Vapor Intrusion Investigation and Sub-Slab-Depressurization-System Operation, February 2014 Monitoring Report Lockheed Martin Middle River Complex 2323 Eastern Boulevard Middle River, Maryland

Prepared for:

Lockheed Martin Corporation

Prepared by:

Tetra Tech, Inc.

October 2014

Michael Martin, P.G. Regional Manager

Roman J. Kotun

Ronald Kotun Project Manager

TABLE OF CONTENTS

<u>S</u>	<u>ectio</u>	<u>on</u>		<u>Page</u>
A	CRO	NYMS	3	vii
1	II	NTROI	DUCTION	1-1
2	S	ITE B	ACKGROUND	2-1
	2.1	SITE	HISTORY	2-1
	2.2	HIST	ORICAL INDOOR AIR QUALITY RESULTS	2-1
3			R AIR QUALITY AND VAPOR INTRUSION INVESTIGATION,	3-1
	3.1	INVE	ESTIGATION APPROACH AND GUIDANCE	3-1
	3.2	INSP	ECTION AND MAINTENANCE OF VAPOR MONITORING POINTS	3-2
	3.3	IAQ A	AND SUB-SLAB-VAPOR SAMPLING LOCATIONS	3-2
	3.4	IAQ A	AND SUB-SLAB SAMPLING	3-7
	3	.4.1	Collection of IAQ Samples	3-8
	3	.4.2	Collection of Sub-Slab-Vapor Samples	3-9
	3.5	SAM	PLING ANALYSIS	3-9
	3.6	RESA	AMPLING OF TCE-EXCEEDANCE LOCATIONS (APRIL 2014)	3-11
	3.7	PORT	TABLE GAS-CHROMATOGRAPH/MASS-SPECTROMETER SURVEY	3-11
	3.8	RESU	JLTS	3-13
	3	.8.1	Round 16 Data Analysis	3-14
	3	.8.2	Round 16 Summary	3-27
4	S	UB-SI	LAB-DEPRESSURIZATION-SYSTEM DATA ANALYSIS	4-1
	4.1	SUB-	SLAB-VAPOR MONITORING POINTS	4-1
	4	.1.1	Building A	4-1
	4	.1.2	Building C	4-3

<u>Section</u>	<u>on</u>	<u>Page</u>
4.2	SUB-SLAB-VAPOR EXTRACTION POINTS	4-5
4.3	VACUUM INFLUENCE	4-6
4.4	SUB-SLAB-DEPRESSURIZATION-SYSTEM INFLUENT-VAPOR SAMPLES	4-6
4.5	SUB-SLAB-DEPRESSURIZATION-SYSTEM CONCLUSIONS	4-8
5 C	ONCLUSIONS AND RECOMMENDATIONS	5-1
5.1	CONCLUSIONS	5-1
5.2	RECOMMENDATIONS	5-6
6 R	EFERENCES	6-1
	APPENDICES	
APPE	NDIX A—FEBRUARY 2014 SAMPLE LOG SHEETS/CHAIN OF CU	STODY
APPE	NDIX B—METHOD DETECTION LIMITS	
APPE	NDIX C—LABORATORY ANALYTICAL REPORTS	
APPE	NDIX D—DATA VALIDATION REPORTS	
APPE	NDIX E—COMPARISON TO BACKGROUND	
APPE	NDIX F—HISTORICAL DATA TABLES AND PLOTS	
APPE	NDIX G—SSD-SYSTEM REMEDIAL ACTION PROGRESS REPORT	Г #20
	LIST OF FIGURES	
		<u>Page</u>
Figure	3-1 IAQ Background Sampling Locations, Round 16 February 2014	3-69
Figure	3-2 Indoor Air and Sub-Slab Vapor Monitoring Locations for Building Round 16, February 2014	
Figure	3-3 Indoor Air and Sub-Slab Vapor Monitoring Locations for Building Round 16, February 2014	

LIST OF FIGURES (continued)

		<u>Page</u>
Figure 3-4	Indoor Air and Sub-Slab Vapor Monitoring Locations for Building C, Round 16, February 2014	3-72
Figure 3-5	Sample Locations – ER, PB, and VLS Buildings	3-73
Figure 3-6	Portable GC/MS Grid Sample Locations for Building A Basement	3-74
Figure 3-7	Portable GC/MS Grid Sample Locations for Building C Machine Shop	3-75
Figure 3-8	Round 16 Indoor Air and Sub-Slab Vapor Results Greater than Screening Levels, Building A	3-76
Figure 3-9	Round 16 Indoor Air and Sub-Slab Vapor Results Greater than Screening Levels, Building B	3-77
Figure 3-10	Round 16 Indoor Air and Sub-Slab Vapor Results Greater than Screening Levels, Building C	3-78
Figure 3-11	Round 16 Indoor Air Sampling Results Greater than Screening Levels—ER, PB, and VLS Buildings	3-79
Figure 3-12	Trichloroethene Sample Results, Round 16, Buildings A, B, and C	3-80
Figure 3-13A	Concentrations of Select Chemicals from Round 16, Building A—Soil Vapor	3-81
Figure 3-13B	Concentrations of Select Chemicals from Round 16, Building A—Indoor Air: Basement	3-82
Figure 3-13C	Concentrations of Select Chemicals from Round 16, Building A—Indoor Air: First Floor	3-83
Figure 3-14A	Building A Historical Maximum IAQ TCE Concentrations	3-84
Figure 3-14B	Building A Historical Maximum SV TCE Concentrations	3-85
Figure 3-14C	TCE Results Indoor Air Monitoring Locations for Building A, Round 16, February 2014	3-86
Figure 3-14D	TCE Results Sub-Slab Vapor Monitoring Locations for Building A, Round 16, February 2014	3-87
Figure 3-15A	Concentrations of Select Chemicals from Round 16, Building B—Soil Vapor	3-88
Figure 3-15B	Concentrations of Select Chemicals from Round 16, Building B—Indoor Air: Basement	3-89
Figure 3-15C	Concentrations of Select Chemicals from Round 16, Building B—Indoor Air: First Floor	3-90

LIST OF FIGURES (continued)

		<u>Page</u>
Figure 3-16A	Building B Historical Maximum IAQ TCE Concentrations	3-91
Figure 3-16B	Building B Historical Maximum SV TCE Concentrations	3-92
Figure 3-16C	TCE Results for Indoor Air Monitoring Locations for Building B, Round 16, February 2014	3-93
Figure 3-16D	TCE Results for Sub-Slab Vapor Monitoring Locations for Building B, Round 16, February 2014	3-94
Figure 3-17A	Concentrations of Select Chemicals from Round 16, Building C—Soil Vapor	3-95
Figure 3-17B	Concentrations of Select Chemicals from Round 16, Building C—Indoor Air: Basement	3-96
Figure 3-18A	Building C Historical Maximum IAQ TCE Concentrations	3-97
Figure 3-18B	Building C Historical Maximum SV TCE Concentrations	3-98
Figure 3-18C	TCE Results for Indoor Air Monitoring Locations for Building C, Round 16, February 2014	3-99
Figure 3-18D	TCE Results for Sub-Slab Monitoring Locations for Building C, Round 16, February 2014	. 3-100
Figure 3-19	Graphical Display of Trichloroethene Indoor Air Concentrations from All Buildings (All Rounds)	. 3-101
Figure 3-20	Graphical Display of Naphthalene Indoor Air Concentrations from All Buildings (All Rounds)	. 3-102
Figure 3-21	Graphical Display of Benzene Indoor Air Concentrations from All Buildings (All Rounds)	. 3-103
Figure 3-22	Graphical Display of 1,2-Dichloroethane Indoor Air Concentrations from All Buildings (All Rounds)	. 3-104
Figure 3-23	Graphical Display of Ethylbenzene Indoor Air Concentrations from All Buildings (All Rounds)	. 3-105
Figure 3-24	Graphical Display of Total Xylenes Indoor Air Concentrations from All Buildings (All Rounds)	. 3-106
Figure 4-1	Volatile Organic Compound Concentrations at 015-A (Building A)	4-26
Figure 4-2	Volatile Organic Compound Concentrations at 018-A (Building A Basement)	4-27
Figure 4-3	Volatile Organic Compound Concentrations at 001-C (Building C Basement)	4-28

LIST OF TABLES

		<u>Page</u>
Table 3-1	Descriptive Statistics of Indoor Air Quality Results, All Buildings, February/April 2014	3-32
Table 3-2	Descriptive Statistics of Sub-Slab Vapor Results, All Buildings, February 2014	3-33
Table 3-3	Summary Statistics for Trichloroethene Concentrations in Indoor Air	3-34
Table 3-4	Summary Statistics for Naphthalene Concentrations in Indoor Air	3-35
Table 3-5	Ambient Air (Background) Sampling Results, February 2014	3-36
Table 3-6	Indoor Air Quality Sampling Results, Building A, February 2014	3-37
Table 3-7	Sub-Slab-Vapor Sampling Results, Building A, February 2014	3-39
Table 3-8	Co-Located Sub-Slab-Vapor and Indoor Air Quality Sampling Results, Building A, February 2014	3-41
Table 3-9	Indoor Air Quality Sampling Results, Building B, February 2014	3-48
Table 3-10	Sub-Slab-Vapor Sampling Results, Building B, February 2014	3-49
Table 3-11	Co-Located Sub-Slab Vapor and Indoor Air Quality Sampling Results, Building B, February 2014	3-50
Table 3-12	Indoor Air Quality Sampling Results, Building C, February 2014	3-53
Table 3-13	Sub-Slab-Vapor Sampling Results, Building C, February 2014	3-56
Table 3-14	Co-Located Sub-Slab-Vapor and IAQ Sampling Results, Building C, February 2014	3-58
Table 3-15	Indoor Air Quality Sampling Results, Vertical-Launch System (VLS) Building, February 2014	3-65
Table 3-16	Indoor Air Quality Sampling Results, Engineering Research (ER) Building, February 2014	3-66
Table 3-17	Indoor Air Quality Sampling Results, Program Building (PB), February 2014	3-67
Table 3-18	Analyte Concentrations in Background Air Samples Compared to Indoor Air Samples—February 2014	
Table 4-1	Summary of Positive Detects for Vapor Samples, Building A Plating Shop	4-9
Table 4-2	Summary of Positive Detects for Vapor Samples, Building C Basement Area	4-14

LIST OF TABLES (continued)

		<u>Page</u>
Table 4-3A	Summary of Positive Detects for Vapor Samples,	
	Building A SSD-System	4-22
Table 4-3B	Summary of Positive Detects for Vapor Samples,	
	Building C SSD-System	4-24

ACRONYMS

2-D two-dimensional3-D three-dimensional

ABC Building A basement, center
ABN Building A basement, north
ABS Building A basement, south

AC Building A, central
AF attenuation factor
AN Building A, north

APS Building A plating shop

AS Building A, south

BBN Building B basement, north

BC Building B, central
BN Building B, north
BS Building B south

BTEX benzene, toluene, ethylbenzene, xylenes

BUC Building B utility tunnel, center
BUN Building B utility tunnel, north
BUS Building B utility tunnel, south

ca carcinogenic

CBS Building C basement machining area

CBC Building C basement, center
CBN Building C basement, north
CBS Building C basement, south

CC Building C, central
CN Building C, north
COC chemical(s) of concern
CS Building C, south

DCA dichloroethane
DCE dichloroethene

DUP duplicate

ER engineering research (building)

°F degrees Fahrenheit FC Fire Coat building

Freon 22 chlorodifluoromethane
GAC granular activated-carbon

GC/MS gas chromatograph/mass spectrometer

HAPSITE hazardous air pollutants on site

HVAC heating, ventilation, and air conditioning

in. Hg inch(es) of mercury

IA indoor air

IAQ indoor air quality

J compound positively identified, but quantitation is estimated

lb(s) pound(s)

lbs/day pound(s) per day
LMCPI LMC Properties, Inc.

Lockheed Martin Corporation

MDE Maryland Department of the Environment

μg/m³ microgram(s) per cubic meter

mph mile(s) per hour

MPL mechanical prototype lab
MRC Middle River Complex

MST Mission Systems & Training
MTBE methyl-tertiary-butyl ether

nc noncarcinogenic

OSHA Occupational Safety and Health Administration

Pace Pace Analytical Laboratories

PB program building PCE tetrachloroethene

PEL permissible exposure limit

ppb part(s) per billion

psi pound(s) per square inch
RSL regional screening level
SSD sub-slab depressurization

SSDS sub-slab-depressurization system

SV sub-slab vapor

TestAmerica TestAmerica Laboratories

Tetra Tech Tetra Tech, Inc.
TCA trichloroethane

TCE trichloroethene
TMB trimethylbenzene

U not detected

UCL upper confidence limit

USEPA United States Environmental Protection Agency

UST underground storage tank

VC vinyl chloride VI vapor intrusion

VCP Voluntary Cleanup Program

VLS vertical-launch system

VMP vapor monitoring point

VOC volatile organic compound

This page intentionally left blank.

Section 1 Introduction

Tetra Tech, Inc. (Tetra Tech) has prepared this report on behalf of Lockheed Martin Corporation (Lockheed Martin) to document the first round of indoor air quality (IAQ) and sub-slab-vapor (SV) monitoring for calendar year 2014 at Lockheed Martin's Middle River Complex (MRC) in Middle River, Maryland. This report contains the initial Round 16 (February 2014) monitoring results for Buildings A, B, and C; results from follow-up samples collected in April 2014 at two locations initially sampled in February 2014; sampling results collected from the Vertical-Launch System (VLS), Program Building (PB), and Engineering Research (ER) buildings; and sampling results from background locations. This report also includes a status update of two sub-slab-depressurization (SSD) vapor-intrusion-mitigation systems installed at Middle River Complex in 2008: one beneath the Building A plating shop, and the other beneath the south end of the Building C basement.

This monitoring is part of an ongoing investigation to evaluate whether volatile organic compounds (VOCs) in sub-slab vapors (which are associated with soil and groundwater chemicals of concern [COC] at the site) might be moving into indoor air at Middle River Complex facilities. The first monitoring round for calendar year 2014 continues investigations previously described in the following reports:

- Indoor-Air-Quality Investigation of Buildings A, B, C, and the (Vertical-Launch System) VLS (Facility), Lockheed Martin Middle River Complex, 2323 Eastern Boulevard Middle River, Maryland (Tetra Tech, 2007)
- Indoor-Air-Quality Investigation Round 3, Lockheed Martin Middle River Complex, 2323 Eastern Boulevard Middle River, Maryland (Tetra Tech, 2008a)
- Indoor-Air-Quality Investigation 2008 Summary Report, Lockheed Martin Middle River Complex, 2323 Eastern Boulevard Middle River, Maryland (Tetra Tech, 2008b)
- November 2008 Sub-Slab Sampling Report, Sub-Slab-Depressurization Systems, Buildings A and C, Lockheed Martin Corporation Middle River Complex, Middle River, Maryland (Tetra Tech, 2008c)

- Vapor Intrusion Investigation and Sub-Slab-Depressurization-System Operation 2009 Summary Report, Lockheed Martin Middle River Complex, 2323 Eastern Boulevard Middle River, Maryland (Tetra Tech, 2010a)
- Indoor-Air-Quality Investigation August 2010 Summary Report, Lockheed Martin Middle River Complex, 2323 Eastern Boulevard Middle River, Maryland (Tetra Tech, 2010b)
- Vapor Intrusion Investigation and Sub-Slab-Depressurization-System Operation August 2010 Monitoring Report, Lockheed Martin Middle River Complex, 2323 Eastern Boulevard Middle River, Maryland (Tetra Tech, 2011a)
- Vapor Intrusion Investigation and Sub-Slab-Depressurization-System Operation February 2011 Monitoring Report, Lockheed Martin Middle River Complex, 2323 Eastern Boulevard Middle River, Maryland (Tetra Tech, 2011b)
- Vapor Intrusion Investigation and Sub-Slab-Depressurization-System Operation February 2012 Monitoring Report, Lockheed Martin Middle River Complex, 2323 Eastern Boulevard Middle River, Maryland (Tetra Tech, 2012a)
- Vapor-Intrusion Management Plan, Lockheed Martin Middle River Complex, 2323 Eastern Boulevard Middle River, Maryland (Tetra Tech, 2012b)
- Vapor Intrusion Investigation and Sub-Slab-Depressurization-System Operation August 2012 Monitoring Report, Lockheed Martin Middle River Complex, 2323 Eastern Boulevard Middle River, Maryland (Tetra Tech, 2013a)
- Vapor Intrusion Investigation and Sub-Slab-Depressurization-System Operation February 2013 Monitoring Report, Lockheed Martin Middle River Complex, 2323 Eastern Boulevard Middle River, Maryland (Tetra Tech, 2013c)
- Vapor Intrusion Investigation and Sub-Slab-Depressurization-System Operation August 2013 Monitoring Report, Lockheed Martin Middle River Complex, 2323 Eastern Boulevard Middle River, Maryland (Tetra Tech, 2014a)

This report is organized as follows:

<u>Section 2—Site Background</u>: Briefly describes the site history, condition, and previous investigations.

<u>Section 3—Indoor Air Quality and Vapor Intrusion Investigation, Round 16</u>: Presents the technical approach to the 2014 investigation, describes the sampling and analyses performed, discusses the Round 16 results, and reviews the data collected to evaluate sub-slab-depressurization-system operation.

<u>Section 4—Sub-Slab-Depressurization-System Data Analysis</u>: Analyzes relevant data and evaluates sub-slab-depressurization-system performance.

<u>Section 5—Conclusions and Recommendations</u>: Presents conclusions based on the Round 16 sampling results and recommends future work at the site related to vapor intrusion.

Section 6—References: Lists the references used in this report.

Section 2 Site Background

2.1 SITE HISTORY

The Middle River Complex (MRC) land parcels owned by LMC Properties, Inc. (LMCPI) are undergoing extensive site characterization studies to support remedial decisions. An agreement between the Maryland Department of the Environment (MDE) and Lockheed Martin Corporation (Lockheed Martin) is currently being negotiated to address the cleanup at the Middle River Complex. Ongoing environmental characterization of the site has identified subsurface soil and groundwater contamination from volatile organic compounds (VOCs) under or near occupied workspaces (Tetra Tech, Inc. [Tetra Tech], 2006a). If a complete transport pathway exists from the subsurface into a building, these compounds could potentially volatilize and move into the workspace. Other non-subsurface sources could also potentially affect indoorair contaminant concentrations, including indoor sources (e.g., emissions from process chemicals and building materials) and ambient (outdoor) air contributions (i.e., confounding sources).

In August 2006, Lockheed Martin sampled sub-slab vapor (SV) beneath the Building A basement and plating shop and beneath the southern section of the Building C basement (Tetra Tech, 2006a). These locations were selected because VOC contamination had been observed in groundwater monitoring wells nearby. Analytical results from the SV sampling, as well as other site-specific information, were used as inputs for a human health risk assessment model (Johnson and Ettinger model). The model estimated that these risks are equal to or below MDE and United States Environmental Protection Agency (USEPA) threshold values (Tetra Tech, 2006a). However, because modeling is inherently uncertain, a supplemental indoor air quality (IAQ) investigation was proposed.

2.2 HISTORICAL INDOOR AIR QUALITY RESULTS

Fifteen rounds of previous IAQ monitoring have been completed for Buildings A, B, and C: December 2006, April 2007, October 2007, March 2008, August 2008, July 2009, October 2009,

February 2010, August 2010, February 2011, August 2011, February 2012, August 2012, February 2013, and August 2013. Results from the first monitoring round (in December 2006) for the vertical-launch system (VLS) facility indicated no need for additional sampling, as no analyzed constituents in indoor air (IA) were detected above their respective screening levels (Tetra Tech, 2007). Subsequent analytical results from other locations at Buildings A, B, and C (see Appendix F) indicate that some (but not all) chemicals of concern (COC) identified in the subsurface have also been detected in background and IAQ samples. Background (outdoor air) samples collected at the four corners of the facility property measure on-site concentrations of chemicals that could be attributable to non-MRC/non-subsurface sources, including other industry, Martin State Airport, vehicular traffic, and other urban sources.

IAQ data for COC were compared to risk-based screening levels derived using conservative (i.e., most protective of human health and the environment) USEPA default exposure-assumptions and toxicity values. Screening-level concentrations are based on the risk levels (i.e., 10⁻⁵, or a one-in-100,000 excess lifetime cancer-risk) described in MDE Voluntary Cleanup Program (VCP) guidance (MDE, 2006). The comparison with background, spatial analyses, and assessments of chemicals currently and historically used at the MRC indicate that most VOCs detected in IAQ samples are probably *not* associated with SV intrusion. However, movement of SV into IA may be occurring at limited locations. TCE in IAQ samples may be associated with SV movement at the Building A plating shop and in the Building C basement. TCE has been detected in IA, along with a marker chemical (*cis*-1,2-dichloroethene) normally found only in SV samples.

The results of the first three rounds of monitoring led the project team to recommend mitigation for locations where chemicals in SV were known to be at concentrations above risk-based screening levels. The project team also recommended additional IAQ and SV sampling to address areas of uncertainty. Two SV-mitigation systems were installed in March 2008: one beneath the Building A plating shop, and one beneath the south end of the Building C basement, with full system startup on March 31, 2008. Biannual combined IAQ and SV monitoring rounds continue to investigate possible SV sources at the site, evaluate the performance of the sub-slab-depressurization (SSD) systems, and provide ongoing protection of worker health and safety with respect to potential vapor intrusion.

Elevated COC concentrations in SV samples were detected during multiple sampling events near sampling location 018-A. Therefore, the Building A system was expanded by adding extraction laterals in the basement. Elevated COC concentrations in SV samples were also detected in August 2010 in the east—central part of the Building C basement, near the former Patriot plating line. This area was further delineated in 2011 and 2012, which led to expansion of the Building C SSD system to cover the central part of the building. The expansion began in October 2012 and was completed in May 2013; it included the installation of 11 extraction points in the central-target influence area, increased blower capacity, an additional piping network, and the addition of a potassium permanganate vessel to treat vinyl chloride.

This page intentionally left blank.

Indoor Air Quality and Vapor Intrusion Investigation, Round 16

3.1 INVESTIGATION APPROACH AND GUIDANCE

The indoor air quality (IAQ) and sub-slab-vapor (SV) investigation described herein is designed to evaluate whether volatile organic compounds (VOCs) associated with soil and groundwater contamination at the site might be moving into indoor air (IA) at Middle River Complex (MRC) facilities. During the Round 16 sampling, IA and SV samples were collected from Buildings A, B, and C; IA samples were also collected in the Vertical-Launch Systems (VLS) building, the Program Building (PB), and the Engineering Research (ER) building to investigate their potential for vapor intrusion. Initial sampling locations for Buildings A, B and C were chosen during a 2006 site reconnaissance by Tetra Tech industrial hygienists. Sampling locations in the VLS building were also established during the 2006 sampling. Sampling locations for the PB and ER building were established before the Round 16 sampling, as these locations had not previously been sampled. The sampling plan is based on information obtained during site reconnaissance, on historical detections, and on the review of historical information and reports. A sampling and analytical method designed to measure low VOC concentrations in air was used to assess their presence or absence. Key aspects of the investigation methodology include:

- development of a site-specific and monitoring-round-specific sampling plan, based on site reconnaissance and reviews of historical information and reports
- inspection of sampling locations before fieldwork to assess the condition of proposed sampling points and identify changes in operations or building conditions
- sampling in areas previously identified as having SV and/or IAQ concentrations above screening values; in areas that had not been recently investigated (VLS) or not investigated at all (PB and the ER building); and in areas to evaluate the efficiency of the

operating sub-slab-depressurization systems at the facility, including the Building C system expansion

- sampling and analysis using methods designed to measure low VOC concentrations in air
- conducting a survey using a portable gas chromatograph/mass spectrometer (GC/MS) unit to provide real-time analysis of VOCs in IA
- resampling of two locations (in April 2014) where results had exceeded the trichloroethene (TCE) screening criterion during the initial Round 16 event in February 2014
- interpretation of analytical results

Relevant guidance used to develop and perform this investigation includes:

- Draft Guidance for Evaluating the Vapor Intrusion to Indoor Air Pathway from Groundwater and Soils (United States Environmental Protection Agency [USEPA], 2002)
- Compendium of Methods for the Determination of Toxic Organic Compounds in Ambient Air, Second Edition. "Compendium Method TO-15: Determination of VOCs in Air Collected in Specially Prepared Canisters and Analyzed by Gas Chromatography/Mass Spectrometry (GC/MS)" (USEPA, 1999)
- Maryland Department of the Environment (MDE) *Voluntary Cleanup Program (VCP) Guidance Document* (MDE, 2006)

3.2 INSPECTION AND MAINTENANCE OF VAPOR MONITORING POINTS

Tetra Tech attempts to place vapor monitoring points (VMPs) at locations where they are least subject to damage. However, due to the dynamic nature of the MRC, site operations may change, and VMPs may become inaccessible or damaged. Historical damage has occurred to some VMPs due to forklift traffic, subsidence, and heavy stored materials. Before the Round 16 sampling, Tetra Tech inspected all existing VMPs proposed for sampling in Block I. All VMPs were found to be in good condition; no repairs were required before the Round 16 sampling.

3.3 IAQ AND SUB-SLAB-VAPOR SAMPLING LOCATIONS

The MRC locations originally selected for indoor air quality sampling are presented in Table 3-1 of the *Indoor Air Quality Assessment Work Plan for Buildings A, B, C, and Vertical-Launch System (VLS)* (Tetra Tech, 2006b). These sampling locations have shifted over time based on the results obtained and due to changes in the facility layout and operations. In January 2013, before

the Round 14 sampling, seven new SV monitoring points were installed to further delineate the extent of SV and IA contamination that had been detected in previous monitoring rounds; locations for these vapor monitoring points are identified in the *Work Plan Addendum Indoor-Air* and Sub-Slab Monitoring Round 14 (Tetra Tech, 2013b). No additional VMPs were installed at the site after January 2013.

Figure 3-1 illustrates the locations for background outdoor air samples collected during Round 16 (February 2014); all locations have been used historically for background (ambient air) sampling at MRC, except for location BCK-3. After the July 2013 discovery of an underground storage tank (UST) containing trichloroethene (TCE), location BCK-3 was moved approximately 700 feet northwest of its historical location to the southeast corner of the VLS parking lot. This location was chosen to reduce the possibility of contamination from the open UST excavation.

Not all existing monitoring points inside Buildings A, B, and C were sampled during Round 16. As in previous rounds, samples were collected selectively, in or adjacent to areas where contaminants previously had been detected or are currently suspected of being present, while attempting to maintain adequate overall coverage (approximately 200 feet by 200 feet in a regular sampling grid) across the building footprints. TCE has been targeted as a primary chemical of concern (COC); it has a history of use at the site, and may be toxic and mobile in the environment. The VMPs sampled during this round in Buildings A, B, and C are shown on Figures 3-2, 3-3, and 3-4, respectively, along with historical sampling locations.

IAQ sampling locations were co-located with most monitored VMP locations to evaluate possible relationships between SV and IAQ results. For data organization and interpretation, each building is divided into areas encompassing multiple sampling locations. A table identifying which sampling locations are in each area is included with the historical data tables in Appendix F. These areas are as follows:

Building A	Building B	Building C
Building A north (AN)	Building B north (BN)	Building C north (CN)
Building A central (AC)	Building B central (BC)	• Building C central (CC)
Building A south (AS)	Building B south (BS)	• Building C south (CS)
Building A plating shop (APS)	Building B basement north (BBN)	Building C basement north (CBN)
Building A basement north (ABN)	Building B utility tunnel north (BUN)	• Building C basement center (CBC)
Building A basement center (ABC)	Building B utility tunnel center (BUC)	• Building C basement south (CBS)
Building A basement south (ABS)	Building B utility tunnel south (BUS)	
	Fire Coat building (FC)	

Round 16 sampling was performed on February 24–26, 2014. Ninety-eight samples were collected and submitted for analysis during this round:

- four background samples (from the same background locations used in the previous round)
- 40 IAQ samples (and three duplicates) from Buildings A, B, C and the Fire Coat building
- 32 SV samples (and four duplicates) from Buildings A, B, C and the Fire Coat building
- 12 IAQ samples (and three duplicates) from the VLS, PB, and ER buildings

Five IAQ samples from Building C (144-C through 148-C) were collected in the Lockheed Martin Mission Systems & Training (MST) mechanical prototype laboratory (MPL) machine shop. These sampling locations, in particular, provide data for possible worker exposure areas within the MPL:

- 144-C: machine shop area
- 147-C: machine shop southeast corner workspace
- 145-C: cubicle area
- 148-C: machine shop northwest corner near the office
- 146-C: kitchen area

Three IAQ samples were collected from locations within Buildings A and C where TCE concentrations exceeding the indoor air industrial screening level (8.8 microgram(s) per cubic meter $[\mu g/m^3]$) were detected during the August 2013 sampling round (Round 15):

- 144-C (20 μg/m³), in the Lockheed Martin MST MPL machine shop, located on the northeastern side of the Building C basement
- 093-A (13 μg/m³), in the southern portion of Building A
- 117-A $(34 \mu g/m^3)$, in the southern portion of Building A

IAQ samples were also collected at offset locations 093X-A and 117X-A, because IAQ samples collected at the original locations (093-A and 117-A) exceeded the TCE screening level. An SV sample was not collected at VMP location 140-B because water was in the VMP, apparently from a nearby leaking piece of equipment.

As noted above, IAQ samples were collected from 12 locations inside other buildings: VLS (seven locations), PB (two locations), and ER (three locations) during Round 16 sampling. These sampling locations are shown in Figure 3-5. One quality-control duplicate sample was also collected in each of these buildings (three duplicate samples).

The same VLS locations previously sampled in 2006 (Round 1) were again sampled during Round 16, except for an additional sampling location in the detached training trailer on the western side of the VLS. Samples from all seven locations were collected at ground level; in contrast, some Round 1 samples had been collected at elevated positions. As shown on Figure 3-5, sampling locations are in a grid-like pattern with approximately 200 feet or less between points, to provide coverage across the VLS footprint.

To identify possible sampling locations within the PB and ER buildings, Tetra Tech visited the site on October 30, 2013 to identify accessible locations considered most likely to be subject to possible SV intrusion. Two samples (and one duplicate) were collected at the PB. The first sample was collected in the shipping and receiving area on the east side of the building in a storage area with supplies on shelves; four to five people were observed working in the area. This area has ceiling fans/vents, so the sample was collected at a location that minimized their possible influence. The second PB sample was collected subgrade, downstairs in the missile test area; this area has broken tile floors and a shaft housing a testing apparatus that extends upward

three floors. Three samples (and one duplicate) were collected inside the ER building. The first sample was collected in the engineering prototype lab, a large research laboratory area consisting of one big room plus offices. Ceiling vents and fans are present, so a sampling location was selected that minimized their possible influence. The remaining two samples were collected in work/storage type areas. These three locations are in the northeast, northwest, and southwest corners of the building (Figure 3-5).

The sub-slab-depressurization (SSD) systems were shut down 24 hours before sampling began and restarted within one hour after sampling was completed; this is consistent with previous monitoring events. The following observations were recorded during the February 2014 sampling event:

- Mean outdoor ambient temperature on February 24–26, 2014 was 33 degrees Fahrenheit (°F). Barometric pressure ranged from 29.94 inches of mercury (in. Hg) to 30.16 in. Hg. Wind direction was mostly from the west–southwest, and wind speeds averaged eight miles per hour (mph), with gusts up to 27 mph. All three days were clear to partly cloudy; no precipitation was recorded.
- The highest number of personnel and greatest activity observed at the MRC was in Building B, in locations from the thrust-reverser assembly area in the southern portion of the building (BS) to the machining area in the central portion (BC). Less activity was observed in Building A; activity was generally focused in the plating shop (APS), in bonding lay-up and autoclave areas (AC and AS, respectively), and in the parts and assembly areas (AN). Similar to observations during previous rounds, a lower level of activity was observed in the Building C basement machining and storage operations areas (CBS and CBC).
- Building A is a one-story building, except for a basement corridor under an open air loading dock on its western side. Roof vents approximately 50 feet above the work floor were closed in Building A during Round 16 sampling. The large doors at the loading docks on the west side of the building were only opened periodically for movement of carts, forklifts, personnel, and equipment. No personnel or other activities were observed in the Building A basement.
- IA and SV samples from location 118-A were collected in the bond layup room, where a positive-pressure air-conditioning system was operating.
- Sampling location IA-081-A was moved approximately five feet north of its co-located SV sampling location (SV-081-A), due to site operations.
- Offset sample IA-093X-A was collected halfway between IA-093-A and IA-138-A in the Building A basement.

- Offset sample IA-117X-A was collected approximately 40 feet south of sampling location IA-117-A on the Building A main floor.
- The bay doors across the southern end of Building B were closed during sampling. Only one automatic bay door at the southeastern corner of Building B was opened and closed quickly for the passage of carts and equipment. Open roof vents were not observed in Building B during sampling.
- The IA sample from 063-B was collected within 15 feet of a closed door leading to the outside.
- An oily stain was noted on the floor next to sampling location 063-B in the north-central part of the Building B basement. An oily liquid has been observed dripping from the ceiling or somewhere above the sampling location in the past.
- Sampling location SV-140-B had water in the vault, which appeared to be from an aboveground source.
- Fire Coat building samples IA/SV-105-Z and IA/SV-123-Z were collected in a room containing fire coat paint products. The room was equipped with overhead fans that were operating during sampling, and treated parts were observed on a table.
- The Building C basement is generally accessed via two doors on the eastern side and one door on the southern side. These are automatic rolling doors that open and close quickly for the passage of carts and forklifts. The automatic rolling door approximately 40 feet east of sampling location 141-C was observed opening and closing intermittently during the day.
- Samples IA-144-C and IA-128-C were collected in a positive pressure, air-controlled room.
- The regulator for sample IA-135-C had a stop pressure of -18 pounds per square inch (psi) (i.e., higher than the recommended minimum of -15 psi).
- Most of the pressure gauges on the Summa[®] canisters responded instantaneously upon opening the valve by dropping to -30 in. Hg. However, the pressure gauge on SV-081-A lowered very slowly, to -8 in. Hg over one hour of sampling. Similarly, the pressure gauge on SV-143-C lowered very slowly, to only -23 in. Hg over the one-hour sampling period. Typically, remaining pressure in the canister is between -1 and -5 in. Hg at the end of sampling.
- Very few personnel and little site activity were observed in the VLS, PB, and ER during sampling.

3.4 IAQ AND SUB-SLAB SAMPLING

Sampling was performed according to the methods described in the *Indoor-Air-Quality* Assessment Work Plan for Buildings A, B, C and VLS (Tetra Tech, 2006b); Work Plan Addendum,

Indoor Air and Sub-Slab Sampling Round 16 (Tetra Tech, 2014b); and Work Plan Addendum for Indoor Air and Sub-Slab-Vapor Sampling Round 16—Letter (Tetra Tech, 2014c). IAQ and background samples were collected over approximately eight hours; each SV sample was collected over one hour. All samples were collected via pre-conditioned Summa[®] canisters. IAQ and background samples were collected following procedures for USEPA Method Toxic Organic 15 (TO-15) for the collection and analysis of VOCs (USEPA, 1999). SV samples were collected in accordance with standard operating procedures developed by the USEPA Environmental Response Team for soil vapor sampling (USEPA, 1996) and methodologies developed by the USEPA Office of Research and Development (USEPA, 2004).

After sampling was complete, each canister was closed and sent to an off-site laboratory (Pace Analytical, Minneapolis, Minnesota) under proper chain of custody procedures. Each sample was submitted for analysis by USEPA Method TO-15. The team used the current analytical-parameter list for indoor-air, sub-slab-vapor, and background monitoring that was agreed upon in 2013 (see Section 3.5). A more detailed description of the IAQ and SV sampling activities follows.

3.4.1 Collection of IAQ Samples

Individual evacuated Summa[®] canisters were used to collect all IAQ samples, in accordance with USEPA Method TO-15. These canisters are specially treated stainless-steel evacuated canisters typically used for VOC sampling. One-liter (1L) Summa[®] canisters equipped with in-line particulate filters and integral controllers (to set the rate of filling during sampling) were used.

Samples were collected by opening the canister valve and allowing outside air to enter the canister at the rate set by the controller. The controllers were calibrated in the laboratory and shipped to the field with a sufficient flow rate to maintain the necessary vacuum pressure in the Summa[®] canister for the entire eight-hour sampling interval. Summa[®] canisters were certified clean (less than 0.2 parts per billion [ppb], by volume, of targeted compounds) by the laboratory before being sent to the field, in accordance with Section 8.4 of the TO-15 methodology (USEPA, 1999).

Each canister collected an indoor air sample over an uninterrupted eight-hour period. Each sampling location was routinely inspected during sampling to ensure sample integrity, appropriate operation of sampling devices, and to document conditions within the sampled area

that might affect the results. The four background samples were collected in the same manner as the IAQ samples. Because background samples are collected outdoors, site conditions (e.g., weather, temperature, barometric pressure, humidity and any possible air pollution) that might affect the integrity of the background samples were noted while sampling. Summa[®] canisters were placed in areas away from vehicle traffic and other site operations.

3.4.2 Collection of Sub-Slab-Vapor Samples

Sub-slab soil-vapor samples were collected according to the same protocols discussed in Section 3.4.1. Soil vapor samples were collected through Teflon[®] tubing attached to the stainless steel vapor probes that were installed in the MRC flooring during site characterization studies. Before sampling, the Teflon[®] tubing was purged of atmospheric air to allow any subsurface vapor to enter the probe and tubing. Purging was performed by attaching the Teflon[®] sample tubing to a low-flow sampling pump set at a flow rate of up to approximately 200 cubic centimeters per minute to minimize the potential for mobilizing subsurface vapor and biasing the sample. One to three volumes (i.e., the volume of the sampling probe and tube) were purged to ensure that collected samples were representative of sub-slab conditions.

As with the IAQ samples, sampling was performed using USEPA Method Toxic Organic 15 (TO-15) for the collection and analysis of VOCs (USEPA, 1999). To collect the sample, a clean Summa[®] canister was attached to the Teflon[®] tubing, and the valve on the canister's flow controller opened to allow soil vapor to be drawn into the evacuated canister. The controllers were calibrated by the laboratory and shipped to the field. Soil vapor samples were collected at a low flow rate for one hour to ensure subsurface equilibration and to avoid high negative pressure that might mobilize subsurface vapor and bias the results.

3.5 SAMPLE ANALYSIS

IAQ and SV samples collected during earlier sampling rounds were analyzed for VOCs that had been detected in other MRC investigations. These target compounds, identified in groundwater and sub-slab-vapor samples, may have been historically used and released at the MRC, and could potentially affect IA via subsurface migration. Additional chemicals have been added to this list as they have been detected during facility-wide characterization. Groundwater data collected at the site are reviewed annually to identify possible new COC to be included in the vapor intrusion

(VI) investigation, and the analytical list is amended as needed. A review of 2012 and 2013 groundwater data did not indicate the need to add COC to the 2014 list of analytes. The current list, last amended on February 12, 2012, is below:

- benzene
- carbon tetrachloride
- chlorodifluoromethane (Freon 22)
- chloroform
- dichlorodifluoromethane
- 1,1-dichloroethane (1,1-DCA)
- 1,2-dichloroethane (1,2-DCA)
- 1,1-dichloroethene (1,1-DCE)
- *cis*-1,2-dichloroethene (*cis*-1,2-DCE)
- *trans*-1,2-dichloroethene (*trans*-1,2-DCE)
- ethylbenzene
- methyl-tertiary-butyl ether (MTBE)
- methylene chloride

- naphthalene
- tetrachloroethene (PCE)
- toluene
- 1,2,4-trichlorobenzene
- 1,1,1-trichloroethane (1,1,1-TCA)
- 1,2,3-trimethylbenzene (1,2,3-TMB)
- 1,2,4-trimethylbenzene (1,2,4-TMB)
- 1,3,5-trimethylbenzene (1,3,5-TMB)
- trichloroethene (TCE)
- 1,1,2-trichloroethane (1,1,2-TCA)
- vinyl chloride (VC)
- xylenes (total)

All samples collected during Round 16 were submitted to Pace for analysis by GC/MS using cryogenic concentration (as described in Sections 9 and 10 of USEPA Method TO-15 [USEPA, 1999]). This method was used because of its low detection limit (in the parts per billion by volume range) and because it can quantify all VOCs of concern. Pace is certified in USEPA Method TO-15 analysis, and meets all quality assurance/quality control requirements specified in the TO-15 methodology.

All samples were stored at ambient temperatures and shipped to the laboratory via overnight carrier. All samples were submitted and analyzed within the method's specified 30-day holding time. All appropriate chain of custody documentation was completed for each sample (see Appendix A). A table of Pace's method detection limits is in Appendix B; Appendix C contains the laboratory analytical reports. Data validation reports and supporting documentation are in Appendix D.

Analytical data were qualified in accordance with USEPA *Contract Laboratory Program National Functional Guidelines* (USEPA, 2008). Attaching data qualifiers to analytical results signifies a quality control non-compliance. During Round 16, the following data qualifiers were applicable for the non-conforming data (i.e., data affected by technical limitations during laboratory analysis) after validation:

- J indicates an estimated result where the result was less than the reporting limit
- \bullet J+ indicates an estimated result where the result was less than the reporting limit and biased high
- *U* indicates the chemical was not detected at the numerical detection limit (i.e., the sample-specific quantitation limit)
- UJ indicates the chemical was not detected at the numerical detection limit (i.e., the sample-specific quantitation limit), which was estimated

3.6 RESAMPLING OF TCE-EXCEEDANCE LOCATIONS (APRIL 2014)

Tetra Tech resampled IAQ locations with a TCE concentration above its screening criterion. TCE exceeded its industrial screening level (8.8 μg/m³) at two locations (IA-081-A-16 and IA-113-C-16) in February 2014 (Round 16). IA-081A is in the southeastern corner of Building A and IA-113C is in the central portion of Building C basement. Both locations were resampled on April 17, 2014 to evaluate the reproducibility of the February 2014 exceedance. As summarized below, the April 2014 data indicate that the initial February 2014 concentrations reflect the transient nature of IA concentrations:

Location	February 2014 results (µg/m³)	April 2014 results (µg/m³)
IA-081A	19.2	4.1
IA-113C	20	0.89U (not detected)

3.7 PORTABLE GAS CHROMATOGRAPH/ MASS SPECTROMETER SURVEY

On February 27–28, 2014, immediately following the Summa[®] canister sampling program, Tetra Tech conducted a survey using a HAPSITE (hazardous air pollutants on site) field-portable gasphase GC/MS to locate indoor sources of VOCs and possible sub-slab conduits. Conventional

indoor air sampling using Summa[®] canisters and analysis of samples using USEPA Method TO-15 meet the necessary data requirements for the monitoring program, but the approach has limitations when investigating the source of volatile contaminants. For example, the number of samples collected in a conventional sampling program is often constrained by both time and budget. A portable GC/MS provides real-time analysis of VOCs in IA, which allows for a quick and efficient screening of large building areas for VOCs.

The HAPSITE field-portable GC/MS is a commercial field instrument that is sufficiently sensitive and selective for use in VI applications. The February 2014 HAPSITE survey was conducted in the southern portion of Building A basement and in the MST MPL machine shop on the northeastern side of the Building C basement. TCE was the target analyte, and the instrument was pre-calibrated to identify an ion specifically characteristic of TCE, thus removing interference from other VOCs. The HAPSITE GC/MS provided real-time analysis of TCE in air, the primary contaminant in the subsurface that might also have indoor sources. The instrument was used to scan the two general areas for possible physical sources of TCE, such as tanks, utility corridors, floor grates/drains, storage cabinets, machines, and commercial products.

The survey of the southern portion of the Building A basement started at the southernmost wall and ended near column D18 (Figure 3-6). Twenty-eight sampling locations were surveyed, with many near physical features that could be VOC sources (e.g., utility corridors, floor grates/drains, tanks and storage cabinets). Thirty-six sampling locations were surveyed in the machine shop area of the Building C basement (Figure 3-7), also near physical features that could be VOC sources (e.g., drums, various cutting machines, chemical storage cabinets, flammable cabinets, and worker stations). The HAPSITE GC/MS was calibrated daily before use and transported to each individual sampling location using a pushcart. The unit was connected to a laptop that enabled real-time data processing.

TCE was not detected at concentrations greater than background at locations tested in the Building C basement machine shop area. However, TCE was detected at 16.24 ppb (equivalent to $87 \mu\text{g/m}^3$) at one floor-level location directly above a floor grate near column D26 in the Building A basement. The floor grate is suspected of being part of the storm sewer system. Note that TCE concentrations detected near the grate were below the screening level using conventional sampling methods. Sampling locations 093-A and 138-A are nearby; reported TCE

concentrations at those locations were $5.9 \,\mu\text{g/m}^3$ and $1.6 \,\mu\text{g/m}^3$, respectively. The storm sewer might be a preferential pathway to this area of Building A. Historical exceedances of the TCE screening level in soil vapor have been reported at location 093-A. While this exceedance at the floor grate was noted, no worker is present in this basement area for any continuous period of time. The Building A basement contains pumps, sumps, collection tanks, boiler room equipment, utility corridors, and electrical panels.

3.8 RESULTS

All analytical results for indoor-air-quality and background (ambient air) samples were compared to screening levels for industrial air that are based on those in USEPA's *Regional Screening Levels* (*RSLs*) for Chemical Contaminants at Superfund Sites (USEPA, 2014). COC screening uses the lower of the carcinogenic or noncarcinogenic values. The carcinogenic values are based on a 1×10^{-5} (i.e., a one-in-100,000 probability) cancer risk, and the noncarcinogenic values are based on a hazard index of 1 (i.e., the no-adverse-effect level). These risk benchmarks were selected in accordance with MDE requirements. The screening level available for 1,2,3-trimethylbenzene was used as a surrogate level for 1,3,5-trimethylbenzene, because USEPA has not published an RSL for this chemical in air. Analytical results were also compared to (federal) Occupational Safety and Health Administration (OSHA) permissible exposure limits (PELs).

SV sampling results were compared to SV screening values derived in accordance with methods discussed in Appendix D of USEPA's guidance for evaluating vapor intrusion (USEPA, 2002), and were calculated by dividing IA screening levels by a conservative attenuation factor (AF) of 0.03¹. The attenuation factor represents the adjustment applied to IA screening levels to account for reductions in concentration as vapor migrates from sub-slab to indoor air, due to diffusive, advective, and/or other attenuating mechanisms. Simply stated, SV is expected to dilute upon movement into IA; the AF is the ratio of the IA concentration of the COC to its SV concentration, under a conservative VI scenario. The most recent USEPA guidance (USEPA, 2013b) confirms that an AF of 0.03 is appropriate; this value results in higher SV screening values when compared to those used in pre-August 2012 sampling rounds (based on an AF of 0.1).

_

¹ An AF of 0.1 was used in data analyses before August 2012. This factor has since been updated based on USEPA research. USEPA's *Vapor Intrusion Database: Evaluation and Characterization of Attenuation Factors for Chlorinated Volatile Organic Compounds and Residential Building* (USEPA, 2012b) recommends the new AF of 0.03, as recent data indicate a building contributes a greater degree of attenuation than originally had been believed.

3.8.1 Round 16 Data Analysis

In this section, because all data discussed are from Round 16, and because the sampling medium (i.e., IA or SV) is identified at the start of each subsection, the sampling medium and round designation (R16) are not included when identifying samples or sampling locations in text or tables. For example, under the subheading "Building A Indoor Air Quality (IAQ) Samples," the sampling medium (IA) is identified in the subheading title, so an IAQ sample collected from VMP 076 (e.g., sample 076-A-IA-R16) is referred to as "076-A." If comparisons are made to specific samples from previous sampling rounds, the sample will be identified as such in the text or by using the round-designation suffix (e.g., R06 for Round 6).

Figures 3-2, 3-3, and 3-4 show Round 16 sampling locations in Buildings A, B, and C, respectively, and Figure 3-5 shows sampling locations for the VLS, PB, and ER buildings. Descriptive statistics for Round 16 IAQ and SV samples are in Tables 3-1 and 3-2, respectively. (As a point of comparison, descriptive statistics for all IAQ and SV samples collected during the VI program are also in Appendix F.) Additional summary statistics for IA TCE and naphthalene over time are in Tables 3-3 and 3-4, respectively.

The following chemicals were detected in Round 16 IAQ and SV samples at concentrations exceeding their respective MDE risk-management benchmarks:

- *IA*—ethylbenzene, *meta-+para-*xylenes, naphthalene, and TCE
- *SV*—TCE, naphthalene, 1,2,3-trimethylbenzene, 1,2,4-trimethylbenzene, 1,3,5-trimethylbenzene, chloroform, ethylbenzene, total xylenes, 1,1-dichloroethane, and vinyl chloride

Figures 3-8 through 3-11 show IA and SV sampling locations with exceedances. Concentrations of TCE in IA and SV throughout Buildings A, B, and C are shown on Figure 3-12.

3.8.1.1 Background Ambient Air Samples

Analytical results for the Round 16 ambient air samples collected at the MRC background locations are in Table 3-5. Background sampling locations are far enough away from site operations to avoid any possible site influence (see Figure 3-1). As discussed in Section 3.3, southeastern background location BCK-3 was moved approximately 700 feet northwest of its historical location to the southeast corner of the VLS parking lot, to reduce possible

contamination from an open underground storage tank excavation in Block E. The remaining three background samples were collected from the same locations used in the previous round (the northeastern, northwestern, and southwestern fence lines).

The following 15 chemicals were detected in the background samples, but none were detected at concentrations greater than their corresponding indoor air screening levels:

- benzene (four of four samples)
- ethylbenzene (two of four samples)
- tetrachloroethene (one of four samples)
- 1,2,3-trimethylbenzene (two of four samples)
- xylenes (three of four samples)

- chlorodifluoromethane (four of four samples)
- methylene chloride (four of four samples)
- toluene (four of four samples)
- 1,2,4-trimethylbenzene (three of four samples)

- dichlorodifluoromethane (four of four samples)
- naphthalene (three of four samples)
- trichloroethene (one of four samples)
- 1,3,5-trimethylbenzene (one of four samples)

All of these chemicals have also been detected in IA or SV samples. The maximum detected background concentrations were at least one order of magnitude (10 times) less than screening levels, with only a few exceptions. Two of these exceptions are TCE and naphthalene: the maximum Round 16 background concentrations of TCE ($4.2 \,\mu\text{g/m}^3$) and naphthalene ($3.5 \,\mu\text{g/m}^3$) are within one order of magnitude of the screening levels ($8.8 \,\mu\text{g/m}^3$ and $3.6 \,\mu\text{g/m}^3$, respectively). The maximum detected background TCE concentration from Round 16 ($4.2 \,\mu\text{g/m}^3$) exceeds the historical maximum for background samples ($1.7 \,\mu\text{g/m}^3$). However, the maximum naphthalene concentration ($3.5 \,\mu\text{g/m}^3$) during Round 16 is less than the maximum reported in historical background samples ($8.1 \,\mu\text{g/m}^3$).

3.8.1.2 Building A Indoor Air Quality (IAQ) Samples

Round 16 IAQ results for Building A are in Table 3-6; exceedances are displayed on Figure 3-8. Fifteen indoor air samples (plus one duplicate: IA-DUP-3 [a duplicate of 015-A] and one resample: IA-081-A-16R) were collected. IAQ data for Building A indicate the following:

• TCE and naphthalene are the only target analytes detected at concentrations exceeding their respective MDE screening levels (Figure 3-8).

- TCE was detected in nine of 15 IA samples (not including the duplicate or resample). The only sample with a TCE exceedance (19.2 μg/m³) of the screening level (8.8 μg/m³) was from location 081-A, collected in February 2014, in the southern end of the first floor. This location was resampled in April 2014; TCE in the April sample did not exceed the screening level.
- Historically, the highest IA TCE concentrations in Building A have been detected in the basement and near the plating shop. Comparing the mean and concentration range of samples collected on the first floor to the mean of those collected in the basement indicates that IA concentrations for these two areas are similar (Table 3-3).
- Potential TCE-degradation products (1,1-DCE, *cis*-1,2-DCE, and *trans*-1,2-DCE) were not detected in the sample collected from location 081-A, where the only TCE exceedance was observed. 1,1-DCE and *cis*-1,2-DCE were detected at only one IA location (093X-A), in the southwestern portion of the Building A basement; the detected concentrations do not exceed screening levels. Location 093X-A is an offset sampling location tested in Round 16 because of the TCE concentrations detected at Location 093-A during Round 15. *trans*-1,2-DCE was not detected in Round 16 samples collected from Building A.
- Naphthalene (3.7 μg/m³) slightly exceeded its IA screening level (3.6 μg/m³) at the same location (081-A) as the TCE exceedance. The highest historical naphthalene concentrations have been found along the eastern wall of the Building A basement and on the first floor in the east–central portion of the building, east of the plating shop. The locations of these exceedances follow historical trends. The mean concentrations of naphthalene in samples collected on the first floor and the mean of those collected in the basement are similar (Table 3-4).
- The highest concentrations of several other VOCs, including ethylbenzene (36.6 μg/m³) and total xylenes (209.5 μg/m³), were also detected at 081-A, but none were detected at concentrations above their respective screening levels.
- Comparing the mean concentrations of TCE in samples collected on the first floor and in the basement to the mean of the background concentrations indicates that IA concentrations are slightly greater than background concentrations (Table 3-3). Naphthalene IA concentrations in the basement and on the first floor are also slightly greater than the background concentrations (Table 3-4).

3.8.1.3 Building A Sub-Slab-Vapor (SV) Samples

Round 16 results for sub-slab-vapor (SV) samples collected in Building A are in Table 3-7. Fifteen SV samples (Figure 3-2) were collected from beneath the Building A slab, including two duplicates: SV-DUP-3 (duplicate of 015-A) and SV-DUP-4 (duplicate of 018-A). Figure 3-8 shows SV exceedances by location. Table 3-8 contains a parallel listing of SV and co-located IAQ results for samples collected in Building A. TCE, selected TCE-degradation products, and

naphthalene concentrations detected in Building A are shown graphically on Figures 3-13A–C. Historical maximum IAQ and SV concentrations for TCE in Building A are mapped on 3-D representations on Figures 3-14A and 3-14B, respectively. For purposes of comparison, TCE results for Round 16 are also displayed in 3-D on Figures 3-14C (IAQ data) and 3-14D (SV data). These data indicate the following:

- TCE, chloroform, the trimethylbenzene group of compounds (1,2,3-, 1,2,4-, and 1,3,5-trimethylbenzene [1,2,3-TMB, 1,2,4-TMB, and 1,3,5-TMB, respectively]), and naphthalene were detected at concentrations exceeding screening levels.
- Exceedances of SV TCE screening level (293 μg/m³) were observed at 079-A (6,090 μg/m³), approximately 120 feet south of 117-A, at 015-A (564 μg/m³ and 619 μg/m³ in the duplicate sample) and 118-A (5,860 μg/m³) in the east–central portion of Building A, and at 136-A (91,000 μg/m³), approximately 200 feet south of 075-A. TCE exceedances were also reported for several of these locations in Round 15. However, although TCE concentrations at locations 018-A and 108-A exceeded the screening level in Round 15, Round 16 concentrations do not. SV TCE exceedances were detected at:
 - o 015-A: within the Building A SSD-system radius of influence, this VMP has historically had SV concentrations of VOCs exceeding screening levels
 - 118-A: in an environmentally controlled area under positive pressure, less than 50 feet southeast of 108-A, in the bond lay-up room. This location is not within the SSD system radius of influence
 - 079-A: east of the bond lay-up room, on the east–central side of Building A, north of the autoclaves, near column B-24 (AC). TCE exceedances have been detected at this VMP since its installation in 2009 (Round 6).
 - 136-A: on the eastern side of Building A, near its junction with Building B. The highest TCE concentrations during Rounds 15 and 16 were detected here. This VMP was installed before Round 14.
- Naphthalene exceeded its SV screening level (120 $\mu g/m^3$) only at 075-A (259 $\mu g/m^3$) in the northeastern section of Building A (Table 3-7 and Figure 3-8).
- Chloroform was detected at seven of 13 SV locations, but exceeded its screening level (177 $\mu g/m^3$) only at 136-A (217 $\mu g/m^3$), on the east side of Building A near its junction with Building B. The maximum TCE detection (91,000 $\mu g/m^3$) was also reported for this location.

- Exceedances of trimethylbenzenes (1,2,3-TMB, 1,2,4-TMB, and 1,3,5-TMB) were observed at 081-A, in the far southern end of the building. Exceedances of all three trimethylbenzene isomers were also observed at this location during Round 15. A 1,2,3-TMB exceedance also occurred at 081-A in Round 13, but not during Round 14. In Round 15, naphthalene also exceeded its SV screening level at this location, indicating possible impact from a hydrocarbon fuel.
- Relatively high concentrations (but no exceedances) of 1,1-DCE, *cis*-1,2-DCE and/or *trans*-1,2-DCE were detected at all VMPs exhibiting TCE exceedances.
- Elevated TCE concentrations in SV generally do not correspond with elevated concentrations in IA. TCE concentrations in IA were below screening levels at the same locations where SV exceedances occurred. SV TCE did not exceed its screening criterion at the only location with an IA TCE exceedance (081-A).
- 1,1-DCE and *cis*-1,2-DCE were detected in only one IA sample (093X-A), collected in the Building A basement. Detections of these degradation compounds of TCE in the basement are most likely associated with the former use of TCE in the plating shop.
- *trans*-1,2-DCE was not detected in any IA sample.
- Naphthalene was detected in all but three SV-IA co-located sample pairs. Where the SV naphthalene concentration exceeded its screening level (075-A), the corresponding IA concentration did not. Likewise, where IA naphthalene exceeded its screening level (081-A), the SV concentration did not. This suggests possible IA sources of naphthalene.
- Chloroform was detected in both IA and SV in co-located samples at only one location (018-A), but concentrations are less than screening values. Chloroform in SV at 136-A exceeded the screening level, but was not detected in the associated IA sample.

3.8.1.4 Building B Indoor Air Quality (IAQ) Samples

Round 16 IAQ sampling results for Building B are in Table 3-9. Five IAQ samples were collected from interior locations in Building B. Two additional IA samples (105-Z and 123-Z) were collected from the Fire Coat building, approximately 55 feet south of Building B. Building B exceedances are shown on Figure 3-9. Building B indoor-air-quality data indicate the following:

- Naphthalene is the only COC that exceeded its IA screening level (3.6 $\mu g/m^3$) within Building B.
- Ethylbenzene and xylenes concentrations exceed their respective screening criteria (49-μg/m³ and 440 μg/m³, respectively) in both samples collected in the Fire Coat building.

- TCE was detected in only one of five IA samples collected inside Building B, at a concentration $(1.1 \,\mu\text{g/m}^3)$ below its screening level $(8.8 \,\mu\text{g/m}^3)$. TCE has never been detected in indoor air at the Fire Coat building.
- The mean concentration of TCE in samples collected from the first floor of Building B is less than the mean background concentration (Table 3-3). TCE was not detected in Building B basement samples during Round 16.
- Naphthalene was detected in four of five samples collected in Building B, and in one of the two samples collected from the Fire Coat building. The two exceedances (4*J* µg/m³ at 033-B and 6.5*J* µg/m³ at 140-B) are from the northwestern side of Building B in a machining area (033-B) and from the west–central portion of Building B (140-B). Round 16 results are typical of the historical data reported for Building B.
- The only detection of naphthalene in the Building B basement approximates the maximum 2014 background detection (only two samples were collected). Although the maximum detection from Building B first-floor samples during Round 16 exceeds the maximum background concentration from 2014, all detected naphthalene results from Round 16 are within the historical background range (Table 3-4).

3.8.1.5 Building B Sub-Slab Vapor Samples

Round 16 SV sampling results for Building B are in Table 3-10. Four SV samples were collected from beneath the Building B slab. Two additional SV samples (105-Z and 123-Z) were collected from the Fire Coat building. VOC concentrations above screening levels are shown on Figure 3-9. Table 3-11 contains a parallel listing of the SV and co-located IAQ sampling results for Building B. Round 16 TCE, selected TCE-degradation products, and naphthalene concentrations detected in Building B SV, basement IA, and first-floor IA are shown graphically on Figures 3-15A–C. Historical maximum TCE concentrations in IAQ and SV are mapped on a 3-D Building B representation in Figures 3-16A and 3-16B, respectively, while Round 16 data are displayed on a 3-D Building B representation in Figures 3-16C (IAQ data) and 3-16D (SV data). These data indicate the following:

- No SV concentrations exceed screening levels.
- TCE and naphthalene were detected in all SV samples, but TCE degradation products were detected infrequently.
- SV ethylbenzene and xylenes concentrations detected in the Fire Coat building are somewhat higher than those noted in Building B.
- TCE was detected in co-located IA and SV samples at only one location (121-B). TCE was detected in SV, but not in co-located IA samples, at other locations.

• Naphthalene was detected in four of six co-located IA and SV samples, but the only exceedances were in IA at locations 140-B and 033-B. Note the absence of a co-located SV sample for location 140-B. However, the IA and SV naphthalene concentrations at 121-B (between those two locations) were below screening levels. Generally, higher concentrations of naphthalene in IA do not correlate with higher concentrations in SV.

3.8.1.6 Building C Indoor Air Quality (IAQ) Samples

Round 16 IAQ sampling results for Building C are in Table 3-12. Eighteen indoor-air-quality samples (plus two duplicates: IA-DUP-1 [a duplicate of 133-C] and IA-DUP-2 [a duplicate of 113-C] and one resample [IA-113-C-16R]) were collected from interior locations in the Building C basement (Figure 3-4). Figure 3-10 displays exceedances of screening levels by location. IAQ data for Building C indicate the following:

- TCE (at one location) and naphthalene (at seven locations) are the only target analytes exceeding screening levels (based on MDE risk-management benchmarks).
- TCE was detected at only two Round 16 IA sampling locations (113-C and 133-C), with an exceedance of the IA screening level (8.8 μg/m³) at 113-C (20 μg/m³) in the original sample, but not its duplicate. IA at 113-C was resampled in April 2014 because of this earlier exceedance. TCE in the April sample did not exceed the screening level. TCE was not detected at location 144-C, where an exceedance was reported in Round 15. The mean TCE concentration for Building C IA basement samples is approximately equal to the mean of Round 16 background samples (Table 3-3); no first-floor samples were collected in Building C.
- TCE-degradation products *cis*-1,2-DCE, *trans*-1,2-DCE, and VC were not detected in Round 16 IA samples, but 1,1-DCE (another TCE degradation product) was detected at a concentration less than its screening level at one location (113-C, in the original but not in the duplicate).
- Naphthalene marginally exceeded (3.7–5.1 µg/m³) its indoor-air screening level (3.6 µg/m³) at seven locations during Round 16. In contrast, three naphthalene exceedances occurred in Round 15 IA samples, zero exceedances in Round 14 IA samples, and only one exceedance in Round 13 samples. Most locations with exceedances during Round 16 are in the east–central portion of Building C; however, the highest Round 16 naphthalene concentration was in the northern part of Building C (065-C). Four of seven IA naphthalene exceedances were in the MST MPL area, suggesting a possible indoor air source.
- The mean of Round 16 IA naphthalene concentrations in Building C is greater than the mean of background concentrations. However, historical results indicate IA naphthalene concentrations are generally similar to background concentrations (Table 3-4).

3.8.1.7 Building C Sub-Slab-Vapor (SV) Samples

Fifteen SV samples, including two duplicates (SV-DUP-1 [a duplicate of 133-C] and SV-DUP-2 [a duplicate of 113-C]), were collected from beneath the Building C basement slab (Figure 3-4). Note that while IA samples were collected at locations 144-C through 148-C during Round 16, no corresponding SV samples were collected because no sub-slab VMPs are installed at these locations. Table 3-13 shows Round 16 SV sampling results for Building C, and exceedances are in Figure 3-10. Co-located sampling results for Building C are in Table 3-14. TCE, select TCE-degradation products, and naphthalene concentrations are shown graphically in Figures 3-17A–B. Historical maximum IAQ and SV concentrations for TCE are mapped in 3-D on Figures 3-18A and 3-18B, respectively. IA and SV TCE results for Round 16 are also displayed in 3-D on Figures 3-18C and 3-18D, respectively. These data indicate the following:

- Chloroform, naphthalene, 1,1-DCA, ethylbenzene, TCE, vinyl chloride, and xylenes were detected in SV samples at concentrations exceeding their respective screening levels.
- TCE was detected in all but one of 15 (including two duplicates) SV samples collected beneath Building C, but only two locations had TCE exceedances of the SV screening level (293 $\mu g/m^3$) : 102-C (2,740 $\mu g/m^3$) and 133-C (10,700 $\mu g/m^3$ and 8,630 $\mu g/m^3$ in the duplicate sample).
- The highest TCE concentrations were found in the central portion of the Building C basement (Figure 3-10). The maximum TCE concentration was at 133-C, near the center of the Building C basement (CBC) and west of the former Patriot plating line. This location also had the highest TCE concentrations in Rounds 13, 14, and 15. Location 133-C is within the radius of influence of the Building C SSD-system expansion; TCE concentrations at 133-C have decreased since the SSD system expansion was activated.
- TCE and several other contaminants (1,1-DCA, ethylbenzene, and xylenes) were detected at concentrations greater than their screening levels at location 102-C, which is due west and nearly adjacent to the location of the former Patriot plating line.
- TCE exceedances were also detected in areas outside the observed radius of influence of the Building C SSD system.
- In most cases, TCE was not detected in both IA and SV samples collected from the same locations. Exceptions are locations 113-C and 133-C. The only IA TCE exceedance of the IA screening level (8.8 μg/m³) was at 113-C (20 μg/m³), whereas the maximum SV TCE detection was at 133-C. TCE was not detected in IA at location 102-C, where the only other SV TCE exceedance was detected (Figure 3-18A–B).

- 1,1-DCE, *cis*-1,2-DCE, and *trans*-1,2-DCE, potential TCE breakdown products, were generally found in SV samples that also had TCE concentrations greater than its SV screening level, but this correlation is not completely consistent.
- VC (a breakdown product of TCE and DCE) exceeded its screening level (933 μg/m³) at 126-C (11,900 μg/m³), collected from beneath the southern portion of the Martin Museum on the eastern side of the Building C basement and north of the former Patriot plating line. VC has always exceeded the SV screening level at this location since the VMP was first installed and sampled in February 2012. The last time VC was detected in IA samples was in August 2011 (Round 11) at three CBC locations and at one location each in CBS and CBN. All reported concentrations marginally exceeded the detection level, were *J*-qualified (estimated), and did not exceed the IA screening level (28 μg/m³).
- Naphthalene was detected during Round 16 at 12 of 13 sampling locations and exceeded (157 μ g/m³) its screening level (120 μ g/m³) at only one location (142-C). This location is not within the SSD-system radius of influence.
 - Naphthalene did not exceed its screening level at 102-C, which had the highest naphthalene concentration during Rounds 13, 14, and 15. Naphthalene at 102-C has historically exceeded its SV screening level. However, other exceedances (1,1-DCA, ethylbenzene, TCE, and total xylenes) were detected here during Round 16. Location 102-C is just west of the former Patriot plating line.
 - Comparison of the Round 15 and 16 naphthalene exceedances shows a decrease in concentration (from Round 15 to 16) at locations 102-C, 130-C, and 142-C. No naphthalene exceedances were observed at 102-C and 130-C in Round 16, but naphthalene exceeded its screening level in both rounds at 142-C. These locations are all outside the SSD-system radius of influence.
 - Naphthalene was detected in the co-located IA sample at the location with the SV exceedance (142-C); however, the IA naphthalene concentration does not exceed its screening level.
- SV concentrations of xylenes, ethylbenzene, and 1,1-DCA exceeded their respective screening levels during Round 16 at 102-C, but no exceedances were detected in IA at 102-C.
- The SV concentration of chloroform exceeded its screening level at 143-C during Round 16, but was not detected in IA at the same location.

3.8.1.8 Indoor-Air-Quality Sampling Results from Additional Buildings

Round 16 IAQ sampling results for the VLS, ER, and PB buildings are in Tables 3-15, 3-16, and 3-17, respectively; VOC concentrations above screening levels are shown on Figure 3-11. Eight IAQ samples (including one duplicate) were collected in the VLS building, four IAQ samples (including one duplicate) were collected from the ER building, and three (including one

duplicate) were collected from the PB. No SV samples were collected, because VMPs are not installed in these buildings.

TCE was not detected in any IAQ sample collected from the VLS, PB, or ER buildings. The sole exceedance $(71J \,\mu\text{g/m}^3)$ is naphthalene at 147-VLS, collected on the first floor at the northwestern corner of the VLS building. Naphthalene was detected in four of eight samples collected in the VLS building, in one of four samples from the ER building, and in two of three samples from the PB building. Naphthalene was not detected in the duplicate sample collected from the same location as the exceedance (147-VLS). This suggests that the concentration reported for the original sample was anomalous or transient in nature.

3.8.1.9 Comparison of Round 16 Results to Background Ambient-Air Samples

Outdoor air quality (i.e., background) provides baseline COC concentrations to which concentrations from interior and sub-slab sources can be compared. Comparison to background provides a line of evidence to demonstrate whether chemicals detected in IA are more likely associated with an exterior (i.e., background) or interior source (e.g., chemicals used in the workplace, past spills of chemicals absorbed to above-slab building materials, or sub-slab sources). A comparison of Round 16 IA concentrations (from 58 samples, including duplicates) to the maximum background concentrations for Round 16 is in Appendix E.

Table 3-18 lists the chemicals detected in both background and indoor air samples, and indicates the number of IA samples less than, equal to, and greater than the maximum background concentration. These tables support the evaluation of whether or not chemical concentrations detected in indoor air samples indicate sub-slab or other interior contaminant sources, or simply reflect background conditions:

- When IA concentrations are equal to or less than background concentrations, IA concentrations likely reflect background conditions.
- When IA concentrations are greater than background concentrations, sub-slab or other interior contaminant sources are possibly contributing to the IA concentrations.
- When SV concentrations are less than IA concentrations, and IA concentrations are greater than background, other interior sources are possibly contributing to IA concentrations.

 The presence of chlorinated degradation-products in IA samples (at concentrations less than those detected in SV samples), but not in the background samples, suggests that subslab sources possibly contribute to IA concentrations.

IA chemicals exceeding screening criteria based on MDE risk-management benchmarks (i.e., ethylbenzene, xylenes, naphthalene, and TCE) exceed maximum background values in 30% or fewer samples. TCE exceeded background in fewer than 10% of samples. In general, IA VOCs at concentrations less than screening criteria also exceed background maximum concentrations in 30% or fewer samples. These results suggest that most detections of these chemicals likely reflect background conditions. Overall, Round 16 maximum background concentrations are generally greater than Round 15 maximum background concentrations. A comparison of TCE and naphthalene (the two most significant IA chemicals) data from Round 16 to historical background data suggests that IA concentrations might result from vapor intrusion or interior sources, but could also be due to background sources, as mean TCE and naphthalene results from Round 16 are generally within the range of historical background concentrations.

3.8.1.10 Comparison of Round 16 Results to Historical Data Set

The historical data set for the VI sampling program (Table F-1 in Appendix F) shows that exceedances in IA occurred for only six target analytes: 1,2-DCA, benzene, ethylbenzene, naphthalene, xylenes, and TCE. Figures 3-19 through 3-24 summarize all data collected throughout the VI monitoring program in frequency-of-concentration histograms. As annotated on these figures, very few exceedances of these screening levels have been identified over time.

Graphical techniques were used to compare IA and SV concentrations of select chemicals at Buildings A, B, and C. The following chemicals were included in the comparisons:

- **Building A:** TCE, naphthalene, 1,1-DCE, total 1,2-DCE, chloroform, and total TMB
- **Building B:** TCE, naphthalene, ethylbenzene, toluene, and total xylenes
- *Building C:* TCE, naphthalene, 1,1,1-TCA, 1,1-DCA, chloroform, ethylbenzene, total xylenes, and vinyl chloride

These chemicals were selected because they have been detected at concentrations exceeding screening levels or at particularly noteworthy concentrations (e.g., greater than 1000 µg/m³ in SV).

Figures illustrating the spatial distribution of TCE and *cis*-1,2-DCE concentrations in indoor air and sub-slab vapor for Round 16 are in Appendix F (Figures F-1 through F-4). These figures provide two-dimensional (2-D) portrayals of sub-slab concentrations of TCE and *cis*-1,2-DCE that are color-coded and mapped according to concentration trends. Three-dimensional (3-D) figures illustrating maximum historical TCE concentrations at Buildings A, B, and C, including Round 16 sampling locations, are in Figures F-5 through F-10 of Appendix F.

Two figures are presented for each building: one illustrating IA results and one depicting SV results. Each figure has a color-coded scale corresponding to the highest observed historical TCE concentrations at each sampling location. Note that maximum indoor air and SV concentrations on Figures F-5 through F-10 may have occurred in separate rounds. For example, an elevated IA concentration might have been found during one round, whereas the maximum SV concentration at the same location may have been detected during another sampling round. A review of these figures and historical data indicates the following:

- **Building A, first floor**—Elevated SV TCE does not appear spatially correlated to elevated IA TCE in Round 16. However, elevated SV TCE historically has appeared to be spatially correlated to elevated IA levels near the plating shop.
- **Building A basement**—Elevated SV TCE does not appear spatially correlated to elevated IA TCE concentrations in Round 16. However, elevated IA TCE in the southern half of the basement may be correlated to elevated SV TCE at or near the plating shop.
- **Building B**—No apparent correlations exist between SV and IA; however, COC concentrations are lower overall.
- **Building C basement**—Historical elevated TCE in SV appears spatially correlated to elevated IA TCE at the building's southern end and central portion. During Round 16, IA TCE concentrations were less than the screening level at and near locations with SV TCE exceedances.

Three-dimensional (3-D) figures illustrating historical maximum naphthalene concentrations at Buildings A, B, and C (including Round 16 sampling locations) are shown in Appendix F as Figures F-11 through F-16. Two figures are presented for each building: one illustrating IA results and one depicting SV results. Each figure has a color-coded scale corresponding to the highest observed historical naphthalene concentrations at each location. Note that maximum IA and SV concentrations on Figures F-11 through F-16 may have occurred in separate rounds. For example, an elevated IA concentration might have been found during one round, whereas the

maximum SV concentration at the same location may have been detected during another sampling round.

These figures and historical naphthalene data show no temporal correlations between increased concentrations in soil gas and IA. However, historical data do indicate that IA concentrations greater than the screening level may be near VMPs with soil vapor concentrations greater than screening levels. Not all areas with SV concentrations greater than screening levels have a proximate IA exceedance; however, naphthalene is typically detected in IA with greater than 50% frequency. Hence, a VI pathway might not exist at every observed location with elevated SV naphthalene concentrations, but such a pathway could be present for a subset of these locations.

Many factors can affect the distribution of and temporal changes in IA and SV data. Some significant factors affecting results include complex building-envelope interactions, such as stack effects and the influence of heating, ventilation, and air conditioning (HVAC) systems; weather effects, such as fluctuations in temperature, barometric pressure and precipitation; and laboratory variation. Building-envelope factors at the MRC include roof vents, fans, large doors (often open in the summer), and the use of a forced air heating system in the winter. Personnel and vehicles are also continuously moving through most parts of the building, with the possible exception of the Building A basement. VOCs are also sometimes used at various locations within these buildings.

IA and SV results, in conjunction with observations recorded during Round 16 (previously discussed in Section 3.3), indicate the following:

- Contaminant concentrations in IA sample 118-A from the positive pressure, air-conditioned bond layup room are similar to concentrations detected in other areas. IA concentrations in this sample are more similar than the corresponding SV samples. These similarities could be due to air mixing by the HVAC system. TCE in SV beneath the bond layup room exceeded its screening level (Figure 3-8). The HVAC system might help reduce possible vapor intrusion into IA, but it does not appear to affect SV concentrations.
- IA sample 063-B was collected near a door open to the outside. IA results for this location are generally equal to or less than background results, indicating some contribution from background (as seen at other locations), but also contributions from interior sources.

- Samples IA-144-C and IA-128-C were collected in a positive pressure, air-conditioned room that should reduce possible vapor intrusion. IA TCE was not detected at these sampling locations, or at any nearby sampling locations (IA-145-C, IA-146-C, IA-147-C, and IA-148-C) during Round 16. TCE was detected in all IA samples collected in Building C during Round 15, with an exceedance occurring IA-144-C during Round 15.
- Samples IA/SV-105-Z and IA/SV-123-Z were collected in a room containing fire-coat paint products, operating overhead fans, and with treated parts on a table. Ethylbenzene and xylenes exceedances in IA were detected at these locations during Round 16. Ethylbenzene and xylenes last exceeded their IA screening levels at these locations during Round 11. These exceedances may be attributable to painting done within this building. Strong paint odors are noticeable during sampling.
- Building A is a one-story building except for a basement corridor under an open air loading dock on its western side. Roof vents approximately 50 feet above the work floor were closed in Building A during Round 16 sampling. The large doors at the loading docks on the western side of the building were opened periodically. The increased ventilation associated with open doors might have affected sample concentrations on the first floor of Building A. However, IA naphthalene and TCE detections in the basement suggest that VI might be occurring. Moreover, the detection of TCE (87 μg/m³) measured near IA-093-A and IA-138-A (which are directly above a floor grate) via the portable GC/MS (HAPSITE) suggests that the drain might serve as a preferential pathway to IA in Building A. TCE was detected at both IA-093-A and IA-138-A during Round 16. Historical exceedances of the TCE screening level in SV have been reported at 093-A. No personnel or other activities were observed in the Building A basement.

Laboratory variation may contribute to some data variability, as various labs have been used over the last eight years (16 rounds) of sampling. In addition, more advanced laboratory instrumentation has recently been implemented to analyze samples collected at the site. These changes in instrumentation have improved laboratory accuracy and precision by lowering detection limits, thus complicating direct comparison of older results with more recent data.

3.8.2 Round 16 Summary

Round 16 data support the ongoing MRC VI investigation. The primary chemicals of concern at this site (and discussed below) include TCE and its breakdown products, naphthalene, chloroform, xylene, ethylbenzene, and the TMB group of compounds; all had SV exceedances in at least one sample during Round 16. All COC have been associated with possible vapor intrusion, are toxic at sufficient doses, and are known to have been used historically at the site. In the following discussion, elevated SV or IA concentrations are compared to medium- and COC-specific screening levels. Note that for some COC, Buildings A and B are discussed together because of the possible SV connection between location 136-A at the eastern side of

Building A and monitoring points at the western side of Building B (e.g., locations 101-B, 121-B, and 140-B).

3.8.2.1 <u>Distribution of Trichloroethene and Its Breakdown Products in</u> Sub-Slab Vapor and Indoor Air

- **Buildings A and B**—Locations in Building A with SV TCE exceedances during Round 16 are mapped in orange and red on Figure F-3 in Appendix F. Elevated TCE levels are on the first floor in the southeastern section of the building near 079-A, near the plating area, and in the north–central/northeastern section of Building A near 136-A. Lower SV TCE concentrations (green and blue areas on Figure F-3) were observed in the southern quarter of Building A.
 - Positive correlations between *cis* and *trans*-1,2-DCE in SV and TCE in SV were found at some locations. Higher SV TCE concentrations (orange and red shading, Figure F-3) correlate well with higher *cis*-1,2-DCE concentrations (orange, yellow and green shading, Figure F-4). Dechlorination breakdown-products were detected in the same samples with elevated TCE concentrations, indicating that TCE degradation is most likely occurring. A positive correlation between breakdown product 1,1-DCE and TCE concentrations in SV was not observed in all samples. The presence of *cis*-1,2-DCE, but not 1,1-DCE, suggests that anaerobic biodegradation of TCE is the dominant breakdown pathway.
 - TCE in IA was low at most VMPs in and near the plating shop area (e.g., 015-A and 108-A), where SV TCE was relatively high. No concentration exceeded screening levels. This indicates that the SSD system is reducing the potential for vapor intrusion to occur
 - Elevated SV TCE was detected at 136-A. Concentrations decreased moving east from 136-A to 101-B. Chloroform showed similar behavior. A sewer or other subsurface chase might act as a conduit between these locations.
 - The resampled results for location 081-A in April appear to indicate that the IA TCE exceedance reported in the original (February 2014) sample was transient or anomalous.
 - o Neither *cis*-1,2-DCE nor *trans*-1,2-DCE were detected in IA in Buildings A and B.
- *Fire Coat building*—TCE and its degradation products were not detected in IA samples collected within the Fire Coat building. Both TCE and *cis*-1,2-DCE were detected below screening levels in SV samples, suggesting a possible correlation between these compounds in the subsurface.
- **Building C**—Two areas of elevated TCE (or TCE degradation products) in SV were observed in Building C (yellow shading, Figure F-3). One is near 126-C, and the other extends southeast to northwest between locations 102-C and 133-C. During Round 14, these two areas were mapped together as a single northeast—southwest trending area of TCE in SV. TCE concentrations within these two areas are substantially lower than those observed during Round 14.

- With the possible exception of location 126-C, SV concentrations of 1,1-DCE, cis-1,2-DCE, trans-1,2-DCE, and VC (TCE-degradation products) do not strongly correlate with SV TCE. An exception is the vinyl chloride detection at 126-C (11,900 μg/m³), which suggests that TCE degradation has occurred there in the past.
- The resampled results for location 113-C in April appear to indicate that the IA TCE exceedance reported in the original (February 2014) sample was transient or anomalous.
- *VLS*, *PB*, *and ER buildings*—TCE was not detected in IA in the VLS, PB, or ER buildings, nor were degradation products detected, except for a single detection of *trans*-1,2-DCE in the ER building.

3.8.2.2 <u>Distribution of Naphthalene in Sub-Slab Vapor and Indoor Air</u>

- *Buildings A and B*—The SV naphthalene concentration at 075-A in the northern portion of Building A is the only Round 16 SV naphthalene result in Building A to exceed the screening level. The maximum naphthalene concentration in SV samples collected from Building B (location 121-B, at the western edge of Building B [85.8 μg/m³]) does not exceed screening levels. SV sample concentrations from Building B are generally lower than those detected in Building A. Naphthalene detections in SV are widely dispersed in Buildings A and B, and, in many cases, the detected SV concentrations are similar to concentrations detected in IA. Elevated SV concentrations are not detected at IA locations with naphthalene exceedances (081-A, 033-B, and 140-B). Although vapor intrusion might contribute to the IA naphthalene concentrations detected at some locations (e.g., at location 140-B in the central western portion of Building B), the spatial distribution of the IA/SV data and the comparison of these data to background results suggest that other factors (e.g., background, other indoor air sources) are also likely affecting the IA naphthalene concentrations detected in Buildings A and B.
- *Fire Coat building*—Naphthalene concentrations reported for SV and IA samples collected from the Fire Coat building are not noteworthy. No exceedances were observed; the maximum SV and IA concentrations are 10.9 and 3.2 μg/m³, respectively. The maximum detected background concentration in Round 16 is 3.5 μg/m³.
- *Building C*—Seven IA naphthalene concentrations exceeded the screening level: three locations outside the machine shop (065-C, 133-C, 143-C), and four locations inside the machine shop area (128-C, 145-C, 146-C, and 147-C). Only the SV (not IA) concentration at 142-C (also outside the machine shop) was an exceedance. These sampling locations are dispersed throughout Building C. The maximum IA concentration (5.1 μg/m³ at location 065-C in the northern part of the building) marginally exceeds the maximum detected background concentration (3.5 μg/m³) for Round 16. A strong correlation was not observed between the SV and IA concentrations in Building C.
- *VLS*, *PB*, *and ER buildings*—Naphthalene was detected in almost half of IA samples collected in these buildings, but only one sample in the VLS building (147-VLS) had naphthalene concentrations exceeding the screening level. Naphthalene was not detected in the duplicate sample from this location. The presence of naphthalene suggests a possible indoor air source.

3.8.2.3 Distribution of Chloroform in Sub-Slab Vapor and Indoor Air

Chloroform is a common industrial solvent and a potential degradation product of carbon tetrachloride.

- **Building** A—a chloroform exceedance (217 μg/m³) was observed at a single SV monitoring location (136-A), but did not exceed its screening level in any IA sample. The maximum detected concentration of IA chloroform in Round 16 samples is 1.4 μg/m³. These results are similar to those reported in Rounds 14 and 15.
- **Building B and the Fire Coat, VLS, PB, and ER buildings**—Chloroform concentrations did not exceed IA or SV screening levels in any samples.
- **Building C**—Chloroform was detected at a single SV monitoring location (143-C) at a concentration (194 μg/m³) exceeding its screening level, but was not detected in any Round 16 IA sample.

3.8.2.4 Distribution of Xylenes in Sub-Slab Vapor and Indoor Air

Xylene is a common industrial solvent and a component in gasoline.

- **Building A, Building B, Fire Coat building**—Exceedances of xylenes were not detected in Building A during Round 16. However, xylenes were detected in SV in Building A. These results correlate with TMB exceedances also detected in the SV. IA concentrations of xylenes in Fire Coat building samples (locations 105-Z and 123-Z) also exceed screening levels, but concentrations in SV samples do not.
- **Building C**—Only one SV exceedance (15,540 μg/m³) of the screening level (14,667 μg/m³) for total xylenes was identified, at location 102-C. However, the IA concentration for total xylenes at 102-C was only 1.9 μg/m³, a concentration well below its screening level (440 μg/m³). IA concentrations of xylenes measured in Building C during Round 16 are below the screening level. These results are similar to those observed in Rounds 14 and 15.
- *VLS*, *PB*, *and ER buildings*—Xylenes were detected in most IA samples collected from these buildings, but no concentrations exceeded the screening level.

3.8.2.5 <u>Distribution of Ethylbenzene in Sub-Slab Vapor and Indoor Air</u>

Ethylbenzene is a component in gasoline.

- Building A, Building B, and the VLS, PB, and ER buildings—Ethylbenzene did not exceed its screening level in Round 16 IA/SV samples.
- *Fire Coat building*—Ethylbenzene exceedances were observed in both IA samples collected from this building. IA concentrations significantly exceed those detected in SV samples, suggesting a possible indoor source, rather than a vapor intrusion source. Numerous paints and solvents, possibly containing ethylbenzene, are used at this location.

• **Building C**—Ethylbenzene (2,140 μg/m³) exceeded its SV screening level (1,633 μg/m³) at one location (102-C); this is the same location where the only xylene and 1,1-DCA exceedances were detected in SV. TCE in SV at location 102-C also exceeded screening levels. Ethylbenzene was not detected in the IA sample from location 102-C. Results for location 102-C in Rounds 15 and 16 are similar.

3.8.2.6 <u>Distribution of Trimethylbenzene Compounds in Sub-Slab Vapor</u> and Indoor Air

TMB compounds are common components of gasoline and diesel fuel.

- **Building A**—TMB compounds were detected in the SV sample, but not in the IA sample, from VMP 081-A, at concentrations exceeding their respective screening levels. Several other fuel-related chemicals were also detected in this SV sample.
- Building B, Building C, and the Fire Coat, VLS, PB, and ER buildings—No exceedances of screening levels were detected.

TABLE 3-1

DESCRIPTIVE STATISTICS OF INDOOR AIR QUALITY RESULTS, ALL BUILDINGS, FEBRUARY/APRIL 2014 LOCKHEED MARTIN MIDDLE RIVER COMPLEX, MIDDLE RIVER, MARYLAND

Parameter	Frequency of detection ⁽¹⁾	Minimum detected value ⁽¹⁾	Maximum detected value ⁽¹⁾	Location with maximum detected value	Sample with maximum detected value	Minimum non- detect value ⁽²⁾	Maximum non- detect value ⁽²⁾	Average of detected values ⁽¹⁾	Average of all values ⁽¹⁾	Standard deviation ⁽¹⁾	Average of detected background values	Maximum background value	Number of samples above maximum background value ⁽¹⁾	Adjusted USEPA RSL for industrial air ⁽³⁾	Number of samples above adjusted industrial RSL ⁽¹⁾	OSHA PEL ⁽⁴⁾	Number of samples above OSHA PEL ⁽¹⁾
Volatile organic compounds (µg	/m³)																
1,1,1-TRICHLOROETHANE	4/54	0.81 J	13.2	AIR-113-C	IA-113-C-16	1.8	40.4	2.5	1.5	2.7	ND	ND	3	22000 N	0	1900000	0
1,1-DICHLOROETHANE	1/54	43.7	43.7	AIR-113-C	IA-113-C-16	1.1	29.8	22.2	1.4	3.5	ND	ND	1	77 C	0	400000	0
1,1-DICHLOROETHENE	2/54	0.75 J	17.1	AIR-113-C	IA-113-C-16	1.1	29.5	4.8	1.2	2.2	ND	ND	2	880 N	0	NC	
1,2,3-TRIMETHYLBENZENE	8/54	0.88	3.6	AIR-081-A	IA-081-A-16	0.34	7.3	1.5	0.55	0.7	1.4	1.4	2	22 N	0	123000	0
1,2,4-TRIMETHYLBENZENE	18/54	0.94 J	11.7	AIR-081-A	IA-081-A-16	1.3	36.3	2.6	1.8	2.8	2.1	2.8	7	31 N	0	123000	0
1,3,5-TRIMETHYLBENZENE	9/54	1 J	4.9	AIR-081-A	IA-081-A-16	1.7	36.3	1.9	1.4	2.4	1.7	1.7	5	22 N ⁽⁵⁾	0	123000	0
BENZENE	50/54	0.44 J	15.9	AIR-075-A	IA-075-A-16	0.52	11.8	1.3	1.3	2.2	1.4	2.7	2	16 C	0	319	0
CARBON TETRACHLORIDE	1/54	1.4	1.4	AIR-145-C	IA-145-C-16	0.86	23.3	1.4	0.83	1.5	ND	ND	1	20 C	0	62900	0
CHLORODIFLUOROMETHANE	53/54	1.3	54.2	AIR-146-C	IA-146-C-16	7.3	7.3	10.2	10.1	12.3	4.1	10.8	16	220000 N	0	3590000	0
CHLOROFORM	1/54	1.4 J	1.4 J	AIR-018-A	IA-018-A-16	1.3	36	1.4	1.3	2.3	ND	ND	1	5.3 C	0	240000	0
CIS-1,2-DICHLOROETHENE	1/54	0.91 J	0.91 J	AIR-093X-A	IA-093X-A-16	1.1	29.5	0.91	1.0	1.9	ND	ND	1	NC		790000	0
DICHLORODIFLUOROMETHANE	53/54	1.4 J	4.8	AIR-145-C	IA-145-C-16	1.7	36.7	2.4	2.7	2.2	2.6	3.4	2	440 N	0	4950000	0
ETHYLBENZENE	26/54	0.75 J	164	AIR-123-Z	IA-123-Z-16	1.5	32	16.2	8.5	26.9	1.9	2.6	13	49 C	2	435000	0
M+P-XYLENES	42/54	1.4 J	1030	AIR-123-Z	IA-123-Z-16	3	64	49.5	39.5	153.2	3	5.8	17	440 N ⁽⁶⁾	2	434000	0
METHYLENE CHLORIDE	54/54	1.9 J	1140	AIR-145-C	IA-145-C-16			44.5	44.5	160.8	159	580	2	2600 N ⁽⁷⁾	0	87000	0
NAPHTHALENE	43/54	1.1 J	71 J	AIR-147-VLS	IA-147-VLS-2	1.8	96.7	3.6	4.1	7.7	2.1	3.5	16	3.6 C	11	50000	0
O-XYLENE	36/54	0.74 J	210	AIR-123-Z	IA-123-Z-16	1.5	32	14.6	10.3	34.3	2.3	2.3	16	440 N	0	434000	0
TOLUENE	50/54	1.2 J	20000	AIR-123-Z	IA-123-Z-16	1.3	28	606	561	2976.5	8.8	24	14	22000 N	0	754000	0
TRANS-1,2-DICHLOROETHENE	2/54	17.4 J	70.1 J	AIR-003-ER	IA-003-ER-1-D	1.1	29.5	31.8	2.2	6.6	ND	ND	3	NC		790000	0
TRICHLOROETHENE	13/54	1	20	AIR-113-C	IA-113-C-16	0.89	20	5.1	1.8	3.4	4.2	4.2	5	8.8 N ⁽⁷⁾	2	537000	0
TOTAL XYLENES**	42/54	1.4	1240	IA-123-Z	IA-123-Z-16	0	0	61.0	47.4	187	3.7	8.1	15	440 N	2	434000	0

A shaded maximum background value indicates that the maximum detected value from the site data exceeds the maximum background value.

A bolded chemical name indicates that the chemical exceeds background and the industrial air RSL based on an HQ of 0.1 or an ILCR of 1E-06.

A bolded/shaded chemical name indicates the chemical exceeds background and the industrial air RSL based on an HQ of 1 or an ILCR of 1E-05.

Footnotes:

- 1 Sample and duplicate are considered two separate samples when determining the minimum and maximum concentrations, but are considered one sample when determining frequency of detection, average, standard deviation, and the number of samples exceeding screening criteria.
- 2 Values presented are sample-specific quantitation limits.
- 3 USEPA Regional Screening Levels (RSLs) for Chemical Contaminants at Superfund Sites, May 2014. RSLs for carcinogens were adjusted to be based on a lifetime cancer risk of 1E-05. RSLs for noncarcinogens were not adjusted and represent a hazard quotient (HQ) of 1.
- 4 Occupational Safety and Health Administration (OSHA) Permissible Exposure Limit (PEL).
- 5 The value for 1,2,3-trimethylbenzene is presented for 1,3,5-trimethylbenzene.
- 6 The value for m-xylene and p-xylene is presented for m+p-xylenes.
- 7 One tenth the noncarcinogenic value is less than the carcinogenic value; therefore, the noncarcinogenic value is presented.
- 8 Total xylenes are calculated; a value of 0 is used for non-detects.

Note: Locations AIR-081-A and AIR-113-C were resampled in April 2014 (IA-081-A-16R and IA-113-C-16R). The February 2014 trichloroethene concentrations greater than screening criteria were not confirmed in the April 2014 resamples.

Definitions:

C - carcinogen

HQ - hazard quotient

ILCR - incremental lifetime cancer risk

J - estimated value

μg/m³ - micrograms per cubic meter

N - noncarcinogen

NA - not applicable/not available

NC - no criterion available

ND - not detected

OSHA - Occupational Safety and Health Administration

PEL - permissable exposure limit

RSL - regional screening level

USEPA - United States Environmental Protection Agency

TABLE 3-2 DESCRIPTIVE STATISTICS OF SUB-SLAB VAPOR RESULTS, ALL BUILDINGS, FEBRUARY 2014

Parameter	Frequency of detection ⁽¹⁾	Minimum detected value ⁽¹⁾	Maximum detected value ⁽¹⁾	Location of maximum detected value	Sample with maximum detected value	Minimum non- detect value ⁽²⁾	Maximum non- detect value ⁽²⁾	Average of detected values ⁽¹⁾	Average of all values ⁽¹⁾	Standard deviation ⁽¹⁾	Adjusted USEF industrial air [val by 0.03 [©]	ue divided	Number of samples above adjusted industrial RSL ⁽¹⁾
Volatile organic compounds (µg/m³)													
1,1,1-TRICHLOROETHANE	11/32	1.5 J	2070	AIR-102-C	SV-102-C-16	1.9	4.7	224	77.6	365	733333	N	0
1,1-DICHLOROETHANE	12/32	1.3 J	6760	AIR-102-C	SV-102-C-16	1.4	2.3	574	216	1194	2567	С	1
1,1-DICHLOROETHENE	12/32	0.86 J	2530	AIR-102-C	SV-102-C-16	1.4	2.3	421	158	528	29333	N	0
1,2,3-TRIMETHYLBENZENE	20/32	0.71	4140	AIR-081-A	SV-081-A-16	0.34	1.9	220	138	731	733	N	1
1,2,4-TRIMETHYLBENZENE	22/32	1.3 J	6780	AIR-081-A	SV-081-A-16	1.7	4.2	330	227	1196	1033	N	. 1
1,2-DICHLOROETHANE	1/32	0.82	0.92	AIR-133-C	SV-133-C-16	0.69	1.7	0.87	0.41	0.13	157	С	0
1,3,5-TRIMETHYLBENZENE	11/32	1.1 J	3500	AIR-081-A	SV-081-A-16	1.7	4.2	336	116	618	733	N ⁽⁴⁾	1 1
BENZENE	23/32	0.33 J	88.4	AIR-126-C	SV-126-C-16	0.55	0.9	5.7	4.1	15.5	533	С	0
CARBON TETRACHLORIDE	6/32	0.825	133	AIR-143-C	SV-143-C-16	1.1	1.8	26.7	5.5	23.4	667	С	0
CHLORODIFLUOROMETHANE	29/32	0.8	32.6	AIR-033-B	SV-033-B-16	0.34	5.9	6.5	6.0	7.0	7333333	N	0
CHLOROFORM	18/32	0.84 J	217	AIR-136-A	SV-136-A-16	1.7	2.8	41.3	23.6	54.1	177	С	2
CIS-1,2-DICHLOROETHENE	18/32	0.7 J	2620	AIR-079-A	SV-079-A-16	1.4	2.3	264	149	503			
DICHLORODIFLUOROMETHANE	30/32	1.5 J	7.3	AIR-065-C	SV-065-C-16	1.7	1.9	2.8	2.7	1.3	14667	N	0
ETHYLBENZENE	20/32	0.87 J	2140	AIR-102-C	SV-102-C-16	1.5	3.7	118	74.1	377	1633	С	1
M+P-XYLENES	30/32	1.1 J	11500	AIR-102-C	SV-102-C-16	3.2	5	430	403	2029	14667	N _(p)	0
METHYLENE CHLORIDE	32/32	2.1 J	621 J	AIR-105-Z	SV-105-Z-16			60.8	60.8	132	86667	N ⁽⁶⁾	0
NAPHTHALENE	28/32	2.5	259	AIR-075-A	SV-075-A-16	1.8	4.5	40.0	35.1	56.5	120	С	2
O-XYLENE	26/32	0.81 J	4040	AIR-102-C	SV-102-C-16	1.5	3.7	179	146	713	14667	N	0
TETRACHLOROETHENE	16/32	1.6	169	AIR-133-C	SV-133-C-16	1.2	1.9	23.1	11.9	31.6	6000	N ^(b)	0
TOLUENE	29/32	1.2 J	128	AIR-102-C	SV-102-C-16	1.3	1.3	16.2	14.8	24.7	733333	N	0
TRANS-1,2-DICHLOROETHENE	8/32	1.1 J	517	AIR-079-A	SV-079-A-16	1.4	3.4	75.7	19.5	91.1			
TRICHLOROETHENE	30/32	0.94 J	91000	AIR-136-A	SV-136-A-16	0.92	0.99	3917	3673	16087	293	N ^(b)	8
VINYL CHLORIDE	4/32	0.57	11900	AIR-126-C	SV-126-C-16	0.44	1.1	2978	372	2104	933	С	1
TOTAL XYLENES(')	30/32	1.1	15540	SV-102-C	SV-102-C-16	0	0	549	585	2740	14667	N	1

LOCKHEED MARTIN MIDDLE RIVER COMPLEX, MIDDLE RIVER, MARYLAND

A bolded chemical name indicates that the chemical exceeds the industrial air RSL divided by 0.03 (based on an HQ of 0.1 or an ILCR of 1E-06). A bolded/shaded chemical name indicates that the chemical exceeds the industrial air RSL divided by 0.03 (based on an HQ of 1 or an ILCR of 1E-05).

Footnotes:

- 1 Sample and duplicate are considered as two separate samples when determining the minimum and maximum concentrations. Sample and duplicate are considered as one sample when determining frequency of detection, average, standard deviation, and the number of samples exceeding screening criteria.
- 2 Values presented are sample-specific quantitation limits.
- 3 Screening values derived in accordance with Draft Guidance for Evaluating the Vapor Intrusion to Indoor Air Pathway from Groundwater and Soils (November 2002). Screening values are equal to United States Environmental Protection Agency (USEPA) Industrial Air Screening Values divided by an attenuation factor 0.03, and correspond to a target cancer risk level of 1.0E-05 or a hazard quotient (HQ) of 1.
- 4 The value for 1,2,3-trimethylbenzene is presented for 1,3,5-trimethylbenzene.
- 5 The value for m-xylene and p-xylene is presented for m+p-xylenes.
- 6 One tenth the noncarcinogenic value is less than the carcinogenic value; therefore, the noncarcinogenic value is presented.
- 7 Total xylenes are calculated; a value of 0 is used for non-detects.

Definitions:

-- = no criterion available HQ = hazard quotient J = estimated value RSL = regional screening level ILCR = incremental lifetime cancer risk N = noncarcinogen

C = carcinogen

TABLE 3-3
SUMMARY STATISTICS FOR TRICHLOROETHENE CONCENTRATIONS IN INDOOR AIR
LOCKHEED MARTIN MIDDLE RIVER COMPLEX, MIDDLE RIVER, MARYLAND

Building level or background	Dataset	Minimum detected value ⁽¹⁾	Maximum detected value ⁽¹⁾	Minimum non- detect value ⁽¹⁾⁽²⁾	Maximum non- detect value ⁽¹⁾⁽²⁾		Average of detected values ⁽³⁾	Frequency of	Number of detections > 8.8 μg/m³ (4)(5)	95% UCL ⁽³⁾
	A D	0.077	00 (fi)	0.075	22	0.07		0.10/05.1	_	
Basement	All Buildings 2006-2014	0.077 J	36 ⁽⁶⁾	0.075	20	0.97	1.4	212/354	5	1.4
	All Buildings 2014	1	20	0.89	20	1.8	4.7	6/27	1	2.7
	Building A 2006-2014	0.15 J	13	0.36	0.96	2.3	2.5	45/50	1	3.8
	Building A 2014	1	8.4	0.96	0.96	3.5	4.2	4/5	0	6.9
	Building B 2006-2014	0.078 J	2.5	0.075	2.7	0.60	0.67	51/73	0	0.67
	Building C 2006-2014	0.077 J	36 ⁽⁶⁾	0.075	20	0.81	1.2	116/230	4	1.3
	Building C 2014	1.2	20	0.89	20	1.5	5.8	2/19	1	NA ⁽⁷⁾
First Floor	All Buildings 2006-2014	0.081 J	34	0.075	12	1.1	1.6	141/290	2	1.2
	All Buildings 2014	1.1	19.2	0.92	1.4	1.8	5.4	7/27	1	3.3
	Building A 2006-2014	0.086 J	34	0.075	12	1.3	1.9	102/176	2	2.2
	Building A 2014	1.6	19.2	0.92	1.4	3.6	6.1	6/11	1	10.1
	Building B 2006-2014	0.081 J	5.1	0.075	11	0.79	0.72	32/73	0	0.63
	Building B 2014	1.1	1.1	0.99	1	0.62	1.1	1/5	0	NA ⁽⁷⁾
	Building C 2006-2014	0.5 J	7.2	0.21	2.7	1.0	2.3	7/22	0	2.0
Background	2006-2014	0.45 J	4.2	0.075	2.7	0.45	1.6	5/52	0	0.41
	2014	4.2	4.2	0.92	1.4	1.5	4.2	1/4	0	NA ⁽⁸⁾

All results are in µg/m³.

- (1) The original sample and duplicate are considered as two separate samples when determining the minimum and maximum concentration.
- (2) Values presented are sample-specific quantitation limits.
- (3) The average of the original sample and duplicate is used for determining the mean, frequency of detection, and 95% UCL.
- (4) Value is the non-carcinogenic industrial air regional screening level corresponding to HI = 1 (USEPA, May 2014).
- (5) Field duplicate pair samples are counted as one sample in determining the number of samples exceeding the screening level. The field duplicate pair is considered to exceed the screening level if either the original or duplicate sample is greater than the screening level.
- (6) The maximum detected concentration of $36 \,\mu\text{g/m}^3$ was detected in a duplicate sample, and the corresponding original sample concentration of $0.75 \,\mu\text{g/m}^3$ is considerably less than the maximum concentration. Resampling at the same location found concentrations that were closer to the original sample concentration.
- (7) There are less than 4 detections; therefore, a UCL is not presented.
- (8) There are less 5 samples; therefore, a UCL is not presented.

Note: Locations AIR-081-A and AIR-113-C were resampled in April 2014 (IA-081-A-16R and IA-113-C-16R). The February 2014 trichloroethene exceedances were not confirmed in the April 2014 resamples.

Definitions:

HI - hazard index

ILCR - incremental lifetime cancer risk

J - estimated value

μg/m³ - micrograms per cubic meter

NA - not applicable/not available

UCL - upper confidence limit

USEPA - United States Environmental Protection Agency

A benchmark of 8.8 μ g/m³ corresponds to HI = 1.

TABLE 3-4
SUMMARY STATISTICS FOR NAPHTHALENE CONCENTRATIONS IN INDOOR AIR LOCKHEED MARTIN MIDDLE RIVER COMPLEX, MIDDLE RIVER, MARYLAND

Building level or background	Dataset	Minimum detected value ⁽¹⁾	Maximum detected value ⁽¹⁾	Minimum non- detect value ⁽¹⁾⁽²⁾	Maximum non- detect value ⁽¹⁾⁽²⁾	Average of all values ⁽³⁾	Average of detected values ⁽³⁾	Frequency of detection ⁽³⁾	Number of detections > 3.6 µg/m³ (4)(5)	95% UCL ⁽³⁾
Basement	All Buildings 2006-2014	0.1775	12 J	0.19	96.7	1.4	1.8	182/289	26	1.4
	All Buildings 2014	1.1 J	5.1	4.6	96.7	4.8	3.2	23/27	8	3.5
	Building A 2006-2014	0.2825	12 J	0.19	1	1.9	2.7	32/45	9	2.6
	Building A 2014	1.7 J	3			2.5	2.5	5/5	0	3.0
	Building B 2006-2014	0.23 J	5	0.19	5.6	1.1	1.5	30/46	3	1.4
	Building B 2014	4 J	4 J	5.6	5.6	3.4	4.0	1/2	1	NA ⁽⁶⁾
	Building C 2006-2014	0.1775	5.1	0.19	96.7	1.4	1.6	119/197	14	1.2
	Building C 2014	1.1 J	5.1	4.6	96.7	5.7	3.4	16/19	7	4.6
	Building PB 2014	1.2 J	1.2 J	1.8	1.8	1.2	1.2	1/1	0	NA ⁽⁶⁾
First Floor	All Buildings 2006-2014	0.19 J	71 J	0.19	31	1.3	1.7	90/182	4	1.4
	All Buildings 2014	1.1 J	71 J	1.8	5	3.4	4.1	20/27	3	5.8
	Building A 2006-2014	0.19 J	4.8	0.19	31	0.93	1.2	60/125	2	0.89
	Building A 2014	1.3 J	3.7	1.8	3.6	2.5	2.5	10/11	1	3.0
	Building B 2006-2014	0.26 J	6.5 J	0.19	24	1.7	1.4	24/46	1	1.3
	Building B 2014	1.3 J	6.5 J	5	5	3.4	3.6	4/5	1	5.4
	Building ER 2014	1.1 J	1.1 J	1.8	2.5	1.1	1.1	1/3	0	NA ⁽⁶⁾
	Building PB 2014	1.3 J	1.3 J			1.3	1.3	1/1	0	NA ^(b)
	Building VLS 2014	1.3 J	71 J	1.8	1.9	6.1	10.0	4/7	1	16.6
Background	2006-2014	0.2 J	8.1 J	0.19	2.7	0.8	1.4	18/36	1	1.4
	2014	1.3 J	3.5	2.7	2.7	1.9	2.1	3/4	0	NA ⁽⁶⁾

All results are in µg/m³.

A benchmark of 3.6 μ g/m³ corresponds to HI = 1.

- (1) The original sample and duplicate are considered as two separate samples when determining the minimum and maximum concentration.
- (2) Values presented are sample-specific quantitation limits.
- (3) The average of the original sample and duplicate is used for determining the mean, frequency of detection, and 95% UCL.
- (4) Value is the non-carcinogenic industrial air regional screening level corresponding to HI = 1 (USEPA, May 2014).
- (5) Field duplicate pair samples are counted as one sample in determining the number of samples exceeding the screening level. The field duplicate pair is considered to exceed the screening level if either the original or duplicate sample is greater than the screening level.
- (6) There are less than 5 samples; therefore, a UCL is not presented.

Definitions:

HI - hazard index

ILCR - incremental lifetime cancer risk

J - estimated value

μg/m³ - micrograms per cubic meter

NA - not applicable/not available

UCL - upper confidence limit

USEPA - United States Environmental Protection Agency

AMBIENT AIR (BACKGROUND) SAMPLING RESULTS, FEBRUARY 2014 LOCKHEED MARTIN MIDDLE RIVER COMPLEX MIDDLE RIVER, MARYLAND

SAMPLE ID SAMPLE DATE	OSHA PEL (µg/m³)	Industrial air screening level (µg/m³)	KEY	BCK-1 BCK-1-16 20140225	BCK-2 BCK-2-16 20140225	BCK-3 BCK-3-16 20140225	BCK-4 BCK-4-16 20140225
Volatile organic compounds (µg/							
BENZENE	319	16	ca	0.93	2.7	0.78	1.1
CARBON TETRACHLORIDE	62,900	20	ca	1.1 U	1.1 U	1.1 U	1.6 U
CHLORODIFLUOROMETHANE	3,590,000	220,000	nc	10.8	2.7	1.2	1.8
CHLOROFORM	240,000	5	ca	1.7 U	1.7 U	1.7 U	2.5 U
DICHLORODIFLUOROMETHANE	4,950,000	440	nc	2.1	3.4	2.1	2.9
1,1-DICHLOROETHANE	400,000	77	ca	1.4 U	1.4 U	1.4 U	2 U
1,2-DICHLOROETHANE	400,000	5	ca	0.69 U	0.69 U	0.69 U	1 U
1,1-DICHLOROETHENE		880	nc	1.4 U	1.4 U	1.4 U	2 U
CIS-1,2-DICHLOROETHENE	790,000			1.4 U	1.4 U	1.4 U	2 U
TRANS-1,2-DICHLOROETHENE	790,000			1.4 U	1.4 U	1.4 U	2 U
ETHYLBENZENE	435,000	49	ca	1.2 J	2.6	1.5 U	2.2 U
METHYL TERT-BUTYL ETHER	180,000 ^A	470	ca	1.2 U	1.2 U	1.2 U	1.8 U
METHYLENE CHLORIDE	87,000	2,600	nc	580	23.4	21.2	10
NAPHTHALENE	50,000	3.6	ca	1.3 J	3.5	1.4 J	2.7 U
TETRACHLOROETHENE	678,000	180	nc	1.2 U	1.9	1.2 U	1.7 U
TOLUENE	754,000	22,000	nc	8.3	24	1.3 J	1.6 J
1,2,4-TRICHLOROBENZENE	40,000 ^N	9	nc	2.5 U	2.5 U	2.5 U	3.8 U
1,1,1-TRICHLOROETHANE	1,900,000	22,000	nc	1.9 U	1.9 U	1.9 U	2.8 U
1,1,2-TRICHLOROETHANE	45,000	0.88	nc	0.92 U	0.92 U	0.92 U	1.4 U
TRICHLOROETHENE	537,000	8.8	nc	0.92 U	4.2	0.92 U	1.4 U
1,2,3-TRIMETHYLBENZENE	123,000	22	nc	0.34 U	1.4	1.3	0.5 U
1,2,4-TRIMETHYLBENZENE	123,000	31	nc	1.3 J	2.8	2.2	2.5 U
1,3,5-TRIMETHYLBENZENE	123,000	22	nc ⁽¹⁾	1.7 U	1.7 U	1.7	2.5 U
VINYL CHLORIDE	21,560	28	ca	0.44 U	0.44 U	0.44 U	0.65 U
M+P-XYLENES	434000	440	nc	1.7 J	5.8	1.5 J	4.4 U
O-XYLENE	434000	440	nc	1.5 U	2.3	1.5 U	2.2 U
TOTAL XYLENES	434000	440	nc	1.7 J	8.1	1.5 J	0

All concentrations are in micrograms per cubic meter air (µg/m³)

Shaded cells indicate a concentration greater than the risk -based screening level

Industrial Air Screening Levels from USEPA Regional Screening Levels for Chemical Contaminants at Superfund Sites May-2014 TOTAL XYLENES values are calculated.

- (1) Value is for 1,2,3-trimethylbenzene.
- -- = not available
- A = American Council of Governmental Industrial Hygienists Theshold Limit Value
- ca = screening value based on 1x 10° carcinogenic risk
- J = estimated value
- N = National Institute for Occupational Safety and Health Recommended Exposure Limit
- nc = screening value based on noncarcinogenic hazard index = 1
- ND calculated value is nondetect.
- OSHA PEL = Occupational Safety and Health Administration Pemissible Exposure Limit
- U = not detected
- USEPA = United States Environmental Protection Agency

TABLE 3-6

INDOOR AIR QUALITY SAMPLING RESULTS, BUILDING A, FEBRUARY 2014
LOCKHEED MARTIN MIDDLE RIVER COMPLEX, MIDDLE RIVER, MARYLAND
PAGE 1 OF 2

LOCATION ⁽¹⁾		Industrial		AIR-0	015-A	AIR-018-A	AIR-075-A	AIR-076-A	AIR-079-A	AIR-081-A	AIR-081-A	AIR-093-A
SAMPLE ID	OSHA PEL	Air		IA-015-A-16	IA-015-A-16-D	IA-018-A-16	IA-075-A-16	IA-076-A-16	IA-079-A-16	IA-081-A-16	IA-081-A-16R	IA-093-A-16
	(µg/m3)	Screening	KEY		DUP							
SAMPLE DATE		Level		20140225	20140225	20140225	20140225	20140225	20140225	20140225	20140417	20140225
	3\	(µg/m³)		20140225	20140225	20140225	20140225	20140225	20140225	20140225	20140417	20140225
Volatile organic compounds (µg/n BENZENE	319	16	ca	1.2	1.2	0.75	15.9	0.96	0.88	1.4	0.44	0.98
CARBON TETRACHLORIDE	62.900	20	ca	1.2 1.1 U	1.6 U	1.1 U	1.2 U	1.2 U	1.2 U	1.4 1.7 U	0.86 U	1.7 U
CHLORODIFLUOROMETHANE	3.590.000	220,000	nc	7.5	8.2	2.6	3.9	2.9	4.8	36.6	28	4.4
CHLOROFORM	240.000	5.3	ca	1.7 U	2.5 U	1.4 J	1.9 U	1.9 U	1.9 U	2.6 U	1.3 U	2.6 U
DICHLORODIFLUOROMETHANE	4,950,000	440	nc	2.9	3.2	2	2.2	2.1	2.4	2.9	2.1	3.1
1.1-DICHLOROETHANE	400.000	77	ca	1.4 U	2 U	1.4 U	1.5 U	1.5 U	1.5 U	2.2 U	1.1 U	2.1 U
1.2-DICHLOROETHANE	400,000	4.7	ca	0.69 U	1 U	0.71 U	0.77 U	0.77 U	0.77 U	1.1 U	0.55 U	1.1 U
1.1-DICHLOROETHENE		880	nc	1.4 U	2 U	1.4 U	1.5 U	1.5 U	1.5 U	2.2 U	1.1 U	2.1 U
CIS-1.2-DICHLOROETHENE	790.000			1.4 U	2 U	1.4 U	1.5 U	1.5 U	1.5 U	2.2 U	1.1 U	2.1 U
TRANS-1.2-DICHLOROETHENE	790,000			1.4 U	2 U	1.4 U	1.5 U	1.5 U	1.5 U	2.2 U	1.1 U	2.1 U
ETHYLBENZENE	435,000	49	ca	0.77 J	2.2 U	1.5 U	0.87 J	0.83 J	1.6 U	36.6	8	2.3 U
METHYL TERT-BUTYL ETHER	180,000 A	470	ca	1.2 U	1.8 U	1.3 U	1.4 U	1.4 U	1.4 U	1.9 U	0.98 U	1.9 U
METHYLENE CHLORIDE	87,000	2,600	nc	13.7 J	7.4 J	14.4	14.7	9.8	12.7	37	1.9 J	14
NAPHTHALENE	50,000	3.6	ca	1.8 UJ	2.1 J	2.8	3.6	3.6	2.1	3.7	3.6 U	2.8
TETRACHLOROETHENE	678,000	180	nc	1.2 U	1.7 U	1.2 U	1.3 U	1.3 U	1.3 U	1.8 U	1.6	1.8 U
TOLUENE	754,000	22,000	nc	15.6	16.9	1.7	49.3	54.5	41.8	163	20.4	3
1,2,4-TRICHLOROBENZENE	40,000 N	8.8	nc	2.5 UJ	3.8 U	2.6 U	2.8 U	2.8 U	2.8 U	4 U	5.1 U	3.9 U
1,1,1-TRICHLOROETHANE	1,900,000	22,000	nc	1.9 U	2.8 U	1.9 U	2.1 U	2.1 U	2.1 U	3 U	0.81 J	2.9 U
1,1,2-TRICHLOROETHANE	45,000	0.88	nc	0.92 U	1.4 U	0.96 U	1 U	1 U	1 U	1.5 U	0.74 U	1.4 U
TRICHLOROETHENE	537,000	8.8	nc	0.92 U	1.4 U	1	1.6	1.9	1 U	19.2	4.1	5.9
1,2,3-TRIMETHYLBENZENE	123,000	22	nc	1.7 U	0.5 U	0.35 U	0.37 U	0.37 U	0.37 U	3.6	1.3 U	0.52 U
1,2,4-TRIMETHYLBENZENE	123,000	31	nc	1.7 U	2.5 U	1.7 U	1.9 U	1.9 U	1.9 U	11.7	1.3 U	2.6 U
1,3,5-TRIMETHYLBENZENE	123,000	22	nc ⁽²⁾	1.7 U	2.5 U	1.7 U	1.9 U	1.9 U	1.9 U	4.9	1.2 J	2.6 U
VINYL CHLORIDE	21,560	28	ca	0.44 U	0.65 U	0.45 U	0.49 U	0.49 U	0.49 U	0.69 U	0.35 U	0.67 U
M+P-XYLENES	434000	440	nc	3.3	3.4 J	3.1 U	3 J	2.9 J	2.6 J	161	38.2	4.5 U
O-XYLENE	434000	440	nc	1.3 J	1.4 J	1.5 U	1.1 J	1.2 J	0.9 J	48.5	11.6	2.3 U
TOTAL XYLENES	434000	440	nc	4.6 J	4.8 J	0	4.1 J	4.1 J	3.5 J	209.5	49.8	0

TABLE 3-6

INDOOR AIR QUALITY SAMPLING RESULTS, BUILDING A, FEBRUARY 2014 LOCKHEED MARTIN MIDDLE RIVER COMPLEX, MIDDLE RIVER, MARYLAND PAGE 2 OF 2

LOCATION ⁽¹⁾		Industrial		AIR-093X-A	AIR-094-A	AIR-108-A	AIR-117-A	AIR-117X-A	AIR-118-A	AIR-136-A	AIR-138-A
SAMPLE ID	OSHA PEL	Air		IA-093X-A-16	IA-094-A-16	IA-108-A-16	IA-117-A-16	IA-117X-A-16	IA-118-A-16	IA-136-A-16	IA-138-A-16
	(µg/m3)	Screening Level	KEY								
SAMPLE DATE		(µg/m³)		20140226	20140225	20140225	20140225	20140226	20140225	20140225	20140225
Volatile organic compounds (µg/n	n ³)	(μg/iii)		20140220	20140220	20140220	20140220	20140220	20140220	20140220	20140220
BENZENE	319	16	ca	0.58	0.93	0.9	0.89	0.44 J	1	0.94	1.1
CARBON TETRACHLORIDE	62,900	20	ca	1.1 U	1.1 U	1.2 U	1.2 U	1.2 U	1.2 U	1.2 U	1.7 U
CHLORODIFLUOROMETHANE	3,590,000	220,000	nc	1.4	1.7	4	3.5	1.5	12.4	3.3	4.8
CHLOROFORM	240,000	5.3	ca	1.7 U	1.7 U	1.8 U	1.9 U	1.8 U	1.8 U	1.8 U	2.6 U
DICHLORODIFLUOROMETHANE	4,950,000	440	nc	1.9	2.2	2.2	2	1.4 J	1.9	2.2	3
1,1-DICHLOROETHANE	400,000	77	ca	1.4 U	1.4 U	1.5 U	1.5 U	1.5 U	1.5 U	1.5 U	2.1 U
1,2-DICHLOROETHANE	400,000	4.7	ca	0.71 U	0.71 U	0.74 U	0.77 U	0.74 U	0.74 U	0.74 U	1.1 U
1,1-DICHLOROETHENE		880	nc	0.75 J	1.4 U	1.5 U	1.5 U	1.5 U	1.5 U	1.5 U	2.1 U
CIS-1,2-DICHLOROETHENE	790,000			0.91 J	1.4 U	1.5 U	1.5 U	1.5 U	1.5 U	1.5 U	2.1 U
TRANS-1,2-DICHLOROETHENE	790,000			1.4 U	1.4 U	1.5 U	1.5 U	1.5 U	1.5 U	1.5 U	2.1 U
ETHYLBENZENE	435,000	49	ca	1.1 J	1.5 U	0.94 J	0.84 J	1.3 J	1.4 J	0.75 J	2.3 U
METHYL TERT-BUTYL ETHER	180,000 A	470	ca	1.3 U	1.3 U	1.3 U	1.4 U	1.3 U	1.3 U	1.3 U	1.9 U
METHYLENE CHLORIDE	87,000	2,600	nc	6.6	5	8.8	8.9	89.7	8.8	7.3	17.2
NAPHTHALENE	50,000	3.6	ca	1.7 J	2.2	2.2	2.2	1.3 J	2.2	2.9	3
TETRACHLOROETHENE	678,000	180	nc	1.2 U	1.2 U	1.2 U	1.3 U	1.2 U	1.2 U	1.2 U	1.8 U
TOLUENE	754,000	22,000	nc	1.2 J	1.6	43.8	67.5	15.7	16.5	53.6	2.5
1,2,4-TRICHLOROBENZENE	40,000 ^N	8.8	nc	2.6 U	2.6 U	2.7 U	2.8 U	2.7 U	2.7 U	2.7 U	3.9 U
1,1,1-TRICHLOROETHANE	1,900,000	22,000	nc	0.87 J	1.9 U	2 U	2.1 U	2 U	1.2 J	2 U	2.9 U
1,1,2-TRICHLOROETHANE	45,000	0.88	nc	0.96 U	0.96 U	0.99 U	1 U	0.99 U	0.99 U	0.99 U	1.4 U
TRICHLOROETHENE	537,000	8.8	nc	8.4	0.96 U	0.99 U	1 U	0.99 U	5.6	4.2	1.6
1,2,3-TRIMETHYLBENZENE	123,000	22	nc	0.35 U	0.35 U	0.36 U	0.37 U	0.36 U	0.36 U	0.36 U	0.52 U
1,2,4-TRIMETHYLBENZENE	123,000	31	nc	1.3 J	1.7 U	1.8 U	1.9 U	1.2 J	1.8 U	1.8 U	2.6 U
1,3,5-TRIMETHYLBENZENE	123,000	22	nc ⁽²⁾	1.7 U	1.7 U	1.8 U	1.9 U	1.8 U	1.8 U	1.8 U	2.6 U
VINYL CHLORIDE	21,560	28	ca	0.45 U	0.45 U	0.47 U	0.49 U	0.47 U	0.47 U	0.47 U	0.67 U
M+P-XYLENES	434000	440	nc	1.4 J	3.1 U	3.4	2.7 J	1.9 J	5.6	2.6 J	4.5 U
O-XYLENE	434000	440	nc	1.5 U	1.5 U	1.3 J	0.92 J	0.74 J	2	0.99 J	2.3 U
TOTAL XYLENES	434000	440	nc	1.4 J	0	4.7 J	3.62 J	2.64 J	7.6	3.59 J	0

Shaded cells indicate a concentration greater than the risk -based screening level

TOTAL XYLENES values are calculated.

-- = not available

J = estimated value

ND - calculated value is nondetect.

U = not detected

USEPA = United States Environmental Protection Agency

ca = screening value based on 1x 10⁻⁵ carcinogenic risk

nc = screening value based on noncarcinogenic hazard index = 1

A = American Council of Governmental Industrial Hygienists Theshold Limit Value

N = National Institute for Occupational Safety and Health Recommended Exposure Limit

OSHA PEL = Occupational Safety and Health Administration Pemissible Exposure Limit

Industrial Air Screening Levels from USEPA Regional Screening Levels for Chemical Contaminants at Superfund Sites May-2014

- (1) Location AIR-081-A was resampled in April 2014 (IA-081-A-16R). The February 2014 trichloroethene concentration greater than screening criteria was not confirmed in this April 2014 resample.
- (2) Value is for 1,2,3-trimethylbenzene.

SUB-SLAB VAPOR SAMPLE RESULTS, BUILDING A, FEBRUARY 2014 LOCKHEED MARTIN MIDDLE RIVER COMPLEX, MIDDLE RIVER, MARYLAND PAGE 1 OF 2

	Target shallow		AIR-0	015-A	AIR-0	018-A	AIR-075-A	AIR-076-A	AIR-079-A
SAMPLE ID	soil gas		SV-015-A-16	SV-015-A-16-	SV-018-A-16	SV-018-A-16-	SV-075-A-16	SV-076-A-16	SV-079-A-16
0/1111 EE 15	concentration	KEY		DUP		DUP			
	(μg/m3) ⁽¹⁾								
SAMPLE DATE	_		20140225	20140225	20140225	20140225	20140225	20140225	20140225
Volatile Organic Compounds (µg			0.04	0.011	0.00	0.77	0.70	0.04.11	4.4
BENZENE	533	ca	0.64	0.9 U	0.96	0.77	0.79	0.61 U	1.1
CARBON TETRACHLORIDE	667	ca	1.2 U	1.8 U	1.3 U	1.1 U	1.1 U	1.2 U	1.2 U
CHLORODIFLUOROMETHANE	7,333,333	nc	5.8 J	2.6 J	8.9	7.1	4.1	1.6	2.7
CHLOROFORM	177	ca	64.7	93.6	1.7 J	1.4 J	1.7 U	1.7 J	9
DICHLORODIFLUOROMETHAN			2.1	2.3 J	2.2	1.9	2.1	1.9	1.7 J
E	14,667	nc							
1,1-DICHLOROETHANE	2,567	ca	14.6	21.6	3.1	3.2	1.4 U	1.5 U	1.6
1,2-DICHLOROETHANE	157	ca	0.77 U	1.1 U	0.83 U	0.71 U	0.69 U	0.77 U	0.74 U
1,1-DICHLOROETHENE	29,333	nc	369	473	230	192	1.4 U	1.5 U	2.7
CIS-1,2-DICHLOROETHENE			1110	1260	16.3	13.7	1.4 U	1.5 U	2620
TRANS-1,2-DICHLOROETHENE			25	37.7	1.6 U	1.4 U	1.4 U	1.5 U	517
ETHYLBENZENE	1,633	ca	1.6 U	2.4 U	1.8 U	1.5 U	1.6	1.6 U	2.1
METHYL TERT-BUTYL ETHER	15,667	ca	1.4 U	2 U	1.5 U	1.3 U	1.2 U	1.4 U	1.3 U
METHYLENE CHLORIDE	86,667	nc	31.6 J	18.6 J	19.8	17.8	3.1	12.6	18.7
NAPHTHALENE	120	ca	2 UJ	3 U	2.8	3.1	259	94.9	27.9
TETRACHLOROETHENE	6,000	nc	1.3 U	1.9 U	1.4 U	1.2 U	1.2 U	1.3 U	14.1
TOLUENE	733,333	nc	7.1	4.6	2.6	2	7.8	3.8	5.9
1,2,4-TRICHLOROBENZENE	293	nc	2.8 UJ	4.2 U	3.1 U	2.6 U	2.5 U	2.8 U	2.7 U
1,1,1-TRICHLOROETHANE	733,333	nc	76.3	112	2.2 U	1.9 U	1.9 U	2.1 U	2.1
1,1,2-TRICHLOROETHANE	29	nc	1 U	1.5 U	1.1 U	0.96 U	0.92 U	1 U	0.99 U
TRICHLOROETHENE	293	nc	564	619	174	150	3.1	14	6090
1,2,3-TRIMETHYLBENZENE	733	nc	1.9 U	0.55 U	0.4 U	0.35 U	59.2	20.8	23.1
1,2,4-TRIMETHYLBENZENE	1,033	nc	1.9 U	2.8 U	1.7 J	1.5 J	205	40.2	12.3
1,3,5-TRIMETHYLBENZENE	733	nc ⁽²⁾	1.9 U	2.8 U	2 U	1.4 J	107	14	1.8 U
VINYL CHLORIDE	933	ca	0.49 UJ	1.5 J	0.57	0.59	0.44 U	0.49 U	0.47 U
M+P-XYLENES	14,667	nc	3.1 J	4.9 U	2 J	1.7 J	9	4.4	5.2
O-XYLENE	14,667	nc	1.6 J	1.4 J	1.8 U	1.5 U	19.7	2.9	5.3
TOTAL XYLENES	14.667	nc	4.7 J	1.4 J	2 J	1.7 J	28.7	7.3	10.5

TABLE 3-7

SUB-SLAB VAPOR SAMPLE RESULTS, BUILDING A, FEBRUARY 2014 LOCKHEED MARTIN MIDDLE RIVER COMPLEX, MIDDLE RIVER, MARYLAND PAGE 2 OF 2

SAMPLE ID	Target shallow		AIR-081-A SV-081-A-16	AIR-093-A SV-093-A-16	AIR-094-A SV-094-A-16	AIR-108-A SV-108-A-16	AIR-117-A SV-117-A-16	AIR-118-A SV-118-A-16	AIR-136-A SV-136-A-16	AIR-138-A SV-138-A-16
SAMPLE ID	soil gas concentration	KEY	3V-061-A-16	3V-093-A-16	3V-094-A-10	3V-100-A-10	SV-117-A-10	3V-110-A-10	3V-130-A-10	3V-130-A-10
SAMPLE DATE	(µg/m3) ⁽¹⁾		20140225	20140225	20140225	20140225	20140225	20140225	20140225	20140225
Volatile Organic Compounds (μο										
BENZENE	533	ca	0.58 U	1.2	1.1	0.88	0.58 U	1.8	6.7	1.6
CARBON TETRACHLORIDE	667	ca	1.2 U	1.8 U	1.2 U	1.1 U	1.2 U	1.2 U	1.2 U	1.8 U
CHLORODIFLUOROMETHANE	7,333,333	nc	25.4	14.6	3.6	12.3	0.8	5.2	0.37 U	9.6
CHLOROFORM	177	ca	2.8	2.8 U	1.8 U	1.7 U	1.8 U	106	217	2.8 U
DICHLORODIFLUOROMETHAN			1.8	3.9	2.3	2.5	1.5 J	2	1.9 U	3.3
E	14,667	nc								
1,1-DICHLOROETHANE	2,567	ca	1.5 U	2.3 U	1.5 U	2.1	1.5 U	90.3	1.7	2.6
1,2-DICHLOROETHANE	157	ca	0.74 U	1.2 U	0.74 U	0.71 U	0.74 U	0.77 U	0.77 U	1.2 U
1,1-DICHLOROETHENE	29,333	nc	1.5 U	2.3 U	1.5 U	7.7	1.5 U	1670	1.5 U	6.4
CIS-1,2-DICHLOROETHENE			6.1	2.3 U	1.5 U	1.4 U	1.5 U	477	55.2	5.6
TRANS-1,2-DICHLOROETHENE			1.5 U	2.3 U	1.5 U	1.4 U	1.5 U	18.1	25.3	2.3 U
ETHYLBENZENE	1,633	ca	57.9	2.5 U	1.6 U	1.5 U	2.1	27.2	1.7	1.9 J
METHYL TERT-BUTYL ETHER	15,667	ca	1.3 U	2.1 U	1.3 U	1.3 U	1.3 U	1.4 U	1.4 U	2.1 U
METHYLENE CHLORIDE	86,667	nc	15.4	415	59.8	12.4	40.4	15	13.5	17.5
NAPHTHALENE	120	ca	1.9 U	3.5	2.5	1.9 UJ	95.1	20.7	9.3	23.1
TETRACHLOROETHENE	6,000	nc	73.8	1.9 U	1.2 U	1.2 U	10.3	1.6	15.1	2.7
TOLUENE	733,333	nc	13.9	6.8	2.3	17.3	9.9	3.8	11.7	10.3
1,2,4-TRICHLOROBENZENE	293	nc	2.7 U	4.3 U	2.7 U	2.6 UJ	2.7 U	2.8 U	2.8 U	4.3 U
1,1,1-TRICHLOROETHANE	733,333	nc	6.4	3.1 U	2 U	1.9 U	5.1	26.2	3.4	3.2 U
1,1,2-TRICHLOROETHANE	29	nc	0.99 U	1.6 U	0.99 U	0.96 U	0.99 U	1 U	1 U	1.6 U
TRICHLOROETHENE	293	nc	7.9	7	0.99 U	0.94 J	109	5860	91000	80.3
1,2,3-TRIMETHYLBENZENE	733	nc	4140	0.56 U	0.36 U	1.7 U	4.5	18.1	6.1	0.57 U
1,2,4-TRIMETHYLBENZENE	1,033	nc	6780	2.8 U	1.8 U	1.7 U	5.8	34.1	6.8	2.9 U
1,3,5-TRIMETHYLBENZENE	733	nc ⁽²⁾	3500	2.8 U	1.8 U	1.7 U	1.8 U	23.2	5.4	2.9 U
VINYL CHLORIDE	933	ca	0.47 U	0.73 U	0.47 U	0.45 U	0.47 U	0.49 U	0.49 U	0.75 U
M+P-XYLENES	14,667	nc	480	5 U	3.2 U	2.9 J	9.7	156	4.2	6.1
O-XYLENE	14,667	nc	228	2.5 U	1.6 U	1.2 J	8.3	65.2	3.4	1.6 J
TOTAL XYLENES	14,667	nc	708	0	0	4.1 J	18	221.2	7.6	7.7 J

Notes: All sample concentrations are in micrograms per cubic meter (µg/m³)

Shaded cells indicate a concentration greater than risk-based screening level

TOTAL XYLENES values are calculated.

-- = not available

ca = screening value based on carcinogenic effects

J = estimated value

nc = screening value based on noncarcinogenic effects

U = nondetect

(1) Screening values derived in accordance with Draft Guidance for Evaluating the Vapor Intrusion to Indoor Air Pathway from Groundwater and Soils (November 2002). Screening values are equal to United States Environmental Protection Agency (USEPA) Industrial Air Screening Values divided by an attenuation factor of 0.03, and correspond to a target cancer risk level of 1.0E-05.

(2) Value is for 1,2,3-trimethylbenzene.

CO-LOCATED SUB-SLAB VAPOR AND INDOOR AIR QUALITY SAMPLING RESULTS, BUILDING A, FEBRUARY 2014 LOCKHEED MARTIN MIDDLE RIVER COMPLEX, MIDDLE RIVER, MARYLAND PAGE 1 OF 7

Analyte	Co-Located SV Sample ID	Result (µg/m³)	Duplicate/ Additional	Co-Located IAQ Sample ID	Result (µg/m³)	Duplicate/ Additional
Benzene	Sample ID	(μ g/III) 0.64	0.9 U	Sample ID	(μ g/ III) 1.2	1.2
Carbon tetrachloride	-	1.2 U	1.8 U		1.2 1.1 U	1.6 U
Chlorodifluoromethane	SV-015-A-16	5.8 J	2.6 J	IAQ-015-A-16	7.5	8.2
Chloroform	and its duplicate	64.7	93.6	and its duplicate	1.7 U	2.5 U
Dichlorodifluoromethane	and its duplicate	2.1	93.0 2.3 J	and its duplicate	2.9	3.2
1,1-Dichloroethane	1	14.6	21.6		1.4 U	2 U
	1	0.77 U	1.1 U		0.69 U	
1,2-Dichloroethane 1,1-Dichloroethene	1	369	473		1.4 U	1 U 2 U
cis -1,2-Dichloroethene	1	1,110	1260		1.4 U	2 U
	-		37.7			
trans-1,2-Dichloroethene Ethylbenezene	-	25 1.6 U	37.7 2.4 U		1.4 U 0.77 J	2 U
	1					2.2 U
Methyl tert-butyl ether	-	1.4 U	2 U		1.2 U	1.8 U
Methylene chloride	-	31.6 J	18.6 J		13.7 J	7.4 J
Naphthalene		2 UJ	3 U		1.8 UJ	2.1 J
Tetrachloroethene	-	1.3 U	1.9 U		1.2 U	1.7 U
Toluene		7.1	4.6		15.6	16.9
1,2,4-Trichlorobenzene		2.8 UJ	4.2 U		2.5 UJ	3.8 U
1,1,1-Trichloroethane		76.3	112		1.9 U	2.8 U
1,1,2-Trichloroethane		1 U	1.5 U		0.92 U	1.4 U
Trichloroethene		564	619		0.92 U	1.4 U
1,2,3-Trimethylbenzene		1.9 U	0.55 U		1.7 U	0.5 U
1,2,4-Trimethylbenzene		1.9 U	2.8 U		1.7 U	2.5 U
1,3,5-Trimethylbenzene		1.9 U	2.8 U		1.7 U	2.5 U
Vinyl chloride		0.49 UJ	1.5 J		0.44 U	0.65 U
Xylenes, meta- + para-		3.1 J	4.9 U		3.3	3.4 J
Xylene, ortho-		1.6 J	1.4 J		1.3 J	1.4 J
Xylenes, total		4.7	6.3		4.6	4.8
, ,						
Benzene		0.96	0.77		0.75	
	-					
Carbon tetrachloride	SV 040 A 40	1.3 U	1.1 U		1.1 U	
		8.0	7 1	140-018-4-16	26	
Chlorodifluoromethane	SV-018-A-16	8.9	7.1	IAQ-018-A-16	2.6	
Chloroform	and its duplicate	1.7 J	1.4 J	IAQ-018-A-16	1.4 J	
Chloroform Dichlorodifluoromethane	1	1.7 J 2.2	1.4 J 1.9	IAQ-018-A-16	1.4 J 2	
Chloroform Dichlorodifluoromethane 1,1-Dichloroethane	1	1.7 J 2.2 3.1	1.4 J 1.9 3.2	IAQ-018-A-16	1.4 J 2 1.4 U	
Chloroform Dichlorodifluoromethane 1,1-Dichloroethane 1,2-Dichloroethane	1	1.7 J 2.2 3.1 0.83 U	1.4 J 1.9 3.2 0.71 U	IAQ-018-A-16	1.4 J 2 1.4 U 0.71 U	
Chloroform Dichlorodifluoromethane 1,1-Dichloroethane 1,2-Dichloroethane 1,1-Dichloroethene	1	1.7 J 2.2 3.1 0.83 U 230	1.4 J 1.9 3.2 0.71 U 192	IAQ-018-A-16	1.4 J 2 1.4 U 0.71 U 1.4 U	
Chloroform Dichlorodifluoromethane 1,1-Dichloroethane 1,2-Dichloroethane 1,1-Dichloroethene cis-1,2-Dichloroethene	1	1.7 J 2.2 3.1 0.83 U 230 16	1.4 J 1.9 3.2 0.71 U 192 13.7	IAQ-018-A-16	1.4 J 2 1.4 U 0.71 U 1.4 U 1 U	
Chloroform Dichlorodifluoromethane 1,1-Dichloroethane 1,2-Dichloroethane 1,1-Dichloroethene cis-1,2-Dichloroethene trans-1,2-Dichloroethene	1	1.7 J 2.2 3.1 0.83 U 230 16 1.6 U	1.4 J 1.9 3.2 0.71 U 192 13.7 1.4 U	IAQ-018-A-16	1.4 J 2 1.4 U 0.71 U 1.4 U 1 U	
Chloroform Dichlorodifluoromethane 1,1-Dichloroethane 1,2-Dichloroethane 1,1-Dichloroethene cis-1,2-Dichloroethene trans-1,2-Dichloroethene Ethylbenezene	1	1.7 J 2.2 3.1 0.83 U 230 16 1.6 U 1.8 U	1.4 J 1.9 3.2 0.71 U 192 13.7 1.4 U 1.5 U	IAQ-018-A-16	1.4 J 2 1.4 U 0.71 U 1.4 U 1.4 U 1.5 U	
Chloroform Dichlorodifluoromethane 1,1-Dichloroethane 1,2-Dichloroethane 1,1-Dichloroethene cis-1,2-Dichloroethene trans-1,2-Dichloroethene Ethylbenezene Methyl tert-butyl ether	1	1.7 J 2.2 3.1 0.83 U 230 16 1.6 U 1.8 U 1.5 U	1.4 J 1.9 3.2 0.71 U 192 13.7 1.4 U 1.5 U 1.3 U	IAQ-018-A-16	1.4 J 2 1.4 U 0.71 U 1.4 U 1.4 U 1.5 U 1.3 U	
Chloroform Dichlorodifluoromethane 1,1-Dichloroethane 1,2-Dichloroethane 1,1-Dichloroethene cis-1,2-Dichloroethene trans-1,2-Dichloroethene Ethylbenezene Methyl tert-butyl ether Methylene chloride	1	1.7 J 2.2 3.1 0.83 U 230 16 1.6 U 1.8 U 1.5 U	1.4 J 1.9 3.2 0.71 U 192 13.7 1.4 U 1.5 U 1.3 U	IAQ-018-A-16	1.4 J 2 1.4 U 0.71 U 1.4 U 1.4 U 1.5 U 1.3 U 1.44	
Chloroform Dichlorodifluoromethane 1,1-Dichloroethane 1,2-Dichloroethane 1,1-Dichloroethene cis-1,2-Dichloroethene trans-1,2-Dichloroethene Ethylbenezene Methyl tert-butyl ether Methylene chloride Naphthalene	1	1.7 J 2.2 3.1 0.83 U 230 16 1.6 U 1.8 U 1.5 U 19.8 2.8	1.4 J 1.9 3.2 0.71 U 192 13.7 1.4 U 1.5 U 1.3 U 17.8 3.1	IAQ-018-A-16	1.4 J 2 1.4 U 0.71 U 1.4 U 1.4 U 1.5 U 1.3 U 14.4 2.8	
Chloroform Dichlorodifluoromethane 1,1-Dichloroethane 1,2-Dichloroethane 1,1-Dichloroethene cis-1,2-Dichloroethene trans-1,2-Dichloroethene Ethylbenezene Methyl tert-butyl ether Methylene chloride Naphthalene Tetrachloroethene	1	1.7 J 2.2 3.1 0.83 U 230 16 1.6 U 1.8 U 1.5 U 19.8 2.8 1.4 U	1.4 J 1.9 3.2 0.71 U 192 13.7 1.4 U 1.5 U 17.8 3.1	IAQ-018-A-16	1.4 J 2 1.4 U 0.71 U 1.4 U 1.4 U 1.5 U 1.3 U 1.4.4 2.8 1.2 U	
Chloroform Dichlorodifluoromethane 1,1-Dichloroethane 1,2-Dichloroethane 1,1-Dichloroethene cis-1,2-Dichloroethene trans-1,2-Dichloroethene Ethylbenezene Methyl tert-butyl ether Methylene chloride Naphthalene Tetrachloroethene Toluene	1	1.7 J 2.2 3.1 0.83 U 230 16 1.6 U 1.8 U 1.5 U 19.8 2.8 1.4 U 2.6	1.4 J 1.9 3.2 0.71 U 192 13.7 1.4 U 1.5 U 17.8 3.1 1.2 U	IAQ-018-A-16	1.4 J 2 1.4 U 0.71 U 1.4 U 1.5 U 1.3 U 14.4 2.8 1.2 U 1.7	
Chloroform Dichlorodifluoromethane 1,1-Dichloroethane 1,2-Dichloroethane 1,1-Dichloroethene cis-1,2-Dichloroethene trans-1,2-Dichloroethene Ethylbenezene Methyl tert-butyl ether Methylene chloride Naphthalene Tetrachloroethene Toluene 1,2,4-Trichlorobenzene	1	1.7 J 2.2 3.1 0.83 U 230 16 1.6 U 1.8 U 1.5 U 19.8 2.8 1.4 U 2.6 3.1 U	1.4 J 1.9 3.2 0.71 U 192 13.7 1.4 U 1.5 U 1.3 U 17.8 3.1 1.2 U 2	IAQ-018-A-16	1.4 U 0.71 U 1.4 U 1.4 U 1.5 U 1.3 U 14.4 2.8 1.2 U 1.7 2.6 U	
Chloroform Dichlorodifluoromethane 1,1-Dichloroethane 1,2-Dichloroethane 1,1-Dichloroethene cis-1,2-Dichloroethene trans-1,2-Dichloroethene Ethylbenezene Methyl tert-butyl ether Methylene chloride Naphthalene Tetrachloroethene Toluene 1,2,4-Trichlorobenzene 1,1,1-Trichloroethane	1	1.7 J 2.2 3.1 0.83 U 230 16 1.6 U 1.8 U 1.5 U 19.8 2.8 1.4 U 2.6 3.1 U 2.2 U	1.4 J 1.9 3.2 0.71 U 192 13.7 1.4 U 1.5 U 1.3 U 17.8 3.1 1.2 U 2 2.6 U 1.9 U	IAQ-018-A-16	1.4 U 0.71 U 1.4 U 1.4 U 1.5 U 1.3 U 1.4.4 2.8 1.2 U 1.7 2.6 U 1.9 U	
Chloroform Dichlorodifluoromethane 1,1-Dichloroethane 1,2-Dichloroethene cis-1,2-Dichloroethene trans-1,2-Dichloroethene Ethylbenezene Methyl tert-butyl ether Methylene chloride Naphthalene Tetrachloroethene Toluene 1,2,4-Trichlorobenzene 1,1,1-Trichloroethane 1,1,2-Trichloroethane	1	1.7 J 2.2 3.1 0.83 U 230 16 1.6 U 1.8 U 1.5 U 19.8 2.8 1.4 U 2.6 3.1 U 2.2 U 1.1 U	1.4 J 1.9 3.2 0.71 U 192 13.7 1.4 U 1.5 U 1.3 U 17.8 3.1 1.2 U 2 2.6 U 1.9 U 0.96 U	IAQ-018-A-16	1.4 U 0.71 U 1.4 U 1.5 U 1.3 U 1.4 U 2.8 1.2 U 1.7 2.6 U 1.9 U 0.96 U	
Chloroform Dichlorodifluoromethane 1,1-Dichloroethane 1,2-Dichloroethene cis-1,2-Dichloroethene trans-1,2-Dichloroethene Ethylbenezene Methyl tert-butyl ether Methylene chloride Naphthalene Tetrachloroethene Toluene 1,2,4-Trichlorobenzene 1,1,1-Trichloroethane Trichloroethene Trichloroethene Trichloroethene	1	1.7 J 2.2 3.1 0.83 U 230 16 1.6 U 1.8 U 1.5 U 19.8 2.8 1.4 U 2.6 3.1 U 2.2 U 1.1 U	1.4 J 1.9 3.2 0.71 U 192 13.7 1.4 U 1.5 U 1.3 U 17.8 3.1 1.2 U 2 2.6 U 1.9 U 0.96 U	IAQ-018-A-16	1.4 U 0.71 U 1.4 U 1.4 U 1.5 U 1.3 U 1.4 U 1.5 U 1.7 U 1.9 U 0.96 U 1	
Chloroform Dichlorodifluoromethane 1,1-Dichloroethane 1,2-Dichloroethene cis-1,2-Dichloroethene trans-1,2-Dichloroethene Ethylbenezene Methyl tert-butyl ether Methylene chloride Naphthalene Tetrachloroethene 1,2,4-Trichlorobenzene 1,1,2-Trichloroethane Trichloroethene Trichloroethene 1,2,3-Trimethylbenzene	1	1.7 J 2.2 3.1 0.83 U 230 16 1.6 U 1.8 U 1.5 U 19.8 2.8 1.4 U 2.6 3.1 U 2.2 U 1.1 U 174 0.4 U	1.4 J 1.9 3.2 0.71 U 192 13.7 1.4 U 1.5 U 1.3 U 17.8 3.1 1.2 U 2 2.6 U 1.9 U 0.96 U 150 0.35 U	IAQ-018-A-16	1.4 U 0.71 U 1.4 U 1.5 U 1.3 U 1.4 U 2.8 1.2 U 1.7 2.6 U 1.9 U 0.96 U 1 0.35 U	
Chloroform Dichlorodifluoromethane 1,1-Dichloroethane 1,2-Dichloroethene cis-1,2-Dichloroethene trans-1,2-Dichloroethene Ethylbenezene Methyl tert-butyl ether Methylene chloride Naphthalene Tetrachloroethene 1,2,4-Trichloroethane 1,1,2-Trichloroethane Trichloroethene 1,2,3-Trimethylbenzene 1,2,4-Trimethylbenzene 1,2,4-Trimethylbenzene	1	1.7 J 2.2 3.1 0.83 U 230 16 1.6 U 1.8 U 1.5 U 19.8 2.8 1.4 U 2.6 3.1 U 2.2 U 1.1 U 174 0.4 U 1.7 J	1.4 J 1.9 3.2 0.71 U 192 13.7 1.4 U 1.5 U 1.3 U 17.8 3.1 1.2 U 2 2.6 U 1.9 U 0.96 U 150 0.35 U 1.5 J	IAQ-018-A-16	1.4 U 0.71 U 1.4 U 1.5 U 1.3 U 1.4 U 2.8 1.2 U 1.7 2.6 U 1.9 U 0.96 U 1 0.35 U 1.7 U	
Chloroform Dichlorodifluoromethane 1,1-Dichloroethane 1,2-Dichloroethene cis-1,2-Dichloroethene trans-1,2-Dichloroethene Ethylbenezene Methyl tert-butyl ether Methylene chloride Naphthalene Tetrachloroethene 1,2,4-Trichloroethane 1,1,1-Trichloroethane 1,2,3-Trimethylbenzene 1,2,4-Trimethylbenzene 1,2,3-Trimethylbenzene 1,2,4-Trimethylbenzene	1	1.7 J 2.2 3.1 0.83 U 230 16 1.6 U 1.8 U 1.5 U 19.8 2.8 1.4 U 2.6 3.1 U 2.2 U 1.1 U 174 0.4 U 1.7 J 2 U	1.4 J 1.9 3.2 0.71 U 192 13.7 1.4 U 1.5 U 1.3 U 17.8 3.1 1.2 U 2 2.6 U 1.9 U 0.96 U 150 0.35 U 1.5 J 1.4 J	IAQ-018-A-16	1.4 U 2 1.4 U 0.71 U 1.4 U 1.5 U 1.3 U 1.4 U 2.8 1.2 U 1.7 2.6 U 1.9 U 0.96 U 1 0.35 U 1.7 U	
Chloroform Dichlorodifluoromethane 1,1-Dichloroethane 1,2-Dichloroethene cis-1,2-Dichloroethene trans-1,2-Dichloroethene Ethylbenezene Methyl tert-butyl ether Methylene chloride Naphthalene Tetrachloroethene 1,2,4-Trichloroethane 1,1,1-Trichloroethane 1,1,2-Trichloroethane 1,2,3-Trimethylbenzene 1,2,4-Trimethylbenzene 1,2,3-Trimethylbenzene 1,2,5-Trimethylbenzene 1,3,5-Trimethylbenzene Vinyl chloride	1	1.7 J 2.2 3.1 0.83 U 230 16 1.6 U 1.8 U 1.5 U 19.8 2.8 1.4 U 2.6 3.1 U 2.2 U 1.1 U 174 0.4 U 1.7 J 2 U 0.57	1.4 J 1.9 3.2 0.71 U 192 13.7 1.4 U 1.5 U 1.3 U 17.8 3.1 1.2 U 2 2.6 U 1.9 U 0.96 U 150 0.35 U 1.5 J 1.4 J 0.59	IAQ-018-A-16	1.4 U 0.71 U 1.4 U 1.5 U 1.3 U 1.4 2.8 1.2 U 1.7 2.6 U 1.9 U 0.96 U 1 0.35 U 1.7 U 0.45 U	
Chloroform Dichlorodifluoromethane 1,1-Dichloroethane 1,2-Dichloroethene cis-1,2-Dichloroethene trans-1,2-Dichloroethene Ethylbenezene Methyl tert-butyl ether Methylene chloride Naphthalene Tetrachloroethene Toluene 1,2,4-Trichloroethane 1,1,1-Trichloroethane 1,2,3-Trimethylbenzene 1,2,4-Trimethylbenzene 1,2,3-Trimethylbenzene 1,2,3-Trimethylbenzene 1,3,5-Trimethylbenzene Vinyl chloride Xylenes, meta- + para-	1	1.7 J 2.2 3.1 0.83 U 230 16 1.6 U 1.8 U 1.5 U 19.8 2.8 1.4 U 2.6 3.1 U 2.2 U 1.1 U 174 0.4 U 1.7 J 2 U 0.57 2 J	1.4 J 1.9 3.2 0.71 U 192 13.7 1.4 U 1.5 U 1.3 U 17.8 3.1 1.2 U 2 2.6 U 1.9 U 0.96 U 150 0.35 U 1.5 J 1.4 J 0.59 1.7 J	IAQ-018-A-16	1.4 U 0.71 U 1.4 U 1.5 U 1.3 U 1.4 2.8 1.2 U 1.7 2.6 U 1.9 U 0.96 U 1 0.35 U 1.7 U 0.45 U 3.1 U	
Chloroform Dichlorodifluoromethane 1,1-Dichloroethane 1,2-Dichloroethene cis-1,2-Dichloroethene trans-1,2-Dichloroethene Ethylbenezene Methyl tert-butyl ether Methylene chloride Naphthalene Tetrachloroethene 1,2,4-Trichloroethane 1,1,1-Trichloroethane 1,1,2-Trichloroethane 1,2,3-Trimethylbenzene 1,2,4-Trimethylbenzene 1,2,3-Trimethylbenzene 1,2,5-Trimethylbenzene 1,3,5-Trimethylbenzene Vinyl chloride	1	1.7 J 2.2 3.1 0.83 U 230 16 1.6 U 1.8 U 1.5 U 19.8 2.8 1.4 U 2.6 3.1 U 2.2 U 1.1 U 174 0.4 U 1.7 J 2 U 0.57	1.4 J 1.9 3.2 0.71 U 192 13.7 1.4 U 1.5 U 1.3 U 17.8 3.1 1.2 U 2 2.6 U 1.9 U 0.96 U 150 0.35 U 1.5 J 1.4 J 0.59	IAQ-018-A-16	1.4 U 0.71 U 1.4 U 1.5 U 1.3 U 1.4 2.8 1.2 U 1.7 2.6 U 1.9 U 0.96 U 1 0.35 U 1.7 U 0.45 U	

CO-LOCATED SUB-SLAB VAPOR AND INDOOR AIR QUALITY SAMPLING RESULTS, BUILDING A, FEBRUARY 2014 LOCKHEED MARTIN MIDDLE RIVER COMPLEX, MIDDLE RIVER, MARYLAND PAGE 2 OF 7

Analyte	Co-Located SV Sample ID	Result (µg/m³)	Duplicate/ Additional	Co-Located IAQ Sample ID	Result (µg/m³)	Duplicate/ Additional
Benzene		0.79			15.9	
Carbon tetrachloride		1.1 U			1.2 U	
Chlorodifluoromethane	SV-075-A-16	4.1		IAQ-075-A-16	3.9	
Chloroform		1.7 U			1.9 U	
Dichlorodifluoromethane		2.1			2.2	
1,1-Dichloroethane		1.4 U			1.5 U	
1,2-Dichloroethane		0.69 U			0.77 U	
1,1-Dichloroethene		1.4 U			1.5 U	
cis-1,2-Dichloroethene		1 U			2 U	
trans -1,2-Dichloroethene		1.4 U			1.5 U	
Ethylbenezene		1.6			0.87 J	
Methyl tert-butyl ether		1.2 U			1.4 U	
Methylene chloride		3.1			14.7	
Naphthalene		259			3.6	
Tetrachloroethene	1	1.2 U			1.3 U	
Toluene	1	7.8			49.3	
1,2,4-Trichlorobenzene	1	2.5 U			2.8 U	
1,1,1-Trichloroethane	1	1.9 U			2.1 U	
1,1,2-Trichloroethane	1	0.92 U			1 U	
Trichloroethene	1	3.1			1.6	
1,2,3-Trimethylbenzene	1	59.2			0.37 U	
1,2,4-Trimethylbenzene	1	205			1.9 U	
1,3,5-Trimethylbenzene	1	107			1.9 U	
Vinyl chloride	†	0.44 U			0.49 U	
Xylenes, meta- + para-	1	9			3 J	
Xylene, ortho-	-	19.7			1.1 J	
Xylenes, total	-	28.7			4.1	
• ,	I.	l .	l .			
Benzene		0.61 U			0.96	
Carbon tetrachloride	1	1.2 U			1.2 U	
Chlorodifluoromethane	SV-076-A-16	1.6		IAQ-076-A-16	2.9	
Chloroform		1.7 J			1.9 U	
Dichlorodifluoromethane	1	1.9			2.1	
1,1-Dichloroethane	1	1.5 U			1.5 U	
1,2-Dichloroethane	1	0.77 U			0.77 U	
1,1-Dichloroethene	1	1.5 U			1.5 U	
cis -1,2-Dichloroethene	1	2 U			2 U	
trans -1,2-Dichloroethene	1	1.5 U			1.5 U	
Ethylbenezene	1	1.6 U			0.83 J	
Methyl tert-butyl ether	1	1.4 U			1.4 U	
Methylene chloride	1	12.6			9.8	
Naphthalene	1	94.9			3.6	
Tetrachloroethene	1	1.3 U			1.3 U	
Toluene	1	3.8			54.5	
1,2,4-Trichlorobenzene	1	2.8 U			2.8 U	
1,1,1-Trichloroethane	1	2.1 U			2.1 U	
1,1,2-Trichloroethane	1	1 U			1 U	
Trichloroethene	1	14			1.9	
1,2,3-Trimethylbenzene	1	20.8			0.37 U	
1,2,4-Trimethylbenzene	1	40.2			1.9 U	
1,3,5-Trimethylbenzene	1	14			1.9 U	
Vinyl chloride	1	0.49 U			0.49 U	
Xylenes, meta- + para-	1	4.4			2.9 J	
Xylene, ortho-	1	2.9			1.2 J	
Xylenes, total	1	7.3			4.1	
[-,	1	l	l			

CO-LOCATED SUB-SLAB VAPOR AND INDOOR AIR QUALITY SAMPLING RESULTS, BUILDING A, FEBRUARY 2014 LOCKHEED MARTIN MIDDLE RIVER COMPLEX, MIDDLE RIVER, MARYLAND PAGE 3 OF 7

Analyte	Co-Located SV Sample ID	Result (µg/m³)	Duplicate/ Additional	Co-Located IAQ Sample ID	Result	Duplicate/ Additional
Benzene	Sample ID	(μ g/III) 1.1	Additional	Sample ID	(μg/m³) 0.88	Additional
Carbon tetrachloride	-	1.2 U			1.2 U	
Chlorodifluoromethane	SV-079-A-16	2.7		IAQ-079-A-16	4.8	
Chloroform	1	9			1.9 U	
Dichlorodifluoromethane	1	1.7 J			2.4	
1,1-Dichloroethane	-	1.6			1.5 U	
1,2-Dichloroethane	1	0.74 U			0.77 U	
1,1-Dichloroethene	1	2.7			1.5 U	
cis-1,2-Dichloroethene		2,620			2 U	
trans -1,2-Dichloroethene		517			1.5 U	
Ethylbenezene	1	2.1			1.6 U	
Methyl tert-butyl ether	1	1.3 U			1.4 U	
Methylene chloride	1	18.7			12.7	
Naphthalene	1	27.9			2.1	
Tetrachloroethene	1	14.1			1.3 U	
Toluene	1	5.9			41.8	
1,2,4-Trichlorobenzene	1	2.7 U			2.8 U	
1,1,1-Trichloroethane	1	2.1			2.1 U	
1,1,2-Trichloroethane		0.99 U			1 U	
Trichloroethene		6090			1 U	
1,2,3-Trimethylbenzene		23.1			0.37 U	
1,2,4-Trimethylbenzene		12.3			1.9 U	
1,3,5-Trimethylbenzene		1.8 U			1.9 U	
Vinyl chloride		0.47 U			0.49 U	
Xylenes, meta- + para-		5.2			2.6 J	
Xylene, ortho-		5.3			0.9 J	
Xylenes, total		10.5			3.5	
Benzene		0.58 U			1.4	0.44
Carbon tetrachloride		1.2 U			1.7 U	0.86 U
Chlorodifluoromethane	SV-081-A-16	25.4		IAQ-081-A-16	36.6	28
Chloroform		2.8		IA-081-A-16R ⁽¹⁾	2.6 U	1.3 U
Dichlorodifluoromethane		1.8			2.9	2.1
1,1-Dichloroethane		1.5 U			2.2 U	1.1 U
1,2-Dichloroethane		0.74 U			1.1 U	0.55 U
1,1-Dichloroethene		1.5 U			2.2 U	1.1 U
cis-1,2-Dichloroethene		6			2 U	1.1 U
trans -1,2-Dichloroethene	_	1.5 U			2.2 U	1.1 U
Ethylbenezene	_	57.9			36.6	8
Methyl tert-butyl ether	_	1.3 U			1.9 U	0.98 U
Methylene chloride	_	15.4			37	1.9 J
Naphthalene	_	1.9 U			3.7	3.6 U
Tetrachloroethene	_	73.8			1.8 U	1.6
Toluene	_	13.9			163	20.4
1,2,4-Trichlorobenzene	1	2.7 U			4 U	5.1 U
1,1,1-Trichloroethane	1	6.4			3 U	0.81 J
1,1,2-Trichloroethane	_	0.99 U			1.5 U	0.74 U
Trichloroethene	1	7.9			19.2	4.1
1,2,3-Trimethylbenzene	ĺ	4140			3.6	1.3 U
1,2,4-Trimethylbenzene	ĺ	6780			11.7	1.3 U
1,3,5-Trimethylbenzene	-	3500			4.9	1.2 J
Vinyl chloride	-	0.47 U			0.69 U	0.35 U
Xylenes, meta- + para-	-	480			161	38.2
Xylene, ortho-	-	228 708			48.5 210	11.6
Xylenes, total		700			210	49.8

CO-LOCATED SUB-SLAB VAPOR AND INDOOR AIR QUALITY SAMPLING RESULTS, BUILDING A, FEBRUARY 2014 LOCKHEED MARTIN MIDDLE RIVER COMPLEX, MIDDLE RIVER, MARYLAND PAGE 4 OF 7

Analyte	Co-Located SV Sample ID	Result (µg/m³)	Duplicate/ Additional	Co-Located IAQ Sample ID	Result (µg/m³)	Duplicate/ Additional
Benzene	Compress.	1.2		Outerplace and	0.98	
Carbon tetrachloride	1	1.8 U			1.7 U	
Chlorodifluoromethane	SV-093-A-16	14.6		IAQ-093-A-16	4.4	
Chloroform		2.8 U			2.6 U	
Dichlorodifluoromethane		3.9			3.1	
1,1-Dichloroethane		2.3 U			2.1 U	
1,2-Dichloroethane		1.2 U			1.1 U	
1,1-Dichloroethene		2.3 U			2.1 U	
cis -1,2-Dichloroethene	1	2 U			2 U	
trans -1,2-Dichloroethene		2.3 U			2.1 U	
Ethylbenezene	1	2.5 U			2.3 U	
Methyl tert-butyl ether		2.1 U			1.9 U	
Methylene chloride	1	415			14	
Naphthalene		3.5			2.8	
Tetrachloroethene		1.9 U			1.8 U	
Toluene		6.8			3	
1,2,4-Trichlorobenzene	1	4.3 U			3.9 U	
1,1,1-Trichloroethane		3.1 U			2.9 U	
1,1,2-Trichloroethane	1	1.6 U			1.4 U	
Trichloroethene		7			5.9	
1,2,3-Trimethylbenzene	1	0.56 U			0.52 U	
1,2,4-Trimethylbenzene	1	2.8 U			2.6 U	
1,3,5-Trimethylbenzene		2.8 U			2.6 U	
Vinyl chloride	1	0.73 U			0.67 U	
Xylenes, meta- + para-	1	5 U			4.5 U	
Xylene, ortho-		2.5 U			2.3 U	
Xylenes, total		0			0	
1,7-1, 1						
Benzene		1.1			0.93	
Carbon tetrachloride	1	1.2 U			1.1 U	
Chlorodifluoromethane	SV-094-A-16	3.6		IAQ-094-A-16	1.7	
Chloroform		1.8 U			1.7 U	
Dichlorodifluoromethane		2.3			2.2	
1,1-Dichloroethane		1.5 U			1.4 U	
1,2-Dichloroethane		0.74 U			0.71 U	
1,1-Dichloroethene		1.5 U			1.4 U	
cis -1,2-Dichloroethene		2 U			1 U	
trans-1,2-Dichloroethene						
		1.5 U			1.4 U	
Ethylbenezene		1.5 U 1.6 U			1.4 U 1.5 U	
Ethylbenezene Methyl tert-butyl ether						
		1.6 U			1.5 U	
Methyl tert-butyl ether		1.6 U 1.3 U			1.5 U 1.3 U	
Methyl tert-butyl ether Methylene chloride		1.6 U 1.3 U 59.8			1.5 U 1.3 U 5	
Methyl <i>tert</i> -butyl ether Methylene chloride Naphthalene		1.6 U 1.3 U 59.8 2.5			1.5 U 1.3 U 5 2.2	
Methyl tert-butyl ether Methylene chloride Naphthalene Tetrachloroethene		1.6 U 1.3 U 59.8 2.5 1.2 U			1.5 U 1.3 U 5 2.2 1.2 U	
Methyl tert-butyl ether Methylene chloride Naphthalene Tetrachloroethene Toluene		1.6 U 1.3 U 59.8 2.5 1.2 U 2.3			1.5 U 1.3 U 5 2.2 1.2 U 1.6	
Methyl tert-butyl ether Methylene chloride Naphthalene Tetrachloroethene Toluene 1,2,4-Trichlorobenzene		1.6 U 1.3 U 59.8 2.5 1.2 U 2.3 2.7 U			1.5 U 1.3 U 5 2.2 1.2 U 1.6 2.6 U	
Methyl tert-butyl ether Methylene chloride Naphthalene Tetrachloroethene Toluene 1,2,4-Trichlorobenzene 1,1,1-Trichloroethane		1.6 U 1.3 U 59.8 2.5 1.2 U 2.3 2.7 U 2 U			1.5 U 1.3 U 5 2.2 1.2 U 1.6 2.6 U 1.9 U	
Methyl tert-butyl ether Methylene chloride Naphthalene Tetrachloroethene Toluene 1,2,4-Trichlorobenzene 1,1,1-Trichloroethane 1,1,2-Trichloroethane		1.6 U 1.3 U 59.8 2.5 1.2 U 2.3 2.7 U 2 U 0.99 U			1.5 U 1.3 U 5 2.2 1.2 U 1.6 2.6 U 1.9 U 0.96 U	
Methyl tert-butyl ether Methylene chloride Naphthalene Tetrachloroethene Toluene 1,2,4-Trichlorobenzene 1,1,1-Trichloroethane 1,1,2-Trichloroethane Trichloroethene		1.6 U 1.3 U 59.8 2.5 1.2 U 2.3 2.7 U 2.9 U 0.99 U 0.99 U			1.5 U 1.3 U 5 2.2 1.2 U 1.6 2.6 U 1.9 U 0.96 U 0.96 U	
Methyl tert-butyl ether Methylene chloride Naphthalene Tetrachloroethene Toluene 1,2,4-Trichloroethane 1,1,2-Trichloroethane Trichloroethene 1,2,3-Trimethylbenzene		1.6 U 1.3 U 59.8 2.5 1.2 U 2.3 2.7 U 2 U 0.99 U 0.99 U 0.36 U			1.5 U 1.3 U 5 2.2 1.2 U 1.6 2.6 U 1.9 U 0.96 U 0.35 U	
Methyl tert-butyl ether Methylene chloride Naphthalene Tetrachloroethene Toluene 1,2,4-Trichloroethane 1,1,2-Trichloroethane Trichloroethene 1,2,3-Trimethylbenzene 1,2,4-Trimethylbenzene		1.6 U 1.3 U 59.8 2.5 1.2 U 2.3 2.7 U 2 U 0.99 U 0.99 U 0.36 U 1.8 U			1.5 U 1.3 U 5 2.2 1.2 U 1.6 2.6 U 1.9 U 0.96 U 0.96 U 1.7 U	
Methyl tert-butyl ether Methylene chloride Naphthalene Tetrachloroethene Toluene 1,2,4-Trichloroethane 1,1,2-Trichloroethane Trichloroethene 1,2,3-Trimethylbenzene 1,2,4-Trimethylbenzene 1,3,5-Trimethylbenzene		1.6 U 1.3 U 59.8 2.5 1.2 U 2.3 2.7 U 2 U 0.99 U 0.96 U 1.8 U 1.8 U			1.5 U 1.3 U 5 2.2 1.2 U 1.6 2.6 U 1.9 U 0.96 U 0.96 U 0.35 U 1.7 U 1.7 U	
Methyl tert-butyl ether Methylene chloride Naphthalene Tetrachloroethene Toluene 1,2,4-Trichloroethane 1,1,2-Trichloroethane Trichloroethene 1,2,3-Trimethylbenzene 1,2,4-Trimethylbenzene 1,2,4-Trimethylbenzene 1,3,5-Trimethylbenzene Vinyl chloride		1.6 U 1.3 U 59.8 2.5 1.2 U 2.3 2.7 U 2 U 0.99 U 0.96 U 1.8 U 1.8 U 0.47 U			1.5 U 1.3 U 5 2.2 1.2 U 1.6 2.6 U 1.9 U 0.96 U 0.96 U 0.35 U 1.7 U 1.7 U 0.45 U	

CO-LOCATED SUB-SLAB VAPOR AND INDOOR AIR QUALITY SAMPLING RESULTS, BUILDING A, FEBRUARY 2014 LOCKHEED MARTIN MIDDLE RIVER COMPLEX, MIDDLE RIVER, MARYLAND PAGE 5 OF 7

Ameliate	Co-Located SV	Result	Duplicate/	Co-Located IAQ	Result	Duplicate/
Analyte	Sample ID	(µg/m³)	Additional	Sample ID	(µg/m³)	Additional
Benzene	_	0.88			0.9	
Carbon tetrachloride	_	1.1 U			1.2 U	
Chlorodifluoromethane	SV-108-A-16	12.3		IAQ-108-A-16	4	
Chloroform]	1.7 U			1.8 U	
Dichlorodifluoromethane]	2.5			2.2	
1,1-Dichloroethane]	2.1			1.5 U	
1,2-Dichloroethane]	0.71 U			0.74 U	
1,1-Dichloroethene]	7.7			1.5 U	
cis -1,2-Dichloroethene]	1 U			2 U	
trans -1,2-Dichloroethene		1.4 U			1.5 U	
Ethylbenezene		1.5 U			0.94 J	
Methyl tert-butyl ether		1.3 U			1.3 U	
Methylene chloride		12.4			8.8	
Naphthalene		1.9 UJ			2.2	
Tetrachloroethene	1	1.2 U			1.2 U	
Toluene	1	17.3			43.8	
1.2.4-Trichlorobenzene	1	2.6 UJ			2.7 U	
1,1,1-Trichloroethane		1.9 U			2 U	
1,1,2-Trichloroethane		0.96 U			0.99 U	
Trichloroethene		0.94 J			0.99 U	
1,2,3-Trimethylbenzene		1.7 U			0.36 U	
1,2,4-Trimethylbenzene	1	1.7 U			1.8 U	
1,3,5-Trimethylbenzene]	1.7 U			1.8 U	
Vinyl chloride	-	0.45 U			0.47 U	
Xylenes, meta- + para-	-	2.9 J			3.4	
Xylene, ortho-		1.2 J			1.3 J	
Xylenes, total		4.1			4.7	
_						
Benzene		0.58 U			0.89	
Carbon tetrachloride		1.2 U			1.2 U	
Chlorodifluoromethane	SV-117-A-15	0.8		IAQ-117-A-15	3.5	
Chloroform		1.8 U			1.9 U	
		4.5.1				
Dichlorodifluoromethane		1.5 J			2	
1,1-Dichloroethane		1.5 U			1.5 U	
1,1-Dichloroethane 1,2-Dichloroethane		1.5 U 0.74 U			1.5 U 0.77 U	
1,1-Dichloroethane 1,2-Dichloroethane 1,1-Dichloroethene		1.5 U 0.74 U 1.5 U			1.5 U 0.77 U 1.5 U	
1,1-Dichloroethane 1,2-Dichloroethane 1,1-Dichloroethene cis -1,2-Dichloroethene		1.5 U 0.74 U 1.5 U 2 U			1.5 U 0.77 U 1.5 U 2 U	
1,1-Dichloroethane 1,2-Dichloroethane 1,1-Dichloroethene cis-1,2-Dichloroethene trans-1,2-Dichloroethene		1.5 U 0.74 U 1.5 U 2 U 1.5 U			1.5 U 0.77 U 1.5 U 2 U 1.5 U	
1,1-Dichloroethane 1,2-Dichloroethane 1,1-Dichloroethene cis-1,2-Dichloroethene trans-1,2-Dichloroethene Ethylbenezene		1.5 U 0.74 U 1.5 U 2 U 1.5 U 2.1			1.5 U 0.77 U 1.5 U 2 U 1.5 U 0.84 J	
1,1-Dichloroethane 1,2-Dichloroethane 1,1-Dichloroethene cis-1,2-Dichloroethene trans-1,2-Dichloroethene Ethylbenezene Methyl tert-butyl ether		1.5 U 0.74 U 1.5 U 2 U 1.5 U 2.1			1.5 U 0.77 U 1.5 U 2 U 1.5 U 0.84 J 1.4 U	
1,1-Dichloroethane 1,2-Dichloroethane 1,1-Dichloroethene cis-1,2-Dichloroethene trans-1,2-Dichloroethene Ethylbenezene Methyl tert-butyl ether Methylene chloride		1.5 U 0.74 U 1.5 U 2 U 1.5 U 2.1 1.3 U 40.4			1.5 U 0.77 U 1.5 U 2 U 1.5 U 0.84 J 1.4 U 8.9	
1,1-Dichloroethane 1,2-Dichloroethane 1,1-Dichloroethene cis-1,2-Dichloroethene trans-1,2-Dichloroethene Ethylbenezene Methyl tert-butyl ether Methylene chloride Naphthalene		1.5 U 0.74 U 1.5 U 2 U 1.5 U 2.1 1.3 U 40.4 95.1			1.5 U 0.77 U 1.5 U 2 U 1.5 U 0.84 J 1.4 U 8.9 2.2	
1,1-Dichloroethane 1,2-Dichloroethane 1,1-Dichloroethene cis-1,2-Dichloroethene trans-1,2-Dichloroethene Ethylbenezene Methyl tert-butyl ether Methylene chloride Naphthalene Tetrachloroethene		1.5 U 0.74 U 1.5 U 2 U 1.5 U 2.1 1.3 U 40.4 95.1 10.3			1.5 U 0.77 U 1.5 U 2 U 1.5 U 0.84 J 1.4 U 8.9 2.2 1.3 U	
1,1-Dichloroethane 1,2-Dichloroethane 1,1-Dichloroethene cis-1,2-Dichloroethene trans-1,2-Dichloroethene Ethylbenezene Methyl tert-butyl ether Methylene chloride Naphthalene Tetrachloroethene Toluene		1.5 U 0.74 U 1.5 U 2 U 1.5 U 2.1 1.3 U 40.4 95.1 10.3 9.9			1.5 U 0.77 U 1.5 U 2 U 1.5 U 0.84 J 1.4 U 8.9 2.2 1.3 U 67.5	
1,1-Dichloroethane 1,2-Dichloroethane 1,1-Dichloroethene cis-1,2-Dichloroethene trans-1,2-Dichloroethene Ethylbenezene Methyl tert-butyl ether Methylene chloride Naphthalene Tetrachloroethene Toluene 1,2,4-Trichlorobenzene		1.5 U 0.74 U 1.5 U 2 U 1.5 U 2.1 1.3 U 40.4 95.1 10.3 9.9 2.7 U			1.5 U 0.77 U 1.5 U 1.5 U 0.84 J 1.4 U 8.9 2.2 1.3 U 67.5 2.8 U	
1,1-Dichloroethane 1,2-Dichloroethane 1,1-Dichloroethene cis-1,2-Dichloroethene trans-1,2-Dichloroethene Ethylbenezene Methyl tert-butyl ether Methylene chloride Naphthalene Tetrachloroethene Toluene 1,2,4-Trichlorobenzene 1,1,1-Trichloroethane		1.5 U 0.74 U 1.5 U 2 U 1.5 U 2.1 1.3 U 40.4 95.1 10.3 9.9 2.7 U 5.1			1.5 U 0.77 U 1.5 U 2 U 1.5 U 0.84 J 1.4 U 8.9 2.2 1.3 U 67.5 2.8 U 2.1 U	
1,1-Dichloroethane 1,2-Dichloroethane 1,1-Dichloroethene cis-1,2-Dichloroethene trans-1,2-Dichloroethene Ethylbenezene Methyl tert-butyl ether Methylene chloride Naphthalene Tetrachloroethene Toluene 1,2,4-Trichlorobenzene 1,1,1-Trichloroethane 1,1,2-Trichloroethane		1.5 U 0.74 U 1.5 U 2 U 1.5 U 2.1 1.3 U 40.4 95.1 10.3 9.9 2.7 U 5.1 0.99 U			1.5 U 0.77 U 1.5 U 2 U 1.5 U 0.84 J 1.4 U 8.9 2.2 1.3 U 67.5 2.8 U 2.1 U 1 U	
1,1-Dichloroethane 1,2-Dichloroethane 1,1-Dichloroethene cis-1,2-Dichloroethene trans-1,2-Dichloroethene Ethylbenezene Methyl tert-butyl ether Methylene chloride Naphthalene Tetrachloroethene Toluene 1,2,4-Trichloroethane 1,1,2-Trichloroethane Trichloroethene Trichloroethene		1.5 U 0.74 U 1.5 U 2 U 1.5 U 2.1 1.3 U 40.4 95.1 10.3 9.9 2.7 U 5.1 0.99 U 109			1.5 U 0.77 U 1.5 U 2 U 1.5 U 0.84 J 1.4 U 8.9 2.2 1.3 U 67.5 2.8 U 2.1 U 1 U 1 U	
1,1-Dichloroethane 1,2-Dichloroethane 1,1-Dichloroethene cis-1,2-Dichloroethene trans-1,2-Dichloroethene Ethylbenezene Methyl tert-butyl ether Methylene chloride Naphthalene Tetrachloroethene Toluene 1,2,4-Trichloroethane 1,1,2-Trichloroethane Trichloroethene Trichloroethene 1,2,3-Trimethylbenzene		1.5 U 0.74 U 1.5 U 2 U 1.5 U 2.1 1.3 U 40.4 95.1 10.3 9.9 2.7 U 5.1 0.99 U 109 4.5			1.5 U 0.77 U 1.5 U 2 U 1.5 U 0.84 J 1.4 U 8.9 2.2 1.3 U 67.5 2.8 U 2.1 U 1 U 0.37 U	
1,1-Dichloroethane 1,2-Dichloroethane 1,1-Dichloroethene cis-1,2-Dichloroethene trans-1,2-Dichloroethene Ethylbenezene Methyl tert-butyl ether Methylene chloride Naphthalene Tetrachloroethene Toluene 1,2,4-Trichloroethane 1,1,2-Trichloroethane Trichloroethene 1,2,3-Trimethylbenzene 1,2,4-Trimethylbenzene		1.5 U 0.74 U 1.5 U 2 U 1.5 U 2.1 1.3 U 40.4 95.1 10.3 9.9 2.7 U 5.1 0.99 U 109 4.5 5.8			1.5 U 0.77 U 1.5 U 2 U 1.5 U 0.84 J 1.4 U 8.9 2.2 1.3 U 67.5 2.8 U 2.1 U 1 U 0.37 U 1.9 U	
1,1-Dichloroethane 1,2-Dichloroethane 1,1-Dichloroethene cis-1,2-Dichloroethene trans-1,2-Dichloroethene Ethylbenezene Methyl tert-butyl ether Methylene chloride Naphthalene Tetrachloroethene Toluene 1,2,4-Trichloroethane 1,1,2-Trichloroethane 1,2,3-Trimethylbenzene 1,2,4-Trimethylbenzene 1,3,5-Trimethylbenzene		1.5 U 0.74 U 1.5 U 2 U 1.5 U 2.1 1.3 U 40.4 95.1 10.3 9.9 2.7 U 5.1 0.99 U 109 4.5 5.8 1.8 U			1.5 U 0.77 U 1.5 U 2 U 1.5 U 0.84 J 1.4 U 8.9 2.2 1.3 U 67.5 2.8 U 2.1 U 1 U 0.37 U 1.9 U	
1,1-Dichloroethane 1,2-Dichloroethane 1,1-Dichloroethene cis-1,2-Dichloroethene trans-1,2-Dichloroethene Ethylbenezene Methyl tert-butyl ether Methylene chloride Naphthalene Tetrachloroethene Toluene 1,2,4-Trichloroethane 1,1,1-Trichloroethane 1,1,2-Trichloroethane 1,2,3-Trimethylbenzene 1,2,4-Trimethylbenzene 1,2,4-Trimethylbenzene 1,2,5-Trimethylbenzene 1,2,5-Trimethylbenzene 1,2,4-Trimethylbenzene 1,2,4-Trimethylbenzene		1.5 U 0.74 U 1.5 U 2 U 1.5 U 2.1 1.3 U 40.4 95.1 10.3 9.9 2.7 U 5.1 0.99 U 109 4.5 5.8 1.8 U 0.47 U			1.5 U 0.77 U 1.5 U 2 U 1.5 U 0.84 J 1.4 U 8.9 2.2 1.3 U 67.5 2.8 U 2.1 U 1 U 0.37 U 1.9 U 0.49 U	
1,1-Dichloroethane 1,2-Dichloroethane 1,1-Dichloroethene cis-1,2-Dichloroethene trans-1,2-Dichloroethene Ethylbenezene Methyl tert-butyl ether Methylene chloride Naphthalene Tetrachloroethene Toluene 1,2,4-Trichloroethane 1,1,1-Trichloroethane 1,1,2-Trichloroethane 1,2,3-Trimethylbenzene 1,2,4-Trimethylbenzene 1,2,3-Trimethylbenzene 1,2,5-Trimethylbenzene 1,2,5-Trimethylbenzene 1,3,5-Trimethylbenzene Vinyl chloride Xylenes, meta-+ para-		1.5 U 0.74 U 1.5 U 2 U 1.5 U 2.1 1.3 U 40.4 95.1 10.3 9.9 2.7 U 5.1 0.99 U 109 4.5 5.8 1.8 U 0.47 U 9.7			1.5 U 0.77 U 1.5 U 2 U 1.5 U 0.84 J 1.4 U 8.9 2.2 1.3 U 67.5 2.8 U 2.1 U 1 U 0.37 U 1.9 U 0.49 U 2.7 J	
1,1-Dichloroethane 1,2-Dichloroethane 1,1-Dichloroethene cis-1,2-Dichloroethene trans-1,2-Dichloroethene Ethylbenezene Methyl tert-butyl ether Methylene chloride Naphthalene Tetrachloroethene Toluene 1,2,4-Trichloroethane 1,1,1-Trichloroethane 1,1,2-Trichloroethane 1,2,3-Trimethylbenzene 1,2,4-Trimethylbenzene 1,2,4-Trimethylbenzene 1,2,5-Trimethylbenzene 1,2,5-Trimethylbenzene 1,2,4-Trimethylbenzene 1,2,4-Trimethylbenzene		1.5 U 0.74 U 1.5 U 2 U 1.5 U 2.1 1.3 U 40.4 95.1 10.3 9.9 2.7 U 5.1 0.99 U 109 4.5 5.8 1.8 U 0.47 U			1.5 U 0.77 U 1.5 U 2 U 1.5 U 0.84 J 1.4 U 8.9 2.2 1.3 U 67.5 2.8 U 2.1 U 1 U 0.37 U 1.9 U 0.49 U	

CO-LOCATED SUB-SLAB VAPOR AND INDOOR AIR QUALITY SAMPLING RESULTS, BUILDING A, FEBRUARY 2014 LOCKHEED MARTIN MIDDLE RIVER COMPLEX, MIDDLE RIVER, MARYLAND PAGE 6 OF 7

Section Sect	Analyte	Co-Located SV Sample ID	Result (µg/m³)	Duplicate/ Additional	Co-Located IAQ Sample ID	Result (µg/m³)	Duplicate/ Additional
Discretifiur commethane SV-118-A-16 16	Benzene						
106 1.8 U	Carbon tetrachloride		1.2 U			1.2 U	
1.1-Dichloroethane	Chlorodifluoromethane	SV-118-A-16	5.2		IAQ-118-A-16	12.4	
1.1-Dichloroethane	Chloroform		106			1.8 U	
1.2-Dichloroethane	Dichlorodifluoromethane		2			1.9	
1.1 Dichloroethene	1,1-Dichloroethane		90.3			1.5 U	
A77	1,2-Dichloroethane		0.77 U			0.74 U	
18.1 1.5 U Ethylbenezene	1,1-Dichloroethene		1670			1.5 U	
Ethylbenezane	cis-1,2-Dichloroethene		477			2 U	
Methyl terr-budyl ether	trans-1,2-Dichloroethene		18.1			1.5 U	
Mathylane chloride 15	Ethylbenezene		27.2			1.4 J	
Naphthalene 20.7 2.2	Methyl tert-butyl ether		1.4 U			1.3 U	
Terrachloroethene	Methylene chloride		15			8.8	
Toluene	Naphthalene		20.7			2.2	
1,2,4-Trichloroethane	Tetrachloroethene		1.6			1.2 U	
1,1,1-Trichloroethane	Toluene		3.8			16.5	
1 U 0,99 U 17/10/corothene 1 U 0,99 U 17/10/corothene 18.1 0,36 U 1.2,3-Trimethylbenzene 18.1 1.8 U 1.2,4-Trimethylbenzene 1.2,4-Trimethylbenzene 23.2 1.8 U 0.47 U 1.8 U 1.4 U 1.5 U	1,2,4-Trichlorobenzene	1	2.8 U			2.7 U	
Trichloroethene	1,1,1-Trichloroethane	1	26.2			1.2 J	
1.2.3-Trimethylbenzene 18.1 1.8 U 1.2.4-Trimethylbenzene 34.1 1.8 U 1.3.5-Trimethylbenzene 23.2 1.8 U 1.3.5-Trimethylbenzene 1.1.5 U 1.2 U 1.3.5-Trimethylbenzene 1.7 1.5 U 1.	1,1,2-Trichloroethane		1 U			0.99 U	
1,2,4-Trimethylbenzene 1,3,5-Trimethylbenzene 1,2,2-Trimethylbenzene 1,2,2-Trimethylbenzene 1,2,2-Trimethylbenzene 1,1,1-Trichloroethane 1,2,2-Trimethylbenzene 1,1,1-Trichloroethane 1,2,2-Trimethylbenzene 1,2,2-Trimethylbenzene 1,1,1-Trichloroethane 1,2,2-Trimethylbenzene 1,2,3-Trimethylbenzene 1,3,3-Trimethylbenzene 1,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,	Trichloroethene		5860			5.6	
1.3.5-Trimethylbenzene 23.2	1,2,3-Trimethylbenzene		18.1			0.36 U	
Name		-	34.1			1.8 U	
Sylenes, meta + para 156 65.2 2 2 7.6		-	23.2			1.8 U	
Sylenes, meta + para- 156 65.2 2 2	-		0.49 U				
Sylene, ortho- Sylenes, total 2 7.6			156			5.6	
Sylenes, total 221 7.6						2	
Senzene Carbon tetrachloride SV-136-A-16 1.2 U 1.2 U 1.2 U 1.2 U 1.2 U 1.4 U 1.3 U 1.4 U 1.5 U						7.6	
Carbon tetrachloride 1.2 U Chlorodiffluoromethane 9.37 U Chloroform 1.8 U Dichlorodiffuoromethane 1.9 U 1,1-Dichloroethane 1.7 1,2-Dichloroethane 1.5 U 1,2-Dichloroethane 1.5 U 1,1-Dichloroethene 1.5 U c8-1,2-Dichloroethene 1.5 U c8-1,2-Dichloroethene 25.3 Ethylbenezene 1.7 Methyl tetr-butyl ether 1.4 U Methyl tetr-butyl ether 1.3 U Methylene chloride 13.5 Naphthalene 15.1 Toluene 15.1 1,2-Trichloroethene 11.7 1,2-Trichloroethane 11.7 1,1,1-Trichloroethane 2.8 U 1,1,1-Trichloroethane 2.9 U 1,2,3-Trimethylbenzene 6.1 1,2,3-Trimethylbenzene 6.1 1,3,5-Trimethylbenzene 5.4 Vinyl chloride 0.49 U Xylenes, meta + para- Xylenes, ortho-	-	I.					
Chlorodifluoromethane Chloroform Chloroform Chloroform Chloroform Chloroform Chloroform Chloroform Chloroform Chloroform Chlorodifluoromethane Chlorod	Benzene		6.7			0.94	
Chloroform Dichlorodifluoromethane 1.9 U 1.9 U 1.5 U	Carbon tetrachloride		1.2 U			1.2 U	
Dichlorodifluoromethane	Chlorodifluoromethane	SV-136-A-16	0.37 U		IAQ-136-A-16	3.3	
1,1-Dichloroethane 1.7 0.77 U 0.74 U 1,2-Dichloroethane 1.5 U 0.74 U 0.74 U 1,1-Dichloroethene 1.5 U 0.74 U 0.74 U 1,1-Dichloroethene 1.5 U 0.74 U 0.75 U 1,2-Dichloroethene 1.5 U 0.75 U 0.75 U Ethylbenezene 1.7 0.75 J 0.75 J Methyl tert-butyl ether 1.4 U 1.3 U 0.75 J Methylene chloride 13.5 7.3 0.75 J 0.75 J Methylene chloride 13.5 7.3 0.75 J	Chloroform		217			1.8 U	
1,2-Dichloroethane 0.77 U 0.74 U 1,1-Dichloroethene 1.5 U 1.5 U cis-1,2-Dichloroethene 25.3 1.5 U Ethylbenezene 1.7 0.75 J Methyl tert-butyl ether 1.4 U 1.3 U Methylene chloride 13.5 7.3 Naphthalene 9.3 2.9 Tetrachloroethene 11.7 53.6 1,2,4-Trichloroethane 11.7 53.6 1,2,4-Trichloroethane 2.8 U 2.7 U 1,1,1-Trichloroethane 1 U 0.99 U Trichloroethane 1 U 0.99 U 1,2,3-Trimethylbenzene 6.1 0.36 U 1,2,4-Trimethylbenzene 6.8 1.8 U 1,3,5-Trimethylbenzene 5.4 1.8 U Vinyl chloride 0.49 U 0.47 U Xylenes, meta- + para- 4.2 2.6 J Xylenes, ortho- 3.4 0.99 J	Dichlorodifluoromethane		1.9 U			2.2	
1,1-Dichloroethene 1.5 U cis-1,2-Dichloroethene 2 U trans-1,2-Dichloroethene 25.3 Ethylbenezene 1.7 Methyl tert-butyl ether 1.4 U Methylene chloride 13.5 Naphthalene 9.3 Tetrachloroethene 15.1 Toluene 11.7 1,2,4-Trichlorobenzene 2.8 U 1,2,4-Trichloroethane 2.7 U 1,1,1-Trichloroethane 1 U 1,1,2-Trichloroethane 1 U 1,2,3-Trimethylbenzene 6.1 1,2,3-Trimethylbenzene 6.8 1,3,5-Trimethylbenzene 5.4 Vinyl chloride 0.49 U Xylene, meta-+ para- Xylene, ortho-	1,1-Dichloroethane		1.7			1.5 U	
cis -1,2-Dichloroethene 55 trans-1,2-Dichloroethene 25.3 Ethylbenezene 1.7 Methyl tert-butyl ether 1.4 U Methylene chloride 13.5 Naphtalene 9.3 Tetrachloroethene 15.1 Toluene 11.7 1,2,4-Trichlorobenzene 2.8 U 1,2,4-Trichloroethane 2.7 U 1,1,1-Trichloroethane 1 U 1,1,2-Trichloroethane 1 U 1,2,3-Trimethylbenzene 6.1 1,2,3-Trimethylbenzene 6.8 1,3,5-Trimethylbenzene 5.4 Vinyl chloride 0.49 U Xylene, meta-+ para- Xylene, ortho-	1,2-Dichloroethane		0.77 U			0.74 U	
trans-1,2-Dichloroethene 25.3 1.5 U Ethylbenezene 1.7 0.75 J Methyl tert-butyl ether 1.4 U 1.3 U Methylene chloride 13.5 7.3 Naphthalene 9.3 2.9 Tetrachloroethene 15.1 1.2 U Toluene 11.7 53.6 1,2,4-Trichloroethane 2.8 U 2.7 U 1,1,1-Trichloroethane 1 U 0.99 U 1,1,2-Trichloroethane 1 U 0.99 U 1,2,3-Trimethylbenzene 6.1 0.36 U 1,2,3-Trimethylbenzene 6.8 1.8 U 1,3,5-Trimethylbenzene 5.4 1.8 U Vinyl chloride 0.49 U 0.47 U Xylene, meta-+ para- Xylene, ortho- 3.4 0.99 J	1,1-Dichloroethene		1.5 U			1.5 U	
1.7 0.75 J Methyl tert-butyl ether 1.4 U 1.3 U Methylene chloride 1.5 7.3 Naphthalene 9.3 2.9 Tetrachloroethene 15.1 1.2 U Toluene 11.7 53.6 1.2,4-Trichloroethane 1.7 53.6 1.2,4-Trichloroethane 1.7 53.6 1.2,4-Trichloroethane 1.7 53.6 1.2,4-Trichloroethane 1.8 U 1.1,2-Trichloroethane 1.9 1.0 1.1,2-Trichloroethane 1.0 1.1,2-Trimethylbenzene 1.2,3-Trimethylbenzene 1.3,5-Trimethylbenzene 1.8 U 1.3,5-Trimethylbenzene 1.3 U 1.3 U	cis-1,2-Dichloroethene		55			2 U	
Methyl tert-butyl ether 1.4 U 1.3 U Methylene chloride 13.5 7.3 Naphthalene 9.3 2.9 Tetrachloroethene 15.1 1.2 U Toluene 11.7 53.6 1,2,4-Trichlorobenzene 2.8 U 2.7 U 1,1,1-Trichloroethane 3.4 2 U 1,1,2-Trichloroethane 1 U 0.99 U Trichloroethene 91000 4.2 1,2,3-Trimethylbenzene 6.1 0.36 U 1,2,4-Trimethylbenzene 6.8 1.8 U 1,3,5-Trimethylbenzene 5.4 1.8 U Vinyl chloride 0.49 U 0.47 U Xylene, meta-+ para- 3.4 0.99 J Xylene, ortho- 3.4 0.99 J	trans-1,2-Dichloroethene		25.3			1.5 U	
Methylene chloride 13.5 7.3 Naphthalene 9.3 2.9 Tetrachloroethene 15.1 1.2 U Toluene 11.7 53.6 1,2,4-Trichlorobenzene 2.8 U 2.7 U 1,1,1-Trichloroethane 3.4 2 U 1,1,2-Trichloroethane 1 U 0.99 U Trichloroethene 91000 4.2 1,2,3-Trimethylbenzene 6.1 0.36 U 1,2,4-Trimethylbenzene 6.8 1.8 U 1,3,5-Trimethylbenzene 5.4 1.8 U Vinyl chloride 0.49 U 0.47 U Xylene, meta- + para- 3.4 0.99 J Xylene, ortho- 3.4 0.99 J	Ethylbenezene		1.7			0.75 J	
Naphthalene	Methyl tert-butyl ether		1.4 U			1.3 U	
15.1 1.2 U Toluene 15.1 1.2 U 53.6 1.2,4-Trichlorobenzene 2.8 U 2.7 U 1.1,1-Trichloroethane 1 U 0.99 U 1.1,2-Trichloroethane 1 U 0.99 U 1.2,3-Trimethylbenzene 6.1 0.36 U 1.2,4-Trimethylbenzene 6.8 1.8 U 1.3,5-Trimethylbenzene 5.4 1.8 U 1.8 U 1.9,5-Trimethylbenzene 0.49 U 0.47 U 1.8 U 1.9,5-Trimethylbenzene 0.49 U 0.47 U 1.9 U 0.49 U 0.47 U 0.49 U 0.4	Methylene chloride		13.5			7.3	
Toluene 11.7 53.6 1,2,4-Trichlorobenzene 2.8 U 2.7 U 1,1,1-Trichloroethane 3.4 2 U 1,1,2-Trichloroethane 1 U 0.99 U Trichloroethene 91000 4.2 1,2,3-Trimethylbenzene 6.1 0.36 U 1,2,4-Trimethylbenzene 6.8 1.8 U 1,3,5-Trimethylbenzene 5.4 1.8 U Vinyl chloride 0.49 U 0.47 U Xylene, meta-+ para- 3.4 0.99 J Xylene, ortho- 3.4 0.99 J	Naphthalene		9.3			2.9	
1,2,4-Trichlorobenzene 2.8 U 2.7 U 1,1,1-Trichloroethane 3.4 2 U 1,1,2-Trichloroethane 1 U 0.99 U Trichloroethene 91000 4.2 1,2,3-Trimethylbenzene 6.1 0.36 U 1,2,4-Trimethylbenzene 6.8 1.8 U 1,3,5-Trimethylbenzene 5.4 1.8 U Vinyl chloride 0.49 U 0.47 U Xylenes, meta-+ para- 4.2 2.6 J Xylene, ortho- 3.4 0.99 J	Tetrachloroethene		15.1			1.2 U	
1,1,1-Trichloroethane 3.4 1,1,2-Trichloroethane 1 U 1,2,3-Trimethylbenzene 6.1 1,2,4-Trimethylbenzene 6.8 1,3,5-Trimethylbenzene 1.8 U 1,3,5-Trimethylbenzene 5.4 1,8 U Vinyl chloride 0.49 U Xylenes, meta-+ para- Xylene, ortho-	Toluene	1	11.7			53.6	
1,1,2-Trichloroethane 1 U 0.99 U Trichloroethene 91000 4.2 1,2,3-Trimethylbenzene 6.1 0.36 U 1,2,4-Trimethylbenzene 6.8 1.8 U 1,3,5-Trimethylbenzene 5.4 1.8 U Vinyl chloride 0.49 U 0.47 U Xylenes, meta-+ para- 4.2 2.6 J Xylene, ortho- 3.4 0.99 J	1,2,4-Trichlorobenzene		2.8 U			2.7 U	
1,1,2-Trichloroethane 1 U 0.99 U Trichloroethene 91000 4.2 1,2,3-Trimethylbenzene 6.1 0.36 U 1,2,4-Trimethylbenzene 6.8 1.8 U 1,3,5-Trimethylbenzene 5.4 1.8 U Vinyl chloride 0.49 U 0.47 U Xylenes, meta-+ para- 4.2 2.6 J Xylene, ortho- 3.4 0.99 J	1,1,1-Trichloroethane	1	3.4			2 U	
Trichloroethene 91000 4.2 1,2,3-Trimethylbenzene 6.1 0.36 U 1,2,4-Trimethylbenzene 6.8 1.8 U 1,3,5-Trimethylbenzene 5.4 1.8 U Vinyl chloride 0.49 U 0.47 U Xylenes, meta-+ para- 4.2 2.6 J Xylene, ortho- 3.4 0.99 J		1	1 U			0.99 U	
1.2,4-Trimethylbenzene 1.3,5-Trimethylbenzene 5.4 1.8 U 1.3,5-Trimethylbenzene 5.4 1.8 U Vinyl chloride 0.49 U 0.47 U Xylenes, meta-+ para- Xylene, ortho- 3.4 0.99 J	Trichloroethene	1	91000			4.2	
1,2,4-Trimethylbenzene 6.8 1,3,5-Trimethylbenzene 5.4 Vinyl chloride 0.49 U Xylenes, meta- + para- 4.2 Xylene, ortho- 3.4 0.99 J	1,2,3-Trimethylbenzene	1	6.1			0.36 U	
1,3,5-Trimethylbenzene 5.4 1.8 U Vinyl chloride 0.49 U 0.47 U Xylenes, meta- + para- 4.2 2.6 J Xylene, ortho- 3.4 0.99 J		1				1.8 U	
Vinyl chloride 0.49 U 0.47 U Xylenes, meta- + para- 4.2 2.6 J Xylene, ortho- 3.4 0.99 J		1					
Xylenes, meta- + para- 4.2 2.6 J Xylene, ortho- 3.4 0.99 J	Vinyl chloride	1					
Xylene, ortho- 3.4 0.99 J	Xylenes, meta- + para-	1	4.2			2.6 J	
70 00		1					
	Xylenes, total	1					

CO-LOCATED SUB-SLAB VAPOR AND INDOOR AIR QUALITY SAMPLING RESULTS, BUILDING A, FEBRUARY 2014 LOCKHEED MARTIN MIDDLE RIVER COMPLEX, MIDDLE RIVER, MARYLAND

PAGE 7 OF 7

TABLE 3-8

Analyte	Co-Located SV	Result	Duplicate/	Co-Located IAQ	Result	Duplicate/
Analyte	Sample ID	(µg/m³)	Additional	Sample ID	(µg/m³)	Additional
Benzene		1.6			1.1	
Carbon tetrachloride		1.8 U			1.7 U	
Chlorodifluoromethane	SV-138-A-15	9.6		IAQ-138-A-15	4.8	
Chloroform		2.8 U			2.6 U	
Dichlorodifluoromethane		3.3			3	
1,1-Dichloroethane		2.6			2.1 U	
1,2-Dichloroethane		1.2 U			1.1 U	
1,1-Dichloroethene		6.4			2.1 U	
cis -1,2-Dichloroethene		6			2 U	
trans-1,2-Dichloroethene		2.3 U			2.1 U	
Ethylbenezene		1.9 J			2.3 U	
Methyl tert-butyl ether		2.1 U			1.9 U	
Methylene chloride		17.5			17.2	
Naphthalene		23.1			3	
Tetrachloroethene		2.7			1.8 U	
Toluene		10.3			2.5	
1,2,4-Trichlorobenzene		4.3 U			3.9 U	
1,1,1-Trichloroethane		3.2 U			2.9 U	
1,1,2-Trichloroethane		1.6 U			1.4 U	
Trichloroethene		80.3			1.6	
1,2,3-Trimethylbenzene		0.57 U			0.52 U	
1,2,4-Trimethylbenzene		2.9 U			2.6 U	
1,3,5-Trimethylbenzene		2.9 U			2.6 U	
Vinyl chloride		0.75 U			0.67 U	
Xylenes, meta- + para-		6.1			4.5 U	
Xylene, ortho-		1.6 J			2.3 U	
Xylenes, total		7.7			0	

Notes: All concentrations are in micrograms per cubic meter air $[\mu g/m^3]$

Shaded cells indicate a concentration greater than the risk-based screening level.

*Bold font indicates co-located (IAQ and SV) detections within that sample.

(1) Location AIR-081-A was resampled in April 2014 (IA-081-A-16R). The February 2014 trichloroethene concentration greater than screening criteria was not confirmed in this April 2014 resample.

IAQ = indoor air quality SV = sub-slab vapor

J = estimated value U = analyzed for but not detected

TABLE 3-9

INDOOR AIR QUALITY SAMPLING RESULTS, BUILDING B, FEBRUARY 2014
LOCKHEED MARTIN MIDDLE RIVER COMPLEX, MIDDLE RIVER, MARYLAND

LOCATION SAMPLE ID	OSHA PEL	Industrial Air Screening Level	KEY	AIR-033-B IA-033-B-16	AIR-063-B IA-063-B-16	AIR-101-B IA-101-B-16	AIR-105-Z IA-105-Z-16	AIR-121-B IA-121-B-16	AIR-123-Z IA-123-Z-16	AIR-140-B IA-140-B-16
SAMPLE DATE	(µg/m3)	(µg/m³)		20140224	20140224	20140224	20140224	20140224	20140224	20140226
Volatile Organic Compounds (µg/m³)										
BENZENE	319	16	ca	0.87	0.68 U	0.65	1.6	0.78	2.3	0.58 U
CARBON TETRACHLORIDE	62,900	20	ca	1.2 U	1.3 U	1.2 U				
CHLORODIFLUOROMETHANE	3,590,000	220,000	nc	42.6	6.9	18.9	1.4	37.5	1.3	13.6
CHLOROFORM	240,000	5.3	ca	1.8 U	2.1 U	1.9 U	1.8 U	1.9 U	1.9 U	1.8 U
DICHLORODIFLUOROMETHANE	4,950,000	440	nc	3.1	2.5	2.7	1.8	1.9	2.1	2.4
1,1-DICHLOROETHANE	400,000	77	ca	1.5 U	1.7 U	1.5 U				
1,2-DICHLOROETHANE	400,000	4.7	ca	0.74 U	0.86 U	0.77 U	0.74 U	0.77 U	0.77 U	0.74 U
1,1-DICHLOROETHENE		880	nc	1.5 U	1.7 U	1.5 U				
CIS-1,2-DICHLOROETHENE	790,000			1.5 U	1.7 U	1.5 U				
TRANS-1,2-DICHLOROETHENE	790,000			1.5 U	1.7 U	1.5 U				
ETHYLBENZENE	435,000	49	ca	1.7	1.8 U	1.6 U	113	1.6 U	164	2.1
METHYL TERT-BUTYL ETHER	180,000 ^A	470	ca	1.3 U	1.5 U	1.4 U	1.3 U	1.4 U	1.4 U	1.3 U
METHYLENE CHLORIDE	87,000	2,600	nc	12.6	4.9 J	11.5	14.8	4.5 J	8.7	18.3
NAPHTHALENE	50,000	3.6	ca	4 J	5.6 U	1.3 J	3.2 J	3.4 J	5 U	6.5 J
TETRACHLOROETHENE	678,000	180	nc	1.2 U	1.4 U	1.3 U	1.2 U	1.3 U	1.3 U	1.2 U
TOLUENE	754,000	22,000	nc	44.1	15.1	17.1	9300	19.4	20000	84
1,2,4-TRICHLOROBENZENE	40,000 ^N	8.8	nc	6.8 U	7.9 U	2.8 U	6.8 U	7 U	7 U	2.7 UJ
1,1,1-TRICHLOROETHANE	1,900,000	22,000	nc	2 U	2.3 U	2.1 U	2 U	2.1 U	2.1 U	2 U
1,1,2-TRICHLOROETHANE	45,000	0.88	nc	0.99 U	1.2 U	1 U	0.99 U	1 U	1 U	0.99 U
TRICHLOROETHENE	537,000	8.8	nc	0.99 U	1.2 U	1 U	0.99 U	1.1	1 U	0.99 U
1,2,3-TRIMETHYLBENZENE	123,000	22	nc	0.36 U	0.42 U	0.37 U	0.36 U	0.37 U	0.37 U	1.8 U
1,2,4-TRIMETHYLBENZENE	123,000	31	nc	1.4 J	1.1 J	1.9 U	1.7 J	1.9 U	1.3 J	1.8 U
1,3,5-TRIMETHYLBENZENE	123,000	22	nc ⁽¹⁾	1.8 U	2.1 U	1.9 U	1.8 U	1.9 U	1.9 U	1.8 U
VINYL CHLORIDE	21,560	28	ca	0.47 U	0.55 U	0.49 U	0.47 U	0.49 U	0.49 U	0.47 U
M+P-XYLENES	434000	440	nc	7.4	2.7 J	2.5 J	476	2.8 J	1030	8.1
O-XYLENE	434000	440	nc	2.5	0.95 J	0.95 J	142	1.1 J	210	2.6
TOTAL XYLENES	434000	440	nc	9.9	3.65 J	3.45 J	618	3.9 J	1240	10.7

Shaded cells indicate a concentration greater than the risk -based screening level

TOTAL XYLENES values are calculated.

(1) Value is for 1,2,3-trimethylbenzene.

-- = not available

J = estimated value

ND - calculated value is nondetect.

U = not detected

USEPA = United States Environmental Protection Agency

ca = screening value based on 1x 10⁻⁵ carcinogenic risk

nc = screening value based on noncarcinogenic hazard index = 1

A = American Council of Governmental Industrial Hygienists Theshold Limit Value
N = National Institute for Occupational Safety and Health Recommended Exposure Limit
OSHA PEL = Occupational Safety and Health Administration Pemissible Exposure Limit
Industrial Air Screening Levels from USEPA Regional Screening Levels for Chemical
Contaminants at Superfund Sites May-2014

TABLE 3-10

SUB-SLAB VAPOR SAMPLE RESULTS, BUILDING B, FEBRUARY 2014 LOCKHEED MARTIN MIDDLE RIVER COMPLEX, MIDDLE RIVER, MARYLAND

	Target Shallow		AIR-033-B	AIR-063-B	AIR-101-B	AIR-105-Z	AIR-121-B	AIR-123-Z
SAMPLE ID	Soil Gas		SV-033-B-16	SV-063-B-16	SV-101-B-16	SV-105-Z-16	SV-121-B-16	SV-123-Z-16
	Concentration	KEY						
SAMPLE DATE	(µg/m3) ⁽¹⁾		20140224	20140224	20140224	20140224	20140224	20140224
Volatile Organic Compounds (μg/m³)								
BENZENE	533	ca	1.2	0.55 U	0.57 U	1.5	0.58 U	0.55 U
CARBON TETRACHLORIDE	667	ca	1.1 U	16.3	2.6	1.1 U	4.4	1.1 U
CHLORODIFLUOROMETHANE	7,333,333	nc	32.6	1.7	4.3	9	1.5	5.9 U
CHLOROFORM	177	ca	1.7 U	1.7 U	1.7 U	2.5	26.4	1.7 U
DICHLORODIFLUOROMETHANE	14,667	nc	3.4	2.2	4.5	1.7 U	2.3	2.6
1,1-DICHLOROETHANE	2,567	ca	1.4 U	1.4 U	1.4 U	1.4 U	1.5 J	1.4 U
1,2-DICHLOROETHANE	157	ca	0.69 U	0.69 U	0.71 U	0.69 U	0.74 U	0.69 U
1,1-DICHLOROETHENE	29,333	nc	1.4 U	1.4 U	1.4 U	1.4 U	1.5 U	1.4 U
CIS-1,2-DICHLOROETHENE			1.4 U	1.4 U	1.4 U	36.3	1.5 U	0.7 J
TRANS-1,2-DICHLOROETHENE			1.4 U	1.4 U	1.4 U	5.5 J+	1.5 U	1.4 U
ETHYLBENZENE	1,633	ca	3.1	1.5 U	0.87 J	5.3	1.5 J	3.9
METHYL TERT-BUTYL ETHER	15,667	ca	1.2 U	1.2 U	1.3 U	1.2 U	1.3 U	1.2 U
METHYLENE CHLORIDE	86,667	nc	10.5	14.6	14.3	621 J	24.6	8.2
NAPHTHALENE	120	ca	10.4	3.3 J	9.7	4.9	85.8	10.9
TETRACHLOROETHENE	6,000	nc	1.2 U	3.3	45.9	1.2 U	2.4	1.2 U
TOLUENE	733,333	nc	36.1	2.4	12.5	59.6	6.7	50.9
1,2,4-TRICHLOROBENZENE	293	nc	6.3 U	6.3 U	6.6 U	6.3 U	6.8 U	2.5 U
1,1,1-TRICHLOROETHANE	733,333	nc	88.6	1.9 U	143	1.9 U	1.5 J	1.9 U
1,1,2-TRICHLOROETHANE	29	nc	0.92 U	0.92 U	0.96 U	0.92 U	0.99 U	0.92 U
TRICHLOROETHENE	293	nc	2.8	1.6	79.2	129	203	37.5
1,2,3-TRIMETHYLBENZENE	733	nc	5.2	0.34 U	2.9	1.8	13.2	3.7
1,2,4-TRIMETHYLBENZENE	1,033	nc	11.1	1.4 J	3.4	2.7	32	1.7
1,3,5-TRIMETHYLBENZENE	733	nc ⁽²⁾	1.7 U	1.7 U	1.7 U	1.7 U	1.8 U	2.9
VINYL CHLORIDE	933	ca	0.44 U	0.44 U	0.45 U	9.4	0.47 U	0.44 U
M+P-XYLENES	14,667	nc	13.8	1.8 J	2.7 J	22.7	7.2	19.9
O-XYLENE	14,667	nc	4.9	1.5 U	1.8	4.8	5	4.3
TOTAL XYLENES	14,667	nc	18.7	1.8 J	4.5 J	27.5	12.2	24.2

Notes: All sample concentrations are in micrograms per cubic meter ($\mu g/m^3$) Shaded cells indicate a concentration greater than risk-based screening level

TOTAL XYLENES values are calculated.

-- = not available

ca = screening value based on carcinogenic effects

J = estimated value

 $\mu g/m^3 = micrograms per cubic meter$ nc = screening value based on noncarcinogenic effects

U = nondetect

(1) Screening values derived in accordance with Draft Guidance for Evaluating the Vapor Intrusion to Indoor Air Pathway from Groundwater and Soils (November 2002). Screening values are equal to United States Environmental Protection Agency (USEPA) Industrial Air Screening Values divided by an attenuation factor of 0.03, and correspond to a target cancer risk level of 1.0E-05. (2) Value is for 1,2,3-trimethylbenzene.

TABLE 3-11

CO-LOCATED SUB-SLAB VAPOR AND INDOOR AIR QUALITY SAMPLING RESULTS, BUILDING B, FEBRUARY 2014 LOCKHEED MARTIN MIDDLE RIVER COMPLEX, MIDDLE RIVER, MARYLAND PAGE 1 OF 3

Analyte	Co-Located SV Sample ID	Result (µg/m³)	Duplicate	Co-Located IAQ Sample ID	Result (µg/m³)	Duplicate
Benzene	Sample ID	(μ g /III)		Sample ID	0.87	
Carbon tetrachloride	1	1.1 U			1.2 U	
Chlorodifluoromethane	SV-033-B-16	32.6		IAQ-033-B-16	42.6	
Chloroform		1.7 U			1.8 U	
Dichlorodifluoromethane		3.4			3.1	
1,1-Dichloroethane		1.4 U			1.5 U	
1,2-Dichloroethane		0.69 U			0.74 U	
1,1-Dichloroethene	1	1.4 U			1.5 U	
cis-1,2-Dichloroethene	1	1 U			2 U	
trans-1,2-Dichloroethene	1	1.4 U			1.5 U	
Ethylbenezene		3.1			1.7	
Methyl tert-butyl ether		1.2 U			1.3 U	
Methylene chloride	1	10.5			12.6	
Naphthalene		10.4			4 J	
Tetrachloroethene	1	1.2 U			1.2 U	
Toluene		36.1			44.1	
1,2,4-Trichlorobenzene		6.3 U			6.8 U	
1,1,1-Trichloroethane		88.6			2 U	
1,1,2-Trichloroethane		0.92 U			0.99 U	
Trichloroethene		2.8			0.99 U	
1,2,3-Trimethylbenzene		5.2			0.36 U	
1,2,4-Trimethylbenzene		11.1			1.4 J	
1,3,5-Trimethylbenzene		1.7 U			1.4 J	
Vinyl chloride		0.44 U			0.47 U	
Xylenes, meta- + para-		13.8			7.4	
	-	4.9			2.5	
Xylene, ortho- Xylenes, total	-	18.7			9.9	
Aylenes, total						
Panzana		0.55 U			0.68 U	
Benzene						
Carbon tetrachloride		16.3			1.3 U	
Chlorodifluoromethane	SV-063-B-16	1.7		IAQ-063-B-16	6.9	
Chloroform		1.7 U			2.1 U	
Dichlorodifluoromethane		2.2			2.5	
1,1-Dichloroethane		1.4 U			1.7 U	
1,2-Dichloroethane		0.69 U			0.86 U	
1,1-Dichloroethene		1.4 U			1.7 U	
cis-1,2-Dichloroethene		1 U			2 U	
trans -1,2-Dichloroethene		1.4 U			1.7 U	
Ethylbenezene		1.5 U			1.8 U	
Methyl tert-butyl ether		1.2 U			1.5 U	
Methylene chloride		14.6			4.9 J	
Naphthalene		3.3 J			5.6 U	
Tetrachloroethene		3.3			1.4 U	
Toluene		2.4			15.1	
1,2,4-Trichlorobenzene		6.3 U			7.9 U	
1,1,1-Trichloroethane		1.9 U			2.3 U	
1,1,2-Trichloroethane		0.92 U			1.2 U	
Trichloroethene		1.6			1.2 U	
1,2,3-Trimethylbenzene		0.34 U			0.42 U	
1,2,4-Trimethylbenzene		1.4 J			1.1 J	
1,3,5-Trimethylbenzene		1.7 U			2.1 U	
Vinyl chloride		0.44 U			0.55 U	
Xylenes, meta- + para-		1.8 J			2.7 J	
Xylene, ortho-		1.5 U			0.95 J	
Xylenes, total		1.8			3.7	

TABLE 3-11

CO-LOCATED SUB-SLAB VAPOR AND INDOOR AIR QUALITY SAMPLING RESULTS, BUILDING B, FEBRUARY 2014 LOCKHEED MARTIN MIDDLE RIVER COMPLEX, MIDDLE RIVER, MARYLAND PAGE 2 OF 3

Analyte	Co-Located SV	Result	Duplicate	Co-Located IAQ	Result	Duplicate
Analyte	Sample ID	(µg/m³)	Duplicate	Sample ID	(µg/m³)	Duplicate
Benzene		0.57 U			0.65	
Carbon tetrachloride		2.6			1.2 U	
Chlorodifluoromethane	SV-101-B-16	4.3		IAQ-101-B-16	18.9	
Chloroform		1.7 U			1.9 U	
Dichlorodifluoromethane		4.5			2.7	
1,1-Dichloroethane		1.4 U			1.5 U	
1,2-Dichloroethane		0.71 U			0.77 U	
1,1-Dichloroethene		1.4 U			1.5 U	
cis-1,2-Dichloroethene		1 U			2 U	
trans -1,2-Dichloroethene		1.4 U			1.5 U	
Ethylbenezene		0.87 J			1.6 U	
Methyl tert-butyl ether		1.3 U			1.4 U	
Methylene chloride		14.3			11.5	
Naphthalene		9.7			1.3 J	
Tetrachloroethene		45.9			1.3 U	
Toluene		12.5			17.1	
1,2,4-Trichlorobenzene		6.6 U			2.8 U	
1,1,1-Trichloroethane		143			2.1 U	
1,1,2-Trichloroethane		0.96 U			1 U	
Trichloroethene		79.2			1 U	
1,2,3-Trimethylbenzene		2.9			0.37 U	
1,2,4-Trimethylbenzene		3.4			1.9 U	
1,3,5-Trimethylbenzene		1.7 U			1.9 U	
Vinyl chloride		0.45 U			0.49 U	
Xylenes, meta- + para-		2.7 J			2.5 J	
Xylene, ortho-		1.8			0.95 J	
Xylenes, total		4.5			3.5	
	•	•	•	•		
Benzene		0.58 U			0.78	
Carbon tetrachloride		4.4			1.2 U	
Chlorodifluoromethane	SV-121-B-16	1.5		IAQ-121-B-16	37.5	
Chloroform		26.4			1.9 U	
Dichlorodifluoromethane		2.3			1.9	
1,1-Dichloroethane		1.5 J			1.5 U	
1,2-Dichloroethane		0.74 U			0.77 U	
1,1-Dichloroethene		1.5 U			1.5 U	
cis-1,2-Dichloroethene		2 U			2 U	
trans -1,2-Dichloroethene		1.5 U			1.5 U	
Ethylbenezene		1.5 J			1.6 U	
Methyl tert-butyl ether		1.3 U			1.4 U	
Methylene chloride		24.6			4.5 J	
Naphthalene		85.8			3.4 J	
Tetrachloroethene		2.4			1.3 U	
Toluene		6.7			19.4	
1,2,4-Trichlorobenzene		6.8 U			7 U	
1,1,1-Trichloroethane		1.5 J			2.1 U	
1,1,2-Trichloroethane		0.99 U			1 U	
Trichloroethene		203			1.1	
1,2,3-Trimethylbenzene		13.2			0.37 U	
1,2,4-Trimethylbenzene		32			1.9 U	
1,3,5-Trimethylbenzene		1.8 U			1.9 U	
Vinyl chloride		0.47 U			0.49 U	
Xylenes, meta- + para-		7.2			2.8 J	
Xylene, ortho-		5			1.1 J	
Xylenes, total		12.2			3.9	
,,	L	l	l	l		

CO-LOCATED SUB-SLAB VAPOR AND INDOOR AIR QUALITY SAMPLING RESULTS, BUILDING B, FEBRUARY 2014 LOCKHEED MARTIN MIDDLE RIVER COMPLEX, MIDDLE RIVER, MARYLAND PAGE 3 OF 3

Amelista	Co-Located SV	Result	Dunlingto	Co-Located IAQ	Result	Dumlicate
Analyte	Sample ID	(μg/m³)	Duplicate	Sample ID	(µg/m³)	Duplicate
Benzene		1.5			1.6	
Carbon tetrachloride		1.1 U			1.2 U	
Chlorodifluoromethane	SV-105-Z-16	9		IAQ-105-Z-16	1.4	
Chloroform		2.5			1.8 U	
Dichlorodifluoromethane		1.7 U			1.8	
1,1-Dichloroethane		1.4 U			1.5 U	
1,2-Dichloroethane		0.69 U			0.74 U	
1,1-Dichloroethene		1 U			1.5 U	
cis-1,2-Dichloroethene		36.3			2 U	
trans -1,2-Dichloroethene		5.5 J+			1.5 U	
Ethylbenezene		5.3			113	
Methyl tert-butyl ether		1.2 U			1.3 U	
Methylene chloride		621 J			14.8	
Naphthalene		4.9			3.2 J	
Tetrachloroethene		1.2 U			1.2 U	
Toluene		59.6			9300	
1,2,4-Trichlorobenzene		6.3 U			6.8 U	
1,1,1-Trichloroethane		1.9 U			2 U	
1,1,2-Trichloroethane		0.92 U			0.99 U	
Trichloroethene		129			0.99 U	
1,2,3-Trimethylbenzene		1.8			0.36 U	
1,2,4-Trimethylbenzene		2.7			1.7 J	
1,3,5-Trimethylbenzene		1.7 U			1.8 U	
Vinyl chloride		9.4			0.47 U	
Xylenes, meta- + para-		22.7			476	
Xylene, ortho-		4.8			142	
Xylenes, total		27.5			618	
	T		П	Г		
Benzene		0.55 U			2.3	
Carbon tetrachloride		1.1 U			1.2 U	
Chlorodifluoromethane	SV-123-Z-16	5.9 U		IAQ-123-Z-16	1.3	
Chloroform	-	1.7 U			1.9 U	
Dichlorodifluoromethane	-	2.6			2.1	
1,1-Dichloroethane		1.4 U			1.5 U	
1,2-Dichloroethane		0.69 U			0.77 U	
1,1-Dichloroethene	-	1.4 U			1.5 U	
cis-1,2-Dichloroethene	1	1 J			2 U	
trans -1,2-Dichloroethene Ethylbenezene	1	1.4 U			1.5 U	
	1	3.9 1.2 U			164	
Methyl tert-butyl ether Methylene chloride	1	1.2 U 8.2			1.4 U 8.7	
Naphthalene	1	10.9			8.7 5 U	
Tetrachloroethene	1	10.9 1.2 U			1.3 U	
Toluene	1	50.9			20000	
1,2,4-Trichlorobenzene	1	2.5 U			20000 7 U	
1,1,1-Trichloroethane	1	1.9 U			2.1 U	
1,1,2-Trichloroethane	1	0.92 U			1 U	
Trichloroethene	†	37.5			1 U	
1,2,3-Trimethylbenzene	†	3.7			0.37 U	
1,2,4-Trimethylbenzene	1	1.7			1.3 J	
1,3,5-Trimethylbenzene	†	2.9			1.9 U	
Vinyl chloride	1	0.44 U			0.49 U	
Xylenes, meta- + para-	1	19.9			1030	
Xylene, ortho-	1	4.3			210	
Xylenes, total	†	24.2			1240	
,,, total	I .		l	Ì		

Notes: All concentrations are in micrograms per cubic meter air $[\mu g/m^3]$

Shaded cells indicate a concentration greater than the risk-based screening level.

*Bold font indicates co-located (IAQ and SV) detections within that sample.

IAQ = indoor air quality

SV = sub-slab vapor

J = estimated value

U = analyzed for but not detected

TABLE 3-12

INDOOR AIR QUALITY SAMPLING RESULTS, BUILDING C, FEBRUARY 2014
LOCKHEED MARTIN MIDDLE RIVER COMPLEX, MIDDLE RIVER, MARYLAND
PAGE 1 OF 3

LOCATION ⁽¹⁾		Industrial Air		AIR-060-C	AIR-065-C	AIR-088-C	AIR-102-C	AIR-	113-C	AIR-113-C	AIR-126-C	AIR-128-C
SAMPLE ID	OSHA PEL	Screening		IA-060-C-16	IA-065-C-16	IA-088-C-16	IA-102-C-16	IA-113-C-16	IA-113-C-16-D	IA-113-C-16R	IA-126-C-16	IA-128-C-16
	(µg/m³)	Level	KEY						(IA-DUP-2)			
SAMPLE DATE	(F9···)	(μg/m³)		20140224	20140224	20140224	20140224	20140224	20140224	20140417	20140224	20140224
Volatile organic compounds (µg/n												
BENZENE	319	16	ca	0.81	0.64	11.8 U	0.61 J	1.9	0.89	0.52 U	0.79	0.84
CARBON TETRACHLORIDE	62,900	20	ca	1.1 U	1.1 U	23.3 U	1.2 U	3.4 U	1.1 U	1 U	1.1 U	1.2 U
CHLORODIFLUOROMETHANE	3,590,000	220,000	nc	9.4	23.9	7.3 U	1.8 J	6.5 J	3.1 J	4	2	23.2
CHLOROFORM	240,000	5.3	ca	1.7 U	1.7 U	36 U	1.9 U	5.3 U	1.7 U	1.6 U	1.7 U	1.9 U
DICHLORODIFLUOROMETHANE	4,950,000	440	nc	2.4	2.3	36.7 U	2.6	4.7 J	2.1	2.5	2.3	2.4
1,1-DICHLOROETHANE	400,000	77	ca	1.4 U	1.4 U	29.8 U	1.6 U	43.7	1.4 U	1.3 U	1.4 U	1.5 U
1,2-DICHLOROETHANE	400,000	4.7	ca	0.71 U	0.69 U	14.9 U	0.8 U	2.2 U	0.69 U	0.66 U	0.71 U	0.77 U
1,1-DICHLOROETHENE		880	nc	1.4 U	1.4 U	29.5 U	1.6 U	17.1	1.4 U	1.3 U	1.4 U	1.5 U
CIS-1,2-DICHLOROETHENE	790,000			1.4 U	1.4 U	29.5 U	1.6 U	4.3 U	1.4 U	1.3 U	1.4 U	1.5 U
TRANS-1,2-DICHLOROETHENE	790,000			1.4 U	1.4 U	29.5 U	1.6 U	4.3 U	1.4 U	1.3 U	1.4 U	1.5 U
ETHYLBENZENE	435,000	49	ca	1.5 U	1.5 U	32 UJ	1.7 U	4.7 U	1.5 U	1.2 J	1.5 U	1.6 U
METHYL TERT-BUTYL ETHER	180,000 A	470	ca	1.3 U	1.2 U	26.5 U	1.4 U	3.9 U	1.2 U	1.2 U	1.3 U	1.4 U
METHYLENE CHLORIDE	87,000	2,600	nc	8.1	5.8 J	33.6 J	8.6	79.7 J	5.1 J	3.1 J	14.6	14.5
NAPHTHALENE	50,000	3.6	ca	3.6 J	5.1	96.7 UJ	1.1 J	14.1 U	3.2 J	2.1 J	3.4 J	3.9 J
TETRACHLOROETHENE	678,000	180	nc	1.2 U	1.2 U	25.1 U	1.3 U	3.7 U	1.2 U	1.6	1.2 U	1.3 U
TOLUENE	754,000	22,000	nc	3.8	2.1	28 U	3.2	24.7	1.3 U	5.1	6	4.3
1,2,4-TRICHLOROBENZENE	40,000 N	8.8	nc	6.6 U	6.3 U	137 UJ	2.9 U	20 UJ	6.3 U	6.1 U	6.6 U	7 U
1,1,1-TRICHLOROETHANE	1,900,000	22,000	nc	1.9 U	1.9 U	40.4 U	2.2 U	13.2	1.9 U	1.8 U	1.9 U	2.1 U
1,1,2-TRICHLOROETHANE	45,000	0.88	nc	0.96 U	0.92 U	20 U	1.1 U	2.9 U	0.92 U	0.89 U	0.96 U	1 U
TRICHLOROETHENE	537,000	8.8	nc	0.96 U	0.92 U	20 U	1.1 U	20	0.92 U	0.89 U	0.96 U	1 U
1,2,3-TRIMETHYLBENZENE	123,000	22	nc	0.35 U	0.34 U	7.3 UJ	0.39 U	1.1 U	0.34 U	1.6 U	0.35 U	0.37 U
1,2,4-TRIMETHYLBENZENE	123,000	31	nc	1.7 U	1.7 U	36.3 UJ	1.9 U	3.2 J	0.94 J	1.6 U	1.7 U	1.9 U
1,3,5-TRIMETHYLBENZENE	123,000	22	nc ⁽¹⁾	1.7 U	1.7 U	36.3 UJ	1.9 U	5.3 U	1.7 U	4 U	1.7 U	1.9 U
VINYL CHLORIDE	21,560	28	ca	0.45 U	0.44 U	9.5 U	0.5 U	1.4 U	0.44 U	0.42 U	0.45 U	0.49 U
M+P-XYLENES	434000	440	nc	2.5 J	3 U	64 UJ	1.9 J	76.6 J	3.4 J	2 J	3.1 U	2.6 J
O-XYLENE	434000	440	nc	0.98 J	1.5 U	32 UJ	1.7 U	26.6 J	1.2 J	0.9 J	1.5 U	1.1 J
TOTAL XYLENES	434000	440	nc	3.48 J	0	0	1.9 J	103.2 J	4.6 J	2.9	0	3.7 J

TABLE 3-12

INDOOR AIR QUALITY SAMPLING RESULTS, BUILDING C, FEBRUARY 2014
LOCKHEED MARTIN MIDDLE RIVER COMPLEX, MIDDLE RIVER, MARYLAND
PAGE 2 OF 3

LOCATION ⁽¹⁾		Industrial Air		AIR-130-C	AIR-	133-C	AIR-135-C	AIR-141-C	AIR-142-C	AIR-143-C	AIR-144-C	AIR-145-C
SAMPLE ID	OSHA PEL	Screening		IA-130-C-16	IA-133-C-16	IA-133-C-16-D	IA-135-C-16	IA-141-C-16	IA-142-C-16	IA-143-C-16	IA-144-C-16	IA-145-C-16
	(μg/m³)	Level	KEY			(IA-DUP-1)						
SAMPLE DATE	(μg/ιιι)	(μg/m³)		20140224	20140224	20140224	20140224	20140224	20140224	20140224	20140224	20140224
	3\	,		20140224	20140224	20140224	20140224	20140224	20140224	20140224	20140224	20140224
Volatile organic compounds (µg/r BENZENE	n') 319	16	ca	1.3	0.93	0.83	0.8	0.92	0.67	0.81	0.71	3.6
CARBON TETRACHLORIDE	62,900	20	ca	1.3 1.1 U	1.1 U	1.1 U	1.2 U	1.1 U	1.2 U	1.2 U	1.2 U	1.4
CHLORODIFLUOROMETHANE	3,590,000	220,000	nc	4	4.4	3.9	2.1	7.1	1.9	2.5	18	37.2
CHLOROFORM	240.000	5.3	ca	1.7 U	1.7 U	1.7 U	1.8 U	1.7 U	1.9 U	1.8 U	1.9 U	1.9 U
DICHLORODIFLUOROMETHANE	4.950.000	440	nc	2.4	2.4	2.3	2.3	3	2	2.4	2	4.8
1.1-DICHLOROETHANE	400,000	77	ca	1.4 U	1.4 U	1.4 U	1.5 U	1.4 U	1.5 U	1.5 U	1.5 U	1.5 U
1.2-DICHLOROETHANE	400,000	4.7	ca	0.69 U	0.69 U	0.69 U	0.74 U	0.71 U	0.77 U	0.74 U	0.77 U	0.77 U
1,1-DICHLOROETHENE		880	nc	1.4 U	1.4 U	1.4 U	1.5 U	1.4 U	1.5 U	1.5 U	1.5 U	1.5 U
CIS-1,2-DICHLOROETHENE	790,000			1.4 U	1.4 U	1.4 U	1.5 U	1.4 U	1.5 U	1.5 U	1.5 U	1.5 U
TRANS-1,2-DICHLOROETHENE	790,000			1.4 U	1.4 U	1.4 U	1.5 U	1.4 U	1.5 U	1.5 U	1.5 U	1.5 U
ETHYLBENZENE	435,000	49	ca	1.5 U	1.5 U	1.5 U	1.6 U	1.5 U	1.6 U	1.6 U	1.6 U	1.7
METHYL TERT-BUTYL ETHER	180,000 A	470	ca	1.2 U	1.2 U	1.2 U	1.3 U	1.3 U	1.4 U	1.3 U	1.4 U	1.4 U
METHYLENE CHLORIDE	87,000	2,600	nc	14.1	8.4 J	1.9 J	13.2	7.8	3.8 J	6.1 J	6.6	1140
NAPHTHALENE	50,000	3.6	ca	3.6 J	3.7 J	3.5 J	4.8 U	4.6 U	3.4 J	4.4 J	3.6 J	4.1 J
TETRACHLOROETHENE	678,000	180	nc	1.2 U	1.2 U	1.2 U	1.2 U	1.2 U	1.3 U	1.2 U	1.3 U	1.3 U
TOLUENE	754,000	22,000	nc	3.5	2.9	2.4	1.4 U	2.1	1.4 U	1.4 U	3.5	16.2
1,2,4-TRICHLOROBENZENE	40,000 N	8.8	nc	6.3 U	6.3 U	6.3 U	6.8 U	6.6 U	7 U	6.8 U	7 U	7 U
1,1,1-TRICHLOROETHANE	1,900,000	22,000	nc	1.9 U	1.9 U	1.9 U	2 U	1.9 U	2.1 U	2 U	2.1 U	2.1 U
1,1,2-TRICHLOROETHANE	45,000	0.88	nc	0.92 U	0.92 U	0.92 U	0.99 U	0.96 U	1 U	0.99 U	1 U	1 U
TRICHLOROETHENE	537,000	8.8	nc	0.92 U	1.2	1.4	0.99 U	0.96 U	1 U	0.99 U	1 U	1 U
1,2,3-TRIMETHYLBENZENE	123,000	22	nc	0.34 U	0.34 U	0.34 U	0.36 U	0.35 U	0.37 U	0.36 U	0.37 U	0.37 U
1,2,4-TRIMETHYLBENZENE	123,000	31	nc	1.7 U	1.7 U	1.7 U	1.8 U	1.7 U	1.9 U	1.2 J	1.9 U	3.4
1,3,5-TRIMETHYLBENZENE	123,000	22	nc ⁽¹⁾	1.7 U	1.7 U	1.7 U	1.8 U	1.7 U	1.9 U	1.8 U	1.9 U	1 J
VINYL CHLORIDE	21,560	28	ca	0.44 U	0.44 U	0.44 U	0.47 U	0.45 U	0.49 U	0.47 U	0.49 U	0.49 U
M+P-XYLENES	434000	440	nc	1.6 J	2.1 J	1.9 J	3.2 U	1.6 J	1.7 J	3.2 U	2.3 J	6.1
O-XYLENE	434000	440	nc	1.5 U	0.84 J	1.5 U	1.6 U	1.5 U	1.6 U	1.6 U	0.88 J	2.3
TOTAL XYLENES	434000	440	nc	1.6 J	2.94 J	1.9 J	0	1.6 J	1.7 J	0	3.18 J	8.4

TABLE 3-12

INDOOR AIR QUALITY SAMPLING RESULTS, BUILDING C, FEBRUARY 2014 LOCKHEED MARTIN MIDDLE RIVER COMPLEX, MIDDLE RIVER, MARYLAND PAGE 3 OF 3

LOCATION ⁽¹⁾		Industrial Air		AIR-146-C	AIR-147-C	AIR-148-C
SAMPLE ID	OSHA PEL	Screening	KEY	IA-146-C-16	IA-147-C-16	IA-148-C-16
	(µg/m³)	Level	IXE I			
SAMPLE DATE		(μg/m³)		20140224	20140224	20140224
Volatile organic compounds (µg/r	n³)					
BENZENE	319	16	ca	0.76	0.8	0.61
CARBON TETRACHLORIDE	62,900	20	ca	1.2 U	1.2 U	1.2 U
CHLORODIFLUOROMETHANE	3,590,000	220,000	nc	54.2	18.2	24.4
CHLOROFORM	240,000	5.3	ca	1.8 U	1.9 U	1.9 U
DICHLORODIFLUOROMETHANE	4,950,000	440	nc	2.3	2.1	2.7
1,1-DICHLOROETHANE	400,000	77	ca	1.5 U	1.5 U	1.5 U
1,2-DICHLOROETHANE	400,000	4.7	ca	0.74 U	0.77 U	0.77 U
1,1-DICHLOROETHENE		880	nc	1.5 U	1.5 U	1.5 U
CIS-1,2-DICHLOROETHENE	790,000			1.5 U	1.5 U	1.5 U
TRANS-1,2-DICHLOROETHENE	790,000			1.5 U	1.5 U	1.5 U
ETHYLBENZENE	435,000	49	ca	1.6 U	1.6 U	1.6 U
METHYL TERT-BUTYL ETHER	180,000 A	470	ca	1.3 U	1.4 U	1.4 U
METHYLENE CHLORIDE	87,000	2,600	nc	6.7	19.1	11
NAPHTHALENE	50,000	3.6	ca	3.7 J	4.9 J	1.2 J
TETRACHLOROETHENE	678,000	180	nc	1.2 U	1.3 U	1.3 U
TOLUENE	754,000	22,000	nc	2.5	5.4	2.9
1,2,4-TRICHLOROBENZENE	40,000 N	8.8	nc	6.8 U	7 U	2.8 U
1,1,1-TRICHLOROETHANE	1,900,000	22,000	nc	2 U	2.1 U	2.1 U
1,1,2-TRICHLOROETHANE	45,000	0.88	nc	0.99 U	1 U	1 U
TRICHLOROETHENE	537,000	8.8	nc	0.99 U	1 U	1 U
1,2,3-TRIMETHYLBENZENE	123,000	22	nc	0.36 U	0.37 U	0.37 U
1,2,4-TRIMETHYLBENZENE	123,000	31	nc	1.8 U	1.9 U	1.9 U
1,3,5-TRIMETHYLBENZENE	123,000	22	nc ⁽¹⁾	1.8 U	1.9 U	1.9 U
VINYL CHLORIDE	21,560	28	ca	0.47 U	0.49 U	0.49 U
M+P-XYLENES	434000	440	nc	2.3 J	2.7 J	2.3 J
O-XYLENE	434000	440	nc	0.88 J	1.1 J	0.93 J
TOTAL XYLENES	434000	440	nc	3.18 J	3.8 J	3.23 J

Shaded cells indicate a concentration greater than the risk -based screening level

TOTAL XYLENES values are calculated.

Industrial Air Screening Levels from USEPA Regional Screening Levels for Chemical Contaminants at Superfund Sites May-2014

(1) Value is for 1,2,3-trimethylbenzene.

(2) Location AIR-113-C was resampled in April 2014 (IA-113-C-16R). The February 2014 trichloroethene exceedance criteria was not confirmed in this April 2014 resample.

