Lockheed Martin Corporation 6801 Rockledge Drive MP: CCT-246 Bethesda, MD 20817 Telephone (301) 548-2227

April 1, 2016

VIA PRIVATE CARRIER

Mr. James R. Carroll
Program Administrator
Land Restoration Program
Land Management Administration
Maryland Department of the Environment
1800 Washington Boulevard, Suite 625
Baltimore, Maryland 21230

Subject: Transmittal of the Bulkhead Soil-Retention Geotechnical Investigation,

Lockheed Martin Middle River Complex,

2323 Eastern Boulevard Middle River, Maryland

Dear Mr. Carroll:

For your information, please find enclosed two hard copies with CD of the above-referenced document. This report presents the results of a geotechnical and subsurface investigation of the Dark Head Cove bulkhead at the Lockheed Martin River Complex in Baltimore County, Middle River, Maryland.

Please let me know if you have any questions. My office phone is (301) 548-2227.

Sincerely,

Lynnette Drake

Remediation Analyst, Environmental Remediation

Enclosures:

cc: (via email without enclosure)

Lynnettet Diale

Gary Schold, MDE Mark Mank, MDE

Tom Blackman, Lockheed Martin Christine Kline, Lockheed Martin Norman Varney, Lockheed Martin

Dave Brown, MRAS Michael Martin, Tetra Tech Cannon Silver, CDM Smith

cc: (via mail with CD enclosure) Jann Richardson, Lockheed Martin Scott Heinlein, LMCPI cc: (via mail with enclosure)
Tom Green, LMCPI
Mike Musheno, LMCPI
Justin Tetlow, MRAS
Doug Mettee, Lockheed Martin MST
John Morgan, LMCPI

Bulkhead Soil-Retention Geotechnical Investigation Lockheed Martin Middle River Complex 2323 Eastern Boulevard Middle River, Maryland

Michael Byle, P.E., D.GE, F.ASCE Geotechnical Project Manager

TABLE OF CONTENTS

<u>S</u>	ectio	<u>on</u>	<u>Page</u>
A	CRC	DNYMS	iii
1	IN	ITRODUCTION	1-1
2	SI	ITE BACKGROUND	2-1
	2.1	CURRENT SITE CONDITIONS	2-1
	2.2	GEOLOGY	2-3
3	IN	IVESTIGATION APPROACH	3-1
	3.1	SOIL BORINGS	3-1
	3.2	LABORATORY TESTING	3-3
	3.3	INVESTIGATION-DERIVED-WASTE MANAGEMENT	3-3
4	R	ESULTS	4-1
	4.1	STRATIGRAPHY	4-1
	4.2	SEISMIC CLASSIFICATION	4-3
	4.3	GROUNDWATER ELEVATIONS	4-3
	4.4	CORROSIVITY	4-4
5	C	ONCLUSIONS	5-1
	5.1	SUBSURFACE CONDITIONS	5-1
	5.2	LIMITATIONS	5-1
6	R	EFERENCES	6-1

APPENDICES

APPENDIX A—SITE PLAN

APPENDIX B—BOREHOLE LOCATION PLAN

APPENDIX C—SOIL BORING LOGS

APPENDIX D—LABORATORY TEST RESULTS

APPENDIX E—INVESTIGATION-DERIVED-WASTE DOCUMENTATION

APPENDIX F—GEOTECHNICAL PROFILES

LIST OF FIGURES

		<u>Page</u>
Figure 4-1	Site Classification Table with Standard Minimum Design-Loads for Construction	4-6
Figure 5-1	Recommended Soil Properties for Bulkhead Construction in Block D (Cross-Section by Stratum)	5-2
Figure 5-2	Recommended Soil Properties for Bulkhead Construction in Block F (Cross-Section by Stratum)	5-3
	LIST OF TABLES	
		<u>Page</u>
Table 3-1	Soil Boring Locations	3-4
Table 4-1	Seismic-Design Coefficients and Factors	4-5
Table 4-2	Estimated Depth to Groundwater in Soil Borings While Drilling	4-5

ACRONYMS

AASHTO American Association of State Highway and Transportation Officials

ASCE American Society of Civil Engineers

ASTM ASTM International

bpf blows per foot

CL lean clay (Unified Soil Classification)
CL-ML silty clay (Unified Soil Classification)

CME Central Mine Equipment Co.

CU consolidated undrained
GPS global positioning system

Lockheed Martin Corporation (Lockheed Martin)

MDE Maryland Department of the Environment

MRC Middle River Complex

N standard penetration test N-value NAD83 North American Datum of 1983

NAVD88 North American Vertical Datum of 1988

PAH polycyclic aromatic hydrocarbon

PCB polychlorinated biphenyl
PP pocket penetrometer

SC-SM clayey sand with silt (Unified Soil Classification)

SEI Structural Engineering Institute

SPT standard penetration test

Tetra Tech, Inc.

USCS Unified Soil Classification System

USDOT United States Department of Transportation

UU unconsolidated undrained

WH weight of hammer
WR weight of rod

 $g_{n} \hspace{1cm} \text{moist unit-weight of soil} \\$

g saturated unit-weight of soil

c' effective cohesion/drained cohesion
c total cohesion/undrained cohesion

f ' effective internal-friction angle of soil

f total internal-friction angle of soil

Section 1 Introduction

On behalf of Lockheed Martin Corporation (Lockheed Martin), Tetra Tech, Inc. (Tetra Tech) has prepared this data report presenting the results of a geotechnical and subsurface investigation of the Dark Head Cove bulkhead. The existing bulkheads along the Dark Head Cove adjacent to Tax Blocks D, D Panhandle, and F at the Lockheed Martin Middle River Complex (MRC) facility are in poor condition and are considered structurally deficient. A substantial portion of the steel surface has completely corroded away, creating large openings through which soil carried by runoff from upland areas is being transported to the cove. A new sheet-pile wall has been proposed to limit migration of possibly impacted soil into the cove. More data were needed before the new bulkhead design could be completed. The results of this geotechnical subsurface-exploration program provide geotechnical parameters that will be used to design the new sheet-pile wall.

This study evaluates subsurface conditions pertinent to the design and construction of the proposed bulkhead. Data from this investigation will be used to develop soil parameters for the bulkhead design. An additional study of the storm-drain system, using a closed-circuit television camera and test-pit excavations, was made coincident with this study; those results will be reported in a separate document. Specific tasks performed during this investigation include:

- exploring/evaluating soil stratigraphy along the existing bulkhead
- developing suitable bulkhead design parameters
- providing geotechnical engineering recommendations relevant to the new bulkhead and storm drain system

Figures and tables follow the text at the end of each section. This report is organized as follows:

<u>Section 2—Site Background</u>: Briefly describes the site and where detailed background information and reports of previous investigations can be found.

<u>Section 3—Investigation Approach</u>: Describes the field activities performed during this investigation.

<u>Section 4— Results</u>: Presents the investigation results.

<u>Section 5—Conclusions</u>: Summarizes the investigation findings.

<u>Section 6—References</u>: Cites references used to compile this report.

Section 2 Site Background

The Lockheed Martin Corporation (Lockheed Martin) Middle River Complex (MRC) at 2323 Eastern Boulevard in Middle River, Maryland is part of the Chesapeake Industrial Park, approximately 11.5 miles northeast of Baltimore. The MRC comprises approximately 161 acres and includes 12 main buildings, an active industrial area and yard, perimeter parking lots, an athletic field, a vacant concrete lot, trailer storage areas, and numerous grassy spaces along its perimeter. The MRC is bounded by Eastern Boulevard (Route 150) to the north, Martin State Airport to the east, Dark Head Cove to the south, and Cow Pen Creek to the west.

Numerous environmental investigations have been conducted at the MRC. Relevant to this geotechnical study of the bulkhead, soils and offshore sediments have been found to be impacted by a range of contaminants, most notably polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), and some heavy metals. The existing bulkhead no longer effectively controls the potential migration of soils to the offshore sediments due to significant degradation of the sheet pile; measures must be taken to control this migration pathway.

The MRC was previously entered into the Maryland Department of the Environment (MDE) Voluntary Cleanup Program. Remediation of impacted media at the MRC is now being conducted under the MDE Controlled Hazardous Substances regulatory framework, under an "Administrative Consent Order and Settlement Agreement" effective December 2015, which allows both on- and off-site issues to be addressed under the same program.

2.1 CURRENT SITE CONDITIONS

Various studies of the bulkhead and storm-drain system have been conducted to meet a range of project objectives. The most pertinent information derived from these studies is summarized and referenced in this section. The project area extends southwestward along the shoreline of Dark Head Cove. The site is bounded by Wilson Point Road on the north, Dark Head Cove Road to the

northwest, and Chesapeake Park Plaza to the southwest. The ground surface of the investigation area is fairly level. In Block F, the ground surface slopes slightly to moderately down to the bulkhead, while grades are flatter in Block D.

Historical site plans and as-built drawings of the existing bulkhead appear to indicate that significant fill was placed behind the bulkheads at Blocks D and F, though it appears that the more extensive fill was in Block D (Tetra Tech, 2012). Ground elevations along the top of the existing bulkhead are approximately 4.0–5.0 feet. The typical tide range in this area is about two feet, although the range can vary significantly according to wind direction, atmospheric pressure, and other variables.

The Dark Head Cove shoreline along the MRC consists of two steel bulkhead walls and riprap with a concrete-overlay shoreline. The steel bulkhead has two sections: one adjoins the concrete seaplane ramp at the southern end of the cove in Block F, and one is in Block D at the northern end of Dark Head Cove. Both steel bulkheads are severely corroded. This corrosion resulted in a complete loss of a substantial portion of the bulkhead's steel surface, creating large openings through which soil from the upland areas is transported to Dark Head Cove (Tetra Tech, 2015). A general site plan of the project site is in Appendix A.

A concrete cap and walkway run along the top of the existing bulkhead. Depressions in soil along the upland side of the bulkheads indicate that soil has eroded and been lost through openings in the bulkhead. Depressions in the soil surface over storm drains indicate that soil might have been washed through openings in these drains, or could indicate storm drains that have collapsed. The sizes of the soil depressions vary, from a few feet to more than 10 feet long.

The existing sheet-pile bulkhead is anchored by steel rods connected to timber-pile-supported wales on the upland side of the wall. These anchors will not be used for the new bulkhead due to concerns over their condition, and due to the extent of upland disturbance that would be necessary to incorporate them into a replacement structure. A wall without anchors has the additional benefit of being faster to construct, which will facilitate completion of a new wall before completing additional dredging associated with sediment remediation.

Regulatory permits restrict any in-water construction associated with bulkhead replacement or dredging to occur only between October 15 and February 15. The current projected construction

sequencing and schedule is to address the bulkhead before dredging and to do the work during the 2016/2017 construction work-window, if all permits can be obtained in time. Therefore, construction of a cantilevered sheet-pile wall in front of the existing deteriorated bulkhead will likely be proposed as a means to prevent future migration of impacted upland soil into Dark Head Cove.

We anticipate that the height of the proposed cantilevered sheet-pile wall will (at most) be 15 feet above the proposed dredge line in the northern bulkhead area, and 19 feet above the proposed dredge line in the southern bulkhead area. The timber bulkhead for Dark Head Cove at the southern end of the MRC is also deteriorating. No plans have been made to replace or modify this wall, but borings adjacent to the timber bulkhead were also advanced during this investigation to gather information about this wall for use in the design, if needed.

2.2 GEOLOGY

According to the Maryland Geological Survey's *Geologic Map of Maryland* (1968), the project site is mapped within the Potomac Group, which consists of interbedded quartzose gravels; protoquartzitic to orthoquartzitic argillaceous sands; and white, dark gray, and multicolored silts and clays. The thickness of the Potomac Group varies from 0–800 feet deep. The Potomac Group consists of three formations: the Raritan and Patapsco Formation, the Arundel Clay, and the Patuxent Formation. The Raritan and Patapsco Formations consist of gray, brown, and red variegated silts and clays; lenticular, cross-bedded, argillaceous, sub-rounded sands; and minor gravel. The thickness of the Raritan and Patapsco varies from 0–400 feet. The Arundel Clay consists of dark-gray and maroon lignitic-clays, with thickness varying from 0–100 feet. The Patuxent Formation consists of white or light-gray to orange-brown, moderately sorted, cross-bedded, argillaceous, angular sands, and sub-rounded quartz gravels with silts and clays. The thickness of the Patuxent soil varies from 0–250 feet.

_

¹Composed of clay particles.

This page was intentionally left blank.

Section 3 Investigation Approach

Tetra Tech, Inc. (Tetra Tech) developed a subsurface exploration program that included 12 land borings (TTDHCB-1 through TTDHCB-12) and seven marine borings (TTDHC-1 through TTDHC-7). These borings were used to conduct standard penetration tests (SPTs), and groundwater levels in the borings were recorded. Samples of disturbed and undisturbed soil were also collected. Field operations started on September 29, 2015 and ended on October 9, 2015. The field investigation was conducted in accordance with ASTM standards, including ASTM D 420—"Standard Guide to Site Characterization for Engineering, Design, and Construction Purposes," ASTM D 4220—"Standard Practices for Preserving and Transporting Soil Samples," the geotechnical assessment and work plan for the bulkhead (Tetra Tech, 2015), and the health and safety plan.

3.1 SOIL BORINGS

Labor, equipment, utility-clearance coordination, and permits for the drilling were provided by Uni-Tech Drilling, Inc. Two drilling rigs (models CME-55LC and CME-45C) were used to advance these borings using the mud-rotary drilling method. All land borings were advanced using a CME-55LC skid-mounted drill rig employing hollow-stem auger and mud-rotary sampling techniques. Marine borings were advanced using a CME-45C skid-mounted drill rig on a 30- by 20-foot barge. Drilling locations for these borings were surveyed and positioned using global positioning system (GPS) equipment before installation. Drilling locations were maintained by lowering spuds² to the cove floor to keep the barge on station.

The land and marine borings were spaced along the shoreline on both sides of the existing bulkhead. Eight of the 12 land borings were drilled to 40 feet below the ground surface, and four of the 12 were drilled to 70 feet deep. Marine borings were advanced to 50 feet below the mudline.

 $^{^2}$ A pointed leg or stake used to stay or support dredging or earth-boring machinery.

Except where undisturbed tube-samples were taken, two-foot disturbed (split-barrel) soil samples were taken continuously to a depth of 20 feet, and at five-foot intervals thereafter until terminus. The number of blows applied for each six-inch increment was recorded, unless one of the following occurred:

- 50 blows had been applied during any one of four six-inch increments
- 150 blows had been applied
- no observed advance of the sampler was noted after 10 successive blows of the hammer
- the sampler advanced to 24 inches (two feet) without reaching the blow-count limit

As-drilled coordinates for landside and marine borings are shown in Table 3-1. As-drilled boring locations are in Appendix B, and soil boring logs are in Appendix C. Note that the soil strata boundaries shown on the logs in Appendix C are approximate, and are intended to demark general changes in the composite layer (e.g., the predominant soil type and stiffness) and other properties, as interpreted from the samples taken within each boring.

To avoid the downhole transport of contaminated sediment in the marine borings, a steel casing was placed in the top five feet of each boring to contain cuttings and maintain mud circulation during drilling. The casing was driven through standing water into the top five feet of sediment. The length of casing used ranged between 15 and 25 feet, depending on the water depth. The first soil sample from each marine boring was collected five to seven feet below the mudline. Samples were taken continuously to a depth of 25 feet and at five-foot intervals thereafter.

Most soil samples were obtained using a two-inch outside-diameter and 1½-inch inside-diameter standard penetration test (SPT) split-barrel samplers driven 24 inches into the soil. SPT sampling was done in accordance with ASTM D 1586—"Standard Test Method for Penetration Test and Split-Barrel Sampling of Soil." The sampler was driven by successive blows of a 140-lb automatic trip-hammer dropped from a height of 30 inches. All disturbed samples were visually classified in the field by a Tetra Tech geotechnical engineer using the Unified Soil Classification System (USCS) for soil identification.

Representative portions of each disturbed sample were labeled and preserved in glass jars for later review and possible laboratory testing. Where cohesive soils were encountered,

three-inch-diameter thin-walled (Shelby tube) samples were attempted. Each undisturbed soil sample was retained in a stainless steel thin-walled tube (having been obtained using a piston-sampling device) and sealed with wax. The Shelby tube was pressed into the soil by a continuous thrust of hydraulic rams on the drilling rig. Samples were observed and classified by the field engineer, who recorded this information in field logs.

After drilling, each hole was completely backfilled using a bentonite-cement grout, tremied (i.e., funneled in) from the bottom of the borehole. Soil cuttings from drilling were collected and placed in United States Department of Transportation (USDOT)-approved 55-gallon drums that were later collected by the drilling contractor and deposited at a controlled location on-site for later disposal at an appropriately permitted off-site landfill approved by Lockheed Martin.

3.2 LABORATORY TESTING

The geotechnical engineer reviewed each sample on-site and selected samples for geotechnical laboratory analyses. The selected soil samples were delivered to Tetra Tech's geotechnical testing laboratory to verify the soil classification recorded in the field, and to provide specific soil parameters for use in design. Shelby-tube samples were packaged, handled, and delivered in accordance with ASTM D1587 and laboratory specifications, including shipping each tube in a vertical orientation with minimal disturbance. Geotechnical laboratory testing was performed by Ardaman & Associates, Inc. (a Tetra Tech company).

Laboratory test results are in Appendix D. Laboratory tests were performed in general accordance with applicable ASTM test procedures. ASTM test designations used for these tests include:

- visual classification (ASTM D2488)
- Atterberg limits (ASTM D4318)
- unconsolidated undrained (UU)
- consolidated undrained (CU)
- · corrosivity (ASTM D2976)

- moisture content (ASTM D2216)
- sieve analysis (ASTM D422)
- triaxial compression (ASTM D2850)
- triaxial compression (ASTM D4767)
- organic content (ASTM D2974)

3.3 INVESTIGATION-DERIVED-WASTE MANAGEMENT

Soil cuttings and drilling muds from advancement of the geotechnical borings were collected in 55-gallon drums and staged on-site during the investigation. Drum contents were characterized

and disposed of in accordance with all applicable laws and regulations. Characterization and waste management documentation are in Appendix E.

Table 3-1 **Soil Boring Locations**

Boring No. Location		Globa	al coordinates (ft)	Ground			
		Northing	Easting	elevation* (ft)			
Land borings							
TTDHCB-1	Block D	605630.7943	1475169.5397	+4.14			
TTDHCB-2	Block D	605704.9278	1475059.7013	+4.32			
TTDHCB-3	Block D	605612.4834	1474865.4765	+4.98			
TTDHCB-4	Block D	605516.9785	1474770.6305	+4.59			
TTDHCB-5	Block D	605414.8629	1474670.9438	+5.09			
TTDHCB-6	Block F	604871.2328	1473853.6657	+5.02			
TTDHCB-7	Block F	604794.5472	1473729.9770	+4.68			
TTDHCB-8	Block F	604680.4520	1473602.9321	+9.00			
TTDHCB-9	Block F	604542.2869	1473578.7008	+7.56			
TTDHCB-10	Block F	604429.0408	1473578.8936	+5.52			
TTDHCB-11	Block F	604265.0466	1473441.1996	+4.76			
TTDHCB-12	Block F	604266.6051	1473373.4247	+5.19			
Marine borings							
TTDHC-1	Block D	605675.47	1475119.68	-3.00			
TTDHC-2	Block D	605592.81	1474909.09	-7.60			
TTDHC-3	Block D	605405.34	1474702.34	-4.30			
TTDHC-4	Block F	604854.13	1473871.31	-6.20			
TTDHC-5	Block F	604666.67	1473652.01	-6.10			
TTDHC-6	Block F	604446.27	1473611.30	-12.30			
TTDHC-7	Block F	604244.30	1473385.82	-5.30			
Notes: Horizontal datum in NAD83; vertical datum in NAVD88 *Ground elevation of marine borings = mudline elevation							

Section 4 Results

4.1 STRATIGRAPHY

Subsurface soil conditions at the site generally correspond to the soil composition of Potomac Group soil in the Atlantic Coastal Plain, which consists of unconsolidated sediment including gravel, sand, silt, and clay. A summary of site soil characteristics and stratigraphy in the investigation area is presented below.

Soil strata at this site tend to be comprised of interlayered deposits with highly variable materials. We have tried to characterize these by strata based on composite properties. Note that the soil classification is often borderline with fines content near 50% and liquid limits near 50%. Variations of less than five percent in fines content or liquid limits are within the normal accuracy range in laboratory tests, and can radically change the initial Unified Soil Classification System (USCS) soil classification recorded in the field.

Natural soils are generally similar despite widely varying classifications. This makes the soil classification less important to the evaluation, because most site soils consist of sandy clays with medium plasticity. Therefore, for the purposes of this report, the strata have been subdivided into "probable fill," "upper fluvial deposits," "lower fluvial deposits," and "deep fluvial deposits," as described below.

Stratum A—probable fill—Stratum A is comprised of apparently human-placed fill materials. Stratum A consists of light brown to reddish-brown silt and clay with varying amounts of fine sand and gravel in the northern portion of the site, and brownish-red to reddish-brown silty-clayey sand in the southern part of the site. Stratum A extends to a depth of approximately 10 to 20 feet below grade. Soil materials generally have medium stiffness, with standard penetration test (SPT) N-values ranging from weight-of-hammer to 14 blows per foot (bpf), except at the depth of 10–14 feet below grade in boring TTDHCB-5. Soil materials in this boring were cemented and

ironized (i.e., contained precipitated iron), with SPT N-values ranging from 20 to 26 bpf. Organic soil was typically observed at shallower depths (less than 10 feet below grade) within this stratum. Soil with organic materials is generally dark gray. This stratum is uncontrolled fill, and was possibly placed during or after construction of the existing bulkhead.

Stratum B—upper fluvial deposits—Stratum B soil underlies Stratum A soil. Stratum B is similar to Stratum A, but appears to be of natural origin, as indicated by the interstratified nature typical of the Potomac Group deposits. Stratum B is composed of interlayered silty clay with varying amounts of fine sand and silt. The thickness of Stratum B, where encountered, ranged from five to 11 feet. This stratum is generally stiff to very stiff (SPT N-values of 7–27 bpf), except in the southern part of the site near borings TTDHCB-3 and TTDHCB-4, where the soil is generally soft to medium-stiff (SPT N-values 1–9 bpf).

Stratum C—lower fluvial deposits—Stratum C is predominantly interstratified fine silty and clayey sand, with infrequent clay and silt layers. The interlayers are thin, ranging from a few inches to two feet. Stratum C is approximately 20–25 feet thick. For concise logging, composite soil is classified as medium clayey sand, but contains interlayers and lenses of varying gradation and classification, including sand, silt, and clay. SPT N-values in Stratum C generally range from 10–30 bpf.

Stratum D—deep fluvial deposits—Stratum D is similar to Stratum C, except that, in general, Stratum D is more consistently very stiff and dense (SPT N-values 17–32). These deeper interstratified deposits have 30–60% fines, and a liquid limit of approximately 30–52%. Stratum D generally extended to the maximum depth explored in Borings TTDHC-5, TTDHC-6, and TTDHC-7, indicating its thickness exceeds 20–32 feet.

Stratum E—deep over-consolidated fluvial deposits—The composition of Stratum E is similar to Stratum D, except it is significantly more stiff, and Stratum E is generally harder and more dense (SPT N-values greater than 32). The deeper interstratified deposits in Stratum E are over-consolidated, with 30–60% fines and a liquid limit of 30–52%. In general, Stratum E extended to the maximum depth explored, indicating its thickness exceeds 20–32 feet.

4.2 SEISMIC CLASSIFICATION

The liquefaction potential for site soil was estimated using the results of the field and laboratory tests conducted for this project, a review of the available geologic mapping, and the site class definitions shown on Figure 4-1 (which is Table 20.3-1 from *Minimum Design Loads for Buildings and Other Structures* [ASCE/SEI 7-10, 2011]). Site soil was assessed as "not liquefiable" due to its significant cohesion. Accordingly, the project site can be classified as Site Class D, "stiff soil," because, except for the upper 10–15 feet (where mean blow-counts generally exceed 15), no soft-clay lenses greater than 10 feet thick were identified.

We recommend that the bulkhead be designed in accordance with American Association of State Highway and Transportation Officials (AASHTO) specifications, which indicate a seven percent probability of exceedance in 75 years (approx. 1000-year return period) for the designed earthquake. Table 4-1 contains the relevant seismic design-factors for this project based on the AASHTO 2010 specifications.

4.3 GROUNDWATER ELEVATIONS

All soil borings were drilled using the mud rotary-drilling method. This method does not permit groundwater measurement during drilling, because the borehole is filled with drilling mud at all times. Groundwater levels were estimated based on moisture observed and by visually estimating the saturation of SPT samples collected. Therefore, groundwater levels presented herein should be considered rough approximations. Groundwater levels can be measured in surrounding monitoring wells, but confined or semiconfined conditions are common at the Middle River Complex, so equilibrated levels are typically higher than the elevation at which saturated conditions are observed in boreholes. The estimated depth to groundwater from this geophysical study is summarized in Table 4-2. Each borehole was grouted immediately after completion of drilling, as a preventive measure against vertical migration of contamination within the hole. Therefore, groundwater readings after 24 hours of drilling were not taken.

Accurately predicting subsurface-water fluctuations is difficult when based upon relatively short-term observations. Groundwater conditions are subject to change, with variations in climatic conditions and tidal influences. Depth to groundwater will be affected by changes in seasonal moisture conditions, site drainage, and other factors, particularly after periods of intense or

sustained precipitation. Groundwater, when present, is typically contained within the pore spaces of overburden soil and within pore spaces. Actual depth to groundwater may vary from the estimated levels herein.

Near the bulkhead, groundwater appears to be at roughly the same level as the water level in the cove. Small movements indicating tidal influence are not observed when estimating the groundwater level by moisture. As such, groundwater fluctuations near the bulkhead are expected to vary with the tide.

4.4 CORROSIVITY

One sample of the Stratum B soil was tested for corrosivity. Results indicate that this soil is "strongly aggressive" to "very strongly aggressive" to buried metal, on a scale that ranges from "virtually nonaggressive" to "slightly aggressive" to "moderately aggressive" to "aggressive" to "strongly aggressive" to "very strongly aggressive." This, coupled with the tidal fluctuation and splash zone effects in Dark Head Cove, indicates that steel sheet-piling must be protected from corrosion. Thickness loss of unprotected steel due to corrosion is expected to exceed 0.5 inches over a 75-year life span (Knöfel, D., 1978). Available drawings indicate that the existing sheet piling was installed between 1945 and 1971. The original half-inch-thick sheet piling, after 40–70 years, has been corroded completely through, indicating that the above estimated corrosion rate is reasonable. However, note that when the piling was actually penetrated is unknown, so the corrosion rate could be higher and should be accounted for when material specifications are made during future design.

Table 4-1
Seismic-Design Coefficients and Factors

Parameter (abbreviation)	Value of coefficient or factor	AASHTO reference
Peak ground-acceleration coefficient (PGA)	5%	Figure 3.10.2.1-1
0.2 second spectral-acceleration coefficient (S_s)	10%	Figure 3.10.2.1-2
1.0 second spectral-acceleration coefficient (S_I)	3%	Figure 3.10.2.1-3
Site factor (F_{pga})	1.6 for Site Class D	Table 3.10.3.2-1
Short-period site factor (F_a)	1.6 for Site Class D	Table 3.10.3.2-2
Long Period Site Factor (F_v)	2.4 for Site Class D	Table 3.10.3.2-3

Table 4-2
Estimated Depth to Groundwater in Soil Borings While Drilling

Boring No.	Estimated depth to groundwater while drilling (feet)
TTDHCB-1	6–8
TTDHCB-2	2–4
TTDHCB-3	8–10
TTDHCB-4	8–10
TTDHCB-5	6–8
TTDHCB-6	4–6
TTDHCB-7	6–8
TTDHCB-8	6–8
TTDHCB-9	±6
TTDHCB-10	6–8
TTDHCB-11	10–2
TTDHCB-12	8–10

Figure 4-1 Site-Classification Table with Standard Minimum Design-Loads for Construction

Table 20.3-1 Site Classification

Site Class	\overline{v}_s	\overline{N} or \overline{N}_{ch}	\overline{S}_{u}
A. Hard rock	>5,000 ft/s	NA	NA
B. Rock	2,500 to 5,000 ft/s	NA	NA
C. Very dense soil and soft rock	1,200 to 2,500 ft/s	>50	>2,000 psf
D. Stiff soil	600 to 1,200 ft/s	15 to 50	1,000 to 2,000 psf
E. Soft clay soil	<600 ft/s	<15	<1,000 psf
	Any profile with more that —Plasticity index $PI > 20$ —Moisture content $w \ge 4$ —Undrained shear strengt), 0%,	e following characteristics:
F. Soils requiring site response analysis in accordance with Section 21.1	See Section 20.3.1		

Source: ASCE Standard Minimum Design-Loads for Building and Other Structures (ASTM, 2011)

Section 5 Conclusions

5.1 SUBSURFACE CONDITIONS

Subsurface soil conditions at the site generally correspond to the soil composition of Potomac Group soil in the Atlantic Coastal Plain, consisting of unconsolidated sediment, including gravel, sand, silt, and clay. Profiles of these conditions are in Appendix F. Based on the subsurface conditions at this site, and the location and height of the proposed new bulkhead and walls, we recommend that the design be based on a critical soil-profile. The recommended soil properties for each stratum are summarized on Figures 5-1 and 5-2.

5.2 LIMITATIONS

Subsurface conditions found during this study and at the Middle River Complex vary. Statements about site-wide subsurface variations in this report are estimations only, and are based on the data obtained at specific boring locations, as presented in this report. Tetra Tech strives to perform our services in a manner consistent with the level of care and skill ordinarily exercised by local (i.e., near the site) professionals currently practicing under similar conditions. No other representation, expressed or implied, nor warranty or guarantee is included or intended in this report, nor in any addendum, opinion, document, or other instrument of service.

The results, conclusions, and recommendations in this report are within the scope of work contained in the agreement executed by Tetra Tech and its client. This report is not intended for any other purpose. Tetra Tech makes no claim or representation concerning any activity or condition falling outside the specified purposes of this report as defined by the scope of work. Inquiries regarding our scope of work, or concerning any activity or condition not specifically contained therein, should be directed to Tetra Tech for evaluation and, if necessary, further investigation.

Figure 5-1
Recommended Soil Properties for Bulkhead Construction in Block D
(Cross-Section by Stratum)

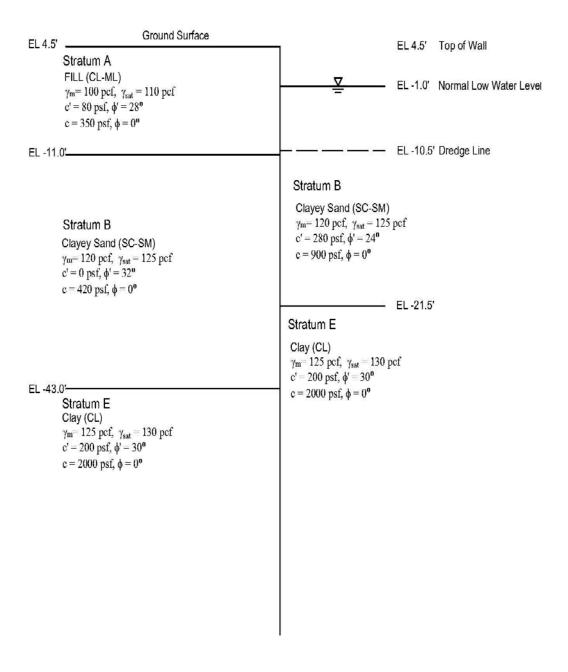
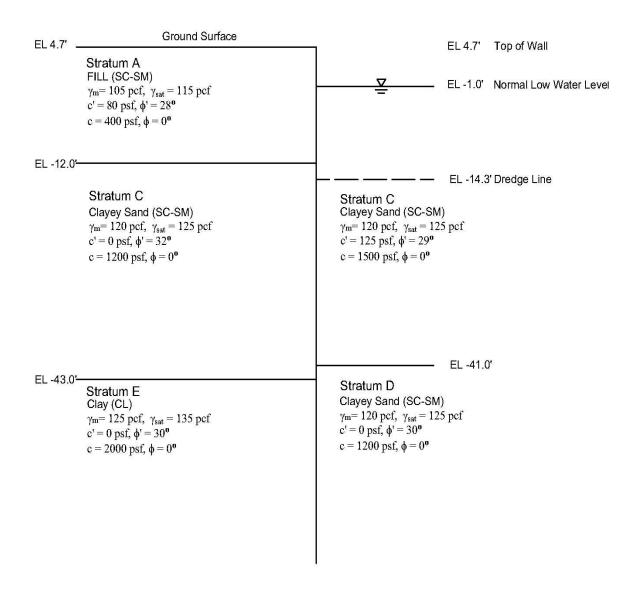
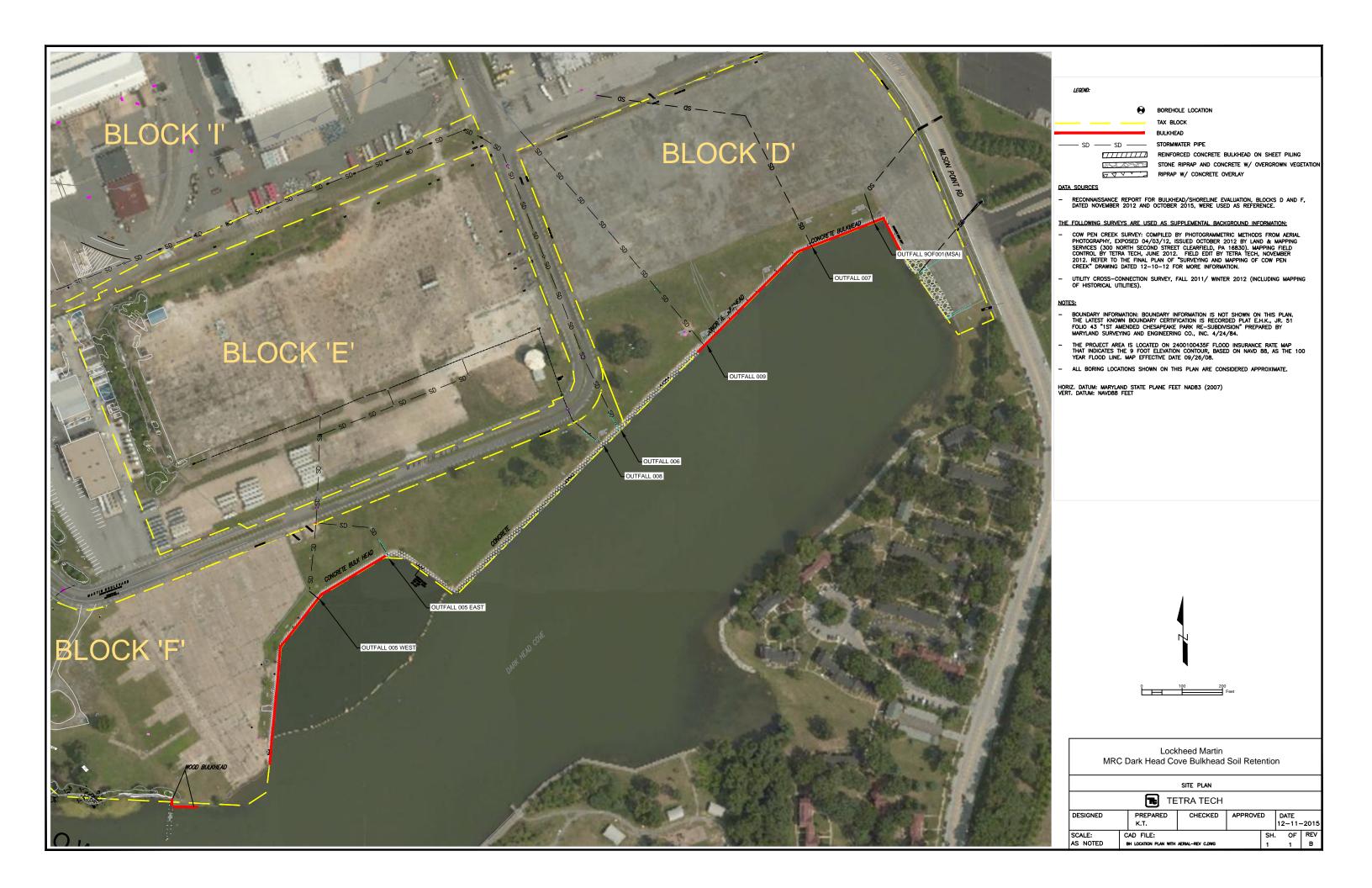
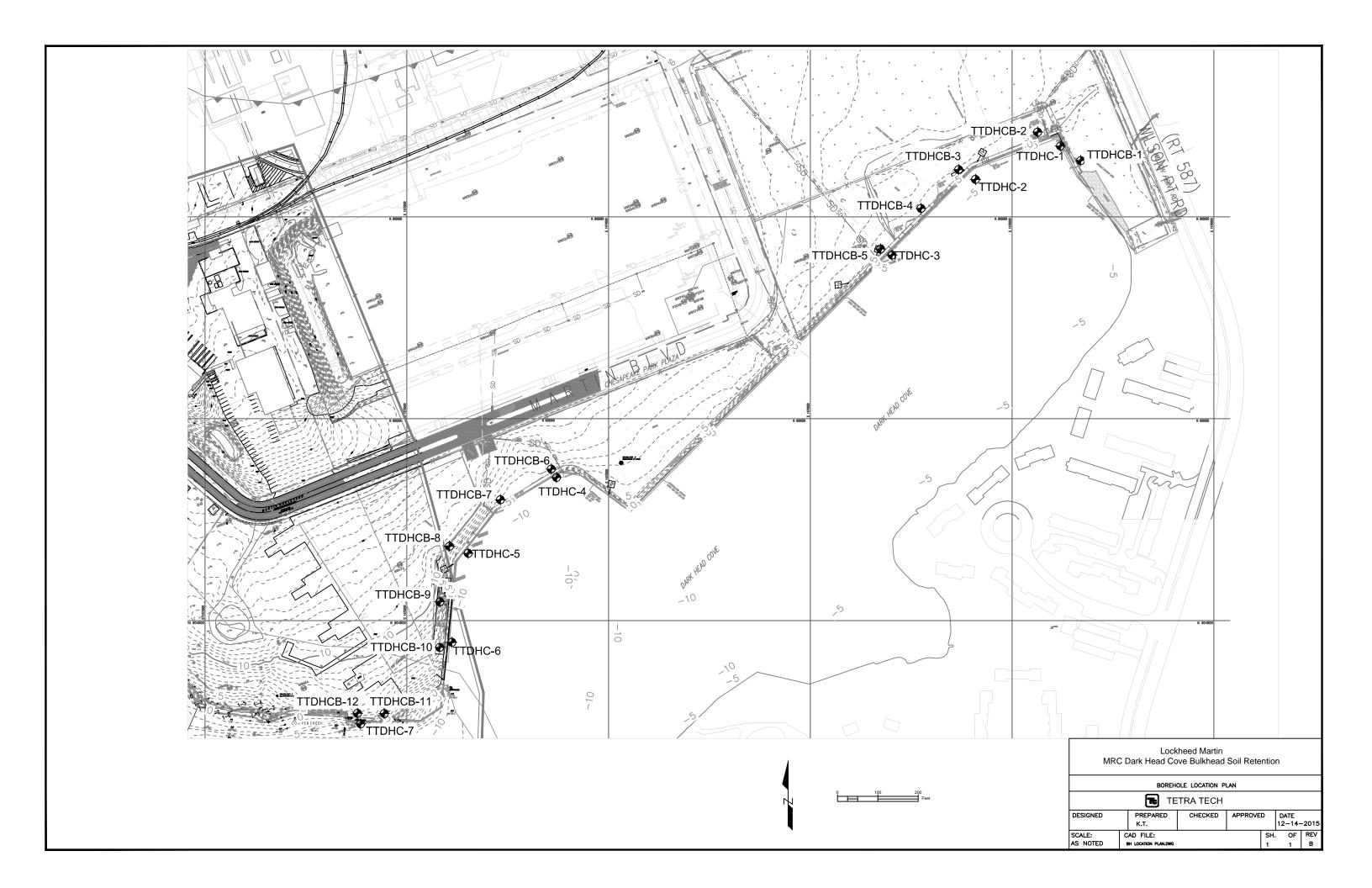



Figure 5-2
Recommended Soil Properties for Bulkhead Construction in Block F
(Cross-Section by Stratum)


This page intentionally left blank.

Section 6 References


- 1. American Association of State Highway and Transportation Officials (2010), *AASHTO LRFD Bridge-Design Specifications*, Fifth Edition. AASHTO, 444 North Capitol Street NW, Washington, DC.
- 2. American Society of Civil Engineers (2011), *Minimum Design Loads for Building and Other Structures*, ASCE/SEI 7-10, 1801. ASCE, Alexander Bell Drive, Reston, Virginia.
- 3. American Society for Testing and Materials (1998), *Standard Guide to Site Characterization for Engineering Design and Construction Purposes*, ASTM D 420-98. ASTM, 110 Barr Harbor Drive, West Conshohocken, Pennsylvania.
- 4. American Society for Testing and Materials (2000), *Standard Practices for Preserving and Transporting Soil Samples*, ASTM D 4220-95, 110 Barr Harbor Drive, West Conshohocken, Pennsylvania.
- 5. American Society for Testing and Materials (1999), *Standard Test Method for Penetration Test and Split-Barrel Sampling of Soils*, ASTM D 1586-99. ASTM, 110 Barr Harbor Drive, West Conshohocken, Pennsylvania.
- 6. American Society for Testing and Materials (2000), *Standard Practice for Thin-Walled Tube Sampling of Soils for Geotechnical Purposes*, ASTM D 1587-00. ASTM, 110 Barr Harbor Drive, West Conshohocken, Pennsylvania.
- 7. Cleaves, Emery, John Glaser, and Jonathan Edwards, Maryland Geological Survey (1968), *Geologic Map of Maryland*. Maryland Geological Survey, 2300 St. Paul Street, Baltimore, Maryland.
- 8. Dietbert Knöfel (1978), *Corrosion of Building Materials*, Van Nostrand Reinhold Company, 450 West 33rd Street, New York, New York.
- 9. Tetra Tech, Inc. (2012). *Reconnaissance Report for Bulkhead/Shoreline Evaluation, Blocks D and F, Lockheed Martin Middle River Complex, Middle River, Maryland.* Prepared by Tetra Tech, Inc., Germantown, Maryland for Lockheed Martin Corporation, Bethesda, Maryland. November
- 10. Tetra Tech, Inc. (2015). *Bulkhead and Storm-Drain Assessment, Blocks D and F, Lockheed Martin Middle River Complex, 2323 Eastern Boulevard, Middle River, Maryland.* Prepared by Tetra Tech, Inc., Germantown, Maryland for Lockheed Martin Corporation, Bethesda, Maryland. November.

This page intentionally left blank.

