

September 06, 2013

Mr. Tom Blackman Lockheed Martin Corporation 6801 Rockledge Dr. -MP CCT 246 Bethesda, MD 20817

Subject: Letter Report: Additional Indoor Air and Sub-Slab Vapor Monitoring Building A Sub-Slab Depressurization (SSD) Shutdown Middle River Complex

Dear Mr. Blackman: On behalf of Lockheed Martin Corporation (Lockheed Martin), Tetra Tech, Inc. has prepared this letter report following completion of additional indoor air quality (IAQ) and sub-slab vapor (SV) monitoring at Lockheed Martin's Middle River Complex (MRC) in Middle River, Maryland. This report presents the results from the additional indoor air quality and sub-slab vapor sampling performed while the Building A sub-slab vapor depressurization (SSD) system was shut down for repair of a failed blower between March 16 and April 8, 2013. Sampling was performed at areas in and around the plating shop in Building A. The objective of this additional monitoring was to evaluate any potential concentration changes in chemicals of concern (COCs) in indoor air (IA) and sub-slab vapor at and around the Building A plating shop during the non-operational period (March 16-April 8, 2013) by comparing analytical results to those obtained during the February 2013 (Round 14) indoor air–sub-slab vapor monitoring event, while the sub-slab vapor depressurization system was still operational. Specifically, the data were evaluated to determine whether rebound (i.e., increases in concentration following cessation of sub-slab vapor depressurization system operation) was occurring in sub-slab vapor and possibly indoor air.

Sample Locations

Samples collected in March 2013 during the sub-slab vapor depressurization system shutdown were identified by an "A" suffix after the round number (i.e., -R14A) to differentiate these samples from the scheduled February sampling round (Round 14). Nine indoor air samples plus one duplicate, and four sub-slab vapor samples plus one duplicate were collected from locations at and around the Building A plating shop (Figure 1). The sampling rationale included locations within the Building A sub-slab vapor depressurization radius of influence (ROI) for both sub-slab vapor and indoor air, as well as test locations beyond the radius of influence for indoor air only, since vapors might have migrated beyond the areas near locations with elevated sub-slab vapor concentrations. Locations beyond the radius of influence that have previously shown elevated indoor air trichloroethene (TCE) concentrations (although not above the screening level) were also included.

Indoor air and co-located sub-slab vapor samples were collected at four locations within the Building A sub-slab vapor depressurization system radius of influence. These locations were:

- 015-A in the plating shop,
- 108-A in the room east of the plating shop,
- 118-A in the bond layup room, and
- 018-A in the Building A basement.

Five indoor air samples, with no co-located sub-slab vapor samples, were collected outside the Building A sub-slab vapor depressurization system radius of influence. The sample locations and their rationale are as follows:

Sample ID	Location	Rationale
093-A	southern part of basement	location with the highest indoor air trichloroethene (TCE) concentration (6.3 μ g/m ³) in Round 14.

138-A	basement, south of the sub-slab vapor depressurization (SSD) radius of influence (ROI)	location with the second highest indoor air TCE concentration (4.5 μ g/m ³) in Round 14.
116-A	basement 27-feet north of the SSD ROI	delineate volatile organic compound (VOC) concentrations immediately outside the radius of influence during the shutdown period.
079-A	west of the plating shop	elevated sub-slab vapor TCE concentrations detected at this location since installation in June 2009.
076-A	north of the plating shop	possible northern extent of TCE; low concentrations of TCE (1.3 J μ g/m ³) were found in indoor air during Round 14.

Sampling and Analysis

Sampling was performed in accordance with the methods described in the *IAQ Assessment Work Plan* (Tetra Tech, 2006) and the *Work Plan Addendum, Indoor Air and Sub-Slab Sampling Round 14* (Tetra Tech, 2013). Indoor air quality and sub-slab sampling and analysis were performed in accordance with USEPA Method Toxic Organic 15 (TO-15) for collection and analysis of volatile organic compounds (VOCs) (USEPA, 1999). Sub-slab soil vapor samples were likewise collected in accordance with standard operating procedures developed by the USEPA Environmental Response Team for soil vapor sampling (USEPA, 1996), as well as in accordance with methodologies developed by the USEPA Office of Research and Development (USEPA, 2004). Indoor air quality samples were collected over a seven- to eight-hour period, while sub-slab vapor samples were collected over a one-hour period.

All samples were analyzed for the current list of chemicals of concern for vapor intrusion monitoring at the Middle River Complex:

- benzene
- carbon tetrachloride
- chlorodifluoromethane (Freon 22)
- chloroform
- dichlorodifluoromethane
- 1,1-dichloroethane (1,1-DCA)
- 1,2-dichloroethane (1,2-DCA)

- naphthalene
- tetrachloroethene (PCE)
- toluene
- 1,2,4-trichlorobenzene
- 1,1,1-trichloroethane (1,1,1-TCA)
- 1,2,3-trimethylbenzene (1,2,3-TMB)
- 1,2,4-trimethylbenzene (1,2,4-TMB)

- 1,1-dichloroethene (1,1-DCE)
- *cis*-1,2-dichloroethene (*cis*-1,2-DCE)
- *trans*-1,2-dichloroethene (*trans*-1,2-DCE)
- Ethylbenzene
- methyl-tertiary-butyl ether (MTBE)
- methylene chloride

- 1,3,5-trimethylbenzene (1,3,5-TMB)
- trichloroethene (TCE)
- 1,1,2-trichloroethane (1,1,2-TCA)
- vinyl chloride (VC)
- xylenes (total)

All samples were submitted to Centek Laboratories, Limited Liability Company (Centek) in Syracuse, New York for analysis by gas chromatography/mass spectroscopy with cryogenic concentration (as described in Sections 9 and 10 of USEPA Method TO-15 [USEPA, 1999]). Centek is certified in USEPA Method TO-15 analysis and meets all quality assurance/quality control requirements specified in the TO-15 methodology. All samples were stored at ambient temperatures and shipped via overnight carrier to the laboratory. All samples were submitted and analyzed within the method's specified holding time of 30 days. All appropriate chain of custody documentation was completed for each sample (see Appendix A).

Data validation reports and supporting documentation are in Appendix A. Analytical data were qualified (e.g., *U*, *B*, *E*, *J*, or *K* qualifiers) in accordance with USEPA *Contract Laboratory Program National Functional Guidelines* (USEPA, 2008). Attaching data qualifiers to analytical results signifies a quality control non-compliance. After validation, the following qualifiers were assigned to non-conforming data (i.e., data affected by technical limitations during laboratory analysis):

- J indicating an estimated result where the result was less than the reporting limit
- *U* indicating the chemical was not detected at the numerical detection limit (sample-specific quantitation limit)

Data Analysis

The analytical results for the additional indoor air and sub-slab vapor samples collected in March 2013 at and around the Building A plating shop are included in Tables 1, 2, 3, and 4. Table 1 illustrates the March 2013 indoor air results, and Table 2 compares March 2013 results with February 2013 indoor air results from the same locations. Duplicate indoor air results (for sample locations 018-A and 108-A) and averaged concentrations of the original sample and the duplicate are also included in these tables. Table 3 illustrates the March 2013 sub-slab vapor results, while

Table 4 compares March 2013 sub-slab vapor results to February 2013 sub-slab vapor results from the same locations. The comparisons between March and February 2013 indoor air and sub-slab vapor results were performed to evaluate possible increases (rebound) in indoor air or sub-slab vapor while the sub-slab vapor depressurization system was not operating. Tables 2 and 4 contain calculations of the percent change in concentration measured during the February and March 2013 events. If both sample results were U-flagged, then the percent change was listed as 0%, but if only one of the results was U-flagged, then the percent change was listed as "N/A".

Specific chemicals known to be associated with sub-slab vapor at the Middle River Complex (i.e., trichloroethene [TCE], *cis*-1,2-dichloroethene [*cis*-1,2-DCE], and 1,1-dichloroethene [1,1-DCE]) were used as indicators of possible rebound and vapor intrusion.

Indoor air quality-monitoring analytical results for all compounds except 1,2,3- and 1,2,4,-trimethylbenzene were compared to screening levels for industrial air set forth in the USEPA's *Regional Screening Levels for Chemical Contaminants at Superfund Sites* (USEPA, 2012). The lowest of the carcinogenic (*ca*) or noncarcinogenic (*nc*) values for each chemical of concern were used for the screening. Carcinogenic risk was evaluated at the 1×10^{-5} (one in 100,000) risk level, in accordance with Maryland Department of the Environment requirements. 1,2,3- and 1,2,4-Trimethylbenzene were compared to their respective American Council of Governmental Industrial Hygienists "Threshold Limit Values."

Sub-slab vapor monitoring results were compared to sub-slab vapor screening values derived in accordance with methods discussed in Appendix D of USEPA's guidance for evaluating vapor intrusion (USEPA, 2002): sub-slab vapor screening values were calculated by dividing the indoor-air screening levels by USEPA's recommended attenuation factor (AF) of 0.03 (USEPA, 2013). Figure 1 illustrates locations where chemicals of concern concentrations exceeded screening levels. A review of the results indicated the following:

Indoor Air

- No chemical of concern exceeded its applicable screening level in indoor air
- The greatest increases in indoor air trichloroethene (TCE) concentration from February to March 2013 were seen at the following locations:
 - o 015-A (0.36U- $1.8 \,\mu g/m^3$)

- o 076-A (1.3 J-7.6 $J \mu g/m^3$)
- o 079-A (0.36U- $8.2 \,\mu g/m^3$)
- \circ 108-A (0.79 J [average with duplicate]-5.6 μ g/m³)
- Reductions in indoor air trichloroethene (TCE) concentration from February to March 2013 were seen at the following locations:
 - o 093-A (6.3-1.2 μ g/m³)
 - o 138-A (4.5-2.7 μ g/m³
- The remaining two locations sampled during both events (018-A and 118-A) showed only small changes in the concentration of trichloroethene (TCE) (location 116-A was not sampled in February 2013).
- Increases in the indoor air concentration of *cis*-1,2-dichloroethene (*cis*-1,2-DCE) [a indicator of potential vapor intrusion] from February to March 2013 were seen at the following locations:
 - o 015-A $(0.19U-0.48J \,\mu g/m^3)$
 - o 018-A (0.19 U-0.48J μ g/m³ [average with duplicate])
 - o 076-A (0.19U- $1.8 \,\mu g/m^3$)
 - ο 079-A (0.19*U*-0.85 μg/m³)
 - o 108-A $(0.19U-0.64 \,\mu g/m^3)$
- Sample location 018-A had an indoor air *cis*-1,2-dichloroethene (*cis*-1,2-DCE) concentration of 0.48 $J \mu g/m^3$ during the March event; however, its duplicate was reported as not-detected (0.6 $U \mu g/m^3$). The February result for *cis*-1,2-DCE at this location was reported as not-detected (0.19 $U \mu g/m^3$).
- Increases in indoor air trichloroethene (TCE) concentrations (from February to March 2013) were observed where increases in *cis*-1,2-dichloroethene (*cis*-1,2-DCE) were found.
- *cis*-1,2-Dichloroethene (*cis*-1,2-DCE) concentrations in the remaining samples were reported as not detected in both sampling events.
- Increases in indoor air concentrations of 1,1-dichloroethene (1,1-DCE) from February to March 2013 were seen at the following locations:
 - o 018-A (0.85-1.4 μ g/m³[average with duplicate])
 - o 076-A (0.22*U*-8.1 μ g/m³)

- o 079-A (0.22U-4.5 µg/m³)
- o 118-A $(0.22U-4.2 \ \mu g/m^3)$
- Reductions in indoor air 1,1-dichloroethene (1,1-DCE) concentrations from February to March 2013 were seen at the same locations where indoor air trichloroethene (TCE) reductions were found:
 - o 093-A (0.89-0.22 $U \,\mu g/m^3$)
 - o 138-A $(0.93-0.22U \,\mu g/m^3)$
- Other chemicals of concern that predominantly increased in indoor air from February to March 2013 included:
 - Chlorodifluoromethane increased in eight of eight locations listed below:
 - 015-A $(0.18U-1.2 \,\mu g/m^3)$
 - 018-A (0.18U-0.985 µg/m³[average with duplicate])
 - 076-A $(0.18U-2.7 \,\mu g/m^3)$
 - 079-A $(0.18U-2.2 \,\mu g/m^3)$
 - 093-A (0.18U-2.5 μg/m³)
 - 108-A $(0.18U-1.5 \,\mu g/m^3)$
 - 118-A $(0.18U-7.2 \,\mu g/m^3)$
 - 138-A (0.18U-0.93 μg/m³)
 - Methylene chloride increased at five of eight locations, decreased at one of eight and remained relatively unchanged at two of eight locations. Increases are listed below:
 - 015-A $(1-24 \,\mu g/m^3)$
 - 018-A (0.36-0.87 μ g/m³[average with duplicate])
 - 093-A $(0.53-3. \mu g/m^3)$
 - 118-A $(0.74-1.4 \ \mu g/m^3)$
 - 138-A $(0.14-1.1 \ \mu g/m^3)$
 - Naphthalene did not show notable changes in concentration between February and March.

Sub-Slab Vapor

- Trichloroethene (TCE) exceeded its sub-slab vapor screening level (293 μ g/m³) in all four sub-slab vapor samples (and the duplicate sample) collected in March 2013.
- Sub-slab vapor trichloroethene (TCE) concentrations increased from February to March 2013 at the following locations:
 - \circ 015-A (710-8,800 µg/m³)
 - \circ 108-A (590 [average with duplicate]-1,800 μ g/m³)
 - \circ 118-A (5,100-17,000 μ g/m³)
- Sample location 018-A had a sub-slab vapor trichloroethene (TCE) concentration of 52,000 $J \mu g/m^3$, with a duplicate result of 96,000 $\mu g/m^3$ during the March monitoring round. The February TCE concentration was 95,000 $\mu g/m^3$, which lies between the March original and its duplicate.
- Increases in the sub-slab vapor concentration of *cis*-1,2-Dichloroethene (*cis*-1,2-DCE) from February to March 2013 were seen at all four locations:
 - o 015-A $(1,300-7,000 \ \mu g/m^3)$
 - o 018-A (3,800-4,800 μ g/m³ [average with duplicate])
 - o $108-A (330-780 \,\mu g/m^3)$
 - o 118-A (410J-1,100 μ g/m³)
- Increases in sub-slab vapor trichloroethene (TCE) concentrations are where increases in *cis*-1,2-Dichloroethene (*cis*-1,2-DCE) were found.
- Increases in the sub-slab vapor concentration of 1,1-dichloroethene (1,1-DCE) from February 2013 to March 2013 were seen at the following locations:
 - o 015-A (490-3,100 μ g/m³)
 - o 108-A (3,850 [average with duplicate]-9,500 μ g/m³)
 - o 118-A $(1,100-5,200 \,\mu g/m^3)$
- For 1,1-Dichloroethene (1,1-DCE): location 018-A's March sample (37,000 $J \mu g/m^3$) and its duplicate (67,000 $\mu g/m^3$) both exceeded the screening level (29,333 $\mu g/m^3$). The February concentration of 1,1-DCE was 54,000 $\mu g/m^3$.
- Increases in 1,1-Dichloroethene (1,1-DCE) are in the same locations where increases in trichloroethene (TCE) and *cis*-1,2-Dichloroethene (*cis*-1,2-DCE) sub-slab vapor concentrations were found.

- Sub-slab vapor chloroform was detected above its screening level (177 μ g/m³) at March sample location 118-A (280 μ g/m³), a concentration over three times higher than its concentration in February (55 μ g/m³).
- 1,1-Dichloroethane (1,1-DCA) had a March exceedance (8,300 μ g/m³) of its screening level (2,567 μ g/m³) at location 108-A. The February concentration in the duplicate sample at this location was also an exceedance (4,100 μ g/m³), but the original February sample had a concentration (2,000 J μ g/m³) which was below the screening level.
- Other chemicals of concern that predominantly increased in sub-slab vapor from February to March 2013 included:
 - Chlorodifluoromethane increased in two of four locations and remained relatively unchanged at two of four locations. Increases are listed below:
 - 015-A (0.18*U*-0.93 μ g/m³)
 - 118-A $(0.18U-3.9 \,\mu g/m^3)$
 - Toluene increased in four of four locations. Increases are listed below:
 - 015-A $(14-160 \,\mu g/m^3)$
 - 018-A (4.1-59 µg/m³[average with duplicate])
 - 108-A (6.1[average with duplicate]-64 μ g/m³)
 - 118-A $(8-37 \,\mu g/m^3)$
 - 1,1,1-Trichloroethane increased in three of four locations and remained relatively unchanged at one location. Increases are listed below:
 - 015-A $(140-460 \,\mu g/m^3)$
 - 108-A (175[average with duplicate]-360 μg/m³)
 - 118-A (29-340 μ g/m³)
 - 1,2,4-Trimethylbenzene increased in two of four locations, decreased at one location and remained relatively unchanged at one location. Increases are listed below:
 - 015-A $(0.84-1.3 \,\mu g/m^3)$
 - 018-A (0.48 [average with duplicate]-0.85 μ g/m³)

Summary and Conclusions

Tetra Tech has completed additional indoor air quality and sub-slab vapor monitoring at Lockheed Martin's Middle River Complex located in Middle River, Maryland. The ongoing

vapor intrusion (VI) investigation seeks to evaluate whether volatile organic compounds (VOCs) in sub-slab vapors (associated with soil and groundwater chemicals of concern [COC] at the site) might be migrating into indoor air at site facilities. Additional indoor air and sub-slab vapor sampling was performed while the Building A sub-slab depressurization system was shut down between March 16 and April 8, 2013 to repair a blower failure.

The objective of this additional monitoring was to evaluate any potential changes in chemicals of concern in indoor air and sub-slab vapor at and around the Building A plating shop during the non-operational period, by comparing March 2013 analytical results to those obtained during the normally scheduled February 2013 (Round 14) monitoring event, while the sub-slab depressurization system was still operational. Sampling was performed at areas in and around the plating shop in Building A. The data set used for comparison to March 2013 data is comprised of indoor air and sub-slab vapor samples collected from the same locations in February 2013. All data were validated to ensure compliance with analytical method requirements. Results of the additional indoor air quality/sub-slab vapor samples led to the following conclusions:

- No indoor air concentrations of any chemicals of concern exceeded screening levels therefore, it appears that personnel were not exposed to concentrations of chemicals of concern that might pose potential risks while the system was shut down.
- Increased indoor air concentrations of trichloroethene (TCE), *cis*-1,2-Dichloroethene (*cis*-1,2-DCE), and 1,1-Dichloroethene (1,1-DCE) were detected (from February to March 2013) at locations both within and outside of the sub-slab depressurization (SSD) system radius of influence (ROI).
- Locations with increases in indoor air trichloroethene (TCE) also had increases in *cis*-1,2-Dichloroethene (*cis*-1,2-DCE). Similarly, locations with TCE concentration decreases in indoor air are the same locations where reductions in 1,1-Dichloroethene (1,1-DCE) were found.
- Trichloroethene (TCE) exceeded its sub-slab vapor screening level at all four sample locations (and in the duplicate sample). 1,1-Dichloroethene (1,1-DCE) exceeded its sub-slab vapor screening level at three of four sample locations, and 1,1-dichloroethane (1,1-DCA) and chloroform exceeded their respective sub-slab vapor screening levels at one location each.
- Rebound concentrations of trichloroethene (TCE), *cis*-1,2-Dichloroethene (*cis*-1,2-DCE) and 1,1-Dichloroethene (1,1-DCE) were observed in sub-slab vapor collected from the four locations within the sub-slab depressurization system radius of influence.
- Increased concentrations of chemicals of concern in indoor air (trichloroethene [TCE], *cis*-1,2-Dichloroethene [*cis*-1,2-DCE] and 1,1-Dichloroethene [1,1-DCE]) are believed to be associated with the rebound of these chemicals of concern in sub-slab vapor during sub-slab depressurization system shutdown, and is an indication of the potential for vapor intrusion. While none of the indoor air samples exceeded the trichloroethene (TCE) screening value of 8.8 μ g/m³, the detected concentrations were approaching this value, suggesting that active vapor mitigation within Building A remains appropriate.

• The sub-slab depressurization system is effectively controlling sub-slab vapor migration, and indoor air contaminant concentrations within its area of influence, and operation of the system should continue.

Sincerely,

Milal Mart

Michael Martin Program Manager Tetra Tech, Inc.

Attachment: Tables 1-4, Figure 1, Appendix A

cc:

REFERENCES

- 1. Tetra Tech (Tetra Tech, Inc.), 2006. Indoor-Air-Quality Assessment Work Plan for Buildings A, B, C, and VLS, Lockheed Martin Middle River Complex. November.
- 2. Tetra Tech (Tetra Tech, Inc.), 2013. Work Plan Addendum, Indoor Air and Sub-Slab-Vapor Monitoring Round 14, February 2013 Lockheed Martin Middle River Complex 2323 Eastern Boulevard Middle River, Maryland. January.
- 3. USEPA (United States Environmental Protection Agency), 1996. "Soil-Gas-Sampling Standard Operating Procedure #2042." United States Environmental Protection Agency Environmental Response Team. May 1. REV. #: 0.0.
- 4. USEPA (United States Environmental Protection Agency), 1999. Compendium of Methods for the Determination of Toxic Organic Compounds in Ambient Air, Second Edition. "Compendium Method TO-15 Determination of Volatile Organic Compounds (VOCs) in Air Collected in Specially Prepared Canisters and Analyzed by Gas Chromatography/Mass Spectrometry (GC/MS)." (USEPA/625/R-96/010b). Center for Environmental Research Information, Office of Research and Development, U.S. Environmental Protection Agency. Cincinnati, Ohio 45268. January.
- USEPA (United States Environmental Protection Agency), 2002. "Draft Guidance for Evaluating the Vapor Intrusion to Indoor-Air Pathway from Groundwater and Soils (Docket ID No. RCRA-2002-0033)." *Federal Register*: November 29, 2002 (Volume 67, Number 230).
- 6. USEPA (United States Environmental Protection Agency), 2004. *Sub-Slab Sampling and Analysis to Support Assessment of Vapor Intrusion*. United States Environmental Protection Agency, Office of Research and Development, National Risk Management Research Laboratory, Groundwater and Ecosystem Restoration Division. Ada, Oklahoma. May.
- 7. USEPA (United States Environmental Protection Agency), 2008. USEPA Contact Program **Functional** Guidelines for Superfund Laboratory National Organic-Method Data Review. USEPA Office of Superfund Remediation and Technology Innovation (OSRTI). Office of Solid Waste Emergency Response and (OSWER 9240.1-48, Washington, D.C. June. (USEPA-540-R-08-901).
- 8. USEPA (United States Environmental Protection Agency), 2012. *Regional Screening Levels for Chemical Contaminants at Superfund Sites*. EPA Office of Superfund and Oak Ridge National Laboratory. November.
- 9. USEPA (United States Environmental Protection Agency), 2013. OSWER Final Guidance for Assessing and Mitigating the Vapor Intrusion Pathway From Subsurface Sources to Indoor Air (External Review Draft) Office of Solid Waste and Emergency Response Washington, D.C. April.

TABLES

TABLE 1 MARCH 2013 INDOOR AIR RESULTS LOCKHEED MIDDLE RIVER COMPLEX MIDDLE RIVER, MARYLAND PAGE 1 of 2

SAMPLE ID SAMPLE DATE	OSHA PEL (µg/m3)	Industrial Air Screening Level (µg/m3)	KEY	IA-015-A-14A 28-Mar-13	IA-018-A-14A 27-Mar-13	IA-018-A-14A-D 27-Mar-13	IA-076-A-14A 28-Mar-13
				015-A	018-A		076-A
Volatile Organic Compounds (µg/m ³)							
BENZENE	319	16	са	1.1	0.58	0.55	0.62
CARBON TETRACHLORIDE	62,900	20	са	0.36 U	0.36 U	0.36 U	0.36 U
CHLORODIFLUOROMETHANE	3,590,000	220,000	nc	1.2	0.97	1	2.7
CHLOROFORM	240,000	5.3	са	0.2 U	0.2 U	0.2 U	0.5 J
DICHLORODIFLUOROMETHANE	4,950,000	440	nc	2.4	2.7	2.8	2.5
1,1-DICHLOROETHANE	400,000	77	са	0.22 U	0.22 U	0.22 U	0.82
1,2-DICHLOROETHANE	400,000	4.7	са	0.2 U	0.2 U	0.2 U	0.2 U
1,1-DICHLOROETHENE	NA	880	nc	0.22 U	1.5	1.3	8.1
CIS-1,2-DICHLOROETHENE	790,000			0.48 J	0.48 J	0.19 U	1.8
TRANS-1,2-DICHLOROETHENE	790,000	260	nc	0.19 U	0.19 U	0.19 U	0.19 U
ETHYLBENZENE	435,000	49	са	4.4	0.19 U	0.19 U	2.4
METHYL TERT-BUTYL ETHER	180,000 ^A	470	са	0.24 U	0.24 U	0.24 U	0.24 U
METHYLENE CHLORIDE	87,000	2,600	nc	24	0.99	0.74	1.3
NAPHTHALENE	50,000	3.6	са	0.25 U	1	1.3	1.2
TETRACHLOROETHENE	678,000	180	nc	0.39 U	0.39 U	0.39 U	0.39 U
TOLUENE	754,000	22,000	nc	99	57 J	22 J	70
1,2,4-TRICHLOROBENZENE	40,000 ^N	8.8	nc	0.45 U	0.45 U	0.45 U	0.45 U
1,1,1-TRICHLOROETHANE	1,900,000	22,000	nc	0.27 U	0.27 U	0.27 U	0.27 U
1,1,2-TRICHLOROETHANE	45,000	0.88	nc	0.2 U	0.2 U	0.2 U	0.2 U
TRICHLOROETHENE	537,000	8.8	nc	1.8	3.3	2.7	7.6 J
1,2,3-TRIMETHYLBENZENE	123,000	22	nc	0.18 U	0.18 U	0.18 U	0.18 U
1,2,4-TRIMETHYLBENZENE	123,000	31	nc	0.85	0.23 U	0.23 U	0.5 J
1,3,5-TRIMETHYLBENZENE	123,000			0.18 U	0.18 U	0.18 U	0.18 U
VINYL CHLORIDE	21,560	28	са	0.21 U	0.21 U	0.21 U	0.21 U
M+P-XYLENES	434000	440	nc	17	1.5	0.66 J	14
O-XYLENE	434000	440	nc	8.7	0.19 U	0.19 U	4.8
TOTAL XYLENES	434000	440	nc	25.7	1.5	0.66 J	18.8

-14A = sample collected during sub-slab depressurization system shutdown (March 2013) Shaded cells indicate a concentration greater than the risk -based screening level

-- = not available J = estimated value U = not detected USEPA = United States Environmental Protection Agency

TOTAL XYLENES values are calculated.

ca = screening value based on 1×10^{-5} carcinogenic risk

nc = screening value based on noncarcinogenic hazard index = 1

A = American Council of Governmental Industrial Hygienists

Theshold Limit Value N = National institute for Occupational Safety and Health

Recommended Expoesure Limit

OSHA PEL = Occupational Safety and Health Administration Permissible Exposure Limit Levels for Chemical Contaminants at Superfund Sites Nov-2012

TABLE 1 MARCH 2013 INDOOR AIR RESULTS LOCKHEED MIDDLE RIVER COMPLEX MIDDLE RIVER, MARYLAND PAGE 2 of 2

SAMPLE ID SAMPLE DATE	OSHA PEL (µg/m3)	Industrial Air Screening Level (µg/m3)	KEY	IA-079-A-14A 28-Mar-13	IA-093-A-14A 27-Mar-13	IA-108-A-14A 28-Mar-13	IA-116-A-14A 27-Mar-13	IA-118-A-14A 28-Mar-13	IA-138-A-14A 27-Mar-13
				079-A	093-A	108-A	116-A	118-A	138-A
Volatile Organic Compounds (µg/m³)					r		r		
BENZENE	319	16	са	0.75	0.62	2.5	0.49	0.65	1.2
CARBON TETRACHLORIDE	62,900	20	са	0.36 U					
CHLORODIFLUOROMETHANE	3,590,000	220,000	nc	2.2	2.5	1.5	0.97	7.2	0.93
CHLOROFORM	240,000	5.3	са	0.2 U					
DICHLORODIFLUOROMETHANE	4,950,000	440	nc	2.5	2.9	2.5	2.7	2.4	2.5
1,1-DICHLOROETHANE	400,000	77	са	1.4	0.22 U	0.22 U	0.22 U	2.8	0.22 U
1,2-DICHLOROETHANE	400,000	4.7	са	0.2 U					
1,1-DICHLOROETHENE	NA	880	nc	4.5	0.22 U	0.22 U	0.22 U	4.2	0.22 U
CIS-1,2-DICHLOROETHENE	790,000			0.85	0.19 U	0.64	0.19 U	0.19 U	0.19 U
TRANS-1,2-DICHLOROETHENE	790,000	260	nc	0.19 U					
ETHYLBENZENE	435,000	49	ca	1.3	0.19 U	4.6	0.19 U	1.5	0.19 U
METHYL TERT-BUTYL ETHER	180,000 ^A	470	ca	0.24 U					
METHYLENE CHLORIDE	87,000	2,600	nc	0.99	3.1	2.2	0.85	1.4	1.1
NAPHTHALENE	50,000	3.6	ca	0.25 U	0.69 J	0.64 J	0.25 U	0.25 U	0.25 U
TETRACHLOROETHENE	678,000	180	nc	0.39 U					
TOLUENE	754,000	22,000	nc	38	41	100	50	40	50
1,2,4-TRICHLOROBENZENE	40,000 ^N	8.8	nc	0.45 U					
1,1,1-TRICHLOROETHANE	1,900,000	22,000	nc	0.27 U	0.27 U	0.27 U	0.27 U	1	0.27 U
1,1,2-TRICHLOROETHANE	45,000	0.88	nc	0.2 U					
TRICHLOROETHENE	537,000	8.8	nc	8.2	1.2	5.6	0.71 J	2.9	2.7
1,2,3-TRIMETHYLBENZENE	123,000	22	nc	0.18 U	0.18 U	0.8	0.18 U	0.18 U	0.18 U
1,2,4-TRIMETHYLBENZENE	123,000	31	nc	0.6 J	0.8	2.6	0.8	0.6 J	0.23 U
1,3,5-TRIMETHYLBENZENE	123,000			0.18 U	0.18 U	0.65 J	0.18 U	0.18 U	0.18 U
VINYL CHLORIDE	21,560	28	ca	0.21 U					
M+P-XYLENES	434000	440	nc	9.4	1.3	19	1.1 J	8.7	1 J
O-XYLENE	434000	440	nc	2.4	0.19 U	9	0.19 U	2.1	0.19 U
TOTAL XYLENES	434000	440	nc	11.8	1.3	28	1.1 J	10.8	1 J

-14A = sample collected during sub-slab depressurization system shutdown (March 2013) Shaded cells indicate a concentration greater than the risk -based screening level

-- = not available

J = estimated value

U = not detected

USEPA = United States Environmental Protection Agency

TOTAL XYLENES values are calculated.

ca = screening value based on 1×10^{-5} carcinogenic risk

nc = screening value based on noncarcinogenic hazard index = 1

A = American Council of Governmental Industrial Hygienists Theshold Limit Value

 ${\sf N}={\sf N}{\sf ational}$ Institute for Occupational Safety and Health Recommended Exposure Limit

OSHA PEL = Occupational Safety and Health Administration Pemissible Exposure Limit Industrial Air Screening Levels from USEPA Regional Screening Levels for Chemical Contaminants at Superfund Sites Nov-2012

TABLE 2 FEBRUARY 2013 AND MARCH 2013 INDOOR AIR RESULTS LOCKHEED MARTIN MIDDLE RIVER COMPLEX MIDDLE RIVER, MARYLAND Page 1 of 3

SAMPLE ID SAMPLE DATE	OSHA PEL (µg/m3)	Industrial Air Screening Level (µg/m3)	KEY	IAQ-015-A-14 5-Feb-13 015-A	IA-015-A-14A 20130328 015-A	% change	IAQ-018-A-14- 5-Feb-13 018-A Avg	IA-018-A-14A-AVG 27-Mar-13 018-A Avg	% change	IAQ-076-A-14 5-Feb-13 076-A	IA-076-A-14A 28-Mar-13 076-A	% change
Volatile Organic Compounds (µg/m³)												
BENZENE	319	16	са	0.78 J	1.1	41%	0.99	0.565	-43%	1.1 J	0.62	-44%
CARBON TETRACHLORIDE	62,900	20	са	0.36 U	0.36 U	0%	0.44	0.36 U	N/A	0.36 U	0.36 U	0%
CHLORODIFLUOROMETHANE	3,590,000	220,000	nc	0.18 U	1.2	N/A	0.18 U	0.985	N/A	0.18 U	2.7	N/A
CHLOROFORM	240,000	5.3	са	0.2 U	0.2 U	0%	0.6	0.2 U	N/A	0.2 U	0.5 J	N/A
DICHLORODIFLUOROMETHANE	4,950,000	440	nc	2.7	2.4	-11%	3.05	2.75	-10%	2.6	2.5	-4%
1,1-DICHLOROETHANE	400,000	77	са	0.22 U	0.22 U	0%	0.22 U	0.22 U	0%	0.22 U	0.82	N/A
1,2-DICHLOROETHANE	400,000	4.7	са	0.2 U	0.2 U	0%	0.2 U	0.2 U	0%	0.2 U	0.2 U	0%
1,1-DICHLOROETHENE	NA	880	nc	0.22 U	0.22 U	0%	0.85	1.4	65%	0.22 U	8.1	N/A
CIS-1,2-DICHLOROETHENE	790,000			0.19 U	0.48 J	N/A	0.19 U	0.2875	N/A	0.19 U	1.8	N/A
TRANS-1,2-DICHLOROETHENE	790,000	260	nc	0.19 U	0.19 U	0%	0.19 U	0.19 U	0%	0.19 U	0.19 U	0%
ETHYLBENZENE	435,000	49	са	3.6 J	4.4	22%	0.19 U	0.19 U	0%	3.7 J	2.4	-35%
METHYL TERT-BUTYL ETHER	180,000 ^A	470	са	0.24 U	0.24 U	0%	0.24 U	0.24 U	0%	0.24 U	0.24 U	0%
METHYLENE CHLORIDE	87,000	2,600	са	1	24	2300%	0.335	0.865	158%	1.1	1.3	18%
NAPHTHALENE	50,000	3.6	са	0.53 J	0.25 U	N/A	0.9125	1.15	26%	2.9 J	1.2	-59%
TETRACHLOROETHENE	678,000	180	nc	0.39 U	0.39 U	0%	0.39 U	0.39 U	0%	0.39 U	0.39 U	0%
TOLUENE	754,000	22,000	nc	200	99	-51%	1.65	39.5	2294%	180	70	-61%
1,2,4-TRICHLOROBENZENE	40,000 ^N	8.8	nc	0.45 U	0.45 U	0%	0.45 U	0.45 U	0%	0.45 U	0.45 U	0%
1,1,1-TRICHLOROETHANE	1,900,000	22,000	nc	0.27 U	0.27 U	0%	0.27 U	0.27 U	0%	0.27 U	0.27 U	0%
1,1,2-TRICHLOROETHANE	45,000	0.88	nc	0.2 U	0.2 U	0%	0.2 U	0.2 U	0%	0.2 U	0.2 U	0%
TRICHLOROETHENE	537,000	8.8	nc	0.36 U	1.8	N/A	2.9	3	3%	1.3 J	7.6 J	485%
1,2,3-TRIMETHYLBENZENE	123,000	22	nc	0.18 U	0.18 U	0%	0.18 U	0.18 U	0%	0.18 U	0.18 U	0%
1,2,4-TRIMETHYLBENZENE	123,000	31	nc	0.55 J	0.85	55%	0.3325	0.23 U	N/A	1.7 J	0.5 J	-71%
1,3,5-TRIMETHYLBENZENE	123,000			0.18 U	0.18 U	0%	0.18 U	0.18 U	0%	0.55 J	0.18 U	N/A
VINYL CHLORIDE	21,560	28	ca	0.21 U	0.21 U	0%	0.21 U	0.21 U	0%	0.21 U	0.21 U	0%
M+P-XYLENES	434000	440	nc	16 J	17	6%	0.725	1.08	49%	15 J	14	-7%
O-XYLENE	434000	440	nc	5.5 J	8.7	58%	0.19 U	0.19 U	0%	3.6 J	4.8	33%
TOTAL XYLENES	434000	440	nc	21.5 J	25.7	20%	0.725	1.08	49%	18.6 J	18.8	1%

-14 = sample collected during Round 14 (February 2013)

-14A = sample collected during sub-slab depressurization system shutdown (March 2013)

Shaded cells indicate a concentration greater than the risk -based screening level

-- = not available

J = estimated value

U = not detected

USEPA = United States Environmental Protection Agency

TOTAL XYELENES values are calculated.

ca = screening value based on 1x 10⁻⁵ carcinogenic risk

nc = screening value based on noncarcinogenic hazard index = 1

A = American Council of Governmental Industrial Hygienists Theshold Limit Value

N = National Institute for Occupational Safety and Health Recommended Exposure Limit

OSHA PEL = Occupational Safety and Health Administration Pemissible Exposure Limit

Industrial Air Screening Levels from USEPA Regional Screening Levels for Chemical Chemical Contaminants mat Superfund Sites Nov-2012

Avg - Average

TABLE 2 FEBRUARY 2013 AND MARCH 2013 INDOOR AIR RESULTS LOCKHEED MARTIN MIDDLE RIVER COMPLEX MIDDLE RIVER, MARYLAND Page 2 of 3

SAMPLE ID SAMPLE DATE	OSHA PEL (µg/m3)	Industrial Air Screening Level (µg/m3)	KEY	IAQ-079-A-14 5-Feb-13 079-A	IA-079-A-14A 28-Mar-13 079-A	% change	IAQ-093-A-14 5-Feb-13 093-A	IA-093-A-14A 27-Mar-13 093-A	% change	IAQ-108-A-14- 5-Feb-13 108-A Avg	IA-108-A-14A 28-Mar-13 108-A	% change
Volatile Organic Compounds (µg/m³)												
BENZENE	319	16	са	1 J	0.75	-25%	0.81	0.62	-23%	1.005	2.5	149%
CARBON TETRACHLORIDE	62,900	20	са	0.36 U	0.36 U	0%	0.36 U	0.36 U	0%	0.41	0.36 U	N/A
CHLORODIFLUOROMETHANE	3,590,000	220,000	nc	0.18 U	2.2	N/A	0.18 U	2.5	N/A	0.18 U	1.5	N/A
CHLOROFORM	240,000	5.3	са	0.6 J	0.2 U	N/A	0.2 U	0.2 U	0%	0.2 U	0.2 U	0%
DICHLORODIFLUOROMETHANE	4,950,000	440	nc	2.9	2.5	-14%	2.8	2.9	4%	2.95	2.5	-15%
1,1-DICHLOROETHANE	400,000	77	са	0.22 U	1.4	N/A	0.22 U	0.22 U	0%	0.22 U	0.22 U	0%
1,2-DICHLOROETHANE	400,000	4.7	са	0.2 U	0.2 U	0%	0.2 U	0.2 U	0%	0.2 U	0.2 U	0%
1,1-DICHLOROETHENE	NA	880	nc	0.22 U	4.5	N/A	0.89	0.22 U	N/A	0.22 U	0.22 U	0%
CIS-1,2-DICHLOROETHENE	790,000			0.19 U	0.85	N/A	0.19 U	0.19 U	0%	0.19 U	0.64	N/A
TRANS-1,2-DICHLOROETHENE	790,000	260	nc	0.19 U	0.19 U	0%	0.19 U	0.19 U	0%	0.19 U	0.19 U	0%
ETHYLBENZENE	435,000	49	са	3.9 J	1.3	-67%	0.19 U	0.19 U	0%	2.45	4.6	88%
METHYL TERT-BUTYL ETHER	180,000 ^A	470	ca	0.24 U	0.24 U	0%	0.24 U	0.24 U	0%	0.24 U	0.24 U	0%
METHYLENE CHLORIDE	87,000	2,600	са	1.4	0.99	-29%	0.53	3.1	485%	1.175	2.2	87%
NAPHTHALENE	50,000	3.6	са	0.85 J	0.25 U	N/A	0.64 J	0.69 J	8%	0.25 U	0.64 J	N/A
TETRACHLOROETHENE	678,000	180	nc	0.39 U	0.39 U	0%	0.39 U	0.39 U	0%	0.39 U	0.39 U	0%
TOLUENE	754,000	22,000	nc	340	38	-89%	3.3	41	1142%	145	100	-31%
1,2,4-TRICHLOROBENZENE	40,000 ^N	8.8	nc	0.45 U	0.45 U	0%	0.45 U	0.45 U	0%	0.45 U	0.45 U	0%
1,1,1-TRICHLOROETHANE	1,900,000	22,000	nc	0.27 U	0.27 U	0%	0.27 U	0.27 U	0%	0.27 U	0.27 U	0%
1,1,2-TRICHLOROETHANE	45,000	0.88	nc	0.2 U	0.2 U	0%	0.2 U	0.2 U	0%	0.2 U	0.2 U	0%
TRICHLOROETHENE	537,000	8.8	nc	0.36 U	8.2	N/A	6.3	1.2	-81%	0.79	5.6	609%
1,2,3-TRIMETHYLBENZENE	123,000	22	nc	0.18 U	0.18 U	0%	0.18 U	0.18 U	0%	0.18 U	0.8	N/A
1,2,4-TRIMETHYLBENZENE	123,000	31	nc	1.1 J	0.6 J	-45%	0.23 U	0.8	N/A	0.675	2.6	285%
1,3,5-TRIMETHYLBENZENE	123,000			0.18 U	0.18 U	0%	0.18 U	0.18 U	0%	0.18 U	0.65 J	N/A
VINYL CHLORIDE	21,560	28	ca	0.21 U	0.21 U	0%	0.21 U	0.21 U	0%	0.21 U	0.21 U	0%
M+P-XYLENES	434000	440	nc	19 J	9.4	-51%	0.84 J	1.3	55%	13	19	46%
O-XYLENE	434000	440	nc	4.2 J	2.4	-43%	0.19 U	0.19 U	0%	2.9	9	210%
TOTAL XYLENES	434000	440	nc	23.2 J	11.8	-49%	0.84 J	1.3	55%	15.9	28	76%

-14 = sample collected during Round 14 (February 2013)

-14A = sample collected during sub-slab depressurization system shutdown (March 2013)

Shaded cells indicate a concentration greater than the risk -based screening level

-- = not available

J = estimated value

U = not detected

USEPA = United States Environmental Protection Agency

TOTAL XYELENES values are calculated.

ca = screening value based on 1×10^{-5} carcinogenic risk

nc = screening value based on noncarcinogenic hazard index = 1

A = American Council of Governmental Industrial Hygienists Theshold Limit Value

N = National Institute for Occupational Safety and Health Recommended Exposure Limit

OSHA PEL = Occupational Safety and Health Administration Pemissible Exposure Limit

Industrial Air Screening Levels from USEPA Regional Screening Levels for Chemical Chemical Contaminants mat Superfund Sites Nov-2012

Avg - Average

TABLE 2 FEBRUARY 2013 AND MARCH 2013 INDOOR AIR RESULTS LOCKHEED MARTIN MIDDLE RIVER COMPLEX MIDDLE RIVER, MARYLAND Page 3 of 3

