······································
21	[	· ·	·*	I
22	·	- ' <u></u> '		[

page 2 of 2

#### TestAmerica North Canton

INITIAL CALIBRATION DATA

Start Cal Date	: 29-APR-2010 20:22	
End Cal Date	: 30-APR-2010 04:42	
Quant Method	: ISTD	
Origin	: Disabled	
Target Version	: 4.14	
Integrator	: HP RTE	
Method file	: \\cansvrll\dd\chem\MSV\a3ux14.i\R00429D-IC.b\8260SUX14.m	l
Last Edit	: 30-Apr-2010 09:46 a3ux14.i	
Curve Type	: Average	

### Calibration File Names:

Calibration File Names: Level 1: \\cansvrll\dd\chem\MSV\a3ux14.i\R00429D-IC.b\149620.D Level 2: \\cansvrll\dd\chem\MSV\a3ux14.i\R00429D-IC.b\149619.D Level 3: \\cansvrll\dd\chem\MSV\a3ux14.i\R00429D-IC.b\149618.D Level 4: \\cansvrll\dd\chem\MSV\a3ux14.i\R00429D-IC.b\149617.D Level 5: \\cansvrll\dd\chem\MSV\a3ux14.i\R00429D-IC.b\149616.D Level 6: \\cansvrll\dd\chem\MSV\a3ux14.i\R00429D-IC.b\149615.D Level 7: \\cansvrll\dd\chem\MSV\a3ux14.i\R00429D-IC.b\149614.D Level 8: \\cansvrll\dd\chem\MSV\a3ux14.i\R00429D-IC.b\149613.D

	5.000	10.000	25.000	50.000	100.000	250.000	I	
Compound	Level 1	Level 2	Level 3	Level 4	Level 5	Level 6	RRF	% RSD
		- <b></b>				- <b>-</b>		
	500.000	1000.000	1					
	Level 7	Level 8						
			•				=======	
8 Dichlorodifluoromethane	0.25502			0.24741	0.25629	0.23160		
	0.26010	0.24519	1				0.24919	4.528
9 Chloromethane	0.44927	0.45745	0.43969	0.42684	0.44630	0.38904		
	0.43736		•	0.42004	0.44050	0.50504	0.43074	5.636
10 Vinyl Chloride	0.28952	0.27677	0.27522	0.28888	0.29842	0.26754	ļ	
	0.29696	0.28102	.		i	. I	0.28429	3.850
11 Bromomethane	0.13151		0.15589	0.12886	0.12842	0.12406	. 1	
	0.11251	0.11645	, ,		1	.	0.12948	10.384
12 Chloroethane								
12 Chloroethane	0.17929			0.16872	0.16275	0.14603	0.16437	9.760
		0.14356			<del>ا</del> ا	! 	0.1043/1	9.760
13 Trichlorofluoromethane	0.19600	0.20118	0.22167	0.24286	0.24323	0.24354		
	0.26580	0.23591					0.23127	10,184
14 Dichlorofluoromethane	0.27664	0.19779	0.22585	0.20615	0.23541	0.27384		
	0.27664	0.25483		1			0.24339	13.091
	!	}	!					
15 Acrolein	+++++	+++++	0.04232	0.03622	0.03815	0.03151		
	0.03419	0.03037					0.03546	12.479
			}					
			ł			[	1	

### TestAmerica North Canton

Start Cal Date	: 29-APR-2010 20:22	
End Cal Date	: 30-APR-2010 04:42	
Quant Method	: ISTD	
Origin	: Disabled	
Target Version	: 4.14	
Integrator	: HP RTE	
Method file	: \\cansvrll\dd\chem\MSV\a3ux14.i\R00429D-IC.b\8260SUX14.r	m
Last Edit	: 30-Apr-2010 09:46 a3ux14.i	
Curve Type	: Average	
	-	

	5.000	10.000	25.000	50.000	100.000	250.000		
Compound	Level 1		Level 3		Level 5	Level 6	RRF	% RSD
	500.000	  1000.000   Level 8	   	   				
			1		=========			
16 Acetone	0.11191		I i	0.10623	0.12772	0.10094	0.11547	14.967
17 1,1-Dichloroethene	0.19719	0.23442	•	0.18273	0.20117	0.15892		
	0.17774					ļ	0.19602	15.964
18 Freon-113	0.12359	•	0.23481	0.16253	0.21128	0.14986	0.17499	19.997
19 Iodomethane	-	1	· ·				-	
19 IOUOMETHAILE	0.47994		·	0.46729	0.47340	0.42625	0.46263	5.754
20 Carbon Disulfide	0.60339	'	· ·		•	1		
	0.72792	0.68164	,	ļ	1		0.66801	7.762
21 Methylene Chloride	0.31682	•	i i	0.24524	0.23142	0.24480	·	
	0.24759	0.22848		1			0.25257	10.891
22 Acetonitrile	-	+++++	0.03664	0.03414	0.03656	0.02963		
	0.03183	0.02738	.	I			0.03270	11.523
23 Acrylonitrile	0.11328	I I	1	0.09743	1	0.08873		
	0.09593						0.09758	9.107
24 Methyl tert-butyl ether	0.35479	0.31239	'	0.32298	0.33078	0.29650	-  ·	
	0.29450			1		1	0.31792	12.278
25 trans-1,2-Dichloroethene	0.27782	0.29219	1	0.29382	0.28637	0.25359	-	
	0.27941	0.26139	I	1	1	1	0.28357	7.614
26 Hexane	0.05095	0.05683	0.06882	0.06910	0.06611	0.06241		
	0.06294	0.06013	1	İ	I	Í	0.06216	9.938
	 		 	 	 	·۱ا	- 	

### TestAmerica North Canton

## INITIAL CALIBRATION DATA

Start Cal Date	:	29-APR-2010 20:22
End Cal Date	:	30-APR-2010 04:42
Quant Method	:	ISTD
Origin	:	Disabled
Target Version	:	4.14
Integrator		HP RTE
Method file	:	<pre>\\cansvrll\dd\chem\MSV\a3ux14.i\R00429D-IC.b\8260SUX14.m</pre>
Last Edit	:	30-Apr-2010 09:46 a3ux14.i
Curve Type	:	Average

- -

   Compound	Level 1	10.000   Level 2	25.000 Level 3	50.000 Level 4	100.000 Level 5	250.000 Level 6	RRF	% RSD
	500.000	  1000.000   Level 8		<b>  </b>   		   		
27 Vinyl acetate	0.60667		0.58248	0.48798				11.780
154 Vinyl Acetate**2nd**	0.03767	0.03284		0.03099		0.03396	0.03339	7.375
28 1,1-Dichloroethane	0.55278 0.55947	0.53852	0.61870	0.56403		0.52590	0.55941	5.002
   29 tert-Butyl Alcohol 	   0.02142   0.01796	0.01848	0.02205	0.01858	0.02064	0.01688	0.01875	14.023
30 2-Butanone	0.12449	0.13002	0.13062	0.12536	0.13846	0.11920	0.12610	6.099
] (total) M 31 1,2-Dichloroethene (total)	0.30175   0.28169	•	•	0.29278	0.29036	0.26289	0.28950	7.015
32 cis-1,2-dichloroethene	0.32568	0.26556		0.29174		0.27218	0.29542	7.477
33 2,2-Dichloropropane	0.21770	0.19037	0.22328	0.21811	0.20776	0.19176	0.20462	7.198
34 Bromochloromethane	0.16649	0.12820		0.13724	0.14071	0.13069	0.14224	. 8.815
   35 Chloroform 	0.46790	•	0.46274	0.42612	0.43148	0.40474	0.42926	5.744
   36 Tetrahydrofuran 	   +++++   0.08529	0.10439		0.09039	0.09651	0.08167	0.09071	12.777
 	.  .		 	 				· · · · · · · · · · · · · · · · · · ·

## TestAmerica North Canton

Start Cal Date End Cal Date Quant Method Origin Target Version Integrator Method file Last Edit Curve Type	: 29-APR-2010 20:22 : 30-APR-2010 04:42 : ISTD : Disabled : 4.14 : HP RTE : \\cansvr11\dd\chem\MSV\a3ux14.i\R00429D-IC.b\8260SUX14.m : 30-Apr-2010 09:46 a3ux14.i : Average	1
Curve Type	: Average	

Compound	•	10.000   Level 2	25.000 Level 3	50.000   Level 4	100.000 Level 5	Level 6	 RRF	 % RSD
	500.000					   	   	
37 1,1,1-Trichloroethane	0.35768	0.35432		0.38316			0.37405	5.876
38 1,1-Dichloropropene	0.29348	0.31692	0.38757	0.34580		0.33327	0.33348	8.361
39 Carbon Tetrachloride	0.31370	0.39112				0.37802	0.37601	9.030
40 1,2-Dichloroethane	   0.39894   0.36575	0.38264	0.42614	0,38385		0.36223	0.38077	6.128
41 Benzene	   1.03484   0.98145		1.11913	1.01575	1.01193	0.96424	1.01064	5.230
42 Trichloroethene	0.30526			0.32524	0.31768	0.31456	0.31752	5.165
43 1,2-Dichloropropane	0.28598 0.27955	0.26868		0.28909	0.28741	0.28424	0.28721	3.992
44 1,4-Dioxane	0.00222	0.00130		0.00170	0.00184	0.00157	0.00174	15.662
45 Dibromomethane	   0.13047   0.11881			0.12204	0.12259	0.11811	0.12255	6.722
46 Bromodichloromethane	0.25465 0.27412			0.25007	0.26143	0.26865	0.26030	5.944
47 2-Chloroethyl vinyl ether	   0.09554   0.09484			0.09428	0.09682	0.10002	0.09482	3.222

## TestAmerica North Canton

## INITIAL CALIBRATION DATA

Target Version : 4.14 Integrator : HP RTE Method file : \\cansvr11\dd\chem\MSV\a3ux14.i\R00429D-IC.b\8260SUX14.m Last Edit : 30-Apr-2010 09:46 a3ux14.i Curve Type : Average	Integrator Method file Last Edit	: HP RTE : \\cansvr11\dd\chem\MSV\a3ux14.i\R00429D-IC.b\8260SUX14.m : 30-Apr-2010 09:46 a3ux14.i
------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------	----------------------------------------	--------------------------------------------------------------------------------------------------------

Compound	5.000   Level 1	10.000   Level 2	25.000 Level 3	50.000 Level 4	100.000 Level 5	250.000   Level 6	RRF	% RSD
	500.000 Level 7	1000.000   Level 8				     	   	
48 cis-1,3-Dichloropropene	0.29099 0.32087	0.31731	0.32390		0.31122	0.32789	0.30687	6.417
49 4-Methyl-2-pentanone	0.39132	0.35492		0.40263	0.43379	0.37174	0.39490	6.143
50 Toluene	-     1.65591   1.51223			1		 1.48978  	1.55970	6.135
51 trans-1,3-Dichloropropene	-    0.39778   0.39180	0.35257		]	0.38476	 0.39645  	0.38482	5.033
52 Ethyl Methacrylate	-     0.36036   0.31114	0.29955	I	0.29312	0.32477	0.30917	0.31633	7.255
53 1,1,2-Trichloroethane	0.27838		,	0.23748	0.25041	 0.23963  	0.25041	8.360
54 1,3-Dichloropropane	0.42596 0.37273	0.35232	I	0.37991	0.39163		0.38956	6.538
55 Tetrachloroethene	-    0.31970   0.34962	, ,	I	0.34423	0.36522	0.34603	0.35077	6.109
56 2-Hexanone	-     0.23455   0.23895	0.22018		0.24570	0.26180	0.23821	0.24042	4.951
57 Dibromochloromethane	0.25681   0.31565		0.30914	 0.26207  	0.29653	0.30739	-   0.29073	8.970
58 1,2-Dibromoethane	0.28300 0.23929		0.27067	 0.24221  	0.25201	0.24240	0.25167	6,941
	-	 	 		 	] 	- 	

134

### TestAmerica North Canton

### INITIAL CALIBRATION DATA

Start Cal Date	: 29-APR-2010 20:22				
End Cal Date	: 30-APR-2010 04:42				
Quant Method	: ISTD				
Origin	: Disabled				
Target Version	: 4.14				
Integrator	: HP RTE				
Method file	: \\cansvr11\dd\chem\MSV\a3ux14	.i\R00429D-	IC.b\826	OSUX14	. m
Last Edit	: 30-Apr-2010 09:46 a3ux14.i				
Curve Type	: Average				
	-				

Compound	Level 1	10.000   Level 2	•		100.000 Level 5		RRF	% RSD
	500.000   Level 7	  1000.000   Level 8			•••••			
59 Chlorobenzene	1.03475   0.97827	0.95538	1.10031	0.97551	0.99354	0.98602		4.53
60 1,1,1,2-Tetrachloroethane	0.35464			0.38640	0.39655	0.37666	0.38150	5.727
61 Ethylbenzene	-     0.55308   0.55463			0.55675	0.56542	0.56030	   0.56303	4.83
62 m + p-Xylene	-     0.67703   0.64615	0.64600		0.66814	0.68781	0.66330	0.66598	5.393
M 63 Xylenes (total)	-     0.68175   0.64957	0.64442	•	0.67341	0.68975	0.65993	   0.66870	6.153
64 Xylene-o	0.69121 0.65642		,	0.68395	0.69362	0.65321	   0.67413	7,74:
65 Styrene	0.94540   0.92521			0.91399	0.93415	0.95919	   0.93687	4.623
66 Bromoform	0.13080	0.16506	0.13916	0.13289		. 0.15846	0.14524	11.438
67 Isopropylbenzene	1.71663 1.91094		2.02770	 1.86514  	 1.92626  	 1.81481  	   1.84311	6.107
68 1,1,2,2-Tetrachloroethane	0.53016		 0.56980  	 0.50888  	 0.57847  	0.52346	0.53330	5.441
69 1,4-Dichloro-2-butene	0.22986		 0.25115  	 021604  	 0.22759  	 0.24051  	0.23956	7.699
	·     _		 		 l	 	 	

135

# TestAmerica North Canton

Start Cal Date	: 29-APR-2010 20:22
End Cal Date	: 30-APR-2010 04:42
Quant Method	: ISTD
Origin	: Disabled
Target Version	: 4.14
Integrator	: HP RTE
Method file	: \\cansvr11\dd\chem\MSV\a3ux14.i\R00429D-IC.b\8260SUX14.m
Last Edit	: 30-Apr-2010 09:46 a3ux14.i
Curve Type	: Average

Compound	5.000   Level 1	10.000   Level 2	25.000   Level 3	50.000 Level 4	100.000 Level 5	250.000 Level 6	RRF	% RSD
	Level 7		   					
70 1,2,3-Trichloropropane	0.19394		0.18540		0.17521	0.16107		8.32
71 Bromobenzene	0.82618	0.78981		0.80733	0.81424	0.80916	0.82404	3.91
72 n-Propylbenzene	0.90043	0.93570 0.01908		l	l	1.04071	1.00904	6.058
73 2-Chlorotoluene	0.96090	0.91220		0.90030	l	0.90451	0.92332	3.11
74 1,3,5-Trimethylbenzene	2.65825 3.29137	2.76917		3.14010	3.23306	3.08127	3.07618	7.99
75 4-Chlorotoluene	0.86602	0.81931		0.86353	0.86179	0.86554	0.86640	4.95
76 tert-Butylbenzene	2.40980 3.25702	3.04054	•	3.05727	I	l	2.97798	10.08
77 1,2,4-Trimethylbenzene	2.74441	3.11032		3.02298	 3.12366  	l	3.04363	6.15
78 sec-Butylbenzéne	3.26817 4.50604	3.65173	•	4.16348	4.37094	4.10735	4.10082	10.53
79 4-Isopropyltoluene	2.79848 3.64716	3.46006		3.33505	3.52449	3.35053	3.32715	9.34
80 1,3-Dichlorobenzene	   1.72581   1.62974		 1.77467	1.60604	 1.62491	 1.59487	·   1.64403	4.19

### TestAmerica North Canton

Integrator Method file	<pre>: 29-APR-2010 20:22 : 30-APR-2010 04:42 : ISTD : Disabled : 4.14 : HP RTE : \\cansvr11\dd\chem\MSV\a3ux14.i\R00429D-IC.b\8260 : 30-Apr-2010 09:46 a3ux14.i : Average</pre>	
curve type	: Average	

	,					250.000		
Compound	•	Level 2		Level 4	Level 5	Level 6	RRF	% RSD
	1	  1000.000					1	
		Level 8	1				1	
81 1,4-Dichlorobenzene	1.74839	•				1.56616	=================	*********
	1.59463	• •					1.64811	5.742
82 n-Butylbenzene	2.33163 2.79780		-	2.66390	2.80530	2.69562	2.65539	7.97
83 1,2-Dichlorobenzene	1.63146			1.54388	1.56359	1.47497		
	1.51763						1.54733	6.51
84 1,2-Dibromo-3-chloropropane	0.08661	· . ·		0.10545	0.11606	0.10609	İ	
	0.12587						0.10955	11.04
85 1,2,4-Trichlorobenzene	1.28689	, ,		1.09667	1,11682	1.02212		
55 1,2,4-111010Delizene	1.12397			1.05007	1.11002	1.00010	1.13164	8.33
86 Hexachlorobutadiene	0.51148	, ,		0.65156	0.65485	0.62224	0.63588	10.43
87 Naphthalene	2.92146	•		2.44834	2.59392	2.23594	.	-
	2.46651						2.52547	9.35 
88 1,2,3-Trichlorobenzene	1.23504	1 1	1.14501	1.03603	1.06748	0.94492		
	1.03125						1.05761	9.38
89 Ethyl Ether	0.22435	, ,	0.20232	0.19940	0.19613	0.20127	1	
69 BUNYI BUNEI	0.202433	, ,		0.19940	0.10010	0.20121	0.20550	6.18
90 Ethanol	+++++ +++++	+++++     +++++	+++++   ·	++++	++++	+++++	+++++	+++++
	+++++	+++++   						
91 3-Chloropropene	0.13110			0.12987	0.11853	0.13640		_
	0.13919	0.13278			 	\`	0.12932	5.67
			· · · · · · · · · · · · · · · · · · ·				1	

# TestAmerica North Canton

Start Cal Date	: 29-APR-2010 20:22
End Cal Date	: 30-APR-2010 04:42
Quant Method	: ISTD
Origin	: Disabled
Target Version	: 4.14
Integrator	: HP RTE
Method file	: \\cansvrll\dd\chem\MSV\a3ux14.i\R00429D-IC.b\8260SUX14.m
Last Edit	: 30-Apr-2010 09:46 a3ux14.i
Curve Type	: Average

Compound		10.000	25.000 Level 3	50.000 Level 4	100.000 Level 5		RRF	% RSD
· · ·								
	Level 7	1000.000						
92 Isopropyl Ether	0.22204		0.21623				•	
					<b></b>			
93 2-Chloro-1,3-butadiene	0.57624			0.60671	0.58762	0.62586	0.60657	
94 Propionitrile	   +++++   0.03412	0.04391		0.03162	0.03161	0.03510	0.03504	12.756
95 Ethyl Acetate	0.29656		0.26727	0.22940	0.24670	0.25317	0.26151	9.544
96 Methacrylonitrile	0.08624		0.07918	0.06468	0.07124	0.07138	0.07403	9.855
97 Isobutanol	0.00759	0.00816	0.00700	0.00621	0.00689	0.00741		
	0.00742					 	0.00719	8.193
98 Cyclohexane	0.54431		0.87500	0.79713	0.82184	0.74288	0.75474	13.969
99 n-Butanol	0.00729	0.00724	0.00629	0.00551	0.00598	0.00646		
	0.00671				 		0.00645	9.524
100 Methyl Methacrylate	0.22535	0.21749	0.23013	0.20466	0.22980	0.22477	0.22260	3.796
101 2-Nitropropane		0.08987		0.06677	0.06676	0.08213	0.08110	14.654
	0.09071	0.09629	 		 		0.08110	
102 Chloropicrin	+++++ ++++++	+++++	++++	+++++	+++++	++++	+++++	   +++++  ·
	·	I I				·		·

## TestAmerica North Canton

### INITIAL CALIBRATION DATA

Start Cal Date	: 29-APR-2010 20:22
End Cal Date	: 30-APR-2010 04:42
Quant Method	: ISTD
Origin	: Disabled
Target Version	: 4.14
Integrator	: HP RTE
Method file	: \\cansvrll\dd\chem\MSV\a3uxl4.i\R00429D-IC.b\8260SUX14.m
Last Edit	: 30-Apr-2010 09:46 a3ux14.i
Curve Type	: Average

- -

	•	10.000		•	100.000	250.000			1
Compound	•	Level 2	Level 3	Level 4	Level 5	Level 6	RRF	% RSD	
l de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la const	•	1000.000	•	1	l	]	1		İ
	Level 7	•	 {		  ==========			}   ====================================	-
25 Cyclohexanone	0.06960			•	-				
	0.06940	0.06293		} ·	1	l	0.06460	6.911	
104 Pentachloroethane	   +++++	+++++	+++++	   +++++	+++++	++++++			
1	+++++	+++++			l		+++++	<del>***</del> ++	<-
105 Benzyl Chloride	+++++	+++++	+++++	 +++++	   +++++	   +++++		} }	1
1	+++++	+++++		1	1	1	+++++	+++++	<-
134 Thiophene	   +++++	+++++		   +++++	   +++++	   +++++		 	
	+++++	++++				•	+++++	,   +++++	<-
135 Crotononitrile(1st Isomer)	   +++++	+++++	+++++	   +++++	   +++++	   +++++		 	
	+++++	+++++			1	l	,   +++++	' }	<-
136 Crotononitrile(2nd Isomer)	+++++		 +++++		   +++++	   +++++	 	<b></b>	
	+++++	+++++				1	,   +++++	1   +++++	<-
							 1	 	
M 137 Total Crotononitrile	+++++	+++++ +++++	++++	<b>+++</b> ++ 	+++++   .	++++++ 	   +++++	+++++	<-
									ļ
138 Paraldehyde	+++++	+++++ +++++	+++++	+++++	+++++ 	+++++	}   +++++	   +++++	<-
									1
139 3,3,5-Trimethylcyclohexanone	+++++ +++++	+++++	+++++	++++	+++++ 	+++++; 	   +++++		<-
· 									1
140 1-Chlorohexane	+++++	+++++	, <b>++++</b> +	+++++ !	+++ <b>*</b> *	+++++ !	]   +++++	   +++++	
! 	+++++	+++++	   <b></b> -		 	 	++++++ 	.====================================	
141 1,3,5-Trichlorobenzene	1.30840			1.20864	1.25798	1.18363		. 	1
 	1.27726	1.18768	<b>_</b>			 	1.24859 	5.083	-
						I			.i

-

### TestAmerica North Canton

## INITIAL CALIBRATION DATA

Start Cal Date	: 29-APR-2010 20:22
End Cal Date	: 30-APR-2010 04:42
Quant Method	: ISTD
Origin	: Disabled
Target Version	: 4.14
Integrator	: HP RTE
Method file	: \\cansvrll\dd\chem\MSV\a3ux14.i\R00429D-IC.b\8260SUX14.m
Last Edit	: 30-Apr-2010 09:46 a3ux14.i
Curve Type	: Average

- -

Compound		10.000	25.000	50.000	100.000	,	•		1
compound		Level 2	•	Level 4	Level 5	Level 6		% RSD	1
	500.000	1000.000					1	1	
	Level 7	Level 8	J	I	ł	1	I	1	Ì
143 Methyl Acetate				7		•		.====================================	=
145 Methyr Acetale	0.26881	•		0.22869	0.24399	0.20871	   0.23612	9.824	1
			 	 		 			-
144 Methylcyclohexane	0.36918	0.46575	0.60156	0.54496	0.55677	0.51066			I
	0.54912	0.50025			1	1	0.51228	13.836	51
145 Dimethoxymethane	++++++	+++++	   + <b>+++</b> +	+++++	   +++++	   +++++			-  -  -
-	} +++++	+++++					++++	,   +++++	1
									-
146 2-Methylnaphthalene	1.47871	1.39648		1.32537	1.10197	1.28961			
		1.32514					1.35613	9.330	가 - 1
147 Ethyl Acrylate	+++++	+++++	+++++	+++++	+++++	++++		1	1
	+++++	+++++			l .		++++	+++++	ŀ
148 n-Butyl Acrylate	   +++++	++++++			••••				•
110 h Butyr Actyrate	+++++	+++++	****	+++++	<del>****</del>	+++++	+++++	****	  -
									•
149 1,2:3,4-Diepoxybutane	+++++	++++	++++	+++++	+++++	++++			ł
	+++++	+++++					+++++	+++++	•
150 Bromoacetone	+++++	+++++	+++++	++++++	+++++	+++++			1
	+++++	++++	i	· · ·	Í		•++ <b>+</b> +	++++	
									1
151 Allyl Alcohol	+++++     +++++	+++++   ++++++	++++	+++++	+++++	++++	+++++	+++++	
			ا 					*****	-   • -
152 Acenaphthylene	+++++	++++	+++++	+++++	+++++	+++++			İ
	+++++	++++		·			+++++	+++++	1
153 Isopropyl Acetate	   +++++	+++++	+++++	+++++	+++++	+++++ 1		· · · · · · · · · · · · · · · · · · ·	1
	++++++	+++++	+++++	++++++	+++++	+++++	+++++ ]	+++++	1
									ł
						<u> </u>			

# TestAmerica North Canton

Start Cal Date	:	29-APR-2010 20:22
End Cal Date	:	30-APR-2010 04:42
Quant Method	:	ISTD
Origin	.:	Disabled
Target Version	:	4.14
Integrator		HP RTE
Method file	· :	<pre>\\cansvrll\dd\chem\MSV\a3ux14.i\R00429D-IC.b\8260SUX14.m</pre>
Last Edit	:	30-Apr-2010 09:46 a3ux14.i
Curve Type	:	Average
		-

1	5.000	10.000	25.000	50.000	100.000	250.000		
Compound	Level 1	Level 2	Level 3	Level 4	Level 5	Level 6	RRF	% RSD
<b>j</b> .								ł
1	500.000	1000.000	l		l		•	
1	Level 7	Level 8			[			1
				*******	=========		========	*********
155 1,3-Butadiene	+++++	++++	· +++++	+++++	} +++++ . !	+++++	   +++++	+++++  -
	+++++	+++++	 	 	 	 	; +++++ ; }	
156 tert-Butyl Ethyl ether	0.56751	0.49661	0.54670	0.52245	0.53504	0.52533	, , , , , , , , , , , , , , , , , , ,	
	0.49192				1		0.51551	7.707
1 								
157 tert-Amyl Methyl ether	0.34130	0.28579	0.31048	0.30827	0.31591	0.31000		1
1	0.28546	0.25691			]		0.30176	8.385
158 1,2,3-Trimethylbenzene	2.77157	2.54229	2.70739	2.69583	2.56664	2.84643		1
1	2.98387	2.91724			l ,		2.75391	5.722
\$ 4 Dibromofluoromethane	+++++	++++	0.29655	0.27742	0.27361	0.25131		8.300
1	0.25334	0.23558			1		0.26463	8.300
\$ 5 1,2-Dichloroethane-d4	+++++	+++++	0.33643	0.31097	0.30534	0.27560		
	0.27592			0.51057	0,50554	0.2.500	0.29470	9.335
1  \$ 6 Toluene-d8	+++++	++++	1.65676	1.51553	1.51056	1.41896		ĺ
	1.39436	1.35603			.		1.47537	7.409
	·							
\$ 7 Bromofluorobenzene	+++++	+++++	1.09863	0.99317	0.98056	0.98075	ł	1
1	0.94349	0.92409		ł			0.98678	6.152
l	-l		l	. <u></u>	<u> </u>			I

Data File: \\cansvrll\dd\chem\MSV\a3ux14.i\R00429D-IC.b\149621.D Report Date: 30-Apr-2010 10:12

### TestAmerica North Canton

#### RECOVERY REPORT

Client SDG: SDGa00468 Fraction: VOA

Operator: 2807 SampleType: METHSPIKE Quant Type: ISTD

Sample Matrix: SOLID Lab Smp Id: ICV Level: LOW Data Type: MS DATA SpikeList File: DODICV.spk Sublist File: 4-8260+IX.sub Method File: \\cansvr11\dd\c

Client Name:

Method File: \\cansvr11\dd\chem\MSV\a3ux14.i\R00429D-IC.b\8260SUX14.m Misc Info: R00429D-IC,8260SUX14,,2807,3

	CONC	CONC	% %	
SPIKE COMPOUND	ADDED	RECOVERED	RECOVERED	LIMITS
	UG/KG	UG/KG		
17 1,1-Dichloroethen	e 50.000	53.036	106.07	55-142
42 Trichloroethene	50.000	46.775	93.55	70-131
41 Benzene	50.000	48.193	96.39	75-129
50 Toluene	50.000	46.973	93.95	71-130
59 Chlorobenzene	50.000	46.028	92.06	75-127
60 1,1,1,2-Tetrachlo		48.971	97.94	75-125
37 1,1,1-Trichloroet		48.731	97.46	75-125
68 1,1,2,2-Tetrachlo	r 50.000	48.800	97.60	75-125
53 1,1,2-Trichloroet		45.418	90.84	75-125
28 1,1-Dichloroethan	e 50.000	50.746	101.49	75-125
38 1,1-Dichloroprope		49.686	99.37	75-125
88 1,2,3-Trichlorobe		40.885	81.77	75-125
70 1,2,3-Trichloropr		50.281	100.56	75-125
85 1,2,4-Trichlorobe		37.542	75.08	75-125
77 1,2,4-Trimethylbe		47.699	95.40	75-125
84 1,2-Dibromo-3-chl		43.924	87.85	75-125
58 1,2-Dibromoethane	50.000	45.154	90.31	75-125
83 1,2-Dichlorobenze		44.403	88.81	75-125
40 1,2-Dichloroethan		48.635	97.27	75-125
43 1,2-Dichloropropa		49.194	98.39	75-125
74 1,3,5-Trimethylbe		48.066	96.13	75-125
80 1,3-Dichlorobenze		42.285	84.57	75-125
54 1,3-Dichloropropa		47.164	94.33	75-125
81 1,4-Dichlorobenze	n 50.000	41.346	82.69	75-125
33 2,2-Dichloropropa		44.555	89.11	75-125
30 2-Butanone	100.00	95.034	95.03	75-125
73 2-Chlorotoluene	50.000	45.615	91.23 93.22	75-125
56 2-Hexanone	100.00	93.220	87.78	75-125
75 4-Chlorotoluene	50.000	43.889 95.546	95.55	75-125
49 4-Methyl-2-pentan 16 Acetone		82.590	82.59	75-125
71 Bromobenzene	100.00	45.501	91.00	75-125
34 Bromochloromethan	50.000 50.000	47.532	95.07	75-125
46 Bromodichlorometha		47.552	99.69	75-125
66 Bromoform		45.389	90.78	75-125
11 Bromomethane	50.000 50.000	42.250	84.50	75-125
20 Carbon Disulfide	50.000	50.268	100.54	75-125
39 Carbon Tetrachlor		50.107	100.21	75-125
57 Dibromochlorometha		46.685	93.37	75-125
12 Chloroethane	50.000	44.789	89.58	75-125
	50.000	1		
		1	I	1 [

Data File: \\cansvr11\dd\chem\MSV\a3ux14.i\R00429D-IC.b\149621.D Report Date: 30-Apr-2010 10:12

	CONC	CONC	8	
SPIKE COMPOUND	ADDED	RECOVERED	RECOVERED	LIMITS
	UG/KG	UG/KG		
35 Chloroform	50.000	49.468	98.94	75-125
9 Chloromethane	50.000	45.737	91.47	75-125
32 cis-1,2-dichloroet	50.000	48.937	97.87	75-125
48 cis-1,3-Dichloropr		47.064	94.13	75-125
48 CIS-1, 3-Dichloropr 45 Dibromomethane	50.000		97.66	75-125
	50.000	48.832		
8 Dichlorodifluorome	50.000	41.265	82.53	75-125
61 Ethylbenzene	50.000	46.451	92.90	75-125
86 Hexachlorobutadien	50.000	42.849	85.70	75-125
67 Isopropylbenzene	50.000	47.592	95.18	75-125
62 m + p-Xylene	100.00	92.215	92.21	75-125
21 Methylene Chloride	50.000	48.249	96.50	75-125
87 Naphthalene	50.000	43.115	86.23	75-125
82 n-Butylbenzene	50.000	43.116	86.23	75-125
72 n-Propylbenzene	50.000	47.071	94.14	75-125
64 Xylene-o	50.000	47.603	95.21	75-125
79 4-Isopropyltoluene	50.000	47.341	94.68	75-125
78 sec-Butylbenzene	50.000	48.633	97.27	75-125
65 Styrene	50.000	46.128	92.26	75-125
76 tert-Butylbenzene	50.000	50.587	101.17	75-125
55 Tetrachloroethene	50.000	44.727	89.45	75-125
25 trans-1,2-Dichloro	50.000	49.629	99.26	75-125
51 trans-1,3-Dichloro	50.000	44.610	89.22	75-125
13 Trichlorofluoromet	50.000	54.876	109.75	75-125
10 Vinyl Chloride	50.000	45.937	91.87	75-125
27 Vinyl acetate	50.000	63.900	127.80*	
154 Vinyl Acetate**2nd	50.000	54.462	108.92	75-125
19 Iodomethane	50.000	53.375	106.75	75-125
92 Isopropyl Ether	50.000	53.126	106.25	75-125
24 Methyl tert-butyl	50.000	47.477	94.95	75-125
M 63 Xylenes (total)	150.00	139.82	93.21	75-125
22 Acetonitrile	150.00	147.51	98.34	75-125
15 Acrolein	150.00	156.89	104.59	75-125
23 Acrylonitrile		144.26	96.18	75-125
	150.00	47.998	96.00	75-125
47 2-Chloroethyl viny	50.000		90.17	75-125
98 Cyclohexane	50.000	45.085		75-125
M 31 1,2-Dichloroethene	100.00	98.566	98.57	
26 Hexane	50.000	48.493	96.99	75-125
143 Methyl Acetate	50.000	45.486	90.97	75-125
144 Methylcyclohexane	50.000	47.477	94.95	75-125
18 Freon-113	50.000	49.185	98.37	75-125
25 Cyclohexanone	500.00	401.76	80.35	75-125

SURROGATE COMPOUND	CONC ADDED UG/KG	CONC RECOVERED UG/KG	% RECOVERED	LIMITS
<pre>\$ 4 Dibromofluorometha</pre>	50.000	47.917	95.83	59-138
\$ 5 1,2-Dichloroethane	50.000	46.637	93.27	61-130
\$ 6 Toluene-d8	50.000	48.761	97.52	60-143
\$ 7 Bromofluorobenzene	50.000	48.577	97.15	47-158

5A VOLATILE ORGANIC GC/MS TUNING AND MASS CALIBRATION - BROMOFLUOROBENZENE (BFB)

Lab Name: NORTH CANTON	Contract:	
Lab Code: TALCAN Case N	Io.: SAS No.:	SDG No.: 0E06602
Lab File ID: BFB14430	BFB	Injection Date: 05/18/10
Instrument ID: A3UX14	BFB	Injection Time: 1010
Matrix:(soil/water) SOIL	Level:(low/med) LOW	Column:(pack/cap) CAP

	% RELATIVE
m/e   ION ABUNDANCE CRITERI	IA   ABUNDANCE
=====   =============================	
50   15.0 - 40.0% of mass 95	32.0
75   30.0 - 60.0% of mass 95	45.8
95   Base Peak, 100% relative	abundance  100.0
96   5.0 - 9.0% of mass 95	7.3
173   Less than 2.0% of mass 17	4 0.0 ( 0.0)1
174   50.0 - 120.0% of mass 95_	83.6
175   5.0 - 9.0% of mass 174	6.0 (7.1)1
176   Greater than 95.0%, but l	ess than 101.0% of mass 174  81.5 ( 97.6)1
177   5.0 - 9.0% of mass 176	5.0 ( 6.1)2
1-Value is % of mass 174	2-Value is % of mass 176

THIS TUNE APPLIES TO THE FOLLOWING SAMPLES, MS, MSD, BLANKS, AND STANDARDS:

·····				
EPA	LAB	LAB	DATE	TIME
SAMPLE NO.	SAMPLE ID	FILE ID	ANALYZED	ANALYZED
===============	======================================	=   ===================================	==========	=======
01 VSTD050	250NG-CC	149969	05/18/10	1052
02 VSTD050	250NG-A9CC	149970	05/18/10	1114
03 L1PMTCHK	L1PMT1AC	149971	05/18/10	1136
04 L1PMTCKDUP	L1PMT1AD	149972	05/18/10	1158
05 L1PMTBLK	L1PMT1AA	149973	05/18/10	1220
06 MRC-MW95D (2	L1H521AC	149979	05/18/10	1430
07 MRC-MW95D (2	L1H521AD	149984	05/18/10	1619
08 MRC-MW95D (2	L1H521AE	149985	05/18/10	1640
091	]			1
10				
11				I
12				
13			/	·
141			,	I
15			·	· /
161		_ · ·	· · · · · · · · · · · · · · · · · · ·	·
17		_ · /	'	·
18			/	
19			······································	1
20		_ · /		I
211		- ' <u></u> '	I	I
22	·,	- ' ' '	I	I
		- ' <u> </u>		

page 1 of 1

North Canton

64

## Data File: \\cansvr11\dd\chem\MSV\a3ux14.i\R00518A.b\149969.D Report Date: 18-May-2010 11:32

### TestAmerica North Canton

Instrument ID: a3ux14.i	Injection Date: 18-MAY-2010 10:			
Lab File ID: 149969.D	Init. Cal. Date(s): 29-APR-2010	30-APR-2010		
Analysis Type: SOIL	Init. Cal. Times: 20:22	04:42		
Lab Sample ID: 250NG-CC	Quant Type: ISTD			
Method: \\cansvrl1\dd\chem\MSV\a3ux14.i\R00518A.b\8260SUX14.m				

I	11	T	CCAL   MIN	1	МАХ	
I COMPOUND	RRF / AMOUNT	RF250	RRF250   RRF	%D / %DRIFT %	D / NDRIFT	CURVE TYPE
		==================				
<pre>\$ 4 Dibromofluoromethane</pre>	0.26463	0.251401	0.25140 0.010	5.002601	50.00000	Averaged
<pre>\$ 5 1,2-Dichloroethane-d4</pre>	0.294701	0.308481	0.3084810.0101	-4.67566	50.00000	Averaged
\$ 6 Toluene-d8	1.47537	1.49384	1.49384 0.010	-1.25208/	50.00000	Averaged
\$ 7 Bromofluorobenzene	0.98678	0.87319	0.87319 0.010	11.51162	50.00000	
8 Dichlorodifluoromethane	0.24919	0.232001	0.23200 0.010	6.897061	50.00000	Averaged
9 Chloromethane	0.43074	0.444391	0.44439 0.100	-3.169771	50.000001	
10 Vinyl Chloride	0.284291	0.308301	0.30830 0.010	~8.44471	20.000001	
11 Bromomethane	0.12948	0.12174	0.12174/0.010/	5.977971	50.000001	Averaged
12 Chloroethane	0.16437	0.161251	0.16125 0.010	1.900541	50.000001	
13 Trichlorofluoromethane	0.23127	0.28402	0.2840210.0101	-22.808331	50.000001	-
15 Acrolein	0.03546	0.03061	0.03061 0.010	13.67034	50.000001	
16 Acetone	0.11547	0.105321	0.10532 0.010	8.79117	50.000001	-
17 1,1-Dichloroethene	1 2501	2931	0.2032210.0101	-17.249771		
18 Freon-113	250	2701	0.19518 0.010		0.000e+0001	
19 Iodomethane	0.462631	0.405231	0.4052310.0101	12.407171	50.000001	
20 Carbon Disulfide	0.66801	0.45612	0.45612 0.010	31,71937		
22 Acetonitrile	0.03270	0.031951	0.03195 0.010	2.28893	50.000001	-
23 Acrylonitrile	0.09758	0.11049	0.11049 0.010	-13.23901	50.000001	
24 Methyl tert-butyl ether	0.31792	0.525071	0.52507 0.010	-65.15788	50.000001	-
25 trans~1,2-Dichloroethene	0.28357	0.259771	0.2597710.0101	8.396171	50.000001	Averaged
26 Hexane	0.06216	0.05880	0.05880 0.010	5.408521	20.000001	Averaged
27 Vinyl acetate	0.54069	0.43716	0.43716 0.010	19.14793	50.000001	Averaged
154 Vinyl Acetate**2nd**	0.033391	0.023801	0.0238010.0101	28.72875	50.000001	Averaged
28 1,1-Dichloroethane	0.55941	0.540471	0.54047[0.100]	3.384961	50.000001	Averaged
29 tert-Butyl Alcohol	0.01875	0.01633	0.0163510.0101	12.81277	50.000001	Averaged
30 2-Butanone	0.12610	0.132861	0.13286 0.010	-5.360551	50.000001	Averaged
M 31 1,2-Dichloroethene (total)	0.289501	0.27114	0.27114/0.010/	6.34115	50.000001	Averaged
32 cis-1,2-dichloroethene	0.295421	0.28252	0.2825210.0101	4.368541	50.000001	Averaged
33 2,2-Dichloropropane	0.20462	0.17649	0.17649 0.010	13.74823	50.000001	Averaged
34 Bromochloromethane	0.14224	0.13161	0.13161 0.010	7.472701	50.000001	Averaged
35 Chloroform	0.42926	0.426391	0.42639 0.010	0.668551	20.000001	-
36 Tetrahydrofuran	0.09071	0.089741	0.0897410.0101	1.06891	50.000000	Averaged
37 1,1,1-Trichloroethane	0.37405	0.343631	0.34363 0.010	8.13246	50.000001	Averaged
38 1,1-Dichloropropene	0.33348	0.342771	0.3427710.0101	-2.78485	50.000001	Averaged
39 Carbon Tetrachloride	0.37601	0.33147	0.33147 0.010	11.84369	50.000001	Averaged
10 1,2-Dichloroethane	0.38077	0.410521	0.41052 0.010	-7.81468		Averaged
11 Benzene	1.01064	1.01742	1.01742 0.010		50.000001	Averaged
2 Trichloroethene	0.31752	0.303141	0.30314/0.010	-0.670261	50.000001	Averaged
3 1,2-Dichloropropane	0.28721	0.28579		4.529231	50.000001	Averaged
4 1,4-Dioxane	1 12500	11765	0.2857910.0101	0.495281	20.000001	Averaged
15 Dibromomethane			0.00166 0.010		.000e+0001	
6 Bromodichloromethane		0.122101	0.1221010.0101	0.367521	50.000001	Averaged
		0.236941	0.23694 0.010	8.97246	50.000001	Averaged
17 2-Chloroethyl vinyl ether	0.094821	0.11131	0.11131 0.010	-17.39523	50.000001	Averaged

## Data File: \\cansvrl1\dd\chem\MSV\a3ux14.i\R00518A.b\149969.D Report Date: 18-May-2010 11:32

TestAmerica North Canton

.

Instrument ID: a3ux14.i	Injection Date: 18-1	MAY-2010 10:52	2
Lab File ID: 149969.D	Init. Cal. Date(s):	29-APR-2010	30-APR-2010
Analysis Type: SOIL	Init. Cal. Times:	20:22	04:42
Lab Sample ID: 250NG-CC	Quant Type: ISTD		
Method: \\cansvrll\dd\chem\M	4SV\a3ux14.i\R00518A	.b\8260SUX14.r	n

	I I	1	CCAL   MIN	I	MAX I	
COMPOUND	RRF / AMOUNT	RF250		D / %DRIFT %D		
48 cis-1,3-Dichloropropene	0.30687	0.27188	0.27188 0.010		50.00000	
49 4-Methyl-2-pentanone	0.39490	0.416921	0.41692(0.010)	-5.57585	50.000001	
50 Toluene	1 1.55970	1.65571	1.65571 0.010	-6.15549		Averaged
51 trans-1,3-Dichloropropene	0.38482	0.33627	0.33627[0.010]		20.000001	Averageo
52 Ethyl Methacrylate	0.31633	0.28718	0.2871810.010	12.61594  9.21275	50.000001	Averaged
53 1,1,2-Trichloroethane	0.25041	0.26266	0.2626610.0101	-4.893781	50.000001	Averaged
54 1,3-Dichloropropane	0.38956	0.41935	0.41935 0.010	-7.645531	50.000001	Average
55 Tetrachloroethene	0.35077	0.359691	0.3596910.010	-2.54131	50.000001	Average
56 2-Hexanone	0.24042	0.23889	0.23889 0.010	0.635361	50.000001	Average
57 Dibromochloromethane	0.29073	0.26470				Averaged
58 1,2-Dibromoethane	0.251671	0.25140	0.2647010.0101	8.953941	50.000001	Averageo
59 Chlorobenzene	1 1.002901		0.25140 0.010	0.10852	50.000001	Averageo
60 1,1,1,2-Tetrachloroethane	0.38150	1.023351	1.02335 0.300	-2.039061	50.000001	Averageo
61 Ethylbenzene	,	0.363731	0.36373 0.010	4.656861	50.000001	Averageo
62 m + p-Xylene	0.56303	0.560461	0.5604610.0101	0.45716	20.000001	Average
	0.665981	0.685331	0.6853310.0101	-2.90512	50.000001	Average
4 63 Xylenes (total)	0.668701	0.685721	0.68572 0.010	-2.54593	50.00000!	Averaged
54 Xylene-o	0.67413	0.686511	0.68651 0.010	-1.836241	50.000001	Average
55 Styrene	0.93687	0.98141	0.98141 0.010	-4.754751	50.000001	Average
56 Bromoform	0.14524	0.12178	0.12178 0.100	16.15135	50.000001	Average
57 Isopropylbenzene	1.84311	1.906261	1.90626 0.010	-3.426241	50.000001	Average
58 1,1,2,2-Tetrachloroethane	0.533301	0.546131	0.54613 0.300	-2.406041	50.00000	Average
59 1,4-Dichloro-2-butene	0.239561	0.22529	0.22529 0.010	5.959481	50.00000	Average
70 1,2,3-Trichloropropane	0.17072	0.16976	0.16976 0.010	0.56303	50.000001	Average
/1 Bromobenzene	0.824041	0.754591	0.75459 0.010	8.42818	50.000001	Average
72 n-Propylbenzene	1.00904	0.930731	0.93073 0.010	7.76104	50.00000	Averaged
73 2-Chlorotoluene	0.923321	0.83796	0.83796 0.010	9.245381	50.000001	Average
74 1,3,5-Trimethylbenzene	3.07618	2.92585	2.9258510.0101	4.88701	50.000001	Averaged
75 4-Chlorotoluene	0.86640	0.821921	0.82192 0.010	5.13407	50.000001	Averaged
/6 tert-Butylbenzene	1 2.977981	2.75505	2.75505 0.010	7.486151	50.000001	Average
7 1,2,4-Trimethylbenzene	3.04363	2.93858	2.93858 0.010	3.45130	50.000001	Average
8 sec-Butylbenzene	4.100821	3.87661	3.87661(0.010)	5.467591	50.000001	Averaged
9 4-Isopropyltoluene	3.32715	3.257521	3.25752(0.010)	2.092921	50.000001	Averaged
0 1,3-Dichlorobenzene	1.64403	1.59842	1.59842 0.010	2.774301	50.000001	Averaged
1 1,4-Dichlorobenzene	1.64811	1.60377	1.6037710.0101	2.690021	50.000001	Averaged
2 n-Butylbenzene	2.65539	2.719351	2.71935/0.010/	-2.408891	50.000001	Averaged
3 1,2-Dichlorobenzene	1.54733	1.551171	1.55117 0.010	-0.248051	50.000001	Average
4 1,2-Dibromo-3-chloropropane	0.10955	0.08449	0.08449 0.010	22.873321	50.000001	Averaged
5 1,2,4-Trichlorobenzene	1.13164	1.08556	1.08556(0.010)	4.07213	50.000001	Averaged
7 Naphthalene	2.52547	2.41359	2.4135910.0101	4.429971	50.000000	
6 Hexachlorobutadiene	0.63588	0.60991	0.60991 0.010	4.429971	50.000001	Average
8 1,2,3-Trichlorobenzene	1 1.05761	0.99347				Averageo
8 Cyclohexane	0.75474		0.99347 0.010	6.065431	50.000001	Averageo
43 Methyl Acetate	0.23612	0.77030	0.77030 0.010	-2.06182	50.000001	Averaged

## Data File: \\cansvr11\dd\chem\MSV\a3ux14.i\R00518A.b\149969.D Report Date: 18-May-2010 11:32

### TestAmerica North Canton

Instrument ID: a3ux14.i	Injection Date: 18-MAY-2010 10:52				
Lab File ID: 149969.D	Init. Cal. Date(s): 29-APR-2010	30-APR-2010			
Analysis Type: SOIL	Init. Cal. Times: 20:22	04:42			
Lab Sample ID: 250NG-CC	Ouant Type: ISTD				
Method: \\cansvrll\dd\chem\MSV\a3ux14.i\R00518A.b\8260SUX14.m					

I	١	. I	t	CCAL	MIN	1	MAX I	
COMPOUND	RRF	/ AMOUNT	RF250	RRF250	RRF   ह	D / %DRIFT %[	) / %DRIFT (	CURVE TYPE
	====   ===	======= ==			== ===== =:			
144 Methylcyclohexane	1	0.51228	0.51549		49 0.010	-0.62687	50.000001	Averaged
141 1,3,5-Trichlorobenzene	1	1.24859	1.226361	1.226	3610.0101	1.780091	50.000001	Averaged
I	I	I	I		ll		I	I

## Data File: \\cansvr11\dd\chem\MSV\a3ux14.i\R00518A.b\149970.D Report Date: 18-May-2010 11:30

TestAmerica North Canton

Instrument ID: a3ux14.i	Injection Date: 18-3	MAY-2010 11:1	4
	<pre>Init. Cal. Date(s):</pre>		
	Init. Cal. Times:		04:42
Lab Sample ID: 250NG-A9CC	Quant Type: ISTD		01112
Method: \\cansvr11\dd\chem\M	1SV\a3ux14.i\R00518A	.b\8260SUX14.	m

	I	1	1	CCAL I	MIN	1 1	MAX I	1
COMPOUND	RRF		RF250			%D / %DRIFT %D		
	===== ===	======= =	===========			========= ==	=======	
14 Dichlorofluoromethane	1	0.243391	0.382591	0.382591	0.010	-57.18955	50.000001	Averaged
89 Ethyl Ether	I.	0.205501	0.22402!	0.224021	0.010	-9.01551	50.000001	Averaged
91 3-Chloropropene	1	0.12932	0.10196	0.10196	0.010	21.15751	50.00000;	Averaged
92 Isopropyl Ether	1	0.205021	0.20342	0.20342	0.010	0.779501	50.000001	Averaged
93 2-Chloro-1,3-butadiene	1	0.60657	0.578091	0.578091	0.010	4.69468	50.000001	Averaged
94 Propionitrile	Ł	0.035041	0.03586	0.035861	0.010	-2.339591	50.000001	Averaged
95 Ethyl Acetate	1	0.26151	0.262461	0.262461	0.010	-0.363331	50.000001	Averaged
96 Méthacrylonitrile	1	0.074031	0.06759	0.06759	0.010	8.707091	50.000001	Averaged
97 Isobutanol	t	0.007191	0.00618	0.006181	0.010	13.947271	50.000001	Averaged
101 2-Nitropropane	I	0.08110	0.043031	0.043031	0.010	46.93557	50.000001	Averaged
99 n-Butanol	1	0.006451	0.00508	0.005081	0.010	21.300731	50.000001	Averaged
100 Methyl Methacrylate	1	0.22260	0.223451	0.22345	0.010	-0.37882	50.000001	Averaged
25 Cyclohexanone	1	0.064601	0.032271	0.032271	0.0101	50.041931	50.000001	Averaged
156 tert-Butyl Ethyl ether	1	0.51551	0.809821	0.809821	0.010	-57.091881	50.000001	Averaged
157 tert-Amyl Methyl ether	1	0.30176	0.439771	0.4397710	0.010)	(-45.7327D)	50.000001	Averaged!
158 1,2,3-Trimethylbenzene	T	2.75391/	2.642861	2.6428610	0.0101		50.000001	Averaged
146 2-Methylnaphthalene	I.	1.35613	1.24428	1.24428	0.010	8.247261	50.000001	Averaged
21 Methylene Chloride	1	0.252571	0.24485	0.2448510	0.0101	3.056181	50.000001	Averaged
	1	1	1	1	1			

BLANK WORKORDER NO.

.

| L1PMT1AA

1

|____

SDG Number:0E06602

SW846 8260B METHOD BLANK SUMMARY

Lab Name: TestAmerica Laboratories, Inc.

Lab Code: TALCAN

Lab File ID: 149973.DLot Number: A0E140486Date Analyzed: 05/18/10Time Analyzed: 12:20Matrix: SOLIDDate Extracted:05/18/10GC Column: DB624ID: .18Instrument ID: UX14Level:(low/med) LOW

THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES, LCS, LCSD, MS , MSD:

	SAMPLE	LAB	DATE	TIME
CLIENT ID.	WORK ORDER	# FILE ID	ANALYZED	ANALYZED
01/MRC-MW95D (214')	<b></b>   L1H521AC	=== === <b>====</b> ===  149979.D		
02/ MRC-MW95D (214')	L1H521AD S	5  149984.D	05/18/10	1 16:19
03/MRC-MW95D (214')	L1H521AE E	) 149985.D	05/18/10	16:40
04 CHECK SAMPLE	L1PMT1AC C	C  149971.D	05/18/10	
05 DUPLICATE CHECK	L1PMT1AD I	149972.D	05/18/10	
061				1
07	;		<u>;</u>	
081	;;	/	i	
091	· · · · · · · · · · · · · · · · · · · · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ / _ /			
10	· · · · · · · · · · · · · · · ·	'		·
11				1
12			·	l
13	1	``		1
14				
151				
16				·
17			`	
18				1
191		1		1
201	I	[		
21				1
221		[		
231				
24				
251				1
261				1
27		 		
281		i	 	·
291		I		
30	·	 		·

#### COMMENTS:

#### METHOD BLANK REPORT

#### GC/MS Volatiles

Client Lot #: 0E06602	Work Order #: L1PMT1AA	Matrix SOLID
MB Lot-Sample #: A0E190000-136		
	Prep Date: 05/18/10	Final Wgt/Vol: 5 mL
Analysis Date: 05/18/10	Prep Batch #: 0139136	
Dilution Factor: 1	Initial Wgt/Vol: 5 g	

		REPORTING			
PARAMETER	RESULT	LIMIT	UNITS	METHOD	
Bromobenzene	ND	5.0	ug/kg	SW846 8260B	
Bromochloromethane	ND	5.0	ug/kg	SW846 8260B	
n-Butylbenzene	ND	5.0	ug/kg	SW846 8260B	
sec-Butylbenzene	ND	5.0	ug/kg	SW846 8260B	
tert-Butylbenzene	ND	5.0	ug/kg	SW846 8260B	
1,2-Dibromo-3-chloro- propane	ND	10	ug/kg	SW846 8260B	
2-Chloroethyl vinyl ether	ND	10	ug/kg	SW846 8260B	
2-Chlorotoluene	ND	5.0	ug/kg	SW846 8260B	
4-Chlorotoluene	ND	5.0	ug/kg	SW846 8260B	
1,2-Dibromoethane	ND	5.0	ug/kg	SW846 8260B	
Dibromomethane	ND	5.0	ug/kg	SW846 8260B	
1,2-Dichlorobenzene	ND	5.0	ug/kg	SW846 8260B	
1,3-Dichlorobenzene	ND	5.0	ug/kg	SW846 8260B	
1,4-Dichlorobenzene	ND	5.0	ug/kg	SW846 8260B	
Dichlorodifluoromethane	ND	5.0	ug/kg	SW846 8260B	
cis-1,2-Dichloroethene	ND	5.0	ug/kg	SW846 8260B	
trans-1,2-Dichloroethene	ND	5.0	ug/kg	SW846 8260B	
1,3-Dichloropropane	ND	5.0	ug/kg	SW846 8260B	
2,2-Dichloropropane	ND	5.0	ug/kg	SW846 8260B	
1,1-Dichloropropene	ND	5.0	ug/kg	SW846 8260B	
Trichlorofluoromethane	ND	5.0	ug/kg	SW846 8260B	
Hexachlorobutadiene	ND	5.0	ug/kg	SW846 8260B	
Isopropylbenzene	ND	5.0	ug/kg	SW846 8260B	
p-Isopropyltoluene	ND	5.0	ug/kg	SW846 8260B	
tert-Butyl alcohol	ND	100	ug/kg	SW846 8260B	
Naphthalene	0.36 J	5.0	ug/kg	SW846 8260B	
n-Propylbenzene	ND	5.0	ug/kg	SW846 8260B	
1,1,1,2-Tetrachloroethane	ND	5.0	ug/kg	SW846 8260B	
1,2,3-Trichlorobenzene	ND	5.0	ug/kg	SW846 8260B	
1,2,4-Trichloro-	0.32 J	5.0	ug/kg	SW846 8260B	
benzene					
1,2,3-Trichloropropane	ND	5.0	ug/kg	SW846 8260B	
1,1,2-Trichloro- 1,2,2-trifluoroethane	ND	5.0	ug/kg	SW846 8260B	
1,2,4-Trimethylbenzene	ND	5.0	ug/kg	SW846 8260B	
Vinyl acetate	ND	10	ug/kg	SW846 8260B	
o-Xylene	ND	5.0	ug/kg	SW846 8260B	
Methyl tert-butyl ether	ND	10	ug/kg	SW846 8260B	
m-Xylene & p-Xylene	ND	10	ug/kg	SW846 8260B	
1,2,3-Trimethylbenzene	ND	5.0	ug/kg	SW846 8260B	

(Continued on next page)

#### METHOD BLANK REPORT

#### GC/MS Volatiles

Client Lot #...: 0E06602

Work Order #...: L1PMT1AA Matrix...... SOLID

		REPORTING		
PARAMETER	RESULT	LIMIT	UNITS	METHOD
Diisopropyl Ether (DIPE)	ND	10	ug/kg	SW846 8260B
Ethyl-t-Butyl Ether (ETBE	ND	5.0	uq/kq	SW846 8260B
Tert-amyl methyl ether (T	ND	5.0	uq/kq	SW846 8260B
Chloromethane	ND	5.0	ug/kg	SW846 8260B
Bromomethane	ND	5.0	ug/kg	SW846 8260B
Vinyl chloride	ND	5.0	ug/kg	SW846 8260B
Chloroethane	ND	5.0	ug/kg	SW846 8260B
Methylene chloride	0.80 J	5.0	ug/kg	SW846 8260B
Acetone	9.0 J	10	ug/kg	SW846 8260B
Carbon disulfide	ND	5.0	ug/kg	SW846 8260B
1,1-Dichloroethene	ND	5.0	uq/kq	SW846 8260B
1,1-Dichloroethane	ND	5.0	ug/kg	SW846 8260B
Chloroform	ND	5.0	ug/kg	SW846 8260B
1,2-Dichloroethane	ND	5.0	ug/kg	SW846 8260B
2-Butanone	ND	10	ug/kg	SW846 8260B
1,1,1-Trichloroethane	ND	5.0	ug/kg	SW846 8260B
Carbon tetrachloride	ND	5.0	ug/kg	SW846 8260B
Bromodichloromethane	ND	5.0	ug/kg	SW846 8260B
1,2-Dichloropropane	ND	5.0	ug/kg	SW846 8260B
cis-1,3-Dichloropropene	ND	5.0	ug/kg	SW846 8260B
Trichloroethene	ND	5.0	ug/kg	SW846 8260B
Dibromochloromethane	ND	5.0	ug/kg	SW846 8260B
Benzene	ND	5.0	ug/kg	SW846 8260B
trans-1,3-Dichloropropene	ND .	5.0	ug/kg	SW846 8260B
Bromoform	ND	5.0	ug/kg	SW846 8260B
4-Methyl-2-pentanone	ND	10	ug/kg	SW846 8260B
2-Hexanone	0.64 J	10	ug/kg	SW846 8260B
Tetrachloroethene	ND	5.0	ug/kg	SW846 8260B
1,1,2,2-Tetrachloroethane	ND	5.0	ug/kg	SW846 8260B
Toluene	0.82 J	5.0	ug/kg	SW846 8260B
Chlorobenzene	ND	5.0	ug/kg	SW846 8260B
Ethylbenzene	ND	5.0	ug/kg	SW846 8260B
Styrene	ND	5.0	ug/kg	SW846 8260B
Xylenes (total)	ND	10	ug/kg	SW846 8260B
	PERCENT	RECOVERY		
SURROGATE	RECOVERY	LIMITS		
Dibromofluoromethane	91	(59 - 138	;)	
1,2-Dichloroethane-d4	111	(61 - 130	)	
Toluene-d8	101	(60 - 143	,	
4-Bromofluorobenzene	86	(47 - 158	;)	

### NOTE (S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

J Estimated result. Result is less than RL.

### Tetra Tech NUS, Inc

### Method Blank Report

### GC/MS Volatiles

Lot-Sample #: A0E190000-136 B Work Order #: L1PMT1AA Matrix: SOLID

MASS SPECTROMETER/DATA SYSTEM (MSDS) TENTATIVELY IDENTIFIED COMPOUNDS

		ESTIMATED	RETENTION	
PARAMETER	CAS #	RESULT	TIME	UNITS
None				uq/kq

#### SW846 8260B CHECK SAMPLE RECOVERY

Lab Name: TestAmerica Laboratories, Inc. Client: Tetra Tech NUS, Inc

Lab Code: TALCAN

Lot #: A0E190000

### SDG No: 0E06602

WO #: L1PMT1AC BATCH: 0139136

	SPIKE	SAMPLE		QC I	
	ADDED	CONCENT.	00	LIMITS	
COMPOUND	(ug/kg)	(ug/kg)	REC	REC  Q	UAL
=====================================	===   =================================	== ====================================	==   =====   =	=======================================	========
1,1-Dichloroethene	50	62	124	55- 142	
Trichloroethene	50	48	96	70- 131	
Benzene	50	50	101	75- 129	
Toluene	50	51	102	71- 130	
Chlorobenzene	50	49	98	75- 127	

#### NOTES (S):

* Values outside of QC limits

Spike Recovery: ____0 out of ___5 outside limits

COMMENTS:

FORM III

#### SW846 8260B CHECK SAMPLE DUPLICATE RECOVERY

Lab Name: TestAmerica Laboratories, Inc. Client: Tetra Tech NUS, Inc

Lab Code: TALCAN

Lot #: A0E190000

SDG No: 0E06602

WO #: L1PMT1AD BATCH: 0139136

     COMPOUND	SPIKE ADDED (ug/kg)	SAMPLE CONCENT. (ug/kg)	% REC	QC   LIMITS   REC	QUAL
=====================================	=== ==================================	=== ==================================	== ===== =   121	===================  55- 142	=========
Trichloroethene	50	47	95	70- 131	
Benzene	1 50	50	99	75- 129	
Toluene	50	51	101	71- 130	
Chlorobenzene	50	49	99	75- 127	

NOTES(S):

* Values outside of QC limits

Spike Recovery: ____0 out of ____5 outside limits

COMMENTS:

### SW846 8260B MATRIX SPIKE/MATRIX SPIKE DUPLICATE RECOVERY

Lab Name: TestAmerica Laboratories, Inc. Client: Tetra Tech NUS, Inc

Lab Code: TALCAN

Matrix Spike ID: MRC-MW95D (214')

Lot #: A0E140486

1 1

WO #: L1H521AD

BATCH: 0139136

SDG No: 0E06602

SPIKE	SAMPLE	MS	MS		
ADDED	CONCENT.	CONCENT.	00	LIMITS	
(ug/kg)	(ug/kg)	(ug/kg)	REC	REC	QUAL

COMPOUND	(ug/kg)	(ug/kg)	(ug/kg)	REC	REC	QUAL
=====================================	= =========	=========	========	======	===========	=======
1,1-Dichloroethene	58	ND	179	135	43- 147	
Trichloroethene	58	ND	52	90	46- 143	
Benzene	158	0.52	54	92	55- 138	11
Toluene	58	1.6	55	91	46- 147	1
Chlorobenzene	58	<u>ND</u>	52	89	49- 139	11

NOTES(S):

Results and reporting limits have been adjusted for dry weight.

# Column to be used to flag recovery and RPD values with an asterisk * Values outside of QC limits

RPD: ____0 out of ____0 outside limits Spike Recovery: _____0 out of ____5 outside limits

COMMENTS:

48

#### SW846 8260B MATRIX SPIKE/MATRIX SPIKE DUPLICATE RECOVERY

Lab Name: TestAmerica Laboratories, Inc. Client: Tetra Tech NUS, Inc

Lab Code: TALCAN

Matrix Spike ID: MRC-MW95D (214')

Lot #: A0E140486

SDG No: 0E06602

WO #: L1H521AE BATCH: 0139136

ł	SPIKE	MSD	MSD				1
ł	ADDED	CONCENT.	00	00	QC L	IMITS	1
COMPOUND	(ug/kg)	(ug/kg)	REC	RPD	RPD	REC	QUAL
====================================	=== ===================================	-   =======	=====	======	=   ====   =		==== ========
1,1-Dichloroethene	58	62	106	24	27	43-	1471
Trichloroethene	58	53	91	10.89	1 231	46-	1431
Benzene	58	54	92	10.060	20	55-	138
Toluene	58	153	89	2.2	24	46-	147
Chlorobenzene	58	152	90	11.6	22	49-	1391

#### NOTES(S):

Results and reporting limits have been adjusted for dry weight.

# Column to be used to flag recovery and RPD values with an asterisk * Values outside of QC limits

RPD: ____0 out of ____5 outside limits Spike Recovery: 0 out of 5 outside limits

COMMENTS:

#### SW846 8260B SURROGATE RECOVERY

Lab Name: TestAmerica Laboratories, Inc. Client: Tetra Tech NUS, Inc

Lab Code: TALCAN SDG No: 0E06602

Lot #: A0E060602

Extraction: XXI25QK01

CLIENT ID.	SRG01	SRG02	SRG03	SRG04	TOT OUT
=====================================	======	======	======	======	======
01  <u>INTRA-LAB_QC</u>	90	91	1 97	89	1 00 1
02   MRC-MW94D(72')	95	98	98	85	00 1
03   METHOD BLK. L1K531AA	92	94	100	89	00
04 LCS L1K531AC	93	98	101	1 99	1 00 1
05 LAB MS/MSD D	91	95	100	97	00
06 LCSD L1K531AD	93	96	100	98	00
07 LAB MS/MSD S	89	93	99	97	00

SURROGA	ATES	QC LIMITS
SRG01	= Dibromofluoromethane	(73-122)
SRG02	= 1,2-Dichloroethane-d4	( 61-128)
SRG03	= Toluene-d8	( 76-110)
SRG04	= 4-Bromofluorobenzene	(74-116)

# Column to be used to flag recovery values

* Values outside of required QC Limits

D System monitoring Compound diluted out

FORM II

Lab Name: TestAmerica Laboratories, Inc. Client: Tetra Tech NUS, Inc

Lab Code: TALCAN SDG No: 0E06602

Lot #: A0E110505

Extraction: XXI25QK01

CLIENT ID.	SRG01	SRG02	SRG03	SRG04	TOT OUT
=====================================	====== ======	=======	-   =======	-   =======	=   =======
01  <u>INTRA-LAB QC</u>	94	92	1 96	85	00
02  <u>MRC-MW95D(63')</u>	100	95	1 95	84	00
03 MRC-MW95D(76')	92	91	95	89	00
04   INTRA-LAB QC	90	90	95	85	00
05 METHOD BLK. L1PKA1AA	92	91	95	85	1 00
06 METHOD BLK. L1RNQ1AA	90	87	95	87	1 00
07 LCS L1PKA1AC	94	96	97	96	00
08 LCS L1RNQ1AC	93	1 90	95	94	00
09 LAB MS/MSD D	96	96	1 99	97	00
10 LAB MS/MSD D	89	92	97	96	00
11 LCSD L1PKA1AD	94	92	97	95	00
12 LCSD L1RNQ1AD	91	89	94	92	1 00
13 LAB MS/MSD S	97	99	99	98	1 00
14 LAB_MS/MSD_S	90	93	98	97	00

SURROGATE	<u>ES</u>		QC	: LIMITS
SRG01	=	Dibromofluoromethane	(	73-122)
SRG02	=	1,2-Dichloroethane-d4	(	61-128)
SRG03	=	Toluene-d8	(	76-110)
SRG04	=	4-Bromofluorobenzene	(	74-116)

- # Column to be used to flag recovery values
- * Values outside of required QC Limits
- D System monitoring Compound diluted out

## SW846 8260B SURROGATE RECOVERY

Lab Name: TestAmerica Laboratories, Inc. Client: Tetra Tech NUS, Inc

Lab Code: TALCAN SDG No: 0E06602

Lot #: A0E140486

Extraction: XXA15QK01

CLIENT ID.	SRG01	SRG02	SRG03	SRG04	TOT OUT
=======================================	======	======	=======	======	======
01  <u>MRC-MW95D (214')</u>	90	109	102	90	00
02   METHOD BLK. L1PMT1AA	91	111	101	86	00
03 LCS L1PMT1AC	96	107	100	90	00
04  <u>MRC-MW95D (214')</u> D	95	106	96	98	00
05 LCSD L1PMT1AD	97	108	102	1 90	00 1
06 MRC-MW95D (214') S	96	105	100	91	00

SURROGA	ATES	QC LIMITS
SRG01	= Dibromofluoromethane	( 59-138)
SRG02	= 1,2-Dichloroethane-d4	( 61-130)
SRG03	= Toluene-d8	( 60-143)
SRG04	= 4-Bromofluorobenzene	( 47-158)

- # Column to be used to flag recovery values
- * Values outside of required QC Limits
- D System monitoring Compound diluted out

FORM II

## SW846 8260B SURROGATE RECOVERY

Lab Name: TestAmerica Laboratories, Inc.