APPENDIX A—SITE PLAN

APPENDIX B—BOREHOLE LOCATION PLAN

APPENDIX C—SOIL BORING LOGS

TETRA TECH Hole No. TTDHC-1 CLIENT PROJECT NUMBER SHEET **DRILLING LOG** Lockheed Martin Corporation 194-8711 3 OF SHEETS 1. PROJECT 10. DRILLING METHOD Mud Rotary Lockheed Martin MRC 11. DATUM FOR ELEVATION SHOWN (TBM or MSL) 2. LOCATION (Coordinates or Station)
Middle River, MD N 605,675.4700 E 1,475,119.6800 MSL 12. MANUFACTURER'S DESIGNATION OF DRILL 3. DRILLING AGENCY UniTech 13. TOTAL NO. OF SOIL SAMPLES TAKEN DISTURBED UNDISTURBED 4. HOLE NO. (As shown on drawing title and 0 file number) TTDHC-1 14. TOTAL NUMBER CORE BOXES 5 NAME OF DRILLER 15. ELEVATION GROUND WATER C. Lopez COMPLETED STARTED 6. DIRECTION OF HOLE 16. DATE HOLE 10/8/2015 10/9/2015 ☐ INCLINED DEG. FROM VERT 17. ELEVATION TOP OF HOLE -6.77. THICKNESS OF OVERBURDEN 18. TOTAL CORE RECOVERY FOR BORING 8. DEPTH DRILLED INTO ROCK 19. GEOLOGIST 9. TOTAL DEPTH OF HOLE 50.0 R. Lama Tamang BOX OR SAMPLE NO. REMARKS (Drilling time, water loss, depth weathering, etc., if significant) CLASSIFICATION OF MATERIALS **ELEVATION** DEPTH LEGEND RECOV-ERY (Description) d -6.7 0.0 UNSAMPLED 5.0 -11.7SILTY SAND (SM) with trace of organics, BLOWCOUNT SS-1 WR-WR-WR-WR N = WR, PP = 0.0 tsf 5.0 7.0 N=WR & WH, very soft, brownish gray to dark gray (SM) with organics SS-2a SS-2b 67 BLOWCOUNT WH-WH-WH-5 7.0 9.0 N = WH(SM) -15.2 Poorly-graded SAND with SILT (SP-SM), 10<N<57, dense to very dense, yellowish brown to light whiteish gray 79 SS-3 **BLOWCOUNT** 21-24-33-43 N = 57 9.0 11.0 (SP-SM) BLOWCOUNT SS-4 79 11.0 18-18-15-18 13.0 N = 33(SP-SM) SS-5a SS-5b 67 **BLOWCOUNT** 5-5-5-9 13.0 15.0 N = 10(SM) (CH) 15 83 **BLOWCOUNT** SS-6a SS-6b 15.0 5-9-15-21 N = 24 Top 12" (SP-SM) -22.7 16.0 Bottom 12" (CL-ML) with sand Interstratified with CLAY (CL) and SILTY CLAY (CL-ML), trace of sand, 41<N<65, hard, yellowish brown to reddish brown SS-7 17.0 BLOWCOUNT 9-18-23-25 88 N = 41, PP > 4.0 tsf (CL-ML) with sand 19.0 **BLOWCOUNT**

92

SS-8 19.0 21.0

Lockheed Martin MRC

14-27-38-54/5" N = 65

20

HOLE NO. TTDHC-1

ROJECT	LOG (2 2 0	neet) -6.7				
ockheed	Martin N	/IRC			I DOV CT	of 3 s	2 HEETS
EVATION	DEPTH	LEGEND	CLASSIFICATION OF MATERIALS (Description)	% CORE RECOV-	BOX OR SAMPLE	REMARKS (Drilling time, water loss, depth	
а	b	c www.ww	d	ERY e	NO. f	weathering, etc., if significant)	
			Interstratified with CLAY (CL) and SILTY CLAY (CL-ML), trace of sand, 41 <n<65, hard,<="" td=""><td></td><td></td><td></td><td></td></n<65,>				
	=		yellowish brown to reddish brown (continued)				
				100	SS-9 21.0	BLOWCOUNT 5-13-28-32	
	=				23.0	N = 41	
						(CL-ML) with sand	
-29.7	23.0						
			CLAYEY SAND (SC), 33 <n<49, and<="" brown="" brown,="" colors="" dense,="" in="" td="" varying="" yellowish=""><td>100</td><td>SS-10 23.0</td><td>BLOWCOUNT 10-16-17-19</td><td></td></n<49,>	100	SS-10 23.0	BLOWCOUNT 10-16-17-19	
			whitish gray		25.0	N = 33, PP > 4.5 tsf (SC-SM)	
						(30-3W)	
	_						
		 {////}					
				100	SS-11 28.0	BLOWCOUNT 11-20-29-38	
				30.0	N = 49, PP > 4.5 tsf (SC)		
				400	00.12	DI OMOCULAT	
				100	SS-12 33.0	BLOWCOUNT 4-19-22-24	
	_			35.0	N = 41, PP > 4.5 tsf (SC)		
						, ,	
	=						
		3///					
				100 SS	SS-13 BLOWCO	BLOWCOUNT	
					38.0	11-14-21-25	
-45.7	39.0				40.0	N = 35, PP > 4.5 tsf Top 10" (SC)	
			CLAY (CL), trace of sand, 29 <n<35, brown<="" hard,="" reddish="" stiff="" td="" to="" very=""><td></td><td></td><td>Bottom 14" (CL) with sand</td><td></td></n<35,>			Bottom 14" (CL) with sand	
				100	00.44	DI OMCOUNT	
				100	SS-14 43.0	BLOWCOUNT 17-11-18-24	
	-			Ī	45.0	N = 29 (CL) with sand	

DRILLING	G LOG ((Cont S	heet)	-6.7	TOP OF HOLE				Hole No. TTI	DHC-1		
PROJECT Lockheed Martin MRC					INSTALLA				SHEET 3 OF 3 SHEETS			
ELEVATION	DEPTH	LEGEND			TION OF MATERIA escription)	ALS	% CORE RECOV- ERY	BOX OR SAMPLE NO. f	REMAR (Drilling time, wate weathering, etc., i	KS er loss, depth if significant)		
а	b	c	CLAY (CL), trace of	d sand, 29 <n<35 wn <i>(continued)</i></n<35 	, very stiff	e	f	g		_	
	_		to hard	, reddish bro	wn (continued)						Ė,	
											<u>_</u>	15
	_										E	
											E	
	_ _											
	_											
	_						100	SS-15 48.0	BLOWCOUNT 13-15-20-36			
								50.0	N = 35, PP > 4.5 tsf (CL) with sand			
-56.7	50.0		END O	F BORING							5	50
			2.45	· Boranto							E	
	<u> </u>											
	_ 											
											E	
	<u> </u>										_ 5	55
	_										E	
	_										Ė	
	_											
	_											
	_ _											
											' -	30
											E	
	<u> </u>										F	
	_										E	
											E	
											_	
											E	
	_										6	35
											F	
											F	
	_ 										E	
											<u> </u>	
											E	
ENG FORM JUN 67	1836-	A					PROJECT Lockhe	eed Marti	in MRC	HOLE NO. TTDHC-1		

1836-A Lockheed Martin MRC JUN 67

Hole No. TTDHC-2

DRILLI	NG LOG		ENT .ockheed Martin Corporation		T NUMBER		SHEET OF 3	1 SHEETS	
1. PROJECT		1 -	.comicca martin Corporation	194-8711 OF 3 SHEETS 10. DRILLING METHOD Mud Rotary					
	Martin MRC			11. DATUM FOR ELEVATION SHOWN (TBM or MSL)					
2. LOCATION (Middle Ri	Coordinates or Siver, MD N 6	tation) 805.5	92.8100 E 1,474,909.0900	MSL 12. MANUFACTURER'S DESIGNATION OF DRILL					
3. DRILLING A		,,,	. ,						
	As shown on drav	wing tit			L NO. OF SOPLES TAKEN		DISTURBED UNDISTUR		
file number)			TTDHC-2	14. TOTA	L NUMBER	CORE BOX			
5. NAME OF DI C. Lopez	KILLER			15. ELEV	ATION GRO	UND WATE			
6. DIRECTION				16. DATE	HOLE	ST	ARTED COMPLETED 9/29/2015 9/29/20	115	
⊠ VERTICA			DEG. FROM VERT.		ATION TOP	OF HOLE	-3.5	,,,,	
	OF OVERBURD						OR BORING	%	
9. TOTAL DEP	LED INTO ROC	K	50.0	19. GEOL	OGIST	рі	ama Tamana		
			CLASSIFICATION OF MATERIAL	 _S	% CORE	BOX OR	Lama Tamang REMARKS		
ELEVATION		SEND	(Description)		RECOV- ERY	SAMPLE NO. f	weathering, etc., if significant	th t)	
-3.5	0.0 _	С	d UNSAMPLED		е	T	g		
								E	
								E	
								<u> </u>	
								E	
								E	
								E	
-8.5	5.0	1 - 1 -	011 774 01 (22 (22 (22 (22 (22 (22 (22 (D. 0.440 5 : 11 : -	5	
			SILTY CLAY (CL-ML) with sands, trace organics, N = WR, very soft, gray to determine the same of the sa	ce of lark grav	4	SS-1 5.0	BLOWCOUNT WR-WR-WR	E	
			, , , , , , , , , , , , , , , , , , , ,	J. ~J		7.0	N = WR	E	
							(CL-ML) with sand		
								E	
								E	
					58	SS-2 7.0	BLOWCOUNT WR-WR-WR-1	E	
						9.0	N = WR	E	
							(CL-ML) with sand		
								E	
-12.5	9.0							Ē	
			CLAYEY SAND (SC/SC-SM) with thir of silty clay and little amont of silt, 10-	n layers <n<20< td=""><td>71</td><td>SS-3 9.0</td><td>BLOWCOUNT 4-5-5-9</td><td>E</td></n<20<>	71	SS-3 9.0	BLOWCOUNT 4-5-5-9	E	
			N=4 @ 21' to 23', medium dense, ligh	nt		11.0	N = 10		
		111	yellowish brown, reddish brown and v	vnitisn			(SC-SM)		
		 						E	
								E	
		1			75	SS-4 11.0	BLOWCOUNT 4-6-6-8	E	
		111				13.0	N = 12	E	
							(SC-SM)	E	
		111						E	
								E	
					50	SS-5 13.0	BLOWCOUNT 7-9-11-12	E	
		111				15.0	N = 20	F	
							(SC)	F	
								F	
		111						<u> </u>	
					83	SS-6a SS-6b	BLOWCOUNT 5-6-8-15	E	
	<i> </i>					15.0	N = 14	F	
		111				17.0	(SC)	F-	
								F	
		111				<u>L</u>		F	
		111			63	SS-7	BLOWCOUNT		
	<i></i>					17.0 19.0	3-6-6-8 N = 12	F	
]					(SC-SM)	<u> </u>	
								F	
	<i> \ \ \ \ \ \ \ \ \ \ \ \ \ </i>	111						F	
]			46	SS-8	BLOWCOUNT	<u> </u>	
						19.0 21.0	4-4-5-4 N = 9	F	
ENC FORM	<u> </u>	111			PROJECT		(SC-SM)	<u> </u>	
ENG FORM MAR 71	NG FORM 1836 PREVIOUS EDITIONS ARE OBSOLETE. MAR 71						in MRC	NO. DHC-2	

ELEVATION TOP OF HOLE **DRILLING LOG (Cont Sheet)** -3.5 Hole No. TTDHC-2 INSTALLATION SHEET 2 Lockheed Martin MRC 3 OF SHEETS BOX OR SAMPLE NO. f REMARKS CLASSIFICATION OF MATERIALS ELEVATION DEPTH LEGEND (Drilling time, water loss, depth weathering, etc., if significant) RECOV-ERY (Description) CLAYEY SAND (SC/SC-SM) with thin layers of silty clay and little amont of silt, 10<N<20, N=4 @ 21' to 23', medium dense, light yellowish brown, reddish brown and whitish gray (continued) **BLOWCOUNT** 58 SS-9 21.0 23.0 2-2-2-5 N = 4 (SC-SM) BLOWCOUNT 3-4-8-10 N = 12 (SC-SM) SS-10 23.0 67 25 28.0 <u>-31.5</u> CLAYEY SAND (SC) with little amuonts of silt, 31<N<48, dense, light reddish brown to brown SS-11 **BLOWCOUNT** 100 28.0 30.0 9-15-20-30 N = 35 30 SS-12a SS-12b 33.0 35.0 BLOWCOUNT 10-11-28-41 N = 39 Top 12" (SP-SM) Bottom 12" (SC) 100 35 BLOWCOUNT 10-13-18-26 100 SS-13 38.0 40.0 N = 31 (SC) 96 SS-14 **BLOWCOUNT** 43.0 45.0 22-21-27-31 N = 48

ENG FORM 1836-A

Lockheed Martin MRC

DRILLING	G LOG ((Cont S	heet)	ELEVATIO -3.5	N TOP OF H	IOLE				Hole No.	TTDH	C-2		
PROJECT Lockheed	Martin I	MRC					INSTALLA				OF	HEET 3 3 SHEETS		
ELEVATION	DEPTH	LEGEND			ATION OF N		6	% CORE RECOV- ERY	BOX OR SAMPLE NO. f	F (Drilling tim weathering	REMARKS ne, water los g, etc., if sig	ss, depth Inificant)		
а	b	c	CLAYE	Y SAND (S	d SC) with litt light reddis	le amuoni	ts of silt,	е	f		g	<u> </u>	\vdash	-
	=		(contin	48, dense, ued)	light readis	sn brown t	o brown							45
	_						•						E	0
													E	_
	=													
														_
	=												F	
								100	SS-15	BLOWCOUNT				-
	=								48.0 50.0	11-18-15-18 N = 33 (SC)				
	_												E	-
-53.5	50.0													_50
	_		END O	F BORING	;								E	
														-
													F	
														-
	=												E	
	_												E	-
														_
	=													
	_												E	_55
	=												F	
														-
	=												E	
														-
	_												E	_
	=													
														_
	_ 												E	
														_60
	_												E	
	=													-
	_													_
	_													-
	_													
	_												E	-
	_													_65
													F	-
													E	_
													E	
	_												E	-
	=												E	
ENG FORM JUN 67	1836-	A	<u> </u>					PROJECT Lockhe	eed Marti	n MRC		HOLE NO. TTDHC-2		-

Hole No. TTDHC-3

DRILLI	NG LOG		ENT Lockheed Martin Corporation	PROJECT 194-8	ΓNUMBER		SHEET 1 OF 3 SHE		
1. PROJECT			Lockileed Martin Corporation		ING METHO	 DD	Mud Rotary	E13	
	Martin MRC			11. DATU			HOWN (TBM or MSL)		
2. LOCATION (Middle Ri	Coordinates or St ver, MD N 60	ation) 05.4) .05.3400 E 1,474,702.3400	MSL 12. MANU	JEACTURES	R'S DESIGN	IATION OF DRILL		
3. DRILLING A			, , , :						
UniTech 4. HOLE NO. (A	As shown on draw	ing ti	tle and		L NO. OF SO LES TAKEN		DISTURBED UNDISTURBED 15 1		
file number)			TTDHC-3	14. TOTA	L NUMBER	CORE BOX			
5. NAME OF D C. Lopez	RILLER			15. ELEVATION GROUND WATER					
6. DIRECTION				16. DATE HOLE STARTED COMPLETED 9/30/2015 10/1/2015					
			DEG. FROM VERT.	17. ELEVATION TOP OF HOLE -7.1					
	OF OVERBURDI			18. TOTAL CORE RECOVERY FOR BORING					
9. TOTAL DEP	LLED INTO ROCK		50.0	19. GEOL	.OGIST	R I	Lama Tamang		
ELEVATION		-ND	CLASSIFICATION OF MATERIAL	S	% CORE	BOX OR	REMARKS		
a	DEPTH LEGI		(Description)		RECOV- ERY e	SAMPLE NO. f	(Drilling time, water loss, depth weathering, etc., if significant) g		
-7.1	0.0		UNSAMPLED			'	9		
								E	
								F	
								F	
								F	
								E	
								E	
-12.1	5.0							- - 5	
-12.1	5.0		CLAY (CL), WH <n<14, soft="" sti<="" td="" to="" very=""><td>iff, gray</td><td>0</td><td>SS-1</td><td>BLOWCOUNT</td><td></td></n<14,>	iff, gray	0	SS-1	BLOWCOUNT		
						5.0 7.0	WH-WH-WH N = WH	E	
							(CL)	<u> </u>	
					63	SS-2	BLOWCOUNT		
						7.0 9.0	3-4-5-6 N = 9		
						0.0	(CL)	_	
					83	ST-1	Shelby tube		
						9.0 10.5	(CL)	F	
								1	
								F	
					58	SS-3 10.5	BLOWCOUNT 4-5-9-10	F	
						12.5	N = 14	<u> </u>	
							(CL)	F	
								<u> </u>	
-19.6	12.5		011 774 0 44 17 17 27 27 27 27					F	
			SILTY SAND (SC-SM) with some amount silt and clay, 15 <n<23, dense<="" medium="" td=""><td>ounts of e, brown.</td><td>58</td><td>SS-4 12.5</td><td>BLOWCOUNT 6-6-9-14</td><td>F</td></n<23,>	ounts of e, brown.	58	SS-4 12.5	BLOWCOUNT 6-6-9-14	F	
			reddish brown, and whitish gray	,		14.5	N = 15 (SC-SM)	E	
							(55 5)	E	
					63	SS-5	BLOWCOUNT	F	
					US	14.5	26-11-12-11		
		1				16.5	N = 23 (SC-SM)	F	
								E	
		11			92	SS-6	BLOWCOUNT	F	
					32	16.5	6-8-11-15		
		11				18.5	N = 19 (SC-SM)	F	
								E	
		11							
					67	00.7	PLOWCOUNT	E	
		$\ \cdot\ $			67	SS-7 18.5	BLOWCOUNT 6-7-10-10	E	
						20.5	N = 17 (SC-SM)	E	
								E.	
ENG FORM	1926 555	VIC	IS EDITIONS ARE ORGOLETE		PROJECT	1	HOLE NO.	2	
MAR 71	1836 PRE	VIOL	JS EDITIONS ARE OBSOLETE.		Lockh	eed Mart	in MRC HOLE NO.	C-3	

	G LOG (Cont S	7.1	II ATIO:		Hole No. TTDHC	-3	
ROJECT Lockheed	d Martin MRC	INSTA	LLATION		SHEET 2 OF 3 SHEET		
ELEVATION a	DEPTH LEGEND	CLASSIFICATION OF MATERIALS (Description) d	% CORE RECOV- ERY e	BOX OR SAMPLE NO. f	REMARKS (Drilling time, water loss, weathering, etc., if signif		
		SILTY SAND (SC-SM) with some amounts of silt and clay, 15 <n<23, (continued)<="" and="" brown,="" browneddish="" dense,="" gray="" medium="" td="" whitish=""><td>f</td><td>SS-8 20.5 22.5</td><td>BLOWCOUNT 5-8-15-18 N = 23 (SC-SM)</td><td></td></n<23,>	f	SS-8 20.5 22.5	BLOWCOUNT 5-8-15-18 N = 23 (SC-SM)		
-29.6	22.5	CILT CAND (CC CM) with some amounts of	06	88.0	DI OWCOLINT		
		SILT SAND (SC-SM) with some amounts of silt, 42 <n<52, 29.5'="" 31.5',="" @="" brown="" brown<="" colors="" dense="" dense,="" in="" mediul="" n="24" reddish="" td="" to="" varying="" very=""><td>n </td><td>SS-9 22.5 24.5</td><td>BLOWCOUNT 9-16-26-32 N = 42 (SC-SM)</td><td></td></n<52,>	n	SS-9 22.5 24.5	BLOWCOUNT 9-16-26-32 N = 42 (SC-SM)		
			96	SS-10 24.5 26.5	BLOWCOUNT 13-22-30-39 N = 52 (SC-SM)		
-38.1	31.0	SILTY SAND (SM) with trace of clay, 28 <n<37, dense="" dense,="" light<br="" medium="" to="">reddish brown to reddish brown</n<37,>	100	SS-11 29.5 31.5	BLOWCOUNT 14-20-32-36 N = 24 Top 21" (SC-SM) Bottom 3" (SM)		
			100	SS-12 34.5 36.5	BLOWCOUNT 11-15-22-36 N = 37 (SM)		
					(JW)		
			100	SS-13 39.5	BLOWCOUNT 14-15-15-19		
				41.5	N = 30 (SM) with trace of clay		

PROJECT Lockheed Martin MRC

PROJECT	S LOG (Cont S	neet) -7.1	INSTAL	LATION		Hole No. TTDHC-3			
	Martin MRC						OF 3 SHEETS		
LEVATION	DEPTH LEGEND b c	CLASSIFICATION OF (Description		% CORE RECOV- ERY	BOX OR SAMPLE NO. f	REMARK (Drilling time, water weathering, etc., if	S loss, depth significant)		
а	b c -	SILTY SAND (SM) with trace	e of clay,	е	T	<u>g</u>			
		SILTY SAND (SM) with trace 28 <n<37, brown="" brown<="" dense="" medium="" reddish="" td="" to=""><td>own <i>(continued)</i></td><td>100</td><td>SS-14</td><td>BLOWCOUNT</td><td></td></n<37,>	own <i>(continued)</i>	100	SS-14	BLOWCOUNT			
					44.5 46.5	10-12-16-19 N = 28			
						(SM)			
				100	SS-15 48.0	BLOWCOUNT 8-12-18-26 N = 30			
					50.0	N = 30 (SM)			
-57.1	50.0								
-57.1	-	END OF BORING							
	=								
	=								
	=								
	\exists								
	-								
	\exists								
	=								
	7								
	\Box								
	\exists								
	\exists								
IG FORM	1836-A	I		PROJECT	and Mart	1	HOLE NO.		

PROJECT Lockheed Martin MRC

TETRA TECH Hole No. TTDHC-4 CLIENT PROJECT NUMBER SHEET **DRILLING LOG Lockheed Martin Corporation** 194-8711 OF 3 SHEETS 1. PROJECT Mud Rotary 10. DRILLING METHOD Lockheed Martin MRC 11. DATUM FOR ELEVATION SHOWN (TBM or MSL) 2. LOCATION (Coordinates or Station)
Middle River, MD N 604,854.1300 E 1,473,871.3100 MSL 12. MANUFACTURER'S DESIGNATION OF DRILL 3. DRILLING AGENCY UniTech 13. TOTAL NO. OF SOIL SAMPLES TAKEN DISTURBED UNDISTURBED 4. HOLE NO. (As shown on drawing title and file number) TTDHC-4 14. TOTAL NUMBER CORE BOXES 5. NAME OF DRILLER 15. ELEVATION GROUND WATER C. Lopez COMPLETED STARTED 6. DIRECTION OF HOLE 16. DATE HOLE 10/5/2015 10/5/2015 ☐ INCLINED DEG. FROM VERT. 17. ELEVATION TOP OF HOLE -11.8 7. THICKNESS OF OVERBURDEN 18. TOTAL CORE RECOVERY FOR BORING 8. DEPTH DRILLED INTO ROCK 19. GEOLOGIST R. Lama Tamang
OR REMARKS
PLE (Drilling time, water loss, depth 9. TOTAL DEPTH OF HOLE 50.0 CLASSIFICATION OF MATERIALS ELEVATION DEPTH LEGEND

ELEVATION	DEPTH	LEGEND	CLASSIFICATION OF MATERIALS (Description)	RECOV- ERY	SAMPLE NO. f	(Drilling time, water loss, depth weathering, etc., if significant)	
-11.8	0.0 _	С	d UNSAMPLED	е	f	g	+-
11.0	5.5 _	1	ONOMIVII ELD				F
							F
	_ _ _						
	_ _ _ _						
	_						E
	_ _ _						E
	_						\vdash
	_						F
-16.8	5.0			07	00.4	DI OMOGUNIT	5
	_		SANDY CLAY (CLS) with varying amounts of sand and occasional clay layers, 15 <n<34,< td=""><td>67</td><td>SS-1 5.0</td><td>BLOWCOUNT 4-8-9-12</td><td></td></n<34,<>	67	SS-1 5.0	BLOWCOUNT 4-8-9-12	
	_		very stiff to hard, light brown and yellowish		7.0	N = 17	
			brown			(CLS)	
							\vdash
	=	V//////					F
				100	ST-1	Shelby tube	
					7.0 8.5	PP = 2.5 tsf (CL)	F
						, ,	
							E
	_			58	SS-2	BLOWCOUNT	E
					8.5 10.5	4-10-13-15 N = 23, PP = 0.5-2.0 tsf	
	_					(CL)	F
	_						F 1
	_			63	SS-3	BLOWCOUNT	
					10.5	1-5-10-11	
					12.5	N = 15 (CLS)	E
	_					(==)	E
	_						F
	_			100	SS-4 12.5	BLOWCOUNT 8-15-19-29	F
					14.5	N = 34, PP = 0.75-4.5 tsf	
	_					Top & Bottom 7" (CLS) Middle 10" (SM)	
						, ,	
-26.3	 14.5						E
_0.0	- 1.0		CLAY (CL) with trace of sand, 44 <n<69,< td=""><td>100</td><td>SS-5</td><td>BLOWCOUNT</td><td>E</td></n<69,<>	100	SS-5	BLOWCOUNT	E
			N=81/8" @ 18.5' to 20.5', hard, brown to reddish brown		14.5 16.5	12-16-28-42 N = 44, PP = 0.75-4.5 tsf	<u> </u>
			reducti stemi		10.0	(CL)	F
							F
		(/////		100	SS-6	BLOWCOUNT	F
				100	16.5	13-21-48-49	E
					18.5	N = 69, PP = 3.0-4.5 tsf (CL)	E
	=	<i>\\\\\\</i>					F
							F
							F
		\ ////////////////////////////////////		58	SS-7	BLOWCOUNT	F
					18.5 20.5	18-31-50/2"-x N = 81/8", PP = 2.5-4.5 tsf	
	_					(CL)	E
NG FORM	1836	PREVIOL	JS EDITIONS ARE OBSOLETE.	PROJECT	and Maret	HOLE NO.	
MAR 71				LOCKNE	eed Mart	in MRC TTDHC-	4

ELEVATION TOP OF HOLE DRILLING LOG (Cont Sheet) -11.8 Hole No. TTDHC-4 PROJECT INSTALLATION SHEET 2 Lockheed Martin MRC 3 OF SHEETS REMARKS CLASSIFICATION OF MATERIALS ELEVATION DEPTH LEGEND SAMPLE NO. f (Drilling time, water loss, depth weathering, etc., if significant) RECOV-ERY (Description) а d -32.3 20.5 SS-8 20.5 22.5 SANDY SILT (MLS), 29<N<36, very stiff to **BLOWCOUNT** 14-15-21-38 N = 36 hard, brown to reddish brown (MLS) SS-9 22.5 24.5 BLOWCOUNT 100 13-12-17-24 N = 29, PP = 1.0-3.5 tsf (MLS) SS-10 24.5 26.5 BLOWCOUNT 9-18-13-28 N = 31 100 25 (MLS) 28.0 -39.8 CLAYEY SAND (SC-SM) with varying amounts of silt and clay, 32<N<51, N=51/6" @ 39.5' to 41.5', N=89/10" @ 44.5' to 46.5' dense to very dense, varying colors in brown, reddish brown and dark brown BLOWCOUNT 100 SS-11 29.5 31.5 18-16-16-15 N = 32 30 SS-12 34.5 36.5 BLOWCOUNT 12-14-37-31 N = 51 100 35 (SC-SM) BLOWCOUNT 29-51/6"-x-x N = 51/6", PP > 4.5 tsf (SC) SS-13 39.5 41.5 50

ENG FORM 1836-A PROJECT Lockheed Martin MRC TTDHC-4

MISTALLATION SITEST 3	DRILLING	G LOG ((Cont S	heet)	-11.8				Hole No. TTDHC-4	
Section Depth Listing Chercipions Section Se		l Martin I	MRC			INSTALLA	ATION		SHEET 3 OF 3 SHEETS	
CLAYET SAND (30 S.S.M) with varying Clayer (30 s.S.M) with varying G.S.M. Clayer (30 s.M. Cl	ELEVATION	DEPTH	LEGEND		(Description)	_S	ERY	BOX OR SAMPLE NO.	REMARKS (Drilling time, water loss, depth weathering, etc., if significant)	
48.0 (27-38-20-24	a		c	@ 39.5 dense t	Y SAND (SC-SM) with varying ts of silt and clay, 32 <n<51, n<br="">of to 41.5', N=89/10" @ 44.5' to to very dense, varying colors in</n<51,>	46.5' n brown,		SS-14 44.5	BLOWCOUNT 15-39-50/4"-x N = 89/10", PP > 4.5 tsf	4!
	-61.8	50.0					100	48.0	27-18-20-24 N = 38, PP > 4.5 tsf	
	-01.8			ENDO	F BORING					

Lockheed Martin MRC

TTDHC-4

Hole No. TTDHC-5

DRILLI		ENT ockheed Martin Corporation	PROJECT NUMBER SHEET 1 194-8711 OF 3 SHEETS								
1. PROJECT		<u> </u>		Sourious Martin Corporation	10. DRILLING METHOD Mud Rotary						
2. LOCATION	d Martin M (Coordinates	or Statio	on))	11. DATUM FOR ELEVATION SHOWN (TBM or MSL) MSL						
Middle Ri	ver, MD	N 604	·,6	66.6700 E 1,473,652.0100		JFACTUREF	R'S DESIGN	ATION OF DRILL		\dashv	
UniTech					13. TOTAL NO. OF SOIL DISTURBED UNDISTURBED						
4. HOLE NO. (file number)	As shown on	drawing	g tit	tle and TTDHC-5		SAMPLES TAKEN 15 0 14. TOTAL NUMBER CORE BOXES					
5. NAME OF D						ATION GRO					
C. Lopez 6. DIRECTION					16. DATE			ARTED C	OMPLETED		
∨ERTIC	AL	INCLINE	ΞD	DEG. FROM VERT.		ATION TOP	OE HOLE	10/6/2015	10/6/2015		
7. THICKNESS						L CORE RE				%	
8. DEPTH DRI				50.0	19. GEOL	OGIST	Б.1	T			
9. TOTAL DEP			_	CLASSIFICATION OF MATERIAL	.S	% CORE	BOX OR	_ama Tamang REM/			
ELEVATION	DEPTH b	LEGEN c	ן ט	(Description) d		RECOV- ERY	SAMPLE NO. f	(Drilling time, w weathering, etc	c., if significant)		
-12.8	0.0	C		UNSAMPLED		е	<u> </u>	<u> </u>	<u> </u>	丰	
										F	
										F	
										E	
										E	
										F	
										F	
										F	
										F	
										F	
										E	
-17.8	5.0	////	J. 1							E	
				SILTY SAND (SM), CLAYEY SAND (SANDY SILT (MLS), 27 <n<34, mediu<="" td=""><td>SC) and um</td><td>63</td><td>SS-1 5.0</td><td>BLOWCOUNT 6-16-15-16</td><td></td><td>E</td></n<34,>	SC) and um	63	SS-1 5.0	BLOWCOUNT 6-16-15-16		E	
				dense to dense, varying colors in light to yellowish brown	t brown		7.0	N = 31, PP = 3.5 tsf (SM)		F	
				to yellowish brown				(SIVI)		F	
										F	
						100	66.0	BLOWCOUNT		F	
						100	SS-2 7.0	9-13-19-19		F	
							9.0	N = 32 (MLS)		F	
										F	
	7									F	
						88	SS-3	BLOWCOUNT		E	
							9.0 11.0	8-12-15-18 N = 27		E	
							11.0	(SM)		E	
										F	
										F	
						96	SS-4	BLOWCOUNT		F	
							11.0 13.0	4-14-20-26 N = 34		F	
								(SC-SM)		F	
										E	
-25.8	13.0	<u>/////</u>								E	
				SANDY SILT (MLS), 36 <n<49, brown<="" gray="" hard,="" light="" td="" to=""><td>whitish</td><td>100</td><td>SS-5 13.0</td><td>BLOWCOUNT 16-25-22-26</td><td></td><td>上</td></n<49,>	whitish	100	SS-5 13.0	BLOWCOUNT 16-25-22-26		上	
	=====================================						15.0	N = 47 (MLS)		F	
								(WLO)		F	
	=====================================									F	
						100	SS-6	BLOWCOUNT		F	
	7					100	15.0	10-17-19-22		F	
							17.0	N = 36 (MLS)		E	
										E	
										E	
						100	SS-7	BLOWCOUNT		F	
							17.0 19.0	12-21-28-36 N = 49, PP > 4.5 tsf		E	
							.5.5	(CL=ML) with sand		E	
	=====================================									F	
-31.8	19.0									F	
01.0	13.5		П	CLAYEY SAND (SC-SM) with varying	J	100	SS-8	BLOWCOUNT		F	
	7			amounts of silt, 17 <n<29, (25',="" dense="" dense,="" medium="" n='66/11"' red<="" td="" to="" very=""><td>ي عن ۵ Idish</td><td></td><td>19.0 21.0</td><td>3-7-22-25 N = 29, PP > 4.5 tsf</td><td></td><td>F</td></n<29,>	ي عن ۵ Idish		19.0 21.0	3-7-22-25 N = 29, PP > 4.5 tsf		F	
	ı →	///		brown and brownish red		1		(SC-SM)			

Continue Martin MRC Classification De Matienhals Clas	ROJECT	S LOG (Cont S	-12.8 INSTALI	ATION		HC-5 SHEET 2	
D CLAYEY SAND (SC. SM) with varying amounts of all. 17-8x-20, N=0011* (Sp. 21 to 20 to			CLASSIFICATION OF MATERIALS	% CORE	BOX OR		OF 3 SHEETS
CANYER SAND (3C SM) with varying amounts of sill. T-level 20, 150 (3C SM) SS-9 SLOWCOUNT S1-15-16 S1-16 S1-15-16 S1-15-16 S1-15-16 S1-15-16 S1-15-16 S1-15			(Description)	RECOV- ERY	SAMPLE NO. f	weathering, etc., if s	loss, depth significant)
100 SS-11 BLOWCOUNT SS-13 BLOWCOUNT SS-13 SS-34	u		CLAYEY SAND (SC-SM) with varying			9	
100 SS-10 SLOWCOUNT 71 SS-10 SLOWCOUNT 100 SS-11 SLOWCOUNT 100 SS-11 SLOWCOUNT 100 SS-11 SLOWCOUNT 100 SS-11 SLOWCOUNT 100 SS-12 SLOWCOUNT 100 SS-13 SLOWCOUNT 100 SS-13 SLOWCOUNT 100 SS-14 SLOWCOUNT 100 SS-15 SLOWCOUNT 100 SS-16 SLOWCOUNT 100 SS-17 SLOWCOUNT 100 SS-18 SLOWCOUNT			25', medium dense to very dense, reddish brown and brownish red (continued)				
23.0 N = 28, FP = 1.5 lsf (SC-SM) 71			(100	SS-9	BLOWCOUNT	
71 SS-10 BLOWCOUNT 6-15-515-3 (S-15-3) N-2 (23.0	N = 29, PP = 1.5 tsf	
23.0 & 1.55.15* × N = 66.11* (SC SM) 100 SS-11 BLOWCOUNT 17.7-10-10 SS-13 SS-13 SC SM) 100 SS-13 BLOWCOUNT (SC SM) 100 SS-13 BLOWCOUNT (SC SM) 100 SS-14 BLOWCOUNT 18.1 SS-13 SS-13 SS-13 SS-13 SC SM)						(30-311)	
23.0 & 1.55.15* × N = 66.11* (SC SM) 100 SS-11 BLOWCOUNT 17.7-10-10 SS-13 SS-13 SC SM) 100 SS-13 BLOWCOUNT (SC SM) 100 SS-13 BLOWCOUNT (SC SM) 100 SS-14 BLOWCOUNT 18.1 SS-13 SS-13 SS-13 SS-13 SC SM)							
100 SS-12 BLOWCOUNT (SC-SM)				71	SS-10	BLOWCOUNT	
100 SS-11 BLOWCOUNT (0-12-15-23 N = 27 (SC-SM)) 100 SS-12 SS-13 (SC-SM) 100 SS-13					23.0 25.0	N = 66/11"	
28.0 10-12-15-23 N = 27 (SC-SM) 100 SS-12 SLOWCOUNT 77-10-19 N = 17, PP = 1.0-1.5 tef (SC-SM) 100 SS-13 SLOWCOUNT N = 17, PP = 1.0-1.5 tef (SC-SM) 100 SS-14 SC-SM) SC-SM) 100 SS-14 SC-SM) SC-SM)						(SC-SM)	
28.0 10-12-15-23 N = 27 (SC-SM) 100 SS-12 SLOWCOUNT 77-10-19 N = 17, PP = 1.0-1.5 tef (SC-SM) 100 SS-13 SLOWCOUNT N = 17, PP = 1.0-1.5 tef (SC-SM) 100 SS-14 SC-SM) SC-SM) 100 SS-14 SC-SM) SC-SM)							
100 SS-12 BLOWCOUNT 77-10-19 (SC-SM) 100 SS-12 (SC-SM) 100 SS-13 BLOWCOUNT 77-10-19 (SC-SM) 100 SS-13 BLOWCOUNT 79-12-21 (SC-SM) 100 SS-14 BLOWCOUNT 79-12-21 (SC-SM)							
100 SS-12 BLOWCOUNT 77-10-19 (SC-SM) 100 SS-12 (SC-SM) 100 SS-13 BLOWCOUNT 77-10-19 (SC-SM) 100 SS-13 BLOWCOUNT 77-12-11 (SC-SM)							
100 SS-12 BLOWCOUNT 77-10-19 (SC-SM) 100 SS-12 (SC-SM) 100 SS-13 BLOWCOUNT 77-10-19 (SC-SM) 100 SS-13 BLOWCOUNT 79-12-21 (SC-SM) 100 SS-14 BLOWCOUNT 79-12-21 (SC-SM)							
100 SS-12 BLOWCOUNT 77-10-19 (SC-SM) 100 SS-12 (SC-SM) 100 SS-13 BLOWCOUNT 77-10-19 (SC-SM) 100 SS-13 BLOWCOUNT 77-12-11 (SC-SM)		3//					
28.0 10-12-15-23 N = 27 (SC-SM) 100 SS-12 SLOWCOUNT 77-10-19 N = 17, PP = 1.0-1.5 tef (SC-SM) 100 SS-13 SLOWCOUNT N = 17, PP = 1.0-1.5 tef (SC-SM) 100 SS-14 SC-SM) SC-SM) 100 SS-14 SC-SM) SC-SM)							
28.0 10-12-15-23 N = 27 (SC-SM) 100 SS-12 SLOWCOUNT 77-10-19 N = 17, PP = 1.0-1.5 lsf 100 SS-13 SLOWCOUNT N = 17, PP = 1.0-1.5 lsf 100 SS-14 SLOWCOUNT N = 21 100 SS-15							
100 SS-12 BLOWCOUNT 77-10-19 (SC-SM) 100 SS-12 (SC-SM) 100 SS-13 BLOWCOUNT 77-10-19 (SC-SM) 100 SS-13 BLOWCOUNT 79-12-21 (SC-SM) 100 SS-14 BLOWCOUNT 79-12-21 (SC-SM)				100	00 11	BLOWCOUNT	
100 SS-12 BLOWCOUNT 77-10-19 SS-13 SLOWCOUNT 78-17.PP = 1.0-1.5 tsf (SC-SM) 100 SS-13 BLOWCOUNT 78-12-21 (SC-SM) 100 SS-14 BLOWCOUNT 78-12-21 (SC-SM)				100	28.0	10-12-15-23 N = 27	
33.0 7-7-10-19 N=17.PP = 1.0-1.5 tsf (SC-SM) 100 SS-13 38.0 7-9-12-21 N=21 (SC-SM) 100 SS-14 43.0 8-9-12-14 N=21 N=21 N=21 N=21 N=21 N=21 N=21 N=21					30.0	(SC-SM)	
33.0 7-7-10P 1.0-1.5 tsf (SC-SM) 100 SS-13 38.0 7-9-12-21 7-9-12-21 (SC-SM) 100 SS-14 40.0 SS-14 43.0 43.0 8-9-12-14 8-9							
33.0 7.7-10-19 N=17.PP = 1.0-1.5 tsf (SC-SM) 100 SS-13 38.0 40.0 SS-14 (SC-SM) 100 SS-14 43.0 8-9-12-14 N=2-1							
33.0 7-7-10-19 N=17.PP = 1.0-1.5 tsf (SC-SM) 100 SS-13 38.0 7-9-12-21 N=21 (SC-SM) 100 SS-14 40.0 SS-14 8-9-12-14 N=21 N=21 N=21 N=21 N=21 N=21 N=21 N=21							
100 SS-13 38.0 (SC-SM) 100 SS-13 38.0 7-7-19-19 N = 1.0-1.5 tsf (SC-SM) 100 SS-13 (SC-SM) 100 SS-14 (SC-SM) 100 SS-14 43.0 8-9-12-14 N N = 21							
100 SS-13 38.0 (SC-SM) 100 SS-13 38.0 7-7-19-19 N = 1.0-1.5 tsf (SC-SM) 100 SS-13 (SC-SM) 100 SS-14 (SC-SM) 100 SS-14 43.0 8-9-12-14 N N = 21							
100 SS-13 38.0 (SC-SM) 100 SS-13 38.0 7-7-19-19 N = 1.0-1.5 tsf (SC-SM) 100 SS-13 (SC-SM) 100 SS-14 (SC-SM) 100 SS-14 43.0 8-9-12-14 N N = 21							
33.0 7-7-10-19 N=17.PP = 1.0-1.5 tsf (SC-SM) 100 SS-13 38.0 7-9-12-21 N=10 N=10 N=10 N=10 N=10 N=10 N=10 N=1							
33.0 7-7-10-19 N=17.PP = 1.0-1.5 tsf (SC-SM) 100 SS-13 38.0 7-9-12-21 N=21 (SC-SM) 100 SS-14 40.0 SS-14 (SC-SM)		4/1					
100 SS-13 BLOWCOUNT 7-9-12-21 (SC-SM) 100 SS-14 43.0 8-12-14 100 SS-14 N-21 (SC-SM)				100	33.0	7-7-10-19	
100 SS-13 BLOWCOUNT 7-9-12-21 N = 21 (SC-SM) 100 SS-14 43.0 8-9-12-14 8-9-12-14					35.0	N = 17, PP = 1.0-1.5 tsf	
38.0 40.0 7-9-12-21 N = 21 (SC-SM) 100 SS-14 43.0 8-9-12-14 N = 21						,	
38.0 40.0 7-9-12-21 N = 21 (SC-SM) 100 SS-14 43.0 8-9-12-14 N = 21							
38.0 40.0 7-9-12-21 N = 21 (SC-SM) 100 SS-14 43.0 8-9-12-14 N = 21						1	
38.0 40.0 7-9-12-21 N = 21 (SC-SM) 100 SS-14 43.0 8-9-12-14 N = 21							
38.0 40.0 7-9-12-21 N = 21 (SC-SM) 100 SS-14 43.0 8-9-12-14 N = 21							
38.0 40.0 7-9-12-21 N = 21 (SC-SM) 100 SS-14 43.0 8-9-12-14 N = 21							
38.0 40.0 7-9-12-21 N = 21 (SC-SM) 100 SS-14 43.0 8-9-12-14 N = 21							
38.0 40.0 7-9-12-21 N = 21 (SC-SM) 100 SS-14 43.0 8-9-12-14 N = 21							
100 SS-14 43.0 BLOWCOUNT 43.0 8-9-12-14 N = 21				100	SS-13	BLOWCOUNT	
100 SS-14 43.0 45.0 BLOWCOUNT 8-9-12-14 N = 21					38.0 40.0	N = 21	
43.0 8-9-12-14 45.0 N = 21						(SC-SM)	
43.0 8-9-12-14 45.0 N = 21							
43.0 8-9-12-14 45.0 N = 21							
43.0 8-9-12-14 45.0 N = 21							
43.0 8-9-12-14 45.0 N = 21							
43.0 8-9-12-14 45.0 N = 21							
43.0 8-9-12-14 45.0 N = 21							
43.0 8-9-12-14 45.0 N = 21		4/					
43.0 8-9-12-14 45.0 N = 21							
45.0 N = 21				100	43.0	8-9-12-14	
G FORM 1926 A PROJECT HOLE NO.					45.0		HOLE NO.