- = not available

A = American Council of Governmental Industrial Hygienists Theshold Limit Value ca = screening value based on 1x 10⁻⁵ carcinogenic risk

J = estimated value

 $\mbox{N = National Institute for Occupational Safety and Health Recommended Exposure Limit} \label{eq:National Institute}$

ND - calculated value is nondetect.

nc = screening value based on noncarcinogenic hazard index = 1

OSHA PEL = Occupational Safety and Health Administration Pemissible Exposure Limit U = not detected

USEPA = United States Environmental Protection Agency

SUB-SLAB VAPOR SAMPLING RESULTS, BUILDING C, FEBRUARY 2014 LOCKHEED MARTIN MIDDLE RIVER COMPLEX, MIDDLE RIVER, MARYLAND

PAGE 1 OF 2

	Target Shallow Soil Gas		AIR-060-C	AIR-065-C	AIR-088-C	AIR-102-C		113-C	AIR-126-C	AIR-128-C
SAMPLE ID	Concentration	KEY	SV-060-C-16	SV-065-C-16	SV-088-C-16	SV-102-C-16	SV-113-C-16	SV-113-C-16-D DUP	SV-126-C-16	SV-128-C-16
SAMPLE DATE	(μg/m3) ⁽¹⁾		20140224	20140224	20140224	20140224	20140224	20140224	20140224	20140224
Volatile Organic Compounds (µg/m³)	(I''3' '')									
BENZENE	533	ca	0.85	0.55 U	1.2	7.5	2.4	0.55 U	88.4	3.6
CARBON TETRACHLORIDE	667	ca	1.1 U	1.1 U	1.1 U	3.1	1.1	1.1 U	1.1 U	1.1 U
CHLORODIFLUOROMETHANE	7,333,333	nc	5.8 J	7.9	3.2	3.3	10.7 J	3.5 J	0.34 U	6.1
CHLOROFORM	177	ca	3.1	2.7	1.7 U	71.9	1.7 U	1.8	0.84 J	1.7 U
DICHLORODIFLUOROMETHANE	14,667	nc	2.8	7.3	2.6	5.8	3.8 J	2.2 J	1.5 J	2.5
1,1-DICHLOROETHANE	2,567	ca	2.3	1.4 U	1.4 U	6760	1.4 U	1.4 U	1.4 U	1.4 U
1,2-DICHLOROETHANE	157	ca	0.69 U	0.69 U	0.69 U					
1,1-DICHLOROETHENE	29,333	nc	0.86 J	1.4 U	1.4 U	2530	1.4 U	1.4 U	199	1.4 U
CIS-1,2-DICHLOROETHENE			16.5	1.4 U	17.6	67.4	0.73 J	31.7 J	205	6.5
TRANS-1,2-DICHLOROETHENE			1.1 J	1.4 U	1.4 U	3.9 J+	1.4 U	1.4 U	1.4 U	1.4 U
ETHYLBENZENE	1,633	ca	96.5	1.5 U	2.2	2140	1.5 U	1.5 U	3	2
METHYL TERT-BUTYL ETHER	15,667	ca	1.2 U	1.2 U	1.2 U					
METHYLENE CHLORIDE	86,667	nc	10.7	16.9	82.5	46.3	557 J	12.5 J	9.2	9.6
NAPHTHALENE	120	ca	4.4	6.9	22.3	66	4.5 U	3.7 J	70.6	92.6
TETRACHLOROETHENE	6,000	nc	2.2	12.6	1.2 U	2.2	1.2 U	1.2 U	1.2 U	1.6
TOLUENE	733,333	nc	13.1	1.2 J	1.3 U	128	6.1 J	1.7 J	14.7	5.8
1,2,4-TRICHLOROBENZENE	293	nc	2.5 U	2.5 U	6.3 U	6.3 U	6.3 U	6.3 U	6.3 U	6.3 U
1,1,1-TRICHLOROETHANE	733,333	nc	1.9 U	1.9 U	1.9 U	2070	1.9 U	1.9 U	1.9 U	1.9 U
1,1,2-TRICHLOROETHANE	29	nc	0.92 U	0.92 U	0.92 U					
TRICHLOROETHENE	293	nc	291	0.92 U	70.6	2740	7 J	243 J	177	2.1
1,2,3-TRIMETHYLBENZENE	733	nc	0.91	0.95	1.1	90.4	0.34 U	0.34 U	1.4	1.2
1,2,4-TRIMETHYLBENZENE	1,033	nc	3.2	1.3 J	1.8	89.1	1.7 U	1.7 U	4.3	2.8
1,3,5-TRIMETHYLBENZENE	733	nc ⁽²⁾	2.2	1.7 U	1.7 U	39.7	1.7 U	1.7 U	1.1 J	1.7 U
VINYL CHLORIDE	933	ca	0.44 U	11900	0.44 U					
M+P-XYLENES	14,667	nc	561	1.1 J	10	11500	2.4 J	1.5 J	13.4	12.1
O-XYLENE	14,667	nc	230	1.5 U	4.7	4040	0.83 J	1.5 U	5.7	3.6
TOTAL XYLENES	14,667	nc	791	1.1	14.7	15540	3.23	1.5	19.1	15.7

SUB-SLAB VAPOR SAMPLING RESULTS, BUILDING C, FEBRUARY 2014

LOCKHEED MARTIN MIDDLE RIVER COMPLEX, MIDDLE RIVER, MARYLAND PAGE 2 OF 2

TABLE 3-13

	Target Shallow		AIR-130-C	AIR-	-133-C	AIR-135-C	AIR-141-C	AIR-142-C	AIR-143-C
SAMPLE ID	Soil Gas	KEY	SV-130-C-16	SV-133-C-16	SV-133-C-16-D	SV-135-C-16	SV-141-C-16	SV-142-C-16	SV-143-C-16
	Concentration	KET			DUP				
SAMPLE DATE	(µg/m3) ⁽¹⁾		20140224	20140224	20140224	20140224	20140224	20140224	20140224
Volatile Organic Compounds (µg/m³)									
BENZENE	533	ca	4.1	0.77	0.87	0.33 J	0.88	0.55 U	1.8
CARBON TETRACHLORIDE	667	ca	1.1 U	1.1 U	1.1 U	1.1 U	1.3 U	1.1 U	133
CHLORODIFLUOROMETHANE	7,333,333	nc	1.7 J	4.3	4.4	2.1	2.6	1.4	1.7 J
CHLOROFORM	177	ca	1.8	6.7	6.2	1.7 U	2 U	15	194
DICHLORODIFLUOROMETHANE	14,667	nc	3.1	3.2	3	2.1	2.3	2.2	2.6 J
1,1-DICHLOROETHANE	2,567	ca	1.3 J	1.4 U	1.4 U	1.4 U	1.7 U	1.4 U	1.8 J
1,2-DICHLOROETHANE	157	ca	0.69 U	0.92	0.82	0.69 U	0.83 U	0.69 U	1.7 U
1,1-DICHLOROETHENE	29,333	nc	2.9	1.4 U	1.4 U	1.4 U	1.7	1.4 U	2.1 J
CIS-1,2-DICHLOROETHENE			1.4 U	8.4	8.7	1.4 U	2.2	1.4 U	5.7
TRANS-1,2-DICHLOROETHENE			1.4 U	3.6 J+	3.5 J+	1.4 U	1.6 U	1.4 U	3.4 U
ETHYLBENZENE	1,633	ca	2.3	1.5 U	1.5 U	4.2	2.2	1.5 U	3.7 U
METHYL TERT-BUTYL ETHER	15,667	ca	1.2 U	1.2 U	1.2 U	1.2 U	1.5 U	1.2 U	3.1 U
METHYLENE CHLORIDE	86,667	nc	28.2	20.2 J	13 J	2.1 J	39.1	7.5	30.1
NAPHTHALENE	120	ca	1.8 U	4.7	4.2 J	3.8 J	4.1 J	157	19.3
TETRACHLOROETHENE	6,000	nc	3.3	169	159	1.2 U	1.4 U	1.2 U	15
TOLUENE	733,333	nc	12.2	3.6 J	5.5 J	1.3 U	3.7	1.3 U	13.6
1,2,4-TRICHLOROBENZENE	293	nc	2.5 U	6.3 U	6.3 U	6.3 U	7.6 U	6.3 U	6.4 U
1,1,1-TRICHLOROETHANE	733,333	nc	21.3	1.9 U	1.9 U	1.9 U	2.2 U	1.9 U	4.7 U
1,1,2-TRICHLOROETHANE	29	nc	0.92 U	0.92 U	0.92 U	0.92 U	1.1 U	0.92 U	2.3 U
TRICHLOROETHENE	293	nc	3.4	10700	8630	5.6	25.2	6.8	33.1
1,2,3-TRIMETHYLBENZENE	733	nc	3.4	0.34 U	0.34 U	0.34 U	0.4 U	0.71	0.84 U
1,2,4-TRIMETHYLBENZENE	1,033	nc	9.9	1.7 U	1.7 U	1.7 U	2 U	1.4 J	4.2 U
1,3,5-TRIMETHYLBENZENE	733	nc ⁽²⁾	4.4	1.7 U	1.7 U	1.7 U	2 U	1.7 U	4.2 U
VINYL CHLORIDE	933	ca	0.44 U	0.44 U	0.44 U	0.44 U	0.53 U	0.44 U	1.1 U
M+P-XYLENES	14,667	nc	9.2	1.8 J	2 J	18.1	11.6	5.1	3.3 J
O-XYLENE	14,667	nc	7.5	0.81 J	0.95 J	4.3	3.7	3.1	3.7 U
TOTAL XYLENES	14,667	nc	16.7	2.61	2.95	22.4	15.3	8.2	3.3

Notes: All sample concentrations are in micrograms per cubic meter ($\mu g/m^3$) TOTAL XYLENES values are calculated.

Shaded cells indicate a concentration greater than risk-based screening level

(1) Screening values derived in accordance with Draft Guidance for Evaluating the Vapor Intrusion to Indoor Air Pathway from Groundwater and Soils (November 2002). Screening values are equal to United States Environmental Protection Agency (USEPA) Industrial Air Screening Values divided by an attenuation factor of 0.03, and correspond to a target cancer risk level of 1.0E-05. (2) Value is for 1,2,3-trimethylbenzene.

-- = not available

ca = screening value based on carcinogenic effects

J = estimated value

µg/m3 = micrograms per cubic meter

nc = screening value based on noncarcinogenic effects

U = nondetect

CO-LOCATED SUB-SLAB VAPOR AND INDOOR AIR QUALITY SAMPLING RESULTS, BUILDING C, FEBRUARY 2014 LOCKHEED MARTIN MIDDLE RIVER COMPLEX, MIDDLE RIVER, MARYLAND PAGE 1 OF 7

	Co-Located SV	Result		Co I costed IAO	Result		
Analyte*	Sample ID	(µg/m³)	Duplicate	Co-Located IAQ Sample ID	(µg/m³)	Duplicate	Additional
Benzene	-	0.85		-	0.81		
Carbon tetrachloride		1.1 U			1.1 U		
Chlorodifluoromethane	SV-060-C-16	5.8 J		IAQ-060-C-16	9.4		
Chloroform		3.1			1.7 U		
Dichlorodifluoromethane		2.8			2.4		
1,1-Dichloroethane		2.3			1.4 U		
1,2-Dichloroethane		0.69 U			0.71 U		
1,1-Dichloroethene		0.86 J			1.4 U		
cis-1,2-Dichloroethene		17			1 U		
trans -1,2-Dichloroethene		1.1 J			1.4 U		
Ethylbenezene		96.5			1.5 U		
Methyl tert-butyl ether		1.2 U			1.3 U		
Methylene chloride		10.7			8.1		
Naphthalene		4.4			3.6 J		
Tetrachloroethene		2.2			1.2 U		
Toluene		13.1			3.8		
1,2,4-Trichlorobenzene		2.5 U			6.6 U		
1,1,1-Trichloroethane		1.9 U			1.9 U		
1,1,2-Trichloroethane		0.92 U			0.96 U		
Trichloroethene		291			0.96 U		
1,2,3-Trimethylbenzene		0.91			0.35 U		
1,2,4-Trimethylbenzene		3.2			1.7 U		
1,3,5-Trimethylbenzene		2.2			1.7 U		
Vinyl chloride		0.44 U			0.45 U		
Xylenes, meta- + para-		561			2.5 J		
Xylene, ortho-		230			0.98 J		
Xylenes, total		791			3.48 J		
, ,		I	I				
Benzene		0.55 U			0.64		
Carbon tetrachloride		1.1 U			1.1 U		
Chlorodifluoromethane	SV-065-C-16	7.9		IAQ-065-C-16	23.9		
Chloroform	0 000 0 10	2.7		IAQ 000 0 10	1.7 U		
Dichlorodifluoromethane		7.3			2.3		
1,1-Dichloroethane		1.4 U			1.4 U		
1,2-Dichloroethane		0.69 U			0.69 U		
1,1-Dichloroethene		1.4 U			1.4 U		
cis-1,2-Dichloroethene		1 U			1 U		
trans -1,2-Dichloroethene		1.4 U			1.4 U		
Ethylbenezene		1.5 U			1.5 U		
Methyl tert-butyl ether		1.2 U			1.2 U		
Methylene chloride		16.9			5.8 J		
Naphthalene		6.9			5.1		
Tetrachloroethene		12.6			1.2 U		
Toluene		1.2 J			2.1		
1,2,4-Trichlorobenzene		2.5 U			6.3 U		
1,1,1-Trichloroethane		1.9 U			1.9 U		
1,1,2-Trichloroethane		0.92 U			0.92 U		
Trichloroethene		0.92 U			0.92 U		
1,2,3-Trimethylbenzene		0.95			0.34 U		
1,2,4-Trimethylbenzene		1.3 J			1.7 U		
1,3,5-Trimethylbenzene		1.7 U			1.7 U		
Vinyl chloride		0.44 U			0.44 U		
Xylenes, meta- + para-		1.1 J			3 U		
Xylene, ortho-		1.5 U			1.5 U		
Xylenes, total		1.1			0		
,	L	<u> </u>	l	l			

TABLE 3-14

CO-LOCATED SUB-SLAB VAPOR AND INDOOR AIR QUALITY SAMPLING RESULTS, BUILDING C, FEBRUARY 2014
LOCKHEED MARTIN MIDDLE RIVER COMPLEX, MIDDLE RIVER, MARYLAND
PAGE 2 OF 7

	Co-Located SV	Result	D	Co-Located IAQ	Result	D "	A 4 ****
Analyte*	Sample ID	(μg/m³)	Duplicate	Sample ID	(µg/m³)	Duplicate	Additional
Benzene		1.2			11.8 U		
Carbon tetrachloride		1.1 U			23.3 U		
Chlorodifluoromethane	SV-088-C-16	3.2		IAQ-088-C-16	7.3 U		
Chloroform		1.7 U			36 U		
Dichlorodifluoromethane		2.6			36.7 U		
1,1-Dichloroethane		1.4 U			29.8 U		
1,2-Dichloroethane		0.69 U			14.9 U		
1,1-Dichloroethene		1.4 U			29.5 U		
cis-1,2-Dichloroethene		18			30 U		
trans -1,2-Dichloroethene		1.4 U			29.5 U		
Ethylbenezene		2.2			32 UJ		
Methyl tert-butyl ether		1.2 U			26.5 U		
Methylene chloride		82.5			33.6 J		
Naphthalene		22.3			96.7 UJ		
Tetrachloroethene		1.2 U			25.1 U		
Toluene		1.3 U			28 U		
1,2,4-Trichlorobenzene		6.3 U			137 UJ		
1,1,1-Trichloroethane		1.9 U			40.4 U		
1,1,2-Trichloroethane		0.92 U			20 U		
Trichloroethene		70.6			20 U		
1,2,3-Trimethylbenzene	-	1.1			7.3 UJ		
1,2,4-Trimethylbenzene	-	1.8			36.3 UJ		
1,3,5-Trimethylbenzene		1.7 U			36.3 UJ		
Vinyl chloride		0.44 U			9.5 U		
Xylenes, meta- + para-	-	10			64 UJ		
Xylene, ortho-		4.7 14.7			32 UJ 0		
Xylenes, total		17.7			ŭ		
Benzene		7.5			0.61 J		
Carbon tetrachloride	1	3.1			1.2 U		
Chlorodifluoromethane	SV-102-C-16	3.3		IAQ-102-C-16	1.8 J		
Chloroform	1	71.9			1.9 U		
Dichlorodifluoromethane	1	5.8			2.6		
1,1-Dichloroethane	1	6760			1.6 U		
1,2-Dichloroethane		0.69 U			0.8 U		
1,1-Dichloroethene		2530			1.6 U		
cis-1,2-Dichloroethene		67			2 U		
trans -1,2-Dichloroethene		3.9 J+			1.6 U		
Ethylbenezene	1	2140			1.7 U		
Methyl tert-butyl ether	1	1.2 U			1.4 U		
Methylene chloride	1	46.3			8.6		
Naphthalene	1	66			1.1 J		
Tetrachloroethene	1	2.2			1.3 U		
Toluene	7	i l			3.2		
		128					
1,2,4-Trichlorobenzene		128 6.3 U			2.9 U		
1,2,4-Trichlorobenzene		6.3 U			2.9 U		
1,2,4-Trichlorobenzene 1,1,1-Trichloroethane		6.3 U 2070			2.9 U 2.2 U		
1,2,4-Trichlorobenzene 1,1,1-Trichloroethane 1,1,2-Trichloroethane		6.3 U 2070 0.92 U			2.9 U 2.2 U 1.1 U		
1,2,4-Trichlorobenzene 1,1,1-Trichloroethane 1,1,2-Trichloroethane Trichloroethene		6.3 U 2070 0.92 U 2740			2.9 U 2.2 U 1.1 U 1.1 U		
1,2,4-Trichlorobenzene 1,1,1-Trichloroethane 1,1,2-Trichloroethane Trichloroethene 1,2,3-Trimethylbenzene		6.3 U 2070 0.92 U 2740 90.4			2.9 U 2.2 U 1.1 U 1.1 U 0.39 U		
1,2,4-Trichlorobenzene 1,1,1-Trichloroethane 1,1,2-Trichloroethane Trichloroethane 1,2,3-Trimethylbenzene 1,2,4-Trimethylbenzene		6.3 U 2070 0.92 U 2740 90.4 89.1			2.9 U 2.2 U 1.1 U 1.1 U 0.39 U 1.9 U		
1,2,4-Trichlorobenzene 1,1,1-Trichloroethane 1,1,2-Trichloroethane Trichloroethane 1,2,3-Trimethylbenzene 1,2,4-Trimethylbenzene 1,3,5-Trimethylbenzene		6.3 U 2070 0.92 U 2740 90.4 89.1 39.7			2.9 U 2.2 U 1.1 U 1.1 U 0.39 U 1.9 U		
1,2,4-Trichlorobenzene 1,1,1-Trichloroethane 1,1,2-Trichloroethane Trichloroethane 1,2,3-Trimethylbenzene 1,2,4-Trimethylbenzene 1,3,5-Trimethylbenzene Vinyl chloride		6.3 U 2070 0.92 U 2740 90.4 89.1 39.7 0.44 U			2.9 U 2.2 U 1.1 U 1.1 U 0.39 U 1.9 U 0.5 U		

CO-LOCATED SUB-SLAB VAPOR AND INDOOR AIR QUALITY SAMPLING RESULTS, BUILDING C, FEBRUARY 2014 LOCKHEED MARTIN MIDDLE RIVER COMPLEX, MIDDLE RIVER, MARYLAND PAGE 3 OF 7

Analyte*	Co-Located SV Sample ID	Result (µg/m³)	Duplicate	Co-Located IAQ Sample ID	Result (µg/m³)	Duplicate	Additional
Benzene		2.4	0.55 U		1.9	0.89	
Carbon tetrachloride		1.1	1.1 U		3.4 U	1.1 U	
Chlorodifluoromethane	SV-113-C-16	10.7 J	3.5 J	IAQ-113-C-16	6.5 J	3.1 J	
Chloroform		1.7 U	1.8		5.3 U	1.7 U	
Dichlorodifluoromethane		3.8 J	2.2 J		4.7 J	2.1	
1,1-Dichloroethane		1.4 U	1.4 U		43.7	1.4 U	
1,2-Dichloroethane		0.69 U	0.69 U		2.2 U	0.69 U	
1,1-Dichloroethene		1.4 U	1.4 U		17.1	1.4 U	
cis-1,2-Dichloroethene		1 J	31.7 J		4 U	1.4 U	
trans -1,2-Dichloroethene		1.4 U	1.4 U		4.3 U	1.4 U	
Ethylbenezene		1.5 U	1.5 U		4.7 U	1.5 U	
Methyl tert-butyl ether		1.2 U	1.2 U		3.9 U	1.2 U	
Methylene chloride		557 J	12.5 J		79.7 J	5.1 J	
Naphthalene		4.5 U	3.7 J		14.1 U	3.2 J	
Tetrachloroethene		1.2 U	1.2 U		3.7 U	1.2 U	
Toluene		6.1 J	1.7 J		24.7	1.3 U	
1,2,4-Trichlorobenzene		6.3 U	6.3 U		20 UJ	6.3 U	
1,1,1-Trichloroethane		1.9 U	1.9 U		13.2	1.9 U	
1,1,2-Trichloroethane		0.92 U	0.92 U		2.9 U	0.92 U	
Trichloroethene		7 J	243 J		20	0.92 U	
1,2,3-Trimethylbenzene		0.34 U	0.34 U		1.1 U	0.34 U	
1,2,4-Trimethylbenzene		1.7 U	1.7 U		3.2 J	0.94 J	
1,3,5-Trimethylbenzene		1.7 U	1.7 U		5.3 U	1.7 U	
Vinyl chloride		0.44 U	0.44 U		1.4 U	0.44 U	
Xylenes, meta- + para-		2.4 J	1.5 J		76.6 J	3.4 J	
Xylene, ortho-		0.83 J	1.5 U		26.6 J	1.2 J	
Xylenes, total		3.23	1.5		103 J	4.6 J	
Benzene		88.4			0.79		
Carbon tetrachloride		1.1 U			1.1 U		
Chlorodifluoromethane	SV-126-C-16	0.34 U		IAQ-126-C-16	2		
Chloroform		0.84 J			1.7 U		
Dichlorodifluoromethane		1.5 J			2.3		
1,1-Dichloroethane		1.4 U			1.4 U		
1,2-Dichloroethane		0.69 U			0.71 U		
1,1-Dichloroethene		199			1.4 U		
cis-1,2-Dichloroethene		205			1 U		
trans -1,2-Dichloroethene		1.4 U			1.4 U		
Ethylbenezene		3			1.5 U		
Methyl tert-butyl ether		1.2 U			1.3 U		
Methylene chloride		9.2			14.6		
Naphthalene		70.6			3.4 J		
Tetrachloroethene		1.2 U			1.2 U		
Toluene		14.7			6		
1,2,4-Trichlorobenzene		6.3 U			6.6 U		
1,1,1-Trichloroethane		1.9 U			1.9 U		
1,1,2-Trichloroethane		0.92 U			0.96 U		
Trichloroethene		177			0.96 U		
1,2,3-Trimethylbenzene		1.4			0.35 U		
1,2,4-Trimethylbenzene		4.3			1.7 U		
1,3,5-Trimethylbenzene		1.1 J			1.7 U		
,							ı
Vinyl chloride		11900			0.45 U		
		11900 13.4			0.45 U 3.1 U		
Vinyl chloride							

TABLE 3-14

CO-LOCATED SUB-SLAB VAPOR AND INDOOR AIR QUALITY SAMPLING RESULTS, BUILDING C, FEBRUARY 2014
LOCKHEED MARTIN MIDDLE RIVER COMPLEX, MIDDLE RIVER, MARYLAND
PAGE 4 OF 7

		D !!			Decel		
Analyte*	Co-Located SV Sample ID	Result (µg/m³)	Duplicate	Co-Located IAQ Sample ID	Result (µg/m³)	Duplicate	Additional
Benzene		3.6			0.84		
Carbon tetrachloride		1.1 U			1.2 U		
Chlorodifluoromethane	SV-128-C-16	6.1		IAQ-128-C-16	23.2		
Chloroform	1	1.7 U			1.9 U		
Dichlorodifluoromethane	1	2.5			2.4		
1,1-Dichloroethane		1.4 U			1.5 U		
1,2-Dichloroethane		0.69 U			0.77 U		
1,1-Dichloroethene		1.4 U			1.5 U		
cis-1,2-Dichloroethene		7			2 U		
trans -1,2-Dichloroethene		1.4 U			1.5 U		
Ethylbenezene		2			1.6 U		
Methyl tert-butyl ether		1.2 U			1.4 U		
Methylene chloride		9.6			14.5		
Naphthalene		92.6			3.9 J		
Tetrachloroethene		1.6			1.3 U		
Toluene		5.8			4.3		
1,2,4-Trichlorobenzene		6.3 U			7 U		
1,1,1-Trichloroethane	1	1.9 U			2.1 U		
1,1,2-Trichloroethane		0.92 U			1 U		
Trichloroethene		2.1			1 U		
1,2,3-Trimethylbenzene	1	1.2			0.37 U		
1,2,4-Trimethylbenzene	1	2.8			1.9 U		
1,3,5-Trimethylbenzene	1	1.7 U			1.9 U		
Vinyl chloride	1	0.44 U			0.49 U		
Xylenes, meta- + para-		12.1			2.6 J		
Xylene, ortho-		3.6			1.1 J		
Xylenes, total		15.7			3.7 J		
.,	ı						
Benzene		4.1			1.3		
Carbon tetrachloride		1.1 U			1.1 U		
Chlorodifluoromethane	SV-130-C-16	1.7 J		IAQ-130-C-16	4		
Chloroform		1.8			1.7 U		
Dichlorodifluoromethane		3.1			2.4		
1,1-Dichloroethane		1.3 J			1.4 U		
1,2-Dichloroethane		0.69 U			0.69 U		
1,1-Dichloroethene		2.9			1.4 U		
cis-1,2-Dichloroethene		1 U			1 U		
trans -1,2-Dichloroethene		1.4 U			1.4 U		
Ethylbenezene	1	2.3			1.5 U		
Methyl tert-butyl ether		1.2 U			1.2 U		
Methylene chloride		28.2			14.1		
Naphthalene		1.8 U			3.6 J		
Tetrachloroethene		3.3			1.2 U		
Toluene		12.2			3.5		
1,2,4-Trichlorobenzene		2.5 U			6.3 U		
1,1,1-Trichloroethane		21.3			1.9 U		
1,1,2-Trichloroethane		0.92 U			0.92 U		
Trichloroethene	1	3.4			0.92 U		
1,2,3-Trimethylbenzene	1	3.4			0.34 U		
1,2,4-Trimethylbenzene	1	9.9			1.7 U		
1,3,5-Trimethylbenzene	1	4.4			1.7 U		
Vinyl chloride	1	0.44 U			0.44 U		
Xylenes, meta- + para-	1	9.2			1.6 J		
Xylene, ortho-	†	7.5			1.5 U		
	1	7.5 16.7			1.5 U		
Xylenes, total	<u> </u>		l		•		

CO-LOCATED SUB-SLAB VAPOR AND INDOOR AIR QUALITY SAMPLING RESULTS, BUILDING C, FEBRUARY 2014 LOCKHEED MARTIN MIDDLE RIVER COMPLEX, MIDDLE RIVER, MARYLAND PAGE 5 OF 7

Analyte*	Co-Located SV Sample ID	Result (µg/m³)	Duplicate	Co-Located IAQ Sample ID	Result (µg/m³)	Duplicate	Additional
Benzene		0.77	0.87		0.93	0.83	0.52 U
Carbon tetrachloride		1.1 U	1.1 U		1.1 U	1.1 U	1 U
Chlorodifluoromethane	SV-133-C-16	4.3	4.4	IAQ-133-C-16	4.4	3.9	4
Chloroform	and its duplicate	6.7	6.2	and its duplicate;	1.7 U	1.7 U	1.6 U
Dichlorodifluoromethane		3.2	3	IA-113-C-16R ⁽¹⁾	2.4	2.3	2.5
1,1-Dichloroethane	1	1.4 U	1 U		1.4 U	1.4 U	1.3 U
1,2-Dichloroethane	1	0.92	0.82		0.69 U	0.69 U	0.66 U
1,1-Dichloroethene		1.4 U	1 U		1.4 U	1.4 U	1.3 U
cis-1,2-Dichloroethene		8	8.7		1 U	1.4 U	1.3 U
trans -1,2-Dichloroethene		3.6 <mark>J+</mark>	3.5 <mark>J+</mark>		1.4 U	1.4 U	1.3 U
Ethylbenezene		1.5 U	1.5 U		1.5 U	1.5 U	1.2 J
Methyl tert-butyl ether		1.2 U	1.2 U		1.2 U	1.2 U	1.2 U
Methylene chloride		20.2 J	13 J		8.4 J	1.9 J	3.1 J
Naphthalene		4.7	4.2 J		3.7 J	3.5 J	2.1 J
Tetrachloroethene		169	159		1.2 U	1.2 U	1.6
Toluene		3.6 J	5.5 J		2.9	2.4	5.1
1,2,4-Trichlorobenzene		6.3 U	6.3 U		6.3 U	6.3 U	6.1 U
1,1,1-Trichloroethane		1.9 U	1.9 U		1.9 U	1.9 U	1.8 U
1,1,2-Trichloroethane]	0.92 U	0.92 U		0.92 U	0.92 U	0.89 U
Trichloroethene		10700	8630		1.2	1.4	0.89 U
1,2,3-Trimethylbenzene		0.34 U	0.34 U		0.34 U	0.34 U	1.6 U
1,2,4-Trimethylbenzene		1.7 U	1.7 U		1.7 U	1.7 U	1.6 U
1,3,5-Trimethylbenzene		1.7 U	1.7 U		1.7 U	1.7 U	4 U
Vinyl chloride		0.44 U	0.44 U		0.44 U	0.44 U	0.42 U
Xylenes, meta- + para-		1.8 J	2 J		2.1 J	1.9 J	2 J
Xylene, ortho-		0.81 J	0.95 J		0.84 J	1.5 U	0.9 J
Xylenes, total		2.61	2.95		2.94 J	1.9 J	2.9
Benzene		0.33 J			0.8		
Carbon tetrachloride		1.1 U			1.2 U		
Chlorodifluoromethane	SV-135-C-16	2.1		IAQ-135-C-16	2.1		
Chloroform		1.7 U			1.8 U		
Dichlorodifluoromethane		2.1			2.3		
1,1-Dichloroethane		1.4 U			1.5 U		
1,2-Dichloroethane		0.69 U			0.74 U		
1,1-Dichloroethene	1	1.4 U			1.5 U		
cis-1,2-Dichloroethene	1	1 U			2 U		
trans -1,2-Dichloroethene	1	1.4 U			1.5 U		
Ethylbenezene		4.2			1.6 U		
Methyl tert-butyl ether		1.2 U			1.3 U		
Methylene chloride		2.1 J			13.2		
Naphthalene]	3.8 J			4.8 U		
Tetrachloroethene	3				1.2 U		
		1.2 U					
Toluene		1.2 U 1.3 U			1.4 U		
Toluene 1,2,4-Trichlorobenzene					1.4 U 6.8 U		
		1.3 U					
1,2,4-Trichlorobenzene		1.3 U 6.3 U			6.8 U		
1,2,4-Trichlorobenzene 1,1,1-Trichloroethane		1.3 U 6.3 U 1.9 U			6.8 U 2 U		
1,2,4-Trichlorobenzene 1,1,1-Trichloroethane 1,1,2-Trichloroethane		1.3 U 6.3 U 1.9 U 0.92 U			6.8 U 2 U 0.99 U		
1,2,4-Trichlorobenzene 1,1,1-Trichloroethane 1,1,2-Trichloroethane Trichloroethene		1.3 U 6.3 U 1.9 U 0.92 U 5.6			6.8 U 2 U 0.99 U 0.99 U		
1,2,4-Trichlorobenzene 1,1,1-Trichloroethane 1,1,2-Trichloroethane Trichloroethene 1,2,3-Trimethylbenzene		1.3 U 6.3 U 1.9 U 0.92 U 5.6 0.34 U			6.8 U 2 U 0.99 U 0.99 U 0.36 U		
1,2,4-Trichlorobenzene 1,1,1-Trichloroethane 1,1,2-Trichloroethane Trichloroethane 1,2,3-Trimethylbenzene 1,2,4-Trimethylbenzene		1.3 U 6.3 U 1.9 U 0.92 U 5.6 0.34 U 1.7 U			6.8 U 2 U 0.99 U 0.99 U 0.36 U 1.8 U		
1,2,4-Trichlorobenzene 1,1,1-Trichloroethane 1,1,2-Trichloroethane Trichloroethane 1,2,3-Trimethylbenzene 1,2,4-Trimethylbenzene 1,3,5-Trimethylbenzene		1.3 U 6.3 U 1.9 U 0.92 U 5.6 0.34 U 1.7 U			6.8 U 2 U 0.99 U 0.99 U 0.36 U 1.8 U		
1,2,4-Trichlorobenzene 1,1,1-Trichloroethane 1,1,2-Trichloroethane Trichloroethene 1,2,3-Trimethylbenzene 1,2,4-Trimethylbenzene 1,3,5-Trimethylbenzene Vinyl chloride		1.3 U 6.3 U 1.9 U 0.92 U 5.6 0.34 U 1.7 U 0.44 U			6.8 U 2 U 0.99 U 0.99 U 0.36 U 1.8 U 0.47 U		

TABLE 3-14

CO-LOCATED SUB-SLAB VAPOR AND INDOOR AIR QUALITY SAMPLING RESULTS, BUILDING C, FEBRUARY 2014
LOCKHEED MARTIN MIDDLE RIVER COMPLEX, MIDDLE RIVER, MARYLAND
PAGE 6 OF 7

	0.1	Result		0.1	Booult		
Analyte*	Co-Located SV Sample ID	(µg/m³)	Duplicate	Co-Located IAQ Sample ID	Result (μg/m³)	Duplicate	Additional
Benzene		0.88			0.92		
Carbon tetrachloride		1.3 U			1.1 U		
Chlorodifluoromethane	SV-141-C-16	2.6		IAQ-141-C-16	7.1		
Chloroform		2 U			1.7 U		
Dichlorodifluoromethane		2.3			3		
1,1-Dichloroethane		1.7 U			1.4 U		
1,2-Dichloroethane		0.83 U			0.71 U		
1,1-Dichloroethene		1.7			1.4 U		
cis-1,2-Dichloroethene		2			1 U		
trans -1,2-Dichloroethene		1.6 U			1.4 U		
Ethylbenezene		2.2			1.5 U		
Methyl tert-butyl ether		1.5 U			1.3 U		
Methylene chloride		39.1			7.8		
Naphthalene		4.1 J			4.6 U		
Tetrachloroethene		1.4 U			1.2 U		
Toluene		3.7			2.1		
1,2,4-Trichlorobenzene		7.6 U			6.6 U		
1,1,1-Trichloroethane		2.2 U			1.9 U		
1,1,2-Trichloroethane		1.1 U			0.96 U		
Trichloroethene		25.2			0.96 U		
1,2,3-Trimethylbenzene		0.4 U			0.35 U		
1,2,4-Trimethylbenzene		2 U			1.7 U		
1,3,5-Trimethylbenzene		2 U			1.7 U		
Vinyl chloride		0.53 U			0.45 U		
Xylenes, meta- + para-		11.6			1.6 J		
Xylene, ortho-		3.7			1.5 U		
Xylenes, total		15.3			1.6 J		
Benzene		0.55 U			0.67		
Carbon tetrachloride		1.1 U			1.2 U		
Chlorodifluoromethane	SV-142-C-16	1.4		IAQ-142-C-16	1.9		
Chloroform		15			1.9 U		
Dichlorodifluoromethane		2.2			2		
1,1-Dichloroethane		1.4 U			1.5 U		
1,2-Dichloroethane		0.69 U			0.77 U		
1,1-Dichloroethene		1.4 U			1.5 U		
cis-1,2-Dichloroethene		1 U			2 U		
trans -1,2-Dichloroethene		1.4 U			1.5 U		
Ethylbenezene		1.5 U			1.6 U		
Methyl tert-butyl ether	_	1.2 U			1.4 U		
Methylene chloride		7.5			3.8 J		
Naphthalene	_[157			3.4 J		
Tetrachloroethene		1.2 U			1.3 U		
Toluene		1.3 U			1.4 U		
1,2,4-Trichlorobenzene	_	6.3 U			7 U		
1,1,1-Trichloroethane	_	1.9 U			2.1 U		
1,1,2-Trichloroethane		0.92 U			1 U		
Trichloroethene		6.8			1 U		
1,2,3-Trimethylbenzene		0.71			0.37 U		
1,2,4-Trimethylbenzene	_	1.4 J			1.9 U		
1,3,5-Trimethylbenzene	_	1.7 U			1.9 U		
Vinyl chloride	_	0.44 U			0.49 U		
Xylenes, meta- + para-	_	5.1			1.7 J		
Xylene, ortho-		3.1			1.6 U		
		8.2			1.7 J		

CO-LOCATED SUB-SLAB VAPOR AND INDOOR AIR QUALITY SAMPLING RESULTS, BUILDING C, FEBRUARY 2014 LOCKHEED MARTIN MIDDLE RIVER COMPLEX, MIDDLE RIVER, MARYLAND PAGE 7 OF 7

Analyte*	Co-Located SV Sample ID	Result (µg/m³)	Duplicate	Co-Located IAQ Sample ID	Result (µg/m³)	Duplicate	Additional
Benzene		1.8			0.81		
Carbon tetrachloride		133			1.2 U		
Chlorodifluoromethane	SV-143-C-16	1.7 J		IAQ-143-C-16	2.5		
Chloroform		194			1.8 U		
Dichlorodifluoromethane		2.6 J			2.4		
1,1-Dichloroethane		1.8 J			1.5 U		
1,2-Dichloroethane		1.7 U			0.74 U		
1,1-Dichloroethene		2.1 J			1.5 U		
cis-1,2-Dichloroethene		6			2 U		
trans -1,2-Dichloroethene		3.4 U			1.5 U		
Ethylbenezene		3.7 U			1.6 U		
Methyl tert-butyl ether		3.1 U			1.3 U		
Methylene chloride		30.1			6.1 J		
Naphthalene		19.3			4.4 J		
Tetrachloroethene		15			1.2 U		
Toluene		13.6			1.4 U		
1,2,4-Trichlorobenzene		6.4 U			6.8 U		
1,1,1-Trichloroethane		4.7 U			2 U		
1,1,2-Trichloroethane		2.3 U			0.99 U		
Trichloroethene		33.1			0.99 U		
1,2,3-Trimethylbenzene		0.84 U			0.36 U		
1,2,4-Trimethylbenzene		4.2 U			1.2 J		
1,3,5-Trimethylbenzene		4.2 U			1.8 U		
Vinyl chloride		1.1 U			0.47 U		
Xylenes, meta- + para-		3.3 J			3.2 U		
Xylene, ortho-		3.7 U			1.6 U		
Xylenes, total		3.3			0		

Notes: All concentrations are in micrograms per cubic meter air $[\mu g/m^3]$

Shaded cells indicate a concentration greater than the risk-based screening level.

*Bold font indicates co-located (IAQ and SV) detections within that sample.

(1) Location AIR-113-C was resampled in April 2014 (IA-113-C-16R). The February 2014 trichloroethene concentration greater than screening criteria was not confirmed in this April 2014 resample.

IAQ = indoor air quality SV = sub-slab vapor

J = estimated value U = analyzed for but not detected

TABLE 3-15

INDOOR AIR QUAITY SAMPLING RESULTS, VERTICAL-LAUNCH SYSTEM (VLS) BUILDING, FEBRUARY 2014

LOCKHEED MARTIN MIDDLE RIVER COMPLEX, MIDDLE RIVER, MARYLAND

LOCATION		Industrial		AIR-146-VLS	AIR-14	47-VLS	AIR-148-VLS	AIR-149-VLS	AIR-150-VLS	AIR-151-VLS	AIR-152-VLS
SAMPLE ID	OSHA PEL	Air	KEY	IA-146-VLS-2	IA-147-VLS-2	IA-147-VLS-2-	IA-148-VLS-2	IA-149-VLS-2	IA-150-VLS-2	IA-151-VLS-2	IA-152-VLS-2
	(µg/m3)	Screening	KET			DUP					
SAMPLE DATE		Level		20140226	20140226	20140226	20140226	20140226	20140226	20140226	20140226
Volatile Organic Compounds (µg/m³)											
BENZENE	319	16	ca	0.66	2.5 J	0.92 J	0.98	0.66	0.67	0.75	0.83
CARBON TETRACHLORIDE	62,900	20	ca	1.2 U	1.1 U	1.1 U	1.2 U	1.2 U	1.2 U	1.1 U	1.2 U
CHLORODIFLUOROMETHANE	3,590,000	220,000	nc	2.3	5	4.6	3.2	2	2.1	2.7	3.8
CHLOROFORM	240,000	5.3	ca	1.9 U	1.7 U	1.7 U	1.8 U	1.8 U	1.8 U	1.7 U	1.8 U
DICHLORODIFLUOROMETHANE	4,950,000	440	nc	1.9	1.7 U	2.6	2.7	1.8	1.9	2.4	2.6
1,1-DICHLOROETHANE	400,000	77	ca	1.5 U	1.4 U	1.4 U	1.5 U	1.5 U	1.5 U	1.4 U	1.5 U
1,2-DICHLOROETHANE	400,000	4.7	ca	0.77 U	0.69 U	0.69 U	0.74 U	0.74 U	0.74 U	0.69 U	0.74 U
1,1-DICHLOROETHENE		880	nc	1.5 U	1.4 U	1.4 U	1.5 U	1.5 U	1.5 U	1.4 U	1.5 U
CIS-1,2-DICHLOROETHENE	790,000			1.5 U	1.4 U	1.4 U	1.5 U	1.5 U	1.5 U	1.4 U	1.5 U
TRANS-1,2-DICHLOROETHENE	790,000			1.5 U	1.4 U	1.4 U	1.5 U	1.5 U	1.5 U	1.4 U	1.5 U
ETHYLBENZENE	435,000	49	ca	9.8	12.1	14.7	17.9	10.5	12.8	1.5 U	1.6 U
METHYL TERT-BUTYL ETHER	180,000 ^A	470	ca	1.4 U	1.2 U	1.2 U	1.3 U	1.3 U	1.3 U	1.2 U	1.3 U
METHYLENE CHLORIDE	87,000	2,600	nc	6.8	483 J	11.7 J	21.9	11.7	11.8	7.3	19.3
NAPHTHALENE	50,000	3.6	ca	1.4 J	71 J	1.8 UJ	1.9 UJ	1.3 J	1.3 J	1.8 UJ	1.9 UJ
TETRACHLOROETHENE	678,000	180	nc	1.3 U	1.2 U	1.2 U	1.2 U	1.2 U	1.2 U	1.2 U	1.2 U
TOLUENE	754,000	22,000	nc	10	120 J	18.9 J	17.4	9.5	11.2	5	4.4
1,2,4-TRICHLOROBENZENE	40,000 N	8.8	nc	2.8 U	2.5 UJ	2.5 UJ	2.7 UJ	2.7 U	2.7 U	2.5 UJ	2.7 UJ
1,1,1-TRICHLOROETHANE	1,900,000	22,000	nc	2.1 U	1.9 U	1.9 U	2 U	2 U	2 U	1.9 U	2 U
1,1,2-TRICHLOROETHANE	45,000	0.88	nc	1 U	0.92 U	0.92 U	0.99 U	0.99 U	0.99 U	0.92 U	0.99 U
TRICHLOROETHENE	537,000	8.8	nc	1 U	0.92 U	0.92 U	0.99 U	0.99 U	0.99 U	0.92 U	0.99 U
1,2,3-TRIMETHYLBENZENE	123,000	22	nc	1.4	1.3 J	1.6 J	1.8 U	1.4	1.4	1.7 U	1.8 U
1,2,4-TRIMETHYLBENZENE	123,000	31	nc	2.6	4.1	4.9	2.9	2.5	2.7	1.7 U	1.8 U
1,3,5-TRIMETHYLBENZENE	123,000	22	nc ⁽²⁾	1.9 J	1.8	1.7 U	1.8 U	1.9	1.9	1.7 U	1.8 U
VINYL CHLORIDE	21,560	28	ca	0.49 U	0.44 U	0.44 U	0.47 U	0.47 U	0.47 U	0.44 U	0.47 U
M+P-XYLENES	434000	440	nc	26.1	31.9	38.5	47.9	27.4	32.2	3 U	3.2 U
O-XYLENE	434000	440	nc	6.8	8.5	10.3	12	7.3	8.8	1.5 U	1.6 U
TOTAL XYLENES	434000	440	nc	32.9	40.4	48.8	59.9	34.7	41	0	0

Shaded cells indicate a concentration greater than the risk -based screening level

TOTAL XYLENES values are calculated.

Industrial Air Screening Levels from USEPA Regional Screening Levels for Chemical Contaminants at Superfund Sites May-2014

(1) Value is for 1,2,3-trimethylbenzene.

-- = not available; not applicable

A = American Council of Governmental Industrial Hygienists Theshold Limit Value

ca = screening value based on 1x 10⁻⁵ carcinogenic risk

J = estimated value

N = National Institute for Occupational Safety and Health Recommended Exposure Limit

nc = screening value based on noncarcinogenic hazard index = 1

ND - calculated value is nondetect.

OSHA PEL = Occupational Safety and Health Administration Pemissible Exposure Limit

U = not detected

USEPA = United States Environmental Protection Agency

TABLE 3-16

INDOOR AIR QUALITY SAMPLING RESULTS, ENGINEERING RESEARCH (ER) BUILDING, FEBRUARY 2014 LOCKHEED MARTIN MIDDLE RIVER COMPLEX, MIDDLE RIVER, MARYLAND

LOCATION		Industrial Air		AIR-001-ER	AIR-002-ER	AIR-0	03-ER
SAMPLE ID	OSHA PEL (µg/m3)	Screening Level	KEY	IA-001-ER-1	IA-002-ER-1	IA-003-ER-1	IA-003-ER-1-D DUP
SAMPLE DATE	(μg/1113)	(µg/m³)		20140226	20140226	20140226	20140226
Volatile organic compounds (µg/m³)							
BENZENE	319	16	ca	0.83	1.1	0.89	1.3
CARBON TETRACHLORIDE	62,900	20	ca	1.5 U	1.2 U	1.1 U	1.1 U
CHLORODIFLUOROMETHANE	3,590,000	220,000	nc	4.8	4.3	4.5 J	12.9 J
CHLOROFORM	240,000	5.3	ca	2.3 U	1.8 U	1.7 U	1.7 U
DICHLORODIFLUOROMETHANE	4,950,000	440	nc	2.5	2.5	2	2.9
1,1-DICHLOROETHANE	400,000	77	ca	1.9 U	1.5 U	1.4 U	1.4 U
1,2-DICHLOROETHANE	400,000	4.7	ca	0.94 U	0.74 U	0.69 U	0.69 U
1,1-DICHLOROETHENE		880	nc	1.9 U	1.5 U	1.4 U	1.4 U
CIS-1,2-DICHLOROETHENE	790,000			1.9 U	1.5 U	1.4 U	1.4 U
TRANS-1,2-DICHLOROETHENE	790,000			1.9 U	19.9	17.4 J	70.1 J
ETHYLBENZENE	435,000	49	ca	2 U	5.2	5 J	17.1 J
METHYL TERT-BUTYL ETHER	180,000 ^A	470	ca	1.7 U	1.3 U	1.2 U	1.2 U
METHYLENE CHLORIDE	87,000	2,600	nc	20.8	14.4	605 J	22.2 J
NAPHTHALENE	50,000	3.6	ca	2.5 UJ	1.9 UJ	1.1 J	1.8 UJ
TETRACHLOROETHENE	678,000	180	nc	1.6 U	1.2 U	1.2 U	1.2 U
TOLUENE	754,000	22,000	nc	2.7	14.8	14.6 J	44.7 J
1,2,4-TRICHLOROBENZENE	40,000 N	8.8	nc	3.5 UJ	2.7 UJ	2.5 U	2.5 UJ
1,1,1-TRICHLOROETHANE	1,900,000	22,000	nc	2.5 U	2 U	1.9 U	1.9 U
1,1,2-TRICHLOROETHANE	45,000	0.88	nc	1.3 U	0.99 U	0.92 U	0.92 U
TRICHLOROETHENE	537,000	8.8	nc	1.3 U	0.99 U	0.92 U	0.92 U
1,2,3-TRIMETHYLBENZENE	123,000	22	nc	2.3 U	1.8 U	0.88	1.7 U
1,2,4-TRIMETHYLBENZENE	123,000	31	nc	2.3 U	1.8 U	1.3 J	3
1,3,5-TRIMETHYLBENZENE	123,000	22	nc ⁽¹⁾	2.3 U	1.8 U	1.4 J	1.7 U
VINYL CHLORIDE	21,560	28	ca	0.6 U	0.47 U	0.44 U	0.44 U
M+P-XYLENES	434000	440	nc	4 U	25.7	21.5 J	81.5 J
O-XYLENE	434000	440	nc	2 U	8.9	7.8 J	29.5 J
TOTAL XYLENES	434000	440	nc		34.6	29.3	111 J

All concentrations are in micrograms per cubic meter air (µg/m³)

Shaded cells indicate a concentration greater than the risk -based screening level TOTAL XYLENES values are calculated.

Industrial Air Screening Levels from USEPA Regional Screening Levels for Chemical Contaminants at Superfund Sites May-2014

- (1) Value is for 1,2,3-trimethylbenzene.
- -- = not available; not applicable
- A = American Council of Governmental Industrial Hygienists Theshold Limit Value
- ca = screening value based on 1x 10⁻⁵ carcinogenic risk
- N = National Institute for Occupational Safety and Health Recommended Exposure Limit
- nc = screening value based on noncarcinogenic hazard index = 1
- ND calculated value is nondetect.
- OSHA PEL = Occupational Safety and Health Administration Pemissible Exposure Limit
- USEPA = United States Environmental Protection Agency

INDOOR AIR QUALITY SAMPLING RESULTS, PROGRAM BUILDING (PB), FEBRUARY 2014

LOCKHEED MARTIN MIDDLE RIVER COMPLEX, MIDDLE RIVER, MARYLAND

LOCATION	Industrial Air		AIR-001-PB		AIR-002-PB	
SAMPLE ID	OSHA PEL	Screening	KEV.	IA-001-PB-1	IA-001-PB-1-D	IA-002-PB-1
	(µg/m3)	Level	KEY		DUP	
SAMPLE DATE		(µg/m³)		20140226	20140226	20140226
Volatile Organic Compounds (µg/m³)	20140220	20140220	20140220			
BENZENE	319	16	ca	0.86	0.8	0.65
CARBON TETRACHLORIDE	62.900	20	ca	1.1 U	1.1 U	1.2 U
CHLORODIFLUOROMETHANE	3,590,000	220,000	nc	2.8	2.6	11.5
CHLOROFORM	240.000	5.3	ca	1.7 U	1.7 U	1.8 U
DICHLORODIFLUOROMETHANE	4,950,000	440	nc	2.2	2.2	2
1.1-DICHLOROETHANE	400,000	77	ca	1.4 U	1.4 U	1.5 U
1.2-DICHLOROETHANE	400,000	4.7	ca	0.69 U	0.69 U	0.74 U
1.1-DICHLOROETHENE		880	nc	1.4 U	1.4 U	1.5 U
CIS-1,2-DICHLOROETHENE	790,000			1.4 U	1.4 U	1.5 U
TRANS-1,2-DICHLOROETHENE	790,000			1.4 U	1.4 U	1.5 U
ETHYLBENZENE	435,000	49	ca	1.6	1.5 U	1.2 J
METHYL TERT-BUTYL ETHER	180,000 ^A	470	ca	1.2 U	1.2 U	1.3 U
METHYLENE CHLORIDE	87,000	2,600	nc	9.6	6.5	11.3
NAPHTHALENE	50,000	3.6	ca	1.2 J	1.8 U	1.3 J
TETRACHLOROETHENE	678,000	180	nc	1.2 U	1.2 U	1.2 U
TOLUENE	754,000	22,000	nc	1.4	1.4	3.9
1,2,4-TRICHLOROBENZENE	40,000 N	8.8	nc	2.5 U	2.5 U	2.7 U
1,1,1-TRICHLOROETHANE	1,900,000	22,000	nc	1.9 U	1.9 U	2 U
1,1,2-TRICHLOROETHANE	45,000	0.88	nc	0.92 U	0.92 U	0.99 U
TRICHLOROETHENE	537,000	8.8	nc	0.92 U	0.92 U	0.99 U
1,2,3-TRIMETHYLBENZENE	123,000	22	nc	0.97	0.34 U	0.94
1,2,4-TRIMETHYLBENZENE	123,000	31	nc	1.7	1.7 U	1.4 J
1,3,5-TRIMETHYLBENZENE	123,000	22	nc ⁽¹⁾	1.5 J	1.7 U	1.8 U
VINYL CHLORIDE	21,560	28	ca	0.44 U	0.44 U	0.47 U
M+P-XYLENES	434000	440	nc	2.9 J	1.5 J	1.5 J
O-XYLENE	434000	440	nc	0.95 J	1.5 U	1.6 U
TOTAL XYLENES	434000	440	nc	3.85 J	1.5 J	1.5 J

Shaded cells indicate a concentration greater than the risk -based screening level

-- = not available

J = estimated value

U = not detected

USEPA = United States Environmental Protection Agency

TOTAL XYELENES values are calculated.

ND - calculated value is nondetect.

ca = screening value based on 1x 10⁻⁵ carcinogenic risk

nc = screening value based on noncarcinogenic hazard index = 1

A = American Council of Governmental Industrial Hygienists Theshold Limit Value
N = National Institute for Occupational Safety and Health Recommended Exposure Limit
OSHA PEL = Occupational Safety and Health Administration Pemissible Exposure Limit
Industrial Air Screening Levels from USEPA Regional Screening Levels for Chemical
Contaminants at Superfund Sites May-2014

(1) Value is for 1,2,3-trimethylbenzene.

TABLE 3-18

ANALYTE CONCENTRATIONS IN BACKGROUND AIR SAMPLES COMPARED TO INDOOR AIR SAMPLES - FEBRUARY 2014 LOCKHEED MARTIN CORPORATION MIDDLE RIVER COMPLEX MIDDLE RIVER, MARYLAND

Analyte	Maximum Background Concentration	Maximum Sample Concentration	Number of Samples with Detects	Number of Samples < Background	Number of Samples = Background	Number of Samples > Background
Benzene	2.7	15.9	50	52	0	2
Chlorodifluoromethane	10.8	54.2	53	38	0	16
Dichlorodifluoromethane	3.4	4.8	53	52	0	2
Ethylbenzene	2.6	164	26	36	5	13
Methylene chloride	580	1140	54	52	0	2
Naphthalene	3.5	71	43	37	0	17
Tetrachloroethene	1.9	1.6	2	54	0	0
Toluene	24	20000	50	40	0	14
Trichloroethene	4.2	20	13	49	0	5
1,2,3-Trimethylbenzene	1.4	3.6	8	52	0	2
1,2,4-Trimethylbenzene	2.8	11.7	18	47	0	7
1,3,5-Trimethylbenzene	1.7	4.9	9	49	0	5
Xylenes, total	8.1	1240	42	39	0	15

µg/m³ - micrograms per cubic meter

Note: Locations AIR-081-A and AIR-113-C were resampled in April 2014 (IA-081-A-16R and IA-113-C-16R). The February 2014 trichloroethene exceednaces were not confirmed in the April 2014 resamples.

Figure 3-2 Indoor Air and Sub-Slab Vapor Monitoring Locations for Building A, Round 16, February 2014

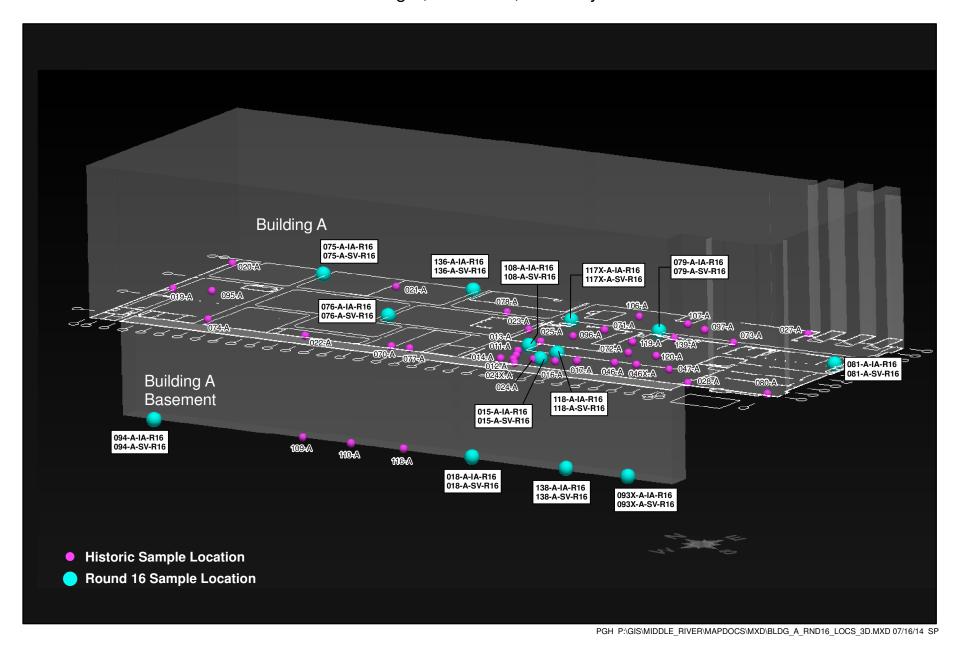
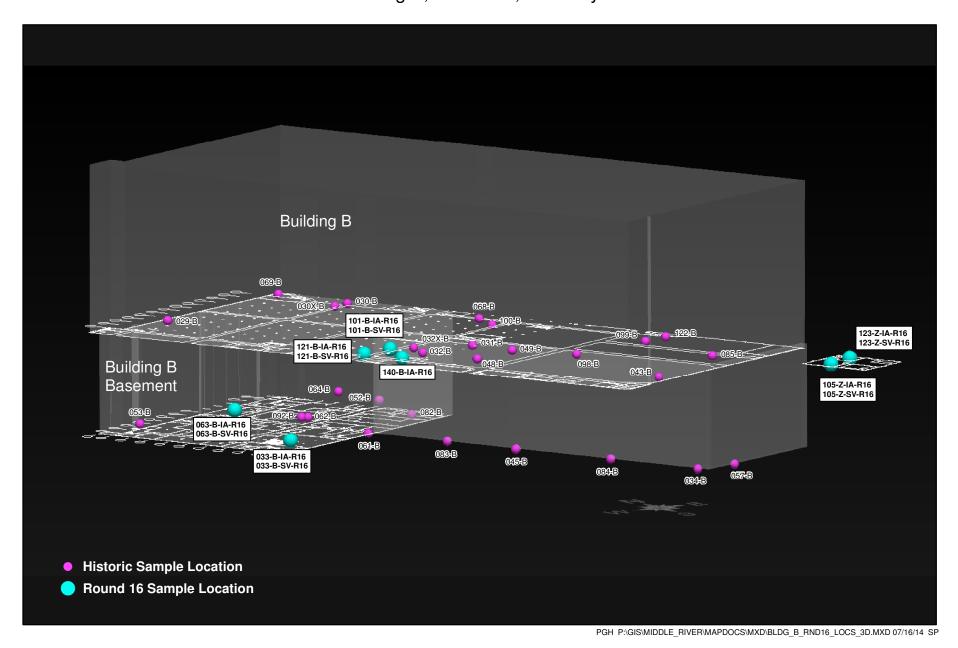
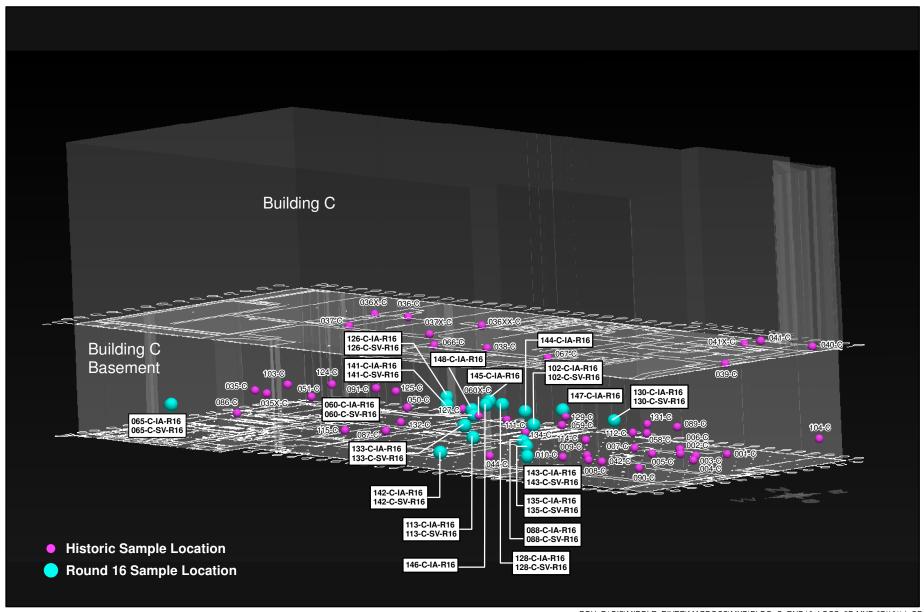
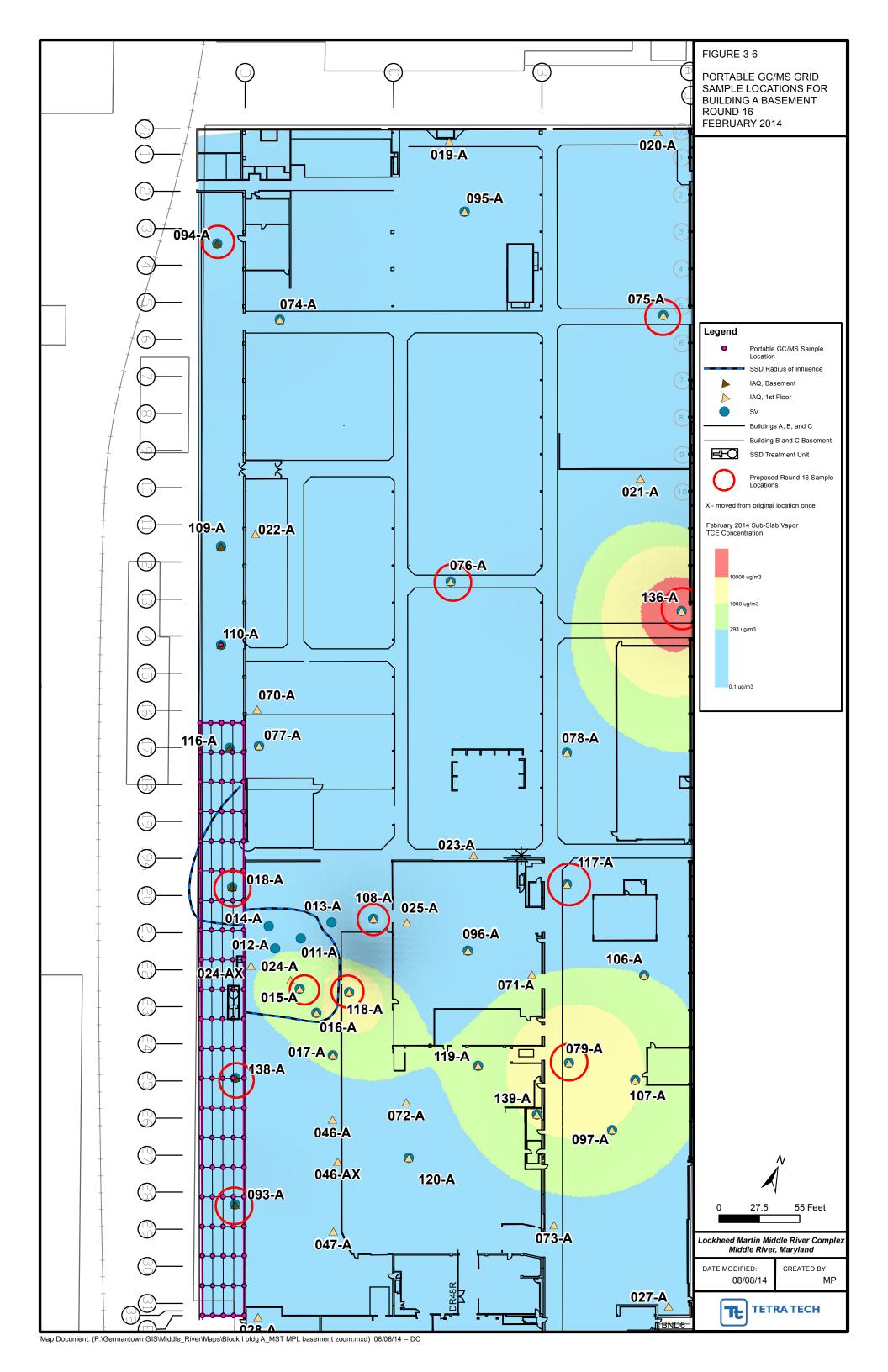
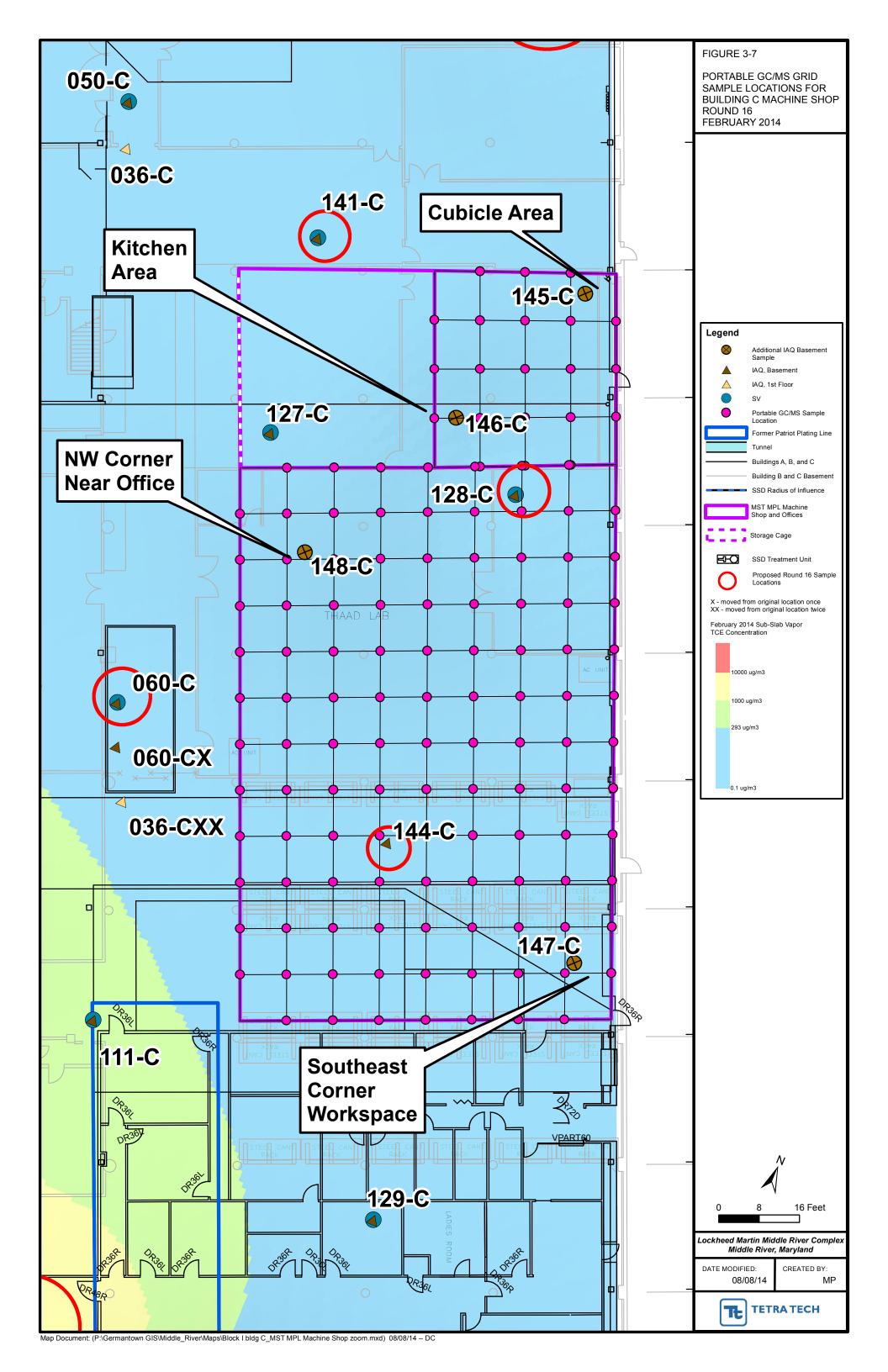
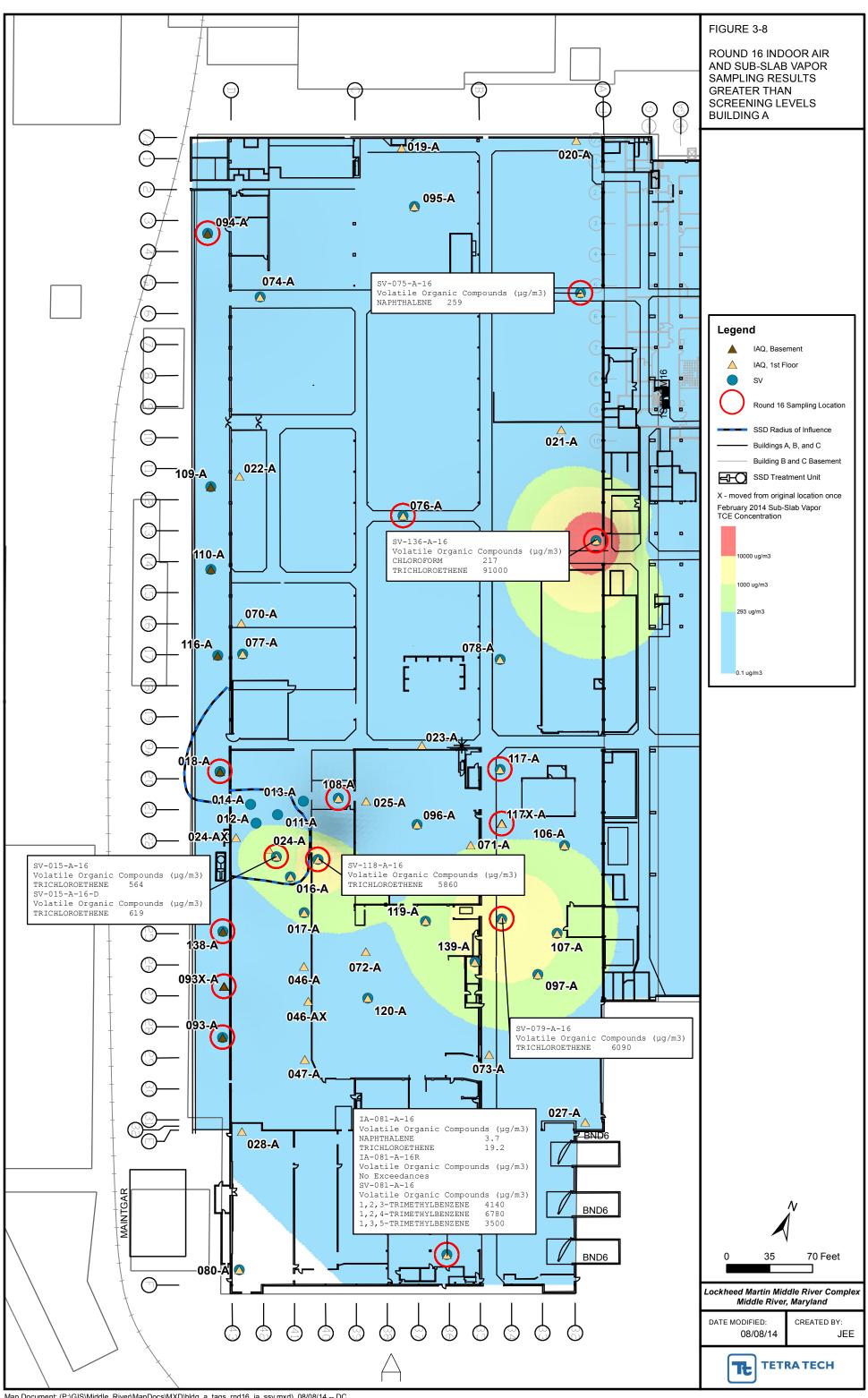
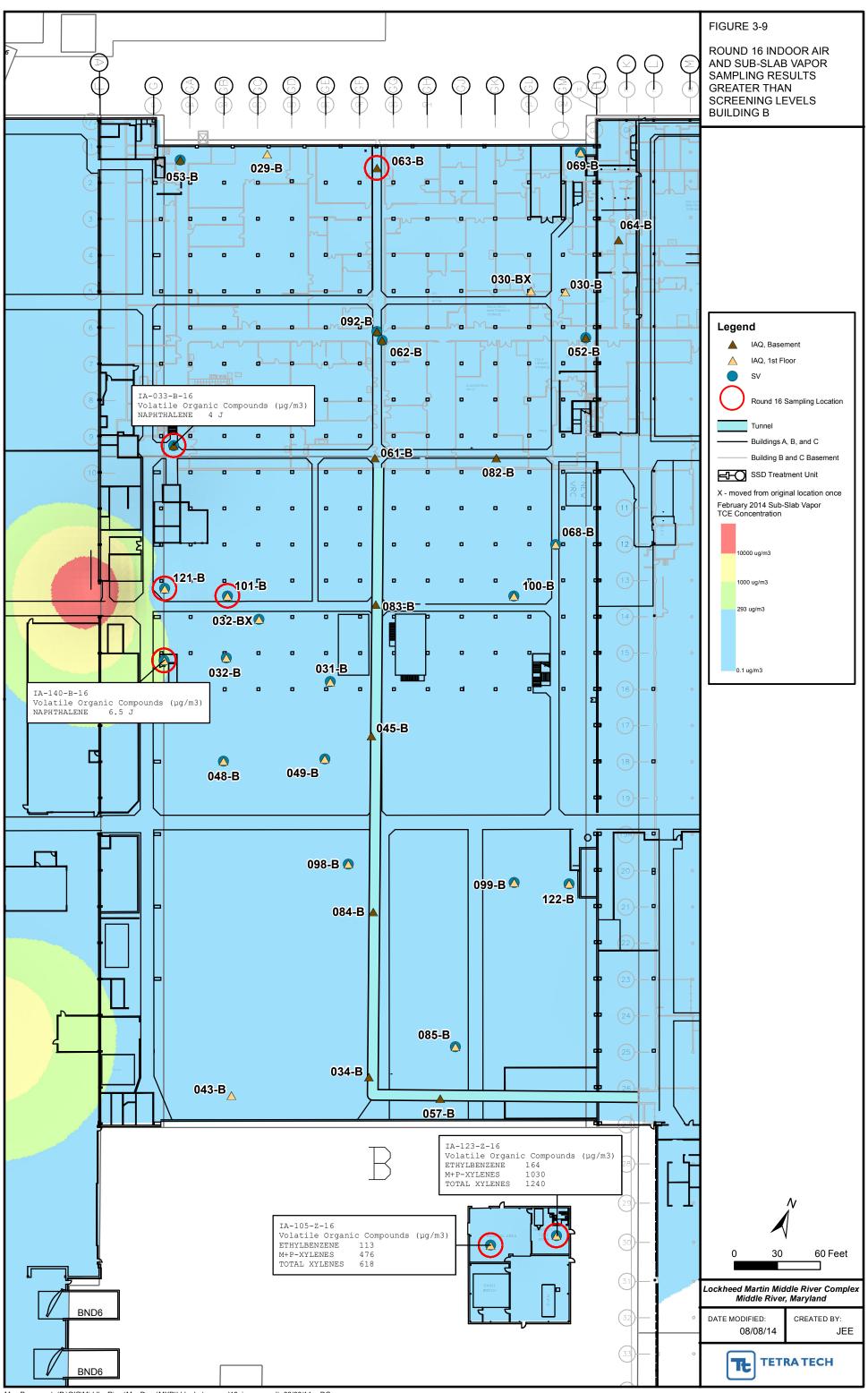


Figure 3-3 Indoor Air and Sub-Slab Vapor Monitoring Locations for Building B, Round 16, February 2014


Figure 3-4
Indoor Air and Sub-Slab Vapor Monitoring Locations for Building C, Round 16, February 2014





Map Document: (P:\GIS\Middle_River\MapDocs\MXD\er_pb_vls_tags_may2014_sample_locations.mxd) 06/17/14 -- JEE

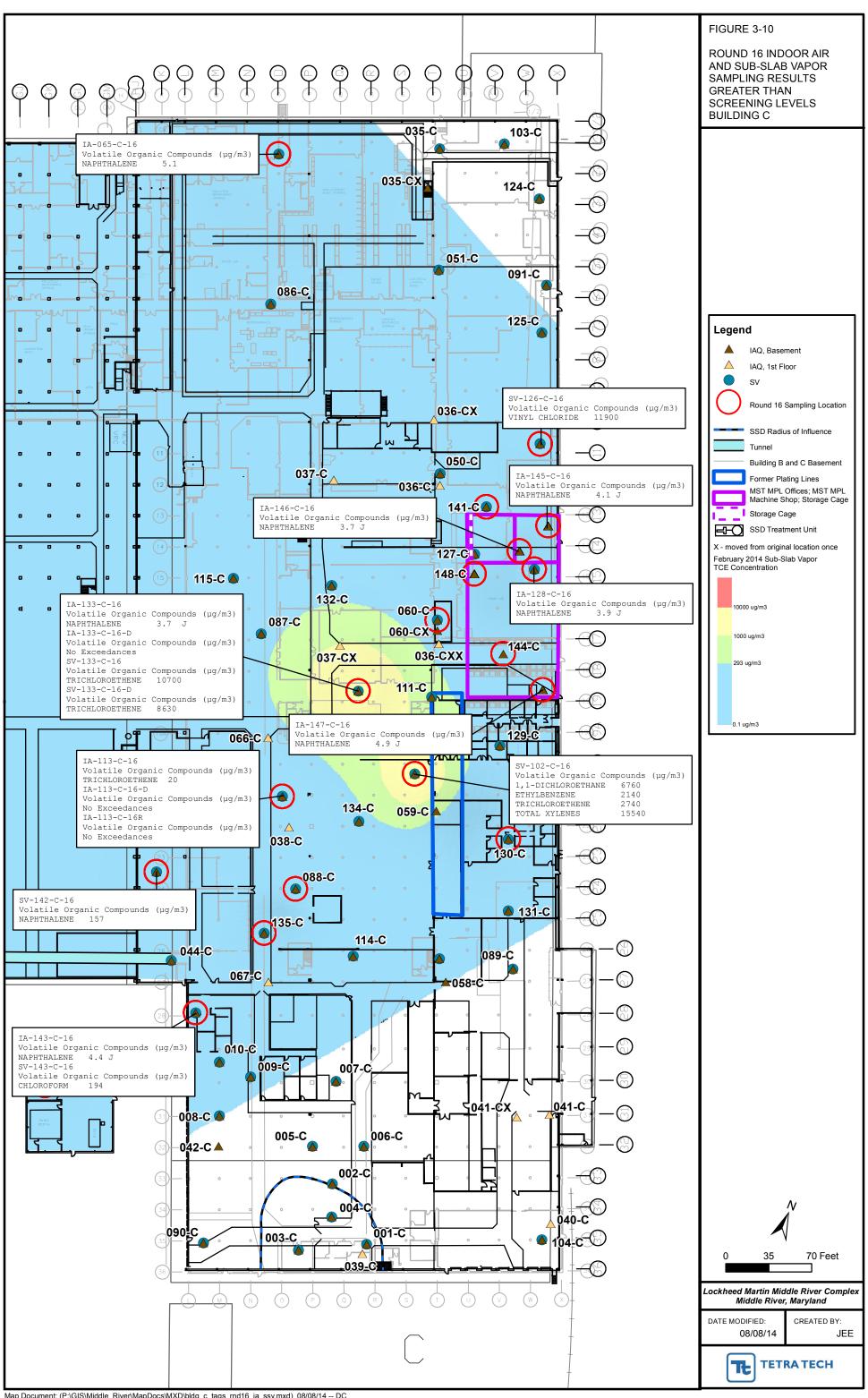


Figure 3-13A

Concentrations of Select Chemicals from Round 16 Building A - Soil Vapor

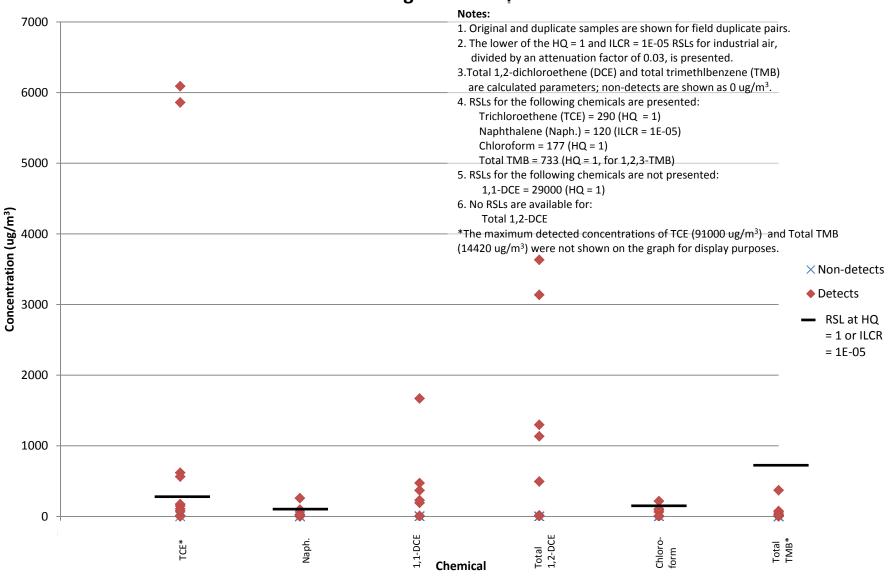


Figure 3-13B

Concentrations of Select Chemicals from Round 16 - Building A - Indoor Air - Basement

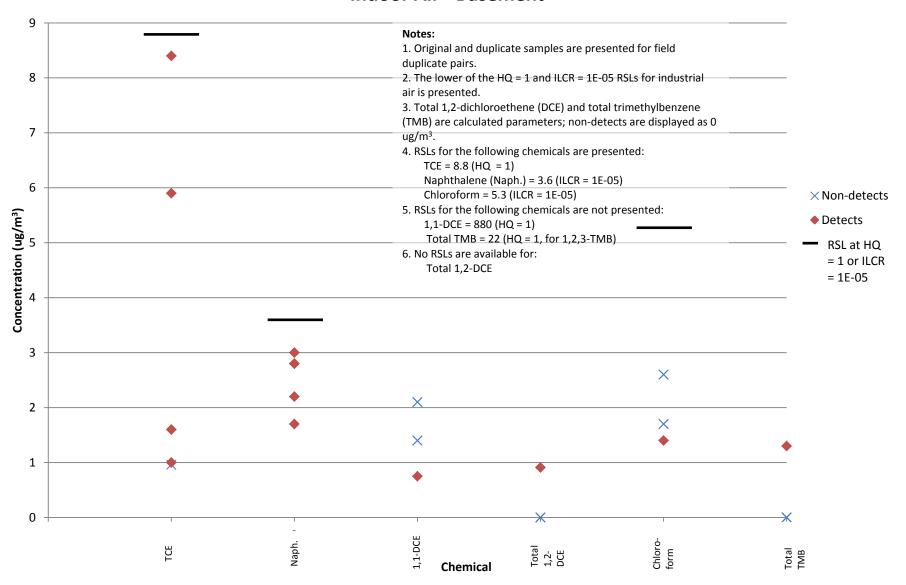


Figure 3-13C

Concentrations of Select Chemicals from Round 16 - Building A Indoor Air - First Floor

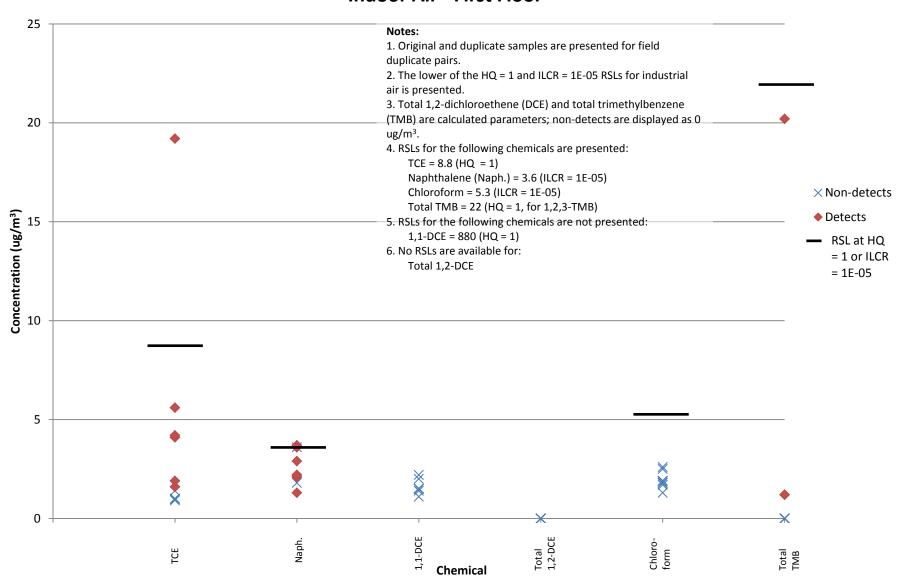


Figure 3-14A
Building A Historical Maximum IAQ
TCE Concentrations

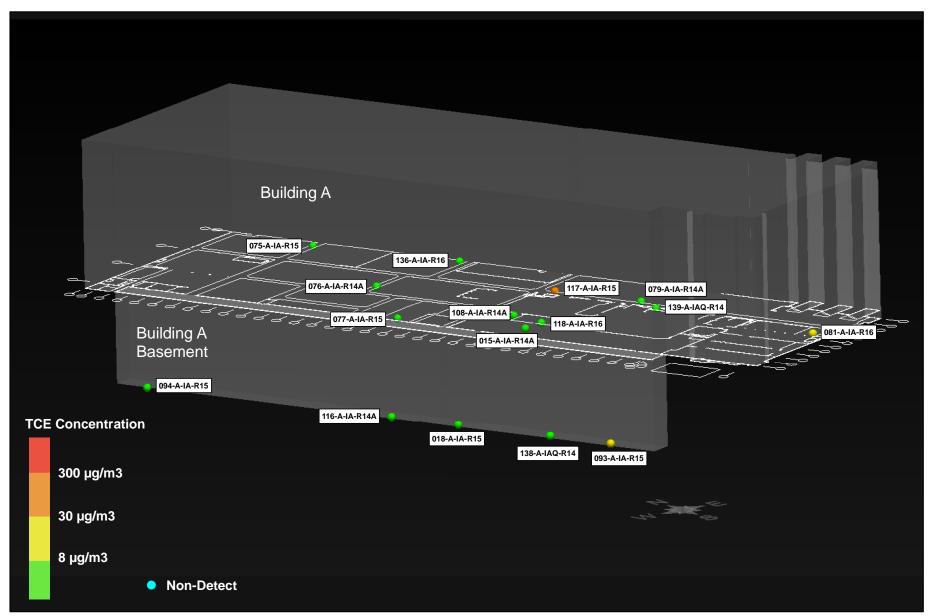


Figure 3-14B Building A Historical Maximum SV TCE Concentrations

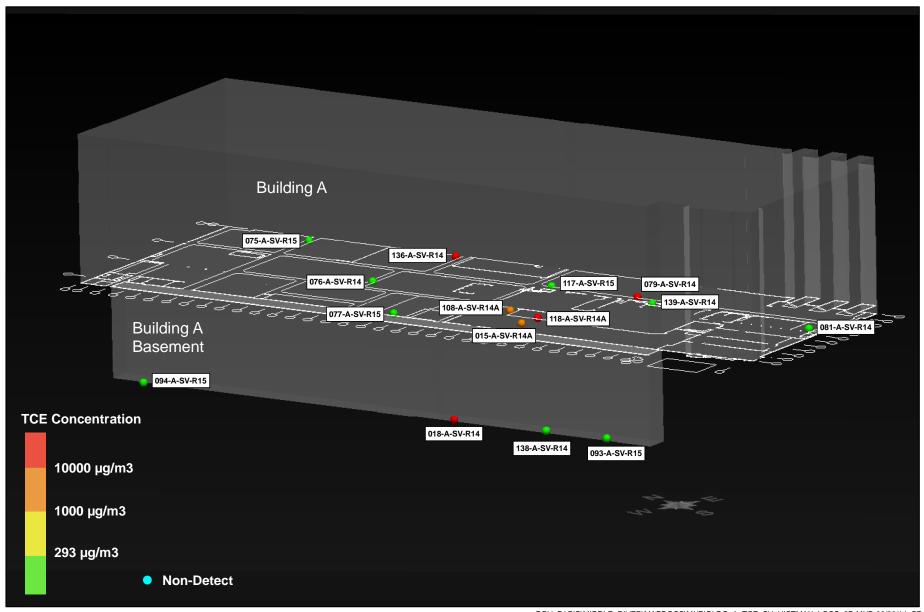


Figure 3-14C TCE Results Indoor Air Monitoring Locations for Building A, Round 16, February 2014

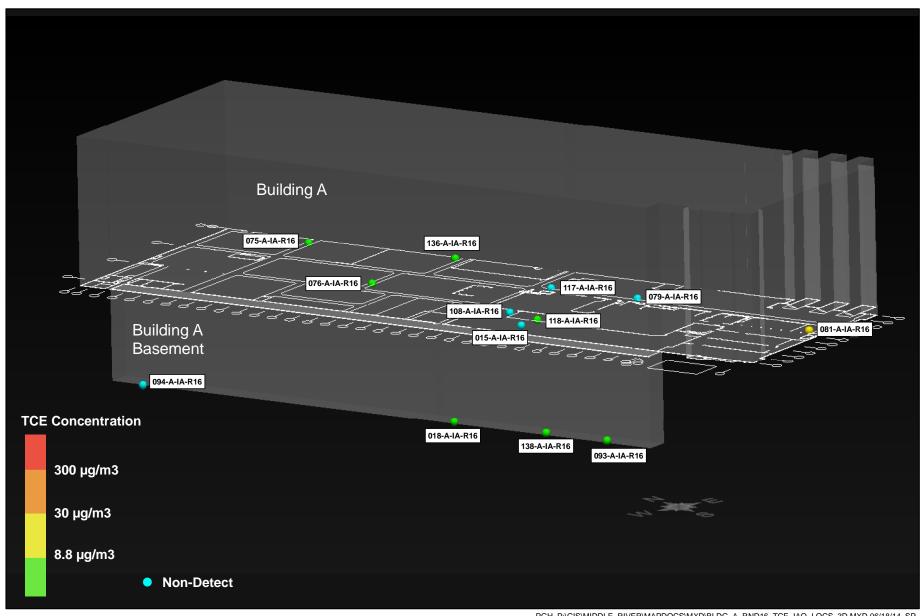


Figure 3-14D TCE Results Sub-Slab Vapor Monitoring Locations for Building A, Round 16, February 2014

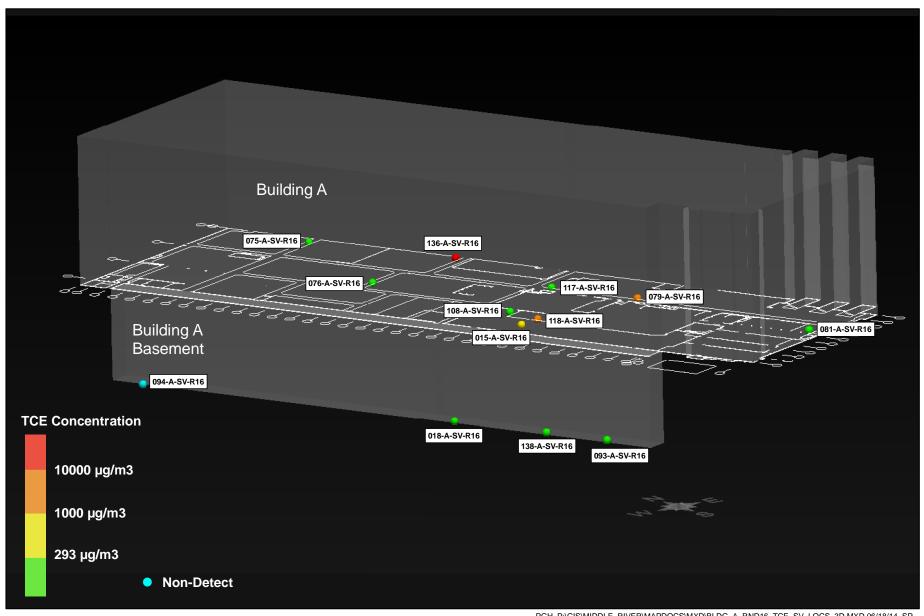


Figure 3-15A

Concentrations of Select Chemicals from Round 16 Building B - Soil Vapor

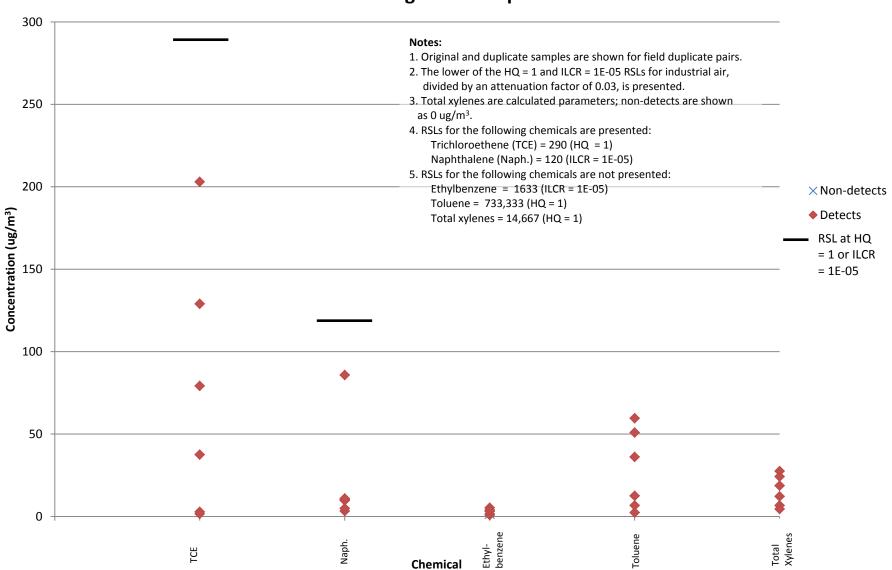


Figure 3-15B

Concentrations of Select Chemicals from Round 16 - Building B - Indoor Air - Basement

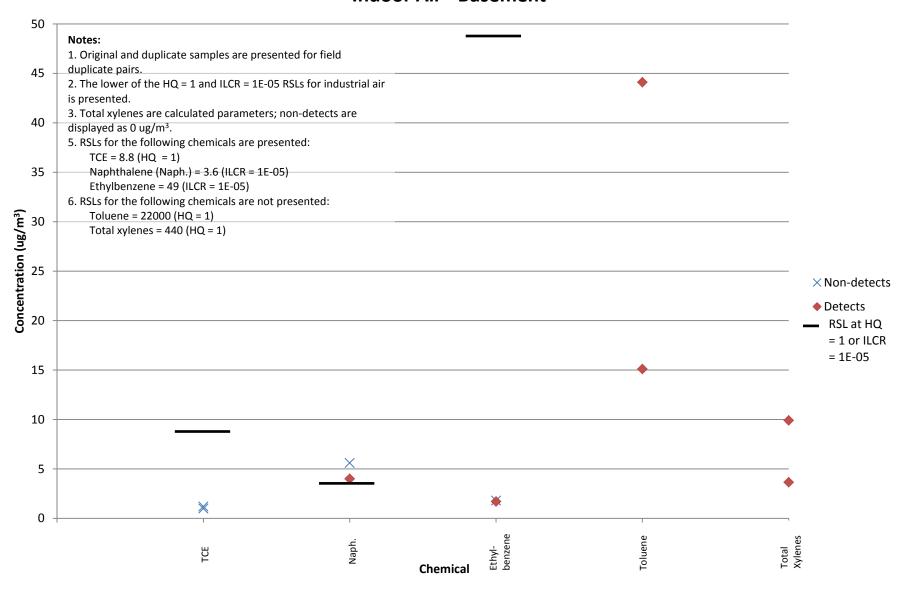


Figure 3-15C

Concentrations of Select Chemicals from Round 16 - Building B - Indoor Air - First Floor

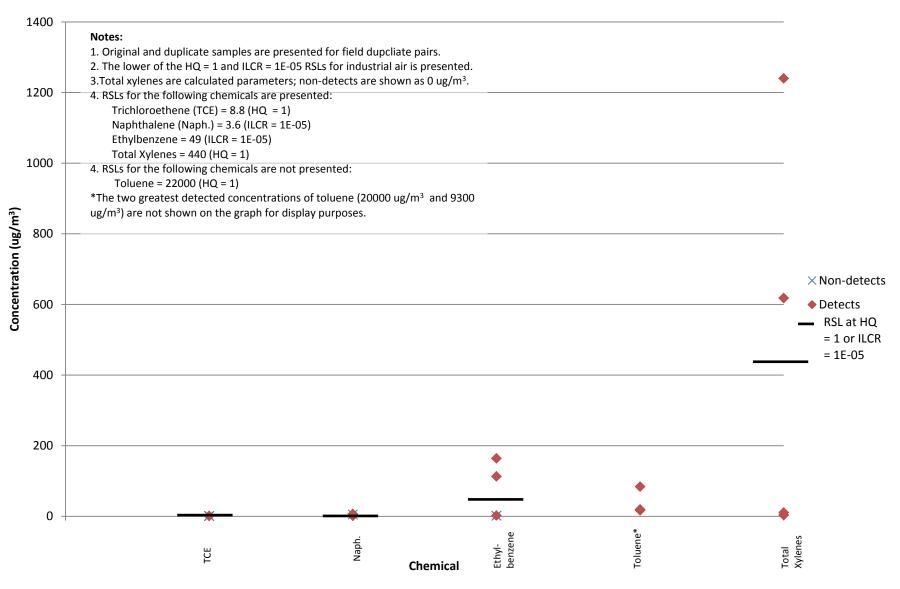


Figure 3-16A
Building B Historical Maximum IAQ
TCE Concentrations

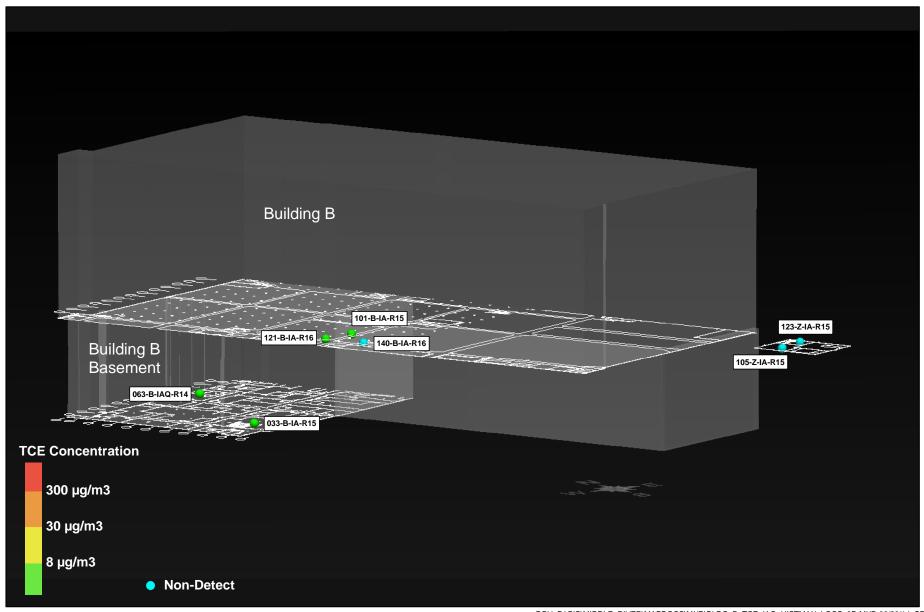


Figure 3-16B Building B Historical Maximum SV TCE Concentrations

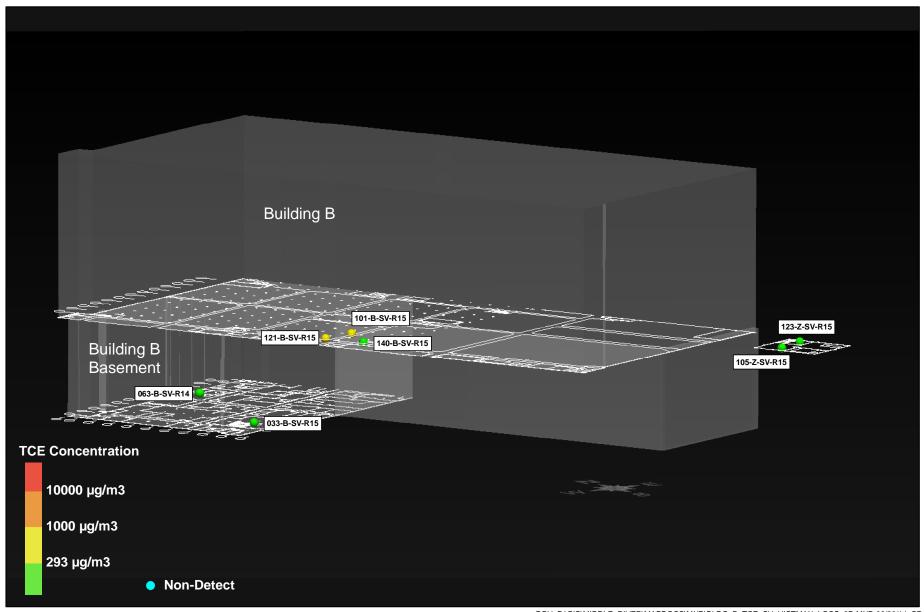


Figure 3-16C
TCE Results for Indoor Air Monitoring Locations for Building B, Round 16, February 2014

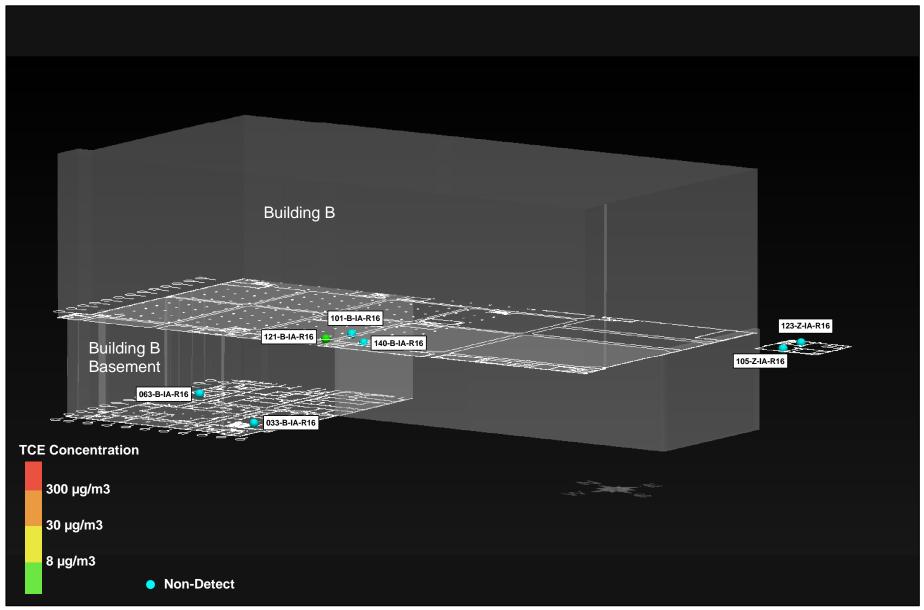


Figure 3-16D
TCE Results for Sub-Slab Vapor Monitoring Locations for Building B, Round 16, February 2014

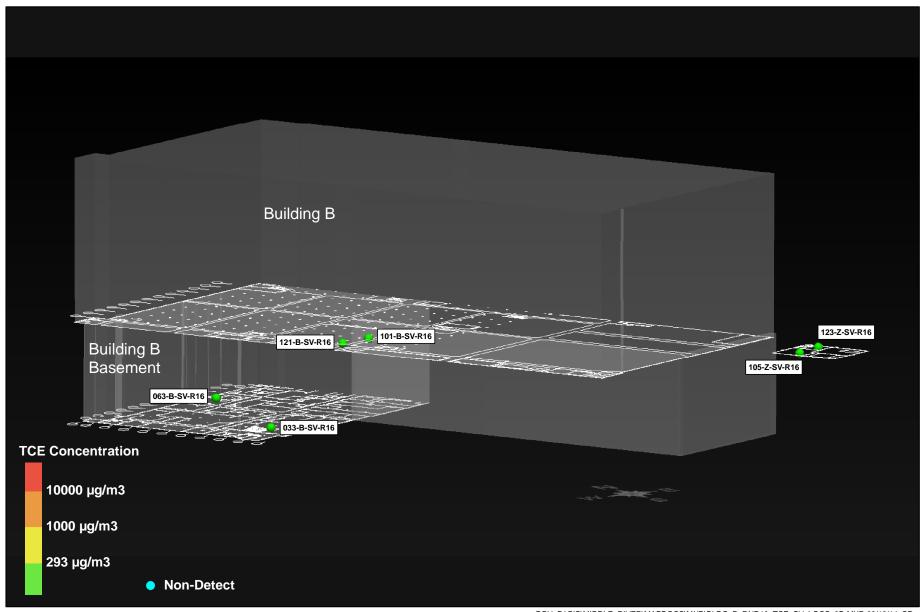


Figure 3-17A

Concentrations of Select Chemicals from Round 16 Building C - Soil Vapor

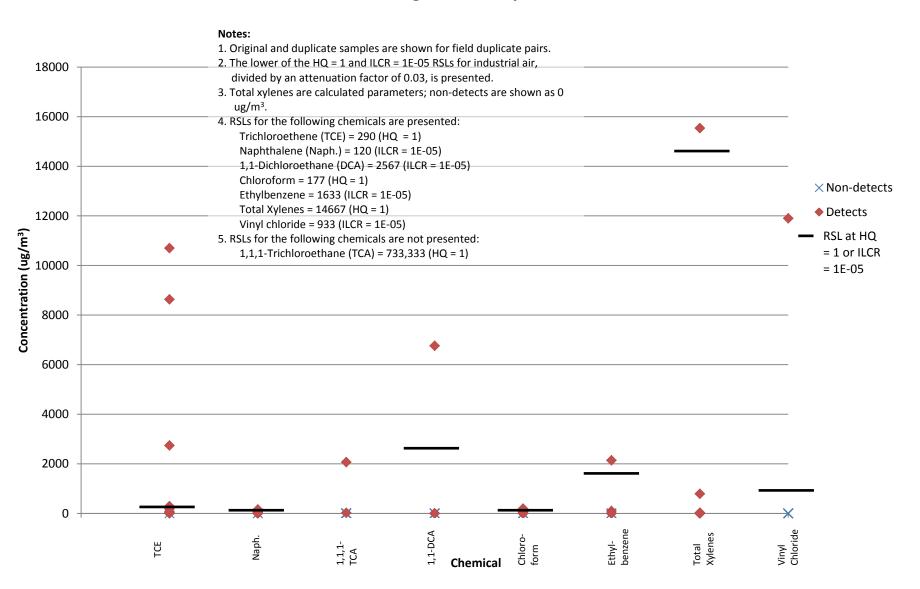
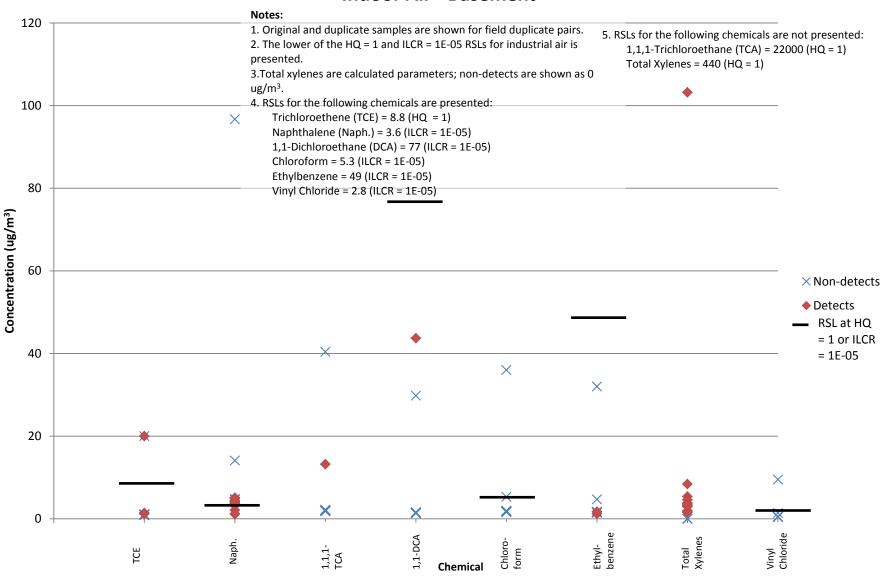



Figure 3-17B

Concentrations of Select Chemicals from Round 15 - Building C - Indoor Air - Basement

Figure 3-18A Building C Historical Maximum IAQ TCE Concentrations

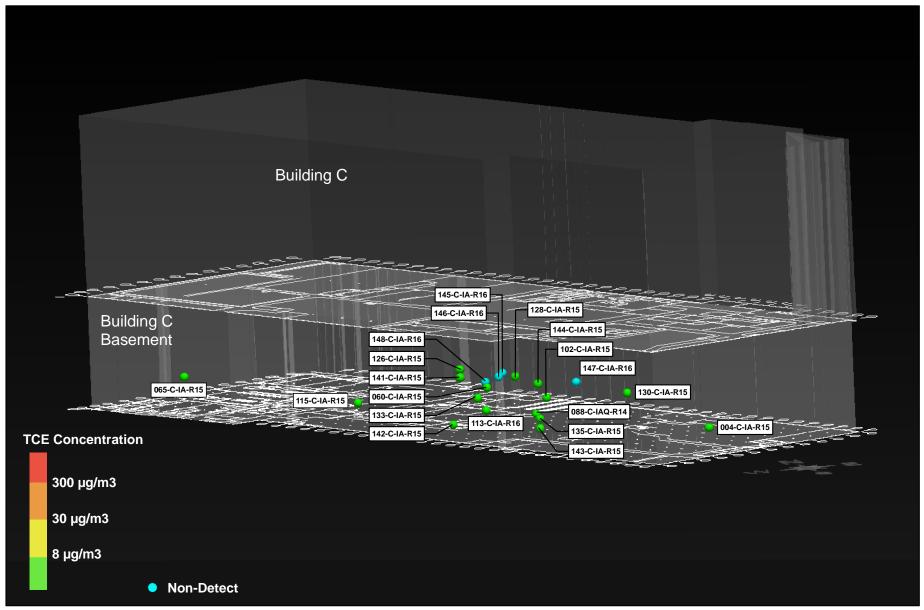


Figure 3-18B Building C Historical Maximum SV TCE Concentrations

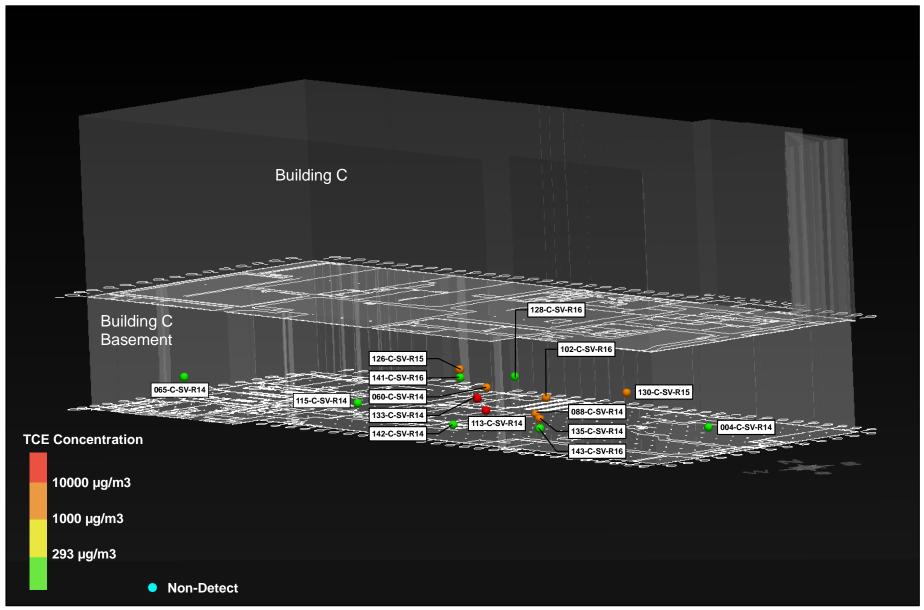


Figure 3-18C TCE Results for Indoor Air Monitoring Locations for Building C, Round 16, February 2014

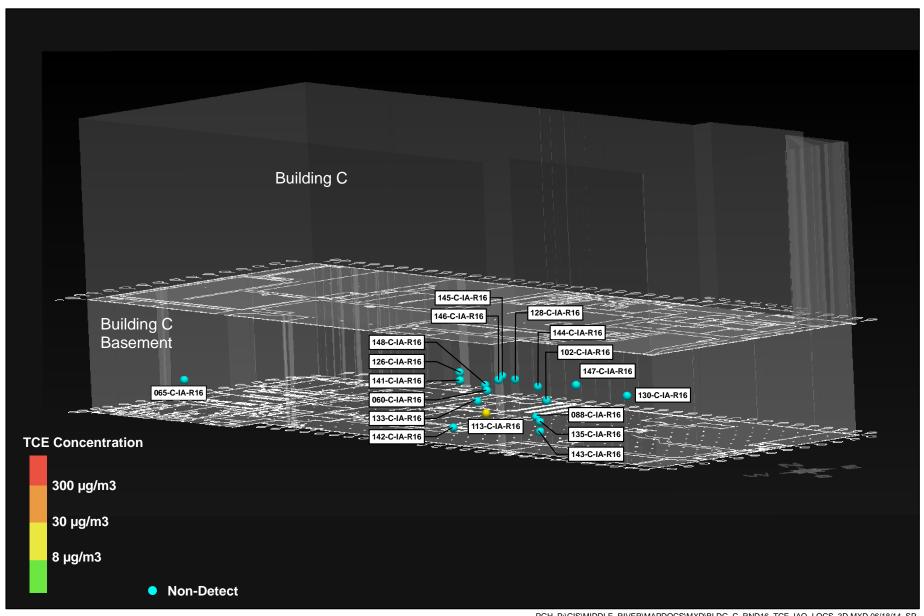


Figure 3-18D TCE Results for Sub-Slab Vapor Monitoring Locations for Building C, Round 16, February 2014

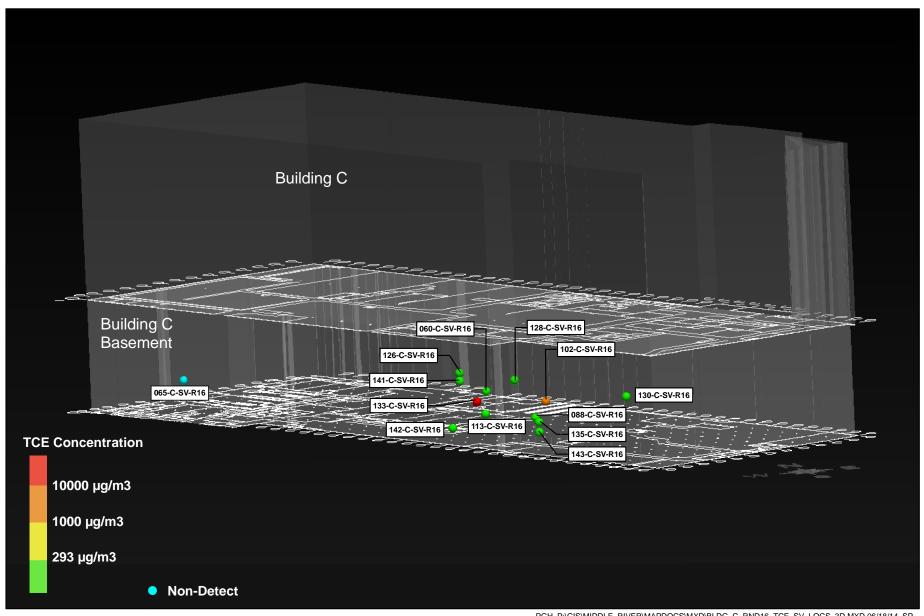


Figure 3-19
Graphical Display of Trichloroethene Indoor Air Concentrations from All Buildings (All Rounds)

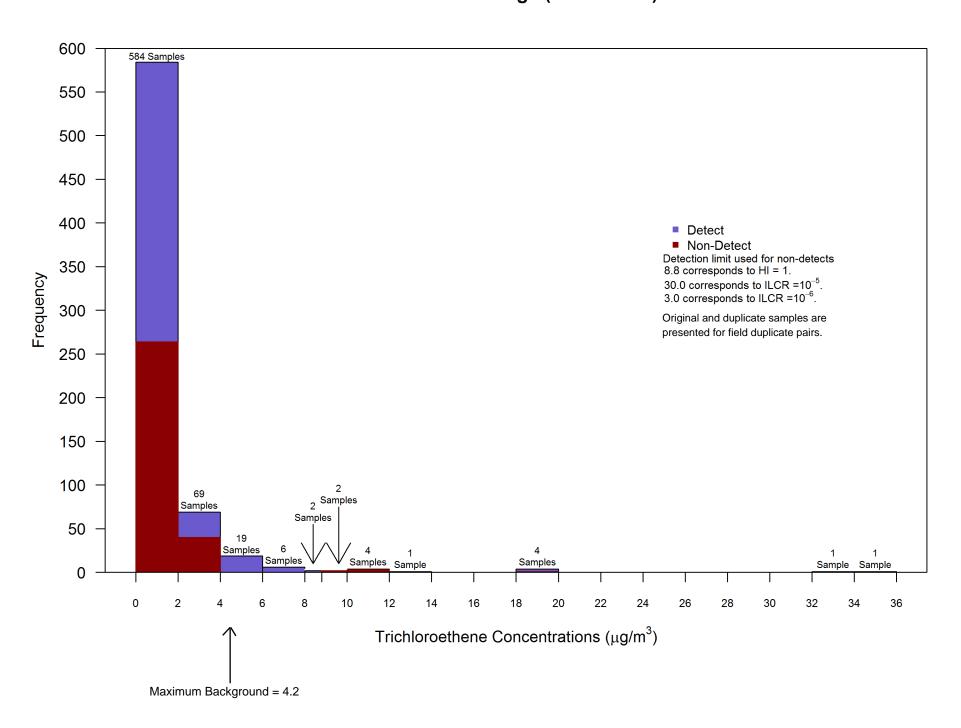


Figure 3-20
Graphical Display of Naphthalene Indoor Air Concentrations from All Buildings (All Rounds)

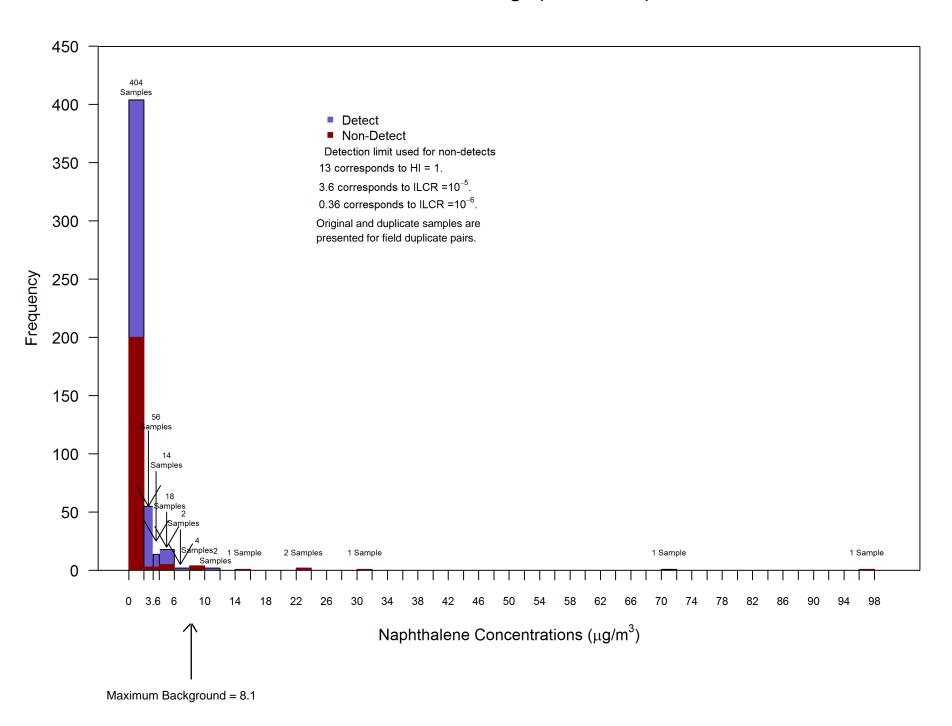


Figure 3-21
Graphical Display of Benzene Indoor Air Concentrations from All Buildings (All Rounds)

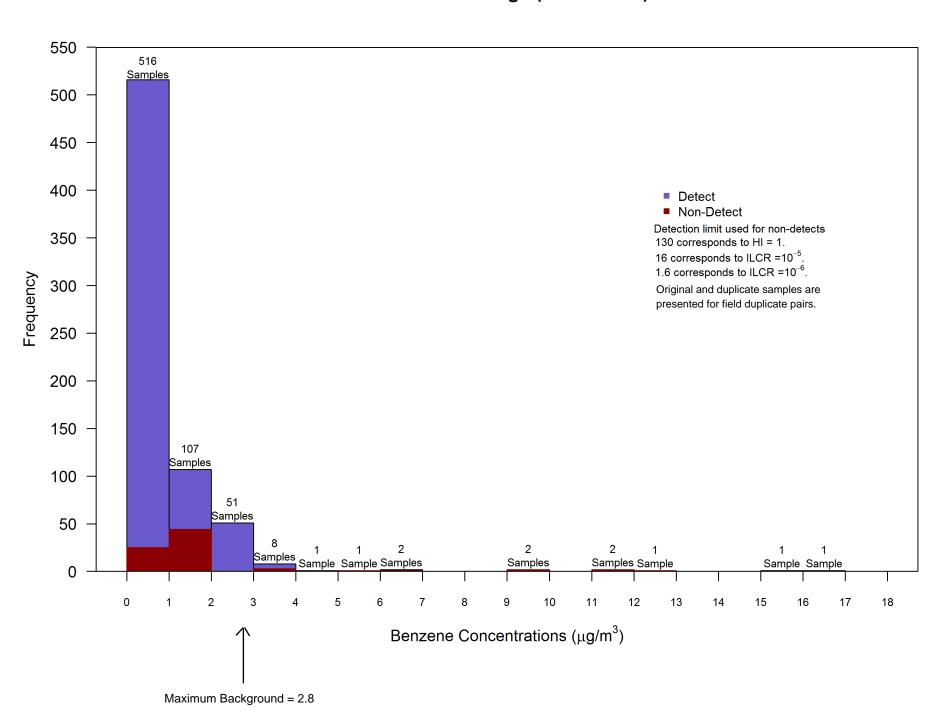


Figure 3-22
Graphical Display of 1,2-Dichloroethane Indoor Air Concentrations from All Buildings (All Rounds)

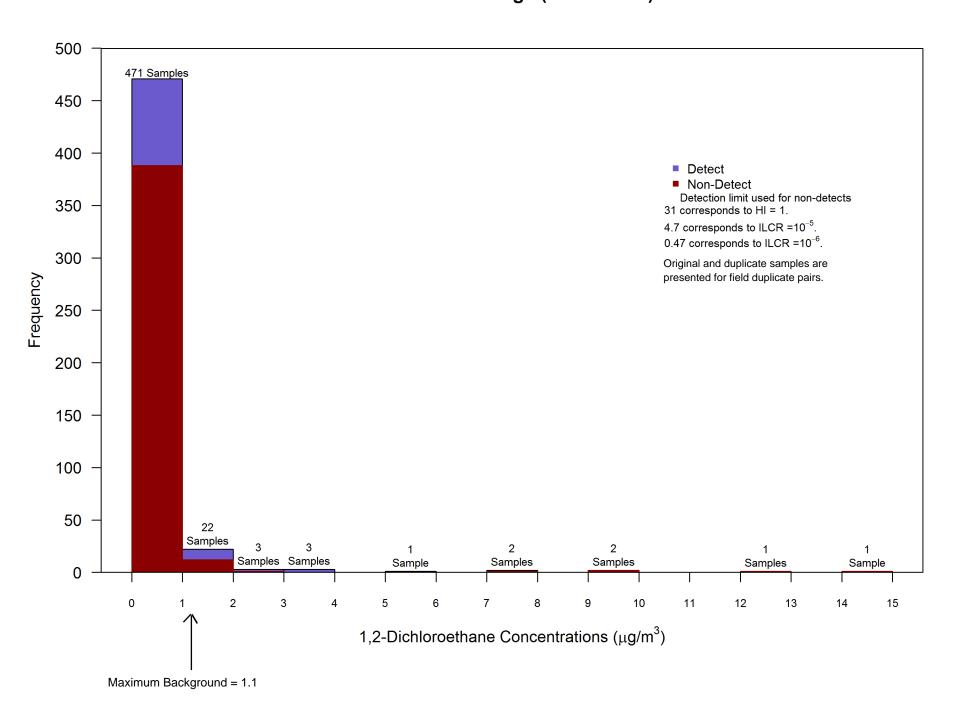


Figure 3-23
Graphical Display of Ethylbenzene Indoor Air Concentrations from All Buildings (All Rounds)

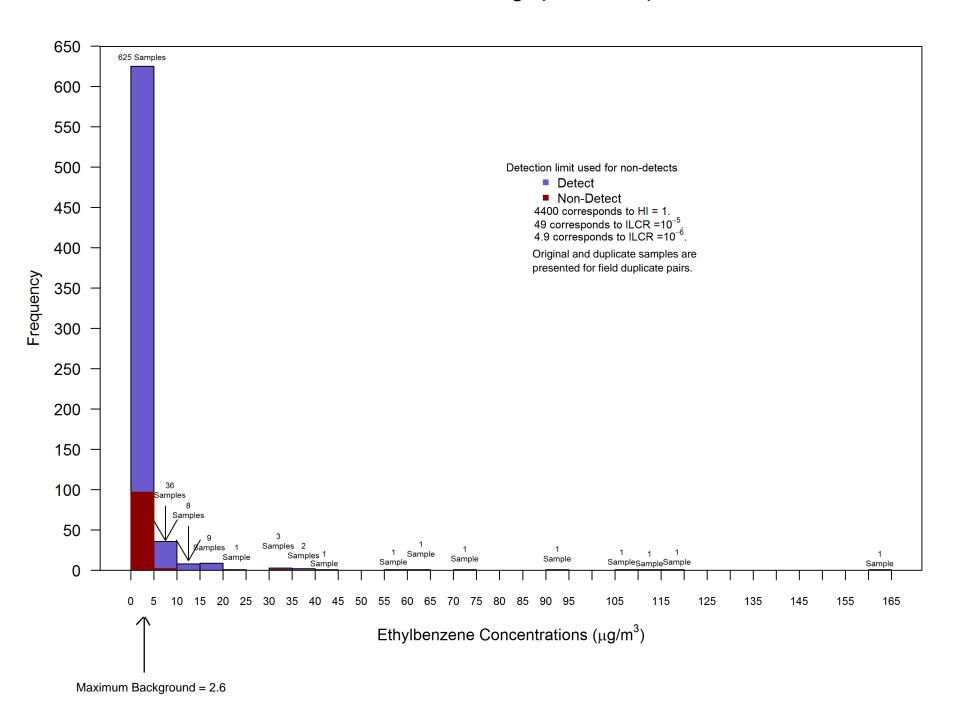
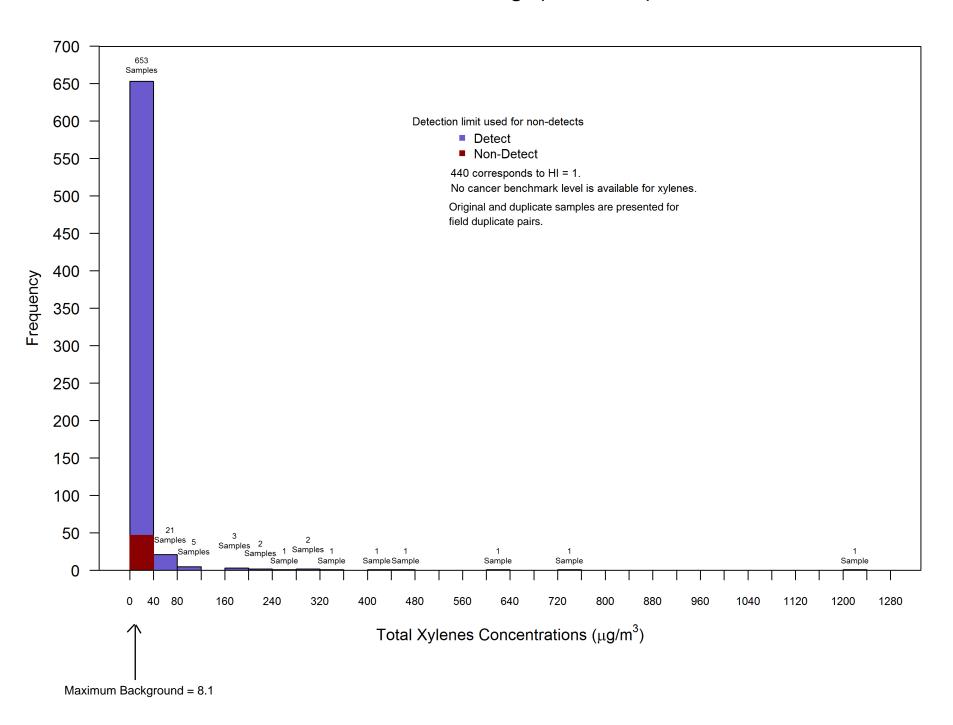



Figure 3-24
Graphical Display of Total Xylenes Indoor Air Concentrations from All Buildings (All Rounds)

Section 4 Sub-SlabDepressurization-System Data Analysis

The operation and monitoring activities for the sub-slab-depressurization (SSD) systems operating in Buildings A and C were completed from October 1, 2013 to March 31, 2014. A detailed account of these activities is in the April 29, 2014 *Remedial Action Progress Report #20*, included herein as Appendix G. The location and layout of the SSD systems and associated sub-slab-vapor (SV) extraction points and vapor monitoring points (VMPs) are shown in Figures 1, 2, and 4 of Appendix G. This section discusses SV sampling results, extraction points, system influent, vacuum influence, and performance of the SSD systems.

4.1 SUB-SLAB-VAPOR MONITORING POINTS

Tables 4-1 and 4-2 summarize the concentrations of target volatile organic compounds (VOCs) detected at SV monitoring points to date at the Building A plating shop and Building C basement, respectively.

4.1.1 Building A

SV samples collected to date near the Building A SSD-system (SSDS) are shown in the chart below. In Building A, sub-slab-vapor monitoring points 015-A and 018-A have been sampled regularly as part of the facility-wide semiannual sub-slab and indoor-air monitoring program. Location 015-A is on the main floor of Building A, and 018-A is in the basement (see Figure 2 in Appendix G). Both VMPs are within the measured SSDS radius of influence.

	Sub-slab ı	monitoring	points sam	pled near the	Building A	SSD-syste	m
Date	SSD-11-A	SSD-12-A	SSD-13-A	015-A	SSD-16-A	017-A	018-A
Mar-06	✓	✓	✓	✓	✓	✓	✓
Dec-06			✓	✓			✓
Apr-07			✓	✓			√
Oct-07			✓	✓			√
Jul-08	✓	✓	✓	✓	✓		
Nov-08	✓	✓	✓	✓	✓	✓	√
Oct-09				✓		✓	√
Aug-10				✓			√
Oct-10					✓		
Feb-11				✓			√
Aug-11				✓			✓
Oct-11				✓			√
Feb-12				✓			✓
Aug-12				✓			√
Feb-13				✓			✓
Aug-13				✓			√
Feb-14				✓			✓

Note: Points with an "SSD" designation were installed and are monitored for the SSD system; points without the SSD designation are used for the vapor-intrusion monitoring program.

As shown below, the highest trichloroethene (TCE) concentrations detected at VMPs 015-A and 018-A before SSDS operation began (i.e., before March 2008 on the main floor [015-A] and before October 2010 in the basement [018-A]), are two to three orders of magnitude (i.e., 100–1,000 times) greater than the most recent concentrations (post-SSD-system operation):

	Trichloroethen	e concentrations-	—Building A										
VMP location Before SSD-system operation* Post-SSD-system operation (most recent concentration)													
015-A	April 2007	326,000 μg/m ³	February 2014	$564 \mu g/m^3$									
018-A	August 2010	64,000 μg/m ³	February 2014	174 μg/m ³									

^{*}SSD-system startup for the main floor of Building A (015-A) was in March 2008, and for the Building A basement (018-A) in October 2010.

μg/m³—microgram(s) per cubic meter air

SSD-sub-slab depressurization

VMP—vapor monitoring point

While a significant decline has been observed at 015-A, TCE concentrations continue to fluctuate over time. For example, TCE was detected at 8.1 micrograms per cubic meter of air $(\mu g/m^3)$ in October 2009, but at 3,400 $\mu g/m^3$ in October 2011 (see Figure 4-1). Similar

fluctuations also occurred in sub-slab SV at 018-A, where TCE was detected at the following concentrations over 2.5 years (see Figure 4-2):

- $7.2 \,\mu\text{g/m}^3$ in August 2011
- 800,000 μg/m³ in October 2011
- 95,000 μg/m³ in February 2013
- $4,000J \,\mu\text{g/m}^3$ (estimated) in August 2013
- 174 μg/m³ in February 2014

Post-SSD-system concentrations are generally lower than before the system began operation. VOC reductions at 018-A might be more limited than the main floor VMPs because of the high water levels (frequently less than one foot below the basement slab) that could impede vapor flow.

4.1.2 Building C

SV samples collected to date near the Building C SSD system are shown on the following page. Sub-slab-vapor monitoring points 060-C, 088-C, 113-C, 126-C, 133-C, and 135-C (in the middle basement area), which were sampled before SSD-system expansion, were sampled in February 2014. The locations of these monitoring points are shown on Figure 4 of Appendix G. These points are within 100 feet of SSD-system extraction points in the Building C basement, and several (060-C, 113-C, 133-C, and 135-C) show the influence of SSD-system operations. Table 4-2 shows the highest TCE concentrations detected in these points before SSD system operation, and compares them with the most recent concentrations (post-SSD-system operation).

The February 2014 TCE concentrations listed below are lower than the concentrations measured before SSD-system startup and lower than the concentrations measured in August 2013. Concentrations of vinyl chloride (detected only at 126-C-SV) have also decreased since the SSD-system expansion. Vinyl chloride (VC) concentrations at 126-C-SV have varied over time:

- 37,000 μg/m³ (February 2012)
- 110,000 μg/m³ (August 2012)
- $28,000 \,\mu\text{g/m}^3 \,(\text{August } 2013)$
- 11,900 μg/m³ (February 2014)

The reason for these fluctuations is difficult to determine, as no vacuum influence has been observed at 126-C. VC has not been detected in SSD-system-influent samples or in groundwater samples collected from a nearby well pair (MW88A/B).

	Trichloroethene o	concentrations—l	Building C	
VMP location	Before SSD-syste	em operation*		tem operation concentration)
060-C	August 2011	12,000 μg/m ³	February 2014	291 μg/m ³
088-C	February 2012	3,800 μg/m ³	February 2014	70.6 μg/m ³
113-C	February 2013	$16,000 \text{ μg/m}^3 J$	February 2014	$7 \mu \text{g/m}^3 J$
126-C	August 2012	$5,800 \ \mu \text{g/m}^3 J$	February 2014	177 μg/m ³
133-C	February 2013	60,000 μg/m ³	February 2014	10,700 μg/m ³
135-C	August 2012	16,000 μg/m ³	February 2014	5.6 μg/m ³
SSD-4-C	December 2006**	28,300 μg/m ³	August 2013	140 μg/m ³

^{*}SSD-system startup in the middle basement area of Building C was in May 2013

μg/m³—microgram(s) per cubic meter air

SSD—sub-slab depressurization

VMP—vapor monitoring point

Analytical results from a few discrete groundwater sampling events in that area show TCE concentrations up to 1,500 μg/L, but no detectable VC concentrations. The 126-C area might be affected by groundwater fluctuation (depth to groundwater there is between four and five feet), but its correlation to VC concentrations is difficult to determine. In general, SV concentrations in the southern basement (SSD-4-C) of Building C have decreased since the March 2008 SSD-system startup. Middle basement VMPs (060-C, 088-C, 113-C, 126-C, 133-C, and 135-C) also show lower concentrations as compared to results before startup of the expanded system in May 2013. Tetra Tech will continue to monitor concentrations to determine if the SSD system is mitigating sub-slab concentrations of VOCs in the middle basement area of Building C.

^{**}SSD-system startup in the south end of Building C was in March 2008

	Sub-	slab n	nonito	ring p	oints	samp	oled ne	ar the E	Building	g C SSI	D-syste	m	
Date	001-C	SSD-2-C	SSD-3-C	SSD-4-C	SSD-5-C	SSD-6-C	3-090	088-C	113-C	126-C	133-C	135-C	141-C
Mar-06	✓	✓	✓	✓	✓	✓							
Dec-06	✓			✓									
Apr-07	✓			✓									
Oct-07	✓			✓									
Jul-08	✓	✓	✓	✓									
Nov-08	✓	✓	✓	✓	✓	✓							
Jul-09							✓	✓					
Oct-09	✓				✓		✓	✓					
Feb-10	✓						✓	✓					
Aug-10	✓				✓		✓	✓					
Feb-11	✓						✓	✓	✓				
Aug-11	✓						✓	✓	✓				
Feb-12	✓						✓	✓	✓	✓	✓	✓	
Jun-12	✓		✓	✓									
Jul-12	✓		✓	✓									
Aug-12	✓						✓	✓	✓	✓	✓	✓	
Feb-13							✓	✓	✓	✓	✓	✓	
Aug-13				✓			✓	✓	✓	✓	✓	✓	
Feb-14							✓	✓	✓	✓	✓	✓	✓

Note: Points with an "SSD" designation were installed and are monitored for the SSD system; points without the SSD designation are used for the vapor-intrusion monitoring program.

4.2 SUB-SLAB-VAPOR EXTRACTION POINTS

The Building A sub-slab-vapor extraction trenches and Building C SV extraction points were not sampled in February 2014. Figures 2 and 4 in Appendix G show the locations of the extraction trenches (Building A north, south, north basement, and south basement laterals) and extraction points (Building C SSD-21-C, SSD-23-C, SSD-26-C, SSD-27-C, SSD-28-C, SSD-29-C, SSD-31-C, SSD-31-C, SSD-32-C, SSD-33-C, and SSD-34-C), respectively.

4.3 VACUUM INFLUENCE

Figures 6, 7, and 8 in Appendix G show induced vacuum levels over time for the sub-slab VMPs in Building A, in the southern end of the Building C basement, and in the middle basement area of Building C, respectively. Representative values from monitoring in March 2014 are indicated on plan views in Figures 9, 10, and 11 of Appendix G. Vacuum influence in the SSD-system-associated VMPs is checked biweekly. As indicated in the April 2014 progress report (Appendix G), extraction trenches near the Building A plating shop induce a vacuum over an approximate 5,600-square-foot area; this area encompasses all SV monitoring points that had relatively high levels of VOCs before system startup. The trenches in the Building A basement induce a vacuum over an approximately 400-square-foot area that encompasses three of four VMPs used to measure the SSD-system-induced vacuum in the basement.

The Building C basement wells induce a vacuum influence over an approximate 3,900-square-foot area in the southern aspect of the basement, while the extraction wells in the mid-basement area induce vacuum influence over an approximate 37,500-square-foot area. Five of eight mid-basement monitoring points are within the target area shown to have vacuum influence. Additional monitoring points will be needed to determine a more accurate measure of the SSD-system radius of influence. Vacuum influence has not been observed at VMPs near active extraction points SSD-29-C and SSD-34-C in the northern target area.

4.4 SUB-SLAB-DEPRESSURIZATION-SYSTEM INFLUENT-VAPOR SAMPLES

Influent-vapor samples were collected monthly to monitor SSD-system operation. VOC concentrations at the granular activated-carbon (GAC) influent, midpoint (after the lead unit), and effluent (after the second unit) are monitored to determine when the midpoint concentration reaches 50% of the influent; when it does, the lead GAC unit is changed out. These samples also allow monitoring of influent-concentration trends over time. Samples were collected directly from all three sampling ports of both SSD systems by connecting a clean one-liter Summa[®] canister (batch certified) to the Teflon[®] tubing of each sampling port and opening the valve for approximately one minute. The October and November 2013 samples were submitted to TestAmerica Laboratories, Inc. in Knoxville, Tennessee; subsequent monthly samples were submitted to Pace Analytical Services, Inc. in Minneapolis, Minnesota (the new project

laboratory) for VOC analysis using United States Environmental Protection Agency (USEPA) Toxic Organic Method (TO-15).

Table 4-3 summarizes the influent-vapor concentrations of target VOCs in samples collected over time (from system startup in March 2008 through March 2014). These results are displayed graphically on Figures 12 and 13 in Appendix G. Table 4-3 also provides average influent concentrations for the current (October 2013–March 2014) and previous (April–September 2013) reporting periods. The average influent VOC concentration in Building A during the current reporting period $(4,212 \,\mu\text{g/m}^3)$ is higher than that observed during the previous semiannual reporting period $(3,750 \,\mu\text{g/m}^3)$. This increase is attributed to an abnormally high toluene concentration $(9,820 \,\mu\text{g/m}^3)$ measured in January 2014.

As indicated in Section 2.2 of Appendix G, this toluene result appears to be a one-time occurrence, as a concentration this high had not been detected in previous monitoring episodes. No construction was occurring near the Building A system during this time. If the January 2014 outlier is excluded, the average influent VOC concentrations for Building A are lower than those detected in the previous semiannual reporting period. Average influent VOC concentrations in Building C are also lower than concentrations detected during the previous semiannual reporting period: $345 \mu g/m^3$ compared to $771 \mu g/m^3$, respectively. Vinyl chloride, which has only been detected in 126-C during the recent sampling events, has not been detected in the Building C SSD-system influent. Overall, influent VOC concentrations for both SSD systems have been relatively stable since 2009 (see Figures 12 and 13 in Appendix G).

VOC removal rates (SSD-system influent mass) in Building A are 0.021 to 0.166 pounds per day (lbs/day); these rates are similar to the removal rates (0.018 to 0.172 lbs/day) observed in the previous semiannual reporting period. The Building A system has removed 11.13 lbs of VOCs during this reporting period, 9.4 lbs in the previous reporting period, and 108.5 lbs of VOCs total since system startup in March 2008. VOC removal rates in Building C during the current reporting period are between 0.077 lbs/month and 0.213 lbs/month; these rates are lower than the removal rates (0.018 to 0.968 lbs/month) observed during the previous semiannual reporting period. The Building C SSD-system has removed 0.84 lbs of VOCs this reporting period, 1.7 lbs in the previous reporting period, and 7.75 lbs since system startup in March 2008.

4.5 SUB-SLAB-DEPRESSURIZATION-SYSTEM CONCLUSIONS

In general, the flow rate and induced vacuum for the SSD systems are performing as designed. However, the induced-vacuum area for the middle basement area of Building C is unknown because the current monitoring network is not adequate for evaluation. The induced-vacuum influence for the Building A system is at least 0.05-inches water column over areas of 5,600-square-feet on the main floor (encompassing the plating shop) and 2,400-square-feet in the basement. The induced-vacuum influence for the Building C SSD-system extends over an approximate 3,900-square-foot area in the southern basement and over an approximate 37,500-square-foot area in the middle basement. The Building C middle basement requires additional monitoring points to accurately determine the area of influence.

Table 4-1

Summary of Positive Detects for Vapor Samples Building A Plating Shop Lockheed Martin Corporation, Middle River Complex Middle River, Maryland Page 1 of 5

				S	SD-11-A								SS	SD-12-A				
Sample ID:	SV-11-A	SV-11-A	SV-11-A	SV-11-A	SV-11-A	SV-11-A	SV-11-A	SV-11-A	SV-11-A	SV-12-A	SV-12-A	SV-12-A	SV-12-A	SV-12-A	SV-12-A	SV-12-A	SV-12-A	SV-12-A
Sample Date:	Mar-06	Jul-08	Nov-08	Oct-09	Feb-12	Aug-12	Feb-13	Aug-13	Feb-14	Mar-06	Jul-08	Nov-08	Oct-09	Feb-12	Aug-12	Feb-13	Aug-13	Feb-14
Volatile organic compounds (u	ıg/m³)																	
1,1-Dichloroethane	8,070	12,000	4,600	NS	NS	NS	NS	NS	NS	26,900	2,400	11,000	NS	NS	NS	NS	NS	NS
1,1-Dichloroethene		3,900	1,900	NS	NS	NS	NS	NS	NS		1,800	9,900	NS	NS	NS	NS	NS	NS
1,1,1-Trichloroethane				NS	NS	NS	NS	NS	NS		780	3,700	NS	NS	NS	NS	NS	NS
1,2,4-Trichlorobenzene				NS	NS	NS	NS	NS	NS				NS	NS	NS	NS	NS	NS
Chloroethane		460		NS	NS	NS	NS	NS	NS				NS	NS	NS	NS	NS	
Methylene chloride			4,800	NS	NS	NS	NS	NS	NS				NS	NS	NS	NS	NS	NS
Benzene	257 J			NS	NS	NS	NS	NS	NS	61 J			NS	NS	NS	NS	NS	NS
Carbon tetrachloride				NS	NS	NS	NS	NS	NS	8 J			NS	NS	NS	NS	NS	
Chloroform	11 J			NS	NS	NS	NS	NS	NS	55 J			NS	NS	NS	NS	NS	NS
cis-1,2-Dichloroethene	163,000 J	79,000	31,000	NS	NS	NS	NS	NS	NS	18,800	1,200	2,900	NS	NS	NS	NS	NS	
Dichlorodifluoromethane				NS	NS	NS	NS	NS	NS				NS	NS	NS	NS	NS	
Ethylbenzene	76			NS	NS	NS	NS	NS	NS	44 J			NS	NS	NS	NS	NS	
Methyl tert-butyl ether	425 J		NS	206 J		NS												
Tetrachloroethene	387			NS	NS	NS	NS	NS	NS	181 J			NS	NS	NS	NS	NS	NS
Toluene	309	500		NS	NS	NS	NS	NS	NS	119 J			NS	NS	NS	NS	NS	NS
Total Xylenes	227			NS	NS	NS	NS	NS	NS	340 J			NS	NS	NS	NS	NS	
trans-1,2-Dichloroethene	1,980 J			NS	NS	NS	NS	NS	NS	240 J			NS	NS	NS	NS	NS	
Trichloroethene	2,150 J	2,800	850	NS	NS	NS	NS	NS	NS	81,400	3,500	6,800	NS	NS	NS	NS	NS	NS
Vinyl chloride	727 J			NS	NS	NS	NS	NS	NS	42 J			NS	NS	NS	NS	NS	NS
TOTAL VOCs	177,619 J	98,660	43,150	NS	NS	NS	NS	NS	NS	128,395 J	9,680	34,300	NS	NS	NS	NS	NS	NS

^{-- =} non-detect (below detection limit)

J = estimated value

NS = not sampled

SSD - sub-slab depressurization

SV - soil vapor

VOCs = volatile organic compounds

μg/m³ = micrograms per cubic meter air

Table 4-1

Summary of Positive Detects for Vapor Samples Building A Plating Shop Lockheed Martin Corporation, Middle River Complex Middle River, Maryland Page 2 of 5

						SSD-	13-A						
Sample ID:	SV-13-A	SV-13-A	SV-13-A D	SV-13-A	SV-13-A	SV-13-A	SV-13-A	SV-13-A	SV-13-A	SV-13-A	SV-13-A	SV-13-A	SV-13-A
Sample Date:	Mar-06	Dec-06	Dec-06	Apr-07	Oct-07	Jul-08	Nov-08	Oct-09	Feb-12	Aug-12	Feb-13	Aug-13	Feb-14
Volatile organic compound	s (ug/m3)												
1,1-Dichloroethane	17,900	9,080	9,360	11,000	3,400	200		NS	NS	NS	NS	NS	NS
1,1-Dichloroethene					-	520	16	NS	NS	NS	NS	NS	NS
1,2,4-Trichlorobenzene								NS	NS	NS	NS	NS	NS
1,1,1-Trichloroethane						550		NS	NS	NS	NS	NS	NS
Methylene chloride							20	NS	NS	NS	NS	NS	NS
Benzene	61 J	82	88					NS	NS	NS	NS	NS	NS
Carbon tetrachloride								NS	NS	NS	NS	NS	NS
Chloroform	59	85 J	96 J	65 J				NS	NS	NS	NS	NS	NS
cis-1,2-Dichloroethene	230,000 J	242,000	234,000	292,000	15,000	3,800	47	NS	NS	NS	NS	NS	NS
Dichlorodifluoromethane								NS	NS	NS	NS	NS	NS
Ethylbenzene	27 B							NS	NS	NS	NS	NS	NS
Methyl tert-butyl ether	155 J					NS							
Tetrachloroethene	215	178	195	166 J				NS	NS	NS	NS	NS	NS
Toluene	70				1,100	I	170	NS	NS	NS	NS	NS	NS
Total Xylenes	83 J				-	-	15	NS	NS	NS	NS	NS	NS
trans-1,2-Dichloroethene	1,190 J	3,160	3,470	4,650	-	-		NS	NS	NS	NS	NS	NS
Trichloroethene	270,000 J	369,000	352,000	326,000	820	4,700	46	NS	NS	NS	NS	NS	NS
Vinyl chloride	182 J	618	701	549				NS	NS	NS	NS	NS	NS
TOTAL VOCs	519,942 J	624,202 J	599,910 J	634,430 J	20,320	9,770	314	NS	NS	NS	NS	NS	NS

-- = non-detect (below detection limit)

D = duplicate

J = estimated value

NA = not applicable

NS - not sampled

SSD = sub-slab depressurization

SV = soil vapor

VOCs = volatile organic compounds

Table 4-1

Summary of Positive Detects for Vapor Samples Building A Plating Shop Lockheed Martin Corporation, Middle River Complex Middle River, Maryland Page 3 of 5

									015-A-SV								
Sample ID:	015-A-SV	015-A-SV	015-A-SV	015-A-SV	015-A-SV	015-A-SV	015-A-SV	015-A-SV	015-A-SV	015-A-SV	015-A-SV	015-A-SV	015-A-SV	015-A-SV	015-A-SV	015-A-SV	015-A-SV
Sample Date:	Mar-06	Dec-06	Apr-07	Oct-07	Oct-07	Jul-08	Nov-08	Oct-09	Aug-10	Feb-11	Aug-11	Oct-11	Feb-12	Aug-12	Feb-13	Aug-13	Feb-14
Volatile organic compou	nds (µg/m³)																
1,1-Dichloroethane	27,700 J	2,160	6,010	5,700	7,600	320	480	0.4 J	58	12	1.7	51	65	77	13	45	14.6
1,1-Dichloroethene						3,400	6,400	3.4	1,200	150	12	1,100	780	1,500	490	1,100 J	369
1,2,4-Trichlorobenzene	-			-								-			-		
1,1,1-Trichloroethane	-			-		9,800	2,500			380		1,100	840	770	140	280 J	76.3
Benzene	51 J	22 J								0.4 J						0.49	0.64
Carbon tetrachloride	6 J										0.6	0.96			0.77 J	0.83 J	
Chlorodifluoromethane					-							-			-		5.8 J
Chloroform	63 J	68	109	-					J	0.9 J	1.1	5.2		18	6.8	19	64.7
cis-1,2-Dichloroethene	118,000 J	83,800	167,000	140,000	190,000	7,800	20,000	36	1,800	200	320	1,800	1,100	2,000	1,300	2,700	1,110
Dichlorodifluoromethane								3.2 J		2	2.7	2.2			2.7	2.8	2.1
Ethylbenzene	794 J	43 J		-				4.6		2	3.6	0.79			2.3	7.5	
Methyl tert-butyl ether	1,050 J	19 J		-		NA	NA					-			-		
Methylene Chloride										3 B	0.9	0.6			0.74	0.99	31.6 J
Napthalene										1 UL	4				0.8	1.2 J	
Tetrachloroethene	346 J	55 J	99	-								1.4			-	3.9	
Toluene	431 J	16 J	15 J	-			480	210	14	27	28	15	47	8 J	14	240 J	7.1
Total Xylenes	5,150 J						310	13.9	0.7	10	27.9	5.9			17.3	57	4.7 J
trans-1,2-Dichloroethene	1,370 J	1,430	4,660	2,100	3,200				99	13	2.7	46	46	69	23	79	25
Trichloroethene	154,000 J	161,000	326,000	150,000	220,000	17,000	12,000	8.1	1,300	340	18	3,400	2,400	2,600	710	1,600	564
Vinyl chloride	100 J	210	491						9.8	0.8	0.26	4		7.3 J	1.4	7.5 J	
TOTAL VOCs	309,061 J	248,823	504,383	297,800	420,800	38,320	42,170	280	4,482	1,142	424	7,533	5,278	7,050 J	2,723 J	6,145 J	2,276 J

^{-- =} non-detect (below detection limit)

B = analyte detected in laboratory blank

D = duplicate

J = estimated value

NA = not applicable

SSD = sub-slab depressurization

SV = soil vapor

UL = non-detect, result biased low

VOCs = volatile organic compounds

 $\mu g/m^3$ = micrograms per cubic meter air

Table 4-1

Summary of Positive Detects for Vapor Samples Building A Plating Shop Lockheed Martin Corporation, Middle River Complex Middle River, Maryland Page 4 of 5

				SS	D-16-A								SSD-1	7-A			
Sample ID:	SV-16-A	SV-16-A	SV-16-A	SV-16-A	SV-16-A	SV-16-A	SV-16-A	SV-16-A	SV-16-A	SV-17-A							
Sample Date:	Mar-06	Jul-08	Nov-08	Oct-10	Feb-12	Aug-12	Feb-13	Aug-13	Feb-14	Mar-06	Nov-08	Oct-09	Feb-12	Aug-12	Feb-13	Aug-13	Feb-14
Volatile organic compour	nds (µg/m³)																
1,1-Dichloroethane	42,700 J	180	1,400	40	NS	NS	NS	NS	NS	5.6	47	6.7	NS	NS	NS	NS	NS
1,1-Dichloroethene		2,100	18,000	770	NS	NS	NS	NS	NS		38	6	NS	NS	NS	NS	NS
1,2,4-Trichlorobenzene					NS	NS	NS	NS	NS				NS	NS	NS	NS	NS
Chloroethane			53		NS	NS	NS	NS	NS				NS	NS	NS	NS	NS
1,1,1-Trichloroethane		67	420	5.7 J	NS	NS	NS	_	NS		21		NS	NS	NS	NS	NS
Benzene	46.1 J				NS	NS	NS	NS	NS	0.9 J		0.4	NS	NS	NS	NS	NS
Carbon tetrachloride	10.7 J				NS	NS	NS	NS	NS	0.8 J		0.5	NS	NS	NS	NS	NS
Chloroform	47.4 J				NS	NS	NS		NS	1.1 J	78	27	NS	NS	NS	NS	NS
cis-1,2-Dichloroethene	5,820	710	3,000	88	NS	NS	NS	NS	NS	43.8	8	2.4	NS	NS	NS	NS	NS
Dichlorodifluoromethane					NS	NS	NS	NS	NS	2.8		2.8	NS	NS	NS	NS	NS
Ethylbenzene	19.2 B				NS	NS	NS	NS	NS	0.5 B		3.3	NS	NS	NS	NS	NS
Methyl tert-butyl ether	1,490 J				NS	NS	NS	NS	NS	0.7 J	NA	0.5 J	NS	NS	NS	NS	NS
Tetrachloroethene	514 J				NS	NS	NS	_	NS	0.7 J		8.0	NS	NS	NS	NS	NS
Toluene	30.8 B			7.9 J	NS	NS	NS	NS	NS	2.3		58	NS	NS	NS	NS	NS
Total Xylenes	68.1 J				NS	NS	NS	NS	NS	1.7 J		11.3	NS	NS	NS	NS	NS
trans-1,2-Dichloroethene	297 J			9.7	NS	NS	NS	NS	NS	0.7 J		0.2 J	NS	NS	NS	NS	NS
Trichloroethene	6,870	1,300	3,700	130	NS	NS	NS	NS	NS	60.4	310	67	NS	NS	NS	NS	NS
Vinyl chloride	124 J		63	6.4	NS	NS	NS	NS	NS			0.1 J	NS	NS	NS	NS	NS
TOTAL VOCs	58,037 J	4,357	26,636	1,058 J	NS	NS	NS	NS	NS	122	502	187 J	NS	NS	NS	NS	NS

^{-- =} non-detect (below detection limit)

B = blank contamination

J = estimated value

NS = not sampled

SSD = sub-slab depressurization

SV = soil vapor

VOCs = volatile organic compounds

Table 4-1

Summary of Positive Detects for Vapor Samples Building A Plating Shop Lockheed Martin Corporation, Middle River Complex Middle River, Maryland Page 5 of 5

								018-A-S	V							
Sample ID:	018-A-SV	018-A-SV	018-A-SV	018-A-SV	018-A-SV	018-A-SV	018-A-SV	018-A-SV	018-A-SV	018-A-SV	018-A-SV	018-A-SV	018-A-SV	018-A-SV	018-A-SV	018-A-SV
Sample Date:	Mar-06	Dec-06	Apr-07	Oct-07	Oct-07	Nov-08	Oct-09	Aug-10	Feb-11	Aug-11	Oct-11	Feb-12	Aug-12	Feb-13	Aug-13	Feb-14
Location:	BLDG A	BLDG A	BLDG A	BLDG A	BLDG A	BLDG A	BLDG A	BLDG A	BLDG A	BLDG A	BLDG A	BLDG A	BLDG A	BLDG A	BLDG A	BLDG A
Volatile organic compound	ds (µg/m³)															
1,1-Dichloroethane	9,550 J	1,750	78,600	10	76,000	44,000	1,100	750	3		2,200	1,300	1,200	410	92 J	3.1
1,1-Dichloroethene						1,500,000	43,000	32,000	48	2.9	130,000	69,000	42,000	54,000	6,100 J	230
1,2,4-Trichlorobenzene																
1,2,4-Trimethylbenzene	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	1.7 J
Benzene	1.5 J								1	0.58	7.8			23	1.3	0.96
Carbon tetrachloride	1.8 J	17.3	337								6.7			7	1.7 J	
Chlorodifluoromethane																8.9
Chloroform	5.7	8.8 J	316						0.6 J	0.65 J	14			15	1.6 J	1.7 J
cis-1,2-Dichloroethene	2,040 J	6,270	232,000	30	250,000	170,000	4,400	3,200	17	1.3	23,000	6,700	8,200	3,800	850 J	16.3
Dichlorodifluoromethane									2	2.5	2.2			2.80	3.3	2.2
Ethylbenzene	0.8 J								1	2.6	0.97				1.1	
Methyl tert-butyl ether	14.4	5.3 J														
Methylene Chloride									4 B	0.81			450 B		1.7 J	19.8
Napthalene										11 J			450 J		6.9	2.8
Tetrachloroethene	9.9	91.2	4,470								120			110	6.2 J	
Toluene	1.6 B	2.1 J	29.6 J						4	32	19			4.1	27 J	2.6
Total Xylenes	2.5 J						500		5	14.9	1.63 J			0.62	4.5	2.0 J
trans-1,2-Dichloroethene	15.4	113	4,160								71			66.00	6.4 J	
Trichloroethene	20,900 J	162,000	6,200,000	330	3,900,000	2,700,000	63,000	64,000	160	7.2	800,000	83,000	69,000	95,000	4,000 J	174
Vinyl chloride	7	91.2	1,850								550	300 J	180 J	170	24	0.57
TOTAL VOCs	32,551 J	170,349 J	6,521,763 J	370	4,226,000	4,414,000	112,000	99,950	246 J	76 J	955,993 J	160,300 J	121,480 J	153,609	11,128 J	467 J

^{-- =} non-detect (below detection limit)

B = analyte detected in laboratory blank

D = duplicate value

J = estimated value

NA = not applicable

NS = not sampled

SSD = sub-slab depressurization

SV = soil vapor

VOCs = volatile organic compounds

 $[\]mu g/m^3$ = micrograms per cubic meter air

Table 4-2

Summary of Positive Detects for Vapor Samples Building C Basement Area Lockheed Martin Corporation, Middle River Complex Middle River, Maryland Page 1 of 8

									001-C-SV									
Sample ID:	001-C-SV	001-C-SV	001-C-SV	001-C-SV	001-C-SV	001-C-SV	001-C-SV	001-C-SV	001-C-SV	001-C-SV	001-C-SV	001-C-SV	001-C-SV	001-C-SV	001-C-SV	001-C-SV	001-C-SV	001-C-SV
Sample Date:	Mar-06	Mar-06	Dec-06	Apr-07	Oct-07	Jul-08	Nov-08	Oct-09	Aug-10	Feb-11	Aug-11	Feb-12	Jun-12	Jul-12	Aug-12	Feb-13	Aug-13	Feb-14
Volatile organic compour	nds (µg/m³)																	
1,1-Dichloroethane	5,410	2,960									6.7				1.4 J	NS	NS	NS
1,1-Dichloroethene						24	39	1 J			2.3			23		NS	NS	NS
1,1,1-Trichloroethane											2.8					NS	NS	NS
1,2,4-Trichlorobenzene																NS	NS	NS
Benzene		33.4 J							-		0.39 J					NS	NS	NS
Carbon tetrachloride			-						1							NS	NS	NS
Chloroform	86.8 J	57 J						7.4	18	4	13	5			8.9 J	NS	NS	NS
cis-1,2-Dichloroethene	792,000 J	840,000 J	481,000	1,550,000	260,000	1,100	3,300	230	360	97	250	100	110	1,900	170	NS	NS	NS
Dichlorodifluoromethane								2.2 J	-	2	2.6	2.4 J				NS	NS	NS
Ethylbenzene	39.3 B	34.8 B	-						1		6.6					NS	NS	NS
Methyl tert-butyl ether	332	238				NA	NA		-	1						NS	NS	NS
Methylene Chloride										33 J	1.1			32	30 B	NS	NS	NS
Napthalene										1 UR	3.1					NS	NS	NS
Styrene						13										NS	NS	NS
Tetrachloroethene	107 J	100 J	158 J	136 J				3 J	6 J	2	4.8	1.8 J			8.7 J	NS	NS	NS
Toluene	103 B	86.8								1 J	3.6	1.2 J			13	NS	NS	NS
Total Xylenes	68.7 J	81.5 J	-					3.2	19		18				5.1 J	NS	NS	NS
trans-1,2-Dichloroethene	5,180	2,580	5,200	5,930	3,500			49	88	25	44	18			33	NS	NS	NS
Trichloroethene	19,200	16,400 J	19,600	21,100	8,500	450	850	330	620	190	550	160	150	700	300	NS	NS	NS
Vinyl chloride	1,320	542	761	578		58	40							14		NS	NS	NS
TOTAL VOCs	823,847 J	863,113 J	506,719 J	1,577,744 J	272,000	1,645	4,229	626 J	1,111 J	355 J	909 J	288 J		2,669	570 J	NS	NS	NS

-- = non-detect (below detection limit)

B = blank contamination

D = duplicate

J = estimated value

NA = not applicable NS = not sampled

SSD = sub-slab depressurization SV = soil vapor

UR = nondetect, data rejected

VOCs = volatile organic compounds

μg/m³ = micrograms per cubic meter air

Table 4-2

Summary of Positive Detects for Vapor Samples Building C Basement Area Lockheed Martin Corporation, Middle River Complex Middle River, Maryland Page 2 of 8

			S	SD-2-C									SSD	-3-C				
Sample ID:	SV-2-C	SV-2-C	SV-2-C	SV-2-C	SV-2-C	SV-2-C	SV-2-C	SV-2-C	SV-3-C	SV-3-C	SV-3-C	SV-3-C	SV-3-C	SV-3-C	SV-3-C	SV-3-C	SV-3-C	SV-3-C
Sample Date:	Mar-06	Jul-08	Nov-08	Feb-12	Aug-12	Feb-13	Aug-13	Feb-14	Mar-06	Jul-08	Nov-08	Feb-12	Jun-12	Jul-12	Aug-12	Feb-13	Aug-13	Feb-14
Volatile organic compound	s (µg/m3)																	
1,1-Dichloroethane	10.6 B			NS	NS	NS	NS	NS	3.4 B			NS			NS	NS	NS	NS
1,2,4-Trichlorobenzene			-	NS	NS	NS	NS	NS		-		NS		-	NS	NS	NS	NS
Methylene chloride		44	I	NS	NS	NS	NS	NS	-	ŀ	-	NS		ŀ	NS	NS	NS	NS
Benzene	18.3 J		8.4	NS	NS	NS	NS	NS	6.7 J	64		NS		-	NS	NS	NS	NS
Carbon tetrachloride		-	I	NS	NS	NS	NS	NS	1.8 J	ŀ	-	NS		ŀ	NS	NS	NS	NS
Chloroform	552 J	-	18	NS	NS	NS	NS	NS	66	ŀ	-	NS		ŀ	NS	NS	NS	NS
cis-1,2-Dichloroethene	320 J	22	350	NS	NS	NS	NS	NS	93	-	9	NS		11	NS	NS	NS	NS
Dichlorodifluoromethane	4.5 J		-	NS	NS	NS	NS	NS				NS		-	NS	NS	NS	NS
Ethylbenzene	38.2 J	-	I	NS	NS	NS	NS	NS	19	ŀ	-	NS		ŀ	NS	NS	NS	NS
Methyl tert-butyl ether	1,000	NA	NA	NS	NS	NS	NS	NS	469	ŀ	-	NS		I	NS	NS	NS	NS
Tetrachloroethene	174 J	-	I	NS	NS	NS	NS	NS	388	ŀ	14	NS		58	NS	NS	NS	NS
Toluene	65.9 J	14	-	NS	NS	NS	NS	NS	18.8		NS	NS		-	NS	NS	NS	NS
Total Xylenes	95.5 J		-	NS	NS	NS	NS	NS	70.9	-		NS	8.7	-	NS	NS	NS	NS
trans-1,2-Dichloroethene	20.9 J			NS	NS	NS	NS	NS	24.4			NS			NS	NS	NS	NS
Trichloroethene	408 J	55	770	NS	NS	NS	NS	NS	2,130	49	60	NS	49	310	NS	NS	NS	NS
Vinyl chloride	15.9 J			NS	NS	NS	NS	NS				NS			NS	NS	NS	NS
TOTAL VOCs	2,724 J	135	1,146	NS	NS	NS	NS	NS	3,291 J	113	83	NS	58	379	NS	NS	NS	NS

-- = non-detect (below detection limit)

B = blank contamination

J = estimated value

NA = not applicable

NS = not sampled

SSD = sub-slab depressurization

SV = soil vapor VOCs = volatile organic compounds

 $\mu g/m^3$ = micrograms per cubic meter air

Table 4-2

Summary of Positive Detects for Vapor Samples Building C Basement Area Lockheed Martin Corporation, Middle River Complex Middle River, Maryland Page 3 of 8

						S	SD-4-C						
Sample ID:	SV-4-C	SV-4-C	SV-4-C	SV-4-C	SV-4-C	SV-4-C	SV-4-C	SV-4-C	SV-4-C	SV-4-C	SV-4-C	SV-4-C	SV-4-C
Sample Date:	Mar-06	Dec-06	Apr-07	Oct-07	Jul-08	Nov-08	Feb-12	Jun-12	Jul-12	Aug-12	Feb-13	Aug-13	Feb-14
Volatile organic compoun	ıds (µg/m³)											
1,1-Dichloroethane	1,010						NS			NS	NS		NS
1,1-Dichloroethene					9.7	9.9	NS			NS	NS	1.7	NS
1,2,4-Trichlorobenzene							NS			NS	NS		NS
Methylene chloride						36	NS			NS	NS	1.2	NS
Benzene	51.2	50	71.2				NS			NS	NS	0.65	NS
Carbon tetrachloride							NS			NS	NS	0.83 J	NS
Chloroform	131	7 J			270	240	NS	33	46	NS	NS	88	NS
cis-1,2-Dichloroethene	65,800	79,300	58,100	11,000	650	520	NS	200	2,500	NS	NS	71	NS
Dichlorodifluoromethane							NS			NS	NS	2.3	NS
Ethylbenzene	58.9	4.3 J	4 J				NS			NS	NS	1.5 J	NS
Methyl tert-butyl ether	420					NS	NS			NS	NS		NS
Tetrachloroethene	72.1	33.9	33.8 J				NS			NS	NS	2.2 J	NS
Toluene	211	51.2	72.1	210			NS			NS	NS	14	NS
Total Xylenes	264						NS			NS	NS	4.7	NS
trans-1,2-Dichloroethene	1,020	661	759	140		-	NS		-	NS	NS	20	NS
Trichloroethene	14,400	28,300	16,500	2,700	430	300	NS	240	2,500	NS	NS	140	NS
Vinyl chloride	663	381	609		16	13	NS			NS	NS	0.65	NS
TOTAL VOCs	84,101	108,788 J	76,149 J	14,050	1,376	1,119	NS	473	5,046	NS	NS	349 J	NS

-- = non-detect (below detection limit)

D = duplicate

J = estimated

NA = not applicable

NS = not sampled

SSD = sub-slab depressurization

SV = soil vapor

VOCs = volatile organic compounds

Table 4-2

Summary of Positive Detects for Vapor Samples Building C Basement Area Lockheed Martin Corporation, Middle River Complex Middle River, Maryland Page 4 of 8

	SSD-5-C									SSD-6-C						
Sample ID:	SV-5-C	SV-5-C	SV-5-C	SV-5-C	SV-5-C	SV-5-C	SV-5-C	SV-5-C	SV-5-C	SV-6-C	SV-6-C	SV-6-C	SV-6-C	SV-6-C	SV-6-C	SV-6-C
Sample Date:	Mar-06	Nov-08	Oct-09	Aug-10	Feb-12	Aug-12	Feb-13	Aug-13	Feb-14	Mar-06	Nov-08	Feb-12	Aug-12	Feb-13	Aug-13	Feb-14
Volatile organic compounds (μg/m³)																
1,1-Dichloroethane				0.12 J	NS	NS	NS	NS	NS	0.5 B		NS	NS	NS	NS	NS
1,2,4-Trichlorobenzene					NS	NS	NS	NS	NS			NS	NS	NS	NS	NS
1,2,4-Trimethylbenzene					NS	NS	NS	NS	NS		12	NS	NS	NS	NS	NS
Benzene	9 J		0.36	0.39	NS	NS	NS	NS	NS	23.5 J		NS	NS	NS	NS	NS
Trichlorofluormethane		19			NS	NS	NS	NS	NS			NS	NS	NS	NS	NS
Methylene chloride				0.58 J	NS	NS	NS	NS	NS		52	NS	NS	NS	NS	NS
Carbon tetrachloride	0.9 J		0.4 J	0.61	NS	NS	NS	NS	NS	1.4 J		NS	NS	NS	NS	NS
Chloroform	286	15	8.5	13	NS	NS	NS	NS	NS	390		NS	NS	NS	NS	NS
cis-1,2-Dichloroethene	0.8 B				NS	NS	NS	NS	NS	2.7 B		NS	NS	NS	NS	NS
Dichlorodifluoromethane	3.1 J		3.7	0.73	NS	NS	NS	NS	NS	2.6 J		NS	NS	NS	NS	NS
Ethylbenzene	93.6 J		0.24 J	0.41	NS	NS	NS	NS	NS	164 J		NS	NS	NS	NS	NS
Methyl tert-butyl ether	572	NA			NS	NS	NS	NS	NS	416	NS	NS	NS	NS	NS	NS
Tetrachloroethene	82.9 J	64	66	110	NS	NS	NS	NS	NS	76.3 J	42	NS	NS	NS	NS	NS
Toluene	157 J		0.53	0.56	NS	NS	NS	NS	NS	249		NS	NS	NS	NS	NS
Total Xylenes	407 J		1.08	1.64 J	NS	NS	NS	NS	NS	935		NS	NS	NS	NS	NS
trans-1,2-Dichloroethene					NS	NS	NS	NS	NS			NS	NS	NS	NS	NS
Trichloroethene	2 B		0.94	2.6	NS	NS	NS	NS	NS	5.1 B		NS	NS	NS	NS	NS
Vinyl chloride					NS	NS	NS	NS	NS			NS	NS	NS	NS	NS
TOTAL VOCs	1,614 J	98	82 J	131 J	NS	NS	NS	NS	NS	2,266 J	106	NS	NS	NS	NS	NS

-- = non-detect (below detection limit)

D = duplicate

J = estimated

NA = not applicable

NS = not sampled

SSD = sub-slab depressurization

SV = soil vapor

VOCs = volatile organic compounds

Table 4-2

Summary of Positive Detects for Vapor Samples Building C Basement Area Lockheed Martin Corporation, Middle River Complex Middle River, Maryland Page 5 of 8

			060-C-SV		088-C-SV						
Sample ID:	060-C-SV	060-C-SV	060-C-SV	060-C-SV	060-C-SV	088-C-SV	088-C-SV	088-C-SV	088-C-SV	088-C-SV	
Sample Date:	Feb-12	Aug-12	Feb-13	Aug-13	Feb-14	Feb-12	Aug-12	Feb-13	Aug-13	Feb-14	
Volatile organic compoun	Volatile organic compounds (μg/m³)										
1,1-Dichloroethane	71 J	74	43	6.9	2.3			0.66			
1,2-Dichloroethane				0.53 J					0.62		
1,1-Dichloroethene	11 J	4.6 J	22	7.4	0.86 J	3.3 J		1	0.52 J		
1,1,1-Trichloroethane	11 J	9.5 J	19	19					0.67 J		
1,2,4-Trichlorobenzene											
1,2,4-Trimethylbenzene	20 J		9.5	5.4 J	3.2	39		5.4	5.4	1.8	
1,2,3-Trimethylbenzene			6.8	1.5 J	0.91	30		2.9	3	1.1	
1,3,5-Trimethylbenzene			14	5.8 J	2.2	11 J		1.1	1.7		
Benzene			5.9	0.62	0.85			1.1	0.97	1.2	
Trichlorofluoromethane											
Methylene chloride	25 B	15 B	5.8	3.4	10.7	9.4 B	6.5 B	0.92	1.30	82.5	
Naphthalene	280 J	360 J	67	4.3 J	4.4	540	180 J	61	15	22.3	
Carbon tetrachloride								0.77 J			
Chloroform	56	69	57	5	3.1	9.7 J	4.5 J	6.6	2.4		
Chlorodifluoromethane	18 B	6 J		260	5.8 J	34 B			210	3.2	
cis-1,2-Dichloroethene	200 J	230	460 J	23	16.5	670	290	470	33	17.6	
Dichlorodifluoromethane			4	3.8	2.8			3.2	6.8	2.6	
Ethylbenzene	190 J	160	390 J	150	96.5	15 J		1.1	2.6 J	2.2	
Methyl tert-butyl ether											
Tetrachloroethene	23 J	26 J	23	1.2 J	2.2			2.3	0.83 J		
Toluene	14 J	10 J	8	20	13.1	12 J		1.4	8.4		
Total Xylenes	1,200 J	2,600	4,100	780	791	150	5 J	9.9	18.1	14.7	
trans-1,2-Dichloroethene	26 J	24	18	3.5	1.1 J	14 J	5.4 J	5.4	1.9		
Trichloroethene	3,000	3,700	10,000	370	291	3,800	1,900	2,800	270	70.6	
Vinyl chloride								0.49			
TOTAL Volatile organic co	5,145 J	7,288 J	15,253 J	1,671 J	1,249 J	5,337 J	2,391 J	3,375 J	583 J	220	

^{-- =} non-detect (below detection limit)

J = estimated value

SSD = sub-slab depressurization

SV = soil vapor

VOCs = volatile organic compounds

μg/m3 = micrograms per cubic meter air

Table 4-2

Summary of Positive Detects for Vapor Samples Building C Basement Area Lockheed Martin Corporation, Middle River Complex Middle River, Maryland Page 6 of 8

		1	13-C-SV			126-C-SV						
Sample ID:	113-C-SV	113-C-SV	113-C-SV	113-C-SV	113-C-SV	126-C-SV	126-C-SV	126-C-SV	126-C-SV	126-C-SV		
Sample Date:	Feb-12	Aug-12	Feb-13	Aug-13	Feb-14	Feb-12	Aug-12	Feb-13	Aug-13	Feb-14		
Volatile organic compou	nds (µg/m³)											
1,1-Dichloroethane		-	2.2	2.2 J	-				-			
1,2-Dichloroethane												
1,1-Dichloroethene			1.7	0.69 J		360	1,000	680	720	199		
1,1,1-Trichloroethane			1.1	1.3 J								
1,2,4-Trichlorobenzene										4.3		
1,2,4-Trimethylbenzene			8.5	6.3 J		29 J			6.2 J			
1,2,3-Trimethylbenzene			2.8	3 J				5.5	5.8 J	1.4		
1,3,5-Trimethylbenzene			2.2	1.9 J						1.1 J		
Benzene			2	0.49 J	2.4	86	220	250	300	88.4		
Trichlorofluoromethane												
Methylene chloride	12 B	24 B	0.53	0.53 J	557 J	36 B	27 B	4.2	3.1 J	9.2		
Naphthalene	64 J	30 J	51	47		250	360	200	100 J	70.6		
Carbon tetrachloride					1.1			1.2				
Chloroform	38	59	50	3 J					2.3 J	0.84 J		
Chlorodifluoromethane	13 B	12 J	3.2	27	10.7 J	20 J						
cis-1,2-Dichloroethene	500	700	850	40		350	670	560	740	205		
Dichlorodifluoromethane			3.2	2.4 J	3.8 J			0.96	0.55 J	1.5 J		
Ethylbenzene			1.6	2.6 J		72	180	8.7	13.0 J	3.0		
Methyl tert-butyl ether												
Tetrachloroethene	14 J	21 J	15	0.69 J								
Toluene	15 J	16 J	3	7 J	6.1 J	54	92	19	45 J	14.7		
Total Xylenes			8.9	18.5 J	3.23	350	980	29	29 J	19.1		
trans-1,2-Dichloroethene			5.2	0.6 J	0.73 J	41 J	80	32	92			
Trichloroethene	5,700	8,900	16,000	290	7.0 J	280	2,900 J	920	2,400	177		
Vinyl chloride			1			82,000	110,000	37,000	28,000	11,900		
TOTAL VOCs	6,356 J	9,762 J	17,013	455 J	592 J	83,928 J	116,482 J	39,711	32,457 J	12,695 J		

^{-- =} non-detect (below detection limit)

D = duplicate

J = estimated value

SSD = sub-slab depressurization

SV = soil vapor

VOCs = volatile organic compounds

Table 4-2

Summary of Positive Detects for Vapor Samples Building C Basement Area Lockheed Martin Corporation, Middle River Complex Middle River, Maryland Page 7 of 8

			133-C-SV		135-C-SV								
Sample ID:	133-C-SV	133-C-SV	133-C-SV	133-C-SV	133-C-SV	135-C-SV	135-C-SV	135-C-SV	135-C-SV	135-C-SV			
Sample Date:	Feb-12	Aug-12	Feb-13	Aug-13	Feb-14	Feb-12	Aug-12	Feb-13	Aug-13	Feb-14			
Volatile organic compour	Volatile organic compounds (µg/m³)												
1,1-Dichloroethane				0.41 J	-			-					
1,2-Dichloroethane			0.7	0.66	0.92				0.49 J				
1,1-Dichloroethene				0.6	-	-		-					
1,1,1-Trichloroethane				5.2					0.78 J				
1,2,4-Trichlorobenzene													
1,2,4-Trimethylbenzene			2.1	28 J		81		4.1	2.1				
1,2,3-Trimethylbenzene			0.95	4.1 J				3.2					
1,3,5-Trimethylbenzene			0.6 J	3.6		27 J		1.2	1				
Benzene			1.3	0.62	0.77			0.75	1.1	0.33 J			
Trichlorofluoromethane													
Methylene chloride	2,700 J	230 B		0.53	20.2 J	23 B	58 B	0.49 J					
Naphthalene	2,200		110	42 J	4.7	510	580	280	6.7	3.8 J			
Carbon tetrachloride			2.5	0.77 J				52	1.7				
Chloroform	83 J		43	7.9	6.7	14 J		21	0.84				
Chlorodifluoromethane	1,500			190 J	4.3				89	2.1			
cis-1,2-Dichloroethene			33	2.5	8.4	220	260	130					
Dichlorodifluoromethane	130 J				3.2			2.7	3.4	2.1			
Ethylbenzene			0.93	2.2		40 J			3	4.2			
Methyl tert-butyl ether													
Tetrachloroethene	2,200	740	1,500	77	169	22 J		11					
Toluene	180 J	90 J	1.3	7.7	3.6 J	49		0.61	7.7				
Total Xylenes	60 J		1.5	10.4	2.61	210		2.56	14	22.4			
trans-1,2-Dichloroethene			25	3.1	3.6	15 J		3.9					
Trichloroethene	50,000	20,000	60,000	5,600	10,700	11,000	16,000	4,500	29	5.6			
Vinyl chloride				0.57									
TOTAL VOCs	59,053 J	21,060 J	61,723 J	5,988 J	10,928 J	12,211 J	16,898 J	5,014 J	161 J	40.5 J			

^{-- =} non-detect (below detection limit)

SSD = sub-slab depressurization

SV = soil vapor

VOCs = volatile organic compounds

D = duplicate

J = estimated value

Table 4-2

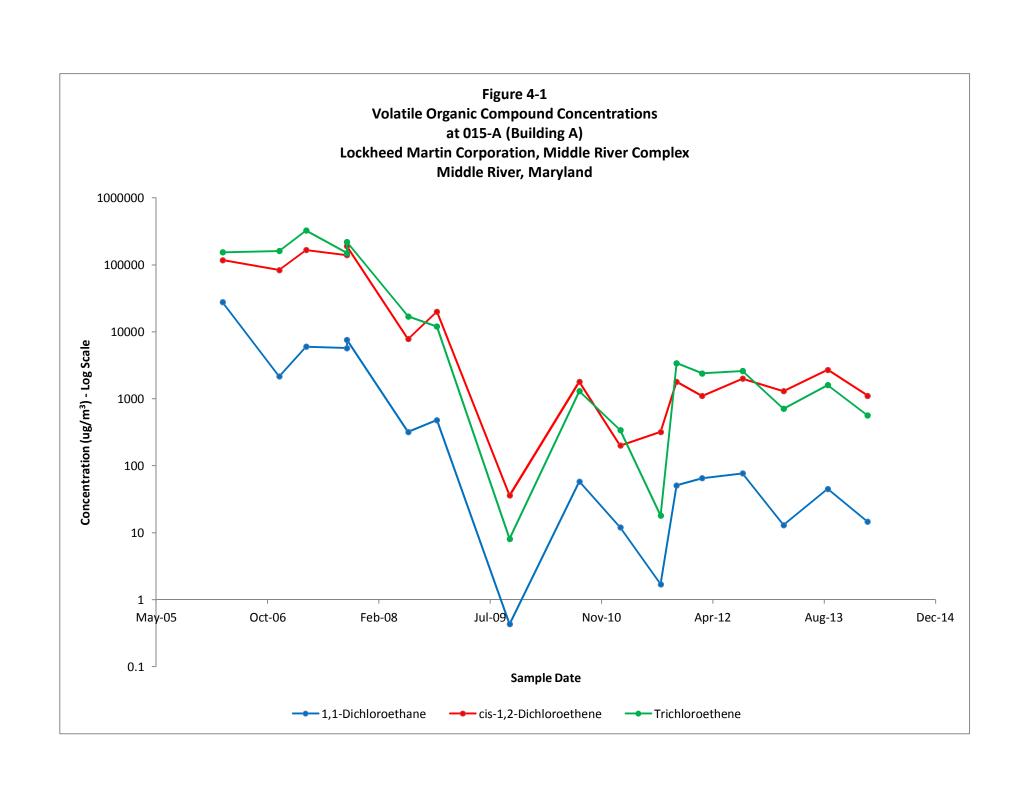
Summary of Positive Detects for Vapor Samples Building C Basement Area Lockheed Martin Corporation, Middle River Complex Middle River, Maryland Page 8 of 8

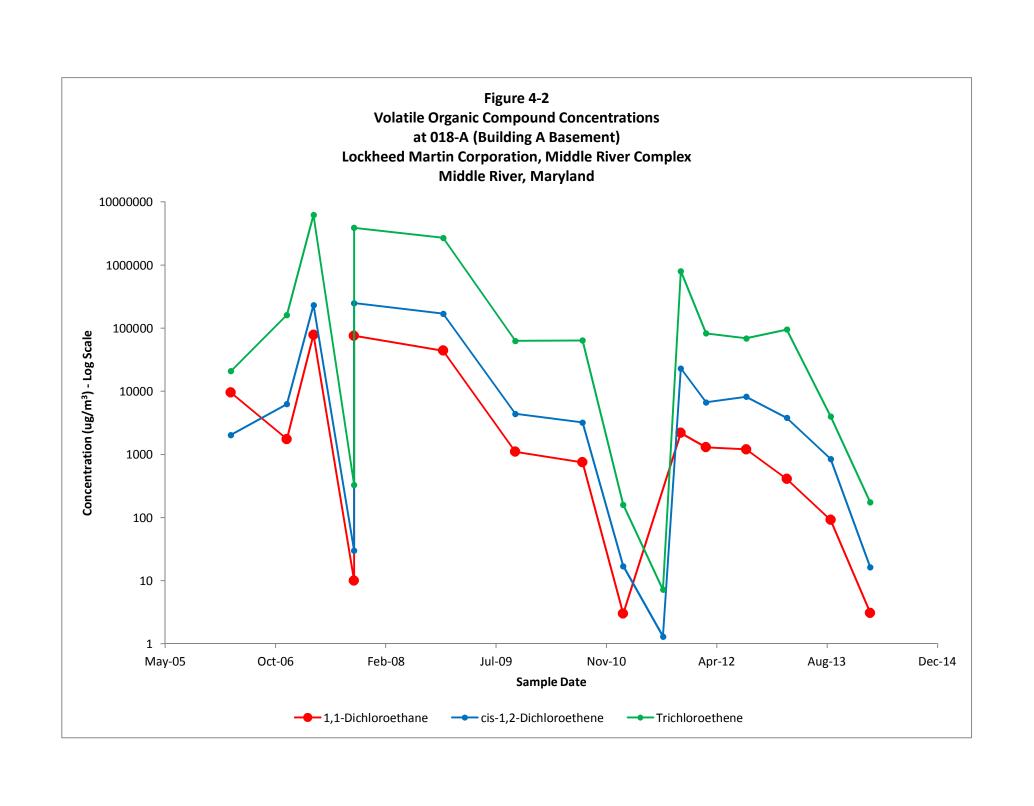
	SV-141-C
Sample ID:	SV-141-C
Sample Date:	Feb-14
Volatile organic compound	ls (µg/m³)
1,1-Dichloroethane	
1,1-Dichloroethene	1.7
1,2,4-Trichlorobenzene	
Methylene chloride	39.1
Benzene	0.88
Carbon tetrachloride	
Chlorodifluoromethane	2.6
Chloroform	
cis-1,2-Dichloroethene	2.2
Dichlorodifluoromethane	2.3
Ethylbenzene	2.2
Methyl tert-butyl ether	
Napthalene	4.1 J
Tetrachloroethene	
Toluene	3.7
Total Xylenes	15.3
trans-1,2-Dichloroethene	
Trichloroethene	25.2
Vinyl chloride	
TOTAL VOCs	99.28 J

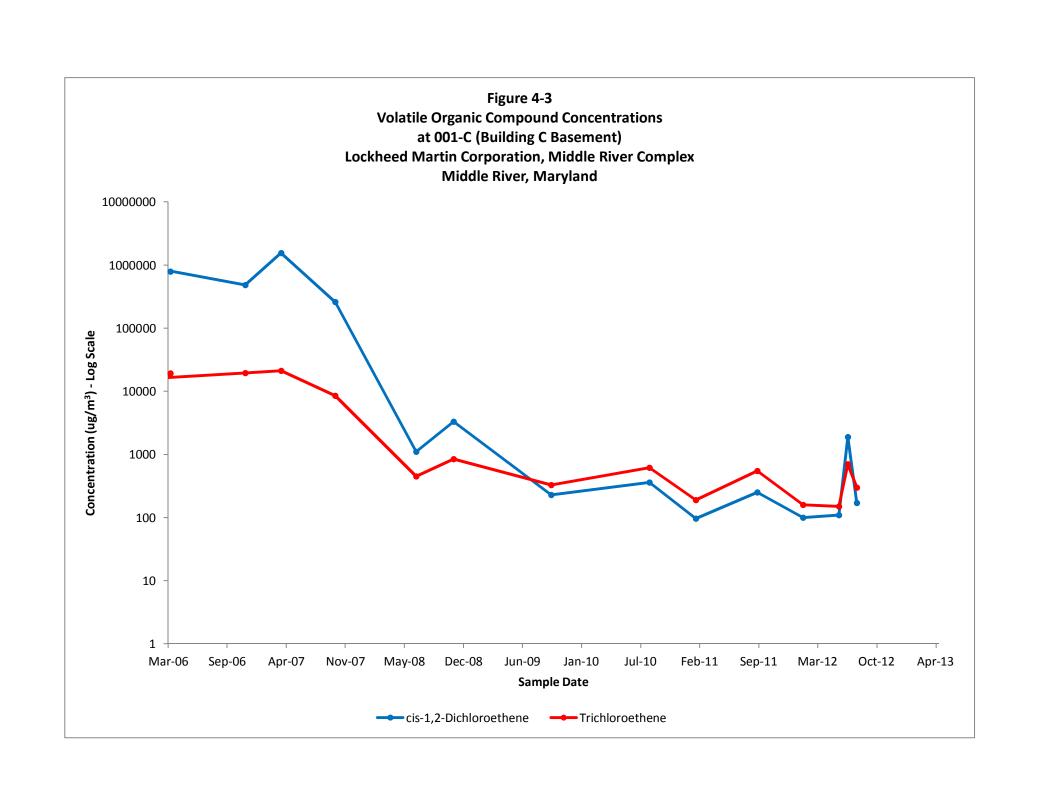
^{-- =} non-detect (below detection limit)

J = estimated value

NA = not applicable


NS = not sampled


SSD = sub-slab depressurization


SV = soil vapor

VOCs = volatile organic compounds

 $[\]mu$ g/m³ = micrograms per cubic meter air

Conclusions and Recommendations

5.1 CONCLUSIONS

Tetra Tech, Inc. (Tetra Tech) has completed the first of two rounds of vapor-intrusion monitoring (Round 16) scheduled for 2014 in Buildings A, B, and C at the LMC Properties, Inc. (LMPCI) Middle River Complex (MRC) in Middle River, Maryland. This ongoing investigation seeks to evaluate whether volatile organic compounds (VOCs) in sub-slab vapors (associated with soil and groundwater chemicals of concern [COC] at the site) might be moving into indoor air at Middle River Complex facilities. The data set is comprised of indoor air (IA) and sub-slab-vapor (SV) samples collected in February 2014 from interior locations in Buildings A, B, and C, and in the Fire Coat, Vertical-Launch System (VLS), Engineering Research (ER), and Program buildings (PB), as well as two follow-up samples (one each from Buildings A and C) collected in April 2014. Ambient air samples were collected at four background locations around the perimeter of the Middle River Complex. All data were validated to ensure compliance with analytical method requirements.

Indoor air quality (IAQ) data were compared to risk-based screening levels for industrial air set at the 10⁻⁵ (i.e., one-in-100,000 probability) risk level for carcinogens and at a hazard index of 1 for noncarcinogens (as published by the United States Environmental Protection Agency's [USEPA's] *Regional Screening Levels for Chemical Contaminants at Superfund Sites* [USEPA, 2014]) and to Occupational Safety and Health Administration (OSHA) permissible exposure limits (PELs). Alternate values, such as the "Threshold Limit Values" published by the American Council of Governmental Industrial Hygienists, were used for chemicals without OSHA PELs. Sub-slab-vapor (SV) data were compared to screening values derived using methods described in *Draft Guidance for Evaluating the Vapor-Intrusion to Indoor-Air Pathway*

from Groundwater and Soils [USEPA, 2002]) by applying an attenuation factor of 0.03 to the indoor-air screening-values.

Results from the Round 16 monitoring program led to the following conclusions:

Overall indoor-air quality—

- While some evidence of sub-slab vapor intrusion to indoor air at the Middle River Complex continues to be found, Round 16 results indicate that its impact on indoor air quality appears limited. Trichloroethene, naphthalene, ethylbenzene, and xylenes were detected at concentrations exceeding indoor-air screening levels. Trichloroethene exceedances were detected at two locations in February 2014, but not in the follow-up samples collected at the same locations in April 2014.
- Naphthalene concentrations exceeded screening levels at 11 locations scattered throughout the study area, but Round 16 results generally do not indicate that sub-slab-vapor concentrations are strongly correlated to indoor air concentrations. The spatial distribution of data and a comparison of indoor air to background concentrations suggests that other factors (e.g., background, other indoor air sources) are likely affecting indoor air concentrations of naphthalene.
- Ethylbenzene and xylenes exceedances were observed in both samples collected from the Fire Coat building. The indoor air concentrations of these two analytes are greater than their co-located sub-slab-vapor concentrations, suggesting that vapor intrusion is not the source of these chemicals.
- No chemicals exceeded their applicable Occupational Safety and Health Administration permissible exposure limits (OSHA PELs) during Round 16 monitoring.

Trichloroethene in indoor air—

- Trichloroethene continues to be detected in indoor air.
- In Building A, the maximum trichloroethene indoor air concentration for this round was on the southern end of the first floor. This location has never had a historical exceedance. A lower concentration (below the screening level) of trichloroethene was detected in the sample collected from this location in April. Maximum detections of trichloroethene have historically been observed in the basement of the building near the plating shop. The higher indoor air concentrations of trichloroethene in the basement area might result from several factors, including a lack of ventilation in this area, the density of trichloroethene (it is heavier than air), and/or the area's proximity to a possible source(s).
- The HAPSITE instrument (portable gas chromatograph/mass spectrometer [GC/MS]) recorded one significant detection (87 µg/m³) at a location above a floor grate near air sampling locations 093-A and 138-A in the Building A basement. This suggests that the drain may serve as a preferential pathway to this area.

- The only indoor air detection of trichloroethene in Building B was at a sampling point on the western side of the first floor, adjacent to Building A. Although trichloroethene has been detected in Building B indoor air in the past, it has never exceeded its indoor-air-quality screening level.
- Trichloroethene exceeded its indoor air screening level at location 113-C in the center of Building C, although the duplicate sample collected at the same time did not show a trichloroethene exceedance. Trichloroethene was not detected in the sample subsequently collected from this location in April. Although trichloroethene has been routinely detected in indoor air in Building C, its concentrations have not typically exceeded its screening level, except during Round 15. The location of this specific exceedance at location 144-C during Round 15 was in the Mission Systems & Training (MST) mechanical prototype lab (MPL) machine shop, northeast of the former Patriot plating line in the east–central part of the building. During Round 15 sampling, this room had a positive pressure and was air-conditioned. Elevated concentrations here suggest a possible indoor source. Trichloroethene was not detected at this location during the current round of sampling. Moreover, the HAPSITE instrument did not detect any trichloroethene concentrations above background in the Building C machine shop.
- Trichloroethene exceeded its indoor air screening level at location 081-A on the southern side of Building A in February 2014, but was detected at a concentration less than its screening level when this location was resampled in April 2014. Historically, this location has never had an indoor air exceedance of trichloroethene.
- Trichloroethene concentrations in indoor air vary, as demonstrated by comparing initial sampling results (February 2014) at locations 081-A and 113-C to resampling results (April 2014). This variability reflects the transient nature of volatile organic compound concentrations.
- Trichloroethene was not detected in indoor air in the Fire Coat, Vertical-Launch System, Engineering Research, or Program buildings.

Trichloroethene in sub-slab vapor—

- Four locations in Building A had sub-slab-vapor concentrations of trichloroethene greater than screening levels during Round 16. One area of elevated trichloroethene is along the southern half of the first floor of Building A from 015-A across to 079-A, near the plating shop. The other location is in the north–central/northeast section of Building A (Figure 3-8).
- Sub-slab-vapor trichloroethene has historically been high near the Building A plating shop (018-A). However, the soil vapor concentration of trichloroethene in this area during Round 16 was below the screening level. This may suggest that the sub-slab-depressurization system has influenced this area. Elevated concentrations of trichloroethene found at 079-A to the east could also be associated with an isolated source

• Exceedances of trichloroethene in sub-slab-vapor were also detected in the central-eastern portion of the Building C basement, ranging from 2,740 μg/m³ to 10,700 μg/m³. A comparison to same-season results shows that these concentrations are less than Round 14 results (2,600 to 60,000 μg/m³) and Round 12 results (trichloroethene greater than 200,000 μg/m³). This concentration reduction might be associated with the expansion of the Building C sub-slab-depressurization system, or could be due to random concentration fluctuations.

Relationship between soil-vapor and indoor-air trichloroethene concentrations—

- Exceedances of trichloroethene in soil vapor samples in the southern half of Building A near the plating shop might be a possible source of the indoor air contamination identified throughout Building A (Figure 3-8).
- The detection of trichloroethene in indoor air (via portable gas-chromatograph/mass-spectrometer) above a floor grate near sampling location 093-A suggests a possible soil vapor source to the Building A basement through a preferential pathway.
- While the indoor air concentrations of trichloroethene in Building C were less than the screening level, its presence likely (at least in part) results from a possible indoor air source or a possible vapor intrusion contribution, due to the presence of elevated trichloroethene concentrations and degradation products in sub-slab vapor (Figure 3-10).
- The detection of trichloroethene in Building B is most likely related to its proximate location to Building A.

Trichloroethene degradation products—

- The concentrations and distribution of possible the trichloroethene-degradation products 1,1-dichloroethene, *cis*-1,2-dichloroethene, *trans*-1,2-dichloroethene, and vinyl chloride were compared to trichloroethene concentrations in sub-slab vapor and indoor air. In Building A, sub-slab-vapor concentrations of these degradation products typically coincide with higher sub-slab-vapor concentrations of trichloroethene. These results indicate that trichloroethene degradation in the subsurface could be contributing these breakdown products to sub-slab vapor beneath parts of Building A. The presence of these degradation products in indoor air where trichloroethene is located continues to indicate that sub-slab-vapor intrusion is occurring, particularly in Building A.
- In Buildings B and C, high sub-slab concentrations of trichloroethene do not necessarily correlate with high sub-slab-vapor concentrations of trichloroethene degradation products.
- Elevated levels of vinyl chloride have been observed in sub-slab vapor in the Building C basement beneath its southern aspect, and in the northeastern and central portions of the Building C basement near its eastern edge. Vinyl chloride was not detected in any indoor air samples during Round 16.
- The recurring high sub-slab-vapor concentration of vinyl chloride at 126-C might indicate that this location is above or at the leading edge of an upgradient subsurface source of chlorinated-solvent contamination, possibly originating outside the building.

The groundwater samples collected from MW-88 during the March–May 2011 and March–May 2012 monitoring rounds contained trichloroethene exceedances (1200 μ g/L and 712 μ g/L, respectively). This well is outside Building C, approximately 112-feet northeast of sampling location 126-C. In the 2009 Block I Phase II site investigation, trichloroethene (20,000 μ g/m³) was also reported in soil gas sample SG-2, collected approximately 56-feet north of 126-C (also outside the building). The groundwater concentration reported is unlikely to result in sub-slab-vapor concentrations greater than its screening level, but might still suggest a contributing groundwater source of trichloroethene in soil vapor.

Naphthalene in soil vapor and indoor air—

- Naphthalene exceeded its sub-slab-vapor screening level at one location in Building A and at one location in Building C.
- Naphthalene exceeded its indoor-air screening level at one location in Building A, two locations in Building B, and seven locations in Building C.
- In Buildings A, B, and C, no notable correlations were noted between the soil vapor and indoor air concentrations of naphthalene.
- Naphthalene was detected in seven indoor air samples collected from the Vertical-Launch System, Engineering Research, and Program buildings. Naphthalene was detected at a concentration greater than its screening level in only one sample from the northwestern corner of the Vertical-Launch System building. The presence of naphthalene in indoor air in these buildings might be related to the use of products containing naphthalene.

Chloroform in soil vapor and indoor air—

• Chloroform is a common industrial solvent and a potential degradation product of carbon tetrachloride. Only two locations (136-A and 143-C) had an exceedance of chloroform in sub-slab vapor. Chloroform was not detected in the co-located indoor air sample. Chloroform concentrations in indoor air did not exceed its screening level.

Xylene and ethylbenzene in soil vapor and indoor air—

• During Round 16, ethylbenzene and xylenes exceedances were detected in both indoor air samples collected from the Fire Coat building. Their co-located soil-vapor concentrations were less than their screening levels, but were greater than concentrations detected in Building B soil vapor. Detected levels of ethylbenzene and xylenes in the Fire Coat building are most likely related to solvents present within the building.

Contribution of background sources to indoor air—

- Interior and/or sub-slab sources appear to contribute chlorodifluoromethane, ethylbenzene, naphthalene, toluene, trichloroethene, trimethylbenzenes, and total xylenes to indoor air, because a significant number of their indoor air concentrations are greater than background (Table 3-18).
- Most Round 16 indoor air concentrations reported for benzene, methylene chloride, tetrachloroethene, and dichlorodifluoromethane likely reflect background conditions, because these compounds were infrequently detected at concentrations greater than the maximum background concentration (Table 3-18).

• The evaluation of the Round 16 and historical background data for trichloroethene and naphthalene—the two most significant IA chemicals—suggests that IA concentrations reported for many of the locations sampled also likely reflect background conditions. In specific portions of Buildings A and C, trichloroethene and naphthalene data could indicate a possibly concurrent vapor-intrusion source.

Analysis of historical data—

• The locations of historical maximum indoor-air and sub-slab-vapor concentrations of trichloroethene in Buildings A and C indicate a possible spatial relationship. Elevated concentrations of trichloroethene in soil vapor on the eastern side of Building A correlate with the historical detections of trichloroethene in indoor air. Similarly, the elevated concentrations of trichloroethene in soil vapor in the center of Building C correlate with the historical detections of trichloroethene in the indoor air of this section of Building C.

Sub-slab-depressurization-systems—

• The sub-slab-depressurization mitigation-systems appear to be operating as designed and appear effective in mitigating sub-slab-vapor intrusion from known source areas of sub-slab-vapor contamination. Contaminants are constantly removed from soil vapor during system operation, and indoor air concentrations rarely exceed screening values. The Building C sub-slab-depressurization-system has been expanded to address the sub-slab-vapor contamination found beneath the eastern and central portions of the Building C basement. Concentrations of trichloroethene and *cis*-1,2-dichloroethene in sub-slab vapor at extraction points in the southern portion of the Building C basement have remained relatively constant over the last five rounds of sampling. These areas will continue to be monitored as the expanded Building C sub-slab-depressurization system continues to operate.

5.2 RECOMMENDATIONS

Results of the February 2014 Round 16 vapor-intrusion investigation at Buildings A, B, and C lead to the following recommendations:

- Continue SSD-system operations in Buildings A and C.
- Install additional vapor-monitoring points in the central portion of Building C that will more accurately measure the recently expanded SSD-system radius of influence in that area.
- Continue semiannual indoor-air-quality/sub-slab-vapor monitoring to evaluate possible vapor intrusion and to assess the ongoing performance of the existing mitigation systems. Monitoring will continue to evaluate the effectiveness of the sub-slab-depressurization systems. These results will be used to evaluate the control and reduction (if occurring) of known sources, identify new sources (if present), and help determine if additional mitigation or sub-slab-depressurization-system modifications are needed. Locations within the Building C sub-slab-depressurization systems' radii of influence should continue to be monitored to evaluate whether the recent system expansion affects contaminant concentrations.

• High concentrations of trichloroethene in sub-slab vapor beneath the eastern part of Building A (defined by results at locations 136-A and 079-A) suggest a need for additional sampling locations in this part of the building to determine if trichloroethene contamination is localized or widespread. Use of the HAPSITE portable gas-chromatograph/mass-spectrometer should be considered to determine if the eastern side of Building A has sources contributing trichloroethene to indoor air. In addition, sampling of IA on the west side of the Building A basement should be considered in light of the exceedance of TCE in IA found above the grate near 093-A using the HAPSITE instrument.

This page intentionally left blank.

Section 6 References

- 1. Air Toxics Ltd., 2007. *The Application of Method TO-15 to Naphthalene Measurements in Air.* Heidi C. Hayes and Diane J. Benton, Extended Abstract #13. Air Toxics Ltd. Folsom, California.
- 2. Maryland Department of the Environment (MDE), 2006. *Voluntary Cleanup Program Guidance Document*, Environmental Restoration and Redevelopment Program, Maryland Department of the Environment. March 17.
- 3. Maryland Department of the Environment (MDE), 2009. Conversation among Mr. Mark Mank (MDE), Tetra Tech, and Lockheed Martin. June.
- 4. Tetra Tech, Inc. (Tetra Tech), 2006a. Site Characterization Report, Lockheed Martin Middle River Complex, Revision 1. May.
- 5. Tetra Tech, Inc. (Tetra Tech), 2006b. *Indoor-Air-Quality Assessment Work Plan for Buildings A, B, C, and VLS, Lockheed Martin Middle River Complex*. November.
- 6. Tetra Tech, Inc. (Tetra Tech), 2007. *Indoor-Air-Quality Investigation, Buildings A, B, C, and VLS, Lockheed Martin Middle River Complex, 2323 Eastern Boulevard, Middle River, Maryland*. September.
- 7. Tetra Tech, Inc. (Tetra Tech), 2008a. *Indoor-Air-Quality Investigation Round 3, Lockheed Martin Middle River Complex, 2323 Eastern Boulevard, Middle River, Maryland.* January.
- 8. Tetra Tech, Inc. (Tetra Tech), 2008b. *Indoor-Air-Quality Investigation, 2008 Summary Report, Lockheed Martin Middle River Complex, 2323 Eastern Boulevard Middle River, Maryland*. July.
- 9. Tetra Tech, Inc. (Tetra Tech), 2008c. November 2008 Sub-Slab Sampling Report, Sub-Slab Depressurization-Systems, Buildings A and C, Lockheed Martin Corporation Middle River Complex, Middle River, Maryland. December.
- 10. Tetra Tech, Inc. (Tetra Tech), 2009a. Block I Phase II Investigation Report, July 2009, Lockheed Martin Middle River Complex 2323 Eastern Boulevard Middle River, Maryland. July.
- 11. Tetra Tech, Inc. (Tetra Tech), 2010a. Vapor Intrusion Investigation and Sub-Slab-Depressurization-System Operation 2009 Summary Report, Lockheed Martin Middle River Complex, 2323 Eastern Boulevard Middle River, Maryland. July.

- 12. Tetra Tech, Inc. (Tetra Tech), 2010b. Indoor-Air-Quality Investigation August 2010 Summary Report, Lockheed Martin Middle River Complex, 2323 Eastern Boulevard Middle River, Maryland. August.
- 13. Tetra Tech, Inc. (Tetra Tech), 2011a. Vapor Intrusion Investigation and Sub-Slab-Depressurization-System Operation August 2010 Monitoring Report, Lockheed Martin Middle River Complex, 2323 Eastern Boulevard Middle River, Maryland. January.
- 14. Tetra Tech, Inc. (Tetra Tech), 2011b. Vapor Intrusion Investigation and Sub-Slab-Depressurization-System Operation February 2011 Monitoring Report, Lockheed Martin Middle River Complex, 2323 Eastern Boulevard Middle River, Maryland. July.
- 15. Tetra Tech, Inc. (Tetra Tech), 2011c. Work Plan Addendum, Indoor Air and Sub-Slab-Vapor Sampling Round 11, August 2011, Lockheed Martin Middle River Complex, 2323 Eastern Boulevard Middle River, Maryland. July.
- 16. Tetra Tech, Inc. (Tetra Tech), 2012a. Vapor Intrusion Investigation and Sub-Slab-Depressurization-System Operation February 2012 Monitoring Report, Lockheed Martin Middle River Complex, 2323 Eastern Boulevard Middle River, Maryland. March.
- 17. Tetra Tech, Inc. (Tetra Tech), 2012b. Vapor-Intrusion Management Plan, Lockheed Martin Middle River Complex, 2323 Eastern Boulevard Middle River, Maryland. September.
- 18. Tetra Tech, Inc. (Tetra Tech), 2012c. Remedial Action Progress Report #14 April 1, 2012 through September 30, 2012 Sub-Slab Depressurization-Systems in Buildings A and C, Lockheed Martin Middle River Complex, 2323 Eastern Boulevard Middle River, Maryland. October.
- 19. Tetra Tech, Inc. (Tetra Tech) 2013a. Vapor Intrusion Investigation and Sub-Slab-Depressurization-System Operation August 2012 Monitoring Report, Lockheed Martin Middle River Complex, 2323 Eastern Boulevard Middle River, Maryland. January.
- 20. Tetra Tech, Inc. (Tetra Tech), 2013b. Work Plan Addendum, Indoor Air and Sub-Slab-Vapor Monitoring Round 14, February 2013, Lockheed Martin Middle River Complex, 2323 Eastern Boulevard, Middle River, Maryland. January.
- 21. Tetra Tech, Inc. (Tetra Tech) 2013c. Vapor Intrusion Investigation and Sub-Slab-Depressurization-System Operation February 2013 Monitoring Report, Lockheed Martin Middle River Complex, 2323 Eastern Boulevard Middle River, Maryland. January.
- 22. Tetra Tech, Inc. (Tetra Tech) 2014a. Vapor Intrusion Investigation and Sub-Slab-Depressurization-System Operation August 2013 Monitoring Report, Lockheed Martin Middle River Complex, 2323 Eastern Boulevard Middle River, Maryland. April.

- 23. Tetra Tech, Inc. (Tetra Tech), 2014b. Work Plan Addendum, Indoor Air and Sub-Slab-Vapor Monitoring Round 16, February 2014, Lockheed Martin Middle River Complex, 2323 Eastern Boulevard, Middle River, Maryland. September.
- 24. Tetra Tech, Inc. (Tetra Tech), 2014c. Work Plan Addendum for Indoor Air and Sub-Slab-Vapor Monitoring Round 16—Letter, February 2014, Lockheed Martin Middle River Complex, 2323 Eastern Boulevard, Middle River, Maryland. September.
- 25. United States Environmental Protection Agency (USEPA), 1996. Soil-Gas-Sampling Standard Operating Procedure #2042. United States Environmental Protection Agency Environmental Response Team. May 1. REV. #: 0.0.
- 26. United States Environmental Protection Agency (USEPA), 1999. Compendium of Methods for the Determination of Toxic Organic Compounds in Ambient Air, Second Edition. "Compendium Method TO-15: Determination of Volatile Organic Compounds (VOCs) in Air Collected in Specially Prepared Canisters and Analyzed by Gas Chromatography/Mass Spectrometry (GC/MS)." (USEPA/625/R-96/010b). Center for Environmental Research Information, Office of Research and Development, U.S. Environmental Protection Agency. Cincinnati, Ohio 45268. January.
- 27. United States Environmental Protection Agency (USEPA), 2002. "Draft Guidance for Evaluating the Vapor Intrusion to Indoor-Air Pathway from Groundwater and Soils (Docket ID No. RCRA-2002-0033)." *Federal Register*: November 29 (Volume 67, Number 230).
- 28. United States Environmental Protection Agency (USEPA), 2004. Sub-Slab Sampling and Analysis to Support Assessment of Vapor Intrusion. United States Environmental Protection Agency, Office of Research and Development, National Risk Management Research Laboratory, Groundwater and Ecosystem Restoration Division. Ada, Oklahoma. May.
- 29. United States Environmental Protection Agency (USEPA), 2008. *USEPA Contact Laboratory Program National Functional Guidelines for Superfund Organic-Method Data Review*. USEPA Office of Superfund Remediation and Technology Innovation (OSRTI), Office of Solid Waste and Emergency Response (OSWER 9240.1–48) (USEPA-540-R-08-901). Washington, D.C. June.
- 30. United States Environmental Protection Agency (USEPA), 2013. Final Guidance for Assessing and Mitigating the Vapor Intrusion Pathway from Subsurface Sources to Indoor Air (External Review Draft) 04-11-2013. USEPA Office of Solid Waste and Emergency Response. April.
- 31. United States Environmental Protection Agency (USEPA), 2014. *Regional Screening Levels for Chemical Contaminants at Superfund Sites*. USEPA Office of Superfund and the U.S. Department of Energy's Oak Ridge National Laboratory. May.

This page intentionally left blank.