Client: Tetra Tech NUS, Inc

Lab Code: TALCAN SDG No: 0E06602

Lot #: A0E140486

Extraction: XXI25QK01

CLIENT ID.	SRG01	SRG02	SRG03	SRG04	TOT OUT
=======================================	-   =======	======	=======	======	======
01  <u>MRC-MW96D (65')</u>	98	91	96	83	00
02 INTRA-LAB QC	97	94	95	81	00
03 METHOD BLK. L15781AA	93	89	97	84	00
04  <u>LCS L15781AC</u>	95	93	100	99	00
05 LAB MS/MSD D	94	93	98	97	1 00
06 LCSD L15781AD	91	89	96	1 94	00
07 LAB MS/MSD S	97	1 95	100	98	00

SURROGATES		<u>ES</u>		Q	C LIMITS
	SRG01	=	Dibromofluoromethane	(	73-122)
	SRG02	=	1,2-Dichloroethane-d4	(	61-128)
	SRG03	=	Toluene-d8	(	76-110)
	SRG04	=	4-Bromofluorobenzene	(	74-116)

- # Column to be used to flag recovery values
- * Values outside of required QC Limits
- D System monitoring Compound diluted out

FORM II

## VOLATILE INTERNAL STANDARD AREA SUMMARY

Lab Name: NORTH CANTON	Contract:	
Lab Code: TALCAN Case No.:	SAS No.: SDG 1	No.: 0E06602
Lab File ID (Standard): UXJ9380	Date Analyzed	d: 05/13/10
Instrument ID: A3UX11	Time Analyzed	d: 1137
Matrix:(soil/water) WATER Level:(10	w/med) LOW Column:(pac)	(/cap) CAP

		IS1(CBZ)		IS2(DCB)		IS3	]
		AREA #		AREA #		AREA #	RT
	12 HOUR STD	1112498	8.04	615796	10.28	1 1492545	1 5 31
	UPPER LIMIT	2224996	8.54	1231592	10.78	2985090	1 5 81
	 LOWER LIMIT   	556249	7.54	307898	9.78	746273	4.85
	EPA SAMPLE   NO.		1				======
י 110	========  L1K53CHK	1094382	1	=========   605049		======================================	
	L1K53CKDUP	1113003	•	596006			5.35
)31	L1K53BLK	1047799		498881			5.3
)41	MRC-MW94D(72)		8.041	455459	. ,		0.00
51				100105	10.27	1049910	5.35
61			·		'		
171			······································	· · · · · · · · · · · · · · · · · · ·	' 		
18	]		1		!	l	
91					·	/	
0		I				· '	
11	I	]	I		·	 	
21	l	[	I				
31	I		l_				
4	l	1		1	]		
51	l	1	I	I _			
61_	I	l	!_	]			
71_	_		l_	l			
81_	l	!_	l	[			
91		l_	1				
01_	<u> </u>	l_	!_	!			
11_			·	· 1	[	1	
21_				l	1		

IS2 (DCB) = 1,4-Dichlorobenzene-d4 IS3 = Fluorobenzene

UPPER LIMIT = +100% of internal standard area. LOWER LIMIT = - 50% of internal standard area.

# Column used to flag internal standard area values with an asterisk.

page 1 of 1

FORM VIII VOA

1/87 Rev.

65

#### VOLATILE INTERNAL STANDARD AREA SUMMARY

Lab Name: NORTH CANTON	Contract:	
Lab Code: TALCAN Case No.:	SAS No.: SDG No.: 0E06602	>
Lab File ID (Standard): UXJ9543	Date Analyzed: 05/18/10	
Instrument ID: A3UX11	Time Analyzed: 1126	
Matrix:(soil/water) WATER Level:(lo	ow/med) LOW Column:(pack/cap) CAP	

 	IS1(CBZ)   AREA #		IS2(DCB) AREA #		IS3 AREA #	RT
============						
12 HOUR STD   ===================================	921562 J	8.04	564712	10.29	1138202	5.35
UPPER LIMIT   ===========	1843124	8.54	1129424	10.79	2276404	5.85
LOWER LIMIT	460781	7.54	282356	9.79	569101	4.85
=====================================	 	 				
==========  01 L1PKACHK		•				
		8.041				
		8.04				
04   MRC-MW95D (63						
05	. 520025	1 - 0.0	424000	10.25	1214049	5.55
06	······	·		· /		·
07	/	' ا		'		
081	·	י ا		· •		
091		· !				
10						
11		· !				
12				· · · · · · · · · · · · · · · · · · ·		
13						
14						
15				I		
16						
17	1			I		
18	1					
191	[		[		1	
20	[		I	I		
21						
22			I			
	hlorobenzen ,4-Dichloro				NIT = +100% Nal standard	l area.

IS1	(CBZ)	= Chlorobenzene-d5
IS2	(DCB)	= 1,4-Dichlorobenzene-d
IS3		= Fluorobenzene

of internal standard area. LOWER LIMIT = - 50% of internal standard area.

# Column used to flag internal standard area values with an asterisk.

page 1 of 1

FORM VIII VOA

1/87 Rev.

66

#### VOLATILE INTERNAL STANDARD AREA SUMMARY

Lab Name: NORTH CANTON	Contract:	
Lab Code: TALCAN Case No.:	SAS No.:	SDG No.: 0E06602
Lab File ID (Standard): UXJ95	72	Date Analyzed: 05/19/10
Instrument ID: A3UX11		Time Analyzed: 1208
Matrix:(soil/water) WATER Lev	vel:(low/med) LOW	Column:(pack/cap) CAP

	IS1(CBZ)		IS2(DCB)		IS3	 l
	AREA #				AREA #	
12 HOUR STD   ===================================	904970	8.04	516072	10.29	1169519	5.35
UPPER LIMIT	1809940	8.54	1032144	10.79	2339038	5.85
=====================================	452485	7.54	258036	9.79	584760	4.85
=====================================	 	i				
=====================================	'					
02 L1RNQCKDUP	913332	8.04			•	
03 L1RNQBLK	840498	8.04	417006	10.29	1145800	5.35
04 MRC-MW95D(76	1048917	8.04	489167	10.29	1434583	5.35
05		I			ll	L.
06					l	
07						
0811	l					
0911	1			I	<u></u>	
10	[		I			i
11		I		I		
12						
13	l					
14	[					
15			I			<u></u> :
16		·····	!	!		
17		!	·	!		
18		¹	l	I		
19   20	I	I	I	I		
211		I	I	I	·	· 1
221		I	J	l	· !	· 1
· ·	 hlorobenzen	I	I	PER LIN	 1IT = +100%	
	,4-Dichloro				al standard	larea
	'luorobenzen				11T = - 50%	. urca.
		~			al standard	l area.

# Column used to flag internal standard area values with an asterisk.

page 1 of 1

FORM VIII VOA

1/87 Rev.

- 8A

VOLATILE INTERNAL STANDARD AREA SUMMARY

Lab Name: NORTH CANTON	Contract:	
Lab Code: TALCAN Case No.:	SAS No.:	SDG No.: 0E06602
Lab File ID (Standard): UXJ9766		Date Analyzed: 05/26/10
Instrument ID: A3UX11		Time Analyzed: 1046
Matrix:(soil/water) WATER Level:(lc	w/med) LOW	Column:(pack/cap) CAP

	IS1(CBZ)	 	IS2(DCB)	 	IS3	 
			,		AREA #	
12 HOUR STD   ===============================						
UPPER LIMIT					2762816	
========================						
LOWER LIMIT	527057	7.54	311302	9.78	690704	4.851
================			===========	======	==== <b>==</b> ==============	======
EPA SAMPLE					l l	I
NO.						 
=====================================	1032628					
02 L1578CKDUP						
03 L1578BLK		8.04				
04 MRC-MW96D (6	976840	8.04	469362	10.29		·
0511						
0611	i			I		I
07			lI			1
0811		·		[		!
09						I
10   11		I			·	I
12			'	'	·	ا ا
13				'		''
14				I		
15	I			I		1
16				I	[	
17		I	l	<u> </u>	[	
18				!		!
19   20	I	I	[	ا ا		 
21	l	· !		I	I	ا۱ ۱
221		'	· /	 	·1	'
` <u></u> `	·	·	·		·	'
, ,	Chlorobenzer				11T = +100%	
	,4-Dichloro				al standard	area.
IS3 = Fluorobenzene				WER LIM	IIT = - 50%	

# Column used to flag internal standard area values with an asterisk.

page 1 of 1

FORM VIII VOA

1/87 Rev.

of internal standard area.

### VOLATILE INTERNAL STANDARD AREA SUMMARY

Lab Name: NORTH CANTON	Contract:	
Lab Code: TALCAN Case No.:	SAS No.:	SDG No.: 0E06602
Lab File ID (Standard): 149969	Date Ana	lyzed: 05/18/10
Instrument ID: A3UX14	Time Ana	lyzed: 1052
Matrix:(soil/water) SOIL Level:(lo	w/med) LOW Column:	(pack/cap) CAP

	IS1(CBZ)		IS2(DCB)		IS3	
  ====================================	AREA #   ===== <b>===</b> =		AREA #		AREA #	
12 HOUR STD	1152572	9.32	626501	11.30	1860591	6.59
UPPER LIMIT	2305144	9.821	1253002	11.80	3721182	7.09
LOWER LIMIT	576286	8.82	313251	10.80	930296	6.09
EPA SAMPLE     NO.			 			
=====================================	1129101	9.32	607205	11.30	1812314	6.59
02 L1PMTCKDUP   03 L1PMTBLK	1139636   1047733	9.32  9.32		11.29  11.30		6.59 6.59
04 MRC-MW95D (2) 05 MRC-MW95D (2)		9.32  9.32	,			6.59 6.59
06 MRC-MW95D (2				11.30		6.59
07   08	I	l	 	l		
09   10		 	l	 	 	[
11	]	I		I		
12   13	I			l	[	
14   15	 	 		 		
16	I	!		i	l	
17   18		 			F	I
19   20			 	I		l
21		l	······	l		l
22				[		
	hlorobenzen				IIT = +100%	
	,4-Dichloro luorobenzen				al standard NIT = - 50%	area.

 $\ensuremath{\texttt{\#}}$  Column used to flag internal standard area values with an asterisk.

page 1 of 1

FORM VIII VOA

1/87 Rev.

of internal standard area.

SDG 0E06602

SAMPLE ID MRC-MW95D (214 ft)

# SAMPLE CALC

IS AREA	DILUTION	COMPOUND OF INTEREST	IS AMOUNT (NG)	Final Extract Volume (UL)	AVE RRF	CONCENTRATION PPB	
1027548	1	17585	50	5	0.6687	1.49	
		% Solids		Sample Volume (Grams)			
		0.86		5			

Total xylenes = 1.5 ug/kg

Data File: \\cansvr11\dd\chem\MSV\a3ux14.i\R00518A.b\149979.D Report Date: 25-May-2010 18:30

TestAmerica North Canton

VOLATILE REPORT SW-846 Method 8260A/8260B Data file : \\cansvrll\dd\chem\MSV\a3ux14.i\R00518A.b\149979.D Lab Smp Id: L1H521AC Client Smp ID: MRC-MW95D (214') Inj Date : 18-MAY-2010 14:30 Operator : 2807 Inst ID: a3ux14.i Smp Info : L1H521AC, 5G/5ML Misc Info : R00518A,8260SUX14,,2807 Comment : : \\cansvrl1\dd\chem\MSV\a3ux14.i\R00518A.b\8260SUX14.m Method Meth Date : 18-May-2010 11:33 macenczaks Quant Type: ISTD Cal Date : 30-APR-2010 02:53 Cal File: 149615.D Als bottle: 12 Dil Factor: 1.00000 Integrator: HP RTE Compound Sublist: 4-8260+IX.sub Target Version: 4.14 Processing Host: CANSVR11

Concentration Formula: Amt * DF * 1/Vo * CpndVariable

Name	Value	Description
DF Vo Va Cpnd Variable	$ \begin{array}{c} 1.000 \\ 5.000 \\ 100.000 \end{array} $	Dilution Factor Sample Volume Injection Volume Local Compound Variable

			CONCENTRA	ATIONS
	QUANT SIG		ON-COLUMN	FINAL
Compounds	MASS	RT EXP RT REL RT RESPONSE	( ng)	(UG/KG)
#=====================================			=======	
* 1 Fluorobenzene	96	6.587 6.587 (1.000) 1682444	250.000	
* 2 Chlorobenzene-d5	117	9.321 9.321 (1.000) 1027548	250.000	
* 3 1,4-Dichlorobenzene-d4	152	11.297 11.297 (1.000) 568761	250.000	
\$ 4 Dibromofluoromethane	113	5.889 5.889 (0.894) 400998	225.162	45.032
\$ 5 1,2-Dichloroethane-d4	65	6.232 6.232 (0.946) 540333	272.446	54.489
\$ 6 Toluene-d8	98	8.078 8.078 (0.867) 1540587	254.053	50.810
\$ 7 Bromofluorobenzene	95	10.315 10.315 (0.913) 503046	224.077	44.815
8 Dichlorodifluoromethane	85	Compound Not Detected.		
9 Chloromethane	50	1.440 1.440 (0.219) 2730	0.94178	0.1884
10 Vinyl Chloride	62	Compound Not Detected.		
11 Bromomethane	94	Compound Not Detected.		
12 Chloroethane	64	Compound Not Detected.		
13 Trichlorofluoromethane	101	Compound Not Detected.		
15 Acrolein	56	Compound Not Detected.		
16 Acetone	43	2.907 2.919 (0.441) 214946	276.612	55.322
17 1,1-Dichloroethene	96	Compound Not Detected.		
18 Freon-113	151	Compound Not Detected.		
19 Iodomethane	142	Compound Not Detected.		
20 Carbon Disulfide	76	Compound Not Detected.		
21 Methylene Chloride	84	3.487 3.487 (0.529) 7212	4.24303	0.8486

# Data File: \\cansvr11\dd\chem\MSV\a3ux14.i\R00518A.b\149979.D Report Date: 25-May-2010 18:30

	00000		CONCENTRA	
omnoue de	QUANT SIG		ON-COLUMN	FINAL
ompounds === <b>==</b> ========================	MASS ====	RT EXP RT REL RT RESPON		(UG/KG)
24 Methyl tert-butyl ether	73	Compound Not Detected.	== ======	
25 trans-1,2-Dichloroethene	96	Compound Not Detected.		
26 Hexane	86	Compound Not Detected.		
27 Vinyl acetate	43	Compound Not Detected.		
154 Vinyl Acetate**2nd**	86	Compound Not Detected.		
28 1,1-Dichloroethane	63	Compound Not Detected.		
29 tert-Butyl Alcohol	59	Compound Not Detected.		
30 2-Butanone	43	5.369 5.369 (0.815) 999	35 117.824	23.565
31 1,2-Dichloroethene (total)	96	Compound Not Detected.	55 117.024	23.303
32 cis-1,2-dichloroethene	96	Compound Not Detected.		
33 2,2-Dichloropropane	. 77	Compound Not Detected.		
34 Bromochloromethane	128	Compound Not Detected.		
35 Chloroform	83	Compound Not Detected.		
36 Tetrahydrofuran	42	Compound Not Detected.		
37 1,1,1-Trichloroethane	97	Compound Not Detected.		
38 1,1-Dichloropropene	75	Compound Not Detected.		
39 Carbon Tetrachloride	117	Compound Not Detected.		
40 1,2-Dichloroethane	62	Compound Not Detected.		
41 Benzene	78	6.291 6.292 (0.955) 1510	0 2.22013	0.4440
42 Trichloroethene	130	Compound Not Detected.		
43 1,2-Dichloropropane	63	Compound Not Detected.		
44 1,4-Dioxane	88	Compound Not Detected.		
45 Dibromomethane	93	Compound Not Detected.		
46 Bromodichloromethane	83	Compound Not Detected.		
47 2-Chloroethyl vinyl ether	63	Compound Not Detected.		
48 cis-1,3-Dichloropropene	75	Compound Not Detected.		
49 4-Methyl-2-pentanone	43	Compound Not Detected.		
50 Toluene	91	8.126 8.137 (0.872) 4462	4 6.96088	1.392
51 trans-1,3-Dichloropropene	75	Compound Not Detected.		
52 Ethyl Methacrylate	69	Compound Not Detected.		
53 1,1,2-Trichloroethane	97	Compound Not Detected.		
54 1,3-Dichloropropane	76	Compound Not Detected.		
55 Tetrachloroethene	164	Compound Not Detected.		
56 2-Hexanone	43	8.705 8.705 (0.934) 3279	3 33.1855	6.637
57 Dibromochloromethane	129	Compound Not Detected.		
58 1,2-Dibromoethane	107	Compound Not Detected.		
59 Chlorobenzene	112	Compound Not Detected.		
60 1,1,1,2-Tetrachloroethane	131	Compound Not Detected.		
61 Ethylbenzene	106	9.439 9.439 (1.013) 412	2 1.78121	0.3562
62 m + p-Xylene	106	9.546 9.546 (1.024) 1056	6 3.86000	0.7720
63 Xylenes (total)	106	1758	5 6.39319	1.279
64 Xylene-o	106	9.877 9.877 (1.060) 701	9 2.53319	0.5066
65 Styrene	104	Compound Not Detected.		
66 Bromoform	173	Compound Not Detected.		
67 Isopropylbenzene	105	Compound Not Detected.		
68 1,1,2,2-Tetrachloroethane	83	Compound Not Detected.		
69 1,4-Dichloro-2-butene	53	Compound Not Detected.		
70 1,2,3-Trichloropropane	110	Compound Not Detected.	•	
71 Bromobenzene	156	Compound Not Detected.		
72 n-Propylbenzene	120	10.540 10.540 (0.933) 177	l 0.77147	0.1543
73 2-Chlorotoluene	126	Compound Not Detected.		
74 1,3,5-Trimethylbenzene	105	Compound Not Detected.		

#### SW846 8260B CHECK SAMPLE DUPLICATE RECOVERY

Lab Name: TestAmerica Laboratories, Inc. Client: Tetra Tech NUS, Inc

Lab Code: TALCAN

Lot #: A0E150000

SDG No: 0E06602

WO #: L1K531AD BATCH: 0135112

	SPIKE	SAMPLE		QC	
	ADDED	CONCENT.	olo	LIMITS	1
COMPOUND	(ug/L )	(ug/L )	REC	REC	QUAL
=======================================	==== ==================================	=== ===================================	===== =		======================================
1,1-Dichloroethene	10	10	104	63- 130	1
Trichloroethene	10	8.6	86	75- 122	
Benzene	10	9.9	99	80- 116	
Toluene	10	10	101	74- 119	
Chlorobenzene	10	9.8	98	76- 117	1

#### NOTES(S):

* Values outside of QC limits

Spike Recovery: ____0 out of ____5 outside limits

COMMENTS:

#### SW846 8260B MATRIX SPIKE/MATRIX SPIKE DUPLICATE RECOVERY

Lab Name: TestAmerica Laboratories, Inc. Client: Tetra Tech NUS, Inc

Lab Code: TALCAN

Matrix Spike ID: LAB MS/MSD

Lot #: A0E050542

SDG No: 0E06602

WO #: L02271AC BATCH: 0135112

1	SPIKE	SAMPLE	MS	MS		
	ADDED	CONCENT.	CONCENT.	90	LIMITS	
COMPOUND	(ug/L )	(ug/L )	(ug/L )	REC	REC QUAL	
=======================================	==== ==================================	=======		======	========   =======	==:
1,1-Dichloroethene	114000	ND	114000	98	62- 130	
Trichloroethene	14000	ND	12000	82	62- 130	
Benzene	14000	ND	13000	93	78- 118	
Toluene	14000	ND	14000	96	70- 119	
Chlorobenzene	14000	IND	13000	94	76- 117	

NOTES(S):

# Column to be used to flag recovery and RPD values with an asterisk * Values outside of QC limits

RPD: 0 out of 0 outside limits Spike Recovery: 0 out of 5 outside limits

COMMENTS:

#### SW846 8260B MATRIX SPIKE/MATRIX SPIKE DUPLICATE RECOVERY

Lab Name: TestAmerica Laboratories, Inc. Client: Tetra Tech NUS, Inc

Lab Code: TALCAN

Matrix Spike ID: LAB MS/MSD

Lot #: A0E050542

SDG No: 0E06602

WO #: L02271AD BATCH: 0135112

	SPIKE	MSD	MSD					
	ADDED	CONCENT.	010	90	QC LI	IMITS	I	
COMPOUND	(ug/L )	(ug/L )	REC	RPD	RPD	REC	I	QUAL
=====================================	====   ================================	======================================	=====	=====		======	====	
1,1-Dichloroethene	114000	15000	104	16.3	20	62-	130	
Trichloroethene	14000	12000	86	14.4	201	62-	130	
Benzene	14000	14000	98	15.3	201	78-	118	
Toluene	14000	14000	101	4.3	201	70-	119	
Chlorobenzene	14000	14000	97	12.9	201	76	117	

NOTES (S):

# Column to be used to flag recovery and RPD values with an asterisk * Values outside of QC limits

RPD: _____0 out of ____5 outside limits Spike Recovery: ____0 out of ____5 outside limits

COMMENTS:

FORM III

43



**Tetra Tech NUS** 

# INTERNAL CORRESPONDENCE

то:	A. APANAVAGE	DATE:	JULY 12, 2010
FROM:	TERRI L. SOLOMON	COPIES:	DV FILE
SUBJECT:	ORGANIC DATA VALIDATION	– VOCs, SVOCs	

MRC DEEP WELL SAMPLE DELIVERY GROUP (SDG) – 0F11578

SAMPLES: 6/Aqueous/

MRC-95D-061110 MRC-MW93D-061010 TB-0610101 MRC-96D-061110 MRC-MW94D-061010 TB-061110

#### <u>Overview</u>

The sample set for MRC Deep Well, SDG 0F11578, consists of four (4) aqueous environmental samples and two (2) trip blanks (TB-0610101 and TB-061110). No field duplicate pairs were included within this SDG.

All samples, with the exception of TB-0610101 and TB-061110, were analyzed for volatile organic compounds and semivolatile organic compounds. Samples TB-0610101 and TB-061110 were analyzed for volatile organic compounds only. The samples were collected by Tetra Tech NUS on June 10 and 11, 2010 and analyzed by Test America – North Canton. VOC analyses were conducted using SW-846 method 8260B. SVOC analyses were conducted using SW-846 method 8270C.

The findings offered in this report are based upon a general review of all available data. The data review was based on data completeness, holding times, GC/MS tuning, initial and continuing calibration results, laboratory method / trip blank results, surrogate spike recoveries, internal standard recoveries, matrix spike / matrix spike duplicate recoveries, laboratory control sample / laboratory control sample duplicate recoveries, detection limits, compound quantitation and compound identification.

Areas of concern with respect to data quality are listed below.

#### Major Problems

The initial and continuing calibration relative response factors (RRFs) on 06/18/10 and 06/21/10 at 13:16 on instrument A3UX11 for tert-butyl alcohol were < 0.05 quality control limit. The nondetected results reported for tert-butyl alcohol were qualified as rejected, "UR".</li>

#### Minor Problems

• The continuing calibration percent differences (%Ds) on 06/21/10 at 13:16 on instrument A3UX11 for acetone, carbon disulfide, bromodichloromethane, bromoform and 1,2-

## TO: A. APANAVAGE – PAGE 2 DATE: JULY 12, 2010

dibromo-3-chloropropane were > 25% but < 50% quality control limit. The positive results reported for carbon disulfide and bromodichloromethane were qualified as estimated, "J". No validation actions were required for the nondetected results.

• The following contaminants were detected in the laboratory method/trip blanks at the following maximum concentrations:

	Maximum	Action
Compound	<b>Concentration</b>	Level
Hexachlorobutadiene	0.44 ug/L	2.2 ug/L
Naphthalene	0.49 ug/L	2.45 ug/L
1,2,3-trichlorobenzene	0.54 ug/L	2.7 ug/L
1,2,4-trichlorobenzene	0.40 ug/L	2.0 ug/L
Methylene chloride	0.45 ug/L	4.5 ug/L
Acetone	15 ug/Ľ	150 ug/L
Acetone ⁽²⁾	36 ug/L	360 ug/L
Bis (2-ethylhexyl)phthalate	1.9 ug/L	19 ug/L

⁽¹⁾Maximum concentration present in a trip blank affecting samples MRC-MW93D-061010 and MRC-MW94D-061010.

⁽²⁾Maximum concentration present in a trip blank affecting samples MRC-95D-061110 and MRC-96D-061110.

An action level of 5X (10X for common laboratory contaminants) the maximum contaminant level has been used to evaluate sample data for blank contamination. Sample aliquot and dilution factors, if applicable, were taken into consideration when evaluating for blank contamination. The positive results less than the blank action level reported for methylene chloride, acetone and bis (2-ethylhexyl) phthalate were qualified "B" as a result of laboratory blank contamination. Field blanks are not qualified for blank contamination.

• Positive results below the reporting limit (RL) but greater than the method detection limit (MDL) were qualified as estimated, "J".

#### <u>Notes</u>

The initial calibration relative standard deviation (%RSD) on 06/14/10 on instrument A4AG2 for 2,4-dinitrophenol was > 30% but < 50% quality control limit. No validation actions were required for nondetected results.

The continuing calibration %D on 06/16/10 at 09:30 on instrument A4AG2 for benzaldehyde was > 25% but < 50% quality control limit. No validation actions were required for nondetected results.

#### Executive Summary

**Laboratory Performance:** The initial and continuing calibration RRFs on 06/18/10 and 06/21/10 at 13:16 on instrument A3UX11 for tert-butyl alcohol were < 0.05 quality control limit. The continuing calibration %Ds) on 06/21/10 at 13:16 on instrument A3UX11 for acetone, carbon disulfide, bromodichloromethane, bromoform and 1,2-dibromo-3-chloropropane were > 25% but < 50% quality control limit. Several compounds were present in the laboratory method / trip blanks.

Other Factors Affecting Data Quality: Positive results below the RL but greater than the MDL were qualified as estimated.

## TO: A. APANAVAGE - PAGE 3 DATE: JULY 12, 2010

The data for these analyses were reviewed with reference to Region III modifications to the "National Functional guidelines for Organic Data Review", September 1994.

The text of this report has been formulated to address only those problem areas affecting data quality.

Tétra Tech NUS

Terri L. Solomon Environmental Scientist

Joseph A. Samchuck Quality Assurance Officer

Attachments:

- 1. Appendix A Qualified Analytical Results
- 2. Appendix B Results as reported by the Laboratory
- 3. Appendix C Support Documentation

# APPENDIX A QUALIFIED ANALYTICAL RESULTS

### Data Validation Qualifier Codes:

- A = Lab Blank Contamination
- B = Field Blank Contamination
- C = Calibration Noncompliance (e.g. % RSDs, %Ds, ICVs, CCVs, RRFs, etc.)
- C01 = GC/MS Tuning Noncompliance
- D = MS/MSD Recovery Noncompliance
- E = LCS/LCSD Recovery Noncompliance
- F = Lab Duplicate Imprecision
- G = Field Duplicate Imprecision
- H = Holding Time Exceedance
- I = ICP Serial Dilution Noncompliance
- J = GFAA PDS-GFAA MSA's r < 0.995 / ICP PDS Recovery Noncompliance
- K = ICP Interference includes ICS % R Noncompliance
- L = Instrument Calibration Range Exceedance
- M = Sample Preservation Noncompliance
- N = Internal Standard Noncompliance
- N01 = Internal Standard Recovery Noncompliance Dioxins
- N02 = Recovery Standard Noncompliance Dioxins
- N03 = Clean-up Standard Noncompliance Dioxins
- O Poor Instrument Performance (e.g. base-line drifting)
- P = Uncertainty near detection limit (< 2 x IDL for inorganics and <CRQL for organics)
- Q = Other problems (can encompass a number of issues; e.g. chromatography, interferences, etc.)
- R = Surrogates Recovery Noncompliance
- S = Pesticide/PCB Resolution
- T = % Breakdown Noncompliance for DOT and Endrin
- U = % Difference between columns/detectors >25% for positive results determined via GC/HPLC
- V = Non-linear calibrations; correlation coefficient r < 0.995
- W = EMPC result
- X = Signal to noise response drop
- Y = Percent solids <30%
- Z = Uncertainty at 2 sigma deviation is greater than sample activity

PROJ_NO: 02720	NSAMPLE	MRC-95D-061			MRC-96D-061			MRC-MW93D			MRC-MW94D-		)
SDG: 0F11578	LAB_ID	A0F120439002	2		A0F12043900	1		A0F11057800	2		A0F110578003	3	
FRACTION: OV	SAMP_DATE	6/11/2010			6/11/2010			6/10/2010			6/10/2010 NM		
MEDIA: WATER	QC_TYPE	NM			NM			NM					
	UNITS	UG/L			UG/L			UG/L			UG/L		
	PCT_SOLIDS	0.0			0.0			0.0			0.0		
	DUP_OF												
PARAMETER		RESULT	VQL	QLCD	RESULT	VQL	QLCD	RESULT	VQL	OLCD		VQL	QLCE
1,1,1,2-TETRACHLORC	····	0.23			0.23			0.23			0.23		
1,1,1-TRICHLOROETH		0.22			0.22			0.22			0.22		
1,1,2,2-TETRACHLORC		0.18			0.18			0.18			0.18		
1,1,2-TRICHLOROTRIF		0.28			0.28			0.28		-	0.28		
1,1-DICHLOROETHAN		0.15			0.15	1		0.15			0.15		
1,1-DICHLOROETHEN		0.19			0.19		· · · · ·	0.19			0.19		
1,1-DICHLOROPROPE		0.13			0.13	ļ		0.13		1	0.13		
1,2,3-TRICHLOROBEN		0.17			0.17			0.17			0.17		
1,2,3-TRICHLOROPRO		0.43			0.43			0.43			0.43		
1,2,3-TRIMETHYLBENZ		0.0059			0.0059			0.0059	U		0.0059		
1,2,4-TRICHLOROBEN		0.15			0.15			0.15			0.15		
1,2,4-TRIMETHYLBENZ		0.12			0.12			0.12			0.12		
1,2-DIBROMO-3-CHLO	ROPROPANE	0.67	U		0.67			0.67	U		0.67	U	
1,2-DIBROMOETHANE		0.24			0.24			0.24	U		0.24	U	
1,2-DICHLOROBENZE		0.13			0.13			0.13	U	1	0.13	U	
1,2-DICHLOROETHANE	=	0.22			0.22	U		0.22	U		0.22	U	
1,2-DICHLOROPROPA	NE	0.18			0.18	U		0.18	U		0.18	U	
1,3-DICHLOROBENZE		0.14			0.14	υ		0.14	U		0.14	U	
1,3-DICHLOROPROPA	NE	0.16	U		0.16	U		0.16	U		0.16	U	
1,4-DICHLOROBENZE	NE	0.13	U		0.13	U		0.13	U		0.13	U	
2,2-DICHLOROPROPA	NE	0.13	U		0.13			0.13			0.13	U	
2-BUTANONE		1.4		P	0.57	1		1.5	J	P '	0.57	U	
2-CHLOROETHYL VIN	LETHER	0.99	U		0.99	U		0.99	U		0.99	U	
2-CHLOROTOLUENE		0.11			0.11	· · · ·		0.11			0.11	U	
2-HEXANONE		0.41			0.41			0.41			0.41		
4-CHLOROTOLUENE		0.18			0.18			0.18			0.18		
4-ISOPROPYLTOLUEN		0.12			0.12			0.12			0.12		
4-METHYL-2-PENTANC	DNE	0.32			0.32			0.67		Р	0.32		
ACETONE		20		B	3.8		В	. 17		В	11		В
BENZENE		0.13			0.13			0.13			0.13		
BROMOBENZENE		0.13			0.13			0.13			0.13		
BROMOCHLOROMETH		0.29			0.29	-		0.29			0.29	U	
BROMODICHLOROME	THANE	0.31		СР	0.15			0.15			0.23		СР
BROMOFORM		0.64			0.64			0.64			0.64		
BROMOMETHANE		0.41			0.41			0.41			0.41	U	
CARBON DISULFIDE		0.13	U		0.13	U		0.71	J	CP	0.13	U	

PROJ_NO: 02720					TB-061110	TB-061110				
SDG: 0F11578	LAB_ID	A0F11057800	1 .		A0F12043900	3				
FRACTION: OV	SAMP_DATE	6/10/2010			6/11/2010					
MEDIA: WATER	QC_TYPE	NM			NM	NM				
	UNITS	UG/L			UG/L					
	PCT_SOLIDS	0.0			0.0					
	DUP_OF									
PARAMETER		RESULT	VQL	QLCD	RESULT	VQL	QLCD			
1,1,1,2-TETRACHLOROE	THANE	0.23	U		0.23	U				
1,1,1-TRICHLOROETHAI	NE	0.22	U		0.22	U				
1,1,2,2-TETRACHLOROE	THANE	0.18	U		0.18	U				
1,1,2-TRICHLOROTRIFL	UOROETHANE	0.28	U		0.28	U				
1,1-DICHLOROETHANE		0.15	U		0.15	U				
1,1-DICHLOROETHENE		0.19	U		0.19	U	-			
1,1-DICHLOROPROPENI		0.13	U		0.13	U				
1,2,3-TRICHLOROBENZE	INE	0.17	U		0.17	U				
1,2,3-TRICHLOROPROP	ANE	0.43	U		0.43	U				
1,2,3-TRIMETHYLBENZE	NE	0.0059	U		0.0059	U				
1,2,4-TRICHLOROBENZE	INE	0.15	U		0.15	U .				
1,2,4-TRIMETHYLBENZE	NE	0.12	U		0.12	U				
1,2-DIBROMO-3-CHLOR	OPROPANE	0.67	U		0.67	U				
1,2-DIBROMOETHANE		0.24	U		0.24	U	· ·			
1,2-DICHLOROBENZENE		0.13	U	1	0.13	U				
1,2-DICHLOROETHANE		0.22	U	1	0.22	U				
1,2-DICHLOROPROPAN	<u> </u>	0.18	U	1	0.18	U				
1,3-DICHLOROBENZENE		0.14	U		0.14	U				
1,3-DICHLOROPROPANE		0.16	U		0.16	U				
1,4-DICHLOROBENZENE		0.13	U		0.13	U				
2,2-DICHLOROPROPANE	=	0.13	U		0.13	U				
2-BUTANONE	·	0.57	U .		0.57	U				
2-CHLOROETHYL VINYL	ETHER	0.99	U		0.99	U				
2-CHLOROTOLUENE		0.11	U	1	0.11	U				
2-HEXANONE		0.41	U		0.41	U				
4-CHLOROTOLUENE		0.18	U		0.18	U				
4-ISOPROPYLTOLUENE		0.12	U		0.12					
4-METHYL-2-PENTANON	IE	0.32	U		0.32					
ACETONE		15			36					
BENZENE		0.13			0.13	υ				
BROMOBENZENE		0.13			0.13					
BROMOCHLOROMETHA	NE	0.29			0.29					
BROMODICHLOROMETH		0.15			0.15					
BROMOFORM		0.64			0.64					
BROMOMETHANE		0.41		-	0.41					
CARBON DISULFIDE		0.13			0.13					

7/12/2010

PROJ_NO: 02720	NSAMPLE	MRC-95D-061	110		MRC-96D-061			MRC-MW93D	-061010	)	MRC-MW94D	-061010	)	
SDG: 0F11578	LAB_ID	A0F12043900	2	·	A0F12043900	1		A0F11057800	2		A0F11057800	3		
FRACTION: OV	SAMP_DATE	6/11/2010			6/11/2010			6/10/2010			6/10/2010			
MEDIA: WATER	QC_TYPE	NM			NM			NM	NM			NM		
	UNITS	UG/L			UG/L			UG/L			UG/L			
	PCT_SOLIDS	0.0			0.0			0.0	0.0					
	DUP_OF													
PARAMETER		RESULT	VQL	QLCD	RESULT	VQL	QLCD	RESULT	VQL	QLCD	RESULT	VQL	QLCD	
CARBON TETRACHLORI	DE	0.13	U		0.13	U		0.13	U		0.13	U		
CHLOROBENZENE		0.15	U		0.15	U		0.15	U		0.15	U		
CHLORODIBROMOMETH	IANE	0.37	J	Р	0.18	U		0.18	U		0.18	U		
CHLOROETHANE		0.29	U		0.29	U		0.29	U		0.29	U		
CHLOROFORM	-	19			0.19	J	Р	8.8			10			
CHLOROMETHANE		0.36	J	Р	0.3	U		0.3	U		0.3	U		
CIS-1,2-DICHLOROETHE	NE	0.17	U		0.17	U		0.17	U		0.17	U		
CIS-1,3-DICHLOROPROP	PENE	0.14	U		0.14	U		0.14	U		0.14	U		
DIBROMOMETHANE		0.28	U		0.28	U		0.28	U		0.28	U		
DICHLORODIFLUOROME	ETHANE	0.31	U		0.31	U		0.31	U		0.31	U		
DIISOPROPYL ETHER		1.5	U		1.5	U		1.5	U		1.5	U		
ETHYL TERT-BUTYL ETH	IER	0.11	U		0.11	U		0.11	U		0.11	ປ		
ETHYLBENZENE		0.17	U .		0.17	U		0.17	U		0.17	U		
HEXACHLOROBUTADIEN	NE	0.3	U		0.3	U		0.3	U		0.3	U		
SOPROPYLBENZENE		0.13	U		0.13	U		0.13	U		0.13	U		
M+P-XYLENES		0.24	U		0.24	U		0.24	U		0.24	U .		
METHYL TERT-BUTYL ET	THER	0.17	U		0.17	U		0.17	U		0.17	U		
METHYLENE CHLORIDE		0.58	В	A	0.33	U		0.47	В	A	0.54	В	A	
NAPHTHALENE		0.24	U		0.24	U		0.24	υ		0.24	U		
N-BUTYLBENZENE		0.12	U		0.12	U		0.12	υ		0.12	U		
N-PROPYLBENZENE		0.14	U		0.14	U		0.14	U		0.14	U		
O-XYLENE		0.14	U		0.14	U		0.14	U		0.14	U		
SEC-BUTYLBENZENE		0.13	U		0.13	U		0.13	U	1	0.13	U	1	
STYRENE		0.11	U		0.11	U		0.11	U		0.11	U		
TERT-AMYL METHYL ETH	HER	0.067	U		0.067	U		0.067	U	1	0.067	U		
TERT-BUTYLBENZENE		0.13	U		0.13	U		0.13	U		0.13	U		
TERTIARY-BUTYL ALCOH	HOL	3.9	UR	С	3.9	UR	С	3.9	UR	С	3.9	UR	С	
TETRACHLOROETHENE		0.29	U		0.29	U		0.29	U		0.29	U		
TOLUENE		0.28	J	P	0.13	U		0.22	J	P	0.21	J	Р	
FOTAL XYLENES		0.28	U		0.28	U		0.28	U		0.28	U		
RANS-1,2-DICHLOROET	THENE	0.19	U		0.19	U		0.19	U	1	0.19	U		
TRANS-1,3-DICHLOROPF	ROPENE	0.19	U		0.19	U		0.19	U		0.19	U	-	
TRICHLOROETHENE		0.17	U		0.17	U		0.17	U	T	0.17		1	
TRICHLOROFLUOROMET	THANE	0.21	U		0.21	U		0.21	U		0.21			
/INYL ACETATE		0.19	U		0.19	U		0.19	U	1	0.19	U	1	
VINYL CHLORIDE		0.22	U	1	0.22	U		0.22			0.22			

PROJ_NO: 02720	ROJ_NO: 02720 NSAMPLE				TB-061110	TB-061110				
SDG: 0F11578	LAB_ID	A0F11057800	1		A0F12043900	A0F120439003				
FRACTION: OV	SAMP_DATE	6/10/2010			6/11/2010	6/11/2010				
MEDIA: WATER	QC_TYPE	NM			NM					
	UNITS	UG/L			UG/L					
	PCT_SOLIDS	0.0			0.0					
	DUP_OF									
PARAMETER	······································	RESULT	VQL	QLCD	RESULT	VQL	QLCD			
CARBON TETRACHLORI	DE	0.13	U		0.13	U				
CHLOROBENZENE		0.15	U .		0.15	U				
CHLORODIBROMOMETH	IANE	0.18	U		0.18	U				
CHLOROETHANE		0.29	U		0.29	U				
CHLOROFORM		0.16	U		0.16	υ				
CHLOROMETHANE		0.3	U		0.3					
CIS-1,2-DICHLOROETHE	NE	0.17	U		0.17	U				
CIS-1,3-DICHLOROPROF	PENE	0.14			0.14					
DIBROMOMETHANE		0.28		1	0.28		1			
DICHLORODIFLUOROME	THANE	0.31			0.31					
DIISOPROPYL ETHER		1.5	-	1	1.5					
ETHYL TERT-BUTYL ETH	IER	0.11		1	0.11					
ETHYLBENZENE		0.17	U		0.17					
HEXACHLOROBUTADIEN	NE	0.3	U		0.3					
ISOPROPYLBENZENE		0.13	U	· ·	0.13					
M+P-XYLENES		0.24	U		0.24					
METHYL TERT-BUTYL ET	THER	0.17			0.17					
METHYLENE CHLORIDE		0.33	U		0.33		-			
NAPHTHALENE		0.24	υ		0.24					
N-BUTYLBENZENE		0.12	U	1	0.12					
N-PROPYLBENZENE		0.14			0.14					
O-XYLENE		0.14			0.14					
SEC-BUTYLBENZENE	,	0.13		1	0.13					
STYRENE		0.11			0.11					
TERT-AMYL METHYL ETI	HER	0.067		1	0.067					
TERT-BUTYLBENZENE		0.13		1	0.13					
TERTIARY-BUTYL ALCO	HOL		UR	С	3.9		c			
TETRACHLOROETHENE		0.29	U		0.29					
TOLUENE	······	0.13		1	0.13		· · · · · · · · · · · · · · · · · · ·			
TOTAL XYLENES		0.28			0.28					
TRANS-1,2-DICHLOROET	THENE	0.19		1	0.19					
TRANS-1,3-DICHLOROPF		0.19		1	0.19					
TRICHLOROETHENE		0.17		+	0.17					
TRICHLOROFLUOROME	THANE	0.21		-	0.21					
VINYL ACETATE		0.19			0.19					
VINYL CHLORIDE		0.22			0.22					

7/12/2010

PROJ_NO: 02720	NSAMPLE	MRC-95D-061	110		MRC-96D-061110		MRC-MW93D-061010		MRC-MW94D-061010				
SDG: 0F11578	LAB_ID	A0F12043900	439002		A0F120439001		A0F110578002		A0F110578003				
FRACTION: OS	SAMP_DATE	6/11/2010			6/11/2010		6/10/2010		6/10/2010				
MEDIA: WATER QC_TYPE		NM			NM			NM			NM		. <u>.</u>
	UNITS	UG/L			UG/L		UG/L			UG/L			
	PCT_SOLIDS	0.0			0.0			0.0			0.0		
	DUP_OF								21				
PARAMETER		RESULT	VQL	QLCD	RESULT	VQL	QLCD	RESULT	VQL	QLCD	RESULT	VQL	QLCD
1,1-BIPHENYL		0.8	U		0.8	U		(	.8 U			8 U	
1,4-DIOXANE		0.49	U		0.49	U			19 U			9 U	
2,2'-OXYBIS(1-CHLORC	PROPANE)	0.4	U		0.4	U			.4 U			4 U	
2,4,5-TRICHLOROPHEN	NOL	0.3	U		0.3	U			.3 U			3 U	
2,4,6-TRICHLOROPHEN		0.8	U		0.8	U			.8 U			8 U	
2,4-DICHLOROPHENOL		0.8	U		0.8	U			.8 U			8 U	
2,4-DIMETHYLPHENOL		0.8	U		0.8 U				.8 U			8 U	
2,4-DINITROPHENOL		2.4	U		2.4 U				.4 U	<u> </u>		4 U	
2,4-DINITROTOLUENE		0.27	0.27 U		0.27 U		0.27 U		0.27 U				
2,6-DINITROTOLUENE		0.8	0.8 U		0.8 U			0.8 U		0.8 U			
2-CHLORONAPHTHALE	INE	0.1	U		0.1	U			.1 U			1 U	+
2-CHLOROPHENOL		0.29	U	1	0.29	U			29 U			9 U	
2-METHYLNAPHTHALE	NE	0.1	U		0.1	U			.1 U				
2-METHYLPHENOL		0.8	U		0.8	U			.8 U _			8 U	
2-NITROANILINE		0.8	U		0.8	U			.8 U	-		8 U	
2-NITROPHENOL		0.28	U		0.28	U			28 U			8 U	
3,3'-DICHLOROBENZID	INE	0.37	U		0.37	U	· · ·		57 U			7 U	
3-NITROANILINE		0.28	U		0.28	U	1		28 U			8 U	
4,6-DINITRO-2-METHYL		2.4	U		2.4	U			4 U			4 U	
4-BROMOPHENYL PHE		0.8	U		0.8	U			.8 U			8 U	
4-CHLORO-3-METHYLP	HENOL	0.8	U		0.8	U			.8 U			8 U	
4-CHLOROANILINE		0.8	U		0.8	U			8 U			8 U	
4-CHLOROPHENYL PHE	ENYL ETHER	0.3	U		. 0.3	U	· · · · ·		3 U			3 U	
4-METHYLPHENOL		0.8	U		0.8	U	·····		8 U			BU	-
4-NITROANILINE		0.8	U		0.8	U			8 U				
4-NITROPHENOL		2.4	U	· · ·	2.4	U		2.4 U		-	0.8 U 2.4 U		
ACENAPHTHENE		0.1	U		0.1	U			1 U			10	
ACENAPHTHYLENE		0.1	U		0.1	U			1 U			1 U	
ACETOPHENONE		0.34	U		0.34	U			4 U		0.34		·   · · · · · · · · · · · · · · · · · ·
ANTHRACENE		0.1	U		0.1				1 U	+		1 U	
ATRAZINE		0.34	U		0.34				4 U		0.34		
BENZALDEHYDE		0.39	U		0.39				9 U		0.3		+
3ENZO(A)ANTHRACEN		0.1	U		0.1				1 U			10	
BENZO(A)PYRENE		0.1	U	,	0.1		<u>                                      </u>		1 U				
BENZO(B)FLUORANTHE	ENE	0.1			0.1		1		10				

-

PROJ_NO: 02720	NSAMPLE	MRC-95D-061	110		MRC-96D-061	110		MRC-MW93	0-06101		MRC-MW94D	-06101	)
SDG: 0F11578	LAB_ID	A0F12043900	2		A0F120439001		A0F1105780			A0F110578003			
FRACTION: OS	SAMP_DATE	6/11/2010			6/11/2010			6/10/2010					
MEDIA: WATER	QC_TYPE	NM			NM			NM			NM	NM	
	UNITS	UG/L			UG/L			UG/L			UG/L		
	PCT_SOLIDS	0.0			0.0			0.0			0.0		
	DUP_OF								·				
PARAMETER		RESULT	VQL	QLCD	RESULT	VQL	QLCD	RESULT	VQL	QLCD	RESULT	VQL	QLCD
BENZO(G,H,I)PERYLENE		0.1	U		0.1	U		0.	1 U		0.1	U	
BENZO(K)FLUORANTHEN	NE	0.1	U		0.1	U		0.	ı U	1	0.1		
BIS(2-CHLOROETHOXY)	/IETHANE	0.32	U		0.32	U	1	0.3	2 U	-	0.32	U	
BIS(2-CHLOROETHYL)ET	HER	0.1	U		0.1	U	1	0.	i U		0.1	U	
BIS(2-ETHYLHEXYL)PHTH	IALATE	0.8			2.1	В	A	1.5	В	A	2.1		A
BUTYL BENZYL PHTHALA	ATE	0.8			0.8	U	-	1.	1		1.1		
CAPROLACTAM		0.8	υ		0.8	U	1	0.8	3 U		0.8	U	
CARBAZOLE		0.28	U		0.28	U	1	0.2	3 U		0.28		
CHRYSENE		0.1	U		0.1	U		0.1	I U		0.1		
DIBENZO(A,H)ANTHRACE	ENE	0.1	U		0.1	U		0.	I U		0.1	U	
DIBENZOFURAN		0.1	U		0.1	υ		0.1	I U		0.1	U	
DIETHYL PHTHALATE		0.6	U		0.6	U		0.0	5 U	-	0.6	U	1
DIMETHYL PHTHALATE		0.29	U		0.29	U		0.2	U		0.29	U	
DI-N-BUTYL PHTHALATE		0.67	U		0.67	U		0.6	7 U		0.67	U	
DI-N-OCTYL PHTHALATE		0.8	U		0.8	U		0.8	3 U		0.8	U	
FLUORANTHENE		0.1	U		0.1	U		0.1	ΙU		0.1	U	
FLUORENE		0.1			0.1	U		0.1	ΙU		0.1	U	
HEXACHLOROBENZENE		0.1	U		0.1	U		0.1	U		0.1	U	
HEXACHLOROBUTADIEN	_	0.27	U		0.27	U		0.2	′ U		0.27	U	
HEXACHLOROCYCLOPE	NTADIENE	0.8	U		0.8	U		0.8	3 U		0.8	U	
HEXACHLOROETHANE		0.8	U		0.8	U		0.8	3 U		0.8	U	
INDENO(1,2,3-CD)PYREN	E	0.1	U		- 0.1	U		0.1	U		0.1	U	
ISOPHORONE		0.27	U		0.27	U		0.2	' U		0.27	U	
NAPHTHALENE		0.1			0.1	U		0.1	U		0.1	U	1
NITROBENZENE		0.04	U		0.04	U		0.04	U		0.04	U	
N-NITROSODIMETHYLAM		0.31	U		0.31	-		0.3	U		0.31		
N-NITROSO-DI-N-PROPYL	AMINE	0.8			0.8	U		0.8	B U		0.8	U	
N-NITROSODIPHENYLAM	INE	0.31			0.31	U		0.3	U		0.31	U	
PENTACHLOROPHENOL		2.4	U		2.4	U		2.4	U		2.4		
PHENANTHRENE		0.1	U		0.1	U		0.1	U		0.1		
PHENOL		0.6	U		0.6	U		0.6	s U	-	0.6	U	
PYRENE		0.1	U		0.1	U			U	1	0.1		

# APPENDIX B RESULTS AS REPORTED BY THE LABORATORY

## Client Sample ID: MRC-95D-061110

#### GC/MS Volatiles

Lot-Sample #:	A0F120439-002	Work Order #:	L2T6X1AM	Matrix:	WG
Date Sampled:	06/11/10 09:28	Date Received:	06/12/10		
Prep Date:	06/21/10	Analysis Date:	06/21/10		
Prep Batch #:	0173220				
Dilution Factor:	1	<pre>Initial Wgt/Vol:</pre>	5 mL	<pre>Final Wgt/Vol:</pre>	5 mL
		Method:	SW846 8260B		

		REPORTIN	IG	
PARAMETER	RESULT	LIMIT	UNITS	MDL
Acetone	20	5.0	ug/L	1.1
Bromobenzene	ND	1.0	ug/L	0.13
Bromochloromethane	ND	1.0	ug/L	0.29
Bromodichloromethane	0.31 J	1.0	ug/L	0.15
2-Butanone	1.4 J	5.0	ug/L	0.57
n-Butylbenzene	ND	1.0	ug/L	0.12
sec-Butylbenzene	ND	1.0	ug/L	0.13
tert-Butylbenzene	ND	1.0	ug/L	0.13
Carbon disulfide	ND	1.0	ug/L	0.13
Dibromochloromethane	0.37 J	1.0	ug/L	0.18
1,2-Dibromo-3-chloro-	ND	2.0	ug/L	0.67
propane				
2-Chloroethyl vinyl ether	ND	5.0	ug/L	0.99
2-Chlorotoluene	ND	1.0	ug/L	0.11
4-Chlorotoluene	ND	1.0	ug/L	0.18
1,2-Dibromoethane	ND	1.0	ug/L	0.24
Dibromomethane	ND	1.0	ug/L	0.28
1,2-Dichlorobenzene	ND	1.0	ug/L	0.13
1,3-Dichlorobenzene	ND	1.0	ug/L	0.14
1,4-Dichlorobenzene	ND	1.0	ug/L	0.13
Dichlorodifluoromethane	ND	1.0	ug/L	0.31
cis-1,2-Dichloroethene	ND	1.0	ug/L	0.17
trans-1,2-Dichloroethene	ND	1.0	ug/L	0.19
1,3-Dichloropropane	ND	1.0	ug/L	0.16
2,2-Dichloropropane	ND	1.0	ug/L	0.13
1,1-Dichloropropene	ND	1.0	ug/L	0.13
Trichlorofluoromethane	ND	1.0	ug/L	0.21
Hexachlorobutadiene	ND	1.0	ug/L	0.30
2-Hexanone	ND	5.0	ug/L	0.41
Isopropylbenzene	ND	1.0	ug/L	0.13
p-Isopropyltoluene	ND	1.0	ug/L	0.12
tert-Butyl alcohol	ND	20	ug/L	3.9
4-Methyl-2-pentanone	ND	5.0	ug/L	0.32
Naphthalene	ND	1.0	ug/L	0.24
n-Propylbenzene	ND	1.0	ug/L	0.14
Styrene	ND	1.0	ug/L	0.11
1,1,1,2-Tetrachloroethane	ND	1.0	ug/L	0.23
1,2,3-Trichlorobenzene	ND	1.0	ug/L	0.17

(Continued on next page)

## Client Sample ID: MRC-95D-061110

#### GC/MS Volatiles

Lot-Sample #...: A0F120439-002 Work Order #...: L2T6X1AM Matrix...... WG

		REPORTIN		
PARAMETER	RESULT	LIMIT	UNITS	MDL
1,2,4-Trichloro-	ND	1.0	ug/L	0.15
benzene			-	
1,2,3-Trichloropropane	ND	1.0	ug/L	0.43
1,1,2-Trichloro-	ND	1.0	ug/L	0.28
1,2,2-trifluoroethane				
1,2,4-Trimethylbenzene	ND	1.0	ug/L	0.12
Vinyl acetate	ND	2.0	ug/L	0.19
o-Xylene	ND	1.0	ug/L	0.14
Xylenes (total)	ND	2.0	ug/L	0.28
Methyl tert-butyl ether	ND	5.0	ug/L	0.17
m-Xylene & p-Xylene	ND	2.0	ug/L	0.24
1,2,3-Trimethylbenzene	ND	5.0	ug/L	0.0059
Diisopropyl Ether (DIPE)	ND	5.0	ug/L	1.5
Ethyl-t-Butyl Ether (ETBE)	ND	5.0	ug/L	0.11
Tert-amyl methyl ether (TAME)	ND	5.0	ug/L	0.067
Benzene	ND	1.0	ug/L	0.13
Bromoform	ND	1.0	ug/L	0.64
Bromomethane	ND	1.0	ug/L	0.41
Carbon tetrachloride	ND	1.0	ug/L	0.13
Chlorobenzene	ND	1.0	ug/L	0.15
Chloroethane	ND	1.0	ug/L	0.29
Chloroform	19	1.0	ug/L	0.16
Chloromethane	0.36 J	1.0	ug/L	0.30
1,1-Dichloroethane	ND	1.0	ug/L	0.15
1,2-Dichloroethane	ND	1.0	ug/L	0.22
1,1-Dichloroethene	ND	1.0	ug/L	0.19
1,2-Dichloropropane	ND	1.0	ug/L	0.18
cis-1,3-Dichloropropene	ND	1.0	ug/L	0.14
trans-1,3-Dichloropropene	ND	1.0	ug/L	0.19
Ethylbenzene	ND	1.0	ug/L	0.17
Methylene chloride	0.58 J,B	1.0	ug/L	0.33
1,1,2,2-Tetrachloroethane	ND	1.0	ug/L	0.18
Tetrachloroethene	ND	1.0	ug/L	0.29
Toluene	0.28 J	1.0	ug/L	0.13
1,1,1-Trichloroethane	ND	1.0	ug/L	0.22
Trichloroethene	ND	1.0	ug/L	0.17
Vinyl chloride	ND	1.0	ug/L	0.22
	PERCENT	RECOVERY		
SURROGATE	RECOVERY	LIMITS		
Dibromofluoromethane	100	(73 - 12	2)	
1,2-Dichloroethane-d4	96	(61 - 12	8)	
Toluene-d8	90	(76 - 11	0)	
4-Bromofluorobenzene	86	(74 - 11	6)	

(Continued on next page)

#### MRC-95D-061110

### GC/MS Volatiles

Lot-Sample #: A0F120439-002 Work Order #: L2T6X1AM

Matrix: WG

MASS SPECTROMETER/DATA SYSTEM (MSDS) TENTATIVELY IDENTIFIED COMPOUNDS

		ESTIMATED	RETENTION	1
PARAMETER	CAS #	RESULT	TIME	UNITS
Pentane	109-66-0	1.2 NJ N	1 2.5499	ug/L
Isopropyl Alcohol	67-63-0	2.0 NJ N	1 3.0587	ug/L
Freon 22		ND N	1	ug/L

## NOTE(S):

M: Result was measured against nearest internal standard assuming a response factor of 1.

## Client Sample ID: MRC-96D-061110

#### GC/MS Volatiles

Lot-Sample #:	A0F120439-001	Work Order #:	L2T531AA	Matrix:	WG
Date Sampled:	06/11/10 12:45	Date Received:	06/12/10		
Prep Date:	06/21/10	Analysis Date:	06/21/10		
Prep Batch #:	0173220				
Dilution Factor:	1	<pre>Initial Wgt/Vol:</pre>	5 mL	<pre>Final Wgt/Vol:</pre>	5 mL
		Method:	SW846 8260B		

		REPORTIN	G	
PARAMETER	RESULT	LIMIT	UNITS	MDL
Acetone	3.8 J	5.0	ug/L	1.1
Bromobenzene	ND	1.0	ug/L	0.13
Bromochloromethane	ND	1.0	ug/L	0.29
Bromodichloromethane	ND	1.0	ug/L	0.15
2-Butanone	ND	5.0	ug/L	0.57
n-Butylbenzene	ND	1.0	ug/L	0.12
sec-Butylbenzene	ND	1.0	ug/L	0.13
tert-Butylbenzene	ND	1.0	ug/L	0.13
Carbon disulfide	ND	1.0	ug/L	0.13
Dibromochloromethane	ND	1.0	ug/L	0.18
1,2-Dibromo-3-chloro-	ND	2.0	ug/L	0.67
propane				
2-Chloroethyl vinyl ether	ND	5.0	ug/L	0.99
2-Chlorotoluene	ND	1.0	ug/L	0.11
4-Chlorotoluene	ND	1.0	ug/L	0.18
1,2-Dibromoethane	ND	1.0	ug/L	0.24
Dibromomethane	ND	1.0	ug/L	0.28
1,2-Dichlorobenzene	ND	1.0	ug/L	0.13
1,3-Dichlorobenzene	ND	1.0	ug/L	0.14
1,4-Dichlorobenzene	ND	1.0	ug/L	0.13
Dichlorodifluoromethane	ND	1.0	ug/L	0.31
cis-1,2-Dichloroethene	ND	1.0	ug/L	0.17
trans-1,2-Dichloroethene	ND	1.0	ug/L	0.19
1,3-Dichloropropane	ND	1.0	ug/L	0.16
2,2-Dichloropropane	ND	1.0	ug/L	0.13
1,1-Dichloropropene	ND	1.0	ug/L	0.13
Trichlorofluoromethane	ND	1.0	ug/L	0.21
Hexachlorobutadiene	ND	1.0	ug/L	0.30
2-Hexanone	ND	5.0	ug/L	0.41
Isopropylbenzene	ND	1.0	ug/L	0.13
p-Isopropyltoluene	ND	1.0	ug/L	0.12
tert-Butyl alcohol	ND	20	ug/L	3.9
4-Methyl-2-pentanone	ND	5.0	ug/L	0.32
Naphthalene	ND	1.0	ug/L	0.24
n-Propylbenzene	ND	1.0	ug/L	0.14
Styrene	ND	1.0	ug/L	0.11
1,1,1,2-Tetrachloroethane	ND	1.0	ug/L	0.23
1,2,3-Trichlorobenzene	ND	1.0	ug/L	0.17

(Continued on next page)

## Client Sample ID: MRC-96D-061110

## GC/MS Volatiles

Lot-Sample #...: A0F120439-001 Work Order #...: L2T531AA

Matrix..... WG

		REPORTI	NG			
PARAMETER	RESULT	LIMIT	UNITS	MDL		
1,2,4-Trichloro-	ND	1.0	ug/L	0.15		
benzene						
1,2,3-Trichloropropane	ND	1.0	ug/L	0.43		
1,1,2-Trichloro-	ND	1.0	ug/L	0.28		
1,2,2-trifluoroethane						
1,2,4-Trimethylbenzene	ND	1.0	ug/L	0.12		
Vinyl acetate	ND	2.0	ug/L	0.19		
o-Xylene	ND	1.0	ug/L	0.14		
Xylenes (total)	ND	2.0	ug/L	0.28		
Methyl tert-butyl ether	ND	5.0	ug/L	0.17		
m-Xylene & p-Xylene	ND	2.0	ug/L	0.24		
1,2,3-Trimethylbenzene	ND	5.0	ug/L	0.0059		
Diisopropyl Ether (DIPE)	ND	5.0	ug/L	1.5		
Ethyl-t-Butyl Ether (ETBE)	ND	5.0	ug/L	0.11		
Tert-amyl methyl ether (TAME)	ND	5.0	ug/L	0.067		
Benzene	ND	1.0	ug/L	0.13		
Bromoform	ND	1.0	ug/L	0.64		
Bromomethane	ND	1.0	ug/L	0.41		
Carbon tetrachloride	ND	1.0	ug/L	0.13		
Chlorobenzene	ND	1.0	ug/L	0.15		
Chloroethane	ND	1.0	ug/L	0.29		
Chloroform	0.19 J	1.0	ug/L	0.16		
Chloromethane	ND	1.0	ug/L	0.30		
1,1-Dichloroethane	ND	1.0	ug/L	0.15		
1,2-Dichloroethane	ND	1.0	ug/L	0.22		
1,1-Dichloroethene	ND	1.0	ug/L	0.19		
1,2-Dichloropropane	ND	1.0	ug/L	0.18		
cis-1,3-Dichloropropene	ND	1.0	ug/L	0.14		
trans-1,3-Dichloropropene	ND	1.0	ug/L	0.19		
Ethylbenzene	ND	1.0	ug/L	0.17		
Methylene chloride	ND	1.0	ug/L	0.33		
1,1,2,2-Tetrachloroethane	ND	1.0	ug/L	0.18		
Tetrachloroethene	ND	1.0	ug/L	0.29		
Toluene	ND	1.0	ug/L	0.13		
1,1,1-Trichloroethane	ND	1.0	ug/L	0.22		
Trichloroethene	ND	1.0	ug/L	0.17		
Vinyl chloride	ND	1.0	ug/L	0.22		
vingi ontorrae	ND	1.0	ug/1	0.22		
	PERCENT	RECOVERY	7			
SURROGATE	RECOVERY	LIMITS	-			
Dibromofluoromethane	98	(73 - 12	22)			
1,2-Dichloroethane-d4	98	(61 - 12				
Toluene-d8	91	(76 - 11		·		
4-Bromofluorobenzene	86	(74 - 11)				
. Elomotituoi openizene	00	(/ 1	/			
NOTE (S) ·						

## NOTE(S):

J Estimated result. Result is less than RL.

#### MRC-96D-061110

#### GC/MS Volatiles

Lot-Sample #: A0F120439-001 Wor

Work Order #: L2T531AA

Matrix: WG

MASS SPECTROMETER/DATA SYSTEM (MSDS) TENTATIVELY IDENTIFIED COMPOUNDS

		ESTIMATED	RETENTION	1
PARAMETER	CAS #	RESULT	TIME	UNITS
Freon 22		ND	M	uq/L

#### NOTE(S):

M: Result was measured against nearest internal standard assuming a response factor of 1.

# Client Sample ID: MRC-MW93D-061010

## GC/MS Volatiles

Lot-Sample #:	A0F110578-002	Work Order #:	L2TE81AA	Matrix:	WG
Date Sampled:	06/10/10 10:23	Date Received:	06/11/10		
Prep Date:	06/21/10	Analysis Date:	06/21/10		
Prep Batch #:	0173220				
Dilution Factor:	1	<pre>Initial Wgt/Vol:</pre>	5 mL	<pre>Final Wgt/Vol:</pre>	5 mL
		Method:	SW846 8260B		

		REPORTIN	IG	
PARAMETER	RESULT	LIMIT	UNITS	MDL
Acetone	17	5.0	ug/L	1.1
Bromobenzene	ND	1.0	ug/L	0.13
Bromochloromethane	ND	1.0	ug/L	0.29
Bromodichloromethane	ND	1.0	ug/L	0.15
2-Butanone	1.5 J	5.0	ug/L	0.57
n-Butylbenzene	ND	1.0	ug/L	0.12
sec-Butylbenzene	ND	1.0	ug/L	0.13
tert-Butylbenzene	ND	1.0	ug/L	0.13
Carbon disulfide	0.71 J	1.0	ug/L	0.13
Dibromochloromethane	ND	1.0	ug/L	0.18
1,2-Dibromo-3-chloro-	ND	2.0	ug/L	0.67
propane			-	
2-Chloroethyl vinyl ether	ND	5.0	ug/L	0.99
2-Chlorotoluene	ND	1.0	ug/L	0.11
4-Chlorotoluene	ND	1.0	ug/L	0.18
1,2-Dibromoethane	ND	1.0	ug/L	0.24
Dibromomethane	ND	1.0	ug/L	0.28
1,2-Dichlorobenzene	ND	1.0	ug/L	0.13
1,3-Dichlorobenzene	ND	1.0	ug/L	0.14
1,4-Dichlorobenzene	ND	1.0	ug/L	0.13
Dichlorodifluoromethane	ND	1.0	ug/L	0.31
cis-1,2-Dichloroethene	ND	1.0	ug/L	0.17
trans-1,2-Dichloroethene	ND .	1.0	ug/L	0.19
1,3-Dichloropropane	ND	1.0	ug/L	0.16
2,2-Dichloropropane	ND	1.0	ug/L	0.13
1,1-Dichloropropene	ND	1.0	ug/L	0.13
Trichlorofluoromethane	ND	1.0	ug/L	0.21
Hexachlorobutadiene	ND	1.0	ug/L	0.30
2-Hexanone	ND	5.0	ug/L	0.41
Isopropylbenzene	ND	1.0	ug/L	0.13
p-Isopropyltoluene	ND	1.0	ug/L	0.12
tert-Butyl alcohol	ND	20	ug/L	3.9
4-Methyl-2-pentanone	0.67 J	5.0	ug/L	0.32
Naphthalene	ND	1.0	ug/L	0.24
n-Propylbenzene	ND	1.0	ug/L	0.14
Styrene	ND	1.0	ug/L	0.11
1,1,1,2-Tetrachloroethane	ND	1.0	ug/L	0.23
1,2,3-Trichlorobenzene	ND	1.0	ug/L	0.17

(Continued on next page)

.

## Client Sample ID: MRC-MW93D-061010

## GC/MS Volatiles

Lot-Sample #...: A0F110578-002 Work Order #...: L2TE81AA

Matrix..... WG

			REPORTING				
PARAMETER	RESULT	LIMIT	UNITS	MDL			
1,2,4-Trichloro-	ND	1.0	ug/L	0.15			
benzene							
1,2,3-Trichloropropane	ND	1.0	ug/L	0.43			
1,1,2-Trichloro-	ND	1.0	ug/L	0.28			
1,2,2-trifluoroethane							
1,2,4-Trimethylbenzene	ND	1.0	ug/L	0.12			
Vinyl acetate	ND	2.0	ug/L	0.19			
o-Xylene	ND	1.0	ug/L	0.14			
Xylenes (total)	ND	2.0	ug/L	0.28			
Methyl tert-butyl ether	ND	5.0	ug/L	0.17			
m-Xylene & p-Xylene	ND	2.0	ug/L	0.24			
1,2,3-Trimethylbenzene	ND	5.0	ug/L	0.0059			
Diisopropyl Ether (DIPE)	ND	5.0	ug/L	1.5			
Ethyl-t-Butyl Ether (ETBE)	ND	5.0	ug/L	0.11			
Tert-amyl methyl ether (TAME)	ND	5.0	ug/L	0.067			
Benzene	ND	1.0	ug/L	0.13			
Bromoform	ND	1.0	ug/L	0.64			
Bromomethane	ND	1.0	ug/L	0.41			
Carbon tetrachloride	ND	1.0	ug/L	0.13			
Chlorobenzene	ND	1.0	ug/L	0.15			
Chloroethane	ND	1.0	ug/L	0.29			
Chloroform	8.8	1.0	ug/L	0.16			
Chloromethane	ND	1.0	ug/L	0.30			
1,1-Dichloroethane	ND	1.0	ug/L	0.15			
1,2-Dichloroethane	ND	1.0	ug/L	0.22			
1,1-Dichloroethene	ND	1.0	ug/L	0.19			
1,2-Dichloropropane	ND	1.0	ug/L	0.18			
cis-1,3-Dichloropropene	ND	1.0	ug/L	0.14			
trans-1,3-Dichloropropene	ND	1.0	ug/L	0.19			
Ethylbenzene	ND	1.0	ug/L	0.17			
Methylene chloride	0.47 J,B	1.0	ug/L	0.33			
1,1,2,2-Tetrachloroethane	ND	1.0	ug/L	0.18			
Tetrachloroethene	ND	1.0	ug/L	0.29			
Toluene	0.22 J	1.0	ug/L	0.13			
1,1,1-Trichloroethane	ND	1.0	ug/L	0.22			
Trichloroethene	ND	1.0	ug/L	0.17			
Vinyl chloride	ND	1.0	ug/L	0.22			
-			5.				
	PERCENT	RECOVERY					
SURROGATE	RECOVERY	LIMITS					
Dibromofluoromethane	98	(73 - 12	2)				
1,2-Dichloroethane-d4	98	(61 - 12					
Toluene-d8	90	(76 - 11					
4-Bromofluorobenzene	90	(74 - 11	6)				

## MRC-MW93D-061010

## GC/MS Volatiles

Lot-Sample #: A0F110578-002 Work Orde	r #: L2TE81AA Matrix: WG
---------------------------------------	--------------------------

MASS SPECTROMETER/DATA SYSTEM (MSDS) TENTATIVELY IDENTIFIED COMPOUNDS

		ESTIMATED	)	RETENTION	
PARAMETER	CAS #	RESULT		TIME	UNITS
Freon 22		 ND	М		ug/L

#### NOTE(S):

M: Result was measured against nearest internal standard assuming a response factor of 1.