SAMPLE ID SAMPLE DATE	OSHA PEL (µg/m3)	Industrial Air Screening Level (µg/m3)	KEY	IA-116-A-14A 27-Mar-13 116-A	IAQ-118-A-14 5-Feb-13 118-A	IA-118-A-14A 28-Mar-13 118-A	% change	IAQ-138-A-14 5-Feb-13 138-A	IA-138-A-14A 27-Mar-13 138-A	% change		
Volatile Organic Compounds (µg/m³)												
BENZENE	319	16	са	0.49	0.88 J	0.65	-26%	0.81	1.2	48%		
CARBON TETRACHLORIDE	62,900	20	са	0.36 U	0.36 U	0.36 U	0%	0.36 U	0.36 U	0%		
CHLORODIFLUOROMETHANE	3,590,000	220,000	nc	0.97	0.18 U	7.2	N/A	0.18 U	0.93	N/A		
CHLOROFORM	240,000	5.3	са	0.2 U	0.5 J	0.2 U	N/A	0.2 U	0.2 U	0%		
DICHLORODIFLUOROMETHANE	4,950,000	440	nc	2.7	2.8	2.4	-14%	2.9	2.5	-14%		
1,1-DICHLOROETHANE	400,000	77	са	0.22 U	0.22 U	2.8	N/A	0.22 U	0.22 U	0%		
1,2-DICHLOROETHANE	400,000	4.7	са	0.2 U	0.2 U	0.2 U	0%	0.2 U	0.2 U	0%		
1,1-DICHLOROETHENE	NA	880	nc	0.22 U	0.22 U	4.2	N/A	0.93	0.22 U	N/A		
CIS-1,2-DICHLOROETHENE	790,000			0.19 U	0.19 U	0.19 U	0%	0.19 U	0.19 U	0%		
TRANS-1,2-DICHLOROETHENE	790,000	260	nc	0.19 U	0.19 U	0.19 U	0%	0.19 U	0.19 U	0%		
ETHYLBENZENE	435,000	49	са	0.19 U	2.2 J	1.5	-32%	0.19 U	0.19 U	0%		
METHYL TERT-BUTYL ETHER	180,000 ^A	470	са	0.24 U	0.24 U	0.24 U	0%	0.24 U	0.24 U	0%		
METHYLENE CHLORIDE	87,000	2,600	са	0.85	0.74	1.4	89%	0.14 U	1.1	N/A		
NAPHTHALENE	50,000	3.6	са	0.25 U	0.85 J	0.25 U	N/A	0.85	0.25 U	N/A		
TETRACHLOROETHENE	678,000	180	nc	0.39 U	0.39 U	0.39 U	0%	0.39 U	0.39 U	0%		
TOLUENE	754,000	22,000	nc	50	60	40	-33%	2.7	50	1752%		
1,2,4-TRICHLOROBENZENE	40,000 ^N	8.8	nc	0.45 U	0.45 U	0.45 U	0%	0.45 U	0.45 U	0%		
1,1,1-TRICHLOROETHANE	1,900,000	22,000	nc	0.27 U	0.67 J	1	49%	0.27 U	0.27 U	0%		
1,1,2-TRICHLOROETHANE	45,000	0.88	nc	0.2 U	0.2 U	0.2 U	0%	0.2 U	0.2 U	0%		
TRICHLOROETHENE	537,000	8.8	nc	0.71 J	2.8 J	2.9	4%	4.5	2.7	-40%		
1,2,3-TRIMETHYLBENZENE	123,000	22	nc	0.18 U	0.18 U	0.18 U	0%	0.18 U	0.18 U	0%		
1,2,4-TRIMETHYLBENZENE	123,000	31	nc	0.8	0.95 J	0.6 J	-37%	0.23 U	0.23 U	0%		
1,3,5-TRIMETHYLBENZENE	123,000			0.18 U	0.18 U	0.18 U	0%	0.18 U	0.18 U	0%		
VINYL CHLORIDE	21,560	28	ca	0.21 U	0.21 U	0.21 U	0%	0.21 U	0.21 U	0%		
M+P-XYLENES	434000	440	nc	1.1 J	14 J	8.7	-38%	0.84 J	1 J	19%		
O-XYLENE	434000	440	nc	0.19 U	2.9 J	2.1	-28%	0.19 U	0.19 U	0%		
TOTAL XYLENES	434000	440	nc	1.1 J	16.9 J	10.8	-36%	0.84 J	1 J	19%		

-14 = sample collected during Round 14 (February 2013)

-14A = sample collected during sub-slab depressurization system shutdown (March 2013)

Shaded cells indicate a concentration greater than the risk -based screening level

U = not detected

USEPA = United States Environmental Protection Agency

TOTAL XYELENES values are calculated.

ca = screening value based on 1×10^{-5} carcinogenic risk

nc = screening value based on noncarcinogenic hazard index = 1

A = American Council of Governmental Industrial Hygienists Theshold Limit Value

N = National Institute for Occupational Safety and Health Recommended Exposure Limit

OSHA PEL = Occupational Safety and Health Administration Pemissible Exposure Limit

Industrial Air Screening Levels from USEPA Regional Screening Levels for Chemical Contaminants contaminats at Superfiund Sites Nov-212

Avg - Average

^{-- =} not available

J = estimated value

TABLE 3 MARCH 2013 SUB-SLAB VAPOR RESULTS LOCKHEED MARTIN MIDDLE RIVER COMPLEX MIDDLE RIVER, MARYLAND

SAMPLE ID SAMPLE DATE	Target Shallow Soil Gas Concentration	KEY	SV-015-A-14A 27-Mar-13	SV-018-A-14A 27-Mar-13	SV-018-A-14A-D 27-Mar-13	SV-108-A-14A 27-Mar-13	SV-118-A-14A 27-Mar-13
	(µg/m3)		015-A	018-A	018-A Dup	108-A	118-A
Volatile Organic Compounds (µg/n	n ³)		-	-		-	
BENZENE	533	са	0.32 J	5.2 J	10 J	2	5.5
CARBON TETRACHLORIDE	667	са	0.36 U	1.7	2.7	0.36 U	0.7 J
CHLORODIFLUOROMETHANE	7,333,333	nc	0.93	0.18 U	0.18 U	0.18 U	3.9
CHLOROFORM	177	са	26	4.3 J	8.3 J	8.3	280
DICHLORODIFLUOROMETHANE	14,667	nc	2.4	2	2.4	2.5	2.4
1,1-DICHLOROETHANE	2,567	са	170	800 J	1400 J	8300	830
1,2-DICHLOROETHANE	157	ca	0.66	14 J	29 J	2.4	0.2 U
1,1-DICHLOROETHENE	29,333	nc	3100	37000 J	67000 J	9500	5200
CIS-1,2-DICHLOROETHENE			7000	4400	5200	780	1100
TRANS-1,2-DICHLOROETHENE	8,667	nc	160	26 J	56 J	11	59
ETHYLBENZENE	1,633	са	4.5	0.19 U	0.79	0.66	34
METHYL TERT-BUTYL ETHER	15,667	ca	0.24 U	0.24 U	0.24 U	0.24 U	0.24 U
METHYLENE CHLORIDE	86,667	nc	0.14 U	0.14 U	0.14 U	0.14 U	31
NAPHTHALENE	120	са	0.25 U	0.25 UJ	2.7 J	0.59 J	22
TETRACHLOROETHENE	6,000	nc	1.2	28 J	64 J	2.3	4.3
TOLUENE	733,333	nc	160	36 J	82 J	64	37
1,2,4-TRICHLOROBENZENE	293	nc	0.45 U	0.45 U	0.45 U	0.45 U	0.45 U
1,1,1-TRICHLOROETHANE	733,333	nc	460	73 J	240 J	360	340
1,1,2-TRICHLOROETHANE	29	са	0.2 U	2.1	3.2	0.2 U	0.2 U
TRICHLOROETHENE	293	nc	8800	52000 J	96000 J	1800	17000
1,2,3-TRIMETHYLBENZENE	733	nc	0.18 U	0.18 U	0.18 U	0.18 U	22
1,2,4-TRIMETHYLBENZENE	1,033	nc	1.3	0.23 U	0.85	0.65 J	54
1,3,5-TRIMETHYLBENZENE			0.75	0.18 U	0.18 U	0.18 U	38
VINYL CHLORIDE	933	са	12	160 J	310 J	12	4.9
M+P-XYLENES	14,667	nc	23	1.9 J	3.2 J	3.5	280
O-XYLENE	14,667	nc	8.8	0.44 J	0.97	1.5	100
TOTAL XYLENES	14,667	nc	31.8	2.34 J	4.17	5	380

-14A = sample collected during sub-slab depressurization system shutdown (March 2013)

Shaded cells indicate a concentration greater than risk-based screening level

 $\mu g/m^3 = micrograms per cubic meter$

- -- = not available J = estimated value
- U = nondetect SV = sub-slab vapor
- ca = screening value based on carcinogenic effects

nc = screening value based on noncarcinogenic effects

(1) Screening values derived in accordance with Draft Guidance for Evaluating the Vapor Intrusion to Indoor Air Pathway from Groundwater and Soils (November 2002). Screening values are equal to United States Environmental Protection Agency (USEPA) Industrial Air Screening Values divided by an attenuation factor of 0.03, and correspond to a target cancer risk level of 1.0E-05.

TABLE 4 FEBRUARY 2013 AND MARCH 2013 SUB-SLAB VAPOR RESULTS LOCKHEED MARTIN MIDDLE RIVER COMPLEX MIDDLE RIVER, MARYLAND Page 1 of 2

SAMPLE ID SAMPLE DATE	Target Shallow Soil Gas Concentration (μq/m3) ¹	KEY	SV-015-A-14 5-Feb-13	SV-015-A-14A 27-Mar-13	% change	SV-018-A-14 5-Feb-13	SV-018-A-14 SV-018-A-14A-AVG 5-Feb-13 27-Mar-13	
	41 3 47		015-A	015-A		018-A	018-A Avg	
Volatile Organic Compounds (µg/m ³)								
BENZENE	533	ca	0.13 U	0.32 J	N/A	23	7.6	-67%
CARBON TETRACHLORIDE	667	ca	0.77 J	0.36 U	N/A	7	2.2	-69%
CHLORODIFLUOROMETHANE	7,333,333	nc	0.18 U	0.93	N/A	0.18 U	0.18 U	0%
CHLOROFORM	177	ca	6.8	26	282%	15	6.3	-58%
DICHLORODIFLUOROMETHANE	14,667	nc	2.7	2.4	-11%	2.8	2.2	-21%
1,1-DICHLOROETHANE	2,567	са	13	170	1208%	410	1100	168%
1,2-DICHLOROETHANE	157	са	0.2 U	0.66	N/A	44	21.5	-51%
1,1-DICHLOROETHENE	29,333	nc	490	3100	533%	54000	52000	-4%
CIS-1,2-DICHLOROETHENE			1300	7000	438%	3800	4800	26%
TRANS-1,2-DICHLOROETHENE	8,667	nc	23	160	596%	66	41	-38%
ETHYLBENZENE	1,633	ca	2.3 K	4.5	96%	0.19 U	0.4425	N/A
METHYL TERT-BUTYL ETHER	15,667	ca	0.24 U	0.24 U	0%	0.24 U	0.24 U	0%
METHYLENE CHLORIDE	86,667	nc	0.74	0.14 U	N/A	0.14 U	0.14 U	0%
NAPHTHALENE	120	са	0.8	0.25 U	N/A	0.25 U	1.4125	N/A
TETRACHLOROETHENE	6,000	nc	0.39 U	1.2	N/A	110	46	-58%
TOLUENE	733,333	nc	14	160	1043%	4.1	59	1339%
1,2,4-TRICHLOROBENZENE	293	nc	0.45 U	0.45 U	0%	0.45 U	0.45 U	0%
1,1,1-TRICHLOROETHANE	733,333	nc	140	460	229%	270	156.5	-42%
1,1,2-TRICHLOROETHANE	29	ca	0.2 U	0.2 U	0%	6	2.65	-56%
TRICHLOROETHENE	293	nc	710	8800	1139%	95000	74000	-22%
1,2,3-TRIMETHYLBENZENE	733	nc	0.18 U	0.18 U	0%	0.18 U	0.18 U	0%
1,2,4-TRIMETHYLBENZENE	1,033	nc	0.85	1.3	53%	0.23 U	0.4825	N/A
1,3,5-TRIMETHYLBENZENE			0.18 U	0.75	N/A	0.18 U	0.18 U	0%
VINYL CHLORIDE	933	ca	1.4	12	757%	170	235	38%
M+P-XYLENES	14,667	nc	8.8 J	23	161%	0.62 J	2.55	311%
O-XYLENE	14,667	nc	8.5	8.8	4%	0.19 U	0.705	N/A
TOTAL XYLENES	14,667	nc	17.3 J	31.8	84%	0.62 J	3.255	425%

-14 =sample collected during Round 14 (February 2013)

-14A = sample collected during sub-slab depressurization system

shutdown (March 2013)

Notes: All sample concentrations are in micrograms per cubic

meter (µg/m3)

Shaded cells indicate a concentration greater than risk-based

screening level

 $\mu g/m^3$ = micrograms per cubic meter

-- = not available

U = nondetect

ca = screening value based on carcinogenic effects

nc = screening value based on noncarcinogenic effects

TOTAL XYELENES values are calculated.

Avg - Average

(1) Screening values derived in accordance with Draft Guidance for Evaluating the Vapor Intrusion to Indoor Air Pathway from Groundwater and Soils (November 2002). Screening values are equal to United States Environmental Protection Agency (USEPA) Industrial Air Screening Values divided by an attenuation factor of 0.03, and correspond to a target cancer risk level of 1.0E-05.

TABLE 4 FEBRUARY 2013 AND MARCH 2013 SUB-SLAB VAPOR RESULTS LOCKHEED MARTIN MIDDLE RIVER COMPLEX MIDDLE RIVER, MARYLAND Page 2 of 2

SAMPLE ID SAMPLE DATE	Target Shallow Soil Gas Concentration (ug/m3) ¹	KEY	SV-108-A-14-AVG 5-Feb-13	SV-108-A-14A 27-Mar-13	% change	SV-118-A-14 5-Feb-13	SV-118-A-14A 27-Mar-13	% change				
	(13 · · /		108-A Avg	108-A		118-A	118-A					
Volatile Organic Compounds (µg/m³)												
BENZENE	533	са	1.5	2	33%	1.9 J	5.5	189%				
CARBON TETRACHLORIDE	667	са	0.41	0.36 U	N/A	0.83 J	0.7 J	-16%				
CHLORODIFLUOROMETHANE	7,333,333	nc	0.18 U	0.18 U	0%	0.18 U	3.9	N/A				
CHLOROFORM	177	са	7.9	8.3	5%	55	280	409%				
DICHLORODIFLUOROMETHANE	14,667	nc	2.7	2.5	-7%	3.2 J	2.4	-25%				
1,1-DICHLOROETHANE	2,567	са	3050	8300	172%	61	830	1261%				
1,2-DICHLOROETHANE	157	са	1.7	2.4	41%	0.2 U	0.2 U	0%				
1,1-DICHLOROETHENE	29,333	nc	3850	9500	147%	1100	5200	373%				
CIS-1,2-DICHLOROETHENE			330	780	136%	410 J	1100	168%				
TRANS-1,2-DICHLOROETHENE	8,667	nc	6.1	11	80%	13	59	354%				
ETHYLBENZENE	1,633	са	1.12	0.66	-41%	75	34	-55%				
METHYL TERT-BUTYL ETHER	15,667	ca	0.24 U	0.24 U	0%	0.24 U	0.24 U	0%				
METHYLENE CHLORIDE	86,667	nc	0.985	0.14 U	N/A	12 J	31	158%				
NAPHTHALENE	120	ca	36.95	0.59 J	-98%	35	22	-37%				
TETRACHLOROETHENE	6,000	nc	2.45	2.3	-6%	1.9 J	4.3	126%				
TOLUENE	733,333	nc	6.1	64	949%	8	37	363%				
1,2,4-TRICHLOROBENZENE	293	nc	0.45 U	0.45 U	0%	0.45 U	0.45 U	0%				
1,1,1-TRICHLOROETHANE	733,333	nc	175	360	106%	29	340	1072%				
1,1,2-TRICHLOROETHANE	29	ca	0.2 U	0.2 U	0%	0.2 U	0.2 U	0%				
TRICHLOROETHENE	293	nc	590	1800	205%	5100	17000	233%				
1,2,3-TRIMETHYLBENZENE	733	nc	1.4	0.18 U	N/A	22	22	0%				
1,2,4-TRIMETHYLBENZENE	1,033	nc	5.15	0.65 J	-87%	92	54	-41%				
1,3,5-TRIMETHYLBENZENE			3.05	0.18 U	N/A	50	38	-24%				
VINYL CHLORIDE	933	са	12	12	0%	2.9 J	4.9	69%				
M+P-XYLENES	14,667	nc	7.3	3.5	-52%	810	280	-65%				
O-XYLENE	14,667	nc	2.85	1.5	-47%	200	100	-50%				
TOTAL XYLENES	14,667	nc	10.15	5	-51%	1010	380	-62%				

-14 =sample collected during Round 14 (February 2013)

-14A = sample collected during sub-slab depressurization system shutdown (March 2013)

Notes: All sample concentrations are in micrograms per cubic meter (µg/m3)

Shaded cells indicate a concentration greater than risk-based screening level

 μ g/m³ = micrograms per cubic meter

-- = not available

U = nondetect

ca = screening value based on carcinogenic effects

nc = screening value based on noncarcinogenic effects

TOTAL XYELENES values are calculated.

Avg - Average

(1) Screening values derived in accordance with Draft Guidance for Evaluating the Vapor Intrusion to Indoor Air Pathway from Groundwater and Soils (November 2002). Screening values are equal to United States Environmental Protection Agency (USEPA) Industrial Air Screening Values divided by an attenuation factor of 0.03, and correspond to a target cancer risk level of 1.0E-05.

FIGURE 1

Map Document: (K:\GProject\middle_river\Maps\Block I bldg A_March 2013 SSD System Shutdown exceedances.mxd 5/20/2013 - 11:56:41 AM

APPENDIX A FIELD DOCUMENTATION AND DATA VALIDATION REPORTS

				P	ageof
Project	Site Name:	MECSUTIAO	Date:	3/2 <u>7/13,</u>	3/28/13
Project	Number - Task: _	112704792	Sampled	d By: <u>TA</u>	
SAMPLIN	IG DATA:				
	SOIL VAPO	DR SAMPLE 3/27	INDOOR A	IR QUALITY SAN	IPLE 3/28
_SV San	nple ID: 5V-C	15-A-14A	IAQ Sample ID:	1-015-A-	-14 <u>A</u>
SV Car	iister #: <u>3</u>	57	IAQ Canister #:	556	
SV Reg	julator #: 1	11	IAQ Regulator #:	299	
SV Sta	rt Time:	048	IAQ Start Time:	0924	
SV Star	rt Pressure:	-30	IAQ Start Pressure:	-18.5	
<u>SV Stop</u> SV Stop	o Time: o Pressure:	1158 -2	IAQ Stop Time:	1739 -1	
SAMPLE	COLLECTION IN	FORMATION:			
	Analysis	Cor	ntainer Requirements		Collected
	TOIS	16	JUMMA		
	-21 M.T.F.				
LOCATIO	N:				
7	BUILDIN	G A PLATIN	16 SHOP		
OBSERV/	ATIONS / NOTES:				
Circle if A	pplicable:		Signature(s):	/ /	
MS/MSD	Duplicate ID No.:		1-10	-1/-	
					· · · ·

TŁ

TETRA TECH

				Page] of]
Project Site Name: MR Project Number - Task: 100	_5V+1AQ	Date:	By: <u>7</u> 7	<i> 27/13</i> +
SAMPLING DATA:				
SOIL VAPOR SAM	IPLE	INDOOR AI	R QUALITY S	SAMPLE
SV Sample ID: $5V-018$ SV Canister #: 98 SV Regulator #: 59 SV Start Time: 1030 SV Start Pressure: 1212 SV Stop Time: -20 SV Stop Pressure: -12	-A-14A 	IAQ Sample ID: IA IAQ Canister #: IA IAQ Regulator #: IA IAQ Start Time: IA IAQ Start Pressure: IA IAQ Stop Time: IA IAQ Stop Pressure: IA	-018 1183 271 095 -30 180 -11	- A -14A 7 2
		- Haramatiana	and the strength	
SAMPLE COLLECTION INFORM	ATION:			
Analysis	Сог	ntainer Requirements		Collected
	177	SI I AA AA A		
				~
LOCATION:			e Sun nën na Ur	
BUILDING /	t Basema	NT IN PUR	1P Ro	0M
UDSERVATIONS/ NUTES:		046	10011110	1
DUPLICATES	CAN	120	TOUM	<u>'</u>
EL 101 -4	-14A 554	r — ·	-29/-3	5
	· · · -		-201-	1
IA - DUP1-A	-14A 1174	77	- 30/-	1
Circle if Applicable:		Signature(s)	1	
MS/MSD Duplicate ID No.: SV-	DUP1-A-14A		h	
	1001 - A-14A			

	·····			2		Page of
Project	Site Name: M	RCSV+1A	Ð	Date: 3	127/13.3	128/B
Project	Number - Task:	12IC0479	12	Sample	d By:	TA
			A. Jonation			
SAMPLIN	IG DATA:		-			
	SOIL VAPOR SA	MPLE 3/27		INDOOR A		SAMPLE 3/28
SV Sample ID: SV-108-A-14A SV Canister #: /33 SV Regulator #: /167 SV Start Time: /053 SV Start Pressure: -28 SV Stop Time: /201		IAQ Sample ID: IA-108-A-14A IAQ Canister #: 360 IAQ Regulator #: 187 IAQ Start Time: 092 6 IAQ Start Pressure: -30				
SV Stor)			-10)
<u>37 310</u>				op Pressure:		
SAMPLE	COLLECTION INFORM	ATION:				
-	Analysis	Cor	ntainer Req	uirements		Collected
	-1012	<u> </u>	50	MMA		
			4	-		
LOCATIO	N:					
SMALL ROOM EAST OF PLATING SHOP						
OBSERV	ATIONS / NOTES:			-		
GREASE FROM NEARBY MACHINERY ON FLOOR						
Circle if A	pplicable:		S	ignature(s)	1	1
MS/MSD	Duplicate ID No.:			P	1-	1

TE TETRA TECH

		SAM		Page of		
Project S	Site Name: MR	CSV+1AC	Date: 3/27/13,-	3/28/13		
Project N	lumber - Task:2	JC0479	Sampled By:	TA		
SAMPLIN	G DATA:					
Name and Address of States	SOIL VAPOR SAM	NPLE 3/27	INDOOR AIR QUALIT	Y SAMPLE 3/28		
Sole VAPOR SAMPLE $3/27$ SV Sample ID: $5V-118-A-14A$ SV Canister #: 429 SV Regulator #: 176 SV Start Time: 1102 SV Start Pressure: -30 SV Stop Time: 1207 SV Stop Pressure: 0		INDOOR AIR QUALITY SAMPLE $3/3/8$ IAQ Sample ID: $//A - //8 - A - /4A$ IAQ Canister #: $5 - 44$ IAQ Canister #: $5 - 44$ IAQ Regulator #: 2.95 IAQ Start Time: 0935 IAQ Start Pressure: -30 IAQ Stop Time: $/74/8$ IAQ Stop Time: -4				
<u></u>				/		
SAMPLE (COLLECTION INFORM	ATION:				
	Analysis	Co	ntainer Requirements	Collected		
	TOIS	11	SUMMA			
			1			
LOCATIO	N:					
IN CONTROLLAD ENVIRONMENT ROOM EAST OF BUILDING & PLATING SHOP						
OBSERVA	TIONS / NOTES:					
Circle if A	plicable:		Signature(s)	1		
MS/MSD	Duplicate ID No.:		The			

						Page _ l_of _ l
Project	Site Name: M	EC SV + 1A	Q	Date:	3/	28/13
Project	Number - Task:	aICO479	ລ	Sampled By:		TA
CAMPLIN	O DATA			a —		
SAMPLIN		MDLE	T		1.1734.4	
	SUL VAPOR SP			INDUUR AIR QUA		SAMPLE
<u>SV San</u>	nple ID:		IAQ S	ample ID: 1A-0	76	-A-14A
<u>SV Can</u>	ister #:		IAQ C	anister #: / 2	<u>>8</u>	
SV Reg	ulator #:			egulator #: // 2	57	•
<u>SV Star</u>	t Time:		IAQ SI	tart Time: 09	38	
SV Star	t Pressure:			tart Pressure:	-30	2
<u>SV Stop</u> <u>SV Stop</u>	SV Stop Time: SV Stop Pressure:		IAQ Stop Time: 1758 IAQ Stop Pressure: 0			
SAMPLE	COLLECTION INFORM	IATION:				
	Analysis	Co	ntainer Rec	quirements		Collected
	7015		SUMA	14		~
	10					
	N•		ilea anna anna anna anna anna anna anna a			
LOUAIIO	_	<u> </u>				
NORTH CRUTEAL PORTION OF BUILDING A IN MIDDLE OF CONNECTING ACCESS WALKWAY						
OBSERVA	TIONS / NOTES:					
	2					
Circle if A	oplicable:		1	Signature(s);	1	
MS/MSD	Duplicate ID No.:			1/		

Æ

TETRA TECH SOIL VAPOR AND INDOOR AIR QUALITY SAMPLE LOG SHEET

					Page of
Project S	Site Name:	ec sut in	1Q Date:	3	128/13
Project N	Number - Task:	2IC04792	R Samp	led By:	TA
SAMPLIN	G DATA:				
	SOIL VAPOR SA	MPLE	INDOOR	AIR QUALITY	SAMPLE
SV Sam	ple ID:		IAQ Sample ID:	1A-07	9-A-14A
SV Cani	ster #:		IAQ Canister #:	55	8
SV Reg	ulator #:		IAQ Regulator #:	17;	₹
SV Start	t Time:		IAQ Start Time:	0930	<u>م</u>
SV Start	t Pressure:		IAQ Start Pressure	- 3	0
SV Stop	Time:		IAQ Stop Time:	/75	-0
SV Stop	Pressure:		IAQ Stop Pressure:	0	
SAMPLE	COLLECTION INFORM	ATION:			
	Analysis	Co	ntainer Requirements		Collected
	1015	11-	BUMMA		
LOCATIO	N:				
B	DILDING A	NEAR	AUTOCIA	VES	
OBSERVA	TIONS / NOTES:				
Circle if A	pplicable:		Signature(e)	. /	
MS/MSD	Duplicate ID No.:		K	/	-07

						Page	<u>l_{of}]</u>
Project S	ite Name: MC	C SU + 1A	Q	Date:		3/27/	/13
Project N	lumber - Task:	250470	オス	Sampl	ed By:	TA	
SAMPLING	G DATA:						
	SOIL VAPOR SA	MPLE	1.	INDOOK	AIR QUALITY	SAMPLE	
<u>SV Sam</u>	ple ID:		IAQ Sa	ample ID:	<u>A-09</u>	<u>3-A</u>	-14A
SV Cani	ster #:		IAQ Ca	anister #:	542		
SV Regu	ilator #:		IAQ Re	egulator #:	180		
SV Start	Time:		IAQ St	art Time:	1020		
SV Start	Pressure:		IAQ St	art Pressure:	-28		
SV Stop	Time:		IAQ St	op Time:	181	6	
SV Stop	Pressure:		IAQ St	op Pressure:			
SAMPLE (COLLECTION INFORM	MATION:					
	Analysis	Co	ntainer Rec	quirements		Collec	cted
	TAIS	<u> </u>	5	IMMA	1915 A.	-1	/
	R						
LUCATIO	N				<u> </u>		USIT
	Southen	WD OF	Ø		NG A	5422	MWI
OBSERVA	TIONS / NOTES:						
Circle if A	oplicable:			Signature(s)	1/		
MS/MSD	Duplicate ID No.:			P	\sim		-/

R

				Page of
Project S Project N	Site Name: Number - Task:	2 I CO + 10	10Date:12Sampled	<u>3/27/13</u> By: <u>TA</u>
SAMPLIN	G DATA:			
	SOIL VAPOR SAI	MPLE	INDOOR AII	R QUALITY SAMPLE
_SV Sam	ple ID:		IAQ Sample ID: 1A-	-116-A-14A
<u>SV Cani</u>	ister #:		IAQ Canister #:	571
SV Regi	ulator #:	······································	IAQ Regulator #:	262
SV Start	t Time:		IAQ Start Time:	1013
SV Start	t Pressure:		IAQ Start Pressure:	-28
<u>SV Stop</u> SV Stop	Time:		IAQ Stop Time:	0 1202
		-		Collected
	Analysis	Co Co	ontainer Requirements	
	Analysis	Cc	ontainer Requirements	Conected
	TOIS			
	TOIS			
LOCATIO	TOIS N:		BUMMA	
LOCATIO	Analysis TOIS N: BUILDING	A BASS	SUMMA SUMMA	
LOCATIO	Analysis TOIS N: BUILDING	A BASS	SUMMA SUMMA EMSUT	
OBSERVA	TOIS N: DILDING	A BASS	SUMMA SUMMA SMENT	
LOCATION OBSERVA	Analysis TOIS N: DUILDING ATIONS / NOTES:	A BASS	Signature(s)	

|--|

TETRA TECH

					Page of [
Project S Project N	Site Name: <u>MR</u> Jumber - Task: <u>1</u>	<u>210479</u>	Date:	:	5/27/13 TA	
SAMPLIN	G DATA:					
	SOIL VAPOR SA	MPLE	INDOOF	R AIR QUALITY	SAMPLE	
<u>SV Sam</u> <u>SV Cani</u> <u>SV Regu</u> <u>SV Start</u> <u>SV Start</u> <u>SV Stop</u>	ple ID: ster #: ulator #: Time: Pressure: Time: Pressure:		IAQ Sample ID: IAQ Canister #: IAQ Regulator #: IAQ Start Time: IAQ Start Pressure IAQ Stop Time: IAQ Stop Pressure	1A-138 367 296 102 : -30	-A-14A 3 > 8 7	
SAMPLE (COLLECTION INFORM	ATION:				
			ntainer Requirements		Collected	
	/ maryono	1				
	1015	16	SUMMA			
LOCATIO	N:					
BUILDING A BASEMENT						
OBSERVA	TIONS / NOTES:					
Circle if A	pplicable:		Signature(s	s): /		
MS/MSD						

		Centek Cl	nain of (Custody		Site Name: Middle Rive	r	Detection Limit	Report Level
Centek Laboratorias		143 Midler Parl	k Drive			Project: SV AND	JAQ	5ppbv	Level I
	,	Syracuse, NY 1 315-431-9730 www.CentekLa	13206 b s.com	Vapor Intrusio	n & IAQ	PO#: 112IC04792 Quote # Q-1653 Other: BO3569	-03	x 1ug/M3 1ug/M3 +TCE .25	Level II Cat "B" Like
Turnaround Time:	Check One	Rush TAT Surcharge %	Due Date:	Company:	Tetra Tech Ir	IC.	Company: Check Here	If Same:	u
5 Business Days 4 Business Days	x	0% 25% .		Report to: Address:	2171 W. Park	Court, Suite E	Invoice to: Address:		<u></u>
3 Business Days 2 Business Days Next Day by 5pm		50% 75%	·	City, State, Zip	Stone Mounta	ain, GA 30087	City, State, Z	lip	
Next Day by Spin Next Day by Noon Same Day		150% 200%	-	Phone:	Joseph.Samuels (770) 413-096	@tetratech.com huck@tetratech.com	Phone ⁻		
Sample ID	e de la compañía Traisteoir	Date	Sampled	Canister Number	Regulator Number	Analysis Request		Comments ກາທຮຽ	Vacuum Start/Stop
5V-018-A-	14A	3/27	1/13	98	59	T015	1030	6/1215	-29/-4
5V-015-A-	<u>14A</u>	3/27	113	357	111	T015	1042	8 / 1158	-30/-2
<u>- 71-168-A-</u>	144	3/27	7/13	/33	1167	T015	105	<u>3/1201</u>	-28/0
<u>DV-118-A-</u>	144	3/2	7/13	429	176	T015	1102	<u> 1207</u>	-30/0
<u> JV-DUP1-A-</u>	- <i>147</i>	3/2	7/13	554		T015		·/	-29/-3
1A-018-A-	14A	3/27	<u>v/[3</u>	1/83	271	7015	095	7/ 1807	-30/-11
<u>14-116-A-</u>	14A	<u> 3/a</u> -	7/13	571	262	7015	1013	1808	-28'/0'
1A-138-A-	14A	3/2	7/13	1.367	296	T015	1023	3/ 1818	-30 /-7
<u>14-093-A</u>	-14A	<u>3/a</u>	1/13	542	180	TOIS	1020	1816	-28/-1
<u> 1A-DUP1-A</u>	-14A	3/2	7/13	1.174	177	T015		/	-30/-1
						·····		······································	
		•	·		\sum				
									· · · · · · · · · · · · · · · · · · ·
						2			
Chain of Custody		Print Namo			Gianatives		Dete		
Sampled by:			A.DANIA	HIMIG	oignaiure		Date/Time		it: :kup/Dropoff
Relinguished by:		1001 1	<u>, , , , , , , , , , , , , , , , , , , </u>	VIIBC.			1845		
Received at Lab by:		San	Seal	h	Ď	d.l.	3/28/1-	For LAB USE ONLY	307079 \$
*** By signing Centek Lat	os Chain	of Custody, ye	ou are acce	epting Centek L	abs Terms an	d Conditions listed on	the peverse sid	de.	<u></u>

	Centek Chain of (Custody		Site Name: Middle River		Detection Limit	Report Level
Centek Løborøtories	143 Midler Park Drive			Project SVAN	SIAQ	5ppbv	Level i
	Syracuse, NY 13206 315-431-9730 www.CentekLabs.com	Vapor Intrusio	n & IAQ	PO#: 112IC04792- Quote # Q-1653 Other: BO3569	-03	X 1ug/M3 1ug/M3 +TCE .25	Level II Cat "B" Like
Cheo Turnaround Time: One	k Rush TAT Due Surcharge % Date:	Company:	Tetra Tech, Ir	IC.	Company: Check Here	If Same: 🔽	<u> </u>
5 Business Days x 4 Business Days 3 Business Days	0% 25% 50%	Report to: Address: City, State, Zip	2171 W. Park	Court, Suite E	<i>Invoice to:</i> Address: City, State, 2	Zip	
2 Business Days	75% 100% 150%	Email:	Stone Mounta Eric.Samuels Joseph.Samo	ain, GA 30087 @tetratech.com huck@tetratech.com	Email:		
Same Day	200%	Phone:	(770) 413-096	35	Phone:		
Sample ID	Date Sampled	Canister Number	Regulator Number	Analysis Request		Comments TIMES	Vacuum Start/Stop
1A-015-A-141	9 3/28/13	556	299	7015	09	24/1739	-185/-1
1A- 079 A 111A	1 3/28/13	544	15	7015	09	55/ 1748	-30/-4
IA ATLANDA	3/28/13	120	110	-1015	09	<u>50/ 1/50</u>	-30/0
1A - 108 - 4.14A	3/20/15	20	1121	1015	07	50/1/20	-30/ 4
	JIAOTIS	100	+ 0/	1013	010	e/1/15	-50/ -10
						······································	· · · · · · · · · · · · · · · · · · ·
		Ne					2
						5	
							· · · · <u>· · · · · · · · · · · · · · · </u>
				<u> </u>			
<u> </u>	-					<u> </u>	
				-		<u> </u>	
· · · · · · · · · · · · · · · · · · ·		1224					
Chain of Custody	Print Name		Signature		Date/Time	Courier: CIRCLE ON	E a state and a state of the st
Sampled by:	TONY APANAVI	965	1/m	2/1-1	3/29/13	FedEx DPS Pic	kup/Dropoff
Relinquished by:				1/	1100	For LAB USE ONLY	
Received at Lab by:	Jandrala			Jcal.	4/1/13	Work Order #	<u>304005</u>

** By signing Centek Labs Chain of Custody, you are accepting Centek Labs Terms and Conditions listed on the reverse side.

Tetra Tech, INC

TO:	E. SAMUELS	DATE:	MAY 8, 2013
FROM:	A. COGNETTI	COPIES:	DV FILE
SUBJECT:	ORGANIC DATA VALIDATION - VOC LOCKHEED MIDDLE RIVER SAMPLE DELIVERY GROUP (SDG) - 0	01303079	

SAMPLES: 10/Air/VOC

IA-018-A-14A	IA-093-A-14A	IA-116-A-14A	IA-138-A-14A
IA-DUP1-A-14A	SV-015-A-14A	SV-018-A-14A	SV-108-A-14A
SV-118-A-14A	SV-DUP1-A-14A		

<u>Overview</u>

The sample set for Lockheed Middle River SDG C1303079 consisted of five (5) indoor air samples and five (5) soil vapor air samples. The air samples were analyzed for a select list of volatile organic compounds (VOC). Two (2) field duplicate pairs were associated with this sample delivery group (SDG): IA-DUP1-A-14A/IA-018-A-14A and SV-DUP1-A-14A/SV-018-A-14A.

The samples were collected by Tetra Tech on March 27, 2013 and sent to Centek Laboratories, LLC. The laboratory analyzed the samples in accordance with EPA Method TO-15 analytical and reporting protocols.

The data contained in this SDG were validated with regard to the following parameters: data completeness, holding times, GC/MS tuning, initial/continuing calibrations, laboratory method blank/canister blank results, blank spike/blank spike duplicate results, surrogate spike recoveries, internal standard recoveries, chromatographic resolution, compound identification, compound quantitation, field duplicate precision and detection limits. Areas of concern are listed below.

Major Issues

No major issues were identified.

Minor Issues

- Field duplicate imprecision was noted in the field duplicate pair IA-DUP1-A-14A and IA-018-A-14A. The relative percent differences (RPDs) were greater than the 50% quality control limit for cis-1,2dichloroethene, m&p xylenes and toluene. The positive toluene results were qualified as estimated (J) in the field duplicate pair IA-DUP1-A-14A and IA-018-A-14A. No action was taken on the positive and nondetected cis-1,2-dichloroethene and m&p xylenes results. The variances for these analytes were less than 2X the reporting limit.
- Field duplicate imprecision was noted in the field duplicate pair SV-DUP1-A-14A and SV-018-A-14A. The RPDs were greater than the 50% quality control limit for several analytes. As noted on the field duplicate precision table included in Appendix C, several analytes were diluted in the samples at different dilutions. The analytes were 1,1,1-trichloroethane, 1,1-dichloroethane, 1,1dichloroethene, benzene and trichloroethene. The positive 1,1,1-trichloroethane, 1,1dichloroethane, 1,1-dichloroethene, benzene and trichloroethene results were qualified as estimated (J). The RPDs for 1,2-dichloroethane, chloroform, m&p xylenes, tetrachloroethene, toluene, trans-1,2-dichloroethene and vinyl chloride were greater than the 50% quality control limit.
The positive results in the field duplicate samples were greater than the reporting limit. The positive 1,2-dichloroethane, chloroform, m&p xylenes, tetrachloroethene, toluene, trans-1,2-dichloroethene and vinyl chloride results were qualified as estimated (J). In addition, the variance for naphthalene was greater than 2X the reporting limit. The positive and nondetected naphthalene results were qualified as estimated (J) and (UJ), respectively.

• Positive results below the Reporting Limit (RL) and above the detection limit were qualified as estimated, (J), due to uncertainty near the detection limit.

Additional Comments

Samples were analyzed at the following dilutions:

- SampleDilutionIA-018-A-14A10X (toluene)IA-093-A-14A10X (toluene)IA-116-A-14A10X (toluene)
- IA-138-A-14A 10X (toluene)
- IA-DUP1-A-14A 10X (toluene)
- SV-015-A-14A 10X (chloroform, m&p xylenes, o-xylene, vinyl chloride), 40X (1,1,1-trichloroethane, 1,1-dichloroethane, toluene, trans-1,2-dichloroethene), 810X (1,1-dichloroethene, cis-1,2-dichloroethene, trichloroethene)
- SV-018-A-14A 10X (1,1,1-trichloroethane, 1,2-dichloroethane, tetrachloroethene, toluene, trans-1,2dichloroethene, 40X (vinyl chloride), 810X (1,1-dichloroethane, cis-1,2dichloroethene), 7290X (1,1-dichloroethene, trichloroethene)
- SV-108-A-14A 10X (toluene, trans-1,2-dichloroethene, vinyl chloride), 40X (1,1,1-trichloroethane), 810X (cis-1,2-dichloroethene, trichloroethene), 1620X (1,1-dichloroethane, 1,1dichloroethene)
- SV-118-A-14A 10X (1,2,3-trimethylbenzene, 1,2,4-trimethylbenzene, 1,3,5-trimethylbenzene, ethylbenzene, methylene chloride, naphthalene, o-xylene, toluene, trans-1,2-dichloroethene), 40X (1,1,1-trichloroethane, chloroform, m&p xylenes), 810X (1,1-dichloroethane, 1,1-dichloroethene, cis-1,2-dichloroethene), 1620X (trichloroethene)
- SV-DUP1-A-14A 10X (1,2-dichloroethane, benzene, tetrachloroethene, toluene, trans-1,2dichloroethene), 40X (1,1,1-trichloroethane, vinyl chloride), 2430X (1,1dichloroethene, cis-1,2-dichloroethene), 9720X (1,1-dichloroethene, trichloroethene)

The laboratory reported the VOC air result concentrations in units of μ g/m3 and also ppbv on the sample forms. The results in the database and the qualified analytical result concentrations are reported as μ g/m3 only.

Non-detected sample analytes results were reported to the method detection limit (MDL).

TO: E. Samuels FROM: A. Cognetti SDG: C1303079 DATE: May 8, 2013

The data package initially reported the sample non-detected analytes only to the Reporting Limit (RL). The laboratory was contacted and reported the non-detected sample analytes to the MDL.

EXECUTIVE SUMMARY

Laboratory Performance Issues: None.

Other Factors Affecting Data Quality: Field duplicate imprecision was noted in both field duplicate pairs.

Positive results below the Reporting Limit (RL) and above the detection limit were qualified as estimated, (J), due to uncertainty near the detection limit.

The data for these analyses were reviewed with reference to the USEPA Method TO-15 and the Region III Modifications to the National Functional Guidelines for Organic Data Review (September 1994).

Ann Cognetti

Chemist/Data Validator

Tetra Tech Joseph A. Samchuck Data Validation Quality Assurance Officer

Attachments: Appendix A - Qualified Analytical Results Appendix B - Results as Reported by the Laboratory Appendix C - Support Documentation

Appendix A

.

