Lockheed Martin Corporation 6801 Rockledge Drive MP: CCT-246 Bethesda, MD 20817 Telephone (301) 548-2209

December 8, 2016

VIA PRIVATE CARRIER

Ms. Ruth Prince, PhD Toxicologist U.S. Environmental Protection Agency, Region 3 Land and Chemicals Division 1650 Arch St. Mail Code 3LC40 Philadelphia, Pennsylvania 19103

Subject: Transmittal of the Technical Memorandum: June 2016 Surface Water Sampling Results

Lockheed Martin Corporation; Middle River Complex

2323 Eastern Boulevard, Middle River, Baltimore County, Maryland

Dear Ms. Prince:

For your information please find enclosed two hard copies with a CD of the above-referenced document. This document summarizes the analytical results for surface water samples collected adjacent to the Lockheed Martin's Middle River Complex in Middle River, Maryland.

Please let me know if you have any questions. My office phone is (301) 548-2209.

Sincerely,

Thomas D. Blackman

Project Lead, Environmental Remediation

cc: (via email without enclosure)

Gary Schold, MDE Mark Mank, MDE

James Carroll, MDE

James Carron, NIDE

Christine Kline, Lockheed Martin

Norman Varney, Lockheed Martin

Lynnette Drake, Lockheed Martin

Dave Brown, MRAS

John Morgan, LMCPI Michael Martin, Tetra Tech

Cannon Silver, CDM Smith

cc: (via mail with CD enclosure)

Jann Richardson, Lockheed Martin

Justin Tetlow, MRAS

Scott Heinlein, LMCPI

cc: (via mail with enclosure)

Tom Green, LMCPI

Mike Musheno, LMCPI

Doug Mettee, Lockheed Martin MST

Lockheed Martin Corporation 6801 Rockledge Drive MP: CCT-246 Bethesda, MD 20817 Telephone (301) 548-2227

December 7, 2016

VIA PRIVATE CARRIER

Mr. James R. Carroll Program Administrator Land Restoration Program Land Management Administration Maryland Department of the Environment 1800 Washington Boulevard, Suite 625 Baltimore, Maryland 21230

Subject: Transmittal of the Technical Memorandum: June 2016 Surface Water Sampling Results

Lockheed Martin Corporation; Middle River Complex

2323 Eastern Boulevard, Middle River, Baltimore County, Maryland

Dear Mr. Carroll:

For your review please find enclosed two hard copies with a CD of the above-referenced document. This document summarizes the analytical results for surface water samples collected adjacent to the Lockheed Martin's Middle River Complex in Middle River, Maryland. If possible, we respectfully request to receive MDE's comments by February 9, 2017.

Please let me know if you have any questions. My office phone is (301) 548-2227.

Sincerely,

Lynnette Drake

Lynnettett Diale

Remediation Analyst, Environmental Remediation

cc: (via email without enclosure)

Gary Schold, MDE
Mark Mank, MDE
Ruth Prince, USEPA
Christine Kline, Lockheed Martin
Norman Varney, Lockheed Martin
Tom Blackman, Lockheed Martin
Dave Brown, MRAS
John Morgan, LMCPI
Michael Martin, Tetra Tech

cc: (via mail with CD enclosure)
Jann Richardson, Lockheed Martin
Justin Tetlow, MRAS
Scott Heinlein, LMCPI

Cannon Silver, CDM Smith

cc: (via mail with enclosure) Tom Green, LMCPI Mike Musheno, LMCPI

Doug Mettee, Lockheed Martin MST

Technical Memorandum: June 2016 Surface Water Sampling Results for Dark Head Cove and Cow Pen Creek Middle River Complex 2323 Eastern Boulevard Middle River, Maryland

Prepared for:

Lockheed Martin Corporation

Prepared by:

Tetra Tech, Inc.

December 2016

Michael Martin, P.G. Regional Manager

Mylal Mart

Anthony Apanavage, P.G.

Project Manager

TABLE OF CONTENTS

<u>S</u>	<u>section</u>		<u>Page</u>
A	CRONYM	IS	iii
1	INTE	RODUCTION	1-1
2	SITI	E BACKGROUND	2-1
3	INV	ESTIGATION APPROACH AND METHODOLOGY	3-1
	3.1 SUR	RFACE WATER SAMPLING	3-1
	3.1.1	Surface Water Sampling and Analyses	3-2
	3.1.2	Documentation	3-3
	3.1.3	Sample Nomenclature and Handling	3-3
	3.1.4	Equipment Decontamination	3-4
	3.1.5	Waste Management	3-4
	3.2 DAT	TA MANAGEMENT	3-4
	3.2.1	Data Tracking and Control	3-5
	3.2.2	Sample Information	3-5
	3.2.3	Project Data Compilation	3-5
	3.2.4	Geographical Information System	3-5
	3.3 DAT	TA REVIEW	3-6
4	RES	SULTS	4-1
	4.1 VOI	LATILE ORGANIC COMPOUNDS	4-1
	4.2 1,4-1	DIOXANE	4-3
	4.3 POL	YCHLORINATED BIPHENYLS	4-3
		ΓER-QUALITY PARAMETERS	
5	SUM	MMARY	5-1
6	REF	FERENCES	6-1
_			

TABLE OF CONTENTS (continued)

APPENDICES

APPENDIX A—SURFACE-WATER-SAMPLING LOG SHEETS
APPENDIX B—DATA-VALIDATION REPORT (ON CD)
APPENDIX C—CHEMICAL-RESULTS DATA TABLES
APPENDIX D—RISK ESTIMATES FOR RECREATIONAL SWIMMING IN DARK HEAD COVE

LIST OF FIGURES

		<u>Page</u>
Figure 1-1	Middle River Complex Location Map	1-3
Figure 2-1	Site Layout and Tax Blocks, Middle River Complex	2-3
Figure 3-1	2016 Surface Water Sampling Locations	3-8
Figure 4-1	Analytes Detected in Surface Water Samples, June 2016	4-11
	LIST OF TABLES	
		<u>Page</u>
Table 3-1	Chemical Analyses of Surface Water Samples, June 2016	3-7
Table 4-1	Statistical Summary of Analytes Detected in Surface Water Samples, June 2016	4-5
Table 4-2	Detected Analytes and Screening Level Exceedances in Surface Water Samples, June 2016	4-6
Table 4-3	Field Measurements for Surface-Water Quality, June 2016	4-10

ACRONYMS

AWQC ambient water quality criteria

BTAG (USEPA) Biological Technical Advisory Group

°C degrees Celsius COC chain of custody

COMAR Code of Maryland Regulations

DO dissolved oxygen

ESA environmental site assessment
GIS geographic information system
HHRA human health risk assessment
IDW investigation-derived waste
Lockheed Martin Lockheed Martin Corporation

MDE Maryland Department of the Environment

 $\begin{array}{ll} \mu g/L & microgram(s) \ per \ liter \\ mg/L & milligram(s) \ per \ liter \\ MRC & Middle \ River \ Complex \end{array}$

mS/cm milliSiemen(s) per centimeter

mv millivolt(s)

MW monitoring well

NRWQC national recommended water quality criteria

NTU nephelometric turbidity unit(s)
ORP oxidation-reduction potential
PCB polychlorinated biphenyl
PDF portable document format

pH a measure of hydrogen-ion content indicating relative acidity or alkalinity

PM project manager

REC recognized environmental condition

SC specific conductance
S.U. standard unit(s)
SW surface water
TCE trichloroethene
Tetra Tech Tetra Tech, Inc.

TSCA Toxic Substances Control Act

USEPA United States Environmental Protection Agency

VCP Voluntary Cleanup Program VOC volatile organic compound

Section 1 Introduction

On behalf of Lockheed Martin Corporation (Lockheed Martin), Tetra Tech, Inc. (Tetra Tech) has prepared this technical memorandum presenting the analytical results for surface water samples collected adjacent to the Middle River Complex (MRC) in Middle River, Maryland on June 13, 2016 (see Figure 1-1). This technical memorandum presents results from surface water samples collected along five transects in Dark Head Cove (at Outfalls 005, 006, 007, 008, and 009) and at two locations in Cow Pen Creek near the southwestern trichloroethene (TCE) and 1,4-dioxane plumes.

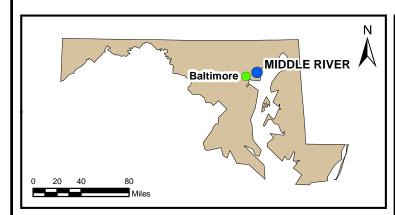
Before 2016, surface water had been sampled annually. In 2016, sampling frequency increased to three times per year (March, June, and September) to provide further assurance during implementation of the groundwater remedy that volatile organic compounds are not reaching surface water. Future planned events include September 2016, March 2017, June 2017 and September 2017. Thereafter, sampling schedules will be evaluated and established, based on findings from sampling. This investigation obtained additional surface-water-quality data for Dark Head Cove and Cow Pen Creek to determine whether volatile organic compounds (VOCs) in groundwater at Middle River Complex are impacting the surface water of Dark Head Cove and Cow Pen Creek. Additional objectives were to determine possible concentrations of polychlorinated biphenyls in surface water subsequent to a sediment removal action completed by Lockheed Martin Corporation in early 2015, and to determine 1,4-dioxane concentrations in Cow Pen Creek surface water near the southwestern trichloroethene and 1,4-dioxane groundwater plumes.

Two of the Dark Head Cove transects (Outfalls 006 and 008) are downgradient of the southeastern trichloroethene groundwater plume. Volatile organic compounds in groundwater at the Middle River Complex may be introduced to surface water by groundwater seepage or by groundwater infiltration into drains and outfalls that discharge to surface water. Surface water quality can also

be affected by constituents in creek-bottom sediment. This technical memorandum is organized as follows:


<u>Section 2—Site Background</u>: Briefly describes the site and where detailed background information and reports of previous investigations can be found.

<u>Section 3—Investigation Approach and Methodology</u>: Presents the technical approach to surface water sampling and describes the field methodology employed.


<u>Section 4—Results</u>: Presents the field program's investigation results.

<u>Section 5—Summary</u>: Summarizes the investigation approach and findings.

<u>Section 6—References</u>: Cites references used to compile this memorandum.

Aerial photograph provided by ESRI's ArcGIS Online World Imagery map service (© 2013 ESRI and its data suppliers).

FIGURE 1-1

MIDDLE RIVER COMPLEX LOCATION MAP

Lockheed Martin Middle River Complex Middle River, Maryland

DATE MODIFIED:

09/18/15

CREATED BY: JEE

Section 2 Site Background

The Middle River Complex (MRC) at 2323 Eastern Boulevard in Middle River, Maryland is part of the Chesapeake Industrial Park, approximately 11.5 miles northeast of Baltimore, Maryland. The MRC comprises approximately 161 acres and includes 12 main buildings, an active industrial area and yard, perimeter parking lots, an athletic field, a vacant concrete lot, trailer storage areas, and numerous grassy spaces along its perimeter. The MRC is bounded by Eastern Boulevard (Route 150) to the north, Martin State Airport to the east, Dark Head Cove to the south, and Cow Pen Creek to the west. Figure 2-1 shows the MRC layout.

Numerous environmental investigations have been conducted at the Lockheed Martin MRC. These include underground storage-tank closures and abandonments, soil excavations, Phase I environmental site assessments (ESAs), and Phase II ESAs. A 2003 facility-wide Phase I ESA at the Lockheed Martin MRC identified 13 recognized environmental conditions (RECs), associated primarily with then-current site conditions (Earth Tech, 2003). Subsequent review of historical site activities identified another 18 RECs (Tetra Tech, 2004). Many RECs are in the southern portion of the facility along the waterfront.

Soil and groundwater sampling have identified contamination in these environmental media underlying the facility. Studies of soil and groundwater are ongoing (Tetra Tech, 2012a). The MRC was previously entered into the Maryland Department of the Environment (MDE) Voluntary Cleanup Program (VCP). Withdrawal from the VCP began in September 2013. Remediation of the MRC is now conducted pursuant to an Administrative Consent Order signed December 2015, whereby work is performed under the MDE Controlled Hazardous Substances framework to allow both on- and off-site issues to be addressed under the same regulatory program.

Sampling of surface water and sediment adjacent to the MRC's southern and western property boundaries was first done in March 2005. Subsequent samples were collected in 2005, and each

year from 2010–2015, to characterize surface water and sediment, support the design development of the sediment remedy, and support storm-drain investigations.

The current annual sampling program seeks to determine the extent to which constituents in groundwater and surface soil at the MRC have been transported to surface water. Studies conducted at Cow Pen Creek and Dark Head Cove from 1997–2015, and details of the area's physical setting, land use, physiography, and surface/subsurface conditions (i.e., soils, hydrology, and geology), are summarized in the 2015 Surface Water Sampling Report (Tetra Tech, 2015), and therefore are not repeated herein.

Section 3 Investigation Approach and Methodology

3.1 SURFACE WATER SAMPLING

The 2016 surface water sampling described herein seeks to provide additional and updated surface-water-quality data for Dark Head Cove and Cow Pen Creek. Specifically, the current goals are to determine whether:

- volatile organic compounds (VOCs) detected in groundwater and site soil are reaching Dark Head Cove and Cow Pen Creek through groundwater infiltration or transport via storm drains
- 1,4-dioxane detected in groundwater and soil is reaching Cow Pen Creek through groundwater infiltration or transport through storm drains
- polychlorinated biphenyls (PCBs) detected in Block E soil are reaching Dark Head Cove through the storm drain system, and/or whether PCBs in surface water are present due to contaminants in sediment

Concentrations of PCBs, VOCs, and 1,4-dioxane in surface water were determined through laboratory analyses of the environmental samples. These compounds are in groundwater and soil at the Middle River Complex (MRC), and might migrate into adjacent surface bodies via groundwater and overland surface water flow.

Thirteen surface water samples were collected from Dark Head Cove and Cow Pen Creek on June 13, 2016 (Figure 3-1). Eleven were collected in Dark Head Cove and two were collected in Cow Pen Creek. All samples were analyzed for VOCs (the primary contaminants of concern in MRC groundwater). Samples collected from Dark Head Cove were also analyzed for PCBs, while samples from Cow Pen Creek were analyzed for 1,4-dioxane. Sampling methods were consistent with the 2016–2017 Groundwater and Surface Water Monitoring Work Plan (Tetra Tech, Inc.

[Tetra Tech], 2015) and amendments stipulated in the *Addendum to the 2016–2017 Groundwater* and Surface Water Monitoring Work Plan (Tetra Tech, 2016).

3.1.1 Surface Water Sampling and Analyses

Surface water samples were collected in Dark Head Cove along transects at Outfalls 005 through 009 (Figure 3-1). Two samples were collected along each transect near Outfalls 006–009: one sample per transect was collected 10-feet from shore ("A" sample) and a second was collected 50-feet from shore ("B" sample). At Outfall 005 (which has two outlets), one sample was collected at each outlet 10-feet from shore ("A1" and "A2" samples), and a single sample was collected 50-feet from shore, approximately midway between the two outlets ("B" sample). Surface water samples from Cow Pen Creek were collected near the western trichloroethene (TCE) plume. Samples were collected along the approximate centerline of the creek, upstream and downstream of the estimated boundaries of the western TCE plume. Table 3-1 summarizes (by surface water sampling location) the chemical analyses conducted for the 2016 monitoring program (Tetra Tech, 2015).

Surface water samples were collected as grab samples using direct-fill sampling techniques. All samples were collected approximately one foot below the water surface using a stainless-steel discrete-interval sampler. The sampler was lowered to approximately one foot below the water surface and the check valve was disengaged until full; the sampler was then brought to the surface and the water was removed through the valve to fill laboratory-supplied containers. Laboratory-cleaned, hydrochloric-acid-preserved, 40-milliliter (mL) sample vials were used for the VOC analysis; separate containers were used to collect samples for the 1,4-dioxane and PCB analyses. All equipment was cleaned after each sample had been collected. The discrete-interval sampler was cleaned after each use by rinsing with distilled water; no decontamination fluids other than distilled water were used, so collection and off-site disposal of rinse water generated during this sampling event was not necessary.

Samples collected on June 13, 2016 were analyzed at a fixed-base laboratory (Test America, North Canton, Ohio) for VOCs via United States Environmental Protection Agency (USEPA) Method 8260C, for 1,4-dioxane via Method 522, and for PCBs via Method 680. One duplicate VOC sample was collected, and trip blanks were provided in each cooler containing VOC samples to ensure quality assurance/quality control. Water-quality parameters, including temperature, pH

(a measure of hydrogen-ion content indicating relative acidity or alkalinity), specific conductance (SC), hardness, salinity, turbidity, dissolved oxygen (DO), color, and oxidation-reduction potential (ORP), were measured at all surface water sampling locations at the time of sampling. The water depth at each sampling location was also recorded.

Tidal stages were recorded on June 13, 2016 before sampling began and after it ended, using the MRC Cow Pen Creek direct-read staff gauge. The staff gauge read 3.44 feet at 11:45 a.m. and 3.94 feet at 1:31 p.m. Tide data for the North Point station (south of Middle River, Maryland) reported high tide at 2:26 a.m., low tide at 8:56 a.m., and high tide at 2:18 p.m. Surface water samples were collected between 11:51 a.m. and 1:22 p.m., at the rising limb of the tidal cycle (Maryland Department of Natural Resources, 2016). All information was documented on surface water sample forms (Appendix A) and in the master site logbook.

Surface-water sampling locations (horizontal locational coordinates) were surveyed using a handheld global positioning system receiver and recorded in the field logbook. Sampling locations were recorded in degrees, minutes, and seconds using geographical latitude and longitude coordinates, and have an accuracy of approximately 15 feet. Coordinates were converted to the Maryland State Plane North American Datum 1983 (feet) for use in the MRC geographical information system (GIS).

3.1.2 Documentation

A master site logbook was maintained as an overall record of field activities. Sample documentation includes completing a chain of custody (COC) form and matrix-specific sampling log sheets. A COC form is a standardized form to summarize and document pertinent sample information, such as sample identification and type, matrix, date and time of collection, preservation, requested analysis, and the times and dates of custody transfers. Sample custody procedures document sample acquisition and integrity. The COC form accompanies the data-validation report in Appendix B.

3.1.3 Sample Nomenclature and Handling

Surface water samples were identified with a unique sample-identification tag. Surface water samples were labeled with an "SW" prefix followed by the sample number, followed by an "A" (designating a sample collected 10 feet from the shoreline) or a "B" (designating a sample collected

50 feet from the shoreline), followed by a six-digit sampling date. For example, a surface water sample collected on June 13, 2016 from transect MRC-SW6 at the 10-foot ("A") location is labeled MRC-SW6A-061316. The trip blank is labeled with a "TB" prefix followed by the blank's six-digit submittal date (e.g., TB-061316).

Sample handling includes field-related considerations concerning the selection of sample containers, preservatives, allowable holding times, and analyses requested. Proper custody procedures were followed throughout all phases of sample collection and handling. COC protocols used throughout sample handling ensure the evidentiary integrity of sample containers.

Sample containers were released under signature from the laboratory and accepted under signature by the sampler(s) or individual responsible for maintaining custody until the sample containers were transferred to the sampler(s). Transport containers returned to the laboratory were sealed with strapping tape and a tamper-proof custody seal. The custody seal included the signature of the individual initially releasing the transport container, along with the date and time.

3.1.4 Equipment Decontamination

To minimize decontamination, both dedicated and disposable equipment (e.g., gloves, rope) were used for surface water sampling. The stainless-steel discrete-interval sampler (i.e., a "bacon bomb" sampler) was rinsed with distilled water before the first sample was collected and after each use.

3.1.5 Waste Management

No investigation-derived waste (IDW) was generated during this surface-water sampling event. General waste (i.e., gloves, rope, etc.) was disposed of in the proper waste disposal containers at the facility.

3.2 DATA MANAGEMENT

Laboratory data-handling procedures met the requirements of the laboratory subcontract. All analytical and field data are maintained in project files. These files include copies of the COC forms, sampling log forms, sampling location maps, and documentation of laboratory quality assurance.

3.2.1 Data Tracking and Control

A cradle-to-grave sample-tracking system was used from the beginning to the end of the sampling event. This system allows for early detection of errors made in the field so adjustments can be made while the field team is still mobilized. Before field mobilization, the field operations leader coordinated and initiated sample tracking. Sample jar labels were handwritten in the field and reviewed to ensure that they were accurate and adhered to work plan requirements.

The project manager (PM) coordinated with the analytical laboratory to ensure that they were aware of the number and types of samples and analyses being submitted. On the day that samples were collected in the field, the field operations leader forwarded the COC form to the PM (or designee) and the laboratory. The PM or designee confirmed that the COC forms provided the information required by the work plan. After all requested analyses had been completed, the laboratory submitted an electronic deliverable for every sample delivery group. When all electronic deliverables had been received from the laboratory, the PM or designee ensured that the laboratory had performed all requested analyses.

3.2.2 Sample Information

Data from field measurements were recorded using appropriate log sheets and summarized in tabular form. Raw instrument-data from the laboratory were also tabulated. The field operations leader verified field data daily; laboratory data were verified by the group supervisor and then by the laboratory's quality control/documentation department.

3.2.3 Project Data Compilation

The analytical laboratory generated a portable document format (PDF) file of the analytical data packages, as well as electronic database deliverables. The electronic data were checked against the PDF file from the laboratory, and updated as required by applying data-qualifier flags during data validation. All data, such as units of measure and chemical nomenclature, are consistent with the project database.

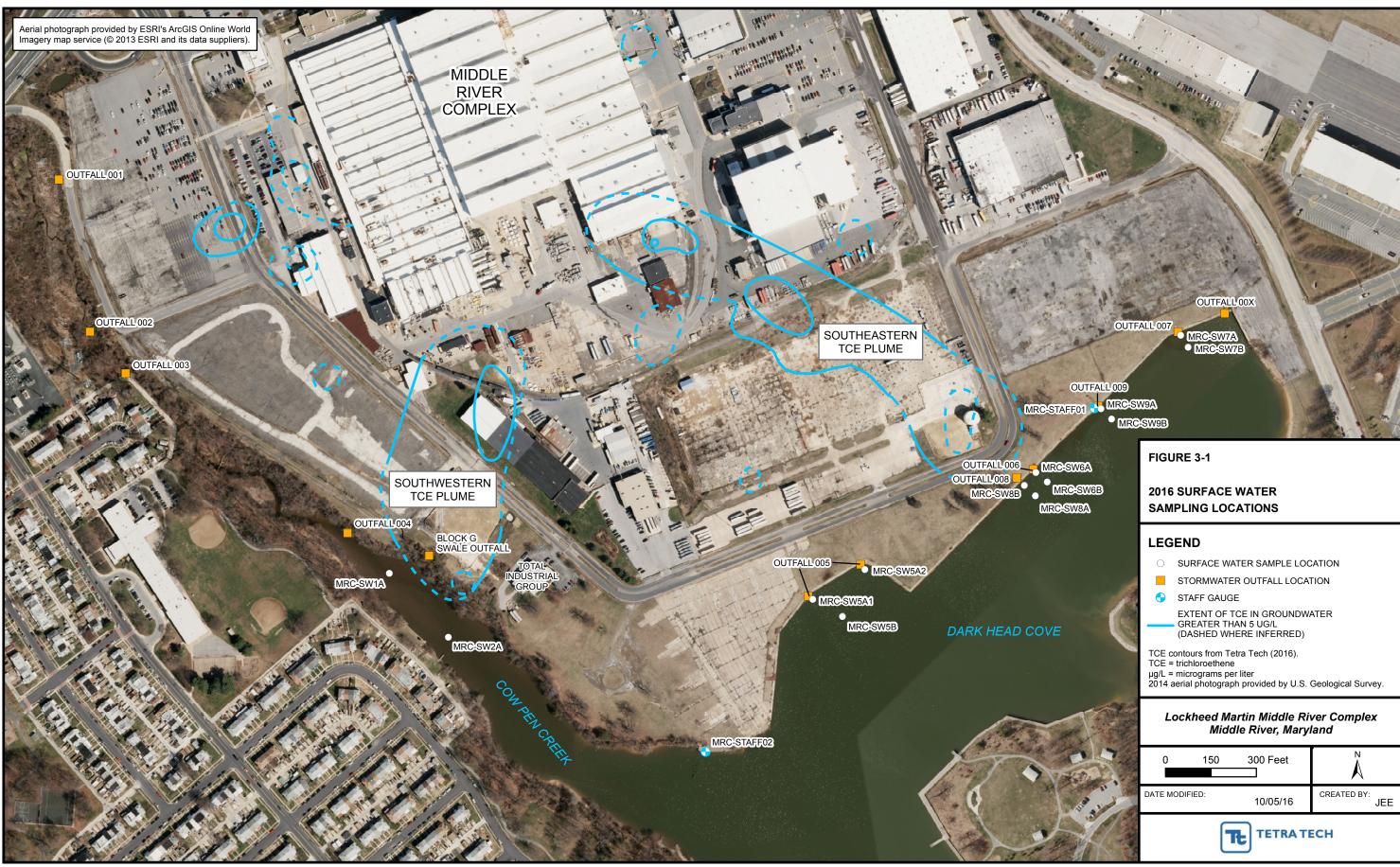
3.2.4 Geographical Information System

Data management systems consist of a relational database and GIS used to manage environmental information pertaining to the MRC. The relational database stores chemical, geological,

hydrogeological, and other environmental data collected during environmental investigations; the GIS is created from the relational database and contains subsets of the larger data pool. The GIS allows posting of environmental data onto base maps to represent the information graphically. Compiled sampling, chemical, and positional data were incorporated into the GIS.

3.3 DATA REVIEW

Data from the laboratory were entered into a sample database and evaluated against various screening criteria. Data validation (consisting of data completeness, holding time, calibrations, lab check standards, laboratory contamination, detection limits, surrogate recovery, and method blanks) was completed concurrent with the data evaluation. The review was based on USEPA Region 3's *Modifications to the National Functional Guidelines for Data Review* (USEPA, 1993 and 1994) and the specifics of the analytical method used. Data from this sampling event consist of chemical results from surface water samples. Appendix C contains tables of all 2016 MRC surface-water-sample analytical data, and includes validation qualifiers, non-detects, and analytical detection limits.


Validation of the MRC data concluded that they are acceptable for their intended uses (i.e., risk screening and risk assessment). The *J*-flag appears on the chemical-results tables in Section 4, and all flags appear in Appendices B and C. The data qualifiers (i.e., flags) applied to the chemical results during data validation are listed below:

- J The analyte is considered present in the sample, but the value is estimated and may not meet highest accuracy or precision standards. In this program, samples were qualified with "J" because quantitation was above the method detection limit but below the laboratory reporting limit.
- U Not detected; the analyte was not detected at the reported value.
- UJ The analyte was not detected, but the quantitation or detection limit may be inaccurate or imprecise.

Table 3-1
Chemical Analyses of Surface Water Samples, June 2016
Cow Pen Creek and Dark Head Cove
Lockheed Martin Middle River Complex, Middle River, Maryland

Sampling location	mpling location Sample Distance from number shore (feet		Analytical parameters	Sampling month	Number of samples
Dark Head Cove					
Outfall 005	SW5A1 SW5A2 SW5B	10 ⁽¹⁾ 10 ⁽¹⁾ 50	Volatile organic compounds (VOCs), polychlorinated biphenyls (PCBs) field parameters	June 2016	1 1 1
Outfall 006 and near the southeastern trichloroethene (TCE) plume	SW6A SW6B	10 50	VOCs, PCBs, field parameters	June 2016	1 1
Outfall 007	SW7A SW7B	10 50	VOCs, PCBs, field parameters	June 2016	1 1
Outfall 008 and near the eastern TCE plume	SW8A SW8B	10 50	VOCs, PCBs, field parameters	June 2016	1 1
Outfall 009	SW9A SW9B	10 50	VOCs, PCBs, field parameters	June 2016	1 1
Cow Pen Creek					
Near the southwestern TCE plume	SW1A SW2A	Upstream Downstream	VOCs, 1,4-dioxane, field parameters	June 2016	1 1

⁽¹⁾Two near-shore samples (10-feet out) were collected at each outlet of Outfall 005. One near-shore sample was collected at all other Dark Head Cove outfalls (006–009).

Section 4 Results

Validated surface-water chemical data of the chemical analytes detected in the June 2016 surface-water samples were used to generate a figure presenting the analytes detected (Figure 4-1), a statistical summary table (Table 4-1), and a table (Table 4-2) listing positive detections (only). (Note that because all sample names share the same leading prefix ["MRC"], that prefix has been dropped in the following discussion to improve readability. For example, MRC-SW1A is referred to simply as "SW1A" in this section.) Tables 4-1 and 4-2 are based on the full data listing provided in Appendix C (Table C-1). Table 4-2 compares surface-water sampling results to several applicable screening criteria, including:

- United States Environmental Protection Agency (USEPA) Region 3 Biological Technical Advisory Group (BTAG) freshwater screening-benchmarks (USEPA, 2006)
- USEPA Region 5 ecological screening level for 1,4-dioxane in water (USEPA, 2003)
- USEPA national recommended water quality criteria (NRWQC) for acute and chronic aquatic-organism exposures and NRWQC for human health aquatic-organism consumption (USEPA, 2009)
- State of Maryland ambient water quality criteria (AWQC) for acute and chronic aquatic-organism-exposures, and AWQC for human health aquatic-organism-consumption (*Code of Maryland Regulations*, 2016)
- Site-specific screening levels for swimming, developed by Lockheed Martin Corporation (Lockheed Martin) to assess volatile organic compounds (VOCs) at Frog Mortar Creek near Martin State Airport (Tetra Tech, Inc., [Tetra Tech], 2013a)

4.1 VOLATILE ORGANIC COMPOUNDS

As shown in Table 4-1 and Figure 4-1, three VOCs were detected in surface water: trichlorethene (TCE), acetone, and chloromethane. TCE, the primary VOC associated with Middle River Complex (MRC) groundwater, was detected in four sampling locations in Dark Head Cove (SW6A [0.26J micrograms per liter (μ g/L)]), SW6B [0.49J μ g/L], SW8A [0.48J μ g/L], and SW8B [0.42J μ g/L]) near Outfalls 006 and 008. These sampling locations are adjacent to the southeastern

TCE groundwater plume. cis-1,2-Dichloroethene (cis-1,2-DCE) and vinyl chloride, breakdown products of TCE, and other common VOCs in MRC groundwater plumes, were not detected in these samples. The other two VOCs detected in surface water (acetone and chloromethane) were both detected in sample SW7B ($2.2J \mu g/L$ and $1.1 \mu g/L$, respectively), 50 feet from Outfall 007.

As shown in Table 4-2, all detected VOC concentrations are low and less than their respective screening criteria. TCE detections are "J" qualified because the concentrations are above the method detection limit but below the laboratory practical quantitation-limit. TCE was not detected in the two samples collected from Cow Pen Creek.

During the 2015 sampling round, the sole TCE detection $(0.42J \,\mu\text{g/L} \text{ at SW5A2})$ was from a sample collected near Outfall 005. TCE concentrations in 2014 ranged from $0.3J \,\mu\text{g/L}$ (SW5A2) to 0.54 $\,\mu\text{g/L}$ (SW8A). Similar to the 2015 sampling result, the highest TCE concentrations $(1.1\text{-}1.9 \,\mu\text{g/L})$ in 2013 were from samples SW5A1, SW5A2, and SW5B collected near Outfall 005. In contrast, the highest TCE concentrations detected in 2012 $(0.55J\text{-}0.82J \,\mu\text{g/L})$, 2014 $(0.52J\text{-}0.54J \,\mu\text{g/L})$, and this 2016 event $(0.26J\text{-}0.49J \,\mu\text{g/L})$ were in samples collected from transects at Outfalls 006 and 008, near the southeastern TCE groundwater plume (see Table C-2 in Appendix C).

The maximum 2016 TCE concentration $(0.49J \,\mu\text{g/L})$ is similar to the maximum TCE concentrations in 2015 $(0.42J \,\mu\text{g/L})$ and in 2014 $(0.54J \,\mu\text{g/L})$ at Outfall 008). These concentrations are approximately one-quarter that of the maximum TCE concentration detected in 2013 $(1.9 \,\mu\text{g/L})$ at Outfall 005). Note that surface water sampling is dynamic in nature, and the distribution of the contaminants in Dark Head Cove and Cow Pen Creek can be affected by tidal fluxes.

USEPA and the State of Maryland have not established acute or chronic freshwater criteria for TCE or acetone. However, they have established a human health consumption-of-aquatic-organism criterion of 300 μ g/L (when adjusted for the MDE risk level of 1×10^{-05} [i.e., a one in 100,000 risk probability]). The BTAG ecological screening levels for TCE and acetone are 21 μ g/L and 1,500 μ g/L, respectively.

The maximum TCE concentration $(0.49J \,\mu\text{g/L})$ detected in this investigation is more than 40 times below the lowest (i.e., most conservative) regulatory screening level (21 $\mu\text{g/L}$), and more than 20 times below its site-specific screening-criterion (10 $\mu\text{g/L}$) for evaluating exposure risks to

swimmers. All TCE, acetone, and chloromethane results are below ecological and human health screening criteria.

4.2 1,4-DIOXANE

As shown in Figure 4-1, 1,4-dioxane was detected at a concentration of $0.13J \,\mu\text{g/L}$ in the sample collected from SW1A, and $0.16J \,\mu\text{g/L}$ in the sample collected from SW2A. These concentrations are more than five orders of magnitude (nearly 100,000 times) lower than the USEPA ecological screening level (22,000 $\,\mu\text{g/L}$).

4.3 POLYCHLORINATED BIPHENYLS

Pentachlorobiphenyl is the only polychlorinated biphenyl (PCBs) homolog detected in the surface water samples collected in Dark Head Cove in June 2016. The only sample with a detected concentration was SW6B ($0.036J\,\mu g/L$), collected 50 feet from Outfall 006. This concentration exceeds the chronic NRWQC (0.014), the BTAG concentration ($0.000074\,\mu g/L$), and the human health consumption-of-aquatic-organism criterion ($0.00064\,\mu g/L$) for PCBs.

The NRWQC and BTAG levels are screening levels. Reported concentrations below these screening levels indicate that no ecological impacts are expected, however, exceeding these screening levels does not necessarily mean that human health risk or ecological risk is occurring. For example, the NRWQC human health consumption-of-aquatic-organism (0.00064 µg/L) screening criterion for PCBs was developed to be protective assuming that someone is exposed to surface water from two exposure pathways: (1) drinking surface water that is used as a drinking water source and (2) via consuming fish caught in the surface water. The value is particularly low to protect surface water as a drinking water source. Since people are not drinking water from Dark Head Cove, the NRWQC is overly protective (low) as a screening value. Fish consumption advisories for the entire region are in effect, because PCBs bioaccumulate and multiple sources contribute PCBs to the upper Chesapeake Bay. A human health risk assessment (HHRA) completed in 2014 to assess exposure to people swimming in Dark Head Cove (a more applicable exposure scenario) indicates that similar PCB concentrations detected in surface water would result in cancer and non-cancer risks less than MDE risk benchmarks.

The BTAG screening is very low to be protective of aquatic organisms, because PCBs bioaccumulate in the ecological food web. The objective of the upcoming sediment remediation in

Dark Head Cove will be to reduce sediment and surface water contaminant concentrations. No PCBs were detected in Dark Head Cove water samples collected in 2015 after completing the sediment removal action near Outfall 005.

4.4 WATER-QUALITY PARAMETERS

Water-quality parameters measured in the field in June 2016 for each surface water sample are in Table 4-3. Data were collected for color, pH, specific conductivity (SC), hardness, temperature, turbidity, dissolved oxygen (DO), salinity, and oxidation-reduction potential (ORP). The June 2016 pH values are consistent with natural surface water in this region. SC is closely associated with salinity, and samples with lower salinity had an expected lower SC, and vice versa. pH was slightly lower in Cow Pen Creek samples, which also had lower salinity and SC, as compared to samples from Dark Head Cove. These results may be due to runoff into the creek, or due to restricted water flow into or out of the creek.

Turbidity was consistent in most samples, with the highest turbidity found in Dark Head Cove sample SW9B. All DO levels are on the high side of typical values, indicating a healthy estuarine environment. ORP values are all positive, which is consistent with an oxygen-rich environment. All water-quality parameters are typical of a tidally controlled estuarine environment.

Table 4-1

Statistical Summary of Analytes Detected in Surface Water Samples-June 2016 Cow Pen Creek and Dark Head Cove Lockheed Martin Middle River Complex, Middle River, Maryland

Chemical	Frequency of Detection		Minimum Non- Detect	Maximum Non- detect Concentration	Minimum Detected Concentration	Maximum Detected Concentration	Location of Maximum Detected Sample	Mean of All Samples	Mean of Positive Detects	Standard Deviation
	Number	Percent					·			
Volatile organic compounds (µg/L)										
TRICHLOROETHENE	4/13	31	0.22 U	0.22 U	0.25 J	0.49 J	MRC-SW6B	0.203	0.41	0.155
ACETONE	1/13	8	0.94 U	0.94 U	2.2 J	2.2 J	MRC-SW7B	0.603	2.2	0.480
CHLOROMETHANE	1/13	8	0.44 UJ	0.44 UJ	1.1	1.1	MRC-SW7B	0.288	1.1	0.244
Semivolatile organic compounds (µg/L)	Semivolatile organic compounds (µg/L)									
1,4-DIOXANE	2/2	100			0.12 J	0.16 J	MRC-SW2A	0.135	0.135	0.007
Polychlorinated biphenyls (ug/L)										
PENTACHLOROBIPHENYLS	1/11	9	0.013 U	0.014 U	0.036 J	0.036 J	MRC-SW6B	0.009	0.036	0.009

For non-detects, 1/2 sample quantitation limit was used as a proxy concentration to caluclate statistics.

μg/L - micrograms per liter

MRC - Middle River Complex

SW - surface water

U - not detected

UJ - nondetect result is estimated

-- Value is not available because analyte is detected in all samples.

Associated Samples:

MRC-SW1A-061316	MRC-SW5B-061316	MRC-SW7B-061316
MRC-SW2A-061316	MRC-SW6A-061316	MRC-SW8A-061316
MRC-SW2A-061316-D	MRC-SW6A-061316-D	MRC-SW8B-061316
MRC-SW5A1-061316	MRC-SW6B-061316	MRC-SW9A-061316
MRC-SW5A2-061316	MRC-SW7A-061316	MRC-SW9B-061316

Detected Analytes and Screening Level Exceedances in Surface Water Samples-June 2016 Cow Pen Creek and Dark Head Cove Lockheed Martin Middle River Complex, Middle River, Maryland Page 1 of 4

Location ID	National Recommended Water Quality Criteria ⁽¹⁾ Freshwater		Ecological Surface Water Screening Level ⁽²⁾	Consumption of I	Swimming Screening Levels (4)	MRC-SW1A	MRC-SW2A		
Sample ID						MRC-SW1A- 061316	MRC-SW2A- 061316	MRC-SW2A- 061316-AVG	MRC-SW2A- 061316-D
Sample Date	Acute	Chronic	Levei	Oilly		20160613	20160613	20160613	20160613
Volatile organic compounds (µg	g/L)								
ACETONE	NA	NA	1500	NA	NA				NA
CHLOROMETHANE	NA	NA	NA	NA	NA				NA
TRICHLOROETHENE	NA	NA	21	300 ⁽³⁾	10				NA
Semivolatile organic compound	s (µg/L)								
1,4-DIOXANE	NA	NA	22000	NA	NA	0.13 J	0.16 J	0.14	0.12 J
Polychlorinated biphenyls (µg/I									
PENTACHLOROBIPHENYLS	NA	0.014	0.000074 ⁽⁵⁾	$0.00064^{(3)}$	NA	NA	NA	NA	NA

1 - National Recommended Water Quality Criteria,

http://water.epa.gov/scitech/swguidance/standards/current/index.cfm; and Maryland Numerical Criteria for Toxic Substances in Surface Waters, Code of Maryland Regulations (COMAR) 26.08.02.03, http://www.dsd.state.md.us./comar/comarhtml/26/26.08.02.03-2.htm

- 2 United State Environmental Protection Agency (USEPA) Region 3 Biological Technical Advisory Group (BTAG) Freshwater Screening Benchmarks. Value for 1,4-dioxane is the USEPA Region 5 ecological screening value (USEPA, 2003)
- 3 For carcinogens, criterion is for incremental cancer risk of 1x10⁻⁵
- 4 Site-specific swimming screening levels were developed for *cis* -1,2-dichloroethene, trichloroethene, and vinyl chloride only
- 5 Value is for total polychlorinated biphenyls.

Gray shading indicates a result that exceeds a screening criterion.

-- not detected MRC - Middle River Complex
 J - estimated result NA - not analyzed or not available

μg/L - micrograms per liter SW - surface water

Detected Analytes and Screening Level Exceedances in Surface Water Samples-June 2016 Cow Pen Creek and Dark Head Cove Lockheed Martin Middle River Complex, Middle River, Maryland Page 2 of 4

National Recommended Water Quality Criteria (1) Freshwater		Ecological Surface Water Screening Level ⁽²⁾	Human Health Consumption of Organism Only ⁽¹⁾⁽³⁾	Swimming Screening Levels ⁽⁴⁾	MRC-SW5A1 MRC-SW5A1- 061316	MRC-SW5A2 MRC-SW5A2- 061316	MRC-SW5B MRC-SW5B- 061316	MRC-SW6A MRC-SW6A- 061316		
Sample Date	Acute	Chronic	Level	Olliy		20160613	20160613	20160613	20160613	
Volatile organic compounds (µg	Volatile organic compounds (µg/L)									
ACETONE	NA	NA	1500	NA	NA					
CHLOROMETHANE	NA	NA	NA	NA	NA					
TRICHLOROETHENE	NA	NA	21	300 ⁽³⁾	10				0.26 J	
Semivolatile organic compound	s (µg/L)									
1,4-DIOXANE	NA	NA	22000	NA	NA	NA	NA	NA	NA	
Polychlorinated biphenyls (µg/L)										
PENTACHLOROBIPHENYLS	NA	0.014	$0.000074^{(5)}$	$0.00064^{(3)}$	NA					

1 - National Recommended Water Quality Criteria,

http://water.epa.gov/scitech/swguidance/standards/current/index.cfm; and Maryland Numerical Criteria for Toxic Substances in Surface Waters, Code of Maryland Regulations (COMAR) 26.08.02.03, http://www.dsd.state.md.us./comar/comarhtml/26/26.08.02.03-2.htm

- 2 United State Environmental Protection Agency (USEPA) Region 3 Biological Technical Advisory Group (BTAG) Freshwater Screening Benchmarks. Value for 1,4-dioxane is the USEPA Region 5 ecological screening value (USEPA, 2003)
- 3 For carcinogens, criterion is for incremental cancer risk of 1x10⁻⁵
- 4 Site-specific swimming screening levels were developed for *cis* -1,2-dichloroethene, trichloroethene, and vinyl chloride only
- 5 Value is for total polychlorinated biphenyls.

Gray shading indicates a result that exceeds a screening criterion.

-- not detected MRC - Middle River Complex
 J - estimated result NA - not analyzed or not available

 $\mu g/L$ - micrograms per liter SW - surface water

Detected Analytes and Screening Level Exceedances in Surface Water Samples-June 2016 Cow Pen Creek and Dark Head Cove Lockheed Martin Middle River Complex, Middle River, Maryland Page 3 of 4

Location ID	National Recommended Water Quality Criteria ⁽¹⁾ Freshwater		Ecological Surface Water Screening Level ⁽²⁾	Human Health Consumption of Organism Only(1)(3)	Swimming Screening Levels ⁽⁴⁾	MRC-SW6A		MRC-SW6B	MRC-SW7A	
Sample ID						MRC-SW6A- 061316-AVG	MRC-SW6A- 061316-D	MRC-SW6B- 061316	MRC-SW7A- 061316	
Sample Date	Acute	Chronic	Level	Olliy		20160613	20160613	20160613	20160613	
Volatile organic compounds (µg	Volatile organic compounds (µg/L)									
ACETONE	NA	NA	1500	NA	NA					
CHLOROMETHANE	NA	NA	NA	NA	NA					
TRICHLOROETHENE	NA	NA	21	300 ⁽³⁾	10	0.255	0.25 J	0.49 J		
Semivolatile organic compound	Semivolatile organic compounds (µg/L)									
1,4-DIOXANE	NA	NA	22000	NA	NA	NA	NA	NA	NA	
Polychlorinated biphenyls (µg/L)										
PENTACHLOROBIPHENYLS	NA	0.014	$0.000074^{(5)}$	$0.00064^{(3)}$	NA			0.036 J		

1 - National Recommended Water Quality Criteria,

http://water.epa.gov/scitech/swguidance/standards/current/index.cfm; and Maryland Numerical Criteria for Toxic Substances in Surface Waters, Code of Maryland Regulations (COMAR) 26.08.02.03, http://www.dsd.state.md.us./comar/comarhtml/26/26.08.02.03-2.htm

- 2 United State Environmental Protection Agency (USEPA) Region 3 Biological Technical Advisory Group (BTAG) Freshwater Screening Benchmarks. Value for 1,4-dioxane is the USEPA Region 5 ecological screening value (USEPA, 2003)
- 3 For carcinogens, criterion is for incremental cancer risk of 1x10⁻⁵
- 4 Site-specific swimming screening levels were developed for *cis* -1,2-dichloroethene, trichloroethene, and vinyl chloride only
- 5 Value is for total polychlorinated biphenyls.

Gray shading indicates a result that exceeds a screening criterion.

-- not detected MRC - Middle River Complex
 J - estimated result NA - not analyzed or not available

μg/L - micrograms per liter SW - surface water

Detected Analytes and Screening Level Exceedances in Surface Water Samples-June 2016 Cow Pen Creek and Dark Head Cove Lockheed Martin Middle River Complex, Middle River, Maryland Page 4 of 4

Location ID	National Recommended Water Quality Criteria ⁽¹⁾ Freshwater		Ecological Human Health Surface Water Screening Organism Level ⁽²⁾ Only ⁽¹⁾⁽³⁾		Swimming	MRC-SW7B	MRC-SW8A	MRC-SW8B	MRC-SW9A	MRC-SW9B
Sample ID				Screening Levels ⁽⁴⁾	MRC-SW7B- 061316	MRC-SW8A- 061316	MRC-SW8B- 061316	MRC-SW9A- 061316	MRC-SW9B- 061316	
Sample Date	Acute	Chronic	Level	Olliy		20160613	20160613	20160613	20160613	20160613
Volatile organic compounds (µg	Volatile organic compounds (µg/L)									
ACETONE	NA	NA	1500	NA	NA	2.2 J				
CHLOROMETHANE	NA	NA	NA	NA	NA	1.1				
TRICHLOROETHENE	NA	NA	21	300 ⁽³⁾	10		0.48 J	0.42 J		
Semivolatile organic compound	s (µg/L)									
1,4-DIOXANE	NA	NA	22000	NA	NA	NA	NA	NA	NA	NA
Polychlorinated biphenyls (μg/L)										
PENTACHLOROBIPHENYLS	NA	0.014	$0.000074^{(5)}$	$0.00064^{(3)}$	NA					

1 - National Recommended Water Quality Criteria,

http://water.epa.gov/scitech/swguidance/standards/current/index.cfm; and Maryland Numerical Criteria for Toxic Substances in Surface Waters, Code of Maryland Regulations (COMAR) 26.08.02.03, http://www.dsd.state.md.us./comar/comarhtml/26/26.08.02.03-2.htm

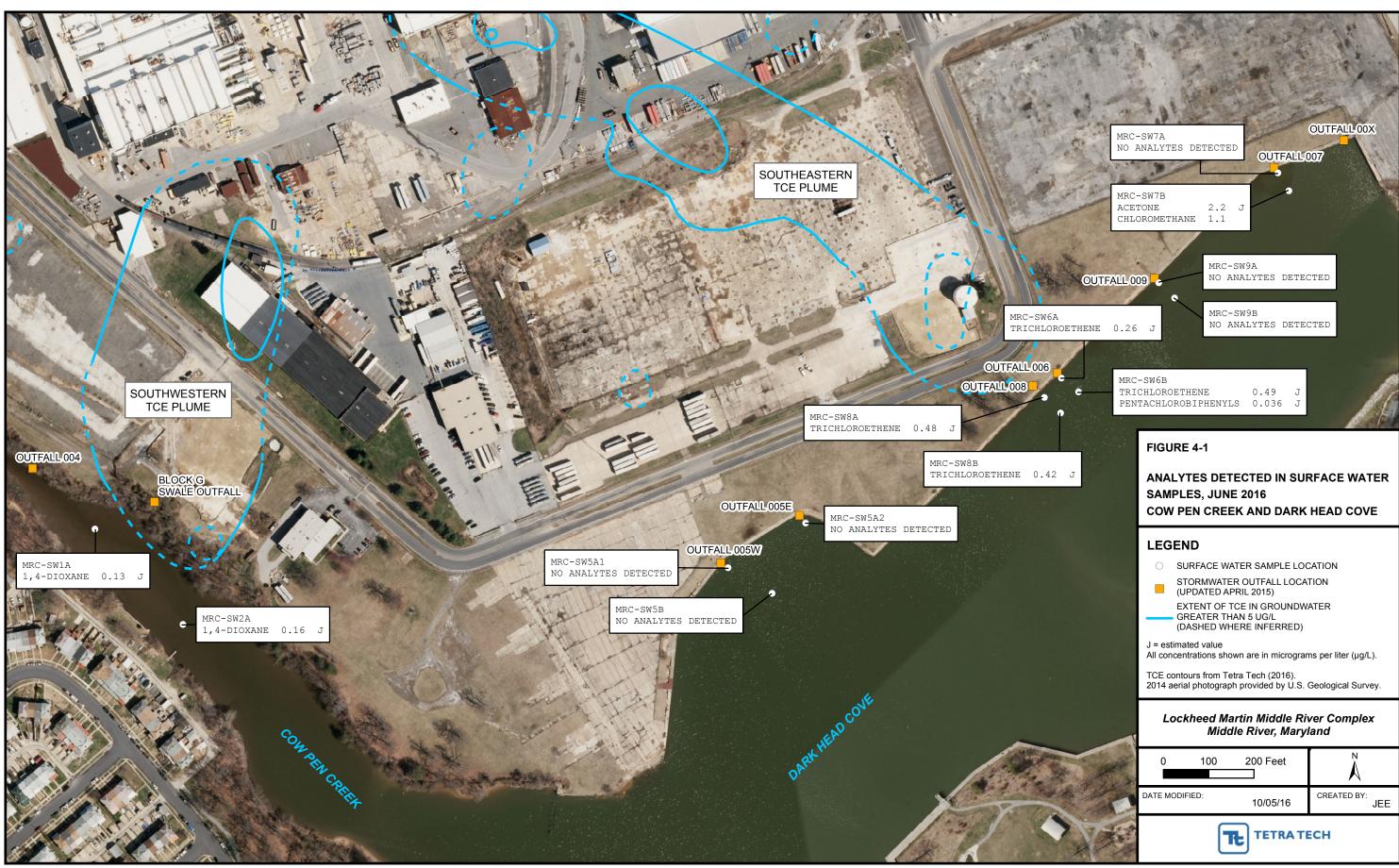
- 2 United State Environmental Protection Agency (USEPA) Region 3 Biological Technical Advisory Group (BTAG) Freshwater Screening Benchmarks. Value for 1,4-dioxane is the USEPA Region 5 ecological screening value (USEPA, 2003)
- 3 For carcinogens, criterion is for incremental cancer risk of 1x10⁻⁵
- 4 Site-specific swimming screening levels were developed for cis-1,2-dichloroethene, trichloroethene, and vinyl chloride only
- 5 Value is for total polychlorinated biphenyls.

Gray shading indicates a result that exceeds a screening criterion.

-- not detected MRC - Middle River Complex
J - estimated result NA - not analyzed or not available

μg/L - micrograms per liter SW - surface water

Table 4-3 Field Measurements for Surface-Water Quality, June 2016 **Cow Pen Creek and Dark Head Cove** Lockheed Martin Middle River Complex, Middle River, Maryland


Sample No.	Color	pH (S.U.)	SC (mS/cm)	Temperature (°C)	Turbidity (NTU)	DO (mg/L)	Salinity (%)	ORP (mv)
SW1A	Clear	6.30	5.44	24.20	5.40	6.35	3.0	136
SW2A	Clear	6.70	6.02	24.54	6.22	5.47	3.3	149
SW5A1	Clear	7.25	6.34	24.25	6.44	4.69	3.5	60
SW5A2	Clear	7.26	6.38	24.34	7.36	4.07	3.5	110
SW5B	Clear	7.34	6.37	24.32	6.22	4.53	3.5	123
SW6A	Clear	7.24	6.32	24.60	4.30	4.15	3.4	140
SW6B	Clear	7.33	6.31	24.70	4.90	5.64	3.4	138
SW7A	Clear	6.90	6.24	24.50	2.41	5.90	3.4	135
SW7B	Clear	7.10	6.28	24.32	5.86	3.90	3.4	128
SW8A	Clear	7.40	6.32	24.71	4.77	5.47	3.4	143
SW8B	Clear	7.40	6.31	24.72	4.67	6.18	3.4	142
SW9A	Clear	7.10	6.33	24.52	4.88	4.40	3.4	136
SW9B	Clear	7.20	6.30	24.63	6.58	4.40	3.4	139
Average	Clear	7.12	6.23	24.49	5.39	5.01	3.38	129.2

°C degrees Celsius DO dissolved oxygen Gr/Br— greenish brown mg/L— milligram(s) per liter

mS/cm—milliSiemen(s) per centimeter

mv millivolt(s) NTU— nephelometric turbidity unit(s) ORP— oxidation-reduction potential pH hydrogen ion content (a measure of

acidity or alkalinity) SCspecific conductance S.U. standard unit(s)

Section 5 Summary

Tetra Tech, Inc. (Tetra Tech) collected 13 water samples from Cow Pen Creek and Dark Head Cove on June 13, 2016 on behalf of Lockheed Martin Corporation (Lockheed Martin), The samples were chemically analyzed for volatile organic compounds (VOCs), 1,4-dioxane (for the two Cow Pen Creek samples only), and polychlorinated biphenyls (PCBs) (for the Dark Head Cove samples only). These analyses were performed to determine if these constituents are in surface water and if they originate from stormwater outfalls, sediments, or groundwater plumes at the Middle River Complex (MRC). The results were validated in accordance with United States Environmental Agency (USEPA) procedures, and were compared to ecological and human-health criteria including site-specific screening concentrations developed by Lockheed Martin Corporation for evaluating risks to recreational swimmers for three volatile organic compounds that are found at elevated concentrations in Middle River Complex groundwater plumes.

The volatile organic compound trichloroethene (TCE) was detected at low concentrations (ranging from 0.26*J* to 0.49*J* micrograms per liter [µg/L]) in four surface water samples collected in Dark Head Cove near Outfalls 006 and 008, adjacent to the southeastern trichloroethene plume (trichloroethene was not detected in the two Cow Pen Creek samples). These trichloroethene concentrations are below ecological and human-health screening criteria used for the investigation, and are similar to trichloroethene concentrations detected in 2015 and in 2014.

1,4-Dioxane was detected in Cow Pen Creek surface water at concentrations of $0.13J\,\mu g/L$ and $0.16J\,\mu g/L$ in two Cow Pen Creek samples. These concentrations are more than five orders of magnitude (nearly 100,000 times) lower than its United Stated Environmental Protection Agency ecological screening-level (22,000 $\mu g/L$). 1,4-Dioxane is likely being discharged to Cow Pen Creek from the southwestern trichloroethene and 1,4-dioxane groundwater plume.

The polychlorinated biphenyl (PCB) homolog pentachlorobiphenyl was detected in surface water sample SW6B, collected 50 feet from Outfall 006 in Dark Head Cove. The pentachlorobiphenyl concentration (0.036 J µg/L) exceeds the Biological Technical Advisory Group ecological criterion

and the human health consumption-of-aquatic-organism criterion. However, the single detection of a polychlorinated biphenyl homolog in one sample indicates reductions in the frequency and concentrations of polychlorinated biphenyls in Dark Head Cove water samples compared to previous samples collected in 2014. The reduction of polychlorinated biphenyl concentrations in 2016 (and 2015 samples) and associated risk around Outfall 005 and Dark Head Cove may be attributed to the removal of sediment with elevated levels of polychlorinated biphenyls that was conducted in the winter of 2014–2015; this removal dredged sediment in a portion of Dark Head Cove adjacent to Outfall 005.

Section 6 References

- 1. Code of Maryland Regulations (COMAR), 2014. "Numerical Criteria for Toxic Substances in Surface Waters." COMAR Title 26, Subtitle 08, Chapter 02, Regulation 03: http://www.dsd.state.md.us/comar/comarhtml/26/26.08.02.03-2.htm.
- 2. Earth Tech, 2003. *Draft Phase I Environmental Assessment, Chesapeake Industrial Park.* Report prepared by Earth Tech, Trevose, Pennsylvania for Lockheed Martin Corporation, Bethesda, Maryland. February.
- 3. Maryland Department of Natural Resources, 2015. "Tides for North Point, Starting with June 13, 2016." Maryland Department of Natural Resources Tide Finder: http://www.dnr.state.md.us/fisheries/tides/index.asp.
- 4. Tetra Tech, Inc. (Tetra Tech), 2004. *Historical Research Report, Lockheed Martin Middle River Complex*. Report prepared by Tetra Tech, Inc., Germantown, Maryland for Lockheed Martin Corporation, Bethesda, Maryland. August.
- 5. Tetra Tech, Inc. (Tetra Tech), 2006. Surface Water and Sediment Sampling Report. Lockheed Martin Middle River Complex. Report prepared by Tetra Tech, Inc., Germantown, Maryland for Lockheed Martin Corporation, Bethesda, Maryland. April.
- 6. Tetra Tech, Inc. (Tetra Tech), 2012a. *Final Groundwater Response Action Plan, Lockheed Martin Middle River Complex*, 2323 Eastern Boulevard, Middle River, Maryland. Prepared by Tetra Tech, Inc., Germantown, Maryland for Lockheed Martin Corporation, Bethesda, Maryland. September.
- 7. Tetra Tech, Inc. (Tetra Tech), 2013a. *Groundwater Monitoring Report, March–April 2012, Lockheed Martin Middle River Complex, 2323 Eastern Boulevard, Middle River, Maryland.* Report prepared by Tetra Tech, Inc., Germantown, Maryland for Lockheed Martin Corporation, Bethesda, Maryland. July.
- 8. Tetra Tech, Inc. (Tetra Tech), 2013b. 2013 Surface Water Sampling Report, Middle River Complex, 2323 Eastern Boulevard, Middle River, Maryland. Report prepared by Tetra Tech, Inc., Germantown, Maryland for Lockheed Martin Corporation, Bethesda, Maryland. November.
- 9. Tetra Tech, Inc. (Tetra Tech), 2014a. 2014 Surface Water Sampling Report, Middle River Complex, 2323 Eastern Boulevard, Middle River, Maryland. Report prepared by Tetra Tech, Inc., Germantown, Maryland for Lockheed Martin Corporation, Bethesda, Maryland. December.

- 10. Tetra Tech, Inc. (Tetra Tech), 2014b. *Block E Remedial Action Plan, Lockheed Martin Middle River Complex, 2323 Eastern Boulevard, Middle River, Maryland.* Prepared by Tetra Tech, Inc., Germantown, Maryland for Lockheed Martin Corporation, Bethesda, Maryland. February.
- 11. Tetra Tech, Inc. (Tetra Tech), 2015. 2016–2017 Groundwater and Surface Water Monitoring Work Plan, Middle River Complex, 2323 Eastern Boulevard, Middle River, Maryland. Report prepared by Tetra Tech, Inc., Germantown, Maryland for Lockheed Martin Corporation, Bethesda, Maryland. December.
- 12. Tetra Tech, Inc. (Tetra Tech), 2016. 2016–2017 Addendum to the 2016–2017 Groundwater and Surface Water Monitoring Work Plan, Middle River Complex, 2323 Eastern Boulevard, Middle River, Maryland. Report prepared by Tetra Tech, Inc., Germantown, Maryland for Lockheed Martin Corporation, Bethesda, Maryland. June.
- 13. United States Environmental Protection Agency (USEPA), Region 3, 1993. Region III Modifications to the Laboratory Data-Validation Functional Guidelines for Evaluating Inorganics Analyses. USEPA Region 3 Central Regional Laboratory Quality Assurance Branch. April.
- 14. United States Environmental Protection Agency (USEPA), Region 3, 1994. *Region III Modifications to the National Functional Guidelines for Organic-Data Review*. USEPA Region 3 Central Regional Laboratory Quality Assurance Branch. September.
- 15. United States Environmental Protection Agency (USEPA), 2003. Region 5 Ecological Screening Levels. August.
- 16. United States Environmental Protection Agency (USEPA), 2006. Region III Biological Technical Advisory Group Freshwater Screening Benchmarks. July.
- 17. United States Environmental Protection Agency (USEPA), 2009. *National Recommended Water Quality Criteria*. U.S. Environmental Protection Agency, Offices of Water and of Science and Technology:
 - http://water.epa.gov/scitech/swguidance/standards/current/index.cfm or http://water.epa.gov/scitech/swguidance/standards/current/upload/nrwqc-2009.pdf.

APPENDIX A—SURFACE-WATER-SAMPLING LOG SHEETS	

Page___ of _

Project Site	· Name·	Dark Head C	ove Midd	lle River		Sample	· ID No ·	MRC-SW5A1	-061316
Project No.:		112IC07776		ic ravei				MRC-SW5A1	
1 10,000110	•	1121007770				Sample		J. Mullis	
[] Stream	n					C.O.C. I	-	o. Maiis	
[] Spring						0.0.0.1	10		
	J					Type of	Sample:		
							-	ration	
[] Lake		Tit Lamanta					w Concenti		
[X] Othe		Tidal creek -	freshwate	<u>:r</u>		_ [] migi	h Concentra	ation	
	ample Type:					-			
SAMPLING Date:		Color			T-mm	Tooleiding	700	Calinita	T CDD
	6/13/2016	Color	pH (SII)	S.C.	Temp.	Turbidity	DO (mg/L)	Salinity	ORP
Time: Depth:	1313 1 ft below water	(Visual) clear	(S.U.) 7.25	(mS/cm) 6.34	24.25	(NTU) 6.44	(mg/L) 4.7	(ppt)	mV 60
Method:	Grab	Clear	1.23	0.34	24.20	0.44	4.7	3.5	0 0
	OLLECTION INF	FORMATIO	N:						
	Analysis			rvative		Container R	equirements	š	Collected
TCL VOCs			HCL	_ pH<2		3 - 40 mL	_ glass vials		Yes
PCBs (680)			No	lone		2 - 1L	. ambers		Yes
			<u> </u>		<u> </u>				
					 				
		!			 				
			 		 				
					 				<u> </u>
		!	 		 				<u> </u>
					 				-
			 		+				1
			 		+		·	<u>,</u>	1
OBSERVAT	IONS / NOTES:				MAP:				
0000	10.107.110.120					a MATE			
Water depth	>4	4 meters			N L			A Property of	
Hardness		mg/L CaCO3	3		7110	10/	EASTERN, TOE PLUVE		
						Jan 1		19	Gran W
					N/V		1	manus man	
					WESTERN TOE PLUME	The same	1. Joseph V		
						OF IL			FIGURE 3-1
					SUTRILENA BLOCKS				2015 SURFACE WATER SAMPLING LOGATIONS
i					Brown Co. Textu		OUTFILE SE		LEGEND
									C 200 SURFACE OWITER SHAFTLE LOCATION STORMWATER OUTSIAL LOCATION
						160	WOODS TO SECURE	DARK HEJOSOVE	\$ STATE CHUCK EXTENSION OF TOERS GROWN DON'TER GREATER THRUS U.G.A. (\$454-50 AM-REE IN PERRED)
								TC TC	TCE contours from Tierra Tools (20: 5) TCE = 1 charcosthoras
						Season Season		77.6	of a contract for the
						Wall was	,		Lackheed Martin Middle River Complex Middle River, Maryland
								TAM	0 150 300 Feet À
							1		TEVECTED SHEETS (TEVTED II). JEE
						Market State		1)47	TETRA TECH
Circle if App	olicable:					Signature	e(s):		
MS/MSD	Duplicate ID No.:						,(0).	Je gha	12
	Duphouto	•			1		/	1	

Page___ of __

Project Site Project No.:		Dark Head C	ove, Midd	le River		Sample		MRC-SW5A2	
1 10,000110		1121007770				Sample		J. Mullis	
[] Stream	า					1.0.0.0		<u> </u>	
[] Spring									
[] Pond						Type of	Sample:		
[] Lake							v Concent	ration	
[X] Other	r:	Tidal creek -	freshwate	r		[] High	Concentr	ation	
[] QA Sa	mple Type:					-			
SAMPLING I									
Date:	6/13/2016	Color	pH	S.C.	Temp.	Turbidity	DO	Salinity	ORP
Time: Depth:	1318	(Visual)	(S.U.)	(mS/cm)	(°C)	(NTU)	(mg/L)	(%)	mV
Method:	1 ft below water Grab	clear	7.26	6.38	24.34	7.36	4.07	3.5	110
	LLECTION INF	ORMATIO	N:						
	Analysis		Preser	vative		Container Re	equirements	3	Collected
TCL VOCs				pH<2	3 -	40 mL glass v	ials		Yes
PCBs (680)			No	one		2 - 1L ambers			Yes
OBSERVATI	ONS / NOTES:				MAP:				
OBSERVATI	ONSTINOTES.				NIAF.	WAT?		Message Commission	
Water depth	3.2	meters			N L				
Hardness	860	mg/L CaCO3			1 -10	10/	EASTERN TOE PLL VE	CLTFAL	
					1	1		A COURT OF THE PARTY OF THE PAR	
					X				
					WESTERN TOE PLUME		100	OTRLESS SECTION FO	SURE 3-1
									15 SURFACE WATER
					SUTTRULING Broke outstall	180			MPLING LOCATIONS
							OUTPLE DE STEELE	4	200 SURBICE OWER SWINE LOCATION SHOWN THE OUTSING
						L	WESTER TO SERVE		STATE GROUP OF THE BEST OF THE
								TC.	ORESTER THAT COOL (SASHED WHERE IN PERRED) E Contour From Text Took (32-5)
						15.4		To be	- 1 dex dans - norgans pe la Lackheed Martin Middle River Complex
						IRSS.			Middle River, Maryland
							- 1		0 100 300 Feet A
					XXX		, ,		TE TETRATECH
						Western .	1		
Circle if App						Signature	e(s):	Je ghi	fi.
MS/MSD	Duplicate ID No.:	:					/	gr you	

Page___ of ___

Project Site Project No.:		Dark Head C		le River		-	ID No.:	MRC-SW5B	-061316
7 10,000 110		. 121001110				Sample		J. Mullis	
[] Stream	n					C.O.C. I	-	<u> </u>	
[] Spring									
[] Pond						Type of	Sample:		
[] Lake							v Concenti	ration	
[X] Other	r:	Tidal creek -	freshwate	r:			Concentra		
	mple Type:					0			
						-			
SAMPLING I Date:	6/13/2016	Color	рН	S.C.	Temp.	Turbidity	DO	Salinity	ORP
Time:	1322	(Visual)	(S.U.)	(mS/cm)	(°C)	(NTU)	(mg/L)	(%)	mV
Depth:	1 ft below water	clear	7.34	6.37	24.32	6.22	4.53	3.5	123
Method:	Grab	Olou.		0.0.	27.02	0	7.00	0.0	120
	LLECTION INF	ORMATIO	N:			<u>, </u>		<u></u>	
	Analysis	_	Preser			Container R			Collected
TCL VOCs				. pH<2		40 mL glass v			Yes
PCBS (680)			No	one		2 - 1L ambers	;		yes
									
									+
			<u> </u>						+
									+
									<u> </u>
			<u> </u>						
ODGEDVATI	ONG /NOTES:				MAD.				
ORSEKANII	IONS / NOTES:				MAP:	SWATE		16-1-11-11-11	Company Company
Water depth	>4	meters			W I			A CONTRACTOR OF THE PARTY OF TH	
Hardness		mg/L CaCO3	š	1	The state of	101	EASTERN. TOE PLUVE	GI THE	
				ľ	MI	J. And			23020 V
					N/V		1	MINESTRATE MINESTREE	AV
					WESTERN TOE FLUME	A Page	1		
				ŀ				conc. (com	GURE 3-1 I16 SURFACE WATER
				ľ	OUTRALING BARK SOLTHALL	100			AMPLING LOCATIONS
				ľ			OUTPLICE	/	EGEND C XXIII SURBICE (WEER SHIK PLE LOCATION
				ŀ			W00050	6	STATE OF THE STATE
						A PER	TENERO .	DARK HEIO COVE	EXTENT OF TOE IN GROUN DOWNER GREATER THIS (SUG), (SACHED WHERE IN PERRED)
				ŀ	2	A COL		105 107 108	Economina Tera Toda (D. S. E - Echarcathana L - maragrams per tar
						A STATE OF THE STA	,	1776	Lockheed Martin Middle River Complex Middle River, Maryland
						URCS		1	0 50 300 Feet }
				ľ		5/A	(- 1 to 1	A CONTROL BROOMS ARE
				1			1	V.	TE TETRATECH
Circle if App	"aabla,				No.	Cianotur	-/->:		
Circle if App						Signature	! (S):	Je ghi	1.
MS/MSD	Duplicate ID No.:						,	gr ju	

Page___ of _

Project Site	e Name:	Dark Head C	Cove, Midd	lle River		_ Sample	ID No.:	MRC-SW6A	-061316
Project No.		112IC07776	j			_	Location:	MRC-SW6A	
•						_ Sampled		J. Mullis	
[] Strear	m					C.O.C. 1	-		
[] Spring	a								
[] Pond	,					Type of	Sample:		ļ
[] Lake							w Concentr	ration	ľ
[X] Othe	er:	Tidal creek -	freshwate	i.			n Concentra		l
	ample Type:	1100. 2	1100			_ 11 3		A	ļ
						_			
SAMPLING		-			1	-			1
Date:	6/13/2016	Color	pH	S.C.	Temp.	Turbidity	DO	Salinity	ORP
Time:	1241	(Visual)	(S.U.)	(mS/cm)	(°C)	(NTU)	(mg/L)	(%)	mV
Depth: Method:	1 ft below water Grab	clear	7.24	6.32	24.6	4.3	4.15	3.4	140
	OLLECTION INF	FORMATIC	N.						
SAIVII LE S.	Analysis	ONNIATIO		rvative	T	Container Re	oguirements		Collected
TCL VOCs	Allalysis			pH<2	3 -	· 40 mL glass v			Yes
PCBS (680)			+	lone	1	2 - 1L ambers			yes
1 050 (,				31.0		Z 1= c			,,,,
			<u> </u>		<u> </u>				
				<u>-</u>					
			<u> </u>	!	<u> </u>				ļ
				'	<u> </u>			!	
			 	!	 			!	
			 		 				
ORSERVAT	TIONS / NOTES:		<u> </u>		MAP:				
ODGERT	1011071101					WATE		(6) 11 18 9 B	
Water depth	2.3	3 meters			W 3	-		A CONTRACTOR	
Hardness	840	0 mg/L CaCO3	3	1	The state of the s		EASTERN. TOE PLL WE	COPI C	MC SMA
		C		Y	MY	J. San P.	L		CESSEED (CESSEED)
				1			3 11	COURTED STREET	AV
				1	WESTERN TOE PLUME	A TOP OF	Lag V		
				1		Or III	11		URE 3-1
				ľ	CURRENCY R. OC. CO.				5 SURFACE WATER MPLING LOCATIONS
					BOOLE OLTHALL		OUTFRACTOR		GEND
				Ŧ					25th SURBICE OWIER SHUPLE LOCATION SHOWNWITH OUTTON LOCATION ON TO A COLUMN LOCATION
				P.		2016	1000000 1000000		STATE CALCE EXTENSION TO EAR GROWN DOWNER GREATER THAN GUIDA (SASHED WHERE IN PERRED)
				Ĩ	Water of			1010	(SASHED WHERE MPERRED) carboun ham "era Toch (DP S) - In charcodium - mocquans per lan
				ŗ				11 K	- margarit per la: Lackheed Martin Middle River Complex
				7		S TO A CONTROL OF THE PARTY OF	, , , , , , , , , , , , , , , , , , ,	AMIL -	Middle River, Maryland
				7		20	1	A Barrier B	0 100 300 Feet A
				7	XXX				197290 JEE
				<u> </u>		Hat Ka	1 /	()-1	TE TETRATECH
Circle if App	plicable:					Signature	e(s):	1 , 11	1
MS/MSD	Duplicate ID No.	.:				1		Je gha	2
	MRC-SWDUP2-06	31316 FOR PC	JBS AND	vocs			6	1	

Page___ of ___

Project Site Project No.:		Dark Head C 112IC07776	ove, Middl	e River		Sample Sample Sample C.O.C. N	Location: d By:	MRC-SW6B MRC-SW6B J. Mullis	-061316
[] Spring [] Pond [] Lake [X] Other		Tidal creek -	freshwater	r		Type of [x] Lov			
SAMPLING I	ΣΑΤΑ ·								
Date:	6/13/2016	Color	рН	S.C.	Temp.	Turbidity	DO	Salinity	ORP
Time:	1252	(Visual)	(S.U.)	(mS/cm)	(°C)	(NTU)	(mg/L)	(%)	mV
Depth:	1 ft below water	clear	7.33	6.31	24.7	4.9	5.64	3.4	138
Method:	Grab								
SAMPLE CO	LLECTION INF	ORMATIO	N:						
	Analysis		Preser			Container Re	equirements	1	Collected
TCL VOCs				pH<2	3 -	40 mL glass v	ials		Yes
PCBS (680)			No	ne		2 - 1L ambers			Yes
OBSERVATI	ONS / NOTES:				MAP:				
						= X1 [
Water depth	3	meters			No.		EASTERN	GTF4.	T .
Hardness	860	mg/L CaCO3			A Selle	10/	EASTERN, TOE PLUVE		CESSES VI
					100	-		OURTE OF	
					X	ALL	3	mesons (meson	
					WESTERN TOE PLUME		200	OTHER OF CHRONICS FIG	EURE 3-1
									15 SURFACE WATER
					SUTRILLIKA Broke outseld	19.9			MPLING LOCATIONS
							OUTPALLORS	6	GEND XH SURSCE (WE'ST SHK PLE LOCATION
							Wooded		STATE GALGE
						E VALUE	128000	DARK HEAD COVE	EXTENT OF TICE IN GROUP DON'TER GREGIER THAT GUIDL (BASHED WHERE IN PERRED)
						100 M		100 100 100	carteus han "era Tish (22 S) - 1 shoroshana - morganis per lar
							, ,	M	Lackheed Martin Middle River Complex Middle River, Maryland
						THE ST	ETE .		0 100 300 Feet }
						Was.	(E-11	94295 GE-2015
							ija)		TE TETRATECH
					24 SW 1	WHITE COLOR			
Circle if App	licable:					Signature	(s):	JL M	-
MS/MSD	Duplicate ID No.:		·					get gh	Ma
								1	

Page___ of __

Project Site		Dark Head C		le River		Sample		MRC-SW7A	-061316
Project No.:		112IC07776					Location:	MRC-SW7A	
[] Ctroom						Sampled C.O.C. N	•	J. Mullis	
[] Stream	ı					C.O.C. 1	NO		
[] Spring						T	0		
[] Pond						Type of	-		
[] Lake		-					w Concentr		
[X] Other		Tidal creek -	freshwate	<u>r</u>		- [] High	Concentra	ation	
	mple Type:				***************************************	-			***************************************
SAMPLING D		1 2 1	1 .,	1 00				T 2 11 16 -	1 255
Date:	6/13/2016	Color	pH (STI)	S.C.	Temp. (°C)	Turbidity	DO (ma/L)	Salinity	ORP
Time: Depth:	1218 1 ft below water	(Visual) clear	(S.U.) 6.9	(mS/cm) 6.24	24.5	(NTU) 2.41	(mg/L) 5.9	(%) 3.4	m∨ 135
Method:	Grab	Utai	0.9	0.24	24.3	2.41	J. J	3.4	135
	LLECTION INF	ORMATIO	N:						
	Analysis		Preser	rvative		Container Re	equirements	;	Collected
TCL VOCs			HCL	. pH<2	3 -	40 mL glass v			Yes
PCBS (680)			No	one		2 - 1L ambers	,		Yes
			<u> </u>						
			<u> </u>		<u> </u>				1
					 				ļ
					 				
									
					<u> </u>				
OBSERVATION	ONS / NOTES:				MAP:				
Water depth		- motore		_		= 1			
·		meters		ľ	The state of the s		EASTERN TOE PLL VIE	Q174L	100 Jan 1000 A
Hardness	820	mg/L CaCO3)			The same of the sa	REPLEME II		CERCES TO SECOND
						-	1	COUNTRY MISSING	A
					WESTERN	A STATE OF THE STA	The second		
					TE-CANE	OF IL	11	CONTROL COMMAND	GURE 3-1
					SJIRLLIK4				15 SURFACE WATER MPLING LOCATIONS
i					STRUE OUTFALL		OUTPALE DE	/	EG END
i									CONTRACTOR SAMPLE DOZION STORMWITHOUTHAL DOZION STATFORAGE
i						116	, reserve	DIRK HEIG COVE	EXPROVOS EXTENT OF TOERS GROUNDONTER ORESTER THAN (USAL GASHED WHERE IN PERRED)
i								107	Economina Terr Toda (2) 5: Ent describano La morgani per de
							la la	100	Lackheed Martin Middle River Complex
						Villa Contract	ma '	4	Middle River, Maryland 0 100 300 Feet
						44	(TO DET	A (1972) (1972) EE
					XXX		, Y		TE TETRATECH
					A SAL	Charles Co.	1		_
Circle if App	licable:					Signature	:(s):	J1 9	11 1
MS/MSD	Duplicate ID No.:	:						92 94	Mr.