## Client Sample ID: MRC-MW94D-061010

# GC/MS Volatiles

Lot-Sample #:	A0F110578-003	Work Order #:	L2TFL1AM	Matrix WG
Date Sampled:	06/10/10 15:03	Date Received:	06/11/10	
Prep Date:	06/21/10	Analysis Date:	06/21/10	
Prep Batch #:	0173220			
Dilution Factor:	1	<pre>Initial Wgt/Vol:</pre>	5 mL	Final Wgt/Vol: 5 mL
		Method:	SW846 8260B	

		REPORTIN	٩Ğ	
PARAMETER	RESULT	LIMIT	UNITS	MDL
Acetone	11	5.0	ug/L	1.1
Bromobenzene	ND	1.0	ug/L	0.13
Bromochloromethane	ND	1.0	ug/L	0.29
Bromodichloromethane	0.23 J	1.0	ug/L	0.15
2-Butanone	ND	5.0	ug/L	0.57
n-Butylbenzene	ND	1.0	ug/L	0.12
sec-Butylbenzene	ND	1.0	ug/L	0.13
tert-Butylbenzene	ND	1.0	ug/L	0.13
Carbon disulfide	ND	1.0	ug/L	0.13
Dibromochloromethane	ND	1.0	ug/L	0.18
1,2-Dibromo-3-chloro-	ND	2.0	ug/L	0.67
propane			2	
2-Chloroethyl vinyl ether	ND	5.0	ug/L	0.99
2-Chlorotoluene	ND	1.0	ug/L	0.11
4-Chlorotoluene	ND	1.0	ug/L	0.18
1,2-Dibromoethane	ND	1.0	ug/L	0.24
Dibromomethane	ND	1.0	ug/L	0.28
1,2-Dichlorobenzene	ND	1.0	ug/L	0.13
1,3-Dichlorobenzene	ND	1.0	ug/L	0.14
1,4-Dichlorobenzene	ND	1.0	ug/L	0.13
Dichlorodifluoromethane	ND	1.0	ug/L	0.31
cis-1,2-Dichloroethene	ND	1.0	ug/L	0.17
trans-1,2-Dichloroethene	ND	1.0	ug/L	0.19
1,3-Dichloropropane	ND	1.0	ug/L	0.16
2,2-Dichloropropane	ND	1.0	ug/L	0.13
1,1-Dichloropropene	ND	1.0	ug/L	0.13
Trichlorofluoromethane	ND	1.0	ug/L	0.21
Hexachlorobutadiene	ND	1.0	ug/L	0.30
2-Hexanone	ND	5.0	ug/L	0.41
Isopropylbenzene	ND	1.0	ug/L	0.13
p-Isopropyltoluene	ND	1.0	ug/L	0.12
tert-Butyl alcohol	ND	20	ug/L	3.9
4-Methyl-2-pentanone	ND	5.0	ug/L	0.32
Naphthalene	ND	1.0	ug/L	0.24
n-Propylbenzene	ND	1.0	ug/L	0.14
Styrene	ND	1.0	ug/L	0.11
1,1,1,2-Tetrachloroethane	ND	1.0	ug/L	0.23
1,2,3-Trichlorobenzene	ND	1.0	ug/L	0.17

## Client Sample ID: MRC-MW94D-061010

## GC/MS Volatiles

Lot-Sample #...: A0F110578-003 Work Order #...: L2TFL1AM Matrix.......... WG

		REPORTING	3		
PARAMETER	RESULT	LIMIT	UNITS	MDL	
1,2,4-Trichloro-	ND	1.0	ug/L	0.15	
benzene			-		
1,2,3-Trichloropropane	ND	1.0	ug/L	0.43	
1,1,2-Trichloro-	ND	1.0	ug/L	0.28	
1,2,2-trifluoroethane					
1,2,4-Trimethylbenzene	ND	1.0	ug/L	0.12	
Vinyl acetate	ND	2.0	ug/L	0.19	
o-Xylene	ND	1.0	ug/L	0.14	
Xylenes (total)	ND	2.0	ug/L	0.28	
Methyl tert-butyl ether	ND	5.0	ug/L	0.17	
m-Xylene & p-Xylene	ND	2.0	ug/L	0.24	
1,2,3-Trimethylbenzene	ND	5.0	ug/L	0.0059	
Diisopropyl Ether (DIPE)	ND	5.0	ug/L	1.5	
Ethyl-t-Butyl Ether (ETBE)	ND	5.0	ug/L	0.11	
Tert-amyl methyl ether (TAME)	ND	5.0	ug/L	0.067	
Benzene	ND	1.0	ug/L	0.13	
Bromoform	ND	1.0	ug/L	0.64	
Bromomethane	ND	1.0	ug/L	0.41	
Carbon tetrachloride	ND	1.0	ug/L	0.13	
Chlorobenzene	ND	1.0	ug/L	0.15	
Chloroethane	ND	1.0	ug/L	0.29	
Chloroform	10	1.0	ug/L	0.16	
Chloromethane	ND	1.0	ug/L	0.30	
1,1-Dichloroethane	ND .	1.0	ug/L	0.15	
1,2-Dichloroethane	ND	1.0	ug/L	0.22	
1,1-Dichloroethene	ND	1.0	ug/L	0.19	
1,2-Dichloropropane	ND	1.0	ug/L	0.18	
cis-1,3-Dichloropropene	ND	1.0	ug/L	0.14	
trans-1,3-Dichloropropene	ND	1.0	ug/L	0.19	
Ethylbenzene	ND	1.0	ug/L	0.17	
Methylene chloride	0.54 J,B	1.0	ug/L	0.33	
1,1,2,2-Tetrachloroethane	ND	1.0	ug/L	0.18	
Tetrachloroethene	ND	1.0	ug/L	0.29	
Toluene	0.21 J	1.0	ug/L	0.13	
1,1,1-Trichloroethane	ND	1.0	ug/L	0.22	
Trichloroethene	ND	1.0	ug/L	0.17	
Vinyl chloride	ND	1.0	ug/L ·	0.22	
	PERCENT	RECOVERY			
SURROGATE	RECOVERY	LIMITS			
Dibromofluoromethane	99	(73 - 122	2)		
1,2-Dichloroethane-d4	94	(61 - 128	3)		
Toluene-d8	89 85	(76 - 110	))		
4-Bromofluorobenzene					

## MRC-MW94D-061010

## GC/MS Volatiles

Lot-Sample #: A0F110578-003 Work Order #: L2TFL1AM Ma	Mat:
-------------------------------------------------------	------

Matrix: WG

MASS SPECTROMETER/DATA SYSTEM (MSDS) TENTATIVELY IDENTIFIED COMPOUNDS

		ESTIMATED	RETENTION	I
PARAMETER	CAS #	RESULT	TIME	UNITS
Isopropyl Alcohol	67-63-0	1.7 NJ	M 3.0588	ug/L
Freon 22		ND	Μ	ug/L

## NOTE(S):

M: Result was measured against nearest internal standard assuming a response factor of 1.

#### Client Sample ID: TB-061010

#### GC/MS Volatiles

Lot-Sample #: A0F110578-001	Work Order #: L2TEX1AA	Matrix WQ
Date Sampled: 06/10/10 07:30	Date Received: 06/11/10	
Prep Date: 06/21/10	Analysis Date: 06/21/10	
Prep Batch #: 0173220		
Dilution Factor: 1	Initial Wgt/Vol: 5 mL	Final Wgt/Vol: 5 mL

Method....: SW846 8260B

REPORTING PARAMETER RESULT LIMIT UNITS MDL Acetone 15 5.0 ug/L 1.1 Bromobenzene ND 1.0 0.13 ug/L Bromochloromethane ND 1.0 uq/L 0.29 Bromodichloromethane ND 1.0 0.15 uq/L 2-Butanone ND 5.0 ug/L 0.57 n-Butylbenzene ND 1.0 uq/L 0.12 sec-Butylbenzene ND 1.0 ug/L 0.13 tert-Butylbenzene ND 1.0 ug/L 0.13 Carbon disulfide ND 1.0 ug/L 0.13 Dibromochloromethane ND 1.0 0.18 ug/L 1,2-Dibromo-3-chloro-ND 2.0 ug/L 0.67 propane 2-Chloroethyl vinyl ether ND 5.0 0.99 uq/L 2-Chlorotoluene ND 1.0 uq/L 0.11 4-Chlorotoluene ND 1.0 0.18 uq/L 1.2-Dibromoethane ND 1.0 ug/L 0.24 Dibromomethane ND 1.0 ug/L 0.28 1,2-Dichlorobenzene ND 1.0 ug/L 0.13 1,3-Dichlorobenzene ND 1.0 0.14 ug/L 1,4-Dichlorobenzene ND 1.0 ug/L 0.13 Dichlorodifluoromethane ND 1.0 ug/L 0.31 cis-1,2-Dichloroethene ND 1.0 0.17 ug/L trans-1,2-Dichloroethene ND 1.0 uq/L 0.19 1,3-Dichloropropane ND 1.0 ug/L 0.16 2,2-Dichloropropane ND 1.0 ug/L 0.13 1,1-Dichloropropene ND 1.0 ug/L 0.13 Trichlorofluoromethane ND 1.0 ug/L 0.21 Hexachlorobutadiene ND 1.0 0.30 ug/L 2-Hexanone ND 5.0 0.41 ug/L Isopropylbenzene ND 1.0 0.13 ug/L p-Isopropyltoluene ND 1.0 ug/L 0.12 tert-Butyl alcohol ND 20 ug/L 3.9 4-Methyl-2-pentanone 0.32 ND 5.0 ug/L Naphthalene ND 1.0 ug/L 0.24 n-Propylbenzene ND 1.0 0.14 uq/L Stvrene ND 1.0 0.11 ug/L 1,1,1,2-Tetrachloroethane ND 1.0 ug/L 0.23 1,2,3-Trichlorobenzene ND 1.0 ug/L 0.17

# Client Sample ID: TB-061010

## GC/MS Volatiles

Lot-Sample #...: A0F110578-001 Work Order #...: L2TEX1AA Matrix...... WQ

PARAMETER         RESULT         LIMIT         UNITS         MDL           1,2,4-Trichloropropane         ND         1.0         ug/L         0.15           1,1,2-Trichloropropane         ND         1.0         ug/L         0.43           1,2,2-Trifhloropropane         ND         1.0         ug/L         0.28           1,2,2-Trifhloropthane         ND         1.0         ug/L         0.12           Vinyl acetate         ND         2.0         ug/L         0.28           Methyl tetr-butyl ether         ND         5.0         ug/L         0.24           1,2,3-Trimethylbenzene         ND         5.0         ug/L         0.55           Dilsopropyl Ether (DTEE)         ND         5.0         ug/L         0.11           Penzene         ND         1.0         ug/L         0.13           Bromoform         ND         1.0         ug/L         0.41           Carbon tetrachloride         ND         1.0         <			REPORTIN	IG			
1,2,4-Trichloro- bonzene         ND         1.0         ug/L         0.15           bonzene         0.15         0.15         0.15           1,2,3-Trichloropropane         ND         1.0         ug/L         0.43           1,2,3-Trichloropropane         ND         1.0         ug/L         0.28           1,2,3-Trimethylbenzene         ND         1.0         ug/L         0.12           Vinyl acetate         ND         1.0         ug/L         0.14           Xylenes (total)         ND         2.0         ug/L         0.28           Methyl tert-butyl ether         ND         2.0         ug/L         0.28           Disopropyl Ether (DIPE)         ND         5.0         ug/L         0.24           1,2,3-Trimethylbenzene         ND         5.0         ug/L         0.059           Disopropyl Ether (DIPE)         ND         5.0         ug/L         0.64           Brenzene         ND         1.0         ug/L         0.41           Bromoform         ND         1.0         ug/L         0.13           Bromoform         ND         1.0         ug/L         0.14           Chlorobenzene         ND         1.0         ug/L         <	PARAMETER	RESULT			MDL		
benzene         ND         1.0         ug/L         0.43           1,1,2-Trichloror         ND         1.0         ug/L         0.28           1,2,2-Trifluoroethane         ND         1.0         ug/L         0.12           Vinyl acetate         ND         2.0         ug/L         0.12           Vision a p-Xylene         ND         5.0         ug/L         0.24           1,2,3-Trimethylbenzene         ND         5.0         ug/L         0.059           Disoproyal Rther (DIPE)         ND         5.0         ug/L         0.11           Perzene         ND         1.0         ug/L         0.64           Bromoform         ND         1.0         ug/L         0.13           Chorobenzene         ND         1.0         ug/L         0.13	1,2,4-Trichloro-						
1,1,2-Trichloro-       ND       1.0       ug/L       0.28         1,2,4-Trimethylbenzene       ND       1.0       ug/L       0.12         Vinyl acetate       ND       2.0       ug/L       0.19         o-Xylene       ND       1.0       ug/L       0.14         Xylenes (total)       ND       2.0       ug/L       0.28         Methyl tert-butyl ether       ND       2.0       ug/L       0.24         1,2,3-Trimethylbenzene       ND       5.0       ug/L       0.24         1,2,3-Trimethylbenzene       ND       5.0       ug/L       0.0059         Diisopropyl Ether (DIFE)       ND       5.0       ug/L       0.11         Perzene       ND       1.0       ug/L       0.67         Benzene       ND       1.0       ug/L       0.64         Bromoform       ND       1.0       ug/L       0.13         Chlorobenzene       ND       1.0       ug/L       0.15         Chlorobenzene       ND       1.0       ug/L       0.16         Chlorobenzene       ND       1.0       ug/L       0.16         Chlorobenzene       ND       1.0       ug/L       0.15				<u> </u>			
1,1,2-Trichloro-       ND       1.0       ug/L       0.28         1,2,4-Trimethylbenzene       ND       1.0       ug/L       0.12         Vinyl acetate       ND       2.0       ug/L       0.19         o-Xylene       ND       1.0       ug/L       0.14         Xylenes (total)       ND       2.0       ug/L       0.28         Methyl tert-butyl ether       ND       2.0       ug/L       0.24         1,2,3-Trimethylbenzene       ND       5.0       ug/L       0.24         1,2,3-Trimethylbenzene       ND       5.0       ug/L       0.0059         Diisopropyl Ether (DIFE)       ND       5.0       ug/L       0.11         Perzene       ND       1.0       ug/L       0.67         Benzene       ND       1.0       ug/L       0.64         Bromoform       ND       1.0       ug/L       0.13         Chlorobenzene       ND       1.0       ug/L       0.15         Chlorobenzene       ND       1.0       ug/L       0.16         Chlorobenzene       ND       1.0       ug/L       0.16         Chlorobenzene       ND       1.0       ug/L       0.15	1,2,3-Trichloropropane	ND	1.0	uq/L	0.43		
1,2,2-trifluoroethane         1,2,4-Trimethylbenzene       ND       1.0       ug/L       0.12         vinyl acetate       ND       1.0       ug/L       0.14         Xylenes (total)       ND       2.0       ug/L       0.28         Methyl tert-butyl ether       ND       2.0       ug/L       0.28         Methyl tert-butyl ether       ND       2.0       ug/L       0.28         Methyl tert-butyl ether       ND       2.0       ug/L       0.28         J,2,3-Trimethylbenzene       ND       5.0       ug/L       0.0059         Diisopropyl Ether (DIPE)       ND       5.0       ug/L       0.11         Tert-amyl methyl ether (TAME)       ND       5.0       ug/L       0.64         Bromoform       ND       1.0       ug/L       0.41         Carbon tetrachloride       ND       1.0       ug/L       0.41         Carbon tetrachloride       ND       1.0       ug/L       0.13         Chlorobenzene       ND       1.0       ug/L       0.15         Chlorobethane       ND       1.0       ug/L       0.22         Chlorobethane       ND       1.0       ug/L       0.15		ND					
1,2,4-Trimethylbenzene       ND       1.0       ug/L       0.12         Vinyl acetate       ND       2.0       ug/L       0.19         o-Xylene       ND       1.0       ug/L       0.14         Xylenes (total)       ND       2.0       ug/L       0.28         Methyl tert-butyl ether       ND       5.0       ug/L       0.24         1,2,3-Trimethylbenzene       ND       5.0       ug/L       0.20         Diisopropyl Ether (DIPE)       ND       5.0       ug/L       0.11         Tert-amyl methyl ether (TAME)       ND       5.0       ug/L       0.67         Benzene       ND       1.0       ug/L       0.41       0.64         Bromoform       ND       1.0       ug/L       0.64       0.64         Bromoform       ND       1.0       ug/L       0.16       0.15         Chlorobenzene       ND       1.0       ug/L       0.16       0.15         Chlorobenzene       ND       1.0       ug/L       0.16       0.10         Chlorobenzene       ND       1.0       ug/L       0.12       0.12         Chlorobenzene       ND       1.0       ug/L       0.16       0	1,2,2-trifluoroethane			2			
Vinyl acetate         ND         2.0         ug/L         0.19           o-Xylene         ND         1.0         ug/L         0.14           Xylenes (total)         ND         2.0         ug/L         0.28           Methyl tert-butyl ether         ND         2.0         ug/L         0.24           1,2,3-Trimethylbenzene         ND         5.0         ug/L         0.0059           Dissopropyl Ether (DTEB)         ND         5.0         ug/L         0.11           Tert-amyl methyl ether (TAME)         ND         5.0         ug/L         0.13           Bromoform         ND         1.0         ug/L         0.11           Carbon tetrachloride         ND         1.0         ug/L         0.64           Bromoform         ND         1.0         ug/L         0.15           Chlorobenzene         ND         1.0         ug/L         0.16           Chlorobenzene         ND         1.0         ug/L         0.30           Chlorobenzene         ND         1.0         ug/L         0.30           Chlorobenzene         ND         1.0         ug/L         0.22           Chlorobenzene         ND         1.0         ug/L	1,2,4-Trimethylbenzene	ND	1.0	ug/L	0.12		
o-Xylene         ND         1.0         ug/L         0.14           Xylenes (total)         ND         2.0         ug/L         0.28           Methyl tert-butyl ether         ND         5.0         ug/L         0.24           n=Xylene & p-Xylene         ND         5.0         ug/L         0.24           1,2,3-Trimethylbenzene         ND         5.0         ug/L         0.0059           Diisopropyl Ether (DIPE)         ND         5.0         ug/L         0.11           Tert-amyl methyl ether (TAME)         ND         5.0         ug/L         0.67           Benzene         ND         1.0         ug/L         0.13           Bromoform         ND         1.0         ug/L         0.41           Carbon tetrachloride         ND         1.0         ug/L         0.13           Chlorobenzene         ND         1.0         ug/L         0.16           Chlorobenzene         ND         1.0         ug/L         0.16           Chlorobenzene         ND         1.0         ug/L         0.15           Chlorobethane         ND         1.0         ug/L         0.16           Chlorobethane         ND         1.0         ug/L	Vinyl acetate	ND	2.0	uq/L			
Xylenes (total)         ND         2.0         ug/L         0.28           Methyl tert-butyl ether         ND         5.0         ug/L         0.17           m-Xylene         ND         2.0         ug/L         0.24           1,2,3-Trimethylbenzene         ND         5.0         ug/L         0.0059           Disopropyl Ether (DIPE)         ND         5.0         ug/L         0.11           Tert-amyl methyl ether (TAME)         ND         5.0         ug/L         0.64           Bromoform         ND         1.0         ug/L         0.64           Bromoform         ND         1.0         ug/L         0.13           Chlorobenzene         ND         1.0         ug/L         0.16           Chlorobenzene         ND         1.0         ug/L         0.1	o-Xylene	ND	1.0	-			
Methyl tett-butyl ether         ND         5.0         ug/L         0.17           m-Xylene & p-Xylene         ND         2.0         ug/L         0.24           1,2,3-Trimethylbenzene         ND         5.0         ug/L         0.26           Diisopropyl Ether (DIPE)         ND         5.0         ug/L         0.11           Tert-awyl methyl ether (TAME)         ND         5.0         ug/L         0.667           Benzene         ND         1.0         ug/L         0.64           Bromoform         ND         1.0         ug/L         0.41           Carbon tetrachloride         ND         1.0         ug/L         0.13           Chlorobenzene         ND         1.0         ug/L         0.16           Chlorobenzene         ND         1.0         ug/L         0.16           Chlorobenzene         ND         1.0         ug/L         0.15           Chlorobenzene         ND         1.0         ug/L         0.15           Chlorobenzene         ND         1.0         ug/L         0.15           Chlorobenzene         ND         1.0         ug/L         0.16           Chlorobenzene         ND         1.0         ug/L	Xylenes (total)	ND	2.0	-			
m-Xylene & p-Xylene         ND         2.0         ug/L         0.24           1,2,3-Trimethylbenzene         ND         5.0         ug/L         0.0059           Diisoproyl Ether (DIPE)         ND         5.0         ug/L         0.11           Tert-amyl methyl ether (TAME)         ND         5.0         ug/L         0.11           Tert-amyl methyl ether (TAME)         ND         5.0         ug/L         0.13           Bromoform         ND         1.0         ug/L         0.41           Carbon tetrachloride         ND         1.0         ug/L         0.41           Chlorobenzene         ND         1.0         ug/L         0.13           Chlorothane         ND         1.0         ug/L         0.13           Chlorothane         ND         1.0         ug/L         0.16           Chlorothane         ND         1.0         ug/L         0.29           Chlorothane         ND         1.0         ug/L         0.30           1, -Dichloroethane         ND         1.0         ug/L         0.30           1, -Dichloroptopane         ND         1.0         ug/L         0.15           1, 2-Dichloropropene         ND         1.0	Methyl tert-butyl ether	ND	5.0	-	0.17		
1,2,3-Trimethylbenzene       ND       5.0       ug/L       0.0059         Diisopropyl Ether (DTPE)       ND       5.0       ug/L       1.5         Ethyl-t-Butyl Ether (CTAME)       ND       5.0       ug/L       0.11         Tert-amyl methyl ether (TAME)       ND       5.0       ug/L       0.13         Bromoform       ND       1.0       ug/L       0.441         Carbon tetrachloride       ND       1.0       ug/L       0.41         Chlorobenzene       ND       1.0       ug/L       0.41         Chlorobenzene       ND       1.0       ug/L       0.13         Chlorobenzene       ND       1.0       ug/L       0.16         Chlorobenzene       ND       1.0       ug/L       0.29         Chlorobenzene       ND       1.0       ug/L       0.30         1,1-Dichloroethane       ND       1.0       ug/L       0.15         1,2-Dichloroptpane       ND       1.0       ug/L       0.16         cis-1,3-Dichloropropene       ND       1.0       ug/L       0.18         cis+1,3-Dichloropropene       ND       1.0       ug/L       0.19         Ithylene chloride       ND       1.0<	m-Xylene & p-Xylene	ND	2.0	-	0.24		
Disopropyl Ether (DIPE)       ND       5.0       ug/L       1.5         Ethyl-t-Butyl Ether (ETBE)       ND       5.0       ug/L       0.11         Tert-anyl methyl ether (TAME)       ND       5.0       ug/L       0.067         Benzene       ND       1.0       ug/L       0.13         Bromoform       ND       1.0       ug/L       0.41         Carbon tetrachloride       ND       1.0       ug/L       0.13         Chlorobenzene       ND       1.0       ug/L       0.41         Carbon tetrachloride       ND       1.0       ug/L       0.15         Chlorobenzene       ND       1.0       ug/L       0.16         Chlorobenzene       ND       1.0       ug/L       0.30         Chlorobenzene       ND       1.0       ug/L       0.30         Chlorobethane       ND       1.0       ug/L       0.15         Chlorobethane       ND       1.0       ug/L       0.15         1,2-Dichloroptopane       ND       1.0       ug/L       0.18         cis-1, 3-Dichloropropene       ND       1.0       ug/L       0.17         Methylene chloride       ND       1.0       ug/L		ND					
Ethyl-t-Butyl Ether (ETBE)       ND       5.0       ug/L       0.11         Tert-amyl methyl ether (TAME)       ND       5.0       ug/L       0.067         Benzene       ND       1.0       ug/L       0.13         Bromoform       ND       1.0       ug/L       0.41         Carbon tetrachloride       ND       1.0       ug/L       0.41         Chlorobenzene       ND       1.0       ug/L       0.13         Chlorobenzene       ND       1.0       ug/L       0.15         Chlorobenzene       ND       1.0       ug/L       0.29         Chlorobenzene       ND       1.0       ug/L       0.29         Chlorobenzene       ND       1.0       ug/L       0.16         Chloroform       ND       1.0       ug/L       0.16         Chlorobethane       ND       1.0       ug/L       0.15         1,1-Dichloroethane       ND       1.0       ug/L       0.15         1,2-Dichloropropane       ND       1.0       ug/L       0.14         trans-1,3-Dichloropropene       ND       1.0       ug/L       0.17         Methylene chloride       ND       1.0       ug/L       0.	Diisopropyl Ether (DIPE)	ND	5.0	-			
Tert-amyl methyl ether (TAME)       ND       5.0       ug/L       0.067         Benzene       ND       1.0       ug/L       0.13         Bromoform       ND       1.0       ug/L       0.41         Carbon tetrachloride       ND       1.0       ug/L       0.13         Chlorobenzene       ND       1.0       ug/L       0.13         Chlorobethane       ND       1.0       ug/L       0.29         Chlorobethane       ND       1.0       ug/L       0.30         1,1-Dichloroethane       ND       1.0       ug/L       0.30         1,1-Dichloroethane       ND       1.0       ug/L       0.22         1,1-Dichloroethane       ND       1.0       ug/L       0.14         trans-1,3-Dichloropropene       ND       1.0       ug/L       0.19         trans-1,3-Dichloropropene       ND       1.0       ug/L       0.19         Ethylbenzene       ND       1.0       ug/L       0.18         Tertachloroethane       ND       1.0       ug/L       0.18         Tetrachloropropene       ND       1.0       ug/L       0.29         Toluene       ND       1.0       ug/L <td< td=""><td></td><td>ND</td><td></td><td></td><td></td></td<>		ND					
Benzene         ND         1.0         ug/L         0.13           Bromoform         ND         1.0         ug/L         0.64           Bromomethane         ND         1.0         ug/L         0.13           Carbon tetrachloride         ND         1.0         ug/L         0.13           Chlorobenzene         ND         1.0         ug/L         0.15           Chlorobenzene         ND         1.0         ug/L         0.22           Chlorobenzene         ND         1.0         ug/L         0.15           Chlorobethane         ND         1.0         ug/L         0.19           1,2-Dichloropethane         ND         1.0         ug/L         0.14           trans-1,3-Dichloropropene         ND         1.0         ug/L         0.17           Methylene chloride         ND         1.0         ug/L         0.29	Tert-amyl methyl ether (TAME)	ND	5.0	-			
Bromoform         ND         1.0         ug/L         0.64           Bromomethane         ND         1.0         ug/L         0.41           Carbon tetrachloride         ND         1.0         ug/L         0.13           Chlorobenzene         ND         1.0         ug/L         0.13           Chlorobenzene         ND         1.0         ug/L         0.15           Chlorobenzene         ND         1.0         ug/L         0.29           Chlorobethane         ND         1.0         ug/L         0.16           Chlorobethane         ND         1.0         ug/L         0.15           1,1-Dichloroethane         ND         1.0         ug/L         0.15           1,2-Dichloropethane         ND         1.0         ug/L         0.19           1,2-Dichloropethane         ND         1.0         ug/L         0.19           1,2-Dichloropropane         ND         1.0         ug/L         0.14           trans-1,3-Dichloropropene         ND         1.0         ug/L         0.17           Methylene chloride         ND         1.0         ug/L         0.29           Toluene         ND         1.0         ug/L         0.2		ND		-			
Bromomethane         ND         1.0         ug/L         0.41           Carbon tetrachloride         ND         1.0         ug/L         0.13           Chlorobenzene         ND         1.0         ug/L         0.15           Chlorobethane         ND         1.0         ug/L         0.29           Chloroform         ND         1.0         ug/L         0.30           1,1-Dichloroethane         ND         1.0         ug/L         0.30           1,1-Dichloroethane         ND         1.0         ug/L         0.30           1,2-Dichloroethane         ND         1.0         ug/L         0.22           1,1-Dichloroethane         ND         1.0         ug/L         0.19           1,2-Dichloropropane         ND         1.0         ug/L         0.19           1,2-Dichloropropane         ND         1.0         ug/L         0.19           trans-1,3-Dichloropropene         ND         1.0         ug/L         0.17           Methylene chloride         ND         1.0         ug/L         0.33           1,1,2,2-Tetrachloroethane         ND         1.0         ug/L         0.31           1,1,2,2-Tetrachloroethane         ND         1.0 <td>Bromoform</td> <td>ND</td> <td>1.0</td> <td>-</td> <td></td>	Bromoform	ND	1.0	-			
Carbon tetrachloride         ND         1.0         ug/L         0.13           Chlorobenzene         ND         1.0         ug/L         0.15           Chlorobenzene         ND         1.0         ug/L         0.29           Chlorobenzene         ND         1.0         ug/L         0.29           Chlorobenzene         ND         1.0         ug/L         0.30           Callohoropropane         ND         1.0         ug/L         0.14           trans-1,3-Dichloropropene         ND         1.0         ug/L         0.33           cis-1,3-Dichloroptodethane         ND         1.0         ug/L         0.29	Bromomethane	ND		-			
Chlorobenzene         ND         1.0         ug/L         0.15           Chlorothane         ND         1.0         ug/L         0.29           Chlorothane         ND         1.0         ug/L         0.16           Chlorothane         ND         1.0         ug/L         0.30           1,1-Dichloroethane         ND         1.0         ug/L         0.30           1,2-Dichloroethane         ND         1.0         ug/L         0.22           1,1-Dichloroethane         ND         1.0         ug/L         0.15           1,2-Dichloroethane         ND         1.0         ug/L         0.19           1,2-Dichloropropane         ND         1.0         ug/L         0.14           trans-1,3-Dichloropropene         ND         1.0         ug/L         0.17           Methylene chloride         ND         1.0         ug/L         0.33           1,1,2,2-Tetrachloroethane         ND         1.0         ug/L         0.29           Toluene         ND         1.0         ug/L         0.29           Toluene         ND         1.0         ug/L         0.22           Trichloroethane         ND         1.0         ug/L	Carbon tetrachloride		1.0	-			
Chloroethane         ND         1.0         ug/L         0.29           Chloroform         ND         1.0         ug/L         0.16           Chloromethane         ND         1.0         ug/L         0.30           1,1-Dichloroethane         ND         1.0         ug/L         0.15           1,2-Dichloroethane         ND         1.0         ug/L         0.22           1,1-Dichloroethane         ND         1.0         ug/L         0.19           1,2-Dichloroptopane         ND         1.0         ug/L         0.14           trans-1,3-Dichloropropene         ND         1.0         ug/L         0.14           trans-1,3-Dichloropropene         ND         1.0         ug/L         0.17           Methylene chloride         ND         1.0         ug/L         0.33           1,1,2,2-Tetrachloroethane         ND         1.0         ug/L         0.29           Toluene         ND         1.0         ug/L         0.29           Toluene         ND         1.0         ug/L         0.22           Trichloroethane         ND         1.0         ug/L         0.22           Trichloroethane         ND         1.0         ug/L	Chlorobenzene	ND	1.0	-			
Chloroform         ND         1.0         ug/L         0.16           Chloromethane         ND         1.0         ug/L         0.30           1,1-Dichloroethane         ND         1.0         ug/L         0.15           1,2-Dichloroethane         ND         1.0         ug/L         0.22           1,1-Dichloroethane         ND         1.0         ug/L         0.19           1,2-Dichloropropane         ND         1.0         ug/L         0.14           trans-1,3-Dichloropropene         ND         1.0         ug/L         0.14           trans-1,3-Dichloropropene         ND         1.0         ug/L         0.17           Methylene chloride         ND         1.0         ug/L         0.33           1,1,2,2-Tetrachloroethane         ND         1.0         ug/L         0.18           Tetrachloroethane         ND         1.0         ug/L         0.13           1,1,1-Trichloroethane         ND         1.0         ug/L         0.22           Trichloroethane         ND         1.0         ug/L         0.22           Trichloroethane         ND         1.0         ug/L         0.22           Trichloroethane         ND         1.0 </td <td>Chloroethane</td> <td>ND</td> <td></td> <td>-</td> <td></td>	Chloroethane	ND		-			
Chloromethane         ND         1.0         ug/L         0.30           1,1-Dichloroethane         ND         1.0         ug/L         0.15           1,2-Dichloroethane         ND         1.0         ug/L         0.22           1,1-Dichloroethane         ND         1.0         ug/L         0.22           1,1-Dichloroethane         ND         1.0         ug/L         0.19           1,2-Dichloropropane         ND         1.0         ug/L         0.14           trans-1,3-Dichloropropene         ND         1.0         ug/L         0.19           Ethylbenzene         ND         1.0         ug/L         0.17           Methylene chloride         ND         1.0         ug/L         0.33           1,1,2,2-Tetrachloroethane         ND         1.0         ug/L         0.33           1,1,2,2-Tetrachloroethane         ND         1.0         ug/L         0.22           Toluene         ND         1.0         ug/L         0.13           1,1,1-Trichloroethane         ND         1.0         ug/L         0.22           Trichloroethane         ND         1.0         ug/L         0.22           Trichloroethane         ND         1.0	Chloroform			=			
1,1-Dichloroethane       ND       1.0       ug/L       0.15         1,2-Dichloroethane       ND       1.0       ug/L       0.22         1,1-Dichloroethane       ND       1.0       ug/L       0.19         1,2-Dichloropropane       ND       1.0       ug/L       0.19         1,2-Dichloropropane       ND       1.0       ug/L       0.18         cis-1,3-Dichloropropene       ND       1.0       ug/L       0.14         trans-1,3-Dichloropropene       ND       1.0       ug/L       0.19         Ethylbenzene       ND       1.0       ug/L       0.17         Methylene chloride       ND       1.0       ug/L       0.29         Toluene       ND       1.0       ug/L       0.29         Toluene       ND       1.0       ug/L       0.22         Trichloroethane       ND       1.0       ug/L       0.2	Chloromethane			-			
1,2-Dichloroethane       ND       1.0       ug/L       0.22         1,1-Dichloroethene       ND       1.0       ug/L       0.19         1,2-Dichloropropane       ND       1.0       ug/L       0.18         cis-1,3-Dichloropropene       ND       1.0       ug/L       0.14         trans-1,3-Dichloropropene       ND       1.0       ug/L       0.19         Ethylbenzene       ND       1.0       ug/L       0.19         Surget       ND       1.0       ug/L       0.14         Tans-1,3-Dichloropropene       ND       1.0       ug/L       0.19         Ethylbenzene       ND       1.0       ug/L       0.19         Surget       ND       1.0       ug/L       0.17         Methylene chloride       ND       1.0       ug/L       0.33         1,1,2,2-Tetrachloroethane       ND       1.0       ug/L       0.29         Toluene       ND       1.0       ug/L       0.22         Toluene       ND       1.0       ug/L       0.22         Trichloroethene       ND       1.0       ug/L       0.22         Vinyl chloride       ND       1.0       ug/L       0.22	1,1-Dichloroethane	ND '		-			
1,1-Dichloroethene       ND       1.0       ug/L       0.19         1,2-Dichloropropane       ND       1.0       ug/L       0.18         cis-1,3-Dichloropropene       ND       1.0       ug/L       0.14         trans-1,3-Dichloropropene       ND       1.0       ug/L       0.19         Ethylbenzene       ND       1.0       ug/L       0.19         Methylene chloride       ND       1.0       ug/L       0.17         Methylene chloride       ND       1.0       ug/L       0.33         1,1,2,2-Tetrachloroethane       ND       1.0       ug/L       0.29         Toluene       ND       1.0       ug/L       0.13         1,1,1-Trichloroethane       ND       1.0       ug/L       0.22         Trichloroethene       ND       1.0       ug/L       0.22         Trichloroethene       ND       1.0       ug/L       0.22         Vinyl chloride       ND       1.0       ug/L       0.22         Vinyl chloride       ND       1.0       ug/L       0.22         Vinyl chloride       ND       1.0       ug/L       0.22         Jibromofluoromethane       98       (73 - 122)       <				-			
1,2-Dichloropropane       ND       1.0       ug/L       0.18         cis-1,3-Dichloropropene       ND       1.0       ug/L       0.14         trans-1,3-Dichloropropene       ND       1.0       ug/L       0.19         Ethylbenzene       ND       1.0       ug/L       0.17         Methylene chloride       ND       1.0       ug/L       0.33         1,1,2,2-Tetrachloroethane       ND       1.0       ug/L       0.18         Tetrachloroethene       ND       1.0       ug/L       0.33         1,1,2,2-Tetrachloroethane       ND       1.0       ug/L       0.29         Toluene       ND       1.0       ug/L       0.29         Toluene       ND       1.0       ug/L       0.22         Trichloroethane       ND       1.0       ug/L       0.22         Trichloroethene       ND       1.0       ug/L       0.22         Vinyl chloride       ND       1.0       ug/L       0.22         SURROGATE       PERCENT       RECOVERY       LIMITS         Dibromofluoromethane       98       (73 - 122)       1.2-Dichloroethane-d4       97         1,2-Dichloroethane-d4       97       (61 - 128)	1,1-Dichloroethene	ND	1.0				
cis-1,3-Dichloropropene       ND       1.0       ug/L       0.14         trans-1,3-Dichloropropene       ND       1.0       ug/L       0.19         Ethylbenzene       ND       1.0       ug/L       0.17         Methylene chloride       ND       1.0       ug/L       0.33         1,1,2,2-Tetrachloroethane       ND       1.0       ug/L       0.33         1,1,2,2-Tetrachloroethane       ND       1.0       ug/L       0.29         Toluene       ND       1.0       ug/L       0.13         1,1,1-Trichloroethane       ND       1.0       ug/L       0.22         Trichloroethane       ND       1.0       ug/L       0.22         Vinyl chloride       ND       1.0       ug/L       0.22         Vinyl chloride       ND       1.0       ug/L       0.22         Vinyl chloroethane       98       (73 - 122)       1,2-Dichloroethane-d4       97       (61 - 128)         Toluene-d8       91       (76 - 110)       (76 - 110)       10       10	1,2-Dichloropropane	ND		-			
trans-1,3-DichloropropeneND1.0ug/L0.19EthylbenzeneND1.0ug/L0.17Methylene chlorideND1.0ug/L0.331,1,2,2-TetrachloroethaneND1.0ug/L0.18TetrachloroetheneND1.0ug/L0.29TolueneND1.0ug/L0.131,1,1-TrichloroethaneND1.0ug/L0.22TrichloroetheneND1.0ug/L0.17Vinyl chlorideND1.0ug/L0.22PERCENTRECOVERY1.0ug/L0.221,2-Dichloroethane98(73 - 122)1,2-Dichloroethane-d497(61 - 128)Toluene-d891(76 - 110)		ND	1.0	-			
Ethylbenzene       ND       1.0       ug/L       0.17         Methylene chloride       ND       1.0       ug/L       0.33         1,1,2,2-Tetrachloroethane       ND       1.0       ug/L       0.18         Tetrachloroethene       ND       1.0       ug/L       0.29         Toluene       ND       1.0       ug/L       0.13         1,1,1-Trichloroethane       ND       1.0       ug/L       0.22         Trichloroethene       ND       1.0       ug/L       0.22         Trichloroethene       ND       1.0       ug/L       0.17         Vinyl chloride       ND       1.0       ug/L       0.22         Vinyl chloromethane       98       (73 - 122)       1.2       1.2         1,2-Dichloroethane-d4       97       (61 - 128)       1.0       1.0         Toluene-d8       91       (76 - 110)       1.0       1.0       1.0		ND		-			
Methylene chloride       ND       1.0       ug/L       0.33         1,1,2,2-Tetrachloroethane       ND       1.0       ug/L       0.18         Tetrachloroethene       ND       1.0       ug/L       0.29         Toluene       ND       1.0       ug/L       0.13         1,1,1-Trichloroethane       ND       1.0       ug/L       0.22         Trichloroethane       ND       1.0       ug/L       0.22         Trichloroethene       ND       1.0       ug/L       0.17         Vinyl chloride       ND       1.0       ug/L       0.22         EURROGATE       PERCENT       RECOVERY       LIMITS         Dibromofluoromethane       98       (73 - 122)				-			
1,1,2,2-Tetrachloroethane       ND       1.0       ug/L       0.18         Tetrachloroethene       ND       1.0       ug/L       0.29         Toluene       ND       1.0       ug/L       0.13         1,1,1-Trichloroethane       ND       1.0       ug/L       0.22         Trichloroethene       ND       1.0       ug/L       0.17         Vinyl chloride       ND       1.0       ug/L       0.22         SURROGATE       PERCENT       RECOVERY       LIMITS         Dibromofluoromethane       98       (73 - 122)		ND		-			
Tetrachloroethene       ND       1.0       ug/L       0.29         Toluene       ND       1.0       ug/L       0.13         1,1,1-Trichloroethane       ND       1.0       ug/L       0.22         Trichloroethene       ND       1.0       ug/L       0.17         Vinyl chloride       ND       1.0       ug/L       0.22         SURROGATE       PERCENT       RECOVERY       LIMITS         Dibromofluoromethane       98       (73 - 122)				-			
Toluene       ND       1.0       ug/L       0.13         1,1,1-Trichloroethane       ND       1.0       ug/L       0.22         Trichloroethene       ND       1.0       ug/L       0.17         Vinyl chloride       ND       1.0       ug/L       0.22         SURROGATE       PERCENT       RECOVERY       LIMITS         Dibromofluoromethane       98       (73 - 122)		ND	1.0				
1,1,1-Trichloroethane       ND       1.0       ug/L       0.22         Trichloroethene       ND       1.0       ug/L       0.17         Vinyl chloride       ND       1.0       ug/L       0.22         SURROGATE       PERCENT       RECOVERY       LIMITS         Dibromofluoromethane       98       (73 - 122)         1,2-Dichloroethane-d4       97       (61 - 128)         Toluene-d8       91       (76 - 110)	Toluene	ND		-			
TrichloroetheneND1.0ug/L0.17Vinyl chlorideND1.0ug/L0.22SURROGATEPERCENTRECOVERYLIMITSDibromofluoromethane98(73 - 122)1,2-Dichloroethane-d497(61 - 128)Toluene-d891(76 - 110)	1,1,1-Trichloroethane			-			
Vinyl chlorideND1.0ug/L0.22PERCENTRECOVERYLIMITSSURROGATE98(73 - 122)Dibromofluoromethane98(73 - 128)1,2-Dichloroethane-d497(61 - 128)Toluene-d891(76 - 110)				-			
SURROGATEPERCENTRECOVERYDibromofluoromethane98(73 - 122)1,2-Dichloroethane-d497(61 - 128)Toluene-d891(76 - 110)	Vinyl chloride		1.0				
SURROGATE         RECOVERY         LIMITS           Dibromofluoromethane         98         (73 - 122)           1,2-Dichloroethane-d4         97         (61 - 128)           Toluene-d8         91         (76 - 110)	-						
SURROGATE         RECOVERY         LIMITS           Dibromofluoromethane         98         (73 - 122)           1,2-Dichloroethane-d4         97         (61 - 128)           Toluene-d8         91         (76 - 110)		PERCENT	RECOVERY				
Dibromofluoromethane98(73 - 122)1,2-Dichloroethane-d497(61 - 128)Toluene-d891(76 - 110)	SURROGATE						
1,2-Dichloroethane-d497(61 - 128)Toluene-d891(76 - 110)	Dibromofluoromethane	98		2)			
Toluene-d8 91 (76 - 110)	1,2-Dichloroethane-d4	97					
	Toluene-d8	91					
	4-Bromofluorobenzene	86					

## TB-061010

## GC/MS Volatiles

Lot-Sample #: A0F110578-001

Work Order #: L2TEX1AA

Matrix: WQ

MASS SPECTROMETER/DATA SYSTEM (MSDS) TENTATIVELY IDENTIFIED COMPOUNDS

		ESTIMATED	RETENTION	
PARAMETER	CAS #	RESULT	TIME	UNITS
Isopropyl Alcohol	67-63-0	2.2 NJ M	3.0587	ug/L
Freon 22		ND M	l	ug/L

NOTE(S):

M: Result was measured against nearest internal standard assuming a response factor of 1.

# Client Sample ID: TB-061110

## GC/MS Volatiles

Lot-Sample #: A0F12	0439-003 Work Order #.	: L2T611AA	Matrix	WQ
Date Sampled: 06/11	/10 07:00 Date Received	: 06/12/10		-
<b>Prep Date:</b> 06/21	/10 Analysis Date	: 06/21/10		
Prep Batch #: 01732	20			
Dilution Factor: 1	Initial Wgt/Vo	<b>bl:</b> 5 mL	Final Wgt/Vol:	5 mL

Method..... SW846 8260B

		REPORTING		
PARAMETER	RESULT	LIMIT	UNITS	MDL
Acetone	36	5.0	ug/L	1.1
Bromobenzene	ND	1.0	ug/L	0.13
Bromochloromethane	ND	1.0	ug/L	0.29
Bromodichloromethane	ND	1.0	ug/L	0.15
2-Butanone	ND	5.0	uq/L	0.57
n-Butylbenzene	ND	1.0	ug/L	0.12
sec-Butylbenzene	ND	1.0	ug/L	0.13
tert-Butylbenzene	ND	1.0	ug/L	0.13
Carbon disulfide	ND	1.0	ug/L	0.13
Dibromochloromethane	ND	1.0	ug/L	0.18
1,2-Dibromo-3-chloro-	ND	2.0	ug/L	0.67
propane			2	
2-Chloroethyl vinyl ether	ND	5.0	ug/L	0.99
2-Chlorotoluene	ND	1.0	ug/L	0.11
4-Chlorotoluene	ND	1.0	ug/L	0.18
1,2-Dibromoethane	ND	1.0	ug/L	0.24
Dibromomethane	ND	1.0	ug/L	0.28
1,2-Dichlorobenzene	ND	1.0	ug/L	0.13
1,3-Dichlorobenzene	ND	1.0	ug/L	0.14
1,4-Dichlorobenzene	ND	1.0	ug/L	0.13
Dichlorodifluoromethane	ND	1.0	ug/L	0.31
cis-1,2-Dichloroethene	ND	1.0	ug/L	0.17
trans-1,2-Dichloroethene	ND	1.0	ug/L	0.19
1,3-Dichloropropane	ND	1.0	ug/L	0.16
2,2-Dichloropropane	ND	1.0	ug/L	0.13
1,1-Dichloropropene	ND	1.0	ug/L	0.13
Trichlorofluoromethane	ND	1.0	ug/L	0.21
Hexachlorobutadiene	ND	1.0	ug/L	0.30
2-Hexanone	ND	5.0	ug/L	0.41
Isopropylbenzene	ND	1.0	ug/L	0.13
p-Isopropyltoluene	ND	1.0	ug/L	0.12
tert-Butyl alcohol	ND	20	ug/L	3.9
4-Methyl-2-pentanone	ND	5.0	uq/L	0.32
Naphthalene	ND	1.0	ug/L	0.24
n-Propylbenzene	ND	1.0	ug/L	0.14
Styrene	ND	1.0	ug/L	0.11
1,1,1,2-Tetrachloroethane	ND	1.0	ug/L	0.23
1,2,3-Trichlorobenzene	ND	1.0	ug/L	0.17
		-		

## Client Sample ID: TB-061110

#### GC/MS Volatiles

Lot-Sample #...: A0F120439-003 Work Order #...: L2T611AA Matrix.......... WQ

.

		REPORTING		
PARAMETER	RESULT	LIMIT	UNITS	MDL
1,2,4-Trichloro-	ND	1.0	ug/L	0.15
benzene				
1,2,3-Trichloropropane	ND	1.0	ug/L	0.43
1,1,2-Trichloro-	ND	1.0	ug/L	0.28
1,2,2-trifluoroethane				
1,2,4-Trimethylbenzene	ND	1.0	ug/L	0.12
Vinyl acetate	ND	2.0	ug/L	0.19
o-Xylene	ND	1.0	ug/L	0.14
Xylenes (total)	ND	2.0	ug/L	0.28
Methyl tert-butyl ether	ND	5.0	ug/L	0.17
m-Xylene & p-Xylene	ND	2.0	ug/L	0.24
1,2,3-Trimethylbenzene	ND	5.0	ug/L	0.0059
Diisopropyl Ether (DIPE)	ND	5.0	ug/L	1.5
Ethyl-t-Butyl Ether (ETBE)	ND	5.0	ug/L	0.11
Tert-amyl methyl ether (TAME)	ND	5.0	ug/L	0.067
Benzene	ND	1.0	ug/L	0.13
Bromoform	ND	1.0	ug/L	0.64
Bromomethane	ND	1.0	ug/L	0.41
Carbon tetrachloride	ND	1.0	ug/L	0.13
Chlorobenzene	ND	1.0	ug/L	0.15
Chloroethane	ND	1.0	ug/L	0.29
Chloroform	ND	1.0	ug/L	0.16
Chloromethane	ND	1.0	ug/L	0.30
1,1-Dichloroethane	ND	1.0	ug/L	0.15
1,2-Dichloroethane	ND	1.0	ug/L	0.22
1,1-Dichloroethene	ND	1.0	ug/L	0.19
1,2-Dichloropropane	ND	1.0	ug/L	0.18
cis-1,3-Dichloropropene	ND	1.0	ug/L	0.14
trans-1,3-Dichloropropene	ND	1.0	ug/L	0.19
Ethylbenzene	ND	1.0	ug/L	0.17
Methylene chloride	ND	1.0	ug/L	0.33
1,1,2,2-Tetrachloroethane	ND	1.0	ug/L	0.18
Tetrachloroethene	ND	1.0	ug/L	0.29
Toluene	ND	1.0	ug/L	0.13
1,1,1-Trichloroethane	ND	1.0	ug/L	0.22
Trichloroethene	ND	1.0	ug/L	0.17
Vinyl chloride	ND	1.0	ug/L	0.22
	PERCENT	RECOVERY		
SURROGATE	RECOVERY	LIMITS	-	
Dibromofluoromethane	99	(73 - 122)		
1,2-Dichloroethane-d4	99	(61 - 128)		
Toluene-d8	90	(76 - 110)		
4-Bromofluorobenzene	86	(74 - 116)		

## TB-061110

#### GC/MS Volatiles

Lot-Sample #: A0F120439-003 Work Order #: L2T611AA Matrix: WQ

MASS SPECTROMETER/DATA SYSTEM (MSDS) TENTATIVELY IDENTIFIED COMPOUNDS

		ESTIMATED		RETENTION	
PARAMETER	CAS #	RESULT		TIME	UNITS
Isopropyl Alcohol	67-63-0	4.7 NJ	М	3.0587	ug/L
Silanol, trimethyl-	1066-40-6	1.2 NJ	М	4.2657	ug/L
Freon 22		ND	М		ug/L

#### NOTE (S):

M: Result was measured against nearest internal standard assuming a response factor of 1.

## Client Sample ID: MRC-95D-061110

## GC/MS Semivolatiles

Lot-Sample #: A0F1204	39-002 Work Order #:	L2T6X1AN Matr	ix WG
Date Sampled: 06/11/1	0 09:28 Date Received:	06/12/10	
Prep Date 06/14/1	0 Analysis Date:	06/16/10	
Prep Batch #: 0165058			
Dilution Factor: 1	Initial Wgt/Vol:	1040 mL Fina	1 Wgt/Vol: 2 mL

Method..... SW846 8270C

		REPORTIN	IG	
PARAMETER	RESULT	LIMIT	UNITS	MDL
Acetophenone	ND	1.0	ug/L	0.34
Atrazine	ND	1.0 .	ug/L	0.34
1,4-Dioxane	ND	1.0	ug/L	0.49
N-Nitrosodimethylamine	ND	1.0	ug/L	0.31
Dibenzo(a,h)anthracene	ND	0.20	ug/L	0.10
Benzaldehyde	ND	1.0	ug/L	0.39
1,1'-Biphenyl	ND	1.0	ug/L	0.80
Caprolactam	ND	5.0	ug/L	0.80
Phenol	ND	1.0	ug/L	0.60
bis(2-Chloroethyl)- ether	ND	1.0	ug/L	0.10
2-Chlorophenol	ND	1.0	ug/L	0.29
2-Methylphenol	ND	1.0	ug/L	0.80
2,2'-oxybis(1-Chloro- propane)	ND	1.0	ug/L	0.40
4-Methylphenol	ND	1.0	ug/L	0.80
N-Nitrosodi-n-propyl- amine	ND	1.0	ug/L	0.80
Hexachloroethane	ND	1.0	ug/L	0.80
Nitrobenzene	ND	1.0	ug/L	0.040
Isophorone	ND	1.0	ug/L	0.27
2-Nitrophenol	ND	2.0	ug/L	0.28
2,4-Dimethylphenol	ND	2.0	ug/L	0.80
bis(2-Chloroethoxy) methane	ND	1.0	ug/L	0.32
2,4-Dichlorophenol	ND	2.0	ug/L	0.80
Naphthalene	ND	0.20	ug/L	0.10
4-Chloroaniline	ND	2.0	ug/L	0.80
Hexachlorobutadiene	ND	1.0	ug/L	0.27
4-Chloro-3-methylphenol	ND	2.0	ug/L	0.80
2-Methylnaphthalene	ND	0.20	ug/L	0.10
Hexachlorocyclopenta- diene	ND	10	ug/L	0.80
2,4,6-Trichloro- phenol	ND	5.0	ug/L	0.80
2,4,5-Trichloro- phenol	ND	5.0	ug/L	0.30
2-Chloronaphthalene	ND	1.0	ug/L	0.10

## Client Sample ID: MRC-95D-061110

#### GC/MS Semivolatiles

Lot-Sample #...: A0F120439-002 Work Order #...: L2T6X1AN

Matrix..... WG

		REPORTIN	IG		
PARAMETER	RESULT	LIMIT	UNITS	MDL	
2-Nitroaniline	ND	2.0	ug/L	0.80	
Dimethyl phthalate	ND	1.0	ug/L	0.29	
Acenaphthylene	ND	0.20	ug/L	0.10	
2,6-Dinitrotoluene	ND	5.0	ug/L	0.80	
3-Nitroaniline	ND	2.0	ug/L	0.28	
Acenaphthene	ND	0.20	ug/L	0.10	
2,4-Dinitrophenol	ND	5.0	ug/L	2.4	
4-Nitrophenol	ND	5.0	ug/L	2.4	
Dibenzofuran	ND	1.0	ug/L	0.10	
2,4-Dinitrotoluene	ND	5.0	ug/L	0.27	
Diethyl phthalate	ND	1.0	ug/L	0.60	
4-Chlorophenyl phenyl	ND	2.0	ug/L	0.30	
ether					
Fluorene	ND	0.20	ug/L	0.10	
4-Nitroaniline	ND	2.0	ug/L	0.80	
4,6-Dinitro-	ND	5.0	ug/L	2.4	
2-methylphenol					
N-Nitrosodiphenylamine	ND	1.0	ug/L	0.31	
4-Bromophenyl phenyl ether	ND	2.0	ug/L	0.80	
Hexachlorobenzene	ND	0.20	uq/L	0.10	
Pentachlorophenol	ND	5.0	ug/L ug/L	2.4	
Phenanthrene	ND	0.20	ug/L ug/L	0.10	
Anthracene	ND	0.20	ug/L ug/L	0.10	
Carbazole	ND	1.0	ug/L ug/L	0.28	
Di-n-butyl phthalate	ND	1.0	ug/L ug/L	0.67	
Fluoranthene	ND	0.20	ug/L ug/L	0.10	
Pyrene	ND	0.20	ug/L	0.10	
Butyl benzyl phthalate	ND	1.0	ug/L ug/L	0.80	
3,3'-Dichlorobenzidine	ND	5.0	ug/L	0.37	
Benzo (a) anthracene	ND	0.20	ug/L	0.10	
Chrysene	ND	0.20	ug/L	0.10	
bis(2-Ethylhexyl)	ND	2.0	ug/L	0.80	
phthalate		2.0	4971	0.00	
Di-n-octyl phthalate	ND	1.0	ug/L	0.80	
Benzo(b)fluoranthene	ND	0.20	ug/L	0.10	
Benzo(k)fluoranthene	ND	0.20	ug/L	0.10	
Benzo(a)pyrene	ND	0.20	ug/L	0.10	
Indeno(1,2,3-cd)pyrene	ND	0.20	ug/L	0.10	
Benzo(ghi)perylene	ND	0.20	ug/L	0.10	

## Client Sample ID: MRC-95D-061110

## GC/MS Semivolatiles

Lot-Sample #...: A0F120439-002 Work Order #...: L2T6X1AN

Matrix..... WG

SURROGATE	PERCENT RECOVERY	RECOVERY LIMITS
Nitrobenzene-d5	56	(27 - 111)
2-Fluorobiphenyl	53	(28 - 110)
Terphenyl-d14	64	(37 - 119)
Phenol-d5	61	(10 - 110)
2-Fluorophenol	59	(10 - 110)
2,4,6-Tribromophenol	65	(22 - 120)

## Client Sample ID: MRC-96D-061110

#### GC/MS Semivolatiles

Lot-Sample #:	A0F120439-001	Work Order #:	L2T531AC	Matrix:	WG
Date Sampled:	06/11/10 12:45	Date Received:			
Prep Date	06/14/10	Analysis Date:	06/16/10		
Prep Batch #:	0165058				
Dilution Factor:	1	<pre>Initial Wgt/Vol:</pre>	1000 mL	Final Wgt/Vol:	2 mL
		Method:			

REPORTING PARAMETER RESULT LIMIT UNITS MDL Acetophenone ND 1.0 uq/L 0.34 Atrazine ND 1.0 uq/L 0.34 1,4-Dioxane ND 1.0 0.49 ug/L N-Nitrosodimethylamine ND 1.0 uq/L 0.31 Dibenzo(a, h) anthracene ND 0.20 ug/L 0.10 Benzaldehyde ND 1.0 ug/L 0.39 1,1'-Biphenvl ND 1.0 ug/L 0.80 Caprolactam ND 5.0 ug/L 0.80 Phenol ND 1.0 ug/L 0.60 bis(2-Chloroethyl)-ND 1.0 ug/L 0.10 ether 2-Chlorophenol ND 1.0 uq/L 0.29 2-Methylphenol ND 1.0 ug/L 0.80 2,2!-oxybis(1-Chloro-ND 1.0 0.40 ug/L propane) 4-Methylphenol ND 1.0 uq/L 0.80 N-Nitrosodi-n-propyl-ND 1.0 ug/L 0.80 amine Hexachloroethane ND 1.0 ug/L 0.80 Nitrobenzene ND 1.0 ug/L 0.040 Isophorone ND 1.0 ug/L 0.27 2-Nitrophenol ND 2.0 uq/L 0.28 2,4-Dimethylphenol ND 2.0 uq/L 0.80 bis(2-Chloroethoxy) ND 1.0 ug/L 0.32 methane 2,4-Dichlorophenol ND 2.0 ug/L 0.80 Naphthalene ND 0.20 ug/L 0.10 4-Chloroaniline ND 2.0 0.80 ug/L Hexachlorobutadiene ND 1.0 ug/L 0.27 4-Chloro-3-methylphenol ND 2.0 ug/L 0.80 2-Methylnaphthalene ND 0.20 ug/L 0.10 Hexachlorocyclopenta-ND 10 ug/L 0.80 diene 2,4,6-Trichloro-ND 5.0 ug/L 0.80 phenol 2,4,5-Trichloro-ND 5.0 uq/L 0.30 phenol 2-Chloronaphthalene ND 1.0 0.10 ug/L

# Client Sample ID: MRC-96D-061110

## GC/MS Semivolatiles

Lot-Sample #...: A0F120439-001 Work Order #...: L2T531AC Matrix...... WG

PARAMETER	RESULT	REPORTI		
2-Nitroaniline	<u>RESOLT</u> ND	LIMIT	UNITS	MDL
Dimethyl phthalate		2.0	ug/L	0.80
Acenaphthylene	ND	1.0	ug/L	0.29
2,6-Dinitrotoluene	ND	0.20	ug/L	0.10
3-Nitroaniline	ND	5.0	ug/L	. 0.80
Acenaphthene	ND	2.0	ug/L	0.28
-	ND	0.20	ug/L	0.10
2,4-Dinitrophenol	ND	5.0	ug/L	2.4
4-Nitrophenol	ND	5.0	ug/L	2.4
Dibenzofuran	ND	1.0	ug/L	0.10
2,4-Dinitrotoluene	ND	5.0	ug/L	0.27
Diethyl phthalate	ND	1.0	ug/L	0.60
4-Chlorophenyl phenyl ether	ND	2.0	ug/L	0.30
Fluorene	ND	0.20	ug/L	0.10
4-Nitroaniline	ND	2.0	ug/L ug/L	0.80
4,6-Dinitro-	ND	5.0	ug/L ug/L	2.4
2-methylphenol		5.0	ug/L	2.4
N-Nitrosodiphenylamine	ND	1.0	ug/L	0.01
4-Bromophenyl phenyl	ND	2.0	-	0.31
ether		2.0	ug/L	0.80
Hexachlorobenzene	ND	0.20		
Pentachlorophenol	ND	5.0	ug/L	0.10
Phenanthrene	ND	0.20	ug/L	2.4
Anthracene	ND		ug/L	0.10
Carbazole	ND	0.20	ug/L	0.10
Di-n-butyl phthalate	ND	1.0	ug/L	0.28
Fluoranthene		1.0	ug/L	0.67
Pyrene	ND	0.20	ug/L	0.10
Butyl benzyl phthalate	ND	0.20	ug/L	0.10
3,3'-Dichlorobenzidine	ND	1.0	ug/L	0.80
Benzo(a) anthracene	ND	5.0	ug/L	0.37
Chrysene	ND	0.20	ug/L	0.10
-	ND	0.20	ug/L	0.10
ois(2-Ethylhexyl) phthalate	2.1 B	2.0	ug/L	0.80
Di-n-octyl phthalate	ND	1.0	ug/L	0.80
Benzo(b)fluoranthene	ND	0.20	ug/L ug/L	
Benzo(k)fluoranthene	ND	0.20		0.10
Benzo (a) pyrene	ND		ug/L	0.10
Indeno(1,2,3-cd)pyrene	ND	0.20	ug/L	0.10
Benzo(ghi)perylene		0.20	ug/L	0.10
erre (arr) ber Arene	ND	0.20	ug/L	0.10

## Client Sample ID: MRC-96D-061110

## GC/MS Semivolatiles

Lot-Sample #...: A0F120439-001 Work Order #...: L2T531AC

Matrix..... WG

SURROGATE	PERCENT RECOVERY	RECOVERY LIMITS
Nitrobenzene-d5	65	(27 - 111)
2-Fluorobiphenyl	62	(28 - 110)
Terphenyl-d14	82	(37 - 119)
Phenol-d5	70	(10 - 110)
2-Fluorophenol	70	(10 - 110)
2,4,6-Tribromophenol	64	(22 - 120)

## NOTE (S):

B Method blank contamination. The associated method blank contains the target analyte at a reportable level.

# Client Sample ID: MRC-MW93D-061010

## GC/MS Semivolatiles

Lot-Sample #:	A0F110578-002	Work Order #: L2TE	81AC Matrix	• MC
Date Sampled:	06/10/10 10:23	Date Received: 06/1	1/10	••• WG
Prep Date:		Analysis Date: 06/1		
Prep Batch <b>#:</b>			0,10	
Dilution Factor:	1	Initial Wgt/Vol: 1040	mL Final Wgt/Vol	<b>:</b> 2 mT.

Method.....: SW846 8270C

/gt/Vol..: 2 mL

		REPORTI	NG	
PARAMETER	RESULT	LIMIT	UNITS	MDL
Acetophenone	ND	1.0	ug/L	0.34
Atrazine	ND	1.0	ug/L	0.34
1,4-Dioxane	ND	1.0	ug/L	0.49
N-Nitrosodimethylamine	ND	1.0	ug/L	0.31
Dibenzo(a,h)anthracene	ND	0.20	ug/L	0.10
Benzaldehyde	ND	1.0	ug/L	0.39
1,1'-Biphenyl	ND	1.0	ug/L	0.80
Caprolactam	ND	5.0	ug/L	0.80
Phenol	ND	1.0	ug/L	0.60
bis(2-Chloroethyl)- ether	ND	1.0	ug/L	0.10
2-Chlorophenol	ND	1.0	ug/L	0.29
2-Methylphenol	ND	1.0	ug/L	0.29
2,2'-oxybis(1-Chloro-	ND	1.0	ug/L	0.40
propane)		1.0	ug/11	0.40
4-Methylphenol	ND	1.0	ug/L	0.80
N-Nitrosodi-n-propyl-	ND	1.0	ug/L	0.80
amine		2.0	ug/ D	0.00
Hexachloroethane	ND	1.0	ug/L	0.80
Nitrobenzene	ND	1.0	ug/L	0.040
Isophorone	ND	1.0	ug/L	0.27
2-Nitrophenol	ND	2.0	ug/L	0.28
2,4-Dimethylphenol	ND	2.0	ug/L	0.80
bis(2-Chloroethoxy)	ND	1.0	ug/L	0.32
methane		2.00	497 D	0.52
2,4-Dichlorophenol	ND	2.0	ug/L	0.80
Naphthalene	ND	0.20	ug/L	0.10
4-Chloroaniline	ND	2.0	ug/L	0.80
Hexachlorobutadiene	ND	1.0	ug/L	0.27
4-Chloro-3-methylphenol	ND	2.0	ug/L	0.80
2-Methylnaphthalene	ND	0.20	ug/L	0.10
Hexachlorocyclopenta-	ND	10	ug/L	0.80
diene		1.0	ug/1	0.80
2,4,6-Trichloro-	ND	5.0	ug/L	0.80
phenol		0.0	ug/1	0.80
2,4,5-Trichloro-	ND	5.0	ug/L	0.30
phenol		0.0	uy/ L	0.30
2-Chloronaphthalene	ND	1.0	ug/L	0.10

# Client Sample ID: MRC-MW93D-061010

# GC/MS Semivolatiles

Lot-Sample #...: A0F110578-002 Work Order #...: L2TE81AC Matrix...... WG

		REPORTI		
PARAMETER	RESULT	LIMIT	UNITS	MDL
2-Nitroaniline	ND	2.0	ug/L	0.80
Dimethyl phthalate	ND	1.0	ug/L	0.29
Acenaphthylene	ND	0.20	ug/L	0.10
2,6-Dinitrotoluene	ND ·	5.0	ug/L	0.80
3-Nitroaniline	ND	2.0	ug/L	0.28
Acenaphthene	ND	0.20	ug/L	0.10
2,4-Dinitrophenol	ND	5.0	ug/L	2.4
4-Nitrophenol	ND	5.0	ug/L	2.4
Dibenzofuran	ND	1.0	ug/L	0.10
2,4-Dinitrotoluene	ND	5.0	uq/L	0.27
Diethyl phthalate	ND	1.0	ug/L	0.60
4-Chlorophenyl phenyl ether	ND	2.0	ug/L	0.30
Fluorene	ND	0.20	ug/L	0.10
4-Nitroaniline	ND	2.0	-	0.10
4,6-Dinitro-	ND	5.0	ug/L	0.80
2-methylphenol	ND	5.0	ug/L	2.4
N-Nitrosodiphenylamine	ND	1.0	1~	
4-Bromophenyl phenyl	ND		ug/L	0.31
ether	ND	2.0	ug/L	0.80
Hexachlorobenzene	ND	0 00	1-	
Pentachlorophenol	ND	0.20	ug/L	0.10
Phenanthrene		5.0	ug/L	2.4
Anthracene	ND	0.20	ug/L	0.10
Carbazole	ND	0.20	ug/L	0.10
Di-n-butyl phthalate	ND	1.0	ug/L	0.28
Fluoranthene	ND	1.0	ug/L	0.67
Pyrene	ND	0.20	ug/L	0.10
Butyl benzyl phthalate	ND	0.20	ug/L	0.10
3,3'-Dichlorobenzidine	1.1	1.0	ug/L	0.80
	ND	5.0	ug/L	0.37
Benzo(a)anthracene	ND	0.20	ug/L	0.10
Chrysene	ND ·	0.20	ug/L	0.10
ois(2-Ethylhexyl)	1.9 J,B	2.0	ug/L	0.80
phthalate				
Di-n-octyl phthalate	ND	1.0	ug/L	0.80
Benzo(b)fluoranthene	ND	0.20	ug/L	0.10
Benzo(k)fluoranthene	ND	0.20	ug/L	0.10
Senzo(a)pyrene	ND	0.20	ug/L	0.10
ndeno(1,2,3-cd)pyrene	ND	0.20	ug/L	0.10
Senzo(ghi)perylene	ND	0.20	ug/L	0.10

# Client Sample ID: MRC-MW93D-061010

## GC/MS Semivolatiles

Lot-Sample #...: A0F110578-002 Work Order #...: L2TE81AC

Matrix..... WG

SURROGATE	PERCENT RECOVERY	RECOVERY LIMITS
Nitrobenzene-d5	60	(27 - 111)
2-Fluorobiphenyl	55	(28 - 110)
Terphenyl-d14	63	(37 - 119)
Phenol-d5	68	(10 - 110)
2-Fluorophenol	69	(10 - 110)
2,4,6-Tribromophenol	73	(22 - 120)

## NOTE (S):

J Estimated result. Result is less than RL.

B Method blank contamination. The associated method blank contains the target analyte at a reportable level.

# Client Sample ID: MRC-MW94D-061010

## GC/MS Semivolatiles

Lot-Sample #: A0F110578-003		Matrix WG
Date Sampled: 06/10/10 15:03	Date Received: 06/11/10	
Prep Date: 06/14/10	Analysis Date: 06/16/10	
Prep Batch #: 0165058		
Dilution Factor: 1	Initial Wgt/Vol: 1050 mL	Final Wgt/Vol: 2 mL

Method....: SW846 8270C

		REPORTI	NG		
PARAMETER	RESULT	LIMIT	UNITS	MDL	
Acetophenone	ND .	1.0	ug/L	0.34	
Atrazine	ND	1.0	ug/L	0.34	
1,4-Dioxane	ND	1.0	ug/L	0.49	
N-Nitrosodimethylamine	ND	1.0	ug/L	0.31	
Dibenzo(a,h)anthracene	ND	0.20	ug/L	0.10	
Benzaldehyde	ND	1.0	ug/L	0.39	
1,1'-Biphenyl	ND	1.0	ug/L	0.80	
Caprolactam	ND	5.0	ug/L	0.80	
Phenol	ND	1.0	ug/L	0.60	
bis(2-Chloroethyl)-	ND	1.0	ug/L	0.10	
ether			-		
2-Chlorophenol	ND	1.0	ug/L	0.29	
2-Methylphenol	ND	1.0	ug/L	0.80	
2,2'-oxybis(1-Chloro-	ND	1.0	ug/L	0.40	
propane)			-		
4-Methylphenol	ND	1.0	ug/L	0.80	
N-Nitrosodi-n-propyl-	ND	1.0	ug/L	0.80	
amine			-		
Hexachloroethane	ND	1.0	ug/L	0.80	
Nitrobenzene	ND	1.0	ug/L	0.040	
Isophorone	ND	1.0	ug/L	0.27	
2-Nitrophenol	ND	2.0	ug/L	0.28	
2,4-Dimethylphenol	ND	2.0	ug/L	0.80	
bis(2-Chloroethoxy)	ND	1.0	ug/L	0.32	
methane					
2,4-Dichlorophenol	ND	2.0	ug/L	0.80	
Naphthalene	ND	0.20	ug/L	0.10	
4-Chloroaniline	ND	2.0	ug/L	0.80	
Hexachlorobutadiene	ND	1.0	ug/L	0.27	
4-Chloro-3-methylphenol	ND	2.0	ug/L	0.80	
2-Methylnaphthalene	ND	0.20	ug/L	0.10	
Hexachlorocyclopenta-	ND	10	ug/L	0.80	
diene			-		
2,4,6-Trichloro-	ND	5.0	ug/L	0.80	
phenol					
2,4,5-Trichloro-	ND	5.0	ug/L	0.30	
phenol			-		
2-Chloronaphthalene	ND	1.0	ug/L	0.10	

# Client Sample ID: MRC-MW94D-061010

## GC/MS Semivolatiles

Lot-Sample #...: A0F110578-003 Work Order #...: L2TFL1AN Matrix..... WG

		REPORTIN		
PARAMETER	RESULT	LIMIT	UNITS	MDL
2-Nitroaniline	ND	2.0	ug/L	0.80
Dimethyl phthalate	ND	1.0	ug/L	0.29
Acenaphthylene	ND	0.20	ug/L	0.10
2,6-Dinitrotoluene	ND	5.0	ug/L	0.80
3-Nitroaniline	ND	2.0	ug/L	0.28
Acenaphthene	ND	0.20	ug/L	0.10
2,4-Dinitrophenol	ND	5.0	ug/L	2.4
4-Nitrophenol	ND .	5.0	ug/L	2.4
Dibenzofuran	ND	1.0	ug/L	0.10
2,4-Dinitrotoluene	ND	5.0	ug/L	0.27
Diethyl phthalate	ND	1.0	ug/L	0.60
4-Chlorophenyl phenyl ether	ND	2.0	ug/L	0.30
Fluorene	ND	0.20	ug/L	0.10
4-Nitroaniline	ND	2.0	ug/L	0.80
4,6-Dinitro-	ND	5.0	ug/L	2.4
2-methylphenol				<b>L</b> • 1
N-Nitrosodiphenylamine	ND	1.0	ug/L	0.31
4-Bromophenyl phenyl ether	ND	2.0	ug/L	0.80
Hexachlorobenzene	ND	0.20	ug/L	0.10
Pentachlorophenol	ND	5.0	ug/L	2.4
Phenanthrene	ND	0.20	ug/L	0.10
Anthracene	ND	0.20	ug/L	0.10
Carbazole	ND	1.0	ug/L	0.28
Di-n-butyl phthalate	ND	1.0	ug/L	0.67
Fluoranthene	ND	0.20	ug/L	0.10
Pyrene	ND	0.20	ug/L	0.10
Butyl benzyl phthalate	1.1	1.0	ug/L	0.80
3,3'-Dichlorobenzidine	ND	5.0	ug/L	0.37
Benzo(a)anthracene	ND	0.20	ug/L	0.10
Chrysene	ND	0.20	ug/L	0.10
ois(2-Ethylhexyl)	2.1 B	2.0	ug/L	0.80
phthalate			49/1	0.00
Di-n-octyl phthalate	ND	1.0	ug/L	0.80
Benzo(b)fluoranthene	ND	0.20	ug/L	0.10
Benzo(k)fluoranthene	ND	0.20	ug/L ug/L	0.10
Benzo(a)pyrene	ND	0.20	ug/L ug/L	0.10
Indeno (1,2,3-cd) pyrene	ND	0.20	ug/L ug/L	0.10
Benzo(ghi)perylene	ND	0.20	ug/L ug/L	0.10

# Client Sample ID: MRC-MW94D-061010

## GC/MS Semivolatiles

Lot-Sample #...: A0F110578-003 Work Order #...: L2TFL1AN

Matrix..... WG

SURROGATE	PERCENT RECOVERY	RECOVERY LIMITS
Nitrobenzene-d5	61	(27 - 111)
2-Fluorobiphenyl	61	(28 - 110)
Terphenyl-d14	82	(37 - 119)
Phenol-d5	70	(10 - 110)
2-Fluorophenol	72	(10 - 110)
2,4,6-Tribromophenol	76	(22 - 120)

## NOTE (S) :

B Method blank contamination. The associated method blank contains the target analyte at a reportable level.