PROJECT Lockheed Martin MRC

	G LOG (Cont S	sheet) ELEVATION TOP OF HOLE -12.8			Hole No. TTDHC-5	
PROJECT Lockheed	I Martin MRC		INSTALLATION		SHEET 3 OF 3 SHEETS	
ELEVATION	DEPTH LEGEND	CLASSIFICATION OF MATERIALS (Description) d	ERY	BOX OR SAMPLE NO. f	REMARKS (Drilling time, water loss, depth weathering, etc., if significant)	
a	b c	CLAYEY SAND (SC-SM) with varying amounts of silt, 17 <n<29, (continued)<="" 25',="" @="" and="" brown="" brownish="" dense="" dense,="" medium="" n='66/11"' red="" td="" to="" very=""><td>e 23' to</td><td>Ť</td><td>g -</td><td></td></n<29,>	e 23' to	Ť	g -	
			100	SS-15 48.0	BLOWCOUNT 7-8-11-17	
-62.8	50.0			50.0	N = 19 (SC-SM)	
		END OF BORING				
ENO EODIA			DDO ISCT		LUQUENO	E

ENG FORM 1836-A PROJE Loc

PROJECT Lockheed Martin MRC

TETRA TECH Hole No. TTDHC-6 PROJECT NUMBER SHEET 3 OF SHEETS Mud Rotary

DRILLING LOG Lockheed Martin Corporation 194-8711 1. PROJECT 10. DRILLING METHOD Lockheed Martin MRC 11. DATUM FOR ELEVATION SHOWN (TBM or MSL) 2. LOCATION (Coordinates or Station)
Middle River, MD N 604,446.2700 E 1,473,611.3000 MSL 12. MANUFACTURER'S DESIGNATION OF DRILL 3. DRILLING AGENCY UniTech 13. TOTAL NO. OF SOIL SAMPLES TAKEN DISTURBED UNDISTURBED HOLE NO. (As shown on drawing title and file number) TTDHC-6 14. TOTAL NUMBER CORE BOXES 5 NAME OF DRILLER 15. ELEVATION GROUND WATER C. Lopez COMPLETED STARTED 6. DIRECTION OF HOLE 16. DATE HOLE 10/5/2015 10/5/2015 ☐ INCLINED DEG. FROM VERT 17. ELEVATION TOP OF HOLE -8.5 7. THICKNESS OF OVERBURDEN 18. TOTAL CORE RECOVERY FOR BORING 8. DEPTH DRILLED INTO ROCK 19. GEOLOGIST R. Lama Tamang

COR REMARKS

MPLE (Drilling time, water loss, depth
O. weathering, etc., if significant)

g 9. TOTAL DEPTH OF HOLE 50.0 BOX OR SAMPLE NO. % CORE CLASSIFICATION OF MATERIALS **ELEVATION** DEPTH LEGEND RECOV-ERY (Description) d -8.5 0.0 UNSAMPLED -13.5 5.0 SILTY CLAY (CL-ML), 8<N<15, stiff, reddish **BLOWCOUNT** SS-1 3-5-10-9 N = 15, PP = 2.6-3.5 tsf 5.0 7.0 brown and brownish red (CL) with organics SS-2 7.0 83 **BLOWCOUNT** 3-3-5-9 N = 8, PP = 1.2-2.0 tsf (CL-ML) with sand 9.0 79 SS-3 **BLOWCOUNT** 6-6-8-11 N = 14, PP = 1.5-2.0 tsf 9.0 11.0 (CL-ML) -19.5 11.0 CLAY (CL) interbedded with varying amonts of silt, 26<N<35, N=15 @ 17' to 19' stiff to hard, brown to reddish brown SS-4 BLOWCOUNT 71 11.0 6-11-15-17 N = 26, PP = 2.5-3.0 tsf 13.0 (CL) 96 ST-1 Shelby tube 13.0 (CL) 15 **BLOWCOUNT** 96 SS-5 15.0 17.0 9-11-24-29 N = 35, PP > 4.5 tsf (CL) SS-6 17.0 BLOWCOUNT 3-5-10-13 N = 15 100 19.0 Top 20" (CL) Bottom 4" (CL-ML) **BLOWCOUNT** 100 SS-7 19.0 21.0 13-16-19-20 N = 35, PP > 4.5 tsf 20 HOLE NO. TTDHC-6

Lockheed Martin MRC

CLIENT

DRILLING	G LOG (Cont S	heet) ELEVATION TOP OF HOLE -8.5				Hole No. TT	 DHC-6
PROJECT	I Martin MRC		INSTALLA	TION			SHEET 2 OF 3 SHEETS
ELEVATION	DEPTH LEGEND	CLASSIFICATION OF MATERIAL	_S	% CORE RECOV- ERY	BOX OR SAMPLE	REMAF (Drilling time, wat weathering, etc.,	RKS
а	b c	(Description) d	ament-	ERY e	NO. f	weathering, etc.,	if significant)
		CLAY (CL) interbedded with varying a of silt, 26 <n<35, (continu<="" 17'="" 19'="" @="" brown="" hard,="" n="15" reddish="" sill="" td="" to=""><td>tiff to</td><td></td><td></td><td></td><td></td></n<35,>	tiff to				
-29.5	21.0	CLAYEY SAND (SC-SM) with varying		100	SS-8	BLOWCOUNT	
		amounts of silt, 30 <n<34, brown="" de="" dense,="" gray<="" light="" medium="" td="" to="" whitish=""><td>ense to</td><td>100</td><td>21.0 23.0</td><td>10-14-16-21 N = 30, PP = 4.0 tsf</td><td></td></n<34,>	ense to	100	21.0 23.0	10-14-16-21 N = 30, PP = 4.0 tsf	
		donos, light oromi to million gray			20.0	(SC-SM)	
			-	100	SS-9	BLOWCOUNT	
					23.0 25.0	9-18-22-25 N = 30, PP = 3.0 tsf	
						(SC-SM)	
				100	SS-10 28.0	BLOWCOUNT 16-16-18-20	
					30.0	N = 34, PP = 3.0 tsf (SC-SM)	
-41.0	32.5	CANDY OF AV (OF O) with a series a series					
		SANDY CLAY (CLS) with varying ame silt, 16 <n<32, hard,="" stiff="" to="" varying<br="" very="">in reddish brown to brown</n<32,>	ng colors	100	SS-11	BLOWCOUNT	
		in reducin brown to brown		100	33.0 35.0	10-11-11-17 N = 22, PP = 0.5 tsf	
						Top 12" (SC-SM) Bottom 12" (CLS)	
						, , ,	
				100	SS-12 38.0	BLOWCOUNT 7-8-8-11	
					40.0	N = 16 (CLS)	
			-	100	SS-13	BLOWCOUNT	
				100	43.0 45.0	8-9-8-14 N = 17	
G FORM	\///////			PROJECT		(CLS)	HOLE NO.

Lockheed Martin MRC

DRILLING	LOG	(Cont S	heet)	-8.5	ION TOP O	F HOLE				Hole No. TTI	OHC-6	
PROJECT Lockheed	l Martin I	MRC		-			INSTALL				SHEET 3 OF 3 SHEETS	
ELEVATION	DEPTH	LEGEND		CLASSIF	ICATION C	F MATERIAL	.S	% CORE RECOV- ERY	BOX OR SAMPLE NO. f	REMARI (Drilling time, wate weathering, etc., i	ŔS	
а	b	c	SAND	CLAY (d		ounts of	e	f f	g	- Significant)	_
	_ 		silt, 16- in redd	<n<32, v<br="">ish browi</n<32,>	ery stiff to n to brown	varying ame hard, varyir (continued)	ng colors)					E
												<u> </u>
	_											
	=											F
												E
	_							100	SS-14 48.0	BLOWCOUNT 11-16-16-26		F
									50.0	N = 32 (CLS)		E
-58.5	50.0		FND C	F BORIN	IG.							<u> </u>
	=	_		_ 2. 111	-							F
	_ 											
	_ _ _	-										F
	=											
	_											
	_											
	_ 	-										<u> </u>
	_											
		_										_
	_											E
	_	- - -										E
	_											E
	_											E
												E.
	_											E
		-										_
	_ _											
		-										_
	=	-										E
												E
	=	-										
	=											E
		-										E_(
												E
		1										
		_										F
												E
		-										E
ENG FORM JUN 67	1836-	·A	ı					PROJECT Lockhe	eed Mart	in MRC	HOLE NO. TTDHC-6	_

Hole No. TTDHC-7

DRILLI	NG LOG		Lockheed Martin Corporation	1	8711			OF 3 SHEETS	
1. PROJECT	Mortin MDC		·	10. DRILLING METHOD Mud Rotary 11. DATUM FOR ELEVATION SHOWN (TBM or MSL)					
2. LOCATION	Martin MRC (Coordinates or S	tation)	11. DAT		VATION SH	HOWN (TBM or MSL)		
Middle Ri 3. DRILLING A	ver, MD N 6	04,2	244.3000 E 1,473,385.8200			'S DESIGN	IATION OF DRILL		
UniTech				13. TOTA	AL NO. OF SO	OIL		UNDISTURBED	
4. HOLE NO. (file number)	As shown on drav	ving ti	itle and TTDHC-7		IPLES TAKEN		14	2	
5. NAME OF D	RILLER			_	AL NUMBER VATION GRO				
C. Lopez 6. DIRECTION	OF HOLE			16. DATE HOLE STARTED COMPLETED 10/8/2015 10/8/2015					
	AL INCL	INED	DEG. FROM VERT.	17. ELEVATION TOP OF HOLE -5.8					
	OF OVERBURD			18. TOTAL CORE RECOVERY FOR BORING					
9. TOTAL DEP	LLED INTO ROCE		50.0	19. GEO	LOGIST	R I	Lama Tamang		
ELEVATION		END	CLASSIFICATION OF MATERIAL	.S	% CORE RECOV-	BOX OR SAMPLE	REMAR		
a			(Description) d		ERY	NO. f	weathering, etc.,	if significant)	
-5.8	0.0		UNSAMPLED					E	
								E	
								-	
								F	
								<u> </u>	
								E	
								E_	
								E	
								þ	
	_ = =							F	
-10.8	5.0		Interstratified with CLAYEY SAND (So	C-SM)	71	SS-1	BLOWCOUNT	<u> </u>	
			with varying amonts of silt and SILTY (CL-ML) with varying amount of sand	CLAY		5.0 7.0	10-11-8-9 N = 19		
			7 <n<19, bro<="" dense,="" loose="" medium="" td="" to=""><td>wn to</td><td></td><td>7.0</td><td>(SC-SM) with gravel</td><td>_</td></n<19,>	wn to		7.0	(SC-SM) with gravel	_	
			reddish brown						
								F	
					79	SS-2	BLOWCOUNT 3-3-4-6	_	
						7.0 9.0	N = 7	F	
							(CL-ML) with sand		
					400	00.0	DI OMOGUNIT	<u> </u>	
					100	SS-3 9.0	BLOWCOUNT 4-4-5-5	E	
						11.0	N = 9 (CL-ML) with sand	E	
								_	
								E	
					75	ST-1	Shelby tube	E	
						11.0 13.0		F	
						.5.5		<u> </u>	
								F	
	_ <i>=\ //</i> /							F	
					100	SS-4 13.0	BLOWCOUNT 5-3-4-8	E	
						15.0	N = 7 (SC-SM)	E	
							(SC-SIVI)	<u> </u>	
								F	
-20.8	15.0		CILTY CAND (CM) with little received	of class	100	SS-5	BLOWCOUNT	<u> </u>	
		1	SILTY SAND (SM) with little mounts of 6 <n<9, be<="" brown="" light="" loose,="" reddish="" td="" to=""><td>orown</td><td>100</td><td>15.0</td><td>3-4-5-6</td><td>F</td></n<9,>	orown	100	15.0	3-4-5-6	F	
						17.0	N = 9 (SM)	F	
								E	
	34							E	
					83	SS-6	BLOWCOUNT	E	
						17.0 19.0	4-4-4-4 N = 8	F	
						.5.5	(SM)	<u> </u>	
								þ	
								F	
					50	SS-7	BLOWCOUNT	 	
	<u> </u>					19.0 21.0	3-3-3-18 N = 6	F	
1			1		1	1	(SM)	-	

	S LOG (Cont S	0.0				Hole No. TTD	HC-7
ROJECT Lockheed	Martin MRC		INSTALLATI	ION			SHEET 2 OF 3 SHEETS
ELEVATION	DEPTH LEGEND	CLASSIFICATION OF MATERIALS	6	% CORE RECOV- ERY	BOX OR SAMPLE	REMARK	S
а	b c	(Description)		ERY e	NO. f	(Drilling time, water weathering, etc., if g	significant)
		SILTY SAND (SM) with little mounts of 6 <n<9, brown="" by<="" light="" loose,="" reddish="" td="" to=""><td>r ciay, rown</td><td></td><td></td><td></td><td></td></n<9,>	r ciay, rown				
-26.8	21.0	(continued)	ad .	07	00.0	DI OMOOUNT	
		SILTY CLAY (CL-ML) with trace of san 15 <n<24, colors="" in="" re<br="" stiff,="" varying="" very="">brown to brownish red</n<24,>	na, eddish	67	SS-8 21.0	BLOWCOUNT 6-10-14-16	
		brown to brownish red			23.0	N = 24 (CL-ML) with sand	
				67	SS-9 23.0	BLOWCOUNT 6-9-12-16	
					25.0	N = 21 (CL-ML)	
				75	SS-10 28.0	BLOWCOUNT 5-7-8-10	
					30.0	N = 15 (CL-ML)	
						(OL WL)	
35.0	30.0						
-35.8	30.0	CLAY (CL), 32 <n<38, 32'="" 3<="" @="" n="18" td="" to=""><td>34',</td><td>67</td><td>ST-2</td><td>Shelby tube</td><td></td></n<38,>	34',	67	ST-2	Shelby tube	
	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	hard, gray to dark gray			30.0 32.0	(CL)	
				79	SS-11	BLOWCOUNT	
	¥//////				32.0 34.0	5-7-11-15 N = 18	
	<u> </u>					(CL)	
	¥//////						
	¥//////						
	¥//////						
	¥//////						
	<u> </u>			96	SS-12	BLOWCOUNT	
	¥//////				38.0 40.0	10-16-21-24 N = 37	
						(CL)	
	<i>\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\</i>						
	<u> </u>						
	<u> </u>						
	¥//////						
	¥//////						
				100	SS-13 43.0	BLOWCOUNT 10-17-15-19	
	3/////				45.0	N = 32 (CL)	
G FORM	1836-A	4	P	ROJECT	ed Marti		HOLE NO.

Lockheed Martin MRC

TTDHC-7

DRILLING	G LOG	(Cont S	heet)	-5.8	ON TOP OF I	HOLE				Hole No. TTI	OHC-7	
PROJECT Lockheed	l Martin I	MRC					INSTALLA				SHEET 3 OF 3 SHEETS	
ELEVATION	DEPTH	LEGEND		CLASSIFI	CATION OF (Description		S	% CORE RECOV- ERY	BOX OR SAMPLE NO. f	REMAR (Drilling time, wate weathering, etc., i	KS	1
а	b	c	CLAY	(CL), 32<1	d N<38. N=18	3 @ 32' to	34',	e	f f	g g	r signincarity	\vdash
	_		hard, g	ray to dar	k gray <i>(con</i>	tinued)						E
							-					<u> </u>
	_											F
	_											Ė.
	_							100	SS-14 48.0	BLOWCOUNT 9-19-19-22		
									50.0	N = 38 (CL)		E_
-55.8	50.0		FND C	F BORIN	G							<u> </u>
	=	-	5	23.411	-							Ē
	_											E
												E
	=	-										F
	=											
	_											E
												E
	=	-										<u> </u>
												E
	_	-										F
	_											
	_											E_
	_	-										F
												<u> </u>
		-										<u> </u>
												E
		-										F
		-										E
												E
	=	-										E
		_										E
		-										<u> </u>
												E
												E
		_										F
	_											E
		-										E
ENG FORM JUN 67	1836-	·A	1					PROJECT Lockhe	eed Mart	in MRC	HOLE NO. TTDHC-7	

Hole No. TTDHCB-1

DRILLI	NG LOG	1 -	ENT	PROJECT NUMBER SHEET 1 pration 194-8711 OF 2 SHEET						
. PROJECT		<u> </u>	Lockheed Martin Corporation							
	l Martin MR	C					HSA/Mud Rotary IOWN (TBM or MSL)	\dashv		
LOCATION ((Coordinates or	Station)	MSL	WIT OIL ELL	*************	ievivi († 2m er mez)			
Middle Ri		605,6	30.7943 E 1,475,169.5397	12. MANU	JFACTURER	S'S DESIGN	ATION OF DRILL			
UniTech					L NO. OF SO		DISTURBED UNDISTURBED	\dashv		
HOLE NO. (/ file number)	As shown on dr	awing ti	tle and TTDHCB-1		PLES TAKEN		15 0	4		
NAME OF D	RILLER		1101001		L NUMBER			4		
D. Evans	0511015				ATION GRO		R -2.9 ARTED COMPLETED	\dashv		
DIRECTION VERTICA		CLINED	DEG. FROM VERT.	16. DATE HOLE 9/29/2015 9/29/2015						
<u> </u>	OF OVERBUR		DEG. PROW VERT.	17. ELEV	ATION TOP	OF HOLE	+4.1	\Box		
	LED INTO RO			18. TOTAL CORE RECOVERY FOR BORING						
	TH OF HOLE	CIC	40.0	19. GEOL	OGIST		K. Tu	- 1		
_EVATION	DEPTH LE	GEND	CLASSIFICATION OF MATERIAL (Description)	.S	% CORE RECOV- ERY	BOX OR SAMPLE NO.	REMARKS (Drilling time, water loss, depth weathering, etc., if significant)			
+4.1	0.0	С	Approx. 3" asphalt		e 0	f N/A	g	+		
+3.6	0.5	××××	Approx. 3" subgrade		44	0.0	BLOWCOUNT	Ŀ		
		XXX	PROBABLE FILL, mixed material, predominantly SILTY CLAY (CL-ML)	with	44	SS-1	6-8-6	╌		
			occasional silty sand and trace of gra	vel,		0.5	N = 14 3" Asphalt	F		
	🕌	XXX	moist, 3 <n<14, co<br="" soft="" stiff,="" to="" varying="">light brown to brown and reddish brow</n<14,>			2.0	(SP-SM) with gravel	F		
		>>>				00.0	DI OMOQUINIT	þ		
	🕸	XXX			0	SS-2 2.0	BLOWCOUNT 4-4-4-4	þ		
		\ggg				4.0	N=8	Ŀ		
	-	XXX					No recovery	F		
		XXX						F		
	🕸	\ggg								
	📆				46	SS-3	BLOWCOUNT	ŀ		
		XXX				4.0	2-2-2-2	\perp		
	🕸	\ggg				6.0	N = 4 (CL-ML) with sand and trace of gravel	F		
	🗮	XXX					, , , , , , , , , , , , , , , , , , , ,	þ		
	🕸	\ggg						þ		
	₩	XXX						ŀ		
		XXX			75	SS-4	BLOWCOUNT	F		
_	L ⊐X	\ggg				6.0 8.0	2-1-2-1 N = 3	þ		
		\ggg					(CL-ML) with sand	ŀ		
	[XXX						F		
	🕌	XXX						F		
-3.9	8.0	XXX	CLAVEV CAND (CC CM)		00	00.5	PLOWCOLNT	þ		
			CLAYEY SAND (SC-SM) with varying amounts of silt, moist, 14 <n<34, med<="" td=""><td>) lium</td><td>96</td><td>SS-5 8.0</td><td>BLOWCOUNT 3-6-8-10</td><td>þ</td></n<34,>) lium	96	SS-5 8.0	BLOWCOUNT 3-6-8-10	þ		
		<i>4</i> 11	dense to dense, light brown to reddis			10.0	N = 14	E		
		4 I I					Interstratified in colors of brown and reddish brown	╌		
	= = = = = = = = = = = = = = = = = = =	4 11					(SC-SM)	F		
	\(\display\)							þ		
		11 1			100	SS-6	BLOWCOUNT	E		
						10.0	4-7-11-13	╌		
		4H				12.0	N = 18 (SC)	F		
							<u>`</u>	þ		
	\(\frac{1}{2}\/\)							þ		
		311						E		
					92	SS-7 12.0	BLOWCOUNT 3-9-11-11	F		
	1//					12.0	N = 20	þ		
		%					Trace of yellowish brown	þ		
	±1//.						(SC)	E		
	<u>-</u> {//							ŀ		
	-\						-	F		
	4//							þ		
	\(\display\)	311			83	SS-8	BLOWCOUNT 8-11-15	þ		
	<u> </u>					14.5 16.0	N = 19	ŀ		
	<i>-\//</i>						(SC-SM)	F		
	4//	311						F		
					100	SS-9a	BLOWCOUNT	ļ		
						SS-9b 16.0	10-16-14-18 N = 30	ŀ		
						18.0	Top 12" Sandy (CL-ML)	F		
							Bottom 12" (SC-SM)	þ		
	\(\frac{1}{2}\/\)							ŀ		
	<u>-</u> //	311						ŀ		
					100	SS-10	BLOWCOUNT	F		
	= = = = = = = = = = = = = = = = = = =					18.0 20.0	5-9-8-11 N = 17	ļ		
		111					(SC)	Ŀ		
		311						F		
	=	<i>a</i>						F		
								╌		

ELEVATION TOP OF HOLE **DRILLING LOG (Cont Sheet)** Hole No. TTDHCB-1 INSTALLATION SHEET 2 Lockheed Martin MRC OF SHEETS REMARKS BOX OR SAMPLE NO. f CLASSIFICATION OF MATERIALS ELEVATION DEPTH LEGEND (Drilling time, water loss, depth weathering, etc., if significant) RECOV-ERY (Description) CLAYEY SAND (SC-SM) with varying amounts of silt, moist, 14<N<34, medium dense to dense, light brown to reddish brown (continued) SS-11 23.0 25.0 BLOWCOUNT 11-15-19-19 N = 34 100 Alternate layers of brown and reddish brown (SC-SM) 25 100 SS-12 **BLOWCOUNT** 28.0 30.0 5-9-12-18 N = 21 (SC-SM) 30 -28.9 SS-13 33.0 35.0 BLOWCOUNT 17-26-35-40 N = 61 CLAYEY SAND (SC), 53<N<61, very dense, 100 light brown to reddish brown (SC) 35 BLOWCOUNT 16-24-29-33 N = 53 (SC) 100 SS-14 38.0 40.0 -35.9 END OF BORING

ENG FORM 1836-A

Lockheed Martin MRC

Hole No. TTDHCB-2

DRILLI	NG LO	~	ENT Lockheed Martin Corporation	PROJECT	T NUMBER		SHEET 1 OF 2 SHEE	TS TS		
1. PROJECT	1 N 1 = mt; = 1		200Kiloda Martin Corporation	10. DRILLING METHOD HSA/Mud Rotary						
Lockheed 2. LOCATION (Coordinate	s or Station)	11. DATU MSL	IM FOR ELE	VATION SH	IOWN (TBM or MSL)			
Middle Ri 3. DRILLING A		N 605,7	04.9278 E 1,475,059.7013	12. MANU	JFACTURER	'S DESIGN	ATION OF DRILL			
UniTech					L NO. OF SO		DISTURBED UNDISTURBED			
4. HOLE NO. (<i>i</i> file number)	As shown o	n drawing ti	TTDHCB-2		L NUMBER		17 2 ES	_		
5. NAME OF D D. Evans				15. ELEV						
6. DIRECTION				16. DATE	HOLE	STA	ARTED COMPLETED 9/30/2015 9/30/2015			
] INCLINED	DEG. FROM VERT.	17. ELEV	ATION TOP	OF HOLE	+4.3			
7. THICKNESS 8. DEPTH DRII					L CORE RE	COVERY F	OR BORING	%		
9. TOTAL DEP			40.0	_ 19. GEOL	19. GEOLOGIST K. Tu					
ELEVATION a	DEPTH b	LEGEND c	CLASSIFICATION OF MATERIAL (Description) d	.S	% CORE RECOV- ERY e	BOX OR SAMPLE NO. f	REMARKS (Drilling time, water loss, depth weathering, etc., if significant)			
+4.3	0.0		PROBABLE FILL, CLAY (CL) with sai	nd,	54	SS-1	BLOWCOUNT	+		
	=		occasional silt and organic materials, very moist, 1 <n<8, mediu<="" soft="" td="" to="" very=""><td>m stiff,</td><td></td><td>0.0 2.0</td><td>1-4-4-4 N = 8</td><td>F</td></n<8,>	m stiff,		0.0 2.0	1-4-4-4 N = 8	F		
			varying colors in reddish brown, dark gray and white	gray to			(CLS) Trace of gravel			
							Trace of organics	F		
					07	00.0	DI OMOGUNT			
	=				67	SS-2 2.0	BLOWCOUNT 1-3-3-3	F		
\	_					4.0	N = 6 (CLS)	F		
	_						Trace of organics	E		
								E		
	_				0	SS-3	BLOWCOUNT			
	_					4.0 6.0	2-1-2-2 N = 3	F		
							No recovery	5		
								E		
								E		
	_				75	SS-4 6.0	BLOWCOUNT 1-2-1-2			
	_ _					8.0	N = 3 Top 12" (CL) in gray	F		
							Bottom 12" (CL-ML) in reddish brown 8	3 <u> </u>		
	_						white	F		
					89	ST-1	Shelby tube			
						8.0 9.5	PP = 1.0 tsf (CL) with sand	E		
	_					9.5	(CL) with sailu			
	_							F		
	_ _				100	SS-5a, SS-5b	BLOWCOUNT WH-WH-1-2	F 10		
						9.5 11.5	N = 1 Bottom 12" (CL-ML) with sand	F-'`		
						11.5	Trace of organics	E		
	_				94	ST-2	Shelby tube			
					34	11.5	PP = 0.5 tsf			
						13.0	(CL) with sand	F		
	=							E		
					75	SS-6 13.0	BLOWCOUNT WH-WH-1-WH	E		
						15.0	N = 1 (CL-ML) with sand	F		
	_						(OL-IVIL) WILLI SALIU			
	=							F		
					100	SS-7a,	BLOWCOUNT	15		
	_				100	SS-7b	WR-WH-2-4 N = 2	E		
						15.0 17.0	Trace of organics with woods	E		
	_						Top 12" (CL) in gray Bottom 12" (CL-ML) in light brown	F		
-12.7	17.0 —							F		
-12.1	- 17.0		CLAYEY SAND (SC-SM) with silt, 3<	N<10,	100	SS-8a,	BLOWCOUNT			
	_		very loose to dense, varying colors in brown to brown, light red to brownish	ııght white		SS-8b 17.0	6-2-4-3 N = 6	F		
			and reddish brown			19.0	Top 12" (SC-SM) in light brown to yellowish brown			
							Bottom 12" (SM) in reddish light brown	E		
						00.5	DI OMOGLINIT			
					83	SS-9 19.0	BLOWCOUNT 3-2-1-1	F		
	=					21.0	N = 3 (SC-SM)			

DRILLING	G LOG (Cont	t Si	neet) ELEVATION TOP OF HOLE 4.3		HCB-2			
ROJECT Lockheed	Martin M	MRC			INSTALLAT	ION			SHEET 2 OF 2 SHEETS
ELEVATION	DEPTH	LEGE	ND	CLASSIFICATION OF MATERIAL (Description)	S	% CORE RECOV- ERY	BOX OR SAMPLE	REMARK (Drilling time, water weathering, etc., if	(S
а	b	c		d CLAYEY SAND (SC-SM) with silt, 3<	N<10,	e	NO. f	Thin interbeds of white,	
	_			very loose to dense, varying colors in brown to brown, light red to brownish	liaht			brown fine sand	
				and reddish brown (continued)					
	=								
						92	SS-10	BLOWCOUNT	
							23.0 25.0	3-5-5-7 N = 10	
								(SC-SM) Thin interbeds of white,	red & reddish
	_							brown fine sand	
	_					100	SS-11	BLOWCOUNT	
						28.0 30.0	6-4-4-2 N = 8		
							(SC)		
	=								
					-	92	SS-12a,	BLOWCOUNT	
-29.4	33.8						SS-12b 33.0	3-3-5-10 N = 8	
				CLAYEY SAND (SC-SM) with varying amounts of silt, 15 <n<23, de<="" medium="" td=""><td>ense.</td><td></td><td>35.0</td><td>Fine content variable w</td><td></td></n<23,>	ense.		35.0	Fine content variable w	
	_			light brown to reddish brown	,			Top 9" (SC) with varyin Bottom 15" (SC-SM)	g amount of clay
								,	
	_								
	_					100	SS-13	BLOWCOUNT	
							38.0 40.0	9-9-14-18 N = 23	
								(SC-SM)	
	_								
-35.7	40.0			END OF BORING					
	_			END OF BOILING					
	=								
	_								
		l							

PROJECT Lockheed Martin MRC

Hole No. TTDHCB-3

DRILLI	NG LO	3	IENT Lockheed Martin Corporation		ΓNUMBER		SHEET 1 OF 4 SHEE	те		
1. PROJECT			Lockneed Martin Corporation	194-8711 OF 4 SHEETS 10. DRILLING METHOD HSA/Mud Rotary						
Lockheed	d Martin N	/IRC					HOWN (TBM or MSL)	-		
2. LOCATION				MSL						
3. DRILLING A		N 605,6	S12.4843 E 1,474,865.4765	12. MANU	JFACTUREF	R'S DESIGN	ATION OF DRILL			
UniTech					L NO. OF S		DISTURBED UNDISTURBED			
4. HOLE NO. (A file number)	As shown on	drawing ti	tle and TTDHCB-3		PLES TAKEN		19 2			
5. NAME OF D	RILLER		: ITDHCB-3		L NUMBER					
D. Evans				15. ELEV	ATION GRO		***	_		
6. DIRECTION				10/1/2015 10/1/2015						
		INCLINED	DEG. FROM VERT.	17. ELEVATION TOP OF HOLE +5.0						
7. THICKNESS				18. TOTA	OR BORING	%				
8. DEPTH DRII 9. TOTAL DEP			70.0	19. GEOL	.OGIST		V To			
9. TOTAL DEP			CLASSIFICATION OF MATERIAL	<u> </u>	% CORE	BOX OR	K. Tu REMARKS	_		
ELEVATION	DEPTH	LEGEND	(Description)	3	RECOV- ERY	SAMPLE NO.	(Drilling time, water loss, depth weathering, etc., if significant)			
+5.0	0.0	с >>>>	d PROBABLE FILL, mixed materials,		e 83	f SS-1	BLOWCOUNT			
13.0			predominantly SILTY CLAY (CL - ML)	with	03	0.0	1-1-1-1			
			occasional sand and trace of organics to very moist, 2 <n<5, med<="" soft="" td="" to="" very=""><td>s, moist lium</td><td></td><td>2.0</td><td>N = 2 (SM)</td><td>F</td></n<5,>	s, moist lium		2.0	N = 2 (SM)	F		
			stiff, very loose to loose, varying color	s in light			Trace of gravel			
			brown to dark brown and reddish brow	vn.				E		
					100	SS-2 2.0	BLOWCOUNT 1-2-3-2	L		
						4.0	N = 5	F		
							(SM)	F-		
		XXXX						F		
								F		
					75	SS-3	BLOWCOUNT			
						4.0 6.0	2-2-2-3 N = 4	E		
						0.0	(CL-ML) with sand	- ₅		
							Trace of organics	F_		
								F		
					- 00	00.4	DI OMOGUNIT			
					83	SS-4 6.0	BLOWCOUNT WH-1-1-2			
						8.0	N = 2	L		
							(SC-SM) with sand and trace of organi	lcs		
								F		
1										
- -					71	SS-5	BLOWCOUNT			
						8.0 10.0	WH-1-1-2 N = 2			
						10.0	(CL-ML) with sand			
								H		
					33	ST-1	Shelby tube	10		
					33	10.0	PP = 0.5 tsf	F		
						12.0	8" recovery	F		
								E		
					77	ST-2 12.0	Shelby tube	E		
						14.0	18.5" recovery (CL)	F		
								<u> </u>		
								F		
0.0	14.0							E		
-9.0	14.0		SILTY CLAY (CL - ML) with sand, 3<	N<9, soft	83	SS-6	BLOWCOUNT			
			to stiff, dark brown to reddish brown			14.0 16.0	WH-WH-3-5 N = 3	E		
						10.0	(CL-ML) with sand	15		
								F_		
								F		
						00 -	DI OMOOUNIT	<u> </u>		
					83	SS-7 16.0	BLOWCOUNT 2-4-5-7	E		
						18.0	N = 9	E		
							(CL) with sand	<u> </u>		
								F		
-13.0	18.0							F		
-10.0	10.0		CLAYEY SAND (SC-SM) with silt, 10-	<n<19,< td=""><td>100</td><td>SS-8</td><td>BLOWCOUNT</td><td></td></n<19,<>	100	SS-8	BLOWCOUNT			
			medium dense, reddish brown			18.0 20.0	3-6-7-9 N = 13	E		
						20.0	(SM) with varying amount of silt/clay			
								E		
								F		
		///	1					20		

RILLING	LOG (Cont S	Sheet) ELEVATION TOP OF HOLE			Hole No. TTDUOD 0	\Box
ROJECT		0.0	NSTALLATION		Hole No. TTDHCB-3	
	Martin MRC	CLASSIFICATION OF MATERIALS	% CORE	BOX OR SAMPLE	OF 4 SHEE	TS
ELEVATION a	DEPTH LEGEND b c	(Description)	% CORE RECOV- ERY e	NO.	(Drilling time, water loss, depth weathering, etc., if significant) g	
		CLAYEY SAND (SC-SM) with silt, 10 <n (continue<="" brown="" dense,="" medium="" reddish="" td=""><td></td><td></td><td>Ü</td><td></td></n>			Ü	
		mediam dense, readism brown (continue	,,,,			
						ŀ
			100	SS-9	BLOWCOUNT	ŀ
				23.0 25.0	6-8-8-8 N = 16	
					(SC)	ŀ
						ŀ
						ı
			100	SS-10 26.0	BLOWCOUNT 5-7-7-7	
	_=\//			28.0	N = 14 (SC-SM)	
						İ
						ſ
	3//					
						ŀ
						ŀ
						ŀ
			100	SS-11	BLOWCOUNT	ı
			1.00	33.0 35.0	10-8-11-16 N = 19	
				00.0	(SC)	
						ŀ
						İ
	1//					
	1//					l
			100	SS-12 38.0	BLOWCOUNT 6-4-6-9	
	1//			40.0	N = 10 (SC-SM)	
						ļ
	= 4/1					
						ļ
						ļ
l	1//					
	─ / / / / 1 1	-				ŀ
					I .	- 1
						ļ
-38.0	43.0	CLAYEY SAND (SC) 20 <n<30 medium<="" td=""><td>n 100</td><td>SS-12</td><td>BLOWCOLINT</td><td></td></n<30>	n 100	SS-12	BLOWCOLINT	
-38.0	43.0	CLAYEY SAND (SC), 29 <n<39, brown<="" dense="" dense,="" medium="" reddish="" td="" to=""><td>n 100</td><td>SS-13 43.0 45.0</td><td>BLOWCOUNT 10-13-16-20 N = 29</td><td></td></n<39,>	n 100	SS-13 43.0 45.0	BLOWCOUNT 10-13-16-20 N = 29	

RILLING	LOG	(Cont S	heet)	ELEVATION TOP OF HOLE 5.0	100000	TICS		Hole No. TTDHCB-3	
ROJECT Lockheed	Martin	MRC			INSTALLA			SHEET 3 OF 4 SHEE	TS
LEVATION	DEPTH	LEGEND		CLASSIFICATION OF MATERIA (Description)	LS	% CORE RECOV-	BOX OR SAMPLE	REMARKS	
a a	DEPTH b	C	CLAYE	(Description) d EY SAND (SC), 29 <n<39, (con<="" brown="" dense,="" me="" reddish="" td="" to=""><td>dium</td><td>RECOV- ERY e</td><td>SAMPLE NO. f</td><td>(Drilling time, water loss, depth weathering, etc., if significant) g BLOWCOUNT 10-17-22-26 N = 39 (SC)</td><td></td></n<39,>	dium	RECOV- ERY e	SAMPLE NO. f	(Drilling time, water loss, depth weathering, etc., if significant) g BLOWCOUNT 10-17-22-26 N = 39 (SC)	
-49.0	54.0		CLAYE poorly dense brown	EY SAND (SC) with varying ar graded sand with silt, 41 <n<¢ to very dense, varying colors</n<¢ 	mounts of 53/9", in reddish	100	SS-15a SS-15b 53.0 55.0	BLOWCOUNT 13-13-15-25 N = 28 Top 14" reddish brown (SC-SM) Top 10" red (SP-SM/SP-SC)	
						100	SS-16 58.0 60.0	BLOWCOUNT 17-16-25-32 N = 41 Top 12" (SP-SM) Bottom 12" (SC)	
						63	SS-17 63.0 65.0	BLOWCOUNT 12-13-50/3"-x N = 63/9" (SC)	
-63.0 5 FORM JN 67	68.0	-A				PROJECT Lockhe	and Marri	n MRC HOLE NO. TTDHCE	

DRILLING	LOG ((Cont S	heet)	ELEVATIO 5.0	N TOP OF	HOLE				Hole No.	TTC	HCB-3	
PROJECT Lockheed	Martin I	MRC					INSTALL	ATION				SHEET 4 OF 4 SHEETS	
ELEVATION	DEPTH	LEGEND				F MATERIA	LS	% CORE RECOV- ERY	BOX OR SAMPLE NO. f	R (Drilling tim	FMARK	(S r loss, depth f significant)	1
а	b	С			(Description d			е	NO. f		, etc., if	significant)	<u> </u>
	=		FAT Cl brown	LAY (CH),	N = 88/1	1.5", hard,	reddish	73	SS-18 68.0	BLOWCOUNT 23-38-50/5.5"-x			E
									70.0	N = 88/11.5" (CH)			<u> </u>
													E
-65.0	70.0												70
	_		END C	F BORING	3								
	_												
													E
	=												E
	_												E
	=												E
													75
	_												
	=												<u> </u>
													E
													E
													E
	=												
													80
	=												
		1											
	=												
													<u> </u>
													E
		4											
	=												E
													85
		+											
	=												E
													E
		4											
	=												
		4											
	=												
													<u> </u>
	=												E
	_												
ENG FORM JUN 67	1836-	A	l .					PROJECT Lockhe	eed Marti	n MRC		HOLE NO.	 _

Hole No. TTDHCB-4

DRILLI	NG LO	G		ENT ockheed Martin Corporation	PROJECT NUMBER SHEET 1 OF 4 SHEETS						
1. PROJECT			_	Sourced Martin Corporation	10. DRILLING METHOD HSA/Mud Rotary						
Lockheed 2. LOCATION (ation)	<u> </u>	11. DATU MSL	M FOR ELE	VATION SH	OWN (TBM or MSL)			
Middle Ri	ver, MD	N 60)5,5	16.9785 E 1,474,770.6305		JFACTUREF	R'S DESIGN	ATION OF DRILL			
3. DRILLING A UniTech	GENCY				13 TOTA	L NO. OF SO	OII	DISTURBED UNDIST	TURBED		
4. HOLE NO. (A	As shown o	n drawi	ing tit			PLES TAKEN		19	1		
5. NAME OF D	RILLER			TTDHCB-4	14. TOTAL NUMBER CORE BOXES						
D. Evans					 	15. ELEVATION GROUND WATER -3.4 STARTED COMPLETED					
6. DIRECTION		INCLI	NED	DEG. FROM VERT.	16. DATE	16. DATE HOLE 10/5/2015 COMPLETED 10/5/201					
7. THICKNESS						ATION TOP		+4.6			
8. DEPTH DRII	LED INTO	ROCK			18. TOTA 19. GEOL		COVERY FO	OR BORING	%		
9. TOTAL DEP	TH OF HOL	LE		70.0							
ELEVATION a	DEPTH b	LEGE		CLASSIFICATION OF MATERIAL (Description) d	S	% CORE RECOV- ERY e	BOX OR SAMPLE NO. f	REMARKS (Drilling time, water loss, weathering, etc., if signifi g	depth icant)		
+4.6	0.0 _		\bowtie	PROBABLE FILL, predominantly CLA SAND (SC-SM) with occasional silt ar	YEY	75	SS-1 0.0	BLOWCOUNT 4-3-5-5			
	_		\bowtie	of gravel, moist to very moist, 1 <n<8,< td=""><td>very</td><td></td><td>2.0</td><td>N = 8</td><td>E</td></n<8,<>	very		2.0	N = 8	E		
			XX	loose to medium dense, varying color to reddish gray and reddish brown	s in gray			(CL-ML) with creosote smell Trace of gravel			
	_		\bowtie								
			\bowtie			12	66.0	DI OMCOLINIT			
	_		\bowtie			13	SS-2 2.0	BLOWCOUNT 5-3-4-4			
	=		\bowtie				4.0	N = 7 (SC-SM) with creosote smell	F		
			\bowtie					Trace of gravel			
		\longrightarrow	\bowtie						E		
			\bowtie			100	SS-3	BLOWCOUNT			
			\bowtie				4.0 6.0	4-4-4-4 N = 8			
			\bowtie				0.0	(SC)	5		
			XX					Trace of gravel			
	=		\bowtie								
			XX			42	SS-4	BLOWCOUNT			
	_		\bowtie				6.0 8.0	2-3-2-2 N = 5			
			\bowtie				0.0	(SC)			
			\bowtie								
_	7 =		\bowtie								
<u> </u>			\bowtie			75	SS-5	BLOWCOUNT	_		
	=		XX				8.0 10.0	1/12"-1-1 N = 1	F		
			\bowtie					(SC-SM)	_		
			\bowtie								
		\bowtie	\bowtie						10		
			XX			50	SS-6 10.0	BLOWCOUNT 1/12"-1-1			
	_		\bowtie				12.0	N = 1			
			\bowtie					(SC) Trace of gravel			
	_		XX								
			\bowtie			75	OT 4	Challes total	_		
	=		\bowtie			75	ST-1 12.0	Shelby tube PP = 2.5 tsf	F		
	=		\bowtie				14.0	18" recovery	F		
	_		\bowtie						F		
			\bowtie			42	SS-7	BLOWCOUNT	F		
-9.4	14.0			SILTY CLAY (CL - ML) with sand, 1 <n< td=""><td>N<2,</td><td></td><td>13.5 15.5</td><td> WH-WH-1-3 N = 1</td><td><u> </u></td></n<>	N<2,		13.5 15.5	WH-WH-1-3 N = 1	<u> </u>		
				very soft, brownish red and gray	,			(CL-ML) with sand	E		
	_								15		
	=								E		
									E		
	_					96	SS-8	BLOWCOUNT	<u> </u>		
	_						16.0 18.0	1-1-1-1 N = 2	E		
								(CLS)	_		
	_								F		
-13.4									F		
10.7				CLAYEY SAND (SC), 8 <n<19, loose<="" td=""><td>to</td><td>100</td><td>SS-9</td><td>BLOWCOUNT</td><td><u> </u></td></n<19,>	to	100	SS-9	BLOWCOUNT	<u> </u>		
	=			medium dense, varying colors in light to reddish brown and dark gray	nword		18.0 20.0	2-4-4-6 N = 8	F		
				, , , , , , , , , , , , , , , , , , ,				(SC)	_		
	_	1///							F		
									20		

DRILLING	G LOG (Cont S	heet)	ELEVATION TOP OF HOLE 4.6				Hole No. TTD	HCB-4		
PROJECT	l Martin M	IDC			INSTALLA	ATION		SHEET 2 OF 4 SHEETS			
ELEVATION		LEGEND		CLASSIFICATION OF MATERI	IALS	% CORE RECOV- ERY	BOX OR SAMPLE	REMARK	S		
a	b	С		(Description) d		ERY	NO. f	(Drilling time, water weathering, etc., if g	significant)		
			CLAYE	EY SAND (SC), 8 <n<19, colors="" dense,="" in="" lig<="" loos="" m="" td="" varying=""><td>se to</td><td></td><td></td><td></td><td></td></n<19,>	se to						
			to redd	lish brown and dark gray (co	ntinued)						
						92	SS-10	BLOWCOUNT			
							23.0 25.0	3-4-5-4 N = 9			
								(SC)			
]								
						100	SS-11	BLOWCOUNT			
	#						28.0 30.0	4-4-5-8 N = 9			
								(SC)			
						100	SS-12 33.0	BLOWCOUNT 10-10-9-11			
							35.0	N = 19			
								(SC)			
			1								
			1			100	SS-13 38.0	BLOWCOUNT 7-10-9-10			
							40.0	N = 19			
								(SC)			
]								
			1								
-38.4	43.0										
			CLAYE	EY SAND (SC-SM) with varyits of silt, 29 <n<39, @<="" n="73" td=""><td>ing 53' to 55'</td><td>100</td><td>SS-14 43.0</td><td>BLOWCOUNT 9-13-16-22</td><td></td></n<39,>	ing 53' to 55'	100	SS-14 43.0	BLOWCOUNT 9-13-16-22			
	ı	///	dense	to very dense, vellowish brow	wn to		45.0	N = 29			
	_ <i>Y</i> .	///	no al -11 1	n brown	WITTO		75.0	(SC)	1		

DRILLING	LOG	(Cont S	heet)	ELEVATION TOP OF HOL 4.6	.E				Hole No. TTDHC	
PROJECT Lockheed	d Martin	MRC				INSTALL			SHE OF	ET 3 4 SHEETS
ELEVATION	DEPTH	LEGEND		CLASSIFICATION OF MAT (Description)	TERIAL	S	% CORE RECOV- ERY	BOX OR SAMPLE NO. f	REMARKS (Drilling time, water loss weathering, etc., if signi	
а	b	c	CLAYE	d	arying		e	f	g g	
	_		amoun dense	Y SAND (SC-SM) with v ts of silt, 29 <n<39, n="73<br">to very dense, yellowish</n<39,>	3 @ 53 brown	s' to 55', to				F
			reddish	brown (continued)						<u> </u>
	_									E
										-
	_									E
	_									E
	_									E
							100	SS-15 48.0	BLOWCOUNT 9-13-17-24	E
	_							50.0	N = 30 (SC-SM)	E
	_									F
										E
	_									E
										E
	_									E
										E
	_									F
							100	SS-16	BLOWCOUNT	<u> </u>
	_ 							53.0 55.0	13-23-50-x N = 73	E
									(SC-SM) Thin layer of light brown sar	ıd
	_									E
										E
	_									E
										E
	_									E
	_									F
	_						100	20.15	D. 0.000.00.T	E
	_						100	SS-17 58.0 60.0	BLOWCOUNT 15-14-17-20 N = 31	E
								60.0	(SM)	E
	_									E
										E
	=									F
										E
	_									E
										F
	_									E
							100	SS-18 63.0	 BLOWCOUNT 19-17-22-28	F
	=							65.0	N = 39 (SM)	F
									,	E
										E
	=									F
										E
	_									F
	_									E
	_									E
ENG FORM	_	<u> </u>	:				PRO IECT		 	OLE NO
ENG FORM JUN 67	1836-	-A					PROJECT Lockhe	eed Mart	in MRC	OLE NO. TTDHCB-4