Page___ of __

Project Site Project No.: [] Stream [] Spring [] Pond [] Lake [X] Othe	n	Dark Head C 112lC07776				Sampled C.O.C. N Type of [x] Lov	Location: d By: No.:		-061316
						-			
SAMPLING I					Ι				
Date:	6/13/2016	Color	pH	S.C.	Temp. (°C)	Turbidity	DO (******/L.)	Salinity	ORP
Time:	1224 1 ft below water	(Visual) clear	(S.U.) 7.1	(mS/cm) 6.28	24.32	(NTU) 5.86	(mg/L) 3.9	(%) 3.4	m∨ 128
Depth: Method:	Grab	Geal	7.1	0.26	24.32	3.00	3.9	3.4	120
SAMPLE CO	LLECTION INF	ORMATIO	N:						
	Analysis		Preser	vative		Container Re	equirements	•	Collected
TCL VOCs			HCL	pH<2	3 -	40 mL glass v	ials		Yes
PCBS (680)			No	one		2 - 1L ambers			Yes
OBSEDVATI	IONS / NOTES:				MAP:				
OBSERVATI	IONS / NOTES.				WAT.	2 1 2 7			
Water depth	2.2	meters			N L				
Hardness	840	mg/L CaCO3			واله	10	EASTERN. TOE PLL WE	GLTHAL S	
					War.			O. MARIAN	A
					WEST-RA	A STATE OF	الم الم	TO SERVICE AND ADDRESS OF THE PARTY.	1
					TOE PLUME		200	OTRUCK CONSTRA	RE3/1
									SURFACE WATER PLING LOCATIONS
					BLOCKS BRALE OUTFALL	10			BID.
							ONLEGICA		20th SUPERCE OWER SHE'RLE LOCATION STORMWATER OUTSIAL LOCATION
						N CA	W1000000	DARK HEID COVE	ETATE OF LOS EXTENSION OF ICEN GROWN DON'TER GRESTER THAN (UIGH (BACHE) WHERE IN PERRED)
								TOE	(SASHE) WHERE NIVERED) ortical from Test Toch (2) Si I charceform
				,				971	nocyani per la- ockhoed Martin Middle River Complex
						TO DE LEGIS	, 100		Aliddle River, Maryland
						200	1	7 44	100 300 Feet A
					XXX		\		SHOOM SHOOM SEE
						A STATE OF THE STA	1 1		TETRA TECH
Circle if App	licable:					Signature	e(s):	, 1	_
MS/MSD	Duplicate ID No.:						. ,	Jet Mr	h-
								1	

Page___ of ___

Project Sit Project No [] Strea [] Sprin [] Pond [] Lake	o.: am ng d	Dark Head C 112IC07489				Sampled C.O.C. N Type of S [x] Low	Location: d By: No.:	J. Mullis	
	Sample Type:	Tidal creek -	fresnware	<u>r</u>			Concenti		
SAMPLING	3 DATA:								
Date:	6/13/2016	Color	рН	S.C.	Temp.	Turbidity	DO	Salinity	ORP
Time:	1257	(Visual)	(S.U.)	(mS/cm)	(°C)	(NTU)	(mg/L)	(%)	mV
Depth: Method:	1 ft below water	clear	7.4	6.32	24.71	4.77	5.47	3.4	143
	Grab COLLECTION INF	FORMATIC	NI.						
SAMILLE		TURINATIO		rvative	T	Container Re	iroment	-	Collected
TCL VOCs	Analysis		_	pH<2	3-	· 40 mL glass vi		<u>; </u>	Yes
PCBs (680)			1	lone		2 - 1L ambers			Yes
1 020 (422,				<u> </u>		2 12 0			1.55
			<u> </u>		<u> </u>				<u> </u>
						-			
									<u> </u>
			<u> </u>		<u> </u>				
		!	 		<u> </u>				
-50EB//A	TICKS/NOTES	<u> </u>	<u> </u>		<u> </u>	***************************************			
OBSERVA	TIONS / NOTES:	<u>:</u>			MAP:			W. Committee	
Water depth Hardness		2 meters 0 mg/L CaCO3	1		WASTERN TO FILMS		ENSTEIN TOE PLI VIE		CESCOOL CESCOOL FOURE 3-4 2015 SURFACE WATER SAMPLING LOCATIONS
							CONTROL CONTRO	2000 45 02 2000 F	LEGENO 2. 2016, 1900 EWEST SAN THE LOCATION 2. 2016, 1900 EWEST SAN THE LOCATION 5. ENAPTHAL LOCATION 6. E
Circle if Ap	-					Signature	∌(S):	JL 9.	M. S.
MS/MSD	Duplicate ID No.	.:			•			gr 1	pro-

MRC-SWDUP-11242015

Page___ of _

Project Site Project No.:		Dark Head C		le River		Sample	ID No.: Location:	MRC-SW8B	-061316
Project No	•	1121007776							
[] Ctroop	•					Sampled C.O.C. N	-	J. Mullis	
[] Stream						C.O.C. 1	NO.:		
[] Spring						_ ,			
[] Pond						Type of	-	_	
[] Lake							v Concent		
[X] Othe		Tidal creek -	freshwate	r		_ [] High	Concentr	ation	
[] QA Sa	ımple Type:					_			
SAMPLING	DATA:								
Date:	6/13/2016	Color	рН	S.C.	Temp.	Turbidity	DO	Salinity	ORP
Time:	1304	(Visual)	(S.U.)	(mS/cm)	(°C)	(NTU)	(mg/L)	(%)	mV
Depth:	1 ft below water	clear	7.40	6.31	24.72	4.67	6.18	3.4	142
Method:	Grab								
SAMPLE CC	DLLECTION INF	ORMATIO			1				
	Analysis		Preser			Container Re	•	<u> </u>	Collected
TCL VOCs				. pH<2		40 mL glass v			Yes
PCBs (680)			INC	one		2 - 1L ambers			Yes
			 						
			 						
			 						
OBSERVAT	IONS / NOTES:				MAP:			-	
Motor donth	2.0	meters				- > 1			
Water depth Hardness	_	mg/L CaCO3	,		M. A. C.		EASTERN TOE PLUVE	CLTF4	
naruness	800	mg/L Cacos	•		100	100	TCE PLL VE		General All
					1	-		OME TO	
					местары	A PARTIES	الماسية الماسية	Total Trans	
					TCE PLAME		X		GURE 3-1
									115 SURFACE WATER
					OUTRALENCE BROKE OUTFALL	A. C. S.			AMPLING LOCATIONS EGEND
							OUTFALLOW COMPOSITION OF THE PERSON OF THE P	^	X NESU REACE PACES SAN PLE LOCATION
				l			WC 3/15-0		STATE OFFICE IN GROUNDONES.
							1 1200	DARK HEJO COVE	GREATER THAN 6 USAL (SACHED WHERE INFERRED)
					A CONTE	1000	i i	TO TO	Econtous han Tera Toch (22: 5) E + 1 charcethans L + macgams per ter
							, ,		Lockheed Martin Middle River Complex Middle River, Maryland
						_ nees	III 1	1	0 150 300 Feet
						A.	(- A	EVICTED 8972915 (FE-TO-FE)
				ľ			100		TE TETRATECH
Circle if App	olicable:				NOV.	Signature	e(s):		
MS/MSD	Duplicate ID No.	:					` '	JL 91	Ma
		-						1	

Page___ of __

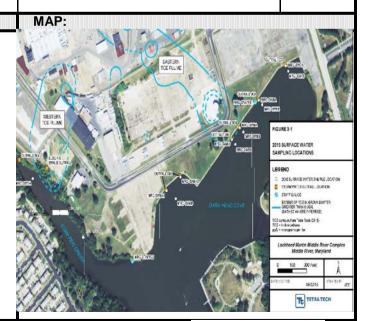
	r: mple Type:	Dark Head C 112IC07776				Sampled C.O.C. N Type of S [x] Low	Location: I By: lo.:		-061316
SAMPLING I									
Date: Time:	6/13/2016	Color	pH	S.C.	Temp. (°C)	Turbidity	DO (******(1.)	Salinity	ORP
Depth:	1229 1 ft below water	(Visual) clear	(S.U.) 7.10	(mS/cm) 6.33	24.52	(NTU) 4.88	(mg/L) 4.4	(%) 3.4	mV 136
Method:	Grab	Cleai	7.10	0.55	24.32	4.00	4.4	3.4	130
	LLECTION INF	ORMATIO	N:						
	Analysis		Preser	vative		Container Re	quirements		Collected
TCL VOCs				pH<2		40 mL glass vi	als		Yes
PCBs (680)			No	ne		2 - 1L ambers			Yes
OBSERVATI	IONS / NOTES:				MAP:				
Water depth Hardness	860	meters mg/L CaCO3			WEST FIR. TOF FLAME COTRUST VO. PROJ. O. THUS		EAST-RN TOE PLUME	OURSE NEED COVE	DURE 3-1 10 SUBFACE WATER MINING LOCATIONS ESSEND CREATION CONTROL OF THE JOST ON CONTROL OF THE MESSEN CONTROL OF THE JOST ON CONTR
Circle if App						Signature	(5):	J1 9h	the second
MS/MSD	Duplicate ID No.:							gr In	

Page___ of ___

	: :: mple Type:	Dark Head C 112IC07776 Tidal creek -				Sampled C.O.C. N Type of [x] Lov	Location: d By: No.:		-061316
SAMPLING I		Color	ьU	8.0	Toma	Turkiditu	DO	Calinity	OBB
Date: Time:	6/13/2016 1234	Color (Visual)	pH (S.U.)	S.C. (mS/cm)	Temp. (°C)	Turbidity (NTU)	DO (mg/L)	Salinity (%)	ORP mV
Depth:	1 ft below water	clear	7.20	6.3	24.63	6.58	4.4	3.4	139
Method:	Grab								
SAMPLE CO	LLECTION INF	ORMATIO	N:						
	Analysis		Preser			Container Re			Collected
TCL VOCs				pH<2		40 mL glass v			Yes
PCBs (680)			INC	ne		2 - 1L ambers			Yes
OBSERVATI	ONS / NOTES:				MAP:				
Water depth Hardness Circle if App	2.4 800	meters mg/L CaCO3			MAP: Wasters UE-1-ME Dance Dance Thomas Dance Thomas	Signature	0070.150 TERLINE 176.0050	OMERY MERCA CONS.	URE 2-1 SURFACE WATER PLAC DOCATIONS SURFACE WATER PLAC DOCATIONS SHALL
MS/MSD	Duplicate ID No.:					2.3	\ -/-	Jet Mh	Mr.
	-							/	

Page___ of _

Project Site Name: Project No.: [] Stream [] Spring [] Pond [] Lake	Dark Head C 112IC07776		le River		Sampled C.O.C. N	Location: d By: No.:	MRC-SW1A MRC-SW1A J. Mullis	-061316
[X] Other: [] QA Sample Type:	Tidal creek -	freshwate	<u>r</u>			n Concentr		
SAMPLING DATA:			4	-	1			·
Date: 6/13/2016	Color	pH	S.C.	Temp.	Turbidity	DO (************************************	Salinity	ORP
Time: 1151 Depth: 1 ft below water	(Visual)	(S.U.)	(mS/cm)	(°C) 24.2	(NTU)	(mg/L)	(%)	mV
Method: Grab	· clear	6.30	5.44	24.2	5.40	6.35	3	136
SAMPLE COLLECTION IN	FORMATIC	N:						
Analysis	• • • • • • • • • • • • • • • • • • • •	Preser	rvative		Container Re	equirement:	s	Collected
TCL VOCs			. pH<2		40 mL glass vi		<u></u>	Yes
1,4 Dioxane (522)			. pH<2		- 250 mL ambe			Yes
OBSERVATIONS / NOTES);			MAP:				
•	.4 meters 00 mg/L CaCO3	}		West only The FLASE CORPLANT BACKS BOOK STREET		EAST-SIGN TOE PLL VIE OUTSLEDS	CONTROL OF	ADJURE BAT STORY OF THE STORY
Circle if Applicable:					Signature	(e)·	J.J. Jh	Cocheed Namin Middle Rover Compiler Model Rover Maryland 10 100 300 Feet 100 300 Fee



								Page	e of	
Project Sit	te Name	Dark Head C	Cove Midd	le River		Sample	ID No ·	MRC-SW2A	-061316	
Project No		112IC07776	•	io ravoi		_	Location:	MRC-SW2A		
1 10,000 110		1121001110				Sample		J. Mullis		-
[] Strea	ım					C.O.C. N	•	o. Ividilio		•
[] Sprin						0.0.0.1	10			•
[] Pond	~					Type of	Sample:			
[] Lake						• •	v Concenti	ration		
[X] Oth		Tidal creek -	freshwate	r		[] High				
	Sample Type:	Tidal Cicck	Ticsriwate			_ 1, 1,1911	Concenti	ation		
ij wh	ampie Type.					_				
SAMPLING	DATA:									
Date:	6/13/2016	Color	рН	S.C.	Temp.	Turbidity	DO	Salinity	ORP	
Time:	1158	(Visual)	(S.U.)	(mS/cm)	(°C)	(NTU)	(mg/L)	(%)	mV	
Depth:	1 ft below water	clear	6.7	6.02	24.54	6.22	5.47	3.3	149	
Method:	Grab								1	
SAMPLE C	OLLECTION IN	FORMATIO	N:							
	A a l i a		Dunner			Cantainas Da	!		Callagead	تنسد

Analysis	Preservative	Container Requirements	Collected
TCL VOCs	HCL pH<2	3 - 40 mL glass vials	Yes
1,4 Dioxane	HCL pH<2	2 - 250 mL ambers	Yes

OBSERVATIONS / NOTES:

Water depth 0.45 meters
Hardness 720 mg/L CaCO3

Circle if App	licable:	Signature(s):
MS/MSD	Duplicate ID No.:	

MRC-SWDUP1-061316 FOR 1,4-DIOXANE ONLY

Jet Juli

APPENDIX B—	-DATA-VALIDAT	ION REPORT ((ON CD)	

INTERNAL CORRESPONDENCE

TO: M. MARTIN DATE: JULY 25, 2016

FROM: L. GANSER COPIES: DV FILE

SUBJECT: DATA VALIDATION - VOC, 1,4-DIOXANE, AND PCB HOMOLOGS

LOCKHEED MARTIN CORPORATION (LMC) - MIDDLE RIVER COMPLEX (MRC)

SDG 240-65994-1

SAMPLES: 17/Aqueous/

MRC-SW1A-061316	MRC-SW2A-061316	MRC-SW5A1-061316
MRC-SW5A2-061316	MRC-SW5B-061316	MRC-SW6A-061316
MRC-SW6B-061316	MRC-SW7A-061316	MRC-SW7B-061316
MRC-SW8A-061316	MRC-SW8B-061316	MRC-SW9A-061316
MRC-SW9B-061316	MRC-SWDUP1-061316	MRC-SWDUP2-061316

MRC-SWFB-061316 TB-061316

Overview

The sample set for LMC-MRC, SDG 240-65994-1 consisted of fifteen (15) aqueous environmental samples, one (1) field blank, and one (1) trip blank. All samples, except MRC-SWDUP1-061316 were analyzed for volatile organic compounds (VOC). Samples MRC-SW1A-061316, MRC-SW2A-061316, and MRC-SWDUP1-061316 were analyzed for 1,4-dioxane. Polychlorinated biphenyl (PCB) homologs were analyzed in all samples, except MRC-SW1A-061316, MRC-SW2A-061316, and MRC-SWDUP1-061316. The trip blank (TB-061316) was only analyzed for VOC. The field blank (MRC-SWFB-061316) was analyzed for VOC, 1,4-dioxane, and PCB homologs. Two field duplicate sample pairs were included in this SDG: MRC-SWDUP1-061316 / MRC-SW2A-061316 and MRC-SWDUP2-061316 / MRC-SW6A-061316.

The samples were collected by Tetra Tech, Inc. on June 13, 2016 and analyzed by TestAmerica, Inc. All analyses were conducted in accordance with SW-846 Methods 8260C for VOC and EPA methods 522 for 1,4-dioxane and 680 for PCB homologs analytical and reporting protocols.

The data contained in this SDG were validated with regard to the following parameters: data completeness, holding times, GC/MS tuning, initial/continuing calibrations, laboratory method/preparation blanks, surrogate spike recoveries, laboratory control sample/laboratory control sample duplicate results, chromatographic resolution, field duplicate precision, analyte identification, analyte quantitation, detection limits, and field duplicate precision. Areas of concern are listed below.

Major

No major issues were noted.

Minor

- Continuing calibration percent difference (%D) greater than 20 percent was noted for dichlorodifluoromethane, chloromethane, bromomethane, trichlorofluoromethane, and 1,2-dibromo-3-chloropropane on 6/20/2016 at 9:34 on instrument A3UX11 affecting all samples except MRC-SW1A-061316, MRC-SW2A-061316, MRC-SWDUP2-061316, the trip blank, and the field blank. The chloromethane result in sample MRC-SW7B-061316 was not affected as this parameter was reanalyzed. The nondetected results for these parameters in the affected samples were qualified as estimated (UJ).
- Continuing calibration %D greater than 20 percent was noted for dichlorodifluoromethane,

TO: M. MARTIN PAGE 2 SDG: 240-65994-1

chloromethane, dichlorofluoromethane, trichlorofluoromethane, and 1,2-dibromo-3-chloropropane on 6/20/2016 at 12:47 on instrument A3UX16 affecting samples MRC-SW1A-061316, MRC-SW2A-061316, MRC-SWDUP2-061316, the trip blank, and the field blank. The nondetected results for these parameters in the affected samples were qualified as estimated (UJ).

 Detected results reported below the Reporting Limit (RL) limit but above the Method Detection Limit (MDL) were qualified as estimated, (J).

Notes

VOC LCS %R was greater than QC limits for methylene chloride affecting samples in analysis batch 235154. No action was taken as methylene chloride results was in any sample.

The laboratory noted that there was insufficient sample volume to perform a VOC matrix spike/matrix spike duplicate associated with sample MRC-SW7B-061316.

Non-detected results were reported to the MDL.

Executive Summary

Laboratory Performance: Calibration noncompliance was noted for select VOCs.

Other Factors Affecting Data Quality: None.

The data for these analyses were reviewed with reference to the "National Functional Guidelines for Organic Review" (August 2014). The text of this report has been formulated to address only those areas affecting data quality.

Tetra Tech, Inc. Leanne Ganser

Environmental Scientist/Data Validator

canne M. Ja

Tetra Tech, Inc.
Joseph A. Samchuck
Data Validation Manager

Attachments:

Appendix A – Qualified Analytical Results

Appendix B – Results as Reported by the Laboratory

Appendix C – Support Documentation

Appendix A

Qualified Analytical Results

Qualifier Codes:

A = Lab Blank Contamination

B = Field Blank Contamination

C = Calibration Noncompliance (i.e., % RSDs, %Ds, ICVs, CCVs, RRFs, etc.)

C01 = GC/MS Tuning Noncompliance

D = MS/MSD Recovery Noncompliance

E = LCS/LCSD Recovery Noncompliance

F = Lab Duplicate Imprecision

G = Field Duplicate Imprecision

H = Holding Time Exceedance

I = ICP Serial Dilution Noncompliance

J = ICP PDS Recovery Noncompliance; MSA's r < 0.995

K = ICP Interference - includes ICS % R Noncompliance

L = Instrument Calibration Range Exceedance

M = Sample Preservation Noncompliance

N = Internal Standard Noncompliance

N01 = Internal Standard Recovery Noncompliance Dioxins

N02 = Recovery Standard Noncompliance Dioxins

N03 = Clean-up Standard Noncompliance Dioxins

O = Poor Instrument Performance (i.e., base-time drifting)

P = Uncertainty near detection limit (< 2 x IDL for inorganics and <CRQL for organics)

Q = Other problems (can encompass a number of issues; i.e.chromatography,interferences, etc.)

R = Surrogates Recovery Noncompliance

S = Pesticide/PCB Resolution

T = % Breakdown Noncompliance for DDT and Endrin

U = RPD between columns/detectors >40% for positive results determined via GC/HPLC

V = Non-linear calibrations; correlation coefficient r < 0.995

W = EMPC result

X = Signal to noise response drop

Y = Percent solids <30%

Z = Uncertainty at 2 standard deviations is greater than sample activity

Z1 = Tentatively Identified Compound considered presumptively present

Z2 = Tentatively Identified Compound column bleed

Z3 = Tentatively Identified Compound aldol condensate

Z4 = Sample activity is less than the at uncertainty at 3 standard deviations and greater than the MDC

Z5 = Sample activity is less than the at uncertainty at 3 standard deviations and less than the MDC

PROJ_NO: 07776	NSAMPLE	MRC-SW1A-0	61316		MRC-SW2A-0	61316		MRC-SW5A1-	061316		MRC-SW5A2-	061316	
SDG: 240-65994-1	LAB_ID	240-65996-2			240-65996-3			240-65994-1			240-65994-2		
FRACTION: OV	SAMP_DATE	6/13/2016			6/13/2016			6/13/2016			6/13/2016		
MEDIA: WATER	QC_TYPE	NM			NM			NM			NM		
	UNITS	UG/L			UG/L			UG/L			UG/L		
	PCT_SOLIDS	0.0			0.0			0.0			0.0		
	DUP_OF												
PARAMETER		RESULT	VQL	QLCD	RESULT	VQL	QLCD	RESULT	VQL	QLCD	RESULT	VQL	QLCD
1,1,1-TRICHLOROETHAN	E	0.44	U		0.44	U		0.44	U		0.44	U	
1,1,2,2-TETRACHLOROE	ΓHANE	0.22	U		0.22	U		0.22	U		0.22	U	
1,1,2-TRICHLOROETHAN	E	0.24	U		0.24	U		0.24	U		0.24	U	
1,1,2-TRICHLOROTRIFLU	OROETHANE	0.45	U		0.45	U		0.45	U		0.45	U	
1,1-DICHLOROETHANE		0.3	U		0.3	U		0.3	U		0.3	U	
1,1-DICHLOROETHENE		0.45			0.45			0.45			0.45		
1,2,4-TRICHLOROBENZE	NE	0.32			0.32			0.32			0.32		
1,2-DIBROMO-3-CHLORO	PROPANE	0.82		С	0.82		С	0.82		С	0.82		С
1,2-DIBROMOETHANE		0.32	U		0.32	U		0.32	U		0.32	U	
1,2-DICHLOROBENZENE		0.25	U		0.25	U		0.25	U		0.25	U	
1,2-DICHLOROETHANE		0.23	U		0.23	U		0.23	U		0.23	U	
1,2-DICHLOROPROPANE		0.25	U		0.25	U		0.25	U		0.25	U	
1,3-DICHLOROBENZENE		0.19	U		0.19	U		0.19	U		0.19	U	
1,4-DICHLOROBENZENE		0.27	U		0.27	U		0.27	U		0.27	U	
2-BUTANONE		0.53	U		0.53	U		0.53	U		0.53	U	
2-HEXANONE		0.48	U		0.48	U		0.48	U		0.48	U	
4-METHYL-2-PENTANONI	Ε	0.99	U		0.99	U		0.99	U		0.99	U	
ACETONE		0.94	U		0.94	U		0.94	U		0.94	U	
BENZENE		0.35	U		0.35	U		0.35	U		0.35	U	
BROMODICHLOROMETH	ANE	0.29	U		0.29	U		0.29	U		0.29	U	
BROMOFORM		0.56	U		0.56	U		0.56	U		0.56	U	
BROMOMETHANE		0.44	U		0.44	U		0.44	UJ	С	0.44	UJ	С
CARBON DISULFIDE		0.38	U		0.38	U		0.38	U		0.38	U	
CARBON TETRACHLORIE	DE	0.43	U		0.43	U		0.43	U		0.43	U	
CHLOROBENZENE		0.25	U		0.25			0.25			0.25		
CHLORODIBROMOMETH	ANE	0.43	U		0.43	U		0.43	U		0.43	U	
CHLOROETHANE		0.32	U		0.32	U		0.32	U		0.32	U	
CHLOROFORM		0.25			0.25			0.25			0.25		
CHLOROMETHANE		0.44		С	0.44		С	0.44		С	0.44		С
CIS-1,2-DICHLOROETHE	NE	0.26			0.26			0.26			0.26		
CIS-1,3-DICHLOROPROP	ENE	0.46			0.46			0.46			0.46		
CYCLOHEXANE		0.45			0.45			0.45			0.45		
DICHLORODIFLUOROME	THANE	0.32		С	0.32		С	0.32		С	0.32		С
ETHYLBENZENE		0.25			0.25			0.25			0.25		
ISOPROPYLBENZENE		0.35	U		0.35	U		0.35	U		0.35	U	

PROJ_NO: 07776	NSAMPLE	MRC-SW5B-0	61316		MRC-SW6A-0	61316		MRC-SW6B-0	61316		MRC-SW7A-0	61316	
SDG: 240-65994-1	LAB_ID	240-65994-3			240-65994-4			240-65994-5			240-65994-6		
FRACTION: OV	SAMP_DATE	6/13/2016			6/13/2016			6/13/2016			6/13/2016		
MEDIA: WATER	QC_TYPE	NM			NM			NM			NM		
	UNITS	UG/L			UG/L			UG/L			UG/L		
	PCT_SOLIDS	0.0			0.0			0.0			0.0		
	DUP_OF												
PARAMETER		RESULT	VQL	QLCD									
1,1,1-TRICHLOROETHAN	E	0.44	U										
1,1,2,2-TETRACHLOROE	THANE	0.22	U										
1,1,2-TRICHLOROETHAN	E	0.24	U										
1,1,2-TRICHLOROTRIFLU	IOROETHANE	0.45	U										
1,1-DICHLOROETHANE		0.3	U		0.3	U		0.3	U		0.3	U	
1,1-DICHLOROETHENE		0.45	U		0.45	U		0.45	U		0.45	U	
1,2,4-TRICHLOROBENZE	NE	0.32	U										
1,2-DIBROMO-3-CHLORC	PROPANE	0.82	UJ	С									
1,2-DIBROMOETHANE		0.32	U		0.32	U		0.32	U		0.32	U	
1,2-DICHLOROBENZENE		0.25	U		0.25	U		0.25	U		0.25	U	
1,2-DICHLOROETHANE		0.23	U		0.23	U		0.23	U		0.23	U	
1,2-DICHLOROPROPANE		0.25	U		0.25	U		0.25	U		0.25	U	
1,3-DICHLOROBENZENE		0.19	U		0.19	U		0.19	U		0.19	U	
1,4-DICHLOROBENZENE		0.27	U		0.27	U		0.27	U		0.27	U	
2-BUTANONE		0.53	U		0.53	U		0.53	U		0.53	U	
2-HEXANONE		0.48	U		0.48	U		0.48	U		0.48	U	
4-METHYL-2-PENTANON	E	0.99	U										
ACETONE		0.94	U		0.94	U		0.94	U		0.94	U	
BENZENE		0.35	U		0.35	U		0.35	U		0.35	U	
BROMODICHLOROMETH	IANE	0.29	U										
BROMOFORM		0.56	U		0.56	U		0.56	U		0.56	U	
BROMOMETHANE		0.44		С	0.44	UJ	С	0.44	UJ	С	0.44	UJ	С
CARBON DISULFIDE		0.38	U		0.38	U		0.38	U		0.38	U	
CARBON TETRACHLORII	DE	0.43	U										
CHLOROBENZENE		0.25	U		0.25	U		0.25	U		0.25	U	
CHLORODIBROMOMETH	IANE	0.43	U										
CHLOROETHANE		0.32	U		0.32	U		0.32	U		0.32	U	
CHLOROFORM		0.25	U		0.25	U		0.25	U		0.25	U	
CHLOROMETHANE		0.44		С									
CIS-1,2-DICHLOROETHE	NE	0.26	U										
CIS-1,3-DICHLOROPROP	ENE	0.46	U										
CYCLOHEXANE		0.45	U		0.45	U		0.45	U		0.45	U	
DICHLORODIFLUOROME	THANE	0.32	UJ	С	0.32	UJ	С	0.32	UJ	С	0.32		С
ETHYLBENZENE		0.25			0.25			0.25			0.25		
ISOPROPYLBENZENE		0.35	U		0.35	U		0.35	U		0.35	U	

PROJ_NO: 07776	NSAMPLE	MRC-SW7B-0	61316		MRC-SW8A-0	61316		MRC-SW8B-0	61316		MRC-SW9A-0	61316	
SDG: 240-65994-1	LAB_ID	240-65994-7			240-65994-8			240-65994-9			240-65994-10		
FRACTION: OV	SAMP_DATE	6/13/2016			6/13/2016			6/13/2016			6/13/2016		
MEDIA: WATER	QC_TYPE	NM			NM			NM			NM		
	UNITS	UG/L			UG/L			UG/L			UG/L		
	PCT_SOLIDS	0.0			0.0			0.0			0.0		
	DUP_OF												
PARAMETER		RESULT	VQL	QLCD	RESULT	VQL	QLCD	RESULT	VQL	QLCD	RESULT	VQL	QLCD
1,1,1-TRICHLOROETHAN	E	0.44	U		0.44	U		0.44	U		0.44	U	
1,1,2,2-TETRACHLOROE	THANE	0.22	U		0.22	U		0.22	U		0.22	U	
1,1,2-TRICHLOROETHAN	E	0.24	U		0.24	U		0.24	U		0.24	U	
1,1,2-TRICHLOROTRIFLU	IOROETHANE	0.45	U		0.45	U		0.45	U		0.45	U	
1,1-DICHLOROETHANE		0.3	U		0.3	U		0.3	U		0.3	U	
1,1-DICHLOROETHENE		0.45	U		0.45	U		0.45	U		0.45	U	
1,2,4-TRICHLOROBENZE	NE	0.32	U		0.32	U		0.32	U		0.32	U	
1,2-DIBROMO-3-CHLORC	PROPANE	0.82	UJ	С	0.82	UJ	С	0.82	UJ	С	0.82	UJ	С
1,2-DIBROMOETHANE		0.32	U		0.32	U		0.32	U		0.32	U	
1,2-DICHLOROBENZENE		0.25	U		0.25	U		0.25	U		0.25	U	
1,2-DICHLOROETHANE		0.23	U		0.23	U		0.23	U		0.23	U	
1,2-DICHLOROPROPANE		0.25	U		0.25	U		0.25	U		0.25	U	
1,3-DICHLOROBENZENE		0.19	U		0.19	U		0.19	U		0.19	U	
1,4-DICHLOROBENZENE		0.27	U		0.27	U		0.27	U		0.27	U	
2-BUTANONE		0.53	U		0.53	U		0.53	U		0.53	U	
2-HEXANONE		0.48	U		0.48	U		0.48	U		0.48	U	
4-METHYL-2-PENTANON	E	0.99	U		0.99	U		0.99	U		0.99	U	
ACETONE		2.2	J	Р	0.94	U		0.94	U		0.94	U	
BENZENE		0.35	U		0.35	U		0.35	U		0.35	U	
BROMODICHLOROMETH	IANE	0.29	U		0.29	U		0.29	U		0.29	U	
BROMOFORM		0.56	U		0.56			0.56	U		0.56	U	
BROMOMETHANE		0.44		С	0.44	UJ	С	0.44	UJ	С	0.44	UJ	С
CARBON DISULFIDE		0.38			0.38			0.38			0.38		
CARBON TETRACHLORII	DE	0.43			0.43			0.43			0.43		
CHLOROBENZENE		0.25	U		0.25			0.25			0.25		
CHLORODIBROMOMETH	IANE	0.43			0.43			0.43			0.43		
CHLOROETHANE		0.32	U		0.32	U		0.32	U		0.32	U	
CHLOROFORM		0.25	U		0.25			0.25			0.25		
CHLOROMETHANE		1.1			0.44		С	0.44		С	0.44		С
CIS-1,2-DICHLOROETHE		0.26			0.26			0.26			0.26		
CIS-1,3-DICHLOROPROP	ENE	0.46			0.46			0.46			0.46		
CYCLOHEXANE		0.45			0.45			0.45			0.45		
DICHLORODIFLUOROME	THANE	0.32		С	0.32		С	0.32		С	0.32		С
ETHYLBENZENE		0.25			0.25			0.25			0.25		
ISOPROPYLBENZENE		0.35	U		0.35	U		0.35	U		0.35	U	

PROJ_NO: 07776	NSAMPLE	MRC-SW9B-0	51316		MRC-SWDUP	2-06131	6	MRC-SWFB-0	61316		TB-061316		
SDG: 240-65994-1	LAB_ID	240-65994-11			240-65996-5			240-65996-1			240-65996-4		
FRACTION: OV	SAMP_DATE	6/13/2016			6/13/2016			6/13/2016			6/13/2016		
MEDIA: WATER	QC_TYPE	NM			FD			NM			ТВ		
	UNITS	UG/L			UG/L			UG/L			UG/L		
	PCT_SOLIDS	0.0			0.0			0.0			0.0		
	DUP_OF				MRC-SW6A-0	51316							
PARAMETER		RESULT	VQL	QLCD	RESULT	VQL	QLCD	RESULT	VQL	QLCD	RESULT	VQL	QLCD
1,1,1-TRICHLOROETHAN	E	0.44	U		0.44	U		0.44	U		0.44	U	
1,1,2,2-TETRACHLOROET	HANE	0.22	U		0.22	U		0.22	U		0.22	U	
1,1,2-TRICHLOROETHAN	E	0.24	U		0.24	U		0.24	U		0.24	U	
1,1,2-TRICHLOROTRIFLU	OROETHANE	0.45	U		0.45			0.45			0.45		
1,1-DICHLOROETHANE		0.3	U		0.3	U		0.3	U		0.3	U	
1,1-DICHLOROETHENE		0.45	U		0.45			0.45			0.45		
1,2,4-TRICHLOROBENZE	NE	0.32			0.32			0.32	_		0.32		
1,2-DIBROMO-3-CHLORO	PROPANE	0.82	UJ	С	0.82	UJ	С	0.82	UJ	С	0.82		С
1,2-DIBROMOETHANE		0.32	U		0.32	U		0.32	U		0.32	U	
1,2-DICHLOROBENZENE		0.25	U		0.25	U		0.25			0.25		
1,2-DICHLOROETHANE		0.23	U		0.23			0.23	U		0.23		
1,2-DICHLOROPROPANE		0.25	U		0.25			0.25	U		0.25	U	
1,3-DICHLOROBENZENE		0.19	U		0.19	U		0.19	U		0.19		
1,4-DICHLOROBENZENE		0.27	U		0.27	U		0.27	U		0.27		
2-BUTANONE		0.53	U		0.53			0.53	U		0.53	U	
2-HEXANONE		0.48	U		0.48			0.48	U		0.48	U	
4-METHYL-2-PENTANONE		0.99	U		0.99	U		0.99	U		0.99	U	
ACETONE		0.94			0.94			1.2	-	Р	1.6		Р
BENZENE		0.35	U		0.35	U		0.35	U		0.35	U	
BROMODICHLOROMETH	ANE	0.29	U		0.29			0.46	J	Р	0.46	_	Р
BROMOFORM		0.56			0.56			0.56			0.56	U	
BROMOMETHANE		0.44		С	0.44			0.44			0.44		
CARBON DISULFIDE		0.38			0.38			0.38			0.38	_	
CARBON TETRACHLORIE	DE	0.43			0.43			0.43	_		0.43	_	
CHLOROBENZENE		0.25			0.25			0.25			0.25	_	
CHLORODIBROMOMETH	ANE	0.43			0.43			0.43			0.43		
CHLOROETHANE		0.32			0.32			0.32			0.32		
CHLOROFORM		0.25			0.25			3.9			3.7		
CHLOROMETHANE		0.44		С	0.44		С	0.44		С	0.44		С
CIS-1,2-DICHLOROETHE		0.26			0.26			0.26			0.26		
CIS-1,3-DICHLOROPROP	ENE	0.46			0.46			0.46	_	ļ	0.46		
CYCLOHEXANE		0.45			0.45			0.45		ļ	0.45		
DICHLORODIFLUOROME	THANE	0.32		С	0.32		С	0.32		С	0.32		С
ETHYLBENZENE		0.25			0.25			0.25		ļ	0.25		
ISOPROPYLBENZENE		0.35	U		0.35	U		0.35	U	<u> </u>	0.35	U	

PROJ_NO: 07776	NSAMPLE	MRC-SW1A-0	61316		MRC-SW2A-0	61316		MRC-SW5A1-	061316	3	MRC-SW5A2-	061316	3
SDG: 240-65994-1	LAB_ID	240-65996-2			240-65996-3	240-65996-3					240-65994-2		
FRACTION: OV	SAMP_DATE	6/13/2016	6/13/2016			6/13/2016			6/13/2016				
MEDIA: WATER	QC_TYPE	NM			NM			NM			NM		
	UNITS	UG/L			UG/L			UG/L			UG/L		
	PCT_SOLIDS	0.0			0.0			0.0			0.0		
	DUP_OF												
PARAMETER		RESULT	VQL	QLCD	RESULT	VQL	QLCD	RESULT	VQL	QLCD	RESULT	VQL	QLCD
METHYL ACETATE		2.3	U		2.3	U		2.3	U		2.3	U	
METHYL CYCLOHEXA	NE	0.43	U		0.43	U		0.43	U		0.43	U	
METHYL TERT-BUTYL	ETHER	0.2	U		0.2	U		0.2	U		0.2	U	
METHYLENE CHLORIC	DE	0.33	U		0.33	U		0.33	U		0.33	U	
STYRENE		0.45	U		0.45	U		0.45	U		0.45	U	
TETRACHLOROETHEN	NE .	0.31	U		0.31	U		0.31	U		0.31	U	
TOLUENE		0.23	U		0.23	U		0.23	U		0.23	U	
TOTAL XYLENES		0.52	U		0.52	U		0.52	U		0.52	U	
TRANS-1,2-DICHLORO	ETHENE	0.3	U		0.3	U		0.3	U		0.3	U	
TRANS-1,3-DICHLORO	PROPENE	0.56	U		0.56	U		0.56	U		0.56	U	
TRICHLOROETHENE		0.22	U		0.22	U		0.22	U		0.22	U	
TRICHLOROFLUOROM	1ETHANE	0.49	UJ	С	0.49	UJ	С	0.49	UJ	С	0.49	UJ	С
VINYL CHLORIDE	·	0.29	U		0.29	U		0.29	U		0.29	U	

PROJ_NO: 07776	NSAMPLE	MRC-SW5B-0	61316		MRC-SW6A-0	61316		MRC-SW6B-0	61316		MRC-SW7A-0	61316	
SDG: 240-65994-1	LAB_ID	240-65994-3			240-65994-4			240-65994-5			240-65994-6		
FRACTION: OV	SAMP_DATE	6/13/2016			6/13/2016			6/13/2016			6/13/2016		
MEDIA: WATER	QC_TYPE	NM			NM			NM			NM		
	UNITS	UG/L			UG/L			UG/L			UG/L		
	PCT_SOLIDS	0.0			0.0			0.0			0.0		
	DUP_OF												
PARAMETER		RESULT	VQL	QLCD									
METHYL ACETATE		2.3	U		2.3	U		2.3	U		2.3	U	
METHYL CYCLOHEXAN	NE	0.43	U										
METHYL TERT-BUTYL	ETHER	0.2	U										
METHYLENE CHLORID	E	0.33	U										
STYRENE		0.45	U		0.45	U		0.45	U		0.45	U	
TETRACHLOROETHEN	E	0.31	U										
TOLUENE		0.23	U		0.23	U		0.23	U		0.23	U	
TOTAL XYLENES		0.52	U		0.52	U		0.52	U		0.52	U	
TRANS-1,2-DICHLORO	ETHENE	0.3	U										
TRANS-1,3-DICHLORO	PROPENE	0.56	U										
TRICHLOROETHENE	·	0.22	U		0.26	J	Р	0.49	J	Р	0.22	U	
TRICHLOROFLUOROM	ETHANE	0.49	UJ	С									
VINYL CHLORIDE		0.29	U		0.29	U		0.29	U		0.29	U	

PROJ_NO: 07776	NSAMPLE	MRC-SW7B-0	61316		MRC-SW8A-0	61316		MRC-SW8B-0	61316		MRC-SW9A-0	61316	
SDG: 240-65994-1	LAB_ID	240-65994-7			240-65994-8			240-65994-9			240-65994-10		
FRACTION: OV	SAMP_DATE	6/13/2016				6/13/2016			6/13/2016				
MEDIA: WATER	QC_TYPE	NM			NM			NM			NM		
	UNITS	UG/L			UG/L			UG/L			UG/L		
	PCT_SOLIDS	0.0			0.0			0.0			0.0		
	DUP_OF												
PARAMETER		RESULT	VQL	QLCD	RESULT	VQL	QLCD	RESULT	VQL	QLCD	RESULT	VQL	QLCD
METHYL ACETATE		2.3	U		2.3	U		2.3	U		2.3	U	
METHYL CYCLOHEXA	NE	0.43	U		0.43	U		0.43	U		0.43	U	
METHYL TERT-BUTYL	ETHER	0.2	U		0.2	U		0.2	U		0.2	U	
METHYLENE CHLORIC	E	0.33	U		0.33	U		0.33	U		0.33	U	
STYRENE		0.45	U		0.45	U		0.45	U		0.45	U	
TETRACHLOROETHEN	IE .	0.31	U		0.31	U		0.31	U		0.31	U	
TOLUENE		0.23	U		0.23	U		0.23	U		0.23	U	
TOTAL XYLENES		0.52	U		0.52	U		0.52	U		0.52	U	
TRANS-1,2-DICHLORO	ETHENE	0.3	U		0.3	U		0.3	U		0.3	U	
TRANS-1,3-DICHLORO	PROPENE	0.56	U		0.56	U		0.56	U		0.56	U	
TRICHLOROETHENE	·	0.22	U		0.48	J	Р	0.42	J	Р	0.22	U	
TRICHLOROFLUOROM	IETHANE	0.49	UJ	С	0.49	UJ	С	0.49	UJ	С	0.49	UJ	С
VINYL CHLORIDE		0.29	U		0.29	U		0.29	U		0.29	U	

PROJ_NO: 07776	NSAMPLE	MRC-SW9B-0	61316		MRC-SWDUP	2-06131	16	MRC-SWFB-0	61316		TB-061316		
SDG: 240-65994-1	LAB_ID	240-65994-11			240-65996-5			240-65996-1			240-65996-4		
FRACTION: OV	SAMP_DATE	6/13/2016			6/13/2016			6/13/2016			6/13/2016		
MEDIA: WATER	QC_TYPE	NM			FD			NM			ТВ		
	UNITS	UG/L			UG/L			UG/L			UG/L		
	PCT_SOLIDS	0.0			0.0			0.0			0.0		
	DUP_OF				MRC-SW6A-0	61316							
PARAMETER		RESULT	VQL	QLCD	RESULT	VQL	QLCD	RESULT	VQL	QLCD	RESULT	VQL	QLCD
METHYL ACETATE		2.3	U		2.3	U		2.3	U		2.3	U	
METHYL CYCLOHEXAN	E	0.43	U		0.43	U		0.43	U		0.43	U	
METHYL TERT-BUTYL E	THER	0.2	U		0.2	U		0.2	U		0.2	U	
METHYLENE CHLORIDE		0.33	U		0.33	U		0.33	U		0.33	U	
STYRENE		0.45	U		0.45	U		0.45	U		0.45	U	
TETRACHLOROETHENE		0.31	U		0.31	U		0.31	U		0.31	U	
TOLUENE		0.23	U		0.23	U		1.8			1.6		
TOTAL XYLENES		0.52	U		0.52	U		1.1	J	Р	0.78	J	Р
TRANS-1,2-DICHLOROE	THENE	0.3	U		0.3	U		0.3	U		0.3	U	
TRANS-1,3-DICHLOROP	ROPENE	0.56	U		0.56	U		0.56	U		0.56	U	
TRICHLOROETHENE		0.22	U		0.25	J	Р	0.22	U		0.22	U	
TRICHLOROFLUOROME	THANE	0.49	UJ	С	0.49	UJ	С	0.49	UJ	С	0.49	UJ	С
VINYL CHLORIDE		0.29	U		0.29	U		0.29	U		0.29	U	

PROJ_NO: 07776	NSAMPLE	MRC-SW1A-0	61316		MRC-SW2A-0	61316		MRC-SWDUP	1-06131	6	MRC-SWFB-0	61316	
SDG: 240-65994-1	LAB_ID	240-65996-2			240-65996-3			240-65994-12			240-65996-1		
FRACTION: OS	SAMP_DATE	6/13/2016			6/13/2016			6/13/2016			6/13/2016		
MEDIA: WATER	QC_TYPE	NM			NM			NM			NM		
	UNITS	UG/L			UG/L			UG/L			UG/L		
	PCT_SOLIDS	0.0			0.0			0.0			0.0		
	DUP_OF							MRC-SW2A-0	61316				
PARAMETER		RESULT	VQL	QLCD	RESULT	VQL	QLCD	RESULT	VQL	QLCD	RESULT	VQL	QLCD
1,4-DIOXANE		0.13	J	Р	0.16	J	Р	0.12	J	Р	0.057	U	

1 of 1 7/29/2016

PROJ_NO: 07776	NSAMPLE	MRC-SW5A1-0	061316		MRC-SW5A2-	061316		MRC-SW5B-0	61316		MRC-SW6A-0	61316		
SDG: 240-65994-1	LAB_ID	240-65994-1	0-65994-1 240		240-65994-2	240-65994-2		240-65994-3			240-65994-4			
FRACTION: PCB	SAMP_DATE	6/13/2016			6/13/2016	6/13/2016		6/13/2016	6/13/2016			6/13/2016		
MEDIA: WATER	QC_TYPE	NM			NM			NM			NM			
	UNITS	UG/L	JG/L UG		UG/L		UG/L			UG/L				
	PCT_SOLIDS	0.0			0.0			0.0			0.0			
	DUP_OF													
PARAMETER		RESULT	VQL	QLCD	RESULT	VQL	QLCD	RESULT	VQL	QLCD	RESULT	VQL	QLCD	
DECACHLOROBIPHENYL		0.069	U		0.069	U		0.067	U		0.067	U		
DICHLOROBIPHENYLS		0.0054	U		0.0053	U		0.0052	U		0.0052	U		
HEPTACHLOROBIPHENYL	.S	0.03	U		0.029	U		0.029	U		0.029	U		
HEXACHLOROBIPHENYLS	3	0.015	U		0.015	U		0.014	U		0.014	U		
MONOCHLOROBIPHENYL	S	0.0056	U		0.0055	U		0.0054	U		0.0054	U		
NONACHLOROBIPHENYL	3	0.049	U		0.048	U		0.047	U		0.047	U		
OCTACHLOROBIPHENYLS	3	0.038	U		0.037	U		0.037	U		0.037	U		
PENTACHLOROBIPHENYL	S	0.014	U		0.014	U		0.013	U		0.013	U		
TETRACHLOROBIPHENYL	.S	0.013	U		0.013	U		0.013	U		0.013	U		
TRICHLOROBIPHENYLS		0.0064	U		0.0064	U		0.0063	U		0.0063	U		

PROJ_NO: 07776	NSAMPLE	MRC-SW6B-06	61316		MRC-SW7A-0	61316		MRC-SW7B-0	61316		MRC-SW8A-0	61316	
SDG: 240-65994-1	LAB_ID	240-65994-5)-65994-5 240		240-65994-6	240-65994-6		240-65994-7			240-65994-8		
FRACTION: PCB	SAMP_DATE	6/13/2016			6/13/2016	6/13/2016		6/13/2016			6/13/2016		
MEDIA: WATER	QC_TYPE	NM			NM			NM			NM		
	UNITS	UG/L	G/L UG,		UG/L	UG/L		UG/L			UG/L		
	PCT_SOLIDS	0.0			0.0			0.0			0.0		
	DUP_OF												
PARAMETER		RESULT	VQL	QLCD	RESULT	VQL	QLCD	RESULT	VQL	QLCD	RESULT	VQL	QLCD
DECACHLOROBIPHENYL		0.067	U		0.07	U		0.069	U		0.067	U	
DICHLOROBIPHENYLS		0.0052	U		0.0054	U		0.0053	U		0.0052	U	
HEPTACHLOROBIPHENYL	.S	0.029	U		0.03	U		0.03	U		0.029	U	
HEXACHLOROBIPHENYLS	3	0.014	U		0.015	U		0.015	U		0.014	U	
MONOCHLOROBIPHENYL	S	0.0054	U		0.0056	U		0.0055	U		0.0054	U	
NONACHLOROBIPHENYL	S	0.047	U		0.049	U		0.048	U		0.047	U	
OCTACHLOROBIPHENYLS	3	0.036	U		0.038	U		0.038	U		0.037	U	
PENTACHLOROBIPHENYL	S	0.036	J	Р	0.014	U		0.014	U		0.013	U	
TETRACHLOROBIPHENYL	.S	0.012	U		0.013	U		0.013	U		0.013	U	
TRICHLOROBIPHENYLS		0.0062	U		0.0065	U		0.0064	U		0.0063	U	

PROJ_NO: 07776	NSAMPLE	MRC-SW8B-06	61316		MRC-SW9A-0	61316		MRC-SW9B-0	61316		MRC-SWDUP2-061316			
SDG: 240-65994-1	LAB_ID	240-65994-9)-65994-9 240		240-65994-10	240-65994-10		240-65994-11	240-65994-11			240-65996-5		
FRACTION: PCB	SAMP_DATE	6/13/2016			6/13/2016	6/13/2016		6/13/2016	6/13/2016			6/13/2016		
MEDIA: WATER	QC_TYPE	NM			NM			NM			FD			
	UNITS	UG/L	G/L UG		UG/L		UG/L			UG/L				
	PCT_SOLIDS	0.0	.0 0.0		0.0			0.0			0.0			
	DUP_OF										MRC-SW6A-0	61316		
PARAMETER		RESULT	VQL	QLCD	RESULT	VQL	QLCD	RESULT	VQL	QLCD	RESULT	VQL	QLCD	
DECACHLOROBIPHENYL		0.069	U		0.067	U		0.067	U		0.068	U		
DICHLOROBIPHENYLS		0.0054	U		0.0052	U		0.0052	U		0.0052	U		
HEPTACHLOROBIPHENYL	S	0.03	U		0.029	U		0.029	U		0.029	U		
HEXACHLOROBIPHENYLS	3	0.015	U		0.014	U		0.014	U		0.014	U		
MONOCHLOROBIPHENYL	S	0.0056	U		0.0054	U		0.0054	U		0.0054	U		
NONACHLOROBIPHENYL	3	0.049	U		0.047	U		0.047	U		0.047	U		
OCTACHLOROBIPHENYLS	8	0.038	U		0.037	U		0.037	U		0.037	U		
PENTACHLOROBIPHENYL	S	0.014	U		0.013	U		0.013	U		0.014	U		
TETRACHLOROBIPHENYL	.S	0.013	U		0.013	U		0.013	U		0.013	U		
TRICHLOROBIPHENYLS		0.0064	U		0.0063	U		0.0063	U		0.0063	U		

PROJ_NO: 07776	NSAMPLE	MRC-SWFB-0	61316			
SDG: 240-65994-1	LAB_ID	240-65996-1				
FRACTION: PCB	SAMP_DATE	6/13/2016				
MEDIA: WATER	QC_TYPE	NM				
	UNITS	UG/L				
	PCT_SOLIDS	0.0				
	DUP_OF					
PARAMETER		RESULT	VQL	QLCD		
DECACHLOROBIPHENYL		0.069	U			
DICHLOROBIPHENYLS		0.0053	U			
HEPTACHLOROBIPHENYL	S	0.03	U			
HEXACHLOROBIPHENYLS	;	0.015	U			
MONOCHLOROBIPHENYL	S	0.0055	U			
NONACHLOROBIPHENYLS	3	0.048	U			
OCTACHLOROBIPHENYLS		0.038	U			
PENTACHLOROBIPHENYLS		0.014	U			
TETRACHLOROBIPHENYLS		0.013	U			
TRICHLOROBIPHENYLS	<u> </u>	0.0064	U			

Appendix B

Results as Reported by the Laboratory

FORM I GC/MS VOA ORGANICS ANALYSIS DATA SHEET

Lab Name: TestAmerica Canton	_ Job No.: 240-65994-1
SDG No.:	
Client Sample ID: MRC-SW5A1-061316	Lab Sample ID: 240-65994-1
Matrix: Water	Lab File ID: UXJ5610.D
Analysis Method: 8260C	Date Collected: 06/13/2016 13:13
Sample wt/vol: 5(mL)	Date Analyzed: 06/20/2016 13:13
Soil Aliquot Vol:	Dilution Factor: 1
Soil Extract Vol.:	GC Column: DB-624 ID: 0.18(mm)
% Moisture:	Level: (low/med) Low
Analysis Batch No.: 235154	Units: ug/L

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
71-55-6	1,1,1-Trichloroethane	1.0	U	1.0	0.44
79-34-5	1,1,2,2-Tetrachloroethane	1.0	U	1.0	0.22
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethan e	1.0	U	1.0	0.45
79-00-5	1,1,2-Trichloroethane	1.0	U	1.0	0.24
75-34-3	1,1-Dichloroethane	1.0	U	1.0	0.30
75-35-4	1,1-Dichloroethene	1.0	U	1.0	0.45
120-82-1	1,2,4-Trichlorobenzene	1.0	U	1.0	0.32
96-12-8	1,2-Dibromo-3-Chloropropane	2.0	U	2.0	0.82
106-93-4	Ethylene Dibromide	1.0	U	1.0	0.32
95-50-1	1,2-Dichlorobenzene	1.0	U	1.0	0.25
107-06-2	1,2-Dichloroethane	1.0	U	1.0	0.23
78-87-5	1,2-Dichloropropane	1.0	U	1.0	0.25
541-73-1	1,3-Dichlorobenzene	1.0	U	1.0	0.19
106-46-7	1,4-Dichlorobenzene	1.0	U	1.0	0.27
78-93-3	2-Butanone (MEK)	10	U	10	0.53
591-78-6	2-Hexanone	10	U	10	0.48
108-10-1	4-Methyl-2-pentanone (MIBK)	10	U	10	0.99
67-64-1	Acetone	10	U	10	0.94
71-43-2	Benzene	1.0	U	1.0	0.35
75-27-4	Dichlorobromomethane	1.0	U	1.0	0.29
75-25-2	Bromoform	1.0	U	1.0	0.56
74-83-9	Bromomethane	1.0	U	1.0	0.44
75-15-0	Carbon disulfide	1.0	U	1.0	0.38
56-23-5	Carbon tetrachloride	1.0	U	1.0	0.43
108-90-7	Chlorobenzene	1.0	U	1.0	0.25
75-00-3	Chloroethane	1.0	U	1.0	0.32
67-66-3	Chloroform	1.0	U	1.0	0.25
74-87-3	Chloromethane	1.0	U	1.0	0.44
156-59-2	cis-1,2-Dichloroethene	1.0	U	1.0	0.26
10061-01-5	cis-1,3-Dichloropropene	1.0	U	1.0	0.46
110-82-7	Cyclohexane	1.0	U	1.0	0.45
124-48-1	Chlorodibromomethane	1.0	U	1.0	0.43
75-71-8	Dichlorodifluoromethane	1.0	U	1.0	0.32
100-41-4	Ethylbenzene	1.0	U	1.0	0.25
98-82-8	Isopropylbenzene	1.0	U	1.0	0.35

FORM I GC/MS VOA ORGANICS ANALYSIS DATA SHEET

SDG No.:		
Client Sample ID: MRC-SW5A1-061316	Lab Sample ID: 240-65994	4-1
Matrix: Water	Lab File ID: UXJ5610.D	
Analysis Method: 8260C	Date Collected: 06/13/20	016 13:13
Sample wt/vol: 5(mL)	Date Analyzed: 06/20/20	16 13:13
Soil Aliquot Vol:	Dilution Factor: 1	
Soil Extract Vol.:	GC Column: DB-624	ID: 0.18(mm)

% Moisture: _____ Level: (low/med) <u>Low</u>

Lab Name: TestAmerica Canton Job No.: 240-65994-1

Analysis Batch No.: 235154 Units: ug/L

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
79-20-9	Methyl acetate	10	U	10	2.3
1634-04-4	Methyl tert-butyl ether	1.0	U	1.0	0.20
108-87-2	Methylcyclohexane	1.0	U	1.0	0.43
75-09-2	Methylene Chloride	1.0	U *	1.0	0.33
100-42-5	Styrene	1.0	U	1.0	0.45
127-18-4	Tetrachloroethene	1.0	U	1.0	0.31
108-88-3	Toluene	1.0	U	1.0	0.23
156-60-5	trans-1,2-Dichloroethene	1.0	U	1.0	0.30
10061-02-6	trans-1,3-Dichloropropene	1.0	U	1.0	0.56
79-01-6	Trichloroethene	1.0	U	1.0	0.22
75-69-4	Trichlorofluoromethane	1.0	U	1.0	0.49
75-01-4	Vinyl chloride	1.0	U	1.0	0.29
1330-20-7	Xylenes, Total	2.0	U	2.0	0.52

CAS NO.	SURROGATE	%REC	Q	LIMITS
2037-26-5	Toluene-d8 (Surr)	90		80-120
1868-53-7	Dibromofluoromethane (Surr)	92		79-120
460-00-4	4-Bromofluorobenzene (Surr)	86		61-120
17060-07-0	1,2-Dichloroethane-d4 (Surr)	96		78-125

FORM I GC/MS VOA ORGANICS ANALYSIS DATA SHEET

Lab Name: TestAmerica Canton	Job No.: 240-65994-1	
SDG No.:		
Client Sample ID: MRC-SW5A2-061316	Lab Sample ID: 240-6599	4-2
Matrix: Water	Lab File ID: UXJ5611.D	
Analysis Method: 8260C	Date Collected: 06/13/2	016 13:18
Sample wt/vol: 5(mL)	Date Analyzed: 06/20/20	16 13:35
Soil Aliquot Vol:	Dilution Factor: 1	
Soil Extract Vol.:	GC Column: DB-624	ID: 0.18 (mm)
% Moisture:	Level: (low/med) Low	
Analysis Batch No • 22515/	IInitat na/I	

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
71-55-6	1,1,1-Trichloroethane	1.0	U	1.0	0.44
79-34-5	1,1,2,2-Tetrachloroethane	1.0	U	1.0	0.22
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethan	1.0	Ū	1.0	0.45
79-00-5	1,1,2-Trichloroethane	1.0	U	1.0	0.24
75-34-3	1,1-Dichloroethane	1.0	U	1.0	0.30
75-35-4	1,1-Dichloroethene	1.0	U	1.0	0.45
120-82-1	1,2,4-Trichlorobenzene	1.0	U	1.0	0.32
96-12-8	1,2-Dibromo-3-Chloropropane	2.0	U	2.0	0.82
106-93-4	Ethylene Dibromide	1.0	U	1.0	0.32
95-50-1	1,2-Dichlorobenzene	1.0	U	1.0	0.25
107-06-2	1,2-Dichloroethane	1.0	U	1.0	0.23
78-87-5	1,2-Dichloropropane	1.0	U	1.0	0.25
541-73-1	1,3-Dichlorobenzene	1.0	U	1.0	0.19
106-46-7	1,4-Dichlorobenzene	1.0	U	1.0	0.27
78-93-3	2-Butanone (MEK)	10	U	10	0.53
591-78-6	2-Hexanone	10	U	10	0.48
108-10-1	4-Methyl-2-pentanone (MIBK)	10	U	10	0.99
67-64-1	Acetone	10	U	10	0.94
71-43-2	Benzene	1.0	U	1.0	0.35
75-27-4	Dichlorobromomethane	1.0	U	1.0	0.29
75-25-2	Bromoform	1.0	U	1.0	0.56
74-83-9	Bromomethane	1.0	U	1.0	0.44
75-15-0	Carbon disulfide	1.0	U	1.0	0.38
56-23-5	Carbon tetrachloride	1.0	U	1.0	0.43
108-90-7	Chlorobenzene	1.0	U	1.0	0.25
75-00-3	Chloroethane	1.0	U	1.0	0.32
67-66-3	Chloroform	1.0	U	1.0	0.25
74-87-3	Chloromethane	1.0	U	1.0	0.44
156-59-2	cis-1,2-Dichloroethene	1.0	U	1.0	0.26
10061-01-5	cis-1,3-Dichloropropene	1.0	U	1.0	0.46
110-82-7	Cyclohexane	1.0	U	1.0	0.45
124-48-1	Chlorodibromomethane	1.0	U	1.0	0.43
75-71-8	Dichlorodifluoromethane	1.0	U	1.0	0.32
100-41-4	Ethylbenzene	1.0	U	1.0	0.25
98-82-8	Isopropylbenzene	1.0	U	1.0	0.35

FORM I GC/MS VOA ORGANICS ANALYSIS DATA SHEET

 SDG No.:
 Client Sample ID: MRC-SW5A2-061316
 Lab Sample ID: 240-65994-2

 Matrix: Water
 Lab File ID: UXJ5611.D

 Analysis Method: 8260C
 Date Collected: 06/13/2016 13:18

Sample wt/vol: 5(mL) Date Analyzed: 06/20/2016 13:35

Soil Aliquot Vol: Dilution Factor: 1

Lab Name: TestAmerica Canton Job No.: 240-65994-1

Soil Extract Vol.: _____ GC Column: <u>DB-624</u> ID: <u>0.18(mm)</u>

% Moisture: _____ Level: (low/med) <u>Low</u>

Analysis Batch No.: 235154 Units: ug/L

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
79-20-9	Methyl acetate	10	U	10	2.3
1634-04-4	Methyl tert-butyl ether	1.0	U	1.0	0.20
108-87-2	Methylcyclohexane	1.0	U	1.0	0.43
75-09-2	Methylene Chloride	1.0	U *	1.0	0.33
100-42-5	Styrene	1.0	U	1.0	0.45
127-18-4	Tetrachloroethene	1.0	U	1.0	0.31
108-88-3	Toluene	1.0	U	1.0	0.23
156-60-5	trans-1,2-Dichloroethene	1.0	U	1.0	0.30
10061-02-6	trans-1,3-Dichloropropene	1.0	U	1.0	0.56
79-01-6	Trichloroethene	1.0	U	1.0	0.22
75-69-4	Trichlorofluoromethane	1.0	U	1.0	0.49
75-01-4	Vinyl chloride	1.0	U	1.0	0.29
1330-20-7	Xylenes, Total	2.0	U	2.0	0.52

CAS NO.	SURROGATE	%REC	Q	LIMITS
2037-26-5	Toluene-d8 (Surr)	94		80-120
1868-53-7	Dibromofluoromethane (Surr)	93		79-120
460-00-4	4-Bromofluorobenzene (Surr)	89		61-120
17060-07-0	1,2-Dichloroethane-d4 (Surr)	97		78-125

Lab Name: TestAmerica Canton	Job No.: 240-65994-1				
SDG No.:					
Client Sample ID: MRC-SW5B-061316	Lab Sample ID: 240-65994-3				
Matrix: Water	Lab File ID: UXJ5612.D				
Analysis Method: 8260C	Date Collected: 06/13/2016 13:22				
Sample wt/vol: 5(mL)	Date Analyzed: 06/20/2016 13:57				
Soil Aliquot Vol:	Dilution Factor: 1				
Soil Extract Vol.:	GC Column: DB-624 ID: 0.18(mm)				
% Moisture:	Level: (low/med) Low				
Analysis Batch No.: 235154 Units: ug/L					

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
71-55-6	1,1,1-Trichloroethane	1.0	U	1.0	0.44
79-34-5	1,1,2,2-Tetrachloroethane	1.0	U	1.0	0.22
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethan e	1.0	U	1.0	0.45
79-00-5	1,1,2-Trichloroethane	1.0	U	1.0	0.24
75-34-3	1,1-Dichloroethane	1.0	U	1.0	0.30
75-35-4	1,1-Dichloroethene	1.0	U	1.0	0.45
120-82-1	1,2,4-Trichlorobenzene	1.0	U	1.0	0.32
96-12-8	1,2-Dibromo-3-Chloropropane	2.0	U	2.0	0.82
106-93-4	Ethylene Dibromide	1.0	U	1.0	0.32
95-50-1	1,2-Dichlorobenzene	1.0	U	1.0	0.25
107-06-2	1,2-Dichloroethane	1.0	U	1.0	0.23
78-87-5	1,2-Dichloropropane	1.0	U	1.0	0.25
541-73-1	1,3-Dichlorobenzene	1.0	U	1.0	0.19
106-46-7	1,4-Dichlorobenzene	1.0	U	1.0	0.27
78-93-3	2-Butanone (MEK)	10	U	10	0.53
591-78-6	2-Hexanone	10	U	10	0.48
108-10-1	4-Methyl-2-pentanone (MIBK)	10	U	10	0.99
67-64-1	Acetone	10	U	10	0.94
71-43-2	Benzene	1.0	U	1.0	0.35
75-27-4	Dichlorobromomethane	1.0	U	1.0	0.29
75-25-2	Bromoform	1.0	U	1.0	0.56
74-83-9	Bromomethane	1.0	U	1.0	0.44
75-15-0	Carbon disulfide	1.0	U	1.0	0.38
56-23-5	Carbon tetrachloride	1.0	U	1.0	0.43
108-90-7	Chlorobenzene	1.0	U	1.0	0.25
75-00-3	Chloroethane	1.0	U	1.0	0.32
67-66-3	Chloroform	1.0	U	1.0	0.25
74-87-3	Chloromethane	1.0	U	1.0	0.44
156-59-2	cis-1,2-Dichloroethene	1.0	U	1.0	0.26
10061-01-5	cis-1,3-Dichloropropene	1.0	U	1.0	0.46
110-82-7	Cyclohexane	1.0	U	1.0	0.45
124-48-1	Chlorodibromomethane	1.0	U	1.0	0.43
75-71-8	Dichlorodifluoromethane	1.0	U	1.0	0.32
100-41-4	Ethylbenzene	1.0	U	1.0	0.25
98-82-8	Isopropylbenzene	1.0	U	1.0	0.35

 SDG No.:

 Client Sample ID: MRC-SW5B-061316
 Lab Sample ID: 240-65994-3

 Matrix: Water
 Lab File ID: UXJ5612.D

 Analysis Method: 8260C
 Date Collected: 06/13/2016 13:22

 Sample wt/vol: 5(mL)
 Date Analyzed: 06/20/2016 13:57

Soil Aliquot Vol: _____ Dilution Factor: 1_____

Lab Name: TestAmerica Canton Job No.: 240-65994-1

Soil Extract Vol.: _____ GC Column: <u>DB-624</u> ID: <u>0.18(mm)</u>

% Moisture: _____ Level: (low/med) <u>Low</u>

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
79-20-9	Methyl acetate	10	U	10	2.3
1634-04-4	Methyl tert-butyl ether	1.0	U	1.0	0.20
108-87-2	Methylcyclohexane	1.0	U	1.0	0.43
75-09-2	Methylene Chloride	1.0	Π *	1.0	0.33
100-42-5	Styrene	1.0	U	1.0	0.45
127-18-4	Tetrachloroethene	1.0	U	1.0	0.31
108-88-3	Toluene	1.0	U	1.0	0.23
156-60-5	trans-1,2-Dichloroethene	1.0	U	1.0	0.30
10061-02-6	trans-1,3-Dichloropropene	1.0	U	1.0	0.56
79-01-6	Trichloroethene	1.0	U	1.0	0.22
75-69-4	Trichlorofluoromethane	1.0	U	1.0	0.49
75-01-4	Vinyl chloride	1.0	U	1.0	0.29
1330-20-7	Xylenes, Total	2.0	U	2.0	0.52

CAS NO.	SURROGATE	%REC	Q	LIMITS
2037-26-5	Toluene-d8 (Surr)	90		80-120
1868-53-7	Dibromofluoromethane (Surr)	93		79-120
460-00-4	4-Bromofluorobenzene (Surr)	85		61-120
17060-07-0	1,2-Dichloroethane-d4 (Surr)	95		78-125

Lab Name: TestAmerica Canton	_ Job No.: <u>240-65994-1</u>				
SDG No.:					
Client Sample ID: MRC-SW6A-061316	Lab Sample ID: 240-65994-4				
Matrix: Water	Lab File ID: UXJ5613.D				
Analysis Method: 8260C	Date Collected: 06/13/2016 12:41				
Sample wt/vol: 5(mL)	Date Analyzed: 06/20/2016 14:20				
Soil Aliquot Vol:	Dilution Factor: 1				
Soil Extract Vol.:	GC Column: DB-624 ID: 0.18(mm)				
% Moisture:	Level: (low/med) Low				
Analysis Batch No.: 235154	235154 Units: ug/L				

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
71-55-6	1,1,1-Trichloroethane	1.0	U	1.0	0.44
79-34-5	1,1,2,2-Tetrachloroethane	1.0	U	1.0	0.22
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethan	1.0	Ū	1.0	0.45
79-00-5	1,1,2-Trichloroethane	1.0	U	1.0	0.24
75-34-3	1,1-Dichloroethane	1.0	U	1.0	0.30
75-35-4	1,1-Dichloroethene	1.0	U	1.0	0.45
120-82-1	1,2,4-Trichlorobenzene	1.0	U	1.0	0.32
96-12-8	1,2-Dibromo-3-Chloropropane	2.0	U	2.0	0.82
106-93-4	Ethylene Dibromide	1.0	U	1.0	0.32
95-50-1	1,2-Dichlorobenzene	1.0	U	1.0	0.25
107-06-2	1,2-Dichloroethane	1.0	U	1.0	0.23
78-87-5	1,2-Dichloropropane	1.0	U	1.0	0.25
541-73-1	1,3-Dichlorobenzene	1.0	U	1.0	0.19
106-46-7	1,4-Dichlorobenzene	1.0	U	1.0	0.27
78-93-3	2-Butanone (MEK)	10	U	10	0.53
591-78-6	2-Hexanone	10	U	10	0.48
108-10-1	4-Methyl-2-pentanone (MIBK)	10	U	10	0.99
67-64-1	Acetone	10	U	10	0.94
71-43-2	Benzene	1.0	U	1.0	0.35
75-27-4	Dichlorobromomethane	1.0	U	1.0	0.29
75-25-2	Bromoform	1.0	U	1.0	0.56
74-83-9	Bromomethane	1.0	U	1.0	0.44
75-15-0	Carbon disulfide	1.0	U	1.0	0.38
56-23-5	Carbon tetrachloride	1.0	U	1.0	0.43
108-90-7	Chlorobenzene	1.0	U	1.0	0.25
75-00-3	Chloroethane	1.0	U	1.0	0.32
67-66-3	Chloroform	1.0	U	1.0	0.25
74-87-3	Chloromethane	1.0	U	1.0	0.44
156-59-2	cis-1,2-Dichloroethene	1.0	U	1.0	0.26
10061-01-5	cis-1,3-Dichloropropene	1.0	U	1.0	0.46
110-82-7	Cyclohexane	1.0	U	1.0	0.45
124-48-1	Chlorodibromomethane	1.0	U	1.0	0.43
75-71-8	Dichlorodifluoromethane	1.0	U	1.0	0.32
100-41-4	Ethylbenzene	1.0	U	1.0	0.25
98-82-8	Isopropylbenzene	1.0	U	1.0	0.35

 SDG No.:
 Client Sample ID: MRC-SW6A-061316
 Lab Sample ID: 240-65994-4

 Matrix: Water
 Lab File ID: UXJ5613.D

 Analysis Method: 8260C
 Date Collected: 06/13/2016 12:41

Sample wt/vol: 5(mL)

Date Analyzed: 06/20/2016 14:20

Soil Aliquot Vol: Dilution Factor: 1

Lab Name: TestAmerica Canton Job No.: 240-65994-1

Soil Extract Vol.: _____ GC Column: <u>DB-624</u> ID: <u>0.18(mm)</u>

% Moisture: _____ Level: (low/med) <u>Low</u>

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
79-20-9	Methyl acetate	10	U	10	2.3
1634-04-4	Methyl tert-butyl ether	1.0	U	1.0	0.20
108-87-2	Methylcyclohexane	1.0	U	1.0	0.43
75-09-2	Methylene Chloride	1.0	Π *	1.0	0.33
100-42-5	Styrene	1.0	U	1.0	0.45
127-18-4	Tetrachloroethene	1.0	U	1.0	0.31
108-88-3	Toluene	1.0	U	1.0	0.23
156-60-5	trans-1,2-Dichloroethene	1.0	U	1.0	0.30
10061-02-6	trans-1,3-Dichloropropene	1.0	U	1.0	0.56
79-01-6	Trichloroethene	0.26	J	1.0	0.22
75-69-4	Trichlorofluoromethane	1.0	U	1.0	0.49
75-01-4	Vinyl chloride	1.0	U	1.0	0.29
1330-20-7	Xylenes, Total	2.0	U	2.0	0.52

CAS NO.	SURROGATE	%REC	Q	LIMITS
2037-26-5	Toluene-d8 (Surr)	91		80-120
1868-53-7	Dibromofluoromethane (Surr)	93		79-120
460-00-4	4-Bromofluorobenzene (Surr)	86		61-120
17060-07-0	1,2-Dichloroethane-d4 (Surr)	96		78-125

Lab Name: TestAmerica Canton	Job No.: 240-65994-1				
SDG No.:					
Client Sample ID: MRC-SW6B-061316	Lab Sample ID: 240-65994-5				
Matrix: Water	Lab File ID: UXJ5614.D				
Analysis Method: 8260C	Date Collected: 06/13/2016 12:52				
Sample wt/vol: 5(mL)	Date Analyzed: 06/20/2016 14:43				
Soil Aliquot Vol:	Dilution Factor: 1				
Soil Extract Vol.:	GC Column: DB-624 ID: 0.18(mm)				
% Moisture:	Level: (low/med) Low				
Analysis Batch No.: 235154	Units: ug/L				

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
71-55-6	1,1,1-Trichloroethane	1.0	U	1.0	0.44
79-34-5	1,1,2,2-Tetrachloroethane	1.0	U	1.0	0.22
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethan	1.0	Ū	1.0	0.45
79-00-5	1,1,2-Trichloroethane	1.0	U	1.0	0.24
75-34-3	1,1-Dichloroethane	1.0	U	1.0	0.30
75-35-4	1,1-Dichloroethene	1.0	U	1.0	0.45
120-82-1	1,2,4-Trichlorobenzene	1.0	U	1.0	0.32
96-12-8	1,2-Dibromo-3-Chloropropane	2.0	U	2.0	0.82
106-93-4	Ethylene Dibromide	1.0	U	1.0	0.32
95-50-1	1,2-Dichlorobenzene	1.0	U	1.0	0.25
107-06-2	1,2-Dichloroethane	1.0	U	1.0	0.23
78-87-5	1,2-Dichloropropane	1.0	U	1.0	0.25
541-73-1	1,3-Dichlorobenzene	1.0	U	1.0	0.19
106-46-7	1,4-Dichlorobenzene	1.0	U	1.0	0.27
78-93-3	2-Butanone (MEK)	10	U	10	0.53
591-78-6	2-Hexanone	10	U	10	0.48
108-10-1	4-Methyl-2-pentanone (MIBK)	10	U	10	0.99
67-64-1	Acetone	10	U	10	0.94
71-43-2	Benzene	1.0	U	1.0	0.35
75-27-4	Dichlorobromomethane	1.0	U	1.0	0.29
75-25-2	Bromoform	1.0	U	1.0	0.56
74-83-9	Bromomethane	1.0	U	1.0	0.44
75-15-0	Carbon disulfide	1.0	U	1.0	0.38
56-23-5	Carbon tetrachloride	1.0	U	1.0	0.43
108-90-7	Chlorobenzene	1.0	U	1.0	0.25
75-00-3	Chloroethane	1.0	U	1.0	0.32
67-66-3	Chloroform	1.0	U	1.0	0.25
74-87-3	Chloromethane	1.0	U	1.0	0.44
156-59-2	cis-1,2-Dichloroethene	1.0	U	1.0	0.26
10061-01-5	cis-1,3-Dichloropropene	1.0	U	1.0	0.46
110-82-7	Cyclohexane	1.0	U	1.0	0.45
124-48-1	Chlorodibromomethane	1.0	U	1.0	0.43
75-71-8	Dichlorodifluoromethane	1.0	U	1.0	0.32
100-41-4	Ethylbenzene	1.0	U	1.0	0.25
98-82-8	Isopropylbenzene	1.0	U	1.0	0.35

 SDG No.:

 Client Sample ID: MRC-SW6B-061316
 Lab Sample ID: 240-65994-5

 Matrix: Water
 Lab File ID: UXJ5614.D

 Analysis Method: 8260C
 Date Collected: 06/13/2016 12:52

 Sample wt/vol: 5(mL)
 Date Analyzed: 06/20/2016 14:43

Soil Aliquot Vol: _____ Dilution Factor: 1_____

Lab Name: TestAmerica Canton Job No.: 240-65994-1

Soil Extract Vol.: _____ GC Column: <u>DB-624</u> ID: <u>0.18 (mm)</u>

% Moisture: _____ Level: (low/med) <u>Low</u>

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
79-20-9	Methyl acetate	10	U	10	2.3
1634-04-4	Methyl tert-butyl ether	1.0	U	1.0	0.20
108-87-2	Methylcyclohexane	1.0	U	1.0	0.43
75-09-2	Methylene Chloride	1.0	U *	1.0	0.33
100-42-5	Styrene	1.0	U	1.0	0.45
127-18-4	Tetrachloroethene	1.0	U	1.0	0.31
108-88-3	Toluene	1.0	U	1.0	0.23
156-60-5	trans-1,2-Dichloroethene	1.0	U	1.0	0.30
10061-02-6	trans-1,3-Dichloropropene	1.0	U	1.0	0.56
79-01-6	Trichloroethene	0.49	J	1.0	0.22
75-69-4	Trichlorofluoromethane	1.0	U	1.0	0.49
75-01-4	Vinyl chloride	1.0	U	1.0	0.29
1330-20-7	Xylenes, Total	2.0	U	2.0	0.52

CAS NO.	SURROGATE	%REC	Q	LIMITS
2037-26-5	Toluene-d8 (Surr)	110		80-120
1868-53-7	Dibromofluoromethane (Surr)	113		79-120
460-00-4	4-Bromofluorobenzene (Surr)	104		61-120
17060-07-0	1,2-Dichloroethane-d4 (Surr)	115		78-125

Lab Name: TestAmerica Canton	Job No.: 240-65994-1	
SDG No.:		
Client Sample ID: MRC-SW7A-061316	Lab Sample ID: 240-65994-6	
Matrix: Water	Lab File ID: UXJ5615.D	
Analysis Method: 8260C	Date Collected: 06/13/2016 12:18	
Sample wt/vol: 5(mL)	Date Analyzed: 06/20/2016 15:05	
Soil Aliquot Vol:	Dilution Factor: 1	
Soil Extract Vol.:	GC Column: DB-624 ID: 0.18 (mm)	
% Moisture:	Level: (low/med) Low	
Analysis Batch No.: 235154	Units: ug/L	