# APPENDIX C SUPPORT DOCUMENTATION

Chain of Custody Record		Temp	perati	ure	on F	Rece	eipt		·			Te	9	S	<b>t</b> ,	4	ſ	Υ	)(	3	ri	$\mathbf{C}$	)(	2						Ċ
-		Drink	ing V	Nate	ər?	Yes	; 🗆	No	X			TH	EL	EAD	ER	IN 8	ΞNV	/IRC	DNN	1EN	TAL	. TE	ST	NG						
TAL-4124 (1007)		Projec	t Man	ager	· -+		<b></b>		$\frac{1}{2}$										Date						<u>F</u>	Chain o	Custo	dy Numl	har	
Client Tetry Tech NUS					k	5g			Ap	lan	KIL	ЦC	i C	ero '					~~~~	6-	-1(	)-	l (	)				407		
20251 Century Blud	Ste XX		(	130			98	-Ĵ	SS	ٞک									fab l	Num	ber	97	1_4	139	il	Page _	1		st _]	
City Germantown MD 210	^{Code} 0874	site G	ontaci 1 H	- p	AV.	<u>،</u> ~	· [ ¹	ab Co	ontac	t						r		nali	isis ( spac	Atta	ch l	ist i	f							
Project Name and Location (State)		Carriei	r/Wayı	bill N	lumbe	er										Sel.	Lak	17									Spec	ial Inst	truction	ns/
Contract/Purchase Order/Quote No. GROWING Maten Sample	4 201	0		N	Aatrix					ntain eserv					Ń	Dox.	1 MC	, W											of Rece	
Sample I.D. No. and Description (Containers for each sample may be combined on one line)	o Date	Time	Air	Aqueous	Sed.	Soil	1 Januar	H2SO4	HNO3	Ю	NaOH	ZnAc/ NaOH		Vecs	Sacs	1.4	12													
TB-061010 /	6-10-10	0730		X						X				X									1.		1	1				
MRC-MW 930-061010 1		1023		X			X	2	X	X				X	X	X	X		1											
Mac-ma 94D-061010 1	V	1503		X			>		X		1			X	X	Х	Х		1						1				W.	
																						1				-				—
·																						Γ			1				•	
													_					1		1			-	T	-				**	
									-																	1			<u> </u>	
					-			1	-															1	+	·			•••••	
								1	1										<u> </u>		1	-			+					
-										+	1							1	$\square$					+	+				<u> </u>	
									-									1-						+	+					
					$\uparrow$								-							$\vdash$	-	+		+	+	+				
Possible Hazard Identification				'	e Disp		I				L	[							1		14	fee		<u>ha a</u>				are retai		
Non-Hazard Flammable Skin Irritant Turn Around Time Required	Poison B [	Unknowi	, [	] Re.	turn T	o Clie	ent		Disp					Arch	ive F	or _			Mor	ths				1 mc				, ,		
□ 24 Hours □ 48 Hours □ 7 Days □ 14 Da	ys 🗌 21 Day	s 🗌 Oll	her						C Rec		nents 'A		ecity)		/	)	//	)			?									
1. Relinquistied By		Date 6-10		0	Tim	800	ð	1.	Fece	_71	A A	H	h	Ţ	7	A	f D	V	D	Ţ	7==	3	T			Date	-21	Tim	ne 091	_ ე
2. Relinquished By		Date			Tim			2.	Rece	vive f	By			_L	/	Ť		au	1	-n	-/1		<u>~</u> (	4	! 	Date		Tin		
3. Relinquished By		Date			Time	9		3.	Rece	v vived	By				l	/		1								Date		Tin	)e	North Canton
Comments										-																				
																														ť
DISTRIBUTION: WHITE - Returned to Client with Report; (	CANARY - Stays v	with the Sam	ple; F	PINK	- Fier	d Co	ру		~											·	· · · ·					· · · · · · · · · · · · · · · · · · ·		· · · · · ·		-2

	······································			2 - - -			T,		<b>~</b> +	٨	$\sim$	~				1			23
Chain of	Temp	perature	on Rec	ceipt		-	16		212			16	3	К					2
Custody Record	Drink	ring Wa	ter? Ye	25 🔲 /	VoiX		тн	E LEA	DER	IN E	ENVIF	RONN	IENT	AL T	ESTING	i			
Client Tetra Tech, NUS Address	De	ct Manage	Jucol	1								Date	1	11	/10	Chain	of Custody	Number	 }
20251 Centra Blud.	Teleph (3	hone Num	ber (Area	^{Code} )/Fi	63	3			·				Numbe		_ ·	Page		of	, }
City State Zip Code	Davi	ontact	<u>ac</u> ĥt		Conta	act						li <b>ve</b> is ( Sepac							
MRC Deep Well GW Sample Contract/Purchase Order/Quote No.		r/Ŵaybill i	Number	···		·····				Sane	Slafe						Specia	al Instruc	ctions/
	2		Matrix			ontaine reserva			JC	Â	<u>e</u> _	STAG					Conditie	ons of F	leceipt
(Containers for each sample may be combined on one line)	Date Time	Air Aqueous	Sed. Soil	Unpres.	H2SO4	HNUS	NaOH ZnAc/ NaOH	X		门									
MRC-96D-06110 6/1	1110 \$1245	X		5	1	13		2		9	1)					*1	ilter	Dise	olved
MRC-95D-061110 / 6/	11/10 6938	LΧ		5	1	3		2		9	1	1							lab.
TB-061110 V 6/1	1110 0700	X				8		2	2							Als	olistede	n aa	# 154978
									-		_			·	+				
					<u> </u>	-			-	╞╌┝	+		-				<u> </u>		
								-	-										·······
							_					_							
				_												<u> </u>			
						+-+													<u></u> ,
Possible Hazard Identification Non-Hazard  Flammable  Skin Irritant  Pois	son B 🗌 Unknown		le Disposa			oosal B		 		[]		4/201		(A fee	may be as	ssessed if s	amples are	e retained	
Turn Around Time Required	21 Days 🗌 Oth						ents (Spe							longer	than 1 mc	onth)			
1. Reinquished By	Date		Time		1. Rec	reived E	3y	1	M	1	t					Date 611		Time	
2. Relinquished By	Date	1/10	Time		2. <i>Rec</i>	eived E	W C		1	La	Y	0		·····		Date	2/10		PAN
3. Relinquished By	Date	·	Time		3. Rec	eived B	ly					- 1				Date	· · · · · · · · · · · · · · · · · · ·	Time	North Canton
Comments	<u></u>		_l											<u> </u>					ٽ
DISTRIBUTION: WHITE - Returned to Client with Report; CANAR.	PY - Stays with the Sam	ple; PINK	( - Field C	ору				· · · · · ·							·	· · · ·		<u> </u>	Nortl

#### **QUALITY CONTROL ELEMENTS NARRATIVE**

TestAmerica conducts a quality assurance/quality control (QA/QC) program designed to provide scientifically valid and legally defensible data. Toward this end, several types of quality control indicators are incorporated into the QA/QC program, which is described in detail in QA Policy, QA-003. These indicators are introduced into the sample testing process to provide a mechanism for the assessment of the analytical data. Program or agency specific requirements take precedence over the requirements listed in this narrative.

#### **OC BATCH**

Environmental samples are taken through the testing process in groups called QUALITY CONTROL BATCHES (QC batches). A QC batch contains up to twenty environmental samples of a similar matrix (water, soil) that are processed using the same reagents and standards. TestAmerica North Canton requires that each environmental sample be associated with a QC batch.

Several quality control samples are included in each QC batch and are processed identically to the twenty environmental samples.

For SW846/RCRA methods, QC samples include a METHOD BLANK (MB), a LABORATORY CONTROL SAMPLE (LCS) and, where appropriate, a MATRIX SPIKE/MATRIX SPIKE DUPLICATE (MS/MSD) pair or a MATRIX SPIKE/SAMPLE DUPLICATE (MS/DU) pair. If there is insufficient sample to perform an MS/MSD or an MS/DU, then a LABORATORY CONTROL SAMPLE DUPLICATE (LCSD) is included in the QC batch.

For 600 series/CWA methods, QC samples include a METHOD BLANK (MB), a LABORATORY CONTROL SAMPLE (LCS) and, where appropriate, a MATRIX SPIKE (MS). An MS is prepared and analyzed at a 10% frequency for GC Methods and at a 5% frequency for GC/MS methods.

#### LABORATORY CONTROL SAMPLE

The Laboratory Control Sample is a QC sample that is created by adding known concentrations of a full or partial set of target analytes to a matrix similar to that of the environmental samples in the QC batch. Multi peak responders may not be included in the target spike list due to co-elution. The LCS analyte recovery results are used to monitor the analytical process and provide evidence that the laboratory is performing the method within acceptable guidelines. All control analytes indicated by a bold type in the LCS must meet acceptance criteria. Failure to meet the established recovery guidelines requires the repreparation and reanalysis of all samples in the QC batch. Comparison of only the failed parameters from the first batch are evaluated. The only exception to the rework requirement is that if the LCS recoveries are biased high and the associated sample is ND (non-detected) for the parameter(s) of interest, the batch is acceptable.

At times, a Laboratory Control Sample Duplicate (LCSD) is also included in the QC batch. An LCSD is a QC sample that is created and handled identically to the LCS. Analyte recovery data from the LCSD is assessed in the same way as that of the LCS. The LCSD recoveries, together with the LCS recoveries, are used to determine the reproducibility (precision) of the analytical system. Precision data are expressed as relative percent differences (RPDs). If the RPD fails for an LCS/LCSD and yet the recoveries are within acceptance criteria, the batch is still acceptable.

#### METHOD BLANK

The Method Blank is a QC sample consisting of all the reagents used in analyzing the environmental samples contained in the QC batch. Method Blank results are used to determine if interference or contamination in the analytical system could lead to the reporting of false positive data or elevated analyte concentrations. All target analytes must be below the reporting limits (RL) or the associated sample(s) must be ND except under the following circumstances:

• Common organic contaminants may be present at concentrations up to 5 times the reporting limits. Common metals contaminants may be present at concentrations up to 2 times the reporting limit, or the reported blank concentration must be twenty fold less than the concentration reported in the associated environmental samples. (See common laboratory contaminants listed in the table.)

Volatile (GC or GC/MS)	Semivolatile (GC/MS)	Metals ICP-MS	Metals ICP Trace
Methylene Chloride,	Phthalate Esters	Copper, Iron, Zinc,	Copper, Iron, Zinc, Lead
Acetone, 2-Butanone		Lead, Calcium,	
		Magnesium, Potassium,	
		Sodium, Barium,	
		Chromium, Manganese	

## **QUALITY CONTROL ELEMENTS NARRATIVE (continued)**

- Organic blanks will be accepted if compounds detected in the blank are present in the associated samples at levels 10 times the blank level. Inorganic blanks will be accepted if elements detected in the blank are present in the associated samples at 20 times the blank level.
- Blanks will be accepted if the compounds/elements detected are not present in any of the associated environmental samples.

Failure to meet these Method Blank criteria requires the repreparation and reanalysis of all samples in the QC batch.

#### MATRIX SPIKE/MATRIX SPIKE DUPLICATE

A Matrix Spike and a Matrix Spike Duplicate are a pair of environmental samples to which known concentrations of a full or partial set of target analytes are added. The MS/MSD results are determined in the same manner as the results of the environmental sample used to prepare the MS/MSD. The analyte recoveries and the relative percent differences (RPDs) of the recoveries are calculated and used to evaluate the effect of the sample matrix on the analytical results. Due to the potential variability of the matrix of each sample, the MS/MSD results may not have an immediate bearing on any samples except the one spiked; therefore, the associated batch MS/MSD may not reflect the same compounds as the samples contained in the analytical report. When these MS/MSD results fail to meet acceptance criteria, the data is evaluated. If the LCS is within acceptance criteria, the batch is considered acceptable.

For certain methods, a Matrix Spike/Sample Duplicate (MS/DU) may be included in the QC batch in place of the MS/MSD. For the parameters (i.e. pH, ignitability) where it is not possible to prepare a spiked sample, a Sample Duplicate may be included in the QC batch. However, a Sample Duplicate is less likely to provide usable precision statistics depending on the likelihood of finding concentrations below the standard reporting limit. When the Sample Duplicate result fails to meet acceptance criteria, the data is evaluated.

For certain methods (600 series methods/CWA), a Matrix Spike is required in place of a Matrix Spike/Matrix Spike Duplicate (MS/MSD) or Matrix Spike/Sample Duplicate (MS/DU).

The acceptance criteria do not apply to samples that are diluted.

#### SURROGATE COMPOUNDS

In addition to these batch-related QC indicators, each organic environmental and QC sample is spiked with surrogate compounds. Surrogates are organic chemicals that behave similarly to the analytes of interest and that are rarely present in the environment. Surrogate recoveries are used to monitor the individual performance of a sample in the analytical system.

If surrogate recoveries are biased high in the LCS, LCSD, or the Method Blank, and the associated sample(s) are ND, the batch is acceptable. Otherwise, if the LCS, LCSD, or Method Blank surrogate(s) fail to meet recovery criteria, the entire sample batch is reprepared and reanalyzed. If the surrogate recoveries are outside criteria for environmental samples, the samples will be reprepared and reanalyzed unless there is objective evidence of matrix interference or if the sample dilution is greater than the threshold outlined in the associated method SOP.

The acceptance criteria do not apply to samples that are diluted. All other surrogate recoveries will be reported.

For the GC/MS BNA methods, the surrogate criterion is that two of the three surrogates for each fraction must meet acceptance criteria. The third surrogate must have a recovery of ten percent or greater.

For the Pesticide and PCB methods, the surrogate criterion is that one of two surrogate compounds must meet acceptance criteria. The second surrogate must have a recovery of 10% or greater.



## **TestAmerica Certifications and Approvals:**

The laboratory is certified for the analytes listed on the documents below. These are available upon-request. California (#01144CA), Connecticut (#PH-0590), Florida (#E87225),

Illinois (#200004), Kansas (#E10336), Minnesota (#39-999-348), New Jersey (#OH001), New York (#10975), Nevada (#OH-000482008A), OhioVAP (#CL0024), Pennsylvania (#008), West Virginia (#210), Wisconsin (#999518190), NAVY, ARMY, USDA Soil Permit

N:\QAQC\Customer Service\Narrative - Combined RCRA_CWA 032609.doc

# ANALYTICAL METHODS SUMMARY

## 0F11578

PARAMETER	ANALYTICAL METHOD
ICP-MS (6020)	SW846 6020
Mercury in Liquid Waste (Manual Cold-Vapor)	SW846 7470A
Semivolatile Organic Compounds by GC/MS	SW846 8270C
Volatile Organics by GC/MS	SW846 8260B

#### References:

SW846 "Test Methods for Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 and its updates.

.

# SAMPLE SUMMARY

#### 0F11578 : A0F110578

WO # SAMPLE	E# CLIENT SAMPLE ID	SAMPLED SAMP DATE TIME
L2TEX 001	TB-061010	06/10/10 07:30
L2TE8 002	MRC-MW93D-061010	06/10/10 10:23
L2TFL 003	MRC-MW94D-061010	06/10/10 15:03

#### NOTE (S):

- The analytical results of the samples listed above are presented on the following pages.

- All calculations are performed before rounding to avoid round-off errors in calculated results.

- Results noted as "ND" were not detected at or above the stated limit.

- This report must not be reproduced, except in full, without the written approval of the laboratory.

- Results for the following parameters are never reported on a dry weight basis: color, corrosivity, density, flashpoint, ignitability, layers, odor,

paint filter test, pH, porosity pressure, reactivity, redox potential, specific gravity, spot tests, solids, solubility, temperature, viscosity, and weight.

# SAMPLE SUMMARY

# OF11578 : AOF120439

<u>WO # </u>	SAMPLE#	CLIENT SAMPLE ID	SAMPLED DATE	SAMP TIME
L2T53	001	MRC-96D-061110	06/11/10	09:28
L2T6X	002	MRC-95D-061110	06/11/10	
L2T61	003	TB-061110	06/11/10	

#### NOTE (S):

- The analytical results of the samples listed above are presented on the following pages.

- All calculations are performed before rounding to avoid round-off errors in calculated results.

- Results noted as "ND" were not detected at or above the stated limit.

- This report must not be reproduced, except in full, without the written approval of the laboratory.

- Results for the following parameters are never reported on a dry weight basis: color, corrosivity, density, flashpoint, ignitability, layers, odor,

paint filter test, pH, porosity pressure, reactivity, redox potential, specific gravity, spot tests, solids, solubility, temperature, viscosity, and weight.

1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.		pre-	~~~	~~~		~~~	 -man	******
SD	G	C	F	7	1	1	57	78
	영상 여	Ł						
		· ·						

國國國

SORT	UNITS	NSAMPLE	LAB_ID	QC_TYPE	SAMP_DATE	EXTR_DATE	ANAL_DATE	SMP_EXTR	EXTR_ANL	SMP_ANL
	UG/L	MRC-96D-061110	A0F120439001	NM	06/11/2010	06/14/2010	06/16/2010	3	2	5
	UG/L	MRC-MW93D-061010	A0F110578002	NM	06/10/2010	06/14/2010	06/16/2010	4	2	6
	UG/L	MRC-MW94D-061010	A0F110578003	NM	06/10/2010	06/14/2010	06/16/2010	4	2	6
	UG/L	MRC-95D-061110	A0F120439002	NM	06/11/2010	06/14/2010	06/16/2010	3	2	5
HG	UG/L	MRC-MW94D-061010	A0F110578003	NM	06/10/2010	06/14/2010	06/16/2010	4	2	6
HG	UG/L	MRC-95D-061110	A0F120439002	NM	06/11/2010	06/14/2010	06/16/2010	3	2	5
HG	UG/L	MRC-96D-061110	A0F120439001	NM	06/11/2010	06/14/2010	06/16/2010	3	2	5
HG	UG/L	MRC-MW93D-061010	A0F110578002	NM	06/10/2010	06/14/2010	06/16/2010	4	2	6
OS	UG/L	MRC-96D-061110	A0F120439001	NM	06/11/2010	06/14/2010	06/16/2010	3	2	5
OS	UG/L	MRC-MW93D-061010	A0F110578002	NM	06/10/2010	06/14/2010	06/16/2010	4	2	6
OS	UG/L	MRC-MW94D-061010	A0F110578003	NM	06/10/2010	06/14/2010	06/16/2010	4	2	6
OS	UG/L	MRC-95D-061110	A0F120439002	NM	06/11/2010	06/14/2010	06/16/2010	3	2	5
ov	UG/L	TB-061110	A0F120439003	ТВ	06/11/2010	06/21/2010	06/21/2010	10	0	10
ov	UG/L	MRC-95D-061110	A0F120439002	NM	06/11/2010	06/21/2010	06/21/2010	10	0	10
ov	UG/L	MRC-96D-061110	A0F120439001	NM	06/11/2010	06/21/2010	06/21/2010	. 10	0	10

Thursday, July 01, 2010

SORT	UNITS	NSAMPLE	LAB_ID	QC_TYPE	SAMP_DATE	EXTR_DATE	ANAL_DATE	SMP_EXTR	EXTR_ANL	SMP_ANL
OV	UG/L	MRC-MW93D-061010	A0F110578002	NM	06/10/2010	06/21/2010	06/21/2010	11	0	11
OV	UG/L	MRC-MW94D-061010	A0F110578003	NM	06/10/2010	06/21/2010	06/21/2010	11	0	11
OV	UG/L	TB-061010	A0F110578001	ТВ	06/10/2010	06/21/2010	06/21/2010	11	0	11

Page 2 of 2

#### 5A VOLATILE ORGANIC GC/MS TUNING AND MASS CALIBRATION - BROMOFLUOROBENZENE (BFB)

Lab Name: NORTH CANTONContract:Lab Code: TACANCase No.:SAS No.:SDG No.: 0F11578Lab File ID: BFB395BFB Injection Date: 06/18/10Instrument ID: A3UX11BFB Injection Time: 0053

Matrix: (soil/water) WATER Level: (low/med) LOW Column: (pack/cap) CAP

m/e	ION ABUNDANCE CRITERIA	% RELATIVE ABUNDANCE
===== 50 75 95 96 173 174 175 176 177	15.0 - 40.0% of mass 95 30.0 - 60.0% of mass 95 Base Peak, 100% relative abundance 5.0 - 9.0% of mass 95 Less than 2.0% of mass 174 50.0 - 100.0% of mass 95 5.0 - 9.0% of mass 174 Greater than 95.0%, but less than 101.0% of mass 174 5.0 - 9.0% of mass 176	$ \begin{array}{c} 19.2 \\ 48.4 \\ 100.0 \\ 7.0 \\ 0.4 \\ ( 0.5)1 \\ 78.7 \\ 5.1 \\ ( 6.5)1 \\ 78.2 \\ ( 99.3)1 \\ 4.7 \\ ( 6.0)2 \\ \end{array} $
I	1-Value is % of mass 174 2-Value is % of ma	ass 176

THIS TUNE APPLIES TO THE FOLLOWING SAMPLES, MS, MSD, BLANKS, AND STANDARDS:

	EPA SAMPLE NO.	LAB SAMPLE ID	LAB FILE ID	DATE ANALYZED	TIME ANALYZED
	=================	=======================================			
012 034 067 090 11234 1567 890 11234 1111 112 112	VSTD040 VSTD020 VSTD010 VSTD005 VSTD002 VSTD001	200NG-A9IC 100NG-A9IC 50NG-A9IC 25NG-A9IC 10NG-A9IC 5NG-A9IC 5NG-A9IC	FILE ID         UXJ0105         UXJ0106         UXJ0107         UXJ0109         UXJ0110	ANALIZED 06/18/10 06/18/10 06/18/10 06/18/10 06/18/10 	ANALYZED
20 21 22					

page 1 of 1

-----

1/87 Rev.

37

## Report Date : 18-Jun-2010 09:11

## TestAmerica North Canton

INITIAL CALIBRATION DATA

میں اور اور اور اور اور اور اور اور اور اور			
Start Cal Date	: 17-JUN-2010 12:26		
End Cal Date	: 18-JUN-2010 03:08		
Quant Method	: ISTD		
Origin	: Disabled		
Target Version	: 4.14		
Integrator	: HP RTE		
Method file	: \\cansvrll\dd\chem\MSV\a3uxll	L.i\J00618A-IC.b\82	SOLLUX11.m
Last Edit	: 18-Jun-2010 09:06 quayler		· · · ·
Curve Type	: Average		

## Calibration File Names:

Level 1: \\cansvrll\dd\chem\MSV\a3uxl1.i\J00618A-IC.b\UXJ0110.D Level 2: \\cansvrll\dd\chem\MSV\a3uxl1.i\J00618A-IC.b\UXJ0109.D Level 3: \\cansvrll\dd\chem\MSV\a3uxl1.i\J00618A-IC.b\UXJ0108.D Level 4: \\cansvrll\dd\chem\MSV\a3uxl1.i\J00618A-IC.b\UXJ0107.D Level 5: \\cansvrll\dd\chem\MSV\a3uxl1.i\J00618A-IC.b\UXJ0106.D Level 6: \\cansvrll\dd\chem\MSV\a3uxl1.i\J00618A-IC.b\UXJ0105.D

	5.000	10.000	25.000	50.000	100.000	200.000	· · · · · · ·	
Compound	Level 1	Level 2	Level 3	Level 4	Level 5	Level 6	RRF	% RSD
	===   ~========							
8 Dichlorodifluoromethane	0.39914	•	0.38562			0.33445		6.8
9 Chloromethane	0.45806	0.45043	0.44369					
10 Vinyl Chloride	0.44762	0.45628	0.43410					
11 Bromomethane	0.14595	0.17196	0.14872	0.16050				1. A
12 Chloroethane	0.23201	0.22876	0.19028	0.18812	0.19920	0.20235	0.20679	
13 Trichlorofluoromethane	0.43146	0.44779	0.42994	0.42692	0.41012	0.39780	0.42400	
14 Dichlorofluoromethane	0.44662	0.47557	0.45721	0.46431	0.49907	0.45292	0.46595	4.0
15 Acrolein	0.04909	0.05190	0.05170	0.05385	0.05223	0.05193	0.05178	2.9
16 Acetone	0.14708	0.12253	0.10465	0.09851	0.09433	0.08888	0.10933	19.9
17 1,1-Dichloroethene	0.29151	0.27742	0.28258	0.28186	0.27976	0.28460	0.28296	1.7
18 Freon-113	0.17141	0.17080	0.17478	0.18339	0.16106	0.15229	0.16896	6.4
19 Iodomethane	0.50854	0.50153	0.48382	0.47168	0.47928	0.49171	0.48943	2.8
20 Carbon Disulfide	0.60310	0.68008	0.72088	0.79079	0.80654	0.87730	0.74645	13.1
21 Methylene Chloride	0.45308	0.39586	0.35533	0.34321	0.33786	0.35026	0.37260	11.9
22 Acetonitrile	0.04144	0.03931	0.03667	0.03782	0.03592	0.03347	0.03744	7.3
23 Acrylonitrile	0.13652	0.13634	0.13762	0.14180	0.13872	0.13594	0.13782	1.5
24 Methyl tert-butyl ether	0.83926	0.84042	0.87870	0.89218	0.91501	0.94464	0.88503	4.6
25 trans-1,2-Dichloroethene	0.34668	0.34914	0.34703	0.34891	0.35290	0.36543	0.35168	2.0
26 Hexane	0.10285	0.09379	0.09247	0.09880	0.09077	0.08609	0.09413	6.3
27 Vinyl acetate	0.52296	0.55096	0.57729	0.63235	0.62651	0.67293	0.59717	9.4
28 1,1-Dichloroethane	0.59568	0.57713	0.58693	0.58237	0.59029	0.62951	0.59365	3.1
29 tert-Butyl Alcohol	0.02175	0.02111	0.02134	0.02169	0.02202	0.02075	0.02144	2.1
	0.19067	0.17226	0.16792	0.17070	0.16303	0.15846	0.17051	6.5
31 1,2-Dichloroethene (total)	0.36610	0.36288	0.36022	0.36626	0.36741	0.38644	0.36822	2.5
32 cis-1,2-dichloroethene	0.38553	0.37663	0.37340	0.38361	0.38192	0.40744	0.38476	3.1
33 2,2-Dichloropropane	0.29244	0.30014	0.30369	0.32156	0.32805	0.33224	0.31302	5.2
34 Bromochloromethane	0.19011	0.18843	0.18127	0.18592	0.18547	0.19356	0.18746	2.2
35 Chloroform	0.58093	0.56460	0.56485	0.56731	0.56511	0.60840	0.57520	3.0
	I	1					l	
		·						

## Report Date : 18-Jun-2010 09:11

### TestAmerica North Canton

Last Edit : 18-Jun-2010 09:06 quayler Curve Type : Average	End Cal Date Quant Method Origin Target Version Integrator Method file Last Edit	: Disabled : 4.14 : HP RTE : \\cansvr11\dd\chem\MSV\a3ux11.i\J00618A-IC.b\8260LLUX11.m : 18-Jun-2010 09:06 quayler
---------------------------------------------------------------	----------------------------------------------------------------------------------------------------	--------------------------------------------------------------------------------------------------------------------------------

Compound	5.000 Level 1	10.000 Level 2	25.000 Level 3	50.000   Level 4	100.000   Level 5	200.000   Level 6	RRF	% RSD
	•							
36 Tetrahydrofuran	0.10538	0.09897		0.10000	0.10016	0.09809	0.10039	2.551
37 1,1,1-Trichloroethane	0.39626	0.41557	0.41361	0.43185	0.43335	0.44598	0.42277	4.194
38 1,1-Dichloropropene	0.48332	0.47089	0.47691	0.49024	0.48391	0.50192	0.48453	2.224
39 Carbon Tetrachloride	0.34338	0.33834	0.34479	0.37041	0.36822	0.38259	0.35796	5.056
40 1,2-Dichloroethane	0.44923	0.42094	0.41601	0.42340	0.42604	0.44852	0.43069	3.359
41 Benzene	1.50992	1.50757	1.50353	1.50978	1.51293	1.61607	1.52663	2.877
42 Trichloroethene	0.40030	0.38097	0.38135	0.38230	0.38483	0.40653	0.38938	2.859
43 1,2-Dichloropropane	0.37057	0.36354	0.35846	0.36369	0.36524	0.38948	0.36850	.2.981
44 1,4-Dioxane	0.00211	0.00229	0.00244	0.00244	0.00245	0.00226	0.00233	5.882
45 Dibromomethane	0.20212	0.20331	0.20161	0.20088	0.20539	0.21501	0.20472	2.579
46 Bromodichloromethane	0.31192	0.33582	0.35422	0.37283	0.39284	0.43089	0.36642	11.547
47 2-Chloroethyl vinyl ether	0.19895	0.21670	0.23179	0.24858	0.24695	0.25679	0.23329	9.449
48 cis-1,3-Dichloropropene	0.39947	0.43641	0.45647	0.50155	0.52741	0.58461	0.48432	13.845
49 4-Methyl-2-pentanone	0.27935	0.28880	0.29995	0.32013	0.31700	0.31842	0.30394	5.683
50 Toluene	2.22994	2.16476	2.17077	2.21603	2.22512	2.38000	2.23110	3.499
51 trans-1,3-Dichloropropene	0.43605	0.47740	0.53296	0.58779	0.61929	0.69315	0.55777	16.991
52 Ethyl Methacrylate	0.50137	0.53171	0.58067	0.63469	0.66066	0.69704	0.60102	12.684
53 1,1,2-Trichloroethane	0.43938	0.42455	0.42916	0.43366	0.43308	0.45257	0.43540	2.240
54 1,3-Dichloropropane	0.79043	0.76924	0.76384	0.78055	0.78415	0.82456	0.78546	2.736
55 Tetrachloroethene	0.45113	0.43713	0.42432	0.43253	0.42301	0.44355	0.43528	2.519
56 2-Hexanone	0.24246	0.25954	0.27467	0.29442	0.29093	0.28848	0.27508	7.469
57 Dibromochloromethane	0.27769	0.29238	0.32133	0.35812	0.37773	0.42096	0.34137	15.935
58 1,2-Dibromoethane	0.43544	0.41962	0.42590	0.43663	0.43571	0.45541	0.43478	2.796
59 Chlorobenzene	1.46573	1.35245	1.36485	1.36616	1.38409	1.48793	1.40354	4.139
60 1,1,1,2-Tetrachloroethane	0.39330	0,41088	0.40170	0.42896	0.43584	0.47986	0.42509	7.356
61 Ethylbenzene	0.71726	0.70990	0.72846	0.75462	0.77094	0.81744	0.74977	5.386
62 m + p-Xylene	0.90191	0.90496	0.92689	0.94760	0.95750	1.03752	0.94607	5.286
M 63 Xylenes (total)	0.87872	0.87933	0.90804	0.93546	0.94227	1.02249	0.92772	5.781
64 Xylene-o	0.83233	0.82806	0.87034	0.91116	0.91180	0.99242	0.89102	6.911
65 Styrene	1.30394	1.36536	1.45205	1.54381	1.58410	1.76019	1.50157	10.965
66 Bromoform	0.11117	0.13383	0.15467	0.18145	0.19544	0.22649	0.16717	25.275
67 Isopropylbenzene	2.11011	2.08781	2.16010	2.29511	2.31906	2.52811	2.25005	7.386
68 1,1,2,2-Tetrachloroethane	0.98829	0.98728	1.00925	1.04362	1.03506	1.03565	1.01653	2.469
69 1,4-Dichloro-2-butene	++++	++++	+++++	++++	+++++	+++++	++++	+++++
70 1,2,3-Trichloropropane	0.32787	0.27956	0.29238	0.29886	0.29890	0.29435	0.29865	5.350
71 Bromobenzene	1.06590	1.04438	1.06416	1.08239	1.08317	1.14729	1.08122	3.271
		ļ	i	i	1	İ	I	

# Report Date : 18-Jun-2010 09:11

## TestAmerica North Canton

End Cal Date Quant Method Origin Target Version Integrator Method file	•	Disabled 4.14 HP RTE \\cansvrll\dd\chem\MS	SV\a3ux11.i	\J00618A-	
Last Edit Curve Type	:	18-Jun-2010 09:06 qua Average			 · · · · · · · · · · · · · · · · · · ·

1	•	5.000	10.000	25.000	50.000	100.000	200.000		
ł	Compound	Level 1	Level 2	Level 3	Level 4	Level 5	Level 6	RRF	% RSD
	72 n-Propylbenzene	1.09555	1.03696				•	1.13342	5.570
I	73 2-Chlorotoluene	1.01792	0.97488						
Ì	74 1,3,5-Trimethylbenzene	3.15293	3.07692		3.46207				
1	75 4-Chlorotoluene	1.10209	1.03973	1.04586	1.06721	1.05780	1.11611	1.07147	
I	76 tert-Butylbenzene	2.81861	2.67833	2.81427					· ·
I	77 1,2,4-Trimethylbenzene	3.36906	3.19762	3.40083	3.54287	3.57117	3.79265		
I	78 sec-Butylbenzene	4.10738	3.81867	4.05022	4.26336	4.27076			
1	79 4-Isopropyltoluene	3.30385	3.12333	3.33230	3.51329	3.55042	3.73804	3.42687	
Ì	80 1,3-Dichlorobenzene	2.16808	2.01125	2.00238		2.03723		2.06913	
I	81 1,4-Dichlorobenzene	2.31123	2.09613	2.06507	2.11459	2.09193	2.18986	2.14480	
Ì	82 n-Butylbenzene	2.81595	2.63448	2.75244			'		•
Ì	83 1,2-Dichlorobenzene	2.02499		1.91451	1.95873	•			
Ì	84 1,2-Dibromo-3-chloropropane	0.09577	0.10401	0.11600	0.12982		'	0.11793	
ł	85 1,2,4-Trichlorobenzene	0.70221	0.65453	0.59569	0,62063	,		0.62238	
l	86 Hexachlorobutadiene	0.29735	0.26395	0.24190	0.25197			0.25782	
1	87 Naphthalene	1.09602	1.14630	1.19041	1.33098	1.32872		1.23103	
l	88 1,2,3-Trichlorobenzene	0.54710	0.54277		,	0.51234	,	0.53026	
l	89 Ethyl Ether	0.30480	0.30310	0.28494	0.28826	0.32680		0.29841	
Ì	90 Ethanol	+++++	+++++	+++++	+++++	+++++	+++++	+++++	+++++
	91 3-Chloropropene	0.14754	0.13334	0.13658	0.15967	0.17623	0.16307	0.15274	
	92 Isopropyl Ether	0.29535	0.28929	0.30396	0.31635	0.34834	0.30247	0.30929	
	93 2-Chloro-1,3-butadiene	0.48186	0.46398	0.47333	0.50571	0.54558	0.48117	0.49194	
	94 Propionitrile	0.04820	0.04604	0.04767	0.04723	0.05089	0.04666	0.04778	
	95 Ethyl Acetate	0.352031	0.31064	0.31294	0.31195	0.34366	0.31989	0.32518	
	96 Methacrylonitrile	0.22188	0.20153	0.20561	0.21094	0.23142	0.21496	0.21439	
	97 Isobutanol	0.01281	0.01313	0.01319	0.01306	0.01471	0.01324	0.01336	
	98 Cyclohexane	0.61514	0.60197	0.62785	0.68013	0.62450	0.59524	0.62414	
	99 n-Butanol	0.00712	0.00793	0.00862	0.00907	0.01111	0.01078	0.00910	
	100 Methyl Methacrylate	0.23124	0.24437	0.26072	0.28061	0.31028	0.29933	0.27109	
	101 2-Nitropropane	0.05680	0.05601	0.05997	0.06388	0.07701	0.07546	0.06486	14.264
	102 Chloropicrin	+++++	+++++	+++++	+++++	+++++	+++++	+++++	+++++
	103 Cyclohexanone	0.02157	0.02495	0.02853	0.02972	0.02926	0.03579	0.02830	
	104 Pentachloroethane	+++++	+++++	+++++	+++++	+++++	+++++	+++++	+++++
	105 Benzyl Chloride	+++++	+++++	+++++	+++++	+++++	+++++	+++++	+++++
	134 Thiophene	+++++	+++++ 1	+++++	+++++	+++++	+++++	+++++	+++++
	135 Crotononitrile(1st Isomer)	+++++	+++++	+++++	+++++	++++	+++++	+++++	+++++
: 			1	1			1	1	
1_		1		1					

# Report Date : 18-Jun-2010 09:11

## TestAmerica North Canton

Quant Method : : Origin : I Target Version : 4 Integrator : I Method file : 1 Last Edit : :	17-JUN-2010 12:26 18-JUN-2010 03:08 ISTD Disabled 4.14 HP RTE \\cansvr11\dd\chem\MSV\a 18-Jun-2010 09:06 quayle Average	13ux11.i\J0061		
------------------------------------------------------------------------------------------------------------	-------------------------------------------------------------------------------------------------------------------------------------------------	----------------	--	--

· · · · ·	1 5.000	10.000	25.000	50,000	100.000	200.000	· · · · · · · · · · · · · · · · · · ·	I .	-
Compound	Level 1	Level 2	Level 3	Level 4	Level 5	Level 6	RRF	¦ % RSD	ì
-									- -
136 Crotononitrile(2nd Isomer)	, +++++	++++	+++++	++++	+++++	+++++	· ++++	, +++++	1.
M 137 Total Crotononitrile	+++++	++++	+++++	++++	+++++	+++++	++++	·++ <b>+</b> +	i
138 Paraldehyde	+++++	+++++	++++	+++++	<b>++</b> +++	++ <b>+</b> ++	<b>++</b> +++	++++	İ
139 3,3,5-Trimethylcyclohexanone	+++++	+++++	++++	+++++	+++++	+++++	+++++	+++++	i
140 1-Chlorohexane	+++++	+++++	++++	+++++	+++++	+++++	+++++	+++++	j.
141 1,3,5-Trichlorobenzene	1.18302	1.03689	1.00550	1.03555	0.97899	0.77365	1.00227	13.221	
143 Methyl Acetate	0.28992	0.27207	0.27376	0.27599	0.27413	0.26958	0.27591	2.608	i į
144 Methylcyclohexane	0.67612	0.62461	0.65157	0.70883	0.65327	0.61310	0.65458	5.308	ı.
145 Dimethoxymethane	+++++	++++	+++++	+++++	+++++	+++++	+++++	+++++	İ
146 2-Methylnaphthalene	0.51403	0.52039	0.49150	0.64993	0.72911	+++++	0,58099	17.816	÷
147 Tetrahydrothiophene	+++++	+++++	+++++	++++	+++++	+++++	+++++	+++++	Ì
148 1,4-Dichlorobutane	+++++	++++	+++++	++++	+++++	++++	+++++	+++++	1
149 Ethyl Acrylate	+++++	+++++	+++++	+++++	++++	+++++	+++++	+++++	Ì
150 Vinyl Acetate-86	0.05327	0.06362	0.07058	0.07428	0.07410	0.07896	0.06913	13.441	
151 1,3-Butadiene	+++++	+++++	+++++	+++++	+++++	++++	+++++	+++++	1
152 n-Heptane	+++++	+++++	+++++	+++++	+++++	+++++	+++++	+++++	1
155 t-Butyl ethyl ether	0.85963	0.82998	0.86844	0.90774	1.01467	0.90019	0.89678	7.171	1
156 t-Amyl methyl ether	0.70010	0.70293	0.75882]	0.81257]	0.91513	0.87203	0.79360	11.193	ł
157 1,2,3-Trimethylbenzene	2.68476	2.68474	3.01171	3.39604	3.77338	3.82613	3.22946	15.913	I
								*****	:
\$ 4 Dibromofluoromethane	0.31765	0.30077	0.29566	0.29804	0.30382	0.31908	0.30584	3.299	1
5 1,2-Dichloroethane-d4	0.40438	0.37745	0.37778	0.36099	0.37593	0.39318	0.38162	3.960	1
5 6 Toluene-d8	1.80569	1.73071	1.76070	1.76877	1.79330	1.92267	1.79697	3.724	1
5 7 Bromofluorobenzene	0.61312	0.61109	0.60408	0.61451	0.62048	0.66855	0.62197	3.767	1
			I	[		1			1

5A

#### VOLATILE ORGANIC GC/MS TUNING AND MASS CALIBRATION - BROMOFLUOROBENZENE (BFB)

Lab Name: NORTH CANTONContract:Lab Code: TACANCase No.:SAS No.:SDG No.: 0F11578Lab File ID: BFB397BFB Injection Date: 06/21/10Instrument ID: A3UX11BFB Injection Time: 1247

Matrix: (soil/water) WATER Level: (low/med) LOW Column: (pack/cap) CAP

% RELATIVE m/e ION ABUNDANCE CRITERIA ABUNDANCE ===== 50 15.0 - 40.0% of mass 95 16.9 75 30.0 - 60.0% of mass 95 45.4 Base Peak, 100% relative abundance 5.0 - 9.0% of mass 95 95 100.0 96 6.2 173 Less than 2.0% of mass 174 0.5(0.5)1174 50.0 - 100.0% of mass 95 92.8 175 5.0 - 9.0% of mass 174 6.0 7 6.5)1176 Greater than 95.0%, but less than 101.0% of mass 174 90.0 (97.0)1 177 5.0 - 9.0% of mass 176 5.6 ( 6.3)2

1-Value is % of mass 174

#### 2-Value is % of mass 176

THIS TUNE APPLIES TO THE FOLLOWING SAMPLES, MS, MSD, BLANKS, AND STANDARDS:

	EPA	LAB	LAB	DATE	TIME
	SAMPLE NO.	SAMPLE ID	FILE ID	ANALYZED	ANALYZED
	============	=======================================	=================	=======	=========
01	VSTD010	50NG-CC	UXJ0140	06/21/10	1316
02	VSTD010	50NG-A9CC	UXJ0141	06/21/10	1339
03	L28P4CHK	L28P41AC	UXJ0142	06/21/10	1401
04	L28P4CKDUP	L28P41AD	UXJ0143	06/21/10	1424
05	L28P4BLK	L28P41AA	UXJ0144	06/21/10	1447
06	TB-061010	L2TEX1AA	UXJ0148	06/21/10	1617
07	MRC-MW93D-06	L2TE81AA	UXJ0149	06/21/10	1640
08	MRC-MW94D-06	L2TFL1AM	UXJ0150	06/21/10	1703
09	MRC-MW27B-06	L2T531AA	UXJ0151	06/21/10	1726
10	MRC-95D-0611	L2T6X1AM	UXJ0152	06/21/10	1748
11	TB-061110	L2T611AA	UXJ0153	06/21/10	1811
12					
13					
14					
15	······				
16					
17					
18					
19					
20					
21					
22					

FORM V VOA

1/87 Rev.

## Data File: \\cansvr11\dd\chem\MSV\a3ux11.i\J00621A.b\UXJ0140.D Report Date: 22-Jun-2010 13:48

### TestAmerica North Canton

Instrument ID: a3ux11.i	Injectio	on Date: 21-3	JUN-2010 13:1	6
Lab File ID: UXJ0140.D	Init. Ca	al. Date(s):	17-JUN-2010	18-JUN-2010
Analysis Type: WATER	Init. Ca	al. Times:	12:26	03:08
Lab Sample ID: 50NG-CC		ype: ISTD		
Method: \\cansvrll\dd\chem\B	ISV\a3ux]	11.i\J00621A	.b\8260LLUX11	.m

	'	I I	CCAL   MIN	1 1	MAX I	
COMPOUND	RRF / AMOUNT			ND / NDRIFT N		
<pre>\$ 4 Dibromofluoromethane</pre>						
	0.30584		0.3055810.010		50.000001	2
, , , , , , , , , , , , , , , , , , , ,			0.3917110.010		50.000001	-
\$ 6 Toluene-d8	1 1.79697		1.7105710.010		50.000001	
\$ 7 Bromofluorobenzene	1 0.62197		0.59373 0.010		50.000001	
8 Dichlorodifluoromethane	0.38232		0.36173 0.010		50.00000	-
9 Chloromethane	0.45854		0.51756 0.100		50.000001	2
10 Vinyl Chloride	0.44626		0.49277 0.010		20.000001	
11 Bromomethane	I 0.16759		0.19805 0.010		50.00000	-
12 Chloroethane	0.20679		0.22208/0.010		50.00000	Average
13 Trichlorofluoromethane	I 0.42400		0.4211410.010	0.676581	50.00000	Average
15 Acrolein	0.05178	0.049221	0.0492210.010	4.953961	50.000001	Average
16 Acetone	I 100	131	0.12530 0.010	-30.652401	0.000e+0001	Wt Linea:
17 1,1-Dichloroethene	1 0.28296	0.31681	0.31681 0.010	-11.96335	20.000001	Average
18 Freon-113	0.16896	0.17057	0.17057 0.010	-0.95520	50.00000	Average
19 Iodomethane	0.48943	0.499961	0.49996 0.010	-2.153141	50.00000	Average
20 Carbon Disulfide	I 0.74645	1.02496	1.02496 0.010	<u>(37.31125</u> )	50.00000	Average
21 Methylene Chloride	I 0.37260	0.39669	0.39669 0.010	-6.46550	50.000001	Average
22 Acetonitrile	0.03744	0.04056	0.04056 0.010	-8.337971	50.000001	Average
23 Acrylonitrile	0.13782	0.14660	0.14660 0.010	-6.368071	50.000001	Average
24 Methyl tert-butyl ether	0.88503	0.97618	0.97618 0.010	-10.298481	50.000001	Average
25 trans-1,2-Dichloroethene	0.35168	0.393321	0.39332 0.010	-11.84068	50.000001	Average
26 Hexane	0.09413	0.088841	0.08884 0.010	5.62010	20.000001	Average
27 Vinyl acetate	0.59717	0.56104	0.56104 0.010	6.05021	50.000001	Average
28 1,1-Dichloroethane	0.59365	0.68493	0.68493 0.100	~15.37602	50.000001	Average
29 tert-Butyl Alcohol	0.02144		0.0222210.010		50.000001	Average
- 30 2-Butanone	0.17051	$\sim$	0.1696610.010		50.000001	-
M 31 1,2-Dichloroethene (total)	0.36822		0.40722[0.010]		50.000001	Average
32 cis-1,2-dichloroethene	0.38476		0.42112 0.010		50.000001	Average
33 2,2-Dichloropropane	0.31302		0.31592 0.010		50.000001	Average
34 Bromochloromethane	0.18746	-	0.2049910.0101		50.000001	Average
35 Chloroform	0.57520		0.6493510.010		20.000001	
36 Tetrahydrofuran	0.10039		0.1049810.010		50.000001	Average
37 1,1,1-Trichloroethane						Average
	•		0.4568510.0101		50.000001	Average
38 1,1-Dichloropropene	0.48453		0.54883 0.010		50.000001	Average
39 Carbon Tetrachloride	0.35796		0.41768 0.010		50.00000	Average
40 1,2-Dichloroethane	0.43069		0.50971 0.010		50.00000	Average
41 Benzene	1.52663	-	1.70759 0.010		50.00000	Average
42 Trichloroethene	0.389381		0.42501 0.010		50.00000	Average
43 1,2-Dichloropropane	0.36850		0.41749 0.010		20.000001	Average
44 1,4-Dioxane	0.00233	0.00251	0.0025110.0101	-7.666761	50.000001	Average
45 Dibromomethane	0.20472	0.231741	0.23174 0.010		50.000001	Average
46 Bromodichloromethane	0.36642	0.46477	0.46477 0.010	-26.84262	50.00000	Averaged
47 2-Chloroethyl vinyl ether	0.233291	0.24473	0.24473 0.010	-4.901701	50.000001	Average

### Data File: \\cansvrl1\dd\chem\MSV\a3ux11.i\J00621A.b\UXJ0140.D Report Date: 22-Jun-2010 13:48

#### TestAmerica North Canton

Instrument ID: a3ux11.i	Injection Date: 21-	JUN-2010 13:1	6
Lab File ID: UXJ0140.D	Init. Cal. Date(s):	17-JUN-2010	18-JUN-2010
Analysis Type: WATER	Init. Cal. Times:	12:26	03:08
Lab Sample ID: 50NG-CC	Quant Type: ISTD		
Method: \\cansvr11\dd\chem\	MSV\a3ux11.i\J00621A	.b\8260LLUX11	.m

	11	I	CCAL   MIN	1	MAX	I
COMPOUND	RRF / AMOUNT	RF50		%D / %DRIFT %		
48 cis-1,3-Dichloropropene		0.60150			50.00000	
49 4-Methyl-2-pentanone	0.303941	0.31518	0.31518[0.010]	-3.696551	50.00000	
50 Toluene	2.23110	2.362801	2.36280 0.010			-
51 trans-1,3-Dichloropropene	50.00000	56.229801	0.68736 0.010	-5.902701	20.00000	
52 Ethyl Methacrylate	0.60102	0.626071	0.6260710.010			
53 1,1,2-Trichloroethane	0.43540	0.47168		-4.16667	50.00000	2
54 1,3-Dichloropropane	0.78546	0.84246	0.4716810.0101	-8.33180	50.00000	
55 Tetrachloroethene	0.435281	0.455731	0.84246 0.010	-7.256931	50.00000	,
56 2-Hexanone	0.27508		0.45573 0.010	-4.698771	50.00000	
57 Dibromochloromethane		0.27146	0.27146 0.010	1.31708	50.00000	<u> </u>
	1 50.000001	60.86578	0.45315 0.010	-21.73157		
58 1,2-Dibromoethane	0.43478	0.448891	0.44889 0.010	-3.24498	50.00000	-
59 Chlorobenzene	1.40354	1.48642	1.48642 0.300	-5.905271	50.00000	-
60 1,1,1,2-Tetrachloroethane	0.425091	0.48191	0.48191 0.010	-13.36584	50.00000	
61 Ethylbenzene	0.749771	0.80990	0.80990 0.010	-8.01940	20.00000	Averaged
62 m + p-Xylene	0.94607	1.02303	1.0230310.010	-8.13558	50.00000	Averaged
M 63 Xylenes (total)	0.927721	1.002831	1.00283 0.010	~8.09629	50.00000	Averaged
64 Xylene-o	0.891021	0.962411	0.96241 0.010	-8.01284	50.00000	Averaged
55 Styrene	1.50157	1.649261	1.64926 0.010	-9.83569	50.00000	Averaged
66 Bromoform	1 50.000001	64.96146	0.26713 0.100	(-29.92292)	0.000e+000	Wt Linear
57 Isopropylbenzene	1 2.250051	2.37819	2.37819 0.010	-5.69501	50.00000	Averaged
58 1,1,2,2-Tetrachloroethane	1.01653	1.00475	1,00475 0.300	1.15827	50.00000	Averaged
70 1,2,3-Trichloropropane	0.29865	0.29101/	0.29101 0.010	2.55901	50.00000	Averaged
71 Bromobenzene	1 1.081221	1.07756	1.07756 0.010	0.338271	50.00000	Averaged
72 n-Propylbenzene	1.13342	1.14056	1.14056 0.010	-0.63019	50.00000	Averaged
73 2-Chlorotoluene	1.00766	0.995211	0.99521 0.010	1.235431	50.00000	Averaged
74 1,3,5-Trimethylbenzene	3.350641	3.357771	3.35777 0.010	-0.21297	50.00000	Averaged
75 4-Chlorotoluene	1.07147	1.07911	1.07911 0.010	-0.71297	50.000001	Averaged
76 tert-Butylbenzene	2.91617	2.85692	2.8569210.0101	2.031741	50.000001	Averaged
77 1,2,4-Trimethylbenzene	3.47903	3.559191	3.5591910.0101	-2.303931	50.000001	
78 sec-Butylbenzene	4.16080	4.035051	4.03505 0.010	3.02216	50.000001	· ·
79 4-Isopropyltoluene	3.42687	3.422711	3.42271   0.010	0.12136	50.000001	2
30 1,3-Dichlorobenzene	2.06913	2.04918	2.04918 0.010	0.96419	50.000001	-
31 1,4-Dichlorobenzene	2.14480	2.116381	2.11638[0.010]	1.325271	50.000001	2
32 n-Butylbenzene	2.88607	2.87444	2.87444 0.010	0.402721	50.000001	
33 1,2-Dichlorobenzene	1 1.953491	1.94238	1.94238 0.010	0.56896	50.000001	-
84 1,2-Dibromo-3-chloropropane	0.11793	0.14834	0.14834[0.010]	25.78172	50.000001	-
35 1,2,4-Trichlorobenzene	0.62238	0.74098				2
36 Hexachlorobutadiene	0.25782		0.74098[0.010]	-19.055091	50.000001	-
7 Naphthalene		0.24618	0.24618 0.010	4.513271	50.000001	-
•	1 1.231031	1.382921	1.38292 0.010	-12.338431	50.000001	-
38 1,2,3-Trichlorobenzene	0.530261	0.485231	0.48523 0.010	8.49216	50.000001	-
38 Cyclohexane	0.62414	0.61188	0.61188 0.010	1.96378	50.00000	
43 Methyl Acetate	0.27591	0.31117;	0.31117 0.010	-12.78195	50.000001	Averaged
144 Methylcyclohexane	0.654581	0.640321	0.64032 0.010	2.17918	50.00000	Averaged

## Data File: \\cansvrl1\dd\chem\MSV\a3ux11.i\J00621A.b\UXJ0140.D Report Date: 22-Jun-2010 13:48

#### TestAmerica North Canton

Instrument ID: a3ux11.i	Injection Date: 21-JUN-2010 13:	16
Lab File ID: UXJ0140.D	Init. Cal. Date(s): 17-JUN-2010	
Analysis Type: WATER	Init. Cal. Times: 12:26	03:08
Lab Sample ID: 50NG-CC	Quant Type: ISTD	
Method: \\cansvr11\dd\chem\	ISV\a3ux11.i\J00621A.b\8260LLUX1	1.m

-								·		
1	I			I	CCAL	MIN	1	1	MAX	I
I COMPOUND	RRI	7 / AMOUNT	RF50	I F	RF50	RRF	%D /	%DRIFT %D	/ %DRIFT	CURVE TYPE
	=====(===			====		= =====	======			
141 1,3,5-Trichlorobenzene	I	1.002271	1.13969	91	1.1396	910.010	1 -13	.71121	50.000001	Averaged
1150 Vinyl Acetate-86	I.	0.069131	0.06035	i I	0.0603	510.010	1 12	.700981	50.000001	Averaged
1	I	I				_1	I	I	I	

### Data File: \\cansvrll\dd\chem\MSV\a3ux11.i\J00621A.b\UXJ0141.D Report Date: 22-Jun-2010 13:48

### TestAmerica North Canton

Instrument ID: a3ux11.i	Injection Date: 21-JUN-2010 13:3	9
Lab File ID: UXJ0141.D	Init. Cal. Date(s): 17-JUN-2010	18-JUN-2010
Analysis Type: WATER	Init. Cal. Times: 12:26	03:08
	Quant Type: ISTD	
Method: \\cansvr11\dd\chem\l	MSV\a3ux11.i\J00621A.b\8260LLUX11	.m

1	1	I		1	CCAL	I	MIN	I		ŧ	MAX	ł
I COMPOUND	RRF /	AMOUNT	RF50	1	RRF50	I	RRF	% D	/ %DRIF	ΓĮ%D	/ &DRIFT	CURVE TYP
	===== =====	======= ==		=   = =		===		===		=   ==:		
<pre>14 Dichlorofluoromethane</pre>	1	0.46595	0.4958	41	0.49	5841	0.010	1	-6.41524	41	50.00000	Average
189 Ethyl Ether	I	0.298411	0.2765	21	0.27	6521	0.010	1	7.33598	31	50.00000	Average
191 3-Chloropropene	I.	0.15274	0.1659	31	0.16	5931	0.010	1	-8.64002	21	50.00000	Average
92 Isopropyl Ether	L	0.309291	0.3390	81	0.33	9081	0.010	1	-9.63050	51	50.00000	Average
193 2-Chloro-1,3-butadiene	1	0.49194	0.5291	61	0.52	916	0.010	1	-7.56563	31	50.00000	Average
194 Propionitrile	1	0.047781	0.0504	81	0.05	0481	0.010	t	-5.65699	9 I	50.00000	Average
95 Ethyl Acetate	1	0.32518	0.3194	81	0.31	9481	0.010	1	1.75545	51	50.00000	Average
196 Methacrylonitrile	1	0.21439	0.2148	41	0.21	4841	0.010	1	-0.20967	7	50.00000	Average
197 Isobutanol	t	0.013361	0.0138	91	0.01	3891	0.010	1	-3.95097	71	50.00000	Average
199 n-Butanol	I.	1000}	101	91	0.01	0131	0.010	1	-1.87209	91 0.	.000e+000	Wt Linea
103 Cyclohexanone	I.	5001	. 47	91	0.02	951	0.010	1	4.27968	310.	.000e+000	Wt Linea
1100 Methyl Methacrylate	1	0.271091	0.28280	) I	0.28	2801	0.010	1.	-4.32121		50.00000	
1101 2-Nitropropane	1 0	0.064861	0.0720	91	0.07	2091	0.010	1 -	11.15856	51	50.00000	Average
1155 t-Butyl ethyl ether	1 0	0.896781	0.99038	31	0.99	0381	0.010	1 -3	0.43775	51 .	50.00000	-
156 t-Amyl methyl ether	(	0.79360	0.9029	51	0.90	2961	0.010	1 -:	13.78081		50.00000	
157 1,2,3-Trimethylbenzene	1 50	0.00001	51.46592	21	3.60	3731	0.010	1.	-2.93183	81 0.	000e+000	
146 2-Methylnaphthalene	I	1001	67.74420	51	0.43	9631	0.010				000e+000	
I	1	i.		ł								21//04

BLANK WORKORDER NO.

L28P41AA

SDG Number:0F11578

SW846 8260B METHOD BLANK SUMMARY

Lab Name: TestAmerica Laboratories, Inc.

Lab Code: TALCAN

Lab File ID: UXJ0144.DLot Number: A0F120439Date Analyzed: 06/21/10Time Analyzed: 14:47Matrix: WATERDate Extracted:06/21/10GC Column: DB 624ID: .18Instrument ID: UX11Level:(low/med) LOW

THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES, LCS, LCSD, MS , MSD:

Ī		SAMPLE	LAB	DATE	TIME
	CLIENT ID.	WORK ORDER #	FILE ID	ANALYZED	ANALYZED
			================		· · · · · ·
01	MRC-96D-061110	L2T531AA	UXJ0151.D	06/21/10	 17:26
	MRC-95D-061110	L2T6X1AM	UXJ0152.D	06/21/10	17:48
•	TB-061110				
		L2T611AA	UXJ0153.D	06/21/10	18:11
	INTRA-LAB QC	L21J91AA	UXJ0161.D	06/21/10	21:12
	LAB MS/MSD	L21J91AC S	UXJ0163.D	06/21/10	_21:57
	LAB MS/MSD	L21J91AD D	UXJ0164.D	06/21/10	22:20
07	CHECK SAMPLE	L28P41AC C	UXJ0142.D	06/21/10	14:01
08	DUPLICATE CHECK	L28P41AD L	UXJ0143.D	06/21/10	14:24
09					
10		· · · · · · · · · · · · · · · · · · ·			
11		· · · · · · · · · · · · · · · · · · ·			
12			l	·	·
13			ļ		
14				l	l
15	· · · · · · · · · · · · · · · · · · ·	l	<u></u>		
16				l	
17				İ	
18					
19				l	
20		· · · ·			1
21					
22					
23	· · · ·			]	
24					
25					
26				1	
27	, <u> </u>		1		<u></u>
28		1	1		
29			- }		
30			· ]		
20			.)	I	

COMMENTS:

.....

BLANK WORKORDER NO.

L28P41AA

SDG Number:0F11578

SW846 8260B METHOD BLANK SUMMARY

Lab Name: TestAmerica Laboratories, Inc.

Lab Code: TALCAN

Lab File ID: UXJ0144.DLot Number: A0F110578Date Analyzed: 06/21/10Time Analyzed: 14:47Matrix: WATERDate Extracted:06/21/10GC Column: DB 624ID: .18Extraction Method: 5030BInstrument ID: UX11Level:(low/med) LOW

THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES, LCS, LCSD, MS , MSD:

Ī		SAMPLE		LAB	DATE	TIME
	CLIENT ID.	WORK ORDER	. #	FILE ID	ANALYZED	ANALYZED
i			===		=======	========
01	TB-061010	L2TEX1AA		UXJ0148.D	06/21/10	16:17
02	MRC-MW93D-061010	L2TE81AA		UXJ0149.D	06/21/10	16:40
03	MRC-MW94D-061010	L2TFL1AM		UXJ0150.D	06/21/10	17:03
04	INTRA-LAB QC	L21J91AA		UXJ0161.D	06/21/10	21:12
05	LAB MS/MSD	L21J91AC	S	UXJ0163.D	06/21/10	21:57
06	LAB MS/MSD	L21J91AD	D	UXJ0164.D	06/21/10	22:20
07	CHECK SAMPLE	L28P41AC	С	UXJ0142.D	06/21/10	14:01
80	DUPLICATE CHECK	L28P41AD	L	UXJ0143.D	06/21/10	14:24
09						
10				1		
11				l		
12						
13				<u> </u>		
14	· · · · · · · · · · · · · · · · · · ·			I	l	
15						
16		l			·	l
17						
18					l	I
19					<u> </u>	l
20					·	
21						
22		I			I	
23						
24		<u></u>		.		
25		<u>.</u>				
26						
27		l				
28				<u> </u>		
29					ļ	
30						

COMMENTS:

FORM IV

._....

#### METHOD BLANK REPORT

#### GC/MS Volatiles

Client Lot #: 0F11578	Work Order #: L28P41AA	Matrix WATER
MB Lot-Sample #: A0F220000-220		
	Prep Date: 06/21/10	Final Wgt/Vol: 5 mL
Analysis Date: 06/21/10	Prep Batch #: 0173220	

Dilution Factor: 1

Initial Wgt/Vol: 5 mL

		REPORTI	NG	
PARAMETER	RESULT	LIMIT	UNITS	METHOD
Bromodichloromethane	ND	1.0	ug/L	SW846 8260B
Dibromochloromethane	ND	1.0	ug/L	SW846 8260B
1,2-Dichlorobenzene	ND	1.0	ug/L	SW846 8260B
1,3-Dichlorobenzene	ND	1.0	ug/L	SW846 8260B
1,4-Dichlorobenzene	ND	1.0	ug/L	SW846 8260B
Dichlorodifluoromethane	ND	1.0	ug/L	SW846 8260B
cis-1,2-Dichloroethene	ND	1.0	ug/L	SW846 8260B
trans-1,2-Dichloroethene	ND	1.0	ug/L	SW846 8260B
Trichlorofluoromethane	ND	1.0	ug/L	SW846 8260B
Acetone	ND	5.0	ug/L	SW846 8260B
Bromobenzene	ND	1.0	uq/L	SW846 8260B
Bromochloromethane	ND	1.0	uq/L	SW846 8260B
2-Butanone	ND	5.0	uq/L	SW846 8260B
n-Butylbenzene	ND	1.0	ug/L	SW846 8260B
sec-Butylbenzene	ND	1.0	ug/L	SW846 8260B
tert-Butylbenzene	ND	1.0	ug/L	SW846 8260B
Carbon disulfide	ND	1.0	ug/L	SW846 8260B
1,2-Dibromo-3-chloro-	ND	2.0	ug/L	SW846 8260B
propane		F 0	1-	
2-Chloroethyl vinyl ether	ND	5.0	ug/L	SW846 8260B
2-Chlorotoluene	ND	1.0	ug/L	SW846 8260B
4-Chlorotoluene	ND	1.0	ug/L	SW846 8260B
1,2-Dibromoethane	ND	1.0	ug/L	SW846 8260B
Dibromomethane	ND	1.0	ug/L	SW846 8260B
1,3-Dichloropropane	ND	1.0	ug/L	SW846 8260B
2,2-Dichloropropane	ND	1.0	ug/L	SW846 8260B
1,1-Dichloropropene	NB	1.0	ug/L	SW846 8260B
Hexachlorobutadiene	0.44 J	1.0	ug/L	SW846 8260B
2-Hexanone	ND	5.0	ug/L	SW846 8260B
Isopropylbenzene	ND	1.0	ug/L	SW846 8260B
p-Isopropyltoluene	ND	1.0	ug/L	SW846 8260B
tert-Butyl alcohol	ND	20	ug/L	SW846 8260B
4-Methyl-2-pentanone	ND	5.0	ug/L	SW846 8260B
Naphthalene	0.49 J	1.0	ug/L	SW846 8260B
n-Propylbenzene	ND	1.0	ug/L	SW846 8260B
Styrene	ND	1.0	ug/L	SW846 8260B
1,1,1,2-Tetrachloroethane	ND	1.0	ug/L	SW846 8260B
1,2,3-Trichlorobenzene	Q.54 V	1.0	ug/L	SW846 8260B
1,2,4-Trichloro- benzene	0.40 J	1.0	ug/L	SW846 8260B
1,2,3-Trichloropropane	ND	1.0	ug/L	SW846 8260B
	(Continue-			

(Continued on next page)

#### METHOD BLANK REPORT

#### GC/MS Volatiles

**Client Lot #...:** 0F11578

Work Order #...: L28P41AA

Matrix..... WATER

		REPORTI	NG	
PARAMETER	RESULT	LIMIT	UNITS	METHOD
1,1,2-Trichloro-	ND	1.0	ug/L	SW846 8260B
1,2,2-trifluoroethane				
1,2,4-Trimethylbenzene	ND	1.0	ug/L	SW846 8260B
Vinyl acetate	ND	2.0	ug/L	SW846 8260B
o-Xylene	ND	1.0	ug/L	SW846 8260B
Xylenes (total)	ND	2.0	ug/L	SW846 8260B
Methyl tert-butyl ether	ND	5.0	ug/L	SW846 8260B
m-Xylene & p-Xylene	ND	2.0	ug/L	SW846 8260B
1,2,3-Trimethylbenzene	ND	5.0	ug/L	SW846 8260B
Diisopropyl Ether (DIPE)	ND	5.0	ug/L	SW846 8260B
Ethyl-t-Butyl Ether (ETBE	ND	5.0	ug/L	SW846 8260B
Tert-amyl methyl ether (T	ND	5.0	ug/L	SW846 8260B
Benzene	ND	1.0	ug/L	SW846 8260B
Bromoform	ND	1.0	ug/L	SW846 8260B
Bromomethane	ND	1.0	ug/L	SW846 8260B
Carbon tetrachloride	ND	1.0	ug/L	SW846 8260B
Chlorobenzene	ND	1.0	ug/L	SW846 8260B
Chloroethane	ND	1.0	ug/L	SW846 8260B
Chloroform	ND	1.0	ug/L	SW846 8260B
Chloromethane	ND	1.0	ug/L	SW846 8260B
1,1-Dichloroethane	ND	1.0	ug/L	SW846 8260B
1,2-Dichloroethane	ND	1.0	ug/L	SW846 8260B
1,1-Dichloroethene	ND	1.0	ug/L	SW846 8260B
1,2-Dichloropropane	ND	1.0	ug/L	SW846 8260B
cis-1,3-Dichloropropene	ND	1.0	ug/L	SW846 8260B
trans-1,3-Dichloropropene	ND	1.0	ug/L	SW846 8260B
Ethylbenzene	ND	1.0	ug/L	SW846 8260B
Methylene chloride	(0.45 J)	1.0	ug/L	SW846 8260B
1,1,2,2-Tetrachloroethane	ND	1.0	ug/L	SW846 8260B
Tetrachloroethene	ND	1.0	ug/L	SW846 8260B
Toluene	ND	1.0	ug/L	SW846 8260B
1,1,1-Trichloroethane	ND	1.0	ug/L	SW846 8260B
Trichloroethene	ND	1.0	ug/L	SW846 8260B
Vinyl chloride	ND	1.0	ug/L	SW846 8260B
	PERCENT	RECOVERY	Y	
SURROGATE	RECOVERY	LIMITS		
Dibromofluoromethane	95	(73 - 12	22)	
1,2-Dichloroethane-d4	91	(61 - 12	28)	
Toluene-d8	90	(76 - 11	10)	
4-Bromofluorobenzene	88	(74 - 12		

## NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

J Estimated result. Result is less than RL.

#### Tetra Tech NUS, Inc

#### Method Blank Report

#### GC/MS Volatiles

Lot-Sample #: A0F220000-220 B Work Order #: L28P41AA Matrix: WATER

-----

MASS SPECTROMETER/DATA SYSTEM (MSDS) TENTATIVELY IDENTIFIED COMPOUNDS

		ESTIMATED	RETENTION	I
PARAMETER	CAS #	RESULT	TIME	UNITS
Freon 22		ND	M	ug/L

#### NOTE(S):

M: Result was measured against nearest internal standard assuming a response factor of 1.

#### SW846 8260B SURROGATE RECOVERY

Lab Name: TestAmerica Laboratories, Inc.