DRILLING	G LOG	(Cont S	heet)	ELEVATION TOP OF 4.6	HOLE				Hole No.	TTDHCB-4	
PROJECT Lockheed	l Martin I	MRC		•		INSTALLA	ATION			SHEET 4 OF 4 SHE	
ELEVATION	DEPTH	LEGEND		CLASSIFICATION OF (Descriptio		S	% CORE RECOV- ERY	BOX OR SAMPLE NO. f	RE (Drilling time, weathering, (MARKS water loss, depth etc., if significant)	
a	b	С	dense	d EY SAND (SC-SM) w ts of silt, 29 <n<39, n<br="">to very dense, yellow n brown (continued)</n<39,>	vith varying N=73 @ 53 vish brown	' to 55', to	<u>e</u> 75	f SS-19 68.0 70.0	BLOWCOUNT 15-12-19-N/A N = 31 (SC-SM)	g	
-65.4	70.0		FND C	F BORING							70
-65.4	70.0			of BORING					(SC-SM)		
	- - - - - -										90
											F
ENG FORM JUN 67	1836-	<u> </u>					PROJECT Lockhe	eed Mart	n MRC	HOLE NO.	 CB-4

					TETRA TECH Hole No. TTDHC					
DRILLING LOG CLIENT Lockheed Martin Corporation				PROJEC ⁻ 194-8	ΓNUMBER		SHEET 1 OF 2 SHEE	\neg		
. PROJECT			Lockineed Martin Corporation		ING METHO)D	HSA/Mud Rotary	.13		
Lockheed LOCATION (1)	11. DATU MSL	M FOR ELE	VATION SH	HOWN (TBM or MSL)			
	ver, MD		114.8629 E 1,474,670.9438		JFACTURER	'S DESIGN	ATION OF DRILL			
UniTech					L NO. OF SO		DISTURBED UNDISTURBED	\dashv		
HOLE NO. (A file number)	As shown o	n drawing t	itle and TTDHCB-5		PLES TAKEN		15 0			
S. NAME OF DI					L NUMBER			_		
D. Evans				16. DATE			ARTED COMPLETED			
∨ERTICA	AL] INCLINED	DEG. FROM VERT.		ATION TOP	OF HOLF	9/30/2015 9/30/2015 +5.1	\dashv		
. THICKNESS							OR BORING	%		
DEPTH DRILLED INTO POCK				19. GEOL	.OGIST		K. Tu			
ELEVATION	DEPTH	LEGEND	CLASSIFICATION OF MATERIAL	.S	% CORE RECOV-	BOX OR SAMPLE	REMARKS (Drilling time, water loss, depth			
a	b	C	(Description)		ERY	NO. f	weathering, etc., if significant)			
+5.1	0.0		PROBABLE FILL, predominantly SIL ⁻ (CL - ML) with occasional sand and tr	TY CLAY	83	SS-1	BLOWCOUNTNT 2-3-3-4	T		
	=		organics, moist, 5 <n<26, medium="" stif<="" td=""><td>f to very</td><td></td><td>0.0 2.0</td><td>N = 6</td><td>Ī</td></n<26,>	f to very		0.0 2.0	N = 6	Ī		
			stiff, varying colors in brown to reddis	משסומ וו			(CL-ML) with sand and gravel Trace of organics	ŀ		
	_							ŀ		
					75	SS-2	BLOWCOUNT	ļ		
	_				13	2.0	2-3-2-4	ļ		
	_					4.0	N = 5 (CL-ML) with sand in color of light brow	wn		
	=							ŀ		
	=							ļ		
	_				92	SS-3 4.0	BLOWCOUNT 3-3-5-7	ļ		
	_					6.0	N = 8	ŀ		
	_						(CL-ML) Trace of organics	-		
	_						-	ŀ		
_					75	00.4	DI CIMOCINIT			
	_				75	SS-4 6.0	BLOWCOUNT 3-5-9-8	ŀ		
	_					8.0	N = 14 (CL-ML) with sand	ŀ		
								Ī		
	_									
					92	SS-5	BLOWCOUNT	ŀ		
	_					8.0 10.0	7-9-11-15 N = 20	ŀ		
							(CL-ML) with sand	ŀ		
								ŀ		
	_				100	SS-6a SS-6b	BLOWCOUNT 7-8-12-13	ŀ		
	_ _					10.0 12.0	N = 20 (CL-ML)	ŀ		
							Thin layers of ironized (CL-ML) Top 12" in reddish brown			
							Bottom 12" in reddish black			
					100	SS-7	BLOWCOUNT	ŀ		
	=					12.0 14.0	7-11-15-11 N = 26	ŀ		
							Cemented (CL-ML)	ļ		
	_							ŀ		
								ŀ		
					100	SS-8 14.0	BLOWCOUNT 3-7-9-9	ŀ		
	<u> </u>					16.0	N = 16 (CL-ML)	ŀ		
							\ ···-/			
								ļ		
-10.9	16.0		LEAN CLAY (CL) with varying amoun	ts of	100	SS-9	BLOWCOUNT	ŀ		
	_		sand, 11 <n<16, gray<="" stiff,="" td=""><td>-</td><td></td><td>16.0 18.0</td><td>4-5-6-9 N = 11</td><td>ŀ</td></n<16,>	-		16.0 18.0	4-5-6-9 N = 11	ŀ		
						10.0	(CL)	ŀ		
	=	\ ///////						ŀ		
	=	\ //////								
	_				100	SS-10 18.0	BLOWCOUNT 4-5-6-8	ı		
	_					20.0	N = 11	ŀ		
							(CL)	F		
	<u> </u>	\ //////						ŀ		
NO FORM	_	<u> </u>			DDO ITOT		LIOLENO	_		
NG FORM MAR 71	1836	PREVIO	US EDITIONS ARE OBSOLETE.		PROJECT Lockhe	eed Mart	in MRC HOLE NO.	3-5		

RILLING	LOG (C	ont S	heet) ELEVATION TOP OF HOL	E			Holo No. TTD://	, , , ,
ROJECT	Martin MF		, j 5.1	INSTALLA	TION			2 SHEETS
ELEVATION		EGEND	CLASSIFICATION OF MAT (Description)	ERIALS	% CORE RECOV- ERY	BOX OR SAMPLE	REMARKS (Drilling time, water los weathering, etc., if sign	
а	b	c //////	d LEAN CLAY (CL) with varying a sand, 11 <n<16, <i="" gray="" stiff,="">(cont</n<16,>	imounts of	e e	NO. f	weathering, etc., ii Sigi g	iiiiCarit)
			sand, 11 <n<16, (cont<="" gray="" stiff,="" td=""><td>inued)</td><td></td><td></td><td></td><td></td></n<16,>	inued)				
					100	SS-11	BLOWCOUNT	
						23.0 25.0	3-6-10-1 N = 16	
							(CL) with sand	
				-				
-22.9	28.0							
-22.9	28.0		SILTY CLAY (CL-ML) with sand stiff, light brown	i, N = 18, very	92	SS-12 28.0	BLOWCOUNT 4-9-9-10	
			Sun, ngrit brown			30.0	N = 18 (CL-ML) with sand	
							(OE ME) With Sand	
-27.9	33.0							
			CLAYEY SAND (SC-SM), 33 <n brown<="" dense,="" reddish="" td="" very=""><td><43, dense to</td><td>100</td><td>SS-13 33.0</td><td>BLOWCOUNT 8-14-19-28</td><td></td></n>	<43, dense to	100	SS-13 33.0	BLOWCOUNT 8-14-19-28	
						35.0	N = 33 (SC-SM)	
							,	
					100	SS-14 38.0	BLOWCOUNT 13-18-25-27	
						40.0	N = 43 (SC)	
								-
-34.9	40.0		END OF BODING					
			END OF BORING					
								-
	ı I		1			İ		

Hole No. TTDHCB-6

DRILLING LOG CLIENT Lockheed Martin Corporation		PROJECT NUMBER SHEET 1 OF 2 SHEETS							
1. PROJECT	1 N A - 41 -				10. DRIL	LING METHO		HSA/Mud Rotary	
Lockheed 2. LOCATION			on)		11. DATU	JM FOR ELE	VATION SH	IOWN (TBM or MSL)	
Middle Ri	ver, MD	N 604	,8	71.2328 E 1,473,853.6657		UFACTURER	R'S DESIGN	ATION OF DRILL	
3. DRILLING A UniTech	GENCY				13. TOTA	AL NO. OF SO	OIL	DISTURBED UNDISTURBED	_
4. HOLE NO. (4. HOLE NO. (As shown on drawing title and file number) TTDHCB-6						1	15 1	
5. NAME OF D	RILLER			: IIDUCB-0		AL NUMBER			
D. Evans						ATION GRO		R 0.0 ARTED COMPLETED	_
6. DIRECTION VERTIC		INCLINE	ΞD	DEG. FROM VERT.	16. DATE	HOLE		10/6/2015 10/6/2015	_
7. THICKNESS		•				ATION TOP		+5.0	
8. DEPTH DRI					18. TOTA 19. GEOI	AL CORE RE	COVERY F	OR BORING	%
9. TOTAL DEP	TH OF HOL	E		40.0	10. 0201			K. Tu	
ELEVATION a	DEPTH b	LEGEN c	D	CLASSIFICATION OF MATERIAL (Description) d	S	% CORE RECOV- ERY e	BOX OR SAMPLE NO. f	REMARKS (Drilling time, water loss, depth weathering, etc., if significant) g	
+5.0	0.0		\boxtimes	PROBABLE FILL, CLAYEY SAND (Swith silt and trace of gravel and organ	C-SM)	50	SS-1 0.0	BLOWCOUNT 2-1-3-2	
			\otimes	moist to very moist, 3 <n<5, loos<="" td="" very=""><td>e to</td><td></td><td>2.0</td><td>N = 4</td><td>E</td></n<5,>	e to		2.0	N = 4	E
			\bigotimes	loose, varying colors in light brown to brown and gray	reddish			(SM) with trace of organics Trace of gravel	Ē
			\boxtimes	5 ,					Е
			$\langle \! \rangle$			_			
			\otimes			75	SS-2 2.0	BLOWCOUNT 2-2-2-2	
			\bigotimes				4.0	N = 4 (SC-SM)	F
			\boxtimes					(GC-GW)	
			\bigotimes						F
			$\langle\!\langle\!\langle$			83	SS-3	BLOWCOUNT	<u> </u>
			\bigotimes			63	4.0	1-1-2-2	F
1			\bigotimes				6.0	N = 3 (SC)	5
-			\boxtimes						
			\otimes						Е
			\otimes			100	SS-4a	BLOWCOUNT	<u> </u>
	_		\otimes				SS-4b 6.0	4-2-3-2 N = 5	E
			\boxtimes				8.0	Top 18" (SC)	
-2.5	7.5 —		\otimes					Bottom 6" Sándy (SC-SM)	
	=		7	CLAYEY SAND (SC), 8 <n<14, dense,="" gray<="" loose="" medium="" td=""><td>to</td><td></td><td></td><td></td><td>F</td></n<14,>	to				F
				medium dense, gray		75	SS-5	BLOWCOUNT	
							8.0 10.0	WH-3-5-6 N = 8	F
								(SC)	
									F
	=								F 10
						83	SS-6 10.0	BLOWCOUNT 4-6-8-10	E
							12.0	N = 14	Е
								(SC)	
	_								F
							0.5	DI OMOO! "IT	
						100	SS-7 12.0	BLOWCOUNT 3-5-6-7	F
	_						14.0	N = 11 (SC)	E
	_								F
	_								F
						83	SS-8	BLOWCOUNT	
						03	14.0	4-5-7-10	F
	_						16.0	N = 12 (SC)	F 15
									E
	_								E
						100	SS-9	BLOWCOUNT	Ē
	_						16.0 18.0	3-5-7-7 N = 12	E
							10.0	(CL)	
									F
40.0									E
-13.0	18.0		11	CLAYEY SAND (SC-SM), 18 <n<22, i<="" td=""><td>medium</td><td>108</td><td>ST-1</td><td>Shelby tube</td><td></td></n<22,>	medium	108	ST-1	Shelby tube	
				dense, reddish brown			18.0 19.5	PP = 1.5 tsf Top 11" (CL) with sand	F
								Bottom 3.5" (SC)	<u> </u>
									F
	_					90	SS-10 19.5	BLOWCOUNT 9-9-9-9	<u></u> 20
ENG FORM	1836	PREVI	OU	S EDITIONS ARE OBSOLETE.		PROJECT	eed Mart	HOLE NO.	
IVIAK / I						LOCKIN	ocu iviait	v	

RILLING	LOG (Cont	Sheet) ELEVATION TOP OF HOLE 5.0			Holo No. TTDUCE 6	
ROJECT		, l 9.0	INSTALLATION		Hole No. TTDHCB-6	\exists
Lockheed	Martin MRC DEPTH LEGENI	CLASSIFICATION OF MATERIAL	S % CORE RECOV- ERY	BOX OR SAMPLE	OF 2 SHEETS REMARKS (Drilling time, water loss, depth	s
a	b c	(Description)	e	NO. f	weathering, etc., if significant) g	\perp
		CLAYEY SAND (SC-SM), 18 <n<22, (continued)<="" brown="" dense,="" r="" reddish="" td=""><td>nedium</td><td>21.5</td><td>N = 18 (SC)</td><td>ŀ</td></n<22,>	nedium	21.5	N = 18 (SC)	ŀ
						F
						ŀ
						ŀ
						F
						ŀ
			83	SS-11 23.0	BLOWCOUNT 5-9-13-13	F
				25.0	N = 22 (SC-SM)	þ
					,	ŀ
						ŀ
						ŀ
						ŀ
		A.				ŀ
						ŀ
						þ
	3//					F
			83	SS-12	BLOWCOUNT	ŧ
				28.0 30.0	5-8-11-15 N = 19	ŀ
					(SC)	ŀ
						Ė
						F
						ļ
		A: 1. 2.				F
						þ
						ŀ
						ŀ
-28.0	33.0	CLAYEY SAND (SC-SM), 47 <n<71, td="" v<=""><td>ery 100</td><td>SS-13</td><td>BLOWCOUNT</td><td>ŀ</td></n<71,>	ery 100	SS-13	BLOWCOUNT	ŀ
		dense to dense, reddish brown		33.0 35.0	27-21-50-x N = 71	þ
					(SC-SM)	Ė
						ŀ
		A.				ŀ
						F
						ŀ
						F
						ŀ
						F
			100	SS-14	BLOWCOUNT	þ
			100	38.0 40.0	15-20-27-37 N = 47	F
					(SC)	
						F
-35.0	40.0	END OF BORING				þ
		FIAD OF BOILING				þ
						ŀ
	\exists					þ
	\exists					F
	\exists					ŀ
	\exists					ŀ
						E
	\dashv					

					TETRA TECH Hole No. TTDHO					
DRILLI	DRILLING LOG CLIENT Lockheed Martin Corporation				T NUMBER			1		
. PROJECT		•	Lookiicea Martin Corporation	10. DRILL	LING METHO		HSA/Mud Rotary	ILLIO		
Lockheed			n)	11. DATU MSL	JM FOR ELE	VATION SH	IOWN (TBM or MSL)			
	ver, MD		794.5472 E 1,473,729.9770		JFACTURER	'S DESIGN	ATION OF DRILL			
UniTech					L NO. OF SO		DISTURBED UNDISTURBE	D		
HOLE NO. (A file number)	As shown o	n drawing t	itle and TTDHCB-7		PLES TAKEN		22 1			
NAME OF D					L NUMBER ATION GRO					
D. Evans				16. DATE			ARTED COMPLETED	_		
∨ERTICA	AL] INCLINED	DEG. FROM VERT.		ATION TOP	OF HOLF	10/6/2015 10/6/2015 +4.7	<u> </u>		
7. THICKNESS OF OVERBURDEN					L CORE RE			%		
DEDTH DDILLED INTO DOCK				19. GEOL	OGIST		K. Tu			
ELEVATION	DEPTH	LEGEND	CLASSIFICATION OF MATERIAL	S	% CORE RECOV-	BOX OR SAMPLE	REMARKS (Drilling time, water loss, depth			
a	b	C	(Description)		ERY e	NO. f	weathering, etc., if significant)			
+4.7	0.0		PROBABLE FILL, POORLY GRADED WITH CLAY (SP-SC), moist to very m		83	SS-1 0.0	BLOWCOUNT 1-1-2-2			
			0 <n,3, colors="" gr<br="" in="" loose,="" varying="" very="">dark gray, brownish gray and redish b</n,3,>	ray to		2.0	N=3			
	_		uark gray, brownish gray and redish b	n OWI l			(SC-SM)			
	=									
					83	SS-2	BLOWCOUNT			
						2.0	2-1-2-1 N = 3			
	_				455		(SP-SC)			
	=				100	SS-15 3.0	BLOWCOUNT 6-9-12-14			
	_					5.0	N = 21 (SC-SM)			
	_				100	SS-3 4.0	BLOWCOUNT			
						6.0	N = 2			
							(SP-SC)			
_	_									
_					100	SS-4	BLOWCOUNT			
	_				100	6.0	1-2-1-2			
	_					8.0	N = 3 (SP-SC)			
	_									
	_ _									
					50	SS-5	BLOWCOUNT			
	_					8.0 10.0	1-1-1-1 N = 2			
							(SP-SC)			
	_									
	_				400	00.0	DI OMOQUINT			
	_				100	SS-6 10.0	BLOWCOUNT 1-1-1-1			
	_					12.0	N = 2 (SP-SC)			
	_									
	<u>-</u>									
	_				100	SS-7	BLOWCOUNT			
						12.0 14.0	WH-WH-WH-1 N = WH			
							SP-SC			
					63	00.0	PLOWCOLINT			
	=				03	SS-8 14.0	BLOWCOUNT WH-WH-2-1			
						16.0	N = 2 Top 12" (SP-SC)			
	=						Bottom 12" (SC-SM)			
-11.3										
-11.3	10.0		STILY CLAY (CL-ML) with varying am	ounts of	100	SS-9	BLOWCOUNT			
	=		sand, 10 <n<27, brown<="" light="" reddish="" stiff="" stiff,="" td="" to="" very=""><td>prown to</td><td></td><td>16.0 18.0</td><td>2-4-6-9 N = 10</td><td></td></n<27,>	prown to		16.0 18.0	2-4-6-9 N = 10			
							(CL-ML) with sand			
	_									
					75	SS-10b	BLOWCOUNT 4-7-7-9			
	<u>-</u>					18.0	N = 14 (CL-ML)			
							\/			
	=									
NG FORM	4000		LIC EDITIONS ARE ORGAN ETF		PROJECT		HOLE NO			
MAR 71	1836	rkeviU	US EDITIONS ARE OBSOLETE.		Lockhe	eed Mart	in MRC HOLE NO	ICB-7		

OJECT		4.7 INSTALL	ATION		Hole No. TTDHCB-7			
	Martin MRC	CLASSIFICATION OF MATERIALS	% CORE	BOX OR	OF 4 SHEET	s		
EVATION a	DEPTH LEGEND c	(Description)	RECOV- ERY e	BOX OR SAMPLE NO. f	(Drilling time, water loss, depth weathering, etc., if significant)			
ŭ		STILY CLAY (CL-ML) with varying amounts of sand, 10 <n<27, (continued)<="" brown="" light="" reddish="" stiff="" stiff,="" td="" to="" very=""><td></td><td></td><td>9</td><td></td></n<27,>			9			
			100	SS-11	BLOWCOUNT			
				23.0 25.0	9-11-16-18 N = 27 (CL-ML) with sand			
23.3	28.0	CLAYEY SAND (SC-SM) with silt, 13 <n<24, brown<="" colors="" desne,="" in="" light="" medium="" td="" varying=""><td>100</td><td>SS-12 28.0</td><td>BLOWCOUNT 10-7-12-17</td><td></td></n<24,>	100	SS-12 28.0	BLOWCOUNT 10-7-12-17			
		medium desne, varying colors in light brown to reddish brown and red to brownish red		30.0	N = 19 (SC-SM)			
			100	ST-1	Shelby tube			
			33	30.0 30.3 SS-13a 30.3 32.3	PP = 2.0-3.0 tsf 3" recovery (SC) BLOWCOUNT 3-7-9-9 N = 16 (SC)			
			100	SS-14	BLOWCOUNT 5-6-7-8			
				33.0 35.0	N = 13 (SM)			
			100	SS-16 43.0 45.0	BLOWCOUNT 8-10-14-17 N = 24 (SC-SM) with thin layers of CL-ML			

ELEVATION TOP OF HOLE **DRILLING LOG (Cont Sheet)** Hole No. TTDHCB-7 INSTALLATION SHEET 3 Lockheed Martin MRC OF SHEETS BOX OR SAMPLE NO. f REMARKS CLASSIFICATION OF MATERIALS ELEVATION DEPTH LEGEND (Drilling time, water loss, depth weathering, etc., if significant) RECOV-ERY e (Description) CLAYEY SAND (SC-SM) with silt, 13<N<24, medium desne, varying colors in light brown to reddish brown and red to brownish red (continued) 45 -43.3 48.0 Interbedded CLAYEY SAND (SC-SM) and SILTY CLAY (CL-ML), 35<N<42, N=79 @ 63' to 65', medium dense and hard, varying colors in brownish red to red and gray BLOWCOUNT 17-18-17-33 N = 35 (SC-SM) 100 SS-17 48.0 50.0 SS-18 53.0 55.0 **BLOWCOUNT** 8-16-21-38 N = 37 (CL-ML) 55 BLOWCOUNT 14-19-23-26 N = 42 (SC-SM) SS-19 58.0 100 60.0 60 BLOWCOUNT 13-39-40-50/5" N = 79 96 SS-20 63.0 65.0 Cemented (CL-ML) 65 HOLE NO. TTDHCB-7 **ENG FORM**

1836-A

Lockheed Martin MRC

DRILLING	G LOG (Cont S	heet)	ELEVATI 4.7	ON TOP	OF HOLE				Hole N	o. TTI	рнсв-7	
PROJECT Lockheed	l Martin I	MRC					INSTALL	ATION				SHEET 4 OF 4 SHEETS	
ELEVATION	DEPTH	LEGEND		CLASSIF	ICATION (Descri	OF MATERIA	ALS	% CORE RECOV- ERY	BOX OR SAMPLE NO. f	(Drilling weathe	REMARI time, wate	KS or loss, depth f significant)	
а	b	c	Interbe	dded CL	d AYEY S/	AND (SC-SN 5 <n<42, n="</th"><th>M) and</th><th>100</th><th>SS-21</th><th>BLOWCOUN</th><th>g</th><th></th><th></th></n<42,>	M) and	100	SS-21	BLOWCOUN	g		
	_		to 65',	medium (dense ar	nd hard, var	ying colors		68.0 70.0	17-18-24-32 N = 42			
			in brow	nish red	to red ar	nd gray (con	tinued)			(CL)			
	=												E
-65.3	70.0		END C	F BORIN	IG								70
	_												
	_ _ _ _												E
													E
													75
	=												E
	_												E
	=												
	_ _												
	_												
													80
	=												E
													E
													_
													_
													E
	_												
													85
	=												E
													E
	_												
													E
													E
													90
	_												E
	=												E
													F
ENG FORM JUN 67	1836-	A						PROJECT Lockhe	eed Mart	in MRC		HOLE NO. TTDHCB-7	7

Hole No. TTDHCB-8

DRILLI	NG LOG	CLIE	NT ockheed Martin Corporation	PROJECT 194-8	NUMBER			SHEET 1 OF 2 SHEETS
1. PROJECT		[ockileed Martin Corporation		ING METHO		HSA/Mud Rotary	OF Z SHEETS
	Martin MRC			11. DATU			HOWN (TBM or MSL)	
	Coordinates or St		30.4520 E 1,473,602.9321	MSL 12. MANU	JFACTURFF	R'S DESIGN	ATION OF DRILL	
3. DRILLING A		,	, -,					
UniTech 4. HOLE NO. (A	As shown on draw	ing title	e and		L NO. OF SOLES TAKEN		DISTURBED UI	NDISTURBED 1
file number)			TTDHCB-8	14. TOTA	L NUMBER	CORE BOX	*	<u> </u>
5. NAME OF D D. Evans				15. ELEV	ATION GRO	UND WATE	ER 3.0	
6. DIRECTION	OF HOLE			16. DATE	HOLE	ST		PLETED 10/8/2015
			DEG. FROM VERT.	17. ELEV	ATION TOP	OF HOLE	+9.0	10/0/2010
	OF OVERBURDI						OR BORING	%
9. TOTAL DEP	LLED INTO ROCK		40.0	19. GEOL	OGIST		K. Tu	
			CLASSIFICATION OF MATERIALS	 S	% CORE	BOX OR	REMARK	
ELEVATION	DEPTH LEGI		(Description)		RECOV- ERY	SAMPLE NO. f	(Drilling time, water weathering, etc., if	loss, depth significant)
a +9.0	0.0		d PROBABLE FILL, CLAYEY SAND (So to very moist, 2 <n<7, and="" brown="" brownish="" colors="" go="" gray<="" in="" loo="" loose="" reddish="" td="" to="" varying="" very=""><td>ose,</td><td>42</td><td>SS-1 0.0 2.0</td><td>BLOWCOUNT x-x-7-25 N = 7 8" dirt 4" concrete slab 12" base materials</td><td></td></n<7,>	ose,	42	SS-1 0.0 2.0	BLOWCOUNT x-x-7-25 N = 7 8" dirt 4" concrete slab 12" base materials	
					63	SS-2 2.0 4.0	BLOWCOUNT 2-1-2-1 N = 3 (SC-SM)	
					67	SS-3a SS-3b 4.0 6.0	BLOWCOUNT 2-2-1-1 N = 3 Top 8" (SC) Bottom 8" (CLS)	E
					92	SS-4 6.0 8.0	BLOWCOUNT WH-1-1-1 N = 2 (CLS)	
					100	SS-5 8.0 10.0	BLOWCOUNT 1-2-3-5 N = 5 (SC)	
					54	SS-6 10.0 12.0	BLOWCOUNT 5-4-3-3 N = 7 (SC) with gravel	
-3.0	12.0		SILTY CLAY (CL-ML) with occasional 7 <n<15, l<="" medium="" reddish="" stiff="" stiff,="" td="" to=""><td>sand, brown</td><td>50</td><td>SS-7 12.0 14.0</td><td>BLOWCOUNT 2-4-7-7 N = 11 (CL-ML) with sand</td><td> </td></n<15,>	sand, brown	50	SS-7 12.0 14.0	BLOWCOUNT 2-4-7-7 N = 11 (CL-ML) with sand	
					100	ST-1 14.0 16.0	Shelby tube 24" recovery	
					63	SS-8 16.0 18.0	BLOWCOUNT 6-8-7-8 N = 15 (CL-ML)	- - - - - -
					54	SS-9 18.0 20.0	BLOWCOUNT 3-3-4-6 N = 7 (CLS)	
ENG FORM MAR 71	1836 PRE	VIOUS	S EDITIONS ARE OBSOLETE.		PROJECT Lockho	eed Mart	in MRC	HOLE NO. TTDHCB-8

או ו ווסר	2100	Conto	hast	ELEVATION TOP OF HOLE			16		
PROJECT	LOG (Cont S	neet)	9.0	INSTALLAT	ION		Hole No. 1	TDHCB-8 SHEET 2
Lockheed	Martin I	MRC				% CORE	DOV OD	DEA	OF 2 SHEETS
ELEVATION	DEPTH	LEGEND		CLASSIFICATION OF MATERIAL (Description)	_S	RECOV- ERY	BOX OR SAMPLE NO. f	(Drilling time, weathering, e	water loss, depth tc., if significant)
а	b		SILTY	d CLAY (CL-ML) with occasiona	ıl sand.	е	f		9
	_		7 <n<1< td=""><td>5, medium stiff to stiff, reddish</td><td>brown</td><td></td><td></td><td></td><td></td></n<1<>	5, medium stiff to stiff, reddish	brown				
			(COTILITIE	ucu)					
	_								
	_								
	=								
-14.0	23.0		CLAYE	EY SAND (SC-SM) with silt and	trace of	96	SS-10	BLOWCOUNT	
	=		organic	cs, 12 <n<20, and<="" brown="" ratified="" reddish="" stiff="" stiff,="" td="" to="" very="" with=""><td>2 1.000 0.</td><td></td><td>23.0 25.0</td><td>4-7-5-7 N = 12</td><td></td></n<20,>	2 1.000 0.		23.0 25.0	4-7-5-7 N = 12	
			brownis	sh red			25.0	(SC-SM)	
	=								
	_								
	_								
	_		1						
	_								
	_					100	SS-11	BLOWCOUNT	
	_						28.0 30.0	5-6-7-9 N = 13	
								Top 12" (SC-SM) ir Bottom 12" (CL-ML	ı brown) in reddish brown
								Bottom 12 (OL IVIL	, iii roddioir brown
	_								
	=								
	_								
						100	SS-12 33.0	BLOWCOUNT 6-8-12-13	
	=						35.0	N = 20 (CLS)	
								Trace of decompos	ed timber
	=								
	=								
	_		1						
	_								
	_								
-29.0	38.0		LEAN	CLAY (CL) with sand. N = 40	hard.	100	SS-13	BLOWCOUNT	
			interstr	CLAY (CL) with sand, N = 40, I ratified with reddish brown and sh red in color		. = •	38.0 40.0	8-16-24-28 N = 40	
	_		2.5Wills	100 111 00101			40.0	(CL)	
	_								
-31.0	40.0								
31.0		<i></i>	END O	F BORING					
	_								
	_								
	_								
	_								
	_	I	1				1	1	

ENG FORM 1836-A

PROJECT Lockheed Martin MRC

HOLE NO. TTDHCB-8

Hole No. TTDHCB-9

DRILLI	NG LO	G	CLIEI L o	NT ockheed Martin Corporation	PROJEC ⁻ 194-8	T NUMBER		SHEET OF 2	1 SHEETS
1. PROJECT	I N 4 =t.: N	400		onineed Martin Corporation	10. DRILL	ING METHO		HSA/Mud Rotary	OHEETO
Lockheed 2. LOCATION (Coordinates	s or Stati	ion)		11. DATU MSL	IM FOR ELE	VATION SH	IOWN (TBM or MSL)	
Middle Ri 3. DRILLING A		N 604	1,54	2.2869 E 1,473,578.7008	12. MANU	JFACTURER	'S DESIGN	ATION OF DRILL	
UniTech				• :		L NO. OF SO		DISTURBED UNDISTU	
4. HOLE NO. (a file number)	As shown o	n drawin	g title	TTDHCB-9		L NUMBER			1
5. NAME OF D D. Evans	RILLER					ATION GRO			
6. DIRECTION					16. DATE	HOLE	ST	ARTED COMPLETED 10/8/2015 10/8/2	
VERTIC		INCLIN		DEG. FROM VERT.	17. ELEV	ATION TOP	OF HOLE	+7.6	.010
7. THICKNESS 8. DEPTH DRII			1				COVERY F	OR BORING	%
9. TOTAL DEP	TH OF HOL	.E		40.0	. 19. GEOL			K. Tu	
ELEVATION	DEPTH	LEGEN	ID	CLASSIFICATION OF MATERIAL (Description)	S	% CORE RECOV- ERY	BOX OR SAMPLE NO.	REMARKS (Drilling time, water loss, de weathering, etc., if significa	
a +7.6	b 0.0	c ××××	× 1	d d PROBABLE FILL, mixed material,		e 83	SS-1	BLOWCOUNT	
17.0	0.0 _		ı KXX	predominantly SANDY CLAY (CL), m		63	0.0	3-1-3-2 N = 4	
				very moist, 1 <n<4, a="" and="" are="" brown="" color,="" loose,="" loose.<="" reddish="" soft="" th="" to="" varying="" very=""><th></th><th></th><th>2.0</th><th>N = 4 (MLS)</th><th></th></n<4,>			2.0	N = 4 (MLS)	
	_								F
	<u>=</u>								F
						75	SS-2 2.0	BLOWCOUNT 2-2-1-2	
							4.0	N = 3 (SC-SM)	E
								(30-3WI)	<u> </u>
	<u> </u>								F
						92	SS-3	BLOWCOUNT	<u> </u>
						"-	4.0 6.0	1-1-1-1 N = 2	E
	_						0.0	(CLS)	5
	_								F
1	7 –								F
						83	SS-4 6.0	BLOWCOUNT WH-WH-1-1	E
	_						8.0	N = 1 (CLS)	
	_							(CLS)	
	_								F
	_					63	SS-5a	BLOWCOUNT	
	_						SS-5b 8.0	WR-1-2-3 N = 3	E
							10.0	Top 11" (SP-SM) Bottom 4" (CL-ML)	
	_							Bottom 4 (CE-IVIE)	F
-2.4	10.0								10
				SILTY CLAY (CL - ML), 16 <n<25, stif<br="">stiff, reddish brown</n<25,>	f to very	100	SS-6 10.0	BLOWCOUNT 5-7-9-13	
	_ _			,			12.0	N = 16 PP = 2.0-4.0 tsf	-
	_							(CL-ML)	<u> </u>
	_								F
	_					100	ST-1	Shelby tube	
	<u> </u>						12.0 13.0	PP = 4.0-4.5 tsf 12" recovery	þ
						100	SS-7a	(CL) BLOWCOUNT	<u> </u>
						100	SS-7b	6-10-15-17 N = 25	E
							13.0 15.0	Top 12" (CL-ML)	E_
	_							Bottom 12" (CLŚ)	F
-7.4	15.0 —								- - 15
				CLAYEY SAND (SC) with varying amount of the community of	ounts of	63	SS-8 15.0	BLOWCOUNT 7-13-20-23	E
				stiff, brown to reddish brown	o, voiy		17.0	N = 33	E
	_							(SC)	<u> </u>
	<u> </u>								F
						100	SS-9	BLOWCOUNT	
							17.0 19.0	4-7-9-8 N = 16	E
							10.0	(SC)	
	=								F
									F
						63	SS-10 19.0	BLOWCOUNT 4-6-4-4	E
	<u>-</u>						21.0	N = 10 (SC)	- - 20
ENG FORM	1836	PREVI	IOUS	S EDITIONS ARE OBSOLETE.		PROJECT Lockhe	eed Mart	HOLE	
MAR 71						LUCKIR	ou iviai l	vii.\\\	ביםטוום

ELEVATION TOP OF HOLE **DRILLING LOG (Cont Sheet)** Hole No. TTDHCB-9 INSTALLATION SHEET 2 Lockheed Martin MRC OF SHEETS REMARKS BOX OR SAMPLE NO. f CLASSIFICATION OF MATERIALS ELEVATION DEPTH LEGEND (Drilling time, water loss, depth weathering, etc., if significant) RECOV-ERY e (Description) CLAYEY SAND (SC) with varying amounts of silt, 10<N<33, medium dense to dense, very stiff, brown to reddish brown (continued) SS-11 23.0 25.0 BLOWCOUNT 4-7-9-11 N = 16 100 Sandy (SC-SM) 25 -20.4 28.0 SILTY CLAY (CL - ML), 36<N<39, hard, 100 SS-12 **BLOWCOUNT** 28.0 30.0 11-17-22-27 N = 39 PP > 4.5 tsf reddish brown (CLS) 30 BLOWCOUNT 10-16-22-27 N = 38 (CL-ML) SS-13 33.0 35.0 100 35 BLOWCOUNT 9-15-21-30 N = 36 (CL-ML) 100 SS-14 38.0 40.0 -32.4 ENG FORM JUN 67 HOLE NO. TTDHCB-9 1836-A Lockheed Martin MRC

Hole No. TTDHCB-10

DRILLI	NG LO	·	ENT .ockheed Martin Corporation	PROJEC*	T NUMBER		SHEET OF 2 SH	1
1. PROJECT			Cockneed Martin Corporation	_	LING METHO	OD	HSA/Mud Rotary	IEE 13
Lockheed				11. DATU			HOWN (TBM or MSL)	
2. LOCATION (Middle Ri) 29.0408 E 1,473,578.8936	MSL 12 MANI	JEACTI IREE	R'S DESIGN	ATION OF DRILL	
3. DRILLING A				_ IZ. WAIN	JI ACTORES	V3 DESIGN	ATION OF DIVILLE	
UniTech 4. HOLE NO. (A	As shown or	n drawing ti	tle and		L NO. OF SOPLES TAKEN		DISTURBED UNDISTURBED 17 1	D
file number)			TTDHCB-10	14. TOTA	L NUMBER	CORE BOX		
5. NAME OF D D. Evans					ATION GRO			
6. DIRECTION				16. DATE	HOLE	ST	ARTED COMPLETED 10/7/2015 10/7/2015	
	AL	INCLINED	DEG. FROM VERT.	17. ELEV	ATION TOP	OF HOLE	+5.5	<u>'</u>
7. THICKNESS							OR BORING	%
8. DEPTH DRII 9. TOTAL DEP			40.0	19. GEOL	OGIST		V Т	
			CLASSIFICATION OF MATERIAL	.s	% CORE	BOX OR	K. Tu	
ELEVATION	DEPTH	LEGEND	(Description)		RECOV- ERY	SAMPLE NO. f	weathering, etc., if significant)	
a +5.5	0.0	c	PROBABLE FILL, CLAYEY SAND (So trace of organics, moist to very moist, very loose to loose, varying colors in r brown and brownish gray to gray	3 <n<7,< th=""><th>67</th><th>SS-1 0.0 2.0</th><th>BLOWCOUNT 2-2-4-5 N = 6 (SC-SM) with sand, trace of organic</th><th>cs</th></n<7,<>	67	SS-1 0.0 2.0	BLOWCOUNT 2-2-4-5 N = 6 (SC-SM) with sand, trace of organic	cs
						00.0	DI OMO OLINIT	
	——————————————————————————————————————				83	SS-2 2.0 4.0	BLOWCOUNT 2-2-3-4 N = 5 (CLS) with sand	
					92	SS-3a SS-3b 4.0 6.0	BLOWCOUNT 4-2-5-4 N = 7 (CLS) Top 15" in reddish brown Bottom 7" in gray Creosote small	5
<u>-</u>	——————————————————————————————————————				100	SS-4 6.0 8.0	BLOWCOUNT 1-1-2-1 N = 3 (SC) with organics	
					100	SS-5 8.0 10.0	BLOWCOUNT 1-1-1-1 N = 2 (SC) with organics and trace of timb	E
-6.0	11.5		CLAY (CL-CH) with varying amounts	of sand	75	SS-6a SS-6b 10.0 12.0	BLOWCOUNT WH-2-3-4 N = 5 Top 18" (SC) Bottom 6" (CL-ML)	1
			and thin layers of silty clay, 9 <n<30, s<br="">very stiff, brownish red</n<30,>	stiff to	83	SS-7 12.0 14.0	BLOWCOUNT 3-4-5-6 N = 9 (CL-ML)	
					92	SS-8	BLOWCOUNT	
						14.0 16.0	8-9-10-14 N = 19 (CH)	- - - - - -
					83	SS-9 16.0 18.0	BLOWCOUNT 4-4-7-8 N = 11 (CH)	
					0	ST-1 18.0 20.0	Shelby tube No recovery	
ENG FORM MAR 71	1836	PREVIOL	JS EDITIONS ARE OBSOLETE.		PROJECT Lockho	eed Mart	in MRC HOLE NO	CB-10

	LOG (Cont S	0.0			Hole No. TTDHCB-10	
ROJECT Lockheed	Martin MRC	. IN	STALLATION		SHEET 2 OF 2 SHEET	_{IS}
ELEVATION	DEPTH LEGEND	CLASSIFICATION OF MATERIALS	% COR RECOV ERY	BOX OR - SAMPLE	REMARKS	١٥
a	b c	(Description) d	ı e	NO. f	weathering, etc., if significant) g	
		CLAY (CL-CH) with varying amounts of s and thin layers of silty clay, 9 <n<30, stiff<br="">very stiff, brownish red (continued)</n<30,>	sand 100	SS-10 20.0	BLOWCOUNT 4-7-12-14	
		very stiff, brownish red (continued)	10	22.0	N = 19	ŀ
					(CH)	ŀ
						ŀ
					_	ŀ
						ŀ
						þ
			100	SS-11	BLOWCOUNT	ŀ
				23.0 25.0	5-8-12-13 N = 20	F
					(CL)	E
						ŀ
						ŀ
						ŀ
						þ
						þ
						þ
						þ
						ŀ
						ŀ
			100	SS-12 28.0	BLOWCOUNT 5-11-19-19	E
				30.0	N = 30	ŀ
					(CL) with sand	ŀ
						ŀ
						ŀ
						þ
						þ
						ŀ
						F
						F
						E
						ŀ
			92	SS-13a SS-13b	5-13-18-24	ŀ
				33.0 35.0	N = 31 Top 15" (CH)	þ
				00.0	Bottom 7" (SC)	þ
-29.0	34.5	CLAYEY SAND (SC), N = 30, dense, red	ldish			ŀ
		brown.			-	F
	3/////					E
	<i></i>					ŀ
	¥/////					ŀ
	4////					ŀ
						þ
	4////					ŀ
			100	SS-14	BLOWCOUNT	F
	¥/////		100	38.0	10-15-15-16	F
				40.0	N = 30 (SC)	F
	<i>\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\</i>					E
24.5	40.0					F
-34.5	40.0 - //////	END OF BORING			-	ŀ
	\exists					ŀ
						þ
	\exists					þ
	\exists					þ
	\exists					þ
	\exists					F
	$\overline{}$					F
	\exists					F
			1	1	T. Control of the Con	- 1

ENG FORM 1836-A

Lockheed Martin MRC

TTDHCB-10

Hole No. TTDHCB-11

DRILLI	NG LO	$oldsymbol{c}$	IENT		T NUMBER		SHEET	1
1. PROJECT			_ockheed Martin Corporation	194-8	ING METHO	<u> </u>	HSA/Mud Rotary	SHEETS
Lockheed	Martin	MRC					IOWN (TBM or MSL)	
2. LOCATION (MSL				
3. DRILLING A		N 604,2	265.0466 E 1,473,441.1996	12. MANU	JFACTUREF	R'S DESIGN	ATION OF DRILL	
UniTech	OLIVOT			13. TOTA	L NO. OF SO	OIL	DISTURBED UNDISTUR	BED
4. HOLE NO. (A file number)	As shown o	n drawing ti			PLES TAKEN		22 1	
5. NAME OF D	RILLER		TTDHCB-11		L NUMBER			
D. Evans				15. ELEV	ATION GRO		-	
6. DIRECTION		,		16. DATE	HOLE	SI	ARTED COMPLETED 10/7/2015 10/7/20	015
⊠ VERTICA] INCLINED	DEG. FROM VERT.	17. ELEV	ATION TOP	OF HOLE	+4.8	
7. THICKNESS				18. TOTA	L CORE RE	COVERY F	OR BORING	%
8. DEPTH DRIL			40.0	19. GEOL	OGIST		И.Т.,	
9. TOTAL DEP			CLASSIEICATION OF MATERIAL	<u> </u>	% CORE	BOX OR	K. Tu REMARKS	
ELEVATION	DEPTH	LEGEND	(Description)	.0	RECOV- ERY	SAMPLE NO.	(Drilling time, water loss, dep weathering, etc., if significan	th t)
+4.8	0.0 _	c ××××××	d PROBABLE FILL, predominantly CLA	VEV	e 83	f	BLOWCOUNT	<u></u>
+4 .0	0.0 _		SAND (SC) with varying amounts of s	ilt and	83	SS-1 0.0	BLOWCOUNT 2-6-3-6	
	_		and traces of organic materials, moist 9 <n<13, and<="" dense="" loose="" medium="" td="" to=""><td>t, ctiff</td><td></td><td>2.0</td><td>N = 9 (CLS/MLS)</td><td>E</td></n<13,>	t, ctiff		2.0	N = 9 (CLS/MLS)	E
			varying color, light brown to brown an				(CES/IVIES)	
	_		reddish brown.					\vdash
	_							F
					100	SS-2	BLOWCOUNT	F
	_	*****				2.0 4.0	4-5-5-3 N = 10	F
							(SC) with organics	<u> </u>
								E
	<u> </u>							E
					100	SS-3	BLOWCOUNT	<u> </u>
	_				100	4.0	5-5-8-12	F
	_					6.0	N = 13 (SC)	F 5
							(66)	
	_							
	_				100	SS-4	BLOWCOUNT	\vdash
	_					6.0 8.0	2-2-7-8 N = 9	F
							(SC)	
	_							
0.0	_							
-3.2	8.0		CLAYEY SAND (SC) with thin (<2") I	avers of	100	SS-5	BLOWCOUNT	<u> </u>
	_		silty clay, 11 <n<28, b<="" dense,="" medium="" td=""><td>rownish</td><td></td><td>8.0</td><td>11-11-13-13</td><td>\vdash</td></n<28,>	rownish		8.0	11-11-13-13	\vdash
	_		red to reddish brown			10.0	N = 24 (SC-SM)	F
	_ =							
								10
	_				100	SS-6 10.0	BLOWCOUNT 5-6-9-9	
	_					12.0	N = 15	H
							(SC) with thin layer of CL	
								F
	_							F
					100	SS-7	BLOWCOUNT	
	_					12.0 14.0	16-15-13-11 N = 28	E
	_					1-4.0	(SC-SM)	
	_							\vdash
	_		1					F
					100	00.0	PLOWCOUNT	_
					100	SS-8 14.0	BLOWCOUNT 7-9-11-11	E
	_					16.0	N = 20	- - 15
							(SC)	<u> </u>
	_							\vdash
	_							F
					100	SS-9	BLOWCOUNT	
	_					16.0 18.0	7-10-13-15 N = 23	
						10.0	(SC)	E
			1					
	_	V////						F
						00.10	DI OMCOUNT	<u> </u>
					92	SS-10 18.0	BLOWCOUNT 6-7-10-12	
	_					20.0	N = 17	E
							(SC-SM)	
	_							F
								F 20