Qualified Analytical Results

Qualifier Codes:

- A = Lab Blank Contamination
- B = Field Blank Contamination
- C = Calibration Noncompliance (i.e., % RSDs, %Ds, ICVs, CCVs, RRFs, etc.)
- C01 = GC/MS Tuning Noncompliance
- D = MS/MSD Recovery Noncompliance
- E = LCS/LCSD Recovery Noncompliance
- F = Lab Duplicate Imprecision
- G = Field Duplicate Imprecision
- H = Holding Time Exceedance
- I = ICP Serial Dilution Noncompliance
- J = ICP PDS Recovery Noncompliance; MSA's r < 0.995
- K = ICP Interference includes ICS % R Noncompliance
- L = Instrument Calibration Range Exceedance
- M = Sample Preservation Noncompliance
- N = Internal Standard Noncompliance
- N01 = Internal Standard Recovery Noncompliance Dioxins
- N02 = Recovery Standard Noncompliance Dioxins
- N03 = Clean-up Standard Noncompliance Dioxins
- O = Poor Instrument Performance (i.e., base-time drifting)
- P = Uncertainty near detection limit (< 2 x IDL for inorganics and <CRQL for organics)
- Q = Other problems (can encompass a number of issues; i.e.chromatography,interferences, etc.)
- R = Surrogates Recovery Noncompliance
- S = Pesticide/PCB Resolution
- T = % Breakdown Noncompliance for DDT and Endrin
- U = RPD between columns/detectors >40% for positive results determined via GC/HPLC
- V = Non-linear calibrations; correlation coefficient r < 0.995
- W = EMPC result
- X = Signal to noise response drop
- Y = Percent solids <30%
- Z = Uncertainty at 2 standard deviations is greater than sample activity
- Z1 = Tentatively Identified Compound considered presumptively present
- Z2 = Tentatively Identified Compound column bleed
- Z3 = Tentatively Identified Compound aldol condensate

PROJ_NO: 04792	NSAMPLE	IA-018-A-14A			IA-093-A-14A			IA-116-A-14A			IA-138-A-14A		
SDG: C1303079	LAB_ID	C1303079-006	6A		C1303079-009	A(C1303079-007	A		C1303079-008	3A	
FRACTION: OV-M3	SAMP_DATE	3/27/2013			3/27/2013			3/27/2013			3/27/2013		
MEDIA: AIR	QC_TYPE	NM			NM			NM			NM		
	UNITS	UG/M3			UG/M3			UG/M3		UG/M3		•	
	PCT_SOLIDS												
	DUP_OF									-			
PARAMETER		RESULT	VQL	QLCD	RESULT	VQL	QLCD	RESULT	VQL	QLCD	RESULT	VQL	QLCD
1,1,1-TRICHLOROETHANE		0.27	U	-	0.27	U		0.27	U		0.27	υ	
1,1,2-TRICHLOROETHANE		0.2	U		0.2	U		0.2	U		0.2	υ	
1,1-DICHLOROETHANE		0.22	U		0.22	U		0.22	U		0.22	υ	
1,1-DICHLOROETHENE		1.5			0.22	υ		0.22	U		0.22	υ	
1,2,3-TRIMETHYLBENZEN	E	0.18	U		0.18	U		0.18	U		0.18	υ	
1,2,4-TRICHLOROBENZEN	IE	0.45	U		0.45	U		0.45	U		0.45	U	
1,2,4-TRIMETHYLBENZEN	<u>E</u>	0.23	U		0.8			0.8			0.23	U	
1,2-DICHLOROETHANE		0.2	U		0.2	U		0.2	U		0.2	U	
1,3,5-TRIMETHYLBENZEN	E	0.18	U		0.18	U		0.18	U		0.18	U	
BENZENE		0.58			0.62			0.49			1.2		
CARBON TETRACHLORID	E	0.36	U		0.36	U		0.36	U		0.36	U	
CHLORODIFLUOROMETH	ANE	0.97			2.5			0.97			0.93		
CHLOROFORM		0.2	U		0.2	U		0.2	U		0.2	U	
CIS-1,2-DICHLOROETHEN	E	0.48	J	Р	0.19	U		0.19	υ		0.19	U	
DICHLORODIFLUOROMET	HANE	2.7			2.9			2.7			2.5		
ETHYLBENZENE		0.19	U		0.19	U		0.19	U		0.19	U	
M+P-XYLENES		1.5			1.3			1.1	J	Р	1	J	Р
METHYL TERT-BUTYL ETH	IER	0.24	U		0.24	U		0.24	U		0.24	U	
METHYLENE CHLORIDE		0.99		_	3.1			0.85			1.1		
NAPHTHALENE		1			0.69	J	P	0.25	U		0.25	U	<u></u>
O-XYLENE		0.19	U		0.19	U		0.19	U		0.19	U	ļ
TETRACHLOROETHENE		0.39	U		0.39	U		0.39	U		0.39	U	ļ
TOLUENE		57	J	G	41			50		•	50		
TRANS-1,2-DICHLOROETH	IENE	0.19	U		0.19	U	<u> </u>	0.19	U		0.19	U	<u> </u>
TRICHLOROETHENE		3.3		ļ	1.2			0.71	J	Р	2.7		
VINYL CHLORIDE		0.21	U		0.21	U	1	0.21	U		0.21	U	

PROJ_NO: 04792	NSAMPLE	IA-DUP1-A-14	A		SV-015-A-14A			SV-018-A-14A			SV-108-A-14A		
SDG: C1303079	LAB_ID	C1303079-010	A(C1303079-002	2A		C1303079-001	A		C1303079-003	3A	
FRACTION: OV-M3	SAMP_DATE	3/27/2013			3/27/2013			3/27/2013			3/27/2013		
MEDIA: AIR	QC_TYPE	NM			NM			NM			NM		
	UNITS	UG/M3			UG/M3	UG/M3		UG/M3			UG/M3		
	PCT_SOLIDS												
	DUP_OF	IA-018-A-14A				_							
PARAMETER		RESULT	VQL	QLCD	RESULT	VQL	QLCD	RESULT	VQL	QLCD	RESULT	VQL	QLCD
1,1,1-TRICHLOROETHANE		0.27	U		460			73	J	G	360		
1,1,2-TRICHLOROETHANE		0.2	U		0.2	U		2.1			0.2	U	
1,1-DICHLOROETHANE		0.22	U		170			800	J	G	8300		
1,1-DICHLOROETHENE		1.3			3100			37000	J	G	9500		
1,2,3-TRIMETHYLBENZEN	E	0.18	U		0.18	U		0.18	U		0.18	U	
1,2,4-TRICHLOROBENZEN	E	0.45	U		0.45	U		0.45	U		0.45	U	-
1,2,4-TRIMETHYLBENZEN	E	0.23	U		1.3			0.23	U		0.65	J	P
1,2-DICHLOROETHANE		0.2	U		0.66			14	J	G	2.4	ļ	
1,3,5-TRIMETHYLBENZEN	E	0.18	U		0.75			0.18	U		0.18	U	
BENZENE		0.55			0.32	J	P	5.2	J	G	2		
CARBON TETRACHLORID	E	0.36	U		0.36	U		1.7			0.36	U	
CHLORODIFLUOROMETH	ANE	1			0.93			0.18	U		0.18	U	
CHLOROFORM		0.2	U		26			4.3	J	G	8.3		
CIS-1,2-DICHLOROETHEN	E .	0.19	U		7000			4400			780		ļ!
DICHLORODIFLUOROMET	HANE	2.8			2.4			2			2.5		!
ETHYLBENZENE		0.19	U		4.5			0.19	U		0.66	ļ	
M+P-XYLENES		0.66	J	Р	23			1.9	J	G	3.5		
METHYL TERT-BUTYL ETH	IER	0.24	U		0.24	U		0.24	U		0.24	U	
METHYLENE CHLORIDE		0.74			0.14	U		0.14	<u>U</u>		0.14	U	
NAPHTHALENE		1.3		-	0.25	U		0.25	UJ	G	0.59	J	P
O-XYLENE		0.19	U		8.8			0.44	J	P	1.5		ļ
TETRACHLOROETHENE		0.39	U		1.2			28	J	G	2.3		
TOLUENE		22	J	G	160		ļ	36	J	G	64	ļ	
TRANS-1,2-DICHLOROETH	IENE	0.19	U		160			26	J	G	11		
TRICHLOROETHENE		2.7			8800		· · · · · · · · · · · · · · · · · · ·	52000	J	G	1800	ļ	
VINYL CHLORIDE		0.21	U		12			160	J	G	12		

PROJ_NO: 04792	NSAMPLE	SV-118-A-14A			SV-DUP1-A-14A			
SDG: C1303079	LAB_ID	C1303079-004A			C1303079-005	δA		
FRACTION: OV-M3	SAMP_DATE	3/27/2013			3/27/2013			
MEDIA: AIR	QC_TYPE	NM			NM			
	UNITS	UG/M3			UG/M3			
	PCT_SOLIDS							
	DUP_OF				SV-018-A-14A			
PARAMETER		RESULT	VQL	QLCD	RESULT	VQL	QLCD	
1,1,1-TRICHLOROETHANE		340			240	J	G	
1,1,2-TRICHLOROETHANE		0.2	U		3.2			
1,1-DICHLOROETHANE		830			1400	J	GP	
1,1-DICHLOROETHENE		5200			67000	J	G	
1,2,3-TRIMETHYLBENZEN	Ε	22			0.18	U		
1,2,4-TRICHLOROBENZEN	E	0.45	U		0.45	U		
1,2,4-TRIMETHYLBENZEN	Ξ	54			0.85			
1,2-DICHLOROETHANE		0.2	U		29	J	G	
1,3,5-TRIMETHYLBENZEN	E	38			0.18	U		
BENZENE		5.5			10	J	G	
CARBON TETRACHLORID	E	0.7	J	Р	2.7			
CHLORODIFLUOROMETH/	ANE	3.9			0.18	U		
CHLOROFORM		280			8.3	J	G	
CIS-1,2-DICHLOROETHEN	E	1100			5200			
DICHLORODIFLUOROMET	HANE	2.4			2.4			
ETHYLBENZENE		34			0.79			
M+P-XYLENES		280			3.2	J	G	
METHYL TERT-BUTYL ETH	IER	0.24	U		0.24	U		
METHYLENE CHLORIDE		31			0.14	U		
NAPHTHALENE		22			2.7	J	G	
O-XYLENE		100			0.97			
TETRACHLOROETHENE		4.3			64	J	G	
TOLUENE		37			82	J	G	
TRANS-1,2-DICHLOROETH	IENE	59			56	J	G	
TRICHLOROETHENE		17000			96000	J	G	
VINYL CHLORIDE		4.9			310	J	G	

Appendix B

.

Results as Reported by the Laboratory

Date: 25-Apr-13

 CLIENT:
 Tetra Tech, Inc.
 Client Sample ID: IA-018-A-14A

 Lab Order:
 C1303079
 Tag Number: 1183,271

 Project:
 Middle River
 Collection Date: 3/27/2013

 Lab ID:
 C1303079-006A
 Matrix: AIR

Analyses	Result	Qual	MDL	**Limit	Units	DF	Date Analyzed
1UG/M3 W/ADDITIONAL CMPD	S BY METHOD TO1		TO-15			A	nalyst: RJP
1,1,1-Trichloroethane	< 0.83		0.27	0.83	ug/m3	1	4/1/2013 8:37:00 PM
1,1,2-Trichloroethane	< 0.83		0.20	0.83	ug/m3	1	4/1/2013 8:37:00 PM
1,1-Dichloroethane	< 0.62		0.22	0.62	ug/m3	1	4/1/2013 8:37:00 PM
1,1-Dichloroethene	1.5		0.22	0.60	ug/m3	1	4/1/2013 8:37:00 PM
1,2,3-Trimethylbenzene	< 0.75		0.18	0.75	ug/m3	1	4/1/2013 8:37:00 PM
1,2,4-Trichlorobenzene	< 1.1		0.45	1.1	ug/m3	1	4/1/2013 8:37:00 PM
1,2,4-Trimethylbenzene	< 0.75		0.23	0.75	ug/m3	1	4/1/2013 8:37:00 PM
1,2-Dichloroethane	< 0.62		0.20	0.62	ug/m3	1	4/1/2013 8:37:00 PM
1,3,5-Trimethylbenzene	< 0.75		0.18	0.75	ug/m3	1	4/1/2013 8:37:00 PM
Benzene	0.58		0.13	0.49	ug/m3	1	4/1/2013 8:37:00 PM
Carbon tetrachloride	< 0.96		0.36	0.96	ug/m3	1	4/1/2013 8:37:00 PM
Chloroform	< 0.74		0.20	0.74	ug/m3	1	4/1/2013 8:37:00 PM
cis-1,2-Dichloroethene	0.48	J	0.19	0.60	ug/m3	1	4/1/2013 8:37:00 PM
Ethylbenzene	< 0.66		0.19	0.66	ug/m3	1	4/1/2013 8:37:00 PM
Freon 12	2.7		0.20	0.75	ug/m3	1	4/1/2013 8:37:00 PM
Freon 22	0.97		0.18	0.54	ug/m3	1	4/1/2013 8:37:00 PM
m&p-Xylene	1.5		0.44	1.3	ug/m3	1	4/1/2013 8:37:00 PM
Methyl tert-butyl ether	< 0.55		0.24	0.55	ug/m3	1	4/1/2013 8:37:00 PM
Methylene chloride	0.99		0.14	0.53	ug/m3	1	4/1/2013 8:37:00 PM
Naphthalene	1.0		0.25	0.80	ug/m3	1	4/1/2013 8:37:00 PM
o-Xylene	< 0.66		0.19	0.66	ug/m3	1	4/1/2013 8:37:00 PM
Tetrachloroethylene	< 1.0		0.39	1.0	ug/m3	1	4/1/2013 8:37:00 PM
Toluene	57		1.5	5.7	ug/m3	10	4/2/2013 5:24:00 AM
trans-1,2-Dichloroethene	< 0.60		0.19	0.60	ug/m3	1	4/1/2013 8:37:00 PM
Trichloroethene	3.3		0.36	0.82	ug/m3	1	4/1/2013 8:37:00 PM
Vinyl chloride	< 0.39		0.21	0.39	ug/m3	1	4/1/2013 8:37:00 PM

Qualifiers:	**	Reporting Limit		Results reported are not blank corrected	
	в	Analyte detected in the associated Method Blank	Е	Value above quantitation range	
	Н	Holding times for preparation or analysis exceeded	J	Analyte detected at or below quantitation limits	
	JN	Non-routine analyte. Quantitation estimated.	ND	Not Detected at the Reporting Limit	D (010
	S	Spike Recovery outside accepted recovery limits			Page 6 of 10

Date: 25-Apr-13

 CLIENT:
 Tetra Tech, Inc.
 Client Sample ID: IA-093-A-14A

 Lab Order:
 C1303079
 Tag Number: 542,180

 Project:
 Middle River
 Collection Date: 3/27/2013

 Lab ID:
 C1303079-009A
 Matrix: AIR

Analyses	Result	Qual	MDL	**Limit	Units	DF	Date Analyzed
1UG/M3 W/ADDITIONAL CMPE	S BY METHOD TO1		TO-15			А	nalyst: RJP
1,1,1-Trichloroethane	< 0.83		0.27	0.83	ug/m3	1	4/1/2013 10:21:00 PM
1,1,2-Trichloroethane	< 0.83		0.20	0.83	ug/m3	1	4/1/2013 10:21:00 PM
1,1-Dichloroethane	< 0.62		0.22	0.62	ug/m3	1	4/1/2013 10:21:00 PM
1,1-Dichloroethene	< 0.60		0.22	0.60	ug/m3	1	4/1/2013 10:21:00 PM
1,2,3-Trimethylbenzene	< 0.75		0.18	0.75	ug/m3	1	4/1/2013 10:21:00 PM
1,2,4-Trichlorobenzene	< 1.1		0.45	1.1	ug/m3	1	4/1/2013 10:21:00 PM
1,2,4-Trimethylbenzene	0.80		0.23	0.75	ug/m3	1	4/1/2013 10:21:00 PM
1,2-Dichloroethane	< 0.62		0.20	0.62	ug/m3	1	4/1/2013 10:21:00 PM
1,3,5-Trimethylbenzene	< 0.75		0.18	0.75	ug/m3	1	4/1/2013 10:21:00 PM
Benzene	0.62		0.13	0.49	ug/m3	1	4/1/2013 10:21:00 PM
Carbon tetrachloride	< 0.96		0.36	0.96	ug/m3	1	4/1/2013 10:21:00 PM
Chloroform	< 0.74		0.20	0.74	ug/m3	1	4/1/2013 10:21:00 PM
cis-1,2-Dichloroethene	< 0.60		0.19	0.60	ug/m3	1	4/1/2013 10:21:00 PM
Ethylbenzene	< 0.66		0.19	0.66	ug/m3	1	4/1/2013 10:21:00 PM
Freon 12	2.9		0.20	0.75	ug/m3	1	4/1/2013 10:21:00 PM
Freon 22	2.5		0.18	0.54	ug/m3	1	4/1/2013 10:21:00 PM
m&p-Xylene	1.3		0.44	1.3	ug/m3	1	4/1/2013 10:21:00 PM
Methyl tert-butyl ether	< 0.55		0.24	0.55	ug/m3	1	4/1/2013 10:21:00 PM
Methylene chloride	3.1		0.14	0.53	ug/m3	1	4/1/2013 10:21:00 PM
Naphthalene	0.69	J	0.25	0.80	ug/m3	1	4/1/2013 10:21:00 PM
o-Xylene	< 0.66		0.19	0.66	ug/m3	1	4/1/2013 10:21:00 PM
Tetrachloroethylene	< 1.0		0.39	1.0	ug/m3	1	4/1/2013 10:21:00 PM
Toluene	41		1.5	5.7	ug/m3	10	4/2/2013 7:07:00 AM
trans-1,2-Dichloroethene	< 0.60		0.19	0.60	ug/m3	1	4/1/2013 10:21:00 PM
Trichloroethene	1.2		0.36	0.82	ug/m3	1	4/1/2013 10:21:00 PM
Vinyl chloride	< 0.39		0.21	0.39	ug/m3	1	4/1/2013 10:21:00 PM

Qualifiers:	Q	ual	ifie	ers:
-------------	---	-----	------	------

** Reporting Limit

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded

JN Non-routine analyte. Quantitation estimated.

S Spike Recovery outside accepted recovery limits

. Results reported are not blank corrected

- E Value above quantitation range
- J Analyte detected at or below quantitation limits

ND Not Detected at the Reporting Limit

Date: 25-Apr-13

 CLIENT:
 Tetra Tech, Inc.
 Client Sample ID: IA-116-A-14A

 Lab Order:
 C1303079
 Tag Number: 571,262

 Project:
 Middle River
 Collection Date: 3/27/2013

 Lab ID:
 C1303079-007A
 Matrix: AlR

Analyses	Result	Qual	MDL	**Limit	Units	DF	Date Analyzed
1UG/M3 W/ADDITIONAL CMPDS BY M	ETHOD TO1		TO-15			А	nalyst: RJP
1,1,1-Trichloroethane	< 0.83		0.27	0.83	ug/m3	1	4/1/2013 9:12:00 PM
1,1,2-Trichloroethane	< 0.83		0.20	0.83	ug/m3	1	4/1/2013 9:12:00 PM
1,1-Dichloroethane	< 0.62		0.22	0.62	ug/m3	1	4/1/2013 9:12:00 PM
1,1-Dichloroethene	< 0.60		0.22	0.60	ug/m3	1	4/1/2013 9:12:00 PM
1,2,3-Trimethylbenzene	< 0.75		0.18	0.75	ug/m3	1	4/1/2013 9:12:00 PM
1,2,4-Trichlorobenzene	< 1.1		0.45	1.1	ug/m3	1	4/1/2013 9:12:00 PM
1,2,4-Trimethylbenzene	0.80		0.23	0.75	ug/m3	1	4/1/2013 9:12:00 PM
1,2-Dichloroethane	< 0.62		0.20	0.62	ug/m3	1	4/1/2013 9:12:00 PM
1,3,5-Trimethylbenzene	< 0.75		0.18	0.75	ug/m3	1	4/1/2013 9:12:00 PM
Benzene	0.49		0.13	0.49	ug/m3	1	4/1/2013 9:12:00 PM
Carbon tetrachloride	< 0.96		0.36	0.96	ug/m3	1	4/1/2013 9:12:00 PM
Chloroform	< 0.74		0.20	0.74	ug/m3	1	4/1/2013 9:12:00 PM
cis-1,2-Dichloroethene	< 0.60		0.19	0.60	ug/m3	1	4/1/2013 9:12:00 PM
Ethylbenzene	< 0.66		0.19	0.66	ug/m3	1	4/1/2013 9:12:00 PM
Freon 12	2.7		0.20	0.75	ug/m3	1	4/1/2013 9:12:00 PM
Freon 22	0.97		0.18	0.54	ug/m3	1	4/1/2013 9:12:00 PM
m&p-Xylene	1.1	J	0.44	1.3	ug/m3	1	4/1/2013 9:12:00 PM
Methyl tert-butyl ether	< 0.55		0.24	0.55	ug/m3	1	4/1/2013 9:12:00 PM
Methylene chloride	0.85		0.14	0.53	ug/m3	1	4/1/2013 9:12:00 PM
Naphthalene	< 0.80		0.25	0.80	ug/m3	1	4/1/2013 9:12:00 PM
o-Xylene	< 0.66		0.19	0.66	ug/m3	1	4/1/2013 9:12:00 PM
Tetrachloroethylene	< 1.0		0.39	1.0	ug/m3	1	4/1/2013 9:12:00 PM
Toluene	50		1.5	5.7	ug/m3	10	4/2/2013 5:59:00 AM
trans-1,2-Dichloroethene	< 0.60		0.19	0.60	ug/m3	1	4/1/2013 9:12:00 PM
Trichloroethene	0.71	J	0.36	0.82	ug/m3	1	4/1/2013 9:12:00 PM
Vinyl chloride	< 0.39		0.21	0.39	ug/m3	1	4/1/2013 9:12:00 PM

Qualifiers: ** Reporting Limit Results reported are not blank corrected Analyte detected in the associated Method Blank В Е Value above quantitation range Н Holding times for preparation or analysis exceeded Analyte detected at or below quantitation limits J JN Non-routine analyte. Quantitation estimated. ND Not Detected at the Reporting Limit Spike Recovery outside accepted recovery limits S

Date: 25-Apr-13

 CLIENT:
 Tetra Tech, Inc.
 Client Sample ID: IA-138-A-14A

 Lab Order:
 C1303079
 Tag Number: 367,296

 Project:
 Middle River
 Collection Date: 3/27/2013

 Lab ID:
 C1303079-008A
 Matrix: AIR

Analyses	Result	Qual	MDL	**Limit	Units	DF	Date Analyzed
1UG/M3 W/ADDITIONAL CMPI	DS BY METHOD TO		TO-15			A	nalyst: RJP
1,1,1-Trichloroethane	< 0.83		0.27	0.83	ug/m3	1	4/1/2013 9:46:00 PM
1,1,2-Trichloroethane	< 0.83		0.20	0.83	ug/m3	1	4/1/2013 9:46:00 PM
1,1-Dichloroethane	< 0.62		0.22	0.62	ug/m3	1	4/1/2013 9:46:00 PM
1,1-Dichloroethene	< 0.60		0.22	0.60	ug/m3	1	4/1/2013 9:46:00 PM
1,2,3-Trimethylbenzene	< 0.75		0.18	0.75	ug/m3	1	4/1/2013 9:46:00 PM
1,2,4-Trichlorobenzene	< 1.1		0.45	1.1	ug/m3	1	4/1/2013 9:46:00 PM
1,2,4-Trimethylbenzene	< 0.75		0.23	0.75	ug/m3	1	4/1/2013 9:46:00 PM
1,2-Dichloroethane	< 0.62		0.20	0.62	ug/m3	1	4/1/2013 9:46:00 PM
1,3,5-Trimethylbenzene	< 0.75		0.18	0.75	ug/m3	1	4/1/2013 9:46:00 PM
Benzene	1.2		0.13	0.49	ug/m3	1	4/1/2013 9:46:00 PM
Carbon tetrachloride	< 0.96		0.36	0.96	ug/m3	1	4/1/2013 9:46:00 PM
Chloroform	< 0.74		0.20	0.74	ug/m3	1	4/1/2013 9:46:00 PM
cis-1,2-Dichloroethene	< 0.60		0.19	0.60	ug/m3	1	4/1/2013 9:46:00 PM
Ethylbenzene	< 0.66		0.19	0.66	ug/m3	1	4/1/2013 9:46:00 PM
Freon 12	2.5		0.20	0.75	ug/m3	1	4/1/2013 9:46:00 PM
Freon 22	0.93		0.18	0.54	ug/m3	1	4/1/2013 9:46:00 PM
m&p-Xylene	1.0	J	0.44	1.3	ug/m3	1	4/1/2013 9:46:00 PM
Methyl tert-butyl ether	< 0.55		0.24	0.55	ug/m3	1	4/1/2013 9:46:00 PM
Methylene chloride	1.1		0.14	0.53	ug/m3	1	4/1/2013 9:46:00 PM
Naphthalene	< 0.80		0.25	0.80	ug/m3	1	4/1/2013 9:46:00 PM
o-Xylene	< 0.66		0.19	0.66	ug/m3	1	4/1/2013 9:46:00 PM
Tetrachloroethylene	< 1.0		0.39	1.0	ug/m3	1	4/1/2013 9:46:00 PM
Toluene	50		1.5	5.7	ug/m3	10	4/2/2013 6:33:00 AM
trans-1,2-Dichloroethene	< 0.60		0.19	0.60	ug/m3	1	4/1/2013 9:46:00 PM
Trichloroethene	2.7		0.36	0.82	ug/m3	1	4/1/2013 9:46:00 PM
Vinyl chloride	< 0.39		0.21	0.39	ug/m3	1	4/1/2013 9:46:00 PM

Qualifiers:	**	Reporting Limit	·	Results reported are not blank corrected
	В	Analyte detected in the associated Method Blank	Е	Value above quantitation range
	Н	Holding times for preparation or analysis exceeded	J	Analyte detected at or below quantitation limits
	JN	Non-routine analyte. Quantitation estimated.	ND	Not Detected at the Reporting Limit
	S	Spike Recovery outside accepted recovery limits		

CLIENT:

Project: Lab ID:

Lab Order:

Date: 25-Apr-13

 Tetra Tech, Inc.
 Client Sample ID: 1A-DUP1-A-14A

 C1303079
 Tag Number: 1174,177

 Middle River
 Collection Date: 3/27/2013

 C1303079-010A
 Matrix: AIR

Analyses	Result	Qual	MDL	**Limit	Units	DF	Date Analyzed
1UG/M3 W/ADDITIONAL CMPDS	BY METHOD TO1		TO-15			A	nalyst: RJP
1,1,1-Trichloroethane	< 0.83		0.27	0.83	ug/m3	1	4/1/2013 10:56:00 PM
1,1,2-Trichloroethane	< 0.83		0.20	0.83	ug/m3	1	4/1/2013 10:56:00 PM
1,1-Dichloroethane	< 0.62		0.22	0.62	ug/m3	1	4/1/2013 10:56:00 PM
1,1-Dichloroethene	1.3		0.22	0.60	ug/m3	1	4/1/2013 10:56:00 PM
1,2,3-Trimethylbenzene	< 0.75		0.18	0.75	ug/m3	1	4/1/2013 10:56:00 PM
1,2,4-Trichlorobenzene	< 1.1		0.45	1.1	ug/m3	1	4/1/2013 10:56:00 PM
1,2,4-Trimethylbenzene	< 0.75		0.23	0.75	ug/m3	1	4/1/2013 10:56:00 PM
1,2-Dichloroethane	< 0.62		0.20	0.62	ug/m3	1	4/1/2013 10:56:00 PM
1,3,5-Trimethylbenzene	< 0.75		0.18	0.75	ug/m3	1	4/1/2013 10:56:00 PM
Benzene	0.55		0.13	0.49	ug/m3	1	4/1/2013 10:56:00 PM
Carbon tetrachloride	< 0.96		0.36	0.96	ug/m3	1	4/1/2013 10:56:00 PM
Chloroform	< 0.74		0.20	0.74	ug/m3	1	4/1/2013 10:56:00 PM
cis-1,2-Dichloroethene	< 0.60		0.19	0.60	ug/m3	1	4/1/2013 10:56:00 PM
Ethylbenzene	< 0.66		0.19	0.66	ug/m3	1	4/1/2013 10:56:00 PM
Freon 12	2.8		0.20	0.75	ug/m3	1	4/1/2013 10:56:00 PM
Freon 22	1.0		0.18	0.54	ug/m3	1	4/1/2013 10:56:00 PM
m&p-Xylene	0.66	J	0.44	1.3	ug/m3	1	4/1/2013 10:56:00 PM
Methyl tert-butyl ether	< 0.55		0.24	0.55	ug/m3	1	4/1/2013 10:56:00 PM
Methylene chloride	0.74		0.14	0.53	ug/m3	1	4/1/2013 10:56:00 PM
Naphthalene	1.3		0.25	0.80	ug/m3	1	4/1/2013 10:56:00 PM
o-Xylene	< 0.66		0.19	0.66	ug/m3	1	4/1/2013 10:56:00 PM
Tetrachloroethylene	< 1.0		0.39	1.0	ug/m3	1	4/1/2013 10:56:00 PM
Toluene	22		1.5	5.7	ug/m3	10	4/2/2013 7:42:00 AM
trans-1,2-Dichloroethene	< 0.60		0.19	0.60	ug/m3	1	4/1/2013 10:56:00 PM
Trichloroethene	2.7		0.36	0.82	ug/m3	1	4/1/2013 10:56:00 PM
Vinyl chloride	< 0.39		0.21	0.39	ug/m3	1	4/1/2013 10:56:00 PM

Qualifiers:	**	Reporting Limit		Results reported are not blank corrected
	В	Analyte detected in the associated Method Blank	Ε	Value above quantitation range
	Н	Holding times for preparation or analysis exceeded	J	Analyte detected at or below quantitation limits
	JN	Non-routine analyte. Quantitation estimated.	ND	Not Detected at the Reporting Limit
	S	Spike Recovery outside accepted recovery limits		

Page 10 of 10

Date: 25-Apr-13

 CLIENT:
 Tetra Tech, Inc.
 Client Sample ID: SV-015-A-14A

 Lab Order:
 C1303079
 Tag Number: 351,111

 Project:
 Middle River
 Collection Date: 3/27/2013

 Lab ID:
 C1303079-002A
 Matrix: AIR

Analyses	Result	Qual	MDL	**Limit	Units	DF	Date Analyzed
1UG/M3 W/ADDITIONAL CMP	DS BY METHOD TO1		TO-15			Ar	nalyst: RJP
1,1,1-Trichloroethane	460		11	33	ug/m3	40	4/2/2013 7:21:00 PM
1,1,2-Trichloroethane	< 0.83		0.20	0.83	ug/m3	1	4/2/2013 12:06:00 AM
1,1-Dichloroethane	170		9.1	25	ug/m3	40	4/2/2013 7:21:00 PM
1,1-Dichloroethene	3100		180	480	ug/m3	810	4/3/2013 12:45:00 PM
1,2,3-Trimethylbenzene	< 0.75		0.18	0.75	ug/m3	1	4/2/2013 12:06:00 AM
1,2,4-Trichlorobenzene	< 1.1		0.45	1. 1	ug/m3	1	4/2/2013 12:06:00 AM
1,2,4-Trimethylbenzene	1.3		0.23	0.75	ug/m3	1	4/2/2013 12:06:00 AM
1,2-Dichloroethane	0.66		0.20	0.62	ug/m3	1	4/2/2013 12:06:00 AM
1,3,5-Trimethylbenzene	0.75		0.18	0.75	ug/m3	1	4/2/2013 12:06:00 AM
Benzene	0.32	J	0.13	0.49	ug/m3	1	4/2/2013 12:06:00 AM
Carbon tetrachloride	< 0.96		0.36	0.96	ug/m3	1	4/2/2013 12:06:00 AM
Chloroform	26		2.0	7.4	ug/m3	10	4/2/2013 8:51:00 AM
cis-1,2-Dichloroethene	7000		160	480	ug/m3	810	4/3/2013 12:45:00 PM
Ethylbenzene	4.5		0.19	0.66	ug/m3	1	4/2/2013 12:06:00 AM
Freon 12	2.4		0.20	0.75	ug/m3	1	4/2/2013 12:06:00 AM
Freon 22	0.93		0.18	0.54	ug/m3	1	4/2/2013 12:06:00 AM
m&p-Xylene	23		4.4	13	ug/m3	10	4/2/2013 8:51:00 AM
Methyl tert-butyl ether	< 0.55		0.24	0.55	ug/m3	1	4/2/2013 12:06:00 AM
Methylene chloride	< 0.53		0.14	0.53	ug/m3	1	4/2/2013 12:06:00 AM
Naphthalene	< 0.80		0.25	0.80	ug/m3	1	4/2/2013 12:06:00 AM
o-Xylene	8.8		1.9	6.6	ug/m3	10	4/2/2013 8:51:00 AM
Tetrachloroethylene	1.2		0.39	1.0	ug/m3	1	4/2/2013 12:06:00 AM
Toluene	160		6.1	23	ug/m3	40	4/2/2013 7:21:00 PM
trans-1,2-Dichloroethene	160		7.7	24	ug/m3	40	4/2/2013 7:21:00 PM
Trichloroethene	8800		290	660	ug/m3	810	4/3/2013 12:45:00 PM
Vinyl chloride	12		2.1	3.9	ug/m3	10	4/2/2013 8:51:00 AM

Qualifiers:	**	Reporting Limit		Results reported are not blank corrected	
	В	Analyte detected in the associated Method Blank	Е	Value above quantitation range	
	Н	Holding times for preparation or analysis exceeded	J	Analyte detected at or below quantitation limits	
	JN	Non-routine analyte. Quantitation estimated.	ND	Not Detected at the Reporting Limit	
	S	Spike Recovery outside accepted recovery limits			P

Date: 25-Apr-13

 CLIENT:
 Tetra Tech, Inc.
 Client Sample ID: SV-018-A-14A

 Lab Order:
 C1303079
 Tag Number: 98,59

 Project:
 Middle River
 Collection Date: 3/27/2013

 Lab ID:
 C1303079-001A
 Matrix: AIR

Analyses	Result	Qual	MDL	**Limit	Units	DF	Date Analyzed
1UG/M3 W/ADDITIONAL CMPDS BY MI	ETHOD TO		TO-15	Analyst: RJP			alyst: RJP
1,1,1-Trichloroethane	73		2.7	8.3	ug/m3	10	4/2/2013 8:17:00 AM
1,1,2-Trichloroethane	2.1		0.20	0.83	ug/m3	1	4/1/2013 11:30:00 PM
1,1-Dichloroethane	800		180	490	ug/m3	810	4/3/2013 11:38:00 AM
1,1-Dichloroethene	37000		1600	4400	ug/m3	7290	4/3/2013 12:12:00 PM
1,2,3-Trimethylbenzene	< 0.75		0.18	0.75	ug/m3	1	4/1/2013 11:30:00 PM
1,2,4-Trichlorobenzene	< 1.1		0.45	1.1	ug/m3	1	4/1/2013 11:30:00 PM
1,2,4-Trimethylbenzene	< 0.75		0.23	0.75	ug/m3	1	4/1/2013 11:30:00 PM
1,2-Dichloroethane	14		2.0	6.2	ug/m3	10	4/2/2013 8:17:00 AM
1,3,5-Trimethylbenzene	< 0.75		0.18	0.75	ug/m3	1	4/1/2013 11:30:00 PM
Benzene	5.2		0.13	0.49	ug/m3	1	4/1/2013 11:30:00 PM
Carbon tetrachloride	1.7		0.36	0.96	ug/m3	1	4/1/2013 11:30:00 PM
Chloroform	4.3		0.20	0.74	ug/m3	1	4/1/2013 11:30:00 PM
cis-1,2-Dichloroethene	4400		160	480	ug/m3	810	4/3/2013 11:38:00 AM
Ethylbenzene	< 0.66		0.19	0.66	ug/m3	1	4/1/2013 11:30:00 PM
Freon 12	2.0		0.20	0.75	ug/m3	1	4/1/2013 11:30:00 PM
Freon 22	< 0.54		0.18	0.54	ug/m3	1	4/1/2013 11:30:00 PM
m&p-Xylene	1.9		0.44	1.3	ug/m3	1	4/1/2013 11:30:00 PM
Methyl tert-butyl ether	< 0.55		0.24	0.55	ug/m3	1	4/1/2013 11:30:00 PM
Methylene chloride	< 0.53		0.14	0.53	ug/m3	1	4/1/2013 11:30:00 PM
Naphthalene	< 0.80		0.25	0.80	ug/m3	1	4/1/2013 11:30:00 PM
o-Xylene	0.44	J	0.19	0.66	ug/m3	1	4/1/2013 11:30:00 PM
Tetrachloroethylene	28		3.9	10	ug/m3	10	4/2/2013 8:17:00 AM
Toluene	36		1.5	5.7	ug/m3	10	4/2/2013 8:17:00 AM
trans-1,2-Dichloroethene	26		1.9	6.0	ug/m3	10	4/2/2013 8:17:00 AM
Trichloroethene	52000		2600	6000	ug/m3	7290	4/3/2013 12:12:00 PM
Vinyl chloride	160		8.3	16	ug/m3	40	4/2/2013 6:48:00 PM

Qualifiers:	**	Reporting Limit		Results reported are not blank corrected
	В	Analyte detected in the associated Method Blank	Е	Value above quantitation range
	Н	Holding times for preparation or analysis exceeded	J	Analyte detected at or below quantitation limits
	JN	Non-routine analyte. Quantitation estimated.	ND	Not Detected at the Reporting Limit
	S	Spike Recovery outside accepted recovery limits		

S

Date: 25-Apr-13

CLIENT: Tetra Tech, Inc. Client Sample ID: SV-108-A-14A Lab Order: C1303079 **Tag Number:** 133,1167 Collection Date: 3/27/2013 **Project:** Middle River C1303079-003A Lab ID: Matrix: AIR

Analyses	Result	Qual	MDL	**Limit	Units	DF	Date Analyzed
1UG/M3 W/ADDITIONAL CMPD	S BY METHOD TO1		TO-15	Analyst: RJP			alyst: RJP
1,1,1-Trichloroethane	360		11	33	ug/m3	40	4/2/2013 7:55:00 PM
1,1,2-Trichloroethane	< 0.83		0.20	0.83	ug/m3	1	4/2/2013 12:41:00 AM
1,1-Dichloroethane	8300		360	990	ug/m3	1620	4/3/2013 4:05:00 PM
1,1-Dichloroethene	9500		350	970	ug/m3	1620	4/3/2013 4:05:00 PM
1,2,3-Trimethylbenzene	< 0.75		0.18	0.75	ug/m3	1	4/2/2013 12:41:00 AM
1,2,4-Trichlorobenzene	< 1.1		0.45	1.1	ug/m3	1	4/2/2013 12:41:00 AM
1,2,4-Trimethylbenzene	0.65	J	0.23	0.75	ug/m3	1	4/2/2013 12:41:00 AM
1,2-Dichloroethane	2.4		0.20	0.62	ug/m3	1	4/2/2013 12:41:00 AM
1,3,5-Trimethylbenzene	< 0.75		0.18	0.75	ug/m3	1	4/2/2013 12:41:00 AM
Benzene	2.0		0.13	0.49	ug/m3	1	4/2/2013 12:41:00 AM
Carbon tetrachloride	< 0.96		0.36	0.96	ug/m3	1	4/2/2013 12:41:00 AM
Chloroform	8.3		0.20	0.74	ug/m3	1	4/2/2013 12:41:00 AM
cis-1,2-Dichloroethene	780		160	480	ug/m3	810	4/3/2013 1:19:00 PM
Ethylbenzene	0.66		0.19	0.66	ug/m3	1	4/2/2013 12:41:00 AM
Freon 12	2.5		0.20	0.75	ug/m3	1	4/2/2013 12:41:00 AM
Freon 22	< 0.54		0.18	0.54	ug/m3	1	4/2/2013 12:41:00 AM
m&p-Xylene	3.5		0.44	1.3	ug/m3	1	4/2/2013 12:41:00 AM
Methyl tert-butyl ether	< 0.55		0.24	0.55	ug/m3	1	4/2/2013 12:41:00 AM
Methylene chloride	< 0.53		0.14	0.53	ug/m3	1	4/2/2013 12:41:00 AM
Naphthalene	0.59	J	0.25	0.80	ug/m3	1	4/2/2013 12:41:00 AM
o-Xylene	1.5		0.19	0.66	ug/m3	1	4/2/2013 12:41:00 AM
Tetrachloroethylene	2.3		0.39	1.0	ug/m3	1	4/2/2013 12:41:00 AM
Toluene	64		1.5	5.7	ug/m3	10	4/2/2013 9:24:00 AM
trans-1,2-Dichloroethene	11		1.9	6.0	ug/m3	10	4/2/2013 9:24:00 AM
Trichloroethene	1800		290	660	ug/m3	810	4/3/2013 1:19:00 PM
Vinyl chloride	12		2.1	3.9	ug/m3	10	4/2/2013 9:24:00 AM

Qualifiers: ** Reporting Limit Results reported are not blank corrected Analyte detected in the associated Method Blank в Е Value above quantitation range Н Holding times for preparation or analysis exceeded J Analyte detected at or below quantitation limits Non-routine analyte. Quantitation estimated. JN ND Not Detected at the Reporting Limit

Spike Recovery outside accepted recovery limits

Page 3 of 10

Date: 25-Apr-13

 CLIENT:
 Tetra Tech, Inc.
 Client Sample ID: SV-118-A-14A

 Lab Order:
 C1303079
 Tag Number: 429,176

 Project:
 Middle River
 Collection Date: 3/27/2013

 Lab ID:
 C1303079-004A
 Matrix: AIR

Analyses	Result	Qual	MDL	**Limit	Units	DF	Date Analyzed
1UG/M3 W/ADDITIONAL CMP	DS BY METHOD TO		TO-15			Ar	alyst: RJP
1,1,1-Trichloroethane	340		11	33	ug/m3	40	4/2/2013 9:03:00 PM
1,1,2-Trichloroethane	< 0.83		0.20	0.83	ug/m3	1	4/2/2013 1:17:00 AM
1,1-Dichloroethane	830		180	490	ug/m3	810	4/3/2013 1:52:00 PM
1,1-Dichloroethene	5200		180	480	ug/m3	810	4/3/2013 1:52:00 PM
1,2,3-Trimethylbenzene	22		1.8	7.5	ug/m3	10	4/2/2013 8:29:00 PM
1,2,4-Trichlorobenzene	< 1.1		0.45	1.1	ug/m3	1	4/2/2013 1:17:00 AM
1,2,4-Trimethylbenzene	54		2.3	7.5	ug/m3	10	4/2/2013 8:29:00 PM
1,2-Dichloroethane	< 0.62		0.20	0.62	ug/m3	1	4/2/2013 1:17:00 AM
1,3,5-Trimethylbenzene	38		1.8	7.5	ug/m3	10	4/2/2013 8:29:00 PM
Benzene	5.5		0.13	0.49	ug/m3	1	4/2/2013 1:17:00 AM
Carbon tetrachloride	0.70	J	0.36	0.96	ug/m3	1	4/2/2013 1:17:00 AM
Chloroform	280		7.9	30	ug/m3	40	4/2/2013 9:03:00 PM
cis-1,2-Dichloroethene	1100		160	480	ug/m3	810	4/3/2013 1:52:00 PM
Ethylbenzene	34		1.9	6.6	ug/m3	10	4/2/2013 8:29:00 PM
Freon 12	2.4		0.20	0.75	ug/m3	1	4/2/2013 1:17:00 AM
Freon 22	3.9		0.18	0.54	ug/m3	1	4/2/2013 1:17:00 AM
m&p-Xylene	280		18	53	ug/m3	40	4/2/2013 9:03:00 PM
Methyl tert-butyl ether	< 0.55		0.24	0.55	ug/m3	1	4/2/2013 1:17:00 AM
Methylene chloride	31		1.4	5.3	ug/m3	10	4/2/2013 8:29:00 PM
Naphthalene	22		2.5	8.0	ug/m3	10	4/2/2013 8:29:00 PM
o-Xylene	100		1.9	6.6	ug/m3	10	4/2/2013 8:29:00 PM
Tetrachloroethylene	4.3		0.39	1.0	ug/m3	1	4/2/2013 1:17:00 AM
Toluene	37		1.5	5.7	ug/m3	10	4/2/2013 8:29:00 PM
trans-1,2-Dichloroethene	59		1.9	6.0	ug/m3	10	4/2/2013 8:29:00 PM
Trichloroethene	17000		600	1300	ug/m3	1620	4/3/2013 2:25:00 PM
Vinyl chloride	4.9		0.21	0.39	ug/m3	1	4/2/2013 1:17:00 AM

Qualifiers:	**	Reporting Limit		Results reported are not blank corrected
	в	Analyte detected in the associated Method Blank	Е	Value above quantitation range
	Н	Holding times for preparation or analysis exceeded	J	Analyte detected at or below quantitation limits
	JN	Non-routine analyte. Quantitation estimated.	ND	Not Detected at the Reporting Limit
	S	Spike Recovery outside accepted recovery limits		

Date: 25-Apr-13

CLIENT:Tetra Tech, Inc.Client Sample ID: SV-DUP1-A-14ALab Order:C1303079Tag Number: 554,Project:Middle RiverCollection Date: 3/27/2013Lab ID:C1303079-005AMatrix: AIR

Analyses	Result	Qual	MDL	**Limit	Units	DF	Date Analyzed
1UG/M3 W/ADDITIONAL CMP	DS BY METHOD TO1		TO-15			Ana	alyst: RJP
1,1,1-Trichloroethane	240		11	33	ug/m3	40	4/2/2013 10:09:00 PM
1,1,2-Trichloroethane	3.2		0.20	0.83	ug/m3	1	4/2/2013 1:52:00 AM
1,1-Dichloroethane	1400	J	530	1500	ug/m3	2430	4/3/2013 2:58:00 PM
1,1-Dichloroethene	67000		2100	6000	ug/m3	9720	4/3/2013 3:32:00 PM
1,2,3-Trimethylbenzene	< 0.75		0.18	0.75	ug/m3	1	4/2/2013 1:52:00 AM
1,2,4-Trichlorobenzene	< 1.1		0.45	1.1	ug/m3	1	4/2/2013 1:52:00 AM
1,2,4-Trimethylbenzene	0.85		0.23	0.75	ug/m3	1	4/2/2013 1:52:00 AM
1,2-Dichloroethane	29		2.0	6.2	ug/m3	10	4/2/2013 9:36:00 PM
1,3,5-Trimethylbenzene	< 0.75		0.18	0.75	ug/m3	1	4/2/2013 1:52:00 AM
Benzene	10		1.3	4.9	ug/m3	10	4/2/2013 9:36:00 PM
Carbon tetrachloride	2.7		0.36	0.96	ug/m3	1	4/2/2013 1:52:00 AM
Chloroform	8.3		0.20	0.74	ug/m3	1	4/2/2013 1:52:00 AM
cis-1,2-Dichloroethene	5200		480	1500	ug/m3	2430	4/3/2013 2:58:00 PM
Ethylbenzene	0.79		0.19	0.66	ug/m3	1	4/2/2013 1:52:00 AM
Freon 12	2.4		0.20	0.75	ug/m3	1	4/2/2013 1:52:00 AM
Freon 22	< 0.54		0.18	0.54	ug/m3	1	4/2/2013 1:52:00 AM
m&p-Xylene	3.2		0.44	1.3	ug/m3	1	4/2/2013 1:52:00 AM
Methyl tert-butyl ether	< 0.55		0.24	0.55	ug/m3	1	4/2/2013 1:52:00 AM
Methylene chloride	< 0.53		0.14	0.53	ug/m3	1	4/2/2013 1:52:00 AM
Naphthalene	2.7		0.25	0.80	ug/m3	1	4/2/2013 1:52:00 AM
o-Xylene	0.97		0.19	0.66	ug/m3	1	4/2/2013 1:52:00 AM
Tetrachloroethylene	64		3.9	10	ug/m3	10	4/2/2013 9:36:00 PM
Toluene	82		1.5	5.7	ug/m3	10	4/2/2013 9:36:00 PM
trans-1,2-Dichloroethene	56		1.9	6.0	ug/m3	10	4/2/2013 9:36:00 PM
Trichloroethene	96000		3400	8200	ug/m3	9720	4/3/2013 3:32:00 PM
Vinyl chloride	310		8.3	16	ug/m3	40	4/2/2013 10:09:00 PM

Qualifiers:	**	Reporting Limit		Results reported are not blank corrected	
	В	Analyte detected in the associated Method Blank	E	Value above quantitation range	
	Н	Holding times for preparation or analysis exceeded	·J	Analyte detected at or below quantitation limits	
	JN	Non-routine analyte. Quantitation estimated.	ND	Not Detected at the Reporting Limit	
	S	Spike Recovery outside accepted recovery limits			Page 5 of 10

Appendix C

Support Documentation

			<u>Centek Ch</u>	ain of (Custody_		Site Name: Middle River		Detection Limit	Report Level
			143 Midler Park	Drive			Project: SV AND	, IAQ	5ppbv	Level 1
	A Contraction of the Contraction		Syracuse, NY 1	3206			PO#: 112IC04792-	03	x 1uo/M3	
	and a second sec		315-431-9730		Vapor Intrusio	n & IAQ	Quote # Q-1653		1ug/M3 +TCE .25	Cat "B" Like
π		1	www.CentekLal	bs.com			Other: BO3569			
a		Check	Rush TAT	Due	Company:			Company:		<u> </u>
Ð	Turnaround Time:	One	Surcharge %	Date:		Tetra Tech, Ir	1C.	Check Here	if Same: 🔽	
0	5 Business Days		0% _		Report to:	.	_	Invoice to:		,
Ц Ц	4 Business Days		25%		Address:	2171 W. Park	Court, Suite E	Address:		a
ŝõ	2 Rusiness Days	H	50%		City, State, Zip			City, State, Z	Zip	
Q	Next Day by 5pm	H	100%			Stone Mounta	ain, GA 30087	<u> </u>		Q
	Next Day by Noon	H	150%	·		Loseph Same	@tetratecn.com		· · · · · · · · · · · · · · · · · · ·	
	Same Dav	H	200%		Phone:	(770) 413-096	SS	Phono:	······	
	Sample ID		Date 5	Sampled	Canister	Regulator	Analysis Baguast		Commonto	
			Duto (Jumpicu	Number	Number	Analysis Request		TIMES	Start/Stan
	5V-018-A-	ТЧА	3/27	13	98	59	TOIS	103	6 /1215	- Startistop
	5V-015-A-1	14A	3/27	113	357	111	TOIS	104	8 / 1158	-30/-2
	5V-108-A-	14A	3/27	13	/33	1167	TOIS	105	3/1201	-28/0
	5V-118-A-1	14A	3/27	1/13	429	176	TOIS	1102	2/1207	-30/0
	<u>5V-DUP1-A-</u>	14A	3/27	1/13	554		T015		-/	-29/-3
	1A-018-A-	14 <u>4</u>	3/27	/[3	1183	271	T015	095	7/ 1803	-30/-11
	1A-116-A-1	14A	3/27	//3	571	262	<u>T015</u>	1013	5/ 1808	-28 /0
	<u>A-138-A-</u>	14 <u>A</u>	3/27	7/13	1361	296	T015	1023	3/ 1818	-30/-7
	<u> A -093 - A -</u>	14A	<u>3/a</u> 7	<u>//3</u>	542	180	TOIS	1020	1816	-28/-1
	<u> 1A-DUP1-A-</u>	-14A-	3/27	7/13	1.174	177	<u>T015</u>		/	-30/-1
			··-·							
					·`			ļ		
	, 					×				
	· · · · · · · · · · · · · · · · · · ·									
									,,	
			<u></u>							
	Chain of Custody		Print Name		· · · · ·	Signature		Date/Time	Courier: CIRCLE ON	IE
	Sampled by:	·	TONY #	7-PANA	VAGE	-7	2/1-2	3/27/12	FedEx UPS Pic	kup/Dropoff
	Relinquished by:			<u></u>	A		K D.	1,845	For LAB USE ONLY	
	Received at Lab by:		San	Scal	h		del.	3/28/17	Work Order #	307079
	the Design Operation of the last					<u> </u>				

* By signing Centek Labs Chain of Custody, you are accepting Centek Labs Terms and Conditions listed on the reverse side.