Client: Tetra Tech NUS, Inc

Lab Code: TALCAN SDG No: 0F11578

Lot #: A0F120439

Extraction: XXI25QK01

	CLIENT ID.	SRG01	SRG02	SRG03	SRG04	TOT OUT
		=======	======	======	=======	=======
01	MRC-96D-061110	98	_98	91	86	00
02	MRC-95D-061110	100	96	90	86	00
03	<u>TB-061110</u>	99	99	90	86	00
04	INTRA-LAB QC	99	97	90	85	00
05	METHOD BLK. L28P41AA	95	91	90	88	00
06	LCS L28P41AC	96	97	93	99	00
07	LAB MS/MSD D	96	95	96	99	00
80	LCSD L28P41AD	92	95	93	99	00
09	LAB MS/MSD S	96	_97	95	97	00

SURROGA	ATES	QC LIMITS
SRG01	= Dibromofluoromethane	(73-122)
SRG02	= 1,2-Dichloroethane-d4	( 61-128)
SRG03	= Toluene-d8	( 76-110)
SRG04	= 4-Bromofluorobenzene	( 74-116)

# Column to be used to flag recovery values

____

* Values outside of required QC Limits

D System monitoring Compound diluted out

FORM II

North Canton

#### SW846 8260B SURROGATE RECOVERY

Lab Name: TestAmerica Laboratories, Inc.

Client: Tetra Tech NUS, Inc

Lab Code: TALCAN SDG No: 0F11578

Lot #: A0F110578

Extraction: XXI25QK01

	CLIENT ID.	SRG01	SRG02	SRG03	SRG04	TOT OUT
	***************************************	=======		=======	======	=======
01	TB-061010	98	97	91	86	00
02	MRC-MW93D-061010	98	98	90	90	00
03	MRC-MW94D-061010	99	94	89	85	00
04	INTRA-LAB QC	99	97	90	85	00
05	METHOD BLK. L28P41AA	95	91	90	88	00
06	LCS L28P41AC	96	97	93	99	00
07	LAB MS/MSD D	96	95	96	99	00
80	LCSD L28P41AD	92	95	93	99	00
09	LAB MS/MSD S	96	97	95	97	00

SURROGATE	S		QC	LIMITS
SRG01	=	Dibromofluoromethane	(	73-122)
SRG02	=	1,2-Dichloroethane-d4	(	61-128)
SRG03	=	Toluene-d8	(.	76-110)
SRG04	=	4-Bromofluorobenzene	(	74-116)

# Column to be used to flag recovery values

* Values outside of required QC Limits

D System monitoring Compound diluted out

FORM II

#### SW846 8260B CHECK SAMPLE RECOVERY

Lab Name: TestAmerica Laboratories, Inc. Client: Tetra Tech NUS, Inc

Lab Code: TALCAN

SDG No: 0F11578

Lot #: A0F220000

#### WO #: L28P41AC BATCH: 0173220

COMPOUND	SPIKE ADDED (ug/L )	SAMPLE CONCENT. (ug/L )	% REC	QC LIMITS REC	QUAL
1,1-Dichloroethene	10	10	101	63- 130	=======================================
Trichloroethene	10	10	102	75- 122	
Benzene	10	11	106	80- 116	
Toluene	10	10	100	74- 119	
Chlorobenzene	10	10	100	76- 117	

NOTES(S):

* Values outside of QC limits

Spike Recovery: ____0 out of ____5 outside limits

COMMENTS:

FORM III

#### SW846 8260B CHECK SAMPLE DUPLICATE RECOVERY

Lab Name: TestAmerica Laboratories, Inc. Client: Tetra Tech NUS, Inc

Lab Code: TALCAN

SDG No: 0F11578

Lot #: A0F220000

#### WO #: L28P41AD BATCH: 0173220

COMPOUND	SPIKE ADDED (ug/L )	SAMPLE CONCENT. (ug/L )	% REC	QC LIMITS REC	QUAL
1,1-Dichloroethene	<b>====</b> ================================	======================================	==== <b>=</b>     110	63- 130	=======
Trichloroethene	10	10	101	75- 122	
Benzene	10	10	105	80- 116	
Toluene	10	10	100	74- 119	
Chlorobenzene	10	9.9	99	76- 117	

#### NOTES(S):

* Values outside of QC limits		
Spike Recovery: <u>0</u> out of COMMENTS:	<u>5</u> outside limits	
	FORM III	
North Canton		

#### SW846 8260B MATRIX SPIKE/MATRIX SPIKE DUPLICATE RECOVERY

Lab Name: TestAmerica Laboratories, Inc. Client: Tetra Tech NUS, Inc

1

32

Lab Code: TALCAN

SDG No: 0F11578

Matrix Spike ID: LAB MS/MSD

Lot #: A0F160530

WO #: L21J91AC BATCH: 0173220

COMPOUND	SPIKE ADDED (ug/L )	SAMPLE CONCENT. (ug/L )	MS CONCENT. (ug/L)	MS % REC	LIMITS REC	QUAL
	=======================================	=========	=========	======	=========	=======================================
1,1-Dichloroethene	10	ND	11	108	62- 130	
Trichloroethene	10	ND	9.5	95	<u>62</u> - 130	
Benzene	10	2.2	12	102	78- 118	1
Toluene	10	ND	9.7	97	70- 119	
Chlorobenzene	10	ND	9.4	94	76- 117	

NOTES(S):

# Column to be used to flag recovery and RPD values with an asterisk * Values outside of QC limits	
RPD:       0       out of       0         Spike Recovery:       0       out of       5       outside limits	
COMMENTS:	
FORM III	
North Canton	

#### SW846 8260B MATRIX SPIKE/MATRIX SPIKE DUPLICATE RECOVERY

Lab Name: TestAmerica Laboratories, Inc. Client: Tetra Tech NUS, Inc

Lab Code: TALCAN

SDG No: 0F11578

Matrix Spike ID: LAB MS/MSD

Lot #: A0F160530

WO #: L21J91AD BATCH: 0173220

COMPOUND	SPIKE ADDED (ug/L )	MSD CONCENT. (ug/L)	MSD % REC	ہ RPD	QC I RPD	LIMITS REC	
			<u>квс</u>			REC	QUAL
1,1-Dichloroethene	10	10	104	3.7	20	62- 130	
Trichloroethene	10	9.4	94	1.3	20	62- 130	
Benzene	10	12	99	2.5	20	78- 118	
Toluene	10	9.6	96	1.5	20	70- 119	
Chlorobenzene	10	9.2	92	2.4	20	<u>    76-    117</u>	

NOTES (S):

# Column to be used to flag recovery and RPD values with an asterisk * Values outside of QC limits

RPD:0out of5outside limitsSpike Recovery:0out of5outside limits

COMMENTS:

FORM III

#### 8A VOLATILE INTERNAL STANDARD AREA SUMMARY

Lab Name: NORTH CANTON Lab Code: TACAN Case No.: Lab File ID (Standard): UXJ0140 Instrument ID: A3UX11 Contract: SAS No.:

SDG No.: 0F11578 Date Analyzed: 06/21/10 Time Analyzed: 1316

Column: (pack/cap) CAP

Matrix: (soil/water) WATER Level: (low/med) LOW

1	IS1		IS2 (CBZ)	······	IS3 (DCB)	
	AREA #	RT	AREA #	RT	AREA #	RT .
12 HOUR STD	1264540	5.35	983963	8.04	578276	10.28
UPPER LIMIT	2529080	==== <u>=</u> 5.85	1967926	8.54	======================================	10.78
LOWER LIMIT	632270	4.85	======================================	====== 7.54	289138	====== 9.78
EPA SAMPLE NO.		======				
==========         01       L28P4CHK         02       L28P4CKDUP         03       L28P4BLK         04       TB-061010         05       MRC-MW93D-06         06       MRC-MW94D-06         07       MRC-MW27B-06         08       MRC-95D-0611         09       TB-061110         10	1204917 1228287 1160980 1053526 1061468 1063414 1035868 1054217 1011242	5.35 5.35 5.35 5.35 5.35 5.35 5.35 5.35	925542 930691 884944 813213 820745 808673 787481 804950 785152	8.04 8.04 8.04 8.04 8.04 8.04 8.04 8.04	<pre>531509 534287 446915 408311 428964 402347 397939 414929 396033</pre>	

IS1		= Fluorobenzene
IS2	(CBZ)	= Chlorobenzene-d5
IS3	(DCB)	= 1,4-Dichlorobenzene-d4

UPPER LIMIT = +100% of internal standard area. LOWER LIMIT = - 50% of internal standard area.

# Column used to flag internal standard area values with an asterisk.

page 1 of 1

FORM VIII VOA

1/87 Rev.

5B

### SEMIVOLATILE ORGANIC INSTRUMENT PERFORMANCE CHECK DECAFLUOROTRIPHENYLPHOSPHINE (DFTPP)

Lab Name: NORTH CANTONContract:Lab Code: TACANCase No.:SAS No.:SDG No.: 0F11578Lab File ID: 2DF0614DFTPP Injection Date: 06/14/10Instrument ID: A4AG2DFTPP Injection Time: 0827

m/e	ION ABUNDANCE CRITERIA	% RELATIVE ABUNDANCE
51 68 69 70 127 197 198 199 275 365 441 442 443	30.0 - 80.0% of mass 198         Less than 2.0% of mass 69         Mass 69 relative abundance         Less than 2.0% of mass 69         25.0 - 75.0% of mass 198         Less than 1.0% of mass 198         Base Peak, 100% relative abundance         5.0 to 9.0% of mass 198         10.0 - 30.0% of mass 198         Greater than 0.75% of mass 198         Present, but less than mass 443         40.0 - 110.0% of mass 198         15.0 - 24.0% of mass 442	$\begin{array}{c} ====================================$

1-Value is % mass 69

### 2-Value is % mass 442

THIS CHECK APPLIES TO THE FOLLOWING SAMPLES, MS, MSD, BLANKS, AND STANDARDS:

	EPA	LAB	LAB		I
	SAMPLE NO.	SAMPLE ID		DATE	TIME
		SAMELE ID	FILE ID	ANALYZED	ANALYZED
01	SSTD009	L9		=======================================	========
02	SSTD008		2SHHH0614	06/14/10	0844
02	SSID008 SSID007	L8 L7	2SHH0614	06/14/10	0901
03			2SH0614	06/14/10	0918
	SSTD006	L6	2SMH0614	06/14/10	0935
05	SSTD005	L5	2SMM0614	06/14/10	0952
06	SSTD004	L4	2SM0614	06/14/10	1009
07	SSTD003	L3	2SML0614	06/14/10	1026
08	SSTD002	L2	2SL0614	06/14/10	1042
09	SSTD001	Ll	2SLL0614	06/14/10	1059
10	·				
11					
12				· · · · · · · · · · · · · · · · · · ·	
13					
14					
15	<u> </u>				
16					
17					
18					
19					
20					
21		· · · · · · · · · · · · · · · · · · ·			
22					
			l		

page 1 of 1

OLM03.0

Page 1

TestAmerica North Canton

#### INITIAL CALIBRATION DATA

Start Cal Date	: 14-JUN-2010 08:44
End Cal Date	: 14-JUN-2010 13:31
Quant Method	: ISTD
Örigin	: Disabled
Target Version	: 4.14
Integrator	: HP RTE
Method file	: $\cansvrll\d\chem\MSS\a4ag2.i\00614A.b\8270C-625.m$
Last Edit	: 14-Jun-2010 14:01 a4ag2.i
Curve Type	: Average

#### Calibration File Names:

Level 1: \\cansvrll\dd\chem\MSS\a4ag2.i\00614A.b\2SLL0614.D Level 2: \\cansvrll\dd\chem\MSS\a4ag2.i\00614A.b\2AL0614.D Level 3: \\cansvrll\dd\chem\MSS\a4ag2.i\00614A.b\2AML0614.D Level 4: \\cansvrll\dd\chem\MSS\a4ag2.i\00614A.b\2AML0614.D Level 4: \\cansvrll\dd\chem\MSS\a4ag2.i\00614A.b\2AMM0614.D \\cansvrl1\dd\chem\MSS\a4ag2.i\00614A.b\2AMH0614.D Level 6:  $\cansvr11\d\chem\MSS\a4ag2.i\00614A.b\2AH0614.D$ Level 7: Level 8: \\cansvrll\dd\chem\MSS\a4ag2.i\00614A.b\2AHH0614.D Level 9: \\cansvrll\dd\chem\MSS\a4ag2.i\00614A.b\2AHHH0614.D

	0.05000	0.25000	0.50000	1.000	2.500	5.000		
Compound	Level 1	Level 2	Level 3	Level 4	Level 5	Level 6	RRF	% RSD
	7.500	10.000	12.500				ĺ	
	Level 7	Level 8	Level 9			1		
		,			•	=========		522328255
198 1,4-Dioxane	+++++	0.73215			0.62697	0.64050		
	0.63607	0.84302	0.66309	ļ .	1		0.67541	11.386
7 N-Nitrosomorpholine	+++++	0.70215		•	0.75380	0.79389		9.995
	0.84112	0.91223	0.89205	l	!		0.79512	9.995
	1				0.92556	1.00062		
8 Ethyl methanesulfonate	+++++	1.05768		•	0.92556	1.00062  	1.01344	6.163
	1.04028	1.09484	1.06261	1	1		1.01344	0.10.
		1.26877	1.41410	1.53658	1.47312	1.55221		
9 Pyridine	+++++				1.1/542	1.55222	1.53658	10.243
	1.60104	1 1.78841	T.02030	I 	1 1 <b>_</b>			
	+++++	0.76624	0.78466	0.84298	0.80641	0.83523	1	
10 N-Nitrosodimethylamine	0.84522	•		•	1	1	0.83617	6.60
	0.04022	0.54024	0.00200	 	 			
11 Ethyl methacrylate		+++++	+++++	   +++++	۰ ۱ +++++	\   +++++	Ī	
ii binyi methaciyiace	+++++	+++++	+++++	1	1	1	+++++	++ <b>++</b> +
12 3-Chloropropionitrile	) +++++	0.65368	0.64991	0.69961	0.66547	0.69719	]	
	0.65846	•	•		i		0.68222	4.95
							ļ	
13 Malononitrile	,   +++++	+++++	+++++	+++++	+++++	+++++	1	ļ
	· +++++	++++	+++++	1	1	1	++++++	+++++
							1	}
	· 1	1	1	1		1	1	1

#### INITIAL CALIBRATION DATA

<pre>Start Cal Date : 14-JUN-2010 08:44 End Cal Date : 14-JUN-2010 13:31 Quant Method : ISTD Origin : Disabled Target Version : 4.14 Integrator : HP RTE Method file : \\cansvrll\dd\chem\MSS\a4ag2.i\00614A.b\8270C-625.m Last Edit : 14-Jun-2010 14:01 a4ag2.i</pre>
----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

Compound	0.05000   Level 1	0.25000 Level 2	0.50000 Level 3	1.000 Level 4	2.500 ·	,		]
<b>^</b>				4				% RSD 
	7.500	10.000	12.500					
	Level 7	Level 8	Level 9		l	1	1	l
14 2-Picoline	+++++	1.35356				1.41354		
	1.46620	• •					1.43425	6.358
15 N-Nitrosomethylethylamine	+++++	0.70476	0.64464	0.63520	0.61815	0.65243	1	 
	0.66985	0.71178					0.66545	5.055
16 Methyl methanesulfonate	+++++	0.88850	0.85008	0.81949	0.79313	0.83185	 ]	<i>-</i>
	0.86334	0.92136					0.85884	5.099
18 1,3-Dichloro-2-propanol	+++++	1.29854	1.38172	1.26907	1.27757	1.40799	[ ]	- <b></b>
	1.44928						1.39634	7.996
19 N-Nitrosodiethylamine	++++++	0.62238	0.63449	0.60000	0.62032	0.64625		
	0.66776	0.71346	0.70563	i			0.65129	6.310
21 Aniline	++++++	1.84844	1.99772	2.13653	2.01744	2.21410		
	2.27643	2.75011	2.54063	1	l		2.22268	13.416
22 Phenol	   +++++++	1.53957	1.60849	1.70478	1.68276	1.73240	- <b></b>   	
	1.77412	2.00118	1.85744	I	I		1.73759	8.288
23 bis(2-Chloroethyl)ether	   ++++++	1.42145	1.35969	1.45362	1.41554	1.37685		
	1.36677	1.43887		1	-	İ	1.39607	3.009
24 2-Chlorophenol	   ++++++	1.29314	1.28869	1.38776	1.33245	1.40784		
	1.43126	1.67573	1.54128	I		İ	1.41977	9.315
25 Pentachloroethane	++++++	0.45051	0.44476	0.41293	0.42622	0.45341	<b>-</b>	
	0.46943	0.50186	0.49819			l	0.45716	6.896
26 1,3-Dichlorobenzene	+++++	1.46573	1.39767	1.52343	1.43960	1.49855	 	
	1.46089	1.66731	1.53593				1.49864	5.447
	[ 							

Page 2

### INITIAL CALIBRATION DATA

Start Cal Date	:	14-JUN-2010 08:44
End Cal Date	:	14-JUN-2010 13:31
Quant Method	:	ISTD
Origin	:	Disabled
Target Version	:	4.14
Integrator		HP RTE
Method file	:	$\cansvrll\d\chem\MSS\a4ag2.i\00614A.b\8270C-625.m$
Last Edit	:	14-Jun-2010 14:01 a4ag2.i
Curve Type	:	Average

	0.05000	0.25000	0.50000	1.000	2.500	5.000		1	1
Compound	Level 1	Level 2	Level 3	Level 4	Level 5	Level 6	RRF	% RSD	l
ł									ł
	7.500	10.000	12.500		1	1			1
	Level 7	Level 8	Level 9		ļ	]			1
	=========								1
27 1,4-Dichlorobenzene	+++++   	1.32669		•	1.31403	1.37329	1.36846	4.744	
	1.33192	1.50502	1.40617	l I	<b>!</b> 1	 	1.36846	4./44	<-
28 1,2-Dichlorobenzene	   ++++++	1.36964	1.38342	1.47832	1.37676	1.44370	]		1
	1.41934			•			1.45059	5.890	
 						, 			1
29 Benzyl Alcohol	· +++++	0.79702	0.78326	0.90345	0.85350	0.89088	I		Ì
	0.91845	1.03593	0.96220			Ì	0.89309	9.348	<-
									I.
30 2-Methylphenol	+++++	1.11466	1.15476	1.31317	1.21204	1.29379	1	1	1
ļ	1.31193	1.48275	1.41270	I	1	I	1.28697	9.664	<-
31 bis (2-Chloroisopropyl) ether	+++++	1.34223			1.27033	1.31026		1	
	1.25067	1.39778		ļ		1	1.30876	3.965	<-
									1
32 N-Nitroso-di-n-propylamine	+++++	1.02753	·		1.09736	1.11558	   1.12215	7.505	1
1	1.13689	1.27573	1.1964/ 	! !	.  	 	1.12213	/.505	<b>\</b> - .]
M 195 Cresols, total	+++++	2.28157	1	2.63363	2.51827	2.63835	1	1	ł
	2.67711		•		1	1	2.62966	9.073	<-
, 					, 		· 		1
192 4-Methylphenol	+++++	1.16691	1.24775	1.32046	1.30624	1.34456	l	1	Í
·	1.36519	1.54582	1.44456	1	Ì		1.34269	8.625	<-
									• }
193 3-Methylphenol	+++++	0.84012	0.98300	1.02454	1.12050	1.21120	1	!	1
I	1.29982	1.43974	1.43052	1	1	1	1.16868	18.482	: <-
	1								-
34 Hexachloroethane	+++++	0.58472	•		0.55705	0.59113			
1	0.57271	0.64316	0.58938	1	1	1	0.58357	4.709	/ <-
	1		1			0.43229	1	]	1
35 Nitrobenzene	0.44976	•			0.40494	U.43229	0.42725	4.295	1 ;1
1	0.41123	0.45/56	0.43014	1	1			1	- 1
	1		1	1	1			1	1
t	- I	·	I				. !		-1

### INITIAL CALIBRATION DATA

Start Cal Date	: 14-JUN-2010 08:44
End Cal Date	: 14-JUN-2010 13:31
Quant Method	: ISTD
Origin	: Disabled
Target Version	: 4.14
Integrator	: HP RTE
Method file	: $\cansvrll\d\chem\MSS\a4ag2.i\00614A.b\8270C-625.m$
Last Edit	: 14-Jun-2010 14:01 a4ag2.i
Curve Type	: Average

	0.05000	0.25000	0.50000	1.000	2.500	5.000		
Compound	Level 1	Level 2	Level 3	Level 4	Level 5	Level 6	RRF	% RSD
	7.500	10.000	12.500		1	l i		ļ
	Level 7	Level 8	Level 9					
		, ,		*******	•		•	
36 N-Nitrosopyrrolidine	+++++	0.55732			0.62676	0.66926		
	0.71093	0.77090	0.75398				0.65794	12.345
37 Acetophenone	   +++++	1.88679	1.89139	1.98851	1.89275	1.97269	 1	
57 Accoptioned	2.00630				1 1.09275	1.37209	2.00415	6.633
	2.00030	2.20413	2.13001		[   ]	l 	2.00415	0.033
39 o-Toluidine	· +++++	1.83346		1.91042	1.85305	1.87616		: 
	1.74624	1.60393	1.44389				1.77024	9.355
								, 
40 N-Nitrosopiperidine	+++++	0.14282	0.14900	0.14872	0.14746	0.15405	1	l
	0.15623	0.17221	0,17148				0.15525	7.100
41 Isophorone	+++++	0.63232		0.72553	0.70090	0.73552	1	]
	0.75034	0.81377	0.76333		l		0.72706	7.380
								<b></b>
42 2-Nitrophenol	+++++	0.14745		•	0.18574	0.19772		
	0.20702	0.22762	0.21994	ł		1	0.19189	] 14.066
43 2,4-Dimethylphenol	++++++	0.33902	0.36419	0.37961	0.37791	0.40029	1	
	0.41993				1	0.10025	0.39917	10.919
					, 	, 		
44 bis(2-Chloroethoxy)methane	+++++	0.37500	0.39624	0.40352	0.39541	0.41658		I
	0.40067	0.43793	0.41450		1	1	0.40498	4.570
45 0,0,0-Triethyl phosphorothioa	++++	0.13141	0.14931	0.14016	0.13873	0.14582	1	1
	0.14901	0.16415	0.16131		1	I	0.14749	7.540
					<b></b>			
46 2,4-Toluenediamene	+++++	+++++	0.19677		0.13070	0.14676	•	
	0.15494	0.11172	0.09161	1		1	0.14484	25.629
47 1,3,5-Trichlorobenzene	   +++++	0.28484	0.29024	0.29208	0.28856	0.30170		
*, *'?'?-**reurorobensene	0.30022	•		•	U.28856	0.301/0	0.30399	7.15
				 	، 	! 		
	1	1	_	1	1	1	1	

Page 4

### INITIAL CALIBRATION DATA

End Cal Date : 14 Quant Method : IS Origin : Di Target Version : 4. Integrator : HE Method file : \\ Last Edit : 14	isabled .14 P RTE \cansvr11\dd\chem\MSS\a4ag2.i\00614A.b\8270C-625.m 4-Jun-2010 14:01 a4ag2.i
	verage

Compound	0.05000 Level 1	0.25000 Level 2	0.50000 Level 3	1.000 Level 4	2.500 Level 5	5.000 Level 6	   RRF	   % RSD	1
	7.500 Level 7	10.000 Level 8	12.500 Level 9				;   	 	
48 2,4-Dichlorophenol	+++++ 0.26929	0.22213	0.23243		•	   0.26270 	1	Ì	i
49 Benzoic Acid	+++++ 0.24469	+++++ 0.28925	0.11277 0.29015	0.17015	0.20051	<b></b>   0.25495 	     0.22321	29.400	    <-
50 1,2,4-Trichlorobenzene	+++++ 0.28723	0.28601			0.28595	 0.29007 	     0.29480	     4.256	
51 Naphthalene	1.00573 1.07829	· ·			0.97714		     1.04536	     6.862	
52 4-Chloroaniline	+++++ 0.43156	0.40668 0.49521			0.38772	   0.42939 	     0.43007	     8.956	    <·
53 a,a-Dimethyl-phenethylamine	+++++ 0.71115	0.38303 0.77204		0.54169	0.62037	0.69352	     0.58355	     27.617	    <·
54 2,6-Dichlorophenol	+++++ 0.24059	0.19236 0.26730			 ] 0.21467	0.23038	     0.22626	     12.712	    <-
55 Hexachloropropene	 ++++++ 0.18193	+++++ 0.20198	+++++ 0.20023	0.16639	0.16886	   0.17922 	     0.18310	     8.277	    <·
56 Hexachlorobutadiene	+++++ 0.15648	0.15365	•		   0.15409 	<b>-</b>   0.15739 	     0.15850	4.313	    <-
57 1,2,3-Trichlorobenzene	+++++ 0.26674	0.27459			<b>-</b>   0.25705	   0.27052 	     0.27335	     4.868	   . <-
58 N-Nitrosodi-n-butylamine	+++++ 0.24775	0.21780		•	   0.22982 	   0.24176 	     0.24230	     7.901	   . <-
		 			 	 	<b></b> -	 	

**.** .

· · · · · · · - __

### INITIAL CALIBRATION DATA

Start Cal Date	:	14-JUN-2010 08:44
End Cal Date	:	14-JUN-2010 13:31
Quant Method	:	ISTD
Origin	:	Disabled
Target Version	:	4.14
Integrator	:	HP RTE
Method file	:	$\cansvrll\d\chem\MSS\a4ag2.i\00614A.b\8270C-625.m$
Last Edit	:	14-Jun-2010 14:01 a4aq2.i
Curve Type	:	Average
		-

Compound	0.05000	0.25000 Level 2	0.50000 Level 3	1.000 Level 4	2.500 Level 5	5.000 Level 6	RRF	* RSD	1
	7.500 Level 7	10.000 Level 8	12.500 Level 9				.   		
59 4-Chloro-3-Methylphenol.	=====================================	+++++	0.30514				•	7.175	    <
60 p-Phenylene diamine	   +++++   0.17752	+++++ 0.15880		0.17232	0.22758	0.21647	0.19054	15.642	  <
61 Safrole	+++++ 0.24331		0.27038		İ		0.24538	6.727	    <
62 2-Methylnaphthalene	0.65493	0.73959	0.68780			ł	0.65271	6.197	
63 1-Methylnaphthalene	0.64161		0.62299	•	   0.62084 }	   0.64912 	     0.65694	     5.983	
64 Hexachlorocyclopentadiene	++++++		0.38006		0.32400	0.33807	     0.32622	     16.530	
65 1,2,4,5-Tetrachlorobenzene	++++++ 0.42096				   0.38069 	   0.41670 	0.41141	     8.477	    <
66 2,4,6-Trichlorophenol	+++++ 0.32473	0.22737	0.27719	1	l	   0.31096 	0.30536	15.067	
67 2,4,5-Trichlorophenol	++++++	0.27167			<b>-</b>   0.32771 	   0.32081 	     0.33060	     11.623	    <
68 1,2,3,5-Tetrachlorobenzene	+++++ 0.47760	0.46168			   0.46935 	   0.48060	0.48588	     7.369	    <
69 1,4-Dinitrobenzene	+++++ 0.17976	 ++++++ 0.19911	0.12523	•	   0.15970 	   0.17394 	     0.16864	     15.756	
	·	 		 	 	 	 	 	 

......

.....

### INITIAL CALIBRATION DATA

Start Cal Date	: 14-JUN-2010 08:44
End Cal Date	: 14-JUN-2010 13:31
Quant Method	: ISTD
Origin	: Disabled
Target Version	: 4.14
Integrator	: HP RTE
Method file	: \\cansvr11\dd\chem\MSS\a4ag2.i\00614A.b\8270C-625.m
Last Edit	: 14-Jun-2010 14:01 a4aq2.i
Curve Type	: Average

	0.05000	0.25000	0.50000	1.000	2.500	5.000	I	
Compound	Level 1	Level 2	Level 3	Level 4	Level 5	Level 6	RRF	% RSD
	7.500	10.000 Level 8	12.500 Level 9		•			
70 2-Chloronaphthalene	1.23009   1.06970	1.04463	1.04400	1.07032	1.04884			6.324
71 Isosafrole 1	-     +++++   0.15500	0.14076 0.17484	0.15227	0.13437	0.13551	0.15197	1	     9.689 <
188 Isosafrole, Total	-    +++++   1.05972		1.14639				1.02104	       10.237 <
72 Isosafrole 2	-    +++++   0.90472				0.81151	0.87363	0.86938	         10.464 <
73 2-Nitroaniline	++++++	0.34390	0.37472	0.39027	0.40103		0.40335	     9.212 <
74 1,2,3,4-Tetrachlorobenzene	+++++ 0.44744	0.40104	0.41241	0.43389	0.43750	0.44835	0.44643	       7.964 <
75 1,4-Naphthoquinone	+++++ 0.36996	+++++ 0.39004	0.30934 0.36868	,	0.34339	0.36531	0.35241	       8.300 <
76 Dimethylphthalate	   +++++   1.28715	1.11480 1.44696	1.18096 1.35323	1.23271	1.21671	1.25134	1.26048	       8.179 <
77 m-Dinitrobenzene		,	0.17210		0.18000		0.19303	         9.525 <
78 2,6-Dinitrotoluene	-      +++++     0.29637	0.22968	0.26233	0.28593	0.29138	0.29993		         10.345 <
79 Acenaphthylene	1.79726 1.82840			1.73830	1.70337	1.76106	1.78559	9.864
	-							

Page 7

	0.05000	0.25000	0.50000	1.000	2.500	5.000	l		
Compound	Level 1	Level 2	Level 3	Level 4	Level 5	Level 6	RRF	% RSD	ł
	7.500	10.000	12.500				1		} 
	Level 7	Level 8	Level 9			1 	1		1
		*****				=======		========	1
80 1,2-Dinitrobenzene	+++++	0.11509			0.13886	0.13922	•		
	0.13844	0.15327		 	 	 	0.13573	9.067	< • 1
81 3-Nitroaniline	++++++	0.25274		1	1	0.32312			 
	0.32980	0.36468	0.34647			1	0.31353	11.482	<
									ļ
82 Acenaphthene	1.18021			1	1.07575	1.13734 	1.15756	10.159	 
				 	 	 			ł
83 2,4-Dinitrophenol	+++++	+++++	0.09958	0.13808	0.19462	0.21672	1		ĸ
	0.23172	0.26871	•		I	l	0.20398	32.270	فرا
84 Pentachlorobenzene	·	0.36087		0.32731		0.36415			1
84 Pencachtoropenzene	+++++				0.32984	0.36415	0.36214	   8.202	   <
						r }			1
85 4-Nitrophenol	++++++	+++++	0.14465	0.19855	0.22307	0.23741	1	1	1
	0.26161	0.27379	0.26328	l			0.22891	19.853	<
86 Dibenzofuran	1.63805	1.34100	1.39962	   1.42988	1.40858	1.43383	 	` 	1
	1.49953	•			1	1,15505	   1.49939	8.755	ł
									Ì
87 2,4-Dinitrotoluene	+++++	0.32547			0.40680	0.40255			1
	0.40232	0.44512	0.41697	1			0.39614	8.821	<
88 2,3,4,6-Tetrachlorophenol	+++++	   +++++	0.16823	0.17463	0.21216	0.23155			1
······································	0.24083	•				1	0.22207	17.567	<
	•								ł
89 1-Naphthylamine	++++++	0.90301		0.93057	0.86855	0.86017			1
	+++++	+++++ 	+++++ 	] 	 	 	0.89731	3.555	< 
90 Zinophos	+++++	0.28609	0.28663	0.26240	0.27447	0.29546	1		1
	0.30226	0.33592	0.32526	ļ	l	1	0.29606	8.340	<
	-			!					1
	_	l	I	I	I	I	.I	1	I.

Start Cal Date	: 14-JUN-2010 08:44
End Cal Date	: 14-JUN-2010 13:31
Quant Method	: ISTD
Origin	: Disabled
Target Version	: 4.14
Integrator	: HP RTE
Method file	: $\cansvr11\d\chem\MSS\a4ag2.i\00614A.b\8270C-625.m$
Last Edit	: 14-Jun-2010 14:01 a4aq2.i
Curve Type	: Average
	5

<b>5</b>	0.05000	0.25000		1.000	2.500	5.000		I
Compound	Level I	Level 2	Level 3	Level 4	Level 5	Level 6	RRF	% RSD
	7.500	10.000	12.500				1	1 
	Level 7	Level 8	Level 9	**====			ŀ	ļ
91 2,3,5,6-Tetrachlorophenol	+++++	0.22298				======== 0.26942		
	0.27757	0.31287	0.29377		l		0.26449	] 11.673
92 2-Naphthylamine	++++++	0.98874	1.02533	1.00336	0.98639	0.94378	 	 
	0.88182	0.89021	0.85206				0.94646	6.812
93 Diethylphthalate		1.18572	1.29484	1.29251	1.29238	1.31347		
	1.37064	1.55200	•				1.34395	8.387
94 Fluorene	1.41879	1.10073	1.15854	1.21332	1.20762	1.24716		
	1.30499	•		2.21552		1.24710	1.28857	   10.731
95 4-Chlorophenyl-phenylether	{ +++++	0.50365	0.49982	0.54025	0.54087			
	0.55258	•	•		0.54087	0.54952	0.54888	7.095
96 4-Nitroaniline	 ++++++							
	0.38359	0.26588	0.30811	0.33989	0.35449	0.36035	0.34982	15.507
97 5-Nitro-o-toluidine	+++++	0.24325	0.27817	0.29812	0.31448	0.32595	0.30675	10.667
98 4,6-Dinitro-2-methylphenol	+++++	+++++	0.09836	0.11487	0.13032	0.14180		
ہ 							0.13456	19.179
99 N-Nitrosodiphenylamine	+++++	0.53337		0.55792	0.54944	0.57565		
 	0.59313	0.67748	0.62298		·		0.58190	8.297
100 1,2-Diphenylhydrazine	+++++	0.88534	0.88048	0.96071	0.91368	0.97554		
 	0.98581	1.10201	1.03188	1			0.96693	7.808
101 Diphenylamine	+++++	0.53337	0.54524	0.55792	0.54944	0.57565	 	
	0.59313	0.67748	0.62298				0.58190	8.297

# INITIAL CALIBRATION DATA

Start Cal Date	14-JUN-2010 08:44	
End Cal Date	14-JUN-2010 13:31	
Quant Method	ISTD	
Origin	Disabled	
Target Version	4.14	
Integrator	HP RTE	
Method file	$\cansvrll\d\chem\MSS\a4ag2.i\00614A.b\8270C-625.m$	
Last Edit	14-Jun-2010 14:01 a4ag2.i	
Curve Type	Average	
	5	

	0.05000	0.25000	0.50000	1.000	2.500	5.000	I	
Compound	Level 1	Level 2	Level 3	Level 4	Level 5	Level 6	RRF	% RSD
	7.500	10.000	12.500	 			1	
	Level 7	Level 8	Level 9		1	1	l	
102 Tetraethyl dithiopyrophosphat	=======================================	0.08459				0.08963	•	
	0.09283						0.09110	10.328
103 Diallate 1	   +++++	0.58602	0.58941	0.56359	0.58615	0.63886		
	0.65756	•					0.62485	10.440
189 Diallate, Total	   +++++	2.63649	2.61554	2.55221	2.61296	2.75603		
	2.99187						2.82228	9.683
104 Phorate		0.15310	0.15855	0.15728	0.15884	0.17288		
	0.18277			-		012/200	0.17480	12.811
105 1,3,5-Trinitrobenzene		0.03965	0.05168	0.05728	0.06766	0.07456	 1	
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	0.07619				0.00700	0.07456	0.06730	24.602
106 4-Bromophenyl-phenylether	 +++++	0.18024	0.18937	0.19650		0.19284		
	0.19064		0.20410	0.19050	0.18007	0.15204	0.19454	5.717
107 Hexachlorobenzene	 +++++	0.20174	0.20914	0.21395				
	0.20155			0.21395	0.20541	0.21262	0.21212	4.843
108 Phenacetin							'	
	++++++ 0.47055	0.28755			0.41142	0.46422	0.43176	20.906
109 Diallate 2	+++++	0.11483  0.13161	0.11499		0.10980	0.11544	0.11810	6.405
						• • • • •		
110 Dimethoate	+++++ 0.29346	0.25848	0.27752	0.27960	0.27632	0.29191	0.28662	6.267
							0.20002	0.267
111 Pentachlorophenol	+++++	0.07471			0.13092	0.14593		
	0.14809	0.17165	0.17959		 		0.13404	26.174
	l	l						

Page 10

### INITIAL CALIBRATION DATA

Start Cal Date	: 14-JUN-2010 08:44
End Cal Date	: 14-JUN-2010 13:31
Quant Method	: ISTD
Origin	: Disabled
Target Version	: 4.14
Integrator	: HP RTE
Method file	: $\cansvrll\d\chem\MSS\a4ag2.i\00614A.b\8270C-625.m$
Last Edit	: 14-Jun-2010 14:01 a4ag2.i
Curve Type	: Average
	5

Compound	Level 1	0.25000 Level 2	Level 3	1.000 Level 4	2.500 Level 5	5.000 Level 6	RRF	% RSD
	7.500 Level 7	10.000 Level 8	12.500 Level 9				   	
112 Pentachloronitrobenzene	+++++ 0.09604	0.08447	0.09169 0.11017	0.08629	0.08873	0.09443	0.09546	
113 4-Aminobiphenyl	+++++ 0.59399	0.66188 +++++	0.69960	0.66236	0.63436	0.64461	1	     5.406 <
114 Pronamide	+++++		0.40341	0.30650	0.31496	0.34347	- <b></b>     0.34186	     13.958 <
115 Phenanthrene	1.39102 1.14225		1.06176 1.21539	1.08334	1.05552	1.09615	     1.15263	     10.835
116 Anthracene	1.25244 1.15151		•	1.07306	1.05473	1.09414	     1.12711	9.969
117 Dinoseb	+++++   0.19016	0.07924 0.21956	· · · · · · · · · · · · · · · · · · ·	0.12690	0.15359	0.17441	     0.15815	       33.831 <
118 Disulfoton	+++++   0.43751	0.37938 0.50568		0.36289	0.38625	0.42654	     0.42228	         12.941 <
119 Carbazole	+++++   1.09944	 0.97150  1.24719		1.02623  	1.02361	1.05716	     1.07565	       8.895 <
120 Di-n-Butylphthalate	+++++   1.47713	1.23859 1.60739		 1.32552	1.37608	1.43943	     1.38750	     9.126 <
121 4-Nitroquinoline 1-oxide	+++++   0.11205	0.03909	0.04956 0.12152	 0.05847  	0.08884	0.10359	     0.08714	     38.746 <
122 Methapyrilene	+++++   0.30823	0.23089 0.33785	,	 0.27967  	0.28276	0.30799	     0.28600	     12.556 <

North Canton

### INITIAL CALIBRATION DATA

<pre>Start Cal Date : 14-JUN-2010 08:44 End Cal Date : 14-JUN-2010 13:31 Quant Method : ISTD Origin : Disabled Target Version : 4.14 Integrator : HP RTE Method file : \\cansvrll\dd\chem\MSS\a4ag2.i\00614A.b\8270C-625.m Last Edit : 14-Jun-2010 14:01 a4ag2.i</pre>	l Cal Date : int Method : igin : iget Version : iegrator : hod file : it Edit :	End Cal Dat Quant Metho Origin Target Vers Integrator Method file Last Edit
----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------	---------------------------------------------------------------------------------------------------	-----------------------------------------------------------------------------------------------

Compound	0.05000   Level 1	0.25000 Level 2	0.50000 Level 3	1.000 Level 4	2.500 Level 5	5.000 Level 6	[	* RSD	 
								!	
	7.500 Level 7	10.000 Level 8	12.500 Level 9		\$ }			1	] 
					•				1
123 Fluoranthene	1.38583    1.13972	0.96714 1.28133			1.04184	1.08306	1.12315	12.888	: 
	   +++++	+++++	0.49255		<b></b>   0.54452	0.56608	•		     -
 	0.62388	0.71473	0.63879	   <b></b>	 	 	0.58927	12.643	<-
125 Pyrene 	1.26578			Ì	1.02231 	1.07049	   1.10527	8.776	
   126 Aramite 1	   +++++   0.04992	0.04433	·	•	   0.04390 	0.04976	     0.04795	9.710	    <-
  M 191 Aramite, Total 	   +++++   0.56170	0.49607	•	•	   0.49618 	   0.52589 	0.52768	8.832	    <-
   127 Aramite 2	   +++++   0.09063	0.08025	•		   0.08164 	   0.08984 	     0.08699	     9.830	    <-
   128 p-Dimethylamino azobenzene 	   +++++   0.21782	0.17064	•	0.18228	   0.19032 	   0.21074 	     0.20354	     13.044	    <-
   129 p-Chlorobenzilate	   +++++   0.45386	0.41579 0.51594	0.39093	•	0.40378	   0.45422 	     0.44292	     10.575	    <-
   130 Famphur 1	   +++++   0.18487	   0.32066	0.33731		0.26231	   0.23529	     0.27888	     22.152	   
     131 Butylbenzylphthalate	0.18487     +++++	+++++     0.47296	+++++     0.52658	   <b></b>   0.55849	     0.57093	0.58675			
1	0.60157	0.67269	0.62320	1			0.57665	10.515	<-
132 3,3'-Dimethylbenzidine	   +++++   +++++	   0.48061   +++++	0.48808	0.47525	0.42987	0.39616	0.45399	   8.706	    <·

- ----

#### INITIAL CALIBRATION DATA

Start Cal Date : 14-JUN-2010 08:44 End Cal Date : 14-JUN-2010 13:31 Quant Method : ISTD Origin : Disabled Target Version : 4.14 Integrator : HP RTE Method file : \\cansvrl1\dd\chem\MSS\a4ag2.i\00614A.b\8270C-625.m Last Edit : 14-Jun-2010 14:01 a4ag2.i Curve Type : Average

	0.05000	0.25000	0.50000	1.000	2.500	5.000	I	
Compound	Level 1	Level 2	Level 3	Level 4	Level 5	Level 6	RRF	% RSD
	7.500	10.000	12.500			{ 	} 1	i I
	Level 7	Level 8	Level 9			İ	1	1
		*******	*******				1	
133 3,3'-Dimethoxybenzidine	+++++	+++++	0.22154		0.22354	0.24271	0.24186	6.790
134 2-Acetylaminofluorene	+++++	0.35127	0.35723	0.37836	0.43438	0.50020	l	
	0.53334	0.61199	0.59849				0.47066	22.439
135 3,3'-Dichlorobenzidine	+++++	0.34371	0.36509		0.39886	0.40870	 	 
	0.41295	0.48536	0.45238				,   0.40693	11.151
136 Benzo(a)Anthracene	1.31157	1.02026			0.97190	1.00417	 ] 1.07495	   10.147
137 Chrysene	1.30099		•		0.91009	0.92299	I	1
	0.92485	1.09873	1.00070			1	0.99899	12.753
138 4,4'-Methylene bis(o-chloroan	+++++	0.16168	0.18470	0.19736	0.19834	0.20528		
	0.22336	0.25251	0.23510		l	1	0.20729	13.946
139 bis(2-ethylhexyl)Phthalate	+++++	0.70222			0.82940	0.86624	   0.85668	1 12.070
						(  - <b>-</b>		
140 Di-n-octylphthalate	+++++	1.09816	•	1.38075	1.43607	1.57039		1
	1.60839	1.88745	+++++			 	1.45713	18.002
141 Benzo(b)fluoranthene	1.27708	0.95609	1.09032	1.00524		1		
	1.24903	1.45822	+++++		I		1.14382	14.976
140 Deres (I) 53								]
142 Benzo(k)fluoranthene	1.34155				1.13223	1.18610 	   1.15635	1   8.003
				<b></b>				
143 7,12-dimethylbenz[a]anthracen		0.38700			0.43467	0.47840		l
	0.49643	0.55522	0.54423		1	1	0.46206	14.392
······						 		 

Start Cal Date	: 14 - JUN - 2010 08:44
End Cal Date	: 14-JUN-2010 13:31
Quant Method	: ISTD
Origin	: Disabled
Target Version	: 4.14
Integrator	: HP RTE
Method file	: \\cansvr11\dd\chem\MSS\a4ag2.i\00614A.b\8270C-625.m
Last Edit	: 14-Jun-2010 14:01 a4aq2.i
Curve Type	: Average
	-

	0.05000		0.50000	1.000	2.500	5.000			I
Compound	Level 1	Level 2	Level 3	Level 4	Level 5	Level 6	RRF	% RSD	1
	7.500	10.000	12.500		]   ]				
	Level 7	Level 8	Level 9		1		ļ		i
									; ] 
144 Hexachlorophene	+++++	+++++	+++++ +++++	+++++	+++++ 	+++++	+++++	+++++	
					, 	- <b></b>			Ì
145 Hexachlorophene product	+++++	<b>*</b> ++++	+++++	+++++	+++++	++++			1
	+++++ 	+++++	+++++		 		+++++	++++	·
146 Benzo(a) pyrene	1.08542	0.86475	0.94980	0.95037	0.98498	1.01154			ł
	1.04645	1.19627	1.12991		l i		1.02439	9.951	- 1
									· I
148 3-Methylcholanthrene	0.57207	0.46573	0.48482 0.62591	0.49226	0.50618	0.55039	0.53982	11.524	 
						<b></b>			-1
149 Indeno(1,2,3-cd)pyrene	1.34751				1.16348	1.21812	•		1
	1.24575	1.42354	1.35229	 	<b> </b>		1.21511	11.906	ן: י
150 Dibenz(a,h)anthracene	1.12188	0.88031	0.92494	0.95810	0.97570	1.02632			י י 
	1.04908	1.19467	1.12377	l	1	l	1.02831	10.098	3]
151 Benzo(q,h,i)perylene		0.83489	0.94667	0.93484	0.95220	0.97883			·
isi Benzo(g, n, i) peryrene	1.16543			•	0.95220	0.97883	   1.00091	   10.306	ו   5
									-
199 3-Picoline	+++++	1.09410			1.24645	1.39563			
	1.46795	1.57959	1.57056	 	 	 	1.34420	13.758	3 [ - 1
200 N,N-Dimethylacetamide	।  · +++++	+++++	0.88212	i   0.84727	•		I		1
	0.95288	1.02458	1.01620	I	l	ł	0.92131	8.444	1
201 Quinoline		- <i>-</i>	<b></b>   <b>++</b> +++	   +++++	[ ] +++++	   +++++		<b>-</b>	•   
201 Quinorine	+++++ +++++	+++++	+++++	+++++	+++++	+++++	   +++++	   ++++++	
									-1
202 Diphenyl	+++++	+++++	+++++	+++++	+++++	+++++	!	1	ļ
	+++++ 	+++++ 	+++++   <b>-</b>	! !- <b></b>			+++++ 	+++++   <b></b>	  -
	1			,	,				1

Start Cal Date	: 14-JUN-2010 08:44
End Cal Date	: 14-JUN-2010 13:31
Quant Method	: ISTD
Origin	: Disabled
Target Version	: 4.14
Integrator	: HP RTE
Method file	: \\cansvr11\dd\chem\MSS\a4ag2.i\00614A.b\8270C-625.m
Last Edit	: 14-Jun-2010 14:01 a4ag2.i
Curve Type	Average
Curve Type	: Average

Compound	0.05000   Level 1	0.25000   Level 2	0.50000 Level 3	1.000 Level 4	2.500 Level 5	5.000 Level 6	RRF	* RSD	
	7.500 Level 7	10.000   Level 8	12.500 Level 9						   
203 Diphenyl ether	=============== ++++++ ++++++		***** +++++	======= <b>=</b> = +++++	****	+++++	*++++	****	    <-
204 6-Methylchrysene	 ++++++ +++++	+++++   +++++	+++++ +++++	<b>~~~~</b>	+++++	++++	+++++	     +++++	  <-
   205 Benzenethiol 	 ++++++ +++++	+++++	+++++ +++++	+++++	<b></b>     +++++` 	<b>-</b>	+++++	 }   +++++	    <-
   207 Indene 	   ++++++   +++++	 +++++ +++++	 ++++++ +++++		   +++++ 	   ++++++	<b>-</b>	~	    <-
   208 Dibenz(a,j)acridine 	 +++++ +++++	+++++ +++++		<b></b>   +++++ 	   +++++ 	   +++++   	     +++++	     +++++	    <-
   209 Benzaldehyde 	+++++ 0.63250	1.07614 +++++	1.05421 +++++		   1.01663 	   0.83815 	     0.95413	     19.275	    <-
210 Caprolactam	+++++ 0.11626	0.06126 0.12714	0.11856	l	1	l	0.10368	     20.407	    <-
   211 1,1'-Biphenyl   ·	   +++++   1.52780	1.33268 1.75277	•	1.38331 	I	I	     1.48308	     10.509	    <-
212 Atrazine	+++++ 0.20045	0.17298	•		   0.18990 	   0.19162 	     0.19222	     5.573	    <-
213 Benzothiazole	   +++++   +++++	   +++++   +++++	   +++++   +++++	   +++++ 	   +++++ 	   +++++ 	     +++++	     +++++	    <-
214 1,3-Dimethyl-2-Thiourea	~   +++++   +++++		   +++++   +++++	   +++++ 	   +++++ 	   +++++ 	     +++++	     +++++	  <-

#### TestAmerica North Canton

#### INITIAL CALIBRATION DATA

Start Cal Date	:	14-JUN-2010 08:44
End Cal Date	:	14-JUN-2010 13:31
Quant Method	:	ISTD .
Origin	:	Disabled
Target Version	:	4.14
Integrator		HP RTE
Method file	:	$\cansvr11\d\chem\MSS\a4ag2.i\00614A.b\8270C-625.m$
Last Edit	:	14-Jun-2010 14:01 a4ag2.i
Curve Type	:	Average

Compound	0.05000	0.25000	0.50000 Level 3	1.000 Level 4	2.500 Level 5	5,000 Level 6	   RRF	% RSD	
		Level Z	5	4				3 KGU	1
· [	7.500	10.000	12.500						
***************************************	Level 7	Level 8	Level 9			******		********	1 1
215 Phenyl ether	++++	+++++	+++++	+++++	++++	+++++			İ.
I	+++++	++++	+++++				++++++	· ++++	<
216 1,3-Diethyl-2-Thiourea	+++++	+++++	+++++	+++++	+++++	+++++	 		1 1
1	+++++	+++++	+++++			l	+++++	++++	<-
217 1,3-Dibutyl-2-Thiourea		+++++	 +++ <b>+</b> +	+++++		<b></b>	<b></b>		
217 1,3-Dibuty1-2-Infourea	+++++	+++++	+++++	*****	+++++	+++++	+++++	 ++++++	i I
									I
218 1,1,3,3-Tetramethyl-2-Thioure	+++++	+++++	+++++ +++++	+++++	+++++	+++++	   +++ <b>+</b> +	   +++++	  <-
ا   <b></b>						 			
219 o-Benzyl Phenol	+++++	++++	+++++	+++++	+++++	+++++	1	I	1
	+++++	+++++	+++++		 	 	+++++ 	+++++ 	<-
220 Diphenyl Thiourea	+++++	+++++	++++	++++	++++	+++++	1	· ·	i -
1	+++++	++++	++++++		ļ		+++++	] +++++	<-
221 Hexabromobenzene	+++++	+++++		+++++		]   +++++		<b></b> 	1
	+++++	****	+++++	1	Ì	1	+++++	+++++	<-
222 Dibenz(a,h)acridine		+++++	   +++++			   +++++		 	
	· +++++	+++++	+++++	++++++	++++++	+++++	•	   +++++	  <-
									1
223 1,2-bis(2-chloroethoxy)ethane	++++++	+++++	+++++ +++++	+++++ 	+++++ 	++++++ 	   +++++	   +++++	  <-
					   <b>-</b>	 			1
224 Acrylamide	<b>*++++</b>	+++++	+++++	****	****	+++++		1	1
	+++++	+++++	+++++	 		 	+++++ 	+++++ 	<-
225 Methyl parathion	+++++	·   +++++	0.22585	0.23302	0.24476	0.25934		I	i
	0.26424	0.28539	0.26643		1		0.25415	8.177	<-
			 						1

#### TestAmerica North Canton

#### INITIAL CALIBRATION DATA

Start Cal Date : 14-JUN-2010 08:44 End Cal Date : 14-JUN-2010 13:31 Quant Method : ISTD Origin : Disabled Target Version : 4.14 Integrator : HP RTE Method file : \\cansvr11\dd\chem\MSS\a4ag2.i\00614A.b\8270C-625.m Last Edit : 14-Jun-2010 14:01 a4ag2.i Curve Type : Average

	0.05000	0.25000	0.50000	1.000	2.500	5.000		 	-
Compound	Level 1	Level 2	Level 3	Level 4	Level 5	Level 6	RRF	* RSD	İ
]		10.000	12.500	<b>-</b>	] 		<b>1</b>	} 	] [
	Level 7	Level 8	Level 9	ļ	I	1	1	l	İ
226 Parathion	= ===========				•	==========		===========	• }
226 Paratnion	+++++	0.13524	0.20074	0.15056	0.15815 	0.17674	   0.16897	14.884	
227 Isodrin	-	0.13802	0.12412	0.12445	0.12742	   0.13586	 	   .	-1
	0.13479	0.14987	0.14804		1	1	0.13532	7.324	<
M 229 Famphur,Total	-	   +++++		+++++	+++++	   +++++		 	
	+++++ -	++++++	+++++		 	1	+++++	+++++	<-
230 Famphur 2	   +++++	+++++	+++++	+++++	+++++	+++++		 	1
	<b>++</b> +++	+++++	+++++		1	l	+++ <b>+</b> +	+++++	<-
231 2-Chloroacetophenone	-	+++++	+++++	+++++	++++++		 	 	· [
	+++++	+++++	+++++			 	   ++++ 	   +++++	<-
232 2-Methylcyclohexanone	¦ } +++++	0.71291	0.70139	0.72239	0.73213	1		 	1
	0.74370	0.84799	0.80905		]	l	0.74893	6.907	' <-
233 3-Methylcyclohexanone	-	1.30297	1.27560	1.27109	1.30684	1.26433	 1		
	1.34659		1.46603	1.27105	1.30084	1.20433	1.34555	   7.391	 . <-
234 4-Methylcyclohexanone	-       +++++	0.88035	0,84576	0.87004	0.89382	0.88467			
	0.91828	1.04980		0.07004	0.05582	0.00407	0.91741	7.616	   -
	-	]							Ì
235 Tributyl phosphate	+++++	1.45727		1.57232	1.56454	1.71873		l	1
	1.70004  -	2.05468	+++++		[ 	 	1.65506	12.854	.<-
236 Phenyl sulfone	+++++	+++++	+++++	+++++	+++++	+++++			1
	+++++	+++++	+++++	. ]		1 !	+++++	++++	<-
237 3,4-Dichloronitrobenzene	+++++	++++++	+++++	 +++++	<b></b>     +++++	 +++++		<b></b>	
	+++++	++++	+++++				+++++	+++++	،  <-
	-		`						1
	_1						I		.1

# Report Date : 14-Jun-2010 14:38

#### TestAmerica North Canton

#### INITIAL CALIBRATION DATA

Start Cal Date	:	14-JUN-2010 08:44
End Cal Date	:	14-JUN-2010 13:31
Quant Method	:	ISTD
Origin	:	Disabled
Target Version	:	4.14
Integrator	:	HP RTE
Method file	. :	$\cansvr11\d\chem\MSS\a4ag2.i\00614A.b\8270C-625.m$
Last Edit		14-Jun-2010 14:01 a4aq2.i
Curve Type		Average
· · ·		5

	0.05000	0.25000	0.50000	1.000	2.500	5.000			
Compound	Level 1	Level 2	Level 3	Level 4	Level 5	Level 6	RRF	* RSD	i.
							l		I
	7.500	10.000   Level 8	12.500   Level 9	} I	!		1	[	1
	=========	Dever 8	Tever a		 	   ===================================		) {===============	
238 Bis(2-hydroxyphenyl)methane	+++++	+++++	+++++	+++++	+++ <b>+</b> +	+++++		{	1
	+++++	+++++	+++++	1	1	[	• • • • • • • •	+++++	<
								,   - <del>,</del>	·
239 Bis(4-hydroxyphenyl)methane	+++++	+++++	++++	++++	<b>↓</b> +++++	+++++	1	1	ł
	+++++	+++++	+++++	l	1		+++++	+++++	<
240 4-Chlorophenol	   +++++								
240 4-Childiophenoi	++++++	+++++   +++++	++++   +++++	+++++ 	+++++ 	+++++	   +++++	   ++++++	  <
					1 	 	++++++ 	+++++ 	s: 
241 2,3-Dichlorophenol	+++++	,   +++++	+++++	,   +++++	'   +++++	+++++	l	1.	ł
	+++++	+++++	+++++	1	l	l	+++++	+++++	<
			]						-1
242 2,5-Dichlorophenol	+++++	+++++	+++++	+++++	+++++	+++++	l	I	ł
	+++++	+++ <b>++</b> +	+++++	1		]	+++++	+++++	<
243 Octachlorostyrene	+++++	   +++++		   +++++	   +++++	[ <b>-</b>			
	+++++	+++++	+++++	++++++ 	+++++ 	+++++ 	   +++++	   +++++	
					 	   <b></b>		++++++ 	-   -
244 Octachlorocyclopentene	+++++	+++++	+++++	,   +++++	,   +++++	,   +++++	Ì	, 	Í.
	+++++	+++++	] +++++	1	I	l	+++++	+++++	<
									-
245 Catechol	+++++	+++++	+++++	+++++	+++++	+++++	l	1	1
	+++++ 1	+++++	+++++	1	1	1	+++++	+++++	<
246 3-methylcatechol	.+++++	+++++		 ] +++++	   +++++			 	·] 1
	+++++	+++++	+++++	; <del>•••••</del>	+++++++	+++++++++++++++++++++++++++++++++++++	I   ++++	   +++++	  <-
					' 	/ 			
247 4-methylcatechol	+++++	+++++	+++++	] +++++	+++++	+++++	I	1	İ
	+++++	+++++	**+++	l	1	I	+++++	<b>+</b> ++++	<
									1
248 Hydroquinone	+++++	++++	+++++	l +++++	+++++	+++++	1	I	1
	+++++	+++++	+++++ 	1	1	1	+++++	+++++	<
	1	 	l	 	 	 	 	 	1
	I			·	I	I	I	1	-1

#### TestAmerica North Canton

#### INITIAL CALIBRATION DATA

Start Cal Date : 14-JUN-2010 08:44 End Cal Date : 14-JUN-2010 13:31 Quant Method : ISTD Origin : Disabled Target Version : 4.14 Integrator : HP RTE Method file : \\cansvr11\dd\chem\MSS\a4ag2.i\00614A.b\8270C-625.m Last Edit : 14-Jun-2010 14:01 a4ag2.i Curve Type : Average

				1		1			Ĩ.
- ·	0.05000	0.25000	0.50000	1.000	2.500	5.000	!		
Compound	Level 1	Level 2	Level 3	Level 4	Level 5	Level 6	RRF	% RSD	
							1	[	Ι
	7.500	10.000	12.500	ļ	l	1	l	i	1
	Level 7	Level 8	Level 9		l	l	1	1	
				=======				=========	= ]
249 Resorcinol	+++++	++++	+++++	++++	+++++	+++++		I	1
	+++++	+++++	++++	l		1	++++++	+++++	<
	-								-1
250 N-methyl-pyrrolidone	,   +++++	+++++	++++	+++++	+++++	+++++	i		i
	+++++	+++++	++++	1		1	+++++	,   ++++++	<
									-1
\$ 154 Nitrobenzene-d5	0.47424	0.41988	0.45216	0.46063				<b></b>	
2 T24 MICLODENZENE-02	0.45481	•		•	1 0.44700	0.4/222	0.46031	!   4.439	
					} 	 	0.40031	4.439	1
· · · · · · · · · · · · · · · · · · ·	-			1	1	1			·
\$ 155 2-Fluorobiphenyl	1.32046		•		1.19982	1.24288	<u>.</u>	1	1
	1.20116		1.31567		}		1.26147	5.382	21
		<b>-</b>							·
\$ 156 Terphenyl-d14	0.88031	0.69059	0.66104	0.69950	0.67167	0.69524	1	}	I
	0.67818	0.77408	0.71668		!	l	0.71859	9.600	)
	-					<b></b>			- [
\$ 157 Phenol-d5	} +++++	1.43260	1.45432	1.61183	1.58664	1.64012	1	I	I
	1.66222	1.89667	1.76395	1	F	ł	1.63104	9.334	1
									-1
\$ 158 2-Fluorophenol	+++++	1.07828	1.12128	1.24158	1.17255	1.23340	i	1	i
	1.25940	1.44386		•	i	1		9.570	aİ
	-					1			-
\$ 159 2,4,6-Tribromophenol	   +++++	0.12653	1	0.14012	0.14530	1		1	1
¢ 155 2,4,5-111510m0phenor	•				1 0.14550	0.13013	0.15262		
	0.16123			•	1	1	:		1
	-]			•		1			- [
\$ 186 2-Chlorophenol-d4	+++++	1.15883			1.21449	1.25039		1	
	1.29286			l i	1	1	1.27520	8.071	41.
	-							!	-
\$ 187 1,2-Dichlorobenzene-d4	+++++	0.91394	0.83322	0.91341	0.85806	0.88002	1	1	
	0.85170	0.98897	0.93037	ł	1	1	0.89621	5.665	5
	-						]		-
	1	I	l	1	L	1	I	L	Ì
			·	I	I	· ·			_ ł

#### 5B

## SEMIVOLATILE ORGANIC INSTRUMENT PERFORMANCE CHECK DECAFLUOROTRIPHENYLPHOSPHINE (DFTPP)

Lab Name: NORTH CANTONContract:Lab Code: TACANCase No.:SAS No.:SDG No.: 0F11578Lab File ID: 2DF0616DFTPP Injection Date: 06/16/10Instrument ID: A4AG2DFTPP Injection Time: 0913

m/e	ION ABUNDANCE CRITERIA	% RELATIVE ABUNDANCE
51 68 69 70 127 197 198 199 275 365 441 442 443	30.0 - 80.0% of mass 198Less than 2.0% of mass 69Mass 69 relative abundanceLess than 2.0% of mass 6925.0 - 75.0% of mass 198Less than 1.0% of mass 198Base Peak, 100% relative abundance5.0 to 9.0% of mass 19810.0 - 30.0% of mass 198Greater than 0.75% of mass 198Present, but less than mass 44340.0 - 110.0% of mass 19815.0 - 24.0% of mass 442	$\begin{array}{c} 46.4 \\ 0.2 ( 0.5)1 \\ 52.7 \\ 0.5 ( 0.9)1 \\ 58.6 \\ 0.0 \\ 100.0 \\ 6.9 \\ 29.2 \\ 5.29 \\ 15.7 \\ 93.4 \\ 19.0 ( 20.4)2 \end{array}$
	1-Value is % mass 69 2-Value is % mass	442

THIS CHECK APPLIES TO THE FOLLOWING SAMPLES, MS, MSD, BLANKS, AND STANDARDS:

	EPA	7.5.5				
		LAB		LAB	DATE	TIME
	SAMPLE NO.	SAMPLE	ID	FILE ID	ANALYZED	ANALYZED
~ -		=======================================	=====	================	===========	
01	SSTD006	L6		2SMH0616	06/16/10	0930
02	L2VJ8BLK	L2VJ81AA		L2VJ81AA	06/16/10	1054
03	L2VJ8CHK	L2VJ81AC		L2VJ81AC	06/16/10	
04	MRC-MW93D-06	L2TE81AC		L2TE81AC	06/16/10	1111
05	MRC-MW94D-06	L2TFL1AN		L2TFL1AN		1128
06	MRC-96D-0611	L2T531AC		L2T531AC	06/16/10	1145
07	MRC-95D-0611	L2T6X1AN		L2T6X1AN	06/16/10	1417
08				LIZIOATAN	06/16/10	1434
09						
10						
11						
12			·			
13						
14						
15						
16			•			
17						
18						
19						· · · · · · · · · · · · · · · · · · ·
20			Ì			
21						
22						
	- <u> </u>					

page 1 of 1

FORM V SV

OLM03.0

301

Data File: \\cansvrll\dd\chem\MSS\a4ag2.i\00616A.b\2SMH0616.D Report Date: 16-Jun-2010 11:27

#### TestAmerica North Canton

CONTINUING CALIBRATION COMPOUNDS

Instrument ID: a4ag2.iInjection Date: 16-JUN-2010 09:30Lab File ID: 2SMH0616.DInit. Cal. Date(s): 14-JUN-2010 14-JUN-2010Analysis Type:Init. Cal. Times: 08:44Lab Sample ID: L6Quant Type: ISTDMethod: \\cansvrll\dd\chem\MSS\a4ag2.i\00616A.b\8270C-625.m

	I		CCAL	MIN	l	MAX	
COMPOUND	RRF / AMOUNT		RRF5	RRF	%D / %DRIFT	\$D / \$DRIFT	CURVE TYP
	0.67541						
9 Pyridine	1.53658						
10 N-Nitrosodimethylamine	0.83617						
12 3-Chloropropionitrile	0.68222						, ,
209 Benzaldehyde	5.00000						
209 Benzaldenyde 21 Aniline							, .
22 Phenol	2.22268						
22 Field 23 bis(2-Chloroethyl)ether	1.73759		,				
•	1.39607						·
24 2-Chlorophenol	1.41977		•			_	Averag
26 1,3-Dichlorobenzene	1.49864		,			50.00000	Averag
27 1,4-Dichlorobenzene	1.36846		•	0.010	-0.36636	20.00000	Average
28 1,2-Dichlorobenzene	1.45059			0.010	1.11379	50.00000	Average
29 Benzyl Alcohol	0.89309	0.91794	0.91794	0.010	-2.78257	50.00000	Averag
30 2-Methylphenol	1.28697	1.29728	1.29728	0.010	-0.80082	50.00000	Averag
31 bis(2-Chloroisopropyl)ether	1.30876	1.26130	1.26130	0.010	3.62583	50.00000	Average
37 Acetophenone	2.00415	1.95759	1.95759	0.010	2.32289	50.00000	Averag
32 N-Nitroso-di-n-propylamine	1.12215	1.06930	1.06930	0.050	4.70915	50.00000	Averag
192 4-Methylphenol	1.34269	1.34436	1.34436	0.010	-0.12480	50.00000	Averag
34 Hexachloroethane	0.58357	0.58030	0.58030	0.010	0.56022	50.00000	-
35 Nitrobenzene	0.42725	0.41981	0.41981	0.010	1.74094	50.00000	
1 Isophorone	0.72706	0.73096	0.73096	0.010	-0.53619		
2 2-Nitrophenol	0.19189	0.20037	0.20037	0.010	-4.41496		
13 2,4-Dimethylphenol	0.39917	0.39319	0.39319	0.010	1.49892		
44 bis(2-Chloroethoxy)methane	0.40498	0.40588	0.40588				5
46 2,4-Toluenediamene	5.00000	5.32833	0.14477			0.000e+000	5
1,3,5-Trichlorobenzene	0.30399	0.30771	0.30771				
18 2,4-Dichlorophenol	0.25518	0.26042	0.26042				
19 Benzoic Acid	10.00000	7.63594	0.17799			0.000e+000	. 2
0 1,2,4-Trichlorobenzene	0.29480	0.29819	0.29819				
1 Naphthalene	1.04536	1.01448	1.01448				
52 4-Chloroaniline	0.43007	0.44169	0.44169		•		
6 Hexachlorobutadiene	0.15850	0.15783	0.15783				5
210 Caprolactam	5.00000	5.07960	0.11738		•		
7 1,2,3-Trichlorobenzene	0.27335	0.27185		•	•	0.000e+000	
59 4-Chloro-3-Methylphenol	0.33679	•	0.27185		,	· · · ·	5
2 2-Methylnaphthalene	· ·	0.33691	0.33691	•		20.00000	5
3 1-Methylnaphthalene	0.65271	0.64490	0.64490		•	•	
	0.65694	0.64202	0.64202		2.27059	•	
4 Hexachlorocyclopentadiene	5.00000	4.66941	0.32050				
6 2,4,6-Trichlorophenol	5.00000	5.14135	0.31848	,		0.000e+000	
7 2,4,5-Trichlorophenol	0.33060	0.34244	0.34244		•	50.00000	
11 1,1'-Biphenyl	1.48308	1.44555	1.44555	0.010	2.53020	50.00000	Average
8 1,2,3,5-Tetrachlorobenzene	0.48588	0.49053	0.49053	0.010	-0.95717	50.00000	Average

Data File: \\cansvrl1\dd\chem\MSS\a4ag2.i\00616A.b\2SMH0616.D Report Date: 16-Jun-2010 11:27

#### TestAmerica North Canton

## CONTINUING CALIBRATION COMPOUNDS

Instrument ID: a4ag2.iInjection Date: 16-JUN-2010 09:30Lab File ID: 2SMH0616.DInit. Cal. Date(s): 14-JUN-2010 14-JUN-2010Analysis Type:Init. Cal. Times: 08:44Lab Sample ID: L6Quant Type: ISTDMethod: \\cansvrll\dd\chem\MSS\a4ag2.i\00616A.b\8270C-625.m

	I		CCAL	MIN	1	MAX	1
COMPOUND	RRF / AMOUNT	RF5	RRF5	RRF	8D / %DRIFT	%D / %DRIFT	, CURVE TYP
		============	===========			[======================================	
70 2-Chloronaphthalene	1.10350	1.09281	1.09281	0.010	0.96827	50.00000	Average
73 2-Nitroaniline	0.40335	0.40476	0.40476	0.010	-0.35055	50.00000	
74 1,2,3,4-Tetrachlorobenzene	0.44643	0.44774	0.44774	0.010	-0.29171	50.00000	Average
76 Dimethylphthalate	1.26048	1.28965	1.28965	0.010	-2.31388		
78 2,6-Dinitrotoluene	0.28758	0.31394	0.31394	0.010	-9.16626	50.00000	. –
79 Acenaphthylene	1.78559	1.75821	1.75821	0.010	1.53373	50.00000	
80 1,2-Dinitrobenzene	0.13573	0.14478	0.14478	0.010	-6.66655	50.00000	· <u> </u>
81 3-Nitroaniline	0.31353	0.33748	0.33748	0.010	-7.63807	50.00000	
82 Acenaphthene	1.15756	1.13962	1.13962	0.010	1.55051		
83 2,4-Dinitrophenol	10.00000	9.33901	0.20315	0.050		0.000e+000	
85 4-Nitrophenol	5.00000	4.71119	0.23536	0.050			
86 Dibenzofuran	1.49939	1.47463	1.47463	0.010			
87 2,4-Dinitrotoluene	0.39614	0.41261	0.41261	0.010			
91 2,3,5,6-Tetrachlorophenol	0.26449	0.25085	0.25085	0.010			_
93 Diethylphthalate	1.34395	1.34279	1.34279	0.010			
94 Fluorene	1.28857	1.28318	1.28318	0.010			
95 4-Chlorophenyl-phenylether	0.54888	0.55670	0.55670	,			
96 4-Nitroaniline	5.00000	5.14006	0.37143			0.000e+000	
98 4,6-Dinitro-2-methylphenol	5.00000	4.61827	0.12862			0.000e+000	-
99 N-Nitrosodiphenylamine	0.58190	0.57725	0.57725	'			
LOO 1,2-Diphenylhydrazine	0.96693	0.95148	0.95148				
106 4-Bromophenyl-phenylether	0.19454	0.20317	0.20317	,	,		
107 Hexachlorobenzene	0.21212	0.21694	0.21694		-2.27149		
212 Atrazine	0.19222	0.19616	0.19616				
11 Pentachlorophenol	10.00000	8.57527	0.12118		14.24726		
15 Phenanthrene	1.15263	1.10302	1.10302		4.30410		
16 Anthracene	1.12711	1.15154	1.15154		-2.16736		Average
19 Carbazole	1.07565	1.08163	1.08163		-0.55605		5
20 Di-n-Butylphthalate	1.38750	1.46975	1.46975		-5.92797	50.00000	
.23 Fluoranthene	1.12315	1.12499	1.12499			20.00000	Averaged
24 Benzidine	0.58927	0.62688	0.62688		-6.38368		Average
25 Pyrene	1.10527	1.04648	1.04648	,	5.31933	•	Averaged
31 Butylbenzylphthalate	0.57665	0.59947	0.59947		-3.95855	50.00000	Averaged
33 3,3'-Dimethoxybenzidine	0.24186	0.22752	0.22752		5.93139	50.00000	Averaged
35 3,3'-Dichlorobenzidine	0.40693	0.40297	0.40297		•	50.00000	Averageo
36 Benzo(a)Anthracene	1.07495	1.01715			0.97348	50.00000]	Averaged
37 Chrysene	0.99899	0.95763	1.01715 0 0.95763 0	•	5.37773	50.00000	Averaged
38 4,4'-Methylene bis(o-chloro	0.20729	0.21607			4.13972		Averaged
39 bis(2-ethylhexyl)Phthalate	0.85668	0.21607	0.21607		-4.23275	50.00000	Averaged
40 Di-n-octylphthalate	5.00000	5.11849	0.88620		-3.44590	50.00000	Averaged
41 Benzo (b) fluoranthene	1.14382		1.56185 0	•		0.000e+000	Quadratic
42 Benzo(k) fluoranthene	1.14382	1.09979	1.09979 (	•	3.84909	50.00000	Averaged
	1 1.10032	1.11291	1.11291	0.010	3.75643	50.00000	Averaged

ł

Data File: \\cansvrll\dd\chem\MSS\a4ag2.i\00616A.b\2SMH0616.D Report Date: 16-Jun-2010 11:27

# TestAmerica North Canton

# CONTINUING CALIBRATION COMPOUNDS

Instrument ID: a4ag2.i Injection Date: 16-JUN-2010 09:30 Lab File ID: 2SMH0616.D Init. Cal. Date(s): 14-JUN-2010 14-JUN-2010 Analysis Type: Init. Cal. Times: 08:44 13:31 Lab Sample ID: L6 Quant Type: ISTD Method: \\cansvrll\dd\chem\MSS\a4ag2.i\00616A.b\8270C-625.m

COMPOUND	RRF / AMOUNT		CCAL	MIN		MAX	1
	Incre / AMOUNT	RF5	RRF5	RRF	%D / %DRIFT	%D / %DRIFT	CURVE TYP
<pre> ====================================</pre>		1.26317 1.05462 1.01755 0.42259 1.25654	1.01516 1.26317 1.05462 1.01755 0.42259 1.25654 0.70590 1.61838	0.010 0.010 0.010 0.010 0.010 0.010 0.010	0.90077 -3.95471 -2.55922 -1.66207 8.19420 0.39085 1.76526	20.00000 50.00000 50.00000 50.00000 50.00000 50.00000 50.00000	Averaged Averaged Averaged Averaged Averaged Averaged Averaged
<pre>\$ 158 2-Fluorophenol \$ 159 2,4,6-Tribromophenol \$ 186 2-Chlorophenol-d4 \$ 187 1,2-Dichlorobenzene-d4 M 195 Cresols, total 101 Diphenylamine</pre>	1.23715 0.15262 1.27520 0.89621 2.62966 0.58190	1.21859 0.15901 1.25733 0.88628 2.64164 0.57725	1.21859 0.15901 1.25733 0.88628 2.64164 0.57725	0.010  0.010  0.010  0.010  0.010	1.49986 -4.18701 1.40114 1.10882 -0.45565	50.00000  50.00000  50.00000  50.00000	Average Average Average Average Average Average

BLANK WORKORDER NO.