DRILLING	sheet)	4.8					Hole No.	. TTDHCB-11			
PROJECT Lockheed	I Martin I	MRC				INSTALLA				SHEET 2 OF 4 SHEETS	s
ELEVATION	DEPTH	LEGEND		CLASSIFICATION OF N (Description)		3	% CORE RECOV- ERY e	BOX OR SAMPLE NO. f	R (Drilling time weathering	EMARKS e, water loss, depth , etc., if significant)	1
а	b	c	CLAYE	d d Y SAND (SC) with th		vers of	e	f f	weathering	g g	+
			silty clay	y, 11 <n<28, medium<br="">eddish brown <i>(continu</i></n<28,>	dense, br	ownish					ŀ
) icu to it	eddisii biowii (comm	ucu)						ŀ
	_										ŀ
											ŀ
	_										ŀ
											ŀ
	_						100	SS-11 23.0 25.0	BLOWCOUNT 6-9-10-11		ŀ
	_							25.0	N = 19 (SC)		ŀ
	_										ŀ
											ŀ
											F
	=										-
											ŀ
	<u>-</u>										ŀ
											İ
											f
							100	SS-12a SS-12b	BLOWCOUNT 7-8-13-15		ŀ
-23.9	28.7		LEAN	CLAY (CL) with varvin	ig amount	s of		28.0 30.0	N = 21		F
			sand, 1	CLAY (CL) with varyin 6 <n<32, i<br="" stiff="" to="" very="">o brownish red</n<32,>	hard, redd	lish		30.0	Top 8" (SC) Bottom 16" (CL)		ļ
			S.OWII (o prowingit ieu							ŀ
											ŀ
											ŀ
											ŀ
	_										ŀ
											ŀ
											ŀ
	_						83	SS-13	BLOWCOUNT		ŀ
	_							33.0 35.0	4-6-10-12 N = 16		ŀ
	_								(CL)		ŀ
	_ _										ŀ
							0	ST-1	Shelby tube		F
	<u> </u>							35.0 37.0	No recovery		ŀ
											F
	_										-
											ŀ
	<u> </u>										ŀ
							100	SS-14	BLOWCOUNT		ŧ
								38.0 40.0	8-13-19-28 N = 32		F
									(CL)		ŧ
											F
											ļ
											ŀ
											ŀ
	=										ļ
											ŀ
-37.7	42.5 —										ŀ
	_		clayey s	CLAY (CLS) with a t sand @ 48', 20 <n<56< td=""><td>6, very stiff</td><td>of f to</td><td></td><td></td><td></td><td></td><td>ŀ</td></n<56<>	6, very stiff	of f to					ŀ
				ownish red to reddish			100	SS-15 43.0	BLOWCOUNT 6-8-12-17		F
								45.0	N = 20 (CLS)		J
NG FORM JUN 67	1836-	A					PROJECT Lockhe	eed Marti	in MRC	HOLE NO. TTDHCB-	.11

ELEVATION TOP OF HOLE **DRILLING LOG (Cont Sheet)** Hole No. TTDHCB-11 INSTALLATION SHEET 3 Lockheed Martin MRC of 4 SHEETS BOX OR SAMPLE NO. f REMARKS CLASSIFICATION OF MATERIALS ELEVATION DEPTH LEGEND RECOV-ERY e (Drilling time, water loss, depth weathering, etc., if significant) (Description) SANDY CLAY (CLS) with a thin layer of clayey sand @ 48', 20<N<56, very stiff to hard, brownish red to reddish brown (continued) 45 BLOWCOUNT 18-20-21-30 N = 41 Top 12" (SC) Bottom 12" (CL) with sand SS-16 48.0 100 50.0 SS-17a SS-17b 53.0 55.0 **BLOWCOUNT** 6-7-18-22 N = 25 (CLS) BLOWCOUNT 8-29-27-29 N = 56 (CLS) SS-18 58.0 60.0 100 60 BLOWCOUNT 12-19-24-38 N = 43 100 SS-19 63.0 65.0 (CLS) 65 ENG FORM JUN 67 PROJECT Lockheed Martin MRC HOLE NO. TTDHCB-11 1836-A

DECEMBER MARTIN MRC CLASSIFICATION OF MATTRIALS REVAIN (REVAIN AND CLASSIFICATION OF MATTRIALS SHOOL DISCOURT) REVAIN (REVAIN AND CLASSIFICATION OF MATTRIALS SHOOL DISCOURT) REVAIN (REVAIN AND CLASSIFICATION OF MATTRIALS SHOOL DISCOURT) REVAIN (REVAIN AND CLASSIFICATION OF MATTRIALS SHOOL DISCOURT) REVAIN (REVAIN AND CLASSIFICATION OF MATTRIAL SHOOL DISCOURT) REVAIN AND CLASSIFICATION OF MATTRIAL SHOOL DISCOURT) REVAIN AND CLASSIFICATION OF MATTRIAL SHOOL DISCOURT OF MATTRIAL SHOOL DISCOURT OF MATTRIAL SHOOL DISCOURT OF MATTRIAL SHOOL DISCOURT OF MATTRIAL SHOOL DISCOURT OF MATTRIAL SHOOL DISCOURT OF MATTRIAL SHOOL DISCOURT OF MATTRIAL SHOOL DISCOURT OF MATTRIAL SHOOL DISCOURT OF MATTRIAL SHOOL DISCOURT OF MATTRIAL SHOOL DISCOURT OF MATTRIAL SHOOL DISCOURT OF MATTRIAL SHOOL DISCOURT OF MATTRIAL SHOOL DISCOURT OF MATTRIAL SHOOL DIS	DRILLING	G LOG ((Cont S	heet)	4.8				Hole No. TTDHCB-11	
ELPH/TON DEPTH EGDD CLASSIFICATION OF MATERIALS SQUARE	PROJECT Lockheed	l Martin N	MRC			INSTALLA	ATION		SHEET 4	TS
3 ANDOY CLAY (CLS) with a thin taper of page 100 Sept 17 17 22 25 Touch browning in set to necides brown continues of cont						LS	% CORE RECOV- FRY	BOX OR SAMPLE NO	REMARKS	
SS.2 70.0 ENIO OF BORING	а	b	c	SAND	d	r of	e e		BLOWCOUNT	+
SS.2 70.0 ENIO OF BORING				clayey hard, b	sand @ 48', 20 <n<56, sign<="" th="" very=""><th>tiff to</th><th></th><th>68.0</th><th> 11-17-22-26 N = 39</th><th>E</th></n<56,>	tiff to		68.0	11-17-22-26 N = 39	E
ENO OF BORING ENO OF				(contin	ued)				(CLS)	
ENO OF BORING ENO OF										E
	-65.2	70.0		END O	E BODING					<u> </u>
				LIND	DORING					E
										<u> </u>
										E
		_								
										E
		_								E
		_								F
		_								F
		_								F
		_								E
		_								F
		_								E
		_								F
		_								F
										E
		_								F
		_								F
		_								
		_								F
		_								F
		_								F
										E
		_								F
										E
										F
										E
										F
		_								E
										F
										F 9
										E
		=								F
										E
										<u>_</u>

ENG FORM 1836-A

Lockheed Martin MRC

TTDHCB-11

Hole No. TTDHCB-12

DRILLI	NG LOG	CLIE	ENT ockheed Martin Corporation	PROJECT 194-8	NUMBER		SHEET 1 OF 2 SHEE				
. PROJECT		<u> </u>	ockileed Martin Corporation		ING METHO	OD	HSA/Mud Rotary	E18			
Lockheed	d Martin MRC			11. DATU			OWN (TBM or MSL)	\dashv			
LOCATION ((Coordinates or St	ation)	66 6051 E 1 472 272 4247	MSL							
DRILLING A		04,2	66.6051 E 1,473,373.4247	12. MANU	IFACTUREF	R'S DESIGN.	ATION OF DRILL				
UniTech					L NO. OF S		DISTURBED UNDISTURBED	\dashv			
HOLE NO. (/	As shown on draw	ing tit	Ite and TTDHCB-12		PLES TAKEN 16 1						
NAME OF D	RILLER		110110012		L NUMBER			_			
D. Evans					ATION GRO		R -2.8 ARTED COMPLETED	\dashv			
DIRECTION VERTICA		INED	DEG. FROM VERT.	16. DATE	HOLE	317	10/7/2015 10/7/2015				
			DEG. FROM VERT.	17. ELEV	ATION TOP	OF HOLE	+5.2				
	S OF OVERBURD					COVERY FO	OR BORING	%			
	TH OF HOLE		40.0	19. GEOL	OGIST		K. Tu				
			CLASSIFICATION OF MATERIAL	.S	% CORE	BOX OR	REMARKS	\dashv			
LEVATION	DEPTH LEGI		(Description)		RECOV- ERY	SAMPLE NO.	(Drilling time, water loss, depth weathering, etc., if significant)				
+5.2	0.0	; 	d PROBABLE FILL, predominantly CLA	YFY	е	f	9	+			
. 0.2		\bowtie	SAND (SC) with occasional clay and	trace of				F			
		\bowtie	organics, moist, 4 <n<10, and="" colors="" dense="" graying<="" in="" loose="" me="" stiff,="" td="" to="" varying=""><td>dium ish</td><td>0</td><td>SS-1 0.5</td><td>BLOWCOUNT x-3-4-2</td><td>F</td></n<10,>	dium ish	0	SS-1 0.5	BLOWCOUNT x-3-4-2	F			
		XX	brown to reddish brown			2.5	N = 7	F			
		\bowtie					6" concrete slab No recovery				
		\bowtie						E			
		\bowtie			75	SS-2 2.0	BLOWCOUNT 2-2-2-3	E			
	-	\bowtie				4.0	N = 4	F			
		\bowtie					(SC)	F			
		\bowtie						F			
		\bowtie						þ			
		\bowtie			100	SS-3	BLOWCOUNT	F			
		\bowtie				4.0 6.0	3-3-3-3 N = 6	F			
		\bowtie				0.0	(SC-SM)	F			
		\bowtie						F			
								F			
		\bowtie			400	00.1	D. 0.00	F			
		\bowtie			100	SS-4 6.0	BLOWCOUNT 3-4-6-8	E			
		\bowtie				8.0	N = 10	E			
		\bowtie					(CLS)	H			
		\bowtie									
-2.8	8.0	\bowtie						þ			
-2.0	0.0		SANDY CLAY (CLS), 6 <n<11, mediu<="" td=""><td>m stiff to</td><td>63</td><td>SS-5</td><td>BLOWCOUNT</td><td>F</td></n<11,>	m stiff to	63	SS-5	BLOWCOUNT	F			
			stiff, brown to reddish brown and brow	vnish red		8.0 10.0	3-4-3-4 N = 7				
						10.0	(CLS)	E			
								⊢			
								F			
					50	SS-6	BLOWCOUNT	F			
					50	10.0	WH-1-5-7				
						12.0	N = 6 (CLS)	F			
							(CLS)	E			
								L			
	<i></i>							F			
					75	SS-7	BLOWCOUNT	F			
	\\					12.0 14.0	6-5-4-5 N = 9	F			
							(CLS)	þ			
	<i>\\\\\\\\</i>							E			
								F			
					100	SS-8	BLOWCOUNT	F			
	<i> </i>					14.0	6-5-4-8	F			
						16.0	N = 9 (CLS)	F			
								F			
	<i>\\\\\\\</i>							þ			
								E			
	<i>-\ ///</i>				100	SS-9 16.0	BLOWCOUNT 3-4-4-4	F			
	<i> </i>					18.0	N = 8	F			
							(CLS)	F			
								þ			
	<u> </u>							E			
	<i>-\\\\\\</i>				100	SS-10	BLOWCOUNT	F			
	1/////				100	18.0	5-5-6-6	F			
		////									
						20.0	N = 11 (CL)	F			
						20.0	N = 11 (CL)	E			
						20.0					
						20.0					

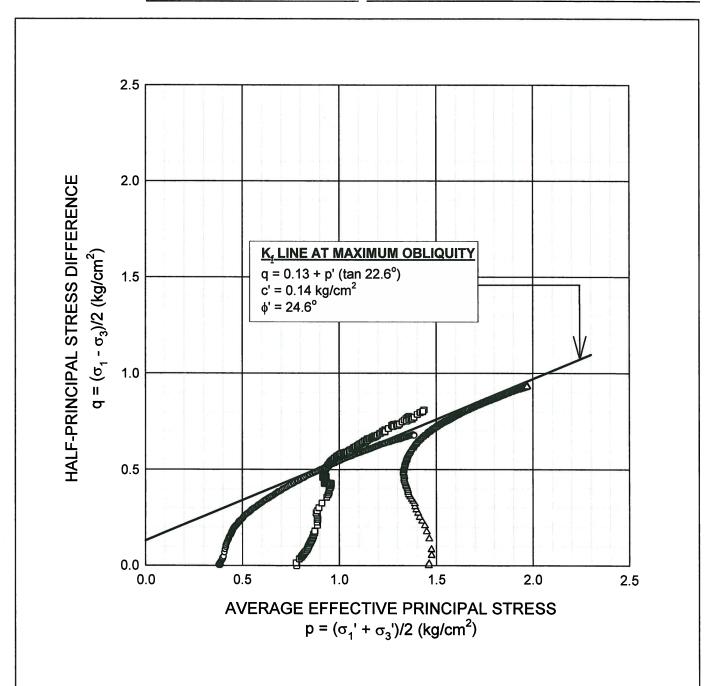
DRILLING	LOG (Cont S	heet) ELEVATION TOP OF HOLE 5.2			Hole No. TTDHCB-12	
PROJECT Lockheed	Martin MRC		TALLATION		SHEET 2 OF 2 SHEE	
ELEVATION	DEPTH LEGEND	CLASSIFICATION OF MATERIALS	% CORE RECOV- ERY	BOX OR SAMPLE	REMARKS	<u> </u>
а	b c	(Description) d	l e	NO. f	(Drilling time, water loss, depth weathering, etc., if significant) g	
		SANDY CLAY (CLS), 6 <n<11, and="" brown="" brownish<="" medium="" reddish="" sti="" stiff,="" td="" to=""><td>ff to red</td><td></td><td></td><td></td></n<11,>	ff to red			
		(continued)				
						l
						ŀ
			100	SS-11a	BLOWCOUNT	l
				SS-11b 23.0	3-4-4-4 N = 8	l
				25.0	(CLS)	ŀ
						ŀ
	<i>\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\</i>					ļ
	<u> </u>					
	<u> </u>					ļ
	¥//////		100	SS-12 28.0	BLOWCOUNT 2-3-4-5	l
				30.0	N = 7 (CLS)	ļ
						ŀ
						l
						ŀ
-27.8	33.0	LEAN CLAY (CL), 11 <n<22, st<="" stiff="" td="" to="" very=""><td>tiff, 75</td><td>SS-13</td><td>BLOWCOUNT</td><td>ŀ</td></n<22,>	tiff, 75	SS-13	BLOWCOUNT	ŀ
		brownish red		33.0 35.0	2-4-7-9 N = 11	ŀ
					(CL)	
			4	ST-1	Chalby tuba	ŀ
			4	35.0	Shelby tube PP = 3.0 tsf	ŀ
				37.0	24" recovery (CL)	
			92	SS-14 36.0	BLOWCOUNT 9-11-11-17	ŀ
				38.0	N = 22 (CL)	ŀ
	=					
			100	SS-15 38.0	BLOWCOUNT 6-8-14-15	ļ
	¥//////			40.0	N = 22 (CL)	ŀ
						ļ
64.5	3//////					İ
-34.8	40.0					ŀ
	\exists					ļ
						ļ
	\dashv					
	\dashv		1			-
						ļ

ENG FORM 1836-A

Lockheed Martin MRC

TTDHCB-12

APPENDIX D—LABORATORY TEST RESULTS


	SUMMARY OF LABORATORY TEST RESULTS - MARINE BORINGS																																	
		Depth of					Att	erberg Limits		-	UU Triaxia	al Compression	n					CU Triaxial Com	npressio	n	Corrosivity				Part	cle-Size Dis	tribution				T	Partic	le Size	
Marine Boring	Sample	Sample	Description	Water Content	Su [PP] * (lb/ft²)	Organic Content	Liquid	Plastic Plast	city I	D	ν.	a Su	[UU] ε	-200		D				, φ ε,	ctivity s/cm) s/cm) s/cm) s/cm) ide ag(/l) ag(/l) tivity cm)	Dry Mass				Fraction Fine	by Dry Mas	s (%)				Fraction by [Ory Mass (%)	
Dorling		(ft)		(%)	(ID/IT)	(%)	Limit	Plastic Plast Limit Ind	ex (cm)	(cm) W _c (%)	(lb/ft ³)	(lb/ft²)	/ft²) (%	5) (%)	L (cm) (c	cm) W _c (%	%) γ _t (lb/ft ³	σ _c (lb/ft²) (lb/f	/ft ²) (degr	ees) c (lb/ft²)	Chlor Chlor Cl (m Sulfi SO ₄ (r Chm)	(grams)	3/4-inch 3/8	inch No	. 4 No.	0 No. 20	No. 40	No. 60 No.	o. 100 No	o. 140 No. 200		Coarse Med Sand Sa		
	2A & 2B	7 - 8.5	Brown sandy lean clay [CL]	33.1			34.0	15.0 19.	0													81.5											9.6 28.4	61.0
	3	9 - 11	Light brown to orange sand with silt [SP-SM]	19.1						'												164.4	100.0 10			.3 97.3				8.5 6.9				
	5A	13 - 15	Light brown silty sand [SM]	18.6						'												177.2	100.0	7.5 9	7.5 95	.6 91.6	49.3	20.3	17.3 1	16.4 15.6	2.5	1.9 46	33.7	15.6
TTDHC-1	5B		Brown sandy fat clay [CH]	21.1				22.0 31.																				++			++			
	8		Orangish-brown sandy lean clay [CL]	15.1			32.0	15.0 17.	0													.== 0												
	10		Light brown to orange clayey sand [SC] Orangish-brown lean clay [CL]	18.2 14.5			00.0	20.0 16.	^	 '												1/5.3	100.0 10).0 10	0.0 100	.0 100.0	99.8	95.6	70.5	50.4 37.2	0.0	0.0 0	0.2 62.6	37.2
-			Brown silty sand [SM]	21.2				Von-plastic	J		-		_	_		-	-	+	_			06.7	100.0 10	0.0 10	100	0 00 0	00.6	97.2	44.4	20.5 26.7	- 00	0.0	0.4 72.9	26.7
TTDHC-2	6A	9-11	Dark brown clayey sand [SC]	21.2				NOTI-plastic		-+-									_														.3 64.9	
	2		Dark brown lean clay [CL]	24.1		-	25.0	20.0 15	n		_				 	_	_	+ + + + + + + + + + + + + + + + + + + +	_			175.4	100.0	7.0 10	7.0 100	.0 100.0	50.7	01.0	30.2	+1.4 33.0	0.0	0.0	.5 04.5	33.0
			Dark brown to dark gray lean clay [CL]	23.1				20.0 14		-+-																		+			++			
		10.5 - 12.5	Daik blown to daik gray lean day [CL]	29.3			34.0	20.0 14	J	-+-					l					<u> </u>								+			++			
TTDHC-3				21.6	3,400					. '					7.1 3	3.6 22.9	9 128.2				4.9 704.0 60.0 42.0 880.0													ı I
	ST-1	9 - 10.5	Brown lean clay [CL]	21.0						,					7.1 3	3.6 24.8	8 125.6	1,598.0	5.0 24.	6 983.0 13.7 14.9											1			
										i								2,991.0		15.1														
	12	34.5 - 36.5	Dark brown silty sand [SM]	23.3						,												164.6	100.0 10	0.0 10	0.0 100	.0 100.0	100.0	99.8	80.3	51.4 30.4	0.0	0.0	0.0 69.6	30.4
				31.8					7.1	3.6 20.9	131.2	800.0 1,1	12.0 14	.8 76.7																	T			$\overline{}$
	ST-1	7 - 8.5	Reddish-brown lean clay with sand [CL]	19.0	4,500				7.1	3.6 18.4	136.3 1	1,600.0 3,8	66.0 5.	8 75.1																				
TTDHC-4	-			16.6 16.6	4,500 2,700				7.1	3.6 15.6	138.4	3.000.0 3.5	00.0 14	.8 71.4																	1			
TIDHC-4	7	185-205	Dark brown to light brown lean clay [CL]	21.6			49.0	22.0 27				.,																+			+			
			Dark brown sandy silt	19.7			10.0	ZZ.O Z7														182 6	100.0 10	0.0 10	100	0 100.0	99.9	97 1	796 6	64.1 51.8	0.0	0.0 /).1 48.1	51.8
			Dark reddish-brown lean clay [CL]	17.6			36.0	18.0 18.	0													102.0	100.0	5.0	7.0	100.0	00.0	- 07	70.0	01.0	- 0.0	0.0		01.0
TTDHC-5	6	15 -17	Dark brown sandy silt	19.4						,												177.6	100.0 10	0.0 10	0.0 100	.0 100.0	99.9	99.8	96.2	30.5 60.8	0.0	0.0	0.1 39.1	60.8
	3		Reddish-brown to yellowish-brown lean clay [CL]	21.2			43.0	17.0 26	0	,					7.1 3	.6 18.1	1 132.3	1,004.0																
				19.3	1,650																													
				15.7	4,500					. '					74 .		4 400 0	4.540.0				282.0	100.0 10		0.5	07.4	94.1	72.9	40.7	36.0 31.1	0.5	1.6	00.0	31.1
	ST-1	13 - 15	Reddish-brown sandy lean clay to lean clay [CL] in upper 45.5	17.5	4,500					. '					7.1	3.6 15.1	1 138.2	2 1,516.0 286	6.7 24	.0 4,098.0 0.0 14.8		282.0	100.0	0.0 9	9.5 97	.9 97.1	94.1	72.9	46.7	36.0 31.1	0.5	1.6	3.8 63.0	31.1
TTDHC-6	31-1	13 - 15	cm over brown clayey sand [SC] in lower 7.5 cm	15.3	4,400					. '																								1
				15.4	4,000																													
				18.2	3,600					 '					7.1 3	3.6 17.0	.0 136.1	3,053.0										\bot			+			
	- 6	17 10	Reddish-brown to vellowish-brown lean clay [CL]	38.5			26.0	17.0 19.	2	'																		+			+			-
	6 12		Reddish-brown to yellowish-brown lean clay [CL] Reddish-brown sandy clay	21.1			30.0	17.0 19.	U	-+-	1			_	1		-	+ +				160.2	100.0 10	10	100	0 100.0	100.0	00.7	01.0	72.4 51.4	0.0	0.0	0.0 48.6	E1 /
-	12			40.0						-+-	 			+	 	-	+	+	-	 														
	2		Dark brown sand with silt, wood and and trace organics [SP-SM]	42.4		8.5																133.7	100.0	8.2 9	7.1 95	5.5 91.6	72.9	34.0	15.9	17.1 9.8	3 2.9	1.6 22	2.6 63.1	9.8
TTDUC -	4	13 - 15	Dark brown lean clay [CL] Reddish-brown silty sand [SM]	26.4 21.3			42.0	20.0 22	U						 				_			1011	100.0 10	20 40	100	0 100.0	00.7	87.1	FO 4 1	27.2	- 00	0.0	0.3 70.2	20.5
TTDHC-7	5		Dark brown to light gray lean clay[CL]	21.7			42.0	19.0 23	n .	-+-'	+ +			_	1		-	+ +		+ + + + +		184.4	100.0 10	J.U 10	100	.0 100.0	99.7	87.1	ou.4 3	37.3 29.5	0.0	0.0 0	1.3 /0.2	29.5
	9			16.0	3,750		42.0	19.0 23		3.5 22.2	121 7 4	1 900 0 4 4	26.0	6 06 0	1		-	+ +		+ + + + +		1				_	+	++			++	-	_	$\overline{}$
	ST-2	30 - 32	Reddish-brown lean clay [CL]	20.1	2,200					3.6 21.1																						世		

SUMMARY OF LABORATORY TEST RESULTS - LAND BORINGS

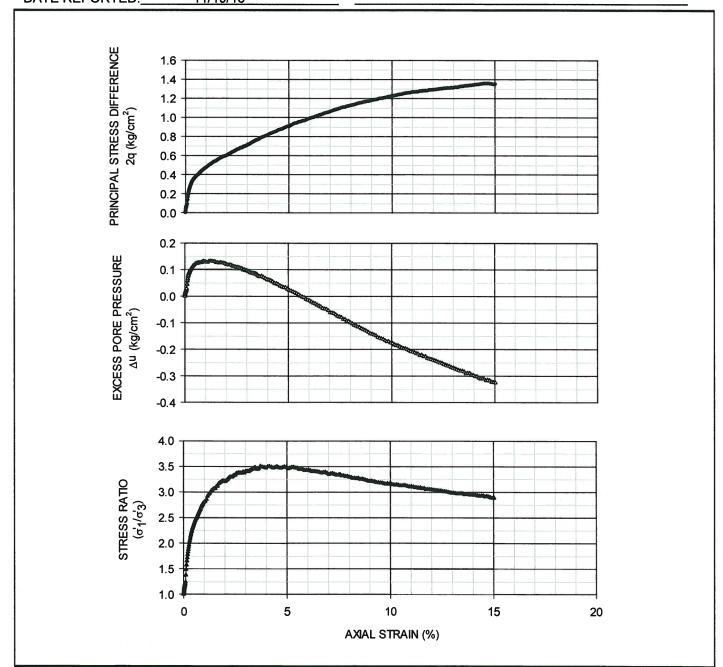
		Depth of					Atte	rberg Limi	its		U	U Triaxial (Compres	ssion			CU	Triaxial (Compress	sion						Particle-	Size Distr	ibution						Par	ticle Size	
Land	Sample	Sample	Description	Water Content	Su [PP]	Organic Content															4					Fract	ion Finer I	by Dry Mas	ss (%)			<u> </u>		Fraction b	by Dry Mass	(%)
Boring	Gample	Interval (ft)	Description	(%)	(lb/ft ²)	(%)	Liquid Limit	Plastic Limit	Plasticity Index	L (cm) (c	D m) w _c (%	(lb/ft ³) (lb		$[UU]$ ϵ_f $(\%)$	-200 (%)	(cm)	D (cm) W _c (%) (lb/ft ³)	σ _c (lb/ft ²) (c' lb/ft ²) (deg	φ' (lb/	$f(t^2)$ $(degre es)$ $(f(t^2)$	Dry Mass (grams)	3/4-inch	3/8-inch	No. 4	No.10	No. 20	No. 40	No. 60	No. 100	No. 140	No. 200	Gravel	Coarse N		ne Clay &
TTDHCB-1	6	10 - 12	Gray and brown clayey sand [SC]	15.7			33	14	19																											
TIBLIOD I	10	18 - 20	Tan and gray clayey sand [SC]	14.4																		163.48	100	100	100			77.2				29.0	0.0			3.2 29.0
	2 ST-1	2 - 4 8 - 9.5	Reddish-brown sandy clay Reddish-brown sandy lean clay to lean clay [CL]	19.4 21.3 27.6 27.5 30.9	250 250 		32	13	19	6.66 3. 6.92 3. 7.06 3.	56 16.1	128.4 7 133.5 1, 2 127.3 2,	400 2	88 13.8 95 14.6 97 13.8	71.4							125.33	100	97.7	95.5	93.8	91.9	89.1	82.8	70.1	63.5	58.2	4.5	1.7	4.7 30	0.9 58.2
TTDHCB-2	ST-2	11.5 - 13	Reddish-brown clayey sand [SC] to sandy lean clay [CL]	24.6 27.1 22.8 21.7	500 250 400																															
	8A & 8B		Reddish-brown silty sand [SM]	20.4																		154.67	100	100	100		99.2		23.8	17.5		14.5	0.0		23.0 62	
	11	28 - 30	Brown clayey sand [SC]	24.1			05	40	40			+				_		1				95.34	100	100	100	100	100	99.8	84.6	40.5	27.9	22.2	0.0	0.0	0.2 77	7.6 22.2
	12A	33 - 35	Brown clayey sand [SC]	24.4 62.9	250		25	12	13				_			1		1		_																+-
	ST-2	12 - 14	Dark gray sandy lean clay to lean clay [CL]	59.8 50.1 21.0	250 250 250 1,000		40			7.08 3.	56 61.0	3 101.4 1, 0 103.8 2, 110.9 3,	000 4	08 7.1 41 7.8 14 8.6	75.8																					
TTDHCB-3	7	16 - 18		29.3			40	18	22			+		-		 		-				454.00	400	400	400	00.0	00.4	00	45.0	20.4	22.5	24.0	0.0	0.0	2.0 7.	1 01.6
·	9	18 - 20 23 - 25	Dark brown and brown silty sand [SM] Gray clayey sand [SC]	19.6 16.9		-				_		+-+			<u> </u>	+	+-+-	+	_			154.82 135.33	100 100	100 100	100 100	99.8 100	98.4 100	96 99.3		26.1 47.3	23.5	21.6 30.2	0.0	0.2	3.8 74 0.7 69	1.4 21.6 9.1 30.2
 	14	48 - 50	Brown clayey sand [SC]	17.4			ŀ				-	+ +	_		 	1	 	+ +		1	+ +	133.33	100	100	100	99.5	98.1	99.3		57.6		49.9	0.0	0.5	6.0 43	
	16	58- 60	Brown sand with silt [SP-SM]	23.6			1			- 	-	+ +			1	1	 	+ +	-	- 		127.82	100	100	100		100		47.8			11.1			2.5 86	
•	18	68 - 70	Brown to gray fat clay with sand [CH]	19.2			51	21	30																											
	3	4 - 6	Reddish-brown clayey sand with gravel [SC]	14.5 15.1		 1.9																113.37	100	89.4	83.3	79.3	74.0	68.8	60.1	46.7	39.8	35.6	16.7	4.0	10.5 33	35.6
TTDUOD 4	5	8 - 10 10 - 12	Brown and gray silty sand with trace organics [SM] Reddish-brown clayey sand with gravel [SC]	14.7 15.5 14.7		1.3		lon-plastic	28													133.28	100	100	100	98.4	96.0	81.0	53.8	41.3	37.4	34.7	0.0	1.6	17.4 46	34.7
TTDHCB-4	10	23 - 25	Brown silty sand [SM]	20.5				lon-plastic	20			-	-			1		+				103.93	100	100	100	100	100	gg g	91.6	39.4	30.3	27.6	0.0	0.0	0.1 72	2.3 27.6
-	11	28 - 30	Brown clavev sand [SC]	20.6			i	on plastic				+ +			1	1		1 1		-		182.38	100	100	100	100	100				32.8	30.9	0.0	0.0		1.3 30.9
	15	48 - 50	Reddish-bown and tan sandy clay [CL]	14.2			32	14	18							1																				
	18	63 - 65	Brown silty sand [SM]	22.1																		193.80	100	99.3	98.6	97.6	96.4	92.0	61.4	22.5	18.5	16.3	1.4	1.0	5.6 75	5.7 16.3
TTDHCB-5	8	14 - 16	Brown lean clay [CL]	23.3			40	19	21																											
TTDHCB-6	3 ST-1	4 - 6	Gray and brown clayey sand [SC] Reddish-brown lean clay with sand [CL] in upper 27.8 cm of sample and clayey sand [SC] within lower	20.5 22.4 23.3 20.2	4,500 4,500		28	17	11													248.19 161.74 270.81	100 100 100	99.7 100 100	98.4 100 100	96.8 100 99.9	87.4 100 99.9	71.7 100 92.6	58.0 99.8 71.0	51.5 97.8 61.7	45.6 90.0 49.0	45.1 74.7 39.9	1.6 0.0 0.0	1.6 0.0 0.1		5.6 45.1 5.3 74.7 2.7 39.9
	11	23 - 25	8.7 cm of sample Brown and tan sandy lean clay [CL]	16.7 16.4	3,750		37	14	23													270.01	100	100	100	33.3	33.3	92.0	71.0	01.7	49.0	39.9	0.0	0.1	7.5 52	.7 39.9
	_																												ļ	<u> </u>						
TTDHCB-7	5 6		Dark gray sand with silt [SM] Gray sand with clay and organics [SP-SC]	31.1							_	+	_		-	1	 	+				130.97 191.45	100 100	100 99.2	97.7 98.6				34.3 35.7				2.3 1.4		30.2 55 24.2 62	5.3 9.0 2.8 9.4
TIDHCB-/	18		Brown lean clay [CL]	32.9 16.2			40	22	18		-	+ +			 	1	 	+ +			+ +	191.45	100	99.2	90.0	90.4	91.9	12.2	35.7	0.01	11.7	9.4	1.4	2.2	24.2 62	.0 9.4
	4	6 - 8	Gray sandy clay with organics	50.9			+∪		10										<u> </u>			144.68	100	100	100	98.6	97.1	89.4	75.9	65.7	60.9	55.1	0.0	1.4	9.2 34	1.3 55.1
TTDHCB-8	9		Brown lean clay [CL]	16.3			41	18	23		1	1 1						1 1																		
			1 1																																	
TTDHCB-9	10 ST-1	19 - 21 12 - 13.5	Brown clayey sand [SC] Reddish-brown lean clay [CL]	19.9 32.0 17.5	 2,250		40	22	18							7.07	3.58 23.2 127		200	2.2	100	239.25	100	100	100	100	100	99.4	81.5	53.7	44.7	38.8	0.0	0.0	0.6 60	0.6 38.8
	40	20, 20	Drawn and the lane slav CU	20.7 21.4	1,800 2,000		47		-								3.57 16.6 135 3.57 17.3 134	1516	266 3	3.3 54																
 	12	20 - 30	Brown and tan lean clay CL]	19.9			4/	19	28		-	+			 	1		1				 		+	-		-	1	}	+	 	+	H			+-
	5	8 - 10	Gray clayey sand with organics [SC]	45.8							-	+				1		1 1	<u> </u>	1		173.55	100	100	100	97.9	94.9	87.9	75.9	59.9	46.8	32.2	0.0	2.1	10.0 55	5.7 32.2
TTDHCB-10			Brown fat clay [CH]	25.1			52	21	31		1	1 1						1 1										1	1	1						
	11		Brown clayey sand [SC]	20.2															ı İ	 		233.29	100	100	100	100	100	99.8	89.9	52.0	39.5	34.2	0.0	0.0	0.2 65	5.6 34.2
TTDHCB-11	14		Brown lean clay [CL]	18.7			48	19	29			1 1	_		1			1 1																		
TTDHCB-12	6 9		Brown lean clay with sand clay [CL] Brown sandy clay	21.9			39	20	19													203.32	100	100	100	100	96.9	96.2	95.0	86.5	69.8	50.9	0.0	0.0	3.8 45	5.3 50.9
	ST-1	35 - 37	Reddish-brown lean clay [CL]	27.8 21.6	1,650		39	18	21													163.87	100	100	100	100	99.9	99.4	98.4	97.6	97.2	96.3	0.0	0.0	0.6	3.1 96.3
<u> </u>		1		21.0	1,000							1 1					<u> </u>										<u> </u>	1		1	<u> </u>		<u> </u>			

ARDAMAN & ASSOCIATES, INC. GEOTECHNICAL TESTING LABORATORY CONSOLIDATED UNDRAINED TRIAXIAL COMPRESSION TEST EFFECTIVE STRESS PATHS

CLIENT: LOCKHEED MARTIN	INCOMING SAMPLE NO.	·
PROJECT: MRC LABORATORY TESTING	BORING: TTDHC-3	
FILE NO.: 15-13-0120	DEPTH: 9 - 11	
	LABORATORY IDENTIFIC	CATION NO.: 150120/HC3
DATE SAMPLE RECEIVED: 10/19/15	SAMPLE DESCRIPTION:	Brown lean clay
DATE TEST SET-UP: 10/31/15		
DATE REPORTED: 11/24/15		

The test data and all associated project information presented hereon shall be held in confidence and disclosed to other parties only with the authorization of the Client. Physical and electronic records of each project are kept for a minimum of 7 years. Test samples are kept in storage for at least 10 working days after mailing the test report, prior to being discarded, unless a longer storage period is requested in writing and accepted by Ardaman & Associates, Inc.

Checked By:

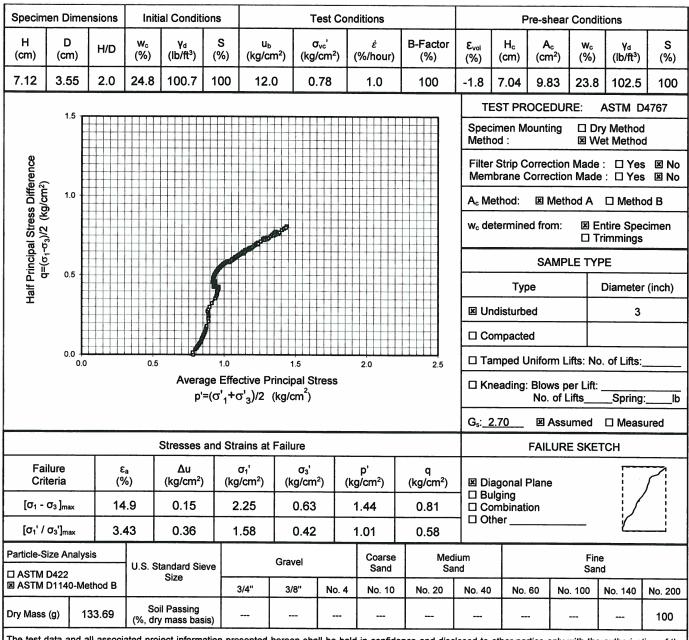

Date: 112419

CLIE	NIT.	LOCK	HEED	MADTU					INICOMI	NO CAMI								
				MARTII RATOR		STING				NG SAMI B: TT			ΔМРІ	F· S	T-1			
	NO.:					<u>-01114G</u>				9 -			CIVII L			ft; \square m		
				/ED: 1	0/19/	/15				ATORY IE		ICATIO	N NC	O.: 150				
	ETEST)/31/					E DESCR								
DATE	REPO	DRTE	D:	1:	/19/	15												
Specim	en Dimer	nsions	Initia	al Conditio	ns		Te	est Cor	nditions		Pre-shear Conditions							
H (cm)	D (cm)	H/D	₩ _c (%)	Y _d (lb/ft³)	S (%)	u _b (kg/cm²)		oc' cm²)	έ (%/hour)	B-Factor (%)	ε _{vol} (%)	H _c (cm)	A _c (cm²)	W _c (%)	Y _d (Ib/ft ³)	S (%)		
7.11	3.55	2.0	22.9	104.3	100	12.0	0.	39	1.0	98	1.3	7.08 1	0.09	23.6	103.0	100		
											TES	ST PRO	CEDU	RE:	ASTM D	4767		
	1.5										Specin Method	nen Mou d :	unting		y Method et Method			
erence	.														: □ Yes e: □ Yes			
s Diffe a/cm²	1.0										A _c Met	hod: I	■ Meti	nod A	☐ Metho	d B		
Half Principal Stress Difference α=(σ,-σ,)/2 (kα/cm²)											w _c dete	ermined	from:		ntire Spec rimmings	cimen		
rincip =(σ,-													SAMP	LE TY	PE			
lalf P.	0.5											Туре			Diameter	(inch)		
											⊠ Und	isturbed	l		3			
											□ Con	npacted						
	0.0		0.5		1.0	1 1 1 1 1 1 1	1.5		2.0	2.5	□ Tam	ped Un	iform L	.ifts: No	o. of Lifts:			
						ctive Princ σ' ₃)/2 (kg		ress			☐ Kne	ading: E	Blows p		Spring	lb		
											G _s : 2.	70	_⊠ Ass	sumed	☐ Meas	ured		
				Stresses a	nd St	rains at Fa	ilure					F	AILUR	E SKE	тсн			
Fai Criteria	lure		:a %)	Δu (kg/cm²)	(kį	σ ₁ ' g/cm²)	σ₃' (kg/cm	²) (p' (kg/cm²)	q (kg/cm²)	☑ Diag	gonal Pla	ane					
[σ ₁ -	σ ₃] _{max}	14	1.7	-0.32	2	2.06	0.71		1.38	0.68		nbinatio	n		\ <u>i</u>	\\		
[σ ₁ ' /	σ ₃ '] _{max}	3.	72	0.08	1 1	1.10	0.32		0.71	0.40		-				للـــ		
urticle-Size Analysis U.S. Standard Sieve Gravel						Coarse Sand	Med Sa				Fin San							
ASTM ASTM	D1140 Method B		No. 4	_	No. 20	No. 40	No. 60	0 N	o. 100	No. 140	No. 200							
Ory Mass (g) 117.90 Soil Passing (%, dry mass basis)														99.6				
lient. Ph	ysical and	l electror	ic record	is of each pr	oject a	re kept for	ı minimi	um of 7	years. Test	ence and disc samples are accepted by	kept in sto	age for a	t least	10 worki				
Vhere:	stress; ἐ area; ε _a :	= Vertic = Axial s	al displad train; ∆u	ement rate;	ε _{vol} = \ ore pre	Volume cha ssure; σ ₁ ' =	nge(- de Major e	enotes of	consolidation principal str	$\gamma_d = Dry dens$ α_1 , + denotes s α_3 = Mino	welling); H	= Conso	olidated	height;	A _c = Conso	lidated		

Date:____

ARDAMAN & ASSOCIATES, INC. GEOTECHNICAL TESTING LABORATORY CONSOLIDATED UNDRAINED TRIAXIAL COMPRESSION TEST STRESS - STRAIN CURVES

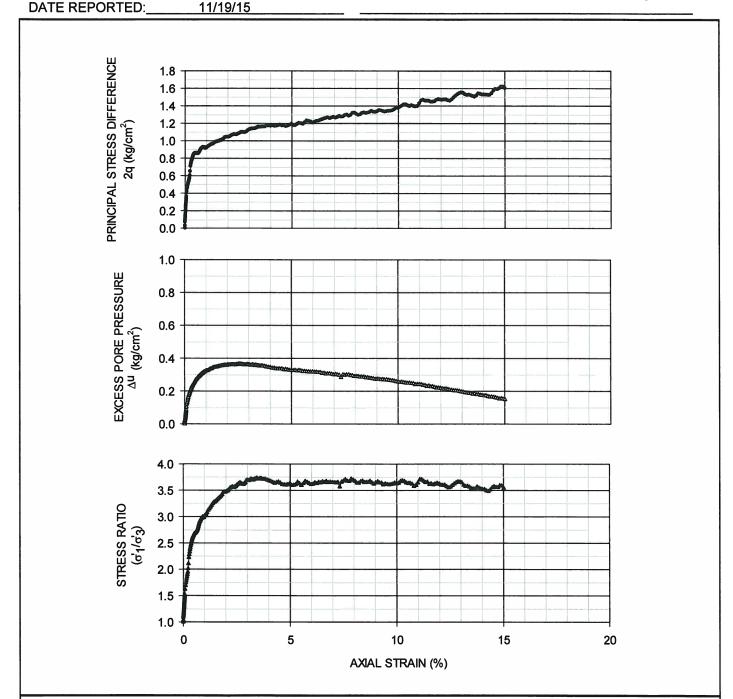
CLIENT: LOCKHEED MARTIN INCOMING SAMPLE NO .: _ PROJECT: MRC LABORATORY TESTING BORING_ TTDHC-3 SAMPLE: ST-1 FILE NO.: 15-13-0120 **DEPTH**: 9 - 11 ☑ ft: □ m LABORATORY IDENTIFICATION NO.: 150120/HC3/ST1B3 DATE SAMPLE RECEIVED: SAMPLE DESCRIPTION: Brown clay 10/19/15 DATE TEST SET-UP: 10/31/15 Effective Isotropic Consolidation Stress = 0.39 kg/cm² DATE REPORTED: 11/19/15



The test data and all associated project information presented hereon shall be held in confidence and disclosed to other parties only with the authorization of the Client. Physical and electronic records of each project are kept for a minimum of 7 years. Test samples are kept in storage for at least 10 working days after mailing the test report, prior to being discarded, unless a longer storage period is requested in writing & accepted by Ardaman & Associates, Inc.