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
71-55-6	1,1,1-Trichloroethane	1.0	U	1.0	0.44
79-34-5	1,1,2,2-Tetrachloroethane	1.0	U	1.0	0.22
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethan	1.0	Ū	1.0	0.45
79-00-5	1,1,2-Trichloroethane	1.0	U	1.0	0.24
75-34-3	1,1-Dichloroethane	1.0	U	1.0	0.30
75-35-4	1,1-Dichloroethene	1.0	U	1.0	0.45
120-82-1	1,2,4-Trichlorobenzene	1.0	U	1.0	0.32
96-12-8	1,2-Dibromo-3-Chloropropane	2.0	U	2.0	0.82
106-93-4	Ethylene Dibromide	1.0	U	1.0	0.32
95-50-1	1,2-Dichlorobenzene	1.0	U	1.0	0.25
107-06-2	1,2-Dichloroethane	1.0	U	1.0	0.23
78-87-5	1,2-Dichloropropane	1.0	U	1.0	0.25
541-73-1	1,3-Dichlorobenzene	1.0	U	1.0	0.19
106-46-7	1,4-Dichlorobenzene	1.0	U	1.0	0.27
78-93-3	2-Butanone (MEK)	10	U	10	0.53
591-78-6	2-Hexanone	10	U	10	0.48
108-10-1	4-Methyl-2-pentanone (MIBK)	10	U	10	0.99
67-64-1	Acetone	10	U	10	0.94
71-43-2	Benzene	1.0	U	1.0	0.35
75-27-4	Dichlorobromomethane	1.0	U	1.0	0.29
75-25-2	Bromoform	1.0	U	1.0	0.56
74-83-9	Bromomethane	1.0	U	1.0	0.44
75-15-0	Carbon disulfide	1.0	U	1.0	0.38
56-23-5	Carbon tetrachloride	1.0	U	1.0	0.43
108-90-7	Chlorobenzene	1.0	U	1.0	0.25
75-00-3	Chloroethane	1.0	U	1.0	0.32
67-66-3	Chloroform	1.0	U	1.0	0.25
74-87-3	Chloromethane	1.0	U	1.0	0.44
156-59-2	cis-1,2-Dichloroethene	1.0	U	1.0	0.26
10061-01-5	cis-1,3-Dichloropropene	1.0	U	1.0	0.46
110-82-7	Cyclohexane	1.0	U	1.0	0.45
124-48-1	Chlorodibromomethane	1.0	U	1.0	0.43
75-71-8	Dichlorodifluoromethane	1.0	U	1.0	0.32
100-41-4	Ethylbenzene	1.0	U	1.0	0.25
98-82-8	Isopropylbenzene	1.0	U	1.0	0.35

SDG No.: Client Sample ID: MRC-SW7A-061316 Lab Sample ID: 240-65994-6 Matrix: Water Lab File ID: UXJ5615.D Analysis Method: 8260C Date Collected: 06/13/2016 12:18

Date Analyzed: 06/20/2016 15:05 Sample wt/vol: 5(mL)

Dilution Factor: 1 Soil Aliquot Vol:

Lab Name: TestAmerica Canton Job No.: 240-65994-1

Soil Extract Vol.: _____ GC Column: <u>DB-624</u> ID: <u>0.18(mm)</u>

% Moisture: _____ Level: (low/med) <u>Low</u>

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
79-20-9	Methyl acetate	10	U	10	2.3
1634-04-4	Methyl tert-butyl ether	1.0	U	1.0	0.20
108-87-2	Methylcyclohexane	1.0	U	1.0	0.43
75-09-2	Methylene Chloride	1.0	U *	1.0	0.33
100-42-5	Styrene	1.0	U	1.0	0.45
127-18-4	Tetrachloroethene	1.0	U	1.0	0.31
108-88-3	Toluene	1.0	U	1.0	0.23
156-60-5	trans-1,2-Dichloroethene	1.0	U	1.0	0.30
10061-02-6	trans-1,3-Dichloropropene	1.0	U	1.0	0.56
79-01-6	Trichloroethene	1.0	U	1.0	0.22
75-69-4	Trichlorofluoromethane	1.0	U	1.0	0.49
75-01-4	Vinyl chloride	1.0	U	1.0	0.29
1330-20-7	Xylenes, Total	2.0	U	2.0	0.52

CAS NO.	SURROGATE	%REC	Q	LIMITS
2037-26-5	Toluene-d8 (Surr)	89		80-120
1868-53-7	Dibromofluoromethane (Surr)	91		79-120
460-00-4	4-Bromofluorobenzene (Surr)	83		61-120
17060-07-0	1,2-Dichloroethane-d4 (Surr)	96		78-125

Lab Name: TestAmerica Canton	Job No.: <u>240-65994-1</u>
SDG No.:	
Client Sample ID: MRC-SW7B-061316	Lab Sample ID: 240-65994-7
Matrix: Water	Lab File ID: UXJ5616.D
Analysis Method: 8260C	Date Collected: 06/13/2016 12:24
Sample wt/vol: 5(mL)	Date Analyzed: 06/20/2016 15:27
Soil Aliquot Vol:	Dilution Factor: 1
Soil Extract Vol.:	GC Column: DB-624 ID: 0.18(mm)
% Moisture:	Level: (low/med) Low
Analysis Batch No.: 235154	Units: ug/L

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
71-55-6	1,1,1-Trichloroethane	1.0	U	1.0	0.44
79-34-5	1,1,2,2-Tetrachloroethane	1.0	U	1.0	0.22
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethan	1.0	U	1.0	0.45
79-00-5	1,1,2-Trichloroethane	1.0	U	1.0	0.24
75-34-3	1,1-Dichloroethane	1.0	U	1.0	0.30
75-35-4	1,1-Dichloroethene	1.0	U	1.0	0.45
120-82-1	1,2,4-Trichlorobenzene	1.0	U	1.0	0.32
96-12-8	1,2-Dibromo-3-Chloropropane	2.0	U	2.0	0.82
106-93-4	Ethylene Dibromide	1.0	U	1.0	0.32
95-50-1	1,2-Dichlorobenzene	1.0	U	1.0	0.25
107-06-2	1,2-Dichloroethane	1.0	U	1.0	0.23
78-87-5	1,2-Dichloropropane	1.0	U	1.0	0.25
541-73-1	1,3-Dichlorobenzene	1.0	U	1.0	0.19
106-46-7	1,4-Dichlorobenzene	1.0	U	1.0	0.27
78-93-3	2-Butanone (MEK)	10	U	10	0.53
591-78-6	2-Hexanone	10	U	10	0.48
108-10-1	4-Methyl-2-pentanone (MIBK)	10	U	10	0.99
67-64-1	Acetone	2.2	J	10	0.94
71-43-2	Benzene	1.0	U	1.0	0.35
75-27-4	Dichlorobromomethane	1.0	U	1.0	0.29
75-25-2	Bromoform	1.0	U	1.0	0.56
74-83-9	Bromomethane	1.0	U	1.0	0.44
75-15-0	Carbon disulfide	1.0	U	1.0	0.38
56-23-5	Carbon tetrachloride	1.0	U	1.0	0.43
108-90-7	Chlorobenzene	1.0	U	1.0	0.25
75-00-3	Chloroethane	1.0	U	1.0	0.32
67-66-3	Chloroform	1.0	U	1.0	0.25
156-59-2	cis-1,2-Dichloroethene	1.0	U	1.0	0.26
10061-01-5	cis-1,3-Dichloropropene	1.0	U	1.0	0.46
110-82-7	Cyclohexane	1.0	U	1.0	0.45
124-48-1	Chlorodibromomethane	1.0	U	1.0	0.43
75-71-8	Dichlorodifluoromethane	1.0	U	1.0	0.32
100-41-4	Ethylbenzene	1.0	U	1.0	0.25
98-82-8	Isopropylbenzene	1.0	U	1.0	0.35
79-20-9	Methyl acetate	10	IJ	10	2.3

 SDG No.:
 Client Sample ID: MRC-SW7B-061316
 Lab Sample ID: 240-65994-7

 Matrix: Water
 Lab File ID: UXJ5616.D

 Analysis Method: 8260C
 Date Collected: 06/13/2016 12:24

 Sample wt/vol: 5 (mL)
 Date Analyzed: 06/20/2016 15:27

 Soil Aliquot Vol:
 Dilution Factor: 1

 Soil Extract Vol.:
 GC Column: DB-624
 ID: 0.18 (mm)

 % Moisture:
 Level: (low/med) Low

Lab Name: TestAmerica Canton Job No.: 240-65994-1

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
1634-04-4	Methyl tert-butyl ether	1.0	U	1.0	0.20
108-87-2	Methylcyclohexane	1.0	U	1.0	0.43
75-09-2	Methylene Chloride	1.0	U *	1.0	0.33
100-42-5	Styrene	1.0	U	1.0	0.45
127-18-4	Tetrachloroethene	1.0	U	1.0	0.31
108-88-3	Toluene	1.0	U	1.0	0.23
156-60-5	trans-1,2-Dichloroethene	1.0	U	1.0	0.30
10061-02-6	trans-1,3-Dichloropropene	1.0	U	1.0	0.56
79-01-6	Trichloroethene	1.0	U	1.0	0.22
75-69-4	Trichlorofluoromethane	1.0	U	1.0	0.49
75-01-4	Vinyl chloride	1.0	U	1.0	0.29
1330-20-7	Xylenes, Total	2.0	U	2.0	0.52

CAS NO.	SURROGATE	%REC	Q	LIMITS
2037-26-5	Toluene-d8 (Surr)	89		80-120
1868-53-7	Dibromofluoromethane (Surr)	91		79-120
460-00-4	4-Bromofluorobenzene (Surr)	84		61-120
17060-07-0	1,2-Dichloroethane-d4 (Surr)	93		78-125

Lab Name: TestAmerica Canton Job No.: 240-65994-1 SDG No.: Client Sample ID: MRC-SW7B-061316 Lab Sample ID: 240-65994-7 Matrix: Water Lab File ID: UXJ5670.D Date Collected: 06/13/2016 12:24 Analysis Method: 8260C Sample wt/vol: 5(mL) Date Analyzed: 06/21/2016 13:59 Dilution Factor: 1 Soil Aliquot Vol: Soil Extract Vol.: _____ GC Column: <u>DB-624</u> ID: <u>0.18(mm)</u> Level: (low/med) Low % Moisture: _____ Analysis Batch No.: 235310 Units: ug/L

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
74-87-3	Chloromethane	1.1		1.0	0.44

CAS NO.	SURROGATE	%REC	Q	LIMITS
2037-26-5	Toluene-d8 (Surr)	95		80-120
1868-53-7	Dibromofluoromethane (Surr)	97		79-120
460-00-4	4-Bromofluorobenzene (Surr)	89		61-120
17060-07-0	1,2-Dichloroethane-d4 (Surr)	100		78-125

Lab Name: TestAmerica Canton	Job No.: 240-65994-1
SDG No.:	
Client Sample ID: MRC-SW8A-061316	Lab Sample ID: 240-65994-8
Matrix: Water	Lab File ID: UXJ5617.D
Analysis Method: 8260C	Date Collected: 06/13/2016 12:57
Sample wt/vol: 5(mL)	Date Analyzed: 06/20/2016 15:49
Soil Aliquot Vol:	Dilution Factor: 1
Soil Extract Vol.:	GC Column: DB-624 ID: 0.18(mm)
% Moisture:	Level: (low/med) Low
Analysis Batch No.: 235154	Units: ug/L

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
71-55-6	1,1,1-Trichloroethane	1.0	U	1.0	0.44
79-34-5	1,1,2,2-Tetrachloroethane	1.0	U	1.0	0.22
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethan	1.0	Ū	1.0	0.45
79-00-5	1,1,2-Trichloroethane	1.0	U	1.0	0.24
75-34-3	1,1-Dichloroethane	1.0	U	1.0	0.30
75-35-4	1,1-Dichloroethene	1.0	U	1.0	0.45
120-82-1	1,2,4-Trichlorobenzene	1.0	U	1.0	0.32
96-12-8	1,2-Dibromo-3-Chloropropane	2.0	U	2.0	0.82
106-93-4	Ethylene Dibromide	1.0	U	1.0	0.32
95-50-1	1,2-Dichlorobenzene	1.0	U	1.0	0.25
107-06-2	1,2-Dichloroethane	1.0	U	1.0	0.23
78-87-5	1,2-Dichloropropane	1.0	U	1.0	0.25
541-73-1	1,3-Dichlorobenzene	1.0	U	1.0	0.19
106-46-7	1,4-Dichlorobenzene	1.0	U	1.0	0.27
78-93-3	2-Butanone (MEK)	10	U	10	0.53
591-78-6	2-Hexanone	10	U	10	0.48
108-10-1	4-Methyl-2-pentanone (MIBK)	10	U	10	0.99
67-64-1	Acetone	10	U	10	0.94
71-43-2	Benzene	1.0	U	1.0	0.35
75-27-4	Dichlorobromomethane	1.0	U	1.0	0.29
75-25-2	Bromoform	1.0	U	1.0	0.56
74-83-9	Bromomethane	1.0	U	1.0	0.44
75-15-0	Carbon disulfide	1.0	U	1.0	0.38
56-23-5	Carbon tetrachloride	1.0	U	1.0	0.43
108-90-7	Chlorobenzene	1.0	U	1.0	0.25
75-00-3	Chloroethane	1.0	U	1.0	0.32
67-66-3	Chloroform	1.0	U	1.0	0.25
74-87-3	Chloromethane	1.0	U	1.0	0.44
156-59-2	cis-1,2-Dichloroethene	1.0	U	1.0	0.26
10061-01-5	cis-1,3-Dichloropropene	1.0	U	1.0	0.46
110-82-7	Cyclohexane	1.0	U	1.0	0.45
124-48-1	Chlorodibromomethane	1.0	U	1.0	0.43
75-71-8	Dichlorodifluoromethane	1.0	U	1.0	0.32
100-41-4	Ethylbenzene	1.0	U	1.0	0.25
98-82-8	Isopropylbenzene	1.0	U	1.0	0.35

 SDG No.:
 Client Sample ID: MRC-SW8A-061316
 Lab Sample ID: 240-65994-8

 Matrix: Water
 Lab File ID: UXJ5617.D

 Analysis Method: 8260C
 Date Collected: 06/13/2016 12:57

 Sample wt/vol: 5(mL)
 Date Analyzed: 06/20/2016 15:49

Soil Aliquot Vol: _____ Dilution Factor: 1_____

Lab Name: TestAmerica Canton Job No.: 240-65994-1

Soil Extract Vol.: _____ GC Column: <u>DB-624</u> ID: <u>0.18 (mm)</u>

% Moisture: _____ Level: (low/med) <u>Low</u>

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
79-20-9	Methyl acetate	10	Ū	10	2.3
1634-04-4	Methyl tert-butyl ether	1.0	U	1.0	0.20
108-87-2	Methylcyclohexane	1.0	U	1.0	0.43
75-09-2	Methylene Chloride	1.0	Π *	1.0	0.33
100-42-5	Styrene	1.0	U	1.0	0.45
127-18-4	Tetrachloroethene	1.0	U	1.0	0.31
108-88-3	Toluene	1.0	U	1.0	0.23
156-60-5	trans-1,2-Dichloroethene	1.0	U	1.0	0.30
10061-02-6	trans-1,3-Dichloropropene	1.0	U	1.0	0.56
79-01-6	Trichloroethene	0.48	J	1.0	0.22
75-69-4	Trichlorofluoromethane	1.0	U	1.0	0.49
75-01-4	Vinyl chloride	1.0	U	1.0	0.29
1330-20-7	Xylenes, Total	2.0	U	2.0	0.52

CAS NO.	SURROGATE	%REC	Q	LIMITS
2037-26-5	Toluene-d8 (Surr)	94		80-120
1868-53-7	Dibromofluoromethane (Surr)	96		79-120
460-00-4	4-Bromofluorobenzene (Surr)	89		61-120
17060-07-0	1,2-Dichloroethane-d4 (Surr)	99		78-125

Lab Name: TestAmerica Canton	Job No.: 240-65994-1			
SDG No.:				
Client Sample ID: MRC-SW8B-061316	Lab Sample ID: 240-65994-9			
Matrix: Water	Lab File ID: UXJ5618.D			
Analysis Method: 8260C	Date Collected: 06/13/2016 13:04			
Sample wt/vol: 5(mL)	Date Analyzed: 06/20/2016 16:12			
Soil Aliquot Vol:	Dilution Factor: 1			
Soil Extract Vol.:	GC Column: DB-624 ID: 0.18 (mm)			
% Moisture:	Level: (low/med) Low			
Analysis Batch No.: 235154	Units: ug/L			

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
71-55-6	1,1,1-Trichloroethane	1.0	U	1.0	0.44
79-34-5	1,1,2,2-Tetrachloroethane	1.0	U	1.0	0.22
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethan	1.0	Ū	1.0	0.45
79-00-5	1,1,2-Trichloroethane	1.0	U	1.0	0.24
75-34-3	1,1-Dichloroethane	1.0	U	1.0	0.30
75-35-4	1,1-Dichloroethene	1.0	U	1.0	0.45
120-82-1	1,2,4-Trichlorobenzene	1.0	U	1.0	0.32
96-12-8	1,2-Dibromo-3-Chloropropane	2.0	U	2.0	0.82
106-93-4	Ethylene Dibromide	1.0	U	1.0	0.32
95-50-1	1,2-Dichlorobenzene	1.0	U	1.0	0.25
107-06-2	1,2-Dichloroethane	1.0	U	1.0	0.23
78-87-5	1,2-Dichloropropane	1.0	U	1.0	0.25
541-73-1	1,3-Dichlorobenzene	1.0	U	1.0	0.19
106-46-7	1,4-Dichlorobenzene	1.0	U	1.0	0.27
78-93-3	2-Butanone (MEK)	10	U	10	0.53
591-78-6	2-Hexanone	10	U	10	0.48
108-10-1	4-Methyl-2-pentanone (MIBK)	10	U	10	0.99
67-64-1	Acetone	10	U	10	0.94
71-43-2	Benzene	1.0	U	1.0	0.35
75-27-4	Dichlorobromomethane	1.0	U	1.0	0.29
75-25-2	Bromoform	1.0	U	1.0	0.56
74-83-9	Bromomethane	1.0	U	1.0	0.44
75-15-0	Carbon disulfide	1.0	U	1.0	0.38
56-23-5	Carbon tetrachloride	1.0	U	1.0	0.43
108-90-7	Chlorobenzene	1.0	U	1.0	0.25
75-00-3	Chloroethane	1.0	U	1.0	0.32
67-66-3	Chloroform	1.0	U	1.0	0.25
74-87-3	Chloromethane	1.0	U	1.0	0.44
156-59-2	cis-1,2-Dichloroethene	1.0	U	1.0	0.26
10061-01-5	cis-1,3-Dichloropropene	1.0	U	1.0	0.46
110-82-7	Cyclohexane	1.0	U	1.0	0.45
124-48-1	Chlorodibromomethane	1.0	U	1.0	0.43
75-71-8	Dichlorodifluoromethane	1.0	U	1.0	0.32
100-41-4	Ethylbenzene	1.0	U	1.0	0.25
98-82-8	Isopropylbenzene	1.0	U	1.0	0.35

 SDG No.:
 Client Sample ID: MRC-SW8B-061316
 Lab Sample ID: 240-65994-9

 Matrix: Water
 Lab File ID: UXJ5618.D

 Analysis Method: 8260C
 Date Collected: 06/13/2016 13:04

 Sample wt/vol: 5 (mL)
 Date Analyzed: 06/20/2016 16:12

 Soil Aliquot Vol:
 Dilution Factor: 1

Lab Name: TestAmerica Canton Job No.: 240-65994-1

Soil Extract Vol.: _____ GC Column: <u>DB-624</u> ID: <u>0.18(mm)</u>

% Moisture: _____ Level: (low/med) <u>Low</u>

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
79-20-9	Methyl acetate	10	U	10	2.3
1634-04-4	Methyl tert-butyl ether	1.0	U	1.0	0.20
108-87-2	Methylcyclohexane	1.0	U	1.0	0.43
75-09-2	Methylene Chloride	1.0	U *	1.0	0.33
100-42-5	Styrene	1.0	U	1.0	0.45
127-18-4	Tetrachloroethene	1.0	U	1.0	0.31
108-88-3	Toluene	1.0	U	1.0	0.23
156-60-5	trans-1,2-Dichloroethene	1.0	U	1.0	0.30
10061-02-6	trans-1,3-Dichloropropene	1.0	U	1.0	0.56
79-01-6	Trichloroethene	0.42	J	1.0	0.22
75-69-4	Trichlorofluoromethane	1.0	U	1.0	0.49
75-01-4	Vinyl chloride	1.0	U	1.0	0.29
1330-20-7	Xylenes, Total	2.0	U	2.0	0.52

CAS NO.	SURROGATE	%REC	Q	LIMITS
2037-26-5	Toluene-d8 (Surr)	91		80-120
1868-53-7	Dibromofluoromethane (Surr)	91		79-120
460-00-4	4-Bromofluorobenzene (Surr)	84		61-120
17060-07-0	1,2-Dichloroethane-d4 (Surr)	95		78-125

Lab Name: TestAmerica Canton	Job No.: 240-65994-1			
SDG No.:				
Client Sample ID: MRC-SW9A-061316	Lab Sample ID: 240-65994-10			
Matrix: Water	Lab File ID: UXJ5619.D			
Analysis Method: 8260C	Date Collected: 06/13/2016 12:29			
Sample wt/vol: 5(mL)	Date Analyzed: 06/20/2016 16:34			
Soil Aliquot Vol:	Dilution Factor: 1			
Soil Extract Vol.:	GC Column: DB-624 ID: 0.18(mm)			
% Moisture:	Level: (low/med) Low			
Analysis Batch No.: 235154	Units: ug/L			

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
71-55-6	1,1,1-Trichloroethane	1.0	U	1.0	0.44
79-34-5	1,1,2,2-Tetrachloroethane	1.0	U	1.0	0.22
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethan	1.0	Ū	1.0	0.45
79-00-5	1,1,2-Trichloroethane	1.0	U	1.0	0.24
75-34-3	1,1-Dichloroethane	1.0	U	1.0	0.30
75-35-4	1,1-Dichloroethene	1.0	U	1.0	0.45
120-82-1	1,2,4-Trichlorobenzene	1.0	U	1.0	0.32
96-12-8	1,2-Dibromo-3-Chloropropane	2.0	U	2.0	0.82
106-93-4	Ethylene Dibromide	1.0	U	1.0	0.32
95-50-1	1,2-Dichlorobenzene	1.0	U	1.0	0.25
107-06-2	1,2-Dichloroethane	1.0	U	1.0	0.23
78-87-5	1,2-Dichloropropane	1.0	U	1.0	0.25
541-73-1	1,3-Dichlorobenzene	1.0	U	1.0	0.19
106-46-7	1,4-Dichlorobenzene	1.0	U	1.0	0.27
78-93-3	2-Butanone (MEK)	10	U	10	0.53
591-78-6	2-Hexanone	10	U	10	0.48
108-10-1	4-Methyl-2-pentanone (MIBK)	10	U	10	0.99
67-64-1	Acetone	10	U	10	0.94
71-43-2	Benzene	1.0	U	1.0	0.35
75-27-4	Dichlorobromomethane	1.0	U	1.0	0.29
75-25-2	Bromoform	1.0	U	1.0	0.56
74-83-9	Bromomethane	1.0	U	1.0	0.44
75-15-0	Carbon disulfide	1.0	U	1.0	0.38
56-23-5	Carbon tetrachloride	1.0	U	1.0	0.43
108-90-7	Chlorobenzene	1.0	U	1.0	0.25
75-00-3	Chloroethane	1.0	U	1.0	0.32
67-66-3	Chloroform	1.0	U	1.0	0.25
74-87-3	Chloromethane	1.0	U	1.0	0.44
156-59-2	cis-1,2-Dichloroethene	1.0	U	1.0	0.26
10061-01-5	cis-1,3-Dichloropropene	1.0	U	1.0	0.46
110-82-7	Cyclohexane	1.0	U	1.0	0.45
124-48-1	Chlorodibromomethane	1.0	U	1.0	0.43
75-71-8	Dichlorodifluoromethane	1.0	U	1.0	0.32
100-41-4	Ethylbenzene	1.0	U	1.0	0.25
98-82-8	Isopropylbenzene	1.0	U	1.0	0.35

Lab	Name:	TestAmerica Canton	Job No.:	240-65994-1
SDG	No.:			

Client Sample ID: MRC-SW9A-061316 Lab Sample ID: 240-65994-10

Matrix: Water Lab File ID: UXJ5619.D

Analysis Method: 8260C Date Collected: 06/13/2016 12:29

Sample wt/vol: 5 (mL) Date Analyzed: 06/20/2016 16:34

Soil Aliquot Vol: Dilution Factor: 1

Soil Extract Vol.: _____ GC Column: <u>DB-624</u> ID: <u>0.18(mm)</u>

% Moisture: _____ Level: (low/med) <u>Low</u>

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
79-20-9	Methyl acetate	10	U	10	2.3
1634-04-4	Methyl tert-butyl ether	1.0	U	1.0	0.20
108-87-2	Methylcyclohexane	1.0	U	1.0	0.43
75-09-2	Methylene Chloride	1.0	U *	1.0	0.33
100-42-5	Styrene	1.0	U	1.0	0.45
127-18-4	Tetrachloroethene	1.0	U	1.0	0.31
108-88-3	Toluene	1.0	U	1.0	0.23
156-60-5	trans-1,2-Dichloroethene	1.0	U	1.0	0.30
10061-02-6	trans-1,3-Dichloropropene	1.0	U	1.0	0.56
79-01-6	Trichloroethene	1.0	U	1.0	0.22
75-69-4	Trichlorofluoromethane	1.0	U	1.0	0.49
75-01-4	Vinyl chloride	1.0	U	1.0	0.29
1330-20-7	Xylenes, Total	2.0	U	2.0	0.52

CAS NO.	SURROGATE	%REC	Q	LIMITS
2037-26-5	Toluene-d8 (Surr)	94		80-120
1868-53-7	Dibromofluoromethane (Surr)	94		79-120
460-00-4	4-Bromofluorobenzene (Surr)	87		61-120
17060-07-0	1,2-Dichloroethane-d4 (Surr)	97		78-125

Lab Name: TestAmerica Canton	Job No.: 240-65994-1			
SDG No.:				
Client Sample ID: MRC-SW9B-061316	Lab Sample ID: 240-65994-11			
Matrix: Water	Lab File ID: UXJ5620.D			
Analysis Method: 8260C	Date Collected: 06/13/2016 12:34			
Sample wt/vol: 5(mL)	Date Analyzed: 06/20/2016 16:57			
Soil Aliquot Vol:	Dilution Factor: 1			
Soil Extract Vol.:	GC Column: DB-624 ID: 0.18(mm)			
% Moisture:	Level: (low/med) Low			
Analysis Batch No.: 235154	Units: ug/L			

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
71-55-6	1,1,1-Trichloroethane	1.0	U	1.0	0.44
79-34-5	1,1,2,2-Tetrachloroethane	1.0	U	1.0	0.22
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethan	1.0	Ū	1.0	0.45
79-00-5	1,1,2-Trichloroethane	1.0	U	1.0	0.24
75-34-3	1,1-Dichloroethane	1.0	U	1.0	0.30
75-35-4	1,1-Dichloroethene	1.0	U	1.0	0.45
120-82-1	1,2,4-Trichlorobenzene	1.0	U	1.0	0.32
96-12-8	1,2-Dibromo-3-Chloropropane	2.0	U	2.0	0.82
106-93-4	Ethylene Dibromide	1.0	U	1.0	0.32
95-50-1	1,2-Dichlorobenzene	1.0	U	1.0	0.25
107-06-2	1,2-Dichloroethane	1.0	U	1.0	0.23
78-87-5	1,2-Dichloropropane	1.0	U	1.0	0.25
541-73-1	1,3-Dichlorobenzene	1.0	U	1.0	0.19
106-46-7	1,4-Dichlorobenzene	1.0	U	1.0	0.27
78-93-3	2-Butanone (MEK)	10	U	10	0.53
591-78-6	2-Hexanone	10	U	10	0.48
108-10-1	4-Methyl-2-pentanone (MIBK)	10	U	10	0.99
67-64-1	Acetone	10	U	10	0.94
71-43-2	Benzene	1.0	U	1.0	0.35
75-27-4	Dichlorobromomethane	1.0	U	1.0	0.29
75-25-2	Bromoform	1.0	U	1.0	0.56
74-83-9	Bromomethane	1.0	U	1.0	0.44
75-15-0	Carbon disulfide	1.0	U	1.0	0.38
56-23-5	Carbon tetrachloride	1.0	U	1.0	0.43
108-90-7	Chlorobenzene	1.0	U	1.0	0.25
75-00-3	Chloroethane	1.0	U	1.0	0.32
67-66-3	Chloroform	1.0	U	1.0	0.25
74-87-3	Chloromethane	1.0	U	1.0	0.44
156-59-2	cis-1,2-Dichloroethene	1.0	U	1.0	0.26
10061-01-5	cis-1,3-Dichloropropene	1.0	U	1.0	0.46
110-82-7	Cyclohexane	1.0	U	1.0	0.45
124-48-1	Chlorodibromomethane	1.0	U	1.0	0.43
75-71-8	Dichlorodifluoromethane	1.0	U	1.0	0.32
100-41-4	Ethylbenzene	1.0	U	1.0	0.25
98-82-8	Isopropylbenzene	1.0	U	1.0	0.35

Lab Name: TestAmerica Canton	Job No.: 240-65994-1				
SDG No.:					
Client Sample ID: MRC-SW9B-061316	Lab Sample ID: 240-65994-11				
Matrix: Water	Lab File ID: UXJ5620.D				
Analysis Method: 8260C	Date Collected: 06/13/2016 12:34				
Sample wt/vol: 5(mL)	Date Analyzed: 06/20/2016 16:57				
Soil Aliquot Vol:	Dilution Factor: 1				
Soil Extract Vol.:	GC Column: DB-624 ID: 0.18(mm)				
% Moisture:	Level: (low/med) Low				

Units: ug/L

Analysis Batch No.: 235154

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
79-20-9	Methyl acetate	10	U	10	2.3
1634-04-4	Methyl tert-butyl ether	1.0	U	1.0	0.20
108-87-2	Methylcyclohexane	1.0	U	1.0	0.43
75-09-2	Methylene Chloride	1.0	U *	1.0	0.33
100-42-5	Styrene	1.0	U	1.0	0.45
127-18-4	Tetrachloroethene	1.0	U	1.0	0.31
108-88-3	Toluene	1.0	U	1.0	0.23
156-60-5	trans-1,2-Dichloroethene	1.0	U	1.0	0.30
10061-02-6	trans-1,3-Dichloropropene	1.0	U	1.0	0.56
79-01-6	Trichloroethene	1.0	U	1.0	0.22
75-69-4	Trichlorofluoromethane	1.0	U	1.0	0.49
75-01-4	Vinyl chloride	1.0	U	1.0	0.29
1330-20-7	Xylenes, Total	2.0	U	2.0	0.52

CAS NO.	SURROGATE	%REC	Q	LIMITS
2037-26-5	Toluene-d8 (Surr)	91		80-120
1868-53-7	Dibromofluoromethane (Surr)	93		79-120
460-00-4	4-Bromofluorobenzene (Surr)	86		61-120
17060-07-0	1,2-Dichloroethane-d4 (Surr)	97		78-125

Lab Name: TestAmerica Canton	_ Job No.: 240-65994-1			
SDG No.:				
Client Sample ID: MRC-SWFB-061316	Lab Sample ID: 240-65996-1			
Matrix: Water	Lab File ID: UXM6074.D			
Analysis Method: 8260C	Date Collected: 06/13/2016 00:00			
Sample wt/vol: 5(mL)	Date Analyzed: 06/20/2016 18:04			
Soil Aliquot Vol:	Dilution Factor: 1			
Soil Extract Vol.:	GC Column: DB-624 ID: 0.18(mm)			
% Moisture:	Level: (low/med) Low			
Analysis Batch No.: 235221	Units: ug/L			

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
71-55-6	1,1,1-Trichloroethane	1.0	U	1.0	0.44
79-34-5	1,1,2,2-Tetrachloroethane	1.0	U	1.0	0.22
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethan e	1.0	U	1.0	0.45
79-00-5	1,1,2-Trichloroethane	1.0	U	1.0	0.24
75-34-3	1,1-Dichloroethane	1.0	U	1.0	0.30
75-35-4	1,1-Dichloroethene	1.0	U	1.0	0.45
120-82-1	1,2,4-Trichlorobenzene	1.0	U	1.0	0.32
96-12-8	1,2-Dibromo-3-Chloropropane	2.0	U	2.0	0.82
106-93-4	Ethylene Dibromide	1.0	U	1.0	0.32
95-50-1	1,2-Dichlorobenzene	1.0	U	1.0	0.25
107-06-2	1,2-Dichloroethane	1.0	U	1.0	0.23
78-87-5	1,2-Dichloropropane	1.0	U	1.0	0.25
541-73-1	1,3-Dichlorobenzene	1.0	U	1.0	0.19
106-46-7	1,4-Dichlorobenzene	1.0	U	1.0	0.27
78-93-3	2-Butanone (MEK)	10	U	10	0.53
591-78-6	2-Hexanone	10	U	10	0.48
108-10-1	4-Methyl-2-pentanone (MIBK)	10	U	10	0.99
67-64-1	Acetone	1.2	J	10	0.94
71-43-2	Benzene	1.0	U	1.0	0.35
75-27-4	Dichlorobromomethane	0.46	J	1.0	0.29
75-25-2	Bromoform	1.0	U	1.0	0.56
74-83-9	Bromomethane	1.0	U	1.0	0.44
75-15-0	Carbon disulfide	1.0	U	1.0	0.38
56-23-5	Carbon tetrachloride	1.0	U	1.0	0.43
108-90-7	Chlorobenzene	1.0	U	1.0	0.25
75-00-3	Chloroethane	1.0	U	1.0	0.32
67-66-3	Chloroform	3.9		1.0	0.25
74-87-3	Chloromethane	1.0	U	1.0	0.44
156-59-2	cis-1,2-Dichloroethene	1.0	U	1.0	0.26
10061-01-5	cis-1,3-Dichloropropene	1.0	U	1.0	0.46
110-82-7	Cyclohexane	1.0	U	1.0	0.45
124-48-1	Chlorodibromomethane	1.0	U	1.0	0.43
75-71-8	Dichlorodifluoromethane	1.0	U	1.0	0.32
100-41-4	Ethylbenzene	1.0	U	1.0	0.25
98-82-8	Isopropylbenzene	1.0	U	1.0	0.35

Lab Name: TestAmerica Canton	JOD NO.: 240-65994-1			
SDG No.:				
Client Sample ID: MRC-SWFB-061316	Lab Sample ID: 240-65996-1			
Matrix: Water	Lab File ID: UXM6074.D			
Analysis Method: 8260C	Date Collected: 06/13/2016 00:00			
Sample wt/vol: 5(mL)	Date Analyzed: 06/20/2016 18:04			
Soil Aliquot Vol:	Dilution Factor: 1			
Soil Extract Vol.:	GC Column: DB-624 ID: 0.18(mm)			
% Moisture:	Level: (low/med) Low			

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
79-20-9	Methyl acetate	10	U	10	2.3
1634-04-4	Methyl tert-butyl ether	1.0	U	1.0	0.20
108-87-2	Methylcyclohexane	1.0	U	1.0	0.43
75-09-2	Methylene Chloride	1.0	U	1.0	0.33
100-42-5	Styrene	1.0	U	1.0	0.45
127-18-4	Tetrachloroethene	1.0	U	1.0	0.31
108-88-3	Toluene	1.8		1.0	0.23
156-60-5	trans-1,2-Dichloroethene	1.0	U	1.0	0.30
10061-02-6	trans-1,3-Dichloropropene	1.0	U	1.0	0.56
79-01-6	Trichloroethene	1.0	U	1.0	0.22
75-69-4	Trichlorofluoromethane	1.0	U	1.0	0.49
75-01-4	Vinyl chloride	1.0	U	1.0	0.29
1330-20-7	Xylenes, Total	1.1	J	2.0	0.52

CAS NO.	SURROGATE	%REC	Q	LIMITS
2037-26-5	Toluene-d8 (Surr)	104		80-120
1868-53-7	Dibromofluoromethane (Surr)	99		79-120
460-00-4	4-Bromofluorobenzene (Surr)	99		61-120
17060-07-0	1,2-Dichloroethane-d4 (Surr)	95		78-125

Lab Name: TestAmerica Canton	JOD NO.: 240-65994-1		
SDG No.:			
Client Sample ID: MRC-SW1A-061316	Lab Sample ID: 240-65996-2		
Matrix: Water	Lab File ID: UXM6075.D		
Analysis Method: 8260C	Date Collected: 06/13/2016 11:51		
Sample wt/vol: 5(mL)	Date Analyzed: 06/20/2016 18:27		
Soil Aliquot Vol:	Dilution Factor: 1		
Soil Extract Vol.:	GC Column: DB-624 ID: 0.18(mm)		
% Moisture:	Level: (low/med) Low		
Analysis Batch No · 235221	IInits· 11a/I.		

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
71-55-6	1,1,1-Trichloroethane	1.0	U	1.0	0.44
79-34-5	1,1,2,2-Tetrachloroethane	1.0	U	1.0	0.22
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethan e	1.0	U	1.0	0.45
79-00-5	1,1,2-Trichloroethane	1.0	U	1.0	0.24
75-34-3	1,1-Dichloroethane	1.0	U	1.0	0.30
75-35-4	1,1-Dichloroethene	1.0	U	1.0	0.45
120-82-1	1,2,4-Trichlorobenzene	1.0	U	1.0	0.32
96-12-8	1,2-Dibromo-3-Chloropropane	2.0	U	2.0	0.82
106-93-4	Ethylene Dibromide	1.0	U	1.0	0.32
95-50-1	1,2-Dichlorobenzene	1.0	U	1.0	0.25
107-06-2	1,2-Dichloroethane	1.0	U	1.0	0.23
78-87-5	1,2-Dichloropropane	1.0	U	1.0	0.25
541-73-1	1,3-Dichlorobenzene	1.0	U	1.0	0.19
106-46-7	1,4-Dichlorobenzene	1.0	U	1.0	0.27
78-93-3	2-Butanone (MEK)	10	U	10	0.53
591-78-6	2-Hexanone	10	U	10	0.48
108-10-1	4-Methyl-2-pentanone (MIBK)	10	U	10	0.99
67-64-1	Acetone	10	U	10	0.94
71-43-2	Benzene	1.0	U	1.0	0.35
75-27-4	Dichlorobromomethane	1.0	U	1.0	0.29
75-25-2	Bromoform	1.0	U	1.0	0.56
74-83-9	Bromomethane	1.0	U	1.0	0.44
75-15-0	Carbon disulfide	1.0	U	1.0	0.38
56-23-5	Carbon tetrachloride	1.0	U	1.0	0.43
108-90-7	Chlorobenzene	1.0	U	1.0	0.25
75-00-3	Chloroethane	1.0	U	1.0	0.32
67-66-3	Chloroform	1.0	U	1.0	0.25
74-87-3	Chloromethane	1.0	U	1.0	0.44
156-59-2	cis-1,2-Dichloroethene	1.0	U	1.0	0.26
10061-01-5	cis-1,3-Dichloropropene	1.0	U	1.0	0.46
110-82-7	Cyclohexane	1.0	U	1.0	0.45
124-48-1	Chlorodibromomethane	1.0	U	1.0	0.43
75-71-8	Dichlorodifluoromethane	1.0	U	1.0	0.32
100-41-4	Ethylbenzene	1.0	U	1.0	0.25
98-82-8	Isopropylbenzene	1.0	U	1.0	0.35

Lab Name: TestAmerica Canton

SDG No.:

Client Sample ID: MRC-SW1A-061316

Lab Sample ID: 240-65996-2

Matrix: Water

Lab File ID: UXM6075.D

Analysis Method: 8260C

Date Collected: 06/13/2016 11:51

Sample wt/vol: 5(mL)

Date Analyzed: 06/20/2016 18:27

Soil Aliquot Vol:

Soil Extract Vol.:

GC Column: DB-624

ID: 0.18 (mm)

Analysis Batch No.: 235221 Units: ug/L

% Moisture: _____ Level: (low/med) <u>Low</u>

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
79-20-9	Methyl acetate	10	U	10	2.3
1634-04-4	Methyl tert-butyl ether	1.0	U	1.0	0.20
108-87-2	Methylcyclohexane	1.0	U	1.0	0.43
75-09-2	Methylene Chloride	1.0	U	1.0	0.33
100-42-5	Styrene	1.0	U	1.0	0.45
127-18-4	Tetrachloroethene	1.0	U	1.0	0.31
108-88-3	Toluene	1.0	U	1.0	0.23
156-60-5	trans-1,2-Dichloroethene	1.0	U	1.0	0.30
10061-02-6	trans-1,3-Dichloropropene	1.0	U	1.0	0.56
79-01-6	Trichloroethene	1.0	U	1.0	0.22
75-69-4	Trichlorofluoromethane	1.0	U	1.0	0.49
75-01-4	Vinyl chloride	1.0	U	1.0	0.29
1330-20-7	Xylenes, Total	2.0	U	2.0	0.52

CAS NO.	SURROGATE	%REC	Q	LIMITS
2037-26-5	Toluene-d8 (Surr)	104		80-120
1868-53-7	Dibromofluoromethane (Surr)	94		79-120
460-00-4	4-Bromofluorobenzene (Surr)	99		61-120
17060-07-0	1,2-Dichloroethane-d4 (Surr)	96		78-125

Lab Name: TestAmerica Canton	Job No.: <u>240-65994-1</u>		
SDG No.:			
Client Sample ID: MRC-SW2A-061316	Lab Sample ID: 240-6599	96-3	
Matrix: Water Lab File ID: UXM6076.D			
Analysis Method: 8260C Date Collected: 06/13/2016 11:58		2016 11:58	
Sample wt/vol: 5(mL)	Sample wt/vol: 5(mL) Date Analyzed: 06/20/2016 18:50		
Soil Aliquot Vol:	Dilution Factor: 1		
Soil Extract Vol.:	GC Column: DB-624	ID: 0.18(mm)	
% Moisture:	Level: (low/med) Low		
Analysis Patch No · 225221	IInita. na/I		

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
71-55-6	1,1,1-Trichloroethane	1.0	U	1.0	0.44
79-34-5	1,1,2,2-Tetrachloroethane	1.0	U	1.0	0.22
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethan	1.0	Ū	1.0	0.45
79-00-5	1,1,2-Trichloroethane	1.0	U	1.0	0.24
75-34-3	1,1-Dichloroethane	1.0	U	1.0	0.30
75-35-4	1,1-Dichloroethene	1.0	U	1.0	0.45
120-82-1	1,2,4-Trichlorobenzene	1.0	U	1.0	0.32
96-12-8	1,2-Dibromo-3-Chloropropane	2.0	U	2.0	0.82
106-93-4	Ethylene Dibromide	1.0	U	1.0	0.32
95-50-1	1,2-Dichlorobenzene	1.0	U	1.0	0.25
107-06-2	1,2-Dichloroethane	1.0	U	1.0	0.23
78-87-5	1,2-Dichloropropane	1.0	U	1.0	0.25
541-73-1	1,3-Dichlorobenzene	1.0	U	1.0	0.19
106-46-7	1,4-Dichlorobenzene	1.0	U	1.0	0.27
78-93-3	2-Butanone (MEK)	10	U	10	0.53
591-78-6	2-Hexanone	10	U	10	0.48
108-10-1	4-Methyl-2-pentanone (MIBK)	10	U	10	0.99
67-64-1	Acetone	10	U	10	0.94
71-43-2	Benzene	1.0	U	1.0	0.35
75-27-4	Dichlorobromomethane	1.0	U	1.0	0.29
75-25-2	Bromoform	1.0	U	1.0	0.56
74-83-9	Bromomethane	1.0	U	1.0	0.44
75-15-0	Carbon disulfide	1.0	U	1.0	0.38
56-23-5	Carbon tetrachloride	1.0	U	1.0	0.43
108-90-7	Chlorobenzene	1.0	U	1.0	0.25
75-00-3	Chloroethane	1.0	U	1.0	0.32
67-66-3	Chloroform	1.0	U	1.0	0.25
74-87-3	Chloromethane	1.0	U	1.0	0.44
156-59-2	cis-1,2-Dichloroethene	1.0	U	1.0	0.26
10061-01-5	cis-1,3-Dichloropropene	1.0	U	1.0	0.46
110-82-7	Cyclohexane	1.0	U	1.0	0.45
124-48-1	Chlorodibromomethane	1.0	U	1.0	0.43
75-71-8	Dichlorodifluoromethane	1.0	U	1.0	0.32
100-41-4	Ethylbenzene	1.0	U	1.0	0.25
98-82-8	Isopropylbenzene	1.0	U	1.0	0.35

Lab Name: TestAmerica Canton

SDG No.:

Client Sample ID: MRC-SW2A-061316

Matrix: Water

Lab File ID: UXM6076.D

Analysis Method: 8260C

Date Collected: 06/13/2016 11:58

Sample wt/vol: 5(mL)

Date Analyzed: 06/20/2016 18:50

Soil Aliquot Vol:

Soil Extract Vol.:

GC Column: DB-624

ID: 0.18 (mm)

Analysis Batch No.: 235221 Units: ug/L

% Moisture: _____ Level: (low/med) <u>Low</u>

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
79-20-9	Methyl acetate	10	U	10	2.3
1634-04-4	Methyl tert-butyl ether	1.0	U	1.0	0.20
108-87-2	Methylcyclohexane	1.0	U	1.0	0.43
75-09-2	Methylene Chloride	1.0	U	1.0	0.33
100-42-5	Styrene	1.0	U	1.0	0.45
127-18-4	Tetrachloroethene	1.0	U	1.0	0.31
108-88-3	Toluene	1.0	U	1.0	0.23
156-60-5	trans-1,2-Dichloroethene	1.0	U	1.0	0.30
10061-02-6	trans-1,3-Dichloropropene	1.0	U	1.0	0.56
79-01-6	Trichloroethene	1.0	U	1.0	0.22
75-69-4	Trichlorofluoromethane	1.0	U	1.0	0.49
75-01-4	Vinyl chloride	1.0	U	1.0	0.29
1330-20-7	Xylenes, Total	2.0	U	2.0	0.52

CAS NO.	SURROGATE	%REC	Q	LIMITS
2037-26-5	Toluene-d8 (Surr)	102		80-120
1868-53-7	Dibromofluoromethane (Surr)	91		79-120
460-00-4	4-Bromofluorobenzene (Surr)	97		61-120
17060-07-0	1,2-Dichloroethane-d4 (Surr)	93		78-125

Lab Name: <u>TestAmerica Canton</u>	Job No.: <u>240-65994-1</u>	
SDG No.:		
Client Sample ID: TB-061316	Lab Sample ID: 240-65996-4	
atrix: Water Lab File ID: UXM6077.D		
Analysis Method: 8260C	Date Collected: 06/13/2016 00:00	
Sample wt/vol: 5(mL)	Date Analyzed: 06/20/2016 19:12	
Soil Aliquot Vol:	Dilution Factor: 1	
Soil Extract Vol.:	GC Column: DB-624 ID: 0.18	(mm)
% Moisture:	Level: (low/med) Low	
Analysis Ratch No · 235221	IInits: ua/I.	

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
71-55-6	1,1,1-Trichloroethane	1.0	U	1.0	0.44
79-34-5	1,1,2,2-Tetrachloroethane	1.0	U	1.0	0.22
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethan	1.0	Ū	1.0	0.45
79-00-5	1,1,2-Trichloroethane	1.0	U	1.0	0.24
75-34-3	1,1-Dichloroethane	1.0	U	1.0	0.30
75-35-4	1,1-Dichloroethene	1.0	U	1.0	0.45
120-82-1	1,2,4-Trichlorobenzene	1.0	U	1.0	0.32
96-12-8	1,2-Dibromo-3-Chloropropane	2.0	U	2.0	0.82
106-93-4	Ethylene Dibromide	1.0	U	1.0	0.32
95-50-1	1,2-Dichlorobenzene	1.0	U	1.0	0.25
107-06-2	1,2-Dichloroethane	1.0	U	1.0	0.23
78-87-5	1,2-Dichloropropane	1.0	U	1.0	0.25
541-73-1	1,3-Dichlorobenzene	1.0	U	1.0	0.19
106-46-7	1,4-Dichlorobenzene	1.0	U	1.0	0.27
78-93-3	2-Butanone (MEK)	10	U	10	0.53
591-78-6	2-Hexanone	10	U	10	0.48
108-10-1	4-Methyl-2-pentanone (MIBK)	10	U	10	0.99
67-64-1	Acetone	1.6	J	10	0.94
71-43-2	Benzene	1.0	U	1.0	0.35
75-27-4	Dichlorobromomethane	0.46	J	1.0	0.29
75-25-2	Bromoform	1.0	U	1.0	0.56
74-83-9	Bromomethane	1.0	U	1.0	0.44
75-15-0	Carbon disulfide	1.0	U	1.0	0.38
56-23-5	Carbon tetrachloride	1.0	U	1.0	0.43
108-90-7	Chlorobenzene	1.0	U	1.0	0.25
75-00-3	Chloroethane	1.0	U	1.0	0.32
67-66-3	Chloroform	3.7		1.0	0.25
74-87-3	Chloromethane	1.0	U	1.0	0.44
156-59-2	cis-1,2-Dichloroethene	1.0	U	1.0	0.26
10061-01-5	cis-1,3-Dichloropropene	1.0	U	1.0	0.46
110-82-7	Cyclohexane	1.0	U	1.0	0.45
124-48-1	Chlorodibromomethane	1.0	U	1.0	0.43
75-71-8	Dichlorodifluoromethane	1.0	U	1.0	0.32
100-41-4	Ethylbenzene	1.0	U	1.0	0.25
98-82-8	Isopropylbenzene	1.0	U	1.0	0.35

Lab Name: TestAmerica Canton	Job No.: 240-65994-1
SDG No.:	
Client Sample ID: TB-061316	Lab Sample ID: 240-65996-4
Matrix: Water	Lab File ID: UXM6077.D
Analysis Method: 8260C	Date Collected: 06/13/2016 00:00
Sample wt/vol: 5(mL)	Date Analyzed: 06/20/2016 19:12
Soil Aliquot Vol:	Dilution Factor: 1
Soil Extract Vol.:	GC Column: DB-624 ID: 0.18(mm)
% Moisture:	Level: (low/med) Low

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
79-20-9	Methyl acetate	10	U	10	2.3
1634-04-4	Methyl tert-butyl ether	1.0	U	1.0	0.20
108-87-2	Methylcyclohexane	1.0	U	1.0	0.43
75-09-2	Methylene Chloride	1.0	U	1.0	0.33
100-42-5	Styrene	1.0	U	1.0	0.45
127-18-4	Tetrachloroethene	1.0	U	1.0	0.31
108-88-3	Toluene	1.6		1.0	0.23
156-60-5	trans-1,2-Dichloroethene	1.0	U	1.0	0.30
10061-02-6	trans-1,3-Dichloropropene	1.0	U	1.0	0.56
79-01-6	Trichloroethene	1.0	U	1.0	0.22
75-69-4	Trichlorofluoromethane	1.0	U	1.0	0.49
75-01-4	Vinyl chloride	1.0	U	1.0	0.29
1330-20-7	Xylenes, Total	0.78	J	2.0	0.52

CAS NO.	SURROGATE	%REC	Q	LIMITS
2037-26-5	Toluene-d8 (Surr)	104		80-120
1868-53-7	Dibromofluoromethane (Surr)	97		79-120
460-00-4	4-Bromofluorobenzene (Surr)	100		61-120
17060-07-0	1,2-Dichloroethane-d4 (Surr)	97		78-125

Lab Name: TestAmerica Canton	Job No.: 240-65994-1
SDG No.:	
Client Sample ID: MRC-SWDUP2-061316	Lab Sample ID: 240-65996-5
Matrix: Water	Lab File ID: UXM6078.D
Analysis Method: 8260C	Date Collected: 06/13/2016 00:00
Sample wt/vol: 5(mL)	Date Analyzed: 06/20/2016 19:35
Soil Aliquot Vol:	Dilution Factor: 1
Soil Extract Vol.:	GC Column: DB-624 ID: 0.18(mm)
% Moisture:	Level: (low/med) Low
Analysis Batch No.: 235221	Units: ug/L

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
71-55-6	1,1,1-Trichloroethane	1.0	U	1.0	0.44
79-34-5	1,1,2,2-Tetrachloroethane	1.0	U	1.0	0.22
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethan e	1.0	U	1.0	0.45
79-00-5	1,1,2-Trichloroethane	1.0	U	1.0	0.24
75-34-3	1,1-Dichloroethane	1.0	U	1.0	0.30
75-35-4	1,1-Dichloroethene	1.0	U	1.0	0.45
120-82-1	1,2,4-Trichlorobenzene	1.0	U	1.0	0.32
96-12-8	1,2-Dibromo-3-Chloropropane	2.0	U	2.0	0.82
106-93-4	Ethylene Dibromide	1.0	U	1.0	0.32
95-50-1	1,2-Dichlorobenzene	1.0	U	1.0	0.25
107-06-2	1,2-Dichloroethane	1.0	U	1.0	0.23
78-87-5	1,2-Dichloropropane	1.0	U	1.0	0.25
541-73-1	1,3-Dichlorobenzene	1.0	U	1.0	0.19
106-46-7	1,4-Dichlorobenzene	1.0	U	1.0	0.27
78-93-3	2-Butanone (MEK)	10	U	10	0.53
591-78-6	2-Hexanone	10	U	10	0.48
108-10-1	4-Methyl-2-pentanone (MIBK)	10	U	10	0.99
67-64-1	Acetone	10	U	10	0.94
71-43-2	Benzene	1.0	U	1.0	0.35
75-27-4	Dichlorobromomethane	1.0	U	1.0	0.29
75-25-2	Bromoform	1.0	U	1.0	0.56
74-83-9	Bromomethane	1.0	U	1.0	0.44
75-15-0	Carbon disulfide	1.0	U	1.0	0.38
56-23-5	Carbon tetrachloride	1.0	U	1.0	0.43
108-90-7	Chlorobenzene	1.0	U	1.0	0.25
75-00-3	Chloroethane	1.0	U	1.0	0.32
67-66-3	Chloroform	1.0	U	1.0	0.25
74-87-3	Chloromethane	1.0	U	1.0	0.44
156-59-2	cis-1,2-Dichloroethene	1.0	U	1.0	0.26
10061-01-5	cis-1,3-Dichloropropene	1.0	U	1.0	0.46
110-82-7	Cyclohexane	1.0	U	1.0	0.45
124-48-1	Chlorodibromomethane	1.0	U	1.0	0.43
75-71-8	Dichlorodifluoromethane	1.0	U	1.0	0.32
100-41-4	Ethylbenzene	1.0	U	1.0	0.25
98-82-8	Isopropylbenzene	1.0	U	1.0	0.35

Lab Name: TestAmerica Canton

SDG No.:

Client Sample ID: MRC-SWDUP2-061316

Matrix: Water

Analysis Method: 8260C

Sample wt/vol: 5(mL)

Soil Aliquot Vol:

Soil Extract Vol.:

MRC-SWDUP2-061316

Lab Sample ID: 240-65996-5

Lab File ID: UXM6078.D

Date Collected: 06/13/2016 00:00

Date Analyzed: 06/20/2016 19:35

Dilution Factor: 1

Soil Extract Vol.:

GC Column: DB-624

ID: 0.18 (mm)

Level: (low/med) Low

79-20-9 Methyl acetate 10 U 10 1634-04-4 Methyl tert-butyl ether 1.0 U 1.0 O 108-87-2 Methylcyclohexane 1.0 U 1.0 O 75-09-2 Methylene Chloride 1.0 U 1.0 O 100-42-5 Styrene 1.0 U 1.0 O 127-18-4 Tetrachloroethene 1.0 U 1.0 O 108-88-3 Toluene 1.0 U 1.0 O 156-60-5 trans-1,2-Dichloroethene 1.0 U 1.0 O 79-01-6 trans-1,3-Dichloropropene 1.0 U 1.0 O 75-69-4 Trichlorofluoromethane 1.0 U 1.0 O 75-01-4 Vinyl chloride 1.0 U 1.0 O						
1634-04-4 Methyl tert-butyl ether 1.0 U 1.0 0 108-87-2 Methylcyclohexane 1.0 U 1.0 0 75-09-2 Methylene Chloride 1.0 U 1.0 0 100-42-5 Styrene 1.0 U 1.0 0 127-18-4 Tetrachloroethene 1.0 U 1.0 0 108-88-3 Toluene 1.0 U 1.0 0 156-60-5 trans-1,2-Dichloroethene 1.0 U 1.0 0 10061-02-6 trans-1,3-Dichloropropene 1.0 U 1.0 0 79-01-6 Trichloroethene 0.25 J 1.0 0 75-69-4 Trichlorofluoromethane 1.0 U 1.0 0 75-01-4 Vinyl chloride 1.0 U 1.0 0	CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
108-87-2 Methylcyclohexane 1.0 U 1.0 0 75-09-2 Methylene Chloride 1.0 U 1.0 0 100-42-5 Styrene 1.0 U 1.0 0 127-18-4 Tetrachloroethene 1.0 U 1.0 0 108-88-3 Toluene 1.0 U 1.0 0 156-60-5 trans-1,2-Dichloroethene 1.0 U 1.0 0 10061-02-6 trans-1,3-Dichloropropene 1.0 U 1.0 0 79-01-6 Trichloroethene 0.25 J 1.0 0 75-69-4 Trichlorofluoromethane 1.0 U 1.0 0 75-01-4 Vinyl chloride 1.0 U 1.0 0	79-20-9	Methyl acetate	10	U	10	2.3
75-09-2 Methylene Chloride 1.0 U 1.0 0 100-42-5 Styrene 1.0 U 1.0 0 127-18-4 Tetrachloroethene 1.0 U 1.0 0 108-88-3 Toluene 1.0 U 1.0 0 156-60-5 trans-1,2-Dichloroethene 1.0 U 1.0 0 10061-02-6 trans-1,3-Dichloropropene 1.0 U 1.0 0 79-01-6 Trichloroethene 0.25 J 1.0 0 75-69-4 Trichlorofluoromethane 1.0 U 1.0 0 75-01-4 Vinyl chloride 1.0 U 1.0 0	1634-04-4	Methyl tert-butyl ether	1.0	U	1.0	0.20
100-42-5 Styrene 1.0 U 1.0 0 127-18-4 Tetrachloroethene 1.0 U 1.0 0 108-88-3 Toluene 1.0 U 1.0 0 156-60-5 trans-1,2-Dichloroethene 1.0 U 1.0 0 10061-02-6 trans-1,3-Dichloropropene 1.0 U 1.0 0 79-01-6 Trichloroethene 0.25 J 1.0 0 75-69-4 Trichlorofluoromethane 1.0 U 1.0 0 75-01-4 Vinyl chloride 1.0 U 1.0 0	108-87-2	Methylcyclohexane	1.0	U	1.0	0.43
127-18-4 Tetrachloroethene 1.0 U 1.0 0 108-88-3 Toluene 1.0 U 1.0 0 156-60-5 trans-1,2-Dichloroethene 1.0 U 1.0 0 10061-02-6 trans-1,3-Dichloropropene 1.0 U 1.0 0 79-01-6 Trichloroethene 0.25 J 1.0 0 75-69-4 Trichlorofluoromethane 1.0 U 1.0 0 75-01-4 Vinyl chloride 1.0 U 1.0 0	75-09-2	Methylene Chloride	1.0	U	1.0	0.33
108-88-3 Toluene 1.0 U 1.0 0 156-60-5 trans-1,2-Dichloroethene 1.0 U 1.0 0 10061-02-6 trans-1,3-Dichloropropene 1.0 U 1.0 0 79-01-6 Trichloroethene 0.25 J 1.0 0 75-69-4 Trichlorofluoromethane 1.0 U 1.0 0 75-01-4 Vinyl chloride 1.0 U 1.0 0	100-42-5	Styrene	1.0	U	1.0	0.45
156-60-5 trans-1,2-Dichloroethene 1.0 U 1.0 0 10061-02-6 trans-1,3-Dichloropropene 1.0 U 1.0 0 79-01-6 Trichloroethene 0.25 J 1.0 0 75-69-4 Trichlorofluoromethane 1.0 U 1.0 0 75-01-4 Vinyl chloride 1.0 U 1.0 0	127-18-4	Tetrachloroethene	1.0	U	1.0	0.31
10061-02-6 trans-1,3-Dichloropropene 1.0 U 1.0 0 79-01-6 Trichloroethene 0.25 J 1.0 0 75-69-4 Trichlorofluoromethane 1.0 U 1.0 0 75-01-4 Vinyl chloride 1.0 U 1.0 0	108-88-3	Toluene	1.0	U	1.0	0.23
79-01-6 Trichloroethene 0.25 J 1.0 0 75-69-4 Trichlorofluoromethane 1.0 U 1.0 0 75-01-4 Vinyl chloride 1.0 U 1.0 0	156-60-5	trans-1,2-Dichloroethene	1.0	U	1.0	0.30
75-69-4 Trichlorofluoromethane 1.0 U 1.0 0 75-01-4 Vinyl chloride 1.0 U 1.0 0	10061-02-6	trans-1,3-Dichloropropene	1.0	U	1.0	0.56
75-01-4 Vinyl chloride 1.0 U 1.0 0	79-01-6	Trichloroethene	0.25	J	1.0	0.22
	75-69-4	Trichlorofluoromethane	1.0	U	1.0	0.49
1330-20-7 Xylenes, Total 2.0 U 2.0 0	75-01-4	Vinyl chloride	1.0	U	1.0	0.29
	1330-20-7	Xylenes, Total	2.0	U	2.0	0.52

CAS NO.	SURROGATE	%REC	Q	LIMITS
2037-26-5	Toluene-d8 (Surr)	100		80-120
1868-53-7	Dibromofluoromethane (Surr)	92		79-120
460-00-4	4-Bromofluorobenzene (Surr)	98		61-120
17060-07-0	1,2-Dichloroethane-d4 (Surr)	94		78-125

Lab Name: TestAmerica Burlington Job No.: 240-65994-1

SDG No.:

Client Sample ID: MRC-SWDUP1-061316 Lab Sample ID: 240-65994-12

Matrix: Water Lab File ID: 20474_27.D

Analysis Method: 522 MOD Date Collected: 06/13/2016 00:00

Extract. Method: 3535A Date Extracted: 06/16/2016 18:26

Sample wt/vol: 100(mL) Date Analyzed: 06/17/2016 16:32

Con. Extract Vol.: 2000(uL) Dilution Factor: 1

Injection Volume: 2(uL) Level: (low/med) Low

% Moisture: GPC Cleanup:(Y/N) N

Analysis Batch No.: 105857 Units: ug/L

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
123-91-1	1,4-Dioxane	0.12	J	0.20	0.057

CAS NO.	SURROGATE	%REC	Q	LIMITS
17647-74-4	1,4-Dioxane-d8 (Surr)	105		70-130

Lab Name: TestAmerica Burlington Job No.: 240-65994-1

SDG No.:

Client Sample ID: MRC-SWFB-061316 Lab Sample ID: 240-65996-1

Matrix: Water Lab File ID: 20593_15.D

Analysis Method: 522 MOD Date Collected: 06/13/2016 00:00

Extract. Method: 3535A Date Extracted: 06/22/2016 18:02

Sample wt/vol: 100(mL) Date Analyzed: 06/24/2016 23:32

Con. Extract Vol.: 2000(uL) Dilution Factor: 1

Injection Volume: 2(uL) Level: (low/med) Low

% Moisture: GPC Cleanup:(Y/N) N

Analysis Batch No.: 106221 Units: ug/L

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
123-91-1	1,4-Dioxane	0.20	U	0.20	0.057

CAS NO.	SURROGATE	%REC	Q	LIMITS
17647-74-4	1,4-Dioxane-d8 (Surr)	95		70-130

Lab Name: TestAmerica Burlington Job No.: 240-65994-1

SDG No.:

Client Sample ID: MRC-SW1A-061316 Lab Sample ID: 240-65996-2

Matrix: Water Lab File ID: 20593_16.D

Analysis Method: 522 MOD Date Collected: 06/13/2016 11:51

Extract. Method: 3535A Date Extracted: 06/22/2016 18:02

Sample wt/vol: 100(mL) Date Analyzed: 06/24/2016 23:45

Con. Extract Vol.: 2000(uL) Dilution Factor: 1

Injection Volume: 2(uL) Level: (low/med) Low

% Moisture: GPC Cleanup:(Y/N) N

Analysis Batch No.: 106221 Units: ug/L

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
123-91-1	1,4-Dioxane	0.13	J	0.20	0.057

CAS NO.	SURROGATE	%REC	Q	LIMITS
17647-74-4	1,4-Dioxane-d8 (Surr)	92		70-130

Lab Name: TestAmerica Burlington Job No.: 240-65994-1

SDG No.:

Client Sample ID: MRC-SW2A-061316 Lab Sample ID: 240-65996-3

Matrix: Water Lab File ID: 20593_17.D

Analysis Method: 522 MOD Date Collected: 06/13/2016 11:58

Extract. Method: 3535A Date Extracted: 06/22/2016 18:02

Sample wt/vol: 100(mL) Date Analyzed: 06/24/2016 23:59

Con. Extract Vol.: 2000(uL) Dilution Factor: 1

Injection Volume: 2(uL) Level: (low/med) Low

% Moisture: GPC Cleanup:(Y/N) N

Analysis Batch No.: 106221 Units: ug/L

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
123-91-1	1,4-Dioxane	0.16	J	0.20	0.057

CAS NO.	SURROGATE	%REC	Q	LIMITS
17647-74-4	1,4-Dioxane-d8 (Surr)	97		70-130

Lab Name: TestAmerica Savannah Job No.: 240-65994-1

SDG No.:

Client Sample ID: MRC-SW5A1-061316 Lab Sample ID: 240-65994-1

Matrix: Water Lab File ID: Xf2018.D

Analysis Method: 680 Date Collected: 06/13/2016 13:13

Extract. Method: 680 Date Extracted: 06/16/2016 13:29

Sample wt/vol: 504.4 (mL) Date Analyzed: 06/20/2016 16:30

Con. Extract Vol.: .5 (mL) Dilution Factor: 1

Injection Volume: 2(uL) Level: (low/med) Low

% Moisture: GPC Cleanup: (Y/N) N

Analysis Batch No.: 438006 Units: ug/L

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
28655-71-2	Heptachlorobiphenyl	0.30	U *	0.30	0.030
26601-64-9	Hexachlorobiphenyl	0.20	U *	0.20	0.015
53742-07-7	Nonachlorobiphenyl	0.50	Π *	0.50	0.049
55722-26-4	Octachlorobiphenyl	0.30	Π *	0.30	0.038
27323-18-8	Monochlorobiphenyl	0.099	Π *	0.099	0.0056
2051-24-3	DCB Decachlorobiphenyl	0.50	Π *	0.50	0.069
25512-42-9	Dichlorobiphenyl	0.099	Π *	0.099	0.0054
25429-29-2	Pentachlorobiphenyl	0.20	Π *	0.20	0.014
26914-33-0	Tetrachlorobiphenyl	0.20	U *	0.20	0.013
25323-68-6	Trichlorobiphenyl	0.099	U *	0.099	0.0064

CAS NO.	SURROGATE	%REC	Q	LIMITS
STL00281	Decachlorobiphenyl-13C12	48	*	25-113

Lab Name: TestAmerica Savannah Job No.: 240-65994-1

SDG No.:

Client Sample ID: MRC-SW5A2-061316 Lab Sample ID: 240-65994-2

Matrix: Water Lab File ID: Xf2112.D

Analysis Method: 680 Date Collected: 06/13/2016 13:18

Extract. Method: 680 Date Extracted: 06/16/2016 13:29

Sample wt/vol: 509.9(mL) Date Analyzed: 06/22/2016 01:01

Con. Extract Vol.: .5 (mL) Dilution Factor: 1

Injection Volume: 2(uL) Level: (low/med) Low

% Moisture: GPC Cleanup: (Y/N) N

Analysis Batch No.: 438264 Units: ug/L

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
28655-71-2	Heptachlorobiphenyl	0.29	U	0.29	0.029
26601-64-9	Hexachlorobiphenyl	0.20	U	0.20	0.015
53742-07-7	Nonachlorobiphenyl	0.49	U	0.49	0.048
55722-26-4	Octachlorobiphenyl	0.29	U	0.29	0.037
27323-18-8	Monochlorobiphenyl	0.098	U	0.098	0.0055
2051-24-3	DCB Decachlorobiphenyl	0.49	U	0.49	0.069
25512-42-9	Dichlorobiphenyl	0.098	U	0.098	0.0053
25429-29-2	Pentachlorobiphenyl	0.20	U	0.20	0.014
26914-33-0	Tetrachlorobiphenyl	0.20	U	0.20	0.013
25323-68-6	Trichlorobiphenyl	0.098	U	0.098	0.0064

CAS NO.	SURROGATE	%REC	Q	LIMITS
STL00281	Decachlorobiphenyl-13C12	83		25-113

Lab Name: TestAmerica Savannah Job No.: 240-65994-1

SDG No.:

Client Sample ID: MRC-SW5B-061316 Lab Sample ID: 240-65994-3

Matrix: Water Lab File ID: Xf2113.D

Analysis Method: 680 Date Collected: 06/13/2016 13:22

Extract. Method: 680 Date Extracted: 06/16/2016 13:29

Sample wt/vol: 1037.6(mL) Date Analyzed: 06/22/2016 01:30

Con. Extract Vol.: 1(mL) Dilution Factor: 1

Injection Volume: 2(uL) Level: (low/med) Low

% Moisture: _____ GPC Cleanup:(Y/N) N

Analysis Batch No.: 438264 Units: ug/L

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
28655-71-2	Heptachlorobiphenyl	0.29	U	0.29	0.029
26601-64-9	Hexachlorobiphenyl	0.19	U	0.19	0.014
53742-07-7	Nonachlorobiphenyl	0.48	U	0.48	0.047
55722-26-4	Octachlorobiphenyl	0.29	U	0.29	0.037
27323-18-8	Monochlorobiphenyl	0.096	U	0.096	0.0054
2051-24-3	DCB Decachlorobiphenyl	0.48	U	0.48	0.067
25512-42-9	Dichlorobiphenyl	0.096	U	0.096	0.0052
25429-29-2	Pentachlorobiphenyl	0.19	U	0.19	0.013
26914-33-0	Tetrachlorobiphenyl	0.19	U	0.19	0.013
25323-68-6	Trichlorobiphenyl	0.096	U	0.096	0.0063

CAS NO.	SURROGATE	%REC	Q	LIMITS
STL00281	Decachlorobiphenyl-13C12	71		25-113

Lab Name: TestAmerica Savannah Job No.: 240-65994-1

SDG No.:

Client Sample ID: MRC-SW6A-061316 Lab Sample ID: 240-65994-4

Matrix: Water Lab File ID: Xf2114.D

Analysis Method: 680 Date Collected: 06/13/2016 12:41

Extract. Method: 680 Date Extracted: 06/16/2016 13:29

Sample wt/vol: 1037.6(mL) Date Analyzed: 06/22/2016 01:59

Con. Extract Vol.: 1(mL) Dilution Factor: 1

Injection Volume: 2(uL) Level: (low/med) Low

% Moisture: GPC Cleanup:(Y/N) N

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
28655-71-2	Heptachlorobiphenyl	0.29	U *	0.29	0.029
26601-64-9	Hexachlorobiphenyl	0.19	Π *	0.19	0.014
53742-07-7	Nonachlorobiphenyl	0.48	Π *	0.48	0.047
55722-26-4	Octachlorobiphenyl	0.29	Π *	0.29	0.037
27323-18-8	Monochlorobiphenyl	0.096	Π *	0.096	0.0054
2051-24-3	DCB Decachlorobiphenyl	0.48	Π *	0.48	0.067
25512-42-9	Dichlorobiphenyl	0.096	Π *	0.096	0.0052
25429-29-2	Pentachlorobiphenyl	0.19	Π *	0.19	0.013
26914-33-0	Tetrachlorobiphenyl	0.19	U *	0.19	0.013
25323-68-6	Trichlorobiphenyl	0.096	U *	0.096	0.0063

CAS NO.	SURROGATE	%REC	Q	LIMITS
STL00281	Decachlorobiphenyl-13C12	74	*	25-113

Lab Name: TestAmerica Savannah Job No.: 240-65994-1

SDG No.:

Client Sample ID: MRC-SW6B-061316 Lab Sample ID: 240-65994-5

Matrix: Water Lab File ID: Xf2115.D

Analysis Method: 680 Date Collected: 06/13/2016 12:52

Extract. Method: 680 Date Extracted: 06/16/2016 13:29

Sample wt/vol: 1042.4 (mL) Date Analyzed: 06/22/2016 02:27

Con. Extract Vol.: 1(mL) Dilution Factor: 1

Injection Volume: 2(uL) Level: (low/med) Low

% Moisture: GPC Cleanup:(Y/N) N

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
28655-71-2	Heptachlorobiphenyl	0.29	U *	0.29	0.029
26601-64-9	Hexachlorobiphenyl	0.19	Π *	0.19	0.014
53742-07-7	Nonachlorobiphenyl	0.48	Π *	0.48	0.047
55722-26-4	Octachlorobiphenyl	0.29	Π *	0.29	0.036
27323-18-8	Monochlorobiphenyl	0.096	Π *	0.096	0.0054
2051-24-3	DCB Decachlorobiphenyl	0.48	U *	0.48	0.067
25512-42-9	Dichlorobiphenyl	0.096	U *	0.096	0.0052
25429-29-2	Pentachlorobiphenyl	0.036	J *	0.19	0.013
26914-33-0	Tetrachlorobiphenyl	0.19	U *	0.19	0.012
25323-68-6	Trichlorobiphenyl	0.096	U *	0.096	0.0062

CAS NO.	SURROGATE	%REC	Q	LIMITS
STL00281	Decachlorobiphenyl-13C12	71	*	25-113

Lab Name: TestAmerica Savannah Job No.: 240-65994-1

SDG No.:

% Moisture:

Client Sample ID: MRC-SW7A-061316 Lab Sample ID: 240-65994-6

Matrix: Water Lab File ID: Xf2116.D

Analysis Method: 680 Date Collected: 06/13/2016 12:18

Extract. Method: 680 Date Extracted: 06/16/2016 13:29

Sample wt/vol: 501.9(mL) Date Analyzed: 06/22/2016 02:56

Con. Extract Vol.: .5 (mL) Dilution Factor: 1

Injection Volume: 2(uL) Level: (low/med) Low

Analysis Batch No.: 438264 Units: ug/L

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
28655-71-2	Heptachlorobiphenyl	0.30	U	0.30	0.030
26601-64-9	Hexachlorobiphenyl	0.20	U	0.20	0.015
53742-07-7	Nonachlorobiphenyl	0.50	U	0.50	0.049
55722-26-4	Octachlorobiphenyl	0.30	U	0.30	0.038
27323-18-8	Monochlorobiphenyl	0.10	U	0.10	0.0056
2051-24-3	DCB Decachlorobiphenyl	0.50	U	0.50	0.070
25512-42-9	Dichlorobiphenyl	0.10	U	0.10	0.0054
25429-29-2	Pentachlorobiphenyl	0.20	U	0.20	0.014
26914-33-0	Tetrachlorobiphenyl	0.20	U	0.20	0.013
25323-68-6	Trichlorobiphenyl	0.10	U	0.10	0.0065

GPC Cleanup:(Y/N) N

CAS NO.	SURROGATE	%REC	Q	LIMITS
STL00281	Decachlorobiphenyl-13C12	68		25-113

Lab Name: TestAmerica Savannah Job No.: 240-65994-1

SDG No.:

Client Sample ID: MRC-SW7B-061316 Lab Sample ID: 240-65994-7

Matrix: Water Lab File ID: Xf2117.D

Analysis Method: 680 Date Collected: 06/13/2016 12:24

Extract. Method: 680 Date Extracted: 06/16/2016 13:29

Sample wt/vol: 1012.9(mL) Date Analyzed: 06/22/2016 03:25

Con. Extract Vol.: 1(mL) Dilution Factor: 1

Injection Volume: 2(uL) Level: (low/med) Low

% Moisture: GPC Cleanup:(Y/N) N
Analysis Batch No.: 438264 Units: ug/L

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
28655-71-2	Heptachlorobiphenyl	0.30	U *	0.30	0.030
26601-64-9	Hexachlorobiphenyl	0.20	U *	0.20	0.015
53742-07-7	Nonachlorobiphenyl	0.49	U *	0.49	0.048
55722-26-4	Octachlorobiphenyl	0.30	U *	0.30	0.038
27323-18-8	Monochlorobiphenyl	0.099	U *	0.099	0.0055
2051-24-3	DCB Decachlorobiphenyl	0.49	U *	0.49	0.069
25512-42-9	Dichlorobiphenyl	0.099	U *	0.099	0.0053
25429-29-2	Pentachlorobiphenyl	0.20	U *	0.20	0.014
26914-33-0	Tetrachlorobiphenyl	0.20	U *	0.20	0.013
25323-68-6	Trichlorobiphenyl	0.099	U *	0.099	0.0064

CAS NO.	SURROGATE	%REC	Q	LIMITS
STL00281	Decachlorobiphenyl-13C12	78	*	25-113

Lab Name: TestAmerica Savannah Job No.: 240-65994-1

SDG No.:

Client Sample ID: MRC-SW8A-061316 Lab Sample ID: 240-65994-8

Matrix: Water Lab File ID: Xf2118.D

Analysis Method: 680 Date Collected: 06/13/2016 12:57

Extract. Method: 680 Date Extracted: 06/16/2016 13:29

Sample wt/vol: 1039.4 (mL) Date Analyzed: 06/22/2016 03:54

Con. Extract Vol.: 1(mL) Dilution Factor: 1

Injection Volume: 2(uL) Level: (low/med) Low

% Moisture: _____ GPC Cleanup:(Y/N) N

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
28655-71-2	Heptachlorobiphenyl	0.29	U *	0.29	0.029
26601-64-9	Hexachlorobiphenyl	0.19	U *	0.19	0.014
53742-07-7	Nonachlorobiphenyl	0.48	U *	0.48	0.047
55722-26-4	Octachlorobiphenyl	0.29	U *	0.29	0.037
27323-18-8	Monochlorobiphenyl	0.096	U *	0.096	0.0054
2051-24-3	DCB Decachlorobiphenyl	0.48	П *	0.48	0.067
25512-42-9	Dichlorobiphenyl	0.096	Π *	0.096	0.0052
25429-29-2	Pentachlorobiphenyl	0.19	Π *	0.19	0.013
26914-33-0	Tetrachlorobiphenyl	0.19	U *	0.19	0.013
25323-68-6	Trichlorobiphenyl	0.096	U *	0.096	0.0063

CAS NO.	SURROGATE	%REC	Q	LIMITS
STL00281	Decachlorobiphenyl-13C12	72	*	25-113

Lab Name: TestAmerica Savannah Job No.: 240-65994-1

SDG No.:

Client Sample ID: MRC-SW8B-061316 Lab Sample ID: 240-65994-9

Matrix: Water Lab File ID: Xf2119.D

Analysis Method: 680 Date Collected: 06/13/2016 13:04

Extract. Method: 680 Date Extracted: 06/16/2016 13:29

Sample wt/vol: 1008.3(mL) Date Analyzed: 06/22/2016 04:22

Con. Extract Vol.: 1(mL) Dilution Factor: 1

Injection Volume: 2(uL) Level: (low/med) Low

% Moisture: GPC Cleanup:(Y/N) N

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
28655-71-2	Heptachlorobiphenyl	0.30	U *	0.30	0.030
26601-64-9	Hexachlorobiphenyl	0.20	U *	0.20	0.015
53742-07-7	Nonachlorobiphenyl	0.50	U *	0.50	0.049
55722-26-4	Octachlorobiphenyl	0.30	U *	0.30	0.038
27323-18-8	Monochlorobiphenyl	0.099	U *	0.099	0.0056
2051-24-3	DCB Decachlorobiphenyl	0.50	U *	0.50	0.069
25512-42-9	Dichlorobiphenyl	0.099	U *	0.099	0.0054
25429-29-2	Pentachlorobiphenyl	0.20	U *	0.20	0.014
26914-33-0	Tetrachlorobiphenyl	0.20	U *	0.20	0.013
25323-68-6	Trichlorobiphenyl	0.099	U *	0.099	0.0064

CAS NO.	SURROGATE	%REC	Q	LIMITS
STL00281	Decachlorobiphenyl-13C12	67	*	25-113

Lab Name: TestAmerica Savannah Job No.: 240-65994-1

SDG No.:

Client Sample ID: MRC-SW9A-061316 Lab Sample ID: 240-65994-10

Matrix: Water Lab File ID: Xf2120.D

Analysis Method: 680 Date Collected: 06/13/2016 12:29

Extract. Method: 680 Date Extracted: 06/16/2016 13:29

Sample wt/vol: 1039.6(mL) Date Analyzed: 06/22/2016 04:51

Con. Extract Vol.: 1(mL) Dilution Factor: 1

Injection Volume: 2(uL) Level: (low/med) Low

% Moisture: GPC Cleanup: (Y/N) N

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
28655-71-2	Heptachlorobiphenyl	0.29	U	0.29	0.029
26601-64-9	Hexachlorobiphenyl	0.19	U	0.19	0.014
53742-07-7	Nonachlorobiphenyl	0.48	U	0.48	0.047
55722-26-4	Octachlorobiphenyl	0.29	U	0.29	0.037
27323-18-8	Monochlorobiphenyl	0.096	U	0.096	0.0054
2051-24-3	DCB Decachlorobiphenyl	0.48	U	0.48	0.067
25512-42-9	Dichlorobiphenyl	0.096	U	0.096	0.0052
25429-29-2	Pentachlorobiphenyl	0.19	U	0.19	0.013
26914-33-0	Tetrachlorobiphenyl	0.19	U	0.19	0.013
25323-68-6	Trichlorobiphenyl	0.096	U	0.096	0.0063

CAS NO.	SURROGATE	%REC	Q	LIMITS
STL00281	Decachlorobiphenyl-13C12	74		25-113

Lab Name: TestAmerica Savannah Job No.: 240-65994-1

SDG No.:

Client Sample ID: MRC-SW9B-061316 Lab Sample ID: 240-65994-11

Matrix: Water Lab File ID: Xf2121.D

Analysis Method: 680 Date Collected: 06/13/2016 12:34

Extract. Method: 680 Date Extracted: 06/16/2016 13:29

Sample wt/vol: 1038.3(mL) Date Analyzed: 06/22/2016 05:20

Con. Extract Vol.: 1(mL) Dilution Factor: 1

Injection Volume: 2(uL) Level: (low/med) Low

% Moisture: GPC Cleanup:(Y/N) N

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
28655-71-2	Heptachlorobiphenyl	0.29	U	0.29	0.029
26601-64-9	Hexachlorobiphenyl	0.19	U	0.19	0.014
53742-07-7	Nonachlorobiphenyl	0.48	U	0.48	0.047
55722-26-4	Octachlorobiphenyl	0.29	U	0.29	0.037
27323-18-8	Monochlorobiphenyl	0.096	U	0.096	0.0054
2051-24-3	DCB Decachlorobiphenyl	0.48	U	0.48	0.067
25512-42-9	Dichlorobiphenyl	0.096	U	0.096	0.0052
25429-29-2	Pentachlorobiphenyl	0.19	U	0.19	0.013
26914-33-0	Tetrachlorobiphenyl	0.19	U	0.19	0.013
25323-68-6	Trichlorobiphenyl	0.096	U	0.096	0.0063

CAS NO.	SURROGATE	%REC	Q	LIMITS
STL00281	Decachlorobiphenyl-13C12	68		25-113

Lab Name: TestAmerica Savannah Job No.: 240-65994-1

SDG No.:

Client Sample ID: MRC-SWFB-061316 Lab Sample ID: 240-65996-1

Matrix: Water Lab File ID: Xf2122.D

Analysis Method: 680 Date Collected: 06/13/2016 00:00

Extract. Method: 680 Date Extracted: 06/16/2016 13:29

Sample wt/vol: 1011.3(mL) Date Analyzed: 06/22/2016 05:48

Con. Extract Vol.: 1(mL) Dilution Factor: 1

Injection Volume: 2(uL) Level: (low/med) Low

% Moisture: _____ GPC Cleanup:(Y/N) N

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
28655-71-2	Heptachlorobiphenyl	0.30	U *	0.30	0.030
26601-64-9	Hexachlorobiphenyl	0.20	Π *	0.20	0.015
53742-07-7	Nonachlorobiphenyl	0.49	Π *	0.49	0.048
55722-26-4	Octachlorobiphenyl	0.30	Π *	0.30	0.038
27323-18-8	Monochlorobiphenyl	0.099	Π *	0.099	0.0055
2051-24-3	DCB Decachlorobiphenyl	0.49	Π *	0.49	0.069
25512-42-9	Dichlorobiphenyl	0.099	Π *	0.099	0.0053
25429-29-2	Pentachlorobiphenyl	0.20	Π *	0.20	0.014
26914-33-0	Tetrachlorobiphenyl	0.20	U *	0.20	0.013
25323-68-6	Trichlorobiphenyl	0.099	U *	0.099	0.0064

CAS NO.	SURROGATE	%REC	Q	LIMITS
STL00281	Decachlorobiphenyl-13C12	81	*	25-113

Lab Name: TestAmerica Savannah Job No.: 240-65994-1

SDG No.:

Client Sample ID: MRC-SWDUP2-061316 Lab Sample ID: 240-65996-5

Matrix: Water Lab File ID: Xf2123.D

Analysis Method: 680 Date Collected: 06/13/2016 00:00

Extract. Method: 680 Date Extracted: 06/16/2016 13:29

Sample wt/vol: 1035.6(mL) Date Analyzed: 06/22/2016 06:17

Con. Extract Vol.: 1(mL) Dilution Factor: 1

Injection Volume: 2(uL) Level: (low/med) Low

% Moisture: _____ GPC Cleanup:(Y/N) N

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
28655-71-2	Heptachlorobiphenyl	0.29	U	0.29	0.029
26601-64-9	Hexachlorobiphenyl	0.19	U	0.19	0.014
53742-07-7	Nonachlorobiphenyl	0.48	U	0.48	0.047
55722-26-4	Octachlorobiphenyl	0.29	U	0.29	0.037
27323-18-8	Monochlorobiphenyl	0.097	U	0.097	0.0054
2051-24-3	DCB Decachlorobiphenyl	0.48	U	0.48	0.068
25512-42-9	Dichlorobiphenyl	0.097	U	0.097	0.0052
25429-29-2	Pentachlorobiphenyl	0.19	U	0.19	0.014
26914-33-0	Tetrachlorobiphenyl	0.19	U	0.19	0.013
25323-68-6	Trichlorobiphenyl	0.097	U	0.097	0.0063

CAS NO.	SURROGATE	%REC	Q	LIMITS
STL00281	Decachlorobiphenyl-13C12	78		25-113

Appendix C

Support Documentation

CASE NARRATIVE

Client: Tetra Tech, Inc.