APPENDIX A—FEBRUARY 2014 SAMPLE LOG SHEETS/ CHAIN OF CUSTODY

				Page of
Project Site Name: <u>MR</u> (Project Number - Task:	2 AUILDING	<u>A</u>	Date: 313 Sampled By: DLM	1120 AT 1 MC10
SAMPLING DATA:				
SOIL VAPOR SA	MPLE	11	NDOOR AIR QUALITY	V SAMPLE
SOIL VAPOR SAMPLE SV Sample ID: SV - 015 - P - 16 SV Canister #: 3368 SV Regulator #: FC CO75 SV Start Time: 0845 SV Start Pressure: -30 SV Stop Time: 0948 SV Stop Pressure: +5, C		IAQ Sample IAQ Caniste IAQ Regular IAQ Start Ti IAQ Start Pr	e ID: TA-015-1 er #: 1156 tor #: FC0333 me: 0730 ressure: -30	A-16
SAMPLE COLLECTION INFORM	471031			
SAMPLE COLLECTION INFORM				
Analysis	Con	tainer Requireme	ents	Collected
T015	SUMM	ACAN		
LOCATION:				
5V-DUP3-A-16 Can# 2550			IA-DUP 3 - Can# 2401	A-16
OBSERVATIONS / NOTES:				
Circle if Applicable: MS/MSD Duplicate ID No.: A		Signat	ure(s):	

TETRA TECH SOIL VAPOR AND INDOOR AIR QUALITY SAMPLE LOG SHEET

Page 🚶 of 🚶 Project Site Name: MRC BULDING A a la5/14 Date: Sampled By: DLm Lm TA Project Number - Task: SAMPLING DATA: SOIL VAPOR SAMPLE **INDOOR AIR QUALITY SAMPLE** SV Sample ID: 6V-018-A-16 IAQ Sample ID: TA -018-A-16 SV Canister #: 2568 IAQ Canister #: 3387 IAQ Regulator #: FCO 295 SV Regulator #: FC0347 SV Start Time: 0936 IAQ Start Time: 0740 SV Start Pressure: ~ 58 IAQ Start Pressure: IAQ Stop Time: 1633 SV Stop Time: 1030 SV Stop Pressure: -5.0 IAQ Stop Pressure: -2.5 SAMPLE COLLECTION INFORMATION: Analysis **Container Requirements** Collected TOIS SUMMA CAN LOCATION: 57-DUPY-A-16 Can# 2197 **OBSERVATIONS / NOTES:** Circle if Applicable: Signature(e) MS/MSD **Duplicate ID No.:** 5V-DUP4-A-16

TETRA TECH SOIL VAPOR AND INDOOR AIR QUALITY SAMPLE LOG SHEET

Page 1 of 1

a 125/14 Project Site Name: MRC BUILDINGA Date: Sampled By: Dimlim TA Project Number - Task: SAMPLING DATA: SOIL VAPOR SAMPLE INDOOR AIR QUALITY SAMPLE IAQ Sample ID: TA -675-A-16 SV Sample ID: 5V-075-A-16 IAQ Canister #: 1458 SV Canister #: 2063 SV Regulator #: FCCC4/ IAQ Regulator #: FC0455 SV Start Time: 09 10 IAQ Start Time: 0817 SV Start Pressure: - 30 IAQ Start Pressure: -30 IAQ Stop Time: 167 SV Stop Time: 1000 IAQ Stop Pressure: -3.5 SV Stop Pressure: C.C SAMPLE COLLECTION INFORMATION: Collected **Analysis Container Requirements** TO15 SUMMA CAN LOCATION: OBSERVATIONS / NOTES: Circle if Applicable: رسن(Signature(s MS/MSD **Duplicate ID No.:**

						Pagel of
Project Site Nam	e: MRC BUI	LDING	A	Date:	2/25	/14
Project Number	Task:			Sampled By:	Dimlo	m/TA
SAMPLING DATA						
SC	DIL VAPOR SAMPLE			INDOOR AIR Q	UALITY SAI	MPLE
SV Sample ID:	3V-076-A-16		IAQ Sampl	e ID: IA	z-076	-A-16
SV Canister #:	1233		IAQ Canist	er#: 1\05		
SV Regulator #:	FC0407		IAQ Regula	ator #: FCO4	19	
SV Start Time:	80PC		IAQ Start T	ime: 0813 2		
SV Start Pressur	e:-30		IAQ Start F	ressure: â	7	
SV Stop Time:	800		IAQ Stop T	ime: /(6/2)		
SV Stop Pressure	9:4.0		IAQ Stop P	ressure: -3.	0	
SAMPLE COLLEC Analysis	TION INFORMATION:	Cont	tainer Requiren			Calledad
						Collected
TOI	5	SUMMI	A CAN)		
OCATION:						
BSERVATIONS/	NOTES:					
ircle if Applicable:	The second secon		Signa	ture(s):	1	
MS/MSD Duplicate	ID No.:					

			Page <u>l</u> of <u>l</u>
Project Site Name Project Number - 7	1100000	Date: 213 Sampled By: Dun	5/14 0/2m/TA
SAMPLING DATA:			
SOI	L VAPOR SAMPLE	INDOOR AIR QUALITY	SAMPLE
SV Sample ID: S	507	IAQ Sample ID: TA - 079 - A IAQ Canister #: 3436	-16
SV Regulator #: T	<u>-(0600</u>	IAQ Regulator #: FCC 44	
SV Start Time: 0	900	IAQ Start Time: 0757	
SV Start Pressure:	-D8	IAQ Start Pressure: -38	
SV Stop Time: 10	0.0	IAQ Stop Pressure: ~4.0	
SAMPLE COLLECT Analysis	ION INFORMATION:	antinos Porsissos de	
Analysis		ontainer Requirements	Collected
Tol	5 SUMM	A CAN	
OCATION:			
DBSERVATIONS / N	OTES:		
ircle if Applicable:		Signature(s):	
MS/MSD Duplicate II) No.:		

						Page of
Project	Site Name: MRC	BUILDING	A	Date:	alas	116
Project	Number - Task:			Sampled B	y: Diml	mITA
SAMPLIN	IG DATA:					
	SOIL VAPOR SAN	PLE		INDOOR AIR	QUALITY S	AMPLE
SV San	nple ID: 5V-081-A	-16	IAQ Sam	ple ID: TA-0	-A-18	16
SV Car	nister #: 0837		IAQ Canis	ster #: 1106		
SV Reg	julator #: FC 0053		IAQ Regu	lator #: FCC	0009	
SV Star	t Time: 0903		IAQ Start	Time: 0800)	
SV Star	t Pressure: -30		IAQ Start	Pressure:)9	
SV Stor	Time: 1004		IAQ Stop	Time: /(¿OC	3	•
SV Stop	Pressure: -8,0**		IAQ Stop	Pressure: $\neg \partial$.0	
SAMPLE	COLLECTION INFORMA	ATION:				
	Analysis	Co	ntainer Requir	ements		Collected
	TO15	SUMM	1A CF	- N		
LOCATIO	NE I					
LOCATIO	IV.		and in include an		ing sydding annod	iong cognition (Regales Whiteo)
	ATIONS / NOTES:					
*Ragul	apa dande won't	e broken.				
Circle if A	pplicable:		Sigi	nature(s):		
MS/MSD						

TETRA TECH SOIL VAPOR AND INDOOR AIR QUALITY SAMPLE LOG SHEET

Page 1 of 1

Project Site Name: MRC BUILDING A 2/25/14 Date: Sampled By: Din In Project Number - Task: SAMPLING DATA: **SOIL VAPOR SAMPLE INDOOR AIR QUALITY SAMPLE** SV Sample ID: 5Y-093-A-16 IAQ Sample ID: TA - 093-A-16 SV Canister #: 1785 IAQ Canister #: 10% IAQ Regulator #: FC 0364 SV Regulator #: FC0056 IAQ Start Time: 0745 SV Start Time: 0940 SV Start Pressure: 30 IAQ Start Pressure: SV Stop Time: 1657 IAQ Stop Time: 167 IAQ Stop Pressure: -3, O SV Stop Pressure: SAMPLE COLLECTION INFORMATION: **Analysis Container Requirements** Collected TO15 SUMMA CAN LOCATION: **OBSERVATIONS / NOTES:** Circle if Applicable: Signature(s); **Duplicate ID No.:** MS/MSD

Page <u>l</u> of <u>l</u>

16
ed
-

Page 1 of Project Site Name: MRC RUILDING A 2/25/14 Date: Sampled By: Dim 179 Project Number - Task: SAMPLING DATA: **SOIL VAPOR SAMPLE INDOOR AIR QUALITY SAMPLE** IAQ Sample ID: IA-094-9-16 SV Sample ID: SV-094-A-16 SV Canister #: 2530 IAQ Canister #: 2195 SV Regulator #: FCC253 IAQ Regulator #: F C 0 153 SV Start Time: 0935 IAQ Start Time 0750 SV Start Pressure: -27 IAQ Start Pressure: SV Stop Time: 1050 IAQ Stop Time: 1619 SV Stop Pressure: - 3.0 IAQ Stop Pressure: 73.5 SAMPLE COLLECTION INFORMATION: **Analysis Container Requirements** Collected SUMMA CAN TO15 LOCATION: **OBSERVATIONS / NOTES:** Circle if Applicable: Signature(s): MS/MSD **Duplicate ID No.:**

TETRA TECH SOIL VAPOR AND INDOOR AIR QUALITY SAMPLE LOG SHEET

Page _ i of] Project Site Name: MRC BULDING A alasli4 Date: Sampled By: Dum In 17A Project Number - Task: _____ SAMPLING DATA: SOIL VAPOR SAMPLE INDOOR AIR QUALITY SAMPLE IAQ Sample ID: TA - 108 - A - 16 SV Sample ID: SV - 108 - 17 - 16 IAQ Canister #: 249° SV Canister #: 2343 IAQ Regulator #: FCC534 SV Regulator #: FCO133 SV Start Time: 0848 IAQ Start Time: 0737 SV Start Pressure: ~ 30 IAQ Start Pressure: 728 SV Stop Time: 695 IAQ Stop Time: 1549 SV Stop Pressure: - 3.0 IAQ Stop Pressure: -3.0 SAMPLE COLLECTION INFORMATION: Analysis **Container Requirements** Collected SUMMA CAN TOIS LOCATION: **OBSERVATIONS / NOTES:** Circle if Applicable: Signature(s): MS/MSD **Duplicate ID No.:**

Page 1 of 1

Project	Site Name:	MRC BUILDING	Date: 33	5114
Project	Number - Task:		Sampled By: DLm	ATIMAL
CAMDIIA	IG DATA:			
SAMPLIN		POR SAMPLE	INDOOR AIR QUALITY	SAMPLE
SV Sample ID: 57-117-A-16		17-A-16	IAQ Sample ID: TA-II7-A-	-16
SV Car	nister #: 0501		IAQ Canister #: 2530	,
SV Reg	gulator #: FCC	119	IAQ Regulator #: FCOISS	
SV Star	rt Time: 085	9	IAQ Start Time: 0753	
SV Star	rt Pressure: ~ 2	<u> </u>	IAQ Start Pressure: -30	
SV Stor	o Time: 09 5 ⁰	}	IAQ Stop Time: 1553	Í
	_			
SV Stop	o Pressure: 13	0 0	IAQ Stop Pressure: ~/, C	
SAMPLE	COLLECTION I	NFORMATION:		
SAMPLE	Analysis	NFORMATION:	ontainer Requirements	Collected
SAMPLE	Analysis	Co		Collected
SAMPLE		Co	ontainer Requirements	Collected
SAMPLE	Analysis TO 15	Co		Collected
LOCATIO	Analysis TO15 N:	SUMM		Collected
LOCATIO	Analysis TO 15	SUMM		Collected
LOCATIO	Analysis TO15 N:	SUMM		Collected
LOCATIO	Analysis TO15 N:	SUMM		Collected
LOCATIO	Analysis TO15 N:	SUMM		Collected
LOCATIO	Analysis TO15 N:	SUMM		Collected
OBSERVA	Analysis TO15 N:	SUMM		Collected
DBSERVA	Analysis TO 15 N:	S:	A CAN	Collected

TETRA TECH SOIL VAPOR AND INDOOR AIR QUALITY SAMPLE LOG SHEET

Page ___ of __

2/26/14 Project Site Name: MRC BUILDING A Date: Sampled By: DLM JM Project Number - Task: **SAMPLING DATA:** SOIL VAPOR SAMPLE **INDOOR AIR QUALITY SAMPLE** IAQ Sample ID: TA-117X-A-16 SV Sample ID: IAQ Canister #: 2534SV Canister #: IAQ Regulator #: FC 0458 SV Regulator #: IAQ Start Time: 0848 SV Start Time: IAQ Start Pressure: -36 SV Start Pressure: IAQ Stop Time: 1713 SV Stop Time: IAQ Stop Pressure: SV Stop Pressure: SAMPLE COLLECTION INFORMATION: **Container Requirements** Collected **Analysis** SUMMA CAN TO 15 LOCATION: ALTERNATE LOCATION TO 117 OBSERVATIONS / NOTES: Circle if Applicable: رسنا(Signature(s MS/MSD **Duplicate ID No.:**

						Page _ of _
-	Site Name: Number - Task:	MRC_	BUILDING	<u>A</u>	Date: <u>al</u>	125/14 Lm/1m/TA
SAMPLIN	IG DATA:					
	SOIL VA	POR SAME	LE		INDOOR AIR QUALI	TY SAMPLE
SV Car	nple ID: SV-\) nister #: ƏƏT gulator #: FCC	7	Δ	IAQ Canis	ter #: 3365 ator #: FC0113	A-16
SV Star	rt Time: 0859	ĵ.		IAQ Start	Time: 0747	
	rt Pressure: - 3				Pressure: -38	
	o Time: 0955 o Pressure: ~4			-	Fime: 1553 Pressure: -3-0	-
SAMPLE	COLLECTION	NFORMAT				
	Analysis	-	Coi	ntainer Require	ments	Collected
	TO 15		SUMM	ACA	J	
LOCATIO	N:					
BSERVA	ATIONS / NOTE	S:				
ircle if A	pplicable:			Sign	ature(s):	
MS/MSD	Duplicate ID No.:					7

MS/MSD

Duplicate ID No.:

SOIL VAPOR AND INDOOR AIR QUALITY SAMPLE LOG SHEET

SAMPLE LOG SHEET Page ___l of ___ Project Site Name: MRC BUILDING A HIZELE Date: Sampled By: Dim Dim TF Project Number - Task: SAMPLING DATA: SOIL VAPOR SAMPLE INDOOR AIR QUALITY SAMPLE 136 IAQ Sample ID: TA - 136- A-16 SV Sample ID: SV-COO-A-16 SV Canister #: 3,555 IAQ Canister #: 3458 IAQ Regulator #: F CO527 SV Regulator #: FCOO SV Start Time: 0810 IAQ Start Time: 0805 SV Start Pressure: -30 IAQ Start Pressure: 729 IAQ Stop Time: 1608 SV Stop Time: 0910 SV Stop Pressure: ~4.5 IAQ Stop Pressure: SAMPLE COLLECTION INFORMATION: **Analysis Container Requirements** Collected TO 15 SUMMA CAN LOCATION: OBSERVATIONS / NOTES: Circle if Applicable: Signature(s):

Page 1 of 1

Project Site Name: MRC	BUILDING	<u>A</u> [Date:	2 25	114
Project Number - Task:		S	Sampled By:	Drula	m/TA
SAMPLING DATA:					
SOIL VAPOR SA	MPLE	IND	OOR AIR Q	UALITY SA	MPLE
SV Sample ID: SV - 138 -1	4-16	IAQ Sample IE	: - AI :0	38-A-	16
SV Canister #: (33)		IAQ Canister #	1PP0:		
SV Regulator #: F(035		IAQ Regulator	#: FC05	590	
SV Start Time: 0935		IAQ Start Time	: 074S		
SV Start Pressure: -		IAQ Start Pres	sure:		
SV Stop Time: 1035 SV Stop Pressure: -30		IAQ Stop Time		5	
SAMPLE COLLECTION INFORMATION		ontainer Requiremen			Collected
			185		Collected
TOIS	500	MMA CAN	<u> </u>		ν
LOCATION:				audagastan	
OBSERVATIONS / NOTES:					
Circle if Applicable:		Signatu	re(s):		
MS/MSD Duplicate ID No.:			///-		

	- 10				Page of
Project	t Site Name:	MRC BUILT	ING B	Date: 31	<u> 34/14</u>
Project	t Number - Task:			Sampled By: <u>D</u> L	m/m
SAMPLI	NG DATA:				
	SOIL VA	POR SAMPLE		INDOOR AIR QUALI	TY SAMPLE
SV Sar	mple ID: 5V-(033-B-16	IAQ	Sample ID: IA-033-	-13-16
SV Car	nister #: 1778	<u> </u>	IAQ	Canister #: 1786	
SV Re	gulator #: FC	2174	IAQ	Regulator #: FC053	4
SV Sta	urt Time: 1000	<u> </u>	IAQ	Start Time: 1000	
SV Sta	rt Pressure: 🧻 💍	38	IAQ	Start Pressure: -29	
SV Sto	p Time: 1318		IAQ	Stop Time: 182	8
SV Sto	p Pressure: 🔘 ,	0	IAQ	Stop Pressure:	<u>†</u>
SAMOLE	COLLECTION	NFORMATION:			
MINIFLE	Analysis	NFORWATION:	Container F	Requirements	Collected
	TO15	5	UMMA	CAN	
OOATIO					
OCATIO	IN:				
DOED!	TIONO (NOTE				
BSEHVA	ATIONS / NOTE	S:			
ircle if A	pplicable:			Signature(s):	
MS/MSD	Duplicate ID No.:				-21

				Page of
Project	Site Name:	MRC BUILDING	<u> </u>	<u> એવે / 14</u>
Project	Number - Task:		Sampled By: DL	m/im
AI IGMAS	IG DATA:			
SAWIP LIV		OR SAMPLE	INDOOR AIR QUALIT	Y SAMPLE
	·····			
SV San	nple ID: SV-C	63-B-16	IAQ Sample ID: TA-06?	5-B-16
SV Car	nister #: 2498	}	IAQ Canister #: 3449	
SV Rec	gulator #: FCC	189	IAQ Regulator #: FC 이익역	
SV Star	rt Time: 0955	<u> </u>	IAQ Start Time: 0955	
SV Star	rt Pressure: - ∂^{ς}	8	IAQ Start Pressure: -30	
SV Stop	Time: 1814		IAQ Stop Time: 1825	>
	Pressure: 💍, 🤇		IAQ Stop Pressure:	
		-		
SAMPLE	COLLECTION IN			
***************************************	Analysis	Cor	ntainer Requirements	Collected
	T015	SUMMI	1 CAN	
OCATIO	V			
OCATIO	IN:			
BSERVA	ATIONS / NOTES			
ircle if A	pplicable:	Prantis Manufactures and Securities a	Signature(s):	
MS/MSD	Duplicate ID No.:		Signature(s):	
	·			

				Page <u>l</u> of <u>l</u>
Project Site Project Num	Name: MRC	BUILDINE		2/34/14 2/34/14
AMPLING D				
	SOIL VAPOR SA	MPLE	INDOOR AIR C	QUALITY SAMPLE
SV Sample	10: 5V-101-F	3-16	IAQ Sample ID: TA-10	01-13-16
SV Caniste	r#: <i>3441</i>		IAQ Canister #: 1332	
SV Regulat	or #: FC0196		IAQ Regulator #: FCC	535
SV Start Tir	ne: 1/05		IAQ Start Time: 1/05	
SV Start Pro	essure: -30		IAQ Start Pressure: っつ	9
SV Stop Pre	me: /240 essure: +3.0		IAQ Stop Time: 19	<u> </u>
	LLECTION INFORM	AND DESIGN OF THE PERSON NAMED IN COLUMN 2 IN COLUMN 2	ntainer Requirements	Collected
**	TOIS	SUMM	A CAN	
CATION:				
SERVATIO	ONS / NOTES:			
rcle if Appli	cable:		Signature(s):	
IS/MSD Du	plicate ID No.:			/

TETRA TECH SOIL VAPOR AND INDOOR AIR QUALITY **SAMPLE LOG SHEET**

Page ___ of ____

Project Site Name: Project Number - Task:	RC BUILDIN	Date: <u>3/34</u> Sampled By: <u>DLYY</u>	
SAMPLING DATA:		INDOOR AIR QUALITY SAMPLE	
SOIL VAPOR SAMPLE		INDOOR AIR QUALITY SAWIFEE	
SV Sample ID: SV - 131 - 13 - 16 SV Canister #: 3497		IAQ Sample ID: TA-131-B-16 IAQ Canister #: 3558	
SV Regulator #: FCOI79		IAQ Regulator #: FCO433	
SV Start Time: 1103		IAQ Start Time: 103	
SV Start Pressure: 730		IAQ Start Pressure: -30	
SV Stop Time: 1239 SV Stop Pressure: 73.0		IAQ Stop Time: 1902 IAQ Stop Pressure: 4	
SAMPLE COLLECTION INFORMATION:			
Analysis	Container Requirements		Collected
TOIS SUMMA		4 CAN	V
			`
LOCATION:			
OBSERVATIONS / NOTES:			
Circle if Applicable: Signature(s):			
MS/MSD Duplicate ID No.:			

SOIL VAPOR AND INDOOR AIR QUALITY SAMPLE LOG SHEET

Page ___ of __

Project S	Site Name:	MRC	BUILDING	B	Date:	2/26	114
Project N	Number - Task:				Sampled By:	DLMI	Jm .
SAMPLIN		00001			INDOOR AID O	LIALITY C	AMDI E
	SOIL VAI	POR SAN	//PLE		INDOOR AIR Q	UALITY	SAMPLE
	11.	n 51	V				
SV Sam	ple ID:	$\frac{0}{\sqrt{2}}$	15 14	IAQ San	nple ID: <u>IA-14</u>	0-13-1	6
SV Can	ister#:	MP		IAQ Can	ister #: <i>බ</i> ්රට		
SV Reg	ارک	77	MOV		ulator #: FC 🚳	<u>a)</u>	1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
SV Star	/1	J5H	NE VIETE		t Time: 0852		· · · · · · · · · · · · · · · · · · ·
OV Otal	t time.	-11/	1/2				
SV Star	t Pressure:	100	G/	IAQ Star	t Pressure: 728	<u> </u>	
	•	M/M	PILL				
		V	21'			115	
SV Stop	Time:	-		IAQ Stop	Time:	113	
SV Stop	Pressure:			IAQ Stop	Pressure:	<u> -3</u>	
SAMPLE	COLLECTION	INFORM	ATION:				
	Analysis			ntainer Requi	irements		Collected
	TOIS	-	SUMM	A CAN	J		TO15 /
	11/12		2000				
LOCATIO	N·	HERYOTE BULLEYS			macataman menyakanak	ESPERA DINING	
LOCATIO		mateur est p	Photos based to see spice on	arama meninda		THE PERSON NAMED IN	Compromission and Comprehensive Com-
ORSERVA	TIONS / NOTE	e.					
ODSLITT	TIONS/NOTE						Hanna i i ing mangang ang ang ang ang ang ang ang ang a
Circle if A	pplicable:			Si	gnature(s):		
MS/MSD	Duplicate ID No.	:		i	-{///		-1/

SOIL VAPOR AND INDOOR AIR QUALITY SAMPLE LOG SHEET

Page 1 of 1

Project	Site Name: <u> </u>	IRC BUILDING	C Date:	124/16
Project	Number - Task:		Sampled By: D	imlim
SAMPLIN	IG DATA:			
	SOIL VAPOR	SAMPLE	INDOOR AIR QUAI	LITY SAMPLE
SV San	nple ID: SV - (V.C	-C-16	IAQ Sample ID: WXTQ -	060 - C-16
SV Car	nister#: 1016		IAQ Canister #: 2003	
SV Reg	gulator #: FCOS	7	IAQ Regulator #: FC 0/5	50
SV Star	rt Time: 0908		IAQ Start Time: 09つと	
SV Star	rt Pressure: - 30		IAQ Start Pressure: -30	
SV Stop	o Time: 1159			00
SV Stop	Pressure: O. O		IAQ Stop Pressure:	<u> </u>
SAMPLE	COLLECTION INFO	RMATION:		
	Analysis		ntainer Requirements	Collected
	T015	SUMM	1A CAN	
LOGATIO				
LOCATIO	N _i			
OBSERVA	ATIONS / NOTES:			
MS/MSD	pplicable: Duplicate ID No.:	innisminatriamismismismismismismismismismismismismism	Signature(s):	
	- 25			- 9

Page ___ of ___

	Site Name:	MRC BUILDING	Date: <u>3</u>	1114
Project Number - Task:			Sampled By: DLM	11700
SAMPLING	G DATA:			
	THE RESIDENCE OF THE PARTY OF T	OR SAMPLE	INDOOR AIR QUALITY	SAMPLE
SV Sam	ple ID: 5\\-(X65-C-16	IAQ Sample ID: TA-065- (2-16
SV Cani	ster#: 133C)	IAQ Canister #: 1033	
SV Regu	ulator #: FCC	2199	IAQ Regulator #: FC 0531	
SV Start	: Time: 095	3	IAQ Start Time: 0150	
	: Pressure: ˆ ट		IAQ Start Pressure: -34	
	Time: /ঠ/C	<u> </u>	IAQ Stop Time: 1823 IAQ Stop Pressure: —)	
SAMPLE (COLLECTION	NFORMATION:		Collected
	Analysis	Co	ntainar waniiiramants i	
	Analysis	V	ntainer Requirements	
	Analysis TOIS	V	A CAN	V
LOCATION	TOIS	V		
LOCATION	T015	SUMN		
LOCATION	TOIS	SUMN		
LOCATION	T015	SUMN		
LOCATION	T015	SUMN		
LOCATION	T015	SUMN		
LOCATION	TOIS	SUMN		

SOIL VAPOR AND INDOOR AIR QUALITY SAMPLE LOG SHEET

	****			Page of
Project Site Name: ms	C BUILDIN	6C	Date:	2/24/14
Project Number - Task:			Sampled By:]	DLM/Jm
SAMPLING DATA:				
SOIL VAPOR S	AMPLE		INDOOR AIR QUA	ALITY SAMPLE
SV Sample ID: 5V-088-	C-16	IAQ Samp	le ID: IA -08	38-C-16
SV Canister #: 1348	· · · · · · · · · · · · · · · · · · ·	IAQ Canis	ter#: 1784	
SV Regulator #: FCO314		IAQ Regul	ator #: FCO4L	14
SV Start Time: 6853		IAQ Start	Time: 0853	
SV Start Pressure: っるんら		IAQ Start I	Pressure: ~30	
SV Stop Time: 1143		IAQ Stop T	ime: 1656	
SV Stop Pressure: (),()		IAQ Stop Pressure: -7, 0		
SAMPLE COLLECTION INFORI				
Analysis		ntainer Require		Collected
TOIS	SUMMA	CAN)	
OCATION:		numpromeominis		
OCATION.		Amelia		
DBSERVATIONS / NOTES:				
ircle if Applicable:		Sign	ature(s):	1
MS/MSD Duplicate ID No.:				

	0.000	4			Page of
Project Site Project Num	-	BUILDING	<u> </u>		2/34/14 Dum 1,1m
SAMPLING D	ATA:				
	THE RESERVE THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NAMED IN COLUMN TWIND TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN	MPLE	11	IDOOR AIR QUA	LITY SAMPLE
SOIL VAPOR SAMPLE SV Sample ID: 5V-103-C-76 SV Canister #: 6766 SV Regulator #: FC 638 SV Start Time: 6965 SV Start Pressure: 68 SV Stop Time: 1149 SV Stop Pressure: 666		INDOOR AIR QUALITY SAMPLE IAQ Sample ID: TA - 103 - C - 16 IAQ Canister #: 3369 IAQ Regulator #: FCCC17 IAQ Start Time: 0905 IAQ Start Pressure: - 29.9 IAQ Stop Time: 1703 IAQ Stop Pressure: -5.0			
SAMPLE COL	LECTION INFORM	ATION:			
Ana	lysis	Co	ntainer Requirem	ents	Collected
- 10	1015	SUMMA	CAN		
LOCATION:					
OBSERVATIO	NS / NOTES:				
Circle if Applic	cable: plicate ID No.:		Signa	ture(s):	

Page ___ of ___

Project Site Name: MRC Project Number - Task:	BUILDINE	Date: 3/34 Sampled By: DLM	4/14
r rojoot Number - rask.		Sampled by	1/3/11
SAMPLING DATA:			
SOIL VAPOR SAI	MPLE	INDOOR AIR QUALITY	SAMPLE
SV Sample ID: SV - 113-C-	-Ila	IAQ Sample ID: TA-113-C-	-16
SV Canister #: 2523		IAQ Canister #: 3448	
SV Regulator #: FC0170		IAQ Regulator #: FCO377	
SV Start Time: 1025		IAQ Start Time: 1035	
SV Start Pressure: -30		IAQ Start Pressure: -29	
SV Stop Time: 1143		IAQ Stop Time: 1659	***************************************
SV Stop Pressure: O. C		IAQ Stop Pressure: C, C	
SAMPLE COLLECTION INFORM			
			1
Analysis	. Co	ntainer Requirements	Collected
Analysis TO 15	SUMMA		Collected
TOIS			Collected
TO 15		CAN	
Tois			
TO 15		CAN	
LOCATION: SV-DUP2-C-16 Can# 2582		CAN	
LOCATION: SV-DUP2-C-16 Can# 2582		CAN	
LOCATION: SV-DUP2-C-16 Can# 2582		CAN	
LOCATION: SV-DUP2-C-16 Can# 2582		CAN	
LOCATION: SV-DUP2-C-16 Can# 2582		CAN	
LOCATION: SV-DUPA-C-16 Can# 3583 OBSERVATIONS/NOTES: Circle if Applicable: MS/MSD Duplicate ID No.:		IA-DUP (Can#120	

Page ___ of _

a 14114 Project Site Name: MRC EVILDING C Date: Sampled By: DLm llm Project Number - Task: **SAMPLING DATA:** SOIL VAPOR SAMPLE INDOOR AIR QUALITY SAMPLE SV Sample ID: 5V-166-C-16 IAQ Sample ID: TA - 136-1-16 IAQ Canister #: C903 SV Regulator #: T-CO138 IAQ Regulator #: FC 0434 IAQ Start Time: 0943 SV Start Time: 0943 IAQ Start Pressure: ~36 SV Start Pressure: -39SV Stop Time: /206 IAQ Stop Time: 1819 SV Stop Pressure: O.C IAQ Stop Pressure: -3 SAMPLE COLLECTION INFORMATION: Analysis **Container Requirements** Collected SUMMA CAN T015 LOCATION: **OBSERVATIONS / NOTES:** Circle if Applicable: Signature(s): MS/MSD **Duplicate ID No.:**

Page _ of _

Project Site Name: MRC BUILDING C Date: Project Number - Task: Sampled By: TP SAMPLING DATA: SOIL VAPOR SAMPLE INDOOR AIR QUALITY SAMPLE SV Sample ID: 5V-128-C-16 IAQ Sample ID: TA - 138-C-16 IAQ Canister #: 0891 SV Canister #: 3467 SV Regulator #: FC 0308 IAQ Regulator #: 15C 0453 SV Start Time: 1113 IAQ Start Time: 1110 SV Start Pressure: -30 IAQ Start Pressure: -30 IAQ Stop Time: 1913 SV Stop Time: |316 IAQ Stop Pressure: SV Stop Pressure: -\,O SAMPLE COLLECTION INFORMATION: Analysis **Container Requirements** Collected TO15 SUMMA CAN LOCATION: **OBSERVATIONS / NOTES:** Circle if Applicable: وسن(Signature(s MS/MSD **Duplicate ID No.:**

SOIL VAPOR AND INDOOR AIR QUALITY SAMPLE LOG SHEET

			P	age ⊥_ of ⊥_
Project Site Name:	MRC BUILDIN	GC Date:	2124/14	
Project Number - Task:		Sample	d By: DLM	<u>lm</u>
SAMPLING DATA:				
SOIL VAPOR	RSAMPLE	INDOOR A	AIR QUALITY SAN	IPLE
SV Sample ID: SV-13	5-C-16	IAQ Sample ID: I	7-130-c-	16
SV Canister #: 1176		IAQ Canister #: 135	38	
SV Regulator #: FCC3	<u>28</u>	IAQ Regulator #:	C0435	
SV Start Time: 0910		IAQ Start Time: O		
SV Start Pressure: -38		IAQ Start Pressure:	_	
SV Stop Time: 153		IAQ Stop Time:	758	
SV Stop Pressure: 6,0		IAQ Stop Pressure: -2.5		
SAMPLE COLLECTION INFO	The second secon	ntainer Requirements	PO SUCCESSION AND PROPERTY OF THE	Collected
TO15	SUMMA	CAN		
OCATION:			rannamia di decembro	
DBSERVATIONS / NOTES:		presenta con concentra		
		*		
ircle if Applicable:		The state of the s		
MS/MSD Duplicate ID No.:		Signature(s):	7//	

Page ___ of ___ Project Site Name: MRC BULLING C 2/24/14 Date: Sampled By: DLM Jm Project Number - Task: SAMPLING DATA: INDOOR AIR QUALITY SAMPLE **SOIL VAPOR SAMPLE** IAQ Sample ID: TA-133-C-16 SV Sample ID: SV-133-C-16 SV Canister #: 2390 IAQ Canister #: 1030 SV Regulator #: FCO183 IAQ Regulator #: FC 0134 SV Start Time: 1010 IAQ Start Time: IOIO IAQ Start Pressure: "36 SV Start Pressure: ~3() SV Stop Time: 1155 IAQ Stop Time: 1840 SV Stop Pressure: 🔘 🕻 🔘 IAQ Stop Pressure: SAMPLE COLLECTION INFORMATION: **Container Requirements** Collected **Analysis** TOIS SUMMA CAN LOCATION: 3V-DUPI-C-16 IA-DUPI-C-16 Can# 9030 Can# 2504 Regt FC0124 Start Time: 1010 Reg #FC0183 Start Time: 1010 Start Press: -30 **OBSERVATIONS / NOTES:** Circle if Applicable: Signature(s): Duplicate ID No.: SV-DUPI-C-16 MS/MSD 14-DUPI-C-16

Page 1 of 1

Project 9	Site Name:	MRC	BUILDIN	6 C	Date:	2/24/14	
Project N	Number - Task:				Sampled By:	Drug	<u> </u>
SAMPLIN		202.044			INDOOD AID O	MALITY CARS	
	SOIL VA	POR SAM	PLE		INDOOR AIR C	IUALITY SAIVII	<u> </u>
SV Sam	ple ID: 5V-1	35-C-	16	IAQ Samp	ole ID: TA-I	135-C-/(, 2
SV Can	ister #: 237			IAQ Canis	ter#: <u>/030</u>		
SV Reg	ulator #: FC C	339		IAQ Regu	lator #: FC O	148	
SV Star	t Time:0850	<u> </u>		IAQ Start	Time: 0856		
SV Star	t Pressure: 📆	18		IAQ Start	Pressure: ~ 30)	
	SV Stop Time: 1\35 SV Stop Pressure: 0\0		IAQ Stop Time: 1654 IAQ Stop Pressure: 3.0				
SAMPLE	COLLECTION	INFORMA		ntainer Require	monts		Collected
	Analysis						Conscieu
	TOIS	5	SUMMA	t CAN	J		
LOCATIO	N•					Colora compression	
OBSERVA	ATIONS / NOTE	:S:	DANING NEDEKTA SEREDA KASAMA SEREDA				
Circle if A	pplicable:	<u> </u>		Sig	nature(s):		
MS/MSD	Duplicate ID No	.:					7

SOIL VAPOR AND INDOOR AIR QUALITY SAMPLE LOG SHEET

Page 1 of 1

	ite Name: MRC BUILDIN		1
Project N	lumber - Task:	Sampled By: Dim	1702
SAMPLING			
	SOIL VAPOR SAMPLE	INDOOR AIR QUALITY S	SAMPLE
SV Sam	ple ID: 5V-141-C-16	IAQ Sample ID: 'TA - [니 - C-	- 16
SV Cani	ster #: 3461	IAQ Canister #: 2075	
SV Regu	alator #: FC0336	IAQ Regulator #: FC0147	
SV Start	Time: 0935	IAQ Start Time: 0935	
SV Start	Pressure: -30	IAQ Start Pressure: 130	
	Time: 1203 Pressure: 16	IAQ Stop Time: 1814 IAQ Stop Pressure: -3	
	COLLECTION INFORMATION:		
	Analysis Co	ntainer Requirements	Collected
	TOIS SUM	MA CAN	V
LOCATION			
OBSERVA	TIONS / NOTES:		
			9
Circle if Ap		Signature(s):	
MS/MSD	Duplicate ID No.:		3

Page ___ of ___

Project Site Name: MRC BULL Project Number - Task:	Committed Day DV	201722 24114
SAMPLING DATA:	INDOOR AIR QUALIT	V CAMDI E
SOIL VAPOR SAMPLE	INDOOR AIR QUALIT	Y SAIVIPLE
SV Sample ID: 5V-143-C-16	IAQ Sample ID: TYA - 148 - 0	C-16
SV Canister #: 2574	IAQ Canister #: 3581	
SV Regulator #: FCO167	IAQ Regulator #: FCC53C	>
SV Start Time: 0855	IAQ Start Time: 0855	
SV Start Pressure: -37	IAQ Start Pressure: - 27.5	
SV Stop Time: ++35 //46 SV Stop Pressure: 0	IAQ Stop Time: 1657 IAQ Stop Pressure: -5.0	
SAMPLE COLLECTION INFORMATION: Analysis	Container Requirements	Collected
	UMMA CAN	
LOCATION: OBSERVATIONS / NOTES:		
Circle if Applicable: MS/MSD Duplicate ID No.:	Signature(s):	

Page ___ of ___ 2/24/14 Project Site Name: MRC BUILDING C Date: Sampled By: DLM / JM Project Number - Task: SAMPLING DATA: INDOOR AIR QUALITY SAMPLE SOIL VAPOR SAMPLE IAQ Sample ID: T 14-143-C-16 SV Sample ID: SV - 143 - (~ 16 IAQ Canister #: 2070 SV Canister #: 2777 IAQ Regulator #: FCC408 SV Regulator #: FCOOCH IAQ Start Time: (843) SV Start Time: 0843 IAQ Start Pressure: ~30 SV Start Pressure: - 30 IAQ Stop Time: 1644 SV Stop Time: 1127 1632 IAQ Stop Pressure: -4.0 SV Stop Pressure: -33 SAMPLE COLLECTION INFORMATION: Collected **Container Requirements** SUMMA CAN TO15 LOCATION: OBSERVATIONS / NOTES: *Gauge on SV sample appears broken. Signature(s) Circle if Applicable: **Duplicate ID No.:** MS/MSD

SOIL VAPOR AND INDOOR AIR QUALITY SAMPLE LOG SHEET

Page ___ of ___

3/24/14 Project Site Name: MRC BUILDING C Date: Sampled By: TB Project Number - Task: SAMPLING DATA: INDOOR AIR QUALITY SAMPLE SOIL VAPOR SAMPLE IAQ Sample ID: TA-148-C-16 Alv SV Sample ID: IAQ Canister #: 3361 SV Canister #: IAQ Regulator #: FCO141 SV Regulator #: IAQ Start Time: 1137 SV Start Time: IAQ Start Pressure: -30 SV Start Pressure: IAQ Stop Time: SV Stop Time: IAQ Stop Pressure: SV Stop Pressure: SAMPLE COLLECTION INFORMATION: Collected Analysis **Container Requirements** SUMMA CAN TO15 LOCATION: **OBSERVATIONS / NOTES:** Circle if Applicable: Signature(s): MS/MSD **Duplicate ID No.:**

Page ___ of ___

l '	ite Name:		BUILDIN		Date: <u>ala</u>	<u>94/14</u>
Project N	lumber - Task:				Jampied by. 11	
SAMPLING	G DATA:					
	SOIL VAI	POR SAMI	PLE		INDOOR AIR QUALIT	Y SAMPLE
SV Samp SV Canis	ster #:	10		IAQ Ca	umple ID: TA - 145 unister #: 2431 egulator #: FC 0445	
SV Start	Timo	1		IAO St	art Time: 1130	
	Pressure:				art Pressure:	
	Pressure:				op Time: 1920 op Pressure: -5	
SAMPLE (COLLECTION	INFORMA		ntainer Rec	uirements	Collected
	Analysis					
	TO15		SUMM	A C	AN	
LOCATIO	N:					
OBSERVA	ATIONS / NOTI	ES:				
Circle if A	The second secon				Signature(s):	
MS/MSD	Duplicate ID No). :				

SOIL VAPOR AND INDOOR AIR QUALITY SAMPLE LOG SHEET

Page ___ of __

Project	Site Name:	MRC	BUILDIN	6 C	Date:	2 2 2 2 2
Project Number - Task:					Sampled By:	TA
SAMPLIN	C DATA:			aran kara kara kalila		
SAMPLIN	The second second	POR SAMP	PLE		INDOOR AIR QU	IALITY SAMPLE
SV San	nple ID:	ALM		IAQ Samp	ole ID: TA -IL	46-C-16
SV Can	ister #:			IAQ Canis	ster #: 333)	
SV Reg	ulator #:		· · · · · · · · · · · · · · · · · · ·	IAQ Regu	lator #: FCC5	19
SV Star	t Time:			IAQ Start	Time: 1118	
SV Star	t Pressure:			IAQ Start	Pressure: 30	
SV Stop	Time:			IAQ Stop	Time: 1918	
SV Stor	Pressure:	<u> </u>		IAQ Stop	Pressure: /	4
,						
SAMPLE	COLLECTION	NFORMAT	THE RESERVE AND ADDRESS OF THE PERSON NAMED IN	ontainer Require		Collected
	Analysis					Conected
	TOIS	5	SUMM	1A CA	4 N	
LOCATIO	NI-					
LOCATIO	N-same and the	isan da masa, nan			anne approcedant annue.	
OBSERV	ATIONS / NOTE	S:				
Circle if A	pplicable:			Sign	nature(s):	
MS/MSD	Duplicate ID No.	:				
			10.00 T. Woman		10/	

50000				Page ⊥ of <u>\</u>		
-	Site Name:	MRC BUILDING	Sampled By: Th	4))\4		
SAMPLIN	G DATA:					
	SOIL VAPO	OR SAMPLE	INDOOR AIR QUALITY	SAMPLE		
SV Sam SV Can SV Reg SV Star	ister #: ulator #:	NA	IAQ Sample ID: TB-147-C IAQ Canister #: 1334 IAQ Regulator #: FCO512 IAQ Start Time: 1135 IAQ Start Pressure: -30	16		
SV Stop Time: SV Stop Pressure: SAMPLE COLLECTION INFORMATION:			IAQ Stop Time: 1925 IAQ Stop Pressure: 5			
	Analysis		ntainer Requirements	Conecieu		
	TO15	SUMMI	CAN			
OBSERVA	ATIONS / NOTES					
Circle if A	pplicable:		Signature(s):			
MS/MSD	Duplicate ID No.:			~		

Page ____ of ____

·	ite Name: umber - Task:		MAJIUG		Date: Sampled By	ilvelc.	4
•						- Andrews - His	
SAMPLING					NDOOD AID C	NEAL ITY C	MADI E
	SOIL VAI	POR SAM	PLE		NDOOR AIR C	WALIIY SA	AWPLE
SV Samp		NA			e ID: <u>TA - 1</u> 0		<u>ر</u>
SV Regu	lator #:		·	IAQ Regula	ntor #: FCOS	512	
SV Start Time:			·	ime: 1115			
SV Start	Pressure:			IAQ Start P	ressure: - 3	<u> </u>	
	Time: Pressure:	INFORMA	TION:	IAQ Stop T		115	
	Analysis			ntainer Requirer	ments		Collected
	TOIS		SUMMA	CAN)		V
LOCATION					nižženomini kličekoj		
OBSERVA	TIONS / NOTE	S:					
Circle if Ap	The second secon			Sign	ature(s):		
MS/MSD	Duplicate ID No	.:		-	K	//~	

SOIL VAPOR AND INDOOR AIR QUALITY SAMPLE LOG SHEET

					Page <u></u> of <u></u>	
Project Si Project N	ite Name: <u>mR(</u> umber - Task:	C-BUILD IN	62	Date: Sampled By: Dim		
SAMPLING	The second secon					
	SOIL VAPOR SA	MPLE		NDOOR AIR QUALITY	SAMPLE	
SV Sample ID: SV – 105 – 2 – 16 SV Canister #: C838 SV Regulator #: FC C037 SV Start Time: IOSO SV Start Pressure: -30			IAQ Sample ID: TA - 105-7-14. IAQ Canister #: 933 IAQ Regulator #: FC - 6454 IAQ Start Time: 1050 IAQ Start Pressure: -30			
SV Stop Time: 122			IAQ Stop Time: 1848 IAQ Stop Pressure: -4.5			
CAMDLE C	OLLECTION INFORM	IATION				
	Analysis	AND RESIDENCE OF THE PARTY OF T	ntainer Require	ments	Collected	
				}		
	TO15	SUMMA	CAN	<u>/</u>		
LOCATION						
OBSERVA [*]	TIONS / NOTES:					
Circle if Ap	plicable:	4044072 marketaja (2019)	Sign	ature(s):	_	
MS/MSD	Duplicate ID No.:		-			

Page ___ of ___

Project Si Project No	te Name: umber - Task:		BUILDING		Date: <u>ala</u>	m 17.w
SAMPLING		202.0444			NDOOR AIR QUALIT	Y SAMPLE
	SOIL VA	POR SAMI	PLE		NDOON AIN GOALIT	1 OAMI CL
SV Samp	ole ID: SV-	a3-7-	-16		e ID: <u>TA-133-</u> Z	2-16
SV Canis	ter#: a39	8			er #: 3537	
SV Regu	lator #: FC	1930		IAQ Regula	ator #: FC0146	
SV Start	Time: 105	3		IAQ Start T	ime: 1053	
	Pressure:			IAQ Start F	ressure: -29	
					•	
SV Stop Time: 1333			IAQ Stop Time: 1849 IAQ Stop Pressure: -4.5			
SV Stop	Pressure: O	<u>.O</u>		IAQ Stop F	ressure.	
CAMPLE C	OLLECTION	INFORMA	TION:			
	Analysis		The second secon	ntainer Require	ments	Collected
	TOIS	-	SUMM	1A CA	N	
LOCATION	V:					premingualite qui lecerativori
				, i		
OBSERVA	TIONS / NOT	ES:				
Circle if A	oplicable:		HANDAN BASTRAN KANDARI DER	Sigi	nature(s):	
MS/MSD	Duplicate ID N	0.:				

Page 1 of 1

ala5 | 14 MRC BACKGEOUND Date: Project Site Name: Sampled By: TA Project Number - Task: SAMPLING DATA: INDOOR AIR QUALITY SAMPLE **SOIL VAPOR SAMPLE** IAQ Sample ID: BCK - 1 - 16 SV Sample ID: IAQ Canister #: SV Canister #: IAQ Regulator #: FCO44/ SV Regulator #: IAQ Start Time: 065 2 SV Start Time: IAQ Start Pressure: SV Start Pressure: IAQ Stop Time: \537 SV Stop Time: IAQ Stop Pressure: - 2.0 SV Stop Pressure: SAMPLE COLLECTION INFORMATION: Collected **Container Requirements Analysis** SUMMA CAN TOIS LOCATION: **OBSERVATIONS / NOTES:** Signature(s): Circle if Applicable: **Duplicate ID No.:** MS/MSD

Page 1 of 1

Project Si Project No	te Name: MRC umber - Task:	BACCEROL		Date: <u>ala</u>	5/14
SAMPLING	DATA: SOIL VAPOR SAM	PLE	IND	OOR AIR QUALIT	Y SAMPLE
SV Stop	eter #: lator #: Time: Pressure:		IAQ Canister # IAQ Regulator IAQ Start Time IAQ Start Pres	#: <i>FC</i> 03	305
	OLLECTION INFORMA		ntainer Requiremer	nts	Collected
	T015	SUMM	A CAN		V
LOCATION: DUP CAN 2413 REG FC0305 3T PRESS, 0657 -17 MINE BCK-BUP -16 OBSERVATIONS/NOTES:					
Circle if A MS/MSD	Duplicable: Duplicate ID No.: BCK-DI	UP-16	Signat	ure(s):	11

Page ___ of __

Project Site Name: MRC	BACKEROUND Date: 2/35/14
Project Number - Task:	Sampled By: 1A
SAMPLING DATA: SOIL VAPOR SAI	MPLE INDOOR AIR QUALITY SAMPLE
SV Sample ID:	
SV Canister #:	IAQ Canister #: 2250
SV Regulator #:	IAQ Regulator #: FCO296
SV Start Time:	IAQ Start Time: 071
SV Start Pressure:	IAQ Start Pressure: -30
SV Stop Time: SV Stop Pressure:	IAQ Stop Time: 1538 IAQ Stop Pressure: -3.5
SAMPLE COLLECTION INFORM	
Analysis	Container Requirements Collected
T015	SUMMA CAN
LOCATION:	
OBSERVATIONS / NOTES:	
Circle if Applicable:	Signature(s):
MS/MSD Duplicate ID No.:	

Page 1 of

Project Si	te Name: MRC	BACKEROUND Date: 2/35/14
Project No	umber - Task:	Sampled By: TA
	DATA	
SAMPLING	SOIL VAPOR SAMI	PLE INDOOR AIR QUALITY SAMPLE
SV Stop	ole ID: Ster #: lator #: Time: Pressure:	IAQ Sample ID: BCK-4-16 IAQ Canister #: 2208 IAQ Regulator #: FC0523 IAQ Start Time: 0705 IAQ Start Pressure: -28 IAQ Stop Time: 1529 IAQ Stop Pressure: -25
OAMPI E C	COLLECTION INFORMA	ATION:
SAMPLE	Analysis	Container Requirements Collected
	T015	SUMMA CAN
LOCATION	TIONS / NOTES:	
OBSERVA		

Page _i_of _i

<u> 2156174</u> YLS BUILDING Date: Project Site Name: Sampled By: Dimlim TB Project Number - Task: SAMPLING DATA: **INDOOR AIR QUALITY SAMPLE** SOIL VAPOR SAMPLE NIA IAQ Sample ID: TA - 146-VLS-3 SV Sample ID: IAQ Canister #: 3570 SV Canister #: IAQ Regulator #: FC0513 SV Regulator #: IAQ Start Time: 1000 SV Start Time: IAQ Start Pressure: SV Start Pressure: IAQ Stop Time: SV Stop Time: IAQ Stop Pressure: SV Stop Pressure: SAMPLE COLLECTION INFORMATION: Collected **Container Requirements Analysis** TOIS SUMMA CAN LOCATION: **OBSERVATIONS / NOTES:** Signature(s): Circle if Applicable: **Duplicate ID No.:** MS/MSD

Page ___ of ___

Project Site Project Num		YLS	BUILDIN	16		136/14 DIMINITA	
SAMPLING D	ATA:						
O/1111 E1110 E		POR SAME	PLE		INDOOR AIR QUA	LITY SAMPLE	
SV Sample ID: SV Canister #: SV Regulator #: SV Start Time: SV Start Pressure:			IAQ Sample ID: TR - 147-YL5 - 2 IAQ Canister #: 0905 IAQ Regulator #: F-C0358 IAQ Start Time: 1035 IAQ Start Pressure: -38,5				
SV Stop Tir	me:			The diop time.			
SV Stop Pro		INFORMA		IAQ Stop			
An	alysis		Co	ntainer Require	ements	Collected	
	1015		SUMM	1A CA	-N		
LOCATION:							
IA-DUP -VLS-2 CAN 2491							
OBSERVATIONS / NOTES:							
Circle if App	THE RESERVE AND ADDRESS OF THE PARTY OF THE			Sig	nature(s):		
MS/MSD D	Ouplicate ID No	o.: - DUP :	1-115-2	-			

SOIL VAPOR AND INDOOR AIR QUALITY SAMPLE LOG SHEET

Page _ of

Project Site	e Name: VL	S BULLIN	<u>C</u> Date: <u>2120</u>	0114
Project Nu	ımber - Task:		Sampled By: DLM	AT I mil
SAMPLING	SOIL VAPOR S	SAMPLE	INDOOR AIR QUALITY	SAMPLE
	SOIL VALOUE	JAINI LL		
SV Sampl	le ID:	Α	IAQ Sample ID: TA-148-V	15-2
SV Canist	ter#:		IAQ Canister #: 8418	
SV Regula	ator #:		IAQ Regulator #: FCO449	
SV Start 7	Гime:		IAQ Start Time: 1013	·
SV Start F	Pressure:		IAQ Start Pressure: -27.5	
SV Stop 1		/	IAQ Stop Time:	-2 -2
SAMPLE C	OLLECTION INFO			
	Analysis	Cor	ntainer Requirements	Collected
	TO15	SUMMA	CAN	
LOCATION				
OBSERVAT	TIONS / NOTES:			
Circle if Ap	plicable: Duplicate ID No.:		Signature(s):	

Page ___of ___

Project Site Name: Project Number - Ta		BUILDIA	16_		AT I MUDALS	
SAMPLING DATA:						
SOIL	VAPOR SAMPI	-E		INDOOR AIR QUA	LITY SAMPLE	
SV Sample ID: SV Canister #: SV Regulator #: SV Start Time: SV Start Pressure:	NIA		IAQ Canis IAQ Regul	ter #: 3397 lator #: FC053 Time: 1007 Pressure: -30		
			IAQ Stop Pressure:			
SAMPLE COLLECTI Analysis	ON INFORMAT		ntainer Require	ements	Collected	
1019		SUM	MMA CAN			
LOCATION:						
OBSERVATIONS / NOTES:						
Circle if Applicable:			Sig	nature(s)		
MS/MSD Duplicate	ID No.:		_		~	

Page | of

	Site Name: $$	BUILDIN	Date: 3/3 Sampled By: Dum	1
SAMPLIN	G DATA: SOIL VAPOF	SAMPLE	INDOOR AIR QUALITY	SAMPLE
SV Stop	ister #: ulator #: t Time: t Pressure:		IAQ Sample ID: TA-150-1 IAQ Canister #: 2548 IAQ Regulator #: FC 0518 IAQ Start Time: 1019 IAQ Start Pressure: -38 IAQ Stop Time: 1834 IAQ Stop Pressure: -3	125-3
SAMPLE (COLLECTION INFO		ntainer Requirements	Collected
	TO15		CAN	V
LOCATIO	N: upunda atau atau a			
OBSERVA	ATIONS / NOTES:			
Circle if A	THE RESERVE OF THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NAMED IN COLUMN TW		Signature(s):	
MS/MSD	Duplicate ID No.:		The	

				W-1		Page <u>l</u> of <u>l</u>
Project Site Name: Project Number - Task:		BULLDIN	<u>6</u>	Date: Sampled By:	<u>Dumla</u>	
SAMPLING DATA:						
SOIL VA	POR SAM	IPLE	<u> </u>	NDOOR AIR QU	JALITY SA	MPLE
SV Sample ID: SV Canister #: SV Regulator #: SV Start Time: SV Start Pressure:	NA		IAQ Canist IAQ Regula IAQ Start 7	e ID: TQ - 15 er #: 2227 ator #: FC 04 ime: 0 955 Pressure: *20		3-3
SV Stop Time: SV Stop Pressure:	<u> </u>		IAQ Stop T		350 -4	
SAMPLE COLLECTION Analysis	INFORM	COLUMN TWO IS NOT THE OWNER, THE REAL PROPERTY AND THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NAMED	ontainer Require	ments		Collected
T015			1A CAI			/
LOCATION: OBSERVATIONS / NOT	ES:					
Circle if Applicable: MS/MSD Duplicate ID No	o.:		Sign	nature(s):		11

Page ___ of ___ 2/36/14 VIS BUILDING Date: Project Site Name: Sampled By: DLM 1m 3 Project Number - Task: SAMPLING DATA: INDOOR AIR QUALITY SAMPLE **SOIL VAPOR SAMPLE** SV Sample ID: NIA IAQ Sample ID: TA - 152-VLS - 2 IAQ Canister #: 3435 SV Canister #: IAQ Regulator #: FCO448 SV Regulator #: IAQ Start Time: 0953 SV Start Time: IAQ Start Pressure: ~30 SV Start Pressure: IAQ Stop Time: SV Stop Time: IAQ Stop Pressure: 1845 SV Stop Pressure: SAMPLE COLLECTION INFORMATION: Collected **Container Requirements** Analysis SUMMA CAN TO15 LOCATION: **OBSERVATIONS / NOTES:** Circle if Applicable: Signature(s): MS/MSD **Duplicate ID No.:**

SOIL VAPOR AND INDOOR AIR QUALITY SAMPLE LOG SHEET

Project Site Name: ENCINEEPING RESEARCH Date: BUILDING Project Number - Task: Sampled By: SAMPLING DATA: **INDOOR AIR QUALITY SAMPLE** SOIL VAPOR SAMPLE IAQ Sample ID: IA-001-ER-) SV Sample ID: IAQ Canister #: වうう6 SV Canister #: IAQ Regulator #: FCO451 SV Regulator #: IAQ Start Time: 6933 SV Start Time: IAQ Start Pressure: -39SV Start Pressure: IAQ Stop Time: /753 SV Stop Time: IAQ Stop Pressure: -/O SV Stop Pressure: SAMPLE COLLECTION INFORMATION: Analysis **Container Requirements** Collected TO15 SUMMA CAN LOCATION: MILLI Integration Lab **OBSERVATIONS / NOTES:** Circle if Applicable: -ن(Signature(s) MS/MSD **Duplicate ID No.:**

						Page of		
Project S	ite Name:	VLS-ER		Date:	2/36	114		
Project N	lumber - Task:	ENGINECEIN!	6 PESSARCO	H Sampled By:	DLM	1 Jm/TA		
BUILDING SAMPLING DATA:								
SOIL VAPOR SAMPLE			- CO	INDOOR AIR QUALITY SAMPLE				
SV Sample ID:			IAQ Sam	IAQ Sample ID: TA - 002 - ER - I				
SV Cani	ster #:		IAQ Canis	IAQ Canister #: 2383				
SV Regulator #:				IAQ Regulator #: FCOS33				
SV Start Time:			IAQ Start	IAQ Start Time: 0931				
SV Start Pressure:			IAQ Start	IAQ Start Pressure: -39				
SV Stop Time: SV Stop Pressure:				IAQ Stop Time: 1814 IAQ Stop Pressure: —]				
SAMPLE	COLLECTION	INFORMATION:						
	Analysis		Container Requir	ements		Collected		
	T015	51	MMA	CAN				
LOCATIO								
	s Room							
OBSERVA	TIONS / NOTE	S:						
Circle if A	pplicable:		Sig	gnature(s):				
MS/MSD	Duplicate ID No	.:		-U	<i></i>			

Page ____of ___

Project Sit	te Name:	VL3-ER ENGINESPING P	Date: 2/26 ESSAPCH Sampled By: DLM/					
Project Number - Task: ENGINERRING RESEARCH Sampled By: DLMINM TA								
SAMPLING DATA:								
SOIL VAPOR SAMPLE			INDOOR AIR QUALITY SAMPLE					
SV Sample ID:			IAQ Sample ID: TA - 003 - ER - 1					
SV Canister #:			IAQ Canister #: 1888 2427					
SV Regulator #:			IAQ Regulator #: FCOおお					
SV Start Time:			IAQ Start Time: 692S					
SV Start Pressure:			IAQ Start Pressure: 30					
SV Stop Time: SV Stop Pressure:			IAQ Stop Time: 1810 IAQ Stop Pressure:					
SAMPLE COLLECTION INFORMATION:								
		THE RESERVE OF THE PARTY OF THE	entainer Paguiroments	Collected				
	Analysis	Co	ntainer Requirements	Collected				
		THE RESERVE OF THE PARTY OF THE		Collected				
,	Analysis TOIS	Co		Collected				
LOCATION	Analysis TOIS	SUMMA						
LOCATION	Analysis TOIS	SUMMA	LCAN					
LOCATION	Analysis TOIS	SUMMA	TA-PVA1-E CANIS					
LOCATION	TIONS / NOTE	SUMMA	LCAN					

Page ___ of ___

Project Site Name:	MRC-PB	Date: <u>3/36</u>	•					
Project Number - Task:	PEOGRAM BI	JILDING Sampled By: DUM	7W11H					
SAMPLING DATA:								
SOIL VAF	POR SAMPLE	INDOOR AIR QUALITY SAMPLE						
SV Sample ID:		IAQ Sample ID: TA - 001 - PP						
SV Canister #:		IAQ Canister #: 2434						
SV Regulator #:		IAQ Regulator #: FCO3QC						
SV Start Time:		IAQ Start Time: U931						
SV Start Pressure:		IAQ Start Pressure: - 28.5						
SV Stop Time: SV Stop Pressure:		IAQ Stop Time: 1804 IAQ Stop Pressure:						
SAMPLE COLLECTION	THE RESERVE THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NAMED	ontainer Requirements	Collected					
Analysis								
1015	SUMM	A CAN	V					
IA-DUPI-PB-1 2451 CAN								
OBSERVATIONS / NOTES:								
Circle if Applicable: Signature(s):								
MS/MSD Duplicate ID No	 - DUP (- PB-1							

TETRA TECH SOIL VAPOR AND INDOOR AIR QUALITY SAMPLE LOG SHEET

Page _/ of _/

2/26/14 VLS-Program BUILDING Date: Project Site Name: Sampled By: DIM JM TA Project Number - Task: SAMPLING DATA: INDOOR AIR QUALITY SAMPLE SOIL VAPOR SAMPLE IAQ Sample ID: TA -002 - PB-1 SV Sample ID: IAQ Canister #: 2528 SV Canister #: IAQ Regulator #: FC0409 SV Regulator #: IAQ Start Time: 0911 SV Start Time: IAQ Start Pressure: -30 SV Start Pressure: 801 IAQ Stop Time: SV Stop Time: IAQ Stop Pressure: SV Stop Pressure: SAMPLE COLLECTION INFORMATION: Collected Analysis **Container Requirements** SUMMA CAN TO15 LOCATION: **OBSERVATIONS / NOTES:** Signature(s): Circle if Applicable: MS/MSD **Duplicate ID No.:**

Section A Required Client Information:	Section B Required Project Inform	nation:		Section Invoice In	C					Ž.		148	48	Page:	of	4
Company: Tetro Tech	Report To:			Attention	•		1389)			***************************************		Program			=	3-2
Address 2005 Centry Blvd	Сору То:			Company	y Name:			3317.5			UST	Superfund	Emissio	ons	Clean Ai	ir Act
The constant in the man men	4			Address:							Voluntar	y Clean Up Dr	Clean	RCR	A - 0	ther
Jony Hipmynoe @ totintoning	Purchase Order No.:			Pace Que	ote Referenc	e:					1		-	Reportin		
	Project Name:			Pace Pro	ject Manage	r/Sales Re	ер.				Location of Sampling b	by State MD		PPBV_	mg/m³_ PPMV_	_
Requested Due Date/TAT:	Project Number: 112	c065	15	Pace Pro	file #:						Report Leve		IV	Other	le co-	
Section D Required Client Information AIR SAMPLE ID Sample IDs MUST BE UNIQUE	Valid Media Codes MEDIA Tadlar Bag TB 1 Liter Summa Can 1LC 6 Liter Summa Can 6LC Low Volume Puff LVP High Volume Puff PVP Other PM10	MEDIA CODE PID Reading (Client only)	COMPOSITE STAI		COMPO		Canister Pressure (Initial Field - psig)	Canister Pressure (Final Field - psig)	Summa Can Number	Flow Control Number	Method:		77/	///	7	
1 SV-143-C-16		-	DATE	TIME	DATE	TIME	_		4 0 - 7	1	18/8/2			1	Pace Lal	o ID
2 TA-143-C-16		ILC NIA	MILLEID	1.					2877			D D				
3 SV-135-C-16		H	-	CPRO		WH.			070			7			-	
		HH	$\vdash \vdash$	C856	1	135		0.0		0339		X		Liza		S- 1
4 IA-135-C-16		HH	2	250	1	654	-30	-3.0	1030			X				
5 5 V-088-C-16		HH		0853		CH	285	0,0	1348	0214		X				
6 IA-088-C-16		$\sqcup \sqcup$		0853	1.1	656	-30	-70	1784	0444		X				
7 5Y-142-C-16				3855		1140	-27	0.0	2574	0167		X				
8 TA-142-C-16			1 1	\$55		1.57	275	-50	2581	0536		X				
9 54-103-C-16				0905	1 1	149	-280	10	0766	0038		X				
10 TA-102-C-16				0905		702	-700	-50	2269	0000						
11 5VH30-C-16				0910	1 1	10	-0717	00	1 1 7 (0386	1	X				
12 JA-130-C-16		11	1	0910	10	158	-70	35	1770	01125		X		-		
Comments :	RE	LINQUIS	HED BY / A	AND REAL PROPERTY.		DATE	TIN	ريه.	ACCEPTED	BY / AFFILIATION	DATE	TIME		APLE C	ÓNDITIC	
	rk	JARLA)	11411	10111		10511		90	ACCEL TED	D17 ATTIEIATION	DATE	TIME	SAII			
	K	KLEEKE	10	wale	a Col	lobji.	17	20	-		-	-		N >	Z >	Z >
	· -		~											N X	N/A	¥.
	-							330		-	3			ž ×	Z >	× ×
	- Jan _				10 36	Justini	694	67%	AF Lands	Mission &	eastiti	DESCRIPTION.	i upu	₹ ¥	.¥	N/A
	37				SIGNATURE of	SAMPLER	2019	Secondor.	iin.	DATE Signed (MM/DD	(M)	**	Temp in °C	Received on Ice	Custody Sealed Cooler	Samples Intact

	red Client Information:	Section B Required Project Info	rmation:			Section Invoice	n C								14	85	6	Page:	of	4
Comp	Jetic Tech	Report To:				Attention	1:						7		Prog	ram				
190	asi Centuru Blyd Sherr	Сору То:				Compan	y Name:							UST	Superfund	En	nissior	ns F	Clean Ai	r Act
Ge	rmantono, MD 20874					Address	:			-			1	XVoluntary C	lean Up	Dry Cle	ean 🗆	RCRA	0	ther
Email	To: Aranavane telecter	Purchase Order No.:				Pace Qu	ote Refere	nce:			 -		1	Location of	'.			Reporting	Units	
		Project Name:				Pace Pr	oject Mana	ger/Sales Re	ep.				1.	Sampling by S	State	nD	_	ug/m³ PPBV Other	mg/m³_ PPMV_	_
Reque	ested Due Date/TAT:	Project Number:	16.0	Xon	ر <u>ک</u> ا	Pace Pr	ofile #:						1	Report Level	II III.	IV.		Other_		
# W	AIR SAMPLE ID	Valid Media Codes MEDIA CODE Tediar Bag TB 1 Liter Summa Can 1LC 6 Liter Summa Can 6LC Low Volume Puff LVP High Volume Puff HVP Other PM10	MEDIA CODE	PID Reading (Cilent only)	COMPOSITE STA		ECTED	POSITE -	Canister Pressure (Initial Field - psig)	Canister Prossure (Final Field - psig)	Summa Can Number	Flow Control Num	ber	Method:		Will	1015 Show	**************************************		
ITEM			MEDI	음	DATE	TIME	DATE	TIME	Car	S E	rus-ing	of afterning		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	3/3/5/		5/	/	Pace Lai	n In
	54-060-C-16		116	NE	20414	C925	SISVIA	1159	-20	0.0	1016	005	7			X		= .		- 1
	TA-060-C-16		1	1		0928		1800	- 30	-3	2003	1	0			X		433		5
	SV-141-C-16					0935		1300	-30	60	3461	023	_			χ		_P		X g
	IA-141-C-16					0935		1814	-20	-3	2015	014	7			X			E	14
	54-126-C-16			\coprod		0943	T	1906	-29	0,0	(1)	018	2			X			27	
	TA-126-C-16					1943		1219	-30	-3	5905	043	4			X				N.
	SY-065-C-16					REC		1910	- 30	00	1330	019	9			X				3.
	TA-065-C-16					0950		1823	-34	-1	1083	058	1			X			-	9 4
	54-063-B-16			\coprod		095	5	1214	-28	0,0	2498	018	3			X				
	IA-063-B-16			1		095		1825	-30	-8	2449	014	9			X				
11	5V-033-B-16		44	Щ		1000	10	1318	-38	0.0	78	017	4		5 72	X			·	
12	TA-133-B-16	51	1	1	V	1000	V	1828	79	-4	1786	058	4			X				
Comm	eents :	are ill resort	RELINC	UISI	HED BY / A			DATE	AłT	1E	ACCEPTED	BY / AFFILIATI	ON	DATE	TIME	137	SAM	PLE CC	NDITIO	ONS
		4	IM		HIM	Much	2 6	2/25/14	140	00	outin -	3.4	77 1=	922345p* 09121	1185	-		N.	Υ'N	Z >
		=																N.	X X	N X
		-					2											Z X	Ϋ́	X
		L	health.				160	2000 0	\$100 to 1	-Try li	. North B.	La Lange Vi	5.7	ingertage elet	Stager	362	:	X.	N.	× ×
]			¥211		PRINT Nume DQU SIGNATURE	OF SAMPLER:	المراز	2	in.	DATE Stoned (M	1/9	T	6 5		Temp in "C	Received on Ico	Custody Sealed Cooler	Samplos Intact

Section A Required Client Information:	Section B Required Project Inform	nation:	Section C	on:					1485	7	Page:	3 of	4
Company Tetra Tech	Report To:		Attention:						Program				
20251 Century Blud States	Copy To:		Company Name:					□ UST □	Superfund	Emissio	ons F	Clean Air	r Act
Proof on wathoms			Address:					Voluntary C	Clean Up Dry	Clean	RCR	A C O	ther
Ton Aparamaga tetraters	Purchase Order No.:		Pace Quote Refe					Location of			Reporting		
	Project Name:		Pace Project Mar	nager/Sales R	lep.			Sampling by	State MD		PPBV Other	PPMV_	_
Requested Due Date/TAT:		(0(2)	Pace Profile #:					Report Level	H BL	IV	Other_	_	
Section D Required Client Information AIR SAMPLE ID Sample IDs MUST BE UNIQUE	Velid Media Codes MEDIA CODE Tediar Bag TB 1 Liter Summa Can 1 Liter Summa Can 6 Liter Summa Can Low Volume Puff High Volume Puff HVP Other	S CK ENDIGRA		COMPOSITE -	Canister Pressure (Initial Field - psig) Canister Pressure (Final Field - psig)	Summa Can Number	Flow Control Number	Method:		\$1.50 \$1.50		/	7
1 SV-133-6-16		LC NA ALA	TE TIME DATE	1		2290	0183	1 2/3/2/1	<i>8] 2] 2] 2] 2</i>] 2 V	/2/		Pace Lat) ID
2 TA-133-C-16		I HANDIN	1010	1840	-30 -1	1090	0124		X				
3 SY-113-(-16		11 11 1	1025	1143	-30 0,0	2523	0170		X				
4 TA-113-(-16			405	1659		3448	0977		V				
5 54-105-Z-16			1050	1390	-30 -1.0		0037		X				
6 IA-105-Z-16			1050	1848	-30-45		0454		X		l		
7 5V-103-2-16			1053	1832	-3000	2398	0039		Ý				-
8 IA-123-Z-16	9 11		1053	1849	-29-45	2537	0146		X				
· 54-121-B-16			1103	1239	-30-3.0	2497	0179		X				
10 TA-121-B-16			1103	1962	-20-4	3558	0433		X				
11 SV-101-B-16			1105	1940	-30 +3.0	2441	0196		X				
12 IA-101-B-16		411	11051	1903	-39-5	1332	0535		X				
Comments:	RE	LINQUISHED B	Y / AFFILIATION	DATE	TIME	ACCEPTED	BY / AFFILIATION	DATE	TIME	SAN	IPLE C	ONDITIO	ONS
	G	Meust 7	MALLE	2/25/14	1420	DEPOSIT MIC	Table				X/N	X X	N/A
											N ×	N.	×
	_						31		7		N/A	N/A	N/A
				e at the si		reconstruction	granting files	of call beds	State (Text)	(S) 1	N.	N.	N.
	1		PRINT No	me of SAMPLER:	NO SIGNATURE	atta o	DATE Signed (MM FDD	lγn		Temp in °C	Received on Ice	Custody Sealed Cooler	Semples Intact

Section A Required Client Information:	Section B Required Project Inform	nation:		Section Invoice I	C nformation:							14	858	Page	: 4 of	4
Company Tetra Tech	Report To:			Attention	:							Prog	gram			
Address: 2025) Century Blvd Sink 201	Сору То:			Compan	Name:						UST	Superfund	I Emi	ssions	Clean Ai	r Act
Germotous MO SORTU				Address:							Voluntary	Clean Up	Dry Cle	an 🗀 RO	RA C	ther
Email To: Acanavage Otehateha	Purchase Order No.:			Pace Qu	ote Referer	nce:			The super		Location of				ting Units mg/m³_	
Phone: Fax:	Project Name:	gio i		Pace Pro	ject Manag	er/Sales Re	вр.				Sampling b		MD	PPBV Other	PPMV_	_
Requested Due Date/TAT:	Project Number: 1/2	1006	221	Pace Pro	file #:		voidon de esqu				Report Leve	<u>1</u> II II	rv	Other		
'Section D Required Client Information AIR SAMPLE ID Sample IDs MUST BE UNIQUE	Valid Media Codes MEDIA Tediar Bag TB 1 Liter Summa Cen 1LC 6 Liter Summa Cen 6LC Low Volume Puff LVP High Volume Puff PM10 Other PM10	MEDIA CODE PID Reading (Client only)	COMPOSITE STALEADIGRAB	RT		POSITE -	Canister Pressure (Initial Field - psig)	Canister Pressure (Final Field - psig)	Summa Can Number	Flow Control Number	Method:		(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	15 Short List.		8 8 0 0
1 SV-128-C-16		- ,	DATE	TIME	- DATE	TIME	-		4107	0308	18/8/2	12/2/2/		/ /	Pace La	b ID
2 IA-128-C-16	- 1 11-11	IL MIP	2/24/14		श्रिमान	The state of the s		-1.0		-			X	-		
3 TA-145-C-16				1110		1913	-30	-8	11880	V , W W		-	X			
4 TA-1416-C-16		HH		1130	-	1920	30	7	2431	0445			X			
5 TA - 147-C-16		HH		1118		1710	30	4	000	0517		+++				
1 TA - 148-C-11		HH	1	1192		1420	20	-5	1334	0510			X		74.2	
1 IB - 144-0-16		+++	 	115	+	1915	-30	-/	01	051			X			
8 SV-17 PI- (-16	101131-13	HH	+	1131	-	1937	30	-3	0141	0141			\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \			
5V-DIPS-C-16	77 AV 10	HH	7 =	-	-	-	30	0	40Cb				X		7	
D D D D D		HH			\vdash		-30		3583				X		٧	
10 TH-DDAI-C-1C	Property and	311			- 0.0		-30		9030	1-6 Ead 1 1-21 E.		-	X			
12 to 1111 C-16 T		AA	V		V		-99	0.0	1999				Χ	-		
Comments :		FLINOLIS	HED BY / A	SECULOATI	IONI	DATE	TIA	10	ACCEPTED	BY / AFFILIATION	DATE	TIM		AMPLE	CONDITI	ONE
5.7		HAM	11 (4/1	64.8.80	1110	125/14	10000	CONT.	ACCEPTED	BY / AFFILIATION	DATE	THO	-	AWIFLE		
	14	Jacob 1	11/10	wyce	0	10011	14	30	-				_		Z Z	N ×
							-			***		-		Z Z	Z Z	Z Z
	-	-		11/2			-	-9	1 Source				-	Z > Z	Z Z	N.
			1470 V	No.	HSb-ug	Men 31	0.32	1871		A SEE SELLOW YORK		ng inter	100	×	× ×	× ×
	4				SHEET STATE SERVICE	R NAME A	ND SIGN	ATURE						e do	Coole	s in lac
12	1		- 10		Day	of SAMPLER	logic	PHO	de-	DATE Signed (MM / DO	74			Received on	Custody Sealed Cooler	Samples Intact

_	red Client Information:	Section B Required Project Inform	nation:		Section C	nation:							1	486	1	Page:	of	3
Compa	tetro tern	Report To:	ne		Attention:						180		1	Program			- 10-1	== ****
Addres	51 Century Bld Sork 30	Сору То:			Company Na	me:						UST	Super	fund E	missio	ns ,	Clean Air	r Act
Ser	markour, MD 20874				Address:							Xvolunta	iry Clean L	ip □ Dry C	lean T	RCRA	0	ther
Email	J. A. anavage @ tetratarba	Purchase Order No.:			Pace Quote F	Reference:					-	Location	of	111-20-2		Reporting		
Phone	Fax:	Project Name:			Pace Project	Manager/Sales R	ер.				3 6			-wD	_	ug/m³ PPBV Other	PPMV _	二 : : : : : : : : : : : : : : : : : : :
Reque	sted Due Date/TAT:	Project Number:			Pace Profile #	# ;						Report Lev	vel II.	III. P	v	Other		
ITEM#	'Section D Required Client Information AIR SAMPLE ID Sample IDs MUST BE UNIQUE	Veild Media Codes MEDIA Tediar Bag TB 1 Liber Summa Can 1 LC 6 Liber Summa Cen 6 Low Volume Puff LVP High Volume Puff HVP Other	MEDIA CODE PID Reading (Client only)	COMPOSITE STA	$\overline{}$	COMPOSITE -	Canister Pressure (Initial Field - psig)	Canister Pressure (Final Field - psig)	Summa Can Number	Flo Control N		Method:	77		7	77	Pace Lat	
1	SY-05-A-16			125/14	1 .	25/4094F	-30	+5	5 368	00	75	14/3/^	7~/~/	Y	~	/	Pace Lat	טו נ
2	IA-015-A-V-		1 1		0730	1 1549	-30		1156		33			X	+	.=		
3	IA-015-A-16 SV-108-A-16	95		11		0951	-30	-5	2949	01	1		x .	X	-		_	b ÷
4	IA-108-A-16		11 1	11	0848	1549		-3	March 1975 Co.		-		13	- 2	12	140		
5	DV-118-A-16	-	11 1		0751 0255		30	-4	2492	05				X	- 4		201	1
	TA-118-A-16	\$	11 1			0955	-38	-		00	13			The second second	+			
7	SV-117-A-16	14.	11 1		0747	1553	100000	_	2065	01	ां वे		+++	X	-			
8	TA-117-A-16	104	11 11		8280	0959		-5	2501		1			X	5,			3
9	5V-079-A-V		11 11	++	0753	1553	-30		2530		50	-		X	1			20
10	TD-0399-V		11 11	+ + -	00900	1000	-28	0	2507		00	1		X	+	- 5		
11	SV-081-A-16		11 11	1100	0757	1555	-38	4	2436	01	44	\vdash		X	+			
	11-A-180-AI	-	11	1	ORAL	1004			1680	00	1 1-		+ -	X	4			
41	ents : "This Common and the common a			HED BY ! A	FFILIATION	1600	-39		1106	00	101.			X				
. R	a Francis	1-1-	LINGUIS		FFILIATION		TIM	- 1	ACCEPTED	BY / AFFIL	IATION	DATE		IME	SAM	PLE CC		
1.4	broken	10 DE	A STATE OF THE PARTY OF THE PAR	//	7/ 1/	1 2/27/1	ret 1	200								N.	N.	× ×
						-										N/A	N.	N.
					-											N.	× ×	N.
				177		and the	1/2,50	17.5	i eksment	Me interes	Ar Sla	REFERE	1	artur!		X	×.	N.
		9°	~	44	PRIN	T Name of SAMPLER ATURE of SAMPLER ATURE of SAMPLER:	000	0		DATE S	ed (MM / rin	/20			Temp in *C	Received on Ice	Custody Sealed Cooler	Samples Intact
					1X	Alle &	1/11	all	120	RIS	35 //	4			-	č	Sa	Sar

Section A Required Client Information:	Section B Required Project Inform	nation:		Section C	n:							1486	3	Page: <	of	3_
Company Tetro Tech	Report To:	ml	**	Attention:					- A			Program				
Address: St. Century Blvd. Suite:		17 01		Company Name:						1	□ UST □	Superfund E	mission	s C	Clean Air	Act
German in Mar 2087				Address:						1	XVoluntary C	lean Up Dry (Clean	RCRA	□ Ot	her
Germantown, MD 2087	Purchase Order No.:			Pace Quote Refer	ence:						Location of			Reporting ug/m	mg/m³	44
Phone: Aparavage@tetraled	Project Name:		- Jan 1997	Pace Project Man	ager/Sales R	ер.				9	Sampling by	State MD		PPBV Other	PPMV_	
Requested Due Date/TAT:	Project Number:			Pace Profile #:							Report Level	11 10=1	v	Other		
'Section D Required Client Information AIR SAMPLE ID Sample IDs MUST BE UNIQUE	Valid Media Codes MEDIA Tedra Bag TB 1 Lière Summa Can 1 LC 6 Lière Summa Can 6 LC Low Volume Puff High Volume Puff HVP PM10	MEDIA CODE PID Reading (Client only)	COMPOSITE STA	COLLECTED AT COLLECTED TIME DATE	OMPOSITE -	Canister Pressure (Initial Field - pslg)	Canister Pressure (Final Field - psig)	Summa Can Number	Flow Control Num	nbei	Method:		1018 Short		Pace Lab	o ID
1 SV-136-A-16		-	DATE	0810 2/25/	1	-36	-45	2555	000	1						
2 IA-136-A-16		1 1	1	0805 1	8001	-39		2458		57		X				
3 SY-076-A-16			11	8090	100	-20		3333	046	7		X		200		j.
4 IA-076-A-16		\Box		0813	1612		-09	1105	041			X	10			
5 SY-075-A-16	10	11 1		0919	1020		~	2863	00			X	100		- 3	
6 IA-075-A-16	- N			0817		100	-35		045	100		X				
7 54-094-A-16		11 /	1 1	0925	1617	3	1	2230	025			X	2		1	
8 TA - 094-A-16		11 1			1619	101	-3.5	2195				V			1	P
h 1/		+++	1 1	0750	1670	L~67			03				2		*	7.
0 21-01x-H-16		11 1		0630	1030				020	-		-				
10 IA-018-A-16		11 1	+ +	0740	1623			2987			4	X			V.	-
11 SV-138-A-16		+++	1	0935	1035	1.91		1381	056	5			-			
12 IA - 138 - A - 16		ELINOLII	SHED BY //	AFFILIATION	Mo24	70	ME	ACCEPTED	BY / AFFILIAT		DATE	TIME	SAN	IPLE CO	ONDITIO	ONS
Comments.	-	LE INCOI		TE	2/27		1200			unian.	1711			N X	××××××××××××××××××××××××××××××××××××××	N.
	 -	10	1/2-	716	75/20	9.77	1200	 						N.	× ×	× ×
	-	/				+		 		_		+	N	N.	N.	Z ×
	1					1 .	-					100		N.	Z X	N.
	L			CONTRA	ER NAME	AND SIC	NA TURE						0		<u>ā</u>	act
				PRINT Na	me of SAMPLER		0. T. A	360V		200			Temp in "C	Received on Ice	Custody Sealed Cooler	Samples Intact
	A			SIGNATU	RE of SAMPLER	non	18	m-	DATE Signed	MM 4D	PIM		Теп	Rec	Ct. Seale	Samp

Section A Required Client Information:	Section B Required Project Inform	nation:	Section C Invoice Information:					1486	0	Page:	3 of	3
Company Tetra Tech	Report To:	me	Attention:					Program	- 100			
address 51 Century Blvd. Sul	Сору То:		Company Name:				□ UST □ S		mission	ns	Clean Air	Act
Germantown, MD 30874		n_	Address:				K.	ean Up Dry (A T Of	
Email To:	Purchase Order No.:		Pace Quote Reference:				7 (1 5 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	50.1 Op 51.7 C	, ioun	Reporting		
Phone: Fax:	Project Name:		Pace Project Manager/Sales F	Rep.			Location of Sampling by S	tate MD		ug/m³ PPBV	mg/m³	- 20
Requested Due Date/TAT:	Project Number:		Pace Profile #:				Report Level	44.5	v	Other		
'Section D Required Client Information AIR SAMPLE ID Sample IDs MUST BE UNIQUE	Valid Media Codes MEDIA COPE Tecliar Bag TB 1 Liter Summa Can 1LC 6 Liter Summa Can 6LC Low Volume Puff LVP High Volume Puff HVP Other PM10	MEDIA CODE PLE STROUMON PLE STR	COLLECTED Time Date Time	Field Field Field Field	Summa Can Number	Flow Control Number	Method:	/////	lon long		Pace Lab	ıD
5V-093-A-16		ILC NIP Stasin	0940 SISHIN 1687	3001	785	0056		Y			1 000 200	, 10
2 IA-093-A-16		11/11	0745 1 1627	-21	108	0364		X				
3 BCK-1-16			0655 1537	30-2	170	0441		x			3	7 -
4 BCK-2-16			0.457 1533	177.557	088	0305						
5 BCK-3-16	Year of the second			-30-352		0396		X	71			
6 BCK-4-16	100	1 1 1	1000			0583			+		19	
BCK-DUP-16	1	 	0705 1589	-28-252		0383		X	-			
8 SV-DUP3-A-16		 						X	-			-
9 IA-DUP3-A-16					550			X				
10 SY-DUPY-A-16		 			40			X				
11	. 4	11111	-	-38-53	197			X		-9		
12		1.111				1 4						
Comments :		VV	V					- 111	-	180		
	2.7	LINQUISHED BY / A			CCEPTED I	BY / AFFILIATION	DATE	TIME	SAM		NDITIC	
	5	11/1-2	7- 1- 1/20/11	1206				5		X.	ž Ž	×
	S. C.									× ×	× ×	N.
	DIT-									X X	× ×	N.
				West Land	ebile to	Alexander.		a). and To		Z ×	¥	₹ ×
	1 2 2		SAMPLER NAME A	1					٠ ت	ed on	Sooler	
]		SIGNATURE OF SAMPLER:	A Monde	ic.	DATE Slegged (MM/DD) 8/35/14	m		Temp ii	Received or Ice	Custody Sealed Cooler	Samples intact

Section A Required Client Information:	Section B Required Project Inform	nation:		Section C								14	1841		Page: /	of /
Company: Tel ra Tech	Report To:	am	0	Attention:								· Pi	rogram			
Address: 2025 1 Century Blud 200	Сору То:			Company I	Name:			i i			ir us	T - Superfu	ınd En	nission	Clea	n Air Act
Germantower, ND 20871				Address:			e e				Volum	ntary Clean Up	Dry Cl	ean 🗀	RCRA	Other
Email To: + 100 C para rage tetratect. Phone: Fex:	Purchase Order No.:			Pace Quot	e Refere	nce:					Location	n of	4. 8		Reporting Units	
Phone: Fax: 20/23-2 5(2)	Project Name:			Pace Proje	ct Manag	ger/Sales R	ер.				Samplin	ng by State	MD	Į.	PPBV PPN	
Requested Due Date/TAT:	Project Number:			Pace Profi	le #:					9	Report L	evel II.	III IV.		Other	
Section D Required Client Information AIR SAMPLE ID Sample IDs MUST BE UNIQUE	Valid Media Codes MEDIA Tediar Bag TB 1 Liter Summa Can 1LC 6 Liter Summa Can 6LC Low Volume Puff LVP High Volume Puff HVP Other PM10	MEDIA CODE PID Reading (Client only)	COMPOSITE STAR ENDIGRAS	TIME		POSITE -	Canister Pressure (Initial Field - psig)	Canister Pressure (Final Fietd - psig)	Summa Can Number	Flow Control Numbe	Method:	(3) (3) (3) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4		(0/5 Show (1/1)	Pace	Lab ID
1 IA-001-PB-1		111	3/26/14	0921=		1904	28.5	0	2434	0320			×			
2 IA-002-PB-1	7. P.		1 - 2	0911		1801	-30		2528	0409	0 - 1 1 1		Y	TT		
3 TA-001- ER-1				7933	7	1753	-29		2226	0451			X	П	· · · · · · · · · · · · · · · · · · ·	
4 JA-002-ER-1	11 11			0931		1814	-29		2283	0533			X	П		
5 IA-003-FR-1				0925		1810	-30	0	2427	0225			X			
6 IA - DUPI - PB-1							-		2451				X			
IA - DUPI-ER-1	22	V	V		V				1323				X			
8							ii .				13					
9 TA-093X-A	-16	110	2/24/11	18/6	16/14	1010	-29	-3	1396	0528			X			
10 IA -117X-A- 11 IA-140B-16	16	140	2/26/14					-4	2524	0458	5		X			
11 IA-HOB-16		211	226/14			1715	27	3	2267	000			X			
12			1 = 1		100	Vol. Co.			47	5 - 65 OU 165 "				3		
Comments :	R	ELINQUISI	HED BY / A	FFILIATIO -	NC	DATE	TIN	ΛŒ	ACCEPTED	BY / AFFILIATION	DA	TE T	ME =	SAMI	PLE COND	
	_	4	///	-	li les Li	2/27/1	1 17	00		and the division of the of	1 1 1 2 2		2		¥ ¥	
	*		0	To No.	- 1				2				f.i		¥	
		Treat		7.			60		4 =				3		× ×	
	1.5		V.		11	B-Estat	27.52	5520E	gordova, ellec		15607	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			Z Z	
						R NAME A								င့	Received on Ice Custody	Sealed Cooler Semples Intact
	1			146		of SAMPLER		24/	gana		1/20 1		All the	Temp ir	Received Ice Custody	alea c
	}			Ľ	- I ONE	1	//			DATE Signed (MM / D)	27/1	4		F.	<u>x</u>	Sar

Parent	d Client Information:	Section B Required Project Infor	mation:			Section Invoice I	n C nformatio	n:							ď.					14	85	5	Page:	of	/
Compai	Total	Report To:	Sci	m	re	Attention	n:													Pro	ogram				
Address	20251 Centry Blyd 842	Сору То:				Compan	y Name:										F	UST	S	uperfu	nd F	Emissio	ns 🗏	Clean Air	Act
611	mantium MD 20874					Address	:										X	Volunt	ary Cle	an Up	Dry (Clean T	RCR	A CO	ther
Email I	Tony. Assorberage to tetroto	Purchase Order No.:				Pace Qu	iote Refei	ence:		1.11.11.11							Lo	cation	of		420		Reporting	g Units mg/m³_	_
201	23-820					Pace Pr	oject Man	ager/Sales R	ер.								Sa	mpling	by St	ate _	/41)		PPBV Other	_ PPMV _	
Reques	ted Due Date/TAT:	Project Number:				Pace Pro	ofile #:			9a							Rej	ort Le	vel li	. <u> </u>	III I	v	Other_		
M #	'Section D Required Client Information AIR SAMPLE ID Sample IDs MUST BE UNIQUE	Valid Media Codes MEDIA CODE. Tediar Bag TB 1 Liter Summe Can 1LC 6 Liter Summe Can 6LC Low Volume Puff LVP High Volume Puff HVP Other PM10	MEDIA CODE	PID Reading (Client only)	COMPOSITE ST/	COLL		OMPOSITE -	Canister Pressure (Initial Field - psig)	Canister Pressure (Final Field - psig)	Si	umma Can umbe		Cont	Flo	w lumbe		hod:	(%)	(Methano)		1000		/	
ITEM			MEDI	음	DATE	TIME	DATE	TIME	Ē	2 €							1	//	0/0/	/3/2				Pace Lat) ID
1	IA-147-VLS-2		140	WA	2/26/19	1025	2/26/	11828	-28.5	0	0	90	5	0	2	5 8	?				X				13
2	IA- OUP 1 - ULS- 2						1		-28.		2 1	19	1	2	-		7.	4			x		1	8	
3	IA-148- VES-2	9				1013	1 30	1855	-27.5	-2	2 4	11	2	0	4	40	i				X				
4	IA-152-VL5-2				. 19	0953	1 1	1845						0	4	4 2	1				X				
5	IA-151-VL5-Z	6.00				0455		1850			- 19			0	4	1 3	-				×				
6	IA-149-VL5-2					1007		1825	1	_	-	_	-	0	5	37	7				X				
7	IN-150-465-2	5.	H			1019		1834		-	-	_	-		5	_	-				×				
8	IA-146-V25-2	* 1 THE T	N	V	1//	1022	V		-28						-	1	3			T	k				
9			1			-	Ť			1	Ħ					Ħ	1							-	
10				T	1000																				
11					-												\top		Ħ						
12	A Property of the Control of the Con					1		15. 15.				1				H	+	1		1		1		-	
Comme	onts:	R	ELINC	DUISI	HED BY / A	AFFILIAT	ION	DATE	TIM	ИE	ACC	CEPTE	EDI	BY / A	FFIL	ATION		DAT	E	TII	ИE	SAN	IPLE C	ONDITIO	ONS
			_	1	///-	1	TL	267/	11/1	200		(***)	IP TO	ett.		1 - 5				77.1			N.	N/	× ×
			2		1		40	2000				1			-			- 18W/-		i.			N.	N.	N.
	Apr			1.0	1- 1								25	-			T						× ×	Z >	N.
					. 7			8				47.04			3	616			3-1	to,			Z ×	N X	N.
	*			FEW EN	7	- 1	SAMPL	ER NAME A	ND SIGN	NATURE											250	ပ	5		
-								of SAMPLER	Apr	z-nc	110	cal	2	-			. ,	10.5	r C. S.			Temp in °	Received of Ice	Custody Sealed Cooler	Samples Intect
	. *	1					SIGNATUR	E of SAMPLES	2-7	1.1	1		4	DAT	E Signi	MM/C	7//	4				TeT	Rec	Seal	Sami

SOIL VAPOR AND INDOOR AIR QUALITY SAMPLE LOG SHEET

Project Site Name: MRC BUILDING A Date: Sampled By: Project Number - Task: SAMPLING DATA: **INDOOR AIR QUALITY SAMPLE** SOIL VAPOR SAMPLE IAQ Sample ID: 1A-081-A-16R SV Sample ID: IAQ Canister #: //95 SV Canister #: IAQ Regulator #: 0285 SV Regulator #: IAQ Start Time: 0835 SV Start Time: IAQ Start Pressure: -30 SV Start Pressure: IAQ Stop Time: SV Stop Time: IAQ Stop Pressure: SV Stop Pressure: SAMPLE COLLECTION INFORMATION: Collected **Container Requirements** Analysis SUMMA CAN TO15 LOCATION: SE Corenge OF BURDING A OBSERVATIONS / NOTES: Circle if Applicable: Signature(s): MS/MSD **Duplicate ID No.:**

SOIL VAPOR AND INDOOR AIR QUALITY SAMPLE LOG SHEET

Page ___ of ___ Project Site Name: MRC BUILDING C Date: Project Number - Task: _____ Sampled By: SAMPLING DATA: SOIL VAPOR SAMPLE INDOOR AIR QUALITY SAMPLE IAQ Sample ID: 1A-113-C-16R SV Sample ID: 2357 SV Canister #: IAQ Canister #: IAQ Regulator #: 0377 SV Regulator #: 0843 IAQ Start Time: SV Start Time: IAQ Start Pressure: -28 SV Start Pressure: IAQ Stop Time: 1643 SV Stop Time: IAQ Stop Pressure: SV Stop Pressure: SAMPLE COLLECTION INFORMATION: **Container Requirements** Collected Analysis SUMMA CAN TO15 LOCATION: CONTEAL PORTION BUILDING C BASEMENT OBSERVATIONS / NOTES: Circle if Applicable: Signature(s): MS/MSD **Duplicate ID No.:**

Section A Required Client Information:	Section B Required Project Information		Section C Invoice Infor	mation:						1304	5 E	age:	of	
Company: TETEATECH	Report To: Tory A	novage	Attention:							Program				
Company: TETRA TECH Address: CENTRY BUND GERMANTOWN MD Email To: 1001, approximate Helital Bloom Solf 28 301528 30 Requested Due Date/TAT:	476 200	0	Company Na	eme;					UST	Superfund 5	Emissions	Cle	an Air A	ct
GERMAN - LABOUR MAD	20874		Address:					R 18	Woluntary Ck	ean Up Dry (Clean	RCRA	Othe	31
Email To:	Purchase Order No.:		Pace Quote	Reference:					Location of	447		teporting Uni		
Phone: Fax:	Project Name	ulina	Pace Projec	t Manager/Sales F	Rep.				Sampling by S	State //	2	ig/m³ mç PPBV PF Other	MV	- 107
Requested Due Date/TAT:	Project Number 2100	4279	Pace Profile	#:					Report Lavel	n m	v (Other		
'Section D Required Client Information AIR SAMPLE ID Sample IDs MUST BE UNIQUE	Valid Media Codes	ST Collect anity)		END COMPOSITE	Canister Pressure (Initial Field - psig)	Canister Pressure (Final Field - psig)	Summa Can Number	Flow Control Numbe	Method:		10158 Plant 1.	ž.	e Lab I	ID
	The state of the s	DATE	TIME	DATE TIME			1195	0285		K			- 1	
1A-081-A-	16R &		NOUS .	HAMH 1635 HAMH 1645	LX	-6	2357	0377		K		-33	2	
	160	L 7/11/19	0015	7111JP4 1672	Tal	6		0-11				-		
4														
5	1	-			-									
7	A													
8					-	-	+++		++++				_	-
9		- The			-	-	+++		+	+			-	
10		3	1		-	-								
17		151			+	+								
12	DE I	NOUISHED PY I	NEED INSTITUTE	ON DATE		ME	ACCEPTED	BY / AFFILIATION	DATE	TIME	SAM	PLE CON	рітіо	NS
Comments :	Maur	NO. O. S. H. L.			OR CHARLES	715	06	AARIC	41814	0405	fort	(\$)	₹	N)
	1	1/-	17	t you	14 1	112	- Inch	The same	7.	1	1	N X	Z.	VIII)
		/								 			N.	¥.
	ļ—						-						× ×	Z.
			- 6		AUD CIC	NATHOR					0			
			P	AMPLER NAME	5NY	The same of the same of	ANAU	46 E			Temp in °C	Received on Ice	Sealed Coolor	Samples Intact
	RIGINAL		S	GNATURE of SAMPLE	//_			DATE Signed (MM/)	17/14		<u> </u>	ă.	Se	Sar

APPENDIX B—METHOD DETECTION LIMITS

							Avg	LCS	DUP
Analyte	CAS#	MDL (ppbv)	PRL (ppbv)	MW	MDL (ug/m ³)	PRL (ug/m ³)	Lower	Upper	RPD
1,1,1-Trichloroethane	71-55-6	0.0250	0.2	133.4047	0.139	1.11	72	128	25
1,1,2,2-Tetrachloroethane	79-34-5	0.0334	0.1	167.8498	0.233	0.70	72	136	25
1,1,2-Trichloroethane	79-00-5	0.0437	0.1	133.4047	0.243	0.55	72	130	25
1,1,2-Trichlorotrifluoroethane	76-13-1	0.0205	0.2	187.3762	0.160	1.60	68	126	25
1,1-Dichloroethane	75-34-3	0.0341	0.2	98.9596	0.140	0.82	68	128	25
1,1-Dichloroethene	75-35-4	0.0255	0.2	96.9438	0.103	0.81	68	130	25
1,2,4-Trichlorobenzene	120-82-1	0.0482	0.2	181.4487	0.364	1.51	30	150	25
1,2,4-Trimethylbenzene	95-63-6	0.0244	0.2	120.1938	0.122	1.00	71	140	25
1,2-Dibromoethane	106-93-4	0.0300	0.2	187.8616	0.234	1.56	73	136	25
1,2-Dichlorobenzene	95-50-1	0.0230	0.2	147.0036	0.141	1.22	63	150	
1,2-Dichloroethane	107-06-2	0.0289	0.1	98.9596	0.119	0.41	71	132	25
1,2-Dichloropropane	78-87-5	0.0323	0.2	112.9864	0.152	0.94	72	130	25
1,3,5-Trimethylbenzene	108-67-8	0.0414	0.2	120.1938	0.207	1.00	73	136	25
1,3-Butadiene	106-99-0	0.0376	0.2	54.0914	0.085	0.45	72	130	25
1,3-Dichlorobenzene	541-73-1	0.0379	0.2	147.0036	0.232	1.22	69	142	25
1,4-Dichlorobenzene	106-46-7	0.0324	0.2	147.0036	0.198	1.22	65	142	25
2-Butanone (MEK)	78-93-3	0.0912	0.2	72.1066	0.273	0.6	71	135	25
2-Hexanone	591-78-6	0.0512	0.2	100.1602	0.213	0.83	75	133	25
2-Propanol	67-63-0	0.0374	0.5	60.1	0.093	1.25	68	135	25
4-Ethyltoluene	622-96-8	0.0349	0.2	120.1938	0.174	1.00	73	134	25
4-Methyl-2-pentanone (MIBK)	108-10-1	0.0411	0.2	100.1602	0.171	0.83	72	137	25
Acetone	67-64-1	0.5000	1	58.0798	1.207	2.414	68	136	25
Benzene	71-43-2	0.0362	0.1	78.1134	0.118	0.33	69	134	25
Benzyl Chloride	100-44-7	0.1000	0.2	126.58	0.526	1.05	71	136	25
Bromodichloromethane	75-27-4	0.0268	0.2	163.8289	0.182	1.36	74	129	25
Bromoform	75-25-2	0.0307	0.2	252.7309	0.323	2.10	69	138	25
Bromomethane	74-83-9	0.0685	0.2	94.9387	0.270	0.79	68	127	25
Carbon Disulfide	75-15-0	0.0228	0.2	76.131	0.072	0.63	68	130	25
Carbon tetrachloride	56-23-5	0.0500	0.1	153.823	0.320	0.64	66	134	25

		-			1	T			
Chlorobenzene	108-90-7	0.0227	0.2	112.5585		0.94	72	137	25
Chloroethane	75-00-3	0.0600	0.2	64.5145	0.161	0.54	69	128	25
Chloroform	67-66-3	0.0360	0.2	119.3779		0.99	72		25
Chloromethane	74-87-3	0.0917	0.2	50.4877	0.192	0.42	69	1	25
cis-1,2-Dichloroethene	156-59-2	0.0487	0.2	96.9438	0.196	0.81	71	135	25
cis-1,3-Dichloropropene	10061-01-5	0.0295	0.2	110.9706	0.136	0.92	74	134	25
Cyclohexane	110-82-7	0.0360	0.2	84.1608	0.126	0.70	72	130	25
Dibromochloromethane	124-48-1	0.1000	0.2	208.2799	0.866	1.73	73	133	25
Dichlorodifluoromethane	75-71-8	0.0216	0.2	120.9138	0.109	1.01	69	125	25
Dichlorotetrafluoroethane	76-14-2	0.0351	0.2	170.9216	0.249	1.42	68	128	25
Ethanol	64-17-5	0.1646	0.5	46.07	0.315	0.96	70	134	25
Ethyl Acetate	141-78-6	0.0345	0.2	88.106	0.126	0.73	71	134	25
Ethyl Benzene	100-41-4	0.0405	0.2	106.167	0.179	0.88	73	139	25
Hexachlorobutadiene	87-68-3	0.0379	0.2	260.762	0.411	2.20	30	150	25
m&p-Xylene	106-42-3	0.0318	0.4	106.167	0.140	1.77	73	139	25
Methyl Tert Butyl Ether	1634-04-4	0.0243	0.2	88.1492	0.089	0.73	72	132	25
Methylene chloride	75-0902	0.0653	1	84.9328	0.231	3.53	64	134	25
Naphthalene	91-20-3	0.0483	0.5	128.1732	0.258	2.66	61	150	25
n-Heptane	142-82-5	0.0390	0.2	100.2034	0.162	0.83	70	130	25
n-Hexane	110-54-3	0.0281	0.2	86.1766	0.101	0.72	69	128	25
o-Xylene	95-47-6	0.1000	0.2	106.167	0.441	0.88	71	138	25
Propylene	115-07-1	0.0628	0.2	42.0804	0.110	0.35	69	133	25
Styrene	100-42-5	0.0313	0.2	104.1512	0.135	0.87	74	136	25
Tetrachloroethene	127-18-4	0.0273	0.1	165.834	0.188	0.69	69	136	25
Tetrahydrofuran	109-99-9	0.0464	0.2	72.1066	0.139	0.60	73	131	25
Toluene	108-88-3	0.0351	0.2	92.1402	0.135	0.77	67	133	25
trans-1,2-dichloroethene	156-60-5	0.0404	0.2	96.9438	0.163	0.81	70	131	25
trans-1,3-Dichloropropene	10061-02-6	0.0328	0.2	110.9706	0.151	0.92	72	135	25
Trichloroethene	79-01-6	0.0326	0.1	131.3889	0.178	0.55	70	135	25
Trichlorofluoromethane	75-69-4	0.0242	0.2	137.3684	0.138	1.14	67	125	25
Vinyl Acetate	108-05-4	0.0971	0.2	86.0902	0.348	0.72	72	133	25
Vinyl chloride	75-01-4	0.0359	0.1	62.4987	0.093	0.26	69	132	25
1,2,3-Trimethylbenzene		0.0355	0.2	120.19	0.177	1.00	70	130	25
Chlorodifluoromethane		0.0539	0.2	86.47	0.194	0.72	70	130	25
Di-isopropyl Ether		0.0497	0.2	102.18	0.211	0.85	70	130	25
Ethyl Tert-Butyl Ether		0.1000	0.2	102.17	0.425	0.85	70	130	25
Isopentane		0.0588	0.2	72.15	0.176	0.60	70	130	25
Methylcyclohexane		0.0652	0.2	98.186	0.266	0.82	70	130	25
p-Isopropyltoluene		0.0287	0.2	134.22	0.160	1.12	70	130	25
Tert Amyl Methyl Ether		0.0484	0.2	88.15		0.73	70		25
Tert-Butyl Benzene		0.0244	0.2	166.217		1.38	70		25

EXTRA ANALYTES (available upon request at an additional cost)

							LO	CS	DUP
Analyte	CAS#	MDL (ppbv)	PRL (ppbv)	MW	MDL (ug/m ³)	PRL (ug/m ³)	Lower	Upper	RPD
1,4-Dioxane	123-91-1	0.0587	1	88.1	0.215	3.66	62	148	25
2,2,4-Trimethylpentane	540-84-1	0.0286	0.5	114.22	0.136	2.37	70	130	25
Acrolein	107-02-8	0.0981	0.5	56.06	0.229	1.17	69	131	25
Acrylonitrile	107-13-1	0.0632	0.5	53.06	0.139	1.10	73	135	25
Allyl Chloride	107-05-1	0.0879	0.5	76.52	0.280	1.59	67	145	25
N-Butylbenzene	104-51-8	0.0240	0.5	134.2206	0.134	2.79	70	130	25
N-Propylbenzene	103-65-1	0.0323	0.5	120.1938	0.162	2.50	73	132	25

Pace Analytical Services, Inc. Method Detection Limits and Reporting Limits for EPA TO15 ALL

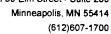
00-022 11/-
qr
QR
XZ
HR

Sec- Butylbenzene	135-98-8	0.1000	0.5	134.2206	0.558	2.79	70	130	25
Tert Butyl Alcohol (TBA)	75-65-0	0.0737	0.5	74.12	0.227	1.54	70	130	25
Vinyl Bromide	593-60-2	0.0429	0.5	106.95	0.191	2.22	70	130	25
Isopropylbenzene	98-82-8	0.1000	0.5	120.194	0.500	2.50	73	135	25
THC as gas		7.0000	14	104.467	30.400	60.80	65	136	25
Xylene (Total)	1330-20-7	0.1243	0.6	106.17	0.548	2.65	70	130	25

Surrogates					
1,4-Dichlorobenzene-d4 (S)	3855-82-1			58	130
Hexane-d14 (S)	21666-38-6			30	150
Toluene-d8 (S)	2037-26-5			30	150

APPENDIX C—LABORATORY ANALYTICAL REPORTS

Project:


1121C06221 REV

Pace Project No.:

10258805

Sample: IA-033-B-16	Lab ID: 10258805024	Collected: 02/24/14 18:2	28 Received: 02/26/14 08:12 Matrix: Air
Parameters	Results Units	Report Limit DF	Prepared Analyzed CAS No. Qua
TO15 MSV AIR	Analytical Method: TO-15		
Benzene	0.87 ug/m3	0.58 1.8	03/07/14 22:16 71-43-2
Carbon tetrachloride	ND ug/m3	1.2 1.8	03/07/14 22:16 56-23-5
Chlorodifluoromethane	42.6 ug/m3	0.36 1.8	03/07/14 22:16 75-45-6
Chloroform	ND ug/m3	1.8 1.8	03/07/14 22:16 67-66-3
Dichlorodifluoromethane	3.1 ug/m3	1.8 1.8	03/07/14 22:16 75-71-8
1,1-Dichloroethane	ND ug/m3	1.5 1.8	03/07/14 22:16 75-34-3
1,2-Dichloroethane	ND ug/m3	0.74 1.8	03/07/14 22:16 107-06-2
1,1-Dichloroethene	ND ug/m3	1.5 1.8	03/07/14 22:16 75-35-4
cis-1,2-Dichloroethene	ND ug/m3	1.5 1.8	03/07/14 22:16 156-59-2
trans-1,2-Dichloroethene	ND ug/m3	1.5 1.8	03/07/14 22:16 156-60-5
Ethylbenzene	1.7 ug/m3	1.6 1.8	03/07/14 22:16 100-41-4
Methylene Chloride	12.6 ug/m3	6.4 1.8	03/07/14 22:16 75-09-2
Methyl-tert-butyl ether	ND ug/m3	1.3 1.8	03/07/14 22:16 1634-04-4
Naphthalene	4.0J ug/m3	4.8 1.8	03/07/14 22:16 91-20-3
Tetrachloroethene	ND ug/m3	1.2 1.8	03/07/14 22:16 127-18-4
Toluene	44.1 ug/m3	1.4 1.8	03/07/14 22:16 108-88-3
1,2,4-Trichlorobenzene	ND ug/m3	6.8 1.8	03/07/14 22:16 120-82-1
1,1,1-Trichloroethane	ND ug/m3	2.0 1.8	03/07/14 22:16 71-55-6
1,1,2-Trichloroethane	ND ug/m3	0.99 1.8	03/07/14 22:16 79-00-5
Trichloroethene	ND ug/m3	0.99 1.8	03/07/14 22:16 79-01-6
1,2,3-Trimethylbenzene	ND ug/m3	0.36 1.8	03/07/14 22:16 526-73-8
1,2,4-Trimethylbenzene	1.4J ug/m3	1.8 1.8	03/07/14 22:16 95-63-6
1,3,5-Trimethylbenzene	ND ug/m3	1.8 1.8	03/07/14 22:16 108-67-8
Vinyl chloride	ND ug/m3	0.47 1.8	03/07/14 22:16 75-01-4
m&p-Xylene	7.4 ug/m3	3.2 1.8	03/07/14 22:16 179601-23-1
o-Xylene	2.5 ug/m3	1.6 1.8	03/07/14 22:16 95-47-6

REPORT OF LABORATORY ANALYSIS

Project:

1121C06221 REV

Sample: IA-060-C-16	Lab ID: 10258805014	Collected: 02/24/14	18:00	Received: 0	2/26/14 08:12	Matrix: Air	
Parameters	Results Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
TO15 MSV AIR	Analytical Method: TO-15						
Benzene	0.81 ug/m3	0.57	1.74		03/07/14 05:0	1 71-43-2	
Carbon tetrachloride	ND ug/m3	1.1	1.74		03/07/14 05:0	1 56-23-5	
Chlorodifluoromethane	9.4 ug/m3	0.35	1.74		03/07/14 05:01	1 75-45-6	
Chloroform	ND ug/m3	1.7	1.74		03/07/14 05:01	1 67-66-3	
Dichlorodifluoromethane	2.4 ug/m3	1.8	1.74		03/07/14 05:01	1 75-71-8	
1,1-Dichloroethane	ND ug/m3	1.4	1.74		03/07/14 05:01	1 75-34-3	
1,2-Dichloroethane	ND ug/m3	0.71	1.74		03/07/14 05:01	1 107-06-2	
1,1-Dichloroethene	ND ug/m3	1.4	1.74		03/07/14 05:01	1 75-35-4	
cis-1,2-Dichloroethene	ND ug/m3	1.4	1.74		03/07/14 05:01	1 156-59-2	
trans-1,2-Dichloroethene	ND ug/m3	1.4	1.74		03/07/14 05:01	1 156-60-5	
Ethylbenzene	ND ug/m3	1.5	1.74		03/07/14 05:01	1 100-41-4	
Methylene Chloride	8.1 ug/m3	6.1	1.74		03/07/14 05:01	1 75-09-2	
Methyl-tert-butyl ether	ND ug/m3	1.3	1.74		03/07/14 05:0	1 1634-04-4	
Naphthalene	3.6J ug/m3	4.6	1.74		03/07/14 05:01	1 91-20-3	
Tetrachloroethene	ND ug/m3	1.2	1.74		03/07/14 05:01	1 127-18-4	
Toluene	3.8 ug/m3	1.3	1.74		03/07/14 05:01	1 108-88-3	
1,2,4-Trichlorobenzene	ND ug/m3	6.6	1.74		03/07/14 05:01	1 120-82-1	
1,1,1-Trichloroethane	ND ug/m3	1.9	1.74		03/07/14 05:01	1 71-55-6	
1,1,2-Trichloroethane	ND ug/m3	0.96	1.74		03/07/14 05:01	1 79-00-5	
Trichloroethene	ND ug/m3	0.96	1.74		03/07/14 05:0	1 79-01-6	
1,2,3-Trimethylbenzene	ND ug/m3	0.35	1.74		03/07/14 05:01	526-73-8	
1,2,4-Trimethylbenzene	ND ug/m3	1.7	1.74		03/07/14 05:01		
1,3,5-Trimethylbenzene	ND ug/m3	1.7	1.74		03/07/14 05:01		
Vinyl chloride	ND ug/m3	0.45	1.74		03/07/14 05:01		
m&p-Xylene	2. 5J ug/m3		1.74			1 179601-23-1	
o-Xylene	0.98J ug/m3		1.74		03/07/14 05:01		

Project:

1121C06221 REV

Pace Project No.:

Date: 04/17/2014 12:19 PM

.: 10258805

Sample: IA-063-B-16	Lab ID: 10258805022	Collected: 02/24/14 1	8:25	Received: 02/26/14 08:12	Matrix: Air	
Parameters	Results Units	Report Limit D	F	Prepared Analyze	CAS No.	Qual
TO15 MSV AIR	Analytical Method: TO-15					
Benzene	ND ug/m3	0.68 2.	.1	03/06/14 19	:12 71-43-2	•
Carbon tetrachloride	ND ug/m3	1.3 2.	.1	03/06/14 19	:12 56-23-5	
Chlorodifluoromethane	6.9 ug/m3	0.42 2.	.1	03/06/14 19	:12 75-45-6	
Chloroform	ND ug/m3	2.1 2.	.1	03/06/14 19	:12 67-66-3	
Dichlorodifluoromethane	2.5 ug/m3	2.1 2.	.1	03/06/14 19	:12 75-71-8	
1,1-Dichloroethane	ND ug/m3	1.7 2.	.1	03/06/14 19	:12 75-34-3	
1,2-Dichloroethane	ND ug/m3	0.86 2.	.1	03/06/14 19	:12 107-06-2	
1,1-Dichloroethene	ND ug/m3	1.7 2.	.1	03/06/14 19	:12 75-35-4	
cis-1,2-Dichloroethene	ND ug/m3	1.7 2.	.1	03/06/14 19	:12 156-59-2	
trans-1,2-Dichloroethene	ND ug/m3	1.7 2.	.1	03/06/14 19	:12 156-60-5	
Ethylbenzene	ND ug/m3	1.8 2.	.1	03/06/14 19	12 100-41-4	
Methylene Chloride	4.9J ug/m3	7.4 2.	.1	03/06/14 19	:12 75-09-2	
Methyl-tert-butyl ether	ND ug/m3	1.5 2.	.1	03/06/14 19	:12 1634-04-4	
Naphthalene	ND ug/m3	5.6 2.	.1	03/06/14 19	:12 91-20-3	
Tetrachloroethene	ND ug/m3	1.4 2.	.1	03/06/14 19	:12 127-18-4	
Toluene	15.1 ug/m3	1.6 2.	.1	03/06/14 19	:12 108-88-3	
1,2,4-Trichlorobenzene	ND ug/m3	7.9 2.	.1	03/06/14 19	:12 120-82-1	
1,1,1-Trichloroethane	ND ug/m3	2.3 2.	.1	03/06/14 19	:12 71-55-6	
1,1,2-Trichloroethane	ND ug/m3	1.2 2	.1	03/06/14 19	:12 79-00-5	
Trichloroethene	ND ug/m3	1.2 2	.1	03/06/14 19	:12 79-01-6	
1,2,3-Trimethylbenzene	ND ug/m3	0.42 2	.1	03/06/14 19	:12 526-73-8	
1,2,4-Trimethylbenzene	1.1J ug/m3	2.1 2.	.1	03/06/14 19	:12 95-63-6	
1,3,5-Trimethylbenzene	ND ug/m3	2.1 2.	.1		:12 108-67-8	
Vinyl chloride	ND ug/m3	0.55 2.	.1	03/06/14 19	:12 75-01-4	*
m&p-Xylene	2.7J ug/m3	3.7 2.	.1	03/06/14 19	:12 179601-23-1	
o-Xylene	0.95J ug/m3	1.8 2	.1	03/06/14 19	:12 95-47-6	

Project:

1121C06221 REV

Pace Project No.: 10258805

Date: 04/17/2014 12:19 PM

Sample: IA-065-C-16	Lab ID: 10258805020	Collected: 02/24/14	18:23	Received: 02/26/14 08:12	Matrix: Air	
Parameters	Results Units	Report Limit	DF	Prepared Analyzed	CAS No.	Qua
TO15 MSV AIR	Analytical Method: TO-15					
Benzene	0.64 ug/m3	0.55	1.68	03/06/14 21:10	71-43-2	
Carbon tetrachloride	ND ug/m3	1.1	1.68	03/06/14 21:10	56-23-5	
Chlorodifluoromethane	23.9 ug/m3	0.34	1.68	03/06/14 21:10	75-45-6	
Chloroform	ND ug/m3	1.7	1.68	03/06/14 21:10	67-66-3	
Dichlorodifluoromethane	2.3 ug/m3	1.7	1.68	03/06/14 21:10	75-71-8	
1,1-Dichloroethane	ND ug/m3	1.4	1.68	03/06/14 21:10	75-34-3	
1,2-Dichloroethane	ND ug/m3	0.69	1.68	03/06/14 21:10	107-06-2	
1,1-Dichloroethene	ND ug/m3	1.4	1.68	03/06/14 21:10	75-35-4	
cis-1,2-Dichloroethene	ND ug/m3	1.4	1.68	03/06/14 21:10	156-59-2	
trans-1,2-Dichloroethene	ND ug/m3	1.4	1.68	03/06/14 21:10	156-60-5	
Ethylbenzene	ND ug/m3	1.5	1.68	03/06/14 21:10	100-41-4	
Methylene Chloride	5.8J ug/m3	5.9	1.68	03/06/14 21:10	75-09-2	
Methyl-tert-butyl ether	ND ug/m3	1.2	1.68	03/06/14 21:10	1634-04-4	
Naphthalene	5.1 ug/m3	4.5	1.68	03/06/14 21:10	91-20-3	
Tetrachloroethene	ND ug/m3	1.2	1.68	03/06/14 21:10	127-18-4	
Toluene	2.1 ug/m3	1.3	1.68	03/06/14 21:10	108-88-3	
1,2,4-Trichlorobenzene	ND ug/m3	6.3	1.68	03/06/14 21:10	120-82-1	
1,1,1-Trichloroethane	ND ug/m3	1.9	1.68	03/06/14 21:10	71-55-6	
1,1,2-Trichloroethane	ND ug/m3	0.92	1.68	03/06/14 21:10	79-00-5	
Trichloroethene	ND ug/m3	0.92	1.68	03/06/14 21:10	79-01-6	
1,2,3-Trimethylbenzene	ND ug/m3	0.34	1.68	03/06/14 21:10	526-73-8	
1,2,4-Trimethylbenzene	ND ug/m3	1.7	1.68	03/06/14 21:10	95-63-6	
1,3,5-Trimethylbenzene	ND ug/m3	1.7	1.68	03/06/14 21:10	108-67-8	
Vinyl chloride	ND ug/m3	0.44	1.68	03/06/14 21:10	75-01-4	
m&p-Xylene	ND ug/m3	3.0	1.68	03/06/14 21:10	179601-23-1	
o-Xylene	ND ug/m3	1.5	1.68	03/06/14 21:10	95-47-6	

REPORT OF LABORATORY ANALYSIS

Project:

1121C06221 REV

Pace Project No.:

Date: 04/17/2014 12:19 PM

No.: 10258805

Sample: IA-088-C-16	Lab ID: 10258805006	Collected: 02/24/14 16:56	Received: 02/26/14 08:12 Matrix: Air
Parameters	Results Units	Report Limit DF	Prepared Analyzed CAS No. Qua
TO15 MSV AIR	Analytical Method: TO-15		
Benzene	ND ug/m3	11.8 36.36	03/10/14 01:06 71-43-2
Carbon tetrachloride	ND ug/m3	23.3 36.36	03/10/14 01:06 56-23-5
Chlorodifluoromethane	ND ug/m3	7.3 36.36	03/10/14 01:06 75-45-6
Chloroform	ND ug/m3	36.0 36.36	03/10/14 01:06 67-66-3
Dichlorodifluoromethane	ND ug/m3	36.7 36.36	03/10/14 01:06 75-71-8 D3
1,1-Dichloroethane	ND ug/m3	29.8 36.36	03/10/14 01:06 75-34-3
1,2-Dichloroethane	ND ug/m3	14.9 36.36	03/10/14 01:06 107-06-2
1,1-Dichloroethene	ND ug/m3	29.5 36.36	03/10/14 01:06 75-35-4
cis-1,2-Dichloroethene	ND ug/m3	29.5 36.36	03/10/14 01:06 156-59-2
trans-1,2-Dichloroethene	ND ug/m3	29.5 36.36	03/10/14 01:06 156-60-5
Ethylbenzene	ND ug/m3	32.0 36.36	03/10/14 01:06 100-41-4
Methylene Chloride	33.6J ug/m3	128 36.36	03/10/14 01:06 75-09-2
Methyl-tert-butyl ether	ND ug/m3	26.5 36.36	03/10/14 01:06 1634-04-4
Naphthalene	ND ug/m3	96.7 36.36	03/10/14 01:06 91-20-3
Tetrachloroethene	ND ug/m3	25.1 36.36	03/10/14 01:06 127-18-4
Toluene	ND ug/m3	28.0 36.36	03/10/14 01:06 108-88-3
1,2,4-Trichlorobenzene	ND ug/m3	137 36.36	03/10/14 01:06 120-82-1
1,1,1-Trichloroethane	ND ug/m3	40.4 36.36	03/10/14 01:06 71-55-6
1,1,2-Trichloroethane	ND ug/m3	20.0 36.36	03/10/14 01:06 79-00-5
Trichloroethene	ND ug/m3	20.0 36.36	03/10/14 01:06 79-01-6
1,2,3-Trimethylbenzene	ND ug/m3	7.3 36.36	03/10/14 01:06 526-73-8
1,2,4-Trimethylbenzene	ND ug/m3	36.3 36.36	03/10/14 01:06 95-63-6
1,3,5-Trimethylbenzene	ND ug/m3	36.3 36.36	03/10/14 01:06 108-67-8
Vinyl chloride	ND ug/m3	9.5 36.36	03/10/14 01:06 75-01-4
m&p-Xylene	ND ug/m3	64.0 36.36	03/10/14 01:06 179601-23-1
o-Xylene	ND ug/m3	32.0 36.36	03/10/14 01:06 95-47-6

Project:

1121C06221 REV

Pace Project No.:

Date: 04/17/2014 12:19 PM

10258805

Sample: IA-101-B-16	Lab ID: 10258805036	Collected: 02/24/1	4 19:03	Received: 02/26/14 08:12 Matrix: Air	
Parameters	Results Units	Report Limit	DF	Prepared Analyzed CAS No. C	Qual
TO15 MSV AIR	Analytical Method: TO-15				
Benzene	0.65 ug/m3	0.61	1.87	03/07/14 22:27 71-43-2	
Carbon tetrachloride	ND ug/m3	1.2	1.87	03/07/14 22:27 56-23-5	
Chlorodifluoromethane	18.9 ug/m3	6.6	1.87	03/07/14 22:27 75-45-6	
Chloroform	ND ug/m3	1.9	1.87	03/07/14 22:27 67-66-3	
Dichlorodifluoromethane	2.7 ug/m3	1.9	1.87	03/07/14 22:27 75-71-8	
1,1-Dichloroethane	ND ug/m3	1.5	1.87	03/07/14 22:27 75-34-3	
1,2-Dichloroethane	ND ug/m3	0.77	1.87	03/07/14 22:27 107-06-2	
1,1-Dichloroethene	ND ug/m3	1.5	1.87	03/07/14 22:27 75-35-4	
cis-1,2-Dichloroethene	ND ug/m3	1.5	1.87	03/07/14 22:27 156-59-2	
trans-1,2-Dichloroethene	ND ug/m3	1.5	1.87	03/07/14 22:27 156-60-5	
Ethylbenzene	ND ug/m3	1.6	1.87	03/07/14 22:27 100-41-4	
Methylene Chloride	11.5 ug/m3	6.6	1.87	03/07/14 22:27 75-09-2	
Methyl-tert-butyl ether	ND ug/m3	1.4	1.87	03/07/14 22:27 1634-04-4	
Naphthalene	1.3J ug/m3	2.0	1.87	03/07/14 22:27 91-20-3	
Tetrachloroethene	ND ug/m3	1.3	1.87	03/07/14 22:27 127-18-4	
Toluene	17.1 ug/m3	1.4	1.87	03/07/14 22:27 108-88-3	
1,2,4-Trichlorobenzene	ND ug/m3	2.8	1.87	03/07/14 22:27 120-82-1	
1,1,1-Trichloroethane	ND ug/m3	2.1	1.87	03/07/14 22:27 71-55-6	
1,1,2-Trichloroethane	ND ug/m3	1.0	1.87	03/07/14 22:27 79-00-5	
Trichloroethene	ND ug/m3	1.0	1.87	03/07/14 22:27 79-01-6	
1,2,3-Trimethylbenzene	ND ug/m3	0.37	1.87	03/07/14 22:27 526-73-8	
1,2,4-Trimethylbenzene	ND ug/m3	1.9	1.87	03/07/14 22:27 95-63-6	
1,3,5-Trimethylbenzene	ND ug/m3	1.9	1.87	03/07/14 22:27 108-67-8	
Vinyl chloride	ND ug/m3	0.49	1.87	03/07/14 22:27 75-01-4	
m&p-Xylene	2.5J ug/m3	3.3	1.87	03/07/14 22:27 179601-23-1	
o-Xylene	0.95J ug/m3	1.6	1.87	03/07/14 22:27 95-47-6	

Project:

1121C06221 REV

Sample: IA-102-C-16	Lab ID: 10258805010	Collected: 02/24/14 1	7:03	Received: 02/26/14 08:	12 Matrix: Air	
Parameters	Results Units	Report Limit [)F	Prepared Analy	zed CAS No.	Qual
TO15 MSV AIR	Analytical Method: TO-15					
Benzene	0.61J ug/m3	0.63 1.	.94	03/07/14	21:59 71-43-2	
Carbon tetrachloride	ND ug/m3	1.2 1.	.94	03/07/14	21:59 56-23-5	
Chlorodifluoromethane	1.8J ug/m3	6.9 1.	.94	03/07/14	21:59 75-45-6	
Chloroform	ND ug/m3	1.9 1.	.94	03/07/14	21:59 67-66-3	
Dichlorodifluoromethane	2.6 ug/m3	2.0 1.	.94	03/07/14	21:59 75-71-8	
1,1-Dichloroethane	ND ug/m3	1.6 1.	.94	03/07/14	21:59 75-34-3	
1,2-Dichloroethane	ND ug/m3	0.80 1.	.94	03/07/14	21:59 107-06-2	
1,1-Dichloroethene	ND ug/m3	1.6 1.	94	03/07/14	21:59 75-35-4	
cis-1,2-Dichloroethene	ND ug/m3	1.6 1.	.94	03/07/14	21:59 156-59-2	
trans-1,2-Dichloroethene	ND ug/m3	1.6 1.	.94	03/07/14	21:59 156-60-5	
Ethylbenzene	ND ug/m3	1.7 1.	.94	03/07/14	21:59 100-41-4	
Methylene Chloride	8.6 ug/m3	6.9 1.	.94	03/07/14	21:59 75-09-2	
Methyl-tert-butyl ether	ND ug/m3	1.4 1.	94	03/07/14	21:59 1634-04-4	
Naphthalene	1.1J ug/m3	2.1 1.	94	03/07/14	21:59 91-20-3	
Tetrachloroethene	ND ug/m3	1.3 1.	94	03/07/14	21:59 127-18-4	
Toluene	3.2 ug/m3	1.5 1.	94	03/07/14	21:59 108-88-3	
1,2,4-Trichlorobenzene	ND ug/m3	2.9 1.	.94	03/07/14	21:59 120-82-1	
1,1,1-Trichloroethane	ND ug/m3	2.2 1.	.94	03/07/14	21:59 71-55-6	
1,1,2-Trichloroethane	ND ug/m3	1.1 1.	.94	03/07/14	21:59 79-00-5	
Trichloroethene	ND ug/m3	1.1 1.	.94	03/07/14	21:59 79-01-6	
1,2,3-Trimethylbenzene	ND ug/m3	0.39 1.	94	03/07/14	21:59 526-73-8	
1,2,4-Trimethylbenzene	ND ug/m3	1.9 1.	94	03/07/14	21:59 95-63-6	
1,3,5-Trimethylbenzene	ND ug/m3	1.9 1.	94		21:59 108-67-8	
Vinyl chloride	ND ug/m3	0.50 1.	94	03/07/14	21:59 75-01-4	
m&p-Xylene	1.9J ug/m3	3.4 1.	94		21:59 179601-23-1	
o-Xylene	ND ug/m3	1.7 1,	94		21:59 95-47-6	

(612)607-1700

ANALYTICAL RESULTS

Project:

1121C06221 REV

Pace Project No.: 10258805

Date: 04/17/2014 12:19 PM

Sample: IA-105-Z-16	Lab ID: 10258805030	Collected: 02/24/1	4 18:48	Received: 02/26/14 08:12	Matrix: Air	
Parameters	Results Units	Report Limit	DF	Prepared Analyze	CAS No.	Qua
TO15 MSV AIR	Analytical Method: TO-15	5				
Benzene	1.6 ug/m3	0.58	1.8	03/08/14 02	:13 71-43-2	
Carbon tetrachloride	ND ug/m3	1.2	1.8	03/08/14 02	:13 56-23-5	
Chlorodifluoromethane	1.4 ug/m3	0.36	1.8	03/08/14 02	:13 75-45-6	
Chloroform	ND ug/m3	1.8	1.8	03/08/14 02	:13 67-66-3	
Dichlorodifluoromethane	1.8 ug/m3	1.8	1.8	03/08/14 02	:13 75-71-8	
1,1-Dichloroethane	ND ug/m3	1.5	1.8	03/08/14 02	:13 75-34-3	
1,2-Dichloroethane	ND ug/m3	0.74	1.8	03/08/14 02	:13 107-06-2	
1,1-Dichloroethene	ND ug/m3	1.5	1.8	03/08/14 02	:13 75-35-4	
cis-1,2-Dichloroethene	ND ug/m3	1.5	1.8	03/08/14 02	:13 156-59-2	
rans-1,2-Dichloroethene	ND ug/m3	1.5	1.8	03/08/14 02	:13 156-60-5	
Ethylbenzene	113 ug/m3	1.6	1.8	03/08/14 02	:13 100-41-4	
Methylene Chloride	14.8 ug/m3	6.4	1.8	03/08/14 02	:13 75-09-2	
Methyl-tert-butyl ether	ND ug/m3	1.3	1.8	03/08/14 02	:13 1634-04-4	
Naphthalene	3.2J ug/m3	4.8	1.8	03/08/14 02	:13 91-20-3	
Tetrachloroethene	ND ug/m3	1.2	1.8	03/08/14 02	:13 127-18-4	
Toluene	9300 ug/m3	111	144	03/09/14 18	:40 108-88-3	A3
1,2,4-Trichlorobenzene	ND ug/m3	6.8	1.8	03/08/14 02	:13 120-82-1	
,1,1-Trichloroethane	ND ug/m3	2.0	1.8	03/08/14 02	:13 71-55-6	
,1,2-Trichloroethane	ND ug/m3	0.99	1.8	03/08/14 02	:13 79-00-5	
Trichloroethene	ND ug/m3	0.99	1.8	03/08/14 02	:13 79-01-6	
1,2,3-Trimethylbenzene	ND ug/m3	0.36	1.8	03/08/14 02	:13 526-73-8	
,2,4-Trimethylbenzene	1.7J ug/m3	1.8	1.8	03/08/14 02	:13 95-63-6	
1,3,5-Trimethylbenzene	ND ug/m3	1.8	1.8	03/08/14 02	:13 108-67-8	
/inyl chloride	ND ug/m3	0.47	1.8		:13 75-01-4	
n&p-Xylene	476 ug/m3	253	144	03/09/14 18	:40 179601-23-1	A3
o-Xylene	142 ug/m3	1.6	1.8	03/08/14 02	:13 95-47-6	

REPORT OF LABORATORY ANALYSIS

Project:

1121C06221 REV

Sample: IA-113-C-16	Lab ID: 10258805028	Collected: 02/24/14	16:59	Received: 02/26/14 08:12	Matrix: Air	
Parameters	Results Units	Report Limit	DF	Prepared Analyzed	CAS No.	Qual
TO15 MSV AIR	Analytical Method: TO-15					
Benzene	1.9 ug/m 3	1.7	5.31	03/10/14 01:3	5 71-43-2	
Carbon tetrachloride	ND ug/m3	3.4	5.31	03/10/14 01:3	5 56-23-5	
Chlorodifluoromethane	6.5 ug/m3	1.1	5.31	03/10/14 01:3	5 7 5-45-6	
Chloroform	ND ug/m3	5.3	5.31	03/10/14 01:3	5 67-66-3	
Dichlorodifluoromethane	4.7J ug/m3	5.4	5.31	03/10/14 01:39	5 75 -71-8	
1,1-Dichloroethane	43.7 ug/m3	4.4	5.31	03/10/14 01:3	5 75-34-3	
1,2-Dichloroethane	ND ug/m3	2.2	5.31	03/10/14 01:3	5 107-06-2	
1,1-Dichloroethene	17.1 ug/m3	4.3	5.31	03/10/14 01:3	5 75-35-4	
cis-1,2-Dichloroethene	ND ug/m3	4.3	5.31	03/10/14 01:3	5 156-59-2	
rans-1,2-Dichloroethene	ND ug/m3	4.3	5.31	03/10/14 01:3	5 156-60-5	
Ethylbenzene	ND ug/m3	4.7	5.31	03/10/14 01:3	5 100-41-4	
Methylene Chloride	79.7 ug/m3	18.7	5.31	03/10/14 01:3	5 75-09-2	
Methyl-tert-butyl ether	ND ug/m3	3.9	5.31	03/10/14 01:3	5 1634-04-4	
Naphthalene	ND ug/m3	14.1	5.31	03/10/14 01:3	5 91-20-3	
Tetrachloroethene	ND ug/m3	3.7	5.31	03/10/14 01:3	5 127-18-4	
Toluene	24.7 ug/m3	4.1	5.31	03/10/14 01:3	5 108-88-3	
1,2,4-Trichlorobenzene	ND ug/m3	20.0	5.31	03/10/14 01:3	5 120-82-1	
1,1,1-Trichloroethane	13.2 ug/m3	5.9	5.31	03/10/14 01:3	5 71-55-6	
1,1,2-Trichloroethane	ND ug/m3	2.9	5.31	03/10/14 01:3	5 79-00-5	
Trichloroethene	20.0 ug/m3	2.9	5.31	03/10/14 01:3	5 7 9 -01-6	
1,2,3-Trimethylbenzene	ND ug/m3	1.1	5.31	03/10/14 01:3	5 526-73-8	
1,2,4-Trimethylbenzene	3.2J ug/m3	5.3	5.31	03/10/14 01:3		
1,3,5-Trimethylbenzene	ND ug/m3	5.3	5.31	03/10/14 01:3		
Vinyl chloride	ND ug/m3	1.4	5.31	03/10/14 01:3		
m&p-Xylene	76.6 ug/m3	9.3	5.31	03/10/14 01:3	5 179601-23-1	
o-Xylene	26.6 ug/m3	4.7	5.31	03/10/14 01:3	5 95-47-6	

Project:

1121C06221 REV

Pace Project No.:

10258805

Sample: IA-121-B-16	Lab ID: 10258805034	Collected: 02/24/14	19:02	Received: 02/26/14 08:12 M	atrix: Air
Parameters	Results Units	Report Limit	DF	Prepared Analyzed	CAS No. Qua
TO15 MSV AIR	Analytical Method: TO-15				
Benzene	0.78 ug/m3	0.61	1.87	03/07/14 01:35	71-43-2
Carbon tetrachloride	ND ug/m3	1.2	1.87	03/07/14 01:35	56-23-5
Chlorodifluoromethane	37.5 ug/m3	0.37	1.87	03/07/14 01:35	75-45-6
Chloroform	ND ug/m3	1.9	1.87	03/07/14 01:35	67-66-3
Dichlorodifluoromethane	1.9 ug/m3	1.9	1.87	03/07/14 01:35	75-71-8
1,1-Dichloroethane	ND ug/m3	1.5	1.87	03/07/14 01:35	75-34-3
1,2-Dichloroethane	ND ug/m3	0.77	1.87	03/07/14 01:35	107-06-2
1,1-Dichloroethene	ND ug/m3	1.5	1.87	03/07/14 01:35	75-35-4
cis-1,2-Dichloroethene	ND ug/m3	1.5	1.87	03/07/14 01:35	156-59-2
trans-1,2-Dichloroethene	ND ug/m3	1.5	1.87	03/07/14 01:35	156-60-5
Ethylbenzene	ND ug/m3	1.6	1.87	03/07/14 01:35	100-41-4
Methylene Chloride	4.5J ug/m3	6.6	1.87	03/07/14 01:35	75-09-2
Methyl-tert-butyl ether	ND ug/m3	1.4	1.87	03/07/14 01:35	1634-04-4
Naphthalene	3.4J ug/m3	5.0	1.87	03/07/14 01:35	91-20-3
Tetrachloroethene	ND ug/m3	1.3	1.87	03/07/14 01:35	127-18 -4
Toluene	19.4 ug/m3	1.4	1.87	03/07/14 01:35	108-88-3
1,2,4-Trichlorobenzene	ND ug/m3	7.0	1.87	03/07/14 01:35	120-82-1
1,1,1-Trichloroethane	ND ug/m3	2.1	1.87	03/07/14 01:35	71-55-6
1,1,2-Trichloroethane	ND ug/m3	1.0	1.87	03/07/14 01:35	79-00-5
Trichloroethene	1.1 ug/m3	1.0	1.87	03/07/14 01:35	79-01-6
1,2,3-Trimethylbenzene	ND ug/m3	0.37	1.87	03/07/14 01:35	526-73-8
1,2,4-Trimethylbenzene	ND ug/m3	1.9	1.87	03/07/14 01:35	95-63-6
1,3,5-Trimethylbenzene	ND ug/m3	1.9	1.87	03/07/14 01:35	108-67-8
Vinyl chloride	ND ug/m3	0.49	1.87	03/07/14 01:35	75-01-4
m&p-Xylene	2.8J ug/m3	3.3	1.87	03/07/14 01:35	179601-23-1
o-Xylene	1.1J ug/m3	1.6	1.87	03/07/14 01:35	95-47-6

Project:

1121C06221 REV

Sample: IA-123-Z-16	Lab ID: 10258805032	Collected: 02/24/14	4 18:49	Received: 02/26/14 08:12	Matrix: Air	
Parameters	Results Units	Report Limit	DF	Prepared Analyzed	CAS No.	Qual
TO15 MSV AIR	Analytical Method: TO-15					
Benzene	2.3 ug/m3	0.61	1.87	03/08/14 00:1	3 71-43-2	
Carbon tetrachloride	ND ug/m3	1.2	1.87	03/08/14 00:1	3 56-23-5	
Chlorodifluoromethane	1.3 ug/m3	0.37	1.87	03/08/14 00:1	3 75-45-6	
Chloroform	ND ug/m3	1.9	1.87	03/08/14 00:1	3 67-66-3	
Dichlorodifluoromethane	2.1 ug/m3	1.9	1.87	03/08/14 00:1	3 75-71-8	
1,1-Dichloroethane	ND ug/m3	1.5	1.87	03/08/14 00:1	3 75-34-3	
1,2-Dichloroethane	ND ug/m3	0.77	1.87	03/08/14 00:1	3 107-06-2	
1,1-Dichloroethene	ND ug/m3	1.5	1.87	03/08/14 00:1	3 75-35-4	
cis-1,2-Dichloroethene	ND ug/m3	1.5	1.87	03/08/14 00:1	3 156-59-2	
rans-1,2-Dichloroethene	ND ug/m3	1.5	1.87	03/08/14 00:1	3 156-60-5	
Ethylbenzene	164 ug/m3	1.6	1.87	03/08/14 00:1	3 100-41-4	
Methylene Chloride	8.7 ug/m3	6.6	1.87	03/08/14 00:1	3 75-09-2	
Methyl-tert-butyl ether	ND ug/m3	1.4	1.87	03/08/14 00:1	3 1634-04-4	
Naphthalene	ND ug/m3	5.0	1.87	03/08/14 00:1	3 91-20-3	
Tetrachloroethene	ND ug/m3	1.3	1.87	03/08/14 00:1	3 127-18-4	
Toluene	20000 ug/m3	230	299.2	03/09/14 19:0	4 108-88-3	A3
1,2,4-Trichlorobenzene	ND ug/m3	7.0	1.87	03/08/14 00:1	3 120-82-1	
1,1,1-Trichloroethane	ND ug/m3	2.1	1.87	03/08/14 00:1	3 71-55-6	
1,1,2-Trichloroethane	ND ug/m3	1.0	1.87	03/08/14 00:1	3 79-00-5	
Trichloroethene	ND ug/m3	1.0	1.87	03/08/14 00:1	3 79-01-6	
1,2,3-Trimethylbenzene	ND ug/m3	0.37	1.87	03/08/14 00:1	3 526-73-8	
1,2,4-Trimethylbenzene	1.3J ug/m3	1.9	1.87	03/08/14 00:1	3 95-63-6	
1,3,5-Trimethylbenzene	ND ug/m3	1.9	1.87	03/08/14 00:1	3 108-67-8	
√inyl chloride	ND ug/m3	0.49	1.87	03/08/14 00:1	3 75-01-4	
m&p-Xylene	1030 ug/m3	527	299.2	03/09/14 19:0	4 179601-23-1	A3
o-Xylene	210 ug/m3	1.6	1.87	03/08/14 00:1	3 95-47-6	

Project:

1121C06221 REV

Pace Project No.: 10258805

Date: 04/17/2014 12:19 PM

Sample: IA-126-C-16	Lab ID: 10258805018	Collected: 02/24/14 1	8:19	Received: 02/26/14 08:12	∕latrix: Air	_
Parameters	Results Units	Report Limit [)F	Prepared Analyzed	CAS No.	Qua
TO15 MSV AIR	Analytical Method: TO-15					
Benzene	0.79 ug/m3	0.57 1.	74	03/07/14 20:16	71-43-2	
Carbon tetrachloride	ND ug/m3	1.1 1.	74	03/07/14 20:16	56-23-5	
Chlorodifluoromethane	2.0 ug/m3	0.35 1.	74	03/07/14 20:16	75-45-6	
Chloroform	ND ug/m3	1.7 1.	74	03/07/14 20:16	67-66-3	
Dichlorodifluoromethane	2.3 ug/m3	1.8 1.	74	03/07/14 20:16	75-71-8	
1,1-Dichloroethane	ND ug/m3	1.4 1.	74	03/07/14 20:16	75-34-3	
1,2-Dichloroethane	ND ug/m3	0.71 1.	74	03/07/14 20:16	107-06-2	
1,1-Dichloroethene	ND ug/m3	1.4 1.	74	03/07/14 20:16	75-35-4	
cis-1,2-Dichloroethene	ND ug/m3	1.4 1.	74	03/07/14 20:16	156-59-2	
rans-1,2-Dichloroethene	ND ug/m3	1.4 1.	74	03/07/14 20:16	156-60-5	
Ethylbenzene	ND ug/m3	1.5 1.	74	03/07/14 20:16	100-41-4	
Methylene Chloride	14.6 ug/m3	6.1 1.	74	03/07/14 20:16	75-09-2	
Methyl-tert-butyl ether	ND ug/m3	1.3 1.	74	03/07/14 20:16	1634-04-4	
Naphthalene	3.4J ug/m3	4.6 1.	74	03/07/14 20:16	91-20-3	
Tetrachloroethene	ND ug/m3	1.2 1.	74	03/07/14 20:16	127-18-4	
Toluene	6.0 ug/m3	1.3 1.	74	03/07/14 20:16	108-88-3	
1,2,4-Trichlorobenzene	ND ug/m3	6.6 1.	74	03/07/14 20:16	120-82-1	
1,1,1-Trichloroethane	ND ug/m3	1.9 1.	74	03/07/14 20:16	71-55-6	
1,1,2-Trichloroethane	ND ug/m3	0.96 1.	74	03/07/14 20:16	79-00-5	
Trichloroethene	ND ug/m3	0.96 1.	74	03/07/14 20:16	79-01-6	
1,2,3-Trimethylbenzene	ND ug/m3	0.35 1.	74	03/07/14 20:16	526-73-8	
1,2,4-Trimethylbenzene	ND ug/m3	1.7 1.	74	03/07/14 20:16	95-63-6	
1,3,5-Trimethylbenzene	ND ug/m3	1.7 1.	74	03/07/14 20:16	108-67-8	
√inyl chloride	ND ug/m3	0.45 1.	74	03/07/14 20:16	75-01-4	
n&p-Xylene	ND ug/m3	3.1 1.	74	03/07/14 20:16		
o-Xylene	ND ug/m3	1.5 1.	74	03/07/14 20:16		

Project:

1121C06221 REV

Sample: IA-128-C-16	Lab ID: 10258805038	Collected: 02/24/14	19:13	Received: 02/26/14 08:12	Matrix: Air	
Parameters	Results Units	Report Limit I	DF	Prepared Analyzed	CAS No.	Qual
TO15 MSV AIR	Analytical Method: TO-15					
Benzene	0.84 ug/m3	0.61 1	.87	03/07/14 18:4	8 71-43-2	
Carbon tetrachloride	ND ug/m3	1.2 1	.87	03/07/14 18:4	8 56-23-5	
Chlorodifluoromethane	23.2 ug/m3	0.37 1	.87	03/07/14 18:4	8 75-45-6	
Chloroform	ND ug/m3	1.9 1	.87	03/07/14 18:4	8 67-66-3	
Dichlorodifluoromethane	2.4 ug/m3	1.9 1	.87	03/07/14 18:4	8 75-71 - 8	
1,1-Dichloroethane	ND ug/m3	1.5 1	1.87	03/07/14 18:4	8 75-34-3	
1,2-Dichloroethane	ND ug/m3	0.77 1	1.87	03/07/14 18:4	8 107-06-2	
1,1-Dichloroethene	ND ug/m3	1.5 1	1.87	03/07/14 18:4	8 75-35-4	
cis-1,2-Dichloroethene	ND ug/m3	1.5 1	1.87	03/07/14 18:4	8 156-59-2	
rans-1,2-Dichloroethene	ND ug/m3	1.5 1	1.87	03/07/14 18:4	8 156-60-5	
Ethylbenzene	ND ug/m3	1.6 1	1.87	03/07/14 18:4	8 100-41-4	
Methylene Chloride	14.5 ug/m3	6.6 1	1.87	03/07/14 18:4	8 75-09-2	
Methyl-tert-butyl ether	ND ug/m3	1.4 1	1.87	03/07/14 18:4	8 1634-04-4	
Naphthalene	3.9J ug/m3	5.0 1	.87	03/07/14 18:4	8 91-20-3	
Tetrachloroethene	ND ug/m3	1.3 1	1.87	03/07/14 18:4	8 127-18-4	
Toluene	4.3 ug/m3	1.4 1	1.87	03/07/14 18:4	8 108-88-3	
1,2,4-Trichlorobenzene	ND ug/m3	7.0 1	1.87	03/07/14 18:4	8 120-82-1	
1,1,1-Trichloroethane	ND ug/m3	2.1 1	1.87	03/07/14 18:4	8 71-55-6	
1,1,2-Trichloroethane	ND ug/m3	1.0 1	1.87	03/07/14 18:4	8 79-00-5	
Trichloroethene	ND ug/m3	1.0 1	1.87	03/07/14 18:4	8 79-01-6	
1,2,3-Trimethylbenzene	ND ug/m3	0.37 1	1.87	03/07/14 18:4	8 526-73-8	
1,2,4-Trimethylbenzene	ND ug/m3	1.9 1	1.87	03/07/14 18:4	8 95-63-6	
1,3,5-Trimethylbenzene	ND ug/m3	1.9 1	1.87	03/07/14 18:4	8 108-67-8	
Vinyl chloride	ND ug/m3	0.49 1	1.87	03/07/14 18:4	8 75-01-4	
m&p-Xylene	2.6J ug/m3	3.3 1	1.87	03/07/14 18:4	8 179601-23-1	
o-Xylene	1.1J ug/m3	1.6 1	1.87	03/07/14 18:4	8 95-47-6	

Project:

1121C06221 REV

Pace Project No.: 10258805

Date: 04/17/2014 12:19 PM

Sample: IA-130-C-16	Lab ID: 10258805012	Collected: 02/24/14	4 17:58	Received: 02/26/14 08:1	2 Matrix: Air	
Parameters	Results Units	Report Limit	DF	Prepared Analyze	ed CAS No.	Qua
TO15 MSV AIR	Analytical Method: TO-15					
Benzene	1.3 ug/m3	0.55	1.68	03/07/14 0	3:32 71-43-2	
Carbon tetrachloride	ND ug/m3	1.1	1.68	03/07/14 0	3:32 56-23-5	
Chlorodifluoromethane	4.0 ug/m3	0.34	1.68	03/07/14 0	3:32 75-45-6	
Chloroform	ND_ug/m3	1.7	1.68	03/07/14 0	3:32 67-66-3	
Dichlorodifluoromethane	2.4 ug/m3	1.7	1.68	03/07/14 0	3:32 75-71 -8	
1,1-Dichloroethane	ND ug/m3	1.4	1.68	03/07/14 0	3:32 75-34-3	
1,2-Dichloroethane	ND ug/m3	0.69	1.68	03/07/14 0	3:32 107-06-2	
1,1-Dichloroethene	ND ug/m3	1.4	1.68	03/07/14 0	3:32 75-35-4	
cis-1,2-Dichloroethene	ND ug/m3	1.4	1.68	03/07/14 0	3:32 156-59-2	
rans-1,2-Dichloroethene	ND ug/m3	1.4	1.68	03/07/14 0	3:32 156-60-5	
Ethylbenzene	ND ug/m3	1.5	1.68	03/07/14 0	3:32 100-41-4	
Methylene Chloride	14.1 ug/m3	5.9	1.68	03/07/14 0	3:32 75-09-2	
Methyl-tert-butyl ether	ND ug/m3	1.2	1.68	03/07/14 0	3:32 1634-04-4	
Naphthalene	3.6J ug/m3	4.5	1.68	03/07/14 0	3:32 91-20-3	
Tetrachloroethene	ND ug/m3	1.2	1.68	03/07/14 0	3:32 127-18 -4	
Toluene	3.5 ug/m3	1.3	1.68	03/07/14 0	3:32 108-88-3	
1,2,4-Trichlorobenzene	ND ug/m3	6.3	1.68	03/07/14 0	3:32 120-82-1	
1,1,1-Trichloroethane	ND ug/m3	1.9	1.68	03/07/14 0	3:32 71-55-6	
1,1,2-Trichloroethane	ND ug/m3	0.92	1.68	03/07/14 0	3:32 79-00-5	
Trichloroethene	ND ug/m3	0.92	1.68	03/07/14 0	3:32 79-01-6	
1,2,3-Trimethylbenzene	ND ug/m3	0.34	1.68	03/07/14 0	3:32 526-73-8	
1,2,4-Trimethylbenzene	ND ug/m3	1.7	1.68	03/07/14 0	3:32 95-63-6	
1,3,5-Trimethylbenzene	ND_ug/m3	1.7	1.68	03/07/14 0	3:32 108-67-8	
Vinyl chloride	ND ug/m3	0.44	1.68	03/07/14 0	3:32 75-01-4	
m&p-Xylene	1.6J ug/m3	3.0	1.68	03/07/14 0	3:32 179601-23-1	
o-Xylen e	ND ug/m3	1.5	1.68	03/07/14 0	3:32 95-47-6	

REPORT OF LABORATORY ANALYSIS

Project:

1121C06221 REV

Pace Project No.: 10258805

Sample: IA-133-C-16	Lab ID: 10258805026	Collected: 02/24/1	4 18:40	Received: 02/26/14 08:12	Matrix: Air	
Parameters	Results Units	Report Limit	DF	Prepared Analyze	d CAS No.	Qua
TO15 MSV AIR	Analytical Method: TO-15					
Benzene	0.93 ug/m3	0.55	1.68	03/07/14 19	:47 71-43-2	
Carbon tetrachloride	ND ug/m3	1.1	1.68	03/07/14 19	:47 56-23-5	
Chlorodifluoromethane	4.4 ug/m3	0.34	1.68	03/07/14 19	:47 75-45-6	
Chloroform	ND ug/m3	1.7	1.68	03/07/14 19	:47 67-66-3	
Dichlorodifluoromethane	2.4 ug/m3	1.7	1.68	03/07/14 19	:47 75-71-8	
1,1-Dichloroethane	ND ug/m3	1.4	1.68	03/07/14 19	:47 75-34-3	
1,2-Dichloroethane	ND ug/m3	0.69	1.68	03/07/14 19	:47 107-06-2	
1,1-Dichloroethene	ND ug/m3	1.4	1.68	03/07/14 19	:47 75-35-4	
cis-1,2-Dichloroethene	ND ug/m3	1.4	1.68	03/07/14 19	:47 156-59-2	
trans-1,2-Dichloroethene	ND ug/m3	1.4	1.68	03/07/14 19	:47 156-60-5	
Ethylbenzene	ND ug/m3	1.5	1.68	03/07/14 19	:47 100-41-4	
Methylene Chloride	8.4 ug/m3	5.9	1.68	03/07/14 19	:47 75-09-2	
Methyl-tert-butyl ether	ND ug/m3	1.2	1.68	03/07/14 19	:47 1634-04-4	
Naphthalene	3.7J ug/m3	4.5	1.68	03/07/14 19	:47 91-20-3	
Tetrachloroethene	ND ug/m3	1.2	1.68	03/07/14 19	:47 127-18-4	
Toluene	2.9 ug/m3	1.3	1.68	03/07/14 19	:47 108-88-3	
1,2,4-Trichlorobenzene	ND ug/m3	6.3	1.68	03/07/14 19	:47 120-82-1	
1,1,1-Trichloroethane	ND ug/m3	1.9	1.68	03/07/14 19	;47 71-55-6	
1,1,2-Trichloroethane	ND ug/m3	0.92	1.68	03/07/14 19	:47 79-00-5	
Trichloroethene	1.2 ug/m3	0.92	1.68	03/07/14 19	:47 79-01-6	
1,2,3-Trimethylbenzene	ND ug/m3	0.34	1.68	03/07/14 19	:47 526-73 -8	
1,2,4-Trimethylbenzene	ND ug/m3	1.7	1.68	03/07/14 19	:47 95-63-6	
1,3,5-Trimethylbenzene	ND ug/m3	1.7	1.68	03/07/14 19	:47 108-67-8	
Vinyl chloride	ND ug/m3	0.44	1.68	03/07/14 19	:47 75-01-4	
m&p-Xylene	2.1J ug/m3	3.0	1.68	03/07/14 19	:47 179601-23-1	
o-Xylene	0.84J ug/m3	1.5	1.68		3:47 95-47-6	

REPORT OF LABORATORY ANALYSIS

Project:

1121C06221 REV

Pace Project No.: 10258805

Date: 04/17/2014 12:19 PM

Sample: IA-135-C-16	Lab ID: 10258805004	Collected: 02/24/14 16	:54 Re	eceived: 02/26/14 08:12	Matrix: Air	
Parameters	Results Units	Report Limit D	= 1	Prepared Analyzed	CAS No.	Qua
TO15 MSV AIR	Analytical Method: TO-15					
Benzene	0.80 ug/m3	0.58 1.	В	03/06/14 22:	39 71-43-2	
Carbon tetrachloride	ND ug/m3	1.2 1.	В	03/06/14 22:		
Chlorodifluoromethane	2.1 ug/m3	0.36 1.	В	03/06/14 22:	39 75-45-6	
Chloroform	ND ug/m3	1.8 1.	В	03/06/14 22:	39 67-66-3	
Dichlorodifluoromethane	2.3 ug/m3	1.8 1.	8	03/06/14 22:	39 75-71-8	
1,1-Dichloroethane	ND ug/m3	1.5 1.	8	03/06/14 22:	39 75-34-3	
1,2-Dichloroethane	ND ug/m3	0.74 1.	8	03/06/14 22:	39 107-06-2	
1,1-Dichloroethene	ND ug/m3	1.5 1.	В	03/06/14 22:	39 75-35-4	
cis-1,2-Dichloroethene	ND ug/m3	1.5 1.	8	03/06/14 22:	39 156-59-2	
trans-1,2-Dichloroethene	ND ug/m3	1.5 1.	8	03/06/14 22:	39 156-60-5	
Ethylbenzene	ND ug/m3	1.6 1.	8	03/06/14 22:	39 100-41-4	
Methylene Chloride	13.2 ug/m3	6.4 1.	8	03/06/14 22:	39 75-09-2	
Methyl-tert-butyl ether	ND ug/m3	1.3 1.	8	03/06/14 22:	39 1634-04-4	
Naphthalene	ND ug/m3	4.8 1.	8	03/06/14 22:	39 91-20-3	
Tetrachloroethene	ND ug/m3	1.2 1.	8	03/06/14 22:	39 127-18-4	
Toluene	ND ug/m3	1.4 1.	8	03/06/14 22:	39 108-88-3	
1,2,4-Trichlorobenzene	ND ug/m3	6.8 1.	8	03/06/14 22:	39 120-82-1	
1,1,1-Trichloroethane	ND ug/m3	2.0 1.	8	03/06/14 22:	:39 71-55-6	
1,1,2-Trichloroethane	ND ug/m3	0.99 1.	8	03/06/14 22:	:39 79-00-5	
Trichloroethene	ND ug/m3	0.99 1.	8	03/06/14 22:	39 79-01-6	
1,2,3-Trimethylbenzene	ND ug/m3	0.36 1.	8	03/06/14 22:	39 526-73-8	
1,2,4-Trimethylbenzene	ND ug/m3	1.8 1.	8	03/06/14 22:	:39 95-63-6	
1,3,5-Trimethylbenzene	ND ug/m3	1.8 1.	8	03/06/14 22:	39 108-67-8	
Vinyl chloride	ND ug/m3	0.47 1.	8	03/06/14 22:		
m&p-Xylene	ND ug/m3	3.2 1.	8	03/06/14 22:	39 179601-23-1	
o-Xylene	ND ug/m3	1.6 1.	8		39 95-47-6	

Project:

1121C06221 REV

Sample: IA-141-C-16	Lab ID: 10258805016	Collected: 02/24/1	4 18:14	Received: 02/26/14 0	8:12 Matrix: Air	
Parameters	Results Units	Report Limit	DF	Prepared Ana	lyzed CAS No.	Qual
TO15 MSV AIR	Analytical Method: TO-15					
Benzene	0.92 ug/m3	0.57	1.74	03/07/1	4 19:17 71-43-2	
Carbon tetrachloride	ND ug/m3	1.1	1.74	03/07/1	4 19:17 56-23-5	
Chlorodifluoromethane	7.1 ug/m3	0.35	1.74	03/07/1	4 19:17 75-45-6	
Chloroform	ND ug/m3	1.7	1.74	03/07/1	4 19:17 67-66-3	
Dichlorodifluoromethane	3.0 ug/m3	1.8	1.74	03/07/1	4 19:17 75-71-8	
1,1-Dichloroethane	ND ug/m3	1.4	1.74	03/07/1	4 19:17 75-34-3	
1,2-Dichloroethane	ND ug/m3	0.71	1.74	03/07/1	4 19:17 107-06-2	
1,1-Dichloroethene	ND ug/m3	1.4	1.74	03/07/1	4 19:17 75-35-4	
cis-1,2-Dichloroethene	ND ug/m3	1.4	1.74	03/07/1	4 19:17 156-59-2	
trans-1,2-Dichloroethene	ND ug/m3	1.4	1.74	03/07/1	4 19:17 156-60-5	
Ethylbenzene	ND ug/m3	1.5	1.74	03/07/1	4 19:17 100-41-4	
Methylene Chloride	7.8 ug/m3	6.1	1.74	03/07/1	4 19:17 75-09-2	
Methyl-tert-butyl ether	ND ug/m3	1.3	1.74	03/07/1	4 19:17 1634-04-4	
Naphthalene	ND ug/m3	4.6	1.74	03/07/1	4 19:17 91-20-3	
Tetrachloroethene	ND ug/m3	1.2	1.74	03/07/1	4 19:17 127-18-4	
Toluene	2.1 ug/m3	1.3	1.74	03/07/1	4 19:17 108-88-3	
1,2,4-Trichlorobenzene	ND ug/m3	6.6	1.74	03/07/1	4 19:17 120-82-1	
1,1,1-Trichloroethane	ND ug/m3	1.9	1.74	03/07/1	4 19:17 71-55-6	
1,1,2-Trichloroethane	ND ug/m3	0.96	1.74	03/07/1	4 19:17 79-00-5	
Trichloroethene	ND ug/m3	0.96	1.74	03/07/1	4 19:17 79-01-6	
1,2,3-Trimethylbenzene	ND ug/m3	0.35	1.74	03/07/1	4 19:17 526-73-8	
1,2,4-Trimethylbenzene	ND ug/m3	1.7	1.74	03/07/1	4 19:17 95-63-6	
1,3,5-Trimethylbenzene	ND ug/m3	1.7	1.74	03/07/1	4 19:17 108-67-8	
Vinyl chloride	ND ug/m3	0.45	1.74		4 19:17 75-01-4	
m&p-Xylene	1.6J ug/m3	3.1	1.74	03/07/1	4 19:17 179601-23-	1
o-Xylene	ND ug/m3	1.5	1.74	03/07/1	4 19:17 95-47-6	

Project:

1121C06221 REV

Sample: IA-142-C-16	Lab ID: 10258805008	Collected: 02/24/1	4 16:57	Received: 02/26/14 08:12 Ma	atrix: Air
Parameters	Results Units	Report Limit	DF	Prepared Analyzed	CAS No. Qu
TO15 MSV AIR	Analytical Method: TO-15				
Benzene	0.67 ug/m3	0.61	1.87	03/06/14 19:41	71-43-2
Carbon tetrachloride	ND ug/m3	1.2	1.87	03/06/14 19:41	56-23-5
Chlorodifluoromethane	1.9 ug/m3	0.37	1.87	03/06/14 19:41	75-45-6
Chloroform	ND ug/m3	1.9	1.87	03/06/14 19:41	67-66-3
Dichlorodifluoromethane	2.0 ug/m3	1.9	1.87	03/06/14 19:41	75-71-8
1,1-Dichloroethane	ND ug/m3	1.5	1.87	03/06/14 19:41	75-34-3
1,2-Dichloroethane	ND ug/m3	0.77	1.87	03/06/14 19:41	107-06-2
1,1-Dichloroethene	ND ug/m3	1.5	1.87	03/06/14 19:41	75-35-4
cis-1,2-Dichloroethene	ND ug/m3	1.5	1.87	03/06/14 19:41	156-59-2
trans-1,2-Dichloroethene	ND ug/m3	1.5	1.87	03/06/14 19:41	156-60-5
Ethylbenzene	ND ug/m3	1.6	1.87	03/06/14 19:41	100-41-4
Methylene Chloride	3.8J ug/m3	6.6	1.87	03/06/14 19:41	75-09-2
Methyl-tert-butyl ether	ND ug/m3	1.4	1.87	03/06/14 19:41	1634-04-4
Naphthalene	3.4J ug/m3	5.0	1.87	03/06/14 19:41	91-20-3
Tetrachloroethene	ND ug/m3	1.3	1.87	03/06/14 19:41	127-18-4
Toluene	ND ug/m3	1.4	1.87	03/06/14 19:41	108-88-3
1,2,4-Trichlorobenzene	ND ug/m3	7.0	1.87	03/06/14 19:41	120-82-1
1,1,1-Trichloroethane	ND ug/m3	2.1	1.87	03/06/14 19:41	71-55-6
1,1,2-Trichloroethane	ND ug/m3	1.0	1.87	03/06/14 19:41	79-00-5
Trichloroethene	ND ug/m3	1.0	1.87	03/06/14 19:41	79-01-6
1,2,3-Trimethylbenzene	ND ug/m3	0.37	1.87	03/06/14 19:41	526-73-8
1,2,4-Trimethylbenzene	ND ug/m3	1.9	1.87	03/06/14 19:41	95-63-6
1,3,5-Trimethylbenzene	ND ug/m3	1.9	1.87	03/06/14 19:41	108-67-8
Vinyl chloride	ND ug/m3	0.49	1.87	03/06/14 19:41	
m&p-Xylene	1.7J ug/m3	3.3	1.87	03/06/14 19:41	179601-23-1
o-Xylene	ND ug/m3	1.6	1.87	03/06/14 19:41	95-47-6

Project:

1121C06221 REV

Pace Project No.: 10258805

Sample: IA-143-C-16	Lab ID: 10258805002	Collected: 02/24/1	4 16:44	Received: 02/26/14 08:12	Matrix: Air
Parameters	Results Units	Report Limit	DF	Prepared Analyzed	CAS No. Qu
TO15 MSV AIR	Analytical Method: TO-1	5			
Benzene	0.81 ug/m3	0.58	1.8	03/07/14 04:01	71-43-2
Carbon tetrachloride	ND ug/m3	1.2	1.8	03/07/14 04:01	56-23-5
Chlorodifluoromethane	2.5 ug/m3	0.36	1.8	03/07/14 04:01	75 -45-6
Chloroform	ND ug/m3	1.8	1.8	03/07/14 04:01	67-66-3
Dichlorodifluoromethane	2.4 ug/m3	1.8	1.8	03/07/14 04:01	75-71-8
1,1-Dichloroethane	ND ug/m3	1.5	1.8	03/07/14 04:01	75-34-3
1,2-Dichloroethane	ND ug/m3	0.74	1.8	03/07/14 04:01	107-06-2
1,1-Dichloroethene	ND ug/m3	1.5	1.8	03/07/14 04:01	75-35-4
cis-1,2-Dichloroethene	ND ug/m3	1.5	1.8	03/07/14 04:01	156-59-2
rans-1,2-Dichloroethene	ND ug/m3	1.5	1.8	03/07/14 04:01	156-60-5
Ethylbenzene	ND ug/m3	1.6	1.8	03/07/14 04:01	100-41-4
Methylene Chloride	6.1J ug/m3	6.4	1.8	03/07/14 04:01	75-09-2
Methyl-tert-butyl ether	ND ug/m3	1.3	1.8	03/07/14 04:01	1634-04- 4
Naphthalene	4.4J ug/m3	4.8	1.8	03/07/14 04:01	91-20-3
Tetrachioroethene	ND ug/m3	1.2	1.8	03/07/14 04:01	127-18 -4
Toluene	ND ug/m3	1.4	1.8	03/07/14 04:01	108-88-3
1,2,4-Trichlorobenzene	ND ug/m3	6.8	1.8	03/07/14 04:01	120-82-1
1,1,1-Trichloroethane	ND ug/m3	2.0	1.8	03/07/14 04:01	71-55-6
1,1,2-Trichloroethane	ND ug/m3	0.99	1.8	03/07/14 04:01	79-00-5
Trichloroethene	ND ug/m3	0.99	1.8	03/07/14 04:01	79-01-6
1,2,3-Trimethylbenzene	ND ug/m3	0.36	1.8	03/07/14 04:01	526-73-8
1,2,4-Trimethylbenzene	1.2J ug/m3	1.8	1.8	03/07/14 04:01	95-63-6
1,3,5-Trimethylbenzene	ND ug/m3	1.8	1.8	03/07/14 04:01	108-67-8
Vinyl chloride	ND ug/m3	0.47	1.8	03/07/14 04:01	75-01 -4
m&p-Xylene	ND ug/m3	3.2	1.8	03/07/14 04:01	179601-23-1
o-Xylene	ND ug/m3	1.6	1.8	03/07/14 04:01	95-47-6

Project:

1121C06221 REV

Pace Project No.:

Date: 04/17/2014 12:19 PM

10258805

Sample: IA-144-C-16	Lab ID: 10258805043	Collected: 02/24/14 19	9:37 Received: 02/26/14 08:12 Matrix: Air
Parameters	Results Units	Report Limit D	F Prepared Analyzed CAS No. Qual
TO15 MSV AIR	Analytical Method: TO-15		
Benzene	0.71 ug/m3	0.61 1.8	03/06/14 23:38 71-43-2
Carbon tetrachloride	ND ug/m3	1.2 1.8	37 03/06/14 23:38 56-23-5
Chlorodifluoromethane	18.0 ug/m3	0.37 1.8	37 03/06/14 23:38 75-45-6
Chloroform	ND ug/m3	1.9 1.8	37 03/06/14 23:38 67-66-3
Dichlorodifluoromethane	2.0 ug/m3	1.9 1.8	37 03/06/14 23:38 75-71-8
1,1-Dichloroethane	ND ug/m3	1.5 1.8	37 03/06/14 23:38 75-34-3
1,2-Dichloroethane	ND ug/m3	0.77 1.8	37 03/06/ 14 23:38 107-06-2
1,1-Dichloroethene	ND ug/m3	1.5 1.8	37 03/06/14 23:38 75-35-4
cis-1,2-Dichloroethene	ND ug/m3	1.5 1.8	37 03/06/14 23:38 156-59-2
trans-1,2-Dichloroethene	ND ug/m3	1.5 1.8	37 03/06/14 23:38 156-60-5
Ethylbenzene	ND ug/m3	1.6 1.8	37 03/06/14 23:38 100-41-4
Methylene Chloride	6.6 ug/m3	6.6 1.8	37 03/06/14 23:38 75-09-2
Methyl-tert-butyl ether	ND ug/m3	1.4 1.8	37 03/06/14 23:38 1634-04-4
Naphthalene	3.6J ug/m3	5.0 1.8	37 03/06/14 23:38 91-20-3
Tetrachloroethene	ND ug/m3	1.3 1.8	37 03/06/14 23:38 127-18-4
Toluene	3.5 ug/m3	1.4 1.8	37 03/06/14 23:38 108-88-3
1,2,4-Trichlorobenzene	ND ug/m3	7.0 1.8	37 03/06/14 23:38 120-82-1
1,1,1-Trichloroethane	ND ug/m3	2.1 1.8	37 03/06/14 23:38 71-55-6
1,1,2-Trichloroethane	ND ug/m3	1.0 1.8	37 03/06/14 23:38 79-00-5
Trichloroethene	ND ug/m3	1.0 1.8	37 03/06/14 23:38 79-01-6
1,2,3-Trimethylbenzene	ND ug/m3	0.37 1.8	37 03/06/14 23:38 526-73-8
1,2,4-Trimethylbenzene	ND ug/m3	1.9 1.8	37 03/06/14 23:38 95-63-6
1,3,5-Trimethylbenzene	ND ug/m3	1.9 1.8	37 03/06/14 23:38 108-67-8
Vinyl chloride	ND ug/m3	0.49 1.8	37 03/06/14 23:38 75-01-4
m&p-Xylene	2.3J ug/m3	3.3 1.8	87 03/06/14 23:38 179601-23-1
o-Xylene	0.88J ug/m3	1.6 1.8	87 03/06/14 23:38 95-47-6

(612)607-1700

ANALYTICAL RESULTS

Project:

1121C06221 REV

Pace Project No.: 10258805

Date: 04/17/2014 12:19 PM

Sample: IA-145-C-16	Lab ID: 10258805039	Collected: 02/24/1	4 19:20	Received: 0	2/26/14 08:12	Matrix: Air	
Parameters	Results Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
TO15 MSV AIR	Analytical Method: TO-15						
Benzene	3.6 ug/m3	0.61	1.87		03/07/14 23:1	5 71-43-2	
Carbon tetrachloride	1.4 ug/m3	1.2	1.87		03/07/14 23:1	5 56-23-5	
Chlorodifluoromethane	37.2 ug/m3	0.37	1.87		03/07/14 23:1	5 75-45-6	
Chloroform	ND ug/m3	1.9	1.87		03/07/14 23:1	5 67-66-3	
Dichlorodifluoromethane	4.8 ug/m3	1.9	1.87		03/07/14 23:1	5 75-71-8	
1,1-Dichloroethane	ND ug/m3	1.5	1.87		03/07/14 23:1	5 75-34-3	
1,2-Dichloroethane	ND ug/m3	0.77	1.87		03/07/14 23:1	5 107-06-2	
1,1-Dichloroethene	ND ug/m3	1.5	1.87		03/07/14 23:1	5 75-35-4	
cis-1,2-Dichloroethene	ND ug/m3	1.5	1.87		03/07/14 23:1	5 156-59-2	
trans-1,2-Dichloroethene	ND ug/m3	1.5	1.87		03/07/14 23:1	5 156-60-5	
Ethylbenzene	1.7 ug/m3	1.6	1.87		03/07/14 23:1	5 100-41-4	
Methylene Chloride	1140 ug/m3	222	62.83		03/09/14 17:2	6 75-09-2	
Methyl-tert-butyl ether	ND ug/m3	1.4	1.87		03/07/14 23:1	5 1634-04-4	
Naphthalene	4.1J ug/m3	5.0	1.87		03/07/14 23:1	5 91-20-3	
Tetrachloroethene	ND ug/m3	1.3	1.87		03/07/14 23:1	5 127-18-4	
Toluene	16.2 ug/m3	1.4	1.87		03/07/14 23:1	5 108-88-3	
1,2,4-Trichlorobenzene	ND ug/m3	7.0	1.87		03/07/14 23:1	5 120-82-1	
1,1,1-Trichloroethane	ND ug/m3	2.1	1.87		03/07/14 23:1	5 71-55-6	
1,1,2-Trichloroethane	ND ug/m3	1.0	1.87		03/07/14 23:1	5 79-00-5	
Trichloroethene	ND ug/m3	1.0	1.87		03/07/14 23:1	5 79-01-6	
1,2,3-Trimethylbenzene	ND ug/m3	0.37	1.87		03/07/14 23:1	5 526-73-8	
1,2,4-Trimethylbenzene	3.4 ug/m3	1.9	1.87		03/07/14 23:1	5 95-63-6	
1,3,5-Trimethylbenzene	1. 0J ug/m3	1.9	1.87		03/07/14 23:1	5 108-67-8	
Vinyl chloride	ND ug/m3	0.49	1.87		03/07/14 23:1	5 75-01-4	
m&p-Xylene	6.1 ug/m3	3.3	1.87		03/07/14 23:1	5 179601-23-1	
o-Xylene	2.3 ug/m3	1.6	1.87		03/07/14 23:1	5 95-47-6	

(612)607-1700

ANALYTICAL RESULTS

Project:

1121C06221 REV

Pace Project No.:

Sample: IA-146-C-16	Lab ID: 10258805040	Collected: 02/24/1	4 19:18	Received: 02/26/14 08:12	Matrix: Air	
Parameters	Results Units	Report Limit	DF	Prepared Analyze	d CAS No.	Qual
TO15 MSV AIR	Analytical Method: TO-15					
Benzene	0.76 ug/m3	0.58	1.8	03/07/14 1	5:58 71-43-2	
Carbon tetrachloride	ND ug/m3	1.2	1.8	03/07/14 1	5:58 56-23-5	
Chlorodifluoromethane	54.2 ug/m3	0.36	1.8	03/07/14 1	5:58 75-45-6	
Chloroform	ND ug/m3	1.8	1.8	03/07/14 15	5:58 67-66-3	
Dichlorodifluoromethane	2.3 ug/m3	1.8	1.8	03/07/14 1	5:58 75-71-8	
1,1-Dichloroethane	ND ug/m3	1.5	1.8	03/07/14 15	5:58 75-34-3	
1,2-Dichloroethane	ND ug/m3	0.74	1.8	03/07/14 15	5:58 107-06-2	
1,1-Dichloroethene	ND ug/m3	1.5	1.8	03/07/14 15	5:58 75-35-4	
cis-1,2-Dichloroethene	ND ug/m3	1.5	1.8	03/07/14 1	5:58 156-59-2	
rans-1,2-Dichloroethene	ND ug/m3	1.5	1.8	03/07/14 15	5:58 156-60-5	
Ethylbenzene	ND ug/m3	1.6	1.8	03/07/14 1	5:58 100-41-4	
Methylene Chloride	6.7 ug/m3	6.4	1.8	03/07/14 1	5:58 75-09-2	
Methyl-tert-butyl ether	ND ug/m3	1.3	1.8	03/07/14 15	5:58 1634-04-4	
Naphthalene	3.7J ug/m3	4.8	1.8	03/07/14 1	5:58 91-20-3	
Tetrachloroethene	ND ug/m3	1.2	1.8	03/07/14 15	5:58 127-18-4	
Toluene	2.5 ug/m3	1.4	1.8	03/07/14 15	5:58 108-88-3	
1,2,4-Trichlorobenzene	ND ug/m3	6.8	1.8	03/07/14 15	5:58 120-82-1	
1,1,1-Trichloroethane	ND ug/m3	2.0	1.8	03/07/14 15	5:58 71-55-6	
1,1,2-Trichloroethane	ND ug/m3	0.99	1.8	03/07/14 15	5:58 79-00-5	
Trichloroethene	ND ug/m3	0.99	1.8	03/07/14 15	5:58 79-01-6	
1,2,3-Trimethylbenzene	ND ug/m3	0.36	1.8	03/07/14 15	5:58 526-73-8	
1,2,4-Trimethylbenzene	ND ug/m3	1.8	1.8	03/07/14 15	5:58 95-63-6	
1,3,5-Trimethylbenzene	ND ug/m3	1.8	1.8	03/07/14 15	5:58 108-67-8	
Vinyl chloride	ND ug/m3	0.47	1.8	03/07/14 15	5:58 75-01-4	
m&p-Xylene	2.3J ug/m3	3.2	1.8	03/07/14 15	5:58 179601-23-1	
o-Xylene	0.88J ug/m3	1.6	1.8	03/07/14 1	5:58 95-47-6	

Project:

1121C06221 REV

Pace Project No.: 10258805

mple: IA-147-C-16 Collected: 02/24/14 19:25 Received: 02/26/14 08:12 Matrix: Air

Sample: IA-147-C-16	Lab ID: 10258809	5041 Collected: 02/24/	14 19:25	Received: 0	2/26/14 08:12	Matrix: Air	
Parameters	Results U	Jnits Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
TO15 MSV AIR	Analytical Method: 1	ГО-15					
Benzene	0.80 ug/m3	0.61	1.87		03/07/14 03:03	3 71-43-2	
Carbon tetrachloride	ND ug/m3	1.2	1.87		03/07/14 03:03		
Chlorodifluoromethane	1 8.2 ug/m3	0.37	1.87		03/07/14 03:03	3 75-45-6	
Chloroform	ND ug/m3	1.9	1.87		03/07/14 03:03	3 67-66-3	
Dichlorodifluoromethane	2.1 ug/m3	1.9	1.87		03/07/14 03:03	3 75-71-8	
1,1-Dichloroethane	ND ug/m3	1.5	1.87		03/07/14 03:03	3 75-34-3	
1,2-Dichloroethane	ND ug/m3	0.77	1.87		03/07/14 03:03	3 107-06-2	
1,1-Dichloroethene	ND ug/m3	1.5	1.87		03/07/14 03:03	3 75-35-4	
cis-1,2-Dichloroethene	ND ug/m3	1.5	1.87		03/07/14 03:03	3 156-59-2	
trans-1,2-Dichloroethene	ND ug/m3	1.5	1.87		03/07/14 03:03	3 156-60-5	
Ethylbenzene	ND ug/m3	1.6	1.87		03/07/14 03:03	3 100-41-4	
Methylene Chloride	19.1 ug/m3	6.6	1.87		03/07/14 03:0	3 75-0 9- 2	
Methyl-tert-butyl ether	ND ug/m3	1.4	1.87		03/07/14 03:03	3 1634-04-4	
Naphthalene	4.9J ug/m3	5.0	1.87		03/07/14 03:03	3 91-20-3	
Tetrachloroethene	ND ug/m3	1.3	1.87		03/07/14 03:03	3 127-18-4	
Toluene	5.4 ug/m3	1.4	1.87		03/07/14 03:03	3 108-88-3	
1,2,4-Trichlorobenzene	ND ug/m3	7.0	1.87		03/07/14 03:03	3 120-82-1	
1,1,1-Trichloroethane	ND ug/m3	2.1	1.87		03/07/14 03:03	3 71-55-6	
1,1,2-Trichloroethane	ND ug/m3	1.0	1.87		03/07/14 03:0	3 7 9-00 -5	
Trichloroethene	ND ug/m3	1.0	1.87		03/07/14 03:0	3 79-01-6	
1,2,3-Trimethylbenzene	ND ug/m3	0.37	1.87		03/07/14 03:0	3 526-73-8	
1,2,4-Trimethylbenzene	ND ug/m3	1.9	1.87		03/07/14 03:0	3 95-63-6	
1,3,5-Trimethylbenzene	ND ug/m3	1.9	1.87		03/07/14 03:0	3 108-67-8	
Vinyl chloride	ND ug/m3	0.49	1.87		03/07/14 03:0	3 75-01-4	
m&p-Xylene	2.7J ug/m3	3.3	1.87		03/07/14 03:0	3 179601-23-1	
o-Xylene	1.1J ug/m3	1.6	1.87		03/07/14 03:0	3 95-47-6	

Project:

1121C06221 REV

Pace Project No.:

Date: 04/17/2014 12:19 PM

10258805

Sample: IA-148-C-16	Lab ID: 10258805042	Collected: 02/24/1	4 19:15	Received: 02/26/14 08:12	Matrix: Air	
Parameters	Results Units	Report Limit	DF	Prepared Analyzed	CAS No. Q)ual
TO15 MSV AIR	Analytical Method: TO-15					
Benzene	0.61 ug/m3	0.61	1.87	03/07/14 21:03	3 71-43-2	
Carbon tetrachloride	ND ug/m3	1.2	1.87	03/07/14 21:03	3 56-23-5	
Chlorodifluoromethane	24.4 ug/m3	6.6	1.87	03/07/14 21:03	3 75-45-6	
Chloroform	ND ug/m3	1.9	1.87	03/07/14 21:03	3 67-66-3	
Dichlorodifluoromethane	2.7 ug/m3	1.9	1.87	03/07/14 21:03	3 75-71-8	
1,1-Dichloroethane	ND ug/m3	1.5	1.87	03/07/14 21:03	3 75-34-3	
1,2-Dichloroethane	ND ug/m3	0.77	1.87	03/07/14 21:03	3 107-06-2	
1,1-Dichloroethene	ND ug/m3	1.5	1.87	03/07/14 21:03	3 75-35-4	
cis-1,2-Dichloroethene	ND ug/m3	1.5	1.87	03/07/14 21:03	3 156-59-2	
trans-1,2-Dichloroethene	ND ug/m3	1.5	1.87	03/07/14 21:03	3 156-60-5	
Ethylbenzene	ND ug/m3	1.6	1.87	03/07/14 21:03	3 100-41-4	
Methylene Chloride	11.0 ug/m3	6.6	1.87	03/07/14 21:03	3 75-09-2	
Methyl-tert-butyl ether	ND ug/m3	1.4	1.87	03/07/14 21:03	3 1634-04-4	
Naphthalene	1.2J ug/m3	2.0	1.87	03/07/14 21:0	3 91-20-3	
Tetrachloroethene	ND ug/m3	1.3	1.87	03/07/14 21:03	3 127-18-4	
Toluene	2.9 ug/m3	1.4	1.87	03/07/14 21:03	3 108-88-3	
1,2,4-Trichlorobenzene	ND ug/m3	2.8	1.87	03/07/14 21:03	3 120-82-1	
1,1,1-Trichloroethane	ND ug/m3	2.1	1.87	03/07/14 21:03	3 71-55-6	
1,1,2-Trichloroethane	ND ug/m3	1.0	1.87	03/07/14 21:03	3 79-00-5	
Trichloroethene	ND ug/m3	1.0	1.87	03/07/14 21:0	3 79-01-6	
1,2,3-Trimethylbenzene	ND ug/m3	0.37	1.87	03/07/14 21:03	3 526-73-8	
1,2,4-Trimethylbenzene	ND ug/m3	1.9	1.87	03/07/14 21:03	3 95-63-6	
1,3,5-Trimethylbenzene	ND ug/m3	1.9	1.87	03/07/14 21:03	3 108-67-8	
Vinyl chloride	ND ug/m3	0.49	1.87	03/07/14 21:03	3 75-01 -4	
m&p-Xylene	2.3J ug/m3	3.3	1.87	03/07/14 21:0	3 179601-23-1	
o-Xylene	0.93J ug/m3	1.6	1.87	03/07/14 21:0	3 95-47-6	

Project:

1121C06221 REV

Pace Project No.: 10258805

Sample: IA-DUP1-C-16	Lab ID: 10258805046	Collected: 02/24/14	4 00:00	Received: 02/26/14 08:1	2 Matrix: Air	
Parameters	Results Units	Report Limit	DF	Prepared Analyze	ed CAS No.	Qual
TO15 MSV AIR	Analytical Method: TO-15					
Benzene	0.83 ug/m3	0.55	1.68	03/06/14 2	2:10 71-43-2	
Carbon tetrachloride	ND ug/m3	1.1	1.68	03/06/14 2	2:10 56-23-5	
Chlorodifluoromethane	3.9 ug/m3	0.34	1.68	03/06/14 2	2:10 75-45-6	
Chloroform	ND ug/m3	1.7	1.68	03/06/14 2	2:10 67-66-3	
Dichlorodifluoromethane	2.3 ug/m3	1.7	1.68	03/06/14 2	2:10 75-71-8	
1,1-Dichloroethane	ND ug/m3	1.4	1.68	03/06/14 2	2:10 75-34-3	
1,2-Dichloroethane	ND ug/m3	0.69	1.68	03/06/14 2	2:10 107-06-2	
1,1-Dichloroethene	ND ug/m3	1.4	1.68	03/06/14 2	2:10 75-35-4	
cis-1,2-Dichloroethene	ND ug/m3	1.4	1.68	03/06/14 2	2:10 156-59-2	
trans-1,2-Dichloroethene	ND ug/m3	1.4	1.68	03/06/14 2	2:10 156-60-5	
Ethylbenzene	ND ug/m3	1.5	1.68	03/06/14 2	2:10 100-41-4	
Methylene Chloride	1.9J ug/m3	5.9	1.68		2:10 75-09-2	
Methyl-tert-butyl ether	ND ug/m3	1.2	1.68	03/06/14 2	2:10 1634-04-4	
Naphthalene	3.5J ug/m3	4.5	1.68	03/06/14 2	2:10 91-20-3	
Tetrachloroethene	ND ug/m3	1.2	1.68	03/06/14 2	2:10 127-18-4	
Toluene	2.4 ug/m3	1.3	1.68	03/06/14 2	2:10 108-88-3	
1,2,4-Trichlorobenzene	ND ug/m3	6.3	1.68	03/06/14 2	2:10 120-82-1	
1,1,1-Trichloroethane	ND ug/m3	1.9	1.68	03/06/14 2	2:10 71-55-6	
1,1,2-Trichloroethane	ND ug/m3	0.92	1.68	03/06/14 2	2:10 79-00-5	
Trichloroethene	1.4 ug/m3	0.92	1.68	03/06/14 2	2:10 79-01-6	
1,2,3-Trimethylbenzene	ND ug/m3	0.34	1.68		2:10 526-73-8	
1,2,4-Trimethylbenzene	ND ug/m3	1.7	1.68		2:10 95-63-6	
1,3,5-Trimethylbenzene	ND ug/m3	1.7	1.68		2:10 108-67-8	
Vinyl chloride	ND ug/m3	0.44	1.68		2:10 75-01-4	
m&p-Xylene	1.9J ug/m3	3.0	1.68	03/06/14 2	2:10 179601-23-1	
o-Xylene	ND ug/m3	1.5	1.68		2:10 95-47-6	

Project:

1121C06221 REV

Pace Project No.: 10258805

Date: 04/17/2014 12:19 PM

Sample: IA-DUP2-C-16	Lab ID: 10258805047	Collected: 02/24/14	00:00	Received:	02/26/14 08:12	Matrix: Air	
Parameters	Results Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
TO15 MSV AIR	Analytical Method: TO-15						
Benzene	0.89 ug/m3	0.55	1.68		03/07/14 05:3	0 71-43-2	
Carbon tetrachloride	ND ug/m3	1.1	1.68		03/07/14 05:3	0 56-23-5	
Chlorodifluoromethane	3.1 ug/m3	0.34	1.68		03/07/14 05:3	0 75-45-6	
Chloroform	ND ug/m3	1.7	1.68		03/07/14 05:3	0 67-66-3	
Dichlorodifluoromethane	2.1 ug/m3	1.7	1.68		03/07/14 05:3	0 75-71-8	
1,1-Dichloroethane	ND ug/m3	1.4	1.68		03/07/14 05:3	0 75-34-3	
1,2-Dichloroethane	ND ug/m3	0.69	1.68		03/07/14 05:3	0 107-06-2	
1,1-Dichloroethene	ND ug/m3	1.4	1.68		03/07/14 05:3	0 75-35-4	
cis-1,2-Dichloroethene	ND ug/m3	1.4	1.68		03/07/14 05:3	0 156-59-2	
trans-1,2-Dichloroethene	ND ug/m3	1.4	1.68		03/07/14 05:3	0 156-60-5	
Ethylbenzene	ND ug/m3	1.5	1.68		03/07/14 05:3	0 100-41-4	
Methylene Chloride	5.1J ug/m3	5.9	1.68		03/07/14 05:3	0 75-09-2	
Methyl-tert-butyl ether	ND ug/m3	1.2	1.68		03/07/14 05:3	0 1634-04-4	
Naphthalene	3.2J ug/m3	4.5	1.68		03/07/14 05:3	0 91-20-3	
Tetrachloroethene	ND ug/m3	1.2	1.68		03/07/14 05:3	0 127-18-4	
Toluene	ND ug/m3	1.3	1.68		03/07/14 05:3	0 108-88-3	
1,2,4-Trichlorobenzene	ND ug/m3	6.3	1.68		03/07/14 05:3	0 120-82-1	
1,1,1-Trichloroethane	ND ug/m3	1.9	1.68		03/07/14 05:3	0 71-55-6	
1,1,2-Trichloroethane	ND ug/m3	0.92	1.68		03/07/14 05:3	0 79-00-5	
Trichloroethene	ND ug/m3	0.92	1.68		03/07/14 05:3	0 79-01-6	
1,2,3-Trimethylbenzene	ND ug/m3	0.34	1.68		03/07/14 05:3	0 526-73-8	
1,2,4-Trimethylbenzene	0.94J ug/m3	1.7	1.68		03/07/14 05:3	0 95-63-6	
1,3,5-Trimethylbenzene	ND ug/m3	1.7	1.68		03/07/14 05:3		
Vinyl chloride	ND ug/m3	0.44	1.68		03/07/14 05:3	0 75-01-4	
m&p-Xylene	3.4 ug/m3	3.0	1.68		03/07/14 05:3	0 179601-23-1	
o-Xylene	1.2J ug/m3	1.5	1.68		03/07/14 05:3		

Project:

1121C06221 REV

Pace Project No.:

Date: 04/17/2014 12:19 PM

Sample: SV-033-B-16	Lab ID: 10258805023	Collected: 02/24/1	4 12:18	Received: 02/26/14 08:12	Matrix: Air	
Parameters	Results Units	Report Limit	DF	Prepared Analyzed	CAS No.	Qual
TO15 MSV AIR	Analytical Method: TO-15					
Benzene	1.2 ug/m3	0.55	1.68	03/07/14 23:	44 71-43-2	
Carbon tetrachloride	ND ug/m3	1.1	1.68	03/07/14 23:	44 56-23-5	
Chlorodifluoromethane	32.6 ug/m3	0.34	1.68	03/07/14 23:	44 75-45-6	
Chloroform	ND ug/m3	1.7	1.68	03/07/14 23:	44 67-66-3	
Dichlorodifluoromethane	3.4 ug/m3	1.7	1.68	03/07/14 23:	44 75-71-8	
1,1-Dichloroethane	ND ug/m3	1.4	1.68	03/07/14 23:	44 75-34-3	
1,2-Dichloroethane	ND ug/m3	0.69	1.68	03/07/14 23:	44 107-06-2	
1,1-Dichloroethene	ND ug/m3	1.4	1.68	03/07/14 23:	44 75-35 -4	
cis-1,2-Dichloroethene	ND ug/m3	1.4	1.68	03/07/14 23:	44 156-59-2	
trans-1,2-Dichloroethene	ND ug/m3	1.4	1.68	03/07/14 23:	44 156-60-5	
Ethylbenzene	3.1 ug/m3	1.5	1.68	03/07/14 23:	44 100-41-4	
Methylene Chloride	10.5 ug/m3	5.9	1.68	03/07/14 23:	44 75-09-2	
Methyl-tert-butyl ether	ND ug/m3	1.2	1.68	03/07/14 23:	44 1634-04-4	
Naphthalene	10.4 ug/m3	4.5	1.68	03/07/14 23:	44 91-20-3	
Tetrachloroethene	ND ug/m3	1.2	1.68	03/07/14 23:	44 127-18-4	
Toluene	36.1 ug/m3	1.3	1.68	03/07/14 23:	44 108-88-3	
1,2,4-Trichlorobenzene	ND ug/m3	6.3	1:68	03/07/14 23:	44 120-82-1	
1,1,1-Trichloroethane	88.6 ug/m3	1.9	1.68	03/07/14 23:	44 71-55-6	
1,1,2-Trichloroethane	ND ug/m3	0.92	1.68	03/07/14 23:	44 79-00-5	
Trichloroethene	2.8 ug/m3	0.92	1.68	03/07/14 23:	44 79-01 - 6	
1,2,3-Trimethylbenzene	5.2 ug/m3	0.34	1.68	03/07/14 23:	44 526-73-8	
1,2,4-Trimethylbenzene	11.1 ug/m3	1.7	1.68	03/07/14 23:	44 95-63-6	
1,3,5-Trimethylbenzene	ND ug/m3	1.7	1.68	03/07/14 23:	44 108-67-8	
Vinyl chloride	ND ug/m3	0.44	1.68	03/07/14 23:	44 75-01-4	
m&p-Xylene	13.8 ug/m3	3.0	1.68	03/07/14 23:	44 179601-23-1	
o-Xylene	4.9 ug/m3	1.5	1.68	03/07/14 23:		

Project:

1121C06221 REV

Pace Project No.: 10258805

Sample: SV-060-C-16	Lab ID: 10258805013	Collected: 02/24/14 11	:59 Received: 02/26/14 08:12 Matrix: Air
Parameters	Results Units	Report Limit DI	Prepared Analyzed CAS No. Qua
TO15 MSV AIR	Analytical Method: TO-15		
Benzene	0.85 ug/m3	0.55 1.6	8 03/07/14 22:55 71-43-2
Carbon tetrachloride	ND ug/m3	1.1 1.6	8 03/07/14 22:55 56-23-5
Chlorodifluoromethane	5.8J ug/m3	5.9 1.6	8 03/07/14 22:55 75-45-6
Chloroform	3.1 ug/m3	1.7 1.6	8 03/07/14 22:55 67-66-3
Dichlorodifluoromethane	2.8 ug/m3	1.7 1.6	8 03/07/14 22:55 75-71-8
1,1-Dichloroethane	2.3 ug/m3	1.4 1.6	8 03/07/14 22:55 75-34-3
1,2-Dichloroethane	ND ug/m3	0.69 1.6	8 03/07/14 22:55 107-06-2
1,1-Dichloroethene	0.86J ug/m3	1.4 1.6	8 03/07/14 22:55 75-35-4
cis-1,2-Dichloroethene	16.5 ug/m3	1.4 1.6	8 03/07/14 22:55 156-59-2
rans-1,2-Dichloroethene	1.1J ug/m3	1.4 1.6	
Ethylbenzene	96.5 ug/m3	1.5 1.6	
Methylene Chloride	10.7 ug/m3	5.9 1.6	
Methyl-tert-butyl ether	ND ug/m3	1.2 1.6	8 03/07/14 22:55 1634-04-4
Naphthalene	4.4 ug/m3	1.8 1.6	
Tetrachloroethene	2.2 ug/m3	1.2 1.6	
Toluene	13.1 ug/m3	1.3 1.6	8 03/07/14 22:55 108-88-3
1,2,4-Trichlorobenzene	ND ug/m3	2.5 1.6	
1,1,1-Trichloroethane	ND ug/m3	1.9 1.6	
I,1,2-Trichloroethane	ND ug/m3	0.92 1.6	
Trichloroethene	291 ug/m3	0.92 1.6	
1,2,3-Trimethylbenzene	0.91 ug/m3	0.34 1.6	
1,2,4-Trimethylbenzene	3.2 ug/m3	1.7 1.6	
1,3,5-Trimethylbenzene	2.2 ug/m3	1.7 1.6	
√inyl chloride	ND ug/m3	0.44 1.6	
n&p-Xylene	561 ug/m3	29.6 16.	
o-Xylene	230 ug/m3	1.5 1.6	

Project:

1121C06221 REV

Pace Project No.:

Date: 04/17/2014 12:19 PM

Sample: SV-063-B-16	Lab ID: 10258805021	Collected: 02/24/1	4 12:14	Received: 02/26/14 08:12 M	Matrix: Air	
Parameters	Results Units	Report Limit	DF	Prepared Analyzed	CAS No.	Qual
TO15 MSV AIR	Analytical Method: TO-15					
Benzene	ND ug/m3	0.55	1.68	03/07/14 02:33	71-43-2	
Carbon tetrachloride	16.3 ug/m3	1.1	1.68	03/07/14 02:33	56-23-5	
Chlorodifluoromethane	1.7 ug/m3	0.34	1.68	03/07/14 02:33	75-45-6	
Chloroform	ND ug/m3	1.7	1.68	03/07/14 02:33	67-66-3	
Dichlorodifluoromethane	2.2 ug/m3	1.7	1.68	03/07/14 02:33	75-71-8	
1,1-Dichloroethane	ND ug/m3	1.4	1.68	03/07/14 02:33	75-34-3	
1,2-Dichloroethane	ND ug/m3	0.69	1.68	03/07/14 02:33	107-06-2	
1,1-Dichloroethene	ND ug/m3	1.4	1.68	03/07/14 02:33	75-35-4	
cis-1,2-Dichloroethene	ND ug/m3	1.4	1.68	03/07/14 02:33	156-59-2	
trans-1,2-Dichloroethene	ND ug/m3	1.4	1.68	03/07/14 02:33	156-60-5	
Ethylbenzene	ND ug/m3	1.5	1.68	03/07/14 02:33	100-41-4	
Methylene Chloride	14.6 ug/m3	5.9	1.68	03/07/14 02:33	75-09-2	
Methyl-tert-butyl ether	ND ug/m3	1.2	1.68	03/07/14 02:33	1634-04-4	
Naphthalene	3.3J ug/m3	4.5	1.68	03/07/14 02:33	91-20-3	
Tetrachloroethene	3.3 ug/m3	1.2	1.68	03/07/14 02:33	127-18-4	
Toluene	2.4 ug/m3	1.3	1.68	03/07/14 02:33	108-88-3	
1,2,4-Trichlorobenzene	ND ug/m3	6.3	1.68	03/07/14 02:33	120-82-1	
1,1,1-Trichloroethane	ND ug/m3	1.9	1.68	03/07/14 02:33	71-55-6	
1,1,2-Trichloroethane	ND ug/m3	0.92	1.68	03/07/14 02:33	79-00-5	
Trichloroethene	1.6 ug/m3	0.92	1.68	03/07/14 02:33	79-01-6	
1,2,3-Trimethylbenzene	ND ug/m3	0.34	1.68	03/07/14 02:33	526-73-8	
1,2,4-Trimethylbenzene	1.4J ug/m3	1.7	1.68	03/07/14 02:33	95-63-6	
1,3,5-Trimethylbenzene	ND ug/m3	1.7	1.68	03/07/14 02:33		
Vinyl chloride	ND ug/m3	0.44	1.68	03/07/14 02:33		
m&p-Xylene	1.8J ug/m3	3.0	1.68	03/07/14 02:33		
o-Xylene	ND ug/m3	1.5	1.68	03/07/14 02:33		

Project:

1121C06221 REV

Pace Project No.:

Sample: SV-065-C-16	Lab ID: 10258805019	Collected: 02/24/1	4 12:10	Received: 02/26/14 08:12	Matrix: Air	
Parameters	Results Units	Report Limit	DF	Prepared Analyze	d CAS No.	Qual
TO15 MSV AIR	Analytical Method: TO-15					
Benzene	ND ug/m3	0.55	1.68	03/07/14 2	0:07 71-43-2	
Carbon tetrachloride	ND ug/m3	1.1	1.68	03/07/14 2	0:07 56-23-5	
Chlorodifluoromethane	7.9 ug/m3	5.9	1.68	03/07/14 2	0:07 75-45-6	
Chioroform	2.7 ug/m3	1.7	1.68	03/07/14 2	0:07 67-66-3	
Dichlorodifluoromethane	7.3 ug/m3	1.7	1.68	03/07/14 2	0:07 75-71-8	
1,1-Dichloroethane	ND ug/m3	1.4	1.68	03/07/14 2	0:07 75-34-3	
1,2-Dichloroethane	ND ug/m3	0.69	1.68	03/07/14 2	0:07 107-06-2	
1,1-Dichloroethene	ND ug/m3	1.4	1.68	03/07/14 2	0:07 75-35 -4	
cis-1,2-Dichloroethene	ND ug/m3	1.4	1.68	03/07/14 2	0:07 156-59-2	
rans-1,2-Dichloroethene	ND ug/m3	1.4	1.68	03/07/14 2	0:07 156-60-5	
Ethylbenzene	ND ug/m3	1.5	1.68	03/07/14 2	0:07 100-41-4	
Methylene Chloride	16.9 ug/m3	5.9	1.68	03/07/14 2	0:07 75-09-2	
Methyl-tert-butyl ether	ND ug/m3	1.2	1.68	03/07/14 2	0:07 1634-04-4	
Naphthalene	6.9 ug/m3	1.8	1.68	03/07/14 2	0:07 91-20-3	
Tetrachloroethene	12.6 ug/m3	1.2	1.68	03/07/14 2	0:07 127-18-4	
Toluene	1.2J ug/m3	1.3	1.68	03/07/14 2	0:07 108-88-3	
1,2,4-Trichlorobenzene	ND ug/m3	2.5	1.68	03/07/14 2	0:07 120-82-1	
1,1,1-Trichloroethane	ND ug/m3	1.9	1.68	03/07/14 2	0:07 71-55-6	
1,1,2-Trichloroethane	ND ug/m3	0.92	1.68	03/07/14 2	0:07 79-00-5	
Trichloroethene	ND ug/m3	0.92	1.68	03/07/14 2	0:07 79-01-6	
1,2,3-Trimethylbenzene	0.95 ug/m3	0.34	1.68	03/07/14 2	0:07 526-73-8	
1,2,4-Trimethylbenzene	1.3J ug/m3	1.7	1.68	03/07/14 2	0:07 95-63-6	
1,3,5-Trimethylbenzene	ND ug/m3	1.7	1.68	03/07/14 2	0:07 108-67-8	
Vinyl chloride	ND ug/m3	0.44	1.68	03/07/14 2	0:07 75-01-4	
m&p-Xylene	1.1J ug/m3	3.0	1.68	03/07/14 2	0:07 179601-23-1	
o-Xylene	ND ug/m3	1.5	1.68	03/07/14 2	0:07 95-47-6	

Project:

1121C06221 REV

Pace Project No.:

Date: 04/17/2014 12:19 PM

Sample: SV-088-C-16	Lab ID: 10258805005	Collected: 02/24/14	11:42	Received: 02/26/14 08:12	Matrix: Air	
Parameters	Results Units	Report Limit	DF	Prepared Analyzed	CAS No.	Qual
TO15 MSV AIR	Analytical Method: TO-1	5				
Benzene	1.2 ug/m3	0.55	1.68	03/08/14 03:4	6 71-43-2	
Carbon tetrachloride	ND ug/m3	1.1	1.68	03/08/14 03:4	6 56-23-5	
Chlorodifluoromethane	3.2 ug/m3	0.34	1.68	03/08/14 03:4	6 75-45-6	
Chloroform	ND ug/m3	1.7	1.68	03/08/14 03:4	6 67-66-3	
Dichlorodifluoromethane	2.6 ug/m3	1.7	1.68	03/08/14 03:4	6 75-71 - 8	
1,1-Dichloroethane	ND ug/m3	1.4	1.68	03/08/14 03:4	6 75-34-3	
1,2-Dichloroethane	ND ug/m3	0.69	1.68	03/08/14 03:4	6 107-06-2	
1,1-Dichloroethene	ND ug/m3	1.4	1.68	03/08/14 03:4	6 75-35-4	
cis-1,2-Dichloroethene	17.6 ug/m3	1.4	1.68	03/08/14 03:4	6 156-59-2	
trans-1,2-Dichloroethene	ND ug/m3	1.4	1.68	03/08/14 03:4	6 156-60-5	
Ethylbenzene	2.2 ug/m3	1.5	1.68	03/08/14 03:4	6 100-41-4	
Methylene Chloride	82.5 ug/m3	5.9	1.68	03/08/14 03:4	6 75-09-2	
Methyl-tert-butyl ether	ND ug/m3	1.2	1.68	03/08/14 03:4	6 1634-04-4	
Naphthalene	22.3 ug/m3	4.5	1.68	03/08/14 03:4	6 91-20-3	
Tetrachloroethene	ND ug/m3	1.2	1.68	03/08/14 03:4	6 127-18-4	
Toluene	ND ug/m3	1.3	1.68	03/08/14 03:4	6 108-88-3	
1,2,4-Trichlorobenzene	ND ug/m3	6.3	1.68	03/08/14 03:4	6 120-82-1	
1,1,1-Trichloroethane	ND ug/m3	1.9	1.68	03/08/14 03:4	6 71-55-6	
1,1,2-Trichloroethane	ND ug/m3	0.92	1.68	03/08/14 03:4	6 79-00-5	
Trichloroethene	70.6 ug/m3	0.92	1.68	03/08/14 03:4	6 79-01-6	
1,2,3-Trimethylbenzene	1.1 ug/m3	0.34	1.68	03/08/14 03:4	6 526-73-8	
1,2,4-Trimethylbenzene	1.8 ug/m3	1.7	1.68	03/08/14 03:4	6 95-63-6	
1,3,5-Trimethylbenzene	ND ug/m3	1.7	1.68	03/08/14 03:4	6 108-67-8	
Vinyl chloride	ND ug/m3	0.44	1.68	03/08/14 03:4	6 75-01-4	
m&p-Xylene	10 ug/m3	3.0	1.68	03/08/14 03:4	6 179601-23-1	
o-Xylene	4.7 ug/m3	1.5	1.68	03/08/14 03:4	6 95-47-6	

Project:

1121C06221 REV

Pace Project No.:

Sample: SV-101-B-16	Lab ID: 10258805035	Collected: 02/24/1	4 12:40	Received: 02/26/14 08:12	Matrix: Air	
Parameters	Results Units	Report Limit	DF	Prepared Analyzed	CAS No.	Qual
TO15 MSV AIR	Analytical Method: TO-1	5				
Benzene	ND ug/m3	0.57	1.74	03/08/14 01:4	44 71-43-2	
Carbon tetrachloride	2.6 ug/m3	1.1	1.74	03/08/14 01:4	44 56-23-5	
Chlorodifluoromethane	4.3 ug/m3	0.35	1.74	03/08/14 01:4	44 75-45-6	
Chloroform	ND ug/m3	1.7	1.74	03/08/14 01:4	44 67- 6 6-3	
Dichlorodifluoromethane	4.5 ug/m3	1.8	1.74	03/08/14 01:4	44 75-71-8	
1,1-Dichloroethane	ND ug/m3	1.4	1.74	03/08/14 01:4	44 75-34-3	
1,2-Dichloroethane	ND ug/m3	0.71	1.74	03/08/14 01:4	44 107-06-2	
1,1-Dichloroethene	ND ug/m3	1.4	1.74	03/08/14 01:4	44 75-35-4	
cis-1,2-Dichloroethene	ND ug/m3	1.4	1.74	03/08/14 01:4	44 156-59-2	
trans-1,2-Dichloroethene	ND ug/m3	1.4	1.74	03/08/14 01:4	44 156-60-5	
Ethylbenzene	0.87J ug/m3	1.5	1.74	03/08/14 01:4	44 100 -41-4	
Methylene Chloride	14.3 ug/m3	6.1	1.74	03/08/14 01:4	44 75-09-2	
Methyl-tert-butyl ether	ND ug/m3	1.3	1.74	03/08/14 01:4	44 1634-04-4	
Naphthalene	9.7 ug/m3	4.6	1.74	03/08/14 01:4	44 91-20-3	
Tetrachloroethene	45.9 ug/m3	1.2	1.74	03/08/14 01:4	44 127-18-4	
Toluene	12.5 ug/m3	1.3	1.74	03/08/14 01:4	44 108-88-3	
1,2,4-Trichlorobenzene	ND ug/m3	6.6	1.74	03/08/14 01:4	44 120-82-1	
1,1,1-Trichloroethane	143 ug/m3	1.9	1.74	03/08/14 01:4	44 71-55-6	
1,1,2-Trichloroethane	ND ug/m3	0.96	1.74	03/08/14 01:4	44 79-00-5	
Trichloroethene	79.2 ug/m3	0.96	1.74	03/08/14 01:4	44 79-01-6	
1,2,3-Trimethylbenzene	2.9 ug/m3	0.35	1.74	03/08/14 01:4	44 526-73-8	
1,2,4-Trimethylbenzene	3.4 ug/m3	1.7	1.74	03/08/14 01:4		
1,3,5-Trimethylbenzene	ND ug/m3	1.7	1.74	03/08/14 01:4	44 108-67-8	
Vinyl chloride	ND ug/m3	0.45	1.74	03/08/14 01:4	44 75-01-4	
m&p-Xylene	2.7J ug/m3	3.1	1.74	03/08/14 01:4	44 179601-23-1	
o-Xylene	1.8 ug/m3	1.5	1.74	03/08/14 01:4		

Project:

1121C06221 REV

Pace Project No.:

Date: 04/17/2014 12:19 PM

Sample: SV-102-C-16	Lab ID: 10258805009	Collected: 02/24/1	14 11:49	Received: 02/26/14 08:12	Matrix: Air	
Parameters	Results Units	Report Limit	DF	Prepared Analyzed	CAS No.	Qua
TO15 MSV AIR	Analytical Method: TO-15					
Benzene	7.5 ug/m3	0.55	1.68	03/07/14 21	:15 71-43-2	
Carbon tetrachloride	3.1 ug/m3	1.1	1.68	03/07/14 21	:15 56-23-5	
Chlorodifluoromethane	3.3 ug/m3	0.34	1.68	03/07/14 21	:15 75-45-6	
Chloroform	71.9 ug/m3	1.7	1.68	03/07/14 21	:15 67-66-3	
Dichlorodifluoromethane	5.8 ug/m3	1.7	1.68	03/07/14 21	:15 7 5- 71 -8	
1,1-Dichloroethane	6760 ug/m3	220	268.8	03/09/14 19	:29 75-34-3	A3
1,2-Dichloroethane	ND ug/m3	0.69	1.68	03/07/14 21	:15 107-06-2	
1,1-Dichloroethene	2530 ug/m3	218	268.8	03/09/14 19	:29 75-35-4	A3
cis-1,2-Dichloroethene	67.4 ug/m3	1.4	1.68	03/07/14 21	:15 156-59-2	
trans-1,2-Dichloroethene	3.9 ug/m3	1.4	1.68	03/07/14 21	:15 156-60-5	L1
Ethylbenzene	2140 ug/m3	237	268.8	03/09/14 19	:29 100-41-4	A3
Methylene Chloride	46.3 ug/m3	5.9	1.68	03/07/14 21	:15 75-09-2	
Methyl-tert-butyl ether	ND ug/m3	1.2	1.68	03/07/14 21	:15 1634-04-4	
Naphthalene	66.0 ug/m3	4.5	1.68	03/07/14 21	:15 91-20-3	
Tetrachloroethene	2.2 ug/m3	1.2	1.68	03/07/14 21	:15 127-18-4	
Toluene	128 ug/m3	1.3	1.68	03/07/14 21	:15 108-88-3	
1,2,4-Trichlorobenzene	ND ug/m3	6.3	1.68	03/07/14 21	:15 120-82-1	
1,1,1-Trichloroethane	2070 ug/m3	298	268.8	03/09/14 19	:29 71-55-6	A3
1,1,2-Trichloroethane	ND ug/m3	0.92	1.68	03/07/14 21	:15 79-00-5	
Trichloroethene	2740 ug/m3	148	268.8	03/09/14 19	:29 79-01-6	A3
1,2,3-Trimethylbenzene	90.4 ug/m3	0.34	1.68	03/07/14 21	:15 526-73-8	
1,2,4-Trimethylbenzene	89.1 ug/m3	1.7	1.68	03/07/14 21	:15 95-63-6	
1,3,5-Trimethylbenzene	39.7 ug/m3	1.7	1.68	03/07/14 21	:15 108-67-8	
Vinyl chloride	ND ug/m3	0.44	1.68	03/07/14 21	:15 75-01-4	
m&p-Xylene	11500 ug/m3	473	268.8	03/09/14 19	:29 179601-23-1	A3
o-Xylene	4040 ug/m3	237	268.8	03/09/14 19	:29 95-47-6	A3

Project:

1121C06221 REV

Pace Project No.:

Date: 04/17/2014 12:19 PM

Sample: SV-105-Z-16	Lab ID: 10258805029	Collected: 02/24/14	12:29	Received: 02/26/14 08:12	Matrix: Air	
Parameters	Results Units	Report Limit	DF	Prepared Analyzed	CAS No.	Qual
TO15 MSV AIR	Analytical Method: TO-15					
Benzene	1.5 ug/m3	0.55	1.68	03/08/14 04:20	71-43-2	
Carbon tetrachloride	ND ug/m3	1.1	1.68	03/08/14 04:20	56-23-5	
Chlorodifluoromethane	9.0 ug/m3	0.34	1.68	03/08/14 04:20	75-45-6	
Chloroform	2.5 ug/m3	1.7	1.68	03/08/14 04:20	67-66-3	
Dichlorodifluoromethane	ND ug/m3	1.7	1.68	03/08/14 04:20	75-71-8	
1,1-Dichloroethane	ND ug/m3	1.4	1.68	03/08/14 04:20	75-34-3	
1,2-Dichloroethane	ND ug/m3	0.69	1.68	03/08/14 04:20	107-06-2	
1,1-Dichloroethene	ND ug/m3	1.4	1.68	03/08/14 04:20	75-35-4	
cis-1,2-Dichloroethene	36.3 ug/m3	1.4	1.68	03/08/14 04:20	156-59-2	
trans-1,2-Dichloroethene	5.5 ug/m3	1.4	1.68	03/08/14 04:20	156-60-5	L1
Ethylbenzene	5.3 ug/m3	1.5	1.68	03/08/14 04:20	100-41-4	
Methylene Chloride	621 ug/m3	5.9	1.68	03/08/14 04:20	75-09-2	C0,E
Methyl-tert-butyl ether	ND ug/m3	1.2	1.68	03/08/14 04:20	1634-04-4	
Naphthalene	4.9 ug/m3	4.5	1.68	03/08/14 04:20	91-20-3	
Tetrachloroethene	ND ug/m3	1.2	1.68	03/08/14 04:20	127-18-4	
Toluene	59.6 ug/m3	1.3	1.68	03/08/14 04:20	108-88-3	
1,2,4-Trichlorobenzene	ND ug/m3	6.3	1.68	03/08/14 04:20	120-82-1	
1,1,1-Trichloroethane	ND ug/m3	1.9	1.68	03/08/14 04:20	71-55-6	
1,1,2-Trichloroethane	ND ug/m3	0.92	1.68	03/08/14 04:20	79-00-5	
Trichloroethene	129 ug/m3	0.92	1.68	03/08/14 04:20	79-01-6	
1,2,3-Trimethylbenzene	1.8 ug/m3	0.34	1.68	03/08/14 04:20	526-73-8	
1,2,4-Trimethylbenzene	2.7 ug/m3	1.7	1.68	03/08/14 04:20	95-63-6	
1,3,5-Trimethylbenzene	ND ug/m3	1.7	1.68	03/08/14 04:20	108-67-8	
Vinyl chloride	9.4 ug/m3	0.44	1.68	03/08/14 04:20	75-01-4	
m&p-Xylene	22.7 ug/m3	3.0	1.68	03/08/14 04:20	179601-23-1	
o-Xylene	4.8 ug/m3	1.5	1.68	03/08/14 04:20	95-47-6	

Project:

1121C06221 REV

Pace Project No.:

Sample: SV-113-C-16	Lab ID: 10258805027	Collected: 02/24/14	11:43	Received: 02/26/14 08:12	Matrix: Air	
Parameters	Results Units	Report Limit	DF	Prepared Analyzed	CAS No.	Qual
TO15 MSV AIR	Analytical Method: TO-15					
Benzene	2.4 ug/m3	0.55 1	.68	03/07/14 00	07 71-43-2	
Carbon tetrachloride	1.1 ug/m3	1.1 1	.68	03/07/14 00	07 56-23-5	
Chlorodifluoromethane	10.7 ug/m3	0.34 1	.68	03/07/14 00	07 75-45-6	
Chloroform	ND ug/m3	1.7 1	.68	03/07/14 00	07 67-66-3	
Dichlorodifluoromethane	3.8 ug/m3	1.7 1	.68	03/07/14 00	07 75-71-8	
1,1-Dichloroethane	ND ug/m3	1,4 1	.68	03/07/14 00	07 75-34-3	
1,2-Dichloroethane	ND ug/m3	0.69 1	.68	03/07/14 00	07 107-06-2	
1,1-Dichloroethene	ND ug/m3	1.4 1	.68	03/07/14 00	07 75-35-4	
cis-1,2-Dichloroethene	0.73J ug/m3	1.4 1	1.68	03/07/14 00	07 156-59-2	
trans-1,2-Dichloroethene	ND ug/m3	1.4 1	.68	03/07/14 00	07 156-60-5	
Ethylbenzene	ND ug/m3	1.5 1	1.68	03/07/14 00	07 100-41-4	
Methylene Chloride	557 ug/m3	5.9 1	1.68	03/07/14 00	07 75-09-2	Ė
Methyl-tert-butyl ether	ND ug/m3	1.2 1	1.68	03/07/14 00	07 1634-04-4	
Naphthalene	ND ug/m3	4.5 1	1.68	03/07/14 00:	07 91-20-3	
Tetrachloroethene	ND ug/m3	1.2 1	1.68	03/07/14 00	07 127-18-4	
Toluene	6.1 ug/m3	1.3 1	1.68	03/07/14 00	07 108-88-3	
1,2,4-Trichlorobenzene	ND ug/m3	6.3 1	1.68	03/07/14 00	07 120-82-1	
1,1,1-Trichloroethane	ND ug/m3	1.9 1	1.68	03/07/14 00	07 71-55-6	
1,1,2-Trichloroethane	ND ug/m3	0.92 1	1.68	03/07/14 00	07 79-00-5	
Trichloroethene	7.0 ug/m3	0.92 1	.68	03/07/14 00	07 79-01-6	
1,2,3-Trimethylbenzene	ND ug/m3	0.34 1	.68	03/07/14 00	07 526-73-8	
1,2,4-Trimethylbenzene	ND ug/m3	1.7 1	.68	03/07/14 00	07 95-63-6	
1,3,5-Trimethylbenzene	ND ug/m3	1.7 1	.68	03/07/14 00:	07 108-67-8	
Vinyl chloride	ND ug/m3	0.44 1	.68	03/07/14 00:	07 75-01-4	
m&p-Xylene	2.4J ug/m3	3.0 1	.68		07 179601-23-1	
o-Xylene	0.83J ug/m3	1.5 1	1.68	03/07/14 00:		

Project:

1121C06221 REV

Pace Project No.:

Sample: SV-121-B-16	Lab ID: 10258805033	Collected: 02/24/1	4 12:39	Received: 02/26/14 08:12	Matrix: Air	
Parameters	Results Units	Report Limit	DF	Prepared Analyzed	CAS No.	Qual
TO15 MSV AIR	Analytical Method: TO-15					
Benzene	ND ug/m3	0.58	1.8	03/07/14 02:0	4 71-43-2	
Carbon tetrachloride	4.4 ug/m3	1.2	1.8	03/07/14 02:0	4 56-23-5	
Chlorodifluoromethane	1.5 ug/m3	0.36	1.8	03/07/14 02:0	4 75-45-6	
Chloroform	26.4 ug/m3	1.8	1.8	03/07/14 02:0	4 67-66-3	
Dichlorodifluoromethane	2.3 ug/m3	1.8	1.8	03/07/14 02:0	4 75-71-8	
1,1-Dichloroethane	1.5J ug/m3	1.5	1.8	03/07/14 02:0	4 75-34-3	
1,2-Dichloroethane	ND ug/m3	0.74	1.8	03/07/14 02:0	4 107-06-2	
1,1-Dichloroethene	ND ug/m3	1.5	1.8	03/07/14 02:0	4 75-35-4	
cis-1,2-Dichloroethene	ND ug/m3	1.5	1.8	03/07/14 02:0	4 156-59-2	
rans-1,2-Dichloroethene	ND ug/m3	1.5	1.8	03/07/14 02:0	4 156-60-5	
Ethylbenzene	1.5J ug/m3	1.6	1.8	03/07/14 02:0	4 100-41-4	
Methylene Chloride	24.6 ug/m3	6.4	1.8	03/07/14 02:0	4 75-09-2	
Methyl-tert-butyl ether	ND ug/m3	1.3	1.8	03/07/14 02:0	4 1634-04-4	
Naphthalene	85.8 ug/m3	4.8	1.8	03/07/14 02:0	4 91-20-3	
Tetrachloroethene	2.4 ug/m3	1.2	1.8	03/07/14 02:0	4 127-18-4	
Toluene	6.7 ug/m3	1.4	1.8	03/07/14 02:0	4 108-88-3	
1,2,4-Trichlorobenzene	ND ug/m3	6.8	1.8	03/07/14 02:0	4 120-82-1	
1,1,1-Trichloroethane	1.5J ug/m3	2.0	1.8	03/07/14 02:0	4 71-55-6	
1,1,2-Trichloroethane	ND ug/m3	0.99	1.8	03/07/14 02:0	4 79-00-5	
Trichloroethene	203 ug/m3	0.99	1.8	03/07/14 02:0	4 79-01-6	
1,2,3-Trimethylbenzene	13.2 ug/m3	0.36	1.8	03/07/14 02:0	4 526-73-8	
1,2,4-Trimethylbenzene	32.0 ug/m3	1.8	1.8	03/07/14 02:0	4 95-63-6	
1,3,5-Trimethylbenzene	ND ug/m3	1.8	1.8	03/07/14 02:0	4 108-67-8	
Vinyl chloride	ND ug/m3	0.47	1.8	03/07/14 02:0	4 75-01-4	
n&p-Xylene	7.2 ug/m3	3.2	1.8	03/07/14 02:0	4 179601-23-1	
o-Xylene	5.0 ug/m3	1.6	1.8	03/07/14 02:0		

Project:

1121C06221 REV

Pace Project No.:

Sample: SV-123-Z-16	Lab ID: 10258805031	Collected: 02/24/1	4 12:32	Received: 02/26/14 08:12	Matrix: Air	
Parameters	Results Units	Report Limit	DF	Prepared Analyzed	CAS No.	Qual
TO15 MSV AIR	Analytical Method: TO-15	5				
Benzene	ND ug/m3	0.55	1.68	03/07/14 21:3	31 71-43-2	
Carbon tetrachloride	ND ug/m3	1.1	1.68	03/07/14 21:3	31 56-23-5	
Chlorodifluoromethane	ND ug/m3	5.9	1.68	03/07/14 21:3	31 75-45-6	
Chloroform	ND ug/m3	1.7	1.68	03/07/14 21:3	31 67 - 66-3	
Dichlorodifluoromethane	2.6 ug/m3	1.7	1.68	03/07/14 21:3	31 75-71-8	
1,1-Dichloroethane	ND ug/m3	1.4	1.68	03/07/14 21:3	31 75-34-3	
1,2-Dichloroethane	ND ug/m3	0.69	1.68	03/07/14 21:3	31 107-06-2	
1,1-Dichloroethene	ND ug/m3	1.4	1.68	03/07/14 21:3	31 75-35-4	
cis-1,2-Dichloroethene	0.70J ug/m3	1.4	1.68	03/07/14 21:3	31 156-59-2	
trans-1,2-Dichloroethene	ND ug/m3	1.4	1.68	03/07/14 21:3	156-60-5	
Ethylbenzene	3.9 ug/m3	1.5	1.68	03/07/14 21:3	31 100-41-4	
Methylene Chloride	8.2 ug/m3	5.9	1.68	03/07/14 21:3	31 75-09-2	
Methyl-tert-butyl ether	ND ug/m3	1.2	1.68	03/07/14 21:3	1634-04-4	
Naphthalene	10.9 ug/m3	1.8	1.68	03/07/14 21:3	31 91-20-3	
Tetrachloroethene	ND ug/m3	1.2	1.68	03/07/14 21:3	31 127-18 -4	
Toluene	50.9 ug/m3	1.3	1.68	03/07/14 21:3	31 108-88-3	
1,2,4-Trichlorobenzene	ND ug/m3	2.5	1.68	03/07/14 21:3	31 120-82-1	
1,1,1-Trichloroethane	ND ug/m3	1.9	1.68	03/07/14 21:3	31 71-55-6	
1,1,2-Trichloroethane	ND ug/m3	0.92	1.68	03/07/14 21:3	31 79-00-5	
Trichloroethene	37.5 ug/m3	0.92	1.68	03/07/14 21:3	31 79-01 - 6	
1,2,3-Trimethylbenzene	3.7 ug/m3	0.34	1.68	03/07/14 21:3	31 526-73-8	
1,2,4-Trimethylbenzene	1.7 ug/m3	1.7	1.68	03/07/14 21:3	31 95-63-6	
1,3,5-Trimethylbenzene	2.9 ug/m3	. 1.7	1.68	03/07/14 21:3	31 108-67-8	
Vinyl chloride	ND ug/m3	0.44	1.68	03/07/14 21:3	31 75-01-4	
m&p-Xylene	19.9 ug/m3	3.0	1.68	03/07/14 21:3	179601-23-1	
o-Xylene	4.3 ug/m3	1.5	1.68	03/07/14 21:3	31 95-47-6	

Project:

1121C06221 REV

Pace Project No.: 10258805

Sample: SV-126-C-16	Lab ID: 10258805017	Collected: 02/24/14 1	12:06	Received: 02/26/14 08:12 Matrix: Air
Parameters	Results Units	Report Limit [OF	Prepared Analyzed CAS No. Qua
TO15 MSV AIR	Analytical Method: TO-15			
Benzene	88.4 ug/m3	0.55 1	.68	03/08/14 04:49 71-43-2
Carbon tetrachloride	ND ug/m3	1.1 1	.68	03/08/14 04:49 56-23-5
Chlorodifluoromethane	ND ug/m3	0.34 1	.68	03/08/14 04:49 75-45-6
Chloroform	0.84J ug/m3	1.7 1	.68	03/08/14 04:49 67-66-3
Dichlorodifluoromethane	1.5J ug/m3	1.7 1	.68	03/08/14 04:49 75-71-8
1,1-Dichloroethane	ND ug/m3	1.4 1	.68	03/08/14 04:49 75-34-3
1,2-Dichloroethane	ND ug/m3	0.69 1	.68	03/08/14 04:49 107-06-2
1,1-Dichloroethene	199 ug/m3	1.4 1	.68	03/08/14 04:49 75-35-4
cis-1,2-Dichloroethene	205 ug/m3	1.4 1	.68	03/08/14 04:49 156-59-2
rans-1,2-Dichloroethene	ND ug/m3	1.4 1	.68	03/08/14 04:49 156-60-5
Ethylbenzene	3.0 ug/m3	1.5 1	.68	03/08/14 04:49 100-41-4
Methylene Chloride	9.2 ug/m3	5.9 1	.68	03/08/14 04:49 75-09-2
Methyl-tert-butyl ether	ND ug/m3	1.2 1	.68	03/08/14 04:49 1634-04-4
Naphthalene	70.6 ug/m3	4.5 1	.68	03/08/14 04:49 91-20-3
Tetrachloroethene	ND ug/m3	1.2 1	.68	03/08/14 04:49 127-18-4
Toluene	14.7 ug/m3	1.3 1	.68	03/08/14 04:49 108-88-3
1,2,4-Trichlorobenzene	ND ug/m3	6.3 1	.68	03/08/14 04:49 120-82-1
1,1,1-Trichloroethane	ND ug/m3	1.9 1	.68	03/08/14 04:49 71-55-6
1,1,2-Trichloroethane	ND ug/m3	0.92 1	.68	03/08/14 04:49 79-00-5
Trichloroethene	177 ug/m3	0.92 1	.68	03/08/14 04:49 79-01-6
1,2,3-Trimethylbenzene	1.4 ug/m3	0.34 1	.68	03/08/14 04:49 526-73-8
1,2,4-Trimethylbenzene	4.3 ug/m3	1.7 1	.68	03/08/14 04:49 95-63-6
1,3,5-Trimethylbenzene	1.1J ug/m3	1.7 1	.68	03/08/14 04:49 108-67-8
Vinyl chloride	11900 ug/m3	140 53	37.6	03/09/14 19:53 75-01-4 A3
m&p-Xylene	13.4 ug/m3	3.0 1	.68	03/08/14 04:49 179601-23-1
o-Xylene	5.7 ug/m3	1.5 1	.68	03/08/14 04:49 95-47-6

Project:

1121C06221 REV

Pace Project No.:

Date: 04/17/2014 12:19 PM

Sample: SV-128-C-16	Lab ID: 10258805037	Collected: 02/24/14	12:18	Received: 02/26/14 08:12	Matrix: Air	
Parameters	Results Units	Report Limit	DF	Prepared Analyzed	CAS No.	Qual
TO15 MSV AIR	Analytical Method: TO-15					
Benzene	3.6 ug/m3	0.55	1.68	03/07/14 22:4	5 71-43-2	
Carbon tetrachloride	ND ug/m3	1.1	1.68	03/07/14 22:4	5 56-23 - 5	
Chlorodifluoromethane	6.1 ug/m3	0.34	1.68	03/07/14 22:4	5 75-45-6	
Chloroform	ND ug/m3	1.7	1.68	03/07/14 22:4	5 67-66-3	
Dichlorodifluoromethane	2.5 ug/m3	1.7	1.68	03/07/14 22:4	5 75-71-8	
1,1-Dichloroethane	ND ug/m3	1.4	1.68	03/07/14 22:4	5 75-34-3	
1,2-Dichloroethane	ND ug/m3	0.69	1.68	03/07/14 22:4	5 107-06-2	
1,1-Dichloroethene	ND ug/m3	1.4	1.68	03/07/14 22:4	5 75-35-4	
cis-1,2-Dichloroethene	6.5 ug/m3	1.4	1.68	03/07/14 22:4	5 156-59-2	
trans-1,2-Dichloroethene	ND ug/m3	1.4	1.68	03/07/14 22:4	5 156-60-5	
Ethylbenzene	2.0 ug/m3	1.5	1.68	03/07/14 22:4	5 100-41-4	
Methylene Chloride	9.6 ug/m3	5.9	1.68	03/07/14 22:4	5 75-09-2	
Methyl-tert-butyl ether	ND ug/m3	1.2	1.68	03/07/14 22:4	5 1634-04-4	
Naphthalene	92.6 ug/m3	4.5	1.68	03/07/14 22:4	5 91-20-3	
Tetrachloroethene	1.6 ug/m3	1.2	1.68	03/07/14 22:4	5 127-18-4	
Toluene	5.8 ug/m3	1.3	1.68	03/07/14 22:4	5 108-88-3	
1,2,4-Trichlorobenzene	ND ug/m3	6.3	1.68	03/07/14 22:4	5 120-82-1	
1,1,1-Trichloroethane	ND ug/m3	1.9	1.68	03/07/14 22:4	5 71-55-6	
1,1,2-Trichloroethane	ND ug/m3	0.92	1.68	03/07/14 22:4	5 79-00-5	
Trichloroethene	2.1 ug/m3	0.92	1.68	03/07/14 22:4	5 79-01-6	
1,2,3-Trimethylbenzene	1.2 ug/m3	0.34	1.68	03/07/14 22:4	5 526-73-8	
1,2,4-Trimethylbenzene	2.8 ug/m3	1.7	1.68	03/07/14 22:4	5 95-63-6	
1,3,5-Trimethylbenzene	ND ug/m3	1.7	1.68	03/07/14 22:4	5 108-67-8	
Vinyl chloride	ND ug/m3	0.44	1.68	03/07/14 22:4	5 75-01-4	
m&p-Xylene	12.1 ug/m3	3.0	1.68	03/07/14 22:4	5 179601-23-1	
o-Xylene	3.6 ug/m3	1.5	1.68	03/07/14 22:4	5 95-47-6	

Project:

1121C06221 REV

Pace Project No.:

Sample: SV-130-C-16	Lab ID: 10258805011	Collected: 02/24/1	4 11:52	Received: 02/26/14 08:12	Matrix: Air	
Parameters	Results Units	Report Limit	DF	Prepared Analyzed	CAS No. Qu	ual
TO15 MSV AIR	Analytical Method: TO-19	5				
Benzene	4.1 ug/m3	0.55	1.68	03/07/14 20:35	5 71-43-2	
Carbon tetrachloride	ND ug/m3	1.1	1.68	03/07/14 20:35	5 56-23-5	
Chlorodifluoromethane	1.7J ug/m3	5.9	1.68	03/07/14 20:35	5 75-45-6	
Chloroform	1.8 ug/m3	1.7	1.68	03/07/14 20:35	67-66-3	
Dichlorodifluoromethane	3.1 ug/m3	1.7	1.68	03/07/14 20:35	5 75-71-8	
1,1-Dichloroethane	1.3J ug/m3	1.4	1.68	03/07/14 20:35	5 75-34-3	
1,2-Dichloroethane	ND ug/m3	0.69	1.68	03/07/14 20:35	5 107-06-2	
1,1-Dichloroethene	2.9 ug/m3	1.4	1.68	03/07/14 20:35	5 75-35-4	
cis-1,2-Dichloroethene	ND ug/m3	1.4	1.68	03/07/14 20:35	5 156-59-2	
trans-1,2-Dichloroethene	ND ug/m3	1.4	1.68	03/07/14 20:35	5 156-60-5	
Ethylbenzene	2.3 ug/m3	1.5	1.68	03/07/14 20:35	5 100-41-4	
Methylene Chloride	28.2 ug/m3	5.9	1.68	03/07/14 20:35	5 75-09-2	
Methyl-tert-butyl ether	ND ug/m3	1.2	1.68	03/07/14 20:35	5 1634-04-4	
Naphthalene	ND ug/m3	1.8	1.68	03/07/14 20:35	5 91-20-3	
Tetrachloroethene	3.3 ug/m3	1.2	1.68	03/07/14 20:35	5 127-18-4	
Toluene	12.2 ug/m3	1.3	1.68	03/07/14 20:35	5 108-88-3	
1,2,4-Trichlorobenzene	ND ug/m3	2.5	1.68	03/07/14 20:35	5 120-82-1	
1,1,1-Trichloroethane	21.3 ug/m3	1.9	1.68	03/07/14 20:35	5 71 -55-6	
1,1,2-Trichloroethane	ND ug/m3	0.92	1.68	03/07/14 20:35	5 7 9-00-5	
Trichloroethene	3.4 ug/m3	0.92	1.68	03/07/14 20:35	5 7 9 -01-6	
1,2,3-Trimethylbenzene	3.4 ug/m3	0.34	1.68	03/07/14 20:35	5 526-73-8	
1,2,4-Trimethylbenzene	9.9 ug/m3	1.7	1.68	03/07/14 20:35	5 95-6 3-6	
1,3,5-Trimethylbenzene	4.4 ug/m3	1.7	1.68	03/07/14 20:35	5 108-67-8	
Vinyl chloride	ND ug/m3	0.44	1.68	03/07/14 20:35	5 75-01-4	
m&p-Xylene	9.2 ug/m3	3.0	1.68	03/07/14 20:35	5 179601-23-1	
o-Xylene	7.5 ug/m3	1.5	1.68	03/07/14 20:35	5 95-47-6	

Project:

1121C06221 REV

Pace Project No.:

Date: 04/17/2014 12:19 PM

Sample: SV-133-C-16	Lab ID: 10258805025	Collected: 02/24/1	4 11:55	Received: (02/26/14 08:12	Matrix: Air	
Parameters	Results Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
TO15 MSV AIR	Analytical Method: TO-15						
Benzene	0.77 ug/m3	0.55	1.68		03/07/14 20:4	5 71-43-2	
Carbon tetrachloride	ND ug/m3	1.1	1.68		03/07/14 20:4	5 56-23-5	
Chlorodifluoromethane	4.3 ug/m3	0.34	1.68		03/07/14 20:4	5 75-45-6	
Chloroform	6.7 ug/m3	1,7	1.68		03/07/14 20:4	5 67-66-3	
Dichlorodifluoromethane	3.2 ug/m3	1.7	1.68		03/07/14 20:4	5 75-71-8	
1,1-Dichloroethane	ND ug/m3	1.4	1.68		03/07/14 20:4	5 75-34-3	
1,2-Dichloroethane	0.92 ug/m3	0.69	1.68		03/07/14 20:4	5 107-06-2	
1,1-Dichloroethene	ND ug/m3	1.4	1.68		03/07/14 20:4	5 75-35-4	
cis-1,2-Dichloroethene	8.4 ug/m3	1.4	1.68		03/07/14 20:4	5 156-59-2	
trans-1,2-Dichloroethene	3.6 ug/m3	1.4	1.68		03/07/14 20:4	5 156-60-5	L1
Ethylbenzene	ND ug/m3	1.5	1.68		03/07/14 20:4	5 100-41-4	
Methylene Chloride	20.2 ug/m3	5.9	1.68		03/07/14 20:4	5 75-09-2	
Methyl-tert-butyl ether	ND ug/m3	1.2	1.68		03/07/14 20:4	5 1634-04-4	
Naphthalene	4.7 ug/m3	4.5	1.68		03/07/14 20:4	5 91-20-3	
Tetrachloroethene	169 ug/m3	1.2	1.68	*	03/07/14 20:4	5 127-18 -4	
Toluene	3.6 ug/m3	1.3	1.68		03/07/14 20:4	5 108-88-3	
1,2,4-Trichlorobenzene	ND ug/m3	6.3	1.68		03/07/14 20:4	5 120-82-1	
1,1,1-Trichloroethane	ND ug/m3	1.9	1.68		03/07/14 20:4	5 71-55 -6	
1,1,2-Trichloroethane	ND ug/m3	0.92	1.68		03/07/14 20:4	5 79-00-5	
Trichloroethene	10700 ug/m3	73.9	134.4		03/09/14 18:1	5 79-01-6	A3
1,2,3-Trimethylbenzene	ND ug/m3	0.34	1.68		03/07/14 20:4	5 526-73-8	
1,2,4-Trimethylbenzene	ND ug/m3	1.7	1.68		03/07/14 20:4	5 95-63 -6	
1,3,5-Trimethylbenzene	ND ug/m3	1.7	1.68		03/07/14 20:4	5 108-67-8	
Vinyl chloride	ND ug/m3	0.44	1.68		03/07/14 20:4	5 75-01-4	
m&p-Xylene	1.8J ug/m3	3.0	1.68		03/07/14 20:4	5 179601-23-1	
o-Xylene	0.81J ug/m3	1.5	1.68		03/07/14 20:4	5 95-47-6	

Project:

1121C06221 REV

Pace Project No.: 10258805

Date: 04/17/2014 12:19 PM

Sample: SV-135-C-16	Lab ID: 10258805003	Collected: 02/24/14 1	1:35 R	eceived: 02/26/14 08:12	Matrix: Air	
Parameters	Results Units	Report Limit D	F	Prepared Analyzed	CAS No.	Qual
TO15 MSV AIR	Analytical Method: TO-15					
Benzene	0.33J ug/m3	0.55 1.0	68	03/07/14 01:	06 71-43-2	
Carbon tetrachloride	ND ug/m3	1.1 1.0	68	03/07/14 01:	06 56-23-5	
Chlorodifluoromethane	2.1 ug/m3	0.34 1.0	68	03/07/14 01:	06 75 -45- 6	
Chloroform	ND ug/m3	1.7 1.9	68	03/07/14 01:	06 67-66-3	
Dichlorodifluoromethane	2.1 ug/m3	1.7 1.0	68	03/07/14 01:	06 75-71-8	
1,1-Dichloroethane	ND ug/m3	1.4 1.9	68	03/07/14 01:	06 75-34-3	
1,2-Dichloroethane	ND ug/m3	0.69 1.	68	03/07/14 01:	06 107-06-2	
1,1-Dichloroethene	ND ug/m3	1.4 1.9	68	03/07/14 01:	06 75-35-4	
cis-1,2-Dichloroethene	ND ug/m3	1.4 1.9	68	03/07/14 01:	06 156-59-2	
trans-1,2-Dichloroethene	ND ug/m3	1.4 1.	68	03/07/14 01:	06 156-60-5	
Ethylbenzene	4.2 ug/m3	1.5 1.0	68	03/07/14 01:	06 100-41-4	
Methylene Chloride	2.1J ug/m3	5.9 1.	68	03/07/14 01:		
Methyl-tert-butyl ether	ND ug/m3	1.2 1.0	68	03/07/14 01:	06 1634-04-4	
Naphthalene	3.8J ug/m3	4.5 1 .0	68	03/07/14 01:	06 91-20-3	
Tetrachloroethene	ND ug/m3	1.2 1.9	68	03/07/14 01:	06 127-18-4	
Toluene	ND ug/m3	1.3 1.	68	03/07/14 01:	06 108-88-3	
1,2,4-Trichlorobenzene	ND ug/m3	6.3 1.	68	03/07/14 01:	06 120-82-1	
1,1,1-Trichloroethane	ND ug/m3	1.9 1.	68	03/07/14 01:	06 71-55-6	
1,1,2-Trichloroethane	ND ug/m3	0.92 1.	68	03/07/14 01:	06 79-00-5	
Trichloroethene	5.6 ug/m3	0.92 1.	68	03/07/14 01:	06 79-01-6	
1,2,3-Trimethylbenzene	ND ug/m3	0.34 1.	68		06 526-73-8	
1,2,4-Trimethylbenzene	ND ug/m3	1.7 1.	68	03/07/14 01:	06 95-63-6	
1,3,5-Trimethylbenzene	ND ug/m3	1.7 1.	68	03/07/14 01:	06 108-67-8	
Vinyl chloride	ND ug/m3	0.44 1.	68	03/07/14 01:	06 75-01-4	
m&p-Xylene	18.1 ug/m3	3.0 1.	68	03/07/14 01:	06 179601-23-1	
o-Xylene	4.3 ug/m3	1.5 1.	68	03/07/14 01:	06 95-47-6	

Project:

1121C06221 REV

Pace Project No.: 10258805

Date: 04/17/2014 12:19 PM

Sample: SV-141-C-16	Lab ID: 10258805015	Collected: 02/24/1	4 12:02	Received: 02/26/14 08:12 Mate	rix: Air
Parameters	Results Units	Report Limit	DF	Prepared Analyzed	CAS No. Qua
TO15 MSV AIR	Analytical Method: TO-15				
Benzene	0.88 ug/m3	0.66	2.02	03/07/14 04:30 7	1-43-2
Carbon tetrachloride	ND ug/m3	1.3	2.02	03/07/14 04:30 5	6-23-5
Chlorodifluoromethane	2.6 ug/m3	0.40	2.02	03/07/14 04:30 7	5-45-6
Chloroform	ND ug/m3	2.0	2.02	03/07/14 04:30 6	7 - 66-3
Dichlorodifluoromethane	2.3 ug/m3	2.0	2.02	03/07/14 04:30 7	5-71-8
1,1-Dichloroethane	ND ug/m3	1.7	2.02	03/07/14 04:30 7	5-34-3
1,2-Dichloroethane	ND ug/m3	0.83	2.02	03/07/14 04:30 1	07-06-2
1,1-Dichloroethene	1.7 ug/m3	1.6	2.02	03/07/14 04:30 7:	5-35 -4
cis-1,2-Dichloroethene	2.2 ug/m3	1.6	2.02	03/07/14 04:30 1	56-59 -2
trans-1,2-Dichloroethene	ND ug/m3	1.6	2.02	03/07/14 04:30 1:	56-60-5
Ethylbenzene	2.2 ug/m3	1.8	2.02	03/07/14 04:30 1	00-41-4
Methylene Chloride	39.1 ug/m3	7.1	2.02	03/07/14 04:30 7	5-09-2
Methyl-tert-butyl ether	ND ug/m3	1.5	2.02	03/07/14 04:30 1	634-04-4
Naphthalene	4.1J ug/m3	5.4	2.02	03/07/14 04:30 9	1-20-3
Tetrachloroethene	ND ug/m3	1.4	2.02	03/07/14 04:30 1:	27-18-4
Toluene	3.7 ug/m3	1.6	2.02	03/07/14 04:30 1	08-88-3
1,2,4-Trichlorobenzene	ND ug/m3	7.6	2.02	03/07/14 04:30 1:	20-82-1
1,1,1-Trichloroethane	ND ug/m3	2.2	2.02	03/07/14 04:30 7	1-55-6
1,1,2-Trichloroethane	ND ug/m3	1.1	2.02	03/07/14 04:30 7	9-00-5
Trichloroethene	25.2 ug/m3	1.1	2.02	03/07/14 04:30 7	9-01 - 6
1,2,3-Trimethylbenzene	ND ug/m3	0.40	2.02	03/07/14 04:30 5	26-73-8
1,2,4-Trimethylbenzene	ND ug/m3	2.0	2.02	03/07/14 04:30 9	5-63-6
1,3,5-Trimethylbenzene	ND ug/m3	2.0	2.02	03/07/14 04:30 1	08 - 67-8
Vinyl chloride	ND ug/m3	0.53	2.02	03/07/14 04:30 7	5-01-4
m&p-Xylene	11.6 ug/m3	3.6	2.02	03/07/14 04:30 1	79601-23-1
o-Xylene	3.7 ug/m3	1.8	2.02	03/07/14 04:30 9	

Project:

1121C06221 REV

Pace Project No.: 10258805

Sample: SV-142-C-16	Lab ID: 10258805007	Collected: 02/24/14	4 11:40	Received: 02	/26/14 08:12 I	Matrix: Air	
Parameters	Results Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
TO15 MSV AIR	Analytical Method: TO-15						
Benzene	ND ug/m3	0.55	1.68		03/06/14 20:41	71-43-2	
Carbon tetrachloride	ND ug/m3	1.1	1.68		03/06/14 20:41	56-23-5	
Chlorodifluoromethane	1.4 ug/m3	0.34	1.68		03/06/14 20:41	75 -4 5-6	
Chloroform	15.0 ug/m3	1.7	1.68		03/06/14 20:41	67-66-3	
Dichlorodifluoromethane	2.2 ug/m3	1.7	1.68		03/06/14 20:41	75-71-8	
1,1-Dichloroethane	ND ug/m3	1.4	1.68		03/06/14 20:41	75-34-3	
1,2-Dichloroethane	ND ug/m3	0.69	1.68		03/06/14 20:41	107-06-2	
1,1-Dichloroethene	ND ug/m3	1.4	1.68		03/06/14 20:41	75-35-4	
cis-1,2-Dichloroethene	ND ug/m3	1.4	1.68		03/06/14 20:41	156-59-2	
trans-1,2-Dichloroethene	ND ug/m3	1.4	1.68		03/06/14 20:41	156-60-5	
Ethylbenzene	ND ug/m3	1.5	1.68		03/06/14 20:41	100-41-4	
Methylene Chloride	7.5 ug/m3	5.9	1.68		03/06/14 20:41	75-09-2	
Methyl-tert-butyl ether	ND ug/m3	1.2	1.68		03/06/14 20:41	1634-04-4	
Naphthalene	157 ug/m3	4.5	1.68		03/06/14 20:41	91-20-3	
Tetrachloroethene	ND ug/m3	1.2	1.68		03/06/14 20:41	127-18-4	
Toluene	ND ug/m3	1.3	1.68		03/06/14 20:41	108-88-3	
1,2,4-Trichlorobenzene	ND ug/m3	6.3	1.68		03/06/14 20:41	120-82-1	
1,1,1-Trichloroethane	ND ug/m3	1.9	1.68		03/06/14 20:41	71-55-6	
1,1,2-Trichloroethane	ND ug/m3	0.92	1.68		03/06/14 20:41	79-00-5	
Trichloroethene	6.8 ug/m3	0.92	1.68		03/06/14 20:41	79-01-6	
1,2,3-Trimethylbenzene	0.71 ug/m3	0.34	1.68		03/06/14 20:41	526-73-8	
1,2,4-Trimethylbenzene	1.4J ug/m3	1.7	1.68		03/06/14 20:41	95-63-6	
1,3,5-Trimethylbenzene	ND ug/m3	1.7	1.68		03/06/14 20:41	108-67-8	
Vinyl chloride	ND ug/m3	0.44	1.68		03/06/14 20:41	75-01-4	
m&p-Xylene	5.1 ug/m3	3.0	1.68		03/06/14 20:41	179601-23-1	
o-Xylene	3.1 ug/m3	1.5	1.68		03/06/14 20:41	95-47-6	

Project:

1121C06221 REV

Pace Project No.: 10258805

Sample: SV-143-C-16	Lab ID: 10258805001	Collected: 02/24/1	4 16:32	Received: 02/26/14 08:12	2 Matrix: Air	
Parameters	Results Units	Report Limit	DF	Prepared Analyze	d CAS No.	Qual
TO15 MSV AIR	Analytical Method: TO-15	i				
Benzene	1.8 ug/m3	1.4	4.22	03/07/14 1	9:09 71-43-2	
Carbon tetrachloride	133 ug/m3	2.7	4.22	03/07/14 1	9:09 56-23-5	
Chlorodifluoromethane	1.7J ug/m3	14.9	4.22	03/07/14 1	9:09 75-45-6	
Chloroform	194 ug/m3	4.2	4.22	03/07/14 1	9:09 67-66-3	
Dichlorodifluoromethane	2.6J ug/m3	4.3	4.22	03/07/14 1	9:09 75-71-8	
1,1-Dichloroethane	1.8J ug/m3	3.5	4.22	03/07/14 1	9:09 75-34-3	
1,2-Dichloroethane	ND ug/m3	1.7	4.22	03/07/14 1	9:09 107-06-2	
1,1-Dichloroethene	2.1J ug/m3	3.4	4.22	03/07/14 1	9:09 75-35-4	
cis-1,2-Dichloroethene	5.7 ug/m3	3.4	4.22	03/07/14 1	9:09 156-59-2	
trans-1,2-Dichloroethene	ND ug/m3	3.4	4.22	03/07/14 1	9:09 156-60-5	
Ethylbenzene	ND ug/m3	3.7	4.22	03/07/14 1	9:09 100-41-4	
Methylene Chloride	30.1 ug/m3	14.9	4.22	03/07/14 1	9:09 75-09 - 2	
Methyl-tert-butyl ether	ND ug/m3	3.1	4.22	03/07/14 1	9:09 1634-04-4	
Naphthalene	19.3 ug/m3	4.5	4.22	03/07/14 1	9:09 91-20-3	
Tetrachloroethene	15.0 ug/m3	2.9	4.22	03/07/14 1	9:09 127-18-4	
Toluene	13.6 ug/m3	3.2	4.22	03/07/14 1	9:09 108-88-3	
1,2,4-Trichlorobenzene	ND ug/m3	6.4	4.22	03/07/14 1	9:09 120-82-1	
1,1,1-Trichloroethane	ND ug/m3	4.7	4.22	03/07/14 1	9:09 71-55-6	
1,1,2-Trichloroethane	ND ug/m3	2.3	4.22	03/07/14 1	9:09 79-00-5	
Trichloroethene	33.1 ug/m3	2.3	4.22	03/07/14 1	9:09 79-01-6	
1,2,3-Trimethylbenzene	ND ug/m3	0.84	4.22	03/07/14 1	9:09 526-73-8	
1,2,4-Trimethylbenzene	ND ug/m3	4.2	4.22	03/07/14 1	9:09 95-63-6	
1,3,5-Trimethylbenzene	ND ug/m3	4.2	4.22	03/07/14 1	9:09 108-67-8	
Vinyl chloride	ND ug/m3	1.1	4.22		9:09 75-01-4	
m&p-Xylene	3.3J ug/m3	7.4	4.22	03/07/14 1	9:09 179601-23-1	
o-Xylene	ND ug/m3	3.7	4.22		9:09 95-47-6	

Project:

1121C06221 REV

Pace Project No.: 10258805

Date: 04/17/2014 12:19 PM

Sample: SV-DUP1-C-16	Lab ID: 10258805044	Collected: 02/24/14	1 00:00	Received: 02/26/14 08:12	Matrix: Air	
Parameters	Results Units	Report Limit	DF	Prepared Analyzed	CAS No.	Qua
TO15 MSV AIR	Analytical Method: TO-15					
Benzene	0.87 ug/m3	0.55	1.68	03/08/14 00:4	2 71-43-2	
Carbon tetrachloride	ND ug/m3	1.1	1.68	03/08/14 00:4	2 56-23-5	
Chlorodifluoromethane	4.4 ug/m3	0.34	1.68	03/08/14 00:4	2 75 -45-6	
Chloroform	6.2 ug/m3	1.7	1.68	03/08/14 00:4	2 67-66-3	
Dichlorodifluoromethane	3.0 ug/m3	1.7	1.68	03/08/14 00:4	2 75-71-8	
1,1-Dichloroethane	ND ug/m3	1.4	1.68	03/08/14 00:4	2 75-34-3	
1,2-Dichloroethane	0.82 ug/m3	0.69	1.68	03/08/14 00:4	2 107-06-2	
1,1-Dichloroethene	ND ug/m3	1.4	1.68	03/08/14 00:4	2 75-35-4	
cis-1,2-Dichloroethene	8.7 ug/m3	1.4	1.68	03/08/14 00:4	2 156-59-2	
trans-1,2-Dichloroethene	3.5 ug/m3	1.4	1.68	03/08/14 00:4	2 156-60-5	L1
Ethylbenzene	ND ug/m3	1.5	1.68	03/08/14 00:4	2 100-41-4	
Methylene Chloride	13.0 ug/m3	5.9	1.68	03/08/14 00:4	2 75-09-2	
Methyl-tert-butyl ether	ND ug/m3	1.2	1.68	03/08/14 00:4	2 1634-04-4	
Naphthalene	4.2J ug/m3	4.5	1.68	03/08/14 00:4	2 91-20-3	
Tetrachloroethene	159 ug/m3	1.2	1.68	03/08/14 00:4	2 127-18-4	
Toluene	5.5 ug/m3	1.3	1.68	03/08/14 00:4	2 108-88-3	
1,2,4-Trichlorobenzene	ND ug/m3	6.3	1.68	03/08/14 00:4	2 120-82-1	
1,1,1-Trichloroethane	ND ug/m3	1.9	1.68	03/08/14 00:4	2 71-55-6	
1,1,2-Trichloroethane	ND ug/m3	0.92	1.68	03/08/14 00:4	2 79-00-5	
Trichloroethene	8630 ug/m3	46.6	84.67	03/09/14 17:5	1 79-01-6	
1,2,3-Trimethylbenzene	ND ug/m3	0.34	1.68	03/08/14 00:4	2 526-73-8	
1,2,4-Trimethylbenzene	ND ug/m3	1.7	1.68	03/08/14 00:4	2 95-63-6	
1,3,5-Trimethylbenzene	ND ug/m3	1.7	1.68	03/08/14 00:4	2 108-67-8	
Vinyl chloride	ND ug/m3	0.44	1.68	03/08/14 00:4	2 75-01-4	
m&p-Xylene	2.0J ug/m3	3.0	1.68	03/08/14 00:4	2 179601-23-1	
o-Xylene	0.95J ug/m3	1.5	1.68	03/08/14 00:4		

Project:

1121C06221 REV

Pace Project No.: 10258805

Date: 04/17/2014 12:19 PM

Sample: SV-DUP2-C-16	Lab ID: 10258805045	Collected: 02/24/14	00:00	Received: 02/26/14 08:	12 Matrix: Air	
Parameters	Results Units	Report Limit	DF	Prepared Analy:	zed CAS No.	Qua
TO15 MSV AIR	Analytical Method: TO-15					
Benzene	ND ug/m3	0.55	1.68	03/06/14	23:08 71-43-2	
Carbon tetrachloride	ND ug/m3	1.1	1.68	03/06/14	23:08 56-23-5	
Chlorodifluoromethane	3.5 ug/m3	0.34	1.68	03/06/14	23:08 75-45-6	
Chloroform	1.8 ug/m3	1.7	1.68	03/06/14	23:08 67-66-3	
Dichlorodifluoromethane	2.2 ug/m3	1.7	1.68	03/06/14	23:08 75-71-8	
1,1-Dichloroethane	ND ug/m3	1.4	1.68	03/06/14	23:08 75-34-3	
1,2-Dichloroethane	ND ug/m3	0.69	1.68	03/06/14	23:08 107-06-2	
1,1-Dichloroethene	ND ug/m3	1.4	1.68	03/06/14	23:08 75-35-4	
cis-1,2-Dichloroethene	31.7 ug/m3	1.4	1.68	03/06/14	23:08 156-59-2	
trans-1,2-Dichloroethene	ND ug/m3	1.4	1.68	03/06/14	23:08 156-60-5	
Ethylbenzene	ND ug/m3	1.5	1.68	03/06/14	23:08 100-41-4	
Methylene Chloride	12.5 ug/m3	5.9	1.68	03/06/14	23:08 75-09-2	
Methyl-tert-butyl ether	ND ug/m3	1.2	1.68	03/06/14	23:08 1634-04-4	
Naphthalene	3.7J ug/m3	4.5	1.68	03/06/14	23:08 91-20-3	
Tetrachloroethene	ND ug/m3	1.2	1.68	03/06/14	23:08 127-18-4	
Toluene	1.7 ug/m3	1.3	1.68	03/06/14	23:08 108-88-3	
1,2,4-Trichlorobenzene	ND ug/m3	6.3	1.68	03/06/14	23:08 120-82-1	
1,1,1-Trichloroethane	ND ug/m3	1.9	1.68	03/06/14	23:08 71-55-6	
1,1,2-Trichloroethane	ND ug/m3	0.92	1.68	03/06/14	23:08 79-00-5	
Trichloroethene	243 ug/m3	0.92	1.68	03/06/14	23:08 79-01-6	
1,2,3-Trimethylbenzene	ND ug/m3	0.34	1.68	03/06/14	23:08 526-73-8	
1,2,4-Trimethylbenzene	ND ug/m3	1.7	1.68	03/06/14	23:08 95-63-6	
1,3,5-Trimethylbenzene	ND ug/m3	1.7	1.68	03/06/14	23:08 108-67-8	
Vinyl chloride	ND ug/m3	0.44	1.68	03/06/14	23:08 75-01-4	
m&p-Xylene	1.5J ug/m3	3.0	1.68	03/06/14	23:08 179601-23-1	
o-Xylene	ND ug/m3	1.5	1.68	03/06/14	23:08 95-47-6	

Project:

MRC SV/IAQ Study Feb 2014 REV

Pace Project No.: 10259328

Date: 04/17/2014 12:21 PM

Sample: IA-001-ER-1	Lab ID: 10259328003	Collected: 02/26/1	4 17:53	Received: 03/04/14 10:00	Matrix: Air	
Parameters	Results Units	Report Limit	DF	Prepared Analyzed	CAS No.	Qua
TO15 MSV AIR	Analytical Method: TO-1	5				
Benzene	0.83 ug/m3	0.74	2.29	03/13/14 00:	00 71-43-2	
Carbon tetrachloride	ND ug/m3	1.5	2.29	03/13/14 00:	00 56-23-5	
Chlorodifluoromethane	4.8 ug/m3	1.6	2.29	03/13/14 00:	00 75-45-6	
Chloroform	ND ug/m3	2.3	2.29	03/13/14 00:	00 67-66-3	
Dichlorodifluoromethane	2.5 ug/m3	2.3	2.29	03/13/14 00:	00 75-71-8	
1,1-Dichloroethane	ND ug/m3	1.9	2.29	03/13/14 00:	00 75-34-3	
1,2-Dichloroethane	ND ug/m3	0.94	2.29	03/13/14 00:	00 107-06-2	
1,1-Dichloroethene	ND ug/m3	1.9	2.29	03/13/14 00:	00 75-35-4	
cis-1,2-Dichloroethene	ND ug/m3	1.9	2.29	03/13/14 00:	00 156-59-2	
trans-1,2-Dichloroethene	ND ug/m3	1.9	2.29	03/13/14 00:	00 156-60-5	
Ethylbenzene	ND ug/m3	2.0	2.29	03/13/14 00:	00 100-41-4	
Methylene Chloride	20.8 ug/m3	1.6	2.29	03/13/14 00:	00 75-09-2	
Methyl-tert-butyl ether	ND ug/m3	1.7	2.29	03/13/14 00:	00 1634-04-4	
Naphthalene	ND ug/m3	2.5	2.29	03/13/14 00:	00 91-20-3	
Tetrachloroethene	ND ug/m3	1.6	2.29	03/13/14 00:	00 127-18-4	
Toluene	2.7 ug/m3	1.8	2.29	03/13/14 00	00 108-88-3	
1,2,4-Trichlorobenzene	ND ug/m3	3.5	2.29	03/13/14 00:	00 120-82-1	
1,1,1-Trichloroethane	ND ug/m3	2.5	2.29	03/13/14 00	00 71-55-6	
1,1,2-Trichloroethane	ND ug/m3	1.3	2.29	03/13/14 00	00 79-00-5	
Trichloroethene	ND ug/m3	1.3	2.29	03/13/14 00	00 79-01-6	
1,2,3-Trimethylbenzene	ND ug/m3	2.3	2.29	03/13/14 00	00 526-73-8	
1,2,4-Trimethylbenzene	ND ug/m3	2.3	2.29	03/13/14 00	00 95-63-6	
1,3,5-Trimethylbenzene	ND ug/m3	2.3	2.29	03/13/14 00	00 108-67-8	
Vinyl chloride	ND ug/m3	0.60	2.29	03/13/14 00	00 75-01-4	
m&p-Xylene	ND ug/m3	4.0	2.29	03/13/14 00	00 179601-23-1	
o-Xylene	ND ug/m3	2.0	2.29	03/13/14 00		

Project:

MRC SV/IAQ Study Feb 2014 REV

Pace Project No.:

No.: 10259328

Sample: iA-001-PB-1	Lab ID: 10259328001	Collected: 02/26/14	18:04	Received: 03/04/14 10:00	Matrix: Air	
Parameters	Results Units	Report Limit	DF	Prepared Analyzed	CAS No.	Qua
TO15 MSV AIR	Analytical Method: TO-1	5				
Benzene	0.86 ug/m3	0.55	1.68	03/13/14 00:54	71-43-2	
Carbon tetrachloride	ND ug/m3	1.1	1.68	03/13/14 00:54	56-23-5	
Chlorodifluoromethane	2.8 ug/m3	0.34	1.68	03/13/14 00:54	75-45-6	
Chloroform	ND ug/m3	1.7	1.68	03/13/14 00:54	67-66-3	
Dichlorodifluoromethane	2.2 ug/m3	1.7	1.68	03/13/14 00:54	75-71-8	
1,1-Dichloroethane	ND ug/m3	1.4	1.68	03/13/14 00:54	75-34-3	
1,2-Dichloroethane	ND ug/m3	0.69	1.68	03/13/14 00:54	107-06-2	
1,1-Dichloroethene	ND ug/m3	1.4	1.68	03/13/14 00:54	75-35-4	
cis-1,2-Dichloroethene	ND ug/m3	1.4	1.68	03/13/14 00:54		
trans-1,2-Dichloroethene	ND ug/m3	1.4	1.68	03/13/14 00:54	156-60-5	
Ethylbenzene	1.6 ug/m3	1.5	1.68	03/13/14 00:54		
Methylene Chloride	9.6 ug/m3	1.2	1.68	03/13/14 00:54		
Methyl-tert-butyl ether	ND ug/m3	1.2	1.68	03/13/14 00:54		
Naphthalene	1.2J ug/m3	1.8	1.68	03/13/14 00:54		
Tetrachloroethene	ND ug/m3	1.2	1.68	03/13/14 00:54		
Toluene	1.4 ug/m3	1.3	1.68	03/13/14 00:54		
1,2,4-Trichlorobenzene	ND ug/m3	2.5	1.68	03/13/14 00:54		
1,1,1-Trichloroethane	ND ug/m3	1.9	1.68	03/13/14 00:54		
1,1,2-Trichloroethane	ND ug/m3	0.92	1.68	03/13/14 00:54		
Trichloroethene	ND ug/m3	0.92	1.68	03/13/14 00:54		
1,2,3-Trimethylbenzene	0.97 ug/m3		1.68	03/13/14 00:54		
1,2,4-Trimethylbenzene	1.7 ug/m3		1.68	03/13/14 00:54		
1,3,5-Trimethylbenzene	1.5J ug/m3		1.68	03/13/14 00:54		
Vinyl chloride	ND ug/m3		1.68	03/13/14 00:54		
m&p-Xylene	2.9J ug/m3		1.68	03/13/14 00:54		
o-Xylene	0.95J ug/m3		1.68	03/13/14 00:54		

Project:

MRC SV/IAQ Study Feb 2014 REV

Pace Project No.: 10259328

Date: 04/17/2014 12:21 PM

Sample: IA-002-ER-1	Lab ID: 10259328004	Collected: 02/26/14 18:14	4 Received: 03/04/14 10:00 Matrix: Air	
Parameters	Results Units	Report Limit DF	Prepared Analyzed CAS No. C	Qua
TO15 MSV AIR	Analytical Method: TO-15			
Benzene	1.1 ug/m3	0.58 1.8	03/12/14 23:31 71-43-2	
Carbon tetrachloride	ND ug/m3	1.2 1.8	03/12/14 23:31 56-23-5	
Chlorodifluoromethane	4.3 ug/m3	1.3 1.8	03/12/14 23:31 75-45-6	
Chloroform	ND ug/m3	1.8 1.8	03/12/14 23:31 67-66-3	
Dichlorodifluoromethane	2.5 ug/m3	1.8 1.8	03/12/14 23:31 75-71-8	
1,1-Dichloroethane	ND ug/m3	1.5 1.8	03/12/14 23:31 75-34-3	
1,2-Dichloroethane	ND ug/m3	0.74 1.8	03/12/14 23:31 107-06-2	
1,1-Dichloroethene	ND ug/m3	1.5 1.8	03/12/14 23:31 75-35-4	
cis-1,2-Dichloroethene	ND ug/m3	1.5 1.8	03/12/14 23:31 156-59-2	
trans-1,2-Dichloroethene	19.9 ug/m3	1.5 1.8	03/12/14 23:31 156-60-5	
Ethylbenzene	5.2 ug/m3	1.6 1.8	03/12/14 23:31 100-41-4	
Methylene Chloride	14.4 ug/m3	1.3 1.8	03/12/14 23:31 75-09-2	
Methyl-tert-butyl ether	ND ug/m3	1.3 1.8	03/12/14 23:31 1634-04-4	
Naphthalene	ND ug/m3	1.9 1.8	03/12/14 23:31 91-20-3	
Tetrachloroethene	ND ug/m3	1.2 1.8	03/12/14 23:31 127-18-4	
Toluene	14.8 ug/m3	1.4 1.8	03/12/14 23:31 108-88-3	
1,2,4-Trichlorobenzene	ND ug/m3	2.7 1.8	03/12/14 23:31 120-82-1	
1,1,1-Trichloroethane	ND ug/m3	2.0 1.8	03/12/14 23:31 71-55-6	
1,1,2-Trichloroethane	ND ug/m3	0.99 1.8	03/12/14 23:31 79-00-5	
Trichloroethene	ND ug/m3	0.99 1.8	03/12/14 23:31 79-01-6	
1,2,3-Trimethylbenzene	ND ug/m3	1.8 1.8	03/12/14 23:31 526-73-8	
1,2,4-Trimethylbenzene	ND ug/m3	1.8 1.8	03/12/14 23:31 95-63-6	
1,3,5-Trimethylbenzene	ND ug/m3	1.8 1.8	03/12/14 23:31 108-67-8	
Vinyl chloride	ND ug/m3	0.47 1.8	03/12/14 23:31 75-01-4	
m&p-Xylene	25.7 ug/m3	3.2 1.8	03/12/14 23:31 179601-23-1	
o-Xylene	8.9 ug/m3	1.6 1.8	03/12/14 23:31 95-47-6	

Project:

MRC SV/IAQ Study Feb 2014 REV

Pace Project No.: 10259328

Sample: IA-002-PB-1	Lab ID: 1025932800	2 Collected: 02/26/1	4 18:01	Received: 0	3/04/14 10:00 N	Matrix: Air	
Parameters	Results Unit	s Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
TO15 MSV AIR	Analytical Method: TO-	15					
Benzene	0.65 ug/m3	0.58	1.8		03/12/14 20:38	71-43-2	
Carbon tetrachloride	ND ug/m3	1.2	1.8		03/12/14 20:38	56-23-5	
Chlorodifluoromethane	11.5 ug/m3	0.36	1.8		03/12/14 20:38	75-45-6	
Chloroform	ND ug/m3	1.8	1.8		03/12/14 20:38	67-66-3	
Dichlorodifluoromethane	2.0 ug/m3	1.8	1.8		03/12/14 20:38	75-71-8	
1,1-Dichloroethane	ND ug/m3	1.5	1.8		03/12/14 20:38	75-34-3	
1,2-Dichloroethane	ND ug/m3	0.74	1.8		03/12/14 20:38	107-06-2	
1,1-Dichloroethene	ND ug/m3	1.5	1.8		03/12/14 20:38	75-35-4	
cis-1,2-Dichloroethene	ND ug/m3	1.5	1.8		03/12/14 20:38	156-59-2	
trans-1,2-Dichloroethene	ND ug/m3	1.5	1.8		03/12/14 20:38	156-60-5	
Ethylbenzene	1.2J ug/m3	1.6	1.8		03/12/14 20:38	100-41-4	
Methylene Chloride	11.3 ug/m3	1.3	1.8		03/12/14 20:38	75-09-2	
Methyl-tert-butyl ether	ND ug/m3	1.3	1.8		03/12/14 20:38	1634-04-4	
Naphthalene	1.3J ug/m3	1.9	1.8		03/12/14 20:38	91-20-3	
Tetrachloroethene	ND ug/m3	1.2	1.8		03/12/14 20:38	127-18-4	
Toluene	3.9 ug/m3	1.4	1.8		03/12/14 20:38	108-88-3	
1,2,4-Trichlorobenzene	ND ug/m3	2.7	1.8		03/12/14 20:38	120-82-1	
1,1,1-Trichloroethane	ND ug/m3	2.0	1.8		03/12/14 20:38	71-55-6	
1,1,2-Trichloroethane	ND ug/m3	0.99	1.8		03/12/14 20:38	79-00-5	
Trichloroethene	ND ug/m3	0.99	1.8		03/12/14 20:38	79-01-6	
1,2,3-Trimethylbenzene	0.94 ug/m3	0.36	1.8		03/12/14 20:38	526-73-8	
1,2,4-Trimethylbenzene	1.4J ug/m3	1.8	1.8		03/12/14 20:38	95-63 - 6	
1,3,5-Trimethylbenzene	ND ug/m3	1.8	1.8		03/12/14 20:38		
Vinyl chloride	ND ug/m3	0.47	1.8		03/12/14 20:38	75-01-4	
m&p-Xylene	1.5J ug/m3	3.2	1.8		03/12/14 20:38	179601-23-1	
o-Xylene	ND ug/m3	1.6	1.8		03/12/14 20:38	95-47-6	

(612)607-1700

ANALYTICAL RESULTS

Project:

MRC SV/IAQ Study Feb 2014 REV

Pace Project No.: 10259328

Date: 04/17/2014 12:21 PM

Sample: IA-003-ER-1	Lab ID: 10259328005	Collected: 02/26/14	18:10	Received: 03/04/14 10:00	Matrix: Air	
Parameters	Results Units	Report Limit	DF	Prepared Analyzed	CAS No.	Qua
TO15 MSV AIR	Analytical Method: TO-15					
Benzene	0.89 ug/m3	0.55	1.68	03/12/14 23:3	1 71-43-2	
Carbon tetrachloride	ND ug/m3	1.1	1.68	03/12/14 23:3	1 56-23-5	
Chlorodifluoromethane	4.5 ug/m3	0.34	1.68	03/12/14 23:3	1 75-45-6	
Chloroform	ND ug/m3	1.7	1.68	03/12/14 23:3	1 67-66-3	
Dichlorodifluoromethane	2.0 ug/m3	1.7	1.68	03/12/14 23:3	1 75-71-8	
1,1-Dichloroethane	ND ug/m3	1.4	1.68	03/12/14 23:3	1 75-34-3	
1,2-Dichloroethane	ND ug/m3	0.69	1.68	03/12/14 23:3	1 107-06-2	
1,1-Dichloroethene	ND ug/m3	1.4	1.68	03/12/14 23:3	1 75-35-4	
cis-1,2-Dichloroethene	ND ug/m3	1.4	1.68	03/12/14 23:3	1 156-59-2	
rans-1,2-Dichloroethene	17.4 ug/m3	1.4	1.68	03/12/14 23:3	1 156-60-5	
Ethylbenzene	5.0 ug/m3	1.5	1.68	03/12/14 23:3	1 100-41-4	
Methylene Chloride	605 ug/m3	1.2	1.68	03/12/14 23:3	1 75-09-2	C0,E
Methyl-tert-butyl ether	ND ug/m3	1.2	1.68	03/12/14 23:3	1 1634-04-4	
Naphthalene	1.1J ug/m3	1.8	1.68	03/12/14 23:3	1 91-20-3	
Tetrachloroethene	ND ug/m3	1.2	1.68	03/12/14 23:3	1 127-18-4	
Toluene	14.6 ug/m3	1.3	1.68	03/12/14 23:3	1 108-88-3	
1,2,4-Trichlorobenzene	ND ug/m3	2.5	1.68	03/12/14 23:3	1 120-82-1	
I,1,1-Trichloroethane	ND ug/m3	1.9	1.68	03/12/14 23:3	1 71-55-6	
1,1,2-Trichloroethane	ND ug/m3	0.92	1.68	03/12/14 23:3	1 79-00-5	
Trichloroethene	ND ug/m3	0.92	1.68	03/12/14 23:3	1 79-01-6	
1,2,3-Trimethylbenzene	0.88 ug/m3	0.34	1.68	03/12/14 23:3	1 526-73-8	
1,2,4-Trimethylbenzene	1.3J ug/m3	1.7	1.68	03/12/14 23:3	1 95-63-6	
1,3,5-Trimethylbenzene	1.4J ug/m3	1.7	1.68	03/12/14 23:3	1 108-67-8	
Vinyl chloride	ND ug/m3	0.44	1.68	03/12/14 23:3	1 75-01-4	
m&p-Xylene	21.5 ug/m3	3.0	1.68		1 179601-23-1	
o-Xylene	7.8 ug/m3	1.5	1.68	03/12/14 23:3		

Project:

MRC SV/IAQ Study Feb 2014 REV

Pace Project No.: 10259328

Sample: IA-093X-A-16	Lab ID: 10259328008	Collected: 02/26/14	17:10	Received: 03/04/14 10:00	Matrix: Air	
Parameters	Results Units	Report Limit I	DF	Prepared Analyzed	CAS No.	Qual
TO15 MSV AIR	Analytical Method: TO-15					
Benzene	0.58 ug/m3	0.57 1	.74	03/12/14 22:3	1 71-43-2	
Carbon tetrachloride	ND ug/m3	1.1 1	.74	03/12/14 22:3	1 56-23-5	
Chlorodifluoromethane	1.4 ug/m3	0.35 1	.74	03/12/14 22:3	1 75-45-6	
Chloroform	ND ug/m3	1.7 1	.74	03/12/14 22:3	1 67-66-3	
Dichlorodifluoromethane	1.9 ug/m3	1.8 1	.74	03/12/14 22:3	1 75-71-8	
1,1-Dichloroethane	ND ug/m3	1.4 1	.74	03/12/14 22:3	1 75-34-3	
1,2-Dichloroethane	ND ug/m3	0.71 1	.74	03/12/14 22:3	1 107-06-2	
1,1-Dichloroethene	0.75J ug/m3	1.4 1	.74	03/12/14 22:3	1 75-35-4	
cis-1,2-Dichloroethene	0.91J ug/m3	1.4 1	.74	03/12/14 22:3	1 156-59-2	
trans-1,2-Dichloroethene	ND ug/m3	1.4 1	.74	03/12/14 22:3	1 156-60-5	
Ethylbenzene	1.1J ug/m3	1.5 1	.74	03/12/14 22:3	1 100-41-4	
Methylene Chloride	6.6 ug/m3	1.2 1	.74	03/12/14 22:3	1 75-09-2	
Methyl-tert-butyl ether	ND ug/m3	1.3 1	.74	03/12/14 22:3	1 1634-04-4	
Naphthalene	1.7J ug/m3	1.9 1	.74	03/12/14 22:3	1 91-20-3	
Tetrachloroethene	ND ug/m3	1.2 1	.74	03/12/14 22:3	1 127-18-4	
Toluene	1.2J ug/m3	1.3 1	1.74	03/12/14 22:3	1 108-88-3	
1,2,4-Trichlorobenzene	ND ug/m3	2.6 1	.74	03/12/14 22:3	1 120-82-1	
1,1,1-Trichloroethane	0.87J ug/m3	1.9 1	1.74	03/12/14 22:3	1 71-55-6	
1,1,2-Trichloroethane	ND ug/m3	0.96 1	1.74	03/12/14 22:3	1 79-00-5	
Trichloroethene	8.4 ug/m3	0.96 1	.74	03/12/14 22:3	1 79-01-6	
1,2,3-Trimethylbenzene	ND ug/m3	0.35 1	.74	03/12/14 22:3	1 526-73-8	
1,2,4-Trimethylbenzene	1.3J ug/m3	1.7 1	.74	03/12/14 22:3	1 95-63- 6	
1,3,5-Trimethylbenzene	ND ug/m3	1.7 1	.74	03/12/14 22:3	1 108-67-B	
Vinyl chloride	ND ug/m3	0.45 1	.74	03/12/14 22:3	1 75-01 -4	
m&p-Xylene	1.4J ug/m3	3.1 1	.74	03/12/14 22:3	1 179601-23-1	
o-Xylene	ND ug/m3	1.5 1	.74	03/12/14 22:3	1 95-47-6	

Project:

MRC SV/IAQ Study Feb 2014 REV

Pace Project No.:

Date: 04/17/2014 12:21 PM

.: 10259328

Sample: IA-117X-A-16	Lab ID: 10259328009	Collected: 02/26/14	17:13	Received: 03/04/14 10:00	Matrix: Air	
Parameters	Results Units	Report Limit	DF	Prepared Analyzed	CAS No.	Qua
TO15 MSV AIR	Analytical Method: TO-15					
Benzene	0.44J ug/m3	0.58	1.8	03/12/14 23:0	1 71-43-2	
Carbon tetrachloride	ND ug/m3	1.2	1.8	03/12/14 23:0	1 56-23-5	
Chlorodifluoromethane	1.5 ug/m3	0.36	1.8	03/12/14 23:0	1 75-45-6	
Chloroform	ND ug/m3	1.8	1.8	03/12/14 23:0	1 67 - 66-3	
Dichlorodifluoromethane	1.4J ug/m3	1.8	1.8	03/12/14 23:0	1 75-71-8	
1,1-Dichloroethane	ND ug/m3	1.5	1.8	03/12/14 23:0	1 75-34-3	
1,2-Dichloroethane	ND ug/m3	0.74	1.8	03/12/14 23:0	1 107-06-2	
1,1-Dichloroethene	ND ug/m3	1.5	1.8	03/12/14 23:0	1 75-35-4	
cis-1,2-Dichloroethene	ND ug/m3	1.5	1.8	03/12/14 23:0	1 156-59-2	
rans-1,2-Dichloroethene	ND ug/m3	1.5	1.8	03/12/14 23:0	1 156-60-5	
Ethylbenzene	1.3J ug/m3	1.6	1.8	03/12/14 23:0	1 100-41-4	
Methylene Chloride	89.7 ug/m3	1.3	1.8	03/12/14 23:0		
Methyl-tert-butyl ether	ND ug/m3	1.3	1.8	03/12/14 23:0	1 1634-04-4	
Naphthalene	1.3J ug/m3	1.9	1.8	03/12/14 23:0	1 91-20-3	
Tetrachloroethene	ND ug/m3	1.2	1.8	03/12/14 23:0	1 127-18-4	
Toluene	15.7 ug/m3	1.4	1.8	03/12/14 23:0	1 108-88-3	
1,2,4-Trichlorobenzene	ND ug/m3	2.7	1.8	03/12/14 23:0	1 120-82-1	
1,1,1-Trichloroethane	ND ug/m3	2.0	1.8	03/12/14 23:0	1 71-55-6	
1,1,2-Trichloroethane	ND ug/m3	0.99	1.8	03/12/14 23:0	1 79-00-5	
Trichloroethene	ND ug/m3	0.99	1.8	03/12/14 23:0	1 79 - 01-6	
1,2,3-Trimethylbenzene	ND ug/m3	0.36	1.8	03/12/14 23:0	1 526-73-8	
1,2,4-Trimethylbenzene	1.2J ug/m3	1.8	1.8	03/12/14 23:0	1 95-63-6	
1,3,5-Trimethylbenzene	ND ug/m3	1.8	1.8	03/12/14 23:0	1 108-67-8	
Vinyl chloride	ND ug/m3	0.47	1.8	03/12/14 23:0	1 75-01-4	
m&p-Xylene	1.9J ug/m3	3.2	1.8	03/12/14 23:0	1 179601-23-1	
o-Xylene	0.74J ug/m3	1.6	1.8	03/12/14 23:0		

Project:

MRC SV/IAQ Study Feb 2014 REV

Pace Project No.: 10259328

Date: 04/17/2014 12:21 PM

Sample: IA-140-B-16	Lab ID: 10259328010	Collected: 02/26/1	4 17:15	Received: 03/04/	14 10:00 N	Matrix: Air	
Parameters	Results Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
TO15 MSV AIR	Analytical Method: TO-15						
Benzene	ND ug/m3	0.58	1.8	03/	12/14 22:32	71-43-2	
Carbon tetrachloride	ND ug/m3	1.2	1.8	03/	12/14 22:32	56-23-5	
Chlorodifluoromethane	13.6 ug/m3	1.3	1.8	03/	12/14 22:32	75-45-6	
Chloroform	ND ug/m3	1.8	1.8	03/	12/14 22:32	67-66-3	
Dichlorodifluoromethane	2.4 ug/m3	1.8	1.8	. 03/	12/14 22:32	75-71-8	
1,1-Dichloroethane	ND ug/m3	1.5	1.8	03/	12/14 22:32	75-34-3	
1,2-Dichloroethane	ND ug/m3	0.74	1.8	03/	12/14 22:32	107-06-2	
1,1-Dichloroethene	ND ug/m3	1.5	1.8	03/	12/14 22:32	75-35-4	
cis-1,2-Dichloroethene	ND ug/m3	1.5	1.8	03/	12/14 22:32	156-59-2	
trans-1,2-Dichloroethene	ND ug/m3	1.5	1.8	03/	12/14 22:32	156-60-5	
Ethylbenzene	2.1 ug/m3	1.6	1.8	03/	12/14 22:32	100-41-4	
Methylene Chloride	18.3 ug/m3	1.3	1.8	03/	12/14 22:32	75-09-2	
Methyl-tert-butyl ether	ND ug/m3	1.3	1.8	03/	12/14 22:32	1634-04-4	
Naphthalene	6.5 ug/m3	1.9	1.8	03/	12/14 22:32	91-20-3	CH
Tetrachloroethene	ND ug/m3	1.2	1.8	03/	12/14 22:32	127-18-4	
Toluene	84.0 ug/m3	1.4	1.8	03/	12/14 22:32	108-88-3	
1,2,4-Trichlorobenzene	ND ug/m3	2.7	1.8	03/	12/14 22:32	120-82-1	
1,1,1-Trichloroethane	ND ug/m3	2.0	1.8	03/	12/14 22:32	71-55-6	
1,1,2-Trichloroethane	ND ug/m3	0.99	1.8	03/	12/14 22:32	79-00-5	
Trichloroethene	ND ug/m3	0.99	1.8	03/	12/14 22:32	79-01 - 6	
1,2,3-Trimethylbenzene	ND ug/m3	1.8	1.8	03/	12/14 22:32	526-73-8	
1,2,4-Trimethylbenzene	ND ug/m3	1.8	1.8	03/	12/14 22:32	95-63-6	
1,3,5-Trimethylbenzene	ND ug/m3	1.8	1.8	03/	12/14 22:32	108-67-8	
Vinyl chloride	ND ug/m3	0.47	1.8	03/	12/14 22:32	75-01-4	
m&p-Xylene	8.1 ug/m3	3.2	1.8	03/	12/14 22:32	179601-23-1	
o-Xylene	2.6 ug/m3	1.6	1.8	03/	12/14 22:32	95-47-6	

Project:

MRC SV/IAQ Study Feb 2014 REV

Pace Project No.: 10259328

Date: 04/17/2014 12:21 PM

Sample: IA-DUP1-ER-1	Lab ID: 10259328007	Collected: 02/26/14 0	00:00	Received: 03/04/14 10:00	Matrix: Air	
Parameters	Results Units	Report Limit [OF	Prepared Analyzed	CAS No.	Qua
TO15 MSV AIR	Analytical Method: TO-15					
Benzene	1.3 ug/m3	0.55 1.	.68	03/12/14 23:01	71-43-2	
Carbon tetrachloride	ND ug/m3	1.1 1.	.68	03/12/14 23:01	56-23-5	
Chlorodifluoromethane	12.9 ug/m3	1.2 1.	.68	03/12/14 23:01	75-45-6	
Chloroform	ND ug/m3	1.7 1.	.68	03/12/14 23:01	67-66-3	
Dichlorodifluoromethane	2.9 ug/m3	1.7 1.	.68	03/12/14 23:01	75-71-8	
1,1-Dichloroethane	ND ug/m3	1.4 1.	.68	03/12/14 23:01	75-34-3	
1,2-Dichloroethane	ND ug/m3	0.69 1	.68	03/12/14 23:01	107-06-2	
1,1-Dichloroethene	ND ug/m3	1.4 1	.68	03/12/14 23:01	75-35-4	
cis-1,2-Dichloroethene	ND ug/m3	1.4 1	.68	03/12/14 23:01	156-59-2	
trans-1,2-Dichloroethene	70.1 ug/m3	1.4 1	.68	03/12/14 23:01	I 156-60-5	
Ethylbenzene	17.1 ug/m3	1.5 1	.68	03/12/14 23:01	I 100-41-4	
Methylene Chloride	22.2 ug/m3	1.2 1	.68	03/12/14 23:01	75-09-2	
Methyl-tert-butyl ether	ND ug/m3	1.2 1	.68	03/12/14 23:01	l 1634-04-4	
Naphthalene	ND ug/m3	1.8 1	.68	03/12/14 23:01	1 91-20-3	
Tetrachloroethene	ND ug/m3	1.2 1	.68	03/12/14 23:01	1 127-18 -4	
Toluene	44.7 ug/m3	1.3 1	.68	03/12/14 23:01	1 108-88-3	
1,2,4-Trichlorobenzene	ND ug/m3	2.5 1	.68	03/12/14 23:01	1 120-82-1	
1,1,1-Trichloroethane	ND ug/m3	1.9 1	.68	03/12/14 23:01	1 71-55-6	
1,1,2-Trichloroethane	ND ug/m3	0.92 1	.68	03/12/14 23:01	1 79-00-5	
Trichloroethene	ND ug/m3	0.92 1	.68	03/12/14 23:01	1 79-01-6	
1,2,3-Trimethylbenzene	ND ug/m3	. 1.7 1	.68	03/12/14 23:01	526-73-8	
1,2,4-Trimethylbenzene	3.0 ug/m3	1.7 1	.68	03/12/14 23:01	95-63-6	
1,3,5-Trimethylbenzene	ND ug/m3	1.7 1	.68	03/12/14 23:01	108-67-8	
Vinyl chloride	ND ug/m3	0.44 1	.68	03/12/14 23:01	75-01-4	
m&p-Xylene	81.5 ug/m3	3.0 1	.68	03/12/14 23:01	1 179601-23-1	
o-Xylene	29.5 ug/m3	1.5 1	.68	03/12/14 23:01		

REPORT OF LABORATORY ANALYSIS

Project:

MRC SV/IAQ Study Feb 2014 REV

Pace Project No.: 10259328

Sample: IA-DUP1-PB-1	Lab ID: 10259328006	Collected: 02/26/1	4 00:00	Received: 03/04/14 10:00 Matrix: Air
Parameters	Results Units	Report Limit	DF	Prepared Analyzed CAS No. Qua
TO15 MSV AIR	Analytical Method: TO-15			
Benzene	0.80 ug/m3	0.55	1.68	03/13/14 01:23 71-43-2
Carbon tetrachloride	ND ug/m3	1.1	1.68	03/13/14 01:23 56-23-5
Chlorodifluoromethane	2.6 ug/m3	0.34	1.68	03/13/14 01:23 75-45-6
Chloroform	ND ug/m3	1.7	1.68	03/13/14 01:23 67-66-3
Dichlorodifluoromethane	2.2 ug/m3	1.7	1.68	03/13/14 01:23 75-71-8
1,1-Dichloroethane	ND ug/m3	1.4	1.68	03/13/14 01:23 75-34-3
1,2-Dichloroethane	ND ug/m3	0.69	1.68	03/13/14 01:23 107-06-2
1,1-Dichloroethene	ND ug/m3	1.4	1.68	03/13/14 01:23 75-35-4
cis-1,2-Dichloroethene	ND ug/m3	1.4	1.68	03/13/14 01:23 156-59-2
trans-1,2-Dichloroethene	ND ug/m3	1.4	1.68	03/13/14 01:23 156-60-5
Ethylbenzene	ND ug/m3	1.5	1.68	03/13/14 01:23 100-41-4
Methylene Chloride	6.5 ug/m3	1.2	1.68	03/13/14 01:23 75-09-2
Methyl-tert-butyl ether	ND ug/m3	1.2	1.68	03/13/14 01:23 1634-04-4
Naphthalene	ND ug/m3	1.8	1.68	03/13/14 01:23 91-20-3
Tetrachloroethene	ND ug/m3	1.2	1.68	03/13/14 01:23 127-18-4
Toluene	1.4 ug/m3	1.3	1.68	03/13/14 01:23 108-88-3
1,2,4-Trichlorobenzene	ND ug/m3	2.5	1.68	03/13/14 01:23 120-82-1
1,1,1-Trichloroethane	ND ug/m3	1.9	1.68	03/13/14 01:23 71-55-6
1,1,2-Trichloroethane	ND ug/m3	0.92	1.68	03/13/14 01:23 79-00-5
Trichloroethene	ND ug/m3	0.92	1.68	03/13/14 01:23 79-01-6
1,2,3-Trimethylbenzene	ND ug/m3	0.34	1.68	03/13/14 01:23 526-73-8
1,2,4-Trimethylbenzene	ND ug/m3	1.7	1.68	03/13/14 01:23 95-63-6
1,3,5-Trimethylbenzene	ND ug/m3	1.7	1.68	03/13/14 01:23 108-67-8
Vinyl chloride	ND ug/m3	0.44	1.68	03/13/14 01:23 75-01-4
m&p-Xylene	1.5J ug/m3	3.0	1.68	03/13/14 01:23 179601-23-1
o-Xylene	ND ug/m3	1.5	1.68	03/13/14 01:23 95-47-6

Project:

MRC SV/IAQ Study Feb 2014 REV

Pace Project No.:

Date: 04/17/2014 12:22 PM

Sample: IA-146-VLS-2	Lab ID: 10259329008	Collected: 02/26/1	4 18:31	Received: 03/04/14 10:00 I	Matrix: Air
Parameters	Results Units	Report Limit	DF	Prepared Analyzed	CAS No. Qu
TO15 MSV AIR	Analytical Method: TO-15				
Benzene	0.66 ug/m3	0.61	1.87	03/12/14 21:06	71-43-2
Carbon tetrachloride	ND ug/m3	1.2	1.87	03/12/14 21:06	5 56-23-5
Chlorodifluoromethane	2.3 ug/m3	0.37	1.87	03/12/14 21:06	75-45-6
Chloroform	ND ug/m3	1.9	1.87	03/12/14 21:06	67-66-3
Dichlorodifluoromethane	1.9 ug/m3	1.9	1.87	03/12/14 21:06	75-71-8
1,1-Dichloroethane	ND ug/m3	1.5	1.87	03/12/14 21:06	75-34-3
1,2-Dichloroethane	ND ug/m3	0.77	1.87	03/12/14 21:06	107-06-2
1,1-Dichloroethene	ND ug/m3	1.5	1.87	03/12/14 21:06	75-35-4
cis-1,2-Dichloroethene	ND ug/m3	1.5	1.87	03/12/14 21:06	156-59-2
trans-1,2-Dichloroethene	ND ug/m3	1.5	1.87	03/12/14 21:06	156-60-5
Ethylbenzene	9.8 ug/m3	1.6	1.87	03/12/14 21:06	100-41-4
Methylene Chloride	6.8 ug/m3	1.3	1.87	03/12/14 21:06	75-09-2
Methyl-tert-butyl ether	ND ug/m3	1.4	1.87	03/12/14 21:06	1634-04-4
Naphthalene	1.4J ug/m3	2.0	1.87	03/12/14 21:06	91-20-3
Tetrachioroethene	ND ug/m3	1.3	1.87	03/12/14 21:06	3 127-18 -4
Toluene	10 ug/m3	1.4	1.87	03/12/14 21:06	108-88-3
1,2,4-Trichlorobenzene	ND ug/m3	2.8	1.87	03/12/14 21:06	5 12 0-82- 1
1,1,1-Trichloroethane	ND ug/m3	2.1	1.87	03/12/14 21:06	3 71-55-6
1,1,2-Trichloroethane	ND ug/m3	1.0	1.87	03/12/14 21:06	79-00-5
Trichloroethene	ND ug/m3	1.0	1.87	03/12/14 21:06	79-01-6
1,2,3-Trimethylbenzene	1.4 ug/m3	0.37	1.87	03/12/14 21:06	5 526-73-8
1,2,4-Trimethylbenzene	2.6 ug/m3	1.9	1.87	03/12/14 21:06	95-63-6
1,3,5-Trimethylbenzene	1.9J ug/m3	1.9	1.87	03/12/14 21:06	6 108- 67- 8
Vinyl chloride	ND ug/m3	0.49	1.87	03/12/14 21:06	75-01-4
m&p-Xylene	26.1 ug/m3	3.3	1.87	03/12/14 21:06	179601-23-1
o-Xylene	6.8 ug/m3	1.6	1.87	03/12/14 21:06	95-47-6

Project:

MRC SV/IAQ Study Feb 2014 REV

Pace Project No.: 10259329

Date: 04/17/2014 12:22 PM

Sample: IA-147-VLS-2	Lab ID: 10259329001	Collected: 02/26/14	4 18:28	Received: 03/04/14 10:00	Matrix; Air	
Parameters	Results Units	Report Limit	DF	Prepared Analyzed	CAS No.	Qua
TO15 MSV AIR	Analytical Method: TO-15					
Benzene	2.5 ug/m3	0.55	1.68	03/13/14 03:	00 71-43-2	
Carbon tetrachloride	ND ug/m3	1.1	1.68	03/13/14 03:	00 56-23-5	
Chlorodifluoromethane	5.0 ug/m3	1.2	1.68	03/13/14 03:	00 75-45-6	
Chloroform	ND ug/m3	1.7	1.68	03/13/14 03:	00 67-66-3	
Dichlorodifluoromethane	ND ug/m3	1.7	1.68	03/13/14 03:	00 75-71-8	
1,1-Dichloroethane	ND ug/m3	1.4	1.68	03/13/14 03:	00 75-34-3	
1,2-Dichloroethane	ND ug/m3	0.69	1.68	03/13/14 03:	00 107-06-2	
1,1-Dichloroethene	ND ug/m3	1.4	1.68	03/13/14 03:	00 75-35-4	
cis-1,2-Dichloroethene	ND ug/m3	1.4	1.68	03/13/14 03:	00 156-59-2	
trans-1,2-Dichloroethene	ND ug/m3	1.4	1.68	03/13/14 03:	00 156-60-5	
Ethylbenzene	12.1 ug/m3	1.5	1.68	03/13/14 03:	00 100-41-4	
Methylene Chloride	483 ug/m3	1.2	1.68	03/13/14 03:	00 75-09-2	Ė
Methyl-tert-butyl ether	ND ug/m3	1.2	1.68	03/13/14 03:	00 1634-04-4	
Naphthalene	71.0 ug/m3	1.8	1.68	03/13/14 03:	00 91-20-3	CH
Tetrachloroethene	ND ug/m3	1.2	1.68	03/13/14 03:	00 127-18-4	
Toluene	120 ug/m3	1.3	1.68	03/13/14 03:	00 108-88-3	
1,2,4-Trichlorobenzene	ND ug/m3	2.5	1.68	03/13/14 03:	00 120-82-1	
1,1,1-Trichloroethane	ND ug/m3	1.9	1.68	03/13/14 03:	00 71-55-6	
1,1,2-Trichloroethane	ND ug/m3	0.92	1.68	03/13/14 03:	00 79-00-5	
Trichloroethene	ND ug/m3	0.92	1.68	03/13/14 03:	00 79-01-6	
1,2,3-Trimethylbenzene	1.3J ug/m3	1.7	1.68	03/13/14 03:	00 526-73-8	
1,2,4-Trimethylbenzene	4.1 ug/m3	1.7	1.68	03/13/14 03:	00 95-63-6	
1,3,5-Trimethylbenzene	1.8 ug/m3	1.7	1.68	03/13/14 03:	00 108-67-8	
Vinyl chloride	ND ug/m3	0.44	1.68	03/13/14 03:	00 75-01- 4	
m&p-Xylene	31.9 ug/m3	3.0	1.68	03/13/14 03:	00 179601-23-1	
o-Xylene	8.5 ug/m3	1.5	1.68	03/13/14 03:	00 95-47-6	

REPORT OF LABORATORY ANALYSIS

Project:

MRC SV/IAQ Study Feb 2014 REV

Pace Project No.: 10259329

Date: 04/17/2014 12:22 PM

Sample: IA-148-VLS-2	Lab ID: 10259329003	Collected: 02/26/1	4 18:55	Received: 03/04/14 10:00 Matrix: Air	
Parameters	Results Units	Report Limit	DF	Prepared Analyzed CAS No.	Qua
TO15 MSV AIR	Analytical Method: TO-15				
Benzene	0.98 ug/m3	0.58	1.8	03/13/14 01:27 71-43-2	
Carbon tetrachloride	ND ug/m3	1.2	1.8	03/13/14 01:27 56-23-5	
Chlorodifluoromethane	3.2 ug/m3	1.3	1.8	03/13/14 01:27 75-45-6	
Chloroform	ND ug/m3	1.8	1.8	03/13/14 01:27 67-66-3	
Dichlorodifluoromethane	2.7 ug/m3	1.8	1.8	03/13/14 01:27 75-71-8	
1,1-Dichloroethane	ND ug/m3	1.5	1.8	03/13/14 01:27 75-34-3	
1,2-Dichloroethane	ND ug/m3	0.74	1.8	03/13/14 01:27 107-06-2	
1,1-Dichloroethene	ND ug/m3	1.5	1.8	03/13/14 01:27 75-35-4	
cis-1,2-Dichloroethene	ND ug/m3	1.5	1.8	03/13/14 01:27 156-59-2	
trans-1,2-Dichloroethene	ND ug/m3	1.5	1.8	03/13/14 01:27 156-60-5	
Ethylbenzene	17.9 ug/m3	1.6	1.8	03/13/14 01:27 100-41-4	
Methylene Chloride	21.9 ug/m3	1.3	1.8	03/13/14 01:27 75-09-2	
Methyl-tert-butyl ether	ND ug/m3	1.3	1.8	03/13/14 01:27 1634-04-4	
Naphthalene	ND ug/m3	1.9	1.8	03/13/14 01:27 91-20-3	
Tetrachloroethene	ND ug/m3	1.2	1.8	03/13/14 01:27 127-18-4	
Toluene	17.4 ug/m3	1.4	1.8	03/13/14 01:27 108-88-3	
1,2,4-Trichlorobenzene	ND ug/m3	2.7	1.8	03/13/14 01:27 120-82-1	
1,1,1-Trichloroethane	ND ug/m3	2.0	1.8	03/13/14 01:27 71-55-6	
1,1,2-Trichloroethane	ND ug/m3	0.99	1.8	03/13/14 01:27 79-00-5	
Trichloroethene	ND ug/m3	0.99	1.8	03/13/14 01:27 79-01-6	
1,2,3-Trimethylbenzene	ND ug/m3	1.8	1.8	03/13/14 01:27 526-73-8	
1,2,4-Trimethylbenzene	2.9 ug/m3	1.8	1.8	03/13/14 01:27 95-63-6	
1,3,5-Trimethylbenzene	ND ug/m3	1.8	1.8	03/13/14 01:27 108-67-8	
Vinyl chloride	ND ug/m3	0.47	1.8	03/13/14 01:27 75-01-4	
m&p-Xylene	47.9 ug/m3	3.2	1.8	03/13/14 01:27 179601-23-1	
o-Xylene	12.0 ug/m3	. 1.6	1.8	03/13/14 01:27 95-47-6	

REPORT OF LABORATORY ANALYSIS

Project:

MRC SV/IAQ Study Feb 2014 REV

Pace Project No.:

Date: 04/17/2014 12:22 PM

Sample: IA-149-VLS-2	Lab ID: 10259329006	Collected: 02/26/1	4 18:25	Received: 03/04/14 10:00	Matrix: Air	
Parameters	Results Units	Report Limit	DF	Prepared Analyzed	CAS No.	Qual
TO15 MSV AIR	Analytical Method: TO-15					
Benzene	0.66 ug/m3	0.58	1.8	03/12/14 21:34	4 71-43-2	
Carbon tetrachloride	ND ug/m3	1.2	1.8	03/12/14 21:34	4 56-23-5	
Chlorodifluoromethane	2.0 ug/m3	0.36	1.8	03/12/14 21:34	4 75-45-6	
Chloroform	ND ug/m3	1.8	1.8	03/12/14 21:34	4 67-66-3	
Dichlorodifluoromethane	1.8 ug/m3	1.8	1.8	03/12/14 21:34	4 75-71-8	
1,1-Dichloroethane	ND ug/m3	1.5	1.8	03/12/14 21:34	4 75-34-3	
1,2-Dichloroethane	ND ug/m3	0.74	1.8	03/12/14 21:34	4 107-06-2	
1,1-Dichloroethene	ND ug/m3	1.5	1.8	03/12/14 21:34	4 75-35-4	
cis-1,2-Dichloroethene	ND ug/m3	1.5	1.8	03/12/14 21:34	4 156-59-2	
trans-1,2-Dichloroethene	ND ug/m3	1.5	1.8	03/12/14 21:34	4 156-60-5	
Ethylbenzene	10.5 ug/m3	1.6	1.8	03/12/14 21:34	4 100-41-4	
Methylene Chloride	11.7 ug/m3	1.3	1.8	03/12/14 21:34	4 75-09-2	
Methyl-tert-butyl ether	ND ug/m3	1.3	1.8	03/12/14 21:34	4 1634-04 -4	
Naphthalene	1.3J ug/m3	1.9	1.8	03/12/14 21:34	4 91-20-3	
Tetrachloroethene	ND ug/m3	1.2	1.8	03/12/14 21:34	4 127-18-4	
Toluene	9.5 ug/m3	1.4	1.8	03/12/14 21:34	4 108-88-3	
1,2,4-Trichlorobenzene	ND ug/m3	2.7	1.8	03/12/14 21:34	4 120-82-1	
1,1,1-Trichloroethane	ND ug/m3	2.0	1.8	03/12/14 21:34	4 71-55-6	
1,1,2-Trichloroethane	ND ug/m3	0.99	1.8	03/12/14 21:34	4 79-00-5	
Trichloroethene	ND ug/m3	0.99	1.8	03/12/14 21:3-	4 79-01-6	
1,2,3-Trimethylbenzene	1.4 ug/m3	0.36	1.8	03/12/14 21:3-	4 526-73-8	
1,2,4-Trimethylbenzene	2.5 ug/m3	1.8	1.8	03/12/14 21:3-	4 95-63-6	
1,3,5-Trimethylbenzene	1.9 ug/m3	1.8	1.8	03/12/14 21:3-	4 108-67-8	
Vinyl chloride	ND ug/m3	0.47	1.8	03/12/14 21:3-	4 75 -01-4	
m&p-Xylene	27.4 ug/m3	3.2	1.8	03/12/14 21:3-	4 179601-23-1	
o-Xylene	7.3 ug/m3	1.6	1.8	03/12/14 21:3	4 95- 4 7-6	

Project:

MRC SV/IAQ Study Feb 2014 REV

Pace Project No.: 10259329

Sample: IA-150-VLS-2	Lab ID: 10259329007	Collected: 02/26/1	4 18:34	Received: 03/04/14 10:	00 Matrix: Air	
Parameters	Results Units	Report Limit	DF	Prepared Analyz	ted CAS No.	Qua
TO15 MSV AIR	Analytical Method: TO-15					
Benzene	0.67 ug/m3	0.58	1.8	03/12/14	22:03 71-43-2	
Carbon tetrachloride	ND ug/m3	1.2	1.8	03/12/14	22:03 56-23-5	
Chlorodifluoromethane	2.1 ug/m3	0.36	1.8	03/12/14	22:03 75-45-6	
Chloroform	ND ug/m3	1.8	1.8	03/12/14	22:03 67-66-3	
Dichlorodifluoromethane	1.9 ug/m3	1.8	1.8	03/12/14	22:03 75-71-8	
1,1-Dichloroethane	ND ug/m3	1.5	1.8	03/12/14	22:03 75-34-3	
1,2-Dichloroethane	ND ug/m3	0.74	1.8	03/12/14	22:03 107-06-2	
1,1-Dichloroethene	ND ug/m3	1.5	1.8	03/12/14	22:03 75-35-4	
cis-1,2-Dichloroethene	ND ug/m3	1.5	1.8	03/12/14	22:03 156-59-2	
trans-1,2-Dichloroethene	ND ug/m3	1.5	1.8	03/12/14	22:03 156-60-5	
Ethylbenzene	12.8 ug/m3	1.6	1.8	03/12/14	22:03 100-41-4	
Methylene Chloride	11.8 ug/m3	1.3	1.8	03/12/14	22:03 75-09-2	
Methyl-tert-butyl ether	ND ug/m3	1.3	1.8	03/12/14	22:03 1634-04-4	
Naphthalene	1.3J ug/m3	1.9	1.8	03/12/14	22:03 91-20-3	
Tetrachloroethene	ND ug/m3	1.2	1.8	03/12/14	22:03 127-18-4	
Toluene	11.2 ug/m3	1.4	1.8	03/12/14	22:03 108-88-3	
1,2,4-Trichlorobenzene	ND ug/m3	2.7	1.8		22:03 120-82-1	
1,1,1-Trichloroethane	ND ug/m3	2.0	1.8	03/12/14	22:03 71-55-6	
1,1,2-Trichloroethane	ND ug/m3	0.99	1.8	03/12/14	22:03 79-00-5	
Trichloroethene	ND ug/m3	0.99	1.8	03/12/14	22:03 79-01-6	
1,2,3-Trimethylbenzene	1.4 ug/m3	0.36	1.8	03/12/14	22:03 526-73-8	
1,2,4-Trimethylbenzene	2.7 ug/m3	1.8	1.8	03/12/14	22:03 95-63-6	
1,3,5-Trimethylbenzene	1.9 ug/m3	1.8	1.8	03/12/14	22:03 108-67-8	
Vinyl chloride	ND ug/m3	0.47	1.8	03/12/14	22:03 75-01-4	
m&p-Xylene	32.2 ug/m3	3.2	1.8	03/12/14	22:03 179601-23-1	
o-Xylene	8.8 ug/m3	1.6	1.8		22:03 95-47-6	

Project:

MRC SV/IAQ Study Feb 2014 REV

Pace Project No.: 10259329

Sample: IA-151-VLS-2	Lab ID: 10259329005	Collected: 02/26/14 18	:50 Received: 03/04/14 10:00 Matrix: Air
Parameters	Results Units	Report Limit Df	Prepared Analyzed CAS No. Qua
TO15 MSV AIR	Analytical Method: TO-15		
Benzene	0.75 ug/m3	0.55 1.6	8 03/13/14 00:29 71-43-2
Carbon tetrachloride	ND ug/m3	1.1 1.6	8 03/13/14 00:29 56-23-5
Chlorodifluoromethane	2.7 ug/m3	1.2 1.6	8 03/13/14 00:29 75-45-6
Chloroform	ND ug/m3	1.7 1.6	8 03/13/14 00:29 67-66-3
Dichlorodifluoromethane	2.4 ug/m3	1.7 1.6	8 03/13/14 00:29 75-71-8
1,1-Dichloroethane	ND ug/m3	1.4 1.6	8 03/13/14 00:29 75-34-3
1,2-Dichloroethane	ND ug/m3	0.69 1.6	8 03/13/14 00:29 107-06-2
1,1-Dichloroethene	ND ug/m3	1.4 1.6	8 03/13/14 00:29 75-35-4
cis-1,2-Dichloroethene	ND ug/m3	1.4 1.6	8 03/13/14 00:29 156-59-2
trans-1,2-Dichloroethene	ND ug/m3	1.4 1.6	8 03/13/14 00:29 156-60-5
Ethylbenzene	ND ug/m3	1.5 1.6	8 03/13/14 00:29 100-41-4
Methylene Chloride	7.3 ug/m3	1.2 1.6	68 03/13/14 00:29 75-09-2
Methyl-tert-butyl ether	ND ug/m3	1.2 1.6	8 03/13/14 00:29 1634-04-4
Naphthalene	ND ug/m3	1.8 1.6	68 03/13/14 00:29 91-20-3
Tetrachloroethene	ND ug/m3	1.2 1.6	68 03/13/14 00:29 127-18-4
Toluene	5.0 ug/m3	1.3 1.6	03/13/14 00:29 108-88-3
1,2,4-Trichlorobenzene	ND ug/m3	2.5 1.6	03/13/14 00:29 120-82-1
1,1,1-Trichloroethane	ND ug/m3	1.9 1.6	03/13/14 00:29 71-55-6
1,1,2-Trichloroethane	ND ug/m3	0.92 1.6	03/13/14 00:29 79-00-5
Trichloroethene	ND ug/m3	0.92 1.6	03/13/14 00:29 79-01-6
1,2,3-Trimethylbenzene	ND ug/m3	1.7 1.6	68 03/13/14 00:29 526-73-8
1,2,4-Trimethylbenzene	ND ug/m3	1.7 1.6	68 03/13/14 00:29 95-63-6
1,3,5-Trimethylbenzene	ND ug/m3	1.7 1.6	03/13/14 00:29 108-67-8
Vinyl chloride	ND ug/m3	0.44 1.6	68 03/13/14 00:29 75-01 -4
m&p-Xylene	ND ug/m3	3.0 1.6	03/13/14 00:29 179601-23-1
o-Xylene	ND ug/m3	1.5 1.6	03/13/14 00:29 95-47-6

Date: 04/17/2014 12:22 PM

Project:

MRC SV/IAQ Study Feb 2014 REV

Pace Project No.:

Date: 04/17/2014 12:22 PM

Sample: IA-152-VLS-2	Lab ID: 10259329004	Collected: 02/26/14	18:45	Received: 03/04/14 10:00 Matrix: Air	
Parameters	Results Units	Report Limit	DF	Prepared Analyzed CAS No.	Qual
TO15 MSV AIR	Analytical Method: TO-15	5			
Benzene	0.83 ug/m3	0.58	1.8	03/13/14 00:58 71-43-2	
Carbon tetrachloride	ND ug/m3	1.2	1.8	03/13/14 00:58 56-23-5	
Chlorodifluoromethane	3.8 ug/m3	1.3	1.8	03/13/14 00:58 75-45-6	
Chloroform	ND ug/m3	1.8	1.8	03/13/14 00:58 67-66-3	
Dichlorodifluoromethane	2.6 ug/m3	1.8	1.8	03/13/14 00:58 75-71-8	
1,1-Dichloroethane	ND ug/m3	1,5	1.8	03/13/14 00:58 75-34-3	
1,2-Dichloroethane	ND ug/m3	0.74	1.8	03/13/14 00:58 107-06-2	
1,1-Dichloroethene	ND ug/m3	1.5	1.8	03/13/14 00:58 75-35-4	
cis-1,2-Dichloroethene	ND ug/m3	1.5	1.8	03/13/14 00:58 156-59-2	
trans-1,2-Dichloroethene	ND ug/m3	1.5	1.8	03/13/14 00:58 156-60-5	
Ethylbenzene	ND ug/m3	1.6	1.8	03/13/14 00:58 100-41-4	
Methylene Chloride	19.3 ug/m3	1.3	1.8	03/13/14 00:58 75-09-2	
Methyl-tert-butyl ether	ND ug/m3	1.3	1.8	03/13/14 00:58 1634-04-4	
Naphthalene	ND ug/m3	1.9	1.8	03/13/14 00:58 91-20-3	
Tetrachloroethene	ND ug/m3	1.2	1.8	03/13/14 00:58 127-18-4	
Toluene	4.4 ug/m3	1.4	1.8	03/13/14 00:58 108-88-3	
1,2,4-Trichlorobenzene	ND ug/m3	2.7	1.8	03/13/14 00:58 120-82-1	
1,1,1-Trichloroethane	ND ug/m3	2.0	1.8	03/13/14 00:58 71-55-6	
1,1,2-Trichloroethane	ND ug/m3	0.99	1.8	03/13/14 00:58 79-00-5	
Trichloroethene	ND ug/m3	0.99	1.8	03/13/14 00:58 79-01-6	
1,2,3-Trimethylbenzene	ND ug/m3	1.8	1.8	03/13/14 00:58 526-73-8	
1,2,4-Trimethylbenzene	ND ug/m3	1.8	1.8	03/13/14 00:58 95-63-6	
1,3,5-Trimethylbenzene	ND ug/m3	1.8	1.8	03/13/14 00:58 108-67-8	
Vinyl chloride	ND ug/m3	0.47	1.8	03/13/14 00:58 75-01-4	
m&p-Xylene	ND ug/m3	3.2	1.8	03/13/14 00:58 179601-23	1
o-Xylene	ND ug/m3	1.6	1.8	03/13/14 00:58 95-47-6	

Project:

MRC SV/IAQ Study Feb 2014 REV

Pace Project No.:

Sample: IA-DUP1-VLS-2	Lab ID: 10259329002	Collected: 02/26/1	4 00:00	Received: (03/04/14 10:00	Matrix: Air	
Parameters	Results Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Quai
TO15 MSV AIR	Analytical Method: TO-15						
Benzene	0.92 ug/m3	0.55	1.68		03/13/14 02:28	3 71-43-2	
Carbon tetrachloride	ND ug/m3	1.1	1.68		03/13/14 02:28	3 56-23-5	
Chlorodifluoromethane	4.6 ug/m 3	1.2	1.68		03/13/14 02:28	3 75-45-6	
Chloroform	ND ug/m3	1.7	1.68		03/13/14 02:28	8 67-66-3	
Dichlorodifluoromethane	2.6 ug/m3	1.7	1.68		03/13/14 02:28	3 75-71-8	
1,1-Dichloroethane	ND ug/m3	1.4	1.68		03/13/14 02:28	3 75-34-3	
1,2-Dichloroethane	ND ug/m3	0.69	1.68		03/13/14 02:28	3 107-06-2	
1,1-Dichloroethene	ND ug/m3	1.4	1.68		03/13/14 02:28	3 75-35-4	
cis-1,2-Dichloroethene	ND ug/m3	1.4	1.68		03/13/14 02:28	3 156-59-2	
trans-1,2-Dichloroethene	ND ug/m3	1.4	1.68		03/13/14 02:28	3 156-60-5	
Ethylbenzene	14.7 ug/m3	1.5	1.68		03/13/14 02:28	3 100-41-4	
Methylene Chloride	11.7 ug/m3	1.2	1.68		03/13/14 02:28	3 75-09-2	
Methyl-tert-butyl ether	ND ug/m3	1.2	1.68		03/13/14 02:28	3 1634-04- 4	
Naphthalene	ND ug/m3	1.8	1.68		03/13/14 02:28	3 91-20-3	
Tetrachloroethene	ND ug/m3	1.2	1.68		03/13/14 02:28	3 127-18-4	
Toluene	18.9 ug/m3	1.3	1.68		03/13/14 02:28	3 108-88-3	
1,2,4-Trichlorobenzene	ND ug/m3	2.5	1.68		03/13/14 02:28	3 120-82-1	
1,1,1-Trichloroethane	ND ug/m3	1.9	1.68		03/13/14 02:28	3 71-55-6	
1,1,2-Trichloroethane	ND ug/m3	0.92	1.68		03/13/14 02:28	3 79-00-5	
Trichloroethene	ND ug/m3	0.92	1.68		03/13/14 02:28	3 79-01-6	
1,2,3-Trimethylbenzene	1.6J ug/m3	1.7	1.68		03/13/14 02:28	3 526-73-8	
1,2,4-Trimethylbenzene	4.9 ug/m3	1.7	1.68		03/13/14 02:28	3 95-63-6	
1,3,5-Trimethylbenzene	ND ug/m3	1.7	1.68		03/13/14 02:28	3 108-67-8	
Vinyl chloride	ND ug/m3	0.44	1.68		03/13/14 02:28	3 75-01-4	
m&p-Xylene	38.5 ug/m3	3.0	1.68		03/13/14 02:28	3 179601-23-1	
o-Xylene	10.3 ug/m3	1.5	1.68		03/13/14 02:28	3 95-47-6	

Project:

MRC SV/IAQ Study Feb 2014 REV

Pace Project No.:

Sample: BCK-1-16	Lab ID: 10259332027	Collected: 02/25/14	15:37	Received: 03/04/14 10:00	Matrix: Air	
Parameters	Results Units	Report Limit	DF	Prepared Analyzed	CAS No.	Qua
TO15 MSV AIR	Analytical Method: TO-15					
Benzene	0.93 ug/m3	0.55	1.68	03/15/14 06:14	71-43-2	
Carbon tetrachloride	ND ug/m3	1.1	1.68	03/15/14 06:14	56-23-5	
Chlorodifluoromethane	10.8 ug/m3	0.34	1.68	03/15/14 06:14		
Chloroform	ND ug/m3	1.7	1.68	03/15/14 06:14		
Dichlorodifluoromethane	2.1 ug/m3	1.7	1.68	03/15/14 06:14	75-71-8	
1,1-Dichloroethane	ND ug/m3	1.4	1.68	03/15/14 06:14	75-34-3	
1,2-Dichloroethane	ND ug/m3	0.69	1.68	03/15/14 06:14	107-06-2	
1,1-Dichloroethene	ND ug/m3	1.4	1.68	03/15/14 06:14		
cis-1,2-Dichloroethene	ND ug/m3	1.4	1.68	03/15/14 06:14	156-59-2	
trans-1,2-Dichloroethene	ND ug/m3	1.4	1.68	03/15/14 06:14	156-60-5	
Ethylbenzene	1.2J ug/m3	1.5	1.68	03/15/14 06:14	100-41-4	
Methylene Chloride	580 ug/m3	16.8	23.71	03/18/14 14:34	75-09-2	
Methyl-tert-butyl ether	ND ug/m3	1.2	1.68	03/15/14 06:14	1 1634-04-4	
Naphthalene	1.3J ug/m3	1.8	1.68	03/15 /14 06:14	91-20-3	
Tetrachloroethene	ND ug/m3	1.2	1.68	03/15/14 06:14	1 127-18-4	
Toluene	8.3 ug/m3	1.3	1.68	03/15/14 06:14	108-88-3	
1,2,4-Trichlorobenzene	ND ug/m3	2.5	1.68	03/15/14 06:14	120-82-1	
1,1,1-Trichloroethane	ND ug/m3	1.9	1.68	03/15/14 06:14	71-55-6	
1,1,2-Trichloroethane	ND ug/m3	0.92	1.68	03/15/14 06:14	79-00-5	
Trichloroethene	ND ug/m3	0.92	1.68	03/15/14 06:14	79-01-6	
1,2,3-Trimethylbenzene	ND ug/m3	0.34	1.68	03/15/14 06:14	526-73-8	
1,2,4-Trimethylbenzene	1.3J ug/m3	1.7	1.68	03/15/14 06:14	95-63-6	
1,3,5-Trimethylbenzene	ND ug/m3	1.7	1.68	03/15/14 06:14	1 108-67-8	
Vinyl chloride	ND ug/m3	0.44	1.68	03/15/14 06:14	75-01 - 4	
m&p-Xylene	1.7J ug/m3	3.0	1.68	03/15/14 06:14	179601-23-1	
o-Xylene	ND ug/m3	1.5	1.68	03/15/14 06:14		

Project:

MRC SV/IAQ Study Feb 2014 REV

Pace Project No.:

Date: 04/17/2014 12:22 PM

Sample: BCK-2-16	Lab ID: 102593320	28 Collected: 02/25/1	4 15:33	Received: 03/04	\$/14 10:00 M	latrix: Air	
Parameters	Results Uni	ts Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
TO15 MSV AIR	Analytical Method: TO	-15					
Benzene	2.7 ug/m3	0.55	1.68	0	3/15/14 01:54	71-43-2	
Carbon tetrachloride	ND ug/m3	1.1	1.68	0	3/15/14 01:54	56-23-5	
Chlorodifluoromethane	2.7 ug/m3	0.34	1.68	_	3/15/14 01:54		
Chloroform	ND ug/m3	1.7	1.68	0	3/15/14 01:54	67-66-3	
Dichlorodifluoromethane	3.4 ug/m3	1.7	1.68	0	3/15/14 01:54	75-71-8	
1,1-Dichloroethane	ND ug/m3	1.4	1.68		3/15/14 01:54		
1,2-Dichloroethane	ND ug/m3	0.69	1.68	0	3/15/14 01:54	107-06-2	
1,1-Dichloroethene	ND ug/m3	1.4	1.68	0	3/15/14 01:54	75-35-4	
cis-1,2-Dichloroethene	ND ug/m3	1.4	1.68	_	3/15/14 01:54		
trans-1,2-Dichloroethene	ND ug/m3	1.4	1.68	0	3/15/14 01:54	156-60-5	
Ethylbenzene	2.6 ug/m3	1.5	1.68	0	3/15/14 01:54	100-41-4	
Methylene Chloride	23.4 ug/m3	1.2	1.68	0	3/15/14 01:54	75-09-2	
Methyl-tert-butyl ether	ND ug/m3	1.2	1.68	0	3/15/14 01:54	1634-04-4	
Naphthalene	3.5 ug/m3	1.8	1.68	0	3/15/14 01:54	91-20-3	
Tetrachloroethene	1.9 ug/m3	1.2	1.68	0	3/15/14 01:54	127-18 -4	
Toluene	24.0 ug/m3	1.3	1.68	0	3/15/14 01:54	108-88-3	
1,2,4-Trichlorobenzene	ND ug/m3	2.5	1.68	0	3/15/14 01:54	120-82-1	
1,1,1-Trichloroethane	ND ug/m3	1.9	1.68	0	3/15/14 01:54	71-55-6	
1,1,2-Trichloroethane	ND ug/m3	0.92	1.68	0	3/15/14 01:54	79-00-5	
Trichloroethene	4.2 ug/m3	0.92	1.68	0	3/15/14 01:54	79-01-6	
1,2,3-Trimethylbenzene	1.4 ug/m3	0.34	1.68	0	3/15/14 01:54	526-73-8	
1,2,4-Trimethylbenzene	2.8 ug/m3	1.7	1.68	0	3/15/14 01:54	95-63-6	
1,3,5-Trimethylbenzene	ND ug/m3	1.7	1.68	0	3/15/14 01:54	108-67-8	
Vinyl chloride	ND ug/m3	0.44	1.68	0	3/15/14 01:54	75-01-4	
m&p-Xylene	5.8 ug/m3	3.0	1.68	0	3/15/14 01:54	179601-23-1	
o-Xyiene	2.3 ug/m3	1.5	1.68	0	3/15/14 01:54	95-47-6	

Project:

MRC SV/IAQ Study Feb 2014 REV

Pace Project No.:

Sample: BCK-3-16	Lab ID: 10259332029	Collected: 02/25/1	4 15:32	Received: 03/04/14 10:00	Matrix: Air	
Parameters	Results Units	Report Limit	DF	Prepared Analyzed	CAS No.	Qua
TO15 MSV AIR	Analytical Method: TO-15	i				
Benzene	0.78 ug/m3	0.55	1.68	03/15/14 00:5	_	
Carbon tetrachloride	ND ug/m3	1.1	1.68	03/15/14 00:5		
Chlorodifluoromethane	1.2 ug/m3	0.34	1.68	03/15/14 00:5		
Chloroform	ND ug/m3	1.7	1.68	03/15/14 00:5		
Dichlorodifluoromethane	2.1 ug/m3	1.7	1.68	03/15/14 00:5		
1,1-Dichloroethane	ND ug/m3	1.4	1.68	03/15/14 00:5		
1,2-Dichloroethane	ND ug/m3	0.69	1.68	03/15/14 00:5		
1,1-Dichloroethene	ND ug/m3	1.4	1.68	03/15/14 00:5		
cis-1,2-Dichloroethene	ND ug/m3	1.4	1.68	03/15/14 00:5		
trans-1,2-Dichloroethene	ND ug/m3	1.4	1.68	03/15/14 00:5		
Ethylbenzene	ND ug/m3	1.5	1.68	03/15/14 00:5	6 100-41-4	
Methylene Chloride	21.2 ug/m3	1.2	1.68	03/18/14 02:2		
Methyl-tert-butyl ether	ND ug/m3	1.2	1.68	03/15/14 00:5	6 1634-04 -4	
Naphthalene	1.4J ug/m3	1.8	1.68	03/15/14 00:5	6 91-20-3	
Tetrachloroethene	ND ug/m3	1.2	1.68	03/15/14 00:5	6 127-18 -4	
Toluene	1.3J ug/m3	1.3	1.68	03/15/14 00:5	6 108-88-3	
1,2,4-Trichlorobenzene	ND ug/m3	2.5	1.68	03/15/14 00:5	6 120-82-1	
1,1,1-Trichloroethane	ND ug/m3	1.9	1.68	03/15/14 00:5	6 71-55-6	
1,1,2-Trichloroethane	ND ug/m3	0.92	1.68	03/15/14 00:5	6 79-00-5	
Trichloroethene	ND ug/m3	0.92	1.68	03/15/14 00:5	6 79-01-6	
1,2,3-Trimethylbenzene	1.3 ug/m3	0.34	1.68	03/15/14 00:5	6 526-73-8	
1,2,4-Trimethylbenzene	2.2 ug/m3	1.7	1.68	03/15/14 00:5	6 95-63-6	
1,3,5-Trimethylbenzene	1.7 ug/m3	1.7	1.68	03/15/14 00:5	6 108-67-8	
Vinyl chloride	ND ug/m3	0.44	1.68	03/15/14 00:5	6 75-01-4	
m&p-Xylene	1.5J ug/m3	3.0	1.68	03/15/14 00:5	6 179601-23-1	
o-Xylene	ND ug/m3	1.5	1.68	03/15/14 00:5	66 95-47-6	

Project:

MRC SV/iAQ Study Feb 2014 REV

Pace Project No.:

Date: 04/17/2014 12:22 PM

Sample: BCK-4-16	Lab ID: 1025933203	02/25/1	4 15:29	Received: 03/04/14 10:00	Matrix: Air	
Parameters	Results Unit	s Report Limit	DF	Prepared Analyzed	CAS No.	Qua
TO15 MSV AIR	Analytical Method: TO-	15				
Benzene	1.1 ug/m 3	0.81	2.49	03/18/14 02:5	8 71-43-2	
Carbon tetrachloride	ND ug/m3	1.6	2.49	03/18/14 02:5	8 56-23- 5	
Chlorodifluoromethane	1.8 ug/m3	0.50	2.49	03/18/14 02:5	8 75-45-6	
Chloroform	ND ug/m3	2.5	2.49	03/18/14 02:5	8 67-66-3	
Dichlorodifluoromethane	2.9 ug/m3	2.5	2.49	03/18/14 02:5	8 75-71-8	
1,1-Dichloroethane	ND ug/m3	2.0	2.49	03/18/14 02:5	8 75-34-3	
1,2-Dichloroethane	ND ug/m3	1.0	2.49	03/18/14 02:5	8 107-06-2	
1,1-Dichloroethene	ND ug/m3	2.0	2.49	03/18/14 02:5	8 75-35-4	
cis-1,2-Dichloroethene	ND ug/m3	2.0	2.49	03/18/14 02:5	8 156-59-2	
rans-1,2-Dichloroethene	ND ug/m3	2.0	2.49	03/18/14 02:5	8 156-60-5	
Ethylbenzene	ND ug/m3	2.2	2.49	03/18/14 02:5	8 100-41-4	
Methylene Chloride	10 ug/m3	1.8	2.49	03/18/14 02:5	8 75-09-2	
Methyl-tert-butyl ether	ND ug/m3	1.8	2.49	03/18/14 02:5	8 1634-04-4	
Naphthalene	ND ug/m3	2.7	2.49	03/18/14 02:5	8 91-20-3	
Tetrachloroethene	ND ug/m3	1.7	2.49	03/18/14 02:5	8 127-18-4	
Toluene	1.6J ug/m3	1.9	2.49	03/18/14 02:5	8 108-88-3	
1,2,4-Trichlorobenzene	ND ug/m3	3.8	2.49	03/18/14 02:5	8 120-82-1	
1,1,1-Trichloroethane	ND ug/m3	2.8	2.49	03/18/14 02:5	8 71-55-6	
1,1,2-Trichloroethane	ND ug/m3	1.4	2.49	03/18/14 02:5	8 79-00-5	
Trichloroethene	ND ug/m3	1.4	2.49	03/18/14 02:5	8 79 - 01-6	
1,2,3-Trimethylbenzene	ND ug/m3	0.50	2.49	03/18/14 02:5	8 526-73-8	
1,2,4-Trimethylbenzene	ND ug/m3	2.5	2.49	03/18/14 02:5	8 95-63-6	
1,3,5-Trimethylbenzene	ND ug/m3	2.5	2.49	03/18/14 02:5	8 108-67-8	
Vinyl chloride	ND ug/m3	0.65	2.49	03/18/14 02:5	8 75-01-4	
m&p-Xylene	ND ug/m3	4.4	2.49	03/18/14 02:5	8 179601-23-1	
o-Xylene	ND ug/m3	2.2	2.49	03/18/14 02:5	8 95-47-6	

Project:

MRC SV/IAQ Study Feb 2014 REV

Pace Project No.: 10259332

Sample: IA-015-A-16	Lab ID: 10259332002	Collected: 02/25/1	4 15:49	Received: 03/04/14 10:00	Matrix: Air
Parameters	Results Units	Report Limit	DF	Prepared Analyzed	CAS No. Qu
TO15 MSV AIR	Analytical Method: TO-15				
Benzene	1.2 ug/m3	0.55	1.68	03/12/14 21:34	
Carbon tetrachloride	ND ug/m3	1.1	1.68	03/12/14 21:34	
Chlorodifluoromethane	7.5 ug/m3	1.2	1.68	03/12/14 21:34	
Chloroform	ND ug/m3	1.7	1.68	03/12/14 21:34	
Dichlorodifluoromethane	2.9 ug/m3	1.7	1.68	03/12/14 21:34	
1,1-Dichloroethane	ND ug/m3	1.4	1.68	03/12/14 21:34	
1,2-Dichloroethane	ND ug/m3	0.69	1.68	03/12/14 21:34	
1.1-Dichloroethene	ND ug/m3	1.4	1.68	03/12/14 21:34	
cis-1,2-Dichloroethene	ND ug/m3	1.4	1.68	03/12/14 21:34	156-59-2
trans-1,2-Dichloroethene	ND ug/m3	1.4	1.68	03/12/14 21:34	156-60-5
Ethylbenzene	0.77J ug/m3	1.5	1.68	03/12/14 21:34	1 100-41-4
Methylene Chloride	13.7 ug/m3	1.2	1.68	03/12/14 21:34	
Methyl-tert-butyl ether	ND ug/m3	1.2	1.68	03/12/14 21:34	1 1634-04-4
Naphthalene	ND ug/m3	1.8	1.68	03/12/14 21:34	4 91-20-3
Tetrachloroethene	ND ug/m3	1.2	1.68	03/12/14 21:34	4 127-18- 4
Toluene	15.6 ug/m3	1.3	1.68	03/12/14 21:34	4 108-88-3
1,2,4-Trichlorobenzene	ND ug/m3	2.5	1.68	03/12/14 21:34	4 120-82-1
1,1,1-Trichloroethane	ND ug/m3	1.9	1.68	03/12/14 21:34	4 71-55-6
1,1,2-Trichloroethane	ND ug/m3	0.92	1.68	03/12/14 21:34	4 79-00-5
Trichloroethene	ND ug/m3	0.92	1.68	03/12/14 21:34	4 79-01-6
1,2,3-Trimethylbenzene	ND ug/m3	1.7	1.68	03/12/14 21:3	4 526-73-8
1,2,4-Trimethylbenzene	ND ug/m3	1.7	1.68	03/12/14 21:3	4 95-63 - 6
1,3,5-Trimethylbenzene	ND ug/m3	1.7	1.68	03/12/14 21:3-	4 108-67-8
Vinyl chloride	ND ug/m3	0.44	1.68	03/12/14 21:3	4 75-01-4
m&p-Xylene	3.3 ug/m3	3.0	1.68	. 03/12/14 21:3	4 179601-23-1
o-Xylene	1.3J ug/m3	1.5	1.68	03/12/14 21:3	4 95 -4 7-6

Project:

MRC SV/IAQ Study Feb 2014 REV

Pace Project No.:

Date: 04/17/2014 12:22 PM

Sample: IA-018-A-16	Lab ID: 10259332022	Collected: 02/25/1	4 16:23	Received: 03/04/14 10:00	Matrix: Air	
Parameters	Results Units	Report Limit	DF	Prepared Analyzed	CAS No.	Qua
TO15 MSV AIR	Analytical Method: TO-15					
Benzene	0.75 ug/m3	0.57	1.74	03/17/14 23:18	71-43-2	
Carbon tetrachloride	ND ug/m3	1.1	1.74	03/17/14 23:18	56-23-5	
Chlorodifluoromethane	2.6 ug/m3	0.35	1.74	03/17/14 23:18	75-45-6	
Chloroform	1.4J ug/m3	1.7	1.74	03/17/14 23:18	67 - 66-3	
Dichlorodifluoromethane	2.0 ug/m3	1.8	1.74	03/17/14 23:18	75-71-8	
1,1-Dichloroethane	ND ug/m3	1.4	1.74	03/17/14 23:18	75-34-3	
1,2-Dichloroethane	ND ug/m3	0.71	1.74	03/17/14 23:18	107-06-2	
1,1-Dichloroethene	ND ug/m3	1.4	1.74	03/17/14 23:18	3 75- 35-4	
cis-1,2-Dichloroethene	ND ug/m3	1.4	1.74	03/17/14 23:18		
rans-1,2-Dichloroethene	ND ug/m3	1.4	1.74	03/17/14 23:18	156-60-5	
Ethylbenzene	ND ug/m3	1.5	1.74	03/17/14 23:18	100-41-4	
Methylene Chloride	14.4 ug/m3	1.2	1.74	03/17/14 23:18	75-09-2	
Methyl-tert-butyl ether	ND ug/m3	1.3	1.74	03/17/14 23:18	1634-04-4	
Naphthalene	2.8 ug/m3	1.9	1.74	03/17/14 23:18	91-20-3	
Tetrachloroethene	ND ug/m3	1.2	1.74	03/17/14 23:18	3 127-18-4	
Toluene	1.7 ug/m3	1.3	1.74	03/17/14 23:18	108-88-3	
1,2,4-Trichlorobenzene	ND ug/m3	2.6	1.74	03/17/14 23:18	3 120-82-1	
1,1,1-Trichloroethane	ND ug/m3	1.9	1.74	03/17/14 23:18	3 71-55-6	
1,1,2-Trichloroethane	ND ug/m3	0.96	1.74	03/17/14 23:18	3 79-00-5	
Trichloroethene	1.0 ug/m3	0.96	1.74	03/17/14 23:18	3 79-01-6	
1,2,3-Trimethylbenzene	ND ug/m3	0.35	1.74	03/17/14 23:18	526-73-8	
1,2,4-Trimethylbenzene	ND ug/m3	1.7	1.74	03/17/14 23:18	95-63-6	
1,3,5-Trimethylbenzene	ND ug/m3	1.7	1.74	03/17/14 23:18	3 108 -67 - 8	
Vinyl chloride	ND ug/m3	0.45	1.74	03/17/14 23:18	3 75-01-4	
m&p-Xylene	ND ug/m3	3.1	1.74	03/17/14 23:18	3 179601-23-1	
o-Xylene	ND ug/m3	1.5	1.74	03/17/14 23:18		

Project:

MRC SV/IAQ Study Feb 2014 REV

Pace Project No.:

Sample: IA-075-A-16	Lab ID: 10259332018	Collected: 02/25/1	4 16:17	Received: 03	3/04/14 10:00 N	latrix: Air	
Parameters	Results Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
TO15 MSV AIR	Analytical Method: TO-1	5					
Benzene	15.9 ug/m3	0.61	1.87		03/15/14 00:04		
Carbon tetrachloride	ND ug/m3	1.2	1.87		03/15/14 00:04		
Chlorodifluoromethane	3.9 ug/m3	0.37	1.87		03/15/14 00:04		
Chloroform	ND ug/m3	1.9	1.87		03/15/14 00:04		
Dichlorodifluoromethane	2.2 ug/m3	1.9	1.87		03/15/14 00:04	75 - 71-8	
1,1-Dichloroethane	ND ug/m3	1.5	1.87		03/15/14 00:04		
1,2-Dichloroethane	ND ug/m3	0.77	1.87		03/15/14 00:04		
1.1-Dichloroethene	ND ug/m3	1.5	1.87		03/15/14 00:04	75-35-4	
cis-1,2-Dichloroethene	ND ug/m3	1.5	1.87		03/15/14 00:04		
trans-1,2-Dichloroethene	ND ug/m3	1.5	1.87		03/15/14 00:04	156 -6 0-5	
Ethylbenzene	0.87J ug/m3	1.6	1.87		03/15/14 00:04	100-41-4	
Methylene Chloride	14.7 ug/m3	1.3	1.87		03/15/14 00:04	75-09-2	
Methyl-tert-butyl ether	ND ug/m3	1.4	1.87		03/15/14 00:04	1634-04-4	
Naphthalene	3.6 ug/m3	2.0	1.87		03/15/14 00:04	91-20-3	
Tetrachloroethene	ND ug/m3	1.3	1.87		03/15/14 00:04	127-18-4	
Toluene	49.3 ug/m3	1.4	1.87		03/15/14 00:04	108-88-3	
1,2,4-Trichlorobenzene	ND ug/m3	2.8	1.87		03/15/14 00:04	120-82-1	
1,1,1-Trichloroethane	ND ug/m3	2.1	1.87		03/15/14 00:04	71-55 -6	
1.1.2-Trichloroethane	ND ug/m3	1.0	1.87		03/15/14 00:04	79-00-5	
Trichloroethene	1.6 ug/m3	1.0	1.87		03/15/14 00:04	79-0 1- 6	
1,2,3-Trimethylbenzene	ND ug/m3	0.37	1.87		03/15/14 00:04	526-73-8	
1,2,4-Trimethylbenzene	ND ug/m3	1.9	1.87		03/15/14 00:04	95 - 63-6	
1,3,5-Trimethylbenzene	ND ug/m3	1.9	1.87		03/15/14 00:04	108-67-8	
Vinyl chloride	ND ug/m3	0.49	1.87		03/15/14 00:04		
m&p-Xylene	3.0J ug/m3	3.3	1.87		03/15/14 00:04		
o-Xylene	1.1J ug/m3	1.6	1.87		03/15/14 00:04		

Project:

MRC SV/IAQ Study Feb 2014 REV

Pace Project No.: 10259332

Date: 04/17/2014 12:22 PM

Sample: IA-076-A-16	Lab ID: 10259332016	6 Collected: 02/25/1	4 16:12	Received: 03/04/14 10:00	Matrix: Air	
Parameters	Results Units	Report Limit	DF	Prepared Analyzed	CAS No.	Qua
TO15 MSV AIR	Analytical Method: TO-1	5				
Benzene	0.96 ug/m3	0.61	1.87	03/14/14 23	:05 71-43-2	
Carbon tetrachloride	ND ug/m3	1.2	1.87	03/14/14 23	:05 56-23-5	
Chlorodifluoromethane	2.9 ug/m 3	0.37	1.87		:05 75-45-6	
Chloroform	ND ug/m3	1.9	1.87	03/14/14 23	:05 67-66-3	
Dichlorodifluoromethane	2.1 ug/m3	1.9	1.87		:05 75-71-8	
1,1-Dichloroethane	ND ug/m3	1.5	1.87		:05 75-34-3	
1,2-Dichloroethane	ND ug/m3	0.77	1.87	03/14/14 23	:05 107-06-2	
1,1-Dichloroethene	ND ug/m3	1.5	1.87	03/14/14 23	:05 75-35-4	
cis-1,2-Dichloroethene	ND ug/m3	1.5	1.87	03/14/14 23	:05 156-59-2	
trans-1,2-Dichloroethene	ND ug/m3	1.5	1.87	03/14/14 23	:05 156-60-5	
Ethylbenzene	0.83J ug/m3	1.6	1.87	03/14/14 23	:05 100-41-4	
Methylene Chloride	9.8 ug/m3	1.3	1.87	03/14/14 23	:05 75-09-2	
Methyl-tert-butyl ether	ND ug/m3	1.4	1.87	03/14/14 23	:05 1634-04-4	
Naphthalene	3.6 ug/m3	2.0	1.87	03/14/14 23	:05 91-20-3	
Tetrachloroethene	ND ug/m3	1.3	1.87	03/14/14 23	:05 127-18-4	
Toluene	54.5 ug/m3	1.4	1.87	03/14/14 23	:05 108-88-3	
1,2,4-Trichlorobenzene	ND ug/m3	2.8	1.87	03/14/14 23	:05 120-82-1	
1,1,1-Trichloroethane	ND ug/m3	2.1	1.87	03/14/14 23	:05 71-55-6	
1,1,2-Trichloroethane	ND ug/m3	1.0	1.87	03/14/14 23	:05 79-00-5	
Trichloroethene	1.9 ug/m3	1.0	1.87	03/14/14 23	:05 79-01-6	
1,2,3-Trimethylbenzene	ND ug/m3	0.37	1.87	03/14/14 23	:05 526-73-8	
1,2,4-Trimethylbenzene	ND ug/m3	1.9	1.87	03/14/14 23	:05 95-63-6	
1,3,5-Trimethylbenzene	ND ug/m3	1.9	1.87	03/14/14 23	:05 108-67-8	
Vinyl chloride	ND ug/m3	0.49	1.87	03/14/14 23	3:05 75-01-4	
m&p-Xylene	2.9J ug/m3	3.3	1.87	03/14/14 23	3:05 179601-23-1	
o-Xylene	1.2J ug/m3	1.6	1.87	03/14/14 23	3:05 95-47-6	

Project:

MRC SV/IAQ Study Feb 2014 REV

Pace Project No.: 10259332

Date: 04/17/2014 12:22 PM

Sample: IA-079-A-16	Lab ID: 10259332010	Collected: 02/25/14	15:55	Received: 03/04/14 10:00	Matrix: Air	
Parameters	Results Units	Report Limit	DF	Prepared Analyzed	CAS No.	Qua
TO15 MSV AIR	Analytical Method: TO-15					
Benzene	0.88 ug/m3	0.61	1.87	03/14/14 20:1	0 71-43-2	
Carbon tetrachloride	ND ug/m3	1.2	1.87	03/14/14 20:1	0 56-23-5	
Chlorodifluoromethane	4.8 ug/m3	0.37	1.87	03/14/14 20:1	0 75-45-6	
Chloroform	ND ug/m3	1.9	1.87	03/14/14 20:1	0 67-66-3	
Dichlorodifluoromethane	2.4 ug/m3	1.9	1.87	03/14/14 20:1	0 75-71-8	
1,1-Dichloroethane	ND ug/m3	1.5	1.87	03/14/14 20:1	0 75-34-3	
1,2-Dichloroethane	ND ug/m3	0.77	1.87	03/14/14 20:1	0 107-06-2	
1,1-Dichloroethene	ND ug/m3	1.5	1.87	03/14/14 20:1	0 75-35-4	
cis-1,2-Dichloroethene	ND ug/m3	1.5	1.87	03/14/14 20:1	0 156-59-2	
trans-1,2-Dichloroethene	ND ug/m3	1.5	1.87	03/14/14 20:1	0 156-60-5	
Ethylbenzene	ND ug/m3	1.6	1.87	03/14/14 20:1	0 100-41-4	
Methylene Chloride	12.7 ug/m3	1.3	1.87	03/14/14 20:1	0 75-09-2	
Methyl-tert-butyl ether	ND ug/m3	1.4	1.87	03/14/14 20:1	0 1634-04-4	
Naphthalene	2.1 ug/m3	2.0	1.87	03/14/14 20:1	0 91-20-3	
Tetrachloroethene	ND ug/m3	1.3	1.87	03/14/14 20:1	0 127-18-4	
Toluene	41.8 ug/m3	1.4	1.87	03/14/14 20:1	0 108-88-3	
1,2,4-Trichlorobenzene	ND ug/m3	2.8	1.87	03/14/14 20:1	0 120-82-1	
1,1,1-Trichloroethane	ND ug/m3	2.1	1.87	03/14/14 20:1	0 71-55-6	
1,1,2-Trichloroethane	ND ug/m3	1.0	1.87	03/14/14 20:1	0 79-00-5	
Trichloroethene	ND ug/m3	1.0	1.87	03/14/14 20:1	0 79-01-6	
1,2,3-Trimethylbenzene	ND ug/m3	0.37	1.87	03/14/14 20:1	0 526-73-8	
1,2,4-Trimethylbenzene	ND ug/m3	1.9	1.87	03/14/14 20:1	0 95-63-6	
1,3,5-Trimethylbenzene	ND ug/m3	1.9	1.87	03/14/14 20:1	0 108-67-8	
Vinyl chloride	ND ug/m3	0.49	1.87	03/14/14 20:1	0 75-01-4	
m&p-Xylene	2.6J ug/m3	3.3	1.87	03/14/14 20:1	0 179601-23-1	
o-Xylene	0.90J ug/m3	1.6	1.87	03/14/14 20:1	0 95-47-6	

Project:

MRC SV/IAQ Study Feb 2014 REV

Pace Project No.: 10259332

Sample: IA-081-A-16	Lab ID: 10259332012	Collected: 02/25/1	4 16:00	Received: 03/04/14 10:00 Matrix: Air	
Parameters	Results Units	Report Limit	DF	Prepared Analyzed CAS No.	Qual
TO15 MSV AIR	Analytical Method: TO-15				
Benzene	1.4 ug/m3	0.86	2.66	03/17/14 22:44 71-43-2	
Carbon tetrachloride	ND ug/m3	1.7	2.66	03/17/14 22:44 56-23-5	
Chlorodifluoromethane	36.6 ug/m 3	0.53	2.66	03/17/14 22:44 75-45-6	
Chloroform	ND ug/m3	2.6	2.66	03/17/14 22:44 67-66-3	
Dichlorodifluoromethane	2.9 ug/m3	2.7	2.66	03/17/14 22:44 75-71-8	
1,1-Dichloroethane	ND ug/m3	2.2	2.66	03/17/14 22:44 75-34-3	
1,2-Dichloroethane	ND ug/m3	1.1	2.66	03/17/14 22:44 107-06-2	
1,1-Dichloroethene	ND ug/m3	2.2	2.66	03/17/14 22:44 75-35-4	
cis-1,2-Dichloroethene	ND ug/m3	2.2	2.66	03/17/14 22:44 156-59-2	
trans-1.2-Dichloroethene	ND ug/m3	2.2	2.66	03/17/14 22:44 156-60-5	
Ethylbenzene	36.6 ug/m3	2.3	2.66	03/17/14 22:44 100-41-4	
Methylene Chloride	37.0 ug/m3	1.9	2.66	03/17/14 22:44 75-09-2	
Methyl-tert-butyl ether	ND ug/m3	1.9	2.66	03/17/14 22:44 1634-04-4	
Naphthalene	3.7 ug/m3	2.8	2.66	03/17/14 22:44 91-20-3	
Tetrachloroethene	ND ug/m3	1.8	2.66	03/17/14 22:44 127-18-4	
Toluene	163 ug/m3	2.0	2.66	03/17/14 22:44 108-88-3	
1,2,4-Trichlorobenzene	ND ug/m3	4.0	2.66	03/17/14 22:44 120-82-1	
1,1,1-Trichloroethane	ND ug/m3	3.0	2.66	03/17/14 22:44 71-55-6	
1,1,2-Trichloroethane	ND ug/m3	1.5	2.66	03/17/14 22:44 79-00-5	
Trichloroethene	19.2 ug/m3	1.5	2.66	03/17/14 22:44 79-01-6	
1,2,3-Trimethylbenzene	3.6 ug/m3	0.53	2.66	03/17/14 22:44 526-73-8	
1,2,4-Trimethylbenzene	11.7 ug/m3	2.7	2.66	03/17/14 22:44 95-63-6	
1,3,5-Trimethylbenzene	4.9 ug/m3	2.7	2.66	03/17/14 22:44 108-67-8	
Vinyl chloride	ND ug/m3	0.69	2.66	03/17/14 22:44 75-01-4	
m&p-Xylene	161 ug/m3	4.7	2.66	03/17/14 22:44 179601-23-1	
o-Xylene	48.5 ug/m3	2.3	2.66	03/17/14 22:44 95-47-6	

Project:

MRC SV/IAQ Study Feb 2014 REV

Pace Project No.:

Sample: IA-093-A-16	Lab ID: 10259332026	Collected: 02/25/1	4 16:27	Received: 03/04/14 10:00 N	/latrix: Air	
Parameters	Results Units	Report Limit	DF	Prepared Analyzed	CAS No. Q	Qua
TO15 MSV AIR	Analytical Method: TO-1	5				
Benzene	0.98 ug/m3	0.84	2.58	03/18/14 01:23	71-43-2	
Carbon tetrachloride	ND ug/m3	1.7	2.58	03/18/14 01:23		
Chlorodifluoromethane	4.4 ug/m3	0.52	2.58	03/18/14 01:23	75- 45 -6	
Chloroform	ND ug/m3	2.6	2.58	03/18/14 01:23		
Dichlorodifluoromethane	3.1 ug/m3	2.6	2.58	03/18/14 01:23	75-71-8	
1,1-Dichloroethane	ND ug/m3	2.1	2.58	03/18/14 01:23	75-34-3	
1,2-Dichloroethane	ND ug/m3	1.1	2.58	03/18/14 01:23		
1,1-Dichloroethene	ND ug/m3	2.1	2.58	03/18/14 01:23		
cis-1,2-Dichloroethene	ND ug/m3	2.1	2.58	03/18/14 01:23	156-59-2	
rans-1,2-Dichloroethene	ND ug/m3	2.1	2.58	03/18/14 01:23	156 - 60-5	
Ethylbenzene	ND ug/m3	2.3	2.58	03/18/14 01:23	100-41-4	
Methylene Chioride	14.0 ug/m3	1.8	2.58	03/18/14 01:23		
Methyl-tert-butyl ether	ND ug/m3	1.9	2.58	03/18/14 01:23	1634-04-4	
Naphthalene	2.8 ug/m3	2.8	2.58	03/18/14 01:23	91-20-3	
Tetrachloroethene	ND ug/m3	1.8	2.58	03/18/14 01:23	127-18-4	
Toluene	3.0 ug/m3	2.0	2.58	03/18/14 01:23	108-88-3	
1,2,4-Trichlorobenzene	ND ug/m3	3.9	2.58	03/18/14 01:23	120-82-1	
1,1,1-Trichloroethane	ND ug/m3	2.9	2.58	03/18/14 01:23	71-55-6	
1,1,2-Trichloroethane	ND ug/m3	1.4	2.58	03/18/14 01:23	79-00-5	
Trichloroethene	5.9 ug/m3	1.4	2.58	03/18/14 01:23	79-01-6	
1,2,3-Trimethylbenzene	ND ug/m3	0.52	2.58	03/18/14 01:23	526-73-8	
1,2,4-Trimethylbenzene	ND ug/m3	2.6	2.58	03/18/14 01:23	95-63-6	
1,3,5-Trimethylbenzene	ND ug/m3	2.6	2.58	03/18/14 01:23	108-67-8	
Vinyl chloride	ND ug/m3	0.67	2.58	03/18/14 01:23	75-01-4	
m&p-Xylene	ND ug/m3	4.5	2.58	03/18/14 01:23	179601-23-1	
o-Xylene	ND ug/m3	2.3	2.58	03/18/14 01:23	95-47-6	

Project:

MRC SV/IAQ Study Feb 2014 REV

Pace Project No.:

Date: 04/17/2014 12:22 PM

10259332

Sample: IA-094-A-16	Lab ID: 10259332020	Collected: 02/25/14	16:19	Received: 03/04/14 10:00	Matrix: Air	
Parameters	Results Units	Report Limit	DF	Prepared Analyzed	CAS No.	Qua
TO15 MSV AIR	Analytical Method: TO-15					
Benzene	0.93 ug/m3	0.57	1.74	03/15/14 01:3	71-43-2	
Carbon tetrachloride	ND ug/m3	1.1	1.74	03/15/14 01:3	7 56-23-5	
Chlorodifluoromethane	1.7 ug/m3	0.35	1.74	03/15/14 01:3	75-45-6	
Chloroform	ND ug/m3	1.7	1.74	03/15/14 01:3	7 67-66-3	
Dichlorodifluoromethane	2.2 ug/m3	1.8	1.74	03/15/14 01:3	75-71-8	
1,1-Dichloroethane	ND ug/m3	1.4	1.74	03/15/14 01:3	75-34-3	
1,2-Dichloroethane	ND ug/m3	0.71	1.74	03/15/14 01:3	7 107-06-2	
1,1-Dichloroethene	ND ug/m3	1.4	1.74	03/15/14 01:3	75-35-4	
cis-1,2-Dichloroethene	ND ug/m3	1.4	1.74	03/15/14 01:3	7 156-59-2	
trans-1,2-Dichloroethene	ND ug/m3	1.4	1.74	03/15/14 01:3	7 156-60-5	
Ethylbenzene	ND ug/m3	1.5	1.74	03/15/14 01:3	7 100-41-4	
Methylene Chloride	5.0 ug/m3	1.2	1.74	03/15/14 01:3	75-09-2	
Methyl-tert-butyl ether	ND ug/m3	1.3	1.74	03/15/14 01:3	7 1634-04-4	
Naphthalene	2.2 ug/m3	1.9	1.74	03/15/14 01:3	7 91-20-3	
Tetrachloroethene	ND ug/m3	1.2	1.74	03/15/14 01:3	7 127-18-4	
Toluene	1.6 ug/m3	1.3	1.74	03/15/14 01:3	7 108-88-3	
1,2,4-Trichlorobenzene	ND ug/m3	2.6	1.74	03/15/14 01:3	7 120-82-1	
1,1,1-Trichloroethane	ND ug/m3	1.9	1.74	03/15/14 01:3	37 71-55-6	
1,1,2-Trichloroethane	ND ug/m3	0.96	1.74	03/15/14 01:3	37 79 - 00-5	
Trichloroethene	ND ug/m3	0.96	1.74	03/15/14 01:3	37 7 9- 01-6	
1,2,3-Trimethylbenzene	ND ug/m3	0.35	1.74	03/15/14 01:3	37 526-73-8	
1,2,4-Trimethylbenzene	ND ug/m3	1.7	1.74	03/15/14 01:3	37 95-63-6	
1,3,5-Trimethylbenzene	ND ug/m3	1.7	1.74	03/15/14 01:3	37 108-67-8	
Vinyl chloride	ND ug/m3	0.45	1.74	03/15/14 01:3		
m&p-Xylene	ND ug/m3	3.1	1.74		37 179601-23-1	
o-Xylene	ND ug/m3	1.5	1.74	03/15/14 01:3		

REPORT OF LABORATORY ANALYSIS

Project:

MRC SV/IAQ Study Feb 2014 REV

Pace Project No.:

Date: 04/17/2014 12:22 PM

.. 10259332

Sample: IA-108-A-16	Lab ID: 1025933200	4 Collected: 02/25/1	4 15:49	Received: 03/04/14 10:00	Matrix: Air	
Parameters	Results Unit	s Report Limit	DF	Prepared Analyzed	CAS No. C	Qua
TO15 MSV AIR	Analytical Method: TO-	15				
Benzene	0.90 ug/m3	0.58	1.8	03/14/14 17:1	4 71-43-2	
Carbon tetrachloride	ND ug/m3	1.2	1.8	03/14/14 17:1	4 56-23-5	
Chlorodifluoromethane	4.0 ug/m3	0.36	1.8	03/14/14 17:1	4 75-45-6	
Chloroform	ND ug/m3	1.8	1.8	03/14/14 17:1	4 67-66-3	
Dichlorodifluoromethane	2.2 ug/m3	1.8	1.8	03/14/14 17:1	4 75-71 - 8	
1,1-Dichloroethane	ND ug/m3	1.5	1.8	03/14/14 17:1	4 75-34-3	
1,2-Dichloroethane	ND ug/m3	0.74	1.8	03/14/14 17:1	4 107-06-2	
1,1-Dichloroethene	ND ug/m3	1.5	1.8	03/14/14 17:1	4 75-35-4	
cis-1,2-Dichloroethene	ND ug/m3	1.5	1.8	03/14/14 17:1	4 156-59-2	
trans-1,2-Dichloroethene	ND ug/m3	1.5	1.8	03/14/14 17:1	4 156-60-5	
Ethylbenzene	0.94J ug/m3	1.6	1.8	03/14/14 17:1	4 100-41-4	
Methylene Chloride	8.8 ug/m3	1.3	1.8	03/14/14 17:1	4 75-09-2	
Methyl-tert-butyl ether	ND ug/m3	1.3	1.8	03/14/14 17:1	4 1634-04-4	
Naphthalene	2.2 ug/m3	1.9	1.8	03/14/14 17:1	4 91-20-3	
Tetrachloroethene	ND ug/m3	1.2	1.8	03/14/14 17:1	4 127-18-4	
Toluene	43.8 ug/m3	1.4	1.8	03/14/14 17:1	4 108-88-3	
1,2,4-Trichlorobenzene	ND ug/m3	2.7	1.8	03/14/14 17:1	4 120-82-1	
1,1,1-Trichloroethane	ND ug/m3	2.0	1.8	03/14/14 17:1	4 71-55-6	
1,1,2-Trichloroethane	ND ug/m3	0.99	1.8	03/14/14 17:1	4 79-00-5	
Trichloroethene	ND ug/m3	0.99	1.8	03/14/14 17:1	4 79-01-6	
1,2,3-Trimethylbenzene	ND ug/m3	0.36	1.8	03/14/14 17:1	4 526-73-8	
1,2,4-Trimethylbenzene	ND ug/m3	1.8	1.8	03/14/14 17:1	4 95-63-6	
1,3,5-Trimethylbenzene	ND ug/m3	1.8	1.8	03/14/14 17:1	4 108-67-8	
Vinyl chloride	ND ug/m3	0.47	1.8	03/14/14 17:1	4 75-01-4	
m&p-Xylene	3.4 ug/m3	3.2	1.8	03/14/14 17:1	4 179601-23-1	
o-Xylene	1.3J ug/m3	1.6	1.8	03/14/14 17:1		

Project:

MRC SV/IAQ Study Feb 2014 REV

Pace Project No.:

Date: 04/17/2014 12:22 PM

Sample: IA-117-A-16	Lab ID: 10259332008	Collected: 02/25/1	4 15:53	Received: 03/04/14 10:00 M	//atrix: Air	
Parameters	Results Units	Report Limit	DF	Prepared Analyzed	CAS No.	Qua
TO15 MSV AIR	Analytical Method: TO-1	5				
Benzene	0.89 ug/m3	0.61	1.87	03/14/14 19:11	71-43-2	
Carbon tetrachloride	ND ug/m3	1.2	1.87	03/14/14 19:11	56-23-5	
Chlorodifluoromethane	3.5 ug/m3	0.37	1.87	03/14/14 19:11	75 -45- 6	
Chloroform	ND ug/m3	1.9	1.87	03/14/14 19:11	67-66-3	
Dichlorodifluoromethane	2.0 ug/m3	1.9	1.87	03/14/14 19:11		
1,1-Dichloroethane	ND ug/m3	1.5	1.87	03/14/14 19:11		
1,2-Dichloroethane	ND ug/m3	0.77	1.87	03/14/14 19:11		
1,1-Dichloroethene	ND ug/m3	1.5	1.87	03/14/14 19:11	75-35-4	
cis-1,2-Dichloroethene	ND ug/m3	1.5	1.87	03/14/14 19:11	156-59-2	
trans-1,2-Dichloroethene	ND ug/m3	1.5	1.87	03/14/14 19:11	156-60-5	
Ethylbenzene	0.84J ug/m3	1.6	1.87	03/14/14 19:11	100-41 - 4	
Methylene Chloride	8.9 ug/m3	1.3	1.87	03/14/14 19:11	75-09-2	
Methyl-tert-butyl ether	ND ug/m3	1.4	1.87	03/14/14 19:11	1634-04-4	
Naphthalene	2.2 ug/m3	2.0	1.87	03/14/14 19:11	91-20-3	
Tetrachloroethene	ND ug/m3	1.3	1.87	03/14/14 19:11	127-18-4	
Toluene	67.5 ug/m3	1.4	1.87	03/14/14 19:11	108-88-3	
1,2,4-Trichlorobenzene	ND ug/m3	2.8	1.87	03/14/14 19:11	120-82-1	
1,1,1-Trichloroethane	ND ug/m3	2.1	1.87	03/14/14 19:11	71-55-6	
1,1,2-Trichloroethane	ND ug/m3	1.0	1.87	03/14/14 19:11	79 -0 0-5	
Trichloroethene	ND ug/m3	1.0	1.87	03/14/14 19:11	79-01-6	
1,2,3-Trimethylbenzene	ND ug/m3	0.37	1.87	03/14/14 19:11	526-73-8	
1,2,4-Trimethylbenzene	ND ug/m3	1.9	1.87	03/14/14 19:11	95-63-6	
1,3,5-Trimethylbenzene	ND ug/m3	1.9	1.87	03/14/14 19:11	108-67-8	
Vinyl chloride	ND ug/m3	0.49	1.87	03/14/14 19:11	75-01-4	
m&p-Xylene	2.7J ug /m3	3.3	1.87	03/14/14 19:11	179601-23-1	
o-Xylene	0.92J ug/m3	1.6	1.87	03/14/14 19:11	95-47-6	

Project:

MRC SV/IAQ Study Feb 2014 REV

Pace Project No.:

Sample: IA-118-A-16	Lab ID: 10259332006	Collected: 02/25/1	4 15:53	Received: 03/0	04/14 10:00 I	Matrix: Air	
Parameters	Results Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
TO15 MSV AIR	Analytical Method: TO-15						
Benzene	1.0 ug/m3	0.58	1.8	(03/14/14 18:13	71-43-2	
Carbon tetrachloride	ND ug/m3	1.2	1.8	(03/14/14 18:13	56-23-5	
Chlorodifluoromethane	12.4 ug/m3	0.36	1.8	(03/14/14 18:13	75-45-6	
Chloroform	ND ug/m3	1.8	1.8	(03/14/14 18:13	67-66-3	
Dichlorodifluoromethane	1.9 ug/m3	1.8	1.8		03/14/14 18:13		
1,1-Dichloroethane	ND ug/m3	1.5	1.8		03/14/14 18:13	75-34-3	
1,2-Dichloroethane	ND ug/m3	0.74	1.8	+	03/14/14 18:13	107-06-2	
1,1-Dichloroethene	ND ug/m3	1.5	1.8	1	03/14/14 18:13	75-35-4	
cis-1,2-Dichloroethene	ND ug/m3	1.5	1.8		03/14/14 18:13		
trans-1,2-Dichloroethene	ND ug/m3	1.5	1.8	ļ	03/14/14 18:13	3 156-60-5	
Ethylbenzene	1.4J ug/m3	1.6	1.8	(03/14/14 18:13	3 100-41-4	
Methylene Chloride	8.8 ug/m3	1.3	1.8	(03/14/14 18:13	3 75-09-2	
Methyl-tert-butyl ether	ND ug/m3	1.3	1.8		03/14/14 18:13	3 1634- 04-4	
Naphthalene	2.2 ug/m3	1.9	1.8		03/14/14 18:13	91-20-3	
Tetrachloroethene	ND ug/m3	1.2	1.8		03/14/14 18:13	3 127-18-4	
Toluene	16.5 ug/m3	1.4	1.8		03/14/14 18:13	3 108-88-3	
1,2,4-Trichlorobenzene	ND ug/m3	2.7	1.8		03/14/14 18:13	3 120-82-1	
1,1,1-Trichloroethane	1.2J ug/m3	2.0	1.8		03/14/14 18:13	3 71-55-6	
1,1,2-Trichloroethane	ND ug/m3	0.99	1.8		03/14/14 18:13	3 79-00-5	
Trichloroethene	5.6 ug/m3	0.99	1.8		03/14/14 18:13	3 7 9-0 1-6	
1,2,3-Trimethylbenzene	ND ug/m3	0.36	1.8		03/14/14 18:13	3 526-73 - 8	
1,2,4-Trimethylbenzene	ND ug/m3	1.8	1.8		03/14/14 18:13	3 95-63-6	1
1,3,5-Trimethylbenzene	ND ug/m3	1.8	1.8		03/14/14 18:13	3 108-67-8	
Vinyl chloride	ND ug/m3	0.47	1.8		03/14/14 18:13		
m&p-Xylene	5.6 ug/m3	3.2	1.8		03/14/14 18:13	3 179601-23-1	
o-Xylene	2.0 ug/m3	1.6	1.8		03/14/14 18:13	3 95 -4 7-6	

Project:

MRC SV/IAQ Study Feb 2014 REV

Pace Project No.:

Date: 04/17/2014 12:22 PM

Sample: IA-136-A-16	Lab ID: 10259332014	Collected: 02/25/14	4 16:08	Received: 03/04/14 10:00 M	flatrix: Air
Parameters	Results Units	Report Limit	DF	Prepared Analyzed	CAS No. Qu
TO15 MSV AIR	Analytical Method: TO-15				
Benzene	0.94 ug/m3	0.58	1.8	03/14/14 22:07	71-43-2
Carbon tetrachloride	ND ug/m3	1.2	1.8	03/14/14 22:07	56 - 23-5
Chlorodifluoromethane	3.3 ug/m3	0.36	1.8	03/14/14 22:07	75 - 45-6
Chloroform	ND ug/m3	1.8	1.8	03/14/14 22:07	67-66-3
Dichlorodifluoromethane	2.2 ug/m3	1.8	1.8	03/14/14 22:07	75-71-8
1,1-Dichloroethane	ND ug/m3	1.5	1.8	03/14/14 22:07	75-34-3
1,2-Dichloroethane	ND ug/m3	0.74	1.8	03/14/14 22:07	107-06-2
1,1-Dichloroethene	ND ug/m3	1.5	1.8	03/14/14 22:07	75-35 -4
cis-1,2-Dichloroethene	ND ug/m3	1.5	1.8	03/14/14 22:07	156-59-2
trans-1,2-Dichloroethene	ND ug/m3	1.5	1.8	03/14/14 22:07	156-60-5
Ethylbenzene	0.75J ug/m3	1.6	1.8	03/14/14 22:07	100-41-4
Methylene Chloride	7.3 ug/m3	1.3	1.8	03/14/14 22:07	75-09-2
Methyl-tert-butyl ether	ND ug/m3	1.3	1.8	03/14/14 22:07	1634-04-4
Naphthalene	2.9 ug/m3	1.9	1.8	03/14/14 22:07	91-20-3
Tetrachloroethene	ND ug/m3	1.2	1.8	03/14/14 22:07	127-18-4
Toluene	53.6 ug/m3	1.4	1.8	03/14/14 22:07	108-88-3
1,2,4-Trichlorobenzene	ND ug/m3	2.7	1.8	03/14/14 22:07	120-82-1
1,1,1-Trichloroethane	ND ug/m3	2.0	1.8	03/14/14 22:07	71-55 - 6
1,1,2-Trichloroethane	ND ug/m3	0.99	1.8	03/14/14 22:07	79-00 - 5
Trichloroethene	4.2 ug/m 3	0.99	1.8	03/14/14 22:07	79-01-6
1,2,3-Trimethylbenzene	ND ug/m3	0.36	1.8	03/14/14 22:07	526-73-8
1,2,4-Trimethylbenzene	ND ug/m3	1.8	1.8	03/14/14 22:07	
1,3,5-Trimethylbenzene	ND ug/m3	1.8	1.8	03/14/14 22:07	108-67-8
Vinyl chloride	ND ug/m3	0.47	1.8	03/14/14 22:07	
m&p-Xylene	2.6J ug/m3	3.2	1.8	03/14/14 22:07	
o-Xylene	0.99J ug/m3	1.6	1.8	03/14/14 22:07	

Project:

MRC SV/IAQ Study Feb 2014 REV

Pace Project No.:

Sample: IA-138-A-16	Lab ID: 10259332024	Collected: 02/25/1	4 16:24	Received: 03/04/14 10:00	Matrix: Air	
Parameters	Results Units	Report Limit	DF	Prepared Analyzed	CAS No.	Qua
TO15 MSV AIR	Analytical Method: TO-15					
Benzene	1.1 ug/m3	0.84	2.58	03/18/14 00:		
Carbon tetrachloride	ND ug/m3	1.7	2.58	03/18/14 00:	19 56-23-5	
Chlorodifluoromethane	4.8 ug/m3	0.52	2.58	03/18/14 00:	19 75-45-6	
Chloroform	ND ug/m3	2.6	2.58	03/18/14 00:	19 67-66-3	
Dichlorodifluoromethane	3.0 ug/m3	2.6	2.58	03/18/14 00:		
1,1-Dichloroethane	ND ug/m3	2.1	2.58	03/18/14 00:		
1,2-Dichloroethane	ND ug/m3	1.1	2.58	03/18/14 00:	19 107-06-2	
1,1-Dichloroethene	ND ug/m3	2.1	2.58	03/18/14 00:		
cis-1,2-Dichloroethene	ND ug/m3	2.1	2.58	03/18/14 00:	19 156-59-2	
trans-1,2-Dichloroethene	ND ug/m3	2.1	2.58	03/18/14 00:	19 156-60-5	
Ethylbenzene	ND ug/m3	2.3	2.58		19 100-41-4	
Methylene Chloride	17.2 ug/m3	1.8	2.58	03/18/14 00:		
Methyl-tert-butyl ether	ND ug/m3	1.9	2.58	03/18/14 00:	19 1634-04-4	
Naphthalene	3.0 ug/m3	2.8	2.58	03/18/14 00:	19 91-20-3	
Tetrachloroethene	ND ug/m3	1.8	2.58	03/18/14 00:	19 127-18-4	
Toluene	2.5 ug/m3	2.0	2.58	03/18/14 00:	19 108-88-3	
1,2,4-Trichlorobenzene	ND ug/m3	3.9	2.58	03/18/14 00:	19 120-82-1	
1,1,1-Trichloroethane	ND ug/m3	2.9	2.58	03/18/14 00:	19 71-55-6	
1,1,2-Trichloroethane	ND ug/m3	1.4	2.58	03/18/14 00:	19 79-00-5	
Trichloroethene	1.6 ug/m3	1.4	2.58	03/18/14 00:	19 79-01-6	
1,2,3-Trimethylbenzene	ND ug/m3	0.52	2.58	03/18/14 00:	19 526-73-8	
1,2,4-Trimethylbenzene	ND ug/m3	2.6	2.58	03/18/14 00:	19 95-63 - 6	
1,3,5-Trimethylbenzene	ND ug/m3	2.6	2.58	03/18/14 00:	19 108-67-8	
Vinyl chloride	ND ug/m3	0.67	2.58	03/18/14 00:	19 75-01-4	
m&p-Xylene	ND ug/m3	4.5	2.58	03/18/14 00:	19 179601-23-1	
o-Xylene	ND ug/m3	2.3	2.58	03/18/14 00:	19 95-47-6	

Project:

MRC SV/IAQ Study Feb 2014 REV

Pace Project No.:

Date: 04/17/2014 12:22 PM

Sample: IA-DUP3-A-16	Lab ID: 102593320	33 Collected: 02/25/	14 00:00	Received: 03/04/14 10:00	Matrix: Air	
Parameters	Resutts Uni	its Report Limit	DF	Prepared Analyze	CAS No.	Qua
TO15 MSV AIR	Analytical Method: TO	-15				
Benzene	1.2 ug/m3	0.81	2.49	03/18/14 04	:37 71-43-2	
Carbon tetrachloride	ND ug/m3	1.6	2.49	03/18/14 04	:37 56-23-5	
Chlorodifluoromethane	8.2 ug/m3	0.50	2.49	03/18/14 04	:37 75-45-6	
Chloroform	ND ug/m3	2.5	2.49	03/18/14 04	:37 67-66-3	
Dichlorodifluoromethane	3.2 ug/m3	2.5	2.49	03/18/14 04	:37 75- 71-8	
1,1-Dichloroethane	ND ug/m3	2.0	2.49	03/18/14 04	:37 75-34-3	
1,2-Dichloroethane	ND ug/m3	1.0	2.49	03/18/14 04	:37 107-06-2	
1,1-Dichloroethene	ND ug/m3	2.0	2.49	03/18/14 04	:37 75-35-4	
cis-1,2-Dichloroethene	ND ug/m3	2.0	2.49	03/18/14 04	:37 156-59-2	
trans-1,2-Dichloroethene	ND ug/m3	2.0	2.49		:37 156-60-5	
Ethylbenzene	ND ug/m3	2.2	2.49	03/18/14 04	:37 100-41-4	
Methylene Chloride	7.4 ug/m3	1.8	2.49	03/18/14 04	:37 75-09-2	
Methyl-tert-butyl ether	ND ug/m3	1.8	2.49	03/18/14 04	:37 1634-04-4	
Naphthalene	2.1J ug/m3	2.7	2.49	03/18/14 04	:37 91-20-3	
Tetrachloroethene	ND ug/m3	1.7	2.49	03/18/14 04	:37 127-18-4	
Toluene	16.9 ug/m3	1.9	2.49	03/18/14 04	:37 108-88-3	
1,2,4-Trichlorobenzene	ND ug/m3	3.8	2.49	03/18/14 04	:37 120-82-1	
1,1,1-Trichloroethane	ND ug/m3	2.8	2.49	03/18/14 04	:37 71-55-6	
1,1,2-Trichloroethane	ND ug/m3	1.4	2.49	03/18/14 04	:37 79-00-5	
Trichloroethene	ND ug/m3	1.4	2.49	03/18/14 04	:37 79-01-6	
1,2,3-Trimethylbenzene	ND ug/m3	0.50	2.49	03/18/14 04	:37 526-73-8	
1,2,4-Trimethylbenzene	ND ug/m3	2.5	2.49	03/18/14 04	:37 95-63-6	
1,3,5-Trimethylbenzene	ND ug/m3	2.5	2.49	03/18/14 04	:37 108-67-8	
Vinyl chloride	ND ug/m3	0.65	2.49	03/18/14 04	:37 75-01 -4	
m&p-Xylene	3.4J ug/m3	4.4	2.49	03/18/14 04	:37 179601-23-1	
o-Xylene	1. 4J ug/m3	2.2	2.49	03/18/14 04	:37 95-47-6	

Project:

MRC SV/IAQ Study Feb 2014 REV

Pace Project No.:

Sample: SV-015-A-16	Lab ID: 10259332001	Collected: 02/25/1	4 09:48	Received: 03/04/14 10:00) Matrix: Air	
Parameters	Results Units	Report Limit	DF	Prepared Analyze	d CAS No.	Qua
TO15 MSV AIR	Analytical Method: TO-15	•				
Benzene	0.64 ug/m3	0.61	1.87	03/12/14 2	1:04 71-43-2	
Carbon tetrachloride	ND ug/m3	1.2	1.87	03/12/14 2	1:04 56-23-5	
Chlorodifluoromethane	5.8 ug/m3	1.3	1.87	03/12/14 2	1:04 75 -4 5-6	
Chloroform	64.7 ug/m3	1.9	1.87	03/12/14 2	1:04 67- 66- 3	
Dichlorodifluoromethane	2.1 ug/m3	1.9	1.87	03/12/14 2	1:04 75-71-8	
1,1-Dichloroethane	14.6 ug/m3	1.5	1.87	03/12/14 2	1:04 75-34-3	
1,2-Dichloroethane	ND ug/m3	0.77	1.87	03/12/14 2	1:04 107-06-2	
1,1-Dichloroethene	369 ug/m3	60.6	74.8		1:00 75-35-4	A3
cis-1,2-Dichloroethene	1110 ug/m3	60.6	74.8	03/14/14 0	1:00 156-59-2	A3
trans-1,2-Dichloroethene	25.0 ug/m3	1.5	1.87	03/12/14 2	1:04 156-60-5	
Ethylbenzene	ND ug/m3	1.6	1.87		1:04 100-41-4	
Methylene Chloride	31.6 ug/m3	1.3	1.87	03/12/14 2	1:04 75-09-2	
Methyl-tert-butyl ether	ND ug/m3	1.4	1.87	03/12/14 2	1:04 1634-04-4	
Naphthalene	ND ug/m3	2.0	1.87	03/12/14 2	1:04 91-20-3	
Tetrachloroethene	ND ug/m3	1.3	1.87		1:04 127-18-4	
Toluene	7.1 ug/m3	1.4	1.87	03/12/14 2	1:04 108-88-3	
1,2,4-Trichlorobenzene	ND ug/m3	2.8	1.87	03/12/14 2	1:04 120-82-1	
1,1,1-Trichloroethane	76.3 ug/m3	2.1	1.87	03/12/14 2	1:04 71-55-6	
1,1,2-Trichloroethane	ND ug/m3	1.0	1.87	03/12/14 2	1:04 79-00-5	
Trichloroethene	564 ug/m3	41.1	74.8	03/14/14 0	1:00 79-01-6	A 3
1,2,3-Trimethylbenzene	ND ug/m3	1.9	1.87	03/12/14 2	1:04 526-73-8	
1,2,4-Trimethylbenzene	ND ug/m3	1.9	1.87	03/12/14 2	1:04 95-63-6	
1,3,5-Trimethylbenzene	ND ug/m3	1.9	1.87	03/12/14 2	1:04 108-67-8	
Vinyl chloride	ND ug/m3	0.49	1.87	03/12/14 2	1:04 75-01-4	
m&p-Xylene	3.1J ug/m3	3.3	1.87	03/12/14 2	1:04 179601-23-	1
o-Xylene	1.6J ug/m3	1.6	1.87	03/12/14 2	1:04 95-47-6	

Project:

MRC SV/IAQ Study Feb 2014 REV

Pace Project No.:

Date: 04/17/2014 12:22 PM

Sample: SV-018-A-16	Lab ID: 10259332021	Collected: 02/25/1	4 10:30	Received: 03/04/14 10:00	Matrix: Air	
Parameters	Results Units	Report Limit	DF	Prepared Analyze	d CAS No.	Qua
TO15 MSV AIR	Analytical Method: TO-15					
Benzene	0.96 ug/m3	0.66	2.02	03/15/14 0	7:38 71-43-2	
Carbon tetrachloride	ND ug/m3	1.3	2.02	03/15/14 0	7:38 56-23-5	
Chlorodifluoromethane	8.9 ug/m3	0.40	2.02	03/15/14 0	7: 38 75 -4 5-6	
Chloroform	1.7J ug/m3	2.0	2.02	03/15/14 0	7:38 67-66-3	
Dichlorodifluoromethane	2.2 ug/m3	2.0	2.02	03/15/14 0	7:38 75-71-8	
1,1-Dichloroethane	3.1 ug/m3	1.7	2.02	03/15/14 0	7:38 75-34-3	
1,2-Dichloroethane	ND ug/m3	0.83	2.02	03/15/14 0	7:38 107-06-2	
1,1-Dichloroethene	230 ug/m3	1.6	2.02	03/15/14 0	7:38 75-35-4	
cis-1,2-Dichloroethene	16.3 ug/m3	1.6	2.02	03/15/14 0	7:38 156-59-2	
trans-1,2-Dichloroethene	ND ug/m3	1.6	2.02	03/15/14 0	7:38 156-60-5	
Ethylbenzene	ND ug/m3	1.8	2.02	03/15/14 0	7:38 100-41-4	
Methylene Chloride	19.8 ug/m3	1.4	2.02	03/15/14 0	7:38 75-09-2	
Methyl-tert-butyl ether	ND ug/m3	1.5	2.02	03/15/14 0	7:38 1634-04-4	
Naphthalene	2.8 ug/m3	2.2	2.02	03/15/14 0	7:38 91-20-3	
Tetrachloroethene	ND ug/m3	1.4	2.02	03/15/14 0	7:38 127-18-4	
Toluene	2.6 ug/m3	1.6	2.02	03/15/14 0	7:38 108-88-3	
1,2,4-Trichlorobenzene	ND ug/m3	3.1	2.02	03/15/14 0	7:38 120-82-1	
1,1,1-Trichloroethane	ND ug/m3	2.2	2.02	03/15/14 0	7:38 71-55-6	
1,1,2-Trichloroethane	ND ug/m3	1.1	2.02	03/15/14 0	7:38 79-00-5	
Trichloroethene	174 ug/m3	1.1	2.02	03/15/14 0	7:38 79-01-6	
1,2,3-Trimethylbenzene	ND ug/m3	0.40	2.02	03/15/14 0	7:38 526-73-8	
1,2,4-Trimethylbenzene	1.7J ug/m3	2.0	2.02	03/15/14 0	7:38 95-63-6	
1,3,5-Trimethylbenzene	ND ug/m3	2.0	2.02	03/15/14 0	7:38 108-67-8	
Vinyl chloride	0.57 ug/m3	0.53	2.02	03/15/14 0	7:38 75-01 -4	
m&p-Xylene	2.0J ug/m3	3.6	2.02	03/15/14 0	7:38 179601-23-1	
o-Xylene	ND ug/m3	1.8	2.02		7:38 95-47-6	

Project:

MRC SV/IAQ Study Feb 2014 REV

Pace Project No.: 10259332

Sample: SV-075-A-16	Lab ID: 10259332017	Collected: 02/25/14	4 10:20	Received: 03/04/14 10:00 Matrix: Air
Parameters	Results Units	Report Limit	DF	Prepared Analyzed CAS No. Qu
TO15 MSV AIR	Analytical Method: TO-15			
Benzene	0.79 ug/m3	0.55	1.68	03/14/14 23:34 71-43-2
Carbon tetrachloride	ND ug/m3	1.1	1.68	03/14/14 23:34 56-23-5
Chlorodifluoromethane	4.1 ug/m3	0.34	1.68	03/14/14 23:34 75-45-6
Chloroform	ND ug/m3	1.7	1.68	03/14/14 23:34 67-66-3
Dichlorodifluoromethane	2.1 ug/m3	1.7	1.68	03/14/14 23:34 75-71-8
1,1-Dichloroethane	ND ug/m3	1.4	1.68	03/14/14 23:34 75-34-3
1,2-Dichloroethane	ND ug/m3	0.69	1.68	03/14/14 23:34 107-06-2
1,1-Dichloroethene	ND ug/m3	1.4	1.68	03/14/14 23:34 75-35-4
cis-1,2-Dichloroethene	ND ug/m3	1.4	1.68	03/14/14 23:34 156-59-2
trans-1,2-Dichloroethene	ND ug/m3	1.4	1.68	03/14/14 23:34 156-60-5
Ethylbenzene	1.6 ug/m3	1.5	1.68	03/14/14 23:34 100-41-4
Methylene Chloride	3.1 ug/m3	1.2	1.68	03/14/14 23:34 75-09-2
Methyl-tert-butyl ether	ND ug/m3	1.2	1.68	03/14/14 23:34 1634-04-4
Naphthalene	259 ug/m3	1.8	1.68	03/14/14 23:34 91-20-3
Tetrachloroethene	ND ug/m3	1.2	1.68	03/14/14 23:34 127-18-4
Toluene	7.8 ug/m3	1.3	1.68	03/14/14 23:34 108-88-3
1,2,4-Trichlorobenzene	ND ug/m3	2.5	1.68	03/14/14 23:34 120-82-1
1,1,1-Trichloroethane	ND ug/m3	1.9	1.68	03/14/14 23:34 71-55-6
1,1,2-Trichloroethane	ND ug/m3	0.92	1.68	03/14/14 23:34 79-00-5
Trichloroethene	3.1 ug/m3	0.92	1.68	03/14/14 23:34 79-01-6
1,2,3-Trimethylbenzene	59.2 ug/m3	0.34	1.68	03/14/14 23:34 526-73-8
1,2,4-Trimethylbenzene	205 ug/m3	1.7	1.68	03/14/14 23:34 95-63-6
1.3.5-Trimethylbenzene	107 ug/m3	1.7	1.68	03/14/14 23:34 108-67-8
Vinyl chloride	ND ug/m3	0.44	1.68	03/14/14 23:34 75-01-4
m&p-Xylene	9.0 ug/m3	3.0	1.68	03/14/14 23:34 179601-23-1
o-Xylene	19.7 ug/m3	1.5	1.68	03/14/14 23:34 95-47-6

Project:

MRC SV/IAQ Study Feb 2014 REV

Pace Project No.:

Sample: SV-076-A-16	Lab ID: 10259332015	Collected: 02/25/1	4 10:08	Received: 03/04/14 10:00	Matrix: Air	
Parameters	Results Units	Report Limit	DF	Prepared Analyzed	CAS No.	Qua
TO15 MSV AIR	Analytical Method: TO-15					
Benzene	ND ug/m3	0.61	1.87	03/14/14 22:		
Carbon tetrachloride	ND ug/m3	1.2	1.87	03/14/14 22:		
Chlorodifluoromethane	1.6 ug/m3	0.37	1.87	03/14/14 22:		
Chloroform	1.7J ug/m3	1.9	1.87	03/14/14 22:		
Dichlorodifluoromethane	1.9 ug/m3	1.9	1.87	03/14/14 22:		
1,1-Dichloroethane	ND ug/m3	1.5	1.87	03/14/14 22:		
1,2-Dichloroethane	ND ug/m3	0.77	1.87	03/14/14 22:	36 107-06-2	
1,1-Dichloroethene	ND ug/m3	1.5	1.87	03/14/14 22:		
cis-1,2-Dichloroethene	ND ug/m3	1.5	1.87		36 156-59-2	
trans-1,2-Dichloroethene	ND ug/m3	1.5	1.87	03/14/14 22:	36 156-60-5	
Ethylbenzene	ND ug/m3	1.6	1.87	03/14/14 22:	36 100-41-4	
Methylene Chloride	12.6 ug/m3	1.3	1.87	03/14/14 22:	36 75-09-2	
Methyl-tert-butyl ether	ND ug/m3	1.4	1.87		36 1634-04-4	
Naphthalene	94.9 ug/m3	2.0	1.87	03/14/14 22:		
Tetrachloroethene	ND ug/m3	1.3	1.87	03/14/14 22:	36 127-18-4	
Toluene	3.8 ug/m3	1.4	1.87		36 108 - 88-3	
1,2,4-Trichlorobenzene	ND ug/m3	2.8	1.87	03/14/14 22:	36 120-82-1	
1.1.1-Trichloroethane	ND ug/m3	2.1	1.87	03/14/14 22	:36 71-55 -6	
1.1.2-Trichloroethane	ND ug/m3	1.0	1.87	03/14/14 22	36 79-00-5	
Trichloroethene	14.0 ug/m3	1.0	1.87	03/14/14 22	:36 79-01-6	
1,2,3-Trimethylbenzene	20.8 ug/m3	0.37	1.87	03/14/14 22	:36 526-73-8	
1,2,4-Trimethylbenzene	40.2 ug/m3	1.9	1.87	• • • • • • • • • • • • • • • • • • • •	:36 95-63-6	
1,3,5-Trimethylbenzene	14.0 ug/m3	1.9	1.87	03/14/14 22	:36 108-67-8	
Vinyl chloride	ND ug/m3	0.49	1.87	03/14/14 22	:36 75-01-4	
m&p-Xylene	4.4 ug/m3	3.3	1.87	03/14/14 22	:36 179601-23-1	
o-Xylene	2.9 ug/m3	1.6	1.87	03/14/14 22	:36 95-47-6	

Project:

MRC SV/IAQ Study Feb 2014 REV

Pace Project No.:

Sample: SV-079-A-16	Lab ID: 10259332009	Collected: 02/25/14	10:00	Received: 03/04/14 10:00	/latrix: Air	
Parameters	Results Units	Report Limit	DF	Prepared Analyzed	CAS No.	Qua
TO15 MSV AIR	Analytical Method: TO-15					
Benzene	1.1 ug/m3	0.58	1.8	03/14/14 19:40	71-43-2	
Carbon tetrachloride	ND ug/m3	1.2	1.8	03/14/14 19:40	56-23-5	
Chlorodifluoromethane	2.7 ug/m3	0.36	1.8	03/14/14 19:40	75 -4 5-6	
Chloroform	9.0 ug/m3	1.8	1.8	03/14/14 19:40	67-66-3	
Dichlorodifluoromethane	1.7J ug/m3	1.8	1.8	03/14/14 19:40	75-71-8	
1,1-Dichloroethane	1.6 ug/m3	1.5	1.8	03/14/14 19:40		
1,2-Dichloroethane	ND ug/m3	0.74	1.8	03/14/14 19:40	107-06-2	
1,1-Dichloroethene	2.7 ug/m3	1.5	1.8	03/14/14 19:40	75-35-4	
cis-1,2-Dichloroethene	2620 ug/m3	58.3	72	03/17/14 21:50	156-59-2	A 3
rans-1,2-Dichloroethene	517 ug/m3	58.3	72	03/17/14 21:50	156-60-5	A 3
Ethylbenzene	2.1 ug/m3	1.6	1.8	03/14/14 19:40	100-41-4	
Methylene Chloride	18.7 ug/m3	1.3	1.8	03/14/14 19:40	75-09-2	
Methyl-tert-butyl ether	ND ug/m3	1.3	1.8	03/14/14 19:40	1634-04-4	
Naphthalene	27.9 ug/m3	1.9	1.8	03/14/14 19:40	91-20-3	
Tetrachloroethene	14.1 ug/m3	1.2	1.8	03/14/14 19:40	127-18 -4	
Toluene	5.9 ug/m3	1.4	1.8	03/14/14 19:40	108-88-3	
1,2,4-Trichlorobenzene	ND ug/m3	2.7	1.8	03/14/14 19:40	120-82-1	
1,1,1-Trichloroethane	2.1 ug/m3	2.0	1.8	03/14/14 19:40	71-55-6	
1,1,2-Trichloroethane	ND ug/m3	0.99	1.8	03/14/14 19:40	79-00-5	
Trichloroethene	6090 ug/m3	39.6	72	03/17/14 21:50	79-01 - 6	A3
1,2,3-Trimethylbenzene	23.1 ug/m3	0.36	1.8	03/14/14 19:40	526-73-8	
1,2,4-Trimethylbenzene	12.3 ug/m3	1.8	1.8	03/14/14 19:40	95-63-6	
1,3,5-Trimethylbenzene	ND ug/m3	1.8	1.8	03/14/14 19:40	108-67-8	
Vinyl chloride	ND ug/m3	0.47	1.8	03/14/14 19:40	75-01-4	
m&p-Xylene	5.2 ug/m3	3.2	1.8	03/14/14 19:40	179601-23-1	
o-Xylene	5.3 ug/m3	1.6	1.8	03/14/14 19:40	95-47-6	

Project:

MRC SV/IAQ Study Feb 2014 REV

Pace Project No.:

Date: 04/17/2014 12:22 PM

Sample: SV-081-A-16	Lab ID: 10259332011	Collected: 02/25/14 1	0:04	Received: 03/04/14 10:00	Matrix: Air	
Parameters	Results Units	Report Limit D)F	Prepared Analyze	d CAS No.	Qu
TO15 MSV AIR	Analytical Method: TO-15					
Benzene	ND ug/m3	0.58 1.	.8	03/14/14 2):39 71-43-2	
Carbon tetrachloride	ND ug/m3	1.2 1.	.8	03/14/14 2):39 56-23-5	
Chlorodifluoromethane	25.4 ug/m3	0.36 1	.8	03/14/14 2):39 75-45-6	
Chloroform	2.8 ug/m3	1.8 1	.8	03/14/14 2):39 67-66-3	
Dichlorodifluoromethane	1.8 ug/m3	1.8 1	.8	03/14/14 2):39 75-71-8	
1,1-Dichloroethane	ND ug/m3	1.5 1	.8	03/14/14 2):39 75-34-3	
1,2-Dichloroethane	ND ug/m3	0.74 1	.8	03/14/14 2):39 107-06-2	
1,1-Dichloroethene	ND ug/m3	1.5 1	.8	03/14/14 2):39 75-35-4	
cis-1,2-Dichloroethene	6.1 ug/m3	1.5 1	.8	03/14/14 2	0:39 156-59-2	
rans-1,2-Dichloroethene	ND ug/m3	1.5 1	.8	03/14/14 2):39 156-60-5	
Ethylbenzene	57.9 ug/m3	1.6 1	.8	03/14/14 2	0:39 100-41-4	
Methylene Chloride	15.4 ug/m3	1.3 1	.8	03/14/14 2):39 75-09-2	
Methyl-tert-butyl ether	ND ug/m3	1.3 1	.8	03/14/14 2):39 1634-04-4	
Naphthalene	ND ug/m3	1.9 1	.8.	03/14/14 2):39 91-20-3	
Tetrachloroethene	73.8 ug/m3	1.2 1	.8	03/14/14 2):39 127-18-4	
Toluene	13.9 ug/m3	1.4 1	.8	03/14/14 2	0:39 108-88-3	
1,2,4-Trichlorobenzene	ND ug/m3	2.7 1	.8	03/14/14 2	0:39 120-82-1	
1,1,1-Trichloroethane	6.4 ug/m3	2.0 1	.8	03/14/14 2	0:39 71-55-6	
1,1,2-Trichloroethane	ND ug/m3	0.99 1	.8	03/14/14 2	0:39 79-00-5	
Trichloroethene	7.9 ug/m3	0.99 1	.8	03/14/14 2	0:39 79-01-6	
1,2,3-Trimethylbenzene	4140 ug/m3	14.4 7	72	03/17/14 2	2:14 526-73-8	A3
1,2,4-Trimethylbenzene	6780 ug/m3	71.9 7	72	03/17/14 2	2:14 95-63-6	A3
1,3,5-Trimethylbenzene	3500 ug/m3	71.9 7	72	03/17/14 2	2:14 108-67-8	A3
Vinyl chloride	ND ug/m3	0.47 1	.8	03/14/14 2	0:39 75-01-4	
m&p-Xylene	480 ug/m3	127 7	72	03/17/14 2	2:14 179601-23-1	A 3
o-Xylene	228 ug/m3		.8	03/14/14 2	0:39 95-47-6	

Project:

MRC SV/IAQ Study Feb 2014 REV

Pace Project No.:

Date: 04/17/2014 12:22 PM

Sample: SV-093-A-16	Lab ID: 102	59332025	Collected: 02/25/	14 16:27	Received: 03	3/04/14 10:00 M	//atrix: Air	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
TO15 MSV AIR	Analytical Met	hod: TO-15						
Benzene	1.2 ug/m3		0.92	2.82		03/18/14 00:49	71-43-2	
Carbon tetrachloride	ND ug	ND ug/m3		2.82		03/18/14 00:49	56-23-5	
Chlorodifluoromethane	14.6 ug/m3		0.56	2.82		03/18/14 00:49	75-45-6	
Chloroform	ND ug/m3		2.8	2.82		03/18/14 00:49	67-66-3	
Dichlorodifluoromethane	3.9 ug/m3		2.8	2.82		03/18/14 00:49	75- 71-8	
1,1-Dichloroethane	ND ug/m3		2.3	2.82		03/18/14 00:49	75-34-3	
1,2-Dichloroethane	ND ug/m3		1.2	2.82		03/18/14 00:49	107-06-2	
1,1-Dichloroethene	ND ug/m3		2.3	2.82		03/18/14 00:49	7 5 -35-4	
cis-1,2-Dichloroethene	ND ug/m3		2.3	2.82		03/18/14 00:49		
trans-1,2-Dichloroethene	ND ug/m3		2.3	2.82		03/18/14 00:49	156-60-5	
Ethylbenzene	ND ug	g/m3	2.5	2.82		03/18/14 00:49	100-41-4	
Methylene Chloride	415 ug	g/m3	2.0	2.82		03/18/14 00:49	75-09-2	Ε
Methyl-tert-butyl ether	ND ug	g/m3	2.1	2.82		03/18/14 00:49	1634-04-4	
Naphthalene	3.5 ug	_	3.0	2.82		03/18/14 00:49	91-20-3	
Tetrachloroethene	ND us	g/m3	1.9	2.82		03/18/14 00:49	127-18-4	
Toluene	6.8 u	g/m3	2.2	2.82		03/18/14 00:49	108-88-3	
1,2,4-Trichlorobenzene	ND u	g/m3	4.3	2.82		03/18/14 00:49	120-82-1	
1,1,1-Trichloroethane	ND u	g/m3	3.1	2.82		03/18/14 00:49	71-55-6	
1,1,2-Trichloroethane	ND u	g/m3	1.6	2.82		03/18/14 00:49	79-00-5	
Trichloroethene	7.0 u	g/m3	1.6	2.82		03/18/14 00:49	79-01-6	
1,2,3-Trimethylbenzene	ND u	-	0.56	2.82		03/18/14 00:49	526-73-8	
1,2,4-Trimethylbenzene	ND u	•	2.8	2.82		03/18/14 00:49		
1,3,5-Trimethylbenzene	ND u	•	2.8	2.82		03/18/14 00:49	108-67-8	
Vinyl chloride	ND u	•	0.73	2.82		03/18/14 00:49	75-01-4	
m&p-Xylene	ND u		5.0	2.82		03/18/14 00:49	179601-23-1	
o-Xylene	ND u	_	2.5	2.82		03/18/14 00:49		

Project:

MRC SV/IAQ Study Feb 2014 REV

Pace Project No.:

No.: 10259332

Sample: SV-094-A-16	Lab ID: 10259332019	Collected: 02/25/14	10:26	Received: 03/04/14 10:00	Matrix: Air	
Parameters	Results Units	Report Limit	DF	Prepared Analyzed	CAS No.	Qua
TO15 MSV AIR	Analytical Method: TO-15					
Benzene	1.1 ug/m3	0.58	1.8	03/15/14 00:33		
Carbon tetrachloride	ND ug/m3	1.2	1.8	03/15/14 00:33		
Chlorodifluoromethane	3.6 ug/m3	0.36	1.8	03/15/14 00:33	3 75-45-6	
Chloroform	ND ug/m3	1.8	1.8	03/15/14 00:33	3 67-66-3	
Dichlorodifluoromethane	2.3 ug/m3	1.8	1.8	03/15/14 00:33	3 75-71-8	
1,1-Dichloroethane	ND ug/m3	1.5	1.8	03/15/14 00:33		
1,2-Dichloroethane	ND ug/m3	0.74	1.8	03/15/14 00:33	3 107-06-2	
1,1-Dichloroethene	ND ug/m3	1.5	1.8	03/15/14 00:33		
cis-1,2-Dichloroethene	ND ug/m3	1.5	1.8	03/15/14 00:33	3 156-59-2	
trans-1,2-Dichloroethene	ND ug/m3	1.5	1.8	03/15/14 00:33	3 156-60-5	
Ethylbenzene	ND ug/m3	1.6	1.8	03/15/14 00:33	3 100-41-4	
Methylene Chloride	59.8 ug/m3	1.3	1.8	03/15/14 00:33	3 75-09-2	
Methyl-tert-butyl ether	ND ug/m3	1.3	1.8	03/15/14 00:3	3 1634-04-4	
Naphthalene	2.5 ug/m3	1.9	1.8	03/15/14 00:3	3 91-20-3	
Tetrachioroethene	ND ug/m3	1.2	1.8	03/15/14 00:3	3 127-18-4	
Toluene	2.3 ug/m3	1.4	1.8	03/15/14 00:3	3 108-88-3	
1,2,4-Trichlorobenzene	ND ug/m3	2.7	1.8	03/15/14 00:3	3 120-82-1	
1,1,1-Trichloroethane	ND ug/m3	2.0	1.8	03/15/14 00:3	3 71-55-6	
1.1.2-Trichloroethane	ND ug/m3	0.99	1.8	03/15/14 00:3	3 79-00-5	
Trichloroethene	ND ug/m3	0.99	1.8	03/15/14 00:3	3 79-01-6	
1.2.3-Trimethylbenzene	ND ug/m3	0.36	1.8	03/15/14 00:3	3 526-73-8	
1.2,4-Trimethylbenzene	ND ug/m3	1.8	1.8	03/15/14 00:3	3 95- 63-6	
1.3.5-Trimethylbenzene	ND ug/m3	1.8	1.8	03/15/14 00:3		
Vinyl chloride	ND ug/m3	0.47	1.8	03/15/14 00:3		
m&p-Xylene	ND ug/m3	3.2	1.8		3 179601-23-1	
o-Xylene	ND ug/m3	1.6	1.8	03/15/14 00:3		

Project:

MRC SV/IAQ Study Feb 2014 REV

Pace Project No.: 10259332

Date: 04/17/2014 12:22 PM

Sample: SV-108-A-16	Lab ID: 10259332003	Collected: 02/25/14	09:51	Received: 03/04/14 10:00	Лatrix: Air
Parameters	Results Units	Report Limit	DF	Prepared Analyzed	CAS No. Qu
TO15 MSV AIR	Analytical Method: TO-15				
Benzene	0.88 цg/m3	0.57	1.74	03/12/14 22:03	71-43-2
Carbon tetrachloride	ND ug/m3	1.1	1.74	03/12/14 22:03	56-23-5
Chlorodifluoromethane	12.3 ug/m3	1.3	1.74	03/12/14 22:03	75-45-6
Chloroform	ND ug/m3	1.7	1.74	03/12/14 22:03	67-66-3
Dichlorodifluoromethane	2.5 ug/m3	1.8	1.74	03/12/14 22:03	75-71-8
1,1-Dichloroethane	2.1 ug/m3	1.4	1.74	03/12/14 22:03	75-34-3
1,2-Dichloroethane	ND ug/m3	0.71	1.74	03/12/14 22:03	107-06-2
1,1-Dichloroethene	7.7 ug/m3	1.4	1.74	03/12/14 22:03	75-35-4
cis-1,2-Dichloroethene	ND ug/m3	1.4	1.74	03/12/14 22:03	156-59-2
trans-1,2-Dichloroethene	ND ug/m3	1.4	1.74	03/12/14 22:03	156-60-5
Ethylbenzene	ND ug/m3	1.5	1.74	03/12/14 22:03	100-41-4
Methylene Chloride	12.4 ug/m3	1.2	1.74	03/12/14 22:03	75-09-2
Methyl-tert-butyl ether	ND ug/m3	1.3	1.74	03/12/14 22:03	1634-04-4
Naphthalene	ND ug/m3	1.9	1.74	03/12/14 22:03	91-20-3
Tetrachloroethene	ND ug/m3	1.2	1.74	03/12/14 22:03	127-18-4
Toluene	17.3 ug/m3	1.3	1.74	03/12/14 22:03	108-88-3
1.2.4-Trichlorobenzene	ND ug/m3	2.6	1.74	03/12/14 22:03	120-82-1
1,1,1-Trichloroethane	ND ug/m3	1.9	1.74	03/12/14 22:03	71-55-6
1,1,2-Trichloroethane	ND ug/m3	0.96	1.74	03/12/14 22:03	79 - 00-5
Trichloroethene	0.94J ug/m3	0.96	1.74	03/12/14 22:03	79-01-6
1,2,3-Trimethylbenzene	ND ug/m3	1.7	1.74	03/12/14 22:03	526-73-8
1,2,4-Trimethylbenzene	ND ug/m3	1.7	1.74	03/12/14 22:03	
1,3,5-Trimethylbenzene	ND ug/m3	1.7	1.74	03/12/14 22:03	3 108-67 -8
Vinyl chloride	ND ug/m3	0.45	1.74	03/12/14 22:03	
m&p-Xylene	2.9J ug/m3		1.74	03/12/14 22:03	179601-23-1
o-Xylene	1.2J ug/m3		1.74	03/12/14 22:03	

Minneapolis, MN 55414 (612)607-1700

ANALYTICAL RESULTS

Project:

MRC SV/IAQ Study Feb 2014 REV

Pace Project No.:

10259332

Sample: SV-117-A-16	Lab ID: 10259332007	Collected: 02/25/14 09	:59 Receive	d: 03/04/14 10:00 N	/latrix: Air	
Parameters	Results Units	Report Limit DI	Prepar	red Analyzed	CAS No.	Qual
TO15 MSV AIR	Analytical Method: TO-15					
Benzene	ND ug/m3	0.58 1.		03/14/14 18:42		
Carbon tetrachloride	ND ug/m3	1.2 1.	-	03/14/14 18:42		
Chlorodifluoromethane	0.80 ug/m3	0.36 1.		03/14/14 18:42		
Chloroform	ND ug/m3	1.8 1.		03/14/14 18:42		
Dichlorodifluoromethane	1.5J ug/m3	1.8 1.	8	03/14/14 18:42		
1.1-Dichloroethane	ND ug/m3	1.5 1.	8	03/14/14 18:42		
1,2-Dichloroethane	ND ug/m3	0.74 1.	8	03/14/14 18:42		
1,1-Dichloroethene	ND ug/m3	1.5 1.	8	03/14/14 18:42		
cis-1,2-Dichloroethene	ND ug/m3	1.5 1.	8	03/14/14 18:42		
trans-1,2-Dichloroethene	ND ug/m3	1.5 1.	8	03/14/14 18:42		
Ethylbenzene	2.1 ug/m3	1.6 1.	.8	03/14/14 18:42		
Methylene Chloride	40.4 ug/m3	1.3 1.	.8	03/14/14 18:42		
Methyl-tert-butyl ether	ND ug/m3	1.3 1	.8	03/14/14 18:42		
Naphthalene	95.1 ug/m3	1.9 1	.8	03/14/14 18:42		
Tetrachloroethene	10.3 ug/m3	1.2 1	.8	03/14/14 18:42		
Toluene	9.9 ug/m3	1.4 1	.8	03/14/14 18:42	2 108-88-3	
1,2,4-Trichlorobenzene	ND ug/m3	2.7 1	.8	03/14/14 18:42	2 120-82-1	
1,1,1-Trichloroethane	5.1 ug/m3	2.0 1	.8	03/14/14 18:42	2 71-55-6	
1,1,2-Trichloroethane	ND ug/m3	0.99 1	.8	03/14/14 18:42	2 79-00-5	
Trichloroethene	109 ug/m3	0.99 1	.8	03/14/14 18:42	2 79-01 - 6	
1,2,3-Trimethylbenzene	4.5 ug/m3	0.36 1	.8	03/14/14 18:42	2 526-73-8	
1,2,4-Trimethylbenzene	5.8 ug/m3	1.8 1	.8	03/14/14 18:42	2 95 - 63-6	
1,3,5-Trimethylbenzene	ND ug/m3		.8	03/14/14 18:42		
• •	ND ug/m3		.8	03/14/14 18:4	2 75-01 -4	
Vinyl chloride	9.7 ug/m3		.8		2 179601-23-1	
m&p-Xylene o-Xylene	8.3 ug/m3		.8	03/14/14 18:4		

Project:

MRC SV/IAQ Study Feb 2014 REV

Pace Project No.: 10259332

Sample: SV-118-A-16	Lab ID: 10259332005	Collected: 02/25/14	4 09:55	Received: 03/04/14 10:00	Matrix: Air	
Parameters	Results Units	Report Limit	DF	Prepared Analyzed	CAS No.	Qua
TO15 MSV AIR	Analytical Method: TO-1	5				
Benzene	1.8 ug/m3	0.61	1.87	03/14/14 17:	43 71-43-2	
Carbon tetrachloride	ND ug/m3	1.2	1.87	03/14/14 17:		
Chlorodifluoromethane	5.2 ug/m3	0.37	1.87	03/14/14 17:		
Chloroform	106 ug/m3	1.9	1.87	03/14/14 17:		
Dichlorodifluoromethane	2.0 ug/m3	1.9	1.87	03/14/14 17:		
1,1-Dichloroethane	90.3 ug/m3	1.5	1.87	03/14/14 17:		
1,2-Dichloroethane	ND ug/m3	0.77	1.87		43 107-06-2	
1,1-Dichloroethene	1670 ug/m3	60.6	74.8	03/17/14 21:	25 75-35-4	A 3
cis-1,2-Dichloroethene	477 ug/m3	60.6	74.8		25 156-59-2	А3
rans-1,2-Dichloroethene	18.1 ug/m3	1.5	1.87		43 156-60-5	
Ethylbenzene	27.2 ug/m3	1.6	1.87		43 100-41-4	
Methylene Chloride	15.0 ug/m3	1.3	1.87	03/14/14 17:	43 75-09-2	
Methyl-tert-butyl ether	ND ug/m3	1.4	1.87	03/14/14 17:	43 1634-04-4	
Naphthalene	20.7 ug/m3	2.0	1.87	03/14/14 17:	43 91-20-3	
Tetrachloroethene	1.6 ug/m 3	1.3	1.87	03/14/14 17:	43 127-18-4	
Toluene	3.8 ug/m3	1.4	1.87	03/14/14 17:	43 108-88-3	
1,2,4-Trichlorobenzene	ND ug/m3	2.8	1.87	03/14/14 17:	43 120-82-1	
1,1,1-Trichloroethane	26.2 ug/m3	2.1	1.87	03/14/14 17:	43 71-55-6	
1,1,2-Trichloroethane	ND ug/m3	1.0	1.87	03/14/14 17:	43 79-00-5	
Trichloroethene	5860 ug/m3	41.1	74.8	03/17/14 21:	25 79-01-6	A3
1,2,3-Trimethylbenzene	18.1 ug/m3	0.37	1.87	03/14/14 17:	43 526-73-8	
1,2,4-Trimethylbenzene	34.1 ug/m3	1.9	1.87	03/14/14 17:	43 95-63-6	
1,3,5-Trimethylbenzene	23.2 ug/m3	1.9	1.87	03/14/14 17:	43 108-67-8	
Vinyl chloride	ND ug/m3	0.49	1.87	03/14/14 17:	43 75-01-4	
m&p-Xylene	156 ug/m3	3.3	1.87	03/14/14 17:	43 179601-23-1	
o-Xylene	65.2 ug/m3	1.6	1.87	03/14/14 17:	43 95-47-6	

Project:

MRC SV/IAQ Study Feb 2014 REV

Pace Project No.:

Date: 04/17/2014 12:22 PM

10259332

Sample: SV-136-A-16	Lab ID: 10259332013	Collected: 02/25/1	4 09:10	Received: 03/04/14 10:00	Matrix: Air	
Parameters	Results Units	Report Limit	DF	Prepared Analyzed	CAS No.	Qua
TO15 MSV AIR	Analytical Method: TO-15					
Benzene	6.7 ug/m3	0.61	1.87		37 71-43-2	
Carbon tetrachloride	ND ug/m3	1.2	1.87	03/14/14 21	37 56-23-5	
Chlorodifluoromethane	ND ug/m3	0.37	1.87	03/14/14 21	37 75-45-6	
Chloroform	217 ug/m3	1.9	1.87	03/14/14 21	37 67-66-3	
Dichlorodifluoromethane	ND ug/m3	1.9	1.87	03/14/14 21	37 75-71-8	
1,1-Dichloroethane	1.7 ug/m3	1.5	1.87		37 75-34-3	
1,2-Dichloroethane	ND ug/m3	0.77	1.87	03/14/14 21	37 107-06-2	
1,1-Dichloroethene	ND ug/m3	1.5	1.87	03/14/14 21	37 75-35-4	
cis-1,2-Dichloroethene	55.2 ug/m3	1.5	1.87	03/14/14 21	37 156-59-2	
trans-1,2-Dichloroethene	25.3 ug/m3	1.5	1.87	03/14/14 21	37 156-60-5	
Ethylbenzene	1.7 ug/m3	1.6	1.87	03/14/14 21	37 100-41-4	
Methylene Chloride	13.5 ug/m3	1.3	1.87	03/14/14 21	37 75-09-2	
Methyl-tert-butyl ether	ND ug/m3	1.4	1.87	03/14/14 21	37 1634-04-4	
Naphthalene	9.3 ug/m3	2.0	1.87	03/14/14 21	:37 91-20-3	
Tetrachloroethene	15.1 ug/m3	1.3	1.87	03/14/14 21	:37 127-18-4	
Toluene	11.7 ug/m3	1.4	1.87	03/14/14 21	:37 108-88-3	
1,2,4-Trichlorobenzene	ND ug/m3	2.8	1.87	03/14/14 21	37 120-82-1	
1,1,1-Trichloroethane	3.4 ug/m3	2.1	1.87	03/14/14 21	:37 71-55-6	
1,1,2-Trichloroethane	ND ug/m3	1.0	1.87	03/14/14 21	:37 79-00-5	
Trichloroethene	91000 ug/m3	658	1196.8	03/17/14 16	:34 79-01-6	A3
1,2,3-Trimethylbenzene	6.1 ug/m3	0.37	1.87	03/14/14 21	:37 526-73-8	
1,2,4-Trimethylbenzene	6.8 ug/m3	1.9	1.87	03/14/14 21	:37 95-63-6	
1,3,5-Trimethylbenzene	5.4 ug/m3	1.9	1.87		:37 108-67-8	
Vinyl chloride	ND ug/m3	0.49	1.87		:37 75-01-4	
m&p-Xylene	4.2 u g/m3	3.3	1.87		:37 179601-23-1	
o-Xylene	3.4 ug/m3	1.6	1.87		:37 95-47-6	

Project:

MRC SV/IAQ Study Feb 2014 REV

Pace Project No.: 10259332

Date: 04/17/2014 12:22 PM

Sample: SV-138-A-16	Lab ID: 10259332023	Collected: 02/25/1	4 10:35	Received: 0	3/04/14 10:00 M	Matrix: Air	
Parameters	Results Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
TO15 MSV AIR	Analytical Method: TO-15	5					
Benzene	1.6 ug/m3	0.93	2.87		03/17/14 23:50	71-43-2	
Carbon tetrachloride	ND ug/m3	1.8	2.87		03/17/14 23:50	56-23-5	
Chlorodifluoromethane	9.6 ug/m3	0.57	2.87		03/17/14 23:50	75-45-6	
Chloroform	ND ug/m3	2.8	2.87		03/17/14 23:50	67-66-3	
Dichlorodifluoromethane	3.3 ug/m3	2.9	2.87		03/17/14 23:50	75-71-8	
1,1-Dichloroethane	2.6 ug/m3	2.4	2.87		03/17/14 23:50	75-34-3	
1,2-Dichloroethane	ND ug/m3	1.2	2.87		03/17/14 23:50	107-06-2	
1,1-Dichloroethene	6.4 ug/m3	2.3	2.87		03/17/14 23:50	75-35-4	
cis-1,2-Dichloroethene	5.6 ug/m3	2.3	2.87		03/17/14 23:50	156-59-2	
trans-1,2-Dichloroethene	ND ug/m3	2.3	2.87		03/17/14 23:50	156-60-5	
Ethylbenzene	1.9J ug/m3	2.5	2.87		03/17/14 23:50	100-41-4	
Methylene Chloride	17.5 ug/m3	2.0	2.87		03/17/14 23:50	75-09-2	
Methyl-tert-butyl ether	ND ug/m3	2.1	2.87		03/17/14 23:50	1634-04-4	
Naphthalene	23.1 ug/m3	3.1	2.87		03/17/14 23:50	91-20-3	
Tetrachloroethene	2.7 ug/m3	2.0	2.87		03/17/14 23:50	127-18-4	
Toluene	10.3 ug/m3	2.2	2.87		03/17/14 23:50	108-88-3	
1,2,4-Trichlorobenzene	ND ug/m3	4.3	2.87		03/17/14 23:50	120-82-1	
1,1,1-Trichloroethane	ND ug/m3	3.2	2.87		03/17/14 23:50	71-55 - 6	
1,1,2-Trichloroethane	ND ug/m3	1.6	2.87		03/17/14 23:50	79-00-5	
Trichloroethene	80.3 ug/m3	1.6	2.87		03/17/14 23:50	79-01-6	
1,2,3-Trimethylbenzene	ND ug/m3	0.57	2.87		03/17/14 23:50	526-73-8	
1,2,4-Trimethylbenzene	ND ug/m3	2.9	2.87		03/17/14 23:50	95-63-6	
1,3,5-Trimethylbenzene	ND ug/m3	2.9	2.87		03/17/14 23:50	108-67-8	
Vinyl chloride	ND ug/m3	0.75	2.87		03/17/14 23:50	75-01-4	
m&p-Xylene	6.1 ug/m3	5.1	2.87			179601-23-1	
o-Xylene	1. 6J ug/m3	2.5	2.87		03/17/14 23:50		

Project:

MRC SV/IAQ Study Feb 2014 REV

Pace Project No.:

10259332

Sample: SV-DUP3-A-16	Lab ID: 10259332032	Collected: 02/25/1	4 00:00	Received: 03	3/04/14 10:00 I	Matrix: Air	
Parameters	Results Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
TO15 MSV AIR	Analytical Method: TO-15						
Benzene	ND ug/m3	0.90	2.77		03/18/14 04:03		
Carbon tetrachloride	ND ug/m3	1.8	2.77		03/18/14 04:03		
Chlorodifluoromethane	2.6 ug/m3	0.55	2.77		03/18/14 04:03		
Chloroform	93.6 ug/m3	2.7	2.77		03/18/14 04:03		
Dichlorodifluoromethane	2.3J ug/m3	2.8	2.77		03/18/14 04:03		
1.1-Dichloroethane	21.6 ug/m3	2.3	2.77		03/18/14 04:03		
1,2-Dichloroethane	ND ug/m3	1.1	2.77		03/18/14 04:03		
1.1-Dichloroethene	473 ug/m3	89.7	110.7		03/18/14 17:3		A3
cis-1,2-Dichloroethene	1260 ug/m3	89.7	110.7		03/18/14 17:3		A3
trans-1,2-Dichloroethene	37.7 ug/m 3	2.2	2.77		03/18/14 04:03		
Ethylbenzene	ND ug/m3	2.4	2.77		03/18/14 04:03		
Methylene Chloride	18.6 ug/m3	2.0	2.77		03/18/14 04:03		
Methyl-tert-butyl ether	ND ug/m3	2.0	2.77		03/18/14 04:03		
Naphthalene	ND ug/m3	3.0	2.77		03/18/14 04:03		
Tetrachloroethene	ND ug/m3	1.9	2.77		03/18/14 04:0	3 127-18-4	
Toluene	4.6 ug/m3	2.1	2.77		03/18/14 04:0		
1.2.4-Trichlorobenzene	ND ug/m3	4.2	2.77		03/18/14 04:0	3 120-82-1	
1,1,1-Trichloroethane	112 ug/m3	3.1	2.77		03/18/14 04:0	3 71-5 5- 6	
1.1.2-Trichloroethane	ND ug/m3	1.5	2.77		03/18/14 04:0	3 79-00-5	
Trichloroethene	619 ug/m3	60.9	110.7		03/18/14 17:3	1 79-01-6	A 3
1,2,3-Trimethylbenzene	ND ug/m3	0.55	2.77		03/18/14 04:0		
1.2.4-Trimethylbenzene	ND ug/m3	2.8	2.77		03/18/14 04:0		
1.3.5-Trimethylbenzene	ND ug/m3	2.8	2.77		03/18/14 04:0		
Vinyl chloride	1.5 ug/m3	0.72	2.77		03/18/14 04:0		
m&p-Xylene	ND ug/m3	4.9	2.77		03/18/14 04:0	3 179601-23-1	
o-Xylene	1.4J ug/m3	2.4	2.77		03/18/14 04:0	3 95-47-6	

Project:

MRC SV/IAQ Study Feb 2014 REV

Pace Project No.: 10259332

Sample: SV-DUP4-A-16	Lab ID: 10259332034	Collected: 02/25/1	4 00:00	Received: 03/0	04/14 10:00 N	Matrix: Air	
Parameters	Results Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
TO15 MSV AIR	Analytical Method: TO-15						
Benzene	0.77 ug/m3	0.57	1.74		03/15/14 05:15	71-43-2	
Carbon tetrachloride	ND ug/m3	1.1	1.74		03/15/14 05:15	56-23-5	
Chlorodifluoromethane	7.1 ug/m3	0.35	1.74		03/15/14 05:15	75-45-6	
Chloroform	1.4J ug/m3	1.7	1.74		03/15/14 05:15	67-66-3	
Dichlorodifluoromethane	1.9 ug/m3	1.8	1.74		03/15/14 05:15	75-71-8	
1,1-Dichloroethane	3.2 ug/m3	1.4	1.74		03/15/14 05:15	75-34-3	
1,2-Dichloroethane	ND ug/m3	0.71	1.74		03/15/14 05:15		
1,1-Dichloroethene	192 ug/m3	1.4	1.74		03/15/14 05:15	75-35-4	
cis-1,2-Dichloroethene	13.7 ug/m3	1.4	1.74		03/15/14 05:15	156-59-2	
rans-1,2-Dichloroethene	ND ug/m3	1.4	1.74		03/15/14 05:15		
Ethylbenzene	ND ug/m3	1.5	1.74		03/15/14 05:15	100-41-4	
Methylene Chloride	17.8 ug/m3	1.2	1.74		03/15/14 05:15	75-09-2	
Methyl-tert-butyl ether	ND ug/m3	1.3	1.74		03/15/14 05:15	1634-04-4	
Naphthalene	3.1 ug/m3	1.9	1.74		03/15/14 05:15	91-20-3	
Tetrachloroethene	ND ug/m3	1.2	1.74		03/15/14 05:15	127-18-4	
Toluene	2.0 ug/m3	1.3	1.74		03/15/14 05:15	108-88-3	
1,2,4-Trichlorobenzene	ND ug/m3	2.6	1.74		03/15/14 05:15	120-82-1	
1,1,1-Trichloroethane	ND ug/m3	1.9	1.74		03/15/14 05:15	71-55-6	
1,1,2-Trichloroethane	ND ug/m3	0.96	1.74		03/15/14 05:15	79-00-5	
Trichloroethene	150 ug/m3	0.96	1.74		03/15/14 05:15	79-01-6	
1,2,3-Trimethylbenzene	ND ug/m3	0.35	1.74		03/15/14 05:15	5 526-73-8	
1,2,4-Trimethylbenzene	1.5J ug/m3	1.7	1.74		03/15/14 05:15	95-63-6	
1,3,5-Trimethylbenzene	1.4J ug/m3	1.7	1.74		03/15/14 05:15	108-67-8	
Vinyl chloride	0.59 ug/m3	0.45	1.74		03/15/14 05:15	75-01-4	
m&p-Xylene	1.7J ug/m3	3.1	1.74		03/15/14 05:15	179601-23-1	
o-Xylene	ND ug/m3	1.5	1.74		03/15/14 05:15	95-47-6	

Project:

112IC06279 MRC SV/IAQ

Pace Project No.:

10263934

Sample: IA-081-A-16R	Lab ID: 10263934001	Collected: 04/17/14	16:35	Received: 04/18/14 09:05	Matrix: Air	
Parameters	Results Units	Report Limit	DF	Prepared Analyzed	CAS No.	Qual
TO15 MSV AIR	Analytical Method: TO-15	5				
Benzene	0.44 ug/m3	0.44	1.34	04/30/14 15:2	5 71-43-2	
Carbon tetrachloride	ND ug/m3	0.86	1.34	04/30/14 15:2	5 56-23-5	
Chlorodifluoromethane	28.0 ug/m3	0.96	1.34	04/30/14 15:2	5 75-45-6	
Chloroform	ND ug/m3	1.3	1.34	04/30/14 15:2	.5 67 - 66-3	
Dichlorodifluoromethane	2.1 ug/m3	1.4 :	1.34	04/30/14 15:2	5 75-71-8	
1,1-Dichloroethane	ND ug/m3	1.1	1.34	04/30/14 15:2	5 75-34-3	
1,2-Dichloroethane	ND ug/m3	0.55	1.34	04/30/14 15:2	5 107-06-2	
1,1-Dichloroethene	ND ug/m3	1.1	1.34	04/30/14 15:2	5 75-35-4	
cis-1,2-Dichloroethene	ND ug/m3	1.1	1.34	04/30/14 15:2	5 156-59-2	
trans-1,2-Dichloroethene	ND ug/m3	1.1	1.34	04/30/14 15:2	5 156-60-5	
Ethylbenzene	8.0 ug/m3	1.2	1.34	04/30/14 15:2	5 100-41-4	
Methylene Chloride	1.9J ug/m3	4.7	1.34	04/30/14 15:2	5 75-09-2	
Methyl-tert-butyl ether	ND ug/m3	0.98	1.34	04/30/14 15:2	5 1634-04-4	
Naphthalene	ND ug/m3	3.6	1.34	04/30/14 15:2	25 91-20-3	
Tetrachloroethene	1.6 ug/m3	0.92	1.34	04/30/14 15:2	25 127-18-4	
Toluene	20.4 ug/m3	1.0	1.34	04/30/14 15:2	5 108-88-3	
1,2,4-Trichlorobenzene	ND ug/m3	5.1	1.34	04/30/14 15:2	25 120-82-1	
1,1,1-Trichloroethane	0.81J ug/m3	1.5	1.34	04/30/14 15:2	25 71-55-6	
1,1,2-Trichloroethane	ND ug/m3	0.74	1.34	04/30/14 15:2	5 79-00-5	
Trichloroethene	4.1 ug/m3	0.74	1.34	04/30/14 15:2	25 79-01-6	
1,2,3-Trimethylbenzene	ND ug/m3	1.3	1.34	04/30/14 15:2	25 526-73-8	
1,2,4-Trimethylbenzene	ND ug/m3	1.3	1.34	04/30/14 15:2	25 95-63-6	
1,3,5-Trimethylbenzene	1.2J ug/m3	3.3	1.34	04/30/14 15:2	25 108-67-8	
Vinyl chloride	ND ug/m3	0.35	1.34	04/30/14 15:2	25 75-01-4	
m&p-Xylene	38.2 ug/m3	2.4	1.34	04/30/14 15:2	25 179601-23-1	
o-Xylene	11.6 ug/m3	1.2	1.34	04/30/14 15:2	25 95-47-6	

Project:

112IC06279 MRC SV/IAQ

Pace Project No.: 10263934

Sample: IA-113-C-16R	Lab ID: 10263934002	Collected: 04/17/14	16:43	Received: 04/18/14 09:05	Matrix: Air	
Parameters	Results Units	Report Limit	DF	Prepared Analyzed	CAS No. Q)ua
TO15 MSV AIR	Analytical Method: TO-15					
Benzene	ND ug/m3	0.52	1.61	04/30/14 15:	53 71-43-2	
Carbon tetrachloride	ND ug/m3	1.0	1.61	04/30/14 15:	53 56-23-5	
Chlorodifluoromethane	4.0 ug/m3	1.2	1.61	04/30/14 15:	53 75-45-6	
Chloroform	ND ug/m3	1.6	1.61	04/30/14 15:	53 67-66-3	
Dichlorodifluoromethane	2.5 ug/m3	1.6	1.61	04/30/14 15:	53 75-71 -8	
1,1-Dichloroethane	ND ug/m3	1.3	1.61	04/30/14 15:	53 75-34-3	
1,2-Dichloroethane	ND ug/m3	0.66	1.61	04/30/14 15:	53 107-06-2	
1,1-Dichloroethene	ND ug/m3	1.3	1.61	04/30/14 15:	53 75-35-4	
cis-1,2-Dichloroethene	ND ug/m3	1.3	1.61	04/30/14 15:	53 156-59-2	
trans-1,2-Dichloroethene	ND ug/m3	1.3	1.61	04/30/14 15:	53 156-60-5	
Ethylbenzene	1.2J ug/m3	1.4	1.61	04/30/14 15:	53 100-41-4	
Methylene Chloride	3.1J ug/m3	5.7	1.61	04/30/14 15:	53 75-09-2	
Methyl-tert-butyl ether	ND ug/m3	1.2	1.61	04/30/14 15:	53 1634-04-4	
Naphthalene	2.1J ug/m3	4.3	1.61	04/30/14 15:	53 91-20-3	
Tetrachloroethene	1.6 ug/m3	1.1	1.61	04/30/14 15:	53 127-18 -4	
Toluene	5.1 ug/m3	1.2	1.61	04/30/14 15:	53 108-88-3	
1,2,4-Trichlorobenzene	ND ug/m3	6.1	1.61	04/30/14 15:	53 120-82-1	
1,1,1-Trichloroethane	ND ug/m3	1.8	1.61	04/30/14 15:	53 71-55-6	
1,1,2-Trichloroethane	ND ug/m3	0.89	1.61	04/30/14 15:	53 79-00-5	
Trichloroethene	ND ug/m3	0.89	1.61	04/30/14 15:	53 79-01-6	
1,2,3-Trimethylbenzene	ND ug/m3	1.6	1.61	04/30/14 15:	53 526-73-8	
1,2,4-Trimethylbenzene	ND ug/m3	1.6	1.61	04/30/14 15:	53 95-63-6	
1,3,5-Trimethylbenzene	ND ug/m3	4.0	1.61	04/30/14 15:	53 108-67-8	
Vinyl chloride	ND ug/m3	0.42	1.61	04/30/14 15:	53 75-01-4	
m&p-Xylene	2.0J ug/m3	2.8	1.61	04/30/14 15:	53 179601-23-1	
o-Xylene	0.90J ug/m3	1.4	1.61	04/30/14 15:		

APPENDIX D—DATA VALIDATION REPORTS

Tetra Tech

INTERNAL CORRESPONDENCE

TO:

M. MARTIN

DATE:

APRIL 24, 2014

FROM:

A. COGNETTI

COPIES:

DV FILE

SUBJECT:

ORGANIC DATA VALIDATION - VOC

MIDDLE RIVER CENTER

SAMPLE DELIVERY GROUP (SDG) - 10258805

SAMPLES:

47/Air/VOC

IA-033-B-16	IA-060-C-16	IA-063-B-16	IA-065-C-16
IA-088-C-16	IA-101-B-16	IA-102-C-16	IA-105-Z-16
IA-113-C-16	IA-121-B-16	IA-123-Z-16	IA-126-C-16
IA-128-C-16	IA-130-C-16	IA-133-C-16	IA-135-C-16
IA-141-C-16	IA-142-C-16	IA-143-C-16	IA-144-C-16
IA-145-C-16	IA-146-C-16	IA-147-C-16	IA-148-C-16
IA-DUP1-C-16	IA-DUP2-C-16	SV-033-B-16	SV-060-C-16
SV-063-B-16	SV-065-C-16	SV-088-C-16	SV-101-B-16
SV-102-C-16	SV-105-Z-16	SV-113-C-16	SV-121-B-16
SV-123-Z-16	SV-126-C-16	SV-128-C-16	SV-130-C-16
SV-133-C-16	SV-135-C-16	SV-141-C-16	SV-142-C-16
SV-143-C-16	SV-DUP1-C-16	SV-DUP2-C-16	

Overview

The sample set for Middle River Center, SDG 10258805 consisted of forty-seven (47) air samples. All samples were analyzed for volatile organic compounds (VOC). There are four (4) field duplicate pairs included in this SDG: IA-DUP1-C-16/ IA-133-C-16, IA-DUP2-C-16/ IA-113-C-16, SV-DUP1-C-16/ SV-133-C-16 and SV-DUP2-C-16/ SV-113-C-16.

The samples were collected by Tetra Tech on February 24, 2014 and analyzed by PACE Analytical. All analyses were conducted in accordance with EPA Method TO-15 analytical and reporting protocols.

The data contained in this SDG were validated with regard to the following parameters: data completeness, holding times, GC/MS tuning, initial/continuing calibrations, laboratory method blank results, surrogate spike recoveries, blank spike results, internal standard recoveries, chromatographic resolution, compound identification, compound quantitation, field duplicate precision and detection limits. Areas of concern are listed below.

<u>Major</u>

No major noncompliances were noted.

Minor

- The continuing calibration percent difference (%D) for 1,2,4-trichlorobenzene was greater than the 30% quality control limit on March 9, 2014 @ 10:55 on instrument 10AIR0. The nondetected 1,2,4-trichlorobenzene results in samples IA-088-C-16 and IA-113-C-16 reported from this analytical sequence were qualified as estimated (UJ).
- The laboratory control sample (LCS) percent recoveries (%Rs) of trans-1,2-dichloroethene were greater than the upper quality control limit in batches 1635646 and 1635821 (19607 and 19617). The detected

TO: M. Martin FROM: A. Cognetti SDG: 10258805 DATE: April 24, 2014

PAGE 2

trans-1,2-dichloroethene results in the affected samples SV-102-C-16, SV-133-C-16, SV-105-Z-16 and SV-DUP1-C-16 were qualified as estimated (J+).

- The internal standard area of chlorobenzene-d5 was outside quality control limits in sample IA-088-C-16. The nondetected results quantitated using this internal standard were qualified as estimated (UJ).
- The concentration of methylene chloride in sample SV-113-C-16 and SV-105-Z-16 exceeded instrument calibration range. The detected methylene chloride results were qualified as estimated (J).
- Field duplicate imprecision was noted in the field duplicate pair IA-DUP1-C-16 and IA-133-C-16. The
 relative percent difference (RPD) for methylene chloride exceeded the 50% quality control limit. The
 detected methylene chloride results were qualified as estimated (J).
- Field duplicate imprecision was noted in the field duplicate pair IA-DUP2-C-16 and IA-113-C-16. The RPDs for chlorodifluoromethane and m&p xylenes exceeded the 50% quality control limit. The variance for methylene chloride and o-xylene was greater than 2X the reporting limit. The detected chlorodifluoromethane, m&p xylenes, methylene chloride and o-xylene results were qualified as estimated (J).
- Field duplicate imprecision was noted in the field duplicate pair SV-DUP1-C-16 and SV-133-C-16. The RPDs for methylene chloride and toluene exceeded the 50% quality control limit. The detected methylene chloride and toluene results were qualified as estimated (J).
- Field duplicate imprecision was noted in the field duplicate pair SV-DUP2-C-16 and SV-113-C-16. The RPDs for chlorodifluoromethane, dichlorodifluoromethane, methylene chloride, toluene and trichloroethene exceeded the 50% quality control limit. The variance for cis-1,2-dichloroethene was greater than 2X the reporting limit. The detected chlorodifluoromethane, dichlorodifluoromethane, methylene chloride, toluene, cis-1,2-dichloroethene and trichloroethene results were qualified as estimated (J).

Notes

The laboratory control sample (LCS) percent recovery (%R) of 1,2,4-trichlorobenzene was greater than the upper quality control limit in batch 1638294. No action was taken on the nondetected 1,2,4-trichlorobenzene results in the affected samples.

The laboratory did not report detections between the reporting limit and the method detection limit. The laboratory was required to revise and resubmit all sample results.

Nondetected results were reported to the method detection limit.

Executive Summary

Laboratory Performance: The laboratory did not initially report detections between the reporting limit and method detection limit. The continuing calibration %Ds for 1,2,4-trichlorobenzene was greater than the 30% quality control limit. The concentration of methylene chloride in samples SV-113-C-16 and SV-105-Z-16 exceeded instrument calibration range. The internal standard area of chlorobenzene-d5 was outside quality control limits in sample IA-088-C-16. The LCS %R of trans-1,2-dichloroethene exceeded the upper quality control limit.

Other Factors Affecting Data Quality: Field duplicate imprecision was noted in all field duplicate pairs.

TO: M. Martin FROM: A. Cognetti

SDG: 10258805 DATE: April 24, 2014

Cognetti PAGE 3 258805

The data for these analyses were reviewed with reference to USEPA National Functional Guidelines for Organic Data Validation (June 2008) and EPA Method TO-15. The text of this report has been formulated to address only those problem areas affecting data quality.

Tetra Tech

Ann Cognetti

Chemist/Data Validator

Zetra Tech

Joseph A. Samchuck
Data Validation Manager

Attachments:

Appendix A - Qualified Analytical Results

Appendix B – Results as Reported by the Laboratory

Appendix C – Support Documentation

Appendix A

Qualified Analytical Results

Qualifier Codes:

A = Lab Blank Contamination

B = Field Blank Contamination

C = Calibration Noncompliance (i.e., % RSDs, %Ds, ICVs, CCVs, RRFs, etc.)

C01 = GC/MS Tuning Noncompliance

D = MS/MSD Recovery Noncompliance

E = LCS/LCSD Recovery Noncompliance

F = Lab Duplicate Imprecision

G = Field Duplicate Imprecision

H = Holding Time Exceedance

I = ICP Serial Dilution Noncompliance

J = ICP PDS Recovery Noncompliance; MSA's r < 0.995

K = ICP Interference - includes ICS % R Noncompliance

L = Instrument Calibration Range Exceedance

M = Sample Preservation Noncompliance

N = Internal Standard Noncompliance

N01 = Internal Standard Recovery Noncompliance Dioxins

N02 = Recovery Standard Noncompliance Dioxins

N03 = Clean-up Standard Noncompliance Dioxins

O = Poor Instrument Performance (i.e., base-time drifting)

P = Uncertainty near detection limit (< 2 x IDL for inorganics and <CRQL for organics)

Q = Other problems (can encompass a number of issues; i.e.chromatography,interferences, etc.)

R = Surrogates Recovery Noncompliance

S = Pesticide/PCB Resolution

T = % Breakdown Noncompliance for DDT and Endrin

U = RPD between columns/detectors >40% for positive results determined via GC/HPLC

V = Non-linear calibrations; correlation coefficient r < 0.995

W = EMPC result

X = Signal to noise response drop

Y = Percent solids <30%

Z = Uncertainty at 2 standard deviations is greater than sample activity

Z1 = Tentatively Identified Compound considered presumptively present

Z2 = Tentatively Identified Compound column bleed

Z3 = Tentatively Identified Compound aldol condensate

PROJ NO: 04792	NSAMPLE	IA-033-B-16			IA-060-C-16			IA-063-B-16	3		IA-065-C-16		
SDG: 10258805	LAB_ID	10258805024			10258805014	4		10258805022	22		10258805020		
FRACTION: OV	SAMP_DATE	2/24/2014			2/24/2014			2/24/2014			2/24/2014		
MEDIA: AIR	QC_TYPE	ΣZ			ΣZ			NM			ZZ		
	UNITS	UG/M3			UG/M3			UG/M3			UG/M3		!
	PCT_SOLIDS												
	DUP_OF						!						
PARAMETER		RESULT	VaL	arcd	RESULT	VQL	QLCD	RESULT	ΛΩ	OLCD	RESULT		alco
1,1,1-TRICHLOROETHANE			2 U		1	1.9 U			2.3 U		1.9) U	
1,1,2-TRICHLOROETHANE		0.99 U	n_6		3.0	0.96 U		, -	1.2 U		0.92 U	2 U	
1,1-DICHLOROETHANE		1.	1.5 U		1	1.4 U		,	1.7 U		4.1	1.4 U	
1,1-DICHLOROETHENE		1.5	1.5 U		1	1.4 U		,	1.7 U		4.1	1.4 U	
1,2,3-TRIMETHYLBENZENE	ш	0.36 U	3 U		0.3	0.35 U		0	0.42 U		0.34	n t	
1,2,4-TRICHLOROBENZENE	Щ	6.8	3 U		9	e.e U			7.9 U		6.3	3 U	
1,2,4-TRIMETHYLBENZENE	ш	1.1	1.4 J	Ь	1	1.7 U			1.1 J	۵	1.7	7 U	
1,2-DICHLOROETHANE		0.74 U	n t		0.7	0.71 U		0.	0.86 U		0.69 U	0	
1,3,5-TRIMETHYLBENZENE	ш	1.8	1.8 U		1	1.7 U		, 1	2.1 U		1.7	1.7 U	
BENZENE		0.87			0.81	31		Ö	0.68 U		0.64	-	
CARBON TETRACHLORIDE	ш	1.2	2 0		1.	1.1 U	-		1.3 U		1.1	<u> </u>	
CHLORODIFLUOROMETHANE	ANE	42.6	3		6	9.4		3	6.9		23.9	6	
CHLOROFORM		1.2	1.8 U		1	1.7 U		, 7	2.1 U		1.7	7 U	
CIS-1,2-DICHLOROETHENE	ш	1.5	1.5 U		1	1.4 U			1.7 U		4.1	1.4 U	
DICHLORODIFLUOROMETHANE	THANE	3.1	_		2	2.4		-	2.5		2.3	3	
ETHYLBENZENE		1.7	2		1	1.5 U			1.8 U		1.5	1.5 U	
M+P-XYLENES		7.4	†		2	2.5 J	Ъ	. 4	2.7 J	<u>а</u>	8	3 U	
METHYL TERT-BUTYL ETHER	ter.	1.3	3 U		1	1.3 U		, .	1.5 U		1.2	2 U	
METHYLENE CHLORIDE		12.6	3		8	8.1		1	4.9 J	а.	5.8	3 J	Ь
NAPHTHALENE		7	4 ا	Ь	3.	3.6 J	Д	/	5.6 U		5.1	_	
O-XYLENE		2.5	2		0.98	J8 J	Ъ	0	0.95 J	<u>م</u>	1.5	2 N	
TETRACHLOROETHENE		1.2	2 U		1	1.2 U		,-	1.4 U		1.2	2 U	
TOLUENE		44.1			3.	3.8		1	15.1		2.1		
TRANS-1,2-DICHLOROETHENE	1ENE	1.5	5 U		1	1.4 U		,	1.7 U		1.4	t U	
TRICHLOROETHENE		0.9	0.99 U		5.0	0.96 U		,-	1.2 U		0.92	D 2	
VINYL CHLORIDE		0.47 U	0 ₂		0.4	0.45 U		0.	0.55 U		0.44 U	<u>D</u>	

	1	0, 0 000		0, 6,0,			07 0 007 41			10 40 1 40		
PROJ_NO: 04792	NSAMPLE	IA-088-C-16		IA-101-B-16			IA-102-C-16			91-7-cn1-W		
SDG: 10258805	LAB_ID	10258805006		10258805036			10258805010	i		10258805030	0	
FRACTION: OV	SAMP_DATE	2/24/2014		2/24/2014			2/24/2014			2/24/2014		
MEDIA: AIR	QC_TYPE	NA NA		NN			NA			NΝ		
	UNITS	UG/M3		UG/M3			UG/M3			UG/M3		
	PCT_SOLIDS											
	DUP_OF					•					_	
PARAMETER		RESULT VQL	QLCD	RESULT	VQL	arcp	RESULT \	Val	QLCD	RESULT	VQL	QLCD
1,1,1-TRICHLOROETHANE		40.4 U		2.1	U		2.2	Э			2 U	
1,1,2-TRICHLOROETHANE		20 U		1	1 U		1.1 U	J		0.0	0.99 U	
1,1-DICHLOROETHANE		29.8 U		1.5 U	n		1.6 U	J.		1.	1.5 U	
1,1-DICHLOROETHENE		29.5 U		1.5 U	n		1.6 U	J		+-	1.5 U	
1,2,3-TRIMETHYLBENZENE	ш	7.3 UJ	z	0.37)		U 66.0	ſ		0.3	0.36 U	
1,2,4-TRICHLOROBENZENE	Щ	137 UJ	CN	2.8	n		2.9 U	ſ		9	6.8 U	
1,2,4-TRIMETHYLBENZENE	Ш	36.3 UJ	z	1.9 U	D		1.9 U	ا ر		1.	1.7 J	Ь
1,2-DICHLOROETHANE		14.9 U		U 77.0	n		0.8 U			0.7	0.74 U	
1,3,5-TRIMETHYLBENZENE	ш	36.3 UJ	Z	1.9 U	n		1.9 U	_			1.8 U	
BENZENE		11.8 U		0.65			0.61 J		Ь	-+	1.6	
CARBON TETRACHLORIDE	ш	23.3 U		1.2	n		1.2 U	ח		+	1.2 U	
CHLORODIFLUOROMETHANE	ANE	7.3 U		18.9			1.8 J		Ь	-	1.4	
CHLOROFORM		36 U		1.9	n		1.9 U	_			1.8 U	
CIS-1,2-DICHLOROETHENE	Ш	29.5 U		1.5 U	n		1.6 U	J U		1.	1.5 U	
DICHLORODIFLUOROMETHANE	HANE	36.7 U		2.7			2.6			 1	1.8	
ETHYLBENZENE		32 UJ	Z	1.6	U		1.7 U	_		113	3	
M+P-XYLENES		64 UJ	Z	2.5	ſ	Ъ	1.9		<u>а</u>	476	9.	
METHYL TERT-BUTYL ETHER	HER	26.5 U		1.4	. U		1.4 U	ח		+	1.3 U	
METHYLENE CHLORIDE		33.6 J	Ь	11.5			8.6			14.8	80	
NAPHTHALENE		UJ 2.96	Z	1.3]	Ь	1.1 J		Д.	ю. Э	3.2 J	_
O-XYLENE		32 UJ	Z	0.95	ſ	Ь	1.7 U	_		142	5	
TETRACHLOROETHENE		25.1 U		1.3	Ω		1.3 U	_	;		1.2 U	
TOLUENE		28 U		17.1			3.2			9300	Q	
TRANS-1,2-DICHLOROETHENE	1ENE	29.5 U		1.5	n		1.6 U	7		+	1.5 U	
TRICHLOROETHENE		20 U		1	ח		1.1	Э		0.99	O 6	
VINYL CHLORIDE		9.5 U		0.49 U	ם		0.5 L	n		0.4	0.47 U	

PROJ NO: 04792	NSAMPLE	IA-113-C-16		IA-121-B-16			IA-123-Z-16		IA-126-C-16	
SDG: 10258805	LAB_ID	10258805028		10258805034			10258805032		10258805018	
FRACTION: OV	SAMP_DATE	2/24/2014		2/24/2014			2/24/2014		2/24/2014	
MEDIA: AIR	QC_TYPE	N N		ΣZ			NM		NN	
•	UNITS	UG/M3		UG/M3			UG/M3		UG/M3	
	PCT_SOLIDS									
	DUP_OF		:					Ī		
PARAMETER		RESULT	L QLCD	RESULT	VaL	alcD	RESULT VQL	OLCD	RESULT VOL QLCD	<u>۾</u>
1,1,1-TRICHLOROETHANE		13.2		2.1	n		2.1 U		1.9 U	
1,1,2-TRICHLOROETHANE		2.9 U		1	1 U		1 U		0.96 U	
1,1-DICHLOROETHANE		43.7		1.5 U	n		1.5 U		1.4 U	
1,1-DICHLOROETHENE		17.1		1.5	.5 U		1.5 U		1.4 U	
1,2,3-TRIMETHYLBENZENE		1.1		0.37	n		0.37 U		0.35 U	
1,2,4-TRICHLOROBENZENE	ш	20 UJ	၁	7	n		7 U		6.6 U	
1,2,4-TRIMETHYLBENZENE		3.2 J	<u>a</u>	1.9 U	n		1.3 J	Ь	1.7 U	
1,2-DICHLOROETHANE		2.2 U		U 77.0	n		0.77 U		0.71 U	
1,3,5-TRIMETHYLBENZENE		5.3 U		1.9 U	U		1.9 U		1.7 U	
BENZENE		1.9		0.78			2.3		0.79	
CARBON TETRACHLORIDE	411	3.4 U		1.2	n		1.2 U		1.1 U	
CHLORODIFLUOROMETHANE	ANE	6.5 J	Э	37.5			1.3		2	
CHLOROFORM		5.3 U		1.9	D		1.9 U		1.7 U	
CIS-1,2-DICHLOROETHENE		4.3 U		1.5	.5 U		1.5 U		1.4 U	
DICHLORODIFLUOROMETHANE	HANE	J 4.7	Ъ	1.9			2.1		2.3	
ETHYLBENZENE		4.7 U		1.6 U	n		164		1.5 U	
M+P-XYLENES		76.6 J	9	2.8	_	Ь	1030		3.1 U	
METHYL TERT-BUTYL ETHER	ER	3.9 U		1.4	n		1.4 U		1.3 U	
METHYLENE CHLORIDE		J 29.7	9	4.5	J	Ь	8.7		14.6	ļ
NAPHTHALENE		14.1 U		3.4	ſ	Ь	5 U		3.4 J P	
O-XYLENE		26.6 J	9	1.1	J	Ь	210		1.5 U	ļ
TETRACHLOROETHENE		3.7 U		1.3	U		1.3 U		1.2 U	
TOLUENE		24.7		19.4			20000	-	9	
TRANS-1,2-DICHLOROETHENE	ENE	4.3 U		1.5	ם		1.5 U		1.4 U	
TRICHLOROETHENE		20		1.1			1 U		0.96 U	
VINYL CHLORIDE		1.4 U		0.49)		0.49 U		0.45 U	

DDO 1 NO: 04792	NSAMPI E	10-128-0-16			IA-130-C-16			IA-133-C-16		IA-135-C-16			
SDG: 10258805	LAB ID	10258805038		i	10258805012			10258805026		10258805004	4		
FRACTION: OV	SAMP_DATE	2/24/2014			2/24/2014			2/24/2014		2/24/2014		į	
MEDIA: AIR	QC_TYPE	ΣZ			NZ.			NM		ΣZ		ı	
	UNITS	UG/M3			UG/M3			UG/M3		UG/M3			
	PCT_SOLIDS								ļ				
	DUP_OF											,	
PARAMETER		RESULT	VQL	arcd	RESULT	Val	QLCD	RESULT VQL	OLCD	RESULT	_	arco	
1,1,1-TRICHLOROETHANE		2.1	n ı		1.9	_		1.9 U			2 U		
1,1,2-TRICHLOROETHANE			ם		0.92 U	_		0.92 U		0.6	0.99 U	ļ	
1,1-DICHLOROETHANE		1.5	0 5		1.4 U	b		1.4 U		-	1.5 U		
1,1-DICHLOROETHENE		1.5	<u>۱</u>		1.4 U	n		1.4 U		-	1.5 U		
1,2,3-TRIMETHYLBENZENE	[11	0.37	0 2		0.34 U	Ω		0.34 U		0.3	0.36 U		
1,2,4-TRICHLOROBENZENE	ш	7	0 Z		6.3)		6.3 U		9	6.8 U		
1,2,4-TRIMETHYLBENZENE	111	1.5	1.9 U		U 7.1	Π		1.7 U		-	1.8 U		
1,2-DICHLOROETHANE		U 77.0	u ,		N 69'0	n		O 69:0		0.7	0.74 U		
1,3,5-TRIMETHYLBENZENE	111	2.1	1.9 U		U 7.1	n		1.7 U		_	1.8 U		
BENZENE		0.84	-		1.3			0.93		0	0.8		
CARBON TETRACHLORIDE	ш	1.2	7		1.1	n		1.1 U			1.2 U		
CHLORODIFLUOROMETHANE	4NE	23.2	~ 1		4			4.4		2	2.1		
CHLOROFORM		1.5	1.9 U		1.7	ח		1.7 U		-	1.8 U		
CIS-1,2-DICHLOROETHENE	Ш	1.5	1.5 U		1.4	n		1.4 U			1.5 U		
DICHLORODIFLUOROMETHANE	HANE	2.4			2.4			2.4	ı	2	2.3		
ETHYLBENZENE		1.6	9 0		1.5 U	_		1.5 U		-	1.6 U		
M+P-XYLENES		2.6	7 9	Ь	1.6 J	_	Ъ	2.1 J	Ф.	3	3.2 U		
METHYL TERT-BUTYL ETHER	ter.	1.4	₽		1.2	_		1.2 U			1.3 U		
METHYLENE CHLORIDE		14.5	2		14.1			8.4 J	9	13	13.2		
NAPHTHALENE		3.9	г 6	Д	3.6	r	Ь	3.7 J	Д	4	4.8 U		
O-XYLENE		1.1	۱ ک	Ь	1.5 U	D		0.84	۵		1.6 U		
TETRACHLOROETHENE		1.3	3 U		1.2 U	_		1.2 U			1.2 U		
TOLUENE		4.3	3		3.5			2.9			1.4 U		
TRANS-1,2-DICHLOROETHENE	ENE	1.5	2 N		1.4	n		1.4 U		_	1.5 U		
TRICHLOROETHENE		-	1 U		0.92	D		1.2	-	0.6	0.99 U		
VINYL CHLORIDE		0.49	n e		0.44	n		0.44 U		0.7	0.47 U		

PROJ NO: 04792	NSAMPLE	IA-141-C-16			IA-142-C-16			IA-143-C-16			IA-144-C-16		
SDG: 10258805	LAB_ID	10258805016			10258805008		į	10258805002			10258805043		
FRACTION: OV	SAMP_DATE	2/24/2014			2/24/2014			2/24/2014			2/24/2014		
MEDIA: AIR	QC_TYPE	ΣN			NN			NM			ΣN		
	UNITS	UG/M3			UG/M3			UG/M3			UG/M3		į
	PCT_SOLIDS												
	DUP_OF											Ī	i
PARAMETER		RESULT	Val	alcd	RESULT	VQL	alcd	RESULT	VQL	alcd	RESULT	님	alcD
1,1,1-TRICHLOROETHANE		1.9 U) l		2.1	1 N			2 U		2.1 U	n	
1,1,2-TRICHLOROETHANE		N 96.0	1			1 U		36.0	O 66		7	1 0	
1,1-DICHLOROETHANE		1.4 U			1.	1.5 U		1.5	1.5 U		1.5 U	D	
1,1-DICHLOROETHENE		1.4 U			1.	1.5 U		1.5	1.5 U		1.5 U	D	
1,2,3-TRIMETHYLBENZENE		0.35 U			0.3	0.37 U		0.36 U	O S		U 7E.0	D.	
1,2,4-TRICHLOROBENZENE	111	9.9	D			7 U		9:9	6.8 U		7	7 U	
1,2,4-TRIMETHYLBENZENE		1.7 U	ſ		1.	1.9 U		7.	1.2 J	Ь	1.9 U	ם	
1,2-DICHLOROETHANE		0.71 U			0.7	0.77.U		0.74 U	D		0.77 U	n	
1,3,5-TRIMETHYLBENZENE		1.7 U	ſ		1.	1.9 U		1.8	1.8 U		1.9 U	D	
BENZENE	:	0.92			0.67			0.81	_		0.71		
CARBON TETRACHLORIDE		1.1	n		1.2	2 U		1.2	2 U		1.2 U	ס	
CHLORODIFLUOROMETHANE	NE	7.1			1.9	6		2.5	10		18		
CHLOROFORM		1.7	n		1.	1.9 U	ļ	1.8	3 U		1.9	D	,
CIS-1,2-DICHLOROETHENE	3111	1.4 U			1.	1.5 U		1.5	5 U		1.5	ם	
DICHLORODIFLUOROMETHANE	HANE	က				2		2.4	T		2	_	
ETHYLBENZENE		1.5 U			1.	1.6 U		1.6	1.6 U		1.6 U	D.	ļ
M+P-XYLENES		1.6	J P		1.7	7 J	a	3.2	7 n		2.3	_	۵
METHYL TERT-BUTYL ETHER	ER	1.3	n		1.	.4 U		1.3	3 U			D	
METHYLENE CHLORIDE		7.8			3.8	8 J	Ь	6.1		Ь	6.6		
NAPHTHALENE		4.6 U	_		3.4	4 J	Ь	4.4	7	а	3.6	7	۵
O-XYLENE		1.5 U	ſ		1.	1.6 U		1.6	1.6 U		0.88	_	L.
TETRACHLOROETHENE		1.2 U			7	1.3 U		1,1	1.2 U		1.3 U	D	
TOLUENE		2.1			1.	.4 U		1.4	1.4 U		3.5		
TRANS-1,2-DICHLOROETHENE	ENE	1.4 [n		+	1.5 U		1,5	1.5 U		1.5		
TRICHLOROETHENE		1 96.0	n			1 U		0.99 U	<u>0</u>		1	ם	İ
VINYL CHLORIDE		0.45 U			0.4	0.49 U		0.47 U	n /		0.49 U	o l	!

PROJ NO: 04792 NS/	NSAMPLE	IA-145-C-16	i	IA-146-C-16	16		IA-147-C-16			IA-148-C-16		
J	LAB_ID	10258805039		10258805040	040		10258805041	_		10258805042	.2	
FRACTION: OV SAN	SAMP_DATE	2/24/2014		2/24/2014			2/24/2014			2/24/2014		:
MEDIA: AIR QC	QC_TYPE	MN		ΣN			NM			Z		
UNITS	TS	UG/M3		UG/M3			UG/M3			UG/M3		
PCT	L_SOLIDS_											
Ina	DUP_OF											
PARAMETER		RESULT	VQL QLCD	RESULT	VQL	QLCD	RESULT	ΛQL	arcp	RESULT	Καμ	arco
1,1,1-TRICHLOROETHANE		2.1 U	ſ		2 U		2.	2.1 U		2	2.1 U	
1,1,2-TRICHLOROETHANE		1 0		,	0.99 U			U U			1 U	
1,1-DICHLOROETHANE		1.5 U			1.5 U		<u> </u>	1.5 U		+	1.5 U	
1,1-DICHLOROETHENE		1.5 U	ſ		1.5 U		1.	1.5 U		-	1.5 U	
1,2,3-TRIMETHYLBENZENE		U 75.0			0.36 U		0.37	7 U		0.37	37 U	
1,2,4-TRICHLOROBENZENE		0 7			0.8 U			2 n		2	2.8 U	
1,2,4-TRIMETHYLBENZENE		3.4			1.8 U		1.	1.9 U		+	1.9 U	
1,2-DICHLOROETHANE		U 77.0		,	0.74 U		0.77	7 U		0.7	0.77 U	
1,3,5-TRIMETHYLBENZENE		1)	Ъ		1.8 U			1.9 U		-	1.9 U	
BENZENE		3.6		,	92.0		Ö	0.8		0.61	31	
CARBON TETRACHLORIDE		1.4			1.2 U		1.	1.2 U		1	1.2 U	
CHLORODIFLUOROMETHANE		37.2			54.2		18.2	2		24.4	4	
CHLOROFORM		U 6:1	1		1.8 U	_	-	1.9 U		-	1.9 U	
CIS-1,2-DICHLOROETHENE		1.5 U	ſ		1.5 U		1.	1.5 U		-	1.5 U	
DICHLORODIFLUOROMETHANE	박	4.8			2.3		2.1	-		2	2.7	
ETHYLBENZENE		1.7			1.6 U		+	1.6 U		-	1.6 U	
M+P-XYLENES		6.1			2.3 J	۵	2.	2.7 J	<u>م</u>	2	2.3 J	Ь
METHYL TERT-BUTYL ETHER		1.4 U	1		1.3 U		-	1.4 U		-	1.4 U	
METHYLENE CHLORIDE		1140			6.7		19.1	-			11	
NAPHTHALENE		4.1 J	Ф		3.7 J	Д	4	4.9 J	٩	-	1.2 J	Ь
O-XYLENE		2.3		,	0.88 J	Ь	-	1.1	<u>a</u>	0.93	93 J	۵
TETRACHLOROETHENE		1.3 U			1.2 U		-	1.3 U		-	1.3 U	
TOLUENE		16.2			2.5		5.	5.4		2	2.9	
TRANS-1,2-DICHLOROETHENE	111	1.5 U			1.5 U		-	.5 U		-	1.5	
TRICHLOROETHENE		1 0)	0.99 U			1 0			- 0	
VINYL CHLORIDE		0.49 U			0.47 U		0.49	N 6		0.4	0.49 U	

NSAMPTE NAMPTE		L	7 0 10 41			14 DUD2 C-16			SV-033-B-16		SV-060-C-16	,	
AMPLIANE LOSAME DATE ACALOLOS	 2	ASAMPLE AB 15	10758905046			1025805047			10258805023		1025880501	3	
OCE TYPE NAM		AB_ID	2/24/2014			2/24/2014			2/24/2014		2/24/2014		
CONTINE NO.	_,	TYPE	NM			Z			ΣN		ΝN		
No.	SLINE	UG/M3	l		UG/M3			UG/M3		UG/M3		ļ	
DUP_OF RESULT Vot. OLCD RESULT VOT. I.19 U II.19 U	1 **	SOLIDS TO											
RESULT VGI GLCD RESULT VGL GLCD RESULT VGL GLCD RESULT VGL GLCD RESULT VGL GLCD GL	<u>, </u>	OUP OF	IA-133-C-16			IA-113-C-16							
1.9 U 1.9 U 1.9 U 886			RESULT	ΥøΓ	QLCD	RESULT	VQL	alcd			. 1	Z Z	alcd
Continue	1 1 1-TRICHLOROETHANE		1	<u></u>		1.6	0		88.6			∩ 6:	
14 U	1.1.2-TRICHLOROETHANE		0.92	D :		0.92	5 U				0.6	32 U	
14 U	1,1-DICHLOROETHANE		1.4	<u>D</u>		1.4	O t		1.4 U		7		-
Control Cont	1,1-DICHLOROETHENE		1.4)		1.4	t O		1.4 U		9.0		<u> </u>
Fig.	1,2,3-TRIMETHYLBENZENE		0.3	ח		0.3	n t		5.2		0.0	-	
17 U 0.94 J P 111 J J J J J J J J	1 2 4-TRICHLOROBENZENE		6.3			6.3	3 U				2		
NE 0.69 0 0.69 0 0.69 0 0.69 0 0.69 0 0.69 0 0.69 0	1 2 4-TRIMETHYLBENZENE		1.7			76.0		Ь	11.1		8		
ENE 1.7 U 1.7 U 1.7 U 1.7 U 2.2 Use IUE 0.83 0.89 1.1 U 1.2 U </td <td>1.2-DICHLOROETHANE</td> <td></td> <td>0.69</td> <td><u>D</u></td> <td>!</td> <td>9.0</td> <td>η 6</td> <td></td> <td>O 69:0</td> <td></td> <td>0.6</td> <td></td> <td></td>	1.2-DICHLOROETHANE		0.69	<u>D</u>	!	9.0	η 6		O 69:0		0.6		
0.83 0.89 1.2 0.85 1.1 0 1.1 0 0.85 1.1 1.1 1.1 0 0.85 3.9 3.1 6 326 5.8 1.1 1.1 0 1.7 0 1.1 0 1.1 0 1.7 0 1.7 0 1.7 0 3.1 0 1.1 0 1.1 0 1.1 0 1.2 0 1.2 0 1.2 0 1.2 0 1.2 0 1.2 0 1.2 0 1.2 0 1.2 0 1.2 0 1.2 0 1.2 0 1.2 0 1.2 0 1.2 0 1.2 0 1.2 0 1.2 0 0 1.2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1.3.5-TRIMETHYLBENZENE		1.7	0 '		1	<u>n </u> 2			-	2	.2	
1.1 U	BENZENE		0.83			0.8	6		1.2		0.6		
1.7 U	CARBON TETRACHLORIDE		-	0		-	D 1		1.1 U				
1.7 U	CHLORODIFLUOROMETHA	Ä	3.6	6		e.	1)	9	32.6		3		۵
ANE 2.3 1.4 U 1.4 U 1.4 U 1.4 U 1.5 U 2.1 U 3.4 U 2.8 U 3.4 U 3.5 U 3.4 U 3.5	CHLOROFORM	ļ	1	0 /		-	0 Z		1.7 U		6		
ANE 2.3 2.1 3.4 2.8 2.8 2.8 2.8 2.8 2.8 2.8 3.1 2.8 3.6 3.1 3.6 3.6 3.7 3.6 3.6 3.6 3.7 3.6 <td>CIS-1.2-DICHLOROETHENE</td> <td></td> <td>-</td> <td></td> <td>!</td> <td><u> </u></td> <td></td> <td></td> <td>1.4 U</td> <td>*</td> <td>16</td> <td>5.5</td> <td></td>	CIS-1.2-DICHLOROETHENE		-		!	<u> </u>			1.4 U	*	16	5.5	
TTALETHER 1.5 U 1.5 U 1.5 U 1.5 U 96.5 96.5 OTYLETHER 1.9 J P 3.4 J G 13.8 561 561 ORIDE 1.2 U L 1.2 U 1.2 U 1.2 U 1.2 U ORIDE 3.5 J P 3.2 J P 4.4 4.4 THENE 1.5 U N 1.2 U 1.2 U 2.2 2.2 THENE 1.2 U N 1.3 U 1.3 U 1.4 U 1.1 U <td>DICHLORODIFLUOROMET</td> <td>HANE</td> <td>2.3</td> <td>3</td> <td></td> <td>2.</td> <td>_</td> <td></td> <td>3.4</td> <td></td> <td></td> <td>8:</td> <td></td>	DICHLORODIFLUOROMET	HANE	2.3	3		2.	_		3.4			8:	
TYPL ETHER 1.9 J P 3.4 J G 13.8 J 561 J ONTYL ETHER 1.2 J GP 1.2 J GP 1.2 J I 1.2 J I	ETHYLBENZENE		1.	2 0		+	5 U		3.1		96	5.5	
12 U 1.2 U 1.2 U 1.2 U 1.2 U 1.9 J GP 5.1 J GP 10.5 10.7 10.7 3.5 J P 10.4 4.4 4.4 1.5 U 1.2 J GP 4.9 230 1.2 U 1.2 U 1.2 U 2.2 2.4 1.3 U 36.1 13.1 E 1.4 U 1.4 U 1.4 U 1.1 J E 1.4 U 0.92 U 2.8 291 D.44 U 0.44 U 0.44 U 0.44 U 0.44 U	M+P-XYLENES		1	ر ا	Ь	3.		ပ	13.8		25		
19 J GP 5.1 J GP 10.5 10.7 3.5 J P 10.4 4.4 1.5 U 1.2 J GP 4.9 230 1.2 U 1.2 U 1.2 U 2.2 2.4 1.3 U 36.1 13.1 E 1.4 U 1.4 U 1.4 U 1.1 J E 1.4 U 0.92 U 2.8 291 D.44 U 0.44 U 0.44 U 0.44 U	METHYL TERT-BUTYL ETH	ER	-	2 U		1	2 U		1.2 U			7 O	
3.5 J P 10.4 4.4 1.5 U 1.2 J GP 4.9 230 1.2 U 1.2 U 2.2 2.2 1.4 U 1.4 U 1.4 U 1.1 J 1.4 U 0.92 U 2.8 291 0.44 U 0.44 U 0.44 U 0.44 U	METHYLENE CHLORIDE		7	٦ 6	GP	5.	1 J	GP	10.5		10	2.	
ETHENE 1.5 U 1.2 U GP 4.9 230 ETHENE 1.2 U 1.2 U 1.2 U 2.2 HOROETHENE 1.4 U 1.4 U 1.4 U 1.1 J HENE 1.4 U 0.92 U 2.8 291 HENE 0.44 U 0.44 U 0.44 U 0.44 U	NAPHTHALENE		8	5 7	Д	3.	2 J	Д.	10.4		4 10	4 6	
OROETHENE 1.2 U 1.2 U 2.2 ORDETHENE 1.2 U 1.2 U 2.2 ORIDE 1.2 U 36.1 I 13.1 1.3 U 1.4 U 1.4 U 1.1 J OFTHENE 1.4 U 2.8 I 291 ORIDE 0.44 U 0.44 U 0.44 U 0.44 U	O-XYI ENE		-			-		GР	4.9		2	30	
THENE 1.4 U 1.4 U 1.4 U 1.4 U 1.1 J 0.92 U 2.8 291 0.44 U 0.44 U 0.44 U	TETRACHLOROETHENE		-			1	2 U		\rightarrow			2.2	
OROETHENE 1.4 U 1.4 U 1.1 U NE 1.4 U 1.4 U 1.1 U NE 1.4 U 2.8 291 NE 0.44 U 0.44 U 0.44 U 0.44 U	TOLUENE		2.	4		 			36.1			2.1	
NE 1.4 0.92 U 2.8 291 0.44 U 0.44 U 0.44 U 0.44	TRANS-1,2-DICHLOROETH	ENE	-	⊅		1.	4 U					ر ا	<u>-</u>
0.44 U 0.44 U 0.44 U	TRICHLOROETHENE		-	4		6.0	2 U		2.8		2		
	VINYL CHLORIDE		4.0	0		0.4	4 U		0.44 ∪		0		

PROJ NO: 04792	NSAMPLE	SV-063-B-16			SV-065-C-16	9		SV-088-C-16	9		SV-101-B-16			
SDG: 10258805	LAB_ID	10258805021			10258805019	19		10258805005	15		10258805035			
FRACTION: OV	SAMP_DATE	2/24/2014			2/24/2014			2/24/2014			2/24/2014			
MEDIA: AIR	QC_TYPE	ΣZ			ΣZ			NN			ΣN			
	UNITS	UG/M3			UG/M3			UG/M3			UG/M3			
	PCT_SOLIDS													
	DUP_OF			·					_					
PARAMETER		RESULT	Z V	QLCD	RESULT	VQL	arcd	RESULT	VQL	alcD	RESULT	δ Ž	alco	
1,1,1-TRICHLOROETHANE		1.9	1.9 U			1.9 U		_	1.9 U		143	3		
1,1,2-TRICHLOROETHANE		0.92 U	Ω		0.	0.92 U		0.0	.92 U		96.0	D 9		
1,1-DICHLOROETHANE		1.4	1.4 U			1.4 U		1	1.4 U		1.4	4 U	_	
1,1-DICHLOROETHENE		1.4 U)			1.4 U		1	1.4 U		1.4	⊅		
1,2,3-TRIMETHYLBENZENE	Ш	0.34	⊃		0.	0.95			1.1		2.9	6		
1,2,4-TRICHLOROBENZENE	E	6.3	D			2.5 U		9	6.3 U		6.6	9 0		
1,2,4-TRIMETHYLBENZENE	ш	1.4	_	Ь		1.3 J	Д	1	1.8		3.4	4		
1,2-DICHLOROETHANE		0.69 U	⊃		0	O 69 U		0.0	0.69 U		0.71	٦ ر		
1,3,5-TRIMETHYLBENZENE	ш	1.7 U	n			1.7 U		1	1.7 U		1.7	1.7 U		
BENZENE		0.55 U	Ω		.0	0.55 U			1.2		0.57	7 U		
CARBON TETRACHLORIDE	ш	16.3			,	1.1 U		1	1.1 U		2.6	9		
CHLORODIFLUOROMETHANE	ANE	1.7			_	6.7		6	3.2		4.3	3		
CHLOROFORM		1.7	n.			2.7		_	1.7 U		1.7	7 U		
CIS-1,2-DICHLOROETHENE	Ш	1.4	1.4 U			1.4 U		17	17.6		1.4	4		
DICHLORODIFLUOROMETHANE	'HANE	2.2			_	7.3		2	2.6		4.5	2		
ETHYLBENZENE		1.5	U			1.5 U		7	2.2		0.87	7 J	۵	
M+P-XYLENES		1.8	ſ	Ь		1.1 J	Ь		10		2.7	ر 7	۵	
METHYL TERT-BUTYL ETHER	IER	1.2	Ω		,	1.2 U			1.2 U		1.3	3 0		
METHYLENE CHLORIDE	!	14.6			16	16.9		82	82.5		14.3	3		
NAPHTHALENE		3.3	ſ	Ь	9	6.9		22	22.3		9.7	7		
O-XYLENE		1.5	n		•	1.5 U		4	4.7		1.8	80		
TETRACHLOROETHENE		3.3			12	12.6			1.2 U		45.9	6		
TOLUENE		2.4				1.2 J	Ь	-	1.3 U		12.5	2	_	
TRANS-1,2-DICHLOROETHENE	IENE	1.4	D			1.4 U			1.4 U		1.4	4		
TRICHLOROETHENE		1.6			0	0.92 U		70	9.07		79.2	2		
VINYL CHLORIDE		0.44 U	Э		0	0.44 U		0.	0.44 U		0.45	2 N		

DDO 1 NO: 04702	NCAMDI E	CV 102 C 18			SV-105.7-16			SV-113-C-16	\ \(\text{\text{\$\tex{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\}\$}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}		SV-121-B-16		l	
76750 TOOLOGO	יייייייייייייייייייייייייייייייייייייי	100500000			4005005005			102589050	, ,		10258805033			
SDG: 10258805	LAB_ID	10258805009			10258805029	0		7700000701	/7		102300000			T
FRACTION: OV	SAMP_DATE	2/24/2014		;	2/24/2014		ļ	2/24/2014	٠		2/24/2014			
MEDIA: AIR	QC_TYPE	ΣZ			ΝN			NM			Z	i		
	UNITS	UG/M3			UG/M3			UG/M3			UG/M3			
	PCT_SOLIDS													
	DUP_OF									,				
PARAMETER		RESULT	VQL	arcd	RESULT	ΛαΓ	QLCD	RESULT	ΛαΓ	QLCD	RESULT	ΛαΓ	alcD	
1,1,1-TRICHLOROETHANE		2070			1.	1.9 U		,	1.9 U		1.5	5 J	۵.	
1,1,2-TRICHLOROETHANE		0.92	n		6.0	0.92 U		0	0.92 U		O 66:0	9 U		
1,1-DICHLOROETHANE		6760			1.	1.4 U		,-	1.4 U		1.6	1.5 J	Ъ	
1,1-DICHLOROETHENE		2530			1.	1.4 U		-	1.4 U		1.5	1.5 U		
1,2,3-TRIMETHYLBENZENE	ļ _{II} I	90.4			1.	1.8		0	0.34 U		13.2	2		
1,2,4-TRICHLOROBENZENE	ш	6.3	n		.9	6.3 U		Ψ.	6.3 U		6.8	3 U		
1,2,4-TRIMETHYLBENZENE	[ji	89.1			2.7	7		1	1.7 U		32	2		
1,2-DICHLOROETHANE		0.69 U	_		9.0	0.69 U		0	0.69 U		0.74	4 U		
1,3,5-TRIMETHYLBENZENE	ш	39.7			1.	1.7 U			1.7 U		1.8	1.8 U		
BENZENE		7.5			1.	1.5		· N	2.4		0.58 U	3 U		
CARBON TETRACHLORIDE	Ш	3.1	:		1.	1.1 U		-	1.1		4.4	4		
CHLORODIFLUOROMETHANE	ANE	3.3				6		11	10.7 J	9	1.5	5		
CHLOROFORM		71.9			2.	2.5		,-	1.7 U		26.4	4		
CIS-1,2-DICHLOROETHENE	Ш	67.4			36.3	3		0.	0.73 J	GP	1.5	5 U		
DICHLORODIFLUOROMETHANE	HANE	5.8	!		1.	1.7 U		.,	3.8 J	ပ	2.3	3)		
ETHYLBENZENE		2140			5.	5.3		1	1.5 U		1.5	5 J	Ъ	
M+P-XYLENES		11500			22.7	7			2.4 J	۵	7.2	2		
METHYL TERT-BUTYL ETHER	ÆR	1.2	Э		1.	1.2 U		1	1.2 U		1.3	3 U		
METHYLENE CHLORIDE		46.3			621	J J	_	5	557 J	GL	24.6	3		
NAPHTHALENE		99			4.	4.9		7	4.5 U		85.8	3		
O-XYLENE		4040			4.	4.8		0	0.83 J	Ь	47	5		
TETRACHLOROETHENE		2.2			<u> </u>	1.2 U		,,	1.2 U		2.4	4		
TOLUENE		128			59.6	9		6	6.1 J	9	6.7	7		
TRANS-1,2-DICHLOROETHENE	1ENE	3.9	+f	Е	5.	5.5 J+	ш	7-	1.4 U		1.5	5 U		
TRICHLOROETHENE		2740			129	g.			7)	9	203	3		
VINYL CHLORIDE		0.44 U	n		.6	9.4		0.	0.44 U		0.47	7 U		

0000	I IOMADIA	CV 173 7 16			SV-126-0-16			SV-128-C-16			SV-130-C-16		
SDG: 10258805	I AB ID	10258805031			10258805017			10258805037			10258805011		
FRACTION: OV	SAMP_DATE	2/24/2014			2/24/2014			2/24/2014			2/24/2014		
MEDIA: AIR	QC_TYPE	ΣZ			ΣN			NN			MA		
	UNITS	UG/M3			UG/M3			UG/M3			UG/M3		i
	PCT_SOLIDS									į			
	DUP_OF											Ī	
PARAMETER		RESULT	Val alcd	٥	RESULT	VQL	arcp	RESULT	ΛαΓ	arcp		Val	alcD
1,1,1-TRICHLOROETHANE	ш	1.9 U	n		1.5	1.9 U		1.9	Λ 6				
1,1,2-TRICHLOROETHANE	ш	0.92 U			0.92 U	D C		6.0	0.92 U	ı		_ D	Ì
1,1-DICHLOROETHANE		1.4 U	n		1.4	n		-	1.4 U		1.3 J	_	İ
1,1-DICHLOROETHENE		1.4	n		199	(+	1.4 U		2.9	-	
1,2,3-TRIMETHYLBENZENE	À	3.7			1.4	1		1.2	2		3.4		
1,2,4-TRICHLOROBENZENE	J.	2.5	5		6.3	n s		6.3	3 U		_	<u></u>	
1,2,4-TRIMETHYLBENZENE	¥	1.7			4.3	3		2.8	8		6.6		
1,2-DICHLOROETHANE		0.69 U	n		n 69 [.] 0	n e		69.0	η 6		1 69.0		
1,3,5-TRIMETHYLBENZENE	ų	2.9			1	1.1 J	Д.	-	1.7 U		4.4		
BENZENE		0.55 U			88.4	-		3.6	9		4.1		
CARBON TETRACHLORIDE)E	1.1 U	n		1.	1.1 U		-	1.1 U	-	1.1 U		
CHLORODIFLUOROMETHANE	1ANE	1 6.3	_0_		0.34 U	D		6.1	_		1.7、	_	
CHLOROFORM		1.7 [n		0.84	7	۵	1.7	7 U				ŀ
CIS-1,2-DICHLOROETHENE	9	0.7	J P		205	2		6.5	2		\rightarrow	n	ļ
DICHLORODIFLUOROMETHANE	THANE	2.6			1.5	5 J	Ь	2.5	5		3.1		ļ
ETHYLBENZENE		3.9				3			2		2.3		
M+P-XYLENES		19.9			13.4	-		12.1	_		9.5		
METHYL TERT-BUTYL ETHER	HER	1.2	n		1.2	2 U		1.2	2 U			n	
METHYLENE CHLORIDE		8.2			9.2	2		9.6	9		28.2		
NAPHTHALENE		10.9			70.6	3		92.6	9		1.8		
O-XYLENE		4.3			5.7			3.6	9		7.5		ì
TETRACHLOROETHENE		1.2 U	n		4.6	1.2 U		1.6	9		3.3		
TOLUENE		6.03			14.7			5.8	80		12.2		
TRANS-1,2-DICHLOROETHENE	HENE	1.4	n		1.4	Δ D		1.4	4 U			٦	ļ
TRICHLOROETHENE		37.5			177			2.1	-		3.4		
VINYL CHLORIDE		0.44 U			11900			0.4	0.44 U		0.44	ם ס	

PROJ NO: 04792	NSAMPLE	SV-133-C-16			SV-135-C-16			SV-141-C-16	91		SV-142-C-16		
	LAB_ID	10258805025			10258805003	3	Ì	10258805015	15		10258805007	7	
FRACTION: OV	SAMP_DATE	2/24/2014			2/24/2014			2/24/2014			2/24/2014		
MEDIA: AIR	QC_TYPE	ΣZ			NN			ΣZ			ΣZ	į	
, -	UNITS	UG/M3			UG/M3			UG/M3			UG/M3		
	PCT_SOLIDS												
	DUP_OF											-	
PARAMETER		RESULT	VQL	QLCD	RESULT	VQL	arcd	RESULT	δ	alcD	RESULT	ΛQL	alco
1,1,1-TRICHLOROETHANE		1.9	1.9 U		1.	1.9 U			2.2 U		-	1.9 U	
1,1,2-TRICHLOROETHANE		0.92 U	n		6.0	0.92 U			1.1 U	-	0.0	0.92 U	
1,1-DICHLOROETHANE		1.4	1.4 U		1.	1.4 U			1.7 U	_	-	1.4 U	
1,1-DICHLOROETHENE		1.4	n		1.	1.4 U			1.7		-	1.4 U	
1,2,3-TRIMETHYLBENZENE	_	0.34))		0.34	4 O			0.4 U		0.71	-	
1,2,4-TRICHLOROBENZENE		6.3	_		9	6.3 U			7.6 U		9	6.3 U	
1,2,4-TRIMETHYLBENZENE		1.7	1.7 U		-	1.7 U			2 U		1.	1.4 J	۵
1,2-DICHLOROETHANE		0.92			0.69	n e		0	0.83 U		9.0	O 69.0	
1,3,5-TRIMETHYLBENZENE		1.7	⊃		1.	1.7 U			2 N		-	1.7 U	
BENZENE		0.77			0.33	3 J	Ь	0	0.88		0.5	0.55 U	
CARBON TETRACHLORIDE		1.1	⊃		1.	1.1 U			1.3 U			1.1 U	
CHLORODIFLUOROMETHANE	N.	4.3			2.1	1	:		2.6		-	1.4	
CHLOROFORM		6.7			1.	1.7 U			2 N			15	
CIS-1,2-DICHLOROETHENE		8.4			1.	1.4 U			2.2		-	1.4 U	
DICHLORODIFLUOROMETHANE	HANE	3.2			2.	2.1			2.3		2.	2.2	
ETHYLBENZENE		1.5	n :		4.	4.2	-		2.2		<u>+</u>	1.5 U	
M+P-XYLENES		1.8	ſ	Ь	18.1	1		_	11.6		5.	5.1	
METHYL TERT-BUTYL ETHER	ER	1.2	n		1.	1.2 U			1.5 U		-	1.2 U	
METHYLENE CHLORIDE		20.2	7	9	2.	2.1 J	Ь	3	39.1		7.	7.5	
NAPHTHALENE		4.7			3.	3.8 J	Ь		4.1 J	Ь	157	25	
O-XYLENE		0.81	ſ,	Ь	4.	4.3			3.7	_	3.1	+	
TETRACHLOROETHENE		169			1.	.2 U			1.4 U		-	1.2 U	
TOLUENE		3.6	ſ,	G	1.	.3 U			3.7		+	1.3 U	
TRANS-1,2-DICHLOROETHENE	ENE	3.6	+ C	Е	7.	1.4 U			1.6 U		-	1.4 U	
TRICHLOROETHENE		10700			5.	5.6		2	25.2		Q	6.8	
VINYL CHLORIDE		0.44 U	<u> </u>		0.4	0.44 U		0	0.53 U		0.44	7	

PROJ_NO: 04792	NSAMPLE	SV-143-C-16			SV-DUP1-C-16		SV-DUP2-C-16		
SDG: 10258805	LAB_ID	10258805001			10258805044		10258805045		
FRACTION: OV	SAMP_DATE	2/24/2014			2/24/2014		2/24/2014		
MEDIA: AIR	QC_TYPE	ΣZ			NN		NM		
	UNITS	UG/M3			UG/M3		UG/M3		
	PCT_SOLIDS								
-	DUP_OF				SV-133-C-16		SV-113-C-16		
PARAMETER		RESULT	VQL	arcp	RESULT VQL	QLCD	RESULT	VaL	arcd
1,1,1-TRICHLOROETHANE	ш	4.7	D		1.9 U		1.9	D	
1,1,2-TRICHLOROETHANE	ш	2.3	ס		0.92 U		0.92 U	n	
1,1-DICHLOROETHANE		1.8	7	Ь	1.4 U		1.4 U		
1,1-DICHLOROETHENE		2.1	ſ	Ь	1.4 U		1.4 U	D	
1,2,3-TRIMETHYLBENZENE	Ā	0.84	ס		0.34 U		0.34 U	n	
1,2,4-TRICHLOROBENZENE	빚	6.4	ם		0.3 U		6.3 U	n	
1,2,4-TRIMETHYLBENZENE	Ä	4.2 U	ח		1.7 U		1.7 U	n	
1,2-DICHLOROETHANE		1.7 U	n		0.82		0.69 U	D	
1,3,5-TRIMETHYLBENZENE	냔	4.2 U	n		1.7 U		1.7 U	⊃	
BENZENE		1.8			0.87		0.55 U	D	
CARBON TETRACHLORIDE	JE	133			1.1 U		1.1 U	⊃	
CHLORODIFLUOROMETHANE	1ANE	1.7	ſ	Ь	4.4		3.5	7	g
CHLOROFORM		194			6.2		1.8		
CIS-1,2-DICHLOROETHENE	빌	5.7			8.7		31.7	7	9
DICHLORODIFLUOROMETHANE	THANE	2.6	ſ	Ь	3		2.2	J	9
ETHYLBENZENE		3.7 U	n		1.5 U		1.5 U	n	
M+P-XYLENES		3.3	ſ	Ь	2 J	Д	1.5 J	7	۵
METHYL TERT-BUTYL ETHER	HER	3.1	ח		1.2 U		1.2 U	ם כ	
METHYLENE CHLORIDE		30.1			13 J	ඉ	12.5	7	Ŋ
NAPHTHALENE		19.3			4.2 J	Ь	3.7	-	Д
O-XYLENE		3.7	n		0.95 J	Ь	1.5 U	⊃	
TETRACHLOROETHENE		15			159		1.2 U	D	
TOLUENE		13.6			5.5 J	9	1.7 J	7	O
TRANS-1,2-DICHLOROETHENE	HENE	3.4	ם		3.5 J+	ш	1.4 U	D	
TRICHLOROETHENE		33.1			8630		243 J	7	හ
VINYL CHLORIDE		1.1	U		0.44 U		0.44 U	n	

Appendix B

Results as Reported by the Laboratory

Project:

1121C06221 REV

Pace Project No.: 10258805

Date: 04/17/2014 12:19 PM

Sample: IA-033-B-16	Lab ID: 10258805024	Collected: 02/24/14 18	:28 Recei	ived: 02/26/14 08:12	Matrix: Air	
Parameters	Results Units	Report Limit D	Prep	pared Analyzed	CAS No.	Qual
TO15 MSV AIR	Analytical Method: TO-15					
Benzene	0.87 ug/m3	0.58 1.	3	03/07/14 22:1	6 71-43-2	
Carbon tetrachloride	ND ug/m3	1.2 1.	3	03/07/14 22:1	6 56-23-5	
Chlorodifluoromethane	42.6 ug/m3	0.36 1.	В	03/07/14 22:1	6 75-45-6	
Chloroform	ND ug/m3	1.8 1.	3	03/07/14 22:1	6 67-66-3	
Dichlorodifluoromethane	3.1 ug/m3	1.8 1.	3	03/07/14 22:1	6 75-71-8	
1,1-Dichloroethane	ND ug/m3	1.5 1.	3	03/07/14 22:1	6 75-34-3	
1,2-Dichloroethane	ND ug/m3	0.74 1.	В	03/07/14 22:1	6 107-06-2	
1,1-Dichloroethene	ND ug/m3	1.5 1.	В	03/07/14 22:1	6 75-35-4	
cis-1,2-Dichloroethene	ND ug/m3	1.5 1.	В	03/07/14 22:1	6 156-59-2	
trans-1,2-Dichloroethene	ND ug/m3	1.5 1.	3	03/07/14 22:1	6 156-60-5	
Ethylbenzene	1.7 ug/m3	1.6 1.	3	03/07/14 22:1	6 100-41-4	
Methylene Chloride	12.6 ug/m3	6.4 1.	3	03/07/14 22:1	6 75-09-2	
Methyl-tert-butyl ether	ND ug/m3	1.3 1.	3	03/07/14 22:1	6 1634-04-4	
Naphthalene	4.0J ug/m3	4.8 1.	3	03/07/14 22:1	6 91-20-3	
Tetrachloroethene	ND ug/m3	1.2 1.	3	03/07/14 22:1	6 127-18-4	
Toluene	44.1 ug/m3	1.4 1.	3	03/07/14 22:1	6 108-88-3	
1,2,4-Trichlorobenzene	ND ug/m3	6.8 1.	3	03/07/14 22:1	6 120-82-1	
1,1,1-Trichloroethane	ND ug/m3	2.0 1.	3	03/07/14 22:1	6 71-55-6	
1,1,2-Trichloroethane	ND ug/m3	0.99 1.	3	03/07/14 22:1	6 79-00-5	
Trichloroethene	ND ug/m3	0.99 1.	3	03/07/14 22:1	6 79-01-6	
1,2,3-Trimethylbenzene	ND ug/m3	0.36 1.	3	03/07/14 22:1	6 526-73-8	
1,2,4-Trimethylbenzene	1.4J ug/m3	1.8 1.	3	03/07/14 22:1	6 95-63-6	
1,3,5-Trimethylbenzene	ND ug/m3	1.8 1.	3	03/07/14 22:1	6 108-67-8	
Vinyl chloride	ND ug/m3	0.47 1.	3	03/07/14 22:1	6 75-01-4	
m&p-Xylene	7.4 ug/m3	3.2 1.	3	03/07/14 22:1	6 179601-23-1	
o-Xylene	2.5 ug/m3	1.6 1.	3	03/07/14 22:1	6 95-47-6	

Project:

1121C06221 REV

10258805

Pace Project No.:

Date: 04/17/2014 12:19 PM

Sample: IA-060-C-16	Lab ID: 10258805014	Collected: 02/24/14 18	3:00 Received: 02/26/14 08:12 Matrix: Air	
Parameters	Results Units	Report Limit DI	Prepared Analyzed CAS No.	Qual
TO15 MSV AIR	Analytical Method: TO-15			
Benzene	0.81 ug/m3	0.57 1.7	4 03/07/14 05:01 71-43-2	
Carbon tetrachloride	ND ug/m3	1.1 1.7	4 03/07/14 05:01 56-23-5	
Chlorodifluoromethane	9.4 ug/m3	0.35 1.7	4 03/07/14 05:01 75-45-6	
Chloroform	ND ug/m3	1.7 1.7	4 03/07/14 05:01 67-66-3	
Dichlorodifluoromethane	2.4 ug/m3	1.8 1.7	4 03/07/14 05:01 75-71-8	
1,1-Dichloroethane	ND ug/m3	1.4 1.7	4 03/07/14 05:01 75-34-3	
1,2-Dichloroethane	ND ug/m3	0.71 1.7	4 03/07/14 05:01 107-06-2	
1,1-Dichloroethene	ND ug/m3	1.4 1.7	4 03/07/14 05:01 75-35-4	
cis-1,2-Dichloroethene	ND ug/m3	1.4 1.7	4 03/07/14 05:01 156-59-2	
trans-1,2-Dichloroethene	ND ug/m3	1.4 1.7	4 03/07/14 05:01 156-60-5	
Ethylbenzene	ND ug/m3	1.5 1.7	4 03/07/14 05:01 100-41-4	
Methylene Chloride	8.1 ug/m3	6.1 1.7	4 03/07/14 05:01 75-09-2	
Methyl-tert-butyl ether	ND ug/m3	1.3 1.7	4 03/07/14 05:01 1634-04-4	
Naphthalene	3.6J ug/m3	4.6 1.7	4 03/07/14 05:01 91-20-3	
Tetrachloroethene	ND ug/m3	1.2 1.7	4 03/07/14 05:01 127-18-4	
Toluene	3.8 ug/m3	1.3 1.7	4 03/07/14 05:01 108-88-3	
1,2,4-Trichlorobenzene	ND ug/m3	6.6 1.7	4 03/07/14 05:01 120-82-1	
1,1,1-Trichloroethane	ND ug/m3	1.9 1.7	4 03/07/14 05:01 71-55-6	
1,1,2-Trichloroethane	ND ug/m3	0.96 1.7	4 03/07/14 05:01 79-00-5	
Trichloroethene	ND ug/m3	0.96 1.7	4 03/07/14 05:01 79-01-6	
1,2,3-Trimethylbenzene	ND ug/m3	0.35 1.7	4 03/07/14 05:01 526-73-8	
1,2,4-Trimethylbenzene	ND ug/m3	1.7 1.7		
1,3,5-Trimethylbenzene	ND ug/m3	1.7 1.7	4 03/07/14 05:01 108-67-8	
Vinyl chloride	ND ug/m3	0.45 1.7	4 03/07/14 05:01 75-01-4	
m&p-Xylene	2.5J ug/m3	3.1 1.7		
o-Xylene	0.98J ug/m3	1.5 1.7	4 03/07/14 05:01 95-47-6	

Project:

1121C06221 REV

Pace Project No.:

Date: 04/17/2014 12:19 PM

10258805

Sample: IA-063-B-16	Lab ID: 10258805022	Collected: 02/24/14 18	:25 Received: 02/26/14 08:12 Matrix: Air
Parameters	Results Units	Report Limit DF	Prepared Analyzed CAS No. Qu
TO15 MSV AIR	Analytical Method: TO-15		
Benzene	ND ug/m3	0.68 2.1	03/06/14 19:12 71-43-2
Carbon tetrachloride	ND ug/m3	1.3 2.1	03/06/14 19:12 56-23-5
Chlorodifluoromethane	6.9 ug/m3	0.42 2.1	03/06/14 19:12 75-45-6
Chloroform	ND ug/m3	2.1 2.1	03/06/14 19:12 67-66-3
Dichlorodifluoromethane	2.5 ug/m3	2.1 2.1	03/06/14 19:12 75-71-8
1,1-Dichloroethane	ND ug/m3	1.7 2.1	03/06/14 19:12 75-34-3
1,2-Dichloroethane	ND ug/m3	0.86 2.1	03/06/14 19:12 107-06-2
1,1-Dichloroethene	ND ug/m3	1.7 2.1	03/06/14 19:12 75-35-4
cis-1,2-Dichloroethene	ND ug/m3	1.7 2.1	03/06/14 19:12 156-59-2
trans-1,2-Dichloroethene	ND ug/m3	1.7 2.1	03/06/14 19:12 156-60-5
Ethylbenzene	ND ug/m3	1.8 2.1	03/06/14 19:12 100-41-4
Methylene Chloride	4.9J ug/m3	7.4 2.1	03/06/14 19:12 75-09-2
Methyl-tert-butyl ether	ND ug/m3	1.5 2.1	03/06/14 19:12 1634-04-4
Naphthalene	ND ug/m3	5.6 2.1	03/06/14 19:12 91-20-3
Tetrachloroethene	ND ug/m3	1.4 2.1	03/06/14 19:12 127-18-4
Toluene	15.1 ug/m3	1.6 2.1	03/06/14 19:12 108-88-3
1,2,4-Trichlorobenzene	ND ug/m3	7.9 2.1	03/06/14 19:12 120-82-1
1,1,1-Trichloroethane	ND ug/m3	2.3 2.1	03/06/14 19:12 71-55-6
1,1,2-Trichloroethane	ND ug/m3	1.2 2.1	03/06/14 19:12 79-00-5
Trichloroethene	ND ug/m3	1.2 2.1	03/06/14 19:12 79-01-6
1,2,3-Trimethylbenzene	ND ug/m3	0.42 2.1	03/06/14 19:12 526-73-8
1,2,4-Trimethylbenzene	1.1J ug/m3	2.1 2.1	03/06/14 19:12 95-63-6
1,3,5-Trimethylbenzene	ND ug/m3	2.1 2.1	03/06/14 19:12 108-67-8
Vinyl chloride	ND ug/m3	0.55 2.1	03/06/14 19:12 75-01-4
m&p-Xylene	2.7J ug/m3	3.7 2.1	03/06/14 19:12 179601-23-1
o-Xylene	0.95J ug/m3	1.8 2.1	03/06/14 19:12 95-47-6

Project:

1121C06221 REV

Pace Project No.:

Date: 04/17/2014 12:19 PM

10258805

Sample: IA-065-C-16	Lab ID: 10258805020	Collected: 02/24/1	4 18:23	Received: 02/26/14 08:12	Matrix: Air	
Parameters	Results Units	Report Limit	DF	Prepared Analyzed	CAS No.	Qua
TO15 MSV AIR	Analytical Method: TO-15					
Benzene	0.64 ug/m3	0.55	1.68	03/06/14 21:	10 71-43-2	
Carbon tetrachloride	ND ug/m3	1.1	1.68	03/06/14 21:	10 56-23-5	
Chlorodifluoromethane	23.9 ug/m3	0.34	1.68	03/06/14 21:	10 75-45-6	
Chloroform	ND ug/m3	1.7	1.68	03/06/14 21:	10 67-66-3	
Dichlorodifluoromethane	2.3 ug/m3	1.7	1.68	03/06/14 21:	10 75-71-8	
1,1-Dichloroethane	ND ug/m3	1.4	1.68	03/06/14 21:	10 75-34-3	
1,2-Dichloroethane	ND ug/m3	0.69	1.68	03/06/14 21:	10 107-06-2	
1,1-Dichloroethene	ND ug/m3	1.4	1.68	03/06/14 21:	10 75-35-4	
cis-1,2-Dichloroethene	ND ug/m3	1.4	1.68	03/06/14 21:	10 156-59-2	
trans-1,2-Dichloroethene	ND ug/m3	1.4	1.68	03/06/14 21:	10 156-60-5	
Ethylbenzene	ND ug/m3	1.5	1.68	03/06/14 21:	10 100-41-4	
Methylene Chloride	5.8J ug/m3	5.9	1.68	03/06/14 21:	10 75-09-2	
Methyl-tert-butyl ether	ND ug/m3	1.2	1.68	03/06/14 21:	10 1634-04-4	
Naphthalene	5.1 ug/m3	4.5	1.68	03/06/14 21:	10 91-20-3	
Tetrachloroethene	ND ug/m3	1.2	1.68	03/06/14 21:	10 127-18-4	
Toluene	2.1 ug/m3	1.3	1.68	03/06/14 21:	10 108-88-3	
1,2,4-Trichlorobenzene	ND ug/m3	6.3	1.68	03/06/14 21:	10 120-82-1	
1,1,1-Trichloroethane	ND ug/m3	1.9	1.68	03/06/14 21:	10 71-55-6	
1,1,2-Trichloroethane	ND ug/m3	0.92	1.68	03/06/14 21:	10 79-00-5	
Trichloroethene	ND ug/m3	0.92	1.68	03/06/14 21:	10 79-01 - 6	
1,2,3-Trimethylbenzene	ND ug/m3	0.34	1.68	03/06/14 21:	10 526-73-8	
1,2,4-Trimethylbenzene	ND ug/m3	1.7	1.68	03/06/14 21:	10 95-63-6	
1,3,5-Trimethylbenzene	ND ug/m3	1.7	1.68	03/06/14 21:	10 108-67-8	
Vinyl chloride	ND ug/m3	0.44	1.68	03/06/14 21:	10 75-01-4	
m&p-Xylene	ND ug/m3	3.0	1.68	03/06/14 21:	10 179601-23-1	
o-Xylene	ND ug/m3	1.5	1.68	03/06/14 21:	10 95-47-6	

Project:

Vinyl chloride

m&p-Xylene

Date: 04/17/2014 12:19 PM

o-Xylene

1121C06221 REV

10258805

Pace Project No.:

Sample: IA-088-C-16 Lab ID: 10258805006 Collected: 02/24/14 16:56 Received: 02/26/14 08:12 Matrix: Air **Parameters** Results Units Report Limit DF Prepared Analyzed CAS No. Qual TO15 MSV AIR Analytical Method: TO-15 Benzene ND ug/m3 11.8 36.36 03/10/14 01:06 71-43-2 ND ug/m3 Carbon tetrachloride 23.3 36.36 03/10/14 01:06 56-23-5 ND ug/m3 03/10/14 01:06 75-45-6 Chlorodifluoromethane 7.3 36.36 ND ug/m3 Chloroform 36.0 36.36 03/10/14 01:06 67-66-3 ND ug/m3 Dichlorodifluoromethane 36.7 36.36 03/10/14 01:06 75-71-8 D3 1,1-Dichloroethane ND ug/m3 29.8 36.36 03/10/14 01:06 75-34-3 1,2-Dichloroethane ND ug/m3 14.9 36.36 03/10/14 01:06 107-06-2 1,1-Dichloroethene ND ug/m3 29.5 03/10/14 01:06 75-35-4 36.36 cis-1.2-Dichloroethene ND ug/m3 29.5 36.36 03/10/14 01:06 156-59-2 trans-1,2-Dichloroethene ND ug/m3 29.5 36.36 03/10/14 01:06 156-60-5 Ethylbenzene ND ug/m3 32.0 36.36 03/10/14 01:06 100-41-4 Methylene Chloride 33.6J ug/m3 03/10/14 01:06 75-09-2 128 36.36 ND ug/m3 Methyl-tert-butyl ether 26.5 36.36 03/10/14 01:06 1634-04-4 Naphthalene ND ug/m3 96.7 36.36 03/10/14 01:06 91-20-3 Tetrachloroethene ND ug/m3 25.1 36.36 03/10/14 01:06 127-18-4 ND ug/m3 03/10/14 01:06 108-88-3 Toluene 28.0 36.36 1,2,4-Trichlorobenzene ND ug/m3 137 36.36 03/10/14 01:06 120-82-1 1,1,1-Trichloroethane ND ug/m3 40.4 36.36 03/10/14 01:06 71-55-6 1,1,2-Trichloroethane ND ug/m3 20.0 36.36 03/10/14 01:06 79-00-5 Trichloroethene ND ug/m3 20.0 36.36 03/10/14 01:06 79-01-6 1,2,3-Trimethylbenzene ND ug/m3 7.3 36.36 03/10/14 01:06 526-73-8 ND ug/m3 1,2,4-Trimethylbenzene 36.3 36.36 03/10/14 01:06 95-63-6 1,3,5-Trimethylbenzene ND ug/m3 36.3 36.36 03/10/14 01:06 108-67-8

9.5 36.36

64.0 36.36

32.0 36.36

03/10/14 01:06 75-01-4

03/10/14 01:06 95-47-6

03/10/14 01:06 179601-23-1

ND ug/m3

ND ug/m3

ND ug/m3

Project:

1121C06221 REV

Pace Project No.:

Date: 04/17/2014 12:19 PM

10258805

Sample: IA-101-B-16	Lab ID: 10258805036	Collected: 02/24/1	4 19:03	Received: 0	2/26/14 08:12	Matrix: Air	
Parameters	Results Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
TO15 MSV AIR	Analytical Method: TO-15						
Benzene	0.65 ug/m3	0.61	1.87		03/07/14 22:23	7 71-43-2	
Carbon tetrachloride	ND ug/m3	1.2	1.87		03/07/14 22:27	7 56-23-5	
Chlorodifluoromethane	18.9 ug/m3	6.6	1.87		03/07/14 22:27	7 75-45-6	
Chloroform	ND ug/m3	1.9	1.87		03/07/14 22:27	7 67-66-3	
Dichlorodifluoromethane	2.7 ug/m3	1.9	1.87		03/07/14 22:27	7 75-71-8	
1,1-Dichloroethane	ND ug/m3	1.5	1.87		03/07/14 22:27	7 75-34-3	
1,2-Dichloroethane	ND ug/m3	0.77	1.87		03/07/14 22:27	7 107-06-2	
1,1-Dichloroethene	ND ug/m3	1.5	1.87		03/07/14 22:27	7 75-35-4	
cis-1,2-Dichloroethene	ND ug/m3	1.5	1.87		03/07/14 22:27	7 156-59-2	
trans-1,2-Dichloroethene	ND ug/m3	1.5	1.87		03/07/14 22:27	7 156-60-5	
Ethylbenzene	ND ug/m3	1.6	1.87		03/07/14 22:27	100-41-4	
Methylene Chloride	11.5 ug/m3	6.6	1.87		03/07/14 22:27	75-09-2	
Methyl-tert-butyl ether	ND ug/m3	1.4	1.87		03/07/14 22:27	1634-04-4	
Naphthalene	1.3J ug/m3	2.0	1.87		03/07/14 22:27	91-20-3	
Tetrachloroethene	ND ug/m3	1.3	1.87		03/07/14 22:27	7 127-18 -4	
Toluene	17.1 ug/m3	1.4	1.87		03/07/14 22:27	108-88-3	
1,2,4-Trichlorobenzene	ND ug/m3	2.8	1.87		03/07/14 22:27	120-82-1	
1,1,1-Trichloroethane	ND ug/m3	2.1	1.87		03/07/14 22:27	71-55-6	
1,1,2-Trichloroethane	ND ug/m3	1.0	1.87		03/07/14 22:27	79-00-5	
Trichloroethene	ND ug/m3	1.0	1.87		03/07/14 22:27	79-01-6	
1,2,3-Trimethylbenzene	ND ug/m3	0.37	1.87		03/07/14 22:27	526-73-8	
1,2,4-Trimethylbenzene	ND ug/m3	1.9	1.87		03/07/14 22:27	95-63-6	
1,3,5-Trimethylbenzene	ND ug/m3	1.9	1.87		03/07/14 22:27		
Vinyl chloride	ND ug/m3	0.49	1.87		03/07/14 22:27		
m&p-Xylene	2.5J ug/m3	3.3	1.87		03/07/14 22:27	7 179601-23-1	
o-Xylene	0.95J ug/m3	1.6	1.87		03/07/14 22:27		

Project:

1121C06221 REV

Pace Project No.:

Date: 04/17/2014 12:19 PM

10258805

Sample: IA-102-C-16	Lab ID: 10258805010	Collected: 02/24/14	17:03	Received: 02/26/14 08:12	Matrix: Air	
Parameters	Results Units	Report Limit	DF	Prepared Analyzed	CAS No.	Qua
TO15 MSV AIR	Analytical Method: TO-15					
Benzene	0.61J ug/m3	0.63	1.94	03/07/14 21:	59 71-43-2	
Carbon tetrachloride	ND ug/m3	1.2	1.94	03/07/14 21:	59 56-23-5	
Chlorodifluoromethane	1.8J ug/m3	6.9	1.94	03/07/14 21:	59 75-45-6	
Chloroform	ND ug/m3	1.9	1.94	03/07/14 21:	59 67-66-3	
Dichlorodifluoromethane	2.6 ug/m3	2.0	1.94	03/07/14 21:	59 75-71-8	
1,1-Dichloroethane	ND ug/m3	1.6	1.94	03/07/14 21:	59 75-34-3	
1,2-Dichloroethane	ND ug/m3	0.80	1.94	03/07/14 21:	59 107-06-2	
1,1-Dichloroethene	ND ug/m3	1.6	1.94	03/07/14 21:	59 75-35-4	
cis-1,2-Dichloroethene	ND ug/m3	1.6	1.94	03/07/14 21:	59 156-59-2	
rans-1,2-Dichloroethene	ND ug/m3	1.6	1.94	03/07/14 21:	59 156-60-5	
Ethylbenzene	ND ug/m3	1.7	1.94	03/07/14 21:	59 100-41-4	
Methylene Chloride	8.6 ug/m3	6.9	1.94	03/07/14 21:		
Methyl-tert-butyl ether	ND ug/m3	1.4	1.94	03/07/14 21:	59 1634-04-4	
Naphthalene	1.1J ug/m3	2.1	1.94	03/07/14 21:	59 91-20-3	
Tetrachloroethene	ND ug/m3	1.3	1.94	03/07/14 21:	59 127-18 -4	
Toluene	3.2 ug/m3	1.5	1.94	03/07/14 21:	59 108-88-3	
1,2,4-Trichlorobenzene	ND ug/m3	2.9	1.94	03/07/14 21:	59 120-82-1	
I,1,1-Trichloroethane	ND ug/m3	2.2	1.94	03/07/14 21:	59 71-55-6	
I,1,2-Trichloroethane	ND ug/m3	1.1	1.94	03/07/14 21:		
Trichloroethene	ND ug/m3	1.1	1.94	03/07/14 21:		
I,2,3-Trimethylbenzene	ND ug/m3	0.39	1.94	03/07/14 21:		
I,2,4-Trimethylbenzene	ND ug/m3	1.9	1.94	03/07/14 21:		
I,3,5-Trimethylbenzene	ND ug/m3	1.9	1.94	03/07/14 21:		
√inyl chloride	ND ug/m3		1.94	03/07/14 21:		
m&p-Xylene	1.9J ug/m3		1.94		59 179601-23-1	
o-Xylene	ND ug/m3	1.7	1.94	03/07/14 21:		

Project:

1121C06221 REV

Pace Project No.:

Date: 04/17/2014 12:19 PM

10258805

Sample: IA-105-Z-16	Lab ID: 10258805030	Collected: 02/24/14	18:48	Received: 02/26/14 08:12	Matrix: Air	
Parameters	Results Units	Report Limit	DF	Prepared Analyzed	CAS No.	Qua
TO15 MSV AIR	Analytical Method: TO-15					
Benzene	1.6 ug/m3	0.58	1.8	03/08/14 02:13	3 71-43-2	
Carbon tetrachloride	ND ug/m3	1.2	1.8	03/08/14 02:13	3 56-23-5	
Chlorodifluoromethane	1.4 ug/m3	0.36	1.8	03/08/14 02:13	3 75-45-6	
Chloroform	ND ug/m3	1.8	1.8	03/08/14 02:13	67-66-3	
Dichlorodifluoromethane	1.8 ug/m3	1.8	1.8	03/08/14 02:13	3 75-71-8	
1,1-Dichloroethane	ND ug/m3	1.5	1.8	03/08/14 02:13	3 75-34-3	
1,2-Dichloroethane	ND ug/m3	0.74	1.8	03/08/14 02:13	3 107-06-2	
1,1-Dichloroethene	ND ug/m3	1.5	1.8	03/08/14 02:13	3 75-35-4	
cis-1,2-Dichloroethene	ND ug/m3	1.5	1.8	03/08/14 02:13	3 156-59-2	
rans-1,2-Dichloroethene	ND ug/m3	1.5	1.8	03/08/14 02:13	3 156-60-5	
Ethylbenzene	113 ug/m3	1.6	1.8	03/08/14 02:13	3 100-41-4	
Methylene Chloride	14.8 ug/m3	6.4	1.8	03/08/14 02:13	3 75-09-2	
Methyl-tert-butyl ether	ND ug/m3	1.3	1.8	03/08/14 02:13	3 1634-04-4	
Naphthalene	3.2J ug/m3	4.8	1.8	03/08/14 02:13	91-20-3	
Tetrachloroethene	ND ug/m3	1.2	1.8	03/08/14 02:13	3 127-18-4	
Toluene	9300 ug/m3	111	144	03/09/14 18:40	108-88-3	A 3
1,2,4-Trichlorobenzene	ND ug/m3	6.8	1.8	03/08/14 02:13	3 120-82-1	
1,1,1-Trichloroethane	ND ug/m3	2.0	1.8	03/08/14 02:13	3 71-55-6	
1,1,2-Trichloroethane	ND ug/m3	0.99	1.8	03/08/14 02:13	3 79-00-5	
Trichloroethene	ND ug/m3	0.99	1.8	03/08/14 02:13	3 79-01-6	
1,2,3-Trimethylbenzene	ND ug/m3	0.36	1.8	03/08/14 02:13	526-73-8	
1,2,4-Trimethylbenzene	1.7J ug/m3	1.8	1.8	03/08/14 02:13	95-63-6	
1,3,5-Trimethylbenzene	ND ug/m3	1.8	1.8	03/08/14 02:13	3 108-67-8	
Vinyl chloride	ND ug/m3	0.47	1.8	03/08/14 02:13	3 75-01-4	
m&p-Xylene	476 ug/m3	253	144	03/09/14 18:40	179601-23-1	A3
o-Xylene	142 ug/m3	1.6	1.8	03/08/14 02:13	3 95-47-6	

Project:

1121C06221 REV

Date: 04/17/2014 12:19 PM

10258805 Pace Project No.:

Sample: IA-113-C-16	Lab ID: 10258805028	Collected: 02/24/14	16:59	Received: 02/26/14 08:12	Matrix: Air	
Parameters	Results Units	Report Limit	DF	Prepared Analyze	d CAS No.	Qual
TO15 MSV AIR	Analytical Method: TO-15				•	
Benzene	1.9 ug/m3	1.7 5	5.31	03/10/14 01	:35 71-43-2	
Carbon tetrachloride	ND ug/m3	3.4 5	5.31	03/10/14 01	:35 56-23-5	
Chlorodifluoromethane	6.5 ug/m3	1.1 5	5.31	03/10/14 01	:35 75-45-6	
Chloroform	ND ug/m3	5.3 5	5.31	03/10/14 01	:35 67-66-3	
Dichlorodifluoromethane	4.7J ug/m3	5.4 5	5.31	03/10/14 01	:35 75-71-8	
1,1-Dichloroethane	43.7 ug/m3	4.4 5	5.31	03/10/14 01	:35 75-34-3	
1,2-Dichloroethane	ND ug/m3	2.2 5	5.31	03/10/14 01	:35 107-06-2	
1,1-Dichloroethene	17.1 ug/m3	4.3 5	5.31	03/10/14 01	:35 75-35-4	
cis-1,2-Dichloroethene	ND ug/m3	4.3 5	5.31	03/10/14 01	:35 156-59-2	
trans-1,2-Dichloroethene	ND ug/m3	4.3 5	5.31	03/10/14 01	:35 156-60-5	
Ethylbenzene	ND ug/m3	4.7 5	5.31	03/10/14 01	:35 100-41-4	
Methylene Chloride	79.7 ug/m3	18.7 5	5.31	03/10/14 01	:35 75-09-2	
Methyl-tert-butyl ether	ND ug/m3	3.9 5	5.31	03/10/14 01	:35 1634-04-4	
Naphthalene	ND ug/m3	14.1 5	5.31	03/10/14 01	:35 91-20-3	
Tetrachloroethene	ND ug/m3	3.7 5	5.31	03/10/14 01	:35 127-18-4	
Toluene	24.7 ug/m3	4.1 5	5.31	03/10/14 01	:35 108-88-3	
1,2,4-Trichlorobenzene	ND ug/m3	20.0 5	5.31	03/10/14 01	:35 120-82-1	
1,1,1-Trichloroethane	13.2 ug/m3	5.9 5	5.31	03/10/14 01	:35 71-55-6	
1,1,2-Trichloroethane	ND ug/m3	2.9 5	5.31	03/10/14 01	:35 79-00-5	
Trichloroethene	20.0 ug/m3	2.9 5	5.31	03/10/14 01	:35 79-01-6	
1,2,3-Trimethylbenzene	ND ug/m3	1.1 5	5.31	03/10/14 01	:35 526-73-8	
1,2,4-Trimethylbenzene	3.2J ug/m3	5.3 5	5.31	03/10/14 01	:35 95-63-6	
1,3,5-Trimethylbenzene	ND ug/m3	5.3 5	5.31	03/10/14 01	:35 108-67-8	
Vinyl chloride	ND ug/m3	1.4 5	5.31	03/10/14 01	:35 75-01-4	
m&p-Xylene	76.6 ug/m3	9.3 5	5.31	03/10/14 01	:35 179601-23-1	
o-Xylene	26.6 ug/m3	4.7 5	5.31	03/10/14 01	:35 95-47-6	

Project:

1121C06221 REV

Date: 04/17/2014 12:19 PM

Pace Project No.: 10258805

Sample: IA-121-B-16	Lab ID: 10258805034	Collected: 02/24/1	4 19:02	Received: 02/26/14 08:12	Matrix: Air
Parameters	Results Units	Report Limit	DF	Prepared Analyzed	CAS No. Qu
TO15 MSV AIR	Analytical Method: TO-15				
Benzene	0.78 ug/m3	0.61	1.87	03/07/14 01:3	5 71-43-2
Carbon tetrachloride	ND ug/m3	1.2	1.87	03/07/14 01:3	5 56-23-5
Chlorodifluoromethane	37.5 ug/m3	0.37	1.87	03/07/14 01:3	5 75-45-6
Chloroform	ND ug/m3	1.9	1.87	03/07/14 01:3	5 67-66-3
Dichlorodifluoromethane	1.9 ug/m3	1.9	1.87	03/07/14 01:3	5 75-71-8
1,1-Dichloroethane	ND ug/m3	1.5	1.87	03/07/14 01:3	5 75-34-3
1,2-Dichloroethane	ND ug/m3	0.77	1.87	03/07/14 01:3	5 107-06-2
1,1-Dichloroethene	ND ug/m3	1.5	1.87	03/07/14 01:3	5 75-35-4
cis-1,2-Dichloroethene	ND ug/m3	1.5	1.87	03/07/14 01:3	5 156-59-2
trans-1,2-Dichloroethene	ND ug/m3	1.5	1.87	03/07/14 01:3	5 156-60-5
Ethylbenzene	ND ug/m3	1.6	1.87	03/07/14 01:3	5 100-41-4
Methylene Chloride	4.5J ug/m3	6.6	1.87	03/07/14 01:3	5 75-09-2
Methyl-tert-butyl ether	ND ug/m3	1.4	1.87	03/07/14 01:3	5 1634-04-4
Naphthalene	3.4J ug/m3	5.0	1.87	03/07/14 01:3	5 91-20-3
Tetrachloroethene	ND ug/m3	1.3	1.87	03/07/14 01:3	5 127-18- 4
Toluene	19.4 ug/m3	1.4	1.87	03/07/14 01:3	5 108-88-3
1,2,4-Trichlorobenzene	ND ug/m3	7.0	1.87	03/07/14 01:3	5 120-82-1
1,1,1-Trichloroethane	ND ug/m3	2.1	1.87	03/07/14 01:3	5 71-55-6
1,1,2-Trichloroethane	ND ug/m3	1.0	1.87	03/07/14 01:3	5 79-00-5
Trichloroethene	1.1 ug/m3	1.0	1.87	03/07/14 01:3	5 79-01-6
1,2,3-Trimethylbenzene	ND ug/m3	0.37	1.87	03/07/14 01:3	5 526-73-8
1,2,4-Trimethylbenzene	ND ug/m3	1.9	1.87	03/07/14 01:3	5 95-63-6
1,3,5-Trimethylbenzene	ND ug/m3	1.9	1.87	03/07/14 01:3	5 108-67-8
Vinyl chloride	ND ug/m3	0.49	1.87	03/07/14 01:3	5 75-01-4
m&p-Xylene	2.8J ug/m3	3.3	1.87	03/07/14 01:3	5 179601-23-1
o-Xylene	1.1J ug/m3	1.6	1.87	03/07/14 01:3	5 95-47-6

Project:

1121C06221 REV

Pace Project No.: 10258805

1,2,3-Trimethylbenzene

1,2,4-Trimethylbenzene

1,3,5-Trimethylbenzene

Date: 04/17/2014 12:19 PM

Vinyl chloride

m&p-Xylene

o-Xylene

Sample: IA-123-Z-16 Lab ID: 10258805032 Collected: 02/24/14 18:49 Received: 02/26/14 08:12 Matrix: Air **Parameters** Results Units Report Limit DF Prepared Analyzed CAS No. Qual **TO15 MSV AIR** Analytical Method: TO-15 Benzene 2.3 ug/m3 0.61 1.87 03/08/14 00:13 71-43-2 Carbon tetrachloride ND ug/m3 1.2 1.87 03/08/14 00:13 56-23-5 Chlorodifluoromethane 1.3 ug/m3 0.37 1.87 03/08/14 00:13 75-45-6 ND ug/m3 03/08/14 00:13 67-66-3 Chloroform 1.9 1.87 Dichlorodifluoromethane 2.1 ug/m3 1.9 1.87 03/08/14 00:13 75-71-8 1,1-Dichloroethane ND ug/m3 1.5 1.87 03/08/14 00:13 75-34-3 1,2-Dichloroethane ND ua/m3 0.77 1.87 03/08/14 00:13 107-06-2 1.1-Dichloroethene ND ug/m3 03/08/14 00:13 75-35-4 1.5 1.87 cis-1.2-Dichloroethene ND ug/m3 1.5 1.87 03/08/14 00:13 156-59-2 trans-1,2-Dichloroethene ND ug/m3 1.5 1.87 03/08/14 00:13 156-60-5 Ethylbenzene 164 ug/m3 1.6 1.87 03/08/14 00:13 100-41-4 Methylene Chloride 8.7 ug/m3 6.6 1.87 03/08/14 00:13 75-09-2 Methyl-tert-butyl ether ND ug/m3 1.4 1.87 03/08/14 00:13 1634-04-4 Naphthalene ND ug/m3 5.0 1.87 03/08/14 00:13 91-20-3 Tetrachloroethene ND ug/m3 1.3 1.87 03/08/14 00:13 127-18-4 20000 ug/m3 Toluene 230 299.2 03/09/14 19:04 108-88-3 АЗ 1,2,4-Trichlorobenzene ND ug/m3 7.0 1.87 03/08/14 00:13 120-82-1 1,1,1-Trichloroethane ND ug/m3 2.1 1.87 03/08/14 00:13 71-55-6 1,1,2-Trichloroethane ND ug/m3 1.0 1.87 03/08/14 00:13 79-00-5 Trichloroethene ND ug/m3 1.0 1.87 03/08/14 00:13 79-01-6

1.87

1.87

1.87

1.87

299.2

1.87

0.37

1.9

1.9

0.49

527

1.6

03/08/14 00:13 526-73-8

03/08/14 00:13 95-63-6

03/08/14 00:13 108-67-8

03/09/14 19:04 179601-23-1 A3

03/08/14 00:13 75-01-4

03/08/14 00:13 95-47-6

ND ug/m3

1.3J ug/m3

ND ug/m3

ND ug/m3

1030 ug/m3

210 ug/m3

Project:

1121C06221 REV

Pace Project No.:

Date: 04/17/2014 12:19 PM

10258805

Sample: IA-126-C-16	Lab ID: 10258805018	Collected: 02/24/14	1 18:19	Received: 02/26/14 08:	12 Matrix: Air	
Parameters	Results Units	Report Limit	DF	Prepared Analy:	zed CAS No.	Qual
TO15 MSV AIR	Analytical Method: TO-15					
Benzene	0.79 ug/m3	0.57	1.74	03/07/14	20:16 71-43-2	
Carbon tetrachloride	ND ug/m3	1.1	1.74	03/07/14	20:16 56-23-5	
Chlorodifluoromethane	2.0 ug/m3	0.35	1.74	03/07/14	20:16 75-45-6	
Chloroform	ND ug/m3	1.7	1.74	03/07/14	20:16 67-66-3	
Dichlorodifluoromethane	2.3 ug/m3	1.8	1.74	03/07/14	20:16 75-71-8	
1,1-Dichloroethane	ND ug/m3	1.4	1.74	03/07/14	20:16 75-34-3	
1,2-Dichloroethane	ND ug/m3	0.71	1.74	03/07/14	20:16 107-06-2	
1,1-Dichloroethene	ND ug/m3	1.4	1.74		20:16 75-35-4	
cis-1,2-Dichloroethene	ND ug/m3	1.4	1.74	03/07/14	20:16 156-59-2	
trans-1,2-Dichloroethene	ND ug/m3	1.4	1.74		20:16 156-60-5	
Ethylbenzene	ND ug/m3	1.5	1.74		20:16 100-41-4	
Methylene Chloride	14.6 ug/m3	6.1	1.74		20:16 75-09-2	
Methyl-tert-butyl ether	ND ug/m3	1.3	1.74		20:16 1634-04-4	
Naphthalene	3.4J ug/m3	4.6	1.74	03/07/14	20:16 91-20-3	
Tetrachloroethene	ND ug/m3	1.2	1.74	03/07/14	20:16 127-18-4	
Toluene	6.0 ug/m3	1.3	1.74	03/07/14	20:16 108-88-3	
1,2,4-Trichlorobenzene	ND ug/m3	6.6	1.74		20:16 120-82-1	
1,1,1-Trichloroethane	ND ug/m3	1.9	1.74		20:16 71-55-6	
1,1,2-Trichloroethane	ND ug/m3	0.96	1.74		20:16 79-00-5	
Trichloroethene	ND ug/m3	0.96	1.74	03/07/14	20:16 79-01-6	
1,2,3-Trimethylbenzene	ND ug/m3	0.35	1.74	03/07/14	20:16 526-73-8	
1,2,4-Trimethylbenzene	ND ug/m3	1.7	1.74		20:16 95-63-6	
1,3,5-Trimethylbenzene	ND ug/m3	1.7	1.74		20:16 108-67-8	
Vinyl chloride	ND ug/m3	0.45	1.74		20:16 75-01-4	
m&p-Xylene	ND ug/m3		1.74		20:16 179601-23-1	
o-Xylene	ND ug/m3		1.74		20:16 95-47-6	

Project:

Vinyl chloride

m&p-Xylene

Date: 04/17/2014 12:19 PM

o-Xylene

1121C06221 REV

Pace Project No.:

10258805 Sample: IA-128-C-16 Lab ID: 10258805038 Collected: 02/24/14 19:13 Received: 02/26/14 08:12 Matrix: Air **Parameters** Results Units Report Limit DF Prepared Analyzed CAS No. Qual TO15 MSV AIR Analytical Method: TO-15 Benzene 0.84 ug/m3 0.61 1.87 03/07/14 18:48 71-43-2 Carbon tetrachloride ND ug/m3 1.2 1.87 03/07/14 18:48 56-23-5 23.2 ug/m3 03/07/14 18:48 75-45-6 Chlorodifluoromethane 0.37 1.87 ND ug/m3 Chloroform 03/07/14 18:48 67-66-3 1.9 1.87 2.4 ug/m3 Dichlorodifluoromethane 1.9 1.87 03/07/14 18:48 75-71-8 ND ug/m3 1,1-Dichloroethane 1.5 1.87 03/07/14 18:48 75-34-3 ND ug/m3 1,2-Dichloroethane 0.77 1.87 03/07/14 18:48 107-06-2 1,1-Dichloroethene ND ug/m3 1.5 1.87 03/07/14 18:48 75-35-4 cis-1,2-Dichloroethene ND ug/m3 1.5 1.87 03/07/14 18:48 156-59-2 trans-1,2-Dichloroethene ND ug/m3 1.5 1.87 03/07/14 18:48 156-60-5 ND ug/m3 Ethylbenzene 1.6 1.87 03/07/14 18:48 100-41-4 14.5 ug/m3 Methylene Chloride 6.6 1.87 03/07/14 18:48 75-09-2 Methyl-tert-butyl ether ND ug/m3 03/07/14 18:48 1634-04-4 1.4 1.87 Naphthalene 3.9J ug/m3 03/07/14 18:48 91-20-3 5.0 1.87 Tetrachloroethene ND ug/m3 03/07/14 18:48 127-18-4 1.3 1.87 Toluene 4.3 ug/m3 03/07/14 18:48 108-88-3 1.4 1.87 1,2,4-Trichlorobenzene ND ug/m3 7.0 1.87 03/07/14 18:48 120-82-1 ND ug/m3 1,1,1-Trichloroethane 2.1 1.87 03/07/14 18:48 71-55-6 ND ug/m3 1,1,2-Trichloroethane 1.0 1.87 03/07/14 18:48 79-00-5 Trichloroethene ND ug/m3 1.0 1.87 03/07/14 18:48 79-01-6 1,2,3-Trimethylbenzene ND ug/m3 0.37 1.87 03/07/14 18:48 526-73-8 1,2,4-Trimethylbenzene ND ug/m3 1.9 1.87 03/07/14 18:48 95-63-6 1,3,5-Trimethylbenzene ND ug/m3 1.9 1.87 03/07/14 18:48 108-67-8

0.49

3.3

1.6

1.87

1.87

1.87

03/07/14 18:48 75-01-4 03/07/14 18:48 179601-23-1

03/07/14 18:48 95-47-6

ND ug/m3

2.6J ug/m3

1.1J ug/m3

Project:

1121C06221 REV

Pace Project No.:

Date: 04/17/2014 12:19 PM

10258805

Sample: IA-130-C-16	Lab ID: 10258805012	Collected: 02/24/14	17:58	Received: 02/26/14 08:12	Matrix: Air	
Parameters	Results Units	Report Limit I	DF	Prepared Analyzed	CAS No.	Qua
TO15 MSV AIR	Analytical Method: TO-15					
Benzene	1.3 ug/m3	0.55 1	.68	03/07/14 03:3	32 71-43-2	
Carbon tetrachloride	ND ug/m3	1.1 1	.68	03/07/14 03:3	32 56-23-5	
Chlorodifluoromethane	4.0 ug/m3	0.34 1	.68	03/07/14 03:3	32 75-45-6	
Chloroform	ND ug/m3	1.7 1	.68	03/07/14 03:3	32 67-66-3	
Dichlorodifluoromethane	2.4 ug/m3	1.7 1	.68	03/07/14 03:3	32 75-71-8	
1,1-Dichloroethane	ND ug/m3	1.4 1	.68	03/07/14 03:3	32 75-34-3	
1,2-Dichloroethane	ND ug/m3	0.69 1	.68	03/07/14 03:3	32 107-06-2	
1,1-Dichloroethene	ND ug/m3	1.4 1	.68	03/07/14 03:3	32 75-35-4	
cis-1,2-Dichloroethene	ND ug/m3	1.4 1	.68	03/07/14 03:3	32 156-59-2	
trans-1,2-Dichloroethene	ND ug/m3	1.4 1	.68	03/07/14 03:3	32 156-60-5	
Ethylbenzene	ND ug/m3	1.5 1	.68	03/07/14 03:0	32 100-41-4	
Methylene Chloride	14.1 ug/m3	5.9 1	.68	03/07/14 03:3	32 75-09-2	
Methyl-tert-butyl ether	ND ug/m3	1.2 1	.68	03/07/14 03:3	32 1634-04-4	
Naphthalene	3.6J ug/m3	4.5 1	.68	03/07/14 03:3	32 91-20-3	
Tetrachloroethene	ND ug/m3	1.2 1	.68	03/07/14 03:3	32 127-18-4	
Toluene	3.5 ug/m3	1.3 1	.68	03/07/14 03:3	32 108-88-3	
1,2,4-Trichlorobenzene	ND ug/m3	6.3 1	.68	03/07/14 03:3	32 120-82-1	
1,1,1-Trichloroethane	ND ug/m3	1.9 1	.68	03/07/14 03:3	32 71-55-6	
1,1,2-Trichloroethane	ND ug/m3	0.92 1	.68	03/07/14 03:3	32 79-00-5	
Trichloroethene	ND ug/m3	0.92 1	.68	03/07/14 03:3	32 79-01-6	
1,2,3-Trimethylbenzene	ND ug/m3	0.34 1	.68	03/07/14 03:3	32 526-73-8	
1,2,4-Trimethylbenzene	ND ug/m3	1.7 1	.68	03/07/14 03:3	32 95-63-6	
1,3,5-Trimethylbenzene	ND ug/m3	1.7 1	.68	03/07/14 03:3	2 108-67-8	
Vinyl chloride	ND ug/m3	0.44 1	.68	03/07/14 03:3	32 75-01-4	
m&p-Xylene	1.6J ug/m3	3.0 1	.68	03/07/14 03:3	2 179601-23-1	
o-Xylene	ND ug/m3	1.5 1	.68	03/07/14 03:3		

Project:

m&p-Xylene

Date: 04/17/2014 12:19 PM

o-Xylene

1121C06221 REV

Pace Project No.:

10258805 Received: 02/26/14 08:12 Matrix: Air Sample: IA-133-C-16 Lab ID: 10258805026 Collected: 02/24/14 18:40 **Parameters** Results Units Report Limit DF Prepared Analyzed CAS No. Qual **TO15 MSV AIR** Analytical Method: TO-15 Renzene 0.93 ug/m3 0.55 1.68 03/07/14 19:47 71-43-2 Carbon tetrachloride ND ug/m3 1.68 1.1 03/07/14 19:47 56-23-5 4.4 ug/m3 Chlorodifluoromethane 0.34 1.68 03/07/14 19:47 75-45-6 ND ug/m3 03/07/14 19:47 67-66-3 Chloroform 1.68 1.7 2.4 ug/m3 Dichlorodifluoromethane 1.68 03/07/14 19:47 75-71-8 1.7 ND ug/m3 1,1-Dichloroethane 1.4 1.68 03/07/14 19:47 75-34-3 ND ug/m3 1.2-Dichloroethane 0.69 1.68 03/07/14 19:47 107-06-2 1,1-Dichloroethene ND ug/m3 1.4 1.68 03/07/14 19:47 75-35-4 cis-1,2-Dichloroethene ND ug/m3 1.4 1.68 03/07/14 19:47 156-59-2 trans-1,2-Dichloroethene ND ug/m3 03/07/14 19:47 156-60-5 1.4 1.68 ND ug/m3 Ethylbenzene 1.5 1.68 03/07/14 19:47 100-41-4 8.4 ug/m3 Methylene Chloride 5.9 1.68 03/07/14 19:47 75-09-2 Methyl-tert-butyl ether ND ug/m3 1.2 1.68 03/07/14 19:47 1634-04-4 Naphthalene **3.7J** ug/m3 03/07/14 19:47 91-20-3 4.5 1.68 Tetrachloroethene ND ug/m3 1.68 03/07/14 19:47 127-18-4 1.2 Toluene 2.9 ug/m3 1.3 1.68 03/07/14 19:47 108-88-3 ND ug/m3 1,2,4-Trichlorobenzene 6.3 1.68 03/07/14 19:47 120-82-1 ND ug/m3 1,1,1-Trichloroethane 1.9 1.68 03/07/14 19:47 71-55-6 ND ug/m3 1,1,2-Trichloroethane 0.92 1.68 03/07/14 19:47 79-00-5 Trichloroethene 1.2 ug/m3 0.92 1.68 03/07/14 19:47 79-01-6 1,2,3-Trimethylbenzene ND ug/m3 0.34 1.68 03/07/14 19:47 526-73-8 1,2,4-Trimethylbenzene ND ug/m3 1.68 03/07/14 19:47 95-63-6 1.7 1,3,5-Trimethylbenzene ND ug/m3 1.7 1.68 03/07/14 19:47 108-67-8 Vinyl chloride ND ug/m3 0.44 1.68 03/07/14 19:47 75-01-4

3.0

1.5

1.68

1.68

03/07/14 19:47 179601-23-1

03/07/14 19:47 95-47-6

2.1J ug/m3

0.84J ug/m3

Project:

1121C06221 REV

Pace Project No.:

Date: 04/17/2014 12:19 PM

10258805

Sample: IA-135-C-16	Lab ID: 10258805004	Collected: 02/24/14	16:54	Received: 02/26/14 08:12 Matrix: Air	
Parameters	Results Units	Report Limit	DF	Prepared Analyzed CAS No.	Qua
TO15 MSV AIR	Analytical Method: TO-15				
Benzene	0.80 ug/m3	0.58	1.8	03/06/14 22:39 71-43-2	
Carbon tetrachloride	ND ug/m3	1.2	1.8	03/06/14 22:39 56-23-5	
Chlorodifluoromethane	2.1 ug/m3	0.36	1.8	03/06/14 22:39 75-45-6	
Chloroform	ND ug/m3	1.8	1.8	03/06/14 22:39 67-66-3	
Dichlorodifluoromethane	2.3 ug/m3	1.8	1.8	03/06/14 22:39 75-71-8	
1,1-Dichloroethane	ND ug/m3	1.5	1.8	03/06/14 22:39 75-34-3	
1,2-Dichloroethane	ND ug/m3	0.74	1.8	03/06/14 22:39 107-06-2	
1,1-Dichloroethene	ND ug/m3	1.5	1.8	03/06/14 22:39 75-35-4	
cis-1,2-Dichloroethene	ND ug/m3	1.5	1.8	03/06/14 22:39 156-59-2	
trans-1,2-Dichloroethene	ND ug/m3	1.5	1.8	03/06/14 22:39 156-60-5	
Ethylbenzene	ND ug/m3	1.6	1.8	03/06/14 22:39 100-41-4	
Methylene Chloride	13.2 ug/m3	6.4 ·	1.8	03/06/14 22:39 75-09-2	
Methyl-tert-butyl ether	ND ug/m3	1.3	1.8	03/06/14 22:39 1634-04-4	
Naphthalene	ND ug/m3	4.8	1.8	03/06/14 22:39 91-20-3	
Tetrachloroethene	ND ug/m3	1.2	1.8	03/06/14 22:39 127-18-4	
Toluene	ND ug/m3	1.4	1.8	03/06/14 22:39 108-88-3	
1,2,4-Trichlorobenzene	ND ug/m3	6.8	1.8	03/06/14 22:39 120-82-1	
1,1,1-Trichloroethane	ND ug/m3	2.0	1.8	03/06/14 22:39 71-55-6	
1,1,2-Trichloroethane	ND ug/m3	0.99	1.8	03/06/14 22:39 79-00-5	
Trichloroethene	ND ug/m3	0.99	1.8	03/06/14 22:39 79-01-6	
1,2,3-Trimethylbenzene	ND ug/m3	0.36	1.8	03/06/14 22:39 526-73-8	
1,2,4-Trimethylbenzene	ND ug/m3	1.8	1.8	03/06/14 22:39 95-63-6	
1,3,5-Trimethylbenzene	ND ug/m3	1.8	1.8	03/06/14 22:39 108-67-8	
Vinyl chloride	ND ug/m3	0.47	1.8	03/06/14 22:39 75-01-4	
m&p-Xylene	ND ug/m3	3.2	1.8	03/06/14 22:39 179601-23-1	
o-Xylene	ND ug/m3		1.8	03/06/14 22:39 95-47-6	

03/07/14 19:17 179601-23-1

03/07/14 19:17 95-47-6

ANALYTICAL RESULTS

Project:

m&p-Xylene

Date: 04/17/2014 12:19 PM

o-Xylene

1121C06221 REV

Pace Project No.:

10258805 Sample: IA-141-C-16 Lab ID: 10258805016 Collected: 02/24/14 18:14 Received: 02/26/14 08:12 Matrix: Air **Parameters** Results Units Report Limit DF Prepared Analyzed CAS No. Qual TO15 MSV AIR Analytical Method: TO-15 Renzene 0.92 ug/m3 0.57 1.74 03/07/14 19:17 71-43-2 ND ug/m3 Carbon tetrachloride 1.1 1.74 03/07/14 19:17 56-23-5 Chlorodifluoromethane 7.1 ug/m3 03/07/14 19:17 75-45-6 0.35 1.74 ND ug/m3 Chloroform 1.7 1.74 03/07/14 19:17 67-66-3 Dichlorodifluoromethane 3.0 ug/m3 1.8 1.74 03/07/14 19:17 75-71-8 ND ug/m3 1,1-Dichloroethane 1.4 1.74 03/07/14 19:17 75-34-3 1,2-Dichloroethane ND ug/m3 0.71 1.74 03/07/14 19:17 107-06-2 1,1-Dichloroethene ND ug/m3 1.4 1.74 03/07/14 19:17 75-35-4 cis-1.2-Dichloroethene ND ug/m3 1.4 1.74 03/07/14 19:17 156-59-2 trans-1,2-Dichloroethene ND ug/m3 1.4 1.74 03/07/14 19:17 156-60-5 ND ug/m3 Ethylbenzene 1.5 1.74 03/07/14 19:17 100-41-4 03/07/14 19:17 75-09-2 Methylene Chloride 7.8 ug/m3 6 1 174 ND ug/m3 Methyl-tert-butyl ether 1.74 03/07/14 19:17 1634-04-4 1.3 ND ug/m3 03/07/14 19:17 91-20-3 Naphthalene 4.6 1.74 Tetrachloroethene ND ug/m3 1.2 1.74 03/07/14 19:17 127-18-4 2.1 ug/m3 03/07/14 19:17 108-88-3 Toluene 1.3 1.74 1,2,4-Trichlorobenzene ND ug/m3 6.6 1.74 03/07/14 19:17 120-82-1 ND ug/m3 1,1,1-Trichloroethane 1.9 1.74 03/07/14 19:17 71-55-6 1,1,2-Trichloroethane ND ug/m3 0.96 1.74 03/07/14 19:17 79-00-5 Trichloroethene ND ug/m3 0.96 1.74 03/07/14 19:17 79-01-6 1,2,3-Trimethylbenzene ND ug/m3 0.35 1.74 03/07/14 19:17 526-73-8 ND ug/m3 1,2,4-Trimethylbenzene 1.7 1.74 03/07/14 19:17 95-63-6 1,3,5-Trimethylbenzene ND ug/m3 1.74 03/07/14 19:17 108-67-8 17 Vinyl chloride ND ug/m3 0.45 1.74 03/07/14 19:17 75-01-4

3.1

1.5

1.74

1.74

1.6J ug/m3

ND ug/m3

Project:

1121C06221 REV

10258805

Pace Project No.:

Date: 04/17/2014 12:19 PM

Sample: IA-142-C-16	Lab ID: 10258805008	Collected: 02/24/14 1	16:57	Received: 02/26/14 08:12 Matrix: Air	
Parameters	Results Units	Report Limit [OF	Prepared Analyzed CAS No.	Qua
TO15 MSV AIR	Analytical Method: TO-15				
Benzene	0.67 ug/m3	0.61 1	.87	03/06/14 19:41 71-43-2	
Carbon tetrachloride	ND ug/m3	1.2 1	.87	03/06/14 19:41 56-23-5	
Chlorodifluoromethane	1.9 ug/m3	0.37 1	.87	03/06/14 19:41 75-45-6	
Chloroform	ND ug/m3	1.9 1	.87	03/06/14 19:41 67-66-3	
Dichlorodifluoromethane	2.0 ug/m3	1.9 1	.87	03/06/14 19:41 75-71-8	
1,1-Dichloroethane	ND ug/m3	1.5 1	.87	03/06/14 19:41 75-34-3	
1,2-Dichloroethane	ND ug/m3	0.77 1	.87	03/06/14 19:41 107-06-2	
1,1-Dichloroethene	ND ug/m3	1.5 1	.87	03/06/14 19:41 75-35-4	
cis-1,2-Dichloroethene	ND ug/m3	1.5 1	.87	03/06/14 19:41 156-59-2	
trans-1,2-Dichloroethene	ND ug/m3	1.5 1	.87	03/06/14 19:41 156-60-5	
Ethylbenzene	ND ug/m3	1.6 1	.87	03/06/14 19:41 100-41-4	
Methylene Chloride	3.8J ug/m3	6.6 1	.87	03/06/14 19:41 75-09-2	
Methyl-tert-butyl ether	ND ug/m3	1.4 1	.87	03/06/14 19:41 1634-04-4	
Naphthalene	3.4J ug/m3	5.0 1	.87	03/06/14 19:41 91-20-3	
Tetrachloroethene	ND ug/m3	1.3 1	.87	03/06/14 19:41 127-18-4	
Toluene	ND ug/m3	1.4 1	.87	03/06/14 19:41 108-88-3	
1,2,4-Trichlorobenzene	ND ug/m3	7.0 1	.87	03/06/14 19:41 120-82-1	
1,1,1-Trichloroethane	ND ug/m3	2.1 1	.87	03/06/14 19:41 71-55-6	
1,1,2-Trichloroethane	ND ug/m3	1.0 1	.87	03/06/14 19:41 79-00-5	
Trichloroethene	ND ug/m3	1.0 1	.87	03/06/14 19:41 79-01-6	
1,2,3-Trimethylbenzene	ND ug/m3	0.37 1	.87	03/06/14 19:41 526-73-8	
1,2,4-Trimethylbenzene	ND ug/m3	1.9 1	.87	03/06/14 19:41 95-63-6	
1,3,5-Trimethylbenzene	ND ug/m3	1.9 1	.87	03/06/14 19:41 108-67-8	
Vinyl chloride	ND ug/m3	0.49 1	.87	03/06/14 19:41 75-01-4	
m&p-Xylene	1.7J ug/m3	3.3 1	.87	03/06/14 19:41 179601-23-	1
o-Xylene	ND ug/m3	1.6 1	.87	03/06/14 19:41 95-47-6	

03/07/14 04:01 179601-23-1

03/07/14 04:01 95-47-6

ANALYTICAL RESULTS

Project:

m&p-Xylene

Date: 04/17/2014 12:19 PM

o-Xylene

1121C06221 REV

Sample: IA-143-C-16	Lab ID: 10258805002	Collected: 02/24/	4 16:44	Received: 02/26/14 08:12	Matrix: Air	
Parameters	Results Units	Report Limit	DF	Prepared Analyzed	CAS No.	Qua
TO15 MSV AIR	Analytical Method: TO-1	5				
Benzene	0.81 ug/m3	0.58	1.8	03/07/14 04:0	1 71-43-2	
Carbon tetrachloride	ND ug/m3	1.2	1.8	03/07/14 04:0)1 56-23-5	
Chlorodifluoromethane	2.5 ug/m3	0.36	1.8	03/07/14 04:0	1 75-45-6	
Chloroform	ND ug/m3	1.8	1.8	03/07/14 04:0)1 67-66-3	
Dichlorodifluoromethane	2.4 ug/m3	1.8	1.8	03/07/14 04:0)1 75-71-8	
1,1-Dichloroethane	ND ug/m3	1.5	1.8	03/07/14 04:0	1 75-34-3	
1,2-Dichloroethane	ND ug/m3	0.74	1.8	03/07/14 04:0	1 107-06-2	
1,1-Dichloroethene	ND ug/m3	1.5	1.8	03/07/14 04:0	1 75-35-4	
cis-1,2-Dichloroethene	ND ug/m3	1.5	1.8	03/07/14 04:0	156-59-2	
trans-1,2-Dichloroethene	ND ug/m3	1.5	1.8	03/07/14 04:0	156-60-5	
Ethylbenzene	ND ug/m3	1.6	1.8	03/07/14 04:0)1 100-41 -4	
Methylene Chloride	6.1J ug/m3	6.4	1.8	03/07/14 04:0)1 75-09-2	
Methyl-tert-butyl ether	ND ug/m3	1.3	1.8	03/07/14 04:0	1634-04-4	
Naphthalene	4.4J ug/m3	4.8	1.8	03/07/14 04:0	01 91-20-3	
Tetrachloroethene	ND ug/m3	1.2	1.8	03/07/14 04:0)1 127-18 -4	
Toluene	ND ug/m3	1.4	1.8	03/07/14 04:0	108-88-3	
1,2,4-Trichlorobenzene	ND ug/m3	6.8	1.8	03/07/14 04:0)1 120-82-1	
1,1,1-Trichloroethane	ND ug/m3	2.0	1.8	03/07/14 04:0)1 71-55-6	
1,1,2-Trichloroethane	ND ug/m3	0.99	1.8	03/07/14 04:0	1 79-00-5	
Trichloroethene	ND ug/m3	0.99	1.8	03/07/14 04:0		
1,2,3-Trimethylbenzene	ND ug/m3	0.36	1.8	03/07/14 04:0	1 526-73-8	
1,2,4-Trimethylbenzene	1.2J ug/m3	1.8	1.8	03/07/14 04:0	1 95-63-6	
1,3,5-Trimethylbenzene	ND ug/m3	1.8	1.8	03/07/14 04:0	108-67-8	
Vinyl chloride	ND ug/m3	0.47	1.8	03/07/14 04:0	1 75-01-4	

3.2 1.8

1.6 1.8

ND ug/m3

ND ug/m3

Project:

o-Xylene

Date: 04/17/2014 12:19 PM

.1121C06221 REV

Sample: IA-144-C-16	Lab ID: 10258805	043 Collected: 02/24/	14 19:37	Received: 02/26/14 08:13	2 Matrix: Air
Parameters	Results U	nits Report Limit	DF	Prepared Analyze	ed CAS No. Qu
TO15 MSV AIR	Analytical Method: T	O-15			
Benzene	0.71 ug/m3	0.61	1.87	03/06/14 2	3:38 71-43-2
Carbon tetrachloride	ND ug/m3	1.2	1.87	03/06/14 2	3:38 56-23-5
Chlorodifluoromethane	18.0 ug/m3	0.37	1.87	03/06/14 2	3:38 75-45-6
Chloroform	ND ug/m3	1.9	1.87	03/06/14 2	3:38 67-66-3
Dichlorodifluoromethane	2.0 ug/m3	1.9	1.87	03/06/14 2	3:38 75-71-8
1,1-Dichloroethane	ND ug/m3	1.5	1.87	03/06/14 2	3:38 75-34-3
1,2-Dichloroethane	ND ug/m3	0.77	1.87	03/06/14 2	3:38 107-06-2
1,1-Dichloroethene	ND ug/m3	1.5	1.87	03/06/14 2	3:38 75-35-4
cis-1,2-Dichloroethene	ND ug/m3	1.5	1.87	03/06/14 2	3:38 156-59-2
trans-1,2-Dichloroethene	ND ug/m3	1.5	1.87	03/06/14 2	3:38 156-60-5
Ethylbenzene	ND ug/m3	1.6	1.87	03/06/14 2	3:38 100-41-4
Methylene Chloride	6.6 ug/m3	6.6	1.87	03/06/14 2	3:38 75-09-2
Methyl-tert-butyl ether	ND ug/m3	1.4	1.87	03/06/14 2	3:38 1634-04-4
Naphthalene	3.6J ug/m3	5.0	1.87	03/06/14 2	3:38 91-20-3
Tetrachloroethene	ND ug/m3	1.3	1.87	03/06/14 2	3:38 127-18-4
Toluene	3.5 ug/m3	1.4	1.87	03/06/14 2	3:38 108-88-3
1,2,4-Trichlorobenzene	ND ug/m3	7.0	1.87	03/06/14 2	3:38 120-82-1
1,1,1-Trichloroethane	ND ug/m3	2.1	1.87	03/06/14 2	3:38 71-55-6
1,1,2-Trichloroethane	ND ug/m3	1.0	1.87	03/06/14 2	3:38 79-00-5
Trichloroethene	ND ug/m3	1.0	1.87	03/06/14 2	3:38 79-01-6
1,2,3-Trimethylbenzene	ND ug/m3	0.37	1.87	03/06/14 2	3:38 526-73-8
1,2,4-Trimethylbenzene	ND ug/m3	1.9	1.87	03/06/14 2	3:38 95-63-6
1,3,5-Trimethylbenzene	ND ug/m3	1.9	1.87	03/06/14 2	3:38 108-67-8
Vinyl chloride	ND ug/m3	0.49	1.87	03/06/14 2	3:38 75-01-4
m&p-Xylene	2.3J ug/m3	3.3	1.87	03/06/14 2	3:38 179601-23-1

1.6 1.87

03/06/14 23:38 95-47-6

0.88J ug/m3

Project:

1121C06221 REV

Pace Project No.:

Date: 04/17/2014 12:19 PM

10258805

Sample: IA-145-C-16	Lab ID: 10258805039	Collected: 02/24/1	4 19:20	Received: 02/26	/14 08:12	Matrix: Air	
Parameters	Results Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
TO15 MSV AIR	Analytical Method: TO-15						
Benzene	3.6 ug/m3	0.61	1.87	03	/07/14 23:1	5 71-43-2	
Carbon tetrachloride	1.4 ug/m3	1.2	1.87	03	/07/14 23:1	5 56-23-5	
Chlorodifluoromethane	37.2 ug/m3	0.37	1.87	03	/07/14 23:1	5 75-45-6	
Chloroform	ND ug/m3	1.9	1.87	03	/07/14 23:1	5 67-66-3	
Dichlorodifluoromethane	4.8 ug/m3	1.9	1.87	03	/07/14 23:1	5 75-71-8	
1,1-Dichloroethane	ND ug/m3	1.5	1.87	03	/07/14 23:1	5 75-34-3	
1,2-Dichloroethane	ND ug/m3	0.77	1.87	03	/07/14 23:1	5 107-06-2	
1,1-Dichloroethene	ND ug/m3	1.5	1.87	03	/07/14 23:1	5 75-35-4	
cis-1,2-Dichloroethene	ND ug/m3	1.5	1.87	03	/07/14 23:1	5 156-59-2	
trans-1,2-Dichloroethene	ND ug/m3	1.5	1.87	03	/07/14 23:1	5 156-60-5	
Ethylbenzene	1.7 ug/m3	1.6	1.87	03	/07/14 23:1	5 100-41-4	
Methylene Chloride	1140 ug/m3	222	62.83	03	/09/14 17:2	6 75-09-2	
Methyl-tert-butyl ether	ND ug/m3	1.4	1.87	03	/07/14 23:1	5 1634-04-4	
Naphthalene	4.1J ug/m3	5.0	1.87	03	/07/14 23:1	5 91-20-3	
Tetrachloroethene	ND ug/m3	1.3	1.87	03	/07/14 23:1	5 127-18-4	
Toluene	16.2 ug/m3	1.4	1.87	03	/07/14 23:1	5 108-88-3	
1,2,4-Trichlorobenzene	ND ug/m3	7.0	1.87	03	/07/14 23:1	5 120-82-1	
1,1,1-Trichloroethane	ND ug/m3	2.1	1.87	03	/07/14 23:1	5 71-55-6	
1,1,2-Trichloroethane	ND ug/m3	1.0	1.87	03	/07/14 23:1	5 79-00-5	
Trichloroethene	ND ug/m3	1.0	1.87	03	/07/14 23:1	5 79-01-6	
1,2,3-Trimethylbenzene	ND ug/m3	0.37	1.87	03	/07/14 23:1	5 526-73-8	
1,2,4-Trimethylbenzene	3.4 ug/m3	1.9	1.87	03	/07/14 23:1	5 95-63-6	
1,3,5-Trimethylbenzene	1.0J ug/m3	1.9	1.87	03	/07/14 23:1	5 108-67-8	
Vinyl chloride	ND ug/m3	0.49	1.87	03	/07/14 23:1	5 75-01-4	
m&p-Xylene	6.1 ug/m3	3.3	1.87	03	/07/14 23:1	5 179601-23-1	
o-Xylene	2.3 ug/m3	1.6	1.87	03	/07/14 23:1	5 95-47-6	

Project:

1121C06221 REV

Pace Project No.: 10258805

Date: 04/17/2014 12:19 PM

Sample: IA-146-C-16	Lab ID: 10258805040	Collected: 02/24/14 19:1	18 Received: 02/26/14 08:12 Matrix: Air
Parameters	Results Units	Report Limit DF	Prepared Analyzed CAS No. Qua
TO15 MSV AIR	Analytical Method: TO-15		
Benzene	0.76 ug/m3	0.58 1.8	03/07/14 15:58 71-43-2
Carbon tetrachloride	ND ug/m3	1.2 1.8	03/07/14 15:58 56-23-5
Chlorodifluoromethane	54.2 ug/m3	0.36 1.8	03/07/14 15:58 75-45-6
Chloroform	ND ug/m3	1.8 1.8	03/07/14 15:58 67-66-3
Dichlorodifluoromethane	2.3 ug/m3	1.8 1.8	03/07/14 15:58 75-71-8
1,1-Dichloroethane	ND ug/m3	1.5 1.8	03/07/14 15:58 75-34-3
1,2-Dichloroethane	ND ug/m3	0.74 1.8	03/07/14 15:58 107-06-2
1,1-Dichloroethene	ND ug/m3	1.5 1.8	03/07/14 15:58 75-35-4
cis-1,2-Dichloroethene	ND ug/m3	1.5 1.8	03/07/14 15:58 156-59-2
trans-1,2-Dichloroethene	ND ug/m3	1.5 1.8	03/07/14 15:58 156-60-5
Ethylbenzene	ND ug/m3	1.6 1.8	03/07/14 15:58 100-41-4
Methylene Chloride	6.7 ug/m3	6.4 1.8	03/07/14 15:58 75-09-2
Methyl-tert-butyl ether	ND ug/m3	1.3 1.8	03/07/14 15:58 1634-04-4
Naphthalene	3.7J ug/m3	4.8 1.8	03/07/14 15:58 91-20-3
Tetrachloroethene	ND ug/m3	1.2 1.8	03/07/14 15:58 127-18-4
Toluene	2.5 ug/m3	1.4 1.8	03/07/14 15:58 108-88-3
1,2,4-Trichlorobenzene	ND ug/m3	6.8 1.8	03/07/14 15:58 120-82-1
1,1,1-Trichloroethane	ND ug/m3	2.0 1.8	03/07/14 15:58 71-55-6
1,1,2-Trichloroethane	ND ug/m3	0.99 1.8	03/07/14 15:58 79-00-5
Trichloroethene	ND ug/m3	0.99 1.8	03/07/14 15:58 79-01-6
1,2,3-Trimethylbenzene	ND ug/m3	0.36 1.8	03/07/14 15:58 526-73-8
1,2,4-Trimethylbenzene	ND ug/m3	1.8 1.8	03/07/14 15:58 95-63-6
1,3,5-Trimethylbenzene	ND ug/m3	1.8 1.8	03/07/14 15:58 108-67-8
Vinyl chloride	ND ug/m3	0.47 1.8	03/07/14 15:58 75-01-4
m&p-Xylene	2.3J ug/m3	3.2 1.8	03/07/14 15:58 179601-23-1
o-Xylene	0.88J ug/m3	1.6 1.8	03/07/14 15:58 95-47-6

Project:

1121C06221 REV

Pace Project No.:

Date: 04/17/2014 12:19 PM

10258805

Sample: IA-147-C-16	Lab ID: 10258805041	Collected: 02/24/1	4 19:25	Received: 02/26/14 08:12	Matrix: Air	
Parameters	Results Units	Report Limit	DF	Prepared Analyzed	CAS No.	Qua
TO15 MSV AIR	Analytical Method: TO-15					
Benzene	0.80 ug/m3	0.61	1.87	03/07/14 03:03	71-43-2	
Carbon tetrachloride	ND ug/m3	1.2	1.87	03/07/14 03:03	56-23-5	
Chlorodifluoromethane	18.2 ug/m3	0.37	1.87	03/07/14 03:03	75-45-6	
Chloroform	ND ug/m3	1.9	1.87	03/07/14 03:03	67-66-3	
Dichlorodifluoromethane	2.1 ug/m3	1.9	1.87	03/07/14 03:03	75-71-8	
1,1-Dichloroethane	ND ug/m3	1.5	1.87	03/07/14 03:03	75-34-3	
1,2-Dichloroethane	ND ug/m3	0.77	1.87	03/07/14 03:03	107-06-2	
1,1-Dichloroethene	ND ug/m3	1.5	1.87	03/07/14 03:03	75-35-4	
cis-1,2-Dichloroethene	ND ug/m3	1.5	1.87	03/07/14 03:03	156-59-2	
trans-1,2-Dichloroethene	ND ug/m3	1.5	1.87	03/07/14 03:03	156-60-5	
Ethylbenzene	ND ug/m3	1.6	1.87	03/07/14 03:03	100-41-4	
Methylene Chloride	19.1 ug/m3	6.6	1.87	03/07/14 03:03	75-09-2	
Methyl-tert-butyl ether	ND ug/m3	1.4	1.87	03/07/14 03:03	1634-04-4	
Naphthalene	4.9J ug/m3	5.0	1.87	03/07/14 03:03	91-20-3	
Tetrachloroethene	ND ug/m3	1.3	1.87	03/07/14 03:03	127-18-4	
Toluene	5.4 ug/m3	1.4	1.87	03/07/14 03:03	108-88-3	
1,2,4-Trichlorobenzene	ND ug/m3	7.0	1.87	03/07/14 03:03	120-82-1	
1,1,1-Trichloroethane	ND ug/m3	2.1	1.87	03/07/14 03:03	71-55-6	
1,1,2-Trichloroethane	ND ug/m3	1.0	1.87	03/07/14 03:03	79-00-5	
Trichloroethene	ND ug/m3	1.0	1.87	03/07/14 03:03	79-01-6	
1,2,3-Trimethylbenzene	ND ug/m3	0.37	1.87	03/07/14 03:03	526-73-8	
1,2,4-Trimethylbenzene	ND ug/m3	1.9	1.87	03/07/14 03:03	95-63-6	
1,3,5-Trimethylbenzene	ND ug/m3	1.9	1.87	03/07/14 03:03	108-67-8	
Vinyl chloride	ND ug/m3	0.49	1.87	03/07/14 03:03	75-01-4	
m&p-Xylene	2.7J ug/m3	3.3	1.87	03/07/14 03:03	179601-23-1	
o-Xylene	1.1J ug/m3	1.6	1.87	03/07/14 03:03	95-47-6	

Project:

1121C06221 REV

10258805

Pace Project No.:

Date: 04/17/2014 12:19 PM

Sample: IA-148-C-16	Lab ID: 10258805042	Collected: 02/24/14 1	9:15	Received: 02/26/14 08:12 N	latrix: Air
Parameters	Results Units	Report Limit D)F	Prepared Analyzed	CAS No. Qu
TO15 MSV AIR	Analytical Method: TO-15				
Benzene	0.61 ug/m3	0.61 1.	87	03/07/14 21:03	71-43-2
Carbon tetrachloride	ND ug/m3	1.2 1.	87	03/07/14 21:03	56-23-5
Chlorodifluoromethane	24.4 ug/m3	6.6 1.	87	03/07/14 21:03	75-45-6
Chloroform	ND ug/m3	1.9 1.	87	03/07/14 21:03	67-66-3
Dichlorodifluoromethane	2.7 ug/m3	1.9 1.	87	03/07/14 21:03	75-71-8
1,1-Dichloroethane	ND ug/m3	1.5 1.	87	03/07/14 21:03	75-34-3
1,2-Dichloroethane	ND ug/m3	0.77 1.	87	03/07/14 21:03	107-06-2
1,1-Dichloroethene	ND ug/m3	1.5 1.	87	03/07/14 21:03	75-35-4
cis-1,2-Dichloroethene	ND ug/m3	1.5 1.	87	03/07/14 21:03	156-59-2
rans-1,2-Dichloroethene	ND ug/m3	1.5 1.	87	03/07/14 21:03	156-60-5
Ethylbenzene	ND ug/m3	1.6 1.	87	03/07/14 21:03	100-41-4
Methylene Chloride	11.0 ug/m3	6.6 1.	87	03/07/14 21:03	75-09-2
Methyl-tert-butyl ether	ND ug/m3	1.4 1.	87	03/07/14 21:03	1634-04-4
Naphthalene	1.2J ug/m3	2.0 1.	87	03/07/14 21:03	91-20-3
Tetrachloroethene	ND ug/m3	1.3 1.	87	03/07/14 21:03	127-18-4
Toluene	2.9 ug/m3	1.4 1.	87	03/07/14 21:03	108-88-3
1,2,4-Trichlorobenzene	ND ug/m3	2.8 1.	87	03/07/14 21:03	120-82-1
1,1,1-Trichloroethane	ND ug/m3	2.1 1.	87	03/07/14 21:03	71-55-6
1,1,2-Trichloroethane	ND ug/m3	1.0 1.	87	03/07/14 21:03	79-00-5
Trichloroethene	ND ug/m3	1.0 1.	87	03/07/14 21:03	79-01-6
1,2,3-Trimethylbenzene	ND ug/m3	0.37 1.	87	03/07/14 21:03	526-73-8
1,2,4-Trimethylbenzene	ND ug/m3	1.9 1.	87	03/07/14 21:03	95-63-6
1,3,5-Trimethylbenzene	ND ug/m3	1.9 1.	87	03/07/14 21:03	108-67-8
√inyl chloride	ND ug/m3	0.49 1.	87	03/07/14 21:03	75-01-4
m&p-Xylene	2.3J ug/m3	3.3 1.	87	03/07/14 21:03	179601-23-1
o-Xylene	0.93J ug/m3	1.6 1.	87	03/07/14 21:03	

Project:

1121C06221 REV

Pace Project No.:

Date: 04/17/2014 12:19 PM

10258805

Sample: IA-DUP1-C-16	Lab ID: 10258805046	Collected: 02/24/14	00:00	Received: 02/26/14 08:12 Matrix: Air	
Parameters	Results Units	Report Limit I	DF	Prepared Analyzed CAS No.	Qual
TO15 MSV AIR	Analytical Method: TO-15				
Benzene	0.83 ug/m3	0.55 1	.68	03/06/14 22:10 71-43-2	
Carbon tetrachloride	ND ug/m3	1.1 1	.68	03/06/14 22:10 56-23-5	
Chlorodifluoromethane	3.9 ug/m3	0.34 1	.68	03/06/14 22:10 75-45-6	
Chloroform	ND ug/m3	1.7 1	.68	03/06/14 22:10 67-66-3	
Dichlorodifluoromethane	2.3 ug/m3	1.7 1	.68	03/06/14 22:10 75-71-8	
1,1-Dichloroethane	ND ug/m3	1.4 1	.68	03/06/14 22:10 75-34-3	
1,2-Dichloroethane	ND ug/m3	0.69 1	.68	03/06/14 22:10 107-06-2	
1,1-Dichloroethene	ND ug/m3	1.4 1	.68	03/06/14 22:10 75-35-4	
cis-1,2-Dichloroethene	ND ug/m3	1.4 1	.68	03/06/14 22:10 156-59-2	
trans-1,2-Dichloroethene	ND ug/m3	1.4 1	.68	03/06/14 22:10 156-60-5	
Ethylbenzene	ND ug/m3	1.5 1	.68	03/06/14 22:10 100-41-4	
Methylene Chloride	1.9J ug/m3	5.9 1	.68	03/06/14 22:10 75-09-2	
Methyl-tert-butyl ether	ND ug/m3	1.2 1	.68	03/06/14 22:10 1634-04-4	
Naphthalene	3.5J ug/m3	4.5 1	.68	03/06/14 22:10 91-20-3	
Tetrachloroethene	ND ug/m3	1.2 1	.68	03/06/14 22:10 127-18-4	
Toluene	2.4 ug/m3	1.3 1	.68	03/06/14 22:10 108-88-3	
1,2,4-Trichlorobenzene	ND ug/m3	6.3 1	.68	03/06/14 22:10 120-82-1	
1,1,1-Trichloroethane	ND ug/m3	1.9 1	.68	03/06/14 22:10 71-55-6	
1,1,2-Trichloroethane	ND ug/m3	0.92 1	.68	03/06/14 22:10 79-00-5	
Trichloroethene	1.4 ug/m3	0.92 1	.68	03/06/14 22:10 79-01-6	
1,2,3-Trimethylbenzene	ND ug/m3	0.34 1	.68	03/06/14 22:10 526-73-8	
1,2,4-Trimethylbenzene	ND ug/m3	1.7 1	.68	03/06/14 22:10 _95-63-6	
1,3,5-Trimethylbenzene	ND ug/m3	1.7 1	.68	03/06/14 22:10 108-67-8	
Vinyl chloride	ND ug/m3	0.44 1	.68	03/06/14 22:10 75-01-4	
m&p-Xylene	1.9J ug/m3	3.0 1	.68	03/06/14 22:10 179601-23-1	
o-Xylene	ND ug/m3	1.5 1	.68	03/06/14 22:10 95-47-6	

Project:

1121C06221 REV

Pace Project No.: 10258805

Date: 04/17/2014 12:19 PM

Sample: IA-DUP2-C-16	Lab ID: 10258805047	Collected: 02/24/14 0	0:00 Re	ceived: 02/26/14 08:12	Matrix: Air	
Parameters	Results Units	Report Limit D)F P	repared Analyzed	CAS No.	Qual
TO15 MSV AIR	Analytical Method: TO-15					
Benzene	0.89 ug/m3	0.55 1.	68	03/07/14 05:3	30 71-43-2	
Carbon tetrachloride	ND ug/m3	1.1 1.	68	03/07/14 05:3	30 56-23-5	
Chlorodifluoromethane	3.1 ug/m3	0.34 1.	68	03/07/14 05:3	30 75-45-6	
Chloroform	ND ug/m3	1.7 1.	68	03/07/14 05:3	30 67-66-3	
Dichlorodifluoromethane	2.1 ug/m3	1.7 1.	68	03/07/14 05:3	30 75-71-8	
1,1-Dichloroethane	ND ug/m3	1.4 1.	68	03/07/14 05:3	30 75-34-3	
1,2-Dichloroethane	ND ug/m3	0.69 1.	68	03/07/14 05:3	30 107-06-2	
1,1-Dichloroethene	ND ug/m3	1.4 1.	68	03/07/14 05:3	30 75-35-4	
cis-1,2-Dichloroethene	ND ug/m3	1.4 1.	68	03/07/14 05:3	30 156-59-2	
trans-1,2-Dichloroethene	ND ug/m3	1.4 1.	68	03/07/14 05:3	30 156-60-5	
Ethylbenzene	ND ug/m3	1.5 1.	68	03/07/14 05:3	30 100-41-4	
Methylene Chloride	5.1J ug/m3	5.9 1.	68	03/07/14 05:3	30 75-09-2	
Methyl-tert-butyl ether	ND ug/m3	1.2 1.	68	03/07/14 05:3	30 1634-04-4	
Naphthalene	3.2J ug/m3	4.5 1.	68	03/07/14 05:3	30 91-20-3	
Tetrachloroethene	ND ug/m3	1.2 1.	68	03/07/14 05:3	30 127-18-4	
Toluene	ND ug/m3	1.3 1.	68	03/07/14 05:3	30 108-88-3	
1,2,4-Trichlorobenzene	ND ug/m3	6.3 1.	68	03/07/14 05:3	30 120-82-1	
1,1,1-Trichloroethane	ND ug/m3	1.9 1.	68	03/07/14 05:3	30 71-55-6	
1,1,2-Trichloroethane	ND ug/m3	0.92 1.	68	03/07/14 05:3	30 79-00-5	
Trichloroethene	ND ug/m3	0.92 1.	68	03/07/14 05:3	30 79-01-6	
1,2,3-Trimethylbenzene	ND ug/m3	0.34 1.	68	03/07/14 05:3	30 526-73-8	
1,2,4-Trimethylbenzene	0.94J ug/m3	1.7 1.	68	03/07/14 05:3	30 95-63-6	
1,3,5-Trimethylbenzene	ND ug/m3	1.7 1.	68	03/07/14 05:3	30 108-67-8	
Vinyl chloride	ND ug/m3	0.44 1.	68	03/07/14 05:3	30 75-01-4	
m&p-Xylene	3.4 ug/m3	3.0 1.	68	03/07/14 05:3	30 179601-23-1	
o-Xylene	1.2J ug/m3	1.5 1.	68	03/07/14 05:3		

Project:

1121C06221 REV

Pace Project No.:

Date: 04/17/2014 12:19 PM

10258805

Sample: SV-033-B-16	Lab ID: 10258805023	Collected: 02/24/1	4 12:18	Received: 02/26/14 08:12	Matrix: Air	
Parameters	Results Units	Report Limit	DF	Prepared Analyzed	CAS No.	Qua
TO15 MSV AIR	Analytical Method: TO-15					
Benzene	1.2 ug/m3	0.55	1.68	03/07/14 23:	44 71-43-2	
Carbon tetrachloride	ND ug/m3	1.1	1.68	03/07/14 23:	44 56-23-5	
Chlorodifluoromethane	32.6 ug/m3	0.34	1.68	03/07/14 23:	44 75-45-6	
Chloroform	ND ug/m3	1.7	1.68	03/07/14 23:	44 67-66-3	
Dichlorodifluoromethane	3.4 ug/m3	1.7	1.68	03/07/14 23:	44 75-71-8	
1,1-Dichloroethane	ND ug/m3	1.4	1.68	03/07/14 23:	44 75-34-3	
1,2-Dichloroethane	ND ug/m3	0.69	1.68	03/07/14 23:	44 107-06-2	
1,1-Dichloroethene	ND ug/m3	1.4	1.68	03/07/14 23:	44 75-35-4	
cis-1,2-Dichloroethene	ND ug/m3	1.4	1.68	03/07/14 23:	44 156-59-2	
trans-1,2-Dichloroethene	ND ug/m3	1.4	1.68	03/07/14 23:	44 156-60-5	
Ethylbenzene	3.1 ug/m3	1.5	1.68	03/07/14 23:	44 100 -41-4	
Methylene Chloride	10.5 ug/m3	5.9	1.68	03/07/14 23:	44 75-09-2	
Methyl-tert-butyl ether	ND ug/m3	1.2	1.68	03/07/14 23:	44 1634-04-4	
Naphthalene	10.4 ug/m3	4.5	1.68	03/07/14 23:	44 91-20-3	
Tetrachloroethene	ND ug/m3	1.2	1.68	03/07/14 23:	44 127-18- 4	
Toluene	36.1 ug/m3	1.3	1.68	03/07/14 23:	44 108-88-3	
1,2,4-Trichlorobenzene	ND ug/m3	6.3	1.68	03/07/14 23:	44 120-82-1	
1,1,1-Trichloroethane	88.6 ug/m3	1.9	1.68	03/07/14 23:	44 71-55-6	
1,1,2-Trichloroethane	ND ug/m3	0.92	1.68	03/07/14 23:	44 79-00-5	
Trichloroethene	2.8 ug/m3	0.92	1.68	03/07/14 23:	44 79-01-6	
1,2,3-Trimethylbenzene	5.2 ug/m3	0.34	1.68	03/07/14 23:	44 526-73-8	
1,2,4-Trimethylbenzene	11.1 ug/m3	1.7	1.68	03/07/14 23:	44 95-63-6	
1,3,5-Trimethylbenzene	ND ug/m3	1.7	1.68	03/07/14 23:	44 108-67-8	
Vinyl chloride	ND ug/m3	0.44	1.68	03/07/14 23:	44 75-01-4	
m&p-Xylene	13.8 ug/m3	3.0	1.68	03/07/14 23:	44 179601-23-1	
o-Xylene	4.9 ug/m3	1.5	1.68	03/07/14 23:	44 95-47-6	

Project:

1121C06221 REV

Pace Project No.: 10258805

Date: 04/17/2014 12:19 PM

Sample: SV-060-C-16	Lab ID: 10258805013	Collected: 02/24/14	11:59	Received: 02/26/14 08:12	Matrix: Air	
Parameters	Results Units	Report Limit	DF	Prepared Analyze	d CAS No.	Qual
TO15 MSV AIR	Analytical Method: TO-15					
Benzene	0.85 ug/m3	0.55 1	.68	03/07/14 22	::55 71-43-2	
Carbon tetrachloride	ND ug/m3	1.1 1	.68	03/07/14 22	::55 56-23-5	
Chlorodifluoromethane	5.8J ug/m3	5.9 1	.68	03/07/14 22	:55 75-45-6	
Chloroform	3.1 ug/m3	1.7 1	.68	03/07/14 22	:55 67-66-3	
Dichlorodifluoromethane	2.8 ug/m3	1.7 1	.68	03/07/14 22	:55 75-71-8	
1,1-Dichloroethane	2.3 ug/m3	1.4 1	.68	03/07/14 22	:55 75-34-3	
1,2-Dichloroethane	ND ug/m3	0.69 1	.68	03/07/14 22	:55 107-06-2	
1,1-Dichloroethene	0.86J ug/m3	1.4 1	.68	03/07/14 22	:55 75-35-4	
cis-1,2-Dichloroethene	16.5 ug/m3	1.4 1	.68	03/07/14 22	:55 156-59-2	
trans-1,2-Dichloroethene	1.1J ug/m3	1.4 1	.68	03/07/14 22	:55 156-60-5	
Ethylbenzene	96.5 ug/m3	1.5 1	.68	03/07/14 22	:55 100-41-4	
Methylene Chloride	10.7 ug/m3	5.9 1	.68	03/07/14 22	:55 75-09-2	
Methyl-tert-butyl ether	ND ug/m3	1.2 1	.68	03/07/14 22	:55 1634-04-4	
Naphthalene	4.4 ug/m3	1.8 1	.68	03/07/14 22	:55 91-20-3	
Tetrachloroethene	2.2 ug/m3	1.2 1	.68	03/07/14 22	:55 127-18-4	
Toluene	13.1 ug/m3	1.3 1	.68	03/07/14 22	:55 108-88-3	
1,2,4-Trichlorobenzene	ND ug/m3	2.5 1	.68	03/07/14 22	:55 120-82-1	
1,1,1-Trichloroethane	ND ug/m3	1.9 1	.68	03/07/14 22	:55 71-55-6	
1,1,2-Trichloroethane	ND ug/m3	0.92 1	.68	03/07/14 22	:55 79-00-5	
Trichloroethene	291 ug/m3	0.92 1	.68	03/07/14 22	:55 79-01-6	
1,2,3-Trimethylbenzene	0.91 ug/m3	0.34 1	.68		:55 526-73-8	
1,2,4-Trimethylbenzene	3.2 ug/m3	1.7 1	.68		:55 95-63-6	
1,3,5-Trimethylbenzene	2.2 ug/m3	1.7 1	.68		:55 108-67-8	
Vinyl chloride	ND ug/m3	0.44 1	.68		:55 75-01-4	
m&p-Xylene	561 ug/m3	29.6 1	6.8		:32 179601-23-1	
o-Xylene	230 ug/m3		.68		:55 95-47-6	

Project:

1121C06221 REV

Pace Project No.: 10258805

Date: 04/17/2014 12:19 PM

Sample: SV-063-B-16	Lab ID: 10258805021	Collected: 02/24/1	4 12:14	Received: 02/26/14 08:12	Matrix: Air	
Parameters	Results Units	Report Limit	DF	Prepared Analyzed	CAS No.	Qual
TO15 MSV AIR	Analytical Method: TO-15	;				
Benzene	ND ug/m3	0.55	1.68	03/07/14 02	:33 71-43-2	
Carbon tetrachloride	16.3 ug/m3	1.1	1.68	03/07/14 02	:33 56-23-5	
Chlorodifluoromethane	1.7 ug/m3	0.34	1.68	03/07/14 02	:33 75-45-6	
Chloroform	ND ug/m3	1.7	1.68	03/07/14 02	:33 67-66-3	
Dichlorodifluoromethane	2.2 ug/m3	1.7	1.68	03/07/14 02	:33 75-71-8	
1,1-Dichloroethane	ND ug/m3	1.4	1.68	03/07/14 02	:33 75-34-3	
1,2-Dichloroethane	ND ug/m3	0.69	1.68	03/07/14 02	:33 107-06-2	
1,1-Dichloroethene	ND ug/m3	1.4	1.68	03/07/14 02	:33 75-35-4	
cis-1,2-Dichloroethene	ND ug/m3	1.4	1.68	03/07/14 02	:33 156-59-2	
rans-1,2-Dichloroethene	ND ug/m3	1.4	1.68	03/07/14 02	:33 156-60-5	
Ethylbenzene	ND ug/m3	1.5	1.68	03/07/14 02	:33 100-41-4	
Methylene Chloride	14.6 ug/m3	5.9	1.68	03/07/14 02	:33 75-09-2	
Methyl-tert-butyl ether	ND ug/m3	1.2	1.68	03/07/14 02	:33 1634-04-4	
Naphthalene	3.3J ug/m3	4.5	1.68	03/07/14 02	:33 91-20-3	
Tetrachloroethene	3.3 ug/m3	1.2	1.68	03/07/14 02	:33 127-18-4	
Toluene	2.4 ug/m3	1.3	1.68	03/07/14 02	:33 108-88-3	
1,2,4-Trichlorobenzene	ND ug/m3	6.3	1.68	03/07/14 02	:33 120-82-1	
1,1,1-Trichloroethane	ND ug/m3	1.9	1.68	03/07/14 02	:33 71-55-6	
1,1,2-Trichloroethane	ND ug/m3	0.92	1.68	03/07/14 02	:33 79-00-5	
Trichloroethene	1.6 ug/m3	0.92	1.68	03/07/14 02	:33 79-01-6	
1,2,3-Trimethylbenzene	ND ug/m3	0.34	1.68	03/07/14 02	:33 526-73-8	
1,2,4-Trimethylbenzene	1.4J ug/m3	1.7	1.68	03/07/14 02	:33 95-63-6	
1,3,5-Trimethylbenzene	ND ug/m3	1.7	1.68	03/07/14 02	:33 108-67-8	
Vinyl chloride	ND ug/m3	0.44	1.68	03/07/14 02	:33 75-01-4	
m&p-Xylene	1.8J ug/m3	3.0	1.68	03/07/14 02	:33 179601-23-1	
o-Xylene	ND ug/m3	1.5	1.68	03/07/14 02	:33 95-47-6	

Project:

1121C06221 REV

Pace Project No.:

Date: 04/17/2014 12:19 PM

ct No.: 10258805

Sample: SV-065-C-16	Lab ID: 10258805019	Collected: 02/24/14	12:10	Received: 02/26/14 08:12	Matrix: Air	
Parameters	Results Units	Report Limit I	DF	Prepared Analyze	d CAS No.	Qual
TO15 MSV AIR	Analytical Method: TO-15					
Benzene	ND ug/m3	0.55 1	.68	03/07/14 20):07 71-43-2	
Carbon tetrachloride	ND ug/m3	1.1 1	.68	03/07/14 20):07 56-23-5	
Chlorodifluoromethane	7.9 ug/m3	5.9 1	.68	03/07/14 20):07 75-45-6	
Chloroform	2.7 ug/m3	1.7 1	.68	03/07/14 20):07 67-66-3	
Dichlorodifluoromethane	7.3 ug/m3	1.7 1	.68	03/07/14 20):07 75-71-8	
1,1-Dichloroethane	ND ug/m3	1.4 1	.68	03/07/14 20):07 75-34-3	
1,2-Dichloroethane	ND ug/m3	0.69 1	.68	03/07/14 20	0:07 107-06-2	
1,1-Dichloroethene	ND ug/m3	1.4 1	.68	03/07/14 20):07 75-35-4	
cis-1,2-Dichloroethene	ND ug/m3	1.4 1	.68	03/07/14 20):07 156-59-2	
trans-1,2-Dichloroethene	ND ug/m3	1.4 1	.68	03/07/14 20):07 156-60-5	
Ethylbenzene	ND ug/m3	1.5 1	.68	03/07/14 20	0:07 100-41-4	
Methylene Chloride	16.9 ug/m3	5.9 1	1.68	03/07/14 20):07 75-09-2	
Methyl-tert-butyl ether	ND ug/m3	1.2 1	1.68	03/07/14 20):07 1634-04-4	
Naphthalene	6.9 ug/m3	1.8 1	1.68	03/07/14 20	0:07 91-20-3	
Tetrachloroethene	12.6 ug/m3	1.2 1	1.68	03/07/14 20):07 127-18-4	
Toluene	1.2J ug/m3	1.3 1	1.68	03/07/14 20	0:07 108-88-3	
1,2,4-Trichlorobenzene	ND ug/m3	2.5 1	1.68	03/07/14 20):07 120-82-1	
1,1,1-Trichloroethane	ND ug/m3	1.9 1	1.68	03/07/14 20):07 71-55-6	
1,1,2-Trichloroethane	ND ug/m3	0.92 1	1.68	03/07/14 20):07 79-00-5	
Trichloroethene	ND ug/m3	0.92 1	1.68	03/07/14 20):07 79-01-6	
1,2,3-Trimethylbenzene	0.95 ug/m3	0.34 1	1.68	03/07/14 20):07 526-73-8	
1,2,4-Trimethylbenzene	1.3J ug/m3	1.7 1	1.68	03/07/14 20	0:07 95-63-6	
1,3,5-Trimethylbenzene	ND ug/m3	1.7 1	1.68	03/07/14 20	0:07 108-67-8	
Vinyl chloride	ND ug/m3	0.44 1	1.68	03/07/14 20):07 75-01-4	
m&p-Xylene	1.1J ug/m3	3.0 1	1.68	03/07/14 20	0:07 179601-23-1	
o-Xylene	ND ug/m3	1.5 1	1.68	03/07/14 20):07 95-47-6	

Project:

1121C06221 REV

Pace Project No.:

Date: 04/17/2014 12:19 PM

10258805

Sample: SV-088-C-16	Lab ID: 10258805005	Collected: 02/24/14	11:42	Received: 02/26/14 08:12	2 Matrix: Air	
Parameters	Results Units	Report Limit	DF	Prepared Analyze	ed CAS No.	Qual
TO15 MSV AIR	Analytical Method: TO-15					
Benzene	1.2 ug/m3	0.55 1	1.68	03/08/14 0	3:46 71-43-2	
Carbon tetrachloride	ND ug/m3	1.1 1	1.68	03/08/14 0	3:46 56-23-5	
Chlorodifluoromethane	3.2 ug/m3	0.34	1.68	03/08/14 0	3:46 75-45-6	
Chloroform	ND ug/m3	1.7 1	1.68	03/08/14 0	3:46 67-66-3	
Dichlorodifluoromethane	2.6 ug/m3	1.7	1.68	03/08/14 0	3:46 75-71-8	
1,1-Dichloroethane	ND ug/m3	1.4 1	1.68	03/08/14 0	3:46 75-34-3	
1,2-Dichloroethane	ND ug/m3	0.69 1	1.68	03/08/14 0	3:46 107-06-2	
1,1-Dichloroethene	ND ug/m3	1.4 1	1.68	03/08/14 0	3:46 75-35-4	
cis-1,2-Dichloroethene	17.6 ug/m3	1.4 1	1.68	03/08/14 0	3:46 156-59-2	
trans-1,2-Dichloroethene	ND ug/m3	1.4 1	1.68	03/08/14 0	3:46 156-60-5	
Ethylbenzene	2.2 ug/m3	1.5 1	1.68	03/08/14 0	3:46 100-41-4	
Methylene Chloride	82.5 ug/m3	5.9	1.68	03/08/14 0	3:46 75-09-2	
Methyl-tert-butyl ether	ND ug/m3	1.2	1.68	03/08/14 0	3:46 1634-04-4	
Naphthalene	22.3 ug/m3	4.5	1.68	03/08/14 0	3:46 91-20-3	
Tetrachloroethene	ND ug/m3	1.2	1.68	03/08/14 0	3:46 127-18-4	
Toluene	ND ug/m3	1.3	1.68	03/08/14 0	3:46 108-88-3	
1,2,4-Trichlorobenzene	ND ug/m3	6.3	1.68	03/08/14 0	3:46 120-82-1	
1,1,1-Trichloroethane	ND ug/m3	1.9	1.68	03/08/14 0	3:46 71-55-6	
1,1,2-Trichloroethane	ND ug/m3	0.92	1.68	03/08/14 0	3:46 79-00-5	
Trichloroethene	70.6 ug/m3	0.92	1.68	03/08/14 0	3:46 79-01-6	
1,2,3-Trimethylbenzene	1.1 ug/m3	0.34	1.68	03/08/14 0	3:46 526-73-8	
1,2,4-Trimethylbenzene	1.8 ug/m3	1.7	1.68	03/08/14 0	3:46 95-63-6	
1,3,5-Trimethylbenzene	ND ug/m3	1.7 1	1.68	03/08/14 0	3:46 108-67-8	
Vinyl chloride	ND ug/m3	0.44	1.68	03/08/14 0	3:46 75-01-4	
m&p-Xylene	10 ug/m3	3.0 1	1.68	03/08/14 0	3:46 179601-23-1	
o-Xylene	4.7 ug/m3	1.5	1.68	03/08/14 0	3:46 95-47-6	

Project:

1121C06221 REV

Pace Project No.:

Date: 04/17/2014 12:19 PM

10258805

Sample: SV-101-B-16	Lab ID: 10258805035	Collected: 02/24/14	12:40	Received: 02/26/14 08:12	Matrix: Air	
Parameters	Results Units	Report Limit	DF	Prepared Analyzed	CAS No.	Qua
TO15 MSV AIR	Analytical Method: TO-15					
Benzene	ND ug/m3	0.57 1	.74	03/08/14 01:	44 71-43-2	
Carbon tetrachloride	2.6 ug/m3	1.1 1	1.74	03/08/14 01:	44 56-23-5	
Chlorodifluoromethane	4.3 ug/m3	0.35 1	1.74	03/08/14 01:	44 75-45-6	
Chloroform	ND ug/m3	1.7 1	1.74	03/08/14 01:	44 67-66-3	
Dichlorodifluoromethane	4.5 ug/m3	1.8 1	.74	03/08/14 01:	44 75-71-8	
1,1-Dichloroethane	ND ug/m3	1.4 1	.74	03/08/14 01:	44 75-34-3	
1,2-Dichloroethane	ND ug/m3	0.71 1	.74	03/08/14 01:	44 107-06-2	
1,1-Dichloroethene	ND ug/m3	1.4 1	.74	03/08/14 01:	44 75-35-4	
cis-1,2-Dichloroethene	ND ug/m3	1.4 1	.74	03/08/14 01:	44 156-59-2	
trans-1,2-Dichloroethene	ND ug/m3	1.4 1	.74	03/08/14 01:	44 156-60-5	
Ethylbenzene	0.87J ug/m3	1.5 1	.74	03/08/14 01:	44 100-41-4	
Methylene Chloride	14.3 ug/m3	6.1 1	.74	03/08/14 01:	44 75-09-2	
Methyl-tert-butyl ether	ND ug/m3	1.3 1	.74	03/08/14 01:	44 1634-04-4	
Naphthalene	9.7 ug/m3	4.6 1	.74	03/08/14 01:	44 91-20-3	
Tetrachloroethene	45.9 ug/m3	1.2 1	.74	03/08/14 01:	44 127-18 -4	
Toluene	12.5 ug/m3	1.3 1	.74	03/08/14 01:	44 108-88-3	
1,2,4-Trichlorobenzene	ND ug/m3	6.6 1	.74	03/08/14 01:	44 120-82-1	
1,1,1-Trichloroethane	143 ug/m3	1.9 1	.74	03/08/14 01:	44 71-55-6	
1,1,2-Trichloroethane	ND ug/m3	0.96 1	.74	03/08/14 01:	44 79-00-5	
Trichloroethene	79.2 ug/m3	0.96 1	.74	03/08/14 01:	44 79-01-6	
1,2,3-Trimethylbenzene	2.9 ug/m3	0.35 1	.74	03/08/14 01:	44 526-73-8	
1,2,4-Trimethylbenzene	3.4 ug/m3	1.7 1	.74	03/08/14 01:	44 95-63-6	
1,3,5-Trimethylbenzene	ND ug/m3	1.7 1	.74	03/08/14 01:	44 108-67-8	
Vinyl chloride	ND ug/m3	0.45 1	.74	03/08/14 01:	44 75-01-4	
m&p-Xylene	2.7J ug/m3	3.1 1	.74	03/08/14 01:	44 179601-23-1	
o-Xylene	1.8 ug/m3	1.5 1	.74	03/08/14 01:	44 95-47-6	

Project:

1121C06221 REV

Pace Project No.:

Date: 04/17/2014 12:19 PM

10258805

Sample: SV-102-C-16	Lab ID: 10258805009	Collected: 02/24/1	4 11:49	Received: 0	2/26/14 08:12	Matrix: Air	
Parameters	Results Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
TO15 MSV AIR	Analytical Method: TO-15						
Benzene	7.5 ug/m3	0.55	1.68		03/07/14 21:15	71-43-2	
Carbon tetrachloride	3.1 ug/m3	1.1	1.68		03/07/14 21:15	56-23-5	
Chlorodifluoromethane	3.3 ug/m3	0.34	1.68		03/07/14 21:15	75-45-6	
Chloroform	71.9 ug/m3	1.7	1.68		03/07/14 21:15	67-66-3	
Dichlorodifluoromethane	5.8 ug/m3	1.7	1.68		03/07/14 21:15	75-71-8	
1,1-Dichloroethane	6760 ug/m3	220	268.8		03/09/14 19:29	75-34-3	A3
1,2-Dichloroethane	ND ug/m3	0.69	1.68		03/07/14 21:15	107-06-2	
1,1-Dichloroethene	2530 ug/m3	218	268.8		03/09/14 19:29	75-35-4	A3
cis-1,2-Dichloroethene	67.4 ug/m3	1.4	1.68		03/07/14 21:15	156-59-2	
trans-1,2-Dichloroethene	3.9 ug/m3	1.4	1.68		03/07/14 21:15	156-60-5	L1
Ethylbenzene	2140 ug/m3	237	268.8		03/09/14 19:29	100-41-4	A 3
Methylene Chloride	46.3 ug/m3	5.9	1.68		03/07/14 21:15	75-09-2	
Methyl-tert-butyl ether	ND ug/m3	1.2	1.68		03/07/14 21:15	1634-04-4	
Naphthalene	66.0 ug/m3	4.5	1.68		03/07/14 21:15	91-20-3	
Tetrachloroethene	2.2 ug/m3	1.2	1.68		03/07/14 21:15	127-18-4	
Toluene	128 ug/m3	1.3	1.68		03/07/14 21:15	108-88-3	
1,2,4-Trichlorobenzene	ND ug/m3	6.3	1.68		03/07/14 21:15	120-82-1	
1,1,1-Trichloroethane	2070 ug/m3	298	268.8		03/09/14 19:29	71-55-6	A3
1,1,2-Trichloroethane	ND ug/m3	0.92	1.68		03/07/14 21:15	79-00-5	
Trichloroethene	2740 ug/m3	148	268.8		03/09/14 19:29	79-01-6	A3
1,2,3-Trimethylbenzene	90.4 ug/m3	0.34	1.68		03/07/14 21:15	5 526-73-8	
1,2,4-Trimethylbenzene	89.1 ug/m3	1.7	1.68		03/07/14 21:15	95-63-6	
1,3,5-Trimethylbenzene	39.7 ug/m3	1.7	1.68		03/07/14 21:15	108-67-8	
Vinyl chloride	ND ug/m3	0.44	1.68		03/07/14 21:15	75-01-4	
m&p-Xylene	11500 ug/m3	473	268.8		03/09/14 19:29	179601-23-1	A3
o-Xylene	4040 ug/m3	237	268.8		03/09/14 19:29	95-47-6	A3

Project:

1121C06221 REV

Pace Project No.:

Date: 04/17/2014 12:19 PM

10258805

Sample: SV-105-Z-16	Lab ID: 10258805029	Collected: 02/24/1	4 12:29	Received: 02/26/14 08:12	Matrix: Air	
Parameters	Results Units	Report Limit	DF	Prepared Analyzed	CAS No.	Qua
TO15 MSV AIR	Analytical Method: TO-15					
Benzene	1.5 ug/m3	0.55	1.68	03/08/14 04:2	0 71-43-2	
Carbon tetrachloride	ND ug/m3	1.1	1.68	03/08/14 04:2	0 56-23-5	
Chlorodifluoromethane	9.0 ug/m3	0.34	1.68	03/08/14 04:2	0 75-45-6	
Chloroform	2.5 ug/m3	1.7	1.68	03/08/14 04:2	0 67-66-3	
Dichlorodifluoromethane	ND ug/m3	1.7	1.68	03/08/14 04:2	0 75-71-8	
1,1-Dichloroethane	ND ug/m3	1.4	1.68	03/08/14 04:2	0 75-34-3	
1,2-Dichloroethane	ND ug/m3	0.69	1.68	03/08/14 04:2	0 107-06-2	
1,1-Dichloroethene	ND ug/m3	1.4	1.68	03/08/14 04:2	0 75-35-4	
cis-1,2-Dichloroethene	36.3 ug/m3	1.4	1.68	03/08/14 04:2	0 156-59-2	
rans-1,2-Dichloroethene	5.5 ug/m3	1.4	1.68	03/08/14 04:2	0 156-60-5	L1
Ethylbenzene	5.3 ug/m3	1.5	1.68	03/08/14 04:2	0 100-41-4	
Methylene Chloride	621 ug/m3	5.9	1.68	03/08/14 04:2	0 75-09-2	C0,E
Methyl-tert-butyl ether	ND ug/m3	1.2	1.68	03/08/14 04:2	0 1634-04-4	
Naphthalene	4.9 ug/m3	4.5	1.68	03/08/14 04:2	0 91-20-3	
Tetrachloroethene	ND ug/m3	1.2	1.68	03/08/14 04:2	0 127-18-4	
Toluene	59.6 ug/m3	1.3	1.68	03/08/14 04:2	0 108-88-3	
1,2,4-Trichlorobenzene	ND ug/m3	6.3	1.68	03/08/14 04:2	0 120-82-1	
1,1,1-Trichloroethane	ND ug/m3	1.9	1.68	03/08/14 04:2	0 71-55-6	
1,1,2-Trichloroethane	ND ug/m3	0.92	1.68	03/08/14 04:2	0 79-00-5	
Trichloroethene	129 ug/m3	0.92	1.68	03/08/14 04:2	0 79-01-6	
1,2,3-Trimethylbenzene	1.8 ug/m3	0.34	1.68	03/08/14 04:2	0 526-73-8	
1,2,4-Trimethylbenzene	2.7 ug/m3	1.7	1.68	03/08/14 04:2	0 95-63-6	
1,3,5-Trimethylbenzene	ND ug/m3	1.7	1.68	03/08/14 04:2	0 108-67-8	
Vinyl chloride	9.4 ug/m3	0.44	1.68	03/08/14 04:2	0 75-01-4	
m&p-Xylene	22.7 ug/m3	3.0	1.68	03/08/14 04:2	0 179601-23-1	
o-Xylene	4.8 ug/m3	1.5	1.68	03/08/14 04:2		

(612)607-1700

ANALYTICAL RESULTS

Project:

1121C06221 REV

Pace Project No.:

Date: 04/17/2014 12:19 PM

10258805

Sample: SV-113-C-16	Lab ID: 10258805027	Collected: 02/24/1	4 11:43	Received: 0	2/26/14 08:12	Matrix: Air	
Parameters	Results Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
TO15 MSV AIR	Analytical Method: TO-15						
Benzene	2.4 ug/m3	0.55	1.68		03/07/14 00:07	71-43-2	
Carbon tetrachloride	1.1 ug/m3	1.1	1.68		03/07/14 00:07	7 56-23-5	
Chlorodifluoromethane	10.7 ug/m3	0.34	1.68		03/07/14 00:07	75-45-6	
Chloroform	ND ug/m3	1.7	1.68		03/07/14 00:07	7 67-66-3	
Dichlorodifluoromethane	3.8 ug/m3	1.7	1.68		03/07/14 00:07	75-71-8	
1,1-Dichloroethane	ND ug/m3	1.4	1.68		03/07/14 00:07	75-34-3	
1,2-Dichloroethane	ND ug/m3	0.69	1.68		03/07/14 00:07	107-06-2	
1,1-Dichloroethene	ND ug/m3	1.4	1.68		03/07/14 00:07	75-35-4	
cis-1,2-Dichloroethene	0.73J ug/m3	1.4	1.68		03/07/14 00:07	7 156-59-2	
rans-1,2-Dichloroethene	ND ug/m3	1.4	1.68		03/07/14 00:07	156-60-5	
Ethylbenzene	ND ug/m3	1.5	1.68		03/07/14 00:07	7 100-41-4	
Methylene Chloride	557 ug/m3	5.9	1.68		03/07/14 00:07	75-09-2	E
Methyl-tert-butyl ether	ND ug/m3	1.2	1.68		03/07/14 00:07	7 1634-04-4	
Naphthalene	ND ug/m3	4.5	1.68		03/07/14 00:07	91-20-3	
Tetrachloroethene	ND ug/m3	1.2	1.68		03/07/14 00:07	127-18-4	
Toluene	6.1 ug/m3	1.3	1.68		03/07/14 00:07	' 108-88-3	
1,2,4-Trichlorobenzene	ND ug/m3	6.3	1.68		03/07/14 00:07	120-82-1	
1,1,1-Trichloroethane	ND ug/m3	1.9	1.68		03/07/14 00:07	71-55-6	
1,1,2-Trichloroethane	ND ug/m3	0.92	1.68		03/07/14 00:07	79-00-5	
Trichloroethene	7.0 ug/m3	0.92	1.68		03/07/14 00:07	79-01-6	
1,2,3-Trimethylbenzene	ND ug/m3	0.34	1.68		03/07/14 00:07	526-73-8	
1,2,4-Trimethylbenzene	ND ug/m3	1.7	1.68		03/07/14 00:07	95-63-6	
1,3,5-Trimethylbenzene	ND ug/m3	1.7	1.68		03/07/14 00:07	7 108-67-8	
Vinyl chloride	ND ug/m3	0.44	1.68		03/07/14 00:07	75-01-4	
m&p-Xylene	2.4J ug/m3	3.0	1.68		03/07/14 00:07	179601-23-1	
o-Xylene	0.83J ug/m3	1.5	1.68		03/07/14 00:07	95-47-6	

Project:

1121C06221 REV

Pace Project No.:

Date: 04/17/2014 12:19 PM

10258805

Sample: SV-121-B-16	Lab ID: 10258805033	Collected: 02/24/14 12	39 Received: 02/26/14 08:12 Matrix: Air
Parameters	Results Units	Report Limit DF	Prepared Analyzed CAS No. Qu
TO15 MSV AIR	Analytical Method: TO-15		
Benzene	ND ug/m3	0.58 1.8	03/07/14 02:04 71-43-2
Carbon tetrachloride	4.4 ug/m3	1.2 1.8	03/07/14 02:04 56-23-5
Chlorodifluoromethane	1.5 ug/m3	0.36 1.8	03/07/14 02:04 75-45-6
Chloroform	26.4 ug/m3	1.8 1.8	03/07/14 02:04 67-66-3
Dichlorodifluoromethane	2.3 ug/m3	1.8 1.8	03/07/14 02:04 75-71-8
1,1-Dichloroethane	1.5J ug/m3	1.5 1.8	03/07/14 02:04 75-34-3
1,2-Dichloroethane	ND ug/m3	0.74 1.8	03/07/14 02:04 107-06-2
1,1-Dichloroethene	ND ug/m3	1.5 1.8	03/07/14 02:04 75-35-4
cis-1,2-Dichloroethene	ND ug/m3	1.5 1.8	03/07/14 02:04 156-59-2
trans-1,2-Dichloroethene	ND ug/m3	1.5 1.8	03/07/14 02:04 156-60-5
Ethylbenzene	1.5J ug/m3	1.6 1.8	03/07/14 02:04 100-41-4
Methylene Chloride	24.6 ug/m3	6.4 1.8	03/07/14 02:04 75-09-2
Methyl-tert-butyl ether	ND ug/m3	1.3 1.8	03/07/14 02:04 1634-04-4
Naphthalene	85.8 ug/m3	4.8 1.8	03/07/14 02:04 91-20-3
Tetrachloroethene	2.4 ug/m3	1.2 1.8	03/07/14 02:04 127-18-4
Toluene	6.7 ug/m3	1.4 1.8	03/07/14 02:04 108-88-3
1,2,4-Trichlorobenzene	ND ug/m3	6.8 1.8	03/07/14 02:04 120-82-1
1,1,1-Trichloroethane	1.5J ug/m3	2.0 1.8	03/07/14 02:04 71-55-6
1,1,2-Trichloroethane	ND ug/m3	0.99 1.8	03/07/14 02:04 79-00-5
Trichloroethene	203 ug/m3	0.99 1.8	03/07/14 02:04 79-01-6
1,2,3-Trimethylbenzene	13.2 ug/m3	0.36 1.8	03/07/14 02:04 526-73-8
1,2,4-Trimethylbenzene	32.0 ug/m3	1.8 1.8	03/07/14 02:04 95-63-6
1,3,5-Trimethylbenzene	ND ug/m3	1.8 1.8	03/07/14 02:04 108-67-8
Vinyl chloride	ND ug/m3	0.47 1.8	03/07/14 02:04 75-01-4
m&p-Xylene	7.2 ug/m3	3.2 1.8	03/07/14 02:04 179601-23-1
o-Xylene	5.0 ug/m3	1.6 1.8	03/07/14 02:04 95-47-6

Project:

o-Xylene

Date: 04/17/2014 12:19 PM

1121C06221 REV

Pace Project No.:

10258805 Sample: SV-123-Z-16 Lab ID: 10258805031 Collected: 02/24/14 12:32 Received: 02/26/14 08:12 Matrix: Air **Parameters** Results Units Report Limit DF Prepared Analyzed CAS No. Qual **TO15 MSV AIR** Analytical Method: TO-15 1.68 Benzene ND ug/m3 0.55 03/07/14 21:31 71-43-2 Carbon tetrachloride ND ug/m3 1.1 1.68 03/07/14 21:31 56-23-5 ND ug/m3 03/07/14 21:31 75-45-6 Chlorodifluoromethane 5.9 1.68 ND ug/m3 03/07/14 21:31 67-66-3 Chloroform 1.7 1.68 2.6 ug/m3 Dichlorodifluoromethane 1.7 1.68 03/07/14 21:31 75-71-8 ND ug/m3 1.1-Dichloroethane 1.4 1.68 03/07/14 21:31 75-34-3 1,2-Dichloroethane ND ug/m3 0.69 1.68 03/07/14 21:31 107-06-2 1.1-Dichloroethene ND ug/m3 1.4 1.68 03/07/14 21:31 75-35-4 cis-1.2-Dichloroethene 0.70J ug/m3 1.4 1.68 03/07/14 21:31 156-59-2 ND ug/m3 trans-1,2-Dichloroethene 1.4 1.68 03/07/14 21:31 156-60-5 3.9 ug/m3 Ethylbenzene 1.5 1.68 03/07/14 21:31 100-41-4 Methylene Chloride 8.2 ug/m3 5.9 03/07/14 21:31 75-09-2 1 68 03/07/14 21:31 1634-04-4 ND ug/m3 Methyl-tert-butyl ether 1.2 1.68 10.9 ug/m3 03/07/14 21:31 91-20-3 Naphthalene 1.8 1.68 ND ug/m3 03/07/14 21:31 127-18-4 Tetrachloroethene 1.68 1.2 50.9 ug/m3 03/07/14 21:31 108-88-3 Toluene 1.3 1.68 ND ug/m3 1,2,4-Trichlorobenzene 2.5 1.68 03/07/14 21:31 120-82-1 ND ug/m3 1,1,1-Trichloroethane 1.9 1.68 03/07/14 21:31 71-55-6 1,1,2-Trichloroethane ND ug/m3 0.92 1.68 03/07/14 21:31 79-00-5 Trichloroethene 37.5 ug/m3 0.92 1.68 03/07/14 21:31 79-01-6 1,2,3-Trimethylbenzene 3.7 ug/m3 0.34 1.68 03/07/14 21:31 526-73-8 1.7 ug/m3 1,2,4-Trimethylbenzene 1.7 1.68 03/07/14 21:31 95-63-6 1,3,5-Trimethylbenzene 2.9 ug/m3 1.7 1.68 03/07/14 21:31 108-67-8 Vinyl chloride ND ug/m3 0.44 1.68 03/07/14 21:31 75-01-4 03/07/14 21:31 179601-23-1 m&p-Xylene 19.9 ug/m3 3.0 1.68

1.5

1.68

4.3 ug/m3

REPORT OF LABORATORY ANALYSIS

03/07/14 21:31 95-47-6

Project:

1121C06221 REV

Date: 04/17/2014 12:19 PM

Pace Project No.: 10258805

Sample: SV-126-C-16	Lab ID: 10258805017	Collected: 02/24/1	4 12:06	Received: 02/26/14 08:12	Matrix: Air	·
Parameters	Results Units	Report Limit	DF	Prepared Analyzed	CAS No.	Qua
TO15 MSV AIR	Analytical Method: TO-15					
Benzene	88.4 ug/m3	0.55	1.68	03/08/14 04	49 71-43-2	
Carbon tetrachloride	ND ug/m3	1.1	1.68	03/08/14 04	49 56-23-5	
Chlorodifluoromethane	ND ug/m3	0.34	1.68	03/08/14 04	49 75-45-6	
Chloroform	0.84J ug/m3	1.7	1.68	03/08/14 04	49 67-66-3	
Dichlorodifluoromethane	1.5J ug/m3	1.7	1.68	03/08/14 04	49 75-71-8	
1,1-Dichloroethane	ND ug/m3	1.4	1.68	03/08/14 04	49 75-34-3	
1,2-Dichloroethane	ND ug/m3	0.69	1.68	03/08/14 04	49 107-06-2	
1,1-Dichloroethene	199 ug/m3	1.4	1.68	03/08/14 04	49 75-35-4	
cis-1,2-Dichloroethene	205 ug/m3	1.4	1.68	03/08/14 04	49 156-59-2	
rans-1,2-Dichloroethene	ND ug/m3	1.4	1.68	03/08/14 04	49 156-60-5	
Ethylbenzene	3.0 ug/m3	1.5	1.68	03/08/14 04	49 100-41-4	
Methylene Chloride	9.2 ug/m3	5.9	1.68	03/08/14 04	49 75-09-2	
Methyl-tert-butyl ether	ND ug/m3	1.2	1.68	03/08/14 04	49 1634-04-4	
Naphthalene	70.6 ug/m3	4.5	1.68	03/08/14 04	49 91-20-3	
Tetrachloroethene	ND ug/m3	1.2	1.68	03/08/14 04	49 127-18-4	
Toluene	14.7 ug/m3	1.3	1.68	03/08/14 04	49 108-88-3	
1,2,4-Trichlorobenzene	ND ug/m3	6.3	1.68	03/08/14 04	49 120-82-1	
1,1,1-Trichloroethane	ND ug/m3	1.9	1.68	03/08/14 04	49 71-55-6	
I,1,2-Trichloroethane	ND ug/m3	0.92	1.68	03/08/14 04	49 79-00-5	
Frichloroethene	177 ug/m3	0.92	1.68	03/08/14 04	49 79-01-6	
1,2,3-Trimethylbenzene	1.4 ug/m3	0.34	1.68	03/08/14 04	49 526-73-8	
1,2,4-Trimethylbenzene	4.3 ug/m3	1.7	1.68	03/08/14 04	49 95-63-6	
1,3,5-Trimethylbenzene	1.1J ug/m3	1.7	1.68	03/08/14 04	49 108-67-8	
√inyl chloride	11900 ug/m3	140	537.6	03/09/14 19	53 75-01-4	А3
n&p-Xylene	13.4 ug/m3	3.0	1.68	03/08/14 04	49 179601-23-1	
o-Xylene	5.7 ug/m3	1.5	1.68	03/08/14 04		

Project:

1121C06221 REV

Pace Project No.:

10258805

Date: 04/17/2014 12:19 PM

Sample: SV-128-C-16	Lab ID: 10258805037	Collected: 02/24/14	12:18	Received: 02/26/14 08:12	Matrix: Air	
Parameters	Results Units	Report Limit	DF	Prepared Analyzed	CAS No.	Qual
TO15 MSV AIR	Analytical Method: TO-15					
Benzene	3.6 ug/m3	0.55	1.68	03/07/14 22:45	5 71-43-2	
Carbon tetrachloride	ND ug/m3	1.1	1.68	03/07/14 22:45	5 56-23-5	
Chlorodifluoromethane	6.1 ug/m3	0.34	1.68	03/07/14 22:4	5 75-45-6	
Chloroform	ND ug/m3	1.7	1.68	03/07/14 22:4	5 67-66-3	
Dichlorodifluoromethane	2.5 ug/m3	1.7	1.68	03/07/14 22:4	5 75-71-8	
1,1-Dichloroethane	ND ug/m3	1.4	1.68	03/07/14 22:45	5 75-34-3	
1,2-Dichloroethane	ND ug/m3	0.69	1.68	03/07/14 22:4	5 107-06-2	
1,1-Dichloroethene	ND ug/m3	1.4	1.68	03/07/14 22:4	5 75-35-4	
cis-1,2-Dichloroethene	6.5 ug/m3	1.4	1.68	03/07/14 22:45	5 156-59-2	
trans-1,2-Dichloroethene	ND ug/m3	1.4	1.68	03/07/14 22:45	5 156-60-5	
Ethylbenzene	2.0 ug/m3	1.5	1.68	03/07/14 22:4	5 100-41-4	
Methylene Chloride	9.6 ug/m3	5.9	1.68	03/07/14 22:45	5 75-09-2	
Methyl-tert-butyl ether	ND ug/m3	1.2	1.68	03/07/14 22:45	5 1634-04-4	
Naphthalene	92.6 ug/m3	4.5	1.68	03/07/14 22:45	5 91-20-3	
Tetrachloroethene	1.6 ug/m3	1.2	1.68	03/07/14 22:4	5 127-18-4	
Toluene	5.8 ug/m3	1.3	1.68	03/07/14 22:45	5 108-88-3	
1,2,4-Trichlorobenzene	ND ug/m3	6.3	1.68	03/07/14 22:4	5 120-82 -1	
1,1,1-Trichloroethane	ND ug/m3	1.9	1.68	03/07/14 22:45	5 71-55-6	
1,1,2-Trichloroethane	ND ug/m3	0.92	1.68	03/07/14 22:45	5 79-00-5	
Trichloroethene	2.1 ug/m3	0.92	1.68	03/07/14 22:4	5 79-01-6	
1,2,3-Trimethylbenzene	1.2 ug/m3	0.34	1.68	03/07/14 22:45	5 526-73-8	
1,2,4-Trimethylbenzene	2.8 ug/m3	1.7	1.68	03/07/14 22:4	5 95-63-6	
1,3,5-Trimethylbenzene	ND ug/m3	1.7	1.68	03/07/14 22:4	5 108-67-8	
Vinyl chloride	ND ug/m3	0.44	1.68	03/07/14 22:4	5 75-01-4	
m&p-Xylene	12.1 ug/m3	3.0	1.68	03/07/14 22:4	5 179601-23-1	
o-Xylene	3.6 ug/m3	1.5	1.68	03/07/14 22:45	5 95-47-6	

Project:

1121C06221 REV

Pace Project No.:

Date: 04/17/2014 12:19 PM

10258805

Sample: SV-130-C-16	Lab ID: 10258805011	Collected: 02/24/14	11:52	Received: 02/26/14 08:12 Matrix: Air	
Parameters	Results Units	Report Limit	DF	Prepared Analyzed CAS No	Qua
TO15 MSV AIR	Analytical Method: TO-15				
Benzene	4.1 ug/m3	0.55	1.68	03/07/14 20:35 71-43-2	
Carbon tetrachloride	ND ug/m3	1.1	1.68	03/07/14 20:35 56-23-5	
Chlorodifluoromethane	1.7J ug/m3	5.9	1.68	03/07/14 20:35 75-45-6	
Chloroform	1.8 ug/m3	1.7	1.68	03/07/14 20:35 67-66-3	
Dichlorodifluoromethane	3.1 ug/m3	1.7	1.68	03/07/14 20:35 75-71-8	
1,1-Dichloroethane	1.3J ug/m3	1.4	1.68	03/07/14 20:35 75-34-3	
1,2-Dichloroethane	ND ug/m3	0.69	1.68	03/07/14 20:35 107-06-2	
1,1-Dichloroethene	2.9 ug/m3	1.4	1.68	03/07/14 20:35 75-35-4	
cis-1,2-Dichloroethene	ND ug/m3	1.4	1.68	03/07/14 20:35 156-59-2	
trans-1,2-Dichloroethene	ND ug/m3	1.4	1.68	03/07/14 20:35 156-60-5	
Ethylbenzene	2.3 ug/m3	1.5	1.68	03/07/14 20:35 100-41-4	
Methylene Chloride	28.2 ug/m3	5.9	1.68	03/07/14 20:35 75-09-2	
Methyl-tert-butyl ether	ND ug/m3	1.2	1.68	03/07/14 20:35 1634-04-4	
Naphthalene	ND ug/m3	1.8	1.68	03/07/14 20:35 91-20-3	
Tetrachloroethene	3.3 ug/m3	1.2	1.68	03/07/14 20:35 127-18-4	
Toluene	12.2 ug/m3	1.3	1.68	03/07/14 20:35 108-88-3	
1,2,4-Trichlorobenzene	ND ug/m3	2.5	1.68	03/07/14 20:35 120-82-1	
1,1,1-Trichloroethane	21.3 ug/m3	1.9	1.68	03/07/14 20:35 71-55-6	
1,1,2-Trichloroethane	ND ug/m3	0.92	1.68	03/07/14 20:35 79-00-5	
Trichloroethene	3.4 ug/m3	0.92	1.68	03/07/14 20:35 79-01-6	
1,2,3-Trimethylbenzene	3.4 ug/m3	0.34	1.68	03/07/14 20:35 526-73-8	
1,2,4-Trimethylbenzene	9.9 ug/m3	1.7	1.68	03/07/14 20:35 95-63-6	
1,3,5-Trimethylbenzene	4.4 ug/m3	1.7	1.68	03/07/14 20:35 108-67-8	
Vinyl chloride	ND ug/m3	0.44	1.68	03/07/14 20:35 75-01-4	
m&p-Xylene	9.2 ug/m3	3.0	1.68	03/07/14 20:35 179601-23	-1
o-Xylene	7.5 ug/m3	1.5	1.68	03/07/14 20:35 95-47-6	

03/07/14 20:45 75-35-4

03/07/14 20:45 156-59-2

03/07/14 20:45 156-60-5

03/07/14 20:45 100-41-4

03/07/14 20:45 75-09-2

03/07/14 20:45 91-20-3

03/07/14 20:45 127-18-4 03/07/14 20:45 108-88-3

03/07/14 20:45 120-82-1

03/07/14 20:45 71-55-6

03/07/14 20:45 79-00-5

03/09/14 18:15 79-01-6

03/07/14 20:45 526-73-8

03/07/14 20:45 95-63-6

03/07/14 20:45 108-67-8

03/07/14 20:45 75-01-4

03/07/14 20:45 95-47-6

03/07/14 20:45 179601-23-1

03/07/14 20:45 1634-04-4

L1

A3

ANALYTICAL RESULTS

Project:

1121C06221 REV

10258805

Pace Project No.:

1,1-Dichloroethene

Methylene Chloride

Tetrachloroethene

Methyl-tert-butyl ether

1.2.4-Trichlorobenzene

1,1,1-Trichloroethane

1,1,2-Trichloroethane

1,2,3-Trimethylbenzene

1,2,4-Trimethylbenzene

1,3,5-Trimethylbenzene

Date: 04/17/2014 12:19 PM

Trichloroethene

Vinyl chloride

m&p-Xylene

o-Xylene

Ethylbenzene

Naphthalene

Toluene

cis-1,2-Dichloroethene

trans-1,2-Dichloroethene

Sample: SV-133-C-16 Lab ID: 10258805025 Collected: 02/24/14 11:55 Received: 02/26/14 08:12 Matrix: Air **Parameters** Results DF CAS No. Units Report Limit Prepared Analyzed Qual **TO15 MSV AIR** Analytical Method: TO-15 0.77 ug/m3 0.55 03/07/14 20:45 71-43-2 Benzene 1.68 ND ug/m3 Carbon tetrachloride 1.1 1.68 03/07/14 20:45 56-23-5 4.3 ug/m3 Chlorodifluoromethane 0.34 1.68 03/07/14 20:45 75-45-6 Chloroform 6.7 ug/m3 1.7 1.68 03/07/14 20:45 67-66-3 3.2 ug/m3 Dichlorodifluoromethane 1.7 1.68 03/07/14 20:45 75-71-8 1.1-Dichloroethane ND ug/m3 1.68 03/07/14 20:45 75-34-3 1.4 1,2-Dichloroethane 0.92 ug/m3 0.69 1.68 03/07/14 20:45 107-06-2

1.4

1.4

1.4

1.5

5.9

1.2

4.5

1.2

1.3

6.3

1.9

0.92

73.9

0.34

1.7

1.7

0.44

3.0

1.5

1.68

1.68

1.68

1.68

1.68

1.68

1.68

1.68

1.68

1.68

1.68

1.68

134.4

1.68

1.68

1.68

1.68

1.68

1.68

ND ug/m3

8.4 ug/m3

3.6 ug/m3

ND ug/m3

20.2 ug/m3

ND ug/m3

4.7 ug/m3

169 ug/m3

3.6 ug/m3

ND ug/m3

ND ug/m3

ND ug/m3

ND ug/m3

ND ug/m3

ND ug/m3

ND ug/m3

1.8J ug/m3

0.81J ug/m3

10700 ug/m3

Project:

1121C06221 REV

Pace Project No.:

Date: 04/17/2014 12:19 PM

: 10258805

Sample: SV-135-C-16	Lab ID: 10258805003	Collected: 02/24/1	4 11:35	Received: 02/26/	14 08:12	Matrix: Air	_
Parameters	Results Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
TO15 MSV AIR	Analytical Method: TO-15	5					
Benzene	0.33J ug/m3	0.55	1.68	03/	07/14 01:0	6 71-43-2	
Carbon tetrachloride	ND ug/m3	1.1	1.68	03/	07/14 01:0	6 56-23-5	
Chlorodifluoromethane	2.1 ug/m3	0.34	1.68	03/	07/14 01:0	6 75 -4 5-6	
Chloroform	ND ug/m3	1.7	1.68	03/	07/14 01:0	6 67-66-3	
Dichlorodifluoromethane	2.1 ug/m3	1.7	1.68	03/	07/14 01:0	6 75-71-8	
1,1-Dichloroethane	ND ug/m3	1.4	1.68	03/	07/14 01:0	6 75-34-3	
1,2-Dichloroethane	ND ug/m3	0.69	1.68	03/	07/14 01:0	6 107-06-2	
1,1-Dichloroethene	ND ug/m3	1.4	1.68	03/	07/14 01:0	6 75-35-4	
cis-1,2-Dichloroethene	ND ug/m3	1.4	1.68	03/	07/14 01:0	6 156-59-2	
trans-1,2-Dichloroethene	ND ug/m3	1.4	1.68	03/	07/14 01:0	6 156-60-5	
Ethylbenzene	4.2 ug/m3	1.5	1.68	03/	07/14 01:0	6 100 -4 1- 4	
Methylene Chloride	2.1J ug/m3	5.9	1.68	- 03/	07/14 01:0	6 75-09-2	
Methyl-tert-butyl ether	ND ug/m3	1.2	1.68	03/	07/14 01:0	6 1634-04-4	
Naphthalene	3.8J ug/m3	4.5	1.68	03/	07/14 01:0	6 91-20-3	
Tetrachloroethene	ND ug/m3	1.2	1.68	03/	07/14 01:0	6 127-18-4	
Toluene	ND ug/m3	1.3	1.68	03/	07/14 01:0	6 108-88-3	
1,2,4-Trichlorobenzene	ND ug/m3	6.3	1.68	03/	07/14 01:0	6 120-82-1	
1,1,1-Trichloroethane	ND ug/m3	1.9	1.68	03/	07/14 01:0	6 71-55-6	
1,1,2-Trichloroethane	ND ug/m3	0.92	1.68	03/	07/14 01:0	6 79-00-5	
Trichloroethene	5.6 ug/m3	0.92	1.68	03/	07/14 01:0	6 79-01-6	
1,2,3-Trimethylbenzene	ND ug/m3	0.34	1.68	03/	07/14 01:0	6 526-73-8	
1,2,4-Trimethylbenzene	ND ug/m3	1.7	1.68	03/	07/14 01:0	6 95-63-6	
1,3,5-Trimethylbenzene	ND ug/m3	1.7	1.68	03/	07/14 01:0	6 108-67-8	
Vinyl chloride	ND ug/m3	0.44	1.68	03/	07/14 01:0	6 75-01-4	
m&p-Xylene	18.1 ug/m3	3.0	1.68	03/	07/14 01:0	6 179601-23-1	
o-Xylene	4.3 ug/m3	1.5	1.68	03/	07/14 01:0	6 95-47-6	

Project:

1121C06221 REV

Pace Project No.:

Date: 04/17/2014 12:19 PM

10258805

Sample: SV-141-C-16	Lab ID: 10258805015	Collected: 02/24/14	4 12:02	Received: 02/26/14 08:12	2 Matrix: Air	
Parameters	Results Units	Report Limit	DF	Prepared Analyze	d CAS No.	Qual
TO15 MSV AIR	Analytical Method: TO-15					
Benzene	0.88 ug/m3	0.66	2.02	03/07/14 0	4:30 71-43-2	
Carbon tetrachloride	ND ug/m3	1.3	2.02	03/07/14 0	4:30 56-23-5	
Chlorodifluoromethane	2.6 ug/m3	0.40	2.02	03/07/14 0	4:30 75-45-6	
Chloroform	ND ug/m3	2.0	2.02	03/07/14 0	4:30 67-66-3	
Dichlorodifluoromethane	2.3 ug/m3	2.0	2.02	03/07/14 0	4:30 75-71-8	
1,1-Dichloroethane	ND ug/m3	1.7	2.02	03/07/14 0	4:30 75-34-3	
1,2-Dichloroethane	ND ug/m3	0.83	2.02	03/07/14 0	4:30 107-06-2	
1,1-Dichloroethene	1.7 ug/m3	1.6	2.02	03/07/14 0	4:30 75-35-4	
cis-1,2-Dichloroethene	2.2 ug/m3	1.6	2.02	03/07/14 0	4:30 156-59-2	
trans-1,2-Dichloroethene	ND ug/m3	1.6	2.02	03/07/14 0	4:30 156-60-5	
Ethylbenzene	2.2 ug/m3	1.8	2.02	03/07/14 0	4:30 100-41-4	
Methylene Chloride	39.1 ug/m3	7.1	2.02	03/07/14 0	4:30 75-09-2	
Methyl-tert-butyl ether	ND ug/m3	1.5	2.02	03/07/14 0	4:30 1634-04-4	
Naphthalene	4.1J ug/m3	5.4	2.02	03/07/14 0	4:30 91-20-3	
Tetrachloroethene	ND ug/m3	1.4	2.02	03/07/14 0	4:30 127-18-4	
Toluene	3.7 ug/m3	1.6	2.02	03/07/14 0	4:30 108-88-3	
1,2,4-Trichlorobenzene	ND ug/m3	7.6	2.02	03/07/14 0	4:30 120-82-1	
1,1,1-Trichloroethane	ND ug/m3	2.2	2.02	03/07/14 0	4:30 71-55-6	
1,1,2-Trichloroethane	ND ug/m3	1.1	2.02	03/07/14 0	4:30 79-00-5	
Trichloroethene	25.2 ug/m3	1.1	2.02	03/07/14 0	4:30 79-01-6	
1,2,3-Trimethylbenzene	ND ug/m3	0.40	2.02	03/07/14 0	4:30 526-73-8	
1,2,4-Trimethylbenzene	ND ug/m3	2.0	2.02	03/07/14 0	4:30 95-63-6	
1,3,5-Trimethylbenzene	ND ug/m3	2.0	2.02	03/07/14 0	4:30 108-67-8	
Vinyl chloride	ND ug/m3	0.53	2.02	03/07/14 0	4:30 75-01-4	
m&p-Xylene	11.6 ug/m3	3.6	2.02	03/07/14 0	4:30 179601-23-1	
o-Xylene	3.7 ug/m3	1.8	2.02	03/07/14 0	4:30 95-47-6	

Project:

1121C06221 REV

Pace Project No.:

Date: 04/17/2014 12:19 PM

ect No.: 10258805

Sample: SV-142-C-16	Lab ID: 10258805007	Collected: 02/24/14	4 11:40	Received: 02/26	5/14 08:12 I	Matrix: Air	
Parameters	Results Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
TO15 MSV AIR	Analytical Method: TO-15						
Benzene	ND ug/m3	0.55	1.68	0:	3/06/14 20:41	71-43-2	
Carbon tetrachloride	ND ug/m3	1.1	1.68	0	3/06/14 20:41	56-23-5	
Chlorodifluoromethane	1.4 ug/m3	0.34	1.68	0:	3/06/14 20:41	75-45-6	
Chloroform	15.0 ug/m3	1.7	1.68	0:	3/06/14 20:41	67-66-3	
Dichlorodifluoromethane	2.2 ug/m3	1.7	1.68	0:	3/06/14 20:41	75-71-8	
1,1-Dichloroethane	ND ug/m3	1.4	1.68	0:	3/06/14 20:41	75-34-3	
1,2-Dichloroethane	ND ug/m3	0.69	1.68	0:	3/06/14 20:41	107-06-2	
1,1-Dichloroethene	ND ug/m3	1.4	1.68	0:	3/06/14 20:41	75-35-4	
cis-1,2-Dichloroethene	ND ug/m3	1.4	1.68	0	3/06/14 20:41	156-59-2	
trans-1,2-Dichloroethene	ND ug/m3	1.4	1.68	0:	3/06/14 20:41	156-60-5	
Ethylbenzene	ND ug/m3	1.5	1.68	0:	3/06/14 20:41	100-41-4	
Methylene Chloride	7.5 ug/m3	5.9	1.68	0:	3/06/14 20:41	75-09-2	
Methyl-tert-butyl ether	ND ug/m3	1.2	1.68	0:	3/06/14 20:41	1634-04-4	
Naphthalene	157 ug/m3	4.5	1.68	0:	3/06/14 20:41	91-20-3	
Tetrachloroethene	ND ug/m3	1.2	1.68	0:	3/06/14 20:41	127-18-4	
Toluene	ND ug/m3	1.3	1.68	0:	3/06/14 20:41	108-88-3	
1,2,4-Trichlorobenzene	ND ug/m3	6.3	1.68	0:	3/06/14 20:41	120-82-1	
1,1,1-Trichloroethane	ND ug/m3	1.9	1.68	0:	3/06/14 20:41	71-55-6	
1,1,2-Trichloroethane	ND ug/m3	0.92	1.68	0:	3/06/14 20:41	79-00-5	
Trichloroethene	6.8 ug/m3	0.92	1.68	0:	3/06/14 20:41	79-01-6	
1,2,3-Trimethylbenzene	0.71 ug/m3	0.34	1.68	0:	3/06/14 20:41	526-73-8	
1,2,4-Trimethylbenzene	1.4J ug/m3	1.7	1.68	0:	3/06/14 20:41	95-63-6	
1,3,5-Trimethylbenzene	ND ug/m3	1.7	1.68	0:	3/06/14 20:41	108-67-8	
Vinyl chloride	ND ug/m3	0.44	1.68	0:	3/06/14 20:41	75-01-4	
m&p-Xylene	5.1 ug/m3	3.0	1.68	0:	3/06/14 20:41	179601-23-1	
o-Xylene	3.1 ug/m3	1.5	1.68	0;	3/06/14 20:41	95-47-6	

REPORT OF LABORATORY ANALYSIS

Project:

1121C06221 REV

Pace Project No.:

Date: 04/17/2014 12:19 PM

No.: 10258805

Sample: SV-143-C-16	Lab ID: 10258805001	Collected: 02/24/14 1	6:32 Received: 02/26/14 08:12 Matrix: Air
Parameters	Results Units	Report Limit D	F Prepared Analyzed CAS No. Qu
TO15 MSV AIR	Analytical Method: TO-15		
Benzene	1.8 ug/m3	1.4 4.3	22 03/07/14 19:09 71-43-2
Carbon tetrachloride	133 ug/m3	2.7 4.3	22 03/07/14 19:09 56-23-5
Chlorodifluoromethane	1.7J ug/m3	14.9 4.3	22 03/07/14 19:09 75-45-6
Chloroform	194 ug/m3	4.2 4.3	22 03/07/14 19:09 67-66-3
Dichlorodifluoromethane	2.6J ug/m3	4.3 4.3	22 03/07/14 19:09 75-71-8
1,1-Dichloroethane	1.8J ug/m3	3.5 4.3	22 03/07/14 19:09 75-34-3
1,2-Dichloroethane	ND ug/m3	1.7 4.3	22 03/07/14 19:09 107-06-2
1,1-Dichloroethene	2.1J ug/m3	3.4 4.3	22 03/07/14 19:09 75-35-4
cis-1,2-Dichloroethene	5.7 ug/m3	3.4 4.5	22 03/07/14 19:09 156-59-2
trans-1,2-Dichloroethene	ND ug/m3	3.4 4.:	22 03/07/14 19:09 156-60-5
Ethylbenzene	ND ug/m3	3.7 4.5	22 03/07/14 19:09 100-41-4
Methylene Chloride	30.1 ug/m3	14.9 4.3	22 03/07/14 19:09 75-09-2
Methyl-tert-butyl ether	ND ug/m3	3.1 4.3	22 03/07/14 19:09 1634-04-4
Naphthalene	19.3 ug/m3	4.5 4.5	22 03/07/14 19:09 91-20-3
Tetrachloroethene	15.0 ug/m3	2.9 4.:	22 03/07/14 19:09 127-18-4
Toluene	13.6 ug/m3	3.2 4.:	22 03/07/14 19:09 108-88-3
1,2,4-Trichlorobenzene	ND ug/m3	6.4 4.:	22 03/07/14 19:09 120-82-1
1,1,1-Trichloroethane	ND ug/m3	4.7 4.3	22 03/07/14 19:09 71-55-6
1,1,2-Trichloroethane	ND ug/m3	2.3 4.3	22 03/07/14 19:09 79-00-5
Trichloroethene	33.1 ug/m3	2.3 4.3	22 03/07/14 19:09 79-01-6
1,2,3-Trimethylbenzene	ND ug/m3	0.84 4.3	22 03/07/14 19:09 526-73-8
1,2,4-Trimethylbenzene	ND ug/m3	4.2 4.3	22 03/07/14 19:09 95-63-6
1,3,5-Trimethylbenzene	ND ug/m3	4.2 4.3	22 03/07/14 19:09 108-67-8
Vinyl chloride	ND ug/m3	1.1 4.3	22 03/07/14 19:09 75-01-4
m&p-Xylene	3.3J ug/m3	7.4 4.3	22 03/07/14 19:09 179601-23-1
o-Xylene	ND ug/m3	3.7 4.3	

Project:

1121C06221 REV

Pace Project No.:

Date: 04/17/2014 12:19 PM

10258805

Sample: SV-DUP1-C-16	Lab ID: 10258805044	Collected: 02/24/1	4 00:00	Received: 02	2/26/14 08:12 I	Matrix: Air	
Parameters	Results Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
TO15 MSV AIR	Analytical Method: TO-15						
Benzene	0.87 ug/m3	0.55	1.68		03/08/14 00:42	71-43-2	
Carbon tetrachloride	ND ug/m3	1.1	1.68		03/08/14 00:42	56-23-5	
Chlorodifluoromethane	4.4 ug/m3	0.34	1.68		03/08/14 00:42	75-45-6	
Chloroform	6.2 ug/m3	1.7	1.68		03/08/14 00:42	67-66-3	
Dichlorodifluoromethane	3.0 ug/m3	1.7	1.68		03/08/14 00:42	75-71-8	
1,1-Dichloroethane	ND ug/m3	1.4	1.68		03/08/14 00:42	75-34-3	
1,2-Dichloroethane	0.82 ug/m3	0.69	1.68		03/08/14 00:42	107-06-2	
1,1-Dichloroethene	ND ug/m3	1.4	1.68		03/08/14 00:42	75-35-4	
cis-1,2-Dichloroethene	8.7 ug/m3	1.4	1.68		03/08/14 00:42	156-59-2	
trans-1,2-Dichloroethene	3.5 ug/m3	1.4	1.68		03/08/14 00:42	156-60-5	L1
Ethylbenzene	ND ug/m3	1.5	1.68		03/08/14 00:42	100-41-4	
Methylene Chloride	13.0 ug/m3	5.9	1.68		03/08/14 00:42	75-09-2	
Methyl-tert-butyl ether	ND ug/m3	1.2	1.68		03/08/14 00:42	1634-04-4	
Naphthalene	4.2J ug/m3	4.5	1.68		03/08/14 00:42	91-20-3	
Tetrachloroethene	159 ug/m3	1.2	1.68		03/08/14 00:42	127-18-4	
Toluene	5.5 ug/m3	1.3	1.68		03/08/14 00:42	108-88-3	
1,2,4-Trichlorobenzene	ND ug/m3	6.3	1.68		03/08/14 00:42	120-82-1	
1,1,1-Trichloroethane	ND ug/m3	1.9	1.68		03/08/14 00:42	71-55-6	
1,1,2-Trichloroethane	ND ug/m3	0.92	1.68		03/08/14 00:42	79-00-5	
Trichloroethene	8630 ug/m3	46.6	84.67		03/09/14 17:51	79-01-6	
1,2,3-Trimethylbenzene	ND ug/m3	0.34	1.68		03/08/14 00:42	526-73-8	
1,2,4-Trimethylbenzene	ND ug/m3	1.7	1.68		03/08/14 00:42	95-63-6	
1,3,5-Trimethylbenzene	ND ug/m3	1.7	1.68		03/08/14 00:42	108-67-8	
Vinyl chloride	ND ug/m3	0.44	1.68		03/08/14 00:42	75-01-4	
m&p-Xylene	2.0J ug/m3	3.0	1.68		03/08/14 00:42	179601-23-1	
o-Xylene	0.95J ug/m3	1.5	1.68		03/08/14 00:42	95-47-6	

REPORT OF LABORATORY ANALYSIS

Project:

1121C06221 REV

Pace Project No.:

Date: 04/17/2014 12:19 PM

10258805

Sample: SV-DUP2-C-16	Lab ID: 10258805045	Collected: 02/24/1	4 00:00	Received: 02/26/14 08:12	Matrix: Air	
Parameters	Results Units	Report Limit	DF	Prepared Analyzed	CAS No.	Qua
TO15 MSV AIR	Analytical Method: TO-15					
Benzene	ND ug/m3	0.55	1.68	03/06/14 23:0	8 71-43-2	
Carbon tetrachloride	ND ug/m3	1.1	1.68	03/06/14 23:0	8 56-23-5	
Chlorodifluoromethane	3.5 ug/m3	0.34	1.68	03/06/14 23:0	8 75 -4 5-6	
Chloroform	1.8 ug/m3	1.7	1.68	03/06/14 23:0	8 67 - 66-3	
Dichlorodifluoromethane	2.2 ug/m3	1.7	1.68	03/06/14 23:0	3 75 - 71-8	
1,1-Dichloroethane	ND ug/m3	1.4	1.68	03/06/14 23:0	8 75-34-3	
1,2-Dichloroethane	ND ug/m3	0.69	1.68	03/06/14 23:0	8 107-06-2	
1,1-Dichloroethene	ND ug/m3	1.4	1.68	03/06/14 23:0	B 75-35-4	
cis-1,2-Dichloroethene	31.7 ug/m3	1.4	1.68	03/06/14 23:0	8 156-59-2	
rans-1,2-Dichloroethene	ND ug/m3	1.4	1.68	03/06/14 23:0	8 156-60-5	
Ethylbenzene	ND ug/m3	1.5	1.68	03/06/14 23:0	8 100-41-4	
Methylene Chloride	12.5 ug/m3	5.9	1.68	03/06/14 23:0	B 75-09-2	
Methyl-tert-butyl ether	ND ug/m3	1.2	1.68	03/06/14 23:0	B 1634-04-4	
Naphthalene	3.7J ug/m3	4.5	1.68	03/06/14 23:0	8 91-20-3	
Tetrachloroethene	ND ug/m3	1.2	1.68	03/06/14 23:0	8 127-18 -4	
Toluene	1.7 ug/m3	1.3	1.68	03/06/14 23:0	8 108-88-3	
1,2,4-Trichlorobenzene	ND ug/m3	6.3	1.68	03/06/14 23:0	8 120-82-1	
,1,1-Trichloroethane	ND ug/m3	1.9	1.68	03/06/14 23:0	8 71-55-6	
,1,2-Trichloroethane	ND ug/m3	0.92	1.68	03/06/14 23:0	8 79-00-5	
Frichloroethene	243 ug/m3	0.92	1.68	03/06/14 23:0	8 79-01-6	
1,2,3-Trimethylbenzene	ND ug/m3	0.34	1.68	03/06/14 23:0	8 526-73-8	
,2,4-Trimethylbenzene	ND ug/m3	1.7	1.68	03/06/14 23:0	8 95-63-6	
,3,5-Trimethylbenzene	ND ug/m3	1.7	1.68	03/06/14 23:0	8 108-67-8	
/inyl chloride	ND ug/m3	0.44	1.68	03/06/14 23:0	8 75-01-4	
n&p-Xylene	1.5J ug/m3	3.0	1.68	03/06/14 23:0	8 179601-23-1	
o-Xylene	ND ug/m3	1.5	1.68	03/06/14 23:0	8 95-47-6	

REPORT OF LABORATORY ANALYSIS

Appendix C

Support Documentation

PROJECT NARRATIVE

Project:

1121C06221 10258805

Method:

TO-15

Pace Project No.:

Description: TO15 MSV AIR

Client:

Tetra Tech GEO - Maryland

Date:

March 15, 2014

General Information:

47 samples were analyzed for TO-15. All samples were received in acceptable condition with any exceptions noted below.

The samples were analyzed within the method required hold times with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Internal Standards:

All internal standards were within QC limits with any exceptions noted below.

Surrogates:

All surrogates were within QC limits with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

- L1: Analyte recovery in the laboratory control sample (LCS) was above QC limits. Results may be biased high.
 - LCS (Lab ID: 1635646)
 - trans-1,2-Dichloroethene

QC Batch: AIR/19617

- L3: Analyte recovery in the laboratory control sample (LCS) exceeded QC limits. Analyte presence below reporting limits in associated samples. Results unaffected by high bias.
 - · LCS (Lab ID: 1635821)
 - trans-1,2-Dichloroethene

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

QC Batch: AIR/19607

- R1: RPD value was outside control limits.
 - DUP (Lab ID: 1635819)
 - · Methylene Chloride

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

PROJECT NARRATIVE

Project:

1121C06221 10258805

Method:

Pace Project No.:

d: TO-15

Description: TO15 MSV AIR

Client:

Tetra Tech GEO - Maryland

Date:

March 15, 2014

QC Batch: AIR/19607

R1: RPD value was outside control limits.

Trichloroethene

Additional Comments:

Analyte Comments:

QC Batch: AIR/19598

E: Analyte concentration exceeded the calibration range. The reported result is estimated.

- SV-113-C-16 (Lab ID: 10258805027)
 - · Methylene Chloride

QC Batch: AIR/19607

A3: The sample was analyzed by serial dilution.

- IA-105-Z-16 (Lab ID: 10258805030)
 - m&p-Xylene
 - Toluene
- IA-123-Z-16 (Lab ID: 10258805032)
 - m&p-Xylene
 - Toluene
- SV-102-C-16 (Lab ID: 10258805009)
 - 1,1-Dichloroethane
 - 1,1-Dichloroethene
 - 1,1,1-Trichloroethane
 - Ethylbenzene
 - m&p-Xylene
 - o-Xylene
 - Trichloroethene
- SV-126-C-16 (Lab ID: 10258805017)
 - · Vinyl chloride
- SV-133-C-16 (Lab ID: 10258805025)
 - Trichloroethene

C0: Result confirmed by second analysis.

- SV-105-Z-16 (Lab ID: 10258805029)
 - Methylene Chloride

E: Analyte concentration exceeded the calibration range. The reported result is estimated.

- DUP (Lab ID: 1635819)
 - Trichloroethene
- SV-105-Z-16 (Lab ID: 10258805029)
 - · Methylene Chloride

QC Batch: AIR/19617

D3: Sample was diluted due to the presence of high levels of non-target analytes or other matrix interference.

- IA-088-C-16 (Lab ID: 10258805006)
 - · Dichlorodifluoromethane

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

Minneapolis, MN 55414 (612)607-1700

PROJECT NARRATIVE

Project:

1121C06221

Pace Project No.:

10258805

Method:

TO-15

Description: TO15 MSV AIR

Client:

Tetra Tech GEO - Maryland

Date:

March 15, 2014

This data package has been reviewed for quality and completeness and is approved for release.

REPORT OF LABORATORY ANALYSIS

SAMPLE SUMMARY

Project:

1121C06221

Pace Project No.:

10258805

Lab ID	Sample ID	Matrix	Date Collected	Date Received
10258805001	SV-143-C-16	Air	02/24/14 16:32	02/26/14 08:12
10258805002	IA-143-C-16	Air	02/24/14 16:44	02/26/14 08:12
10258805003	SV-135-C-16	Air	02/24/14 11:35	02/26/14 08:12
10258805004	IA-135-C-16	Air	02/24/14 16:54	02/26/14 08:12
10258805005	SV-088-C-16	Air	02/24/14 11:42	02/26/14 08:12
10258805006	IA-088-C-16	Air	02/24/14 16:56	02/26/14 08:12
10258805007	SV-142-C-16	Air	02/24/14 11:40	02/26/14 08:12
10258805008	IA-142-C-16	Air	02/24/14 16:57	02/26/14 08:12
10258805009	SV-102-C-16	Air	02/24/14 11:49	02/26/14 08:12
10258805010	IA-102-C-16	Air	02/24/14 17:03	02/26/14 08:12
10258805011	SV-130-C-16	Air	02/24/14 11:52	02/26/14 08:12
10258805012	IA-130-C-16	Air	02/24/14 17:58	02/26/14 08:12
10258805013	SV-060-C-16	Air	02/24/14 11:59	02/26/14 08:12
10258805014	IA-060-C-16	Air	02/24/14 18:00	02/26/14 08:12
10258805015	SV-141-C-16	Air	02/24/14 12:02	02/26/14 08:12
10258805016	IA-141-C-16	Air	02/24/14 18:14	02/26/14 08:12
10258805017	SV-126-C-16	Air	02/24/14 12:06	02/26/14 08:12
10258805018	IA-126-C-16	Air	02/24/14 18:19	02/26/14 08:12
10258805019	SV-065-C-16	Air	02/24/14 12:10	02/26/14 08:12
10258805020	IA-065-C-16	Air	02/24/14 18:23	02/26/14 08:12
10258805021	SV-063-B-16	Air	02/24/14 12:14	02/26/14 08:12
10258805022	IA-063-B-16	Air	02/24/14 18:25	02/26/14 08:12
10258805023	SV-033-B-16	Air	02/24/14 12:18	02/26/14 08:12
10258805024	IA-033-B-16	Air	02/24/14 18:28	02/26/14 08:12
10258805025	SV-133-C-16	Air	02/24/14 11:55	02/26/14 08:12
10258805026	IA-133-C-16	Air	02/24/14 18:40	02/26/14 08:12
10258805027	SV-113-C-16	Air	02/24/14 11:43	02/26/14 08:12
10258805028	IA-113-C-16	Air	02/24/14 16:59	02/26/14 08:12
10258805029	SV-105-Z-16	Air	02/24/14 12:29	02/26/14 08:12
10258805030	IA-105-Z-16	Air	02/24/14 18:48	02/26/14 08:12
10258805031	SV-123-Z-16	Air	02/24/14 12:32	02/26/14 08:12
10258805032	IA-123-Z-16	Air	02/24/14 18:49	02/26/14 08:12
10258805033	SV-121-B-16	Air	02/24/14 12:39	02/26/14 08:12
10258805034	IA-121-B-16	Air	02/24/14 19:02	02/26/14 08:12
10258805035	SV-101-B-16	Air	02/24/14 12:40	02/26/14 08:12
10258805036	IA-101-B-16	Air	02/24/14 19:03	02/26/14 08:12
10258805037	SV-128-C-16	Air	02/24/14 12:18	02/26/14 08:12

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

SAMPLE SUMMARY

Project:

1121C06221

Pace Project No.:

10258805

Lab ID	Sample ID	Matrix	Date Collected	Date Received
10258805038	IA-128-C-16	Air	02/24/14 19:13	02/26/14 08:12
10258805039	IA-145-C-16	Air	02/24/14 19:20	02/26/14 08:12
10258805040	IA-146-C-16	Air	02/24/14 19:18	02/26/14 08:12
10258805041	IA-147-C-16	Air	02/24/14 19:25	02/26/14 08:12
10258805042	IA-148-C-16	Air	02/24/14 19:15	02/26/14 08:12
0258805043	IA-144-C-16	Air	02/24/14 19:37	02/26/14 08:12
0258805044	SV-DUP1-C-16	Air	02/24/14 00:00	02/26/14 08:12
0258805045	SV-DUP2-C-16	Air	02/24/14 00:00	02/26/14 08:12
10258805046	IA-DUP1-C-16	Air	02/24/14 00:00	02/26/14 08:12
10258805047	IA-DUP2-C-16	Air	02/24/14 00:00	02/26/14 08:12
10258805048	Unused Can#1163	Air	02/24/14 00:00	02/26/14 08:12
10258805049	Unused Can#2476	Air	02/24/14 00:00	02/26/14 08:12

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

AIR: CHAIN-OF-CUSTODY / Analytical Request Document

The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.

N/A Samples Intact Y/N SAMPLE CONDITIONS 3 ৃ 900 Clean Air Act Pace Lab ID 000 -14 700 P ි ය 0 Reporting Units
ug/m² mg/m²
PPBV PPMV Sealed Cooler g Ó Voluntary Clean Up Dry Clean RCRA Received on lce N/A N/A N/A Other, Emissions Z. J° ni qmeT 14848 CW 7180 Superfund Sampling by State 72614 Report Level DATE ocation of UST Method: 0017 0386 0435 80h0 Y / AFFILIATION Control Number h ho 003 -30-40|a070 1030 Number -30-70178 Summa -3800B -275-5035B -30-383 0.086-SAMPLER NAME AND SIGNATURE 654 - 30-30 3850C (Final Field - psig) Canister Pressure (Initial Field - psig) Canister Pressure ace Project Manager/Sales Rep. 132 53 0 B CH PH. GEON MINGECHSONINGICIAN F ace Quote Reference: DATE COLLECTED Company Name: RELINQUISHED BY / AFFILIATION Pace Profile #: Section C C488 0853 8355 98 0160 000 \$850 555 8833 500 PID Reading (Client only प्र MEDIA CODE Required Project Information Project Number: 113 1 Liter Summa Can 6 Liter Summa Can Engal To: | Purchase Order | Purchase Order | Sany, Apara Nacy & Petrahada Cum | Project Name: | Project Name: Section B Report To: Copy To: Sermanhowa, MD 3081 'Section D Required Client Information Address 20351 Century Byd Sample IDs MUST BE UNIQUE **AIR SAMPLE ID** AI-08-C-16 IA-143-C-16 TA-143-C-16 TH-088-C-16 SY-103-C-16 TB-135-C-16 SN-088-C-16 SV-135-C-16 SV-143-C-16 mpany Tetra Tech Section A Required Client Information: Requested Due Date/TAT: 10 # MBTI

OFIGINAL

SOLVE OF SAMPLES

1700 Elm Street SE, Suite 200, Minneapolis, MN 55414 Air Technical Phone: 612.607.6386

FC046Rev.01, 03Feb2010

Page 70 of 76

FC046Rev.01, 03Feb2010

AIR: CHAIN-OF-CUSTODY / Analytical Request Document

The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.

Samples Intact Y/N Y/N Y/N/ SAMPLE CONDITIONS Clean Air Act Other \simeq mg/m³ ţ から 065 Sealed Cooler 0 1% 5 Ø, 520 S 0 Z 2 N/A N/A స్త్రీ RCRA ্র ক্ 2 Cretody Page: 🎝 Other ug/m² PPBV N/A N/A N/A Received on Emissions Xvoluntary Clean Up Dry Clean £ 50 14856 O" ni qmeT Qu $\times \times \times$ 2)80 Superfund Sampling by State Report Level ocation of 22614 UST Method: Control Number あるス O 1003 2498 090 1330 Number Summa 1303 -30 -60346 000 _ 0 1819-30-30 310-3000 0086-814-30 -3 825-30-8 ナー SAMPLER NAME AND SIGNATURE (Final Field - psig) 一 る-1430 Canister Pressure (linitial Field - psig) Pace Project Manager/Sales Rep. HISCIC भ्र 88 833 PSIL HINDERCES HITHEIGHIN DATE Pace Quote Reference Invoice Information DATE COLLECTED Company Name Pace Profile #: RELINQUISHED BY / AFFILIATION Section C 55 000 **G335** 200 C243 5443 R R 8 Address: 0935 DATE CO(0,00 PID Reading (Cilent only) ري Required Project Information MEDIA CODE Project Number. 112 Purchase Order No. Tedlar Bag
1 Liter Summa Can
6 Liter Summa Can
Low Volume Puff
High Volume Puff
Other Project Name: Section B Copy To: 10351 Century Blyd 2 Hear Tony, Approvage C-tetrateh Cermanhound, mid 2087 'Section D Required Client Information AIR SAMPLE ID Sample IDs MUST BE UNIQUE IA-063-B-16 SV-033-B-16 IA-065-C-16 9 51-063-B-16 DA-141-C-16 SV-136-C-10 5V-141-C-16 SX-090-C)-9e1-HI SX-C65-X tetro Tech Required Client Information: Requested Due Date/TAT: Section A # MBTI

1700 Elm Street SE, Suite 200, Minneapolis, MN 55414 Air Technical Phone: 612.607.6386

ORIGINAL

Pace Analytical

50885201

AIR: CHAIN-OF-CUSTODY / Analytical Request Document

The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately

Samples Intact Y/N A/A(QA/A N/A SAMPLE CONDITIONS Clean Air Act Pace Lab ID 030 Reporting Units ug/m² mg/m² ppBV ppMV 035 50 23.0 Sealed Cooler N/A ANY. cnarogy RCRA eo| N/A N/A Offher, N/A Received on Emissions Dry Clean Amy Temp in °C 14857 ≥ B TIME Voluntary Clean Up Superfund 6817 Sampling by State 22614 Report Level ocation of UST Method: 0000 Control Number 0000 0000 0000 0000 made our 0 Number 368001-05-1 1333 30 0.0 239 1749-39 45253 -30 0.0 BB -30-3024g 2401-30 +3.0 ay 3000 Str 02-8/18 SAMPLER NAME AND SIGNATURE (Final Field - psig) Canister Pressure Name of SAMPLER: Sec Pace Project Manager/Sales Rep **CHI** AOS SEII MINCE SIGNI MINES ace Quote Reference nvoice Information COLLECTED отрапу Nате: Pace Profile #: Section C 8 3 SS 3 S 833 8 B 3 ttention: Address: DATE PID Reading (Client only) خ Required Project Information: MEDIA CODE Project Number | 7 urchase Order No.: Tedlar Bag 1 Liter Summa Can 6 Liter Summa Can Low Volume Puff High Volume Puff Other Section B Report To: Tong, Apanaxage tehotech Casi Centory Blud States Section D Required Client Information Proce Om pushing AIR SAMPLE ID Sample IDs MUST BE UNIQUE 31-131-B-16 IB-105-7-11 SN-133-Z-16 Required Client Information: Requested Due Date/TAT: 1-10 Section A # MaTI

ORIGINAL

Pace Analytical" www.pacelabs.com

(0258%

AIR: CHAIN-OF-CUSTODY / Analytical Request Document

The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.

N/A N/A(Jk/N N/Y fostri seldmed SAMPLE CONDITIONS Clean Air Act Other Pace Lab 1D 550 ᢐ sealed Cooler N/A N/A N/A 376 RCRA 0,00 とばの Z 5 620 Custody 7,70 770 7 × 5 Page: ug/m² PPBV Other Other **⊕**√ N/A N/A N/A Received on Superfund Emissions Xoluntary Clean Up Dry Clean AMR Temp in °C 14858 2 TIME 2180 Sampling by State Report Level ocation of DATE 22614 UST Method: 8000c Control Number ACCEPTED BY / AFFILIATION 00000 0000 0000 0000 0000 1206CR 0 5880 9030 299 **3504** وَ Number Summa 8 0 C 3 999 ਹ ਹ 0 SAMPLER NAME AND SIGNATURE (Final Field - psig) **S** 1 Canister Pressure TIME R स्र (Initial Field - psig) Canister Pressure ace Project Manager/Sales Rep 925 19662 2019 1018 DATE ace Quote Reference COLLECTED DATE Company Name Pace Profile #: RELINQUISHED BY / AFFILIATION Section C Address: SE SE SE DATE るの金 520 PID Reading (Cllent only) Project Number: 1/2/1CC MEDIA CODE Required Project Information Purchase Order No. MEDIA CO Tedlar Bag T 1 Liler Summa Can 1 6 Liter Summa Can 6 Low Volume Puff L High Volume Puff L Other Project Name: alid Media Code Section B Copy To: ong. Aporovoge @ tehodeh co SCOST CENTUM BIND SINK SOC Germantount MD 20874 Section D Required Client Information Sample IDs MUST BE UNIQUE AIR SAMPLE ID SY-D-83-C-16 TA-144-C-16 TA-146-C-16 31-D-191-C-16 CA-145-C-16 Required Client Information: Requested Due Date/TAT: Section A # Mati

1700 Elm Street SE, Suite 200, Minneapolis, MN 55414 Air Technical Phone: 612.607,6386

OFIGINAL

Pace Analytical"

Pace	Analytical [®]
James Land	

Document Name: Air Sample Condition Upon Receipt Document No.:

Document Revised: 26Dec2013

Receipt Page 1 of 1

Issuing Authority:

	,
	ŧ
Ì	

1		F-MN-A-106	-rev.09		Pace Minnesota Quality C	Office
ir Sample Condition Cli Upon Receipt	ient Name: tetsa tec	,L	roject #:	#OI	: 1025880)5
	ed Ex UPS	USPS Clie	ent	025880		
Tracking Number:	n other sheet					and the second s
ustody Seal on Cooler/B	ox Present? Yes	No Seals Int	act? Yes	⊠ No [Optional: Proj. Due Date:	Proj. Name:
cking Material: Bul	bble Wrap □ Bubble B	ags Foam Nor	ne []Other:		Temp	Blank rec: Yes
emp. (TO17 and TO13 samp emp should be above freezing one of ice Received Bli	ing to 6°C Correction Fact	Corrected Temp (°C):		m. Used: nitials of Pe	B88A912167504 B88A9132521491 erson Examining Contents:	☐72337080 ☐80512447 €2 2-2 6 6
Chain of Custody Present?	<u></u>	Øes □No	□N/A 1.		Comments:	
	_				· · · · · · · · · · · · · · · · · · ·	
Chain of Custody Filled Ou			□N/A 2. □N/A 3.			
Chain of Custody Relinqui		Yes □No	□N/A 3.			
Sampler Name and/or Sig	~					
Samples Arrived within Ho		✓Yes □No □Yes ☑No	N/A 5. N/A 6.			
Short Hold Time Analysis Rush Turn Around Time R	·		□N/A 7.			
Sufficient Volume?	requesteu:	YesNo □es □No	□N/A 7.			
Correct Containers Used?		Yes No	□N/A 8.			
-Pace Containers Used		☑res ☐No	□N/A			
Containers Intact?		→ Yes No	□N/A 10.			
Media: GI GY		Les Livo	11.			
Sample Labels Match COC		Yes No	□N/A 12.			
	<u> </u>	%	1	****		
Samples Received:		T :			<u> </u>	
Cani	sters T	Flow C	ontrollers		Stand A	
Sample Number	Can ID	Sample Number	Can I		Sample Number	Can ID 2498/ 0(8)
54-143-6-16	2477/0204	5V-130-6-16	1176/	0386	5V-063-8-16	
IA - 143-C-16		IA-130-6-16			IA-063-19-16	
SV-135-6-16	4	SV-060-C-16		0057	SV-033-8-16	
IA-135-6-16		IA -060-L-16		2150	TA-037-8-16	. 2.1
SV-088-C-16		5V-141-6-16		336	SV-133-0-16	4 10
IA-088-6-16	1784/0444	IA-141-6-16		0147	I4 133-6-16	
W-142-C-16	2574/0167	5V-126-6-16		128	SV 113 - 0 - 16	2523/0170
TA-142-C-16	2581/0536	24-126 - C-16		0434	IA-113-6-16	2448 027
	0766/ 0038	SV-065-6-16		2199	5V-105-0-16	0828 /0037
IA-102-C-16	2264 0017	IA-067- 6-216	1023/03	521	IA-105-6-16	0922/0454
LIENT NOTIFICATION/RE	ESOLUTION				Field Data Required?	☐Yes ☐No
Person Conta	acted:		Date/Tii	me:		
Comments/Resol	ution:				· · · · · · · · · · · · · · · · · · ·	
						
		•		Doto:	2/2/10	
roject Manager Review:		rolina compliance samples a	copy of this form	Date:	to the North Carolina DEHNR	Certification Office (i.e

hold, incorrect preservative, out of temp_incorrect containers)

	Document Na		Document Revised: 26De	ec2013
Pace Analytical*	Air Sample Condition (Page 1 of 1 Issuing Authority:	
accomany tour	F-MN-A-106-re		Pace Minnesota Quality	Office
Air Sample Condition Upon Receipt Client Name:	Pro	oject #:	20 990 T	
Courier: Fed Ex UPS Commercial Pace	USPS Clien	t / 0	15885	
Tracking Number:	No Seals Intag	t? □Yes □N	Optional: Proj. Due Date:	Proj. Name:
Custody Seal on Cooler/Box Present? Yes Packing Material: Bubble Wrap Bubble	_		<u> </u>	Blank rec: Yes No
	-	Thermom. Use	d. □B88A912167504	72337080
, , , , , , , , , , , , , , , , , , ,	ctor:	· ·	of Person Examining Contents:	80512447
Type of ice Received Blue Wet None		24.0 5	• · · · · · · · · · · · · · · · · · · ·	
			Comments:	
Chain of Custody Present?	☐Yes ☐No [
Chain of Custody Filled Out?	□Yes □No [_N/A 2.		
Chain of Custody Relinquished?	□Yes □No [_N/A 3.		
Sampler Name and/or Signature on COC?	☐Yes ☐No [□N/A 4.		
Samples Arrived within Hold Time?	□Yes □No [_N/A 5.		
Short Hold Time Analysis (<72 hr)?	☐Yes ☐No [N/A 6		
Rush Turn Around Time Requested?	Yes No	□N/A 7.	<u> </u>	<u>. </u>
Sufficient Volume?	☐Yes ☐No [□N/A 8.		,
Correct Containers Used?	☐Yes ☐No []N/A 9.		
-Pace Containers Used?	□Yes □No [□n/a		
Containers Intact?	☐Yes ☐No	N/A _ 10.		
Media:	<u> </u>	11.	w	
Sample Labels Match COC?	☐Yes ☐No	N/A 12.		
Samples Received:				
Canisters	Flow Co	ntrollers	Stand	Alone G
Sample Number Can ID	Sample Number	Can ID	Sample Number	Can ID
8V-123-2-16 2398/0239	IA-147-6-16	1334 /05	12	
IA-143-2-16 2537/0146	IA-148-1-16	1661 /051	(
5U-121 B-16 2497/ 0179	[A-144 (-16	2261/014	(
IA-121 B_16 2558/0433	5U-DOP77-16	254/018	3	ļ
SU-101-8-16 2441 / 0196	5V-142-016	2582/ 048	3	
TA-101-B-16 1332 / 0535	IA-Dopl-Calb	088/-		
50-128-6-16 2407/0368	IA-Dup 2-6-16	1299 / -		
IA- 128-1-16 0891 /0453	unised	1163	73	
2421 145-146 2421 / 0445	unused	2000	• •	
IA- 146-6-16 2221 /0519		2476	<u> </u>	
CLIENT NOTIFICATION/RESOLUTION			Field Data Required	Yes No
Person Contacted:		Date/Time:		
Comments/Resolution: 53E		- · · · · · · · · · · · · · · · · · · ·		

Project Manager Review:

Note: Whenever there is a discrepancy affecting North Carolina compliance samples, a copy of this form will be sent to the North Carolina DEHNR Certification Office (i.e. out of hold, incorrect preservative, out of temp, incorrect containers)

Document Name: SCUR Exceptions Form

Document No.: F-MN-L-220-Rev.00

Document Revised: 16Apr2012 Page 1 of 1

Issuing Authority: Pace Minnesota Quality Office

R #15

Workorder #:

10258805

FEDEX #'S		
issue	Sample ID	Container Type/#
7Jug 79802923 2156		
7980 2923 2167		
7980 2923 2123		
85834427 1600		
7980 : 2923 2134		
8583 4427 1600 ²²⁶¹⁴		÷
798029232178		
7980 29232145		
		:
	·:	
÷		

ANALYTE	IA-DUP1-C-16	IA-133-C-16	RPD	VARIANCE
BENZENE	0.83	0.93	11.36	0.1
CHLORODIFLUOROMETHANE	3.9	4.4	12.05	0.5
DICHLORODIFLUOROMETHANE	2.3	2.4	4.26	0.1
M+P-XYLENES	1.9	2.1	10	0.2
METHYLENE CHLORIDE	1.9	8.4	(126.21)	6.5
NAPHTHALENE	3.5	3.7	5.56	0.2
O-XYLENE	QN	0.84	(200)	99.0
TOLUENE	2.4	2.9	18.87	0.5
TRICHLOROETHENE	1.4	1.2	15.38	0.2

ANALYTE	IA-DUP2-C-16	IA-113-C-16	RPD	VARIANCE
1,1,1-TRICHLOROETHANE	QN	13.2	(200)	11.3
1,1-DICHLOROETHANE	QN	43.7	(500)	42.3
1,1-DICHLOROETHENE	QN	17.1	\doz\	15.7
1,2,4-TRIMETHYLBENZENE	0.94	3.2	(109.18)	2.26
BENZENE	0.89	1.9	(2.40)	1.01
CHLORODIFLUOROMETHANE	3.1	6.5	(70.83)	3.4
DICHLORODIFLUOROMETHANE	2.1	4.7	(200)	99.0
M+P-XYLENES	3.4	9.92	(183.00)	73.2
METHYLENE CHLORIDE	5.1	79.7	(175.94)	74.6
NAPHTHALENE	3.2	QN	(200)	10.9
O-XYLENE	1.2	26.6	(182.73)	25.4
TOLUENE	QN	24.7	(200)	23.4
TRICHLOROETHENE	QN	20	(500)	19.8

ANALYTE	SV-DUP1-C-16	SV-133-C-16	RPD	VARIANCE
1,2-DICHLOROETHANE	0.82	0.92	11.49	1.0
BENZENE	28.0	0.77	12.20	0.1
CHLORODIFLUOROMETHANE	4.4	4.3	2.30	0.1
CHLOROFORM	6.2	6.7	7.75	9.0
CIS-1,2-DICHLOROETHENE	2.8	8.4	3.51	6.0
DICHLORODIFLUOROMETHANE	8	3.2	6.45	0.2
M+P-XYLENES	2	1.8	10.53	0.2
METHYLENE CHLORIDE	13	20.2	(43.37)	7.2
NAPHTHALENE	4.2	4.7	11.24	9.0
O-XYLENE	26.0	0.81	15.91	0.14
TETRACHLOROETHENE	159	169	6.10	10
TOLUENE	5.5	3.6	(41.76)	1.9
TRANS-1,2-DICHLOROETHENE	3.5	3.6	2.82	1.0
TRICHLOROETHENE	8630	10700	21.42	2070

ANALYTE	SV-DUP2-C-16	SV-113-C-16	RPD	VARIANCE
BENZENE	QN	2.4	(200)	1.85
CARBON TETRACHLORIDE	ND	1.1	(200)	0
CHLORODIFLUOROMETHANE	3.5	10.7	(101.41)	7.2
CHLOROFORM	1.8	ND	(2007)	0.1
CIS-1,2-DICHLOROETHENE	31.7	0.73	(191.00)	30.97
DICHLORODIFLUOROMETHANE	2.2	3.8	(53.33)	1.6
M+P-XYLENES	1.5	2.4	(46.15)	6.0
METHYLENE CHLORIDE	12.5	257	(191.22)	544.5
NAPHTHALENE	3.7	QN	(500)	0.8
O-XYLENE	ND	0.83	(200)	0.67
TOLUENE	1.7	6.1	(12.82	4.4
TRICHLOROETHENE	243	7	(188.80)	236

Pace Analytical"

Instrument Run Log

Instrument: 10AIR0 Method: Column: J&W DB-5 0.32mm Helium Tune Standard: 10288-3-16 Misc. Prep. Info: ISTD Lot: 10288-3-16 Surrogate Lot: Cal. Standard: 10288-3-16 10288-8-3

	IAM	3/07/14 06:19	TO15 065-14	_	Sample	5	5	06543 D
	JAM	3/07/14 05:55	TO15_065-14	214.4	Sample	G/19576	10258700001	06542.D
	JAM	3/07/14 05:30	TO15_065-14	1.68	Sample	G/19598	10258805047	06541.D
	JAM	3/07/14 05:01	TO15_065-14	1.74	Sample	G/19598	10258805014	06540.D
	JAM	3/07/14 04:30	TO15_065-14	2.02	Sample	G/19598	10258805015	06539.D
	JAM	3/07/14 04:01	TO15_065-14	1.8	Sample	G/19598	10258805002	06538.D
	JAM	3/07/14 03:32	TO15_065-14	1.68	Sample	G/19598	10258805012	06537.D
	JAM	3/07/14 03:03	TO15_065-14	1.87	Sample	G/19598	10258805041	06536.D
	JAM	3/07/14 02:33	TO15_065-14	1.68	Sample	G/19598	10258805021	06535.D
	JAM		TO15_065-14	1.8	Sample	G/19598	10258805033	06534.D
	JAM	3/07/14 01:35	TO15_065-14	1.87	Sample	G/19598	10258805034	06533.D
	JAM	3/07/14 01:06	TO15_065-14	1.68	Sample	G/19598	10258805003	06532.D
	JAM	3/07/14 00:36	TO15_065-14	. .	Sample	G/19598	10258805040	06531.D
	JAM	3/07/14 00:07	TO15_065-14	1.68	Sample	G/19598	10258805027	06530.D
	JAM	3/06/14 23:38	TO15_065-14	1.87	Sample	G/19598	10258805043	06529.D
	JAM	3/06/14 23:08	TO15_065-14	1.68	Sample	G/19598	10258805045	06528.D
	JAM	3/06/14 22:39	TO15_065-14	1.8	Sample	G/19598	10258805004	06527.D
	JAM	3/06/14 22:10	TO15_065-14	1.68	Sample	G/19598	10258805046	06526.D
	JAM	3/06/14 21:41	TO15_065-14	1.68	Duplicate	G/19598	1635564	06525.D
	JAM	3/06/14 21:10	TO15_065-14	1.68	Sample	G/19598	10258805020	06524.D
	JAM	3/06/14 20:41	TO15_065-14	1.68	Sample	G/19598	10258805007	06523.D
	JAM	3/06/14 20:12	TO15_065-14	9 1.87	Duplicate	G/19598	-DUP	06522.D
	JAM	3/06/14 19:41	TO15_065-14	1.87	Sample	G/19598	10258805008	06521.D
	JAM	3/06/14 19:12	TO15_065-14	2.1	Sample	G/19598	10258805022	06520.D
	JAM	3/06/14 18:43	TO15_065-14	1.44	Sample	G/19576	60163440001	06519.D
	JAM	3/06/14 18:12	TO15_065-14	_	Blank	G/19598	.D1634995	06518_19598.D1634995
	JAM	3/06/14 18:12	TO15_065-14	-	Blank	ତ	BLANK	06518.D
	JAM	_	TO15_065-14	_	Blank	ହ	K. IBLANK	06518_BLANK.DBLANK
	JAM	_	TO15_065-14	-	Blank	ହ	BLANK	06517.D
	JAM	_	TO15_065-14		Blank	ଦ	BLANK	06516.D
	JAM	3/06/14 16:44	TO15_065-14	_	Sample	ହ	0	06515.D
	JAM		TO15_065-14	_	S	G/19598	.D1634996	06514_19598.D1634996
	JAM	_	TO15_065-14	_	S	ହ	LCS	06514.D
	JAM	_	TO15_065-14	-	SO	ହ	CV	06513.D
	JAM	_	TO15_065-14	_	SOL	ହ	ICV ADDL	06512.D
	JAM	_	TO15 065-14	_	<u>ន</u>	ହ	CAL7	06511.D
	JAM		TO15 065-14	_	<u>8</u>	ଦ	CAL6	06510.D
	JAM		TO15 065-14	_	<u>ន</u>	ହ	CAL5	06509.D
	JAM	_	TO15 065-14		<u>ន</u>	ହ	CAL4	06508.D
	JAM	_	TO15_065-14	-	<u>ਲ</u>	ହ	CAL3	06507.D
	JAM	_	TO15_065-14	-	<u>ਲ</u>	ହ	CAL2	06506.D
	JAM	_	TO15_065-14	-	<u>ਲ</u>	ହ	CAL1	06505.D
	JAM	3/06/14 11:48	TUNE	-	Tune	U	BFB	06504.D
	JAM	_	TO15_061-14	_	CCal	ହ	CCV	06503.D
	JAM	_	TO15_061-14	_	CCa	ହ	CCV	06502.D
	JAM	3/06/14 10:00	TUNE		Tune	C	BFB	06501BFB.D
Comments	Oper. C	Date & Time	pH Method	묶	Type	Matrix/Batch	Lab ID	Path/File

Instrument Run Log

/ AUGHIAIYIIGAI	ludi	Hat dillett vall Fog		2
Instrument: 10AIR0 Column: J&W DB-5 0.32r	Instrument: 10AIR0 Column: J&W DB-5 0.32mm Helium Tune Standard: 10288-3-16	Misc. Prep. Info: 10288-3-16 ISTD Lot: 10288-3-16		Surrogate Lot: 10288-3-16 Cal. Standard: 10288-8-3
Path/File Lab ID	Matrix/Batch Type DF	DF pH Method Date & Time	e Oper. Comments	
06544.D IC	G/ Sample 1	TO15_065-14 3/07/14 06:4		
06545.D IC	G/ Sample 1	TO15_065-14 3/07/14 07:2		
06546.D IC	G/ Sample 1	TO15_065-14 3/07/14 07:56	i6 JAM	
06547.D 10256665001	G/ Sample 1	TO15_065-14		,
Check Maintenance Items Performed:	rformed:			
Changed septum	Clipped column	Changed column - Lot #		
Cleaned liner	Changed trap - Lot #	# Other minor parts replaced		
Replaced/Cleaned gold seal	seal Cleaned MS Source	e No maintenance performed today		

File Path 1: U:\10AIR0.I\030614.B\
Matrix Codes: [G]as, [L]iquid, [S]olid, [N]one

Additional Comments:

Run order verified:

Report Date: 03/07/2014 16:42 Reviewed By/Date:

5A - FORM V VOA VOLATILE ORGANIC INSTRUMENT PERFORMANCE CHECK BROMOFLUOROBENZENE (BFB)

EFA SAIVIF	LE NO.
BFB	

Lab Name: Pace Analytical

Contract:

Lab Code:

PASI

Case No.:

SAS No.:

SDG No.: 10258805

Lab File ID: 06504.D

BFB Injection Date: 03/06/2014

Instrument ID: 10AIR0

BFB Injection Time: 11:48

GC Column: J&W DB-5 ID: 0.32 (mm)

		% RELATIVE	
m/e	ION ABUNDANCE CRITERIA	ABUNDANCE	
95	Base Peak, 100% relative abundance	100.00	
50	8.00 - 40.00% of mass 95	18.70	-
75	30.00 - 66.00% of mass 95	53.61	
96	5.00 - 9.00% of mass 95	6.57	
173 Less than 2.00% of mass 174		0.82	(0.98)
174	50.00 - 120.00% of mass 95	83.77	
175	4.00 - 9.00% of mass 174	6.26	(7.48)
176	93.00 - 101.00% of mass 174	81.89	(97.76)
177	5.00 - 9.00% of mass 176	5.27	(6.44)

1 - Value is %mass 174

2 - Value is %mass 176

	EPA SAMPLE NO.	LAB SAMPLE ID	LAB FILE ID	DATE ANALYZED	TIME ANALYZED
1	CAL1	CAL1	06505.D	03/06/2014	12:12
2	CAL2	CAL2	06506.D	03/06/2014	12:37
3	CAL3	CAL3	06507.D	03/06/2014	13:02
4	CAL4	CAL4	06508.D	03/06/2014	13:29
5	CAL5	CAL5	06509.D	03/06/2014	13:59
6	CAL6	CAL6	06510.D	03/06/2014	14:28
7	CAL7	CAL7	06511.D	03/06/2014	15:00
8	ICVADDL (LCS)	ICVADDL	06512.D	03/06/2014	15:26
9	ICV (LCS)	ICV	06513.D	03/06/2014	15:53
10	LCS (LCS)	LCS	06514.D	03/06/2014	16:20
11	LCS for HBN 288599 [AIR/	1634996	06514_19598.D	03/06/2014	16:20
12	BLANK (BLK)	BLANK	06518_BLANK.	03/06/2014	18:12
13	BLANK for HBN 288599 [AI	1634995	06518_19598.D	03/06/2014	18:12
14	IA-063-B-16	10258805022	06520.D	03/06/2014	19:12
15	IA-142-C-16	10258805008	06521.D	03/06/2014	19:41
16	SV-142-C-16	10258805007	06523.D	03/06/2014	20:41
17	IA-065-C-16	10258805020	06524.D	03/06/2014	21:10
18	IA-065-C-16(1630530DUP)	1635564-DUP	06525.D	03/06/2014	21:41
19	IA-DUP1-C-16	10258805046	06526.D	03/06/2014	22:10
20	IA-135-C-16	10258805004	06527.D	03/06/2014	22:39
21	SV-DUP2-C-16	10258805045	06528.D	03/06/2014	23:08
22	IA-144-C-16	10258805043	06529.D	03/06/2014	23:38
23	SV-113-C-16	10258805027	06530.D	03/07/2014	00:07
24	SV-135-C-16	10258805003	06532.D	03/07/2014	01:06
25	IA-121-B-16	10258805034	06533.D	03/07/2014	01:35

26	SV-121-B-16	10258805033	06534.D	03/07/2014	02:04
27	SV-063-B-16	10258805021	06535.D	03/07/2014	02:33
28	IA-147-C-16	10258805041	06536.D	03/07/2014	03:03
29	IA-130-C-16	10258805012	06537.D	03/07/2014	03:32
30	IA-143-C-16	10258805002	06538.D	03/07/2014	04:01
31	SV-141-C-16	10258805015	06539.D	03/07/2014	04:30
32	IA-060-C-16	10258805014	06540.D	03/07/2014	05:01
33	IA-DUP2-C-16	10258805047	06541.D	03/07/2014	05:30

10258805 Page 761 of 1988

5A - FORM V VOA VOLATILE ORGANIC INSTRUMENT PERFORMANCE CHECK BROMOFLUOROBENZENE (BFB)

EPA SAMPLE NO.	
BFB	

Lab Name: Pace Analytical

Contract:

Lab Code:

PASI

Case No.:

ID: 0.32

SAS No.:

SDG No.: 10258805

Lab File ID: 06501BFB.D

BFB Injection Date: 03/06/2014

Instrument ID: 10AIR0

BFB Injection Time: 10:00

GC Column: J&W DB-5

(mm)

		% RELATIVE	
m/e	ION ABUNDANCE CRITERIA	ABUNDANCE	=
95	Base Peak, 100% relative abundance	100.00	
50	8.00 - 40.00% of mass 95	23.76	
75	30.00 - 66.00% of mass 95	55.59	
96	5.00 - 9.00% of mass 95	6.71	
173	Less than 2.00% of mass 174	1.01	(1.27)
174	50.00 - 120.00% of mass 95	79.71	
175	4.00 - 9.00% of mass 174	6.86	(8.60)
176	93.00 - 101.00% of mass 174	77.93	(97.78)
177	5.00 - 9.00% of mass 176	5.60	(7.19)

INITIAL CALIBRATION DATA

Start Cal Date : 06-MAR-2014 12:12
End Cal Date : 06-MAR-2014 15:00
Quant Method : ISTD
Target Version : 4.14
Integrator : HP RTE
Method file : \\192.168.10.12\chem\10air0.i\030614.b\T015_065-14.m
Last Edit : 07-Mar-2014 10:13 10air0.i

Calibration File Names:
Level 1: \\192.168.10.12\chem\10air0.i\030614.b\06505.D
Level 2: \\192.168.10.12\chem\10air0.i\030614.b\06506.D
Level 3: \\192.168.10.12\chem\10air0.i\030614.b\06507.D
Level 4: \\192.168.10.12\chem\10air0.i\030614.b\06508.D
Level 5: \\192.168.10.12\chem\10air0.i\030614.b\06509.D
Level 6: \\192.168.10.12\chem\10air0.i\030614.b\06509.D
Level 7: \\192.168.10.12\chem\10air0.i\030614.b\06501.D
Level 7: \\192.168.10.12\chem\10air0.i\030614.b\065510.D

Compound	0.1000000 Level 1	0.2000000 Level 2	0.5000000 Level 3	1.0000 Level 4	10.0000 Level 5	20.0000 Level 6	 Curve	Coefficients b ml	m2	%RSD or R^2
	30.0000 Level 7		, 		 					
1 Chlorodif,uoromethane	+++++	1.99394			2.91016	2.98294	AVRG	 2.52255		20.08817
2 Propylene	6.61965 8.41833		8.15922	8.38875	,	8.29533		i 7.83508		9.66848
3 Dichlorodifluoromethane	1.03207	i i	i		i		AVRG	1.27555		1 11.41730
4 Dichlorotetraflucroethane	1.27217	1.46714	1.63486	1.64058		1.79592	 AVRG	1.62869		1 12.64715
a parantel - Millionnel - 1949-Million	_							ii		

10258805 Page 88 of 1988

Pace Analytical Services, Inc. INITIAL CALIBRATION DATA

Start Cal Date : 06-MAR-2014 12:12
End Cal Date : 06-MAR-2014 15:00
Quant Method : ISTD
Target Version : 4.14
Integrator : HP RTE
Method file : \\192.168.10.12\chem\10air0.i\030614.b\T015_065-14.m
Last Edit : 07-Mar-2014 10:13 10air0.i

	0.10000000	0.2000000	0.5000000	1.0000	10.0000	20.0000	i I	(Coefficients		* %RSD
Compound	Level 1 :	Level 2	Level 3	Level 4	Level 5		Curve	ь	ml	m2	or R^2
	30.0000 Level 7	i	i		 						1
5 Chloromethane	3.50245 5.34801		4.36948	4.51623		5.01769	 AVRG		4.50576	========	13.3289
6 Vinyl chloride	4.14126 4.61739	4.60201	4.83093	5.06430		4.69410	 AVRG		4.66786		 6.0080
7 1,3-Butadiene	6.58073 6.90758	7.343531	7.65434	7.06121	6.98929 	6.95432	, AVRG		7.07014		4.8379
8 Bromomethane	3.90165 4.57447		4.76856	4.88310	,		I IAVRG		4.52911		 7.2256
9 Chloroethane	8.51242: 10.11957	i	10.32200	10.64026	10.26343 	10.19563	I I IAVRG I		10.04013		 6.9113
10 Ethanol	1022; 243387	i	3275	7481	76561 	150543	 LINR	0.01071	14.11944		0.9986
11 Vinyl Bromide	3.74626 4.76964	4.55810			4.65708	4.66924			 4.59536		
				!			: 		; 		

Page 89 of 1988 10258805

Pace Analytical Services, Inc.

INITIAL CALIBRATION DATA

Start Cal Date : 06-MAR-2014 12:12
End Cal Date : 06-MAR-2014 15:00
Quant Method : ISTD
Target Version : 4.14
Integrator : HP RTE
Method file : \\192.168.10.12\chem\l0air0.i\030614.b\T015_065-14.m
Last Edit : 07-Mar-2014 10:13 10air0.i

	· 0.1000000	0.2000000	0.5000000	1.0000	16.0000	20.0000			Coefficients		%RSD
Compound	Level 1	Level 2	Level 3	Level 4	Level 5	Level 6	Curve	b	ml	m 2	or R^2
	30.0000 Level 7	i	; ;	, 	 		! 				
12 isopentane	4.20189	4.45193 		,	1	5.34369	AVRG		4.95832		10.28292
13 Acrolein	12.23369	13.85825 	15.63713			16.25000	AVRG				11.06501
14 Trichlorofluoromethane	0.98200 1.47074	1.06762	1.21300	1.23746	1.26431	1.35663	AVRG		1.22740		1 13.44237
15 Acetone	+++++ 3.17716	1.91456 	2.36380	2.43167	i	3.15082	AVRG		2.68538		1 19.50439
16 Isopropyl Alcohol	2.90900	3.84386		3.32005	3.46797	3.51013	AVRG I		- 3.39322		9.01810
17 Acrylonitrile	1146 391488	2272 	1	10306	i	266571	LINR :	0.00228	8.53814:		0.99962
18 l,l-Dichloroethene	2.36456! 3.22729!	2.64841	1	,	I	3.03206	AVRG		2.83450		9.70329
	;	i		! 					-)

10258805 Page 90 of 1988

Pace Analytical Services, Inc. INITIAL CALIBRATION DATA

	0.1000000	0.2000000	0.5000000	1.0000	10.0000	20.0000	1		Coefficients		%RSD
Compound	Level 1	Tevel 2			,		Curve	ь	m1	m2	or R^2
	30.0000 Level 7	 	 		I		 				1
19 Tert Butyl Alcohol (TBA)	1.66798	1.88614	1.78484		2.18144	2.37155	 AVRG		2.03510	======	16.1424
20 Freon 113	1.80808				2.382C21	2.53849	 AVRG		2.26695		1 13.0163
21 Methylene chloride	5016 677881	i	18603		2626331	480633	LINE	+0.05779	4.94221		0.9965
22 Allyl Chloride	12.04933 10.55409	11.62305	12.86250	11.62522;		10.24300	 AVRG	 	11.33608		 8.5948
23 Carbon Disulfide	1.54270 1.70403	1.57976		1.80081;		1.68785	i AVRG		1.68637		5.680
24 trans-1,2-dichloroethene	4.75120 4.83798	5.70443 	i		4.78672	4.79488	 AVRG	· 	5.08699		7.5894
25 Methyl Tert Butyl Ether	1.21421			1.49258			1	 			9.350
	 								 		_

10258805 Page 91 of 1988

INITIAL CALIBRATION DATA

	0.1000000	0.2000000	0.5000000	1.0000	10.0000	20.0000	1 1		cefficients		%RSD
Compound	Level 1 !	Level 2	Level 3	Level 4	Level 5	Level 6	Curve	d	ml	m2	or R^2
	30.0000 Level 7			 	 						
26 Vinyl Acetate	5143	,	20621	39824	582987 582987	1143838	 LINR			400	0.9996
27 1,1-Dichloroethane	1.91184 2.58224	2.08888			2.39959 	2.48296	I I	i	2.33452		10.3205
29 Methyl Ethyl Ketone	1139 329063		4499	8069	,	223053	I I !LINR	0.00457	10.16832		0.9997
30 Di-isopropyl Ether	1.16119 1.92482		i	1.57247	ı	1.79166	I I	 	1.55859		1 16.6903
31 n-Hexane	2.48255	i	3.18505 		3.19024	3.37878			3.15902		1 11.8359
32 Ethyl Acetate	2.32189 2.47458	2.66964			2.26677	2.37571	 AVRG	 	2.51148		8.6643
33 cis-1,2-Dichloroethene	5.07887; 4.61863		4.98313	5.05377	4.58561 		 AVRG		4.86083		4.9782
	: 										-

Page 92 of 1988 10258805

INITIAL CALIBRATION DATA

	0.1000000	0.2000000		1.0000	10.0000	20.0000			Coefficients		%RSD
Compound	Level]	Level 2	Level 3	Level 4			Curve	b	m1	m2	or R^2
	30.0000				 						i I
	Level 7	 - -	 	.e	 		 				
34 Ethyl Tert-Butyl Ether	1.08216		1.36441	1.38447					1		
	1.51482						AVRG		1.34351		10.7379
35 Chloroform	1.44979		1.73567	1.81129							:
	1.95438						AVRG		1.74061		9.8674
36 Tetrahydrofuran	3.83219		4.89183	4.91089					i i		;
	4.49320		!	!	 		AVRG		4.50854		8.4992
37 1,1,1-Trichloroethane	1.33482		1.53043	1.55117			{ -				!
	1.75455		1				AVRG		1.52974		9.8884
38 1,2-Dichloroethane	1.97771		2.27218	2.28069			• .				
	2.55506		1	I			AVRG		2.26620		8.1561
39 Benzene	1.17090		1.49783	1.53469							
	1.76249	1	1	!			AVRG		1.50703		1 12-5110
40 Carbon tetrachloride	1.31708	1.45154	1.53322	1.57726					-		
	1.91251	1		1			AVRG		1.58082		12.1751
							-		-		-

10258805 Page 93 of 1988

INITIAL CALIBRATION DATA

	C.1000000	0.2000000	0.5000000	1.0000	10.0000	20.0000	1	Coeffic	ients		%RSD
Compound	Level 1	Level 2	Level 3	Level 4	Level 5	Level 6	Curve	b m1		m2	or R^2
	30.0000 Level 7		i i	ļ	1		, ;] [
41 Cyclohexane	3.01802 4.54478	3.02078	i	1	3.46895	4.05973	I I	1	 1543		 16.4212
42 Tert Amyl Methyl Ether	+++++ 1.48708	C.70297	1.04520	1.26261	1.38716	1.43824	I I	ï	 2054		i 1 24.4857
44 2,2,4-Trimethylpentane	0.78493	0.96676 	,		1.00969	1.05438	I I	i	9164		i 10.2743
45 Heptane	2.34622	2.81857 2.81857	i	2.89820	'	3.04927	I I	i	1 4943		9.455
46 1,2-Dichloropropane	2.71563 4.70515	3.41398	4.07622	4.00249	,	4.40908	I I	3.9	 1722		16.885
47 Trichloroethene	2.84541 3.46202	3.39290	3.66439	3.73324	3.38692 	3.43703	I I		1741		8.377
48 1,4-Dioxane	4.42444 8.64949	6.74415				9.19682	I I	; 7.4	 0946		21.491
							! -				

10258805 Page 94 of 1988

INITIAL CALIBRATION DATA

	0.1000000	0.2000000	0.5000000	1.0000	10.0000	20,0000	1 1	Co	pefficients	:	%RSD
Compound		Level 2	Level 3	Level 4			Curve	b	m1	m2	or R^2
	30.0000 Level 7		 	, 	 	, 	i i				
49 Brownodichloromethane	1.40028			,	1.50491	1.64206	I AVRG		 1.56920		7.4497
50 Methylcyclohexane	5.78194		6.688881	6.3C144		5.92933 	I AVRG	. 1	6.12567		5.4717
51 Methyl Isobutyl Ketone	1.89309	i	2.62752	2.55257	1.96760	2.02466	I I IAVRG I	 	2.20958		13.2374
52 cis-1,3-Dichloropropene	1440669	6801	18213	37222 	474286	963452 963452	 LINR		2.33059		0.999
53 trans-1,3-Dichloropropene	36421 16190921	6693		35590	525674	 1082753 	 LINR	C.0139€	2.06940		0.9998
55 1,1,2-Trichloroethane	2.20829 3.60777		3.19524	3.44456	3.36067	3.54856 I	I I	- 	3.15076		1 16.3886
56 Toluene	1.02143		1.22565	1.25370 1.25370		1.29645		- 	1.21861		 8.8432
	- - !				 		 				_

10258805 Page 95 of 1988

INITIAL CALIBRATION DATA

Compound			0.5000000 : Level 3 :		10.0000 Level 5	20.0000 Level 6		b	Coefficients ml	m2	: %RSD : or R^2
	30.0000 Level 7		1	 	 						!
57 Methyl Butyl Ketone	1.20423 1.51312	1.52817	1.77821	1.89676	i	1.44797	I I		1.52798		15.8649
58 Dibromochloromethane	1.12652	1.17863		1.23136	1.08702	1.16789	I i		1.18586		5.5309
59 1,2-Dibromoethane	1.39157 1.48445	i		1.46901	, 1	1.38694	I AVRG		1.42652	·	5.4741
60 Tetrachloroethene	1.20745 1.68485	1.42142	i i	1.59374	1.48450	1.59820	AVRG		1.50481		 10.3777
62 Chlorobenzene	0.84990 1.13712		1.09878	1.12802 	i	1.10203			1.04790		
63 Rihyl Benzene	0.57229			C.64036	i	0.64266					 6.6649
64 m&p-Xylene	0.70270	C.78571	0.81043			0.77327					 6.0906
	 						- 		_ -		 \

10258805 Page 96 of 1988

INITIAL CALIBRATION DATA

Start Cal Date : 06-MAR-2014 12:12
End Cal Date : 06-MAR-2014 15:00
Quant Method : ISTD
Target Version : 4.14
Integrator : HP RTE
Method file : \\192.168.10.12\chem\10air0.i\030614.b\T015_065-14.m
Last Edit : 07-Mar-2014 10:13 10air0.i

Compound	0.1000000 Level 1	0.20000000 Level 2	0.5000000 Level 3		10.0000 Level 5	20.0000 Level 6		b	Coefficients ml	m2	%RSD or R^2
•	 30.0000 Level 7	! !	 !	:			I I I I				
65 Styrene	1.15986	1.36481			1.13054	1.25898	I AVRG			=======	8.0521
66 Bromoform	1.14877	İ	i	1	1.06572	1.17937	I I		1.21:14		7.0311
67 o-Xylene	0.66132	0.71841	0.73033	0.73441		0.77018	I I		0.73139		7.2632
68 1,1,2,2-Tetrachlorcethane	0.95266 1.20700		1.13681	1.12300		1.15652	I I		1.09768		7.6751
69 Isopropylbenzene	0.50074 0.63880	0.57332	,	0.59942 		0.60271	I I		0.58171		7.5428
70 N-Propylbenzene	0.45957	I	İ	0.50102 	0.46409	0.51703	I I		0.50823		 6.8374
71 4-Ethyitoluene	0.59354:	0.66955				0.62319	I I		0.62805		5.6617
	_ · ·										_

10258805 Page 97 of 1988

Pace Analytical Services, Inc.

INITIAL CALIBRATION DATA

Start Cal Date : 06-MAR-2014 12:12
End Cal Date : 06-MAR-2014 15:00
Quant Method : ISTD
Target Version : 4.14
Integrator : HP RTE
Method file : \\192.168.10.12\chem\10air0.i\030614.b\T015_065-14.m
Last Edit : 07-Mar-2014 10:13 10air0.i

Compound	0.1000000 Level 1	Level 2	Level 3	1.0000 Level 4			 Curve		Coefficients ml	m2	%RSD or R^2
	30.0000 Level 7		I I	 	 		1 : 1 :				
72 1,3,5-Trimethylbenzene	0.55933; 0.67303	0.61547	0.65071	C.62861	0.61320 	0.63636	AVRG		 0.62525		~ 5.7120
73 Tert-Butyl Benzene	i 0.65686		0.73446 i	0.7087 4 0.70874	0.68116	0.73590	i				5.7306
74 1,2,4-Trimethylbenzene	0.66029!	0.66653	0.70338	0.66337 	0.65338 	0.71823	 AVRG		- 		- 6.1178
75 Sec- Butylbenzene	0.61674	1	1	0.50987	0.51042		I :				9.2478
76 1,3-Dichlorobenzene	1.01574 1.18788	1.11958	1.18492	1.14373	1	1.13642	 AVRG				- 5.5471
78 Benzyl Chloride	6894 +++++	11849°	26930	63132	906494	1772277	 LINR	C.00240			0.9980
79 l,4-Dichlorobenzene	0.86937 0.86937	1.02461	1.07234	1.13717 		1.13912	 AVRG		- 1.07141:		9.8750
							 i		: - 		I

INITIAL CALIBRATION DATA

Start Cal Date : 06-MAR-2014 12:12
End Cal Date : 06-MAR-2014 15:00
Quant Method : ISTD
Target Version : 4.14
Integrator : HP RTE
Method file : \\192.168.10.12\chem\10air0.i\030614.b\T015_065-14.m
Last Edit : 07-Mar-2014 10:13 10air0.i

	0.1000000 ;	0.2000000	0.50000000	1.0000	10.0000	20.0000		C	oefficients		%RSD
Compound	Level 1	Level 2	Level 3	Level 4	Level 5	Level 6	Curve	ь	ml	m2	or R^2
	30.0000 Level 7		 	 	 						
80 p-isopropyltoluene	0.6867C 0.70197	0.88073	0.87312 	0.66861	0.61444	0.66014	 AVRG	 	0.72653		1 14.6297
81 1,2,3-Trimethylbenzene	0.82096	0.72462			0.67965 0.67965	0.74075	 AVRG	i I	0.73742		6.3448
62 1,2-Dichlorobenzene	1.29322	1.35244	1.32132	1.26050	1,11319 	1.15111	 AVRG	 	1.24311		7.1440
83 N-Butylbenzene	8877	15862	37059	78807		2261151	 LINR	0.00391	0.68519		 0.9987
84 1,2,4-Trichlorobenzene	3449 +++++	5623	i	25785	389072	8727 94	, LINR	0.01858	1.80104		 0.9993!
85 Naphthalene	: 6360:	10326		48481	705917	1629119	 LINR	0.02130			 0.9986
86 Hexachlorobutadiene	C.98831	1.19805	1.351221	1.36299		1.69296		 	1.38105		20.0505

Page 99 of 1988 10258805

Pace Analytical Services, Inc.

INITIAL CALIBRATION DATA

Start Cal Date : 06-MAR-2014 12:12
End Cal Date : 06-MAR-2014 15:00
Quant Method : ISTD
Target Version Integrator : 4.14
Method file : \\192.168.10.12\chem\10air0.i\030614.b\T015_065-14.m
Last Edit : 07-Mar-2014 10:13 10air0.i

 Compound	L	evel 1	0.200000C Level 2	Level 3	1.0000 Leve] 4		20.0000 Level 6		l ; b	Coefficients ml	m2	: %RSD or R^2
	3 L	0.0000 evel 7	I I				 	I I	 			
\$ 28 Hexane-d14(S)	İ	2.14022	2.20137	2.15063	2.09929 i	2.13387	2,10359 	I AVRG				1 2.63539
\$ 54 Toluene-d8 (S)		1.02720	1.04013;	1.02437	1.02593 	1.02977	0.96452 	 AVRG	 	1.00589		4.16137
\$ 77 1,4-dichlorobenzene-d4 (S)	İ	1.92251	2.03560	2.00074	1.88797	1.77087	1.56444	I AVRG	 	1.78868		14.19634
									-	_		- -

10258805 Page 100 of 1988

5A - FORM V VOA VOLATILE ORGANIC INSTRUMENT PERFORMANCE CHECK BROMOFLUOROBENZENE (BFB)

PA	SAME	'LE	NO.	
-	BFB			

Lab Name: Pace Analytical

Contract:

Lab Code:

PASI

Case No.:

SAS No.:

SDG No.: 10258805

Lab File ID: 06601BFB.D

GC Column: J&W DB-5

BFB Injection Date: 03/07/2014

Instrument ID: 10AIR0 BFB Injection Time: 10:28

ID: 0.32

(mm)

		% RELATIVE	
m/e	ION ABUNDANCE CRITERIA	ABUNDANCE	
95	Base Peak, 100% relative abundance	100.00	
50	8.00 - 40.00% of mass 95	17.92	
75	30.00 - 66.00% of mass 95	49.42	
96	5.00 - 9.00% of mass 95	6.93	
173	Less than 2.00% of mass 174	0.25	(0.28)
174	50.00 - 120.00% of mass 95	86.50	
175	4.00 - 9.00% of mass 174	6.71	(7.76)
176	93.00 - 101.00% of mass 174	83.93	(97.03)
177	5.00 - 9.00% of mass 176	5.62	(6.70)

1 - Value is %mass 174 2 - Value is %mass 176

	 			
				TIME ANALYZED
	LCS	06602_LCS.D	03/07/2014	10:54
CCV	CCV	06602.D	03/07/2014	10:54
LCS for HBN 288687 [AIR/	1635646	06602_19607.D	03/07/2014	10:54
BLANK (BLK)	BLANK	06604_BLANK.	03/07/2014	12:15
BLANK for HBN 288687 [AI	1635645	06604_19607.D	03/07/2014	12:15
IA-146-C-16	10258805040	06610.D	03/07/2014	15:58
IA-128-C-16	10258805038	06616.D	03/07/2014	18:48
IA-141-C-16	10258805016	06617.D	03/07/2014	19:17
IA-133-C-16	10258805026	06618.D	03/07/2014	19:47
IA-126-C-16	10258805018	06619.D	03/07/2014	20:16
SV-133-C-16	10258805025	06620.D	03/07/2014	20:45
SV-102-C-16	10258805009	06621.D	03/07/2014	21:15
IA-033-B-16	10258805024	06623.D	03/07/2014	22:16
SV-128-C-16	10258805037	06624.D	03/07/2014	22:45
IA-145-C-16	10258805039	06625.D	03/07/2014	23:15
SV-033-B-16	10258805023	06626.D	03/07/2014	23:44
IA-123-Z-16	10258805032	06627.D	03/08/2014	00:13
SV-DUP1-C-16	10258805044	06628.D	03/08/2014	00:42
SV-DUP1-C-16(1630565D	1635819-DUP	06629.D	03/08/2014	01:15
SV-101-B-16	10258805035	06630.D	03/08/2014	01:44
IA-105-Z-16	10258805030	06631.D	03/08/2014	02:13
SV-088-C-16	10258805005	06634.D	03/08/2014	03:46
SV-105-Z-16	10258805029	06635.D	03/08/2014	04:20
SV-126-C-16	10258805017	06636.D	03/08/2014	04:49
	LCS for HBN 288687 [AIR/BLANK (BLK) BLANK for HBN 288687 [AI IA-146-C-16 IA-128-C-16 IA-133-C-16 IA-126-C-16 SV-102-C-16 IA-033-B-16 SV-128-C-16 IA-123-Z-16 SV-DUP1-C-16 SV-DUP1-C-16 SV-DUP1-C-16 SV-DUP1-C-16 SV-DUP1-C-16 SV-088-C-16 SV-088-C-16 SV-105-Z-16	SAMPLE ID LCS (LCS) LCS CCV CCV LCS for HBN 288687 [AIR/ 1635646 BLANK (BLK) BLANK BLANK for HBN 288687 [AI 1635645 IA-146-C-16 10258805040 IA-128-C-16 10258805038 IA-141-C-16 10258805016 IA-133-C-16 10258805026 IA-126-C-16 10258805025 SV-102-C-16 10258805025 SV-102-C-16 10258805024 SV-128-C-16 10258805037 IA-145-C-16 10258805039 SV-033-B-16 10258805023 IA-123-Z-16 10258805032 SV-DUP1-C-16 10258805034 SV-DUP1-C-16 10258805035 IA-105-Z-16 10258805030 SV-088-C-16 10258805005 SV-105-Z-16 102588050029	SAMPLE NO. SAMPLE ID FILE ID LCS (LCS) LCS 06602_LCS.D CCV 06602.D CCV 06602_19607.D LCS for HBN 288687 [AIR/ 1635646 06602_19607.D BLANK (BLK) BLANK 06604_BLANK. BLANK for HBN 288687 [AI 1635645 06604_19607.D IA-146-C-16 10258805040 06610.D IA-128-C-16 10258805038 06616.D IA-141-C-16 10258805016 06617.D IA-133-C-16 10258805026 06618.D IA-126-C-16 10258805018 06619.D SV-133-C-16 10258805025 06620.D SV-102-C-16 10258805009 06621.D IA-033-B-16 10258805037 06624.D IA-145-C-16 10258805039 06625.D SV-033-B-16 10258805039 06626.D SV-DUP1-C-16 10258805032 06627.D SV-DUP1-C-16 10258805035 06629.D SV-101-B-16 10258805035 06630.D IA-105-Z-16 10258805005	SAMPLE NO. SAMPLE ID FILE ID ANALYZED LCS (LCS) LCS 06602_LCS.D 03/07/2014 CCV CCV 06602_D 03/07/2014 LCS for HBN 288687 [AIR/ 1635646 06602_19607.D 03/07/2014 BLANK (BLK) BLANK 06604_BLANK. 03/07/2014 BLANK for HBN 288687 [AI 1635645 06604_19607.D 03/07/2014 IA-146-C-16 10258805040 06610.D 03/07/2014 IA-128-C-16 10258805038 06616.D 03/07/2014 IA-141-C-16 10258805016 06617.D 03/07/2014 IA-133-C-16 10258805026 06618.D 03/07/2014 IA-126-C-16 10258805018 06619.D 03/07/2014 SV-133-C-16 10258805025 06620.D 03/07/2014 SV-102-C-16 10258805025 06620.D 03/07/2014 SV-128-C-16 10258805037 06624.D 03/07/2014 SV-128-C-16 10258805039 06625.D 03/07/2014 SV-00P1-C-16 10258805032 06626.D

Page 765 of 1988 10258805

Data File: \\192.168.10.12\chem\10air0.i\030714.b\06602.D

Report Date: 07-Mar-2014 11:24

Pace Analytical Services, Inc.

CONTINUING CALIBRATION COMPOUNDS

Injection Date: 07-MAR-2014 10:54 Instrument ID: 10air0.i

			CCAL MIN		I MAX	
COMPOUND	RRF / AMOUNT 	RF10 ====================================	RRF10 RRF	%D / %DRIFT 	•	
1 Chlorodifluoromethane	2.52255	2.441491	2.44149 0.010			
2 Propylene	7.83508	6.24839	6.24839 0.010	-20.25110	30.00000	Averaged
3 Dichlorodifluoromethane	1.27555	1.16865	1.16865 0.010	-8.38060	30.00000	Averaged
4 Dichlorotetrafluoroethane	1.62869	1.40680	1.40680 0.010	-13.62402	30.00000	Averaged
5 Chloromethane	4.50576	3.80321	3.80321 0.010	-15.59231	30.00000	Averaged
6 Vinyl chloride	4.66786	3.65600	3.65600 0.010	-21.67714	30.00000	Averaged
7 1,3-Butadiene	7.C7014	5.44492	5.44492 0.010	-22.98717	30.00000	Averaged
8 Bromomethane	4.52911	3.63781	3.63781 0.010	-19.67945	30.00000	Averaged
9 Chloroethane	10.04013	7.97862	7.97862 0.010	-20.53270	30.00000	Averaged
1C Ethanol	10.00000	13.05769	10.90252 0.010	30.57691	30.00000	Linear
11 Vinyl Bromide	4.59506	3.71507	3.71507 0.010	-19.15075	30.00000	Averaged
12 Isopentane	4.95832	4.13450	4.13450 0.010	-16.61495	30.00000	Averaged
13 Acrolein	15.34643	12.73236	12.73236 0.010	-17.03374	30.00000	Averaged
14 Trichlorofluoromethane	1.22740	1.13812	1.13812 0.010	-7.27328	30.00000	Averaged
15 Acetone	2.68538	2.54622	2.54622 0.010	-5.18218	30.00000	Averaged
16 Isopropyl Alcohol	3.39322	2.57609	2.57609 0.010	-24.08140	30.00000	Averaged
17 Acrylonitrile	10.00000	13.10993	6.52406 0.010	31.0992 <u>6</u>	L 30.00000	Linear
18 1,1-Dichloroethene	2.83450	2.53244	2.53244 0.010	-10.65665	30.00000	Averaged
19 Tert Butyl Alcohol (TBA)	[2.03510]	1.70092	1.70092 0.100	-16.42084	30.00000	Averaged
20 Freon 113	[2.26695]	2.00080	2.00080 0.010	-11.74017	30.00000	Averaged
21 Methylene chloride	10.00000	12.63174	3.74138 0.010	26.31741	30.00000	Linear
22 Allyl Chloride	11.33608	8.20756	8.20756 0.010	-27.59793	30.00000	Averaged
23 Carbon Disulfide	1.68637	1.36295	1.36295 0.010	-19.17840	30.00000	Averaged
24 trans-1,2-dichloroethene	5.08699	3.80734	3.80734 0.010	-25.15537	30.00000	Averaged
25 Methyl Tert Butyl Ether	1.44907	1.21559	1.21559 0.300	-16.11287	30.00000	Averaged
26 Vinyl Acetate	10.00000	12.10209	1.60705 0.010	21.02090	30.00000	Linea:
27 1,1-Dichloroethane	2.33452	2.01826	2.01826 0.010	-13.54707	30.00000	Averaged
\$ 28 Hexane-d14(S)	2.12135	2.12273	2.12273 0.200	0.06510	30.00000	Averaged
29 Methyl Ethyl Ketone	10.00000	12.77598	7.98753 0.010	27.75982	30.00000	Linea:
30 Di-isopropyl Ether	1.55859	1.39075	1.39075 0.010	-10.76871	30.00000	Averaged
31 n-Hexane	3.15902	2.63758	2.63758 0.010	-16.50627	30.00000	Averaged
32 Ethyl Acetate	2.51148	1.86973	1.86973 0.010	-25.55290	30.00000	Averaged
33 cis-1,2-Dichloroethene	4.86083	3.692291	3.69229 0.010	-24.03989	30.00000	Averaged
34 Ethyl Tert-Butyl Ether	1.34351	1.13954	1.13954 0.010	-15.18156	30.00000	Averaged
35 Chloroform	1.74061	1.54554	1.54554 0.010	-11.20749	30.00000	Averaged
36 Tetrahydrofuran	4.50854	3.65686	3.65686[0.010	-18.89039	30.00000	-
37 1,1,1-Trichloroethane	1.52974	1.38036	1.38036 0.010		•	
38 1,2-Dichlorcethane	2,26620	2.05070	2.05070 0.010		•	
39 Benzene	1.50703	1.22173	1.22173 0.300		•	
40 Carbon tetrachloride	1.59082	1.41553	1.41553 0.010		-	
41 Cyclohexane	3.51543	2.84793	2.84793 0.010		•	
42 Tert Amyl Methyl Ether	1.22054	1.14578	1.14578 0.010			
		1.2.2.01	1			

10258805 Page 781 of 1988 Data File: \\192.168.10.12\chem\10air0.i\030714.b\06602.D

Report Date: 07-Mar-2014 11:24

Pace Analytical Services, Inc.

CONTINUING CALIBRATION COMPOUNDS

Injection Date: 07-MAR-2014 10:54 Instrument ID: 10air0.i

Init. Cal. Date(s): 06-MAR-2014 06-MAR-2014
Init. Cal. Times: 12:12 15:00
Quant Type: ISTD Lab File ID: 06602.D Init. Cal. Date(s): 06-MAR-2014
Analysis Type: AIR Init. Cal. Times: 12:12
Lab Sample ID: CCV Quant Type: ISTD
Method: \\192.168.10.12\chem\10air0.i\030714.b\T015_065~14.m

I	1	1	CCAL	MIN		MAX	Ι
COMPOUND	RRF / AMOUNT	RF10			%D / %DRIFT		
=====================================	- 0.99164		 0.81925		'		
45 Heptane	2.849431	2.363941	2.36394			•	
46 1,2-Dichloropropane	3.91722	3.34514	3.34514			•	
47 Trichloroethene	3.41741	2.66554	2.66554				-
148 1.4-Dioxane	7.40946	6.10977	6.10977			•	
149 Bromodichloromethane	1.56920	1.34579	1.34579	0.010		•	
50 Methylcyclohexane	6.12567	4.61159	4.61159			•	
51 Methyl Isobutyl Ketone	2.20958	1.63123	1.63123				
52 cis-1,3-Dichloropropene	10.00000	12.496291	1.87508				
53 trans-1,3-Dichloropropene	10.00000	11.97414	1.74861				
\$ 54 Toluene-d8 (S)	1.00589	0.99814	0.99814		•	•	•
55 1.1.2-Trichloroethane	3.15076	2,76555	2.76555		•	- ·	
156 Toluene	1.21861	0.99881	0.99881		•		
57 Methyl Butyl Ketone	1.52798	1.157941	1.15794		•	•	
58 Dibromochloromethane	1.18586	0.94485	0.94485				
59 1.2-Dibromoethane	1.42652	1.096461	1.09646		•	•	
160 Tetrachloroethene	1.50481	1,22212	1.22212		•		
162 Chlorobenzene	1.04790	0.838491	0.83849				
63 Ethyl Benzene	0.62773	0.493881	0.49388				
64 m&p-Xylene	0.764141	0.58920	0.58920				
65 Styrene	1.27934	0.94725	0.94725				
66 Bromeform	1.21114	0.92771	0.92771			•	
67 o-Xylene	0.73139	0.59010	0.59010				
68 1.1.2.2-Tetrachloroethane	1.097681	0.899221	0.89922			•	
69 Isopropylbenzene	0.58171	0.46384	0.46384			•	-
70 N-Propylbenzene	0.508231	0.39348	0.39348	0.010			
71 4-Ethyltoluene	0.62805	0.47371	0.47371	0.010			
72 1.3.5-Trimethylbenzene	0.62525	0.51817	0.51817	0.010	- 17.12495	30.00000	Averaged
73 Tert-Butyl Benzene	0.71680	0.57762	0.57762	0.010	- 19.41739	30.00000	Averaged
74 1,2,4-Trimethylbenzene	0.69061	0.56231	0.56231	0.010	-18.57708	30.00000	Averaged
75 Sec- Butylbenzene	0.56804	0.440061	0.44006	0.010	-22.53012	30.00000	Averaged
76 l,3-Dichlorobenzene	1.12225	0.89791	0.89791	0.010	-19.98985	30.00000	
\$ 77 1,4-dichlorobenzene-d4 (S)	1.78868	1.77736	1.77736	0.200	-0.63243	30.00000	Averaged
78 Benzyl Chloride	10.00000	12.61207	0.69222	0.010	26.12069	30.00000	Linear
79 1,4-Dichlorobenzene	1.07141	0.87879	0.87879	0.010	-17.97799	30.00000	Averaged
80 p-Isopropyltoluene	0.72653	0.52106	0.52106	0.010	-28.28139	30.00000	
81 1,2,3-Trimethylbonzene	0.73742	0.57733	0.57733	0.010	-21.70861	30.00000	Averaged
82 1,2-Dichlorobenzene	1.24311	0.89655	0.89655	0.010	-27.87879	30.00000	-
83 N-Butylbenzene	10.00000	12.30814	0.55847	0.010	23.08138	-30.00000	Linear
84 1,2,4-Trichlorobenzene	10.00000	12.41305	1.47297	0.010	24.13051	30.00000	Linear
85 Naphthalene	10.00000	12.42256	0.79314	0.010	24.22560	30.00000	Linear
86 Hexachlorobutadiene	1.38105	1.36826	1.36826	0.010	-0.92546	30.00000	Averaged
I	1	1		I	I	I	1

Page 782 of 1988 10258805

Data File: \\192.168.10.12\chem\10air0.i\030714.b\06602.D

Report Date: 07-Mar-2014 11:24

Pace Analytical Services, Inc.

CONTINUING CALIBRATION COMPOUNDS

Instrument ID: 10air0.i Injection Date: 07-MAR-2014 10:54

Lab File ID: 06602.D Init. Cal. Date(s): 06-MAR-2014 06-MAR-2014
Analysis Type: AIR Init. Cal. Times: 12:12 15:00
Lab Sample ID: CCV Quant Type: ISTD
Method: \\192.168.10.12\chem\10air0.i\030714.b\T015_065-14.m

|Average %D / Drift Results. ______ |Calculated Average %D/Drift = 18.27763 |Maximun Average %D/Drift = 30.00000 |* Passed Average %D/Drift Test.

> 10258805 Page 783 of 1988

Instrument Run Log

Pace Analytical Method:
Column: J&W DB-5 0.32mm Helium Tune Standard:

Misc. Prep. Info: ISTD Lot: 8137-74-13

Surrogate Lot: 8137-74-13 Cal. Standard:

FB.D BFB L/ Tune 1 CCS.D LCS G/ CCV G/ CCal 1 19607.D1635646 G/19607 LCS 1 19607.D1635646 G/19607 LCS 1 19607.D1635646 G/19607 LCS 1 10259049013 G/19607 Blank 1 10259049013 G/19607 Sample 1 10258805040 G/19607 Sample 1 10258805038 G/19607 Sample 1 10258805016 G/19607 Sample 1 10258805016 G/19607 Sample 1.87 10258805016 G/19607 Sample 1.87 10258805018 G/19607 Sample 1.68 10258805024 G/19607 Sample 1.68 10258805039 G/19607 Sample 1.68 10258805031 G/19607 Sample 1.68 10258805032 G/19607 Sample 1.68 10258805033 G/19607 Sample 1.68 10258805034 G/19607 Sample 1.68 10258805035 G/19607 Sample 1.68 10258805030 G/19607 Sample 1.68 10258805031 G/19607 Sample 1.68 10258805032 G/19607 Sample 1.68 10258805033 G/19607 Sample 1.68 10258805034 G/19607 Sample 1.87 10258805035 G/19607 Sample 1.87 10258805036 G/19607 Sample 1.87 10258805036 G/19607 Sample 1.88 10258805037 G/19607 Sample 1.89 10258805036 G/19607 Sample 1.89 10258805039 G/19607 Sample 1.89 10258805030 G/19607 Sample 1.89 1025880500 G/19607 Sample 1.89 1025880500	Dath/Eile	ah ID	Matriv/Batch			Method	Date & Time	Oper	Comments
CS.D. LCS CCV CCV CCV CCV CCV CCV CCV CCA CCCV CCV	ő		-					MAL	
CCV G/ CCal 19607. D1635646 G/19607 LCS 0 G/ Sample CERT G/ G/ Sample CERT G/ G/ Sample IO25805040 G/19607 Blank CERT G/ G/ Sample IC G/19607 Blank CERT G/ Sample IC G/19607 Sample IC G/19607 Sample IC G/19607 Sample IC G/19607 Sample IC G/19607 Sample IO258805016 G/19607 Sample IO258805018 G/19607 Sample IO258805026 G/19607 Sample IO258805028 G/19607 Sample IO258805029 G/19607 Sample IO258805039 G/19607 Sample IO258805030 G/19607 Sample IO258805031 G/19607 Sample IO258805032 G/19607 Sample IO258805035 G/19607 Sample IO258805036 G/19607 Sample IO258805036 G/19607 Sample IO258805036 G/19607 Sample IO258805036 G/19607 Sample IO258805036 G/19607 Sample IO258805006 G/19607 Sample IO258805006 G/19607 Sample IO258805006 G/19607 Sample IO258805007 G/19607 Sample IO258805006 G/19607 Sample IO258805006 G/19607 Sample IO258805007 G/19607 Sample IO258805006 G/19607 Sample IO258805006 G/19607 Sample IO258805006 G/19607 Sample IO258805007 G/19607 Sample IO258805007 G/19607 Sample IO258805007 G/19607 Sample IO258805007 G/19607 Sample IO258805007 G/19607 Sample IO258805007 G/19607 Sample IO258805007 G/19607 Sample IO258805007 G/19607 Sample IO258805007 G/19607 Sample IO258805007 G/19607 Sample IO258805007 G/19607 Sample IO258805007 G/19607 Sample IO258805007 G/19607 Sample IO258805007 G/19607 Sample	U	SS	ହ	LCS 1		TO15_065-14		JAM	
19607. D1635646 G/19607 LCS O		CV	ହ	CCal 1		TO15_065-14		JAM	
O G/ Sample CERT G/ Sample CERT G/ Sample CERT G/ Sample SILANK. IBLANK G/19607 Blank G/19607. D 1635645 G/19607 Blank CERT G/ Sample 10259049013 G/19580 Sample IC G/ Sample IC G/ Sample IC G/ Sample IC G/ Sample IC G/ Sample IC G/ Sample IC G/ Sample IC G/ Sample IC G/ Sample IC G/ Sample IC G/ Sample IC G/ Sample IC Sample IC G/ Sample IC IC Sample IC IC Sample	06602_19607.D1	535646	G/19607	LCS 1		TO15_065-14		JAM	
CERT G/ Sample BLANK. IBLANK G/ Sample BLANK. IBLANK G/19607 D 1635645 G/19607 Blank G/19607 D 1635645 G/19607 Blank CERT G/ Sample IC G/19580 Sample IC G/19580 Sample IC G/19607 Sample IC G/ Sample IC G/19607	06603.D 0		ହ	Sample 1		TO15_065-14		JAM	
BLANK Blank 9607.D 1635645 G/19607 Blank CERT G/ Sample 10259049013 G/19580 Sample IC G/ Sample IC258805038 G/19607 Sample IQ258805018 G/19607 Sample IQ258805025 G/19607 Sample IQ258805036 G/19607 Sample IQ258805037 G/19607 Sample IQ258805038 G		界	ହ	Sample 1		TO15_065-14		JAM	
Section Sample	06604 BLANK. TB	LANK	ହ	Blank 1		TO15_065-14		JAM	
CERT G/ Sample 10259049013 G/19580 Sample IC G/ Sample IC G/19607 Sample <t< td=""><td>06604_19607.D1</td><td>535645</td><td>G/19607</td><td>Blank 1</td><td></td><td>TO15_065-14</td><td></td><td>JAM</td><td></td></t<>	06604_19607.D1	535645	G/19607	Blank 1		TO15_065-14		JAM	
10259049013 G/19580 Sample IC G/ Sample IC G/ Sample IC G/ Sample IC G/ Sample IC G/ Sample IC G/ Sample IC G/ Sample IC G/ Sample IC G/ Sample IC G/ Sample IC G/ Sample IC G/ Sample IC G/ Sample IC G/ Sample IC G/ Sample IC G/ Sample IC G/ Sample IC Sample IC G/ Sample IC Sa	06605.D C	EST .	ହ	Sample 1		TO15_065-14		JAM	
IC G/ Sample IC G/ Sample IC G/ Sample IC G/ Sample IC G/ Sample IC G/ Sample IC G/ Sample IC G/ Sample IC G/ Sample IC G/ Sample IC G/ Sample IC G/ Sample IC G/ Sample IC G/ Sample IC G/ Sample IC G/ Sample IC G/ Sample IC Sa		0259049013	G/19580		8.464	TO15_065-14		AH2	
IC G/ Sample IC G/ Sample IC G/ Sample IC G/ Sample IC G/ Sample IC G/ Sample IC G/ Sample IC G/ Sample IC G/ Sample IC G/ Sample IC G/ Sample IC G/ Sample IC G/ Sample IC G/ Sample IC G/ Sample IC G/ Sample IC Sample IC Sample IC Sample IC Sample IC G/19607 Sample IC G/19607 Sample IC G/19607 Sample IC G/19607 Sample IC G/19607 Sample IC G/19607 Sample IC Sample		``	ହ	Sample 1		TO15_065-14		AH2	
IC G/ Sample 10258805040 G/ Sample IC G/ Sample IC G/ Sample IC G/ Sample IC G/ Sample IC G/ Sample IC G/ Sample IC G/ Sample IC G/ Sample IC G/ Sample IC G/ Sample I0258805016 G/19607 Sample 10258805026 G/19607 Sample 10258805025 G/19607 Sample 10258805024 G/19607 Sample 10258805023 G/19607 Sample 10258805032 G/19607 Sample 10258805032 G/19607 Sample 10258805035 G/19607 Sample 10258805035 G/19607 Sample 10258805036 G/19607 Sample 10258805036 G/19607 Sample 10258805036 G/19607 Sample 10258805036 G/19607 Sample 10258805006 G/19607 Sample 10258805006 G/19607 Sample 10258805006 G/19607 Sample 10258805006 G/19607 Sample 10258805006 G/19607 Sample 10258805006 G/19607 Sample 10258805009 G/19607 Sample 10258805009 G/19607 Sample 10258805017 G/19607 Sample I0258805017 G/1960		•	ହ	Sample 1		TO15_065-14	3/07/14 14:58	AH2	
10258805040 G/19607 Sample IC G/ Sample IC G/19607 Sample 10258805038 G/19607 Sample 10258805026 G/19607 Sample 10258805025 G/19607 Sample 10258805026 G/19607 Sample 10258805027 G/19607 Sample 10258805039 G/19607 Sample 10258805032 G/19607 Sample 10258805032 G/19607 Sample 10258805033 G/19607 Sample 10258805034 G/19607 Sample 10258805035 G/19607 Sample 10258805036 G/19607 Sample 10258805030 G/19607 Sample 10258805005 G/19607 Sample 10258805005 G/19607 Sample		.,	ହ	Sample 1		TO15_065-14		AH2	
IC G/ Sample IC G/ Sample IC G/ Sample IC G/ Sample IC G/ Sample IC G/ Sample IC G/ Sample IC G/ Sample IC G/ Sample IO258805016 G/19607 Sample IO258805026 G/19607 Sample IO258805025 G/19607 Sample IO258805024 G/19607 Sample IO258805037 G/19607 Sample IO258805039 G/19607 Sample IO258805032 G/19607 Sample IO258805032 G/19607 Sample IO258805035 G/19607 Sample IO258805036 G/19607 Sample IO258805036 G/19607 Sample IO258805036 G/19607 Sample IO258805036 G/19607 Sample IO258805006 G/19607 Sample IO258805006 G/19607 Sample IO258805006 G/19607 Sample IO258805006 G/19607 Sample IO258805009		0258805040	G/19607	_	œ	TO15_065-14		AH2	
IC G/ Sample IC G/ Sample IC G/ Sample IC G/ Sample IC G/ Sample IC G/ Sample IC G/ Sample IC G/ Sample IO258805016 G/19607 Sample IO258805026 G/19607 Sample IO258805025 G/19607 Sample IO258805024 G/19607 Sample IO258805037 G/19607 Sample IO258805039 G/19607 Sample IO258805032 G/19607 Sample IO258805032 G/19607 Sample IO258805035 G/19607 Sample IO258805036 G/19607 Sample IO258805036 G/19607 Sample IO258805036 G/19607 Sample IO258805036 G/19607 Sample IO258805036 G/19607 Sample IO258805006 G/19607 Sample IO258805006 G/19607 Sample IO258805006 G/19607 Sample IO258805009 G/19607 Sampl		•	ହ	Sample 1		TO15_065-14	3/07/14 16:51	AH2	
IC G/ Sample 10258805038 G/19607 Sample 10258805016 G/19607 Sample 10258805016 G/19607 Sample 10258805026 G/19607 Sample 10258805025 G/19607 Sample 10258805024 G/19607 Sample 10258805039 G/19607 Sample 10258805039 G/19607 Sample 10258805032 G/19607 Sample 10258805032 G/19607 Sample 10258805035 G/19607 Sample 10258805036 G/19607 Sample 10258805036 G/19607 Sample 10258805036 G/19607 Sample 10258805036 G/19607 Sample 10258805036 G/19607 Sample 10258805036 G/19607 Sample 10258805006 G/19607 Sample 10258805006 G/19607 Sample 10258805006 G/19607 Sample 10258805006 G/19607 Sample 10258805009 G/19607 Sample 10258805			ହ	Sample 1		TO15_065-14		AH2	
IC 10258805038 10258805016 10258805016 10258805016 10258805026 10258805026 10258805025 10258805025 10258805029 10258805024 10258805037 10258805037 10258805039 10258805039 10258805032 10258805032 10258805032 10258805033 10258805035 10258805036 10258805039 10258805039 10258805039 10258805039 10258805039 10258805039 10258805039 10258805039 10258805039 10258805044 10258805039 10258805039 10258805039 10258805039 10258805039 10258805039 10258805039 10258805039 10258805039 10258805039 10258805006 10258805006 10258805006 10258805009 1025805009 1025		•	ହ	Sample 1		TO15_065-14	3/07/14 17:20	AH2	
10258805038 G/19607 Sample 10258805016 G/19607 Sample 10258805026 G/19607 Sample 10258805026 G/19607 Sample 10258805025 G/19607 Sample 10258805009 G/19607 Sample 10258805024 G/19607 Sample 10258805037 G/19607 Sample 10258805039 G/19607 Sample 10258805032 G/19607 Sample 10258805033 G/19607 Sample 10258805034 G/19607 Sample 10258805035 G/19607 Sample 10258805036 G/19607 Sample 10258805030 G/19607 Sample 10258805006 G/19607 Sample 10258805007 G/19607 Sample 10258805009 G/19607 Sample 10258805009 G/19607 Sample 10258805009 G/19607 Sample 10258805009 G/19607 Sample <tr< td=""><td></td><td>••</td><td>ହ</td><td>Sample 1</td><td></td><td></td><td></td><td>:</td><td></td></tr<>		••	ହ	Sample 1				:	
10258805016 G/19607 Sample 10258805026 G/19607 Sample 10258805025 G/19607 Sample 10258805025 G/19607 Sample 10258805029 G/19607 Sample 10258805037 G/19607 Sample 10258805039 G/19607 Sample 10258805032 G/19607 Sample 10258805032 G/19607 Sample 10258805035 G/19607 Sample 10258805035 G/19607 Sample 10258805036 G/19607 Sample 10258805036 G/19607 Sample 10258805036 G/19607 Sample 10258805036 G/19607 Sample 10258805006 G/19607 Sample 10258805006 G/19607 Sample 10258805006 G/19607 Sample 10258805006 G/19607 Sample 10258805009 G/19607 Sample 10258805009 G/19607 Sample 10258805009 G/19607 Sample 10258805017 G/19607 Sample 1025805017 G	_	0258805038	G/19607	(Si		TO15_065-14		AH2	
10258805026 G/19607 Sample 10258805018 G/19607 Sample 10258805025 G/19607 Sample 10258805029 G/19607 Sample 10258805024 G/19607 Sample 10258805024 G/19607 Sample 10258805037 G/19607 Sample 10258805032 G/19607 Sample 10258805032 G/19607 Sample 10258805035 G/19607 Sample 10258805035 G/19607 Sample 10258805036 G/19607 Sample 10258805036 G/19607 Sample 10258805006 G/19607 Sample 10258805006 G/19607 Sample 10258805006 G/19607 Sample 10258805006 G/19607 Sample 10258805006 G/19607 Sample 10258805009 G/19607 S	06617.D 1	0258805016	4		.87	TO15_065-14 TO15_065-14		AH2	
10258805018 G/19607 Sample 10258805025 G/19607 Sample 10258805009 G/19607 Sample 10258805028 G/19607 Sample 10258805024 G/19607 Sample 10258805037 G/19607 Sample 10258805039 G/19607 Sample 10258805032 G/19607 Sample 10258805032 G/19607 Sample 10258805034 G/19607 Sample 10258805035 G/19607 Sample 10258805030 G/19607 Sample 10258805006 G/19607 Sample 10258805005 G/19607 Sample 10258805005 G/19607 Sample 10258805017 G/19607 Sample 10258805017 G/19607 Sample 10258805017 G/19607 Sample		0258805026	G/19607		.87 .74	TO15_065-14 TO15_065-14 TO15_065-14		AH2 AH2	
10258805025 G/19607 Sample 10258805009 G/19607 Sample 10258805028 G/19607 Sample 10258805024 G/19607 Sample 10258805037 G/19607 Sample 10258805039 G/19607 Sample 10258805032 G/19607 Sample 10258805032 G/19607 Sample 10258805034 G/19607 Sample 10258805035 G/19607 Sample 10258805030 G/19607 Sample 10258805006 G/19607 Sample 10258805005 G/19607 Sample 10258805005 G/19607 Sample 10258805007 G/19607 Sample 10258805009 G/19607 Sample 10258805017 G/19607 Sample 10258805017 G/19607 Sample	06619.D 1		G/19607 G/19607		.87 .74 .68	TO15_065-14 TO15_065-14 TO15_065-14 TO15_065-14		AH2 AH2	
10258805009 G/19607 Sample 10258805028 G/19607 Sample 10258805024 G/19607 Sample 10258805037 G/19607 Sample 10258805039 G/19607 Sample 10258805032 G/19607 Sample 10258805032 G/19607 Sample 10258805034 G/19607 Sample 10258805035 G/19607 Sample 10258805036 G/19607 Sample 10258805030 G/19607 Sample 10258805006 G/19607 Sample 10258805006 G/19607 Sample 10258805005 G/19607 Sample 10258805005 G/19607 Sample 10258805006 G/19607 Sample 10258805007 G/19607 Sample	06620.D 1	0258805018	G/19607 G/19607 G/19607		.87 .74 .68	TO15_065-14 TO15_065-14 TO15_065-14 TO15_065-14 TO15_065-14 TO15_065-14		AH2 AH2 AH2	
10258805028 G/19607 Sample 10258805024 G/19607 Sample 10258805037 G/19607 Sample 10258805039 G/19607 Sample 10258805023 G/19607 Sample 10258805032 G/19607 Sample 10258805034 G/19607 Sample 10258805035 G/19607 Sample 10258805030 G/19607 Sample 10258805006 G/19607 Sample 10258805005 G/19607 Sample 10258805007 G/19607 Sample 10258805009 G/19607 Sample 10258805007 G/19607 Sample	06621.D 1)258805018 0258805025	G/19607 G/19607 G/19607 G/19607		.74 .74 .68	TO15_065-14 TO15_065-14 TO15_065-14 TO15_065-14 TO15_065-14 TO15_065-14 TO15_065-14		AH2 AH2 AH2 AH2	
10258805024 G/19607 Sample 10258805037 G/19607 Sample 10258805039 G/19607 Sample 10258805023 G/19607 Sample 10258805032 G/19607 Sample 10258805044 G/19607 Sample 10258805035 G/19607 Sample 10258805030 G/19607 Sample 10258805030 G/19607 Sample 10258805006 G/19607 Sample 10258805005 G/19607 Sample 10258805029 G/19607 Sample 10258805017 G/19607 Sample 10258805017 G/19607 Sample 10258805017 G/19607 Sample	06622.D 1)258805018)258805025)258805009	G/19607 G/19607 G/19607 G/19607 G/19607		.87 .74 .68 .68 .68	TO15_65-14 TO15_65-14 TO15_65-14 TO15_065-14 TO15_065-14 TO15_065-14 TO15_065-14 TO15_065-14		AH2 AH2 AH2 AH2 AH2	
10258805037 G/19607 Sample 10258805039 G/19607 Sample 10258805023 G/19607 Sample 10258805032 G/19607 Sample 10258805032 G/19607 Sample 10258805044 G/19607 Sample 1635819 G/19607 Sample 10258805035 G/19607 Sample 10258805030 G/19607 Sample 10258805006 G/19607 Sample 10258805005 G/19607 Sample 10258805005 G/19607 Sample 10258805005 G/19607 Sample 10258805007 G/19607 Sample	06623.D 1)258805018)258805025)258805009 0258805028	G/19607 G/19607 G/19607 G/19607 G/19607 G/19607		.87 .74 .68 .68 .68 .68	TO15_065-14 TO15_065-14 TO15_065-14 TO15_065-14 TO15_065-14 TO15_065-14 TO15_065-14 TO15_065-14 TO15_065-14		AH2 AH2 AH2 AH2 AH2	
10258805039 G/19607 Sample 10258805023 G/19607 Sample 10258805032 G/19607 Sample 10258805044 G/19607 Sample 1635819 G/19607 Duplicate 10258805035 G/19607 Sample 10258805030 G/19607 Sample 10258805030 G/19607 Sample 10258805006 G/19607 Sample 10258805005 G/19607 Sample 10258805017 G/19607 Sample 10258805017 G/19607 Sample 10258805017 G/19607 Sample	06624.D 1)258805018)258805025)258805009)258805028)0258805024	G/19607 G/19607 G/19607 G/19607 G/19607 G/19607 G/19607		.87 .74 .68 .68 .68 .68	TO15_65-14 TO15_65-14 TO15_65-14 TO15_65-14 TO15_065-14 TO15_065-14 TO15_065-14 TO15_065-14 TO15_065-14 TO15_065-14		A H H 2 2 2 2 A H 2 2 A H 2 2 A H 2 2 A H 2 2 A H 2 2 A H 2 2 A H 2 2 A H 2 A	
10258805023 G/19607 Sample 10258805032 G/19607 Sample 10258805044 G/19607 Sample 1635819 G/19607 Duplicate 10258805035 G/19607 Sample 10258805030 G/19607 Sample 10258805030 G/19607 Sample 10258805006 G/19607 Sample 10258805005 G/19607 Sample 10258805017 G/19607 Sample 10258805017 G/19607 Sample 10258805017 G/19607 Sample	06625.D 1)258805018)258805025)258805009)258805028)0258805024)0258805037	G/19607 G/19607 G/19607 G/19607 G/19607 G/19607 G/19607 G/19607		.688	TO15_65-14 TO15_65-14 TO15_65-14 TO15_65-14 TO15_065-14 TO15_065-14 TO15_065-14 TO15_065-14 TO15_065-14 TO15_065-14 TO15_065-14 TO15_065-14		A A A A A A A A A A A A A A A A A A A	
10258805032 G/19607 Sample 10258805044 G/19607 Sample 1635819 G/19607 Duplicate 10258805035 G/19607 Sample 10258805030 G/19607 Sample 10258805030 G/19607 Sample 10258805006 G/19607 Sample 10258805005 G/19607 Sample 10258805005 G/19607 Sample 10258805017 G/19607 Sample	_)258805018)258805025)258805009)258805028)258805024)0258805037)0258805039	G/19607 G/19607 G/19607 G/19607 G/19607 G/19607 G/19607 G/19607 G/19607		.87 .68 .68 .68 .68 .68	TO15_065-14 TO15_065-14 TO15_065-14 TO15_065-14 TO15_065-14 TO15_065-14 TO15_065-14 TO15_065-14 TO15_065-14 TO15_065-14 TO15_065-14 TO15_065-14 TO15_065-14		A A A A A A A A A A A A A A A A A A A	
10258805044 G/19607 Sample 1635819 G/19607 Duplicate 10258805035 G/19607 Sample 10258805030 G/19607 Sample -DUP G/19607 Sample 10258805006 G/19607 Sample 10258805005 G/19607 Sample 10258805005 G/19607 Sample 10258805017 G/19607 Sample	_)258805018)258805025)258805009)258805028)258805024)258805037)0258805039)0258805039	G/19607 G/19607 G/19607 G/19607 G/19607 G/19607 G/19607 G/19607 G/19607		.68 .68 .68 .68 .68	TO15_065-14 TO15_065-14 TO15_065-14 TO15_065-14 TO15_065-14 TO15_065-14 TO15_065-14 TO15_065-14 TO15_065-14 TO15_065-14 TO15_065-14 TO15_065-14 TO15_065-14 TO15_065-14 TO15_065-14		A A A A A A A A A A A A A A A A A A A	
1635819 G/19607 Duplicate 10258805035 G/19607 Sample 10258805030 G/19607 Sample -DUP G/19607 Sample 10258805006 G/19607 Sample 10258805005 G/19607 Sample 10258805029 G/19607 Sample 10258805017 G/19607 Sample)258805018)258805025)258805009)258805028)258805024)258805037)258805039)0258805039)0258805033	G/19607 G/19607 G/19607 G/19607 G/19607 G/19607 G/19607 G/19607 G/19607 G/19607		.87 .68 .68 .68 .68 .68 .68	TO15_065-14 TO15_065-14 TO15_065-14 TO15_065-14 TO15_065-14 TO15_065-14 TO15_065-14 TO15_065-14 TO15_065-14 TO15_065-14 TO15_065-14 TO15_065-14 TO15_065-14 TO15_065-14 TO15_065-14 TO15_065-14		A A A A A A A A A A A A A A A A A A A	
10258805035 G/19607 Sample 10258805030 G/19607 Sample -DUP G/19607 Sample 10258805006 G/19607 Sample 10258805005 G/19607 Sample 10258805029 G/19607 Sample 10258805017 G/19607 Sample)258805018)258805025)258805009)258805028)258805024)258805037 0258805039 0258805039 0258805039	G/19607 G/19607 G/19607 G/19607 G/19607 G/19607 G/19607 G/19607 G/19607 G/19607 G/19607		.68 .68 .68 .68 .68 .68 .68	TO15_065-14 TO15_065-14 TO15_065-14 TO15_065-14 TO15_065-14 TO15_065-14 TO15_065-14 TO15_065-14 TO15_065-14 TO15_065-14 TO15_065-14 TO15_065-14 TO15_065-14 TO15_065-14 TO15_065-14 TO15_065-14 TO15_065-14 TO15_065-14		A A A A A A A A A A A A A A A A A A A	
10258805030 G/19607 Sample -DUP G/19607 Sample 10258805006 G/19607 Sample 10258805005 G/19607 Sample 10258805029 G/19607 Sample 10258805017 G/19607 Sample	-)258805018)258805025)258805009)258805028)258805024)258805037)258805039)0258805039)0258805023)0258805044 635819	G/19607 G/19607 G/19607 G/19607 G/19607 G/19607 G/19607 G/19607 G/19607 G/19607 G/19607 G/19607	र्वे	.68 .68 .68 .68 .68 .68 .68	TO15_065-14 TO15_065-14 TO15_065-14 TO15_065-14 TO15_065-14 TO15_065-14 TO15_065-14 TO15_065-14 TO15_065-14 TO15_065-14 TO15_065-14 TO15_065-14 TO15_065-14 TO15_065-14 TO15_065-14 TO15_065-14 TO15_065-14 TO15_065-14 TO15_065-14		A A A A A A A A A A A A A A A A A A A	
-DUP G/19607 Sample 10258805006 G/19607 Sample 10258805005 G/19607 Sample 10258805029 G/19607 Sample 10258805017 G/19607 Sample G/)258805018)258805025)258805009)258805028)258805024)258805037)258805039)258805039)258805032 0258805032 0258805032	G/19607 G/19607 G/19607 G/19607 G/19607 G/19607 G/19607 G/19607 G/19607 G/19607 G/19607 G/19607 G/19607	र्व	.74 .74 .68 .68 .68 .68 .68 .68 .68 .68	TO15_065-14 TO15_065-14 TO15_065-14 TO15_065-14 TO15_065-14 TO15_065-14 TO15_065-14 TO15_065-14 TO15_065-14 TO15_065-14 TO15_065-14 TO15_065-14 TO15_065-14 TO15_065-14 TO15_065-14 TO15_065-14 TO15_065-14 TO15_065-14 TO15_065-14 TO15_065-14		A A A A A A A A A A A A A A A A A A A	
10258805006 G/19607 Sample 10258805005 G/19607 Sample 10258805029 G/19607 Sample 10258805017 G/19607 Sample G/ Sample)258805018)258805025)258805029)258805024)258805037)258805039)258805039)258805032 0258805032 0258805032 0258805035	G/19607 G/19607 G/19607 G/19607 G/19607 G/19607 G/19607 G/19607 G/19607 G/19607 G/19607 G/19607 G/19607	ह ें	.87 .74 .87 .88 .88 .88 .88 .88 .88 .88 .88 .88	TO15_065-14 TO15_065-14 TO15_065-14 TO15_065-14 TO15_065-14 TO15_065-14 TO15_065-14 TO15_065-14 TO15_065-14 TO15_065-14 TO15_065-14 TO15_065-14 TO15_065-14 TO15_065-14 TO15_065-14 TO15_065-14 TO15_065-14 TO15_065-14 TO15_065-14 TO15_065-14		A A A A A A A A A A A A A A A A A A A	
10258805005)258805018)258805025)258805029)258805024)258805037)258805039)258805039)258805032)258805032)258805032)0258805035)0258805035	G/19607 G/19607 G/19607 G/19607 G/19607 G/19607 G/19607 G/19607 G/19607 G/19607 G/19607 G/19607 G/19607 G/19607	ল	.80 .60 .60 .60 .60 .60 .60 .60 .60 .60 .6	TO15_065-14 TO15_065-14		A A A A A A A A A A A A A A A A A A A	
10258805029 G/19607 Sample 10258805017 G/19607 Sample G/ Sample)258805018)258805025)258805029)258805024)258805037)258805039)258805032)258805032)258805032)258805034 635819 0258805035)0258805035	G/19607 G/19607 G/19607 G/19607 G/19607 G/19607 G/19607 G/19607 G/19607 G/19607 G/19607 G/19607 G/19607 G/19607	ল	.02 .03 .03 .03 .03 .03 .03 .03 .03 .03 .03	TO15_065-14 TO15_065-14		A A A A A A A A A A A A A A A A A A A	
10258805017 G/19607 Sample G/ Sample)258805018)258805025)258805029)258805024)258805037)258805039)258805032)258805032)258805032)258805034 635819 0258805035 0258805035)UP	G/19607 G/19607 G/19607 G/19607 G/19607 G/19607 G/19607 G/19607 G/19607 G/19607 G/19607 G/19607 G/19607 G/19607 G/19607	o	.56.00 .6	TO15_065-14 TO15_065-14		A A A A A A A A A A A A A A A A A A A	
ତ)258805018)258805025)258805029)258805024)258805037)258805039)258805032)258805032)258805032)258805034)35819 0258805035 0258805035 0258805036 0258805006	G/19607 G/19607 G/19607 G/19607 G/19607 G/19607 G/19607 G/19607 G/19607 G/19607 G/19607 G/19607 G/19607 G/19607 G/19607 G/19607	ਰ	.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5	TO15_065-14 TO15_065-14		A A A A A A A A A A A A A A A A A A A	
)258805018)258805025)258805029)258805024)258805037)258805039)258805032)258805032)258805034)35819 0258805035 0258805035 0258805036 0258805006 0258805006	G/19607 G/19607 G/19607 G/19607 G/19607 G/19607 G/19607 G/19607 G/19607 G/19607 G/19607 G/19607 G/19607 G/19607 G/19607 G/19607 G/19607	र्ल	.56.66.66.66.66.66.66.66.66.66.66.66.66.	TO15_065-14 TO15_065-14		A A A A A A A A A A A A A A A A A A A	
ਨ ਹ)258805018)258805025)258805029)258805024)258805037)258805039)258805032)258805032)258805034)35819)258805035)258805035)258805036)258805036)258805006)258805006)258805005	G/19607 G/19607 G/19607 G/19607 G/19607 G/19607 G/19607 G/19607 G/19607 G/19607 G/19607 G/19607 G/19607 G/19607 G/19607 G/19607 G/19607	र्वे	5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.	TO15_065-14 TO15_065-14		A A A A A A A A A A A A A A A A A A A	

Instrument Run Log

Instrument: 10AIR0
Column: J&W DB-5 0.32mm Helium Tune Standard:

Misc. Prep. Info: ISTD Lot: 8137-74-13

Surrogate Lot: Cal. Standard:

8137-74-13

Path/File Check Maintenance Items Performed: Replaced/Cleaned gold seal Cleaned liner Changed septum Lab ID Matrix/Batch Type Changed trap - Lot #
Cleaned MS Source Clipped column 묶 모 Method No maintenance performed today Other minor parts replaced Changed column - Lot # Date & Time Oper. Comments

File Path 1: U:\10AIR0.I\030714.B\

Additional Comments:

Matrix Codes: [G]as, [L]iquid, [S]olid, [N]one

Run order verified:

Report Date: 03/11/2014 13:13

Reviewed By/Date:

5A - FORM V VOA VOLATILE ORGANIC INSTRUMENT PERFORMANCE CHECK BROMOFLUOROBENZENE (BFB)

EPA SAMPLE NO.

BFB

Lab Name: Pace Analytical

Contract:

Lab Code:

PASI

Case No.:

ID: 0.32

SAS No.:

SDG No.: 10258805

Lab File ID: 06801BFB.D

BFB Injection Date: 03/09/2014

Instrument ID: 10AIR0 BFB Injection Time: 10:29

GC Column: J&W DB-5

(mm)

		% RELATIVE	
m/e	ION ABUNDANCE CRITERIA	ABUNDANCE	
95	Base Peak, 100% relative abundance	100.00	
50	8.00 - 40.00% of mass 95	19.15	
75	30.00 - 66.00% of mass 95	52.39	
96	5.00 - 9.00% of mass 95	6.49	
173	Less than 2.00% of mass 174	0.52	(0.60)
174	50.00 - 120.00% of mass 95	86.50	
175	4.00 - 9.00% of mass 174	6.18	(7.15)
176	93.00 - 101.00% of mass 174	83.96	(97.07)
177	5.00 - 9.00% of mass 176	5.27	(6.27)

1 - Value is %mass 174 2 - Value is %mass 176

	EPA SAMPLE NO.	LAB SAMPLE ID	LAB FILE ID	DATE ANALYZED	TIME ANALYZED
1	LCS (LCS)	LCS	06802LCS.D	03/09/2014	10:55
2	CCV	CCV	06802.D	03/09/2014	10:55
3	LCS for HBN 288713 [AIR/	1635821	06802_19617.D	03/09/2014	10:55
4	BLANK (BLK)	BLANK	06808_BLANK.	03/09/2014	14:02
5	BLANK for HBN 288713 [Al	1635820	06808_19617.D	03/09/2014	14:02
6	IA-145-C-16	10258805039	06814.D	03/09/2014	17:26
7	SV-DUP1-C-16	10258805044	06815.D	03/09/2014	17:51
8	SV-133-C-16	10258805025	06816.D	03/09/2014	18:15
9	IA-105-Z-16	10258805030	06817.D	03/09/2014	18:40
10	IA-123-Z-16	10258805032	06818.D	03/09/2014	19:04
11	SV-102-C-16	10258805009	06819.D	03/09/2014	19:29
12	SV-126-C-16	10258805017	06820.D	03/09/2014	19:53
13	IA-088-C-16	10258805006	06831.D	03/10/2014	01:06
14	IA-113-C-16	10258805028	06832.D	03/10/2014	01:35
15	IA-T-1-7(1633543DUP)	1636060-DUP	06836.D	03/10/2014	03:39

Data File: \\192.168.10.12\chem\10air0.i\030914.b\06802.D

Report Date: 09-Mar-2014 11:14

Pace Analytical Services, Inc.

CONTINUING CALIBRATION COMPOUNDS

Instrument ID: 10air0.i Injection Date: 09-MAR-2014 10:55

Init. Cal. Date(s): 06-MAR-2014 06-MAR-2014 Lab File ID: 06802.D

Analysis Type: AIR Init. Cal. Times: 15:00 12:12

Lab Sample ID: CCV Quant Type: ISTD Method: \\192.168.10.12\chem\10air0.i\030914.b\T015_065-14.m

	\		CCAL MIN	1	MAX	I
COMPOUND	RRF / AMOUNT	RF10	RRF10 RRF	%D / %DRIFT		
 1 Chlorodifluoromethane	2.52255	2.33783	2.33783 0.010	. ,	30.00000	•
2 Propylene	7.83508	6.29801	6.29801 0.010	-19.61773	30.00000	Averaged
3 Dichlorodifluoromethane	1.27555	1.05824	1.05824 0.010	-17.03640	30,00000	Averaged
4 Dichlorotetrafluoroethane	1.62869	1.34497	1.34497 0.010	-17.42012	30.00000	_
5 Chloromethane	4.50576	3.72458	3.72458 0.010	-17.33739	30.00000	Averaged
6 Vinyl chloride	4.66786	3.75615	3.75615 0.010	-19.53177	30.00000	Averaged
7 1,3-Butadiene	7.07014	5.46396	5.46396 0.010	-22.71785	30.00000	Averaged
8 Bromomethane	4.52911	3.64163	3.64163 0.010	-19.59494	30.00000	Averaged
9 Chloroethane	10.04013	8.26800	8.26800 0.010	-17.65055	30.00000	Averaged
10 Ethanol	10.00000	15.53264	9.15327 0.010	55.326441	30.00000	Linear
11 Vinyl Bromide	4.59506	3.64915	3.64915 0.010	-20.58533	30.00000	Averaged
12 Isopentane	4.958321	4.09572	4.09572 0.010	-17.39703	30.00000	Averaged
13 Acrolein	15.34643	13.27838	13.27838 0.010	-13.47576	30.00000	Averaged
14 Trichlorofluoromethane	1.22740	1.03246	1.03246 0.010	-15.88244	30.00000	Averaged
15 Acetone	2.68538	2.45533	2.45533 0.010	-8.56682	30.00000	Averaged
16 Isopropyl Alcohol	3.39322	2.26114	2.26114 0.010	-33.36304	30.00000	Averaged
17 Acrylonitrile	10.00000	13.29989	6.43072 0.010	32.99890	30.00000	Linear
18 1,1-Dichloroethene	1 2.83450	2.33714	2.33714 0.010	-17.54671	30.00000	Averaged
19 Tert Butyl Alcohol (TBA)	2.03510	1.50040	1.50040 0.100	-26.27377	30.00000	Averaged
20 Freon 113	2.26695	1.89640	1.89640 0.010	-16.34568	30.00000	Averaged
21 Methylene chloride	10.00000	12.75262	3.70745 0.010	27.52625	30.00000	Linear
22 Allyl Chloride	11.33608	8.18534	8.18534 0.010	-27.79391	30.00000	Averaged
23 Carbon Disulfide	1.68637	1.34319	1.34319 0.010	-20.35004	30.00000	Averaged
24 trans-1,2-dichloroethene	5.086991	3.70571	3.70571 0.010	-27.15313	30.00000	Averaged
25 Methyl Tert Butyl Ether	1.44907	1.16361	1.16361 0.300	-19.69953	30.00000	Averaged
26 Vinyl Acetate	10.00000	12.43014	1.56435 0.010	24.30143	30.00000	Linear
27 1,1-Dichloroethane	2.33452	1.94573	1.94573 0.010	-16.65396	30.00000	Averaged
\$ 28 Hexane-d14(S)	2.12135	2.22389	2.22389 0.200	4.83401	30.00000	Averaged
29 Methyl Ethyl Ketone	10.00000	12.99554	7.85210 0.010	29.95544	30.00000	Linear
30 Di-isopropyl Ether	1.55859	1.34071	1.34071 0.010	-13.97956	30.00000	Averaged
31 n-Hexane	3.15902	2.58359	2.58359 0.010	-18.21544	30.00000	Averaged
32 Ethyl Acetate	2.51148	1.84965	1.84965 0.010	-26.35240	30.00000	Averaged
33 cis-1,2-Dichloroethene	4.86083	3.68065	3.68065 0.010	-24.27949	30.00000	Averaged
34 Ethyl Tert-Butyl Ether	1.34351	1.10223	1.10223 0.010	-17.95858	30.00000	Averaged
35 Chloroform	1.74061	1.44616	1.44616 0.010	-16.91649	30.00000	Averaged
36 Tetrahydrofuran	4.50854	3.76540	3.76540 0.010	-16.48284	30.00000	Averaged
37 1,1,1-Trichloroethane	1.52974	1.24122	1.24122 0.010	-18.86071	30.00000	Averaged
38 1,2-Dichloroethane	2.26620	1.85036	1.85036 0.010	-18.34932	30.00000	Averaged
39 Benzene	1.50703	1.21909)	1.21909 0.300	-19.10642	30.00000	_
40 Carbon tetrachloride	1.58082	1.25412	1.25412 0.010	-20.66664	30.00000	Averaged
41 Cyclohexane	3.51543	2.82871	2.82871 0.010	-19.53453	30.00000	-
42 Tert Amyl Methyl Ether	1.220541	1.09701	1.09701 0.010		30.00000	

10258805 Page 820 of 1988 Data File: \\192.168.10.12\chem\10air0.i\030914.b\06802.D

Report Date: 09-Mar-2014 11:14

Pace Analytical Services, Inc.

CONTINUING CALIBRATION COMPOUNDS

Instrument ID: 10air0.i Injection Date: 09-MAR-2014 10:55

	I	1	CCAL MIN	1	MAX	I
COMPOUND	RRF / AMOUNT	RF10	RRF10 RRF	%D / %DRIFT	%D / %DRIFT	CURVE TYPE
44 2,2,4-Trimethylpentane	0.991641	0.82000	0.8200C 0.01	= 0 - 17.30850	30.00000	====== Averaged
45 Heptane	2.84943	2.37331	2.37331 0.01		30.00000	
46 1,2-Dichloropropane	3.91722	3.33642	3.33642 0.01		30.00000	
47 Trichloroethene	3.41741	2.63082	2.63082 (0.01		30.00000	
48 1,4-Dioxane	7.40946	5,29181	5.29181 0.01		30.00000	
49 Bromodichloromethane	1.56920	1.23970	1.2397010.01		30.00000	
50 Methylcyclohexane	6.12567	4.66409	4.66409 0.01		30.00000	
51 Methyl Isobutyl Ketone	2.209581	1.58333	1.58333 0.01			
52 cis-1,3-Dichloropropene	10.000001		•			
53 trans-1,3-Dichloropropene	10.000001	12.71123 12.15329	1.84321 0.01		30.00000	
* * *			·		30.00000	
\$ 54 Toluene-d8 (S)	1.00589	1.01169	1.01169 0.20		30.00000	
55 1,1,2-Trichloroethane	3.15076	2.66406	2.66406 0.01		30.00000	
56 Toluene	1.21861	0.96313	0.96313 0.30		30.00000	
57 Methyl Butyl Ketone	1.52798	1.12886	1.12886 0.01		30.00000	
58 Dibromochloromethane	1.18586	0.87084	0.87084 0.01		30.00000	
59 1,2-Dibromoethane	1.42652	1.04599	1.04599 0.01		30.00000	
60 Tetrachloroethene	1.50481	1.16138	1.16138 0.01			-
62 Chlorobenzene	1.04790	0.81314	0.81314 0.01		30.00000	
63 Ethyl Benzene	0.62773	0.47039	0.47039 0.30	0 -25.06514	30.00000	Averaged
64 m&p-Xylene	0.76414	0.56363	0.56363[0.30	0 -26.24019	30.00000	Averaged
65 Styrene	1.27934	0.89400	0.89400 0.01	0 -30.12020	<i>)</i> 30.00000	Averaged <
66 Bromoform	1.21114	0.86001	0.86001 0.01	0 -28.99142	30.00000	Averaged
67 o-Xylene	0.73139	0.55659	0.55659 0.30	0 -23.89941	30.00000	Averaged
68 1,1,2,2-Tetrachloroethane	1.09768	0.87335	0.87335 0.01	0 -20.43686	30.00000	Averaged
69 Isopropylbenzene	0.58171	0.44499	0.44499 0.01	0 -23.50297	30.00000	Averaged
70 N-Propylbenzene	0.50823	0.38232	0.38232 0.01	0 -24.77344	30.00000	Averaged
71 4-Ethyltoluene	0.62805	0.45974	0.45974 0.01	0 -26.79910	30.00000	Averaged
72 1,3,5-Trimethylbenzene	0.62525	0.49700	0.49700 0.01	0 -20.51075	30.00000	Averaged
73 Tert-Butyl Benzene	0.71680	0.53947	0.53947 0.01	0 -24.73938	30.00000	Averaged
74 1,2,4-Trimethylbenzene	0.69061	0.52212	0.52212 0.01	0 -24.39744	30.00000	Averaged
75 Sec- Butylbenzene	0.56804	0.40912	0.40912 0.01	0 -27.97793	30.00000	Averaged
76 1,3-Dichlorobenzene	1.12225	0.84508	0.84508 0.01	0 -24.69705	30.00000	Averaged
\$ 77 1,4-dichlorobenzene-d4 (S)	1.78868	1.49584	1.49584 0.20	0 -16.37139	30.00000	Averaged
78 Benzyl Chloride	10.00000	13.47510	0.64781 0.01	0 34.75100	30.00000	Linear
79 1,4-Dichlorobenzene	1.07141	0.82883	0.82883 0.01	0 -22.64098	30.00000	Averaged
80 p-Isopropyltoluene	0.72653	0.48907	0.48907[0.01	0 -32.68387	30.00000	Averaged
81 1,2,3-Trimethylbenzene	0.73742	0.55000	0.55000 0.01		30.00000	
82 1,2-Dichlorobenzene	1.24311	0.86065	0.86065 0.01		30.00000	
83 N-Butylbenzene	10.00000	12.89534	0.53296 0.01	A	30.00000	
84 1,2,4-Trichlorobenzene	10.000001	13.06117	1.39882 0.01		30.00000	
85 Naphthalene	10.000001	12.85453	0.76604 0.01	-	30.00000	
86 Hexachlorobutadiene	1.38105	1.29119	1.29119 0.01		30.00000	
	1.001001	1.221171	1.23113,0.01	0.555401	50.00000	,vc_raged)

10258805 Page 821 of 1988 Data File: \\192.168.10.12\chem\10air0.i\030914.b\06802.D

Report Date: 09-Mar-2014 11:14

Pace Analytical Services, Inc.

CONTINUING CALIBRATION COMPOUNDS

Instrument ID: 10air0.i Injection Date: 09-MAR-2014 10:55

Init. Cal. Date(s): 06-MAR-2014 06-MAR-2014
Init. Cal. Times: 12:12 15:00
Quant Type: ISTD Lab File ID: 06802.D Analysis Type: AIR

Lab Sample ID: CCV Quant Type: ISTD Method: \\192.168.10.12\chem\10air0.i\030914.b\T015_065-14.m

|Average %D / Drift Results. |Calculated Average %D/Drift = 22.00408 |Maximun Average %D/Drift = 30.00000 |* Passed Average %D/Drift Test.