Where: Δu = Excess pore pressure; σ₁' = Major effective principal stress; and σ₃'= Minor effective principal stress.

CLIENT: <u>LOCKHEED MAR</u>	<u> TIN </u>	INCOMING	SAMPLE NO.:		-
PROJECT: MRC LABORATOR	RY TESTING	BORING:_	TTDHC-3	SAMPLE:	ST-1
FILE NO.: 15-13-0120		DEPTH:	9 - 11		⊠ ft; □ m
DATE SAMPLE RECEIVED:	10/19/15	LABORATO	RY IDENTIFICA	ATION NO.: 15	0120/HC3/ST1B2
DATE TEST SET-UP:	10/31/15		ESCRIPTION: E		
DATE REPORTED:	11/19/15				

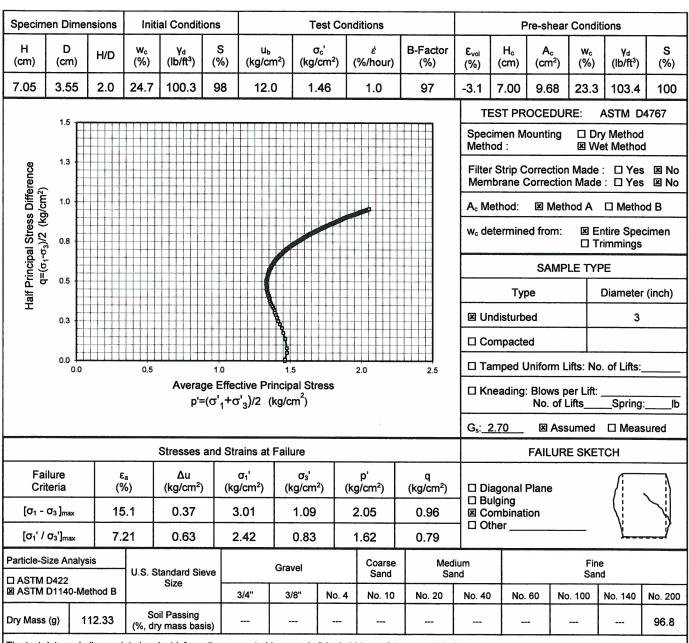

The test data and all associated project information presented hereon shall be held in confidence and disclosed to other parties only with the authorization of the Client. Physical and electronic records of each project are kept for a minimum of 7 years. Test samples are kept in storage for at least 10 working days after mailing the test report, prior to being discarded, unless a longer storage period is requested in writing & accepted by Ardaman & Associates, Inc.

H = Specimen height; D = Specimen diameter; w_c = Water content (ASTM D2216); γ_d = Dry density; S = Saturation; σ_c ' = Isotropic effective confining stress; $\dot{\varepsilon}$ = Vertical displacement rate; ε_{vol} = Volume change(- denotes consolidation, + denotes swelling); H_c = Consolidated height; A_c = Consolidated area; ε_a = Axial strain; Δu = Excess pore pressure; σ_1 = Major effective principal stress; σ_3 '= Minor effective principal stress; ρ = Average effective principal stress; ρ = Half principal stress difference; and ρ = Specific gravity.

Checked By: Date: Male

ARDAMAN & ASSOCIATES, INC. GEOTECHNICAL TESTING LABORATORY CONSOLIDATED UNDRAINED TRIAXIAL COMPRESSION TEST STRESS - STRAIN CURVES

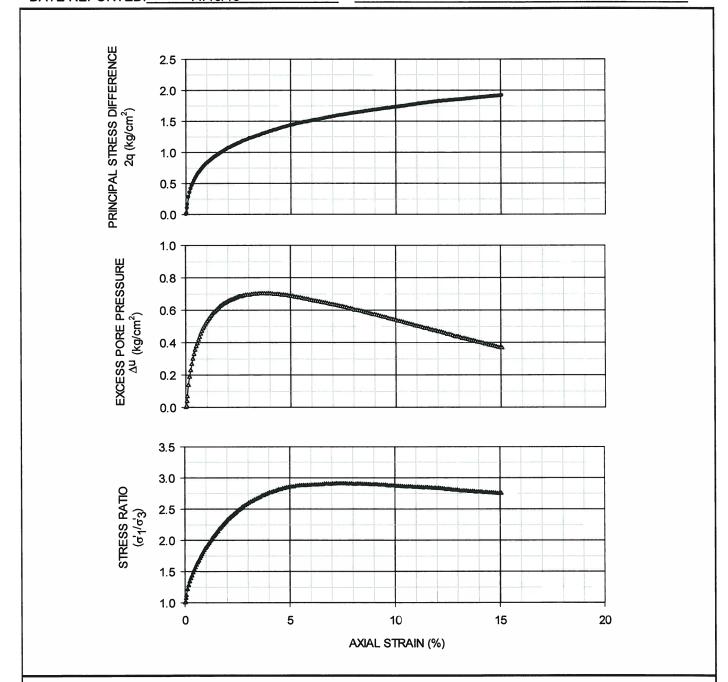
CLIENT:_ **LOCKHEED MARTIN INCOMING SAMPLE NO.:** PROJECT: MRC LABORATORY TESTING BORING: TTDHC-3 SAMPLE: ST-1 FILE NO.: 15-13-0120 DEPTH: 9 - 11 図 ft; □ m LABORATORY IDENTIFICATION NO.: 150120/HC3/ST1B2 DATE SAMPLE RECEIVED: 10/19/15 SAMPLE DESCRIPTION: Brown clay 10/31/15 DATE TEST SET-UP:____ Effective Isotropic Consolidation Stress = 0.78 kg/cm²



The test data and all associated project information presented hereon shall be held in confidence and disclosed to other parties only with the authorization of the Client. Physical and electronic records of each project are kept for a minimum of 7 years. Test samples are kept in storage for at least 10 working days after mailing the test report, prior to being discarded, unless a longer storage period is requested in writing & accepted by Ardaman & Associates, Inc.

Where: $\Delta u = \text{Excess pore pressure}$; $\sigma_1' = \text{Major effective principal stress}$; and $\sigma_3' = \text{Minor effective principal stress}$.

CLIENT: LOCKHEED MARTIN	INCOMING SAMPLE NO.:
PROJECT: MRC LABORATORY TESTING	BORING: TTDHC-3 SAMPLE: ST-1
FILE NO.: 15-13-0120	DEPTH: 9 - 11
DATE SAMPLE RECEIVED: 10/19/15	LABORATORY IDENTIFICATION NO.: 150120/HC3/ST1B1
DATE TEST SET-UP: 10/31/15	SAMPLE DESCRIPTION: Brown clay
DATE REPORTED: 11/19/15	


The test data and all associated project information presented hereon shall be held in confidence and disclosed to other parties only with the authorization of the Client. Physical and electronic records of each project are kept for a minimum of 7 years. Test samples are kept in storage for at least 10 working days after mailing the test report, prior to being discarded, unless a longer storage period is requested in writing & accepted by Ardaman & Associates, Inc.

re: H = Specimen height; D = Specimen diameter; w_c = Water content (ASTM D2216); γ_d = Dry density; S = Saturation; σ_c' = Isotropic effective confining stress; ἐ = Vertical displacement rate; ε_{vol} = Volume change(- denotes consolidation, + denotes swelling); H_c = Consolidated height; A_c = Consolidated area; ε_a = Axial strain; Δu = Excess pore pressure; σ₁' = Major effective principal stress; σ₃'= Minor effective principal stress; p' = Average effective principal stress; q = Half principal stress difference; and G_s = Specific gravity.

Checked By: 1M Date: 11/19/19

ARDAMAN & ASSOCIATES, INC. GEOTECHNICAL TESTING LABORATORY CONSOLIDATED UNDRAINED TRIAXIAL COMPRESSION TEST STRESS - STRAIN CURVES

CLIENT: LOCKHEED MARTIN INCOMING SAMPLE NO .: PROJECT: MRC LABORATORY TESTING SAMPLE **ST-1** BORING: TTDHC-3 FILE NO.: 15-13-0120 DEPTH:__ 9 - 11 ☑ ft; □ m LABORATORY IDENTIFICATION NO.: 150120/HC3/ST1B1 DATE SAMPLE RECEIVED: 10/19/15 SAMPLE DESCRIPTION: Brown clay Effective Isotropic Consolidation Stress = 1.46 kg/cm² DATE TEST SET-UP:___ 10/31/15 DATE REPORTED: 11/19/15

The test data and all associated project information presented hereon shall be held in confidence and disclosed to other parties only with the authorization of the Client. Physical and electronic records of each project are kept for a minimum of 7 years. Test samples are kept in storage for at least 10 working days after mailing the test report, prior to being discarded, unless a longer storage period is requested in writing & accepted by Ardaman & Associates, Inc.

Where: $\Delta u = \text{Excess pore pressure}$; $\sigma_1' = \text{Major effective principal stress}$; and $\sigma_3' = \text{Minor effective principal stress}$.

Checked By: Date: 11/9/19

ARDAMAN & ASSOCIATES, INC. GEOTECHNICAL TESTING LABORATORY CONSOLIDATED UNDRAINED TRIAXIAL COMPRESSION TEST EFFECTIVE STRESS PATHS

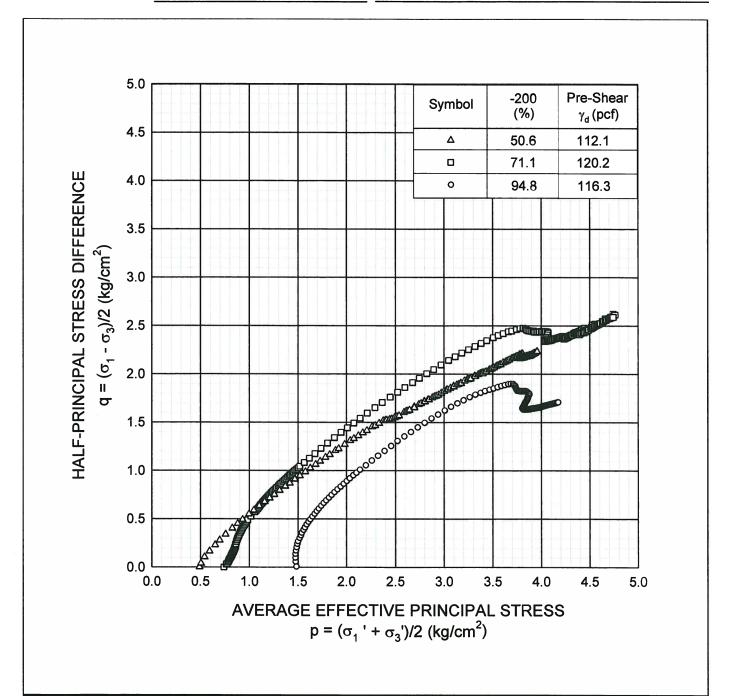
CLIENT: LOCKHEED MARTIN

PROJECT: MRC LABORATORY TESTING

FILE NO.: 15-13-0120

DATE SAMPLE RECEIVED: 10/19/15

DATE TEST SET-UP: 11/04/15

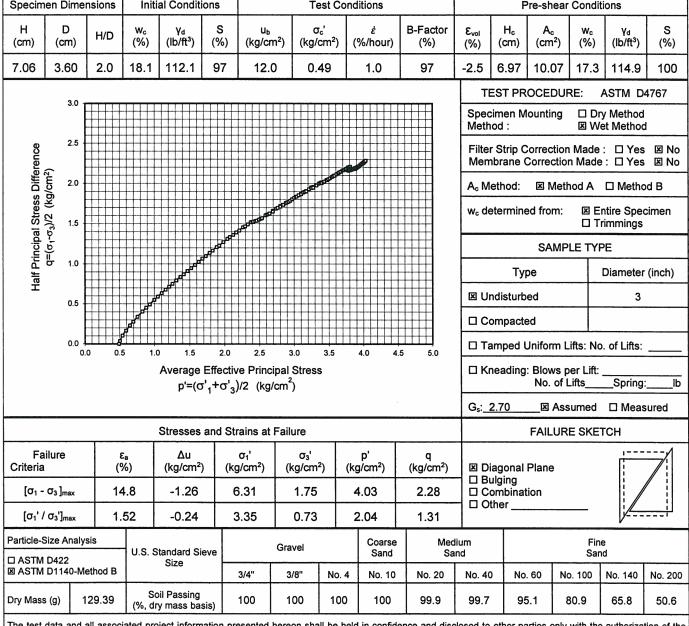

DATE REPORTED: 11/24/15

INCOMING SAMPLE NO.: ----
BORING: TTDHC-6

SAMPLE: ST-1

LABORATORY IDENTIFICATION NO.: 150120/HC6

SAMPLE DESCRIPTION: Reddish-brown lean clay to sandy lean clay

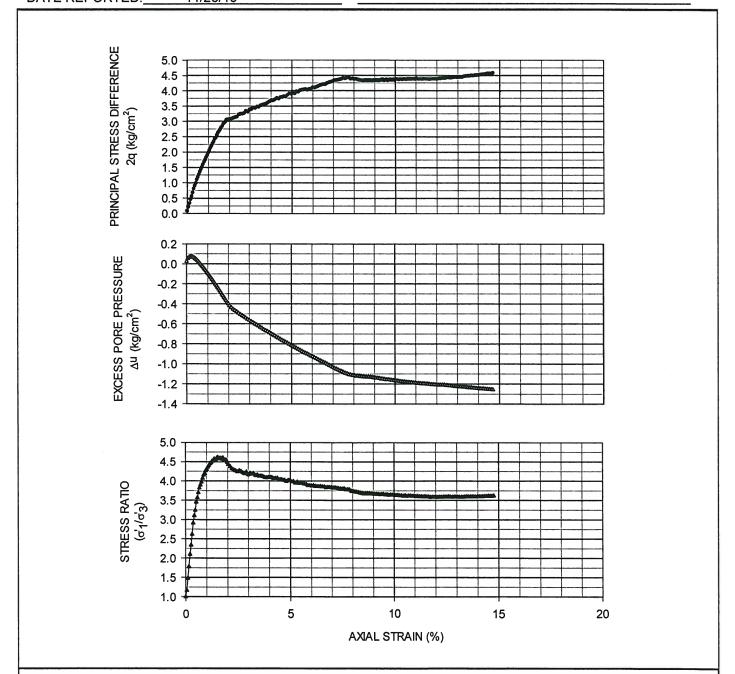


The test data and all associated project information presented hereon shall be held in confidence and disclosed to other parties only with the authorization of the Client. Physical and electronic records of each project are kept for a minimum of 7 years. Test samples are kept in storage for at least 10 working days after mailing the test report, prior to being discarded, unless a longer storage period is requested in writing and accepted by Ardaman & Associates, Inc.

Checked By: _______

Date: 112415

CLIENT: LOCKHEED MARTIN PROJECT: MRC LABORATORY FILE NO.: 15-13-0120 DATE SAMPLE RECEIVED: 10/ DATE TEST SET-UP: 11/04 DATE REPORTED: 11/23/	9/15 /15	BORING:_ DEPTH: LABORAT	SAMPLE NO.: TTDHC-6 13 - 15 ORY IDENTIFIC DESCRIPTION:	SAMPLI).: <u>150120</u>	_図 ft; //HC6/S	T1B1
pecimen Dimensions Initial Conditions	Test C	onditions		Pre-shear	Conditions		

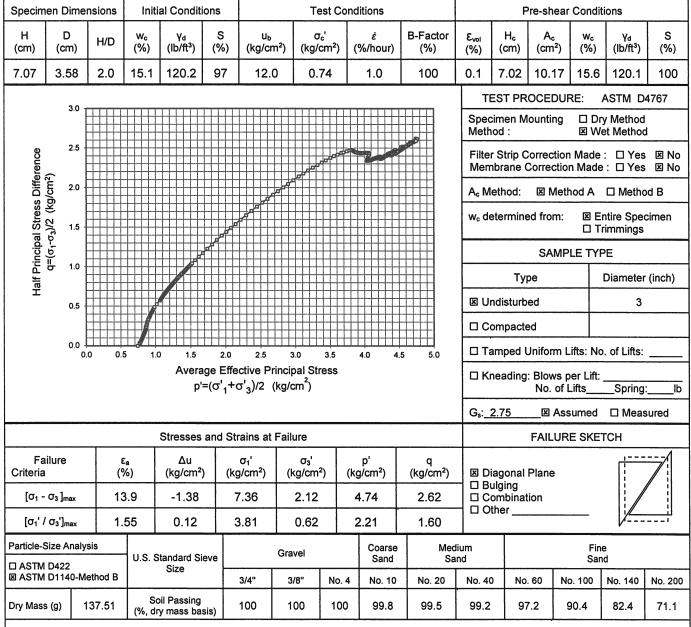

The test data and all associated project information presented hereon shall be held in confidence and disclosed to other parties only with the authorization of the Client. Physical and electronic records of each project are kept for a minimum of 7 years. Test samples are kept in storage for at least 10 working days after mailing the test report, prior to being discarded, unless a longer storage period is requested in writing & accepted by Ardaman & Associates, Inc.

Where: H = Specimen height; D = Specimen diameter; w_c = Water content (ASTM D2216); γ_d = Dry density; S = Saturation; σ_c' = Isotropic effective confining stress; ἐ = Vertical displacement rate; ε_{vol} = Volume change(- denotes consolidation, + denotes swelling); H_c = Consolidated height; A_c = Consolidated area; ε_a = Axial strain; Δu = Excess pore pressure; σ₁' = Major effective principal stress; σ₃'= Minor effective principal stress; p' = Average effective principal stress; q = Half principal stress difference; and G_s = Specific gravity.

Checked By:	M	Date:_	11	23	19	

ARDAMAN & ASSOCIATES, INC. GEOTECHNICAL TESTING LABORATORY CONSOLIDATED UNDRAINED TRIAXIAL COMPRESSION TEST STRESS - STRAIN CURVES

CLIENT: LOCKHEED MARTIN **INCOMING SAMPLE NO.:** PROJECT: MRC LABORATORY TESTING BORING: TTDHC-6 FILE NO.: 15-13-0120 DEPTH: 13 - 15 ☑ ft; □ m LABORATORY IDENTIFICATION NO.: 150120/HC6/ST1B1 DATE SAMPLE RECEIVED:_ 11/04/15 SAMPLE DESCRIPTION: Reddish-brown sandy lean clay DATE TEST SET-UP:_ 11/04/15 Effective Isotropic Consolidation Stress = 0.49 kg/cm² 11/23/15 DATE REPORTED:

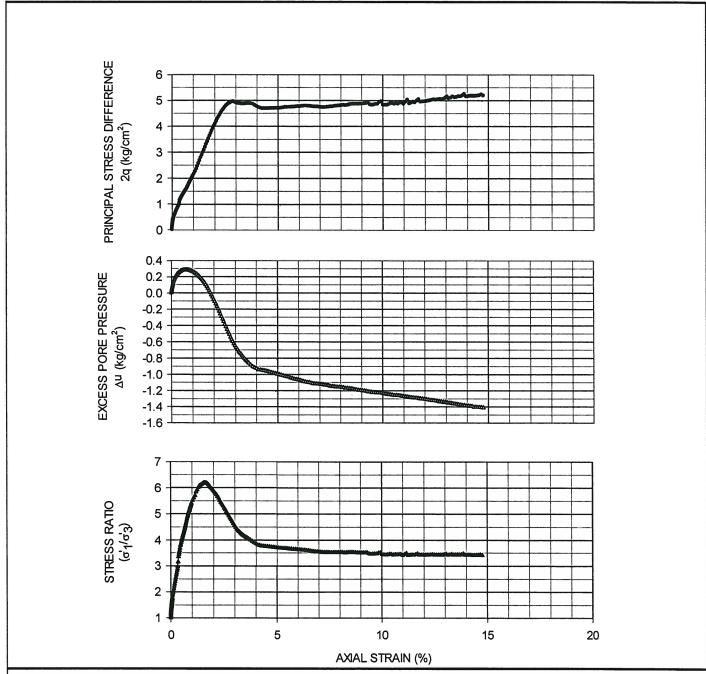


The test data and all associated project information presented hereon shall be held in confidence and disclosed to other parties only with the authorization of the Client. Physical and electronic records of each project are kept for a minimum of 7 years. Test samples are kept in storage for at least 10 working days after mailing the test report, prior to being discarded, unless a longer storage period is requested in writing & accepted by Ardaman & Associates, Inc.

Where: $\Delta u = \text{Excess pore pressure}$; $\sigma_1' = \text{Major effective principal stress}$; and $\sigma_3' = \text{Minor effective principal stress}$.

CLIENT: LOCKHEED MARTIN	INCOMING SAMPLE NO.:
PROJECT: MRC LABORATORY TESTING	BORING: TTDHC-6 SAMPLE: ST-1
FILE NO.: 15-13-0120	DEPTH: 13 - 15 ☑ ft; ☐ m
DATE SAMPLE RECEIVED: 10/19/15	LABORATORY IDENTIFICATION NO.: 150120/HC6/ST1B2
DATE TEST SET-UP: 11/04/15	SAMPLE DESCRIPTION: Reddish-brown lean clay with
DATE REPORTED: 11/23/15	sand

The test data and all associated project information presented hereon shall be held in confidence and disclosed to other parties only with the authorization of the Client. Physical and electronic records of each project are kept for a minimum of 7 years. Test samples are kept in storage for at least 10 working days after mailing the test report, prior to being discarded, unless a longer storage period is requested in writing & accepted by Ardaman & Associates, Inc.


/here: H = Specimen height; D = Specimen diameter; w_c = Water content (ASTM D2216); γ_d = Dry density; S = Saturation; σ_c' = Isotropic effective confining stress; ἐ = Vertical displacement rate; ε_{vol} = Volume change(- denotes consolidation, + denotes swelling); H_c = Consolidated height; A_c = Consolidated area; ε_s = Axial strain; Δu = Excess pore pressure; σ₁' = Major effective principal stress; σ₃'= Minor effective principal stress; p' = Average effective principal stress; q = Half principal stress difference; and G_s = Specific gravity.

Checked By: 1M Date: 1/123/19

ARDAMAN & ASSOCIATES, INC. GEOTECHNICAL TESTING LABORATORY CONSOLIDATED UNDRAINED TRIAXIAL COMPRESSION TEST STRESS - STRAIN CURVES

CLIENT: LOCKHEED MARTIN
PROJECT: MRC LABORATORY TESTING
FILE NO.: 15-13-0120

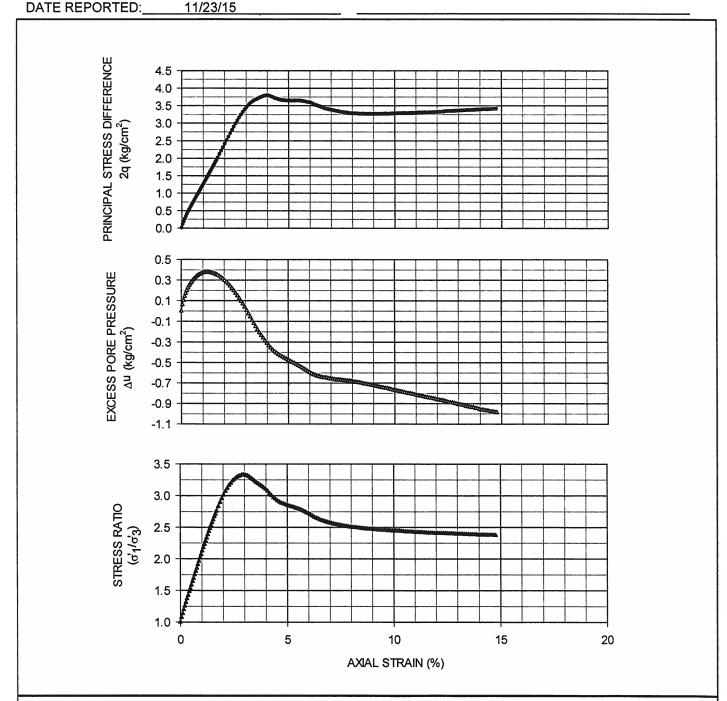
DATE SAMPLE RECEIVED: 10/19/15
DATE TEST SET-UP: 11/04/15
DATE REPORTED: 11/23/15

The test data and all associated project information presented hereon shall be held in confidence and disclosed to other parties only with the authorization of the Client. Physical and electronic records of each project are kept for a minimum of 7 years. Test samples are kept in storage for at least 10 working days after mailing the test report, prior to being discarded, unless a longer storage period is requested in writing & accepted by Ardaman & Associates, Inc.

Where: $\Delta u = \text{Excess pore pressure}$; $\sigma_1' = \text{Major effective principal stress}$; and $\sigma_3' = \text{Minor effective principal stress}$.

CLIENT: LOCKHEED MARTIN	INCOMING SAMPLE NO.:
PROJECT: MRC LABORATORY TESTING	BORING: TTDHC-6 SAMPLE: ST-1
FILE NO.: 15-13-0120	DEPTH: 13 - 15
DATE SAMPLE RECEIVED: 10/19/15	LABORATORY IDENTIFICATION NO.: 150120/HC6/ST1B3
DATE TEST SET-UP: 11/04/15	SAMPLE DESCRIPTION: Reddish-brown lean clay
DATE REPORTED: 11/23/15	

Specim	nen Dim	ensions	Init	ial Conditi	ons		Те	st Cor	ditions		Pre-shear Conditions								
H (cm)	D (cm)	H/D	W _c (%)	Ya (lb/ft³)	S (%)	u _b (kg/cm²	σ _c 2) (kg/c		έ (%/hour)	B-Factor (%)	ε _{vol} (%)	H _c (cm)	A _c (cm²)	w _c (%)	Y _d (lb/ft³)	S (%)			
7.06	3.58	2.0	17.0	116.3	98	12.0	1.4	19	1.0	100	0.8	7.05	10.16	17.7	115.3	100			
8	3.0 2.5										Spec	imen M	OCEDU	□ Di ⊠ W	ASTM Downson				
Half Principal Stress Difference	Membrane A _c Method: w _c determin										etermined from: ☐ Entire Specimen ☐ Trimmings								
rincipa	in cipal											SAMPLE TYPE							
laff P	5 1.0				6500					Ту	ре		Diameter	(inch)					
	0.5			<i>A</i>	8						⊠ Uı	ndisturb	ed		3				
											СС	ompact	ed						
	0.0		.5 1.	0 1.5	2.0	2.5	3.0	3.5	4.0 4	.5 5.0	☐ Tamped Uniform Lifts: No. of Lifts:								
						ctive Prir ວ່ ₃)/2 (k		ess			☐ Kneading: Blows per Lift:								
											G₅: 2.75 ■ Assumed □ Measured								
				Stresses	and St	rains at F	ailure						FAILU	RE SKE	тсн				
Fa Criteria	ilure	(ε _a %)	Δu (kg/cm²)	(k	σ ₁ ' g/cm²)	σ₃' (kg/cm²) (1	p' kg/cm²)	q (kg/cm²)		☑ Diagonal Plane							
[σ_1 - σ_3] _{max}		3	.97	-0.31		5.64	1.80		3.72	1.92	□ Bulging □ Combination								
[\sigma_1' / \sigma_3']_max 2.94 0.04				0.04	4	1.89	1.45		3.17	1.72		iner			1/	- \			
Particle-S	Size Ana	lysis		Standard C:		(Gravel		Coarse		lium			Fir					
	□ ASTM D422 図 ASTM D1140-Method B			Standard Sie Size	,ve	3/4"	3/8"	No. 4	Sand No. 10	No. 20	nd No. 40	No	. 60	Sai No. 100	No. 140	No. 200			
Dry Mass	s (g)	132.61		oil Passing ry mass bas	is)	100	100	100	100	100	99.9		9.7	98.7	97.2	94.8			
The test data and all associated project information presented bereon shall be held in confidence and disclosed to other parties only with the authorization of the																			

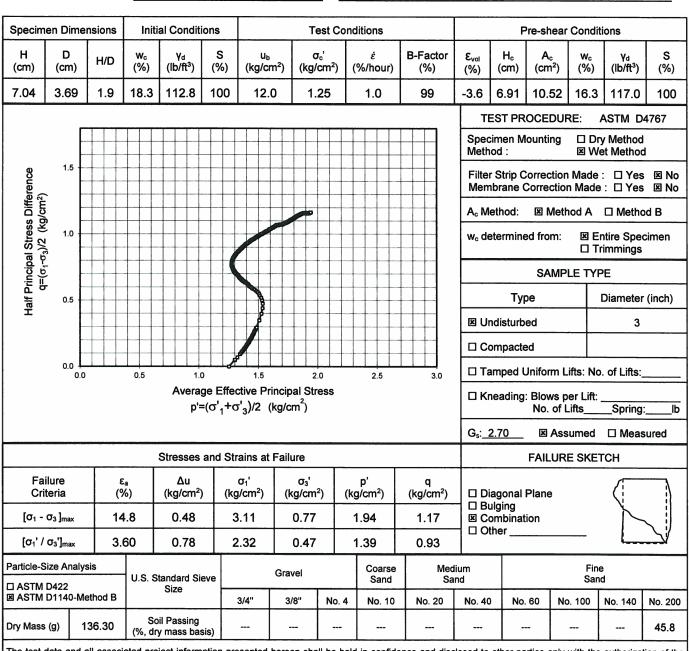

The test data and all associated project information presented hereon shall be held in confidence and disclosed to other parties only with the authorization of the Client. Physical and electronic records of each project are kept for a minimum of 7 years. Test samples are kept in storage for at least 10 working days after mailing the test report, prior to being discarded, unless a longer storage period is requested in writing & accepted by Ardaman & Associates, Inc.

here: H = Specimen height; D = Specimen diameter; w_c = Water content (ASTM D2216); γ_d = Dry density; S = Saturation; σ_c' = Isotropic effective confining stress; ε' = Vertical displacement rate; ε_{νοl} = Volume change(- denotes consolidation, + denotes swelling); H_c = Consolidated height; A_c = Consolidated area; ε_θ = Axial strain; Δu = Excess pore pressure; σ₁' = Major effective principal stress; σ₃'= Minor effective principal stress; p' = Average effective principal stress; q = Half principal stress difference; and G_s = Specific gravity.

Checked By: 14 Date: 11/23/19

ARDAMAN & ASSOCIATES, INC. GEOTECHNICAL TESTING LABORATORY CONSOLIDATED UNDRAINED TRIAXIAL COMPRESSION TEST STRESS - STRAIN CURVES

CLIENT: **LOCKHEED MARTIN INCOMING SAMPLE NO.:** PROJECT: MRC LABORATORY TESTING BORING: TTDHC-6 ST-1 FILE NO.: 15-13-0120 13 - 15 DEPTH: ☑ ft: □ m LABORATORY IDENTIFICATION NO.: 150120/HC6/ST1B3 SAMPLE DESCRIPTION: Reddish-brown lean clay DATE SAMPLE RECEIVED: 10/19/15 11/04/15 Effective Isotropic Consolidation Stress = 1.49 kg/cm² DATE TEST SET-UP:

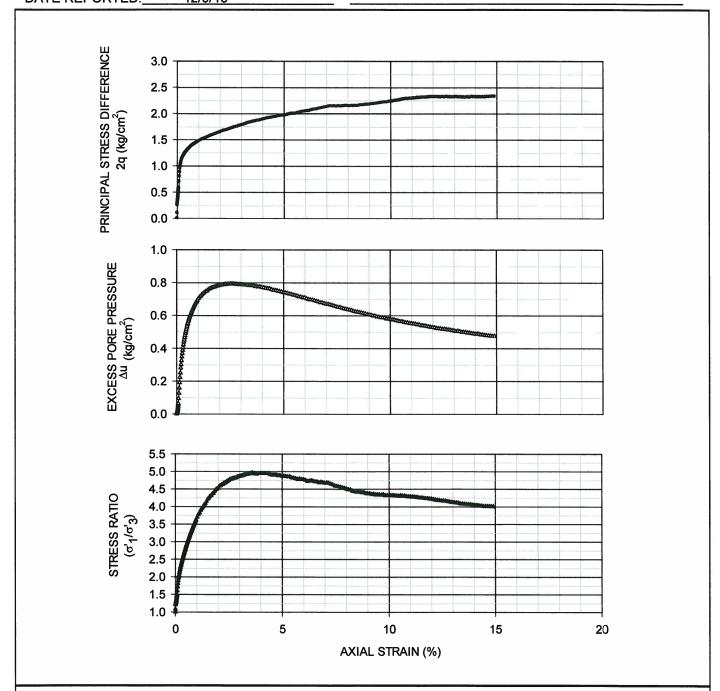


The test data and all associated project information presented hereon shall be held in confidence and disclosed to other parties only with the authorization of the Client. Physical and electronic records of each project are kept for a minimum of 7 years. Test samples are kept in storage for at least 10 working days after mailing the test report, prior to being discarded, unless a longer storage period is requested in writing & accepted by Ardaman & Associates, Inc.

Where: $\Delta u = \text{Excess pore pressure}$; $\sigma_1' = \text{Major effective principal stress}$; and $\sigma_3' = \text{Minor effective principal stress}$.

CLIENT: LOCKHEED MARTIN	INCOMING SAMPLE NO.:
PROJECT: MRC LABORATORY TESTING	BORING: TTDHCB-2 SAMPLE: ST-2
FILE NO.: 15-13-0120	DEPTH: 11.5 – 13.5
DATE SAMPLE RECEIVED: 10/19/15	LABORATORY IDENTIFICATION NO.: 150120/HB3/ST2B1
DATE TEST SET-UP: 11/16/15	SAMPLE DESCRIPTION: Reddish-brown clayey sand (SC
DATE REPORTED: 12/0/15	

The test data and all associated project information presented hereon shall be held in confidence and disclosed to other parties only with the authorization of the Client. Physical and electronic records of each project are kept for a minimum of 7 years. Test samples are kept in storage for at least 10 working days after mailing


the test report, prior to being discarded, unless a longer storage period is requested in writing & accepted by Ardaman & Associates, Inc.

H = Specimen height; D = Specimen diameter; w_c = Water content (ASTM D2216); γ_d = Dry density; S = Saturation; σ_c' = Isotropic effective confining stress; & = Vertical displacement rate; &vol = Volume change(- denotes consolidation, + denotes swelling); Ho = Consolidated height; Ao = Consolidated area; ε_a = Axial strain; Δu = Excess pore pressure; σ₁' = Major effective principal stress; σ₃'= Minor effective principal stress; p' = Average effective principal stress; q = Half principal stress difference; and G_s = Specific gravity.

Checked By:_ Date: 2/09/19

ARDAMAN & ASSOCIATES, INC. GEOTECHNICAL TESTING LABORATORY CONSOLIDATED UNDRAINED TRIAXIAL COMPRESSION TEST STRESS - STRAIN CURVES

LOCKHEED MARTIN CLIENT: **INCOMING SAMPLE NO.:** PROJECT: MRC LABORATORY TESTING SAMPLE: BORING: TTDHCB-2 ST-2 FILE NO.: 15-13-0120 11.5 - 13.5DEPTH: **図** ft; □ m LABORATORY IDENTIFICATION NO.: 150120/HB3/ST2B1 DATE SAMPLE RECEIVED: 10/19/15 SAMPLE DESCRIPTION: Reddish-brown clayey sand (SC) DATE TEST SET-UP: 11/16/15 Effective Isotropic Consolidation Stress = 1.25 kg/cm² DATE REPORTED: 12/9/15

The test data and all associated project information presented hereon shall be held in confidence and disclosed to other parties only with the authorization of the Client. Physical and electronic records of each project are kept for a minimum of 7 years. Test samples are kept in storage for at least 10 working days after mailing the test report, prior to being discarded, unless a longer storage period is requested in writing & accepted by Ardaman & Associates, Inc.

Where: $\Delta u = \text{Excess pore pressure}$; $\sigma_1' = \text{Major effective principal stress}$; and $\sigma_3' = \text{Minor effective principal stress}$.

Checked By: Date: 12/09/15

ARDAMAN & ASSOCIATES, INC. GEOTECHNICAL TESTING LABORATORY CONSOLIDATED UNDRAINED TRIAXIAL COMPRESSION TEST EFFECTIVE STRESS PATHS

CLIENT: LOCKHEED MARTIN

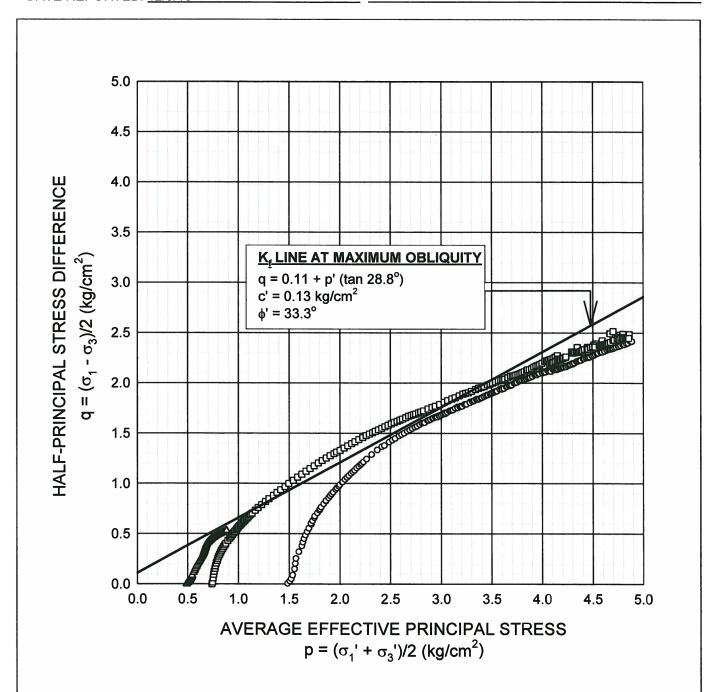
PROJECT: MRC LABORATORY TESTING

FILE NO.: 15-13-0120

DATE SAMPLE RECEIVED: 10/19/15

DATE TEST SET-UP: 11/16/15

DATE REPORTED: 12/9/15

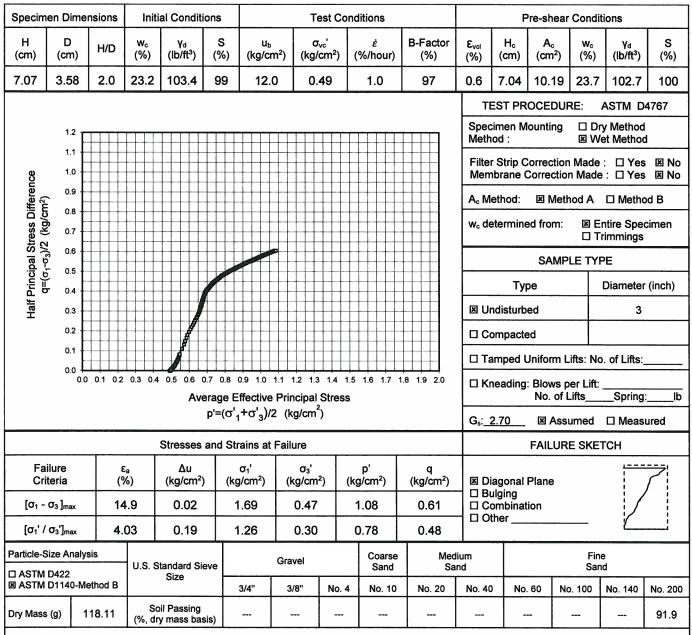

INCOMING SAMPLE NO.: ----
BORING: TTDHCB-9

SAMPLE: ST-1

DEPTH: 12.0 − 14.0

LABORATORY IDENTIFICATION NO.: 150120/HB9

SAMPLE DESCRIPTION: Reddish-brown lean clay (CL)

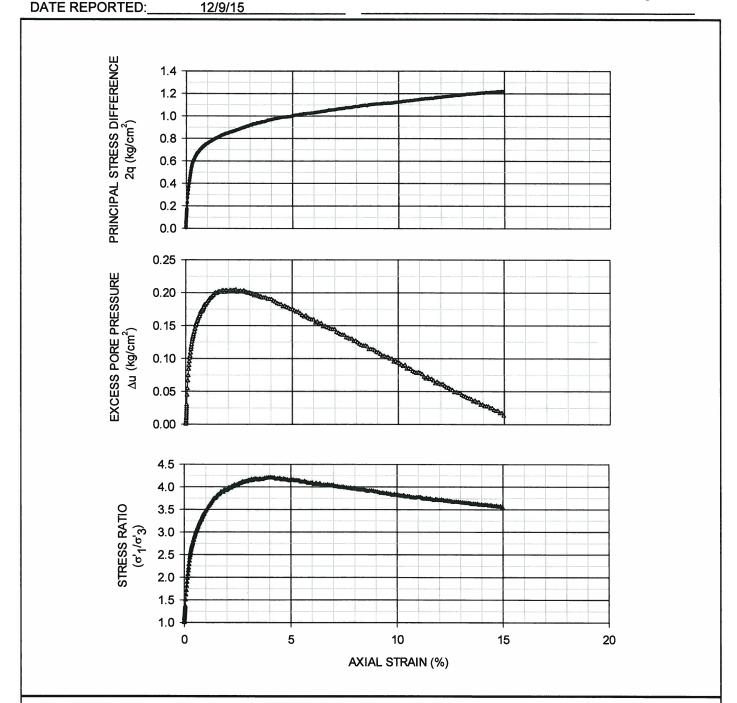


The test data and all associated project information presented hereon shall be held in confidence and disclosed to other parties only with the authorization of the Client. Physical and electronic records of each project are kept for a minimum of 7 years. Test samples are kept in storage for at least 10 working days after mailing the test report, prior to being discarded, unless a longer storage period is requested in writing and accepted by Ardaman & Associates, Inc.

Checked By: ________

Date: 12/09/19

CLIENT: LOCKHEED MARTIN	INCOMING SAMPLE NO.:
PROJECT: MRC LABORATORY TESTING	BORING: TTDHCB-9 SAMPLE: ST-1
FILE NO.: 15-13-0120	DEPTH: 12.0 – 14.0 🗵 ft; 🗆 m
DATE SAMPLE RECEIVED: 10/19/15	LABORATORY IDENTIFICATION NO.: 150120/HB9/ST1B1
DATE TEST SET-UP: 11/16/15	SAMPLE DESCRIPTION: Reddish-brown lean clay (CL)
DATE REPORTED: 12/9/15	

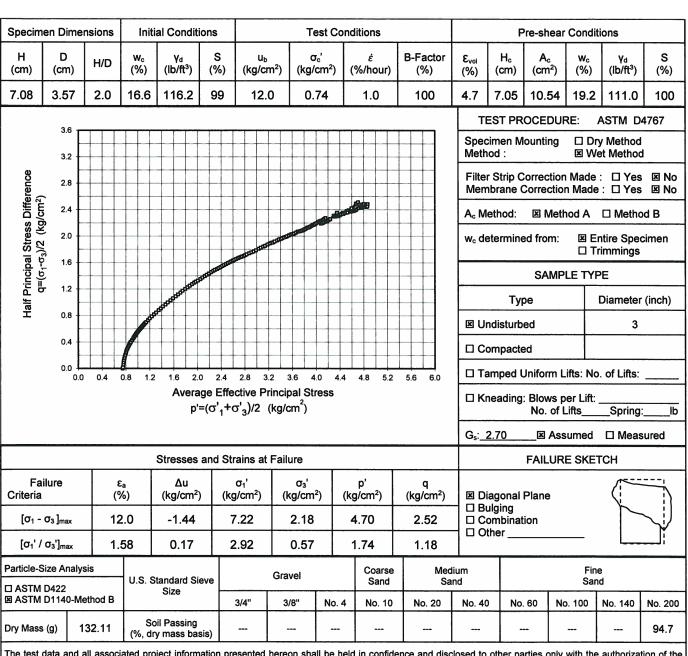

The test data and all associated project information presented hereon shall be held in confidence and disclosed to other parties only with the authorization of the Client. Physical and electronic records of each project are kept for a minimum of 7 years. Test samples are kept in storage for at least 10 working days after mailing the test report, prior to being discarded, unless a longer storage period is requested in writing & accepted by Ardaman & Associates, Inc.