Project: MRC Surface Water Sampling

Report Number: 240-65994-1

With the exceptions noted as flags or footnotes, standard analytical protocols were followed in the analysis of the samples and no problems were encountered or anomalies observed. In addition all laboratory quality control samples were within established control limits, with any exceptions noted below. Each sample was analyzed to achieve the lowest possible reporting limit within the constraints of the method. In some cases, due to interference or analytes present at high concentrations, samples were diluted. For diluted samples, the reporting limits are adjusted relative to the dilution required.

The 522 1,4-Dioxane analysis was performed at the TestAmerica Burlington laboratory. The 680 Polychlorinated Biphenyls analysis was performed at the TestAmerica Savannah laboratory.

TestAmerica Canton attests to the validity of the laboratory data generated by TestAmerica facilities reported herein. All analyses performed by TestAmerica facilities were done using established laboratory SOPs that incorporate QA/QC procedures described in the application methods. TestAmerica's operations groups have reviewed the data for compliance with the laboratory QA/QC plan, and data have been found to be compliant with laboratory protocols unless otherwise noted below.

The test results in this report meet all NELAP requirements for parameters for which accreditation is required or available. Any exceptions to NELAP requirements are noted in this report. Pursuant to NELAP, this report may not be reproduced, except in full, without the written approval of the laboratory.

Calculations are performed before rounding to avoid round-off errors in calculated results.

All holding times were met and proper preservation noted for the methods performed on these samples, unless otherwise detailed in the individual sections below.

This laboratory report is confidential and is intended for the sole use of TestAmerica and its client.

RECEIPT

The samples were received on 6/14/2016 9:20 AM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperatures of the 6 coolers at receipt time were 1.1° C, 1.1° C, 1.2° C, 1.2° C, 2.0° C and 2.0° C.

One container for the following samples was received broken 1XL each for: MRC-SW5A2-061316 (240-65994-2) and MRC-SW7A-061316 (240-65994-6). There is one liter that remains for each sample to have the 680 PCB analysis extracted.

VOLATILE ORGANIC COMPOUNDS (GCMS)

Samples MRC-SW5A1-061316 (240-65994-1), MRC-SWFB-061316 (240-65996-1), MRC-SW5A2-061316 (240-65994-2), MRC-SW1A-061316 (240-65996-2), MRC-SW5B-061316 (240-65994-3), MRC-SW2A-061316 (240-65996-3), MRC-SW6A-061316 (240-65994-4), TB-061316 (240-65996-4), MRC-SW6B-061316 (240-65994-5), MRC-SWDUP2-061316 (240-65996-5), MRC-SW7A-061316 (240-65994-6), MRC-SW7B-061316 (240-65994-7), MRC-SW8A-061316 (240-65994-8), MRC-SW8B-061316 (240-65994-9), MRC-SW9A-061316 (240-65994-10) and MRC-SW9B-061316 (240-65994-11) were analyzed for volatile organic compounds (GCMS) in accordance with EPA SW-846 Method 8260C. The samples were analyzed on 06/20/2016 and 06/21/2016.

The continuing calibration verification (CCV) associated with batch 240-235221 recovered above the upper control limit for multiple analytes. The samples associated with this CCV were non-detects for the affected analytes; therefore, the data have been reported. The following samples are impacted: MRC-SWFB-061316 (240-65996-1), MRC-SW1A-061316 (240-65996-2), MRC-SW2A-061316 (240-65996-3), TB-061316 (240-65996-4) and MRC-SWDUP2-061316 (240-65996-5).

The continuing calibration verification (CCV) for analytical batch 235154 exceeded control criteria for multiple compounds. The samples associated with this CCV were non-detects for the affected analytes. In accordance with the laboratory SOP, a low level CCV at the reporting limit (labeled as an MRL) was analyzed and the affected compounds were detected; therefore the data has been reported. No further corrective action was required. The following samples were impacted: MRC-SW5A1-061316 (240-65994-1), MRC-SW5A2-061316 (240-65994-2), MRC-SW5B-061316 (240-65994-3), MRC-SW6A-061316 (240-65994-4), MRC-SW6B-061316 (240-65994-5), MRC-SW7A-061316 (240-65994-6), MRC-SW7B-061316 (240-65994-7), MRC-SW8A-061316 (240-65994-8), MRC-SW8B-061316 (240-65994-9), MRC-SW9A-061316 (240-65994-10) and MRC-SW9B-061316 (240-65994-11).

The laboratory control sample (LCS) for 235154 recovered outside control limits for the following analytes: Methylene Chloride. This analyte was biased high in the LCS and was not detected in the associated samples; therefore, the data have been reported. The following samples were impacted: MRC-SW5A1-061316 (240-65994-1), MRC-SW5A2-061316 (240-65994-2), MRC-SW5B-061316 (240-65994-3), MRC-SW6A-061316 (240-65994-4), MRC-SW6B-061316 (240-65994-5), MRC-SW7A-061316 (240-65994-6).

MRC-SW7B-061316 (240-65994-7), MRC-SW8A-061316 (240-65994-8), MRC-SW8B-061316 (240-65994-9), MRC-SW9A-061316 (240-65994-10), MRC-SW9B-061316 (240-65994-11) and (LCS 240-235154/4).

Insufficient sample volume was available to perform a matrix spike/matrix spike duplicate/sample duplicate (MS/MSD/DUP) associated with 235310.MRC-SW7B-061316 (240-65994-7)

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

1,4-DIOXANE

Samples MRC-SWFB-061316 (240-65996-1), MRC-SW1A-061316 (240-65996-2), MRC-SW2A-061316 (240-65996-3) and MRC-SWDUP1-061316 (240-65994-12) were analyzed for 1,4-Dioxane in accordance with EPA Method 522. The samples were prepared on 06/16/2016 and 06/22/2016 and analyzed on 06/17/2016 and 06/24/2016.

No analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

POLYCHLORINATED BIPHENYLS (PCBS)

Samples MRC-SW5A1-061316 (240-65994-1), MRC-SWFB-061316 (240-65996-1), MRC-SW5A2-061316 (240-65994-2), MRC-SW5B-061316 (240-65994-3), MRC-SW6A-061316 (240-65994-4), MRC-SW6B-061316 (240-65994-5), MRC-SWDUP2-061316 (240-65996-5), MRC-SW7A-061316 (240-65994-6), MRC-SW7B-061316 (240-65994-7), MRC-SW8A-061316 (240-65994-8), MRC-SW8B-061316 (240-65994-9), MRC-SW9A-061316 (240-65994-10) and MRC-SW9B-061316 (240-65994-11) were analyzed for polychlorinated biphenyls (PCBs) in accordance with EPA Method 680. The samples were prepared on 06/16/2016 and analyzed on 06/20/2016 and 06/22/2016.

The SOP for the 680 Method allows that the capping CCV for soils has the limit of <30% average %D with no analyte >60%D and for liquids <20% average D with no analyte >40%D. Due to software limitations for this method, the limits are set at <20%D and flags will appear on data when data is outside that criteria. (CCV 680-438006/20) has been flagged.

The internal standard response for the following samples was outside of acceptance limits when compared to the area of the CCVIS(continuing calibration verification internal standard). The 680 method allows that the sample also be compared to the average internal standard area of the calibration (ICISAV). Due to limitations in the software, when the areas of the sample are out of control for either the CCVIS or the ICISAV both are flagged. Although a * flag appears on the data, the sample is within the area range for the internal standard area of the calibration (ICISAV). MRC-SW5A1-061316 (240-65994-1MSD)

The internal standard response for the following samples was outside of acceptance limits when compared to the area of the internal standard area of the calibration (ICISAV). The 680 method allows that the sample also be compared to the internal standard area of the CCVIS(continuing calibration verification internal standard). Due to limitations in the software, when the areas of the sample are out of control for either the CCVIS or the ICISAV both are flagged. Although a * flag appears on the data, the sample is within the area range for the internal standard area of the CCVIS(continuing calibration verification internal standard). LCS 680-437585/16-A, MB 680-437585/15-A, MRC-SW5A1-061316 (240-65994-1) and MRC-SW5A1-061316 (240-65994-1MS)

The internal standard response for the following samples was outside of acceptance limits when compared to the area of the CCVIS(continuing calibration verification internal standard). The 680 method allows that the sample also be compared to the average internal standard area of the calibration (ICISAV). Due to limitations in the software, when the areas of the sample are out of control for either the CCVIS or the ICISAV both are flagged. Although a * flag appears on the data, the sample is within the area range for the internal standard area of the calibration (ICISAV). MRC-SWFB-061316 (240-65996-1), MRC-SW6A-061316 (240-65994-4), MRC-SW6B-061316 (240-65994-5), MRC-SW7B-061316 (240-65994-7), MRC-SW8A-061316 (240-65994-8) and MRC-SW8B-061316 (240-65994-9).

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Method Summary

Client: Tetra Tech, Inc.

Project/Site: MRC Surface Water Sampling

TestAmerica Job ID: 240-65994-1

Method	Method Description	Protocol	Laboratory
8260C	Volatile Organic Compounds by GC/MS	SW846	TAL CAN
522 MOD	1,4 Dioxane (GC/MS SIM)	EPA	TAL BUR
680	Polychlorinated Biphenyls (PCBs) (GC/MS)	EPA	TAL SAV

Protocol References:

EPA = US Environmental Protection Agency

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL BUR = TestAmerica Burlington, 30 Community Drive, Suite 11, South Burlington, VT 05403, TEL (802)660-1990

TAL CAN = TestAmerica Canton, 4101 Shuffel Street NW, North Canton, OH 44720, TEL (330)497-9396

TAL SAV = TestAmerica Savannah, 5102 LaRoche Avenue, Savannah, GA 31404, TEL (912)354-7858

Sample Summary

Client: Tetra Tech, Inc.

Project/Site: MRC Surface Water Sampling

Lab Sample ID Client Sample ID Matrix Collected Received 240-65994-1 MRC-SW5A1-061316 Water 06/13/16 13:13 06/14/16 09:20 Water 240-65994-2 MRC-SW5A2-061316 06/13/16 13:18 06/14/16 09:20 240-65994-3 MRC-SW5B-061316 Water 06/13/16 13:22 06/14/16 09:20 240-65994-4 MRC-SW6A-061316 Water 06/13/16 12:41 06/14/16 09:20 240-65994-5 MRC-SW6B-061316 Water 06/13/16 12:52 06/14/16 09:20 240-65994-6 MRC-SW7A-061316 Water 06/13/16 12:18 06/14/16 09:20 240-65994-7 MRC-SW7B-061316 Water 06/13/16 12:24 06/14/16 09:20 240-65994-8 MRC-SW8A-061316 Water 06/13/16 12:57 06/14/16 09:20 240-65994-9 MRC-SW8B-061316 Water 06/13/16 13:04 06/14/16 09:20 240-65994-10 MRC-SW9A-061316 Water 06/13/16 12:29 06/14/16 09:20 240-65994-11 MRC-SW9B-061316 Water 06/13/16 12:34 06/14/16 09:20 240-65994-12 MRC-SWDUP1-061316 Water 06/13/16 00:00 06/14/16 09:20 240-65996-1 MRC-SWFB-061316 Water 06/13/16 00:00 06/14/16 09:20 240-65996-2 MRC-SW1A-061316 Water 06/13/16 11:51 06/14/16 09:20 Water 240-65996-3 MRC-SW2A-061316 06/13/16 11:58 06/14/16 09:20 240-65996-4 TB-061316 Water 06/13/16 00:00 06/14/16 09:20 240-65996-5 MRC-SWDUP2-061316 Water 06/13/16 00:00 06/14/16 09:20

TestAmerica Job ID: 240-65994-1

180325 O.1/ North Canton 4101 Shuffel Street, N. W. **Chain of Custody Record** BALTIMORE North Canton, OH 44720 phone 330.497.9396 fax 330.497.0772 TestAmerica Laboratories, Inc. Client Contact Project Manager: Tony Apanavage Site Contact: Tony Apanavage Date: 6/13/2016 COC No: Tel/Fax: 301-233-8230 (cell) Tetra Tech Lab Contact: John McFadden Carrier: Fedex 1 of 2 COCs 20251 Century Blvd, Suite 200 **Analysis Turnaround Time** Job No. Germantown, MD 20874 Calendar (C) or Work Days (W) (301) 528-3021 Phone TAT if different from Below: STANDARD (301) 528-3000 FAX 2 weeks SDG No. Project Name: MRC Surface Water Sampling 1 week Site: MRC Dark Head Cove / Cow Per Creek 2 days Project # 112IC07776.07 1 day VOCs (8260C) Sampler: MULLIS Sample Sample Sample PCBs Sample Identification Date Time Type Matrix Cont. Sample Specific Notes: 1313 MRC-SW5A1-061316 6/13/2016 Water 5 6/13/2016 318 MRC-SW5A2-061316 5 Water MRC-SW5B-06 316 6/13/2016 Water 5 <u>P</u>a¢e 6/13/2016 1241 MRC-SW6A-06 316 Water 5 MRC-SW6B-06 B16 6/13/2016 Water 5 <u>3</u> 3 6/13/2016 MRC-SW7A-06 316 Water 5 6/13/2016 1277 MRC-SW7B-06 316 Water 5 MRC-SW8A-06 316 6#13/2016 Water 5 MRC-SW8B-06 316 6/13/2016 Water 6/13/2016 1229 MRC-SW9A-06 316 Water MRC-SW9B-06 316 6/13/2016 Water 5 PMRC SWOUD STORE MACGINEPT- WIRIG/13/2016 MPL-Swirft-Obl3/6 Water P-4 Preservation Used: 1= Lee, 2= HCl; 3= H2SO4; 4=HNO3; 5=NaOH; 6= Other Possible Hazard Identification Sample Disposal (A fee may be assessed if samples are retained longer than 1 month) ☐ Flammable Non-Hazard Disposal By Lab Skin Irritant Unknown Return To Client Archive For Months Special Instructions/QC Requirements & Comments: MRC-SWEUF1-061316 for 14-dokune only Relinquished by: Relinquished by

Company:

Relinguished by:

Form No. CA-C-WI-002, Rev. 2, dated 03/06/2012

TestAmerica Canton Sample Receipt Form/Narrative Logic	n#: 05994
Canton Facility	и и
Client Tetra Tech Site Name	Cooler unpacked by:
Cooler Received on O6-14-16 Opened on O6-14-16	$ O_{SO} $
FedEx: 1st Grd Exp UPS FAS Stetson Client Drop Off TestAmerica Courier	Other
Receipt After-hours: Drop-off Date/Time Storage Location	
TestAmerica Cooler # Balk we Foam Box Client Cooler Box Other	
Packing material used: But ble Wrap Foam Plastic Bag None Other	
COOLANT: Wet Ide Blue Ice Dry Ice Water None 1. Cooler temperature upon receipt See Multiple Cooler For	
1. Cooler temperature upon receipt IR GUN# IR-8 (CF-+1.3 °C) Observed Cooler Temp. See Multiple Cooler For Corrected Cooler Temp.	emp. °C
IR GUN #36 (CF +1.0°C) Observed Cooler Temp. °C Corrected Cooler Te	emp. °C
2. Were custody seals on the outside of the cooler(s)? If Yes Quantity Pach Yes	
	s No NA
-Were custody seals on the bottle(s) or bottle kits (LLHg/MeHg)?	. •
3. Shippers' packing slip attached to the cooler(s)?	
4. Did custody papers accompany the sample(s)?	No
5. Were the custody papers relinquished & signed in the appropriate place? 6. Was/were the person(s) who collected the samples clearly identified on the COC?	No No
1 - 1	10
	No
9. Were correct bottle(s) used for the test(s) indicated?	No
10. Sufficient quantity received to perform indicated analyses?	No
11. Are these work share samples?	100
If yes, Questions 11-15 have been checked at the originating laboratory.	No PH Strip Lot# HC574756
	No Pri Strip Lot# HC5/4/50
	s (N) NA
14. Was a VOA trip blank present in the cooler(s)? Trip Blank Lot # Yes	
15. Was a LL Hg or Me Hg trip blank present? Yes Contacted PM Date by via Verbal Ve	₩
Contacted PM Date by via Verbal Ver	oice Mail Other
Concerning	
14. CHAIN OF CUSTODY & SAMPLE DISCREPANCIES	Samples processed by:
Sample'S MRC-SWSAZ and MRC-SW7A each	
Titie Amber. Samplès MRC-SWSAI MRC-SWSA	2/ MRC-SUBA COUL
had one lid broken on Ambers.	
	
15. SAMPLE CONDITION	and the standard and
Sample(s) were received after the recommended holding Sample(s) were received	in a broken container
Sample(s) were received with bubble >6 mm ir	l l
Sample(s)were received with outbole >0 min in	diamotor. (110tily 1111)
16. SAMPLE PRESERVATION	
0 - 1.()	they preserved in the laboratory
Sample(s) were furt Time preserved: Preservative(s) added/Lot number(s):	ther preserved in the laboratory.
1 mo proserva1 reservative(s) added Decinamov(s).	

Ref:-SOP-NC-SC-0005-Sample-Receiving-L:\QAQC\QA Department\QA TARDIS\Document Control\Work Instructions\In Revision\W1-NC-099-061316 Cooler Receipt Form.doc djl

Cooler #	IR Gun#	Observed Temp °C	Corrected Temp	Coolant
Balt:min	36	1.0	2.0	Ice
		0,2	1.7	1
	b	0.1	1.1	V
meneral contract of the contra	AND THE PROPERTY OF A THE PROP	A selection with the control of the control of the selection of the control of th		manya firmininin manamanashin menanashi aliku a ta'u ji an genera a na sa
	<u> </u>			
	- to			
1				
			delta della della	
٠,	·			•
			r _t	
			July th COV 30 offer.	

6/14/2016

Login Container Summary Report

240-65994

Temperature readings:			-		
Client Sample ID	<u>Lab ID</u>	Container Type	Container pH	Preservative Added (mls)	Lot #
MRC-SWAPT-061316	240-65994-A-12	Amber Glass 250mL - hydrochloric	<2		
MRC-SWAPT-061316	240-65994-B-12	Amber Glass 250mL - hydrochloric	<2		
					-
	·				

18**080325**

North Canton

4101 Shuffel Street, N. W.

North Canton, OH 44720 phone 330.497.9396 fax 330.497.0772

BABALTIMORE

Chain of Custody Record

THE LEADER IN ENVIRONMENTAL TESTING

TestAmerica Laboratories, Inc.

p.10.10 000115113050	Client Conta	ct		Project Man	ager: Tony	Apanavag	e		Site (Conta	ct: To	ony Ap	anavage	e		Dat	e: 6	/13/2	2016			i.		COC No:	\neg
Tetra Tech				Tel/Fax: 301	-233-8230	(cell)			Lab	Conta	act: Jo	hn Mo	fadden			Carr	ier:	Fede	x			İ		2 of 2 COCs	\neg
20251 Century Blvd	, Suite 200			I	Analysis Tu	rnaround I	ſime		П					T			Т	\top	T	T				Job No.	\neg
Germantown, MD 2	0874			Calendar	(C) or Wo	k Days (W)			11																
(301) 528-3021	Phor	ie		TAT	if different fro	m Below; STA	NDARD]	ı	1 1			ĺ							1				
(301) 528-3000	FA	X			2	weeks								-				- [İ		H			SDG No.	
Project Name: MRC	Surface Water S	mpling			1	week			П								1					1		!	
Site: MRC Dark He	ad Cove / Cow Per	Creek			2	days					ล									İ		H		i .	. 1
Project # 112IC077	76.07				1	day			Tal 2	3	(522)					l	1							Sampler: Mullis	
									Filtered Sample	PCBs (680)	1,4-Dioxane									1	1.				
				Sample	Sample	Sample		# of	tere	3 g	ặ	ŀ					- -						ļ	<u> </u>	
	Sample Identific	ation		Date	Time	Туре	Matrix	Cont.		2 2	4,1			_				_	-	<u> </u>		Ш		Sample Specific Notes:	
	MRC-SWFB-06	1316			000	sw	Water	7	x	x	x			_			_		$\downarrow \downarrow$	1.				Field Rinsate Blank	
	MRC-SW1A-06	1316		6/13/2016	[15]	SW	Water	5	x		x						- 1			1.	1			!	l
	MRC-SW2A-06	1316	_	6/13/2016	1158	sw	Water	5	x		x						!								
Page 317 of 320	TB-061316			6/13/2016	2000	sw	Water	2	l x					T		П					1				-
Ö	MBC=SWOO	0-2	16/2//	6/13/2010			witer	5	١,	ž X	,			†			_	\neg	+	1:	:11	1	1	0 / 1 2	\dashv
3	1,200 70000		01710	0/19 200		100	DAIL!		╀		╅┈┤			┼┈	╁	┢	- -		- -	1 3	+	┼╫	 	Ouplicate 2	
9			<u> </u>						Ш		$\perp \perp$						1							<u> </u>	.
ယ္လ						!			Ιİ											T i					
0							1		11		11		\Box	1		•	٠		-1	1	 	1 - 1	l		-
							<u> </u>		╂╌┠	-	+	_	+					Hillin	ii m	1 1000	 		ļ <u></u>		
										1				1									Ш	Ì	I
														11									Ш	1	\neg
							 		+	\dashv	+		++	- 11				l III.					III	i	
							ļ		$oldsymbol{\perp}$	_ _	1	_		24	10-65	996	Chá	in of	Cus	todv	, HILD TÄH	11111	111		
									11	-							ľ	ī	I	1	1 :				
Preservation Used:	16 e. 2= HCl: 3	H2SO4:	4=HNO3: 5=NaO	H; 6= Other		<u> </u>			_	2 1	1		11		†	$ \cdot $	7	+	十	╅	+	1 1	1	 	
Possible Hazard Ide	ntification			,								sposa	I (A fee	ma	y be	ass	esse	ed if	sami	ples	are	reta	ine	d longer than 1 month)	—
Non-Hazard	Flammable		Skin Irritant	Poison B	. \square	Unknown					Retu	rn To (Client	(Disp	osai	l By I	ab		\Box	Arc	chiv	re For Months	ļ
Special Instructions		& Comm	ents: AAD Co	SW OUP	5 ~26	13/1	60 1	F3/6	<i>e</i>	0	ar	RC				·						i:		nonata s	$\overline{}$
			101100	76000	2 00	1716	cos u	وساماء	W.		ru	دار						•						1	l
Relinquished by:	11 1 -	 		Company:	J*'. 1		Date/Ti	ne:	R	Receiv	ed by:	Kh	7/	广			7	Comp	any;	1	. '	r	<u> </u>	Date/Time:	\dashv
	VELO L			Comment	ELL	<u> </u>	Date/Ti	122					-	<u> </u>			_	16	310	<u> Im</u>	<u>C/1</u>	Ca	ļ	Date/Time: (6/13/16/1525	
Relinquished by:	Perhal			Company/	Me Pico	1 6/1	3/6/		_ 1/	CEGEIX	ed by:	~	(6)	L	_	_	ľ	Conn	jany:	\mathcal{C}		1.		Date/Time: 6/14/16 4:70	, ,
Relinquished by:	1			Company:	<u> </u>		Date/Ti			Receiv	ed by:	:					7	Comp	any:		īΪ			Date/Time:	\dashv
	<i>V</i>			1															_		1 '			}	
																					F	orm	No.	CA-C-WI-002, Rev. 2, dated 03/06/2	2012

	TestAmerica Canton Sample Receipt Form/Narrative Logic	n#:65996
	Client Tetra Tech Site Name	Cooler unpacked by:
	Cooler Received on 06-14-16 Opened on 06-14-16	O20
	FedEx: 1st Grd (x) UPS FAS Stetson Client Drop Off TestAmerica Courier	Other
	Receipt After-hours: Drop-off Date/Time Storage Location	
'	Foam Box Client Cooler Box Other Packing material used: Bubble Wrap Foam Plastin Bag None Other	
_ -	Packing material used: Buble Wrap Foam Plast Bag None Other COOLANT: We fice Blue Ice Dry Ice Water None	
	I. Cooler temperature upon receipt IR GUN# IR-8 (CF +1.3 °C) Observed Cooler Temp. IR GUN #36 (CF +1.0 °C) Observed Cooler Temp. OC Corrected Cooler Temp. OC Corrected Cooler Temp. OC Corrected Cooler Temp. OC Corrected Cooler Temp. OC Corrected Cooler Temp. OC Corrected Cooler Temp. OC Corrected Cooler Temp.	Cemp°C emp°C
3 3 4 5 8 9 9 1 1 1 1 1 1 1 1 1 1	-Were custody seals on the outside of the cooler(s) signed & dated? -Were custody seals on the bottle(s) or bottle kits (LLHg/MeHg)? Shippers' packing slip attached to the cooler(s)? Did custody papers accompany the sample(s)? Were the custody papers relinquished & signed in the appropriate place? Was/were the person(s) who collected the samples clearly identified on the COC? Did all bottles arrive in good condition (Unbroken)? Could all bottle labels be reconciled with the COC? Were correct bottle(s) used for the test(s) indicated? Sufficient quantity received to perform indicated analyses? Are these work share samples? If yes, Questions 11-15 have been checked at the originating laboratory. Were sample(s) at the correct pH upon receipt? Were VOAs on the COC?	S No NA S No S No S No S No S No S No S No S No
	4. CHAIN OF CUSTODY & SAMPLE DISCREPANCIES	Samples processed by:
- - - - - 1	5. SAMPLE CONDITION	£-
S	ample(s)were received after the recommended holding	
	ample(s) were received ample(s) were received with bubble >6 mm in	in a broken container.
3	ample(s)were received with onpose >0 tilli ii	in diameter. (Notify 1 191)
1	6. SAMPLE PRESERVATION	
S	P	ther preserved in the laboratory.

Ref: SOP NC-SC-0005, Sample Receiving.

L:\QAQC\QA Department\QA TARDIS\Document Control\Work Instructions\In Revision\WI-NC-099-061316 Cooler Receipt Form.doc djl

Cooler#	IR Gun#	Observed Temp °C	Login#: 1/5996 Corrected Temp °C	Coolant
Q W.	36			T(1
Bult: more	36	1.0	2.0	FCC
		0.2	1.7	
4	Ф	0.1		y
	Z 410 7/7 1100 / 200			
				46 to
	·			
		· ·		
		1		
			· · · · · · · · · · · · · · · · · · ·	
	•			
`,				
		· · · · · · · · · · · · · · · · · · ·		
				•
			0,5	
			v v	
				·
,				

Login Container Summary Report

240-65996

Temperature readings:			_	ar rear ar the residence and and area	
Client Sample ID	<u>Lab ID</u>	Container Type	Container pH	Preservative Added (mls)	Lot #
•		•	-	<u>, , , , , , , , , , , , , , , , , , , </u>	<u> 200 ::</u>
MRC-SWFB-061316	240-65996-D-1	Amber Glass 250mL - hydrochloric	<2		
MRC-SWFB-061316	240-65996-E-1	Amber Glass 250mL - hydrochloric	<2		
		Amber Glass-250mL-hydrochloric			
MRC-SW1A-061316		Amber Glass 250mL - hydrochloric	<2		
MRC-SW2A-061316	240-65996-D-3	Amber Glass 250mL - hydrochloric	<2		
MRC-SW2A-061316	240-65996-E-3	Amber Glass 250mL - hydrochloric	<2		

Page 1 of 1

Method 8260C

Volatile Organic Compounds (GC/MS) by Method 8260C

Lab Name: TestAmerica Canton Job No.: 240-65994-1

SDG No.:

Lab File ID: BFB6528.D BFB Injection Date: 05/28/2016

Instrument ID: A3UX11 BFB Injection Time: 08:28

Analysis Batch No.: 232366

M/E	ION ABUNDANCE CRITERIA	% RELATIVE ABUNDANCE		
50	15.0 - 40.0 % of mass 95	15.5		
75	30.0 - 60.0 % of mass 95	43.7		
95	Base Peak, 100% relative abundance	100.0		
96	5.0 - 9.0 % of mass 95	6.4		
173	Less than 2.0 % of mass 174	0.0	(0.0) 1	
174	50.0 - 120.00 % of mass 95	89.7		
175	5.0 - 9.0 % of mass 174	6.8	(7.6) 1	
176	95.0 - 101.0 % of mass 174	86.3	(96.2) 1	
177	5.0 - 9.0 % of mass 176	5.8	(6.7) 2	

1-Value is % mass 174

2-Value is % mass 176

CLIENT SAMPLE ID	LAB SAMPLE ID	LAB FILE ID	DATE ANALYZED	TIME ANALYZED
	STD8260 240-232366/2	UXJ4939.D	05/28/2016	09:12
	STD8260 240-232366/3	UXJ4940.D	05/28/2016	09:34
	STD8260 240-232366/4	UXJ4941.D	05/28/2016	09:56
	STD8260 240-232366/5	UXJ4942.D	05/28/2016	10:19
	STD8260 240-232366/6	UXJ4943.D	05/28/2016	10:40
	STD8260 240-232366/7	UXJ4944.D	05/28/2016	11:03
	ICV 240-232366/14	UXJ4945.D	05/28/2016	11:25
	ICV 240-232366/15	UXJ4952.D	05/28/2016	14:03

Lab Name: TestAmerica Canton Job No.: 240-65994-1

SDG No.:

Lab File ID: BFB6620.D BFB Injection Date: 06/20/2016

Instrument ID: A3UX11 BFB Injection Time: 09:01

Analysis Batch No.: 235154

M/E	ION ABUNDANCE CRITERIA	% RELATIVE ABUNDANCE		
50	15.0 - 40.0 % of mass 95	16.2		
75	30.0 - 60.0 % of mass 95	46.4		
95	Base Peak, 100% relative abundance	100.0		
96	5.0 - 9.0 % of mass 95	6.6		
173	Less than 2.0 % of mass 174	0.0	(0.0) 1	
174	50.0 - 120.00 % of mass 95	84.1		
175	5.0 - 9.0 % of mass 174	6.4	(7.6) 1	
176	95.0 - 101.0 % of mass 174	81.9	(97.4) 1	
177	5.0 - 9.0 % of mass 176	5.4	(6.6) 2	

1-Value is % mass 174

2-Value is % mass 176

CLIENT SAMPLE ID	LAB SAMPLE ID	LAB FILE ID	DATE ANALYZED	TIME ANALYZED
	CCVIS 240-235154/2	UXJ5601.D	06/20/2016	09:34
	LCS 240-235154/4	UXJ5602.D	06/20/2016	09:57
	CCV 240-235154/3	UXJ5603.D	06/20/2016	10:20
	MB 240-235154/6	UXJ5605.D	06/20/2016	11:05
MRC-SW5A1-061316	240-65994-1	UXJ5610.D	06/20/2016	13:13
MRC-SW5A2-061316	240-65994-2	UXJ5611.D	06/20/2016	13:35
MRC-SW5B-061316	240-65994-3	UXJ5612.D	06/20/2016	13:57
MRC-SW6A-061316	240-65994-4	UXJ5613.D	06/20/2016	14:20
MRC-SW6B-061316	240-65994-5	UXJ5614.D	06/20/2016	14:43
MRC-SW7A-061316	240-65994-6	UXJ5615.D	06/20/2016	15:05
MRC-SW7B-061316	240-65994-7	UXJ5616.D	06/20/2016	15:27
MRC-SW8A-061316	240-65994-8	UXJ5617.D	06/20/2016	15:49
MRC-SW8B-061316	240-65994-9	UXJ5618.D	06/20/2016	16:12
MRC-SW9A-061316	240-65994-10	UXJ5619.D	06/20/2016	16:34
MRC-SW9B-061316	240-65994-11	UXJ5620.D	06/20/2016	16:57
	240-65995-B-5 MS	UXJ5626.D	06/20/2016	19:12
	240-65995-B-5 MSD	UXJ5627.D	06/20/2016	19:35

Lab Name: TestAmerica Canton Job No.: 240-65994-1

SDG No.:

Lab File ID: BFB6621.D BFB Injection Date: 06/21/2016

Instrument ID: A3UX11 BFB Injection Time: 08:00

Analysis Batch No.: 235310

M/E	ION ABUNDANCE CRITERIA	% RELATIVE ABUNDANCE		
50	15.0 - 40.0 % of mass 95	17.1		
75	30.0 - 60.0 % of mass 95	46.0		
95	Base Peak, 100% relative abundance	100.0		
96	5.0 - 9.0 % of mass 95	6.6		
173	Less than 2.0 % of mass 174	0.0	(0.0) 1	
174	50.0 - 120.00 % of mass 95	82.2		
175	5.0 - 9.0 % of mass 174	7.0	(8.5) 1	
176	95.0 - 101.0 % of mass 174	80.6	(98.1) 1	
177	5.0 - 9.0 % of mass 176	5.7	(7.1) 2	

1-Value is % mass 174

2-Value is % mass 176

CLIENT SAMPLE ID	LAB SAMPLE ID	LAB FILE ID	DATE ANALYZED	TIME ANALYZED
	CCVIS 240-235310/2	UXJ5658.D	06/21/2016	08:52
	CCV 240-235310/3	UXJ5660.D	06/21/2016	09:36
	LCS 240-235310/4	UXJ5661.D	06/21/2016	10:17
	MB 240-235310/6	UXJ5663.D	06/21/2016	11:01
MRC-SW7B-061316	240-65994-7	UXJ5670.D	06/21/2016	13:59

Lab Name: TestAmerica Canton Job No.: 240-65994-1

SDG No.:

Lab File ID: BFB4865.D BFB Injection Date: 06/01/2016

Instrument ID: A3UX16 BFB Injection Time: 11:38

Analysis Batch No.: 232711

M/E	ION ABUNDANCE CRITERIA	% RELATIVE ABUNDANCE		
50	15.0 - 40.0 % of mass 95	16.1		
75	30.0 - 60.0 % of mass 95	47.6		
95	Base Peak, 100% relative abundance	100.0		
96	5.0 - 9.0 % of mass 95	6.2		
173	Less than 2.0 % of mass 174	0.4	(0.5) 1	
174	50.0 - 120.00 % of mass 95	74.9		
175	5.0 - 9.0 % of mass 174	5.3	(7.1) 1	
176	95.0 - 101.0 % of mass 174	73.3	(97.9) 1	
177	5.0 - 9.0 % of mass 176	5.1	(7.0) 2	

1-Value is % mass 174

2-Value is % mass 176

CLIENT SAMPLE ID	LAB SAMPLE ID	LAB FILE ID	DATE ANALYZED	TIME ANALYZED
	STD8269 240-232711/2	UXM5570.D	06/01/2016	12:06
	STD8260 240-232711/3	UXM5571.D	06/01/2016	12:29
	STD8260 240-232711/4	UXM5572.D	06/01/2016	12:51
	STD8260 240-232711/5	UXM5573.D	06/01/2016	13:14
	STD8260 240-232711/6	UXM5574.D	06/01/2016	13:37
	STD8260 240-232711/7	UXM5575.D	06/01/2016	14:00
	STD8260 240-232711/8	UXM5576.D	06/01/2016	14:22
	ICV 240-232711/9	UXM5577.D	06/01/2016	14:45
	ICV 240-232711/16	UXM5584.D	06/01/2016	17:24

Lab Name: TestAmerica Canton Job No.: 240-65994-1

SDG No.:

Lab File ID: BFB4888.D BFB Injection Date: 06/20/2016

Instrument ID: A3UX16 BFB Injection Time: 11:25

Analysis Batch No.: 235221

M/E	ION ABUNDANCE CRITERIA		ATIVE DANCE
50	15.0 - 40.0 % of mass 95	18.0	
75	30.0 - 60.0 % of mass 95	48.4	
95	Base Peak, 100% relative abundance	100.0	
96	5.0 - 9.0 % of mass 95	6.3	
173	Less than 2.0 % of mass 174	0.2	(0.2) 1
174	50.0 - 120.00 % of mass 95	74.1	
175	5.0 - 9.0 % of mass 174	5.1	(6.9) 1
176	95.0 - 101.0 % of mass 174	72.1	(97.3) 1
177	5.0 - 9.0 % of mass 176	4.5	(6.2) 2

1-Value is % mass 174

2-Value is % mass 176

CLIENT SAMPLE ID	LAB SAMPLE ID	LAB FILE ID	DATE ANALYZED	TIME ANALYZED
	LCS 240-235221/4	UXM6059.D	06/20/2016	12:25
	CCVIS 240-235221/2	UXM6060.D	06/20/2016	12:47
	CCV 240-235221/3	UXM6061.D	06/20/2016	13:10
	MB 240-235221/6	UXM6063.D	06/20/2016	13:55
	240-65962-B-1 MS	UXM6071.D	06/20/2016	16:56
	240-65962-B-1 MSD	UXM6072.D	06/20/2016	17:19
MRC-SWFB-061316	240-65996-1	UXM6074.D	06/20/2016	18:04
MRC-SW1A-061316	240-65996-2	UXM6075.D	06/20/2016	18:27
MRC-SW2A-061316	240-65996-3	UXM6076.D	06/20/2016	18:50
TB-061316	240-65996-4	UXM6077.D	06/20/2016	19:12
MRC-SWDUP2-061316	240-65996-5	UXM6078.D	06/20/2016	19:35

Lab Name: TestAmerica Canton Job No.: 240-65994-1 Analy Batch No.: 232366

SDG No.:

Instrument ID: A3UX11 GC Column: DB-624 ID: 0.18(mm) Heated Purge: (Y/N) N

Calibration Start Date: 05/28/2016 09:12 Calibration End Date: 05/28/2016 11:03 Calibration ID: 34632

Calibration Files:

LEVEL:	LAB SAMPLE ID:	LAB FILE ID:
Level 1	STD8260 240-232366/7	UXJ4944.D
Level 2	STD8260 240-232366/6	UXJ4943.D
Level 3	STD8260 240-232366/5	UXJ4942.D
Level 4	STD8260 240-232366/4	UXJ4941.D
Level 5	STD8260 240-232366/3	UXJ4940.D
Level 6	STD8260 240-232366/2	UXJ4939.D

ANALYTE			RRF			CURVE		COEFFICIE	NT #	MIN RRF	%RSD				11111 11 0
	LVL 1 LVL 6	LVL 2	LVL 3	LVL 4	LVL 5	TYPE	В	M1	M2			%RS	D OR C	DD	OR COD
Dichlorodifluoromethane	0.1874 0.1365	0.1804	0.1569	0.1477	0.1345	Ave		0.1572		0.1000	14.2	20	. 0		
Chloromethane	0.2347	0.2368	0.2391	0.2296	0.2034	Ave		0.2254		0.1000	6.8	20	. 0		
Vinyl chloride	0.2661	0.2726	0.2549	0.2398	0.2079	Ave		0.2393		0.1000	13.3	20	. 0		
Butadiene	0.2902 0.1915	0.2430	0.2236	0.2072	0.1931	Ave		0.2248			16.7	20	. 0		
Bromomethane	0.1050 0.1039	0.1171	0.1178	0.1085	0.1034	Ave		0.1093		0.0500	6.0	20	. 0		
Chloroethane	0.1242	0.1183	0.1173	0.1128	0.1037	Ave		0.1134		0.0500	7.2	20	. 0		
Dichlorofluoromethane	0.2652	0.2510	0.2494	0.2472	0.2313	Ave		0.2466			4.9	20	. 0		
Trichlorofluoromethane	0.1586 0.1718	0.1896	0.1718	0.1763	0.1658	Ave		0.1723		0.1000	6.1	20	. 0		
Ethyl ether	0.2791	0.2355	0.2143	0.2247	0.1967	Ave		0.2239			14.1	20	. 0		
Acrolein	0.0309	0.0362	0.0322	0.0324	0.0295	Ave		0.0316			8.6	20	. 0		
1,1-Dichloroethene	0.1891 0.1632	0.1879	0.1767	0.1764	0.1670	Ave		0.1767		0.1000	6.0	20	. 0		
1,1,2-Trichloro-1,2,2-trifluoroethane	0.1179 0.1005	0.1146	0.1068	0.1044	0.0984	Ave		0.1071		0.0500	7.2	20	. 0		
Acetone	0.1159 0.0473	0.0784	0.0616	0.0562	0.0505	Lin1	0.1399	0.0464		0.0100			0.99	90	0.9900
Iodomethane	0.2712	0.2508	0.2518	0.2412	0.2336	Ave		0.2451			7.0	20	. 0		
Carbon disulfide	0.5031 0.4104	0.4698	0.4742	0.4421	0.4373	Ave		0.4562		0.1000	7.2	20	. 0		

Lab Name: TestAmerica Canton Job No.: 240-65994-1 Analy Batch No.: 232366

SDG No.:

Instrument ID: A3UX11 GC Column: DB-624 ID: 0.18(mm) Heated Purge: (Y/N) N

Calibration Start Date: 05/28/2016 09:12 Calibration End Date: 05/28/2016 11:03 Calibration ID: 34632

ANALYTE			RRF			CURVE		COEFFICIE	ENT	# MIN RRF	%RSD	#	MAX	R^2		MIN R^2
	LVL 1	LVL 2	LVL 3	LVL 4	LVL 5	TYPE	В	M1	M2				%RSD	OR COD		OR COD
	LVL 6														Ш	
3-Chloro-1-propene	0.1477	0.1624	0.1618	0.1717	0.1628	Ave		0.1616			4.8		20.0			
	0.1632															
Methyl acetate	0.1492	0.1415	0.1379	0.1354	0.1267	Ave		0.1347		0.1000	8.4		20.0			
Methylene Chloride	0.1172 0.4395	0.3287	0.2437	0.2251	0.2061	T 1 . 1	0.0660	0.1891		0.1000				0.9990	\vdash	0.9900
methylene chioride	0.4395	0.3287	0.2437	0.2251	0.2061	PIUI	0.2008	0.1891		0.1000				0.9990		0.9900
2-Methyl-2-propanol	0.0152	0.0127	0.0136	0.0126	0.0116	Ave		0.0132			10.4		20.0		\vdash	
1 1	+++++															
Acrylonitrile	0.0740	0.0715	0.0721	0.0723	0.0674	Ave		0.0700			6.0		20.0		H	
	0.0627															
Methyl tert-butyl ether	0.6968	0.6644	0.6642	0.6935	0.6425	Ave		0.6617		0.1000	5.0		20.0			
	0.6087	0 0005	0.0504	0.055	0.0505			0.000		0.1000					$\perp \perp$	
trans-1,2-Dichloroethene	0.2888 0.2454	0.2625	0.2591	0.2657	0.2505	Ave		0.2620		0.1000	5.8		20.0			
Hexane	0.2454	0.0534	0.0515	0.0545	0.0543	70		0.0561			10.1		20.0		\vdash	
nexalle	0.0553	0.0554	0.0313	0.0343	0.0343	Ave		0.0301			10.1		20.0			
1,1-Dichloroethane	0.4677	0.4478	0.4396	0.4565	0.4422	Ave		0.4477		0.2000	2.8		20.0		+	
	0.4326				*****											
Vinyl acetate	0.4182	0.4338	0.4161	0.4307	0.4152	Ave		0.4179			3.4		20.0		П	
	0.3938															
cis-1,2-Dichloroethene	0.2801	0.2762	0.2735	0.2834	0.2738	Ave		0.2770		0.1000	1.4		20.0			
(0.2752	0 0 0 0 0 0	0 0015	0 0000	0.000					0.0100	100				ш	
2-Butanone (MEK)	0.0983 0.0737	0.0786	0.0817	0.0829	0.0790	Ave		0.0824		0.0100	10.2		20.0			
2,2-Dichloropropane	0.2080	0.1876	0.1977	0.2027	0.1990	7770		0.1969			4.3		20.0		\vdash	
2,2 Dichiolopiopane	0.1863	0.1070	0.13//	0.2027	0.1000	Ave		0.1303			1.5		20.0			
Chlorobromomethane	0.1272	0.1218	0.1259	0.1333	0.1309	Ave		0.1278			3.1		20.0		+	
	0.1276															
Tetrahydrofuran	0.0601	0.0557	0.0518	0.0536	0.0500	Ave		0.0529			9.1		20.0		Ħ	
	0.0461														Ш	
Chloroform	0.4249	0.3907	0.3887	0.4080	0.4090	Ave		0.4028		0.2000	3.4		20.0			
	0.3958	0 0 64 0	0.000	0.0555	0.0000			0.004.0		0.1000	0.6				ш	
1,1,1-Trichloroethane	0.2866 0.2625	0.2619	0.2664	0.2757	0.2770	Ave		0.2717		0.1000	3.6		20.0			
Cyclohexane	0.2625	0.3042	0.2938	0.2971	0.2985	7270		0.3041		0.1000	5.9		20.0		\vdash	
Cyclonexane	0.2916	0.3042	0.2930	0.23/1	0.2303	Ave		0.3041		0.1000] 3.9		20.0			
1,1-Dichloropropene	0.2310	0.3276	0.3319	0.3472	0.3430	Ave		0.3431			4.8		20.0		++	
_,	0.3357		1.0019	1 3.01,2	3.0100								20.0			
Carbon tetrachloride	0.2549	0.2228	0.2418	0.2613	0.2561	Ave		0.2486		0.1000	5.7		20.0		\vdash	
	0.2547			1												

Lab Name: TestAmerica Canton Job No.: 240-65994-1 Analy Batch No.: 232366

SDG No.:

Instrument ID: $\underline{\text{A3UX11}}$ GC Column: $\underline{\text{DB-624}}$ ID: 0.18(mm) Heated Purge: (Y/N) N

Calibration Start Date: 05/28/2016 09:12 Calibration End Date: 05/28/2016 11:03 Calibration ID: 34632

ANALYTE			RRF			CURVE TYPE		COEFFICI	ENT	#	MIN RRF	%RSD	# MAX %RSD	R^2 OR COD	# MIN R^2 OR COD
	LVL 1	LVL 2	LVL 3	LVL 4	LVL 5	TYPE	В	M1	M2				*KSD	OR COD	OR COD
	LVL 6														
Isobutyl alcohol	0.0062	0.0059	0.0063	0.0071	0.0058	Ave		0.0060				14.3	20.0		
1,2-Dichloroethane	0.0045	0.2707	0.2764	0.2862	0 0050	2 -		0.2815			0 1000	3.7	20.0		
1,2-Dichioroethane	0.2981	0.2707	0.2/64	0.2862	0.2852	Ave		0.2815			0.1000	3./	20.0		
Benzene	1.0915	1.0274	1.0168	1.0745	1.0726	Ave		1.0572			0.5000	2.8	20.0		
	1.0604														
n-Heptane	0.0767	0.0637	0.0501	0.0519	0.0539	Ave		0.0587				17.0	20.0		
	0.0562														
Trichloroethene	0.2904	0.2627	0.2619	0.2746	0.2860	Ave		0.2761			0.1500	4.3	20.0		
Methylcyclohexane	0.2807	0.3438	0 2040	0.3065	0.3225	7		0.3306			0.1000	9.8	20.0		
Methylcyclonexane	0.3699	0.3430	0.3046	0.3063	0.3223	Ave		0.3300			0.1000	9.0	20.0		
1,2-Dichloropropane	0.2636	0.2477	0.2418	0.2504	0.2626	Ave		0.2533			0.1000	3.4	20.0		
, 1 1	0.2540														
Dibromomethane	0.1260	0.1267	0.1228	0.1240	0.1303	Ave		0.1259				2.0	20.0		
	0.1258														
1,4-Dioxane	0.0010	0.0013	0.0014	0.0016	0.0017	Lin1	-0.017	0.0017						0.9990	0.9900
Dichlorobromomethane	0.2938	0.2907	0 2723	0.2880	0.3112	Δττο		0.2929			0.1500	4.5	20.0		
DIGITOTODIO MONGESTATIO	0.3017	0.2307	0.2723	0.2000	0.0112	1100		0.2323			0.1000	1.0	20.0		
2-Chloroethyl vinyl ether	0.1384	0.1484	0.1416	0.1458	0.1535	Ave		0.1454				3.6	20.0		
	0.1445														
cis-1,3-Dichloropropene	0.3776	0.3788	0.3775	0.4025	0.4308	Ave		0.3977			0.1500	5.9	20.0		
	0.4191														
4-Methyl-2-pentanone (MIBK)	0.1794	0.1670	0.1634	0.1645	0.1729	Ave		0.1675			0.0500	4.5	20.0		
Toluene	0.1579 1.6592	1.5809	1 5500	1.6505	1.6591	7		1.6133			0.4000	3.0	20.0		
Toluene	1.6592	1.3809	1.3386	1.0505	1.0591	Ave		1.0133			0.4000	3.0	20.0		
trans-1,3-Dichloropropene	0.4368	0.4583	0 4669	0.5112	0 5324	Δττο		0.4831			0.1000	7.4	20.0		
crand 1,0 Brenieropropene	0.4929	0.1000	0.1003	0.0112	0.0021	1100		0.1001			0.1000	, • •	20.0		
Ethyl methacrylate	0.4247	0.4124	0.4087	0.4397	0.4428	Ave		0.4217				4.0	20.0		
1	0.4021														
1,1,2-Trichloroethane	0.2779	0.2893	0.2905	0.2951	0.3013	Ave		0.2874			0.1000	4.0	20.0		
	0.2701														
Tetrachloroethene	0.3260	0.2891	0.2964	0.3117	0.3178	Ave		0.3065			0.1500	4.6	20.0		
1 2 2 1 1	0.2981	0 505:	0 5441	0 5 4 0 5	0 5 4 4 5			0.5005				0.0			
1,3-Dichloropropane	0.5178	0.5274	0.5141	0.5435	0.5440	Ave		0.5237				3.6	20.0		
2-Hexanone	0.4955 0.1845	0.1883	0 1720	0.1827	0.1815	7.770		0.1780			0.0500	6.2	20.0		
Z-nexamone	0.1843	0.1003	0.1/32	0.102/	0.1013	Ave		0.1/00			0.0300	0.2	20.0		

Lab Name: TestAmerica Canton Job No.: 240-65994-1 Analy Batch No.: 232366

SDG No.:

Instrument ID: $\underline{\text{A3UX11}}$ GC Column: $\underline{\text{DB-624}}$ ID: $\underline{\text{0.18 (mm)}}$ Heated Purge: (Y/N) N

Calibration Start Date: 05/28/2016 09:12 Calibration End Date: 05/28/2016 11:03 Calibration ID: 34632

ANALYTE			RRF			CURVE		COEFFICI	ENT	#	MIN RRF	%RSD	# MAX %RSD	R^2 OR COD	# MIN R^2
	LVL 1 LVL 6	LVL 2	LVL 3	LVL 4	LVL 5	TYPE	В	M1	M2				*RSD	OR COD	OR COD
Chlorodibromomethane	0.2713 0.3118	0.2819	0.2799	0.3107	0.3300	Ave		0.2976				7.8	20.0		
Ethylene Dibromide	0.2749 0.2645	0.2712	0.2625	0.2827	0.2896	Ave		0.2742				3.8	20.0		
Chlorobenzene	1.0021 0.9778	0.9625	0.9467	0.9849	1.0339	Ave		0.9846			0.3000	3.1	20.0		
1,1,1,2-Tetrachloroethane	0.3124 0.3245	0.2955	0.3071	0.3343	0.3508	Ave		0.3208				6.2	20.0		
Ethylbenzene	0.5297 0.5154	0.5166	0.5168	0.5295	0.5569	Ave		0.5275				3.0	20.0		
m-Xylene & p-Xylene	0.6526 0.6339	0.6292	0.6072	0.6409	0.6817	Ave		0.6409				3.9	20.0		
o-Xylene	0.6267 0.6070	0.5789	0.5953	0.6248	0.6608	Ave		0.6156				4.6	20.0		
Styrene	1.0612 1.0573	1.0236	1.0246	1.0787	1.1399	Ave		1.0642			0.3000	4.0	20.0		
Bromoform	0.1294 0.1729	0.1399	0.1527	0.1658	0.1841	Ave		0.1575			0.1000	13.1	20.0		
Isopropylbenzene	1.4418	1.3579	1.3867	1.4136	1.5024	Ave		1.4133			0.1000	3.7	20.0		
1,1,2,2-Tetrachloroethane	0.7048 0.6684	0.6947	0.6821	0.7009	0.7169	Ave		0.6946			0.3000	2.5	20.0		
Bromobenzene	0.9492 0.9267	0.9025	0.8699	0.9413	0.9437	Ave		0.9222				3.3	20.0		
1,2,3-Trichloropropane	0.2266 0.2086	0.2279	0.2147	0.2187	0.2292	Ave		0.2209				3.8	20.0		
trans-1,4-Dichloro-2-butene	0.1143 0.1900	0.1405	0.1609	0.1869	0.1886	Ave		0.1635				19.0	20.0		
N-Propylbenzene	0.8818 0.9344	0.8262	0.8621	0.9134	0.9434	Ave		0.8936				5.1	20.0		
2-Chlorotoluene	0.7900 0.8102	0.7694	0.7533	0.8111	0.8197	Ave		0.7923				3.3	20.0		
1,3,5-Trimethylbenzene	2.4904	2.4676	2.4041	2.5168	2.5605	Ave		2.4838				2.1	20.0		
4-Chlorotoluene	0.8392	0.7868	0.8198	0.8628	0.8527	Ave		0.8349				3.3	20.0		
tert-Butylbenzene	2.0991	2.0122	2.0006	2.1022	2.1464	Ave		2.0745				2.7	20.0		
1,2,4-Trimethylbenzene	2.5486 2.4454	2.3862	2.4030	2.4835	2.5470	Ave		2.4689				2.8	20.0		

Lab Name: TestAmerica Canton Job No.: 240-65994-1 Analy Batch No.: 232366

SDG No.:

Instrument ID: A3UX11 GC Column: DB-624 ID: 0.18(mm) Heated Purge: (Y/N) N

Calibration Start Date: 05/28/2016 09:12 Calibration End Date: 05/28/2016 11:03 Calibration ID: 34632

ANALYTE			RRF			CURVE		COEFFICI	ENT	#	MIN RRF	%RSD		R^2	# MIN R^
	LVL 1 LVL 6	LVL 2	LVL 3	LVL 4	LVL 5	TYPE -	В	M1	M2				%RSD	OR COD	OR COL
sec-Butylbenzene	2.7399	2.5216	2.6264	2.7096	2.7610	Ave		2.6778				3.3	20.0		
1,3-Dichlorobenzene	1.4310 1.3899	1.4226	1.3716	1.4076	1.4392	Ave		1.4103			0.6000	1.8	20.0		
4-Isopropyltoluene	2.3727 2.2716	2.1405	2.1846	2.3189	2.3681	Ave		2.2761				4.2	20.0		
1,4-Dichlorobenzene	1.5090 1.3897	1.4507	1.3767	1.4493	1.4354	Ave		1.4351			0.5000	3.3	20.0		
n-Butylbenzene	1.6341	1.5296	1.6133	1.6710	1.7165	Ave		1.6446				4.2	20.0		
1,2-Dichlorobenzene	1.3346 1.2285	1.2638	1.2189	1.2545	1.3092	Ave		1.2683			0.4000	3.6	20.0		
1,2-Dibromo-3-Chloropropane	0.1065 0.1011	0.1093	0.0973	0.1023	0.1039	Ave		0.1034			0.0500	4.0	20.0		
1,2,4-Trichlorobenzene	0.6139 0.6504	0.5991	0.5773	0.5968	0.6016	Ave		0.6065			0.2000	4.0	20.0		
Hexachlorobutadiene	0.2676 0.2710	0.2301	0.2389	0.2482	0.2407	Ave		0.2494				6.6	20.0		
Naphthalene	1.5365 1.5180	1.5623	1.4231	1.4795	1.4541	Ave		1.4956				3.5	20.0		
1,2,3-Trichlorobenzene	0.6048 0.5976	0.5621	0.5340	0.5478	0.5466	Ave		0.5655				5.2	20.0		
Dibromofluoromethane (Surr)	0.2118	0.2331	0.2147	0.2235	0.2274	Ave		0.2231				3.7	20.0		
1,2-Dichloroethane-d4 (Surr)	0.2439	0.2559	0.2483	0.2521	0.2548	Ave		0.2501				2.0	20.0		
Toluene-d8 (Surr)	1.3628 1.3928	1.4804	1.3814	1.4319	1.4793	Ave		1.4214				3.6	20.0		
4-Bromofluorobenzene (Surr)	0.4331	0.4504	0.4110	0.4176	0.4550	Ave		0.4299				4.5	20.0		

Lab Name: TestAmerica Canton Job No.: 240-65994-1 Analy Batch No.: 232711

SDG No.:

Instrument ID: A3UX16 GC Column: DB-624 ID: 0.18(mm) Heated Purge: (Y/N) N

Calibration Start Date: 06/01/2016 12:06 Calibration End Date: 06/01/2016 14:22 Calibration ID: 34643

Calibration Files:

LEVEL:	LAB SAMPLE ID:	LAB FILE ID:
Level 1	STD8260 240-232711/8	UXM5576.D
Level 2	STD8260 240-232711/7	UXM5575.D
Level 3	STD8260 240-232711/6	UXM5574.D
Level 4	STD8260 240-232711/5	UXM5573.D
Level 5	STD8260 240-232711/4	UXM5572.D
Level 6	STD8260 240-232711/3	UXM5571.D
Level 7	STD8269 240-232711/2	UXM5570.D

ANALYTE			RRF			CURVE		COEFFICI	ENT #	MIN RRF	%RSD		MAX	R^2	-	MIN R^2
	LVL 1 LVL 6	LVL 2 LVL 7	LVL 3	LVL 4	LVL 5	TYPE	В	M1	M2			9	RSD	OR COD		OR COD
Dichlorodifluoromethane	0.2658	0.2105	0.2317	0.2446	0.2397	Ave		0.2419		0.1000	7.3		20.0		Ť	
Chloromethane	0.2547		0.2941	0.3192	0.2884	Ave		0.2976		0.1000	6.3		20.0			
	0.2701	0.2864	0 0000	0.0100	0 0011			0.0010		0.1000			000			
Vinyl chloride	0.3255	0.3084	0.2872	0.3180	0.3044	Ave		0.3048		0.1000	4.5		20.0			
Butadiene	0.3225 0.2831	0.3028	0.3071	0.2922	0.2814	Ave		0.2947			5.8		20.0			
Bromomethane	0.1151 0.0765	0.1086 0.0681	0.1054	0.1220	0.0735	Qua	0.0578	0.0802	-0.000339	0.0500				0.9940		0.9900
Chloroethane	0.1578 0.1246		0.1504	0.1643	0.1208	Ave		0.1388		0.0500	13.6		20.0			
Dichlorofluoromethane	0.5184 0.2583		0.3142	0.3606	0.2407	Qua	0.1531	0.2534	-0.000241					0.9970		0.9900
Trichlorofluoromethane	0.2173 0.1946		0.1992	0.2109	0.1892	Ave		0.1995		0.1000	7.2		20.0			
Ethyl ether	0.3560 0.2099		0.2684	0.2256	0.2235	Lin1	0.0783	0.2144						0.9990		0.9900
Acrolein	0.0391 0.0315	0.0353	0.0358	0.0343	0.0330	Ave		0.0346			7.0		20.0			
1,1-Dichloroethene	0.3372 0.2539		0.2570	0.2618	0.2679	Ave		0.2710		0.1000	11.0		20.0			
1,1,2-Trichloro-1,2,2-trifluoroethane	0.2237 0.1940		0.1824	0.1752	0.1856	Ave		0.1905		0.0500	8.5		20.0			
Acetone	0.2239 0.0715		0.0985	0.0817	0.0769	Lin1	0.1458	0.0695		0.0100				0.9990		0.9900
Iodomethane	0.4300 0.3525		0.3992	0.3934	0.3676	Ave		0.3849			6.6		20.0			

Lab Name: TestAmerica Canton Job No.: 240-65994-1 Analy Batch No.: 232711

SDG No.:

Instrument ID: A3UX16 GC Column: DB-624 ID: 0.18(mm) Heated Purge: (Y/N) N

Calibration Start Date: 06/01/2016 12:06 Calibration End Date: 06/01/2016 14:22 Calibration ID: 34643

ANALYTE			RRF			CURVE		COEFFICI	ENT	# M	IIN RRF	%RSD	# MAX %RSD	R^2 OR COD	# MIN R^2 OR COD
	LVL 1	LVL 2	LVL 3	LVL 4	LVL 5	TYPE	В	М1	M2				*RSD	OR COD	OR COD
	LVL 6	LVL 7													
Carbon disulfide	0.9313	0.8580	0.8641	0.8340	0.8112	Ave		0.8432			0.1000	5.6	20.0		
	0.7876	0.8159													
3-Chloro-1-propene	0.2140	0.1806	0.1710	0.1652	0.1707	Ave		0.1767				9.9	20.0		
	0.1616	0.1737													
Methyl acetate	0.1637	0.1612	0.1513	0.1591	0.1572	Ave		0.1583			0.1000	2.7	20.0		
	0.1543	0.1612													
Methylene Chloride	0.8350	0.5307	0.3976	0.3123	0.2926	Lin1	0.2795	0.2595			0.1000			0.9980	0.9900
	0.2580	0.2734													
2-Methyl-2-propanol	0.0208		0.0189	0.0181	0.0178	Ave		0.0187				8.6	20.0		
	0.0171	0.0174													
Acrylonitrile	0.0805		0.0791	0.0816	0.0804	Ave		0.0806				2.2	20.0		
	0.0796														
Methyl tert-butyl ether	0.8433	0.7518	0.7713	0.7710	0.7554	Ave		0.7693			0.1000	4.8	20.0		
	0.7214	0.7709													
trans-1,2-Dichloroethene	0.2759		0.2766	0.2759	0.2675	Ave		0.2741			0.1000	4.3	20.0		
	0.2557	0.2720													
Hexane	0.0907	0.0761	0.0790	0.0691	0.0739	Ave		0.0778				8.8	20.0		
1 1 5 1 1 1 1	0.0811	0.0748	0 4005	0 4070	0 4000	_		0 4000			0 0000	- 1	0.0.0		
1,1-Dichloroethane	0.5461 0.4561	0.4860 0.4895	0.4885	0.4978	0.4882	Ave		0.4932			0.2000	5.4	20.0		
Vinyl acetate	0.4561	0.4895	0.4474	0.4566	0.4610	7		0.4610				()	20.0		
vinyi acetate	0.5072	0.4180	0.44/4	0.4566	0.4610	Ave		0.4610				6.3	20.0		
2,2-Dichloropropane	0.4463	0.3022	0.3026	0.3055	0.2945	7		0.3040				9.2	20.0		
z,z-bichioropropane	0.3627		0.3026	0.3033	0.2943	Ave		0.3040				9.2	20.0		
cis-1,2-Dichloroethene	0.2733		0.3033	0.3019	0.2957	7110		0.3002			0.1000	4.8	20.0		
CIS-1, Z-DICHIOTOECHEHE	0.2733		0.3033	0.3019	0.2937	Ave		0.3002			0.1000	4.0	20.0		
2-Butanone (MEK)	0.1380	0.0946	0.1032	0.1041	0.0965	7770		0.1039			0.0100	15 0	20.0		
2 Bucanone (Filt)	0.0937	0.0974	0.1032	0.1041	0.0303	2100		0.1033			0.0100	13.0	20.0		
Chlorobromomethane	0.1735	0.1529	0.1423	0.1389	0.1367	Ave		0.1437				10.8	20.0		
CHIOLOGIC MOME CHAIR	0.1257	0.1358	0.1123	0.1303	0.1307	1110		0.1137				10.0	20.0		
Tetrahydrofuran	0.0892	0.0681	0.0641	0.0630	0.0607	Ave		0.0667				15.4	20.0		
	0.0598	0.0620													
Chloroform	0.5085		0.4645	0.4572	0.4407	Ave		0.4559			0.2000	6.3	20.0		
	0.4143	0.4474													
1,1,1-Trichloroethane	0.3792	0.3829	0.3471	0.3382	0.3447	Ave		0.3496			0.1000	6.6	20.0		
	0.3224	0.3330													
Cyclohexane	0.5099	0.4608	0.4342	0.4263	0.4547	Ave		0.4582			0.1000	5.9	20.0		
	0.4686	0.4527													
1,1-Dichloropropene	0.4261		0.3808	0.3873	0.3786	Ave		0.3882				4.9	20.0		
	0.3658	0.3840													

FORM VI GC/MS VOA BY INTERNAL STANDARD - INITIAL CALIBRATION DATA CURVE EVALUATION

Lab Name: TestAmerica Canton Job No.: 240-65994-1 Analy Batch No.: 232711

SDG No.:

Instrument ID: A3UX16 GC Column: DB-624 ID: 0.18(mm) Heated Purge: (Y/N) N

Calibration Start Date: 06/01/2016 12:06 Calibration End Date: 06/01/2016 14:22 Calibration ID: 34643

ANALYTE			RRF			CURVE		COEFFICIE	INT	# M3	IN RRF	%RSD	# MAX %RSD	R^2 OR COD	# MIN R^2 OR COD
	LVL 1	LVL 2	LVL 3	LVL 4	LVL 5	TYPE	В	М1	M2				*RSD	OR COD	OR COD
	LVL 6	LVL 7													
Carbon tetrachloride	0.3923	0.3529	0.3067	0.3168	0.3107	Ave		0.3280			0.1000	10.0	20.0		
	0.3032	0.3132													
Isobutyl alcohol	0.0075		0.0057	0.0060	0.0058	Ave		0.0062				10.8	20.0		
	0.0057	0.0058													
1,2-Dichloroethane	0.3912		0.3523	0.3560	0.3524	Ave		0.3581		1 1 1	0.1000	4.7	20.0		
	0.3357	0.3622													
Benzene	1.1464		1.1208	1.1182	1.1146	Ave		1.1128			0.5000	3.5	20.0		
	1.0413														
n-Heptane	0.8658	0.4891	0.3113	0.2049	0.1790	Lin1	0.3425	0.1521						0.9950	0.9900
	0.1847	0.1570													
Trichloroethene	0.3294		0.2797	0.2846	0.2796	Ave		0.2871		1 1 '	0.1500	7.0	20.0		
	0.2661	0.2899	0 10.65	0 1101		_		1505							
Methylcyclohexane	0.5109	0.4698	0.4267	0.4101	0.4420	Ave		0.4527		'	0.1000	7.4	20.0		
1.0.5'.17	0.4682	0.4413	0.0501	0.0600	0.0550	_		0.0670			0 1000		0.0.0		
1,2-Dichloropropane	0.3109		0.2591	0.2638	0.2558	Ave		0.2678		'	0.1000	7.7	20.0		
Dibromomethane	0.2464	0.2680	0.1590	0.1411	0.1416			0.1494				7 0	20.0		
Dibromomethane	0.1642 0.1341		0.1590	0.1411	0.1416	Ave		0.1494				7.8	20.0		
1,4-Dioxane	0.1341		0.0021	0.0021	0.0023	70		0.0021				4.9	20.0		
1,4-DIOXANE	0.0020	0.0022	0.0021	0.0021	0.0023	Ave		0.0021				4.9	20.0		
Dichlorobromomethane	0.4212		0.3437	0.3465	0.3397	7110		0.3531			0.1500	9.2	20.0		
DICHIOLODIOMOMECHANE	0.4212		0.3437	0.5405	0.3397	Ave		0.3331			0.1300	9.2	20.0		
2-Chloroethyl vinyl ether	0.1538		0.1420	0.1428	0.1448	7770		0.1448				3.6	20.0		
2 Chioloechyl vinyl echel	0.1393		0.1420	0.1420	0.1110	Ave		0.1440				3.0	20.0		
cis-1,3-Dichloropropene	0.5169		0.4377	0.4485	0.4405	Ave		0.4504			0.1500	7.1	20.0		
ers 1,5 bremforopropene	0.4190	0.4595	0.4377	0.4403	0.1103	2100		0.4304			0.1500	/ • ±	20.0		
4-Methyl-2-pentanone (MIBK)	0.2155		0.2027	0.2030	0.1990	Ave		0.2024			0.0500	3.8	20.0		
	0.1908														
Toluene	1.8078		1.6197	1.6140	1.6207	Ave		1.6423			0.4000	5.1	20.0		
	1.5456	1.6831													
trans-1,3-Dichloropropene	0.5854		0.5557	0.5361	0.5421	Ave		0.5439			0.1000	4.1	20.0		
	0.5147	0.5456													
Ethyl methacrylate	0.5357	0.4567	0.4685	0.4479	0.4402	Ave		0.4573				8.3	20.0		
	0.4188	0.4334													
1,1,2-Trichloroethane	0.2886		0.2772	0.2912	0.2815	Ave		0.2860			0.1000	2.9	20.0		
	0.2791	0.2832													
Tetrachloroethene	0.3308		0.2777	0.2955	0.2960	Ave		0.2970			0.1500	5.6	20.0		
	0.2848	0.2974													
1,3-Dichloropropane	0.5948		0.5370	0.5310	0.5300	Ave		0.5367				5.2	20.0		
	0.5061	0.5372				1									

Note: The ml coefficient is the same as Ave RRF for an Ave curve type.