Contraction of the second s

Date: 16-Apr-13

CLIENT:Tetra Tech, Inc.Project:Middle RiverLab Order:C1303079

CASE NARRATIVE

Samples were analyzed using the methods outlined in the following references:

Compendium of Methods for the Determination of Toxic Organic Compounds, Compendium Method TO-15, January 1999 and Centek Laboratories, LLC SOP TS-80:

All method blanks, laboratory spikes, and/or matrix spikes met quality assurance objective except as indicated in the corrective action report(s). All samples were received and analyzed within the EPA recommended holding times. Test results are not Method Blank (MB) corrected for contamination.

NYSDEC ASP samples:

Canisters should be evacuated to a reading of less than or equal to 50 millitorr prior to shipment to sampling personnel. The vacuum in the canister will be field checked prior to sampling, and must read 28" of Hg (\pm 2", vacuum, absolute) before a sample can be collected. After the sample has been collected, the pressure of the canister will be read and recorded again, and must be 5" of Hg (\pm 1", vacuum, absolute) for the sample to be valid. Once received at the laboratory, the canister vacuum should be confirmed to be 5" of Hg, \pm 1". Please record and report the pressure/vacuum of received canisters on the sample receipt paperwork. A pressure/vacuum reading should also be taken just prior to the withdrawal of sample from the canister, and recorded on the sample preparation log sheet. All regulators are calibrated to meet these requirements before they leave the laboratory. However, due to environmental conditions and use of the equipment Centek can not guarantee that this criteria can always be achieved.

See Corrective Action: [2714] Missing samples off the COC

Corrective Action Report

Date Initiated: Initiated By:	28-Mar-13 Janice Scala	Corrective Action Report ID: 2714 Department: LOGIN								
Corrective Action Description										
CAR Summary: Missing samples off the COC										
Description of Nonconformand	Sample IA-138 e: box	-A-14A (367) & 1A-DUP1-A-14A was listed on COC but was not in sample								
Description ofSpoke to the PM and they located the canisters. Canister 367 & Canister 1174 will arrivCorrective Action:3/29/13 / E. Sammules										
Performed By:	Janice Scala	Completion Date: 29-Mar-13								
		Client Notification								
Client Notificati Comment: Wil	Client Notification Required: Yes Notified By: Janice Scala Comment: Will arrive 3/29/13									
	Quality Assurance Review									

Nonconformance Type: Anomaly

Further ActionAt this time no further corrective action takenrequired by QA:

		Approval and Closure	
Technical Director / Deputy Tech. Dir.:	Will	Sell:	Close Date: 28-Mar-13
QA Officer Approval:	NAL-	William Dobbin	QA Date: 28-Mar-13
		Russell Pellegrino	
Last Updated BY russ2		Updated: 16-Apr-2013 11:37 AM	Reported: 16-Apr-2013 11:37 A

Date: 16-Apr-13

CLIENT: Project: Lab Order:	Tetra Tech, Inc. Middle River C1303079		Work Order Sa	ample Summary
Lab Sample ID C1303079-001A	Client Sample ID SV-018-A-14A	Tag Number 98,59	Collection Date 3/27/2013	Date Received 3/28/2013
C1303079-002A	SV-015-A-14A	351,111	3/27/2013	3/28/2013
C1303079-003A	SV-108-A-14A	133,1167	3/27/2013	3/28/2013
C1303079-004A	SV-118-A-14A		3/27/2013	3/28/2013
C1303079-005A	SV-DUP1-A-14A	554,	3/27/2013	3/28/2013
C1303079-006A	[A-018-A-14A	1183,271	3/27/2013	3/28/2013
C1303079-007A	IA-116-A-14A	571,262	3/27/2013	3/28/2013

CLIENT: Project: Lab Order:	Tetra Tech, Inc. Middle River C1303079		Work Ord	er Sample Summary
Lab Sample ID C1303079-008A	Client Sample ID IA-138-A-14A	Tag Number 367,296	Collection Date 3/27/2013	Date Received 4/1/2013
C1303079-009A	IA-093-A-14A	542,180	3/27/2013	3/28/2013
C1303079-010A	IA-DUP1-A-14A	1174,177	3/27/2013	4/1/2013

					S	ample Re	ceipt Cho	ecklist
Client Name: TETRA TECH - ATLANTA				Date and	i Time	Received		3/28/2013
Work Order Number C1303079				Received	d by:	JDS		
Checklist completed by	ala 3/2	, 8/1	3	Reviewe	d by _	NV Initials		3/23/13 Date
Matrix:	Carrier name:	<u>Fed</u>	<u>Ex</u>				I	
Shipping container/cooler in good condition?		Yes		No 🗆	٢	Not Present		
Custody seals intact on shippping container/coole	τ?	Yes		No 🗆	4	lot Present		
Custody seals Intact on sample bottles?		Yes		No 🗔	٢	lot Present		
Chain of custody present?		Yes		No 🗌				
Chain of custody signed when relinquished and re	ceived?	Yes		No 🗖				
Chain of custody agrees with sample labels?		Yes		No 🗹				
Samples in proper container/bottle?		Yes		No 🗔				
Sample containers Intact?		Yes		No 🗔				
Sufficient sample volume for indicated test?		Yes		No 🗌				
Il samples received within holding time?		Yes		No 🗔				
Container/Temp Blank temperature in compliance	7	Yes		No 🗌				
Vater - VOA viais have zero headspace?	No VOA vials subm	litted		Yes		No 🗌		
Vater - pH acceptable upon receipt?		Yes		No 🗹				
م	djusted?			Checked by				
ny No and/or NA (not applicable) response must	be detailed in the co		nts sec 	ction bel				
Client contacted:	ate contacted:	_3/	28/	//3 P	erson	contacted	Hick	Samue
Contacted by:	legarding: 🗤	-/ (. / 	· Sam	-	1		
	0	1		<u>r</u>	- 1 -			
omments: Musin Sar	yeles a	00	ş(COC	·····			
angle 1A-138-14-141	A IA-Du	(PI	- 1	7-14A-	l	isted	on Co	10 but
at received						-		·
	سب ل			. 1 . *				
orrective Action See	Correcte	بر السط	·	action		repor	+ 2	71 4

600	S	
эт	DG	
LIMI	C130	
те	307!	
NCAN	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	
ID		
· · ·		
DE		
CAMD		
г		
TTP		
ΔΝΑΙ		
: GM		
D EVTE		
) EY		
тр		
ANI		
CMD		
ANI		

	30RI	UNITS	NSAMPLE	LAD_IU				ANAL_VAIE		EXIR_ANL	SNIP_ANL
	OV-M3	UG/M3	SV-015-A-14A	C1303079-002A	NM	3/27/2013	4/3/2013	4/3/2013	7	0	7
	OV-M3	UG/M3	IA-018-A-14A	C1303079-006A	NM	3/27/2013	4/2/2013	4/2/2013	6	0	6
	OV-M3	UG/M3	IA-093-A-14A	C1303079-009A	NM	3/27/2013	4/1/2013	4/1/2013	5	0	5
	OV-M3	UG/M3	IA-093-A-14A	C1303079-009A	NM	3/27/2013	4/2/2013	4/2/2013	6	0	6
	OV-M3	UG/M3	IA-116-A-14A	C1303079-007A	NM	3/27/2013	4/1/2013	4/1/2013	5	0	5
	OV-M3	UG/M3	IA-116-A-14A	C1303079-007A	NM	3/27/2013	4/2/2013	4/2/2013	6	0	6
	OV-M3	UG/M3	IA-138-A-14A	C1303079-008A	NM	3/27/2013	4/1/2013	4/1/2013	5	0	5
	OV-M3	UG/M3	IA-138-A-14A	C1303079-008A	NM	3/27/2013	4/2/2013	4/2/2013	6	0	6
	OV-M3	UG/M3	IA-DUP1-A-14A	C1303079-010A	NM	3/27/2013	4/1/2013	4/1/2013	5	0	5
	OV-M3	UG/M3	IA-018-A-14A	C1303079-006A	NM	3/27/2013	4/1/2013	4/1/2013	5	0	5
	OV-M3	UG/M3	SV-015-A-14A	C1303079-002A	NM	3/27/2013	4/2/2013	4/2/2013	6	0	6
	OV-M3	UG/M3	SV-DUP1-A-14A	C1303079-005A	NM	3/27/2013	4/3/2013	4/3/2013	7	0	7
	OV-M3	UG/M3	SV-018-A-14A	C1303079-001A	NM	2/27/2013	4/1/2013	4/1/2013	33	0	33
	OV-M3	UG/M3	SV-018-A-14A	C1303079-001A	NM	2/27/2013	4/2/2013	4/2/2013	34	0	34
	OV-M3	UG/M3	SV-018-A-14A	C1303079-001A	NM	2/27/2013	4/3/2013	4/3/2013	35	0	35
Text Sector	Wednesda	iy, April 1	17, 2013						arian and a star and a star and a star and a star a st	P	age 1 of 2
- 38	Contraction (Contraction (Contraction))			North Control of California Control of California Control of California	to company caloring and a section of	and the second state of th	Contraction of the second state of the second	LT			HINGS AND STREET, SUDGERS, STREET, STRE

10	SORT	UNITS	NSAMPLE	LAB_ID	QC_TYPE	SAMP_DATE	EXTR_DATE	ANAL_DATE	SMP_EXTR	EXTR_ANL	SMP_ANL
12	OV-M3	UG/M3	SV-108-A-14A	C1303079-003A	NM	3/27/2013	4/2/2013	4/2/2013	6	0	6
	OV-M3	UG/M3	SV-108-A-14A	C1303079-003A	NM	3/27/2013	4/3/2013	4/3/2013	7	0	7
	OV-M3	UG/M3	SV-118-A-14A	C1303079-004A	NM	3/27/2013	4/2/2013	4/2/2013	6	0	6
	OV-M3	UG/M3	SV-118-A-14A	C1303079-004A	NM	3/27/2013	4/3/2013	4/3/2013	7	0	7
	OV-M3	UG/M3	SV-DUP1-A-14A	C1303079-005A	NM	3/27/2013	4/2/2013	4/2/2013	6	0	6
	OV-M3	UG/M3	IA-DUP1-A-14A	C1303079-010A	NM	3/27/2013	4/2/2013	4/2/2013	6	0	6

Wednesday, April 17, 2013

[Field Duplicate Precision			
ANALYTE	IA-DUP1-A-14A	IA-018-A-14A	RPD	DIFFERENCE
1,1-DICHLOROETHENE	1.3	1.5	14.29	0.2
BENZENE	0.55	0.58	5.31	0.03
CHLORODIFLUOROMETHANE	1	0.97	3.05	0.03
CIS-1,2-DICHLOROETHENE	ND	0.48	200.00	0.12
DICHLORODIFLUOROMETHANE	2.8	2.7	3.64	0.1
M+P-XYLENES	0.66	1.5	77.78	0.84 🗸
METHYLENE CHLORIDE	0.74	0.99	28.90	0.25
NAPHTHALENE	1.3	1	26.09	0.3
TOLUENE	22	57	88.61	35
TRICHLOROETHENE	2.7	3.3	20.00	0.6

.

ANALYTE	SV-DUP1-A-14A	SV-018-A-14A	RPD	DIFFERENCE]
1,1,1-TRICHLOROETHANE	240 (40x)	73 $(10x)$	(106.Z1)	167]
1,1,2-TRICHLOROETHANE	3.2	2.1	41.51	1.1]
1,1-DICHLOROETHANE	1400 (Z = 30x)	800 (800X)	(54.55)	600]
1,1-DICHLOROETHENE	67000 (9720x)	37000 (3 290x)	57.69	30000]
1,2,4-TRIMETHYLBENZENE	0.85	ND	(200.00)	0.1	
1,2-DICHLOROETHANE	29	14	N 69.77	15	
BENZENE	10 (IOX)	5.2	63.16	4.8	
CARBON TETRACHLORIDE	2.7	1.7	45.45	1	
CHLOROFORM	8.3	4.3	N (63.49)	4	
CIS-1,2-DICHLOROETHENE	5200	4400	16.67	800	
DICHLORODIFLUOROMETHANE	2.4	2	18.18	0.4	
ETHYLBENZENE	0.79	ND	(200.00)	0.13	
M+P-XYLENES	3.2	1.9	N <u>50.98</u>	1.3	
NAPHTHALENE	2.7	ND	200.00	N 1.9	
O-XYLENE	0.97	0.44	(75.18)	0.53	
TETRACHLOROETHENE	64	28	78.26	36	
TOLUENE	82	36	N(77.97)	46	
TRANS-1,2-DICHLOROETHENE	56	26	N (73.17)	30]
TRICHLOROETHENE	96000 (97201)	52000 (7290x)	(59.46)	44000]
VINYL CHLORIDE	310	160	♦(63.83)	150]

C:\HPCHEM\1\DATA

Directory:

Injection Log

Insuument#

Internal Standard Stock #_

1491

					Standard Standard	Stock #
Line	Viai	FileName	Multiplier	SampleName	Misc Info	
	VICAL		Manapilo	bampiename	Method R	ef: EPA TO-19798H. 1999
221	10	Ak031115.d	1.	C1303012-019A 10X	A305_1UG	11 Mar 2013 21:09
222	10	Ak031116.d	1.	C1303012-023A 10X	A305_1UG	11 Mar 2013 21:42
223	11	Ak031117.d	1.	C1303013-003A 10X	A305_1UG	11 Mar 2013 22:15
224	12	Ak031118.d	1.	C1303013-004A 10X	A305_1UG	11 Mar 2013 22:48
225	13	AKU31119.0	1.	C1303013-000A 10A		13 Mar 2013 23:21 11 Mar 2013 23:54
220	15	Ak031121.d	1.	C1303013-015A 10X	A305_1UG	12 Mar 2013 00 27
228	16	Ak031122.d	1.	C1303013	A305 1UG-015A	40X 12 Mar 2013 01:00
229	17	Ak031123.d	1.	C1303013-018A 10X	A305_1UG	12 Mar 2013 01:33
230	18	Ak031124.d	1.	C1303013	A305_1UG-018A	40X 12 Mar 2013 D2:06
231	19	Ak031125.d	1.	C1303013-019A 10X	A305_1UG	12 Mar 2013 02:38
232	20	Ak031126.d	. 1.	C1303013	A305_1UG-019A	40X 12 Mar 2013 03:11
233	21	Ak031127.d	1.	ALCS1UGD-031113	A305_1UG	12 Mar 2013 03:44
234	22	Ak031128.d	1.	C1303033-006A 5X	A305_1UG	12 Mar 2013 04:17
235	23	AK031129.0	1.	C1303033-000A 5X	A305_1UG	12 Mar 2013 04:50
230	24 25	AKU31130.0	1.	C1303033-007A 3A	A305_1UG	12 Mar 2013 05:25
238	26	Ak031132.d	1.	C1303033-002A 40X	A305 1UG	12 Mar 2013 06:29
239	27	Ak031133.d	1.	C1303033-003A 10X	A305_1UG	12 Mar 2013 07:02
240	28	Ak031134.d	1.	C1303033-005A 2X	A305_1UG	12 Mar 2013 07:36
241	27	Ak031135.d	1.	C1303033-003A 270X	A305_1UG	12 Mar 2013 08:37
242	28	Ak031136.d	1.	C1303012-014A 90X	A305_1UG	12 Mar 2013 09:10
243	29	Ak031137.d	1.	C1303D12-023A 270X	A305_1UG	12 Mar 2013 09:44
244	30	Ak031138.d	1.	C1303012-013A 90X	A305_1UG	12 Mar 2013 10:17
245	31	Ak031139.d	1.		A305_1UG	12 Mar 2013 10:50
240	31	AKU3 1140.0	1.	No MS or GC data present	A309_10G	12 WAI 2013 11:24
247	1	Ak031301.d	1.	BFB1UG		13 Mar 2013 16:28
249	4	Ak031318.d	1.	A1UG 0.04		14 Mar 2013 01:58
250	5	Ak031319.d	1.	A1UG		14 Mar 2013 02:30
261	6	Ak031320.d	1.	A1UG_0.10		14 Mar 2013 03:04
252	7	Ak031321.d	1.	A1UG_0.15		14 Mar 2013 03:37
253	8	Ak031322.d	1.	A1UG_		14 Mar 2013 04:11
254	9	Ak031323.d	1.	A1UG_0.30		14 Mar 2013 04:45
200	10	AKU31324.0	1. 1	A1UG_0.75		14 Mar 2013 05.17
200	11	AKU31328.0	1.	A1UG 1 0		14 Mar 2013 06:25
258	13	Ak031320.d	1.	A1UG 1.25		14 Mar 2013 06:59
259	14	Ak031328.d	1.	A1UG 1.5		14 Mar 2013 07:35
260	15	Ak031329.d	1.	A1UG_2.0		14 Mar 2013 08:09
261		Ak031330.d	1.	No MS or GC data present		
262	1	Ak031401.d	1.	BFB1UG		14 Mar 2013 08:49
263	2	Ak031402.d	1.	A1UG_1.0		14 Mar 2013 09:38
264	3	AkD31403.d	1.	ALCS1UG-031413		14 Mar 2013 10:12
265	4 5	AKU31404.d	7.	AMB10G-031413		14 Mar 2013 10:40
200	0 6		1. -{			14 Mar 2013 11:13
268	7	Ak031407.d	1.	PROF 40X	·	14 Mar 2013 12:26
269	1	Ak031408.d	1.	WAC031413A		14 Mar 2013 12:58
270	2	Ak031409.d	1.	WAC031413B		14 Mar 2013 13:32
271	3	Ak031410.d	1.	WAC031413C		14 Mar 2013 14:05
272	4	Ak031411.d	1.	WAC031413D		14 Mar 2013 15:38
273	2	Ak031412.d	1.	WAC031413E		14 Mar 2013 16:11
274	3	Ak031413.d	1.	WAC031413F		14 Mar 2013 16:44
275	4	AKU31414.d	1.	WAC031413G		14 Mar 2013 17:17

Page 5

Centek	Laboratories,	LLC
		· — · -

Directory: C:\HPCHEM\1\DATA2

Line	Vial	FileName	Multiplier	SampleName	Misc Info Metho
606 607 608 609 610 611 612 613 614 615	2 3 4 5 6 7 8 9 10	Ak032808.d Ak032809.d Ak032810.d Ak032811.d Ak032812.d Ak032813.d Ak032814.d Ak032815.d Ak032816.d Ak032816.d	1. 1. 1. 1. 1. 1. 1. 1.	C1303075-003A C1303075-004A C1303075-005A C1303075- C1303075-007A C1303075-008A C1303075-002A C1303075-006A C1303075-001A 10X C1303075-003A 10X	A313_UGM3 A313_UGM3 A313_UGM3 A313_UGM3 A313_UGM3 A313_UGM3 A313_UGM3 A313_UGM3 A313_UGM3 A313_UGM3 A313_UGM3
616 617 618 619 620 621 622 623 624 625	11 12 13 14 15 16 17 18 19 20	Ak032818.d Ak032819.d Ak032820.d Ak032821.d Ak032822.d Ak032823.d Ak032824.d Ak032825.d Ak032825.d Ak032826.d	1. 1. 1. 1. 1. 1. 1. 1. 1.	C1303075-004A 10X C1303075-005A 10X C1303075-005A 10X C1303075-008A 10X C1303075-002A 10X C1303075-006A 10X C1303075-006A 10X C1303075 ALCS1UGD-032813 C1303081-001A	A313_UGM3 A313_UGM3 A313_UGM3 A313_UGM3 A313_UGM3 A313_UGM3-000 A313_UGM3 A313_UGM3-000 A313_UGM3-000 A313_UGM3
626 627 628 629 630 631 632 633 633 634 635	21 22 23 24 25 26 27 28 29 23	Ak032828.d Ak032829.d Ak032830.d Ak032831.d Ak032832.d Ak032833.d Ak032834.d Ak032835.d Ak032835.d Ak032836.d	1. 1. 1. 1. 1. 1. 1. 1.	C1303081-002A C1303081-003A C1303081-003A 10X C1303081 C1303081 C1303081 blk WAC032813A WAC032813B C1303075-002A 40X	A313_UGM3 A313_UGM3 A313_UGM3 A313_UGM3-003 A313_UGM3-003 A313_UGM3-003 A313_UGM3 A313_UGM3 A313_UGM3 A313_UGM3 A313_UGM3
536 537 538 539 540 541 542 543 544 545	24 1 2 3 4 5 6 7 8	Ak032838.d Ak032839.d Ak032901.d Ak032902.d Ak032903.d Ak032905.d Ak032905.d Ak032906.d Ak032907.d Ak032908.d	1. 1. 1. 1. 1. 1. 1. 1.	C1303081-003A 90X No MS or GC data present BFB1UG A1UG_1.0 ALCS1UG-032913 AMB1UG-032913 C1303082-018A C1303082-003A C1303082-003A MS C1303082-003A MSD	A313_UGM3 A313_UGM3 A313_UGM3 A313_UGM3 A313_UGM3 A313_UGM3 A313_UGM3 A313_UGM3 A313_UGM3 A313_UGM3 A313_UGM3
546 547 548 549 550 551 552 553 554 355	5 6 7 8 9 10 11 12 13 12	Ak032909.d Ak032910.d Ak032911.d Ak032912.d Ak032913.d Ak032914.d Ak032915.d Ak032916.d Ak032917.d Ak032918.d	1. 1. 1. 1. 1. 1. 1. 1.	C1303082-002A C1303082-005A C1303082-006A C1303082-008A C1303082-010A C1303082-012A C1303082-013A C1303082-015A C1303082-017A C1303082-001A	A313_UGM3 A313_UGM3 A313_UGM3 A313_UGM3 A313_UGM3 A313_UGM3 A313_UGM3 A313_UGM3 A313_UGM3 A313_UGM3 A313_UGM3
356 357 358 359 360	41 42 43 44 45	Ak032919.d Ak032920.d Ak032921.d Ak032922.d Ak032923.d	1. 1. 1. 1. 1.	C1303082-004A C1303082-007A C1303082-009A C1303082 C1303082-014A	A313_UGM3 A313_UGM3 A313_UGM3 A313_UGM3-011 A313_UGM3

Instrument # Internal Standard Sta Standard Stock # LCS Stock # Method Ref: 58	L Dock #
GM3	28 Mar 2013 14:45
GM3	28 Mar 2013 15:18
GM3	28 Mar 2013 15:56
GM3	28 Mar 2013 16:30
GM3	28 Mar 2013 17:17
GM3	28 Mar 2013 17:50
GM3	28 Mar 2013 18:24
GM3	28 Mar 2013 18:57
GM3	28 Mar 2013 19:30
GM3	28 Mar 2013 20:04
GM3	28 Mar 2013 20:37
GM3	28 Mar 2013 21:11
GM3	28 Mar 2013 21:44
GM3	28 Mar 2013 22:17
GM3	28 Mar 2013 22:50
GM3-002A 40X	28 Mar 2013 23:23
GM3	28 Mar 2013 23:56
GM3-006A 40X	29 Mar 2013 00:28
GM3	29 Mar 2013 01:02
GM3	29 Mar 2013 01:35
GM3	29 Mar 2013 02:09
GM3	29 Mar 2013 02:44
GM3-003A 40X	29 Mar 2013 03:17
GM3-001A 10X	29 Mar 2013 03:50
GM3-002A 5X	29 Mar 2013 04:24
GM3	29 Mar 2013 04:57
GM3	29 Mar 2013 05:30
GM3	29 Mar 2013 06:03
GM3	29 Mar 2013 06:37
GM3	29 Mar 2013 07:21
GM3 GM3 GM3 GM3 GM3 GM3 GM3 GM3 GM3 GM3	29 Mar 2013 09:31 29 Mar 2013 10:09 29 Mar 2013 10:43 29 Mar 2013 11:16 29 Mar 2013 12:03 29 Mar 2013 12:38 29 Mar 2013 13:13 29 Mar 2013 13:49
GM3 GM3 GM3 GM3 GM3 GM3 GM3 GM3 GM3 GM3	29 Mar 2013 14:23 29 Mar 2013 14:56 29 Mar 2013 15:30 29 Mar 2013 16:06 29 Mar 2013 16:41 29 Mar 2013 17:15 29 Mar 2013 17:49 29 Mar 2013 18:22 29 Mar 2013 19:00 29 Mar 2013 19:33
GM3	29 Mar 2013 20:06
GM3	29 Mar 2013 20:41
GM3	29 Mar 2013 21:14
GM3-011A	29 Mar 2013 21:53
GM3-011A	29 Mar 2013 22:28

	_	Centek	Laborator	ies, LLC	Injection Log	Instrument #	1
	Ĺ	Directory: C	:\HPCHEM	11DA FA2		Stendard Standard Stock /	<u>t_1)31</u>
1			R.A. (Kingling)	Demails Menne			
LINE	viai	FileName	Multiplier	SampleName	MIS	cinto icorkent inte	U-Injected. 1999
661	46	Ak032924.d	1.	C1303082-016A	A31	3 UGM3	29 Mar 2013 23·04
662	47	Ak032925.d	1.	ALCS1UGD-032913	A31	3 UGM3	29 Mar 2013 23:40
663	48	Ak032926.d	· 1.	C1303083-001A	A31	3 UGM3	30 Mar 2013 00.16
664	49	Ak032927.d	1.	C1303083-002A	A31	3 UGM3	30 Mar 2013 00:53
665	50	Ak032928.d	1.	C1303083-003A	A31	3 UGM3	30 Mar 2013 01:28
666	51	Ak032929.d	1.	C1303083-004A	A31	3 UGM3	30 Mar 2013 02:04
667	52	Ak032930.d	1.	C1303083-005A	A31	3 UGM3	30 Mar 2013 02:00
668	53	Ak032931.d	1.	C1303083-006A	A31	3 UGM3	30 Mar 2013 03:16
669		Ak032942 d	1	No MS or GC data pres	ent	0_00110	00 Mai 2010 03.10
670	1	Ak033001.d	1.	BFB1UG	A31	3 UGM3	30 Mar 2013 10:05
671	3	Ak033002.d	1.	A1UG 1.0	A31		30 Mar 2013 12:33
672	4	Ak033003.d	1.	ALCS1UG-033013	A31	3 UGM3	30 Mar 2013 13:09
673	6	Ak033004.d	1.	AMB1UG-033013	A31	3 UGM3	30 Mar 2013 13:43
674	7	Ak033005.d	1.	WAC033013A	A31	3 UGM3	30 Mar 2013 16:47
675	8	Ak033006.d	1.	WAC033013B n	A31	3 UGM3	30 Mar 2013 17:23
676	9	Ak033007.d	1	WAC033013C n	A31	3 UGM3	30 Mar 2013 17:50
677	10	Ak033008 d	1	WAC033013D n	A31	3 UGM3	30 Mar 2013 18:35
678	11	Ak033009 d	1	C1303082-003A 2X	Δ31		30 Mar 2013 10:00
679	12	Ak033010 d	1	C1303082-002A 10X	A31	3 110143	30 Mar 2013 19.09
680	13	Ak033011 d	1	C1303082-005A 10X	Δ31		30 Mar 2013 19.43
000			1.	01000002 000/110/			30 Wai 2013 20.18
681	14	AK033012.0	1.	C1303082-006A 10X	A31	3_UGM3	30 Mar 2013 20:52
682	15	AK033013.d	1.	C1303082-008A 10X	A31	3_UGM3	30 Mar 2013 21:27
683	16	AKU33014.d	1.	C1303082-010A 10X	A31	3_UGM3	30 Mar 2013 22:01
684	1/	Ak033015.d	1.	C1303082-012A 10X	A31	3_UGM3	30 Mar 2013 22:36
685	18	Ak033016.d	1.	C1303082-013A 10X	A31	3_UGM3	30 Mar 2013 23:10
686	19	Ak033017.d	1.	C1303082-015A 10X	A31	3_UGM3	30 Mar 2013 23:44
687	20	Ak033018.d	1.	C1303082-017A 10X	A31	3_UGM3	31 Mar 2013 00:20
688	21	Ak033019.d	1.	C1303082-001A 10X	A31:	3_UGM3	31 Mar 2013 00:54
689	22	Ak033020.d	1.	C1303082-001A 90X	A31	3_UGM3	31 Mar 2013 01:28
690	23	Ak033021.d	1.	C1303082-004A 10X	A31	3_UGM3	31 Mar 2013 02:03
691	24	Ak033022.d	1.	C1303082-004A 90X	A31:	3_UGM3	31 Mar 2013 02:37
692	25	Ak033023.d	1.	C1303082-007A 10X	A31:	3_UGM3	31 Mar 2013 03:11
693	26	Ak033024.d	1.	C1303082-007A 90X	A31	3_UGM3	31 Mar 2013 03:45
694	27	Ak033025.d	1.	C1303082-009A 10X	A31:	3_UGM3	31 Mar 2013 04:20
695	28	Ak033026.d	1.	C1303082-009A 90X	A31:	3_UGM3	31 Mar 2013 04:54
396	29	Ak033027.d	1.	C1303082-014A 10X	A31	3_UGM3	31 Mar 2013 05:28
397	30	Ak033028.d	1.	C1303082-016A 10X	A313	3 UGM3	31 Mar 2013 06:02
398	31	Ak033029.d	1.	C1303082-016A 40X	A31	3 UGM3	31 Mar 2013 06:37
399	32	Ak033030.d	1.	ALCS1UGD-033013	A31:	3 UGM3	31 Mar 2013 07:13
700		Ak033031.d	1.	No MS or GC data press	ent		

•

			•	Resp	onse F	actor	Report	MSD	#1	
	Meth	od : C:\HPCH	EM\1\M	ETHODS	\A313_	1UG.M	(RTE I	ntegra	tor)	
	Last	Update : Wed Mar	: 27 15	:03:05	2013	ο τοτα	L Carl	Dracio	1	
	Resp	onse via : Initial	. Calib	ration						
	Cali	bration Files .								
	0.04	=AK031318.D 0	.10	=AK031	320,D	0.15	=AK	031321	.D	
	0.30	=AK031323.D 0	.50	=AK031	324.D	0.75	=AK	031325	,D	
		Compound	0.04	0.10	0.15	0.30	0.50	0.75	Avq	\$RSD
1)	I	Bromochloromethan	e -			TST	D			
2)	Ť	Freon 22	-		3.081	2.495	2.258	2.251	2.318	14.51
3)	Т	Propylene			0.902	0.799	0.840	0.745	0.750	11.67
4) E)	T	Freon 12 Chloromethano			5.430	5.238	4.955	4.831	4.997	12.39
6)	ŕ	Freon 114			4.946	4.059	3.737	3.681	3.803	13.25
7)	T	Vinyl Chloride	1.539	1.228	1.254	1.180	1.065	1.076	1.130	15.65
B)	т	1,3-butadiene	•		0.931	0.818	0.703	0.790	0.796	11.00
9)	T	Bromomethane			1.682	1.356	1.335	1.286	1.314	12.22
11)	Ť	Acrolein			0.348	0.257	0.253	0.207	0.267	15.80
12)	T	Chloroethane			0.598	0.607	0.515	0.503	0.507	12.58
13)	T	Vinyl Bromide			1.779	1.426	1.436	1.387	1.388	12.57
14)	T	Freon 11		_	7.033	5,436	5.167	5.090	5.257	14.29
16)	יבי ידי	Teopropyl alcoh			1.605	0.494	1 334	1.364	0.435	13 47
17)	Ŧ	1,1-dichloroeth			1.403	1.317	1.136	1.106	1.151	11.64
18)	т	Freon 113			3.698	2.902	2.731	2.739	2.759	14.84
19)	t	t-Butyl alcohol			2.837	2.073	2.026	1.999	2.053	16.43
20)	T T	Mecnylene chior			1 877	1 966	1 500	U.939	0.968	15.24
22)	Ŷ	Carbon disulfid			4.597	3,489	3.093	3.120	3.221	18.55
23)	Т	trans-1,2-dichl		•	2.028	1.600	1.480	1.589	1.584	11.75
24)	T	methyl tert-but			3.872	3.220	2.988	2.808	3.063	11.56
25)	T T	1,1-dichloroeth			3.052	2.440	2.194	2.322	2,323	13.53
27)	Ť	Methvl Ethvl Ke			2.177	0.366	0.396	0.398	0.379	4.47
28)	T	cis-1,2-dichlor			1.896	1.355	1.459	1.335	1.439	13.09
29)	T	Hexane			1.592	1.227	1.174	1.282	1.268	10.97
30)	T	Ethyl acetate			2.170	1.847	1.715	1.754	1.802	8.91
32)	T	Tetrahvdrofuran			0.952	0.885	0.776	0.747	0.780	11.53
33)	T	1,2-dichloroeth			2.949	2.320	2.209	2.204	2.258	12.92
145	Ŧ	1 A-difluoroberge	10			T C M]			
35)	Ť	1.1.1-trichloro			1.691	1.197	1.110	1.124	1.155	19.49
36)	T	Cyclohexane			0.454	0.362	0.344	0.347	0.364	10.62
37)	Т	Carbon tetrachl	2.306	1.702	1.954	1.379	1.339	1.321	1.492	25.15
38)	T	Benzene			1.169	0.940	0.930	0.890	0.910	12.50
40)	Ψ	1.4-dioxane			4.37Z	0.129	0.200	0.273 0.112	0.113	6.79
41)	Î	2,2,4-trimethyl			1.581	1.160	1.122	1.111	1.175	14.30
42)	т	Heptane			0.557	0.386	0.375	0.349	0.389	17.92
43)	T	Trichloroethene	0.771	0.585	0.694	0.512	0.490	0.476	0.541	20.17
44) 45)	T	Bromodichlorome			1.483	1.087	1.074	1.029	1.076	15.84
46)	Î	cis-1,3-dichlor		•	0.661	0.457	0.457	0.467	0.482	15.14
47)	т	trans-1,3-dichl			0.564	0.407	0.452	0.422	0.455	10,95
48)	т	1,1,2-trichloro			0.657	0.492	0.488	0.454	0.485	14,88
49)	I	Chlorobenzene-d5				IST	J			
50)	т	Toluene			0.844	0.608	0.629	0.623	0.648	12,47
51)	т	Methyl Isobutyl				0.475	0.458	0.455	0.432	8.76

(#) = Out of Range ### Number of calibration levels exceeded format ### A313_1UG.M Thu Mar 28 09:33:19 2013 MSD1

.

Response Factor Report MSD #1

	Meth Titl Last Resp	od : C:\HPG e : TO-15 Update : Wed Ma oonse via : Initia	CHEM\1\N VOA St ar 27 19 al Calib	METHODS Landard 5:03:05 Dration	\A313_ s for 2013	IUG.M 5 point	(RTE I: t cali!	ntegra bratio	tor) a	
	Cali 0.04 0.30	bration Files =AK031318.D =AK031323.D	0.10 0.50	=AK031 =AK031	320.D 324.D	0.15 0.75	=AK =AK	031321 031325	.D .D	
		Compound	0.04	0.10	0.15	0.30	0.50	0.75	Avg	&rsd
52)	T	Dibromochlorome			1.638	1.173	1.108	1.073	1.141	18.20
53)	Т	Methyl Butyl Ke				0.318	0.302	0.288	0,289	7.94
54)	T	1,2-dibromoetha			1.038	0.716	0.742	0.742	0.753	15.64
55)	T	Tetrachloroethy	1.204	0.802	0.927	0.662	0.660	0.642	0.728	27.38
56)	T	Chlorobenzene			1.422	1.010	1.025	1.004	1.038	15.23
57	T	Ethylbenzene			1.717	1.238	1.329	1.351	1.395	10.54
58)	T	m&p-xylene			1.264	0.940	1.018	1.089	1.120	10.07
59)	T	Styrene			0.755	0.574	0.644	0.657	.0.683	9.97
60)	T	Bromororm			T'#TD	1,040	1.061	1.055	1.005	13.71
61	T	o-xyiene	0 505		1.767	1.4/3	1.367	1,470	1.4/1	12.1/ E 48
62/	5	Brombiluorobenz	0.520	1 0.9TT	1 100		0,980	0.067	0.3/2	3.40 77 44
021	T m	7-Chlorotoluono			1 517	1 101	1 058	1 1 1 7 7	1 139	14 08
64) CC)	T T	2-Chiofocothene			1 164	T. TST	1.020	1 063	1 116	11 90
621	T.	1 3 5-trimethyl			1 779	1 767	1 450	1.435	1 516	8.44
671	÷	1 2 A-trimethyl			1.145	0.850	0.974	1.050	1.095	14.38
681	ŵ	1.3-dichloroben			0.961	0.731	0.825	0.894	0.895	10.72
69)	Ť	benzyl chloride			0.946	0.662	0.675	0.698	0.794	14.70
70)	Ŧ	1.4-dichloroben			0.894	0.746	0.750	0.822	0.850	11.35
71)	Ŧ	1.2.3-trimethyl			1.335	1.032	1.121	1.227	1.298	14.02
72)	Ŧ	1.2-dichloroben			1.048	0.805	0,859	0.921	0.920	9.22
73)	T	1,2,4-trichloro			0.551	0.576	0.492	0.500	0.541	10.80
74)	т	Naphthalene			0.975	0.854	0.741	0.812	0.859	10.87
75)	т	Hexachloro-1,3-			1.135	0.863	0.991	0.923	0.947	9.68

(#) = Out of Range ### Number of calibration levels exceeded format ### A313_1UG.M Thu Mar 28 09:33:19 2013 MSD1

,

Page 288 of 399

Line	Vial	FileName	Multiplier	SampleName
1 2 3 4 5 6 7 8 9 10	1 2 3 4 5 1 2 3 4 5	Ak040101.d Ak040102.d Ak040103.d Ak040104.d Ak040105.d Ak040106.d Ak040108.d Ak040109.d Ak040110.d	1. 1. 1. 1. 1. 1. 1. 1. 1.	BFB1UG A1UG A1UG_1.0 ALCS1UG-040113 AMB1UG-040113 WAC040113A WAC040113B WAC040113C WAC040113D WAC040113E
11 12 13 14 15 16 17 18 19 20	6783456789	Ak040111.d Ak040112.d Ak040113.d Ak040114.d Ak040115.d Ak040116.d Ak040117.d Ak040118.d Ak040119.d Ak040120.d	1. 1. 1. 1. 1. 1. 1. 1.	WAC040113F WAC040113G WAC040113H C1304005-001A C1304005-002A C1304005-003A C1304005-004A C1304005-005A C1303079-006A C1303079-007A
21 22 23 24 25 26 27 28 29 30	10 11 12 41 42 43 44 45 46 47	Ak040121.d Ak040122.d Ak040123.d Ak040125.d Ak040125.d Ak040126.d Ak040127.d Ak040128.d Ak040129.d Ak040130.d	1. 1. 1. 1. 1. 1. 1. 1.	C1303079-008A C1303079-009A C1303079-010A C1303079-001A C1303079-002A C1303079-003A C1303079-004A C1303079-005A C1304001-003A C1304001-004A
31 32 34 35 36 37 38 39 40	48 49 50 51 52 53 54 55 56 57	Ak040131.d Ak040132.d Ak040133.d Ak040134.d Ak040135.d Ak040136.d Ak040137.d Ak040138.d Ak040139.d Ak040140.d	1. 1. 1. 1. 1. 1. 1. 1.	C1304001-001A C1304001-002A ALCS1UGD-040113 C1303079-006A 10x C1303079-007A 10x C1303079-008A 10x C1303079-009A 10x C1303079-010A 10x C1303079-001A 10x C1303079-002A 10x
41 42 43 44 45 46 47 48 49 50 51	58 59 1 2 3 4 1 2 3 3 4	Ak040141.d Ak040142.d Ak040143.d Ak040201.d Ak040202.d Ak040203.d Ak040204.d Ak040205.d Ak040206.d Ak040207.d	1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	C1303079-003A 10x C1303079-004A 10x No MS or GC data present BFB1UG A1UG_1.0 ALCS1UG-040213 AMB1UG-040213 C1304005-001A 10x C1304005-002A 10x C1304005-004A 10x
52 53 54 55	5 6 7 8	Ak040209.d Ak040210.d Ak040211.d Ak040212.d	1. 1. 1. 1.	C1304005-005A 10x C1303079-001A 40x C1303079-002A 40x C1303079-003A 40x

ļ		Instrument #	Ĺ
		Internal Standard Stock #	9531
			<u>553J</u>
	Misc I	Wethod Ref: EPA TO	
	A313_		1 Apr 2013 09:38
	A313_		1 Apr 2013 10:17
	A313		1 Apr 2013 11.08*
	A313	UGM3	1 Apr 2013 12:16
	A313	UGM3	1 Apr 2013 12:53
	A313	UGM3	1 Apr 2013 13:27
	A313_		1 Apr 2013 14:02
	A313_ A313_	UGM3	1 Apr 2013 14:35 1 Apr 2013 15:08
	A313_	UGM3	1 Apr 2013 15:42
	A313_		1 Apr 2013 16:39
	A313_ A313		1 Apr 2013 17:14
	A313	UGM3	1 Apr 2013 17:47
	A313	UGM3	1 Apr 2013 18:55
	A313	UGM3	1 Apr 2013 19:28
	A313_	UGM3	1 Apr 2013 20:02
	A313_		1 Apr 2013 20:37
	A313		1 Apr 2013 21:46
	A313	UGM3	1 Apr 2013 22:21
	A313_	UGM3	1 Apr 2013 22:56
	A313_	UGM3	1 Apr 2013 23:30
	A313_		2 Apr 2013 00:06
	A313_	UGM3	2 Apr 2013 00.41
	A313	UGM3	2 Apr 2013 01:52
	A313	UGM3	2 Apr 2013 02:28
	A313_	UGM3	2 Apr 2013 03:03
	A313_		2 Apr 2013 03:39
	A313	UGM3	2 Apr 2013 04:14
	A313	UGM3	2 Apr 2013 05:24
	A313	UGM3	2 Apr 2013 05:59
	A313_	UGM3	2 Apr 2013 06:33
	A313_		2 Apr 2013 07:07
	A313_		2 Apr 2013 07:42
	A313_	UGM3	2 Apr 2013 08:51
	A313	UGM3	2 Apr 2013 09:24
	A313_	UGM3	2 Apr 2013 09:57
	A313_	UGM3	2 Apr 2013 13:01
	A313_	UGM3	2 Apr 2013 13:47
	A313_		2 Apr 2013 14:20
	A313_ A313		2 Apr 2013 14:53 2 Apr 2013 16:03
	A313	UGM3	2 Apr 2013 16:35
	A313_	UGM3	2 Apr 2013 17:09
	A313_	UGM3	2 Apr 2013 17:42
	A313_		2 Apr 2013 18:14
	A313 A313		2 Apr 2013 18:48 2 Apr 2013 10:21
	A313	UGM3	2 Apr 2013 19:55