L2VJ81AA

SW846 8270C METHOD BLANK SUMMARY

Lab Name: TestAmerica Laboratories, Inc.

Lab Code: TALCAN

SDG Number:0F11578 Lab File ID: L2VJ81AA. Lot Number: A0F110578 Date Analyzed: 06/16/10 Time Analyzed: 10:54 Matrix: WATER Date Extracted:06/14/10 GC Column: DB-5.625 ID: .18 Extraction Method: 3520C Instrument ID: AG2 Level: (low/med) LOW

THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES, LCS, LCSD, MS , MSD:

		SAMPLE		LAB	DATE	TIME
	CLIENT ID.	WORK ORDE		FILE ID	ANALYZED	ANALYZED
		=================	====	=======================================	================	===========
	MRC-MW93D-061010	L2TE81AC		L2TE81AC.	06/16/10	11:28
	MRC-MW94D-061010	L2TFL1AN		L2TFL1AN.	06/16/10	11:45
03	INTRA-LAB QC	L2T291AH		L2T291AH.	06/16/10	13:10
	LAB MS/MSD	_L2T291GP	S	L2T291GP.	06/16/10	13:27
	LAB MS/MSD	L2T291GQ	D	L2T291GQ.	06/16/10	13:44
06	CHECK SAMPLE	L2VJ81AC	С	L2VJ81AC.	06/16/10	11:11
77						<u>_** • * * </u>
28			-	1		<u> </u>
19					¦	
10				· · · · · · · · · · · · · · · · · · ·		
11						
12				1		
13			<u> </u>			
L4				· · · · ·		
L5						·
161				· ·	I	·
L7				l,		
18						
۱9						
20						
21		<u> </u>		ļ		
22		·				
23		·				
24		······				
					_	
25						
6						······
27						
88					I	
29					i	
0				· · · · · · ·	!	

COMMENTS:

FORM IV

298

BLANK WORKORDER NO.

L2VJ81AA

SW846 8270C METHOD BLANK SUMMARY

Lab Name: TestAmerica Laboratories, Inc.

Lab Code: TALCAN

SDG Number:0F11578 Lab File ID: L2VJ81AA. Lot Number: A0F120439 Date Analyzed: 06/16/10 Time Analyzed: 10:54 Matrix: WATER Date Extracted:06/14/10 GC Column: DB-5.625 ID: .18 Extraction Method: 3520C Instrument ID: AG2 Level: (low/med) LOW

THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES, LCS, LCSD, MS , MSD:

-					· · · · · · · · · · · · · · · · · · ·	
		SAMPLE		LAB	DATE	TIME
	CLIENT ID.	WORK ORDE		FILE ID	ANALYZED	ANALYZED
~ 1		===========	====	=======================================	=========	==========
	INTRA-LAB QC	L2T291AH		L2T291AH.	06/16/10	13:10
	LAB MS/MSD	L2T291GP	S	L2T291GP.	06/16/10	13:27
	LAB MS/MSD	L2T291GQ	D	L2T291GQ.	06/16/10	13:44
	MRC-96D-061110	L2T531AC		L2T531AC.	06/16/10	14:17
05	MRC-95D-061110	L2T6X1AN		L2T6X1AN.	06/16/10	14:34
06	CHECK SAMPLE	L2VJ81AC	С	L2VJ81AC.	06/16/10	11:11
07						
08				]		
09						[
10						
11						
12		· · · · · · · · · · · · · · · · · · ·		]		
13		/ 				
14		1	<u> </u>	1		·
15						
16						<u> </u>
17				l		
18				·		
19	· · · · · · · · · · · · · · · · · · ·	ļ	· · · · <b>·</b> · ·		·	
20	· · · · · · · · · · · · · · · · · · ·				·	
21						
22						
23						
24				·		
25						
26			•			
27						
28						l
29				· · · · · · · · · · · · · · · · ·		
30				· ·		·
			<u> </u>			

#### COMMENTS:

North Canton

#### METHOD BLANK REPORT

#### GC/MS Semivolatiles

Client Lot #: 0F11578 MB Lot-Sample #: A0F140000-058	Work Order #: L2VJ81AA	Matrix WATER
Analysis Date: 06/16/10 Dilution Factor: 1	Prep Date: 06/14/10 Prep Batch #: 0165058 Initial Wgt/Vol: 1000 mL	Final Wgt/Vol: 2 mL

		REPORTI	NG	
PARAMETER	RESULT	LIMIT	UNITS	METHOD
Acetophenone	ND	1.0	ug/L	SW846 8270C
Atrazine	ND	1.0	ug/L	SW846 8270C
1,4-Dioxane	ND	1.0	ug/L	SW846 8270C
N-Nitrosodimethylamine	ND	1.0	ug/L	SW846 8270C
Dibenzo(a,h)anthracene	ND	0.20	ug/L	SW846 8270C
Benzaldehyde	ND	1.0	ug/L	SW846 8270C
1,1'-Biphenyl	ND	1.0	ug/L	SW846 8270C
Caprolactam	ND	5.0	uq/L	SW846 8270C
Phenol	ND	1.0	ug/L	SW846 8270C
bis(2-Chloroethyl)-	ND	1.0	ug/L	SW846 8270C
ether			2.	
2-Chlorophenol	ND	1.0	ug/L	SW846 8270C
2-Methylphenol	ND	1.0	ug/L	SW846 8270C
2,2'-oxybis(1-Chloro-	ND	1.0	ug/L	SW846 8270C
propane)				0.010 02700
4-Methylphenol	ND	1.0	ug/L	SW846 8270C
N-Nitrosodi-n-propyl-	ND	1.0	ug/L	SW846 8270C
amine			~97 1	54616 62766
Hexachloroethane	ND	1.0	ug/L	SW846 8270C
Nitrobenzene	ND	1.0	ug/L	SW846 8270C
Isophorone	ND	1.0	uq/L	SW846 8270C
2-Nitrophenol	ND	2.0	ug/L	SW846 8270C
2,4-Dimethylphenol	ND	2.0	ug/L	SW846 8270C
bis(2-Chloroethoxy)	ND	1.0	ug/L	SW846 8270C
methane			~9/ ±	511040 02700
2,4-Dichlorophenol	ND	2.0	ug/L	SW846 8270C
Naphthalene	ND	0.20	ug/L	SW846 8270C
4-Chloroaniline	ND	2.0	ug/L	SW846 8270C
Hexachlorobutadiene	ND	1.0	ug/L ug/L	SW846 8270C
4-Chloro-3-methylphenol	ND	2.0	ug/L	SW846 8270C
2-Methylnaphthalene	ND	0.20	ug/L	SW846 8270C
Hexachlorocyclopenta-	ND	10	ug/L	SW846 8270C
diene		10	ug/ ii	50040 82700
2,4,6-Trichloro-	ND	5.0	ug/L	SM946 92700
phenol		5.0	ug/ L	SW846 8270C
2,4,5-Trichloro-	ND	5.0	ug /T	SH946 92200
phenol	, in the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second s	5.0	ug/L	SW846 8270C
2-Chloronaphthalene	ND	1.0	wa /T	SM046 00700
2-Nitroaniline	ND	2.0	ug/L ug/I	SW846 8270C
Dimethyl phthalate	ND	2.0 1.0	ug/L	SW846 8270C
Acenaphthylene	ND		ug/L	SW846 8270C
	мD	0.20	ug/L	SW846 8270C

(Continued on next page)

#### METHOD BLANK REPORT

#### GC/MS Semivolatiles

**Client Lot #...:** 0F11578

Work Order #...: L2VJ81AA

Matrix.....: WATER

		REPORTI	NG	
PARAMETER	RESULT	LIMIT	UNITS	METHOD
2,6-Dinitrotoluene	ND	5.0	ug/L	SW846 8270C
3-Nitroaniline	ND	2.0	ug/L	SW846 8270C
Acenaphthene	ND	0.20	ug/L	SW846 8270C
2,4-Dinitrophenol	ND	5.0	ug/L	SW846 8270C
4-Nitrophenol	ND	5.0	ug/L	SW846 8270C
Dibenzofuran	ND	1.0	ug/L	SW846 8270C
2,4-Dinitrotoluene	ND	5.0	ug/L	SW846 8270C
Diethyl phthalate	ND	1.0	ug/L	SW846 8270C
4-Chlorophenyl phenyl	ND	2.0	ug/L	SW846 8270C
ether		2.0	ug/ ii	50040 02700
Fluorene	ND	0.20	ug/L	SW846 8270C
4-Nitroaniline	ND	2.0	ug/L	SW846 8270C
4,6-Dinitro-	ND	5.0	ug/L ug/L	
2-methylphenol		5.0	ug/ш	SW846 8270C
N-Nitrosodiphenylamine	ND	1.0	ug/L	SW846 8270C
4-Bromophenyl phenyl	ND	2.0		
ether		2.0	ug/L	SW846 8270C
Hexachlorobenzene	ND	0.20		
Pentachlorophenol	ND	5.0	ug/L	SW846 8270C
Phenanthrene	ND	0.20	ug/L	SW846 8270C
Anthracene	ND		ug/L	SW846 8270C
Carbazole	ND	0.20	ug/L	SW846 8270C
Di-n-butyl phthalate	ND	1.0	ug/L	SW846 8270C
Fluoranthene	ND	1.0	ug/L	SW846 8270C
Pyrene	ND	0.20	ug/L	SW846 8270C
Butyl benzyl phthalate	ND	0.20	ug/L	SW846 8270C
3,3'-Dichlorobenzidine	ND	1.0	ug/L	SW846 8270C
Benzo (a) anthracene	ND	5.0	ug/L	SW846 8270C
Chrysene		0.20	ug/L	SW846 8270C
bis(2-Ethylhexyl)	ND 1.9 J	0.20	ug/L	SW846 8270C
phthalate	1.90	2.0	ug/L	SW846 8270C
Di-n-octyl phthalate		1 0	,	
Benzo (b) fluoranthene	ND	1.0	ug/L	SW846 8270C
Benzo(k) fluoranthene	ND	0.20	ug/L	SW846 8270C
Benzo (a) pyrene	ND	0.20	ug/L	SW846 8270C
Indeno(1,2,3-cd)pyrene	ND	0.20	ug/L	SW846 8270C
	ND	0.20	ug/L	SW846 8270C
Benzo(ghi)perylene	ND	0.20	ug/L	SW846 8270C
SURROGATE	PERCENT	RECOVERY	ł	
Nitrobenzene-d5	RECOVERY	LIMITS		
	65	(27 - 11		
2-Fluorobiphenyl	59	(28 - 11		
Terphenyl-d14	78	(37 - 11		
Phenol-d5	69	(10 - 11		
2-Fluorophenol	69	(10 - 11	0)	

(Continued on next page)

## METHOD BLANK REPORT

#### GC/MS Semivolatiles

Client Lot #: 0F11578	Work Order #: L2VJ81AA	Matrix WATER
PARAMETER 2,4,6-Tribromophenol	RESULTREPORTING70LIMITUNITS	METHOD

#### NOTE (S) :

Calculations are performed before rounding to avoid round-off errors in calculated results.

J Estimated result. Result is less than RL.

# SW846 8270C SURROGATE RECOVERY

Lab Name: TestAmerica Laboratories, Inc.

Client: Tetra Tech NUS, Inc

Lab Code: TALCAN SDG No: 0F11578

Lot #: A0F110578

Extraction: XXI51QLLB

	CLIENT ID.	SRG01	SRG02	SRG03	00000			
			SKG02	SKGU3	SRG04	SRG05	SRG06	TOT OUT
01	MRC-MW93D-061010	60	55		=======	=======	=======	=======
02	MRC-MW94D-061010	61		63	68	69	_73	00
	INTRA-LAB QC		61		70		76	00
	METHOD BLK. L2VJ81AA	70	68	84	_78	_80	88	00
	LCS L2VJ81AC	65	_59		_69	69	70	00
		65	60	_79	73	73	81	00
	LAB MS/MSD D	70	63	73	77	78	79	
07	LAB MS/MSD S	66	64	77	78			_00
		· · · · · · · · · · · · · · · · · · ·					_81	00

SURROGAT	'ES	QC LIMITS
SRG01	= Nitrobenzene-d5	(27-111)
SRG02	= 2-Fluorobiphenyl	(27-111) (28-110)
SRG03	= Terphenyl-d14	( 37-119)
SRG04	= Phenol-d5	(10-110)
SRG05	= 2-Fluorophenol	(10-110)
SRG06	= 2,4,6-Tribromophenol	(22-120)

# Column to be used to flag recovery values

* Values outside of required QC Limits

D System monitoring Compound diluted out

FORM II

#### SW846 8270C SURROGATE RECOVERY

Lab Name: TestAmerica Laboratories, Inc.

Client: Tetra Tech NUS, Inc

Lab Code: TALCAN SDG No: 0F11578

Lot #: A0F120439

Extraction: XXI51QLLB

	CLIENT ID.	SRG01	SRG02	SRG03	SRG04	SRG05	SRG06	TOT OUT
	=======================================	=======	=======	======	=======		3600	
01	INTRA-LAB QC	70	68	84	78	80	88	
02	MRC-96D-061110	65	62	82	70	70	64	00
03	MRC-95D-061110	56	53	64	61	59	65	00
04	METHOD BLK. L2VJ81AA	65	59	78	69	69	·	00
05	LCS L2VJ81AC	65	60	79	73		70	00
06	LAB MS/MSD D	70	63	73				
	LAB MS/MSD S	66	64	73				00
		00	64		78	_78	81	00

SURROGATI	<u>SS</u>		00	C LIMITS
SRG01	=	Nitrobenzene-d5		27-111)
SRG02	=	2-Fluorobiphenyl	(	28-110)
SRG03	=	Terphenyl-d14	(	37-119)
SRG04	=	Phenol-d5	(	10-110)
SRG05		2-Fluorophenol	(	10-110)
SRG06	=	2,4,6-Tribromophenol	(	22-120)

# Column to be used to flag recovery values

* Values outside of required QC Limits

D System monitoring Compound diluted out

FORM II

. . . . _ _ _

## SW846 8270C CHECK SAMPLE RECOVERY

# Lab Name: TestAmerica Laboratories, Inc. Client: Tetra Tech NUS, Inc

Lab Code: TALCAN

SDG No: 0F11578

Lot #: A0F140000

#### WO #: L2VJ81AC BATCH: 0165058

COMPOUND	SPIKE ADDED (ug/L )	SAMPLE CONCENT. (ug/L )	ہ REC	QC LIMITS REC	QUAL
1,2,4-Trichlorobenzene	20	=   ===================================	= =====  42	25 - 110	=======================================
Acenaphthene	20	13	63	$\frac{25-110}{40-110}$	<u> </u>
2,4-Dinitrotoluene	20	15		52 - 123	·
Pyrene	20	14	68	52 - 123 55 - 120	l
N-Nitrosodi-n-propylamine	20	15		37 - 121	l
1,4-Dichlorobenzene	20	9.0	45	19 - 110	
Pentachlorophenol	20	11	56	26 - 110	
Phenol	20	15	76		
2-Chlorophenol	20	14			
4-Chloro-3-methylphenol	20	15			
4-Nitrophenol	20	14	72	39 - 110 12 - 130	

NOTES (S):

* Values outside of QC limits

Spike Recovery: ___0 out of ___1 outside limits

COMMENTS:

FORM III

295

# SW846 8270C MATRIX SPIKE/MATRIX SPIKE DUPLICATE RECOVERY

Lab Name: TestAmerica Laboratories, Inc. Client: Tetra Tech NUS, Inc

Lab Code: TALCAN

Matrix Spike ID: LAB MS/MSD

Lot #: A0F120429

WO #: L2T291GP BATCH: 0165058

SDG No: 0F11578

	SPIKE	SAMPLE	MS	MS		
	ADDED	CONCENT.	CONCENT.	0,0	LIMITS	
COMPOUND	(ug/L )	(ug/L )	(ug/L )	REC	REC	QUAL
	===========	=========	========	======	=======================================	=========
1,2,4-Trichlorobenzene	38	ND	20	52	25- 110	<b></b>
Acenaphthene	38	1.5	28	68	36- 110	1
2,4-Dinitrotoluene	38	ND	31	81	46 - 119	
Pyrene	38	1.0	27	69	54- 115	·
N-Nitrosodi-n-propylamine	38	ND	30	79	25~ 119	·
1,4-Dichlorobenzene	38	ND	22	57	17 - 110	
Pentachlorophenol	38	ND	25	65	23 - 110	
Phenol	38	ND	31	82	16 - 110	
2-Chlorophenol	38	ND	29	77		
4-Chloro-3-methylphenol	38	ND.	30	78		[
4-Nitrophenol	38	ND	28		33- 110	
		<u>11D</u>	20	73	<u>   13   127</u>	

NOTES(S):

# Column to be used to flag recovery and RPD values with an asterisk * Values outside of QC limits

RPD: <u>0</u> out of <u>0</u> outside limits Spike Recovery: <u>0</u> out of <u>11</u> outside limits

COMMENTS:

FORM III

# SW846 8270C MATRIX SPIKE/MATRIX SPIKE DUPLICATE RECOVERY

Lab Name: TestAmerica Laboratories, Inc. Client: Tetra Tech NUS, Inc

Lab Code: TALCAN

Matrix Spike ID: LAB MS/MSD

Lot #: A0F120429

WO #: L2T291GO BATCH: 0165058

SDG No: 0F11578

	SPIKE	MSD	MSD				1
CONDORRE	ADDED	CONCENT.	olo	00	OC I	IMITS	1
COMPOUND	(ug/L)	(ug/L )	REC	RPD	RPD -	REC	OUAL
	=======================================	=======================================	=====	=======	====	=================	QUAL
1,2,4-Trichlorobenzene	38	19	51	3.5	30	25- 110	===================================
Acenaphthene	38 .	27	67	1.3	30		
2,4-Dinitrotoluene	38	31	82	1.0	30		ļ
Pyrene	38	27	69	0.74		46- 119	
N-Nitrosodi-n-propylamine	38	30	79	0.74 - 0.20	30		
1,4-Dichlorobenzene	38	22	<u> </u>		30	25- 119	
Pentachlorophenol	38	25	<u> </u>	0.88	30	<u>    17-   110</u>	
Phenol	38	29		0.92	30	23- 110	l
2-Chlorophenol	38		77	6.6	30	<u> 16- 110</u>	I
4-Chloro-3-methylphenol		29	76	0.91	30	26- 110	
4-Nitrophenol	38	30	79	0.39	30	33- 110	
	38	28	74	1.6	30	13- 127	

NOTES(S):

# Column to be used to flag recovery and RPD values with an asterisk * Values outside of QC limits

RPD: <u>0</u> out of <u>11</u> outside limits Spike Recovery: <u>0</u> out of <u>11</u> outside limits

COMMENTS:

FORM III

297

8B

# SEMIVOLATILE INTERNAL STANDARD AREA AND RT SUMMARY

Lab Name: NORTH CANTON Lab Code: TACAN Case No.: Lab File ID (Standard): 2SMH0616

Contract:

SAS No.:

SDG No.: 0F11578

Date Analyzed: 06/16/10

Instrument ID: A4AG2

Time Analyzed: 0930

		IS1 (DCB)		IS2 (NPT)	I	Tap (2270)	· ,
		AREA #	RT #			IS3 (ANT)	
	=============	===========		AREA #	RT #	AREA #	RT #
	12 HOUR STD	159221	======================================		=======	===========	=======
	UPPER LIMIT	318442	3.47	632199	4.37	362536	5.64
	LOWER LIMIT	79611		1264398	4.87	725072	6.14
		79611	2.97	316100	3.87	181268	5.14
	EPA SAMPLE		======	=========	=======	==============	======
	NO.						
	=======================================						
01	L2VJ8BLK	10001	======	=========	======	==========	=======
02	L2VJ8CHK	166931	3.47	638999	4.37	368712	5.64
03	MRC-MW93D-06	123536	3.47	489965	4.37	289651	5.64
04	MRC-MW94D-06	118583	3.47	486982	4.37	294026	5.64
05	MRC-96D-0611	156245	3.47	629472	4.37	362636	5.64
06	MRC-96D-0611	176090	3.47	682039	4.37	401988	5.64
08	MRC-95D-0611	161466	3.47	640265	4.37	382586	5.64
07	······						
09	······						
10			·				
11	].						
$12^{11}$							
13	.						
$14^{13}$							
$14 \\ 15$						·····	·····
16	\.						
						(.	
17							
18						·	
19							
20							
21					·		
22					·		
		I •	· } .		l.		

IS1 (DCB) = 1, 4-Dichlorobenzene-d4 IS2 (NPT) = Naphthalene-d8 IS3 (ANT) = Acenaphthene-d10

AREA UPPER LIMIT = +100% of internal standard area AREA LOWER LIMIT = -50% of internal standard area RT UPPER LIMIT = + 0.50 minutes of internal standard RT RT LOWER LIMIT = - 0.50 minutes of internal standard RT

# Column used to flag internal standard area values with an asterisk. * Values outside of QC limits.

page 1 of 1

FORM VIII SV-1

OLM03.0

8C

#### SEMIVOLATILE INTERNAL STANDARD AREA AND RT SUMMARY

Lab Name: NORTH CANTON Lab Code: TACAN Case No.: Lab File ID (Standard): 2SMH0616

Contract:

SAS No.:

SDG No.: 0F11578

Date Analyzed: 06/16/10

Instrument ID: A4AG2

Time Analyzed: 0930

	· · · · · · · · · · · · · · · · · · ·	IS4 (PHN)		IS5 (CRY)		IS6(PRY)	
		AREA #	RT #	AREA #	RT #	AREA #	RT #
	12 HOUR STD	========== 578012	====== 6.74		=======	=========	
	UPPER LIMIT	1156024	7.24	642917 1285834	8.70 9.20	610747 1221494	$10.06 \\ 10.56$
	LOWER LIMIT	289006	6.24	321459	8.20	305374	9.56
		=========	======	========	=======		======
	EPA SAMPLE NO.						
	=============	============	======		=======		
	L2VJ8BLK	600056	6.74	640147	8.70	607573	10.06
	L2VJ8CHK	461031	6.74	500017	8.70	484559	10.06
	MRC-MW93D-06	482512	6.73	523645	8.70	511211	10.05
	MRC-MW94D-06 MRC-96D-0611	592211 645504	6.73 6.73	627224 689992	8.70	618238	10.05
,	MRC-95D-0611	619559	6.73	650861	8.69 8.69	659166 644247	10.05 10.05
07		010000	0.75	000001	0.05	044247	10.05
08							
09							
10							
11 12							
13		·					
14							
15							
16							
17							
18 19							
20							
21							
22							

IS4 (PHN) = Phenanthrene-d10 IS5 (CRY) = Chrysene-d12 IS6 (PRY) = Perylene-d12

AREA UPPER LIMIT = +100% of internal standard area AREA LOWER LIMIT = -50% of internal standard area RT UPPER LIMIT = +0.50 minutes of internal standard RT RT LOWER LIMIT = -0.50 minutes of internal standard RT

# Column used to flag internal standard area values with an asterisk.
* Values outside of QC limits.

page 1 of 1

FORM VIII SV-2

OLM03.0

303

carbon disulfide rep result 0.71 vall 93D JAMP = 0.7113 ug/L 5 14645)

Data File: \\cansvrll\dd\chem\MSV\a3uxll.i\J00621A.b\UXJ0149.D Report Date: 22-Jun-2010 14:10

TestAmerica North Canton

CONCENTRATIONS

VOLATILE REPORT SW-846 Method 8260A/8260B Data file : \\cansvrl1\dd\chem\MSV\a3ux11.i\J00621A.b\UXJ0149.D Lab Smp Id: L2TE81AA Client Smp ID: MRC-MW93D-061010 Inj Date : 21-JUN-2010 16:40 Operator : 1644 Smp Info : L2TE81AA,5ML/5ML Inst ID: a3ux11.i Misc Info : J00621A,8260LLUX11,,1644 Comment : : \\cansvrll\dd\chem\MSV\a3ux11.i\J00621A.b\8260LLUX11.m Method Meth Date : 22-Jun-2010 13:48 a3ux11.i Quant Type: ISTD Cal Date : 18-JUN-2010 02:01 Cal File: UXJ0107.D Als bottle: 10 Dil Factor: 1.00000 Integrator: HP RTE Compound Sublist: 4-8260+IX.sub Target Version: 4.14 Processing Host: CANPMSV30

Concentration Formula: Amt * DF * 1/Vo * CpndVariable

Name	Value	Description
DF Vo Va Cpnd Variable	1.000 5.000 100.000	Dilution Factor Sample volume Injection Volume Local Compound Variable

				CONCENTRATIONS
		QUANT SIG	40	-COLUMN FINAL
Co	ompounds	MASS	RT EXP RT REL RT RESPONSE	(ng) (ug/L)
==		====		
*	1 Fluorobenzene	96	5.354 5.354 (1.000) 1061468 5	50.0000
*	2 Chlorobenzene-d5	117	8.040 8.040 (1.000) 820745 5	50.0000
*	3 1,4-Dichlorobenzene-d4	152	10.288 10.276 (1.000) 428964 5	50.0000
Ş	4 Dibromofluoromethane	113	4.774 4.774 (0.892) 318917 4	19.1191 9.824
Ş	5 1,2-Dichloroethane-d4	65	5.058 5.058 (0.945) 396563 4	18.9490 9.790
Ş	6 Toluene-d8	98	6.715 6.715 (0.835) 1328125 4	15.0256 9.005
Ş	7 Bromofluorobenzene	95	9.140 9.140 (1.137) 459222 4	14.9793 8.996
	8 Dichlorodifluoromethane	85	Compound Not Detected.	
	9 Chloromethane	50	Compound Not Detected.	
	10 Vinyl Chloride	62	Compound Not Detected.	
	11 Bromomethane	94	Compound Not Detected.	
	12 Chloroethane	64	Compound Not Detected.	
	13 Trichlorofluoromethane	101	Compound Not Detected.	
	15 Acrolein	56	Compound Not Detected.	
	16 Acetone	43	2.952 2.952 (0.551) 173832 8	33.2156 16.643
	17 1,1-Dichloroethene	96	Compound Not Detected.	
	18 Freon-113	151	Compound Not Detected.	
	19 Iodomethane	142	Compound Not Detected.	
	20 Carbon Disulfide	76	3.129 3.129 (0.585) 56361 3	8.55667 0.7113
	21 Methylene Chloride	84	3.319 3.319 (0.620) 18574 2	2.34815 0.4696

rep. result buty benzyl phthalate 93D Sample 2000 1.0978 10401 0.5 Data File: \\cansvr11\dd\chem\MSS\a4ag2.i\00616A.b\L2TE81AC.D

Data File: \\cansvrll\dd\chem\MSS\a4ag2.i\00616A.b\L2TE81AC.D Page 1 Report Date: 17-Jun-2010 12:37

TestAmerica North Canton

Semivolatile REPORT SW-846 Method 8270 Data file : \\cansvr11\dd\chem\MSS\a4ag2.i\00616A.b\L2TE81AC.D Lab Smp Id: L2TE81AC Client Smp ID: MRC-MW93D-061010 Inj Date : 16-JUN-2010 11:28 Operator : 046900 Inst ID: a4a Smp Info : L2TE81AC,00616A.B,8270C-625,3-827042.SUB Inst ID: a4aq2.i Misc Info : Comment Method : \\cansvrll\dd\chem\MSS\a4ag2.i\00616A.b\8270C-625.m Meth Date : 17-Jun-2010 12:34 hulat Quant Type: ISTD Cal Date : 14-JUN-2010 12:07 Cal File: 2AH0614.D Als bottle: 9 Dil Factor: 1.00000 Integrator: HP RTE Compound Sublist: 3-827042.SUB Target Version: 4.14 Processing Host: CANPMSSV04

Concentration Formula: Amt * DF * Uf * Vt/(Vo * Vi) * CpndVariable

Name	Value	Description
DF Uf Vt Vo Vi Cpnd Variable	1.000 2000.000 1040.000	Dilution Factor ng unit correction factor Volume of final extract (uL) Volume of sample extracted (mL) Volume injected (uL) Local Compound Variable

			CONCENTRATIONS
	QUANT SIG		ON-COLUMN FINAL
Compounds	MASS	RT EXP RT REL RT RESPONSE	( NG) ( ug/L)
	====		
* 1 1,4-Dichlorobenzene-d4	152	3.473 3.473 (1.000) 118583	2.00000
* 2 Naphthalene-d8	136	4.366 4.371 (1.000) 486982	2.00000
* 3 Acenaphthene-d10	164	5.639 5.644 (1.000) 294026	2.00000
* 4 Phenanthrene-d10	188	6.730 6.735 (1.000) 482512	2.00000
* 5 Chrysene-d12	240	8.698 8.704 (1.000) 523645	2.00000
* 6 Perylene-d12	264	10.051 10.062 (1.000) 511211	2.00000
198 1,4-Dioxane	88	Compound Not Detected.	
9 Pyridine	79	Compound Not Detected.	
10 N-Nitrosodimethylamine	74	Compound Not Detected.	
12 3-Chloropropionitrile	54	Compound Not Detected.	
209 Benzaldehyde	77	Compound Not Detected.	
21 Aniline	93	3.243 3.248 (0.934) 17226	0.13071 0.50274
22 Phenol	94	Compound Not Detected.	0,000,00
23 bis(2-Chloroethyl)ether	93	Compound Not Detected.	
24 2-Chlorophenol	128	Compound Not Detected.	
26 1,3-Dichlorobenzene	146	Compound Not Detected.	
27 1,4-Dichlorobenzene	146	Compound Not Detected.	
28 1,2-Dichlorobenzene	146	Compound Not Detected.	

# Data File: \\cansvr11\dd\chem\MSS\a4ag2.i\00616A.b\L2TE81AC.D Page 3 Report Date: 17-Jun-2010 12:37

	011117 010		CONCENTRA	
Compounds	QUANT SIG		ON-COLUMN	FINAL
	MASS	RT EXP RT REL RT RESPONSE	( NG)	( ug/L)
116 Anthracene			======	
119 Carbazole	178	Compound Not Detected.		
	167	Compound Not Detected.		
120 Di-n-Butylphthalate 123 Fluoranthene	149	Compound Not Detected.		
123 Fluoranthene 124 Benzidine	202	Compound Not Detected.		
	184	Compound Not Detected.		
125 Pyrene	202	Compound Not Detected.		
131 Butylbenzylphthalate	149	8.217 8.222 (0.945) 43095	0.28544	1.0978
133 3,3'-Dimethoxybenzidine	244	Compound Not Detected.		
135 3,3'-Dichlorobenzidine	252	Compound Not Detected.		
136 Benzo(a)Anthracene	228	Compound Not Detected.		
137 Chrysene	228	Compound Not Detected.		
138 4,4'-Methylene bis(o-chloroan	231	Compound Not Detected.		
139 bis(2-ethylhexyl)Phthalate	149	8.623 8.623 (0.991) 112913	0.50340	1.936
140 Di-n-octylphthalate	149	Compound Not Detected.		
141 Benzo(b)fluoranthene	252	Compound Not Detected.		
142 Benzo(k)fluoranthene	252	Compound Not Detected.		
146 Benzo(a)pyrene	252	Compound Not Detected.		
149 Indeno(1,2,3-cd)pyrene	276	Compound Not Detected.		
150 Dibenz(a,h)anthracene	278	Compound Not Detected.		
151 Benzo(g,h,i)perylene	276	Compound Not Detected.		
154 Nitrobenzene-d5	82	3.847 3.852 (0.881) 334318	2.98282	11.472
155 2-Fluorobiphenyl	172	5.131 5.131 (0.910) 512137	2.76155	10.621
156 Terphenyl-dl4	244	7.885 7.885 (0.907) 592347	3.14839	12.109
157 Phenol-d5	99	3.184 3.189 (0.917) 490446	5.07147	19.506
158 2-Fluorophenol	112	2.601 2.606 (0.749) 378730	5.16317	19.858
159 2,4,6-Tribromophenol	330	6.216 6.222 (1.102) 122860	5.47564	21.060
186 2-Chlorophenol-d4	132	3.317 3.323 (0.955) 413589	5.47015	21.039
187 1,2-Dichlorobenzene-d4	152	3.585 3.585 (1.032) 134854	2.53782	9.7608
195 Cresols, total	100	Compound Not Detected.		
101 Diphenylamine	169	Compound Not Detected.		



Tetra Tech NUS

# INTERNAL CORRESPONDENCE

TO:	A. APANAVAGE	DATE: JULY 26, 2010
FROM:	DANIELLE M. BAUGHMAN	COPIES: DV FILE
SUBJECT:	INORGANIC DATA VALIDATION – SELECT TO METALS MIDDLE RIVER CENTER SAMPLE DELIVERY GROUP (SDG) – 0F11578	
SAMPLES:	4/Aqueous/	

MRC-MW93D-061010 MRC-95D-061110 MRC-MW94D-061010 MRC-96D-061110

Overview

The sample set for Middle River Center, SDG 0F11578, consists of four (4) aqueous environmental samples. No field duplicate pairs were included within this SDG.

All samples were analyzed for select total and dissolved metals (-F) including antimony, arsenic, barium, beryllium, cadmium, chromium, cobalt, copper, iron, lead, manganese, mercury, molybdenum, nickel, selenium, silver, thallium, vanadium and zinc. The samples were collected by Tetra Tech NUS on June 10 and 11, 2010 and analyzed by Test America. Metals analyses were conducted using SW-846 method 6020. Mercury analyses were conducted using SW-846 method 7470A.

The findings offered in this report are based upon a general review of all available data. The data review was based on data completeness, holding times, initial and continuing calibration verification results, laboratory method / preparation blank results, ICP interference results, laboratory control sample recoveries, matrix spike recoveries, laboratory duplicate results, ICP serial dilution results, detection limits, internal standard recoveries, and analyte quantitation.

Areas of concern with respect to data quality are listed below.

Major Problems

None.

#### Minor Problems

• The following contaminants were detected in the laboratory method/preparation blanks at the following maximum concentrations:

Copper(1) Iron Lead Manganese Molybdenum Nickel(1) Selenium Thallium	1.2 ug/L 24.9 ug/L 0.064 ug/L 0.89 ug/L 0.61 ug/L 0.22 ug/L 0.15 ug/L 0.33 ug/L	6.0 ug/L 124.5 ug/L 0.32 ug/L 4.45 ug/L 3.05 ug/L 1.1 ug/L 0.75 ug/L 1.65 ug/L
Zinc(1)	6.5 ug/L	32.5 ug/L
		-

(1) Maximum concentration present in a preparation blank.

An action level of 5X the maximum contaminant level has been used to evaluate sample data for blank contamination. Sample aliquot and dilution factors, if applicable, were taken into consideration when evaluating for blank contamination. Positive results less than the blank action level reported for antimony, beryllium, cadmium, chromium, cobalt, copper, iron, lead, manganese, molybdenum, nickel selenium, thallium, and zinc were qualified "B" as a result of laboratory blank contamination.

- The interfering analyte iron was present in sample MRC-95D-061110 (total metals) at a concentration comparable to the concentration of iron in the interference check sample (ICS) solution. Several analytes namely, antimony, arsenic, barium, beryllium, cadmium, chromium, cobalt, lead, manganese, nickel, silver and zinc were present in the ICS solution at a concentration that exceeded the absolute value of the instrument detection limit (IDL). Interference effects exist for antimony, cadmium, and silver in the affected sample. No validation actions were warranted for antimony and cadmium as the results were qualified for blank contamination. The result reported for silver was qualified as biased low, "UL".
- The interfering analyte iron was present in sample MRC-MW93D-061010 (total metals) at a concentration comparable to the concentration of iron in the interference check sample (ICS) solution. Several analytes namely, antimony, arsenic, barium, beryllium, cadmium, chromium, cobalt, lead, manganese, nickel, silver and zinc were present in the ICS solution at a concentration that exceeded the absolute value of the instrument detection limit (IDL). Interference effects exist for antimony, cadmium, and silver in the affected sample. The positive results reported for cadmium and silver were qualified as estimated "J", as a result of conflicting noncompliances. No validation actions were warranted for antimony as the result was qualified for blank contamination.
- The interfering analyte iron was present in sample MRC-MW94D-061010 (total metals) at a concentration comparable to the concentration of iron in the interference check sample (ICS) solution. Several analytes namely, antimony, arsenic, barium, beryllium, cadmium, chromium, cobalt, lead, manganese, nickel, silver and zinc were present in the ICS solution at a concentration that exceeded the absolute value of the instrument detection limit (IDL). Interference effects exist for antimony, cadmium, and silver in the affected sample. No validation actions were warranted for antimony and cadmium, as the results were qualified for blank contamination. The result reported for silver was qualified as biased low, "UL".
- The interfering analyte iron was present in sample MRC-MW93D-061010 (dissolved metals) at a concentration comparable to the concentration of iron in the interference check sample (ICS) solution. Several analytes namely, antimony, arsenic, barium, beryllium, cadmium, chromium, cobalt, lead, manganese, nickel, silver and zinc were present in the ICS solution at a concentration that exceeded the absolute value of the instrument detection limit (IDL). Interference effects exist for antimony, cadmium, and silver in the affected sample. No validation actions were warranted for antimony and cadmium as the results were qualified for blank contamination. The positive result reported for silver was qualified as estimated "J" as a result of conflicting noncompliances.

- Positive results greater than the MDL, but less than the RL were qualified as estimated "J" for conflicting noncompliances.
- The CRDL % recoveries for arsenic and nickel were >110% quality control limit affecting all samples. The positive results reported for arsenic and nickel <2x CRDL were qualified as either biased high "K" or estimated "J" as a result of conflicting noncompliances.

#### <u>Notes</u>

The CRDL % recoveries for copper, iron, lead, and manganese were outside the 90-110% quality control limits. No validation actions were warranted as all sample results were either nondetects or were qualified as blank contamination.

#### Executive Summary

**Laboratory Performance:** Several analytes were present in the laboratory method / preparation blanks. Several CRDL % recoveries were outside the 90-110% quality control limits.

**Other Factors Affecting Data Quality:** The interfering analyte iron was present in several samples. Positive results greater than the MDL, but less than the RL were qualified.

The data for these analyses were reviewed with reference to Region III modifications to the "National Functional Guidelines for Inorganic Data Validation", April 1993.

The text of this report has been formulated to address only those problem areas affecting data quality.

Tetra Tech NUS Danielle M. Baughman Project Engineer

んと Tetra Tech NUS

Joseph A. Samchuck Quality Assurance Officer

#### Attachments:

- 1. Appendix A Qualified Analytical Results
- 2. Appendix B Results as reported by the Laboratory
- 3. Appendix C Support Documentation

# APPENDIX A QUALIFIED ANALYTICAL RESULTS

#### Data Validation Qualifier Codes:

- A = Lab Blank Contamination
- B = Field Blank Contamination
- C = Calibration Noncompliance (e.g. % RSDs, %Ds, ICVs, CCVs, RRFs, etc.)
- C01 = GC/MS Tuning Noncompliance
- D = MS/MSD Recovery Noncompliance
- E = LCS/LCSD Recovery Noncompliance
- F = Lab Duplicate Imprecision
- G = Field Duplicate Imprecision
- H = Holding Time Exceedance
- I = ICP Serial Dilution Noncompliance
- J = GFAA PDS-GFAA MSA's r < 0.995 / ICP PDS Recovery Noncompliance
- K = ICP Interference includes ICS % R Noncompliance
- L = Instrument Calibration Range Exceedance
- M = Sample Preservation Noncompliance
- N = Internal Standard Noncompliance
- N01 = Internal Standard Recovery Noncompliance Dioxins
- N02 = Recovery Standard Noncompliance Dioxins
- N03 = Clean-up Standard Noncompliance Dioxins
- O Poor Instrument Performance (e.g. base-line drifting)
- P = Uncertainty near detection limit (< 2 x IDL for inorganics and <CRQL for organics)
- Q = Other problems (can encompass a number of issues; e.g. chromatography, interferences, etc.)
- R = Surrogates Recovery Noncompliance
- S = Pesticide/PCB Resolution
- T = % Breakdown Noncompliance for DOT and Endrin
- U = % Difference between columns/detectors >25% for positive results determined via GC/HPLC
- V = Non-linear calibrations; correlation coefficient r < 0.995
- W = EMPC result
- X = Signal to noise response drop
- Y = Percent solids <30%
- Z = Uncertainty at 2 sigma deviation is greater than sample activity

PROJ_NO: 02720	NSAMPLE	MRC-95D-061110 A0F120439002		MRC-96D-061				MRC-MW93D-061010 A0F110578002			MRC-MW94D-061010 A0F110578003			
SDG: 0F11578	LAB_ID			A0F12043900										
FRACTION: MF	SAMP_DATE	6/11/2010			6/11/2010	6/11/2010					6/10/2010	6/10/2010		
MEDIA: WATER	QC_TYPE	NM			NM	NM		NM			NM			
	UNITS	UG/L			UG/L			UG/L			UG/L	UG/L		
	PCT_SOLIDS	0.0			0.0			0.0			0.0			
	DUP_OF													
PARAMETER		RESULT	VQL	QLCD	RESULT	VQL	QLCD	RESULT	VQL	QLCD	RESULT	VQL	QLCD	
ANTIMONY		0.35	В	A	0.2	В	A	0.32	В	A	0.13	В	A	
ARSENIC		2.8	J	CP	0.16	U		20.5			1.2	J	СР	
BARIUM		11.2			7.6			399			43.7			
BERYLLIUM		0.0059	U		0.085	В	A	5.4			0.28	В	A	
CADMIUM		0.025	U		0.031	В	A	0.38	В	A	0.028	В	A	
CHROMIUM		0.89	В	A	0.17	В	A	108			6.4			
COBALT		0.039	В	A	2.2			8			0.76	J	Р	
COPPER		2.5	в	A	1.7	В	A	47.4			4.5	В	A	
IRON		47.2	в	A	73.4	В	A	51300	1		4400			
LEAD		0.019	U		0.019	U		63.3			3			
MANGANESE		0.17	В	A	11.1			377			75.6			
MERCURY		0.1	U		0.1	U		0.1	U		0.1	U		
MOLYBDENUM		15.4			0.31	В	A	22.5			3.8			
NICKEL		0.45		A	3.5	к	С	32.8			7			
SELENIUM		0.5	B	A	0.18	В	A	4.5	J	P	0.4	В	A	
SILVER		0.015	U		0.015	U		0.088	J	KP	0.015	U		
THALLIUM		0.13	U		0.24	В	A	0.34	В	A	0.13	U		
VANADIUM		6.2	J	Р	0.43	U		80.8			6.5	J	Р	
ZINC		4.9	В	A	11.3	В	A	118			14.5	В	A	

PROJ_NO: 02720	NSAMPLE	MRC-95D-061110		MRC-96D-061				MRC-MW93D-061010 A0F110578002			MRC-MW94D-061010 A0F110578003			
SDG: 0F11578	LAB_ID	A0F120439002												A0F12043900
FRACTION: M	SAMP_DATE	6/11/2010			6/11/2010	6/11/2010 NM					6/10/2010	6/10/2010		
MEDIA: WATER	QC_TYPE	NM			NM						NM			
	UNITS	UG/L			UG/L			UG/L			UG/L	UG/L		
	PCT_SOLIDS	0.0			0.0			0.0			0.0			
	DUP_OF		•											
PARAMETER		RESULT	VQL	QLCD	RESULT	VQL	QLCD	RESULT	VQL	QLCD	RESULT	VQL	QLCD	
ANTIMONY		0.28	В	A	0.027	U		0.42	В	A	0.18	В	A	
ARSENIC		7.5	К	С	0.16	U		26.1			4.1	J	СР	
BARIUM		209			9			515			133			
BERYLLIUM		2.3			0.11	В	A	6.7			1.3			
CADMIUM		0.17	В	A	0.025	U		0.49	J	KP	0.12	В	A	
CHROMIUM		72.9			0.51	В	A	143			28.1			
COBALT		5.5			2.4			10			2.6			
COPPER		24.6			2.2	В	A	59.9			13.1			
IRON		40900			202			66400			18100			
LEAD		30.2			0.019	υ		78.2			14.5			
MANGANESE		262			12.6			522			214			
MERCURY		0.1	U		0.1	U		0.13	J .	Р	0.1	U		
MOLYBDENUM		14.1			0.27	U		20	1		5.2			
NICKEL		21.3			3.9	к	С	40.4			20.4	-		
SELENIUM		3.2	J	Р	0.13	U		6.6	-		0.96	J	P	
SILVER		0.015	UL	K	0.015	U		0.15	J	KP	0.015		К	
THALLIUM		0.21	В	A	0.13	U		0.49	В	A	0.14	В	A	
VANADIUM		53.2			0.45	J	P	107			28.9			
ZINC		66.8			10.9	В	A	145			35.5			

# APPENDIX B RESULTS AS REPORTED BY THE LABORATORY

#### Client Sample ID: MRC-95D-061110

#### TOTAL Metals

Matrix..... WG

Lot-Sample #...: A0F120439-002

Date Sampled...: 06/11/10 09:28 Date Received..: 06/12/10

PARAMETER	RESULT	REPORTING LIMIT UNITS	METHOD	PREPARATION- WORK ANALYSIS DATE ORDER #
Prep Batch <b>#</b> .	.: 0165019			
Silver	ND	1.0 ug/L	SW846 6020	06/14-06/16/10 L2T6X1A5
		Dilution Factor: 1	Analysis Time: 20:42	Analyst ID: 000079
		Instrument ID: 18	MDL 0.015	
Arsenic	7.5	5.0 ug/L	SW846 6020	06/14-06/16/10 L2T6X1AQ
		Dilution Factor: 1	Analysis Time: 20:42	Analyst ID: 000079
		Instrument ID: 18	MDL 0.16	
Barium	209 J	1.0 ug/L	SW846 6020	06/14-06/16/10 L2T6X1AR
		Dilution Factor: 1	Analysis Time: 20:42	Analyst ID: 000079
		Instrument ID: 18	MDL 0.027	
Beryllium	2.3	1.0 ug/L	SW846 6020	06/14-06/16/10 L2T6X1AT
		Dilution Factor: 1	Analysis Time: 20:42	Analyst ID: 000079
		Instrument ID: 18	MDL 0.0059	)
Cadmium	0.17 B	1.0 ug/L	SW846 6020	06/14-06/16/10 L2T6X1AU
		Dilution Factor: 1	Analysis Time: 20:42	Analyst ID: 000079
		Instrument ID: 18	MDL 0.025	
Cobalt	5.5	1.0 ug/L	SW846 6020	06/14-06/16/10 L2T6X1AV
		Dilution Factor: 1	Analysis Time: 20:42	Analyst ID: 000079
		Instrument ID: 18	MDL 0.015	
Chromium	72 <b>.9</b> J	2.0 ug/L	SW846 6020	06/14-06/16/10 L2T6X1A9
		Dilution Factor: 1	Analysis Time: 20:42	Analyst ID: 000079
		Instrument ID: 18	MDL 0.044	
Copper	24.6 J	2.0 ug/L	SW846 6020	06/14-06/16/10 L2T6X1AW
		Dilution Factor: 1	Analysis Time: 20:42	Analyst ID: 000079 [.]
		Instrument ID: 18	MDL 0.043	
Iron	40900 J	50.0 ug/L	SW846 6020	06/14-06/16/10 L2T6X1AX
		Dilution Factor: 1	Analysis Time: 20:42	Analyst ID: 000079
		Instrument ID: 18	MDL 6.0	
Manganese	262 J	1.0 ug/L	SW846 6020	06/14-06/16/10 L2T6X1A1
		Dilution Factor: 1	Analysis Time: 20:42	Analyst ID: 000079
		Instrument ID: 18	MDL 0.16	

(Continued on next page)

.

#### Client Sample ID: MRC-95D-061110

#### TOTAL Metals

#### Lot-Sample #...: A0F120439-002

Matrix..... WG

		REPORTIN			PREPARATION- WORK
PARAMETER Molybdenum	<u>RESULT</u>	$\frac{\text{LIMIT}}{2.0}$	UNITS ug/L	METHOD SW846 6020	ANALYSIS DATE ORDER # 06/14-06/16/10 L2T6X1A2
norybuchum	<b>T</b> . <b>J</b> . <b>T</b>	Dilution Fac		Analysis Time: 20:42	Analyst ID: 000079
		Instrument I		MDL 0.27	Analyse 15 000075
Nickel	21.3 J	2.0	ug/L	SW846 6020	06/14-06/16/10 L2T6X1A3
		Dilution Fac	ctor: 1	Analysis Time: 20:42	Analyst ID: 000079
		Instrument I	ID: 18	MDL 0.16	
Lead	30.2	1.0	ug/L	SW846 6020	06/14-06/16/10 L2T6X1A0
		Dilution Factor: 1		Analysis Time: 20:42	Analyst ID: 000079
		Instrument ID: 18		MDL 0.019	
Antimony	0.28 B,J	2.0	ug/L	SW846 6020	06/14-06/16/10 L2T6X1AP
		Dilution Fac	ctor: 1	Analysis Time: 20:42	Analyst ID: 000079
		Instrument ID: 18		MDL: 0.027	
Selenium	3.2 B	5.0	ug/L	SW846 6020	06/14-06/16/10 L2T6X1A4
		Dilution Factor: 1		Analysis Time: 20:42	Analyst ID: 000079
		Instrument ID: 18		MDL 0.13	
m) . ] ] '	0.01 5.7	1 0	1-		
Thallium	0.21 B,J	1.0	ug/L	SW846 6020	06/14-06/16/10 L2T6X1A6
		Dilution Fac Instrument I		Analysis Time: 20:42	Analyst ID: 000079
		Instrument I	.0: 10	MDL 0.13	
Vanadium	53.2	20.0	ug/L	SW846 6020	06/14-06/16/10 L2T6X1A7
		Dilution Fac	ctor: 1	Analysis Time: 20:42	Analyst ID: 000079
		Instrument I	D: 18	MDL 0.43	
Zinc	66.8 J	20.0	ug/L	SW846 6020	06/14-06/16/10 L2T6X1A8
		Dilution Fac	ctor: 1	Analysis Time: 20:42	Analyst ID: 000079
		Instrument I	D: 18	MDL 0.35	
Mercury	ND	0.20	ug/L	SW846 7470A	06/14-06/16/10 L2T6X1AA
		Dilution Fac	tor: 1	Analysis Time: 08:56	Analyst ID: 001576
		Instrument I	D: H1	MDL 0.10	

#### NOTE(S):

J Method blank contamination. The associated method blank contains the target analyte at a reportable level.

B Estimated result. Result is less than RL.

#### Client Sample ID: MRC-95D-061110

#### DISSOLVED Metals

Lot-Sample #...: A0F120439-002 Date Sampled...: 06/11/10 09:28 Date Received..: 06/12/10

Matrix..... WG

PARAMETER	RESULT	REPORTING LIMIT UNITS	METHOD	PREPARATION- WORK ANALYSIS DATE ORDER #	
			· .		
Prep Batch #.	: 0165019			·	
Silver	ND	1.0 ug/L	SW846 6020	06/14-06/16/10 L2T6X1CF	
		Dilution Factor: 1	Analysis Time: 20:47	Analyst ID: 000079	
		Instrument ID: 18	MDL 0.015		
Arsenic	2.8 B	5.0 ug/L	SW846 6020	06/14-06/16/10 L2T6X1AD	
		Dilution Factor: 1	Analysis Time: 20:47	Analyst ID: 000079	
		Instrument ID: 18	MDL 0.16		
Barium	11.2 Ј	1.0 ug/L	SW846 6020	06/14-06/16/10 L2T6X1AE	
		Dilution Factor: 1	Analysis Time: 20:47	Analyst ID: 000079	
		Instrument ID: 18	MDL 0.027		
Beryllium	ND	1.0 ug/L	SW846 6020	06/14-06/16/10 L2T6X1AF	
		Dilution Factor: 1	Analysis Time: 20:47	Analyst ID: 000079	
		Instrument ID: 18	MDL 0.005	.9	
Cadmium	ND	1.0 ug/L	SW846 6020	06/14-06/16/10 L2T6X1AG	
		Dilution Factor: 1	Analysis Time: 20:47	Analyst ID: 000079	
		Instrument ID: 18	MDL 0.025		
Cobalt	0.039 B	1.0 ug/L	SW846 6020	06/14-06/16/10 L2T6X1AH	
		Dilution Factor: 1	Analysis Time: 20:47	Analyst ID: 000079	
		Instrument ID: 18	MDL 0.015		
Chromium	0.89 B,J	2.0 ug/L	SW846 6020	06/14-06/16/10 L2T6X1CK	
		Dilution Factor: 1	Analysis Time: 20:47	Analyst ID: 000079	
		Instrument ID: 18	MDL 0.044		
Copper	2.5 J	2.0 ug/L	SW846 6020	06/14-06/16/10 L2T6X1AJ	
		Dilution Factor: 1	Analysis Time: 20:47	Analyst ID: 000079	
		Instrument ID: 18	MDL 0.043		
Iron	47.2 B,J	50.0 ug/L	SW846 6020	06/14-06/16/10 L2T6X1AK	
		Dilution Factor: 1	Analysis Time: 20:47	Analyst ID: 000079	
		Instrument ID: 18	MDL 6.0		
Manganese	0.17 B,J	1.0 ug/L	SW846 6020	06/14-06/16/10 L2T6X1CA	
		Dilution Factor: 1	Analysis Time: 20:47	Analyst ID: 000079	
		Instrument ID: 18	MDL 0.16		

(Continued on next page)

#### Client Sample ID: MRC-95D-061110

#### DISSOLVED Metals

Lot-Sample #...: A0F120439-002

:

Matrix....: WG

PARAMETER	RESULT	REPORTING LIMITUNITS	METHOD	PREPARATION- WORK ANALYSIS DATE ORDER #
Molybdenum	15.4	2.0 ug/L	SW846 6020	06/14-06/16/10 L2T6X1CC
		Dilution Factor: 1	Analysis Time: 20:47	Analyst ID: 000079
		Instrument ID: 18	MDL 0.27	
Nickel	0.45 B,J	2.0 ug/L	SW846 6020	06/14-06/16/10 L2T6X1CD
		Dilution Factor: 1	Analysis Time: 20:47	Analyst ID: 000079
		Instrument ID: 18	MDL 0.16	
Lead	ND	1.0 ug/L	SW846 6020	06/14-06/16/10 L2T6X1AL
		Dilution Factor: 1	Analysis Time: 20:47	Analyst ID: 000079
		Instrument ID: 18	MDL 0.019	
Antimony	0.35 B,J	2.0 ug/L	SW846 6020	06/14-06/16/10 L2T6X1AC
		Dilution Factor: 1	Analysis Time: 20:47	Analyst ID: 000079
		Instrument ID: 18	MDL 0.027	
Selenium	0.50 B	5.0 ug/L	SW846 6020	06/14-06/16/10 L2T6X1CE
		Dilution Factor: 1	Analysis Time: 20:47	Analyst ID: 000079
		Instrument ID: 18	MDL 0.13	
Thallium	ND	1.0 ug/L	SW846 6020	06/14-06/16/10 L2T6X1CG
		Dilution Factor: 1	Analysis Time: 20:47	Analyst ID: 000079
		Instrument ID: 18	MDL 0.13	·
Vanadium	6.2 B	20.0 ug/L	SW846 6020	06/14-06/16/10 L2T6X1CH
		Dilution Factor: 1	Analysis Time: 20:47	Analyst ID: 000079
		Instrument ID: 18	MDL 0.43	
Zinc	4.9 B,J	20.0 ug/L	SW846 6020	06/14-06/16/10 L2T6X1CJ
		Dilution Factor: 1	Analysis Time: 20:47	Analyst ID: 000079
		Instrument ID: 18	MDL 0.35	
Mercury	ND	0.20 ug/L	SW846 7470A	06/14-06/16/10 L2T6X1CL
		Dilution Factor: 1	Analysis Time: 08:57	Analyst ID: 001576
		Instrument ID: H1	MDL 0.10	·

#### NOTE(S):

B Estimated result. Result is less than RL.

J Method blank contamination. The associated method blank contains the target analyte at a reportable level.

#### Client Sample ID: MRC-MW93D-061010

#### TOTAL Metals

Lot-Sample #...: A0F110578-002 Date Sampled...: 06/10/10 10:23 Date Received..: 06/11/10

Matrix..... WG

PARAMETER	RESULT	REPORTING LIMIT UNITS	METHOD	PREPARATION- WORK ANALYSIS DATE ORDER #
			MEINOD	ANALISIS DAIL ORDER #
Prep Batch #.	: 0165019			
Silver	0.15 B	1.0 ug/L	SW846 6020	06/14-06/16/10 L2TE81AT
•		Dilution Factor: 1	Analysis Time: 19:27	Analyst ID: 000079
		Instrument ID: 18	MDL 0.015	
Arsenic	26.1	5.0 ug/L	SW846 6020	06/14-06/16/10 L2TE81AE
		Dilution Factor: 1	Analysis Time: 19:27	Analyst ID: 000079
		Instrument ID: 18	MDL 0.16	
Barium	515 J	1.0 ug/L	SW846 6020	06/14-06/16/10 L2TE81AF
		Dilution Factor: 1	Analysis Time: 19:27	Analyst ID: 000079
		Instrument ID: 18	MDL 0.027	
Beryllium	6.7	1.0 ug/L	SW846 6020	06/14-06/16/10 L2TE81AG
		Dilution Factor: 1	Analysis Time: 19:27	Analyst ID: 000079
		Instrument ID: 18	MDL 0.005	9
Cadmium	0.49 B	1.0 ug/L	SW846 6020	06/14-06/16/10 L2TE81AH
		Dilution Factor: 1	Analysis Time: 19:27	Analyst ID: 000079
		Instrument ID: 18	MDL 0.025	
Cobalt	10	1.0 ug/L	SW846 6020	06/14-06/16/10 L2TE81AJ
		Dilution Factor: 1	Analysis Time: 19:27	Analyst ID: 000079
		Instrument ID: 18	MDL 0.015	
Chromium	143 J	2.0 ug/L	SW846 6020	06/14-06/16/10 L2TE81AX
		Dilution Factor: 1	Analysis Time: 19:27	Analyst ID: 000079
,		Instrument ID: 18	MDL 0.044	
Copper	59.9 J	2.0 ug/L	SW846 6020	06/14-06/16/10 L2TE81AK
		Dilution Factor: 1	Analysis Time: 19:27	Analyst ID: 000079
		Instrument ID: 18	MDL 0.043	
Iron	66400 J	50.0 ug/L	SW846 6020	06/14-06/16/10 L2TE81AL
		Dilution Factor: 1	Analysis Time: 19:27	Analyst ID: 000079
		Instrument ID: 18	MDL 6.0	
Manganese	522 J	1.0 ug/L	SW846 6020	06/14-06/16/10 L2TE81AN
		Dilution Factor: 1	Analysis Time: 19:27	Analyst ID: 000079
		Instrument ID: 18	MDL 0.16	

(Continued on next page)

### Client Sample ID: MRC-MW93D-061010

#### TOTAL Metals

Lot-Sample #...: A0F110578-002

Matrix..... WG

		REPORTING		PREPARATION- WORK					
PARAMETER	RESULT	LIMIT UNI	ITS METHOD	ANALYSIS DATE ORDER #					
Molybdenum	olybdenum 20.0 2.0		/L SW846 6020	06/14-06/16/10 L2TE81AP					
		Dilution Factor: 1	Analysis Time: 19:27	Analyst ID: 000079					
	Instru		8 MDL 0.27						
Nickel	40.4 J	2.0 ug,	/L SW846 6020	06/14-06/16/10 L2TE81AQ					
	•	Dilution Factor: 1	Analysis Time: 19:27	Analyst ID: 000079					
		Instrument ID: I	8 MDL 0.16						
Lead	78.2	1.0 ug.	/L SW846 6020	06/14-06/16/10 L2TE81AM					
		Dilution Factor: 1	Analysis Time: 19:27	Analyst ID: 000079					
		Instrument ID: I	8 MDL: 0.019						
Antimony	0.42 B,J	2.0 ug,	/L SW846 6020	06/14-06/16/10 L2TE81AD					
		Dilution Factor: 1	Analysis Time: 19:27	Analyst ID: 000079					
		Instrument ID: I	8 MDL 0.027						
Selenium	6.6	5.0 ug,	L SW846 6020	06/14-06/16/10 L2TE81AR					
		Dilution Factor: 1	Analysis Time: 19:27	Analyst ID: 000079					
		Instrument ID: I	8 MDL 0.13						
Thallium	0.49 B,J	1.0 ug,	/L SW846 6020	06/14-06/16/10 L2TE81AU					
		Dilution Factor: 1	Analysis Time: 19:27	Analyst ID: 000079					
		Instrument ID: I	8 MDL 0.13						
Vanadium	107	20.0 ug,	L SW846 6020	06/14-06/16/10 L2TE81AV					
		Dilution Factor: 1	Analysis Time: 19:27	Analyst ID: 000079					
		Instrument ID: I	8 MDL 0.43						
Zinc	145 J	20.0 ug	L SW846 6020	06/14-06/16/10 L2TE81AW					
		Dilution Factor: 1	Analysis Time: 19:27	Analyst ID: 000079					
	Instrument ID:		8 MDL 0.35						
Mercury	0.13 B	<b>0.</b> 20 ug/	L SW846 7470A	06/14-06/16/10 L2TE81A0					
		Dilution Factor: 1	Analysis Time: 09:03	Analyst ID: 001576					
		Instrument ID: H	1 MDL 0.10						

#### NOTE(S):

B Estimated result. Result is less than RL.

J Method blank contamination. The associated method blank contains the target analyte at a reportable level.

### Client Sample ID: MRC-MW93D-061010

#### DISSOLVED Metals

Matrix..... WG

Lot-Sample #...: A0F110578-002

Date Sampled...: 06/10/10 10:23 Date Received..: 06/11/10

PARAMETER	REPORTING ETER RESULT LIMIT UNITS			METHOD	PREPARATION- WORK ANALYSIS DATE ORDER #						
Prep Batch #	.: 0165019										
Silver	0.088 B	1.0	ug/L	SW846 6020	06/14-06/16/10 L2TE81CF						
	Dilution Factor: 1		Analysis Time: 19:32	Analyst ID: 000079							
		Instrument	ID: 18	MDL: 0.015							
Arsenic	nic 20.5 5.0 ug/L		ug/L	SW846 6020	06/14-06/16/10 L2TE81A2						
	Dilution Factor: 1		Analysis Time: 19:32	Analyst ID: 000079							
		Instrument	ID: 18	MDL 0.16							
Barium	399 J 1.0 ug/L		ug/L	SW846 6020	06/14-06/16/10 L2TE81A3						
		Dilution Fa	ctor: 1	Analysis Time: 19:32	Analyst ID: 000079						
		Instrument	ID: 18	MDL 0.027							
Beryllium	5.4	1.0	ug/L	SW846 6020	06/14-06/16/10 L2TE81A4						
		Dilution Fa	ctor: 1	Analysis Time: 19:32	Analyst ID 000079						
		Instrument	ID: 18	MDL 0.0059	9						
Cadmium	0.38 B	1.0	ug/L	SW846 6020	06/14-06/16/10 L2TE81A5						
		Dilution Fa	ctor: 1	Analysis Time: 19:32	Analyst ID: 000079						
		Instrument	ID: 18	MDL: 0.025							
Cobalt	8.0	1.0	ug/L	SW846 6020	06/14-06/16/10 L2TE81A6						
		Dilution Fa	ctor: 1	Analysis Time: 19:32	Analyst ID: 000079						
		Instrument	ID: I8	MDL 0.015							
Chromium	108 J	2.0	ug/L	SW846 6020	06/14-06/16/10 L2TE81CK						
		Dilution Fa	ctor: 1	Analysis Time: 19:32	Analyst ID: 000079						
		Instrument	ID: I8	MDL 0.044							
Copper	47.4 J	2.0	ug/L	SW846 6020	06/14-06/16/10 L2TE81A7						
		Dilution Fa	ctor: 1	Analysis Time: 19:32	Analyst ID: 000079						
		Instrument	ID: 18	MDL 0.043							
Iron	51300 J	50.0	ug/L	SW846 6020	06/14-06/16/10 L2TE81A8						
		Dilution Fa	ctor: l	Analysis Time: 19:32	Analyst ID: 000079						
		Instrument	ID: 18	MDL 6.0							
Manganese	377 J	1.0	ug/L	SW846 6020	06/14-06/16/10 L2TE81CA						
		Dilution Fa	ctor: 1	Analysis Time: 19:32	Analyst ID: 000079						
		Instrument	ID: 18	MDL 0.16	• · · · ·						

(Continued on next page)

### Client Sample ID: MRC-MW93D-061010

#### DISSOLVED Metals

### Lot-Sample #...: A0F110578-002

Matrix..... WG

PARAMETER	RESULT	REPORTING LIMIT UNITS	METHOD	PREPARATION- WORK ANALYSIS DATE ORDER #					
Molybdenum	$\frac{1000011}{22.5}$	$\frac{11111}{2.0} \frac{00110}{ug/L}$	SW846 6020	06/14-06/16/10 L2TE81CC					
2		Dilution Factor: 1	Analysis Time: 19:32	Analyst ID: 000079					
		Instrument ID: 18	MDL 0.27						
Nickel	32.8 J	2.0 ug/L	SW846 6020	06/14-06/16/10 L2TE81CD					
		Dilution Factor: 1	Analysis Time: 19:32	Analyst ID: 000079					
		Instrument ID: 18	MDL 0.16						
Lead	63.3	1.0 ug/L	SW846 6020	06/14-06/16/10 L2TE81A9					
		Dilution Factor: 1	Analysis Time: 19:32	Analyst ID: 000079					
		Instrument ID: 18	MDL 0.019						
Antimony	0.32 B,J	2.0 ug/L	SW846 6020	06/14-06/16/10 L2TE81A1					
		Dilution Factor: 1	Analysis Time: 19:32	Analyst ID: 000079					
		Instrument ID: 18	MDL 0.027						
Selenium	4.5 B	5.0 ug/L	SW846 6020	06/14-06/16/10 L2TE81CE					
		Dilution Factor: 1	Analysis Time: 19:32	Analyst ID: 000079					
		Instrument ID: 18	MDL 0.13						
Thallium	0.34 B,J	1.0 ug/L	SW846 6020	06/14-06/16/10 L2TE81CG					
		Dilution Factor: 1	Analysis Time: 19:32	Analyst ID: 000079					
		Instrument ID: 18	MDL 0.13						
Vanadium	80.8	20.0 ug/L	SW846 6020	06/14-06/16/10 L2TE81CH					
		Dilution Factor: 1	Analysis Time: 19:32	Analyst ID: 000079					
		Instrument ID: 18	MDL 0.43						
Zinc	118 J	20.0 ug/L	SW846 6020	06/14-06/16/10 L2TE81CJ					
		Dilution Factor: 1	Analysis Time: 19:32	Analyst ID: 000079					
	Instrument ID.		MDL 0.35						
Mercury	ND	0.20 ug/L	SW846 7470A	06/14-06/16/10 L2TE81CL					
		Dilution Factor: 1	Analysis Time: 09:04	Analyst ID: 001576					
		Instrument ID: H1	MDL 0.10						

### NOTE(S):

B Estimated result. Result is less than RL.

J Method blank contamination. The associated method blank contains the target analyte at a reportable level.