FORM VI GC/MS VOA BY INTERNAL STANDARD - INITIAL CALIBRATION DATA CURVE EVALUATION

Lab Name: TestAmerica Canton Job No.: 240-65994-1 Analy Batch No.: 232711

SDG No.:

Instrument ID: A3UX16 GC Column: DB-624 ID: 0.18(mm) Heated Purge: (Y/N) N

Calibration Start Date: 06/01/2016 12:06 Calibration End Date: 06/01/2016 14:22 Calibration ID: 34643

ANALYTE			RRF			CURVE		COEFFICIE	ENT	# M	IN RRF	%RSD	# MAX %RSD	R^2 OR COD	# MIN R^2 OR COD
	LVL 1	LVL 2	LVL 3	LVL 4	LVL 5	TYPE	В	M1	M2				*RSD	OR COD	OR COD
	LVL 6	LVL 7													
2-Hexanone	0.2702	0.2135	0.2111	0.1984	0.2007	Ave		0.2098			0.0500	13.6	20.0		
	0.1877	0.1870													
Chlorodibromomethane	0.4389		0.3295	0.3314	0.3332	Ave		0.3538				12.3	20.0		
	0.3177	0.3399													
Ethylene Dibromide	0.3417	0.2738		0.2848	0.2919	Ave		0.2906				8.0	20.0		
	0.2751	0.2835													
Chlorobenzene	1.1892		1.0244	1.0192	1.0080	Ave		1.0416			0.3000	6.8	20.0		
	0.9615														
1,1,1,2-Tetrachloroethane	0.4284		0.3655	0.3675	0.3563	Ave		0.3717				7.4	20.0		
	0.3412	0.3634													
Ethylbenzene	0.6350			0.5716	0.5684	Ave		0.5737				5.1	20.0		
	0.5391	0.5736													
m-Xylene & p-Xylene	0.8090	0.7153		0.7165	0.7005	Ave		0.7167				6.1	20.0		
	0.6776														
o-Xylene	0.7828		0.7109	0.7017	0.7035	Ave		0.7199				4.7	20.0		
	0.6776	0.7224													
Styrene	1.2751		1.1650	1.1717	1.1713	Ave		1.1767			0.3000	4.4	20.0		
	1.1040														
Bromoform	0.2021	0.1856	0.1907	0.1935	0.1934	Ave		0.1935			0.1000	2.9	20.0		
	0.1898	0.1995													
Isopropylbenzene	1.9322		1.7487	1.7471	1.7692	Ave		1.7848			0.1000	4.2	20.0		
	1.7091	1.8331	0 6050	0 6001	0.6045	_		0.5050							
1,1,2,2-Tetrachloroethane	0.7589			0.6894	0.6915	Ave		0.6963			0.3000	4.2	20.0		
7	0.6733			0.7604	0 7016	_		0.7000				4 0	0.0.0		
Bromobenzene	0.8272 0.7233		0.7889	0.7684	0.7816	Ave		0.7820				4.0	20.0		
1 0 0 m.'.1.1	0.7233		0.0170	0.2037	0.2208	T 1 . 1	0.0867	0.2029						0.9970	0.9900
1,2,3-Trichloropropane	0.4533			0.2037	0.2208	Lini	0.0867	0.2029						0.9970	0.9900
trans-1,4-Dichloro-2-butene	0.2033	0.2083		0.1934	0 1000	7		0.1991				5.2	20.0		
trans-1,4-Dichioro-2-Dutene	0.2081	0.2098	0.2113	0.1934	0.1898	Ave		0.1991				5.2	20.0		
N-Propylbenzene	1.0373		0 0000	0.9136	0 0101	7		0.9385				5.4	20.0		
N-Propyrbenzene	0.8830	0.9436	0.9090	0.9136	0.9191	Ave		0.9363				3.4	20.0		
2-Chlorotoluene	0.9555		0.7699	0.7644	0 7603	λ110		0.8045				9.3	20.0		
2 Chitotocotuene	0.7312	0.8014	0.7000	0.7044	0.7093	Ave		0.0043				۶.۵	20.0		
1,3,5-Trimethylbenzene	3.0092	2.8007	2.8557	2.7340	2.8511	λ110		2.8479				4.1	20.0		
T' 2' 2 ITIMECHÀ IDENZENE	2.6976		2.0007	2.7540	2.0011	1110		2.04/9				4.1	20.0		
4-Chlorotoluene	0.9328		0.8042	0.8170	0.8228	Ave		0.8281				6.5	20.0		
1 dillolocoluciic	0.7537	0.8293	0.0042	3.01/0	0.0220	1100		0.0201				0.0	20.0		
tert-Butylbenzene	2.5383		2.4127	2.3965	2.4849	Ave		2.4620		++-		2.8	20.0		
COT C DOOM TOCHTO		2.5572	2.712/	2.5505	2.4047	11100		2.7020				2.0	20.0		

Note: The ml coefficient is the same as Ave RRF for an Ave curve type.

FORM VI GC/MS VOA BY INTERNAL STANDARD - INITIAL CALIBRATION DATA CURVE EVALUATION

Lab Name: TestAmerica Canton Job No.: 240-65994-1 Analy Batch No.: 232711

SDG No.:

Instrument ID: A3UX16 GC Column: DB-624 ID: 0.18(mm) Heated Purge: (Y/N) N

ANALYTE			RRF			CURVE		COEFFICI	ENT	# M	MIN RRF	%RSD		R^2	# MIN R^2
	LVL 1 LVL 6	LVL 2 LVL 7	LVL 3	LVL 4	LVL 5	TYPE	В	M1	M2				%RSD	OR COD	OR COD
1,2,4-Trimethylbenzene	3.2212	2.8942	2.9390	2.9103	2.9845	Ave		2.9773				4.9	20.0		
sec-Butylbenzene	3.6758 3.2676	3.3683 3.5151	3.2579	3.2123	3.3949	Ave		3.3846				4.8	20.0		
1,3-Dichlorobenzene	1.6908 1.4357		1.5479	1.5290	1.5344	Ave		1.5506			0.6000	4.9	20.0		
4-Isopropyltoluene	3.1582 2.8283		2.8226	2.8587	2.9339	Ave		2.9440				4.3	20.0		
1,4-Dichlorobenzene	1.6660 1.4327	1.5476	1.5656	1.5412	1.5577	Ave		1.5582			0.5000	4.5	20.0		
n-Butylbenzene	2.8401 2.3843		2.4586	2.3986	2.4954	Ave		2.5234				6.1	20.0		
1,2-Dichlorobenzene	1.6201		1.4046	1.4681	1.4834	Ave		1.4789			0.4000	5.4	20.0		
1,2-Dibromo-3-Chloropropane	0.1835		0.1620	0.1504	0.1537	Ave		0.1603			0.0500	8.4	20.0		
1,2,4-Trichlorobenzene	1.0780		0.9787	0.9584	0.9634	Ave		0.9684			0.2000	6.0	20.0		
Hexachlorobutadiene	0.4164 0.3120	0.3404	0.3469	0.3377	0.3325	Ave		0.3429				10.2	20.0		
Naphthalene	2.8816 2.2973		2.5060	2.4521	2.4179	Ave		2.4825				7.7	20.0		
1,2,3-Trichlorobenzene	1.0204		0.8741	0.8778	0.8406	Ave		0.8687				8.5	20.0		
Dibromofluoromethane (Surr)	+++++ 0.2142	0.2459	0.2421	0.2373	0.2329	Ave		0.2344				4.7	20.0		
1,2-Dichloroethane-d4 (Surr)	+++++	0.2977	0.2809	0.2939	0.2799	Ave		0.2836				4.6	20.0		
Toluene-d8 (Surr)	1.2967	1.2980	1.3722	1.3589	1.3423	Ave		1.3482				3.5	20.0		
4-Bromofluorobenzene (Surr)	+++++		0.5183	0.5087	0.5099	Ave		0.5111				3.8	20.0		

Note: The m1 coefficient is the same as Ave RRF for an Ave curve type.

Lab Name: TestAmerica Canton Job No.: 240-65994-1

SDG No.:

Lab Sample ID: ICV 240-232366/14 Calibration Date: 05/28/2016 11:25

Instrument ID: A3UX11 Calib Start Date: 05/28/2016 09:12

GC Column: DB-624 ID: 0.18 (mm) Calib End Date: 05/28/2016 11:03

Lab File ID: UXJ4945.D Conc. Units: ng/uL Heated Purge: (Y/N) N

ANALYTE	CURVE TYPE	AVE RRF	RRF	MIN RRF	CALC AMOUNT	SPIKE AMOUNT	%D	MAX %D
Dichlorodifluoromethane	Ave	0.1572	0.0785*	0.1000	0.00499	0.0100	-50.1*	20.0
Chloromethane	Ave	0.2254	0.1613	0.1000	0.00716	0.0100	-28.4*	20.0
Vinyl chloride	Ave	0.2393	0.1918	0.1000	0.00801	0.0100	-19.9	20.0
Butadiene	Ave	0.2248	0.1710		0.00761	0.0100	-23.9	30.0
Bromomethane	Ave	0.1093	0.0897	0.0500	0.00821	0.0100	-17.9	20.0
Chloroethane	Ave	0.1134	0.0951	0.0500	0.00838	0.0100	-16.2	20.0
Dichlorofluoromethane	Ave	0.2466	0.2222		0.00901	0.0100	-9.9	20.0
Trichlorofluoromethane	Ave	0.1723	0.1649	0.1000	0.00957	0.0100	-4.3	20.0
Ethyl ether	Ave	0.2239	0.2205		0.00985	0.0100	-1.5	20.0
Acrolein	Ave	0.0316	0.0196		0.0309	0.0500	-38.1	50.0
1,1-Dichloroethene	Ave	0.1767	0.1892	0.1000	0.0107	0.0100	7.1	20.0
1,1,2-Trichloro-1,2,2-triflu oroethane	Ave	0.1071	0.1197	0.0500	0.0112	0.0100	11.8	20.0
Acetone	Lin1		0.0409	0.0100	0.0146	0.0200	-27.1	50.0
Iodomethane	Ave	0.2451	0.2543		0.0104	0.0100	3.8	20.0
Carbon disulfide	Ave	0.4562	0.4979	0.1000	0.0109	0.0100	9.1	20.0
3-Chloro-1-propene	Ave	0.1616	0.1753		0.0108	0.0100	8.5	20.0
Methyl acetate	Ave	0.1347	0.1285	0.1000	0.0477	0.0500	-4.6	20.0
Methylene Chloride	Lin1		0.2133	0.1000	0.00987	0.0100	-1.3	50.0
2-Methyl-2-propanol	Ave	0.0132	0.0104		0.0788	0.100	-21.2	50.0
Acrylonitrile	Ave	0.0700	0.0688		0.0982	0.100	-1.8	20.0
Methyl tert-butyl ether	Ave	0.6617	0.6529	0.1000	0.00987	0.0100	-1.3	20.0
trans-1,2-Dichloroethene	Ave	0.2620	0.2698	0.1000	0.0103	0.0100	3.0	20.0
Hexane	Ave	0.0561	0.0718		0.0128	0.0100	28.0*	20.0
1,1-Dichloroethane	Ave	0.4477	0.4276	0.2000	0.00955	0.0100	-4.5	20.0
Vinyl acetate	Ave	0.4179	0.4341		0.0104	0.0100	3.9	50.0
2-Butanone (MEK)	Ave	0.0824	0.0709	0.0100	0.0172	0.0200	-13.9	20.0
cis-1,2-Dichloroethene	Ave	0.2770	0.2702	0.1000	0.00975	0.0100	-2.5	20.0
2,2-Dichloropropane	Ave	0.1969	0.1923		0.00977	0.0100	-2.3	20.0
Chlorobromomethane	Ave	0.1278	0.1279		0.0100	0.0100	0.0	20.0
Tetrahydrofuran	Ave	0.0529	0.0487		0.0184	0.0200	-8.0	20.0
Chloroform	Ave	0.4028	0.3863	0.2000	0.00959	0.0100	-4.1	20.0
1,1,1-Trichloroethane	Ave	0.2717	0.2653	0.1000	0.00977	0.0100	-2.3	20.0
Cyclohexane	Ave	0.3041	0.3496	0.1000	0.0115	0.0100	14.9	20.0
1,1-Dichloropropene	Ave	0.3431	0.3373		0.00983	0.0100	-1.7	20.0
Carbon tetrachloride	Ave	0.2486	0.2618	0.1000	0.0105	0.0100	5.3	20.0
Isobutyl alcohol	Ave	0.0060	0.0055		0.231	0.250	-7.5	20.0
1,2-Dichloroethane	Ave	0.2815	0.2824	0.1000	0.0100	0.0100	0.3	20.0
Benzene	Ave	1.057	1.019	0.5000	0.00964	0.0100	-3.6	20.0
n-Heptane	Ave	0.0587	0.0635		0.0108	0.0100	8.1	20.0
Trichloroethene	Ave	0.2761	0.2702	0.1500	0.00979	0.0100	-2.1	20.0

Lab Name: TestAmerica Canton Job No.: 240-65994-1

SDG No.:

Lab Sample ID: ICV 240-232366/14 Calibration Date: 05/28/2016 11:25

Instrument ID: A3UX11 Calib Start Date: 05/28/2016 09:12

GC Column: DB-624 ID: 0.18(mm) Calib End Date: 05/28/2016 11:03

Lab File ID: UXJ4945.D Conc. Units: ng/uL Heated Purge: (Y/N) N

ANALYTE	CURVE TYPE	AVE RRF	RRF	MIN RRF	CALC AMOUNT	SPIKE AMOUNT	%D	MAX %D
Methylcyclohexane	Ave	0.3306	0.3651	0.1000	0.0110	0.0100	10.4	20.0
1,2-Dichloropropane	Ave	0.2533	0.2462	0.1000	0.00972	0.0100	-2.8	20.0
Dibromomethane	Ave	0.1259	0.1188		0.00943	0.0100	-5.7	20.0
1,4-Dioxane	Lin1		0.0009		0.119	0.200	-40.4	50.0
Dichlorobromomethane	Ave	0.2929	0.2750	0.1500	0.00939	0.0100	-6.1	20.0
2-Chloroethyl vinyl ether	Ave	0.1454	0.1420		0.00977	0.0100	-2.3	20.0
cis-1,3-Dichloropropene	Ave	0.3977	0.3785	0.1500	0.00952	0.0100	-4.8	20.0
4-Methyl-2-pentanone (MIBK)	Ave	0.1675	0.1619	0.0500	0.0193	0.0200	-3.4	20.0
Toluene	Ave	1.613	1.577	0.4000	0.00977	0.0100	-2.3	20.0
trans-1,3-Dichloropropene	Ave	0.4831	0.4634	0.1000	0.00959	0.0100	-4.1	20.0
Ethyl methacrylate	Ave	0.4217	0.4208		0.00998	0.0100	-0.2	20.0
1,1,2-Trichloroethane	Ave	0.2874	0.2803	0.1000	0.00975	0.0100	-2.5	20.0
Tetrachloroethene	Ave	0.3065	0.3058	0.1500	0.00998	0.0100	-0.2	20.0
1,3-Dichloropropane	Ave	0.5237	0.5135		0.00980	0.0100	-2.0	20.0
2-Hexanone	Ave	0.1780	0.1624	0.0500	0.0182	0.0200	-8.8	20.0
Chlorodibromomethane	Ave	0.2976	0.2888		0.00970	0.0100	-3.0	20.0
Ethylene Dibromide	Ave	0.2742	0.2692		0.00982	0.0100	-1.8	20.0
Chlorobenzene	Ave	0.9846	0.9345	0.3000	0.00949	0.0100	-5.1	20.0
1,1,1,2-Tetrachloroethane	Ave	0.3208	0.3054		0.00952	0.0100	-4.8	20.0
Ethylbenzene	Ave	0.5275	0.5081		0.00963	0.0100	-3.7	20.0
m-Xylene & p-Xylene	Ave	0.6409	0.6189		0.00966	0.0100	-3.4	20.0
o-Xylene	Ave	0.6156	0.5915		0.00961	0.0100	-3.9	20.0
Styrene	Ave	1.064	1.036	0.3000	0.00973	0.0100	-2.7	20.0
Bromoform	Ave	0.1575	0.1606	0.1000	0.0102	0.0100	2.0	20.0
Isopropylbenzene	Ave	1.413	1.372	0.1000	0.00971	0.0100	-2.9	20.0
1,1,2,2-Tetrachloroethane	Ave	0.6946	0.6670	0.3000	0.00960	0.0100	-4.0	20.0
Bromobenzene	Ave	0.9222	0.8545		0.00927	0.0100	-7.3	20.0
1,2,3-Trichloropropane	Ave	0.2209	0.2222		0.0101	0.0100	0.6	20.0
trans-1,4-Dichloro-2-butene	Ave	0.1635	0.1515		0.00927	0.0100	-7.3	20.0
N-Propylbenzene	Ave	0.8936	0.8451		0.00946	0.0100	-5.4	20.0
2-Chlorotoluene	Ave	0.7923	0.7318		0.00924	0.0100	-7.6	20.0
1,3,5-Trimethylbenzene	Ave	2.484	2.313		0.00931	0.0100	-6.9	20.0
4-Chlorotoluene	Ave	0.8349	0.7709		0.00923	0.0100	-7.7	20.0
tert-Butylbenzene	Ave	2.075	1.952		0.00941	0.0100	-5.9	20.0
1,2,4-Trimethylbenzene	Ave	2.469	2.264		0.00917	0.0100	-8.3	20.0
sec-Butylbenzene	Ave	2.678	2.475		0.00924	0.0100	-7.6	20.0
1,3-Dichlorobenzene	Ave	1.410	1.275	0.6000	0.00904	0.0100	-9.6	20.0
4-Isopropyltoluene	Ave	2.276	2.122		0.00933	0.0100	-6.7	20.0
1,4-Dichlorobenzene	Ave	1.435	1.312	0.5000	0.00914	0.0100	-8.6	20.0
n-Butylbenzene	Ave	1.645	1.481		0.00901	0.0100	-9.9	20.0
1,2-Dichlorobenzene	Ave	1.268	1.157	0.4000	0.00912	0.0100	-8.8	20.0
					1			

Lab Name: TestAmerica Canton Job No.: 240-65994-1

SDG No.:

Lab Sample ID: <u>ICV 240-232366/14</u> Calibration Date: 05/28/2016 11:25

Instrument ID: A3UX11 Calib Start Date: 05/28/2016 09:12

GC Column: DB-624 ID: 0.18(mm) Calib End Date: 05/28/2016 11:03

Lab File ID: UXJ4945.D Conc. Units: ng/uL Heated Purge: (Y/N) N

ANALYTE	CURVE TYPE	AVE RRF	RRF	MIN RRF	CALC AMOUNT	SPIKE AMOUNT	%D	MAX %D
1,2-Dibromo-3-Chloropropane	Ave	0.1034	0.0919	0.0500	0.00889	0.0100	-11.1	50.0
1,2,4-Trichlorobenzene	Ave	0.6065	0.5148	0.2000	0.00849	0.0100	-15.1	50.0
Hexachlorobutadiene	Ave	0.2494	0.2019		0.00810	0.0100	-19.0	20.0
Naphthalene	Ave	1.496	1.340		0.00896	0.0100	-10.4	50.0
1,2,3-Trichlorobenzene	Ave	0.5655	0.4760		0.00842	0.0100	-15.8	20.0
Dibromofluoromethane (Surr)	Ave	0.2231	0.2015		0.0108	0.0120	-9.7	20.0
1,2-Dichloroethane-d4 (Surr)	Ave	0.2501	0.2259		0.0108	0.0120	-9.7	20.0
Toluene-d8 (Surr)	Ave	1.421	1.311		0.0110	0.0120	-7.8	20.0
4-Bromofluorobenzene (Surr)	Ave	0.4299	0.3884		0.0108	0.0120	-9.6	20.0

Lab Name: TestAmerica Canton Job No.: 240-65994-1

SDG No.:

Lab Sample ID: CCVIS 240-235154/2 Calibration Date: 06/20/2016 09:34

Instrument ID: A3UX11 Calib Start Date: 05/28/2016 09:12

GC Column: DB-624 ID: 0.18(mm) Calib End Date: 05/28/2016 11:03

Lab File ID: UXJ5601.D Conc. Units: ng/uL Heated Purge: (Y/N) N

ANALYTE	CURVE TYPE	AVE RRF	RRF	MIN RRF	CALC AMOUNT	SPIKE AMOUNT	%D	MAX %D
Dichlorodifluoromethane	Ave	0.1572	0.2042	0.1000	0.0130	0.0100	29.8*	20.0
Chloromethane	Ave	0.2254	0.2846	0.1000	0.0126	0.0100	26.3*	20.0
Vinyl chloride	Ave	0.2393	0.2630	0.1000	0.0110	0.0100	9.9	20.0
Butadiene	Ave	0.2248	0.2519		0.0112	0.0100	12.1	20.0
Bromomethane	Ave	0.1093	0.0735	0.0500	0.00673	0.0100	-32.7*	20.0
Chloroethane	Ave	0.1134	0.0992	0.0500	0.00874	0.0100	-12.6	20.0
Dichlorofluoromethane	Ave	0.2466	0.2663		0.0108	0.0100	8.0	20.0
Trichlorofluoromethane	Ave	0.1723	0.2511	0.1000	0.0146	0.0100	45.7*	20.0
Ethyl ether	Ave	0.2239	0.2029		0.00906	0.0100	-9.4	20.0
Acrolein	Ave	0.0316	0.0237		0.0374	0.0500	-25.1	50.0
1,1-Dichloroethene	Ave	0.1767	0.1907	0.1000	0.0108	0.0100	7.9	20.0
1,1,2-Trichloro-1,2,2-triflu oroethane	Ave	0.1071	0.1162	0.0500	0.0109	0.0100	8.5	20.0
Acetone	Lin1		0.0462	0.0100	0.0169	0.0200	-15.6	50.0
Iodomethane	Ave	0.2451	0.2368		0.00966	0.0100	-3.4	20.0
Carbon disulfide	Ave	0.4562	0.4742	0.1000	0.0104	0.0100	3.9	20.0
3-Chloro-1-propene	Ave	0.1616	0.1649		0.0102	0.0100	2.0	20.0
Methyl acetate	Ave	0.1347	0.1260	0.1000	0.0468	0.0500	-6.5	20.0
Methylene Chloride	Lin1		0.2338	0.1000	0.0110	0.0100	9.5	50.0
2-Methyl-2-propanol	Ave	0.0132	0.0088		0.0671	0.100	-32.9	50.0
Acrylonitrile	Ave	0.0700	0.0649		0.0927	0.100	-7.3	20.0
Methyl tert-butyl ether	Ave	0.6617	0.6433	0.1000	0.00972	0.0100	-2.8	20.0
trans-1,2-Dichloroethene	Ave	0.2620	0.2684	0.1000	0.0102	0.0100	2.5	20.0
Hexane	Ave	0.0561	0.0636		0.0113	0.0100	13.5	20.0
1,1-Dichloroethane	Ave	0.4477	0.4635	0.2000	0.0104	0.0100	3.5	20.0
Vinyl acetate	Ave	0.4179	0.3914		0.00937	0.0100	-6.3	50.0
2-Butanone (MEK)	Ave	0.0824	0.0736	0.0100	0.0179	0.0200	-10.6	20.0
cis-1,2-Dichloroethene	Ave	0.2770	0.2881	0.1000	0.0104	0.0100	4.0	20.0
2,2-Dichloropropane	Ave	0.1969	0.2061		0.0105	0.0100	4.7	20.0
Chlorobromomethane	Ave	0.1278	0.1340		0.0105	0.0100	4.8	20.0
Tetrahydrofuran	Ave	0.0529	0.0479		0.0181	0.0200	-9.6	20.0
Chloroform	Ave	0.4028	0.4281	0.2000	0.0106	0.0100	6.3	20.0
1,1,1-Trichloroethane	Ave	0.2717	0.2699	0.1000	0.00994	0.0100	-0.6	20.0
Cyclohexane	Ave	0.3041	0.3309	0.1000	0.0109	0.0100	8.8	20.0
1,1-Dichloropropene	Ave	0.3431	0.3652		0.0106	0.0100	6.4	20.0
Carbon tetrachloride	Ave	0.2486	0.2662	0.1000	0.0107	0.0100	7.1	20.0
Isobutyl alcohol	Ave	0.0060	0.0060		0.251	0.250	0.5	20.0
1,2-Dichloroethane	Ave	0.2815	0.3067	0.1000	0.0109	0.0100	8.9	20.0
Benzene	Ave	1.057	1.102	0.5000	0.0104	0.0100	4.3	20.0
n-Heptane	Ave	0.0587	0.0646		0.0110	0.0100	10.0	20.0
Trichloroethene	Ave	0.2761	0.2817	0.1500	0.0102	0.0100	2.1	20.0

Lab Name: TestAmerica Canton Job No.: 240-65994-1

SDG No.:

Lab Sample ID: CCVIS 240-235154/2 Calibration Date: 06/20/2016 09:34

Instrument ID: A3UX11 Calib Start Date: 05/28/2016 09:12

GC Column: DB-624 ID: 0.18(mm) Calib End Date: 05/28/2016 11:03

Lab File ID: UXJ5601.D Conc. Units: ng/uL Heated Purge: (Y/N) N

ANALYTE	CURVE TYPE	AVE RRF	RRF	MIN RRF	CALC AMOUNT	SPIKE AMOUNT	%D	MAX %D
Methylcyclohexane	Ave	0.3306	0.3513	0.1000	0.0106	0.0100	6.3	20.0
1,2-Dichloropropane	Ave	0.2533	0.2606	0.1000	0.0103	0.0100	2.8	20.0
Dibromomethane	Ave	0.1259	0.1313		0.0104	0.0100	4.3	20.0
1,4-Dioxane	Lin1		0.0011		0.140	0.200	-30.0	50.0
Dichlorobromomethane	Ave	0.2929	0.3045	0.1500	0.0104	0.0100	3.9	20.0
2-Chloroethyl vinyl ether	Ave	0.1454	0.1431		0.0197	0.0200	-1.6	20.0
cis-1,3-Dichloropropene	Ave	0.3977	0.3901	0.1500	0.00981	0.0100	-1.9	20.0
4-Methyl-2-pentanone (MIBK)	Ave	0.1675	0.1582	0.0500	0.0189	0.0200	-5.6	20.0
Toluene	Ave	1.613	1.799	0.4000	0.0112	0.0100	11.5	20.0
trans-1,3-Dichloropropene	Ave	0.4831	0.5143	0.1000	0.0106	0.0100	6.5	20.0
Ethyl methacrylate	Ave	0.4217	0.4325		0.0103	0.0100	2.5	20.0
1,1,2-Trichloroethane	Ave	0.2874	0.3087	0.1000	0.0107	0.0100	7.4	20.0
Tetrachloroethene	Ave	0.3065	0.3272	0.1500	0.0107	0.0100	6.8	20.0
1,3-Dichloropropane	Ave	0.5237	0.5659		0.0108	0.0100	8.1	20.0
2-Hexanone	Ave	0.1780	0.1745	0.0500	0.0196	0.0200	-2.0	20.0
Chlorodibromomethane	Ave	0.2976	0.3188		0.0107	0.0100	7.1	20.0
Ethylene Dibromide	Ave	0.2742	0.2916		0.0106	0.0100	6.3	20.0
Chlorobenzene	Ave	0.9846	1.026	0.3000	0.0104	0.0100	4.2	20.0
1,1,1,2-Tetrachloroethane	Ave	0.3208	0.3317		0.0103	0.0100	3.4	20.0
Ethylbenzene	Ave	0.5275	0.5448		0.0103	0.0100	3.3	20.0
m-Xylene & p-Xylene	Ave	0.6409	0.6844		0.0107	0.0100	6.8	20.0
o-Xylene	Ave	0.6156	0.6439		0.0105	0.0100	4.6	20.0
Styrene	Ave	1.064	1.097	0.3000	0.0103	0.0100	3.1	20.0
Bromoform	Ave	0.1575	0.1430	0.1000	0.00908	0.0100	-9.2	20.0
Isopropylbenzene	Ave	1.413	1.434	0.1000	0.0101	0.0100	1.5	20.0
1,1,2,2-Tetrachloroethane	Ave	0.6946	0.7283	0.3000	0.0105	0.0100	4.8	20.0
Bromobenzene	Ave	0.9222	0.9786		0.0106	0.0100	6.1	20.0
1,2,3-Trichloropropane	Ave	0.2209	0.2415		0.0109	0.0100	9.3	20.0
trans-1,4-Dichloro-2-butene	Ave	0.1635	0.1683		0.0103	0.0100	2.9	20.0
N-Propylbenzene	Ave	0.8936	1.025		0.0115	0.0100	14.8	20.0
2-Chlorotoluene	Ave	0.7923	0.8593		0.0108	0.0100	8.5	20.0
1,3,5-Trimethylbenzene	Ave	2.484	2.685		0.0108	0.0100	8.1	20.0
4-Chlorotoluene	Ave	0.8349	0.9366		0.0112	0.0100	12.2	20.0
tert-Butylbenzene	Ave	2.075	2.162		0.0104	0.0100	4.2	20.0
1,2,4-Trimethylbenzene	Ave	2.469	2.647		0.0107	0.0100	7.2	20.0
sec-Butylbenzene	Ave	2.678	2.793		0.0104	0.0100	4.3	20.0
1,3-Dichlorobenzene	Ave	1.410	1.406	0.6000	0.00997	0.0100	-0.3	20.0
4-Isopropyltoluene	Ave	2.276	2.313		0.0102	0.0100	1.6	20.0
1,4-Dichlorobenzene	Ave	1.435	1.455	0.5000	0.0101	0.0100	1.4	20.0
n-Butylbenzene	Ave	1.645	1.667		0.0101	0.0100	1.4	20.0
1,2-Dichlorobenzene	Ave	1.268	1.206	0.4000	0.00951	0.0100	-4.9	20.0

Lab Name: TestAmerica Canton Job No.: 240-65994-1

SDG No.:

Lab Sample ID: CCVIS 240-235154/2 Calibration Date: 06/20/2016 09:34

Instrument ID: A3UX11 Calib Start Date: 05/28/2016 09:12

GC Column: DB-624 ID: 0.18(mm) Calib End Date: 05/28/2016 11:03

Lab File ID: UXJ5601.D Conc. Units: ng/uL Heated Purge: (Y/N) N

ANALYTE	CURVE TYPE	AVE RRF	RRF	MIN RRF	CALC AMOUNT	SPIKE AMOUNT	%D	MAX %D
1,2-Dibromo-3-Chloropropane	Ave	0.1034	0.0816	0.0500	0.00789	0.0100	-21.1	50.0
1,2,4-Trichlorobenzene	Ave	0.6065	0.5723	0.2000	0.00944	0.0100	-5.6	50.0
Hexachlorobutadiene	Ave	0.2494	0.2198		0.00881	0.0100	-11.9	20.0
Naphthalene	Ave	1.496	1.391		0.00930	0.0100	-7.0	50.0
1,2,3-Trichlorobenzene	Ave	0.5655	0.5329		0.00942	0.0100	-5.8	20.0
Dibromofluoromethane (Surr)	Ave	0.2231	0.2105		0.0113	0.0120	-5.7	20.0
1,2-Dichloroethane-d4 (Surr)	Ave	0.2501	0.2507		0.0120	0.0120	0.3	20.0
Toluene-d8 (Surr)	Ave	1.421	1.423		0.0120	0.0120	0.1	20.0
4-Bromofluorobenzene (Surr)	Ave	0.4299	0.3935		0.0109	0.0120	-8.5	20.0

Lab Name: TestAmerica Canton Job No.: 240-65994-1

SDG No.:

Lab Sample ID: (CCVIS) 240-235310/2 Calibration Date: 06/21/2016 08:52

Instrument ID: A3UX11 Calib Start Date: 05/28/2016 09:12

GC Column: DB-624 ID: 0.18(mm) Calib End Date: 05/28/2016 11:03

Lab File ID: UXJ5658.D Conc. Units: ng/uL Heated Purge: (Y/N) N

ANALYTE	CURVE TYPE	AVE RRF	RRF	MIN RRF	CALC AMOUNT	SPIKE AMOUNT	%D	MAX %D
Dichlorodifluoromethane	Ave	0.1572	0.1689	0.1000	0.0107	0.0100	7.4	20.0
Chloromethane	Ave	0.2254	0.2423	0.1000	0.0108	0.0100	7.5	20.0
Vinyl chloride	Ave	0.2393	0.2266	0.1000	0.00947	0.0100	-5.3	20.0
Butadiene	Ave	0.2248	0.2087		0.00928	0.0100	-7.2	20.0
Bromomethane	Ave	0.1093	0.0650	0.0500	0.00595	0.0100	-40.5*	20.0
Chloroethane	Ave	0.1134	0.0823	0.0500	0.00726	0.0100	-27.4*	20.0
Dichlorofluoromethane	Ave	0.2466	0.2274		0.00922	0.0100	-7.8	20.0
Trichlorofluoromethane	Ave	0.1723	0.2008	0.1000	0.0117	0.0100	16.5	20.0
Ethyl ether	Ave	0.2239	0.1935		0.00864	0.0100	-13.6	20.0
Acrolein	Ave	0.0316	0.0215		0.0340	0.0500	-32.0	50.0
1,1-Dichloroethene	Ave	0.1767	0.1787	0.1000	0.0101	0.0100	1.1	20.0
1,1,2-Trichloro-1,2,2-triflu oroethane	Ave	0.1071	0.1027	0.0500	0.00959	0.0100	-4.1	20.0
Acetone	Lin1		0.0365	0.0100	0.0127	0.0200	-36.5	50.0
Iodomethane	Ave	0.2451	0.2228		0.00909	0.0100	-9.1	20.0
Carbon disulfide	Ave	0.4562	0.4866	0.1000	0.0107	0.0100	6.7	20.0
3-Chloro-1-propene	Ave	0.1616	0.1508		0.00933	0.0100	-6.7	20.0
Methyl acetate	Ave	0.1347	0.1144	0.1000	0.0425	0.0500	-15.0	20.0
Methylene Chloride	Lin1		0.2045	0.1000	0.00941	0.0100	-5.9	50.0
2-Methyl-2-propanol	Ave	0.0132	0.0082		0.0622	0.100	-37.8	50.0
Acrylonitrile	Ave	0.0700	0.0605		0.0864	0.100	-13.6	20.0
Methyl tert-butyl ether	Ave	0.6617	0.5887	0.1000	0.00890	0.0100	-11.0	20.0
trans-1,2-Dichloroethene	Ave	0.2620	0.2466	0.1000	0.00941	0.0100	-5.9	20.0
Hexane	Ave	0.0561	0.0617		0.0110	0.0100	10.0	20.0
1,1-Dichloroethane	Ave	0.4477	0.4287	0.2000	0.00958	0.0100	-4.2	20.0
Vinyl acetate	Ave	0.4179	0.3691		0.00883	0.0100	-11.7	50.0
cis-1,2-Dichloroethene	Ave	0.2770	0.2551	0.1000	0.00921	0.0100	-7.9	20.0
2,2-Dichloropropane	Ave	0.1969	0.1843		0.00936	0.0100	-6.4	20.0
2-Butanone (MEK)	Ave	0.0824	0.0630	0.0100	0.0153	0.0200	-23.5*	20.0
Chlorobromomethane	Ave	0.1278	0.1210		0.00946	0.0100	-5.4	20.0
Tetrahydrofuran	Ave	0.0529	0.0444		0.0168	0.0200	-16.1	20.0
Chloroform	Ave	0.4028	0.3828	0.2000	0.00950	0.0100	-5.0	20.0
1,1,1-Trichloroethane	Ave	0.2717	0.2502	0.1000	0.00921	0.0100	-7.9	20.0
Cyclohexane	Ave	0.3041	0.3056	0.1000	0.0100	0.0100	0.5	20.0
1,1-Dichloropropene	Ave	0.3431	0.3313		0.00965	0.0100	-3.5	20.0
Carbon tetrachloride	Ave	0.2486	0.2326	0.1000	0.00936	0.0100	-6.4	20.0
Isobutyl alcohol	Ave	0.0060	0.0054		0.226	0.250	-9.5	20.0
1,2-Dichloroethane	Ave	0.2815	0.2865	0.1000	0.0102	0.0100	1.7	20.0
Benzene	Ave	1.057	1.003	0.5000	0.00949	0.0100	-5.1	20.0
n-Heptane	Ave	0.0587	0.0578		0.00984	0.0100	-1.6	20.0
Trichloroethene	Ave	0.2761	0.2556	0.1500	0.00926	0.0100	-7.4	20.0

Lab Name: TestAmerica Canton Job No.: 240-65994-1

SDG No.:

Lab Sample ID: CCVIS 240-235310/2 Calibration Date: 06/21/2016 08:52

Instrument ID: A3UX11 Calib Start Date: 05/28/2016 09:12

GC Column: DB-624 ID: 0.18 (mm) Calib End Date: 05/28/2016 11:03

Lab File ID: UXJ5658.D Conc. Units: ng/uL Heated Purge: (Y/N) N

ANALYTE	CURVE TYPE	AVE RRF	RRF	MIN RRF	CALC AMOUNT	SPIKE AMOUNT	%D	MAX %D
Methylcyclohexane	Ave	0.3306	0.3178	0.1000	0.00961	0.0100	-3.9	20.0
1,2-Dichloropropane	Ave	0.2533	0.2303	0.1000	0.00909	0.0100	-9.1	20.0
Dibromomethane	Ave	0.1259	0.1203		0.00955	0.0100	-4.5	20.0
1,4-Dioxane	Lin1		0.0012		0.147	0.200	-26.5	50.0
Dichlorobromomethane	Ave	0.2929	0.2693	0.1500	0.00919	0.0100	-8.1	20.0
2-Chloroethyl vinyl ether	Ave	0.1454	0.1282		0.0176	0.0200	-11.8	20.0
cis-1,3-Dichloropropene	Ave	0.3977	0.3428	0.1500	0.00862	0.0100	-13.8	20.0
4-Methyl-2-pentanone (MIBK)	Ave	0.1675	0.1470	0.0500	0.0176	0.0200	-12.2	20.0
Toluene	Ave	1.613	1.622	0.4000	0.0101	0.0100	0.5	20.0
trans-1,3-Dichloropropene	Ave	0.4831	0.4473	0.1000	0.00926	0.0100	-7.4	20.0
Ethyl methacrylate	Ave	0.4217	0.3893		0.00923	0.0100	-7.7	20.0
1,1,2-Trichloroethane	Ave	0.2874	0.2810	0.1000	0.00978	0.0100	-2.2	20.0
1,3-Dichloropropane	Ave	0.5237	0.5170		0.00987	0.0100	-1.3	20.0
Tetrachloroethene	Ave	0.3065	0.2963	0.1500	0.00967	0.0100	-3.3	20.0
2-Hexanone	Ave	0.1780	0.1510	0.0500	0.0170	0.0200	-15.2	20.0
Chlorodibromomethane	Ave	0.2976	0.2761		0.00928	0.0100	-7.2	20.0
Ethylene Dibromide	Ave	0.2742	0.2608		0.00951	0.0100	-4.9	20.0
Chlorobenzene	Ave	0.9846	0.9258	0.3000	0.00940	0.0100	-6.0	20.0
1,1,1,2-Tetrachloroethane	Ave	0.3208	0.3015		0.00940	0.0100	-6.0	20.0
Ethylbenzene	Ave	0.5275	0.5163		0.00979	0.0100	-2.1	20.0
m-Xylene & p-Xylene	Ave	0.6409	0.6193		0.00966	0.0100	-3.4	20.0
o-Xylene	Ave	0.6156	0.5720		0.00929	0.0100	-7.1	20.0
Styrene	Ave	1.064	1.009	0.3000	0.00948	0.0100	-5.2	20.0
Bromoform	Ave	0.1575	0.1254	0.1000	0.00796	0.0100	-20.4*	20.0
Isopropylbenzene	Ave	1.413	1.310	0.1000	0.00927	0.0100	-7.3	20.0
1,1,2,2-Tetrachloroethane	Ave	0.6946	0.6708	0.3000	0.00966	0.0100	-3.4	20.0
Bromobenzene	Ave	0.9222	0.9004		0.00976	0.0100	-2.4	20.0
1,2,3-Trichloropropane	Ave	0.2209	0.2233		0.0101	0.0100	1.1	20.0
trans-1,4-Dichloro-2-butene	Ave	0.1635	0.1219		0.00746	0.0100	-25.4*	20.0
N-Propylbenzene	Ave	0.8936	0.9048		0.0101	0.0100	1.3	20.0
2-Chlorotoluene	Ave	0.7923	0.7753		0.00979	0.0100	-2.1	20.0
1,3,5-Trimethylbenzene	Ave	2.484	2.428		0.00978	0.0100	-2.2	20.0
4-Chlorotoluene	Ave	0.8349	0.8245		0.00987	0.0100	-1.3	20.0
tert-Butylbenzene	Ave	2.075	1.943		0.00937	0.0100	-6.3	20.0
1,2,4-Trimethylbenzene	Ave	2.469	2.379		0.00964	0.0100	-3.6	20.0
sec-Butylbenzene	Ave	2.678	2.548		0.00952	0.0100	-4.8	20.0
1,3-Dichlorobenzene	Ave	1.410	1.291	0.6000	0.00915	0.0100	-8.5	20.0
4-Isopropyltoluene	Ave	2.276	2.115		0.00929	0.0100	-7.1	20.0
1,4-Dichlorobenzene	Ave	1.435	1.304	0.5000	0.00908	0.0100	-9.2	20.0
n-Butylbenzene	Ave	1.645	1.507		0.00916	0.0100	-8.4	20.0
1,2-Dichlorobenzene	Ave	1.268	1.114	0.4000	0.00879	0.0100	-12.1	20.0

Lab Name: TestAmerica Canton Job No.: 240-65994-1

SDG No.:

Lab Sample ID: CCVIS 240-235310/2 Calibration Date: 06/21/2016 08:52

Instrument ID: A3UX11 Calib Start Date: 05/28/2016 09:12

GC Column: DB-624 ID: 0.18(mm) Calib End Date: 05/28/2016 11:03

Lab File ID: UXJ5658.D Conc. Units: ng/uL Heated Purge: (Y/N) N

ANALYTE	CURVE TYPE	AVE RRF	RRF	MIN RRF	CALC AMOUNT	SPIKE AMOUNT	%D	MAX %D
1,2-Dibromo-3-Chloropropane	Ave	0.1034	0.0751	0.0500	0.00726	0.0100	-27.4	50.0
1,2,4-Trichlorobenzene	Ave	0.6065	0.5140	0.2000	0.00847	0.0100	-15.3	50.0
Hexachlorobutadiene	Ave	0.2494	0.1959		0.00785	0.0100	-21.5*	20.0
Naphthalene	Ave	1.496	1.240		0.00829	0.0100	-17.1	50.0
1,2,3-Trichlorobenzene	Ave	0.5655	0.4764		0.00842	0.0100	-15.8	20.0
Dibromofluoromethane (Surr)	Ave	0.2231	0.2064		0.0111	0.0120	-7.5	20.0
1,2-Dichloroethane-d4 (Surr)	Ave	0.2501	0.2401		0.0115	0.0120	-4.0	20.0
Toluene-d8 (Surr)	Ave	1.421	1.354		0.0114	0.0120	-4.7	20.0
4-Bromofluorobenzene (Surr)	Ave	0.4299	0.3806		0.0106	0.0120	-11.5	20.0

Lab Name: TestAmerica Canton Job No.: 240-65994-1

SDG No.:

Lab Sample ID: ICV 240-232711/9 Calibration Date: 06/01/2016 14:45

Instrument ID: A3UX16 Calib Start Date: 06/01/2016 12:06

GC Column: DB-624 ID: 0.18(mm) Calib End Date: 06/01/2016 14:22

Lab File ID: UXM5577.D Conc. Units: ng/uL Heated Purge: (Y/N) N

ANALYTE	CURVE TYPE	AVE RRF	RRF	MIN RRF	CALC AMOUNT	SPIKE AMOUNT	%D	MAX %D
Dichlorodifluoromethane	Ave	0.2419	0.3305	0.1000	0.0137	0.0100	36.6*	20.0
Chloromethane	Ave	0.2976	0.3513	0.1000	0.0118	0.0100	18.0	20.0
Vinyl chloride	Ave	0.3048	0.3483	0.1000	0.0114	0.0100	14.3	20.0
Butadiene	Ave	0.2947	0.3177		0.0108	0.0100	7.8	30.0
Bromomethane	Qua		0.1145	0.0500	0.0144	0.0100	44.4*	20.0
Chloroethane	Ave	0.1388	0.1683	0.0500	0.0121	0.0100	21.3*	20.0
Dichlorofluoromethane	Qua		0.3588		0.0137	0.0100	37.3*	20.0
Trichlorofluoromethane	Ave	0.1995	0.2430	0.1000	0.0122	0.0100	21.8*	20.0
Ethyl ether	Lin1		0.2244		0.0101	0.0100	1.0	20.0
Acrolein	Ave	0.0346	0.0395		0.0569	0.0500	13.9	50.0
1,1-Dichloroethene	Ave	0.2710	0.2759	0.1000	0.0102	0.0100	1.8	20.0
1,1,2-Trichloro-1,2,2-triflu oroethane	Ave	0.1905	0.1970	0.0500	0.0103	0.0100	3.4	20.0
Acetone	Lin1		0.0687	0.0100	0.0177	0.0200	-11.7	50.0
Iodomethane	Ave	0.3849	0.4271		0.0111	0.0100	11.0	20.0
Carbon disulfide	Ave	0.8432	0.8967	0.1000	0.0106	0.0100	6.3	20.0
3-Chloro-1-propene	Ave	0.1767	0.1932		0.0109	0.0100	9.3	20.0
Methyl acetate	Ave	0.1583	0.1544	0.1000	0.0488	0.0500	-2.5	20.0
Methylene Chloride	Lin1		0.3051	0.1000	0.0107	0.0100	6.8	50.0
2-Methyl-2-propanol	Ave	0.0187	0.0175		0.0933	0.100	-6.7	50.0
Acrylonitrile	Ave	0.0806	0.0825		0.102	0.100	2.3	20.0
trans-1,2-Dichloroethene	Ave	0.2741	0.2952	0.1000	0.0108	0.0100	7.7	20.0
Methyl tert-butyl ether	Ave	0.7693	0.7901	0.1000	0.0103	0.0100	2.7	20.0
Hexane	Ave	0.0778	0.0778		0.0100	0.0100	-0.0	20.0
1,1-Dichloroethane	Ave	0.4932	0.4950	0.2000	0.0100	0.0100	0.4	20.0
Vinyl acetate	Ave	0.4610	0.5063		0.0110	0.0100	9.8	50.0
2,2-Dichloropropane	Ave	0.3040	0.3134		0.0103	0.0100	3.1	20.0
2-Butanone (MEK)	Ave	0.1039	0.0862	0.0100	0.0166	0.0200	-17.0	20.0
cis-1,2-Dichloroethene	Ave	0.3002	0.3024	0.1000	0.0101	0.0100	0.7	20.0
Chlorobromomethane	Ave	0.1437	0.1388		0.00966	0.0100	-3.4	20.0
Tetrahydrofuran	Ave	0.0667	0.0577		0.0173	0.0200	-13.5	20.0
Chloroform	Ave	0.4559	0.4658	0.2000	0.0102	0.0100	2.2	20.0
1,1,1-Trichloroethane	Ave	0.3496	0.3618	0.1000	0.0103	0.0100	3.5	20.0
Cyclohexane	Ave	0.4582	0.4706	0.1000	0.0103	0.0100	2.7	20.0
1,1-Dichloropropene	Ave	0.3882	0.3966		0.0102	0.0100	2.1	20.0
Carbon tetrachloride	Ave	0.3280	0.3396	0.1000	0.0104	0.0100	3.6	20.0
Isobutyl alcohol	Ave	0.0062	0.0056		0.229	0.250	-8.3	20.0
1,2-Dichloroethane	Ave	0.3581	0.3730	0.1000	0.0104	0.0100	4.1	20.0
Benzene	Ave	1.113	1.149	0.5000	0.0103	0.0100	3.2	20.0
n-Heptane	Lin1		0.1858		0.00996	0.0100	-0.4	20.0
Trichloroethene	Ave	0.2871	0.2971	0.1500	0.0103	0.0100	3.5	20.0

Lab Name: TestAmerica Canton Job No.: 240-65994-1

SDG No.:

Lab Sample ID: ICV 240-232711/9 Calibration Date: 06/01/2016 14:45

Instrument ID: A3UX16 Calib Start Date: 06/01/2016 12:06

GC Column: DB-624 ID: 0.18 (mm) Calib End Date: 06/01/2016 14:22

Lab File ID: UXM5577.D Conc. Units: ng/uL Heated Purge: (Y/N) N

ANALYTE									
1,2=Pichloropropane	ANALYTE		AVE RRF	RRF	MIN RRF			%D	
1,2=Pichloropropane	Methylcyclohexane	Ave	0.4527	0.4581	0.1000	0.0101	0.0100	1.2	20.0
Dibromomethane		Ave	0.2678	0.2796	0.1000	0.0104	0.0100	4.4	20.0
Dichlorobromomethane		Ave	0.1494	0.1494		0.0100	0.0100	-0.0	20.0
2-Chloroethyl vinyl ether	1,4-Dioxane	Ave	0.0021	0.0020		0.188	0.200	-6.2	50.0
cis=1,3=bichloropropene Ave 0.4504 0.4612 0.1500 0.0102 0.0100 2.4 20.0 4-Methyl=2-pentanone (NIRK) Ave 0.2024 0.1946 0.0500 0.0102 0.000 -3.8 20.0 Toluene Ave 1.642 1.695 0.4000 0.0103 0.0100 -3.8 20.0 trans=1,3=Dichloropropene Ave 0.5439 0.5423 0.1000 0.00997 0.0100 -0.3 20.0 Itl,12=Tritoloropthane Ave 0.4873 0.4889 0.00988 0.0100 -1.8 20.0 1,3=Dichloropropane Ave 0.2850 0.2886 0.1000 0.0101 0.0100 -1.2 20.0 1,12=Tritoloropthane Ave 0.25967 0.5305 0.00988 0.0100 -1.2 20.0 2-Hexanone Ave 0.2993 0.1010 0.0100 2.1 20.0 Ethylane Dibromide Ave 0.2906 0.2993 0.0103 0.0100 1.5 20.0 </td <td>Dichlorobromomethane</td> <td>Ave</td> <td>0.3531</td> <td>0.3505</td> <td>0.1500</td> <td>0.00993</td> <td>0.0100</td> <td>-0.7</td> <td>20.0</td>	Dichlorobromomethane	Ave	0.3531	0.3505	0.1500	0.00993	0.0100	-0.7	20.0
cis=1,3=bichloropropene Ave 0.4504 0.4612 0.1500 0.0102 0.0100 2.4 20.0 4-Methyl=2-pentanone (NIRK) Ave 0.2024 0.1946 0.0500 0.0102 0.000 -3.8 20.0 Toluene Ave 1.642 1.695 0.4000 0.0103 0.0100 -3.8 20.0 trans=1,3=Dichloropropene Ave 0.5439 0.5423 0.1000 0.00997 0.0100 -0.3 20.0 Itl,12=Tritoloropthane Ave 0.4873 0.4889 0.00988 0.0100 -1.8 20.0 1,3=Dichloropropane Ave 0.2850 0.2886 0.1000 0.0101 0.0100 -1.2 20.0 1,12=Tritoloropthane Ave 0.25967 0.5305 0.00988 0.0100 -1.2 20.0 2-Hexanone Ave 0.2993 0.1010 0.0100 2.1 20.0 Ethylane Dibromide Ave 0.2906 0.2993 0.0103 0.0100 1.5 20.0 </td <td>2-Chloroethyl vinyl ether</td> <td>Ave</td> <td>0.1448</td> <td>0.1445</td> <td></td> <td>0.00998</td> <td>0.0100</td> <td>-0.2</td> <td>20.0</td>	2-Chloroethyl vinyl ether	Ave	0.1448	0.1445		0.00998	0.0100	-0.2	20.0
Toluene Ave 1.642 1.695 0.4000 0.0103 0.0100 3.2 20.0		Ave	0.4504	0.4612	0.1500	0.0102	0.0100	2.4	20.0
Toluene Ave 1.642 1.695 0.4000 0.0103 0.0100 3.2 20.0	4-Methyl-2-pentanone (MIBK)	Ave	0.2024	0.1946	0.0500	0.0192	0.0200	-3.8	20.0
Ethyl methacrylate		Ave	1.642	1.695	0.4000	0.0103	0.0100	3.2	20.0
Ethyl methacrylate	trans-1,3-Dichloropropene	Ave	0.5439	0.5423	0.1000	0.00997	0.0100	-0.3	20.0
1,1,2-Trichloroethane		Ave	0.4573			0.00982	0.0100	-1.8	20.0
1,3-Dichloropropane Ave 0.5367 0.5305 0.00988 0.0100 -1.2 20.0		Ave	0.2860	0.2886	0.1000	0.0101	0.0100	0.9	20.0
Tetrachloroethene	1,3-Dichloropropane	Ave	0.5367	0.5305		0.00988	0.0100	-1.2	20.0
Chlorodibromomethane Ave 0.3538 0.3434 0.00971 0.0100 -2.9 20.0 Ethylene Dibromide Ave 0.2966 0.2993 0.0103 0.0100 3.0 20.0 Chlorobenzene Ave 1.042 1.058 0.3000 0.0102 0.0100 1.5 20.0 Lil,1,2-Tetrachloroethane Ave 0.3717 0.3698 0.00935 0.0103 0.0100 -5.5 20.0 Ethylbenzene Ave 0.5737 0.5909 0.0103 0.0100 2.9 20.0 o-Xylene Ave 0.7167 0.7377 0.0103 0.0100 2.9 20.0 o-Xylene Ave 0.7167 0.7377 0.0103 0.0100 0.7 20.0 Styrene Ave 0.7199 0.7248 0.0101 0.0100 0.7 20.0 Bromoform Ave 0.1935 0.2144 0.1000 0.0111 0.0100 10.8 20.0 Isomoform Ave 0.6963		Ave	0.2970	0.3033	0.1500	0.0102	0.0100	2.1	20.0
Ethylene Dibromide	2-Hexanone	Ave	0.2098	0.1810	0.0500	0.0173	0.0200	-13.7	20.0
Chlorobenzene Ave 1.042 1.058 0.3000 0.0102 0.0100 1.5 20.0 1,1,1,2-Tetrachloroethane Ave 0.3717 0.3698 0.00995 0.0100 -0.5 20.0 Ethylbenzene Ave 0.5737 0.5909 0.0103 0.0100 3.0 20.0 σ-Xylene Ave 0.7167 0.7377 0.0103 0.0100 2.9 20.0 σ-Xylene Ave 0.7199 0.7248 0.0101 0.0100 4.6 20.0 Styrene Ave 0.1935 0.2144 0.1000 0.0111 0.0100 4.6 20.0 Bromoform Ave 0.1935 0.2144 0.1000 0.0111 0.0100 10.8 20.0 Isopropylbenzene Ave 0.6963 0.6931 0.3000 0.0105 0.0100 5.4 20.0 1,2,3-Trichloropropane Lini 0.2166 0.0102 0.0100 2.5 20.0 N-Fropylbenzene Ave 0	Chlorodibromomethane	Ave	0.3538	0.3434		0.00971	0.0100	-2.9	20.0
Chlorobenzene	Ethylene Dibromide	Ave	0.2906	0.2993		0.0103	0.0100	3.0	20.0
Ethylbenzene Ave 0.5737 0.5909 0.0103 0.0100 3.0 20.0 m-Xylene & p-Xylene Ave 0.7167 0.7377 0.0103 0.0100 2.9 20.0 c-Xylene Ave 0.7199 0.7248 0.0101 0.0100 0.7 20.0 Styrene Ave 1.177 1.231 0.3000 0.0105 0.0100 4.6 20.0 Bromoform Ave 0.1935 0.2144 0.1000 0.0111 0.0100 1.08 20.0 1,2,2-Tetrachloroethane Ave 0.6963 0.6931 0.3000 0.0105 0.0100 5.4 20.0 1,2,3-Trichloropropane Lin1 0.2166 0.0102 0.0100 1.9 20.0 N-Propylbenzene Ave 0.1991 0.1927 0.00968 0.0100 -3.2 20.0 N-Propylbenzene Ave 0.8045 0.7957 0.00996 0.0100 -1.1 20.0 2-Chlorotoluene Ave 0.848		Ave	1.042	1.058	0.3000	0.0102	0.0100	1.5	20.0
m-Xylene & p-Xylene Ave 0.7167 0.7377 0.0103 0.0100 2.9 20.0 o-Xylene Ave 0.7199 0.7248 0.0101 0.0100 0.7 20.0 Styrene Ave 1.177 1.231 0.3000 0.0105 0.0100 4.6 20.0 Bromoform Ave 0.1935 0.2144 0.1000 0.0111 0.0100 10.8 20.0 Isopropylbenzene Ave 1.785 1.881 0.1000 0.0105 0.0100 5.4 20.0 I,1,2,2-Tetrachloroethane Ave 0.6963 0.6931 0.3000 0.0095 0.0100 -0.5 20.0 Brombenzene Ave 0.7820 0.7968 0.0102 0.0100 1.9 20.0 1,2,3-Trichloropropane Lin1 0.2166 0.0102 0.0100 2.5 20.0 N-Propylbenzene Ave 0.1991 0.1927 0.0968 0.0100 -0.4 20.0 2-Chlorotoluene Ave	1,1,1,2-Tetrachloroethane	Ave	0.3717	0.3698		0.00995	0.0100	-0.5	20.0
o-Xylene Ave 0.7199 0.7248 0.0101 0.0100 0.7 20.0 Styrene Ave 1.177 1.231 0.3000 0.0105 0.0100 4.6 20.0 Bromoform Ave 0.1935 0.2144 0.1000 0.0111 0.0100 10.8 20.0 Isopropylbenzene Ave 1.785 1.881 0.1000 0.0105 0.0100 5.4 20.0 1,1,2,2-Tetrachloroethane Ave 0.6963 0.6931 0.3000 0.00995 0.0100 -0.5 20.0 Bromobenzene Ave 0.7820 0.7968 0.0102 0.0100 1.9 20.0 1,2,3-Trichloropropane Lin1 0.2166 0.0102 0.0100 2.5 20.0 N-Propylbenzene Ave 0.1991 0.1927 0.00968 0.0100 -3.2 20.0 N-Propylbenzene Ave 0.9385 0.9345 0.00996 0.0100 -0.4 20.0 2-Chlorotoluene Ave	Ethylbenzene	Ave	0.5737	0.5909		0.0103	0.0100	3.0	20.0
o-Xylene Ave 0.7199 0.7248 0.0101 0.0100 0.7 20.0 Styrene Ave 1.177 1.231 0.3000 0.0105 0.0100 4.6 20.0 Bromoform Ave 0.1935 0.2144 0.1000 0.0111 0.0100 10.8 20.0 Isopropylbenzene Ave 1.785 1.881 0.1000 0.0105 0.0100 5.4 20.0 1,1,2,2-Tetrachloroethane Ave 0.6963 0.6931 0.3000 0.00995 0.0100 -0.5 20.0 Bromobenzene Ave 0.7820 0.7968 0.0102 0.0100 1.9 20.0 1,2,3-Trichloropropane Lin1 0.2166 0.0102 0.0100 2.5 20.0 N-Propylbenzene Ave 0.1991 0.1927 0.00968 0.0100 -3.2 20.0 N-Propylbenzene Ave 0.9385 0.9345 0.00996 0.0100 -0.4 20.0 2-Chlorotoluene Ave	m-Xylene & p-Xylene	Ave	0.7167	0.7377		0.0103	0.0100	2.9	20.0
Styrene Ave 1.177 1.231 0.3000 0.0105 0.0100 4.6 20.0 Bromoform Ave 0.1935 0.2144 0.1000 0.0111 0.0100 10.8 20.0 Isopropylbenzene Ave 1.785 1.881 0.1000 0.0105 0.0100 5.4 20.0 1,1,2,2-Tetrachloroethane Ave 0.6963 0.6931 0.3000 0.00995 0.0100 -0.5 20.0 Bromobenzene Ave 0.7820 0.7968 0.0102 0.0100 1.9 20.0 1,2,3-Trichloropropane Lin1 0.2166 0.0102 0.0100 2.5 20.0 trans-1,4-Dichloro-2-butene Ave 0.1991 0.1927 0.00968 0.0100 -3.2 20.0 N-Propylbenzene Ave 0.9385 0.9345 0.00996 0.0100 -0.4 20.0 2-Chlorotoluene Ave 0.8045 0.7957 0.00989 0.0100 -1.1 20.0 4-Chlorotoluene		Ave	0.7199	0.7248		0.0101	0.0100	0.7	20.0
Tampong Ave 1.785 1.881 0.1000 0.0105 0.0100 5.4 20.0		Ave	1.177	1.231	0.3000	0.0105	0.0100	4.6	20.0
1,1,2,2-Tetrachloroethane	Bromoform	Ave	0.1935	0.2144	0.1000	0.0111	0.0100	10.8	20.0
1,1,2,2-Tetrachloroethane Ave 0.6963 0.6931 0.3000 0.00995 0.0100 -0.5 20.0 Bromobenzene Ave 0.7820 0.7968 0.0102 0.0100 1.9 20.0 1,2,3-Trichloropropane Lin1 0.2166 0.0102 0.0100 2.5 20.0 trans-1,4-Dichloro-2-butene Ave 0.1991 0.1927 0.00968 0.0100 -3.2 20.0 N-Propylbenzene Ave 0.9385 0.9345 0.00996 0.0100 -0.4 20.0 2-Chlorotoluene Ave 0.8045 0.7957 0.00989 0.0100 -1.1 20.0 4-Chlorotoluene Ave 2.848 2.896 0.0102 0.0100 1.7 20.0 4-Chlorotoluene Ave 0.8281 0.8207 0.00991 0.0100 -0.9 20.0 tert-Butylbenzene Ave 2.462 2.517 0.0102 0.0100 2.2 20.0 1,2,4-Trimethylbenzene Ave 2.977	Isopropylbenzene	Ave	1.785	1.881	0.1000	0.0105	0.0100	5.4	20.0
1,2,3-Trichloropropane Lin1 0.2166 0.0102 0.0100 2.5 20.0 trans-1,4-Dichloro-2-butene Ave 0.1991 0.1927 0.00968 0.0100 -3.2 20.0 N-Propylbenzene Ave 0.9385 0.9345 0.00996 0.0100 -0.4 20.0 2-Chlorotoluene Ave 0.8045 0.7957 0.00998 0.0100 -1.1 20.0 1,3,5-Trimethylbenzene Ave 2.848 2.896 0.0102 0.0100 1.7 20.0 4-Chlorotoluene Ave 0.8281 0.8207 0.00991 0.0100 -0.9 20.0 tert-Butylbenzene Ave 2.462 2.517 0.0102 0.0100 2.2 20.0 1,2,4-Trimethylbenzene Ave 2.977 2.954 0.00992 0.0100 -0.8 20.0 sec-Butylbenzene Ave 3.385 3.413 0.0101 0.0100 0.8 20.0 1,3-Dichlorobenzene Ave 1.551 1.549		Ave	0.6963	0.6931	0.3000	0.00995	0.0100	-0.5	20.0
trans-1,4-Dichloro-2-butene Ave 0.1991 0.1927 0.00968 0.0100 -3.2 20.0 N-Propylbenzene Ave 0.9385 0.9345 0.00996 0.0100 -0.4 20.0 2-Chlorotoluene Ave 0.8045 0.7957 0.00989 0.0100 -1.1 20.0 1,3,5-Trimethylbenzene Ave 2.848 2.896 0.0102 0.0100 1.7 20.0 4-Chlorotoluene Ave 0.8281 0.8207 0.00991 0.0100 -0.9 20.0 tert-Butylbenzene Ave 2.462 2.517 0.0102 0.0100 -0.9 20.0 1,2,4-Trimethylbenzene Ave 2.977 2.954 0.00992 0.0100 -0.8 20.0 sec-Butylbenzene Ave 3.385 3.413 0.0101 0.0100 0.8 20.0 4-Isopropyltoluene Ave 2.944 3.021 0.6000 0.00999 0.0100 -0.0 2.6 20.0 1,4-Dichlorobenzene <t< td=""><td>Bromobenzene</td><td>Ave</td><td>0.7820</td><td>0.7968</td><td></td><td>0.0102</td><td>0.0100</td><td>1.9</td><td>20.0</td></t<>	Bromobenzene	Ave	0.7820	0.7968		0.0102	0.0100	1.9	20.0
trans-1,4-Dichloro-2-butene Ave 0.1991 0.1927 0.00968 0.0100 -3.2 20.0 N-Propylbenzene Ave 0.9385 0.9345 0.00996 0.0100 -0.4 20.0 2-Chlorotoluene Ave 0.8045 0.7957 0.00989 0.0100 -1.1 20.0 1,3,5-Trimethylbenzene Ave 2.848 2.896 0.0102 0.0100 1.7 20.0 4-Chlorotoluene Ave 0.8281 0.8207 0.00991 0.0100 -0.9 20.0 tert-Butylbenzene Ave 2.462 2.517 0.0102 0.0100 2.2 20.0 1,2,4-Trimethylbenzene Ave 2.977 2.954 0.00992 0.0100 -0.8 20.0 sec-Butylbenzene Ave 3.385 3.413 0.0101 0.0100 0.8 20.0 4-Isopropyltoluene Ave 2.944 3.021 0.0103 0.0100 -0.0 2.6 20.0 1,4-Dichlorobenzene Ave 2.5	1,2,3-Trichloropropane	Lin1		0.2166		0.0102	0.0100	2.5	20.0
2-Chlorotoluene Ave 0.8045 0.7957 0.00989 0.0100 -1.1 20.0 1,3,5-Trimethylbenzene Ave 2.848 2.896 0.0102 0.0100 1.7 20.0 4-Chlorotoluene Ave 0.8281 0.8207 0.00991 0.0100 -0.9 20.0 tert-Butylbenzene Ave 2.462 2.517 0.0102 0.0100 2.2 20.0 1,2,4-Trimethylbenzene Ave 2.977 2.954 0.00992 0.0100 -0.8 20.0 sec-Butylbenzene Ave 3.385 3.413 0.0101 0.0100 0.8 20.0 1,3-Dichlorobenzene Ave 1.551 1.549 0.6000 0.00999 0.0100 -0.0 20.0 4-Isopropyltoluene Ave 2.944 3.021 0.0103 0.0100 2.6 20.0 1,4-Dichlorobenzene Ave 1.558 1.570 0.5000 0.0100 0.0100 0.0 20.0 n-Butylbenzene Ave	trans-1,4-Dichloro-2-butene	Ave	0.1991	0.1927		0.00968	0.0100	-3.2	20.0
1,3,5-Trimethylbenzene Ave 2.848 2.896 0.0102 0.0100 1.7 20.0 4-Chlorotoluene Ave 0.8281 0.8207 0.00991 0.0100 -0.9 20.0 tert-Butylbenzene Ave 2.462 2.517 0.0102 0.0100 2.2 20.0 1,2,4-Trimethylbenzene Ave 2.977 2.954 0.00992 0.0100 -0.8 20.0 sec-Butylbenzene Ave 3.385 3.413 0.0101 0.0100 0.8 20.0 1,3-Dichlorobenzene Ave 1.551 1.549 0.6000 0.00999 0.0100 -0.0 20.0 4-Isopropyltoluene Ave 2.944 3.021 0.0103 0.0100 2.6 20.0 1,4-Dichlorobenzene Ave 1.558 1.570 0.5000 0.0101 0.0100 0.0 20.0 n-Butylbenzene Ave 2.523 2.525 0.0100 0.0100 0.0 20.0	N-Propylbenzene	Ave	0.9385	0.9345		0.00996	0.0100	-0.4	20.0
4-Chlorotoluene Ave 0.8281 0.8207 0.00991 0.0100 -0.9 20.0 tert-Butylbenzene Ave 2.462 2.517 0.0102 0.0100 2.2 20.0 1,2,4-Trimethylbenzene Ave 2.977 2.954 0.00992 0.0100 -0.8 20.0 sec-Butylbenzene Ave 3.385 3.413 0.0101 0.0100 0.8 20.0 1,3-Dichlorobenzene Ave 1.551 1.549 0.6000 0.00999 0.0100 -0.0 20.0 4-Isopropyltoluene Ave 2.944 3.021 0.0103 0.0100 2.6 20.0 1,4-Dichlorobenzene Ave 1.558 1.570 0.5000 0.0101 0.0100 0.8 20.0 n-Butylbenzene Ave 2.523 2.525 0.0100 0.0100 0.0 20.0	2-Chlorotoluene	Ave	0.8045	0.7957		0.00989	0.0100	-1.1	20.0
tert-Butylbenzene Ave 2.462 2.517 0.0102 0.0100 2.2 20.0 1,2,4-Trimethylbenzene Ave 2.977 2.954 0.00992 0.0100 -0.8 20.0 sec-Butylbenzene Ave 3.385 3.413 0.0101 0.0100 0.8 20.0 1,3-Dichlorobenzene Ave 1.551 1.549 0.6000 0.00999 0.0100 -0.0 20.0 4-Isopropyltoluene Ave 2.944 3.021 0.0103 0.0100 2.6 20.0 1,4-Dichlorobenzene Ave 1.558 1.570 0.5000 0.0101 0.0100 0.8 20.0 n-Butylbenzene Ave 2.523 2.525 0.0100 0.0100 0.0100 0.0 20.0	1,3,5-Trimethylbenzene	Ave	2.848	2.896		0.0102	0.0100	1.7	20.0
1,2,4-Trimethylbenzene Ave 2.977 2.954 0.00992 0.0100 -0.8 20.0 sec-Butylbenzene Ave 3.385 3.413 0.0101 0.0100 0.8 20.0 1,3-Dichlorobenzene Ave 1.551 1.549 0.6000 0.00999 0.0100 -0.0 20.0 4-Isopropyltoluene Ave 2.944 3.021 0.0103 0.0100 2.6 20.0 1,4-Dichlorobenzene Ave 1.558 1.570 0.5000 0.0101 0.0100 0.8 20.0 n-Butylbenzene Ave 2.523 2.525 0.0100 0.0100 0.0 20.0		Ave	0.8281	0.8207		0.00991	0.0100	-0.9	20.0
sec-Butylbenzene Ave 3.385 3.413 0.0101 0.0100 0.8 20.0 1,3-Dichlorobenzene Ave 1.551 1.549 0.6000 0.00999 0.0100 -0.0 20.0 4-Isopropyltoluene Ave 2.944 3.021 0.0103 0.0100 2.6 20.0 1,4-Dichlorobenzene Ave 1.558 1.570 0.5000 0.0101 0.0100 0.8 20.0 n-Butylbenzene Ave 2.523 2.525 0.0100 0.0100 0.0 20.0	tert-Butylbenzene	Ave	2.462	2.517		0.0102	0.0100	2.2	20.0
1,3-Dichlorobenzene Ave 1.551 1.549 0.6000 0.00999 0.0100 -0.0 20.0 4-Isopropyltoluene Ave 2.944 3.021 0.0103 0.0100 2.6 20.0 1,4-Dichlorobenzene Ave 1.558 1.570 0.5000 0.0101 0.0100 0.8 20.0 n-Butylbenzene Ave 2.523 2.525 0.0100 0.0100 0.0 20.0	1,2,4-Trimethylbenzene	Ave	2.977	2.954		0.00992	0.0100	-0.8	20.0
4-Isopropyltoluene Ave 2.944 3.021 0.0103 0.0100 2.6 20.0 1,4-Dichlorobenzene Ave 1.558 1.570 0.5000 0.0101 0.0100 0.8 20.0 n-Butylbenzene Ave 2.523 2.525 0.0100 0.0100 0.0 20.0	sec-Butylbenzene	Ave	3.385	3.413		0.0101	0.0100	0.8	20.0
1,4-Dichlorobenzene Ave 1.558 1.570 0.5000 0.0101 0.0100 0.8 20.0 n-Butylbenzene Ave 2.523 2.525 0.0100 0.0100 0.0 20.0	1,3-Dichlorobenzene	Ave	1.551	1.549	0.6000	0.00999	0.0100	-0.0	20.0
n-Butylbenzene Ave 2.523 2.525 0.0100 0.0100 0.0 20.0	4-Isopropyltoluene	Ave	2.944	3.021		0.0103	0.0100	2.6	20.0
	1,4-Dichlorobenzene	Ave	1.558	1.570	0.5000	0.0101	0.0100	0.8	20.0
1,2-Dichlorobenzene Ave 1.479 1.513 0.4000 0.0102 0.0100 2.3 20.0	n-Butylbenzene	Ave	2.523	2.525		0.0100	0.0100	0.0	20.0
	1,2-Dichlorobenzene	Ave	1.479	1.513	0.4000	0.0102	0.0100	2.3	20.0

Lab Name: TestAmerica Canton Job No.: 240-65994-1

SDG No.:

Lab Sample ID: <u>ICV 240-232711/9</u> Calibration Date: 06/01/2016 14:45

Instrument ID: A3UX16 Calib Start Date: 06/01/2016 12:06

GC Column: DB-624 ID: 0.18 (mm) Calib End Date: 06/01/2016 14:22

Lab File ID: UXM5577.D Conc. Units: ng/uL Heated Purge: (Y/N) N

ANALYTE	CURVE TYPE	AVE RRF	RRF	MIN RRF	CALC AMOUNT	SPIKE AMOUNT	%D	MAX %D
1,2-Dibromo-3-Chloropropane	Ave	0.1603	0.1597	0.0500	0.00996	0.0100	-0.4	50.0
1,2,4-Trichlorobenzene	Ave	0.9684	0.9683	0.2000	0.0100	0.0100	-0.0	50.0
Hexachlorobutadiene	Ave	0.3429	0.3303		0.00963	0.0100	-3.7	20.0
Naphthalene	Ave	2.483	2.405		0.00969	0.0100	-3.1	50.0
1,2,3-Trichlorobenzene	Ave	0.8687	0.8247		0.00949	0.0100	-5.1	20.0
Dibromofluoromethane (Surr)	Ave	0.2344	0.2353		0.0100	0.0100	0.4	20.0
1,2-Dichloroethane-d4 (Surr)	Ave	0.2836	0.2858		0.0101	0.0100	0.8	20.0
Toluene-d8 (Surr)	Ave	1.348	1.356		0.0101	0.0100	0.6	20.0
4-Bromofluorobenzene (Surr)	Ave	0.5111	0.5095		0.00997	0.0100	-0.3	20.0

Lab Name: TestAmerica Canton Job No.: 240-65994-1

SDG No.:

Lab Sample ID: <u>ICV 240-232711/16</u> Calibration Date: 06/01/2016 17:24

Instrument ID: A3UX16 Calib Start Date: 06/01/2016 15:08

GC Column: DB-624 ID: 0.18 (mm) Calib End Date: 06/01/2016 17:02

Lab File ID: UXM5584.D Conc. Units: ng/uL Heated Purge: (Y/N) N

ANALYTE	CURVE	AVE RRF	RRF	MIN RRF	CALC	SPIKE	%D	MAX
	TYPE				AMOUNT	AMOUNT		%D
Acetonitrile	Ave	0.0228	0.0233		0.102	0.100	2.0	20.0
Isopropyl ether	Ave	0.2496	0.2758		0.0110	0.0100	10.5	20.0
2-Chloro-1,3-butadiene	Ave	0.4316	0.4683		0.0109	0.0100	8.5	20.0
Tert-butyl ethyl ether	Ave	0.8440	0.9047		0.0107	0.0100	7.2	20.0
Propionitrile	Ave	0.0286	0.0300		0.105	0.100	4.9	20.0
Ethyl acetate	Ave	0.1684	0.1820		0.0216	0.0200	8.1	50.0
Methacrylonitrile	Ave	0.1290	0.1351		0.105	0.100	4.7	20.0
Tert-amyl methyl ether	Ave	0.7756	0.8251		0.0106	0.0100	6.4	20.0
n-Butanol	Ave	0.0049	0.0047		0.240	0.250	-4.0	20.0
Methyl methacrylate	Ave	0.1806	0.1852		0.0205	0.0200	2.5	20.0
2-Nitropropane	Ave	0.0636	0.0608		0.0191	0.0200	-4.4	20.0
1-Chlorohexane	Ave	0.4765	0.4839		0.0102	0.0100	1.6	20.0
Cyclohexanone	Lin1		0.0159		0.0945	0.100	-5.5	20.0
1,2,3-Trimethylbenzene	Ave	2.977	3.064		0.0103	0.0100	2.9	20.0
1,3,5-Trichlorobenzene	Ave	0.996	1.031		0.0104	0.0100	3.5	20.0
2-Methylnaphthalene	Ave	1.416	1.326		0.0187	0.0200	-6.4	20.0

Lab Name: TestAmerica Canton Job No.: 240-65994-1

SDG No.:

Lab Sample ID: CCVIS 240-235221/2 Calibration Date: 06/20/2016 12:47

Instrument ID: A3UX16 Calib Start Date: 06/01/2016 12:06

GC Column: DB-624 ID: 0.18 (mm) Calib End Date: 06/01/2016 14:22

Lab File ID: UXM6060.D Conc. Units: ng/uL Heated Purge: (Y/N) N

ANALYTE	CURVE TYPE	AVE RRF	RRF	MIN RRF	CALC AMOUNT	SPIKE AMOUNT	%D	MAX %D
Dichlorodifluoromethane	Ave	0.2419	0.3045	0.1000	0.0126	0.0100	25.9*	20.0
Chloromethane	Ave	0.2976	0.3690	0.1000	0.0124	0.0100	24.0*	20.0
Vinyl chloride	Ave	0.3048	0.3498	0.1000	0.0115	0.0100	14.8	20.0
Butadiene	Ave	0.2947	0.3436		0.0117	0.0100	16.6	20.0
Bromomethane	Qua		0.0938	0.0500	0.0115	0.0100	15.4	20.0
Chloroethane	Ave	0.1388	0.1270	0.0500	0.00915	0.0100	-8.5	20.0
Dichlorofluoromethane	Qua		0.3349		0.0128	0.0100	27.7*	20.0
Trichlorofluoromethane	Ave	0.1995	0.2550	0.1000	0.0128	0.0100	27.8*	20.0
Ethyl ether	Lin1		0.2092		0.00939	0.0100	-6.1	20.0
Acrolein	Ave	0.0346	0.0256		0.0369	0.0500	-26.1	50.0
1,1-Dichloroethene	Ave	0.2710	0.2533	0.1000	0.00935	0.0100	-6.5	20.0
1,1,2-Trichloro-1,2,2-triflu oroethane	Ave	0.1905	0.1799	0.0500	0.00944	0.0100	-5.6	20.0
Acetone	Lin1		0.0705	0.0100	0.0182	0.0200	-9.1	50.0
Iodomethane	Ave	0.3849	0.3976		0.0103	0.0100	3.3	20.0
Carbon disulfide	Ave	0.8432	0.8429	0.1000	0.0100	0.0100	-0.0	20.0
3-Chloro-1-propene	Ave	0.1767	0.1561		0.00883	0.0100	-11.7	20.0
Methyl acetate	Ave	0.1583	0.1373	0.1000	0.0434	0.0500	-13.2	20.0
Methylene Chloride	Lin1		0.2847	0.1000	0.00989	0.0100	-1.1	50.0
2-Methyl-2-propanol	Ave	0.0187	0.0159		0.0848	0.100	-15.2	50.0
Acrylonitrile	Ave	0.0806	0.0703		0.0872	0.100	-12.8	20.0
Methyl tert-butyl ether	Ave	0.7693	0.7135	0.1000	0.00927	0.0100	-7.3	20.0
trans-1,2-Dichloroethene	Ave	0.2741	0.2731	0.1000	0.00996	0.0100	-0.4	20.0
Hexane	Ave	0.0778	0.0763		0.00980	0.0100	-2.0	20.0
1,1-Dichloroethane	Ave	0.4932	0.5040	0.2000	0.0102	0.0100	2.2	20.0
Vinyl acetate	Ave	0.4610	0.4171		0.00905	0.0100	-9.5	50.0
2,2-Dichloropropane	Ave	0.3040	0.3496		0.0115	0.0100	15.0	20.0
2-Butanone (MEK)	Ave	0.1039	0.0871	0.0100	0.0168	0.0200	-16.2	20.0
cis-1,2-Dichloroethene	Ave	0.3002	0.2990	0.1000	0.00996	0.0100	-0.4	20.0
Chlorobromomethane	Ave	0.1437	0.1277		0.00889	0.0100	-11.1	20.0
Tetrahydrofuran	Ave	0.0667	0.0520		0.0156	0.0200	-22.0*	20.0
Chloroform	Ave	0.4559	0.4494	0.2000	0.00986	0.0100	-1.4	20.0
1,1,1-Trichloroethane	Ave	0.3496	0.3703	0.1000	0.0106	0.0100	5.9	20.0
Cyclohexane	Ave	0.4582	0.4711	0.1000	0.0103	0.0100	2.8	20.0
1,1-Dichloropropene	Ave	0.3882	0.3864		0.00995	0.0100	-0.5	20.0
Carbon tetrachloride	Ave	0.3280	0.3094	0.1000	0.00943	0.0100	-5.7	20.0
Isobutyl alcohol	Ave	0.0062	0.0051		0.208	0.250	-16.7	20.0
1,2-Dichloroethane	Ave	0.3581	0.3429	0.1000	0.00957	0.0100	-4.3	20.0
Benzene	Ave	1.113	1.120	0.5000	0.0101	0.0100	0.7	20.0
n-Heptane	Lin1		0.1848		0.00990	0.0100	-1.0	20.0
Trichloroethene	Ave	0.2871	0.2798	0.1500	0.00974	0.0100	-2.6	20.0