> 10258805 Page 822 of 1988

Instrument Run Log

Misc. Prep. Info: ISTD Lot: 8137-74-13

Surrogate Lot: Cal. Standard:

8137-74-13

			ļ		-			
	JAM:	3/10/14 06:48	TO15_065-14	1.57	Sample	G/19617	10259331022	06842.D
	IAM.	3/10/14 06-18	TO15 065-14	1 74	Sample	G/10617	10250331005	06841 D
	JAM	3/10/14 05:44	TO15 065-14	1.94	Sample	G/19617	10259331004	06840 D
	JAM	3/10/14 05:14	TO15 065-14	1.68	Sample	G/19617	10259331008	06839.D
	JAM	3/10/14 04:40	TO15_065-14	1.68	Sample	G/19617	10259331020	06838.D
	JAM	3/10/14 04:09	TO15_065-14	1.68	Sample	G/19617	10259331007	06837.D
	JAM	3/10/14 03:39	TO15_065-14	1.68	Duplicate	G/19617	1636060	06836.D
	JAM	3/10/14 03:04	TO15_065-14	1.68	Sample	G/19617	10259331010	06835.D
	JAM	3/10/14 02:35	TO15_065-14	1.68	Duplicate	G/19617	-DUP	06834.D
	JAM	3/10/14 02:04	TO15_065-14	1.68	Sample	G/19617	10259331017	06833.D
	JAM	3/10/14 01:35	TO15_065-14	5.3088	Sample	G/19617	10258805028	06832.D
	JAM	3/10/14 01:06	TO15_065-14	36.36	Sample	G/19617	10258805006	06831.D
	JAM	3/10/14 00:41	TO15_065-14	_	Sample	ହ	೧	06830.D
	JAM	3/10/14 00:12	TO15_065-14	_	Sample	ହ	೧	06829.D
	JAM	3/09/14 23:43	TO15_065-14	_	Sample	ହ	೧	06828.D
	JAM	3/09/14 23:13	FO15_065-14		Sample	ହ	<u></u>	06827.D
	JAM	3/09/14 22:44	TO15_065-14	. <u>_</u> a	Sample	ହ	ਨ ਨ	06826.D
	JAM	3/09/14 22:15	1015_065-14		Sample	ପ	ਨ ਨ	06825.D
	JAM	3/09/14 21:46	TO15_065-14		Sample	ହ	ត	06824.D
	JAM	3/09/14 21:16	1015_065-14	. ـ	Sample	<u>.</u>	i 7	06823.D
	JAM	3/09/14 20:47	1015_065-14	د ـــ	Sample	. ପ	i C	06822.D
	JAM	3/09/14 20:18	1015_065-14	-	Sample	<u>(</u>	;	06821.D
) }	3/00/14 19:33	TO15_065 14	307.0	Sample	6/1900/	1020000017	06824.0
	N.	3/00/14 10:53	TO15_005-14	E 27 G	Cample	0/19007	10250005047	06830 D
	IAM.	3/09/14 19:29	TO15 065-14	8830	Sample	G/19607	10258805000	06819.0
	MA	3/09/14 19:04	TO15 065-14	299 2	Sample	G/19607	10258805032	06818 D
	JAM	3/09/14 18:40	TO15 065-14	144	Sample	G/19607	10258805030	06817.D
	JAM	3/09/14 18:15	TO15 065-14	134.4	Sample	G/19607	10258805025	06816.D
	JAM	3/09/14 17:51	TO15_065-14	84.672	Sample	G/19607	10258805044	06815.D
	JAM	3/09/14 17:26	TO15_065-14	62.832	Sample	G/19607	10258805039	06814.D
	JAM	3/09/14 17:01	TO15_065-14	2.8224	Sample	G/19607	10258805029	06813.D
	JAM	3/09/14 16:31	TO15_065-14	1.74	Sample	G/19607	10258805035	06812.D
	JAM	3/09/14 15:30	TO15_065-14	1.9966	Sample	G/19612	10259098007	06811.D
	JAM	3/09/14 15:01	TO15_065-14	1.9966	Sample	G/19612	10259098005	06810.D
	JAM	3/09/14 14:32	TO15_065-14	1.9966	Sample	G/19612	10259098003	06809.D
	AH2	3/09/14 14:02	TO15_065-14	_	Blank	G/19617	1635820	06808_19617.D
	AH2	3/09/14 14:02	TO15_065-14	_	Sample	ହ	CERT	06808.D
	AH2	3/09/14 14:02	TO15_065-14		Blank	ହ	BLANK	06808_BLANK.D
	AH2	3/09/14 13:33	TO15_065-14	_	Sample	ହ	CERT	06807.D
	AH2	3/09/14 13:04	TO15_065-14	_	Sample	ହ	CERT	06806.D
	AH2	3/09/14 12:35	TO15_065-14	_	Sample	ହ	CERT	06805.D
	AH2	3/09/14 12:06	TO15_065-14	1	Sample	ହ	CERT	06804.D
	AH2	3/09/14 11:37	TO15_065-14	_	Sample	ହ	0	06803.D
	AH2	3/09/14 10:55	TO15_065-14	_	S	G/19617	1635821	06802_19617.D
	AH2	3/09/14 10:55	TO15_065-14	>	CCal	ହ	CCV	06802.D
	AH2	3/09/14 10:55	TO15_065-14	_	LCS	ହ	LCS	06802LCS.D
	AH2	3/09/14 10:29	TUNE	_	Tune	_	BFB	06801BFB.D
Comments	Oper.	Date & Time	Method	PH	Type	Matrix/Batch	Lab ID	Path/File
			۱					

Instrument Run Log

Instrument: 10AIR0 Method: Column: J&W DB-5 0.32mm Helium Tune Standard: Misc Prep. Info: ISTD Lot: 8137-74-13 Surrogate Lot: Cal. Standard: 8137-74-13

Path/File	Lab ID	Matrix/Batch	Туре	PF	РH	pH Method	Date & Time	Oper.	Comments
06843.D	10259331006	G/19617	Sample	2.36		TO15_065-14	3/10/14 07:22	JAM	
06844.D	10259331021	G/19617	Sample	1.57		TO15_065-14	3/10/14 07:57	JAM	
068 4 5.D	10259331003	G/19617	Sample	1.68		TO15_065-14	3/10/14 08:28	JAM	
06846.D	10259331002	G/19617		1.74		TO15_065-14	3/10/14 08:58	JAM	
Check Mainte	Check Maintenance Items Performed	ä							
Change	Changed septum	Clipped	Clipped column			Changed column - Lot#	ot#		
Cleaned liner	dliner	Chang	Changed trap - Lot:	ot#		Other minor parts replaced	placed		
Replaced/Clean Additional Comments:	Replaced/Cleaned gold seal onal Comments:	Cleane	Cleaned MS Source	гсе		No maintenance performed today	formed today		

File Path 1: U:\10AIR0.I\030914.B\
Matrix Codes: [G]as, [L]iquid, [S]olid, [N]one

Run order verified:

Report Date: 03/11/2014 13:16

Reviewed By/Date:

5A - FORM V VOA VOLATILE ORGANIC INSTRUMENT PERFORMANCE CHECK BROMOFLUOROBENZENE (BFB)

EPA SAMPLE NO.	
BFB	

Lab Name: Pace Analytical

Contract:

Lab Code:

PASI

Case No.:

SAS No.:

SDG No.: 10258805

Lab File ID: 06601BFB.D

BFB Injection Date: 03/07/2014

Instrument ID: 10AIRD

BFB Injection Time: 08:10

GC Column: J&W DB-5

ID: 0.32 (mm)

		% RELATIVE	
m/e	ION ABUNDANCE CRITERIA	ABUNDANCE	
95	Base Peak, 100% relative abundance	100.00	
50	8.00 - 40.00% of mass 95	20.98	
75	30.00 - 66.00% of mass 95	53.36	
96	5.00 - 9.00% of mass 95	6.55	
173	Less than 2.00% of mass 174	0.00	(0.00)
174	50.00 - 120.00% of mass 95	90.33	
175	4.00 - 9.00% of mass 174	5.73	(6.34)
176	93.00 - 101.00% of mass 174	84.73	(93.81)
177	5.00 - 9.00% of mass 176	5.64	(6.65)

1 - Value is %mass 174 2 - Value is %mass 176

	EPA SAMPLE NO.	LAB SAMPLE ID	LAB FILE ID	DATE ANALYZED	TIME ANALYZED
1	CAL5	CAL5	06704.D	03/07/2014	10:27
2	CAL6	CAL6	06705.D	03/07/2014	10:56
3	CAL1	CAL1	06708.D	03/07/2014	12:19
4	CAL2	CAL2	06709.D	03/07/2014	12:46
5	CAL3	CAL3	06710.D	03/07/2014	13:14
6	CAL4	CAL4	06711.D	03/07/2014	13:41
7	ICVADD (LCS)	ICVADD	06712.D	03/07/2014	14:09
8	ICV (LCS)	ICV	06713.D	03/07/2014	14:36
9	LCS for HBN 288692 [AIR/	1635689	06714L.D	03/07/2014	15:04
10	LCS (LCS)	LCS	06714.D	03/07/2014	15:04
11	BLANK for HBN 288692 [AI	1635688	06717L.D	03/07/2014	16:39
12	IC	IC	06717.D	03/07/2014	16:39
13	SV-143-C-16	10258805001	06722.D	03/07/2014	19:09
14	SV-065-C-16	10258805019	06724.D	03/07/2014	20:07
15	SV-130-C-16	10258805011	06725.D	03/07/2014	20:35
16	IA-148-C-16	10258805042	06726.D	03/07/2014	21:03
17	SV-123-Z-16	10258805031	06727.D	03/07/2014	21:31
18	IA-102-C-16	10258805010	06728.D	03/07/2014	21:59
19	IA-101-B-16	10258805036	06729.D	03/07/2014	22:27
20	SV-060-C-16	10258805013	06730.D	03/07/2014	22:55
21	K1500022214(1631141DU	1635784-DUP	06735.D	03/08/2014	01:15
		· · · · · · · · · · · · · · · · · · ·		·	

5A - FORM V VOA VOLATILE ORGANIC INSTRUMENT PERFORMANCE CHECK BROMOFLUOROBENZENE (BFB)

EPA 5	AMPLE	NO.
F	RFR	

Lab Name: Pace Analytical

Contract:

Lab Code:

PASI

Case No.:

SAS No.:

SDG No.: 10258805

Lab File ID: 06701BFB.D

BFB Injection Date: 03/08/2014

BFB Injection Time: 09:31

Instrument ID: 10AIRD

GC Column: J&W DB-5 ID: 0.32 (mm)

		% RELATIVE	
m/e	ION ABUNDANCE CRITERIA	ABUNDANCE	
95	Base Peak, 100% relative abundance	100.00	
50	8.00 - 40.00% of mass 95	21.61	
75	30.00 - 66.00% of mass 95	57.15	
96	5.00 - 9.00% of mass 95	6.80	
173	Less than 2.00% of mass 174	0.81	(0.93)
174	50.00 - 120.00% of mass 95	87.48	
175	4.00 - 9.00% of mass 174	6.43	(7.36)
176	93.00 - 101.00% of mass 174	82.36	(94.14)
177	5.00 - 9.00% of mass 176	5.46	(6.63)

1 - Value is %mass 174

1 2 3 2 - Value is %mass 176

EPA SAMPLE NO	LAB SAMPLE ID	LAB FILE ID	DATE ANALYZED	TIME ANALYZED
LCS (LCS)	LCS	· 06702LCS.D	03/08/2014	09:58
CCV	CCV	06702.D	03/08/2014	09:58
SV-060-C-16	10258805013	06715.D	03/08/2014	16:32

Instrument Run Log

Instrument: 10AIRD Method: Column: J&W DB-5 0.32mm Helium Tune Standard:

Misc. Prep. Info: ISTD Lot: 10288-3-7

Surrogate Lot: 10288-3-7

<u>ငရ</u>	9
Stan	9
Standard:	ļ

Path/File	Lab ID	Matrix/Batch	Type	믺	pH Method	Date & Time	Oper.	Comments
06601BFB.D	BFB	L	Tune		50ng_bfb	3/07/14 08:10	AH2	
06702.D	CCV	ହ	CCal	_	TO15_063-14		AH2	
06703.D	CAL4	ହ	<u>8</u>	_	TO15_067-14		AH2	
06704.D	CAL5	ହ	<u>8</u>	-	TO15_067-14		AH2	
06705.D	CAL6	ହ	<u>ਲ</u>	_	TO15_067-14		AH2	
06706.D	0	ହ	Sample	-	TO15_067-14		AH2	
06707.D	CAL1	ହ	Sample	_	TO15_067-14		AH2	
06708.D	CAL1	ହ	<u>8</u>	_	TO15_067-14		AH2	
06709.D	CAL2	ହ	<u>8</u>	_	TO15_067-14		AH2	
06710.D	CAL3	ହ	<u>8</u>		TO15_067-14		AH2	
06711.D	CAL4	ହ	<u>8</u>	_	TO15_067-14		AH2	
06712.D	ICVADD	ହ	S	_	TO15_067-14		AH2	
06713.D	icv	ହ	CS		TO15_067-14		AH2	
06714B.D	1635807	G/19614	SO	_	TO15_067-14		AH2	
06714L.D	1635689	G/19608	CS	_	TO15_067-14		AH2	
06714PTAMB.D 1636348) 1636348	G/19629	SO	_	TO15_067-14		AH2	
06714.D	CS	ହ	CCS	_	TO15_067-14		AH2	
06714PT.D	1636346	G/19628	CCS	_	TO15_067-14		AH2	
06715.D	0	ହ	Sample	_	TO15_067-14		AH2	
06716.D	BLANK	ହ	Sample	_	TO15_067-14	3/07/14 16:05	AH2	
06717PT.D	1636345	G/19628	Blank		TO15_067-14	3/07/14 16:39	AH2	
06717PTAMB.D		G/19629	Blank	_	TO15_067-14		AH2	
06717L.D	1635688	G/19608	Blank		TO15_067-14		AH2	
06717B.D	1635806	G/19614	Blank	_	TO15_067-14		AH2	
06717.D	೧	ହ	Sample	_	TO15_067-14	3/07/14 16:39	AH2	
06718.D	10258905002	G/19591	Sample	2.6939	TO15_067-14	3/07/14 17:18	AH2	
06719PTAMB.D 10256665001	10256665001	G/19629	Sample	_	TO15_067-14		AH2	
06719.D	10256665001	G/19628	Sample	_	TO15_067-14	3/07/14 17:46	AH2	
06720.D	10258609001	G/19589	Sample	27.8	TO15_067-14	3/07/14 18:14	AH2	
06721.D	10258697001	G/19622		476.8	TO15_067-14	3/07/14 18:41	AH2	
06722.D	10258805001	G/19608		4.22	TO15_067-14	3/07/14 19:09	AH2	
06723.D	-DUP	G/19608	Œ.		TO15_067-14	3/07/14 19:39	AH2	
06724.D	10258805019	G/19608			TO15_067-14	3/07/14 20:07	AH2	
06725.D	10258805011	G/19608	Sample	1.68	TO15_067-14	3/07/14 20:35	AH2	
06726.D	10258805042	G/19608	Sample	1.87	TO15_067-14	3/07/14 21:03	AH2	
06727.D	10258805031	G/19608	Sample	1.68	TO15_067-14		AH2	
06728.D	10258805010	G/19608	Sample	1.94	TO15_067-14		AH2	
06729.D	10258805036	G/19608	Sample	1.87	TO15_067-14	3/07/14 22:27	AH2	
06730.D	10258805013	G/19608	Sample	1.68	TO15_067-14		AH2	
06731.D	92191346001	G/19622	Sample	6860.8	TO15_067-14		AH2	
06732.D	0	ହ	Sample	_	TO15_067-14		AH2	
06733.D	ਨ	ହ	Sample	_	TO15_067-14		AH2	
06734.D	10258895001	G/19608	Sample		TO15_067-14	3/08/14 00:47	AH2	
06735.D	1635784	G/19608	:				5	
	000000000000000000000000000000000000000	010000	Duplicate	<u> </u>	TO15_067-14	3/08/14 01:15	AH2	
06736.D	10258904001	6/19008	Duplicate Sample	1.34	TO15_067-14 TO15_067-14	3/08/14 01:15 3/08/14 01:43	AH2	

Instrument Run Log

Instrument: 10AIRD Method: Column: J&W DB-5 0.32mm Helium Tune Standard: Misc. Prep. Info: ISTD Lot: 10288-3-7 Surrogate Lot: Cal. Standard: 10288-3-7

		Other minor parts replaced No maintenance performed today	Other minor parts replaced No maintenance performed	6 # #	Changed trap - Lot # Cleaned MS Source	Chang Cleans	Cleaned liner Replaced/Cleaned gold seal onal Comments:	Cleaned liner Replaced/Clear Additional Comments:
		ın - Lot#	Changed column - Lot #		Clipped column	Clippe	Changed septum	Char
						<u>a.</u>	Check Maintenance Items Performed:	Check Mai
	AH2	3/08/14 07:48	TO15_067-14	_	Sample	ହ	ਨ	06749.D
	AH2	3/08/14 07:20	TO15_067-14	_	Sample	ହ	0	06748.D
	AH2	3/08/14 06:52	TO15_067-14	214.4	Sample	G/19612	10259118004	06747.D
	AH2	3/08/14 06:25	TO15_067-14	27.8	Sample	G/19609	10259118002	06746.D
	AH2	3/08/14 05:58	TO15_067-14	1.34	Sample	G/19608	10259118001	06745.D
	AH2	3/08/14 05:30	TO15_067-14	1.34	Sample	G/19609	10259118003	06744.D
	AH2	3/08/14 05:00	TO15_067-14	36.6	Sample	G/19608	35129079004	06743.D
	AH2	3/08/14 04:33	TO15_067-14	1.68	Sample	G/19608	35129079003	06742.D
	AH2	3/08/14 04:05	TO15_067-14	1.49	Sample	G/19608	35129079001	06741.D
	AH2	3/08/14 03:37	TO15_067-14	1.34	Sample	G/19608	35129079002	06740.D
	AH2	3/08/14 03:09	TO15_067-14	1.74	Duplicate	G/19614	1635808	06739.D
	AH2	3/08/14 02:39	TO15_067-14	1.74	Sample	G/19608	10259500001	06738B.D
	AH2	3/08/14 02:39	TO15_067-14	1.74	Sample	G/19614	10259499001	06738.D
Comments	Oper.	Date & Time	pH Method	묶	Туре	Matrix/Batch Type	Lab ID	Path/File

File Path 1: U:\10AIRD.I\030714.B\
Matrix Codes: [G]as, [L]iquid, [S]olid, [N]one

Run order verified:

Report Date: 03/12/2014 16:35 Reviewed By/Date:

Pace Analytical Services, Inc.

INITIAL CALIBRATION DATA

Start Cal Date : 07-MAR-2014 10:27
End Cal Date : 07-MAR-2014 13:41
Quant Method : ISTD
Target Version : 4.14
Integrator : HP RTE
Method file : \\192.168.10.12\chem\10airD.i\030714.b\T015_067-14.m
Last Edit : 07-Mar-2014 14:19 10airD.i

Calibration File Names:
Level 1: \\192.168.10.12\chem\10airD.i\030714.b\06708.d
Level 2: \\192.168.10.12\chem\10airD.i\030714.b\06709.d
Level 3: \\192.168.10.12\chem\10airD.i\030714.b\06710.d
Level 4: \\192.168.10.12\chem\10airD.i\030714.b\06711.d
Level 5: \\192.168.10.12\chem\10airD.i\030714.b\06704.d
Level 6: \\192.168.10.12\chem\10airD.i\030714.b\06705.d

Compound	1	0.1000000 Level 1	0.2000000 Level 2	1.0000 Level 3	10.0000 Level 4	20.0000 Level 5	30.000C Level 6 Curve:	Co b	efficients ml	m2	%RSD or R^2
	== =										
1 Chiorodifluoromethane	- 1	7218:	12155	55994	436384	1227139	1451178 LINR ,	-0.01670	1.02863		0.99697
2 Propylene	- 1	2.292981	2.92478	3.01479	3.19635	2.51568	2.86817 AVRG :	1	2.80212		11.95735
3 Dichlorodifluoromethane	- 1	0.34284	0.38749	0.42851	0.44395	0.63944	0.47127[AVRG	1	0.45225		22.59224
4 Dichlorotetrafluoroethane	- 1	0.38962	C.45763	0.51879	0.52531	0.48881	0.52917 AVRG	1	0.48489		11.13600
5 Chloromethane	- 1	1.33104	1.36117	1.64144;	1.68497	1.46881	1.69462 AVRG	1	1.53034		10.75191
6 Vinyl chloride	- 1	1.36815	1.51105	1.73133:	1.79081	1.45794	1.68150 AVRG	1	1.59013		10.5817
7 1,3-Butadiene	1	2.21535	2.75667	2.85612;	2.98848	2.33473	2.68892 AVRG	1	2.64004		11.4599
8 Bromomethane	- 1	0.996661	1.21450	1.44830;	1.47031	1.27546	1.38699 AVRG		1.29870		13.7086
9 Chloroethane	1	2.78696	2.83909	3.89806	3.79872	3.18315	3.68705[AVRG		3.36551		14.67578
10 Ethanol	- 1	2.47391	3.12093	3.74676:	3.71450	3.04962	5.36807 AVRG	i	3.57896		27.8250
11 Vinyl Bromide	- 1	1.17790	1.19292	1.46009;	1.47137	1.296491	1.41160[AVRG	i	1.33506		9.84978
(12 Isopentane	1	1.31706	1.66317!	1.97757;	1.8891€	1.55499	1.89325 AVRG	i	1.71587		14.6903
13 Trichloroflucromethane	1	0.33372	0.38619	0.42549	0.44005	0.44781	0.46911 AVRG	i	0.41706:		11.8208
14 Acrolein	1	+++++	3.91025	4.23816	5.84286	4.93493	5.63151 AVRG	i	4.91154		17.1626
I.	1	1		1	1	i	i i	i	1		

10258805 Page 417 of 1988

Pace Analytical Services, Inc.

INITIAL CALIBRATION DATA

1		. 0	.10000000 ,	0.2000000	1.0000 :	10.0000 :	20.0000 I	30.0000	ī ī	Coe	fficients	I	%RSD
1	Compound		Level 1	Level 2	Level 3	Level 4	Level 5		Curve	ь	mí	m2	or R^2
1=-	15 Acetone		+++++	0.56519	0.69785	0.96689	0.88211	1.00751			0.82391	·	22.73632
1	16 Isopropyl Alcohol	i	0.88233	1.06675	1.25789	1.14091	0.94918	1.33641	AVRG	1	1.10558	1	15.85029
1	17 1,1-Dichloroethene	1	0.705671	0.95764	0.98058	1.04010	0.93414	1.02929	AVRG	1	0.94124	1	13.00217
1	18 Tert Butyl Alcohol	1	0.59057	0.72494	0.73710	0.77315	0.65383	0.84004	AVRG	1	0.71994		12.21742
1	19 Acrylonitrile	1	2.94897	3.25268	2.78477	2.73763	2.16572	2.55960	AVRG	1	2.74156	1	13.36065
1	20 Freon 113	1	0.61788	0.65438	0.72353	0.73862	0.69690	0.76047	AVRG	1	0.69863	1	7.714521
1	21 Methylene chloride	1	7267	11456	43584	290760	862586	950638	QUAD	C.COO14	0.77571	-0.04637	0.99334
1	22 Allyl Chloride	1	2.29065	2.91752	3.61251	3.48839	3,02705	3.43092	AVRG	1	3.12784	1	15.74082
1	23 Carbon Disulfide	1	0.35464	0.42814	0.48155	0.50346	0.43265	0.48358	AVRG	1	0.44734	1	12.16709
1	24 trans-1,2-dichloroethene	1	1.13782	1.32528	1.45476	1.43945	1.21614	1.36626	AVRG	1	1.32328	1	9.46920
1	25 Methyl Tert Butyl Ether	1	0.41383	0.48241	0.51155	0.52570	0.44335	0.49772	AVRG	1	0.47910	1	8.91478
1	26 Vinyl Acetate	1	0.58400	0.62983	0.69926	0.66867	0.55680	0.65058	AVRG	1	0.63152	1	8.43192
1	27 1,1-Dichloroethane	1	0.62035	0.70057	0.82318	0.83491	0.728091	0.83229	AVRG	1	0.75656	1	11.64515
	29 Methyl Ethyl Ketone	- 1	2.73463	2.81613	3.21428	3.41052	2.77698	3.25356	AVRG	1	3.03435	1	9.61528
1	30 n-Hexane	1	0.91635	1.11735	1.25988	1.28444	1.01472	1.25462	AVRG	1	1.14123	1	13.26509
1	31 Di-isopropyl Ether	1	0.45394	0.56601	0.59302	0.57701	0.45747	0.56591	AVRG	1	0.53556	1	11.69887
1	32 cis-1,2-Dichloroethene	1	1.15176	1.40114	1.59202	1.47873	1.24241	1.40279	AVRG	1	1.37814	1	11.54950
	33 Ethyl Acetate	1	0.67801	0.70562	0.88486	0.80256	0.67539	0.80316	AVRG	1	0.75827	1	11.20364
1	34 Chloroform		0.43876	0.51772	0.58512	0.56589	0.53457	0.57529	AVRG	1	0.53623	1	10.09131
1	35 Ethyl Tert-Butyl Ether	- 1	0.46174	0.53383	0.57595	0.55297	0.47408	0.52843	AVRG	1	0.52117	1	8.57039
	36 Tetrahydrofuran	1	1.56985	1.99115	2.07044	1.95518	1.56045	1.81801	AVRG	1	1.82751	1	11.98574;
1	37 1,1,1-Trichloroethane	1	0.43229	0.50145	0.56641	0.54124	0.53361	0.54258	AVRG	1	0.51960	1	9.16352
1_					1	1	1		11_	1_	1		1

10258805 Page 418 of 1988 Report Date: 07-Mar-2014 14:24

Pace Analytical Services, Inc. INITIAL CALIBRATION DATA

Start Cal Date : 07-MAR-2014 10:27
End Cal Date : 07-MAR-2014 13:41
Quant Method : ISTD
Target Version : 4.14
Integrator : HP RTE
Method file : \\192.168.10.12\chem\10airD.i\030714.b\T015_067-14.m
Last Edit : 07-MAR-2014 14:19 10airD.i

	(.1000000	0.2000000	1.0000	10.0000	20.0000	30.0000		Coefficients		%RSD
Compound		Level 1	Level 2	Level 3	Level 4	Level 5	Level 6 Curve	ь	ml	m2	or R^2
38 1,2-Dichloroethane		0.62377	0.77592	0.84350	0.80409	0.78342	0.80789 AVRG		0.77310		9.94226
39 Benzene		0.38343	0.46856	0.51270	0.504241	0.43639	0.47588 AVRG		0.46353		10.30341
40 Carbon tetrachloride	1	0.44893;	0.52195;	0.56096	0.56072	0.574231	0.61157 AVRG		0.54639		10.20231
41 Cyclohexane	1	1.18408	1.18690;	1.38783	1.36163;	1.11782	1.30643 AVRG		1.25745		8.71956
42 Tert Amyl Methyl Ether	1	0.29352	0.37697	0.55198	0.52219	0.46042	0.48593 AVRG		C.44850		21.57497
44 2,2,4-Trimethylpentane	- 1	0.35929	0.40027	0.43320	0.41199	0.35175	0.39503 AVRG		0.39192		7.95888
45 Heptane	- 1	0.98664	1.13475	1.20487	1.18687	0.98348	1.13431 AVRG		1.10515		8.79110
46 1,2-Dichloropropane	- 1	1.31323	1.48480	1.57697	1.49341	1.29780	1.43C28 AVRG		1.43275		7.62615
47 Trichloroethene	- 1	1.06584	1.14330	1.46306	1.23612	1.102221	1.16559 AVRG		1.19602		11.96354
48 Bromodichloromethane	1	0.41168	0.50870	0.53658:	0.49812	0.48674	0.50568 AVRG		0.49125		8.62040
49 1,4-Dioxane	1	1.77681	2.23815	2.58516:	2.27845	2.06008	+++++ AVRG		2.18773		13.59556
50 Methylcyclohexane	1	2.00929	2.34771	2.43386	2.31657	2.12993	2.18931 AVRG		2.23778		7.00679
51 Methyl Isobutyl Ketone	- 1	0.74638!	0.79609:	0.87686	0.81932	0.69091	0.76872 AVRG		0.78305!		8.14210
52 cis-1,3-Dichlaropropene	- 1	C.71939	0.77521;	0.89285	0.80179:	0.72349	0.76363 AVRG		0.77939		8.18884
53 trans-1,3-Dichloropropene	- 1	0.72856:	0.81009	0.90320	0.71803	0.67556	0.71141 AVRG		0.75781:		11.07642
55 Toluene	- 1	0.31197	0.38095	0.44580	0.40264	0.35453	0.37260 AVRG		0.37808		11.91841
56 1,1,2-Trichloroethane	- 1	0.98621	1.02399	1.27210	1.11319	0.97682	1.01010 AVRG		1.06374		10.62600
57 Methyl Buryl Ketone	- 1	0.48936	0.53898	0.56985	C.48588	0.43738	0.48077 AVRG		0.50037		9.37444
58 Dibromochloromethane	- 1	0.32616	0.34520	0.38100	0.34470	0.34784	0.35237 AVRG		0.34955		5.10079
59 1,2-Dibromoethane		0.34543	0.41390	0.42979	0.38847	0.36744]	0.37760 AVRG :		0.38711		7,96720
60 Tetrachloroethene		0.41036	C.43201	0.45837;	0.44568	0.42157	0.42271 AVRG ;		0.43178		4.07206
62 Chlorobenzene	i	0.29879	0.31366	0.33604	0.31920	0.29545	0.32725 AVRG		0.31506		5.03222
	1	1	1		1	1	1 1		1 1		1

Page 419 of 1988 10258805

Pace Analytical Services, Inc.

INITIAL CALIBRATION DATA

1		10	.10000000	C.2000000	1.0000	10.0000	20.0000	30.0000	0	oefficients		%RSD
1	Compound	1	Level 1	Level 2	Level 3	Level 4	Level 5	Level 6 Curve	ь	m1	m2	or R^2
1=	63 Ethyl Benzene	= ==	0.16249	0.18435	0.19059	0.17522	0.16954	0.17401 AVRG		0,17603		5.745091<-
i	64 map-Xylene	1	0.22223	0.24001	0.23769	0.21910	0.20774	0.21942 AVRG		0.22437		5.47735;<-
1	65 Bromoform	1	0.29527	0.33524	0.34237	0.30208	0.32566	0.30049 AVRG	1	0.31685		6.34194
1	66 Styrene	1	0.34099	0.39198	0.38203	0.32076	0.32953	0.29985 AVRG	i	0.344191		10.440451
1	67 o-Xylene	1	0.20858	0.22382	0.22372	0.21350	0.233841	0.21170 AVRG	1	0.219191		1 4.365031<-
1	68 1,1,2,2-Tetrachloroethane	1	0.29725	0.31451	0.33514	0.31240	0.34795	0.30267 AVRG		0.31832		6.122661
1	69 Isopropylbenzene	1	0.16909	0.20406	0.18440	0.17373	0.19911	0.17399 AVRG	1	0.184061		7.906901
1	70 N-Propylbenzene	1	0.14507	0.15592	0.14983	0.13598	0.15843	0.13785 AVRG	i	0.147181		6.27916
1	71 4-Ethyltoluene	1	0.19030	0.19520	0.19042	0.17826	0.20634	0.17747[AVRG	i	0.189661		5.720601
1	72 1,3,5-Trimethylbenzene	1	0.20640	0.21846	0.21286	0.20158	0.23635	0.20022[AVRG	i	0.21264		6.349071
1	73 Tert-Butyl Benzene	1	0.23010	0.24023	0.24363	0.21386	0.26402	0.221131AVRG	i	0.23549		7.609291
1	74 1,2,4-Trimethylbenzene	1	0.20789	0.22109	0.21419	0.20062	0.24098	0.20514 AVRG	i	0.21499		6.794341
1	75 1,3-Dichlorobenzene	1	0.31146	0.35208	0.35745	0.32477	0.38173	0.32614TAVRG	i	0.342271		7.61835
1	76 Sec- Butylbenzene	1	0.15286	0.16775	0.16389	0.14898	0.17917	0.15481 AVRG	i	0.161081		6.787391
1	73 Benzyl Chloride	1	9170	15623	77616	1114314	25592941	+++++ LINR	-0.0099€1	0.27641		0.995211
1	79 1,4-Dichlorobenzene	1	0.29284	0.35054	0.37416	0.33512	0.38229	0.32372 AVRG	i	0.34311)		9.68461
1	80 p-Tsopropyltoluene	i	0.20495	0.24137	0.21812	0.19678	0.229661	0.19832 AVRG	i	0.21487;		8.40554
1	81 1,2,3-Trimethylbenzene		0.20979	0.23793	0.24153	0.22009	0.25962	0.22186 AVRG	i	0.23180		7.78069;
1	82 1,2-Dichlorobenzene		0.32434	0.39805	0.40749	0.35671	0.432771	0.35657 AVRG	i	0.37932		10.57993
1	83 N-Butylbenzene		0.20064	C.21858	0.20562	0.18330	0.22054	0.18716 AVRG	i	0.20264		7.64747
1	84 1,2,4-Trichlorobenzene		0.37722	0.51186	0.52047	0.49485	0.51303	0.46749 AVRG	i	0.48082		11.26981
1	85 Naphthalene		0.26813	0.34707	0.33389	0.32457	0.33998[0.30535 AVRG	i	0.31983		9.11622:
1_		_!	i .			i		1 1	i	i		: 1

10258805 Page 420 of 1988 Report Date: 07-Mar-2014 14:24

Pace Analytical Services, Inc. INITIAL CALIBRATION DATA

Start Cal Date : 07-MAR-2014 10:27
End Cal Date : 07-MAR-2014 13:41
Quant Method : ISTD
Target Version : 4.14
Integrator : HP RTE
Method file : \\192.168.10.12\chem\l0airD.i\030714.b\T015_067-14.m
Last Edit : 07-Mar-2014 14:19 10airD.i

	(0.2000000		10.0000	20.0000	30.0000	1 1	 Coefficients	m2	1	%RSD or R^2
Compound	- 1	Level 1	Level 2	Level 3	Level 4	Level 5	Level 6	Curve	 ml			O1 K 2
86 Hexachlorobutadiene	1	0.29691	0.37450	0.41851	0.45802	0.51083		9 AVRG	 0.42188			18.25454
\$ 28 Hexane-d14(S)	1	2.03073	2.23983	2.16907;	2.25841;	1.95951	2.1966	3 AVRG	 2.14236;		1	5.62156
\$ 54 Toluene-d8 (S)	-1	1.04454;		1.11513	1.13345	1.07595		4 AVRG	1.096231			2.95417
\$ 77 1,4-dichlorobenzene-d4 (S)	- 1	1.86589	1.93375!	1.81940	1.88672	2.31962	1.9288	3 AVRG	1.95903		1	9.27228
1	_'							_11	!		_'-	

Page 421 of 1988 10258805

Column: J&W DB-5 0.32mm Helium Tune Standard: Instrument: 10AIRD

06701BFB.D

BFB

င္ပ

Path/File

Lab ID

Matrix/Batch Type

믺

모

Method

Date & Time

Oper

Comments

3/08/14 09:31

Method:

ISTD Lot: 10288-3-7	Misc. Prep. Info:
Cal. Standard:	Surrogate Lot: 10288-3-7

0
$\bar{\mathbf{N}}$
$^{\circ}$
∞
α
0
$^{\circ}$

06730.D

10259098005

0259098007

10259098006

06729.D

06728.D

06727.D

ģ

G/19612

G/19612

Sample

1.49

Sample Sample Sample

G/19612

Sample

1.49

.49

Sample Sample

Sample Sample

TO15_067-14 TO15_067-14 TO15_067-14 TO15_067-14 TO15_067-14 TO15_067-14 TO15_067-14 TO15_067-14 TO15_067-14 TO15_067-14 TO15_067-12

10259098003 1025907100 10259178001 10259178003 10259178002

10259098009

06732.D 06731.D

06733.D

1025909800

10259098002 10259098004

G/19612 G/19612 G/19612 G/19612 G/19612

Sample

10259098008

G/19612 G/19612

TO15_067-14 TO15_067-14 TO15_067-14 TO15_067-14

> 3/09/14 01:34 3/09/14 01:05 3/09/14 00:37 3/09/14 00:09 3/08/14 23:39 3/08/14 23:10 3/08/14 22:40 3/08/14 22:12 3/08/14 21:42 3/08/14 21:12 3/08/14 20:43 3/08/14 20:15 3/08/14 19:46 3/08/14 19:18 3/08/14 18:50 3/08/14 18:23 3/08/14 17:55 3/08/14 17:28 3/08/14 17:01 3/08/14 16:32 3/08/14 16:05 3/08/14 15:37 3/08/14 15:09 3/08/14 14:41 3/08/14 14:11 3/08/14 14:11 3/08/14 13:43 3/08/14 13:15 3/08/14 12:43 3/08/14 12:43 3/08/14 12:43 3/08/14 12:15 3/08/14 11:47 3/08/14 11:19 3/08/14 10:52 3/08/14 09:58 3/08/14 09:58 3/08/14 09:58

3/09/14 03:02

Sample Sample 06726.D

06725.D

06723.D 06724.D 06722.D

06719.D 06718.D

Sample

Sample

537.6 428.8

06717.D 06716.D 06715.D

G/19608 G/19608 G/19608 G/19608 G/19608

Sample Sample Sample Sample Sample Sample

TO15_067-14

1.49

06721.D 06720.D

G/19608 G/19608 G/ G/ G/19612 G/19612 G/19612 G/19612

Sample

1.34 1.26 1.68 1.49

AH2

AH2

AH.2 H.2 AH2 AH2 AH2 AH2 AH2 AH2 AH2 AH2 AH2 AH2

Sample

Sample

TO15_067-12 TO15_067-14 TO15_067-14 TO15_067-14 06714.D

10258805013 10258904002 10258904002

06713.D

06712.D 06711.D 06710.D

1635808

G/19614 G/19614 G/19614 G/19612

Sample Sample Sample Sample Blank Blank Sample

Duplicate

3.654 3.654 3.654

44.48

TO15_067-14

TO15_067-14 TO15_067-14 TO15_067-14 TO15_067-14 TO15_067-14

889.6 10.72

16.8

TO15_067-14 TO15_067-14

G/19612

G/19612

1.7956

39

TO15_067-14

AH2 AH2 AH2 AH2

AH2

TO15_067-14

TO15_067-14

TO15_067-14 TO15_067-14

AH2

용

10259118004 10259499001 1025950000 10259118003 10259118002 1635801

06708.D 06709.D

06707L.D 06707B.D 06706.D

06710B.D

06707.D

ದ ದ

Sample Sample Sample

06705.D

06704.D 06703.D 06702.D

CERT

C/19612
G/19612
G/19614
G/19614
G/19614
G/19614

06702B.D 06702L.D 06702LCS.D

1635807

CCS FCS FCS

CCal

TO15_067-14 TO15_067-14 TO15_067-14 50NG_BFB

ГО15_067-12

3/08/14 09:58

TO15_067-12

Sample

TO15_067-14 TO15_067-14

1635802

Instrument Run Log

Instrument: 10AIRD Method: Column: J&W DB-5 0.32mm Helium Tune Standard:

Misc. Prep. Info: ISTD Lot: 10288-3-7

Surrogate Lot: Cal. Standard:

10288-3-7

Matrix/Batch Type 믺 모 Method Date & Time Oper. Comments

Check Maintenance Items Performed: Changed septum

Path/File

Lab ID

Additional Comments: Replaced/Cleaned gold seal Cleaned liner

> Changed trap - Lot #
> Cleaned MS Source Clipped column

No maintenance performed today Other minor parts replaced Changed column - Lot #

File Path 1: U:\10AIRD.I\030814.B\

Matrix Codes: [G]as, [L]iquid, [S]olid, [N]one

Run order verified:

Report Date: 03/11/2014 13:56

Reviewed By/Date:

Data File: \\192.168.10.12\chem\10airD.i\030814.b\06702.d

Report Date: 08-Mar-2014 10:36

Pace Analytical Services, Inc.

CONTINUING CALIBRATION COMPOUNDS

	I	i	CCAL N	MIN			MAX	
COMPOUND	RRF / AMOUNT	RF10					%D / %DRIFT	
1 Chlorodifluoromethane	10.00000	11.37564	0.89115 0.			 .75636		
2 Propylene	2.80212	2.75521	2.75521 0	.010	-1	.67418	30.00000	Averaged
3 Dichlorodifluoromethane	0.45225	0.36237	0.36237 0.	.010	-19	.97343	30.00000	Averaged
4 Dichlorotetrafluoroethane	0.48489	0.43538	0.43538 0	.010	-10	.20964	30.00000	Averaged
5 Chloromethane	1.53034	1.42571	1.42571 0	.010	-6	.83714	30.00000	Averaged
6 Vinyl chloride	1.59013	1.49171	1.49171 0	.010	-6	.18945	30.00000	Averaged
7 1,3-Butadiene	2.64004	2.54864	2.54864 0.	.010	-3	.46237	30.00000	Averaged
8 Bromomethane	1.29870	1.21203	1.21203 0	.010	-6	.67413	30.00000	Averaged
9 Chloroethane	3.36551	3.26406	3.2640610	.010	-3	.01427	30.00000	Averaged
10 Ethanol	3.57896	3.43089	3.4308910.	.100	-4	.13734	30.00000	_
11 Vinyl Bromide	1.33506	1.24895	1.24895[0.	.0101	-6	.45011	30.00000	
12 Isopentane	1.71587	1.62052	1.62052[0.			.55695		
13 Trichlorofluoromethane	0.41706	0.36083	0.36083[0.	.010	-13	.48170	30.00000	
14 Acrolein	4.91154	5.00202	5.0020210			.84216		
15 Acetone	0.82391	0.82097	0.82097[0.			.35695		
16 Isopropyl Alcohol	1.10558	1.01770	1.01770 0.			.94870		
17 1.1-Dichloroethene	0.94124	0.83893	0.83893[0.			.86966		
18 Tert Butvl Alcohol	0.719941	0.637071	0,6370710			.51115		
19 Acrylonitrile	2.74156	2.23294	2.2329410			.55239		
20 Freon 113	0.698631	0.62942	0.6294210			.90670	•	
21 Methylene chloride	10,000001	10,47262	1.3129310			.72616		Ouadratio
22 Allyl Chloride	3.12784	2.93765	2.93765 0		_	.08042		
23 Carbon Disulfide	0.44734	0.423671	0.4236710			.29049		
24 trans-1,2-dichloroethene	1.323281	1.22904	1,2290410			.12208		
25 Methyl Tert Butyl Ether	0.47910	0.43814	0.43814 0			.54783		
26 Vinyl Acetate	0.63152	0.57429	0.5742910			.06293	•	
27 1.1-Dichloroethane	0.75656	0.71472	0.71472 0			.53149		
\$ 28 Hexane-d14(S)	2.14236	2.25980	2.2598010			.48196		
29 Methyl Ethyl Ketone	3.03435	2.80767	2.8076710			.47047		
30 n-Hexane	1.141231	1.08019	1.08019 0			.34854		
31 Di-isopropyl Ether	0.53556	0.49071	0.49071 0			.37324		
32 cis-1,2-Dichloroethene	1.37814	1.29660	1.29660 0			.91700		
33 Ethyl Acetate	0.758271	0.706781	0.7067810			.79062	•	
34 Chloroform	0.73627	0.47276	0.4727610			.83518		
35 Ethyl Tert-Butyl Ether	0.53023	0.464401	0.4644010					
36 Tetrahydrofuran						.89236		-
-	1.82751	1.68500	1.68500 0			.79838		
37 1,1,1-Trichloroethane	0.51960	0.45369	0.45369 0.			.68381		
38 1,2-Dichloroethane	0.77310	0.65536	0.65536 0.			.23010		
39 Benzene	0.46353	0.42842	0.4284210			.57469		
40 Carbon tetrachloride	0.546391	0.47405	0.47405 0			.23997		
41 Cyclohexane	1.25745	1.16092	1.16092 0			.67625	- ·	
42 Tert Amyl Methyl Ether	0.448501	0.45444	0.4544410.	.0101	1	.32466	30.00000	Averaged

10258805 Page 856 of 1988 Data File: \\192.168.10.12\chem\10airD.i\030814.b\06702.d

Report Date: 08-Mar-2014 10:36

Pace Analytical Services, Inc.

CONTINUING CALIBRATION COMPOUNDS

Injection Date: 08-MAR-2014 09:58

Instrument ID: 10airD.i Injection Date: 08-MAR-2014 09:58
Lab File ID: 06702.d Init. Cal. Date(s): 07-MAR-2014
Analysis Type: AIR Init. Cal. Times: 10:27
Lab Sample ID: CCV Quant Type: ISTD
Method: \\192.168.10.12\chem\10airD.i\030814.b\T015_067-14.m Init. Cal. Date(s): 07-MAR-2014 07-MAR-2014
Init. Cal. Times: 10:27 13:41
Quant Type: ISTD

	I	1	CCAL MIN	t I	MAX	I
COMPOUND	RRF / AMOUNT	RF10	RRF10 RRF	%D / %DRIFT	,	
4 2,2,4-Trimethylpentane	0.39192	0.36379	0.36379 0.010		30.00000	•
5 Heptane	1.10515	1.09445	1.09445 0.010	-0.96846	30.00000	Averaged
6 1,2-Dichloropropane	1.43275	1.27013	1.27013 0.010	-11.34988	30.00000	Averaged
7 Trichloroethene	1.19602	1.03641	1.03641 0.010	-13.34549	30.00000	Averaged
8 Bromodichloromethane	0.49125	0.41945	0.41945 0.010	-14.61583	30.00000	Averaged
9 1,4-Dioxane	2.18773	2.26611	2.26611 0.010	3.58253	30.00000	Averaged
0 Methylcyclohexane	1 2.23778	2.07237	2.07237 0.010	-7.39161	30.00000	Averaged
1 Methyl Isobutyl Ketone	0.783051	0.70585	0.70585 0.010	-9.85907	30.00000	Averaged
2 cis-1,3-Dichloropropene	0.779391	0.70663	0.70663 0.010	-9.33541	30.00000	Averaged
3 trans-1,3-Dichloropropene	0.75781	0.63107	0.63107 0.010	-16.72388	30.00000	Average
5 54 Toluene-d8 (S)	1.09623	1.10761	1.10761 0.200	1.03816	30.00000	Averages
5 Toluene	0.37808	0.33389	0.33389 0.300	-11.68774	30.00000	Average
6 1,1,2-Trichloroethane	1.06374	0.91048	0.91048 0.010	-14.40753	30.00000	Average:
7 Methyl Butyl Ketone	0.50037	0.40541	0.40541 0.010	-18.97820	30.00000	Average
8 Dibromochloromethane	0.34955	0.28258	0.28258 0.010	-19.15741	30.00000	Average
9 1,2-Dibromoethane	0.38711	0.32086	0.32086 0.010	-17.11244	30.00000	Average
0 Tetrachloroethene	0.43178	0.35973	0.35973 0.010	-16.68781	30.00000	Average
2 Chlorobenzene	0.31506	0.26833	0.26833 0.010	-14.83189	30.00000	Average
3 Ethyl Benzene	0.17603	0.14369	0.14369 0.300	-18.37504	30.00000	Average
4 m&p-Xylene	0.22437	0.17941	0.17941 0.300	-20.03551	30.00000	Average
5 Bromoform	0.31685	0.24412	0.24412 0.010	-22.95443	30.00000	Average
6 Styrene	0.34419	0.25901	0.25901 0.010	-24.748291	30.00000	Average
7 o-Xylene	0.21919	0.17299	0.17299 0.300	-21.08047	30.00000	Average
8 1,1,2,2-Tetrachloroethane	0.31832	0.25441	0.25441 0.010	-20.07676	30.00000	Average
9 Isopropylbenzene	0.18406	0.13865	0.13865 0.010	-24.67505	30.00000	Average
O N-Propylbenzene	0.14718	0.11012	0.11012 0.010	-25.18210	30.00000	Average
1 4-Ethyltoluene	0.18966	0.14468	0.14468 0.010	-23.71983	30.00000	Average
2 1,3,5-Trimethylbenzene	0.21264	0.16486	0.16486 0.010	-22.46919	30.00000	Average
3 Tert-Butyl Benzene	0.23549	0.17400	0.17400 0.010	-26.11301	30.00000	Average
4 1,2,4-Trimethylbenzene	0.21499	0.15938	0.15938 0.010	-25.86458	30.00000	Average
5 1,3-Dichlorobenzene	0.34227	0.26356	0.26356 0.010	-22.99646	30.00000	Average
6 Sec- Butylbenzene	0.16108	0.11950	0.11950 0.010	-25.81331	30.00000	Average
77 1,4-dichlorobenzene-d4 (S)	1.95903	1.69292	1.69292 0.200	-13.58410	30.00000	Average
8 Benzyl Chloride	10.00000	13.76032	0.19943 0.010	37.603161	30.00000	Linea.
9 1,4-Dichlorobenzene	0.34311	0.26481	0.26481 0.010	-22.92241	30.00000	Average
0 p-Isopropyltoluene	0.21487	0.15642	0.15642 0.010	-27.20312	30.00000	Average
1 1,2,3-Trimethylbenzene	0.23180	0.17580	0.17580 0.010	-24.15968	30.00000	Average
2 1,2-Dichlorobenzene	0.37932	0.29705	0.29705 0.010	-21.68933	30.00000	=
3 N-Butylbenzene	0.20264	0.14700	0.14700 0.010	-27.45753	30.00000	Average
4 1,2,4-Trichlorobenzene	0.48082	0.38143	0.38143 0.010	-20.67177	30.00000	Average:
5 Naphthalene	0.31983	0.24419	0.24419 0.010	-23.65037	30.00000	
6 Hexachlorobutadiene	0.42188	0.34787	0.34787 0.010	-17.54249	30.00000	Averaged
	1	į	I	i i		I

10258805 Page 857 of 1988 Data File: \\192.168.10.12\chem\10airD.i\030814.b\06702.d Report Date: 08-Mar-2014 10:36

Pace Analytical Services, Inc.

CONTINUING CALIBRATION COMPOUNDS

Instrument ID: 10airD.i Injection Date: 08-MAR-2014 09:58

Init. Cal. Date(s): 07-MAR-2014 07-MAR-2014
Init. Cal. Times: 10:27 13:41
Quant Type: ISTD Lab File ID: 06702.d Init. Cal. Date(s): 07-MAR-2014
Analysis Type: AIR Init. Cal. Times: 10:27
Lab Sample ID: CCV Quant Type: ISTD
Method: \\192.168.10.12\chem\10airD.i\030814.b\T015_067-14.m

|Average %D / Drift Results. _______ |Calculated Average %D/Drift = 13.15526 |Maximun Average %D/Drift = 30.00000 |* Passed Average %D/Drift Test.

> 10258805 Page 858 of 1988

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project:

1121C06221

Pace Project No.:

10258805

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytica Batch
10258805001	SV-143-C-16	TO-15	AIR/19608		
10258805002	IA-143-C-16	TO-15	AIR/19598		
10258805003	SV-135-C-16	TO-15	AIR/19598		
10258805004	IA-135-C-16	TO-15	AIR/19598		
10258805005	SV-088-C-16	TO-15	AIR/19607 +		
10258805006	IA-088-C-16	TO-15	AIR/19617 •		
10258805007	SV-142-C-16	TO-15	AIR/19598		
10258805008	IA-142-C-16	TO-15	AIR/19598		
10258805009	SV-102-C-16	TO-15	AIR/19607		
10258805010	IA-102-C-16	TO-15	AIR/19608		
10258805011	SV-130-C-16	TO-15	AIR/19608		
10258805012	IA-130-C-16	TO-15	AIR/19598		
10258805013	SV-060-C-16	TO-15	AIR/19608		
10258805014	IA-060-C-16	TO-15	AIR/19598		
10258805015	SV-141-C-16	TO-15	AIR/19598		
10258805016	IA-141-C-16	TO-15	AIR/19607 €		
10258805017	SV-126-C-16	TO-15	AIR/19607 👞		
10258805018	IA-126-C-16	TO-15	AIR/19607 🖫		
10258805019	SV-065-C-16	TO-15	AIR/19608		
10258805020	IA-065-C-16	TO-15	AIR/19598		
10258805021	SV-063-B-16	TO-15	AIR/19598		
10258805022	IA-063-B-16	TO-15	AIR/19598		
10258805023	SV-033-B-16	TO-15	AIR/19607 •		
10258805024	IA-033-B-16	TO-15	AIR/19607*		
10258805025	SV-133-C-16	TO-15	AIR/19607 4		
10258805026	IA-133-C-16	TO-15	AIR/19607 x		
10258805027	SV-113-C-16	TO-15	AIR/19598		
10258805028	IA-113-C-16	TO-15	AIR/19617 •		
10258805029	SV-105-Z-16	TO-15	AIR/19607 ₽		
10258805030	IA-105-Z-16	TO-15	AIR/19607 ¥		
10258805031	SV-123-Z-16	TO-15	AIR/19608		
10258805032	IA-123-Z-16	TO-15	AIR/19607 ¹		
10258805033	SV-121-B-16	TO-15	AIR/19598		
10258805034	IA-121-B-16	TO-15	AIR/19598		
10258805035	SV-101-B-16	TO-15	AIR/19607 [™]		
10258805036	IA-101-B-16	TO-15	AIR/19608		
10258805037	SV-128-C-16	TO-15	AIR/19607 \		
10258805038	IA-128-C-16	TO-15	AIR/19607		

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

10258805

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project:

1121C06221

Pace Project No.:

10258805

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytica Batch
10258805039	IA-145-C-16	TO-15	AIR/19607 ¹		
10258805040	IA-146-C-16	TO-15	AIR/19607		
10258805041	IA-147-C-16	TO-15	AIR/19598		
10258805042	IA-148-C-16	TO-15	AIR/19608		
10258805043	IA-144-C-16	TO-15	AIR/19598		
10258805044	SV-DUP1-C-16	TO-15	AIR/19607 *		
10258805045	SV-DUP2-C-16	TO-15	AIR/19598		
10258805046	IA-DUP1-C-16	TO-15	AIR/19598		
10258805047	IA-DUP2-C-16	TO-15	AIR/19598		

REPORT OF LABORATORY ANALYSIS

Project:

1121C06221

Pace Project No.:

10258805

QC Batch:

AIR/19598

Analysis Method:

TO-15

QC Batch Method:

TO-15

Analysis Description:

TO15 MSV AIR Low Level

Associated Lab Samples:

10258805002, 10258805003, 10258805004, 10258805007, 10258805008, 10258805012, 10258805014, 10258805015, 10258805020, 10258805021, 10258805022, 10258805027, 10258805033, 10258805034,

10258805041, 10258805043, 10258805045, 10258805046, 10258805047

METHOD BLANK: 1634995

Matrix: Air

Associated Lab Samples:

10258805002, 10258805003, 10258805004, 10258805007, 10258805008, 10258805012, 10258805014,

10258805015, 10258805020, 10258805021, 10258805022, 10258805027, 10258805033, 10258805034,

10258805041, 10258805043, 10258805045, 10258805046, 10258805047

	•	Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
1,1,1-Trichloroethane	ug/m3	ND	1.1	03/06/14 18:12	
1,1,2-Trichloroethane	ug/m3	ND	0.55	03/06/14 18:12	
1,1-Dichloroethane	ug/m3	ND	0.82	03/06/14 18:12	
1,1-Dichloroethene	ug/m3	ND	0.81	03/06/14 18:12	
1,2,3-Trimethylbenzene	ug/m3	ND	0.20	03/06/14 18:12	
1,2,4-Trichlorobenzene	ug/m3	ND	3.8	03/06/14 18:12	
1,2,4-Trimethylbenzene	ug/m3	ND	1.0	03/06/14 18:12	
1,2-Dichloroethane	ug/m3	ND	0.41	03/06/14 18:12	
1,3,5-Trimethylbenzene	ug/m3	ND	1.0	03/06/14 18:12	
Benzene	ug/m3	ND	0.32	03/06/14 18:12	
Carbon tetrachloride	ug/m3	ND	0.64	03/06/14 18:12	
Chlorodifluoromethane	ug/m3	ND	0.20	03/06/14 18:12	
Chloroform	ug/m3	ND	0.99	03/06/14 18:12	
cis-1,2-Dichloroethene	ug/m3	ND	0.81	03/06/14 18:12	
Dichlorodifluoromethane	ug/m3	ND	1.0	03/06/14 18:12	
Ethylbenzene	ug/m3	ND	0.88	03/06/14 18:12	
m&p-Xylene	ug/m3	ND	1.8	03/06/14 18:12	
Methyl-tert-butyl ether	ug/m3	ND	0.73	03/06/14 18:12	
Methylene Chloride	ug/m3	ND	3.5	03/06/14 18:12	
Naphthalene	ug/m3	ND	2.7	03/06/14 18:12	
o-Xylene	ug/m3	ND	0.88	03/06/14 18:12	
Tetrachloroethene	ug/m3	ND	0.69	03/06/14 18:12	
Toluene	ug/m3	ND	0.77	03/06/14 18:12	
trans-1,2-Dichloroethene	ug/m3	ND	0.81	03/06/14 18:12	
Trichloroethene	ug/m3	ND	0.55	03/06/14 18:12	
Vinyl chloride	ug/m3	ND	0.26	03/06/14 18:12	

LABORATORY CONTROL SAM	MPLE: 1634996					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
1,1,1-Trichloroethane	ug/m3	55.5	56.0	101	72-128	
1,1,2-Trichloroethane	ug/m3	55.5	55.5	100	72-130	
1,1-Dichloroethane	ug/m3	41.2	42.8	104	68-128	
1,1-Dichloroethene	ug/m3	40.3	41.4	103	68-130	
1,2,3-Trimethylbenzene	ug/m3	50	56.9	114	60-140	
1,2,4-Trichlorobenzene	ug/m3	75.5	83.8	111	30-150	
1,2,4-Trimethylbenzene	ug/m3	50	55.2	110	71-140	
1,2-Dichloroethane	ug/m3	41.2	42.0	102	71-132	

REPORT OF LABORATORY ANALYSIS

Project:

1121C06221

Pace Project No.:

10258805

ABORATORY CONTROL SAMPLE:	1634996					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
,3,5-Trimethylbenzene	ug/m3	50	53.3	107	73-136	
enzene	ug/m3	32.5	35.2	108	69-134	
rbon tetrachloride	ug/m3	64	65.2	102	66-134	
lorodifluoromethane	ug/m3	36	33.0	92	60-140	
oroform	ug/m3	49.7	49.9	100	72-127	
1,2-Dichloroethene	ug/m3	40.3	46.3	115	71-135	
hlorodifluoromethane	ug/m3	50.3	49.5	98	69-125	
ylbenzene	ug/m3	44.2	49.9	113	73-139	
p-Xylene	ug/m3	44.2	50.3	114	73-139	
hyl-tert-butyl ether	ug/m3	36.7	39.2	107	72-132	
hylene Chloride	ug/m3	35.3	39.7	112	64-134	
hthalene	ug/m3	53.3	58.6	110	61-150	
ylene	ug/m3	44.2	48.1	109	71-138	
rachloroethene	ug/m3	69	74.9	109	69-136	
uene	ug/m3	38.3	40.9	107	67-133	
s-1,2-Dichloroethene	ug/m3	40.3	47.9	119	70-131	
hloroethene	ug/m3	54.6	60.4	111	70-135	
yl chloride	ug/m3	26	28.8	111	69-132	

SAMPLE DUPLICATE: 163556	54	10258805020	Dup		Max	
Parameter	Units	Result	Result	RPD	RPD	Qualifiers
1,1,1-Trichloroethane	ug/m3	ND ND	ND		25	
1,1,2-Trichloroethane	ug/m3	ND	ND		25	
1,1-Dichloroethane	ug/m3	ND	ND		25	
1,1-Dichloroethene	ug/m3	ND	ND		25	
I,2,3-Trimethylbenzene	ug/m3	ND	ND		25	
I,2,4-Trichlorobenzene	ug/m3	ND	ND		25	
1,2,4-Trimethylbenzene	ug/m3	ND	ND		25	
I,2-Dichloroethane	ug/m3	ND	ND		25	
1,3,5-Trimethylbenzene	ug/m3	ND	ND		25	
Benzene	ug/m3	0.64	0.74	15	25	
Carbon tetrachloride	ug/m3	ND	ND		25	
Chlorodifluoromethane	ug/m3	23.9	27.6	14	25	
Chloroform	ug/m3	ND	ND		25	
cis-1,2-Dichloroethene	ug/m3	ND	ND		25	
Dichlorodifluoromethane	ug/m3	2.3	2.1	10	25	
Ethylbenzene	ug/m3	ND	ND		25	
n&p-Xylene	ug/m3	ND	ND		25	
Methyl-tert-butyl ether	ug/m3	ND	ND		25	
Methylene Chloride	ug/m3	ND	7.4		25	
Naphthalene	ug/m3	5.1	4.3J		25	
o-Xylene	ug/m3	ND	ND		25	
Tetrachloroethene	ug/m3	ND	ND		25	
Toluene	ug/m3	2.1	2.4	12	25	
rans-1,2-Dichloroethene	ug/m3	ND	ND		25	
Trichloroethene	ug/m3	ND	ND		25	

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

Project:

1121C06221

Pace Project No.:

10258805

SAMPLE DUPLICATE: 1635564

Parameter

10258805020 Result Dup Result

RPD

Max RPD

Qualifiers

Vinyl chloride

ug/m3

Units

ND

ND

25

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

Date: 03/15/2014 01:43 PM 10258805

Page 59 of 76

Page 59 of 1988

Project:

1121C06221

Pace Project No.:

10258805

QC Batch:

AIR/19607

Analysis Method:

TO-15

QC Batch Method:

TO-15

Analysis Description:

TO15 MSV AIR Low Level

Associated Lab Samples:

10258805005, 10258805009, 10258805016, 10258805017, 10258805018, 10258805023, 10258805024,

10258805038, 10258805039, 10258805040, 10258805044

METHOD BLANK: 1635645

Matrix: Air

Associated Lab Samples:

10258805038, 10258805039, 10258805040, 10258805044

	·	Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
1,1,1-Trichloroethane	ug/m3	ND	1.1	03/07/14 12:15	
1,1,2-Trichloroethane	ug/m3	ND	0.55	03/07/14 12:15	
1,1-Dichloroethane	ug/m3	ND	0.82	03/07/14 12:15	
1,1-Dichloroethene	ug/m3	ND	0.81	03/07/14 12:15	
1,2,3-Trimethylbenzene	ug/m3	ND	0.20	03/07/14 12:15	
1,2,4-Trichlorobenzene	ug/m3	ND	3.8	03/07/14 12:15	
1,2,4-Trimethylbenzene	ug/m3	ND	1.0	03/07/14 12:15	
1,2-Dichloroethane	ug/m3	ND	0.41	03/07/14 12:15	
1,3,5-Trimethylbenzene	ug/m3	ND	1.0	03/07/14 12:15	
Benzene	ug/m3	ND	0.32	03/07/14 12:15	
Carbon tetrachloride	ug/m3	ND	0.64	03/07/14 12:15	
Chlorodifluoromethane	ug/m3	ND	0.20	03/07/14 12:15	
Chloroform	ug/m3	ND	0.99	03/07/14 12:15	
cis-1,2-Dichloroethene	ug/m3	ND	0.81	03/07/14 12:15	
Dichlorodifluoromethane	ug/m3	ND	1.0	03/07/14 12:15	
Ethylbenzene	ug/m3	ND	0.88	03/07/14 12:15	
m&p-Xylene	ug/m3	ND	1.8	03/07/14 12:15	
Methyl-tert-butyl ether	ug/m3	ND	0.73	03/07/14 12:15	
Methylene Chloride	ug/m3	ND	3.5	03/07/14 12:15	
Naphthalene	ug/m3	ND	2.7	03/07/14 12:15	
o-Xylene	ug/m3	ND	0.88	03/07/14 12:15	
Tetrachloroethene	ug/m3	ND	0.69	03/07/14 12:15	
Toluene	ug/m3	ND	0.77	03/07/14 12:15	
trans-1,2-Dichloroethene	ug/m3	ND	0.81	03/07/14 12:15	
Trichloroethene	ug/m3	ND	0.55	03/07/14 12:15	
Vinyl chloride	ug/m3	ND	0.26	03/07/14 12:15	

LABORATORY CONTROL SAM	IPLE: 1635646	Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
1,1,1-Trichloroethane	ug/m3	55.5	61.5	111	72-128	
1,1,2-Trichloroethane	ug/m3	55.5	63.2	114	72-130	
1,1-Dichloroethane	ug/m3	41.2	47.6	116	68-128	
1,1-Dichloroethene	ug/m3	40.3	45.1	112	68-130	
1,2,3-Trimethylbenzene	ug/m3	50	63.8	128	60-140	
1,2,4-Trichlorobenzene	ug/m3	75.5	93.6	124	30-150	
1,2,4-Trimethylbenzene	ug/m3	50	61.4	123	71-140	
1,2-Dichloroethane	ug/m3	41.2	45.5	110	71-132	

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

Date: 03/15/2014 01:43 PM 10258805

Project:

1121C06221

Pace Project No.:

10258805

ABORATORY CONTROL SAMPLE:	1635646					
Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
,5-Trimethylbenzene	ug/m3		60.3	121	73-136	
nzene	ug/m3	32.5	40.1	123	69-134	
oon tetrachloride	ug/m3	64	71.4	112	66-134	
rodifluoromethane	ug/m3	36	37.1	103	60-140	
oform	ug/m3	49.7	55.9	113	72-127	
,2-Dichloroethene	ug/m3	40.3	53.1	132	71-135	
orodifluoromethane	ug/m3	50.3	54.9	109	69-125	
benzene	ug/m3	44.2	56.1	127	73-139	
Xylene	ug/m3	44.2	57.2	130	73-139	
yl-tert-butyl ether	ug/m3	36.7	43.7	119	72-132	
ylene Chloride	ug/m3	35.3	44.6	126	64-134	
thalene	ug/m3	53.3	66.2	124	61-150	
ene	ug/m3	44.2	54.7	124	71-138	
chloroethene	ug/m3	69	84.9	123	69-136	
ene	ug/m3	38.3	46.7	122	67-133	
-1,2-Dichloroethene	ug/m3	40.3	53.9	.134	70-131 L	.1
loroethene	ug/m3	54.6	70.0	128	70-135	
l chloride	ug/m3	26	33.2	128	69-132	

SAMPLE DUPLICATE: 16358	10	10258805044	Dup		Max	
Parameter	Units	Result	Result	RPD	RPD	Qualifiers
1,1,1-Trichloroethane	ug/m3	ND	ND		25	
1,1,2-Trichloroethane	ug/m3	ND	ND		25	
1,1-Dichloroethane	ug/m3	ND	ND		25	
I,1-Dichloroethene	ug/m3	ND	ND		25	
1,2,3-Trimethylbenzene	ug/m3	ND	ND		25	
1,2,4-Trichlorobenzene	ug/m3	ND	ND		25	
1,2,4-Trimethylbenzene	ug/m3	ND	ND		25	
,2-Dichloroethane	ug/m3	0.82	0.86	5	25	
1,3,5-Trimethylbenzene	ug/m3	ND	ND		25	
Benzene	ug/m3	0.87	0.93	7	25	
Carbon tetrachloride	ug/m3	ND	ND		25	
Chlorodifluoromethane	ug/m3	4.4	4.9	10	25	
Chloroform	ug/m3	6.2	6.7	8	25	
cis-1,2-Dichloroethene	ug/m3	8.7	9.1	4	25	
Dichlorodifluoromethane	ug/m3	3.0	3.0	.7	25	
Ethylbenzene	ug/m3	ND	ND		25	
m&p-Xylene	ug/m3	ND	2J		25	
Methyl-tert-butyl ether	ug/m3	ND	ND		25	
Methylene Chloride	ug/m3	13.0	19.1	(38)	25	R1
Naphthalene	ug/m3	. ND	4.2J	\sim	25	
o-Xylene	ug/m3	ND	.9J		25	
Tetrachloroethene	ug/m3	159	166	4	25	
Toluene Toluene	ug/m3	5.5	4.6	19	25	
rans-1,2-Dichloroethene	ug/m3	3.5	3.9	11	25	L1
Trichloroethene	ug/m3	8630	1930	(127)	25	E,R1

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

Project:

1121C06221

Pace Project No.:

10258805

SAMPLE DUPLICATE: 1635819

Parameter

10258805044 Result

Dup Result

RPD

Max RPD

Qualifiers

Vinyl chloride

ug/m3

Units

ND

ND

25

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

Project:

1121C06221

Pace Project No.:

10258805

QC Batch:

AIR/19608

Analysis Method:

TO-15

QC Batch Method: TO-15

5

Analysis Description:

TO15 MSV AIR Low Level

Associated Lab Samples: 102

 $10258805001,\,10258805010,\,10258805011,\,10258805013,\,10258805019,\,10258805031,\,10258805036,\\10258805042$

METHOD BLANK: 1635688

Matrix: Air

Associated Lab Samples:

10258805042

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
1,1,1-Trichloroethane	ug/m3	ND ND	1.1	03/07/14 16:39	
1,1,2-Trichloroethane	ug/m3	ND	0.55	03/07/14 16:39	
1,1-Dichloroethane	ug/m3	ND	0.82	03/07/14 16:39	
1,1-Dichloroethene	ug/m3	ND	0.81	03/07/14 16:39	
1,2,3-Trimethylbenzene	ug/m3	ND	0.20	03/07/14 16:39	
1,2,4-Trichlorobenzene	ug/m3	ND	1.5	03/07/14 16:39	
1,2,4-Trimethylbenzene	ug/m3	ND	1.0	03/07/14 16:39	
1,2-Dichloroethane	ug/m3	ND	0.41	03/07/14 16:39	
1,3,5-Trimethylbenzene	ug/m3	ND	1.0	03/07/14 16:39	
Benzene	ug/m3	ND	0.32	03/07/14 16:39	
Carbon tetrachloride	ug/m3	ND	0.64	03/07/14 16:39	
Chlorodifluoromethane	ug/m3	ND	3.5	03/07/14 16:39	
Chloroform	ug/m3	ND	0.99	03/07/14 16:39	
cis-1,2-Dichloroethene	ug/m3	ND	0.81	03/07/14 16:39	
Dichlorodifluoromethane	ug/m3	ND	1.0	03/07/14 16:39	
Ethylbenzene	ug/m3	ND	0.88	03/07/14 16:39	
m&p-Xylene	ug/m3	ND	1.8	03/07/14 16:39	
Methyl-tert-butyl ether	ug/m3	ND	0.73	03/07/14 16:39	
Methylene Chloride	ug/m3	ND	3.5	03/07/14 16:39	
Naphthalene	ug/m3	ND	1.1	03/07/14 16:39	
o-Xylene	ug/m3	ND	0.88	03/07/14 16:39	
Tetrachloroethene	ug/m3	ND	0.69	03/07/14 16:39	
Toluene	ug/m3	ND	0.77	03/07/14 16:39	
trans-1,2-Dichloroethene	ug/m3	ND	0.81	03/07/14 16:39	
Trichloroethene	ug/m3	ND	0.55	03/07/14 16:39	
Vinyl chloride	ug/m3	ND	0.26	03/07/14 16:39	

LABORATORY CONTROL SAMPLE:	1635689					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
1,1,1-Trichloroethane	ug/m3	55.5	56.4	102	72-128	
1,1,2-Trichloroethane	ug/m3	55.5	56.6	102	72-130	
1,1-Dichloroethane	ug/m3	41.2	38.6	94	68-128	
1,1-Dichloroethene	ug/m3	40.3	39.1	97	68-130	
1,2,3-Trimethylbenzene	ug/m3	50	53.8	108	60-140	
1,2,4-Trichlorobenzene	ug/m3	75.5	79.5	105	30-150	
1,2,4-Trimethylbenzene	ug/m3	50	56.4	113	71-140	
1,2-Dichloroethane	ug/m3	41.2	41.9	102	71-132	
1,3,5-Trimethylbenzene	ug/m3	50	55.0	110	73-136	
Benzene	ug/m3	32.5	31.5	97	69-134	

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

QUALITY CONTROL DATA

Project:

1121C06221

Pace Project No.:

10258805

LABORATORY CONTROL SAMPLE:	1635689					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Carbon tetrachloride	ug/m3	64	64.5	101	66-134	
Chlorodifluoromethane	ug/m3	36	35.8	100	60-140	
Chloroform	ug/m3	49.7	48.5	98	72-127	
cis-1,2-Dichloroethene	ug/m3	40.3	39.1	97	71-135	
Dichlorodifluoromethane	ug/m3	50.3	54.3	108	69-125	
Ethylbenzene	ug/m3	44.2	44.9	102	73-139	
m&p-Xylene	ug/m3	44.2	45.4	103	73-139	
Methyl-tert-butyl ether	ug/m3	36.7	36.8	100	72-132	
Methylene Chloride	ug/m3	35.3	31.6	90	64-134	
Naphthalene	ug/m3	53.3	57.5	108	61-150	
o-Xylene	ug/m3	44.2	46.7	106	71-138	
Tetrachloroethene	ug/m3	69	70.2	102	69-136	
Toluene	ug/m3	38.3	37.8	99	67-133	
trans-1,2-Dichloroethene	ug/m3	40.3	39.7	98	70-131	
Trichloroethene	ug/m3	54.6	55.2	101	70-135	
Vinyl chloride	ug/m3	26	24.1	93	69-132	

		10258895001	Dup		Max	
Parameter	Units	Result	Result	RPD	RPD	Qualifiers
1,1,1-Trichloroethane	ug/m3	ND	ND		25	
1,1,2-Trichloroethane	ug/m3	ND	ND		25	
1,1-Dichloroethane	ug/m3	ND	ND		25	
1,1-Dichloroethene	ug/m3	ND	ND		25	
1,2,3-Trimethylbenzene	ug/m3	ND	ND		25	
1,2,4-Trichlorobenzene	ug/m3	ND	ND		25	
1,2,4-Trimethylbenzene	ug/m3	ND	ND		25	
1,2-Dichloroethane	ug/m3	ND	ND		25	
1,3,5-Trimethylbenzene	ug/m3	ND	ND		25	
Benzene	ug/m3	0.52	0.55	5	25	
Carbon tetrachloride	ug/m3	ND	ND		25	
Chlorodifluoromethane	ug/m3	0.43J	.49J		25	
Chloroform	ug/m3	ND	ND		25	
cis-1,2-Dichloroethene	ug/m3	ND	ND		25	
Dichlorodifluoromethane	ug/m3	2.9	2.8	1	25	
Ethylbenzene	ug/m3	ND	ND		25	
m&p-Xylene	ug/m3	0.47J	.47J		25	
Methyl-tert-butyl ether	ug/m3	ND	ND		25	
Methylene Chloride	ug/m3	1.0J	.99J		25	
Naphthalene	ug/m3	ND	ND		25	
o-Xylene	ug/m3	ND	ND		25	
Tetrachloroethene	ug/m3	ND	ND		25	
Toluene	ug/m3	0.83	0.85	2	25	
rans-1,2-Dichloroethene	ug/m3	ND	ND		25	
Trichloroethene	ug/m3	ND	ND		25	
√inyl chloride	ug/m3	ND	ND		25	

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

QUALITY CONTROL DATA

Project:

1121C06221

Pace Project No.:

10258805

QC Batch:

AIR/19617

Analysis Method:

TO-15

QC Batch Method:

TO-15

Analysis Description:

TO15 MSV AIR Low Level

Associated Lab Samples:

10258805006, 10258805028

METHOD BLANK: 1635820

Matrix: Air

Associated Lab Samples:

10258805006, 10258805028

Parameter	Units	Blank Result	Reporting Limit	Analyzed	Qualifiers
1,1,1-Trichloroethane	ug/m3	ND -	1.1	03/09/14 14:02	
1,1,2-Trichloroethane	ug/m3	ND	0.55	03/09/14 14:02	
1,1-Dichloroethane	ug/m3	ND	0.82	03/09/14 14:02	
1,1-Dichloroethene	ug/m3	ND	0.81	03/09/14 14:02	
1,2,3-Trimethylbenzene	ug/m3	ND	0.20	03/09/14 14:02	
1,2,4-Trichlorobenzene	ug/m3	ND	3.8	03/09/14 14:02	
1,2,4-Trimethylbenzene	ug/m3	ND	1.0	03/09/14 14:02	
1,2-Dichloroethane	ug/m3	ND	0.41	03/09/14 14:02	
1,3,5-Trimethylbenzene	ug/m3	ND	1.0	03/09/14 14:02	
Benzene	ug/m3	ND	0.32	03/09/14 14:02	
Carbon tetrachloride	ug/m3	ND	0.64	03/09/14 14:02	
Chlorodifluoromethane	ug/m3	ND	0.20	03/09/14 14:02	
Chloroform	ug/m3	ND	0.99	03/09/14 14:02	
cis-1,2-Dichloroethene	ug/m3	ND	0.81	03/09/14 14:02	
Dichlorodifluoromethane	ug/m3	ND	1.0	03/09/14 14:02	
Ethylbenzene	ug/m3	ND	0.88	03/09/14 14:02	
m&p-Xylene	ug/m3	ND	1.8	03/09/14 14:02	
Methyl-tert-butyl ether	ug/m3	ND	0.73	03/09/14 14:02	
Methylene Chloride	ug/m3	ND	3.5	03/09/14 14:02	
Naphthalene	ug/m3	ND	2.7	03/09/14 14:02	
o-Xylene	ug/m3	ND	0.88	03/09/14 14:02	
Tetrachloroethene	ug/m3	ND	0.69	03/09/14 14:02	
Toluene	ug/m3	ND	0.77	03/09/14 14:02	
trans-1,2-Dichloroethene	ug/m3	ND	0.81	03/09/14 14:02	
Frichloroethene	ug/m3	ND	0.55	03/09/14 14:02	
Vinyl chloride	ug/m3	ND	0.26	03/09/14 14:02	

LABORATORY CONTROL SAMPLE	1635821					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
1,1,1-Trichloroethane	ug/m3	55.5	68.4	123	72-128	
1,1,2-Trichloroethane	ug/m3	55.5	65.6	118	72-130	
1,1-Dichloroethane	ug/m3	41.2	49.4	120	68-128	
1,1-Dichloroethene	ug/m3	40.3	48.9	121	68-130	
1,2,3-Trimethylbenzene	ug/m3	50	67.0	134	60-140	
1,2,4-Trichlorobenzene	ug/m3	75.5	98.5	131	30-150	
1,2,4-Trimethylbenzene	ug/m3	50	66.1	132	71-140	
1,2-Dichloroethane	ug/m3	41.2	50.4	122	71-132	
1,3,5-Trimethylbenzene	ug/m3	50	62.9	126	73-136	
Benzene	ug/m3	32.5	40.1	124	69-134	
Carbon tetrachloride	ug/m3	64	80.6	126	66-134	

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

QUALITY CONTROL DATA

Project:

1121C06221

Pace Project No.:

10258805

ABORATORY CONTROL SAMPLE:	1635821					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
rodifluoromethane	ug/m3	36	38.8	108	60-140	
oform	ug/m3	49.7	59.7	120	72-127	
2-Dichloroethene	ug/m3	40.3	53.2	132	71-135	
orodifluoromethane	ug/m3	50.3	60.6	120	69-125	
benzene	ug/m3	44.2	58.9	133	73-139	
Xylene	ug/m3	44.2	59.8	136	73-139	
/l-tert-butyl ether	ug/m3	36.7	45.6	124	72-132	
ene Chloride	ug/m3	35.3	45.0	127	64-134	
alene	ug/m3	53.3	68.5	128	61-150	
ne	ug/m3	44.2	58.0	131	71-138	
hloroethene	ug/m3	69	89.3	130	69-136	
ne	ug/m3	38.3	48.5	126	67-133	
-1,2-Dichloroethene	ug/m3	40.3	55.3	(137)	70-131 L	.3
oroethene	ug/m3	54.6	71.0	130	70-135	
chloride	ug/m3	26	32.3	124	69-132	

SAMPLE DUPLICATE: 163606 Parameter	Units	10259331010 Result	Dup	DDD	Max	O!:5
Parameter	Onls		Result	RPD	RPD	Qualifiers
1,1,1-Trichloroethane	ug/m3	ND	ND		25	
1,1,2-Trichloroethane	ug/m3	ND	ND		25	
1,1-Dichloroethane	ug/m3	ND	ND		25	
1,1-Dichloroethene	ug/m3	ND	ND		25	
1,2,3-Trimethylbenzene	ug/m3	ND	ND		25	
1,2,4-Trichlorobenzene	ug/m3	ND	ND		25	
1,2,4-Trimethylbenzene	ug/m3	1.9	1.8	4	25	
1,2-Dichloroethane	ug/m3	ND	ND		25	
1,3,5-Trimethylbenzene	ug/m3	ND	ND		25	
Benzene	ug/m3	3.1	3.1	.05	25	
Carbon tetrachloride	ug/m3	ND	ND		25	
Chlorodifluoromethane	ug/m3	ND	ND		25	
Chloroform	ug/m3	ND	ND		25	
cis-1,2-Dichloroethene	ug/m3	ND	ND		25	
Dichlorodifluoromethane	ug/m3	ND	ND		25	
Ethylbenzene	ug/m3	3.5	3.5	.8	25	
m&p-Xylene	ug/m3	13.9	13.1	6	25	
Methyl-tert-butyl ether	ug/m3	ND	ND		25	
Methylene Chloride	ug/m3	94.3	94.3	0	25	
Naphthalene	ug/m3	ND	4.2J		25	
o-Xylene	ug/m3	4.2	4.0	6	25	
Tetrachloroethene	ug/m3	ND	ND		25	
Toluene	ug/m3	14.8	14.8	0	25	
rans-1,2-Dichloroethene	ug/m3	ND	ND		25	
Trichloroethene	ug/m3	ND	ND		25	
√inyl chloride	ug/m3	ND	ND		25	

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

Data File: \\192.168.10.12\chem\10airD.i\030714.b\06722.d

Report Date: 08-Mar-2014 11:12

Pace Analytical Services, Inc.

INTERNAL STANDARD COMPOUNDS AREA AND RT SUMMARY

Instrument ID: 10airD.i Lab File ID: 06722.d Lab Smp Id: 10258805001 Analysis Type: VOA Quant Type: ISTD

Calibration Date: 07-MAR-2014 Calibration Time: 13:41

Level: LOW

Sample Type: AIR

Operator: AH2

Method File: \\192.168.10.12\chem\10airD.i\030714.b\T015 067-14.m

Misc Info: 19608

Test Mode:

Use Initial Calibration Level 4. If Continuing Cal. use Initial Cal. Level 4

		AREA	LIMIT		
COMPOUND	STANDARD	LOWER	UPPER	SAMPLE	%DIFF
43 1,4-Difluorobenze 61 Chlorobenzene - d		278035 165793	V 10 / 1 /	390143 241939	-15.81 -12.44

		RT I	JIMIT		
COMPOUND	STANDARD	LOWER	UPPER	SAMPLE	%DIFF
=======================================	========	========	========	========	======
43 1,4-Difluorobenze	6.41	6.08	6.74	6.40	-0.05
61 Chlorobenzene - d	10.08	9.75	10.41	10.08	-0.03

AREA UPPER LIMIT = + 40% of internal standard area. AREA LOWER LIMIT = - 40% of internal standard area. RT UPPER LIMIT = + 0.33 minutes of internal standard RT. RT LOWER LIMIT = - 0.33 minutes of internal standard RT.

10258805

Data File: \\192.168.10.12\chem\10air0.i\030614.b\06538.D

Report Date: 07-Mar-2014 15:34

Pace Analytical Services, Inc.

INTERNAL STANDARD COMPOUNDS AREA AND RT SUMMARY

Instrument ID: 10air0.i Lab File ID: 06538.D Lab Smp Id: 10258805002 Analysis Type: VOA Quant Type: ISTD Calibration Date: 06-MAR-2014 Calibration Time: 13:59

Level: LOW

Sample Type: AIR

Operator: JAM

Method File: \\192.168.10.12\chem\10air0.i\030614.b\T015 065-14.m

Misc Info: 19598

Test Mode:

Use Initial Calibration Level 5.

COMPOUND	STANDARD	AREA LOWER	LIMIT UPPER	SAMPLE	%DIFF
43 1,4-Difluorobenze	1108389	665033		1131822	2.11
61 Chlorobenzene - d	739791	443875		777842	5.14

		RT I	LIMIT		
COMPOUND	STANDARD	LOWER	UPPER	SAMPLE	%DIFF
=======================================	========	=======	=======	=======	======
43 1,4-Difluorobenze	6.12	5.79	6.45	6.10	-0.20
61 Chlorobenzene - d	9.20	8.87	9.53	9.24	0.41
1					

AREA UPPER LIMIT = + 40% of internal standard area. AREA LOWER LIMIT = - 40% of internal standard area.

RT UPPER LIMIT = + 0.33 minutes of internal standard RT. RT LOWER LIMIT = - 0.33 minutes of internal standard RT.

10258805

Data File: \\192.168.10.12\chem\10air0.i\030614.b\06532.D

Report Date: 07-Mar-2014 15:07

Pace Analytical Services, Inc.

INTERNAL STANDARD COMPOUNDS AREA AND RT SUMMARY

Instrument ID: 10air0.i Lab File ID: 06532.D

Calibration Date: 06-MAR-2014

Calibration Time: 13:59

Lab Smp Id: 10258805003 Analysis Type: VOA Quant Type: ISTD

Level: LOW

Sample Type: AIR

Operator: JAM Method File: \\192.168.10.12\chem\10air0.i\030614.b\T015_065-14.m Misc Info: 19598

Test Mode:

Use Initial Calibration Level 5.

COMPOUND	STANDARD	AREA LOWER	LIMIT UPPER	SAMPLE	%DIFF
43 1,4-Difluorobenze 61 Chlorobenzene - d		665033 443875		1234766 887050	11.40 19.91

		RT I	LIMIT		
COMPOUND	STANDARD	LOWER	UPPER	SAMPLE	%DIFF
=======================================	========	========	========	=======	======
43 1,4-Difluorobenze		5.79	6.45	6.10	-0.20
61 Chlorobenzene - d	9.20	8.87	9.53	9.22	0.20
]

AREA UPPER LIMIT = + 40% of internal standard area. AREA LOWER LIMIT = - 40% of internal standard area.

RT UPPER LIMIT = + 0.33 minutes of internal standard RT. RT LOWER LIMIT = - 0.33 minutes of internal standard RT.

10258805 Page 1074 of 1988 Data File: \\192.168.10.12\chem\10air0.i\030614.b\06527.D

Report Date: 07-Mar-2014 13:55

Pace Analytical Services, Inc.

INTERNAL STANDARD COMPOUNDS AREA AND RT SUMMARY

Instrument ID: 10air0.i
Lab File ID: 06527.D

Calibration Date: 06-MAR-2014 Calibration Time: 13:59

Lab Smp Id: 10258805004 Analysis Type: VOA

Level: LOW Sample Type: AIR

Quant Type: ISTD

Operator: JAM Method File: \\192.168.10.12\chem\10air0.i\030614.b\T015 065-14.m

Misc Info: 19598

Test Mode:

Use Initial Calibration Level 5.

		AREA	LIMIT		
COMPOUND	STANDARD	LOWER	UPPER	SAMPLE	%DIFF
=======================================	=======	========	========	========	======
43 1,4-Difluorobenze	1108389	665033	1551745	1282057	15.67
61 Chlorobenzene - d	739791	443875	1035707	699273	-5.48
			!		

	, , , ,	RT I	LIMIT		i
COMPOUND	STANDARD	LOWER	UPPER	SAMPLE	%DIFF
=======================================	=======	=========	========	=======================================	======
43 1,4-Difluorobenze	6.12	5.79	6.45	6.11	-0.10
61 Chlorobenzene - d	9.20	8.87	9.53	9.25	0.54

AREA UPPER LIMIT = + 40% of internal standard area.

AREA LOWER LIMIT = - 40% of internal standard area.

RT UPPER LIMIT = + 0.33 minutes of internal standard RT. RT LOWER LIMIT = - 0.33 minutes of internal standard RT.

10258805 Page 1089 of 1988 Data File: \\192.168.10.12\chem\10air0.i\030714.b\06634.D

Report Date: 09-Mar-2014 14:22

Pace Analytical Services, Inc.

INTERNAL STANDARD COMPOUNDS AREA AND RT SUMMARY

Instrument ID: 10air0.i Lab File ID: 06634.D

Calibration Time: 10:54

Calibration Date: 07-MAR-2014

Lab Smp Id: 10258805005 Analysis Type: VOA

Level: LOW Quant Type: ISTD Sample Type: AIR

Operator: AH2
Method File: \\192.168.10.12\chem\10air0.i\030714.b\T015_065-14.m

Misc Info: 19607

Test Mode:

Use Initial Calibration Level 5.

COMPOUND	STANDARD	AREA LOWER	LIMIT UPPER	SAMPLE	%DIFF
43 1,4-Difluorobenze 61 Chlorobenzene - d		665033 443875		1157853 868630	4.46 17.42

		RT I	LIMIT		
COMPOUND	STANDARD	LOWER	UPPER	SAMPLE	%DIFF
=======================================	=======	========	=======	========	======
43 1,4-Difluorobenze	6.12	5.79	6.45	6.10	-0.20
61 Chlorobenzene - d	9.20	8.87	9.53	9.22	0.27

AREA UPPER LIMIT = + 40% of internal standard area.

AREA LOWER LIMIT = - 40% of internal standard area.

RT UPPER LIMIT = + 0.33 minutes of internal standard RT. RT LOWER LIMIT = - 0.33 minutes of internal standard RT.

10258805 Page 1102 of 1988 Data File: \\192.168.10.12\chem\10air0.i\030914.b\06831.D

Report Date: 10-Mar-2014 09:43

Pace Analytical Services, Inc.

INTERNAL STANDARD COMPOUNDS AREA AND RT SUMMARY

Instrument ID: 10air0.i

Lab File ID: 06831.D

IA-088-C-16

Calibration Date: 09-MAR-2014

Calibration Time: 10:55

Lab Smp Id: 10258805006 Analysis Type: VOA

Quant Type: ISTD

Level: LOW

Sample Type: AIR

Operator: JAM

Method File: \\192.168.10.12\chem\10air0.i\030914.b\T015 065-14.m

Misc Info: 19617

Test Mode:

Use Initial Calibration Level 5.

COMPOUND	STANDARD	AREA LOWER	LIMIT UPPER	SAMPLE	%DIFF
43 1,4-Difluorobenze 61 Chlorobenzene - d		665033 443875		665816 422299	-39.93 -42.92

		RT 1	LIMIT		<u> </u>
COMPOUND	STANDARD	LOWER	UPPER	SAMPLE	%DIFF
=======================================	=======	========	========	=======	=====
43 1,4-Difluorobenze	6.12	5.79	6.45	6.10	-0.30
61 Chlorobenzene - d	9.20	8.87	9.53	9.19	-0.07

AREA UPPER LIMIT = + 40% of internal standard area.

AREA LOWER LIMIT = - 40% of internal standard area.

RT UPPER LIMIT = + 0.33 minutes of internal standard RT. RT LOWER LIMIT = - 0.33 minutes of internal standard RT.

10258805

Internal Std Reference

Data File: $\192.168.10.12\chem\10air0.i\030914.b\06802.D$ Report Date: 09-Mar-2014 11:14

		ONANT SIG					TS
Compounds	QUANT SIG MASS	RT	EXP RT	REL RT	RESPONSE	CAL-AMT (ppbv)	ON-COL (ppbv)
	====					======	======
24 trans-1,2-dichloroethen		4.738		(0.775)	240402	10.0000	13.7 (M
25 Methyl Tert Butyl Ether		4.757		(0.778)	76559B	10.0000	12.4 (N
26 Vinyl Acetate	43	4.843		(0.792)	569476	10.0000	12.4
27 1,1-Dichloroethane	63	4.874		(0.797)	457854	10.0000	12.0
\$ 28 Hexane-d14(S)	66	4.949		(0.809)	400586	10.0000	9.54
29 Methyl Ethyl Ketone	72	5.029		(0.822)	113455	10.0000	13.0(N
30 Di-isopropyl Ether	45	5.060		(3.828)	664470	10.0000	11.6
31 n-Hexane	57	5.048		(0.826)	344815	10.0000	12.2
32 Ethyl Acetate	43	5.191		(0.849)	481638	10.0000	13.6(N
33 cis-1,2-Dichloroethene	96	5.203		(0.851)	242039	10.0000	13.2(N
34 Ethyl Tert-Butyl Ether	59	5.296		(0.866)	808231	10.0000	12.2
35 Chloroform	83	5.327		(0.871)	616016	10.0000	12.0
36 Tetrahydrofuran	42	5.482		(0.897)	236591	10.0000	12.0
37 1,1,1-Trichloroethane	97	5.724		(0.936)	717727	10.0000	12.3
38 1,2-Dichloroethane	62	5.737		(0.938)	481451	10.0000	12.2(N
39 Benzene	78	5.966		(0.976)	730760	10.0000	12.4
40 Carbon tetrachloride	117	5.985	5.997	(0.979)	710349	10.0000	12.6
41 Cyclohexane	56	5.985	5.997	(0.979)	314935	10.0000	12.4 (M
42 Tert Amyl Methyl Ether	73	6.096	6.109	(0.997)	812080	10.0000	11.1
* 43 1,4-Difluorobenzene	114	6.115	6.127	(1.000)	890860	10.0000	
44 2,2,4-Trimethylpentane	57	6.258	6.270	(1.023)	1086412	10.0000	12.1
45 Heptane	43	6.382	6.388	(1.044)	375366	10.0000	12.0
46 1,2-Dichloropropane	63	6.481	6.493	(1.060)	267011	10.0000	11.7 (N
47 Trichloroethene	130	6.500	6.512	(1.063)	338624	10.0000	13.0
48 1,4-Dioxane	88	6.593	6.605	(1.078)	168347	10.0000	14.0(N
49 Bromodichloromethane	83	6.611	6.624	(1.081)	718612	10.0000	12.6
50 Methylcyclohexane	98	6.946	6.952	(1.136)	191004	10.0000	13.1
51 Methyl Isobutyl Ketone	43	7.052	7.076	(1.153)	562648	10.0000	14.0
52 cis-1,3-Dichloropropene	75	7.114	7.126	(1.163)	483321	10.0000	12.7
53 trans-1,3-Dichloroprope	ne 75	7.523	7.535	(1.230)	517179	10.0000	12.2(M
\$ 54 Toluene-d8 (S)	98	7.604	7.616	(1.243)	880565	10.0000	9.94
55 1,1,2-Trichloroethane	97	7.691		(1.258)	334399	10.0000	11.8
56 Toluene	91	7.684		(1.257)	924968	10.0000	12.6
57 Methyl Butyl Ketone	43	7.908		(0.859)	537816	10.0000	13.5
58 Dibromochloromethane	129	8.236		(0.895)	697162	10.0000	13.6
59 1,2-Dibromoethane	107	8.472		(0.920)	580423	10.0000	13.6
60 Tetrachloroethene	166	8.528		(0.927)	522753	10.0000	13.0
* 61 Chlorobenzene - d5	117	9,204		(1.000)	607117	10.0000	10.0
62 Chlorobenzene	112	9.248		(1.005)	746637	10.0000	12.9
63 Ethyl Benzene	91	9.489		(1.031)	1290664	10.0000	13.3
64 m&p-Xylene	91	9.632		(1.046)	1077154	10.0000	13.6
65 Styrene	104		10.091		679103	10.0000	14.3
66 Bromoform	173		10.091		705938	10.0000	14.1
67 o-Xylene	91		10.159		1090782	10.0000	
68 1,1,2,2-Tetrachloroetha		10.414			695160	10.0000	13.1
69 Isopropylbenzene	105		10.438	(1.131)			12.6
70 N-Propylbenzene	91	10.724		(1.165)	1364327	10.0000	13.1
70 N-Propyrdenzene 71 4-Ethyltoluene	105				1587974	10.0000	13.3(M
-		11.474		(1.247)	1320579	10.0000	13.7
72 1,3,5-Trimethylbenzene	105		11.580		1221556	10.0000	12.6
73 Tert-Butyl Benzene	119		12.057		1125393	10.0000	13.3
74 1,2,4-Trimethylbenzene	105		12.082		1162796	10.0000	13.2
75 Sec- Butylbenzene	105		12.380		1483969	10.0000	13.9
76 1,3-Dichlorobenzene	146		12.386		718410	10.0000	13.3
\$ 77 1,4-dichlorobenzene-d4	(S) 150	12.417	12.461	(1.349)	405869	10.0000	12.0(M

Internal Std Kef.

Data File: \\192.168.10.12\chem\10air0.i\030914.b\06802.D Report Date: 09-Mar-2014 11:14

						NUOMA	ITS
	QUANT SIG					CAL-AMT (ppbv)	ON-COL
Compounds	MASS	RT	EXP RT	REL RT	RESPONSE		(ppbv)
	====	====	======	=======			
78 Benzyl Chloride	91	12.436	12.479	(1.351)	937190	10.0000	13.5
79 1,4-Dichlorobenzene	146	12.455	12.492	(1.353)	732495	10.0000	12.9(M)
80 p-Isopropyltoluene	119	12.541	12.579	(1.363)	1241367	10.0000	14.8(M)
81 1,2,3-Trimethylbenzene	105	12.597	12.634	(1.369)	1103854	10.0000	13.4
82 1,2-Dichlorobenzene	146	12.870	12.907	(1.398)	705420	10.0000	14.4
83 N-Butylbenzene	91	13.050	13.081	(1.418)	1139144	10.0000	12.9
84 1,2,4-Trichlorobenzene	180	14.855	14.867	(1.614)	434020	10.0000	13.1
85 Naphthalene	128	14.998	15.016	(1.629)	792538	10.0000	12.8
86 Hexachlorobutadiene	225	15.252	15.264	(1.657)	470200	10.0000	10.7

QC Flag Legend

A - Target compound detected but, quantitated amount exceeded maximum amount.

M - Compound response manually integrated.

Data File: \\192.168.10.12\chem\10air0.i\030614.b\06523.D

Report Date: 07-Mar-2014 13:35

Pace Analytical Services, Inc.

INTERNAL STANDARD COMPOUNDS AREA AND RT SUMMARY

Instrument ID: 10air0.i Lab File ID: 06523.D Lab Smp Id: 10258805007

Level: LOW

Analysis Type: VOA Quant Type: ISTD

Sample Type: AIR

Calibration Date: 06-MAR-2014

Calibration Time: 13:59

Operator: JAM Method File: \\192.168.10.12\chem\10air0.i\030614.b\T015_065-14.m

Misc Info: 19598

Test Mode:

Use Initial Calibration Level 5.

COMPOUND	STANDARD	AREA LOWER	LIMIT UPPER	SAMPLE	%DIFF
43 1,4-Difluorobenze		665033	1551745	1321041	19.19
61 Chlorobenzene - d		443875	1035707	897961	21.38

		RT 1	IMIT		
COMPOUND	STANDARD	LOWER	UPPER	SAMPLE	%DIFF
=======================================	========	=======	========	========	======
43 1,4-Difluorobenze		5.79	6.45	6.10	-0.20
61 Chlorobenzene - d	9.20	8.87	9.53	9.20	0.07

AREA UPPER LIMIT = + 40% of internal standard area. AREA LOWER LIMIT = - 40% of internal standard area.

RT UPPER LIMIT = + 0.33 minutes of internal standard RT. RT LOWER LIMIT = - 0.33 minutes of internal standard RT.

10258805 Page 1128 of 1988 Data File: \\192.168.10.12\chem\10air0.i\030614.b\06521.D

Report Date: 07-Mar-2014 13:11

Pace Analytical Services, Inc.

INTERNAL STANDARD COMPOUNDS AREA AND RT SUMMARY

Instrument ID: 10air0.i Lab File ID: 06521.D Lab Smp Id: 10258805008 Analysis Type: VOA Quant Type: ISTD

Calibration Date: 06-MAR-2014 Calibration Time: 13:59

Level: LOW

Sample Type: AIR

Operator: JAM Method File: \\192.168.10.12\chem\10air0.i\030614.b\T015_065-14.m

Misc Info: 19598

Test Mode:

Use Initial Calibration Level 5.

COMPOUND	STANDARD	AREA LOWER	LIMIT UPPER	SAMPLE	%DIFF
43 1,4-Difluorobenze 61 Chlorobenzene - d	1108389	665033 443875		1147255 791932	3.51 7.05

	_3	RT I	LIMIT		
COMPOUND	STANDARD	LOWER	UPPER	SAMPLE	%DIFF
=======================================	=======	========	=======	========	======
43 1,4-Difluorobenze			6.45	6.11	-0.10
61 Chlorobenzene - d	9.20	8.87	9.53	9.24	0.41
<u> </u>					

AREA UPPER LIMIT = + 40% of internal standard area. AREA LOWER LIMIT = - 40% of internal standard area.

RT UPPER LIMIT = + 0.33 minutes of internal standard RT. RT LOWER LIMIT = - 0.33 minutes of internal standard RT.

10258805 Page 1144 of 1988 Data File: \\192.168.10.12\chem\10air0.i\030714.b\06621.D

Report Date: 09-Mar-2014 13:45

Pace Analytical Services, Inc.

INTERNAL STANDARD COMPOUNDS AREA AND RT SUMMARY

Calibration Date: 07-MAR-2014

Calibration Time: 10:54

Instrument ID: 10air0.i Lab File ID: 06621.D

Lab Smp Id: 10258805009 Analysis Type: VOA

Quant Type: ISTD

Level: LOW Sample Type: AIR Operator: AH2
Method File: \\192.168.10.12\chem\10air0.i\030714.b\T015_065-14.m

Misc Info: 19607

Test Mode:

Use Initial Calibration Level 5.

COMPOUND	STANDARD	AREA LOWER	LIMIT UPPER	SAMPLE	%DIFF
43 1,4-Difluorobenze 61 Chlorobenzene - d		665033 443875		1061510 735436	-4.23 -0.59

		RT LIMIT			
COMPOUND	STANDARD	LOWER	UPPER	SAMPLE	%DIFF
=======================================	=======	========	========	========	======
43 1,4-Difluorobenze		5.79	6.45	6.12	-0.00
61 Chlorobenzene - d	9.20	8.87	9.53	9.20	-0.00

AREA UPPER LIMIT = + 40% of internal standard area. AREA LOWER LIMIT = - 40% of internal standard area.

RT UPPER LIMIT = + 0.33 minutes of internal standard RT. RT LOWER LIMIT = - 0.33 minutes of internal standard RT.

10258805 Page 1158 of 1988 Data File: \\192.168.10.12\chem\10air0.i\030914.b\06819.D

Report Date: 10-Mar-2014 08:57

Pace Analytical Services, Inc.

INTERNAL STANDARD COMPOUNDS AREA AND RT SUMMARY

Instrument ID: 10air0.i Lab File ID: 06819.D

Calibration Time: 10:55 Level: LOW

Calibration Date: 09-MAR-2014

Lab Smp Id: 10258805009 Analysis Type: VOA Quant Type: ISTD

Sample Type: AIR

Operator: JAM Method File: \\192.168.10.12\chem\10air0.i\030914.b\T015_065-14.m

Misc Info: 19607

Test Mode:

Use Initial Calibration Level 5.

201701777		AREA	LIMIT		
COMPOUND	STANDARD	LOWER	UPPER	SAMPLE	%DIFF ======
43 1,4-Difluorobenze 61 Chlorobenzene - d	1108389 739791	665033 443875		823067 524516	-25.74 -29.10

-		RT I	LIMIT		
COMPOUND	STANDARD	LOWER	UPPER	SAMPLE	%DIFF
==============	=======	========	========	========	=====
43 1,4-Difluorobenze	6.12	5.79	6.45	6.10	-0.30
61 Chlorobenzene - d	9.20	8.87	9.53	9.19	-0.07

AREA UPPER LIMIT = + 40% of internal standard area. AREA LOWER LIMIT = - 40% of internal standard area.

RT UPPER LIMIT = + 0.33 minutes of internal standard RT. RT LOWER LIMIT = - 0.33 minutes of internal standard RT.

10258805 Page 1187 of 1988 Data File: \\192.168.10.12\chem\10airD.i\030714.b\06728.d

Report Date: 08-Mar-2014 11:54

Pace Analytical Services, Inc.

INTERNAL STANDARD COMPOUNDS AREA AND RT SUMMARY

Calibration Date: 07-MAR-2014

Calibration Time: 13:41

Instrument ID: 10airD.i
Lab File ID: 06728.d

Lab Smp Id: 10258805010

Analysis Type: VOA Quant Type: ISTD

Level: LOW Sample Type: AIR

Operator: AH2
Method File: \\192.168.10.12\chem\10airD.i\030714.b\T015_067-14.m

Misc Info: 19608

Test Mode:

Use Initial Calibration Level 4. If Continuing Cal. use Initial Cal. Level 4

		AREA	LIMIT		
COMPOUND	STANDARD	LOWER	UPPER	SAMPLE	%DIFF
=======================================	=======	=======	========	========	======
43 1,4-Difluorobenze	463391	278035	648747	456274	-1.54
61 Chlorobenzene - d	276321	165793	386849	274842	-0.54

		RT I			
COMPOUND	STANDARD	LOWER	UPPER	SAMPLE	%DIFF
======================================	========	========	========	=======	==== = =
43 1,4-Difluorobenze	6.41	6.08	6.74	6.41	-0.00
61 Chlorobenzene - d	10.08	9.75	10.41	10.08	-0.03

AREA UPPER LIMIT = + 40% of internal standard area. AREA LOWER LIMIT = - 40% of internal standard area. RT UPPER LIMIT = + 0.33 minutes of internal standard RT. RT LOWER LIMIT = - 0.33 minutes of internal standard RT.

10258805 Page 1201 of 1988 Data File: \\192.168.10.12\chem\10airD.i\030714.b\06725.d

Report Date: 08-Mar-2014 11:49

Pace Analytical Services, Inc.

INTERNAL STANDARD COMPOUNDS AREA AND RT SUMMARY

Instrument ID: 10airD.i
Lab File ID: 06725.d
Lab Smp Id: 10258805011

Calibration Date: 07-MAR-2014 Calibration Time: 13:41

Analysis Type: VOA

Level: LOW

Quant Type: ISTD

Sample Type: AIR

Operator: AH2
Method File: \\192.168.10.12\chem\10airD.i\030714.b\T015_067-14.m

Misc Info: 19608

Test Mode:

Use Initial Calibration Level 4. If Continuing Cal. use Initial Cal. Level 4

	AREA LIMIT				
COMPOUND	STANDARD	LOWER	UPPER	SAMPLE	%DIFF
=======================================	========	========	========	========	======
43 1,4-Difluorobenze	463391	278035	648747	409681	-11.59
61 Chlorobenzene - d	276321	165793	386849	245790	-11.05
					1

		RT I	LIMIT		
COMPOUND	STANDARD	LOWER	UPPER	SAMPLE	%DIFF
=======================================	========	========	=======	=======	=====
43 1,4-Difluorobenze	6.41	6.08	6.74	6.40	-0.05
61 Chlorobenzene - d	10.08	9.75	10.41	10.08	-o.oo

AREA UPPER LIMIT = + 40% of internal standard area. AREA LOWER LIMIT = - 40% of internal standard area. RT UPPER LIMIT = + 0.33 minutes of internal standard RT. RT LOWER LIMIT = - 0.33 minutes of internal standard RT.

10258805 Page 1217 of 1988 Data File: \\192.168.10.12\chem\10air0.i\030614.b\06537.D

Report Date: 07-Mar-2014 15:31

Pace Analytical Services, Inc.

INTERNAL STANDARD COMPOUNDS AREA AND RT SUMMARY

Instrument ID: 10air0.i Lab File ID: 06537.D

Calibration Time: 13:59

Calibration Date: 06-MAR-2014

Lab Smp Id: 10258805012 Analysis Type: VOA Quant Type: ISTD

Level: LOW Sample Type: AIR

Operator: JAM

Method File: \\192.168.10.12\chem\10air0.i\030614.b\T015 065-14.m

Misc Info: 19598

Test Mode:

Use Initial Calibration Level 5.

COMPOUND	STANDARD	AREA LOWER	LIMIT UPPER	SAMPLE	%DIFF
43 1,4-Difluorobenze	1108389	665033		1135149	2.41
61 Chlorobenzene - d	739791	443875		792053	7.06

	* *	RT I	· ,		
COMPOUND	STANDARD	LOWER	UPPER	SAMPLE	%DIFF
=======================================	========	========	========	========	======
43 1,4-Difluorobenze	6.12	5.79	6.45	6.10	-0.20
61 Chlorobenzene - d	9.20	8.87	9.53	9.20	0.00
	•				

AREA UPPER LIMIT = + 40% of internal standard area.

AREA LOWER LIMIT = - 40% of internal standard area.

RT UPPER LIMIT = + 0.33 minutes of internal standard RT. RT LOWER LIMIT = - 0.33 minutes of internal standard RT.

10258805 Page 1247 of 1988 Data File: \\192.168.10.12\chem\10airD.i\030714.b\06730.d

Report Date: 08-Mar-2014 12:01

Pace Analytical Services, Inc.

INTERNAL STANDARD COMPOUNDS AREA AND RT SUMMARY

Instrument ID: 10airD.i Lab File ID: 06730.d

Lab Smp Id: 10258805013

Analysis Type: VOA Quant Type: ISTD Level: LOW Sample Type: AIR

Calibration Date: 07-MAR-2014

Calibration Time: 13:41

Operator: AH2
Method File: \\192.168.10.12\chem\10airD.i\030714.b\T015_067-14.m

Misc Info: 19608

Test Mode:

Use Initial Calibration Level 4.
If Continuing Cal. use Initial Cal. Level 4

COMPOUND	STANDARD	AREA LOWER	LIMIT UPPER	SAMPLE	%DIFF
43 1,4-Difluorobenze	463391	278035	648747	453195	-2.20
61 Chlorobenzene - d	276321	165793	386849	273088	-1.17

		RT 1	LIMIT		<u> </u>
COMPOUND	STANDARD	LOWER	UPPER	SAMPLE	%DIFF
=======================================	=======	=======	_========	=======	======
43 1,4-Difluorobenze	6.41	6.08	6.74	6.41	-0.00
61 Chlorobenzene - d	10.08	9.75	10.41	10.08	-0.00

AREA UPPER LIMIT = + 40% of internal standard area.

AREA LOWER LIMIT = - 40% of internal standard area.

RT UPPER LIMIT = + 0.33 minutes of internal standard RT.

RT LOWER LIMIT = - 0.33 minutes of internal standard RT.

10258805 Page 1260 of 1988

Data File: \\192.168.10.12\chem\10airD.i\030814.b\06715.d

Report Date: 09-Mar-2014 11:36

Pace Analytical Services, Inc.

INTERNAL STANDARD COMPOUNDS AREA AND RT SUMMARY

Instrument ID: 10airD.i

Calibration Date: 08-MAR-2014

Calibration Time: 09:58

Lab File ID: 06715.d Lab Smp Id: 10258805013

Level: LOW

Analysis Type: VOA Quant Type: ISTD

Operator: AH2

Sample Type: AIR

Method File: \\192.168.10.12\chem\10airD.i\030814.b\T015_067-14.m

Misc Info: 19608

Test Mode:

Use Initial Calibration Level 4. If Continuing Cal. use Initial Cal. Level 4

COMPOUND	STANDARD	AREA LOWER	LIMIT UPPER	SAMPLE	%DIFF
43 1,4-Difluorobenze		278035	648747	318773	-31.21
61 Chlorobenzene - d		165793	386849	195526	-29.24

		RT I	TIMIT		
COMPOUND	STANDARD	LOWER	UPPER	SAMPLE	%DIFF
	========	========	========	=======	======
43 1,4-Difluorobenze	6.41	6.08	6.74	6.40	-0.05
61 Chlorobenzene - d	10.08	9.75	10.41	10.08	-0.03

AREA UPPER LIMIT = + 40% of internal standard area. AREA LOWER LIMIT = - 40% of internal standard area. RT UPPER LIMIT = + 0.33 minutes of internal standard RT. RT LOWER LIMIT = - 0.33 minutes of internal standard RT.

10258805 Page 1290 of 1988 Data File: \\192.168.10.12\chem\10air0.i\030614.b\06540.D

Report Date: 07-Mar-2014 15:39

Pace Analytical Services, Inc.

INTERNAL STANDARD COMPOUNDS AREA AND RT SUMMARY

Instrument ID: 10air0.i Lab File ID: 06540.D Lab Smp Id: 10258805014

Calibration Date: 06-MAR-2014 Calibration Time: 13:59

Level: LOW

Analysis Type: VOA Quant Type: ISTD Operator: JAM

Sample Type: AIR

Method File: \\192.168.10.12\chem\10air0.i\030614.b\T015 065-14.m

Misc Info: 19598

Test Mode:

Use Initial Calibration Level 5.

		AREA	LIMIT		
COMPOUND	STANDARD	LOWER	UPPER	SAMPLE	%DIFF
=======================================	=======	=======	========	========	======
43 1,4-Difluorobenze	1108389	665033	1551745	1080599	-2.51
61 Chlorobenzene - d	739791	443875	1035707	771722	4.32

	·	RT I	LIMIT		
COMPOUND	STANDARD	LOWER	UPPER	SAMPLE	%DIFF
	=======	========		========	======
43 1,4-Difluorobenze	6.12	5.79	6.45	6.10	-0.20
61 Chlorobenzene - d	9.20	8.87	9.53	9.19	-0.07

AREA UPPER LIMIT = + 40% of internal standard area. AREA LOWER LIMIT = - 40% of internal standard area.

RT UPPER LIMIT = + 0.33 minutes of internal standard RT. RT LOWER LIMIT = - 0.33 minutes of internal standard RT.

10258805 Page 1319 of 1988 Data File: \\192.168.10.12\chem\10air0.i\030614.b\06539.D

Report Date: 07-Mar-2014 15:37

Pace Analytical Services, Inc.

INTERNAL STANDARD COMPOUNDS AREA AND RT SUMMARY

Instrument ID: 10air0.i Lab File ID: 06539.D Lab Smp Id: 10258805015

Calibration Date: 06-MAR-2014 Calibration Time: 13:59

Analysis Type: VOA Quant Type: ISTD Operator: JAM

Level: LOW Sample Type: AIR

Method File: \\192.168.10.12\chem\10air0.i\030614.b\T015 065-14.m

Misc Info: 19598

Test Mode:

Use Initial Calibration Level 5.

		AREA	LIMIT		
COMPOUND	STANDARD	LOWER	UPPER	SAMPLE	%DIFF
=======================================	=======	========	========	=======	======
43 1,4-Difluorobenze	1108389	665033	1551745	1184461	6.86
61 Chlorobenzene - d	739791	443875	1035707	802844	8.52

		RT I	LIMIT	·	
COMPOUND	STANDARD	LOWER	UPPER	SAMPLE	%DIFF
=======================================	========	========	=======	========	=====
43 1,4-Difluorobenze	6.12	5.79	6.45	6.10	-0.30
61 Chlorobenzene - d		8.87	9.53	9.19	-0.13

AREA UPPER LIMIT = + 40% of internal standard area. AREA LOWER LIMIT = - 40% of internal standard area. RT UPPER LIMIT = + 0.33 minutes of internal standard RT. RT LOWER LIMIT = - 0.33 minutes of internal standard RT.

10258805 Page 1333 of 1988 Data File: \\192.168.10.12\chem\10air0.i\030714.b\06617.D

Report Date: 09-Mar-2014 13:36

Pace Analytical Services, Inc.

INTERNAL STANDARD COMPOUNDS AREA AND RT SUMMARY

Calibration Date: 07-MAR-2014

Calibration Time: 10:54

Level: LOW

Instrument ID: 10air0.i Lab File ID: 06617.D Lab Smp Id: 10258805016

Analysis Type: VOA Sample Type: AIR

Quant Type: ISTD Operator: AH2

Method File: \\192.168.10.12\chem\10air0.i\030714.b\T015 065-14.m

Misc Info: 19607

Test Mode:

Use Initial Calibration Level 5.

		AREA	LIMIT		
COMPOUND	STANDARD	LOWER	UPPER	SAMPLE	%DIFF
=======================================	========	=======	========	========	======
43 1,4-Difluorobenze	1108389	665033	1551745	987148	-10.94
61 Chlorobenzene - d	739791	443875	1035707	657505	-11.12

		RT I	LIMIT	· · · · ·	
COMPOUND	STANDARD	LOWER	UPPER	SAMPLE	%DIFF
	========	=======	=========	========	=====
43 1,4-Difluorobenze	6.12	5.79	6.45	6.10	-0.30
61 Chlorobenzene - d	9.20	8.87	9.53	9.19	-0.13

AREA UPPER LIMIT = + 40% of internal standard area. AREA LOWER LIMIT = - 40% of internal standard area.

RT UPPER LIMIT = + 0.33 minutes of internal standard RT. RT LOWER LIMIT = - 0.33 minutes of internal standard RT.

10258805

Data File: \\192.168.10.12\chem\10air0.i\030714.b\06636.D

Report Date: 09-Mar-2014 14:28

Pace Analytical Services, Inc.

INTERNAL STANDARD COMPOUNDS AREA AND RT SUMMARY

Instrument ID: 10air0.i Lab File ID: 06636.D Lab Smp Id: 10258805017

Calibration Date: 07-MAR-2014 Calibration Time: 10:54

Analysis Type: VOA Quant Type: ISTD

Level: LOW Sample Type: AIR

Operator: AH2
Method File: \\192.168.10.12\chem\10air0.i\030714.b\T015_065-14.m

Misc Info: 19607

Test Mode:

Use Initial Calibration Level 5.

COMPOUND	STANDARD	AREA LOWER	LIMIT UPPER	SAMPLE	%DIFF
43 1,4-Difluorobenze		665033	1551745	1135597	2.45
61 Chlorobenzene - d		443875	1035707	801388	8.33

		RT LIMIT			
COMPOUND	STANDARD	LOWER	UPPER	SAMPLE	%DIFF
=======================================	========		========	=========	======
43 1,4-Difluorobenze	6.12	5.79	6.45	6.10	-0.20
61 Chlorobenzene - d	9.20	8.87	9.53	9.19	-0.07

AREA UPPER LIMIT = + 40% of internal standard area. AREA LOWER LIMIT = - 40% of internal standard area.

RT UPPER LIMIT = + 0.33 minutes of internal standard RT. RT LOWER LIMIT = - 0.33 minutes of internal standard RT.

10258805

Data File: \\192.168.10.12\chem\10air0.i\030914.b\06820.D

Report Date: 10-Mar-2014 08:59

Pace Analytical Services, Inc.

INTERNAL STANDARD COMPOUNDS AREA AND RT SUMMARY

Instrument ID: 10air0.i Lab File ID: 06820.D

Calibration Date: 09-MAR-2014 Calibration Time: 10:55

Lab Smp Id: 10258805017

Level: LOW

Analysis Type: VOA Quant Type: ISTD

Sample Type: AIR

Operator: JAM

Method File: \\192.168.10.12\chem\10air0.i\030914.b\T015 065-14.m Misc Info: 19607

Test Mode:

Use Initial Calibration Level 5.

		AREA	LIMIT		
COMPOUND	STANDARD	LOWER	UPPER	SAMPLE	%DIFF ======
43 1,4-Difluorobenze 61 Chlorobenzene - d	1108389 739791	665033 443875		829497 525596	-25.16 -28.95

		RT I	IMIT		
COMPOUND	STANDARD	LOWER	UPPER	SAMPLE	%DIFF
=======================================	=======	========	========	========	======
43 1,4-Difluorobenze	6.12	5.79	6.45	6.10	-0.30
61 Chlorobenzene - d	9.20	8.87	9.53	9.19	-0.13

AREA UPPER LIMIT = + 40% of internal standard area. AREA LOWER LIMIT = - 40% of internal standard area.

RT UPPER LIMIT = + 0.33 minutes of internal standard RT. RT LOWER LIMIT = - 0.33 minutes of internal standard RT.

10258805 Page 1391 of 1988 Data File: \\192.168.10.12\chem\10air0.i\030714.b\06619.D

Report Date: 09-Mar-2014 13:38

Pace Analytical Services, Inc.

INTERNAL STANDARD COMPOUNDS AREA AND RT SUMMARY

Instrument ID: 10air0.i Lab File ID: 06619.D Lab Smp Id: 10258805018 Calibration Date: 07-MAR-2014 Calibration Time: 10:54

Analysis Type: VOA Quant Type: ISTD

Level: LOW Sample Type: AIR

Operator: AH2 Method File: \\192.168.10.12\chem\10air0.i\030714.b\T015 065-14.m

Misc Info: 19607

Test Mode:

Use Initial Calibration Level 5.

		AREA	LIMIT		
COMPOUND	STANDARD	LOWER	UPPER	SAMPLE	%DIFF
=======================================	========	========	=======	========	======
43 1,4-Difluorobenze	1108389	665033	1551745	1024884	-7.53
61 Chlorobenzene - d	739791	443875	1035707	662054	-10.51

		RT I	LIMIT		
COMPOUND	STANDARD	LOWER	UPPER	SAMPLE	%DIFF
=======================================	========	========	========	=======	======
43 1,4-Difluorobenze	6.12	5.79	6.45	6.10	-0.31
61 Chlorobenzene - d	9.20	8.87	9.53	9.19	-0.14

AREA UPPER LIMIT = + 40% of internal standard area. AREA LOWER LIMIT = - 40% of internal standard area.

RT UPPER LIMIT = + 0.33 minutes of internal standard RT. RT LOWER LIMIT = - 0.33 minutes of internal standard RT.

Page 1401 of 1988 10258805

Data File: \\192.168.10.12\chem\10airD.i\030714.b\06724.d

Report Date: 08-Mar-2014 11:26

Pace Analytical Services, Inc.

INTERNAL STANDARD COMPOUNDS AREA AND RT SUMMARY

Instrument ID: 10airD.i Lab File ID: 06724.d

Calibration Date: 07-MAR-2014

Calibration Time: 13:41

Lab Smp Id: 10258805019 Analysis Type: VOA Quant Type: ISTD

Level: LOW

Operator: AH2

Sample Type: AIR

Misc Info: 19608

Method File: \\192.168.10.12\chem\10airD.i\030714.b\T015_067-14.m

Test Mode:

Use Initial Calibration Level 4. If Continuing Cal. use Initial Cal. Level 4

		AREA	LIMIT	·	
COMPOUND	STANDARD	LOWER	UPPER	SAMPLE	%DIFF
=======================================	========	=======	========	========	=== == =
43 1,4-Difluorobenze	463391	278035	648747	392942	-15.20
61 Chlorobenzene - d	276321	165793	386849	243606	-11.84
					l

		RT I			
COMPOUND	STANDARD	LOWER	UPPER	SAMPLE	%DIFF
=======================================	=======	=======	========	========	======
43 1,4-Difluorobenze	6.41	6.08	6.74	6.40	-0.05
61 Chlorobenzene - d	10.08	9.75	10.41	10.08	-0.03

AREA UPPER LIMIT = + 40% of internal standard area. AREA LOWER LIMIT = - 40% of internal standard area.

RT UPPER LIMIT = + 0.33 minutes of internal standard RT. RT LOWER LIMIT = - 0.33 minutes of internal standard RT.

Data File: \\192.168.10.12\chem\10air0.i\030614.b\06524.D

Report Date: 07-Mar-2014 13:38

Pace Analytical Services, Inc.

INTERNAL STANDARD COMPOUNDS AREA AND RT SUMMARY

Calibration Date: 06-MAR-2014 Calibration Time: 13:59

Level: LOW

Instrument ID: 10air0.i Lab File ID: 06524.D

Lab Smp Id: 10258805020

Quant Type: ISTD

Analysis Type: VOA Sample Type: AIR Operator: JAM

Method File: \\192.168.10.12\chem\10air0.i\030614.b\T015 065-14.m

Misc Info: 19598

Test Mode:

Use Initial Calibration Level 5.

		AREA	LIMIT		
COMPOUND	STANDARD	LOWER	UPPER	SAMPLE	%DIFF
	========	========	=======	######################################	======
43 1,4-Difluorobenze	1108389	665033	1551745	1302126	17.48
61 Chlorobenzene - d	739791	443875	1035707	859620	16.20

		RT I	LIMIT		
COMPOUND	STANDARD	LOWER	UPPER	SAMPLE	%DIFF
=======================================	========	========	========	========	======
43 1,4-Difluorobenze	6.12	5.79	6.45	6.10	-0.20
61 Chlorobenzene - d		8.87	9.53	9.19	-0.07
	•				

AREA UPPER LIMIT = + 40% of internal standard area. AREA LOWER LIMIT = - 40% of internal standard area.

RT UPPER LIMIT = + 0.33 minutes of internal standard RT. RT LOWER LIMIT = - 0.33 minutes of internal standard RT.

10258805 Page 1435 of 1988 Data File: \\192.168.10.12\chem\10air0.i\030614.b\06535.D

Report Date: 07-Mar-2014 15:17

Pace Analytical Services, Inc.

INTERNAL STANDARD COMPOUNDS AREA AND RT SUMMARY

Instrument ID: 10air0.i
Lab File ID: 06535.D Lab Smp Id: 10258805021

Calibration Time: 13:59 Level: LOW

Analysis Type: VOA Quant Type: ISTD Operator: JAM

Sample Type: AIR

Calibration Date: 06-MAR-2014

Method File: \\192.168.10.12\chem\10air0.i\030614.b\T015 065-14.m Misc Info: 19598

Test Mode:

Use Initial Calibration Level 5.

-		AREA			
COMPOUND	STANDARD	LOWER	UPPER	SAMPLE	%DIFF
======================================	========	=======	========	========	======
43 1,4-Difluorobenze	1108389	665033	1551745	1256779	13.39
61 Chlorobenzene - d	739791	443875	1035707	834923	12.86
			*		

		RT I	LIMIT		
COMPOUND	STANDARD	LOWER	UPPER	SAMPLE	%DIFF
======================================	========	========	========	========	======
43 1,4-Difluorobenze 61 Chlorobenzene - d	6.12 9.20	5.79 8.87	6.45 9.53	6.10 9.19	-0.20 -0.07
of chiorobenzene - d	9.20	0.07	9.55	9.19	-0.07

AREA UPPER LIMIT = + 40% of internal standard area. AREA LOWER LIMIT = - 40% of internal standard area.

RT UPPER LIMIT = + 0.33 minutes of internal standard RT. RT LOWER LIMIT = - 0.33 minutes of internal standard RT.

10258805 Page 1448 of 1988 Data File: \\192.168.10.12\chem\10air0.i\030614.b\06520.D

Report Date: 07-Mar-2014 13:01

Pace Analytical Services, Inc.

INTERNAL STANDARD COMPOUNDS AREA AND RT SUMMARY

Calibration Date: 06-MAR-2014

Calibration Time: 13:59

Instrument ID: 10air0.i Lab File ID: 06520.D

Lab Smp Id: 10258805022 Analysis Type: VOA

Quant Type: ISTD Operator: JAM

Level: LOW Sample Type: AIR

Method File: \\192.168.10.12\chem\10air0.i\030614.b\T015 065-14.m Misc Info: 19598

Test Mode:

Use Initial Calibration Level 5.

		AREA	LIMIT		
COMPOUND	STANDARD	LOWER	UPPER	SAMPLE	%DIFF
=======================================	========	========	========	=======	======
43 1,4-Difluorobenze	1108389	665033	1551745	1131108	2.05
61 Chlorobenzene - d	739791	443875	1035707	775836	4.87

		RT I	LIMIT		
COMPOUND	STANDARD	LOWER	UPPER	SAMPLE	%DIFF
=======================================	========	=======	========	========	======
43 1,4-Difluorobenze	6.12	5.79	6.45	6.10	-0.20
61 Chlorobenzene - d	9.20	8.87	9.53	9.19	-0.07

AREA UPPER LIMIT = + 40% of internal standard area. AREA LOWER LIMIT = - 40% of internal standard area.

RT UPPER LIMIT = + 0.33 minutes of internal standard RT. RT LOWER LIMIT = - 0.33 minutes of internal standard RT.

10258805 Page 1463 of 1988 Data File: \\192.168.10.12\chem\10air0.i\030714.b\06626.D

Report Date: 09-Mar-2014 14:02

Pace Analytical Services, Inc.

INTERNAL STANDARD COMPOUNDS AREA AND RT SUMMARY

Instrument ID: 10air0.i Lab File ID: 06626.D Lab Smp Id: 10258805023

Calibration Date: 07-MAR-2014 Calibration Time: 10:54

Analysis Type: VOA Quant Type: ISTD

Level: LOW Sample Type: AIR

Operator: AH2
Method File: \\192.168.10.12\chem\10air0.i\030714.b\T015_065-14.m

Misc Info: 19607

Test Mode:

Use Initial Calibration Level 5.

COMPOUND	STANDARD	AREA LOWER	LIMIT UPPER	SAMPLE	%DIFF
43 1,4-Difluorobenze		665033	1551745	1156982	4.38
61 Chlorobenzene - d		443875	1035707	764601	3.35

		RT I	LIMIT		
COMPOUND	STANDARD	LOWER	UPPER	SAMPLE	%DIFF
**************	========	=======	=======	========	======
43 1,4-Difluorobenze	6.12	5.79	6.45	6.11	-0.10
61 Chlorobenzene - d	9.20	8.87	9.53	9.20	0.00

AREA UPPER LIMIT = + 40% of internal standard area. AREA LOWER LIMIT = - 40% of internal standard area.

RT UPPER LIMIT = + 0.33 minutes of internal standard RT. RT LOWER LIMIT = - 0.33 minutes of internal standard RT.

10258805 Page 1475 of 1988 Data File: \\192.168.10.12\chem\10air0.i\030714.b\06623.D

Report Date: 09-Mar-2014 13:50

Pace Analytical Services, Inc.

INTERNAL STANDARD COMPOUNDS AREA AND RT SUMMARY

Calibration Date: 07-MAR-2014

Calibration Time: 10:54

Instrument ID: 10air0.i Lab File ID: 06623.D

Lab Smp Id: 10258805024

Analysis Type: VOA Quant Type: ISTD

Level: LOW Sample Type: AIR Operator: AH2

Method File: \\192.168.10.12\chem\10air0.i\030714.b\T015 065-14.m Misc Info: 19607

Test Mode:

Use Initial Calibration Level 5.

COMPOUND	STANDARD	AREA LOWER	LIMIT UPPER	SAMPLE	%DIFF
43 1,4-Difluorobenze 61 Chlorobenzene - d		665033 443875		1184999 795249	6.91 7.50

		RT]	LIMIT		
COMPOUND	STANDARD	LOWER	UPPER	SAMPLE	%DIFF
=======================================	========	========	========	========	=====
43 1,4-Difluorobenze	6.12	5.79	6.45	6.11	-0.10
61 Chlorobenzene - d		8.87	9.53	9.20	0.00

AREA UPPER LIMIT = + 40% of internal standard area. AREA LOWER LIMIT = - 40% of internal standard area.

RT UPPER LIMIT = + 0.33 minutes of internal standard RT. RT LOWER LIMIT = - 0.33 minutes of internal standard RT.

10258805

Data File: \\192.168.10.12\chem\10air0.i\030714.b\06620.D

Report Date: 09-Mar-2014 13:41

Pace Analytical Services, Inc.

INTERNAL STANDARD COMPOUNDS AREA AND RT SUMMARY

Instrument ID: 10air0.i Lab File ID: 06620.D

Lab Smp Id: 10258805025

Analysis Type: VOA Quant Type: ISTD

Level: LOW Sample Type: AIR

Calibration Date: 07-MAR-2014 Calibration Time: 10:54

Operator: AH2
Method File: \\192.168.10.12\chem\10air0.i\030714.b\T015_065-14.m

Misc Info: 19607

Test Mode:

Use Initial Calibration Level 5.

COMPOUND	STANDARD	AREA LOWER	LIMIT UPPER	SAMPLE	%DIFF
43 1,4-Difluorobenze 61 Chlorobenzene - d			1551745 1035707	1034780 679317	-6.64 -8.17

		RT LIMIT			
COMPOUND	STANDARD	LOWER	UPPER	SAMPLE	%DIFF
=======================================	========	=======	========	=======	======
43 1,4-Difluorobenze	6.12	5.79	6.45	6.12	0.00
61 Chlorobenzene - d	9.20	8.87	9.53	9.20	0.00

AREA UPPER LIMIT = + 40% of internal standard area.

AREA LOWER LIMIT = - 40% of internal standard area.

RT UPPER LIMIT = + 0.33 minutes of internal standard RT. RT LOWER LIMIT = - 0.33 minutes of internal standard RT.

10258805 Page 1510 of 1988 Data File: \\192.168.10.12\chem\10air0.i\030914.b\06816.D

Report Date: 10-Mar-2014 08:51

Pace Analytical Services, Inc.

INTERNAL STANDARD COMPOUNDS AREA AND RT SUMMARY

Calibration Date: 09-MAR-2014 Calibration Time: 10:55

Level: LOW

Sample Type: AIR

Instrument ID: 10air0.i Lab File ID: 06816.D

Lab Smp Id: 10258805025

Analysis Type: VOA Quant Type: ISTD

Operator: JAM

Method File: \\192.168.10.12\chem\10air0.i\030914.b\T015 065-14.m

Misc Info: 19607

Test Mode:

Use Initial Calibration Level 5.

		AREA	LIMIT		
COMPOUND	STANDARD	LOWER	UPPER	SAMPLE	%DIFF
=======================================	========	========	========	=======	======
43 1,4-Difluorobenze	1108389	665033	1551745	876987	-20.88
61 Chlorobenzene - d		443875	1035707	548674	-25.83

		RT 1			
COMPOUND	STANDARD	LOWER	UPPER	SAMPLE	%DIFF
=======================================	=======	=======	========	========	======
43 1,4-Difluorobenze	6.12	5.79	6.45	6.10	-0.30
61 Chlorobenzene - d		8.87	9.53	9.19	-0.13

AREA UPPER LIMIT = + 40% of internal standard area. AREA LOWER LIMIT = - 40% of internal standard area.

RT UPPER LIMIT = + 0.33 minutes of internal standard RT. RT LOWER LIMIT = - 0.33 minutes of internal standard RT.

10258805 Page 1532 of 1988 Data File: \\192.168.10.12\chem\10air0.i\030714.b\06618.D

Report Date: 09-Mar-2014 13:37

Pace Analytical Services, Inc.

INTERNAL STANDARD COMPOUNDS AREA AND RT SUMMARY

Calibration Date: 07-MAR-2014 Calibration Time: 10:54

Instrument ID: 10air0.i Lab File ID: 06618.D

Lab Smp Id: 10258805026

Analysis Type: VOA Quant Type: ISTD

Level: LOW Sample Type: AIR Operator: AH2

Method File: \\192.168.10.12\chem\10air0.i\030714.b\T015 065-14.m Misc Info: 19607

Test Mode:

Use Initial Calibration Level 5.

		AREA	LIMIT		
COMPOUND	STANDARD	LOWER	UPPER	SAMPLE	%DIFF
=======================================	========	========	=======	=======	======
43 1,4-Difluorobenze	1108389	665033	1551745	1004767	-9.35
61 Chlorobenzene - d	739791	443875	1035707	648136	-12.39

		RT LIMIT			<u> </u>
COMPOUND	STANDARD	LOWER	UPPER	SAMPLE	%DIFF
=======================================	========	========	========	========	=====
43 1,4-Difluorobenze	6.12	5.79	6.45	6.10	-0.30
61 Chlorobenzene - d	9.20	8.87	9.53	9.19	-0.07

AREA UPPER LIMIT = + 40% of internal standard area. AREA LOWER LIMIT = - 40% of internal standard area.

RT UPPER LIMIT = + 0.33 minutes of internal standard RT. RT LOWER LIMIT = - 0.33 minutes of internal standard RT.

10258805 Page 1540 of 1988 Data File: \\192.168.10.12\chem\10air0.i\030614.b\06530.D

Report Date: 07-Mar-2014 14:58

Pace Analytical Services, Inc.

INTERNAL STANDARD COMPOUNDS AREA AND RT SUMMARY

Instrument ID: 10air0.i Lab File ID: 06530.D Lab Smp Id: 10258805027

Calibration Date: 06-MAR-2014 Calibration Time: 13:59

Page 1555 of 1988

Analysis Type: VOA Quant Type: ISTD Operator: JAM

Level: LOW Sample Type: AIR

Method File: \\192.168.10.12\chem\10air0.i\030614.b\T015 065-14.m

Misc Info: 19598

Test Mode:

Use Initial Calibration Level 5.

		AREA			
COMPOUND	STANDARD	LOWER	UPPER	SAMPLE	%DIFF
=======================================	========	========	========	========	======
43 1,4-Difluorobenze	1108389	665033	1551745	921750	-16.84
61 Chlorobenzene - d	739791	443875	1035707	758971	2.59

		RT I	LIMIT		
COMPOUND	STANDARD	LOWER	UPPER	SAMPLE	%DIFF
=======================================	========	=======	========	========	======
43 1,4-Difluorobenze	6.12	5.79	6.45	6.11	-0.10
61 Chlorobenzene - d	9.20	8.87	9.53	9.20	0.00

AREA UPPER LIMIT = + 40% of internal standard area. AREA LOWER LIMIT = - 40% of internal standard area.

RT UPPER LIMIT = + 0.33 minutes of internal standard RT. RT LOWER LIMIT = - 0.33 minutes of internal standard RT.

10258805

Data File: \\192.168.10.12\chem\10air0.i\030914.b\06832.D

Report Date: 10-Mar-2014 09:10

Pace Analytical Services, Inc.

INTERNAL STANDARD COMPOUNDS AREA AND RT SUMMARY

Calibration Date: 09-MAR-2014

Calibration Time: 10:55

Instrument ID: 10air0.i Lab File ID: 06832.D Lab Smp Id: 10258805028

Analysis Type: VOA Quant Type: ISTD

Level: LOW Sample Type: AIR Operator: JAM

Method File: \\192.168.10.12\chem\10air0.i\030914.b\T015 065-14.m

Misc Info: 19617

Test Mode:

Use Initial Calibration Level 5.

		AREA	LIMIT		
COMPOUND	STANDARD	LOWER	UPPER	SAMPLE	%DIFF
======================================	========	=======	========	========	======
43 1,4-Difluorobenze	1108389	665033	1551745	717535	-35.26
61 Chlorobenzene - d	739791	443875	1035707	459459	- 37.89

		RT I	LIMIT	· · · · · · · · · · · · · · · · · · ·	
COMPOUND	STANDARD	LOWER	UPPER	SAMPLE	%DIFF
=======================================	========	=======	========	========	======
43 1,4-Difluorobenze	6.12	5.79	6.45	6.10	-0.30
61 Chlorobenzene - d	9.20	8.87	9.53	9.19	-0.07

AREA UPPER LIMIT = + 40% of internal standard area. AREA LOWER LIMIT = - 40% of internal standard area.

RT UPPER LIMIT = + 0.33 minutes of internal standard RT. RT LOWER LIMIT = - 0.33 minutes of internal standard RT.

10258805 Page 1573 of 1988 Data File: \\192.168.10.12\chem\10air0.i\030714.b\06635.D

Report Date: 09-Mar-2014 14:24

Pace Analytical Services, Inc.

INTERNAL STANDARD COMPOUNDS AREA AND RT SUMMARY

Calibration Date: 07-MAR-2014

Calibration Time: 10:54

Level: LOW

Sample Type: AIR

Instrument ID: 10air0.i Lab File ID: 06635.D Lab Smp Id: 10258805029

Analysis Type: VOA

Quant Type: ISTD

Operator: AH2
Method File: \\192.168.10.12\chem\10air0.i\030714.b\T015_065-14.m

Misc Info: 19607

Test Mode:

Use Initial Calibration Level 5.

		AREA	LIMIT		
COMPOUND	STANDARD	LOWER	UPPER	SAMPLE	%DIFF
43 1,4-Difluorobenze 61 Chlorobenzene - d		665033 443875	1551745 1035707	1046617 783302	-5.57 5.88

		RT I	LIMIT		
COMPOUND	STANDARD	LOWER	UPPER	SAMPLE	%DIFF
=======================================	========	========	========	========	======
43 1,4-Difluorobenze	6.12	5.79	6.45	6.10	-0.20
61 Chlorobenzene - d	9.20	8.87	9.53	9.19	-0.13

AREA UPPER LIMIT = + 40% of internal standard area.

AREA LOWER LIMIT = - 40% of internal standard area.

RT UPPER LIMIT = + 0.33 minutes of internal standard RT. RT LOWER LIMIT = - 0.33 minutes of internal standard RT.

Data File: \\192.168.10.12\chem\10air0.i\030714.b\06631.D

Report Date: 09-Mar-2014 14:14

Pace Analytical Services, Inc.

INTERNAL STANDARD COMPOUNDS AREA AND RT SUMMARY

Instrument ID: 10air0.i Lab File ID: 06631.D Lab Smp Id: 10258805030

Analysis Type: VOA Quant Type: ISTD

Level: LOW Sample Type: AIR

Calibration Date: 07-MAR-2014

Calibration Time: 10:54

Operator: AH2
Method File: \\192.168.10.12\chem\10air0.i\030714.b\T015_065-14.m

Misc Info: 19607

Test Mode:

Use Initial Calibration Level 5.

COMPOUND	STANDARD	AREA LOWER	LIMIT UPPER	SAMPLE	%DIFF
43 1,4-Difluorobenze 61 Chlorobenzene - d		665033 443875		1070771 842420	-3.39 13.87

		RT 1	LIMIT	-,	
COMPOUND	STANDARD	LOWER	UPPER	SAMPLE	%DIFF
=======================================	========	=======	========	========	======
43 1,4-Difluorobenze	6.12	5.79	6.45	6.13	0.20
61 Chlorobenzene - d	9.20	8.87	9.53	9.26	0.67

AREA UPPER LIMIT = + 40% of internal standard area. AREA LOWER LIMIT = - 40% of internal standard area.

RT UPPER LIMIT = + 0.33 minutes of internal standard RT. RT LOWER LIMIT = - 0.33 minutes of internal standard RT.

Data File: \\192.168.10.12\chem\10air0.i\030914.b\06817.D

Report Date: 10-Mar-2014 08:53

Pace Analytical Services, Inc.

INTERNAL STANDARD COMPOUNDS AREA AND RT SUMMARY

Instrument ID: 10air0.i Lab File ID: 06817.D Lab Smp Id: 10258805030

Level: LOW

Analysis Type: VOA Quant Type: ISTD Operator: JAM

Sample Type: AIR

Calibration Date: 09-MAR-2014

Calibration Time: 10:55

Method File: \\192.168.10.12\chem\10air0.i\030914.b\T015 065-14.m

Misc Info: 19607

Test Mode:

Use Initial Calibration Level 5.

COMPOUND	STANDARD	AREA LOWER	LIMIT UPPER	SAMPLE	%DIFF
43 1,4-Difluorobenze		665033	1551745	872271	-21.30
61 Chlorobenzene - d		443875	1035707	546578	-26.12

	-	RT I			
COMPOUND	STANDARD	LOWER	UPPER	SAMPLE	%DIFF
=======================================	=======	========	========	========	======
43 1,4-Difluorobenze	6.12	5.79	6.45	6.10	-0.30
61 Chlorobenzene - d		8.87	9.53	9.19	-0.07
					·

AREA UPPER LIMIT = + 40% of internal standard area. AREA LOWER LIMIT = - 40% of internal standard area.

RT UPPER LIMIT = + 0.33 minutes of internal standard RT. RT LOWER LIMIT = - 0.33 minutes of internal standard RT.

Data File: \\192.168.10.12\chem\10airD.i\030714.b\06727.d

Report Date: 08-Mar-2014 11:53

Pace Analytical Services, Inc.

INTERNAL STANDARD COMPOUNDS AREA AND RT SUMMARY

Instrument ID: 10airD.i Lab File ID: 06727.d

Calibration Date: 07-MAR-2014 Calibration Time: 13:41

Lab Smp Id: 10258805031

Level: LOW Sample Type: AIR

Analysis Type: VOA Quant Type: ISTD

Operator: AH2
Method File: \\192.168.10.12\chem\10airD.i\030714.b\T015_067-14.m

Misc Info: 19608

Test Mode:

Use Initial Calibration Level 4. If Continuing Cal. use Initial Cal. Level 4

COMPOUND	STANDARD	AREA LOWER	LIMIT UPPER	SAMPLE	%DIFF
43 1,4-Difluorobenze 61 Chlorobenzene - d		278035 165793		430642 255624	-7.07 -7.49

		RT I	LIMIT		
COMPOUND	STANDARD	LOWER	UPPER	SAMPLE	%DIFF
=======================================	=======	========	=======	========	======
43 1,4-Difluorobenze	6.41	6.08	6.74	6.40	-0.05
61 Chlorobenzene - d	10.08	9.75	10.41	10.08	0.00

AREA UPPER LIMIT = +40% of internal standard area. AREA LOWER LIMIT = -40% of internal standard area.

RT UPPER LIMIT = + 0.33 minutes of internal standard RT. RT LOWER LIMIT = - 0.33 minutes of internal standard RT.

10258805 Page 1641 of 1988 Data File: \\192.168.10.12\chem\10air0.i\030714.b\06627.D

Report Date: 09-Mar-2014 14:05

Pace Analytical Services, Inc.

INTERNAL STANDARD COMPOUNDS AREA AND RT SUMMARY

Instrument ID: 10air0.i Lab File ID: 06627.D Lab Smp Id: 10258805032

Calibration Date: 07-MAR-2014 Calibration Time: 10:54

Analysis Type: VOA Quant Type: ISTD

Level: LOW Sample Type: AIR

Operator: AH2
Method File: \\192.168.10.12\chem\10air0.i\030714.b\T015_065-14.m

Misc Info: 19607

Test Mode:

Use Initial Calibration Level 5.

		AREA	LIMIT		
COMPOUND	STANDARD	LOWER	UPPER	SAMPLE	%DIFF
=======================================	=======	========	=======	========	======
43 1,4-Difluorobenze	1108389	665033	1551745	1054564	-4.86
61 Chlorobenzene - d	739791	443875	1035707	848296	14.67

		RT I	LIMIT		
COMPOUND	STANDARD	LOWER	UPPER	SAMPLE	%DIFF
=======================================	=======	=======	========	========	======
43 1,4-Difluorobenze	6.12	5.79	6.45	6.15	0.51
61 Chlorobenzene - d	9.20	8.87	9.53	9.30	1.15

AREA UPPER LIMIT = + 40% of internal standard area. AREA LOWER LIMIT = - 40% of internal standard area.

RT UPPER LIMIT = + 0.33 minutes of internal standard RT. RT LOWER LIMIT = - 0.33 minutes of internal standard RT.

10258805 Page 1665 of 1988 Data File: \\192.168.10.12\chem\10air0.i\030914.b\06818.D

Report Date: 10-Mar-2014 08:54

Pace Analytical Services, Inc.

INTERNAL STANDARD COMPOUNDS AREA AND RT SUMMARY

Instrument ID: 10air0.i Lab File ID: 06818.D

Calibration Date: 09-MAR-2014 Calibration Time: 10:55

Lab Smp Id: 10258805032 Analysis Type: VOA

Level: LOW

Quant Type: ISTD

Sample Type: AIR

Operator: JAM Method File: \\192.168.10.12\chem\10air0.i\030914.b\T015 065-14.m

Misc Info: 19607

Test Mode:

Use Initial Calibration Level 5.

		AREA	LIMIT		
COMPOUND	STANDARD	LOWER	UPPER	SAMPLE	%DIFF
=======================================	========	========	========	========	======
43 1,4-Difluorobenze	1108389	665033	1551745	852137	-23.12
61 Chlorobenzene - d	739791	443875	1035707	543261	-26.57

COMPOUND	CHANDADD	RT I	IMIT	GAMPIE	0.0.7.7.7
COMPOUND	STANDARD	LOWER	UPPER	SAMPLE	%DIFF
43 1,4-Difluorobenze		5.79	6.45	6.10	-0.30
61 Chlorobenzene - d	9.20	8.87	9.53	9.19	-0.07
	1				

AREA UPPER LIMIT = + 40% of internal standard area. AREA LOWER LIMIT = - 40% of internal standard area.

RT UPPER LIMIT = + 0.33 minutes of internal standard RT. RT LOWER LIMIT = - 0.33 minutes of internal standard RT.

10258805 Page 1680 of 1988 Data File: \\192.168.10.12\chem\10air0.i\030614.b\06534.D

Report Date: 07-Mar-2014 16:42

Pace Analytical Services, Inc.

INTERNAL STANDARD COMPOUNDS AREA AND RT SUMMARY

Calibration Date: 06-MAR-2014

Calibration Time: 13:59

Level: LOW

Sample Type: AIR

Instrument ID: 10air0.i
Lab File ID: 06534.D

Lab Smp Id: 10258805033 Analysis Type: VOA

Quant Type: ISTD Operator: JAM

Method File: \\192.168.10.12\chem\10air0.i\030614.b\T015 065-14.m Misc Info: 19598

Test Mode:

Use Initial Calibration Level 5.

COMPOUND	STANDARD	AREA LOWER	LIMIT UPPER	SAMPLE	%DIFF
43 1,4-Difluorobenze	1108389	665033	1551745	1264142	14.05
61 Chlorobenzene - d	739791	443875	1035707	850487	14.96

		RT LIMIT			<u> </u>
COMPOUND	STANDARD	LOWER	UPPER	SAMPLE	%DIFF
= =======	========	=======	========	========	======
43 1,4-Difluorobenze		5.79	6.45	6.10	-0.20
61 Chlorobenzene - d	9.20	8.87	9.53	9.19	-0.07
	1				l i

AREA UPPER LIMIT = + 40% of internal standard area.

AREA LOWER LIMIT = - 40% of internal standard area.

RT UPPER LIMIT = + 0.33 minutes of internal standard RT. RT LOWER LIMIT = - 0.33 minutes of internal standard RT.

Data File: \\192.168.10.12\chem\10air0.i\030614.b\06533.D

Report Date: 07-Mar-2014 15:11

Pace Analytical Services, Inc.

INTERNAL STANDARD COMPOUNDS AREA AND RT SUMMARY

Instrument ID: 10air0.i
Lab File ID: 06533.D

Calibration Date: 06-MAR-2014 Calibration Time: 13:59

Lab Smp Id: 10258805034

Analysis Type: VOA Quant Type: ISTD

Level: LOW

Operator: JAM

Sample Type: AIR

Method File: \\192.168.10.12\chem\10air0.i\030614.b\T015 065-14.m

Misc Info: 19598

Test Mode:

Use Initial Calibration Level 5.

COMPOUND	STANDARD	AREA LOWER	LIMIT UPPER	SAMPLE	%DIFF
43 1,4-Difluorobenze	1108389	665033		1232551	11.20
61 Chlorobenzene - d	739791	443875		829528	12.13

		RT I			
COMPOUND	STANDARD	LOWER	UPPER	SAMPLE	%DIFF
	========	========	========	========	======
43 1,4-Difluorobenze	6.12	5.79	6.45	6.10	-0.20
61 Chlorobenzene - d	9.20	8.87	9.53	9.19	-0.07
			,		

AREA UPPER LIMIT = + 40% of internal standard area. AREA LOWER LIMIT = - 40% of internal standard area.

RT UPPER LIMIT = + 0.33 minutes of internal standard RT. RT LOWER LIMIT = - 0.33 minutes of internal standard RT.

Data File: \\192.168.10.12\chem\10air0.i\030714.b\06630.D

Report Date: 09-Mar-2014 14:11

Pace Analytical Services, Inc.

INTERNAL STANDARD COMPOUNDS AREA AND RT SUMMARY

Instrument ID: 10air0.i Lab File ID: 06630.D Lab Smp Id: 10258805035

Calibration Time: 10:54 Level: LOW

Analysis Type: VOA Quant Type: ISTD

Sample Type: AIR

Calibration Date: 07-MAR-2014

Operator: AH2
Method File: \\192.168.10.12\chem\10air0.i\030714.b\T015_065-14.m

Misc Info: 19607

Test Mode:

Use Initial Calibration Level 5.

		AREA	LIMIT		
COMPOUND	STANDARD	LOWER	UPPER	SAMPLE	%DIFF
43 1,4-Difluorobenze		665033	1551745	1081307	-2.44
61 Chlorobenzene - d	739791	443875	1035707	744685	0.66

			ĻĪŇĪT	:-	
COMPOUND	STANDARD	LOWER	UPPER	SAMPLE	%DIFF
43 1,4-Difluorobenze 61 Chlorobenzene - d	6.12 9.20	5.79 8.87	6.45 9.53	6.10	-0.30 -0.13

AREA UPPER LIMIT = + 40% of internal standard area. AREA LOWER LIMIT = - 40% of internal standard area.

RT UPPER LIMIT = + 0.33 minutes of internal standard RT. RT LOWER LIMIT = - 0.33 minutes of internal standard RT.

Data File: \\192.168.10.12\chem\10airD.i\030714.b\06729.d

Report Date: 08-Mar-2014 11:56

Pace Analytical Services, Inc.

INTERNAL STANDARD COMPOUNDS AREA AND RT SUMMARY

Calibration Date: 07-MAR-2014

Calibration Time: 13:41

Level: LOW

Sample Type: AIR

Instrument ID: 10airD.i Lab File ID: 06729.d Lab Smp Id: 10258805036

Lab Smp Id: 10258805036 Analysis Type: VOA

Quant Type: ISTD Operator: AH2

Operator: AH2
Method File: \\192.168.10.12\chem\10airD.i\030714.b\T015_067-14.m

Misc Info: 19608

Test Mode:

Use Initial Calibration Level 4.
If Continuing Cal. use Initial Cal. Level 4

COMPOUND	STANDARD	AREA LOWER	LIMIT UPPER	SAMPLE	%DIFF
43 1,4-Difluorobenze	463391	278035	648747	444893	-3.99
61 Chlorobenzene - d	276321	165793	386849	272825	-1.27

-		RT 1		<u> </u>	
COMPOUND	STANDARD	LOWER	UPPER	SAMPLE	%DIFF
======================================	========	========	=========	========	======
43 1,4-Difluorobenze	6.41	6.08	6.74	6.41	0.00
61 Chlorobenzene - d	10.08	9.75	10.41	10.08	0.00

AREA UPPER LIMIT = + 40% of internal standard area. AREA LOWER LIMIT = - 40% of internal standard area. RT UPPER LIMIT = + 0.33 minutes of internal standard RT. RT LOWER LIMIT = - 0.33 minutes of internal standard RT.

10258805 Page 1747 of 1988

Data File: \\192.168.10.12\chem\10air0.i\030714.b\06624.D

Report Date: 09-Mar-2014 13:52

Pace Analytical Services, Inc.

INTERNAL STANDARD COMPOUNDS AREA AND RT SUMMARY

Instrument ID: 10air0.i Lab File ID: 06624.D Lab Smp Id: 10258805037

Calibration Date: 07-MAR-2014 Calibration Time: 10:54

Analysis Type: VOA Quant Type: ISTD

Level: LOW Sample Type: AIR

Operator: AH2

Method File: \\192.168.10.12\chem\10air0.i\030714.b\T015 065-14.m

Misc Info: 19607

Test Mode:

Use Initial Calibration Level 5.

		AREA	LIMIT		
COMPOUND	STANDARD	LOWER	UPPER	SAMPLE	%DIFF
=======================================	========	========	========	========	======
43 1,4-Difluorobenze	1108389	665033	1551745	1152535	3.98
61 Chlorobenzene - d	739791	443875	1035707	752854	1.77

		RT LIMIT			,
COMPOUND	STANDARD	LOWER	UPPER	SAMPLE	%DIFF
=======================================	========	========	=========	========	=====
43 1,4-Difluorobenze	6.12	5.79	6.45	6.10	-0.30
61 Chlorobenzene - d	9.20	8.87	9.53	9.19	-0.07

AREA UPPER LIMIT = + 40% of internal standard area. AREA LOWER LIMIT = - 40% of internal standard area.

RT UPPER LIMIT = + 0.33 minutes of internal standard RT. RT LOWER LIMIT = - 0.33 minutes of internal standard RT.

Data File: \\192.168.10.12\chem\10air0.i\030714.b\06616.D

Report Date: 09-Mar-2014 13:35

Pace Analytical Services, Inc.

INTERNAL STANDARD COMPOUNDS AREA AND RT SUMMARY

Instrument ID: 10air0.i Lab File ID: 06616.D

Calibration Date: 07-MAR-2014 Calibration Time: 10:54

Lab Smp Id: 10258805038 Analysis Type: VOA Quant Type: ISTD

Level: LOW Sample Type: AIR

Operator: AH2
Method File: \\192.168.10.12\chem\10air0.i\030714.b\T015_065-14.m

Misc Info: 19607

Test Mode:

Use Initial Calibration Level 5.

COMPOUND	STANDARD	AREA LOWER	LIMIT UPPER	SAMPLE	%DIFF
43 1,4-Difluorobenze 61 Chlorobenzene - d		665033 443875		975176 629994	

	· · · · · · ·	RT 1	LIMIT		
COMPOUND	STANDARD	LOWER	UPPER	SAMPLE	%DIFF
=======================================	=======	========	========	========	=====
43 1,4-Difluorobenze			6.45	6.11	-0.10
61 Chlorobenzene - d	9.20	8.87	9.53	9.19	-0.07

AREA UPPER LIMIT = + 40% of internal standard area. AREA LOWER LIMIT = - 40% of internal standard area.

RT UPPER LIMIT = + 0.33 minutes of internal standard RT. RT LOWER LIMIT = - 0.33 minutes of internal standard RT.

10258805 Page 1781 of 1988 Data File: \\192.168.10.12\chem\10air0.i\030714.b\06625.D

Report Date: 09-Mar-2014 14:00

Pace Analytical Services, Inc.

INTERNAL STANDARD COMPOUNDS AREA AND RT SUMMARY

Calibration Date: 07-MAR-2014 Calibration Time: 10:54

Level: LOW

Instrument ID: 10air0.i Lab File ID: 06625.D

Lab Smp Id: 10258805039

Analysis Type: VOA Quant Type: ISTD

Sample Type: AIR Operator: AH2 Method File: \\192.168.10.12\chem\10air0.i\030714.b\T015 065-14.m

Misc Info: 19607

Test Mode:

Use Initial Calibration Level 5.

		ĀREA		-	
COMPOUND	STANDARD	LOWER	UPPER	SAMPLE	%DIFF
=======================================	=======	========	========	========	======
43 1,4-Difluorobenze	1108389	665033	1551745	864899	-21.97
61 Chlorobenzene - d	739791	443875	1035707	672953	-9.03

		RT LIMIT			
COMPOUND	STANDARD	LOWER	UPPER	SAMPLE	%DIFF
=======================================	========	========	========	=======	======
43 1,4-Difluorobenze	6.12	5.79	6.45	6.11	-0.10
61 Chlorobenzene - d	9.20	8.87	9.53	9.19	-0.07

AREA UPPER LIMIT = + 40% of internal standard area. AREA LOWER LIMIT = - 40% of internal standard area.

RT UPPER LIMIT = + 0.33 minutes of internal standard RT. RT LOWER LIMIT = - 0.33 minutes of internal standard RT.

10258805 Page 1796 of 1988 Data File: \\192.168.10.12\chem\10air0.i\030914.b\06814.D

Report Date: 10-Mar-2014 08:41

Pace Analytical Services, Inc.

INTERNAL STANDARD COMPOUNDS AREA AND RT SUMMARY

Instrument ID: 10air0.i Lab File ID: 06814.D

Calibration Date: 09-MAR-2014 Calibration Time: 10:55

Lab Smp Id: 10258805039 Analysis Type: VOA

Level: LOW

Quant Type: ISTD

Sample Type: AIR

Operator: JAM

Method File: \\192.168.10.12\chem\10air0.i\030914.b\T015 065-14.m Misc Info: 19607

Test Mode:

Use Initial Calibration Level 5.

		AREA	LIMIT	1	
COMPOUND	STANDARD	LOWER	UPPER	SAMPLE	%DIFF
	=======	=======	========	========	======
43 1,4-Difluorobenze	1108389	665033	1551745	914897	-17.46
61 Chlorobenzene - d	739791	443875	1035707	575378	-22.22

		RT I	· —- ,		
COMPOUND	STANDARD	LOWER	UPPER	SAMPLE	%DIFF
=======================================	========	========	========	========	======
43 1,4-Difluorobenze	6.12	5.79	6.45	6.10	-0.20
61 Chlorobenzene - d	9.20	8.87	9.53	9.19	-0.07

AREA UPPER LIMIT = + 40% of internal standard area. AREA LOWER LIMIT = - 40% of internal standard area.

RT UPPER LIMIT = + 0.33 minutes of internal standard RT. RT LOWER LIMIT = - 0.33 minutes of internal standard RT.

Data File: \\192.168.10.12\chem\10air0.i\030714.b\06610.D

Report Date: 09-Mar-2014 14:31

Pace Analytical Services, Inc.

INTERNAL STANDARD COMPOUNDS AREA AND RT SUMMARY

Calibration Date: 07-MAR-2014

Calibration Time: 10:54

Level: LOW

Sample Type: AIR

Instrument ID: 10air0.i Lab File ID: 06610.D

Lab Smp Id: 10258805040 Analysis Type: VOA

Quant Type: ISTD

Operator: AH2
Method File: \\192.168.10.12\chem\10air0.i\030714.b\T015_065-14.m Misc Info: 19607

Test Mode:

Use Initial Calibration Level 5.

COMPOUND	STANDARD	AREA LOWER	LIMIT UPPER	SAMPLE	%DIFF
43 1,4-Difluorobenze 61 Chlorobenzene - d		665033 443875	1551745 1035707	864915 633450	

		RT I	LIMIT	· · · · · · · · · · · · · · · · · · ·	
COMPOUND	STANDARD	LOWER	UPPER	SAMPLE	%DIFF
=======================================	========	=======	========	========	======
43 1,4-Difluorobenze	6.12	5.79	6.45	6.10	l -0.30
61 Chlorobenzene - d	9.20	8.87	9.53	9.19	-0.07

AREA UPPER LIMIT = + 40% of internal standard area.

AREA LOWER LIMIT = - 40% of internal standard area.

RT UPPER LIMIT = + 0.33 minutes of internal standard RT. RT LOWER LIMIT = - 0.33 minutes of internal standard RT.

Data File: \\192.168.10.12\chem\10air0.i\030614.b\06536.D

Report Date: 07-Mar-2014 15:29

Pace Analytical Services, Inc.

INTERNAL STANDARD COMPOUNDS AREA AND RT SUMMARY

Instrument ID: 10air0.i Lab File ID: 06536.D

Lab Smp Id: 10258805041

Analysis Type: VOA Quant Type: ISTD Operator: JAM

Calibration Date: 06-MAR-2014 Calibration Time: 13:59

Level: LOW Sample Type: AIR

Method File: \\192.168.10.12\chem\10air0.i\030614.b\T015 065-14.m

Misc Info: 19598

Test Mode:

Use Initial Calibration Level 5.

		AREA	LIMIT		
COMPOUND	STANDARD	LOWER	UPPER	SAMPLE	%DIFF
	========	========	========	========	======
43 1,4-Difluorobenze	1108389	665033	1551745	1176860	6.18
61 Chlorobenzene - d	739791	443875	1035707	795297	7.50

		RT I	TIMIÇ		
COMPOUND	STANDARD	LOWER	UPPER	SAMPLE	%DIFF
=======================================	========	=======	=========	========	======
43 1,4-Difluorobenze		5.79	6.45	6.11	-0.10
61 Chlorobenzene - d	9.20	8.87	9.53	9.19	-0.07

AREA UPPER LIMIT = + 40% of internal standard area. AREA LOWER LIMIT = - 40% of internal standard area.

RT UPPER LIMIT = + 0.33 minutes of internal standard RT. RT LOWER LIMIT = - 0.33 minutes of internal standard RT.

10258805 Page 1837 of 1988 Data File: \\192.168.10.12\chem\10airD.i\030714.b\06726.d

Report Date: 08-Mar-2014 11:50

Pace Analytical Services, Inc.

INTERNAL STANDARD COMPOUNDS AREA AND RT SUMMARY

Instrument ID: 10airD.i Lab File ID: 06726.d

Calibration Date: 07-MAR-2014 Calibration Time: 13:41

Lab Smp Id: 10258805042

Level: LOW

Analysis Type: VOA Quant Type: ISTD

Sample Type: AIR

Operator: AH2

Method File: \\192.168.10.12\chem\10airD.i\030714.b\T015 067-14.m

Misc Info: 19608

Test Mode:

Use Initial Calibration Level 4. If Continuing Cal. use Initial Cal. Level 4

		AREA	LIMIT		
COMPOUND	STANDARD	LOWER	UPPER	SAMPLE	%DIFF
======================================	========	========	========	========	======
43 1,4-Difluorobenze	463391	278035	648747	429282	-7.36
61 Chlorobenzene - d	276321	165793	386849	251309	-9.05

		RT LIMIT			
COMPOUND	STANDARD	LOWER	UPPER	SAMPLE	%DIFF
=======================================	=======	========	========	========	======
43 1,4-Difluorobenze	6.41	6.08	6.74	6.41	-0.00
61 Chlorobenzene - d	10.08	9.75	10.41	10.08	-0.03

AREA UPPER LIMIT = + 40% of internal standard area. AREA LOWER LIMIT = - 40% of internal standard area.

RT UPPER LIMIT = + 0.33 minutes of internal standard RT. RT LOWER LIMIT = - 0.33 minutes of internal standard RT.

10258805 Page 1851 of 1988 Data File: \\192.168.10.12\chem\10air0.i\030614.b\06529.D

Report Date: 07-Mar-2014 14:55

Pace Analytical Services, Inc.

INTERNAL STANDARD COMPOUNDS AREA AND RT SUMMARY

Instrument ID: 10air0.i
Lab File ID: 06529.D Lab Smp Id: 10258805043

Calibration Date: 06-MAR-2014 Calibration Time: 13:59 Level: LOW

Analysis Type: VOA Quant Type: ISTD Operator: JAM

Sample Type: AIR

Method File: \\192.168.10.12\chem\10air0.i\030614.b\T015 065-14.m

Misc Info: 19598

Test Mode:

Use Initial Calibration Level 5.

		AREA	LIMIT		
COMPOUND	STANDARD	LOWER	UPPER	SAMPLE	%DIFF
=======================================	========	=======	=======	========	======
43 1,4-Difluorobenze	1108389	665033	1551745	1319580	19.05
61 Chlorobenzene - d	739791	443875	1035707	852185	15.19

	7.1.1.11	RT 1			
COMPOUND	STANDARD	LOWER	UPPER	SAMPLE	%DIFF
=======================================	========	========	========	========	======
43 1,4-Difluorobenze	6.12	5.79	6.45	6.12	0.00
61 Chlorobenzene - d	9.20	8.87	9.53	9.20	l o.ool

AREA UPPER LIMIT = + 40% of internal standard area. AREA LOWER LIMIT = - 40% of internal standard area.

RT UPPER LIMIT = + 0.33 minutes of internal standard RT. RT LOWER LIMIT = - 0.33 minutes of internal standard RT.

10258805 Page 1869 of 1988 Data File: \\192.168.10.12\chem\10air0.i\030714.b\06628.D

Report Date: 09-Mar-2014 14:08

Pace Analytical Services, Inc.

INTERNAL STANDARD COMPOUNDS AREA AND RT SUMMARY

Instrument ID: 10air0.i

Calibration Date: 07-MAR-2014 Calibration Time: 10:54

Lab File ID: 06628.D Lab Smp Id: 10258805044

Level: LOW

Analysis Type: VOA Quant Type: ISTD

Sample Type: AIR

Operator: AH2

Method File: \\192.168.10.12\chem\10air0.i\030714.b\T015 065-14.m

Misc Info: 19607

Test Mode:

Use Initial Calibration Level 5.

	••	AREA	LIMIT		
COMPOUND	STANDARD	LOWER	UPPER	SAMPLE	%DIFF
=======================================	========	========	========	========	==== =
43 1,4-Difluorobenze	1108389	665033	1551745	1190701	7.43
61 Chlorobenzene - d	739791	443875	1035707	786257	6.28

		RT I			
COMPOUND	STANDARD	LOWER	UPPER	SAMPLE	%DIFF
=======================================	========		=======		======
43 1,4-Difluorobenze	6.12	5.79	6.45	6.12	0.00
61 Chlorobenzene - d	9.20	8.87	9.53	9.20	0.07

AREA UPPER LIMIT = + 40% of internal standard area. AREA LOWER LIMIT = - 40% of internal standard area.

RT UPPER LIMIT = + 0.33 minutes of internal standard RT. RT LOWER LIMIT = - 0.33 minutes of internal standard RT.

10258805 Page 1882 of 1988 Data File: \\192.168.10.12\chem\10air0.i\030914.b\06815.D

Report Date: 10-Mar-2014 08:43

Pace Analytical Services, Inc.

INTERNAL STANDARD COMPOUNDS AREA AND RT SUMMARY

Instrument ID: 10air0.i
Lab File ID: 06815.D Lab Smp Id: 10258805044

Calibration Date: 09-MAR-2014 Calibration Time: 10:55

Analysis Type: VOA Quant Type: ISTD Operator: JAM

Level: LOW Sample Type: AIR

Method File: \\192.168.10.12\chem\10air0.i\030914.b\T015 065-14.m

Misc Info: 19607

Test Mode:

Use Initial Calibration Level 5.

		AREA	LIMIT		
COMPOUND	STANDARD	LOWER	UPPER	SAMPLE	%DIFF
43 1,4-Difluorobenze 61 Chlorobenzene - d		665033 443875	1001,10	890349 560855	-19.67 -24.19

	"	RT I			
COMPOUND	STANDARD	LOWER	UPPER	SAMPLE	%DIFF
=======================================	========	========	========	========	======
43 1,4-Difluorobenze		5.79	6.45	6.10	-0.20
61 Chlorobenzene - d	9.20	8.87	9.53	9.19	-0.07
				a i	

AREA UPPER LIMIT = + 40% of internal standard area.

AREA LOWER LIMIT = - 40% of internal standard area.

RT UPPER LIMIT = + 0.33 minutes of internal standard RT. RT LOWER LIMIT = - 0.33 minutes of internal standard RT.

Data File: \\192.168.10.12\chem\10air0.i\030614.b\06528.D

Report Date: 07-Mar-2014 13:58

Pace Analytical Services, Inc.

INTERNAL STANDARD COMPOUNDS AREA AND RT SUMMARY

Instrument ID: 10air0.i Lab File ID: 06528.D

Calibration Date: 06-MAR-2014 Calibration Time: 13:59

Lab Smp Id: 10258805045

Level: LOW

Analysis Type: VOA Quant Type: ISTD

Sample Type: AIR

Operator: JAM Method File: \\192.168.10.12\chem\10air0.i\030614.b\T015 065-14.m

Misc Info: 19598

Test Mode:

Use Initial Calibration Level 5.

		AREA	LIMIT		
COMPOUND	STANDARD	LOWER	UPPER	SAMPLE	%DIFF
=======================================	========	========	========	========	======
43 1,4-Difluorobenze	1108389	665033	1551745	1332037	20.18
61 Chlorobenzene - d	739791	443875	1035707	908009	22.74
					!

		RT I	LIMIT		
COMPOUND	STANDARD	LOWER	UPPER	SAMPLE	%DIFF
=======================================	=======	========] =======	=======	======
43 1,4-Difluorobenze	6.12	5.79	6.45	6.11	-0.10
61 Chlorobenzene - d		8.87	9.53	9.20	0.00

AREA UPPER LIMIT = + 40% of internal standard area. AREA LOWER LIMIT = - 40% of internal standard area.

RT UPPER LIMIT = + 0.33 minutes of internal standard RT. RT LOWER LIMIT = - 0.33 minutes of internal standard RT.

10258805 Page 1911 of 1988 Data File: \\192.168.10.12\chem\10air0.i\030614.b\06526.D

Report Date: 07-Mar-2014 13:47

Pace Analytical Services, Inc.

INTERNAL STANDARD COMPOUNDS AREA AND RT SUMMARY

Calibration Date: 06-MAR-2014 Calibration Time: 13:59

Level: LOW

Sample Type: AIR

Instrument ID: 10air0.i
Lab File ID: 06526.D Lab Smp Id: 10258805046

Analysis Type: VOA

Quant Type: ISTD Operator: JAM

Method File: \\192.168.10.12\chem\10air0.i\030614.b\T015 065-14.m

Misc Info: 19598

Test Mode:

Use Initial Calibration Level 5.

COMPOUND	STANDARD	AREA LOWER	LIMIT UPPER	SAMPLE	%DIFF
43 1,4-Difluorobenze	1108389	665033		1265127	14.14
61 Chlorobenzene - d	739791	443875		844865	14.20

		RT I	LIMIT		<u></u>
COMPOUND	STANDARD	LOWER	UPPER	SAMPLE	%DIFF
=======================================	========	========	========	========	======
43 1,4-Difluorobenze	6.12	5.79	6.45	6.10	-0.20
61 Chlorobenzene - d		8.87	9.53	9.20	0.00

AREA UPPER LIMIT = + 40% of internal standard area. AREA LOWER LIMIT = - 40% of internal standard area.

RT UPPER LIMIT = + 0.33 minutes of internal standard RT. RT LOWER LIMIT = - 0.33 minutes of internal standard RT.

10258805 Page 1926 of 1988 Data File: \\192.168.10.12\chem\10air0.i\030614.b\06541.D

Report Date: 07-Mar-2014 15:41

Pace Analytical Services, Inc.

INTERNAL STANDARD COMPOUNDS AREA AND RT SUMMARY

Instrument ID: 10air0.i Lab File ID: 06541.D Lab Smp Id: 10258805047

Calibration Date: 06-MAR-2014 Calibration Time: 13:59

Analysis Type: VOA

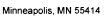
Level: LOW Sample Type: AIR

Quant Type: ISTD Operator: JAM

Method File: \\192.168.10.12\chem\10air0.i\030614.b\T015 065-14.m

Misc Info: 19598

Test Mode:


Use Initial Calibration Level 5.

COMPOUND	STANDARD	AREA LOWER	LIMIT UPPER	SAMPLE	%DIFF
43 1,4-Difluorobenze 61 Chlorobenzene - d		665033 443875		1147791 817194	3.55 10.46

		RT I	JIMIT		
COMPOUND	STANDARD	LOWER	UPPER	SAMPLE	%DIFF
=======================================	=======	========	========	========	======
43 1,4-Difluorobenze	6.12	5.79	6.45	6.10	-0.20
61 Chlorobenzene - d	9.20	8.87	9.53	9.20	0.07

AREA UPPER LIMIT = + 40% of internal standard area. AREA LOWER LIMIT = - 40% of internal standard area.

RT UPPER LIMIT = + 0.33 minutes of internal standard RT. RT LOWER LIMIT = - 0.33 minutes of internal standard RT.

(612)607-1700

ANALYTICAL RESULTS

Project:

1121C06221

Pace Project No.: 10258805

Sample: SV-126-C-16	Lab ID: 10258805017	Collected: 02/24/14 12	2:06 Received: 02/26/14 08:12	Matrix: Air
Parameters	Results Units	Report Limit DF	Prepared Analyzed	CAS No. Qua
TO15 MSV AIR	Analytical Method: TO-15			
Benzene	88.4 ug/m3	0.55 1.6	03/08/14 04:	49 71-43-2
Carbon tetrachloride	ND ug/m3	1.1 1.6	8 03/08/14 04:	49 56-23-5
Chlorodifluoromethane	ND ug/m3	0.34 1.6	8 03/08/14 04:	49 75-45-6
Chloroform	ND ug/m3	1.7 1.6	8 03/08/14 04:	49 67-66-3
Dichlorodifluoromethane	ND ug/m3	1.7 1.6	8 03/08/14 04:	49 75-71-8
1,1-Dichloroethane	ND ug/m3	1.4 1.6	8 03/08/14 04:	49 75-34-3
1,2-Dichloroethane	ND ug/m3	0.69 1.6	8 03/08/14 04:	49 107-06-2
1,1-Dichloroethene	199 ug/m3	1.4 1.6	8 03/08/14 04:	49 75-35-4
cis-1,2-Dichloroethene	205 ug/m3	1.4 1.6	8 03/08/14 04:	49 156-59-2
trans-1,2-Dichloroethene	ND ug/m3	1.4 1.6	8 03/08/14 04:	49 156-60-5
Ethylbenzene	3.0 ug/m3	1.5 1.6	8 03/08/14 04:	49 100-41-4
Methylene Chloride	9.2 ug/m3	5.9 1.6	8 03/08/14 04:	49 75-09-2
Methyl-tert-butyl ether	ND ug/m3	1.2 1.6	8 03/08/14 04:	49 1634-04-4
Naphthalene	70.6 ug/m3	4.5 1.6	8 03/08/14 04:	49 91-20-3
Tetrachloroethene	ND ug/m3	1.2 1.6	8 03/08/14 04:	49 127-18-4
Toluene	14.7 ug/m3	1.3 1.6	8 03/08/14 04:	49 108-88-3
1,2,4-Trichlorobenzene	ND ug/m3	6.3 1.6	8 03/08/14 04:	49 120-82-1
1,1,1-Trichloroethane	ND ug/m3	1.9 1.6	8 03/08/14 04:	49 71-55-6
1,1,2-Trichloroethane	ND ug/m3	0.92 1.6	8 03/08/14 04:	49 79-00-5
Trichloroethene	177 ug/m3	0.92 1.6	8 03/08/14 04:	49 79-01-6
1,2,3-Trimethylbenzene	1.4 ug/m3	0.34 1.6	8 03/08/14 04:	49 526-73-8
1,2,4-Trimethylbenzene	4.3 ug/m3	1.7 1.6	8 03/08/14 04:	49 95-63-6
1,3,5-Trimethylbenzene	ND_ug/m3	1.7 1.6	8 03/08/14 04:	49 108-67-8
Vinyl chloride	11900 ug/m3	140 537	03/09/14 19:	53 75-01-4 A3
m&p-Xylene	13.4 ug/m3	3.0 1.6	8 03/08/14 04:	49 179601-23-1
o-Xylene	5.7 ug/m3	1.5 1.6	8 03/08/14 04:	49 95-47-6

$$\frac{151082}{829497}$$
 * 537.6 × 10 ppbv * 4.66786 = 4570, 62 ppbv
 $\frac{4570}{24.45}$ | 62.50 glmole = 11683.6 uglm³

REPORT OF LABORATORY ANALYSIS

Data File: \\192.168.10.12\chem\10air0.i\030914.b\06820.D

Report Date: 10-Mar-2014 08:59

Sample Calculation

Pace Analytical Services, Inc.

Smp Info

Misc Info: 19607

Comment : Volatile Organic COMPOUNDS in Air

Method : \\192.168.10.12\chem\10air0.i\030914.b\T015 065-14.m

Meth Date: 09-Mar-2014 11:10 ahamilton Quant Type: ISTD Cal Date : 06-MAR-2014 15:00 Als bottle: 20 Cal File: 06511.D

Dil Factor: 537.60000 Integrator: HP RTE Target Version: 4.14

Compound Sublist: 10258805.sub

Concentration Formula: Amt * DF * Uf * CpndVariable

Name	Value	Description
DF Uf Cpnd Variable		Dilution Factor ng unit correction factor Local Compound Variable

			CONCENTRATIONS
		QUANT SIG	ON-COLUMN FINAL
C	ompounds	MASS	RT EXP RT REL RT RESPONSE (ppbv) (ppbv)
==		====	
	1 Chlorodiflucromethane	51	Compound Not Detected.
	3 Dichlorodifluoromethane	85	Compound Not Detected.
	6 Viryl chloride	62	3.690 3.696 (0.605) <u>151082</u> 8.50190 4570
	18 1,1-Dichlorcethene	61	4.366 4.378 (0.716) 6240 0.21323 115
	21 Methylene chloride	49	Compound Not Detected.
	24 trans-1,2-dichloroethene	96	Compound Not Detected.
	25 Methyl Tert Butyl Ether	73	Compound Not Detected.
	27 1,1-Dichlorcethane	63	Compound Not Detected.
\$	28 Hexane-dl4(S)	66	4.949 4.961 (0.812) 377909 9.66460 9.66
	33 cis-1,2-Dichloroethene	96	5.191 5.216 (0.851) 2738 0.16045 86.2(aç
	35 Chloroform	83	Compound Not Detected.
	37 1,1,1-Trichloroethane	97	Compound Not Detected.
	38 1,2-Dichloroethane	62	Compound Not Detected.
	39 Benzene	78	5.954 5.979 (0.977) 6181 0.11230 60.4(al-
	40 Carbon tetrachloride	117	Compound Not Detected.
*	43 1,4-Difluorobenzene	114	6.097 6.127 (1.000) 829497 10.0000
	47 Trichloroethene	130	Compound Not Detected.
Ş	54 Toluene-d8 (S)	98	7.592 7.616 (1.245) 803634 9.74530 9.74
	56 Toluene	91	Compound Not Detected.
	55 1,1,2-Trichloroethane	97	Compound Not Detected.
	60 Tetrachloroethene	166	Compound Not Detected.
*	61 Chlorobenzene - d5	117	9.186 9.216 (1.000) 525596 10.0000
	63 Ethyl Benzene	91	Compound Not Detected.
	64 m&p-Xylene	91	Compound Not Detected.

Report Date : 11-Mar-2014 16:22

Pace Analytical Services, Inc.

INITIAL CALIBRATION DATA

Start Cal Date : 06-MAR-2014 12:12
End Cal Date : 06-MAR-2014 15:00
Quant Method : ISTD
Target Version : 4.14
Integrator : HP RTE
Method file : \\192.168.10.12\chem\10air0.i\030614.b\T015_065-14.m

Last Edit : 07-Mar-2014 10:13 10air0.i
--

	0.1600000	0.2000000	0.5000000	1.0000	15.0000	20.0000	I		Coefficients		%RSD
Compound	Level 1	Level 2		Level 4	Level 5	Level 6	Curve	b	m?	m2	or R^2
	30.0000 Level 7		 	İ	 		 				
5 Chioromethane	; 3.50245 ; 5.34801	4.12677	4.36948	4.51623	4.65970	5.01769			; 4.50576		i 13.3289
6 Vinyl chloride	4.14126 4.61739	4.60201	4.83093	5.06430	4.72505		AVRG	(4.667861	$\overline{)}$	6.0080
7 1,3-Butadiene	6.58073; 6.90756;	7.34353	7.65434	7.06121	6.98929		AVRG		; 7.07014		4.8379
8 Bromomethane	3.90165 4.57447	4.32151	İ		4.65741	4.39706	 AVRG		4.52911		7.2256
9 Chloroethane	8.51242 10.11957	10.22763	10.32200	10.64026	'	10.19563	 AVRG		1 10.04013		 6.9113
10 Ethanol	; 1022 ; 243387;	1591	3275	7481	76561 	150543	 LINK	0.01071	 		 0.9986
11 Vinyl Bromide	i 3.74626; 4.76964;		4.83656	4.92854	1	4.66924	I I AVRG		 4.59506		 8.5733
		, ·					{ I				

10258805

Page 89 of 1988

Sample Calculation

Tetra Tech

INTERNAL CORRESPONDENCE

TO:

M. MARTIN

DATE:

APRIL 24, 2014

FROM:

EDWARD SEDLMYER

COPIES:

DV FILE

SUBJECT:

ORGANIC DATA VALIDATION - VOC

MIDDLE RIVER CENTER

SDG 10259328

SAMPLES:

10/Air/VOC

IA-001-ER-1

IA-001-PB-1

IA-002-ER-1

IA-002-PB-1

IA-003-ER-1

IA-093X-A-16

IA-117X-A-16

IA-140-B-16

IA-DUP1-ER-1

IA-DUP1-PB-1

<u>Overview</u>

The sample set for Middle River Center (MRC), SDG 10259328 consists of ten (10) indoor air environmental samples. There are two field duplicate pairs contained within this SDG: IA-003-ER-1 / IA-DUP1-ER-1 and IA-001-PB-1 / IA-DUP1-PB-1. Samples were analyzed for volatile organic compounds (VOC).

The samples were collected by Tetra Tech on February 26, 2014 and analyzed by Pace Analytical. All analyses were conducted in accordance with EPA Method TO-15 analytical and reporting protocols.

The data contained in this SDG were validated with regard to the following parameters: data completeness, holding times, GC/MS tuning, initial/continuing calibrations, laboratory method blank results, surrogate spike recoveries, blank spike/blank spike duplicate results, internal standard recoveries, field duplicate results, chromatographic resolution, compound identification, compound quantitation, and detection limits. Areas of concern are listed below.

Major

None.

Minor

- The VOC continuing calibration percent differences (%Ds) were greater than the quality control limit of 30% for 1,2,4-trichlorobenzene and naphthalene for instrument 10AIR0 on 03/12/14 @ 12:31. The detected and nondetected results for 1,2,4-trichlorobenzene and naphthalene in the affected samples IA-140-B-16, IA-DUP1-ER-1, IA-001-ER-1, and IA-002-ER-1 were qualified as estimated (J) and (UJ), respectively.
- The compound methylene chloride exceeded the linear calibration range of the instrument in sample IA-003-ER-1. The detected methylene chloride result in sample IA-003-ER-1 has been qualified as estimated (J).
- The field duplicate precision exceeded the 50% relative percent difference (RPD) quality control limit for chlorodifluoromethane, ethylbenzene, m&p xylenes, methylene chloride, o-xylene, toluene, and trans-1,2-dichloroethene in the field duplicate pair IA-003-ER-1 / IA-DUP1-ER-1. Detected results for the aforementioned compounds in the duplicate samples IA-003-ER-1 / IA-DUP1-ER-1 were qualified as estimated (J).

 Positive results reported below the reporting limit but above the method detection limit were qualified as estimated, (J).

Notes

Positive results were not reported between the reporting limit and the method detection limit. The laboratory was required to re-submit and revise all sample results.

The following contaminant was detected in the laboratory method blank associated with batch AIR/19647 at the following maximum concentration:

	<u>Maximum</u>	<u>Action</u>
<u>Analyte</u>	Concentration	Level
Methylene chloride	0.43 ug/m ³	4.3 ug/m ³

An action level of 10X for methylene chloride maximum contaminant level has been used to evaluate sample data for blank contamination. Sample aliquot and dilution factors, if applicable, were taken into consideration when evaluating for blank contamination. No action was taken on this basis because all methylene chloride results were greater than the action level.

The laboratory control sample (LCS) analyzed on 3/12/14 and associated with batch 19645 had a percent recovery greater than the laboratory control limit for 1,2,4-trichlorobenzene. No action was taken on this basis because 1,2,4-trichlorobenzene was not detected in any of the associated samples.

The laboratory stated in the case narrative that all surrogate recoveries were acceptable. The surrogate recoveries were not presented in the SDG for verification. No action was taken on this basis.

The laboratory reported the nondetected results to the reporting limit.

All samples were analyzed at dilutions ranging from 1.68 to 2.29. This accounts for the elevated detection limits for the nondetected compounds.

Executive Summary

Laboratory Performance: Continuing calibration %D noncompliance resulted in the qualification of data. One methylene chloride result was qualified due to an exceedance of the linear calibration range of the instrument.

Other Factors Affecting Data Quality: Positive results reported below the reporting limit but above the method detection limit were qualified as estimated. Field duplicate precision noncompliance resulted in the qualification of data.

The data for these analyses were reviewed with reference to EPA Compendium Method TO-15 (Jan. 1999) and USEPA National Functional Guidelines for Organic Data Validation (June 2008). The text of this report has been formulated to address only those problem areas affecting data quality.

Tetra Tech

Edward SedImyer

Chemist/Data Validator

Tetra Tech

Soseph A. Samchuck Data Validation Manager

Attachments:

Appendix A – Qualified Analytical Results Appendix B – Results as Reported by the Laboratory

Appendix C – Support Documentation

Appendix A

Qualified Analytical Results

Qualifier Codes:

A = Lab Blank Contamination

B = Field Blank Contamination

C = Calibration Noncompliance (i.e., % RSDs, %Ds, ICVs, CCVs, RRFs, etc.)

C01 = GC/MS Tuning Noncompliance

D = MS/MSD Recovery Noncompliance

E = LCS/LCSD Recovery Noncompliance

F = Lab Duplicate Imprecision

G = Field Duplicate Imprecision

H = Holding Time Exceedance

I = ICP Serial Dilution Noncompliance

J = ICP PDS Recovery Noncompliance; MSA's r < 0.995

K = ICP Interference - includes ICS % R Noncompliance

L = Instrument Calibration Range Exceedance

M = Sample Preservation Noncompliance

N = Internal Standard Noncompliance

N01 = Internal Standard Recovery Noncompliance Dioxins

N02 = Recovery Standard Noncompliance Dioxins

N03 = Clean-up Standard Noncompliance Dioxins

O = Poor Instrument Performance (i.e., base-time drifting)

P = Uncertainty near detection limit (< 2 x IDL for inorganics and <CRQL for organics)

Q = Other problems (can encompass a number of issues; i.e.chromatography,interferences, etc.)

R = Surrogates Recovery Noncompliance

S = Pesticide/PCB Resolution

T = % Breakdown Noncompliance for DDT and Endrin

U = RPD between columns/detectors >40% for positive results determined via GC/HPLC

V = Non-linear calibrations; correlation coefficient r < 0.995

W = EMPC result

X = Signal to noise response drop

Y = Percent solids <30%

Z = Uncertainty at 2 standard deviations is greater than sample activity

Z1 = Tentatively Identified Compound considered presumptively present

Z2 = Tentatively Identified Compound column bleed

Z3 = Tentatively Identified Compound aldol condensate

SN CA740 ON LOGG	NSAMPI E	IA-001-FR-1			IA-001-PB-1			IA-002-ER-1	i		IA-002-PB-1		* Marion
	LAB ID	10259328003			10259328001			10259328004			10259328002		
	SAMP_DATE	2/26/2014			2/26/2014			2/26/2014			2/26/2014		
	QC_TYPE	ΣZ			NZ NZ			ΝN			ΣN		
,	UNITS	UG/M3			UG/M3			UG/M3		;	UG/M3		
PC	PCT_SOLIDS												
סר	DUP_OF											9	0
PARAMETER		RESULT	VOL	QLCD .	RESULT	Ζď	arcp	RESULT	7	alcb	RESULI	VQL.	OLCD OLCD
1,1,1-TRICHLOROETHANE		2.:	2.5 U		1.9	n e			2 U			2 U	
1,1,2-TRICHLOROETHANE			1.3 U		76.0	0.92 U		U 66.0	<u> </u>	ļ	0.99	n e	ı
1,1-DICHLOROETHANE		-	O 6:		1.	1.4 U		1.5	1.5 U		1.5	1.5 U	
1,1-DICHLOROETHENE		+	1.9 U		1.4	4 U		1,1	1.5 U		1.5	1.5 U	
1,2,3-TRIMETHYLBENZENE		2.3	3 0		26.0			1.8			0.94		
1,2,4-TRICHLOROBENZENE		Ė	3.5 UJ	O	2.5	5 U		2.7	C C		2.7	D /	
1,2,4-TRIMETHYLBENZENE		2.	2.3 U		1.7			1.8	3 D		4.1		<u>م</u>
1,2-DICHLOROETHANE		0.9	0.94 U		0.6	0.69 U		0.74 U	<u> </u>		0.74	D 4	
1,3,5-TRIMETHYLBENZENE		2.3	3 0		1.5	5 J	۵	1.6	1.8 U		1.8	2	
BENZENE		0.83	က		0.86	9		1.1			0.65	2	
CARBON TETRACHLORIDE	,	-	1.5 U		1.1	1 U			1.2 U	į	17	1.2 U	
CHLORODIFLUOROMETHANE	ш	4.8	8		2.8	8		4.3			11.5		
CHLOROFORM		2	2.3 U		1.	1.7 U		1.8	3 0		1.8		
CIS-1,2-DICHLOROETHENE		-	1.9 U		1.	1.4 U		7.	1.5 U		1.5	2 0	
DICHLORODIFLUOROMETHANE	NE	2.5	5		2.2	2		2.5	2				
ETHYLBENZENE			2 0		1.6	9	-	5.2	2		1.2	2 3	۵
M+P-XYLENES			4 U		2.9	ر 6	Ь	25.7			1.5	2 7	Д
METHYL TERT-BUTYL ETHER	~	1.	1.7 U		-	1.2 U		1.3	<u>ر</u>		-	.3 U	
METHYLENE CHLORIDE		20.8	8		9.6	9		14.4	4		11.3	m	
NAPHTHALENE		2	2.5 UJ	ပ	1.	1.2 J	۵	1	1.9 UJ C		÷		۵.
O-XYLENE			2 0		6.0	0.95 J	۵	8.9	6		1.6	n 9	
TETRACHLOROETHENE		4	1.6 U		-	1.2 U		-	1.2 U		1.2	2 O	
TOLUENE		2.7	7		1.4	4		14.8	8		3.9	6	
TRANS-1,2-DICHLOROETHENE	 	-	1.9 U		1.	1.4 U		19.9	6		1.5	5 U	
TRICHLOROETHENE		<u>-</u>	1.3 U		0.92	2 U		0.99	0 6		0.9	0.99 U	
VINYL CHLORIDE		Ö	0.6 U		0.4	0.44 U		0.4	0.47 U		0.47	7 U	

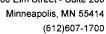
00270	NCAMDI E	1A 003 EP 1		1A-093X-A-16			IA-117X-A-16			IA-140-B-16		İ
PROJ_NO: 04/92	I AB ID	10259328005		10259328008			10259328009			10259328010		
FRACTION: OV	SAMP DATE	2/26/2014		2/26/2014			2/26/2014			2/26/2014		
MEDIA: AIR	QC_TYPE	NM		ΣN			NN			Z		
	UNITS	UG/M3		UG/M3			UG/M3			UG/M3		
	PCT_SOLIDS											
	DUP_OF											
PARAMETER		RESULT VQL	מרכם	RESULT	VQL	QLCD	RESULT	ΛαΓ	alcd	RESULT	ZQL	arco
1,1,1-TRICHLOROETHANE		U 6.1		0.87	ſ	Ь	2	_		2	2 U	
1,1,2-TRICHLOROETHANE		0.92 U		96.0	n		0.99	D		U 66.0	<u> </u>	
1,1-DICHLOROETHANE		1.4		1.4 U	n		1.5	ב		1.5	1.5 U	
1,1-DICHLOROETHENE		1.4 U		0.75 J	7	Ь	1.5 U	o l		1.5	1.5 U	
1,2,3-TRIMETHYLBENZENE	Ш	0.88		0.35 U	n		0.36 U	D		1.8	1.8 U	
1,2,4-TRICHLOROBENZENE	Ш	2.5 U		2.6 U	n		2.7 U	n		2.7	2.7 UJ	O
1,2,4-TRIMETHYLBENZENE	Ш	1.3 J	a	1.3	J	Ь	1.2 J	7	<u>.</u>	1.8	1.8 U	
1,2-DICHLOROETHANE		U 69.0		0.71	U		0.74 U	D		0.74 U	n D	
1,3,5-TRIMETHYLBENZENE	 	1.4 J	Ь	1.7	n		1.8	D		1.8		
BENZENE		0.89		0.58			0.44	7	Д.	0.58		
CARBON TETRACHLORIDE	ш	1.1 U		1.1 U	U		1.2	5		1.2	D	
CHLORODIFLUOROMETHANE	ANE	4.5 J	9	1.4			1.5			13.6		
CHLOROFORM		1.7 U		1.7 U	n		1.8 U)		1.8	<u></u>	
CIS-1,2-DICHLOROETHENE	ш	1.4 U		0.91	ſ	_	1.5 U)		1.5	1.5 U	
DICHLORODIFLUOROMETHANE	HANE	2		1.9			1.4 J	<u>-</u>	Д	2.4	-	
ETHYLBENZENE		5 J	В	1.1	_	Ь	1.3	_	۵	2.1		
M+P-XYLENES		21.5 J	g	1.4	_	Ь	1.9	7	Ъ	8.1	-+	
METHYL TERT-BUTYL ETHER	ÆR	1.2 U		1.3	ם		1.3 U	Ы		1.3	n Q	
METHYLENE CHLORIDE		605	GL	9.9			89.7			18.3	<u></u>	
NAPHTHALENE		1.1	Ь	1.7	-	Ь	1.3	7	۵	6.5	7	O
O-XYLENE		J 8.7	9	1.5 U	U		0.74 J	7	۵	2.6	"	
TETRACHLOROETHENE		1.2 U		1.2	D		1.2 U	<u> </u>		1.2	1.2 U	
TOLUENE		14.6 J	9	1.2	_	Ь	15.7			84		
TRANS-1,2-DICHLOROETHENE	ENE	17.4 J	Э	1.4 U	D		1.5	⊃		1.5		
TRICHLOROETHENE		0.92 U		8.4			0.99	ב		0.99	n e	
VINYL CHLORIDE		0.44 U		0.45 U	_		0.47	D		0.47 U	0 /	

PROJ_NO: 04792	NSAMPLE	IA-DUP1-ER-1		IA-DUP1-PB-1	
SDG: 10259328	LAB_ID	10259328007		10259328006	
FRACTION: OV	SAMP_DATE	2/26/2014		2/26/2014	
MEDIA: AIR	QC_TYPE	MN		N	
	UNITS	UG/M3		UG/M3	
	PCT_SOLIDS				
	DUP_OF	IA-003-ER-1		IA-001-PB-1	
PARAMETER		RESULT VQL	QLCD	RESULT VQL	arcd
1,1,1-TRICHLOROETHANE	111	1.9 U		1.9 U	
1,1,2-TRICHLOROETHANE	11.1	0.92 U		0.92 U	
1,1-DICHLOROETHANE		1.4 U		1.4 U	
1,1-DICHLOROETHENE		U 4.1		1.4 U	
1,2,3-TRIMETHYLBENZENE	¥	U 7.1		0.34 U	
1,2,4-TRICHLOROBENZENE	븻	2.5 UJ	ပ	2.5 U	
1,2,4-TRIMETHYLBENZENE	Щ	3		1.7 U	
1,2-DICHLOROETHANE		N 69.0		0.69 U	
1,3,5-TRIMETHYLBENZENE	Ā	1.7 U		1.7 U	_
BENZENE		1.3		0.8	
CARBON TETRACHLORIDE)E	1.1 U		1.1 U	
CHLORODIFLUOROMETHANE	IANE	12.9 J	В	2.6	
CHLOROFORM		1.7 U		1.7 U	
CIS-1,2-DICHLOROETHENE	¥	1.4 U		1.4 U	
DICHLORODIFLUOROMETHANE	THANE	2.9		2.2	
ETHYLBENZENE	:	17.1	9	1.5 U	
M+P-XYLENES		81.5 J	9	1.5 J	Ъ
METHYL TERT-BUTYL ETHER	HER	1.2 U		1.2 U	
METHYLENE CHLORIDE		22.2 J	9	6.5	
NAPHTHALENE		1.8 UJ	C	1.8 U	
O-XYLENE		29.5 J	9	1.5 U	
TETRACHLOROETHENE		1.2 U		1.2 U	
TOLUENE		44.7 J	Э	1.4	
TRANS-1,2-DICHLOROETHENE	HENE	70.1 J	В	1.4 U	
TRICHLOROETHENE		0.92 U		0.92 U	
VINYL CHLORIDE		0.44 U		0.44 U	

Appendix B

Results as Reported by the Laboratory

Project:


MRC SV/IAQ Study Feb 2014 REV

Pace Project No.:

Date: 04/17/2014 12:21 PM

10259328

Sample: IA-001-ER-1	Lab ID: 10259328003	Collected: 02/26/1	4 17:53	Received: 03/04/14 10:00	Matrix: Air	
Parameters	Results Units	Report Limit	DF	Prepared Analyzed	CAS No.	Qua
TO15 MSV AIR	Analytical Method: TO-15					
Benzene	0.83 ug/m3	0.74	2.29	03/13/14 00:00	71-43-2	
Carbon tetrachloride	ND ug/m3	1.5	2.29	03/13/14 00:00	56-23-5	
Chlorodifluoromethane	4.8 ug/m3	1.6	2.29	03/13/14 00:00	75-45-6	
Chloroform	ND ug/m3	2.3	2.29	03/13/14 00:00	67-66-3	
Dichlorodifluoromethane	2.5 ug/m3	2.3	2.29	03/13/14 00:00	75-71-8	
1,1-Dichloroethane	ND ug/m3	1.9	2.29	03/13/14 00:00	75-34-3	
1,2-Dichloroethane	ND ug/m3	0.94	2.29	03/13/14 00:00	107-06-2	
1,1-Dichloroethene	ND ug/m3	1.9	2.29	03/13/14 00:00	75-35-4	
cis-1,2-Dichloroethene	ND ug/m3	1.9	2.29	03/13/14 00:00) 156-59-2	
trans-1,2-Dichloroethene	ND ug/m3	1.9	2.29	03/13/14 00:00	156-60-5	
Ethylbenzene	ND ug/m3	2.0	2.29	03/13/14 00:00	100-41-4	
Methylene Chloride	20.8 ug/m3	1.6	2.29	03/13/14 00:00	75-09-2	
Methyl-tert-butyl ether	ND ug/m3	1.7	2.29	03/13/14 00:00	1634-04-4	
Naphthalene	ND ug/m3	2.5	2.29	03/13/14 00:00	91-20-3	
Tetrachloroethene	ND ug/m3	1.6	2.29	03/13/14 00:00	127-18-4	
Toluene	2.7 ug/m3	1.8	2.29	03/13/14 00:00	108-88-3	
1,2,4-Trichlorobenzene	ND ug/m3	3.5	2.29	03/13/14 00:00	120-82-1	
1,1,1-Trichloroethane	ND ug/m3	2.5	2.29	03/13/14 00:00	71-55-6	
1,1,2-Trichloroethane	ND ug/m3	1.3	2.29	03/13/14 00:00	79-00-5	
Trichloroethene	ND ug/m3	1.3	2.29	03/13/14 00:00	79-01-6	
1,2,3-Trimethylbenzene	ND ug/m3	2.3	2.29	03/13/14 00:00	526-73-8	
1,2,4-Trimethylbenzene	ND ug/m3	2.3	2.29	03/13/14 00:00	95-63-6	
1,3,5-Trimethylbenzene	ND ug/m3	2.3	2.29	03/13/14 00:00	108-67-8	
Vinyl chloride	ND ug/m3	0.60	2.29	03/13/14 00:00	75-01-4	
m&p-Xylene	ND ug/m3	4.0	2.29	03/13/14 00:00	179601-23-1	
o-Xylene	ND ug/m3	2.0	2.29	03/13/14 00:00	95-47-6	

Project:

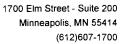
MRC SV/IAQ Study Feb 2014 REV

Pace Project No.:

Date: 04/17/2014 12:21 PM

10259328

Sample: IA-001-PB-1	Lab ID: 10259328001	Collected: 02/26/1	4 18:04	Received: 03/04/14 10:00	Matrix: Air	
Parameters	Results Units	Report Limit	DF	Prepared Analyzed	CAS No.	Qua
TO15 MSV AIR	Analytical Method: TO-15					
Benzene	0.86 ug/m3	0.55	1.68	03/13/14 00:54	71-43-2	
Carbon tetrachloride	ND ug/m3	1.1	1.68	03/13/14 00:54	56-23-5	
Chlorodifluoromethane	2.8 ug/m3	0.34	1.68	03/13/14 00:54	75-45-6	
Chloroform	ND ug/m3	1.7	1.68	03/13/14 00:54	67-66-3	
Dichlorodifluoromethane	2.2 ug/m3	1.7	1.68	03/13/14 00:54	75-71-8	
1,1-Dichloroethane	ND ug/m3	1.4	1.68	03/13/14 00:54	75-34-3	
1,2-Dichloroethane	ND ug/m3	0.69	1.68	03/13/14 00:54	107-06-2	
1,1-Dichloroethene	ND ug/m3	1.4	1.68	03/13/14 00:54	75-35-4	
cis-1,2-Dichloroethene	ND ug/m3	1.4	1.68	03/13/14 00:54	156-59-2	
rans-1,2-Dichloroethene	ND ug/m3	1.4	1.68	03/13/14 00:54	156-60-5	
Ethylbenzene	1.6 ug/m3	1.5	1.68	03/13/14 00:54	100-41-4	
Methylene Chloride	9.6 ug/m3	1.2	1.68	03/13/14 00:54	75-09-2	
Methyl-tert-butyl ether	ND ug/m3	1.2	1.68	03/13/14 00:54	1634-04-4	
Naphthalene	1.2J ug/m3	1.8	1.68	03/13/14 00:54	91-20-3	
Tetrachloroethene	ND ug/m3	1.2	1.68	03/13/14 00:54	127-18-4	
Toluene	1.4 ug/m3	1.3	1.68	03/13/14 00:54	108-88-3	
1,2,4-Trichlorobenzene	ND ug/m3	2.5	1.68	03/13/14 00:54	120-82-1	
1,1,1-Trichloroethane	ND ug/m3	1.9	1.68	03/13/14 00:54	71-55-6	
1,1,2-Trichloroethane	ND ug/m3	0.92	1.68	03/13/14 00:54	79-00-5	
Trichloroethene	ND ug/m3	0.92	1.68	03/13/14 00:54	79-01-6	
1,2,3-Trimethylbenzene	0.97 ug/m3	0.34	1.68	03/13/14 00:54	526-73-8	
1,2,4-Trimethylbenzene	1.7 ug/m3	1.7	1.68	03/13/14 00:54	95-63-6	
1,3,5-Trimethylbenzene	1.5J ug/m3	1.7	1.68	03/13/14 00:54	108-67-8	
Vinyl chloride	ND ug/m3	0.44	1.68	03/13/14 00:54	75-01-4	
m&p-Xylene	2.9J ug/m3	3.0	1.68	03/13/14 00:54		
o-Xylene	0.95J ug/m3	1.5	1.68	03/13/14 00:54		


Project:

MRC SV/IAQ Study Feb 2014 REV

Pace Project No.: 10259328

Date: 04/17/2014 12:21 PM

Sample: IA-002-ER-1	Lab ID: 10259328004	Collected: 02/26/1	4 18:14	Received: 03	/04/14 10:00 N	fatrix: Air	
Parameters	Results Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
TO15 MSV AIR	Analytical Method: TO-1	5					
Benzene	1.1 ug/m3	0.58	1.8		03/12/14 23:31	71-43-2	
Carbon tetrachloride	ND ug/m3	1.2	1.8		03/12/14 23:31	56-23-5	
Chlorodifluoromethane	4.3 ug/m3	1.3	1.8		03/12/14 23:31	75-45-6	
Chloroform	ND ug/m3	1.8	1.8		03/12/14 23:31	67-66-3	
Dichlorodifluoromethane	2.5 ug/m3	1.8	1.8		03/12/14 23:31	75-71-8	
1,1-Dichloroethane	ND ug/m3	1.5	1.8		03/12/14 23:31	75-34-3	
1,2-Dichloroethane	ND ug/m3	0.74	1.8		03/12/14 23:31	107-06-2	
1,1-Dichloroethene	ND ug/m3	1.5	1.8		03/12/14 23:31	75-35-4	
cis-1,2-Dichloroethene	ND ug/m3	1.5	1.8		03/12/14 23:31	156-59-2	
trans-1,2-Dichloroethene	19.9 ug/m3	1.5	1.8		03/12/14 23:31	156-60-5	
Ethylbenzene	5.2 ug/m3	1.6	1.8		03/12/14 23:31	100-41-4	
Methylene Chloride	14.4 ug/m3	1.3	1.8		03/12/14 23:31	75-09-2	
Methyl-tert-butyl ether	ND ug/m3	1.3	1.8		03/12/14 23:31	1634-04-4	
Naphthalene	ND ug/m3	1.9	1.8		03/12/14 23:31	91-20-3	
Tetrachioroethene	ND ug/m3	1.2	1.8		03/12/14 23:31	127-18- 4	
Toluene	14.8 ug/m3	1.4	1.8		03/12/14 23:31	108-88-3	
1,2,4-Trichlorobenzene	ND ug/m3	2.7	1.8		03/12/14 23:31	120-82-1	
1,1,1-Trichloroethane	ND ug/m3	2.0	1.8		03/12/14 23:31	71-55-6	
1,1,2-Trichloroethane	ND ug/m3	0.99	1.8		03/12/14 23:31	79-00-5	
Trichloroethene	ND ug/m3	0.99	1.8		03/12/14 23:31	79-01-6	
1,2,3-Trimethylbenzene	ND ug/m3	1.8	1.8		03/12/14 23:31	526-73-8	
1,2,4-Trimethylbenzene	ND ug/m3	1.8	1.8		03/12/14 23:31	95-63-6	
1,3,5-Trimethylbenzene	ND ug/m3	1.8	1.8		03/12/14 23:31	108-67-8	
Vinyl chloride	ND ug/m3	0.47	1.8		03/12/14 23:31	75-01-4	
m&p-Xylene	25.7 ug/m3	3.2	1.8		03/12/14 23:31	179601-23-1	
o-Xylene	8.9 ug/m3	1.6	1.8		03/12/14 23:31	95-47-6	

Project:

MRC SV/IAQ Study Feb 2014 REV

Pace Project No.:

Date: 04/17/2014 12:21 PM

.: 10259328

Sample: IA-002-PB-1	Lab ID: 10259328002	Collected: 02/26/14	18:01	Received: 03	3/04/14 10:00	Matrix: Air	
Parameters	Results Units	Report Limit I	DF	Prepared	Analyzed	CAS No.	Qual
TO15 MSV AIR	Analytical Method: TO-15						
Benzene	0.65 ug/m3	0.58	1.8		03/12/14 20:38	71-43-2	
Carbon tetrachloride	ND ug/m3	1.2	1.8		03/12/14 20:38	56-23-5	
Chlorodifluoromethane	11.5 ug/m3	0.36	1.8		03/12/14 20:38	75-45-6	
Chloroform	ND ug/m3	1.8	1.8		03/12/14 20:38	8 67-66-3	
Dichlorodifluoromethane	2.0 ug/m3	1.8	1.8		03/12/14 20:38	3 75-71-8	
1,1-Dichloroethane	ND ug/m3	1.5	1.8		03/12/14 20:38	75-34-3	
1,2-Dichloroethane	ND ug/m3	0.74	1.8		03/12/14 20:38	107-06-2	
1,1-Dichloroethene	ND ug/m3	1.5	1.8		03/12/14 20:38	75-35-4	
cis-1,2-Dichloroethene	ND ug/m3	1.5	1.8		03/12/14 20:38	156-59-2	
rans-1,2-Dichloroethene	ND ug/m3	1.5	1.8		03/12/14 20:38	156-60-5	
Ethylbenzene	1.2J ug/m3	1.6	1.8		03/12/14 20:38	3 100-41-4	
Methylene Chloride	11.3 ug/m3	1.3	1.8		03/12/14 20:38	75-09-2	
Methyl-tert-butyl ether	ND ug/m3	1.3	1.8		03/12/14 20:38	1634-04-4	
Naphthalene	1.3J ug/m3	1.9	1.8		03/12/14 20:38	91-20-3	
Tetrachloroethene	ND ug/m3	1.2	1.8		03/12/14 20:38	3 127-18-4	
Toluene	3.9 ug/m3	1.4	1.8		03/12/14 20:38	108-88-3	
1,2,4-Trichlorobenzene	ND ug/m3	2.7	1.8		03/12/14 20:38	120-82-1	
1,1,1-Trichloroethane	ND ug/m3	2.0	1.8		03/12/14 20:38	71-55-6	
1,1,2-Trichloroethane	ND ug/m3	0.99	1.8		03/12/14 20:38	79-00-5	
Trichloroethene	ND ug/m3	0.99	1.8		03/12/14 20:38	79-01-6	
1,2,3-Trimethylbenzene	0.94 ug/m3	0.36	1.8		03/12/14 20:38	526-73-8	
1,2,4-Trimethylbenzene	1.4J ug/m3	1.8	1.8		03/12/14 20:38	95-63-6	
1,3,5-Trimethylbenzene	ND ug/m3	1.8	1.8		03/12/14 20:38	3 108-67-8	
√inyl chloride	ND ug/m3	0.47	1.8		03/12/14 20:38	75-01-4	
m&p-Xylene	1.5J ug/m3	3.2	1.8		03/12/14 20:38	179601-23-1	
o-Xylene	ND ug/m3	1.6	1.8		03/12/14 20:38	95-47-6	

Project:

MRC SV/IAQ Study Feb 2014 REV

Pace Project No.:

Date: 04/17/2014 12:21 PM

10259328

Sample: IA-003-ER-1	Lab ID: 10259328005	Collected: 02/26/1	4 18:10	Received:	03/04/14 10:00	Matrix: Air	
Parameters	Results Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
TO15 MSV AIR	Analytical Method: TO-15						
Benzene	0.89 ug/m3	0.55	1.68		03/12/14 23:3	1 71-43-2	
Carbon tetrachloride	ND ug/m3	1.1	1.68		03/12/14 23:3	1 56-23-5	
Chlorodifluoromethane	4.5 ug/m3	0.34	1.68		03/12/14 23:3	1 75-45-6	
Chloroform	ND ug/m3	1.7	1.68		03/12/14 23:3	1 67-66-3	
Dichlorodifluoromethane	2.0 ug/m3	1.7	1.68		03/12/14 23:3	1 75-71-8	
1,1-Dichloroethane	ND ug/m3	1.4	1.68		03/12/14 23:3	1 75-34-3	
1,2-Dichloroethane	ND ug/m3	0.69	1.68		03/12/14 23:3	1 107-06-2	
1,1-Dichloroethene	ND ug/m3	1.4	1.68		03/12/14 23:3	1 75-35-4	
cis-1,2-Dichloroethene	ND ug/m3	1.4	1.68		03/12/14 23:3	1 156-59-2	
trans-1,2-Dichloroethene	17.4 ug/m3	1.4	1.68		03/12/14 23:3	1 156-60-5	
Ethylbenzene	5.0 ug/m3	1.5	1.68		03/12/14 23:3	1 100-41-4	
Methylene Chloride	605 ug/m3	1.2	1.68		03/12/14 23:3	1 75-09-2	C0,E
Methyl-tert-butyl ether	ND ug/m3	1.2	1.68		03/12/14 23:3	1 1634-04-4	
Naphthalene	1.1J ug/m3	1.8	1.68		03/12/14 23:3	1 91-20-3	
Tetrachloroethene	ND ug/m3	1.2	1.68		03/12/14 23:3	1 127-18-4	
Toluene	14.6 ug/m3	1.3	1.68		03/12/14 23:3	1 108-88-3	
1,2,4-Trichlorobenzene	ND ug/m3	2.5	1.68		03/12/14 23:3	1 120-82-1	
1,1,1-Trichloroethane	ND ug/m3	1.9	1.68		03/12/14 23:3	1 71-55 - 6	
1,1,2-Trichloroethane	ND ug/m3	0.92	1.68		03/12/14 23:3	1 79-00-5	
Trichloroethene	ND ug/m3	0.92	1.68		03/12/14 23:3	1 79-01-6	
1,2,3-Trimethylbenzene	0.88 ug/m3	0.34	1.68		03/12/14 23:3	1 526-73-8	
1,2,4-Trimethylbenzene	1.3J ug/m3	1.7	1.68		03/12/14 23:3	1 95-63-6	
1,3,5-Trimethylbenzene	1.4J ug/m3	1.7	1.68		03/12/14 23:3	1 108-67-8	
Vinyl chloride	ND ug/m3	0.44	1.68		03/12/14 23:3	1 75-01-4	
m&p-Xylene	21.5 ug/m3	3.0	1.68		03/12/14 23:3	1 179601-23-1	
o-Xylene	7.8 ug/m3	1.5	1.68		03/12/14 23:3	1 95-47-6	

Project:

MRC SV/IAQ Study Feb 2014 REV

Pace Project No.:

Date: 04/17/2014 12:21 PM

10259328

Sample: IA-093X-A-16	Lab ID: 10259328008	Collected: 02/26/1	4 17:10	Received: 03/04/14 10:00	Matrix: Air	
Parameters	Results Units	Report Limit	DF	Prepared Analyzed	CAS No.	Qua
TO15 MSV AIR	Analytical Method: TO-15					
Benzene	0.58 ug/m3	0.57	1.74	03/12/14 22:31	71-43-2	
Carbon tetrachloride	ND ug/m3	1.1	1.74	03/12/14 22:31	56-23-5	
Chlorodifluoromethane	1.4 ug/m3	0.35	1.74	03/12/14 22:31	75-45-6	
Chloroform	ND ug/m3	1.7	1.74	03/12/14 22:31	67-66-3	
Dichlorodifluoromethane	1.9 ug/m3	1.8	1.74	03/12/14 22:31	75-71-8	
1,1-Dichloroethane	ND ug/m3	1.4	1.74	03/12/14 22:31	75-34-3	
1,2-Dichloroethane	ND ug/m3	0.71	1.74	03/12/14 22:31	107-06-2	
1,1-Dichloroethene	0.75J ug/m3	1.4	1.74	03/12/14 22:31	75-35-4	
cis-1,2-Dichloroethene	0.91J ug/m3	1.4	1.74	03/12/14 22:31	156-59-2	
rans-1,2-Dichloroethene	ND ug/m3	1.4	1.74	03/12/14 22:31	156-60-5	
Ethylbenzene	1.1J ug/m3	1.5	1.74	03/12/14 22:31	100-41-4	
Methylene Chloride	6.6 ug/m3	1.2	1.74	03/12/14 22:31	75-09-2	
Methyl-tert-butyl ether	ND ug/m3	1.3	1.74	03/12/14 22:31	1634-04-4	
Naphthalene	1.7J ug/m3	1.9	1.74	03/12/14 22:31	91-20-3	
Tetrachloroethene	ND ug/m3	1.2	1.74	03/12/14 22:31	127-18-4	
Toluene	1.2J ug/m3	1.3	1.74	03/12/14 22:31	108-88-3	
1,2,4-Trichlorobenzene	ND ug/m3	2.6	1.74	03/12/14 22:31	120-82-1	
1,1,1-Trichloroethane	0.87J ug/m3	1.9	1.74	03/12/14 22:31	71-55-6	
1,1,2-Trichloroethane	ND ug/m3	0.96	1.74	03/12/14 22:31	79-00-5	
Frichloroethene	8.4 ug/m3	0.96	1.74	03/12/14 22:31	79-01-6	
1,2,3-Trimethylbenzene	ND ug/m3	0.35	1.74	03/12/14 22:31	526-73-8	
1,2,4-Trimethylbenzene	1.3J ug/m3	1.7	1.74	03/12/14 22:31	95-63-6	
1,3,5-Trimethylbenzene	ND ug/m3	1.7	1.74	03/12/14 22:31	108-67-8	
/inyl chloride	ND ug/m3	0.45	1.74	03/12/14 22:31	75-01-4	
m&p-Xylene	1.4J ug/m3	3.1	1.74	03/12/14 22:31		
o-Xylene	ND ug/m3	1.5	1.74	03/12/14 22:31		

Project:

MRC SV/IAQ Study Feb 2014 REV

Pace Project No.:

Date: 04/17/2014 12:21 PM

10259328

Sample: IA-117X-A-16	Lab ID: 10259328009	Collected: 02/26/14 17:13	Received: 03/04/14 10:00 Matri	x: Air
Parameters	Results Units	Report Limit DF	Prepared Analyzed	CAS No. Qua
TO15 MSV AIR	Analytical Method: TO-15			
Benzene	0.44J ug/m3	0.58 1.8	03/12/14 23:01 71	-43-2
Carbon tetrachloride	ND ug/m3	1.2 1.8	03/12/14 23:01 56	-23-5
Chlorodifluoromethane	1.5 ug/m3	0.36 1.8	03/12/14 23:01 75	-45-6
Chloroform	ND ug/m3	1.8 1.8	03/12/14 23:01 67	-66-3
Dichlorodifluoromethane	1.4J ug/m3	1.8 1.8	03/12/14 23:01 75	-71-8
1,1-Dichloroethane	ND ug/m3	1.5 1.8	03/12/14 23:01 75	-34-3
1,2-Dichloroethane	ND ug/m3	0.74 1.8	03/12/14 23:01 10	7-06-2
1,1-Dichloroethene	ND ug/m3	1.5 1.8	03/12/14 23:01 75	-35-4
cis-1,2-Dichloroethene	ND ug/m3	1.5 1.8	03/12/14 23:01 15	6-59-2
rans-1,2-Dichloroethene	ND ug/m3	1.5 1.8	03/12/14 23:01 15	6-60-5
Ethylbenzene	1.3J ug/m3	1.6 1.8	03/12/14 23:01 10	0-41-4
Methylene Chloride	89.7 ug/m3	1.3 1.8	03/12/14 23:01 75	-09-2
Methyl-tert-butyl ether	ND ug/m3	1.3 1.8	03/12/14 23:01 16	34-04-4
Naphthalene	1.3J ug/m3	1.9 1.8	03/12/14 23:01 91	-20-3
etrachloroethene	ND ug/m3	1.2 1.8	03/12/14 23:01 12	7-18-4
Toluene Toluene	15.7 ug/m3	1.4 1.8	03/12/14 23:01 10	8-88-3
1,2,4-Trichlorobenzene	ND ug/m3	2.7 1.8	03/12/14 23:01 12	0-82-1
,1,1-Trichloroethane	ND ug/m3	2.0 1.8	03/12/14 23:01 71	-55-6
,1,2-Trichloroethane	ND ug/m3	0.99 1.8	03/12/14 23:01 79	-00-5
Trichloroethene	ND ug/m3	0.99 1.8	03/12/14 23:01 79	-01-6
,2,3-Trimethylbenzene	ND ug/m3	0.36 1.8	03/12/14 23:01 52	6-73-8
,2,4-Trimethylbenzene	1.2J ug/m3	1.8 1.8	03/12/14 23:01 95	-63-6
,3,5-Trimethylbenzene	ND ug/m3	1.8 1.8	03/12/14 23:01 10	8-67-8
/inyl chloride	ND ug/m3	0.47 1.8	03/12/14 23:01 75	-01-4
n&p-Xylene	1.9J ug/m3	3.2 1.8	03/12/14 23:01 17	
o-Xylene	0.74J ug/m3	1.6 1.8	03/12/14 23:01 95	

Project:

MRC SV/IAQ Study Feb 2014 REV

Pace Project No.:

Date: 04/17/2014 12:21 PM

10259328

Sample: IA-140-B-16	Lab ID: 10259328010	Collected: 02/26/14	4 17:15	Received: 03/04/14 1	10:00 N	/latrix: Air	
Parameters	Results Units	Report Limit	DF	Prepared Ana	alyzed	CAS No.	Qua
TO15 MSV AIR	Analytical Method: TO-15						
Benzene	ND ug/m3	0.58	1.8	03/12/	14 22:32	71-43-2	
Carbon tetrachloride	ND ug/m3	1.2	1.8	03/12/ ⁻	14 22:32	56-23-5	
Chlorodifluoromethane	13.6 ug/m3	1.3	1.8	03/12/	14 22:32	75-45-6	
Chloroform	ND ug/m3	1.8	1.8	03/12/	14 22:32	67-66-3	
Dichlorodifluoromethane	2.4 ug/m3	1.8	1.8	. 03/12/	14 22:32	75-71-8	
1,1-Dichloroethane	ND ug/m3	1.5	1.8	03/12/	14 22:32	75-34-3	
1,2-Dichloroethane	ND ug/m3	0.74	1.8	03/12/	14 22:32	107-06-2	
1,1-Dichloroethene	ND ug/m3	1.5	1.8	03/12/	14 22:32	75-35-4	
cis-1,2-Dichloroethene	ND ug/m3	1.5	1.8	03/12/	14 22:32	156-59-2	
rans-1,2-Dichloroethene	ND ug/m3	1.5	1.8	03/12/	14 22:32	156-60-5	
Ethylbenzene	2.1 ug/m3	1.6	1.8	03/12/	14 22:32	100-41-4	
Methylene Chloride	18.3 ug/m3	1.3	1.8	03/12/	14 22:32	75-09-2	
Methyl-tert-butyl ether	ND ug/m3	1.3	1.8	03/12/	14 22:32	1634-04-4	
Naphthalene	6.5 ug/m3	1.9	1.8	03/12/	14 22:32	91-20-3	СН
Tetrachloroethene	ND ug/m3	1.2	1.8	03/12/	14 22:32	127-18- 4	
Toluene	84.0 ug/m3	1.4	1.8	03/12/	14 22:32	108-88-3	
1,2,4-Trichlorobenzene	ND ug/m3	2.7	1.8	03/12/	14 22:32	120-82-1	
1,1,1-Trichloroethane	ND ug/m3	2.0	1.8	03/12/	14 22:32	71-55-6	
1,1,2-Trichloroethane	ND ug/m3	0.99	1.8	03/12/	14 22:32	79-00-5	
Trichloroethene	ND ug/m3	0.99	1.8	03/12/	14 22:32	79-01-6	
1,2,3-Trimethylbenzene	ND ug/m3	1.8	1.8	03/12/	14 22:32	526-73-8	
1,2,4-Trimethylbenzene	ND ug/m3	1.8	1.8	03/12/	14 22:32	95-63-6	
1,3,5-Trimethylbenzene	ND ug/m3	1.8	1.8	03/12/	14 22:32	108-67-8	
Vinyl chloride	ND ug/m3	0.47	1.8	03/12/	14 22:32	75-01-4	
m&p-Xylene	8.1 ug/m3	3.2	1.8	03/12/	14 22:32	179601-23-1	
o-Xylene	2.6 ug/m3	1.6	1.8	03/12/	14 22:32	95-47-6	

Project:

MRC SV/IAQ Study Feb 2014 REV

Pace Project No.: 10259328

Date: 04/17/2014 12:21 PM

Sample: IA-DUP1-ER-1	Lab ID: 10259328007	Collected: 02/26/1	4 00:00	Received: 03/04/14 10:00	Matrix: Air
Parameters	Results Units	Report Limit	DF	Prepared Analyzed	CAS No. Qu
TO15 MSV AIR	Analytical Method: TO-15				
Benzene	1.3 ug/m3	0.55	1.68	03/12/14 23:01	71-43-2
Carbon tetrachloride	ND ug/m3	1.1	1.68	03/12/14 23:01	56-23-5
Chlorodifluoromethane	12.9 ug/m3	1.2	1.68	03/12/14 23:01	75 -4 5-6
Chloroform	ND ug/m3	1.7	1.68	03/12/14 23:01	67-66-3
Dichlorodifluoromethane	2.9 ug/m3	1.7	1.68	03/12/14 23:01	75-71-8
1,1-Dichloroethane	ND ug/m3	1.4	1.68	03/12/14 23:01	75-34-3
1,2-Dichloroethane	ND ug/m3	0.69	1.68	03/12/14 23:01	107-06-2
1,1-Dichloroethene	ND ug/m3	1.4	1.68	03/12/14 23:01	75-35-4
cis-1,2-Dichloroethene	ND ug/m3	1.4	1.68	03/12/14 23:01	156-59-2
trans-1,2-Dichloroethene	70.1 ug/m3	1.4	1.68	03/12/14 23:01	156-60-5
Ethylbenzene	17.1 ug/m3	1.5	1.68	03/12/14 23:01	100-41-4
Methylene Chloride	22.2 ug/m3	1.2	1.68	03/12/14 23:01	75-09-2
Methyi-tert-butyl ether	ND ug/m3	1.2	1.68	03/12/14 23:01	1634-04-4
Naphthalene	ND ug/m3	1.8	1.68	03/12/14 23:01	91-20-3
Tetrachloroethene	ND ug/m3	1.2	1.68	03/12/14 23:01	127-18-4
Toluene	44.7 ug/m3	1.3	1.68	03/12/14 23:01	108-88-3
1,2,4-Trichlorobenzene	ND ug/m3	2.5	1.68	03/12/14 23:01	120-82-1
1,1,1-Trichloroethane	ND ug/m3	1.9	1.68	03/12/14 23:01	71-55-6
1,1,2-Trichloroethane	ND ug/m3	0.92	1.68	03/12/14 23:01	79-00-5
Trichloroethene	ND ug/m3	0.92	1.68	03/12/14 23:01	79-01-6
1,2,3-Trimethylbenzene	ND ug/m3	1.7	1.68	03/12/14 23:01	526-73-8
1,2,4-Trimethylbenzene	3.0 ug/m3	1.7	1.68	03/12/14 23:01	95-63-6
1,3,5-Trimethylbenzene	ND ug/m3	1.7	1.68	03/12/14 23:01	108-67-8
Vinyl chloride	ND ug/m3	0.44	1.68	03/12/14 23:01	75-01-4
m&p-Xylene	81.5 ug/m3	3.0	1.68	03/12/14 23:01	179601-23-1
o-Xylene	29.5 ug/m3	1.5	1.68	03/12/14 23:01	95-47-6

Project:

MRC SV/IAQ Study Feb 2014 REV

Pace Project No.: 10259328

Date: 04/17/2014 12:21 PM

Sample: IA-DUP1-PB-1	Lab ID: 10259328006	Collected: 02/26/14	4 00:00	Received: 03/04/14 10:00 Matrix: Air	
Parameters	Results Units	Report Limit	DF	Prepared Analyzed CAS No. Q	ua
TO15 MSV AIR	Analytical Method: TO-15				
Benzene	0.80 ug/m3	0.55	1.68	03/13/14 01:23 71-43-2	
Carbon tetrachloride	ND ug/m3	1.1	1.68	03/13/14 01:23 56-23-5	
Chlorodifluoromethane	2.6 ug/m3	0.34	1.68	03/13/14 01:23 75-45-6	
Chloroform	ND ug/m3	1.7	1.68	03/13/14 01:23 67-66-3	
Dichlorodifluoromethane	2.2 ug/m3	1.7	1.68	03/13/14 01:23 75-71-8	
1,1-Dichloroethane	ND ug/m3	1.4	1.68	03/13/14 01:23 75-34-3	
1,2-Dichloroethane	ND ug/m3	0.69	1.68	03/13/14 01:23 107-06-2	
1,1-Dichloroethene	ND ug/m3	1.4	1.68	03/13/14 01:23 75-35-4	
cis-1,2-Dichloroethene	ND ug/m3	1.4	1.68	03/13/14 01:23 156-59-2	
rans-1,2-Dichloroethene	ND ug/m3	1.4	1.68	03/13/14 01:23 156-60-5	
Ethylbenzene	ND ug/m3	1.5	1.68	03/13/14 01:23 100-41-4	
Methylene Chloride	6.5 ug/m3	1.2	1.68	03/13/14 01:23 75-09-2	
Methyl-tert-butyl ether	ND ug/m3	1.2	1.68	03/13/14 01:23 1634-04-4	
Naphthalene	ND ug/m3	1.8	1.68	03/13/14 01:23 91-20-3	
Tetrachloroethene	ND ug/m3	1.2	1.68	03/13/14 01:23 127-18-4	
Toluene	1.4 ug/m3	1.3	1.68	03/13/14 01:23 108-88-3	
1,2,4-Trichlorobenzene	ND ug/m3	2.5	1.68	03/13/14 01:23 120-82-1	
1,1,1-Trichloroethane	ND ug/m3	1.9	1.68	03/13/14 01:23 71-55-6	
1,1,2-Trichloroethane	ND ug/m3	0.92	1.68	03/13/14 01:23 79-00-5	
Trichloroethene	ND ug/m3	0.92	1.68	03/13/14 01:23 79-01-6	
1,2,3-Trimethylbenzene	ND ug/m3	0.34	1.68	03/13/14 01:23 526-73-8	
1,2,4-Trimethylbenzene	ND ug/m3	1.7	1.68	03/13/14 01:23 95-63-6	
1,3,5-Trimethylbenzene	ND ug/m3	1.7	1.68	03/13/14 01:23 108-67-8	
Vinyl chloride	ND ug/m3	0.44	1.68	03/13/14 01:23 75-01-4	
m&p-Xylene	1.5J ug/m3	3.0	1.68	03/13/14 01:23 179601-23-1	
o-Xylene	ND ug/m3	1.5	1.68	03/13/14 01:23 95-47-6	

Appendix C

Support Documentation

MIDDLE RIVER AND TILLEY CHEMICAL AIR DATA

10259328

FRACTION	CHEMICAL	IA-003-ER-1	UNITS	IA-DUP1-ER-1	RPD	U
OV-M3	1,2,3-TRIMETHYLBENZENE	0.88	UG/M3	ND	200.00	0.88 O.K. L.2×RL
OV-M3	1,2,4-TRIMETHYLBENZENE	ND	UG/M3	3	200.00	3.00
OV-M3	BENZENE	0.89	UG/M3	1.3	37.44	0.41
OV-M3	CHLORODIFLUOROMETHANE	4.5	UG/M3	12.9	96.55	8.40
OV-M3	DICHLORODIFLUOROMETHANE	2	UG/M3	2.9	36.73	0.90
OV-M3	ETHYLBENZENE	ഗ	UG/M3	17.1	109.50	12.10
OV-M3	M+P-XYLENES	21.5	UG/M3	81.5	116.50	60.00
OV-M3	METHYLENE CHLORIDE	605	UG/M3	22.2	185.84	582.80
OV-M3	O-XYLENE	7.8	UG/M3	29.5	116,35	21.70
OV-M3	TOLUENE	14.6	UG/M3	44.7	101.52	30.10
OV-M3	TRANS-1,2-DICHLOROETHENE	17.4	UG/M3	70.1	120.46	52.70

Current RPD Quality Control Limit: 50 %. Shaded cells indicate RPDs that exceed the applicable quality control limit.

MIDDLE RIVER AND TILLEY CHEMICAL **AIR DATA**

10259328

	OV-M	OV-M3	оу-мз	оу-мз	оу-мз	OV-M3	оу-мз	FRACTION
OV-M3 TOLUENE	3 METHYLENE CHLORIDE	3 ETHYLBENZENE	3 DICHLORODIFLUOROMETHANE	3 CHLORODIFLUOROMETHANE	3 BENZENE	3 1,2,4-TRIMETHYLBENZENE	3 1,2,3-TRIMETHYLBENZENE	ON CHEMICAL
1.4	9.6	1.6	2.2	2.8	0.86	1.7	0.97	IA-001-PB-1
UG/M3	UG/M3	UG/M3	UG/M3	UG/M3	UG/M3	UG/M3	UG/M3	STINU
1.4	6.5	ND	2.2	2.6	0.8	ND	ND	IA-DUP1-PB-1
0.00	38.51	200.00	0.00	7.41	7.23	200.00	200.00	RPD
0.00	3.10	1.60		0.20	0.06	1.70	0.97	0
	L	つ、ベスンメベヘ				1	の、バヘルメ大へ	

Current RPD Quality Control Limit: 50 %. Shaded cells indicate RPDs that exceed the applicable quality control limit.

March 17, 2014

Tony Apanavage Tetra Tech 20251 Century Blvd Suite 200 Germantown, MD 20874

RE: Project: MRC SV/IAQ Study Feb 2014

Pace Project No.: 10259328

Dear Tony Apanavage:

Enclosed are the analytical results for sample(s) received by the laboratory on March 04, 2014. The results relate only to the samples included in this report. Results reported herein conform to the most current TNI standards and the laboratory's Quality Assurance Manual, where applicable, unless otherwise noted in the body of the report.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Nicole Benjamin nicole.benjamin@pacelabs.com Project Manager

Enclosures

cc: Dawn Monico, Tetra Tech GEO

SAMPLE SUMMARY

Project:

MRC SV/IAQ Study Feb 2014

Pace Project No.:

10259328

Lab ID	Sample ID	Matrix	Date Collected	Date Received
10259328001	IA-001-PB-1	Air	02/26/14 18:04	03/04/14 10:00
10259328002	IA-002-PB-1	Air	02/26/14 18:01	03/04/14 10:00
10259328003	IA-001-ER-1	Air	02/26/14 17:53	03/04/14 10:00
10259328004	IA-002-ER-1	Air	02/26/14 18:14	03/04/14 10:00
10259328005	IA-003-ER-1	Air	02/26/14 18:10	03/04/14 10:00
10259328006	IA-DUP1-PB-1	Air	02/26/14 00:00	03/04/14 10:00
10259328007	IA-DUP1-ER-1	Air	02/26/14 00:00	03/04/14 10:00
10259328008	IA-093X-A-16	Air	02/26/14 17:10	03/04/14 10:00
10259328009	IA-117X-A-16	Air	02/26/14 17:13	03/04/14 10:00
10259328010	IA-140-B-16	Air	02/26/14 17:15	03/04/14 10:00
10259328011	Unused Can#2245	Air		03/04/14 10:00
10259328012	Unused Can#2566	Air		03/04/14 10:00
10259328013	Unused Can#1296	Air		03/04/14 10:00

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

PROJECT NARRATIVE

Project:

MRC SV/IAQ Study Feb 2014

Pace Project No.:

10259328

Method:

TO-15

Description: TO15 MSV AIR

Client:

Tetra Tech GEO - Maryland

Date:

March 17, 2014

General Information:

10 samples were analyzed for TO-15. All samples were received in acceptable condition with any exceptions noted below.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

QC Batch: AIR/19645

CH: The continuing calibration for this compound is outside of Pace Analytical acceptance limits. The results may be biased high.

- DUP (Lab ID: 1638565)
 - Naphthalene
- IA-140-B-16 (Lab ID: 10259328010)
 - Naphthalene
- LCS (Lab ID: 1638294)
 - 1,2,4-Trichlorobenzene
 - Naphthalene

Internal Standards:

All internal standards were within QC limits with any exceptions noted below.

Surrogates:

All surrogates were within QC limits with any exceptions noted below.

Method Blank

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

QC Batch: AIR/19645

L3: Analyte recovery in the laboratory control sample (LCS) exceeded QC limits. Analyte presence below reporting limits in associated samples. Results unaffected by high bias.

- LCS (Lab ID: 1638294)
 - 1,2,4-Trichlorobenzene

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

PROJECT NARRATIVE

Project:

MRC SV/IAQ Study Feb 2014

Pace Project No.:

10259328

Method:

TO-15

Client:

Description: TO15 MSV AIR Tetra Tech GEO - Maryland

Date:

March 17, 2014

Additional Comments:

Analyte Comments:

QC Batch: AIR/19647

C0: Result confirmed by second analysis.

- IA-003-ER-1 (Lab ID: 10259328005)
 - Methylene Chloride

E: Analyte concentration exceeded the calibration range. The reported result is estimated.

- IA-003-ER-1 (Lab ID: 10259328005)
 - · Methylene Chloride

This data package has been reviewed for quality and completeness and is approved for release.

QUALIFIERS

Project:

MRC SV/IAQ Study Feb 2014

Pace Project No.:

10259328

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to changes in sample preparation, dilution of the sample aliquot, or moisture content.

ND - Not Detected at or above adjusted reporting limit.

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PRL - Pace Reporting Limit.

RL - Reporting Limit.

S - Surrogate

1,2-Diphenylhydrazine (8270 listed analyte) decomposes to Azobenzene.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

ANALYTE QUALIFIERS

C0 Result confirmed by second analysis.

CH The continuing calibration for this compound is outside of Pace Analytical acceptance limits. The results may be biased

high.

E Analyte concentration exceeded the calibration range. The reported result is estimated.

L3 Analyte recovery in the laboratory control sample (LCS) exceeded QC limits. Analyte presence below reporting limits in

associated samples. Results unaffected by high bias.

(612)607-1700

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project:

MRC SV/IAQ Study Feb 2014

Pace Project No.:

10259328

ab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
0259328001	IA-001-PB-1	TO-15	AIR/19647		
0259328002	IA-002-PB-1	TO-15	AIR/19647		
0259328003	IA-001-ER-1	TO-15	AIR/19645		
0259328004	IA-002-ER-1	TO-15	AIR/19645		
0259328005	IA-003-ER-1	TO-15	AIR/19647		
0259328006	IA-DUP1-PB-1	TO-15	AIR/19647		
0259328007	IA-DUP1-ER-1	TO-15	AIR/19645		
0259328008	IA-093X-A-16	TO-15	AIR/19647		
0259328009	IA-117X-A-16	TO-15	AIR/19647		
0259328010	IA-140-B-16	TO-15	AIR/19645		

AIR: CHAIN-OF-CUSTODY / Analytical Request Document

The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.

0,500 N/V (V)A SAMPLE CONDITIONS Clean Air Act Other. Pace Lab ID mg/m³ 2 NW N/A 900 S ゴク 50 ၁ ၁ ं RCRA ာ စ 9 0 0 7 Ø. Other N/A PPBV Other Emissions Voluntary Clean Up Dry Clean £ 25.5 14841 911 ≥ imes imes imes imes imesTIME Superfund Cool ΞÉ Sampling by State Report Level DATE ocation of 7177 UST Method: $\infty \infty$ W ACCEPTED BY / AFFILIATION Control Number 0 t 0 0 t 0 Q 040 $\vec{\gamma}$ race 3 O 0 2228 2283 2283 2427 2451 323 よるなられて Number Summa BAC 39 4-08-(Final Field - psig) 1200 1 Canlater Pressure TIME 20 8 なな 25 (Bisq - bleld Isifinl) Canister Pressure 260/14 Pace Project Manager/Sales Rep. OID MINELEGY RO MINELS 180 SILI HARIE SHEO HILBER 1810 DATE 200 1/8 21/14/0852 -24/WITS TIME Pace Quote Reference: 24C/T nvoice Information COLLECTED DATE Company Name Pace Profile #: RELINQUISHED BY / AFFILLATION Section C SER 2933 Address: त्र 3 82 2/25/14 DATE 2500 PID Reading (Client only) MEDIA CODE Required Project Information Jurchase Order No. Tedar Bag 1 Liter Summa Can 6 Liter Summa Can Low Volume Puff High Volume Puff Other Project Number: roject Name Section B 000 teport To: Copy To: IA-093X-A-1 £8 tony, covarianted tetrated - DUPI-PB-20874 - bup1-ER-'Section D Required Client Information IA-002-ER-I IA-003-ER-IA-001-ER-ーニコメータ IA-001-PB-IA-003-PB-Sample IDs MUST BE UNIQUE 1HOB-16 AIR SAMPLE ID 20251 Century Blud ally unatranted Sompany: Tetra Tech Required Client Information: Section A Address: # MƏTI 5

1700 Elm Street SE, Suite 200, Minneapolis, MN 55414 Air Technical Phone: 612.607.6386

ORIGINAL

samples intact

ested Cooler

Received on

O° ni qmeT

aranas

SAMPLER NAME AND SIGNATURE

INT Name of SAMPLER:

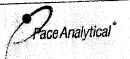
FC046Rev.01, 03Feb2010

N/A N/A

NA

N/A N/A

N/A


Face Analytical www.pacelabs.com

5 3.554	
-	
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	1
- /	Pace Analytical *
1 1	Pace Anaiviicai
A market	400 , 4, 12
3	

Document Name:
Air Sample Condition Upon Receipt
Document No.:
F-MN-A-106-rev.09

Document Revised: 26Dec2013
Page 1 of 1
Issuing Authority:
Pace Minnesota Quality Office

Upon Receipt	t Name: telsia tech	한 10년 (20년 12년 12년) 12년 - 전 20년 (20년) 12년 - 12년 (12년)			: 1025932 	
	mercial Pace	USPS []Client	10259328		
acking Number: <u>60</u>		-/		Yes No	Optional: Proj. Due Date:	Proj. Name:
stody Seal on Cooler/Box					Temp	Blank rec: Yes
king Material: Bubbl	only) (*C): (s Foam Corrected Temp (°C):		Thermom. Used:	B88A912167504 B88A9132521491 erson Examining Contents:	□72337080 □80512447 ♥ \$ 4 (4
emp should be above freezing the of ice Received Blue						
		⊉ ∳es □N	o 🔲 N/A	1.	Comments:	
Chain of Custody Present?	44 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	✓ Yes □N	and the second of the second	2.		
Chain of Custody Filled Out?		Zes □N		3.		
Chain of Custody Relinquish		Zres □ N		4.		
Sampler Name and/or Signa			Se Carlo (ELL) en par	5.		
Samples Arrived within Hold		Yes •	ELEVINORES E	6.		
Short Hold Time Analysis (<				7.		
Rush Turn Around Time Red	quested?			8.		
Sufficient Volume?		AUT AND A LABOUR DAY AND A DESCRIPTION	STATE OF LANGE	9.		
Correct Containers Used?		∫⊠Yes □□ ✓Yes □□				
-Pace Containers Used?		Yes [10.		
Containers Intact?	19 (1848), 12 (1991) - 12 (1992) Pagasaran	-[]tes []	NO CIVA	11.		
Media: ドドク		₩es □	No □N/A	12.		
Sample Labels Match COC?		<u> </u>				
Samples Received:					Ston	d Alone G
Canist	iers		Flow Controlle		Sample Number	Can ID
Sample Number	Can ID	Sample Numb	2000	Can ID	VA V Sed	2245 / 0176
1001-18B-1	2434			<u>0320 </u>	un viel.	2566 /
002-PB-1	2728			54 09 	UNVSED	1296/ 0040
OUL ERI	2226			94 <u>5 (</u> 9433		
002 GB1	7283			0222		
003 ER-1	2427					
Dp1-Pb-1	7451 1237					
OUP - ER-(1323			0528		
093X	2396			0458		
XCII	2524			1500	BB (1975년 2월 2일 1975년 1975년 3월 1일 : 1985년 1985년 1985년 1985년	
140 B	6467			<u> </u>		
CLIENT NOTIFICATION/RE	불만하는 그 사람들이 그리고 그는 것 같습니다.			Date/Time:	Field Data Require	d? □Yes □No
Comments/Resolu						
<u> </u>						
		The second secon		 11 (1) (2) (2) (2) (3) (3) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4		

Document Name:

SCUR Exceptions Form

Document No.: F-MN-L-220-Rev.00 Document Revised: 16Apr2012 Page 1 of 1

Issuing Authority: Pace Minnesota Quality Office

Workorder #:

10259328

	Sample ID Container Type/#
Issue * San Carlo	
7980 5647 7036	
7980 5647 7058	
8583 4427 1621	
7980 5647 6989	
7988 5647 7091	
7980 S647 7070	
79805647 7014	
7980 3647 7003	
7980 3647 7025	
7a80 S647 6990	
7980 5647 7080	
7980 5647 7069	
798056477106	
Inused can 2245	unused FC 0176
2566	
(296	9040
1218	

5A - FORM V VOA VOLATILE ORGANIC INSTRUMENT PERFORMANCE CHECK BROMOFLUOROBENZENE (BFB)

EPA SAMPLE NO.