# Client Sample ID: MRC-MW94D-061010

### TOTAL Metals

Lot-Sample #...: A0F110578-003 Date Sampled...: 06/10/10 15:03 Date Received..: 06/11/10

Matrix..... WG

PARAMETER	RESULT	REPORTING LIMIT UNITS	METHOD	PREPARATION- WORK ANALYSIS DATE ORDER #				
Prep Batch #	: 0165019							
Silver	ND	<pre>1.0 ug/L Dilution Factor: 1 Instrument ID: 18</pre>	SW846 6020 Analysis Time: 19:41 MDL 0.015					
Arsenic	4.1 B	5.0 ug/L Dilution Factor: 1 Instrument ID: 18	<b>SW846 6020</b> Analysis Time: 19:41 MDL 0.16	<b>06/14-06/16/10 L2TFL1AQ</b> Analyst ID: 000079				
Barium	133 J	1.0 ug/L Dilution Factor: 1 Instrument ID: I8	<b>SW846 6020</b> Analysis Time: 19:41 MDL 0.027	<b>06/14-06/16/10 L2TFL1AR</b> Analyst ID: 000079				
Beryllium	1.3	1.0 ug/L Dilution Factor: 1 Instrument ID: I8	<b>SW846 6020</b> Analysis Time: 19:41 MDL 0.0059	06/14-06/16/10 L2TFL1AT Analyst ID: 000079				
Cadmium	0.12 B	1.0 ug/L Dilution Factor: 1 Instrument ID: 18	<b>SW846 6020</b> Analysis Time: 19:41 MDL 0.025	<b>06/14-06/16/10 L2TFL1AU</b> Analyst ID: 000079				
Cobalt	2.6	1.0 ug/L Dilution Factor: 1 Instrument ID: 18	<b>SW846 6020</b> Analysis Time: 19:41 MDL 0.015	<b>06/14-06/16/10 L2TFL1AV</b> Analyst ID: 000079				
Chromium	28.1 J	2.0 ug/L Dilution Factor: 1 Instrument ID: I8	<b>SW846 6020</b> Analysis Time: 19:41 MDL 0.044	<b>06/14-06/16/10 L2TFL1A9</b> Analyst ID: 000079				
Copper	13.1 J	2.0 ug/L Dilution Factor: 1 Instrument ID: I8	<b>SW846 6020</b> Analysis Time: 19:41 MDL 0.043	<b>06/14-06/16/10 L2TFL1AW</b> Analyst ID: 000079				
Iron	18100 J 50.0 ug/L Dilution Factor: 1 Instrument ID: 18		<b>SW846 6020</b> Analysis Time: 19:41 MDL 6.0	<b>06/14-06/16/10 L2TFL1AX</b> Analyst ID: 000079				
Manganese	214 J	1.0 ug/L Dilution Factor: 1 Instrument ID: 18	SW846 6020 Analysis Time: 19:41 MDL 0.16	<b>06/14-06/16/10 L2TFL1A1</b> Analyst ID: 000079				

(Continued on next page)

### Client Sample ID: MRC-MW94D-061010

#### TOTAL Metals

### Lot-Sample #...: A0F110578-003

Matrix..... WG

PARAMETER Molybdenum	RESULT 5.2	REPORTING LIMIT UNITS 2.0 ug/L Dilution Factor: 1 Instrument ID: 18	METHOD SW846 6020 Analysis Time: 19:41 MDL 0.27	PREPARATION- WORK ANALYSIS DATE ORDER # 06/14-06/16/10 L2TFL1A2 Analyst ID: 000079						
Nickel	20 <b>.4</b> J	2.0 ug/L Dilution Factor: 1 Instrument ID: 18	SW846 6020 Analysis Time: 19:41 MDL 0.16	06/14-06/16/10 L2TFL1A3 Analyst ID: 000079						
Lead	14.5	1.0 ug/L Dilution Factor: 1 Instrument ID: 18	<b>SW846 6020</b> Analysis Time: 19:41 MDL 0.019	<b>06/14-06/16/10 L2TFL1A0</b> Analyst ID: 000079						
Antimony	0.18 B,J	2.0 ug/L Dilution Factor: 1 Instrument ID: 18	<b>SW846 6020</b> Analysis Time: 19:41 MDL 0.027	06/14-06/16/10 L2TFL1AP Analyst ID: 000079						
Selenium	0.96 B	5.0 ug/L Dilution Factor: 1 Instrument ID: 18	SW846 6020 Analysis Time: 19:41 MDL 0.13	06/14-06/16/10 L2TFL1A4 Analyst ID: 000079						
Thallium	0.14 B,J	1.0 ug/L Dilution Factor: 1 Instrument ID: 18	<b>SW846 6020</b> Analysis Time: 19:41 MDL 0.13	<b>06/14-06/16/10 L2TFL1A6</b> Analyst ID: 000079						
Vanadium	28.9	20.0 ug/L Dilution Factor: 1 Instrument ID: 18	<b>SW846 6020</b> Analysis Time: 19:41 MDL 0.43	<b>06/14-06/16/10 L2TFL1A7</b> Analyst ID: 000079						
Zinc	35.5 J	20.0 ug/L Dilution Factor: 1 Instrument ID: 18	<b>SW846 6020</b> Analysis Time: 19:41 MDL 0.35	<b>06/14-06/16/10 L2TFL1A8</b> Analyst ID: 000079						
Mercury .	ND	0.20 ug/L Dilution Factor: 1 Instrument ID: H1	SW846 7470A Analysis Time: 08:58 MDL 0.10	06/14-06/16/10 L2TFL1AA Analyst ID: 001576						

#### NOTE(S):

B Estimated result. Result is less than RL.

J Method blank contamination. The associated method blank contains the target analyte at a reportable level.

•

# Client Sample ID: MRC-MW94D-061010

#### DISSOLVED Metals

Lot-Sample #...: A0F110578-003

Date Sampled...: 06/10/10 15:03 Date Received..: 06/11/10

PARAMETER	RESULT	REPORTING LIMIT	G UNITS	METHOD	PREPARATION- WORK ANALYSIS DATE ORDER #
Prep Batch #.	: 0165019				
Silver	ND	1.0	uq/L	SW846 6020	06/14-06/16/10 L2TFL1CF
		Dilution Fact	or: 1	Analysis Time: 19:46	Analyst ID: 000079
		Instrument ID	: I8	MDL 0.015	
Arsenic	1.2 B	5.0	ug/L	SW846 6020	06/14-06/16/10 L2TFL1AI
		Dilution Fact	or: 1	Analysis Time: 19:46	Analyst ID: 000079
		Instrument ID	: 18	MDL 0.16	
Barium	43.7 Ј	1.0	ug/L	SW846 6020	06/14-06/16/10 L2TEL1AE
		Dilution Fact	or: 1	Analysis Time: 19:46	Analyst ID: 000079
		Instrument ID	: 18	MDL 0.027	<b>_</b>
Beryllium	0.28 B	1.0	ug/L	SW846 6020	06/14-06/16/10 L2TFL1AF
		Dilution Fact	or: 1	Analysis Time: 19:46	Analyst ID: 000079
		Instrument ID	: 18	MDL 0.0059	
Cadmium 0.	0.028 B	1.0	ug/L	SW846 6020	06/14-06/16/10 L2TFL1AG
		Dilution Facto	or: 1	Analysis Time: 19:46	Analyst ID: 000079
		Instrument ID	: 18	MDL 0.025	
Cobalt	0.76 B	1.0	ug/L	SW846 6020	06/14-06/16/10 L2TFL1AH
		Dilution Facto	or: 1	Analysis Time: 19:46	Analyst ID: 000079
		Instrument ID	: I8	MDL 0.015	
Chromium	6.4 J	2.0	ug/L	SW846 6020	06/14-06/16/10 L2TFL1CK
		Dilution Facto	or: 1	Analysis Time: 19:46	Analyst ID: 000079
		Instrument ID.	: 18	MDL 0.044	
Copper	4.5 J	2.0	ug/L	SW846 6020	06/14-06/16/10 L2TFL1AJ
		Dilution Facto		Analysis Time: 19:46	Analyst ID: 000079
		Instrument ID.	.: 18	MDL 0.043	
Iron	4400 J	50.0	ug/L	SW846 6020	06/14-06/16/10 L2TFL1AK
		Dilution Facto	or: 1	Analysis Time: 19:46	Analyst ID: 000079
		Instrument ID.	.: 18	MDL 6.0	
langanese	75.6 J	1.0	ug/L	SW846 6020	06/14-06/16/10 L2TFL1CA
		Dilution Facto	or: 1	Analysis Time: 19:46	Analyst ID: 000079
		Instrument ID.	.: 18	MDL 0.16	
		(Cont:	inued on	next page)	

Matrix....: WG

### Client Sample ID: MRC-MW94D-061010

#### DISSOLVED Metals

### Lot-Sample #...: A0F110578-003

Matrix..... WG

		REPORTING	PREPARATION- WORK						
PARAMETER	RESULT	LIMIT UNITS	METHOD	ANALYSIS DATE ORDER #					
Molybdenum	3.8	2.0 ug/L	SW846 6020	06/14-06/16/10 L2TFL1CC					
		Dilution Factor: 1	Analysis Time: 19:46	Analyst ID: 000079					
		Instrument ID: 18	MDL 0.27						
Nickel	7.0 J	2.0 ug/L	SW846 6020	06/14-06/16/10 L2TFL1CD					
		Dilution Factor: 1	Analysis Time: 19:46	Analyst ID: 000079					
		Instrument ID: 18	MDL 0.16						
Lead	3.0	1.0 ug/L	SW846 6020	06/14-06/16/10 L2TFL1AL					
		Dilution Factor: 1	Analysis Time: 19:46	Analyst ID: 000079					
		Instrument ID: 18	MDL 0.019						
Antimony	0.13 B,J	2.0 ug/L	SW846 6020	06/14-06/16/10 L2TFL1AC					
		Dilution Factor: 1	Analysis Time: 19:46	Analyst ID: 000079					
		Instrument ID: 18	MDL 0.027						
Selenium	0.40 B	5.0 ug/L	SW846 6020	06/14-06/16/10 L2TFL1CE					
		Dilution Factor: 1	Analysis Time: 19:46	Analyst ID: 000079					
		Instrument ID: 18	MDL 0.13						
Thallium	ND	1.0 ug/L	SW846 6020	06/14-06/16/10 L2TFL1CG					
		Dilution Factor: 1	Analysis Time: 19:46	Analyst ID: 000079					
		Instrument ID: 18	MDL 0.13						
Vanadium	6.5 B	20.0 ug/L	SW846 6020	06/14-06/16/10 L2TFL1CH					
		Dilution Factor: 1	Analysis Time: 19:46	Analyst ID: 000079					
		Instrument ID: 18	MDL 0.43						
Zinc	14.5 B,J	20.0 ug/L	SW846 6020	06/14-06/16/10 L2TFL1CJ					
		Dilution Factor: 1	Analysis Time: 19:46	Analyst ID: 000079					
	Instrument ID: 18		MDL 0.35						
Mercury	ND	0.20 ug/L	SW846 7470A	06/14-06/16/10 L2TFL1CL					
		Dilution Factor: 1	Analysis Time: 09:00	Analyst ID: 001576					
		Instrument ID: Hl	MDL 0.10						

#### NOTE(S):

B Estimated result. Result is less than RL.

J Method blank contamination. The associated method blank contains the target analyte at a reportable level.

### Client Sample ID: MRC-96D-061110

### TOTAL Metals

~	A0F120439		Received.	.: 06/12/10	Matrix: WG					
		REPORTING			PREPARATION- WORK					
PARAMETER	RESULT	LIMIT	UNITS	METHOD	ANALYSIS DATE ORDER					
Prep Batch #.	• 0165019									
Silver	ND	1.0	uq/L	SW846 6020	06/14-06/16/10 L2T5312					
		Dilution Fact	2	Analysis Time: 20:21	Analyst ID: 000079					
		Instrument ID	: 18	MDL 0.015	-					
Arsenic	ND	5.0	uq/L	SW846 6020	06/14-06/16/10 L2T5312					
		Dilution Fact	2	Analysis Time: 20:21	Analyst ID: 000079					
		Instrument ID	: 18	MDL 0.16						
Barium	9.0 Ј	1.0	uq/L	SW846 6020	06/14-06/16/10 L2T531					
		Dilution Fact	2	Analysis Time: 20:21	Analyst ID: 000079					
		Instrument ID	: 18	MDL 0.027						
Beryllium	0.11 B	1.0	uq/L	SW846 6020	06/14-06/16/10 L2T5312					
		Dilution Fact	2	Analysis Time: 20:21	Analyst ID: 000079					
		Instrument ID	: 18	MDL 0.0059	-					
Cadmium	ND	1.0	ug/L	SW846 6020	06/14-06/16/10 L2T5312					
		Dilution Fact	or: 1	Analysis Time: 20:21	Analyst ID: 000079					
		Instrument ID	: I8	MDL 0.025						
Cobalt	2.4	1.0	ug/L	SW846 6020	06/14-06/16/10 L2T531					
		Dilution Fact	or: 1	Analysis Time: 20:21	Analyst ID: 000079					
		Instrument ID	: 18	MDL 0.015						
Chromium	0.51 B,J	2.0	ug/L	SW846 6020	06/14-06/16/10 L2T5312					
		Dilution Fact	or: 1	Analysis Time: 20:21	Analyst ID: 000079					
		Instrument ID	: I8	MDL 0.044						
Copper	2.2 J	2.0	ug/L	SW846 6020	06/14-06/16/10 L2T5312					
		Dilution Fact	or: 1	Analysis Time: 20:21	Analyst ID: 000079					
		Instrument ID	: 18	MDL 0.043						
Iron	202 J	50.0	ug/L	SW846 6020	06/14-06/16/10 L2T5312					
		Dilution Fact	or: l	Analysis Time: 20:21	Analyst ID: 000079					
		Instrument ID	: I8	MDL 6.0						
Manganese	12.6 J	1.0	ug/L	SW846 6020	06/14-06/16/10 L2T531A					
		Dilution Fact	or: 1	Analysis Time: 20:21	Analyst ID: 000079					
		Instrument ID	: I8	MDL 0.16						

(Continued on next page)

### Client Sample ID: MRC-96D-061110

#### TOTAL Metals

### Lot-Sample #...: A0F120439-001

Matrix....: WG

PARAMETER	RESULT	REPORTING LIMIT UNITS	METHOD	PREPARATION- WORK ANALYSIS DATE ORDER #							
Molybdenum	ND	2.0 ug/L	SW846 6020	06/14-06/16/10 L2T531AP							
		Dilution Factor: 1	Analysis Time: 20:21	Analyst ID: 000079							
		Instrument ID: 18	MDL 0.27								
Nickel	3.9 J	2.0 ug/L	SW846 6020	06/14-06/16/10 L2T531AQ							
		Dilution Factor: 1	Analysis Time: 20:21	Analyst ID: 000079							
		Instrument ID: 18	MDL 0.16								
Lead	ND 1.0 ug/L		SW846 6020	06/14-06/16/10 L2T531AM							
		Dilution Factor: 1	Analysis Time: 20:21	Analyst ID: 000079							
		Instrument ID: 18	MDL 0.019								
Antimony	ND	2.0 ug/L	SW846 6020	06/14-06/16/10 L2T531AD							
		Dilution Factor: 1	Analysis Time: 20:21	Analyst ID: 000079							
		Instrument ID: I8	MDL 0.027								
Selenium	ND	5.0 ug/L	SW846 6020	06/14-06/16/10 L2T531AR							
		Dilution Factor: 1	Analysis Time: 20:21	Analyst ID: 000079							
		Instrument ID: 18	MDL 0.13								
Thallium	ND ·	1.0 ug/L	SW846 6020	06/14-06/16/10 L2T531AU							
		Dilution Factor: 1	Analysis Time: 20:21	Analyst ID: 000079							
		Instrument ID: I8	MDL 0.13								
Vanadium	0.45 B	20.0 ug/L	SW846 6020	06/14-06/16/10 L2T531AV							
		Dilution Factor: 1	Analysis Time: 20:21	Analyst ID: 000079							
		Instrument ID: 18	MDL 0.43								
Zinc	10.9 B,J	20.0 ug/L	SW846 6020	06/14-06/16/10 L2T531AW							
		Dilution Factor: 1	Analysis Time: 20:21	Analyst ID: 000079							
		Instrument ID: 18	MDL 0.35								
Mercury	ND	0.20 ug/L	SW846 7470A	06/14-06/16/10 L2T531A0							
		Dilution Factor: 1	Analysis Time: 08:51	Analyst ID: 001576							
		Instrument ID: H1	MDL 0.10								

### NOTE(S):

J Method blank contamination. The associated method blank contains the target analyte at a reportable level.

B Estimated result. Result is less than RL.

1

### Client Sample ID: MRC-96D-061110

### DISSOLVED Metals

Matrix..... WG

Lot-Sample #...: A0F120439-001

Date Sampled...: 06/11/10 12:45 Date Received..: 06/12/10

PARAMETER	REPORTING ER RESULT LIMIT UNITS METHOD		METHOD	PREPARATION- WORK ANALYSIS DATE ORDER #
Prep Batch #	.: 0165019			
Silver	ND	1.0 ug/L	SW846 6020	06/14-06/16/10 L2T531CF
		Dilution Factor: 1	Analysis Time: 20:37	Analyst ID: 000079
		Instrument ID: 18	MDL 0.015	
Arsenic	enic ND 5.0 ug		SW846 6020	06/14-06/16/10 L2T531A2
		Dilution Factor: 1	Analysis Time: 20:37	Analyst ID: 000079
		Instrument ID: 18	MDL 0.16	
Barium	7.6 J	1.0 ug/L	SW846 6020	06/14-06/16/10 L2T531A3
		Dilution Factor: 1	Analysis Time: 20:37	Analyst ID: 000079
		Instrument ID: 18	MDL 0.027	
Beryllium 0.085 B		1.0 ug/L	SW846 6020	06/14-06/16/10 L2T531A4
		Dilution Factor: 1	Analysis Time: 20:37	Analyst ID: 000079
		Instrument ID: I8	MDL 0.0059	
Cadmium	0.031 B	1.0 ug/L	SW846 6020	06/14-06/16/10 L2T531A5
		Dilution Factor: 1	Analysis Time: 20:37	Analyst ID: 000079
		Instrument ID: 18	MDL 0.025	
Cobalt	2.2	1.0 ug/L	SW846 6020	06/14-06/16/10 L2T531A6
		Dilution Factor: 1	Analysis Time: 20:37	Analyst ID: 000079
		Instrument ID: 18	MDL 0.015	
Chromium	0.17 B,J	2.0 ug/L	SW846 6020	06/14-06/16/10 L2T531CK
		Dilution Factor: 1	Analysis Time: 20:37	Analyst ID: 000079
		Instrument ID: 18	MDL 0.044	
Copper	1.7 B,J	2.0 ug/L	SW846 6020	06/14-06/16/10 L2T531A7
		Dilution Factor: 1	Analysis Time: 20:37	Analyst ID: 000079
		Instrument ID: 18	MDL 0.043	
Iron	73.4 J	50.0 ug/L	SW846 6020	06/14-06/16/10 L2T531A8
		Dilution Factor: 1	Analysis Tíme: 20:37	Analyst ID: 000079
		Instrument ID: 18	MDL 6.0	
Manganese	11.1 J	1.0 ug/L	SW846 6020	06/14-06/16/10 L2T531CA
		Dilution Factor: 1	Analysis Time: 20:37	Analyst ID: 000079
		Instrument ID: 18	MDL 0.16	

(Continued on next page)

### Client Sample ID: MRC-96D-061110

#### DISSOLVED Metals

Lot-Sample #...: A0F120439-001

Matrix..... WG

		REPORTI	NG		PREPARATION- WORK								
PARAMETER	RESULT	LIMIT	UNITS	METHOD	ANALYSIS DATE ORDER #								
Molybdenum	0.31 B	2.0	ug/L	SW846 6020	06/14-06/16/10 L2T531CC								
		Dilution Fa	ctor: 1	Analysis Time: 20:37	Analyst ID: 000079								
		Instrument	ID: 18	MDL 0.27									
Nickel	3.5 J	2.0	ug/L	SW846 6020	06/14-06/16/10 L2T531CD								
		Dilution Fa	ctor: 1	Analysis Time: 20:37	Analyst ID: 000079								
		Instrument	ID: 18	MDL 0.16									
Lead	ND 1.0 ug/L		SW846 6020	06/14-06/16/10 L2T531A9									
		Dilution Fa	ctor: 1	Analysis Time: 20:37	Analyst ID: 000079								
		Instrument	ID: 18	MDL 0.019									
Antimony	0.20 B,J	2.0	ug/L	SW846 6020	06/14-06/16/10 L2T531A1								
		Dilution Fa	ctor: 1	Analysis Time: 20:37	Analyst ID: 000079								
		Instrument	ID: 18	MDL 0.027									
Selenium	0.18 B	5.0	ug/L	SW846 6020	06/14-06/16/10 L2T531CE								
		Dilution Fa	ctor: 1	Analysis Time: 20:37	Analyst ID: 000079								
		Instrument	ID: 18	MDL 0.13									
Thallium	0.24 B,J	1.0	ug/L	SW846 6020	06/14-06/16/10 L2T531CG								
		Dilution Fa	ctor: 1	Analysis Time: 20:37	Analyst ID: 000079								
		Instrument	ID: 18	MDL 0.13									
Vanadium	ND	20.0	ug/L	SW846 6020	06/14-06/16/10 L2T531CH								
		Dilution Fa	ctor: 1	Analysis Time: 20:37	Analyst ID: 000079								
		Instrument	ID: 18	MDL 0.43									
Zinc	11.3 B,J	20.0	ug/L	SW846 6020	06/14-06/16/10 L2T531CJ								
		Dilution Fa	ctor: 1	Analysis Time: 20:37	Analyst ID: 000079								
		Instrument ID: 18		MDL 0.35									
Mercury	ND	0.20	ug/L	SW846 7470A	06/14-06/16/10 L2T531CL								
		Dilution Fa	ctor: 1	Analysis Time: 08:55	Analyst ID: 001576								
		Instrument	ID: H1	MDL 0.10									

#### NOTE(S):

J Method blank contamination. The associated method blank contains the target analyte at a reportable level.

B Estimated result. Result is less than RL.

# APPENDIX C SUPPORT DOCUMENTATION

### CASE NARRATIVE 0F11578

The following report contains the analytical results for four water samples and two quality control samples submitted to TestAmerica North Canton by Tetra Tech NUS, Inc from the LM-MRC Deep Well GW Sampling Site, project number 112IC02720. The samples were received June 11, 2010 and June 12, 2010, according to documented sample acceptance procedures.

This SDG consists of (2) laboratory ID's: A0F110578 and A0F120439.

TestAmerica utilizes USEPA approved methods in all analytical work. The samples presented in this report were analyzed for the parameter(s) listed on the analytical methods summary page in accordance with the method(s) indicated. Preliminary results were provided to Kelly Carper and Tony Apanavage on June 24, 2010. A summary of QC data for these analyses is included at the back of the report.

TestAmerica North Canton attests to the validity of the laboratory data generated by TestAmerica facilities reported herein. All analyses performed by TestAmerica facilities were done using established laboratory SOPs that incorporate QA/QC procedures described in the applicable methods. TestAmerica's operations groups have reviewed the data for compliance with the laboratory QA/QC plan, and data have been found to be compliant with laboratory protocols unless otherwise noted below.

The test results in this report meet all NELAP requirements for parameters for which accreditation is required or available. Any exceptions to NELAP requirements are noted in this report. Pursuant to NELAP, this report may not be reproduced, except in full, without the written approval of the laboratory.

All parameters were evaluated to the method detection limit and include qualified results where applicable.

Please refer to the Quality Control Elements Narrative following this case narrative for additional quality control information.

If you have any questions, please call the Project Manager, Patrick J. O'Meara, at 330-497-9396.

This report is sequentially paginated. The final page of the report is labeled as "END OF REPORT."

## CASE NARRATIVE (continued)

### SUPPLEMENTAL QC INFORMATION

### SAMPLE RECEIVING

The temperatures of the coolers upon sample receipt were 1.6, 2.8 and 2.9°C.

See TestAmerica's Cooler Receipt Form for additional information.

#### **GC/MS VOLATILES**

The sample(s) that contained concentrations of target analyte(s) at a reportable level in the associated Method Blank(s) were flagged with "B". All target analytes in the Method Blank must be below the reporting limit (RL) or the associated sample(s) must be ND with the exception of common laboratory contaminants.

The sample(s) that contain results between the MDL and the RL were flagged with "J". There is a possibility of false positive or mis-identification at these quantitation levels. In analytical methods requiring confirmation of the analyte reported, confirmation was performed only down to the standard reporting limit (SRL). The acceptance criteria for QC samples may not be met at these quantitation levels.

2-Chloroethyl vinyl ether cannot be reliably recovered in an acid preserved sample.

### **GC/MS SEMIVOLATILES**

The sample(s) that contained concentrations of target analyte(s) at a reportable level in the associated Method Blank(s) were flagged with "B". All target analytes in the Method Blank must be below the reporting limit (RL) or the associated sample(s) must be ND with the exception of common laboratory contaminants.

The sample(s) that contain results between the MDL and the RL were flagged with "J". There is a possibility of false positive or mis-identification at these quantitation levels. In analytical methods requiring confirmation of the analyte reported, confirmation was performed only down to the standard reporting limit (SRL). The acceptance criteria for QC samples may not be met at these quantitation levels.

# **CASE NARRATIVE (continued)**

### METALS

The sample(s) that contain results between the MDL and the RL were flagged with "B". There is the possibility of false positive or mis-identification at these quantitation levels. The acceptance criteria for the ICB, CCB, and Method Blank are +/- the standard reporting limit (SRL).

The sample(s) that contained concentrations of target analyte(s) at a reportable level in the associated Method Blank(s) were flagged with "J". Refer to the sample report pages for the affected analyte(s).

The sample duplicate RPD was outside the acceptance limits for some analytes. The result is less than five times the reporting limit; therefore, no corrective action is required. Refer to the sample duplicate report for RPDS that exceed 20%.

Chain of		Temperat	ure o	n Rece	pipt			7	Гe	) S	t/	4	Υ	١Ē	r	ic		C					23
Custody Record							•			Ì													
TAL-4124 (1007)		Drinking V		? Yes		Not		٦ 	THE I	LEAD	ER IN	N EN		NME	ENTA		EST	NG					
Client TetraTech, NUS Address		Project Man Dev Telephone N	m	ilai	20 - 10 - 10									Date	/1		/10	)	Chi	ain of Cust 15	1001 NU		
20251 Century Blvd.		(30)	05		30	)6:	3							Lab Nu					Pa	ge	<u> </u>	of	<u> </u>
City State Zu <u>Semantous</u> Project Name and Location (State)	• Code	Site Contact	Na	chie	~	b Cont Z								ois (A pace									
MRC Deep Well GW Son Contract/Purchase Order/Quote No.	pailam	Carrier Way			<u>_</u>		. <u>.</u>					oxone	S S S S S S S S S S S S S S S S S S S									structio	
Contract/Purchase Order/Quole Ivo.	. 7		Ma	atrix		F	Contain Preserv		•	,	R	ā,								Cont	ditions	of Rec	eipt
Sample I.D. No. and Description (Containers for each sample may be combined on one line,	Date	Time	Aqueous	Seď. Soil	Unpres	H2SO4	HN03 HCI	NaOH Znaci	NaOH	Ş	NS.												
MRC-96D-06110		1245	X		5		13	4		3		Ð	1						X	«Filte	2cD	1550	ived
MRC-95D-061110	6/11/10 C	86R	X		5	5	13	1		3	a	9	MI									la la	
TB-061110	6/11/10 0	700	X				8			Z										llsolist	id on 1	<u>(()</u> #	154972
· · ·										-													
						++					•												
													_			<u> </u>	_			<u></u>			
						+											_						
						+								$\left  - \right $									
					_								+		$\rightarrow$	_							
					_	┼╌┼		$\left  - \right $					_				-	1.					
·	+				_																		
·					<u> </u>																		<u> </u>
Possible Hazard Identification X Non-Hazard	Poison B		•	Disposal um To Cli			isposal l	By Lab		] Arch	ive Fo	r		Month				be as: 1 moi		l if sample	es are re	tained	
Turn Around Time Required	Days 🗌 21 Days	Dther			`		Require	ments (	(Speci	^(h)				 -									
1. Refinished By	1	Date 6/11/	10	Time		1. Re	eceived	By		T	n	1	$\int_{\mathcal{A}}$	1					Ĉ	121	$\left  0 \right $		
2. Relinquished By		Date		Time		2. Re	eceived	By	0		10	Ø	Y	/						ate		Time	raa ⊇
3. Relinquished By		Date	(	Time		3. Re	eceived	Ву										•		ate	1	Time	North Canton
Comments	<u>.</u>		L											<u> </u>									t⊒
DISTRIBUTION: WHITE - Returned to Client with Report	CANARY - Stays with	h the Sample;	PINK	- Field Co	ору													:	·			·····	Nor

Chain of												•	Te		ς.	ŧ,	Д	-Y	γ	h	A	۲	1		· (	Y							20
		Temp	perat	ture	on i	Reci	eipt								5	1/			Ţ	I.			1										
Custody Record		Drink	ina	Wati	er?	Ye	s[]	٨	int	6			ТНЕ	: I F	AD	FR	IN	EN		ON	ME	NТ	A1	TES	STIN	10							
TAL-4124 (1007)			-						1	1									• IIV							• <del>•</del>							
Cillent Tetra Tech NUS		Projec			, r	Gr			A	p	an	40	ίG	C	<u>, .</u>					Da	b	, – ,	10	[	C	)					vumbe ] 7		·
Address JULSI CENTURY BIND	Ste 200			13	Ol	area (	Code	5-	55	<u>S</u>	2		0												-9	391	6	Page		<u> </u>	01		
	20874		<u>n 17</u>	- {-		00	~	Lab	Con	tact				 			1						h lis eea				I	-					
Project Name and Location (State) MRL MD Dec M Contract/Purchase Order/Quote No.	$kh \rightarrow$	Carriel	////ay			ber											(cut.		- CRE	× ×												uction	
GROWING Nation Sample	ig 201	0		· /	Matri	ix T		<u>~</u>	/	Pre.	ntain servi	ative	<i>s</i>		J.	) C<	2	-	2. 	N N							:		Con	ditioi	ns of	Rece	ipt
Sample I.D. No. and Description (Containers for each sample may be combined on one line)	Date	Time	Air	Aqueou	Sed.	Soil		Unpre.	<i>FOSZH</i>	HN03	HCI	NaOH	ZnAc/ NaOH		Vecs	Sac	51		6	Š													
78-061010	6-10-10	6730		X							X				X					,													
MRC-MW 930-061010		1023		X				X		X					X	Х	$\times$	<u>د</u>		X													
Mac-ma 94D-061010	V	1503	ļ	×				X		X	X				X	Х	X	<u>د</u> ]	\$	4													
				<u> </u>										_					_									-					
																				_	_	_	_										<u>.</u>
			·															-	+	-							-	-					
			+								-							-	┿	+			_		-			<u> </u>					
								$\neg$				:		-				-			<u>·</u>	-						<u> </u>					
·		[																		-		+											—
									-+			÷								+	-	-											
· · · · · · · · · · · · · · · · · · ·																			+	+	+	-+											
Possible Hazard Identification	J	J	5	ampl	le Dis	sposa	/	ł	l						l			1								L		n and if	sample				
	Poison B	Unknow	n [[	_ Re	eturn	To C	lient				osal I	-		-		ive I	or _			M	onth				han i				Sample	-s al e	(etall)	80	
	ays 🗌 21 Day								QC.	Req			s (Spe			,	<b>-</b>	/	1		/	2											
24 Hours     48 Hours     7 Days     14 D.     1. Relinguisfied By	ays 🗋 21 Day	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			Tir	ne		=	1.6	2	A	4	· / /	4		Ĺ	L	¥	<u> </u>	-/	4							Date			Time		
Wat E has		Date 6-1	0-1	/0	1	180	10		'' <i>C</i>		1	A	£ł.	k	$\downarrow$	/	F	He	n	Þ		T a m	10	3	T 2.1	4	:		Wra	) .(.)		91	С
2. Rélinquished By		Date				ne			2. R	ece	iveli (	θy					1		7		/		-6-14	<u>e</u> .				Date			Time	2	
3. Relinguished By	·	Date				ne			3. R	ece	ived	9y				(			-1-				····				لـــــ	Date	·····		Time	?	North Canton
Comments	,	l			<u> </u>																												<u>ت</u> ہ
DISTRIBUTION: WHITE - Returned to Client with Report;	CANARY - Stavs	with the San	nple:	PINA	K - FA	eld C	ορν														`												Vort

SDG	0F11578									
SORT	UNITS	NSAMPLE	LAB_ID	QC_TYPE	SAMP_DATE	EXTR_DATE	ANAL_DATE	SMP_EXTR	EXTR_ANL	SMP_ANL
	UG/L	MRC-96D-061110	A0F120439001	NM	06/11/2010	06/14/2010	06/16/2010	3	2	5
	UG/L	MRC-MW93D-061010	A0F110578002	NM	06/10/2010	06/14/2010	06/16/2010	4	2	6
	UG/L	MRC-MW94D-061010	A0F110578003	NM	06/10/2010	06/14/2010	06/16/2010	4	2	6
	UG/L	MRC-95D-061110	A0F120439002	NM	06/11/2010	06/14/2010	06/16/2010	3	2	5
HG	UG/L	MRC-MW94D-061010	A0F110578003	NM	06/10/2010	06/14/2010	06/16/2010	.4	2	6
HG	UG/L	MRC-95D-061110	A0F120439002	NM	06/11/2010	06/14/2010	06/16/2010	3	2	5
HG	UG/L	MRC-96D-061110	A0F120439001	NM	06/11/2010	06/14/2010	06/16/2010	3	2	5
HG	UG/L	MRC-MW93D-061010	A0F110578002	NM	06/10/2010	06/14/2010	06/16/2010	4	2	6
OS	UG/L	MRC-96D-061110	A0F120439001	NM	06/11/2010	06/14/2010	06/16/2010	3	2	5
OS	UG/L	MRC-MW93D-061010	A0F110578002	NM	06/10/2010	06/14/2010	06/16/2010	4	2	6
OS	UG/L	MRC-MW94D-061010	A0F110578003	NM	06/10/2010	06/14/2010	06/16/2010	4	2	6
OS	UG/L	MRC-95D-061110	A0F120439002	NM	06/11/2010	06/14/2010	06/16/2010	3	2	5
ov	UG/L	TB-061110	A0F120439003	ТВ	06/11/2010	06/21/2010	06/21/2010	10	0	10
ov	UG/L	MRC-95D-061110	A0F120439002	NM	06/11/2010	06/21/2010	06/21/2010	10	0	10
ov	UG/L	MRC-96D-061110	A0F120439001	NM	06/11/2010	06/21/2010	06/21/2010	10	0	10

Thursday, July 01, 2010

Page 1 of 2

SORT	UNITS	NSAMPLE	LAB_ID	QC_TYPE	SAMP_DATE	EXTR_DATE	ANAL_DATE	SMP_EXTR	EXTR_ANL	SMP_ANL
OV	UG/L	MRC-MW93D-061010	A0F110578002	NM	06/10/2010	06/21/2010	06/21/2010	11	0	11
OV	UG/L	MRC-MW94D-061010	A0F110578003	NM	06/10/2010	06/21/2010	06/21/2010	11	0	11
OV	UG/L	TB-061010	A0F110578001	ТВ	06/10/2010	06/21/2010	06/21/2010	11	0	11

Thursday, July 01, 2010

Metals Data Reporting Form

Initial Calib	oration V	Verifica	tion Stand	dard			·					
Instrument:	C\	/AA	_				Units:	1	ug/L	_		
Chart Numb	er: hg	10616a.j	orn				Accepta	ble Ra	unge: 9	0% - 1	10%	
Standard So	urce:	<del></del>	Ultra				Standar	d ID:				
	WL/		Ck5IC 06/16/1 8:43 Al	0 M								
Element	Mass	True Conc	Found	% Rec	Found	% Rec	Found	% Rec	Found	% Rec	Found	% Rec
Mercury	253.7	2.5	2.40	96.1	· · · · · · · · · · · · · · · · · · ·							

### Metals Data Reporting Form

# Initial Calibration Verification Standard

Instrument: ICPMS

Units: <u>ug/L</u>

Chart Number: <u>180616A.csv</u>

Acceptable Range: 90% - 110%

Standard Source: _____

Standard ID: _____

	WL/	,	ICV 06/16/1 10:14 A									
Element	Mass	True Conc	Found	% Rec	Found	% Rec	Found	% Rec	Found	% Rec	Found	% Rec
Antimony	121	80.0	81.09	101.4							· · · · · · · · · · · · · · · · · · ·	
Arsenic	75	80.0	80.64	100.8								
Barium	137	80.0	80.05	100.1								
Beryllium	9	80.0	81.22	101.5								
Cadmium	111	80.0	83.50	104.4								
Chromium	52	80.0	79.25	99.1								
Cobalt	59	80.0	81.49	101.9								
Copper	65	80.0	83.92	104.9								
Iron	56	20000.0	19900.00	99.5								
Lead	208	80.0	79.98	100.0								
Manganese	55	400.0	422.60	105.7								
Molybdenum	95	80.0	81.47	101.8								
Nickel	60	80.0	82.25	102.8								
Selenium	78	80.0	82.75	103.4						ľ		
Silver	107	80.0	84.45	105.6								
Thallium	205	80.0	80.44	100.6								
Vanadium	51	80.0	79.46	99.3								
Zinc	66	80.0	82.00	102.5					-			

Form 2A Equivalent

5.04.5

Metals Data Reporting Form

Continuing	Calibra	tion Ve	rification									
Instrument:	C\	/AA	_			,	Units:	1	ug/L			
Chart Numb	er: hg	10616a.p	orn				Acceptal	ble Ra	ange: <u>8</u>	0% - 1	20%	
Standard So	urce:		Ultra				Standard	d ID:				
Element	WL/ Mass	True Conc	Ck2CC 06/16/1 8:47 AN	0	Ck2CC 06/16/1 9:01 Al	0	Ck2CC 06/16/10 9:15 AM	0	Found	% Rec	Found	% Rec
Mercury	253.7	5.0		100.6		102.1		102.1	<u>r ound</u>		1 ound	

Form 2A Equivalent

## Metals Data Reporting Form

## Continuing Calibration Verification

# Instrument: ICPMS

# Chart Number: <u>180616A.csv</u>

Units: _____ug/L

Acceptable Range: 90% - 110%

Standard Source: _____

Standard ID: _____

	*****		CCV		CCV 7 06/16/1 6:05 PN	0	CCV 8 06/16/1 7:09 PM	0	CCV 9 06/16/1 8:10 PM	0	CCV 1 06/16/1 9:13 Pi	0
	WL/	True		%		%		%		%		%
Element	Mass	Conc	Found	Rec	Found	Rec	Found	Rec	Found	Rec	Found	Rec
Antimony	121	100.0	101.00	101.0	100.16	100.2	100.39	100.4	100.15	100.2	100.84	100.8
Arsenic	75	100.0	100.15	100.2	99.22	99.2	99.13	99.1	97.30	97.3	97.43	97.4
Barium	137	100.0	98.61	98.6	99.92	99.9	99.86	99.9	100.85	100.8	99.79	99.8
Beryllium	9	100.0	101.06	101.1	98.78	98.8	101.70	101.7	101.87	101.9	97.20	97.2
Cadmium	111	100.0	101.34	101.3	100.50	100.5	101.27	101.3	100.88	100.9	100.83	100.8
Chromium	52	100.0	100.97	101.0	99.50	99.5	98.62	98.6	97.68	97.7	96.92	96.9
Cobalt	59	100.0	100.83	100.8	98.64	98.6	97.28	97.3	97.47	97.5	96.52	96.5
Copper	65	100.0	102.30	102.3	99.07	99.1	97.38	97.4	97.44	97.4	97.73	97.7
Iron	56	25000.0	25003.33	100.0	25370.00	101.5	25430.00	101.7	25516.67	102.1	25613.33	102.5
Lead	208	100.0	98.63	98.6	97.86	97.9	97.44	97.4	98.16	98.2	97.23	97.2
Manganese	55	500.0	517.50	103.5	531.63	106.3	521.40	104.3	525.57	105.1	524.87	105.0
Molybdenum	95	100.0	106.27	106.3	102.60	102.6	102.97	103.0	101.23	101.2	105.23	105.2
Nickel	60	100.0	101.73	101.7	98.48	98.5	97.27	97.3	97.58	97.6	97.09	97.1
Selenium	78	100.0	100.64	100.6	98.72	98.7	97.35	97.3	97.50	97.5	100.25	100.3
Silver	107	100.0	103.23	103.2	101.30	101.3	100.48	100.5	100.16	100.2	100.28	100.3
Thallium	205	100.0	100.37	100.4	100.06	100.1	98.86	98.9	99.14	99.1	99.05	99.1
Vanadium	51	100.0	99.94	99.9	97.76	97.8	97.12	97.1	96.21	96.2	96.06	96.1
Zinc	66	100.0	103.77	103.8	100.53	100.5	100.40	100.4	99.08	99.1	100.70	100.7

Metals Data Reporting Form

Contract Required Detection Limit Standard Instrument: ____ CVAA Units: ug/L Chart Number: hg10616a.prn Acceptable Range: 50% - 150% Standard ID: Standard Source: Ultra Ck3CRA\MRL 06/16/10 8:45 AM WL/ True % % % % Element Mass Conc Found Rec Found Rec Found Found Found Rec Rec Mercury 0.2 0.17

86.6

253.7

%

Rec

## Metals Data Reporting Form

# Contract Required Detection Limit Standard

Instrument: ICPMS

Units: _____ug/L

Chart Number: <u>180616A.csv</u>

Acceptable Range: 50% - 150%

Standard Source: _____

Standard ID: _____

	WL/	Ture	CRI X 06/16/1 10:25 A	М		0/						
Element	Mass	True <u>Conc</u>	Found	% Rec	Found	% Rec	Found	% Rec	Found	% Rec	Found	% Rec
Antimony	121	2.0	2.05	102.3								
Arsenic	75	2.0	2.23	111.6	$\mathbf{D}$							
Barium	137	1.0	0.93	93.4								
Beryllium	9	1.0	1.04	104.4								
Cadmium	111	0.5	0.50	99.9								
Chromium	52	2.0	2.03	101.4								
Cobalt	59	1.0	1.07	106.9	•							
Copper	65	2.0	2.25	112.5	)							
Iron	56	50.0	55.84	(111.7	$\rangle$							
Lead	208	1.0	0.62	62.4	)							
Manganese	.55	1.0	1.19	118.9	)							
Molybdenu	95	10.0	10.10	101.0								
Nickel	60	2.0	2.31	115.3	)							
Selenium	78	2.0		110.1						·		
Silver	107	0.5	0.45	90.6								
Thallium	205	1.0	1.09	108.7								
Vanadium	51	5.0	5.15	102.9								
Zinc	66	10.0	9.91	99.1								

# Metals Data Reporting Form

# Initial Calibration Blank Results

Instrument:	CVAA

Units: _____ ug/L

Chart Number: <u>hg10616a.prn</u>

Standard Source: _____

Standard ID: _____

		-	Ck4IC 06/16/ 8:44 A	10								
Element	WL/ Mass	Report Limit	Found	Q	Found	Q	Found	Q	Found	Q	Found	Q
Mercury	253.7	0.2	0.1	U								

5.04.5

B Result is between IDL and RL

Form 3 Equivalent

# Metals Data Reporting Form

# Initial Calibration Blank Results

## Instrument: ICPMS

Units: ug/L

Chart Number: <u>180616A.csv</u>

Standard Source: _____

Standard ID:

			ICB 06/16/10 10:21 AN									
Element	WL/ Mass	Report Limit	Found	0	Found	0	Found	Q	Found	Q	Found	0
Antimony	121			B	- ourra	¥	Tound	<u>×</u>	Tound	¥	1 ound	<u> </u>
Arsenic	75		0.16	U								
Barium	137		0.10	U								
Beryllium	9		0.0027	U								ľ
Cadmium	111	_	0.0039	U								
Chromium		1 A A A A A A A A A A A A A A A A A A A		U U								
	52		0.044									
Cobalt	59		0.015	U								
Copper	65		0.043	U			н. -					
Iron	56	50	6	U								
Lead	208		0.019	U								
Manganese	55	1	0.16	U								
Molybdenum	95	2	0.27	U	·							
Nickel	60	2	0.16	U								
Selenium	78	5	0.13	U								
Silver	107	1	-0.1	В								
Thallium	205	1	0.24	В								
Vanadium	51		0.43	U								
Zinc	66		0.35	U								

5.04.5

## Metals Data Reporting Form

# Continuing Calibration Blank Results

# Instrument: CVAA

Units: ug/L

Chart Number: hg10616a.prn

Standard So	ource:					-	Standa	rd ID	):		·····-	
			Ck1CC	B	Ck1CC	B	Ck1CC	В				
			06/16/1	0	06/16/1	0	06/16/1	0				
			8:48 A	<u>M</u>	9:02 A	M	<u>9:16 Al</u>	M				
	WL/	Report			•							
Element	Mass	Limit	Found	Q	Found	<u>Q</u>	Found	Q	Found	Q	Found	<u>Q</u>
Mercury	253.7	0.2	0.1	U	0.1	U	0.1	U				

5.04.5

Form 3 Equivalent

North Canton

600

## Metals Data Reporting Form

# Continuing Calibration Blank Results

Instrument: ICPMS

Units: ug/L

Standard ID:

Chart Number: <u>180616A.csv</u>

Standard Source: _____

			CCB 06/16/1 10:48 Al		× CCB 7 06/16/10 6:11 PM	)	CCB 8 06/16/10 7:16 PM	CCB 9 06/16/10 8:17 PM	CCB 10 06/16/10 9:20 PM
Element	WL/ Mass	Report Limit	Found	Q	Found	Q	Found Q	Found Q	Found Q
Antimony	121	. 2	0.088	В	0.07	В	(0.11 B)	(0.098 B)	0.12 B
Arsenic	75	5	0.16	U	0.16	U	0.16 U	0.16 U	0.16 U
Barium	137	1	0.027	U	0.085	В	0.059 B	(0.1 B)	(0.1 B)
Beryllium	9	1	0.008	В	0.036	В	0.042 B	0.057 B	(0.069 B
Cadmium	111	1	0.025	U	0.058	В	0.062 B	0.058 B	0.081 B
Chromium	52	2	0.044	U	0.044	U	0.044 U	0.066 B	0.076 B
Cobalt	59	I	0.015	U	0.047	В	0.049 B	0.055 B	0.072 B
Copper	65	2	0.043	U	0.075	В	0.11 B	0.078 B	0.092 B
Iron	56	50	6	U	14.9	В	(16.9 B)	20.9 B	24.9 B
Lead	208	1	0.019	U	0.029	В	0.04 B	0.048 B	0.064 B
Manganese	55	1	0.16	U	0.36	В	0.41 B	0.56 B	(0.89 B)
Molybdenum	95	2	0.5	В	0.27	U	0.27 U	0.27 U	0.61 B
Nickel	60		0.16	U	0.16	U	0.16 U	<u>(0.17 B</u> )	0.16 U
Selenium	78	5	0.25	В	0.13	U	0.14 B	0.15 B	0.14 B
Silver	107	1	-0.12	В	-0.08	В	-0.076 B	-0.064 B	-0.039 B
Thallium	205	1	0.26	В	0.3	В	0.3 B	0.27 B	0.33 B
Vanadium	51	20	0.43	U	0.43	U	0.43 U	0.43 U	0.43 U
Zinc	66	20	0.35	U	0.35	U	0.35 U	0.35 U	0.35 U

North Canton

5.04.5

601

#### TOTAL Metals

### **Client Lot #...:** 0F11578

Matrix..... WATER

		REPORTING		PREPARATION- WORK
PARAMETER	RESULT	LIMIT UNITS	METHOD	ANALYSIS DATE ORDER #
MB Lot-Sample	#: A0F140000	-019 Prep Batch #	: 0165019	
Antimony	0.079 B	2.0 ug/L	SW846 6020	06/14-06/16/10 L2VH41AA
		Dilution Factor: 1		
		Analysis Time: 19:04	Analyst ID: 000079	) Instrument ID: 18
Arsenic	ND	5.0 ug/L	SW846 6020	06/14-06/16/10 L2VH41AC
		Dilution Factor: 1		
		Analysis Time: 19:04	Analyst ID: 000079	) Instrument ID: 18
Barium	1.3	1.0 ug/L	SW846 6020	06/14-06/16/10 L2VH41AD
		Dilution Factor: 1		
		Analysis Time: 19:04	Analyst ID: 000079	Instrument ID: 18
Beryllium	ND	1.0 ug/L	SW846 6020	06/14-06/16/10 L2VH41AE
		Dilution Factor: 1		
		Analysis Time: 19:04	Analyst ID: 000079	Instrument ID: 18
Cadmium	ND	1.0 ug/L	SW846 6020	06/14-06/16/10 L2VH41AF
		Dilution Factor: 1		
		Analysis Time: 19:04	Analyst ID: 000079	Instrument ID: 18
Chromium	0.26 B	2.0 ug/L	SW846 6020	06/14-06/16/10 L2VH41AV
		Dilution Factor: 1		
		Analysis Time: 19:04	Analyst ID: 000079	Instrument ID: 18
Cobalt	ND	1.0 ug/L	SW846 6020	06/14-06/16/10 L2VH41AG
		Dilution Factor: 1		
		Analysis Time: 19:04	Analyst ID: 000079	Instrument ID: 18
Copper	1.2 B	2.0 ug/L	SW846 6020	06/14-06/16/10 L2VH41AH
		Dilution Factor: 1		
		Analysis Time: 19:04	Analyst ID: 000079	Instrument ID: 18
Iron	7.6 В	50.0 ug/L	SW846 6020	06/14-06/16/10 L2VH41AJ
		Dilution Factor: 1		
		Analysis Time: 19:04	Analyst ID: 000079	Instrument ID: 18
Lead	ND	1.0 ug/L	SW846 6020	06/14-06/16/10 L2VH41AK
		Dilution Factor: 1		· · · · · · · · · · · · · · · · · · ·
		Analysis Time: 19:04	Analyst ID: 000079	İnstrument ID: 18
Manganese	0.53 B	1.0 ug/L	SW846 6020	06/14-06/16/10 L2VH41AL
		Dilution Factor: 1		
		Analysis Time: 19:04	Analyst ID: 000079	Instrument ID: 18

(Continued on next page)

### TOTAL Metals

### **Client Lot #...:** 0F11578

### Matrix.....: WATER

REPORTING		PREPARATION- WORK
LIMIT UNITS	METHOD	ANALYSIS DATE ORDER #
2.0 ug/L	SW846 6020	06/14-06/16/10 L2VH41AM
Dilution Factor: 1		
Analysis Time: 19:0	4 Analyst ID: 00007	9 Instrument ID: 18
2.0 ug/L	SW846 6020	06/14-06/16/10 L2VH41AN
Dilution Factor: 1		
Analysis Time: 19:0	4 Analyst ID: 00007	9 Instrument ID: 18
5.0 ug/L	SW846 6020	06/14-06/16/10 L2VH41AP
Dilution Factor: 1		
Analysis Time: 19:0	4 Analyst ID: 00007	9 Instrument ID: 18
1.0 ug/L	SW846 6020	06/14-06/16/10 L2VH41AQ
Dilution Factor: 1		
Analysis Time: 19:0	4 Analyst ID: 00007	9 Instrument ID: 18
1.0 ug/L	SW846 6020	06/14-06/16/10 L2VH41AR
Dilution Factor: 1		
Analysis Time: 19:0	4 Analyst ID: 00007	9 Instrument ID: 18
20.0 ug/L	SW846 6020	06/14-06/16/10 L2VH41AT
Dilution Factor: 1		
Analysis Time: 19:0	4 Analyst ID: 00007	9 Instrument ID: 18
20.0 ug/L	SW846 6020	06/14-06/16/10 L2VH41AU
Dilution Factor: 1		
Analysis Time: 19:0	4 Analyst ID: 00007	9 Instrument ID: 18
0.20 ug/L	SW846 7470A	06/14-06/16/10 L2VH41AW
Dilution Factor: 1		
Analysis Time: 08:4	9 Analyst ID: 00157	6 Instrument ID: H1
	2.0ug/LDilution Factor: 1Analysis Time: 19:02.0ug/LDilution Factor: 1Analysis Time: 19:05.0ug/LDilution Factor: 1Analysis Time: 19:01.0ug/LDilution Factor: 1Analysis Time: 19:01.0ug/LDilution Factor: 1Analysis Time: 19:01.0ug/LDilution Factor: 1Analysis Time: 19:020.0ug/LDilution Factor: 1Analysis Time: 19:020.0ug/LDilution Factor: 1Analysis Time: 19:020.0ug/LDilution Factor: 1Analysis Time: 19:00.20ug/LDilution Factor: 1Analysis Time: 19:00.20ug/LDilution Factor: 1	2.0         ug/L         SW846 6020           Dilution Factor: 1         Analysis Time: 19:04         Analyst ID: 00007           2.0         ug/L         SW846 6020           Dilution Factor: 1         Analysis Time: 19:04         Analyst ID: 00007           5.0         ug/L         SW846 6020           Dilution Factor: 1         Analyst ID: 00007           5.0         ug/L         SW846 6020           Dilution Factor: 1         Analyst ID: 00007           1.0         ug/L         SW846 6020           Dilution Factor: 1         Analyst ID: 00007           1.0         ug/L         SW846 6020           Dilution Factor: 1         Analyst ID: 00007           1.0         ug/L         SW846 6020           Dilution Factor: 1         Analyst ID: 00007           20.0         ug/L         SW846 6020           Dilution Factor: 1         Analyst ID: 00007           20.0         ug/L         SW846 6020           Dilution Factor: 1         Analyst ID: 00007           20.0         ug/L         SW846 6020           Dilution Factor: 1         Analyst ID: 00007           0.20         ug/L         SW846 6020           Dilution

NOTE (S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

B Estimated result. Result is less than RL.

#### DISSOLVED Metals

### **Client Lot #...:** 0F11578

.

### Matrix....: WATER

		REPORTING		PREPARATION- WORK
PARAMETER	RESULT	LIMIT UNITS	METHOD	ANALYSIS DATE ORDER #
MB Lot-Sample	<b>#:</b> A0F140000	)-019 Prep Batch #	.: 0165019	
Antimony	0. <b>0</b> 79 B	2.0 ug/L	SW846 6020	06/14-06/16/10 L2VH41CK
		Dilution Factor: 1		
		Analysis Time: 19:04	Analyst ID: 00007	Instrument ID: 18
Arsenic	ND	5.0 ug/L	SW846 6020	06/14-06/16/10 L2VH41CL
		Dilution Factor: 1		
		Analysis Time: 19:04	Analyst ID: 000079	) Instrument ID: 18
Barium	1.3	1.0 ug/L	SW846 6020	06/14-06/16/10 L2VH41CM
		Dilution Factor: 1		
		Analysis Time: 19:04	Analyst ID: 000079	9 Instrument ID: 18
Beryllium	ND	1.0 ug/L	SW846 6020	06/14-06/16/10 L2VH41CN
		Dilution Factor: 1		
		Analysis Time: 19:04	Analyst ID: 000079	) Instrument ID: 18
Cadmium	ND	1.0 ug/L	SW846 6020	06/14-06/16/10 L2VH41CP
		Dilution Factor: 1		
		Analysis Time: 19:04	Analyst ID: 000079	) Instrument ID: 18
Chromium	0.26 B	2.0 ug/L	SW846 6020	06/14-06/16/10 L2VH41C5
		Dilution Factor: 1		
		Analysis Time: 19:04	Analyst ID: 000079	Instrument ID: 18
Cobalt	ND	1.0 ug/L	SW846 6020	06/14-06/16/10 L2VH41CQ
		Dilution Factor: 1		
		Analysis Time: 19:04	Analyst ID: 000079	9 Instrument ID: 18
Copper	1.2 B	2.0 ug/L	SW846 6020	06/14-06/16/10 L2VH41CR
		Dilution Factor: 1	· · · · · ·	
		Analysis Time: 19:04	Analyst ID: 000079	9 Instrument ID: 18
Iron	7.6 B	50.0 ug/L	SW846 6020	06/14-06/16/10 L2VH41CT
		Dilution Factor: 1		
		Analysis Time: 19:04	Analyst ID: 000079	Instrument ID: 18
Lead	ND	1.0 ug/L	SW846 6020	06/14-06/16/10 L2VH41CU
		Dilution Factor: 1		
		Analysis Time: 19:04	Analyst ID: 000079	Instrument ID: 18
Manganese	0.53 B	1.0 ug/L	SW846 6020	06/14-06/16/10 L2VH41CV
		Dilution Factor: 1		
		Analysis Time: 19:04	Analyst ID: 000079	Instrument ID: 18

(Continued on next page)

#### DISSOLVED Metals

### Client Lot #...: 0F11578

.

### Matrix..... WATER

PARAMETER	RESULT	REPORTING LIMIT UNITS	METHOD	PREPARATION- WORK ANALYSIS DATE ORDER #
Molybdenum	ND	2.0 ug/L	SW846 6020	06/14-06/16/10 L2VH41CW
	. •	Dilution Factor: 1		
		Analysis Time: 19:04	Analyst ID: 000079	Instrument ID: 18
Nickel	0.22 B	2.0 ug/L	SW846 6020	06/14-06/16/10 L2VH41CX
		Dilution Factor: 1		
		Analysis Time: 19:04	Analyst ID: 000079	Instrument ID: 18
Selenium	ND	5.0 ug/L	SW846 6020	06/14-06/16/10 L2VH41C0
		Dilution Factor: 1		
		Analysis Time: 19:04	Analyst ID: 000079	Instrument ID: I8
Silver	ND	1.0 ug/L	SW846 6020	06/14-06/16/10 L2VH41C1
		Dilution Factor: 1		
		Analysis Time: 19:04	Analyst ID: 000079	Instrument ID: I8
Thallium	0.18 B	1.0 ug/L	SW846 6020	06/14-06/16/10 L2VH41C2
		Dilution Factor: 1		
		Analysis Time: 19:04	Analyst ID: 000079	Instrument ID: 18
Vanadium	ND	20.0 ug/L	SW846 6020	06/14-06/16/10 L2VH41C3
		Dilution Factor: 1		
		Analysis Time: 19:04	Analyst ID: 000079	Instrument ID: 18
Zinc	6.5 B	20.0 ug/L	SW846 6020	06/14-06/16/10 L2VH41C4
		Dilution Factor: 1		
		Analysis Time: 19:04	Analyst ID: 000079	Instrument ID: 18
Mercury	ND	0.20 ug/L	SW846 7470A	06/14-06/16/10 L2VH41C6
		Dilution Factor: 1		
		Analysis Time: 08:49	Analyst ID: 001576	Instrument ID: H1

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

B Estimated result. Result is less than RL.

### Aqueous

			•						
						<del></del>		·	
Sample		Qualifier	Interferent						Validation
									Action
									na
									na
									na
									na
									na
								na	na
								na	na
								na	na
								ma	na
					1030-			{J/	<u> </u>
	21.3		Fe	50700	0.43	40900	0.35	, ma	na
MRC-95D-061110	0.015		Fe	50700	-0.032	40900	-0.03	(J)	na
MRC-95D-061110	66.8		Fe	50700	4	40900	3.23	na	na
Sample	Reported	Qualifier	Interferent	Interferent	Conc.	Interferent	Est.	Validation	Validation
									Action
MRC-MW93D-061010	0.42	· · · · · · · · · · · · · · · · · · ·	Fe	50700	0.14	66400	0.18		na
MRC-MW93D-061010	26.1		Fe	50700	0.21	66400	0.28	Tha	na
MRC-MW93D-061010	515		Fe	50700	0.1			na	na
MRC-MW93D-061010	6.7		Fe	50700	0.035	66400		ра	na
MRC-MW93D-061010	0.49		Fe	50700	-0.82	66400	-1.07	(J)	na
MRC-MW93D-061010	143		Fe	50700		66400		ha	na
MRC-MW93D-061010	10		Fe	50700				na	na
MRC-MW93D-061010			Fe						na
MRC-MW93D-061010	522		Fe	50700					na
MRC-MW93D-061010	20		Fe						na
								···	na
									na
									na
				00100	•	00100			
Sample	Benorted	Qualifier	Interferent		Conc	Interforent	Ect	Volidation	Validation
Campic		Guainer	menerent	1			3		Action
MBC-MW94D-061010		I	Fe					· · · · · · · · · · · · · · · · · · ·	na
									na
									na
									na
									na
									na
								na	na
MRC-MW94D-061010	14.5		Fe	50700	-0.23	18100	-0.08	na	na
	MRC-95D-061110 Sample MRC-MW93D-061010 MRC-MW93D-061010 MRC-MW93D-061010 MRC-MW93D-061010 MRC-MW93D-061010 MRC-MW93D-061010 MRC-MW93D-061010	Result           MRC-95D-061110         0.28           MRC-95D-061110         7.5           MRC-95D-061110         2.3           MRC-95D-061110         2.3           MRC-95D-061110         2.3           MRC-95D-061110         72.9           MRC-95D-061110         5.5           MRC-95D-061110         30.2           MRC-95D-061110         262           MRC-95D-061110         21.3           MRC-95D-061110         0.015           MRC-95D-061110         0.015           MRC-95D-061110         0.15           MRC-95D-061110         0.15           MRC-95D-061110         0.15           MRC-95D-061110         0.15           MRC-95D-061110         0.15           MRC-95D-061110         0.42           MRC-MW93D-061010         0.42           MRC-MW93D-061010         0.42           MRC-MW93D-061010         0.43           MRC-MW93D-061010         0.49           MRC-MW93D-061010         143           MRC-MW93D-061010         143           MRC-MW93D-061010         145           MRC-MW93D-061010         145           MRC-MW93D-061010         145	Result           MRC-95D-061110         0.28           MRC-95D-061110         7.5           MRC-95D-061110         209           MRC-95D-061110         2.3           MRC-95D-061110         0.17           MRC-95D-061110         72.9           MRC-95D-061110         5.5           MRC-95D-061110         262           MRC-95D-061110         262           MRC-95D-061110         21.3           MRC-95D-061110         0.015           MRC-95D-061110         0.15           MRC-95D-061110         0.15           MRC-95D-061110         0.15           MRC-95D-061110         0.15           MRC-95D-061110         0.42           MRC-95D-061110         0.42           MRC-MW93D-061010         0.42           MRC-MW93D-061010         26.1           MRC-MW93D-061010         515           MRC-MW93D-061010         515           MRC-MW93D-061010         6.7           MRC-MW93D-061010         143           MRC-MW93D-061010         143           MRC-MW93D-061010         145           MRC-MW93D-061010         145           MRC-MW93D-061010         0.15           M	Result         Result           MRC-95D-061110         0.28         Fe           MRC-95D-061110         209         Fe           MRC-95D-061110         2.3         Fe           MRC-95D-061110         0.17         Fe           MRC-95D-061110         72.9         Fe           MRC-95D-061110         30.2         Fe           MRC-95D-061110         30.2         Fe           MRC-95D-061110         262         Fe           MRC-95D-061110         21.3         Fe           MRC-95D-061110         21.3         Fe           MRC-95D-061110         0.015         Fe           MRC-95D-061110         0.015         Fe           MRC-95D-061110         0.015         Fe           MRC-95D-061110         0.015         Fe           MRC-95D-061110         0.42         Fe           MRC-MW93D-061010         0.42         Fe           MRC-MW93D-061010         26.1         Fe           MRC-MW93D-061010         26.1         Fe           MRC-MW93D-061010         26.1         Fe           MRC-MW93D-061010         0.42         Fe           MRC-MW93D-061010         0.43         Fe	Result         Ievel in ICS           MRC-95D-061110         0.28         Fe         50700           MRC-95D-061110         7.5         Fe         50700           MRC-95D-061110         2.3         Fe         50700           MRC-95D-061110         2.3         Fe         50700           MRC-95D-061110         2.3         Fe         50700           MRC-95D-061110         5.5         Fe         50700           MRC-95D-061110         30.2         Fe         50700           MRC-95D-061110         30.2         Fe         50700           MRC-95D-061110         262         Fe         50700           MRC-95D-061110         21.3         Fe         50700           MRC-95D-061110         0.015         Fe         50700           MRC-95D-061110         0.015         Fe         50700           MRC-95D-061110         0.015         Fe         50700           MRC-95D-061110         0.42         Fe         50700           MRC-MW93D-061010         0.42         Fe         50700           MRC-MW93D-061010         26.1         Fe         50700           MRC-MW93D-061010         27         Fe         50700 <td>Result         level in ICS         ICS           MRC-95D-061110         0.28         Fe         50700         0.14           MRC-95D-061110         2.09         Fe         50700         0.1           MRC-95D-061110         2.09         Fe         50700         0.035           MRC-95D-061110         2.3         Fe         50700         0.035           MRC-95D-061110         0.17         Fe         50700         0.09           MRC-95D-061110         72.9         Fe         50700         0.09           MRC-95D-061110         30.2         Fe         50700         0.09           MRC-95D-061110         262         Fe         50700         0.19           MRC-95D-061110         21.3         Fe         50700         0.43           MRC-95D-061110         0.015         Fe         50700         0.43           MRC-95D-061110         0.015         Fe         50700         0.43           MRC-95D-061110         0.015         Fe         50700         0.035           MRC-MW33D-061010         0.42         Fe         50700         0.14           MRC-MW33D-061010         0.42         Fe         50700         0.21</td> <td>Result         level in ICS         ICS         Level           MRC-95D-061110         0.28         Fe         50700         0.14         40900           MRC-95D-061110         209         Fe         50700         0.11         40900           MRC-95D-061110         209         Fe         50700         0.11         40900           MRC-95D-061110         2.3         Fe         50700         0.35         40900           MRC-95D-061110         0.17         Fe         50700         0.67         40900           MRC-95D-061110         72.9         Fe         50700         0.69         40900           MRC-95D-061110         30.2         Fe         50700         0.19         40900           MRC-95D-061110         21.3         Fe         50700         0.43         40900           MRC-95D-061110         21.3         Fe         50700         0.43         40900           MRC-95D-061110         21.3         Fe         50700         0.43         40900           MRC-95D-061110         21.3         Fe         50700         0.43         40900           MRC-95D-061110         0.15         Fe         50700         0.14         66400     <td>Result         level intCS         ICS         Level         Interference           MRC-95D-061110         0.28         Fe         50700         0.14         40900         0.17           MRC-95D-061110         209         Fe         50700         0.21         40900         0.08           MRC-95D-061110         2.3         Fe         50700         0.035         40900         0.066           MRC-95D-061110         0.17         Fe         50700         0.82         40900         0.66           MRC-95D-061110         72.9         Fe         50700         0.07         40900         0.67           MRC-95D-061110         5.5         Fe         50700         0.23         40900         0.19           MRC-95D-061110         262         Fe         50700         0.43         40900         0.35           MRC-95D-061110         21.3         Fe         50700         0.43         40900         0.35           MRC-95D-061110         0.15         Fe         50700         0.43         40900         0.33           MRC-95D-061110         0.15         Fe         50700         0.14         66400         0.18           MRC-MW33D-061010         0.42</td><td>Result         level in ICS         ICS         Level         Interference         Action           MRC-95D-061110         0.28         Fe         50700         0.21         40900         0.11         J           MRC-95D-061110         209         Fe         50700         0.21         40900         0.08         na           MRC-95D-061110         2.3         Fe         50700         0.35         40900         0.08         na           MRC-95D-061110         0.17         Fe         50700         -0.82         40900         -0.66         (J)           MRC-95D-061110         5.5         Fe         50700         -0.82         40900         -0.74         na           MRC-95D-061110         30.2         Fe         50700         -0.23         40900         -0.19         na           MRC-95D-061110         26.2         Fe         50700         0.43         40900         -0.03         J           MRC-95D-061110         21.3         Fe         50700         0.43         40900         -0.03         J           MRC-95D-061110         0.015         Fe         50700         0.44         40900         -0.03         J           MRC-95D-061110</td></td>	Result         level in ICS         ICS           MRC-95D-061110         0.28         Fe         50700         0.14           MRC-95D-061110         2.09         Fe         50700         0.1           MRC-95D-061110         2.09         Fe         50700         0.035           MRC-95D-061110         2.3         Fe         50700         0.035           MRC-95D-061110         0.17         Fe         50700         0.09           MRC-95D-061110         72.9         Fe         50700         0.09           MRC-95D-061110         30.2         Fe         50700         0.09           MRC-95D-061110         262         Fe         50700         0.19           MRC-95D-061110         21.3         Fe         50700         0.43           MRC-95D-061110         0.015         Fe         50700         0.43           MRC-95D-061110         0.015         Fe         50700         0.43           MRC-95D-061110         0.015         Fe         50700         0.035           MRC-MW33D-061010         0.42         Fe         50700         0.14           MRC-MW33D-061010         0.42         Fe         50700         0.21	Result         level in ICS         ICS         Level           MRC-95D-061110         0.28         Fe         50700         0.14         40900           MRC-95D-061110         209         Fe         50700         0.11         40900           MRC-95D-061110         209         Fe         50700         0.11         40900           MRC-95D-061110         2.3         Fe         50700         0.35         40900           MRC-95D-061110         0.17         Fe         50700         0.67         40900           MRC-95D-061110         72.9         Fe         50700         0.69         40900           MRC-95D-061110         30.2         Fe         50700         0.19         40900           MRC-95D-061110         21.3         Fe         50700         0.43         40900           MRC-95D-061110         21.3         Fe         50700         0.43         40900           MRC-95D-061110         21.3         Fe         50700         0.43         40900           MRC-95D-061110         21.3         Fe         50700         0.43         40900           MRC-95D-061110         0.15         Fe         50700         0.14         66400 <td>Result         level intCS         ICS         Level         Interference           MRC-95D-061110         0.28         Fe         50700         0.14         40900         0.17           MRC-95D-061110         209         Fe         50700         0.21         40900         0.08           MRC-95D-061110         2.3         Fe         50700         0.035         40900         0.066           MRC-95D-061110         0.17         Fe         50700         0.82         40900         0.66           MRC-95D-061110         72.9         Fe         50700         0.07         40900         0.67           MRC-95D-061110         5.5         Fe         50700         0.23         40900         0.19           MRC-95D-061110         262         Fe         50700         0.43         40900         0.35           MRC-95D-061110         21.3         Fe         50700         0.43         40900         0.35           MRC-95D-061110         0.15         Fe         50700         0.43         40900         0.33           MRC-95D-061110         0.15         Fe         50700         0.14         66400         0.18           MRC-MW33D-061010         0.42</td> <td>Result         level in ICS         ICS         Level         Interference         Action           MRC-95D-061110         0.28         Fe         50700         0.21         40900         0.11         J           MRC-95D-061110         209         Fe         50700         0.21         40900         0.08         na           MRC-95D-061110         2.3         Fe         50700         0.35         40900         0.08         na           MRC-95D-061110         0.17         Fe         50700         -0.82         40900         -0.66         (J)           MRC-95D-061110         5.5         Fe         50700         -0.82         40900         -0.74         na           MRC-95D-061110         30.2         Fe         50700         -0.23         40900         -0.19         na           MRC-95D-061110         26.2         Fe         50700         0.43         40900         -0.03         J           MRC-95D-061110         21.3         Fe         50700         0.43         40900         -0.03         J           MRC-95D-061110         0.015         Fe         50700         0.44         40900         -0.03         J           MRC-95D-061110</td>	Result         level intCS         ICS         Level         Interference           MRC-95D-061110         0.28         Fe         50700         0.14         40900         0.17           MRC-95D-061110         209         Fe         50700         0.21         40900         0.08           MRC-95D-061110         2.3         Fe         50700         0.035         40900         0.066           MRC-95D-061110         0.17         Fe         50700         0.82         40900         0.66           MRC-95D-061110         72.9         Fe         50700         0.07         40900         0.67           MRC-95D-061110         5.5         Fe         50700         0.23         40900         0.19           MRC-95D-061110         262         Fe         50700         0.43         40900         0.35           MRC-95D-061110         21.3         Fe         50700         0.43         40900         0.35           MRC-95D-061110         0.15         Fe         50700         0.43         40900         0.33           MRC-95D-061110         0.15         Fe         50700         0.14         66400         0.18           MRC-MW33D-061010         0.42	Result         level in ICS         ICS         Level         Interference         Action           MRC-95D-061110         0.28         Fe         50700         0.21         40900         0.11         J           MRC-95D-061110         209         Fe         50700         0.21         40900         0.08         na           MRC-95D-061110         2.3         Fe         50700         0.35         40900         0.08         na           MRC-95D-061110         0.17         Fe         50700         -0.82         40900         -0.66         (J)           MRC-95D-061110         5.5         Fe         50700         -0.82         40900         -0.74         na           MRC-95D-061110         30.2         Fe         50700         -0.23         40900         -0.19         na           MRC-95D-061110         26.2         Fe         50700         0.43         40900         -0.03         J           MRC-95D-061110         21.3         Fe         50700         0.43         40900         -0.03         J           MRC-95D-061110         0.015         Fe         50700         0.44         40900         -0.03         J           MRC-95D-061110