Lab Name: TestAmerica Canton Job No.: 240-65994-1

SDG No.:

Lab Sample ID: CCVIS 240-235221/2 Calibration Date: 06/20/2016 12:47

Instrument ID: A3UX16 Calib Start Date: 06/01/2016 12:06

GC Column: DB-624 ID: 0.18(mm) Calib End Date: 06/01/2016 14:22

Lab File ID: UXM6060.D Conc. Units: ng/uL Heated Purge: (Y/N) N

ANALYTE	CURVE TYPE	AVE RRF	RRF	MIN RRF	CALC AMOUNT	SPIKE AMOUNT	%D	MAX %D
Methylcyclohexane	Ave	0.4527	0.4490	0.1000	0.00992	0.0100	-0.8	20.0
1,2-Dichloropropane	Ave	0.2678	0.2618	0.1000	0.00978	0.0100	-2.2	20.0
Dibromomethane	Ave	0.1494	0.1352		0.00905	0.0100	-9.5	20.0
1,4-Dioxane	Ave	0.0021	0.0018		0.170	0.200	-15.1	50.0
Dichlorobromomethane	Ave	0.3531	0.3198	0.1500	0.00906	0.0100	-9.4	20.0
2-Chloroethyl vinyl ether	Ave	0.1448	0.1225		0.0169	0.0200	-15.4	20.0
cis-1,3-Dichloropropene	Ave	0.4504	0.4085	0.1500	0.00907	0.0100	-9.3	20.0
4-Methyl-2-pentanone (MIBK)	Ave	0.2024	0.1752	0.0500	0.0173	0.0200	-13.4	20.0
Toluene	Ave	1.642	1.674	0.4000	0.0102	0.0100	2.0	20.0
trans-1,3-Dichloropropene	Ave	0.5439	0.4881	0.1000	0.00897	0.0100	-10.3	20.0
Ethyl methacrylate	Ave	0.4573	0.3963		0.00867	0.0100	-13.3	20.0
1,1,2-Trichloroethane	Ave	0.2860	0.2732	0.1000	0.00955	0.0100	-4.5	20.0
1,3-Dichloropropane	Ave	0.5367	0.5078		0.00946	0.0100	-5.4	20.0
Tetrachloroethene	Ave	0.2970	0.2945	0.1500	0.00992	0.0100	-0.8	20.0
2-Hexanone	Ave	0.2098	0.1803	0.0500	0.0172	0.0200	-14.1	20.0
Chlorodibromomethane	Ave	0.3538	0.3004		0.00849	0.0100	-15.1	20.0
Ethylene Dibromide	Ave	0.2906	0.2608		0.00897	0.0100	-10.3	20.0
Chlorobenzene	Ave	1.042	1.027	0.3000	0.00986	0.0100	-1.4	20.0
1,1,1,2-Tetrachloroethane	Ave	0.3717	0.3528		0.00949	0.0100	-5.1	20.0
Ethylbenzene	Ave	0.5737	0.5706		0.00995	0.0100	-0.5	20.0
m-Xylene & p-Xylene	Ave	0.7167	0.7060		0.00985	0.0100	-1.5	20.0
o-Xylene	Ave	0.7199	0.7289		0.0101	0.0100	1.3	20.0
Styrene	Ave	1.177	1.156	0.3000	0.00982	0.0100	-1.8	20.0
Bromoform	Ave	0.1935	0.1556	0.1000	0.00804	0.0100	-19.6	20.0
Isopropylbenzene	Ave	1.785	1.817	0.1000	0.0102	0.0100	1.8	20.0
1,1,2,2-Tetrachloroethane	Ave	0.6963	0.6338	0.3000	0.00910	0.0100	-9.0	20.0
Bromobenzene	Ave	0.7820	0.7591		0.00971	0.0100	-2.9	20.0
1,2,3-Trichloropropane	Lin1		0.1878		0.00883	0.0100	-11.7	20.0
trans-1,4-Dichloro-2-butene	Ave	0.1991	0.1270		0.00638	0.0100	-36.2*	20.0
N-Propylbenzene	Ave	0.9385	0.9346		0.00996	0.0100	-0.4	20.0
2-Chlorotoluene	Ave	0.8045	0.7893		0.00981	0.0100	-1.9	20.0
1,3,5-Trimethylbenzene	Ave	2.848	2.835		0.00996	0.0100	-0.4	20.0
4-Chlorotoluene	Ave	0.8281	0.8238		0.00995	0.0100	-0.5	20.0
tert-Butylbenzene	Ave	2.462	2.541		0.0103	0.0100	3.2	20.0
1,2,4-Trimethylbenzene	Ave	2.977	2.990		0.0100	0.0100	0.4	20.0
sec-Butylbenzene	Ave	3.385	3.470		0.0103	0.0100	2.5	20.0
1,3-Dichlorobenzene	Ave	1.551	1.530	0.6000	0.00987	0.0100	-1.3	20.0
4-Isopropyltoluene	Ave	2.944	3.001		0.0102	0.0100	1.9	20.0
1,4-Dichlorobenzene	Ave	1.558	1.573	0.5000	0.0101	0.0100	1.0	20.0
n-Butylbenzene	Ave	2.523	2.544		0.0101	0.0100	0.8	20.0
1,2-Dichlorobenzene	Ave	1.479	1.484	0.4000	0.0100	0.0100	0.4	20.0

Lab Name: TestAmerica Canton Job No.: 240-65994-1

SDG No.:

Lab Sample ID: CCVIS 240-235221/2 Calibration Date: 06/20/2016 12:47

Instrument ID: A3UX16 Calib Start Date: 06/01/2016 12:06

GC Column: DB-624 ID: 0.18 (mm) Calib End Date: 06/01/2016 14:22

Lab File ID: UXM6060.D Conc. Units: ng/uL Heated Purge: (Y/N) N

ANALYTE	CURVE TYPE	AVE RRF	RRF	MIN RRF	CALC AMOUNT	SPIKE AMOUNT	%D	MAX %D
1,2-Dibromo-3-Chloropropane	Ave	0.1603	0.1143	0.0500	0.00713	0.0100	-28.7	50.0
1,2,4-Trichlorobenzene	Ave	0.9684	0.9206	0.2000	0.00951	0.0100	-4.9	50.0
Hexachlorobutadiene	Ave	0.3429	0.3131		0.00913	0.0100	-8.7	20.0
Naphthalene	Ave	2.483	2.079		0.00838	0.0100	-16.2	50.0
1,2,3-Trichlorobenzene	Ave	0.8687	0.8010		0.00922	0.0100	-7.8	20.0
Dibromofluoromethane (Surr)	Ave	0.2344	0.2242		0.00957	0.0100	-4.3	20.0
1,2-Dichloroethane-d4 (Surr)	Ave	0.2836	0.2682		0.00946	0.0100	-5.4	20.0
Toluene-d8 (Surr)	Ave	1.348	1.399		0.0104	0.0100	3.8	20.0
4-Bromofluorobenzene (Surr)	Ave	0.5111	0.5053		0.00989	0.0100	-1.1	20.0

FORM IV GC/MS VOA METHOD BLANK SUMMARY

Lab Name: TestAmerica Canton	Job No.: 240-65994-1				
SDG No.:					
Lab File ID: UXJ5605.D	Lab Sample ID: MB 240-235154/6				
Matrix: Water	Heated Purge: (Y/N) N				
Instrument ID: A3UX11	Date Analyzed: 06/20/2016 11:05				
GC Column: DB-624 ID: 0.18 (mm)					

THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES:

		LAB	
CLIENT SAMPLE ID	LAB SAMPLE ID	FILE ID	DATE ANALYZED
	LCS 240-235154/4	UXJ5602.D	06/20/2016 09:57
MRC-SW5A1-061316	240-65994-1	UXJ5610.D	06/20/2016 13:13
MRC-SW5A2-061316	240-65994-2	UXJ5611.D	06/20/2016 13:35
MRC-SW5B-061316	240-65994-3	UXJ5612.D	06/20/2016 13:57
MRC-SW6A-061316	240-65994-4	UXJ5613.D	06/20/2016 14:20
MRC-SW6B-061316	240-65994-5	UXJ5614.D	06/20/2016 14:43
MRC-SW7A-061316	240-65994-6	UXJ5615.D	06/20/2016 15:05
MRC-SW7B-061316	240-65994-7	UXJ5616.D	06/20/2016 15:27
MRC-SW8A-061316	240-65994-8	UXJ5617.D	06/20/2016 15:49
MRC-SW8B-061316	240-65994-9	UXJ5618.D	06/20/2016 16:12
MRC-SW9A-061316	240-65994-10	UXJ5619.D	06/20/2016 16:34
MRC-SW9B-061316	240-65994-11	UXJ5620.D	06/20/2016 16:57
	240-65995-B-5 MS	UXJ5626.D	06/20/2016 19:12
	240-65995-B-5 MSD	UXJ5627.D	06/20/2016 19:35

FORM I GC/MS VOA ORGANICS ANALYSIS DATA SHEET

Lab Name: TestAmerica Canton	Job No.: 240-65994-1					
SDG No.:						
Client Sample ID:	Lab Sample ID: MB 240-235154/6					
Matrix: Water	Lab File ID: UXJ5605.D					
Analysis Method: 8260C	Date Collected:					
Sample wt/vol: 5(mL)	Date Analyzed: 06/20/2016 11:05					
Soil Aliquot Vol:	Dilution Factor: 1					
Soil Extract Vol.:	GC Column: DB-624 ID: 0.18 (mm)					
% Moisture:	Level: (low/med) Low					
Analysis Batch No.: 235154	Units: ua/L					

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
71-55-6	1,1,1-Trichloroethane	1.0	U	1.0	0.44
79-34-5	1,1,2,2-Tetrachloroethane	1.0	U	1.0	0.22
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethan e	1.0	U	1.0	0.45
79-00-5	1,1,2-Trichloroethane	1.0	U	1.0	0.24
75-34-3	1,1-Dichloroethane	1.0	U	1.0	0.30
75-35-4	1,1-Dichloroethene	1.0	U	1.0	0.45
120-82-1	1,2,4-Trichlorobenzene	1.0	U	1.0	0.32
96-12-8	1,2-Dibromo-3-Chloropropane	2.0	U	2.0	0.82
106-93-4	Ethylene Dibromide	1.0	U	1.0	0.32
95-50-1	1,2-Dichlorobenzene	1.0	U	1.0	0.25
107-06-2	1,2-Dichloroethane	1.0	U	1.0	0.23
78-87-5	1,2-Dichloropropane	1.0	U	1.0	0.25
541-73-1	1,3-Dichlorobenzene	1.0	U	1.0	0.19
106-46-7	1,4-Dichlorobenzene	1.0	U	1.0	0.27
78-93-3	2-Butanone (MEK)	10	U	10	0.53
591-78-6	2-Hexanone	10	U	10	0.48
108-10-1	4-Methyl-2-pentanone (MIBK)	10	U	10	0.99
67-64-1	Acetone	10	U	10	0.94
71-43-2	Benzene	1.0	U	1.0	0.35
75-27-4	Dichlorobromomethane	1.0	U	1.0	0.29
75-25-2	Bromoform	1.0	U	1.0	0.56
74-83-9	Bromomethane	1.0	U	1.0	0.44
75-15-0	Carbon disulfide	1.0	U	1.0	0.38
56-23-5	Carbon tetrachloride	1.0	U	1.0	0.43
108-90-7	Chlorobenzene	1.0	U	1.0	0.25
75-00-3	Chloroethane	1.0	U	1.0	0.32
67-66-3	Chloroform	1.0	U	1.0	0.25
74-87-3	Chloromethane	1.0	U	1.0	0.44
156-59-2	cis-1,2-Dichloroethene	1.0	U	1.0	0.26
10061-01-5	cis-1,3-Dichloropropene	1.0	U	1.0	0.46
110-82-7	Cyclohexane	1.0	U	1.0	0.45
124-48-1	Chlorodibromomethane	1.0	U	1.0	0.43
75-71-8	Dichlorodifluoromethane	1.0	U	1.0	0.32
100-41-4	Ethylbenzene	1.0	U	1.0	0.25
98-82-8	Isopropylbenzene	1.0	U	1.0	0.35

FORM I GC/MS VOA ORGANICS ANALYSIS DATA SHEET

Lab Name: TestAmerica Canton	Job No.: 240-65994-1				
SDG No.:					
Client Sample ID:	Lab Sample ID: MB 240-235154/6				
Matrix: Water	Lab File ID: UXJ5605.D				
Analysis Method: 8260C	Date Collected:				
Sample wt/vol: 5(mL)	Date Analyzed: 06/20/2016 11:05				
Soil Aliquot Vol:	Dilution Factor: 1				
Soil Extract Vol.:	GC Column: DB-624 ID: 0.18(mm)				
% Moisture:	Level: (low/med) Low				
Analysis Batch No.: 235154	Units: ug/L				

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
79-20-9	Methyl acetate	10	U	10	2.3
1634-04-4	Methyl tert-butyl ether	1.0	U	1.0	0.20
108-87-2	Methylcyclohexane	1.0	U	1.0	0.43
75-09-2	Methylene Chloride	1.0	U	1.0	0.33
100-42-5	Styrene	1.0	U	1.0	0.45
127-18-4	Tetrachloroethene	1.0	U	1.0	0.31
108-88-3	Toluene	1.0	U	1.0	0.23
156-60-5	trans-1,2-Dichloroethene	1.0	U	1.0	0.30
10061-02-6	trans-1,3-Dichloropropene	1.0	U	1.0	0.56
79-01-6	Trichloroethene	1.0	U	1.0	0.22
75-69-4	Trichlorofluoromethane	1.0	U	1.0	0.49
75-01-4	Vinyl chloride	1.0	U	1.0	0.29
1330-20-7	Xylenes, Total	2.0	U	2.0	0.52

CAS NO.	SURROGATE	%REC	Q	LIMITS
2037-26-5	Toluene-d8 (Surr)	92		80-120
1868-53-7	Dibromofluoromethane (Surr)	91		79-120
460-00-4	4-Bromofluorobenzene (Surr)	88		61-120
17060-07-0	1,2-Dichloroethane-d4 (Surr)	94		78-125

FORM IV GC/MS VOA METHOD BLANK SUMMARY

ab Name: TestAmerica Canton		Job No.: 240-65994-1		
SDG No.:				
Lab File ID: UXM6063.D		Lab Sample ID: MB 240-235221/6		
Matrix: Water		Heated Purge: (Y/N) N		
Instrument ID: A3UX16		Date Analyzed: 06/20/2016 13:55		
GC Column: DB-624	ID: 0.18(mm)			

THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES:

		LAB	
CLIENT SAMPLE ID	LAB SAMPLE ID	FILE ID	DATE ANALYZED
	LCS 240-235221/4	UXM6059.D	06/20/2016 12:25
	240-65962-B-1 MS	UXM6071.D	06/20/2016 16:56
	240-65962-B-1 MSD	UXM6072.D	06/20/2016 17:19
MRC-SWFB-061316	240-65996-1	UXM6074.D	06/20/2016 18:04
MRC-SW1A-061316	240-65996-2	UXM6075.D	06/20/2016 18:27
MRC-SW2A-061316	240-65996-3	UXM6076.D	06/20/2016 18:50
TB-061316	240-65996-4	UXM6077.D	06/20/2016 19:12
MRC-SWDUP2-061316	240-65996-5	UXM6078.D	06/20/2016 19:35

FORM I GC/MS VOA ORGANICS ANALYSIS DATA SHEET

Lab Name: TestAmerica Canton	Job No.: <u>240-65994-1</u>			
SDG No.:				
Client Sample ID:	Lab Sample ID: MB 240-235221/6			
Matrix: Water	Lab File ID: UXM6063.D			
nalysis Method: 8260C Date Collected:				
Sample wt/vol: 5(mL)	Date Analyzed: 06/20/2016 13:55			
Soil Aliquot Vol:	Dilution Factor: 1			
Soil Extract Vol.:	GC Column: DB-624 ID: 0.18(mm)			
% Moisture:	Level: (low/med) Low			
Analysis Batch No.: 235221	Units: ug/L			

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
71-55-6	1,1,1-Trichloroethane	1.0	U	1.0	0.44
79-34-5	1,1,2,2-Tetrachloroethane	1.0	U	1.0	0.22
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethan e	1.0	U	1.0	0.45
79-00-5	1,1,2-Trichloroethane	1.0	U	1.0	0.24
75-34-3	1,1-Dichloroethane	1.0	U	1.0	0.30
75-35-4	1,1-Dichloroethene	1.0	U	1.0	0.45
120-82-1	1,2,4-Trichlorobenzene	1.0	U	1.0	0.32
96-12-8	1,2-Dibromo-3-Chloropropane	2.0	U	2.0	0.82
106-93-4	Ethylene Dibromide	1.0	U	1.0	0.32
95-50-1	1,2-Dichlorobenzene	1.0	U	1.0	0.25
107-06-2	1,2-Dichloroethane	1.0	U	1.0	0.23
78-87-5	1,2-Dichloropropane	1.0	U	1.0	0.25
541-73-1	1,3-Dichlorobenzene	1.0	U	1.0	0.19
106-46-7	1,4-Dichlorobenzene	1.0	U	1.0	0.27
78-93-3	2-Butanone (MEK)	10	U	10	0.53
591-78-6	2-Hexanone	10	U	10	0.48
108-10-1	4-Methyl-2-pentanone (MIBK)	10	U	10	0.99
67-64-1	Acetone	10	U	10	0.94
71-43-2	Benzene	1.0	U	1.0	0.35
75-27-4	Dichlorobromomethane	1.0	U	1.0	0.29
75-25-2	Bromoform	1.0	U	1.0	0.56
74-83-9	Bromomethane	1.0	U	1.0	0.44
75-15-0	Carbon disulfide	1.0	U	1.0	0.38
56-23-5	Carbon tetrachloride	1.0	U	1.0	0.43
108-90-7	Chlorobenzene	1.0	U	1.0	0.25
75-00-3	Chloroethane	1.0	U	1.0	0.32
67-66-3	Chloroform	1.0	U	1.0	0.25
74-87-3	Chloromethane	1.0	U	1.0	0.44
156-59-2	cis-1,2-Dichloroethene	1.0	U	1.0	0.26
10061-01-5	cis-1,3-Dichloropropene	1.0	U	1.0	0.46
110-82-7	Cyclohexane	1.0	U	1.0	0.45
124-48-1	Chlorodibromomethane	1.0	U	1.0	0.43
75-71-8	Dichlorodifluoromethane	1.0	U	1.0	0.32
100-41-4	Ethylbenzene	1.0	U	1.0	0.25
98-82-8	Isopropylbenzene	1.0	U	1.0	0.35

FORM I GC/MS VOA ORGANICS ANALYSIS DATA SHEET

Lab Name: TestAmerica Canton	Job No.: 240-65994-1			
SDG No.:				
Client Sample ID:	t Sample ID: Lab Sample ID: MB 240-235221/6			
Matrix: Water	Lab File ID: UXM6063.D			
Analysis Method: 8260C	Date Collected:			
Sample wt/vol: 5(mL)	Date Analyzed: 06/20/20	Date Analyzed: 06/20/2016 13:55		
Soil Aliquot Vol:	Dilution Factor: 1			
oil Extract Vol.: GC Column: DB-624 ID: 0		ID: 0.18(mm)		
% Moisture:	Level: (low/med) Low			
Analysis Batch No.: 235221	Units: ug/L			

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
79-20-9	Methyl acetate	10	U	10	2.3
1634-04-4	Methyl tert-butyl ether	1.0	U	1.0	0.20
108-87-2	Methylcyclohexane	1.0	U	1.0	0.43
75-09-2	Methylene Chloride	1.0	U	1.0	0.33
100-42-5	Styrene	1.0	U	1.0	0.45
127-18-4	Tetrachloroethene	1.0	U	1.0	0.31
108-88-3	Toluene	1.0	U	1.0	0.23
156-60-5	trans-1,2-Dichloroethene	1.0	U	1.0	0.30
10061-02-6	trans-1,3-Dichloropropene	1.0	U	1.0	0.56
79-01-6	Trichloroethene	1.0	U	1.0	0.22
75-69-4	Trichlorofluoromethane	1.0	U	1.0	0.49
75-01-4	Vinyl chloride	1.0	U	1.0	0.29
1330-20-7	Xylenes, Total	2.0	U	2.0	0.52

CAS NO.	SURROGATE	%REC	Q	LIMITS
2037-26-5	Toluene-d8 (Surr)	103		80-120
1868-53-7	Dibromofluoromethane (Surr)	95		79-120
460-00-4	4-Bromofluorobenzene (Surr)	97		61-120
17060-07-0	1,2-Dichloroethane-d4 (Surr)	94		78-125

Lab Name: TestAmerica Canton		Job No.: 240-65994-1		
SDG No.:				
Lab File ID: UXJ5663.D		Lab Sample ID: MB 240-235310/6		
Matrix: Water		Heated Purge: (Y/N) N		
Instrument ID: A3UX11		Date Analyzed: 06/21/2016 11:01		
GC Column: DB-624	ID: 0.18(mm)			

THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES:

		LAB	
CLIENT SAMPLE ID	LAB SAMPLE ID	FILE ID	DATE ANALYZED
	LCS 240-235310/4	UXJ5661.D	06/21/2016 10:17
MRC-SW7B-061316	240-65994-7	UXJ5670.D	06/21/2016 13:59

FORM I GC/MS VOA ORGANICS ANALYSIS DATA SHEET

Lab Name: TestAmerica Canton	Job No.: 240-65994-1			
SDG No.:				
Client Sample ID:	Lab Sample ID: MB 240-2	235310/6		
Matrix: Water	Lab File ID: UXJ5663.D			
Analysis Method: 8260C	Date Collected:			
Sample wt/vol: 5(mL)	Date Analyzed: 06/21/2016 11:01			
Soil Aliquot Vol:	Dilution Factor: 1			
Soil Extract Vol.:	GC Column: DB-624 ID: 0.18 (mm)			
% Moisture:	Level: (low/med) Low			
Analysis Batch No.: 235310	Units: ug/L			

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
71-55-6	1,1,1-Trichloroethane	1.0	U	1.0	0.44
79-34-5	1,1,2,2-Tetrachloroethane	1.0	U	1.0	0.22
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethan e	1.0	U	1.0	0.45
79-00-5	1,1,2-Trichloroethane	1.0	U	1.0	0.24
75-34-3	1,1-Dichloroethane	1.0	U	1.0	0.30
75-35-4	1,1-Dichloroethene	1.0	U	1.0	0.45
120-82-1	1,2,4-Trichlorobenzene	1.0	U	1.0	0.32
96-12-8	1,2-Dibromo-3-Chloropropane	2.0	U	2.0	0.82
106-93-4	Ethylene Dibromide	1.0	U	1.0	0.32
95-50-1	1,2-Dichlorobenzene	1.0	U	1.0	0.25
107-06-2	1,2-Dichloroethane	1.0	U	1.0	0.23
78-87-5	1,2-Dichloropropane	1.0	U	1.0	0.25
541-73-1	1,3-Dichlorobenzene	1.0	U	1.0	0.19
106-46-7	1,4-Dichlorobenzene	1.0	U	1.0	0.27
78-93-3	2-Butanone (MEK)	10	U	10	0.53
591-78-6	2-Hexanone	10	U	10	0.48
108-10-1	4-Methyl-2-pentanone (MIBK)	10	U	10	0.99
67-64-1	Acetone	10	U	10	0.94
71-43-2	Benzene	1.0	U	1.0	0.35
75-27-4	Dichlorobromomethane	1.0	U	1.0	0.29
75-25-2	Bromoform	1.0	U	1.0	0.56
74-83-9	Bromomethane	1.0	U	1.0	0.44
75-15-0	Carbon disulfide	1.0	U	1.0	0.38
56-23-5	Carbon tetrachloride	1.0	U	1.0	0.43
108-90-7	Chlorobenzene	1.0	U	1.0	0.25
75-00-3	Chloroethane	1.0	U	1.0	0.32
67-66-3	Chloroform	1.0	U	1.0	0.25
74-87-3	Chloromethane	1.0	U	1.0	0.44
156-59-2	cis-1,2-Dichloroethene	1.0	U	1.0	0.26
10061-01-5	cis-1,3-Dichloropropene	1.0	U	1.0	0.46
110-82-7	Cyclohexane	1.0	U	1.0	0.45
124-48-1	Chlorodibromomethane	1.0	U	1.0	0.43
75-71-8	Dichlorodifluoromethane	1.0	U	1.0	0.32
100-41-4	Ethylbenzene	1.0	U	1.0	0.25
98-82-8	Isopropylbenzene	1.0	U	1.0	0.35

FORM I GC/MS VOA ORGANICS ANALYSIS DATA SHEET

Lab Name: TestAmerica Canton Job No.: 240-65994-1						
SDG No.:						
Client Sample ID:	Lab Sample ID: MB 240-2	235310/6				
Matrix: Water	Lab File ID: UXJ5663.D					
Analysis Method: 8260C	Date Collected:	Date Collected:				
Sample wt/vol: 5(mL)	Date Analyzed: 06/21/20	016 11:01				
Soil Aliquot Vol:	Dilution Factor: 1					
Soil Extract Vol.:	GC Column: DB-624	ID: 0.18(mm)				
% Moisture:	Level: (low/med) Low					
Analysis Batch No.: 235310	Units: ug/L					

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
79-20-9	Methyl acetate	10	U	10	2.3
1634-04-4	Methyl tert-butyl ether	1.0	U	1.0	0.20
108-87-2	Methylcyclohexane	1.0	U	1.0	0.43
75-09-2	Methylene Chloride	1.0	U	1.0	0.33
100-42-5	Styrene	1.0	U	1.0	0.45
127-18-4	Tetrachloroethene	1.0	U	1.0	0.31
108-88-3	Toluene	1.0	U	1.0	0.23
156-60-5	trans-1,2-Dichloroethene	1.0	U	1.0	0.30
10061-02-6	trans-1,3-Dichloropropene	1.0	U	1.0	0.56
79-01-6	Trichloroethene	1.0	U	1.0	0.22
75-69-4	Trichlorofluoromethane	1.0	U	1.0	0.49
75-01-4	Vinyl chloride	1.0	U	1.0	0.29
1330-20-7	Xylenes, Total	2.0	U	2.0	0.52

CAS NO.	SURROGATE	%REC	Q	LIMITS
2037-26-5	Toluene-d8 (Surr)	109		80-120
1868-53-7	Dibromofluoromethane (Surr)			79-120
460-00-4	0-4 4-Bromofluorobenzene (Surr)			61-120
17060-07-0	7060-07-0 1,2-Dichloroethane-d4 (Surr)			78-125

FORM II GC/MS VOA SURROGATE RECOVERY

Lab Name:	TestAmerica Canton	Job No.:	240-65994-1
SDG No.:			

Matrix: Water Level: Low

GC Column (1): DB-624 ID: 0.18(mm)

			_						
Client Sample ID	Lab Sample ID	DBFM	#	DCA	#	TOL	#	BFB	#
MRC-SW5A1-061316	240-65994-1	92		96		90		86	
MRC-SW5A2-061316	240-65994-2	93		97		94		89	
MRC-SW5B-061316	240-65994-3	93		95		90		85	
MRC-SW6A-061316	240-65994-4	93		96		91		86	
MRC-SW6B-061316	240-65994-5	113	T	115		110		104	
MRC-SW7A-061316	240-65994-6	91	T	96		89		83	
MRC-SW7B-061316	240-65994-7	91	T	93		89		84	
MRC-SW7B-061316	240-65994-7	97	T	100		95		89	
MRC-SW8A-061316	240-65994-8	96	T	99		94		89	
MRC-SW8B-061316	240-65994-9	91	T	95		91		84	
MRC-SW9A-061316	240-65994-10	94	T	97		94		87	
MRC-SW9B-061316	240-65994-11	93	T	97		91		86	
MRC-SWFB-061316	240-65996-1	99	T	95		104		99	
MRC-SW1A-061316	240-65996-2	94	T	96		104		99	
MRC-SW2A-061316	240-65996-3	91	T	93		102		97	
TB-061316	240-65996-4	97	T	97		104		100	
MRC-SWDUP2-061316	240-65996-5	92	T	94		100		98	
	MB 240-235154/6	91		94		92		88	
	MB 240-235221/6	95		94		103		97	
	MB 240-235310/6	115		118		109		104	
	LCS 240-235154/4	97		101		96		90	
	LCS 240-235221/4	93		92		102		99	
	LCS 240-235310/4	94		101		95		88	
	240-65995-B-5 MS	98	T	104		96		92	
	240-65962-B-1 MS	95		92		104		98	
	240-65995-B-5 MSD	97		102		96		92	
	240-65962-B-1 MSD	95		94		105		98	

	QC LIMITS
DBFM = Dibromofluoromethane (Surr)	79-120
DCA = 1,2-Dichloroethane-d4 (Surr)	78-125
TOL = Toluene-d8 (Surr)	80-120
BFB = 4-Bromofluorobenzene (Surr)	61-120

 $[\]ensuremath{\text{\#}}$ Column to be used to flag recovery values

Lab Name: <u>TestAmerica Cant</u>		ton	Job No.: 240-65994-1	
SDG No.	:			
Matrix:	Water	Level: Low	Lab File ID: UXJ5602.D	
Lab ID:	LCS 240-235154/4		Client ID:	

	SPIKE	LCS	LCS	QC	
	ADDED	CONCENTRATION	%	LIMITS	#
COMPOUND	(ug/L)	(ug/L)	REC	REC	
1,1,1-Trichloroethane	10.0	11.0	110	77-123	
1,1,2,2-Tetrachloroethane	10.0	11.9	119	71-123	
1,1,2-Trichloro-1,2,2-trifluor	10.0	7.70	77	67-138	
oethane					
1,1,2-Trichloroethane	10.0	11.0	110		
1,1-Dichloroethane	10.0	11.2	112		
1,1-Dichloroethene	10.0	11.8	118		
1,2,4-Trichlorobenzene	10.0	10.5	105		
1,2-Dibromo-3-Chloropropane	10.0	9.15	91		
Ethylene Dibromide	10.0	11.2	112		
1,2-Dichlorobenzene	10.0	10.0	100		
1,2-Dichloroethane	10.0	11.9	119		
1,2-Dichloropropane	10.0	10.7	107		
1,3-Dichlorobenzene	10.0	10.3	103		
1,4-Dichlorobenzene	10.0	10.6	106		
2-Butanone (MEK)	20.0	19.3	97		
2-Hexanone	20.0	20.1	101		
4-Methyl-2-pentanone (MIBK)	20.0	20.4	102	64-135	
Acetone	20.0	18.0	90		
Benzene	10.0	11.0	110	80-120	
Dichlorobromomethane	10.0	10.5	105	80-120	
Bromoform	10.0	10.1	101		
Bromomethane	10.0	7.40	74		
Carbon disulfide	10.0	13.2	132		
Carbon tetrachloride	10.0	10.7	107	77-131	
Chlorobenzene	10.0	10.5	105	80-120	
Chloroethane	10.0	8.56	86	36-126	
Chloroform	10.0	11.1	111	80-120	
Chloromethane	10.0	11.6	116		
cis-1,2-Dichloroethene	10.0	10.9	109	79-120	
cis-1,3-Dichloropropene	10.0	9.91	99		
Cyclohexane	10.0	8.41	84	60-140	
Chlorodibromomethane	10.0	10.5	105	74-120	
Dichlorodifluoromethane	10.0	6.14	61	23-136	
Ethylbenzene	10.0	10.7	107		
Isopropylbenzene	10.0	10.4	104	77-120	
Methyl acetate	50.0	54.0	108		
Methyl tert-butyl ether	10.0	11.1	111	69-121	
Methylcyclohexane	10.0	7.51	75	61-134	
Methylene Chloride	10.0	13.1	131	77-129	*
Styrene	10.0	10.6	106	76-122	
Tetrachloroethene	10.0	9.93	99	78-121	

 $[\]mbox{\#}$ Column to be used to flag recovery and RPD values FORM III $\mbox{8260C}$

Lab Nam	TestAmerica Canton		Job No.: 240-65994-1	
SDG No.	:			
Matrix:	Water	Level: Low	Lab File ID: UXJ5602.D	
Lab ID:	LCS 240-235154/4		Client ID:	

	SPIKE ADDED	LCS CONCENTRATION	LCS %	QC LIMITS	#
COMPOUND	(ug/L)	(ug/L)	REC	REC	
Toluene	10.0	11.2	112	80-120	
trans-1,2-Dichloroethene	10.0	11.6	116	80-124	
trans-1,3-Dichloropropene	10.0	10.3	103	75-131	
Trichloroethene	10.0	10.7	107	80-121	
Trichlorofluoromethane	10.0	9.13	91	61-133	
Vinyl chloride	10.0	9.48	95	52-121	
Xylenes, Total	20.0	21.1	106	80-120	
m-Xylene & p-Xylene	10.0	10.7	107	80-120	
o-Xylene	10.0	10.4	104	80-120	

 $[\]mbox{\#}$ Column to be used to flag recovery and RPD values FORM III $\mbox{8260C}$

Lab Nam	ab Name: TestAmerica Canton		Job No.: 240-65994-1	
SDG No.	:			
Matrix:	Water	Level: Low	Lab File ID: UXM6059.D	
Lab ID:	LCS 240-235221/4		Client ID:	

	SPIKE	LCS	LCS	QC	
	ADDED	CONCENTRATION	ુ	LIMITS	#
COMPOUND	(ug/L)	(ug/L)	REC	REC	
1,1,1-Trichloroethane	10.0	9.62	96	77-123	
1,1,2,2-Tetrachloroethane	10.0	8.24	82	71-123	
1,1,2-Trichloro-1,2,2-trifluor	10.0	8.44	84		
oethane					
1,1,2-Trichloroethane	10.0	8.73	87	80-120	
1,1-Dichloroethane	10.0	9.16	92	79-125	
1,1-Dichloroethene	10.0	8.38	84		
1,2,4-Trichlorobenzene	10.0	8.52	85	61-120	
1,2-Dibromo-3-Chloropropane	10.0	6.30	63	50-132	
Ethylene Dibromide	10.0	8.44	84	80-120	
1,2-Dichlorobenzene	10.0	9.04	90	79-120	
1,2-Dichloroethane	10.0	8.84	88	80-120	
1,2-Dichloropropane	10.0	9.24	92	78-124	
1,3-Dichlorobenzene	10.0	9.07	91	79-120	
1,4-Dichlorobenzene	10.0	9.17	92	79-120	
2-Butanone (MEK)	20.0	14.5	72	56-138	
2-Hexanone	20.0	15.0	75	55-141	
4-Methyl-2-pentanone (MIBK)	20.0	15.2	76	64-135	
Acetone	20.0	12.6	63	34-148	
Benzene	10.0	9.25	93	80-120	
Dichlorobromomethane	10.0	8.58	86	80-120	
Bromoform	10.0	8.16	82	56-122	
Bromomethane	10.0	8.13	81	38-132	
Carbon disulfide	10.0	8.82	88	65-144	
Carbon tetrachloride	10.0	8.99	90	77-131	
Chlorobenzene	10.0	9.21	92	80-120	
Chloroethane	10.0	6.91	69	36-126	
Chloroform	10.0	9.23	92	80-120	
Chloromethane	10.0	9.86	99	48-133	
cis-1,2-Dichloroethene	10.0	9.12	91	79-120	
cis-1,3-Dichloropropene	10.0	8.58	86	74-126	
Cyclohexane	10.0	9.27	93	60-140	
Chlorodibromomethane	10.0	7.92	79	74-120	
Dichlorodifluoromethane	10.0	8.77	88	23-136	
Ethylbenzene	10.0	9.26	93	80-120	
Isopropylbenzene	10.0	9.53	95	77-120	
Methyl acetate	50.0	38.4	77	67-131	
Methyl tert-butyl ether	10.0	8.59	86	69-121	
Methylcyclohexane	10.0	9.02	90	61-134	
Methylene Chloride	10.0	9.66	97		
Styrene	10.0	9.23	92	76-122	
Tetrachloroethene	10.0	9.24	92		

 $[\]mbox{\#}$ Column to be used to flag recovery and RPD values FORM III $\mbox{8260C}$

Lab Nam	e: TestAmerica Cant	ton	Job No.: 240-65994-1	
SDG No.	:			
Matrix:	Water	Level: Low	Lab File ID: UXM6059.D	
Lab ID:	LCS 240-235221/4		Client ID:	

	SPIKE ADDED	LCS CONCENTRATION	LCS %	QC LIMITS	#
COMPOUND	(ug/L)	(ug/L)	REC	REC	
Toluene	10.0	9.54	95	80-120	
trans-1,2-Dichloroethene	10.0	9.31	93	80-124	
trans-1,3-Dichloropropene	10.0	8.30	83	75-131	
Trichloroethene	10.0	9.09	91	80-121	
Trichlorofluoromethane	10.0	9.97	100	61-133	
Vinyl chloride	10.0	9.23	92	52-121	
Xylenes, Total	20.0	18.4	92	80-120	
m-Xylene & p-Xylene	10.0	9.22	92	80-120	
o-Xylene	10.0	9.21	92	80-120	

 $[\]mbox{\#}$ Column to be used to flag recovery and RPD values FORM III $\mbox{8260C}$

Lab Nam	e: TestAmerica Cant	con	Job No.: 240-65994-1	
SDG No.	:			
Matrix:	Water	Level: Low	Lab File ID: UXJ5661.D	
Lab ID:	LCS 240-235310/4		Client ID:	

	SPIKE	LCS	LCS	QC	
	ADDED	CONCENTRATION	ુ	LIMITS	#
COMPOUND	(ug/L)	(ug/L)	REC	REC	
1,1,1-Trichloroethane	10.0	9.86	99	77-123	
1,1,2,2-Tetrachloroethane	10.0	10.1	101	71-123	
1,1,2-Trichloro-1,2,2-trifluor	10.0	10.4	104		
oethane					
1,1,2-Trichloroethane	10.0	9.96	100	80-120	
1,1-Dichloroethane	10.0	9.66	97	79-125	
1,1-Dichloroethene	10.0	10.6	106	76-124	
1,2,4-Trichlorobenzene	10.0	8.42	84	61-120	
1,2-Dibromo-3-Chloropropane	10.0	7.86	79	50-132	
Ethylene Dibromide	10.0	9.99	100	80-120	
1,2-Dichlorobenzene	10.0	8.92	89	79-120	
1,2-Dichloroethane	10.0	10.6	106	80-120	
1,2-Dichloropropane	10.0	9.38	94	78-124	
1,3-Dichlorobenzene	10.0	9.01	90	79-120	
1,4-Dichlorobenzene	10.0	9.38	94	79-120	
2-Butanone (MEK)	20.0	17.8	89	56-138	
2-Hexanone	20.0	17.7	88	55-141	
4-Methyl-2-pentanone (MIBK)	20.0	18.4	92	64-135	
Acetone	20.0	18.5	92	34-148	
Benzene	10.0	9.73	97	80-120	
Dichlorobromomethane	10.0	9.27	93	80-120	
Bromoform	10.0	9.53	95	56-122	
Bromomethane	10.0	6.15	61	38-132	
Carbon disulfide	10.0	11.3	113	65-144	
Carbon tetrachloride	10.0	10.1	101	77-131	
Chlorobenzene	10.0	9.29	93	80-120	
Chloroethane	10.0	7.57	76	36-126	
Chloroform	10.0	9.91	99	80-120	
Chloromethane	10.0	10.6	106	48-133	
cis-1,2-Dichloroethene	10.0	9.81	98	79-120	
cis-1,3-Dichloropropene	10.0	8.80	88	74-126	
Cyclohexane	10.0	10.7	107	60-140	
Chlorodibromomethane	10.0	9.54	95	74-120	
Dichlorodifluoromethane	10.0	10.4	104	23-136	
Ethylbenzene	10.0	9.52	95	80-120	
Isopropylbenzene	10.0	9.33	93	77-120	
Methyl acetate	50.0	49.1	98	67-131	
Methyl tert-butyl ether	10.0	9.87	99	69-121	
Methylcyclohexane	10.0	9.69	97		
Methylene Chloride	10.0	11.1	111	77-129	
Styrene	10.0	9.39	94		
Tetrachloroethene	10.0	9.24	92		

 $[\]mbox{\#}$ Column to be used to flag recovery and RPD values FORM III $\mbox{8260C}$

Lab Name	Name: TestAmerica Canton		Job No.: 240-65994-1		
SDG No.:	:				
Matrix:	Water	Level: Low	Lab File ID:	UXJ5661.D	
Lab ID:	LCS 240-235310/4		Client ID:		

	SPIKE ADDED	LCS CONCENTRATION	LCS %	QC LIMITS	#
COMPOUND	(ug/L)	(ug/L)	REC	REC	
Toluene	10.0	9.97	100	80-120	
trans-1,2-Dichloroethene	10.0	10.2	102	80-124	
trans-1,3-Dichloropropene	10.0	9.17	92	75-131	
Trichloroethene	10.0	9.45	95	80-121	
Trichlorofluoromethane	10.0	12.6	126	61-133	
Vinyl chloride	10.0	9.75	98	52-121	
Xylenes, Total	20.0	18.4	92	80-120	
m-Xylene & p-Xylene	10.0	9.38	94	80-120	
o-Xylene	10.0	9.03	90	80-120	

 $[\]mbox{\#}$ Column to be used to flag recovery and RPD values FORM III $\mbox{8260C}$

FORM III GC/MS VOA MATRIX SPIKE RECOVERY

Lab	Name:	TestAmerica	Canton	Job No.:	240-65994-1
-----	-------	-------------	--------	----------	-------------

SDG No.: ____

Matrix: Water Level: Low Lab File ID: UXJ5626.D

Lab ID: 240-65995-B-5 MS Client ID:

	SPIKE	SAMPLE	MS	MS	QC	
	ADDED	CONCENTRATION	CONCENTRATION	용	LIMITS	#
COMPOUND	(ug/L)	(ug/L)	(ug/L)	REC	REC	
1,1,1-Trichloroethane	1670	170 U	1810	109	69-122	
1,1,2,2-Tetrachloroethane	1670	170 U	1860	112	61-130	
1,1,2-Trichloro-1,2,2-trifluor	1670	170 U	1030	62	44-140	
oethane						
1,1,2-Trichloroethane	1670	170 U	1820	109		
1,1-Dichloroethane	1670	170 U	1830	110	73-124	
1,1-Dichloroethene	1670	170 U	2000	120		
1,2,4-Trichlorobenzene	1670	170 U	1640	98	I	
1,2-Dibromo-3-Chloropropane	1670	330 U	1380	83	42-130	
Ethylene Dibromide	1670	170 U	1830	110	69-125	
1,2-Dichlorobenzene	1670	170 U	1620	97	67-118	
1,2-Dichloroethane	1670	170 U	1980	119	74-125	
1,2-Dichloropropane	1670	170 U	1760	106	73-122	
1,3-Dichlorobenzene	1670	170 U	1650	99	65-120	
1,4-Dichlorobenzene	1670	170 U	1650	99	66-120	
2-Butanone (MEK)	3330	6200	9790	106	49-132	
2-Hexanone	3330	1700 U	3190	96	49-142	
4-Methyl-2-pentanone (MIBK)	3330	1700 U	3460	104	58-136	
Acetone	3330	8000	12900	149		
Benzene	1670	170 U	1830	110	73-121	
Dichlorobromomethane	1670	170 U	1730	104	72-120	
Bromoform	1670	170 U	1480	89	45-121	
Bromomethane	1670	170 U	1050	63	26-136	
Carbon disulfide	1670	170 U	2080	125	54-144	
Carbon tetrachloride	1670	170 U	1680	101	65-129	
Chlorobenzene	1670	170 U	1690	101	72-120	
Chloroethane	1670	170 U	1370	82	27-131	
Chloroform	1670	170 U	1890	113		
Chloromethane	1670	170 U	2080	125		
cis-1,2-Dichloroethene	1670	170 U	1830	110		
cis-1,3-Dichloropropene	1670	170 U	1590	96		
Cyclohexane	1670	170 U		71	41-137	
Chlorodibromomethane	1670	170 U	1620	97	62-122	
Dichlorodifluoromethane	1670	170 U	1250	75	I	
Ethylbenzene	1670	170 U		101		
Isopropylbenzene	1670	170 U		96		
Methyl acetate	8330	1700 U		109		
Methyl tert-butyl ether	1670	170 U		111		
Methylcyclohexane	1670	170 U		59		
Methylene Chloride	1670	170 U		125		I
Styrene	1670	170 U		101	64-126	
Tetrachloroethene	1670	170 U		91		I
		1,00	1020		00 100	

[#] Column to be used to flag recovery and RPD values

FORM III GC/MS VOA MATRIX SPIKE RECOVERY

Lab Nam	e: TestAmerica Cant	con	Job No.: 240-65994-1	
SDG No.	:			
Matrix:	Water	Level: Low	Lab File ID: UXJ5626.D	
Lab ID:	240-65995-B-5 MS		Client ID:	

	SPIKE ADDED	SAMPLE CONCENTRATION	MS CONCENTRATION	MS %	QC LIMITS	#
COMPOUND	(ug/L)	(ug/L)	(ug/L)	REC	REC	
Toluene	1670	170 U	1750	105	72-122	
trans-1,2-Dichloroethene	1670	170 U	1880	113	72-125	
trans-1,3-Dichloropropene	1670	170 U	1580	95	58-132	
Trichloroethene	1670	170 U	1760	105	61-129	
Trichlorofluoromethane	1670	170 U	1850	111	49-133	
Vinyl chloride	1670	170 U	1730	104	44-122	
Xylenes, Total	3330	330 U	3310	99	67-122	
m-Xylene & p-Xylene	1670	330 U	1650	99	66-123	
o-Xylene	1670	170 U	1660	99	68-121	

 $[\]mbox{\#}$ Column to be used to flag recovery and RPD values FORM III $\mbox{8260C}$

FORM III GC/MS VOA MATRIX SPIKE RECOVERY

Lab	Name:	TestAmerica	Canton	Job No.:	240-65994-1
-----	-------	-------------	--------	----------	-------------

SDG No.: ____

Matrix: Water Level: Low Lab File ID: UXM6071.D

Lab ID: 240-65962-B-1 MS Client ID:

	SPIKE	SAMPLE	MS	MS	QC	
	ADDED	CONCENTRATION	_	_	LIMITS	#
COMPOUND	(ug/L)	(ug/L)	(ug/L)	REC	REC	"
1,1,1-Trichloroethane	3330	330 U	3230	97	69-122	
1,1,2,2-Tetrachloroethane	3330	330 U	2640	79	61-130	
1,1,2-Trichloro-1,2,2-trifluor	3330	330 U	2730	82	44-140	
oethane						
1,1,2-Trichloroethane	3330	330 U	2820	85	72-125	
1,1-Dichloroethane	3330	330 U	3030	91	73-124	
1,1-Dichloroethene	3330	330 U	2770	83	67-124	
1,2,4-Trichlorobenzene	3330	330 U	2870	86	48-120	
1,2-Dibromo-3-Chloropropane	3330	670 U	2080	62	42-130	
Ethylene Dibromide	3330	330 U	2690	81	69-125	
1,2-Dichlorobenzene	3330	330 U	3020	91	67-118	
1,2-Dichloroethane	3330	330 U	2900	87	74-125	
1,2-Dichloropropane	3330	330 U	2980	89	73-122	
1,3-Dichlorobenzene	3330	330 U	3020	91	65-120	
1,4-Dichlorobenzene	3330	330 U	3100	93	66-120	
2-Butanone (MEK)	6670	3300 U	4250	64	49-132	
2-Hexanone	6670	3300 U	4590	69	49-142	
4-Methyl-2-pentanone (MIBK)	6670	3300 U	4760	71	58-136	
Acetone	6670	3300 U	3700	56	32-126	
Benzene	3330	330 U	3080	92	73-121	
Dichlorobromomethane	3330	330 U	2760	83	72-120	
Bromoform	3330	330 U	2590	78	45-121	
Bromomethane	3330	330 U	3280	98	26-136	
Carbon disulfide	3330	330 U	2910	87	54-144	
Carbon tetrachloride	3330	330 U	3010	90	65-129	
Chlorobenzene	3330	330 U	3030	91	72-120	
Chloroethane	3330	330 U	2600	78	27-131	
Chloroform	3330	330 U	3110	93	73-121	
Chloromethane	3330	330 U	3220	97	39-134	
cis-1,2-Dichloroethene	3330	3400	6410	91	66-124	
cis-1,3-Dichloropropene	3330	330 U	2730	82	60-120	
Cyclohexane	3330	330 U	3050	92	41-137	
Chlorodibromomethane	3330	330 U	2530	76	62-122	
Dichlorodifluoromethane	3330	330 U	2830	85	14-137	
Ethylbenzene	3330	330 U	3100	93	68-121	
Isopropylbenzene	3330	330 U	3180	95	61-122	
Methyl acetate	16700	3300 U	12200	73	64-124	
Methyl tert-butyl ether	3330	330 U	2740	82	61-121	
Methylcyclohexane	3330	330 U	2960	89	39-135	
Methylene Chloride	3330	330 U	3090	93	70-124	
Styrene	3330	330 U	2990	90	64-126	
Tetrachloroethene	3330	330 U	3050	92	59-125	

[#] Column to be used to flag recovery and RPD values

FORM III GC/MS VOA MATRIX SPIKE RECOVERY

Lab Nam	e: TestAmerica Cant	ton	Job No.: 240-65994-1	
SDG No.	:			
Matrix:	Water	Level: Low	Lab File ID: UXM6071.D	
Lab ID:	240-65962-B-1 MS		Client ID:	

	SPIKE ADDED	SAMPLE CONCENTRATION	MS CONCENTRATION	MS %	QC LIMITS	#
COMPOUND	(ug/L)	(ug/L)	(ug/L)	REC	REC	
Toluene	3330	330 U	3170	95	72-122	
trans-1,2-Dichloroethene	3330	330 U	3160	95	72-125	
trans-1,3-Dichloropropene	3330	330 U	2620	79	58-132	
Trichloroethene	3330	9400	12300	86	61-129	
Trichlorofluoromethane	3330	330 U	4020	121	49-133	
Vinyl chloride	3330	330 U	3120	94	44-122	
Xylenes, Total	6670	670 U	6060	91	67-122	
m-Xylene & p-Xylene	3330	670 U	3060	92	66-123	
o-Xylene	3330	330 U	3000	90	68-121	

 $[\]mbox{\#}$ Column to be used to flag recovery and RPD values FORM III $\mbox{8260C}$

Lab Name: TestAmerica Canton	4 –	1	
------------------------------	-----	---	--

SDG No.: ____

Matrix: Water Level: Low Lab File ID: UXJ5627.D

Lab ID: 240-65995-B-5 MSD Client ID:

	SPIKE	MSD	MSD		QC LI	MITS	
	ADDED	CONCENTRATION		용			#
COMPOUND	(ug/L)	(ug/L)	REC	RPD	RPD	REC	
1,1,1-Trichloroethane	1670	1790	107	1	14	69-122	
1,1,2,2-Tetrachloroethane	1670	1930	116	4	18	61-130	
1,1,2-Trichloro-1,2,2-trifluor	1670	1790	107	53	35	44-140	F2
oethane	1.670	1000	1.00	- 1	1.0	70 105	
1,1,2-Trichloroethane	1670	1800	108		19	72-125	
1,1-Dichloroethane	1670	1790	107	3	14	73-124	
1,1-Dichloroethene	1670	2070	124	4	24	67-124	
1,2,4-Trichlorobenzene	1670	1730	104	5	28	48-120	
1,2-Dibromo-3-Chloropropane	1670	1520	91	10	24	42-130	
Ethylene Dibromide	1670	1800	108	1	24	69-125	
1,2-Dichlorobenzene	1670	1600	96	1	15	67-118	
1,2-Dichloroethane	1670	1930	116	3	24	74-125	
1,2-Dichloropropane	1670	1720	103	2	15	73-122	
1,3-Dichlorobenzene	1670	1650	99	0	15	65-120	
1,4-Dichlorobenzene	1670	1660	100	1	16	66-120	
2-Butanone (MEK)	3330	9330	93	5	19	49-132	
2-Hexanone	3330	3160	95	1	27	49-142	
4-Methyl-2-pentanone (MIBK)	3330	3530	106	2	32	58-136	
Acetone	3330	12600	139	3	28	32-126	F1
Benzene	1670	1760	106	4	13	73-121	
Dichlorobromomethane	1670	1690	102	2	19	72-120	
Bromoform	1670	1510	90	2	19	45-121	
Bromomethane	1670	1200	72	13	35	26-136	
Carbon disulfide	1670	2090	125	1	34	54-144	
Carbon tetrachloride	1670	1850	111	10	20	65-129	
Chlorobenzene	1670	1660	99	2	15	72-120	
Chloroethane	1670	1430	86	5	35	27-131	
Chloroform	1670	1830	110	3	17	73-121	
Chloromethane	1670	1980	119	5	20	39-134	
cis-1,2-Dichloroethene	1670	1770	106	3	22	66-124	
cis-1,3-Dichloropropene	1670	1560	93		21	60-120	
Cyclohexane	1670	1830	110	43	35	41-137	F2
Chlorodibromomethane	1670	1640	99	1	19	62-122	
Dichlorodifluoromethane	1670	1710	102	31	34	14-137	
Ethylbenzene	1670	1630	98	3	16	68-121	
Isopropylbenzene	1670	1630	98		20	61-122	
Methyl acetate	8330	9210	111	1	12	64-124	
Methyl tert-butyl ether	1670	1840	110		12	61-121	
Methylcyclohexane	1670	1670	100		35	39-135	
Methylene Chloride	1670	2030	122		14	70-124	
Styrene Styrene	1670	1650	99		15	64-126	
Tetrachloroethene	1670	1590	95		20	59-125	
10014011101000110110	10,0	1550		1		0, 120	

[#] Column to be used to flag recovery and RPD values

Lab Name	e: TestAmerica Cant	on	Job No.: 240-65994-1
SDG No.	: <u> </u>		
Matrix:	Water	Level: Low	Lab File ID: UXJ5627.D
Lab ID:	240-65995-B-5 MSD		Client ID:

	SPIKE ADDED	MSD CONCENTRATION	MSD	0/0	QC L1	IMITS	#
COMPOUND	(ug/L)	(ug/L)	REC	∘ RPD	RPD	REC	#
Toluene	1670	1740	104	0	15	72-122	
	1670	1860	112	1	25	72-125	
trans-1,2-Dichloroethene						_	
trans-1,3-Dichloropropene	1670	1560	94	1	22	58-132	
Trichloroethene	1670	1690	102	4	14	61-129	
Trichlorofluoromethane	1670	2230	134	19	25	49-133	F1
Vinyl chloride	1670	1770	106	2	35	44-122	
Xylenes, Total	3330	3290	99	1	14	67-122	
m-Xylene & p-Xylene	1670	1650	99	0	15	66-123	
o-Xylene	1670	1640	98	1	14	68-121	

 $[\]mbox{\#}$ Column to be used to flag recovery and RPD values FORM III $\mbox{8260C}$

Lab Name: TestAmerica Canton	4 –	1	
------------------------------	-----	---	--

SDG No.: _____

Matrix: Water Level: Low Lab File ID: UXM6072.D

Lab ID: 240-65962-B-1 MSD Client ID:

	SPIKE	MSD	MSD		QC LI	MITS	
	ADDED	CONCENTRATION		8		_	#
COMPOUND	(ug/L)	(ug/L)	REC	RPD	RPD	REC	
1,1,1-Trichloroethane	3330	3250	98	1	14	69-122	
1,1,2,2-Tetrachloroethane	3330	2790	84	5	18	61-130	
1,1,2-Trichloro-1,2,2-trifluor	3330	2870	86	5	35	44-140	
oethane 1,1,2-Trichloroethane	3330	2990	90	6	19	72-125	
1,1-Dichloroethane	3330	3040	91	0	14	73-124	
1,1-Dichloroethene	3330	2810	84	1	24	67-124	
1,2,4-Trichlorobenzene	3330	2980	89	4	28	48-120	
1,2-Dibromo-3-Chloropropane	3330	2190	66	5	24	40-120	
Ethylene Dibromide	3330	2850	86	6	24	69-125	
1,2-Dichlorobenzene	3330	3140	94	4	15	67-118	
1,2-Dichloroethane	3330	2890	87	0	24	74-125	
1,2-Dichloropropane	3330	3090	93	3	15	73-122	
1,3-Dichlorobenzene	3330	3140	94	4	15	65-120	
1,4-Dichlorobenzene	3330	3140	94	3	16	66-120	
2-Butanone (MEK)	6670	4260	64	0	19	49-132	
2-Hexanone	6670	4890	73	6	27	49-132	
	6670	5010	75 75	5	32	58-136	
4-Methyl-2-pentanone (MIBK) Acetone	6670	4070	61	9	28	32-126	
Benzene	3330	3080	92	0	13	73-121	
Dichlorobromomethane	3330	2840	85	3	19	72-120	
Bromoform	3330	2590	78	0	19	45-121	
Bromomethane	3330	2510	75	26	35	26-136	
Carbon disulfide	3330	2940	88	1	34	54-144	
Carbon tetrachloride	3330	3020	91	0	20	65-129	
Chlorobenzene	3330	3170	95	4	15	72-120	
Chloroethane	3330	2250	67	15	35	27-131	
Chloroform	3330	3100	93	0	17	73-121	
Chloromethane	3330	3150	95	2	20	39-134	
cis-1,2-Dichloroethene	3330	6330	89	1	22	66-124	
cis-1,3-Dichloropropene	3330	2830	85	3	21	60-120	
Cyclohexane	3330	3120	94	2	35	41-137	
Chlorodibromomethane	3330	2630	79	4	19	62-122	
Dichlorodifluoromethane	3330	2950	88	4	34	14-137	
Ethylbenzene	3330	3210	96	-	16	68-121	
Isopropylbenzene	3330	3270	98		20	61-122	
Methyl acetate	16700	12700	76		12	64-124	
Methyl tert-butyl ether	3330	2820	85		12	61-121	
Methylcyclohexane	3330	3070	92		35	39-135	
Methylene Chloride	3330	3000	90		14	70-124	
Styrene	3330	3120	94		15	64-126	
Tetrachloroethene	3330	3100	93		20	59-125	

 $[\]ensuremath{\mathtt{\#}}$ Column to be used to flag recovery and RPD values

Lab Nam	e: TestAmerica Cant	on	Job No.: 240-65994-1	
SDG No.	:			
Matrix:	Water	Level: Low	Lab File ID: UXM6072.D	
Lab ID:	240-65962-B-1 MSD		Client ID:	

	SPIKE ADDED	MSD CONCENTRATION	MSD	0/0	QC L1	IMITS	#
COMPOUND	(ug/L)	(ug/L)	REC	RPD	RPD	REC	#
Toluene	3330	3250	98	3	15	72-122	
trans-1,2-Dichloroethene	3330	3180	95	1	25	72-125	
trans-1,3-Dichloropropene	3330	2790	84	6	22	58-132	
Trichloroethene	3330	12100	81	1	14	61-129	
Trichlorofluoromethane	3330	3670	110	9	25	49-133	
Vinyl chloride	3330	3140	94	1	35	44-122	
Xylenes, Total	6670	6300	95	4	14	67-122	
m-Xylene & p-Xylene	3330	3160	95	3	15	66-123	
o-Xylene	3330	3140	94	5	14	68-121	

 $[\]mbox{\#}$ Column to be used to flag recovery and RPD values FORM III $\mbox{8260C}$

Lab Name: TestAmerica Canton Job No.: 240-65994-1

SDG No.:

Sample No.: STD8260 240-232366/4 Date Analyzed: 05/28/2016 09:56

Instrument ID: A3UX11 GC Column: DB-624 ID: 0.18(mm)

Lab File ID (Standard): UXJ4941.D Heated Purge: (Y/N) N

Calibration ID: 34632

	FB		CBZ		DCB	
	AREA #	RT #	AREA #	RT #	AREA #	RT #
INITIAL CALIBRATION MID-POINT	1420065	5.12	934240	7.78	380946	10.01
UPPER LIMIT	2840130	5.62	1868480	8.28	761892	10.51
LOWER LIMIT	710033	4.62	467120	7.28	190473	9.51
LAB SAMPLE ID CLIENT SAMPLE ID						
ICV 240-232366/14	1349328	5.12	892490	7.78	381895	10.03
ICV 240-232366/15	1213041	5.12	839047	7.78	340685	10.01
CCVIS 240-235154/2	1716764	5.12	1087867	7.78	406999	10.03
CCVIS 240-235310/2	1764914	5.12	1113939	7.78	422612	10.03

FB = Fluorobenzene

CBZ = Chlorobenzene-d5

DCB = 1,4-Dichlorobenzene-d4

Area Limit = 50%-200% of internal standard area RT Limit = \pm 0.5 minutes of internal standard RT

 $\ensuremath{\text{\#}}$ Column used to flag values outside QC limits

Lab Name: TestAmerica Canton Job No.: 240-65994-1

SDG No.:

Sample No.: CCVIS 240-235154/2 Date Analyzed: 06/20/2016 09:34

Instrument ID: A3UX11 GC Column: DB-624 ID: 0.18(mm)

Lab File ID (Standard): UXJ5601.D Heated Purge: (Y/N) N

Calibration ID: 34635

		FB		CBZ		DCB	
		AREA #	RT #	AREA #	RT #	AREA #	RT #
12/24 HOUR STD		1716764	5.12	1087867	7.78	406999	10.03
UPPER LIMIT		3433528	5.62	2175734	8.28	813998	10.53
LOWER LIMIT		858382	4.62	543934	7.28	203500	9.53
LAB SAMPLE ID	CLIENT SAMPLE ID						
LCS 240-235154/4		1371391	5.12	891005	7.78	335807	10.03
CCV 240-235154/3		1258361	5.12	837101	7.78	306679	10.03
MB 240-235154/6		1216667	5.12	818773	7.78	305253	10.03
240-65994-1	MRC-SW5A1-061316	1207550	5.12	812550	7.78	300326	10.03
240-65994-2	MRC-SW5A2-061316	1167662	5.12	784965	7.78	285557	10.03
240-65994-3	MRC-SW5B-061316	1165506	5.12	799768	7.78	292761	10.03
240-65994-4	MRC-SW6A-061316	1187019	5.12	803788	7.78	294540	10.03
240-65994-5	MRC-SW6B-061316	968710	5.12	656984	7.78	237604	10.03
240-65994-6	MRC-SW7A-061316	1200151	5.12	814993	7.78	290465	10.03
240-65994-7	MRC-SW7B-061316	1183978	5.12	806752	7.78	293158	10.03
240-65994-8	MRC-SW8A-061316	1135030	5.12	762893	7.78	279192	10.03
240-65994-9	MRC-SW8B-061316	1185147	5.12	807191	7.78	290157	10.03
240-65994-10	MRC-SW9A-061316	1174059	5.12	788089	7.78	291883	10.03
240-65994-11	MRC-SW9B-061316	1168374	5.12	802392	7.78	292727	10.03
240-65995-B-5 MS		1177106	5.12	791875	7.78	297138	10.03
240-65995-B-5 MSD		1207951	5.12	798086	7.78	290014	10.03

FB = Fluorobenzene

CBZ = Chlorobenzene-d5

DCB = 1,4-Dichlorobenzene-d4

Area Limit = 50%-200% of internal standard area RT Limit = \pm 0.5 minutes of internal standard RT

 $\ensuremath{\text{\#}}$ Column used to flag values outside QC limits

Lab Name: TestAmerica Canton Job No.: 240-65994-1

SDG No.:

Sample No.: CCVIS 240-235310/2 Date Analyzed: 06/21/2016 08:52

Instrument ID: A3UX11 GC Column: DB-624 ID: 0.18(mm)

Lab File ID (Standard): <u>UXJ5658.D</u> Heated Purge: (Y/N) <u>N</u>

Calibration ID: 34635

		FB		CBZ		DCB	
		AREA #	RT #	AREA #	RT #	AREA #	RT #
12/24 HOUR STD		1764914	5.12	1113939	7.78	422612	10.03
UPPER LIMIT		3529828	5.62	2227878	8.28	845224	10.53
LOWER LIMIT		882457	4.62	556970	7.28	211306	9.53
LAB SAMPLE ID	CLIENT SAMPLE ID						
CCV 240-235310/3		1213542	5.12	834047	7.78	306694	10.03
LCS 240-235310/4		1498486	5.12	959721	7.78	359922	10.03
MB 240-235310/6		966867	5.12	676769	7.78	243781	10.03
240-65994-7	MRC-SW7B-061316	1152494	5.12	782399	7.78	290345	10.03

FB = Fluorobenzene

CBZ = Chlorobenzene-d5

DCB = 1,4-Dichlorobenzene-d4

Area Limit = 50%-200% of internal standard area RT Limit = \pm 0.5 minutes of internal standard RT

 $\ensuremath{\text{\#}}$ Column used to flag values outside QC limits

Lab Name:	TestAmerica	Canton	Job No	.:	240-65994-1
-----------	-------------	--------	--------	----	-------------

SDG No.:

Sample No.: STD8260 240-232711/4 Date Analyzed: 06/01/2016 12:51

Instrument ID: A3UX16 GC Column: DB-624 ID: 0.18(mm)

Lab File ID (Standard): UXM5572.D _____ Heated Purge: (Y/N) N

Calibration ID: 34643

		FB		CBZ		DCB	
		AREA #	RT #	AREA #	RT #	AREA #	RT #
INITIAL CALIBRATION MI	ID-POINT	1415622	5.17	1000389	7.87	522407	10.10
UPPER LIMIT		2831244	5.67	2000778	8.37	1044814	10.60
LOWER LIMIT		707811	4.67	500195	7.37	261204	9.60
LAB SAMPLE ID	CLIENT SAMPLE ID						
ICV 240-232711/9		1350700	5.17	956772	7.85	515548	10.10
ICV 240-232711/16		1312230	5.17	922566	7.85	494155	10.10
CCVIS 240-235221/2		1396171	5.17	949016	7.85	500239	10.10

FB = Fluorobenzene

CBZ = Chlorobenzene-d5

DCB = 1,4-Dichlorobenzene-d4

Area Limit = 50%-200% of internal standard area RT Limit = \pm 0.5 minutes of internal standard RT

 $\ensuremath{\text{\#}}$ Column used to flag values outside QC limits

Lab Name: TestAmerica Canton Job No.: 240-65994-1

SDG No.:

Sample No.: CCVIS 240-235221/2 Date Analyzed: 06/20/2016 12:47

Instrument ID: A3UX16 GC Column: DB-624 ID: 0.18(mm)

Calibration ID: 34649

		FB		CBZ		DCB	
		AREA #	RT #	AREA #	RT #	AREA #	RT #
12/24 HOUR STD		1396171	5.17	949016	7.85	500239	10.10
UPPER LIMIT		2792342	5.67	1898032	8.35	1000478	10.60
LOWER LIMIT		698086	4.67	474508	7.35	250120	9.60
LAB SAMPLE ID	CLIENT SAMPLE ID						
CCV 240-235221/3		1375714	5.17	916832	7.85	492698	10.10
MB 240-235221/6		1343976	5.17	893870	7.85	468158	10.10
240-65962-B-1 MS		1390550	5.17	929879	7.85	499779	10.10
240-65962-B-1 MSD		1373761	5.17	912327	7.87	488907	10.10
240-65996-1	MRC-SWFB-061316	1312400	5.17	902446	7.85	487740	10.10
240-65996-2	MRC-SW1A-061316	1340107	5.17	890190	7.85	473162	10.10
240-65996-3	MRC-SW2A-061316	1336499	5.17	896030	7.85	484805	10.10
240-65996-4	TB-061316	1339479	5.17	890612	7.87	476238	10.10
240-65996-5	MRC-SWDUP2-061316	1369329	5.17	924281	7.85	481400	10.10

FB = Fluorobenzene

CBZ = Chlorobenzene-d5

DCB = 1,4-Dichlorobenzene-d4

Area Limit = 50%-200% of internal standard area RT Limit = \pm 0.5 minutes of internal standard RT

 $\ensuremath{\text{\#}}$ Column used to flag values outside QC limits

Lab Name:	TestAmerica Canton	Job No.: 240-65994-1	
SDG No.:			
Instrument	t ID: A3UX11	Start Date: 05/28/2016 08:28	
Analysis I	Batch Number: 232366	End Date: 05/28/2016 14:03	

LAB SAMPLE ID	CLIENT SAMPLE ID	DATE ANALYZED	DILUTION	LAB FILE ID	COLUMN ID
			FACTOR		
BFB 240-232366/1		05/28/2016 08:28	1	BFB6528.D	DB-624 0.18 (mm)
STD8260 240-232366/2		05/28/2016 09:12	1	UXJ4939.D	DB-624 0.18(mm)
IC					
STD8260 240-232366/3		05/28/2016 09:34	1	UXJ4940.D	DB-624 0.18(mm)
IC		05/00/0016 00 56	1	7777 T 4 O 4 1 D	77 604 0 107
STD8260 240-232366/4 TCTS		05/28/2016 09:56	1	UXJ4941.D	DB-624 0.18(mm)
STD8260 240-232366/5		05/28/2016 10:19	1	UXJ4942.D	DB-624 0.18(mm)
IC			_	********	
STD8260 240-232366/6		05/28/2016 10:40	1	UXJ4943.D	DB-624 0.18(mm)
IC					
STD8260 240-232366/7		05/28/2016 11:03	1	UXJ4944.D	DB-624 0.18(mm)
IC					
ICV 240-232366/14		05/28/2016 11:25	1	UXJ4945.D	DB-624 0.18(mm)
STD6 240-232366/8 IC		05/28/2016 11:48	1		DB-624 0.18(mm)
STD5 240-232366/9 IC		05/28/2016 12:10	1		DB-624 0.18(mm)
STD4 240-232366/10		05/28/2016 12:33	1		DB-624 0.18(mm)
IC					
STD3 240-232366/11		05/28/2016 12:56	1		DB-624 0.18(mm)
IC					
STD2 240-232366/12		05/28/2016 13:18	1		DB-624 0.18(mm)
IC STD1 240-232366/13		05/28/2016 13:41	1		DB-624 0.18(mm)
IC 240-232366/13		03/20/2016 13:41	1		DB-024 U.10(MM)
ICV 240-232366/15		05/28/2016 14:03	1	UXJ4952.D	DB-624 0.18(mm)

Lab Name: TestAmerica Canton	Job No.: 240-65994-1	
SDG No.:		
Instrument ID: A3UX11	Start Date: 06/20/2016 09:01	
Analysis Batch Number: 235154	End Date: 06/20/2016 19:35	

LAB SAMPLE ID	CLIENT SAMPLE ID	DATE ANALYZED	DILUTION FACTOR	LAB FILE ID	COLUMN ID
BFB 240-235154/1		06/20/2016 09:01	1	BFB6620.D	DB-624 0.18 (mm)
CCVIS 240-235154/2		06/20/2016 09:34	1	UXJ5601.D	DB-624 0.18 (mm)
LCS 240-235154/4		06/20/2016 09:57	1	UXJ5602.D	DB-624 0.18 (mm)
CCV 240-235154/3		06/20/2016 10:20	1	UXJ5603.D	DB-624 0.18 (mm)
ZZZZZ		06/20/2016 10:43	1		DB-624 0.18 (mm)
MB 240-235154/6		06/20/2016 11:05	1	UXJ5605.D	DB-624 0.18 (mm)
ZZZZZ		06/20/2016 11:42	1		DB-624 0.18 (mm)
ZZZZZ		06/20/2016 12:05	1		DB-624 0.18 (mm)
ZZZZZ		06/20/2016 12:28	20		DB-624 0.18 (mm)
ZZZZZ		06/20/2016 12:50	33.33		DB-624 0.18 (mm)
240-65994-1		06/20/2016 13:13	1	UXJ5610.D	DB-624 0.18 (mm)
240-65994-2		06/20/2016 13:35	1	UXJ5611.D	DB-624 0.18 (mm)
240-65994-3		06/20/2016 13:57	1	UXJ5612.D	DB-624 0.18 (mm)
240-65994-4		06/20/2016 14:20	1	UXJ5613.D	DB-624 0.18 (mm)
240-65994-5		06/20/2016 14:43	1	UXJ5614.D	DB-624 0.18 (mm)
240-65994-6		06/20/2016 15:05	1	UXJ5615.D	DB-624 0.18 (mm)
240-65994-7		06/20/2016 15:27	1	UXJ5616.D	DB-624 0.18 (mm)
240-65994-8		06/20/2016 15:49	1	UXJ5617.D	DB-624 0.18(mm)
240-65994-9		06/20/2016 16:12	1	UXJ5618.D	DB-624 0.18(mm)
240-65994-10		06/20/2016 16:34	1	UXJ5619.D	DB-624 0.18(mm)
240-65994-11		06/20/2016 16:57	1	UXJ5620.D	DB-624 0.18(mm)
ZZZZZ		06/20/2016 17:19	166.67		DB-624 0.18(mm)
ZZZZZ		06/20/2016 17:42	166.67		DB-624 0.18 (mm)
ZZZZZ		06/20/2016 18:04	166.67		DB-624 0.18 (mm)
ZZZZZ		06/20/2016 18:27	166.67		DB-624 0.18 (mm)
ZZZZZ		06/20/2016 18:50	3.33		DB-624 0.18 (mm)
240-65995-B-5 MS		06/20/2016 19:12	166.67	UXJ5626.D	DB-624 0.18(mm)
240-65995-B-5 MSD		06/20/2016 19:35	166.67	UXJ5627.D	DB-624 0.18 (mm)

Lab Name: TestAmerica Canton	Job No.: <u>240-65994-1</u>
SDG No.:	
Instrument ID: A3UX11	Start Date: 06/21/2016 08:00
Analysis Batch Number: 235310	End Date: 06/21/2016 13:59

LAB SAMPLE ID	CLIENT SAMPLE ID	DATE ANALYZED	DILUTION FACTOR	LAB FILE ID	COLUMN ID
BFB 240-235310/1		06/21/2016 08:00	1	BFB6621.D	DB-624 0.18(mm)
CCVIS 240-235310/1		06/21/2016 08:52	1	UXJ5658.D	DB-624 0.18 (mm)
CCV 240-235310/3		06/21/2016 09:36	1	UXJ5660.D	DB-624 0.18(mm)
LCS 240-235310/4		06/21/2016 10:17	1	UXJ5661.D	DB-624 0.18(mm)
MB 240-235310/6		06/21/2016 11:01	1	UXJ5663.D	DB-624 0.18(mm)
240-65994-7		06/21/2016 13:59	1	UXJ5670.D	DB-624 0.18 (mm)

Lab Name: TestAmerica Canton	Job No.: 240-65994-1
SDG No.:	
Instrument ID: A3UX16	Start Date: 06/01/2016 11:38
Analysis Batch Number: 232711	End Date: 06/01/2016 19:41

LAB SAMPLE ID	CLIENT SAMPLE ID	DATE ANALYZED	DILUTION FACTOR	LAB FILE ID	COLUMN ID
BFB 240-232711/1		06/01/2016 11:38	1	BFB4865.D	DB-624 0.18 (mm)
STD8269 240-232711/2		06/01/2016 12:06	1	UXM5570.D	DB-624 0.18 (mm)
IC STD8260 240-232711/3 IC		06/01/2016 12:29	1	UXM5571.D	DB-624 0.18(mm)
STD8260 240-232711/4 ICIS		06/01/2016 12:51	1	UXM5572.D	DB-624 0.18 (mm)
STD8260 240-232711/5		06/01/2016 13:14	1	UXM5573.D	DB-624 0.18(mm)
STD8260 240-232711/6		06/01/2016 13:37	1	UXM5574.D	DB-624 0.18 (mm)
STD8260 240-232711/7		06/01/2016 14:00	1	UXM5575.D	DB-624 0.18 (mm)
STD8260 240-232711/8 IC		06/01/2016 14:22	1	UXM5576.D	DB-624 0.18 (mm)
ICV 240-232711/9		06/01/2016 14:45	1	UXM5577.D	DB-624 0.18 (mm)
STDA9 240-232711/10 IC		06/01/2016 15:08	1		DB-624 0.18(mm)
STDA9 240-232711/11 IC		06/01/2016 15:31	1		DB-624 0.18(mm)
STDA9 240-232711/12 IC		06/01/2016 15:53	1		DB-624 0.18 (mm)
STDA9 240-232711/13 IC		06/01/2016 16:16	1		DB-624 0.18(mm)
STDA9 240-232711/14 IC		06/01/2016 16:39	1		DB-624 0.18(mm)
STDA9 240-232711/15		06/01/2016 17:02	1		DB-624 0.18 (mm)
ICV 240-232711/16		06/01/2016 17:24	1	UXM5584.D	DB-624 0.18(mm)
STDTHT 240-232711/17 IC		06/01/2016 17:47	1		DB-624 0.18 (mm)
STDTHT 240-232711/18 IC		06/01/2016 18:10	1		DB-624 0.18 (mm)
STDTHT 240-232711/19 IC		06/01/2016 18:33	1		DB-624 0.18 (mm)
STDTHT 240-232711/20 IC		06/01/2016 18:55	1		DB-624 0.18 (mm)
STDTHT 240-232711/21 IC		06/01/2016 19:18	1		DB-624 0.18 (mm)
STDTHT 240-232711/22 IC		06/01/2016 19:41	1		DB-624 0.18(mm)

Lab Name: TestAmerica Canton	Job No.: 240-65994-1
SDG No.:	
Instrument ID: A3UX16	Start Date: 06/20/2016 11:25
Analysis Batch Number: 235221	End Date: 06/20/2016 22:59

LAB SAMPLE ID	CLIENT SAMPLE ID	DATE ANALYZED	DILUTION FACTOR	LAB FILE ID	COLUMN ID
BFB 240-235221/1		06/20/2016 11:25	1	BFB4888.D	DB-624 0.18 (mm)
LCS 240-235221/4		06/20/2016 12:25	1	UXM6059.D	DB-624 0.18(mm)
CCVIS 240-235221/2		06/20/2016 12:47	1	UXM6060.D	DB-624 0.18(mm)
CCV 240-235221/3		06/20/2016 13:10	1	UXM6061.D	DB-624 0.18(mm)
ZZZZZ		06/20/2016 13:33	1		DB-624 0.18(mm)
MB 240-235221/6		06/20/2016 13:55	1	UXM6063.D	DB-624 0.18(mm)
ZZZZZ		06/20/2016 14:41	10000		DB-624 0.18(mm)
ZZZZZ		06/20/2016 15:04	10000		DB-624 0.18(mm)
ZZZZZ		06/20/2016 15:26	66.67		DB-624 0.18(mm)
ZZZZZ		06/20/2016 15:49	25		DB-624 0.18(mm)
ZZZZZ		06/20/2016 16:11	1		DB-624 0.18(mm)
ZZZZZ		06/20/2016 16:33	333.33		DB-624 0.18(mm)
240-65962-B-1 MS		06/20/2016 16:56	333.33	UXM6071.D	DB-624 0.18(mm)
240-65962-B-1 MSD		06/20/2016 17:19	333.33	UXM6072.D	DB-624 0.18(mm)
240-65996-1		06/20/2016 18:04	1	UXM6074.D	DB-624 0.18(mm)
240-65996-2		06/20/2016 18:27	1	UXM6075.D	DB-624 0.18(mm)
240-65996-3		06/20/2016 18:50	1	UXM6076.D	DB-624 0.18(mm)
240-65996-4		06/20/2016 19:12	1	UXM6077.D	DB-624 0.18(mm)
240-65996-5		06/20/2016 19:35	1	UXM6078.D	DB-624 0.18(mm)
ZZZZZ		06/20/2016 19:58	1		DB-624 0.18(mm)
ZZZZZ		06/20/2016 20:43	40		DB-624 0.18(mm)
ZZZZZ		06/20/2016 21:06	100		DB-624 0.18(mm)
ZZZZZ		06/20/2016 21:29	1		DB-624 0.18(mm)
ZZZZZ		06/20/2016 21:51	1		DB-624 0.18(mm)
ZZZZZ		06/20/2016 22:14	1		DB-624 0.18(mm)
ZZZZZ		06/20/2016 22:36	1		DB-624 0.18(mm)
ZZZZZ		06/20/2016 22:59	1		DB-624 0.18(mm)

Method 522 MOD

1,4 Dioxane (GC/MS SIM) by Method 522

FORM V GC/MS SEMI VOA INSTRUMENT PERFORMANCE CHECK

DECAFLUOROTRIPHENYLPHOSPHINE (DFTPP)

Lab Name: TestAmerica Burlington Job No.: 240-65994-1

SDG No.:

Lab File ID: 20247_01.D BFB Injection Date: 06/01/2016

Instrument ID: CHS.i BFB Injection Time: 12:42

Analysis Batch No.: 105200

M/E	ION ABUNDANCE CRITERIA	% RELATIVE ABUNDANCE		
50	15.0 - 40.0 % of mass 95	22.9		
75	30.0 - 80.0 % of mass 95	51.1		
95	Base Peak, 100% relative abundance	100.0		
96	5.0 - 9.0 % of mass 95	6.4		
173	Less than 2.0 % of mass 174	0.7	(1.0) 1	
174	>50.0 % of mass 95	65.3		
175	5.0 - 9.0 % of mass 174	4.6	(7.0) 1	
176	>95.0 but <101.0 % of mass 174	63.7	(97.6) 1	
177	5.0 - 9.0 % of mass 176	4.1	(6.4) 2	

1-Value is % mass 174

2-Value is % mass 176

THIS CHECK APPLIES TO THE FOLLOWING SAMPLES, MS, MSD, BLANKS AND STANDARDS:

CLIENT SAMPLE ID	LAB SAMPLE ID	LAB FILE ID	DATE ANALYZED	TIME ANALYZED
	IC 200-105200/2	20247 02.D	06/01/2016	12:52
	IC 200-105200/3	20247 03.D	06/01/2016	13:05
	IC 200-105200/4	20247 04.D	06/01/2016	13:19
	ICIS 200-105200/5	20247 05.D	06/01/2016	13:32
	IC 200-105200/6	20247 06.D	06/01/2016	13:46
	IC 200-105200/7	20247 07.D	06/01/2016	13:59
	IC 200-105200/8	20247 08.D	06/01/2016	14:13
	ICV 200-105200/9	20247 09.D	06/01/2016	14:26
	CCVL 200-105857/2	20474 02.D	06/17/2016	10:56
	LCS 200-105835/2-A	20474 03.D	06/17/2016	11:09
	MB 200-105835/1-A	20474 04.D	06/17/2016	11:22
	CCV 200-105857/15	20474 15.D	06/17/2016	13:50
	660-74368-A-3-B MSD	20474 17.D	06/17/2016	14:17
	660-74368-A-3-C MS	20474 18.D	06/17/2016	14:31
	CCV 200-105857/26	20474 26.D	06/17/2016	16:18
MRC-SWDUP1-061316	240-65994-12	20474 27.D	06/17/2016	16:32
	CCV 200-105857/28	20474 28.D	06/17/2016	16:45
	CCVL 200-106154/2	20570 02.D	06/23/2016	20:51
	LCS 200-106090/2-A	20570 09.D	06/23/2016	22:26
	MB 200-106090/1-A	20570 10.D	06/23/2016	22:40
	CCV 200-106154/14	20570 14.D	06/23/2016	23:34
	CCVL 200-106221/2	20593 02.D	06/24/2016	20:37
	480-101917-E-32-D MS	20593 10.D	06/24/2016	22:25
	480-101917-E-32-C MSD	20593 11.D	06/24/2016	22:38
	CCV 200-106221/13	20593 13.D	06/24/2016	23:05
MRC-SWFB-061316	240-65996-1	20593 15.D	06/24/2016	23:32
MRC-SW1A-061316	240-65996-2	20593 16.D	06/24/2016	23:45
MRC-SW2A-061316	240-65996-3	20593 17.D	06/24/2016	23:59

FORM V GC/MS SEMI VOA INSTRUMENT PERFORMANCE CHECK DECAFLUOROTRIPHENYLPHOSPHINE (DFTPP)

Lab Name: TestAme:	rica Burlington	Job No.: 240-659	94-1
SDG No.:			
Lab File ID:		BFB Injection Da	te:
Instrument ID:		BFB Injection Ti	me:
Lab File ID:		DFTPP Injection	Date:
Instrument ID:		DFTPP Injection	Time:
Analysis Batch No	.:		
M/E ION ABUN	DANCE CRITERIA		% RELATIVE ABUNDANCE

THIS CHECK APPLIES TO THE FOLLOWING SAMPLES, MS, MSD, BLANKS AND STANDARDS:

CLIENT SAMPLE ID	LAB SAMPLE ID	LAB FILE ID	DATE ANALYZED	TIME ANALYZED
	CCV 200-106221/24	20593_24.D	06/25/2016	01:33

FORM VI

GC/MS SEMI VOA BY INTERNAL STANDARD - INITIAL CALIBRATION DATA CURVE EVALUATION

Lab Name: TestAmerica Burlington

SDG No.:

Instrument ID: CHS.i

GC Column: Rxi-5ms

ID: 0.25 (mm)

Heated Purge: (Y/N) N

Calibration ID: 34839

Calibration Files:

LEVEL:	LAB SAMPLE ID:	LAB FILE ID:
Level 1	IC 200-105200/8	20247 08.D
Level 2	IC 200-105200/7	20247 07.D
Level 3	IC 200-105200/6	20247 06.D
Level 4	ICIS 200-105200/5	20247 05.D
Level 5	IC 200-105200/4	20247 04.D
Level 6	IC 200-105200/3	20247 03.D
Level 7	IC 200-105200/2	20247 02.D

Calibration Start Date: 06/01/2016 12:52 Calibration End Date: 06/01/2016 14:13

ANALYTE			RRF			CURVE		COEFFICI	ENT	#	MIN RRF	%RSD	#	MAX	R^2	# MIN R^2
	LVL 1 LVL 6	LVL 2 LVL 7	LVL 3	LVL 4	LVL 5	TYPE	В	M1	M2					%RSD	OR COD	OR COD
1,4-Dioxane	0.5850 0.6358		0.5567	0.5785	0.5757	Ave		0.5991			0.0500	5.7		15.0		0.990
1,4-Dioxane-d8 (Surr)	0.5502	0.5478 0.5710	0.5635	0.5442	0.5514	Ave		0.5601				3.1		15.0		0.990

Note: The m1 coefficient is the same as Ave RRF for an Ave curve type.