H = Specimen height; D = Specimen diameter; w_c = Water content (ASTM D2216); γ_d = Dry density; S = Saturation; σ_c' = Isotropic effective confining stress; ἐ = Vertical displacement rate; ε_{vol} = Volume change(- denotes consolidation, + denotes swelling); H_c = Consolidated height; A_c = Consolidated area; ε_a = Axial strain; Δu = Excess pore pressure; σ₁' = Major effective principal stress; σ₃'= Minor effective principal stress; p' = Average effective principal stress; q = Half principal stress difference; and G_s = Specific gravity.

Checked By:	m	Date:	2	109	119	
· (100)			-			

ARDAMAN & ASSOCIATES, INC. GEOTECHNICAL TESTING LABORATORY CONSOLIDATED UNDRAINED TRIAXIAL COMPRESSION TEST STRESS - STRAIN CURVES

CLIENT: LOCKHEED MARTIN **INCOMING SAMPLE NO.:** PROJECT: MRC LABORATORY TESTING **BORING: TTDHCB-9** SAMPLE: **ST-1** FILE NO.: 15-13-0120 DEPTH: 12.0 - 14.0**図** ft; □ m LABORATORY IDENTIFICATION NO.: 150120/HB9/ST1B1 DATE SAMPLE RECEIVED:_ 10/19/15 SAMPLE DESCRIPTION: Reddish-brown lean clay (CL) 11/16/15 DATE TEST SET-UP: Effective Isotropic Consolidation Stress = 0.49 kg/cm²



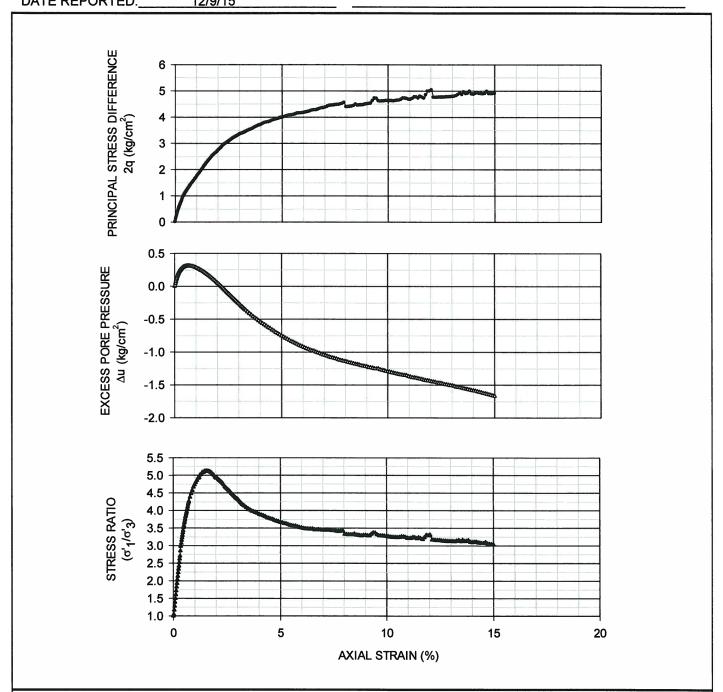
The test data and all associated project information presented hereon shall be held in confidence and disclosed to other parties only with the authorization of the Client. Physical and electronic records of each project are kept for a minimum of 7 years. Test samples are kept in storage for at least 10 working days after mailing the test report, prior to being discarded, unless a longer storage period is requested in writing & accepted by Ardaman & Associates, Inc.

Where: $\Delta u = \text{Excess pore pressure}$; $\sigma_1' = \text{Major effective principal stress}$; and $\sigma_3' = \text{Minor effective principal stress}$.

Checked By: Date: 20919

CLIENT: LOCKHEED MARTIN	INCOMING SAMPLE NO.:
PROJECT: MRC LABORATORY TESTING	BORING: TTDHCB-9 SAMPLE: ST-1
FILE NO.: 15-13-0120	DEPTH: 12.0 – 14.0
DATE SAMPLE RECEIVED: 10/19/15	LABORATORY IDENTIFICATION NO.: 150120/ HB9/ST1B2
DATE TEST SET-UP: 11/16/15	SAMPLE DESCRIPTION: Reddish-brown lean clay (CL)
DATE REPORTED: 12/9/15	

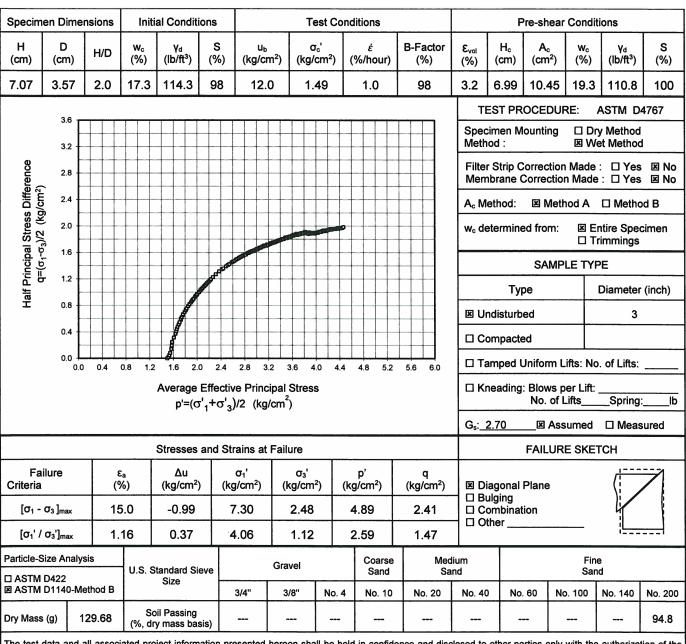
The test data and all associated project information presented hereon shall be held in confidence and disclosed to other parties only with the authorization of the Client. Physical and electronic records of each project are kept for a minimum of 7 years. Test samples are kept in storage for at least 10 working days after mailing


the test report, prior to being discarded, unless a longer storage period is requested in writing & accepted by Ardaman & Associates, Inc.

H = Specimen height; D = Specimen diameter; w_c = Water content (ASTM D2216); γ_d = Dry density; S = Saturation; σ_c' = Isotropic effective confining stress; ε = Vertical displacement rate; ε_{vol} = Volume change(- denotes consolidation, + denotes swelling); H_c = Consolidated height; A_c = Consolidated area; ε_a = Axial strain; Δu = Excess pore pressure; σ₁' = Major effective principal stress; σ₃'= Minor effective principal stress; ρ' = Average effective principal stress; q = Half principal stress difference; and G_s = Specific gravity.

Checked By: Date:

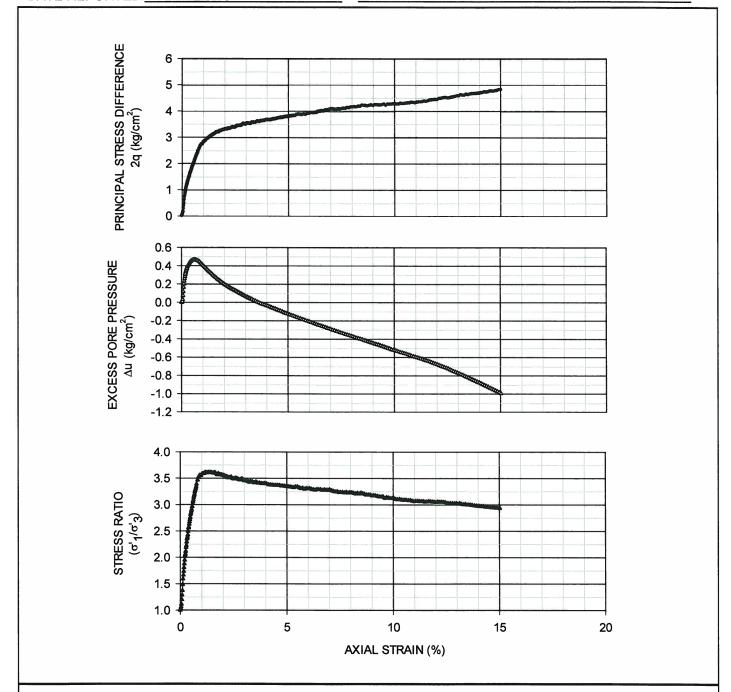
ARDAMAN & ASSOCIATES, INC. GEOTECHNICAL TESTING LABORATORY CONSOLIDATED UNDRAINED TRIAXIAL COMPRESSION TEST STRESS - STRAIN CURVES


CLIENT: LOCKHEED MARTIN **INCOMING SAMPLE NO.:** PROJECT: MRC LABORATORY TESTING SAMPLE: BORING TTDHCB-9 ST-1 FILE NO.: 15-13-0120 12.0 - 14.0DEPTH: ☑ ft; □ m LABORATORY IDENTIFICATION NO.: 150120/HB9/ST1B2 DATE SAMPLE RECEIVED: 10/19/15 SAMPLE DESCRIPTION: Reddish-brown lean clay (CL) 11/16/15 Effective Isotropic Consolidation Stress = 0.74 kg/cm² DATE TEST SET-UP: DATE REPORTED: 12/9/15

The test data and all associated project information presented hereon shall be held in confidence and disclosed to other parties only with the authorization of the Client. Physical and electronic records of each project are kept for a minimum of 7 years. Test samples are kept in storage for at least 10 working days after mailing the test report, prior to being discarded, unless a longer storage period is requested in writing & accepted by Ardaman & Associates, Inc.

Where: $\Delta u = \text{Excess pore pressure}$; $\sigma_1' = \text{Major effective principal stress}$; and $\sigma_3' = \text{Minor effective principal stress}$.

CLIENT: LOCKHEED MARTIN	INCOMING SAMPLE NO.:
PROJECT: MRC LABORATORY TESTING	BORING: TTDHCB-9 SAMPLE: ST-1
FILE NO.: 15-13-0120	DEPTH: 12.0 – 14.0 ☑ ft; □ m
DATE SAMPLE RECEIVED: 10/19/15	LABORATORY IDENTIFICATION NO.: 150120/ HB9/ST1B3
DATE TEST SET-UP: 11/16/15	SAMPLE DESCRIPTION: Reddish-brown lean clay (CL)
DATE REPORTED: 12/9/15	


The test data and all associated project information presented hereon shall be held in confidence and disclosed to other parties only with the authorization of the Client. Physical and electronic records of each project are kept for a minimum of 7 years. Test samples are kept in storage for at least 10 working days after mailing the test report, prior to being discarded, unless a longer storage period is requested in writing & accepted by Ardaman & Associates, Inc.

re: H = Specimen height; D = Specimen diameter; w_c = Water content (ASTM D2216); γ_d = Dry density; S = Saturation; σ_c' = Isotropic effective confining stress; ε' = Vertical displacement rate; ε_{vol} = Volume change(- denotes consolidation, + denotes swelling); H_c = Consolidated height; A_c = Consolidated area; ε_a = Axial strain; Δu = Excess pore pressure; σ₁' = Major effective principal stress; σ₃'= Minor effective principal stress; p' = Average effective principal stress; q = Half principal stress difference; and G_s = Specific gravity.

Checked By: ______ Date: _______

ARDAMAN & ASSOCIATES, INC. GEOTECHNICAL TESTING LABORATORY CONSOLIDATED UNDRAINED TRIAXIAL COMPRESSION TEST STRESS - STRAIN CURVES

CLIENT: **LOCKHEED MARTIN INCOMING SAMPLE NO.:** PROJECT: MRC LABORATORY TESTING BORING: TTDHCB-9 SAMPLE: **ST-1** FILE NO.: 15-13-0120 12.0 - 14.0DEPTH: ☑ ft; □ m LABORATORY IDENTIFICATION NO.: 150120/HB9/ST1B3 DATE SAMPLE RECEIVED:_ 10/19/15 SAMPLE DESCRIPTION: Reddish-brown lean clay (CL) 11/16/15 Effective Isotropic Consolidation Stress = 1.49 kg/cm² DATE TEST SET-UP: DATE REPORTED: 12/9/15

The test data and all associated project information presented hereon shall be held in confidence and disclosed to other parties only with the authorization of the Client. Physical and electronic records of each project are kept for a minimum of 7 years. Test samples are kept in storage for at least 10 working days after mailing the test report, prior to being discarded, unless a longer storage period is requested in writing & accepted by Ardaman & Associates, Inc.

Where: Δu = Excess pore pressure; σ_1 ' = Major effective principal stress; and σ_3 '= Minor effective principal stress.

PROJ	IT: <u> L</u> ECT: <u>M</u> NO.: <u> 1</u>	IRC LA	BORA	TORY T			BORIN DEPTH	l: 7 - 9	C-4	_SAMPLE:_S		: ft; 9 m			
DATE DATE DATE	SAMPI TEST S REPOR	_E REC SET-UI RTED:	CEIVEI 	D: <u>10/1</u> 10/2 11/1	19/15 28/15 19/15			E DESCR		FICATION NO. N: Reddish-bro					
Specin	nen Dime	nsions	ı	nitial Condit	tions		Test Conditio	ns		at (σ ₁ -σ ₃	3) _{max}				
H (cm)	D (cm)	H/D	w _c (%)	Y _d (lb/ft³)	S (%)	σ _c (kg/cm²)	Displacem	ent Rate, έ (%/minute)	ε _a (%)						
							0.074	4.0	14.8	0.54	1.48	0.39			
7.08	3.57	2.0	20.9	108.5	97	0.39	0.071	1.0	Memb	Membrane Correction Made: ☐ Yes					
									Т	TEST PROCEDURE: ASTM D					
	1.20									SAMPLE TYPE					
2				•••••	·*************************************	••••		1	L	Type Diameter					
J/cm	1.00	,		,o*ooo**					×	Undisturbed		3			
E (k			,							Rock Core					
INC.	0.80									Compacted					
IFFER										Tamped Unifor No. of Lifts:					
PRINCIPAL STRESS DIFFERENCE (kg/cm²)	0.60	:								Kneading No. of Lifts:					
STE	0.40	•								Spring: Blows per Lift:_		ID.			
NCIPAL									G	s: <u>2.78</u>	✓ Assu ✓ Mea				
PR	0.20	*								FAILURE	SKETCH	1			
	0.00	0	5		0 XIAL STRA	15 AIN (%)	20	25		Diagonal Plane Bulging Combination Other					
Partic	le-Size Ana	alysis	U.S. S	tandard	C	Gravel	Coarse	Medi Sar			Fine Sand				

Sieve Size ☑ ASTM D1140-Method B No. 200 No. 40 No. 60 No. 100 No. 140 No. 10 No. 20 3/4" 3/8" No. 4 Soil Passing 76.7 122.68 Dry Mass (g) (%, dry mass basis)

The test data and all associated project information presented hereon shall be held in confidence and disclosed to other parties only with the authorization of the Client. Physical and electronic records of each project are kept for a minimum of 7 years. Test samples are kept in storage for at least 10 working days after mailing of the test report, prior to being discarded, unless a longer storage period is requested in writing and accepted by Ardaman & Associates, Inc.

Where: H = Specimen height; D = Specimen diameter; w_c = Water content (ASTM D2216); y_d = Dry density; S = Saturation; σ_c = Isotropic confining stress; $\dot{\varepsilon}$ = Vertical displacement rate; ε_a = Axial strain; σ_1 = Major principal stress; σ_3 = Minor principal stress; and G_s = Specific gravity.

	ORATORY TESTING		SAMPLE: ST-1
DATE SAMPLE RECE DATE TEST SET-UP:	EIVED: 10/19/15 10/28/15		: ft; 9 m NTIFICATION NO.: <u>150120/C4S1B</u> FION: <u>Reddish-brown lean clay</u>
DATE REPORTED: Specimen Dimensions	11/19/15 Initial Conditions	Test Conditions	at (σ ₁ -σ ₃) _{max}

Specin	nen Dim	nensions	lr	itial Con	ditions			Test	Condition	าร			а	at (σ ₁ -σ ₃) _{max}				
н	D		w _c	Yd	s		$\sigma_{\rm c}$	D	isplaceme	ent Rate, έ	ε,		Undra She		σ_1	σ_3		
(cm)	(cm)	H/C	(%)	(lb/ft ^s			kg/cm²)	(cm	n/minute)	(%/minute)	(%		Stren (kg/c	gth	(kg/cm²)	(kg/cm²)		
7.06	3.56	2.0	18.4	115.	1 10	,	0.78	١,	0.071	1.0	5.	8	1.8	9	4.56	0.78		
7.06	3.30	2.0	10.4	115.	1 10	,0	0.76		J.U7 I	1.0	Mer	mbrar	ne Corre	ction Ma	ade: □ Ye	s 🗷 No		
	4.00											TES	T PROC	EDURE	: ASTM	D2850		
	4.00			*****							L		S	AMPLE	TYPE			
m²)	3.50	, [*****									Туре		Diamete	er (inch)		
kg/cr												X U	ndistur	bed	3	3		
) EC	3.00)				******						□ Rock Core						
ÄEN.	2.50											☐ Compacted						
IFFEF	2.50											☐ Tamped Uniform Lifts No. of Lifts:						
o SS	2.00											No. of Lifts:						
Z.	1.50											No				lb.		
L S.	1.50											BI	ows pe	r Lift:		10.		
PRINCIPAL STRESS DIFFERENCE (kg/cm²)	1.00											Gs: _	2.78		_ ⊠ Assu □ Meas			
PR	0.50												FAI	LURE	SKETCH			
	0.0												iagonal ulging	Plane	[
	0.00	0	5	A	10 AXIAL S		15 I (%)		20	25			ombina	tion				
Particle	e-Size A	nalysis	U.S. Sta			Grav	el		Coarse Sand	Medi Sar				Fine Sand				
☑ ASTM	D1140-l	Method B	Sieve	oize	3/4"	3/8"	' No	. 4	N o. 10	No. 20	No.	. 40	No. 60	No. 100 No. 140 No. 2				
Dry Mass	(g)	129.96	Soil Pas (%, dry mas					-			_		75.					
The test of	data and	all assoc	ated project	informatio	n presente	ed hered	on shall be	e held	in confide	nce and disclo	sed to	othe	r parties o	only with	the authoriz	ation of th		

The test data and all associated project information presented hereon shall be held in confidence and disclosed to other parties only with the authorization of the Client. Physical and electronic records of each project are kept for a minimum of 7 years. Test samples are kept in storage for at least 10 working days after mailing of the test report, prior to being discarded, unless a longer storage period is requested in writing and accepted by Ardaman & Associates, Inc.

Where: H = Specimen height; D = Specimen diameter; w_c = Water content (ASTM D2216); γ_d = Dry density; S = Saturation; σ_c = Isotropic confining stress; $\dot{\varepsilon}$ = Vertical displacement rate; ε_a = Axial strain; σ_1 = Major principal stress; σ_3 = Minor principal stress; and G_s = Specific gravity.

Checked By:
Date:
Form SR-3A Rev. 1.6ocx

CLIENT: LOCKHEED MARTIN PROJECT: MRC LABORATORY TESTING	INCOMING SAMPLE NO.: BORING: TTDHC-4 SAMPLE: ST-1
FILE NO.: 15-13-0120	DEPTH: 7 - 9 : ft; 9 m
DATE SAMPLE RECEIVED: 10/19/15 DATE TEST SET-UP: 10/28/15	LABORATORY IDENTIFICATION NO.: 150120/C4S1C SAMPLE DESCRIPTION: Reddish-brown lean clay with sand
DATE REPORTED:	

Specim	nen Dime	nsions	Ir	nitial Condi	tions			Test	Condition	าร		at (σ ₁ -σ ₃) _{max}					
Н	D		T		s		~	Di	splaceme	ent Rate	, έ		Undra		σ 1	α.	
(cm)	(cm)	H/D	(%)	(lb/ft ³)	(%		σ _c g/cm²)	(cm	/minute)	(%/min	nute)	ε _a (%)	She Stren (kg/c	igth	(kg/cm²)	σ ₃ (kg/cm ²)	
7.07	3.57	2.0	15.6	119.7	96	,	1.46	, ا	0.071	1.0		14.8	1.7	′1	4.88	1.46	
7.07	3.57	2.0	15.6	119.7	90	,	1.40		7.071	1.0		Membrar	ne Corre	ction Ma	ade: □ Ye	s 🗷 No	
	4.00											TES	T PROC	EDURE	: ASTM	D2850	
	4.00												S	AMPLE	TYPE		
[2]	3.50								-				Туре		Diamete	r (inch)	
g/cm					2000000	*********						⊠ Uı	ndisturt	oed	3		
я Š	3.00	┡			•••				□ Rock Core								
ENC	0.50	•		******								☐ Compacted					
PRINCIPAL STRESS DIFFERENCE (kg/cm²)	2.50											□ Ta	☐ Tamped Uniform Lifts No. of Lifts:				
3S	2.00		!										neading				
STRE	1.50	1										S	o. of Lif oring: ows pe			lb.	
IPAL	1.00				=								2.78		≝Assun	ned	
INC.		i i													□ Meas		
R.	0.50	/											FA	ILURE	SKETCH		
;	0.00	<u>L</u>										■ B	iagonal ulging)	
		0															
Particle	e-Size Anal D422	ysis	U.S. Sta			Grave	ıl		Coarse Sand			ledium Fine Sand Sand					
	D1140-Me	thod B	Sieve	Size	3/4"	3/8"	No	. 4	No. 10	No.	20					No. 200	
Dry Mass	(g) 13	86.79	Soil Pas (%, dry mas					-			-				the gutheriz	71.4	

The test data and all associated project information presented hereon shall be held in confidence and disclosed to other parties only with the authorization of the Client. Physical and electronic records of each project are kept for a minimum of 7 years. Test samples are kept in storage for at least 10 working days after mailing of the test report, prior to being discarded, unless a longer storage period is requested in writing and accepted by Ardaman & Associates, Inc.

Where: H = Specimen height; D = Specimen diameter; w_c = Water content (ASTM D2216); γ_d = Dry density; S = Saturation; σ_c = Isotropic confining stress; $\dot{\varepsilon}$ = Vertical displacement rate; ε_a = Axial strain; σ_1 = Major principal stress; σ_3 = Minor principal stress; and G_s = Specific gravity.

PROJI FILE N DATE DATE	ECT: M IO.: 1! SAMPL TEST S	RC LA 5-13-0 E REC SET-UF	120 EIVED:	ORY TE 10/19 10/28	9/15 3/15	3	E [ORING DEPTH: ABOR	3: <u>T</u> : <u> 3(</u> ATOF	TDHC 0 - 32 RY ID	ENTIFI	SAMPL	E: <u>ST-</u>	: 50120/0	24S1A
Specim	nen Dimer	sions	Init	ial Condition	ons		Test	Condition	ns			at	(σ ₁ -σ ₃) _{ma}	эх	
							Dis	splaceme	ent Raf	te, έ		Undrai		σ.	σ_3
H (cm)	D (cm)	H/D	(%)	Ya (lb/ft³)	(%)	σ _c (kg/cm ²	(cm/	/minute)	(%/m	inute)	ε _a (%)	Shea Streng (kg/cn	gth (l	σ ₁ (g/cm²)	(kg/cm²)
		V			404	0.00		074	1	.0	6.6	0.58	3	2.05	0.88
7.08	3.55	2.0	22.2	107.8	101	0.88	0	.071	'	.0	Membra	ne Correc	ction Mad	le: 🗆 Yes	s ⊠ No
								-			TE	ST PROC	EDURE:	ASTM	D2850
	1.40											SA	AMPLE	TYPE	
(2												Туре		Diamete	r (inch)
)/cm	1.20			*****	*******	, , , ,					X (Jndisturb	ed	3	
Э <u>ў</u>	4.00		J									Rock Cor	e		
ENC.	1.00											Compact	ed		
PRINCIPAL STRESS DIFFERENCE (kg/cm²)	0.80											Tamped I			
SS D	-											Kneading	!		
L KES	0.60									1		No. of Lift Spring:			lb.
L ST		1						(40)				Blows pe	r Lift:		
NCIPA	0.40										Gs	2.78		☑ Assu ☐ Meas	
PRII	0.20	1								1		FA	ILURE S	SKETCH	
												Diagonal	Plane	1	7
	0.00	0	5	10 AXI		15 RAIN (%)		20	:] 25		Bulging Combina Other	ition		
Partic	le-Size Ana	alysis				Gravel		Coarse		Med				Fine Sand	
☐ ASTN	/I D422 /I D1140-M	ethod B	U.S. Star Sieve S		3/4"	3/8"	No. 4	Sand No. 10		Sa No. 20	No. 40	No. 60	No. 100		No. 200

The test data and all associated project information presented hereon shall be held in confidence and disclosed to other parties only with the authorization of the Client. Physical and electronic records of each project are kept for a minimum of 7 years. Test samples are kept in storage for at least 10 working days after mailing of the test report, prior to being discarded, unless a longer storage period is requested in writing and accepted by Ardaman & Associates, Inc.

96.8

Where: H = Specimen height; D = Specimen diameter; w_c = Water content (ASTM D2216); y_d = Dry density; S = Saturation; σ_c = Isotropic confining stress; $\dot{\varepsilon}$ = Vertical displacement rate; ε_a = Axial strain; σ_1 = Major principal stress; σ_3 = Minor principal stress; and G_s = Specific gravity.

Dry Mass (g)

120.79

Soil Passing

(%, dry mass basis)

CLIENT: LOCKHEED MARTIN PROJECT: MRC LABORATORY TESTING	INCOMING SAMPLE NO.: BORING: _TTDHC-7 SAMPLE: _ST-2
FILE NO.: 15-13-0120	DEPTH: 30 - 32 : ft; 9 m
	LABORATORY IDENTIFICATION NO.: 150120/C4S1B
DATE SAMPLE RECEIVED: 10/19/15	SAMPLE DESCRIPTION: Reddish-brown lean clay
DATE TEST SET-UP: 10/28/15	
DATE REPORTED: 11/19/15	

Specim	en Dimer	nsions	Ini	tial Conditio	ons		Test Condition	ns		at (σ ₁ -σ ₃) _{max}				
н	D		W _c	ν.	s	$\sigma_{\rm c}$	Displaceme	ent Rate, έ		ε _a	Undrained Shear	σ_1	σ₃	
(cm)	(cm)	H/D	(%)	(lb/ft³)	(%)	(kg/cm²)	(cm/minute)	(%/minute)	1 /	%) 	Strength (kg/cm²)	(kg/cm²)	(kg/cm²)	
				400.0	404	4.05	0.074	1.0		7.8	1.60	5.16	1.95	
7.09	3.56	2.0	21.1	109.9	101	1.95	0.071	1.0	Me	embra	ne Correction M	fade: □ Ye	es 🗷 No	
	0.50									TES	T PROCEDUR	E: AST	/ D2850	
	3.50										SAMPL	E TYPE		
	3.00		•	···········							Туре	Diamet	er (inch)	
/cm ²	3.00				*****	20				ВL	Indisturbed		3	
(kg	2.50					***					Rock Core			
		-									Compacted			
ER.	2.00	,								ַ דַ בַּ	amped Unifor	m Lifts		
											(neading			
ESS	1.50									N	lo. of Lifts:			
STR										E	Spring: Blows per Lift:_		lb.	
PRINCIPAL STRESS DIFFERENCE (kg/cm²)	1.00									\vdash	2.78		umed	
	0.50										FAILURE	SKETCH	4	
	•									×	Diagonal Plane	e 1/2		

Particle-Size Analysis ASTM D422 ASTM D1140-Method B		U.S. Standard	Gravel			Coarse Sand	Medi San		Fine Sand			
		Sieve Size	3/4"	3/8"	No. 4	No. 10	No. 20	No. 40	No. 60	No. 100	No. 100 No. 140	
Dry Mass (g) 124.26		Soil Passing (%, dry mass basis)										96.6

15 AXIAL STRAIN (%)

10

20

25

□ Bulging □ Combination

□ Other

The test data and all associated project information presented hereon shall be held in confidence and disclosed to other parties only with the authorization of the Client. Physical and electronic records of each project are kept for a minimum of 7 years. Test samples are kept in storage for at least 10 working days after mailing of the test report, prior to being discarded, unless a longer storage period is requested in writing and accepted by Ardaman & Associates, Inc.

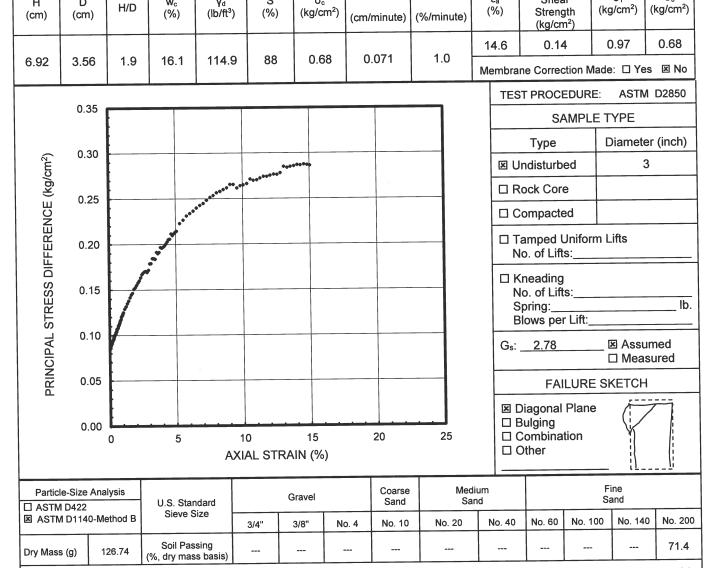
 $H = Specimen \ height; \ D = Specimen \ diameter; \ w_c = Water \ content \ (ASTM \ D2216); \ \gamma_d = Dry \ density; \ S = Saturation; \ \sigma_c = Isotropic \ confining \ stress; \ S = Saturation; \ \sigma_c = Isotropic \ confining \ stress; \ S = Saturation; \ \sigma_c = Isotropic \ confining \ stress; \ S = Saturation; \ \sigma_c = Isotropic \ confining \ stress; \ S = Saturation; \ \sigma_c = Isotropic \ confining \ stress; \ S = Saturation; \ \sigma_c = Isotropic \ confining \ stress; \ S = Saturation; \ \sigma_c = Isotropic \ confining \ stress; \ S = Saturation; \ \sigma_c = Isotropic \ confining \ stress; \ S = Saturation; \ S = S$ $\dot{\varepsilon}$ = Vertical displacement rate; ε_a = Axial strain; σ_1 = Major principal stress; σ_3 = Minor principal stress; and G_s = Specific gravity.

	CT: <u>M</u>	IRC L	ABOR	RATORY		NG		BORIN DEPTH	G: _ T	TDHO	CB-2	_ SAMF	LE: ST	'-1 ⊠	ft; 🗆 m
	AMPL	.E RE	CEIVE	ED: <u>1(</u>	0/19/15 1/12/15 1/19/15			LABOR	RATO LE DE	RY ID	ENTI	FICATIO N: Redd	N NO.: <u>1</u>	50120/	32S1A
Specimen	n Dimer	nsions		Initial Cor	nditions		Т	est Condition	ons				at (σ ₁ -σ ₃) _n	nax	
H (cm)	D (cm)	H/D	W ₀		S (%		o _c (cm²)	Displacem			ε _a (%)	Undra She Strei	ear	σ ₁ kg/cm²)	σ₃ (kg/cm²)
(0111)	(0)		1	(.5		, (9	, ,	(cm/minute)	(%/m	inute)		(kg/d	cm²)		
6.66	3.73	1.8	20.	.4 106	.6 90	0.	.34	0.071	1	.1*	13.8 Memb	0.0		0.52 de: □ Ye	0.34
				1					1		T	EST PRO			D2850
	0.20									1		S	SAMPLE	TYPE	
	0.18					•••••						Туре		Diamete	r (inch)
/cm ² /	0.16										×	Undistur	bed	3	
: (kg				•••								Rock Co	re		
NCE INCE	0.14											Compac	ted		
PRINCIPAL STRESS DIFFERENCE (kg/cm²)	0.12		,	••								Tamped No. of Li		Lifts	
SS DII	0.10		1									Kneadin			
JAE	0.08									1		No. of Li Spring:_			lb.
.S ⊣	0.06									$\{$		Blows pe			
VCIP/	0.04			•							G	s: <u>2.78</u>		☑ Assur ☐ Meas	
PR	0.02	j										FA	ILURE S	SKETCH	
	0.02											Diagona Bulging			
	(0	5		10 XIAL ST	15 RAIN (%	()	20	;	25		Combina Other	auon		/
Particle-Si		ysis		Standard		Gravel		Coarse Sand		Medi Sar				Fine Sand	
☑ ASTM D1	140-Me	thod B	Sie	ve Size	3/4"	3/8"	No. 4	4 No. 10	N	o. 20	No. 4	0 No. 60	No. 100	No. 140	No. 200
Dry Mass (g)	12	23.75		Passing mass basis)											72.7

The test data and all associated project information presented hereon shall be held in confidence and disclosed to other parties only with the authorization of the Client. Physical and electronic records of each project are kept for a minimum of 7 years. Test samples are kept in storage for at least 10 working days after mailing of the test report, prior to being discarded, unless a longer storage period is requested in writing and accepted by Ardaman & Associates, Inc.

Where: $H = Specimen \ height; D = Specimen \ diameter; \ w_c = Water \ content (ASTM D2216); \ \gamma_d = Dry \ density; \ S = Saturation; \ \sigma_c = Isotropic \ confining \ stress; \ \dot{\varepsilon} = Vertical \ displacement \ rate; \ \epsilon_a = Axial \ strain; \ \sigma_1 = Major \ principal \ stress; \ \sigma_3 = Minor \ principal \ stress; \ and \ G_s = Specific \ gravity.$

PROJECT: FILE NO.: DATE SAMF DATE TEST	MRC LAE 15-13-01 PLE RECI SET-UP	EIVED: 10/1	9/15 2/15		INCOMING SAMI BORING: <u>TTDH</u> DEPTH: <u>8</u> - LABORATORY II SAMPLE DESCR with sand	CB-2 10 DENTIFI	SAMPLE: S	: <u>150120/</u>	: ft; 9 m /B2S1B clay
							-1/	`	
Specimen Dim	ensions	Initial Conditi	ons	Te	est Conditions		at (σ₁-σ₃ Undrained	3)max	
1	1 1	1	1 1		Displacement Rate, $\dot{\varepsilon}$	1	Unidialited	l	1


S

 σ_{c}

 $\sigma_{\scriptscriptstyle 1}$

Shear

 σ_3

The test data and all associated project information presented hereon shall be held in confidence and disclosed to other parties only with the authorization of the Client. Physical and electronic records of each project are kept for a minimum of 7 years. Test samples are kept in storage for at least 10 working days after mailing of the test report, prior to being discarded, unless a longer storage period is requested in writing and accepted by Ardaman & Associates, Inc.

H = Specimen height; D = Specimen diameter; w_c = Water content (ASTM D2216); γ_d = Dry density; S = Saturation; σ_c = Isotropic confining stress; Where: $\dot{\varepsilon}$ = Vertical displacement rate; ε_a = Axial strain; σ_1 = Major principal stress; σ_3 = Minor principal stress; and G_s = Specific gravity.

Н

D

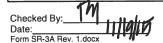
PROJ FILE I	IT: LO ECT: M NO.: 1 SAMPL TEST S REPOR	IRC L 5-13- E RE	ABOF 0120 CEIVI	RATORY ED: 1	7 TESTI 0/19/15			_ _ _		G: <u>TTI</u> :8 ATOR\	DHC 3 - 1 / ID	0 ENT	Σ	SAMP	LE:_ S T		
Specin	nen Dimer	nsions		Initial Co	onditions			Test	Conditio	ns ·				а	t (σ ₁ -σ ₃)	max	
Н	D					s	<i>a</i>	Di	isplaceme	ent Rate,	έ	-		Undra		σ ₁	σ_3
(cm)	(cm)	H/D	(%	(Ib/		%) (k	σ _c g/cm²)	(cm	n/minute)	(%/minu	ıte)	ε (%		She Stren (kg/c	gth	(kg/cm²)	(kg/cm²)
7.06	3.54	2.0	26	2 10	0.9 1	01	1.22	, ا	0.071	1.0		13	8.8	0.1	9	1.61	1.22
7.00	0.04	2.0		.2 10	0.0		1.22	L`		1.0		Mei	mbrar	ne Corre	ction Ma	ıde: □ Ye	s 🗷 No
	0.45												TES	T PROC	EDURE	: ASTM	D2850
	0.45													S	AMPLE	TYPE	
	0.40					******	•							Type		Diamete	er (inch)
·m²)					*****	*****							⊠ Uı	ndisturb	ed	3	3
(kg/c	0.35												□ R	ock Cor	e		
CE (0.30	_		•••									□С	ompact	ed		
FEREN	0.25														Uniform		
DIFI	0.20	/										Ī		neading		-	
ESS	0.20	/										1		o. of Lif oring:	ts:		lb.
STR	0.15														r Lift:		
PRINCIPAL STRESS DIFFERENCE (kg/cm²)	0.10												Gs: _	2.78		_ ⊠ Assu □ Meas	
N N	0.05													FA	ILURE	SKETCH	
	0.00											ſ		iagonal	Plane	1	
	0.00	0		5	10 AXIAL	STRAIN	15 (%)	•	20	2	5			ulging Combina ther	ation		
Particle	e-Size Anal	ysis				Grave	ı		Coarse		Medi					Fine	
☐ ASTM ☑ ASTM	D422 D1140-Me	thod B		Standard ve Size					Sand	<u> </u>	San			N SS		Sand	N. aast
					3/4"	3/8"	No	. 4	No. 10	No. 2	.0	No	. 40	No. 60	No. 100	No. 140	No. 200

Dry Mass (g) 112.73 Soil Passing (%, dry mass basis) --- --- --- 93.5

The test data and all associated project information presented hereon shall be held in confidence and disclosed to other parties only with the authorization of the

Client. Physical and electronic records of each project are kept for a minimum of 7 years. Test samples are kept in storage for at least 10 working days after mailing of the test report, prior to being discarded, unless a longer storage period is requested in writing and accepted by Ardaman & Associates, Inc.

here: $H = Specimen height; D = Specimen diameter; w_c = Water content (ASTM D2216); \gamma_d = Dry density; S = Saturation; \sigma_c = Isotropic confining stress; <math>\dot{\epsilon} = Vertical displacement rate; \epsilon_a = Axial strain; \sigma_1 = Major principal stress; \sigma_3 = Minor principal stress; and <math>G_8 = Specific gravity$.



PROJ FILE N DATE DATE	ECT: M NO.: 1 SAMPL TEST S	IRC L 5-13- .E RE SET-U	ABOR 0120 CEIVE JP:	MARTIN NATORY ED: 10	7ESTII 0/19/15 1/12/15			. .	BORING DEPTH LABOR	ING SAM G: <u>TTDH</u> : 12 ATORY I E DESCR	- 14 DE	3-3 4 NTIFIC	SAMP	LE:_ ST N NO.: <u>1</u>	⊠ 50120/	ft; □ m B3S2A
Specim	nen Dimer	sions		Initial Cor	nditions		7	Γest	Condition	ns			a	t (σ ₁ -σ ₃) _π	nax	
Н	D		w _c	c Yd	5		o _c	Di	splaceme	ent Rate, έ		ε _a	Undra She		σ ₁	σ_3
(cm)	(cm)	H/D	(%				/cm²)	(cm	/minute)	(%/minute		(%)	Stren (kg/ci	gth (kg/cm²)	(kg/cm²)
7.05	3.57	2.0	64.	.3 61.	8 9	9 0	.49	C	0.071	1.0		7.1	0.2	5	0.99	0.49
7.00	0.57	2.0		.0 01.			. 10				N	/lembrai	ne Corre	ction Ma	de: □ Ye	s 🗷 No
												TES	T PROC	EDURE:	ASTN	D2850
	0.60												S	AMPLE	TYPE	
													Туре		Diamete	er (inch)
:m²)	0.50	_		\$ *************	*****							⊠ U	ndisturb	ed	3	3
(kg/c												□R	ock Cor	е		
SE SE	0.40		_									ОС	ompact	ed		
FEREN						4							amped I	Uniform	Lifts	
DIF	0.30					-							neading			
ESS												N ₁	o. of Lift	ts:		lb.
STR	0.20	!										B	oring: ows pe	r Lift:		ID.
PRINCIPAL STRESS DIFFERENCE (kg/cm²)												Gs: _	2.75		Assu Meas	
NIR	0.10												FAI	LURE S	KETCH	
ш													iagonal	Plane		7:7
	0.00	0		5	10 AXIAL S	1: TRAIN (•	20	25			ulging ombina ther	tion	- \	
	-Size Analy	/sis	11.0	Standard		Gravel			Coarse		dium)			Fine Sand	
☐ ASTM ☑ ASTM	D422 D1140-Met	hod B		ve Size	3/4"	3/8"	No.	4	Sand No. 10	No. 20	and	No. 40	No. 60	No. 100	T	No. 200
					J 5/7	1 5/0	1,40.		.,	1	+				1.3 10	1.3.230

The test data and all associated project information presented hereon shall be held in confidence and disclosed to other parties only with the authorization of the Client. Physical and electronic records of each project are kept for a minimum of 7 years. Test samples are kept in storage for at least 10 working days after mailing of the test report, prior to being discarded, unless a longer storage period is requested in writing and accepted by Ardaman & Associates, Inc.

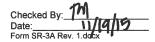
85.6

Where: $H = Specimen \ height; D = Specimen \ diameter; \ w_c = Water \ content \ (ASTM \ D2216); \ \gamma_d = Dry \ density; \ S = Saturation; \ \sigma_c = Isotropic \ confining \ stress; \ \dot{\varepsilon} = Vertical \ displacement \ rate; \ \epsilon_a = Axial \ strain; \ \sigma_1 = Major \ principal \ stress; \ \sigma_3 = Minor \ principal \ stress; \ and \ G_s = Specific \ gravity.$

69.38

Dry Mass (g)

Soil Passing


(%, dry mass basis)

PROJ	ECT: N	IRC L			ΓESTING				ING SAMI G: <u>TTDH</u>		: SAMPLE:_ S	ST-2	
DATE DATE	TEST S	.E RE SET-U	CEIVED	11/	/12/15		LA	BOR	ATORY IE	ENTIFIC	CATION NO Dark gray o	:150120/	
DATE	REPOR	RTED	:	11/	19/15		- =					-	
Specim	nen Dimer	nsions	In	itial Cond	itions		Test Co	ondition	ıs		at (σ ₁ -σ	3) _{max}	
H (cm)	D (cm)	H/D	W _c (%)	Y _d (lb/ft³)	S (%)	σ _c (kg/cm²)			ent Rate, $\dot{\varepsilon}$ (%/minute)	ε _a (%)	Undrained Shear Strength (kg/cm²)	σ ₁ (kg/cm²)	σ₃ (kg/cm²)
7.00	0.50		04.0	0.4.5	404	0.00		74	4.0	7.8	0.22	1.41	0.98
7.08	3.56	2.0	61.0	64.5	101	0.98	0.0	71	1.0	Membra	ne Correction N	lade: □ Ye	s 🗷 No
	0.50							1		TES	T PROCEDUR	E: ASTN	D2850
	0.45										SAMPL	E TYPE	
ر		' [_			*****						Туре	Diamet	er (inch)
/cm	0.40			-		******				⊠U	ndisturbed	;	3
ш Я	0.35	, —	-/							□R	ock Core		
S	0.30									□ C	ompacted		
FFERE	0.30										amped Unifor	m Lifts	
PRINCIPAL STRESS DIFFERENCE (ka/cm²)	0.20									N S	neading o. of Lifts: pring: lows per Lift:		lb.
N N	0.15 !	ì									2.75	✓ Assume	mod
NC IP	0.10									Os.	2.13	_ □ Meas	
PR	0.05	5									FAILURE	SKETCH	
	0.00	0	5		10 AXIAL	15 STRAIN (20	25	B B □ C	piagonal Plane sulging combination other		
	-Size Analy	ysis	U.S. Star	ndard	C	Gravel		Coarse Sand	Med Sa			Fine Sand	
☐ ASTM	D422	- 1	U.G. Stat	iudiu			- 1	Janu	l Sa	iiu	1	Janu	

Particle-Size ☐ ASTM D422		U.S. Standard Sieve Size		Gravel		Coarse Sand	Medi San				ne and	
I⊠ ASTM D114	0-Method B	Sieve Size	3/4"	3/8"	No. 4	No. 10	No. 20	No. 40	No. 60	No. 100	No. 140	No. 200
Dry Mass (g)	74.60	Soil Passing (%, dry mass basis)										75.8

The test data and all associated project information presented hereon shall be held in confidence and disclosed to other parties only with the authorization of the Client. Physical and electronic records of each project are kept for a minimum of 7 years. Test samples are kept in storage for at least 10 working days after mailing of the test report, prior to being discarded, unless a longer storage period is requested in writing and accepted by Ardaman & Associates, Inc.