Centek Laboratories, LLC					Injection Log		
	Ĩ	Directory: (injection Log	Instrument # /	
		, , .				Internal Standard Stock # 95	37
						Standard Stock #530]
Line	· Vial	FileName	Multiplier	SampleName		MibCBbBlock #	<u>Injecte</u> d
	_			• · · · · · · · · · · · · · · · · · · ·		Method Ref: EPA TO-15	/ Jan. 1 ^c
56	9	Ak040213.d	1.	C1303079-004A 10x		A313_UGM3	2 Apr 2013 20:29
5/	10		1.	C1303079-004A 40x		A313_UGM3	2 Apr 2013 21:03
58	11	AK040215.0	1.	C1303079-005A 10x		A313_UGM3	2 Apr 2013 21:36
59 59	12	AK040216.0	1.	C1303079-005A 40X		A313_UGM3	2 Apr 2013 22:09
00 61	11		1.	C1304001-003A 10x			2 Apr 2013 22:42
62	15	AK040210.0	. I. 1	C1304001-004A 10X			2 Apr 2013 23:15
63	16	Ak040219.d	1.	C1304001-001A 40v			2 Apr 2013 23:48
64	17	Ak040221 d	1.	C1304001-002A 10y		A313 LIGM3	3 Apr 2013 00:22
65	18	Ak040222.1.d	1.	C1304001-002A 40x		A313 LIGM3	3 Apr 2013 00.07
			1.				5 Api 2015 01.51
66	19	AKU40223.d	1.	ALCS1UGD-040213	4	A313_UGM3	3 Apr 2013 02:06
0/ 60	4		1.	NO MS OF GC data pres	ent		0.4
60	2	AK040301.0	1.				3 Apr 2013 08:37
70	2	Ak040302.0	1.				3 Apr 2013 09:19V
70	A		1.	ALCOTOG-040313			3 Apr 2013 09:58
72	5	Ak040305 d	1.	C1303079-0014 810X			3 Apr 2013 10:31
73	ő	Ak040306 d	1.	C1303079-001A 7290X		A313 LIGM3	3 Apr 2013 11.30
74	7	Ak040307 d	1	C1303079-002A 810X		A313 LIGM3	3 Apr 2013 12:12
75	9	Ak040308.d	1.	C1303079-003A 810X		A313 UGM3	3 Apr 2013 13:19
76	10	Ak040200 d	4	C1202070 0044 010V			0 Apr 0040 48.50
70	11	AK040309.0	1.	C1303079-004A 610A			3 Apr 2013 13:52
78	11	Ak040310.0	1.	C1303079-004A 1020A			3 Apr 2013 14:25
70	12	Ak040312 d	1. 1	C1303079-0054 9720X		A313 UCM3	3 Apr 2013 14.00
80	12	Ak040313 d	1.	C1303079-003A 1620X		A313 UGM3	3 Apr 2013 16:05
81	14	Ak040314.d	1.	form		A313_UGM3	3 Apr 2013 17:29
82	16	Ak040315.d	1.	C1304012-001A 10X		A313 UGM3	3 Apr 2013 17:58
83	17	Ak040316.d	1.	C1304012-001A 40X		A313 UGM3	3 Apr 2013 18:32
84	18	Ak040317.d	1.	C1304012-001A		A313 UGM3	3 Apr 2013 19:06
85	18	Ak040318.d	1.	C1304012-001A 810x		A313_UGM3	4 Apr 2013 08:00
86	20	Ak040319 d	1	FORM GAS		A313 UGM3	3 Apr 2013 20.13
87	21	Ak040320.d	1.	FORM GAS		A313 UGM3	3 Anr 2013 20:47
88	22	Ak040321.d	1.	FORM GAS		A313 UGM3	3 Apr 2013 21:20
89	23	Ak040322.d	1.	FORM GAS		A313 UGM3	3 Apr 2013 21:53
90	24	Ak040323.d	1.	FORM h2o		A313 UGM3	3 Apr 2013 22:26
91	25	Ak040324.d	1.	FORM h2o		A313_UGM3	3 Apr 2013 23:00
92	26	Ak040325.d	1.	FORM h2o		A313_UGM3	3 Apr 2013 23:34
93	27	Ak040326.d	1.	FORM h2o		A313_UGM3	4 Apr 2013 00:09
94	1	Ak040401.d	1.	BFB1UG		A313_UGM3	4 Apr 2013 08:37
95	2	Ak040402.d	1.	A1UG		A313_UGM3	4 Apr 2013 09:15
96	3	Ak040403.d	1.	A1UG		A313 UGM3	4 Apr 2013 09:57
97	4	Ak040404.d	1.	WAC040413A N		A313_UGM3	4 Apr 2013 10:43
98	5	Ak040405.d	1.	WAC040413B		A313_UGM3	4 Apr 2013 11:17
99	6	Ak040406.d	1.	WAC040413C		A313_UGM3	4 Apr 2013 11:50
100	7	Ak040407.d	1.	WAC040413D		A313_UGM3	4 Apr 2013 12:23
101	8	Ak040408.d	1.	WAC040413E		A313_UGM3	4 Apr 2013 12:57
102	a	AK040409.d	1.	WAC040413F	4	A313_UGM3	4 Apr 2013 13:33
103	- -]. ₄	No MS or GC data prese	ent		C A 0040 00 00
104	31		ן. ז				5 Apr 2013 08:22
100	51	~KU4U3UZ.Ű	١.				o Apr 2013 09:11
106	32	Ak040503.d	1.	AFORM75			5 Apr 2013 09:46
107	33	Ak040504.d	1.	AFORM50			5 Apr 2013 10:20
108	34	Ak040505.d	1.	AFORM25			5 Apr 2013 10:53
109	35	AKU4U5U6.d	1. 1				5 Apr 2013 11:26
110	30	AKU4U5U7.0	1.	ALCSF-040513			5 Apr 2013 11:59

Centek Laboratories, all to Continuing Calibration Report Data File : C:\HPCHEM\1\DATA\AK040103.DVial: 3Acq On : 1 Apr 2013 11:08 amOperator: RJPSample : AlUG_1.0Inst : MSD #1Misc : A313_UGM3Multiplr: 1.00 MS Integration Params: RTEINT.P Method: C:\HPCHEM\1\METHODS\A313_1UG.M (RTE Integrator)Title: TO-15 VOA Standards for 5 point calibration Last Update : Tue Apr 09 08:54:34 2013 Response via : Multiple Level Calibration Min. RRF : 0.000 Min. Rel. Area : 50% Max. R.T. Dev 0.33min Max. RRF Dev : 30% Max. Rel. Area : 150% Compound
 Compound
 AvgRF
 CCRF
 %Dev Area% Dev(mi

 1
 I
 Bromochloromethane
 1.000
 1.000
 0.0
 156#
 0.000

 2
 T
 Freen 22
 2.318
 2.422
 -4.5
 175#
 0.000

 3
 T
 Propylene
 0.750
 0.662
 11.7
 153#
 0.000

 4
 T
 Freen 12
 4.997
 5.079
 -1.6
 171#
 0.00

 5
 T
 Chloromethane
 1.260
 1.315
 -4.4
 179#
 0.00

 6
 T
 Freen 114
 3.803
 4.029
 -5.9
 181#
 0.00

 7
 T
 Vinyl Chloride
 1.130
 1.065
 4.0
 172#
 0.00

 10
 T
 Bromomethane
 1.314
 1.338
 -1.8
 173#
 0.00

 11
 Acrolein
 0.267
 0.236
 11.6
 142
 0.00

 12
 T
 Chloromethane
 1.314
 1.388
 1.462
 AvgRF CCRF %Dev Area% Dev(min)

 34 I
 1,4-difluorobenzene
 1.000
 1.000
 0.0
 130
 0.00

 35 T
 1,1,1-trichloroethane
 1.155
 1.306
 -13.1
 163#
 0.00

 36 T
 Cyclohexane
 0.364
 0.356
 2.2
 135
 0.00

 37 T
 Carbon tetrachloride
 1.492
 1.592
 -6.7
 165#
 0.00

 38 T
 Benzene
 0.910
 0.967
 -6.3
 148
 0.00

 39 T
 Methyl methacrylate
 0.277
 0.221
 20.2
 114
 0.00

 40 T
 1,4-dioxane
 0.113
 0.099
 12.4
 123
 0.00

 41 T
 2,2,4-trimethylpentane
 1.175
 1.210
 -3.0
 144
 0.00

 42 T
 Heptane
 0.389
 0.395
 -1.5
 144
 0.00

 43 T
 Trichloroethene
 0.541
 0.538
 0.6
 151#
 0.00

 44 T
 1,2-dichloropropane
 0.350
 0.407
 -16.3
 164#
 0.00

 45 T
 Bromodichloromethane
 1.076
 1.235
 -14.8
 162#</ 49 I Chlorobenzene-d5 1.000 1.000 0.0 142 0.00 (#) = Out of Range AK040103.D A313_1UG.M Tue Apr 09 09:04:11 2013 MSD1

Page 318 of 399
Centek Laboratoriës, Ltote Continuing Calibration Report

Data File : C:\HPCHEM\1\DATA\AK040103.D Vial: 3 Acq On : 1 Apr 2013 11:08 am Sample : AlUG_1.0 Misc : A313_UGM3 Operator: RJP Inst : MSD #1 Multiplr: 1.00 MS Integration Params: RTEINT.P

Method : C:\HPCHEM\1\METHODS\A313_1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Tue Apr 09 08:54:34 2013 Response via : Multiple Level Calibration

Min. RRF : 0.000 Min. Rel. Area : 50% Max. R.T. Dev 0.33min Max. RRF Dev : 30% Max. Rel. Area : 150%

		Compound	AvgRF	CCRF	*Dev	Areał	Dev(min)
50	T	Toluene	0.648	0.552	14.8	125	0.00
51	т	Methyl Isobutyl Ketone	0.432	0.379	12.3	138	0.00
52	Т	Dibromochloromethane	1.141	1.084	5.0	145	0.00
53	т	Methyl Butyl Ketone	0.289	0.302	-4.5	163#	0.00
54	т	1,2-dibromoethane	0.753	0.694	7.8	140	0.00
55	т	Tetrachloroethylene	0.728	0.603	17.2	139	0.00
56	т	Chlorobenzene	1.038	0.920	11.4	134	0.00
57	т	Ethylbenzene	1.395	1.116	20.0	119	0.00
58	т	m&p-xylene	1.120	0.965	13.8	124	0.00
59	т	Styrene	0.683	0.544	20.4	116	0.00
60	т	Bromoform	1.065	0.873	18.0	126	0.00
61	т	o-xylene	1.471	1.272	13.5	144	0.00
62	S	Bromofluorobenzene	0.572	0.530	7.3	127	0.00
63	т	1,1,2,2-tetrachloroethane	0.978	0.978	0.0	151#	0.00
64	Т	2-Chlorotoluene	1.138	0.951	16.4	131	0.00
65	т	4-ethyltoluene	1.116	0.978	12.4	126	0.00
66	Т	1,3,5-trimethylbenzene	1.516	1.296	14.5	127	0.00
67	т	1,2,4-trimethylbenzene	1.095	0.829	24.3	112	0.00
68	т	1,3-dichlorobenzene	0.895	0.771	13.9	127	0.00
69	т	benzyl chloride	0.794	0.736	7.3	118	0.00
70	т	1,4-dichlorobenzene	0.850	0.680	20.0	122	0.00
71	т	1,2,3-trimethylbenzene	1.298	1.146	11.7	129	0.00
72	т	1,2-dichlorobenzene	0.920	0.747	18.8	124	0.00
73	т	1,2,4-trichlorobenzene	0.541	0.443	18.1	128	0.00
74	т	Naphthalene	0.859	0.616	28.3	114	0.00
75	т	Hexachloro-1,3-butadiene	0.947	0.867	8.4	142	0.00

(#) = Out of Range SPCC's out = 0 CCC's out = 0 AK040103.D A313_1UG.M Tue Apr 09 09:04:11 2013 MSD1

Centek Laboratories, alle Continuing Calibration Report Data File : C:\HPCHEM\1\DATA\AK040302.DVial: 2Acq On : 3 Apr 2013 9:19 amOperator: RJPInst : MSD #1Inst : MSD #1 Sample : AlUG_1.0 Misc : A313_UGM3 Multiplr: 1.00 MS Integration Params: RTEINT.P Method: C:\HPCHEM\1\METHODS\A313_1UG.M (RTE Integrator)Title: TO-15 VOA Standards for 5 point calibration Last Update : Tue Apr 09 08:54:35 2013 Response via : Multiple Level Calibration Min. RRF : 0.000 Min. Rel. Area : 50% Max. R.T. Dev 0.33min Max. RRF Dev : 30% Max. Rel. Area : 150% Compound CompoundAvgRFCCRF% Dev Area% Dev (mi1IBromochloromethane1.0001.0000.01390.002TFreen 222.3182.2722.01460.003TPropylene0.7500.60619.21240.004TFreen 124.9570.091480.005TChloromethane1.2601.2461.1151#0.006TFreen 1143.8033.823-0.5152#0.007TVinyl Chloride1.1301.0586.41490.008T1,3-butadiene0.7960.7416.91180.009TBromomethane1.3141.404-6.8161#0.0010TEthanol0.2670.290-8.6155#-0.0312TChloroethane0.5070.4893.61450.0013TVinyl Bromide1.3881.3790.61490.0014TFreen 115.2575.932-12.8168#0.0014TFreen 132.7595.95-7.1162#0.0014TFreen 132.7592.955-7.1162#0.0015TAcetone1.3241.2413.3148-0.0417T1.1-dichloroethene1.5111.164-1.11.53#0.00<td AvgRF CCRF &Dev Area& Dev(min)

 34 I
 1,4-difluorobenzene
 1.000
 1.000
 0.0
 112
 0.00

 35 T
 1,1,1-trichloroethane
 1.155
 1.307
 -13.2
 140
 0.00

 36 T
 Cyclohexane
 0.364
 0.364
 0.0
 119
 0.00

 37 T
 Carbon tetrachloride
 1.492
 1.633
 -9.5
 145
 0.00

 38 T
 Benzene
 0.910
 0.962
 -5.7
 127
 0.00

 39 T
 Methyl methacrylate
 0.277
 0.250
 9.7
 111
 -0.02

 40 T
 1,4-dioxane
 0.113
 0.131
 -15.9
 139
 -0.05

 41 T
 2,2,4-trimethylpentane
 1.175
 1.203
 -2.4
 123
 0.00

 42 T
 Heptane
 0.389
 0.391
 -0.5
 122
 0.00

 43 T
 Trichloroethene
 0.541
 0.563
 -4.1
 135
 0.00

 44 T
 1,2-dichloropropane
 0.350
 0.402
 -14.9
 139
 0.00

 45 T
 Bromodichloromethane
 1.076
 1.259
 -17.0
 141</td 1.000 1.000 0.0 121 0.00 49 I Chlorobenzene-d5 (#) = Out of Range AK040302.D A313_1UG.M Tue Apr 09 09:08:59 2013 MSD1

Page 328 of 399

Centek Laboratories, alluste Continuing Calibration Report Data File : C:\HPCHEM\1\DATA\AK040302.D Vial: 2 Acq On : 3 Apr 2013 9:19 am Sample : AlUG_1.0 Misc : A313_UGM3 Operator: RJP Inst : MSD #1 Multiplr: 1.00 MS Integration Params: RTEINT.P Method: C:\HPCHEM\1\METHODS\A313_1UG.M (RTE Integrator)Title: TO-15 VOA Standards for 5 point calibrationLast Update: Tue Apr 09 08:54:35 2013 Response via : Multiple Level Calibration Min. RRF : 0.000 Min. Rel. Area : 50% Max. R.T. Dev 0.33min Max. RRF Dev : 30% Max. Rel. Area : 150% AvgRF CCRF &Dev Area& Dev(min) CompoundAvgRFCCRF*Dev Area* Dev (mi50 TToluene0.6480.57611.11110.0051 TMethyl Isobutyl Ketone0.4320.38211.611.8-0.0252 TDibromochloromethane1.1411.1132.51270.0053 TMethyl Butyl Ketone0.2890.25013.511.5-0.0254 T1,2-dibromoethane0.7730.7401.71270.0055 TTetrachloroethylene0.7280.64112.01260.0056 TChlorobenzene1.0380.9904.61230.0057 TEthylbenzene1.3951.24410.81130.0058 Tmkp-xylene1.0655.81160.0059 TStyrene0.6830.60411.61100.0060 TBromoform1.0650.87517.81070.0061 To-xylene1.4711.3696.91320.0062 SBromofluorobenzene0.9781.025-4.81350.0063 T1,1,2,2-tetrachloroethane0.9781.025-4.81350.0064 T2-Chlorotcluene1.1160.90420.61060.0065 T4-ethyltoluene1.1160.90420.61060.0065 T4-ethyltoluene1.2161.3679.81140.0067 T1,2,4-trimethylbenzene1.9550.843 Compound

CENTEK LABORATORIES, LLC

ANALYTICAL QC SUMMARY REPORT

TestCode: 1ugM3_FullList

Page 48 of 399

CLIENT: Tetra Tech, Inc. Work Order: C1303079

Middle River **Project:**

Sample ID AMB1UG-040113	SampType: MBLK	TestCode: 1ugM	3_FullLi Units: ppbV		Prep Da	ite:		RunNo: 681)1	
Client ID: ZZZZZ	Batch ID: R6801	TestNo: TO-15	i		Analysis Da	ate: 4/1/201	3	SeqNo: 80	322	
Analyte	Result	PQL SPK va	lue SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
1,1,1-Trichloroethane	< 0.15	0.15								
1,1,2-Trichloroethane	< 0.15	0.15								
1,1-Dichloroethane	< 0.15	0.15								
1,1-Dichloroethene	< 0.15	0.15								
1,2,3-Trimethylbenzene	< 0.15	0.15								
1,2,4-Trichlorobenzene	< 0.15	0.15								
1,2,4-Trimethylbenzene	< 0.15	0.15								
1,2-Dichloroethane	< 0.15	0.15								
1,3,5-Trimethylbenzene	< 0.15	0.15								
Benzene	< 0.15	0.15								
Carbon tetrachloride	< 0.15	0.15								
Chloroform	< 0.15	0.15								
cis-1,2-Dichloroethene	< 0.15	0.15								
Ethylbenzene	< 0.15	0.15								
Freon 12	< 0,15	0.15								
Freon 22	< 0.15	0.15		•						
m&p-Xylene	< 0.30	0.30								
Methyl tert-butyl ether	< 0.15	0.15								
Methylene chloride	< 0.15	0.15								
Naphthalene	< 0.15	0.15								
o-Xylene	< 0.15	0.15								
Tetrachloroethylene	< 0.15	0.15								
Toluene	< 0.15	0.15								
trans-1,2-Dichloroethene	< 0.15	0.15								
Trichloroethene	< 0.15	0.15								

Qualifiers:

J

Results reported are not blank corrected

Ε Value above quantitation range

ND Not Detected at the Reporting Limit

Analyte detected at or below quantitation limits S Spike Recovery outside accepted recovery limits

Н Holding times for preparation or analysis exceeded

RPD outside accepted recovery limits R

Work Order: C1303079									
Project: Middle Riv	/er			TestCode:	1ugM3_FullList				
Sample ID AMB1UG-040113	SampType: MBLK	TestCode: 1ug	gM3_FullLi Units: ppbV	Prep Date:	RunNo: 6801				
Client ID: ZZZZZ	Batch ID: R6801	TestNo: TO	-15	Analysis Date: 4/1/2013	SeqNo: 80322				
Analyte	Result	PQL SPK	value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual				
Vinyl chloride	< 0.15	0.15							
Sample ID AMB1UG-040213	SampType: MBLK	TestCode: 1u	gM3_FuliLi Units: ppbV	Prep Date:	RunNo: 6802				
Client ID: ZZZZZ	Batch ID: R6802	TestNo: TO	-15	Analysis Date: 4/2/2013	SeqNo: 80358				
Analyte	Result	PQL SPK	value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Quai				
1,1,1-Trichloroethane	< 0.15	0.15							
1,1,2-Trichloroethane	< 0.15	0.15							
1,1-Dichloroethane	< 0.15	0.15							
1,1-Dichloroethene	< 0.15	0.15							
1,2,3-Trimethylbenzene	< 0.15	0.15							
1,2,4-Trichlorobenzene	< 0.15	0.15							
1,2,4-Trimethylbenzene	< 0.15	0.15							
1,2-Dichloroethane	< 0.15	0.15							
1,3,5-Trimethylbenzene	< 0,15	0.15							
Benzene	< 0.15	0.15							
Carbon tetrachloride	< 0.15	0.15							
Chloroform	< 0.15	0.15							
cis-1,2-Dichloroethene	< 0.15	0.15							
Ethylbenzene	< 0.15	0.15							
Freon 12	< 0.15	0.15							
Freon 22	< 0.15	0.15							
m&p-Xylene	< 0.30	0.30							
Methyl tert-butyl ether	< 0.15	0.15							
Methylene chloride	< 0,15	0.15							
Naphthalene	< 0.15	0.15							
o-Xylene	< 0.15	0.15							
Tetrachloroethylene	< 0.15	0.15							
Toluene	< 0.15	0.15							
trans-1,2-Dichloroethene	< 0.15	0.15							

CLIENT:

Tetra Tech, Inc.

ן S

Qualifiers:

Results reported are not blank corrected Analyte detected at or below quantitation limits E Value above quantitation range

ND Not Detected at the Reporting Limit

Spike Recovery outside accepted recovery limits

Holding times for preparation or analysis exceeded
 R RPD outside accepted recovery limits

Work Order: C1303079 Project: Middle Riv	ver]	FestCode: 1	lugM3_Ful	lList	
Sample ID AMB1UG-040213	SampType: MBLK	TestCo	de: 1ugM3_FullLi	Units: ppbV		Prep Da	te:		RunNo: 68)2	
Client ID: ZZZZZ	Batch ID: R6802	Test	No: TO -15			Analysis Da	te: 4/2/20	13	SeqNo: 80	358	
Analyte	Result	PQL	SPK value SPK	(Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Quai
Trichloroethene	< 0.15	0.15									
Vinyl chloride	< 0.15	0.15									
Sample ID AMB1UG-040313	SampType: MBLK	TestCo	de: 1ugM3_FullLi	Units: ppbV		Prep Da	lte:		RunNo: 68	03	
Client ID: ZZZZZ	Batch ID: R6803	Test	TestNo: TO-15			Analysis Da	ite: 4/3/20	13	SeqNo: 80370		
Analyte	Result	PQL	SPK value SPH	(Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
1,1,1-Trichloroethane	< 0.15	0.15									
1,1,2-Trichloroethane	< 0.15	0.15									
1,1-Dichloroethane	< 0.15	0.15									
1,1-Dichloroethene	< 0.15	0.15									
1,2,3-Trimethylbenzene	< 0.15	0.15									
1,2,4-Trichlorobenzene	< 0.15	0.15									
1,2,4-Trimethylbenzene	< 0.15	0.15									
1,2-Dichloroethane	< 0.15	0.15									
1,3,5-Trimethylbenzene	< 0.15	0.15									
Benzene	< 0.15	0.15									
Carbon tetrachloride	< 0.15	0.15									
Chloroform	< 0.15	0.15									
cis-1,2-Dichloroethene	< 0.15	0.15									
Ethylbenzene	< 0.15	0.15									
Freon 12	< 0.15	0.15									
Freon 22	< 0.15	0.15									
m&p-Xylene	< 0.30	0,30									
Methyl tert-butyl ether	< 0.15	0.15									
Methylene chloride	< 0.15	0.15									
Naphthalene	< 0.15	0.15									

CLIENT:

Tetra Tech, Inc.

Qualifiers:

o-Xylene

Toluene

Tetrachloroethylene

J

Results reported are not blank corrected

Value above quantitation range Е

ND Not Detected at the Reporting Limit

Analyte detected at or below quantitation limits S Spike Recovery outside accepted recovery limits

< 0.15

< 0.15

< 0.15

0.15

0.15

0.15

H Holding times for preparation or analysis exceeded

R RPD outside accepted recovery limits

CLIENT:Tetra Tech, Inc.Work Order:C1303079

Project: Middle River

TestCode: 1ugM3_FullList

Sample ID AMB1UG-040313	SampType: MBLK	TestCode: 1ug	M3_FullLi Units: ppbV		Prep Da	ite:		RunNo: 6803		
Client ID: ZZZZZ	Batch ID: R6803	TestNo: TO-	15		Analysis Da	ite: 4/3/201	13	SeqNo: 80370		
Analyte	Result	PQL SPK	value SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
trans-1,2-Dichloroethene	< 0.15	0.15	, <u>, ,,,,</u> ,, <u>,</u> ,,,,,,,,,,,,,,,,,,,,,,,,							
Trichloroethene	< 0.15	0.15								
Vinyl chloride	< 0.15	0.15								

Qualifiers:

.

J

Results reported are not blank corrected

Analyte detected at or below quantitation limits

S Spike Recovery outside accepted recovery limits

E Value above quantitation range

ND Not Detected at the Reporting Limit

H Holding times for preparation or analysis exceeded

R RPD outside accepted recovery limits

Page 4 of 4

Date: 09-Apr-13

1

QC SUMMARY REPORT SURROGATE RECOVERIES

Work Order:	C1303079				
Project:	Middle River				
Test No:	TO-15	Matrix: A			
Sample ID	BR4FBZ				
ALCS1UG-040113	88.0				
ALCS1UG-040213	97.0				
ALCS1UG-040313	96.0				
ALCS1UGD-0401	13 98.0				
ALCS1UGD-0402	13 96.0				
AMB1UG-040113	80.0				
AMB1UG-040213	85.0				
AMB1UG-040313	77.0				
C1303079-001A	117				
C1303079-002A	111				
C1303079-003A	101				
C1303079-004A	128				
C1303079-005A	93.0				
C1303079-006A	91.0				
C1303079-007A	90.0				
C1303079-008A	89.0				
C1303079-009A	83.0				
C1303079-010A	82.0				

Acronym	Surrogate	QC Limits
BR4FBZ	= Bromofluorobenzene	70-130
* Sur	rogate recovery outside accepta	nce limits

CENTEK LABORATORIES, LLC

ANALYTICAL QC SUMMARY REPORT

CLIENT:	Tetra Tech	, Inc.									
Work Order:	C1303079										
Project:	Middle Riv	/er						1	[estCode:	1ugM3_Ful	lList
Sample ID ALCS	1UG-040113	SampType: LCS	TestCo	de: 1ugM3_F	ullLi Units: ppbV		Prep Da	te:		RunNo: 68	01
Client ID: ZZZZ	Z	Batch ID: R6801	Test	No: TO-15			Analysis Da	te: 4/1/201	13	SeqNo: 80	323
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit
1,1,1-Trichloroetha	ane	1.100	0.15	1	٥	110	70	130			
1,1,2-Trichloroeth	ane	1.110	0.15	1	0	111	70	130			
1,1-Dichloroethan	e	0.8600	0.15	1	0	86.0	70	130			
1,1-Dichloroethen	e	0.9500	0.15	1	0	95.0	70	130			
1,2,4-Trichloroben	izene	0.8400	0.15	1	0	84.0	70	130			
1,2,4-Trimethylber	nzene	0.7400	0.15	1	0	74.0	70	130			
1,2-Dichloroethan	e	0.8700	0.15	1	0	87.0	70	130			
1,3,5-Trimethylber	nzene	0.8100	0.15	1	0	81.0	70	130			
Benzene		1.070	0.15	1	Ó	107	70	130			
Carbon tetrachlori	de	1.060	0.15	1	0	106	70	130			
Chloroform		0.9400	0.15	1	0	94.0	70	130			
cis-1,2-Dichloroeti	hene	0.8300	0.15	1	0	83.0	70	130			
Ethylbenzene		0.7700	0.15	1	0	77.0	70	130			
Freon 12		0.9600	0.15	1	0	96.0	70	130			
m&p-Xylene		1.680	0.30	2	0	84.0	70	130			
Methyl tert-butyl e	ther	0.8700	0.15	1	0	87.0	70	130			
Methylene chloride	e	0.9600	0.15	1	٥	96,0	70	130			
o-Xylene		0.8400	0.15	1	0	84.0	70	130			
Tetrachloroethyler	ne	0.8100	0.15	1	0	81.0	70	130			
Toluene		0.8500	0.15	1	0	85.0	70	130			
trans-1,2-Dichloro	ethene	0.9900	0.15	1	0	99.0	70	130			
Trichloroethene		0.9400	0,15	1	0	94.0	70	130			
Vinyl chloride		0.9100	0.15	1	0	91.0	70	130			

Qualifiers:

J

Page 43 of 399

- Results reported are not blank corrected
- E Value above quantitation range
- ND Not Detected at the Reporting Limit

Analyte detected at or below quantitation limits Spike Recovery outside accepted recovery limits S

- Holding times for preparation or analysis exceeded н
- R RPD outside accepted recovery limits

Qual

CLIENT: Tetra Tech, Inc.

Work Order: C1303079

Page 44 of 399

Project: Middle River

Sample ID ALCS1UG-040213	SampType: LCS	TestCoo	ie: 1ugM3_Fi	ullLi Units: ppbV		Prep Date:			RunNo: 68		
Client ID: 22222	Batch ID: R6802	TestN	io: TO-15			Analysis Date	e: 4/2/201	3	SeqNo: 80	361	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
1,1,1-Trichloroethane	1.150	0.15	1	0	115	70	130				
1,1,2-Trichloroethane	1.170	0.15	1	0	117	70	130				
1,1-Dichloroethane	0.9000	0.15	1	0	90.0	70	130				
1,1-Dichloroethene	1.060	0.15	1	0	106	70	130				
1,2,4-Trichlorobenzene	0.8900	0.15	1	0	89.0	70	130				
1,2,4-Trimethylbenzene	0.7500	0.15	1	0	75.0	70	130				
1,2-Dichloroethane	0.9700	0.15	1	0	97.0	70	130				
1,3,5-Trimethylbenzene	0.8700	0.15	1	0	87.0	70	130				
Benzene	1.110	0.15	1	0	111	70	130				
Carbon tetrachloride	1.110	0.15	1	0	111	70	130				
Chloraform	0.9900	0.15	1	Û	99.0	70	130				
cis-1,2-Dichloroethene	0.9000	0.15	1	0	90.0	70	130				
Ethylbenzene	0.8900	0.15	1	0	89.0	70	130				
Freon 12	1.020	0.15	1	0	102	70	130				
m&p-Xylene	1.910	0.30	2	0	95.5	70	130				
Methyl tert-butyl ether	0.9300	0.15	1	0	93.0	70	130				
Methylene chloride	1.040	0.15	1	0	104	70	130				
o-Xylene	0.9400	0.15	1	0	94.0	70	130				
Tetrachloroethylene	0.8900	0.15	1	0	89.0	70	130				
Toluene	0.9400	0.15	1	0	94.0	70	130				
trans-1,2-Dichloroethene	1.020	0.15	1	0	102	70	130				
Trichloroethene	1.030	0.15	1	0	103	70	130				
Vinyl chloride	0.9600	0.15	1	0	96.0	70	130				
Sample ID ALCS1UG-040313	SampType: LCS	TestCod	le: 1ugM3_Fi	ullLI Units: ppbV		Prep Date	e:		RunNo: 68	03	
Client ID: ZZZZZ	Batch ID: R6803	TestN	io: TO-15			Analysis Date	e: 4/3/201	3	SeqNo: 80	371	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Quai
1,1,1-Trichloroethane	1.190	0.15	1	0	119	70	130				
1,1,2-Trichloroethane	1.150	0.15	1	0	115	70	130				

.

1

Results reported are not blank corrected Analyte detected at or below quantitation limits E Value above quantitation range

ND Not Detected at the Reporting Limit

H Holding times for preparation or analysis exceeded

R RPD outside accepted recovery limits

S Spike Recovery outside accepted recovery limits

Page 2 of 3

CLIENT: Tetra Tech, Inc.

Work Order: C1303079

Page 45 of 399

Middle River **Project:**

Sample ID ALCS1UG-040313	ID ALCS1UG-040313 SampType: LCS		TestCode: 1ugM3_FullLi Units: ppbV			Prep Date:				RunNo: 6803		
Client ID: ZZZZZ	Batch ID: R6803	Test	No: TO-15			Analysis Da	te: 4/3/201	3	SeqNo: 803	171		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual	
1,1-Dichloroethane	0.9900	0.15	1	0	99.0	70	130					
1,1-Dichloroethene	1.080	0.15	1	0	108	70	130					
1,2,4-Trichlorobenzene	0.8800	0.15	1	0	88.0	70	130					
1,2,4-Trimethylbenzene	0.7600	0.15	1	0	76.0	70	130					
1,2-Dichloroethane	0.9900	0.15	1	0	99.0	70	130					
1,3,5-Trimethylbenzene	0.9100	0.15	1	0	91.0	70	130					
Benzene	1.120	0.15	1	0	112	70	130					
Carbon tetrachloride	1.120	0.15	1	0	112	70	130					
Chloroform	1.030	0.15	1	0	103	70	130					
cis-1,2-Dichloroethene	0.9300	0.15	1	0	93.0	70	130					
Ethylbenzene	0.8800	0.15	1	0	88.0	70	130					
Freon 12	1.080	0.15	1	0	108	70	130					
m&p-Xylene	1.860	0.30	2	0	93.0	70	130					
Methyl tert-butyl ether	0.9700	0.15	1	0	97.0	70	130					
Methylene chloride	1.130	0.15	1	0	113	70	130					
o-Xylene	0.9300	0.15	1	0	93.0	70	130					
Tetrachloroethylene	0.9100	0.15	1	0	91.0	70	130					
Toluene	0.9200	0.15	1	0	92.0	70	130					
trans-1,2-Dichloroethene	1,110	0.15	1	0	111	70	130					
Trichloroethene	1.050	0.15	1	0	105	70	130					
Vinyl chloride	1.000	0.15	1	0	100	70	130					

J

- Results reported are not blank corrected
- E Value above quantitation range
- ND Not Detected at the Reporting Limit
- Analyte detected at or below quantitation limits
- Spike Recovery outside accepted recovery limits S

Н Holding times for preparation or analysis exceeded

TestCode: 1ugM3_FullList

RPD outside accepted recovery limits R

CENTEK LABORATORIES, LLC

ANALYTICAL QC SUMMARY REPORT

TestCode: 1ugM3_FullList

CLIENT: Work Order: **Project:**

Tetra Tech, Inc. C1303079

Middle River

Sample ID ALCS1UGD-040113 SampType: LCSD		TestCo	de: 1ugM3_F	uliLi Units: ppbV	/ Prep Date:				RunNo: 6801		
Client ID: ZZZZZ	Batch ID: R6801	Test	No: TO-15			Analysis Da	ite: 4/2/201	3	SeqNo: 803	324	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Quai
1,1,1-Trichloroethane	1.170	0.15	1	0	117	70	130	1.1	6.17	30	
1,1,2-Trichloroethane	1.140	0.15	1	0	114	70	130	1.11	2.67	30	
1,1-Dichloroethane	0.8800	0.15	1	0	88.0	70	130	0.86	2.30	30	
1,1-Dichloroethene	1.070	0.15	1	0	107	70	130	0.95	11.9	30	
1,2,4-Trichlorobenzene	0.7900	0.15	1	0	79.0	70	130	0.84	6.13	30	
1,2,4-Trimethylbenzene	0.8400	0.15	· 1	0	84.0	70	130	0.74	12.7	30	
1,2-Dichloroethane	0.9100	0.15	1	0	91.0	70	130	0.87	4.49	30	
1,3,5-Trimethylbenzene	0.9500	0.15	1	0	95.0	70	130	0.81	15.9	30	
Benzene	1.130	0.15	1	0	113	70	130	1.07	5.45	30	
Carbon tetrachloride	1.080	0.15	1	0	108	70	130	1.06	1.87	30	
Chloraform	0.9700	0.15	1	0	97.0	70	130	0.94	3.14	30	
cls-1,2-Dichloroethene	0.9000	0.15	1	0	90.0	70	. 130	0.83	8.09	30	
Ethylbenzene	0.9100	0.15	1	0	91.0	70	130	0.77	16.7	30	
Freon 12	1.160	0.15	1	0	116	70	130	0.96	18.9	30	
m&p-Xylene	1.900	0.30	2	0	95.0	70	130	1.68	12.3	30	
Methyl tert-butyl ether	0.9400	0.15	1	٥	94.0	70	130	0.87	7.73	30	
Methylene chloride	1.050	0.15	1	0	105	70	130	0.96	8.96	30	
o-Xylene	0.9400	0.15	1	0	94.0	70	130	0.84	11.2	30	
Tetrachloroethylene	0.8900	0.15	1	0	89.0	70	130	0.81	9.41	30	
Toluene	0.9200	0.15	1	0	92.0	70	130	0.85	7.91	30	
trans-1,2-Dichloroethene	1.020	0.15	1	0	102	70	130	0.99	. 2.99	30	
Trichloroethene	1.040	0.15	1	٥	104	70	130	0.94	10.1	30	
Vinvl chloride	1.060	0.15	1	D	106	70	130	0.91	15.2	30	

Qualifiers:

1

- Results reported are not blank corrected
- Value above quantitation range Ε
- Not Detected at the Reporting Limit ND

Analyte detected at or below quantitation limits S Spike Recovery outside accepted recovery limits

Holding times for preparation or analysis exceeded Н

Page 1 of 2

RPD outside accepted recovery limits R

CLIENT: Tetra Tech, Inc. Work Order: C1303079

Work Order Cist

Project: Middle River

Sample ID ALCS1UGD-040213	SampType: LCSD	TestCode: 1ugM3_FullLi Units: p		IIILI Units: ppbV	V Prep Date:			RunNo: 6802			
Client ID: ZZZZZ	Batch ID: R6802	Test	No: TO-15			Analysis Da	te: 4/3/201	3	SeqNo: 803	362	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
1,1,1-Trichloroethane	1.170	0.15	1	0	117	70	130	1.15	1.72	30	
1,1,2-Trichloroethane	1.170	0.15	1	0	117	70	130	1.17	0	30	
1,1-Dichloroethane	0.9200	0.15	1	0	92.0	70	130	0.9	2.20	30	
1,1-Dichloroethene	1.080	0.15	1	0	108	70	130	1.06	1.87	30	
1,2,4-Trichlorobenzene	0.7900	0.15	1	0	79.0	70	130	0.89	11.9	30	
1,2,4-Trimethylbenzene	0.7700	0.15	1	0	77.0	70	130	0.75	2.63	30	
1,2-Dichloroethane	0.9700	0.15	1	0	97.0	70	130	0.97	0	30	
1,3,5-Trimethylbenzene	0.9100	0.15	1	0	91.0	70	130	0.87	4.49	30	
Benzene	1.120	0.15	1	0	112	70	130	1.11	0.897	30	
Carbon tetrachloride	1.120	0.15	1	0	112	70	130	1.11	0.897	30	
Chloroform	0.9900	0.15	1	0	99.0	70	130	0.99	0	30	
cis-1,2-Dichloroethene	0.9000	0.15	1	. 0	90.0	70	130	0.9	0	30	
Ethylbenzene	0.9100	0.15	1	0	91.0	70	130	0.89	2.22	30	
Freon 12	1.070	0.15	1	0	107	70	130	1.02	4.78	30	
m&p-Xylene	1.900	0.30	2	0	95.0	70	130	1.91	0.525	30	
Methyl tert-butyl ether	0.9500	0.15	1	0	95.0	70	130	0.93	2.13	30	
Methylene chloride	1.080	0.15	1	0	108	70	130	1.04	3.77	30	
o-Xylene	0.9500	0.15	1	· 0	95.0	70	130	0.94	1.06	30	
Tetrachloroethylene	0.9300	0.15	1	0	93.0	70	130	0.89	4.40	30	
Toluene	0.9600	0.15	1	0	96.0	70	130	0.94	2.11	30	
trans-1,2-Dichloroethene	1.050	0.15	1	0	105	70	130	1.02	2.90	30	
Trichloroethene	1.070	0.15	1	0	107	70	130	1.03	3.81	30	
Vinyl chloride	1.020	0.15	1	0	102	70	130	0.96	6.06	30	

Qualifiers:

.