Lab Name: TestAmerica Burlington Job No.: 240-65994-1

SDG No.:

Lab Sample ID: <u>ICV 200-105200/9</u> Calibration Date: 06/01/2016 14:26

Instrument ID: CHS.i Calib Start Date: 06/01/2016 12:52

GC Column: Rxi-5ms ID: 0.25 (mm) Calib End Date: 06/01/2016 14:13

Lab File ID: 20247_09.D Conc. Units: ug/L

ANALYTE	CURVE TYPE	AVE RRF	RRF	MIN RRF	CALC AMOUNT	SPIKE AMOUNT	%D	MAX %D
1,4-Dioxane	Ave	0.5991	0.6292	0.0500	210	200	5.0	20.0

Lab Name: TestAmerica Burlington Job No.: 240-65994-1

SDG No.:

Lab Sample ID: CCVL 200-105857/2 Calibration Date: 06/17/2016 10:56

Instrument ID: CHS.i Calib Start Date: 06/01/2016 12:52

GC Column: Rxi-5ms ID: 0.25 (mm) Calib End Date: 0.6/01/2016 14:13

Lab File ID: 20474_02.D Conc. Units: ug/L

ANALYTE	CURVE TYPE	AVE RRF	RRF	MIN RRF	CALC AMOUNT	SPIKE AMOUNT	%D	MAX %D
1,4-Dioxane	Ave	0.5991	0.7389	0.0500	12.3	10.0	23.3	50.0
1,4-Dioxane-d8 (Surr)	Ave	0.5601	0.6933	0.0500	619	500	23.8	50.0

Lab Name: TestAmerica Burlington Job No.: 240-65994-1

SDG No.:

Lab Sample ID: <u>CCV 200-105857/15</u> Calibration Date: <u>06/17/2016 13:50</u>

Instrument ID: CHS.i Calib Start Date: 06/01/2016 12:52

GC Column: Rxi-5ms ID: 0.25 (mm) Calib End Date: 06/01/2016 14:13

Lab File ID: 20474_15.D Conc. Units: ug/L

ANALYTE	CURVE TYPE	AVE RRF	RRF	MIN RRF	CALC AMOUNT	SPIKE AMOUNT	%D	MAX %D
1,4-Dioxane	Ave	0.5991	0.6665	0.0500	111	100	11.3	30.0
1,4-Dioxane-d8 (Surr)	Ave	0.5601	0.6648	0.0500	593	500	18.7	30.0

Lab Name: TestAmerica Burlington Job No.: 240-65994-1

SDG No.:

Lab Sample ID: (CCV) 200-105857/26 Calibration Date: 06/17/2016 16:18

Instrument ID: CHS.i Calib Start Date: 06/01/2016 12:52

GC Column: Rxi-5ms ID: 0.25(mm) Calib End Date: 06/01/2016 14:13

Lab File ID: 20474_26.D Conc. Units: ug/L

ANALYTE	CURVE TYPE	AVE RRF	RRF	MIN RRF	CALC AMOUNT	SPIKE AMOUNT	%D	MAX %D
1,4-Dioxane	Ave	0.5991	0.6693	0.0500	894	800	11.7	30.0
1,4-Dioxane-d8 (Surr)	Ave	0.5601	0.6753	0.0500	603	500	20.6	30.0

Lab Name: TestAmerica Burlington Job No.: 240-65994-1

SDG No.:

Lab Sample ID: <u>CCV 200-105857/28</u> Calibration Date: <u>06/17/2016 16:45</u>

Instrument ID: CHS.i Calib Start Date: 06/01/2016 12:52

GC Column: Rxi-5ms ID: 0.25 (mm) Calib End Date: 06/01/2016 14:13

Lab File ID: 20474_28.D Conc. Units: ug/L

ANALYTE	CURVE TYPE	AVE RRF	RRF	MIN RRF	CALC AMOUNT	SPIKE AMOUNT	%D	MAX %D
1,4-Dioxane	Ave	0.5991	0.6569	0.0500	110	100	9.6	30.0
1,4-Dioxane-d8 (Surr)	Ave	0.5601	0.6582	0.0500	587	500	17.5	30.0

Lab Name: TestAmerica Burlington Job No.: 240-65994-1

SDG No.:

Lab Sample ID: CCVL 200-106154/2 Calibration Date: 06/23/2016 20:51

Instrument ID: CHS.i Calib Start Date: 06/01/2016 12:52

GC Column: Rxi-5ms ID: D.25(mm) Calib End Date: D6/01/2016 14:13

Lab File ID: 20570_02.D Conc. Units: ug/L

ANALYTE	CURVE TYPE	AVE RRF	RRF	MIN RRF	CALC AMOUNT	SPIKE AMOUNT	%D	MAX %D
1,4-Dioxane	Ave	0.5991	0.5277	0.0500	8.81	10.0	-11.9	50.0
1,4-Dioxane-d8 (Surr)	Ave	0.5601	0.6275	0.0500	560	500	12.0	50.0

Lab Name: TestAmerica Burlington Job No.: 240-65994-1

SDG No.:

Lab Sample ID: <u>CCV 200-106154/14</u> Calibration Date: <u>06/23/2016 23:34</u>

Instrument ID: CHS.i Calib Start Date: 06/01/2016 12:52

GC Column: Rxi-5ms ID: 0.25 (mm) Calib End Date: 06/01/2016 14:13

Lab File ID: 20570_14.D Conc. Units: ug/L

ANALYTE	CURVE TYPE	AVE RRF	RRF	MIN RRF	CALC AMOUNT	SPIKE AMOUNT	%D	MAX %D
1,4-Dioxane	Ave	0.5991	0.6390	0.0500	107	100	6.7	30.0
1,4-Dioxane-d8 (Surr)	Ave	0.5601	0.6328	0.0500	565	500	13.0	30.0

Lab Name: TestAmerica Burlington Job No.: 240-65994-1

SDG No.:

Lab Sample ID: CCVL 200-106221/2 Calibration Date: 06/24/2016 20:37

Instrument ID: CHS.i Calib Start Date: 06/01/2016 12:52

GC Column: Rxi-5ms ID: D.25(mm) Calib End Date: D6/01/2016 14:13

Lab File ID: 20593_02.D Conc. Units: ug/L

ANALYTE	CURVE TYPE	AVE RRF	RRF	MIN RRF	CALC AMOUNT	SPIKE AMOUNT	%D	MAX %D
1,4-Dioxane	Ave	0.5991	0.7496	0.0500	12.5	10.0	25.1	50.0
1,4-Dioxane-d8 (Surr)	Ave	0.5601	0.6885	0.0500	615	500	22.9	50.0

Lab Name: TestAmerica Burlington Job No.: 240-65994-1

SDG No.:

Lab Sample ID: CCV 200-106221/13 Calibration Date: 06/24/2016 23:05

Instrument ID: CHS.i Calib Start Date: 06/01/2016 12:52

GC Column: Rxi-5ms ID: 0.25 (mm) Calib End Date: 06/01/2016 14:13

Lab File ID: 20593_13.D Conc. Units: ug/L

ANALYTE	CURVE TYPE	AVE RRF	RRF	MIN RRF	CALC AMOUNT	SPIKE AMOUNT	%D	MAX %D
1,4-Dioxane	Ave	0.5991	0.6774	0.0500	113	100	13.1	30.0
1,4-Dioxane-d8 (Surr)	Ave	0.5601	0.6482	0.0500	579	500	15.7	30.0

Lab Name: TestAmerica Burlington Job No.: 240-65994-1

SDG No.:

Lab Sample ID: <u>CCV 200-106221/24</u> Calibration Date: <u>06/25/2016</u> 01:33

Instrument ID: CHS.i Calib Start Date: 06/01/2016 12:52

GC Column: Rxi-5ms ID: 0.25(mm) Calib End Date: 06/01/2016 14:13

Lab File ID: 20593_24.D Conc. Units: ug/L

ANALYTE	CURVE TYPE	AVE RRF	RRF	MIN RRF	CALC AMOUNT	SPIKE AMOUNT	%D	MAX %D
1,4-Dioxane	Ave	0.5991	0.7081	0.0500	946	800	18.2	30.0
1,4-Dioxane-d8 (Surr)	Ave	0.5601	0.5975	0.0500	533	500	6.7	30.0

Lab Name: TestAmerica Burlington	Job No.: 240-65994-1
SDG No.:	
Lab File ID: 20474_04.D	Lab Sample ID: MB 200-105835/1-A
Matrix: Water	Date Extracted: 06/16/2016 18:26
Instrument ID: CHS.i	Date Analyzed: 06/17/2016 11:22
Level: (Low/Med) Low	

THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES:

		LAB	
CLIENT SAMPLE ID	LAB SAMPLE ID	FILE ID	DATE ANALYZED
	LCS 200-105835/2-A	20474_03.D	06/17/2016 11:09
	660-74368-A-3-B MSD	20474_17.D	06/17/2016 14:17
	660-74368-A-3-C MS	20474_18.D	06/17/2016 14:31
MRC-SWDUP1-061316	240-65994-12	20474_27.D	06/17/2016 16:32

Lab Name: Tes	tAmerica Burlington	Job	No.: 240-6	55994-1			
SDG No.:							
Client Sample	e ID:	Lab	Sample ID:	MB 200	-10	5835/1 <i>-1</i>	A
Matrix: Water		Lak	Lab File ID: 20474_04.D				
Analysis Meth	nod: 522 MOD	Dat	ce Collected	l:			
Extract. Meth	nod: 3535A	Dat	te Extracted	l: <u>06/16</u>	/20	16 18:2	26
Sample wt/vol	Date Analyzed: 06/17/2016 11:22			2			
Con. Extract	Vol.: 2000(uL)	Dil	Dilution Factor: 1				
Injection Volume: 2(uL)		Lev	Level: (low/med) Low				
% Moisture:		GPC	GPC Cleanup:(Y/N) N				
Analysis Bato	th No.: 105857	Uni	ts: ug/L				
CAS NO.	COMPOUND NAME		RESULT	Q		RL	MDL
123-91-1	1,4-Dioxane		0.20	U		0.20	0.057
CAS NO	SIIRROGATE	!		%RE(٠	0	TITMTTS

110

70-130

17647-74-4

1,4-Dioxane-d8 (Surr)

Lab Name: TestAmerica Burlington	Job No.: <u>240-65994-1</u>
SDG No.:	
Lab File ID: 20570_10.D	Lab Sample ID: MB 200-106090/1-A
Matrix: Water	Date Extracted: 06/22/2016 18:02
Instrument ID: CHS.i	Date Analyzed: 06/23/2016 22:40
Level:(Low/Med) Low	

THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES:

		LAB	
CLIENT SAMPLE ID	LAB SAMPLE ID	FILE ID	DATE ANALYZED
	LCS 200-106090/2-A	20570_09.D	06/23/2016 22:26
	480-101917-E-32-D MS	20593_10.D	06/24/2016 22:25
	480-101917-E-32-C MSD	20593_11.D	06/24/2016 22:38
MRC-SWFB-061316	240-65996-1	20593_15.D	06/24/2016 23:32
MRC-SW1A-061316	240-65996-2	20593_16.D	06/24/2016 23:45
MRC-SW2A-061316	240-65996-3	20593_17.D	06/24/2016 23:59

Lab Name: Tes	tAmerica Burlington	Job	No.: 240-6	5994-1		
SDG No.:						
Client Sample	e ID:	Lab	Sample ID:	MB 200	-106090/1-	·A
Matrix: Water		Lab	Lab File ID: 20570_10.D			
Analysis Meth	od: 522 MOD	Dat	Date Collected:			
Extract. Meth	od: 3535A	Date Extracted: 06/22/2016 18:02			02	
Sample wt/vol	: 100 (mL)	Dat	Date Analyzed: 06/23/2016 22:40			
Con. Extract	Vol.: 2000(uL)	Dil	Dilution Factor: 1			
Injection Vol	ume: 2(uL)	(uL) Level: (low/med) Low				
% Moisture: GPC Cleanup		Cleanup:(Y	Cleanup: (Y/N) N			
Analysis Bato	th No.: 106154	Uni	ts: ug/L			
CAS NO.	COMPOUND NAME		RESULT	Q	RL	MDL
123-91-1	1,4-Dioxane		0.20	U	0.20	0.057
			<u>-</u>			
CAS NO.	SURROGATE			%RE(C Q	LIMITS

91

70-130

17647-74-4

1,4-Dioxane-d8 (Surr)

FORM II GC/MS SEMI VOA SURROGATE RECOVERY

Lab	Name:	TestAmerica Burlington	Job No.:	240-65994-1
SDG	No.:		•	

Matrix: Water Level: Low

GC Column (1): Rxi-5ms ID: 0.25(mm)

Client Sample ID	Lab Sample ID	DXE #
MRC-SWDUP1-061316	240-65994-12	105
MRC-SWFB-061316	240-65996-1	95
MRC-SW1A-061316	240-65996-2	92
MRC-SW2A-061316	240-65996-3	97
	MB 200-105835/1-A	110
	MB 200-106090/1-A	91
	LCS 200-105835/2-A	99
	LCS 200-106090/2-A	99
	660-74368-A-3-C MS	97
	480-101917-E-32- D MS	103
	660-74368-A-3-B MSD	91
	480-101917-E-32- C MSD	102

 $\frac{\text{QC LIMITS}}{70-130}$

DXE = 1,4-Dioxane-d8 (Surr)

 $\ensuremath{\text{\#}}$ Column to be used to flag recovery values

FORM II 522 MOD

FORM III GC/MS SEMI VOA LAB CONTROL SAMPLE RECOVERY

Lab Name: <u>TestAmerica Bu</u>	rlington	Job No.: 240-6	55994-1		
SDG No.:					
Matrix: Water	Level: Low	Lab File ID: 2	20474_03.D		
Lab ID: LCS 200-105835/2	-A	Client ID:			
	SPIKE	LC	s LCS	OC	
	ADDED	CONCENT		LIMITS	#
COMPOUND	(ug/L)	(ug/	'L) REC	REC	
1.4-Dioxane		.00	8.12 101	70-130	

 $[\]mbox{\#}$ Column to be used to flag recovery and RPD values FORM III 522 MOD

FORM III GC/MS SEMI VOA LAB CONTROL SAMPLE RECOVERY

Lab Name: TestAmerica Burling	gton Job	No.: 240-65994-1			
SDG No.:					
Matrix: Water Le	evel: Low Lab	File ID: 20570_09.D			
Lab ID: LCS 200-106090/2-A	Cli	ent ID:			
	SPIKE	LCS	LCS	QC	
	ADDED	CONCENTRATION	용	LIMITS	#
COMPOUND	(ug/L)	(ug/L)	REC	REC	
1 /-Diovano	2 00	1 05	9.8	70-130	

 $[\]mbox{\#}$ Column to be used to flag recovery and RPD values FORM III 522 MOD

FORM III GC/MS SEMI VOA MATRIX SPIKE RECOVERY

Lab Name: TestAmerica Burlington		Job No.: 2	40-65994-1			
SDG No.:						
Matrix: Water Level	: Low	Lab File I	D: <u>20474</u> _18.D			
Lab ID: 660-74368-A-3-C MS		Client ID:				
	SPIKE	SAMPLE	MS	MS	QC	
	ADDED	CONCENTRATION	CONCENTRATION	용	LIMITS	#
COMPOUND	(ug/L)	(ug/L)	(ug/L)	REC	REC	
1,4-Dioxane	2.00	3.5	5.46	99	70-130	

 $[\]mbox{\#}$ Column to be used to flag recovery and RPD values FORM III 522 MOD

FORM III GC/MS SEMI VOA MATRIX SPIKE RECOVERY

Lab Name	Name: TestAmerica Burlington		Job No.: 240-65994-1				
SDG No.	:						
Matrix:	Water	Level: Low	Lab File I	D: <u>20593</u> _10.D			
Lab ID:	480-101917-E-32-D	MS	Client ID:				
		SPIKE	SAMPLE	MS	MS	QC	ш
	COMPOLIND	ADDED (ug/L)	CONCENTRATION	CONCENTRATION	REC	LIMITS	#

2.00

3.32

70-130

1,4-Dioxane

 $[\]mbox{\#}$ Column to be used to flag recovery and RPD values FORM III 522 MOD

FORM III GC/MS SEMI VOA MATRIX SPIKE DUPLICATE RECOVERY

Lab Name: TestAmerica Burlington	ı	Job No.: 2	40-65	994-1			
SDG No.:							
Matrix: Water Level	Low	Lab File I	D: <u>20</u>	474_1	7.D		
Lab ID: 660-74368-A-3-B MSD		Client ID:					
	SPIKE	MSD	MSD		QC L	IMITS	
	ADDED	CONCENTRATION	용	용		1	#
COMPOUND	(ug/L)	(ug/L)	REC	RPD	RPD	REC	
1,4-Dioxane	2.00	4.97	75	9	30	70-130	

 $[\]mbox{\#}$ Column to be used to flag recovery and RPD values FORM III 522 MOD

FORM III GC/MS SEMI VOA MATRIX SPIKE DUPLICATE RECOVERY

Lab Name: <u>TestAmerica Bu</u>	rlington	Job No.: 2	40-65	994-1			
SDG No.:							
Matrix: Water	Level: Low	Lab File I	D: 20	593_1	1.D		
Lab ID: 480-101917-E-32-	C MSD	Client ID:					
	SPIKE	MSD	MSD		QC L	IMITS	
	ADDED	CONCENTRATION	용	용		1	#
COMPOUND	(ug/L)	(ug/L)	REC	RPD	RPD	REC	
1,4-Dioxane	2.00	3.56	104	7	30	70-130	

 $[\]mbox{\#}$ Column to be used to flag recovery and RPD values FORM III 522 MOD

FORM VIII

GC/MS SEMI VOA INTERNAL STANDARD AREA AND RETENTION TIME SUMMARY

Lab Name: TestAmerica Burlington	Job No.: 240-65994-1
SDG No.:	
Sample No.: ICIS 200-105200/5	Date Analyzed: 06/01/2016 13:32
Instrument ID: CHS.i	GC Column: Rxi-5ms ID: 0.25(mm)
Lab File ID (Standard): 20247_05.D	Heated Purge: (Y/N) N

Calibration ID: 34839

		AREA #	RT #	AREA #	RT #	AREA #	RT #
INITIAL CALIBRATION M	ID-POINT	361147	3.08				
UPPER LIMIT		541721	3.58				
LOWER LIMIT		180574	2.58				
LAB SAMPLE ID	CLIENT SAMPLE ID						
ICV 200-105200/9		334566	3.07				
CCVL 200-105857/2		344275	3.12				
LCS 200-105835/2-A		392530	3.11				
MB 200-105835/1-A		360040	3.11				
CCV 200-105857/15		336524	3.11				
660-74368-A-3-B MSD		375717	3.10				
660-74368-A-3-C MS		380078	3.10				
CCV 200-105857/26		336842	3.10				-
240-65994-12	MRC-SWDUP1-061316	374633	3.11				-
CCV 200-105857/28		332938	3.11				
CCVL 200-106154/2		329535	3.10				
LCS 200-106090/2-A		291429	3.09				
MB 200-106090/1-A		325171	3.10				
CCV 200-106154/14		340665	3.11				
CCVL 200-106221/2		349171	3.13				
480-101917-E-32-D MS		364283	3.11				
480-101917-E-32-C MSD		359007	3.11				
CCV 200-106221/13		314090	3.11				
240-65996-1	MRC-SWFB-061316	341279	3.10				
240-65996-2	MRC-SW1A-061316	340502	3.10				
240-65996-3	MRC-SW2A-061316	345460	3.10				
CCV 200-106221/24		304270	3.10				

= Tetrahydrofuran-d8

Area Limit = 50%-150% of internal standard area RT Limit = \pm 0.5 minutes of internal standard RT

 $\ensuremath{\text{\#}}$ Column used to flag values outside QC limits

FORM VIII 522 MOD

Lab Name: TestAmerica Burlington	Job No.: 240-65994-1				
SDG No.:					
Instrument ID: CHS.i	Start Date: 06/01/2016 12:42				
Analysis Batch Number: 105200	End Date: 06/01/2016 21:00				

LAB SAMPLE ID	CLIENT SAMPLE ID	DATE ANALYZED	DILUTION FACTOR	LAB FILE ID	COLUMN ID
BFB 200-105200/1		06/01/2016 12:42	1	20247_01.D	Rxi-5ms 0.25(mm)
IC 200-105200/2		06/01/2016 12:52	1	20247_02.D	Rxi-5ms 0.25(mm)
IC 200-105200/3		06/01/2016 13:05	1	20247_03.D	Rxi-5ms 0.25(mm)
IC 200-105200/4		06/01/2016 13:19	1	20247_04.D	Rxi-5ms 0.25(mm)
ICIS 200-105200/5		06/01/2016 13:32	1	20247_05.D	Rxi-5ms 0.25(mm)
IC 200-105200/6		06/01/2016 13:46	1	20247_06.D	Rxi-5ms 0.25(mm)
IC 200-105200/7		06/01/2016 13:59	1	20247_07.D	Rxi-5ms 0.25(mm)
IC 200-105200/8		06/01/2016 14:13	1	20247_08.D	Rxi-5ms 0.25(mm)
ICV 200-105200/9		06/01/2016 14:26	1	20247_09.D	Rxi-5ms 0.25(mm)
ZZZZZ		06/01/2016 14:42	1		Rxi-5ms 0.25(mm)
ZZZZZ		06/01/2016 14:56	1		Rxi-5ms 0.25(mm)
ZZZZZ		06/01/2016 15:09	1		Rxi-5ms 0.25(mm)
ZZZZZ		06/01/2016 15:22	1		Rxi-5ms 0.25(mm)
ZZZZZ		06/01/2016 15:36	1		Rxi-5ms 0.25(mm)
ZZZZZ		06/01/2016 15:49	1		Rxi-5ms 0.25(mm)
ZZZZZ		06/01/2016 16:03	1		Rxi-5ms 0.25(mm)
ZZZZZ		06/01/2016 16:16	1		Rxi-5ms 0.25(mm)
ZZZZZ		06/01/2016 16:30	1		Rxi-5ms 0.25(mm)
CCV 200-105200/19		06/01/2016 16:43	1		Rxi-5ms 0.25(mm)
ZZZZZ		06/01/2016 16:57	1		Rxi-5ms 0.25(mm)
ZZZZZ		06/01/2016 17:11	1		Rxi-5ms 0.25(mm)
ZZZZZ		06/01/2016 17:24	1		Rxi-5ms 0.25(mm)
ZZZZZ		06/01/2016 17:37	1		Rxi-5ms 0.25(mm)
ZZZZZ		06/01/2016 17:51	1		Rxi-5ms 0.25(mm)
ZZZZZ		06/01/2016 18:04	1		Rxi-5ms 0.25(mm)
ZZZZZ		06/01/2016 18:18	1		Rxi-5ms 0.25(mm)
ZZZZZ		06/01/2016 18:31	1		Rxi-5ms 0.25(mm)
ZZZZZ		06/01/2016 18:45	1		Rxi-5ms 0.25(mm)
ZZZZZ		06/01/2016 18:58	1		Rxi-5ms 0.25(mm)
CCV 200-105200/30		06/01/2016 19:12	1		Rxi-5ms 0.25(mm)
ZZZZZ		06/01/2016 19:25	1		Rxi-5ms 0.25(mm)
ZZZZZ		06/01/2016 19:39	1		Rxi-5ms 0.25(mm)
ZZZZZ		06/01/2016 19:52	1		Rxi-5ms 0.25(mm)
ZZZZZ		06/01/2016 20:06	1		Rxi-5ms 0.25(mm)
ZZZZZ		06/01/2016 20:19	1		Rxi-5ms 0.25(mm)
ZZZZZ		06/01/2016 20:33	1		Rxi-5ms 0.25(mm)
ZZZZZ		06/01/2016 20:46	10		Rxi-5ms 0.25(mm)
CCV 200-105200/38		06/01/2016 21:00	1		Rxi-5ms 0.25(mm)

Lab Name: TestAmerica Burlington	Job No.: 240-65994-1
SDG No.:	
Instrument ID: CHS.i	Start Date: 06/17/2016 10:43
Analysis Batch Number: 105857	End Date: 06/17/2016 16:45

LAB SAMPLE ID	CLIENT SAMPLE ID	DATE ANALYZED	DILUTION FACTOR	LAB FILE ID	COLUMN ID
ZZZZZ		06/17/2016 10:43	1		Rxi-5ms 0.25(mm)
CCVL 200-105857/2		06/17/2016 10:56	1	20474_02.D	Rxi-5ms 0.25(mm)
LCS 200-105835/2-A		06/17/2016 11:09	1	20474_03.D	Rxi-5ms 0.25(mm)
MB 200-105835/1-A		06/17/2016 11:22	1	20474_04.D	Rxi-5ms 0.25(mm)
ZZZZZ		06/17/2016 11:36	1		Rxi-5ms 0.25(mm)
ZZZZZ		06/17/2016 11:49	1		Rxi-5ms 0.25(mm)
ZZZZZ		06/17/2016 12:03	1		Rxi-5ms 0.25(mm)
ZZZZZ		06/17/2016 12:16	1		Rxi-5ms 0.25(mm)
ZZZZZ		06/17/2016 12:29	1		Rxi-5ms 0.25(mm)
ZZZZZ		06/17/2016 12:43	1		Rxi-5ms 0.25(mm)
ZZZZZ		06/17/2016 12:56	1		Rxi-5ms 0.25(mm)
ZZZZZ		06/17/2016 13:10	1		Rxi-5ms 0.25(mm)
ZZZZZ		06/17/2016 13:23	1		Rxi-5ms 0.25(mm)
ZZZZZ		06/17/2016 13:37	1		Rxi-5ms 0.25(mm)
CCV 200-105857/15		06/17/2016 13:50	1	20474_15.D	Rxi-5ms 0.25(mm)
ZZZZZ		06/17/2016 14:04	1		Rxi-5ms 0.25(mm)
660-74368-A-3-B MSD		06/17/2016 14:17	1	20474_17.D	Rxi-5ms 0.25(mm)
660-74368-A-3-C MS		06/17/2016 14:31	1	20474_18.D	Rxi-5ms 0.25(mm)
ZZZZZ		06/17/2016 14:44	1		Rxi-5ms 0.25(mm)
ZZZZZ		06/17/2016 14:57	1		Rxi-5ms 0.25(mm)
ZZZZZ		06/17/2016 15:11	1		Rxi-5ms 0.25(mm)
ZZZZZ		06/17/2016 15:24	1		Rxi-5ms 0.25(mm)
ZZZZZ		06/17/2016 15:38	1		Rxi-5ms 0.25(mm)
ZZZZZ		06/17/2016 15:51	1		Rxi-5ms 0.25(mm)
ZZZZZ		06/17/2016 16:05	1		Rxi-5ms 0.25(mm)
CCV 200-105857/26		06/17/2016 16:18	1	20474_26.D	Rxi-5ms 0.25(mm)
240-65994-12		06/17/2016 16:32	1	20474_27.D	Rxi-5ms 0.25(mm)
CCV 200-105857/28		06/17/2016 16:45	1	20474 28.D	Rxi-5ms 0.25(mm)

Lab Name:	TestAmerica Burlington	JOD NO.: 240-65994-1
SDG No.:		
Instrumen	t ID: CHS.i	Start Date: 06/23/2016 20:38

Analysis Batch Number: 106154 End Date: 06/24/2016 09:26

LAB SAMPLE ID	CLIENT SAMPLE ID	DATE ANALYZED	DILUTION FACTOR	LAB FILE ID	COLUMN ID
ZZZZZ		06/23/2016 20:38	1		Rxi-5ms 0.25(mm)
CCVL 200-106154/2		06/23/2016 20:51	1	20570_02.D	Rxi-5ms 0.25(mm)
ZZZZZ		06/23/2016 21:05	1		Rxi-5ms 0.25(mm)
ZZZZZ		06/23/2016 21:19	1		Rxi-5ms 0.25(mm)
ZZZZZ		06/23/2016 21:32	1		Rxi-5ms 0.25(mm)
ZZZZZ		06/23/2016 21:46	1		Rxi-5ms 0.25(mm)
ZZZZZ		06/23/2016 21:59	2.5		Rxi-5ms 0.25(mm)
ZZZZZ		06/23/2016 22:13	2.5		Rxi-5ms 0.25(mm)
LCS 200-106090/2-A		06/23/2016 22:26	1	20570_09.D	Rxi-5ms 0.25(mm)
MB 200-106090/1-A		06/23/2016 22:40	1	20570_10.D	Rxi-5ms 0.25(mm)
ZZZZZ		06/23/2016 22:53	1		Rxi-5ms 0.25(mm)
ZZZZZ		06/23/2016 23:07	1		Rxi-5ms 0.25(mm)
ZZZZZ		06/23/2016 23:20	1		Rxi-5ms 0.25(mm)
CCV 200-106154/14		06/23/2016 23:34	1	20570_14.D	Rxi-5ms 0.25(mm)
ZZZZZ		06/23/2016 23:47	1		Rxi-5ms 0.25(mm)
ZZZZZ		06/24/2016 00:01	1		Rxi-5ms 0.25(mm)
ZZZZZ		06/24/2016 00:14	1		Rxi-5ms 0.25(mm)
ZZZZZ		06/24/2016 00:27	1		Rxi-5ms 0.25(mm)
ZZZZZ		06/24/2016 00:41	1		Rxi-5ms 0.25(mm)
ZZZZZ		06/24/2016 00:54	1		Rxi-5ms 0.25(mm)
ZZZZZ		06/24/2016 01:08	1		Rxi-5ms 0.25(mm)
ZZZZZ		06/24/2016 01:21	1		Rxi-5ms 0.25(mm)
ZZZZZ		06/24/2016 01:35	1		Rxi-5ms 0.25(mm)
ZZZZZ		06/24/2016 01:48	1		Rxi-5ms 0.25(mm)
CCV 200-106154/25		06/24/2016 02:02	1		Rxi-5ms 0.25(mm)
ZZZZZ		06/24/2016 02:15	1		Rxi-5ms 0.25(mm)
ZZZZZ		06/24/2016 02:29	1		Rxi-5ms 0.25(mm)
ZZZZZ		06/24/2016 02:42	1		Rxi-5ms 0.25(mm)
ZZZZZ		06/24/2016 02:56	1		Rxi-5ms 0.25(mm)
ZZZZZ		06/24/2016 03:09	1		Rxi-5ms 0.25(mm)
ZZZZZ		06/24/2016 03:23	1		Rxi-5ms 0.25(mm)
ZZZZZ		06/24/2016 03:36	1		Rxi-5ms 0.25(mm)
ZZZZZ		06/24/2016 03:49	1		Rxi-5ms 0.25(mm)
ZZZZZ		06/24/2016 04:03	1		Rxi-5ms 0.25(mm)
ZZZZZ		06/24/2016 04:16	1		Rxi-5ms 0.25(mm)
CCV 200-106154/38		06/24/2016 04:30	1		Rxi-5ms 0.25(mm)
ZZZZZ		06/24/2016 04:43	1		Rxi-5ms 0.25(mm)
ZZZZZ		06/24/2016 04:57	1		Rxi-5ms 0.25(mm)
ZZZZZ		06/24/2016 05:10	1		Rxi-5ms 0.25(mm)
ZZZZZ		06/24/2016 05:24	1		Rxi-5ms 0.25(mm)
ZZZZZ		06/24/2016 05:37	1		Rxi-5ms 0.25(mm)
ZZZZZ		06/24/2016 05:51	1		Rxi-5ms 0.25(mm)
ZZZZZ		06/24/2016 06:04	1		Rxi-5ms 0.25(mm)
ZZZZZ		06/24/2016 06:17	1		Rxi-5ms 0.25(mm)
ZZZZZ		06/24/2016 06:31	1		Rxi-5ms 0.25(mm)

Lab Name: TestAmerica Burlington	Job No.: <u>240-65994-1</u>
SDG No.:	
Instrument ID: CHS.i	Start Date: 06/23/2016 20:38
Analysis Batch Number: 106154	End Date: 06/24/2016 09:26

LAB SAMPLE ID	CLIENT SAMPLE ID	DATE ANALYZED	DILUTION FACTOR	LAB FILE ID	COLUMN ID
ZZZZZ		06/24/2016 06:44	1		Rxi-5ms 0.25(mm)
CCV 200-106154/49		06/24/2016 06:58	1		Rxi-5ms 0.25 (mm)
ZZZZZ		06/24/2016 07:11	1		Rxi-5ms 0.25(mm)
ZZZZZ		06/24/2016 07:25	1		Rxi-5ms 0.25(mm)
ZZZZZ		06/24/2016 07:38	1		Rxi-5ms 0.25(mm)
ZZZZZ		06/24/2016 07:52	1		Rxi-5ms 0.25(mm)
ZZZZZ		06/24/2016 08:05	1		Rxi-5ms 0.25(mm)
ZZZZZ		06/24/2016 08:18	1		Rxi-5ms 0.25(mm)
ZZZZZ		06/24/2016 08:32	1		Rxi-5ms 0.25(mm)
ZZZZZ		06/24/2016 08:45	1		Rxi-5ms 0.25(mm)
ZZZZZ		06/24/2016 08:59	1		Rxi-5ms 0.25(mm)
ZZZZZ		06/24/2016 09:12	1		Rxi-5ms 0.25(mm)
CCV 200-106154/60		06/24/2016 09:26	1		Rxi-5ms 0.25(mm)

_				0.5 / 0.4 / 0.04 5
SDG	No.:			
Lab	Name:	TestAmerica Burlington	Job No.:	240-65994-1

Instrument ID: CHS.i Start Date: 06/24/2016 20:23

Analysis Batch Number: 106221 End Date: 06/25/2016 06:29

LAB SAMPLE ID	CLIENT SAMPLE ID	DATE ANALYZED	DILUTION FACTOR	LAB FILE ID	COLUMN ID
ZZZZZ		06/24/2016 20:23	1		Rxi-5ms 0.25(mm)
CCVL 200-106221/2		06/24/2016 20:37	1	20593_02.D	Rxi-5ms 0.25(mm)
ZZZZZ		06/24/2016 20:50	1		Rxi-5ms 0.25(mm)
ZZZZZ		06/24/2016 21:04	1		Rxi-5ms 0.25(mm)
ZZZZZ		06/24/2016 21:17	1		Rxi-5ms 0.25(mm)
ZZZZZ		06/24/2016 21:31	1		Rxi-5ms 0.25(mm)
ZZZZZ		06/24/2016 21:44	1		Rxi-5ms 0.25(mm)
ZZZZZ		06/24/2016 21:58	1		Rxi-5ms 0.25(mm)
ZZZZZ		06/24/2016 22:11	1		Rxi-5ms 0.25(mm)
480-101917-E-32-D MS		06/24/2016 22:25	1	20593_10.D	Rxi-5ms 0.25(mm)
480-101917-E-32-C		06/24/2016 22:38	1	20593 11.D	Rxi-5ms 0.25(mm)
MSD		06/04/0016 00 50	1	<u> </u>	D ' 5 0 . 0 5 ()
ZZZZZ		06/24/2016 22:52	1	00502 12 5	Rxi-5ms 0.25(mm)
CCV 200-106221/13		06/24/2016 23:05	1	20593_13.D	Rxi-5ms 0.25(mm)
ZZZZZ		06/24/2016 23:18	1		Rxi-5ms 0.25(mm)
240-65996-1		06/24/2016 23:32	1	20593_15.D	Rxi-5ms 0.25(mm)
240-65996-2		06/24/2016 23:45	1	20593_16.D	Rxi-5ms 0.25(mm)
240-65996-3		06/24/2016 23:59	1	20593_17.D	Rxi-5ms 0.25(mm)
ZZZZZ		06/25/2016 00:12	1		Rxi-5ms 0.25(mm)
ZZZZZ		06/25/2016 00:26	1		Rxi-5ms 0.25(mm)
ZZZZZ		06/25/2016 00:39	1		Rxi-5ms 0.25(mm)
ZZZZZ		06/25/2016 00:53	1		Rxi-5ms 0.25(mm)
ZZZZZ		06/25/2016 01:06	1		Rxi-5ms 0.25(mm)
ZZZZZ		06/25/2016 01:20	1		Rxi-5ms 0.25(mm)
CCV 200-106221/24		06/25/2016 01:33	1	20593_24.D	Rxi-5ms 0.25(mm)
ZZZZZ		06/25/2016 01:47	1		Rxi-5ms 0.25(mm)
ZZZZZ		06/25/2016 02:00	1		Rxi-5ms 0.25(mm)
ZZZZZ		06/25/2016 02:14	1		Rxi-5ms 0.25(mm)
ZZZZZ		06/25/2016 02:27	1		Rxi-5ms 0.25(mm)
ZZZZZ		06/25/2016 02:41	1		Rxi-5ms 0.25(mm)
ZZZZZ		06/25/2016 02:54	1		Rxi-5ms 0.25(mm)
ZZZZZ		06/25/2016 03:08	1		Rxi-5ms 0.25(mm)
ZZZZZ		06/25/2016 03:21	5		Rxi-5ms 0.25(mm)
ZZZZZ		06/25/2016 03:34	1		Rxi-5ms 0.25(mm)
ZZZZZ		06/25/2016 03:48	5		Rxi-5ms 0.25(mm)
CCV 200-106221/35		06/25/2016 04:01	1		Rxi-5ms 0.25(mm)
ZZZZZ		06/25/2016 04:15	1		Rxi-5ms 0.25(mm)
ZZZZZ		06/25/2016 04:28	1		Rxi-5ms 0.25(mm)
ZZZZZ		06/25/2016 04:42	1		Rxi-5ms 0.25(mm)
ZZZZZ		06/25/2016 04:55	2		Rxi-5ms 0.25(mm)
ZZZZZ		06/25/2016 05:09	1		Rxi-5ms 0.25(mm)
ZZZZZ		06/25/2016 05:22	1		Rxi-5ms 0.25(mm)
ZZZZZ		06/25/2016 05:36	2		Rxi-5ms 0.25(mm)
ZZZZZ		06/25/2016 05:49	1		Rxi-5ms 0.25(mm)
44444		00/23/2010 03.43			IXI JIIIS U.ZJ (IIIII)

Lab Name: TestAmer	ica Burlington	Job N	Job No.: 240-65994-1				
SDG No.:							
Instrument ID: CHS	.i	Start	Start Date: 06/24/2016 20:23				
Analysis Batch Num	ber: 106221	End I	End Date: 06/25/2016 06:29				
LAB SAMPLE ID	CLIENT SAMPLE ID	DATE ANALYZED	DILUTION	LAB FILE ID	COLUMN ID		
			FACTOR				
ZZZZZ		06/25/2016 06:16	1		Rxi-5ms 0.25(mm)		
CCV 200-106221/46		06/25/2016 06:29	1		Rxi-5ms 0.25(mm)		

GC/MS SEMI VOA BATCH WORKSHEET

Lab Name: TestAmerica Burlington Job No.: 240-65994-1

SDG No.:

Batch Number: 105835 Batch Start Date: 06/16/16 18:26 Batch Analyst: Bourdeau, Timothy P

Batch Method: 3535A Batch End Date: 06/16/16 20:17

Lab Sample ID	Client Sample ID	Method	Chain	Basis	InitialAmount	FinalAmount	EX522SPi 00011	EX522SUi 00018	
MB 200-105835/1		3535A, MOD	522		100 mL	2000 uL		100 uL	
LCS 200-105835/2		3535A, MOD	522		100 mL	2000 uL	400 uL	100 uL	
660-74368-A-3 MSD		3535A, MOD	522	Т	100 mL	2000 uL	100 uL	100 uL	
660-74368-A-3 MS		3535A, MOD	522	Т	100 mL	2000 uL	100 uL	100 uL	
240-65994-A-12	MRC-SWDUP1-06131	3535A, MOD	522	Т	100 mL	2000 uL		100 uL	

Batch Notes					
Acid ID	936696				
Acid Name	HC1				
First End time	1950				
Solvent Lot #	935927				
Solvent Name	MeC12				
SPE Cartridge ID	7332203				
First Start time	1903				

Basis	Basis Description
Т	Total/NA

The pound sign (#) in the amount added field denotes that the reagent was used undiluted. All calculations are performed using the stated concentration for this reagent.

GC/MS SEMI VOA BATCH WORKSHEET

Lab Name: TestAmerica Burlington Job No.: 240-65994-1

SDG No.:

Batch Number: 106090 Batch Start Date: 06/22/16 18:02 Batch Analyst: Bourdeau, Timothy P

Batch Method: 3535A Batch End Date: 06/22/16 20:51

Lab Sample ID	Client Sample ID	Method C	hain	Basis	InitialAmount	FinalAmount	EX522SPi 00011	EX522SUi 00018	AnalysisComment	
MB 200-106090/1		3535A, 52 MOD	22		100 mL	2000 uL		100 uL		
LCS 200-106090/2		3535A, 52 MOD	22		100 mL	2000 uL	100 uL	100 uL		
480-101917-E-32 MSD		3535A, 52 MOD	22	Т	100 mL	2000 uL	100 uL	100 uL	Containers D and E used to generate sample	
480-101917-E-32 MS		3535A, 52 MOD	22	Т	100 mL	2000 uL	100 uL	100 uL	Containers D and E used to generate sample	
240-65996-E-1	MRC-SWFB-061316	3535A, 52 MOD	22	Т	100 mL	2000 uL		100 uL		
240-65996-D-2	MRC-SW1A-061316	3535A, 52 MOD	22	Т	100 mL	2000 uL		100 uL		
240-65996-D-3	MRC-SW2A-061316	3535A, 52 MOD	22	Т	100 mL	2000 uL		100 uL		

Batch Notes							
Acid ID	936696						
Acid Name	HCl						
First End time	1925						
Analyst ID - Reagent Drop Witness	BDL						
Solvent Lot #	942210						
Solvent Name	Methylene Chloride						
SPE Cartridge ID	7463302						
First Start time	1855						

Basis	Basis Description
Т	Total/NA

The pound sign (#) in the amount added field denotes that the reagent was used undiluted. All calculations are performed using the stated concentration for this reagent.

Method 680

Polychlorinated Biphenyls (PCBs) (GC/MS) by Method 680

FORM V GC/MS SEMI VOA INSTRUMENT PERFORMANCE CHECK DECAFLUOROTRIPHENYLPHOSPHINE (DFTPP)

Lab Name: TestAmerica Savannah Job No.: 240-65994-1

SDG No.:

Lab File ID: Xd2402.D DFTPP Injection Date: 04/24/2016

Instrument ID: CMSX DFTPP Injection Time: 14:32

Analysis Batch No.: 430367

M/E	ION ABUNDANCE CRITERIA	% RELATIV ABUNDANC	_
127	40 - 60 % of mass 198	47.8	
197	Less than 1 % of mass 198	0.6	
198	Base peak, 100 % Relative abundance	100.0	
199	5 - 9 % of mass 198	6.4	
275	10 - 30% of mass 198	25.7	
365	Greater than 1% of mass 198	3.3	
441	Present but less than mass 443	11.4 (6	4.3) 2
442	Greater than 40% of mass 198	92.8	
443	17 - 23% of mass 442	17.7 (1	9.1) 1

1-Value is % mass 442

2-Value is % mass 443

THIS CHECK APPLIES TO THE FOLLOWING SAMPLES, MS, MSD, BLANKS AND STANDARDS:

CLIENT SAMPLE ID	LAB SAMPLE ID	LAB FILE ID	DATE ANALYZED	TIME ANALYZED
	ICISAV 680-430367/4	Xd2404.D	04/24/2016	15:41
	IC 680-430367/25	Xd2405.D	04/24/2016	16:10
	IC 680-430367/26	Xd2406.D	04/24/2016	16:38
	IC 680-430367/27	Xd2407.D	04/24/2016	17:07
	IC 680-430367/28	Xd2408.D	04/24/2016	17:35
	ICV 680-430367/30	Xd2409.D	04/24/2016	18:04

FORM V GC/MS SEMI VOA INSTRUMENT PERFORMANCE CHECK DECAFLUOROTRIPHENYLPHOSPHINE (DFTPP)

Lab Name: TestAmerica Savannah Job No.: 240-65994-1

SDG No.:

Lab File ID: Xf2002a.D DFTPP Injection Date: 06/20/2016

Instrument ID: CMSX DFTPP Injection Time: 08:48

Analysis Batch No.: 438006

M/E	ION ABUNDANCE CRITERIA	% REL. ABUNI	
127	40 - 60 % of mass 198	50.7	
197	Less than 1 % of mass 198	0.0	
198	Base peak, 100 % Relative abundance	100.0	
199	5 - 9 % of mass 198	6.2	
275	10 - 30% of mass 198	26.0	
365	Greater than 1% of mass 198	3.6	
441	Present but less than mass 443	10.4	(66.9) 2
442	Greater than 40% of mass 198	83.8	
443	17 - 23% of mass 442	15.6	(18.6) 1

1-Value is % mass 442

2-Value is % mass 443

THIS CHECK APPLIES TO THE FOLLOWING SAMPLES, MS, MSD, BLANKS AND STANDARDS:

CLIENT SAMPLE ID	LAB SAMPLE ID	LAB FILE ID	DATE ANALYZED	TIME ANALYZED
	WDM 680-438006/3	Xf2003.D	06/20/2016	09:19
	CCVIS 680-438006/4	Xf2004.D	06/20/2016	09:49
	MB 680-437585/15-A	Xf2014.D	06/20/2016	14:35
	LCS 680-437585/16-A	Xf2015.D	06/20/2016	15:04
MRC-SW5A1-061316 MS	240-65994-1 MS	Xf2016.D	06/20/2016	15:33
MRC-SW5A1-061316	240-65994-1	Xf2018.D	06/20/2016	16:30
	CCV 680-438006/20	Xf2020.D	06/20/2016	17:28

FORM V GC/MS SEMI VOA INSTRUMENT PERFORMANCE CHECK DECAFLUOROTRIPHENYLPHOSPHINE (DFTPP)

Lab Name: TestAmerica Savannah Job No.: 240-65994-1

SDG No.:

Lab File ID: Xf2102.D DFTPP Injection Date: 06/21/2016

Instrument ID: CMSX DFTPP Injection Time: 20:10

Analysis Batch No.: 438264

M/E	ION ABUNDANCE CRITERIA		ATIVE DANCE
127	40 - 60 % of mass 198	55.5	
197	Less than 1 % of mass 198	1.0	
198	Base peak, 100 % Relative abundance	100.0	
199	5 - 9 % of mass 198	6.5	
275	10 - 30% of mass 198	26.1	
365	Greater than 1% of mass 198	3.0	
441	Present but less than mass 443	4.4	(32.2) 2
442	Greater than 40% of mass 198	68.5	
443	17 - 23% of mass 442	13.8	(20.2) 1

1-Value is % mass 442

2-Value is % mass 443

THIS CHECK APPLIES TO THE FOLLOWING SAMPLES, MS, MSD, BLANKS AND STANDARDS:

CLIENT SAMPLE ID	LAB SAMPLE ID	LAB FILE ID	DATE ANALYZED	TIME ANALYZED
	WDM 680-438264/3	Xf2103.D	06/21/2016	20:41
	CCVIS 680-438264/4	Xf2104.D	06/21/2016	21:12
MRC-SW5A1-061316 MSD	240-65994-1 MSD	Xf2110.D	06/22/2016	00:04
MRC-SW5A2-061316	240-65994-2	Xf2112.D	06/22/2016	01:01
MRC-SW5B-061316	240-65994-3	Xf2113.D	06/22/2016	01:30
MRC-SW6A-061316	240-65994-4	Xf2114.D	06/22/2016	01:59
MRC-SW6B-061316	240-65994-5	Xf2115.D	06/22/2016	02:27
MRC-SW7A-061316	240-65994-6	Xf2116.D	06/22/2016	02:56
MRC-SW7B-061316	240-65994-7	Xf2117.D	06/22/2016	03:25
MRC-SW8A-061316	240-65994-8	Xf2118.D	06/22/2016	03:54
MRC-SW8B-061316	240-65994-9	Xf2119.D	06/22/2016	04:22
MRC-SW9A-061316	240-65994-10	Xf2120.D	06/22/2016	04:51
MRC-SW9B-061316	240-65994-11	Xf2121.D	06/22/2016	05:20
MRC-SWFB-061316	240-65996-1	Xf2122.D	06/22/2016	05:48
MRC-SWDUP2-061316	240-65996-5	Xf2123.D	06/22/2016	06:17
	CCV 680-438264/24	Xf2124.D	06/22/2016	06:45

FORM VI

GC/MS SEMI VOA BY INTERNAL STANDARD - INITIAL CALIBRATION DATA CURVE EVALUATION

Lab Name: TestAmerica Savannah Job No.: 240-65994-1 Analy Batch No.: 430367

SDG No.:

Instrument ID: CMSX GC Column: DB-5MS ID: 0.25(mm) Heated Purge: (Y/N) N

Calibration Start Date: 04/24/2016 15:41 Calibration End Date: 04/24/2016 17:35 Calibration ID: 45292

Calibration Files:

LEVEL:	LAB SAMPLE ID:	LAB FILE ID:
Level 1	IC 680-430367/28	Xd2408.D
Level 2	IC 680-430367/27	Xd2407.D
Level 3	ICISAV 680-430367/4	Xd2404.D
Level 4	IC 680-430367/26	Xd2406.D
Level 5	IC 680-430367/25	Xd2405.D

ANALYTE	RRF					CURVE COEFFICIENT			IT #	MIN RRF	%RSD	# M		R^2	#	MIN R^2
	LVL 1	LVL 2	LVL 3	LVL 4	LVL 5	TYPE	В	M1	M2			%R	SD	OR COD		OR COD
Monochlorobiphenyl	0.9409	0.9877	0.9866	1.0018	1.0386	Ave		0.9911			3.5	2	0.0			
Dichlorobiphenyl	0.6430	0.6782	0.6962	0.6962	0.7337	Ave		0.6895			4.8	2	0.0			
Trichlorobiphenyl	0.4097	0.4114	0.4253	0.4324	0.4604	Ave		0.4278			4.8	2	0.0			
PCB-104			0.2443			Ave		0.2443				3	0.0			
Tetrachlorobiphenyl	0.2470	0.2621	0.2562	0.2680	0.2810	Ave		0.2629			4.9	2	0.0			
Pentachlorobiphenyl	0.1465	0.1582	0.1680	0.1763	0.1852	Ave		0.1668			9.1	2	0.0			
PCB-77			0.3640			Ave		0.3640				3	0.0			
Hexachlorobiphenyl	0.1338	0.1411	0.1498	0.1546	0.1625	Ave		0.1484			7.6	2	0.0			
Heptachlorobiphenyl	0.1015	0.1109	0.1179	0.1228	0.1323	Ave		0.1171			10.0	2	0.0			
Octachlorobiphenyl	0.0938	0.1067	0.1105	0.1195	0.1284	Ave		0.1118			11.7	2	0.0			
PCB-208			0.0500			Ave		0.0500				3	0.0			
Nonachlorobiphenyl			0.0409			Ave		0.0380			14.1	2	0.0			
DCB Decachlorobiphenyl	0.0297	0.0366	0.0390	0.0413	0.0437	Ave		0.0380			14.1	2	0.0			
Decachlorobiphenyl-13C12	0.0248	0.0311	0.0307	0.0339	0.0354	Ave		0.0312			13.1	2	0.0			

Note: The ml coefficient is the same as Ave RRF for an Ave curve type.

FORM VI RESOLUTION CHECK SUMMARY

Lab Name: TestAmerica Savannah

SDG No.:

Lab Sample ID (1): ICISAV 680-430367/4

GC Column (1): DB-5MS

ID: 0.25 (mm)

Date Analyzed (1): 04/24/2016 15:41

ANALYTE	RT	RESOLUTION (%)
Monochlorobiphenyl	8.82	100.0
Dichlorobiphenyl	10.58	100.0
Trichlorobiphenyl	12.25	100.0
Tetrachlorobiphenyl	13.75	100.0
Pentachlorobiphenyl	15.16	100.0
Hexachlorobiphenyl	16.45	100.0
Heptachlorobiphenyl	17.59	100.0
Octachlorobiphenyl	18.69	100.0
Nonachlorobiphenyl	19.75	100.0
DCB Decachlorobiphenyl	20.76	100.0

FORM VI RESOLUTION CHECK SUMMARY

Lab Name: TestAmerica Savannah

SDG No.:

Lab Sample ID (1): CCVIS 680-438006/4

GC Column (1): DB-5MS

ID: 0.25 (mm)

Date Analyzed (1): 06/20/2016 09:49

ANALYTE	RT	RESOLUTION (%)
Monochlorobiphenyl	8.48	100.0
Dichlorobiphenyl	10.23	100.0
Trichlorobiphenyl	11.87	100.0
Tetrachlorobiphenyl	13.37	100.0
Pentachlorobiphenyl	14.77	100.0
Hexachlorobiphenyl	16.07	100.0
Heptachlorobiphenyl	17.20	100.0
Octachlorobiphenyl	18.29	100.0
DCB Decachlorobiphenyl	20.34	100.0

FORM VI RESOLUTION CHECK SUMMARY

Lab Name: TestAmerica Savannah Job No.: 240-65994-1

SDG No.:

Lab Sample ID (1): CCVIS 680-438264/4 Instrument ID (1): CMSX

GC Column (1): DB-5MS ID: 0.25 (mm) Date Analyzed (1): 06/21/2016 21:12

ANALYTE	RT	RESOLUTION (%)
Monochlorobiphenyl	8.48	100.0
Dichlorobiphenyl	10.23	100.0
Trichlorobiphenyl	11.87	100.0
Tetrachlorobiphenyl	13.37	100.0
Pentachlorobiphenyl	14.77	100.0
Hexachlorobiphenyl	16.07	100.0
Heptachlorobiphenyl	17.20	100.0
Octachlorobiphenyl	18.29	100.0
DCB Decachlorobiphenyl	20.36	100.0

Lab Name: TestAmerica Savannah Job No.: 240-65994-1

SDG No.:

Lab Sample ID: <u>ICV</u> 680-430367/30 Calibration Date: <u>04/24/2016</u> 18:04

Instrument ID: CMSX Calib Start Date: 04/24/2016 15:41

GC Column: DB-5MS ID: 0.25 (mm) Calib End Date: 04/24/2016 17:35

Lab File ID: Xd2409.D Conc. Units: ug/mL

ANALYTE	CURVE TYPE	AVE RRF	RRF	MIN RRF	CALC AMOUNT	SPIKE AMOUNT	%D	MAX %D
Monochlorobiphenyl	Ave	0.9911	0.997		1.01	1.00	0.6	20.0
Dichlorobiphenyl	Ave	0.6895	0.6585		0.955	1.00	-4.5	20.0
Trichlorobiphenyl	Ave	0.4278	0.4548		1.06	1.00	6.3	20.0
Tetrachlorobiphenyl	Ave	0.2629	0.2724		2.07	2.00	3.6	20.0
Pentachlorobiphenyl	Ave	0.1668	0.1718		2.06	2.00	3.0	20.0
Hexachlorobiphenyl	Ave	0.1484	0.1534		2.07	2.00	3.4	20.0
Heptachlorobiphenyl	Ave	0.1171	0.1249		3.20	3.00	6.7	20.0
Octachlorobiphenyl	Ave	0.1118	0.1197		3.21	3.00	7.1	20.0
Nonachlorobiphenyl	Ave	0.0409	0.0557		5.86	4.00	36.3*	20.0
DCB Decachlorobiphenyl	Ave	0.0380	0.0408		5.36	5.00	7.2	20.0
Decachlorobiphenyl-13C12	Ave	0.0312	0.0325		5.21	5.00	4.2	20.0

Lab Name: TestAmerica Savannah Job No.: 240-65994-1

SDG No.:

Lab Sample ID: CCVIS 680-438006/4 Calibration Date: 06/20/2016 09:49

Instrument ID: CMSX Calib Start Date: 04/24/2016 15:41

GC Column: DB-5MS ID: 0.25 (mm) Calib End Date: 04/24/2016 17:35

Lab File ID: Xf2004.D Conc. Units: ug/mL

ANALYTE	CURVE TYPE	AVE RRF	RRF	MIN RRF	CALC AMOUNT	SPIKE AMOUNT	%D	MAX %D
Monochlorobiphenyl	Ave	0.9911	0.9317		0.940	1.00	-6.0	20.0
Dichlorobiphenyl	Ave	0.6895	0.6668		0.967	1.00	-3.3	20.0
Trichlorobiphenyl	Ave	0.4278	0.4318		1.01	1.00	0.9	20.0
Tetrachlorobiphenyl	Ave	0.2629	0.2655		2.02	2.00	1.0	20.0
Pentachlorobiphenyl	Ave	0.1668	0.1804		2.16	2.00	8.1	20.0
Hexachlorobiphenyl	Ave	0.1484	0.1566		2.11	2.00	5.5	20.0
Heptachlorobiphenyl	Ave	0.1171	0.1236		3.17	3.00	5.6	20.0
Octachlorobiphenyl	Ave	0.1118	0.1167		3.13	3.00	4.4	20.0
DCB Decachlorobiphenyl	Ave	0.0380	0.0322		4.24	5.00	-15.3	20.0
Decachlorobiphenyl-13C12	Ave	0.0312	0.0292		4.68	5.00	-6.4	20.0

Lab Name: TestAmerica Savannah Job No.: 240-65994-1

SDG No.:

Lab Sample ID: CCV 680-438006/20 Calibration Date: 06/20/2016 17:28

Instrument ID: CMSX Calib Start Date: 04/24/2016 15:41

GC Column: DB-5MS ID: 0.25 (mm) Calib End Date: 04/24/2016 17:35

Lab File ID: Xf2020.D Conc. Units: ug/mL

ANALYTE	CURVE TYPE	AVE RRF	RRF	MIN RRF	CALC AMOUNT	SPIKE AMOUNT	%D	MAX %D
Monochlorobiphenyl	Ave	0.9911	0.9482		0.957	1.00	-4.3	20.0
Dichlorobiphenyl	Ave	0.6895	0.6651		0.965	1.00	-3.5	20.0
Trichlorobiphenyl	Ave	0.4278	0.4229		0.989	1.00	-1.1	20.0
Tetrachlorobiphenyl	Ave	0.2629	0.2577		1.96	2.00	-2.0	20.0
Pentachlorobiphenyl	Ave	0.1668	0.1721		2.06	2.00	3.2	20.0
Hexachlorobiphenyl	Ave	0.1484	0.1457		1.96	2.00	-1.8	20.0
Heptachlorobiphenyl	Ave	0.1171	0.1142		2.93	3.00	-2.4	20.0
Octachlorobiphenyl	Ave	0.1118	0.1077		2.89	3.00	-3.7	20.0
DCB Decachlorobiphenyl	Ave	0.0380	0.0293		3.86	5.00	-22.9*	20.0
Decachlorobiphenyl-13C12	Ave	0.0312	0.0268		4.29	5.00	-14.1	20.0

Lab Name: TestAmerica Savannah Job No.: 240-65994-1

SDG No.:

Lab Sample ID: CCVIS 80-438264/4 Calibration Date: 06/21/2016 21:12

Instrument ID: CMSX Calib Start Date: 04/24/2016 15:41

GC Column: DB-5MS ID: 0.25 (mm) Calib End Date: 04/24/2016 17:35

Lab File ID: Xf2104.D Conc. Units: ug/mL

ANALYTE	CURVE TYPE	AVE RRF	RRF	MIN RRF	CALC AMOUNT	SPIKE AMOUNT	%D	MAX %D
Monochlorobiphenyl	Ave	0.9911	0.9780		0.987	1.00	-1.3	20.0
Dichlorobiphenyl	Ave	0.6895	0.6920		1.00	1.00	0.4	20.0
Trichlorobiphenyl	Ave	0.4278	0.4442		1.04	1.00	3.8	20.0
Tetrachlorobiphenyl	Ave	0.2629	0.2761		2.10	2.00	5.0	20.0
Pentachlorobiphenyl	Ave	0.1668	0.1807		2.17	2.00	8.3	20.0
Hexachlorobiphenyl	Ave	0.1484	0.1593		2.15	2.00	7.3	20.0
Heptachlorobiphenyl	Ave	0.1171	0.1242		3.18	3.00	6.1	20.0
Octachlorobiphenyl	Ave	0.1118	0.1197		3.21	3.00	7.1	20.0
DCB Decachlorobiphenyl	Ave	0.0380	0.0338		4.45	5.00	-11.1	20.0
Decachlorobiphenyl-13C12	Ave	0.0312	0.0312		5.00	5.00	0.0	20.0

Lab Name: TestAmerica Savannah Job No.: 240-65994-1

SDG No.:

Lab Sample ID: CCV 680-438264/24 Calibration Date: 06/22/2016 06:45

Instrument ID: CMSX Calib Start Date: 04/24/2016 15:41

GC Column: DB-5MS ID: 0.25 (mm) Calib End Date: 04/24/2016 17:35

Lab File ID: Xf2124.D Conc. Units: ug/mL

ANALYTE	CURVE TYPE	AVE RRF	RRF	MIN RRF	CALC AMOUNT	SPIKE AMOUNT	%D	MAX %D
Monochlorobiphenyl	Ave	0.9911	1.015		1.02	1.00	2.4	20.0
Dichlorobiphenyl	Ave	0.6895	0.7260		1.05	1.00	5.3	20.0
Trichlorobiphenyl	Ave	0.4278	0.4529		1.06	1.00	5.9	20.0
Tetrachlorobiphenyl	Ave	0.2629	0.2801		2.13	2.00	6.5	20.0
Pentachlorobiphenyl	Ave	0.1668	0.1900		2.28	2.00	13.9	20.0
Hexachlorobiphenyl	Ave	0.1484	0.1674		2.26	2.00	12.8	20.0
Heptachlorobiphenyl	Ave	0.1171	0.1285		3.29	3.00	9.8	20.0
Octachlorobiphenyl	Ave	0.1118	0.1223		3.28	3.00	9.4	20.0
DCB Decachlorobiphenyl	Ave	0.0380	0.0345		4.54	5.00	-9.3	20.0
Decachlorobiphenyl-13C12	Ave	0.0312	0.0309		4.96	5.00	-0.8	20.0

Lab Name: TestAmerica Savannah	Job No.: 240-65994-1
SDG No.:	
Lab File ID: Xf2014.D	Lab Sample ID: MB 680-437585/15-A
Matrix: Water	Date Extracted: 06/16/2016 13:29
Instrument ID: CMSX	Date Analyzed: 06/20/2016 14:35
Level: (Low/Med) Low	

THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES:

		LAB	
CLIENT SAMPLE ID	LAB SAMPLE ID	FILE ID	DATE ANALYZED
	LCS 680-437585/16-A	Xf2015.D	06/20/2016 15:04
MRC-SW5A1-061316 MS	240-65994-1 MS	Xf2016.D	06/20/2016 15:33
MRC-SW5A1-061316	240-65994-1	Xf2018.D	06/20/2016 16:30
MRC-SW5A1-061316 MSD	240-65994-1 MSD	Xf2110.D	06/22/2016 00:04
MRC-SW5A2-061316	240-65994-2	Xf2112.D	06/22/2016 01:01
MRC-SW5B-061316	240-65994-3	Xf2113.D	06/22/2016 01:30
MRC-SW6A-061316	240-65994-4	Xf2114.D	06/22/2016 01:59
MRC-SW6B-061316	240-65994-5	Xf2115.D	06/22/2016 02:27
MRC-SW7A-061316	240-65994-6	Xf2116.D	06/22/2016 02:56
MRC-SW7B-061316	240-65994-7	Xf2117.D	06/22/2016 03:25
MRC-SW8A-061316	240-65994-8	Xf2118.D	06/22/2016 03:54
MRC-SW8B-061316	240-65994-9	Xf2119.D	06/22/2016 04:22
MRC-SW9A-061316	240-65994-10	Xf2120.D	06/22/2016 04:51
MRC-SW9B-061316	240-65994-11	Xf2121.D	06/22/2016 05:20
MRC-SWFB-061316	240-65996-1	Xf2122.D	06/22/2016 05:48
MRC-SWDUP2-061316	240-65996-5	Xf2123.D	06/22/2016 06:17

FORM I GC/MS SEMI VOA ORGANICS ANALYSIS DATA SHEET

Lab Name: TestAmerica Savannah	Job No.: 240-65994-1
SDG No.:	
Client Sample ID:	Lab Sample ID: MB 680-437585/15-A
Matrix: Water	Lab File ID: Xf2014.D
Analysis Method: 680	Date Collected:
Extract. Method: 680	Date Extracted: 06/16/2016 13:29
Sample wt/vol: 1000(mL)	Date Analyzed: 06/20/2016 14:35
Con. Extract Vol.: 1 (mL)	Dilution Factor: 1
Injection Volume: 2(uL)	Level: (low/med) Low
% Moisture:	GPC Cleanup: (Y/N) N
Analysis Batch No.: 438006	Units: ug/L

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
28655-71-2	Heptachlorobiphenyl	0.30	U	0.30	0.030
26601-64-9	Hexachlorobiphenyl	0.20	U	0.20	0.015
53742-07-7	Nonachlorobiphenyl	0.50	U	0.50	0.049
55722-26-4	Octachlorobiphenyl	0.30	U	0.30	0.038
27323-18-8	Monochlorobiphenyl	0.10	U	0.10	0.0056
2051-24-3	DCB Decachlorobiphenyl	0.50	U	0.50	0.070
25512-42-9	Dichlorobiphenyl	0.10	U	0.10	0.0054
25429-29-2	Pentachlorobiphenyl	0.20	U	0.20	0.014
26914-33-0	Tetrachlorobiphenyl	0.20	U	0.20	0.013
25323-68-6	Trichlorobiphenyl	0.10	U	0.10	0.0065

CAS NO.	SURROGATE	%REC	Q	LIMITS
STL00281	Decachlorobiphenyl-13C12	75	*	25-113

FORM II GC/MS SEMI VOA SURROGATE RECOVERY

Lab	Name:	TestAmerica	Savannah	Job	No.:	240-65994-1

SDG No.:

Matrix: Water Level: Low

Client Sample ID	Lab Sample ID	13DCB	#
MRC-SW5A1-061316	240-65994-1	48	*
MRC-SW5A2-061316	240-65994-2	83	
MRC-SW5B-061316	240-65994-3	71	
MRC-SW6A-061316	240-65994-4	74	*
MRC-SW6B-061316	240-65994-5	71	*
MRC-SW7A-061316	240-65994-6	68	
MRC-SW7B-061316	240-65994-7	78	*
MRC-SW8A-061316	240-65994-8	72	*
MRC-SW8B-061316	240-65994-9	67	*
MRC-SW9A-061316	240-65994-10	74	
MRC-SW9B-061316	240-65994-11	68	
MRC-SWFB-061316	240-65996-1	81	*
MRC-SWDUP2-061316	240-65996-5	78	
	MB 680-437585/15-A	75	*
	LCS 680-437585/16-A	64	*
MRC-SW5A1-061316 MS	240-65994-1 MS	63	*
MRC-SW5A1-061316 MSD	240-65994-1 MSD	60	

 $\frac{QC \text{ LIMITS}}{25-113}$

13DCB = Decachlorobiphenyl-13C12

FORM III GC/MS SEMI VOA LAB CONTROL SAMPLE RECOVERY

Lab Name	e: <u>TestAmerica Sava</u>	annah	Job No.: 240-65994-1
SDG No.	:		
Matrix:	Water	Level: Low	Lab File ID: Xf2015.D
Lab ID:	LCS 680-437585/16-	-A	Client ID:

	SPIKE	LCS	LCS	QC	и
	ADDED	CONCENTRATION	ુ	LIMITS	#
COMPOUND	(ug/L)	(ug/L)	REC	REC	
Heptachlorobiphenyl	6.00	4.42	74	62-130	*
Hexachlorobiphenyl	4.00	2.88	72	62-130	*
Nonachlorobiphenyl	10.0	9.09	91	70-195	*
Octachlorobiphenyl	6.00	4.50	75	64-130	*
Monochlorobiphenyl	2.00	1.20	60	42-130	*
DCB Decachlorobiphenyl	10.0	5.98	60	59-130	*
Dichlorobiphenyl	2.00	1.28	64	49-130	*
Pentachlorobiphenyl	4.00	2.94	74	63-130	*
Tetrachlorobiphenyl	4.00	2.72	68	54-130	*
Trichlorobiphenyl	2.00	1.37	68	51-130	*