Where: $H = Specimen height; D = Specimen diameter; w_c = Water content (ASTM D2216); y_d = Dry density; S = Saturation; \(\sigma_c = Isotropic confining stress; \(\delta = Vertical displacement rate; \(\epsilon_a = Axial strain; \sigma_1 = Major principal stress; \(\sigma_3 = Minor principal stress; \) and \(G_s = Specific gravity.$

PROJ FILE N DATE DATE	ECT: NO.:_ SAM TES	MRC 15-1 MPLE I	3-0 RE	ABORAT 0120 CEIVED P:	: 10	7ESTIN 0/19/15 1/12/15			- - E - [BORING DEPTH _ABOR	ING SAMI G: <u>TTBH</u> : 12 - ATORY II E DESCR	CB - 14 DEN	-3 NTIFIC	SAMP	LE:_ ST N NO.: <u>1</u>	⊠ 50120/	
Specim	nen Di	mensio	ns	In	itial Cor	nditions		•	Test	Condition	ns			а	t (σ ₁ -σ ₃) _n	nax	
H (cm)	D (cm		ł/D	w _c (%)	Y⊲ (Ib/fi	S (%) (kg.	σ _c /cm²)			ent Rate, έ (%/minute)		ε _a (%)	Undra She Stren (kg/c	ar gth (σ₁ kg/cm²)	σ ₃ (kg/cm²)
7.08	3.5	4 2	2.0	43.0	77.	6 98	3 1	.46	0).071	1.0	\vdash	8.6	0.2		1.86	1.46
									_			М	lembrar T	ne Corre	ction Ma	de: □ Ye	s 🗷 No
		-											TES	T PROC	EDURE:	ASTM	D2850
	0.4	* [-											S	AMPLE	TYPE	
m^2)	0.4	ю :—		40	,	**********	****							Туре		Diamete	r (inch)
kg/c		_	,	age of the									⊠ U	ndisturb	ed	3	
CE (0.3	35		1									□R	ock Cor	e		
Ĕ	0.3	30											ОС	ompact	ed		
PRINCIPAL STRESS DIFFERENCE (kg/cm²)	0.2	25 —													Uniform		
ESS I	0.2	20											□ Ki	neading	J ts:		
L STF	0.1	15											S	oring: lows pe			lb.
NCIPA	0.1	- 1/											Gs: _	2.75		☑ Assu	
PRI	0.1													FΔ	II LIRE 9	KETCH	
	0.0)5 ,												iagonal		FEE	
	0.0	00 0		5		10	15			20	25		⊠B	ulging ombina		\ \	
					A	XIAL ST	HAIN (%	(o)								_	<u>i</u>
Particle		Analysis	-	U.S. Sta			Gravel			Coarse Sand		dium ınd				Fine Sand	
☑ ASTM		-Method	В	Sieve S	Size	3/4"	3/8"	No.	4	No. 10	No. 20		No. 40	No. 60	No. 100	No. 140	No. 200
Dry Mass	(g)	86.33		Soil Pas (%, dry mas													67.8

The test data and all associated project information presented hereon shall be held in confidence and disclosed to other parties only with the authorization of the Client. Physical and electronic records of each project are kept for a minimum of 7 years. Test samples are kept in storage for at least 10 working days after mailing of the test report, prior to being discarded, unless a longer storage period is requested in writing and accepted by Ardaman & Associates, Inc.

Where: $H = Specimen height; D = Specimen diameter; w_c = Water content (ASTM D2216); y_d = Dry density; S = Saturation; \(\sigma_c = Isotropic confining stress; \) \(\bar{\varepsilon} = Vertical displacement rate; \(\varepsilon_a = Axial strain; \) \(\sigma_1 = Major principal stress; \) \(\sigma_3 = Minor principal stress; \) and \(G_8 = Specific gravity. \)$

APPENDIX E—INVESTIGATION-DERIVED-WAS	STE DOCUMENTATION

Ple	ase pr	int or type. (Form designed for use on elite (12-pitch) typewriter.)	2462	S	CPPW:	12/4/20	15	Form A	proved. Of	/IB No. 20	050-0039
1	UNI	FORM HAZARDOUS IN General Minuter 524413	2. Page 1 o		ency Respons 483-37			Fracking Number 19024	er		LE
	Local 196 Brill General 196 6. Tri	cherotor's Name and Mailing Address kheed Martin i Chesapeake Park Plaza timora, MD 21220 erator's Phon@101666-4012 ATTN:Mike Musheno ansporter 1 Company Name an Harbors Environmental Service, Inc.		10109	's Site Address	धाः स्तावर्ष	U.S. EPA ID N	Sad- le (iv. lumber	OR, M	08	4
	Clea 330 Cha	asignated Facility Name and Site Address as Harbors Chattanoega LLC 00 Cummings Road ettanoega, TH 37419 itys Phone: 423) 821-8926	. 1				U.S. EPAID N	S 2 1 4	1392		
	9a. HM	9b. U.S. DOT Description (including Proper Shipping Name, Hazard Class, ID Number, and Packing Group (if any))	-	F	10. Conta No.	iners Type	11. Total Quantity	12. Unit Wt./Vol.	13. Wa	ste Codes	
GENERATOR -		NON D.O.T. REGULATED, (SOIL, WATER)	ı			DM	24,000	P			***************************************
GEN	=	NON HAZARDOUS, NON D.O.T. REGULATED			-8	DM	500	P-			
		3.	5							, V.	
	44.6	pecial Handling Instructions and Additional Information									
	15.	H1103341 H582299 SX 55 DM	consignmen	nt are fully and	d accurately de	escribed above	by the proper shi	pping name, ar	d are classifi	ed, packaç	ged,
\		marked and labeled/placarded, and are in all respects in proper condition for transport acc Exporter, I certify that the contents of this consignment conform to the terms of the attache I certify that the waste minimization statement identified in 40 CFR 262.27(a) (if I am a large trator's/Offeror's Printed/Typed Name	d EPA Acknor e quantity ge	wledament o	f Consent. b) (if I am a smi	all quantity ger	-	If export shipm	Month	Day	Year
R INT'L	Trans	ternational Shipments Import to U.S. sporter signature (for exports only): ansporter Acknowledgment of Receipt of Materials	Export from		Port of en						
TR ANSPORTER	Trans	porter 1 Printed/Typed Name Printed/Typed Name Printed/Typed Name		gnature	The second secon	religionalis and reported by the proposition of some distribution of the sound of t	and the same of		Month Month	Day	Year /5 Year
→ TRA	18. D	screpancy				·					
	18a. (Discrepancy Indication Space Quantity Type			Residue		Partial Reje	ection		Full Reject	tion
ACILITY		Alternate Facility (or Generator)		Man	ifest Reference	Number:	U.S. EPA ID N	umber			
DESIGNATED FACILITY	18c. S	y's Phone: ignature of Alternate Facility (or Generalor)					<u></u>		Month	Day	Year
- DESI	19, Ha 1. 11:1.	azardous Waste Report Management Method Codes (i.e., codes for hazardous waste treat 2. 11.41.	ment, disposa	ar, and recycl	ing systems)		4.				
		esignated Facility Owner or Operator: Certification of receipt of hazardous materials covered d/Typed Name		nifest except a gnature	as noted in Item	n 18a	<u>-</u> -		Month	Day	Year

Plea	ase print or type. (Form desig	gned for use on elite (12-pitch) typewriter.)			1		Form	Approved. O	MB No. 2	050-0039
1	UNIFORM HAZARDOUS	1. Generator ID Number	2. Page 1 of	3. Emergency Respons	e Phone	4. Manifest				.
Ш	WASTE MANIFEST	MOROSOBRAYIS	1			UU	8/5	0748		LE
	5. Generator's Name and Maili	ng Address Mart Park Plazes Historie Md (21000)	ATTN NICHAEI IGUSH	Generator's Site Address	i (if different the	n mailing addres	is)	- JA - JA		,
	Generator's Phone: 6. Transporter 1 Company Nan	ne No Start	10 656 HO12	MARIL	KINA	U.S. EPA ID N	امر از کسی Number	A Q -		
	7. Transporter 2 Company Nan	a class End San Com	MC			U.S. EPA ID N		2225	Spile	
	8. Designated Facility Name ar	nd Site Address				U.S. EPA ID N	Number			
	Grand Acres	in a field to the	r 70 - Xa3-	7.173		AC	106	9748	16/2	3
$\ $		ion (Including Proper Shipping Name, Hazard Class, ID		10. Conta	T	11. Total	12. Unit	13. Wa	ste Codes	<u> </u>
<u>₩</u>	1	Horzantania constat, Cope	and vide	No.	Туре	Quantity	Wt./Vol.	DØ34		
GENERATOR	1 Acrosto	roatherent, is I		T same	MO	200	P			
- GEN	2.	•				,				
	3.					,			1	
	4.		1						Н	
	14. Special Handling Instruction	ns and Additional Information	= 5 \ AA	1						
	1. 4111343		The state of the s							
	marked and labeled/placa Exporter, I certify that the	OR'S CERTIFICATION: I hereby declare that the context proded, and are in all respects in proper condition for transicontents of this consignment conform to the terms of the himization statement identified in 40 CFR 262.27(a) (if I is	sport according to applicate attached EPA Acknowle	able international and na adgment of Consent.	tional governme	ental regulations.	ipping name If export shi	, and are classif pment and I am	ed, packa the Prima	ged, ry
	Generator's/Offeror's Printed/Ty	/ped Name		Much (2000	Law		Month	Day	Year
IN	16. International Shipments Transporter signature (for expo	Import to U.S.	Export from U		ntry/exit:				-11	
RTER	17. Transporter Acknowledgmen Transporter 1 Printed/Typed Na	·	Sign	ature				Month	Day	Year
TR ANSPORTER	Transporter 2 Printed/Typed Na	Meseraldie	Sign	ature	anagan ayara _m a da maganta i s ^{a anagan} Maganta ya ma ⁿ a maganta maganta na masa ma Maganta ya maganta maganta na masa maganta na masa maganta maganta maganta maganta na maganta maganta na maganta			Month	Day	Year
TRA		, and			·		·		<u> </u>	
	18. Discrepancy 18a. Discrepancy Indication Spa	ace Quantity T	уре	Residue	<u> </u>	Partial Reje	ection		Full Rejec	tion
	,			Manifest Reference	e Number:					·
DESIGNATED FACILITY	18b. Alternate Facility (or Gener	ator)				U.S. EPA ID N	umber			
ED FA	Facility's Phone: 18c. Signature of Alternate Facil	lity (or Generator)						Month	Day	Year
IGNAT	19 Hazardous Waste Report M	anagement Method Codes (i.e., codes for hazardous wa	asta traatment disposal	and requires material						
DES	1.	2.	3.	and recycling systems)		4.		<u>.</u>		
	20. Designated Facility Owner o	r Operator: Certification of receipt of hazardous material	ls covered by the marife	et event se anted in It-	n 18a					
	Printed/Typed Name		Signa		100			Month	Day	Year
Ţ]	, , , , , , , , , , , , , , , , , , ,								نــــــــــــــــــــــــــــــــــــــ	

Land Disposal Restriction Notification Form

Page: 1 of 1

Printed Date: Dec 16, 2015

FORMATION					
tor: Lockheed	Martin				
	MD 21220			008750748 FL	E
# MDRO	00524413		Sal	les Order No: 150409246	32
IFORMATION				II.	
Page No:	Profile No:	Treatability Group	:	LDR Disposal Category	
-	CH1109336	NON-WASTEWA	TER	2 (This is subject to LDR	.)
ode	h	L	EPA Wa	ste SubCategory	
		, , , , , , , , , , , , , , , , , , ,	NONE	H	
	<u>Ce</u>	rtification			Applies to Manifest Line Items
0 CFR 268.7(a),	I hereby notify that t	his shipment contain	s waste res	stricted under 40 CFR	1.
Mil	LD Durlen	Print Nan	-		hÒ
	tor: Lockheed ess: 2323 & a Baltimore, #: MARO FORMATION Page No: 1 ode CFR 268.7(a), is data, where a	tor: Lockheed Martin ess: 2323 Eastern Blud. Baltimore, MD 21220 #: M3/2000 534413 IFORMATION Page No: Profile No: CH1109336 Ode Ce Ce Cockheed Martin Cass: 2323 Eastern Blud. Cass: 24413 CH1109336 Ce Cockheed Martin Cass: 2323 Eastern Blud. Cass: 24413 Ch1109336 Ce Cockheed Martin Cass: 2323 Eastern Blud. Cass: 24413 Cass:	tor: Lockheed Martin Pass: 2323 Eastern Blad. Baltimore,MD 21220 #: MOROCO 534413 FORMATION Page No: Profile No: Treatability Group 1 CH1109336 NON-WASTEWA ode Certification Certification is data, where available, is attached. Market Martin Print Name Print Na	tor: Lockheed Martin Pass: 2323 Eastorn Blud. Baltimore,MD 21220 O#: M30000 534413 SaliFORMATION Page No: Profile No: Treatability Group: 1 CH1109336 NON-WASTEWATER Ode EPA Wanone Certification O CFR 268.7(a), I hereby notify that this shipment contains waste resided at a where available, is attached. Manual Manual Contains Waster estimated. Print Name	tor: Lockheed Martin Bass: 2323 Eastern Blad. Baltimore,MD 21220 The Moroco 534413 Sales Order No: 150409246 FORMATION Page No: Profile No: Treatability Group: LDR Disposal Category CH1109336 NON-WASTEWATER Description Certification Certification Certification Certification Certification Print Name Manifest Tracking In Do 8150 148 FL Con 8150 1

WASTE MATERIAL PROFILE SHEET

ZIP/POSTAL CODE

21220

Clean Harbors Profile No. CH1109336

MDR000524413 A. GENERAL INFORMATION **Lockheed Martin** GENERATOR NAME GENERATOR EPA ID #/REGISTRATION # MDR000548760 STATE/PROVINCE MD CITY Baltimore GENERATOR CODE (Assigned by Clean Harbors) LO2553 PHONE: (610) 656-4012 ADDRESS 701 Wilson Point Road 2323 EASTERN BLUD **CUSTOMER NAME** Tetra Tech Inc TF0740 CUSTOMER CODE (Assigned by Clean Harbors) STATE/PROVINCE CITY Germantown ADDRESS 20251 Century Boulevard Suite 200 B. WASTE DESCRIPTION

ZIP/POSTAL CODE 20874 WASTE DESCRIPTION: Solids/Water with PCE Demolition and support of remedial activity PROCESS GENERATING WASTE IS THIS WASTE CONTAINED IN SMALL PACKAGING CONTAINED WITHIN A LARGER SHIPPING CONTAINER? C. PHYSICAL PROPERTIES (at 25C or 77F) COLOR VISCOSITY (If liquid present) NUMBER OF PHASES/LAYERS PHYSICAL STATE 1 - 100 (e.g. Water) SOLID WITHOUT FREE LIQUID TOP 0.00 varies POWDER 101 - 500 (e.g. Motor Oil) MIDDLE 0.00 % BY VOLUME (Approx.) MONOLITHIC SOLID 501 - 10,000 (e.g. Molassos) воттом 0.00 LIQUID WITH NO SOLIDS LIQUID/SOLID MIXTURE > 10,000 % FREE LIQUID 25.00 - 75.00 ODOR TOTAL ORGANIC CARBON MELTING POINT "F ("C) BOILING POINT °F (°C) % SETTLED SOLID 25.00 - 75.00 NONE % TOTAL SUSPENDED SOLID <= 95 (<=35) MILD < 140 (<60) SLUDGE <= 1% 95 - 100 (35-38) STRONG GAS/AEROSOL 140-200 (60-93) 1-9% 101 - 129 (38-54) > 200 (>93) Describe >= 10% >= 130 (>54) BTU/LB (MJ/kg) SPECIFIC GRAVITY ASH FLASH POINT "F ("C) рΗ < 2,000 (<4.6) < 0.8 (e.g. Gasoline) < 73 (<23) <= 2 > 20 < 0.1 2,000-5,000 (4.6-11.6) 0.8-1.0 (e.g. Ethanol) 73 - 100 (23-38) 2.1 - 6.9 Unknown 0.1 - 1.05,000-10,000 (11.6-23.2) 1.0 (e.g. Water) 101-140 (38-60) 7 (Neutral) 1.1 - 5.0> 10,000 (>23.2) 1.0-1.2 (e.g. Antifreeze) 141 -200 (60-93) 7.1 - 12.45.1 - 20.0 > 1.2 (e.g. Methylene Chloride) > 200 (>93) >= 12.5 D. COMPOSITION (List the complete composition of the waste, include any inert components and/or debns. Ranges for individual components are acceptable. If a trade name is used, UOM MAX CHEMICAL 39000.0000 PPB 39000,00000 **PERCHLOROETHANE** 00 000 25.0000000 75.0000000 SOIL % 75.0000000 25.0000000 WATER DOES THIS WASTE CONTAIN ANY HEAVY GAUGE METAL DEBRIS OR OTHER LARGE OBJECTS (EX., METAL PLATE OR PIPING >1/4" THICK OR NO YES >12" LONG, METAL REINFORCED HOSE >12" LONG, METAL WIRE >12" LONG, METAL VALVES, PIPE FITTINGS, CONCRETE REINFORCING BAR OR PIECES OF CONCRETE >3")? If yes, describe, including dimensions NO VES DOES THIS WASTE CONTAIN ANY METALS IN POWDERED OR OTHER FINELY DIVIDED FORM? DOES THIS WASTE CONTAIN OR HAS IT CONTACTED ANY OF THE FOLLOWING; ANIMAL WASTES, HUMAN BLOOD, BLOOD PRODUCTS, BODY FLUIDS, MICROBIOLOGICAL WASTE, PATHOLOGICAL WASTE, HUMAN OR ANIMAL DERIVED SERUMS OR PROTEINS OR ANY OTHER ✓ NO YES acknowledge that this waste material is neither infectious nor does it contain any organism known to be a threat to human health. This certification is based on my knowledge of the material. Select the answer below that applies NO YES The waste was never exposed to potentially infectious material YES NO Chemical disinfection or some other form of sterilization has been applied to the waste NO YES LACKNOWLEDGE THAT THIS PROFILE MEETS THE CLEAN HARBORS BATTERY PACKAGING REQUIREMENTS NO YES ACKNOWLEDGE THAT MY FRIABLE ASBESTOS WASTE IS DOUBLE BAGGED AND WETTED

SPECIFY THE SOURCE CODE ASSOCIATED WITH THE

WASTE

G39

SPECIFY THE FORM CODE ASSOCIATED WITH THE WASTE

W301

Clean Harbors Profile No. CH1109336

E. CONSTITUENTS

Are these values based on testing or knowledge?

✓ Knowledge

If based on knowledge, please describe in detail, the rationale applied to identify and characterize the waste material. Please include reference to Material Safety Data Sheets (MSDS) when applicable. Include the chemical or trade-name represented by the MSDS, and or detailed process or operating procedures which generate the waste.

generator knowledge

Please indicate which constituents below apply. Concentrations must be entered when applicable to assist in accurate review and expedited approval of your waste profile. Please note that the total regulated metals and other constituents sections require answers.

RCRA	REGULATED METALS	REGULATORY LEVEL (mg/l)	TCLP mg/l	TOTAL	UOM	NOT APPLICABLE	
D004	ARSENIC	5.0				<u> </u>	
D005	BARIUM	100 0				[4]	
D006	CADMIUM	1.0				[v]	
D007	CHROMIUM	5.0					
D008	LEAD	50	C			Y	
D009	MERCURY	0.2					•
D010	SELENIUM	10					
D011	SILVER	5.0				· · · · · · · · [2] · · · · · · · ·	
	VOLATILE COMPOUNDS			OTHER CONSTITUEN	NTS	MAX UOM	NOT
D018	BENZENE	0.5					APPLICABLE
D019	CARBON TETRACHLORIDE	0.5		BROMINE			<u>v</u>
D021	CHLOROBENZENE	100.0		CHLORINE			
D022	CHLOROFORM	6.0		FLUORINE			V
D028	1,2-DICHLOROETHANE	0.5		IODINE			
D029	1,1-DICHLOROETHYLENE	0.7		SULFUR			V
D035	METHYL ETHYL KETONE	200 0		POTASSIUM			V
D039	TETRACHLOROETHYLENE	0.7		SODIUM			~
	(0,5		AMMONIA			Y
D040	TRICHLOROETHYLENE	0.2	<u> </u>	CYANIDE AMENABLE			¥
D043	VINYL CHLORIDE			CYANIDE REACTIVE		******************	V
	SEMI-VOLATILE COMPOUN			CYANIDE TOTAL			V
D023	o-CRESOL	200 0		SULFIDE REACTIVE			
D024	m-CRESOL	200.0					
D025	p-CRESOL	200 0		HOCs		PCBs	
D026	CRESOL (TOTAL)	200.0		- NONE		NONE	
D027	1,4-DICHLOROBENZENE	7.5		- < 1000 PPM		< 50 PPM	
D030	2,4-DINITROTOLUENE	0.13		>= 1000 PPM		>=50 PPM	
D032	HEXACHLOROBENZENE	0.13				IF PCBS ARE PRES	SENT, IS THE
D033	HEXACHLOROBUTADIENE	0.5				WASTE REGULATE CFR 761?	ED BY TSCA 40
D034	HEXACHLOROETHANE	3.0	3.9000			O K TOTA	
D036	NITROBENZENE	20		1		l YES	✓ NO
D037	PENTACHLOROPHENOL	100.0					
D038	PYRIDINE	5,0		-			
D041	2,4,5-TRICHLOROPHENOL	400.0					
D042	2,4,6-TRICHLOROPHENOL	2.0		. 8			
	PESTICIDES AND HERBICI	DES					
D012	ENDRIN	0.02					
D013	LINDANE	0.4		•			
D014	METHOXYCHLOR	10.0		•			
D015		0.5		•			
D016	2.4D	10.0		•			
* - *		1.0		살			
D017	2,4,5-TP (SILVEX)	0.03	• • • • • • • • •	-			
D020	CHLORDANE						
D031	HEPTACHLOR (AND ITS EPOXI	UE) 0.000					

DOES THIS WASTE HAVE ANY UNDISCLOSED HAZARDS OR PRIOR INCIDENTS ASSOCIATED WITH IT, WHICH COULD AFFECT THE WAY IT SHOULD BE HANDLED?

✓ NO (If yes, explain) YES

CHOOSE ALL THAT APPLY

DEA REGULATED SUBSTANCES POLYMERIZABLE

EXPLOSIVE RADIOACTIVE **FUMING**

REACTIVE MATERIAL

OSHA REGULATED CARCINOGENS NONE OF THE ABOVE

Clean Harbors Profile No. CH1109336

F. R	EGULA'	TORY	STAT	บร	
4	YES		NO	USEPA HAZARDOUS W	ASTE?
				D034	
	YES	V	NO	DO ANY STATE WASTE	CODES APPLY?
				Texas Waste Code	
	MEG	1.4			OVINCIAL WASTE CODES APPLY?
	YES	1	NO	DO AINT CANADIAIN PR	UVINCIAL WASTE CODES ATTETY
4	YES		NO	IS THIS WASTE PROHIE	BITED FROM LAND DISPOSAL WITHOUT FURTHER TREATMENT PER 40 CFR PART 268?
				LDR CATEGORY, VARIANCE INFO	This is subject to LDR.
	YES	1	NO	IS THIS A UNIVERSAL V	VASTE?
	YES		NO	IS THE GENERATOR OF	F THE WASTE CLASSIFIED AS CONDITIONALLY EXEMPT SMALL QUANTITY GENERATOR (CESQG)?
	YES		NO		NG TO BE MANAGED AS A RCRA EXEMPT COMMERCIAL PRODUCT, WHICH IS FUEL (40 CFR 261.2 (C)(2)(II))?
	YES	V	NO		THIS WASTE GENERATE A F006 OR F019 SLUDGE?
	YES	4.5	NO		M SUBJECT TO THE INDRGANIC METAL BEARING WASTE PROHIBITION FOUND AT 40 CFR 2683(C)?
	YES	4			NTAIN VOC'S IN CONCENTRATIONS >=500 PPM?
	YES	1	NO		STAIN GREATER THAN 20% OF ORGANIC CONSTITUENTS WITH A VAPOR PRESSURE >= .3KPA (.044 PSIA)?
	YES	V	NO		NTAIN AN ORGANIC CONSTITUENT WHICH IN ITS PURE FORM HAS A VAPOR PRESSURE > 77 KPA (11.2 PSIA)?
	YES	V	NO		LATED (SUPERFUND) WASTE?
	YES	V			CT TO ONE OF THE FOLLOWING NESHAP RULES?
	169	-	NO		The state of the s
	umo	1,2			: NESHAP (HON) rule (subpart G) Pharmaceuticals production (subpart GGs) IZARDOUS WASTE, DOES THIS WASTE STREAM CONTAIN BENZENE?
	YES				stream come from a facility with one of the SIC codes listed under bonzene NESHAP or is this waste regulated under the benzene
		YES		NO Does the waste NESHAP rules	because the original source of the waste is from a chemical manufacturing, coke by-product recovery, or petroleum refinery process?
		YES	6	NO Is the generaling	g source of this waste stream a facility with Total Annual Benzene (TAB) >10 Mg/year?
		Wh	at is th	e TAB quantity for your fac	dity? Megagram/year (1 Mg = 2,200 lbs)
		The	bass	for this determination is. K	nowledge of the Waste Or Test Data Knowledge Testing
		Des	cribe	the knowledge	
-	G. DOT	TDG	NFOR	MATION	
DO				HIPPING NAME:	
_	NA	3082,	HAZ	ARDOUS WASTE, LIQ	UID, N.O.S., (PERCHLOROETHANE), 9, PG III
				I REQUIREMENTS T FREQUENCY . ONE	TIME WEEKLY MONTHLY QUARTERLY YEARLY OTHER
		17		ONTAINERIZED	BULK LIQUID BULK SOLID
	1-1	CON		RS/SHIPMENT	TON MADE
-	ORAGE			1	GALLONS/SHIPMENT: 0 Min -0 Max GAL. SHIPMENT UOM: TON TARD TONS/YARDS/SHIPMENT: 0 Min - 0 Max
ÇO	NTAINE	JBIC Y		BOX PALLET	
		OTE TA		₽ DRUM	
		THER	., .,	DRUM SIZE 55	
_					
1.	SPECIA				
	COMME	NISU	K KEU	05313	
	NERATO	Pie CE	PTIELC	ATION	
				A to assess the designant of the	n suthonzed agent. I hereby certify that all information submitted in this and attached documents is correct to the best of my knowledge. I also certify that any
881	nples sub	mitted a	аге пері	resentative of the actual waste. I the discrepancy.	Clean Harbors discovers a discrepancy during the approval process, Generator grants Clean Harbors the authority to amend the profile, as Clean Harbors
(m	тно	IZED 00	SIGNATURE 1	Michael Mushano Sr. Staff 25H Englosa 12-4-15
-/					

WASTE MATERIAL PROFILE SHEET

Clean Harbors Profile No. CH1109341

A. GENERAL INFORMATION
GENERATOR EPA ID #/REGISTRATION # MDR000524413
MDR000548700

GENERATOR NAME: CITY Baltimore Lockheed Martin

STATE/PROVINCE MD

ZIP/POSTAL CODE

21220

ADDRESS 701-Wilson-Point Road 2323 EASTERN BLVD

>= 12.5

CUSTOMER CODE (Assigned by Clean Harbors)

ADDRESS 20251 Century Boulevard Suite 200

GENERATOR CODE (Assigned by Clean Harbors)

TE0740

LO2553

CUSTOMER NAME: CITY Germantown

Tetra Tech Inc STATE/PROVINCE

MD Z

Actual

PHONE: (610) 656-4012

ZIP/POSTAL CODE

20874

B. WASTE DESCRIPTION

> 200 (>93)

WASTE DESCRIPTION MRC Non haz soil and water

PROCESS GENERATING WASTE

IDW Waste

PHYSICAL STATE SOLID WITHOUT FF POWDER MONOLITHIC SOLIE LIQUID WITH NO SOLID WITH NO SOLID WITH NO SOLID WIXT	olids	NUMBER OF PHASES/LAY	TOP MIDDLE BOTTOM	0.00 0.00 0.00	1 - 100 (c 101 - 500 501 - 10,	(If liquid present) e.g. Water) 0 (e.g. Motor Oil) .000 (e.g. Motasses)	Brown/S
% FREE LIQUID % SETTLED SOLID % TOTAL SUSPENDE SLUDGE GAS/AEROSOL	<u>25.00 - 75.00</u> 75.00 - 25.00	ODOR NONE MILD STRONG Describe	BOILI	NG POINT °F (°C) <= 95 (<=35) 95 - 100 (35-38) 101 - 129 (38-54) >= 130 (>54)	140-		TOTAL ORGANIC CARBON <= 1% 1-9% >= 10%
FLASH POINT *F (°C) < 73 (<23) 73 - 100 (23-38) 101 -140 (38-60) 141 -200 (60-93)	pH	SPECIFIC GRAVITY < 0.8 (e.g. Gasoline) 0.8-1.0 (e.g. Ethanol) 1.0 (e.g. Water) 1.0-1.2 (e.g. Antifreeze)	ASH	< 0.1 0.1 · 1.0	> 20 Unknown		00 (4.6-11.6)

D. COMPOSITION (List the complete composition of the waste, include any inert components and/or debris. Ranges for individual components are acceptable. If a trade name is used,

> 1.2 (e.g. Methylene Chloride)

places supply an MSDS. Pleases do not use approvisions 1					
CHEMICAL	MIN			IAX	UOM
IDW SOIL	80.000	0000	95.0000	000	%
IDW SOIL WATER	5.0000	00	20.0000	000	%
DOES THIS WASTE CONTAIN ANY HEAVY GAUGE METAL DEBRIS OR OTHER LARGE >12" LONG, METAL REINFORCED HOSE >12" LONG, METAL WIRE >12" LONG, METAL PIECES OF CONCRETE >3")?	OBJECTS (EX., METAL PLATE OR PIPING >1/4" THIC VALVES, PIPE FITTINGS, CONCRETE REINFORCING	K OR BAR OR	YES	V	NO
If yes, describe, including dimensions				,	
DOES THIS WASTE CONTAIN ANY METALS IN POWDERED OR OTHER FINELY DIVID	ED FORM?		YES	Y	NO
DOES THIS WASTE CONTAIN OR HAS IT CONTACTED ANY OF THE FOLLOWING: AN FLUIDS, MICROBIOLOGICAL WASTE, PATHOLOGICAL WASTE, HUMAN OR ANIMAL I POTENTIALLY INFECTIOUS MATERIAL?	DERIVED SEROMS OR PROTEINS OF ANY OTHER		YES	Y	NO
I acknowledge that this waste material is neither infectious nor does it contain any orga- based on my knowledge of the material. Select the answer below that applies:	nism known to be a threat to human health. This certifi	ation is			
The waste was never exposed to potentially infectious material.			YES		NO
Chemical disinfection or some other form of sterilization has been applied to the waste			YES		NO
I ACKNOWLEDGE THAT THIS PROFILE MEETS THE CLEAN HARBORS BATTERY PAC			YES		NO
I ACKNOWLEDGE THAT MY FRIABLE ASBESTOS WASTE IS DOUBLE BAGGED AND V			YES		NO
SPECIFY THE SOURCE CODE ASSOCIATED WITH THE G49 WASTE	SPECIFY THE FORM CODE ASSOCIATED WITH	THE WAST	E. W301		

Clean Harbors Profile No. CH1109341

E. CONSTITUENTS

Are these values based on testing or knowledge? ✓ Knowledge

If based on knowledge, please describe in detail, the rationale applied to identify and characterize the waste material. Please include reference to Material Safety Date Sheets (MSDS) when applicable. Include the chemical or trade-name represented by the MSDS, and or detailed process or operating procedures which generate the waste.

generator knowledge

Please indicate which constituents below apply. Concentrations must be entered when applicable to assist in accurate review and expedited

RCRA	REGULATED METALS	REGULATORY LEVEL (mg/l)	TCLP mg/l	TOTAL	MOU	NOT APPLI	CABLE	
D004	ARSENIC	5.0				~		
D005	BARIUM	100.0				V		
D006	CADMIUM	1.0				· · · · · ·	• • • • • • •	
D007	CHROMIUM	5.0						
D008	LEAD	5.0		•••••••••••••••••••••••••••••••••••••••	• • • • • • • • • • • • • • • • • • • •	3	•••••	
D009	MERCURY	0.2				7		
D010	SELENIUM	1.0						
D011	SILVER	5.0					125.51	
D018	VOLATILE COMPOUNDS BENZENE	0.5		OTHER CONSTITUENTS	5	MAX	UOM	NOT APPLICABLE
D019	CARBON TETRACHLORIDE	0.5		BROMINE				~
D021	CHLOROBENZENE	100.0	••••	CHLORINE				7
D022	CHLOROFORM	6.0		FLUORINE				
D028	1,2-DICHLOROETHANE	0.5		IODINE			10.00 - 10 - ·	
D029	1,1-DICHLOROETHYLENE	0.7	****	SULFUR				
D035	METHYL ETHYL KETONE	200 0		POTASSIUM				
D039	TETRACHLOROETHYLENE	0.7		SODIUM			a - 120 - 120	
D040	TRICHLOROETHYLENE	0.5		AMMONIA		a g		
D043	VINYL CHLORIDE	0.2	*****	CYANIDE AMENABLE			*****	
				CYANIDE REACTIVE				·····
D023	SEMI-VOLATILE COMPOUND o-CRESOL	_		CYANIDE TOTAL				
D023	m-CRESOL	200.0		SULFIDE REACTIVE	****			<u>-</u>
		200.0		SOLFIDE NEACTIVE				× · · · · · · · · · · · · · · · · · · ·
D025	p-CRESOL	200.0		HOCs		PCBs		
D026	CRESOL (TOTAL)	200.0		NONE		V NONE		
D027	1,4-DICHLOROBENZENE	7.5		< 1000 PPM		< 50 I		
D030	2,4-DINITROTOLUENE	0 13		>= 1000 PPM		>=50	PPM	
D032	HEXACHLOROBENZENE	0.13				IF PCBS AF	RE PRESEN	T. IS THE
D 0 33	HEXACHLOROBUTADIENE	0.5				WASTE RE	GULATED B	
D034	HEXACHLOROETHANE	3.0				CFR 761?		
D036	NITROBENZENE	2.0		1		YES	4	NO
D037	PENTACHLOROPHENOL	100 0						
0038	PYRIDINE	5.0						
D041	2,4.5-TRICHLOROPHENOL	4000						
0042	2,4,6-TRICHLOROPHENOL	2.0						
	PESTICIDES AND HERBICIDE	S						
0012	ENDRIN	0.02						
	LINDANE	0.4						
0014	METHOXYCHLOR	10.0						
0015	TOXAPHENE	0.5						
016	2,4-D	10.0						
0017	2,4,5-TP (SILVEX)	10						
020	CHLORDANE	0.03						
031	HEPTACHLOR (AND ITS EPOXIDE	0.008						
ADDITIO	NAL HAZARDS WASTE HAVE ANY UNDISCLOSE	D HAZARDS OR PRIOR	INCIDENTS A	ASSOCIATED WITH IT, WHICH (OULD AFFE	CT THE WAY IT	SHOULD BI	E HANDLED?
YES	✓ NO (If yes, explain)							

POLYMERIZABLE

DEA REGULATED SUBSTANCES

FUMING

REACTIVE MATERIAL

EXPLOSIVE

RADIOACTIVE

OSHA REGULATED CARCINOGENS

NONE OF THE ABOVE

Clean Harbors Profile No. CH1109341

. REGULAT	ORY	STAT	rus
YES	4	NO	USEPA HAZARDOUS WASTE?
YES	V	NO	DO ANY STATE WASTE CODES APPLY?
			Texas Waste Code
YES	~	NO	DO ANY CANADIAN PROVINCIAL WASTE CODES APPLY?
YES	•	NO	IS THIS WASTE PROHIBITED FROM LAND DISPOSAL WITHOUT FURTHER TREATMENT PER 40 CFR PART 2687
			LDR CATEGORY VARIANCE INFO
YES	V	NO	IS THIS A UNIVERSAL WASTE?
YES	V	NO	IS THE GENERATOR OF THE WASTE CLASSIFIED AS CONDITIONALLY EXEMPT SMALL QUANTITY GENERATOR (CESQG)?
YES		NO	IS THIS MATERIAL GOING TO BE MANAGED AS A RCRA EXEMPT COMMERCIAL PRODUCT, WHICH IS FUEL (40 CFR 261.2 (C)(2)(II))?
YES	V	NO	DOES TREATMENT OF THIS WASTE GENERATE A F006 OR F019 SLUDGE?
YES	1	NO	IS THIS WASTE STREAM SUBJECT TO THE INORGANIC METAL BEARING WASTE PROHIBITION FOUND AT 40 CFR 268.3(C)?
YES	V	NO	DOES THIS WASTE CONTAIN VOC'S IN CONCENTRATIONS >=500 PPM?
YES		NO	DOES THE WASTE CONTAIN GREATER THAN 20% OF ORGANIC CONSTITUENTS WITH A VAPOR PRESSURE >= .3KPA (.044 PSIA)?
YES	¥	NO	DOES THIS WASTE CONTAIN AN ORGANIC CONSTITUENT WHICH IN ITS PURE FORM HAS A VAPOR PRESSURE > 77 KPA (11.2 PSIA)?
YES	V	NO	IS THIS CERCLA REGULATED (SUPERFUND) WASTE?
YES	4	NO	IS THE WASTE SUBJECT TO ONE OF THE FOLLOWING NESHAP RULES?
			Hazardous Organic NESHAP (HON) rule (subpart G) Pharmaceuticals production (subpart GGG)
YES		NO	IF THIS IS A US EPA HAZARDOUS WASTE, DOES THIS WASTE STREAM CONTAIN BENZENE?
	YES		NO Does the waste stream come from a facility with one of the SIC codes listed under benzene NESHAP or is this waste regulated under the benzene NESHAP rules because the original source of the waste is from a chemical manufacturing, coke by-product recovery, or petroleum refinery process
	YES		NO is the generating source of this waste stream a facility with Total Annual Benzene (TAB) >10 Mg/year?
	Wha	t is the	e TAB quantity for your facility? Megagram/year (1 Mg = 2,200 lbs)
	The	basis	for this determination is. Knowledge of the Waste Or Test Data Knowledge Testing
	Des	cribe th	the knowledge
G. DOT/	rdg II	VFOR	MATION
OOT/TDG P	ROPE	R SH	HIPPING NAME:
NON	1 D.O	.T. R	REGULATED, (SOIL, WATER)
			I REQUIREMENTS T FREQUENCY ONE TIME WEEKLY MONTHLY QUARTERLY ▼ YEARLY OTHER Other
	v	CC	ONTAINERIZED BULK SOLID BULK SOLID
<u>1-50</u>	CONT	AINEF	RS/SHIPMENT GALLONS/SHIPMENT: 0 Min -0 Max GAL. SHIPMENT UOM: TON YARD
TORAGE CONTAINER			TONS/YARDS/SHIPMENT: 9 Min - 0 Mex
		- ARD B	
тот	E TA	NK	□ DRUM
OTH	IER		DRUM SIZE: 55
. SPECIAL	REQ	UEST	
COMMEN	TS OR	REQUI	JESTS:
ENERATOR	'S CER	TIFICA	ATION
amples subm	is betti	e repres	to execute this document as an authorized agent. I hereby certify that all information submitted in this and attached documents is correct to the best of my knowledge I also certify that assentative of the actual waste. If Clean Harbors discovers a discrepancy during the approval process, Generator grants Clean Harbors the authority to amend the profile, as Clean Harbors the discrepancy.
Mi	НОВІ	ED S	Marker Michael Musheno Sr. Stall Est Engineer 12-4-15

	Waste Identifcation and C	Classification Form
Remediation Project Description of Waste	Middle River Complex Geotechnical Bulkh Investigation	State Generated MD
<u>-</u>	Debris-Decontamination Pad Plastic	Solid, Liquid, Gas Solid-Debris Additional Info.
Date of Waste Generation	9/29/2015-10/9/15	Ongoing (Y/N)? N
Description of Process Generating		both onshore and offshore for geotechnical bulkhead investigation a
Lockheed Martin Middle River Com	,	
Listed Waste ? (Y/N)	N F,K, P or U Co	odes [
	tion (attached supporting documentatio	
No sample collected, profiled as no 2015.	nhazardous based on sample analysis of se	ediment/water IDW. Drums removed from the site December 17th,
Form con	Tony Apanavage Date 12/7/2015	

	Waste Identifcation and Clas	ssification Form
Remediation Project Description of Waste	Middle River Complex Geotechnical Bulkhead Investigation	State Generated MD
	Sediment-Liquid/Solid Mixture	Solid, Liquid, Gas Sediment-Liquid/Solid Mixture Additional Info.
Date of Waste Generation	9/29/2015-10/9/15	Ongoing (Y/N)? N
Description of Process Generating		
investigation at Lockheed Martin Mi	, , , , , , , , , , , , , , , , , , ,	drilling from offshore boring for geotechnical bulkhead
		Tana i
Listed Waste ? (Y/N)	N F,K, P or U Codes	[D034
Justification for Waste Classifica	tion (attached supporting documentation)	
Waste characterization sample collesite December 17th, 2015.	ected, profiled as hazardous based on sample a	analysis and elevated PCE detection. Drum removed from the
Form con	Tony Apanavage Date 12/7/2015	

APPENDIX F—GEOTECHNICAL PROFILES

	Ardaman and Assoneed Martin Co SER 194-8711						Lockheed Martin MRC TION Middle River, MD	URFACE DIAGE		Fill (made grou USCS Low to H Clay USCS Low Pla Clay	High Plasticity	USCS Clayey Sand USCS Low Plasticity USCS Poorly-graded with Silt	
0		200	400 :	600 :	800 :	1,000 :	1,200 :	1,400 :	1,600 :	1,	800 :	2,000 :	2,200 2,400 : :
10		TTDHCB-9	TTDHCB-8·····				<u>:</u>				<u>:</u>		10
TTDHCB	12:TDHCB-11 7 9 4 10 6 13 10 9 7 24 6 15 9 28 9 20 8 23 11 17 8 19 16 21 11 16 22 22 32 20 41 41 25 25	TTDHCB-10 3 5 2 7 1 3 3 3 2 16 5 25 9 33 19 16 11 10 19 16 20 39 30 38 31 38 31 36	. 20	10 14 27 19 16 13 21 24 35 37 42	5 8 14 11 12 12 18 22 19		N			14 20 20 26 16 11 11 11 16 43	31	41 63/9"	TTDHCB-2TTDHCB-1
-70 <u>:</u> 0		200	400	600	800	1,000 Dist	1,200 ance Along Baseline	1,400	1,600	1,;		2,000	2,200 2,400

Ardaman and Lockheed Martication Time Number 194-87	n Corporation				SUBS Lockheed Martin MRC TION Middle River, MD	URFACE DIAGI	<i> </i> ///////////////////////////////////	SCS Silty Sand SCS Clayey Sand SCS Clayey Sand	USCS Poorly-graded with Silt USCS Low Plasticity USCS Low Plasticity Clay	Clay USCS Sand	Plasti dy Silt
0		100 600	800 :	1,000 :	1,200	1,400 :	1,600	1,800 :	2,000 :	2,200 :	2,40 :
)									TTDHC-2		
5TTDHC-7	TTDHC-6							TTDHC-3		TTDHC-1	
0 - 19 7		TTDHC-5	TTDHC-4					WH	WR WR 10	WR WH	
5 9 7	8 14	31	17					9. 	12 20 14	57	: : : : : : : : : :
9 8	.26.	27 34	23 15 34					15 23 19	12 9	24	
24	15 35 31, 30	47 36	44 : 69					17 23 42	12	65 41 	
15	30	29	81/8" : 36 : 29					52	35	49	
18	34	56/11" 27	31					24	39	-41	
37	22	17	32					37	31	35	
32	16	21	51/6"					30	48	29	
38	32	21	39/10"					28	33	95	
0		19	38								
5 0	200 4	100 600	800	1,000	1,200	1,400	1,600	1,800	2,000	2,200	2,40