BFB

Lab Name: Pace Analytical

Contract:

Lab Code:

PASI

Case No.:

SAS No.:

SDG No.: 10259328

Lab File ID: 06903BFB.D

BFB Injection Date: 03/10/2014

Instrument ID: 10AIR0

BFB Injection Time: 10:47

GC Column: J&W DB-5 ID: 0.32 (mm)

		% RELATIVE	
m/e	ION ABUNDANCE CRITERIA	ABUNDANCE	
95	Base Peak, 100% relative abundance	100.00	
50	8.00 - 40.00% of mass 95	18.00	
75	30.00 - 66.00% of mass 95	50.47	
96	5.00 - 9.00% of mass 95	6.68	_
173	Less than 2.00% of mass 174	0.65 (0.7	4)
174	50.00 - 120.00% of mass 95	86.78	_
175	4.00 - 9.00% of mass 174	6.55 (7.5	55)
176	93.00 - 101.00% of mass 174	84.03 (96.8	3)
177	5.00 - 9.00% of mass 176	5.81 (6.9	11)

1 - Value is %mass 174

2 - Value is %mass 176

EPA SAMPLE NO.	LAB SAMPLE ID	LAB FILE ID	DATE ANALYZED	TIME ANALYZED
CAL1	CAL1	06904.D	03/10/2014	11:12
CAL2	CAL2	06905.D	03/10/2014	11:36
CAL3	CAL3	06906.D	03/10/2014	12:01
CAL4	CAL4	06907.D	03/10/2014	12:28
CAL5	CAL5	06908.D	03/10/2014	12:54
CAL6	CAL6	06909.D	03/10/2014	13:23
CAL7	CAL7	06910.D	03/10/2014	13:55
ICVADDL (LCS)	ICVADDL	06911.D	03/10/2014	14:22
ICV (LCS)	ICV	06912.D	03/10/2014	14:48

INITIAL CALIBRATION DATA

Start Cal Date : 10-MAR-2014 11:12
End Cal Date : 10-MAR-2014 13:55
Quant Method : ISTD
Target Version : 4.14
Integrator : HP RTE
Method file : \\192.168.10.12\chem\10air0.i\031014.b\T015_069-14.m
Last Edit : 10-Mar-2014 15:12 10air0.i

Calibration File Names:
Level 1: \\192.168.10.12\chem\10air0.i\031014.b\06904.D
Level 2: \\192.168.10.12\chem\10air0.i\031014.b\06905.D
Level 3: \\192.168.10.12\chem\10air0.i\031014.b\06906.D
Level 4: \\192.168.10.12\chem\10air0.i\031014.b\06907.D
Level 5: \\192.168.10.12\chem\10air0.i\031014.b\06908.D
Level 6: \\192.168.10.12\chem\10air0.i\031014.b\06909.D
Level 7: \\192.168.10.12\chem\10air0.i\031014.b\06909.D

	0.1000 Level	1	0.2000000 · Level 2 :		1.0000 Tevel 4	10.0000 level 5	20.0000 Level 6	 Curve	 b	Coefficients m1	m2	eRSD or R^2
	30.00 Level	00	 					1	 			
1 Chlorodifluoromethane	. 2.2	9334 9356	i	1			1	AVRG		 2.04583		 8.06742
2 Fropylene		2343 1678			5.51810	5.55487	6.00090	AVRG	i I	5.43647		 10.78516
3 Dichlorodifluoromethane		6495: 9286:	C.83410:	0.87557	 0.92208 				I	0.92694		. 13.33317
4 Dichlorotetrafluoroethane	1.4	8918; 0435;	1.03163.	1.09640	1.13448	1.17610	1.31356	AVRG	 	1.14938		14.95494
												

10259328 Page 33 of 1036

INITIAL CALIBRATION DATA

Start Cal Date : 10-MAR-2014 11:12 : 10-MAR-2014 13:55 : 10-MAR-2014 13:55 : ISTD : 4.14 : IP RTE Method file Last Edit : \\192.168.10.12\chem\10air0.i\031014.b\T015_069-14.m

 Compourd	0.1000000 Level :	Level 2	0.5000000 Level 3 !		10.0000 J Level 5 J	20.0000 Level 6	 Curve	b.	Coefficients ml	m2	%RSD or R^2
1 1 1	30.0000 Level 7			 	 		! . ! 				
5 Chloromethane	2.73337 4.00112	İ	3.02944	3.11024	3.29718 	3.68461	 AVRG	•	 3.25840		: 13.59974
6 Vinyl chloride	2.80004 3.44528:	,	3.17952	3.36648	3.28817 	3.44421				•••••	6.84907
7 1,3-Butadiëne	4.03477. 5.10050:		4.90816	4.88217	4.82254	5.07005	: 		1 4.841871		7.68659
8 Bromomethane	2.64768		3.10006	3.27756			AVRG		3.14144		7.76394
9 Chloroethane	5.93482 7.42973	7,37708	7.07120:	7.21214	7.08487	7.41352	 AVRG		7.07477		7.41368
10 Sthanel	7.86650 10.37597		10.18409	6.95570	8.11859 	9.11464	AVRG		9-17462		1 10.46115
11 Vinyl Bromide	2.86110; 3.47223	3.08453	3.17242	3.26826	3.15421 	3.40488			3.20252		6.39606
				!			 		: - 		

10259328 Page 34 of 1036

INITIAL CALIBRATION DATA

Start Cal Date : 10-MAR-2014 11:12
End Cal Date : 10-MAR-2014 13:55
Quant Method : ISTD
Target Version : 4.14
Integrator : HP RTE
Method file : \\192.168.10.12\chem\10air0.i\031014.b\T015_069-14.m
Last Edit : 10-Mar-2014 15:12 10air0.i

	0.1000000		0.50000000 :		10.0000	20.0000	1 1		Coefficients		%RSD
Compound	Level 1		Level 3		Level 5	Level €	Curve	Ь	ml	m2	or R^2
	30.0000 Level 7	 	 	 	, 		, 				
12 Isopentane	2.35717 4.20716	2.79325	2.80360j	2.92340	3.55224 J	3.93266	I I				21.1139
13 Acrolein	15.21182; 12.88044;	16.17671	,	15.C1228	11.67974 11.67974	12.23572	I I		1 14.02424!		1 12.3241
14 Trichlorofluoromethane	0.71541, 1.10566.		0.82954	0.84317	0.88790 	1.01350	I I		0.88952		1 14.6233
15 Acetone	1 +++++ :	1.43823		1.72216;		2.22776			1.91867		1 19.4149
16 Isopropyl Alcohol	1.97508 2.47554		2.16594	2.16518	2.038991		AVRG		1 2.262591		 10.6730
17 Acrylonitrile	6.94453; 6.50762;			6.45656:	5.646021	5.89274	AVRG		6.49661		 9.3026
18 1,1-Dichioroethene	1.76703		1.94283	2.008931 1.00893	2.04456		I AVRG I		2.04749:		1 10.9491
	: 			i 			-		-		

Page 35 of 1036 10259328

Report Date : 11-Mar-2014 14:01

Pace Analytical Services, Inc. INITIAL CALIBRATION DATA

Start Cal Date : 10-MAR-2014 11:12 |
End Cal Date : 10-MAR-2014 13:55 |
Quant Method : ISTD |
Target Version : 4.14 |
Integrator : HP RTE |
Method file : \\192.168.10.12\chem\10air0.i\031014.b\T015_069-14.m |
Last Edit : 10-Mar-2014 15:12 10air0.i

Compound			0.5000000 Leve) 3		10.0000 Level 5	20.0000 Level 6	i Curve	b	Coefficients ml	m2	%RSD or R^2
	30.0000 Level 7	i									
19 Ter: Butyl Alcohol (TBA)	1.27469 1.72470	1.38691	1.14962	1.22188;	1.33666	1.63613	I [AVRG				15.3955
20 Frecn 113	1.30782	1.43945	1.48336	1.53997	1.63905	1.85518	. AVRG				i 14.3458:
21 Methylene chloride	2.44829 3.81825	3.04900 i		2.87484	3.18380 	3.50654	 AVRG		3.10202		 14.6396
22 Allyl Chloride	8.99304 7.89769	9.06240	1	8.01340 	7.30581 	7,64392			8.17455		B.0748
23 Carbon Disulfide	1.08017 1.25785	1.11722	1.13167	1.21676	1.16239	1.22848			1.17065		 5.5910
24 trans-1,2-dichloroethene	3.61936 3.49520	3.52832	3.78773	3.72750 	3.26238 	3.40143	 AVRG		3.54599		5.1614
I I I I I I I I I I I I I I I I I I I	: 0.84133 : 1.17268	0.96801	0.96981			1.10853	 AVRG		1.00829		1 10.6178
							 		- _		

Page 36 of 1036 10259328

INITIAL CALIBRATION DATA

	0.1000000 Level 1	0.2000000 Level 2		1.0000 Level 4	10.0000 Level 5	20.0000 Level 6	 Curve:	b	Coefficients m:	m2	%RSD or R^2
Сотроила	rever 1	rever 7 i	TeAe: 2				Curve:	D G	III.	III.Z	OLK Z
	39.0000 level 7	;	:		 						
26 Vinyl Acetate	1.74853		1.78057	1.79436	1.332531	1.43962	I I AVRG		1.64083		12.7178
7 1,1-Dichloroethane	1.42059		1.59147		İ	1.83676	I I AVRG		1,67162		9.7699
29 Methyl Ethyl Ketone	6.97088	9.91072	7.27006	7.02421	6.78266 	7.32787	AVRG		7.56219		14.1911
30 Di-isopropyl Ether	0.81519		1.01117	1.05699	•	1.30958			1.10892		17.9253
31 n-Hexane	1.93758 2.64397		2.10298	2.159 44	2.19919 		 AVRG		2.21062		12.1051
32 Ethyl Acetate	1.46477	İ	1.90244	1.92231	i		AVRG		1.73354;		9.6165
33 cis-1,2-Dichloroethene	3.7 4 863	3.23944	3.31346		'	3.31968			: : : 3.33210		 5.8994

Page 37 of 1036 10259328

INITIAL CALIBRATION DATA

Start Cal Date : 10-MAR-2014 11:12
End Cal Date : 10-MAR-2014 13:55
Quant Method : ISTD
Target Version : 4.14
Integrator : HP RTE
Method file : \\192.168.10.12\chem\10air0.i\031014.b\T015_069-14.m
Last Edit : 10-Mar-2014 15:12 10air0.i

	0.1000000	0.2000000	0.5000000	1.0000	10.0000	20.0000	1 1		Coefficients	 i	%RSD
Compound		Level 2		Level 4	Level 5	Level 6	Curve	ъ	m]	m2	or R^2
	30.0000 Level 7			: ! i	i	 	 				
34 Ethyl Tert-Butyl Ether	0.75949	1	ï	0.92644	0.95192	1.06601	 AVRG		0.94838		1 12.3061
35 Chloroform	1.14391	1.20832	1.15602 		1.23897	1.39267	I I		. 1.25787		9.1157
36 Tet.rahydrofuran	2.77362 3.40923	3.27398	3.03990	3.22107	3.23700	3.41204	 AVRG		3.19526		7.0364
37 1,1,1-Trichloroethane	1.00703	0.98490	0.99377	1.05122		1.23734			1.09721		11.7300
38 1,2-Dichlorpethane	1.69488	1.55334	,	1.56916	1.60382	1.82376 	 AVRG		1.66769		9.4593
39 Benzene	0.90295 1.30653	6.90512	0.96885	0.98664:	1.04197	1.20139 	 AVRG		1.04478;		14.7150
40 Carbon tetrachloride	0.99800	1.01018	1.01830			1.30065			1.13308		1 15.1500
						- 			·		

10259328 Page 38 of 1036

INITIAL CALIBRATION DATA

	0.1000000	0.2000000	0.5000000	1.0000	10.0000	20.0000			Coefficients		%RSD
Compound	Level 1	Level 2	Level 3	Level 4	Level 5	Level 6	Curve	b	ml	m2	or R^2
	30.0000 Level 7	 	! !				 				
41 Syclobexane	1.34791		1.89425	1.99185	2.39771					==-=====	20.16504
42 Tert Amyl Methyl Ether	1.07866	0.60158	0.77689	0.87827	0.95216		 AVRG		0.88875		 20.13045
44 2,2,4-Trimethylpentane	0.59958	C.59595	0.59455	0.62302	0.69863	0.77964	AVRG		0.67258		13.92196
45 Heptane	1.99114; 2.40954	2.02797	1.90049	2.00239	2.02013]		i i NVRG		2.08863		8.65676
46 1,2-Dich]oropropane	2.42726 3.45854	2.45000	2.62988	2.79267	ı		AVRG		2.83988		13.69908
47 Trichloroethene	2.29031	2.21270 i	2.26938	2.31916	2.27705	2.45719	 AVRG		1 2.33270		1 4.56482
48 1,4-Dioxane	3.74290 5.94928	4.26081	4.85849	4.68617					4.81538:		15.25880
							 				I

10259328 Page 39 of 1036

Pace Analytical Services, Inc. INITIAL CALIBRATION DATA

Start Cal Date : 10-MAR-2014 11:12
End Cal Date : 10-MAR-2014 13:55
Quant Method : ISTD
Target Version : 4.14
Integrator : HP RTE
Method file : \\192.168.10.12\chem\10air0.i\031014.b\T015_069-14.m
Last Edit : 10-Mar-2014 15:12 10air0.i

	0.1000000	0.2000000	0.5000000	1.0000	10.0000	20.0000	Ī	l C	Coefficients	3	%KSD
Compound		Level 2	Level 3	Level 4			Curve	b	ml	m2	or R^2
	30.0000 Level 7					, 	i I	:			I I
49 Bromodichloromethane	1.05595			1	1.07884	1.21577 	 AVRG	' 	1.12108	 	8.4664
50 Methylcyclonexane	: 3.95017: 4.37133:		3.83767	3.90218 		4.28893	J AVRG		4.10367		5.3151
51 Methyi Isobutyl Ketone	1.32695	1.69501	1.80412	1.76113		1.50294	1	 	1.57549		 11.86929
52 cis-1,3-Dichloropropene	2.12350	2.34341	1.93713	1.83374	1.58892		AVRG	!	1.90153		 13.5931
53 trans-1,3-Dichloropropene	3437 1588396	6568	i	393391	511296		LINE	0.00414	1.52974		 0.9997
55 1,1,2-Trichloroethane	1.73572 2.57315	2.11602	2.10729	2.20625	i	2.50852	 AVRG	 	2.21992;		12.62258
56 Toluene	0.66842	0.76617	0.75694	0.77657 0.77657	0.83539		I IAVRG	 	C.81342		1 12.6534
		 				 		 			-

10259328 Page 40 of 1036

INITIAL CALIBRATION DATA

Start Cal Date : 10-MAR-2014 11:12 |
End Cal Date : 10-MAR-2014 13:55 |
Quant Method : ISTD |
Target Version : 4.14 |
Integrator : HP RTE |
Method file : \\192.168.10.12\chem\10air0.i\031014.b\T015_069-14.m |
Last Edit : 10-Mar-2014 15:12 10air0.i

	0.1000000			1.0000	10.0000	20.0000	I I		Coefficients		%RSD
Compound	Level 1	Level 2	Level 3	Level 4	Level 5	Level 6	Curve	ь	ml	m2	or R^2
	30.0000		i i		!		i i				·
	Level 7		!				11-				
57 Methyl Butyl Ketone	0.79886	0.98284	1.10824	1.15739			1 1		i i		
	1.02552		1				AVRG		0.99697		12.04599
58 Dibromochloromethane	0.65631	0.72831	0.69572	0.71409	0.71635	0.80087					
	0.82481				i		AVRG		. 0.73378		8.05473
59 1,2-Dibromoethane	C.84085	1.01094	0.90439	0.85925					!		
	0.99574		1				AVRG		0.91459		7.72714
60 Tetrachloroethene	0.822 1 2		0.84245	0.89898		1.05913					
	1.11906		1		 		AVRG		0.930461		13.03271
62 Chlorobenzene	0.50523	0.60618	0.61821	0.64675	 0.67014	0.73925	-		!		:
	0.75078						AVRG		0.64808		12.97137
63 Ethyl Benzene	0.29366	0.35681	0.36071	0.36563	0.38461	0.43379	i-				·
-	0.45061		i i		i i		AVRG		0.37797		13.84980
64 m&p-Xvlene	0.39732	C.43584	0,41731	0.44474	0.461941	0.52079					
	0.53456	:	1		I		AVRG		0.45893		11.18805
	i				1		;-		!		

Page 41 of 1036 10259328

INITIAL CALIBRATION DATA

Start Cal Date : 10-MAR-2014 11:12
End Cal Date : 10-MAR-2014 13:55
Quant Method : ISTD
Target Version : 4.14
Integrator : HP RTE
Method file : \\192.168.10.12\chem\10air0.i\031014.b\T015_069-14.m
Last Edit : 10-Mar-2014 15:12 10air0.i

Compound	0.1000000 : Level 1	6.2000000 Level 2		Level 4	-	Level 6	Curve	b	Coefficients ml	m2	%RSD or R'2
	, 30,0000 . Level 7 .		 	:	; !						
65 Styrene	0.60663 0.86457	0.74216		0.70395;	0.73916 	0.84214	I AVRG		: 0.75155.		1 11.4722
66 Bromoform	0.63168 0.83595	0.69876	0.69979		0.70145 _[0.79391	I AVRG		0.72083		9.6753
67 o-Xylene	0.34083 0.54104	0.39974	0.46399	0.43031 	0.45641 (I	0.51734	I LAVRG		0.44138		15.8302
68 1,1,2,2-Tetrachloroethane	0.56698		0.63138	0.66240 0.66240	,				0.68117		 12.89120
69 Isopropyibenzene	0.33492		1	 0.33331 	i		AVRG		0.35472		1 21.4986
70 N-Propylbenzene	0.29999			 0.29155 					0.31073		 8.78360
71 4-Ethyltoluene	0.32813 0.45136		0.35548	0.35663 0.35663	0.37134		I I AVRG		 0.37743		1 11.11434
	_ 			 			 				_

Page 42 of 1036 10259328

Pace Analytical Services, Inc. INITIAL CALIBRATION DATA

Start Cal Date : 10-MAR-2014 11:12
End Cal Date : 10-MAR-2014 13:55
Quant Method : ISTD
Target Version : 4.14
Integrator : HP RTE
Method file : \\192.168.10.12\chem\l0air0.i\031014.b\T015_069-14.m
Last Edit : 10-Mar-2014 15:12 10air0.i

Compound	0.1000000 Level 1	Level 2		Level 4	10.0000 Level 5	20.0000 Level 6	 Curve	b	Coefficients ml	m2	%RSD or R^2
	30.0000 Level 7	, 	1	 	 		. :				
72 1,3,5-Trimethylbenzene	0.27501: 0.44210;			0.36172 	0.39890	0.43913			!	4-1-515555	15.8684
73 Tert-Butyl Benzene	0.32844	C.39182	0.38978	0.39959 	I	0.49927	 AVRG		0.42392		1 15.7432
74 1,2,4-Trimethylbenzene	0.37504	0.363331	0.37042	İ	,	0.48950	(AVRG				14.5533
75 Sec- Butylbenzeme	0.32314	C.34729	0.29641:	0.29648	0.33004	0.37954	I AVRG		0.33857		11.4640
76 1,3-Dichlorobenzene	0.54152 0.81678	0.62747	0.64023	0.65373 	0.68639	0.76267	I I I AVRG		0.67554		1 13.4662
78 Benzyl Chloride	0.53227	0.66443:	0.66856	C.60947	0.525961	0.59022	AVRG I		0.59745		9.4532
79 1,4-Dichicrobenzene	0.47629 0.78511	0.54975i	0.61391	C.65225:				+-			 16.8446
				:					 !		

10259328 Page 43 of 1036

Pace Analytical Services, Inc. INITIAL CALIBRATION DATA

Start Cal Date : 10-MAR-2014 11:12 |
End Cal Date : 10-MAR-2014 13:55 |
Quant Method : ISTD |
Target Version : 4.14 |
Integrator : HP RTE |
Method file : \\192.168.10.12\chem\10air0.i\031014.b\T015_069-14.m |
Last Edit : 10-Mar-2014 15:12 10air0.i

Compound	0.1000000 Level 1		0.5000000 Level 3	1.0000	10.0000 Level 5	20.0000 Level €		b	Coefficients ml	m2	%RSD or R^2
William Control								D	1112	.nz	01 1/2
	33.0000 Level 7	!	1	 							I I
80 p-Tsopropyltoluene	0.38780; 0.46657;		0.47896	C.39454	,		1 1 -				! 8.63958
·*	;						i-		:-		:
81 1,2,3-Trimethylbenzene	0.41106		0.39371	0.38720	0.44142		AVRG		0.43775		11.99626
82 1,2-Dichlorobenzene	0.68073		0.71387	0.70008	0.71775		AVRG		0.73550		5.81761
83 N-Butylbenzene	0.44393		0.52036	0.53521 0.53521	0.43586		:		0.48401		 7.83489
84 1,2,4-Trichlorobenzene	1.23173	1.40298	:.49432	1.48810 1.48810	1.19544		 AVRG		1.33627		
85 Naphthalene	: 0.62669 : ++++	0.78134	0.82725 	0.82692 	0.65341		 AVRG		. C.729961		 12.60993
86 Nexachlorobutadiene	0.62004 +++++	0.65446	0.77172	0.80364 0.80364	1.06793		;- AVRG		, - : C.85004		 26.69204
=======================================	· · · · · · · · · · · · · · · · · · ·						 				

10259328 Page 44 of 1036 Report Date : 11-Mar-2014 14:01

Pace Analytical Services, Inc. INITIAL CALIBRATION DATA

Start Cal Date : 10-MAR-2014 11:12
End Cal Date : 10-MAR-2014 13:55
Quant Method : ISTD : 4.14
Integrator : HP RTE
Method file : \\192.168.10.12\chem\10air0.i\031014.b\T015_069-14.m
Last Edit : 10-Mar-2014 15:12 10air0.i

Compound	Level 1		Level 3	Level 4	10.0000 Level 5	 Curve		Coefficients ml	s m2	%RSD or R^2
	30.0000 Level 7 :	- 	 	 	 	 				
S 28 Hexame-d14(S)	2.02664	2.15313	2.10830 2.10830	2.16193	2.15686			1 2.11000		. 2.6445
S 54 Tolucne-d8 (S)	1.11151 0.9€396		1.06990	1.06759	1.030221	AVRG	. 	1 1.04795		5.2186
\$ 77 1,4-dichlorobenzene-d4 (S)	2.05679		2.25577	2.05607	1.91045	AVRG	 	2.12325		i i 6.1181
										_

Page 45 of 1036 10259328

Data File: \\192.168.10.12\chem\10air0.i\031014.b\06911.D

Report Date: 10-Mar-2014 15:10

Pace Analytical Services, Inc.

RECOVERY REPORT

Client SDG: 031014.b

Fraction: VOA

Operator: JAM

SampleType: LCS Quant Type: ISTD

Client Name:

Sample Matrix: GAS
Lab Smp Id: ICV addl
Level: LOW

Data Type: MS DATA SpikeList File: addn'lcmpds.spk

Sublist File: addtnlICV.sub Method File: \\192.168.10.12\chem\10air0.i\031014.b\T015_069-14.m Misc Info:

SPIKE COMPOUND	CONC ADDED ppbv	CONC RECOVERED ppbv	g RECOVERED	LIMITS
1 Chlorodifluorometh 12 Isopentane 30 Di-isopropyl Ether 34 Ethyl Tert-Butyl E 42 Tert Amyl Methyl E 50 Methylcyclohexane 73 Tert-Butyl Benzene 80 p-Isopropyltoluene 81 1,2,3-Trimethylben	10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0	10.4 10.2 10.9 10.5 9.65 11.0 9.57 11.7	104.24 101.56 108.90 105.42 96.49 109.89 95.69 116.70 109.75	60-140 60-140 60-140 60-140 60-140 60-140 60-140 60-140

SURROGATE COMPOUND	CONC ADDED ppbv	CONC RECOVERED ppbv	g RECOVERED	LIMITS
\$ 28 Hexane-d14(S)	10.0	10.4	104.47	70-130
\$ 54 Toluene-d8 (S)	10.0	10.1	100.61	70-130
\$ 77 1,4-dichlorobenzen	10.0	8.92	89.21	70-130

10259328 Page 297 of 1036 Data File: \\192.168.10.12\chem\10air0.i\031014.b\06912.D

Report Date: 10-Mar-2014 15:08

Pace Analytical Services, Inc.

RECOVERY REPORT

Client Name: Sample Matrix: GAS Lab Smp Id: ICV Level: LOW Client SDG: 031014.b

Fraction: VOA

Operator: JAM SampleType: LCS Quant Type: ISTD

Data Type: MS DATA SpikeList File: SSV_new.spk

Sublist File: all.sub
Method File: \\192.168.10.12\chem\10air0.i\031014.b\T015_069-14.m

Misc Info:

SPIKE COMPOUND	CONC ADDED ppbv	CONC RECOVERED ppbv	g RECOVERED	LIMITS
2 Propylene 3 Dichlorodifluorome 4 Dichlorotetrafluor 5 Chloromethane 6 Vinyl chloride 7 1,3-Butadiene 8 Bromomethane 9 Chloroethane 10 Ethanol 11 Vinyl Bromide 14 Trichlorofluoromet 15 Acetone 16 Isopropyl Alcohol 18 1,1-Dichloroethene 20 Freon 113 21 Methylene chloride 23 Carbon Disulfide 24 trans-1,2-dichloro 25 Methyl Tert Butyl 27 1,1-Dichloroethane 26 Vinyl Acetate 29 Methyl Ethyl Keton 31 n-Hexane 33 cis-1,2-Dichloroet 32 Ethyl Acetate 35 Chloroform 36 Tetrahydrofuran 37 1,1,1-Trichloroeth 38 1,2-Dichloroethane 39 Benzene 40 Carbon tetrachlori 41 Cyclohexane 44 2,2,4-Trimethylpen 45 Heptane 46 1,2-Dichloropropan 47 Trichloroethene 49 Bromodichlorometha 48 1,4-Dioxane			90.34 89.67 79.65 92.67 96.81 94.40 96.73 97.61 135.01 86.10 84.77 100.86 99.77 99.77 97.03 64.61 105.53 89.53 95.52 109.98 101.90 95.41 102.01 97.73 89.62 99.63 89.88 88.95 89.95	GO-140 60-140
51 Methyl Isobutyl Ke 52 cis-1,3-Dichloropr	9.80	10.6	108.26 103.88	60-140

Page 304 of 1036 10259328

Data File: \\192.168.10.12\chem\10air0.i\031014.b\06912.D Report Date: 10-Mar-2014 15:08

SPIKE COMPOUND	CONC ADDED ppbv	CONC RECOVERED ppbv	% RECOVERED	LIMITS
53 trans-1,3-Dichloro 56 Toluene	9.90	8.77 8.96	88.56 86.20	60-140
55 1,1,2-Trichloroeth	9.60	8.26	86.01	60-140
57 Methyl Butyl Keton	9.70	10.4	107.03	60-140
58 Dibromochlorometha	9.30	9.21	99.07	60-140
59 1,2-Dibromoethane	9.60	9.91	103.19	60-14
60 Tetrachloroethene	9.60	9.16	95.38	60-14
62 Chlorobenzene	10.3	9.37	90.94	60-14
63 Ethyl Benzene	9.90	9.18	92.77	60-14
64 m&p-Xylene	20.2	17.5	86.63	60-14
66 Bromoform	9.80	9.70	98.95	60-14
65 Styrene	11.6	11.1	95.77	60-14
67 o-Xylene	9.30	7.89	84.82	60-14
68 1,1,2,2-Tetrachlor 69 Isopropylbenzene	9.30 9.30 8.90	9.25 9.35 9.17	99.48 100.51 103.07	60-14 60-14 60-14
70 N-Propylbenzene 71 4-Ethyltoluene 72 1,3,5-Trimethylben	8.30 9.60	8.64 8.35	104.06 87.01	60-14 60-14
74 1,2,4-Trimethylben	9.00	8.90	98.90	60-14
75 Sec- Butylbenzene	9.40	9.62	102.33	60-14
76 1,3-Dichlorobenzen	10.0	9.23	92.34	60-14
78 Benzyl Chloride	9.80	10.7	109.65	60-14
79 1,4-Dichlorobenzen	9.70	8.94	92.14	60-14
82 1,2-Dichlorobenzen	9.70	9.65	99.45	60-14
83 N-Butylbenzene	9.50	10.5	110.82	60-14
84 1,2,4-Trichloroben	9.10	11.2	122.76	60-14
85 Naphthalene	9.30	11.2	120.29	60-14
86 Hexachlorobutadien	9.10	7.29	80.11	60-14

SURROGATE COMPOUND	CONC ADDED ppbv	CONC RECOVERED ppbv	% RECOVERED	LIMITS
\$ 28 Hexane-d14(S)	10.0	9.56	95.60	70-130
\$ 54 Toluene-d8 (S)	10.0	9.77	97.74	70-130
\$ 77 1,4-dichlorobenzen	10.0	10.5	104.84	70-130

Page 305 of 1036 10259328

5A - FORM V VOA VOLATILE ORGANIC INSTRUMENT PERFORMANCE CHECK BROMOFLUOROBENZENE (BFB)

EPA SAMPLE NO.	
BFB	

Lab Name: Pace Analytical

Contract:

Lab Code:

PASI

Case No.:

SAS No.:

SDG No.: 10259328

Lab File ID: 07101BFB.D

BFB Injection Date: 03/12/2014

Instrument ID: 10AIR0 BFB Injection Time: 11:26

GC Column: J&W DB-5 ID: 0.32 (mm)

		% RELATIVE	
m/e	ION ABUNDANCE CRITERIA	ABUNDANCE	
95	Base Peak, 100% relative abundance	100.00	
50	8.00 - 40.00% of mass 95	20.96	
75	30.00 - 66.00% of mass 95	54.57	
96	5.00 - 9.00% of mass 95	6.47	
173	Less than 2.00% of mass 174	0.96	(1.18)
174	50.00 - 120.00% of mass 95	81.66	
175	4.00 - 9.00% of mass 174	6.09	(7.46)
176	93.00 - 101.00% of mass 174	80.08	(98.07)
177	5.00 - 9.00% of mass 176	5.02	(6.27)

1 - Value is %mass 174 2 - Value is %mass 176

EPA SAMPLE NO.	LAB SAMPLE ID	LAB FILE ID	DATE ANALYZED	TIME ANALYZED
LCS for HBN 289158 [AIR/	1638294	07103_19645.D	03/12/2014	12:31
CCV	CCV	07103.D	03/12/2014	12:31
LCS (LCS)	LCS	07103_LCS.D	03/12/2014	12:31
BLANK for HBN 289158 [AI	1638293	07105_19645.D	03/12/2014	13:49
BLANK	BLANK	07105.D	03/12/2014	13:49
Ambient(1633318DUP)	1638565-DUP	07113.D	03/12/2014	17:40
IA-140-B-16	10259328010	07123.D	03/12/2014	22:32
IA-DUP1-ER-1	10259328007	07124.D	03/12/2014	23:01
IA-002-ER-1	10259328004	07125.D	03/12/2014	23:31
IA-001-ER-1	10259328003	07126.D	03/13/2014	00:00

10259328 Page 717 of 1036

Data File: \\192.168.10.12\chem\10air0.i\031214.b\07103.D

Report Date: 12-Mar-2014 12:01

Pace Analytical Services, Inc.

CONTINUING CALIBRATION COMPOUNDS

Injection Date: 12-MAR-2014 12:31

Instrument ID: 10air0.i Injection Date: 12-MAR-2014 12:31
Lab File ID: 07103.D Init. Cal. Date(s): 10-MAR-2014
Analysis Type: AIR Init. Cal. Times: 11:12
Lab Sample ID: CCV Quant Type: ISTD
Method: \\192.168.10.12\chem\10air0.i\031214.b\T015_069-14.m Init. Cal. Date(s): 10-MAR-2014 10-MAR-2014
Init. Cal. Times: 11:12 13:55
Quant Type: ISTD

1	l	1	CCAI.	MIN			1	MAX	1
COMPOUND	RRF / AMOUNT	RF10							CURVE TYPE
The state of the	==== ====== == 2.04583	1.71863	1.71863			5.99313		30.00000	•
2 Propylene	5.43647	4.743001	4.74300	0.010	-12	2.75579] 3	30.00000	Averaged
3 Dichlorodifluoromethane	0.92694	0.79182	0.79182	0.010	-14	1.57651	3	30.00000	Averaged
4 Dichlorotetrafluoroethane	1.14938	0.99641	0.99641	0.010	-13	3.30893	3	30.00000	Averaged
5 Chloromethane	3.25840	2.79458	2.79458	0.010	-14	1.23462	3	80.00000	Averaged
6 Vinyl chloride	3.25602	2.86612	2.86612	0.010	-11	.97463	3	30.00000	Averaged
7 1,3-Butadiene	4.84187	4.18665	4.18665	0.010	-13	3.53241] 3	30.00000	Averaged
8 Bromomethane	3.14144	2.75160	2.75160	0.010	-12	2.40978] 3	30.00000	Averaged
9 Chloroethane	7.07477	6.16663	6.16663	0.010	-12	2.83632	. 3	30.00000	Averaged
10 Ethanol	9.17462	7.54701	7.54701	0.010	-17	7.74030	1 3	30.00000	Averaged
 11 Vinyl Bromide	3.202521	2.741171	2.74117			1.40570		30.00000	
12 Isopentane	3.22421	3.067991	3.06799			1.84516		30.00000	-
113 Acrolein	14.024241	10.204271	10.20427			7.23836		30.00000	
14 Trichlorofluoromethane	0.889521	0.766921	0.766921			3.78203		30.00000	
115 Acetone	1.918671	1.68060	1.680601	0.010		2.40801		30.00000	
16 Isopropyl Alcohol	1 2,262591	1.85825	1.858251			7.87090		30.00000	
17 Acrylonitrile	6.49661	4.880651	4.880651		. –	1.87385		30.00000	
18 1,1-Dichloroethene	1 2.047491	1.73115	1.731151			5.45018		30.00000	
19 Tert Butyl Alcohol (TBA)	1.39008	1.17746	1.17746			5.29579		30.00000	
20 Freon 113	1.60200	1.41347	1.41347			1.76874		30.00000	· -
21 Methylene chloride	3,10202	2.73071	2.730711			1.97000		30.00000	
22 Allyl Chloride	8.17455	6.25124	6.251241			3.52808		30.00000	_
23 Carbon Disulfide	1.17065	1.02193	1.021931			2.70390		30.00000	
24 trans-1,2-dichloroethene	3.54599	2.84456	2.844561			9.78092		30.00000	
25 Methyl Tert Butyl Ether	1.00829	0.87525	0.87525			3.19444		30.00000	
26 Vinyl Acetate	1.64083	1.16082	1,16082			9.25403		30.00000	-
27 1.1-Dichloroethane	1.67162	1.45243	1.452431			3.11230		30.00000	
\$ 28 Hexane-d14(S)	2.11000	2.12440	2.12440			0.68239		30.00000	
29 Methyl Ethyl Ketone	7.56219	5.90680	5.90680			1.89045		30.00000	
30 Di-isopropyl Ether	1.10882	0.99174	0.99174			0.55908		30.00000	
31 n-Hexane	1 2.21062	1.91924	1.91924			3.18111		30.00000	-
32 Ethyl Acetate	1.73354	1.32905	1.329051			3.33300		30.00000	-
33 cis-1,2-Dichloroethene	3.33210	2.72239	2.722391			3.29799		30.00000	-
34 Ethyl Tert-Butyl Ether	0.94808	0.81231	0.81231			1.32106		30.00000	
135 Chloroform	1.25787	1.06731	1.06731			5.14917		30.00000	-
136 Tetrahydrofuran	I 3.195261	2,72344	2.723441			1.76630		30.00000	
37 1.1.1-Trichloroethane	1 1.09721	0.940331	0.940331			1.29764		30.00000	
38 1,2-Dichlorcethane	1.66769	1.35984	1.359841			3.45985		30.00000	
139 Benzene	1.04478	0.91289	0.912891			2.62318		30.00000	
35 Benzene 48 Carbon tetrachloride	1.13308	0.95237	0.952371			5.94823		30.00000	
41 Cyclohexane	1.13308	2.10417	2.104171			2.80907		30.00000	
41 Cyclomexane 42 Tert Amyl Methyl Ether	0.88875	0.839681	0.839681				•	30.00000	
iez ieic Amyi metnyi Etner	1 0.555/5	0.838681	0.833681	0.010	+ -5	5.52145	1 3	30.00000	Averaged

10259328 Page 725 of 1036 Data File: \\192.168.10.12\chem\10air0.i\031214.b\07103.D

Report Date: 12-Mar-2014 12:01

Pace Analytical Services, Inc.

CONTINUING CALIBRATION COMPOUNDS

	I		CCAL	Į.	١	MAX		
COMPOUND	RRF / AMOUNT	RF10					%D / %DRIFT	· ·
44 2,2,4-Trimethylpentane	0.67258	0.61497	0.61497			8.56543		•
45 Heptane	2.08863	1.75894	1.75894	0.010	l -1	5.78491	30.00000	Average
46 1,2-Dichloropropane	2.83988	2.49950	2.49950	0.010	-1	1.98595	30.00000	Average
47 Trichloroethene	2.33270	1.98344	1.98344	0.010	-1	4.97242	30.00000	Average
48 1,4-Dioxane	4.81538	4.41680	4.41680	0.010	-	8.27729	30.00000	Average
49 Bromodichloromethane	1.12108	0.93049	0.93049	0.010	-1	7.00064	30.00000	Average
50 Methylcyclohexane	4.10367	3.59795	3.59795	0.010	-1	2.32339	30.00000	Average
51 Methyl Isobutyl Ketone	1.57549	1.19620	1.19620	0.010	-2	4.07451	30.00000	Average
52 cis-1,3-Dichloropropene	1.90153	1.41279	1.41279	0.010	-2	5.70256	30.00000	Average
53 trans-1,3-Dichloropropene	[10.00000]	11.83003	1.29764	0.010	1	8.300321	30.00000	Linea
\$ 54 Toluene-d8 (S)	1.04795	1.07305	1.07305	0.200	l	2.39544	30.00000	Average
55 1,1,2-Trichloroethane	1 2,219921	2.02772	2.02772			8.65778		-
56 Toluene	0.81342	0.73695	0.73695			9.40168		-
57 Methyl Butyl Ketone	0.99697	0.70902	0.70902			8.88288		-
58 Dibromochloromethane	0.73378	0.56289	0.562891			3.28953		_
59 1,2-Dibromoethane	0.91459	0.66738	0.66738			7.02909		-
60 Tetrachiorpethene	0.930461	0.76930	0.769301			7.32003		
52 Chlorobenzene	0.648081	0.54028	0.54028			6.63394		
63 Ethyl Benzene	1 0.377971	0.30075	0.30075			0.43056		
64 m&p-Xylene	0.458931	0.36348	0.363481			0.79814		
55 Styrene	0.75155	0.58777	0.58777			1.79210		
66 Bromoform	0.72083	0.55624	0.55624			2.83282		
67 o-Xylene	0.441381	0.362621	0.362621			7.943931		-
68 1,1,2,2-Tetrachloroethane	0.68117	0.56436	0.564361			7.14873		
69 Isopropylbenzene	0.354721	0.28596	0.28596			9.38580		-
70 N-Propylbenzene	0.310731	0.24608	0.246081			0.80384		-
70 N-Ficpysbenzene 71 4-Ethyltoluene	0.37743	0.299471	0.299471			0.65507		
71 4-Ethyltoluene 72 1,3,5-Trimethylbenzene	0.37743	0.321121	0.32112					-
						3.93209		
73 Tert-Butyl Benzene	0.42392	0.35545	0.35545			6.15188		
74 1,2,4-Trimethylbenzene	0.41658	0.34132	0.34132			8.06515		_
75 Sec- Butylbenzene	0.33857	0.26509	0.26509			1.70411		
76 1,3-Dichlorobenzene	0.67554	0.55119	0.55119			8.40801		
\$ 77 1,4-dichlorobenzene-d4 (S)	2.12325	2.33284	2.33284			9.87102		
78 Benzyl Chloride	0.59745	0.41095	0.41095			1.21545		
79 1,4-Dichlorobenzene	0.64344	0.54903	0.54903			4.67186		
80 p-Isopropyltoluene	0.42738	0.31866	0.31866			5.43747		-
81 1,2,3-Trimethylbenzene	0.43775	0.35225	0.35225		-	9.53176		-
82 1,2-Dichlorobenzene	0.73550	0.56661	0.56661			2.96269		-
83 N-Butylbenzene	0.48401	0.33283	0.33283			1.23431		_
84 1,2,4-Trichlorobenzene	1.33827	0.88836	0.88836			3.61893		
85 Naphthalene	0.72996	0.49437	0.49437		•	2.27456 4.98478		
86 Hexachlorobutadiene	0.850041	0.807661	0.80766				30,00000	

10259328 Page 726 of 1036

5A - FORM V VOA VOLATILE ORGANIC INSTRUMENT PERFORMANCE CHECK BROMOFLUOROBENZENE (BFB)

EPA SAMPLE NO. **BFB**

Lab Name: Pace Analytical

Contract:

Lab Code:

PASI

Case No.:

SAS No.:

SDG No.: 10259328

Lab File ID: 07108BFB.D

BFB Injection Date: 03/12/2014

BFB Injection Time: 14:08

Instrument ID: 10AIRD

GC Column: J&W DB-5

ID: 0.32

(mm)

		% RELATIVE	
m/e	ION ABUNDANCE CRITERIA	ABUNDANCE	
95	Base Peak, 100% relative abundance	100.00	
50	8.00 - 40.00% of mass 95	18.00	
75	30.00 - 66.00% of mass 95	57.87	
96	5.00 - 9.00% of mass 95	6.44	
173	Less than 2.00% of mass 174	0.00	(0.00)
174	50.00 - 120.00% of mass 95	94.75	
175	4.00 - 9.00% of mass 174	7.31	(7.71)
176	93.00 - 101.00% of mass 174	92.10	(97.21)
177	5.00 - 9.00% of mass 176	5.49	(5.96)

1 - Value is %mass 174

2 - Value is %mass 176

	EPA SAMPLE NO.	LAB SAMPLE ID	LAB FILE ID	DATE ANALYZED	TIME ANALYZED
1	CAL1	CAL1	07109.D	03/12/2014	14:36
2	CAL2	CAL2	07110.D	03/12/2014	15:04
3	CAL3	CAL3	07111.D	03/12/2014	15:32
4	CAL4	CAL4	07112.D	03/12/2014	15:59
5	CAL5	CAL5	07113.D	03/12/2014	16:27
6	CAL6	CAL6	07114.D	03/12/2014	16:56
7	ICVADD (LCS)	ICVADD	07116.D	03/12/2014	17:51
8	ICV (LCS)	ICV	07117.D	03/12/2014	18:19
9	LCS for HBN 289212 [AIR/	1638489	07118L.D	03/12/2014	18:46
10	BLANK for HBN 289212 [AI	1638488	07121L.D	03/12/2014	20:09
11	IA-002-PB-1	10259328002	07122.D	03/12/2014	20:38
12	IA-093X-A-16	10259328008	07126.D	03/12/2014	22:31
13	IA-117X-A-16	10259328009	07127.D	03/12/2014	23:01
14	IA-003-ER-1	10259328005	07128.D	03/12/2014	23:31
15	IA-001-PB-1	10259328001	07131.D	03/13/2014	00:54
16	IA-DUP1-PB-1	10259328006	07132.D	03/13/2014	01:23

Pace Analytical Services, Inc.

INITIAL CALIBRATION DATA

Start Cal Date : 12-MAR-2014 14:36
End Cal Date : 12-MAR-2014 16:56
Quant Method : ISTD
Target Version : 4.14
Integrator : HP RTE
Method file : \\192.168.10.12\chem\10airD.i\031214.b\T015_071-14.m
Last Edit : 13-Mar-2014 11:19 ahamilton

Calibration File Names:

		ton title numes.
Level	1:	\\192.168.10.12\chem\10airD.i\031214.b\07109.d
		\\192.168.10.12\chem\10airD.i\031214.b\07110.d
Level	3:	\\192.168.10.12\chem\10airD.i\031214.b\07111.d
Level	4:	\\192.168.10.12\chem\10airD.i\031214.b\07112.d
Level	5:	\\192.168.10.12\chem\10airD.i\031214.b\07113.d
Level	6:	\\192.168.10.12\chem\10airD.i\031214.b\07114.d

,-		(C.20000000	1.0000 :	10.0000	20.0000	36,0000	<u> </u>	oefficients		_	₹RSD
1	Compound	- 1	Level 1	Level 2	Level 3	Level 4	Level 5	Level 6 Curve	ь	m1	m2	1	or R^2
==		== ==										= ==	
1	1 Chlorodifluoromethane	- 1	1.84707	2.20998	2.08707	2.38311	2.65662	2.59098 AVRG	1	2.29581		1	13.45696
1	2 Propylene	- 1	8.30420	10.33282	9.03483	7.10137	7.428451	6.97995 AVRG	1	8.19694!		1	15.95078
1	3 Dichlorodifluoromethane	- 1	1.11783	1.07868	1.10555	0.92829	1.04706	1.16498 AVRG	1	1.07373		1	7.58585
1	4 Dichlorotetrafluoroethame	- 1	1.13666	1.26817	1.26495	1.09100	1.22570	1.20808 AVRG :	1	1.19909		1	5.95336
1	5 Chloremethane	- 1	3.99438	4.61963	4.18383	3.64123	3.99128	3.89205 AVRG	1	4.05373		1	8.11362
1	€ Vinyl chloride	1	3.89964	4.888401	4.60996	3.92104	4.19250	4.07899 AVRG	1	4.265091		1	9.37421
1	7 1,3-Butadiene	i	5.84568	7.723971	7.53790	6.27815	6.73700	6.57185 AVRG	1	6.78243		1	10.70426
ì	3 Bromomethane	i	3.85140	3.70757	3.80127	3.16512	3.377921	3.22720 AVRG	1	3.52176		1	8.57516
1	9 Chloroethane		9.589891	9.74752	9.91081	8.42077	8.98106	8.83494[AVRG	1	9.24750		1	6.36433
1	10 Ethanol		3.89796	5.82756	9.93536	7.64804;	8.49662	8.16434[AVRG	1	7.32832		1	29.25557
1	11 Vinyl Bromide		3.81895	3.73543	3.90216	3.21578	3.35402	3.28417 AVRG	1	3.55175		i	8.46051
1	12 Isopentane		4.15019	5.61721	5.08509	4.26655	4.60957	4.50317 AVRG	1	4.705301		i	11.74291
1	13 Trichlorofluoromethane		0.978601	1.05490	1.05080	0.90657	1.02263	1.04827[AVRG	1	1.01030		1	5.76965
1	14 Acrolein		11.00155	19.36844	11.84109	12.78597	13.21486	12.77064 AVRG	1	13.49709		1	22.11707
1_						·						_l_	

Page 334 of 1036 10259328

Pace Analytical Services, Inc.

INITIAL CALIBRATION DATA

Start Cal Date : 12-MAR-2014 14:36
End Cal Date : 12-MAR-2014 16:56
Quant Method : ISTD
Target Version : 4.14
Integrator : + PRTE
Method file : \\192.168.10.12\chem\10airD.i\031214.b\T015_071-14.m
Last Edit : 13-Mar-2014 11:19 ahamilton

1			C.1000000	0.2000000	1.0000	10.0000	20.0000	36.0000	Co	efficients		1	%RSD
I	Compound	. i	Level 1	Level 2	Level 3	Level 4	Level 5	%cvcl 6 Curve	b	m1	m 2		or R^2
-	15 Acetone	- : -	12855	17620	59374 !	385066	821697	1299436 LINR	-0.03985	2.45705		-	0.99952
	16 lserropyl Alcohol		25221	6197	273701	348129	7100451	1181465 LINR	0.00546	2.68998		1	0.99781
	17 1,1-Dichloroethene		2.896631	2.832€1.	2.53167	2.13799	2.43318	2.38891 AVRG	1	2.53683		i	11.26954)
	18 Tert Butyl Alcohol		2.01544	2.01355.	1.97750	1.60447	1.85244	1.69899 AVRG		1.86040		1	9.39724
i	19 Acrylonitrile	1	798.	1962	110271	157583	326134	544552 LINR	0.01435	5.82725		1	0.99787
ı	20 Freon 113	i	1.81592	1.81395.	1.868001	1.62128	1.729761	1.65941 AVRG	1	1.75138		1	5.56711
I	21 Methylene chloride	1	+-+++ :	11007:	370261	271086	6016131	948282 LINR	-0.02453;	3.35108		1	0.999761
l	22 Allyi Chioride	- 1	12.56010	9.992431	9.29961	8.09682	7.863€3	7.60875 AVRG	1	9.23689		1	20.22778
1	23 Carbon Disulfide	1	1.21729	1.27786	1.37447	1.21500	1.17409	1.16213 AVRG	1	1.23681		i	6.36660
1	24 trans-1,2-dichloroethene	- 1	2193:	4083	20952	267742	598892	914376 LINR	C.00097j	3.40156		1	0.99980
1	25 Methyl Tert Butyl Ether	1	5391	11416	58411	735328	1636774	2492668 LINR	-0.00092	1.24721		i	0.99973
	26 Vinyl Acetate	- 1	3994;	8348	440401	559546	1246062	1921527 LINR	0.00314	1.62242		1	0.99988
	27 1,1-Dichloroethane	- 1	2.43951	2.35852	2.23621	1.96824	2.06167	2.07531 AVRG	1	2.18991		1	8.45938
	29 Methyl Ethyl Ketone	- 1	8.61264	10.67807	9.92530	0.86593	8.41578	8.57651 AVRG	1	9.17904		1	9.94729
	30 n-Hexane	- 1	3.37310	3.48926	3.7223€	3.14871	3.07110	3.21794 AVRG	1	3.33708		1	7.25803
	31 Di-isopropyl Ether	- 1	1.64274	1.81782	1.69669	1.46101:	1.42911	1.38956 AVRG	1	1.57282		1	10.90150
	32 cis-1,2-Dichloroethene	- 1	2137	3858!	19949	274310	578513	947258 LINR	0.01062	3.33737		i	0.99876
	33 Ethyl Acetate	- 1	3824	7381	38812	4958961	1038850	1706192 LINR	C.00822	1.85579		1	0.99861
	34 Chloroform	- 1	1.37666	1.42703	1.45533	1.24153	1.35690	1.33504 AVRG	i	1.36541		İ	5.51478
	35 Ethyl Tert-Butyl Ether	- 1	5101	11163	56108	689344:	1498577	2432017 LINR	0.01121	1.29833		1	0.99925
	36 Tetrahydrofuran	1	5.269971	7.17005	6.09059	4.46509;	4.75097	4.29754 AVRG	1	5.34070		1	20.70947
1	37 1,1,1-Trichloroethane	- 1	1.50495	1.40673	1.38469	1.11945	1.25944	1.25609 AVRG	i i	1.32189		1	10.36522
1		1	1	1	1		1	1 1	1	1		1	1

10259328 Page 335 of 1036

Pace Analytical Services, Inc.

INITIAL CALIBRATION DATA

Start Cal Date : 12-MAR-2014 14:36
End Cal Date : 12-MAR-2014 16:56
Quant Method : ISTD
Target Version : 4.14
Integrator : HP RTE
Method file : \\192.168.10.12\chem\10airD.i\031214.b\T015_071-14.m
Last Edit : 13-Mar-2014 11:19 ahamilton

	(.1000000	C.2000000	1.0000	10.0000	20.0000	30.0000	Co	efficients		T	%RSD
Compound	 	Level 1	Level 2	Level 3	Level 4	Level 5	Level 6 Curve	b	ml	m2		or R^2
38 1,2-Dichloroethane		1.96892	2.01016	1.97100	1.69113	1.87298	1.88399 AVRG		1.89970:			6.07242
39 Benzene	1	1.43681;	1.55608	1.46339	1.12407	1.19846	1.12510 AVRG		1.31732			14.44489
40 Carbon tetrachloride		1.31309	1.38980	1.376721	1.10581	1.28897	1.32943 AVRG		1.30064			7.90208
41 Cyclohexane	- 1	1838	3775	229621	303249	634718	1021012 LINR	0.00424	3.08391:			0.99907
42 Tert Amyl Mothyl Ether	- 1	17758	24679	68807	755422	1603988	2554497 LINR	-0.01200	1.23815)			0.99944
44 2,2,4-Trimethylpentane	1	72241	14397	771931	963317	1984213	3297749 LINR	0.007531	0.96317			0.99800
45 Heptane	- 1	2778	4463	24577	341314	7176421	1123468 LINR	-0.00219	2.78458		1	0.99927
46 1,2-Dichloropropane	- 1	1934	4268	202701	275121	582731	942091 LINR	0.00746	3.346451		1	0.99912
47 Trichloroethene	- 1	3.56455	3.49608	3.46217	2.62209	2.74872	2.67422 AVRG	1	3.09464		1	14.71455
48 Bromodichloromethane	- 1	1.35196	1.32439	1.34149	1.07629	1.16319	1.18352 AVRG	i i	1.24014		1	9.25368
49 1,4-Dioxane	- 1	7.06505	8.16071	7.47531	5.51964	5.64036	5.41685 AVRG	. 1	6.54632		1	17.93051
50 Methylcyclohexane	- 1	1065	2517:	13234	165262	372185	578677 LINR	0.00739	5.39751		1	0.99996
51 Methyl Isobutyl Ketone	- 1	2926	64311	36497	502300	1073067	1712543 LINR	0.00711	1.83404		i	0.99943
52 cis-1,3-Dichloropropene	- 1	3361	7460:	35563	496474	1064359	1720174 LINR	0.01066	1.93165		1	0.99924
53 trans-1,3-Dichloropropene	- 1	3833	6222	3814€	572995	12171891	1863188 LINR	-0.00355	1.66787		1	0.99912
55 Toluene	- 1	80891	15225	76878	1049359	23077641	3573128 LINR	0.00329	0.87292		1	0.99980
56 1,1,2-Trichloroethane	- 1	2.79977	3.26220	3.10938	2.34994	2.41284]	2.35750 AVRG	1	2.71527		1	14.86457
57 Methyl Butyl Ketone	- 1	3115	5648	36044	510936	10767021	1686729 LINR	0.01333	0.99805		i.	0.99982
58 Dibromochloromethane	- 1	5079	10721:	52406	733694	1495682	2389620 LINR	C.01047	0.70854		1	0.99932
59 1,2-Dibromoschane	1	1.03870	0.98439	0.98233	0.91122	0.799941	0.76810 AVRG	1	0.89744		1	13.03189,
60 Tetrachloroethene	1	1.09891	1.11322	1.08591	0.91076	0.86975	0.84570 AVRG	1	0.98738		1	12.63046
62 Chlorobenuene	- 1	0.79863	0.83831	0.81353	0.674091	0.64687	0.63561 AVRG		0.73451		1	12.514023
	1	1		1	1	1	1				1	

10259328 Page 336 of 1036

Pace Analytical Services, Inc. INITIAL CALIBRATION DATA

Start Cal Date : 12-MAR-2014 14:36
End Cal Date : 12-MAR-2014 16:56
Quant Method : ISTD : 4.14
Integrator : 4.14
HP RTE
Method file : \\192.168.10.12\chem\10airD.i\031214.b\T015_071-14.m
Last Edit : 13-Mar-2014 11:19 ahamilton

1		(.10000000	0.2000000	1.0000	10.0000	20.0000	30.0000	Co	efficients		%RSD
1	Compound	 	Level 1	Level 2	Level 3	Level 4	Level 5	Level 6 Curve:	b	ml	m2	or R^2 !
1	63 Ethyl Benzene		8798	16706	102814	1402365.	3086160	4707341 LINR	0.01331	0.35534	·	0.99993
į.	64 m&p-Xylene	- 1	6914+	14151	81094:	1120347	23559021	3705219 LINR	0.01289	0.45498	:	0.99976
	65 Bromoform	1	5717	10782	56975	859792;	18427921	28C7865 LINR	0.00977	0.59533		0.999931
1	66 Styrene	1	3983.	81.38	51055:	7878721	1655243[2606991 LINR	0.01655	C.64594	1	0.99972
1	67 o-Xylene	1	7548.	14271;	857341	1188529	2456161	3804048 LINR	0.005401	C.44165	1	0.999831
1	68 1,1,2,2-Tetrachloroethane	:	0.81657	0.89467	0.81911;	0.63587	0.64088	0.62524 AVRG	i	0.73873	i	16.00246
1	69 Isopropylbenzene	1	10320	19216	103260	1451853	3084217	4734953 LINR	0.008181	0.353991	1	0.9999€
1	7C N-Propylbenzene		104471	20932	124461	1825752	3803407	5981173 LINR	0.01285	0.28167:	i	0.99973
1	71 4-Ethyltoluene		+++++	0.60445	0.48867	0.36975	0.37197	0.35774 AVRG		0.43852	i	24.383351
1	72 1,3,5-Trimethylbenzene	1	6564	14286	88734	1224789	2573268)	4C72O84 LINR	0.01494	0.41449	i	0.99965
1	73 Tert-Butyl Benzene	- 1	5720	12925	79033	1126494	2356681	3694867 LINE	0.013341	0.455681	i	0.999801
1	74 1,2,4-Trimethylbenzene	- 1	6901	14815	84216	1217443	2540474	3980669 LINR	0.011671	0.422951	i	0.99978!
1	75 1,3-Dichlorobenzene	-1	++++-	0.98955	0.86971	0.65511	0.65965	0.64347[AVRG	i	0.763501	ï	20.63877
1	76 Sec- Butylbenzene	- 1	8233	18059	115499	16549941	3497609	5384553 LINR :	0.009761	0.311271	1	0.99995;
-	78 Benzyl Chloride	- 1	5460	10465	603BC	1025289!	2189893	3464827 QUAD	-0.02466	1.939921	0.04094	0.99985
1	79 1,4-Dichloropenzene	- 1	++++-	0.94318!	0.89739	0.67009	0.67251	0.65124 AVRG	i	C.76688		18.41364
1	80 p-Isopropyltoluene	- 1	+++++	0.69177	0.52105	0.41954	0.40475	0.40421 AVRG	i i	0.488261	1	25.343661
1	81 1,2,3-Trimethylbenzene	- 1	6736	14961	80603	1109030	2388977	3649308 LINR	0.00934	0.45871	i	0.99997
1	82 1,2-Dichlorobenzene	- 1	4490:	8618	46991	696705.	1453901	2352537 LINR	0.02065	0.72091!	i	0.99901
1	83 N=Butylbenzene	- 1	63311	15037;	94132	1364510	2885118	4413147 LINR	0.00842	0.37915	i	0.999931
1	84 1,2,4-Trichlorobenzene	- 1	3603.	71.24 (37327	615589	1357627	2122357 QUAD	-0.01725	1.19155	0.025761	0.999941
1	85 Naphthalene	1	4793:	8364	57643,	9607821	2102178	34574551QUAD	-0.01833	1.72712	0.11020	0.99980
1_		_1_					1	I I	1	1	1	i

10259328 Page 337 of 1036 Report Date : 13-Mar-2014 11:19

Pace Analytical Services, Inc.

INITIAL CALIBRATION DATA

Start Cal Date : 12-MAR-2014 14:36
End Cal Date : 12-MAR-2014 16:56
Quant Method : ISTD : 4.14
Integrator : 4.14
End Cal Date : \\192.168.10.12\chem\10airD.i\031214.b\T015_071-14.m
Last Edit : 13-Mar-2014 11:19 ahamilton

	i	0.10000000	0.2000000	1.0000	10.0000	20.0000	30.0000	ī	Coet	fficients		1	%RSD
Compound	- 1	Level 1	Level 2	level 3				- 1		m1	m2		or R^2 :
86 Hexachiorobutadiene	== : =	46671	86621	46156	621041	12881781	20061151LINR			0.83912		-!	0.999831
====================================			========		=========					U.USJ.2			
S 28 Hexane-d14(S)		2.48646	2.25498	2.26576;	2.45626	2.27358	2.47599 AVRG	1	1	2.36864			4.83610;
\$ 54 Toluene-d8 (S)		1.18425	1.16663	1.19488	1.14030	1.14662	1.19130 AVRG	1	1	1.17066		i	1.98980
\$ 77 1,4+dichlcrobenzene-d4 (S)		1.99059	1.94186	1.85306	1.94464	1.81821	1.80511 AVRG	i	1	1.89225		1	4.05846;
	;						I	بصداد					!

10259328 Page 338 of 1036 Data File: \\192.168.10.12\chem\10airD.i\031214.b\07116.d

Report Date: 13-Mar-2014 11:20

Pace Analytical Services, Inc.

RECOVERY REPORT

Client Name:

Client SDG: 031214.b

Sample Matrix: GAS Lab Smp Id: ICVadd Level: LOW

Fraction: VOA

Operator: AH2

SampleType: LCS Quant Type: ISTD

Data Type: MS DATA SpikeList File: addcmpds.spk

Sublist File: add.sub Method File: \\192.168.10.12\chem\10airD.i\031214.b\T015_071-14.m

Misc Info:

SPIKE COMPOUND	CONC ADDED ppbv	CONC RECOVERED ppbv	RECOVERED	LIMITS
1 Chlorodifluorometh 12 Isopentane 31 Di-isopropyl Ether 35 Ethyl Tert-Butyl E 42 Tert Amyl Methyl E 50 Methylcyclohexane 73 Tert-Butyl Benzene 80 p-Isopropyltoluene 81 1,2,3-Trimethylben	10.0 10.0 10.0 10.0 10.0 10.0 10.0	8.70 10.3 10.1 10.0 9.77 9.73 8.22 11.2 9.93	87.02 103.00 101.40 100.60 97.74 97.34 82.18 112.55	60-140 60-140 60-140 60-140 60-140 60-140 60-140 60-140

SURROGATE COMPOUND	CONC ADDED ppbv	CONC RECOVERED ppbv	% RECOVERED	LIMITS
\$ 28 Hexane-d14(S)	10.0	9.68	96.80	70-130
\$ 54 Toluene-d8 (S)	10.0	10.0	100.38	70-130
\$ 77 1,4-dichlorobenzen	10.0	9.15	91.53	70-130

10259328 Page 686 of 1036 Data File: $\192.168.10.12\chem\10airD.i\031214.b\07117.d$ Report Date: 17-Mar-2014 10:06

Pace Analytical Services, Inc.

RECOVERY REPORT

Client SDG: 031214.b

Fraction: VOA Operator: AH2

SampleType: LCS Quant Type: ISTD

Client Name: Sample Matrix: GAS Lab Smp Id: ICV Level: LOW

Data Type: MS DATA SpikeList File: SSV new.spk

Sublist File: all.sub Method File: \\192.168.10.12\chem\10airD.i\031214.b\T015_071-14.m

Misc Info:

SPIKE COMPOUND	CONC ADDED ppbv	CONC RECOVERED ppbv	RECOVERED	LIMITS
2 Propylene 3 Dichlorodifluorome 4 Dichlorotetrafluor 5 Chloromethane 6 Vinyl chloride 7 1,3-Butadiene 8 Bromomethane 9 Chloroethane 10 Ethanol 11 Vinyl Bromide 13 Trichlorofluoromet 15 Acetone 16 Isopropyl Alcohol 17 1,1-Dichloroethene 20 Freon 113 21 Methylene chloride 23 Carbon Disulfide 24 trans-1,2-dichloro 25 Methyl Tert Butyl 27 1,1-Dichloroethane 26 Vinyl Acetate 29 Methyl Ethyl Keton 30 n-Hexane 32 cis-1,2-Dichloroet 33 Ethyl Acetate 34 Chloroform 36 Tetrahydrofuran 37 1,1,1-Trichloroeth 38 1,2-Dichloroethane 39 Benzene 40 Carbon tetrachlori 41 Cyclohexane 44 2,2,4-Trimethylpen 45 Heptane 46 1,2-Dichloropropan 47 Trichloroethene	10.6 9.60 11.0 10.8 9.60 9.90 7.20 7.60 7.90 9.70 9.40 10.2 11.5 9.30 9.90 10.0 10.2 10.3 10.2 10.1 10.7 10.9 10.8 9.90 11.0 10.5 10.5	10.4 9.94 9.06 10.3 9.74 9.87 7.50 7.68 8.66 9.74 9.72 9.72 9.78 10.5 8.92 6.36 9.24 8.44 10.7 9.13 10.5 9.63 9.38 9.31 10.6 10.9 9.40 9.40	97.86 103.50 82.41 95.03 101.52 99.69 104.22 101.03 109.58 101.62 98.04 100.28 95.87 118.88 112.61 90.14 63.66 90.59 87.96 105.25 88.64 102.87 95.33 92.89 87.04 95.30 106.96 102.94 98.72 103.15 97.93 90.25 91.23 88.18 113.17	60-140 60-140
48 Bromodichlorometha 49 1,4-Dioxane 51 Methyl Isobutyl Ke 52 cis-1,3-Dichloropr	9.80 9.70 9.80 11.6	10.7 10.2 9.63 10.3	109.49 105.60 98.32 88.58	60-140 60-140 60-140 60-140

10259328 Page 696 of 1036

Data File: $\192.168.10.12\chem\10airD.i\031214.b\07117.d$ Report Date: $17-Mar-2014\ 10:06$

SPIKE COMPOUND	CONC ADDED	CONC RECOVERED	% RECOVERED	LIMITS
	ppbv	ppbv		
53 trans-1,3-Dichloro	9.90	8.55	86.33	60-140
55 Toluene	10.4	8.97	86.21	60-140
56 1,1,2-Trichloroeth	9.60	9.45	98.41	60-140
57 Methyl Butyl Keton	9.70	8.61	88.77	60-140
58 Dibromochlorometha	9.30	8.53	91.70	60-140
59 1,2-Dibromoethane	9.60	9.57	99.72	60-140
60 Tetrachloroethene	9.60	9.69	100.92	60-140
62 Chlorobenzene	10.3	9.70	94.13	60-140
63 Ethyl Benzene	9.90	8.70	87.89	60-140
64 m&p-Xylene	20.2	17.8	88.21	60-140
65 Bromoform	9.80	8.89	90.74	60-140
66 Styrene	11.6	9.82	84.63	60-140
67 o-Xylene	9.30	7.72	82.96	60-140
68 1,1,2,2-Tetrachlor	9.30	9.91	106.57	60-140
69 Isopropylbenzene	9.30	8.81	94.76	60-140
70 N-Propylbenzene	8.90	8.26	92.81	60-140
71 4-Ethyltoluene	8.30	8.94	107.73	60-140
72 1,3,5-Trimethylben	9.60	8.22	85.58	60-140
74 1,2,4-Trimethylben	9.00	7.86	87.38	60-140
76 Sec- Butylbenzene	9.40	8.48	90.28	60-140
75 1,3-Dichlorobenzen	10.0	9.45	94.49	60-140
78 Benzyl Chloride	9.80	8.32	84.87	60-140
79 1,4-Dichlorobenzen	9.70	9.35	96.36	60-140
82 1,2-Dichlorobenzen	9.70	8.26	85.12	60-140
83 N-Butylbenzene	9.50	8.19	86.19	60-140
84 1,2,4-Trichloroben	9.10	7.54	82.85	60-140
85 Naphthalene	9.30	7.89	84.84	60-140
86 Hexachlorobutadien	9.10	7.04	77.38	60-140
	l	l		i

SURROGATE COMPOUND	CONC ADDED ppbv	CONC RECOVERED ppbv	% RECOVERED	LIMITS
\$ 28 Hexane-d14(S)	10.0	10.5	105.45	70-130
\$ 54 Toluene-d8 (S)	10.0	10.0	100.22	70-130
\$ 77 1,4-dichlorobenzen	10.0	10.1	101.49	70-130

10259328 Page 697 of 1036

Project:

MRC SV/IAQ Study Feb 2014

Pace Project No.:

10259328

QC Batch:

AIR/19645

Analysis Method:

TO-15

QC Batch Method: TO-15

Analysis Description:

TO15 MSV AIR Low Level

Associated Lab Samples:

10259328003, 10259328004, 10259328007, 10259328010

METHOD BLANK: 1638293

Matrix: Air

Associated Lab Samples:

 $10259328003,\,10259328004,\,10259328007,\,10259328010$

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
1,1,1-Trichloroethane	ug/m3	ND ND	1.1	03/12/14 13:49	
1,1,2-Trichloroethane	ug/m3	ND	0.55	03/12/14 13:49	
1,1-Dichloroethane	ug/m3	ND	0.82	03/12/14 13:49	
1,1-Dichloroethene	ug/m3	ND	0.81	03/12/14 13:49	
1,2,3-Trimethylbenzene	ug/m3	· ND	0.20	03/12/14 13:49	
1,2,4-Trichlorobenzene	ug/m3	ND	1.5	03/12/14 13:49	
1,2,4-Trimethylbenzene	ug/m3	ND	1.0	03/12/14 13:49	
1,2-Dichloroethane	ug/m3	ND	0.41	03/12/14 13:49	
1,3,5-Trimethylbenzene	ug/m3	ND	1.0	03/12/14 13:49	
Benzene	ug/m3	ND	0.32	03/12/14 13:49	
Carbon tetrachloride	ug/m3	ND	0.64	03/12/14 13:49	
Chlorodifluoromethane	ug/m3	ND	0.20	03/12/14 13:49	
Chloroform	ug/m3	ND	0.99	03/12/14 13:49	
cis-1,2-Dichloroethene	ug/m3	ND	0.81	03/12/14 13:49	
Dichlorodifluoromethane	ug/m3	· ND	1.0	03/12/14 13:49	
Ethylbenzene	ug/m3	ND	0.88	03/12/14 13:49	
m&p-Xylene	ug/m3	ND	1.8	03/12/14 13:49	
Methyl-tert-butyl ether	ug/m3	ND	0.73	03/12/14 13:49	
Methylene Chloride	ug/m3	ND	0.71	03/12/14 13:49	
Naphthalene	ug/m3	ND	1.1	03/12/14 13:49	
o-Xylene	ug/m3	ND	0.88	03/12/14 13:49	
Tetrachloroethene	ug/m3	ND	0.69	03/12/14 13:49	
Toluene	ug/m3	ND	0.77	03/12/14 13:49	
trans-1,2-Dichloroethene	ug/m3	ND	0.81	03/12/14 13:49	
Trichloroethene	ug/m3	ND	0.55	03/12/14 13:49	
Vinyl chloride	ug/m3	ND	0.26	03/12/14 13:49	

LABORATORY CONTROL SAM	PLE: 1638294				
		Spike	LCS	LCS	% Rec
Parameter	Units	Conc.	Result	% Rec	Limits Qualifiers
1,1,1-Trichloroethane	ug/m3	55.5	64.7	117	72-128
1,1,2-Trichloroethane	ug/m3	55.5	60.7	109	72-130
1,1-Dichloroethane	ug/m3	41.2	47.4	115	68-128
1,1-Dichloroethene	ug/m3	40.3	47.7	118	68-130
1,2,3-Trimethylbenzene	ug/m3	50	62.1	124	60-140
1,2,4-Trichlorobenzene	ug/m3	75.5	114	151	30-150 CH,L3
1,2,4-Trimethylbenzene	ug/m3	50	61.0	122	71-140
1,2-Dichloroethane	ug/m3	41.2	50.5	123	71-132
1,3,5-Trimethylbenzene	ug/m3	50	58.1	116	73-136
Benzene	ug/m3	32.5	37.2	114	69-134
Carbon tetrachloride	ug/m3	64	76.1	119	66-134

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

Date: 03/17/2014 03:34 PM

10259328

Project:

MRC SV/IAQ Study Feb 2014

Pace Project No.:

10259328

ABORATORY CONTROL SAMPLE:	1638294					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
orodifluoromethane	ug/m3	36	42.8	119	60-140	
roform	ug/m3	49.7	58.5	118	72-127	
2-Dichloroethene	ug/m3	40.3	49.3	122	71-135	
lorodifluoromethane	ug/m3	50.3	58.8	117	69-125	
rlbenzene	ug/m3	44.2	55.5	126	73-139	
-Xylene	ug/m3	44.2	55.7	126	73-139	
yl-tert-butyl ether	ug/m3	36.7	42.2	115	72-132	
lene Chloride	ug/m3	35.3	40.1	114	64-134	
halene	ug/m3	53.3	78.7	148	61-150 (CH
ene	ug/m3	44.2	53.7	122	71-138	
chloroethene	ug/m3	69	83.4	121	69-136	
ene	ug/m3	38.3	42.3	110	67-133	
-1,2-Dichloroethene	ug/m3	40.3	50.2	125	70-131	
oroethene	ug/m3	54.6	64.2	118	70-135	
chloride	ug/m3	26	29.5	114	69-132	

_		10259301010	Dup		Max	
Parameter	Units	Result	Result	RPD	RPD	Qualifiers
1,1,1-Trichloroethane	ug/m3	ND	ND		25	
1,1,2-Trichloroethane	ug/m3	ND	ND		25	
1,1-Dichloroethane	ug/m3	ND	ND		25	
1,1-Dichloroethene	ug/m3	ND	ND		25	
1,2,3-Trimethylbenzene	ug/m3	3.1	3.1	.7	25	
1,2,4-Trichlorobenzene	ug/m3	ND	ND		25	
1,2,4-Trimethylbenzene	ug/m3	9.6	10.1	5	25	
1,2-Dichloroethane	ug/m3	4.1	4.4	8	25	
1,3,5-Trimethylbenzene	ug/m3	ND	2.9		25	
Benzene	ug/m3	25.6	28.0	9	25	
Carbon tetrachloride	ug/m3	ND	ND		25	
Chlorodifluoromethane	ug/m3	3.1	3.5	12	25	
Chloroform	ug/m3	ND	ND		25	
cis-1,2-Dichloroethene	ug/m3	ND	ND		25	
Dichlorodifluoromethane	ug/m3	2.8	2.6	7	25	
Ethylbenzene	ug/m3	2.9	3.0	4	25	
m&p-Xylene	ug/m3	11.2	11.5	2	25	
Methyl-tert-butyl ether	ug/m3	ND	ND		25	
Methylene Chloride	ug/m3	91.4	105	14	25	
Naphthalene	ug/m3	4.3	4.6	8	25 (CH
o-Xylene	ug/m3	4.7	4.9	5	25	
Tetrachloroethene	ug/m3	8.3	8.8	5	25	
Toluene	ug/m3	175	183	5	25	
trans-1,2-Dichloroethene	ug/m3	ND	ND		25	
Trichloroethene	ug/m3	ND	ND		25	
Vinyl chloride	ug/m3	ND	ND		25	

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

Date: 03/17/2014 03:34 PM 10259328

Project:

QC Batch:

MRC SV/IAQ Study Feb 2014 REV

Pace Project No.:

10259328

AIR/19647

Analysis Method:

TO-15

QC Batch Method:

TO-15

Analysis Description:

TO15 MSV AIR Low Level

Associated Lab Samples:

10259328001, 10259328002, 10259328005, 10259328006, 10259328008, 10259328009

METHOD BLANK: 1638488

Matrix: Air

Associated Lab Samples:

 $10259328001,\,10259328002,\,10259328005,\,10259328006,\,10259328008,\,10259328009$

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
1,1,1-Trichloroethane	ug/m3	ND	1.1	03/12/14 20:09	
1,1,2-Trichloroethane	ug/m3	ND	0.55	03/12/14 20:09	
1,1-Dichloroethane	ug/m3	ND	0.82	03/12/14 20:09	
1,1-Dichloroethene	ug/m3	ND	0.81	03/12/14 20:09	
1,2,3-Trimethylbenzene	ug/m3	ND	0.20	03/12/14 20:09	
1,2,4-Trichlorobenzene	ug/m3	ND	1.5	03/12/14 20:09	
1,2,4-Trimethylbenzene	ug/m3	ND	1.0	03/12/14 20:09	
1,2-Dichloroethane	ug/m3	ND	0.41	03/12/14 20:09	
1,3,5-Trimethylbenzene	ug/m3	ND	1.0	03/12/14 20:09	
Benzene	ug/m3	ND	0.32	03/12/14 20:09	
Carbon tetrachloride	ug/m3	ND	0.64	03/12/14 20:09	
Chlorodifluoromethane	ug/m3	ND	0.20	03/12/14 20:09	
Chloroform	ug/m3	ND	0.99	03/12/14 20:09	
cis-1,2-Dichloroethene	ug/m3	ND	0.81	03/12/14 20:09	
Dichlorodifluoromethane	ug/m3	ND	1.0	03/12/14 20:09	
Ethylbenzene	ug/m3	ND	0.88	03/12/14 20:09	
m&p-Xylene	ug/m3	ND	1.8	03/12/14 20:09	
Methyl-tert-butyl ether	ug/m3	ND	0.73	03/12/14 20:09	
Methylene Chloride	ug/m3	0.43J	0.71	03/12/14 20:09	
Naphthalene	ug/m3	ND	1.1	03/12/14 20:09	
o-Xylene	ug/m3	ND	0.88	03/12/14 20:09	
Tetrachloroethene	ug/m3	ND	0.69	03/12/14 20:09	
Toluene	ug/m3	ND	0.77	03/12/14 20:09	
trans-1,2-Dichloroethene	ug/m3	ND	0.81	03/12/14 20:09	
Trichloroethene	ug/m3	ND	0.55	03/12/14 20:09	
Vinyl chloride	ug/m3	ND	0.26	03/12/14 20:09	

LABORATORY CONTROL SAMPLE:	1638489					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
1,1,1-Trichloroethane	ug/m3	55.5	58.1	105	72-128	
1,1,2-Trichloroethane	ug/m3	55.5	59.8	108	72-130	
1,1-Dichloroethane	ug/m3	41.2	44.1	107	68-128	
1,1-Dichloroethene	ug/m3	40.3	44.4	110	68-130	
1,2,3-Trimethylbenzene	ug/m3	50	51.7	103	60-140	
1,2,4-Trichlorobenzene	ug/m3	75.5	78.1	103	30-150	
1,2,4-Trimethylbenzene	ug/m3	50	51.7	103	71 -1 40	
1,2-Dichloroethane	ug/m3	41.2	42.1	102	71-132	
1,3,5-Trimethylbenzene	ug/m3	50	50.6	101	73-136	
Benzene	ug/m3	32.5	36.7	113	69-134	
Carbon tetrachloride	ug/m3	64	67.3	105	66-134	

REPORT OF LABORATORY ANALYSIS

Project:

MRC SV/IAQ Study Feb 2014

Pace Project No.:

10259328

BORATORY CONTROL SAMP	LE: 1638489					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
nlorodifluoromethane	ug/m3	36	31.7	88	60-140	
oroform	ug/m3	49.7	51.4	104	72-127	
1,2-Dichloroethene	ug/m3	40.3	38.8	96	71-135	
lorodifluoromethane	ug/m3	50.3	53.9	107	69-125	
lbenzene	ug/m3	44.2	42.5	96	73-139	
-Xylene	ug/m3	44.2	43.3	98	73-139	
nyl-tert-butyl ether	ug/m3	36.7	37.8	103	72-132	
ylene Chloride	ug/m3	35.3	35.6	101	64-134	
nthalene	ug/m3	53.3	55.8	105	61-150	
lene	ug/m3	44.2	44.9	102	71-138	
achloroethene	ug/m3	69	74.3	108	69-136	
ene	ug/m3	38.3	36.4	95	67-133	
s-1,2-Dichloroethene	ug/m3	40.3	41.7	103	70-131	
loroethene	ug/m3	54.6	59.0	108	70-135	
l chloride	ug/m3	26	27.7	107	69-132	

REPORT OF LABORATORY ANALYSIS

10259328

Data File: \\192.168.10.12\chem\10airD.i\031214.b\07131.d

Report Date: 13-Mar-2014 12:29

Pace Analytical Services, Inc.

INTERNAL STANDARD COMPOUNDS AREA AND RT SUMMARY

Instrument ID: 10airD.i
Lab File ID: 07131.d

Lab Smp Id: 10259328001 IA-00/-PB-/

Calibration Date: 12-MAR-2014 Calibration Time: 15:59

Analysis Type: VOA

Level: LOW

Quant Type: ISTD

Sample Type: AIR

Operator: AH2

Method File: \\192.168.10.12\chem\10airD.i\031214.b\T015 071-14.m

Misc Info: 19647

Test Mode:

Use Initial Calibration Level 4. If Continuing Cal. use Initial Cal. Level 4

		AREA	LIMIT		
COMPOUND	STANDARD	LOWER	UPPER	SAMPLE	%DIFF
=======================================	=======	========	========	==== == ==	=====
43 1,4-Difluorobenze	889865	533919	1245811	918951	3.27
61 Chlorobenzene - d	513489	308093	718885	527898	2.81

		RT I			
COMPOUND	STANDARD	LOWER	UPPER	SAMPLE	%DIFF
=======================================	=======	========	=======	========	======
43 1,4-Difluorobenze	6.41	6.08	6.74	6.40	-0.10
61 Chlorobenzene - d	10.08	9.75	10.41	10.08	-0.03

AREA UPPER LIMIT = + 40% of internal standard area. AREA LOWER LIMIT = - 40% of internal standard area.

RT UPPER LIMIT = + 0.33 minutes of internal standard RT. RT LOWER LIMIT = - 0.33 minutes of internal standard RT.

10259328 Page 840 of 1036 Data File: \\192.168.10.12\chem\10airD.i\031214.b\07122.d

Report Date: 13-Mar-2014 12:15

Pace Analytical Services, Inc.

INTERNAL STANDARD COMPOUNDS AREA AND RT SUMMARY

Calibration Date: 12-MAR-2014

Instrument ID: 10airD.i Lab File ID: 07122.d Lab Smp Id: 10259328002 TA-002-PB-/

Calibration Time: 15:59

Level: LOW

Analysis Type: VOA Quant Type: ISTD

Sample Type: AIR

Operator: AH2

Method File: \\192.168.10.12\chem\10airD.i\031214.b\T015 071-14.m

Misc Info: 19647

Test Mode:

Use Initial Calibration Level 4. If Continuing Cal. use Initial Cal. Level 4

		AREA	LIMIT		
COMPOUND	STANDARD	LOWER	UPPER	SAMPLE	%DIFF
======================================	========	========	========	=======	=====
43 1,4-Difluorobenze	889865	533919	1245811	896615	0.76
61 Chlorobenzene - d	513489	308093	718885	526635	2.56
<u> </u>					

		RT 1	JIMIT		
COMPOUND	STANDARD	LOWER	UPPER	SAMPLE	%DIFF
	=======	=======	========	========	======
43 1,4-Difluorobenze	6.41	6.08	6.74	6.40	-0.10
61 Chlorobenzene - d	10.08	9.75	10.41	10.08	-0.03
•					

AREA UPPER LIMIT = + 40% of internal standard area. AREA LOWER LIMIT = - 40% of internal standard area.

RT UPPER LIMIT = + 0.33 minutes of internal standard RT. RT LOWER LIMIT = - 0.33 minutes of internal standard RT.

10259328 Page 865 of 1036 Data File: \\192.168.10.12\chem\10air0.i\031214.b\07126.D

Report Date: 13-Mar-2014 12:03

Pace Analytical Services, Inc.

INTERNAL STANDARD COMPOUNDS AREA AND RT SUMMARY

Calibration Date: 12-MAR-2014 Calibration Time: 12:31

Instrument ID: 10air0.i
Lab File ID: 07126.D

Analysis Type: VOA

Level: LOW

Quant Type: ISTD

Sample Type: AIR

Operator: JAM

Method File: \\192.168.10.12\chem\10air0.i\031214.b\T015 069-14.m

Misc Info: 19645

Test Mode:

Use Initial Calibration Level 5.

COMPOUND	STANDARD	AREA LOWER	LIMIT UPPER	SAMPLE	%DIFF
43 1,4-Difluorobenze 61 Chlorobenzene - d		1010.1		646217 376925	-14.04 -22.05

		RT 1	LIMIT		<u> </u>
COMPOUND	STANDARD	LOWER	UPPER	SAMPLE	%DIFF
=======================================	========	=======	========	=======	=====
43 1,4-Difluorobenze		5.78	6.44	6.10	-0.20
61 Chlorobenzene - d	9.20	8.87	9.53	9.19	-0.14

AREA UPPER LIMIT = + 40% of internal standard area. AREA LOWER LIMIT = - 40% of internal standard area. RT UPPER LIMIT = + 0.33 minutes of internal standard RT. RT LOWER LIMIT = - 0.33 minutes of internal standard RT.

Data File: \\192.168.10.12\chem\10air0.i\031214.b\07125.D

Report Date: 13-Mar-2014 12:01

Pace Analytical Services, Inc.

INTERNAL STANDARD COMPOUNDS AREA AND RT SUMMARY

Calibration Date: 12-MAR-2014 Calibration Time: 12:31

Instrument ID: 10air0.i
Lab File ID: 07125.D Lab Smp Id: 10259328004 TA-002-ER-/

Analysis Type: VOA

Level: LOW

Quant Type: ISTD

Sample Type: AIR

Operator: JAM

Method File: \\192.168.10.12\chem\10air0.i\031214.b\T015 069-14.m

Misc Info: 19645

Test Mode:

Use Initial Calibration Level 5.

		AREA	LIMIT		
COMPOUND	STANDARD	LOWER	UPPER	SAMPLE	%DIFF
=======================================	========	========	========	========	======
43 1,4-Difluorobenze	751790	451074	1052506	653982	-13.01
61 Chlorobenzene - d	483570	290142	676998	376037	-22.24

		RT]	LIMIT		_
COMPOUND	STANDARD	LOWER	UPPER	SAMPLE	%DIFF
	========	=======	========		======
43 1,4-Difluorobenze	6.11	5.78	6.44	6.10	-0.20
61 Chlorobenzene - d	9.20	8.87	9.53	9.19	-0.13

AREA UPPER LIMIT = + 40% of internal standard area. AREA LOWER LIMIT = - 40% of internal standard area.

RT UPPER LIMIT = + 0.33 minutes of internal standard RT. RT LOWER LIMIT = - 0.33 minutes of internal standard RT.

Page 899 of 1036 10259328

Data File: \\192.168.10.12\chem\10airD.i\031214.b\07128.d

Report Date: 13-Mar-2014 12:27

Pace Analytical Services, Inc.

INTERNAL STANDARD COMPOUNDS AREA AND RT SUMMARY

Instrument ID: 10airD.i

Calibration Date: 12-MAR-2014 Calibration Time: 15:59

Lab File ID: 07128.d Lab Smp Id: 10259328005 IA-003-ER-1

Analysis Type: VOA

Level: LOW

Quant Type: ISTD

Sample Type: AIR

Operator: AH2

Test Mode:

Method File: \\192.168.10.12\chem\10airD.i\031214.b\T015 071-14.m

Misc Info: 19647

Use Initial Calibration Level 4.

If Continuing Cal. use Initial Cal. Level 4

		AREA	LIMIT		
COMPOUND	STANDARD	LOWER	UPPER	SAMPLE	%DIFF
=======================================	=======	=======	=========	========	======
43 1,4-Difluorobenze	889865	533919	1245811	989465	11.19
61 Chlorobenzene - d	513489	308093	718885	555743	8.23

		RT I			
COMPOUND	STANDARD	LOWER	UPPER	SAMPLE	%DIFF
=======================================	========	========	=======	========	======
43 1,4-Difluorobenze	6.41	6.08	6.74	6.40	-0.10
61 Chlorobenzene - d	10.08	9.75	10.41	10.08	l -0.06

AREA UPPER LIMIT = + 40% of internal standard area. AREA LOWER LIMIT = - 40% of internal standard area.

RT UPPER LIMIT = + 0.33 minutes of internal standard RT. RT LOWER LIMIT = - 0.33 minutes of internal standard RT.

10259328 Page 914 of 1036 Data File: \\192.168.10.12\chem\10airD.i\031214.b\07132.d

Report Date: 13-Mar-2014 12:31

Pace Analytical Services, Inc.

INTERNAL STANDARD COMPOUNDS AREA AND RT SUMMARY

Instrument ID: 10airD.i
Lab File ID: 07132.d

Calibration Date: 12-MAR-2014 Calibration Time: 15:59

Lab Smp Id: 10259328006 TA-04P/-PB-/

Analysis Type: VOA

Level: LOW

Quant Type: ISTD

Sample Type: AIR

Operator: AH2

Method File: \\192.168.10.12\chem\10airD.i\031214.b\T015 071-14.m

Misc Info: 19647

Test Mode:

Use Initial Calibration Level 4. If Continuing Cal. use Initial Cal. Level 4

		AREA	LIMIT		
COMPOUND	STANDARD	LOWER	UPPER	SAMPLE	%DIFF
=======================================	========	========	========	========	======
43 1,4-Difluorobenze	889865	533919	1245811	961144	8.01
61 Chlorobenzene - d	513489	308093	718885	509750	-0.73

		RT I			
COMPOUND	STANDARD	LOWER	UPPER	SAMPLE	%DIFF
=======================================	========	=======	=======	====== = =	======
43 1,4-Difluorobenze	6.41	6.08	6.74	6.40	-0.10
61 Chlorobenzene - d	10.08	9.75	10.41	10.08	-0.03
					[

AREA UPPER LIMIT = + 40% of internal standard area. AREA LOWER LIMIT = - 40% of internal standard area.

RT UPPER LIMIT = + 0.33 minutes of internal standard RT. RT LOWER LIMIT = - 0.33 minutes of internal standard RT.

10259328 Page 940 of 1036 Data File: \\192.168.10.12\chem\10air0.i\031214.b\07124.D

Report Date: 13-Mar-2014 11:59

Pace Analytical Services, Inc.

INTERNAL STANDARD COMPOUNDS AREA AND RT SUMMARY

Instrument ID: 10air0.i
Lab File ID: 07124.D

Calibration Date: 12-MAR-2014 Calibration Time: 12:31

Lab Smp Id: 10259328007 TA-DUPI-TR-1

Analysis Type: VOA

Level: LOW

Quant Type: ISTD

Operator: JAM

Sample Type: AIR

Method File: \\192.168.10.12\chem\10air0.i\031214.b\T015 069-14.m

Misc Info: 19645

Test Mode:

Use Initial Calibration Level 5.

COMPOUND	STANDARD	AREA LOWER	LIMIT UPPER	SAMPLE	47TG%
	========	=========	========	========	======
43 1,4-Difluorobenze 61 Chlorobenzene - d		1	1052506 676998	661453 372280	
or chrorobenzene – u	403370	2,0142	070930	3,2200	-23.01

		RT I			
COMPOUND	STANDARD	LOWER	UPPER	SAMPLE	%DIFF
=======================================	========	========	========	=======	======
43 1,4-Difluorobenze	6.11	5.78	6.44	6.10	-0.20
61 Chlorobenzene - d	9.20	8.87	9.53	9.19	-0.14

AREA UPPER LIMIT = + 40% of internal standard area. AREA LOWER LIMIT = - 40% of internal standard area.

RT UPPER LIMIT = + 0.33 minutes of internal standard RT. RT LOWER LIMIT = - 0.33 minutes of internal standard RT.

Page 954 of 1036 10259328

Data File: \\192.168.10.12\chem\10airD.i\031214.b\07126.d

Report Date: 13-Mar-2014 12:24

Pace Analytical Services, Inc.

INTERNAL STANDARD COMPOUNDS AREA AND RT SUMMARY

Instrument ID: 10airD.i Lab File ID: 07126.d

Calibration Date: 12-MAR-2014 Calibration Time: 15:59

Lab Smp Id: 10259328008 TA -093x-A-/6

Analysis Type: VOA

Level: LOW

Quant Type: ISTD

Sample Type: AIR

Operator: AH2

Method File: \\192.168.10.12\chem\10airD.i\031214.b\T015 071-14.m

Misc Info: 19647

Test Mode:

Use Initial Calibration Level 4. If Continuing Cal. use Initial Cal. Level 4

COMPOUND	STANDARD	AREA LOWER	LIMIT UPPER	SAMPLE	%DIFF
43 1,4-Difluorobenze	889865	533919	1245811	982742	10.44
61 Chlorobenzene - d	513489	308093	718885	550103	

		RT 1	LIMIT		
COMPOUND	STANDARD	LOWER	UPPER	SAMPLE	%DIFF
=======================================	=======	========	=======	========	=====
43 1,4-Difluorobenze		6.08	6.74	6.40	-0.10
61 Chlorobenzene - d	10.08	9.75	10.41	10.08	-0.03

AREA UPPER LIMIT = + 40% of internal standard area. AREA LOWER LIMIT = - 40% of internal standard area.

RT UPPER LIMIT = + 0.33 minutes of internal standard RT. RT LOWER LIMIT = - 0.33 minutes of internal standard RT.

10259328 Page 970 of 1036 Data File: \\192.168.10.12\chem\10airD.i\031214.b\07127.d

Report Date: 13-Mar-2014 12:25

Pace Analytical Services, Inc.

INTERNAL STANDARD COMPOUNDS AREA AND RT SUMMARY

Instrument ID: 10airD.i
Lab File ID: 07127.d

Calibration Date: 12-MAR-2014 Calibration Time: 15:59

Lab Smp Id: 10259328009 IA -1/7x -A-/6

Analysis Type: VOA

Level: LOW

Quant Type: ISTD

Sample Type: AIR

Operator: AH2

Method File: \\192.168.10.12\chem\10airD.i\031214.b\T015 071-14.m

Misc Info: 19647

Test Mode:

Use Initial Calibration Level 4. If Continuing Cal. use Initial Cal. Level 4

COMPOUND	STANDARD	AREA LOWER	LIMIT UPPER	SAMPLE	%DIFF
43 1,4-Difluorobenze	889865	533919	1245811	995656	11.89
61 Chlorobenzene - d	513489	308093	718885	549578	7.03

COMPOUND	STANDARD	RT I LOWER	JIMIT UPPER	SAMPLE	%DIFF
43 1,4-Difluorobenze 61 Chlorobenzene - d		6.08 9.75	6.74	6.41	-0.05 -0.03

AREA UPPER LIMIT = + 40% of internal standard area. AREA LOWER LIMIT = - 40% of internal standard area.

RT UPPER LIMIT = + 0.33 minutes of internal standard RT. RT LOWER LIMIT = - 0.33 minutes of internal standard RT.

10259328 Page 1001 of 1036 Data File: \\192.168.10.12\chem\10air0.i\031214.b\07123.D

Report Date: 13-Mar-2014 11:57

Pace Analytical Services, Inc.

INTERNAL STANDARD COMPOUNDS AREA AND RT SUMMARY

Instrument ID: 10air0.i
Lab File ID: 07123.D Lab Smp Id: 10259328010 IA-140-B-16 Calibration Date: 12-MAR-2014 Calibration Time: 12:31

Analysis Type: VOA

Level: LOW

Quant Type: ISTD

Sample Type: AIR

Operator: JAM Method File: \\192.168.10.12\chem\10air0.i\031214.b\T015 069-14.m

Misc Info: 19645

Test Mode:

Use Initial Calibration Level 5.

COMPOUND	STANDARD	AREA LOWER	LIMIT UPPER	SAMPLE	%DIFF
43 1,4-Difluorobenze		451074	1052506	658269	-12.44
61 Chlorobenzene - d		290142	676998	381599	-21.09

COMPOUND	STANDARD	LOWER	UPPER	SAMPLE	%DIFF
=======================================		========	=======	========	======
43 1,4-Difluorobenze	6.11	5.78	6.44	6.12	0.20
61 Chlorobenzene - d	9.20	8.87	9.53	9.19	-0.07

AREA UPPER LIMIT = + 40% of internal standard area. AREA LOWER LIMIT = - 40% of internal standard area.

RT UPPER LIMIT = + 0.33 minutes of internal standard RT. RT LOWER LIMIT = - 0.33 minutes of internal standard RT.

Page 1026 of 1036

Pace Analytical "
/ A act Analytical

Instrument Run Log

nstrument: Column: J	10AIR0 &W DB-5 0.32mr	Metho m Helium Tune		l: 10	288-3-	16	Misc. Prep. Info: ISTD Lot: 10288-3-16		Surrogate Lot: 10288-3-16 Cal. Standard: 10288-8-3		
ath/File	Lab ID	Matrix/Batch	Туре	DF	рΗ	Method	Date & Time	Oper.	Comments	- <u>-</u>	
6901.D	BFB	L	Tune	1		TUNE	3/10/14 09:43	JAM			
6902.D	CCV	G/	CCal	1		TO15 065-14	3/10/14 10:09	JAM			
6903BFB.D	BFB	Ū	Tune	1		TUNE	3/10/14 10:47	JAM			
6904.D	CAL1	G/	ical	1		TO15_069-14	3/10/14 11:12	JAM			
6905.D	CAL2	G/	ical	1		TO15 069-14	3/10/14 11:36	JAM			
6906.D	CAL3	G/	ical	1		TO15_069-14	3/10/14 12:01	JAM			
6907.D	CAL4	G/	Ical	1		TO15 069-14	3/10/14 12:28	JAM			
6908.D	CAL5	G/	Ical	1		TO15_069-14	3/10/14 12:54	JAM			
6909.D	CAL6	G/	Ical	1		TO15 069-14	3/10/14 13:23	JAM			
6910.D	CAL7	G/	Ical	1		TO15 069-14	3/10/14 13:55	JAM			
6911.D	ICV ADDL	G/	LCS	1		TO15 069-14	3/10/14 14:22	JAM			
6912.D	ICV	G/	LCS	1		TO15_069-14	3/10/14 14:48	JAM			
6913.D	LCS	G/	LCS	1		TO15_069-14	3/10/14 15:15	JAM			
6913_19627		G/19627	LCS	1		TO15_069-14	3/10/14 15:15	JAM			
6914.D	0	G/	Sample	1		TO15_069-14	3/10/14 15:46	JAM			
6915.D	BLANK	Ġ/	Blank	1		TO15 069-14	3/10/14 16:16	JAM			
6915_19627		G/19627	Blank	1		TO15 069-14	3/10/14 16:16	JAM			
6916.D	BLANK	G/	Blank	1		TO15 069-14	3/10/14 16:46	JAM			
6917.D	10259517003	G/19627	Sample			TO15 069-14	3/10/14 18:14	JAM			
6918.D	-DUP	G/19627	Duplicate			TO15_069-14	3/10/14 18:44	JAM			
6919.D	10259517008	G/19627	Sample			TQ15 069-14	3/10/14 19:13	JAM			
6920.D	10259517005	G/19627		1.34		TO15_069-14	3/10/14 19:42	JAM			
6921.D	10259517006	G/19627		1.75		TO15 069-14	3/10/14 20:11	JAM			
6922.D	10259517001	G/19627	•	1.49		TO15 069-14	3/10/14 20:41	JAM			
6923.D	10259517002	G/19627		1.34		TO15_069-14	3/10/14 21:10	JAM			
6924.D	10259517004	G/19627		1.55		TO15_069-14	3/10/14 21:39	JAM			
6925.D	10259517007	G/19627		1.34		TO15_069-14	3/10/14 22:09	JAM			
6926.D	10259658001	G/19627		1.44		TO15_069-14	3/10/14 22:38	JAM			
6927.D	10259658003	G/19627	Sample			TO15 069-14	3/10/14 23:07	JAM			
6928.D	10259658002	G/19627	•	1.55		TO15_069-14	3/10/14 23:36	JAM			
6929.D	10259658004	G/19627	Sample	1.55		TO15_069-14	3/11/14 00:06	JAM			
6930.D	10258929001	G/19627		1.39		TO15 069-14	3/11/14 00:35	JAM			
6931.D	10259815001	G/19627		1.39		TO15 069-14	3/11/14 01:04	JAM			
6932.D	10259815002	G/19627		1.55		TO15_069-14	3/11/14 01:33	JAM			
6933.D	10259815003	G/19627		1.61		TO15 069-14	3/11/14 02:03	JAM			
6934.D	10259815004	G/19627		1.61		TO15_069-14	3/11/14 02:32	JAM			
6935.D	10259253002	G/19627	Sample			TO15 069-14	3/11/14 02:57	JAM			
6936.D	10259253004	G/19627	Sample			TO15_069-14	3/11/14 03:21	JAM			
6937.D	1636865	G/19627	Duplicate			TO15_069-14	3/11/14 03:46	JAM			
6938.D	30114379001	G/19627	Sample			TO15_069-14	3/11/14 04:10	JAM			
6939.D	0	G/	,	1		TO15_069-14	3/11/14 04:35	JAM			
6940.D	ic	G/	•	1		TO15_069-14	3/11/14 05:04	JAM			
6941.D	0	G/		1		TO15_069-14	3/11/14 08:39	JAM			
6942.D	CERT	G/	Sample	1		TO15_069-14	3/11/14 09:08	JAM			
6943.D	CERT	G/		1		TO15_009-14	3/11/14 09:40	JAM			
6944.D	CERT	G/	Sample			TO15_069-14	3/11/14 10:09	JAM			

10259328

Page 27 of 1036

Instrument Run Log

10AIR0 Instrument:

Method:

Surrogate Lot: Cal. Standard:

10288-3-16

Column: J&W DB-5 0.32mm Helium Tune Standard:

10288-3-16

Misc. Prep. Info: ISTD Lot: 10288-3-16

10288-8-3

Path/File

Lab ID

Matrix/Batch Type pH Method Date & Time 3/11/14 10:38 Comments

Oper.

JAM

06945.D

Check Maintenance Items Performed:

Sample Clipped column

Changed trap - Lot # Cleaned MS Source

TO15_069-14

Changed column - Lot #

Other minor parts replaced No maintenance performed today

Cleaned liner Replaced/Cleaned gold seal Additional Comments:

File Path 1: U:\10AIR0.I\031014.B\

Changed septum

Matrix Codes: [G]as, [L]iquid, [S]olid, [N]one

Run order verified:

Report Date: 03/12/2014 12:53

Reviewed By/Date:

Pace Analytical[™]

Instrument Run Log

Instrument: 10AIR0 Method: Misc. Prep. Info: Surrogate Lot: 8137-74-13 Column: J&W DB-5 0.32mm Helium Tune Standard: ISTD Lot: 8137-74-13 Cal. Standard: Path/File Lab ID Matrix/Batch Type DF рΗ Method Date & Time Oper. Comments 07101BFB.D BFB 3/12/14 11:26 Tune TUNE JAM 07102.D CCV G/ CCal TO15_069-14 3/12/14 11:53 JAM 07103.D CCV G/ **CCal** TO15 069-14 3/12/14 12:31 JAM 07103_LCS.D LCS G/ LCS TO15_069-14 3/12/14 12:31 JAM 07104.D G/ Sample TO15_069-14 3/12/14 13:20 JAM 07105.D BLANK TO15_069-14 3/12/14 13:49 G/ Blank JAM 07106.D G/ TO15_069-14 3/12/14 14:27 JAM Sample 07107.D 10259301002 G/19638 Sample TO15_069-14 3/12/14 14:56 JAM 07108.D 10259301001 G/19638 33.6 TO15_069-14 3/12/14 15:20 JAM Sample 07109.D 10259289002 G/19645 Sample 73.28 TO15_069-14 3/12/14 15:49 JAM 07110.D 10259077001 G/19630 Sample 19148.8 TO15_069-14 3/12/14 16:14 JAM 07111.D 10259079002 G/19630 Sample 18483.2 TO15_069-14 3/12/14 16:39 JAM 07112.D 10259301010 G/19645 Sample 1.74 TO15_069-14 3/12/14 17:08 JAM. 07113.D -DUP G/19645 Duplicate 1.74 TO15 069-14 3/12/14 17:40 JAM 10259301009 07114.D G/19645 Sample 1.8 TO15_069-14 3/12/14 18:09 JAM 10259301008 TO15_069-14 G/19645 3/12/14 18:38 JAM. 07115.D Sample 1.68 10259301007 TO15_069-14 JAM G/19645 1.74 3/12/14 19:07 07116.D Sample 10259301006 G/19645 TO15 069-14 3/12/14 19:37 JAM 07117.D Sample 1.74 10259301005 G/19645 TO15_069-14 3/12/14 20:06 JAM 07118.D Sample 1.8 TO15 069-14 07119.D 10259301004 G/19645 1.74 3/12/14 20:35 JAM Sample 10259332001 G/19645 TO15_069-14 3/12/14 21:04 JAM 07120.D Sample 1.87 TO15 069-14 07121.D 10259332002 G/19645 Sample 1.68 3/12/14 21:34 JAM 10259332003 TO15_069-14 3/12/14 22:03 07122.D G/19645 Sample 1.74 JAM 10259328010 3/12/14 22:32 TO15_069-14 07123.D G/19645 Sample 1.8 JAM 07124.D 10259328007 G/19645 Sample 1.68 TO15_069-14 3/12/14 23:01 JAM 07125.D 10259328004 G/19645 TO15_069-14 3/12/14 23:31 Sample 1.8 JAM 07126.D 10259328003 G/19645 Sample 2.29 TO15_069-14 3/13/14 00:00 JAM 07127.D 10259329005 G/19645 Sample 1.68 TO15_069-14 3/13/14 00:29 JAM 07128.D 10259329004 G/19645 Sample 1.8 TO15_069-14 3/13/14 00:58 JAM 07129.D 10259329003 G/19645 Sample 1.8 TO15_069-14 3/13/14 01:27 JAM 07130.D -DUP G/19645 Duplicate 1.8 TO15_069-14 3/13/14 01:58 JAM 10259329002 07131.D G/19645 Sample 1.68 TO15 069-14 3/13/14 02:28 JAM. 10259329001 TO15 069-14 07132.D G/19645 Sample 1.68 3/13/14 03:00 JAM TO15 069-14 .IAM 07133.D G/ Sample 3/13/14 03:25 TO15 069-14 3/13/14 03:54 07134 D G/ .IAM IC Sample 10259057001 G/19565 598.4 TO15 069-14 07135.D 3/13/14 04:19 JAM Sample 07136 D 10259057005 G/19565 TO15 069-14 3/13/14 04:43 JAM. 576 Sample 10259057007 G/19565 TO15 069-14 3/13/14 05:08 07137.D 576 JAM Sample TO15 069-14 07138.D 10259057009 G/19565 556.8 3/13/14 05:32 JAM Sample 10259057011 G/19565 07139.D Sample 967.68 TO15_069-14 3/13/14 05:57 JAM 10259049007 TO15_069-14 07140.D G/19580 Sample 537.6 3/13/14 06:22 JAM 07141.D 10259049009 G/19580 Sample 903.168 TO15_069-14 3/13/14 06:47 JAM 3/13/14 07:12 07142.D 10259049015 G/19580 Sample 576 TO15_069-14 JAM 07143.D TO15_069-14 3/13/14 07:36 G/ Sample JAM 07144.D TO15_069-14 3/13/14 08:10 Sample JAM 07145.D 10259057009 G/19565 Sample 556.8 TO15 069-14 3/13/14 09:04 JAM

10259328

Page 29 of 1036

Instrument Run Log

Instrument: 10AIR0 Method: Column: J&W DB-5 0.32mm Helium Tune Standard: Misc. Prep. Info: ISTD Lot: 8137-74-13

8137-74-13

Surrogate Lot: Cal. Standard:

Path/File Lab ID 07146.D 10259057011 Matrix/Batch Type G/19565 Sample

Method pН TO15_069-14 TO15_069-14

Date & Time 3/13/14 09:29 3/13/14 09:55

Oper.

JAM

JAM

Comments

07147.D

10259049009 Check Maintenance Items Performed:

967.68 G/19580 903.168 Sample

Changed column - Lot # Other minor parts replaced

Changed septum Cleaned liner Replaced/Cleaned gold seal

Additional Comments:

Clipped column Changed trap - Lot # Cleaned MS Source

No maintenance performed today

File Path 1: U:\10AIR0.I\031214.B\

Matrix Codes: [G]as, [L]iquid, [S]olid, [N]one

Run order verified:

Report Date: 03/13/2014 13:10

Reviewed By/Date:

Pace Analytical

Instrument Run Log

Instrument: 10AIRD Method: Column: J&W DB-5 0.32mm Helium Tune Standar				d:			Misc. Prep ISTD Lot:	Surrogate Lot: 10288-3-14 Cal. Standard:			
Path/File	Lab ID	Matrix/Batch	Туре	DF	рΗ	Method		Date & Time	Oper.	Comments	
07101BFB.D	BFB	L	Tune	1		50NG_BFB		3/12/14 10:04	AH2		
07102BFB.D	BFB	Ĺ	Tune	1		50NG BFB		3/12/14 10:31	AH2		
07103BFB.D	BFB	L	Tune	1		50NG BFB		3/12/14 10:59	AH2		
07104.D	CCV	G/	CCal	1		TO15 068-14		3/12/14 11:39	AH2		
07108BFB.D	BFB	Ū	Tune	1		50NG BFB		3/12/14 14:08	AH2		
07109.D	CAL1	G/	Ical	1		TO15 071-14		3/12/14 14:36	AH2		
07110.D	CAL2	G/	Ical	1		TO15_071-14		3/12/14 15:04	AH2		
07111.D	CAL3	G/	Ical	1		TO15 071-14		3/12/14 15:32	AH2		
07112.D	CAL4	G/	Ical	1		TO15 071-14		3/12/14 15:59	AH2		
07113.D	CAL5	G/	Ical	i		TO15 071-14		3/12/14 16:27	AH2		
07114.D	CAL6	G/	Ical	i		TO15_071-14		3/12/14 16:56	AH2		
07115.D	0	G/	Sample	1		TO15_071-14		3/12/14 17:23	AH2		
07116.D	ICVADD	G/	LCS	1		TO15_071-14		3/12/14 17:51	AH2		
07110.D 07117.D	ICV	G/	LCS	1		TO15_071-14		3/12/14 17:31	AH2		
77117.D 77118.D	LCS	G/	LCS	1		TO15_071-14		3/12/14 18:46	AH2		
07118L.D	1638489	G/19647	LCS	1		TO15_071-14		3/12/14 18:46	AH2		
77116L.D 7119.D	0	G/1904/	Sample			TO15_071-14		3/12/14 19:14	AH2		
7119.D 7120.D	BLANK	G/	Sample			TO15_071-14		3/12/14 19:41	AH2		
7120.D 7121L.D	1638488	G/19647	Blank	1		TO15_071-14		3/12/14 19:41	AH2		
7121L.D 7121.D	BLANK	G/	Blank	1		TO15_071-14		3/12/14 20:09	AH2		
	10259328002					_					
7122.D		G/19647	Sample			TO15_071-14		3/12/14 20:38	AH2		
07123.D	10259329008	G/19647	Sample			TO15_071-14		3/12/14 21:06	AH2		
07124.D	10259329006	G/19647	Sample			TO15_071-14		3/12/14 21:34	AH2		
7125.D	10259329007	G/19647	Sample			TO15_071-14		3/12/14 22:03	AH2		
07126.D	10259328008	G/19647	Sample			TO15_071-14		3/12/14 22:31	AH2		
07127.D	10259328009	G/19647	Sample			TO15_071-14		3/12/14 23:01	AH2		
7128.D	10259328005	G/19647	Sample			TO15_071-14		3/12/14 23:31	AH2		
07129.D	0	G/	Sample			TO15_071-14		3/12/14 23:59	AH2		
7130.D	IC	G/	Sample			TO15_071-14		3/13/14 00:26	AH2		
7131.D	10259328001	G/19647	Sample			TO15_071-14		3/13/14 00:54	AH2		
7132.D	10259328006	G/19647	Sample			TO15_071-14		3/13/14 01:23	AH2		
07133.D	10259331001	G/19647	Sample			TO15_071-14		3/13/14 01:51	AH2		
07134.D	10259331009	G/19647	Sample			TO15_071-14		3/13/14 02:19	AH2		
07135.D	10259331015	G/19647				TO15_071-14		3/13/14 02:47	AH2		
07136.D	-DUP	G/19647	Sample			TO15_071-14		3/13/14 03:17	AH2		
7137.D	10259331013	G/19647	Sample			TO15_071-14		3/13/14 03:45	AH2	•	
07138.D	-DUP	G/19647	Sample			TO15_071-14		3/13/14 04:16	AH2		
7139.D	10259331011	G/19647	Sample			TO15_071-14		3/13/14 04:44	AH2		
71 4 0.D	10259331019	G/19647	Sample			TO15_071-14		3/13/14 05:12	AH2		
7141.D	10259331023	G/19647	Sample			TO15_071-14		3/13/14 05:42	AH2		
7142.D	10259331018	G/19647	Sample			TO15_071-14		3/13/14 06:11	AH2		
7143.D	10259331016	G/19647	Sample	1.68		TO15_071-14		3/13/14 06:41	AH2		
7144.D	10259331014	G/19647	Sample	1.68		TO15_071-14		3/13/14 07:09	AH2		
071 4 5.D	IC	G/	Sample	1		TO15_071-14		3/13/14 07:39	AH2		
07146.D	0	G/	Sample	1		TO15_071-14		3/13/14 09:13	AH2		
07147.D	CERT	G/	Sample			TO15 071-14		3/13/14 09:41	AH2		

10259328 Page 31 of 1036

Pace Analytic	cal [™]

Instrument Run Log

Instrument Column: .	t: 10AIRD J&W DB-5 0.32mm	Metho Helium Tune		d:			Misc. Prep. Info: ISTD Lot: 10288-3-14			Surrogate Lot: Cal. Standard:	10288-3-14
Path/File	Lab ID	Matrix/Batch	Туре	DF	рН	Method	_	Date & Time	Oper.	Comments	
07148.D	CERT	G/	Sample	1		TO15 071-14		3/13/14 10:23	AH2		
07149.D	CERT	G/	Sample	1		TO15 071-14		3/13/14 10:51	AH2		
07150.D	CERT	G/	Sample	1		TO15 071-14		3/13/14 11:38	AH2		
07151.D	CERT	G/	Sample	1		TO15 071-14		3/13/14 12:06	AH2		
07202.D	CCV	G/	CCal	1		TO15_071-14		3/13/14 13:01	AH2		
Check Mai	ntenance Items Perform	ed:		_							
Char	nged septum	Clipped	d column			Changed	column - Lot#				
Cleaned liner		Change	Changed trap - Lot #			Other minor parts replaced					
Replaced/Cleaned gold seal Additional Comments:		Cleane	Cleaned MS Source				nance perform				

File Path 1: U:\10AIRD.I\031214.B\
Matrix Codes: [G]as, [L]iquid, [S]olid, [N]one

Run order verified:

Report Date: 03/14/2014 18:26 Reviewed By/Date:

INTERNAL CORRESPONDENCE

TO:

M. MARTIN

DATE:

APRIL 25, 2014

FROM:

A. COGNETTI

COPIES:

DV FILE

SUBJECT:

ORGANIC DATA VALIDATION - VOC

MIDDLE RIVER CENTER

SAMPLE DELIVERY GROUP (SDG) - 10259329

SAMPLES:

8/Air/VOC

IA-146-VLS-2

IA-147-VLS-2

IA-148-VLS-2

IA-149-VLS-2

IA-150-VLS-2

IA-151-VLS-2

IA-152-VLS-2

IA-DUP1-VLS-2

<u>Overview</u>

The sample set for Middle River Center, SDG 10259329 consisted of eight (8) air samples. All samples were analyzed for volatile organic compounds (VOC). There is one (1) field duplicate pair included in this SDG: IA-DUP1-VLS-2 and IA-147-VLS-2.

The samples were collected by Tetra Tech on February 26, 2014 and analyzed by PACE Analytical. All analyses were conducted in accordance with EPA Method TO-15 analytical and reporting protocols.

The data contained in this SDG were validated with regard to the following parameters: data completeness, holding times, GC/MS tuning, initial/continuing calibrations, laboratory method blank results, surrogate spike recoveries, blank spike results, internal standard recoveries, chromatographic resolution, compound identification, compound quantitation, and detection limits. Areas of concern are listed below.

<u>Major</u>

No major noncompliances were noted.

<u>Minor</u>

- The continuing calibration percent differences (%Ds) for 1,2,4-trichlorobenzene and naphthalene were greater than the 30% quality control limit on March 12, 2014 @ 12:31 on instrument 10AIR0. The detected naphthalene result in sample IA-147-VLS-2 was qualified as estimated (J). The nondetected 1,2,4-trichlorobenzene and naphthalene results were qualified as estimated (UJ) in the affected samples.
- The concentration of methylene chloride in sample IA-147-VLS-s exceeded instrument calibration range. The detected methylene chloride results was qualified as estimated (J).
- Field duplicate imprecision was noted in the field duplicate pair IA-DUP1-VLS-2 and IA-147-VLS-2. The relative percent differences (RPDs) for benzene, methylene chloride and toluene exceeded the 50% quality control limit. The variance exceeded 2X the reporting limit for naphthalene. The detected and nondetected benzene, methylene chloride, naphthalene and toluene results were qualified as estimated (J) and (UJ), respectively in the field duplicate pair.

TO: M. Martin FROM: A. Cognetti

SDG: 10259329 DATE: April 16, 2014 PAGE 2

Notes

The laboratory control sample (LCS) percent recovery (%R) of 1,2,4-trichlorobenzene was greater than the upper quality control limit in batch 1638294. No action was taken on the nondetected 1,2,4-trichlorobenzene results in the affected samples.

The laboratory did not report detections between the reporting limit and the method detection limit. The laboratory was required to revise and resubmit all sample results.

Nondetected results were reported to the method detection limit.

Executive Summary

Laboratory Performance: The laboratory did not initially report detections between the reporting limit and method detection limit. The continuing calibration %Ds for for 1,2,4-trichlorobenzene and naphthalene were greater than the 30% quality control limit. The concentration of methylene chloride in sample IA-147-VLS-2 exceeded instrument calibration range.

Other Factors Affecting Data Quality: Field duplicate imprecision was noted in the field duplicate pair IA-DUP1-VLS-2 and IA-147-VLS-2.

The data for these analyses were reviewed with reference to USEPA National Functional Guidelines for Organic Data Validation (June 2008) and EPA Method TO-15. The text of this report has been formulated to address only those problem areas affecting data quality.

Tetra Tech

Ann Cognetti
Chemist/Data Validator

etra Tech

Joseph A. Samchuck Data Validation Manager

Attachments:

Appendix A - Qualified Analytical Results

Appendix B - Results as Reported by the Laboratory

Appendix C – Support Documentation

Appendix A

Qualified Analytical Results

Qualifier Codes:

A = Lab Blank Contamination

B = Field Blank Contamination

C = Calibration Noncompliance (i.e., % RSDs, %Ds, ICVs, CCVs, RRFs, etc.)

C01 = GC/MS Tuning Noncompliance

D = MS/MSD Recovery Noncompliance

E = LCS/LCSD Recovery Noncompliance

F = Lab Duplicate Imprecision

G = Field Duplicate Imprecision

H = Holding Time Exceedance

I = ICP Serial Dilution Noncompliance

J = ICP PDS Recovery Noncompliance; MSA's r < 0.995

K = ICP Interference - includes ICS % R Noncompliance

L = Instrument Calibration Range Exceedance

M = Sample Preservation Noncompliance

N = Internal Standard Noncompliance

N01 = Internal Standard Recovery Noncompliance Dioxins

N02 = Recovery Standard Noncompliance Dioxins

N03 = Clean-up Standard Noncompliance Dioxins

O = Poor Instrument Performance (i.e., base-time drifting)

P = Uncertainty near detection limit (< 2 x IDL for inorganics and <CRQL for organics)

Q = Other problems (can encompass a number of issues; i.e.chromatography,interferences, etc.)

R = Surrogates Recovery Noncompliance

S = Pesticide/PCB Resolution

T = % Breakdown Noncompliance for DDT and Endrin

U = RPD between columns/detectors >40% for positive results determined via GC/HPLC

V = Non-linear calibrations; correlation coefficient r < 0.995

W = EMPC result

X = Signal to noise response drop

Y = Percent solids <30%

Z = Uncertainty at 2 standard deviations is greater than sample activity

Z1 = Tentatively Identified Compound considered presumptively present

Z2 = Tentatively Identified Compound column bleed

Z3 = Tentatively Identified Compound aldol condensate

PROJ_NO: 04792	NSAMPLE	IA-146-VLS-2	IA-147-VLS-2	IA-148-VLS-2	IA-149-VLS-2
SDG: 10259329	LAB_ID	10259329008	10259329001	10259329003	10259329006
FRACTION: 0V	SAMP_DATE	2/26/2014	2/26/2014	2/26/2014	2/26/2014
MEDIA: AIR	QC_TYPE	MZ	MM	MN	NZ.
	UNITS	UG/M3	UG/M3	UG/M3	UG/M3
	PCT_SOLIDS				
PARAMETER	רי ס	RESULT VOI DICD	RESULT VOL OLCD	RESULT VOL QLCD	RESULT VQL QLCD
1,1,1-TRICHLOROETHANE	111	2.1 U	1.9 U	2 U	2 U
1,1,2-TRICHLOROETHANE		J L	0.92 U	U 66.0	U 66.0
1,1-DICHLOROETHANE		1.5 U	1.4 U	1.5 U	1.5 U
1,1-DICHLOROETHENE		1.5 U	1,4 U	1.5 U	1.5 U
1,2,3-TRIMETHYLBENZENE	Ш	4.1	1.3 J P	1.8 U	1.4
1,2,4-TRICHLOROBENZENE	¥	2.8 U	2.5 UJ C	2.7 UJ C	2.7 U
1,2,4-TRIMETHYLBENZENE	ш	2.6	4.1	2.9	2.5
1,2-DICHLOROETHANE		U 77.0	U 69.0	0.74 U	0.74 U
1,3,5-TRIMETHYLBENZENE	ш	1.9 J	1.8	1.8 U	1.9
BENZENE		99.0	2.5 J G	86.0	99.0
CARBON TETRACHLORIDE	m.	1.2 U	1.1 U	1.2 U	1.2 U
CHLORODIFLUOROMETHANE	IANE	2.3	5	3.2	2
CHLOROFORM		1.9 U	1.7 U	1.8 U	1.8 U
CIS-1,2-DICHLOROETHENE	ű.	1.5 U	1.4 U	1.5 U	1.5 U
DICHLORODIFLUOROMETHANE	THANE	1.9	U 7.1	2.7	1.8
ETHYLBENZENE		8.6	12.1	17.9	10.5
M+P-XYLENES		26.1	31.9	47.9	27.4
METHYL TERT-BUTYL ETHER	HER	1.4 U	1.2 U	1.3 U	1.3 U
METHYLENE CHLORIDE		6.8	483 J LG	21.9	11.7
NAPHTHALENE		1.4 J	71 J CG	1.9 UJ C	1.3 J P
O-XYLENE		6.8	8.5	12	7.3
TETRACHLOROETHENE		1.3 U	1.2 U	1.2 U	1.2 U
TOLUENE		10	120 J G	17.4	9.5
TRANS-1,2-DICHLOROETHENE	HENE	15 U	1.4 U	1.5 U	1.5 U
TRICHLOROETHENE		1 U	0.92 U	U 66.0	U 66:0
VINYL CHLORIDE		0.49 U	0.44 U	0.47 U	0.47

PROJ_NO: 04792	NSAMPLE	IA-150-VLS-2			IA-151-VLS-2			IA-152-VLS-2	-5		IA-DUP1-VLS-2	.S-2	
SDG: 10259329	LAB_ID	10259329007			10259329005			10259329004	40		10259329002	72	
FRACTION: OV	SAMP_DATE	2/26/2014			2/26/2014			2/26/2014			2/26/2014		
MEDIA: AIR	QC_TYPE	ΣZ			ΣZ			ΣZ			NM		
	UNITS	UG/M3			UG/M3			UG/M3			UG/M3		
	PCT_SOLIDS												
	DUP_OF										IA-147-VLS-2	-2	
PARAMETER		RESULT	VQL	alcd	RESULT	NOL	alcd	RESULT	VQL	arcd	RESULT	Val	OLCD
1,1,1-TRICHLOROETHANE	ш	. •	2 U		1.6	1.9 U			2 U		_	1.9 U	
1,1,2-TRICHLOROETHANE	Щ	0.9	0.99 U		0.92 U	ם		0	0.99 U		3.0	0.92 U	
1,1-DICHLOROETHANE		1.	1.5 U		1.4	1.4 U			1.5 U		1	1.4 U	
1,1-DICHLOROETHENE		1,	1.5 U		1.4	1.4 U			1.5 U		—	1.4 U	
1,2,3-TRIMETHYLBENZENE	JA.	1.4	+		1.7	1.7 U			1.8 U		_	1.6 J	۵
1,2,4-TRICHLOROBENZENE	NE	2.	2.7 U		2.5	2.5 UJ	၁		2.7 UJ	၁	2	2.5 UJ	ပ
1,2,4-TRIMETHYLBENZENE	NE	2.7			1.7	1.7 U			1.8 U		4	4.9	
1,2-DICHLOROETHANE		0.7	0.74 U		0.69 U	ח		0	0.74 U		0.6	0.69 U	
1,3,5-TRIMETHYLBENZENE	J.	1.9	9		1.7	1.7 U			1.8 U		-	1.7 U	
BENZENE	!	0.67			0.75			0	0.83		3.0	0.92 J	ပ
CARBON TETRACHLORIDE	DE	1.2	2 U		1.1	n			1.2 U		-	1.1 U	
CHLORODIFLUOROMETHANE	HANE	2.1			2.7				3.8		4	4.6	
CHLOROFORM		1.2	1.8 U		1.7	_			1.8 U			1.7 U	İ
CIS-1,2-DICHLOROETHENE	NE	1.5	5 U		1.4	n			1.5 U		~	1.4 U	
DICHLORODIFLUOROMETHANE	THANE	1.9	9		2.4	_			2.6		2	2.6	
ETHYLBENZENE		12.8	3		1.5	<u>.</u>			1.6 U		14	14.7	
M+P-XYLENES		32.2	2			3 U			3.2 U		38	38.5	
METHYL TERT-BUTYL ETHER	THER	1.3	3 U		1.2	n i			1.3 U		-	1.2 U	
METHYLENE CHLORIDE		11.8	3		7.3	3			19.3		11.7	.7 J	တ
NAPHTHALENE		1.3	3 J	Ь	1.8	1.8 UJ	ပ		1.9 UJ	ပ	-	1.8 UJ	ဗ္ပ
O-XYLENE		8.8	3		1.5	1.5 U			1.6 U		10	10.3	
TETRACHLOROETHENE		1.2	2 U		1.2	D 3			1.2 U	_	_	1.2 U	
TOLUENE		11.2	-		ш)	5			4.4		18	18.9 J	ပ
TRANS-1,2-DICHLOROETHENE	HENE	1.5	5 U		1.4	ם			1.5 U		-	1.4 U	
TRICHLOROETHENE		0.99) 		0.92	n		0	0.99 U		0.6	0.92 U	
VINYL CHLORIDE		0.47	7 U		0.44	<u> </u>		0	0.47 U		7.0	0.44 U	

Appendix B

Results as Reported by the Laboratory

Project:

MRC SV/IAQ Study Feb 2014 REV

Pace Project No.: 10259329

Date: 04/17/2014 12:22 PM

Sample: IA-146-VLS-2	Lab ID: 10259329008	Collected: 02/26/1	4 18:31	Received: 03/04/14 10:00	Matrix: Air	
Parameters	Results Units	Report Limit	DF	Prepared Analyzed	CAS No. Q	ua
TO15 MSV AIR	Analytical Method: TO-15					
Benzene	0.66 ug/m3	0.61	1.87	03/12/14 21:06	71-43-2	
Carbon tetrachloride	ND ug/m3	1.2	1.87	03/12/14 21:06	5 56-23-5	
Chlorodifluoromethane	2.3 ug/m3	0.37	1.87	03/12/14 21:06	75-45-6	
Chloroform	ND ug/m3	1.9	1.87	03/12/14 21:06	67-66-3	
Dichlorodifluoromethane	1.9 ug/m3	1.9	1.87	03/12/14 21:06	75-71-8	
1,1-Dichloroethane	ND ug/m3	1.5	1.87	03/12/14 21:06	75-34-3	
1,2-Dichloroethane	ND ug/m3	0.77	1.87	03/12/14 21:06	107-06-2	
1,1-Dichloroethene	ND ug/m3	1.5	1.87	03/12/14 21:06	75-35-4	
cis-1,2-Dichloroethene	ND ug/m3	1.5	1.87	03/12/14 21:06	156-59-2	
trans-1,2-Dichloroethene	ND ug/m3	1.5	1.87	03/12/14 21:06	156-60-5	
Ethylbenzene	9.8 ug/m3	1.6	1.87	03/12/14 21:06	100-41-4	
Methylene Chloride	6.8 ug/m3	1.3	1.87	03/12/14 21:06	75-09-2	
Methyl-tert-butyl ether	ND ug/m3	1.4	1.87	03/12/14 21:06	1634-04-4	
Naphthalene	1.4J ug/m3	2.0	1.87	03/12/14 21:06	91-20-3	
Tetrachloroethene	ND ug/m3	1.3	1.87	03/12/14 21:06	127-18-4	
Toluene	10 ug/m3	1.4	1.87	03/12/14 21:06	108-88-3	
1,2,4-Trichlorobenzene	ND ug/m3	2.8	1.87	03/12/14 21:06	120-82-1	
1,1,1-Trichloroethane	ND ug/m3	2.1	1.87	03/12/14 21:06	71-55-6	
1,1,2-Trichloroethane	ND ug/m3	1.0	1.87	03/12/14 21:06	79-00-5	
Trichloroethene	ND ug/m3	1.0	1.87	03/12/14 21:06	79-01-6	
1,2,3-Trimethylbenzene	1.4 ug/m3	0.37	1.87	03/12/14 21:06	5 526-73-8	
1,2,4-Trimethylbenzene	2.6 ug/m3	1.9	1.87	03/12/14 21:06	95-63-6	
1,3,5-Trimethylbenzene	1.9J ug/m3	1.9	1.87	03/12/14 21:06	108-67-8	
Vinyl chloride	ND ug/m3	0.49	1.87	03/12/14 21:06	75-01-4	
m&p-Xylene	26.1 ug/m3	3.3	1.87	03/12/14 21:06	179601-23-1	
o-Xylene	6.8 ug/m3	1.6	1.87	03/12/14 21:06	95-47-6	

Project:

MRC SV/IAQ Study Feb 2014 REV

Pace Project No.:

Date: 04/17/2014 12:22 PM

10259329

Sample: IA-147-VLS-2	Lab ID: 10259329001	Collected: 02/26/14	18:28	Received: 03/04/14 10:00	Matrix: Air	
Parameters	Results Units	Report Limit	DF	Prepared Analyze	CAS No.	Qua
TO15 MSV AIR	Analytical Method: TO-15					
Benzene	2.5 ug/m3	0.55	1.68	03/13/14 03	:00 71-43-2	
Carbon tetrachloride	ND ug/m3	1.1	1.68	03/13/14 03	:00 56-23-5	
Chlorodifluoromethane	5.0 ug/m3	1.2	1.68	03/13/14 03	:00 75-45-6	
Chloroform	ND ug/m3	1.7	1.68	03/13/14 03	:00 67-66-3	
Dichlorodifluoromethane	ND ug/m3	1.7	1.68	03/13/14 03	:00 75-71-8	
1,1-Dichloroethane	ND ug/m3	1.4	1.68	03/13/14 03	:00 75-34-3	
1,2-Dichloroethane	ND ug/m3	0.69	1.68	03/13/14 03	:00 107-06-2	
1,1-Dichloroethene	ND ug/m3	1.4	1.68	03/13/14 03	:00 75-35-4	
cis-1,2-Dichloroethene	ND ug/m3	1.4	1.68	03/13/14 03	:00 156-59-2	
rans-1,2-Dichloroethene	ND ug/m3	1.4	1.68	03/13/14 03	:00 156-60-5	
Ethylbenzene	12.1 ug/m3	1.5	1.68	03/13/14 03	:00 100-41-4	
Methylene Chloride	483 ug/m3	1.2	1.68	03/13/14 03	:00 75-09-2	Е
Methyl-tert-butyl ether	ND ug/m3	1.2	1.68	03/13/14 03	:00 1634-04-4	
Naphthalene	71.0 ug/m3	1.8	1.68	03/13/14 03	:00 91-20-3	СН
Tetrachloroethene	ND ug/m3	1.2	1.68	03/13/14 03	:00 127-18-4	
Toluene	120 ug/m3	1.3	1.68	03/13/14 03	:00 108-88-3	
1,2,4-Trichlorobenzene	ND ug/m3	2.5	1.68	03/13/14 03	:00 120-82-1	
1,1,1-Trichloroethane	ND ug/m3	1.9	1.68	03/13/14 03	:00 71-55-6	
1,1,2-Trichloroethane	ND ug/m3	0.92	1.68	03/13/14 03	:00 79-00-5	
Trichloroethene	ND ug/m3	0.92	1.68	03/13/14 03	:00 79-01-6	
1,2,3-Trimethylbenzene	1.3J ug/m3	1.7	1.68	03/13/14 03	:00 526-73-8	
1,2,4-Trimethylbenzene	4.1 ug/m3	1.7	1.68	03/13/14 03	:00 95-63-6	
1,3,5-Trimethylbenzene	1.8 ug/m3	1.7	1.68	03/13/14 03	:00 108-67-8	
Vinyl chloride	ND ug/m3	0.44	1.68	03/13/14 03	:00 75-01-4	
m&p-Xylene	31.9 ug/m3	3.0	1.68	03/13/14 03	:00 179601-23-1	
o-Xylene	8.5 ug/m3	1.5	1.68	03/13/14 03	:00 95-47-6	

Project:

MRC SV/IAQ Study Feb 2014 REV

Pace Project No.:

Date: 04/17/2014 12:22 PM

10259329

Sample: IA-148-VLS-2	Lab ID: 10259329003	Collected: 02/26/1	4 18:55	Received: 03/04/14 10:00	Matrix: Air
Parameters	Results Units	Report Limit	DF	Prepared Analyzed	CAS No. Qu
TO15 MSV AIR	Analytical Method: TO-15				
Benzene	0.98 ug/m3	0.58	1.8	03/13/14 01:27	71-43-2
Carbon tetrachloride	ND ug/m3	1.2	1.8	03/13/14 01:27	56-23-5
Chlorodifluoromethane	3.2 ug/m3	1.3	1.8	03/13/14 01:27	75-45-6
Chloroform	ND ug/m3	1.8	1.8	03/13/14 01:27	67-66-3
Dichlorodifluoromethane	2.7 ug/m3	1.8	1.8	03/13/14 01:27	75-71-8
1,1-Dichloroethane	ND ug/m3	1.5	1.8	03/13/14 01:27	75-34-3
1,2-Dichloroethane	ND ug/m3	0.74	1.8	03/13/14 01:27	107-06-2
1,1-Dichloroethene	ND ug/m3	1.5	1.8	03/13/14 01:27	75-35-4
cis-1,2-Dichloroethene	ND ug/m3	1.5	1.8	03/13/14 01:27	156-59-2
trans-1,2-Dichloroethene	ND ug/m3	1.5	1.8	03/13/14 01:27	156-60-5
Ethylbenzene	17.9 ug/m3	1.6	1.8	03/13/14 01:27	100-41-4
Methylene Chloride	21.9 ug/m3	1.3	1.8	03/13/14 01:27	75-09-2
Methyl-tert-butyl ether	ND ug/m3	1.3	1.8	03/13/14 01:27	1634-04-4
Naphthalene	ND ug/m3	1.9	1.8	03/13/14 01:27	91-20-3
Tetrachloroethene	ND ug/m3	1.2	1.8	03/13/14 01:27	127-18-4
Toluene	17.4 ug/m3	1.4	1.8	03/13/14 01:27	108-88-3
1,2,4-Trichlorobenzene	ND ug/m3	2.7	1.8	03/13/14 01:27	120-82-1
1,1,1-Trichloroethane	ND ug/m3	2.0	1.8	03/13/14 01:27	71-55-6
1,1,2-Trichloroethane	ND ug/m3	0.99	1.8	03/13/14 01:27	79-00-5
Trichloroethene	ND ug/m3	0.99	1.8	03/13/14 01:27	79-01-6
1,2,3-Trimethylbenzene	ND ug/m3	1.8	1.8	03/13/14 01:27	526-73-8
1,2,4-Trimethylbenzene	2.9 ug/m3	1.8	1.8	03/13/14 01:27	95-63-6
1,3,5-Trimethylbenzene	ND ug/m3	1.8	1.8	03/13/14 01:27	108-67-8
Vinyl chloride	ND ug/m3	0.47	1.8	03/13/14 01:27	75-01-4
m&p-Xylene	47.9 ug/m3	3.2	1.8	03/13/14 01:27	179601-23-1
o-Xylene	12.0 ug/m3	. 1.6	1.8	03/13/14 01:27	95-47-6

Project:

MRC SV/IAQ Study Feb 2014 REV

Pace Project No.:

Date: 04/17/2014 12:22 PM

10259329

Sample: IA-149-VLS-2	Lab ID: 10259329006	Collected: 02/26/1	4 18:25	Received: 03/04/14 10:00 M	Matrix: Air	
Parameters	Results Units	Report Limit	DF	Prepared Analyzed	CAS No.	Qua
TO15 MSV AIR	Analytical Method: TO-15					
Benzene	0.66 ug/m3	0.58	1.8	03/12/14 21:34	71-43-2	
Carbon tetrachloride	ND ug/m3	1.2	1.8	03/12/14 21:34	56-23-5	
Chlorodifluoromethane	2.0 ug/m3	0.36	1.8	03/12/14 21:34	75-45-6	
Chloroform	ND ug/m3	1.8	1.8	03/12/14 21:34	67-66-3	
Dichlorodifluoromethane	1.8 ug/m3	1.8	1.8	03/12/14 21:34	75-71-8	
1,1-Dichloroethane	ND ug/m3	1.5	1.8	03/12/14 21:34	75-34-3	
1,2-Dichloroethane	ND ug/m3	0.74	1.8	03/12/14 21:34	107-06-2	
1,1-Dichloroethene	ND ug/m3	1.5	1.8	03/12/14 21:34	75-35-4	
cis-1,2-Dichloroethene	ND ug/m3	1.5	1.8	03/12/14 21:34	156-59-2	
trans-1,2-Dichloroethene	ND ug/m3	1.5	1.8	03/12/14 21:34	156-60-5	
Ethylbenzene	10.5 ug/m3	1.6	1.8	03/12/14 21:34	100-41-4	
Methylene Chloride	11.7 ug/m3	1.3	1.8	03/12/14 21:34	75-09-2	
Methyl-tert-butyl ether	ND ug/m3	1.3	1.8	03/12/14 21:34	1634-04-4	
Naphthalene	1.3J ug/m3	1.9	1.8	03/12/14 21:34	91-20-3	
Tetrachloroethene	ND ug/m3	1.2	1.8	03/12/14 21:34	127-18-4	
Toluene	9.5 ug/m3	1.4	1.8	03/12/14 21:34	108-88-3	
1,2,4-Trichlorobenzene	ND ug/m3	2.7	1.8	03/12/14 21:34	120-82-1	
1,1,1-Trichloroethane	ND ug/m3	2.0	1.8	03/12/14 21:34	71-55-6	
1,1,2-Trichloroethane	ND ug/m3	0.99	1.8	03/12/14 21:34	79-00-5	
Trichloroethene	ND ug/m3	0.99	1.8	03/12/14 21:34	79-01-6	
1,2,3-Trimethylbenzene	1.4 ug/m3	0.36	1.8	03/12/14 21:34	526-73-8	
1,2,4-Trimethylbenzene	2.5 ug/m3	1.8	1.8	03/12/14 21:34	95-63-6	
1,3,5-Trimethylbenzene	1.9 ug/m3	1.8	1.8	03/12/14 21:34	108-67-8	
Vinyl chloride	ND ug/m3	0.47	1.8	03/12/14 21:34	75-01-4	
m&p-Xylene	27.4 ug/m3	3.2	1.8	03/12/14 21:34	179601-23-1	
o-Xylene	7.3 ug/m3	1.6	1.8	03/12/14 21:34	95-47-6	

Project:

MRC SV/IAQ Study Feb 2014 REV

Pace Project No.:

Date: 04/17/2014 12:22 PM

10259329

Sample: IA-150-VLS-2	Lab ID: 10259329007	Collected: 02/26/14	18:34	Received: 03/04/14 10:0	Matrix: Air	
Parameters	Results Units	Report Limit I	DF	Prepared Analyze	d CAS No.	Qua
TO15 MSV AIR	Analytical Method: TO-15					
Benzene	0.67 ug/m3	0.58	1.8	03/12/14 2	2:03 71-43-2	
Carbon tetrachloride	ND ug/m3	1.2	1.8	03/12/14 2	2:03 56-23-5	
Chlorodifluoromethane	2.1 ug/m3	0.36	1.8	03/12/14 2	2:03 75-45-6	
Chloroform	ND ug/m3	1.8	1.8	03/12/14 2	2:03 67-66-3	
Dichlorodifluoromethane	1.9 ug/m3	1.8	1.8	03/12/14 2	2:03 75-71-8	
1,1-Dichloroethane	ND ug/m3	1.5	1.8	03/12/14 2	2:03 75-34-3	
1,2-Dichloroethane	ND ug/m3	0.74	1.8	03/12/14 2	2:03 107-06-2	
1,1-Dichloroethene	ND ug/m3	1.5	1.8	03/12/14 2	2:03 75-35-4	
cis-1,2-Dichloroethene	ND ug/m3	1.5	1.8	03/12/14 2	2:03 156-59-2	
rans-1,2-Dichloroethene	ND ug/m3	1.5	1.8	03/12/14 2	2:03 156-60-5	
Ethylbenzene	12.8 ug/m3	1.6	1.8	03/12/14 2	2:03 100-41-4	
Methylene Chloride	11.8 ug/m3	1.3	1.8	03/12/14 2	2:03 75-09-2	
Methyl-tert-butyl ether	ND ug/m3	1.3	1.8	03/12/14 2	2:03 1634-04-4	
Naphthalene	1.3J ug/m3	1.9	1.8	03/12/14 2	2:03 91-20-3	
Tetrachloroethene	ND ug/m3	1.2	1.8	03/12/14 2	2:03 127-18-4	
Toluene	11.2 ug/m3	1.4	1.8	03/12/14 2	2:03 108-88-3	
1,2,4-Trichlorobenzene	ND ug/m3	2.7	1.8	03/12/14 2	2:03 120-82-1	
1,1,1-Trichloroethane	ND ug/m3	2.0	1.8	03/12/14 2	2:03 71-55-6	
1,1,2-Trichloroethane	ND ug/m3	0.99	1.8	03/12/14 2	2:03 79-00-5	
Trichloroethene	ND ug/m3	0.99	1.8	03/12/14 2	2:03 79-01-6	
1,2,3-Trimethylbenzene	1.4 ug/m3	0.36	1.8	03/12/14 2	2:03 526-73-8	
1,2,4-Trimethylbenzene	2.7 ug/m3	1.8	1.8	03/12/14 2	2:03 95-63-6	
1,3,5-Trimethylbenzene	1.9 ug/m3	1.8	1.8	03/12/14 2	2:03 108-67-8	
Vinyl chloride	ND ug/m3	0.47	1.8	03/12/14 2	2:03 75-01-4	
m&p-Xylene	32.2 ug/m3	3.2	1.8	03/12/14 2	2:03 179601-23-1	
o-Xylene	8.8 ug/m3	1.6	1.8	03/12/14 2	2:03 95-47-6	

Project:

MRC SV/IAQ Study Feb 2014 REV

Pace Project No.:

Date: 04/17/2014 12:22 PM

10259329

Sample: IA-151-VLS-2	Lab ID: 10259329005	Collected: 02/26/1	4 18:50	Received: 03/04/14 10:00	Matrix: Air	
Parameters	Results Units	Report Limit	DF	Prepared Analyzed	CAS No. Q	Qua
TO15 MSV AIR	Analytical Method: TO-15					
Benzene	0.75 ug/m3	0.55	1.68	03/13/14 00:2	9 71-43-2	
Carbon tetrachloride	ND ug/m3	1.1	1.68	03/13/14 00:2	9 56-23-5	
Chlorodifluoromethane	2.7 ug/m3	1.2	1.68	03/13/14 00:2	9 75-45-6	
Chloroform	ND ug/m3	1.7	1.68	03/13/14 00:2	9 67-66-3	
Dichlorodifluoromethane	2.4 ug/m3	1.7	1.68	03/13/14 00:2	9 75-71-8	
1,1-Dichloroethane	ND ug/m3	1.4	1.68	03/13/14 00:2	9 75-34-3	
1,2-Dichloroethane	ND ug/m3	0.69	1.68	03/13/14 00:2	9 107-06-2	
1,1-Dichloroethene	ND ug/m3	1.4	1.68	03/13/14 00:2	9 75-35-4	
cis-1,2-Dichloroethene	ND ug/m3	1.4	1.68	03/13/14 00:2	9 156-59-2	
trans-1,2-Dichloroethene	ND ug/m3	1.4	1.68	03/13/14 00:2	9 156-60-5	
Ethylbenzene	ND ug/m3	1.5	1.68	03/13/14 00:2	9 100-41-4	
Methylene Chloride	7.3 ug/m3	1.2	1.68	03/13/14 00:2	9 75-09-2	
Methyl-tert-butyl ether	ND ug/m3	1.2	1.68	03/13/14 00:2	9 1634-04-4	
Naphthalene	ND ug/m3	1.8	1.68	03/13/14 00:2	9 91-20-3	
Tetrachloroethene	ND ug/m3	1.2	1.68	03/13/14 00:2	9 127-18-4	
Toluene	5.0 ug/m3	1.3	1.68	03/13/14 00:2	9 108-88-3	
1,2,4-Trichlorobenzene	ND ug/m3	2.5	1.68	03/13/14 00:2	9 120-82-1	
1,1,1-Trichloroethane	ND ug/m3	1.9	1.68	03/13/14 00:2	9 71-55-6	
1,1,2-Trichloroethane	ND ug/m3	0.92	1.68	03/13/14 00:2	9 79-00-5	
Trichloroethene	ND ug/m3	0.92	1.68	03/13/14 00:2	9 79-01-6	
1,2,3-Trimethylbenzene	ND ug/m3	1.7	1.68	03/13/14 00:2	9 526-73-8	
1,2,4-Trimethylbenzene	ND ug/m3	1.7	1.68	03/13/14 00:2	9 95-63-6	
1,3,5-Trimethylbenzene	ND ug/m3	1.7	1.68	03/13/14 00:2	9 108-67-8	
Vinyl chloride	ND ug/m3	0.44	1.68	03/13/14 00:2	9 75-01-4	
m&p-Xylene	ND ug/m3	3.0	1.68	03/13/14 00:2	9 179601-23-1	
o-Xylene	ND ug/m3	1.5	1.68	03/13/14 00:2	9 95-47-6	

Project:

MRC SV/IAQ Study Feb 2014 REV

Pace Project No.:

Date: 04/17/2014 12:22 PM

10259329

Sample: IA-152-VLS-2	Lab ID: 10259329004	Collected: 02/26/14 18	3:45 Received	I: 03/04/14 10:00 M	Matrix: Air
Parameters	Results Units	Report Limit D	F Prepare	ed Analyzed	CAS No. C
TO15 MSV AIR	Analytical Method: TO-15				
Benzene	0.83 ug/m3	0.58 1.	8	03/13/14 00:58	71-43-2
Carbon tetrachloride	ND ug/m3	1.2 1.	8	03/13/14 00:58	56-23-5
Chlorodifluoromethane	3.8 ug/m3	1.3 1.	8	03/13/14 00:58	75-45-6
Chloroform	ND ug/m3	1.8 1.	8	03/13/14 00:58	67-66-3
Dichlorodifluoromethane	2.6 ug/m3	1.8 1.	8	03/13/14 00:58	75-71-8
1,1-Dichloroethane	ND ug/m3	1.5 1.	8	03/13/14 00:58	75-34-3
1,2-Dichloroethane	ND ug/m3	0.74 1.	8	03/13/14 00:58	107-06-2
1,1-Dichloroethene	ND ug/m3	1.5 1.	8	03/13/14 00:58	75-35-4
cis-1,2-Dichloroethene	ND ug/m3	1.5 1.	8	03/13/14 00:58	156-59-2
rans-1,2-Dichloroethene	ND ug/m3	1.5 1.	8	03/13/14 00:58	156-60-5
Ethylbenzene	ND ug/m3	1.6 1.	8	03/13/14 00:58	100-41-4
Methylene Chloride	19.3 ug/m3	1.3 1.	8	03/13/14 00:58	75-09-2
Methyl-tert-butyl ether	ND ug/m3	1.3 1.	8	03/13/14 00:58	1634-04-4
Naphthalene	ND ug/m3	1.9 1.	8	03/13/14 00:58	91-20-3
Tetrachloroethene	ND ug/m3	1.2 1.	8	03/13/14 00:58	127-18-4
Toluene	4.4 ug/m3	1.4 1.	8	03/13/14 00:58	108-88-3
1,2,4-Trichlorobenzene	ND ug/m3	2.7 1.	8	03/13/14 00:58	120-82-1
1,1,1-Trichloroethane	ND ug/m3	2.0 1.	8	03/13/14 00:58	71-55-6
1,1,2-Trichloroethane	ND ug/m3	0.99 1.	8	03/13/14 00:58	79-00-5
Trichloroethene	ND ug/m3	0.99 1.	8	03/13/14 00:58	79-01-6
1,2,3-Trimethylbenzene	ND ug/m3	1.8 1.	8	03/13/14 00:58	526-73-8
1,2,4-Trimethylbenzene	ND ug/m3	1.8 1.	8	03/13/14 00:58	95-63-6
1,3,5-Trimethylbenzene	ND ug/m3	1.8 1.	8	03/13/14 00:58	108-67-8
Vinyl chloride	ND ug/m3	0.47 1.	8	03/13/14 00:58	75-01-4
m&p-Xylene	ND ug/m3	3.2 1.	8	03/13/14 00:58	179601-23-1
o-Xylene	ND ug/m3	1.6 1.	8	03/13/14 00:58	95-47-6

Project:

MRC SV/IAQ Study Feb 2014 REV

Pace Project No.:

Date: 04/17/2014 12:22 PM

10259329

Sample: IA-DUP1-VLS-2	Lab ID: 10259329002	Collected: 02/26/1	4 00:00	Received: 03/04/14 10:00	Matrix: Air	
Parameters	Results Units	Report Limit	DF	Prepared Analyze	CAS No.	Qua
TO15 MSV AIR	Analytical Method: TO-15					
Benzene	0.92 ug/m3	0.55	1.68	03/13/14 02	:28 71-43-2	
Carbon tetrachloride	ND ug/m3	1.1	1.68	03/13/14 02	:28 56-23-5	
Chlorodifluoromethane	4.6 ug/m3	1.2	1.68	03/13/14 02	:28 75-45-6	
Chloroform	ND ug/m3	1.7	1.68	03/13/14 02	:28 67-66-3	
Dichlorodifluoromethane	2.6 ug/m3	1.7	1.68	03/13/14 02	:28 75-71-8	
1,1-Dichloroethane	ND ug/m3	1.4	1.68	03/13/14 02	:28 75-34-3	
1,2-Dichloroethane	ND ug/m3	0.69	1.68	03/13/14 02	:28 107-06-2	
1,1-Dichloroethene	ND ug/m3	1.4	1.68	03/13/14 02	:28 75-35-4	
cis-1,2-Dichloroethene	ND ug/m3	1.4	1.68	03/13/14 02	:28 156-59-2	
rans-1,2-Dichloroethene	ND ug/m3	1.4	1.68	03/13/14 02	:28 156-60-5	
Ethylbenzene	14.7 ug/m3	1.5	1.68	03/13/14 02	:28 100-41-4	
Methylene Chloride	11.7 ug/m3	1.2	1.68	03/13/14 02	:28 75-09-2	
Methyl-tert-butyl ether	ND ug/m3	1.2	1.68	03/13/14 02	:28 1634-04-4	
Naphthalene	ND ug/m3	1.8	1.68	03/13/14 02	:28 91-20-3	
Tetrachloroethene	ND ug/m3	1.2	1.68	03/13/14 02	:28 127-18-4	
Toluene	18.9 ug/m3	1.3	1.68	03/13/14 02	:28 108-88-3	
1,2,4-Trichlorobenzene	ND ug/m3	2.5	1.68	03/13/14 02	:28 120-82-1	
1,1,1-Trichloroethane	ND ug/m3	1.9	1.68	03/13/14 02	:28 71-55-6	
1,1,2-Trichloroethane	ND ug/m3	0.92	1.68	03/13/14 02	28 79-00-5	
Trichloroethene	ND ug/m3	0.92	1.68	03/13/14 02	:28 79-01-6	
1,2,3-Trimethylbenzene	1.6J ug/m3	1.7	1.68	03/13/14 02	:28 526-73-8	
1,2,4-Trimethylbenzene	4.9 ug/m3	1.7	1.68	03/13/14 02	:28 95-63-6	
1,3,5-Trimethylbenzene	ND ug/m3	1.7	1.68	03/13/14 02	:28 108-67-8	
Vinyl chloride	ND ug/m3	0.44	1.68	03/13/14 02	:28 75-01-4	
m&p-Xylene	38.5 ug/m3	3.0	1.68	03/13/14 02	:28 179601-23-1	
o-Xylene	10.3 ug/m3	1.5	1.68	03/13/14 02	:28 95-47-6	

Appendix C

Support Documentation

PROJECT NARRATIVE

Project:

MRC SV/IAQ Study Feb 2014

Pace Project No.:

.: 10259329

Method:

TO-15

Description: TO15 MSV AIR

Client:

Tetra Tech GEO - Maryland

Date:

March 17, 2014

General Information:

8 samples were analyzed for TO-15. All samples were received in acceptable condition with any exceptions noted below.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

QC Batch: AIR/19645

CH: The continuing calibration for this compound is outside of Pace Analytical acceptance limits. The results may be biased high.

- DUP (Lab ID: 1638565)
 - Naphthalene
- IA-147-VLS-2 (Lab ID: 10259329001)
 - Naphthalene
- LCS (Lab ID: 1638294)
 - 1,2,4-Trichlorobenzene
 - Naphthalene

Internal Standards:

All internal standards were within QC limits with any exceptions noted below.

Surrogates:

All surrogates were within QC limits with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

QC Batch: AIR/19645

L3: Analyte recovery in the laboratory control sample (LCS) exceeded QC limits. Analyte presence below reporting limits in associated samples. Results unaffected by high bias.

- LCS (Lab ID: 1638294)
 - 1,2,4-Trichlorobenzene

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

PROJECT NARRATIVE

Project:

MRC SV/IAQ Study Feb 2014

Pace Project No.:

10259329

Method:

TO-15

Description: TO15 MSV AIR

Client:

Tetra Tech GEO - Maryland

Date:

March 17, 2014

Additional Comments:

Analyte Comments:

QC Batch: AIR/19645

E: Analyte concentration exceeded the calibration range. The reported result is estimated.

- IA-147-VLS-2 (Lab ID: 10259329001)
 - Methylene Chloride

This data package has been reviewed for quality and completeness and is approved for release.

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project:

MRC SV/IAQ Study Feb 2014

Pace Project No.:

Date: 03/17/2014 03:36 PM

10259329

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytica Batch
10259329001	IA-147-VLS-2	TO-15	AIR/19645		
10259329002	IA-DUP1-VLS-2	TO-15	AIR/19645		
10259329003	IA-148-VLS-2	TO-15	AIR/19645		
10259329004	IA-152-VLS-2	TO-15	AIR/19645		
10259329005	IA-151-VLS-2	TO-15	AIR/19645		
10259329006	IA-149-VLS-2	TO-15	AIR/19647		
10259329007	IA-150-VLS-2	TO-15	AIR/19647		
10259329008	IA-146-VLS-2	TO-15	AIR/19647		

AIR: CHAIN-OF-CUSTODY / Analytical Request Document

The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.

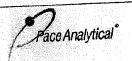

Face Analytical" www.pacelabs.com

Samples Intact Y/N Y/N Y/N (Y(N SAMPLE CONDITIONS Clean Air Act Pace Lab ID RCRA Other sealed Cooler ر ا ا 90 200 o e ∨ 700 N/A ~ ? o Custody 0 ng/m³___ PPBV____ eoj Page: Offher N/A S. N/A N/A Received on Emissions K Voluntary Clean Up Dry Clean 李 14855 O° ni qmeT 200 XX XXXX TIME Superfund 3 Sampling by State Report Level ocation of DATE カラシ UST Method: 4 Control Number ACCEPTED BY / AFFILIATION 7 0 0 053 700 15 0 0 0905 Can Number 7 Hononoused Summa 754 7.0 757 7 SAMPLER NAME AND SIGNATURE 2-82-(Final Field - psig) 2-2.11-258 ODE! HILER 7 125 -30 -4 7-01-1548 Canister Pressure TIME 200 2.82-8281 x1/2/2 2001 41/21/2 37. 850 -30 (bitta - blei4 lettini) Canister Pressure ace Project Manager/Sales Rep. 834 RINT Name of SAMPLER. DATE ace Quote Reference: COLLECTED DATE Company Name Pace Profile #: RELINQUISHED BY / AFFILIATION Section C Address: SIS 250 613 100 Pid TIME OMPOSITE START DATE Sam PID Reading (Client only) Required Project Information: MEDIA CODE 178 61.C 61.C 1.VP 14.VP urchase Order No. Tedlar Bag 11. Lider Summa Can 11. 6 Liter Summa Can 61. Low Volume Puff LV High Volume Puff High Volume Puff Pri Project Number. Project Name: Section B Report To: Centry Blud Fair Email Tory. Apanavage @ thethe 'Section D Required Client Information IA-041-165-2 Z-571-151-4I IA-152-VLS-2 2-571-811-42 2-571-641-42 14-146-125-Z IA-150-145-2 Z-5-142-145-2 Sample IDs MUST BE UNIQUE **AIR SAMPLE ID** Cermentaum, Mg 20874 Tech Required Client Information: Requested Due Date/TAT: Tetra John 826 Address: 20151 Company: Page 21 of 23

1700 Elm Street SE, Suite 200, Minneapolis, MN 55414 Air Technical Phone: 612.607.6386

ORIGINAL

FC046Rev.01, 03Feb2010


hold, incorrect preservative, out of temp, incorrect containers)

Document Name: Air Sample Condition Upon Receipt

Document No.: F-MN-A-106-rev.09 Document Revised: 26Dec2013
Page 1 of 1
Issuing Authority:
Pace Minnesota Quality Office

Yes No Yes No Yes No Yes No Yes No Yes No Yes No Yes No Yes No Yes No Yes No Yes No Yes No Yes No Yes No Yes No Yes No	Thermom. Used: Date & Initials of N/A 1.	B88A912167504 B88A9132521491 Person Examining Contents: Comments: Co	
Corrected Temp (°C): ttor: Yes No Yes No Yes No Yes No Yes No Yes No Yes No Yes No Yes No Yes No Yes No Yes No Yes No Yes No Yes No	Date & Initials of N/A 1. N/A 2. N/A 3. N/A 4. N/A 5. N/A 6. N/A 7. N/A 8. N/A 9. N/A 10. N/A 12. N/A	E 3 and 7 ha	
Yes No Yes No Yes No Yes No Yes No Yes No Yes No Yes No Yes No Yes No Yes No Yes No Yes No Yes No Yes No Yes No Yes No	N/A 2. N/A 3. N/A 4. N/A 5. N/A 6. N/A 7. N/A 8. N/A 9. N/A 9. N/A 10. 11. N/A 12. Sample	e 3 and 7 ha	
Yes No Yes No Yes No Yes No Yes No Yes No Yes No Yes No Yes No Yes No Yes No Yes No Yes No Yes No Yes No Yes No Yes No	N/A 2. N/A 3. N/A 4. N/A 5. N/A 6. N/A 7. N/A 8. N/A 9. N/A 9. N/A 10. 11. N/A 12. Sample	on the top not t	
Yes No Yes No Yes No Yes No Yes No Yes No Yes No Yes No Yes No Yes No Yes No Yes No Yes No Yes No Yes No Yes No Yes No Yes No Yes No	N/A 3. N/A 4. N/A 5. N/A 6. N/A 7. N/A 8. N/A 9. N/A 10. N/A 10. N/A 12. Sample	on the top not t	
Yes	□N/A 4. □N/A 5. □N/A 6. □N/A 7. □N/A 8. □N/A 9. □N/A 10. □N/A 11. □N/A 12. 5	on the top not t	
Yes No Yes No Yes No Yes No Yes No Yes No Yes No Yes No Flow C	N/A 5.	on the top not t	
Yes No Yes No Yes No Yes No Yes No Yes No Yes No Yes No	□N/A 6. □N/A 7. □N/A 8. □N/A 9. □N/A 10. □N/A 12. □N/A 12. □N/A	on the top not t	
Yes No Yes No Yes No Yes No Yes No Yes No Yes No	N/A 7. N/A 8. N/A 9. N/A 10. 11. N/A 12. Sample	on the top not t	
Yes No Yes No Yes No Yes No Yes No Flow C	□N/A 8. □N/A 9. □N/A 10. □11. □N/A 12. Sample	on the top not t	
Yes No Yes No Yes No Yes No Flow C	□N/A 9. □N/A 10. □N/A 11. □N/A 12. Sample	on the top not t	
Yes No Yes No Yes No Flow C	□N/A 10. □N/A 11. □N/A 12. Sample +me	on the top not t	
Yes No	□N/A 10. 11. □N/A 12. Sample → → Time	on the top not t	
Flow C	11. _{DN/A} 12. Sample +me	on the top not t	
Flow C	Fine	on the top not t	
Flow C	Fine	on the top not t	
	ontrollers	J. J. J. J. J. J. J. J. J. J. J. J. J. J	Alone G
Cample Number	Can ID	Sample Number	Can ID
Sample Number	0258		
	0445		
	0448		
	0415		
	0537		
	VS 13	사용의 - 이 사용별 발동 경기 표현. 생물	성명 (호텔 전) 이 사람이 있다. - [2] 이 사람들이 보고 있다.
			<u> </u>
		1919 - Paris San San San San San San San San San San	
	Date/Time:	Field Data Required	[[전화] (2.15) [1] [[1] [1] [1] [1] [1] [1] [1] [1] [1] [1] [1] [1] [1] [1] [1
		0537 0518 0513	の537 の518 の513 Field Data Required

Page 22 of 23

Document Name: SCUR Exceptions Form

Document No.:

F-MN-L-220-Rev.00

Document Revised: 16Apr2012 Page 1 Of 1

Issuing Authority: Pace Minnesota Quality Office

Workorder #:

10259329

	Sample ID	Container Type/#
San Cana 727		
7980 5647 7036		
7980 5647 7058		
8583 4927 1621		
7980 5647 6989	18 (1. 17 (1. 18 1) 19 (1. 18 1) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
7986 5647 7091		
7980 S647 7070		
74805647 7014		
7980 3647 7003		
7980 5647 7025		
7a80 S647 6990		
7980 5647 7080		
7980 5647 7069		
798056477106		
Joused can 2245	unused FC 0176	- 3414 R
3566		
1-1296	9090	

			8
			×
	4.00		
	0000		
	800		
	6000		
100			
	2000 W		
			æ
		6	
		66	
		29	
		329	
		329	
		9329	
		9329	
		59329	
		259329	
		259329	
)259329	
		0259329	
		10259329	
		10259329	
		10259329	
		10259329	
		10259329	
		G 10259329	
	- Section of the sect	IG 10259329	
		DG 10259329	
		i bG 10259329	
		sbG 10259329	
		SDG 10259329	
		SDG 10259329	
		SDG 10259329	
		SDG 10259329	
		SDG 10259329	
		SDG 10259329	
		SDG 10259329	

SORT	UNITS	NSAMPLE	LAB_ID	QC_TYPE	SAMP_DATE	EXTR_DATE	ANAL_DATE	SMP_EXTR	EXTR_ANL	SMP_ANL
	UG/M3	IA-DUP1-VLS-2	10259329002	MN	02/26/2014	03/13/2014	03/13/2014	15	0	15
	UG/M3	UG/M3 IA-152-VLS-2	10259329004	N N	02/26/2014	03/13/2014	03/13/2014	15	0	15
	UG/M3	UG/M3 IA-151-VLS-2	10259329005	N N	02/26/2014	03/13/2014	03/13/2014	15	0	15
	UG/M3	UG/M3 IA-150-VLS-2	10259329007	N Z	02/26/2014	03/12/2014	03/12/2014	14	0	14
	UG/M3	UG/M3 IA-149-VLS-2	10259329006	∑ Z	02/26/2014	03/12/2014	03/12/2014	14	0	14
	UG/M3	IA-148-VLS-2	10259329003	N N	02/26/2014	03/13/2014	03/13/2014	15	0	15
	UG/M3	IA-147-VLS-2	10259329001	N N	02/26/2014	03/13/2014	03/13/2014	15	0,	15
	UG/M3	UG/M3 IA-146-VLS-2	10259329008	ΣX	02/26/2014	03/12/2014	03/12/2014	14	0	14

ANALYTE	IA-DUP1-VLS-2	IA-147-VLS-2	RPD	DIFFERENCE
1,2,3-TRIMETHYLBENZENE	1.6	1.3	20.69	0.3
1,2,4-TRIMETHYLBENZENE	4.9	4.1	17.78	0.8
1,3,5-TRIMETHYLBENZENE	ND	1.8	200.00	0.1
BENZENE	0.92	2.5	92.40	1.58 /
CHLORODIFLUOROMETHANE	4.6	5	8.33	0.4
DICHLORODIFLUOROMETHANE	2.6	ND	200.00	0.9
ETHYLBENZENE	14.7	12.1	19.40	2.6
M+P-XYLENES	38.5	31.9	18.75	6.6
METHYLENE CHLORIDE	11.7	483	(190.54)	471.3
NAPHTHALENE	ND	71	(200.00)	69.2 🗸
O-XYLENE	10.3	8.5	19.15	1.8
TOLUENE	18.9	120	145.57	101.1

5A - FORM V VOA VOLATILE ORGANIC INSTRUMENT PERFORMANCE CHECK BROMOFLUOROBENZENE (BFB)

EPA SAMPLE NO.	
BFB	

Lab Name: Pace Analytical

Contract:

Lab Code:

PASI

Case No.:

SAS No.:

SDG No.: 10259329

Lab File ID: 06903BFB.D

BFB Injection Date: 03/10/2014

BFB Injection Time: 10:47

Instrument ID: 10AIR0

GC Column: J&W DB-5 ID: 0.32 (mm)

		% RELATIVE	
m/e	ION ABUNDANCE CRITERIA	ABUNDANCE	
95	Base Peak, 100% relative abundance	100.00	
50	8.00 - 40.00% of mass 95	18.00	
75	30.00 - 66.00% of mass 95	50.47	
96	5.00 - 9.00% of mass 95	6.68	
173	Less than 2.00% of mass 174	0.65	(0.74)
174	50.00 - 120.00% of mass 95	86.78	
175	4.00 - 9.00% of mass 174	6.55	(7.55)
176	93.00 - 101.00% of mass 174	84.03	(96.83)
177	5.00 - 9.00% of mass 176	5.81	(6.91)

1 - Value is %mass 174

2 - Value is %mass 176

EPA SAMPLE NO.	LAB SAMPLE ID	LAB FILE ID	DATE ANALYZED	TIME ANALYZED
CAL1	CAL1	06904.D	03/10/2014	11:12
CAL2	CAL2	06905.D	03/10/2014	11:36
CAL3	CAL3	06906.D	03/10/2014	12:01
CAL4	CAL4	06907.D	03/10/2014	12:28
CAL5	CAL5	06908.D	03/10/2014	12:54
CAL6	CAL6	06909.D	03/10/2014	13:23
CAL7	CAL7	06910.D	03/10/2014	13:55
ICVADDL (LCS)	ICVADDL	06911.D	03/10/2014	14:22
ICV (LCS)	ICV	06912.D	03/10/2014	14:48

Pace Analytical Services, Inc.

INITIAL CALIBRATION DATA

Start Cal Date : 10-MAR-2014 11:12
End Cal Date : 10-MAR-2014 13:55
Quant Method : ISTD
Target Version : 4.14
Integrator : HP RTE
Method file : \\192.168.10.12\chem\10air0.i\031014.b\T015_069-14.m
Last Edit : 10-Mar-2014 15:12 10air0.i

Calibration File Names:
Level 1: \\192.168.10.12\chem\10air0.i\031014.b\06904.D
Level 2: \\192.168.10.12\chem\10air0.i\031014.b\06905.D
Level 3: \\192.168.10.12\chem\10air0.i\031014.b\06905.D
Level 4: \\192.168.10.12\chem\10air0.i\031014.b\06907.D
Level 5: \\192.168.10.12\chem\10air0.i\031014.b\06908.D
Level 6: \\192.168.10.12\chem\10air0.i\031014.b\06908.D
Level 6: \\192.168.10.12\chem\10air0.i\031014.b\06909.D
Level 7: \\192.168.10.12\chem\10air0.i\031014.b\06909.D

Compound	0.1000000 Level 1	0.2000000 Level 2	0.5000000 Level 3	1.0000 Level 4	10.0000 Level 5	20.0000 Level 6		ь	Coefficients ml	m2	%RSD or R^2
	30.0000 Level 7		 	;			 				
] Chlorodifluoromethane	1.79334		1.99290		2.03916	I	AVRG		: 2.04583		8.06742
2 Propylene	4.42343 6.18678		5.12097	5.51810		ı			.		10.78516
3 Dichlorodifluoromethane	0.76495	0.83410	0.87557	i		I	AVRG				13.33317
4 Dichlorotetrafluoroethane	0.88918		1.09640	1.13448	1.17610	1.31356	 AVRG		1.14938		1 14.95494
	_										I

10259329 Page 31 of 980

Pace Analytical Services, Inc.

INITIAL CALIBRATION DATA

Compound	0.1000000 Level 1		0.5000000 Level 3	1.0000 Level 4	10,0000 Level 5	20.0000 Level 6		ь	Coefficients ml	m2	%RSD or R^2
	30.0000 Level 7		 	 	1						
E Chloromethane	2.73337	2.95282	3.02944	3.11024	1	3.69461	I I				13.599
6 Vinyl chloride	2.80004 3.44528	3.26841	3.17952	3.36648 		3.44421	I I				6.849
7 1,3-Butadiene	4.03477 5.10050	5.07494		4.88217	4.82254	5.07005	AVRG		4.84187		7.686
8 Bromomethane	2.64768 3.35210;		i	3.27756;	3.19326	3.34481	i		3.14144		7.763
9 Chloroethane	5.93482i 7.42973i	,	7.07120	7.21214		7.41352	AVRG		7.07477		7.413
10 Ethanol	. 7.86656 10.37597	9.60682	10.18409:	8.95570	8.11859 	9.11464	AVRG		9.17462		10.461
11 Vinyl Bromide	2.8611C 3.47223	1	,	3.26826	i	3.40488	 AVRG		3.20252		6.396
					I		-				!

Page 32 of 980 10259329

Pace Analytical Services, Inc.

INITIAL CALIBRATION DATA

Start Cal Date : 10-MAR-2014 11:12
End Cal Date : 10-MAR-2014 13:55
Quant Method : ISTD
Target Version : 4.14
Integrator : HP RTE
Method file : \\192.168.10.12\chem\10air0.i\031014.b\T015_069-14.m
Last Edit : 10-Mar-2014 15:12 10air0.i

Sempound	0.1000000 Level 1			1.0000 Level 4	10.0000 Level 5	20.0000 Level 6	 Curve	ь	Coefficients ml	m2	%RSD or R^2
	30.0000 Level 7		! !		i		1 1				
12 Isopentane	2.35717	2.79325	2.80360 		3.55224	3.93266	 AVRG				21.1139
13 Acrolein	15.21182	16.17671	14.97296		11.67974	12.23572	I JAVRG	I	14.02424		1 12.3241
14 Trichlorofluoromethane	0.71541	0.83144		0.84317	0.88790	1.01350	I I AVRG		0.889521		14.6233
15 Acetone	1 1*****	1.43823	1.61026	1.72216		2.22776			1.91867		19.4149
16 Isopropyl Alcohol	1.97508		İ		2.03899		AVRG		2.26259		1 10.6730
17 Acrylonitrile	6.94453 6.50762			6.45656	5.64602	5.89274	JAVRG	 : !	6.49661		9.3026
18 1,1-Dichloroothene	1.76703		1.94283	2,00893		2.27191		 	1 2.047491		1 10.9491
		i i	 						_		_

Page 33 of 980 10259329

	0.1000000	0.2000000	0.50000000	1.0000	10.0000 J	20.0000	1 1	Coeffici	ents	%RSD
Compound	. Level 1	Level 2		Level 4	Level 5	Level 6	Curve	b ml	m2	or R^2
	30.0000 Level 7	i	İ	 	 					
19 Tert Butyl Alcohol (TBA)	1.27469	1.38691	1.14962	1.22188	1.33666 	1.63613	I I	1.39		15.3955
20 Freon 113	1.30782 1.94919	1.43945	1.48336	1.53997 	1.63905 	1.85518	I I	1.60	1 2001	 14.3458
21 Methylene chloride	2.44829				3.18380 	3.50654		3.10	2021	 34.6386
22 Allyl Chloride	8.99304 7.89769	9.06240	· i			7.64392	:	 8.17	i	8.0748
23 Garbon Disulfide	1.08017	i	1.13167	1.21676	1.16239	1.22848	 AVRG	1.17		5.5910
24 trans-1,2-dichloroethene	3.61936; 3.49520		3.78773	3.72750	3.26238	3.40143	 AVRG	3.54	599	5.1614
25 Methyl Tert Butyl Ether	0.84133 1.17268;	0.96601		0.98239	1.01531 	1.10853	JAVRG	:	 	 10.6178
					 		,			

Page 34 of 980 10259329

Report Date : 11-Mar-2014 14:01

Pace Analytical Services, Inc.

INITIAL CALIBRATION DATA

Compound	0.1000000		0.5000000 : Level 3 :		10.0000 Level 5	20.000G Level 6	l I	b	Coefficients ml	m2	%RSD or R^2
Селфодна	 30.0000 Level 7	i	 				[] []	J	2		
26 Vinyl Acetate	1.74853	1.87559 	1.78057	1.79436	i	1.43962					 12.7178
27 1,1-Dichloroethane	1.42059 1.91757	1.63125	1		1.66636 	1.83676	 AVRG		 1.67162		9.7699
29 Methyl Ethyl Ketone	6.97088; 7.64896;		7.27006	7.02421	i		AVRG		7.56219		14.1913
30 Di-isopropyl Ether	0.81519		İ		1.14732 		AVRG		1.10882	_	1 17.925
31 n-Hexane	1.93758 2.64397	i	· i	i	2.19919 		AVRG		2.21062		12.1051
32 Ethyl Acetate	1.46477	1.71527	1.90244 	1.92231	i		AVRG		1.73354		9_6165
33 cis-1,2-Dichloroethene	3.74863 3.33480	3.23944	3.31346	3,23721	,	3.31968			3.33210		5.899

Page 35 of 980 10259329

Start Cal Date : 10-MAR-2014 11:12
End Cal Date : 10-MAR-2014 13:55
Quant Method : ISTD
Target Version : 4.14
Integrator : HP RTE
Method file : \\192.168.10.12\chem\10air0.i\031014.b\T015_069-14.m
Last Edit : 10-MAR-2014 15:12 10air0.i

	0.1000000	0.2000000	0.5000000	1.0000	10.0000	26.0000	I I		Coefficients		%RSD
Compound	Level 1	Level 2	Level 3	Level 4	Level 5	Level 6	Curve	ь	mī	m 2	or R^2
	30.0000 : Level 7 :	i	 	 :							
34 Ethyl Tert-Butyl Ether	0.75949 1.11688	,			0.95192	1.06601	 AVRG				1 12.3061
35 Chloroform	1.14391	1.20832	1.15602	1.22451	1.23897	1.39267	I I		1.25787		 9.1157
36 Tetrahydrofuran	2.77362 3.40923	3.27398	3.03990	3.22107	,	3.41204	I I		3.19526		7.0364
37 1,1,1-Trichlozoethane	1.00703	C.98490	0.99377	1.05122	1.09410	1.23734			1.09721		1 11.7300
38 1,2-Dichloroethane	1.69488	1.55334	1.49881	1.56916	ĺ	1.82376	AVRG		1.66769		9.4593
39 Benzene	0.90295	0.90512	0.96885	0.98664	1.C4197	1.20139			1.04478:		14.7150
40 Carbon tetrachloride	0.99800 1.44353		1.01830	1.06856 1.06856		1.30065	AVRG !		1.13308		1 15.1500
	!! !			 			! 				

Page 36 of 980 10259329

Report Date : 11-Mar-2014 14:01

Pace Analytical Services, Inc. INITIAL CALIBRATION DATA

Cempound	0.1000000 Jevel 1	C.20000000 Level 2		Level 4	10.0000 Level 5	20.0000 Level 6	 Curve	ь	Coefficients ml	m2	%RSD or R12
	39.0000 Level 7	! !	 	; !	i		 				, İ
41 Cyclohexane	1.84791				2.39771 	2.95611	I AVRG		 2.16499		1 20.16500
42 Tert Amyl Methyl Ether	1 1.07866:	0.60158	0.77689	0.87827	0.95216 	1.04492	I I		: 0.88875		 20.10045
44 2,2,4-Trimethylpentane	0.59958	0.59595	0.59455	0.62302		0.77964			0.67258		
45 Heptane	1.99114 2.40954	2.02797	1.90049	2.002391	2.020131	2.26878	 AVRG		2.08863		8.6567
46 1,2-Dichloropropane	2.42726 3.45854	2.45000	2.63988	2.79267			AVRG		2.83988		13.6990
47 Trichloroethene	2.29031 2.50313		2.26938	2.31916	2.27705	2.45719	 AVRG		1 2.33270		4.5648
48 1,4-Dioxane	3.742901 3.949281	į		4.68617i					4.81536		1 15.2588
									- · _ i _		_

Page 37 of 980 10259329

Start Cal Date : 10-MAR-2014 11:12
End Cal Date : 10-MAR-2014 13:55
Quant Method : ISTD
Target Version : 4.14
Integrator : +P RTE
Method file : \\192.168.10.12\chem\10air0.i\031014.b\T015_069-14.m
Last Edit : 10-Mar-2014 15:12 10air0.i

	0.10000000			1.0000	10.0000	20.0000			oefficients		%RSD
Compound	Level 1	Level 2	Level 3	Level 4	Level 5 		Curve 	ь	ml	m2	or R^2
	30.0000 Level 7		 		 		 				
49 Bromodichloromethane	1.05595	1.08294			'	1.21577	I IAVRG		1.12108		 8.46644
50 Methylcyclohexane	3.95017: 4.37133:		3.83767 i	3.90218		4.28893	I I AVRG	:	4,10367		 5.31511
51 Methyl Isobutyl Ketone	1.32695		1.80412	1.76113	'	1.50294	, ,		1.57549		11.8692
52 cis-1,3-Dichloropropene	2.12350		1.93713	1.83374	1.58892		AVRG	- 	1.90153		13.5931
53 trans-1,3-Dichloropropene	3437 1588396	i	17790 	i		l	LINR	0.00414	1.52974		0.9997
55 1,1,2-Trichloroethane	1.73572		2.10729			2.50852	 AVRG	 	2.21992		12.6225
56 Toluene	0.66842 0.96139		0.75694	0.77657			,	 	0.81342		12.6534
		i			 		 				-

Page 38 of 980 10259329

	: 0.100000C !	0.2000000	0.5000000	1.0000	10.0000	20.0000	1 1		Coefficients		%RSD
Compound	Level 1	Level 2	Level 3	Level 4	Level 5	Level 6	Curve.	ь	ml	m2	or R^2
	30.0000 : Level 7 :	i		 	 						
57 Methyl Butyl Ketone	0.79886 1.02552	0.98084	1.10824	1.15739	0.90668 	0.99929	 AVRG		C.99697		12-0459
58 Dibromochloromethane	0.65631 0.82481		0.69572	0.71409		0.80087			i 0.73378		8.0547
59 1,2-Dibromoethane	0.84085	1.01094	0.90439	0.85925	İ		AVRG		0.91459		7.7271
60 Tetrachloroethene	0.82212	C.8C949		0.89898		1.05913	AVRG		0.93046		13.032
62 Chiorobenzene	0.50523		1	0.64675	0.67014	0.73925			0.64808		1 12.971
63 Ethyl Benzene	0.29366 0.45061	0.35681	1	1	0.384€1 		 AVRG				1 13.849
64 m&p-Xylene	0.39732				0.46194	0.52079	I I		0.45893		1 11.188

Page 39 of 980 10259329

	0.1000000	0.2000000	0.5000000	1.0000	10.0000	20.0000	1		Coefficients	, and the second	%RSD
Compound	Level 1	Level 2	Level 3	Level 4	Level 5	Level 6	Curve	b	ml.	m2	or R^2
	30.0000 Level 7	:		 			1 				
65 Styrene	0.60663 0.86457	0.74216	0.76225		0.73916	0.84214	 AVRG				11.4722
66 Bromoform	0.63168	0.69876		0.68427.	0.70145	0.79391	 AVRG		0.72083		9.6753
67 o-Xylene	0.34083		0.403991	0.43031	0.45641	0.51734	 AVRG		0.44138		15.8302
68 1,1,2,2-Tetrachloroethane	C.56698 0.79820		0.63138	0.66240		0.78678	I I AVRG		0.681171		1 12.8912
69 Isopropy)benzene	0.33492		0.32453		0.36077	0.40424	I I AVRG		0.35472		11.4986
70 N-Propylbenzene	0.29999		0.28952	0.29155	0.30373	0.34755	I I AVRG		0.31073	-	8.7836
71 4-Ethyltoluene	0.32813	0.36293	0.35548	0.35663 		0.41615	I I AVRG		0.37743		11.114
	-						1				-:

Page 40 of 980 10259329

Report Date : 11-Mar-2014 14:01

Pace Analytical Services, Inc. INITIAL CALIBRATION DATA

	0.10000000	0.2000000	0.5000000	1.0000	10.0000	20.0000	1 1		Coefficients		%RSD
Compour d	Level 1	Level 2	Level 3	Level 4	Level 5	Level 6	Curve	р	m1	m2	or R^2
	; 30.0000 Level 7	 	 	 	 						
72 1,3,5-Trimethylbenzene	0.27501;	0.33811	0.35672	C.36172	0.39890 	0.43913	 AVRG				15.868
73 Tert-Butyl Benzene	0.32844				0.44048	0.49927	I IAVRG (1 15.743
74 1,2,4-Trimethylbenzene	0.37504	ı	0.37042	ı		0.48950	I I IAVRG		0.41658		1 14.553
75 Sec- Butylbenzene	0.32314	0.34729;	1	0.296 4 8		0.37954			i 0.33857		1 11.464
76 1,3-Dichlorobenzene	0.54152	0.62747	0.64023	0.65373 		0.76267	AVRG		0.675541		1 13.466
78 Benzyl Chloride	0.53227	C.66443	0.66856		0.52596	0.59022			0.59745;		9.453
79 1,4-Dichiorobenzene	0.47629 0.78511	0.54975	0.61391	C.65225;					0.64344		1 16.844
											-

Page 41 of 980 10259329

Report Date : 11-Mar-2014 14:01

Pace Analytical Services, Inc.

INITIAL CALIBRATION DATA

	± 0.1000000	0.2000000	0.5000000	1.0000	10.0000	20.0000) 1		cefficients		%RSD
Compound	Level 1	Level 2	Level 3	level 4	Level 5	Level 6	Curve	b	m2	m2	or R^2
	30.0000 Level 7										1
80 p-Isopropyltcluene	0.38780 0.46657	0.44928	0.47896	0.39454:	0.402261	0.41225	I I	:	C.42738		: 8.639
81 1,2,3-Trimethylbenzene	0.41106 0.52974)	0.41514		0.38720i	0.44142	0.48597	I I	i I	0.43775		11.986
82 1,2-Dichlorobenzene	0.68073		0.71387	0.70038				 	0.73550		5.81
83 N-Butylbenzene	0.44393		0.52036 0.52036	C.53521	0.43586 		AVRG	 	0.48401		 7.83
84 1,2,4-Trichlorobenzene	1.23173	1.40298	1.49432	1.48810	1.19544		AVRG I	 	1.33827		10.43
85 Naphthalene	0.62669 +++++	0.78134	 0.82725 	0.82692	0.65341] 		i	 	0.72996		1 12.60
86 Hexachlorobutadiene	0.62004 +++++	0.65446	 0.77172 	0.80364	,			 	- 0.85004		26.69

Page 42 of 980 10259329

Report Date : 11-Mar-2014 14:01

Pace Analytical Services, Inc. INITIAL CALIBRATION DATA

Start Cal Date : 10-MAR-2014 11:12
End Cal Date : 10-MAR-2014 13:55
Quant Method : ISTD
Target Version : 4.14
Integrator : HP RTE
Method file : \\192.168.10.12\chem\10air0.i\031014.b\T015_069-14.m
Last Edit : 10-Mar-2014 15:12 10air0.i

 Compound	0.10000 Level	00 ; 0.2000C0C 1 Level 2	0.5000000 Level 3	1.0000 Level 4	10.0000 Level 5	20.0000 Level 6	l Curve		Coefficient ml	s m2	%RSD or R^2
 	30.000 Level	7				 	I I	 			
=====================================	: 2.02					2.12256			 2.11000	 	2.64452
 \$ 54 Toluene-dB (S) 	1.11		İ	i 1.06759			AVRG		 1.04795		 5.21865
\$ 77 1,4-dichlorobenzene-d4 (S)		679: 2.09810		2.05607		2.23144	,	i I	2.12325	ì	6.11812
								 		,	

Page 43 of 980 10259329

5A - FORM V VOA VOLATILE ORGANIC INSTRUMENT PERFORMANCE CHECK BROMOFLUOROBENZENE (BFB)

EPA SAMPLE NO. **BFB**

Lab Name: Pace Analytical

Contract:

Lab Code:

PASI

Case No.:

SAS No.:

SDG No.: 10259329

Lab File ID: 07101BFB.D

BFB Injection Date: 03/12/2014

BFB Injection Time: 11:26

Instrument ID: 10AIR0 GC Column: J&W DB-5

ID: 0.32

(mm)

		% RELATIVE	•		
75 96 173 174 175	ION ABUNDANCE CRITERIA	ABUNDANC	E		
95	Base Peak, 100% relative abundance	100.00			
50	8.00 - 40.00% of mass 95	20.96			
75	30.00 - 66.00% of mass 95	54.57			
96	5.00 - 9.00% of mass 95	6.47			
173	Less than 2.00% of mass 174	0.96	(1.18)		
174	50.00 - 120.00% of mass 95	81.66			
175	4.00 - 9.00% of mass 174	6.09	(7.46)		
176	93.00 - 101.00% of mass 174	80.08	(98.07)		
177	5.00 - 9.00% of mass 176	5.02	(6.27)		

1 - Value is %mass 174

2 - Value is %mass 176

EPA SAMPLE NO.	LAB SAMPLE ID	LAB FILE ID	DATE ANALYZED	TIME ANALYZED
LCS for HBN 289158 [AIR/	1638294	07103_19645.D	03/12/2014	12:31
CCV	CCV	07103.D	03/12/2014	12:31
LCS (LCS)	LCS	07103_LCS.D	03/12/2014	12:31
BLANK for HBN 289158 [AI	1638293	07105_19645.D	03/12/2014	13:49
BLANK (BLK)	BLANK	07105.D	03/12/2014	13:49
Ambient(1633318DUP)	1638565-DUP	07113.D	03/12/2014	17:40
IA-151-VLS-2	10259329005	07127.D	03/13/2014	00:29
IA-152-VLS-2	10259329004	07128.D	03/13/2014	00.58
IA-148-VLS-2	10259329003	07129.D	03/13/2014	01:27
IA-DUP1-VLS-2	10259329002	07131.D	03/13/2014	02:28
IA-147-VLS-2	10259329001	07132.D	03/13/2014	03:00

Data File: \\192.168.10.12\chem\10air0.i\031214.b\07103.D Report Date: 12-Mar-2014 12:01

Pace Analytical Services, Inc.

CONTINUING CALIBRATION COMPOUNDS

Instrument ID: 10air0.i Injection Date: 12-MAR-2014 12:31 Lab File ID: 07103.D Init. Cal. Date(s): 10-MAR-2014 Analysis Type: AIR Init. Cal. Times: 11:12 Lab Sample ID: CCV Quant Type: ISTD Method: \\192.168.10.12\chem\10air0.i\031214.b\T015_069-14.m Injection Date: 12-MAR-2014 12:31
Init. Cal. Date(s): 10-MAR-2014 10-MAR-2014
Init. Cal. Times: 11:12 13:55
Quant Type: ISTD

	·	1	CCAL	MIN		MAX	l
COMPOUND	RRF / AMOUNT	RF10				%D / %DRIFT =======	
Chlorodifluoromethane	2.04583	1.71863	1.71863 C				•
2 Propylene	5.43647	4.74300	4.74300 0	0.010	-12.75579	30.00000	Averaged
B Dichlorodifluoromethane	0.92694	0.79182	0.79182 0	0.010	-14.57651	30.00000	Averaged
Dichlorotetrafluoroethane	1.14938	0.99641	0.99641 0	0.010	-13.30893	30.00000	Averaged
5 Chloromethane	3.25840	2.79458	2.79458[0	0.010	-14.23462	30.00000	Averaged
S Vinyl chloride	3.25602	2.86612	2.86612 0	0.010	-11.97463	30.00000	Averaged
7 1,3-Butadiene	4.84187	4.18665	4.18665 0	0.010	-13.53241	30.00000	Averaged
Bromomethane	3.14144	2.75160	2.75160 0	0.010	-12.40978	30.00000	Averaged
9 Chloroethane	7.07477	6.16663	6.16663 0	0.010	-12.83632	30.00000	Averaged
10 Ethanol	9.17462	7.54701	7.54701 0	0.010	-17.74030	30.00000	Averaged
ll Vinyl Bromide	3.202521	2.74117	2.74117 0	0.010	-14.40570	30.00000	Averaged
12 Isopentane	3.22421	3.06799	3.06799 0	0.010	-4.84516	30.00000	Averaged
13 Acrolein	14.02424	10.20427	10.20427 0	0.010	-27.23836	30.00000	Averaged
14 Trichlorofluoromethane	0.88952	0.76692	0.76692 0	0.010	-13.78203	30.00000	Averaged
15 Acetone	1.91867	1.68060	1.68060 0	0.010	-12.40801	30.00000	Averaged
16 Isopropyl Alcohol	2.26259	1.85825	1.85825 0	0.010	-17.87090	30.00000	Averaged
17 Acrylonitrile	6.49661	4.88065	4.88065 0	0.010	-24.87385	30.00000	Averaged
18 1,1-Dichlorcethene	2.04749	1.73115	1.73115 0	0.010	-15.45018	30.00000	Averaged
19 Tert Butyl Alcohol (TBA)	1.39008	1.17746	1.17746 0	.100	-15.29579	30.00000	Averaged
20 Freon 113	1.60200	1.41347	1.41347[0	0.010	-11.76874	30.00000	Averaged
21 Methylene chloride	3.10202	2.73071	2.73071 0	0.010	-11.97000	30.00000	Averaged
22 Allyl Chloride	8.17455	6.25124	6.25124 0	0.010	-23.52808	30.00000	Averaged
23 Carbon Disulfide	1.17065	1.02193	1.02193 0	0.010	-12.70390	30.00000	Averaged
24 trans-1,2-dichloroethene	3.545991	2.84456	2.84456 0	0.010	-19.78092	30.00000	Averaged
25 Methyl Tert Butyl Ether	1.00829	0.87525	0.87525 0	300	-13.19444	30.00000	Averaged
26 Vinyl Acetate	1.64083	1.16082	1.16082 0	0.010	-29.25403	30.00000	Averaged
27 1,1-Dichloroethane	1.67162	1.45243	1.45243 0	0.010	-13,11230	30.00000	Averaged
\$ 28 Hexane-d14(S)	2.11000	2.12440	2.12440 0	0.200	0.68239	30.00000	Averaged
29 Methyl Ethyl Ketone	7.56219	5.90680	5.90680]0	0.010	-21.89045	30.00000	Averaged
30 Di-isopropyl Ether	1.10882	0.99174	0.99174 0	0.010	-10.55908	30.00000	Averaged
31 n-Hexane	2.21062	1.91924	1.91924 0	0.010	-13.18111	30.00000	Averaged
32 Ethyl Acetate	1.73354	1.32905	1.32905 0	0.010	-23.33300	30.00000	Averaged
33 cis-1,2-Dichloroethene	3.33210	2.72239	2.72239 0	0.010	-18.29799	30.00000	Averaged
34 Ethyl Tert-Butyl Ether	0.94808	0.81231	0.81231 0	0.010	-14.32106	30.00000	Averaged
35 Chloroform	1.25787	1.06731	1.06731 0	0.010	-15.14917	30.00000	Averaged
36 Tetrahydrofuran	3.19526	2.72344	2.72344 0	0.010	-14.76630	30.00000	Averaged
37 1,1,1-Trichloroethane	1.09721	0.94033	0.94033 0	0.010	-14.29764	30.00000	Averaged
38 1,2-Dichloroethane	1.66769	1.35984	1.35984 0	0.010	-18.45985	30.00000	Averaged
39 Benzene	1.04478	0.91289	0.91289 0	0.300	-12.62318	30.00000	Averaged
40 Carbon tetrachloride	1.13308	0.95237	0.95237 0	0.010	-15.94823	30.00000	Averaged
41 Cyclohexane	2.16499	2.10417	2.10417 0	0.010	-2.80907	30.00000	Averaged
42 Tert Amy] Methyl Ether	0.88875	0.839681	0.8396810	0.0101	-5.52145	1 30.00000	Averaged

10259329 Page 723 of 980 Data File: \\192.168.10.12\chem\10air0.i\031214.b\07103.D

Report Date: 12-Mar-2014 12:01

Pace Analytical Services, Inc.

CONTINUING CALIBRATION COMPOUNDS

Injection Date: 12-MAR-2014 12:31
Init. Cal. Date(s): 10-MAR-2014
Init. Cal. Times: 11:12
Quant Type: ISTD Instrument ID: 10air0.i Lab File ID: 07103.D 10-MAR-2014

Analysis Type: AIR 13:55

Lab Sample ID: CCV Quant Type: ISTD Method: \\192.168.10.12\chem\10air0.i\031214.b\T015_069-14.m

			CCAL MIN		MAX	1
COMPOUND	RRF / AMOUNT	RF10		%D / %DRIFT % ===================================		
44 2,2,4-Trimethylpentane	 0.67258	0.61497	0.61497 0.010		30.00000	•
45 Heptane	2.08863	1.75894	1.75894 0.010	-15.78491	30.00000	Averaged
46 1,2-Dichloropropane	2.83988	2.49950	2.49950 0.010	-11.98595	30.00000	Averaged
47 Trichloroethene	1 2.33270	1.98344	1.98344 0.010	-14.97242	30.00000	Averaged
48 1,4-Dioxane	4.81538	4.41680	4.41680 0.010	-8.27729	30.00000	Averaged
19 Bromodichloromethane	1.12108	0.93049	0.93049 0.010	-17.00064	30.00000	Averaged
50 Methylcyclohexane	4.10367	3.59795	3.59795 0.010	-12.32339	30.00000	Averaged
51 Methyl 1sobutyl Ketone	1.57549	1.19620	1.19620 0.010	-24.07451	30.00000	Averaged
52 cis-1,3-Dichloropropene	1.90153	1.41279	1.41279 0.010	-25.70256	30.00000	Averaged
53 trans-1,3-Dichloropropene	10.00000	11.83003	1.29764 0.010	18.30032	30.00000	Linear
\$ 54 Toluene-d8 (S)	1.04795	1.07305	1.07305 0.200	2.39544	30.00000	Averaged
55 1,1,2-Trichloroethane	2.21992	2.02772	2.02772 0.010	-8.65778	30.00000	Averaged
56 Toluene	0.81342	0.73695	0.73695 0.300	-9.40168	30.00000	Averaged
b7 Methyl Butyl Ketone	0.996971	0.70902	0.70902 0.010	-28.88288	30.00000	Averaged
58 Dibromochloromethane	0.73378	0.56289	0.56289 0.010	-23.28953	30.00000	Averaged
59 1,2-Dibromoethane	0.91459	0.66738	0.66738 0.010	-27.02909	30.00000	Averaged
0 Tetrachloroethene	0.93046	0.76930	0.76930 0.010	-17.32003	30.00000	Averaged
62 Chlorobenzene	0.64808	0.54028	0.54028 0.010	-16.63394	30.00000	Averaged
53 Ethyl Benzene	0.37797	0.30075	0.30075 0.300	-20.43056	30.00000	Averaged
64 m&p-Xylene	0.45893	0.36348	0.36348[0.300]	-20.79814)	30.00000	Averaged
65 Styrene	0.75155	0.58777	0.58777 0.010	-21.79210	30.00000	Averaged
66 Bromeform	0.72083	0.55624	0.55624 0.010	-22.83282	30.00000	Averaged
67 o-Xylene	0.44138	0.36262	0.36262 0.300	-17.84393	30.00000	Averaged
68 1,1,2,2-Tetrachloroethane	0.68117	0.56436	0.56436 0.010	-17.14873	30.00000	Averaged
69 Isopropylbenzene	0.35472	0.28596	0.28596 0.010	-19.38580	30.00000	Averaged
70 N-Propylbenzene	0.31073	0.24608	0.24608 0.010	-20.80384	30.00000	Averaged
71 4-Ethyltoluene	0.37743	0.29947	0.29947 0.010	-20.65507	30.00000	Averaged
72 1,3,5-Trimethylbenzene	0.37310	0.32112	0.32112 0.010	-13.93209	30.00000	Averaged
73 Tert-Butyl Benzene	0.42392	0.35545	0.35545 0.010	-16.15188	30.00000	Averaged
74 1,2,4-Trimethylbenzene	0.41658	0.34132	0.34132 0.010	-18.06515	30.00000	Averaged
75 Sec- Butylbenzene	0.33857	0.26509	0.26509 0.010	-21.70411	30.00000	Averaged
76 1,3-Dichlorobenzene	0.67554	0.55119	0.55119 0.010	-18.40801	30.00000	Averaged
77 1,4-dichlorobenzene-d4 (S)	2.12325	2.33284	2.33284 0.200	9.87102	30.00000	Averaged
78 Benzyl Chloride	0.59745	0.41095	0.41095 0.010	-31.21545	30.00000	Averaged
79 1,4-Dichlorobenzene	0.64344	0.54903	0.54903 0.010	-14.67186	30.00000	Averaged
30 p-Isopropyltoluene	0.42738	0.31866	0.31866 0.010	-25.43747	30.00000	Averaged
31 1,2,3-Trimethylbenzene	0.43775	0.35225	0.35225 0.010	-19.53176	30.00000	Averaged
32 1,2-Dichlorobenzene	0.73550	0.56661	0.56661 0.010	-22.96269	30.00000	Averaged
83 N-Butylbenzene	0.48401	0.33283	0.33283 0.010	-31.23431	30.00000	Averaged
84 1,2,4-Trichlorobenzene	1.338271	0.88836	0.88836 0.010	-33.618931	30.00000	Average:
85 Naphthalene	0.72996	0.49437	0.49437 0.010	-32.27456]	30.00000 حَ	Averaged
86 Hexachlorobutadiene	0.850041	0.807661	0.80766 0.010	-4.984781	30,00000	Averaged

10259329 Page 724 of 980 Data File: \\192.168.10.12\chem\10air0.i\031214.b\07103.D Report Date: 12-Mar-2014 12:01

Pace Analytical Services, Inc.

CONTINUING CALIBRATION COMPOUNDS

Instrument ID: 10air0.i Lab File ID: 07103.D Analysis Type: AIR Lab Sample ID: CCV Injection Date: 12-MAR-2014 12:31
Init. Cal. Date(s): 10-MAR-2014 10-MAR-2014
Init. Cal. Times: 11:12 13:55
Quant Type: ISTD

Method: \\192.168.10.12\chem\10air0.i\031214.b\T015_069-14.m

|Average %D / Drift Results. |Calculated Average %D/Drift = 16.77426 | |Maximun Average %D/Drift = 30.00000 |* Passed Average %D/Drift Test.

> 10259329 Page 725 of 980

5A - FORM V VOA VOLATILE ORGANIC INSTRUMENT PERFORMANCE CHECK BROMOFLUOROBENZENE (BFB)

EPA SAMPLE NO. BFB

Lab Name: Pace Analytical

Contract:

SDG No.: 10259329

Lab Code: PASI

Case No.:

SAS No.:

BFB Injection Date: 03/12/2014

Lab File ID: 07108BFB.D

Instrument ID: 10AIRD

BFB Injection Time: 14:08

GC Column: J&W DB-5 ID: 0.32 (mm)

		% RELATIVE	
m/e	ION ABUNDANCE CRITERIA	ABUNDANCE	
95	Base Peak, 100% relative abundance	100.00	
50	8.00 - 40.00% of mass 95	18.00	
75	30.00 - 66.00% of mass 95	57.87	
96	5.00 - 9.00% of mass 95	6.44	
173	Less than 2.00% of mass 174	0.00	(0.00)
174	50.00 - 120.00% of mass 95	94.75	
175	4.00 - 9.00% of mass 174	7.31	(7.71)
176	93.00 - 101.00% of mass 174	92.10	(97.21)
177	5.00 - 9.00% of mass 176	5.49	(5.96)

	EPA SAMPLE NO.	LAB SAMPLE ID	LAB FILE ID	DATE ANALYZED	TIME ANALYZED
1	CAL1	CAL1	07109.D	03/12/2014	14:36
2	CAL2	CAL2	07110.D	03/12/2014	15:04
3	CAL3	CAL3	07111.D	03/12/2014	15:32
4	CAL4	CAL4	07112.D	03/12/2014	15:59
5	CAL5	CAL5	07113.D	03/12/2014	16:27
6	CAL6	CAL6	07114.D	03/12/2014	16:56
7	ICVADD (LCS)	ICVADD	07116.D	03/12/2014	17:51
8	ICV (LCS)	ICV	07117.D	03/12/2014	18:19
9	LCS for HBN 289212 [AIR/	1638489	07118L.D	03/12/2014	18:46
10	BLANK for HBN 289212 [AI	1638488	07121L.D	03/12/2014	20:09
11	IA-146-VLS-2	10259329008	07123.D	03/12/2014	21:06
12	IA-149-VLS-2	10259329006	07124.D	03/12/2014	21:34
13	IA-150-VLS-2	10259329007	07125.D	03/12/2014	22:03

Pace Analytical Services, Inc.

INITIAL CALIBRATION DATA

Start Cal Date : 12-MAR-2014 14:36
End Cal Date : 12-MAR-2014 16:56
Quant Method : ISTD
Target Version : 4.14
Integrator : HP RTE
Method file : \\192.168.10.12\chem\10airD.i\031214.b\T015_071-14.m
Last Edit : 13-Mar-2014 11:19 ahamilton

Calibration File Names:
Level 1: \\192.168.10.12\chem\10airD.i\031214.b\07109.d
Level 2: \\192.168.10.12\chem\10airD.i\031214.b\07110.d
Level 3: \\192.168.10.12\chem\10airD.i\031214.b\07111.d
Level 4: \\192.168.10.12\chem\10airD.i\031214.b\071112.d
Level 5: \\192.168.10.12\chem\10airD.i\031214.b\07113.d
Level 6: \\192.168.10.12\chem\10airD.i\031214.b\07114.d

ī		- 1	0.1000000	0.2000000	1.0000	10.0000	20.0000	30.0000	C	oefficients		%RSD
1	Compound	- 1	Level 1	Level 2	level 3	Level 4	Level 5	Level 6 Curve	ь	m1	m2	or R^2
==		== =										
l	1 Chlorodifluoromethane	- 1	1.84707	2.20998	2.08707	2.38311	2.65662	2.59098 AVRG	1	2.29581		13.45696
I	2 Propylene	- 1	8.30420	10.33282	9.03483	7.10137	7.42845	6.97995 AVRG	1	8.19694		15.95078
L	3 Dichlorodifluoromethane	- 1	1.11783	1.07868	1.10555	0.92829	1.04706	1.16498 AVRG	1	1.07373		7.58585
I	4 Dichlorotetrafluoroethane		1.13666	1.26817	1.26495	1.09100	1.22570	1.20808 AVRG	1	1.19909		5.95336
L	5 Chloromethane		3.99438	4.61963	4.183831	3.64123	3.99128	3.89205 AVRG	1	4.05373		0.11362
1	6 Vinyl chloride		3.89964	4.88840	4.60996	3.92104	4.19250	4.07899 AVRG	1	4.26509		9.37421
1	7 1,3-Butadiene	1	5.84568!	7.72397	7.53790	6.27815	6.73700	6.57185 AVRG	1	6.78243		10.70426
ı	8 Bromomethane		3.85148	3.70757	3.80127	3.16512	3.37792	3.22720 AVRG	1	3.52176		8.57516
1	9 Chloroethane		9.58989;	9.74752	9.91081	8.42077	8.98106)	8.83494 AVRG	1	9.24750		6.36433
1	10 Ethanol		3.89796	5.82756	9.93536:	7.64804	8.49662	8.16434 AVRG	1	7.32832		29.25557
1	11 Vinyl Bromide		3.81895	3.73543	3.902161	3.21578	3.35402	3.28417 AVRG	1	3.55175		8.46051
1	12 Isopentane	1	4.15019	5.61721	5.08509;	4.26655	4.60957	4.50317 AVRG	1	4.70530		11.74291
ı	13 Trichlorofluoromethane	1	0.97860	1.05490	1.05080	0.90657	1.02263	1.04827 AVRG	1	1.01030		5.76965
1	14 Acrolein		11.00155;	19.36844	11.84109:	12.78597	13.21486	12.77064 AVRG	1	13.49709		22.11707
1			1	1		1	1	1 1	1	i		ı i

10259329 Page 332 of 980 Report Date : 13-Mar-2014 11:19

Pace Analytical Services, Inc.

INITIAL CALIBRATION DATA

Start Cal Date : 12-MAR-2014 14:36
End Cal Date : 12-MAR-2014 16:56
Quant Method : ISTD
Target Version Integrator : 4.14
HP RTE
Method file : \\192.168.10.12\chem\\10airD.i\\031214.b\\T015_071-14.m
Last Edit : 13-Mar-2014 11:19 ahamilton

1		-	0.1000000	0.2000000	1.0000	10.0000	20.G000	30.0000	Cc	efficients		ī	%RSD
ļ.	Compound	1	Level 1	Level 2	Level 3	Level 4	Level 5	Level 6 Curve	b	ml	m2		or R^2
==	15 Acetone	-= =:	12855	17620	59374	385066	821697	1299436 LTNR	-0.03985	2.457051		= ==	0.999521
1	16 Tsopropyl Alcohol	- 1	2522	6197	27370	348129.	7100451	1181465 LINR	0.00546	2.68998		i	0.99781:
ļ	17 1,1-Dichloroethene	- 1	2.89663	2.83261	2.53167	2.13799	2.43318	2.38891 AVRG		2.53683		1	11.26954
1	18 Tert Butyl Alcohol	1	2.01544;	2.01355	1.97750	1.60447:	1.85244	1.69899 AVRG		1.86040		i	9.39724
1	19 Acrylonitrile	1	798	1962	11027	157583,	326134	544552 LINR	0.01435	5.82725		i	0.99787
1	20 Freon 113	- 1	1.81592	1.81395	1.86800	1.62128	1.72976(1.65941 AVRG		1.75138		1	5.56711
1	21 Methylene chloride	1	++-++	11007	370261	271086;	6016131	948282 LINR	-0.02453;	3.35108		i	0.99976
1	22 Allyl Chloride	1	12.56010	9.99243	9.29961	8.09682	7.863631	7.60875 AVRG	1	9.23689		i	20.227781
1	23 Carbon Disulfide	- 1	1.21729	1.27786	1.37447	1.21500	1.17409	1.16213 AVRG	1	1.23681		1	6.36660
1	24 trans-1,2-dichloroethene	1	2193	4083	209521	267742	5988921	914376 LINR	0.00097	3.40156		i	0.99980
ì	25 Methyl Tert Butyl Ether	1	5391	11416	58411	7353281	16367741	2492668 LINR	-0.00092	1.24721		i	0.99973
1	26 Vinyl Acetate	1	3994	8348	440401	5595461	1246062	1921527 IJNR	0.00314	1.62242			0.99988
1	27 1,1-Dichloroethane	1	2.43951	2.358521	2.23621	1.96824;	2.06167	2.07531 AVRG	1	2.18991		1	8.459381
1	29 Methyl Ethyl Ketone	1	8.61264	10.67907	9.92530	8.86593	8.41578	8.57651 AVRG	i	9.17904			9.94729
1	30 n-Hexane	1	3.37310	3.48926	3.72236	3.14871!	3.07110(3.21794 JAVRG	1	3.33708			7.25803
1	31 Di-isopropyl Ether	1	1.64274	1.81782	1.69669	1.46101	1.429111	1.38956 AVRG	1	1.57282;			10.90150
1	32 cis-1,2-Dichloroethene	1	2137	3858	19949	274310	5785131	947258 LINR	0.01062	3.33737:		1	0.99876
1	33 Ethyl Acetate	- 1	3824	7381	38812	4958961	1038850[1706192 LINR	0.00822	1.85579:			0.99861
1	34 Chloroform	1	1.37666	1.42703	1.45533	1.24153	1.35690	1.33504 JAVRG	i	1.36541		i	5.51478
1	35 Ethyl Tert-Butyl Ether	1	5101	11163	56108	689344	1498577	2432017 LINR	0.01121	1.29833		1	0.99925
1	36 Tetrahydrofuran	1	5.26997	7.17005	6.09059	4.46509	4.75097	4.29754 AVRG	i	5.34070		1	20.70947
1	37 1,1,1-Trichloroethane	-	1.50495	1.40673	1.38469	1.11945	1.25944	1.25609 AVRG	i	1.32189		1	10.36522
1		_ _	ا			1	1					_1_	<u></u> i

Page 333 of 980 10259329

Pace Analytical Services, Inc.

INITIAL CALIBRATION DATA

Start Cal Date : 12-MAR-2014 14:36
End Cal Date : 12-MAR-2014 16:56
Quant Method : ISTD
Target Version : 4.14
Integrator : HP RTE
Method file : \\192.168.10.12\chem\10airD.i\031214.b\T015_071-14.m
Last Edit : 13-Mar-2014 11:19 ahamilton

			0.10000000	C.2000000	1.0000	10.0000	20.0000	30.0000	Co	efficients		%RSD
į	Compound	i	Level 1	Level 2	Level 3 ;	Level 4	Level 5	Level 6 Curve	ь	ml	m2	or R^2
363	38 1,2-Dichloroethane		1.96892	2.01016	1.97100	1.69113	1.87298	1.88399 AVRG		1.89970:		6.07242
l	39 Benzene	- 1	1.43681	1.55608	1.46339	1.12407	1.19846	1.12510 AVRG +	1	1.31732		14.44489
ı	40 Carbon tetrach]oride	- 1	1.31309	1.38980	1.37672	1.10581	1.28897	1.32943 AVRG :	1	1.30064!		7.902081
l	41 Cyclohexane	1	1838	3775	22962	303249	634718	1021012 LINR ;	0.00424	3.08391		0.99907
1	42 Tert Amyl Methyl Ether	:	17758	24679	68807	7554221	1603988	2554497 LINR :	-0.01200	1.23815		0.99944
l	44 2,2,4-Trimethylpentane		72241	14397	77193	963317	1984213	3297749 LINR	0.00753	0.96317		0.998001
l	45 Heptane	- 1	27781	4463	24577	341314	717642	1123468 LINR	-0.002191	2.78458		0.99927
ļ	46 1,2-Dichloropropane	- 1	1934:	4268	20270	275121	582731	942091 LINR	C.00746	3.34645		0.99912
ŀ	47 Trichloroethene	- 1	3.56455	3.49608	3.46217	2.622091	2.74872	2.67422 AVRG		3.09464		14.71455
l	48 Bromodichloromethane	- 1	1.35196	1.32439!	1.34149	1.07629:	1.16319	1.18352 AVRG		1.24014		9.25368
l	49 l,4+Dioxane	- 1	7.06505	8.16071.	7.47531	5.51964;	5.64036	5.41685 AVRG		6.54632		17.93051:
ı	50 Methylcyclohexane	- 1	1065	2517	13234	165262	372185	578677 LINR	0.00739!	5.39751		0.99996;
ı	51 Methyl Isobutyl Ketone	- 1	29261	6431	36497	5023001	1073067	1712543 LINR	0.00711	1.83404		0.999431
I	52 cis-1,3-Dichloropropene	- 1	3361	74601	35563	496474	1064359	1720174 LINR	0.01066	1.83165		0.99924
ı	53 trans-1,3-Dichloropropene	- 1	3833	€222	381461	572995	1217189	1863188 LINR	-0.00355	1.66787		0.99912
1	55 Toluene	- 1	8089	15225	76878	1049359	2307764	3573128 LINR	0.00329	0.87292		0.99980
ļ	56 1,1,2-Trichloroethane	- 1	2.79977	3.26220	3.10938;	2.34994	2.41284	2.35750 AVRG	1	2.71527		14.86457
1	57 Methyl Butyl Ketone	- 1	3115	5648	36044	510936	1076702	1686729 LINR	0.01333	0.99805		0.99982
	58 Dibromochloromethane	- 1	5079	10721	52406	733694	1495682	2389620 LINR	0.01047	0.70854		0.99932
	59 1,2-Dibromoethane	- 1	1.03870	C.98439	0.98233	0.81122	0.79994	0.76819 AVRG	1	0.89744		13.03189
	60 Tetrachloroethene		1.09891	1.11322	1.08591	0.91076	0.86975	0.84570 AVRG	1	0.98738		12.63046
	62 Chlorobenzene		0.79863	C.83831	0.81353	0.67409	0.64687	0.63561 AVRG	1	0.73451		12.51402
1			1	1			1					_11

Page 334 of 980 10259329

Pace Analytical Services, Inc.

INITIAL CALIBRATION DATA

Start Cal Date : 12-MAR-2014 14:36
End Cal Date : 12-MAR-2014 16:56
Quant Method : ISTD
Target Version : 4.14
Integrator : HP RTE
Method file : \\192.168.10.12\chem\10airD.i\031214.b\T015_071-14.m
Last Edit : 13-Mar-2014 11:19 ahamilton

1		ī	0.10000000	0.2000000	1.0000	10.0000	20.0000 I	30.0000	Co	efficients		%RSD
	Compound		Level 1	Level 2	Level 3	Level 4	Level 5	Level 6 Curve	ь	m1	m2	or R^2
1	63 Ethyl Benzene		8798	16706	102814	1402365;	3086160	4707341 LINR	0.01331;	0.35534		0.99993
ì	64 m&p-Xylene	- 1	6914	14151	81094	1120347:	2355902	3705219 LINR	0.01289	0.45498	1	0.99976
1	65 Bromoform	. !	5717	10782	56975	8597921	1842792	2807865 LINR	0.00977	0.59533	1	0.999931
1	66 Styrene		3983	8138	51055	787872:	1655243	2606991 LINR	0.01655	0.64594	1	0.99972
į	67 ≎-Xylene		7548	14271	85734	1188529:	2456161	3804048 LINR	0.00540	0.44165	1	0.99983
1	68 1,1,2,2-Tetrachloroethane	i	0.81657	0.89467!	0.81911	0.63587	0.64088]	0.62524 AVRG	1	0.73873	1	16.00246
1	69 Isopropylbenzene	1	10320	19216	103260	1451853!	3084217	4734953 LINR	0.00818	0.35399	1	0.999961
ł	70 N-Propylbenzene		10447	20932	124461	1825752	38034071	5981173 LINR	0.01285	0.28167	1	0.99973.
1	71 4-Ethyltoluene	ì	+++++	0.60445	0.48867	0.36975	0.371971	0.35774 AVRG	1	0.43852!	1	24.38335.
ł	72 1,3,5-Trimethylbenzene	1	6564	14286	887341	1224789	2573268	4072084 LINR	0.01494	0.41449:	i i	0.99965
ì	73 Tert-Butyl Benzene	;	5720	12925	79033	1120494!	2356681	3694867 LINR	0.01334	0.45568;	i i	0.999801
1	74 1,2,4-Trimethylbenzene	ļ	6901	14815	84216+	1217443	25404741	3980669 LINR	0.01167	0.42295;	1	0.99978
1	75 1,3-Dichlorobenzene	1	++++	0.98955	0.86971;	0.65511	0.65965	0.64347 AVRG	i	0.76350	i i	20.63877
1	76 Sec- Butylbenzene		8233	18059!	115499	1654994	3497609	5384553 LINR :	0.00976	0.31127	1	0.99995
1	78 Benzyl Chloride		546C	10465	60380	1025289	2189893	3464827 QUAD :	-0.02466	1.93992	0.04194	0.99985
1	79 1,4-Dichlorobenzene		+++++	0.94318:	0.89739	0.67009	0.67251	0.65124 AVRG	1	0.76688	1	18.41364
1	80 p-Isopropyltoluene	- 1	+++++	0.69177	0.52105	0.41954	0.40475	0.40421 AVRG	1	0.48826	1	25.34366
1	81 1,2,3-Trimethylbenzene	1	6736	14861	80603	1109030	2388977	3649308 L1NR	0.00934	C.45871	i	0.99997
1	82 1,2-Dichlorobenzene	1	44901	86181	46991	696705	1453901	2352537 L1NR	0.02065	0.72091	4	0.99901
1	83 N-Butylbenzene	1	6331	15037	941321	1364510	2885118	4413147 LINR	0.008421	0.37915		0.99993
1	84 1,2,4-Trichlorobenzene	1	3603	71241	37327	615589	1357627	2122357 QUAD	-C.01725!	1.19155	0.02576	0.99994
1	85 Naphthalene	i	4793	8364	57643	960782	2102178	3457455 QUAD	-0.01833	1.72712	0.11020;	0.99980
1_		_1_	1		1	1	1	1 1		1	1	1

10259329 Page 335 of 980 Report Date : 13-Mar-2014 11:19

Pace Analytical Services, Inc.

INITIAL CALIBRATION DATA

Start Cal Date : 12-MAR-2014 14:36
End Cal Date : 12-MAR-2014 16:56
Quant Method : ISTD : 4.14
Integrator : HP RTE
Method file : \\192.168.10.12\chem\10airD.i\031214.b\T015_071-14.m
Last Edit : 13-Mar-2014 11:19 ahamilton

1	1	0.1000000	0.2000000	1.0000	10.0000	20.0000	30.0000	1	(Coefficients		Ī	%RSD
Compound	-1	Level 1	Level 2	Level 3	Level 4	Level 5	Level 6	Curve	l b	m j	m 2		or R^2
	- -												
86 Hexachlorobutadiene	i	4667	8662	46356	621041:	1288178	200611	FILINE	0.00597	0.83912			0.99983
\$ 28 Hexane-d14(S)		2.48646	2.25498:	2.26576	2.45626	2.27358	2.4759) AVRG	I	2.36884		1	4.83610
\$ 54 Toluene-d8 (S)	i	1.18425	1.16663	1.19488	1.14030	1.14662	1.1913) AVRG	I	1.17066			1.98980
S 77],4-dichlorobenzene-d4 (S)	1	1.99059	1.94186	1.85306	1.94464	1.81821	1.8051	AVRG	l	1.89225		1	4.05846
1	_ i_				I				l	ll_		I_	

Page 336 of 980 10259329

Pace Analytical Services, Inc.

INITIAL CALIBRATION DATA

Start Cal Date : 12-MAR-2014 14:36
End Cal Date : 12-MAR-2014 16:56
Quant Method : ISTD
Target Version : 4.14
Integrator : 4.14
Method file : \\192.168.10.12\chem\10airD.i\031214.b\T015_071-14.m
Last Edit : 13-Mar-2014 11:19 ahamilton

Average %RSD Results.		
Calculated Average %RSD =	10.56159	i
Maximum Average %RSD =	30.00000	
* Passed Average %RSD Test.		
1		1

Curve Formula	Units	_
Averaged Amt = m1*Rsp	Amount	1
Linear Amt = b + m1*Rsp	Amount	!
Quad Rsp = E + ml*Amt + m2*Amt^2	Amount	i
ll	!	1

10259329 Page 337 of 980

Project:

MRC SV/IAQ Study Feb 2014

Pace Project No.:

10259329

QC Batch:

AIR/19645

Analysis Method:

TO-15

QC Batch Method:

TO-15

Analysis Description:

TO15 MSV AIR Low Level

Associated Lab Samples:

10259329001, 10259329002, 10259329003, 10259329004, 10259329005

METHOD BLANK: 1638293

Matrix: Air

Associated Lab Samples:

Date: 03/17/2014 03:36 PM

10259329001, 10259329002, 10259329003, 10259329004, 10259329005

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
1,1,1-Trichloroethane	ug/m3	ND ND	1.1	03/12/14 13:49	
1,1,2-Trichloroethane	ug/m3	ND	0.55	03/12/14 13:49	
1,1-Dichloroethane	ug/m3	ND	0.82	03/12/14 13:49	
1,1-Dichloroethene	ug/m3	ND	0.81	03/12/14 13:49	
1,2,3-Trimethylbenzene	ug/m3	ND	0.20	03/12/14 13:49	
1,2,4-Trichlorobenzene	ug/m3	ND	1.5	03/12/14 13:49	
1,2,4-Trimethylbenzene	ug/m3	ND	1.0	03/12/14 13:49	
1,2-Dichloroethane	ug/m3	ND	0.41	03/12/14 13:49	
1,3,5-Trimethylbenzene	ug/m3	ND	1.0	03/12/14 13:49	
Benzene	ug/m3	ND	0.32	03/12/14 13:49	
Carbon tetrachloride	ug/m3	ND	0.64	03/12/14 13:49	
Chlorodifluoromethane	ug/m3	ND	0.20	03/12/14 13:49	
Chloroform	ug/m3	ND	0.99	03/12/14 13:49	
cis-1,2-Dichloroethene	ug/m3	ND	0.81	03/12/14 13:49	
Dichlorodifluoromethane	ug/m3	ND	1.0	03/12/14 13:49	
Ethylbenzene	ug/m3	ND	0.88	03/12/14 13:49	
m&p-Xylene	ug/m3	ND	1.8	03/12/14 13:49	
Methyl-tert-butyl ether	ug/m3	ND	0.73	03/12/14 13:49	
Methylene Chloride	ug/m3	ND	0.71	03/12/14 13:49	
Naphthalene	ug/m3	ND	1.1	03/12/14 13:49	
o-Xylene	ug/m3	ND	0.88	03/12/14 13:49	
Tetrachloroethene	ug/m3	ND	0.69	03/12/14 13:49	
Toluene	ug/m3	ND	0.77	03/12/14 13:49	
trans-1,2-Dichloroethene	ug/m3	ND	0.81	03/12/14 13:49	
Trichloroethene	ug/m3	ND	0.55	03/12/14 13:49	
Vinyl chloride	ug/m3	ND	0.26	03/12/14 13:49	

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
1,1,1-Trichloroethane	ug/m3	55.5	64.7	117	72-128	
1,1,2-Trichloroethane	ug/m3	55.5	60.7	109	72-130	
1,1-Dichloroethane	ug/m3	41.2	47.4	115	68-128	
1,1-Dichloroethene	ug/m3	40.3	47.7	118	68-130	
1,2,3-Trimethylbenzene	ug/m3	50	62.1	124	60-140	
1,2,4-Trichlorobenzene	ug/m3	75.5	114	(151)	30-150	CH,L3
1,2,4-Trimethylbenzene	ug/m3	50	61.0	122	71-140	•
1,2-Dichloroethane	ug/m3	41.2	50.5	123	71-132	
1,3,5-Trimethylbenzene	ug/m3	50	58.1	116	73-136	
Benzene .	ug/m3	32.5	37.2	114	69-134	
Carbon tetrachloride	ug/m3	64	76.1	119	66-134	

Project:

MRC SV/IAQ Study Feb 2014

Pace Project No.:

Date: 03/17/2014 03:36 PM

10259329

ABORATORY CONTROL SAMPLE:	1638294					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
lorodifluoromethane	ug/m3	36	42.8	119	60-140	
proform	ug/m3	49.7	58.5	118	72-127	
2-Dichloroethene	ug/m3	40.3	49.3	122	71-135	
orodifluoromethane	ug/m3	50.3	58.8	117	69-125	
benzene	ug/m3	44.2	55.5	126	73-139	
Xylene	ug/m3	44.2	55.7°	126	73-139	
yl-tert-butyl ether	ug/m3	36.7	42.2	115	72-132	
lene Chloride	ug/m3	35.3	40.1	114	64-134	
halene	ug/m3	53.3	78.7	148	61-150 (CH
ene	ug/m3	44.2	53.7	122	71-138	
chloroethene	ug/m3	69	83.4	121	69-136	
ne	ug/m3	38.3	42.3	110	67-133	
-1,2-Dichloroethene	ug/m3	40.3	50.2	125	70-131	
oroethene	ug/m3	54.6	64.2	118	70-135	
chloride	ug/m3	26	29.5	114	69-132	

SAMPLE DUPLICATE: 163856	65					
D	Llate	10259301010	Dup	DDD	Max	0
Parameter	Units	Result	Result	RPD	RPD	Qualifiers
1,1,1-Trichloroethane	ug/m3	ND	ND		25	
1,1,2-Trichloroethane	ug/m3	ND	ND		25	
1,1-Dichloroethane	ug/m3	ND	ND		25	
1,1-Dichloroethene	ug/m3	ND	ND		25	
1,2,3-Trimethylbenzene	ug/m3	3.1	3.1	.7	25	
1,2,4-Trichlorobenzene	ug/m3	ND	ND		25	
1,2,4-Trimethylbenzene	ug/m3	9.6	10.1	5	25	
1,2-Dichloroethane	ug/m3	4.1	4.4	8	25	
1,3,5-Trimethylbenzene	ug/m3	ND	2.9		25	
Benzene	ug/m3	25.6	28.0	9	25	
Carbon tetrachloride	ug/m3	ND	ND		25	
Chlorodifluoromethane	ug/m3	3.1	3.5	12	25	
Chloroform	ug/m3	ND	ND		25	
cis-1,2-Dichloroethene	ug/m3	ND	ND		25	
Dichlorodifluoromethane	ug/m3	2.8	2.6	7	25	
Ethylbenzene	ug/m3	2.9	3.0	4	25	
m&p-Xylene	ug/m3	11.2	11.5	2	25	
Methyl-tert-butyl ether	ug/m3	ND	ND		25	
Methylene Chloride	ug/m3	91.4	105	14	25	
Naphthalene	ug/m3	4.3	4.6	8	25 C	Н
o-Xylene	ug/m3	4.7	4.9	5	25	
Tetrachloroethene	ug/m3	8.3	8.8	5	25	
Toluene	ug/m3	175	183	5	25	
trans-1,2-Dichloroethene	ug/m3	ND	ND		25	
Trichloroethene	ug/m3	ND	ND		25	
Vinyl chloride	ug/m3	ND	ND		25	

Project:

MRC SV/IAQ Study Feb 2014

Pace Project No.:

10259329

QC Batch:

AIR/19647

Analysis Method:

TO-15

QC Batch Method:

TO-15

Analysis Description:

TO15 MSV AIR Low Level

Associated Lab Samples:

10259329006, 10259329007, 10259329008

METHOD BLANK: 1638488

Matrix: Air

Associated Lab Samples:

Date: 03/17/2014 03:36 PM

10259329006, 10259329007, 10259329008

Parameter Units Result Limit Analyzed Qualifiers 1,1,1-Trichloroethane ug/m3 ND 1.1 03/12/14 20:09 1,1,2-Trichloroethane ug/m3 ND 0.55 03/12/14 20:09 1,1-Dichloroethane ug/m3 ND 0.82 03/12/14 20:09 1,1-Dichloroethane ug/m3 ND 0.81 03/12/14 20:09 1,2,3-Trimethylbenzene ug/m3 ND 0.20 03/12/14 20:09 1,2,4-Trichlorobenzene ug/m3 ND 1.5 03/12/14 20:09 1,2,4-Trimethylbenzene ug/m3 ND 1.0 03/12/14 20:09 1,2-Dichloroethane ug/m3 ND 0.41 03/12/14 20:09 1,3,5-Trimethylbenzene ug/m3 ND 0.31 03/12/14 20:09 Benzene ug/m3 ND 0.32 03/12/14 20:09 Carbon tetrachloride ug/m3 ND 0.64 03/12/14 20:09 Chlorodifluoromethane ug/m3 ND 0.81 03/12/14 20:09 Chlorodifluorome
1,1,2-Trichloroethane ug/m3 ND 0.55 03/12/14 20:09 1,1-Dichloroethane ug/m3 ND 0.82 03/12/14 20:09 1,1-Dichloroethene ug/m3 ND 0.81 03/12/14 20:09 1,2,3-Trimethylbenzene ug/m3 ND 0.20 03/12/14 20:09 1,2,4-Trichlorobenzene ug/m3 ND 1.5 03/12/14 20:09 1,2,4-Trimethylbenzene ug/m3 ND 1.0 03/12/14 20:09 1,2-Dichloroethane ug/m3 ND 1.0 03/12/14 20:09 1,3,5-Trimethylbenzene ug/m3 ND 1.0 03/12/14 20:09 Benzene ug/m3 ND 0.32 03/12/14 20:09 Carbon tetrachloride ug/m3 ND 0.64 03/12/14 20:09 Chlorodifluoromethane ug/m3 ND 0.20 03/12/14 20:09 Chloroform ug/m3 ND 0.81 03/12/14 20:09 Dichlorodifluoromethane ug/m3 ND 0.81 03/12/14 20:09 Ethylbenzene ug/m3 ND 0.88 03/12/14 20:09 Methyl-tert-butyl ether
1,1-Dichloroethane ug/m3 ND 0.82 03/12/14 20:09 1,1-Dichloroethene ug/m3 ND 0.81 03/12/14 20:09 1,2,3-Trimethylbenzene ug/m3 ND 0.20 03/12/14 20:09 1,2,4-Trichlorobenzene ug/m3 ND 1.5 03/12/14 20:09 1,2,4-Trimethylbenzene ug/m3 ND 1.0 03/12/14 20:09 1,2-Dichloroethane ug/m3 ND 0.41 03/12/14 20:09 1,3,5-Trimethylbenzene ug/m3 ND 1.0 03/12/14 20:09 Benzene ug/m3 ND 0.32 03/12/14 20:09 Carbon tetrachloride ug/m3 ND 0.64 03/12/14 20:09 Chlorodifluoromethane ug/m3 ND 0.20 03/12/14 20:09 Chloroform ug/m3 ND 0.81 03/12/14 20:09 Dichlorodifluoromethane ug/m3 ND 0.81 03/12/14 20:09 Ethylbenzene ug/m3 ND 0.88 03/12/14 20:09 Methyl-tert-butyl ether ug/m3 ND 0.73 03/12/14 20:09 Methylene Chloride
1,1-Dichloroethene ug/m3 ND 0.81 03/12/14 20:09 1,2,3-Trimethylbenzene ug/m3 ND 0.20 03/12/14 20:09 1,2,4-Triichlorobenzene ug/m3 ND 1.5 03/12/14 20:09 1,2,4-Trimethylbenzene ug/m3 ND 1.0 03/12/14 20:09 1,2-Dichloroethane ug/m3 ND 0.41 03/12/14 20:09 1,3,5-Trimethylbenzene ug/m3 ND 1.0 03/12/14 20:09 Benzene ug/m3 ND 0.32 03/12/14 20:09 Carbon tetrachloride ug/m3 ND 0.64 03/12/14 20:09 Chlorodifluoromethane ug/m3 ND 0.20 03/12/14 20:09 Chloroform ug/m3 ND 0.81 03/12/14 20:09 cis-1,2-Dichloroethene ug/m3 ND 0.81 03/12/14 20:09 Dichlorodifluoromethane ug/m3 ND 0.88 03/12/14 20:09 Ethylbenzene ug/m3 ND 0.88 03/12/14 20:09 Methyl-tert-butyl ether ug/m3 ND 0.73 03/12/14 20:09 Methylene Chloride<
1,2,3-Trimethylbenzene ug/m3 ND 0.20 03/12/14 20:09 1,2,4-Trichlorobenzene ug/m3 ND 1.5 03/12/14 20:09 1,2,4-Trimethylbenzene ug/m3 ND 1.0 03/12/14 20:09 1,2-Dichloroethane ug/m3 ND 0.41 03/12/14 20:09 1,3,5-Trimethylbenzene ug/m3 ND 1.0 03/12/14 20:09 Benzene ug/m3 ND 0.32 03/12/14 20:09 Carbon tetrachloride ug/m3 ND 0.64 03/12/14 20:09 Chlorodifluoromethane ug/m3 ND 0.20 03/12/14 20:09 Chloroform ug/m3 ND 0.81 03/12/14 20:09 cis-1,2-Dichloroethene ug/m3 ND 0.81 03/12/14 20:09 Dichlorodifluoromethane ug/m3 ND 0.81 03/12/14 20:09 Ethylbenzene ug/m3 ND 0.88 03/12/14 20:09 Methyl-tert-butyl ether ug/m3 ND 0.73 03/12/14 20:09 Methylene Chloride ug/m3 ND 0.71 03/12/14 20:09
1,2,4-Trichlorobenzene ug/m3 ND 1.5 03/12/14 20:09 1,2,4-Trimethylbenzene ug/m3 ND 1.0 03/12/14 20:09 1,2-Dichloroethane ug/m3 ND 0.41 03/12/14 20:09 1,3,5-Trimethylbenzene ug/m3 ND 1.0 03/12/14 20:09 Benzene ug/m3 ND 0.32 03/12/14 20:09 Carbon tetrachloride ug/m3 ND 0.64 03/12/14 20:09 Chlorodifluoromethane ug/m3 ND 0.20 03/12/14 20:09 Chloroform ug/m3 ND 0.99 03/12/14 20:09 cis-1,2-Dichloroethene ug/m3 ND 0.81 03/12/14 20:09 Dichlorodifluoromethane ug/m3 ND 0.81 03/12/14 20:09 Ethylbenzene ug/m3 ND 0.88 03/12/14 20:09 Methyl-tert-butyl ether ug/m3 ND 0.73 03/12/14 20:09 Methylene Chloride ug/m3 ND 0.71 03/12/14 20:09
1,2,4-Trimethylbenzene ug/m3 ND 1.0 03/12/14 20:09 1,2-Dichloroethane ug/m3 ND 0.41 03/12/14 20:09 1,3,5-Trimethylbenzene ug/m3 ND 1.0 03/12/14 20:09 Benzene ug/m3 ND 0.32 03/12/14 20:09 Carbon tetrachloride ug/m3 ND 0.64 03/12/14 20:09 Chlorodifluoromethane ug/m3 ND 0.20 03/12/14 20:09 Chloroform ug/m3 ND 0.99 03/12/14 20:09 cis-1,2-Dichloroethene ug/m3 ND 0.81 03/12/14 20:09 Dichlorodifluoromethane ug/m3 ND 1.0 03/12/14 20:09 Ethylbenzene ug/m3 ND 0.88 03/12/14 20:09 Methyl-tert-butyl ether ug/m3 ND 0.73 03/12/14 20:09 Methylene Chloride ug/m3 ND 0.71 03/12/14 20:09
1,2-Dichloroethane ug/m3 ND 0.41 03/12/14 20:09 1,3,5-Trimethylbenzene ug/m3 ND 1.0 03/12/14 20:09 Benzene ug/m3 ND 0.32 03/12/14 20:09 Carbon tetrachloride ug/m3 ND 0.64 03/12/14 20:09 Chlorodifluoromethane ug/m3 ND 0.20 03/12/14 20:09 Chloroform ug/m3 ND 0.99 03/12/14 20:09 cis-1,2-Dichloroethene ug/m3 ND 0.81 03/12/14 20:09 Dichlorodifluoromethane ug/m3 ND 1.0 03/12/14 20:09 Ethylbenzene ug/m3 ND 0.88 03/12/14 20:09 m&p-Xylene ug/m3 ND 1.8 03/12/14 20:09 Methyl-tert-butyl ether ug/m3 ND 0.73 03/12/14 20:09 Methylene Chloride ug/m3 ND 0.71 03/12/14 20:09
1,3,5-Trimethylbenzene ug/m3 ND 1.0 03/12/14 20:09 Benzene ug/m3 ND 0.32 03/12/14 20:09 Carbon tetrachloride ug/m3 ND 0.64 03/12/14 20:09 Chlorodifluoromethane ug/m3 ND 0.20 03/12/14 20:09 Chloroform ug/m3 ND 0.99 03/12/14 20:09 cis-1,2-Dichloroethene ug/m3 ND 0.81 03/12/14 20:09 Dichlorodifluoromethane ug/m3 ND 1.0 03/12/14 20:09 Ethylbenzene ug/m3 ND 0.88 03/12/14 20:09 m&p-Xylene ug/m3 ND 1.8 03/12/14 20:09 Methyl-tert-butyl ether ug/m3 ND 0.73 03/12/14 20:09 Methylene Chloride ug/m3 ND 0.71 03/12/14 20:09
Benzene ug/m3 ND 0.32 03/12/14 20:09 Carbon tetrachloride ug/m3 ND 0.64 03/12/14 20:09 Chlorodifluoromethane ug/m3 ND 0.20 03/12/14 20:09 Chloroform ug/m3 ND 0.99 03/12/14 20:09 cis-1,2-Dichloroethene ug/m3 ND 0.81 03/12/14 20:09 Dichlorodifluoromethane ug/m3 ND 1.0 03/12/14 20:09 Ethylbenzene ug/m3 ND 0.88 03/12/14 20:09 m&p-Xylene ug/m3 ND 1.8 03/12/14 20:09 Methyl-tert-butyl ether ug/m3 ND 0.73 03/12/14 20:09 Methylene Chloride ug/m3 ND 0.71 03/12/14 20:09
Carbon tetrachloride ug/m3 ND 0.64 03/12/14 20:09 Chlorodifluoromethane ug/m3 ND 0.20 03/12/14 20:09 Chloroform ug/m3 ND 0.99 03/12/14 20:09 cis-1,2-Dichloroethene ug/m3 ND 0.81 03/12/14 20:09 Dichlorodifluoromethane ug/m3 ND 1.0 03/12/14 20:09 Ethylbenzene ug/m3 ND 0.88 03/12/14 20:09 m&p-Xylene ug/m3 ND 1.8 03/12/14 20:09 Methyl-tert-butyl ether ug/m3 ND 0.73 03/12/14 20:09 Methylene Chloride ug/m3 ND 0.71 03/12/14 20:09
Chlorodifluoromethane ug/m3 ND 0.20 03/12/14 20:09 Chloroform ug/m3 ND 0.99 03/12/14 20:09 cis-1,2-Dichloroethene ug/m3 ND 0.81 03/12/14 20:09 Dichlorodifluoromethane ug/m3 ND 1.0 03/12/14 20:09 Ethylbenzene ug/m3 ND 0.88 03/12/14 20:09 m&p-Xylene ug/m3 ND 1.8 03/12/14 20:09 Methyl-tert-butyl ether ug/m3 ND 0.73 03/12/14 20:09 Methylene Chloride ug/m3 ND 0.71 03/12/14 20:09
Chloroform ug/m3 ND 0.99 03/12/14 20:09 cis-1,2-Dichloroethene ug/m3 ND 0.81 03/12/14 20:09 Dichlorodifluoromethane ug/m3 ND 1.0 03/12/14 20:09 Ethylbenzene ug/m3 ND 0.88 03/12/14 20:09 m&p-Xylene ug/m3 ND 1.8 03/12/14 20:09 Methyl-tert-butyl ether ug/m3 ND 0.73 03/12/14 20:09 Methylene Chloride ug/m3 ND 0.71 03/12/14 20:09
cis-1,2-Dichloroethene ug/m3 ND 0.81 03/12/14 20:09 Dichlorodifluoromethane ug/m3 ND 1.0 03/12/14 20:09 Ethylbenzene ug/m3 ND 0.88 03/12/14 20:09 m&p-Xylene ug/m3 ND 1.8 03/12/14 20:09 Methyl-tert-butyl ether ug/m3 ND 0.73 03/12/14 20:09 Methylene Chloride ug/m3 ND 0.71 03/12/14 20:09
Dichlorodifluoromethane ug/m3 ND 1.0 03/12/14 20:09 Ethylbenzene ug/m3 ND 0.88 03/12/14 20:09 m&p-Xylene ug/m3 ND 1.8 03/12/14 20:09 Methyl-tert-butyl ether ug/m3 ND 0.73 03/12/14 20:09 Methylene Chloride ug/m3 ND 0.71 03/12/14 20:09
Ethylbenzene ug/m3 ND 0.88 03/12/14 20:09 m&p-Xylene ug/m3 ND 1.8 03/12/14 20:09 Methyl-tert-butyl ether ug/m3 ND 0.73 03/12/14 20:09 Methylene Chloride ug/m3 ND 0.71 03/12/14 20:09
m&p-Xylene ug/m3 ND 1.8 03/12/14 20:09 Methyl-tert-butyl ether ug/m3 ND 0.73 03/12/14 20:09 Methylene Chloride ug/m3 ND 0.71 03/12/14 20:09
Methyl-tert-butyl ether ug/m3 ND 0.73 03/12/14 20:09 Methylene Chloride ug/m3 ND 0.71 03/12/14 20:09
Methylene Chloride ug/m3 ND 0.71 03/12/14 20:09
Naphthalene ug/m3 ND 1.1 03/12/14 20:09
o-Xylene ug/m3 ND 0.88 03/12/14 20:09
Tetrachloroethene ug/m3 ND 0.69 03/12/14 20:09
Toluene ug/m3 ND 0.77 03/12/14 20:09
trans-1,2-Dichloroethene ug/m3 ND 0.81 03/12/14 20:09
Trichloroethene ug/m3 ND 0.55 03/12/14 20:09
Vinyl chloride ug/m3 ND 0.26 03/12/14 20:09

LABORATORY CONTROL SAMPLE:	1638489					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
1,1,1-Trichloroethane	ug/m3		58.1	105	72-128	
1,1,2-Trichloroethane	ug/m3	55.5	59.8	108	72-130	
1,1-Dichloroethane	ug/m3	41.2	44.1	107	68-128	
1,1-Dichloroethene	ug/m3	40.3	44.4	110	68-130	
1,2,3-Trimethylbenzene	ug/m3	50	51.7	103	60-140	
1,2,4-Trichlorobenzene	ug/m3	75.5	78.1	103	30-150	
1,2,4-Trimethylbenzene	ug/m3	50	51.7	103	71-140	
1,2-Dichloroethane	ug/m3	41.2	42.1	102	71-132	
1,3,5-Trimethylbenzene	ug/m3	50	50.6	101	73-136	
Benzene	ug/m3	32.5	36.7	113	69-134	
Carbon tetrachloride	ug/m3	64	67.3	105	66-134	

Project:

MRC SV/IAQ Study Feb 2014

Pace Project No.:

Date: 03/17/2014 03:36 PM

10259329

LABORATORY CONTROL SAM	PLE: 1638489					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Chlorodifluoromethane	ug/m3	36	31.7	88	60-140	
Chloroform	ug/m3	49.7	51.4	104	72-127	
cis-1,2-Dichloroethene	ug/m3	40.3	38.8	96	71-135	
Dichlorodifluoromethane	ug/m3	50.3	53.9	107	69-125	
Ethylbenzene	ug/m3	44.2	42.5	96	73-139	
m&p-Xylene	ug/m3	44.2	43.3	98	73-139	
Methyl-tert-butyl ether	ug/m3	36.7	37.8	103	72-132	
Methylene Chloride	ug/m3	35.3	35.6	101	64-134	
Naphthalene	ug/m3	53.3	55.8	105	61-150	
o-Xylene	ug/m3	44.2	44.9	102	71-138	
Tetrachloroethene	ug/m3	69	74.3	108	69-136	
Toluene	ug/m3	38.3	36.4	95	67-133	
trans-1,2-Dichloroethene	ug/m3	40.3	41.7	103	70-131	
Trichloroethene	ug/m3	54.6	59.0	108	70-135	
Vinyl chloride	ug/m3	26	27.7	107	69-132	

ANALYTICAL RESULTS

Project:

MRC SV/IAQ Study Feb 2014 REV

Pace Project No.:

Date: 04/17/2014 12:22 PM

10259329

Sample: IA-147-VLS-2	Lab ID: 10259329001	Collected: 02/26/14	18:28	Received: 0	3/04/14 10:00	Matrix: Air	
Parameters	Results Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
TO15 MSV AIR	Analytical Method: TO-15						
Benzene	2.5 ug/m3	0.55	1.68		03/13/14 03:00	71-43-2	
Carbon tetrachloride	ND ug/m3	1.1	1.68		03/13/14 03:00	56-23-5	
Chlorodifluoromethane	5.0 ug/m3	1.2	1.68		03/13/14 03:00	75-45-6	
Chloroform	ND ug/m3	1.7	1.68		03/13/14 03:00	67-66-3	
Dichlorodifluoromethane	ND ug/m3	1.7	1.68		03/13/14 03:00	75-71-8	
1,1-Dichloroethane	ND ug/m3	1.4	1.68		03/13/14 03:00	75-34-3	
1,2-Dichloroethane	ND ug/m3	0.69	1.68		03/13/14 03:00	107-06-2	
1,1-Dichloroethene	ND ug/m3	1.4	1.68		03/13/14 03:00	75-35-4	
cis-1,2-Dichloroethene	ND ug/m3	1.4	1.68		03/13/14 03:00	156-59-2	
rans-1,2-Dichloroethene	ND ug/m3	1.4	1.68		03/13/14 03:00	156-60-5	
Ethylbenzene	12.1 ug/m3	1.5	1.68		03/13/14 03:00	100-41-4	
Methylene Chloride	483 ug/m3	1.2	1.68		03/13/14 03:00	75-09-2	E
Methyl-tert-butyl ether	ND ug/m3	1.2	1.68		03/13/14 03:00	1634-04-4	
Naphthalene	71.0 ug/m3	1.8	1.68		03/13/14 03:00	91-20-3	СН
Tetrachloroethene	ND ug/m3	1.2	1.68		03/13/14 03:00	127-18-4	
Toluene	120 ug/m3	1.3	1.68		03/13/14 03:00	108-88-3	
1,2,4-Trichlorobenzene	ND ug/m3	2.5	1.68		03/13/14 03:00	120-82-1	
1,1,1-Trichloroethane	ND ug/m3	1.9	1.68		03/13/14 03:00	71-55-6	
1,1,2-Trichloroethane	ND ug/m3	0.92	1.68		03/13/14 03:00	79-00-5	
Trichloroethene	ND ug/m3	0.92	1.68		03/13/14 03:00	79-01-6	
1,2,3-Trimethylbenzene	1.3J ug/m3	1.7	1.68		03/13/14 03:00	526-73-8	
1,2,4-Trimethylbenzene	4.1 ug/m3	1.7	1.68		03/13/14 03:00	95-63-6	
1,3,5-Trimethylbenzene	1.8 ug/m3	1.7	1.68		03/13/14 03:00	108-67-8	
Vinyl chloride	ND ug/m3	0.44	1.68		03/13/14 03:00	75-01-4	
m&p-Xyleпе	31.9 ug/m3	3.0	1.68		03/13/14 03:00	179601-23-1	
o-Xylene	8.5 ug/m3	1.5	1.68		03/13/14 03:00	95-47-6	

$$\frac{1374003}{601477}$$
 x $\frac{10ppbv}{1.68}$ x $\frac{1.68}{0.81342}$ = $\frac{31.22}{2000}$ ppbv $\frac{92.14}{24.45}$ $\frac{1}{2}$ mole = $\frac{117.6}{24.45}$ $\frac{117.6}{24.45}$ $\frac{117.6}{24.45}$ $\frac{117.6}{24.45}$ $\frac{117.6}{24.45}$

Sample Calcutation

Data File: \\192.168.10.12\chem\10air0.i\031214.b\07132.D

Report Date: 13-Mar-2014 12:16

Pace Analytical Services, Inc.