 $[\]mbox{\#}$ Column to be used to flag recovery and RPD values FORM III 680

FORM III GC/MS SEMI VOA MATRIX SPIKE RECOVERY

Lab	Name:	TestAmerica	Savannah	Job No.:	240-65994-1
SDG	No ·				

Matrix: Water Level: Low Lab File ID: Xf2016.D

Lab ID: 240-65994-1 MS Client ID: MRC-SW5A1-061316 MS

	SPIKE ADDED	SAMPLE CONCENTRATION	MS CONCENTRATION	MS %	QC LIMITS	#
COMPOUND	(ug/L)	(ug/L)	(ug/L)	REC	REC	
Heptachlorobiphenyl	5.98	0.30 U	4.66	78	62-130	*
Hexachlorobiphenyl	3.99	0.20 U	3.07	77	62-130	*
Nonachlorobiphenyl	9.97	0.50 U	9.73	98	70-195	*
Octachlorobiphenyl	5.98	0.30 U	4.86	81	64-130	*
Monochlorobiphenyl	1.99	0.099 U	0.976	49	42-130	*
DCB Decachlorobiphenyl	9.97	0.50 U	6.48	65	59-130	*
Dichlorobiphenyl	1.99	0.099 U	1.16	58	49-130	*
Pentachlorobiphenyl	3.99	0.20 U	4.75	119	63-130	*
Tetrachlorobiphenyl	3.99	0.20 U	2.61	65	54-130	*
Trichlorobiphenyl	1.99	0.099 U	1.32	66	51-130	*

 $[\]mbox{\#}$ Column to be used to flag recovery and RPD values FORM III 680

FORM III GC/MS SEMI VOA MATRIX SPIKE DUPLICATE RECOVERY

Lab Name	e: <u>TestAmerica Sav</u>	annah	Job No.: 240-65994-1
SDG No.	:		
Matrix:	Water	Level: Low	Lab File ID: Xf2110.D
Lab ID:	240-65994-1 MSD		Client ID: MRC-SW5A1-061316 MSD

	SPIKE	MSD	MSD		QC L	IMITS	
	ADDED	CONCENTRATION	용	용			#
COMPOUND	(ug/L)	(ug/L)	REC	RPD	RPD	REC	
Heptachlorobiphenyl	5.78	4.01	69	15	40	62-130	
Hexachlorobiphenyl	3.86	2.55	66	18	40	62-130	
Nonachlorobiphenyl	9.64	8.14	84	18	40	70-195	
Octachlorobiphenyl	5.78	4.15	72	16	40	64-130	
Monochlorobiphenyl	1.93	0.918	48	6	40	42-130	
DCB Decachlorobiphenyl	9.64	5.61	58) 14	40	59-130	F1
Dichlorobiphenyl	1.93	1.06	55	9	40	49-130	
Pentachlorobiphenyl	3.86	4.12	107	14	40	63-130	
Tetrachlorobiphenyl	3.86	2.28	59	13	40	54-130	
Trichlorobiphenyl	1.93	1.16	60	13	40	51-130	

 $[\]mbox{\#}$ Column to be used to flag recovery and RPD values FORM III 680

FORM VIII GC/MS SEMI VOA INTERNAL STANDARD AREA AND RETENTION TIME SUMMARY

Lab Name: TestAmerica Savannah Job No.: 240-65994-1

SDG No.:

Instrument ID: CMSX Calibration Start Date: 04/24/2016 15:41

Calibration ID: 45292

		PHN		CRY			
		AREA #	RT #	AREA #	RT #	AREA #	RT #
INITIAL CALIBRATION N	MEAN AREA AND MEAN RT	50088	11.38	42340	17.58		
UPPER LIMIT		75132	11.88	63510	18.08		-
LOWER LIMIT		25044	10.88	21170	17.08		
LAB SAMPLE ID	CLIENT SAMPLE ID						
CCVIS 680-438006/4		70060	11.00	48548	17.18		
MB 680-437585/15-A		81212*	11.01	52624	17.18		-
LCS 680-437585/16-A		81077*	11.01	54298	17.18		
240-65994-1 MS	MRC-SW5A1-061316 MS	89943*	11.00	67009*	17.18		
240-65994-1	MRC-SW5A1-061316	89042*	11.00	63930*	17.18		-
CCV 680-438006/20		72492	11.00	49012	17.18		-
CCVIS 680-438264/4		38876	11.01	29902	17.18		-
240-65994-1 MSD	MRC-SW5A1-061316 MSD	60632	11.01	46821	17.18		-
240-65994-2	MRC-SW5A2-061316	49231	11.01	36697	17.18		
240-65994-3	MRC-SW5B-061316	55078	11.01	43310	17.18		
240-65994-4	MRC-SW6A-061316	61380*	11.01	48888*	17.18		
240-65994-5	MRC-SW6B-061316	70730*	11.01	55487*	17.18		
240-65994-6	MRC-SW7A-061316	58171	11.01	45678*	17.18		
240-65994-7	MRC-SW7B-061316	63478*	11.00	49763*	17.18		
240-65994-8	MRC-SW8A-061316	65299*	11.01	52331*	17.18		
240-65994-9	MRC-SW8B-061316	61876*	11.01	46997*	17.18		-
240-65994-10	MRC-SW9A-061316	54250	11.00	43462	17.18		
240-65994-11	MRC-SW9B-061316	57973	11.01	44013	17.18		
240-65996-1	MRC-SWFB-061316	65480*	11.01	51756*	17.18		
240-65996-5	MRC-SWDUP2-061316	51793	11.01	42507	17.18		
CCV 680-438264/24		39470	11.01	29231	17.18		

ok, samples within limits for IC or CCVIS

PHN = Phenanthrene-d10 CRY = Chrysene-d12

Area Limit = 50%-150% of internal standard area RT Limit = \pm 0.5 minutes of internal standard RT

 $\ensuremath{\text{\#}}$ Column used to flag values outside QC limits

FORM VIII 680

FORM VIII GC/MS SEMI VOA INTERNAL STANDARD AREA AND RETENTION TIME SUMMARY

Lab Name: TestAmerica Savannah	Job No.: 240-65994-1					
SDG No.:						
Sample No.: CCVIS 680-438006/4	Date Analyzed: 06/20/2016	09:49				
Instrument ID: CMSX	GC Column: DB-5MS	ID: 0.25(mm)				

Lab File ID (Standard): Xf2004.D Heated Purge: (Y/N) N

Calibration ID: 45292

		PHN		CRY			
		AREA #	RT #	AREA #	RT #	AREA #	RT #
12/24 HOUR STD		70060	11.00	48548	17.18		
UPPER LIMIT		91078	11.50	63112	17.68		
LOWER LIMIT		49042	10.50	33984	16.68		
LAB SAMPLE ID	CLIENT SAMPLE ID						
MB 680-437585/15-A		81212*	11.01	52624	17.18		
LCS 680-437585/16-A		81077*	11.01	54298	17.18		
240-65994-1 MS	MRC-SW5A1-061316 MS	89943*	11.00	67009*	17.18		
240-65994-1	MRC-SW5A1-061316	89042*	11.00	63930*	17.18		
CCV 680-438006/20		72492	11.00	49012	17.18		

ok, samples within limits for IC or CCVIS

PHN = Phenanthrene-d10 CRY = Chrysene-d12

Area Limit = 70%-130% of internal standard area RT Limit = \pm 0.5 minutes of internal standard RT

 $\ensuremath{\text{\#}}$ Column used to flag values outside QC limits

FORM VIII 680

FORM VIII GC/MS SEMI VOA INTERNAL STANDARD AREA AND RETENTION TIME SUMMARY

Lab Name: TestAmerica Savannah Job No.: 240-65994-1

SDG No.:

Sample No.: CCVIS 680-438264/4 Date Analyzed: 06/21/2016 21:12

Instrument ID: CMSX GC Column: DB-5MS ID: 0.25(mm)

Lab File ID (Standard): Xf2104.D Heated Purge: (Y/N) N

Calibration ID: 45292

		PHN		CRY			
		AREA #	RT #	AREA #	RT #	AREA #	RT :
12/24 HOUR STD		38876	11.01	29902	17.18		
UPPER LIMIT		50539	11.51	38873	17.68		
LOWER LIMIT		27213	10.51	20931	16.68		
LAB SAMPLE ID	CLIENT SAMPLE ID						
240-65994-1 MSD	MRC-SW5A1-061316 MSD	60632	11.01	46821	17.18		
240-65994-2	MRC-SW5A2-061316	49231	11.01	36697	17.18		
240-65994-3	MRC-SW5B-061316	55078	11.01	43310	17.18		
240-65994-4	MRC-SW6A-061316	61380*	11.01	48888*	17.18		
240-65994-5	MRC-SW6B-061316	70730*	11.01	55487*	17.18		
240-65994-6	MRC-SW7A-061316	58171	11.01	45678*	17.18		
240-65994-7	MRC-SW7B-061316	63478*	11.00	49763*	17.18		
240-65994-8	MRC-SW8A-061316	65299*	11.01	52331*	17.18		
240-65994-9	MRC-SW8B-061316	61876*	11.01	46997*	17.18		
240-65994-10	MRC-SW9A-061316	54250	11.00	43462	17.18		
240-65994-11	MRC-SW9B-061316	57973	11.01	44013	17.18		
240-65996-1	MRC-SWFB-061316	65480*	11.01	51756*	17.18		
240-65996-5	MRC-SWDUP2-061316	51793	11.01	42507	17.18		
CCV 680-438264/24		39470	11.01	29231	17.18		

PHN = Phenanthrene-d10 CRY = Chrysene-d12

Area Limit = 70%-130% of internal standard area RT Limit = \pm 0.5 minutes of internal standard RT

Column used to flag values outside QC limits

FORM VIII 680

GC/MS SEMI VOA ANALYSIS RUN LOG

Lab Name: TestAmerica Savannah	Job No.: 240-65994-1
SDG No.:	
Instrument ID: CMSX	Start Date: 04/24/2016 14:32
Analysis Batch Number: 430367	End Date: 04/24/2016 22:50

LAB SAMPLE ID	CLIENT SAMPLE ID	DATE ANALYZED	DILUTION FACTOR	LAB FILE ID	COLUMN ID
			FACTOR		
DFTPP 680-430367/2		04/24/2016 14:32	1	Xd2402.D	DB-5MS 0.25(mm)
WDM 680-430367/3		04/24/2016 15:03	1		DB-5MS 0.25(mm)
ICISAV 680-430367/4		04/24/2016 15:41	1	Xd2404.D	DB-5MS 0.25(mm)
IC 680-430367/25		04/24/2016 16:10	1	Xd2405.D	DB-5MS 0.25(mm)
IC 680-430367/26		04/24/2016 16:38	1	Xd2406.D	DB-5MS 0.25(mm)
IC 680-430367/27		04/24/2016 17:07	1	Xd2407.D	DB-5MS 0.25(mm)
IC 680-430367/28		04/24/2016 17:35	1	Xd2408.D	DB-5MS 0.25(mm)
ICV 680-430367/30		04/24/2016 18:04	1	Xd2409.D	DB-5MS 0.25(mm)
ZZZZZ		04/24/2016 19:01	1		DB-5MS 0.25(mm)
ZZZZZ		04/24/2016 19:30	1		DB-5MS 0.25(mm)
ZZZZZ		04/24/2016 19:58	1		DB-5MS 0.25(mm)
ZZZZZ		04/24/2016 20:27	1		DB-5MS 0.25(mm)
ZZZZZ		04/24/2016 20:55	1		DB-5MS 0.25(mm)
ZZZZZ		04/24/2016 21:24	1		DB-5MS 0.25(mm)
ZZZZZ		04/24/2016 21:53	1		DB-5MS 0.25(mm)
ZZZZZ		04/24/2016 22:21	1		DB-5MS 0.25(mm)
CCVC 680-430367/24		04/24/2016 22:50	1		DB-5MS 0.25 (mm)

GC/MS SEMI VOA ANALYSIS RUN LOG

Lab Name: TestAmerica Savannah	Job No.: <u>240-65994-1</u>				
SDG No.:					
Instrument ID: CMSX	Start Date: 06/20/2016 08:48				
Analysis Batch Number: 438006	End Date: 06/20/2016 17:28				

LAB SAMPLE ID	CLIENT SAMPLE ID	DATE ANALYZED	DILUTION FACTOR	LAB FILE ID	COLUMN ID
DFTPP 680-438006/2		06/20/2016 08:48	1	Xf2002a.D	DB-5MS 0.25 (mm)
WDM 680-438006/3		06/20/2016 09:19	1	Xf2003.D	DB-5MS 0.25 (mm)
CCVIS 680-438006/4		06/20/2016 09:49	1	Xf2004.D	DB-5MS 0.25 (mm)
ZZZZZ		06/20/2016 10:18	1		DB-5MS 0.25 (mm)
ZZZZZ		06/20/2016 10:46	1		DB-5MS 0.25 (mm)
ZZZZZ		06/20/2016 12:41	1		DB-5MS 0.25 (mm)
ZZZZZ		06/20/2016 14:07	1		DB-5MS 0.25 (mm)
MB 680-437585/15-A		06/20/2016 14:35	1	Xf2014.D	DB-5MS 0.25 (mm)
LCS 680-437585/16-A		06/20/2016 15:04	1	Xf2015.D	DB-5MS 0.25 (mm)
240-65994-1 MS		06/20/2016 15:33	1	Xf2016.D	DB-5MS 0.25 (mm)
240-65994-1		06/20/2016 16:30	1	Xf2018.D	DB-5MS 0.25 (mm)
ZZZZZ		06/20/2016 16:59	1		DB-5MS 0.25 (mm)
CCV 680-438006/20		06/20/2016 17:28	1	Xf2020.D	DB-5MS 0.25 (mm)

GC/MS SEMI VOA ANALYSIS RUN LOG

Lab Name: TestAmerica Savannah	Job No.: <u>240-65994-1</u>
SDG No.:	
Instrument ID: CMSX	Start Date: 06/21/2016 20:10
Analysis Batch Number: 438264	End Date: 06/22/2016 06:45

LAB SAMPLE ID	CLIENT SAMPLE ID	DATE ANALYZED	DILUTION FACTOR	LAB FILE ID	COLUMN ID
DFTPP 680-438264/2		06/21/2016 20:10	1	Xf2102.D	DB-5MS 0.25 (mm)
WDM 680-438264/3		06/21/2016 20:41	1	Xf2103.D	DB-5MS 0.25(mm)
CCVIS 680-438264/4		06/21/2016 21:12	1	Xf2104.D	DB-5MS 0.25(mm)
ZZZZZ		06/21/2016 21:40	1		DB-5MS 0.25(mm)
ZZZZZ		06/21/2016 22:09	1		DB-5MS 0.25(mm)
ZZZZZ		06/21/2016 22:38	1		DB-5MS 0.25(mm)
ZZZZZ		06/21/2016 23:35	1		DB-5MS 0.25(mm)
240-65994-1 MSD		06/22/2016 00:04	1	Xf2110.D	DB-5MS 0.25(mm)
240-65994-2		06/22/2016 01:01	1	Xf2112.D	DB-5MS 0.25(mm)
240-65994-3		06/22/2016 01:30	1	Xf2113.D	DB-5MS 0.25(mm)
240-65994-4		06/22/2016 01:59	1	Xf2114.D	DB-5MS 0.25(mm)
240-65994-5		06/22/2016 02:27	1	Xf2115.D	DB-5MS 0.25(mm)
240-65994-6		06/22/2016 02:56	1	Xf2116.D	DB-5MS 0.25(mm)
240-65994-7		06/22/2016 03:25	1	Xf2117.D	DB-5MS 0.25(mm)
240-65994-8		06/22/2016 03:54	1	Xf2118.D	DB-5MS 0.25(mm)
240-65994-9		06/22/2016 04:22	1	Xf2119.D	DB-5MS 0.25(mm)
240-65994-10		06/22/2016 04:51	1	Xf2120.D	DB-5MS 0.25(mm)
240-65994-11		06/22/2016 05:20	1	Xf2121.D	DB-5MS 0.25(mm)
240-65996-1		06/22/2016 05:48	1	Xf2122.D	DB-5MS 0.25(mm)
240-65996-5		06/22/2016 06:17	1	Xf2123.D	DB-5MS 0.25(mm)
CCV 680-438264/24		06/22/2016 06:45	1	Xf2124.D	DB-5MS 0.25(mm)

GC/MS SEMI VOA BATCH WORKSHEET

Lab Name: TestAmerica Savannah Job No.: 240-65994-1

SDG No.:

Batch Number: 437585 Batch Start Date: 06/16/16 13:29 Batch Analyst: Simmons, Richard B

Batch Method: 680 Batch End Date: 06/17/16 07:29

Lab Sample ID	Client Sample ID	Method Chain	Basis	GrossWeight	TareWeight	InitialAmount	FinalAmount	ReceivedpH	ResidualChloChe ck
240-65994-E-1	MRC-SW5A1-061316	680, 680	Т			504.4 mL	.5 mL	8 SU	N
240-65994-D-2	MRC-SW5A2-061316	680, 680	Т			509.9 mL	.5 mL	8 SU	N
240-65994-E-3	MRC-SW5B-061316	680, 680	Т	1548.5 g	510.9 g	1037.6 mL	1 mL	8 SU	N
240-65994-E-4	MRC-SW6A-061316	680, 680	Т	1548.0 g	510.4 g	1037.6 mL	1 mL	8 SU	N
240-65994-E-5	MRC-SW6B-061316	680, 680	Т	1552.1 g	509.7 g	1042.4 mL	1 mL	8 SU	N
240-65994-D-6	MRC-SW7A-061316	680, 680	Т			501.9 mL	.5 mL	8 SU	N
240-65994-E-7	MRC-SW7B-061316	680, 680	Т	1522.7 g	509.8 g	1012.9 mL	1 mL	8 SU	N
240-65994-D-8	MRC-SW8A-061316	680, 680	Т	1551.0 g	511.6 g	1039.4 mL	1 mL	8 SU	N
240-65994-D-9	MRC-SW8B-061316	680, 680	Т	1518.1 g	509.8 g	1008.3 mL	1 mL	8 SU	N
240-65994-D-10	MRC-SW9A-061316	680, 680	Т	1550.6 g	511.0 g	1039.6 mL	1 mL	8 SU	N
240-65994-E-11	MRC-SW9B-061316	680, 680	Т	1549.1 g	510.8 g	1038.3 mL	1 mL	8 SU	N
240-65996-G-1	MRC-SWFB-061316	680, 680	Т	1523.7 g	512.4 g	1011.3 mL	1 mL	7 SU	N
240-65996-E-5	MRC-SWDUP2-06131	680, 680	Т	1547.6 g	512.0 g	1035.6 mL	1 mL	8 SU	N
MB 680-437585/15		680, 680				1000 mL	1 mL	7 SU	N
LCS 680-437585/16		680, 680				1000 mL	1 mL	7 SU	N
240-65994-D-1 MS	MRC-SW5A1-061316	680, 680	Т			501.4 mL	.5 mL	8 SU	N
240-65994-D-1 MSD	MRC-SW5A1-061316	680, 680	Т	1029.3 g	510.6 g	518.7 mL	.5 mL	8 SU	N

Lab Sample ID	Client Sample ID	Method Chain	Basis	680wkSPIKE 00096	680wkSURR 00112	680wkSURR 00113		
240-65994-E-1	MRC-SW5A1-061316	680, 680	T		0.5 mL			
240-65994-D-2	MRC-SW5A2-061316	680, 680	Т		0.5 mL			
240-65994-E-3	MRC-SW5B-061316	680, 680	Т		1 mL			
240-65994-E-4	MRC-SW6A-061316	680, 680	Т		1 mL			
240-65994-E-5	MRC-SW6B-061316	680, 680	Т		1 mL			
240-65994-D-6	MRC-SW7A-061316	680, 680	Т		0.5 mL			
240-65994-E-7	MRC-SW7B-061316	680, 680	Т		1 mL			
240-65994-D-8	MRC-SW8A-061316	680, 680	Т		1 mL			

The pound sign (#) in the amount added field denotes that the reagent was used undiluted. All calculations are performed using the stated concentration for this reagent.

GC/MS SEMI VOA BATCH WORKSHEET

Lab Name: TestAmerica Savannah Job No.: 240-65994-1

SDG No.:

Batch Number: 437585 Batch Start Date: 06/16/16 13:29 Batch Analyst: Simmons, Richard B

Batch Method: 680 Batch End Date: 06/17/16 07:29

Lab Sample ID	Client Sample ID	Method Chain	Basis		680wkSURR 00112	680wkSURR 00113		
				00096				
240-65994-D-9	MRC-SW8B-061316	680, 680	Т		1 mL			
240-65994-D-10	MRC-SW9A-061316	680, 680	Т		1 mL			
240-65994-E-11	MRC-SW9B-061316	680, 680	Т		1 mL			
240-65996-G-1	MRC-SWFB-061316	680, 680	Т		1 mL			
240-65996-E-5	MRC-SWDUP2-06131	680, 680	T		1 mL			
MB 680-437585/15		680, 680				1 mL		
LCS 680-437585/16		680, 680		1 mL		1 mL		
240-65994-D-1 MS	MRC-SW5A1-061316	680, 680	Т	0.5 mL		0.5 mL		
240-65994-D-1 MSD	MRC-SW5A1-061316	680, 680	Т	0.5 mL		0.5 mL		

The pound sign (#) in the amount added field denotes that the reagent was used undiluted. All calculations are performed using the stated concentration for this reagent.

GC/MS SEMI VOA BATCH WORKSHEET

Lab Name: TestAmerica Savannah Job No.: 240-65994-1

SDG No.:

Batch Number: 437585 Batch Start Date: 06/16/16 13:29 Batch Analyst: Simmons, Richard B

Batch Method: 680 Batch End Date: 06/17/16 07:29

Batch Notes					
Balance ID	23				
Batch Comment	680 box M680-71				
Concentration End Time	1059				
Concentration Start Time	1012				
Analyst ID - Concentration	CLP				
Exchange Solvent ID	4526383				
Exchange Solvent Name	Hexanes				
Exchange Solvent Volume Used	10 mL				
Extraction 1 End Time	0729				
Extraction 1 Start Time	1329				
pH Paper ID	4505419 4452485 4481609				
Pipette ID	AA06G				
Prep Solvent ID	4585720				
Prep Solvent Name	MeCL2				
Prep Solvent Volume Used	70 mL				
Person's name who did the prep	RBS/CEW				
Analyst ID - Reagent Drop Witness	CEW/RBS				
Residual Chlorine Indicator ID	4577997				
Analyst ID - Spike Analyst	RBS				
Analyst ID - Spike Witness Analyst	CEW				
Sufficient volume for MS/MSD?	Yes				
Syringe ID	33814752				
Vial ID	74552				

Basis	Basis Description
Т	Total/NA

The pound sign (#) in the amount added field denotes that the reagent was used undiluted. All calculations are performed using the stated concentration for this reagent.

SAMPLE IDENTIFICATION	MRC-SW6B-061316
COMPOUND	TRICHLOROETHENE
COMPOUND AREA	13232
INTERNAL STANDARD AMOUNT (ng)	10
DILUTION FACTOR	1
INTERNAL STANDARD AREA	968710
AVERAGE RRF	0.2761
13232 x 10 x 1 / 968710 x 0.2761	0.49 ug/L

FORM I GC/MS VOA ORGANICS ANALYSIS DATA SHEET

 SDG No.:
 Client Sample ID: MRC-SW6B-061316
 Lab Sample ID: 240-65994-5

 Matrix: Water
 Lab File ID: UXJ5614.D

 Analysis Method: 8260C
 Date Collected: 06/13/2016 12:52

 Sample wt/vol: 5(mL)
 Date Analyzed: 06/20/2016 14:43

Soil Aliquot Vol: _____ Dilution Factor: 1_____

Lab Name: TestAmerica Canton Job No.: 240-65994-1

Soil Extract Vol.: _____ GC Column: <u>DB-624</u> ID: <u>0.18(mm)</u>

% Moisture: _____ Level: (low/med) <u>Low</u>

Analysis Batch No.: 235154 Units: ug/L

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
79-20-9	Methyl acetate	10	U	10	2.3
1634-04-4	Methyl tert-butyl ether	1.0	U	1.0	0.20
108-87-2	Methylcyclohexane	1.0	U	1.0	0.43
75-09-2	Methylene Chloride	1.0	U *	1.0	0.33
100-42-5	Styrene	1.0	U	1.0	0.45
127-18-4	Tetrachloroethene	1.0	U	1.0	0.31
108-88-3	Toluene	1.0	U	1.0	0.23
156-60-5	trans-1,2-Dichloroethene	1.0	U	1.0	0.30
10061-02-6	trans-1,3-Dichloropropene	1.0	U	1.0	0.56
79-01-6	Trichloroethene	0.49	J	1.0	0.22
75-69-4	Trichlorofluoromethane	1.0	U	1.0	0.49
75-01-4	Vinyl chloride	1.0	U	1.0	0.29
1330-20-7	Xylenes, Total	2.0	U	2.0	0.52

CAS NO.	SURROGATE	%REC	Q	LIMITS
2037-26-5	Toluene-d8 (Surr)	110		80-120
1868-53-7	Dibromofluoromethane (Surr)	113		79-120
460-00-4	4-Bromofluorobenzene (Surr)	104		61-120
17060-07-0	1,2-Dichloroethane-d4 (Surr)	115		78-125

Report Date: 21-Jun-2016 10:08:50 Chrom Revision: 2.2 20-Apr-2016 13:59:46

TestAmerica Canton
Target Compound Quantitation Report

Data File: \ChromNA\Canton\ChromData\A3UX11\20160620-55569.b\UXJ5614.D

Lims ID: 240-65994-B-5 Client ID: MRC-SW6B-061316

Sample Type: Client

Inject. Date: 20-Jun-2016 14:43:30 ALS Bottle#: 14 Worklist Smp#: 42

Purge Vol: 5.000 mL Dil. Factor: 1.0000

Sample Info: 240-0055569-042

Misc. Info.: J60620A,8260LLUX11,,43582

Operator ID: 43582 Instrument ID: A3UX11

Method: \\ChromNA\Canton\ChromData\A3UX11\20160620-55569.b\8260_11.m

Limit Group: MSV 8260C ICAL

Last Update:21-Jun-2016 10:07:57Calib Date:28-May-2016 13:41:30Integrator:RTEID Type:Deconvolution IDQuant Method:Internal StandardQuant By:Initial CalibrationLast ICal File:\\ChromNA\Canton\ChromData\A3UX11\20160528-54939.b\UXJ4951.D

Column 1 : DB-624 (0.18 mm) Det: MS SCAN

Process Host: XAWRK033

First Level Reviewer: evansle Date: 21-Jun-2016 09:55:14

First Level Reviewer: evansle			Da	ate:		21-Jun-201		
		RT	Exp RT	Dlt RT			OnCol Amt	
Compound	Sig	(min.)	(min.)	(min.)	Q	Response	ug/l	Flags
* 1 Fluorobonzono	07	Г 11Г	Г 11Г	0.000	00 (0/0710	10.0	
* 1 Fluorobenzene	96	5.115	5.115	0.000	99 <		10.0	
* 2 Chlorobenzene-d5	117	7.777	7.777	0.000	85	656984	10.0	
* 3 1,4-Dichlorobenzene-d4	152	10.026	10.026	0.000	94	237604	10.0	
\$ 4 Dibromofluoromethane (Surr	113	4.547	4.547	0.000	97	290819	13.5	
\$ 51,2-Dichloroethane-d4 (Sur	65 00	4.831	4.831	0.000	98	333773	13.8	
\$ 6 Toluene-d8 (Surr)	98 05	6.476	6.476	0.000	92	1224701	13.1	
\$ 7 4-Bromofluorobenzene (Surr	95 05	8.890	8.890	0.000	92	349842	12.4	
9 Dichlorodifluoromethane	85		1.506				ND	
10 Chloromethane	50 62		1.636				ND	
12 Vinyl chloride 15 Bromomethane	62 94		1.731 2.015				ND ND	
16 Chloroethane	94 64		2.015				ND ND	
18 Trichlorofluoromethane	101		2.110				ND ND	
21 1,1-Dichloroethene	96		2.737				ND ND	
22 1,1,2-Trichloro-1,2,2-trif	151		2.737				ND	
23 Acetone	43		2.749				ND	
26 Carbon disulfide	43 76		2.700				ND ND	
29 Methyl acetate	43		3.033				ND	
30 Methylene Chloride	84		3.115				ND	
33 Methyl tert-butyl ether	73		3.340				ND	
34 trans-1,2-Dichloroethene	96		3.352				ND	
36 1,1-Dichloroethane	63		3.683				ND	
41 cis-1,2-Dichloroethene	96		4.157				ND	
42 2-Butanone (MEK)	43		4.157				ND	
49 Chloroform	83		4.417				ND	
50 1,1,1-Trichloroethane	97		4.583				ND	
51 Cyclohexane	56		4.642				ND	
53 Carbon tetrachloride	117		4.725				ND	
55 Benzene	78		4.890				ND	
56 1,2-Dichloroethane	62		4.890				ND	
60 Trichloroethene	130	5.423	5.423	0.000	96	13232	0.4948	
		020	020	0.000	. •	.0202	3	

FORM VI GC/MS VOA BY INTERNAL STANDARD - INITIAL CALIBRATION DATA CURVE EVALUATION

Lab Name: TestAmerica Canton Job No.: 240-65994-1 Analy Batch No.: 232366

SDG No.:

Instrument ID: $\underline{\text{A3UX11}}$ GC Column: $\underline{\text{DB-624}}$ ID: $\underline{\text{0.18 (mm)}}$ Heated Purge: (Y/N) N

Calibration Start Date: 05/28/2016 09:12 Calibration End Date: 05/28/2016 11:03 Calibration ID: 34632

ANALYTE		RRF						COEFFICIENT			MIN RRF	%RSD		R^2	# MIN R^2
	LVL 1	LVL 2	LVL 3	LVL 4	LVL 5	TYPE	В	M1	M2				%RSD	OR COD	OR COD
	LVL 6														
Isobutyl alcohol	0.0062	0.0059	0.0063	0.0071	0.0058	Ave		0.0060				14.3	20.0		
	0.0045														
1,2-Dichloroethane	0.2981	0.2707	0.2764	0.2862	0.2852	Ave		0.2815			0.1000	3.7	20.0		
	0.2726														
Benzene	1.0915	1.0274	1.0168	1.0745	1.0726	Ave		1.0572			0.5000	2.8	20.0		
	1.0604	0.0637	0.0501	0.0519	0.0539			0.0587				1 7 0	0.0		
n-Heptane	0.0767 0.0562	0.0637	0.0501	0.0519	0.0539	Ave		0.0587				17.0	20.0		
Trichloroethene	0.2904	0.2627	0 2610	0.2746	0.2860	70		0.2761	$\overline{}$		0.1500	4.3	20.0		
Trichioroethene	0.2807	0.2027	0.2019	0.2/40	0.2000	Ave		0.2701			0.1300	4.3	20.0		
Methylcyclohexane	0.3899	0.3438	0 3048	0.3065	0.3225	Ave		0.3306			0.1000	9.8	20.0		
The engley elone name	0.3159	0.0100	0.3010	0.3003	0.3223	1100		0.3300			0.1000	J.0	20.0		
1,2-Dichloropropane	0.2636	0.2477	0.2418	0.2504	0.2626	Ave		0.2533			0.1000	3.4	20.0		
,	0.2540														
Dibromomethane	0.1260	0.1267	0.1228	0.1240	0.1303	Ave		0.1259				2.0	20.0		
	0.1258														
1,4-Dioxane	0.0010	0.0013	0.0014	0.0016	0.0017	Lin1	-0.017	0.0017						0.9990	0.9900
	+++++														
Dichlorobromomethane	0.2938	0.2907	0.2723	0.2880	0.3112	Ave		0.2929			0.1500	4.5	20.0		
	0.3017														
2-Chloroethyl vinyl ether	0.1384	0.1484	0.1416	0.1458	0.1535	Ave		0.1454				3.6	20.0		
	0.1445	0.000	0 0000	0 1005		_		0.000			0.4500				
cis-1,3-Dichloropropene	0.3776	0.3788	0.3775	0.4025	0.4308	Ave		0.3977			0.1500	5.9	20.0		
A Mathail O mantanana (MTDK)	0.4191	0.1670	0 1624	0.1645	0.1729	7		0.1675			0.0500	4.5	20.0		
4-Methyl-2-pentanone (MIBK)	0.1794	0.1070	0.1034	0.1643	0.1729	Ave		0.10/3			0.0300	4.5	20.0		
Toluene	1.6592	1.5809	1 5586	1.6505	1.6591	Δττο		1.6133			0.4000	3.0	20.0		
TOTACHE	1.5713	1.5005	1.3300	1.0505	1.0001	2100		1.0133			0.1000	3.0	20.0		
trans-1,3-Dichloropropene	0.4368	0.4583	0.4669	0.5112	0.5324	Ave		0.4831			0.1000	7.4	20.0		
, , , , , , , , , , , , , , , , , , , ,	0.4929											-			
Ethyl methacrylate	0.4247	0.4124	0.4087	0.4397	0.4428	Ave		0.4217				4.0	20.0		
1	0.4021														
1,1,2-Trichloroethane	0.2779	0.2893	0.2905	0.2951	0.3013	Ave		0.2874			0.1000	4.0	20.0		
	0.2701														
Tetrachloroethene	0.3260	0.2891	0.2964	0.3117	0.3178	Ave		0.3065			0.1500	4.6	20.0		
	0.2981														
1,3-Dichloropropane	0.5178	0.5274	0.5141	0.5435	0.5440	Ave		0.5237				3.6	20.0		
	0.4955	0 1000	0.4565	0.406=	0.403=			0.4500			0.0500				
2-Hexanone	0.1845	0.1883	0.1732	0.1827	0.1815	Ave		0.1780			0.0500	6.2	20.0		
	0.1578					1									

Note: The ml coefficient is the same as Ave RRF for an Ave curve type.

SAMPLE IDENTIFICATION	MRC-SW1A-061316
COMPOUND	1,4-dioxane
COMPOUND AREA	2630
INTERNAL STANDARD AMOUNT (ng)	0.5
DILUTION FACTOR	1
INTERNAL STANDARD AREA	340502
AVERAGE RRF	0.5991
2630 x 0.5 x 1 / 340502 x 0.5991	0.0064 ng
SAMPLE VOLUME (ml)	100
VOLUME EXTRACT (ml)	2
VOLUME INJECTED (μl)	1
conversion	1000

0.13 ug/L

0.00644624438424636 x 2 / (100 x 1) x 1000

FORM I GC/MS SEMI VOA ORGANICS ANALYSIS DATA SHEET

Lab Name: TestAmerica Burlington Job No.: 240-65994-1

SDG No.:

Client Sample ID: MRC-SW1A-061316 Lab Sample ID: 240-65996-2

Matrix: Water Lab File ID: 20593_16.D

Analysis Method: 522 MOD Date Collected: 06/13/2016 11:51

Extract. Method: 3535A Date Extracted: 06/22/2016 18:02

Sample wt/vol: 100(mL) Date Analyzed: 06/24/2016 23:45

Con. Extract Vol.: 2000(uL) Dilution Factor: 1

Injection Volume: 2(uL) Level: (low/med) Low

% Moisture: GPC Cleanup:(Y/N) N

Analysis Batch No.: 106221 Units: ug/L

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
123-91-1	1,4-Dioxane	0.13	J	0.20	0.057

CAS NO.	SURROGATE	%REC	Q	LIMITS
17647-74-4	1,4-Dioxane-d8 (Surr)	92		70-130

Report Date: 27-Jun-2016 14:09:08 Chrom Revision: 2.2 04-Mar-2016 14:36:24

TestAmerica Burlington
Target Compound Quantitation Report

Data File: \\ChromNA\Burlington\ChromData\CHS.i\20160624-20593.b\20593_16.D \\Lims ID: 240-65996-D-2-A \\Lab Sample ID: 200-65996-2

Client ID: MRC-SW1A-061316

Sample Type: Client

Inject. Date: 24-Jun-2016 23:45:30 ALS Bottle#: 16 Worklist Smp#: 16

Injection Vol: 2.0 uL Dil. Factor: 1.0000

Sample Info: 200-0020593-016

Operator ID: jpd Instrument ID: CHS.i

Method: \ChromNA\Burlington\ChromData\CHS.i\20160624-20593.b\522_MOD_2016.m

Limit Group: SV_522_Limits

Last Update: 27-Jun-2016 14:09:04 Calib Date: 01-Jun-2016 14:13:30

Integrator:RTEID Type:RT Order IDQuant Method:Internal StandardQuant By:Initial CalibrationLast ICal File:\\ChromNA\Burlington\ChromData\CHS.i\20160601-20247.b\20247_08.D

Column 1: Rxi-5ms (0.25 mm) Det: MS SCAN

Process Host: XAWRK027

First Level Reviewer: maheseep Date: 27-Jun-2016 08:40:31

Compound	Sig	RT (min.)	Exp RT (min.)	Dlt RT (min.)	Q	Response	OnCol Amt ng/ul	Flags
* 1 Tetrahydrofuran-d8	46	3.103	3.112	-0.009	87	340502	0.5000	
\$ 21,4-Dioxane-d8 (Surr)	64	4.044	4.048	-0.004	100	35169	0.0922	
3 1,4-Dioxane	58	4.088	4.088	0.000	100	2630	0.006446	M

\$ 4 BFB

QC Flag Legend

Review Flags

M - Manually Integrated

Reagents:

SV522ISi_00029 Amount Added: 4.00 Units: uL Run Reagent

FORM VI

GC/MS SEMI VOA BY INTERNAL STANDARD - INITIAL CALIBRATION DATA CURVE EVALUATION

 Lab Name: TestAmerica Burlington
 Job No.: 240-65994-1
 Analy Batch No.: 105200

 SDG No.:
 Instrument ID: CHS.i
 GC Column: Rxi-5ms ID: 0.25 (mm)
 Heated Purge: (Y/N) N

 Calibration Start Date: 06/01/2016 12:52
 Calibration End Date: 06/01/2016 14:13
 Calibration ID: 34839

Calibration Files:

LEVEL:	LAB SAMPLE ID:	LAB FILE ID:
Level 1	IC 200-105200/8	20247 08.D
Level 2	IC 200-105200/7	20247 07.D
Level 3	IC 200-105200/6	20247 06.D
Level 4	ICIS 200-105200/5	20247 05.D
Level 5	IC 200-105200/4	20247 04.D
Level 6	IC 200-105200/3	20247 ⁻ 03.D
Level 7	IC 200-105200/2	20247 02.D

ANALYTE								COEFFICIENT		MIN RRF	%RSD	#	MAX		# MIN		
	LVL 1	LVL 2	LVL 3	LVL 4	LVL 5	TYPE	В	M1	M2					%RSD	OR COD	OR	COD
	LVL 6	LVL 7															
1,4-Dioxane	0.5850	0.6144	0.5567	0.5785	0.5757	Ave		0.5991			0.0500	5.7		15.0		0.9	9900
	0.6358	0.6477					`										
1,4-Dioxane-d8 (Surr)	0.5502	0.5478	0.5635	0.5442	0.5514	Ave		0.5601				3.1		15.0		0.9	9900
	0.5927	0.5710															

Note: The m1 coefficient is the same as Ave RRF for an Ave curve type.

SAMPLE IDENTIFICATION

MRC-SW6B-061316

COMPOUND	Pentachlorobiphenyl
COMPOUND AREA	591
INTERNAL STANDARD AMOUNT (ng)	0.75
DILUTION FACTOR	1
INTERNAL STANDARD AREA	70730
AVERAGE RRF	0.1668
591 x 0.75 x 1 / 70730 x 0.1668	0.0376 ng/ml
SAMPLE VOLUME (ml)	1042.4
VOLUME EXTRACT (ml)	1
VOLUME INJECTED (μΙ)	1
conversion	1000
0.037570678647242 x 1 / (1042.4 x 1) x 1000	0.036 ug/L

FORM I GC/MS SEMI VOA ORGANICS ANALYSIS DATA SHEET

Lab Name: TestAmerica Savannah Job No.: 240-65994-1

SDG No.:

Client Sample ID: MRC-SW6B-061316 Lab Sample ID: 240-65994-5

Matrix: Water Lab File ID: Xf2115.D

Analysis Method: 680 Date Collected: 06/13/2016 12:52

Extract. Method: 680 Date Extracted: 06/16/2016 13:29

Sample wt/vol: 1042.4 (mL) Date Analyzed: 06/22/2016 02:27

Con. Extract Vol.: 1(mL) Dilution Factor: 1

Injection Volume: 2(uL) Level: (low/med) Low

% Moisture: _____ GPC Cleanup:(Y/N) N

Analysis Batch No.: 438264 Units: ug/L

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
28655-71-2	Heptachlorobiphenyl	0.29	U *	0.29	0.029
26601-64-9	Hexachlorobiphenyl	0.19	U *	0.19	0.014
53742-07-7	Nonachlorobiphenyl	0.48	Π *	0.48	0.047
55722-26-4	Octachlorobiphenyl	0.29	Π *	0.29	0.036
27323-18-8	Monochlorobiphenyl	0.096	Π *	0.096	0.0054
2051-24-3	DCB Decachlorobiphenyl	0.48	U *	0.48	0.067
25512-42-9	Dichlorobiphenyl	0.096	U *	0.096	0.0052
25429-29-2	Pentachlorobiphenyl	0.036	J *	0.19	0.013
26914-33-0	Tetrachlorobiphenyl	0.19	U *	0.19	0.012
25323-68-6	Trichlorobiphenyl	0.096	U *	0.096	0.0062

CAS NO.	SURROGATE	%REC	Q	LIMITS
STL00281	Decachlorobiphenyl-13C12	71	*	25-113

Report Date: 24-Jun-2016 10:24:24 Chrom Revision: 2.2 20-Apr-2016 13:59:46

TestAmerica Savannah
Target Compound Quantitation Report

Data File: \\ChromNA\Savannah\ChromData\CMSX\20160621-30741.b\Xf2115.D

Lims ID: 240-65994-E-5-A Client ID: MRC-SW6B-061316

Sample Type: Client

Inject. Date: 22-Jun-2016 02:27:30 ALS Bottle#: 14 Worklist Smp#: 15

Injection Vol: 2.0 ul Dil. Factor: 1.0000

Sample Info: 240-65994-E-5-A Misc. Info.: 680-0030741-015

Operator ID: Instrument ID: CMSX

Method: \ChromNA\Savannah\ChromData\CMSX\20160621-30741.b\680_CMSX.m

Limit Group: 680

Last Update: 24-Jun-2016 10:24:07 Calib Date: 24-Apr-2016 17:35:30

Integrator:RTEID Type:RT Order IDQuant Method:Internal StandardQuant By:Initial CalibrationLast ICal File:\\ChromNA\Savannah\ChromData\CMSX\20160424-29094.b\Xd2408.D

Column 1: Det: MS SCAN

Process Host: XAWRK013

First Level Reviewer: davisn Date: 22-Jun-2016 11:05:26

Compound	Sig	RT	EXP RT	DLT RT	Q	Response	On-Col Amt ug/ml	Flags
* 5 Phenanthrene-d10	188	11.010	11.010	0.0	98	70730	0.7500	 S
A 27 Total Pentachlorobiphenyls	326	14.771	12.923 -	16.619	0	591	0.0376	
* 15 Chrysene-d12	240	17.177	17.177	0.0	100	55487	0.7500	S
\$ 22 Decachlorobiphenyl-13C12	510	20.334	20.334	0.0	42	5217	1.77	

QC Flag Legend

Processing Flags

s - Failed ISTD Recovery Test

Reagents:

SM-680istd_00036 Amount Added: 30.00 Units: uL Run Reagent

Report Date: 24-Jun-2016 10:24:24 Chrom Revision: 2.2 20-Apr-2016 13:59:46

Data File:

WorkSheet Quantitation Report

Sig	RT	Lower RT	Upper RT	Q	Response	On-Col Amt ug/ml	Ratio Range	Ratio	Flags
* 5 P 188 189		rene-d10 11.010 11.010	0.0	98	70730 10911	0.7500	5.9- 7.5	6.5	S
A 27 326 324 254		ntachlord 12.923 -	bbipheny 16.619	ls 29	591 394 1343	0.0376	1.4- 1.8 41.9- 121.9	1.5 0.3	
* 15 (240 241		e-d12 17.177 17.177	0.0	100	55487 11035	0.7500	4.3- 5.9	5.0	S
\$ 22 I 510 512	20.334	orobipher 20.334 20.355		2 42	5217 4359	1.77	0.9- 1.3	1.2	

OC Flag Legend Processing Flags

s - Failed ISTD Recovery Test

Reagents:

SM-680istd_00036 Amount Added: 30.00 Units: uL Run Reagent

FORM VI

GC/MS SEMI VOA BY INTERNAL STANDARD - INITIAL CALIBRATION DATA CURVE EVALUATION

Lab Name: TestAmerica Savannah Job No.: 240-65994-1 Analy Batch No.: 430367

SDG No.:

Instrument ID: CMSX GC Column: DB-5MS ID: 0.25(mm) Heated Purge: (Y/N) N

Calibration Start Date: 04/24/2016 15:41 Calibration End Date: 04/24/2016 17:35 Calibration ID: 45292

Calibration Files:

LEVEL:	LAB SAMPLE ID:	LAB FILE ID:
Level 1	IC 680-430367/28	Xd2408.D
Level 2	IC 680-430367/27	Xd2407.D
Level 3	ICISAV 680-430367/4	Xd2404.D
Level 4	IC 680-430367/26	Xd2406.D
Level 5	IC 680-430367/25	Xd2405.D

ANALYTE			RRF			CURVE		COEFFICIE	NT	# MIN RRF	%RSD		AX	R^2	#	MIN R^2
	LVL 1	LVL 2	LVL 3	LVL 4	LVL 5	TYPE	В	M1	M2			8	RSD	OR COD		OR COD
Monochlorobiphenyl	0.9409	0.9877	0.9866	1.0018	1.0386	Ave		0.9911			3.5	2	0.0			
Dichlorobiphenyl	0.6430	0.6782	0.6962	0.6962	0.7337	Ave		0.6895			4.8	2	0.0			
Trichlorobiphenyl	0.4097	0.4114	0.4253	0.4324	0.4604	Ave		0.4278			4.8	2	0.0			
PCB-104			0.2443			Ave		0.2443				3	0.0			
Tetrachlorobiphenyl	0.2470	0.2621	0.2562	0.2680	0.2810	Ave		0.2629			4.9	2	0.0			
Pentachlorobiphenyl	0.1465	0.1582	0.1680	0.1763	0.1852	Ave		0.1668)		9.1	2	0.0			
PCB-77			0.3640			Ave		0.3640				3	0.0			
Hexachlorobiphenyl	0.1338	0.1411	0.1498	0.1546	0.1625	Ave		0.1484			7.6	2	0.0			
Heptachlorobiphenyl	0.1015	0.1109	0.1179	0.1228	0.1323	Ave		0.1171			10.0	2	0.0			
Octachlorobiphenyl	0.0938	0.1067	0.1105	0.1195	0.1284	Ave		0.1118			11.7	2	0.0			
PCB-208			0.0500			Ave		0.0500				3	0.0			
Nonachlorobiphenyl			0.0409			Ave		0.0380			14.1	2	0.0			
DCB Decachlorobiphenyl	0.0297	0.0366	0.0390	0.0413	0.0437	Ave		0.0380			14.1	2	0.0			
Decachlorobiphenyl-13C12	0.0248	0.0311	0.0307	0.0339	0.0354	Ave		0.0312			13.1	2	0.0			

Note: The ml coefficient is the same as Ave RRF for an Ave curve type.

MRC SW WATER DATA 240-65994-1

			-			
FRACTION	CHEMICAL	MRC-SW6A-061316	UNITS	MRC-SWDUP2-061316	RPD	D
OV	TRICHLOROETHENE	0.26 J	UG/L	0.25 J	3.92	0.01

Current RPD Quality Control Limit: 30 %.
Shaded cells indicate RPDs that exceed the applicable quality control limit.

Friday, July 29, 2016 Page 1 of 1

APPENDIX C—CHEMICAL-RESULTS DATA TABLES

Cow Pen Creek/Dark Head Cove Surface Waters June 2016 Full Appendix

LOCATION	MRC-SW1A		MRC-SW2A		MRC-SW5A1	MRC-SW5A2
SAMPLE ID	MRC-SW1A-061316	MRC-SW2A-061316	MRC-SW2A-061316-AVG	MRC-SW2A-061316-D	MRC-SW5A1-061316	MRC-SW5A2-061316
SAMPLE DATE	20160613	20160613	20160613	20160613	20160613	20160613
VOLATILES (UG/L)						
1,1,1-TRICHLOROETHANE	0.44 U	0.44 U	0.44 U	NA	0.44 U	0.44 U
1,1,2,2-TETRACHLOROETHANE	0.22 U	0.22 U	0.22 U	NA	0.22 U	0.22 U
1,1,2-TRICHLOROETHANE	0.24 U	0.24 U	0.24 U	NA	0.24 U	0.24 U
1,1,2-TRICHLOROTRIFLUOROETHANE	0.45 U	0.45 U	0.45 U	NA	0.45 U	0.45 U
1,1-DICHLOROETHANE	0.3 U	0.3 U	0.3 U	NA	0.3 U	0.3 U
1,1-DICHLOROETHENE	0.45 U	0.45 U	0.45 U	NA	0.45 U	0.45 U
1,2,4-TRICHLOROBENZENE	0.32 U	0.32 U	0.32 U	NA	0.32 U	0.32 U
1,2-DIBROMO-3-CHLOROPROPANE	0.82 UJ	0.82 UJ	0.82 UJ 0.32 U	NA NA	0.82 UJ	0.82 UJ 0.32 U
1,2-DIBROMOETHANE 1,2-DICHLOROBENZENE	0.32 U 0.25 U	0.32 U 0.25 U	0.32 U 0.25 U	NA NA	0.32 U 0.25 U	0.32 U 0.25 U
1,2-DICHLOROETHANE	0.25 U	0.25 U	0.25 U	NA NA	0.25 U	0.25 U 0.23 U
1,2-DICHLOROPROPANE	0.23 U	0.23 U 0.25 U	0.23 U	NA NA	0.23 U	0.23 U 0.25 U
1,3-DICHLOROBENZENE	0.25 U	0.25 U	0.25 U	NA NA	0.25 U	0.25 U 0.19 U
1,4-DICHLOROBENZENE	0.13 U	0.13 U	0.19 U	NA NA	0.19 U	0.19 U
2-BUTANONE	0.53 U	0.53 U	0.53 U	NA NA	0.53 U	0.27 U
2-HEXANONE	0.48 U	0.48 U	0.53 U	NA NA	0.33 U	0.33 U
4-METHYL-2-PENTANONE	0.99 U	0.99 U	0.99 U	NA NA	0.99 U	0.99 U
ACETONE	0.94 U	0.94 U	0.94 U	NA NA	0.94 U	0.94 U
BENZENE	0.35 U	0.35 U	0.35 U	NA NA	0.35 U	0.35 U
BROMODICHLOROMETHANE	0.29 U	0.29 U	0.29 U	NA NA	0.29 U	0.29 U
BROMOFORM	0.56 U	0.56 U	0.56 U	NA	0.56 U	0.56 U
BROMOMETHANE	0.44 U	0.44 U	0.44 U	NA	0.44 UJ	0.44 UJ
CARBON DISULFIDE	0.38 U	0.38 U	0.38 U	NA	0.38 U	0.38 U
CARBON TETRACHLORIDE	0.43 U	0.43 U	0.43 U	NA	0.43 U	0.43 U
CHLOROBENZENE	0.25 U	0.25 U	0.25 U	NA	0.25 U	0.25 U
CHLORODIBROMOMETHANE	0.43 U	0.43 U	0.43 U	NA	0.43 U	0.43 U
CHLOROETHANE	0.32 U	0.32 U	0.32 U	NA	0.32 U	0.32 U
CHLOROFORM	0.25 U	0.25 U	0.25 U	NA	0.25 U	0.25 U
CHLOROMETHANE	0.44 UJ	0.44 UJ	0.44 UJ	NA	0.44 UJ	0.44 UJ
CIS-1,2-DICHLOROETHENE	0.26 U	0.26 U	0.26 U	NA	0.26 U	0.26 U
CIS-1,3-DICHLOROPROPENE	0.46 U	0.46 U	0.46 U	NA	0.46 U	0.46 U
CYCLOHEXANE DICHLORODIFLUOROMETHANE	0.45 U 0.32 UJ	0.45 U 0.32 UJ	0.45 U 0.32 UJ	NA NA	0.45 U 0.32 UJ	0.45 U 0.32 UJ
ETHYLBENZENE	0.32 UJ	0.32 UJ 0.25 U	0.32 UJ 0.25 U	NA NA	0.32 UJ 0.25 U	0.32 UJ 0.25 U
SOPROPYLBENZENE	0.25 U	0.25 U	0.25 U	NA NA	0.25 U	0.25 U
METHYL ACETATE	2.3 U	2.3 U	2.3 U	NA NA	2.3 U	2.3 U
METHYL CYCLOHEXANE	0.43 U	0.43 U	0.43 U	NA NA	0.43 U	0.43 U
METHYL TERT-BUTYL ETHER	0.2 U	0.2 U	0.43 U	NA NA	0.43 U	0.43 C
METHYLENE CHLORIDE	0.33 U	0.33 U	0.2 U	NA NA	0.2 U	0.33 U
STYRENE	0.45 U	0.45 U	0.45 U	NA NA	0.45 U	0.45 U
TETRACHLOROETHENE	0.31 U	0.31 U	0.31 U	NA NA	0.31 U	0.31 U
TOLUENE	0.23 U	0.23 U	0.23 U	NA NA	0.23 U	0.23 U
TOTAL XYLENES	0.52 U	0.52 U	0.52 U	NA NA	0.52 U	0.52 U
TRANS-1,2-DICHLOROETHENE	0.3 U	0.3 U	0.3 U	NA	0.3 U	0.3 U
TRANS-1,3-DICHLOROPROPENE	0.56 U	0.56 U	0.56 U	NA	0.56 U	0.56 U
TRICHLOROETHENE	0.22 U	0.22 U	0.22 U	NA	0.22 U	0.22 U
TRICHLOROFLUOROMETHANE	0.49 UJ	0.49 UJ	0.49 UJ	NA	0.49 UJ	0.49 UJ
VINYL CHLORIDE	0.29 U	0.29 U	0.29 U	NA	0.29 U	0.29 U
SEMIVOLATILES (UG/L)						
1,4-DIOXANE	0.13 J	0.16 J	0.14	0.12 J	NA	NA
PCBS (UG/L)						
DECACHLOROBIPHENYL	NA	NA	NA	NA	0.069 U	0.069 U
DICHLOROBIPHENYLS	NA NA	NA	NA	NA	0.0054 U	0.0053 U
HEPTACHLOROBIPHENYLS	NA NA	NA	NA NA	NA	0.03 U	0.029 U
HEXACHLOROBIPHENYLS	NA NA	NA NA	NA NA	NA NA	0.015 U	0.015 U
MONOCHLOROBIPHENYLS	NA NA	NA NA	NA NA	NA NA	0.0056 U	0.0055 U
NONACHLOROBIPHENYLS	NA NA	NA NA	NA NA	NA NA	0.049 U	0.048 U
OCTACHLOROBIPHENYLS	NA NA	NA NA	NA NA	NA NA	0.038 U	0.037 U
PENTACHLOROBIPHENYLS TETRACHLOROBIPHENYLS	NA NA	NA NA	NA NA	NA NA	0.014 U 0.013 U	0.014 U 0.013 U
TRICHLOROBIPHENYLS TRICHLOROBIPHENYLS	NA NA	NA NA	NA NA	NA NA	0.013 U 0.0064 U	0.013 U 0.0064 U
INICHLOROBIPHENILS	NA NA	NA NA	NA NA	NA NA	U.UU64 U	U.UU64 U

Cow Pen Creek/Dark Head Cove Surface Waters June 2016 Full Appendix

LOCATION	MRC-SW5B		MRC-SW6A		MRC-SW6B	MRC-SW7A
SAMPLE ID	MRC-SW5B-061316	MRC-SW6A-061316	MRC-SW6A-061316-AVG	MRC-SW6A-061316-D	MRC-SW6B-061316	MRC-SW7A-061316
SAMPLE DATE	20160613	20160613	20160613	20160613	20160613	20160613
VOLATILES (UG/L)						
1,1,1-TRICHLOROETHANE	0.44 U					
1,1,2,2-TETRACHLOROETHANE	0.22 U					
1,1,2-TRICHLOROETHANE	0.24 U					
1,1,2-TRICHLOROTRIFLUOROETHANE	0.45 U					
1,1-DICHLOROETHANE	0.3 U					
1,1-DICHLOROETHENE	0.45 U					
1,2,4-TRICHLOROBENZENE	0.32 U					
1,2-DIBROMO-3-CHLOROPROPANE	0.82 UJ	0.82 UJ	0.82 U 0.32 U	0.82 UJ	0.82 UJ	0.82 UJ 0.32 U
1,2-DIBROMOETHANE 1,2-DICHLOROBENZENE	0.32 U 0.25 U	0.32 U 0.25 U	0.32 U 0.25 U	0.32 U 0.25 U	0.32 U 0.25 U	0.32 U 0.25 U
1,2-DICHLOROBENZENE 1,2-DICHLOROETHANE	0.25 U	0.25 U	0.25 U	0.25 U 0.23 U	0.25 U 0.23 U	0.25 U 0.23 U
1,2-DICHLOROPROPANE	0.25 U					
1,3-DICHLOROPROPANE 1,3-DICHLOROBENZENE	0.25 U 0.19 U	0.25 U	0.25 U	0.25 U 0.19 U	0.25 U 0.19 U	0.25 U 0.19 U
1,4-DICHLOROBENZENE	0.13 U	0.19 U	0.19 U	0.19 U	0.19 U	0.19 U
2-BUTANONE	0.53 U	0.53 U	0.53 U	0.53 U	0.27 U	0.27 U
2-HEXANONE	0.48 U	0.33 U 0.48 U	0.33 U	0.33 U	0.33 U	0.33 U
4-METHYL-2-PENTANONE	0.99 U					
ACETONE	0.94 U					
BENZENE	0.35 U					
BROMODICHLOROMETHANE	0.29 U					
BROMOFORM	0.56 U					
BROMOMETHANE	0.44 UJ	0.44 UJ	0.44 U	0.44 U	0.44 UJ	0.44 UJ
CARBON DISULFIDE	0.38 U					
CARBON TETRACHLORIDE	0.43 U					
CHLOROBENZENE	0.25 U					
CHLORODIBROMOMETHANE	0.43 U					
CHLOROETHANE	0.32 U					
CHLOROFORM	0.25 U					
CHLOROMETHANE	0.44 UJ	0.44 UJ	0.44 U	0.44 UJ	0.44 UJ	0.44 UJ
CIS-1,2-DICHLOROETHENE	0.26 U					
CIS-1,3-DICHLOROPROPENE	0.46 U					
CYCLOHEXANE DICHLORODIFLUOROMETHANE	0.45 U 0.32 UJ	0.45 U 0.32 UJ	0.45 U 0.32 U	0.45 U 0.32 UJ	0.45 U 0.32 UJ	0.45 U 0.32 UJ
ETHYLBENZENE	0.32 UJ 0.25 U	0.32 UJ 0.25 U	0.32 U 0.25 U	0.32 UJ 0.25 U	0.32 UJ 0.25 U	0.32 UJ 0.25 U
SOPROPYLBENZENE	0.25 U					
METHYL ACETATE	2.3 U					
METHYL CYCLOHEXANE	0.43 U					
METHYL TERT-BUTYL ETHER	0.2 U	0.2 U	0.2 U	0.43 C	0.43 C	0.43 C
METHYLENE CHLORIDE	0.33 U	0.2 U				
STYRENE	0.45 U					
TETRACHLOROETHENE	0.31 U					
TOLUENE	0.23 U					
TOTAL XYLENES	0.52 U					
TRANS-1,2-DICHLOROETHENE	0.3 U					
TRANS-1,3-DICHLOROPROPENE	0.56 U					
TRICHLOROETHENE	0.22 U	0.26 J	0.255	0.25 J	0.49 J	0.22 U
TRICHLOROFLUOROMETHANE	0.49 UJ	0.49 UJ	0.49 U	0.49 UJ	0.49 UJ	0.49 UJ
VINYL CHLORIDE	0.29 U					
SEMIVOLATILES (UG/L)						
1,4-DIOXANE	NA	NA	NA	NA	NA	NA
PCBS (UG/L)		0.6.2		0.077	0.07	25-11
DECACHLOROBIPHENYL	0.067 U	0.067 U	0.0675 U	0.068 U	0.067 U	0.07 U
DICHLOROBIPHENYLS	0.0052 U	0.0054 U				
HEPTACHLOROBIPHENYLS	0.029 U	0.03 U				
HEXACHLOROBIPHENYLS MONOCHLOROBIPHENYLS	0.014 U	0.014 U 0.0054 U	0.014 U	0.014 U 0.0054 U	0.014 U 0.0054 U	0.015 U 0.0056 U
	0.0054 U 0.047 U	0.0054 U 0.047 U	0.0054 U 0.047 U	0.0054 U 0.047 U	0.0054 U 0.047 U	0.0056 U 0.049 U
NONACHLOROBIPHENYLS	0.047 U	0.047 U	0.047 U	0.047 U 0.037 U	0.047 U 0.036 U	0.049 U 0.038 U
OCTACHLOROBIPHENYLS PENTACHLOROBIPHENYLS	0.037 U 0.013 U	0.037 U 0.013 U	0.037 U 0.0135 U	0.037 U 0.014 U	0.036 U 0.036 J	0.038 U 0.014 U
TETRACHLOROBIPHENYLS TETRACHLOROBIPHENYLS	0.013 U	0.013 U 0.013 U	0.0135 U 0.013 U	0.014 U 0.013 U	0.036 J 0.012 U	0.014 U 0.013 U
TRICHLOROBIPHENYLS	0.013 U	0.013 U	0.013 U	0.013 U 0.0063 U	0.012 U 0.0062 U	0.013 U 0.0065 U
INICITEOROBIFIENTES	U.UU03 U	U.UU03 U	U.UU05 U	U.UU03 U	U.UU02 U	U.0000 U

Cow Pen Creek/Dark Head Cove Surface Waters June 2016 Full Appendix

LOCATION	MRC-SW7B	MRC-SW8A	MRC-SW8B	MRC-SW9A	MRC-SW9B
SAMPLE ID	MRC-SW7B-061316	MRC-SW8A-061316	MRC-SW8B-061316	MRC-SW9A-061316	MRC-SW9B-061316
SAMPLE DATE	20160613	20160613	20160613	20160613	20160613
/OLATILES (UG/L)					
I,1,1-TRICHLOROETHANE	0.44 U				
1,1,2,2-TETRACHLOROETHANE	0.22 U				
I,1,2-TRICHLOROETHANE	0.24 U				
1,1,2-TRICHLOROTRIFLUOROETHANE	0.45 U				
1,1-DICHLOROETHANE	0.3 U				
1,1-DICHLOROETHENE	0.45 U				
1,2,4-TRICHLOROBENZENE	0.32 U				
1,2-DIBROMO-3-CHLOROPROPANE	0.82 UJ				
1,2-DIBROMOETHANE	0.32 U				
1,2-DICHLOROBENZENE	0.25 U				
1,2-DICHLOROETHANE 1.2-DICHLOROPROPANE	0.23 U 0.25 U	0.23 U 0.25 U	0.23 U 0.25 U	0.23 U 0.25 U	0.23 U 0.25 U
1,3-DICHLOROPROPANE 1,3-DICHLOROBENZENE	0.25 U 0.19 U	0.25 U 0.19 U	0.25 U 0.19 U	0.25 U 0.19 U	0.25 U 0.19 U
1,4-DICHLOROBENZENE	0.19 U				
2-BUTANONE	0.27 U				
2-BUTANONE 2-HEXANONE	0.53 U 0.48 U	0.53 U 0.48 U	0.53 U 0.48 U	0.53 U 0.48 U	0.53 U 0.48 U
4-METHYL-2-PENTANONE	0.48 U	0.48 U	0.48 U	0.48 U 0.99 U	0.48 U
ACETONE	0.99 U				
BENZENE	0.35 U	0.35 U	0.35 U	0.34 U	0.35 U
BROMODICHLOROMETHANE	0.33 U				
BROMOFORM	0.56 U				
BROMOMETHANE	0.44 UJ				
CARBON DISULFIDE	0.38 U				
CARBON TETRACHLORIDE	0.43 U				
CHLOROBENZENE	0.25 U				
CHLORODIBROMOMETHANE	0.43 U				
CHLOROETHANE	0.32 U				
CHLOROFORM	0.25 U				
CHLOROMETHANE	1.1	0.44 UJ	0.44 UJ	0.44 UJ	0.44 UJ
CIS-1,2-DICHLOROETHENE	0.26 U				
CIS-1,3-DICHLOROPROPENE	0.46 U				
CYCLOHEXANE	0.45 U				
DICHLORODIFLUOROMETHANE	0.32 UJ				
ETHYLBENZENE	0.25 U				
ISOPROPYLBENZENE	0.35 U				
METHYL ACETATE	2.3 U				
METHYL CYCLOHEXANE	0.43 U				
METHYL TERT-BUTYL ETHER	0.2 U				
METHYLENE CHLORIDE STYRENE	0.33 U 0.45 U	0.33 U 0.45 U	0.33 U 0.45 U	0.33 U 0.45 U	0.33 U 0.45 U
TETRACHLOROETHENE	0.45 U	0.45 U	0.45 U	0.45 U 0.31 U	0.45 U
TOLUENE	0.31 U				
TOTAL XYLENES	0.23 U 0.52 U	0.23 U	0.23 U 0.52 U	0.23 U 0.52 U	0.23 U
TRANS-1.2-DICHLOROETHENE	0.52 U	0.52 U	0.52 U 0.3 U	0.52 U 0.3 U	0.52 U
TRANS-1,3-DICHLOROPROPENE	0.56 U	0.5 U	0.56 U	0.5 U	0.56 U
TRICHLOROETHENE	0.30 U	0.30 U	0.42 J	0.30 U	0.30 U
FRICHLOROFLUOROMETHANE	0.22 U	0.49 UJ	0.49 UJ	0.22 U	0.22 U
/INYL CHLORIDE	0.49 U	0.49 U	0.29 U	0.49 U	0.49 U
SEMIVOLATILES (UG/L)		1.27			1
L,4-DIOXANE	NA	NA	NA	NA	NA
PCBS (UG/L)					
DECACHLOROBIPHENYL	0.069 U	0.067 U	0.069 U	0.067 U	0.067 U
DICHLOROBIPHENYLS	0.0053 U	0.0052 U	0.0054 U	0.0052 U	0.0052 U
HEPTACHLOROBIPHENYLS	0.03 U	0.029 U	0.03 U	0.029 U	0.029 U
HEXACHLOROBIPHENYLS	0.015 U	0.014 U	0.015 U	0.014 U	0.014 U
MONOCHLOROBIPHENYLS	0.0055 U	0.0054 U	0.0056 U	0.0054 U	0.0054 U
NONACHLOROBIPHENYLS	0.048 U	0.047 U	0.049 U	0.047 U	0.047 U
OCTACHLOROBIPHENYLS	0.038 U	0.037 U	0.038 U	0.037 U	0.037 U
PENTACHLOROBIPHENYLS	0.014 U	0.013 U	0.014 U	0.013 U	0.013 U
TETRACHLOROBIPHENYLS	0.013 U				
TRICHLOROBIPHENYLS	0.0064 U	0.0063 U	0.0064 U	0.0063 U	0.0063 U

Table C-2

Primary VOC and 1,4-Dioxane Results for Surface Water Samples, 2012-2016 Cow Pen Creek and Dark Head Cove Lockheed Martin Middle River Complex, Middle River, Maryland Page 1 of 2

	Trichloroethene	cis-1,2-Dichloroethene	Vinyl chloride	1,4-Dioxane
Location/Date	(µg/L)	(μg/L)	(μg/L)	(μg/L)
Cow Pen Creek				
<u>SW1A</u>				0.42.1
2016 (June) 2015 (June)				0.13 J
2015 (June) 2014 (June)		+		0.13 0.235 J
2014 (June) 2013 (June)	0.33 J			0.235 J
2013 (June)				NA NA
SW2A				INA
2016 (June)				0.16 J
2015 (June)				0.13
2014 (June)				0.156 J
2013 (June)				
2012 (June)				NA
David Hand Cours				
Dark Head Cove SW5A1				
2016 (June)				NA
2015 (June)				NA NA
2014 (June)				NA NA
2013 (June)	1.1	0.17 J		NA NA
2012 (June)	0.17 J			NA
SW5A2				1
2016 (June)				NA
2015 (June)	0.42J			NA
2014 (June)	0.3 J			NA
2013 (June)	1.9	0.26 J		NA
2012 (June)	0.19 J			NA
SW5B				
2016 (June)				NA
2015 (June)				NA
2014 (June)				NA
2013 (June)	1.5	0.35 J		NA
2012 (June)	0.19 J			NA
<u>SW6A</u> 2016 (June)	0.26 J			NA
2016 (June)				NA NA
2014 (June)	0.52 J			NA NA
2013 (June)	0.46 J			NA NA
2012 (June)	0.55 J			NA
SW6B				
2016 (June)	0.49J			NA
2015 (June)				NA
2014 (June)	0.39 J			NA
2013 (June)	0.81 J			NA
2012 (June)	0.63 J			NA
SW7A				1
2016 (June)				NA
2015 (June)				NA
2014 (June)	0.44 J			NA NA
2013 (June)	0.7 J			NA NA
2012 (June)				NA
<u>SW7B</u> 2016 (June)				NA
2016 (June) 2015 (June)				NA NA
2014 (June)	0.49 J			NA NA
2014 (June)	0.49 J			NA NA
2013 (June)	0.32 J			NA
SW8A				1
2016 (June)	0.48 J			NA
2015 (June)				NA
2014 (June)	0.54 J			NA
2013 (June)	0.65 J			NA
2012 (June)	0.66 J			NA
SW8B				
2016 (June)	0.42 J			NA
1 (.)				NA
2015 (June)		+		
2015 (June) 2014 (June) 2013 (June)	0.47 J 0.65 J			NA NA

Table C-2

Primary VOC and 1,4-Dioxane Results for Surface Water Samples, 2012-2016 Cow Pen Creek and Dark Head Cove Lockheed Martin Middle River Complex, Middle River, Maryland Page 2 of 2

Location/Date	Trichloroethene (µg/L)	cis-1,2-Dichloroethene (μg/L)	Vinyl chloride (µg/L)	1,4-Dioxane (μg/L)
SW9A	(10, 7	11 02 7	(10, 7	(10)
2016 (June)				NA
2015 (June)				NA
2014 (June)	0.45 J			NA
2013 (June)	0.62 J			NA
2012 (June)	0.33 J			NA
SW9B				
2016 (June)				NA
2015 (June)				NA
2014 (June)	0.47 J			NA
2013 (June)	0.35 J			NA
2012 (June)	0.34 J			NA

⁻⁻ not detected

NA - not analyzed

J - estimated concentration

VOC - volatile organic compound

 $\mu g/L$ - micrograms per liter

APPENDIX D—RISK ESTIMATES FOR RECREATIONAL SWIMMING IN DARK HEAD COVE

Memorandum

To: Michael Martin, P.G. Tetra Tech

From: Edmund Crouds

Edmund Crouch

Date: November 18, 2014

Subject: Risk estimates for recreational swimming in Dark Head Cove

As requested, we have evaluated risk estimates for recreational contact with water containing dissolved PCBs in the water column at Dark Head Cove. These risk estimates are conservative, in that they address the activity associated with the greatest level of exposure — that is, swimming — and make very conservative exposure assumptions for exposure time, duration and contact rates in the absence of site-specific measurements. In particular, we assume:

- The measurements represent dissolved PCBs in the water column (*i.e.*, the samples include no contaminated sediment). The samples were not filtered and the total PCB values reported may include some component of suspended sediment that would result in an overestimation of dissolved PCB concentrations.
- The measurements are representative of the water in Dark Head Cove where recreational swimming might occur. The samples were collected off the Middle River Complex outfalls where the concentrations would be expected to be the highest in the cove.
- The recreational swimmer is in the water for 4 hours/day, 70 days/year, for 6 years as a child and 20 years as an adult.
- The tetrachlorobiphenyls and pentachlorobiphenyls detected have an ingestion carcinogenic potency equal to the highest current estimate for the most carcinogenic tested PCB mixture. Other cancer potency values are available which would result in lower estimated potential risk.
- The tetrachlorobiphenyls and pentachlorobiphenyls detected have an ingestion reference dose (RfD) equal to that of Aroclor 1254, the lowest among PCB mixtures that have assigned RfDs.
- Cancer potency and RfD are the same for dermal exposure as for ingestion exposure.

The recreational activity exposure assumptions of 4 hours/day and 70 days/year were initially introduced in the January 2006 *Revised Human Risk Assessment for Martin State Airport* prepared for Lockheed Martin by Tetra Tech. In the subsequent April 2006 report *Surface Water and Sediment Sampling Report Lockheed Martin Middle River Complex* prepared by Tetra Tech, the 70

Michael Martin, P.G., Tetra Tech November 18, 2014 Page 2

day/year exposure frequency assumption was used for swimming exposures, but with a 2 hours/day exposure time. It is important to note for a recreational swimming exposure scenario, adjusting the exposure time from four hours to two hours does not reduce the cancer or noncancer risk by a factor of two. For ingestion of surface water, the risk estimate scales linearly with the daily exposure time; while for dermal contact with surface water, the risk estimate is a sub-linear function of the daily exposure time. In other words, for dermal exposure absorption continues even after the exposure time in the water has ended.

With the stated site-specific exposure assumptions, and using other default exposure assumptions from the Regional Screening Level (RSL) table (EPA 2014a), together with the dermal exposure methodology described in the Risk Assessment Guidance for Superfund, Volume 1E, and the estimated 95 percent upper confidence limit (95% UCL) of the mean of the measurements as exposure point concentrations, the lifetime risk estimates are:

 $\begin{array}{ll} \mbox{Incidental water ingestion} & 1.7 \times 10^{-8} \\ \mbox{Dermal absorption} & 4.9 \times 10^{-6} \\ \end{array}$

with highest hazard quotients (for children)

Incidental water ingestion 0.003 Dermal absorption 0.47

The calculations documenting these estimates are included in the accompanying workbook *Dark Head Cove Swimming PCBs.xlsx*, which also contains references for the values of all parameters used.

Modifying the daily exposure period to 2 hours/day halves the incidental water ingestion lifetime risk estimate and reduces the dermal absorption estimate to 3.2×10^{-6} , with similar effects on the hazard quotients (0.0014 and 0.30).

There are considerable uncertainties in these estimates that have been resolved in a conservative direction. As noted, the samples were not filtered, allowing potential incorporation of contaminated sediment, which would not contribute to dermal absorption — the dermal absorption calculation assumes dissolved PCBs. Two observations support the likelihood of sediment incorporation in the samples — the lack of detection of the more soluble (lower chlorinated) homologs, and the analysis of sample MRC-SW8B. This sample as originally tested contained a higher total PCB content than any other sample; but those results were rejected because of low recovery of the spike surrogates. Re-extraction and re-analysis of the sample produced non-detect results, suggesting that the first extraction included contaminated sediment (that may also have contributed to the low surrogate recovery) that was missing from the second.

The default ingestion rate of 50 ml/hour assumed for both children and adults as presented in EPA's RSL Risk-Based Concentration Table Equations for a recreational user exposed to surface water may be a conservative assumption for this evaluation. The Exposure Factors Handbook (EPA 2011) recommends a swimming water ingestion rate of 50 ml/hour for children under 18, but a

Michael Martin, P.G., Tetra Tech November 18, 2014 Page 3

value of 21 ml/hour for adults which likely contributes to an overestimation of risk for the adult population swimming in Dark Head Cove. Further, the 50 ml/hour value is based on mean ingestion rates derived from swimming pool studies, while results from seawater ingestion studies indicate lower mean values for children (31 ml/hour), men (27 ml/hour and women (18 ml/hour) (EPA 2011). Dark Head Cove averages approximately 2% salt content, closer to seawater than the fresh water of swimming pools. Therefore, the use of the EPA default surface water ingestion rate likely overestimates ingestion risk.

There are additional uncertainties related to dermal risk estimates. In general, chemical specific permeability coefficients (Kp) are used to estimate dermal absorption of a chemical from water. A Kp is a predicted value obtained from a regression equation using a chemical-specific octanol-water coefficient (Kow) and molecular weight (MW). However, for some chemicals, the Kow value or the MW may be too high or too low (outside the effective prediction domain) and the estimated Kp using the regression is uncertain. For PCBs, both the Kow and MW values are high outside of effective prediction domain resulting in an uncertain predicted Kp value that is combined with a theoretical correction factor (EPA 2004).

The assignment of the highest (most conservative) carcinogenic and noncarcinogenic toxicity values measured for any PCB mixtures for the combinations of PCB homologs measured here (where only tetrachlorobiphenyls and pentachlorobiphenyls were detected) likely overestimates risk calculations

Even with the use of conservative assumptions, the resultant risk estimates lie below the MDE threshold of 1×10^{-5} lifetime increased cancer risk and hazard quotient of 1.0, and within the EPA's range 1×10^{-6} to 1×10^{-4} and hazard quotient of 1.0, indicating no significant risk from exposures due to swimming in Dark Head Cove.

References

- Schets FM, Schijven JF, de Roda Husman AM. (2011). Exposure assessment for swimmers in bathing waters and swimming pools. Water Res 45(7):2392–2400. doi: 10.1016/j.watres.2011.01.025.
- U.S. EPA (2004). Risk Assessment Guidance for Superfund, Volume 1: Human Health Evaluation Manual (Part E, Supplemental Guidance for Dermal Risk Assessment) Final. EPA/540/R/99/005, OSWER 9285.7-02EP, July 2004.
- U.S. EPA (2011). Exposure Factors Handbook: 2011 Edition. EPA/600/R-09/052F, September 2011. Available at http://www.epa.gov/ncea/efh/pdfs/efh-complete.pdf.
- U.S. EPA (2014a). Regional Screening Level (RSL) Summary Table May 2014. Available at http://www.epa.gov/reg3hwmd/risk/human/rb-concentration_table/
- U.S. EPA (2014b). Integrated Risk Information System (IRIS), online database. Available at http://www.epa.gov/iris/