J

- Results reported are not blank corrected
- Analyte detected at or below quantitation limits

S Spike Recovery outside accepted recovery limits

- E Value above quantitation range
- ND Not Detected at the Reporting Limit

H Holding times for preparation or analysis exceeded

TestCode: 1ugM3_FullList

R RPD outside accepted recovery limits

Centeknisaborgtorieseck Leeport

lune	File	:	C:\H	PCHEM\:	1\	DATA	AK040103.D
					_		

Tune Time : 1 Apr 2013 11:08 am

Daily Calibration File : C:\HPCHEM\1\DATA\AK040103.D

		(BI	FB)			(IS1) 31058	(IS2) 91071	(IS3) 93962	
File	Sample	DL	Surrogate	Recovery	8	Internal	Standard	Responses	
AK040104.D	ALCS1UG-04011	===== 3 8	38 38			31533	88841	91050	
AK040105.D	AMB1UG-040113	E	30			31969	86649	79570	
AK040119.D	C1303079-006A	2	91			29169	86488	87543	
AK040120.D	C1303079-007A	2222	90			29102	84193	86331	
AK040121.D	C1303079-008A	8	19			29524	89568	88686	
AK040122.D	C1303079-009A	8	13			26180	85701	87928	
AK040123.D	C1303079-010A	8	12			27045	79783	78596	
AK040124.D	C1303079-001A	11	.7			33776	102889	109854	
AK040125.D	C1303079-002A	11	.1			33314	93678	103922	
AK040126.D	C1303079-003A	10	1			32959	98961	102598	
AK040127.D	C1303079-004A	12	8			33643	98775	110046	
AK040128.D	C1303079-005A	9	3			35722	111684	113081	
AK040133.D	ALCS1UGD-0401	13 9	8			33175	92050	96717	
AK040134.D	C1303079-006A	10x	78			27833	7605	0 7390	2
AK040135.D	C1303079-007A	10x	82			26403	7322	0 6688	7
AK040136.D	C1303079-008A	10x	83			25690	7104	1 7087	2
AK040137.D	C1303079-009A	10x	80			25710	7320	5 6974	1
AK040138.D	C1303079-010A	10x	77			24159	6941	6 6223	8
AK040139.D	C1303079-001A	10x	89			29641	8031	.8 7962	7
AK040140.D	C1303079-002A	10x	93			29154	8136	5 8381	4
AK040141.D	C1303079-003A	10x	90			27643	8213	6 8106	1.
AK040142.D	C1303079-004A	10x	102			29114	7930	1 8187	0
t - fai	lls 24hr time d	check	: * - fai	ls criter	ia				

Created: Tue Apr 09 09:05:12 2013 MSD #1/

Cenflek Eagerstones, tLEport

lune	File	:	C:\HPCHEM\1\DATA\AK040202.D	

Tune Time : 2 Apr 2013 1:47 pm

Daily Calibration File : C:\HPCHEM\1\DATA\AK040202.D

			(BFB)		(IS1) 26866	(IS2) 74937	(IS3) 76628
File	Sample	DL	Surrogate	Recovery	<pre>% Internal</pre>	Standard Re	sponses
AK040203.D	ALCS1UG-04021	3	97		29108	83914	84810
AK040204.D	AMB1UG-040213		85		25813	69871	60061
AK040210.D	C1303079-001A	40x	81		29209	79229	73627
AK040211.D	C1303079-002A	40x	83		28646	77024	73383
AK040212.D	C1303079-003A	40x	80		25747	71389	66533
AK040213.D	C1303079-004A	10x	104		27730	79259	81080
AK040214.D	C1303079-004A	40x	85		27345	75056	72977
AK040215.D	C1303079-005A	10x	75		27532	78178	72556
AK040216.D	C1303079-005A	40x	84		28937	78839	71359
AK040223.D	ALCS1UGD-0402	13	96		26835	77396	77946
t - fai	ils 24hr time (check	: * - fai	lls criter	 ia		

Created: Tue Apr 09 09:07:30 2013 MSD #1/

Centek Magoratoriasedk Ceport

Tune	File	:	C:'	\HPCHEM\1\DATA\AK040302.D	
The same of	mi - ma			3 mm 7017 0 10 mm	

Tune Time : 3 Apr 2013 9:19 am

Daily Calibration File : C:\HPCHEM\1\DATA\AK040302.D

			(BFB)		(IS1) 27604	(IS2) 78137	(IS3) 80009	
File	Sample	DL	Surrogate	Recovery !	f Interna	l Standard	Responses	
AK040303.D	ALCS1UG-04031	3	96		26501	78664	80680	===
AK040304.D	AMB1UG-040313		77		25077	67660	61743	
AK040305.D	C1303079-001A	810X	77		24919	69579	64322	
AK040306.D	C1303079-001A	7290X	84		24763	69885	64191	
AK040307.D	C1303079-002A	810X	79		25237	70134	65140	
AK040308.D	C1303079-003A	810X	74		24276	67674	63365	
AK040309.D	C1303079-004A	810X	83		24358	64547	62681	
AK040310.D	C1303079-004A	1620X	88		25093	66991	59558	
AK040311.D	C1303079-005A	2430X	82		24614	64241	58375	
AK040312.D	C1303079-005A	9720X	83		23316	63275	59465	
AK040313.D	C1303079-003A	1620X	83		23565	62943	58545	
		==				·		

t - fails 24hr time check * - fails criteria

Created: Tue Apr 09 09:09:44 2013 MSD #1/

CALCULATION WORKSHEET TETRA TECH NUS, INC. OF PAGE JOB NUMBER SDG SUBJECT BASED ON C1303079 DRAWING NUMBER CHECKED BY APPROVED BY April 24, 2013 Egnn (cogustio Sample SV-DUPI-A-14A; (trichlowethere) $\frac{67038}{63275} + 9720 + \frac{1ppb}{0.541} = 17,615,49ppbv$ 17,615,49 ppbv * 131.49/mole = 94669.7549/m3

Sample Calculation

Centek Laboratories, LLC

Date: 09-Apr-13

CLIENT:	Tetra Tech, Inc.	Client Sample ID:	SV-DUP1-A-14A
Lab Order:	C1303079	Tag Number:	554,
Project:	Middle River	Collection Date:	3/27/2013
Lab ID:	C1303079-005A	Matrix:	AIR

Analyses	Result	**Limit	Qual	Units	DF	Date Analyzed
1UG/M3 W/ADDITIONAL CMPD	S BY METHOD TO1	TO-15				Analyst: RJP
1,1,1-Trichioroethane	240	33		ug/m3	40	4/2/2013 10:09:00 PM
1,1,2-Trichloroethane	3.2	0.83		ug/m3	1	4/2/2013 1:52:00 AM
1,1-Dichloroethane	1400	1500	J	ug/m3	2430	4/3/2013 2:58:00 PM
1,1-Dichloroethene	67000	6000		ug/m3	9720	4/3/2013 3:32:00 PM
1,2,3-Trimethylbenzene	< 0.75	0.75		ug/m3	1	4/2/2013 1:52:00 AM
1,2,4-Trichlorobenzene	< 1 .1	1.1		ug/m3	1	4/2/2013 1:52:00 AM
1,2,4-Trimethylbenzene	0.85	0.75		ug/m3	1	4/2/2013 1:52:00 AM
1,2-Dichloroethane	29	6.2		ug/m3	10	4/2/2013 9:36:00 PM
1,3,5-Trimethylbenzene	< 0.75	0.75		ug/m3	1	4/2/2013 1:52:00 AM
Benzene	10	4.9		ug/m3	10	4/2/2013 9:36:00 PM
Carbon tetrachloride	2.7	0.96		ug/m3	1	4/2/2013 1:52:00 AM
Chloroform	8.3	0.74		ug/m3	1	4/2/2013 1:52:00 AM
cis-1,2-Dichloroethene	5200	1500		ug/m3	2430	4/3/2013 2:58:00 PM
Ethylbenzene	0.79	0.66		ug/m3	1	4/2/2013 1:52:00 AM
Freon 12	2.4	0.75		ug/m3	1	4/2/2013 1:52:00 AM
Freon 22	< 0.54	0.54		ug/m3	1	4/2/2013 1:52:00 AM
m&p-Xylene	3.2	1.3		ug/m3	1	4/2/2013 1:52:00 AM
Methyl tert-butyl ether	< 0.55	0.55		ug/m3	1	4/2/2013 1:52:00 AM
Methylene chloride	< 0.53	0.53		ug/m3	1	4/2/2013 1:52:00 AM
Naphthalene	2.7	0.80		ug/m3	1	4/2/2013 1:52:00 AM
o-Xylene	0.97	0.66		ug/m3	1	4/2/2013 1:52:00 AM
Tetrachloroethylene	64	10		ug/m3	10	4/2/2013 9:36:00 PM
Toluene	82	5.7		ug/m3	10	4/2/2013 9:36:00 PM
trans-1,2-Dichloroethene	56	6.0		ug/m3	10	4/2/2013 9:36:00 PM
Trichloroethene	96000	8200		ug/m3	9720	4/3/2013 3:32:00 PM
Vinyl chloride	310	16		ug/m3	40	4/2/2013 10:09:00 PM

Qualifiers:	
-------------	--

-

- ** **Reporting Limit**
- Analyte detected in the associated Method Blank в
- Н Holding times for preparation or analysis exceeded
- JN Non-routine analyte. Quantitation estimated,
- S Spike Recovery outside accepted recovery limits
- Results reported are not blank corrected .
- Е Value above quantitation range
- J Analyte detected at or below quantitation limits
- ND Not Detected at the Reporting Limit

Centek Laboratories, Locantitation Report (QT Reviewed) Data File : C:\HPCHEM\1\DATA\AK040312.D Vial: 12 Acq On : 3 Apr 2013 3:32 pm Sample : C1303079-005A 9720X 5V-DOPI-A-14AMisc : A313_UGM3 Operator: RJP Inst : MSD #1 Multiplr: 1.00 MS Integration Params: RTEINT.P Quant Time: Apr 04 15:04:51 2013 Quant Results File: A313_1UG.RES Quant Method : C:\HPCHEM\1\METHODS\A313_1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Wed Mar 27 15:03:05 2013 Response via : Initial Calibration DataAcq Meth : 1UG T015 R.T. QION Response Conc Units Dev(Min) Internal Standards _____ 1) Bromochloromethane9.49128233161.00 ppb0.0234) 1,4-difluorobenzene11.78114632751.00 ppb0.0249) Chlorobenzene-d516.18117594651.00 ppb0.02 System Monitoring Compounds

 52) Bromofluorobenzene
 17.68
 95
 28114
 0.83 ppb
 0.02

 Spiked Amount
 1.000
 Range
 70 - 130
 Recovery
 =
 83.00%

62) Bromofluorobenzene Target Compounds Ovalue 17) 1,1-dichloroethene 43) Trichloroethene 6.34 96 45998 12.38 130 62038 93 1.71 ppb 1.81 ppb 98

Sample Calculation

			Resp	onse F	actor :	Report	MSD ‡	†1	
	Meth Titl Last	od : C:\HPCH e : TO-15 V Update : Wed Mar	EM\1\METHODS OA Standard 27 15:03:05 Calibration	\A313_ ls for 2013	1UG.M 5 poin	(RTE I: t cali)	ntegrat bration	or) 1	
	ксаГ	OURG ATT : THICTAT	Caribrarion	L					
	Cali	bration Files .							
	0.04	=AK031318.D 0	.10 =AK031	320,D	0.15	=AK	031321.	D	
	0.30	=AK031323.D 0	.50 =AK031	324.D	0.75	=AK	031325.	D	
								_	
		Compound	0.04 0.10	0.15	0.30	0.50	0.75	Avg	\$RSD
					~~~~~				
۲ ۲	τ	Bromochloromethan			TST	D			
2)	Ť	Freon 22		3.081	2.495	2.258	2.251	2.318	14.51
3j	$\bar{\mathbf{T}}$	Propylene		0.902	0.799	0.840	0.745	0.750	11.67
4)	Ť	Freon 12		6.430	5.238	4,955	4.831	4.997	12.39
5)	Т	Chloromethane		1.576	1.477	1.232	1.226	1.260	14,29
6)	т	Freon 114		4.946	4.059	3.737	3.681	3.803	13.25
- 7)	T.	Vinyl Chloride	1.539 1.228	1.254	1.180	1.065	1.076	1.130	15.65
B)	$\mathbf{T}$	1,3-butadiene	•	0.931	0.818	0.703	0.790	0.796	11.00
9)	T	Bromomethane		1.682	1.356	1.335	1.286	1.314	12.22
10)	T	Ethanol			0.297	0.301	0.267	0.267	11.24
11}	T	Acrolein		0.348	0.266	0.253	0.316	0.268	15.80
12)	T			0.598	0.607	0.515	0.503	0.507	12.58
131	T.	Vinyi Bromide		7 033	L.440	1.430	1.387	1,300 E 767	14.37
161	Δ <b>Γ</b>	Adetone		1.033	0.430	D 434	5.090	0 435	14.23
16)	Ť	Teopropyl alcoh		1 606	1 386	1 334	1 364	1 284	17 47
171	÷	1.1-dichloroeth		1.403	1.317	1,736	1,106	1,151	11.64
1 R)	ŵ	Freen 113		3.698	2,902	2.731	2.739	2.759	14.84
19)	÷	t-Butyl alcohol	•	2.837	2.073	2.026	1,999	2.053	16.43
20)	Ť	Methvlene chlor		1.210	1.099	0.999	0.939	0.968	13.24
21)	Ŧ	Allyl chloride		1.877	1.966	1.500	1.482	1.546	15.52
22)	т	Carbon disulfid		4.597	3,489	3.093	3.120	3.221	18.55
23)	т	trans-1,2-dichl	•	2.028	1.600	1.480	1.589	1.584	11.75
24)	$\mathbf{T}$	methyl tert-but		3.872	3.220	2.988	2.808	3.063	11.56
25)	$\mathbf{T}$	1,1-dichloroeth	•	3.052	2.440	2.194	2.322	2,323	13.53
26)	т	Vinyl acetate		2.495	1.506	1.629	1.914	1,790	17.55
27)	т	Methyl Ethyl Ke			0.366	0.396	0.398	0.379	4.47
28)	T	cis-1,2-dichlor		1.895	1.355	1.459	1.335	1.439	13.09
29)	T	Hexane		1,592	1.227	1.174	1.282	1.268	TO.97
30)	T	Etnyi acetate		2.170	1.047	1.715	1.754	1.002	11.71
31)	т. Т.	Chiolololm Wetrahydrofyran		4.44U	3.414	0 775	3.200	0 780	11 53
34)	т Т	1 2-dichloroeth		2 949	2 320	2 209	2 204	2 258	12 92
55,	-	all all of occur				4.202	2.201	A.200	20175
34)	I	1,4-difluorobenzer	1e		ISTI	]			
35)	т	1,1,1-trichloro		1.691	1.197	1.110	1.124	1.155	19.49
36)	т	Cyclohexane		0.454	0.362	0.344	0.347	0.364	10.62
37)	T	Carbon tetrachl	2.306 1.702	1.954	1.379	1.339	1.321	1.492	25.15
38)	т	Benzene		1.169	0.940	0.930	0.890	0,910	12.50
39)	Т	Methyl methacry		0.372	0.258	0.260	0.273	0.277	14.13
40)	т	1,4-dioxane			0.129	0.111	0.112	0.113	6.79
41)	т	2,2,4-trimethyl		1.581	1.160	1.122	1.111	1.175	14.30
42)	T	Heptane		0.557	0.386	0.375	0.349	0.389	17,92
43)	T (	TrichLoroethene	0.771 0.585	0.694	0.512	0.490	0.476	<u>U.541</u>	2 20.17
44)	T	1,2-alcaloropro		0.469	0.354	1.351	1.341	1.350	14.45 15 84
45)	T	ain-1 3-dichlor		1.483	T-087		T.U23	1.0/0	15.04
40/ 47)	т Т	trape-1 3-dichl		0.001	0,43/ N 407	0.457	0.30/ N 497	0.402	10 95
48)	Ť	1.1.2-trichloro		0.657	0.492	0.4RA	0.454	0.485	14.88
	-	alale checitroite		0.027	3.196	4.200	4,292		
49)	I	Chlorobenzene-d5			ISTI	)			
50)	т	Toluene		0.844	0.608	0.629	0.623	0.648	12,47
51)	т	Methyl Isobutyl			0.475	0.458	0.455	0.432	8.76

(#) = Out of Range ### Number of calibration levels exceeded format ### A313_1UG.M Thu Mar 28 09:33:19 2013 MSD1

Page 287 of 399

### GC/MS VOLATILES-WHOLE AIR

### METHOD TO-15

# CANISTER CLEANING LOG

Page 381 of 399

# Instrument: Entech 3100

			-				
Canister Number-	OGICan Number	Number of Cycles	Date				
464	466	30	3.19.13	MACO31913 K	Jug 1 m 3+U-25	+ 50	+ 50
351						+	+
1192						+	т _
318			ļ			+	+
466			<u></u>	N 10 - 1210-0		+	+
495	229			WACUSINIS L		+	+
240			ļ			+ 	+
431						+	т
320			<u> </u>			<del>+</del>	т ,
229				MANDIG D M		+	т
493	552			INHCORNA M		+  .	<u> </u>
318						<u> +</u>	<u>т</u>
1175						+  .	т 
354			<u> </u>		<u> </u>	+  .	
552							т 
1173	364			WHLOSIMI'S N	<u> </u>	<del>+</del>	
245							
554							
544							
364						_ <del>*</del>	<u> </u> [∓]
133	283			WHC 0319130		+  .	
360					+	+	
131							+  .
138						+	+  .
283						+	+

.

Cleaned by:

Page # 145

Page 382 of 399

# **Centek Laboratories, LLC**

QC Canister Cleaning Logbook

Instrument: Entech 3100

Page 383 of 399

CanisterNumber	OCICan Number	Number of Cycles	Date	e OC Batch Number	Detection Limits	Leak Test 24	nr (psig str/sto)
1183	556	30	3.19.13	WA2031913 P	1 10 25	+ 20	+ へひ
558					103111310.0.0	+ 30	+
429						+	+
367						+	+
556						+	+
1174	357			WAZO31913Q		+	+
98						+	+
5')1						+	+
542						+	+
35)						+	+
211	1197			LIAZ031913R		+	+
1205						+	+
214	· · · · · · · · · · · · · · · · · · ·					+	+
-14-1						+	+
1147			•			+	+
						+	+
		¥	·····			+	+
•						+	+
						+	+
						+	+
						+	+
						+	+
						+	+
						+	+
						+	+

.....

.

146 Page #__

Centek Laboratories, LQCantitation Report (QT Reviewed) Data File : C:\HPCHEM\1\DATA2\AK031917.D Vial: 11 Acq On : 19 Mar 2013 6:56 pm Operator: RJP Sample : WAC031913K Inst : MSD #1 Misc Multiplr: 1.00 : MS Integration Params: RTEINT.P Quant Time: Mar 20 06:45:07 2013 Quant Results File: A313 1UG.RES Quant Method : C:\HPCHEM\1\METHODS\A313 1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Thu Mar 14 09:00:09 2013 Response via : Initial Calibration DataAcg Meth : 1UG T015 Internal Standards R.T. QIon Response Conc Units Dev(Min) _____ 1) Bromochloromethane9.49128117591.00ppb0.0234) 1,4-difluorobenzene11.77114365851.00ppb0.0249) Chlorobenzene-d516.18117316461.00ppb0.00 System Monitoring Compounds 
 52)
 Bromofluorobenzene
 17.68
 95
 14287
 0.79
 ppb

 Spiked Amount
 1.000
 Range
 70 - 130
 Recovery
 =
 79.00%
 62) Bromofluorobenzene 0.00

Target Compounds

Qvalue





Page 385 i of 399

Centek Laboratories, LDCantitation Report (QT Reviewed) Data File : C:\HPCHEM\1\DATA2\AK031918.D Vial: 12 Acq On : 19 Mar 2013 7:29 pm Operator: RJP Sample : WAC031913L Inst : MSD #1 Misc Multiplr: 1.00 : MS Integration Params: RTEINT.P Quant Time: Mar 20 06:45:08 2013 Quant Results File: A313 1UG.RES Quant Method : C:\HPCHEM\1\METHODS\A313_1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Thu Mar 14 09:00:09 2013 Response via : Initial Calibration DataAcq Meth : 1UG_T015 R.T. QIon Response Conc Units Dev(Min) Internal Standards _____ 1) Bromochloromethane9.4912811111.00ppb0.0234) 1,4-difluorobenzene11.78114347961.00ppb0.0249) Chlorobenzene-d516.18117319641.00ppb0.01 System Monitoring Compounds 
 52) Bromofluorobenzene
 17.68
 95
 13168
 0.72 ppb

 Spiked Amount
 1.000
 Range
 70 - 130
 Recovery = 72.00%
 62) Bromofluorobenzene 0.01

Target Compounds

Ovalue



Page 387 of 399

Centek Laboratories, LQCantitation Report (QT Reviewed) Data File : C:\HPCHEM\1\DATA2\AK031919.D Vial: 13 Acq On : 19 Mar 2013 8:03 pm Sample : WAC031913M Operator: RJP Inst : MSD #1 Misc Multiplr: 1.00 : MS Integration Params: RTEINT.P Quant Time: Mar 20 06:45:09 2013 Quant Results File: A313_1UG.RES Quant Method : C:\HPCHEM\1\METHODS\A313_1UG.M (RTE Integrator) : TO-15 VOA Standards for 5 point calibration Title Last Update : Thu Mar 14 09:00:09 2013 Response via : Initial Calibration DataAcq Meth : 1UG_T015 Internal Standards R.T. QION Response Conc Units Dev(Min) 1) Bromochloromethane9.49128112661.00 ppb0.0134) 1,4-difluorobenzene11.77114330831.00 ppb0.0249) Chlorobenzene-d516.18117290531.00 ppb0.01 System Monitoring Compounds 
 52) Bromofluorobenzene
 17.67
 95
 11984
 0.72 ppb

 Spiked Amount
 1.000
 Range
 70 - 130
 Recovery
 =
 72.00%
 62) Bromofluorobenzene 0.00

Target Compounds

Qvalue



Quantitation Report

Page 389 of 399

(QI REVIEWED)

Page 2

Centek Laboratories, LQCantitation Report (QT Reviewed) Data File : C:\HPCHEM\1\DATA2\AK031920.D Vial: 14 Acq On : 19 Mar 2013 8:36 pm Sample : WAC031913N Operator: RJP Inst : MSD #1 Misc . Multiplr: 1.00 MS Integration Params: RTEINT.P Quant Time: Mar 20 06:45:10 2013 Quant Results File: A313 1UG.RES Quant Method : C:\HPCHEM\1\METHODS\A313_1UG.M (RTE Integrator) : TO-15 VOA Standards for 5 point calibration Title Last Update : Thu Mar 14 09:00:09 2013 Response via : Initial Calibration DataAcq Meth : 1UG_T015 Internal Standards R.T. QION Response Conc Units Dev(Min) 1) Bromochloromethane9.48128116841.00ppb0.0034) 1,4-difluorobenzene11.77114358731.00ppb0.0149) Chlorobenzene-d516.18117323901.00ppb0.01 34) 1,4-difluorobenzene49) Chlorobenzene-d5 System Monitoring Compounds 17.67 95 14021 0.76 ppb 62) Bromofluorobenzene 0.00 Spiked Amount 1.000 Range 70 - 130 Recovery = 76.00%

Target Compounds

Qvalue



Centek Laboratories, LQCantitation Report (QT Reviewed) Data File : C:\HPCHEM\1\DATA2\AK031921.D Vial: 15 Acq On : 19 Mar 2013 9:09 pm Sample : WAC0319130 Operator: RJP Inst : MSD #1 Misc Multiplr: 1.00 1 MS Integration Params: RTEINT.P Quant Time: Mar 20 06:45:11 2013 Quant Results File: A313_1UG.RES Quant Method : C:\HPCHEM\1\METHODS\A313_1UG.M (RTE Integrator) : TO-15 VOA Standards for 5 point calibration Title Last Update : Thu Mar 14 09:00:09 2013 Response via : Initial Calibration DataAcq Meth : 1UG_T015 Internal Standards R.T. QION Response Conc Units Dev(Min) 1) Bromochloromethane9.48128115881.00ppb0.0034) 1,4-difluorobenzene11.77114339521.00ppb0.0249) Chlorobenzene-d516.17117307671.00ppb0.00 34) 1,4-difluorobenzene49) Chlorobenzene-d5 System Monitoring Compounds 17.67 95 13040 0.74 ppb 62) Bromofluorobenzene 0.00 Spiked Amount 1.000 Range 70 - 130 Recovery = 74.00%

Target Compounds

Qvalue



Centek Laboratories, LQCantitation Report (QT Reviewed) Data File : C:\HPCHEM\1\DATA2\AK031922.D Vial: 16 Acq On : 19 Mar 2013 9:42 pm Sample : WAC031913P Misc : Operator: RJP Inst : MSD #1 Misc : Multiplr: 1.00 MS Integration Params: RTEINT.P Quant Time: Mar 20 06:45:12 2013 Quant Results File: A313 1UG.RES Quant Method : C:\HPCHEM\1\METHODS\A313_1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Thu Mar 14 09:00:09 2013 Response via : Initial Calibration DataAcq Meth : 1UG_T015 Internal Standards R.T. QION Response Conc Units Dev(Min) _____ 1) Bromochloromethane9.48128112901.00 ppb0.0034) 1,4-difluorobenzene11.77114335321.00 ppb0.0149) Chlorobenzene-d516.18117290661.00 ppb0.00 System Monitoring Compounds SignatureSignatureSignatureSignatureSignatureSignatureSignatureSignatureSignatureSignatureSignatureSignatureSignatureSignatureSignatureSignatureSignatureSignatureSignatureSignatureSignatureSignatureSignatureSignatureSignatureSignatureSignatureSignatureSignatureSignatureSignatureSignatureSignatureSignatureSignatureSignatureSignatureSignatureSignatureSignatureSignatureSignatureSignatureSignatureSignatureSignatureSignatureSignatureSignatureSignatureSignatureSignatureSignatureSignatureSignatureSignatureSignatureSignatureSignatureSignatureSignatureSignatureSignatureSignatureSignatureSignatureSignatureSignatureSignatureSignatureSignatureSignatureSignatureSignatureSignatureSignatureSignatureSignatureSignatureSignatureSignatureSignatureSignatureSignatureSignatureSignatureSignatureSignatureSignatureSignatureSignatureSignatureSignatureSignatureSignatureSignatureSignatureSignatureSignatureSignatureSignatureSignatureSignatureSignatureSignatureSignatureSignatureSignatureSignatureSignatureSignatureSignatureSignature</th< 62) Bromofluorobenzene 0.00 Target Compounds Qvalue



Page

395

of 399



Centek Laboratories, LDQantitation Report (QT Reviewed) Data File : C:\HPCHEM\1\DATA2\AK031923.D Vial: 17 Acq On : 19 Mar 2013 10:15 pm Sample : WAC031913Q Misc : Operator: RJP Inst : MSD #1 Multiplr: 1.00 MS Integration Params: RTEINT.P Quant Time: Mar 20 06:45:13 2013 Quant Results File: A313_1UG.RES Quant Method : C:\HPCHEM\1\METHODS\A313_1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Thu Mar 14 09:00:09 2013 Response via : Initial Calibration DataAcq Meth : 1UG_T015 Internal Standards R.T. QIon Response Conc Units Dev(Min) _____ 1) Bromochloromethane9.49128111921.00ppb0.0134) 1,4-difluorobenzene11.77114343661.00ppb0.0249) Chlorobenzene-d516.18117305691.00ppb0.00 System Monitoring Compounds 
 62)
 Bromofluorobenzene
 17.68
 95
 12478
 0.71
 ppb

 Spiked Amount
 1.000
 Range
 70 - 130
 Recovery
 =
 71.00%
 0.00 Target Compounds Qvalue


Page 2

Centek Laboratories, LLC

Centek Laboratories, LECantitation Report (QT Reviewed) Data File : C:\HPCHEM\1\DATA2\AK031924.D Vial: 18 Acq On : 19 Mar 2013 10:48 pm Sample : WAC031913R Operator: RJP Inst : MSD #1 Misc : Multiplr: 1.00 MS Integration Params: RTEINT.P Quant Time: Mar 20 06:45:14 2013 Quant Results File: A313_1UG.RES Quant Method : C:\HPCHEM\1\METHODS\A313 1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Thu Mar 14 09:00:09 2013 Response via : Initial Calibration DataAcq Meth : 1UG T015 R.T. QION Response Conc Units Dev(Min) Internal Standards 1) Bromochloromethane9.49128111041.00 ppb0.0134) 1,4-difluorobenzene11.77114341511.00 ppb0.0249) Chlorobenzene-d516.18117313811.00 ppb0.00 System Monitoring Compounds 

 52) Bromofluorobenzene
 17.68
 95
 13124
 0.73 ppb
 0.00

 Spiked Amount
 1.000
 Range
 70 - 130
 Recovery
 =
 73.00%

 62) Bromofluorobenzene

Target Compounds

Qvalue



Page 2

Centek Laboratories, LLC



Tetra Tech, INC

TO:	E. SAMUELS		DATE:	MAY 8, 2013	
FROM:	A. COGNETTI		COPIES:	DV FILE	
SUBJECT:	ORGANIC DATA V LOCKHEED MIDD SAMPLE DELIVER	/ALIDATION - VOC LE RIVER RY GROUP (SDG) - C	;1304005		
SAMPLES:	5/Air/VOC				
	IA-015-A-14A IA-118-A-14A	IA-076-A-14A	IA-(	)79-A-14A	IA-108-A-14A

### **Overview**

The sample set for Lockheed Middle River SDG C1304005 consisted of five (5) indoor air samples. The air samples were analyzed for a select list of volatile organic compounds (VOC). There are no field duplicates included in this SDG.

The samples were collected by Tetra Tech on March 28, 2013 and sent to Centek Laboratories, LLC. The laboratory analyzed the samples in accordance with EPA Method TO-15 analytical and reporting protocols.

The data contained in this SDG were validated with regard to the following parameters: data completeness, holding times, GC/MS tuning, initial/continuing calibrations, laboratory method blank/canister blank results, blank spike/blank spike duplicate results, surrogate spike recoveries, internal standard recoveries, chromatographic resolution, compound identification, compound quantitation, field duplicate precision and detection limits. Areas of concern are listed below.

### Major Issues

No major issues were identified.

### Minor Issues

• Positive results below the Reporting Limit (RL) and above the detection limit were qualified as estimated, (J), due to uncertainty near the detection limit.

### Additional Comments

Samples were analyzed at the following dilutions:

<u>Sample</u>	Dilution
IA-015-A-14A	10X (m&p xylenes, methylene chloride, toluene)
IA-076-A-14A	10X (1,1-dichloroethene, toluene, trichloroethene)
IA-079-A-14A	10X (toluene)
IA-108-A-14A	10X (m&p xylenes, toluene)
IA-118-A-14A	10X (toluene)

The laboratory reported the VOC air result concentrations in units of  $\mu$ g/m3 and also ppbv on the sample forms. The results in the database and the qualified analytical result concentrations are reported as  $\mu$ g/m3 only.

TO: E. Samuels FROM: A. Cognetti SDG: C1304005 DATE: May 8, 2013

PAGE: 2

Non-detected sample analytes results were reported to the method detection limit (MDL).

The data package initially reported the sample non-detected analytes only to the Reporting Limit (RL). The laboratory was contacted and reported the non-detected sample analytes to the MDL.

Form 1s identified sample identifications beginning with 1A but the correct identifications begin with IA. The data reviewer corrected the database and the form 1s.

### EXECUTIVE SUMMARY

### Laboratory Performance Issues: None.

### Other Factors Affecting Data Quality: None.

Positive results below the Reporting Limit (RL) and above the detection limit were qualified as estimated, (J), due to uncertainty near the detection limit.

The data for these analyses were reviewed with reference to the USEPA Method TO-15 and the Region III Modifications to the National Functional Guidelines for Organic Data Review (September 1994).

Ann Cognetti/ Chemist/Data Validator

Petra Tech

Joseph A. Samchuck Data Validation Quality Assurance Officer

Attachments: Appendix A - Qualified Analytical Results Appendix B - Results as Reported by the Laboratory Appendix C - Support Documentation

### Appendix A

**Qualified Analytical Results** 

### **Qualifier Codes:**

- A = Lab Blank Contamination
- B = Field Blank Contamination
- C = Calibration Noncompliance (i.e., % RSDs, %Ds, ICVs, CCVs, RRFs, etc.)
- C01 = GC/MS Tuning Noncompliance
- D = MS/MSD Recovery Noncompliance
- E = LCS/LCSD Recovery Noncompliance
- F = Lab Duplicate Imprecision
- G = Field Duplicate Imprecision
- H = Holding Time Exceedance
- I = ICP Serial Dilution Noncompliance
- J = ICP PDS Recovery Noncompliance; MSA's r < 0.995
- K = ICP Interference includes ICS % R Noncompliance
- L = Instrument Calibration Range Exceedance
- M = Sample Preservation Noncompliance
- N = Internal Standard Noncompliance
- N01 = Internal Standard Recovery Noncompliance Dioxins
- N02 = Recovery Standard Noncompliance Dioxins
- N03 = Clean-up Standard Noncompliance Dioxins
- O = Poor Instrument Performance (i.e., base-time drifting)
- P = Uncertainty near detection limit (< 2 x IDL for inorganics and <CRQL for organics)
- Q = Other problems (can encompass a number of issues; i.e.chromatography,interferences, etc.)
- R = Surrogates Recovery Noncompliance
- S = Pesticide/PCB Resolution
- T = % Breakdown Noncompliance for DDT and Endrin
- U = RPD between columns/detectors >40% for positive results determined via GC/HPLC
- V = Non-linear calibrations; correlation coefficient r < 0.995
- W = EMPC result
- X = Signal to noise response drop
- Y = Percent solids <30%
- Z = Uncertainty at 2 standard deviations is greater than sample activity
- Z1 = Tentatively Identified Compound considered presumptively present
- Z2 = Tentatively Identified Compound column bleed
- Z3 = Tentatively Identified Compound aldol condensate

PROJ_NO: 04792	NSAMPLE	IA-015-A-14A			IA-076-A-14A			IA-079-A-14A			IA-108-A-14A	-	
SDG: C1304005	LAB_ID	C1304005-00	1A		C1304005-004	1A		C1304005-003	A		C1304005-005	5A	
FRACTION: OV-M3	SAMP_DATE	3/28/2013			3/28/2013			3/28/2013			3/28/2013		
MEDIA: AIR	QC_TYPE	NM			NM			NM			NM		
	UNITS	UG/M3			UG/M3			UG/M3			UG/M3		
	PCT_SOLIDS												
	DUP_OF												
PARAMETER		RESULT	VQL	QLCD									
1,1,1-TRICHLOROETHANE		0.27	U		0.27	υ		0.27	U		0.27	U	
1,1,2-TRICHLOROETHANE		0.2	U		0.2	U		0.2	U		0.2	U	
1,1-DICHLOROETHANE		0.22	U		0.82			1.4		-	0.22	U	
1,1-DICHLOROETHENE		0.22	U		8.1			4.5			0.22	U	
1,2,3-TRIMETHYLBENZEN	E	0.18	U		0.18	U		0.18	U		0.8		
1,2,4-TRICHLOROBENZEN	E	0.45	U										
1,2,4-TRIMETHYLBENZEN	E	0.85			0.5	J	Р	0.6	J	Р	2.6		
1,2-DICHLOROETHANE		0.2	U		0.2	U		0.2	U		0.2	U	
1,3,5-TRIMETHYLBENZEN	E	0.18	U		0.18	U		0.18	U		0.65	J	Р
BENZENE		1.1			0.62			0.75			2.5		
CARBON TETRACHLORID	E	0.36	U										
CHLORODIFLUOROMETH,	ANE	1.2			2.7			2.2			1.5		
CHLOROFORM		0.2	U		0.5	J	Ρ	0.2	U		0.2	U	
CIS-1,2-DICHLOROETHEN	E	0.48	J	Р	1.8			0.85			0.64		
DICHLORODIFLUOROMET	HANE	2.4			2.5			2.5			2.5		
ETHYLBENZENE		4.4			2.4			1.3			4.6		
M+P-XYLENES		17			14			9.4			19		
METHYL TERT-BUTYL ETH	IER	0.24	U										
METHYLENE CHLORIDE		24			1.3			0.99			2.2		
NAPHTHALENE		0.25	Ü		1.2			0.25	U		0.64	J	P
O-XYLENE		8.7			4.8			2.4			9		
TETRACHLOROETHENE		0.39	U		0.39	υ		0.39	U		0.39	υ	
TOLUENE		99			70			38			100		
TRANS-1,2-DICHLOROETH	IENE	0.19	U		0.19	υ		0.19	U		0.19	υ	
TRICHLOROETHENE		1.8			7.6	J	Р	8.2			5.6		
VINYL CHLORIDE		0.21	U		0.21	U		0.21	U		0.21	υ	

PROJ_NO: 04792	NSAMPLE	IA-118-A-14A				
SDG: C1304005	LAB_ID	C1304005-002A				
FRACTION: OV-M3	SAMP_DATE	3/28/2013				
MEDIA: AIR	QC_TYPE	NM				
	UNITS	UG/M3				
	PCT_SOLIDS					
	DUP_OF					
PARAMETER		RESULT	VQL	QLCD		
1,1,1-TRICHLOROETHANE	1					
1,1,2-TRICHLOROETHANE		0.2	U			
1,1-DICHLOROETHANE		2.8				
1,1-DICHLOROETHENE		4.2				
1,2,3-TRIMETHYLBENZEN	E	0.18	U			
1,2,4-TRICHLOROBENZEN	IE	0.45	U			
1,2,4-TRIMETHYLBENZENE		0.6	J	Р		
1,2-DICHLOROETHANE	· · · · ·	0.2	U			
1,3,5-TRIMETHYLBENZEN	E	0.18	U			
BENZENE		0.65				
CARBON TETRACHLORID	E	0.36	U			
CHLORODIFLUOROMETH	ANE	7.2				
CHLOROFORM		0.2	U			
CIS-1,2-DICHLOROETHEN	E	0.19	U			
DICHLORODIFLUOROMET		2.4				
ETHYLBENZENE		1.5				
M+P-XYLENES		8.7				
METHYL TERT-BUTYL ETH	HER	0.24	U			
METHYLENE CHLORIDE		1.4				
NAPHTHALENE		0.25	U			
O-XYLENE		2.1				
TETRACHLOROETHENE		0.39	U			
TOLUENE		40				
TRANS-1,2-DICHLOROETH	HENE	0.19	U			
TRICHLOROETHENE		2.9				
VINYL CHLORIDE		0.21	U			

### Appendix B

Results as Reported by the Laboratory

### Centek Laboratories, LLC

Date: 25-Apr-13

IA

 CLIENT:
 Tetra Tech, Inc.
 Client Sample ID:  $\frac{1}{4}A - \frac{4}{5} - A - 14A A - 4 - 24 - 13}$  

 Lab Order:
 C1304005
 Tag Number: 556,299

 Project:
 Middle River
 Collection Date: 3/28/2013

 Lab ID:
 C1304005-001A
 Matrix: AIR

Analyses	Result	Qual	MDL	**Limit	Units	DF Date Analyzed
1UG/M3 W/ADDITIONAL	CMPDS BY METHOD TO1	-	TO-15			Analyst: RJP
1,1,1-Trichloroethane	< 0.83		0.27	0.83	ug/m3	1 4/1/2013 5:47:00 PM
1,1,2-Trichloroethane	< 0.83		0.20	0.83	ug/m3	1 4/1/2013 5:47:00 PM
1,1-Dichloroethane	< 0.62		0.22	0.62	ug/m3	1 4/1/2013 5:47:00 PM
1,1-Dichloroethene	< 0.60		0.22	0.60	ug/m3	1 4/1/2013 5:47:00 PM
1,2,3-Trimethylbenzene	< 0.75		0.18	0.75	ug/m3	1 4/1/2013 5:47:00 PM
1,2,4-Trichlorobenzene	< 1.1		0.45	1.1	ug/m3	1 4/1/2013 5:47:00 PM
1,2,4-Trimethylbenzene	0.85		0.23	0.75	ug/m3	1 4/1/2013 5:47:00 PM
1,2-Dichloroethane	< 0.62		0.20	0.62	ug/m3	1 4/1/2013 5:47:00 PM
1,3,5-Trimethylbenzene	< 0.75		0.18	0.75	ug/m3	1 4/1/2013 5:47:00 PM
Benzene	1.1		0.13	0.49	ug/m3	1 4/1/2013 5:47:00 PM
Carbon tetrachloride	< 0.96		0.36	0.96	ug/m3	1 4/1/2013 5:47:00 PM
Chloroform	< 0.74		0.20	0.74	ug/m3	1 4/1/2013 5:47:00 PM
cis-1,2-Dichloroethene	0.48	J	0.19	0.60	ug/m3	1 4/1/2013 5:47:00 PM
Ethylbenzene	4.4		0.19	0.66	ug/m3	1 4/1/2013 5:47:00 PM
Freon 12	2.4		0.20	0.75	ug/m3	1 4/1/2013 5:47:00 PM
Freon 22	1.2		0.18	0.54	ug/m3	1 4/1/2013 5:47:00 PM
m&p-Xylene	17		4.4	13	ug/m3	10 4/2/2013 4:03:00 PM
Methyl tert-butyl ether	< 0.55		0.24	0.55	ug/m3	1 4/1/2013 5:47:00 PM
Methylene chloride	24		1.4	5.3	ug/m3	10 4/2/2013 4:03:00 PM
Naphthalene	< 0.80		0.25	0.80	ug/m3	1 4/1/2013 5:47:00 PM
o-Xylene	8.7		0.19	0.66	ug/m3	1 4/1/2013 5:47:00 PM
Tetrachloroethylene	< 1.0		0.39	1.0	ug/m3	1 4/1/2013 5:47:00 PM
Toluene	99		1.5	5.7	ug/m3	10 4/2/2013 4:03:00 PM
trans-1,2-Dichloroethene	< 0.60		0.19	0.60	ug/m3	1 4/1/2013 5:47:00 PM
Trichloroethene	1.8		0.36	0.82	ug/m3	1 4/1/2013 5:47:00 PM
Vinyl chloride	< 0.39		0.21	0.39	ug/m3	1 4/1/2013 5:47:00 PM

Qualifiers:	**	Reporting Limit		Results reported are not blank corrected
	В	Analyte detected in the associated Method Blank	E	Value above quantitation range
	Н	Holding times for preparation or analysis exceeded	J	Analyte detected at or below quantitation limits
	JN	Non-routine analyte. Quantitation estimated.	ND	Not Detected at the Reporting Limit
	S	Spike Recovery outside accepted recovery limits		

### **Centek Laboratories, LLC**

Tetra Tech, Inc.

C1304005

Middle River C1304005-004A

**CLIENT:** 

**Project:** 

Lab ID:

Lab Order:

Client Sampl Tag Nun Collection 1 Ma

### Client Sample ID: +A-076-A-14A Tag Number: 138,1157 Collection Date: 3/28/2013 Matrix: AIR

Analyses	Result	Qual	MDL	**Limit	Units	DF	Date Analyzed
1UG/M3 W/ADDITIONAL CMPD	S BY METHOD TO1		TO-15			A	nalyst: <b>RJP</b>
1,1,1-Trichloroethane	< 0.83		0.27	0.83	ug/m3	1	4/1/2013 7:28:00 PM
1,1,2-Trichloroethane	< 0.83		0.20	0.83	ug/m3	1	4/1/2013 7:28:00 PM
1,1-Dichloroethane	0.82		0.22	0.62	ug/m3	1	4/1/2013 7:28:00 PM
1,1-Dichloroethene	8.1		2.2	6.0	ug/m3	10	4/2/2013 5:42:00 PM
1,2,3-Trimethylbenzene	< 0.75		0.18	0.75	ug/m3	1	4/1/2013 7:28:00 PM
1,2,4-Trichlorobenzene	< 1.1		0.45	. 1.1	ug/m3	1	4/1/2013 7:28:00 PM
1,2,4-Trimethylbenzene	0.50	J	0.23	0.75	ug/m3	1	4/1/2013 7:28:00 PM
1,2-Dichloroethane	< 0.62		0.20	0.62	ug/m3	1	4/1/2013 7:28:00 PM
1,3,5-Trimethylbenzene	< 0.75		0.18	0.75	ug/m3	1	4/1/2013 7:28:00 PM
Benzene	0.62		0.13	0.49	ug/m3	1	4/1/2013 7:28:00 PM
Carbon tetrachloride	< 0.96		0.36	0.96	ug/m3	1	4/1/2013 7:28:00 PM
Chloroform	0.50	J	0.20	0.74	ug/m3	· 1	4/1/2013 7:28:00 PM
cis-1,2-Dichloroethene	1.8		0.19	0.60	ug/m3	1	4/1/2013 7:28:00 PM
Ethylbenzene	2.4		0.19	0.66	ug/m3	1	4/1/2013 7:28:00 PM
Freon 12	2.5		0.20	0.75	ug/m3	1	4/1/2013 7:28:00 PM
Freon 22	2.7		0.18	0.54	ug/m3	1	4/1/2013 7:28:00 PM
m&p-Xylene	14		0.44	1.3	ug/m3	1	4/1/2013 7:28:00 PM
Methyl tert-butyl ether	< 0.55		. 0.24	0.55	ug/m3	1	4/1/2013 7:28:00 PM
Methylene chloride	1.3		0.14	0.53	ug/m3	1	4/1/2013 7:28:00 PM
Naphthalene	1.2		0.25	0.80	ug/m3	1	4/1/2013 7:28:00 PM
o-Xylene	4.8		0.19	0.66	ug/m3	1	4/1/2013 7:28:00 PM
Tetrachloroethylene	< 1.0		0.39	1.0	ug/m3	1	4/1/2013 7:28:00 PM
Toluene	70		1.5	5.7	ug/m3	10	4/2/2013 5:42:00 PM
trans-1,2-Dichloroethene	< 0.60		0.19	0.60	ug/m3	1	4/1/2013 7:28:00 PM
Trichloroethene	7.6	J	3.6	8.2	ug/m3	10	4/2/2013 5:42:00 PM
Vinyl chloride	< 0.39		0.21	0.39	ug/m3	1	4/1/2013 7:28:00 PM

Qualifiers: ** Rep

- ** Reporting Limit
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded

JN Non-routine analyte. Quantitation estimated.

S Spike Recovery outside accepted recovery limits

. Results reported are not blank corrected

E Value above quantitation range

J Analyte detected at or below quantitation limits

ND Not Detected at the Reporting Limit

Page 4 of 5

	T 1 4	· • • • • •
Centek	Laborator	ies, LLC

Tetra Tech, Inc.

C1304005

Middle River

C1304005-003A

**CLIENT:** 

Project: Lab ID:

Analyses

Lab Order:

Date: 25-Apr-13

IA

5-8-13 IAJ

Client Sample ID: 1/A-079-A-14A Tag Number: 558,172 Collection Date: 3/28/2013

**Limit Units DF Date Analyzed

			TO-15				alvet: DID
1 1 1-Trichloroethane			0.27	0.83	ua/m3	1	A/1/2013 6:55:00 PM
1, 1, 2-Trichloroethane	< 0.83		0.20	0.00	ug/m3	1	4/1/2013 6:55:00 PM
1 1-Dichloroethane	۰.05 ۱۸		0.20	0.00	ug/m3	1	4/1/2013 6:55:00 PM
1 1-Dichloroethene	4.5		0.22	0.02	ug/m3	1	4/1/2013 6:55:00 PM
1.2.3 Trimethylbenzone	- 0.75		0.22	0.00	ug/m3	1	4/1/2013 6:55:00 PM
	< 0.75		0.10	0.75	ug/m3	1	4/1/2013 0.33.00 FW
	< 1.1 0.60		0.45	0.75	ug/m3	1	4/1/2013 0.55.00 PW
	0.60	J	0.23	0.75	ug/m3	1	4/1/2013 6:55:00 PM
1,2-Dichloroethane	< 0.62		0.20	0.62	ug/m3	1	4/1/2013 6:55:00 PM
1,3,5-Trimethylbenzene	< 0.75		0.18	0.75	ug/m3	1	4/1/2013 6:55:00 PM
Benzene	0.75		0.13	0.49	ug/m3	1	4/1/2013 6:55:00 PM
Carbon tetrachloride	< 0.96		0.36	0.96	ug/m3	1	4/1/2013 6:55:00 PM
Chloroform	< 0.74		0.20	0.74	ug/m3	1	4/1/2013 6:55:00 PM
cis-1,2-Dichloroethene	0.85		0.19	0.60	ug/m3	1	4/1/2013 6:55:00 PM
Ethylbenzene	1.3		0.19	0.66	ug/m3	1	4/1/2013 6:55:00 PM
Freon 12	2.5		0.20	0.75	ug/m3	1	4/1/2013 6:55:00 PM
Freon 22	2.2		0.18	0.54	ug/m3	1	4/1/2013 6:55:00 PM
m&p-Xylene	9.4		0.44	1.3	ug/m3	1	4/1/2013 6:55:00 PM
Methyl tert-butyl ether	< 0.55		0.24	0.55	ug/m3	1	4/1/2013 6:55:00 PM
Methylene chloride	0.99		0.14	0.53	ug/m3	1	4/1/2013 6:55:00 PM
Naphthalene	< 0.80		0.25	0.80	ug/m3	1	4/1/2013 6:55:00 PM
o-Xylene	2.4		0.19	0.66	ug/m3	1	4/1/2013 6:55:00 PM
Tetrachloroethylene	< 1.0		0.39	1.0	ug/m3	1	4/1/2013 6:55:00 PM
Toluene	38		1.5	5.7	ug/m3	10	4/2/2013 5:09:00 PM
trans-1,2-Dichloroethene	< 0.60		0.19	0.60	ug/m3	1	4/1/2013 6:55:00 PM
Trichloroethene	8.2		0.36	0.82	ug/m3	1	4/1/2013 6:55:00 PM
Vinyl chloride	< 0.39		0.21	0.39	ug/m3	1	4/1/2013 6:55:00 PM

MDL

Result Qual

Qualifiers: ** Reporting Limit Results reported are not blank corrected Analyte detected in the associated Method Blank Е В Value above quantitation range Н Holding times for preparation or analysis exceeded J Analyte detected at or below quantitation limits JN Non-routine analyte. Quantitation estimated. ND Not Detected at the Reporting Limit Spike Recovery outside accepted recovery limits S

# Centek Laboratories, LLC

**CLIENT:** 

**Project:** 

Lab ID:

Lab Order:

Tetra Tech, Inc.