Mo	MRC-MW94D-061010	5.2		Fe	50700		10100	-007-74		
								- 307.71 -		na
<u>Ni</u>	MRC-MW94D-061010	20.4		Fe	50700	0.43	18100	0.15	na	na
Ag	MRC-MW94D-061010	0.015		Fe	50700	-0.032	18100	-0.01	(J)	na
Zn	MRC-MW94D-061010	35.5		Fe	50700	4	18100	1.43	na	na
Dissolved							1			
Affected	Sample	Reported	Qualifier	Interferent	Interferent	Conc.	Interferent	Est.	Validation	Validation
Analyte		Result			level in ICS	ICS	Level	Interference	Action	Action
Sb	MRC-MW93D-061010	0.32		Fe	50700	0.14	51300	0.14	67	na
Ar	MRC-MW93D-061010	20.5		Fe	50700	0.21	51300	0.21	ha	na
Ba	MRC-MW93D-061010	399		Fe	50700	0.1	51300	0.10	na	na
Be	MRC-MW93D-061010	5.4		Fe	50700	0.035	51300	0.04	নাৰ	na
Cd	MRC-MW93D-061010	0.38		Fe	50700	-0.82	51300	-0.83	(J)	na
Cr	MRC-MW93D-061010	108		Fe	50700	0.67	51300	0.68	na	na
Co	MRC-MW93D-061010	8		Fe	50700	0.09	51300	0.09	na	na
Pb	MRC-MW93D-061010	63.3		Fe	50700	-0.23	51300	-0.23	na	na
Mn	MRC-MW93D-061010	377		Fe	50700	0.19	51300	0.19	, AA	na
Мо	MRC-MW93D-061010	22.5		Fe		1030	51300	1042.19		<u> </u>
Ňí	MRC-MW93D-061010	32.8		Fe	50700	0.43	51300	0.44	ne.	na
Ag	MRC-MW93D-061010	0.088		Fe	50700	-0.032	51300	-0.03	(J)	na
Zn	MRC-MW93D-061010	118		Fe	50700	4	51300	4.05	na	na

Ś

### Metals Data Reporting Form

Interference Check Standard A

Instrument: ICPMS

Units: <u>ug/L</u>

Chart Number: <u>180616A.csv</u>

Acceptable Range: 0% - 0%

Standard Source: _____

Standard ID:

				ICSA				
				06/16/10				
				10:30 AM				
	WL/	Reporting	True					
Element	Mass	Limit	Conc	Found	Found	Found	Found	Found
Antimony	121	2		0.140				
Arsenic	75	5		0.210				
Barium	137	1		0.100 .				
Beryllium	9	1		0.035-				
Cadmium	111	1		-0.820			-	
Chromium	52	2		0.670				
Cobalt	59	1		(0.090)				
Copper	65	2		0.420				
Iron	56		50000	50700				
Lead	208	1		-0.230				
Manganese	55	1		Q190				
Molybdenum	95	2	1000	4030				
Nickel	60	. 2		(0.430)	/			
Selenium	78	5		<u>0.027</u>	۲ ۲			
Silver	107	1		-0.032				
Thallium	205	1		0.130				
Vanadium	51	20		0.033				
Zinc	66	20		(4)				

## Metals Data Reporting Form

Interference Check Standard AB

Instrument: ICPMS

Chart Number: ________ 180616A.csv

Units: _____ug/L____

Acceptable Range: 50% - 150%

Standard Source: _____

Standard ID: _____

			ICSAE 06/16/1 10:35 A	0								
	WL/	True		%		%		%		%		%
Element	Mass	Conc	Found	Rec	Found	Rec	<u>Found</u>	Rec	Found	Rec	Found	Rec
Antimony	121	100	99.9	99.9								
Arsenic	75	100	99.3	99.3								
Barium	137	100	97.9	97.9								
Beryllium	9	100	99.4	99.4								
Cadmium	111	100	99.4	99.4								
Chromium	52	100	99.7	99.7								
Cobalt	59	100	97.5	97.5								
Copper	65	100	99.0	99.0								
Iron	56	50000	50963.3	101.9								
Lead	208	100	100.0	100.0								
Manganese	55	100	109.3	109.3								
Molybdenum	95	1000	1126.0	112.6								
Nickel	60	100	99.0	99.0								
Selenium	78	100	100.1	100.1								
Silver	107	100	100.6	100.6								
Thallium	205	100	100.9	100.9								
Vanadium	51	100	99.1	99.1								
Zinc	66	100	105.4	105.4								

North Canton

N Spike recovery failedNC Percent recovery was not calculatedU Result is less than the IDL

Form 4 Equivalent

### MATRIX SPIKE SAMPLE DATA REPORT

## TOTAL Metals

Date Sampled	<b>1:</b> 06/	11/10	12:45 Date	Received	d: (	06/12/10		
PARAMETER	SAMPLE AMOUNT	SPIKE AMT	MEASURED AMOUNT	UNITS		CENT DVERY METHOD	PREPARATION- ANALYSIS DATE	WORK ORDER #
MS Lot-Sampl	e #• AOF	120439	-001 Pren	Batch #	- (	165019		
Antimony	ND	100	99.5 Dilution F	ug/L	99	SW846 6020 Analysis Time: 20:21	06/14-06/16/10 Instrument ID:	
Arsenic	ND	100	95.9 Dilution F Analyst IE	ug/L Sactor: 1		SW846 6020 Analysis Time: 20:21	06/14-06/16/10 Instrument ID:	
Barium	9.0	100	109 Dilution F Analyst IE	ug/L Sactor: 1 0: 0000		SW846 6020 Analysis Time: 20:21	06/14-06/16/10 Instrument ID:	
Beryllium	0.11	100 .	Dilution F	ug/L Tactor: 1		SW846 6020 Analysis Time: 20:21	06/14-06/16/10 Instrument ID:	
Cadmium	ND	100	104 Dilution F Analyst ID	ug/L Cactor: 1 0: 0000		SW846 6020 Analysis Time: 20:21	06/14-06/16/10 Instrument ID:	
Chromium	0.51	100	97.3 Dilution F Analyst ID	ug/L ^{actor: 1}		SW846 6020 Analysis Time: 20:21	06/14-06/16/10 Instrument ID:	
Cobalt	2.4	100	99.2 Dilution F Analyst ID	ug/L actor: 1		SW846 6020 Analysis Time: 20:21	06/14-06/16/10 Instrument ID:	
Copper	2.2	100	102 Dilution F Analyst ID	ug/L Cactor: 1		SW846 6020 Analysis Time: 20:21	06/14-06/16/10 Instrument ID:	
Iron	202	10000	10700 Dilution F Analyst ID	ug/L actor: 1		SW846 6020 Analysis Time: 20:21	06/14-06/16/10 Instrument ID:	
Lead	ND	100	96.8 Dilution F Analyst ID	ug/L actor: 1		SW846 6020 Analysis Time: 20:21	06/14-06/16/10 Instrument ID:	

(Continued on next page)

### MATRIX SPIKE SAMPLE DATA REPORT

### TOTAL Metals

Client Lot #...: 0F11578

Matrix..... WG

Date	Sampled:	06/11/10	12:45	Date	Received:	06/12/10
------	----------	----------	-------	------	-----------	----------

	SAMPLE		MEASURED			CENT		PREPARATION-	WORK
PARAMETER	$-\frac{\text{AMOUNT}}{12}$	$\frac{\text{AMT}}{100}$	AMOUNT	UNITS			METHOD	ANALYSIS DATE	ORDER #
Manganese	12.6	100	122 Dilution 1	ug/L Factor: 1	110		SW846 6020	06/14-06/16/10	
				D: 0000		Analysis	5 Time: 20:21	Instrument ID:	18
			Anaryst I	5 0000	119				
Molybdenum	ND	100	96.6	ug/L	97		SW846 6020	06/14-06/16/10	L2T531C0
			Dilution 1			Analysis	5 Time: 20:21	Instrument ID:	I8
			Analyst II	0000	179				
Nickel	3.9	100	102	ug/L	98		SW846 6020	06/14-06/16/10	L2T531C1
			Dilution 1	Factor: 1		Analysis	Time: 20:21	Instrument ID:	18
			Analyst II	D: 0000	179				
Selenium	ND	100	96.2	ug/L	96		SW846 6020	06/14-06/16/10	L2T531C2
			Dilution 1	-			Time: 20:21	Instrument ID:	I8
			Analyst II	D: 0000	79				
Silver	ND	100	104	uq/L	104		SW846 6020	06/14-06/16/10	1 2 7 5 3 1 C 3
0.2.002		100			101		Time: 20:21	Instrument ID:	
				D: 0000	79				
Thallium	ND	100	96.7	ug/L	97		SW846 6020	06/14-06/16/10	10053101
THATTIAM	110	100		Factor: 1			Time: 20:21	Instrument ID:	
				D: 0000		nnai yore	·	instrument ib	10
Vanadium	0.45	100	96.3	ug/L	96		SW846 6020	06/14-06/16/10	1.0052105
Vanaurum	0.45	100	Dilution H	2	90		SW848 8020	Instrument ID:	
				D: 0000	79	Anarysis		institument ib	10
Zinc	10.9	100	111	ug/L	100		SW846 6020	06/14-06/16/10	L2T531C6
			Dilution I			Analysis	Time: 20:21	Instrument ID:	18
			Analyst II	0000	79				
Mercury	ND	1.0	1.0	ug/L	104		SW846 7470A	06/14-06/16/10	L2T531C8
			Dilution H	factor: 1		Analysis	Time: 08:51	Instrument ID:	Н1
			Analyst II	D: 0015	76				

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

### TOTAL Metals

Client Lot 🕯	<b>ŧ:</b> OF1	11578		r	Matrix:	WATER
PARAMETER	SPIKE AMOUNT	MEASUR AMOUNT		r <u>Method</u>	PREPARATION- ANALYSIS DATE	WORK ORDER #
LCS Lot-Sam	ple#: AOH	7140000-	019 Prep Batch #	.: 0165019		
Antimony	100	95.6	ug/L 96 Dilution Factor: 1 Instrument ID: I8	SW846 6020 Analysis Time: 1	06/14-06/16/10 9:20 Analyst ID.	
Arsenic	100	92.9	ug/L 93 Dilution Factor: 1 Instrument ID: I8	SW846 6020 Analysis Time: 1	06/14-06/16/10 9:20 Analyst ID.	
Barium	100	95.2	ug/L 95 Dilution Factor: 1 Instrument ID: I8	SW846 6020 Analysis Time: 1	06/14-06/16/10 9:20 Analyst ID.	
Beryllium	100	98.9	ug/L 99 Dilution Factor: 1 Instrument ID: I8	SW846 6020 Analysis Time: 19	06/14-06/16/10 9:20 Analyst ID.	
Cadmium	100	97.1	ug/L 97 Dilution Factor: 1 Instrument ID: I8	SW846 6020 Analysis Time: 19	06/14-06/16/10 9:20 Analyst ID.	
Cobalt	100	93.6	ug/L 94 Dilution Factor: 1 Instrument ID: I8		06/14-06/16/10 9:20 Analyst ID.	
Copper	100	98.3	ug/L 98 Dilution Factor: 1 Instrument ID: 18	SW846 6020 Analysis Time: 15	06/14-06/16/10 9:20 Analyst ID.	
Iron	10000	10100	ug/L 101 Dilution Factor: 1 Instrument ID: 18	SW846 6020 Analysis Time: 19	06/14-06/16/10 0:20 Analyst ID.	
Lead	100	91.1	ug/L 91 Dilution Factor: 1 Instrument ID: 18	SW846 6020 Analysis Time: 19	06/14-06/16/10 0:20 Analyst ID.	L2VH41A7 : 000079
Manganese	100	102	ug/L 102 Dilution Factor: 1 Instrument ID: 18	SW846 6020 Analysis Time: 19	06/14-06/16/10 9:20 Analyst ID.	L2VH41A8 : 000079

(Continued on next page)

#### TOTAL Metals

**Client Lot #...:** 0F11578

Matrix..... WATER

PARAMETER Molybdenum	SPIKE <u>AMOUNT</u> 100	MEASUR AMOUNT 91.6		T <u>METHOD</u> SW846 6020 Analysis Time: 1	PREPARATION- WORK - ANALYSIS DATE ORDER # 06/14-06/16/10 L2VH41A9 9:20 Analyst ID: 000079
Nickel	100	95.7	ug/L 96 Dilution Factor: 1 Instrument ID: 18	SW846 6020 Analysis Time: 1	06/14-06/16/10 L2VH41CA 9:20 Analyst ID: 000079
Selenium	100	96.1	ug/L 96 Dilution Factor: 1 Instrument ID: 18	SW846 6020 Analysis Time: 1	06/14-06/16/10 L2VH41CC 9:20 Analyst ID: 000079
Silver	100	98.9	ug/L 99 Dilution Factor: 1 Instrument ID: 18		06/14-06/16/10 L2VH41CD 9:20 Analyst ID: 000079
Thallium	100	91.6	ug/L 92 Dilution Factor: 1 Instrument ID: 18	SW846 6020 Analysis Time: 1	06/14-06/16/10 L2VH41CE 9:20 Analyst ID: 000079
Vanadium	100	91.9	ug/L 92 Dilution Factor: 1 Instrument ID: 18	SW846 6020 Analysis Time: 19	06/14-06/16/10 L2VH41CF 9:20 Analyst ID: 000079
Zinc	100	104	ug/L 104 Dilution Factor: 1 Instrument ID: 18	SW846 6020 Analysis Time: 19	06/14-06/16/10 L2VH41CG 9:20 Analyst ID: 000079
Chromium	100	92.9	ug/L 93 Dilution Factor: 1 Instrument ID: 18	SW846 6020 Analysis Time: 19	06/14-06/16/10 L2VH41CH 9:20 Analyst ID: 000079
Mercury	5.0	4.5	ug/L 90 Dilution Factor: 1 Instrument ID: Hl	SW846 7470A Analysis Time: 08	06/14-06/16/10 L2VH41CJ 8:50 Analyst ID: 001576

#### NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

#### DISSOLVED Metals

Client Lot	<b>#:</b> OF:	11578			Matrix WATER
PARAMETER	SPIKE AMOUNT	MEASUR AMOUNT		NT VRY METHOD	PREPARATION- WORK ANALYSIS DATE ORDER #
LCS Lot-Samj Antimony	<b>ple#:</b> A08 100	-140000 95.6	019 Prep Batch #. ug/L 96 Dilution Factor: 1 Instrument ID: 18	SW846 6020	06/14-06/16/10 L2VH41C7 9:20 Analyst ID: 000079
Arsenic	100	92.9	ug/L 93 Dilution Factor: 1 Instrument ID: 18	SW846 6020 Analysis Time: 1	06/14-06/16/10 L2VH41C8 9:20 Analyst ID: 000079
Barium	100	95.2	ug/L 95 Dilution Factor: 1 Instrument ID: 18	SW846 6020 Analysis Time: 1	06/14-06/16/10 L2VH41C9 9:20 Analyst ID: 000079
Beryllium	100	98.9	ug/L 99 Dilution Factor: 1 Instrument ID: I8	SW846 6020 Analysis Time: 1	06/14-06/16/10 L2VH41DA 9:20 Analyst ID: 000079
Cadmium	100	97.1	ug/L 97 Dilution Factor: 1 Instrument ID: I8		06/14-06/16/10 L2VH41DC 9:20 Analyst ID: 000079
Cobalt	100	93.6	ug/L 94 Dilution Factor: 1 Instrument ID: 18	SW846 6020 Analysis Time: 1	06/14-06/16/10 L2VH41DD 9:20 Analyst ID: 000079
Copper	100	98.3	ug/L 98 Dilution Factor: 1 Instrument ID: 18	SW846 6020 Analysis Time: 1	06/14-06/16/10 L2VH41DE 9:20 Analyst ID: 000079
Iron	10000	10100	ug/L 101 Dilution Factor: 1 Instrument ID: 18	SW846 6020 Analysis Time: 1	06/14-06/16/10 L2VH41DF 9:20 Analyst ID: 000079
Lead	100	91.1	ug/L 91 Dilution Factor: 1 Instrument ID: 18	SW846 6020 Analysis Time: 1	06/14-06/16/10 L2VH41DG 9:20 Analyst ID: 000079
Manganese	100	102	ug/L 102 Dilution Factor: 1 Instrument ID: I8	SW846 6020 Analysis Time: 1	06/14-06/16/10 L2VH41DH 9:20 Analyst ID: 000079

(Continued on next page)

· •

### DISSOLVED Metals

### Client Lot #...: 0F11578

Matrix.....: WATER

PARAMETER Molybdenum	SPIKE AMOUNT 100	MEASUR AMOUNT 91.6		92 1	METHOD SW846 6020 Analysis Time: 19:	PREPARATION- WORK ANALYSIS DATE ORDER # 06/14-06/16/10 L2VH41DJ 20 Analyst ID: 000079
Nickel	100	95.7	ug/L Dilution Factor: Instrument ID:		SW846 6020 Analysis Time: 19:	06/14-06/16/10 L2VH41DK 20 Analyst ID: 000079
Selenium	100	96.1	ug/L Dilution Factor: Instrument ID:		SW846 6020 Analysis Time: 19:	06/14-06/16/10 L2VH41DL 20 Analyst ID: 000079
Silver	100	98.9	ug/L Dilution Factor: Instrument ID:	-	SW846 6020 Analysis Time: 19:	06/14-06/16/10 L2VH41DM 20 Analyst ID: 000079
Thallium	100	91.6	ug/L Dilution Factor: Instrument ID:	-	SW846 6020 Analysis Time: 19:	06/14-06/16/10 L2VH41DN 20 Analyst ID: 000079
Vanadium	100 .	91.9	ug/L Dilution Factor: Instrument ID:		SW846 6020 Analysis Time: 19::	06/14-06/16/10 L2VH41DP 20 Analyst ID: 000079
Zinc	100	104	ug/L Dilution Factor: Instrument ID:	1	SW846 6020 Analysis Time: 19:2	06/14-06/16/10 L2VH41DQ 20 Analyst ID: 000079
Chromium	100	92.9	ug/L Dilution Factor: Instrument ID:	1	SW846 6020 Analysis Time: 19:2	06/14-06/16/10 L2VH41DR 20 Analyst ID: 000079
Mercury	5.0	4.5	ug/L Dilution Factor: Instrument ID:	1	SW846 7470A ( Analysis Time: 08:5	06/14-06/16/10 L2VH41DT 50 Analyst ID: 001576

### NOTE (S) :

Calculations are performed before rounding to avoid round-off errors in calculated results.

# Metals Data Reporting Form

Serial Dilution	Serial Dilution RPD Report												
Serial Dilution S	ample ID	:	L	2TE8FL									
Original Sample	ID:	L2	TE8	F		Client ID	):	MRC	C-MW93	D-061010	)		
Matrix: Wate	er	Units:	U	ıg/L		Prep Da	te: _	06/1	14/10	Pro	ep Bato	e <b>h:</b> 01	65019
Weight:     NA     Volume:     NA   Percent Moisture: NA													
Element	WL/ Mass	OS Conc	Q	Serial Dilution Conc	Q	Percent Diff	OS DF	Ser Dil DF	Instr	OS Anal Date	OS Anal Time	Ser Dil Anal Date	Ser Dil Anal Time
Antimony	121	0.32	В	0.15	В		1	5	ICPMS	06/16/10	19:32	06/16/10	19:37
Arsenic	75	✓20.5		21.6	В	5:36	1	5	ICPMS	06/16/10	19:32	06/16/10	19:37
Barium	137	399		399		0.1	1	5	ICPMS	06/16/10	19:32	06/16/10	19:37
Beryllium	9	<b>√</b> 5.4		5.3		1.85	1	5	ICPMS	06/16/10	19:32	06/16/10	19:37
Cadmium	111	0.38	В	0.34	В		1	5	ICPMS	06/16/10	19:32	06/16/10	19:37
Chromium	52	<b>√</b> 108		109		.926	1	5	ICPMS	06/16/10	19:32	06/16/10	19:37
Cobalt	59	<ul><li>✓ 8.0</li></ul>		8.1		1.25	1	5	ICPMS	06/16/10	19:32	06/16/10	19:37
Copper	65	<b>∕</b> 47.4		49.3		4.0	1	5	ICPMS	06/16/10	19:32	06/16/10	19:37
Iron	. 56	51300		52900		3.1	1	5	ICPMS	06/16/10	19:32	06/16/10	19:37
Lead	208	<b>√</b> 63.3		66.0		4.24	1	5	ICPMS	06/16/10	19:32	06/16/10	19:37
Manganese	55	377		390		3.5	1	5	ICPMS	06/16/10	19:32	06/16/10	19:37
Molybdenum	95	<b>1</b> 22.5		23.1		746	1	5	ICPMS	06/16/10	19:32	06/16/10	19:37
Nickel	60	<b>1</b> 32.8		35.3		7.62	1	5	ICPMS	06/16/10	19:32	06/16/10	19:37
Selenium	78	4.5	В	4.2	В		1	5	ICPMS	06/16/10	19:32	06/16/10	19:37
Silver	107	0.088	В	0.075	U		1	5	ICPMS	06/16/10	19:32	06/16/10	19:37
Thallium	205	0.34	В	0.76	В		1	5	ICPMS	06/16/10	19:32	06/16/10	19:37
Vanadium	51	<b>√</b> 80.7		79.3	В	1.73	1	5	ICPMS	06/16/10	19:32	06/16/10	19:37
Zinc	66	✓ 118		118		ð	1	5	ICPMS	06/16/10	19:32	06/16/10	19:37

Comments:

5.04.5

North Canton

B Result is between IDL and RL

# Metals Data Reporting Form

## Instrument Detection Limits

Instrument: ICPMS

Units: _____ppb

Element	Mass	Reporting Limit	IDL	Date of IDL
Antimony	121	2.0	0.027	04/23/10
Arsenic	75	5.0	0.16	04/23/10
Barium	137	1.0	0.027	04/23/10
Beryllium	9	1.0	0.0059	04/23/10
Cadmium	· 111	1.0	0.025	04/23/10
Chromium	52	2.0	0.044	04/23/10
Cobalt	59	1.0	0.015	04/23/10
Copper	65	2.0	0.043	04/23/10
Iron	56	50.0	6.0	04/23/10
Lead	208	1.0	0.019	04/23/10
Manganese	55	1.0	0.16	04/23/10
Molybdenum	95	2.0	0.27	04/23/10
Nickel	60	2.0	0.16	04/23/10
Selenium	78	5.0	0.13	04/23/10
Silver	107	1.0	0.015	04/23/10
Thallium	205	1.0	0.13	04/23/10
Vanadium	51	20.0	0.43	04/23/10
Zinc	66	20.0	0.35	04/23/10

5.04.5

## Metals Data Reporting Form

## Instrument Detection Limits

Instrument: <u>CVAA</u>

/AA

Units: _____ppb

Element	Wavelength	Reporting Limit	IDL	Date of IDL
Mercury	253.700	0.2	0.10	01/08/10

#### METALS PREPARATION SUMMARY

Preparation Type	Matrix	Amount of Standar	rd added to LCS & MS/MSD	Initial Sample Vol/Wt	Final Sample Volume
		Amount	Standard name		
ICP	water	1 mL	Ag	50 mL	50 mL
		1 mL	ICP-1		
		1.0 mL	ICP-2A		
ICPMS	water	0.5ml	ICPMS-1	50 mL	50 mL
		0.5ml	ICPMS-2		
Hg - CVAA	water	5 mL (LCS)	HG-1	100 mL	100 mL
		1 mL (MS/MSD)	HG-1		
Hg - CVAF (low level)	water	0.2 mL (LCS/MS/MSD)	HGICAL	40 ml	40 ml
ІСР	solid	2 mL	Ag	1.00 +/02g	100 mL
		2 mL	ICP-1		
		2 mL	ICP-2A		
ICPMS	solid	1ml	ICPMS-1	1.00 +/02g	100ml
ICF M3		1mi	ICPMS-2	1.00 +/02g	Toomi
Hg - CVAA	solid	5 mL (LCS)	HG-1	0.60 +/01g	100 mL
		1 mL (MS/MSD)	HG-1		
ICP	TCLP	1 mL (LCS)	Ag	50 mL	50 mL
		1 mL(LCS)	ICP-1		
ICP	TCLP	0.5 mL(MS/MSD)	TCLP Spike I RCRA	50 mL	50 mL
ICP	TCLP	1 mL(MS/MSD)	TCLP Spike II Non-RCRA	50 mL	50 mL
Hg - CVAA	TCLP	5 mL (LCS)	HG-1	100 mL	100 mL
-		5 mL (MS/MSD)	HG-1		

Final Concentration		Spiking Standard	
	Amount	Standard	Concentration
Calibration Standards:			
0.0002 ppm	0.2 mL	HG-2	0.1 ppm
0.0005 ppm	0.5 mL	HG-2	0.1 ppm
0.001 ppm	1 mL	HG-2 HG-2	0.1 ppm 0.1 ppm 0.1 ppm
0.005 ppm	5 mL		
0.010 ppm	10 mL	HG-2	
CV Preparation			
0.0025 ppm	2.5 mL	HG-1	0.1 ppm
CCV Preparation:			
0.005 ppm	5 mL	HG-2	0.1 ppm

Final Concentration		Spiking Standard	
	Amount	Standard	Concentration
Calibration Standards:	ds:		
0.5 ppt	20 ul	HG ICAL	1.0 ppb
1.0 ppt	40 ul	HG ICAL	1.0 ppb
2 ppt	80 ul	HG ICAL	1.0 ppb
5 ppt	200 ul	HG ICAL	1.0 ppb
10 ppt	400 ul	HG ICAL	1.0 ppb
25 ppt	1000 ul	HG ICAL	1.0 ppb
ICV Preparation			
5 ppt	200 ul	HG ICV	1.0 ppb
CCV Preparation:			
5 ppt	200 ul	HG ICAL	1.0 ppb

TestAmerica North Canton Revised 1/9/07 N:\Metals\Preplog.xls : Instrument Upload Run Log - Page 1 : : Started Thu Jun 17 05:11:12 2010 by TOTHR : : Data File: UPL\$CAN_DATA_ROOT:<LHG>HG10616A.PRN;1 :

\$	WorkOrder	Dilution	Date	Time	Batch	Lot	Instrument
						·	
	STD1REP1		16-JUN-2010	08:32:12			H1
2	STD2REP1	1	16-JUN-2010	08:33:29			H1
3	STD3REP1	.1	16-JUN-2010 16-JUN-2010	08:34:34			H1
	STD1REP1	1	16-JUN-2010	08:36:14			Hl
· · 5	STD2REP1		16-JUN-2010				H1
e	STD3REP1		16-JUN-2010				Hl
7	STD4REP1	1	16-JUN-2010	08:39:51			H1.
8	STD5REP1	1	16-JUN-2010	08:40:58			H1
9	STD6REP1	1	16-JUN-2010	08:42:09			H1
10	CK5ICV	1	16-JUN-2010 16-JUN-2010	08:43:32			Hl
11	CK4ICB	1	16-JUN-2010	08:44:50			Hl
12	CK3CRA\MRL	1	16-JUN-2010	08:45:56			Hl
			16-JUN-2010				H1
14	CK1CCB	1 .	16-JUN-2010	08:48:31			Hl
15	L2VH4B	1	16-JUN-2010	08:49:35	0165019	A0F140000	H1
	L2VH4C		16-JUN-2010				Hl
17	L2T53	1	16-JUN-2010				Hl
18	L2T53X	1	16-JUN-2010	08:53:01	0165019	0F11578	Hl
19	L2T53S	1	16-JUN-2010 16-JUN-2010 16-JUN-2010	08:54:09	0165019	0F11578	Hl
∕20	L2T53F	1	16-JUN-2010	08:55:26	0165019	0F11578	Hl
<b>v</b> 21	L2T6X	1	16-JUN-2010	08:56:32	0165019	0F11578	Hl
22	L2T53X L2T53S L2T53F L2T6X L2T6XF	1	16-JUN-2010	08:57:38	0165019	0F11578	Hl
√23	L2TFL	1	16-JUN-2010	08:58:44	0165019	0F11578	Hl
$\sqrt{24}$	L2TFLF		16-JUN-2010				Hl
25	CK2CCV	1	16-JUN-2010	09:01:05			Hl
	CK1CCB	1	16-JUN-2010	09:02:15			Hl
27	L2TE8	1	16-JUN-2010 16-JUN-2010 16-JUN-2010 16-JUN-2010	09:03:21	0165019	0F11578	Hl
$\checkmark_{28}$	L2TE8F	1	16-JUN-2010	09:04:26	0165019	0F11578	Hl
	L2THA	1	16-JUN-2010	09:05:32	0165019	0F09447	ні
30	L2R1F	1	16-JUN-2010	09:06:49	0165018	A0F110537	Hl
31	L2TGW	1	16-JUN-2010	09:07:56	0165019	0F09447	Hl
32	L2T64	1	16-JUN-2010	09:09:05	0165019	0F09447	Hl
. 33	L2TG7	1	16-JUN-2010	09:10:12	0165019	0F09447	Hl
34	L2TG8		16-JUN-2010				Hl
35	L2VKMBT	1	16-JUN-2010	09:12:49	0166015	A0F140000	Hl
36	L2WH9BT	1 .	16-JUN-2010	09:13:58	0166015	A0F150000	Hl
37	CK2CCV	1 .	16-JUN-2010	09:15:14			Hl
38	CK1CCB	1	16-JUN-2010	09:16:18			Hl
39	L2WH9CT	1	16-JUN-2010	09:17:25	0166015	A0F150000	Hl
40	L2PTHT	1	16-JUN-2010	09:18:50	0166015	A0F100465	Hl
41	L2PTHTS	1	16-JUN-2010	09:19:55	0166015	A0F100465	Hl
42	L2PTHTD	1	16-JUN-2010	09:21:01	0166015	A0F100465	Hl
43	L2WH5B	l	16-JUN-2010	09:22:37	0166013	A0F150000	Hl
44	L2WH5C	1	16-JUN-2010	09:23:51	0166013	A0F150000	Hl

----- (continued) ------

North Canton

Instrument Upload Run Log - Page 2 : Started Thu Jun 17 05:11:13 2010 by TOTHR : Data File: UPL\$CAN_DATA_ROOT:<LHG>HG10616A.PRN;1 :

• #	WorkOrder	Dilution	Date	Time	Batch	Lot	Instrument
45	L2V2R	1	16-JUN-2010	09:24:57	0166013	0F12484	Hl
46	L2V2RS	1	16-JUN-2010				 H1
47	L2V2RD	1	16-JUN-2010				H1
48	L2VV9	1	16-JUN-2010				
49	CK2CCV		16-JUN-2010				Hl
	CK1CCB		16-JUN-2010	09:31:10			Hl
51	L2WH7B	1	16-JUN-2010	09:32:17	0166014	A0F150000	Hl
52	L2WH7C	1	16-JUN-2010				Hl
53	L2V0C	1	16-JUN-2010	09:34:34	0166014	A0F140425	Hl
54	L2VOCL	1	16-JUN-2010				Hl
55	L2V0CS	1	16-JUN-2010	09:36:50	0166014	A0F140425	Hl
. 56	L2V0CD	l	16-JUN-2010	09:37:55	0166014	A0F140425	Hl
57	L2V0CF	1	16-JUN-2010	09:39:00	0166014	A0F140425	Hl
58	L2VH2C	1	16-JUN-2010	09:40:20	0165018	A0F140000	Hl
59	L2Q8R	10	16-JUN-2010	09:41:26	0165018	A0F110439	H1
60	L2T3EF	1	16-JUN-2010	09:42:44	0165018	A0F120429	Hl
61	CK2CCV	1.	16-JUN-2010	09:43:49	•		Hl
62	CK1CCB	1	16-JUN-2010	09:44:57			Hl
63	L2VHWC	1	16-JUN-2010	09:46:12	0165016	A0F140000	Hl
64	L2Q9K	100	16-JUN-2010	09:47:28	0165016	A0F110442	H1
65	L2Q9KS	100	16-JUN-2010	09:48:37	0165016	A0F110442	Hl
66	L2Q9KD	100	16-JUN-2010	09:49:55	0165016	A0F110442	Hl
67	L2Q9J	100	16-JUN-2010	09:51:12	0165016	A0F110442	Hl
68	L2Q9V	100	16-JUN-2010	09:52:23	0165016	A0F110442	Hl
69	L2TAJ	2	16-JUN-2010	09:53:28	0165015	0F10520	Hl
70	L2VH8C	1	16-JUN-2010	09:54:34	0165021	A0F140000	Hl
71	CK2CCV	1	16-JUN-2010	09:55:54			ні
72	CK1CCB	l	16-JUN-2010	09:57:12			Hl
73	CK2CCV	l	16-JUN-2010	14:37:07			Hl
74	CK1CCB	1	16-JUN-2010	14:38:14			H1
	L2X9EB	1	16-JUN-2010	14:39:20	0167014	A0F160000	Hl
76	L2X9EC	1	16-JUN-2010	14:40:24	0167014	A0F160000	Hl
77	L2XVM	1	16-JUN-2010	14:41:28	0167014	A0F150516	Hl
78	L2XVMS	l	16-JUN-2010	14:42:46	0167014	A0F150516	Hl
	L2XVMD	1	16-JUN-2010	14:43:51	0167014	A0F150516	Hl
80	L2XA1	1	16-JUN-2010	14:45:08	0167014	A0F150460	Hl
81	L2XVN	l	16-JUN-2010	14:46:14	0167014	A0F150516	Hl
82	L2WLKBT	1	16-JUN-2010			A0F150000	Hl
83	L2X9GBT	1	16-JUN-2010	14:48:27	0167015	A0F160000	Hl
	L2X9GCT	1	16-JUN-2010		0167015	A0F160000	Hl
	CK2CCV	1	16-JUN-2010	14:50:43			Hl
	CK1CCB	l	16-JUN-2010				Hl
	L2X9GLT	1	16-JUN-2010			A0F160000	Hl
88	L2WEET	1	16-JUN-2010	14:54:28	0167015	A0F140462	Hl

----- (continued) ------

North Canton

•

:

- -

: Instrument Upload Run Log - Page 3 : : Started Thu Jun 17 05:11:13 2010 by TOTHR : : Data File: UPL\$CAN_DATA_ROOT:<LHG>HG10616A.PRN;1 :

# 	WorkOrder	Dilution	Date	Time	Batch	Lot	Instrument
89	L2WLNBT	1	16-JUN-2010	14.56.10	0167018	DOE150000	
	L2X9LBT	1	16-JUN-2010				H1
	L2X9LCT	1	16-JUN-2010				Hl
	L2X9LLT	1	16-JUN-2010				H1
	L2R15T	10	16-JUN-2010				H1
	L2WLTBT	1	16-JUN-2010				H1
	L2X9JBT	1	16-JUN-2010				Hl
	L2X9JCT	1	16-JUN-2010			A0F160000	H1 H1
	CK2CCV	1	16-JUN-2010			AOL TOODOO	H1
	CK1CCB	1	16-JUN-2010				H1
	L2R2AT	1	16-JUN-2010		0167016	A0F110541	H1
100	L2R2ATS	1	16-JUN-2010			A0F110541	Hl
101	L2R2ATD	1	16-JUN-2010			A0F110541	Hl
102	L2WC2T	1	16-JUN-2010			A0F140458	Hl
	L2WEFT	1	16-JUN-2010			A0F140462	Hl
104	L2R6MT	1	16-JUN-2010			A0F110556	Hl
105	L2VAKT	1	16-JUN-2010			A0F120463	H1
106	L2X9CB	1	16-JUN-2010			A0F160000	Hl
107	L2X9CC	1	16-JUN-2010				H1
108	L2W8V	1	16-JUN-2010				Hl
109	CK2CCV	1	16-JUN-2010				H1
110	CK1CCB	1	16-JUN-2010				Hl
111	L2W8VS	1	16-JUN-2010		0167013	A0F150454	Hl
112	L2W8VD	1	16-JUN-2010			A0F150454	H1
113	L2XCX	1 .	16-JUN-2010	15:24:00	0167013	0F09447	 H1
114	L2V8XF	1	16-JUN-2010	15:25:15	0167013	A0F140446	 Hl
115	L2V84F	1	16-JUN-2010			A0F140446	H1
116	L2V8QF	1	16-JUN-2010				H1.
117	L2V83F	1	16-JUN-2010			A0F140446	H1
118	L2V80F	1	16-JUN-2010			A0F140446	Hl
119	L2XDA	1	16-JUN-2010	15:30:48	0167013		H1
120	L2XDF	1	16-JUN-2010			0F09447	H1
121	CK2CCV	1	16-JUN-2010				H1
122	CK1CCB	1	16-JUN-2010	15:34:56			H1
123	L2XC7	1	16-JUN-2010	15:36:11	0167013		Hl
124	L2V82F		16-JUN-2010				Hl
125	L2XDG		16-JUN-2010				Hl
			16-JUN-2010				Hl
			16-JUN-2010				Hl
128	CK1CCB		16-JUN-2010				H1
			End	of Report			

North Canton

: Instrument Upload Run Log - Page 1: : Started Thu Jun 17 07:29:20 2010 by MUSSELMN : : Data File: UPL\$CAN_DATA_ROOT:<REP>180616A.CSV;1 :

·	#	WorkOrder	Dilution	Date	Time	Batch	Lot	Instrument
		STD1	1	16-JUN-2010	09.52.20			
	2	STD2	1	16-JUN-2010 16-JUN-2010 16-JUN-2010	09.52.38			18
	3	STD3	-	16-JTTN-2010	10.03.14			10 70
	4	STD4	1	16-JUN-2010 16-JUN-2010 16-JUN-2010 16-JUN-2010 16-JUN-2010 16-JUN-2010 16-JUN-2010	10.10.10			18
	5	TCV	1	16-JUN-2010	10.14.50			
	6	TCB	1	16-JUN-2010	10.21.04			18
	7	CBI	1	16-00N-2010	10:21:04			18
	, p	TCGA	1	16-JUN-2010	10:25:45			I8
	Ģ	TCSAB	1	16-JUN-2010	10:30:32			I8
	10	CCV	1	16-00N-2010	10:35:10			18
•	17	CCB	.1	16-JUN-2010	10:41:36			18
				16-JUN-2010			2077240000	.18
	12	L2WH8C	7	16-JUN-2010	10:52:54	0165021	A0F140000	
								18
-	15	1.20049	1	16-JUN-2010	11:03:36	0165021	0F12484	I8
-	16		- <u>-</u>	16-JUN-2010	11:08:19	0165021	0F12484	18
-	17	1.2 PTM	.± 1	16-JUN-2010	11:14:43	0165021	0F12484	18
-	1 Q		1	16-00M-2010	11:21:28	0165021	AUFILOSIL	18
-	10			16-JUN-2010 16-JUN-2010 16-JUN-2010 16-JUN-2010	11:26:14	0165021	AUFII0511	18
-	20		1	16-JUN-2010	LL:30:58	0165021	A0F110511	18
-	20		1	16-JUN-2010	11:35:40	0165021	AUFILUSII	18
-	21	CCU	.⊥ 7	16-JUN-2010	11:40:23	0165021		
				16-JUN-2010				I8
-	2.5		1	16-JUN-2010	11:51:35	01.00001		18
4	2 HE		- <b>-</b>	16-JUN-2010 16-JUN-2010	11:56:17	0165021	A0F110511	18
-	25	L2RT7	1 1	16-JUN-2010	12:01:00	0165021	A0F110511	
		L2VHQB	1	16-JUN-2010	12:05:43	0165021	AUFILUSII	I8
		LIZVHOC		16-JUN-2010 16-JUN-2010 16-JUN-2010 16-JUN-2010 16-JUN-2010 16-JUN-2010	12:20:30	0165014	A0F140000	18
2	20	L2VHQC L2RAM	1	16-00N-2010	12:15:11	0165014	A0F140000	IS
2	20	L2RAN	-	16-JUN-2010	12:21:15	0165014	0F10462	18
2	27	L2RAP	1	16-JUN-2010	12:26:19	0165014	0F10462	18
		L2RAF		16-JUN-2010	12:31:12	0165014	0F10462	18 .
		L2T8P	т т	16-JUN-2010	12:36:04	0165014	0F10462	18
			1 7	16-JUN-2010	12:40:48	0165014		18
2	2 2 2	CCV	1	16-JUN-2010	12:45:36			18
2	2		1	16-JUN-2010 16-JUN-2010 16-JUN-2010	12:51:56			18
נ ר	17		1 1	16-JUN-2010	12:56:37	0165014	0F10462	18
								18
			1 1	16-JUN-2010				18
				16-JUN-2010				18
				16-JUN-2010				18
				16-JUN-2010				18
				16-JUN-2010				18
				16-JUN-2010				18
4	4	1212/2	1.	16-JUN-2010	13:35:31 (	0165014	A0F120459	18

----- (continued) --

North Canton

: Instrument Upload Run Log - Page 2 : : Started Thu Jun 17 07:29:20 2010 by MUSSELMN : : Data File: UPL\$CAN_DATA_ROOT:<REP>I80616A.CSV;1 :

			Date				
	L2T97D		16-JUN-2010				
	CCV		16-JUN-2010				18
47	CCB	1	16-JUN-2010	13:54:51			18
48	L1G56B	1	16-JUN-2010	13:59:36	0134015	A0E140000	18
. 49	L1G56C	5	16-JUN-2010	14:04:39	0134015	A0E140000	18
50	L1FV3	1	16-JUN-2010 16-JUN-2010 16-JUN-2010 16-JUN-2010 16-JUN-2010 16-JUN-2010 16-JUN-2010 16-JUN-2010 16-JUN-2010	14:11:39	0134015	0E12495	<b>⊥</b> 8
51	L1FV3L	1	16-JUN-2010	14:16:41			18
52	L1FV3S	5	16-JUN-2010	14:21:25	0134015	0E12495	I8
53	L1FV3D	5	16-JUN-2010	14:28:24	0134015	0E12495	.I8
54	L1FWD	1	16-JUN-2010	14:35:23	0134015	0E12495	I8
55	L1FWF	1	16-JUN-2010	14:40:25	0134015	0E12495	I8
	TTTT: MIT	علوه	10 000 2010	14.40.00	0704070		70 20
57	L1FWL	1	16-JUN-2010	14:49:53	0134015	0E12495	I8
58	CCV	1	16-JUN-2010	14:54:36			18
59	CCB	1	16-JUN-2010	15:01:08			I8
60	TIFWN	1	$16 - \pi N - 2010$	15.06.03	0134015	0E12495	I8
61	L1FWQ	1	16-JUN-2010	15:10:52	0134015	0E12495	I8
62	L1FWR	1	16-JUN-2010	15:15:35	0134015	0E12495	18
63	LIFWT	1.	16-JUN-2010 16-JUN-2010 16-JUN-2010 16-JUN-2010 16-JUN-2010	15:20:19	0134015	0E12495	I8
64	L1FW2	1	16-JUN-2010	15:25:04	0134015	0E12495	ïI8
65	L1FW6	1	16-JUN-2010	15:29:50	0134015	0E12495	18
66	L1FXF	1	16-JUN-2010	15:34:38	0134015	0E12495	I8
67	L1K98B	1	16-JUN-2010	15:39:27	0137018	A0E170000	18
68	L1K98C	5	16-JUN-2010	15:44:11	0137018	A0E170000	I8
69	L1HND	1	16-JUN-2010	15:51:08	0137018	0E12495	I8
70	CCV	1	16-JUN-2010	15:55:51			I8
71	CCB	1	16-JUN-2010	16:02:26			18
	L1HNG	1	16-JUN-2010 16-JUN-2010 16-JUN-2010	16:07:12	0137018	0E12495	I8
	L1HNGL	l	16-JUN-2010	16:11:58			18
74	L1HNGS	5	16-JUN-2010	16:16:48	0137018	0E12495	18
75	L1HNGD	.5	16-JUN-2010	16:23:46	0137018	0E12495	18
76	L1HNM	1	16-JUN-2010	16:30:44	0137018	0E12495	I8
77			16-JUN-2010				18
78	L1HNV	1	16-JUN-2010	16:40:23	0137018	0E12495	18
79	L1G5WB	1	16-JUN-2010	16:45:08	0134011	A0E140000	18
80	L1G5WC	5	16-JUN-2010	16:49:58	0134011	A0E140000	18
81	L1GD6		16-JUN-2010			A0E130527	18
82	CCV	1	16-JUN-2010	17:01:41			18
83	CCB	1	16-JUN-2010	17:08:38			18
84	L1GD6L	.1	16-JUN-2010	17:13:22			18
85	L1GD6S	5	16-JUN-2010	17:18:06	0134011	A0E130527	18
86	L1GD6D	5	16-JUN-2010	17:25:04	0134011	A0E130527	I8
87	LIEAT	1	16-JUN-2010	17:32:03	0134011	0E12495	18
88	L1EA0	1	16-JUN-2010	17:36:53	0134011	0E12495	18

----- (continued) ------

North Canton

: Instrument Upload Run Log - Page 3 : : Started Thu Jun 17 07:29:20 2010 by MUSSELMN : : Data File: UPL\$CAN_DATA_ROOT:<REP>180616A.CSV;1 :

#	WorkOrder	Dilution	Date	Time	Batch	Lot	Instrument
89	L1EA2	1	16-JUN-2010	17.41.41	0134011	0212495	I8
	L1EA3		16-JUN-2010				18
	L1EA4		16-JUN-2010				18
	L1EA9	.1	16-JUN-2010	17.55.54	0134011	0E12495	18
	LIECC	1	16-JUN-2010	18-00-39	0134011	0E12495	18
	CCV	1	16-JUN-2010	18.05.23	0104017	0112199	IS
	CCB	1	16-JUN-2010	18-11-53			18
	LIECD	1	16-JUN-2010	18:16:42	0134011	0E12495	18
			16-JUN-2010				IS
	L2WH5B		16-JUN-2010				IB
	L2WH5C		16-JUN-2010				I8
	L2V2R		16-JUN-2010				I8
	L2V2RL		16-JUN-2010				18
	L2V2RS		16-JUN-2010		0166013	0F12484	I8
	L2V2RD	1	16-JUN-2010	18:53:05	0166013	0F12484	I8
	L2VV9	1	$1 \leq -\pi M - 2010$	10.50.46	0166072	705140417	IS
105	L2VH4B	1	16-JUN-2010	19:04:34	0165019	A0F140000	I8
	CCV	1	16-JUN-2010	19:09:19	1:09		I8 .
107	CCB	1	16-JUN-2010	19:16:11			<b>I</b> 8
108	L2VH4C		16-JUN-2010		0165019	A0F140000	18
<b>V</b> 1,09	L2TE8	1	16-JUN-2010	19:27:35	0165019	0F11578	18
<b>v</b> 110	L2TE8F	1	16-JUN-2010	19:32:20	0165019	0F11578	<b>I</b> 8
	L2TE8FL	1	16-JUN-2010	19:37:06			IS
√ <b>1</b> 12	L2TFL	.1	16-JUN-2010	19:41:57	0165019	0F11578	18
¥13	L2TFLF	.1	16-JUN-2010	19:46:47	0165019	0F11578	I8 .
114	L2TGW	1	16-JUN-2010	19:51:35	0165019	0F09447	18
115	L2TG7	1	16-JUN-2010	19:56:21	0165019	0F09447	18
116	L2TG8	1	16-JUN-2010 16-JUN-2010 16-JUN-2010	20:01:05	0165019	0F09447	18
117	L2THA				0165019	0F09447	18
118	CCV	1	16-JUN-2010	20:10:39			18
119	ССВ 🦳		16-JUN-2010				18
	L2T53	1	16-JUN-2010	20:21:55	0165019	0F11578	18
	L2T53X	l	16-JUN-2010	20:26:44	0165019	0F11578	18
	L2T53S		16-JUN-2010			0F11578	18
√123	L2T53F	1	16-JUN-2010	20:37:52	0165019	0 <b>F11</b> 578	18
	L2T6X	1	16-JUN-2010	20:42:38	0165019	0F11578	18
	L2T6XF	1	TO DOM-20TO	20.47.20	0102012	0F11578	18
	L2T64	1	16-JUN-2010				18
	L2VHNB	1	16-JUN-2010		0165013	A0F140000	18
	ICSA		16-JUN-2010				18
	ICSAB		16-JUN-2010				18
130			16-JUN-2010		0		18
<u>_ 131</u>			16-JUN-2010				18
132	L2VHNC	1	16-JUN-2010	21:25:01	0165013	A0F140000	18
			(conti	nued)			

#### L2TE8 6/16/2010 19:27:35 QC Status: PASS (Initial: PASS) User Pre-dilution: 1.000

1(	9Be	6Li	Time	Run
p	dqq	ppb		
107.7	6.704	83.190%		X
1.8	1.338	1.165		%RSD
27	<b>25Mg</b>	23Na	Time	Run
P	ppb	ppb		
<u>м90670.0</u>	13470.000	<u>тм 99860.000</u>		X
<u>м1.1</u>	1.719	тм 1.327		%RSD
430	З9К	35Cl	Time	Run
p	ppb	ррЬ		
28720.0	<u>T 27380.000</u>	0.000		<u> </u>
0.3	<u>r1.254</u>	0.000		%RSD
47	45Sc	45Sc	Time	Run
<u> </u>	ppb	ppb	-	
95.6	84.310%	<u>+ 98.471%</u>		X
4.6	0.825	<u>т0.420</u>	tion and	%RSD
	52Cr	51V	Time	Run
(p)	ppb	ppb	-	and a second
11.5	142.900	107.400		<u> </u>
18.7	1.220	0.627	en en en en	%RSD
590	56Fe	55Mn	Time	Run
P	ppb	ppb		a service at
9.9	тм 66390.000	<u>+ 521.500</u>		X
0.8	<u>тм 0.561</u>	<u>10.747</u>		%RSD
667	65Cu	60Ni	Time	Run
PI	ppb	ppb		
145.1	59.860	40.440		X
1.1	0.537	1.735		%RSD
777An	75As 🕻	72Ge	Time	Run
(q) est a service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service service s	ppb 📓	ppb		
0.2	26.090	86.815%		x
86.9	1.189	1.015		%RSD
95M	88Sr	78Se	Time	Run
Pr	ppb	ppb		
20.0	<u>m843.900</u>	6.601		Χ.
1.5	<u>m0.389</u>	14.870		%RSD
108Mb	107Ag	105Pd	Time	Run
pi	ppb	ppb		
-3.8	0.154	0.000		X
43.3	10.360	0.000		%RSD
1189	115In	111Cd	Time	Run
PI	ppb	ppb	1	a da ser a ser a ser a ser a ser a ser a ser a ser a ser a ser a ser a ser a ser a ser a ser a ser a ser a ser
13.9	94.009%	0.486		X
0.2	1.290	11.380	statives received	%RSD
1597	137Ba	121Sb	Time	Run
pr	ppb	ppb	i.	
0.0	<u>m514.800</u>	0.424		<u>x</u>
0.0	<u>м0.633</u>	21.940	·	%RSD
205	182W	165Но	Time	Run
PF	ppb	ppb		12.1.1.1
0.4	0.588	0.000		x
2.9	8.325	0.000		%RSD
	209Bi	208Pb	Time	Run
	ppb	/ ppb		
	115.626%	78.200		X
	0.904	0.708		%RSD
		$\rightarrow$		
		-		$\sim$
			,	i / `
		Intim From	$\Delta 1 1 C m$	10 1
		lation form	ala	
		lation form	alai	
		lation Form 78,7	alai	18 7

#### L2TE8F 6/16/2010 19:32:20 QC Status: PASS (Initial: PASS) User Pre-dilution: 1.000

1	9 <b>Be</b>	6Li	Time	Run
<u></u> p	ppb	ppb		
104.0	5.363	82.477%		x
1.6	2.366	0.224		%RSD
27	25Mg	23Na	Time	Run
p	ppb	ppb		
<u>м 75870.0</u>	11060.000	<u>тм 103700.000</u>	and an and a second second second second second second second second second second second second second second	x
<u>M7.3878.0</u> M0.7	1.132	<u>тм 0.881</u>		%RSD
<u>мо.</u> , <b>43</b>	1.152 <b>39K</b>	35CI	Time	Run
		ppb		<u>.</u>
p	- 25000 000	0.000		
21430.0	<u>T 25060.000</u>			X %RSD
0.8 	<u>11.467</u>	0.000	Time	
47	45Sc	45Sc	Time	Run
P	ppb	ppb	:	5. F
97.1	82.235%	<u>r96.751%</u>	Comparison a	X
4.3	1.141	<u>т 0.619</u>		6RSD
	52Cr	<u></u>	Time	Run
e de la companya de la companya de la companya de la companya de la companya de la companya de la companya de La companya de la companya de la companya de la companya de la companya de la companya de la companya de la comp	ppb	ppb		
11.0	107.600	80.750		X
12.8	0.874	<b>1.957</b>	na na ing na matang sa sa sa	6RSD
59	56Fe	55Mn	Time	Run
p	ppb	ppb		
8.0	тм 51290.000	<u>т 376.600</u>		X
2.0	<u>тм 1.355</u>	<u>т 1.118</u>		6RSD
66	65Cu	60Ni	Time	Run
P	ppb	ppb		
118.4	47.420	32.830		x
2.1	1.576	1.334		6RSD
7 <i>EIL</i> fr	75As	72Ge	Time	Run
(i)	ppb	ppb		
0.2	20.490	85.906%		x
21.7	1.421	1.192		6RSD
951	88Sr	78Se	Time	ในก
p	ppb	ppb	1947 - 1947 - 1947 - 1947 - 1947 - 1947 - 1947 - 1947 - 1947 - 1947 - 1947 - 1947 - 1947 - 1947 - 1947 - 1947 - 1947 - 1947 - 1947 - 1947 - 1947 - 1947 - 1947 - 1947 - 1947 - 1947 - 1947 - 1947 - 1947 - 1947 - 1947 - 1947 -	
22.5	<u>м666.000</u>	4.501	1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.	x
2.5	₩0.791	8.108		6RSD
10806	107Ag	105Pd	Time	Run
participation of the second second second	ppb	ppb		
0.2	0.088	0.000		x
2907.0	26.390	0.000		6RSD
118	115In	<b>111Cd</b>	Time	Run
P	ppb	ppb	and the second second second second second second second second second second second second second second secon	منعنه المتعاصمة
11.3	92.540%	0.383	ina an an garante parte	х
1.9	0.419	17.290		RSD
159	137Ba	121Sb	Time	Run
<u>135</u>	ppb	ppb	an an ann an Anna an Anna an Anna an Anna an Anna an Anna an Anna an Anna an Anna an Anna an Anna an Anna an An Anna an Anna an Anna an Anna an Anna an Anna an Anna an Anna an Anna an Anna an Anna an Anna an Anna an Anna an	
0.0	<u>M399.000</u>	0.324	har and a second second second second second second second second second second second second second second se	x
0.0	<u>m1.071</u>	14.150		%RSD
205	182W	165Ho	Time	Run
		ppb		
PJ	ppb	0.000	·	v
0.3 0.7	0.323	0.000		X %RSD
0.7	1.223 <b>209Bi</b>	0.000 208Pb	Time	Run
				un 👘
	<b>ppb</b> 113.085%	<b>ppb</b> 63.290		x

L2TFLF	6/16/2010 19:46:47	QC Status: PASS (Initial: PASS)
User Pre -dilutior	n: 1.000	

10	9Be	6Li	Time	Run
Pi	ppb	ppb		
21.4	0.279	81.699%	-	x
1.6	3.976	0.731		%RSD
27	25Mg	23Na	Time	Run
p	ppb	ppb		
<u>м 5550.0</u>	1190.000	35810.000		x
<u></u> <u>0.5</u>	6.091	0.673		%RSD
43	39К	35CI	Time	Run
PI	ppb	ppb	ar nadaron rikon na konstant o	
4164.0	<u>т 1889.000</u>	0.000		x
0.8	<u>11.098</u>	0.000		%RSD
47	45Sc	45Sc	Time	Run
p	ppb	ppb		
25.5	75.799%	<u>r.84.082%</u>	-	x
7.3	0.954	<u>r0.033</u>		%RSD
7.5 [53]	52Cr	<u>51V</u>	Time	Run
THE STATE OF COMPANY OF THE WAY AND AND AN AN AN AN AN AND AND AND AND	ppb	ppb		
0.4	6.425	6.549	ŝ	x
	2.220	7.668		× %RSD
203.6 <b>59(</b>	2.220 56Fe	,.000 <b>55Mn</b>	Time	Run
			Inne	Kull j
p	<b>ppb</b>	<b>ppb</b> 75.650		x
0.7	4400.000			%RSD
5.0	0.494	1.624		
662	65Cu	60Ni	Time	Run
PI	ppb	ppb	*.	с
14.5	4.517	6.958		X
2.8		1.395		%RSD
77/A-	75As	72Ge	Time	Run
D	ppb	ppb (37) (		
0.0	1.151	80.188%		X
112.5	14.120	0.750	Time i	%RSD
95M	88Sr	78Se	Time	Run
p	ppb	ppb		·
3.7	59.750	0.404		X
4.2	2.026	98.150	- <u></u>	%RSD
	107Ag	105Pd	Time	Run
Distance in the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second s	ppb	ppb	-	!
-0.5	-0.123	0.000		X
194.6	2.611	0.000	·	%RSD
1185	115In	<b>111Cd</b>	Time	Rún
PI	ppb	bbp	-	2.1
1.0	87.991%	0.028		x
3.9	0.028	40.360		%RSD
1597	137Ba	121Sb	Time	Run
pr	bddd	dqq		
0.0	43.710	0.127		X
0.0	0.252	10.150		%RSD
205	182W	165Ho	Time	Run
PE	ppb	ppb	-	1
0.0	0.066	0.000		X
8.8	24.610	0.000		%RSD
	209Bi	208Pb	Time	Run
	ppb	ppb		
	105.022%	2.958		x
		0.530		

#### L2T53 6/16/2010 20:21:55 QC Status: PASS (Initial: PASS) User Pre-dilution: 1.000

10B	9Be	6Li -	Time	Run
ppb	ppb	ppb		
15.260	0.106	80.587%		x
0.521	10.200	0.259		%RSD
27AI	25Mg	23Na	Time	Run
ppb	ppb	ррБ		
323.900	303.700	2485.000		x
2.547	2.190	0.942		%RSD
<b>43Ca</b>	З9К	35CI	Time	Run
ppb	ppb	ppb	مەرىد.	
608.300	341.900	0.000		X
1.676	1.006	0.000		%RSD
<b>47T</b> î	45Sc	45Sc	Time	Run
ppb	ppb	ppb		ł
2.567	79.821%	<u>r83.506%</u>		X
42.840	0.438	<u>±0.815</u>		%RSD
્રિટિવિડિયે કે સ્ટ્રિટિડિયે	52Cr	<u>51V</u>	Time	Run
DOD.	ppb	ppb		
-1.046	0.506	0.452		X
32.590	4.448	<b>25.370</b>		%RSD
59Co	56Fe	55Mn	Time	Run
ppb	ppb	ppb	1	
2.364	202.300	12.560		X
7.310	1.226	<b>0.754</b>		%RSD
<u>66Zn</u>	65Cu	<u>60Ni</u>	Tîme	Run
ppb	ppb	ppb		1
10.900	2.228	3.905		X
6.988	4.118	6.744		%RSD
7/7/Atr(C)	75As	72Ge	Time	Run
ddq	ppb	ppb	Aug 1971.	
0.113	0.091	85.504%		X
59.890	139.600	1.408		%RSD
95Mo	<u>88Sr</u>	<b>78S</b> e	Time	Run
ppb	ppb	<b>ppb</b>		
0.041	3.897	0.087		X
21.640	2.456	54.230	-	%RSD
00M801	107Ag	105Pd	Time	Run
opb	ppb	ppb		i
1.269	-0.135	0.000		X
93.800	0.864	0.000	The second	%RSD
118Sn	<u>115In</u>	<u> </u>	Time	Run
ppb	ppb	<b>ppb</b>	id and	
0.117	92.547%	0.009		X %RSD
5.415	0.318	43.830	Time	in the second second second second second second second second second second second second second second second
159Tb	137Ba	121Sb	Time	Run
<b>ppb</b>	<b>ppb</b>	<b>ppb</b> -0.041		v
0.000	9.001	48.660		X %RSD
0.000	2.259		Time	
205TI	182W	165Ho	Time	Run
<b>ppb</b>	<b>ppb</b>	<b>ppb</b>	1000 a 10 a 10	× I
0.126	0.004	0.000		X %PSD
3.476	138.900	0.000	Time	%RSD
	209Bi	208Pb	Time	Run
	ррЬ	<b>ppb</b> -0.157		x
	112.146%			

#### L2T53S 6/16/2010 20:31:29 QC Status: PASS (Initial: PASS) User Pre-dilution: 1.000

1	9Be	6Li	Time	Run
P	ppb	ppb		م. او ترجم مردم م
115.4	101.900	79.978%		x
0.9	0.970	0.601		%RSD
27	25Mg	23Na	Time	Run
p	ppb	ррҌ	10 21	
м 10890.0	10830.000	12850.000		x
м0.	0.636	0.310		%RSD
43	<b>39K</b>	35CI	Time	Run
p	ppb	ppb		
11200.0	<u>T 11080.000</u>	0.000		x
0.4	<u>10.820</u>	0.000		%RSD
47	45Sc	45Sc	Time	Run
þ	ppb	ppb		
100.4	78.142%	<u>т 83.745%</u>		x
10.3	0.217	<u>±0.254</u>		%RSD
	52Cr	51V	Time	Run
	ppb	ppb	ja ka ka ka ka ka ka ka ka ka ka ka ka ka	
7.9	97.320	96.280		x
14.3	0.727	1.901		%RSD
59	56Fe	55Mn	Time	Run
p	ppb	ppb	1	
99.1	10700.000	т 122.300		x
0.4	0.784	<u>r 1.571</u>		%RSD
66	65Cu	60Ni	Time	Run
p	ppb	ppb	2	
110.6	102.200	102.300		x
0.7	1.563	0.277		%RSD
7//Ar	75As	72Ge	Time	Run
	ppb	ppb	_	
-0.2	95.860	82.052%		x
41.3	0.353	0.453		%RSD
951	88Sr	<b>78Se</b>	Time	Run
p	ppb	ppb	<u></u>	
96.5	98.940	96.230		x
1.7	0.897	2.184		%RSD
108Ma	107Ag	105Pd	Time	Run
Design of the second second second second second second second second second second second second second second	ppb	ppb		
36.2	103.600	0.000		x
191.6	1.008	0.000		%RSD
118	115In	111Cd	Time	Run
P	ppb	ppb	2	
. 99.0	88.856%	103.900		x
1.0	0.015	1.307	a construction of the second second	%RSD
159	137Ba	121Sb	Time	Run
P	ppb	ppb		1 - 1 - 1
0.0	108.700	99.480		X
0.0	1.373	1.319		%RSD
205	182W	165Ho	Time	Run
P	ppb	ppb		
96.6	100.400	0.000		x
0.6	0.647	0.000		%RSD
	209Bi	208Pb	Time	Run
	ppb	ppb		
	105.324%	96.830		x
	1.144	0.112		%RSD

#### L2T53F 6/16/2010 20:37:52 QC Status: PASS (Initial: PASS) User Pre-dilution: 1.000

101	9Be	6Li	Time	Run
ppl	ppb	ppb		
2.20	0.085	81.614%		<b>X</b> 1
4.10	7.694	0.348	t de la Sectoria Sectoria de la companya	%RSD
27A	25Mg	23Na	Time	Run
ppl	ppb	ppb		
-6.10	266.200	2526.000		X
40.61	9.691	0.367	2 <b>1</b>	%RSD
43C	<b>39K</b>	35Cl	Time	Run
ppl	ppb	ppb		1
536.10	325.900	0.000		x
3.68	1.729	0.000	a e no erectit	%RSD
471	45Sc	45Sc	Time	Run
ppl	ррЬ	ppb		
0.30	78.212%	<u>т83.591%</u>	10001-00	x
115.90	1.829	<u>ŕ0.296</u>	tina an 1955 - Paris Anaratan ang taong taong taong tao	%RSD
55(6)(	52Cr	51V	Time	Run
ligg a start start start start start start start start start start start start start start start start start s	ppb	ppb		1 A. A.
-0.33	0.171	0.249		<u>X</u>
122.70	15.150	136.600		%RSD
59C	56Fe	55Mn	Time	Run
ppl	dqq	ppb	1.	· 1
2.21	73.450	11.130		X
7.25	0.579	0.857	en en en en altre ante	%RSD
66Zı	<b>65Cu</b>	60Ni	Time	Run
ppl	ppb	ppb		,
11.34	1.666	3.465		X
3.50	11.280	4.860	<u></u>	%RSD
a a sa ang ang ang 777An C	75As	72Ge	Time	Run
and the second second second second second second second second second second second second second second secon	рры	ppb	:	
0.05	0.090	83.412%		<b>X</b>
113.30	98.020	2.522	가지) 1773년 - 1711 - 1717	%RSD
95Ma	<b>88Sr</b>	78Se	Time	Run
ppl	ppb	ppb	270	
0.30	3.460	0.177		X
16.85	4.399	61.940	ss at the	%RSD
108Mox	107Ag	105Pd	Time	Run
pp]	ppb	ppb	·	;
-0.00	-0.126	0.000		X
11290.00	2.272		der <u>Lit</u> er i de festere	%RSD
<u>1185</u> r	<u>115In</u>	111Cd	Time	Run
ppi	ppb	ppb	n - Andrew Sa Andrew	
0.24	90.086%	0.031		X
18.50	2.222	25.210		%RSD
159Th	137Ba	121Sb	<u> </u>	Run
ppt	ppb	ppb	<u> Theat</u>	
0.00	7.621	0.202		X
0.00	3.043	19.810		%RSD
205T	182W	165Ho	Time	Run
ppt	ppb	ppb		. 1
0.24	0.370	0.000		X
7.02	22.830	0.000		%RSD
	209Bi	208РЬ	Time	Run
	ppb	ppb		
	108.737%	-0.206		х
	0.810	4.173		%RSD

## L2T6X 6/16/2010 20:42:38 QC Status: PASS (Initial: PASS)

User Pre -dilution: 1.000

10	<b>9Be</b>	6Li	Time	Run
ppl	ppb	ррЬ		
38.70	2.337	83.331%		X
1.85	3.329	0.106		%RSD
27A	25Mg	23Na	Time	Run
ppl	ppb	ppb		
<u>м36070.00</u>	6248.000	<u>т 76080.000</u>		x
<u>м0.28</u>	1.995	<u>т 0.455</u>		%RSD
43C	39K	35Cl	Time	Run
ppl	ppb	ррЬ		
17530.00	<u> 72750.000</u>	0.000		х
1.37	<u>т0.563</u>	0.000		%RSD
471	45Sc	45Sc	Time	Run
ppl	ppb	ррь		
97.01	87.230%	<u>197.164%</u>		X
3.67	0.750	<u>+0.871</u>		%RSD
1993-2	52Cr 52Cr	51V	Time	Run
DD	ppb <b>states and states and states and states and states and states and states and states and states and states and states and states and states and states and states and states and states and states and states and states and states and states and states and states and states and states and states and states and states and states and states and states and states and states and states and states and states and states and states and states and states and states and states and states and states and states and states and states and states and states and states and states and states and states and states and states and states and states and states and states and states and states and states and states and states and states and states and states and states and states and states and states and states and states and states and states and states and states and states and states and states and states and states and states and states and states and states and states and states and states and states and states and states and states and states and states and states and states and states and states and states and states and states and states and states and states and states and states and states and states and states and states and states and states and states and states and states and states and states and states and states and states and states and states and states and states and states and states and states and states and states and states and states and states and states and states and states an</b>	ppb		
6.30	72.940	53.200		X
21.46	0.511	2.078		%RSD
59C	56Fe	55Mn	Time	Run
ppl	ppb	ppb		
5.50	<u>T 40880.000</u>	<u>+ 262.200</u>		X
1.44	<u>τ.0.815</u>	<u>τ.0.907</u>		%RSD
<b>66</b> Z	65Cu	60Ni	Time	Run
ppl	ppb	ppb		. 1
66.78	24.600	21.330		X
0.87	3.056	2.076		%RSD
7/7/17/0	75As 2004	72Ge	Time	Run
	<b>ppb</b>	ppb		
0.10	7.492	90.307%		X
69.88 <b>95M</b>	5.024 885r	1.457 <b>78Se</b>	Time	%RSD
and the second equation ( are dependent of ( ) by ( ) is (			Time	Run
<b>pp</b>   14.09	<u>ррb</u> <u>м 2376.000</u>	<b>ppb</b> 3.169		
3.99				X
5.99 108Mo	<u>M0.393</u>	20.020 <b>105Pd</b>	- Carlos de la composición de la composición de la composición de la composición de la composición de la compos	%RSD
DODDC DD	107Ag		Time	Run
0.01	<b></b>	<b>dqq</b> 000.0		. v f
48310.00	24.320	0.000		X %RSD
	115In	111Cd	Time	Run
ppl	ppb	ppb	Thire	
6.36	97.648%	0.173		x
1.73	1.304	15.800		%RSD
159T	137Ba	121Sb	Time	Run
ppl	ррь	ppb	, inde	
0.00	<u>m209.200</u>	0.284		x
0.00	м0.914	5.211		%RSD
2051	<u>182W</u>	165Ho	Time	Run
205 pp	ppb	ppb	, inte	
0.21	0.333	0.000		x
2.60	3.405	0.000		X %RSD
2,00	209Bi	0.000 208Pb	Time	Run
	ppb	200PD ppb	1000	NUM
	hhn i			
	111.424%	30.160		х