C1304005

Middle River

C1304005-005A

TA-Client Sample ID: 1A-108-A-14A **Tag Number: 360,187** 

Date: 25-Apr-13

Collection Date: 3/28/2013

Matrix: AIR

Analyses	Result	Qual	MDL	**Limit	Units	DF	Date Analyzed
1UG/M3 W/ADDITIONAL CM	PDS BY METHOD TO1		TO-15			A	nalyst: RJP
1,1,1-Trichloroethane	< 0.83		0.27	0.83	ug/m3	1	4/1/2013 8:02:00 PM
1,1,2-Trichloroethane	< 0.83		0.20	0.83	ug/m3	1	4/1/2013 8:02:00 PM
1,1-Dichloroethane	< 0.62		0.22	0.62	ug/m3	1	4/1/2013 8:02:00 PM
1,1-Dichloroethene	< 0.60		0.22	0.60	ug/m3	1	4/1/2013 8:02:00 PM
1,2,3-Trimethylbenzene	0.80		0.18	0.75	ug/m3	1	4/1/2013 8:02:00 PM
1,2,4-Trichlorobenzene	< 1.1		0.45	1.1	ug/m3	1	4/1/2013 8:02:00 PM
1,2,4-Trimethylbenzene	2.6		0.23	0.75	ug/m3	1	4/1/2013 8:02:00 PM
1,2-Dichloroethane	< 0.62		0.20	0.62	ug/m3	1	4/1/2013 8:02:00 PM
1,3,5-Trimethylbenzene	0.65	J	0.18	0.75	ug/m3	1	4/1/2013 8:02:00 PM
Benzene	2.5		0.13	0.49	ug/m3	1	4/1/2013 8:02:00 PM
Carbon tetrachloride	< 0.96		0.36	0.96	ug/m3	1	4/1/2013 8:02:00 PM
Chloroform	< 0.74		0.20	0.74	ug/m3	1	4/1/2013 8:02:00 PM
cis-1,2-Dichloroethene	0.64		0.19	0.60	ug/m3	1	4/1/2013 8:02:00 PM
Ethylbenzene	4.6		0.19	0.66	ug/m3	1	4/1/2013 8:02:00 PM
Freon 12	2.5		0.20	0.75	ug/m3	1	4/1/2013 8:02:00 PM
Freon 22	1.5		0.18	0.54	ug/m3	1	4/1/2013 8:02:00 PM
m&p-Xylene	19		4.4	13	ug/m3	10	4/2/2013 6:14:00 PM
Methyl tert-butyl ether	< 0.55		0.24	0.55	ug/m3	1	4/1/2013 8:02:00 PM
Methylene chloride	2.2		0.14	0.53	ug/m3	1	4/1/2013 8:02:00 PM
Naphthalene	0.64	J	0.25	0.80	ug/m3	1	4/1/2013 8:02:00 PM
o-Xylene	9.0		0.19	0.66	ug/m3	1	4/1/2013 8:02:00 PM
Tetrachloroethylene	< 1.0		0.39	1.0	ug/m3	1	4/1/2013 8:02:00 PM
Toluene	100		1.5	5.7	ug/m3	10	4/2/2013 6:14:00 PM
trans-1,2-Dichloroethene	< 0.60		0.19	0.60	ug/m3	1	4/1/2013 8:02:00 PM
Trichloroethene	5.6		0.36	0.82	ug/m3	1	4/1/2013 8:02:00 PM
Vinyl chloride	< 0.39		0.21	0.39	ug/m3	1	4/1/2013 8:02:00 PM

**Qualifiers:** 

** Reporting Limit

Analyte detected in the associated Method Blank В

Н Holding times for preparation or analysis exceeded

Non-routine analyte. Quantitation estimated. JN

S Spike Recovery outside accepted recovery limits

Results reported are not blank corrected .

Е Value above quantitation range

J Analyte detected at or below quantitation limits

ND Not Detected at the Reporting Limit 5-8-3 IA-

# Centek Laboratories, LLC

**CLIENT:** 

IA_

**Date:** 25-Apr-13

Lab Order: C1304005 **Project:** Middle River Lab ID: C1304005-002A

Tetra Tech, Inc.

Client Sample ID: LA-118-A-14A **Tag Number: 544,295** Collection Date: 3/28/2013 Matrix: AIR

Analyses	Result	Qual	MDL	**Limit	Units	DF	Date Analyzed
1UG/M3 W/ADDITIONAL CMPE	S BY METHOD TO1		TO-15			A	nalyst: <b>RJP</b>
1,1,1-Trichloroethane	1.0		0.27	0.83	ug/m3	1	4/1/2013 6:21:00 PM
1,1,2-Trichloroethane	< 0.83		0.20	0.83	ug/m3	1	4/1/2013 6:21:00 PM
1,1-Dichloroethane	2.8		0.22	0.62	ug/m3	1	4/1/2013 6:21:00 PM
1,1-Dichloroethene	4.2		0.22	0.60	ug/m3	1	4/1/2013 6:21:00 PM
1,2,3-Trimethylbenzene	< 0.75		0.18	0.75	ug/m3	1	4/1/2013 6:21:00 PM
1,2,4-Trichlorobenzene	< 1.1		0.45	1.1	ug/m3	1	4/1/2013 6:21:00 PM
1,2,4-Trimethylbenzene	0.60	J	0.23	0.75	ug/m3	1	4/1/2013 6:21:00 PM
1,2-Dichloroethane	< 0.62		0.20	0.62	ug/m3	1	4/1/2013 6:21:00 PM
1,3,5-Trimethylbenzene	< 0.75		0.18	0.75	ug/m3	1	4/1/2013 6:21:00 PM
Benzene	0.65		0.13	0.49	ug/m3	1	4/1/2013 6:21:00 PM
Carbon tetrachloride	< 0.96		0.36	0.96	ug/m3	1	4/1/2013 6:21:00 PM
Chloroform	< 0.74		0.20	0.74	ug/m3	1	4/1/2013 6:21:00 PM
cis-1,2-Dichloroethene	< 0.60		0.19	0.60	ug/m3	1	4/1/2013 6:21:00 PM
Ethylbenzene	1.5		0.19	0.66	ug/m3	1	4/1/2013 6:21:00 PM
Freon 12	2.4		0.20	0.75	ug/m3	1	4/1/2013 6:21:00 PM
Freon 22	7.2		0.18	0.54	ug/m3	1	4/1/2013 6:21:00 PM
m&p-Xylene	8.7		0.44	1.3	ug/m3	1	4/1/2013 6:21:00 PM
Methyl tert-butyl ether	< 0.55		0.24	0.55	ug/m3	1	4/1/2013 6:21:00 PM
Methylene chloride	1.4		0.14	0.53	ug/m3	1	4/1/2013 6:21:00 PM
Naphthalene	< 0.80		0.25	0.80	ug/m3	1	4/1/2013 6:21:00 PM
o-Xylene	2.1		0.19	0.66	ug/m3	1	4/1/2013 6:21:00 PM
Tetrachloroethylene	< 1.0		0.39	1.0	ug/m3	1	4/1/2013 6:21:00 PM
Toluene	40		1.5	5.7	ug/m3	10	4/2/2013 4:35:00 PM
trans-1,2-Dichloroethene	< 0.60		0.19	0.60	ug/m3	1	4/1/2013 6:21:00 PM
Trichloroethene	2.9		0.36	0.82	ug/m3	1	4/1/2013 6:21:00 PM
Vinyl chloride	< 0.39		0.21	0.39	ug/m3	1	4/1/2013 6:21:00 PM

Qualifiers:	**	Reporting Limit		Results reported are not blank corrected
	В	Analyte detected in the associated Method Blank	Е	Value above quantitation range
	Н	Holding times for preparation or analysis exceeded	J	Analyte detected at or below quantitation limits
	JN	Non-routine analyte. Quantitation estimated.	ND	Not Detected at the Reporting Limit
	S	Spike Recovery outside accepted recovery limits		

# 5-8-13 JAI

### Appendix C

Support Documentation



Date: 18-Apr-13

CLIENT:Tetra Tech, Inc.Project:Middle RiverLab Order:C1304005

# CASE NARRATIVE

Samples were analyzed using the methods outlined in the following references:

Compendium of Methods for the Determination of Toxic Organic Compounds, Compendium Method TO-15, January 1999 and Centek Laboratories, LLC SOP TS-80:

All method blanks, laboratory spikes, and/or matrix spikes met quality assurance objective except as indicated in the corrective action report(s). All samples were received and analyzed within the EPA recommended holding times. Test results are not Method Blank (MB) corrected for contamination.

### NYSDEC ASP samples:

Canisters should be evacuated to a reading of less than or equal to 50 millitorr prior to shipment to sampling personnel. The vacuum in the canister will be field checked prior to sampling, and must read 28" of Hg ( $\pm$ 2", vacuum, absolute) before a sample can be collected. After the sample has been collected, the pressure of the canister will be read and recorded again, and must be 5" of Hg ( $\pm$ 1", vacuum, absolute) for the sample to be valid. Once received at the laboratory, the canister vacuum should be confirmed to be 5" of Hg, $\pm$ 1". Please record and report the pressure/vacuum of received canisters on the sample receipt paperwork. A pressure/vacuum reading should also be taken just prior to the withdrawal of sample from the canister, and recorded on the sample preparation log sheet. All regulators are calibrated to meet these requirements before they leave the laboratory. However, due to environmental conditions and use of the equipment Centek can not guarantee that this criteria can always be achieved.

		Centek Chain of Custody					Site Name: Middle River	Report Level				
	Centek Laboratorius	143 Midler Park Drive Syracuse, NY 13206					Project: SVAN	DIAD	5ppby			
	All Duning Training. (Fr a time						PO# 112/C0/792					
	315-431-9730 www.CentekLabs.com			Vapor Intrusio	n & 140	Oueto # 0 1652	2-03 1ug/M3					
						Other: 803569		1ug/M3 +TCE .25	x Cat "B" Like			
	Check Rush TAT Due C				Company:		50000	Company:		·		
Turr	naround Time:	One Surcharge % Date:				Tetra Tech, Inc.			If Same: 🗴			
5 Bi	isiness Days	x	0%		Report to:			Invoice to:				
4 Bu	isiness Days		25%		Address:	2171 W. Park	Court, Suite E	Address:				
3 Bu	isiness Days		50%		City, State, Zi			City, State, Zip				
2 BU	Isiness Days		75%		L	Stone Mounta	in, GA 30087					
Nex	t Day by opm t Day by Noon		100%			Eric.Samuels	@tetratech.com	Email:				
Sam	ne Dav	<u> </u>	200%		Phone:	Joseph.Samc	huck@tetratech.com					
	Sample ID	<u></u>	Date	Sampled	Capieter	(110) 413-090	Anglanin Direct	Phone:				
l	oumpie 15			Sampled	Number	Number	Analysis Request		Comments	Vacuum		
	1A-015-A.	-14A	3/2	8/12	556	299			74122	Start/Stop		
	A-118-4	144	3/2	8/12	544	295	TO15	07.	2-1/101	-100/-1		
	4-079-4-			oriz alua	O		1015	07.	25/1148	-30/-4		
⊢	$\frac{n}{2} = 011 = 0.011$	44	3/2	8/13	>>0	112	7015	093	50/ 1750	-30/0		
$\square$	<u>H-016-4-1</u>	4 <u>4</u>	3/2	<u>8/13</u>	138	1157	<u>T015</u>	09	38/1758	-30/0		
	<u>A - 108 - A-1</u>	4A	3/2	8/13	360	187	TOIS	092	6/1743	-30/-10		
							<u></u>					
				$\overline{}$								
					$\leftarrow$							
┣					1							
			·									
	• •											
	_							······				
										······································		
	······································											
						· · · · · · · · · · · · · · · · · · ·						
	·											
		}										
1						· · · · · · · · · · · · · · · · · · ·				······································		
							<u>_</u>					
Chai	in of Custody				<u> </u>			<u> </u> 				
Chai						Signature		Date/Time	Courier: CIRCLE ON	<u>E</u>		
Sam	pieu by:		ONY HE	ANITVI	67	m	2/	3/29/13	FedEx DPS Pic	kup/Dropoff		
Reli	nquished by:					· /	1/	1100	For LAB USE ONLY			
Reci	aived at Lab by		100.50			0	1 //	1,11	d /	TAURDI -		
いてしげ			San Or	41 <u>G</u>			Icali	19/1/13	Nork Order #	<u>50400 S</u>		



Date: 18-Apr-13

× •				
CLIENT: Project: Lab Order:	Tetra Tech, Inc. Middle River C1304005		Work Orde	r Sample Summary
Lab Sample ID C1304005-001A	Client Sample ID 1A-05-A-14A	<b>Tag Number</b> 556,299	Collection Date 3/28/2013	Date Received 4/1/2013
C1304005-002A	1 <b>A-118-A-</b> 14A	544,295	3/28/2013	4/1/2013
C1304005-003A	1A-079-A-14A	558,172	3/28/2013	4/1/2013
C1304005-004A	1 <b>A-076-A-</b> 14 <b>A</b>	138,1157	3/28/2013	4/1/2013
C1304005-005A	1A-108-A-14A	360,187	3/28/2013	4/1/2013

	<i></i>					Sample Re	ceipt C	hecklist	
	1								
Client Name: TETRA TECH - ATLANTA				Date an	id Tim	e Received			4/1/2013
Work Order Number C1304005		7	1)	Receive	ed by:	JDS			
Checklist completed by	Date	/	1/1/1-	Review	ed by	nitiels		4/1/1 Date	3
Matrix:	Carrier name:	<u>Fed</u>	<u>Ex</u>						
Shipping container/oooler in good condition?		Yes		No 🗌		Not Present			
Custody seals intact on shippping container/co	oler?	Yes		No 🗔		Not Present			
Custody seals intact on sample bottles?		Yes		No 🛄		Not Present			
Chain of custody present?		Yes		No 🗋					
Chain of custody signed when relinquished and	d received?	Yes		No 🗔					
Chain of custody agrees with sample labels?		Yes		No 🗖					
Samples in proper container/bottle?		Yes		No 🗌					
Sample containers intact?		Yes		No 🗀					·
Sufficient sample volume for indicated test?		Yes		No 🗔					
All samples received within holding time?		Yes	$\checkmark$	No 🗀					
Container/Temp Blank temperature in complian	ice?	Yes		No 🗀					
Water - VOA vials have zero headspace?	No VOA vials subm	litted		Yes		No 🗖			
Water - pH acceptable upon receipt?		Yes		No 🗹					
	Adjusted?		Che	cked by					
Any No and/or NA (not applicable) response mi	ust be detailed in the co	ommer	nts section b	e) 					
Client contacted:	Date contacted:			F	Perso	n contacted			
Contacted by:	Regarding:								
Comments:									
			-						
Corrective Action									-
		•							<u></u>
			<u></u>						
	·			·					

.

SORT	SD
	0) <mark>G</mark> C13(
TS	)4003
NSAMPLE	5 
LAB ID	
QC TYPE	
SAMP DATE	
EXTR DATE	
ANAL DATE	
SMP EXTR	
EXTR_ANL	
SMP_ANL	

	JVNI	UNIIJ			Contract and a Contraction of the Contract of Contract			tin in the second s	KING STOLEN MUTURING ST	and the state of the	as The second second
2	OV-M3	UG/M3	1A-118-A-14A	C1304005-002A	NM	3/28/2013	4/2/2013	4/2/2013	5	0	5
	OV-M3	UG/M3	1A-118-A-14A	C1304005-002A	NM	3/28/2013	4/1/2013	4/1/2013	4	0	4
	OV-M3	UG/M3	1A-108-A-14A	C1304005-005A	NM	3/28/2013	4/2/2013	4/2/2013	5	0	5
	OV-M3	UG/M3	1A-108-A-14A	C1304005-005A	NM	3/28/2013	4/1/2013	4/1/2013	4	0	4
	OV-M3	UG/M3	1A-079-A-14A	C1304005-003A	NM	3/28/2013	4/2/2013	4/2/2013	5	0	5
	OV-M3	UG/M3	1A-079-A-14A	C1304005-003A	NM	3/28/2013	4/1/2013	4/1/2013	4	0	4
	OV-M3	UG/M3	1A-076-A-14A	C1304005-004A	NM	3/28/2013	4/2/2013	4/2/2013	5	0	5
	OV-M3	UG/M3	1A-076-A-14A	C1304005-004A	NM	3/28/2013	4/1/2013	4/1/2013	4	0	4
	OV-M3	UG/M3	1A-05-A-14A	C1304005-001A	NM	3/28/2013	4/2/2013	4/2/2013	5	0	5
	OV-M3	UG/M3	1A-05-A-14A	C1304005-001A	NM	3/28/2013	4/1/2013	4/1/2013	4	0	4

					Injection Log		Insmiment # (	
	E	Directory:	C:\HPCHEM	\1\DATA			Internal Standard Slock	(# 1491
		•					Stondard Stock #	9491
							LCC Stock #	
Line	Vial	FileName	Multiplier	SampleName		Misc In		
	• , ===						Method Ref. EFA	10-187 Jan. 18-5
221	10	Ak031115 d	1	C1303012-019A 10X		A305	1UG ⁽	11 Mar 2013 21:09
222	10	Ak031116 d	1	C1303012-023A 10X		A305	106	11 Mar 2013 21:42
000	10	Ak031110.0	1.	C1303013-003A 10Y		A305		11 Mar 2013 22.15
223		AKUS     /.U	. 	C100010-000A 10X				11 Mar 2019 22.10
224	12	AK031118.0	1.	C1303013-004A 10X		A305_		
225	13	AK031119.d	1.	C1303013-005A 10X		A305_	106	11 War 2013 23:21
226	14	Ak031120.d	1.	C1303013-010A 10X		A305_	1UG	11 Mar 2013 23:54
227	15	Ak031121.d	1.	C1303013-015A 10X		A305_1	1UG	12 Mar 2013 00:27
228	16	Ak031122.d	1.	C1303013		A305_1	1UG-015A 40X	12 Mar 2013 01:00
229	17	Ak031123.d	1.	C1303013-018A 10X		A305	1UG	12 Mar 2013 01:33
230	18	Ak031124.d	1.	C1303013		A305	1UG-018A 40X	12 Mar 2013 02:06
200								
231	19	Ak031125.d	1.	C1303013-019A 10X		A305_	1UG	12 Mar 2013 02:38
232	20	Ak031126.d	. 1.	C1303013		A305_1	1UG-019A 40X	12 Mar 2013 03:11
233	21	Ak031127.d	1.	ALCS1UGD-031113		A305_1	1UG	12 Mar 2013 03:44
234	22	Ak031128.d	1.	C1303033-006A 5X		A305	1UG	12 Mar 2013 04:17
235	23	Ak031129 d	1	C1303033-008A 5X		A305	IUG	12 Mar 2013 04:50
236	20	Ak031120.0	1.	C1303033-001A 5X		A305	1ÚG	12 Mar 2013 05:23
230	24	Vr03112010	4	C1909033-007A 10Y		A305	100	12 Mar 2013 05:56
231	20	AKUSTISI.U	1.	C1303033-002A 10A			100	12 Mar 2013 06:20
238	26	AKU31132.d	1.	C1303033-002A 40X		A305_		12 Mar 2013 00.29
23 <del>9</del>	27	Ak031133.d	1.	C1303033-003A 10X		A300_	10G	
240	28	Ak031134.d	1.	C1303033-005A 2X		A305_	1UG	12 Mar 2013 07:36
044	97	AK024425 d	4	C1303033-0034 270X	•	A305	111G	12 Mar 2013 08:37
241	21		1.	C1202012 014A DOX		V302	100	12 Mar 2013 09:10
242	28	AKU31136.0	1.	C 1303012-014A 90A		M300_		12 Mar 2013 00.10
243	29	AKU31137.0	1.	C1303012-023A 270A		A305		12 Mai 2013 03.44
244	30	Ak031138.d	1.	C1303012-013A 90X		A305_	10G	12 Mar 2013 10:17
245	31	Ak031139.d	1.	WAC031113A		A305_	1UG	12 Mar 2013 10:50
246	31	Ak031140.d	1.	C1303013-015A 90X		A305_	1UG	12 Mar 2013 11:24
247		Ak031141.d	1.	No MS or GC data pres	sent			
248	1	Ak031301.d	1.	BFB1UG				13 Mar 2013 16:28
249	Ā	Ak031318 d	1	A1UG 0.04				14 Mar 2013 01:58
250	5	Ak031319 d	4	A1UG				14 Mar 2013 02:30
200	0	71001010.0		/////				
251	6	Ak031320.d	1.	A1UG_0.10				14 Mar 2013 03:04
252	7	Ak031321.d	1.	A1UG_0,15				14 Mar 2013 03:37
253	8	Ak031322.d	4.	A1UG				14 Mar 2013 04:11
254	ā	Ak031323 d	1	A1UG 0.30				14 Mar 2013 04:45
255	10	Ak031324 d	1	A1UG 0.50				14 Mar 2013 05:17
200	10	AL021225.0		A1UG 0.75				14 Mar 2013 05:51
200	10		- 1. - 1					14 Mar 2013 06:25
201	12	AKU31320.0	.  . 					14 Mar 2019 08.20
258	13	AKU31327,d	]. 					4 Mar 2010 00.00
259	14	Ak031328.d	1.	A1UG_1.5				14 Wat 2013 07:30
260	15	Ak031329.d	1.	A1UG_2.0				14 Mar 2013 08:09
764		VPU34330 4	4	No MS or GC data pres	sent			
201		- YEDA4 404 -	la   −f					14 Mar 2013 08·49
262	1	AKU31401.0	1.					1/ Mar 2013 00:39
263	2	AK031402.d	٦.					14 Mar 2013 40:42
264	3	AkD31403.d	1.	ALCS1UG-031413				
265	4	Ak031404.d	1.	AMB1UG-031413				14 IVIAT 2013 10:46
266	5	Ak031405.d	1.	PROF				14 Mar 2013 11:19
267	6	Ak031408.d	1.	PROF 10X				14 Mar 2013 11:52
268	7	Ak031407 d	1.	PROF 40X				14 Mar 2013 12:26
269	1	Ak031408 d	1	WAC031413A				14 Mar 2013 12:58
222	2	Ak031/00 4	1	WAC031413B				14 Mar 2013 13:32
~1U	£	11001408.0	1.	- 44 (Q Q Q   -   1 Q Q				
271	3	Ak031410.d	1.	WAC031413C				14 Mar 2013 14:05
272	4	Ak031411.d	1.	WAC031413D				14 Mar 2013 15:38
273	2	Ak031412 d	1.	WAC031413E				14 Mar 2013 16:11
274	3	Ak031413 d	1.	WAC031413F				14 Mar 2013 16:44
275	4	Ak031414 d	1	WAC031413G				14 Mar 2013 17:17
	-	/11/00 (+ (+.U	6.0					

٠

### Centek Laboratories, LLC Injection Log Instrument # Directory: C:\HPCHEM\1\DATA Internal Standard Stock # 9531 Standard Stock #_ 5533 LCS Slock # Misc Infethod Ref: EPA TO-157 Jan Line Vial FileName SampleName Multiplier 1 Ak040101.d 1. **BFB1UG** 1 A313 UGM3 1 Apr 2013 09:38 2 2 Ak040102.d 1. A1UG A313_UGM3 1 Apr 2013 10:17 3 3 A1UG_1.0 Ak040103.d 1. A313_UGM3 1 Apr 2013 11:08 Ak040104.d 4 4 ALCS1UG-040113 1. A313 UGM3 1 Apr 2013 11:42 5 5 Ak040105.d A313_UGM3 1. AMB1UG-040113 1 Apr 2013 12:16 6 1 Ak040106.d 1. WAC040113A A313 UGM3 1 Apr 2013 12:53 7 2 Ak040107.d 1. WAC040113B A313 UGM3 1 Apr 2013 13:27 3 8 A313_UGM3 Ak040108.d 1. WAC040113C 1 Apr 2013 14:02 4 9 Ak040109.d WAC040113D A313_UGM3 1. 1 Apr 2013 14:35 5 10 Ak040110.d WAC040113E A313_UGM3 1. 1 Apr 2013 15:08 6 11 Ak040111.d 1. WAC040113F A313 UGM3 1 Apr 2013 15:42 7 12 Ak040112.d 1. WAC040113G A313 UGM3 1 Apr 2013 16:39 13 8 Ak040113.d 1. WAC040113H 1 Apr 2013 17:14 A313_UGM3 3 14 Ak040114.d 1. C1304005-001A A313_UGM3 1 Apr 2013 17:47 15 4 Ak040115.d 1. C1304005-002A A313_UGM3 1 Apr 2013 18:21 16 5 Ak040116.d 1. C1304005-003A A313_UGM3 1 Apr 2013 18:55 17 6 A313_UGM3 Ak040117.d 1. C1304005-004A 1 Apr 2013 19:28 7 18 Ak040118.d 1. C1304005-005A A313_UGM3 1 Apr 2013 20:02 8 19 Ak040119.d 1. C1303079-006A A313_UGM3 1 Apr 2013 20:37 20 9 Ak040120.d 1. C1303079-007A A313_UGM3 1 Apr 2013 21:12 21 10 Ak040121.d 1. C1303079-008A A313_UGM3 1 Apr 2013 21:46 22 11 Ak040122.d 1. C1303079-009A A313_UGM3 1 Apr 2013 22:21 23 A313_UGM3 12 Ak040123.d 1. C1303079-010A 1 Apr 2013 22:56 24 41 A313_UGM3 Ak040124.d C1303079-001A 1. 1 Apr 2013 23:30 25 42 A313_UGM3 C1303079-002A Ak040125.d 1. 2 Apr 2013 00:06 26 2 Apr 2013 00:41 43 Ak040126.d 1. C1303079-003A A313_UGM3 27 44 Ak040127.d C1303079-004A A313_UGM3 2 Apr 2013 01:17 1. 28 45 Ak040128.d 1. C1303079-005A A313_UGM3 2 Apr 2013 01:52 29 46 1. C1304001-003A 2 Apr 2013 02:28 Ak040129.d A313_UGM3 2 Apr 2013 03:03 30 47 Ak040130.d 1. C1304001-004A A313_UGM3 31 48 Ak040131.d 1. C1304001-001A A313_UGM3 2 Apr 2013 03:39 32 49 C1304001-002A A313 UGM3 Ak040132.d 1. 2 Apr 2013 04:14 33 A313_UGM3 50 Ak040133.d 1. ALCS1UGD-040113 2 Apr 2013 04:50 34 51 C1303079-006A 10x Ak040134.d 1. A313_UGM3 2 Apr 2013 05:24 35 52 C1303079-007A 10x A313_UGM3 Ak040135.d 1. 2 Apr 2013 05:59 53 36 Ak040136.d 1. C1303079-008A 10x A313 UGM3 2 Apr 2013 06:33 37 54 Ak040137.d 1. C1303079-009A 10x A313 UGM3 2 Apr 2013 07:07 A313 UGM3 38 55 Ak040138.d 1. C1303079-010A 10x 2 Apr 2013 07:42 1. 39 A313_UGM3 56 Ak040139.d C1303079-001A 10x 2 Apr 2013 08:17 40 57 Ak040140.d 1. C1303079-002A 10x A313 UGM3 2 Apr 2013 08:51 41 58 Ak040141.d 1. C1303079-003A 10x A313_UGM3 2 Apr 2013 09:24 42 59 Ak040142.d 1. C1303079-004A 10x A313_UGM3 2 Apr 2013 09:57 43 1. No MS or GC data present Ak040143.d 44 1 A313 UGM3 2 Apr 2013 13:01 Ak040201.d 1. BFB1UG 45 2 A1UG 1.0 A313 UGM3 Ak040202.d 1. 2 Apr 2013 13:47 46 3 Ak040203.d ALCS1UG-040213 A313_UGM3 2 Apr 2013 14:20 1. 47 4 AMB1UG-040213 A313_UGM3 Ak040204.d 1. 2 Apr 2013 14:53 1 A313_UGM3 48 Ak040205.d 1. C1304005-001A 10x 2 Apr 2013 16:03 49 2 1. C1304005-002A 10x A313_UGM3 2 Apr 2013 16:35 Ak040206.d 50 3 Ak040207.d C1304005-003A 10x A313_UGM3 2 Apr 2013 17:09 1. 4 1. C1304005-004A 10x 51 Ak040208.d A313_UGM3 2 Apr 2013 17:42 5 52 Ak040209.d 1. C1304005-005A 10x A313 UGM3 2 Apr 2013 18:14

C1303079-001A 40x

C1303079-002A 40x

C1303079-003A 40x

1.

1.

1.

6

7

8

Ak040210.d

Ak040211.d

Ak040212.d

53

54

55

A313 UGM3

A313 UGM3

A313_UGM3

2 Apr 2013 18:48

2 Apr 2013 19:21

2 Apr 2013 19:55

Centel	< Laboratories, LLC
Directory:	C:\HPCHEM\1\DATA

Line	Via	I FileName	Multiplier	SampleName
56 57 58 59 50 51 52 53 54 55	9 10 12 13 14 15 16 17 18	Ak040213.d Ak040214.d Ak040215.d Ak040216.d Ak040217.d Ak040218.d Ak040219.d Ak040220.d Ak040221.d Ak040222.d	1. 1. 1. 1. 1. 1. 1. 1.	C1303079-004A 10x C1303079-004A 40x C1303079-005A 10x C1303079-005A 40x C1304001-003A 10x C1304001-004A 10x C1304001-001A 10x C1304001-001A 40x C1304001-002A 10x C1304001-002A 40x
i6789012345	19 1 2 3 4 5 6 7 9	Ak040223.d Ak040224.d Ak040301.d Ak040302.d Ak040303.d Ak040304.d Ak040305.d Ak040306.d Ak040307.d Ak040308.d	1. 1. 1. 1. 1. 1. 1. 1.	ALCS1UGD-040213 No MS or GC data present BFB1UG A1UG_1.0 ALCS1UG-040313 AMB1UG-040313 C1303079-001A 810X C1303079-001A 7290X C1303079-002A 810X C1303079-003A 810X
6789012345	10 11 12 12 14 16 17 18 18	Ak040309.d Ak040310.d Ak040311.d Ak040312.d Ak040313.d Ak040314.d Ak040315.d Ak040316.d Ak040317.d Ak040318.d	1. 1. 1. 1. 1. 1. 1. 1.	C1303079-004A 810X C1303079-004A 1620X C1303079-005A 2430X C1303079-005A 9720X C1303079-003A 1620X form C1304012-001A 10X C1304012-001A 40X C1304012-001A C1304012-001A 810x
6 7 8 9 0 1 2 3 4 5	20 21 22 23 24 25 26 27 1 2	Ak040319.d Ak040320.d Ak040321.d Ak040322.d Ak040323.d Ak040324.d Ak040325.d Ak040326.d Ak040326.d Ak040401.d Ak040402.d	1. 1. 1. 1. 1. 1. 1.	FORM GAS FORM GAS FORM GAS FORM GAS FORM h20 FORM h20 FORM h20 FORM h20 BFB1UG A1UG
6 7 8 9 00 01 02 03 04 05	3 4 5 6 7 8 9 31 31	Ak040403.d Ak040404.d Ak040405.d Ak040406.d Ak040407.d Ak040408.d Ak040409.d Ak040409.d Ak040501.d Ak040502.d	1. 1. 1. 1. 1. 1. 1. 1.	A1UG WAC040413A N WAC040413B WAC040413C WAC040413D WAC040413E WAC040413F No MS or GC data present BFBFORM AFORM100
26 27 28 29 10	32 33 34 35 36	Ak040503.d Ak040504.d Ak040505.d Ak040506.d Ak040507.d	1. 1. 1. 1. 1.	AFORM75 AFORM50 AFORM25 AFORM10 ALCSF-040513

Instrument # /	
Internal Standard Stock f	1 9531
Standard Stock #	5530
Mischielock #5	32 Injected
Method Ref: EPA T	'O-15 / Jan. 1'
A313_UGM3	2 Apr 2013 20:29
A313_UGM3	2 Apr 2013 21:03
A313_UGM3	2 Apr 2013 21.30 2 Apr 2013 22.09
A313_UGM3	2 Apr 2013 22:42
A313_UGM3	2 Apr 2013 23:15
A313_UGM3	2 Apr 2013 23:48
A313_UGM3	3 Apr 2013 00:22 3 Apr 2013 00:57
A313 UGM3	3 Apr 2013 01:31
_ A313_UGM3	3 Apr 2013 02:06
A313_UGM3	3 Apr 2013 08:37
A313_UGM3	3 Apr 2013 09:19
A313_UGM3	3 Apr 2013 09:58 3 Apr 2013 10:31
A313_UGM3	3 Apr 2013 11:38
A313_UGM3	3 Apr 2013 12:12
A313_UGM3	3 Apr 2013 12:45
A313_UGM3 A313_UGM3	3 Apr 2013 13:19 3 Apr 2013 13:52
A313_UGM3	3 Apr 2013 14:25
A313_UGM3	3 Apr 2013 14:58
A313_UGM3	3 Apr 2013 15:32
A313_UGM3	3 Apr 2013 10:05
A313_UGM3	3 Apr 2013 17:58
A313_UGM3	3 Apr 2013 18:32
A313_UGM3	3 Apr 2013 19:06
A313_UGM3	4 Apr 2013 08:00
A313 UGM3	3 Apr 2013 20:47
A313_UGM3	3 Apr 2013 21:20
A313_UGM3	3 Apr 2013 21:53
A313_UGM3	3 Apr 2013 22:26
A313_UGM3	3 Apr 2013 23:00
A313_UGM3	4 Apr 2013 00:09
A313_UGM3	4 Apr 2013 08:37
A313_UGM3	4 Apr 2013 09:15
A313_UGM3	4 Apr 2013 09:57
A313_UGM3	4 Apr 2013 10:43
A313_UGM3	4 Apr 2013 11:17 4 Apr 2013 11:50
A313 UGM3	4 Apr 2013 12:23
A313_UGM3	4 Apr 2013 12:57
A313_UGM3	4 Apr 2013 13:33
	5 Apr 2013 08:22
	5 Apr 2013 09:11
	5 Apr 2013 09:46 5 Apr 2013 10:20
	5 Apr 2013 10:53
	5 Apr 2013 11:26
	5 Apr 2013 11:59

Method: C:\HPCHEM\1\METHODS\A313_1UG.M (RTE Integrator)Title: TO-15 VOA Standards for 5 point calibration Last Update : Wed Mar 27 15:03:05 2013 Response via : Initial Calibration Calibration Files . 0.04 =AK031318.D 0.10 =AK031320.D 0.15 =AK031321.D 0.30 =AK031323.D 0.50 =AK031324.D 0.75 =AK031325.D 0.04 0.10 0.15 0.30 0.50 0.75 Avg Compound *RSD _____ 1) I Bromochloromethane -----ISTD-----ISTD-----1,4-difluorobenzene -----ISTD-----ISTD-----34) I 

 35) T
 1,1,1-trichloro
 1.691
 1.197
 1.110
 1.124
 1.155
 19,49

 36) T
 Cyclohexane
 0.454
 0.362
 0.344
 0.347
 0.364
 10.62

 Cyclohexane
 0.454
 0.362
 0.344
 0.347
 0.364
 10.52

 Carbon tetrachl
 2.306
 1.702
 1.954
 1.379
 1.339
 1.321
 1.492
 25.15
 37) T 

 Carloin Cectachi
 2.300 1.702 1.354 1.379 1.339 1.321 1.492
 25.15

 Benzene
 1.169 0.940 0.930 0.890 0.910
 12.50

 Methyl methacry
 0.372 0.258 0.260 0.273 0.277
 14.13

 1,4-dioxane
 0.129 0.111 0.112 0.113
 6.79

 2,2,4-trimethyl
 1.581 1.160 1.122 1.111 1.175
 14.30

 Heptane
 0.557 0.386 0.375 0.349 0.389
 17.92

 Trichloroethene
 0.771 0.585 0.694 0.3512 0.490 0.476 0.541
 20.17

 38) T 39) T 40) T 41) T 42) T 43) T 1,2-dichloropro0.4690.3540.3510.3410.35014.45Bromodichlorome1.4831.0871.0741.0291.07615.84cis-1,3-dichlor0.6610.4570.4570.4670.48215.14trans-1,3-dichl0.5640.4070.4520.4220.45510.951,1,2-trichloro0.6570.4920.4880.4540.48514.88 44) T 45) T 46) T 47) T 48) T 

 Chlorobenzene-d5
 -----ISTD-----ISTD---- 

 Toluene
 0.844 0.608 0.629 0.623 0.648 12.47

 Methyl Isobutyl
 0.475 0.458 0.455 0.432 8.76

 49) I 50) T 51) T

Response Factor Report MSD #1

(#) = Out of Range ### Number of calibration levels exceeded format ### A313_1UG.M Thu Mar 28 09:33:19 2013 MSD1

Page 1

Деад	onse Factor Report MSD #1
Method : C:\HPCHEM\1\METHODS Title : TO-15 VOA Standard Last Update : Wed Mar 27 15:03:05 Response via : Initial Calibration	A313_1UG.M (RTE Integrator) s for 5 point calibration 2013
Calibration Files 0.04 =AK031318.D 0.10 =AK031 0.30 =AK031323.D 0.50 =AK031	320.D 0.15 =AK031321.D 324.D 0.75 =AK031325.D
Compound 0.04 0.10	0.15 0.30 0.50 0.75 Avg %
T Dibromochlorome T Methyl Butyl Ke T 1,2-dibromoetha T Tetrachloroethy 1.204 0.802 T Chlorobenzene T Ethylbenzene T m&p-xylene T Styrene	1.638       1.173       1.108       1.073       1.141       18         0.318       0.302       0.288       0.289       7         1.038       0.716       0.742       0.742       0.753       15         0.927       0.662       0.660       0.642       0.728       27         1.422       1.010       1.025       1.004       1.038       15         1.717       1.238       1.329       1.351       1.395       10         1.264       0.940       1.018       1.089       1.120       10         0.755       0.574       0.644       0.657       0.683       9

		Compound	0.04	0.10	0.15	0.30	0.50	0.75	Avg	\$RSD
52) 53)	T T	Dibromochlorome Methyl Butyl Ke			1.638	1.173 0.318	1.108	1.073	1.141	18,20
54)	Ŧ	1.2-dibromoetha			1.038	0.716	0.742	0.742	D.753	15.64
55)	Ŧ	Tetrachlorosthy	1.204	0.802	0,927	0.662	0.660	0.642	0.728	27.38
56)	T	Chlorobenzene			1.422	1.010	1.025	1.004	1.038	15.23
57)	T	Ethylbenzene			1.717	1.238	1.329	1.351	1.395	10.54
58)	т	m&p-xylene			1.264	0,940	1.018	1.089	1.120	10.07
59)	т	Styrene			0.755	0.574	0.644	0.657	.0.683	9.97
60)	т	Bromoform			1.415	1.046	1.061	1.055	1.065	13.71
61)	т	o-xylene			1.767	1.273	1.367	1.476	1.471	12.17
62)	S	Bromofluorobenz	0.528	0.511	0.561	0.568	0.580	0.584	0.572	5.48
63)	т	1,1,2,2-tetrach			1.298	0.917	0.953	0.967	0.978	13.44
64)	т	2-Chlorotoluene			1.513	1.121	1.058	1.073	1.138	14.08
65)	т	4-ethyltoluene			1.164	0.928	0.960	1.063	1.116	11.90
66)	Т	1,3,5-trimethyl			1.779	1.363	1.450	1,435	1.516	8.44
67)	т	1,2,4-trimethyl			1.145	0.850	0.974	1.050	1.095	14.38
68)	т	1,3-dichloroben			0.961	0.731	0.825	0.894	0.895	10.72
69)	т	benzyl chloride			0.946	0.662	0.675	0.698	0.794	14.70
70)	т	1,4-dichloroben			0.894	0.746	0.750	0.822	0.850	11.35
71)	т	1,2,3-trimethyl			1.335	1.032	1.121	1.227	1.298	14.02

1.048 0.805 0.859 0.921 0.920

 $0.551 \ 0.576 \ 0.492 \ 0.500 \ 0.541$ 

0.975 0.854 0.741 0.812 0.859

1.135 0.863 0.991 0.923 0.947

9.22

10.80

10.87

9.68

74) T Naphthalene 75) T Hexachloro-1,3-

1,2-dichloroben

1,2,4-trichloro

72) T

73) T

(#) = Out of Range ### Number of calibration levels exceeded format ###
 A313_1UG.M Thu Mar 28 09:33:19 2013 MSD1

Centek Laboratories, alle Continuing Calibration Report Data File : C:\HPCHEM\1\DATA\AK040103.D Vial: 3 Operator: RJP Acq On : 1 Apr 2013 11:08 am Sample : A1UG_1.0 Misc : A313_UGM3 Inst : MSD #1 Multiplr: 1.00 MS Integration Params: RTEINT.P Method : C:\HPCHEM\1\METHODS\A313_1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Thu Apr 18 09:56:13 2013 Response via : Multiple Level Calibration Min. RRF : 0.000 Min. Rel. Area : 50% Max. R.T. Dev 0.33min Max. RRF Dev : 30% Max. Rel. Area : 150% CompoundAvgRFCCRF% Dev Area% Dev (mi1IBromochloromethane1.0001.0000.0156#0.002TFreen 222.3182.422-4.5175#0.003TPropylene0.7500.66211.7153#0.004TFreen 124.9975.079-1.6171#0.005TChloromethane1.2601.315-4.4179#0.006TFreen 1143.8034.029-5.91.81#0.007TVinyl Chloride1.1301.0854.0172#0.008T1,3-butadiene0.7660.7792.11390.009TBromomethane1.3141.338-1.8173#0.0010TEthanol0.2670.23611.61420.0011TAcrolein0.2670.23611.61420.0012TChloroethane0.6570.515-11.6172#0.0013TVinyl Bromide1.3881.462-5.3176#0.0014TFreen 115.2575.786-10.1185#0.0014TFreen 115.2575.786-10.1185#0.0015TAcetone0.4351.6441.22#0.0016TIsopropyl alcohol1.2841.2175.2164#0.00 Compound AvgRF CCRF &Dev Area& Dev(min) _____ 34 I1,4-difluorobenzene1.0001.0000.01300.0035 T1,1,1-trichloroethane1.1551.306-13.1163#0.0036 TCyclohexane0.3640.3562.21350.0037 TCarbon tetrachloride1.4921.592-6.7165#0.0038 TBenzene0.9100.967-6.31480.0039 TMethyl methacrylate0.2770.22120.21140.0040 T1,4-dioxane0.1130.09912.41230.0041 T2,2,4-trimethylpentane1.1751.210-3.01440.0042 THeptane0.3890.395-1.51440.0043 TTrichloroethene0.5410.5380.6151#0.0044 T1,2-dichloropropane0.3500.407-16.3164#0.0045 TBromodichloromethane1.0761.235-14.8162#0.0046 Tcis-1,3-dichloropropene0.4820.42611.61250.0047 Ttrans-1,3-dichloropropene0.4850.531-9.5153#0.00 1.000 1.000 0.0 142 0.00 49 I Chlorobenzene-d5 ____________ (#) = Out of Range AK040103.D A313 1UG.M Thu Apr 18 09:59:37 2013 MSD1

Centek Laboratories, all continuing Calibration Report Data File : C:\HPCHEM\1\DATA\AK040103.D Vial: 3 Acq On : 1 Apr 2013 11:08 am Operator: RJP Sample : A1UG_1.0 Misc : A313_UGM3 Inst : MSD #1 Multiplr: 1.00 MS Integration Params: RTEINT.P Method: C:\HPCHEM\1\METHODS\A313_1UG.M (RTE Integrator)Title: TO-15 VOA Standards for 5 point calibration Last Update : Thu Apr 18 09:56:13 2013 Response via : Multiple Level Calibration Min. RRF : 0.000 Min. Rel. Area : 50% Max. R.T. Dev 0.33min Max. RRF Dev : 30% Max. Rel. Area : 150% AvgRF CCRF %Dev Area% Dev(min) Compound CompoundAvgRFCCRF%Dev Area% Dev(min)50 TToluene0.6480.55214.81250.0051 TMethyl Isobutyl Ketone0.4320.37912.31380.0052 TDibromochloromethane1.1411.0845.014.50.0053 TMethyl Butyl Ketone0.2890.302-4.5163#0.0054 T1,2-dibromoethane0.7530.6947.81400.0055 TTetrachloroethylene0.7280.60317.21390.0056 TChlorobenzene1.0380.92011.41340.0057 TEthylbenzene1.3951.11620.01190.0058 Tm&p-xylene1.200.96513.81240.0059 TStyrene0.6830.54420.41160.0060 TBromoform1.0650.87318.01260.0061 To-xylene1.4711.27213.51440.0062 SBromofluorobenzene0.5720.5307.31270.0063 T1,1,2,2-tetrachloroethane0.9780.9780.0151#0.0064 T2-chlorotoluene1.1380.9781.41260.0065 T4-ethyltoluene1.160.97812.41260.0065 T1,3,5-trimethylbenzene1.9550.82924.31120.0065 T1,2,4-trimethylbenzene0.8 _____

_____

Data File : C:\HPCHEM\1\DATA\AK040202.D Vial: 2 Operator: RJP Acq On : 2 Apr 2013 1:47 pm Sample : AlUG_1.0 Misc : A313_UGM3 Inst : MSD #1 Multiplr: 1.00 MS Integration Params: RTEINT.P Method : C:\HPCHEM\1\METHODS\A313_1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Thu Apr 18 09:56:14 2013 Response via : Multiple Level Calibration Min. RRF : 0.000 Min. Rel. Area : 50% Max. R.T. Dev 0.33min Max. RRF Dev : 30% Max. Rel. Area : 150% CompoundAvgRFCCRF%Dev Area% Dev(min)1IBromochloromethane1.0001.0000.01350.002TFreon 222.3182.490-7.4156#0.003TPropylene0.7500.67310.31340.004TFreon 124.9975.126-2.61490.005TChloromethane1.2601.270-0.81500.006TFreon 1143.8034.060-6.8158#0.007TVinyl Chloride1.1311.1200.9154#0.008T1.3-butadiene0.7960.7357.7114-0.019TBromomethane1.3141.431-8.9160#0.0010TEthanol0.2670.276-3.41440.0011TAcrolein0.2680.270-0.7153#-0.0212TChloroethane0.4350.531-221181#-0.0213TVinyl Bromide1.3881.449-4.4153#-0.0114TFreon 115.2576.200-17.9171#0.0015TAcetone0.4350.531-221181#-0.0216TIsopropyl alcohol1.2841.407-9.6164#-0.0217T1.1-dichloroethene1.5151.229-9.5<td Compound AvgRF CCRF %Dev Area% Dev(min) 

 34 I
 1,4-difluorobenzene
 1.000
 1.000
 0.0
 107
 -0.02

 35 T
 1,1,1-trichloroethane
 1.155
 1.349
 -16.8
 139
 -0.02

 36 T
 Cyclohexane
 0.364
 0.359
 1.4
 113
 -0.01

 37 T
 Carbon tetrachloride
 1.492
 1.704
 -14.2
 145
 -0.02

 38 T
 Benzene
 0.910
 0.994
 -9.2
 125
 -0.03

 39 T
 Methyl methacrylate
 0.277
 0.256
 7.6
 109
 -0.03

 40 T
 1,4-dioxane
 0.113
 0.158
 39.B#
 161#
 -0.04

 41 T
 2,2,4-trimethylpentane
 1.175
 1.205
 -2.6
 118
 -0.01

 42 T
 Heptane
 0.389
 0.386
 0.8
 116
 -0.01

 43 T
 Trichloroethene
 0.541
 0.564
 -4.3
 130
 -0.02

 44 T
 1,2-dichloropropane
 0.350
 0.403
 -15.1
 134
 0.00

 45 T
 Bromodichloromethane
 1.076
 1.319
 -22.6
 <t 49 I Chlorobenzene-d5 . 1.000 1.000 0.0 116 -0.01 _____ (#) = Out of Range AK040202.D A313_1UG.M Thu Apr 18 10:01:20 2013 MSD1

Centek Laboratories, alle Continuing Calibration Report

1

Centek Laboratories, LLCte Continuing Calibration Report Data File : C:\HPCHEM\1\DATA\AK040202.D Vial: 2 Acq On : 2 Apr 2013 1:47 pm Operator: RJP Sample : AlUG_1.0 Misc : A313_UGM3 Inst : MSD #1 Multiplr: 1.00 MS Integration Params: RTEINT.P Method : C:\HPCHEM\1\METHODS\A313_1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Thu Apr 18 09:56:14 2013 Response via : Multiple Level Calibration Min. RRF : 0.000 Min. Rel. Area : 50% Max. R.T. Dev 0.33min Max. RRF Dev : 30% Max. Rel. Area : 150% Compound CompoundAvgRFCCRF%Dev Area% Dev(min)50 TToluene0.6480.6105.9113-0.0151 TMethyl Isobutyl Ketone0.4320.549-27.1163#-0.0152 TDibromochloromethane1.1411.203-5.4131-0.0153 TMethyl Butyl Ketone0.2890.415€43.6#182#-0.0454 T1,2-dibromoethane0.7530.786-4.4130-0.0155 TTetrachloroethylene0.7280.6836.2128-0.0156 TChlorobenzene1.0381.0181.91210.0057 TEthylbenzene1.3951.25410.1109-0.0158 Tm&p-xylene1.1201.0932.4115-0.0159 TStyrene0.6630.61410.11070.0060 TBromoform1.0650.92912.8109-0.0161 To-xylene1.4711.4501.4134-0.0162 SBromofluorobenzene0.5720.5582.4109-0.0163 T1,1,2,2-tetrachloroethane0.9781.074-9.8136-0.0165 T4-ethylboluene1.1161.0595.1111-0.0165 T4-ethylboluene1.5161.4097.1112-0.0165 T1,3-dichlorobenzene0.8950.8425.91130.0065 T1,3-dichlorobenzene AvgRF CCRF %Dev Area% Dev(min) 

# CENTEK LABORATORIES, LLC

# ANALYTICAL QC SUMMARY REPORT

CLIENT: Work Order:	Tetra Tech C1304005	, Inc.										
Project: Middle Ri		rer						נ	TestCode: 1	ugM3_Full	lList	
Sample ID AMB1	Sample ID AMB1UG-040113 SampType: MBLK		TestCo	TestCode: 1ugM3_FutiLi Units: ppbV			Prep Da	te:		RunNo: 681	15	
Client ID: ZZZZZ	2	Batch ID: R6815	Test	No: T <b>O-15</b>			Analysis Da	te: 4/1/20 [.]	13	SeqNo: 804	487	
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
1,1,1-Trichloroetha	ane	< 0.15	0.15									
1,1,2-Trichloroetha	ane	< 0.15	0.15									
1,1-Dichloroethane	3	< 0.15	0.15									
1,1-Dichloroethene	3	< 0.15	0.15									
1,2,3-Trimethylber	izene	< 0,15	0.15									
1,2,4-Trichloroben	zene	< 0.15	0.15									
1,2,4-Trimethylber	izene	< 0.15	0.15									
1,2-Dichloroethane	•	< 0.15	0.15									
1,3,5-Trimethylben	izene	< 0.15	0.15									
Benzene		< 0.15	0.15									
Carbon tetrachlorid	je	< 0.15	0.15									
Chloroform		< 0.15	0.15									
cis-1,2-Dichloroeth	iene	< 0.15	0.15						· .			
Ethylbenzene		< 0.15	0.15									
Freon 12		< 0.15	0.15									
Freon 22		< 0.15	0.15									
m&p-Xylene		< 0.30	0.30									
Methyl tert-butyl et	her	< 0.15	0,15									
Methylene chloride	•	< 0.15	0.15									
Naphthalene		< 0.15	0.15									
o-Xylene		< 0.15	0.15									
Tetrachloroethylen	e	< 0.15	0.15									
Toluene		< 0.15	0.15									
trans-1,2-Dichloroe	ethene	< 0.15	0.15									
Trichloroethene		< 0.15	0.15									

Page 29 of 214

- Results reported are not blank corrected Analyte detected at or below quantitation limits
- Ε Value above quantitation range
- ND Not Detected at the Reporting Limit

Spike Recovery outside accepted recovery limits S

- Н Holding times for preparation or analysis exceeded
- RPD outside accepted recovery limits R

J

Work Order: C1304005											
Project: Middle Ri	ver						]	TestCode: 1	lugM3_Ful	lList	
Sample ID AMB1UG-040113	SampType: MBLK	TestCo	de: 1ugM3_F	uliLi Units: ppbV		Prep Da	ite:		RunNo: 68	 15	
Client ID: ZZZZZ	Batch ID: R6815	Testl	No: TO-15			Analysis Date: 4/1/2013		SeqNo: 80487			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Vinyl chloride	< 0.15	0.15									
Sample ID AMB1UG-040213	SampType: MBLK	TestCo	de: 1ugM3_F	uliLi Units: ppbV		Prep Da	ite:		RunNo: 6816		
Client ID: ZZZZZ	Batch ID: R6816	Test	No: T <b>O-15</b>			Analysis Da	ite: 4/2/20	13	SeqNo: 80495		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
1,1,1-Trichloroethane	< 0.15	0.15									
1,1,2-Trichloroethane	< 0.15	0.15									
1,1-Dichloroethane	< 0.15	0.15									
1,1-Dichloroethene	< 0.15	0.15									
1,2,3-Trimethylbenzene	< 0.15	0.15									
1,2,4-Trichlorobenzene	< 0.15	0.15									
1,2,4-Trimethylbenzene	< 0.15	0.15									
1,2-Dichloroethane	< 0.15	0.15									
1,3,5-Trimethylbenzene	< 0.15	0.15									
Benzene	< 0.15	0.15					•				
Carbon tetrachloride	< 0.15	0.15									
Chloraform	< 0.15	0.15									
cis-1,2-Dichloroethene	< 0.15	0.15									
Ethylbenzene	< 0.15	0.15									
Freon 12	< 0.15	0.15									
Freon 22	< 0,15	0.15									
m&p-Xylene	< 0.30	0.30									
Methyl tert-butyl ether	< 0.15	0.15									
Methylene chloride	< 0.15	0.15									
Naphthalene	< 0.15	0.15						<b>,</b> ·			
o-Xylene	< 0.15	0.15									
Tetrachloroethylene	< 0.15	0.15									
Toluene	< 0,15	0.15									
trans-1,2-Dichloroethene	< 0.15	0.15									

**CLIENT:** 

Tetra Tech, Inc.

### Qualifiers:

1

- Results reported are not blank corrected
- Analyte detected at or below quantitation limits

S Spike Recovery outside accepted recovery limits

E Value above quantitation range

ND Not Detected at the Reporting Limit

H Holding times for preparation or analysis exceeded

R RPD outside accepted recovery limits

Page 2 of 3

Centek Laboratories, LLC

CLIENT: Work Order: Project:	Tetra Tech C1304005 Middle Riv	ı, İnc. ver						J	festCode: 1	lugM3_Ful	lList	
Sample ID AMB1 Client ID: 22222	UG-040213 Z	SampType: MBLK Batch ID: R6816	TestCo Test	de: 1ugM3_F	ullLi Units: ppbV		Prep Da Analysis Da	ite: ite: 4/2/20 [,]	13	RunNo: 68 SeqNo: 804	16 495	
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Trichloroethene		< 0.15	0.15									
Vinyl chloride		< 0.15	0.15									

. Results reported are not blank corrected

J Analyte detected at or below quantitation limits

S Spike Recovery outside accepted recovery limits

E Value above quantitation range

ND Not Detected at the Reporting Limit

- H Holding times for preparation or analysis exceeded
- R RPD outside accepted recovery limits



### Date: 18-Apr-13

1

# QC SUMMARY REPORT SURROGATE RECOVERIES

CLIENT:	Tetra Tech, Inc.				
Work Order:	C1304005				
Project:	Middle River				
Test No:	TO-15	Matrix: A			
Sample ID	BR4FBZ				
ALCSIUG-040113	88.0				
ALCS1UG-040213	97.0			 	
ALCS1UGD-04021	96.0				
AMB1UG-040113	80.0				
AMB1UG-040213	85.0		 	 · · · · · · · · · · · · · · · · · · ·	
C1304005-001A	96.0				
C1304005-002A	92.0			 	
C1304005-003A	84.0		 		
C1304005-004A	96.0			 	
C1304005-005A	102				



### Center MEaboratories, ck Leport

Tune File : C:\HPCHEM\1\DATA\AK040103.D Tune Time : 1 Apr 2013 11:08 am

Daily Calibration File : C:\HPCHEM\1\DATA\AK040103.D

		(BFB)		(IS1) 31058	(IS2) 91071	(IS3) 93962	
File	Sample	DL	Surrogate	Recovery %	Internal	Standard 3	Responses
AK040104.D	ALC51UG-040113	88		31533	88841	91050	
AK040105.D	AMB1UG-040113	80		31969	86649	79570	
AK040114.D	C1304005-001A	96		30203	87005	97018	
AK040115.D	C1304005-002A	92		33704	96038	112542	
AK040116.D	C1304005-003A	84		33850	96543	126966	
AK040117.D	C1304005-004A	96		32923	93870	97692	
AK040118.D	C1304005-005A	102		32458	98713	106408	
AK040133.D	ALCS1UGD-04011	3 98		33175	92050	96717	

t - fails 24hr time check * - fails criteria

Created: Thu Apr 18 10:00:17 2013 MSD #1/

### Centermeaboratories, ckL&eport

lune	File	:	C:\HPCHEM\1\DATA\AK040202.D	
Dunma	The second			

Tune Time : 2 Apr 2013 1:47 pm

Daily Calibration File : C:\HPCHEM\1\DATA\AK040202.D

26866 74937 766	528
File Sample DL Surrogate Recovery & Internal Standard Responses	
AK040203.D ALCS1UG-040213 97 29108 83914 846	310
AK040204.D AMB1UG-040213 85 25813 69871 600	061
AK040205.D C1304005-001A 10x 84 2746B 76530 750	)26
AK040206.D C1304005-002A 10x 82 27594 78156 776	537
AK040207.D Cl304005-003A 10x 82 26763 74657 792	249
AK040208.D C1304005-004A 10x 85 26345 72297 702	296
AK040209.D C1304005-005A 10x 82 27538 80470 755	911
AK040223.D ALCS1UGD-040213 96 26835 77396 779	946

t - fails 24hr time check * - fails criteria

Created: Thu Apr 18 10:01:57 2013 MSD #1/
# CENTEK LABORATORIES, LLC

# ANALYTICAL QC SUMMARY REPORT

CLIENT:	Tetra Tech	, Inc.	<u></u>						<del> </del>				
Work Order:	C1304005												
Project:	Middle Riv	ver				TestCode: 1ugM3_FullList							
Sample ID ALCS	51UG-040113	SampType: LCS	TestCode: 1ugM3_FullL1 Units: ppbV				Prep Da	te:	<u></u>	RunNo: 6815			
Client ID: ZZZZ	z	Batch ID: R6815	Test	No: TO-15			Analysis Da	te: 4/1/201	13	SeqNo: 804	188		
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual	
1,1,1-Trichloroeth	ane	1.100	0.15	1	0	110	70	130					
1,1,2-Trichloroeth	ane	1.110	0.15	1	0	111	70	130					
1,1-Dichloroethan	8	0.8600	0.15	1	0	86.0	70	130					
1,1-Dichloroethen	8	0.9500	0.15	1	0	95.0	70	130					
1,2,4-Trichlorober	izene	0.8400	0.15	1	0	84.0	70	130					
1,2,4-Trimethylbe	nzene	0.7400	0.15	1	0	74.0	70	130					
1,2-Dichloroethan	e	0.8700	0.15	1	0	87.0	70	130					
1,3,5-Trimethylbe	nzene	0.8100	0.15	1	0	81.0	70	130					
Benzene		1.070	0.15	1	0	107	70	130					
Carbon tetrachlori	de	1.060	0.15	1	0	106	70	130					
Chloroform		0.9400	0.15	1	0	94.0	70	130					
cis-1,2-Dichloroet	hen <b>e</b>	0.8300	0.15	1	0	83.0	70	130					
Ethylbenzene		0.7700	0.15	1	0	77.0	70	130					
Freon 12		0.9600	0.15	1	0	96.0	70	130					
m&p-Xylene		1.680	0.30	2	0	84.0	70	130					
Methyl tert-butyl e	ther	0.8700	0.15	1	0	87.0	70	130					
Methylene chlorid	e	0.9600	0.15	1	0	96.0	. 70	130					
o-Xylene		0.8400	0.15	1	0	84.0	70	130					
Tetrachloroethyle	ne	0.8100	0.15	1	O	81.0	70	130					
Toluene		0.8500	0.15	1	0	85.0	70	130					
trans-1,2-Dichloro	ethene	0.9900	0.15	1	0	99.0	70	130					
Trichloroethene		0.9400	0.15	1	0	94.0	70	130	•				
Vinyl chloride		0.9100	0.15	1	0	91.0	70	130					

Qualifiers:

. J Results reported are not blank corrected

- Value above quantitation range Е
- ND Not Detected at the Reporting Limit

S Spike Recovery outside accepted recovery limits

- H Holding times for preparation or analysis exceeded
- R RPD outside accepted recovery limits

#### **CLIENT:** Tetra Tech, Inc.

C1304005

Work Order:

Middle River **Project:** 

Sample ID ALCS1UG-040213	SampType: LCS	TestCo	de: 1ugM3_F	ullLi Units: ppbV		Prep Da	te:		RunNo: 68	16	
Client ID: ZZZZZ	Batch ID: R6816	Test	No: TO-15			Analysis Da	te: 4/2/201	13	SeqNo: 804	496	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
1,1,1-Trichloroethane	1.150	0.15	1	0	115	70	130				
1,1,2-Trichloroethane	1.170	0,15	1	0	117	70	130				
1,1-Dichloroethane	0.9000	0.15	1	0	90.0	70	130				
1,1-Dichloroethene	1.060	0.15	1	0	106	70	130				
1,2,4-Trichlorobenzene	0.8900	0.15	1	0	89.0	70	130				
1,2,4-Trimethylbenzene	0.7500	0.15	1	0	75.0	70	130				
1,2-Dichloroethane	0.9700	0.15	1	0	97.0	70	130				
1,3,5-Trimethylbenzene	0.8700	0.15	1	0	87.0	70	130				
Benzene	1.110	0.15	1	0	111	70	130				
Carbon tetrachloride	1.110	0.15	1	0	111	70	130				
Chloroform	0.9900	0.15	1	0	99.0	70	130				
cis-1,2-Dichloroethene	0.9000	0.15	1	0	90.0	70	130				
Ethylbenzene	0.8900	0.15	1	0	89.0	70	130				
Freon 12	1.020	0.15	1	0	102	70	130				
m&p-Xylene	1,910	0.30	2	0	95.5	70	130				
Methyl tert-butyl ether	0.9300	0.15	1	0	93.0	70	130				
Methylene chloride	1.040	0.15	1	0	104	70	130				
o-Xylene	0.9400	0.15	1	0	94.0	70	130				
Tetrachloroethylene	0.8900	0.15	1	0	89.0	70	130				
Toluene	0.9400	0.15	1	0	94.0	70	130				
trans-1,2-Dichloroethene	1.020	0.15	1	0	102	70	130				
Trichloroethene	1.030	0,15	1	0	103	70	130				
Vinyl chloride	0,9600	0.15	1	0	96.0	70	130				

#### Qualifiers:

.

J

S

- Results reported are not blank corrected
- Analyte detected at or below quantitation limits

Spike Recovery outside accepted recovery limits

Value above quantitation range Е

ND Not Detected at the Reporting Limit

- Holding times for preparation or analysis exceeded Н
  - R RPD outside accepted recovery limits

# ( CENTEK LABORATORIES, LLC

## ANALYTICAL QC SUMMARY REPORT

0.89

0.75

0.97

0.87

1.11

1.11

0.99

0,9

0.89

1.02

1.91

0,93

1.04

0.94

0.89

0.94

1.02

1.03

0.96

11.9

2.63

4.49

0.897

0.897

0

0

0

2.22

4.78

0.525

2.13

3.77

1.06

4.40

2.11

2.90

3.81

6.06

30

30

30

30

30

30

30

30

30

30

30

30

30

30

30

30

30

30

30

CLIENT: Work Order: Project:	Tetra Tech, Inc C1304005 Middle River	2.	TestCode: 1ugM3 FullList										
Sample ID ALCS	ampīvpe: LCSD	TestCode: 1uoM3 Sulli i Unite: ppbV Pres Date:											
Client ID: 7777	7	Batch ID: B6816	Test	No: TO-15			Analysis Da	ite: 4/3/201	13		SeaNo: 80	407	
	2.		1 Gati	10. 10-13			Analysis De	NG. 4(J)201			Seque. 00	437	
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD R	ef Val	%RPD	RPDLimit	Qua
1,1,1-Trichloroeth	але	1.170	0.15	1	0	117	70	130		1.15	1.72	30	
1,1,2-Trichioroeth	ane	1.1 <b>70</b>	0.15	1	0	117	70	130		1.17	٥	30	
1,1-Dichloroethan	e	0.9200	0.15	1	0	92.0	70	130		0.9	2.20	30	
1,1-Dichloroethen	e	1.080	0,15	1	0	108	70	130		1.06	1.87	30	

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

D

79.0

77.0

97.0

91.0

112

112

99.0

90.0

91.0

107

95.0

95.0

108

95.0

93.0

96.0

105

107

102

70

70

70

70

70

70

70

70

70

70

70

70

70

70

70

70

70

70

70

130

130

130

130

130

130

130

130

130

130

130

130

130

130

130

130

130

130

130

0.9600	0.15	1
1.050	0.15	1
1.070	0.15	1
1.020	0.15	1

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.30

0.15

0.15

0.15

0.15

1

1

1

1

1

1

1

1

1

1

2

1

1

1

1

0.7900

0.7700

0.9700

0.9100

1.120

1.120

0.9900

0.9000

0.9100

1.070

1.900

0.9500

1.080

0.9500

0.9300

Qualifiers:

1,2,4-Trichlorobenzene

1,2,4-Trimethylbenzene

1,3,5-Trimethylbenzene

1,2-Dichloroethane

Carbon tetrachloride

cis-1,2-Dichloroethene

Methyl tert-butyl ether Methylene chloride

Tetrachloroethylene

Trichloroethene

Vinyi chloride

trans-1,2-Dichloroethene

J

S

Benzene

Chloroform

Ethylbenzene

m&p-Xylene

Freon 12

o-Xylene

Toluene

Results reported are not blank corrected

- E Value above quantitation range
- ND Not Detected at the Reporting Limit

H Holding times for preparation or analysis exceeded

R RPD outside accepted recovery limits

Spike Recovery outside accepted recovery limits

Analyte detected at or below quantitation limits

Page 1 of 2

CLIENT:	Tetra Tech, Inc.	
Work Order:	C1304005	
Project:	Middle River	TestCode: 1ugM3_FullList

J

Page 35 of 214

Analyte detected at or below quantitation limits

S Spike Recovery outside accepted recovery limits

E Value above quantitation range

ND Not Detected at the Reporting Limit

- H Holding times for preparation or analysis exceeded
- R RPD outside accepted recovery limits

**CALCULATION WORKSHEET** TETRA TECH NUS, INC. OF | PAGE SUENT dle Kiver and Tilley Cheruial SUBJECT Jample Calculation JOB NUMBER 5DG C1304005 DRAWING NUMBER Enn Cogutte april 24,2013 APPROVED BY 5-8-13 CHECKED BY Sample IA-15-A-19A; doluene 125946 * 10+ 1ppbv 75026 * 10+ 0,648 = 2591 ppbv  $25.91 ppbv + \frac{92.14-9|mole}{24.454|mole} = 97.63 uglm³$ 

Sample Calculation

Centek La	boratories, LLC	l 			Date	: 18-Ap A-1	18-Apr-13 A-15-A-14A		
CLIENT:	Tetra Tech, Inc.			C	lient Sample ID:	1 <b>A-0</b>	5-A-14A AC		
Lab Order:	C1304005				Tag Number:	556,2	99		
Project:	Middle River				<b>Collection Date:</b>	3/28/2	2013		
Lab ID:	C1304005-001A				Matrix:	AIR			
Analyses		Result	**Limit	Qual	Units	DF	Date Analyzed		
1UG/M3 W/ADI	DITIONAL CMPDS BY N	ETHOD TO1	то	-15			Analyst: RJP		
1,1,1-Trichloroe	ethane	< 0.83	0.83		ug/m3	1	4/1/2013 5:47:00 PM		
1,1,2-Trichloroe	ethane	< 0.83	0.83		ug/m3	1	4/1/2013 5:47:00 PM		
1,1-Dichloroeth	ane	< 0.62	0.62		ug/m3	1 1	4/1/2013 5:47:00 PM		
1,1-Dichloroeth	ene	< 0.60	0.60		ug/m3	1	4/1/2013 5:47:00 PM		
1,2,3-Trimethyl	benzene	< 0.75	0.75		ug/m3	1	4/1/2013 5:47:00 PM		
1,2,4-Trichlorat	enzene	< 1.1	1.1		ug/m3	1	4/1/2013 5:47:00 PM		
1,2,4-Trimethyl	benzene	0.85	0.75		ug/m3	1	4/1/2013 5:47:00 PM		
1,2-Dichloroeth	але	< 0.62	0.62		ug/m3	1	4/1/2013 5:47:00 PM		
1,3,5-Trimethyl	benzene	< 0.75	0.75		ug/m3	1	4/1/2013 5:47:00 PM		
Benzene		1.1	0.49		ug/m3	1	4/1/2013 5:47:00 PM		
Carbon tetrachi	oride	< 0.96	0.96		ug/m3	1	4/1/2013 5:47:00 PM		
Chloroform		< 0.74	0.74		ug/m3	1	4/1/2013 5:47:00 PM		
cis-1,2-Dichloro	bethene	0.48	0.60	J	ug/m3	1	4/1/2013 5:47:00 PM		
Ethylbenzene		4.4	0.66		ug/m3	1	4/1/2013 5:47:00 PM		
Freon 12		2.4	0.75		ug/m3	1	4/1/2013 5:47:00 PM		
Freon 22		1.2	0.54		ug/m3	1	4/1/2013 5:47:00 PM		

13

0.55

0.80

0.66

1.0

5.7

0.60

0.82

0,39

5.3

17

24

8.7

99

1.8

< 1.0

< 0.60

< 0.39

C

< 0.55

< 0.80

ug/m3

10

1

10

1

1

1

10

1

1

1

4/2/2013 4:03:00 PM

4/1/2013 5:47:00 PM

4/2/2013 4:03:00 PM

4/1/2013 5:47:00 PM

4/1/2013 5:47:00 PM

4/1/2013 5:47:00 PM

4/2/2013 4:03:00 PM

4/1/2013 5:47:00 PM

4/1/2013 5:47:00 PM

4/1/2013 5:47:00 PM

Qualifiers:	**	Reporting Limit		Results reported are not blank corrected
	в	Analyte detected in the associated Method Blank	Е	Value above quantitation range
	Н	Holding times for preparation or analysis exceeded	J	Analyte detected at or below quantitation limits
	JN	Non-routine analyte. Quantitation estimated.	ND	Not Detected at the Reporting Limit
	S	Spike Recovery outside accepted recovery limits		Page 1 of 5

m&p-Xylene

Naphthalene

o-Xylene

Toluene

Methyl tert-butyl ether

Methylene chloride

Tetrachloroethylene

Trichloroethene

Vinyl chloride

trans-1,2-Dichloroethene

(OT Reviewed) Sample Calculation Centek Laboratories, LbGantitation Report Data File : C:\HPCHEM\1\DATA\AK040205.D Vial: 1 Acq On : 2 Apr 2013 4:03 pm **Operator: RJP** Sample : C1304005-001A 10x Misc : A313_UGM3 [A-Inst : MSD #1 IA-15-A-14A Multiplr: 1.00 MS Integration Params: RTEINT.P Quant Time: Apr 03 11:38:24 2013 Quant Results File: A313 1UG.RES Quant Method : C:\HPCHEM\1\METHODS\A313_1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Wed Mar 27 15:03:05 2013 Response via : Initial Calibration DataAcq Meth : 1UG_T015 R.T. QIon Response Conc Units Dev(Min) Internal Standards 

 1) Bromochloromethane
 9.47
 128

 34) 1,4-difluorobenzene
 11.76
 114

 49) Chlorobenzene-d5
 16.17
 117

27468 76530 75026 1.00 ppb 0.00 1.00 ppb 0.00 1.00 ppb 75026 0.00 System Monitoring Compounds 17.67 95 35984 0.84 ppb 62) Bromofluorobenzene 0.00 Spiked Amount 1.000 Range 70 - 130 Recovery = 84.00% Target Compounds Qvalue 6.78 84 <u>1833</u>2 0.69 ppb 20) Methylene chloride - 98 92 125946 97 50) Toluene 14.35 2.59 ppb 16.62 32233m / 0.38 ppb 91 58) m&p-xylene

Sample Calculation

Response Factor Report MSD #1

	Meth Titl Last Resp	od : C:\HPC e : TO-15 V Update : Wed Man onse via : Initial	EM\1\MET /OA Stan 7 27 15:01 7 Calibra	HODS lards 3:05 tion	A313_3 for 9 2013	lUG.M 5 point	(RTE I) t calil	ntegrai pratio	tor) n	
	Cali 0.04 0.30	bration Files . =AK031318.D 0 =AK031323.D 0	1.10 =A1 1.50 =A1	K0313 K0313	20.D	0.15 0.75	=AK( =AK(	031321 031325	.D .D	
		Compound	0.04 0	.10	0.15	0.30	0.50	0.75	Avg	\$RSD
1)	I	Bromochloromethan	.e			ISTI	)			
2)	т	Freon 22			3.081	2.495	2.258	2.251	2.318	14.51
3)	T	Propylene			0.902	0.799	0.840	0.745	0.750	11.67
4)	T	Freon 12			6.430	5.238	4.955	4.831	4.997	12.39
5)	T				1.576	1.477	1.232	1.226	1.260	12 25
70	T	Freun 114 Vinul Chlorido	1 570 1	770	1 764	4.037	3./3/	1 076	3,003	15.43
	T T	1 3-butadiana	1.005 1	. 220	1.234	0 818	0 703	1.070 0 700	0 796	11 00
0/	т Т	Browowethane			1 682	1 356	1 335	1 286	1 314	19 22
101	÷	Ethanol				0.297	0.301	0.267	0.267	11.24
11)	Ť	Acrolein			0.348	0.266	0.253	0.315	0.268	15.80
12)	Ť	Chloroethane			0.598	0.607	0.515	0.503	0.507	12.58
13)	Ŧ	Vinvl Bromide			1.779	1.426	1.436	1.387	1.388	12.57
14)	Ţ	Freon 11			7.033	5.436	5.167	5.090	5.257	14.29
15)	Т	Acetone	•			0.494	0.434	0.464	0.435	8.75
16)	т	Isopropyl alcoh			1.606	1.386	1.334	1.364	1.284	13.47
17)	т	1,1-dichloroeth			1.403	1.317	1.136	1.106	1.151	11.64
18)	$\mathbf{T}$	Freon 113			3.698	2.902	2.731	2.739	2.759	14.84
19)	t	t-Butyl alcohol			2.837	2.073	2.026	1.999	2.053	16.43
20)	T	Methylene chlor			1.210	1.099	0.999	0.939	0.968	13.24
21)	T	Allyl chloride			1.877	1.966	1.500	1,482	1.546	15.52
22)	T	Carbon disulfid			4.597	3,489	3.093	3.120	3.221	10.55
23)	T	trans-1,2-dichl			2.028	1.600	1.440	1.589	1,584	11 56
24)	T	methyl tert-but			3.872	3.220	2.900	2.808	3.003	12 53
25)	T	1,1-dicnioroeth			2 495	1 500	2.194	2,322	2,323	13.33 17 EE
26/	т. Т.	Vinyi acetate			2.473	1.300	1.023	V 200	1.750	4 47
4//	T.	dig_l 2.dichlor			1 896	1 355	1 459	1 335	1 439	13 09
20/	÷	Hevene			1.592	1.227	1.174	1.282	1.268	10.97
301	τ. Γ	Ethyl acetate			2.170	1.847	1.715	1.754	1.802	8.91
311	т. Т	Chloroform			4.440	3.414	3.311	3.200	3.318	14.33
32)	Ŧ	Tetrahvdrofuran			0.952	0.885	0,776	0.747	0.780	11.53
33)	Ť	1,2-dichloroeth			2.949	2.320	2.209	2.204	2.258	12.92
241	T	1 A-difluorobenze	70			<b>-</b> TSTI	)			
351	Ť	1.1.1-trichloro			1.691	1.197	1.110	1.124	1,155	19.49
36)	Ť	Cvclohexane			0.454	0.362	0.344	0.347	0.364	10.62
37)	Ŧ	Carbon tetrachl	2.306 1.	702	1.954	1,379	1.339	1.321	1.492	25.15
38)	$\tilde{\mathbf{T}}$	Benzene		• • -	1.169	0,940	0.930	0.890	0.910	12.50
39)	Ť	Methvl methacrv			0.372	0.258	0.260	0.273	0.277	14.13
40)	т	1,4-dioxane				0.129	0.111	0.112	0.113	6.79
41)	т	2,2,4-trimethyl			1.581	1.160	1.122	1.111	1.175	14.30
42)	т	Heptane			0.557	0.386	0.375	0.349	0.389	17.92
43)	т	Trichloroethene	0.771 0.	585	0.694	0.512	0.490	0.476	0.541	20.17
44)	T	1,2-dichloropro			0.469	0.354	0.351	0.341	0.350	14.45
45)	Т	Bromodichlorome			1.483	1.087	1.074	1.029	1.076	15.84
46)	т	cis-1,3-dichlor			0.661	0.457	0.457	0.467	0.482	15.14
47)	T	trans-1,3-dichl			0.564	0.407	0.452	0.422	0.455	10.95
48)	т	1,1,2-trichloro			U.657	U.492	0.488	U.454	0.485	14,88
49)	I	Chlorobenzene-d5				ISTI	)			
50)	T	Toluene			0.844	0.608	0.629	0.623	0.648	12,47
51)	тζ	Methyl Isobutyl				0.475	0.458	0.455	0.432	8.76
							•			

(#) = Out of Range ### Number of calibration levels exceeded format ### A313_1UG.M Thu Mar 28 09:33:19 2013 MSD1

## GC/MS VOLATILES-WHOLE AIR

### METHOD TO-15

## CANISTER CLEANING LOG

à.

# Centek Laboratories, LLC

# QC Canister Cleaning Logbook

Instrument: Entech 3100

Page 196 of 214

Canister Number	QCCan Number	Number of Gycles	Date	OC Batch Number	DetectionLimits	LeakTest24h	(psig str/stp)
562		30	3.19.13	NAC031913A	1001 21. (1. 1002 1002	+ 30	+ 30
1210				B		+	+
410				ک		+	+
93				D		+	+
142				E		+	+
1193				F		+	+
621	840			WAZ031913 H	lug 103+0:25	+	+
860						+	+
855						+	+
823					· · · · · · · · · · · · · · · · · · ·	+	+
827			<u> </u>			+	+
840						+	+
237	94			WA2031913 1		+	+
1186			ļ			+	+
233						+	+
163		·				+	+
94		κ				+	+
463	236			MACO31913 J		+	+
1191						+	+
3241						+	+
129						+ 	+ 
236					· · · · ·	+	+
				ļ		+	+
					-	+	+
						+	+

_____

144 Page # _____

#### Instrument: Entech 3100

Page 197 of 214

					•		
Canister Number	QC Can Number	Number of Cycles	Date	- OC Batch Number	DetectionLimits	Leak Test 24	1F (psig str/stp)
464	466	70	3.19.13	WAZO31913 X	Jug m3+0.25	+ 30	+ 30
351		3				+	+
1192						+	+
318						+	+
466						+	+
495	229			WAC031913 L		+	+
240						+	+
431						+	+
320					``	+	+
129						+	+
493	552			MAZO31913 M		+	+
318						+	+
1175						+	+
354						+	+
552						+	+
1173	364			MACO31913 N		+	+
245						+	+
554						+	+
544						+	+
364						+	+
133	283			WAC0319130		+	+
360						+	+
131						+	+
138						+	+
283						+	+

Cleaned by:

Page # 145

# **Centek Laboratories, LLC**

.....

Cleaned by:

QC Canister Cleaning Logbook

Instrument: Entech 3100

Canister Number	QC Can Number	Number of Cycles	Date	CG Batch Number	Detection Limits	Leak Test 24	hr (psig str/stp)
1183	556	30	3.19.13	WAZO31913 P	Jualm3+0.25	+30	+30
558						+	+
429		·	· ·			+	+
367						+	+
556						+	+
1174	357			WA2031913Q		+	+
98						+	+
571						+	+
542						+	+
32)						+	+
211	1147			LIAZO31913R		+	+
1205						+	+
218						+	+
4/84						+	+
114-7						+	+
						+	+
		1				+	+
•						+	+
				·		+	+
						+	+
						+	+
						+	+
						+	+
			} 			+	+
·····						+	+

Centek Laboratories, LDCantitation Report (QT Reviewed) Data File : C:\HPCHEM\1\DATA2\AK031917.D Vial: 11 Acq On : 19 Mar 2013 6:56 pm Sample : WAC031913K Misc : Operator: RJP Inst : MSD #1 Multiplr: 1.00 MS Integration Params: RTEINT.P Quant Time: Mar 20 06:45:07 2013 Quant Results File: A313 1UG.RES Quant Method : C:\HPCHEM\1\METHODS\A313_1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Thu Mar 14 09:00:09 2013 Response via : Initial Calibration DataAcq Meth : 1UG_T015 Internal Standards R.T. QION Response Conc Units Dev(Min) 1) Bromochloromethane9.49128117591.00 ppb0.0234) 1,4-difluorobenzene11.77114365851.00 ppb0.0249) Chlorobenzene-d516.18117316461.00 ppb0.00 System Monitoring Compounds 52) Bromofluorobenzene17.6895142870.79 ppbSpiked Amount1.000Range70 - 130Recovery = 79.00% 62) Bromofluorobenzene 0.00

Target Compounds

Qvalue



Page

200 of 214



Centek Laboratories, La Cantitation Report (QT Reviewed) Data File : C:\HPCHEM\1\DATA2\AK031918.D Vial: 12 Acq On : 19 Mar 2013 7:29 pm **Operator:** RJP Sample : WAC031913L Misc : Inst : MSD #1 Multiplr: 1.00 MS Integration Params: RTEINT.P Quant Results File: A313 1UG.RES Quant Time: Mar 20 06:45:08 2013 Quant Method : C:\HPCHEM\1\METHODS\A313_1UG M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Thu Mar 14 09:00:09 2013 Response via : Initial Calibration DataAcq Meth : 1UG_T015 R.T. QION Response Conc Units Dev(Min) Internal Standards 1) Bromochloromethane9.4912811111.00 ppb0.0234) 1,4-difluorobenzene11.78114347961.00 ppb0.0249) Chlorobenzene-d516.18117319641.00 ppb0.01 System Monitoring Compounds 
 62) Bromofluorobenzene
 17.68
 95
 13168
 0.72 ppb

 Spiked Amount
 1.000
 Range
 70 - 130
 Recovery
 =
 72.00%
 0.01 Qvalue Target Compounds

(#) = qualifier out of range (m) = manual integration (+) = signals summed AK031918.D A313_1UG.M Thu Apr 18 10:39:42 2013 MSD1 Page 202

? of 214



Centek Laboratories, LoGantitation Report (QT Reviewed) Data File : C:\HPCHEM\1\DATA2\AK031919.D Vial: 13 Acq On : 19 Mar 2013 8:03 pm Operator: RJP Sample : WAC031913M Misc : Inst : MSD #1 Multiplr: 1.00 MS Integration Params: RTEINT.P Quant Time: Mar 20 06:45:09 2013 Quant Results File: A313 1UG.RES Quant Method : C:\HPCHEM\1\METHODS\A313_1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Thu Mar 14 09:00:09 2013 Response via : Initial Calibration DataAcq Meth : 1UG_T015 R.T. QION Response Conc Units Dev(Min) Internal Standards ------1) Bromochloromethane9.49128112661.00ppb0.0134) 1,4-difluorobenzene11.77114330831.00ppb0.0249) Chlorobenzene-d516.18117290531.00ppb0.01 System Monitoring Compounds System Monitoring Compounds 62) Bromofluorobenzene 17.67 95 11984 0.72 ppb Spiked Amount 1.000 Range 70 - 130 Recovery = 72.00% 0.00 Target Compounds Qvalue



Centek Laboratories, LoGantitation Report (QT Reviewed) Data File : C:\HPCHEM\1\DATA2\AK031920.D Vial: 14 Acq On : 19 Mar 2013 8:36 pm Sample : WAC031913N Operator: RJP Inst : MSD #1 Multiplr: 1.00 Misc . MS Integration Params: RTEINT.P Quant Time: Mar 20 06:45:10 2013 Quant Results File: A313_1UG.RES Quant Method : C:\HPCHEM\1\METHODS\A313_1UG.M (RTE Integrator) : TO-15 VOA Standards for 5 point calibration Title Last Update : Thu Mar 14 09:00:09 2013 Response via : Initial Calibration DataAcq Meth : 1UG T015 R.T. QION Response Conc Units Dev(Min) Internal Standards _____ 1) Bromochloromethane9.48128116841.00ppb0.0034) 1,4-difluorobenzene11.77114358731.00ppb0.0149) Chlorobenzene-d516.18117323901.00ppb0.01 System Monitoring Compounds62) Bromofluorobenzene17.6795140210.76 ppbSpiked Amount1.000Range70 - 130Recovery = 76.00% 0.00

Target Compounds

Qvalue



Page 206 of

214



Centek Laboratories, LbGantitation Report (QT Reviewed) Data File : C:\HPCHEM\1\DATA2\AK031921.D Vial: 15 Acq On : 19 Mar 2013 9:09 pm Operator: RJP Sample : WAC0319130 Misc : Inst : MSD #1 Multiplr: 1.00 MS Integration Params: RTEINT.P Quant Time: Mar 20 06:45:11 2013 Quant Results File: A313_1UG.RES Quant Method : C:\HPCHEM\1\METHODS\A313_1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Thu Mar 14 09:00:09 2013 Response via : Initial Calibration DataAcq Meth : 1UG_T015 R.T. QION Response Conc Units Dev(Min) Internal Standards ______ 1) Bromochloromethane9.48128115881.00 ppb0.0034) 1,4-difluorobenzene11.77114339521.00 ppb0.0249) Chlorobenzene-d516.1711730767,1.00 ppb0.00 System Monitoring Compounds 52) Bromofluorobenzene17.6795130400.74 ppbSpiked Amount1.000Range70 - 130Recovery = 74.00% 62) Bromofluorobenzene 0.00 Target Compounds Ovalue



Quantitation Report

(QT Reviewed)

Centek Laboratories, LLC

Page 208 <u>ç</u> 214

Centek Laboratories, LDOantitation Report (QT Reviewed) Data File : C:\HPCHEM\1\DATA2\AK031922.D Vial: 16 Acq On : 19 Mar 2013 9:42 pm Sample : WAC031913P Operator: RJP Inst : MSD #1 Misc Multiplr: 1.00 : MS Integration Params: RTEINT.P Quant Time: Mar 20 06:45:12 2013 Quant Results File: A313_1UG.RES Quant Method : C:\HPCHEM\1\METHODS\A313 1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Thu Mar 14 09:00:09 2013 Response via : Initial Calibration DataAcq Meth : 1UG T015 Internal Standards R.T. QIon Response Conc Units Dev(Min) 1) Bromochloromethane9.48128112901.00 ppb0.0034) 1,4-difluorobenzene11.77114335321.00 ppb0.0149) Chlorobenzene-d516.18117290661.00 ppb0.00 System Monitoring Compounds 52) Bromofluorobenzene17.6795120010.72 ppbSpiked Amount1.000Range70 - 130Recovery = 72.00% 62) Bromofluorobenzene 0.00

Target Compounds

Qvalue



Centek Laboratories, LDCantitation Report (QT Reviewed) Data File : C:\HPCHEM\1\DATA2\AK031923.D Vial: 17 Acq On : 19 Mar 2013 10:15 pm Operator: RJP Sample : WAC031913Q Misc : Inst : MSD #1 Multiplr: 1.00 MS Integration Params: RTEINT.P Quant Time: Mar 20 06:45:13 2013 Quant Results File: A313 1UG.RES Quant Method : C:\HPCHEM\1\METHODS\A313_1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Thu Mar 14 09:00:09 2013 Response via : Initial Calibration DataAcq Meth : 1UG_T015 Internal Standards R.T. QIon Response Conc Units Dev(Min) _____ 1) Bromochloromethane9.49128111921.00 ppb0.0134) 1,4-difluorobenzene11.77114343661.00 ppb0.0249) Chlorobenzene-d516.18117305691.00 ppb0.00 System Monitoring Compounds 62) Bromofluorobenzene 17.68 95 12478 0.71 ppb Spiked Amount 1.000 Range 70 - 130 Recovery = 71.00% 0.00 Target Compounds

Qvalue

Page 211 of 214

Page

212

of 2

44



Centek Laboratories, LoGantitation Report (QT Reviewed) Data File : C:\HPCHEM\1\DATA2\AK031924.D Vial: 18 Acq On : 19 Mar 2013 10:48 pm Operator: RJP Sample : WAC031913R Misc Inst : MSD #1 Multiplr: 1.00 Misc : MS Integration Params: RTEINT.P Ouant Time: Mar 20 06:45:14 2013 Quant Results File: A313_1UG.RES Quant Method : C:\HPCHEM\1\METHODS\A313_1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Thu Mar 14 09:00:09 2013 Response via : Initial Calibration DataAcq Meth : 1UG_T015 R.T. QION Response Conc Units Dev(Min) Internal Standards _____ 1) Bromochloromethane9.49128111041.00 ppb0.0134) 1,4-difluorobenzene11.77114341511.00 ppb0.0249) Chlorobenzene-d516.18117313811.00 ppb0.00 System Monitoring Compounds 
 Spiked Amount
 1.000
 Range
 70
 13124
 0.73
 ppb
 62) Bromofluorobenzene 0.00

Target Compounds

Qvalue

Page

214

f of 214