TO15 Analysis (UNIX)

Data file: \\192.168.10.12\chem\10air0.i\031214.b\07132.D Lab Smp Id: 10259329001 TA-\47-VLS-Z Inj Date: 13-MAR-2014 03:00

Operator : JAM Inst ID: 10air0.i

Smp Info

Misc Info: 19645

Comment : Volatile Organic COMPOUNDS in Air

Method : \\192.168.10.12\chem\10air0.i\031214.b\T015 069-14.m

Meth Date : 13-Mar-2014 08:24 jmasterman Quant Type: ISTD

Cal Date : 10-MAR-2014 13:55 Cal File: 06910.D

Als bottle: 32

Dil Factor: 1.68000 Integrator: HP RTE

Compound Sublist: 10258805.sub

Target Version: 4.14

Concentration Formula: Amt * DF * Uf * CpndVariable

Name	Value	Description
DF Uf Cpnd Variable		Dilution Factor ng unit correction factor Local Compound Variable

			CONCENTRATIONS	
		QUANT SIG	ON-COLUMN FINAL	
С	ompounds	MASS	RT EXP RT REL RT RESPONSE (ppbv) (ppbv)	
=				
	1 Chlorodifluoromethane	51	3.479 3.479 (0.570) 24541 0.83472 1.40	J
	3 Dichlorodifluoromethane	85	Compound Not Detected.	
	6 Vinyl chloride	62	Compound Not Detected.	
	18 1,1-Dichloroethene	61	Compound Not Detected.	
	21 Methylene chloride	49	4.459 4.465 (0.731) 1577223 81.3428 137	7 (AM)
	24 trans-1,2-dichloroethene	96	Compound Not Detected.	
	25 Methyl Tert Butyl Ether	73	Compound Not Detected.	
	27 1,1-Dichloroethane	63	Compound Not Detected.	
\$	28 Hexane-d14(S)	66	4.949 4.955 (0.811) 281565 9.87739 9.88	3
	33 cis-1,2-Dichloroethene	96	Compound Not Detected.	
	35 Chloroform	83	Compound Not Detected.	
	37 1,1,1-Trichloroethane	97	Compound Not Detected.	
	38 1,2-Dichloroethane	62	Compound Not Detected.	
	39 Benzene	78	5.954 5.972 (0.976) 26051 0.45251 0.760	(M) C
	40 Carbon tetrachloride	117	Compound Not Detected.	
*	43 1,4-Difluorobenzene	114	6.103 6.127 (1.000) 601477 10.0000	
	47 Trichloroethene	130	Compound Not Detected.	
\$	54 Toluene-d9 (S)	98	7.592 7.616 (1.244) 568683 9.90810 9.91	1
	66 Toluene	91	7.672 7.697 (1.257) (1374003) 18.5817 31.2	2 (M)
	55 1,1,2-Trichloroethane	97	Compound Not Detected.	
	60 Tetrachloroethene	166	Compound Not Detected.	
*	61 Chlorobenzene - d5	117	9.186 9.217 (1.000) 359198 10.0000	
	63 Ethyl Benzene	91	9.471 9.508 (1.031) 154578 1.62658 2.73	3
	64 m&p-Xylene	91	9.614 9.651 (1.047) 336827 4.30346 7.23	3
*	63 Ethyl Benzene	91	9.471 9.508 (1.031) 154578 1.62658 2.73	

10259329 Page 836 of 980 Report Date : 11-Mar-2014 14:01

Sample Calcutation

Pace Analytical Services, Inc. INITIAL CALIBRATION DATA

Start Cal Date : 10-MAR-2014 11:12
End Cal Date : 10-MAR-2014 13:55
Quant Method : ISTD
Target Version : 4.14
Integrator : HP RTE
Method file : \\192.168.10.12\chem\10air0.i\031014.b\T015_069-14.m
Last Edit : 10-Mar-2014 15:12 10air0.i

	0.1000000	0.2000000	0.5000000	1.0000	10.0000	20.0000			Coefficients		%KSD
Compound	Level 1		Level 3	Level 4	Level 5	Level €	Curve	b	m1	m2	or R^2
	30.0000 Level 7		} }		 						
49 Bromodichloromethane	1.05595	1.08294	1.05443;		1.07884	1.21577	I I		1.12108:		8.4664
50 Methylcyclohexane	3.95017 4.37133	4.31106		3.90218		4.28893	AVRG		4.10367		5.3151
51 Methyl Isobutyl Ketone	1.32695	İ	1.80412	1.76113	i	1.50294			1.57549		1 11.8692
52 dis-1,3-Dichloropropene	2.12350 1.77241	2.34341	1.93713	1.83374		1.71160			1.90153		13.5931
53 trans-1,3-Dichloropropene	3437 1588396		17790!	39339	511296	1029023	 LINR	0.00414	1.52974		0.9997
55 1,1,2-Grichloroethane	1.73572		i		i i	2.50852	[AVRG		· 2.21992		1 12.6225
56 Toluene	0.66842		0.75694 		0.835391	ļ!			0.81342;	$\overline{)}$	 12.6534
	- : 								1		:

Tetra Tech INC

INTERNAL CORRESPONDENCE

TO:

M. MARTIN

DATE:

APRIL 29, 2014

FROM:

JOSEPH KALINYAK

COPIES:

DV FILE

SUBJECT:

ORGANIC DATA VALIDATION -- VOC

LOCKHEED MIDDLE RIVER

SAMPLE DELIVERY GROUP (SDG) - 10259332

SAMPLES:

33 / Air / VOC

BCK-1-16	BCK-2-16	BCK-3-16	BCK-4-16
IA-015-A-16	IA-018-A-16	IA-075-A-16	IA-076-A-16
IA-079-A-16	IA-081-A-16	IA-093-A-16	IA-094-A-16
IA-108-A-16	IA-117-A-16	IA-118-A-16	IA-136-A-16
IA-138-A-16	IA-DUP3-A-16	SV-015-A-16	SV-018-A-16
SV-075-A-16	SV-076-A-16	SV-079-A-16	SV-081-A-16
SV-093-A-16	SV-094-A-16	SV-108-A-16	SV-117-A-16
SV-118-A-16	SV-136-A-16	SV-138-A-16	SV-DUP3-A-16
SV-DUP4-A-16			01 20. 07. 10

SV-DUP4-A-16

Overview

The sample set for Lockheed Middle River SDG 10259332 consisted of thirty-three (33) soil vapor and indoor air samples, including four (4) blank air samples. The samples were analyzed for a select list of volatile organic compounds (VOC). Three (3) field duplicate sample pairs were associated with this sample delivery group (SDG); IA-DUP3-A-16 / IA-015-A-16, SV-DUP3-A-16 / SV-015-A-16, and SV-DUP4-A-16 / SV-018-A-16.

The sample was collected by Tetra Tech on February 25, 2014 and analyzed by Pace Analytical Services, Inc. The laboratory analyzed the samples in accordance with EPA Method TO-15 analytical and reporting protocols.

The data contained in this SDG were validated with regard to the following parameters: data completeness, holding times, GC/MS tuning, initial/continuing calibrations, laboratory method blank/canister blank results, blank spike/blank spike duplicate results, surrogate spike recoveries, internal standard recoveries, field duplicate precision, chromatographic resolution, compound identification, compound quantitation, and detection limits. Areas of concern are listed below.

Major Issues

No major issues were identified.

Minor Issues

The continuing calibration verification (CCV) percent difference (%D) was greater than the 30% quality control limit for 1,2,4-trichlorobenzene and naphthalene on 03/12/14 @ 12:31.

Affected Samples:

IA-015-A-16

SV-015-A-16

SV-108-A-16

Action: The sample non-detected 1,2,4-trichlorobenzene and naphthalene results were qualified estimated, (UJ).

TO: M. MARTIN PAGE: 2 SDG: 10259332

• The analyte relative percent differences (RPDs) were greater than the 50% quality control limit for chlorodifluoromethane, methylene chloride, and vinyl chloride for field duplicate sample pair samples SV-DUP3-A-16 / SV-015-A-16.

Affected Samples: SV-DUP3-A-16 / SV-015-A-16

Action: The sample detected and non-detected chlorodifluoromethane, methylene chloride, and vinyl chloride results were qualified estimated, (J) and (UJ), respectively.

• The analyte RPD was greater than the 50% quality control limit for methylene chloride for field duplicate sample pair samples IA-DUP3-A-16 / IA-015-A-16.

Affected Samples: IA-DUP3-A-16 / IA-015-A-16

Action: The sample detected methylene chloride results were qualified estimated, (J).

Additional Comments

Samples were analyzed at various dilutions (multiple dilutions in some cases).

The laboratory control sample (LCS) percent recovery (%R) was greater than the quality control limit for 1,2,4-trichlorobenzene and naphthalene for batch Air/19645.

Affected Samples:

IA-015-A-16

SV-015-A-16

SV-108-A-16

Action: No action was taken as the samples had non-detected 1,2,4-trichlorobenzene and naphthalene results.

The following VOC contaminants were detected in the method blank at the following maximum concentrations as listed below:

	<u>Maximum</u>	<u>Action</u>
<u>Analyte</u>	Conc. μg/m ³	Level μg/m ³
Methylene chloride (1)	0.96	4.80

Method blank for batch Air/1640107 affecting samples SV-018-A-16 (dilution 2.02), BCK-2-16 (dilution 1.68), and SV-DUP4-A-16 (dilution 1.74).

An action level of ten times for the common laboratory contaminant methylene chloride has been used to evaluate sample data for blank contamination. Dilution factors, if applicable, were taken into consideration when evaluating for blank contamination. The affected samples were not qualified for methylene chloride method blank contamination.

Background samples BCK-1-16, BCK-2-16, BCK-3-16, and BCK-4-16 had positive VOC detections.

The laboratory package received from the laboratory initially was missing calibration data for an instrument. The laboratory was contacted and the missing information was provided.

The laboratory reported the VOC air result concentrations in units of $\mu g/m3$ and non-detected VOC analyte results to the Reporting Limit (RL).

The laboratory did not initially report detected results less than the reporting limit (RL) and greater than the method detection limit (MDL). All sample result forms were revised to include the detections greater than MDL but less than the RL.

TO:

M. MARTIN

SDG:

10259332

PAGE: 3

EXECUTIVE SUMMARY

Laboratory Performance Issues: Sample analyte results were qualified for CCV %D non-compliances.

Other Factors Affecting Data Quality: None.

The data for these analyses were reviewed with reference to the USEPA Method TO-15 and the USEPA National Functional Guidelines for Organic Data Validation (June 2008).

Jetra Nech Joseph Kalinyak

Chemist/Data Validator

Tetra Tech-

Joseph A. Samchuck Data Validation Manager

Attachments:

Appendix A - Qualified Analytical Results

Appendix B - Results as Reported by the Laboratory

Appendix C - Support Documentation

Appendix A

Qualified Analytical Results

Value Qualifier Key (Val Qual)

J – The result is an estimated quantity. The associated numerical value is the approximate concentration of the analyte in the sample.

UJ – The result is an estimated non-detected quantity. The associated numerical value is the approximate concentration of the analyte in the sample.

U - Value is a non-detect as reported by the laboratory.

UR - Non-detected result is considered rejected, (UR), as a result of technical non-compliances.

DATA QUALIFICATION CODE (QUAL CODE)

Qualifier Codes:

A = Lab Blank Contamination

B = Field Blank Contamination

C = Calibration Noncompliance (i.e., % RSDs, %Ds, ICVs, CCVs, RRFs, etc.)

C01 = GC/MS Tuning Noncompliance

D = MS/MSD Recovery Noncompliance

E = LCS/LCSD Recovery Noncompliance

F = Lab Duplicate Imprecision

G = Field Duplicate Imprecision

H = Holding Time Exceedance

I = ICP Serial Dilution Noncompliance

J = ICP PDS Recovery Noncompliance; MSA's r < 0.995

K = ICP Interference - includes ICS % R Noncompliance

L = Instrument Calibration Range Exceedance

M = Sample Preservation Noncompliance

N = Internal Standard Noncompliance

N01 = Internal Standard Recovery Noncompliance Dioxins

N02 = Recovery Standard Noncompliance Dioxins

N03 = Clean-up Standard Noncompliance Dioxins

O = Poor Instrument Performance (i.e., base-time drifting)

P = Uncertainty near detection limit (< 2 x IDL for inorganics and <CRQL for organics)

Q = Other problems (can encompass a number of issues; i.e.chromatography, interferences, etc.)

R = Surrogates Recovery Noncompliance

S = Pesticide/PCB Resolution

T = % Breakdown Noncompliance for DDT and Endrin

U = RPD between columns/detectors >40% for positive results determined via GC/HPLC

V = Non-linear calibrations; correlation coefficient r < 0.995

W = EMPC result

X = Signal to noise response drop

Y = Percent solids <30%

Z = Uncertainty at 2 sigma deviation is less than sample activity

Z1 = Tentatively Identified Compound considered presumptively present

Z2 = Tentatively Identified Compound column bleed

PROJ_NO: 04792	NSAMPLE	BCK-1-16			BCK-2-16			BCK-3-16			BCK-4-16		
SDG: 10259332	LAB_ID	10259332027			10259332028	_		10259332029	29		10259332030		
FRACTION: OV	SAMP_DATE	2/25/2014			2/25/2014			2/25/2014			2/25/2014		
MEDIA: AIR	QC_TYPE	ZZ			ΝZ			ΣZ			NM		
	UNITS	UG/M3			UG/M3			UG/M3			UG/M3		
	PCT_SOLIDS												
	DUP_OF											Ī	
PARAMETER		RESULT	VaL	QLCD	RESULT	Val	QLCD	RESULT	Val	arcp	RESULT	VQL QLCD	۵
1,1,1-TRICHLOROETHANE		1.9 U	n		13	1.9 U		-	1.9 U		2.8 U		
1,1,2-TRICHLOROETHANE		0.92 U	n		0.9	0.92 U		9:0	0.92 U		1.4 U	_	
1,1-DICHLOROETHANE		1.4 U	n		1.4	4 U		-	1.4 U		2 U		
1,1-DICHLOROETHENE		1.4 U	ח		4.1	→		_	1.4 U		2 0		
1,2,3-TRIMETHYLBENZENE	[11	0.34 U	ח		7.	4		-	1.3		0.5 U	_	
1,2,4-TRICHLOROBENZENE	ш	2.5 U	D		2.5	5 U		2	2.5 U		3.8 U		
1,2,4-TRIMETHYLBENZENE	μι	1.3 J	ſ	Ь	2.8	3		5	2.2		2.5 U		
1,2-DICHLOROETHANE		0.69 U	n		69.0	n 6		0.¢	0.69 U		1 U		
1,3,5-TRIMETHYLBENZENE	ш	1.7	n		1.7	N 2		1	1.7		2.5 U	_	
BENZENE		0.93			2.7			0.	0.78		1.1		
CARBON TETRACHLORIDE	ш	1.1 U	Ω		1.1	1 U		1	1.1 U		1.6 U		
CHLORODIFLUOROMETHANE	ANE	10.8			2.7			1	1.2	=	1.8		
CHLOROFORM		1.7	n		1.	1.7 U		1	1.7 U		2.5 U	_	
CIS-1,2-DICHLOROETHENE	Ш	1.4	n		1.4	4			1.4 U		2 0	_	
DICHLORODIFLUOROMETHANE	HANE	2.1			3.4	4		2	2.1		2.9		
ETHYLBENZENE		1.2	ſ	Ь	2.6	9		-	1.5 U		2.2 U	_	
M+P-XYLENES		1.7	ſ	Д	5.8	3		1	1.5 J	Ь	4.4 U	_	
METHYL TERT-BUTYL ETHER	IER	1.2 U	Ω		1.2	2 U		1	1.2 U		1.8 U	_	
METHYLENE CHLORIDE		280			23.4	4		21	21.2		10		
NAPHTHALENE		1.3 J	٦	Ь	3.5	2		1	1.4 J	Ъ	2.7 U	_	
O-XYLENE		1.5	n		2.3	3		1	1.5 U		2.2 U		
TETRACHLOROETHENE		1.2	n		1.9	6		1	1.2 U		1.7 U		
TOLUENE		8.3			24	₹†		_	1.3 J	<u>a</u>	1.6 J	۵	
TRANS-1,2-DICHLOROETHENE	ENE	1.4	n		1.4	4 U		1	1.4 U		2 U		
TRICHLOROETHENE		0.92 U	Π		4.2	2		3.0	0.92 U		1.4 U		
VINYL CHLORIDE		0.44 U	ם		0.4	0.44 U		7.0	0.44 U		0.65 U		

PROJ_NO: 04792	NSAMPLE	IA-015-A-16			IA-018-A-16			IA-075-A-16	(0		IA-076-A-16	;
SDG: 10259332	LAB_ID	10259332002			10259332022	2		10259332018	18		10259332016	
FRACTION: OV	SAMP_DATE	2/25/2014			2/25/2014			2/25/2014			2/25/2014	
MEDIA: AIR	QC_TYPE	NN			ΣZ			ΣZ			WN	
	UNITS	UG/M3			UG/M3			UG/M3			UG/M3	
	PCT_SOLIDS											
	DUP_OF		Ī									
PARAMETER		RESULT	Val	QLCD	RESULT	VQL	QLCD	RESULT	VQL	QLCD	RESULT VQL	QLCD
1,1,1-TRICHLOROETHANE		1.9 U			-	1.9 U			2.1 U	į	2.1 U	
1,1,2-TRICHLOROETHANE		0.92 U	n		6.0	0.96 U			J		1 U	
1,1-DICHLOROETHANE		1.4 U	וכ		1.	1.4 U			1.5 U		1.5 U	
1,1-DICHLOROETHENE		1.4 U	n		1	1.4 U			1.5 U		1.5 U	
1,2,3-TRIMETHYLBENZENE	ш	1.7	n		0.35	15 U		0	0.37 U		0.37 U	
1,2,4-TRICHLOROBENZENE	E	2.5 UJ	o m		2.	2.6 U			2.8 U		2.8 U	
1,2,4-TRIMETHYLBENZENE	Ш	1.7 U	n		Ł.	1.7 U			1.9 U	i	1.9 U	
1,2-DICHLOROETHANE		N 69.0	n		0.7	0.71 U		0	0.77 U		U 77.0	_
1,3,5-TRIMETHYLBENZENE	ш	1.7 U	n n		-	1.7 U			1.9 U		1.9 U	
BENZENE		1.2			0.75	5		15	15.9		0.96	
CARBON TETRACHLORIDE	Ш	1.1	n		<u>+</u>	<u></u>			1.2 U		1.2 U	
CHLORODIFLUOROMETHANE	ANE	7.5			2.6	9			3.9		2.9	
CHLOROFORM		U 7.1	n		1.	1.4 J	Ф	-	1.9 U		1.9 U	
CIS-1,2-DICHLOROETHENE	Ш	1.4 U	n l		1.	1.4 U			1.5 U		1.5 U	
DICHLORODIFLUOROMETHANE	HANE	2.9				2			2.2		2.1	
ETHYLBENZENE		U 77.0	J P		1.5	2 N		0	0.87 J P		0.83 J	Д
M+P-XYLENES		3.3			3.1	J U			3 J		2.9 J	۵
METHYL TERT-BUTYL ETHER	ĒR	1.2	n		1.3	3 U			1.4 U	İ	1.4 U	
METHYLENE CHLORIDE		13.7	J G	,=	14.4	4		41	14.7		9.8	
NAPHTHALENE		1.8 UJ	o m		2.8	8		6	3.6		3.6	
O-XYLENE		1.3	٦		1.5	5 U			1.1 J		1.2 J	۵
TETRACHLOROETHENE		1.2 U	_		1,4	.2 U			1.3 U		13 U	
TOLUENE		15.6			1.7			49.3	8.		54.5	
TRANS-1,2-DICHLOROETHENE	IENE	1.4 U			4.1	4 U		-	1.5 U	!	1.5 U	
TRICHLOROETHENE		0.92	n		,-	_		-	1.6		1.9	
VINYL CHLORIDE		0.44 U	2		0.45 U	5 U		0,0	0.49 U		0.49 U	
)	

PROJ NO: 04792	NSAMPLE	IA-079-A-16			IA-081-A-16			IA-093-A-16	9		IA-094-A-16		
J	LAB_ID	10259332010			10259332012			10259332026	326		10259332020	0	
FRACTION: OV	SAMP_DATE	2/25/2014			2/25/2014			2/25/2014			2/25/2014		
MEDIA: AIR	QC_TYPE	ΣZ			ΣZ			ΣZ			NN		
ļ D	UNITS	UG/M3			UG/M3			UG/M3			UG/M3		
<u> a c</u>	PCT_SOLIDS												
PARAMETER	5	RESULT	VQL	OLCD	RESULT	Val	QLCD	RESULT	VQL	arcp	RESULT	VaL	arcp
1,1,1-TRICHLOROETHANE		2.1)		(7)	3 U			2.9 U		1.	1.9 U	
1,1,2-TRICHLOROETHANE		-	ם		1.5	0 9			1.4 U		5.0	0.96 U	
1,1-DICHLOROETHANE		1.5)		2.2	0			2.1 U		1.	1.4 U	
1,1-DICHLOROETHENE		1.5	D		2.2	n			2.1 U		1	1.4 U	
1,2,3-TRIMETHYLBENZENE		0.37)		3.6	15)	0.52 U		0.35	35 U	
1,2,4-TRICHLOROBENZENE		2.8 U	_		4	n 1			3.9 U		2.	2.6 U	
1,2,4-TRIMETHYLBENZENE		U 6:1	ח		11.7				2.6 U		1.	1.7 U	
1,2-DICHLOROETHANE		U 27.0	n		1.1	n			1.1 U		0.7	0.71 U	
1,3,5-TRIMETHYLBENZENE		1.9 U)		4.9				2.6 U		1.	1.7 U	
BENZENE		0.88			1.4)	0.98		0.93	33	
CARBON TETRACHLORIDE		1.2	n		1.7	, U			1.7 U		-	1.1 U	
CHLORODIFLUOROMETHANE	JI.	4.8			36.6	(2)			4.4		-	1.7	
CHLOROFORM		1.9 U	n		2.6	2.6 U		_	2.6 U		-	1.7 U	
CIS-1,2-DICHLOROETHENE		1.5 U	n		2.2	2.2 U			2.1 U		-	1.4 U	
DICHLORODIFLUOROMETHANE	ANE	2.4			2.9				3.1		2	2.2	
ETHYLBENZENE		1.6	U		36.6				2.3 U		-	1.5 U	
M+P-XYLENES		2.6	ר	Ь	161				4.5 U		6.	3.1 U	
METHYL TERT-BUTYL ETHER	R	1.4 U	n		1.9	D (1.9 U		-	1.3 U	
METHYLENE CHLORIDE		12.7			37				4			5	
NAPHTHALENE		2.1			3.7				2.8		2.	2.2	
O-XYLENE		6.0	J	Ь	48.5	-			2.3 U		-	1.5 U	
TETRACHLOROETHENE		1.3	n		1.8	3 U			1.8 U		-	1.2 U	
TOLUENE		41.8			163				3		-	1.6	
TRANS-1,2-DICHLOROETHENE	NE	1.5	n		2.2	n a			2.1 U		-	.4 U	
TRICHLOROETHENE		1	n		19.2				6.9		96.0	D 96	
VINYL CHLORIDE		0.49 U	n		U 69.0	0			0.67 U		0.4	0.45 U	

PROJ NO: 04792	NSAMPLE	IA-108-A-16		IA-117-A-16		IA-1	IA-118-A-16		IA-136-A-16	,	
SDG: 10259332	LAB_ID	10259332004		10259332008		102	10259332006		10259332014	14	
FRACTION: OV	SAMP_DATE	2/25/2014		2/25/2014		2/25	2/25/2014		2/25/2014		
MEDIA: AIR	QC_TYPE	ΣZ		ΣN		MN			ΣZ		
	UNITS	UG/M3		UG/M3		UG/M3	МЗ		UG/M3		
	PCT_SOLIDS										
	DUP_OF										
PARAMETER		RESULT VOL	orcd	RESULT	VQL QLCD		RESULT VQL	QLCD	RESULT	VQL	arcd
1,1,1-TRICHLOROETHANE		2 U		2.1			1.2 J	Д		2 U	
1,1,2-TRICHLOROETHANE		U 66.0		1	n		O 66:0		0	0.99 U	
1,1-DICHLOROETHANE		1.5 U		1.5	- n		1.5 U		-	1.5 U	
1,1-DICHLOROETHENE		1.5 U	;	1.5	n		1.5 U			1.5 U	
1,2,3-TRIMETHYLBENZENE	111	0.36 U		0.37	n		0.36 U		0.	0.36 U	
1,2,4-TRICHLOROBENZENE	ш	2.7 U		2.8	n		2.7 U		2	2.7 U	
1,2,4-TRIMETHYLBENZENE		1.8 U		1.9 U	ם		1.8 U		. 1	1.8 U	
1,2-DICHLOROETHANE		0.74 U		U 27.0	n		0.74 U		0	0.74 U	
1,3,5-TRIMETHYLBENZENE	411	1.8 U		1.9	n		1.8 U			1.8 U	
BENZENE		6.0		0.89			1		0	0.94	
CARBON TETRACHLORIDE	103	1.2 U		1.2	1.2 U		1.2 U		1	1.2 U	
CHLORODIFLUOROMETHANE	ANE	4		3.5			12.4			3.3	
CHLOROFORM		1.8 U		1.9	n		1.8 U			1.8 U	
CIS-1,2-DICHLOROETHENE	ш	1.5 U		1.5	n		1.5 U			1.5 U	
DICHLORODIFLUOROMETHANE	HANE	2.2		2			1.9		N	2.2	
ETHYLBENZENE		0.94	Д	0.84	J P		1.4 J	Д	0	0.75 J	Ъ
M+P-XYLENES		3.4		2.7	J		5.6			2.6 J	Д
METHYL TERT-BUTYL ETHER	ER	1.3 U		1.4	1.4 U		1.3 U			1.3 U	
METHYLENE CHLORIDE		8.8		8.9			8.8		7	7.3	
NAPHTHALENE		2.2		2.2			2.2			2.9	
O-XYLENE		1.3 J	Д	0.92	J P		2		0	0.99 J	۵
TETRACHLOROETHENE		1.2 U		1.3	n		1.2 U		_	1.2 U	
TOLUENE		43.8		67.5			16.5		53	53.6	
TRANS-1,2-DICHLOROETHENE	ENE	1.5 U		1.5	n		1.5 U			1.5 U	
TRICHLOROETHENE		0.99 U		1	n		5.6		4	4.2	
VINYL CHLORIDE		0.47 U		0.49	n		0.47 U	:	0.	0.47 U	

PROJ NO: 04792	NSAMPLE	IA-138-A-16		IA-DUP3-A-16	-A-16		SV-015-A-16			SV-018-A-16		
SDG: 10259332	LAB_ID	10259332024		10259332033	2033		10259332001			10259332021		
FRACTION: OV	SAMP_DATE	2/25/2014		2/25/2014	4		2/25/2014			2/25/2014		
MEDIA: AIR	QC_TYPE	ΣZ		ΣZ	:		MN			NM		
	UNITS	UG/M3		UG/M3			UG/M3			UG/M3		
	PCT_SOLIDS											
	DUP_OF			IA-015-A-16	-16							
PARAMETER		RESULT	VQL QLCD	RESULT	VQL	arcd	RESULT	Val	QLCD	RESULT	Val	alcd
1,1,1-TRICHLOROETHANE		2.9 U	n		2.8 U		76.3			2.2	D	
1,1,2-TRICHLOROETHANE		1.4 U	n		1.4 U		1	n		1.1	D	
1,1-DICHLOROETHANE		2.1	n		2 0		14.6			3.1		:
1,1-DICHLOROETHENE		2.1	ח		2 U		369			230		
1,2,3-TRIMETHYLBENZENE	ш	0.52	n		0.5 U		1.9	n		0.4	D	
1,2,4-TRICHLOROBENZENE	Ш	3.9	Ω		3.8 U		2.8	O) CO		3.1	D	
1,2,4-TRIMETHYLBENZENE	Е	2.6] n		2.5 U		1.9 U	n		1.7	7	۵
1,2-DICHLOROETHANE		1.1 U	n		1 U		0.77 U	_		0.83 U	D	
1,3,5-TRIMETHYLBENZENE	ш	2.6	n		2.5 U		U 6.1	n		2	2 U	
BENZENE		1.1			1.2		0.64			96.0		
CARBON TETRACHLORIDE	Е	1.7	n		1.6 U		1.2	n		1.3	5	
CHLORODIFLUOROMETHANE	ANE	4.8			8.2		5.8) O	,_	8.9		
CHLOROFORM		2.6	n n		2.5 U		64.7			1.7	7	_
CIS-1,2-DICHLOROETHENE	E	2.1 U	n		2 U		1110			16.3		
DICHLORODIFLUOROMETHANE	HANE	3			3.2		2.1			2.2		
ETHYLBENZENE		2.3	n		2.2 U		1.6 U	D		1.8	D	
M+P-XYLENES		4.5	l N		3.4 J	Ь	3.1	<u>-</u>		2	7	_
METHYL TERT-BUTYL ETHER	IER	1.9	U		1.8 U		1.4	D		1.5	D	
METHYLENE CHLORIDE		17.2			7.4 J	9	31.6	J G		19.8		
NAPHTHALENE		3			2.1 J	Д	2	2 W C		2.8		
O-XYLENE		2.3 U	n		1.4 J	Ь	1.6	ر م		1.8	D	
TETRACHLOROETHENE		1.8	n		1.7 U		1.3 U	Ω		1.4 U	Ď	
TOLUENE		2.5			16.9		7.1			2.6		
TRANS-1,2-DICHLOROETHENE	TENE	2.1	ח		2 N		25			1.6)	
TRICHLOROETHENE		1.6			1.4 U		564			174		
VINYL CHLORIDE	·	0.67	D		0.65 U		0.49 UJ	n) G		0.57		

	NSAMPLE	SV-075-A-16		SV-076-A-16		SV-079-A-16			SV-081-A-16	
SDG: 10259332	LAB_ID	10259332017		10259332015		10259332009			10259332011	
FRACTION: OV	SAMP_DATE	2/25/2014		2/25/2014		2/25/2014			2/25/2014	
MEDIA: AIR	QC_TYPE	ΣN		NN		NA			NΜ	
	UNITS	UG/M3		UG/M3		UG/M3			UG/M3	
	PCT_SOLIDS									
	DUP_OF				ļ					Ī
PARAMETER		RESULT	VQL QLCD	RESULT VQL	arcd	RESULT	VQL QLCD	9		Val alcd
1,1,1-TRICHLOROETHANE	111	1.9 U	n	2.1 U		2.1			6.4	
1,1,2-TRICHLOROETHANE	111	0.92 U	n	1 U		0.99	n 6		O 66:0	
1,1-DICHLOROETHANE		1.4 U	n	1.5 U		1.6	9		1.5 U	
1,1-DICHLOROETHENE		4.1	n	1.5 U		2.7			1.5 U	
1,2,3-TRIMETHYLBENZENE	Ш	59.2		20.8		23.1	1		4140	
1,2,4-TRICHLOROBENZENE	i 中	2.5	n	2.8 U		2.7	7 U		2.7 U	_
1,2,4-TRIMETHYLBENZENE	Ш	205		40.2		12.3	3		6780	
1,2-DICHLOROETHANE		U 69.0	n	U 27.0		0.74 U	4 U		0.74 U	
1,3,5-TRIMETHYLBENZENE	Ш	107		14		1.8	3 U		3500	
BENZENE		62'0		0.61 U		1.1			0.58 U	
CARBON TETRACHLORIDE	Щ	1.1	n	1.2 U		1.2	2 U		1.2 U	
CHLORODIFLUOROMETHANE	ANE	4.1		1.6		2.7	12		25.4	
CHLOROFORM		1.7 U	n	1.7 J	Ь		6		2.8	
CIS-1,2-DICHLOROETHENE	밀	1.4 U	n	1.5 U		2620	0		6.1	
DICHLORODIFLUOROMETHANE	THANE	2.1		1.9		1	1.7 J P		1.8	
ETHYLBENZENE		1.6		1.6 U		2.1			57.9	-
M+P-XYLENES		6		4.4		5.2			480	
METHYL TERT-BUTYL ETHER	HER	1.2	n	1.4 U		1.3	3 U		1.3 U	
METHYLENE CHLORIDE		3.1		12.6		18.7	2		15.4	
NAPHTHALENE		259		94.9		27.9	9		1.9 U	
O-XYLENE		19.7		2.9		5.3	3		228	
TETRACHLOROETHENE		1.2 U	n	1.3 U		14.1			73.8	-
TOLUENE		7.8		3.8		5.9	6		13.9	
TRANS-1,2-DICHLOROETHENE	HENE	1.4	U	1.5 U		517			1.5 \	
TRICHLOROETHENE		3.1		14		0609	0		6.7	
VINYL CHLORIDE		0.44 U	ם	0.49 U		0.47 U			0.47 U	

	L	07,000 4.00	SV-004-A-16	SV-108-A-16	SV-117-A-16
32	NSAMPLE	SV-093-A-16	10260332010	10259332003	10259332007
	LAB_ID	10259332025	2/25/2014	2/25/2014	2/25/2014
ò	SAMP_DATE	2/25/2014	MA	Z	NN
MEDIA: AIR	QC_IYPE	SIZ.	NIN.	1.12.M/3	UG/M3
5	UNITS	UG/M3	UG/M3	SM/SO	
ĬŢ.	PCT_SOLIDS				
<u>O</u>	DUP_OF	-		CO TO	BESTILT VOI OLCD
PARAMETER		RESULT VOL QLCD	RESULT VOL ALCD	2 2	12
1,1,1-TRICHLOROETHANE		3.1 U		0 :	
1.1.2-TRICHLOROETHANE		1.6 U	0.99 U	0.96.0	0 2 2
1 1-DICHLOROETHANE		2.3 U	1.5 U	2.1	2
1 1-DICHLOROETHENE		2.3 U	1.5 U	7.7	0 6.7
1 2 3-TRIMETHYLBENZENE		0.56 U	0.36 U		_ +-
1 2 4-TRICHLOROBENZENE		4.3 U	2.7 U	2.6 UJ C	2.7 U
1 2 4-TRIMETHYI BENZENE		2.8 U	1.8 U	1.7 U	5.8
1 2-DICHLOROETHANE		1.2 U	0.74 U	0.71 U	0.74 U
1 3 5-TRIMETHYLBENZENE		2.8 U	1.8 U	1.7 U	1.8.0
BENZENE		1.2	1.1	0.88	0.58 U
CARBON TETRACHLORIDE		1.8 U	1.2 U	1.1 U	1.2 U
CHLORODIFLUOROMETHANE	岀	14.6	3.6	12.3	
CHLOROFORM		2.8 U	1.8 U	1.7 U	
CIS-1 2-DICHLOROETHENE		2.3 U	1.5 U	1.4 U	o -
DICHI ORODIFI UOROMETHANE	ANE	3.9	2.3	2.5	T C C C C C C C C C C C C C C C C C C C
FTHYLBENZENE		2.5 U	1.6 U	D.	2.1
M+P-XYLENES		5 0	3.2 U	2.9 J P	
METHYL TERT-BUTYL ETHER	24	2.1 U	1.3 U	130	0 2.
METHYLENE CHLORIDE		415	59.8		10.10
NAPHTHALENE		3.5	2.5		
O-XYLENE		2.5 U	1.6 U		7000
TETRACHLOROETHENE		1.9 U	1.2 U	1.2 U	2.0
TOLUENE		6.8	2.3	17.3	7
TRANS-1.2-DICHLOROETHENE	N.	2.3 U	1.5 U	_ ⊃	
TRICHLOROETHENE		7	O 66.0	0.94 J P	601
		0.73 U	0.47 U	0.45 U	0.47 0

	1	CV 440 A 46		SV-136-A-16			SV-138-A-16		SV-DUP3-A-16	
PROJ_NO: 04792	NSAMPLE	3V-116-A-10		10259332013			10259332023		10259332032	
SDG: 10259332	CAMP DATE	2/25/2014		2/25/2014			2/25/2014		2/25/2014	}
FKACTION: OV	אורים אדי סס	NIM		NZ.			ΝN		NN	
MEDIA: AIK	ייין ייין	WW THE		LIG/M3			UG/M3		UG/M3	
	DCT SOLIDS	CG/INIO								
	DUP OF				!				4-16	0
PARAMETER		RESULT VOL	alco	RESULT	VQL	arcp	RESULT VQL	alcD	RESULT VOL	arcn
1 1 1-TRICHLOROETHANE		26.2		3.4			3.2 U			
1 1 2-TRICHLOROETHANE		1 U		1	1 U		1.6 U		1.5 U	
1.1-DICHLOROETHANE		90.3		1.7			2.6		21.6	
1,1-DICHLOROETHENE		1670		1.5))		6.4			
1,2,3-TRIMETHYLBENZENE	ш	18.1		6.1			0.57 U		0.00	
1.2.4-TRICHLOROBENZENE	Ш	2.8 U		2.8	<u>ح</u>		4.3 U		0 2.0	-
1,2,4-TRIMETHYLBENZENE	Ш	34.1		6.8					7.8 0	
1,2-DICHLOROETHANE		0.77 U		0.77	⊃		7		- 6	
1,3,5-TRIMETHYLBENZENE	ш	23.2		5.4	_		2.9 U		2.00	
BENZENE		1.8		6.7					0.0	
CARBON TETRACHLORIDE	ш	1.2 U		1.2			J.8.		0 -	C
CHLORODIFLUOROMETHANE	ANE	5.2		0.37	D/				6 9.7	9
CHLOROFORM		106		217			2.8 U		93.0	
CIS-1,2-DICHLOROETHENE	¥	477		55.2	2		5.6		1 20	٥
DICHLORODIFLUOROMETHANE	THANE	2		1.9	0			1	2.5	<u> </u>
ETHYLBENZENE		27.2		1.7	_		1.9	ב	0 4.7	
M+P-XYLENES		156		4.2						
METHYL TERT-BUTYL ETHER	HER	1.4 U		4.1	0		7. 7. 0			C
METHYLENE CHLORIDE		15		13.5	22		C: /-		200	
NAPHTHALENE	i	20.7		9.3	8		23.1		0 -	٥
O-XYLENE		65.2		3.4	4		9. 1.	Σ	7	-
TETRACHLOROETHENE		1.6		15.1	_		7.7		0 8.	
TOLUENE		3.8		11.7	_		10.3		0.4	
TRANS-1,2-DICHLOROETHENE	HENE	18.1		25.3	3		2.3 U		27.70	
TRICHLOROETHENE		2860		91000	0		80.3	 	_	C
VINYL CHLORIDE		0.49 U		0.49	O 6		0.75 U		C. I	2

PROJ_NO: 04792	NSAMPLE	SV-DUP4-A-16	"	
SDG: 10259332	LAB_ID	10259332034		
FRACTION: OV	SAMP_DATE	2/25/2014		
MEDIA: AIR	QC_TYPE	ΣZ		
	UNITS	UG/M3		
	PCT_SOLIDS			
	DUP_OF	SV-018-A-16		
PARAMETER		RESULT	NOL	arcp
1,1,1-TRICHLOROETHANE		1.9	n	
1,1,2-TRICHLOROETHANE		96.0	ם	
1,1-DICHLOROETHANE		3.2		
1,1-DICHLOROETHENE		192		
1,2,3-TRIMETHYLBENZENE	Lt I	0.35	Ω	
1,2,4-TRICHLOROBENZENE	E	2.6 U	n	
1,2,4-TRIMETHYLBENZENE	ш	1.5	7	۵
1,2-DICHLOROETHANE		0.71	ח	
1,3,5-TRIMETHYLBENZENE	ш	14	7	٩
BENZENE		77.0		
CARBON TETRACHLORIDE	Е	1.1 U	n	
CHLORODIFLUOROMETHANE	ANE	7.1		
CHLOROFORM		1.4	ſ	Ь
CIS-1,2-DICHLOROETHENE	E	13.7		
DICHLORODIFLUOROMETHANE	HANE	1.9		
ETHYLBENZENE		1.5	n	
M+P-XYLENES		1.7	ſ	Ь
METHYL TERT-BUTYL ETHER	ter	1.3 U	ח	
METHYLENE CHLORIDE		17.8		
NAPHTHALENE		3.1		
O-XYLENE		1.5	n	
TETRACHLOROETHENE		1.2	n	
TOLUENE		2		
TRANS-1,2-DICHLOROETHENE	IENE	1.4	n	
TRICHLOROETHENE		150		
VINYL CHLORIDE		0.59		

Appendix B

Results as Reported by the Laboratory

(612)607-1700

ANALYTICAL RESULTS

Project:

MRC SV/IAQ Study Feb 2014 REV

Pace Project No.:

10259332

Sample: BCK-1-16 Parameters	Lab ID: 10259332027	Collected: 02/25/14 15:37		Received: 03/04/14 10:00	Matrix: Air	
	Results Units	Report Limit	DF	Prepared Analyzed	CAS No.	Qua
TO15 MSV AIR	Analytical Method: TO-15					
Benzene	0.93 ug/m3	0.55	1.68	03/15/14 06:1	4 71-43-2	
Carbon tetrachloride	ND ug/m3	1.1	1.68	03/15/14 06:1	4 56-23-5	
Chlorodifluoromethane	10.8 ug/m3	0.34	1.68	03/15/14 06:1	4 75-45-6	
Chloroform	ND ug/m3	1.7	1.68	03/15/14 06:1	4 67-66-3	
Dichlorodifluoromethane	2.1 ug/m3	1.7	1.68	03/15/14 06:1	4 75-71-8	
1,1-Dichloroethane	ND ug/m3	1.4	1.68	03/15/14 06:1	4 75-34-3	
1,2-Dichloroethane	ND ug/m3	0.69	1.68	03/15/14 06:1	4 107-06-2	
1,1-Dichloroethene	ND ug/m3	1.4	1.68	03/15/14 06:1	4 75-35-4	
cis-1,2-Dichloroethene	ND ug/m3	1.4	1.68	03/15/14 06:1	4 156-59-2	
trans-1,2-Dichloroethene	ND ug/m3	1.4	1.68	03/15/14 06:1	4 156-60-5	
Ethylbenzene	1.2J ug/m3	1.5	1.68	03/15/14 06:1	4 100-41-4	
Methylene Chloride	580 ug/m3	16.8	23.71	03/18/14 14:3	4 75-09-2	
Methyl-tert-butyl ether	ND ug/m3	1.2	1.68	03/15/14 06:1	4 1634-04-4	
Naphthalene	1.3J ug/m3	1.8	1.68	03/15/14 06:1	4 91-20-3	
Tetrachloroethene	ND ug/m3	1.2	1.68	03/15/14 06:1	4 127-18-4	
Toluene	8.3 ug/m3	1.3	1.68	03/15/14 06:1	4 108-88-3	
1,2,4-Trichlorobenzene	ND ug/m3	2.5	1.68	03/15/14 06:1	4 120-82-1	
1,1,1-Trichloroethane	ND ug/m3	1.9	1.68	03/15/14 06:1	4 71-55-6	
1,1,2-Trichloroethane	ND ug/m3	0.92	1.68	03/15/14 06:1	4 79-00-5	
Trichloroethene	ND ug/m3	0.92	1.68	03/15/14 06:1	4 79-01-6	
1,2,3-Trimethylbenzene	ND ug/m3	0.34	1.68	03/15/14 06:1	4 526-73-8	
1,2,4-Trimethylbenzene	1.3J ug/m3	1.7	1.68	03/15/14 06:1	4 95-63-6	
1,3,5-Trimethylbenzene	ND ug/m3	1.7	1.68	03/15/14 06:1	4 108-67-8	
Vinyl chloride	ND ug/m3	0.44	1.68	03/15/14 06:1	4 75-01-4	
m&p-Xylene	1.7J ug/m3	3.0	1.68	03/15/14 06:1	4 179601-23-1	
o-Xylene	ND ug/m3	1.5	1.68	03/15/14 06:1	4 95-47-6	

ANALYTICAL RESULTS

Project:

MRC SV/IAQ Study Feb 2014 REV

Pace Project No.:

Date: 04/17/2014 12:22 PM

10259332

Sample: BCK-2-16 Parameters	Lab ID: 10259332028	Collected: 02/25/14 15:33		Received: 03/04/14 10:00	Matrix: Air	
	Results Units	Report Limit	DF	Prepared Analyzed	CAS No.	Qua
TO15 MSV AIR	Analytical Method: TO-15					
Benzene	2.7 ug/m3	0.55	1.68	03/15/14 01:5	4 71-43-2	
Carbon tetrachloride	ND ug/m3	1.1	1.68	03/15/14 01:5	4 56-23-5	
Chlorodifluoromethane	2.7 ug/m3	0.34	1.68	03/15/14 01:5	4 75-45-6	
Chloroform	ND ug/m3	1.7	1.68	03/15/14 01:5	4 67-66 - 3	
Dichlorodifluoromethane	3.4 ug/m3	1.7	1.68	03/15/14 01:5	4 75-71-8	
1,1-Dichloroethane	ND ug/m3	1.4	1.68	03/15/14 01:5	4 75-34-3	
1,2-Dichloroethane	ND ug/m3	0.69	1.68	03/15/14 01:5	4 107-06-2	
1,1-Dichloroethene	ND ug/m3	1.4	1.68	03/15/14 01:5	4 75-35-4	
cis-1,2-Dichloroethene	ND ug/m3	1.4	1.68	03/15/14 01:5	4 156-59-2	
trans-1,2-Dichloroethene	ND ug/m3	1.4	1.68	03/15/14 01:5	4 156-60-5	
Ethylbenzene	2.6 ug/m3	1.5	1.68	03/15/14 01:5	4 100-41-4	
Methylene Chloride	23.4 ug/m3	1.2	1.68	03/15/14 01:5	4 75-09-2	
Methyl-tert-butyl ether	ND ug/m3	1.2	1.68	03/15/14 01:5	4 1634-04-4	
Naphthalene	3.5 ug/m3	1.8	1.68	03/15/14 01:5	4 91-20-3	
Tetrachloroethene	1.9 ug/m3	1.2	1.68	03/15/14 01:5	4 127-18-4	
Toluene	24.0 ug/m3	1.3	1.68	03/15/14 01:5	4 108-88-3	
1,2,4-Trichlorobenzene	ND ug/m3	2.5	1.68	03/15/14 01:5	4 120-82-1	
1,1,1-Trichloroethane	ND ug/m3	1.9	1.68	03/15/14 01:5	4 71-55-6	
1,1,2-Trichloroethane	ND ug/m3	0.92	1.68	03/15/14 01:5	4 79-00-5	
Trichloroethene	4.2 ug/m3	0.92	1.68	03/15/14 01:5	4 79-01-6	
1,2,3-Trimethylbenzene	1.4 ug/m3	0.34	1.68	03/15/14 01:5	4 526-73-8	
1,2,4-Trimethylbenzene	2.8 ug/m3	1.7	1.68	03/15/14 01:5	4 95-63-6	
1,3,5-Trimethylbenzene	ND ug/m3	1.7	1.68	03/15/14 01:5	4 108-67-8	
Vinyl chloride	ND ug/m3	0.44	1.68	03/15/14 01:5	4 75-01-4	
m&p-Xylene	5.8 ug/m3	3.0	1.68	03/15/14 01:5	4 179601-23-1	
o-Xylene	2.3 ug/m3		1.68	03/15/14 01:5		

Project:

MRC SV/IAQ Study Feb 2014 REV

Pace Project No.:

Date: 04/17/2014 12:22 PM

10259332

Sample: BCK-3-16	Lab ID: 10259332029	Collected: 02/25/1	4 15:32	Received: 03/04/14 10:00 N	//atrix: Air	
Parameters	Results Units	Report Limit	DF	Prepared Analyzed	CAS No.	Qua
TO15 MSV AIR	Analytical Method: TO-15					
Benzene	0.78 ug/m3	0.55	1.68	03/15/14 00:56		
Carbon tetrachloride	ND ug/m3	1.1	1.68	03/15/14 00:56		
Chlorodifluoromethane	1.2 ug/m3	0.34	1.68	03/15/14 00:56	75-45-6	
Chloroform	ND ug/m3	1.7	1.68	03/15/14 00:56	67-66-3	
Dichlorodifluoromethane	2.1 ug/m3	1.7	1.68	03/15/14 00:56	75-71 - 8	
1,1-Dichloroethane	ND ug/m3	1.4	1.68	03/15/14 00:56		
1,2-Dichloroethane	ND ug/m3	0.69	1.68	03/15/14 00:56		
1,1-Dichloroethene	ND ug/m3	1.4	1.68	03/15/14 00:56		
cis-1,2-Dichloroethene	ND ug/m3	1.4	1.68	03/15/14 00:56		
trans-1,2-Dichloroethene	ND ug/m3	1.4	1.68	03/15/14 00:56	156-60-5	
Ethylbenzene	ND ug/m3	1.5	1.68	03/15/14 00:56	100-41-4	
Methylene Chloride	21.2 ug/m3	1.2	1.68	03/18/14 02:28	75-09-2	
Methyl-tert-butyl ether	ND ug/m3	1.2	1.68	03/15/14 00:56	1634-04-4	
Naphthalene	1.4J ug/m3	1.8	1.68	03/15/14 00:56	91-20-3	
Tetrachloroethene	ND ug/m3	1.2	1.68	03/15/14 00:56	127-18-4	
Toluene	1.3J ug/m3	1.3	1.68	03/15/14 00:56	108-88-3	
1,2,4-Trichlorobenzene	ND ug/m3	2.5	1.68	03/15/14 00:56	120-82-1	
1,1,1-Trichloroethane	ND ug/m3	1.9	1.68	03/15/14 00:56	71-55-6	
1,1,2-Trichloroethane	ND ug/m3	0.92	1.68	03/15/14 00:56	79-00-5	
Trichloroethene	ND ug/m3	0.92	1.68	03/15/14 00:56	79-01-6	
1,2,3-Trimethylbenzene	1.3 ug/m3	0.34	1.68	03/15/14 00:56	526-73-8	
1,2,4-Trimethylbenzene	2.2 ug/m3	1.7	1.68	03/15/14 00:56	95-63-6	
1,3,5-Trimethylbenzene	1.7 ug/m3	1.7	1.68	03/15/14 00:56	108-67-8	
Vinyl chloride	ND ug/m3	0.44	1.68	03/15/14 00:56	75-01-4	
m&p-Xylene	1.5J ug/m3	3.0	1.68	03/15/14 00:56	179601-23-1	
o-Xylene	ND ug/m3	1.5	1.68	03/15/14 00:56	95-47-6	

Project:

MRC SV/IAQ Study Feb 2014 REV

Pace Project No.:

Date: 04/17/2014 12:22 PM

10259332

Sample: BCK-4-16	Lab ID: 10259332030	Collected: 02/25/14	15:29	Received: 03/04/14 10:00	Matrix: Air	
Parameters	Results Units	Report Limit	DF	Prepared Analyzed	CAS No.	Qua
TO15 MSV AIR	Analytical Method: TO-1	5				
Benzene	1.1 ug/m3	0.81	2.49	03/18/14 02:58	3 71-43-2	
Carbon tetrachloride	ND ug/m3	1.6	2.49	03/18/14 02:58	8 56-23-5	
Chlorodifluoromethane	1.8 ug/m3	0.50	2.49	03/18/14 02:58	3 75-45-6	
Chloroform	ND ug/m3	2.5	2.49	03/18/14 02:58	8 67-66-3	
Dichlorodifluoromethane	2.9 ug/m3	2.5	2.49	03/18/14 02:58	3 75-71-8	
1,1-Dichloroethane	ND ug/m3	2.0	2.49	03/18/14 02:58	3 75-34-3	
1,2-Dichloroethane	ND ug/m3	1.0	2.49	03/18/14 02:58	3 107-06-2	
1,1-Dichloroethene	ND ug/m3	2.0	2.49	03/18/14 02:58	3 75-35-4	
cis-1,2-Dichloroethene	ND ug/m3	2.0	2.49	03/18/14 02:58	3 156-59-2	
rans-1,2-Dichloroethene	ND ug/m3	2.0	2.49	03/18/14 02:58	3 156-60-5	
Ethylbenzene	ND ug/m3	2.2	2.49	03/18/14 02:58	3 100-41-4	
Methylene Chloride	10 ug/m3	1.8	2.49	03/18/14 02:58	8 75-09-2	
Methyl-tert-butyl ether	ND ug/m3	1.8	2.49	03/18/14 02:58	8 1634-04-4	
Naphthalene	ND ug/m3	2.7	2.49	03/18/14 02:58	8 91-20-3	
Tetrachloroethene	ND ug/m3	1.7	2.49	03/18/14 02:58	8 127-18-4	
Toluene	1.6J ug/m3	1.9	2.49	03/18/14 02:58	8 108-88-3	
1,2,4-Trichlorobenzene	ND ug/m3	3.8	2.49	03/18/14 02:58	8 120-82-1	
1,1,1-Trichloroethane	ND ug/m3	2.8	2.49	03/18/14 02:58	B 71 - 55-6	
1,1,2-Trichloroethane	ND ug/m3	1.4	2.49	03/18/14 02:58	8 79 - 00-5	
Trichloroethene	ND ug/m3	1.4	2.49	03/18/14 02:58	8 79 - 01-6	
1,2,3-Trimethylbenzene	ND ug/m3	0.50	2.49	03/18/14 02:58	8 526-73-8	
1,2,4-Trimethylbenzene	ND ug/m3	2.5	2.49	03/18/14 02:58	8 95-63-6	
1,3,5-Trimethylbenzene	ND ug/m3	2.5	2.49	03/18/14 02:58	8 108-67-8	
Vinyl chloride	ND ug/m3	0.65	2.49	03/18/14 02:58	8 75-01-4	
m&p-Xylene	ND ug/m3	4.4	2.49	03/18/14 02:5	8 179601-23-1	
o-Xylene	ND ug/m3	2.2	2.49	03/18/14 02:58	8 95-47-6	

Project:

MRC SV/IAQ Study Feb 2014 REV

Pace Project No.:

Date: 04/17/2014 12:22 PM

10259332

Sample: IA-015-A-16	Lab ID: 10259332002	Collected: 02/25/1	4 15:49	Received: 03/04/14 10:00	Matrix: Air	
Parameters	Results Units	Report Limit	DF	Prepared Analyzed	CAS No.	Qua
TO15 MSV AIR	Analytical Method: TO-15					
Benzene	1.2 ug/m3	0.55	1.68	03/12/14 21:34	71-43-2	
Carbon tetrachloride	ND ug/m3	1.1	1.68	03/12/14 21:34	56-23-5	
Chlorodifluoromethane	7.5 ug/m3	1.2	1.68	03/12/14 21:34		
Chloroform	ND ug/m3	1.7	1.68	03/12/14 21:34	67-66-3	
Dichlorodifluoromethane	2.9 ug/m3	1.7	1.68	03/12/14 21:34	75-71 - 8	
1,1-Dichloroethane	ND ug/m3	1.4	1.68	03/12/14 21:34	75-34-3	
1,2-Dichloroethane	ND ug/m3	0.69	1.68	03/12/14 21:34	107-06-2	
1,1-Dichloroethene	ND ug/m3	1.4	1.68	03/12/14 21:34		
cis-1,2-Dichloroethene	ND ug/m3	1.4	1.68	03/12/14 21:34	156-59-2	
trans-1,2-Dichloroethene	ND ug/m3	1.4	1.68	03/12/14 21:34	156-60-5	
Ethylbenzene	0.77J ug/m3	1.5	1.68	03/12/14 21:34	100-41-4	
Methylene Chloride	13.7 ug/m3	1.2	1.68	03/12/14 21:34	75-09-2	
Methyl-tert-butyl ether	ND ug/m3	1.2	1.68	03/12/14 21:34	1634-04-4	
Naphthalene	ND ug/m3	1.8	1.68	03/12/14 21:34	91-20-3	
Tetrachloroethene	ND ug/m3	1.2	1.68	03/12/14 21:34	127-18-4	
Toluene	15.6 ug/m3	1.3	1.68	03/12/14 21:34	108-88-3	
1,2,4-Trichlorobenzene	ND ug/m3	2.5	1.68	03/12/14 21:34	120-82-1	
1,1,1-Trichloroethane	ND ug/m3	1.9	1.68	03/12/14 21:34	71-55-6	
1,1,2-Trichloroethane	ND ug/m3	0.92	1.68	03/12/14 21:34	79-00-5	
Trichloroethene	ND ug/m3	0.92	1.68	03/12/14 21:34	79-01-6	
1,2,3-Trimethylbenzene	ND ug/m3	1.7	1.68	03/12/14 21:34	526-73-8	
1,2,4-Trimethylbenzene	ND ug/m3	1.7	1.68	03/12/14 21:34	95-63-6	
1,3,5-Trimethylbenzene	ND ug/m3	1.7	1.68	03/12/14 21:34	1 108-67-8	
Vinyl chloride	ND ug/m3	0.44	1.68	03/12/14 21:34	75-01-4	
m&p-Xylene	3.3 ug/m3	3.0	1.68	. 03/12/14 21:34	179601-23-1	
o-Xylene	1.3J ug/m3	1.5	1.68	03/12/14 21:34		

Project:

MRC SV/IAQ Study Feb 2014 REV

Pace Project No.:

Date: 04/17/2014 12:22 PM

10259332

Sample: IA-018-A-16	Lab ID: 10259332022	Collected: 02/25/1	4 16:23	Received: 0	3/04/14 10:00 I	Matrix: Air	
Parameters	Results Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
TO15 MSV AIR	Analytical Method: TO-15						
Benzene	0.75 ug/m3	0.57	1.74		03/17/14 23:18	71-43-2	
Carbon tetrachloride	ND ug/m3	1.1	1.74	•	03/17/14 23:18	56-23-5	
Chlorodifluoromethane	2.6 ug/m3	0.35	1.74		03/17/14 23:18	75-45-6	
Chloroform	1.4J ug/m3	1.7	1.74		03/17/14 23:18	67-66-3	
Dichlorodifluoromethane	2.0 ug/m3	1.8	1.74		03/17/14 23:18	75-71-8	
1,1-Dichloroethane	ND ug/m3	1.4	1.74		03/17/14 23:18	75-34-3	
1,2-Dichloroethane	ND ug/m3	0.71	1.74		03/17/14 23:18	107-06-2	
1,1-Dichloroethene	ND ug/m3	1.4	1.74		03/17/14 23:18	3 75-35-4	
cis-1,2-Dichloroethene	ND ug/m3	1.4	1.74		03/17/14 23:18	156-59-2	
trans-1,2-Dichloroethene	ND ug/m3	1.4	1.74		03/17/14 23:18	156-60-5	
Ethylbenzene	ND ug/m3	1.5	1.74		03/17/14 23:18	3 100-41-4	
Methylene Chloride	14.4 ug/m3	1.2	1.74		03/17/14 23:18	3 75-09-2	
Methyl-tert-butyl ether	ND ug/m3	1.3	1.74		03/17/14 23:18	3 1634-04-4	
Naphthalene	2.8 ug/m3	1.9	1.74		03/17/14 23:18	91-20-3	
Tetrachloroethene	ND ug/m3	1.2	1.74		03/17/14 23:18	3 127-18-4	
Toluene	1.7 ug/m3	1.3	1.74		03/17/14 23:18	3 108-88-3	
1,2,4-Trichlorobenzene	ND ug/m3	2.6	1.74		03/17/14 23:18	3 120-82-1	
1,1,1-Trichloroethane	ND ug/m3	1.9	1.74		03/17/14 23:18	3 71-55-6	
1,1,2-Trichloroethane	ND ug/m3	0.96	1.74		03/17/14 23:18	3 79-00-5	
Trichloroethene	1.0 ug/m3	0.96	1.74		03/17/14 23:18	3 79-01-6	
1,2,3-Trimethylbenzene	ND ug/m3	0.35	1.74		03/17/14 23:18	526-73-8	
1,2,4-Trimethylbenzene	ND ug/m3	1.7	1.74		03/17/14 23:18	95-63-6	
1,3,5-Trimethylbenzene	ND ug/m3	1.7	1.74		03/17/14 23:18	3 108-67-8	
Vinyl chloride	ND ug/m3	0.45	1.74		03/17/14 23:18	3 75-01-4	
m&p-Xylene	ND ug/m3	3.1	1.74		03/17/14 23:18	3 179601-23-1	
o-Xylene	ND ug/m3	1.5	1.74		03/17/14 23:18		

(612)607-1700

ANALYTICAL RESULTS

Project:

MRC SV/IAQ Study Feb 2014 REV

Pace Project No.:

10259332

Sample: IA-075-A-16	Lab ID: 10259332018	Collected: 02/25/1	4 16:17	Received: 03/04/14 10:00	Matrix: Air	
Parameters	Results Units	Report Limit	DF	Prepared Analyzed	CAS No. Q)ua
TO15 MSV AIR	Analytical Method: TO-15					
Benzene	15.9 ug/m3	0.61	1.87	03/15/14 00:0	4 71-43-2	
Carbon tetrachloride	ND ug/m3	1.2	1.87	03/15/14 00:0	4 56-23-5	
Chlorodifluoromethane	3.9 ug/m3	0.37	1.87	03/15/14 00:0	4 75-45-6	
Chloroform	ND ug/m3	1.9	1.87	03/15/14 00:0	4 67-66-3	
Dichlorodifluoromethane	2.2 ug/m3	1.9	1.87	03/15/14 00:0	4 75-71-8	
1,1-Dichloroethane	ND ug/m3	1.5	1.87	03/15/14 00:0	4 75-34-3	
1,2-Dichloroethane	ND ug/m3	0.77	1.87	03/15/14 00:0	4 107-06-2	
1,1-Dichloroethene	ND ug/m3	1.5	1.87	03/15/14 00:0	4 75-35-4	
cis-1,2-Dichloroethene	ND ug/m3	1.5	1.87	03/15/14 00:0	4 156-59-2	
trans-1,2-Dichloroethene	ND ug/m3	1.5	1.87	03/15/14 00:0	4 156-60-5	
Ethylbenzene	0.87J ug/m3	1.6	1.87	03/15/14 00:0	4 100-41-4	
Methylene Chloride	14.7 ug/m3	1.3	1.87	03/15/14 00:0	4 75-09-2	
Methyl-tert-butyl ether	ND ug/m3	1.4	1.87	03/15/14 00:0	4 1634-04-4	
Naphthalene	3.6 ug/m3	2.0	1.87	03/15/14 00:0	4 91-20-3	
Tetrachloroethene	ND ug/m3	1.3	1.87	03/15/14 00:0	4 127-18-4	
Toluene	49.3 ug/m3	1.4	1.87	03/15/14 00:0	4 108-88-3	
1,2,4-Trichlorobenzene	ND ug/m3	2.8	1.87	03/15/14 00:0	4 120-82-1	
1,1,1-Trichloroethane	ND ug/m3	2.1	1.87	03/15/14 00:0	4 71-55-6	
1,1,2-Trichloroethane	ND ug/m3	1.0	1.87	03/15/14 00:0	4 79-00-5	
Trichloroethene	1.6 ug/m3	1.0	1.87	03/15/14 00:0	4 79-01-6	
1,2,3-Trimethylbenzene	ND ug/m3	0.37	1.87	03/15/14 00:0	4 526-73-8	
1,2,4-Trimethylbenzene	ND ug/m3	1.9	1.87	03/15/14 00:0	4 95-63-6	
1,3,5-Trimethylbenzene	ND ug/m3	1.9	1.87	03/15/14 00:0	4 108-67-8	
Vinyl chloride	ND ug/m3	0.49	1.87	03/15/14 00:0	4 75-01-4	
m&p-Xylene	3.0J ug/m3	3.3	1.87	03/15/14 00:0	4 179601-23-1	
o-Xylene	1.1J ug/m3	1.6	1.87	03/15/14 00:0		

Project:

Date: 04/17/2014 12:22 PM

MRC SV/IAQ Study Feb 2014 REV

Pace Project No.: 10259332

Sample: IA-076-A-16	Lab ID: 10259332016	Collected: 02/25/14	16:12	Received: 03/04/14 10:00	Matrix: Air	
Parameters	Results Units	Report Limit	DF	Prepared Analyzed	CAS No.	Qua
TO15 MSV AIR	Analytical Method: TO-15					
Benzene	0.96 ug/m3	0.61	1.87	03/14/14 23:0	5 71-43-2	
Carbon tetrachloride	ND ug/m3	1.2	1.87	03/14/14 23:0	5 56-23-5	
Chlorodifluoromethane	2.9 ug/m3	0.37	1.87	03/14/14 23:0	5 75-45-6	
Chloroform	ND ug/m3	1.9	1.87	03/14/14 23:0	5 67 - 66-3	
Dichlorodifluoromethane	2.1 ug/m3	1.9	1.87	03/14/14 23:0	5 75-71-8	
1,1-Dichloroethane	ND ug/m3	1.5	1.87	03/14/14 23:0	5 75-34-3	
1,2-Dichloroethane	ND ug/m3	0.77	1.87	03/14/14 23:0	5 107-06-2	
1,1-Dichloroethene	ND ug/m3	1.5	1.87	03/14/14 23:0	5 75-35-4	
cis-1,2-Dichloroethene	ND ug/m3	1.5	1.87	03/14/14 23:0	5 156-59-2	
trans-1,2-Dichloroethene	ND ug/m3	1.5	1.87	03/14/14 23:0	5 156-60-5	
Ethylbenzene	0.83J ug/m3	1.6	1.87	03/14/14 23:0	5 100-41-4	
Methylene Chloride	9.8 ug/m3	1.3	1.87	03/14/14 23:0	5 75-09-2	
Methyl-tert-butyl ether	ND ug/m3	1.4	1.87	03/14/14 23:0	5 1634-04-4	
Naphthalene	3.6 ug/m3	2.0	1.87	03/14/14 23:0	5 91-20-3	
Tetrachloroethene	ND ug/m3	1,3	1.87	03/14/14 23:0	5 127-18-4	
Toluene	54.5 ug/m3	1.4	1.87	03/14/14 23:0	5 108-88-3	
1,2,4-Trichlorobenzene	ND ug/m3	2.8	1.87	03/14/14 23:0	5 120-82-1	
1,1,1-Trichloroethane	ND ug/m3	2.1	1.87	03/14/14 23:0	5 71-55-6	
1,1,2-Trichloroethane	ND ug/m3	1.0	1.87	03/14/14 23:0	5 79 - 00-5	
Trichloroethene	1.9 ug/m3	1.0	1.87	03/14/14 23:0	5 79-01-6	
1,2,3-Trimethylbenzene	ND ug/m3	0.37	1.87	03/14/14 23:0	5 526-73 - 8	
1,2,4-Trimethylbenzene	ND ug/m3	1.9	1.87	03/14/14 23:0	5 95-63-6	
1,3,5-Trimethylbenzene	ND ug/m3	1.9	1.87	03/14/14 23:0	5 108-67-8	
Vinyl chloride	ND ug/m3	0.49	1.87	03/14/14 23:0	5 75-01-4	
m&p-Xylene	2.9J ug/m3	3.3	1.87	03/14/14 23:0	5 179601-23-1	
o-Xylene	1.2J ug/m3	1.6	1.87	03/14/14 23:0	5 95-47 - 6	

Project:

MRC SV/IAQ Study Feb 2014 REV

Pace Project No.:

Date: 04/17/2014 12:22 PM

10259332

Sample: IA-079-A-16	Lab ID: 10259332010	Collected: 02/25/14	15:55	Received: 03/04/14 10:00 M	Matrix: Air	
Parameters	Results Units	Report Limit	DF	Prepared Analyzed	CAS No. Qu	
TO15 MSV AIR	Analytical Method: TO-15					
Benzene	0.88 ug/m3	0.61	1.87	03/14/14 20:10	71-43-2	
Carbon tetrachloride	ND ug/m3	1.2	1.87	03/14/14 20:10	56-23-5	
Chlorodifluoromethane	4.8 ug/m3	0.37	1.87	03/14/14 20:10	75-45-6	
Chloroform	ND ug/m3	1.9	1.87	03/14/14 20:10	67-66-3	
Dichlorodifluoromethane	2.4 ug/m3	1.9	1.87	03/14/14 20:10	75-71-8	
1,1-Dichloroethane	ND ug/m3	1.5	1.87	03/14/14 20:10	75-34-3	
1,2-Dichloroethane	ND ug/m3	0.77	1.87	03/14/14 20:10	107-06-2	
1,1-Dichloroethene	ND ug/m3	1.5	1.87	03/14/14 20:10	75-35-4	
cis-1,2-Dichloroethene	ND ug/m3	1.5	1.87	03/14/14 20:10	156-59-2	
rans-1,2-Dichloroethene	ND ug/m3	1.5	1.87	03/14/14 20:10	156-60-5	
Ethylbenzene	ND ug/m3	1.6	1.87	03/14/14 20:10	100-41-4	
Methylene Chloride	12.7 ug/m3	1.3	1.87	03/14/14 20:10	75-09-2	
Methyl-tert-butyl ether	ND ug/m3	1.4	1.87	03/14/14 20:10	1634-04-4	
Naphthalene	2.1 ug/m3	2.0	1.87	03/14/14 20:10	91-20-3	
Tetrachloroethene	ND ug/m3	1.3	1.87	03/14/14 20:10	127-18-4	
Toluene	41.8 ug/m3	1.4	1.87	03/14/14 20:10	108-88-3	
1,2,4-Trichlorobenzene	ND ug/m3	2.8	1.87	03/14/14 20:10	120-82-1	
1,1,1-Trichloroethane	ND ug/m3	2.1	1.87	03/14/14 20:10	71-55-6	
1,1,2-Trichloroethane	ND ug/m3	1.0	1.87	03/14/14 20:10	79-00-5	
Trichloroethene	ND ug/m3	1.0	1.87	03/14/14 20:10	79-01-6	
1,2,3-Trimethylbenzene	ND ug/m3	0.37	1.87	03/14/14 20:10	526-73-8	
1,2,4-Trimethylbenzene	ND ug/m3	1.9	1.87	03/14/14 20:10	95-63-6	
1,3,5-Trimethylbenzene	ND ug/m3	1.9	1.87	03/14/14 20:10	108-67 - 8	
Vinyl chloride	ND ug/m3	0.49	1.87	03/14/14 20:10	75-01-4	
m&p-Xylene	2.6J ug/m3	3.3	1.87	03/14/14 20:10	179601-23-1	
o-Xylene	0.90J ug/m3	1.6	1.87	03/14/14 20:10	95-47-6	

Project:

MRC SV/IAQ Study Feb 2014 REV

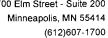
Pace Project No.:

Date: 04/17/2014 12:22 PM

10259332

Sample: IA-081-A-16	Lab ID: 10259332012	Collected: 02/25/14 1	16:00	Received: 03/04/14 10:00	Matrix: Air	
Parameters	Results Units	Report Limit [DF	Prepared Analyzed	CAS No.	Qual
TO15 MSV AIR	Analytical Method: TO-15					
Benzene	1.4 ug/m3	0.86 2	.66	03/17/14 22:4	14 71-43-2	
Carbon tetrachloride	ND ug/m3	1.7 2	.66	03/17/14 22:4	14 56-23-5	
Chlorodifluoromethane	36.6 ug/m3	0.53 2	.66	03/17/14 22:4	14 75-45-6	
Chloroform	ND ug/m3	2.6 2	.66	03/17/14 22:4	14 67-66-3	
Dichlorodifluoromethane	2.9 ug/m3	2.7 2	.66	03/17/14 22:4	14 75-71-8	
1,1-Dichloroethane	ND ug/m3	2.2 2	.66	03/17/14 22:4	14 75-34-3	
1,2-Dichloroethane	ND ug/m3	1.1 2	.66	03/17/14 22:4	14 107 - 06-2	
1,1-Dichloroethene	ND ug/m3	2.2 2	.66	03/17/14 22:4	14 75-35-4	
cis-1,2-Dichloroethene	ND ug/m3	2.2 2	.66	03/17/14 22:4	14 156-59-2	
trans-1,2-Dichloroethene	ND ug/m3	2.2 2	.66	03/17/14 22:4	14 156-60-5	
Ethylbenzene	36.6 ug/m3	2.3 2	:.66	03/17/14 22:4	14 100-41-4	
Methylene Chloride	37.0 ug/m3	1.9 2	.66	03/17/14 22:4	14 75-09-2	
Methyl-tert-butyl ether	ND ug/m3	1.9 2	.66	03/17/14 22:4	14 1634-04-4	
Naphthalene	3.7 ug/m3	2.8 2	.66	03/17/14 22:4	14 91-20-3	
Tetrachloroethene	ND ug/m3	1.8 2	2.66	03/17/14 22:4	14 127-18-4	
Toluene	163 ug/m3	2.0 2	.66	03/17/14 22:4	14 108-88-3	
1,2,4-Trichlorobenzene	ND ug/m3	4.0 2	.66	03/17/14 22:4	14 120-82-1	
1,1,1-Trichloroethane	ND ug/m3	3.0 2	.66	03/17/14 22:4	14 71-55-6	
1,1,2-Trichloroethane	ND ug/m3	1.5 2	2.66	03/17/14 22:	14 79-00-5	
Trichloroethene	19.2 ug/m3	1.5 2	2.66	03/17/14 22:4	14 79-01-6	
1,2,3-Trimethylbenzene	3.6 ug/m3	0.53 2	2.66	03/17/14 22:4	44 526-73-8	
1,2,4-Trimethylbenzene	11.7 ug/m3	2.7 2	2.66	03/17/14 22:	44 95-63-6	
1,3,5-Trimethylbenzene	4.9 ug/m3	2.7 2	2.66	03/17/14 22:	44 108-67-8	
Vinyl chloride	ND ug/m3	0.69 2	2.66	03/17/14 22:	44 75-01-4	
m&p-Xylene	161 ug/m3	4.7 2	2.66	03/17/14 22:	44 179601-23-1	
o-Xylene	48.5 ug/m3	2.3 2	2.66	03/17/14 22:	44 95-47-6	

Project:


MRC SV/IAQ Study Feb 2014 REV

Pace Project No.:

Date: 04/17/2014 12:22 PM

10259332

Sample: IA-093-A-16	Lab ID: 10259332026	Collected: 02/25/14	16:27	Received: 03/04/14 10:00	Matrix: Air	
Parameters	Results Units	Report Limit	DF	Prepared Analyze	d CAS No.	Qua
TO15 MSV AIR	Analytical Method: TO-15					
Benzene	0.98 ug/m3	0.84 2	2.58	03/18/14 0	1:23 71-43-2	
Carbon tetrachloride	ND ug/m3	1.7 2	2.58	03/18/14 0	1:23 56-23-5	
Chlorodifluoromethane	4.4 ug/m3	0.52 2	2.58	03/18/14 0	1:23 75-45-6	
Chloroform	ND ug/m3	2.6 2	2.58	03/18/14 0	1:23 67-66-3	
Dichlorodifluoromethane	3.1 ug/m3	2.6 2	2.58	03/18/14 0	1:23 75-71-8	
1,1-Dichloroethane	ND ug/m3	2.1 2	2.58	03/18/14 0	1:23 75-34-3	
1,2-Dichloroethane	ND ug/m3	1.1 2	2.58		1:23 107-06-2	
1,1-Dichloroethene	ND ug/m3	2.1 2	2.58	03/18/14 0	1:23 75-35-4	
cis-1,2-Dichloroethene	ND ug/m3	2.1 2	2.58	03/18/14 0	1:23 156-59-2	
rans-1,2-Dichloroethene	ND ug/m3	2.1 2	2.58	03/18/14 0	1:23 156-60-5	
Ethylbenzene	ND ug/m3	2.3 2	2.58	03/18/14 0	1:23 100-41-4	
Methylene Chloride	14.0 ug/m3	1.8 2	2.58	03/18/14 0	1:23 75-09-2	
Methyl-tert-butyl ether	ND ug/m3	1.9 2	2.58	03/18/14 0	1:23 1634-04-4	
Naphthalene	2.8 ug/m3	2.8 2	2.58	03/18/14 0	1:23 91-20-3	
Tetrachloroethene	ND ug/m3	1.8 2	2.58	03/18/14 0	1:23 127-18-4	
Toluene	3.0 ug/m3	2.0 2	2.58	03/18/14 0	1:23 108-88-3	
1,2,4-Trichlorobenzene	ND ug/m3	3.9	2.58	03/18/14 0	1:23 120-82-1	
1,1,1-Trichloroethane	ND ug/m3	2.9	2.58	03/18/14 0	1:23 71-55-6	
1,1,2-Trichloroethane	ND ug/m3	1.4	2.58	03/18/14 0	1:23 79-00-5	
Trichloroethene	5.9 ug/m3	1.4	2.58	03/18/14 0	1:23 79-01-6	
1,2,3-Trimethylbenzene	ND ug/m3	0.52	2.58	03/18/14 0	1:23 526-73-8	
1,2,4-Trimethylbenzene	ND ug/m3	2.6	2.58	03/18/14 0	1:23 95-63-6	
1,3,5-Trimethylbenzene	ND ug/m3	2.6	2.58	03/18/14 0	1:23 108-67-8	
Vinyl chloride	ND ug/m3	0.67	2.58	03/18/14 0	1:23 75-01-4	
m&p-Xylene	ND ug/m3	4.5	2.58	03/18/14 0	1:23 179601-23-1	
o-Xylene	ND ug/m3	2.3	2.58	03/18/14 0	1:23 95-47-6	

Project:

MRC SV/IAQ Study Feb 2014 REV

Pace Project No.:

Date: 04/17/2014 12:22 PM

10259332

Sample: IA-094-A-16	Lab ID: 10259332020	Collected: 02/25/1	4 16:19	Received: 03/04/14 10:00	Matrix: Air	
Parameters	Results Units	Report Limit	DF	Prepared Analyzed	CAS No. Q	ua
TO15 MSV AIR	Analytical Method: TO-15					
Benzene	0.93 ug/m3	0.57	1.74	03/15/14 01:37	7 71-43-2	
Carbon tetrachloride	ND ug/m3	1.1	1.74	03/15/14 01:37	7 56-23-5	
Chlorodifluoromethane	1.7 ug/m3	0.35	1.74	03/15/14 01:37	7 75-45-6	
Chloroform	ND ug/m3	1.7	1.74	03/15/14 01:37	7 67-66-3	
Dichlorodifluoromethane	2.2 ug/m3	1.8	1.74	03/15/14 01:3	7 75- 71-8	
1,1-Dichloroethane	ND ug/m3	1.4	1.74	03/15/14 01:3	7 75-34-3	
1,2-Dichloroethane	ND ug/m3	0.71	1.74	03/15/14 01:37	7 107-06-2	
1,1-Dichloroethene	ND ug/m3	1.4	1.74	03/15/14 01:37	7 75-35-4	
cis-1,2-Dichloroethene	ND ug/m3	1.4	1.74	03/15/14 01:37	7 156-59-2	
trans-1,2-Dichloroethene	ND ug/m3	1.4	1.74	03/15/14 01:3	7 156-60-5	
Ethylbenzene	ND ug/m3	1.5	1.74	03/15/14 01:3	7 100-41-4	
Methylene Chloride	5.0 ug/m3	1.2	1.74	03/15/14 01:3	7 75-09-2	
Methyl-tert-butyl ether	ND ug/m3	1.3	1.74	03/15/14 01:3	7 1634-04-4	
Naphthalene	2.2 ug/m3	1.9	1.74	03/15/14 01:3	7 91-20-3	
Tetrachloroethene	ND ug/m3	1.2	1.74	03/15/14 01:3	7 127-18 - 4	
Toluene	1.6 ug/m3	1.3	1.74	03/15/14 01:3	7 108-88-3	
1,2,4-Trichlorobenzene	ND ug/m3	2.6	1.74	03/15/14 01:3	7 120-82-1	
1,1,1-Trichloroethane	ND ug/m3	1.9	1.74	03/15/14 01:3	7 71-55-6	
1,1,2-Trichloroethane	ND ug/m3	0.96	1.74	03/15/14 01:3	7 79-00-5	
Trichloroethene	ND ug/m3	0.96	1.74	03/15/14 01:3	7 79-01-6	
1,2,3-Trimethylbenzene	ND ug/m3	0.35	1.74	03/15/14 01:3	7 526-73-8	
1,2,4-Trimethylbenzene	ND ug/m3	1.7	1.74	03/15/14 01:3	7 95-63-6	
1,3,5-Trimethylbenzene	ND ug/m3	1.7	1.74	03/15/14 01:3	7 108-67-8	
Vinyl chloride	ND ug/m3	0.45	1.74	03/15/14 01:3	7 75-01-4	
m&p-Xylene	ND ug/m3	3.1	1.74	03/15/14 01:3	7 179601 - 23-1	
o-Xylene	ND ug/m3	1.5	1.74	03/15/14 01:3		

Project:

MRC SV/IAQ Study Feb 2014 REV

Pace Project No.:

Date: 04/17/2014 12:22 PM

10259332

Sample: IA-108-A-16	Lab ID: 10259332004	Collected: 02/25/14 15:	49 Received: 03/04/14 10:00 Matrix: A	ir
Parameters	Results Units	Report Limit DF	Prepared Analyzed CAS	No. Qua
TO15 MSV AIR	Analytical Method: TO-15			
Benzene	0.90 ug/m3	0.58 1.8	03/14/14 17:14 71-43-:	2
Carbon tetrachloride	ND ug/m3	1.2 1.8	03/14/14 17:14 56-23-	5
Chlorodifluoromethane	4.0 ug/m3	0.36 1.8	03/14/14 17:14 75-45-	6
Chloroform	ND ug/m3	1.8 1.8	03/14/14 17:14 67-66-	3
Dichlorodifluoromethane	2.2 ug/m3	1.8 1.8	03/14/14 17:14 75-71-	8
1,1-Dichloroethane	ND ug/m3	1.5 1.8	03/14/14 17:14 75-34-	3
1,2-Dichloroethane	ND ug/m3	0.74 1.8	03/14/14 17:14 107-06	-2
1,1-Dichloroethene	ND ug/m3	1.5 1.8	03/14/14 17:14 75-35-	4
cis-1,2-Dichloroethene	ND ug/m3	1.5 1.8	03/14/14 17:14 156-59	1-2
trans-1,2-Dichloroethene	ND ug/m3	1.5 1.8	03/14/14 17:14 156-60)-5
Ethylbenzene	0.94J ug/m3	1.6 1.8	03/14/14 17:14 100-41	-4
Methylene Chloride	8.8 ug/m3	1.3 1.8	03/14/14 17:14 75-09-	2
Methyl-tert-butyl ether	ND ug/m3	1.3 1.8	03/14/14 17:14 1634-0	4-4
Naphthalene	2.2 ug/m3	1.9 1.8	03/14/14 17:14 91-20-	3
Tetrachloroethene	ND ug/m3	1.2 1.8	03/14/14 17:14 127-18	3-4
Toluene	43.8 ug/m3	1.4 1.8	03/14/14 17:14 108-88	3-3
1,2,4-Trichlorobenzene	ND ug/m3	2.7 1.8	03/14/14 17:14 120-82	<u>?-1</u>
1,1,1-Trichloroethane	ND ug/m3	2.0 1.8	03/14/14 17:14 71-55-	6
1,1,2-Trichloroethane	ND ug/m3	0.99 1.8	03/14/14 17:14 79-00-	5
Trichloroethene	ND ug/m3	0.99 1.8	03/14/14 17:14 79-01-	6
1,2,3-Trimethylbenzene	ND ug/m3	0.36 1.8	03/14/14 17:14 526-73	3-8
1,2,4-Trimethylbenzene	ND ug/m3	1.8 1.8	03/14/14 17:14 95-63-	6
1,3,5-Trimethylbenzene	ND ug/m3	1.8 1.8	03/14/14 17:14 108-67	'- 8
Vinyl chloride	ND ug/m3	0.47 1.8	03/14/14 17:14 75-01-	4
m&p-Xylene	3.4 ug/m3	3.2 1.8	03/14/14 17:14 17960	1-23-1
o-Xylene	1.3J ug/m3	1.6 1.8	03/14/14 17:14 95-47-	6

Project:

MRC SV/IAQ Study Feb 2014 REV

Pace Project No.:

Date: 04/17/2014 12:22 PM

10259332

Sample: IA-117-A-16	Lab ID: 10259332008	Collected: 02/25/1	4 15:53	Received: 03/04/14 10:00	Matrix: Air	
Parameters	Results Units	Report Limit	DF	Prepared Analyzed	CAS No. C	Qua
TO15 MSV AIR	Analytical Method: TO-15					
Benzene	0.89 ug/m3	0.61	1.87	03/14/14 19:11	71-43-2	
Carbon tetrachloride	ND ug/m3	1.2	1.87	03/14/14 19:11	56-23-5	
Chlorodifluoromethane	3.5 ug/m3	0.37	1.87	03/14/14 19:11	75-45-6	
Chloroform	ND ug/m3	1.9	1.87	03/14/14 19:11	67-66-3	
Dichlorodifluoromethane	2.0 ug/m3	1.9	1.87	03/14/14 19:11	75-71-8	
1,1-Dichloroethane	ND ug/m3	1.5	1.87	03/14/14 19:11	75-34-3	
1,2-Dichloroethane	ND ug/m3	0.77	1.87	03/14/14 19:11	I 107-06-2	
1,1-Dichloroethene	ND ug/m3	1.5	1.87	03/14/14 19:11	75-35-4	
cis-1,2-Dichloroethene	ND ug/m3	1.5	1.87	03/14/14 19:11	156-59-2	
trans-1,2-Dichloroethene	ND ug/m3	1.5	1.87	03/14/14 19:11	I 156-60-5	
Ethylbenzene	0.84J ug/m3	1.6	1.87	03/14/14 19:11	I 100-41 - 4	
Methylene Chloride	8.9 ug/m3	1.3	1.87	03/14/14 19:11	75-09-2	
Methyl-tert-butyl ether	ND ug/m3	1.4	1.87	03/14/14 19:11	I 1634-04-4	
Naphthalene	2.2 ug/m3	2.0	1.87	03/14/14 19:11	1 91-20-3	
Tetrachloroethene	ND ug/m3	1.3	1.87	03/14/14 19:11	1 127-18 -4	
Toluene	67.5 ug/m3	1.4	1.87	03/14/14 19:11	1 108-88-3	
1,2,4-Trichlorobenzene	ND ug/m3	2.8	1.87	03/14/14 19:1	1 120-82-1	
1,1,1-Trichloroethane	ND ug/m3	2.1	1.87	03/14/14 19:1	1 71-55-6	
1.1.2-Trichloroethane	ND ug/m3	1.0	1.87	03/14/14 19:1	1 79 - 00-5	
Trichloroethene	ND ug/m3	1.0	1.87	03/14/14 19:1	1 79-01-6	
1,2,3-Trimethylbenzene	ND ug/m3	0.37	1.87	03/14/14 19:1	1 526-73-8	
1,2,4-Trimethylbenzene	ND ug/m3	1.9	1.87	03/14/14 19:1	1 95-63-6	
1,3,5-Trimethylbenzene	ND ug/m3	1.9	1.87	03/14/14 19:1	1 108-67-8	
Vinyl chloride	ND ug/m3	0.49	1.87	03/14/14 19:1	1 75-01-4	
m&p-Xylene	2.7J ug/m3	3.3	1.87	03/14/14 19:1	1 179601-23-1	
o-Xylene	0.92J ug/m3	1.6	1.87	03/14/14 19:1	1 95-47-6	

Project:

MRC SV/IAQ Study Feb 2014 REV

Pace Project No.:

Date: 04/17/2014 12:22 PM

10259332

Sample: IA-118-A-16	Lab ID: 10259332006	Collected: 02/25/14	15:53	Received: 03/04/14 10:00 Ma	trix: Air
Parameters	Results Units	Report Limit	DF	Prepared Analyzed	CAS No. Qua
TO15 MSV AIR	Analytical Method: TO-15				
Benzene	1.0 ug/m3	0.58	1.8	03/14/14 18:13	71-43-2
Carbon tetrachloride	ND ug/m3	1.2	1.8	03/14/14 18:13	56-23-5
Chlorodifluoromethane	12.4 ug/m3	0.36	1.8	03/14/14 18:13	75-45-6
Chloroform	ND ug/m3	1.8	1.8	03/14/14 18:13	
Dichlorodifluoromethane	1.9 ug/m3	1.8	1.8	03/14/14 18:13	75-71-8
1,1-Dichloroethane	ND ug/m3	1.5	1.8	03/14/14 18:13	75-34-3
1,2-Dichloroethane	ND ug/m3	0.74	1.8	03/14/14 18:13	107-06-2
1,1-Dichloroethene	ND ug/m3	1.5	1.8	03/14/14 18:13	75 - 35-4
cis-1,2-Dichloroethene	ND ug/m3	1.5	1.8	03/14/14 18:13	156-59-2
trans-1,2-Dichloroethene	ND ug/m3	1.5	1.8	03/14/14 18:13	156-60-5
Ethylbenzene	1.4J ug/m3	1.6	1.8	03/14/14 18:13	100-41 - 4
Methylene Chloride	8.8 ug/m3	1.3	1.8	03/14/14 18:13	75-09-2
Methyl-tert-butyl ether	ND ug/m3	1.3	1.8	03/14/14 18:13	1634-04-4
Naphthalene	2.2 ug/m3	1.9	1.8	03/14/14 18:13	91-20-3
Tetrachloroethene	ND ug/m3	1.2	1.8	03/14/14 18:13	127-18-4
Toluene	16.5 ug/m3	1.4	1.8	03/14/14 18:13	108-88-3
1,2,4-Trichlorobenzene	ND ug/m3	2.7	1.8	03/14/14 18:13	120-82-1
1,1,1-Trichloroethane	1.2J ug/m3	2.0	1.8	03/14/14 18:13	71-55-6
1,1,2-Trichloroethane	ND ug/m3	0.99	1.8	03/14/14 18:13	79-00-5
Trichloroethene	5.6 ug/m3	0.99	1.8	03/14/14 18:13	79-01-6
1,2,3-Trimethylbenzene	ND ug/m3	0.36	1.8	03/14/14 18:13	526-73 - 8
1,2,4-Trimethylbenzene	ND ug/m3	1.8	1.8	03/14/14 18:13	95-63 - 6
1,3,5-Trimethylbenzene	ND ug/m3	1.8	1.8	03/14/14 18:13	108-67-8
Vinyl chloride	ND ug/m3	0.47	1.8	03/14/14 18:13	75-01 - 4
m&p-Xylene	5.6 ug/m3	3.2	1.8	03/14/14 18:13	179601-23-1
o-Xylene	2.0 ug/m3	1.6	1.8	03/14/14 18:13	95-47-6

Project:

MRC SV/IAQ Study Feb 2014 REV

Pace Project No.:

Date: 04/17/2014 12:22 PM

10259332

Sample: IA-136-A-16	Lab ID: 10259332014	Collected: 02/25/14	16:08	Received: 03/	/04/14 10:00 I	Matrix: Air	
Parameters	Results Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
TO15 MSV AIR	Analytical Method: TO-15						
Benzene	0.94 ug/m3	0.58	1.8		03/14/14 22:07	71-43-2	
Carbon tetrachloride	ND ug/m3	1.2	1.8		03/14/14 22:07	56-23-5	
Chlorodifluoromethane	3.3 ug/m3	0.36	1.8		03/14/14 22:07	75 - 45-6	
Chloroform	ND ug/m3	1.8	1.8		03/14/14 22:07	7 67 - 66-3	
Dichlorodifluoromethane	2.2 ug/m3	1.8	1.8		03/14/14 22:07	75-71-8	
1,1-Dichloroethane	ND ug/m3	1.5	1.8		03/14/14 22:07	75-34-3	
1,2-Dichloroethane	ND ug/m3	0.74	1.8		03/14/14 22:07	7 107-06-2	
1,1-Dichloroethene	ND ug/m3	1.5	1.8		03/14/14 22:07	75-35-4	
cis-1,2-Dichloroethene	ND ug/m3	1.5	1.8		03/14/14 22:07	156-59-2	
trans-1,2-Dichloroethene	ND ug/m3	1.5	1.8		03/14/14 22:07	156-60-5	
Ethylbenzene	0.75J ug/m3	1.6	1.8		03/14/14 22:07	7 100-41 - 4	
Methylene Chloride	7.3 ug/m3	1.3	1.8		03/14/14 22:07	75-09-2	
Methyl-tert-butyl ether	ND ug/m3	1.3	1.8		03/14/14 22:07	7 1634-04-4	
Naphthalene	2.9 ug/m3	1.9	1.8		03/14/14 22:07	91-20-3	
Tetrachloroethene	ND ug/m3	1.2	1.8		03/14/14 22:07	127-18-4	
Toluene	53.6 ug/m3	1.4	1.8		03/14/14 22:07	7 108-88-3	
1,2,4-Trichlorobenzene	ND ug/m3	2.7	1.8		03/14/14 22:07	7 120-82-1	
1,1,1-Trichloroethane	ND ug/m3	2.0	1.8		03/14/14 22:07	7 71-55-6	
1,1,2-Trichloroethane	ND ug/m3	0.99	1.8		03/14/14 22:07	7 79-00-5	
Trichloroethene	4.2 ug/m3	0.99	1.8		03/14/14 22:07	7 79-01-6	
1,2,3-Trimethylbenzene	ND ug/m3	0.36	1.8		03/14/14 22:07	7 526-73-8	
1,2,4-Trimethylbenzene	ND ug/m3	1.8	1.8		03/14/14 22:07	7 95-63-6	
1,3,5-Trimethylbenzene	ND ug/m3	1.8	1.8		03/14/14 22:07	7 108-67-8	
Vinyl chloride	ND ug/m3	0.47	1.8		03/14/14 22:07	7 75-01-4	
m&p-Xylene	2.6J ug/m3	3.2	1.8			7 179601-23-1	
o-Xylene	0.99J ug/m3	1.6	1.8		03/14/14 22:07	7 95-47-6	

Project:

MRC SV/IAQ Study Feb 2014 REV

Pace Project No.:

10259332

Sample: IA-138-A-16	Lab ID: 10259332024	Collected: 02/25/1	4 16:24	Received: 03/04/14 10:0	0 Matrix: Air	
Parameters	Results Units	Report Limit	DF	Prepared Analyz	ed CAS No.	Qual
TO15 MSV AIR	Analytical Method: TO-15					
Benzene	1.1 ug/m3	0.84	2.58	03/18/14 (00:19 71 -43 -2	
Carbon tetrachloride	ND ug/m3	1.7	2.58	03/18/14 (00:19 56-23-5	
Chlorodifluoromethane	4.8 ug/m3	0.52	2.58	03/18/14 (00:19 75-45-6	
Chloroform	ND ug/m3	2.6	2.58	03/18/14 (00:19 67-66-3	
Dichlorodifluoromethane	3.0 ug/m3	2.6	2.58	03/18/14 (00:19 75-71-8	
1,1-Dichloroethane	ND ug/m3	2.1	2.58	03/18/14 (00:19 75-34-3	
1,2-Dichloroethane	ND ug/m3	1.1	2.58	03/18/14 (00:19 107-06-2	
1,1-Dichloroethene	ND ug/m3	2.1	2.58	03/18/14 (00:19 75-35-4	
cis-1,2-Dichloroethene	ND ug/m3	2.1	2.58	03/18/14 (00:19 156-59-2	
trans-1,2-Dichloroethene	ND ug/m3	2.1	2.58	03/18/14 (00:19 156-60-5	
Ethylbenzene	ND ug/m3	2.3	2.58	03/18/14 (00:19 100-41-4	
Methylene Chloride	17.2 ug/m3	1.8	2.58	03/18/14 (00:19 75-09-2	
Methyl-tert-butyl ether	ND ug/m3	1.9	2.58	03/18/14 (00:19 1634-04-4	
Naphthalene	3.0 ug/m3	2.8	2.58	03/18/14 (00:19 91-20-3	
Tetrachloroethene	ND ug/m3	1.8	2.58	03/18/14 (00:19 127-18-4	
Toluene	2.5 ug/m3	2.0	2.58	03/18/14 (00:19 108-88-3	
1,2,4-Trichlorobenzene	ND ug/m3	3.9	2.58	03/18/14 (00:19 120-82-1	
1,1,1-Trichloroethane	ND ug/m3	2.9	2.58	03/18/14 (00:19 71-55-6	
1,1,2-Trichloroethane	ND ug/m3	1.4	2.58	03/18/14 (00:19 79-00-5	
Trichloroethene	1.6 ug/m3	1.4	2.58	03/18/14 (00:19 79-01-6	
1,2,3-Trimethylbenzene	ND ug/m3	0.52	2.58	03/18/14 (00:19 526-73-8	
1,2,4-Trimethylbenzene	ND ug/m3	2.6	2.58	03/18/14 (00:19 95-63-6	
1,3,5-Trimethylbenzene	ND ug/m3	2.6	2.58	03/18/14 (00:19 108-67-8	
Vinyl chloride	ND ug/m3	0.67	2.58	03/18/14 (00:19 75-01-4	
m&p-Xylene	ND ug/m3	4.5	2.58	03/18/14 (00:19 179601-23-1	
o-Xylene	ND ug/m3	2.3	2.58	03/18/14 (00:19 95-47-6	

Project:

MRC SV/IAQ Study Feb 2014 REV

Pace Project No.:

Date: 04/17/2014 12:22 PM

10259332

Sample: IA-DUP3-A-16	Lab ID: 10259332033	Collected: 02/25/14	00:00	Received: 03/04/14 10:00 Matrix: /	Air
Parameters	Results Units	Report Limit	DF	Prepared Analyzed CA	S No. Qua
TO15 MSV AIR	Analytical Method: TO-15				
Benzene	1.2 ug/m3	0.81 2	2.49	03/18/14 04:37 71-43	-2
Carbon tetrachloride	ND ug/m3	1.6 2	2.49	03/18/14 04:37 56-23	-5
Chlorodifluoromethane	8.2 ug/m3	0.50 2	2.49	03/18/14 04:37 75-45	-6
Chloroform	ND ug/m3	2.5	2.49	03/18/14 04:37 67-66	i-3
Dichlorodifluoromethane	3.2 ug/m3	2.5 2	2.49	03/18/14 04:37 75-71	-8
1,1-Dichloroethane	ND ug/m3	2.0 2	2.49	03/18/14 04:37 75-34	-3
1,2-Dichloroethane	ND ug/m3	1.0 2	2.49	03/18/14 04:37 107-0	6-2
1,1-Dichloroethene	ND ug/m3	2.0 2	2.49	03/18/14 04:37 75-35	-4
cis-1,2-Dichloroethene	ND ug/m3	2.0	2.49	03/18/14 04:37 156-5	9-2
trans-1,2-Dichloroethene	ND ug/m3	2.0 2	2.49	03/18/14 04:37 156-6	0-5
Ethylbenzene	ND ug/m3	2.2 2	2.49	03/18/14 04:37 100-4	1-4
Methylene Chloride	7.4 ug/m3	1.8 2	2.49	03/18/14 04:37 75-09	1-2
Methyl-tert-butyl ether	ND ug/m3	1.8 2	2.49	03/18/14 04:37 1634-	04-4
Naphthalene	2.1J ug/m3	2.7	2.49	03/18/14 04:37 91-20)-3
Tetrachloroethene	ND ug/m3	1.7	2.49	03/18/14 04:37 127-1	8-4
Toluene	16.9 ug/m3	1.9	2.49	03/18/14 04:37 108-8	8-3
1,2,4-Trichlorobenzene	ND ug/m3	3.8 2	2.49	03/18/14 04:37 120-8	32-1
1,1,1-Trichloroethane	ND ug/m3	2.8	2.49	03/18/14 04:37 71-55	i-6
1,1,2-Trichloroethane	ND ug/m3	1.4	2.49	03/18/14 04:37 79-00)-5
Trichloroethene	ND ug/m3	1.4	2.49	03/18/14 04:37 79-01	-6
1,2,3-Trimethylbenzene	ND ug/m3	0.50	2.49	03/18/14 04:37 526-7	' 3-8
1,2,4-Trimethylbenzene	ND ug/m3	2.5	2.49	03/18/14 04:37 95-63	J-6
1,3,5-Trimethylbenzene	ND ug/m3	2.5	2.49	03/18/14 04:37 108-6	67-8
Vinyl chloride	ND ug/m3	0.65	2.49	03/18/14 04:37 75-01	-4
m&p-Xylene	3.4J ug/m3		2.49	03/18/14 04:37 1796	01-23-1
o-Xylene	1.4J ug/m3	2.2	2.49	03/18/14 04:37 95-47	

(612)607-1700

ANALYTICAL RESULTS

Project:

MRC SV/IAQ Study Feb 2014 REV

Pace Project No.:

10259332

Sample: SV-015-A-16	Lab ID: 10259332001	Collected: 02/25/1	4 09:48	Received: 03/04/14 10:00	Matrix: Air	
Parameters	Results Units	Report Limit	DF	Prepared Analyzed	CAS No.	Qual
TO15 MSV AIR	Analytical Method: TO-15					
Benzene	0.64 ug/m3	0.61	1.87	03/12/14 21:0	4 71-43-2	
Carbon tetrachloride	ND ug/m3	1.2	1.87	03/12/14 21:0	4 56-23-5	
Chlorodifluoromethane	5.8 ug/m3	1.3	1.87	03/12/14 21:0	4 75-45-6	
Chloroform	64.7 ug/m3	1.9	1.87	03/12/14 21:0	4 67-66 - 3	
Dichlorodifluoromethane	2.1 ug/m3	1.9	1.87	03/12/14 21:0	4 75-71-8	
1,1-Dichloroethane	14.6 ug/m3	1.5	1.87	03/12/14 21:0	4 75-34-3	
1,2-Dichloroethane	ND ug/m3	0.77	1.87	03/12/14 21:0	4 107-06-2	
1,1-Dichloroethene	369 ug/m3	60.6	74.8	03/14/14 01:0	0 75-35-4	A3
cis-1,2-Dichloroethene	1110 ug/m3	60.6	74.8	03/14/14 01:0	0 156-59-2	A3
trans-1,2-Dichloroethene	25.0 ug/m3	1.5	1.87	03/12/14 21:0	4 156-60-5	
Ethylbenzene	ND ug/m3	1.6	1.87	03/12/14 21:0		
Methylene Chloride	31.6 ug/m3	1.3	1.87	03/12/14 21:0	4 75-09-2	
Methyl-tert-butyl ether	ND ug/m3	1.4	1.87	03/12/14 21:0	4 1634-04-4	
Naphthalene	ND ug/m3	2.0	1.87	03/12/14 21:0	4 91-20-3	
Tetrachloroethene	ND ug/m3	1.3	1.87	03/12/14 21:0	4 127-18-4	
Toluene	7.1 ug/m3	1.4	1.87	03/12/14 21:0	4 108-88-3	
1,2,4-Trichlorobenzene	ND ug/m3	2.8	1.87	03/12/14 21:0	4 120-82-1	
1,1,1-Trichloroethane	76.3 ug/m3	2.1	1.87	03/12/14 21:0	4 71-55-6	
1,1,2-Trichloroethane	ND ug/m3	1.0	1.87	03/12/14 21:0	4 79-00-5	
Trichloroethene	564 ug/m3	41.1	74.8	03/14/14 01:0	0 79-01 - 6	A3
1,2,3-Trimethylbenzene	ND ug/m3	1.9	1.87	03/12/14 21:0	4 526-73-8	
1,2,4-Trimethylbenzene	ND ug/m3	1.9	1.87	03/12/14 21:0	4 95-63-6	
1,3,5-Trimethylbenzene	ND ug/m3	1.9	1.87	03/12/14 21:0	4 108-67-8	
Vinyl chloride	ND ug/m3	0.49	1.87	03/12/14 21:0	4 75-01-4	
m&p-Xylene	3.1J ug/m3	3.3	1.87	03/12/14 21:0	4 179601-23-1	
o-Xylene	1.6J ug/m3	1.6	1.87	03/12/14 21:0	4 95-47-6	

Project:

MRC SV/IAQ Study Feb 2014 REV

Pace Project No.:

Date: 04/17/2014 12:22 PM

10259332

Sample: SV-018-A-16	Lab ID: 10259332021	Collected: 02/25/1	4 10:30	Received: 03	3/04/14 10:00 I	Matrix: Air	
Parameters	Results Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
TO15 MSV AIR	Analytical Method: TO-15						
Benzene	0.96 ug/m3	0.66	2.02		03/15/14 07:38	71-43-2	
Carbon tetrachloride	ND ug/m3	1.3	2.02		03/15/14 07:38	56-23-5	
Chlorodifluoromethane	8.9 ug/m3	0.40	2.02		03/15/14 07:38	75-45-6	
Chloroform	1.7J ug/m3	2.0	2.02		03/15/14 07:38	67-66-3	
Dichlorodifluoromethane	2.2 ug/m3	2.0	2.02		03/15/14 07:38	75-71-8	
1,1-Dichloroethane	3.1 ug/m3	1.7	2.02		03/15/14 07:38	75-34-3	
1,2-Dichloroethane	ND ug/m3	0.83	2.02		03/15/14 07:38	107-06-2	
1,1-Dichloroethene	230 ug/m3	1.6	2.02		03/15/14 07:38	75-35-4	
cis-1,2-Dichloroethene	16.3 ug/m3	1.6	2.02		03/15/14 07:38	156-59-2	
trans-1,2-Dichloroethene	ND ug/m3	1.6	2.02		03/15/14 07:38	156-60-5	
Ethylbenzene	ND ug/m3	1.8	2.02		03/15/14 07:38	100-41-4	
Methylene Chloride	19.8 ug/m3	1.4	2.02		03/15/14 07:38	75-09-2	
Methyl-tert-butyl ether	ND ug/m3	1.5	2.02		03/15/14 07:38	1634-04-4	
Naphthalene	2.8 ug/m3	2.2	2.02		03/15/14 07:38	91-20-3	
Tetrachloroethene	ND ug/m3	1.4	2.02		03/15/14 07:38	127-18-4	
Toluene	2.6 ug/m3	1.6	2.02		03/15/14 07:38	108-88-3	
1,2,4-Trichlorobenzene	ND ug/m3	3.1	2.02		03/15/14 07:38	120-82-1	
1,1,1-Trichloroethane	ND ug/m3	2.2	2.02		03/15/14 07:38	71-55-6	
1,1,2-Trichloroethane	ND ug/m3	1.1	2.02		03/15/14 07:38	79-00-5	
Trichloroethene	174 ug/m3	1.1	2.02		03/15/14 07:38	79-01-6	
1,2,3-Trimethylbenzene	ND ug/m3	0.40	2.02		03/15/14 07:38	526-73 - 8	
1,2,4-Trimethylbenzene	1.7J ug/m3	2.0	2.02		03/15/14 07:38	95-63-6	
1,3,5-Trimethylbenzene	ND ug/m3	2.0	2.02		03/15/14 07:38	108-67-8	
Vinyl chloride	0.57 ug/m3	0.53	2.02		03/15/14 07:38	75-01-4	
m&p-Xylene	2.0J ug/m3	3.6	2.02		03/15/14 07:38	179601-23-1	
o-Xylene	ND ug/m3	1.8	2.02		03/15/14 07:38	95-47-6	

Minneapolis, MN 55414 (612)607-1700

ANALYTICAL RESULTS

Project:

MRC SV/IAQ Study Feb 2014 REV

Pace Project No.:

Date: 04/17/2014 12:22 PM

10259332

Sample: SV-075-A-16	Lab ID: 10259332017	Collected: 02/25/1	4 10:20	Received: 0	3/04/14 10:00	Matrix: Air	
Parameters	Results Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
TO15 MSV AIR	Analytical Method: TO-15						
Benzene	0.79 ug/m3	0.55	1.68		03/14/14 23:34	1 71-43-2	
Carbon tetrachloride	ND ug/m3	1.1	1.68		03/14/14 23:34	1 56-23-5	
Chlorodifluoromethane	4.1 ug/m3	0.34	1.68		03/14/14 23:34	1 75-45 - 6	
Chloroform	ND ug/m3	1.7	1.68		03/14/14 23:34	4 67-66-3	
Dichlorodifluoromethane	2.1 ug/m3	1.7	1.68		03/14/14 23:34	1 75-71-8	
1,1-Dichloroethane	ND ug/m3	1.4	1.68		03/14/14 23:34	75-34-3	
1,2-Dichloroethane	ND ug/m3	0.69	1.68		03/14/14 23:34	1 107-06-2	
1,1-Dichloroethene	ND ug/m3	1.4	1.68		03/14/14 23:34	1 75-35-4	
cis-1,2-Dichloroethene	ND ug/m3	1.4	1.68		03/14/14 23:34	1 156-59-2	
trans-1,2-Dichloroethene	ND ug/m3	1.4	1.68		03/14/14 23:34	156-60-5	
Ethylbenzene	1.6 ug/m3	1.5	1.68		03/14/14 23:34	1 100-41-4	
Methylene Chloride	3.1 ug/m3	1.2	1.68		03/14/14 23:34	4 75-09-2	
Methyl-tert-butyl ether	ND ug/m3	1.2	1.68		03/14/14 23:34	1 1634-04-4	
Naphthalene	259 ug/m3	1.8	1.68		03/14/14 23:34	4 91-20-3	
Tetrachloroethene	ND ug/m3	1.2	1.68		03/14/14 23:34	1 127-18-4	
Toluene	7.8 ug/m3	1.3	1.68		03/14/14 23:34	1 108-88-3	
1,2,4-Trichlorobenzene	ND ug/m3	2.5	1.68		03/14/14 23:34	1 120-82-1	
1,1,1-Trichloroethane	ND ug/m3	1.9	1.68		03/14/14 23:34	1 71-55-6	
1,1,2-Trichloroethane	ND ug/m3	0.92	1.68		03/14/14 23:34	4 79-00-5	
Trichloroethene	3.1 ug/m3	0.92	1.68		03/14/14 23:34	4 79-01-6	
1,2,3-Trimethylbenzene	59.2 ug/m3	0.34	1.68		03/14/14 23:34	4 526-73-8	
1,2,4-Trimethylbenzene	205 ug/m3	1.7	1.68		03/14/14 23:34	4 95-63-6	
1,3,5-Trimethylbenzene	107 ug/m3	1.7	1.68		03/14/14 23:34	4 108-67-8	
Vinyl chloride	ND ug/m3	0.44	1.68		03/14/14 23:34	4 75-01-4	
m&p-Xylene	9.0 ug/m3	3.0	1.68		03/14/14 23:34	4 179601-23-1	
o-Xylene	19.7 ug/m3	1.5	1.68		03/14/14 23:34		

Project:

MRC SV/IAQ Study Feb 2014 REV

Pace Project No.:

10259332

Sample: SV-076-A-16	Lab ID: 10259332015	Collected: 02/25/1	4 10:08	Received: 03/04/14 10:00	Matrix: Air	
Parameters	Results Units	Report Limit	DF	Prepared Analyzed	CAS No.	Qua
TO15 MSV AIR	Analytical Method: TO-15					
Benzene	ND ug/m3	0.61	1.87	03/14/14 22:3	6 71-43-2	
Carbon tetrachloride	ND ug/m3	1.2	1.87	03/14/14 22:3	6 56-23-5	
Chlorodifluoromethane	1.6 ug/m3	0.37	1.87	03/14/14 22:3	6 75-45-6	
Chloroform	1.7J ug/m3	1.9	1.87	03/14/14 22:3	6 67-66-3	
Dichlorodifluoromethane	1.9 ug/m3	1.9	1.87	03/14/14 22:3	6 75-71-8	
1,1-Dichloroethane	ND ug/m3	1.5	1.87	03/14/14 22:3	6 75 - 34-3	
1,2-Dichloroethane	ND ug/m3	0.77	1.87	03/14/14 22:3	6 107-06-2	
1,1-Dichloroethene	ND ug/m3	1.5	1.87	03/14/14 22:3	6 75-35-4	
cis-1,2-Dichloroethene	ND ug/m3	1.5	1.87	03/14/14 22:3	6 156-59-2	
trans-1,2-Dichloroethene	ND ug/m3	1.5	1.87	03/14/14 22:3	6 156-60-5	
Ethylbenzene	ND ug/m3	1.6	1.87	03/14/14 22:3	6 100-41-4	
Methylene Chloride	12.6 ug/m3	1.3	1.87	03/14/14 22:3	6 75-09-2	
Methyl-tert-butyl ether	ND ug/m3	1.4	1.87	03/14/14 22:3	6 1634-04-4	
Naphthalene	94.9 ug/m3	2.0	1.87	03/14/14 22:3	6 91-20-3	
Tetrachloroethene	ND ug/m3	1.3	1.87	03/14/14 22:3	6 127-18-4	
Toluene	3.8 ug/m3	1.4	1.87	03/14/14 22:3	6 108-88-3	
1,2,4-Trichlorobenzene	ND ug/m3	2.8	1.87	03/14/14 22:3	6 120-82-1	
1,1,1-Trichloroethane	ND ug/m3	2.1	1.87	03/14/14 22:3	6 71-55-6	
1,1,2-Trichloroethane	ND ug/m3	1.0	1.87	03/14/14 22:3	6 79-00-5	
Trichloroethene	14.0 ug/m3	1.0	1.87	03/14/14 22:3	6 79-01-6	
1,2,3-Trimethylbenzene	20.8 ug/m3	0.37	1.87	03/14/14 22:3	6 526-73-8	
1,2,4-Trimethylbenzene	40.2 ug/m3	1.9	1.87	03/14/14 22:3	6 95-63 - 6	
1,3,5-Trimethylbenzene	14.0 ug/m3	1.9	1.87	03/14/14 22:3	6 108-67-8	
Vinyl chloride	ND ug/m3	0.49	1.87	03/14/14 22:3	6 75-01-4	
m&p-Xylene	4.4 ug/m3	3.3	1.87	03/14/14 22:3	6 179601-23-1	
o-Xylene	2.9 ug/m3	1.6	1.87	03/14/14 22:3	36 95-47 - 6	

Project:

MRC SV/IAQ Study Feb 2014 REV

Date: 04/17/2014 12:22 PM

Sample: SV-079-A-16	Lab ID: 10259332	009 Collected: 02/25/1	4 10:00	Received: 03/04/14 10:0	0 Matrix: Air	
Parameters	Results U	nits Report Limit	DF	Prepared Analyz	ed CAS No.	Qua
TO15 MSV AIR	Analytical Method: To	O-15				
Benzene	1.1 ug/m3	0.58	1.8	03/14/14	9:40 71-43-2	
Carbon tetrachloride	ND ug/m3	1.2	1.8	03/14/14	9:40 56-23-5	
Chlorodifluoromethane	2.7 ug/m3	0.36	1.8	03/14/14	9:40 75-45-6	
Chloroform	9.0 ug/m3	1.8	1.8	03/14/14	9:40 67-66-3	
Dichlorodifluoromethane	1.7J ug/m3	1.8	1.8	03/14/14 1	9:40 75-71-8	
1,1-Dichloroethane	1.6 ug/m3	1.5	1.8	03/14/14	9:40 75-34-3	
1,2-Dichloroethane	ND ug/m3	0.74	1.8	03/14/14	9:40 107-06-2	
1,1-Dichloroethene	2.7 ug/m3	1.5	1.8	03/14/14	9:40 75-35-4	
cis-1,2-Dichloroethene	2620 ug/m3	58.3	72	03/17/14 2	1:50 156-59-2	A 3
trans-1,2-Dichloroethene	517 ug/m3	58.3	72	03/17/14 2	1:50 156-60-5	A 3
Ethylbenzene	2.1 ug/m3	1.6	1.8	03/14/14	9:40 100-41-4	
Methylene Chloride	18.7 ug/m3	1.3	1.8	03/14/14	9:40 75-09-2	
Methyl-tert-butyl ether	ND ug/m3	1.3	1.8	03/14/14	9:40 1634-04-4	
Naphthalene	27.9 ug/m3	1.9	1.8	03/14/14	9:40 91-20-3	
Tetrachloroethene	14.1 ug/m3	1.2	1.8	03/14/14	9:40 127-18-4	
Toluene	5.9 ug/m3	1.4	1.8	03/14/14	9:40 108-88-3	
1,2,4-Trichlorobenzene	ND ug/m3	2.7	1.8	03/14/14	9:40 120-82-1	
1,1,1-Trichloroethane	2.1 ug/m3	2.0	1.8	03/14/14	9:40 71-55-6	
1,1,2-Trichloroethane	ND ug/m3	0.99	1.8	03/14/14	9:40 79-00-5	
Trichloroethene	6090 ug/m3	39.6	72	03/17/14 2	1:50 79-01-6	A3
1,2,3-Trimethylbenzene	23.1 ug/m3	0.36	1.8	03/14/14	9:40 526-73-8	
1,2,4-Trimethylbenzene	12.3 ug/m3	1.8	1.8	03/14/14	9:40 95-63-6	
1,3,5-Trimethylbenzene	ND ug/m3	1.8	1.8	03/14/14	9:40 108-67-8	
Vinyl chloride	ND ug/m3	0.47	1.8	03/14/14	9:40 75-01-4	
m&p-Xylene	5.2 ug/m3	3.2	1.8	03/14/14	9:40 179601-23-	1
o-Xylene	5.3 ug/m3	1.6	1.8	03/14/14	9:40 95-47-6	

Project: MRC

MRC SV/IAQ Study Feb 2014 REV

Pace Project No.: 10259332

Date: 04/17/2014 12:22 PM

Sample: SV-081-A-16	Lab ID: 10259332011	Collected: 02/25/14 1	0:04	Received: 0	3/04/14 10:00	Matrix: Air	
Parameters	Results Units	Report Limit D)F	Prepared	Analyzed	CAS No.	Qua
TO15 MSV AIR	Analytical Method: TO-15						
Benzene	ND ug/m3	0.58 1	.8		03/14/14 20:39	71-43-2	
Carbon tetrachloride	ND ug/m3	1.2 1	.8		03/14/14 20:39	56-23-5	
Chlorodifluoromethane	25.4 ug/m3	0.36 1	.8		03/14/14 20:39	75 -4 5-6	
Chloroform	2.8 ug/m3	1.8 1	.8		03/14/14 20:39	67-66 - 3	
Dichlorodifluoromethane	1.8 ug/m3	1.8 1	.8		03/14/14 20:39	75-71 - 8	
1,1-Dichloroethane	ND ug/m3	1.5 1	.8		03/14/14 20:39	75-34-3	
1,2-Dichloroethane	ND ug/m3	0.74 1	.8		03/14/14 20:39	107-06-2	
1,1-Dichloroethene	ND ug/m3	1.5 1	.8		03/14/14 20:39	75-35-4	
cis-1,2-Dichloroethene	6.1 ug/m3	1.5 1	.8		03/14/14 20:39	156-59-2	
trans-1,2-Dichloroethene	ND ug/m3	1.5 1	.8		03/14/14 20:39	156-60-5	
Ethylbenzene	57.9 ug/m3	1.6 1	.8		03/14/14 20:39	100-41-4	
Methylene Chloride	15.4 ug/m3	1.3 1	.8		03/14/14 20:39	75-09-2	
Methyl-tert-butyl ether	ND ug/m3	1.3 1	.8		03/14/14 20:39	1634-04-4	
Naphthalene	ND ug/m3	1.9 1	.8		03/14/14 20:39	91-20-3	
Tetrachloroethene	73.8 ug/m3	1.2 1	.8		03/14/14 20:39	127-18-4	
Toluene	13.9 ug/m3	1.4 1	.8		03/14/14 20:39	108-88-3	
1,2,4-Trichlorobenzene	ND ug/m3	2.7 1	.8		03/14/14 20:39	120-82-1	
1,1,1-Trichloroethane	6.4 ug/m3	2.0 1	.8		03/14/14 20:39	71-55-6	
1,1,2-Trichloroethane	ND ug/m3	0.99 1	.8		03/14/14 20:39	79-00-5	
Trichloroethene	7.9 ug/m3	0.99 1	.8		03/14/14 20:39	79-01 - 6	
1,2,3-Trimethylbenzene	4140 ug/m3	14.4 7	72		03/17/14 22:14	526-73-8	A 3
1,2,4-Trimethylbenzene	6780 ug/m3	71.9 7	72		03/17/14 22:14	95-63-6	A 3
1,3,5-Trimethylbenzene	3500 ug/m3	71.9 7	72		03/17/14 22:14	108-67-8	A3
Vinyl chloride	ND ug/m3	0.47 1	.8		03/14/14 20:39	75-01-4	
m&p-Xylene	480 ug/m3	127 7	72		03/17/14 22:14	179601-23-1	A 3
o-Xylene	228 ug/m3	1.6 1	.8		03/14/14 20:39		

(612)607-1700

ANALYTICAL RESULTS

Project:

MRC SV/IAQ Study Feb 2014 REV

Pace Project No.:

Date: 04/17/2014 12:22 PM

10259332

Sample: SV-093-A-16	Lab ID: 10259332025	Collected: 02/25/1	4 16:27	Received: 0	3/04/14 10:00	Matrix: Air	
Parameters	Results Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
TO15 MSV AIR	Analytical Method: TO-15						
Benzene	1.2 ug/m3	0.92	2.82		03/18/14 00:49	71-43-2	
Carbon tetrachloride	ND ug/m3	1.8	2.82		03/18/14 00:49	9 56 - 23-5	
Chlorodifluoromethane	14.6 ug/m3	0.56	2.82		03/18/14 00:49	75-45-6	
Chloroform	ND ug/m3	2.8	2.82		03/18/14 00:49	9 67-66-3	
Dichlorodifluoromethane	3.9 ug/m3	2.8	2.82		03/18/14 00:49	75-71-8	
1,1-Dichloroethane	ND ug/m3	2.3	2.82		03/18/14 00:49	75-34-3	
1,2-Dichloroethane	ND ug/m3	1.2	2.82		03/18/14 00:49	9 107-06-2	
1,1-Dichloroethene	ND ug/m3	2.3	2.82		03/18/14 00:49	75-35-4	
cis-1,2-Dichloroethene	ND ug/m3	2.3	2.82		03/18/14 00:49	156-59-2	
rans-1,2-Dichloroethene	ND ug/m3	2.3	2.82		03/18/14 00:49	156-60-5	
Ethylbenzene	ND ug/m3	2.5	2.82		03/18/14 00:49	9 100-41-4	
Methylene Chloride	415 ug/m3	2.0	2.82		03/18/14 00:49	75-09-2	E
Methyl-tert-butyl ether	ND ug/m3	2.1	2.82		03/18/14 00:49	9 1634-04-4	
Naphthalene	3.5 ug/m3	3.0	2.82		03/18/14 00:49	91-20-3	
Tetrachloroethene	ND ug/m3	1.9	2.82		03/18/14 00:49	9 127-18-4	
Toluene	6.8 ug/m3	2.2	2.82		03/18/14 00:49	108-88-3	
1,2,4-Trichlorobenzene	ND ug/m3	4.3	2.82		03/18/14 00:49	120-82-1	
1,1,1-Trichloroethane	ND ug/m3	3.1	2.82		03/18/14 00:49	71-55-6	
1,1,2-Trichloroethane	ND ug/m3	1.6	2.82		03/18/14 00:49	79-00-5	
Trichloroethene	7.0 ug/m3	1.6	2.82		03/18/14 00:49	79-01-6	
1,2,3-Trimethylbenzene	ND ug/m3	0.56	2.82		03/18/14 00:49	9 526-73-8	
1,2,4-Trimethylbenzene	ND ug/m3	2.8	2.82		03/18/14 00:49	95-63-6	
1,3,5-Trimethylbenzene	ND ug/m3	2.8	2.82		03/18/14 00:49	9 108-67-8	
Vinyl chloride	ND ug/m3	0.73	2.82		03/18/14 00:49	9 75-01-4	
m&p-Xylene	ND ug/m3	5.0	2.82		03/18/14 00:49	9 179601-23-1	
o-Xylene	ND ug/m3	2.5	2.82		03/18/14 00:49	9 95-47-6	

Project:

MRC SV/IAQ Study Feb 2014 REV

Pace Project No.:

10259332

Sample: SV-094-A-16	Lab ID: 10259332019	Collected: 02/25/1	4 10:26	Received: 03/04/14 10:00) Matrix: Air	
Parameters	Results Units	Report Limit	DF	Prepared Analyze	d CAS No.	Qua
TO15 MSV AIR	Analytical Method: TO-15					
Benzene	1.1 ug/m3	0.58	1.8		0:33 71-43-2	
Carbon tetrachloride	ND ug/m3	1.2	1.8	03/15/14 0	0:33 56-23-5	
Chlorodifluoromethane	3.6 ug/m3	0.36	1.8	03/15/14 0	D:33 75-45 - 6	
Chloroform	ND ug/m3	1.8	1.8	03/15/14 0	0:33 67-66-3	
Dichlorodifluoromethane	2.3 ug/m3	1.8	1.8	03/15/14 0	0:33 75-71-8	
1,1-Dichloroethane	ND ug/m3	1.5	1.8	03/15/14 0	0:33 75-34-3	
1,2-Dichloroethane	ND ug/m3	0.74	1.8	03/15/14 0	0:33 107-06-2	
1,1-Dichloroethene	ND ug/m3	1.5	1.8		0:33 75-35-4	
cis-1,2-Dichloroethene	ND ug/m3	1.5	1.8	03/15/14 0	0:33 156-59-2	
trans-1,2-Dichloroethene	ND ug/m3	1.5	1.8	03/15/14 0	0:33 156-60-5	
Ethylbenzene	ND ug/m3	1.6	1.8	03/15/14 0	0:33 100-41-4	
Methylene Chloride	59.8 ug/m3	1.3	1.8	03/15/14 0	0:33 75-09-2	
Methyl-tert-butyl ether	ND ug/m3	1.3	1.8	03/15/14 0	0:33 1634-04-4	
Naphthalene	2.5 ug/m3	1.9	1.8	03/15/14 0	0:33 91-20-3	
Tetrachloroethene	ND ug/m3	1.2	1.8	03/15/14 0	0:33 127-18-4	
Toluene	2.3 ug/m3	1.4	1.8	03/15/14 0	0:33 108-88-3	
1,2,4-Trichlorobenzene	ND ug/m3	2.7	1.8	03/15/14 0	0:33 120-82-1	
1,1,1-Trichloroethane	ND ug/m3	2.0	1.8	03/15/14 0	0:33 71-55-6	
1,1,2-Trichloroethane	ND ug/m3	0.99	1.8	03/15/14 0	0:33 79-00-5	
Trichloroethene	ND ug/m3	0.99	1.8	03/15/14 0	0:33 79-01-6	
1,2,3-Trimethylbenzene	ND ug/m3	0.36	1.8	03/15/14 0	0:33 526-73-8	
1,2,4-Trimethylbenzene	ND ug/m3	1.8	1.8	03/15/14 0	0:33 95-63-6	
1,3,5-Trimethylbenzene	ND ug/m3	1.8	1.8	03/15/14 0	0:33 108-67-8	
Vinyl chloride	ND ug/m3	0.47	1.8	03/15/14 0	0:33 75-01-4	
m&p-Xylene	ND ug/m3	3.2	1.8	03/15/14 0	0:33 179601-23-1	
o-Xylene	ND ug/m3	1.6	1.8	03/15/14 0	0:33 95-47-6	

Project:

MRC SV/IAQ Study Feb 2014 REV

Pace Project No.:

Date: 04/17/2014 12:22 PM

10259332

Sample: SV-108-A-16	Lab ID: 10259332003	Collected: 02/25/14	09:51	Received: 03/04/14 10:00 Matrix: Air	
Parameters	Results Units	Report Limit	DF	Prepared Analyzed CAS No.	Qua
TO15 MSV AIR	Analytical Method: TO-15				
Benzene	0.88 ug/m3	0.57	1.74	03/12/14 22:03 71-43-2	
Carbon tetrachloride	ND ug/m3	1.1	1.74	03/12/14 22:03 56-23-5	
Chlorodifluoromethane	12.3 ug/m3	1.3	1.74	03/12/14 22:03 75-45-6	
Chloroform	ND ug/m3	1.7	1.74	03/12/14 22:03 67-66-3	
Dichlorodifluoromethane	2.5 ug/m3	1.8	1.74	03/12/14 22:03 75-71-8	
1,1-Dichloroethane	2.1 ug/m3	1.4	1.74	03/12/14 22:03 75-34-3	
1,2-Dichloroethane	ND ug/m3	0.71	1.74	03/12/14 22:03 107-06-2	
1,1-Dichloroethene	7.7 ug/m3	1.4	1.74	03/12/14 22:03 75-35-4	
cis-1,2-Dichloroethene	ND ug/m3	1.4	1.74	03/12/14 22:03 156-59-2	
trans-1,2-Dichloroethene	ND ug/m3	1.4	1.74	03/12/14 22:03 156-60-5	
Ethylbenzene	ND ug/m3	1.5	1.74	03/12/14 22:03 100-41-4	
Methylene Chloride	12.4 ug/m3	1.2	1.74	03/12/14 22:03 75-09-2	
Methyl-tert-butyl ether	ND ug/m3	1.3	1.74	03/12/14 22:03 1634-04-4	
Naphthalene	ND ug/m3	1.9	1.74	03/12/14 22:03 91-20-3	
Tetrachloroethene	ND ug/m3	1.2	1.74	03/12/14 22:03 127-18-4	
Toluene	17.3 ug/m3	1.3	1.74	03/12/14 22:03 108-88-3	
1,2,4-Trichlorobenzene	ND ug/m3	2.6	1.74	03/12/14 22:03 120-82-1	
1,1,1-Trichloroethane	ND ug/m3	1.9	1.74	03/12/14 22:03 71-55-6	
1,1,2-Trichloroethane	ND ug/m3	0.96	1.74	03/12/14 22:03 79-00-5	
Trichloroethene	0.94J ug/m3	0.96	1.74	03/12/14 22:03 79-01-6	
1,2,3-Trimethylbenzene	ND ug/m3	1.7	1.74	03/12/14 22:03 526-73-8	
1,2,4-Trimethylbenzene	ND ug/m3	1.7	1.74	03/12/14 22:03 95-63-6	
1,3,5-Trimethylbenzene	ND ug/m3	1.7	1.74	03/12/14 22:03 108-67-8	
Vinyl chloride	ND ug/m3	0.45	1.74	03/12/14 22:03 75-01-4	
m&p-Xylene	2.9J ug/m3	3.1	1.74	03/12/14 22:03 179601-23-1	
o-Xylene	1.2J ug/m3	1.5	1.74	03/12/14 22:03 95-47-6	

Project:

MRC SV/IAQ Study Feb 2014 REV

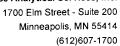
Pace Project No.:

10259332

Sample: SV-117-A-16	Lab ID: 10259332007	Collected: 02/25/1	4 09:59	Received: 03	3/04/14 10:00 F	Matrix: Air	
Parameters	Results Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
TO15 MSV AIR	Analytical Method: TO-15						
Benzene	ND ug/m3	0.58	1.8		03/14/14 18:42		
Carbon tetrachloride	ND ug/m3	1.2	1.8		03/14/14 18:42		
Chlorodifluoromethane	0.80 ug/m3	0.36	1.8		03/14/14 18:42		
Chloroform	ND ug/m3	1.8	1.8		03/14/14 18:42		
Dichlorodifluoromethane	1. 5J ug/m3	1.8	1.8		03/14/14 18:42		
1.1-Dichloroethane	ND ug/m3	1.5	1.8		03/14/14 18:42		
1.2-Dichloroethane	ND ug/m3	0.74	1.8		03/14/14 18:42		
1,1-Dichloroethene	ND ug/m3	1.5	1.8		03/14/14 18:42		
cis-1.2-Dichloroethene	ND ug/m3	1.5	1.8		03/14/14 18:42		
trans-1,2-Dichloroethene	ND ug/m3	1.5	1.8		03/14/14 18:42		
Ethylbenzene	2.1 ug/m3	1.6	1.8		03/14/14 18:42		
Methylene Chloride	40.4 ug/m3	1.3	1.8		03/14/14 18:42		
Methyl-tert-butyl ether	ND ug/m3	1.3	1.8		03/14/14 18:42		
Naphthalene	95.1 ug/m3	1.9	1.8		03/14/14 18:42		
Tetrachloroethene	10.3 ug/m3	1.2	1.8		03/14/14 18:42		
Toluene	9.9 ug/m3	1.4	1.8		03/14/14 18:42		
1,2,4-Trichlorobenzene	ND ug/m3	2.7	1.8		03/14/14 18:4:	2 120-82-1	
1,1,1-Trichloroethane	5.1 ug/m3	2.0	1.8		03/14/14 18:4:	2 71-55-6	
1.1.2-Trichloroethane	ND ug/m3	0.99	1.8		03/14/14 18:4:	2 79-00-5	
Trichloroethene	109 ug/m3	0.99	1.8		03/14/14 18:4		
1.2,3-Trimethylbenzene	4.5 ug/m3	0.36	1.8		03/14/14 18:4	2 526-73-8	
1,2,4-Trimethylbenzene	5.8 ug/m3	1.8	1.8		03/14/14 18:4		
1,3,5-Trimethylbenzene	ND ug/m3	1.8	1.8		03/14/14 18:4		
Vinyl chloride	ND ug/m3	0.47	1.8		03/14/14 18:4		
m&p-Xylene	9.7 ug/m3	3.2	1.8		03/14/14 18:4	2 179601 - 23-1	
o-Xylene	8.3 ug/m3	1.6	1.8		03/14/14 18:4	2 95-47-6	

(612)607-1700

ANALYTICAL RESULTS


Project:

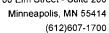
MRC SV/IAQ Study Feb 2014 REV

Pace Project No.: 10259332

Date: 04/17/2014 12:22 PM

Sample: SV-118-A-16	Lab ID: 10259332005	Collected: 02/25/14 0	09:55	Received: 03	3/04/14 10:00 N	fatrix: Air	
Parameters	Results Units	Report Limit [OF	Prepared	Analyzed	CAS No.	Qual
TO15 MSV AIR	Analytical Method: TO-15						
Benzene	1.8 ug/m3	0.61 1	.87		03/14/14 17:43	71-43-2	
Carbon tetrachloride	ND ug/m3	1.2 1	.87		03/14/14 17:43	56-23-5	
Chlorodifluoromethane	5.2 ug/m3	0.37 1	.87		03/14/14 17:43	75-45-6	
Chloroform	106 ug/m3	1.9 1	.87		03/14/14 17:43	67-66-3	
Dichlorodifluoromethane	2.0 ug/m3	1.9 1	.87		03/14/14 17:43	75-71 - 8	
1,1-Dichloroethane	90.3 ug/m3	1.5 1	.87		03/14/14 17:43	75-34 - 3	
1,2-Dichloroethane	ND ug/m3	0.77 1	.87		03/14/14 17:43	107-06-2	
1,1-Dichloroethene	1670 ug/m3	60.6 7	4.8		03/17/14 21:25	75-35-4	A3
cis-1,2-Dichloroethene	477 ug/m3	60.6 7	4.8		03/17/14 21:25	156-59-2	A3
trans-1,2-Dichloroethene	18.1 ug/m3	1.5 1	.87		03/14/14 17:43	156-60-5	
Ethylbenzene	27.2 ug/m3	1.6 1	.87		03/14/14 17:43	100-41-4	
Methylene Chloride	15.0 ug/m3	1.3 1	.87		03/14/14 17:43	75-09-2	
Methyl-tert-butyl ether	ND ug/m3	1.4 1	.87		03/14/14 17:43	1634-04-4	
Naphthalene	20.7 ug/m3	2.0 1	.87		03/14/14 17:43	91-20-3	
Tetrachloroethene	1.6 ug/m3	1.3 1	.87		03/14/14 17:43	127-18-4	
Toluene	3.8 ug/m3	1.4 1	.87		03/14/14 17:43	108-88-3	
1,2,4-Trichlorobenzene	ND ug/m3	2.8 1	.87		03/14/14 17:43	120-82-1	
1,1,1-Trichloroethane	26.2 ug/m3	2.1 1	.87		03/14/14 17:43	71-55-6	
1,1,2-Trichloroethane	ND ug/m3	1.0 1	.87		03/14/14 17:43	79-00 - 5	
Trichloroethene	5860 ug/m3	41.1 7	4.8		03/17/14 21:25	79-01-6	A 3
1,2,3-Trimethylbenzene	18.1 ug/m3	0.37 1	.87		03/14/14 17:43	526-73-8	
1,2,4-Trimethylbenzene	34.1 ug/m3	1.9 1	.87		03/14/14 17:43	95-63-6	
1,3,5-Trimethylbenzene	23.2 ug/m3	1.9 1	.87		03/14/14 17:43	108-67-8	
Vinyl chloride	ND ug/m3	0.49 1	.87		03/14/14 17:43		
m&p-Xylene	156 ug/m3	3.3 1	.87		03/14/14 17:43	179601-23-1	
o-Xylene	65.2 ug/m3	1.6 1	.87		03/14/14 17:43	95-47-6	

Project:


MRC SV/IAQ Study Feb 2014 REV

Pace Project No.:

Date: 04/17/2014 12:22 PM

10259332

Sample: SV-136-A-16	Lab ID: 10259332013	Collected: 02/25/14	4 09:10	Received: 03/04/14 10:00	Matrix: Air	
Parameters	Results Units	Report Limit	DF	Prepared Analyzed	CAS No.	Qua
TO15 MSV AIR	Analytical Method: TO-15					
Benzene	6.7 ug/m3	0.61	1.87	03/14/14 21	37 71-43-2	
Carbon tetrachloride	ND ug/m3	1.2	1.87	03/14/14 21	37 56-23-5	
Chlorodifluoromethane	ND ug/m3	0.37	1.87	03/14/14 21	37 75-45-6	
Chloroform	217 ug/m3	1.9	1.87	03/14/14 21	37 67-66-3	
Dichlorodifluoromethane	ND ug/m3	1.9	1.87	03/14/14 21	37 75-71-8	
1,1-Dichloroethane	1.7 ug/m3	1.5	1.87	03/14/14 21	37 75-34-3	
1,2-Dichloroethane	ND ug/m3	0.77	1.87	03/14/14 21	37 107-06-2	
1,1-Dichloroethene	ND ug/m3	1.5	1.87	03/14/14 21	37 75-35-4	
cis-1,2-Dichloroethene	55.2 ug/m3	1.5	1.87	03/14/14 21	37 156-59-2	
rans-1,2-Dichloroethene	25.3 ug/m3	1.5	1.87	03/14/14 21	37 156-60-5	
Ethylbenzene	1.7 ug/m3	1.6	1.87	03/14/14 21	37 100-41-4	
Methylene Chloride	13.5 ug/m3	1.3	1.87	03/14/14 21	37 75-09-2	
Methyl-tert-butyl ether	ND ug/m3	1.4	1.87	03/14/14 21	37 1634-04-4	
Naphthalene	9.3 ug/m3	2.0	1.87	03/14/14 21	37 91-20-3	
Tetrachloroethene	15.1 ug/m3	1.3	1.87	03/14/14 21	37 127-18-4	
Toluene	11.7 ug/m3	1.4	1.87	03/14/14 21	37 108-88-3	
1,2,4-Trichlorobenzene	ND ug/m3	2.8	1.87	03/14/14 21	37 120-82-1	
1,1,1-Trichloroethane	3.4 ug/m3	2.1	1.87	03/14/14 21	:37 71-55-6	
1,1,2-Trichloroethane	ND ug/m3	1.0	1.87	03/14/14 21	:37 79-00-5	
Trichloroethene	91000 ug/m3	658	1196.8	03/17/14 16	:34 79-01-6	A3
1,2,3-Trimethylbenzene	6.1 ug/m3	0.37	1.87	03/14/14 21	:37 526-73-8	
1,2,4-Trimethylbenzene	6.8 ug/m3	1.9	1.87	03/14/14 21	:37 95-63-6	
1,3,5-Trimethylbenzene	5.4 ug/m3	1.9	1.87	03/14/14 21	:37 108-67-8	
Vinyl chloride	ND ug/m3	0.49	1.87	03/14/14 21	:37 75-01-4	
m&p-Xylene	4.2 ug/m3	3.3	1.87		:37 179601-23-1	
o-Xylene	3.4 ug/m3	1.6	1.87		:37 95-47-6	

Project:

MRC SV/IAQ Study Feb 2014 REV

Pace Project No.:

Date: 04/17/2014 12:22 PM

10259332

Sample: SV-138-A-16	Lab ID: 10259332023	Collected: 02/25/1	4 10:35	Received: 0	3/04/14 10:00 I	Matrix: Air	
Parameters	Results Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
TO15 MSV AIR	Analytical Method: TO-15						
Benzene	1.6 ug/m3	0.93	2.87		03/17/14 23:50	71-43-2	
Carbon tetrachloride	ND ug/m3	1.8	2.87		03/17/14 23:50	56-23-5	
Chlorodifluoromethane	9.6 ug/m3	0.57	2.87		03/17/14 23:50	75-45-6	
Chloroform	ND ug/m3	2.8	2.87		03/17/14 23:50	67-66-3	
Dichlorodifluoromethane	3.3 ug/m3	2.9	2.87		03/17/14 23:50	75-71-8	
1,1-Dichloroethane	2.6 ug/m3	2.4	2.87		03/17/14 23:50	75-34-3	
1,2-Dichloroethane	ND ug/m3	1.2	2.87		03/17/14 23:50	107-06-2	
1,1-Dichloroethene	6.4 ug/m3	2.3	2.87		03/17/14 23:50	75-35-4	
cis-1,2-Dichloroethene	5.6 ug/m3	2.3	2.87		03/17/14 23:50	156-59-2	
trans-1,2-Dichloroethene	ND ug/m3	2.3	2.87		03/17/14 23:50	156-60-5	
Ethylbenzene	1.9J ug/m3	2.5	2.87		03/17/14 23:50	100-41-4	
Methylene Chloride	17.5 ug/m3	2.0	2.87		03/17/14 23:50	75-09-2	
Methyl-tert-butyl ether	ND ug/m3	2.1	2.87		03/17/14 23:50	1634-04-4	
Naphthalene	23.1 ug/m3	3.1	2.87		03/17/14 23:50	91-20-3	
Tetrachloroethene	2.7 ug/m3	2.0	2.87		03/17/14 23:50	127-18-4	
Toluene	10.3 ug/m3	2.2	2.87		03/17/14 23:50	108-88-3	
1,2,4-Trichlorobenzene	ND ug/m3	4.3	2.87		03/17/14 23:50	120-82-1	
1,1,1-Trichloroethane	ND ug/m3	3.2	2.87		03/17/14 23:50	71-55-6	
1,1,2-Trichloroethane	ND ug/m3	1.6	2.87		03/17/14 23:50	79-00-5	
Trichloroethene	80.3 ug/m3	1.6	2.87		03/17/14 23:50	79-01-6	
1,2,3-Trimethylbenzene	ND ug/m3	0.57	2.87		03/17/14 23:50	526-73-8	
1,2,4-Trimethylbenzene	ND ug/m3	2.9	2.87		03/17/14 23:50	95-63-6	
1,3,5-Trimethylbenzene	ND ug/m3	2.9	2.87		03/17/14 23:50	108-67-8	
Vinyl chloride	ND ug/m3	0.75	2.87		03/17/14 23:50	75-01-4	
m&p-Xylene	6.1 ug/m3	5.1	2.87		03/17/14 23:50	179601-23-1	
o-Xylene	1.6J ug/m3	2.5	2.87		03/17/14 23:50		

Project:

MRC SV/IAQ Study Feb 2014 REV

Pace Project No.:

10259332

Sample: SV-DUP3-A-16	Lab ID: 10259332032	Collected: 02/25/1	4 00:00	Received: 03	/04/14 10:00 N	/latrix: Air	
Parameters	Results Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
TO15 MSV AIR	Analytical Method: TO-15						
Benzene	ND ug/m3	0.90	2.77		03/18/14 04:03		
Carbon tetrachloride	ND ug/m3	1.8	2.77		03/18/14 04:03		
Chlorodifluoromethane	2.6 ug/m3	0.55	2.77		03/18/14 04:03		
Chloroform	93.6 ug/m3	2.7	2.77		03/18/14 04:03		
Dichlorodifluoromethane	2.3J ug/m3	2.8	2.77		03/18/14 04:03		
1.1-Dichloroethane	21.6 ug/m3	2.3	2.77		03/18/14 04:03		
1,2-Dichloroethane	ND ug/m3	1.1	2.77		03/18/14 04:03		
1,1-Dichloroethene	473 ug/m3	89.7	110.7		03/18/14 17:31		A3
cis-1,2-Dichloroethene	1260 ug/m3	89.7	110.7		03/18/14 17:31		A3
trans-1,2-Dichloroethene	37.7 ug/m3	2.2	2.77		03/18/14 04:03	156-60-5	
Ethylbenzene	ND ug/m3	2.4	2.77		03/18/14 04:03	3 100-41-4	
Methylene Chloride	18.6 ug/m3	2.0	2.77		03/18/14 04:03	75-09-2	
Methyl-tert-butyl ether	ND ug/m3	2.0	2.77		03/18/14 04:03	3 1634-04-4	
Naphthalene	ND ug/m3	3.0	2.77		03/18/14 04:03	91-20-3	
Tetrachloroethene	ND ug/m3	1.9	2.77		03/18/14 04:03	3 127-18-4	
Toluene	4.6 ug/m3	2.1	2.77		03/18/14 04:03	3 108-88-3	
1,2,4-Trichlorobenzene	ND ug/m3	4.2	2.77		03/18/14 04:03	3 120-82-1	
1,1,1-Trichloroethane	112 ug/m3	3.1	2.77		03/18/14 04:03	3 71-55-6	
1,1,2-Trichloroethane	ND ug/m3	1.5	2.77		03/18/14 04:03	3 79 - 00-5	
Trichloroethene	619 ug/m3	60.9	110.7		03/18/14 17:31	1 79-01-6	А3
1,2,3-Trimethylbenzene	ND ug/m3	0.55	2.77		03/18/14 04:03	3 526-73-8	
1,2,4-Trimethylbenzene	ND ug/m3	2.8	2.77		03/18/14 04:03		
1,3,5-Trimethylbenzene	ND ug/m3	2.8	2.77		03/18/14 04:03	3 108-67-8	
Vinyl chloride	1.5 ug/m3	0.72	2.77		03/18/14 04:03	3 75-01 - 4	
m&p-Xylene	ND ug/m3	4.9	2.77		03/18/14 04:03	3 179601-23-1	
o-Xylene	1.4J ug/m3	2.4	2.77		03/18/14 04:03	3 95-47-6	

Project:

MRC SV/IAQ Study Feb 2014 REV

Pace Project No.:

Date: 04/17/2014 12:22 PM

10259332

Sample: SV-DUP4-A-16	Lab ID: 10259332034	Collected: 02/25/1	4 00:00	Received: 0	3/04/14 10:00	Matrix: Air	
Parameters	Results Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
TO15 MSV AIR	Analytical Method: TO-15						
Benzene	0.77 ug/m3	0.57	1.74		03/15/14 05:15	5 71-43-2	
Carbon tetrachloride	ND ug/m3	1.1	1.74		03/15/14 05:15	5 56-23-5	
Chlorodifluoromethane	7.1 ug/m3	0.35	1.74		03/15/14 05:15	5 75-45-6	
Chloroform	1.4J ug/m3	1.7	1.74		03/15/14 05:15	5 67-66-3	
Dichlorodifluoromethane	1.9 ug/m3	1.8	1.74		03/15/14 05:15	5 75-71-8	
1,1-Dichloroethane	3.2 ug/m3	1.4	1.74		03/15/14 05:15	5 75-34-3	
1,2-Dichloroethane	ND ug/m3	0.71	1.74		03/15/14 05:15	5 107-06-2	
1,1-Dichloroethene	192 ug/m3	1.4	1.74		03/15/14 05:15	5 75-35-4	
cis-1,2-Dichloroethene	13.7 ug/m3	1.4	1.74		03/15/14 05:15	5 156-59-2	
trans-1,2-Dichloroethene	ND ug/m3	1.4	1.74		03/15/14 05:15	5 156-60-5	
Ethylbenzene	ND ug/m3	1.5	1.74		03/15/14 05:15	5 100-41-4	
Methylene Chloride	17.8 ug/m3	1.2	1.74		03/15/14 05:15	5 75-09-2	
Methyl-tert-butyl ether	ND ug/m3	1.3	1.74		03/15/14 05:15	5 1634-04-4	
Naphthalene	3.1 ug/m3	1.9	1.74		03/15/14 05:15	5 91-20-3	
Tetrachloroethene	ND ug/m3	1.2	1.74		03/15/14 05:15	5 127-18-4	
Toluene	2.0 ug/m3	1.3	1.74		03/15/14 05:15	5 108-88-3	
1,2,4-Trichlorobenzene	ND ug/m3	2.6	1.74		03/15/14 05:15	5 120-82-1	
1,1,1-Trichloroethane	ND ug/m3	1.9	1.74		03/15/14 05:15	5 71-55-6	
1,1,2-Trichloroethane	ND ug/m3	0.96	1.74		03/15/14 05:15	5 79-00-5	
Trichloroethene	150 ug/m3	0.96	1.74		03/15/14 05:15	5 79-01-6	
1,2,3-Trimethylbenzene	ND ug/m3	0.35	1.74		03/15/14 05:15	5 526-73-8	
1,2,4-Trimethylbenzene	1.5J ug/m3	1.7	1.74		03/15/14 05:15	5 95-63-6	
1,3,5-Trimethylbenzene	1.4J ug/m3	1.7	1.74		03/15/14 05:15	5 108-67 - 8	
Vinyl chloride	0.59 ug/m3	0.45	1.74		03/15/14 05:15	5 75-01-4	
m&p-Xylene	1.7J ug/m3	3.1	1.74		03/15/14 05:1	5 179601-23-1	
o-Xylene	ND ug/m3	1.5	1.74		03/15/14 05:1	5 95-47-6	

Appendix C

Support Documentation

SDG 10259332

LAB_ID	QC_TYPI	ш	SAMP_DATE	EXTR_DATE	ANAL_DATE	SMP_EXTR	ANL	SMP_ANL
IA-076-A-16 10259332016		ΣZ	02/25/2014	03/14/2014	03/14/2014	17	0	17
BCK-1-16 10259332027		N N	02/25/2014	03/15/2014	03/15/2014	18	0	18
UG/M3 IA-136-A-16 10259332014		×	02/25/2014	03/14/2014	03/14/2014	17	0	17
UG/M3 IA-118-A-16 10259332006		∑	02/25/2014	03/14/2014	03/14/2014	17	0	17
IA-117-A-16 10259332008		W _N	02/25/2014	03/14/2014	03/14/2014	17	0	17
UG/M3 IA-108-A-16 10259332004		N N	02/25/2014	03/14/2014	03/14/2014	17	0	17
UG/M3 IA-094-A-16 10259332020		∑	02/25/2014	03/15/2014	03/15/2014	18	0	18
IA-093-A-16 10259332026		W N	02/25/2014	03/18/2014	03/18/2014	21	0	21
UG/M3 IA-DUP3-A-16 10259332033		∑	02/25/2014	03/18/2014	03/18/2014	21	0	21
UG/M3 IA-079-A-16 10259332010		WN	02/25/2014	03/14/2014	03/14/2014	17	0	17
SV-015-A-16 10259332001		W N	02/25/2014	03/12/2014	03/12/2014	15	0	15
IA-075-A-16 10259332018		⊠ N	02/25/2014	03/15/2014	03/15/2014	18	0	18
UG/M3 IA-018-A-16 10259332022		N N	02/25/2014	03/17/2014	03/17/2014	20	0	20
IA-015-A-16 10259332002		W _N	02/25/2014	03/12/2014	03/12/2014	15	0	15
BCK-4-16 10259332030		N N	02/25/2014	03/18/2014	03/18/2014	21	0	21

Page 1 of 3

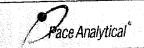
Tuesday, April 15, 2014

SORT UNITS	NSAMPLE	LAB_ID	QC_TYPE	SAMP_DATE	EXTR_DATE	ANAL_DATE	SMP_EXTR	EXTR_ANL	SMP_ANL
UG/M3	BCK-3-16	10259332029	ΣN	02/25/2014	03/18/2014	03/18/2014	21	0	21
UG/M3	BCK-3-16	10259332029	∑	02/25/2014	03/15/2014	03/15/2014	18	0	18
UG/M3	BCK-2-16	10259332028	N N	02/25/2014	03/15/2014	03/15/2014	18	0	18
UG/M3	BCK-1-16	10259332027	N N	02/25/2014	03/18/2014	03/18/2014	21	0	21
UG/M3	IA-081-A-16	10259332012	N N	02/25/2014	03/17/2014	03/17/2014	20	0	20
NG/M3	SV-093-A-16	10259332025	N N	02/25/2014	03/18/2014	03/18/2014	21	0	21
NG/M3	SV-DUP3-A-16	10259332032	NZ Z	02/25/2014	03/18/2014	03/18/2014	21	0	21
UG/M3	SV-138-A-16	10259332023	N N	02/25/2014	03/17/2014	03/17/2014	20	0	20
NG/M3	SV-136-A-16	10259332013	NZ Z	02/25/2014	03/17/2014	03/17/2014	20	0	20
UG/M3	SV-136-A-16	10259332013	ΝN	02/25/2014	03/14/2014	03/14/2014	17	0	17
NG/M3	SV-118-A-16	10259332005	N N	02/25/2014	03/17/2014	03/17/2014	20	0	20
UG/M3	SV-118-A-16	10259332005	WZ	02/25/2014	03/14/2014	03/14/2014	17	0	17
UG/M3	SV-117-A-16	10259332007	N N	02/25/2014	03/14/2014	03/14/2014	17	0	17
UG/M3	IA-138-A-16	10259332024	WN	02/25/2014	03/18/2014	03/18/2014	21	0	21
UG/M3	SV-094-A-16	10259332019	W _N	02/25/2014	03/15/2014	03/15/2014	18	0	18
UG/M3	SV-DUP4-A-16	10259332034	WZ Z	02/25/2014	03/15/2014	03/15/2014	18	0	18
UG/M3	SV-081-A-16	10259332011	NZ Z	02/25/2014	03/17/2014	03/17/2014	20	0	20
UG/M3	SV-081-A-16	10259332011	∑	02/25/2014	03/14/2014	03/14/2014	17	0	17
Tuesday, April 15	Tuesday, April 15, 2014							Pč	Page 2 of 3

SORT	UNITS	UNITS NSAMPLE	LAB_ID	QC_TYPE	SAMP_DATE	EXTR_DATE	ANAL_DATE	SMP_EXTR	EXTR_ANL SMP_ANL	SMP_ANL
	UG/M3	SV-079-A-16	10259332009	N N	02/25/2014	03/17/2014	03/17/2014	20	0	20
	UG/M3	SV-079-A-16	10259332009	Σ N	02/25/2014	03/14/2014	03/14/2014	17	0	17
	UG/M3	SV-076-A-16	10259332015	∑	02/25/2014	03/14/2014	03/14/2014	17	0	17
	UG/M3	SV-075-A-16	10259332017	∑ Z	02/25/2014	03/14/2014	03/14/2014	17	0	17
	UG/M3	SV-018-A-16	10259332021	M N	02/25/2014	03/15/2014	03/15/2014	18	0	18
	UG/M3	SV-015-A-16	10259332001	W N	02/25/2014	03/14/2014	03/14/2014	17	0	17
	UG/M3	SV-108-A-16	10259332003	N N	02/25/2014	03/12/2014	03/12/2014	15	0	15

AIR: CHAIN-OF-CUSTODY / Analytical Request Document The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.

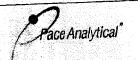
Section A Required Client Information	Section B Required Project Information:		Section C						14861	Page:	Jo T	n
	Report To:	0	Attention:						Program	1.65 121		
7. T. S. L. 3.	Copy To:	The second secon	Сотралу Мате:			Official and the second		S TSU	Superfund En	Emissions	Clean Air Act	Act
SOOTIEDING CONTRACTION AND THE SOUTH		Andrew Communication of the Co	Address:	The state of the s			Annual representation and the second	X Voluntary Clean Up	an Up Dry Clean		RCRA Ot	Other
Email To:	Purchase Order No.:	AND THE PROPERTY OF THE PROPER	Pace Quote Reference	nce:	The state of the s	And the same of th	ANALONA PROPERTY OF THE PROPER	Location of		Repoi ug/m²	Reporting Units ug/m³	
Phone: 4 HOOD avoice of Toll arean	Project Name:	The second secon	Pace Project Manager/Sales Rep	ger/Sales Rep.	A TANK MAN TO THE PARTY OF THE			Sampling by State	ate DO	PPBV	PPMV	
Requested Due Date/TAT:	Project Number:	A THE REAL PROPERTY OF THE PRO	Pace Profile #:		-	energy and the control of the contro	The second secon	Report Level II.	III. IV.	Other		
nation		nt only)	COLLECTED		psig)			Method:				-
Sample IDs MUST BE UNIQUE	ma Can 1LC ma Can 6LC e Puff LVP	eilO) gnib			ear9 refi - blei9 l ser9 refi - blei9 l	Can	Flow Control Number	Ses pa	Methane (885) Methane	JS/7 JJOH		
LEW#	High Volume Purit HVP CO		TIME DATE	composite.	stini) ———— einsO			10 / 10 / 10 / 10 / 10 / 10 / 10 / 10 /	0/0/0/0/0	85101	Pace Lab ID	Ō
() - D-1()		Selcain.	3	₩.	30 75	3000	0075				2	The second secon
1		-	N120	-	30-1	156	0233	and the state of t	×		7	
	and the second resources of the second representation of the second resources	A A A A A A A A A A A A A A A A A A A	87.80		3	SHOR	0 : 3		×		2 2	
4			072	_				The state of the s	×		300	The second secon
	And a serious	Andreas and a second se	- P		1		4200		×			The state of the s
\F			CHO	180	58-38	2065	0 - 3		×		ا و د د	
Î			- F580		-36-3	1080	5 - - 0		X		ε	Account attended account on addition
1-0F			0153	岛	<u>-</u> 8	2530	_		*		1	The same of the sa
7			88	8	0 %	250T	0000		×		- 1	
3/-	The state of the s		0157	. ^	7-80	3436	ਸ 0	1 CONTRACTOR OF THE PARTY OF TH	X			
	anni mandrijam parancem propincje (, pres namonoj nastrani (, primarem m serve m jede de primarem m serve m jede de primarem m serve m jede de primarem m serve m jede de primarem m serve m jede de primarem m serve m jede de primarem m serve m jede de primarem m serve m jede de primarem m serve m jede de primarem m j	5	The second	<u>-</u> 78	30-8	D897	0 0		×		-	Total Section of the
3 - CA - CA - CA - CA - CA - CA - CA - C		~	2800	10031	C- 45	90	0000		X	_	7	
Tour te	RELI	RELINQUISHED BY / /	AFFILIATION		¥	ACCEPTED	ACCEPTED BY / AFFILIATION	DATE	TIME	SAMPLE	Ś	SNC
Des El College Approve	و		72/20	tult-cle	0021 1	They (and from	1919) (%)	E	(B)/	NA
They were up they are	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\			1	7					N/A	N/A	₃N/A
										N/A		N/A
	<u> </u>								111	N/A	N/A	N/A
			SAMPLE	SAMPLER NAME AND SIGNATURE	SIGNATUR	Ш						s Intact
			New York	T Name of SAMPLES	(Dayles		DATE Signed (MM / DD /.YY)	CA.7		Temp i	ool Custo balse	epidwe


AIR: CHAIN-OF-CUSTODY / Analytical Request Document The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.

Company:	Report To:	Attention:				Program			
etra lech	100	Company Name		ermanne per jamme er men jamen jamen jamen jamen jamen jamen jamen jamen jamen jamen jamen jamen jamen jamen j				1.	Ologo Air Act
Cars Center River Sites			to be provided to the second disconsistency of the second disconsistency o	The state of the s					Š
784		Address:				✓yoluntary Clean Up Dr	Dry Clean	RCRA	Other
Email To:	Purchase Order No.:	Pace Quote Reference:	enancia incorrectiva de o presenta de la compositorio de la confessione de la confessione de la confessione de			ocation of		eporting Units y/m² mg/m³.	j.
Phone: United Place of Control Phone: United Place of Control Place of Con	Project Name:	Pace Project Manager/Sales Rep.	Rep.	and a second management of the second		Sampling by State MD		PPBV PPM\	_ -
Requested Due Date/TAT:	Project Number:	Pace Profile #:	mannen miller (17) (April Apri	ALL AND ALL REPORTS AND ALL AN	E	Report Level 11. III.	الا.	Other	
Section D Required Client Information AIR SAMPLE ID Sample IDs MUST BE UNIQUE	Valid Media Codes MEDA. MEDA. CODE Treds: Bag an 1.C Collision of Coll	соггестер	Pressure Field - psig) or Pressure Field - bisig)	Contr		Method:			
# W31	HVP COMPOSITE PM10 A CHIDGRAB DI C. DATE	START COMPOSITE.	tainsO (Initial)	Number		10/07/07/07/07/07/07/07/07/07/07/07/07/07	\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	-	Pace Lab ID
136-A-11c	Lactody A	SASIMO	-30-45	2555 0 0	- b		~/	/3	}
2 TA-126-A-16	}_ -	_	0 kg-k	458 6	5 2 2			. 7	בי
7		The second secon	7-82	22 0	407	^	~	a	8
) F				O	(O)	*	×		3
			18 18	2363 00	- h (6	Co
) P			1-30-35	14 58 C4	55			9	018
		10	27-3	223C C2	- 7			***************************************	510
F		9150 Jal9	35	219501	53		-	77	စ,
10			-3% -5	S	7 7 7		×	5. 	5 Li
JF		562) CA3	-3,5	3387 03	29			6	77
1 V		and the second s	3- الق-		335		V	0	23
5F	> >	>	ין אַ		500			0	3
	RELINQUISHED BY	NO	TIME	ED BY	LIATION	DATE TIME	SAMPLE		CONDITIONS
		While It he	0021 11/2	de 1 may	4ac	occi hihr	SAL SAL	DAY DAY	
		•	1		-				N/A
								N/A	
								N/A	
		SAMPLER NAME PRINT Name of SAMPLET	SAMPLER NAME AND SIGNATURE				o. ui d	no bev	Cooler
		SIGHTONE OF SAMPLE	Collection	DATE.SIG	DATE Signed (MM JDD/)	3	Тетр	ρį	
		(X TOWNS		3.	アノント			_	_

AIR: CHAIN-OF-CUSTODY / Analytical Request Document The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.

	Required Project Information:	invoice Information.))
Company: Tetra Fech	Report To:	:Attention:	Program
Blyd 24	Copy To:	Сотралу Мате:	
MARIA MINISTA		Address:	Woluntary Clean Up Dry Clean RCRA Other
	Purchase Order No.:	Pace Quote Reference:	Reporting ug/m³
Phone: Fax:	Project Name:	Pace Project Manager/Sales Rep.	Sampling by State MD PPBV PPMV
Requested Due Date/TAT:	Project Number:	Pace Profile #:	Report Level II. III. IV. Other.
'Section D Required Client Information AIR SAMPLE ID Sample IDS MUST BE UNIQUE	Water American Codes Younger American Codes Younger American Codes Younger American Codes Younger American Codes Younger American Codes Younger American Codes Younger American Codes Younger Codes <th< td=""><td>COLLECTED COLLECTED Summa Summa Flow inal Field - paig) confroi Number Start Can Can Control Number</td><td>Method: (15.00 kg) (15</td></th<>	COLLECTED COLLECTED Summa Summa Flow inal Field - paig) confroi Number Start Can Can Control Number	Method: (15.00 kg) (15
ILEI	P. DATE	TIME DATE TIME OUR.	12/5/5/5/5/5/5/5/5/5/
- SV-093-P-16	SCAN 21	M 0940 30 H 1 85 C	×
2 IA-093-A-16		O'HS 1627 -311108 0	X
3 BCK-1-16		627-30-31176 6	X ,
4 BCK-3-16		1533-17 0 0880	
· BCK-3-16		1538 - 36 - 358 850 0	×
6 BCK-4-16		0705 1539 - 38-3,50308 053	×
7 BCK-DUP-16	The state of the s	D 3413	and the second s
3N-TUP3-A-16			
17A-1773-A-16		- 10he 1-e 1 -	× (33)
0 SV-DUPY-A-16		- 1-38-50197	× 22 €
	-		
12	→	>	SANDI E CONDITIONS
Comments :	KELINQUISHED BY	AFFICIATION DATE TIME ACCEPTED BY AFFI	Aud (20) AMA (2) (4)
		deally land	N/A N/A
			N/A N/A
		SAMPLER NAME AND SIGNATURE	J° ni qm avies on eoi eoi vboteu yeoder Teloooier
		SIGNIFIE OF SAMPLER OF MANUFACE DATE SUPPLY	Rec Cl
JANIOINAL TANIOINAL	NA.	A KINE O HINIMA	



hold, incorrect preservative, out of temp, incorrect containers)

Document Name: Air Sample Condition Upon Receipt

Document No.: F-MN-A-106-rev.09 Document Revised: 26Dec2013
Page 1 of 1
Issuing Authority:
Pace Minnesota Quality Office

		/		Pptional: Proj. Due Date:	Proj. Name:
tody Seal on Cooler/B					
ing Material: 🔲 But	Ex				
n /TO17 and TO13 samp	Fet				
e of ice Received 🔲 Bl	ue				
hain of Custody Present					
hain of Custody Filled O	ut?				
hain of Custody Relinqui					
TEST CALL TO COLUMN					
and the free control of the control					
	Requested?				
sufficient Volume?					
Correct Containers Used	Fee				
B Containare Head	19	✓ Yes □No	□N/A		
-Pace Containers Used	17				
Containers Intact?			□N/A 10. 11.		
Containers Intact? Media: にない	· · · · · · · · · · · · · · · · · · ·		□N/A 10. 11. → CA7	#208 Sample	Chnes or
Containers Intact? Media: たげ Sample Labels Match CO	· · · · · · · · · · · · · · · · · · ·		□N/A 10. 11. □N/A 12. ≠ 003,		
Containers intact? Media: ぱぱ Sample Labels Match CO Samples Received:	- C < _ 0C?	Yes No	□N/A 10. 11. □N/A 12. ≠ 003, the f-	ng or the start	times not
Containers Intact? Media: Sample Labels Match CO Samples Received: Cal	CS C?	Yes No Yes No Flow C	□N/A 10. 11. □N/A 12. ≠ 003, the F	ng or the stand	tines not Alone G to Can ID
Containers Intact? Media:	nisters Can ID	Yes No Yes No Flow C Sample Number	□N/A 10. 11. □N/A 12. ≠ 003, the F ontrollers Can ID	Stand Stand Sample Number	1 Alone G + Can 1D
Containers intact? Media: ゆうち Sample Labels Match CO Samples Received: Cai Sample Number	nisters Can ID 2268 / 0075	Yes No Yes No Flow C Sample Number SV - U'81 IA - U'81	□N/A 10. 11. □N/A 12. ≠ 003, the F ontrollers Can ID 0827/ 0053 106/ 0051	Stand Sample Number SU _ 018 FA = 018	1 tines not 1 Alone G + 1 Can ID 2 7 68 \$ 020 2 2 8 7 / 02
Containers Intact? Media: Sample Labels Match CO Samples Received: Car Sample Number \$\frac{5}{2} = 015	1007 nisters Can ID 2268 / 0077 1176 / 0133	Flow C Sample Number SV - U 81 TA - D 91 SV - 136	□N/A 10. 11. □N/A 12. ≠ 003, the Footrollers Can ID 0827 / 6053 106 / 004 2555 / 041	Stand Sample Number SU _ 018 FA - 018 SU - 138	tines nst Alone G Can ID 2568 / 020 2287/ 02 1321 / 003
Containers intact? Media: ゆうち Sample Labels Match CO Samples Received: Cai Sample Number	nisters Can ID 2268 / 0075 1056 / 0133 2242 / 0133	Yes No Yes No Flow C Sample Number SV - U 81 TA - U 91 SV - 136 TA - (36)	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Stand Stand Sample Number 50 - 018 FA - 018 50 - 138 TA - 138	Times nst I Alone G Can ID 2768 / 020 2287/ 02 1321 / 003 0991 / 053
Containers Intact? Media: & 15 Sample Labels Match CO Samples Received: Car Sample Number SV 015 LA 015 SV 108	nisters Can ID 2268 / 0075 1156 / 0133 2242 / 0133	Yes No Yes Inc Yes Inc Sample Number SV - U 8 SV - 136 TA - (36 5U - 076 5U - 076	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Stand Stand Sample Number SU = 018 FA = 618 SU = 138 TA = (38) SU = 843	Can ID 2 7 68 / 020 2 2 8 7 / 02 1321 / 003 0991 / 056 1785 / 006
Containers intact? Media: & ft Sample Labels Match CO Samples Received: Cai Sample Number \$\frac{5}{4} = 015 \$\frac{5}{4} = 10\frac{5}{4} \$\frac{7}{4} = 10\frac{5}{4}	nisters Can ID 2268 / 0075 1:56 / 0133 2242 / 0133 2442 / 053 4 2277 / 0054 2265 / 013	Yes	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Stand Stand Sample Number 5U - 018 FA - 018 5U - 138 FA - 138 FA - 138 FA - 043 FA - 043	tines not can lo
Containers Intact? Media: Sample Labels Match CO Samples Received: Car Sample Number SAMPLE OLS IA 015 SU 108 TA -104 SU -108	nisters Can ID 2268 / 0075 1:56 / 0133 2242 / 0133 2442 / 053 4 2277 / 0054 2265 / 013	Yes No Yes No Yes No Yes Into Swest Into S	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Stand Stand Sample Number SU = 018 FA = 618 SU = 138 TA = 138 SU = 843 TA = 093 TA = 093	1 tines nst I Alone G Can ID 2 5 68 / 020 2 28 7 / 02 1321 / 003 0941 / 056 1785 / 006 1108 / 036 1170 / 644
Containers intact? Media: & f. Sample Labels Match CO Samples Received: Cai Sample Number SV = 015 IA = 015 SV = U8 IA = 104 SV = 168 IA = 118	1007 nisters Can ID 2268 / 0075 1156 / 0133 2242 / 0133 2442 / 053 4 2277 / 0054 2265 / 0113 2501 / 0116 2530 / 015	Flow C Sample Number SV - U 81 TA - U 81 TA - 136 TU - 136 T	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Seed:	
Containers Intact? Media: Sample Labels Match CO Samples Received: Car Sample Number SV - 015 IA - 105 SV - 108 IA - 108 IA - 108 SV - 118 SV - 118	nisters Can ID 2268 / 0075 1156 / 0133 2242 / 0133 2247 / 053 4 2277 / 0054 2265 / 0113 2530 / 015	Flow C Sample Number SV - U81 TA - 0481 SV - 136 TA - (36) TU - 076 SU - 075 TA - 075 SU - 075 SU - 094	□N/A 10. 11. □N/A 12. \Rightarrow 003, the Fontrollers Can ID 0827/ 255 1106/ 004 2555/ 044 2458/ 0527 2223/ 0407 1105/ 0412 2263/ 044 1458/ 0455 2230/ 0 257	Stand Stand Sample Number SU _ 018 FA - 018 SU - 138 TA - 138 SU - 243 TA - 043 BCK - 1 BCK - 2 BCK - 3	Date: Proj. Name: Temp Blank rec: Yes No
Containers Intact? Media: & fr Sample Labels Match CO Samples Received: Car Sample Number SV - 015 TA - 105 SV - 108 TA - 105 SV - 108 TA - 107 TA - 118 SV - 118 TA - 118 TA - 117	nisters Can ID 2268 / 0075 1156 / 0133 2242 / 0133 2247 / 053 4 2277 / 0054 2265 / 0113 2530 / 015	Flow C Sample Number SV - U81 TA - 0481 SV - 136 TA - (36) TU - 076 SU - 075 TA - 075 SU - 075 SU - 094	□N/A 10. 11. □N/A 12. \Rightarrow 003, the Fontrollers Can ID 0827/ 255 1106/ 004 2555/ 044 2458/ 0527 2223/ 0407 1105/ 0412 2263/ 044 1458/ 0455 2230/ 0 257	Stand Stand Sample Number SU _ 018 FA - 018 SU - 138 TA - 138 SU - 243 TA - 043 BCK - 1 BCK - 2 BCK - 3	Can ID 2768 / 020 2768 / 020 2287 / 02 1321 / 003 0991 / 056 1785 / 006 1108 / 036 1170 / 644 0880 / 0365 2250 / 025
Containers Intact? Media: 678 Sample Labels Match CO Samples Received: Car Sample Number SV - 015 SV - 108 TA - 109 SV - 118 SV - 118 SV - 117 TA - 117 TA - 117 TA - 117 TA - 117 TA - 179 TA - 179 TA - 179 TA - 179 TA - 179 TA - 179 TA - 179 TA - 179 TA - 179 TA - 179	1007 nisters Can ID 2268 / 0075 1156 / 0133 2242 / 0133 2442 / 053 4 2277 / 6054 2265 / 0113 2501 / 0119 2507 0600 2436 / 0144	Canto Cant			
Containers Intact? Media:	Fe fix				

Document Name: SCUR Exceptions Form

Document No.: F-MN-L-220-Rev.00 Document Revised: 16Apr2012 Page 1 Of 1

Issuing Authority: Pace Minnesota Quality Office

Workorder #:

10259332

issue"	Sample ID	Container Type/# ***
7980 5647 7036		
7980 5647 7058		
8583 4927 1621		
7980 5647 6989		
7986 5647 7091		
7980 S647 7070		
79805647 7014		
7980 3647 7023		
7480 5647 7025		
7a80 S647 6990		
7980 5647 7086		
7980 5647 7069		
798056477106		
Joused can 2245	onused FC 0176	- 14 - Z414R
2566		
129b	0040	
BCK-DUP - 2413		
SV Dup 3 - 2750		
IA DUP3 - 2401		
SU Dup 4 - 2197		

PROJECT NARRATIVE

Project:

MRC SV/IAQ Study Feb 2014

Pace Project No.:

10259332

Method:

TO-15

Description: TO15 MSV AIR

Client:

Tetra Tech GEO - Maryland

Date:

March 19, 2014

General Information:

33 samples were analyzed for TO-15. All samples were received in acceptable condition with any exceptions noted below.

The samples were analyzed within the method required hold times with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

QC Batch: AIR/19645

CH: The continuing calibration for this compound is outside of Pace Analytical acceptance limits. The results may be biased high.

- DUP (Lab ID: 1638565)
 - Naphthalene
- LCS (Lab ID: 1638294)
 - 1,2,4-Trichlorobenzene
 - Naphthalene

Internal Standards:

All internal standards were within QC limits with any exceptions noted below.

Surrogates:

All surrogates were within QC limits with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

QC Batch: AIR/19668

P8: Analyte was detected in the method blank. All associated samples had concentrations of at least ten times greater than the blank or were below the reporting limit.

- BLANK (Lab ID: 1640107)
 - · Methylene Chloride

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

QC Batch: AIR/19645

L3: Analyte recovery in the laboratory control sample (LCS) exceeded QC limits. Analyte presence below reporting limits in associated samples. Results unaffected by high bias.

- · LCS (Lab ID: 1638294)
 - 1,2,4-Trichlorobenzene

PROJECT NARRATIVE

Project:

MRC SV/IAQ Study Feb 2014

Pace Project No.:

10259332

Method: T

TO-15

Description: TO15 MSV AIR

Client:

Tetra Tech GEO - Maryland

Date:

March 19, 2014

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Additional Comments:

Analyte Comments:

QC Batch: AIR/19645

A3: The sample was analyzed by serial dilution.

- SV-015-A-16 (Lab ID: 10259332001)
 - 1,1-Dichloroethene
 - · cis-1,2-Dichloroethene
 - Trichloroethene

QC Batch: AIR/19661

A3: The sample was analyzed by serial dilution.

- SV-079-A-16 (Lab ID: 10259332009)
 - cis-1,2-Dichloroethene
 - trans-1.2-Dichloroethene
 - Trichloroethene
- SV-081-A-16 (Lab ID: 10259332011)
 - 1,2,3-Trimethylbenzene
 - 1,2,4-Trimethylbenzene
 - 1,3,5-Trimethylbenzene
 - m&p-Xylene
- · SV-118-A-16 (Lab ID: 10259332005)
 - 1,1-Dichloroethene
 - · cis-1,2-Dichloroethene
 - Trichloroethene
- SV-136-A-16 (Lab ID: 10259332013)
 - Trichloroethene

QC Batch: AIR/19668

P8: Analyte was detected in the method blank. All associated samples had concentrations of at least ten times greater than the blank or were below the reporting limit.

- BLANK (Lab ID: 1640107)
 - Methylene Chloride

QC Batch: AIR/19678

A3: The sample was analyzed by serial dilution.

- SV-DUP3-A-16 (Lab ID: 10259332032)
 - 1,1-Dichloroethene
 - · cis-1,2-Dichloroethene
 - Trichloroethene

PROJECT NARRATIVE

Project:

MRC SV/IAQ Study Feb 2014

Pace Project No.:

10259332

Method:

TO-15

Description: TO15 MSV AIR

Client:

Tetra Tech GEO - Maryland

Date:

March 19, 2014

Analyte Comments:

QC Batch: AIR/19678

E: Analyte concentration exceeded the calibration range. The reported result is estimated.

• SV-093-A-16 (Lab ID: 10259332025)

Methylene Chloride

This data package has been reviewed for quality and completeness and is approved for release.

SAMPLE SUMMARY

Project:

MRC SV/IAQ Study Feb 2014

Pace Project No.:

10259332

				-
Lab ID	Sample ID	Matrix	Date Collected	Date Received
/10259332001	SV-015-A-16	Air	02/25/14 09:48	03/04/14 10:00
10259332002	IA-015-A-16	Air	02/25/14 15:49	03/04/14 10:00
10259332003	SV-108-A-16	Air	02/25/14 09:51	03/04/14 10:00
10259332004	IA-108-A-16	Air	02/25/14 15:49	03/04/14 10:00
10259332005	SV-118-A-16	Air	02/25/14 09:55	03/04/14 10:00
10259332006	IA-118-A-16	Air	02/25/14 15:53	03/04/14 10:00
10259332007	SV-117-A-16	Air	02/25/14 09:59	03/04/14 10:00
10259332008	IA-117-A-16	Air	02/25/14 15:53	03/04/14 10:00
10259332009	SV-079-A-16	Air	02/25/14 10:00	03/04/14 10:00
10259332010	IA-079-A-16	Air	02/25/14 15:55	03/04/14 10:00
10259332011	SV-081-A-16	Air	02/25/14 10:04	03/04/14 10:00
10259332012	IA-081-A-16	Air	02/25/14 16:00	03/04/14 10:00
10259332013	SV-136-A-16	Air	02/25/14 09:10	03/04/14 10:00
10259332014	IA-136-A-16	Air	02/25/14 16:08	03/04/14 10:00
10259332015	SV-076-A-16	Air	02/25/14 10:08	03/04/14 10:00
10259332016	IA-076-A-16	Air	02/25/14 16:12	03/04/14 10:00
10259332017	SV-075-A-16	Air	02/25/14 10:20	03/04/14 10:00
10259332018	IA-075-A-16	Air	02/25/14 16:17	03/04/14 10:00
10259332019	SV-094-A-16	Air	02/25/14 10:26	03/04/14 10:00
10259332020	IA-094-A-16	Air	02/25/14 16:19	03/04/14 10:00
(10259332021)	SV-018-A-16	Air	02/25/14 10:30	03/04/14 10:00
10259332022	IA-018-A-16	Air	02/25/14 16:23	03/04/14 10:00
10259332023	SV-138-A-16	Air	02/25/14 10:35	03/04/14 10:00
10259332024	IA-138-A-16	Air	02/25/14 16:24	03/04/14 10:00
10259332025	SV-093-A-16	Air	02/25/14 16:27	03/04/14 10:00
10259332026	IA-093-A-16	Air	02/25/14 16:27	03/04/14 10:00
10259332027	BCK-1-16	Air	02/25/14 15:37	03/04/14 10:00
10259332028	BCK-2-16	. Air	02/25/14 15:33	03/04/14 10:00
10259332029	BCK-3-16	Air	02/25/14 15:32	03/04/14 10:00
10259332030	BCK-4-16	Air	02/25/14 15:29	03/04/14 10:00
10259332032	SV-DUP3-A-16	Air	02/25/14 00:00	03/04/14 10:00
10259332033	IA-DUP3-A-16	Air	02/25/14 00:00	03/04/14 10:00
10259332034	SV-DUP4-A-16	Air	02/25/14 00:00	03/04/14 10:00

SAMPLE ANALYTE COUNT

Project:

MRC SV/IAQ Study Feb 2014

Pace Project No.:

10259332

10259332001 SV-015-A-16 TO-15 JAM 26 10259332002 IA-015-A-16 TO-15 JAM 26 10259332003 SV-108-A-16 TO-15 JAM 26 10259332005 SV-108-A-16 TO-15 JAM 26 10259332005 SV-118-A-16 TO-15 JAM 26 10259332007 IA-117-A-16 TO-15 JAM 26 10259332008 IA-117-A-16 TO-15 JAM 26 10259332009 IA-117-A-16 TO-15 JAM 26 10259332010 IA-079-A-16 TO-15 JAM 26 10259332011 SV-081-A-16 TO-15 JAM 26 10259332012 IA-091-A-16 TO-15 JAM 26 10259332013 SV-081-A-16 TO-15 JAM 26 10259332014 IA-075-A-16 TO-15 JAM 26 10259332015 SV-076-A-16 TO-15 JAM 26 10259332014 IA-136-A-16	Lab ID	Sample ID	Method	Analysts	Analytes Reported
10259332003 SV-108-A-16 TO-15 JAM 26 10259332004 IA-108-A-16 TO-15 JAM 26 10259332005 SV-118-A-16 TO-15 JAM 26 10259332006 IA-118-A-16 TO-15 JAM 26 10259332007 SV-117-A-16 TO-15 JAM 26 10259332008 IA-117-A-16 TO-15 JAM 26 10259332009 SV-079-A-16 TO-15 JAM 26 10259332010 IA-079-A-16 TO-15 JAM 26 10259332011 SV-081-A-16 TO-15 JAM 26 10259332012 IA-081-A-16 TO-15 JAM 26 10259332013 SV-136-A-16 TO-15 JAM 26 10259332014 IA-136-A-16 TO-15 JAM 26 10259332015 SV-076-A-16 TO-15 JAM 26 10259332017 SV-075-A-16 TO-15 JAM 26 10259332018 IA-075-A-16	10259332001	SV-015-A-16	TO-15	JAM	26
10259332004 IA-108-A-16 TO-15 JAM 26 10259332006 IA-118-A-16 TO-15 JAM 26 10259332006 IA-118-A-16 TO-15 JAM 26 10259332007 SV-117-A-16 TO-15 JAM 26 10259332008 IA-117-A-16 TO-15 JAM 26 10259332010 IA-079-A-16 TO-15 JAM 26 10259332011 SV-081-A-16 TO-15 JAM 26 10259332011 SV-081-A-16 TO-15 JAM 26 10259332011 SV-081-A-16 TO-15 JAM 26 10259332013 SV-136-A-16 TO-15 JAM 26 10259332014 IA-136-A-16 TO-15 JAM 26 10259332015 SV-076-A-16 TO-15 JAM 26 10259332016 IA-076-A-16 TO-15 JAM 26 10259332017 SV-075-A-16 TO-15 JAM 26 10259332019 SV-094-A-16	10259332002	IA-015-A-16	TO-15	JAM	26
10269332005 SV-118-A-16 TO-15 JAM 26 10259332007 SV-118-A-16 TO-15 JAM 26 10259332008 IA-117-A-16 TO-15 JAM 26 10259332009 SV-079-A-16 TO-15 JAM 26 10259332010 IA-079-A-16 TO-15 JAM 26 10259332011 SV-081-A-16 TO-15 JAM 26 10259332012 IA-081-A-16 TO-15 JAM 26 10259332013 SV-136-A-16 TO-15 JAM 26 10259332014 IA-136-A-16 TO-15 JAM 26 10259332015 SV-076-A-16 TO-15 JAM 26 10259332017 SV-076-A-16 TO-15 JAM 26 10259332017 SV-076-A-16 TO-15 JAM 26 10259332018 IA-075-A-16 TO-15 JAM 26 10259332019 SV-094-A-16 TO-15 JAM 26 10259332021 SV-018-A-16	10259332003	SV-108-A-16	TO-15	JAM	26
10259332006 IA-118-A-16 TO-15 JAM 26 10259332007 SV-117-A-16 TO-15 JAM 26 10259332008 IA-117-A-16 TO-15 JAM 26 10259332009 SV-079-A-16 TO-15 JAM 26 10259332011 SV-081-A-16 TO-15 JAM 26 10259332012 IA-081-A-16 TO-15 JAM 26 10259332013 SV-136-A-16 TO-15 JAM 26 10259332014 IA-136-A-16 TO-15 JAM 26 10259332015 SV-076-A-16 TO-15 JAM 26 10259332016 IA-076-A-16 TO-15 JAM 26 10259332017 SV-076-A-16 TO-15 JAM 26 10259332018 IA-075-A-16 TO-15 JAM 26 10259332019 SV-094-A-16 TO-15 JAM 26 10259332021 IA-094-A-16 TO-15 JAM 26 10259332022 IA-094-A-16	10259332004	IA-108-A-16	TO-15	JAM	26
10259332007 SV-117-A-16 TO-15 JAM 26 10259332008 IA-117-A-16 TO-15 JAM 26 10259332009 SV-079-A-16 TO-15 JAM 26 10259332010 IA-079-A-16 TO-15 JAM 26 10259332011 SV-081-A-16 TO-15 JAM 26 10259332012 IA-081-A-16 TO-15 JAM 26 10259332013 SV-136-A-16 TO-15 JAM 26 10259332014 IA-136-A-16 TO-15 JAM 26 10259332015 SV-076-A-16 TO-15 JAM 26 10259332016 IA-076-A-16 TO-15 JAM 26 10259332017 SV-075-A-16 TO-15 JAM 26 10259332018 IA-076-A-16 TO-15 JAM 26 10259332021 SV-094-A-16 TO-15 JAM 26 10259332021 SV-094-A-16 TO-15 JAM 26 10259332022 IA-018-A-16	10259332005	SV-118-A-16	TO-15	JAM	26
10259332008 IA-117-A-16 TO-15 JAM 26 10259332009 SV-079-A-16 TO-15 JAM 26 10259332011 SV-081-A-16 TO-15 JAM 26 10259332012 IA-081-A-16 TO-15 JAM 26 10259332013 SV-136-A-16 TO-15 JAM 26 10259332014 IA-136-A-16 TO-15 JAM 26 10259332015 SV-076-A-16 TO-15 JAM 26 10259332016 IA-076-A-16 TO-15 JAM 26 10259332017 SV-076-A-16 TO-15 JAM 26 10259332018 IA-076-A-16 TO-15 JAM 26 10259332019 SV-094-A-16 TO-15 JAM 26 10259332019 SV-094-A-16 TO-15 JAM 26 10259332021 SV-018-A-16 TO-15 JAM 26 10259332022 IA-018-A-16 TO-15 JAM 26 10259332023 SV-138-A-16	10259332006	IA-118-A-16	TO-15	JAM	26
10259332009 SV-079-A-16 TO-15 JAM 26 10259332010 IA-079-A-16 TO-15 JAM 26 10259332011 SV-081-A-16 TO-15 JAM 26 10259332012 IA-081-A-16 TO-15 JAM 26 10259332013 SV-136-A-16 TO-15 JAM 26 10259332014 IA-136-A-16 TO-15 JAM 26 10259332015 SV-076-A-16 TO-15 JAM 26 10259332016 IA-076-A-16 TO-15 JAM 26 10259332017 SV-075-A-16 TO-15 JAM 26 10259332018 IA-076-A-16 TO-15 JAM 26 10259332019 SV-094-A-16 TO-15 JAM 26 10259332020 IA-094-A-16 TO-15 JAM 26 10259332021 SV-018-A-16 TO-15 JAM 26 10259332022 IA-018-A-16 TO-15 JAM 26 10259332023 SV-093-A-16	10259332007	SV-117-A-16	TO-15	JAM	26
10259332010 IA-079-A-16 TO-15 JAM 26 10259332011 SV-081-A-16 TO-15 JAM 26 10259332012 IA-081-A-16 TO-15 JAM 26 10259332013 SV-136-A-16 TO-15 JAM 26 10259332014 IA-136-A-16 TO-15 JAM 26 10259332015 SV-076-A-16 TO-15 JAM 26 10259332016 IA-076-A-16 TO-15 JAM 26 10259332017 SV-075-A-16 TO-15 JAM 26 10259332018 IA-075-A-16 TO-15 JAM 26 10259332019 SV-094-A-16 TO-15 JAM 26 10259332021 IA-094-A-16 TO-15 JAM 26 10259332022 IA-018-A-16 TO-15 JAM 26 10259332023 SV-018-A-16 TO-15 JAM 26 10259332024 IA-138-A-16 TO-15 JAM 26 10259332025 SV-093-A-16	10259332008	IA-117-A-16	TO-15	JAM	26
10259332011 SV-081-A-16 TO-15 JAM 26 10259332012 IA-081-A-16 TO-15 JAM 26 10259332013 SV-136-A-16 TO-15 JAM 26 10259332014 IA-136-A-16 TO-15 JAM 26 10259332015 SV-076-A-16 TO-15 JAM 26 10259332016 IA-076-A-16 TO-15 JAM 26 10259332017 SV-075-A-16 TO-15 JAM 26 10259332018 IA-075-A-16 TO-15 JAM 26 10259332019 SV-094-A-16 TO-15 JAM 26 10259332020 IA-094-A-16 TO-15 JAM 26 10259332021 SV-018-A-16 TO-15 JAM 26 10259332022 IA-018-A-16 TO-15 JAM 26 10259332023 SV-138-A-16 TO-15 JAM 26 10259332024 IA-018-A-16 TO-15 JAM 26 10259332025 SV-093-A-16	10259332009	SV-079-A-16	TO-15	JAM	26
10259332012 IA-081-A-16 TO-15 JAM 26 10259332013 SV-136-A-16 TO-15 JAM 26 10259332014 IA-136-A-16 TO-15 JAM 26 10259332015 SV-076-A-16 TO-15 JAM 26 10259332016 IA-076-A-16 TO-15 JAM 26 10259332017 SV-075-A-16 TO-15 JAM 26 10259332018 IA-075-A-16 TO-15 JAM 26 10259332019 SV-094-A-16 TO-15 JAM 26 10259332020 IA-094-A-16 TO-15 JAM 26 10259332021 SV-018-A-16 TO-15 JAM 26 10259332022 IA-018-A-16 TO-15 JAM 26 10259332023 SV-138-A-16 TO-15 JAM 26 10259332024 IA-138-A-16 TO-15 JAM 26 10259332025 SV-093-A-16 TO-15 DR1 26 10259332028 BCK-1-16	10259332010	IA-079-A-16	TO-15	JAM	26
10259332013 SV-136-A-16 TO-15 JAM 26 10259332014 IA-136-A-16 TO-15 JAM 26 10259332015 SV-076-A-16 TO-15 JAM 26 10259332016 IA-076-A-16 TO-15 JAM 26 10259332017 SV-075-A-16 TO-15 JAM 26 10259332018 IA-075-A-16 TO-15 JAM 26 10259332019 SV-094-A-16 TO-15 JAM 26 10259332020 IA-094-A-16 TO-15 JAM 26 10259332021 SV-018-A-16 TO-15 JAM 26 10259332022 IA-018-A-16 TO-15 JAM 26 10259332023 SV-138-A-16 TO-15 JAM 26 10259332024 IA-38-A-16 TO-15 JAM 26 10259332025 SV-093-A-16 TO-15 DR1 26 10259332026 BCK-1-16 TO-15 DR1 26 10259332029 BCK-2-16 <t< td=""><td>10259332011</td><td>SV-081-A-16</td><td>TO-15</td><td>JAM</td><td>26</td></t<>	10259332011	SV-081-A-16	TO-15	JAM	26
10259332014 IA-136-A-16 TO-15 JAM 26 10259332015 SV-076-A-16 TO-15 JAM 26 10259332016 IA-076-A-16 TO-15 JAM 26 10259332017 SV-075-A-16 TO-15 JAM 26 10259332018 IA-075-A-16 TO-15 JAM 26 10259332019 SV-094-A-16 TO-15 JAM 26 10259332020 IA-094-A-16 TO-15 JAM 26 10259332021 SV-018-A-16 TO-15 DR1 26 10259332022 IA-018-A-16 TO-15 JAM 26 10259332023 SV-138-A-16 TO-15 JAM 26 10259332024 IA-138-A-16 TO-15 JAM 26 10259332025 SV-093-A-16 TO-15 JAM 26 10259332026 IA-093-A-16 TO-15 DR1 26 10259332027 BCK-1-16 TO-15 DR1, JAM 26 10259332029 BCK-3-16	10259332012	IA-081-A-16	TO-15	JAM	26
10259332015 SV-076-A-16 TO-15 JAM 26 10259332016 IA-076-A-16 TO-15 JAM 26 10259332017 SV-075-A-16 TO-15 JAM 26 10259332018 IA-075-A-16 TO-15 JAM 26 10259332019 SV-094-A-16 TO-15 JAM 26 10259332020 IA-094-A-16 TO-15 JAM 26 10259332021 SV-018-A-16 TO-15 JAM 26 10259332022 IA-018-A-16 TO-15 JAM 26 10259332023 SV-138-A-16 TO-15 JAM 26 10259332024 IA-138-A-16 TO-15 JAM 26 10259332025 SV-093-A-16 TO-15 JAM 26 10259332026 IA-093-A-16 TO-15 DR1 26 10259332027 BCK-1-16 TO-15 DR1 26 10259332028 BCK-2-16 TO-15 DR1 26 10259332030 BCK-4-16	10259332013	SV-136-A-16	TO-15	JAM	26
10259332016 IA-076-A-16 TO-15 JAM 26 10259332017 SV-075-A-16 TO-15 JAM 26 10259332018 IA-075-A-16 TO-15 JAM 26 10259332019 SV-094-A-16 TO-15 JAM 26 10259332020 IA-094-A-16 TO-15 JAM 26 10259332021 SV-018-A-16 TO-15 JAM 26 10259332022 IA-018-A-16 TO-15 JAM 26 10259332023 SV-138-A-16 TO-15 JAM 26 10259332024 IA-138-A-16 TO-15 JAM 26 10259332025 SV-093-A-16 TO-15 JAM 26 10259332026 IA-093-A-16 TO-15 JAM 26 10259332027 BCK-1-16 TO-15 DR1 26 10259332028 BCK-2-16 TO-15 DR1, JAM 26 10259332029 BCK-3-16 TO-15 JAM 26 10259332030 BCK-4-16 TO-15 JAM 26 10259332031 IA-DUP3-A-16 TO	10259332014	IA-136-A-16	TO-15	JAM	26
10259332017 SV-075-A-16 TO-15 JAM 26 10259332018 IA-075-A-16 TO-15 JAM 26 10259332019 SV-094-A-16 TO-15 JAM 26 10259332020 IA-094-A-16 TO-15 JAM 26 10259332021 SV-018-A-16 TO-15 DR1 26 10259332022 IA-018-A-16 TO-15 JAM 26 10259332023 SV-138-A-16 TO-15 JAM 26 10259332024 IA-138-A-16 TO-15 JAM 26 10259332025 SV-093-A-16 TO-15 JAM 26 10259332026 IA-093-A-16 TO-15 DR1 26 10259332027 BCK-1-16 TO-15 DR1 26 10259332028 BCK-2-16 TO-15 DR1 26 10259332039 BCK-3-16 TO-15 DR1, JAM 26 10259332030 BCK-4-16 TO-15 JAM 26 10259332033 IA-DUP3-A-16 <	10259332015	SV-076-A-16	TO-15	JAM	26
10259332018 IA-075-A-16 TO-15 JAM 26 10259332019 SV-094-A-16 TO-15 JAM 26 10259332020 IA-094-A-16 TO-15 JAM 26 10259332021 SV-018-A-16 TO-15 DR1 26 10259332022 IA-018-A-16 TO-15 JAM 26 10259332023 SV-138-A-16 TO-15 JAM 26 10259332024 IA-138-A-16 TO-15 JAM 26 10259332025 SV-093-A-16 TO-15 JAM 26 10259332026 IA-093-A-16 TO-15 JAM 26 10259332027 BCK-1-16 TO-15 DR1 26 10259332028 BCK-2-16 TO-15 DR1 26 10259332039 BCK-3-16 TO-15 DR1, JAM 26 10259332030 BCK-4-16 TO-15 JAM 26 10259332033 IA-DUP3-A-16 TO-15 JAM 26	10259332016	IA-076-A-16	TO-15	JAM	26
10259332019 SV-094-A-16 TO-15 JAM 26 10259332020 IA-094-A-16 TO-15 JAM 26 10259332021 SV-018-A-16 TO-15 DR1 26 10259332022 IA-018-A-16 TO-15 JAM 26 10259332023 SV-138-A-16 TO-15 JAM 26 10259332024 IA-138-A-16 TO-15 JAM 26 10259332025 SV-093-A-16 TO-15 JAM 26 10259332026 IA-093-A-16 TO-15 JAM 26 10259332027 BCK-1-16 TO-15 DR1 26 10259332028 BCK-2-16 TO-15 DR1 26 10259332039 BCK-3-16 TO-15 DR1, JAM 26 10259332030 BCK-4-16 TO-15 JAM 26 10259332032 SV-DUP3-A-16 TO-15 JAM 26 10259332033 IA-DUP3-A-16 TO-15 JAM 26	10259332017	SV-075-A-16	TO-15	JAM	26
10259332020 IA-094-A-16 TO-15 JAM 26 10259332021 SV-018-A-16 TO-15 DR1 26 10259332022 IA-018-A-16 TO-15 JAM 26 10259332023 SV-138-A-16 TO-15 JAM 26 10259332024 IA-138-A-16 TO-15 JAM 26 10259332025 SV-093-A-16 TO-15 JAM 26 10259332026 IA-093-A-16 TO-15 JAM 26 10259332027 BCK-1-16 TO-15 DR1 26 10259332028 BCK-2-16 TO-15 DR1 26 10259332029 BCK-3-16 TO-15 DR1, JAM 26 10259332030 BCK-4-16 TO-15 JAM 26 10259332032 SV-DUP3-A-16 TO-15 JAM 26 10259332033 IA-DUP3-A-16 TO-15 JAM 26	10259332018	IA-075-A-16	TO-15	JAM	26
10259332021 SV-018-A-16 TO-15 DR1 26 10259332022 IA-018-A-16 TO-15 JAM 26 10259332023 SV-138-A-16 TO-15 JAM 26 10259332024 IA-138-A-16 TO-15 JAM 26 10259332025 SV-093-A-16 TO-15 JAM 26 10259332026 IA-093-A-16 TO-15 JAM 26 10259332027 BCK-1-16 TO-15 DR1 26 10259332028 BCK-2-16 TO-15 DR1 26 10259332029 BCK-3-16 TO-15 DR1, JAM 26 10259332030 BCK-4-16 TO-15 JAM 26 10259332032 SV-DUP3-A-16 TO-15 JAM 26 10259332033 IA-DUP3-A-16 TO-15 JAM 26	10259332019	SV-094-A-16	TO-15	JAM	26
10259332022 IA-018-A-16 TO-15 JAM 26 10259332023 SV-138-A-16 TO-15 JAM 26 10259332024 IA-138-A-16 TO-15 JAM 26 10259332025 SV-093-A-16 TO-15 JAM 26 10259332026 IA-093-A-16 TO-15 JAM 26 10259332027 BCK-1-16 TO-15 DR1 26 10259332028 BCK-2-16 TO-15 DR1 26 10259332029 BCK-3-16 TO-15 DR1, JAM 26 10259332030 BCK-4-16 TO-15 JAM 26 10259332032 SV-DUP3-A-16 TO-15 JAM 26 10259332033 IA-DUP3-A-16 TO-15 JAM 26	10259332020	IA-094-A-16	TO-15	JAM	26
10259332023 SV-138-A-16 TO-15 JAM 26 10259332024 IA-138-A-16 TO-15 JAM 26 10259332025 SV-093-A-16 TO-15 JAM 26 10259332026 IA-093-A-16 TO-15 JAM 26 10259332027 BCK-1-16 TO-15 DR1 26 10259332028 BCK-2-16 TO-15 DR1 26 10259332029 BCK-3-16 TO-15 DR1, JAM 26 10259332030 BCK-4-16 TO-15 JAM 26 10259332032 SV-DUP3-A-16 TO-15 JAM 26 10259332033 IA-DUP3-A-16 TO-15 JAM 26	10259332021	SV-018-A-16	TO-15	DR1	26
10259332024 IA-138-A-16 TO-15 JAM 26 10259332025 SV-093-A-16 TO-15 JAM 26 10259332026 IA-093-A-16 TO-15 JAM 26 10259332027 BCK-1-16 TO-15 DR1 26 10259332028 BCK-2-16 TO-15 DR1, JAM 26 10259332029 BCK-3-16 TO-15 DR1, JAM 26 10259332030 BCK-4-16 TO-15 JAM 26 10259332032 SV-DUP3-A-16 TO-15 JAM 26 10259332033 IA-DUP3-A-16 TO-15 JAM 26	10259332022	IA-018-A-16	TO-15	JAM	26
10259332025 SV-093-A-16 TO-15 JAM 26 10259332026 IA-093-A-16 TO-15 JAM 26 10259332027 BCK-1-16 TO-15 DR1 26 10259332028 BCK-2-16 TO-15 DR1 26 10259332029 BCK-3-16 TO-15 DR1, JAM 26 10259332030 BCK-4-16 TO-15 JAM 26 10259332032 SV-DUP3-A-16 TO-15 JAM 26 10259332033 IA-DUP3-A-16 TO-15 JAM 26	10259332023	SV-138-A-16	TO-15	JAM	26
10259332026 IA-093-A-16 TO-15 JAM 26 10259332027 BCK-1-16 TO-15 DR1 26 10259332028 BCK-2-16 TO-15 DR1 26 10259332029 BCK-3-16 TO-15 DR1, JAM 26 10259332030 BCK-4-16 TO-15 JAM 26 10259332032 SV-DUP3-A-16 TO-15 JAM 26 10259332033 IA-DUP3-A-16 TO-15 JAM 26	10259332024	IA-138-A-16	TO-15	JAM	26
10259332027 BCK-1-16 TO-15 DR1 26 10259332028 BCK-2-16 TO-15 DR1 26 10259332029 BCK-3-16 TO-15 DR1, JAM 26 10259332030 BCK-4-16 TO-15 JAM 26 10259332032 SV-DUP3-A-16 TO-15 JAM 26 10259332033 IA-DUP3-A-16 TO-15 JAM 26	10259332025	SV-093-A-16	TO-15	JAM	26
10259332028 BCK-2-16 TO-15 DR1 26 10259332029 BCK-3-16 TO-15 DR1, JAM 26 10259332030 BCK-4-16 TO-15 JAM 26 10259332032 SV-DUP3-A-16 TO-15 JAM 26 10259332033 IA-DUP3-A-16 TO-15 JAM 26	10259332026	IA-093-A-16	TO-15	JAM	26
10259332029 BCK-3-16 TO-15 DR1, JAM 26 10259332030 BCK-4-16 TO-15 JAM 26 10259332032 SV-DUP3-A-16 TO-15 JAM 26 10259332033 IA-DUP3-A-16 TO-15 JAM 26	10259332027	BCK-1-16	TO-15	DR1	26
10259332030 BCK-4-16 TO-15 JAM 26 10259332032 SV-DUP3-A-16 TO-15 JAM 26 10259332033 IA-DUP3-A-16 TO-15 JAM 26	10259332028	BCK-2-16	TO-15	DR1	26
10259332032 SV-DUP3-A-16 TO-15 JAM 26 10259332033 IA-DUP3-A-16 TO-15 JAM 26	10259332029	BCK-3-16	TO-15	DR1, JAM	26
10259332033 IA-DUP3-A-16 TO-15 JAM 26	10259332030	BCK-4-16	TO-15	JAM	26
	10259332032	SV-DUP3-A-16	TO-15	JAM	26
10259332034 SV-DUP4-A-16 TO-15 DR1 26	10259332033	IA-DUP3-A-16	TO-15	JAM	26
	10259332034	SV-DUP4-A-16	TO-15	DR1	26

QUALIFIERS

Project:

MRC SV/IAQ Study Feb 2014

Pace Project No.:

10259332

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to changes in sample preparation, dilution of the sample aliquot, or moisture content.

ND - Not Detected at or above adjusted reporting limit.

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PRL - Pace Reporting Limit.

RL - Reporting Limit.

S - Surrogate

1,2-Diphenylhydrazine (8270 listed analyte) decomposes to Azobenzene.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

ANALYTE QUALIFIERS

Date: 03/19/2014 06:10 PM

A3	The sample was analyzed by serial dilution.
A.)	The sample was analyzed by senal unbulbo.

CH The continuing calibration for this compound is outside of Pace Analytical acceptance limits. The results may be biased high.

E Analyte concentration exceeded the calibration range. The reported result is estimated.

Analyte recovery in the laboratory control sample (LCS) exceeded QC limits. Analyte presence below reporting limits in associated samples. Results unaffected by high bias.

P8 Analyte was detected in the method blank. All associated samples had concentrations of at least ten times greater than

the blank or were below the reporting limit.

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project:

MRC SV/IAQ Study Feb 2014

Pace Project No.:

Date: 03/19/2014 06:10 PM

10259332

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytica Batch
10259332001	SV-015-A-16	TO-15	AIR/19645		
10259332002	IA-015-A-16	TO-15	AIR/19645		
10259332003	SV-108-A-16	TO-15	AIR/19645		
10259332004	IA-108-A-16	TO-15	AIR/19661		
0259332005	SV-118-A-16	TO-15	AIR/19661		
0259332006	IA-118-A-16	TO-15	AIR/19661		
0259332007	SV-117-A-16	TO-15	AIR/19661		
10259332008	IA-117-A-16	TO-15	AIR/19661		
10259332009	SV-079-A-16	TO-15	AIR/19661		
0259332010	IA-079-A-16	TO-15	AIR/19661		
10259332011	SV-081-A-16	TO-15	AIR/19661		
10259332012	IA-081-A-16	TO-15	AIR/19678		•
10259332013	SV-136-A-16	TO-15	AIR/19661		
0259332014	IA-136-A-16	TO-15	AIR/19661		
0259332015	SV-076-A-16	TO-15	AIR/19661		
0259332016	IA-076-A-16	TO-15	AIR/19661		
10259332017	SV-075-A-16	TO-15	AIR/19661		
10259332018	IA-075-A-16	TO-15	AIR/19661		
10259332019	SV-094-A-16	TO-15	AIR/19661		
0259332020	IA-094-A-16	TO-15	AIR/19661		
10259332021	SV-018-A-16	TO-15	AIR/19668		
10259332022	IA-018-A-16	TO-15	AIR/19678		
10259332023	SV-138-A-16	TO-15	AIR/19678		
10259332024	IA-138-A-16	TO-15	AIR/19678		
0259332025	SV-093-A-16	TO-15	AIR/19678		
0259332026	IA-093-A-16	TO-15	AIR/19678		
0259332027	BCK-1-16	TO-15	AIR/19693		
10259332028	BCK-2-16	TO-15	AIR/19668		
10259332029	BCK-3-16	TO-15	AIR/19693		
10259332030	BCK-4-16	TO-15	AIR/19678		
10259332032	SV-DUP3-A-16	TO-15	AIR/19678		
10259332033	IA-DUP3-A-16	TO-15	AIR/19678		
10259332034	SV-DUP4-A-16	TO-15	AIR/19668		

5A - FORM V VOA VOLATILE ORGANIC INSTRUMENT PERFORMANCE CHECK BROMOFLUOROBENZENE (BFB)

EPA SAMPLE NO.

BFB

Lab Name: Pace Analytical

Contract:

Lab Code: PASI

Case No.:

SAS No.:

SDG No.: 10259332

Lab File ID: 07704BFB.D

BFB Injection Date: 03/18/2014

Instrument ID: 10AIR0

BFB Injection Time: 10:18

GC Column: J&W DB-5

ID: 0.32 (mm)

		% RELATIVE	
m/e	ION ABUNDANCE CRITERIA	ABUNDANCE	
95	Base Peak, 100% relative abundance	100.00	
50	8.00 - 40.00% of mass 95	19.42	
75	30.00 - 66.00% of mass 95	50.84	
96	5.00 - 9.00% of mass 95	6.97	
173	Less than 2.00% of mass 174	0.58	(0.67)
174	50.00 - 120.00% of mass 95	86.39	
175	4.00 - 9.00% of mass 174	6.90	(7.98)
176	93.00 - 101.00% of mass 174	82.62	(95.64)
177	5.00 - 9.00% of mass 176	5.47	(6.62)

1 - Value is %mass 174

2 - Value is %mass 176

EPA SAMPLE NO.	LAB SAMPLE ID	LAB FILE ID	DATE ANALYZED	TIME ANALYZED
CAL1	CAL1	07705.D	03/18/2014	10:43
CAL2	CAL2	07706.D	03/18/2014	11:07
CAL3	CAL3	07707.D	03/18/2014	11:33
CAL4	CAL4	07708.D	03/18/2014	11:59
CAL5	CAL5	07709.D	03/18/2014	12:26
CAL6	CAL6	07710.D	03/18/2014	12:52
CAL7	CAL7	07711.D	03/18/2014	13:21
ICVADDL (LCS)	ICVADDL	07712.D	03/18/2014	13:46
ICV (LCS)	ICV	07713.D	03/18/2014	14:10
LCS (LCS)	LCS	07714.D	03/18/2014	14:35
BLANK (BLK)	BLANK	07718_BLANK.	03/18/2014	16:18
SV-DUP3-A-16	10259332032	07720.D	03/18/2014	17:31

5A - FORM V VOA **VOLATILE ORGANIC INSTRUMENT** PERFORMANCE CHECK BROMOFLUOROBENZENE (BFB)

EPA SAMPLE NO.	
BFB	

Lab Name: Pace Analytical

Contract:

Lab Code: **PASI**

Case No.:

SAS No.:

SDG No.: 10259332

Lab File ID: 07108BFB D

BFB Injection Date: 03/12/2014

Instrument ID: 10AIRD

BFB Injection Time: 14:08

GC Column: J&W DB-5

ID: 0.32 (mm)

		% RELATIVE	
m/e	ION ABUNDANCE CRITERIA	ABUNDANC	E
95	Base Peak, 100% relative abundance	100.00	
50	8.00 - 40.00% of mass 95	18.00	
75	30.00 - 66.00% of mass 95	57.87	
96	5.00 - 9.00% of mass 95	6.44	
173	Less than 2.00% of mass 174	0.00	(0.00)
174	50.00 - 120.00% of mass 95	94.75	
175	4.00 - 9.00% of mass 174	7.31	(7.71)
176	93.00 - 101.00% of mass 174	92.10	(97.21)
177	5.00 - 9.00% of mass 176	5.49	(5.96)

1 - Value is %mass 174

2 - Value is %mass 176

EPA SAMPLE NO.	LAB SAMPLE ID	LAB FILE ID	DATE ANALYZED	TIME ANALYZED
CAL1	CAL1	07109.D	03/12/2014	14:36
CAL2	CAL2	07110.D	03/12/2014	15:04
CAL3	CAL3	07111.D	03/12/2014	15:32
CAL4	CAL4	07112.D	03/12/2014	15:59
CAL5	CAL5	07113.D	03/12/2014	16:27
CAL6	CAL6	07114.D	03/12/2014	16:56
ICVADD (LCS)	ICVADD	07116.D	03/12/2014	17:51
ICV (LCS)	ICV	07117.D	03/12/2014	18:19

INITIAL CALIBRATION DATA

Start Cal Date : 12-MAR-2014 14:36
End Cal Date : 12-MAR-2014 16:56
Quant Method : ISTD
Target Version : 4.14
Integrator : HP RTE
Method file : \\192.168.10.12\chem\10airD.i\031214.b\T015_071-14.m
Last Edit : 13-Mar-2014 11:19 ahamilton

Calibration File Names:
Level 1: \\192.168.10.12\chem\10airD.i\031214.b\07109.d
Level 2: \\192.168.10.12\chem\10airD.i\031214.b\071110.d
Level 3: \\192.168.10.12\chem\10airD.i\031214.b\071112.d
Level 4: \\192.168.10.12\chem\10airD.i\031214.b\071112.d
Level 5: \\192.168.10.12\chem\10airD.i\031214.b\071113.d
Level 6: \\192.168.10.12\chem\10airD.i\031214.b\071114.d

	1	0.1000000	0.2000000	1.0000	10.0000	20.0000	30.0000	Co	efficients		%RSD
Compound	- 1	Level 1	Level 2	Level 3	Level 4	Level 5	Level 6 Curve	b	m'_	m2	or R^2
	== =		-				-				i
1 Chlorodiflucromethane	- 1	1.84707	2.20998	2.08707	2.38311	2.65662	2.59098 AVRG	1	2.29581		1 13.45696
2 Propylene	- 1	8.30420	10.33282	9.034831	7.10137	7.428451	6.97995 AVRG	1	8.196941		1 15.95078.
3 Dichlorodifluoromethane	- 1	1.11783	1.07868	1.105551	0.92929(1.04706	1.16498 AVRG	1	1.07373		7.58585
4 Dichlorctetrafluoroethane	- 1	1.13666	1.26817	1.26495	1.09100	1.22570	1.20808 AVRG	1	1.19909:		5.95336
5 Chloromethane	- 1	3.99438	4.61963	4.18383	3.64123	3.99128	3.89205 AVRG	1	4.05373		8.11362
6 Vinyl chloride	- 1	3.89964	4.888401	4.609961	3.921041	4.19250	4.07899 AVRG	1	4.26509		9.37421
7 1,3-Butadiene	1	5.84568	7.723971	7.53790	6.27815	6.73700	6.57185 AVRG	1	6.78243		10.70426:
9 Bromomethane	- 1	3.85148	3.70757	3.801271	3.16512	3.37792	3.22720 AVRG		3.52176		8.57516:
9 Chloroethane	- 1	9.58989	9.74752	9.91081	8.42077	8.98106	8.83494 AVRG		9.24750		6.36433
10 Ethanol	- 1	3.89796(5.82756	9.93536	7.64804	8.49662	8.16434 AVRG		7.32832:		29.25557
11 Vinyl Bromide	- 1	3.81895[3.73543	3.902161	3.21578	3.35402	3.28417 AVRG		3.55175)		8.46051
12 Isopentane	- 1	4.15019[5.61721	5.085091	4.26655	4.60957	4.50317 AVRG		4.70530		11.74291
13 Trichlorofluoromethane	- 1	0.97860	1.05490	1.05080:	0.90657	1.02263	1.04827 AVRG		1.01030		1 5.769651
14 Acrolein	- 1	11.00155	19.36844	11.84109	12.78597	13.21486	12.77064 AVRG	1	13.49709		[22.11707]
I	_1_		1		1	1	1 1	1	1		1 1

10259332 Page 380 of 2722

INITIAL CALIBRATION DATA

Start Cal Date : 12-MAR-2014 14:36
End Cal Date : 12-MAR-2014 16:56
Quant Method : ISTD
Target Version : 4.14
Integrator : HP RTE
Method file : \\192.168.10.12\chem\10airD.i\031214.b\T015_071-14.m
Last Edit : 13-Mar-2014 11:19 ahamilton

	- 1	0.1000000	0.2000000	1.0000	10.0000	20.0000	30.0000	I	Coefficients		- 1	%RSD
Compound	- 1	Level 1	Level 2	Level 3 ;	Level 4	Level 5	Level 6 Cur		m_	m2	-	or R^2
15 3	-== -				3850661		1202/2617-	,			= =	
15 Acetone	!	12955	17620	59374		821697	1299436 LIN				1	0.99952
16 Isopsopyi Alcohol	!	2522	61971	273701	3481291	710045	1181465 LIN				1	0.99791:
17 1,1-Dichloroethene	1	2.89663	2.83261	2.53167	2.13799	2.43318	2.38891 AVR		2.53683		1	11.26954
19 Tert Butyl Alcohol	- 1	2.01544	2.01355	1.97750	1.60447	1.85244	1.69899 AVE		1.86040		-	9.39724
19 Adrylonitrile	- 1	798	1962	11027	1575831	326134	544552 LIN	NR 0.01435	5.82725		ı	0.99787
20 Freon 113	- 1	1.81592	1.81395	1.86800	1.62128)	1.72976	1.65941 AVE	RG	1.75138		- 1	5.56711
21 Methylene chloride	- 1	+-+++ [11007	370261	271086	601613	948282 LIN	R -0.02453	3.35108		-1	0.99976
22 Allyl Chloride	- 1	12.56010	9.992431	9.29961	8.09682	7.86363	7.60875 AVE	RG	9.236891			20.22778.
23 Carbon Disulfide	- 1	1.21729	1.27786	1.37447!	1.21500	1.17409	1.16213 AVR	RG	1.23681;		-	6.366601
24 trans-1,2-dichloroethene	- 1	2193	4083	20952	267742	598892	914376 LIN	IR 0.00097	3.40156		-	0.999801
25 Methyl Tert Butyl Ether	- 1	5391	11416	58411	735328	1636774	2492668 LIN	R −0.00092	1.24721		1	0.99973
26 Vinyl Acetate	- 1	39941	8348	44040	559546	1246062	1921527 LIN	R 0.00314	1.62242		1	0.99988
27 1,1-Dichloroethane	- 1	2.439511	2.35952	2.23621	1.96824	2.06167	2.07531 AVR	RG	2.18991		-	3.45938
29 Methyl Ethyl Ketone	- 1	8.61264	10.67807	9,92530	8.86593	8.41578	8.57651 AVR	RG	9.17904		-	9.94729
3C n-Hexane	- 1	3.37310	3.48926	3.72236.	3.14871	3.07110	3.21794 AVR	RG (3.33708		1	7.25803
31 Di-isopropyl Ether	- 1	1.64274	1.81782	1.696691	1.46101	1.42911	1.38956 AVA	RG	1.57282		-	10.90150
32 cis-1,2-Dichloroethene	- 1	2137	3858	199491	274310	578513	947258 LIN	R 0.01062	3.33737!		1	0.99876
33 Ethyl Acetate	- 1	3824	7381	38812	495896	1038850	1706192 LIN	IR 0.00822	1.85579		1	0.99861:
34 Chloroform	- 1	1.37666	1.427031	1.45533	1.24153	1.35690	1.33504 AVR	RG	1.36541		1	5.51478
35 Ethyl Tert-Butyl Ether	- 1	5101	11163	56108	6893441	1498577	2432017 LIN	R 0.01121	1.29833		i	0.99925
36 Tetrahydrofurar	Ţ	5.26997	7.17005	6.09059	4.46509	4.75097	4.29754 AVR	RG	5.34070		i	20.70947
37 1,1,1-Trichlorsethane	- 1	1.50495	1.40673	1.38469	1.11945	1.25944	1.25609 AVR	RG	1.32189		i	10.36522
	- 1	1	1	1	1	1	1	1			1	

Page 381 of 2722 10259332

INITIAL CALIBRATION DATA

Start Cal Date : 12-MAR-2014 14:36
End Cal Date : 12-MAR-2014 16:56
Quant Method : ISTD
Target Version : 4.14
Integrator : HP RTE
Method file : \\192.168.10.12\chem\10airD.i\031214.b\T015_071-14.m
Last Edit : 13-Mar-2014 11:19 ahamilton

	10.	1000000 T	0.2000000	1.0000	10.0000	20.0000	30.0000	Se	efficients		1	%RSD
Compound		evel 1	Level 2	Level 3	Level 4	Level 5	Level 6 Curve	ь	ml	m2		r R^2
38 1.2-Dichlorcethane	-		2.01016	1.97100	1.691131	1.872981	1.88399 AVRG		1.899701			6.072421
39 Benzene	i	1.43681	1.55608	1.46339+	1.12407	1.19846	1.12510 AVRG		1.31732		i 1	4.44489
40 Carbon tetrachloride	1	1.31309	1.38980	1.37672	1.10581	1.28897	1.32943 AVRG	1	1.30064;		1	7.90208
41 Oyolohexane	1	1838	3775	229621	3032491	634718	1021012 LINR	0.00424	3.C8391		Ĺ	0.99907
42 Tert Amyl Methyl Ether	1	17758	24679	68807	7554221	1603988	2554497 LINR	-0.01200	1.23815		Ĺ	0.99944
44 2,2,4-Trimethylpentane	1	7224	14397	77193	9633171	1984213	3297749 LINR	0.00753	0.96317		ı	0.99800
45 Heptane	1	2778	4463	245771	3413141	717642	1123468 LINR	-0.00219	2.78458:		i	0.999271
46 1,2-Dichloropropane	1	1934	4268	20270	275121	502731	942091 LINR	0.00746	3.34645		1	0.999121
47 Trichloroethene	1	3.56455	3.49608	3.46217	2.62209	2.74872	2.67422 AVRG	1	3.09464		1 1	4.71455;
49 Bromodichloromethane	1	1.35196	1.324391	1.34149	1.07629	1.16319	1.18352 AVRG		1.24014		İ	9.25368
49 1,4-Dioxane	1	7.06505	8.16071	7.47531	5.51964	5.640361	5.41685 AVRG		6.54632		1 :	7.93051
50 Methyloyolohexane	1	1065	25171	132341	165262	372185	578677 LINR	0.00739	5.39751		1	0.99996
51 Methyl Isobutyl Ketone	1	29261	6431	364971	502300	1073067	1712543 LINR	0.00711	1.83404		1	0.99943
52 cis-1,3-Dichloropropene	1	3361	7460	35563:	496474	1064359	1720174 LINR	0.01066	1.83165		1	0.99924
53 trans-1,3-Dichloropropene	1	3833	6222	38146	572995	1217189	1863188 LINR	-0.00355	1.66787:		1	0.99912
55 Toluene	1	12808	15225	76878	1049359	23077641	3573128 LINR	0.00329	0.872921		i	0.99980
56 1,1,2-Trichloroethane	1	2.79977	3.262201	3.10938	2.34994	2.41284	2.35750 AVRG	1	2.71527		1 1	4.86457
57 Methyl Butyl Ketone	1	31151	5648	36044.	510936	10767021	1686729 JINR	0.01333	0.99805		i	0.99982
58 Dibromochloromethane	1	50791	10721	52406;	7336941	1495682	2389620 LINR	0.01047	0.70854		ł	0.99932
59 1,2-Dibromoethane	1	1.03870	0.98439	0.98233	0.81122	0.79994	0.76810 AVRG	i	0.89744		1 1	3.03189
60 Tetrachioroethene	1	1.09891	1.11322	1.085911	0.910761	0.86975	0.84570 AVRG	ï	0.98738		1 1	2.63046
62 Chlorobenzene	1	C.79863	0.93831	0.81353	0.67409	0.64687	0.63561 AVRG	1	0.73451		1 2	2.51402
	1		1	1	1	1	1 1	1			ı	,

Page 382 of 2722 10259332

INITIAL CALIBRATION DATA

Start Cal Date : 12-MAR-2014 14:36
End Cal Date : 12-MAR-2014 16:56
Quant Method : ISTD
Target Version : 4.14
Integrator : HP RTE
Method file : \\192.168.10.12\chem\10airD.i\031214.b\T015_071-14.m
Last Edit : 13-Mar-2014 11:19 ahamilton

	Ī	0.10000000	0.2000000	1.0000	10.0000 [20.0000	30.0000	1 0	Coefficients	1	%RSD
Compound	!	Level 1	Level 2	Level 3	Level 4 (Ievel 5	Level 6 Curv	el b	ml	m2	or R^2
63 Ethyl Benzene	-	87981	16706	102814	1402365	3086160	4707341 LINR		0.35834		C.99993
64 máp-Xylene	- 1	69141	14151	81094	11203471	2355902	3705219 LENR	0.01289	0.454981	1	0.99976
65 Bromoform	- 1	5717	10782	56975	859792	1842792	2807865 LINR	. 0.00977.	0.59533	1	0.99993
66 Styrene	- 1	3983	8138	51055	787972	1655243	2606991 LINR	0.01655	0.64594	1	0.99972
67 o-Xylene	- 1	75481	14271	85734	1188529	2456161	3804048 LINR	1 0.005401	0.44165	- 1	0.99983
68 1,1,2,2-Tetrachioroethane	- 1	0.81657	0.89467	0.81911.	0.63587	0.64088	0.62524 AVRG	1 1	0.73873	1	16.00246
69 Isopropylbenzene	- 1	103201	19216	103260	1451853	3084217	4734953 LINR	. 0.00818	0.353991	1	0.99996
70 N-Propylbenzene	- 1	104471	20932	124461.	1825752	3803407	5981173 LINR	. 0.01295	0.28167	1	0.99973
71 4-Ethyltoluene	- 1	+++++	0.60445	0.48867	0.36975	0.37197	0.35774 AVRG	1 1	0.43852:	1	24.38335
72 1,3,5-Trimethylbenzene	1	65641	14286	88734:	1224789	2573268	4072084 LINR	0.01494	0.41449	1	0.99965
73 Tert-Butyl Benzene	- 1	57201	12925	790331	1120494	2356681	3694867 LINR	0.01334	0.45568	1	0.99980
74 1,2,4-Trimethylbenzene	- 1	6901	14815	842161	1217443	25404741	3980669 LINR	0.01167	0.42295	1	0.99978
75 1,3-Dichlorobenzene	- [+++++	0.98955	0.86971	0.65511	0.65965[0.64347[AVRG	1	0.76350	1	20.63877
76 Sec- Butylbenzene	- 1	9233	18059	115499	1654994	34976091	5384553 LINR	0.009761	0.31127	1	0.99995
78 Benzyl Chloride	- 1	5460	10465	60380	1025289	2189893	3464827 [QUAD	-0.02466	1.93992	0.04194	0.99985
79 1,4-Dichlorobenzene	1	+-+++	0.94318	0.89739	0.67009	0.67251	0.65124 AVRG	· 1	0.76688	1	18.41364
80 p-Isopropyltoluene	1	+-+-+	0.69177	0.52105	0.41954	0.40475	0.40421 AVRG	- 1 :	0.48826	1	25.34366
81 1,2,3-Trimethylbenzene	- 1	6736	14861	90603	1109030	23889771	3649308 LINR	0.00934	0.45871:	1	0.99997
82 1,2-Dichlorobenzene	1	4490	9618	46991	696705	1453901	2352537 LINR	. 0.02065	0.72091	1	0.99901
83 N-Butylberzene	- 1	6331	15037	94132	1364510	2885118	4413147 LINR	0.00842	0.37915	1	0.99993
84 1,2,4-Trichlorobenzene	- 1	36031	71241	373271	613589	1357627	2122357 QUAD	-0.01725	1.19155	0.02576	0.99994
85 Naphthalene	i.	47931	83641	576431	960782	2102178)	3457455 QUAD	-0.01833	1.72712	0.11020	0.99980
	- 1	1	1		1	t	1	1 .	1	1	

Page 383 of 2722 10259332

Report Date : 13-Mar-2014 11:19

Pace Analytical Services, Inc.

INITIAL CALIBRATION DATA

Start Cal Date : 12-MAR-2014 14:36
End Cal Date : 12-MAR-2014 16:56
Quant Method : ISTD
Target Version : 4.14
Integrator : HP RTE
Method file : \\192.168.10.12\chem\10airD.i\031214.b\T015_071-14.m
Last Edit : 13-Mar-2014 11:19 ahamilton

	- [0.1000000	0.2000000	1.0000	10.0000	20.0000	30.0000 []	Co	efficients		1	%RSD
Compound	- 1	Level 1	Level 2	Level 3	Level 4	Level 5	Level 6 [Curve]	b	m:	m2	1	or R12
	!-						·				1==	
86 Hexachlorobutadiene	- 1	4667	8662	46156	621041	1288173	2006115 LINR	0.00597	0.83912		I	0.99983
28 Hexane-d14(S)	1	2.48646	2.25498	2.26576	2.45626	2.27358	2.47599(AVRG	1	2.36884		1	4.93610
54 Toluene-d8 (S)	- 1	1.18425	1.16663	1.19488	1.14030	1.14662	1.19130(AVRG	1	1.17066		1	1.98980
77 1,4-dichlorobenzene-d4 (S)	- 1	1.99059	1.94186(1.85306	1.94464	1.81821	1.80511 AVRG	1	1.89225		1	4.05846
	- 1	1	1		1	1	+ 1	1			1	

Page 384 of 2722 10259332

INITIAL CALIBRATION DATA

Start Cal Date : 12-MAR-2014 14:36
End Cal Date : 12-MAR-2014 16:56
Quant Method : ISTD
Target Version : 4.14
Integrator : HP RTE
Method file : \\192.168.10.12\chem\10airD.i\031214.b\T015_071-14.m
Last Edit : 13-Mar-2014 11:19 ahamilton

Average %RSD Results.		ı
Calculated Average %RSD =	10.56159	
Maximun Average %RSD =	30.00000	
Passed Average %RSD Test.	1	
1	1	

Curve Formula	Units
Averaged Amt = ml*Rsp	Amount
; Linear Amt = b + ml*Rsp	Amount
· Quad Rsp = b + m1*Amc - mi	2*Amt^2 Amount

Page 385 of 2722 10259332

5A - FORM V VOA VOLATILE ORGANIC INSTRUMENT PERFORMANCE CHECK BROMOFLUOROBENZENE (BFB)

EPA SAMPLE NO.

BFB

Lab Name: Pace Analytical

Contract:

Lab Code:

PASI

Case No.:

SAS No.:

SDG No.: 10259332

Lab File ID: 07301BFB.D

BFB Injection Date: 03/14/2014

Instrument ID: 10AIRD

BFB Injection Time: 12:07

GC Column: J&W DB-5 ID: 0.32

(mm)

		% RELATIVE	=
m/e	ION ABUNDANCE CRITERIA	ABUNDANC	E
95	Base Peak, 100% relative abundance	100.00	
50	8.00 - 40.00% of mass 95	21.37	
75	30.00 - 66.00% of mass 95	56.05	
96	5.00 - 9.00% of mass 95	6.88	
173	Less than 2.00% of mass 174	0.00	(0.00)
174	50.00 - 120.00% of mass 95	91.10	
175	4.00 - 9.00% of mass 174	7.23	(7.94)
176	93.00 - 101.00% of mass 174	89.93	(98.72)
177	5.00 - 9.00% of mass 176	6.64	(7.38)

1 - Value is %mass 174

2 - Value is %mass 176

	EPA SAMPLE NO.	LAB SAMPLE ID	LAB FILE ID	DATE ANALYZED	TIME ANALYZED
	CCV	CCV	07302.D	03/14/2014	12:36
	LCS for HBN 289655 [AIR/	1640973	07321_19693.D	03/14/2014	22:33
	LCS for HBN 289483 [AIR/	1640108	07321.D	03/14/2014	22:33
	BLANK for HBN 289483 [AI	1640107	07323.D	03/14/2014	23:29
	BLANK for HBN 289655 [AI	1640972	07323_19693.D	03/14/2014	23:29
	BCK-3-16	10259332029	07326.D	03/15/2014	00:56
	BCK-2-16	10259332028	07328.D	03/15/2014	01:54
	SV-DUP4-A-16	10259332034	07335.D	03/15/2014	05:15
	BCK-1-16	10259332027	07337.D	03/15/2014	06:14
)	SV-018-A-16	10259332021	07340.D	03/15/2014	07:38

Data File: \\192.168.10.12\chem\10airD.i\031414.b\07302.d Report Date: 14-Mar-2014 13:02

Pace Analytical Services, Inc.

CONTINUING CALIBRATION COMPOUNDS

			CCAL MI	N	MAX	T	
COMPOUND	RRF / AMOUNT	RF10		F %D / %DRIFT			
Chlorodifluoromethane	2.29581	2.39762	2.39762 0.0	•	•	•	
Propylene	8.19694	7.01976	7.01976 0.0	10(-14.36120	30.00000	Averaged	
Dichlorodifluoromethane	1.07373	0.91849	0.91849 0.0	10 -14.45798	30.00000	Averaged	
Dichlorotetrafluoroethane	1.19909	1.11146	1.11146 0.0	10 -7.30818	30.00000	Averaged	
Chloromethane	4.05373	3.70784	3.70784 0.0	10 -8.53273	30.00000	Averaged	
Vinyl chloride	4.26509	3.82837	3.82837[0.0	10 -10.2394	7 30.00000	Averageo	
1,3-Butadiene	6.78243	6.31938	6.31938(0.0	10 -6.82718	30.00000	Averaged	
Bromomethane	3.52176	3.08815	3.08815 0.0	10 -12.31243	30.00000	Averaged	
Chloroethane	9.24750	8.68366	8.68366 0.0	10 -6.09724	30.00000	Averaged	
0 Ethanol	7.32832	7.46866	7.46866 0.1	00 1.9150	30.00000	Averaged	
1 Vinyl Bromide	1 3.551751	3.15473	3.15473 0.0	10 -11.1782	7 30.00000	Averaged	
2 Isopentane	4.705301	4.29731	4.29731 0.0	10 -8.67068	30.00000	Averaged	
3 Trichlorofluoromethane	1.01030	0.94450	0.94450 0.0	10 -6.51304	30.00000	Averaged	
4 Acrolein	13.49709	13.26250	13.26250 0.0	10 -1.73806	30.00000	Averaged	
5 Acetone	10.000001	10.96112	2.16298 0.0	10 9.61110	30.00000	Linear	
6 Isopropyl Alcohol	10.00000	10.30119	2.62523 0.0	10 3.01194	30.00000	Linear	
7 1.1-Dichloroethene	2.536831	2.28818	2.28818 0.0	10 -9.80146	30.00000	Averaged	
8 Tert Butyl Alcohol	1.860401	1.64116	1.64116 0.1	00 -11.78420	30.00000	Average	
9 Acrylonitrile	10.000001	10.05324	5.88034 0.0				
0 Freon 113	1.75138	1.732421	1.7324210.0	10 -1.08260	30.00000	Averaged	
1 Methylene chloride	10.00000	9.19091	3.55130 0.0				
2 Allyl Chloride	9.23689	8.94377	8.94377 0.0		41 30.00000		
3 Carbon Disulfide	1.23681	1.22877	1.22877 0.0		•		
4 trans-1,2-dichloroethene	10.00000	9.85537	3.45488 0.0	10) -1.44633	30.00000		
5 Methyl Tert Butyl Ether	10.00000	9.56019	1.30333 0.0				
6 Vinyl Acetate	10.00000	9.62750	1.69070 0.0		•		
7 1,1-Dichloroethane	2.18991	2.11311	2.11311 0.0	-	•		
28 Hexane-d14(S)	2.36884	2.507031	2.5070310.2			-	
9 Methyl Ethyl Ketone	9.17904	8.31752	8.31752 0.0	•	•		
C n-Hexane	3.33708	3.10555	3.10555 0.0		•		
31 Di-isopropyl Ether	1.57282	1.40098	1,40098 0.0		•		
32 cis-1,2-Dichloroethene	10.00000	10.31003	3.27071 0.0	•	•		
33 Ethyl Acetate	10.00000	10.42823	1.7937210.0				
4 Chloroform	1.36541	1.19953	1.19953 0.0	,	•	•	
35 Ethyl Tert-Butyl Ether	10.000001	11.037191	1.18839 0.0				
36 Tetrahydrofuran	5.34070	4.35104	4.35104 0.0			•	
37 1.1.1-Trichloroethane	1.321891	1.137501	1.13750[0.0		•		
38 1,2-Dichloroethane	1.89970	1.72133	1.7213310.0				
39 Benzene	1.31732	1.12463	1.12463 0.3				
O Carbon tetrachloride	1.300641	1.17898	1.17898 0.0				
1 Cyclchexane	10.000001	9.58303	3.23241 0.0				
2 Tert Amyl Methyl Ether	10.000001	10.65215	1.14940 0.0			•	

10259332 Page 1772 of 2722 Data File: \\192.168.10.12\chem\10airD.i\031414.b\07302.d Report Date: 14-Mar-2014 13:02

Pace Analytical Services, Inc.

CONTINUING CALIBRATION COMPOUNDS

Injection Date: 14-MAR-2014 12:36
Init. Cal. Date(s): 12-MAR-2014 12-MAR-2014
Init. Cal. Times: 14:36 16:56
Quant Type: ISTD Instrument ID: 10airD.i Injection Date: 14-MAR-2014 12:36
Lab File ID: 07302.d Init. Cal. Date(s): 12-MAR-2014
Analysis Type: AIR Init. Cal. Times: 14:36
Lab Sample ID: CCV Quant Type: ISTD
Method: \\192.168.10.12\chem\10airD.i\031414.b\T015_071-14.m

	I	1	CCAL MIN		MAX	1
COMPOUND	RRF / AMOUNT	RF10	RRF10 RRF		%D / %DRIFT	
44 2,2,4-Trimethylpentane	10.00000	10.32763	0.93946;0.010		•	
45 Heptane	10.00000	10.47497	2.65278 0.010	4.74972	30.00000	Linear
46 1,2-Dichloropropane	10.00000	10.28142	3.27865 0.010	2.81420	30.00000	Linear
47 Trichloroethene	3.09464	2.58329	2.58329 0.010	-16.52368	30.00000	Averaged
48 Bromodichloromethane	1.24014	1.05222	1.05222 0.010	-15.15340	30.00000	Averaged
49 1,4-Dioxane	[6.54632]	4.86862	4.86862 0.010	-25.62811	30.00000	Averaged
50 Methylcyclohexane	[10.00000]	10.50510	5.17440[0.010]	5.05102	30.00000	Linear
51 Methyl Isobutyl Ketone	1 10.000001	10.33663	1.78661 0.010	3.36634	30.00000	Linear
52 cis-1,3-Dichloropropene	10.00000	10.43746	1.77299 0.010	4.37463	30.00000	Linear
53 trans-1,3-Dichloropropene	10.00000	10.54302	1.57666 0.010	5.43019	30.00000	Linear
\$ 54 Toluene-d8 (S)	1.17066	1.13392	1.13392 0.200	-3.13859	30.00000	Averaged
55 Toluene	10.000001	10.20878	0.85784 0.300	2.08785	30.00000	Linear
56 1,1,2-Trichloroethane	2.71527	2.34380	2.34380 0.010	-13.68097	30.00000	Averaged
57 Methyl Butyl Ketone	10.00000	10.60478	0.95311[0.010]	6.04779	30.00000	Linear
58 Dibromochloromethane	10.00000	11.33782	0.63076[0.010]	13.37815	30.00000	Linear
59 1,2-Dibromoethane	0.89744	0.74375	0.74375 0.010	-17.12631	30.00000	Averaged
60 Tetrachloroethene	0.98738	0.79430	0.79430 0.010	-19.55396	30.00000	Averaged
62 Chlorobenzene	0.73451	0.59341	0.59341 0.010	-19.21006	30.00000	Averaged
63 Ethyl Benzene	[10.00000]	10.71910	0.33567 0.300	7.19104	30.00000	Linear
64 m&p-Xylene	10.000001	10.85847	0.42405 0.300	8.58473	30.00000	Linear
65 Bromoform	10.00000	11.01610	0.54525 0.010	10.16097	30.00000	Linear
66 Styrene	10.00000	11.09042	0.59125 0.010	10.90423	30.00000	Linear
67 o-Xylene	10.00000	11.07387	0.40078 0.300	10.73866	30.00000	Linear
68 1,1,2,2-Tetrachloroethane	0.73873	0.59306	0.59306 0.010	-19.71818	30.00000	Averaged
69 Isopropylbenzene	10.00000	11.25345	0.31687 0.010	12.53450	30.00000	Linear
70 N-Propylbenzene	10.00000	11.00830	0.25889 0.010	10.08296	30.00000	Linear
71 4-Ethyltoluene	0.43852	0.34430	0.34430 0.010	-21.48443	30.00000	Averaged
72 1,3,5-Trimethylbenzene	10.00000	10.92897	0.38452 0.010	9.28967	30.00000	Linea:
73 Tert-Butyl Benzene	10.00000	11.13060	0.41436 0.010	11.30602	30.00000	Linear
74 1,2,4-Trimethylbenzene	10.00000	11.32973	0.37719 0.010	13.29732	30.00000	Linear
75 1,3-Dichlorobenzene	0.76350	0.59217	0.59217 0.010	-22.44027	30.00000	Averaged
76 Sec- Butylbenzene	10.00000	11.17166	0.28108 0.010	11.71660	30.00000	Linear
\$ 77 1,4-dichlorobenzene-d4 (S)	1.89225	1.95037	1.95037 0.200	3.07156	30.00000	Average:
78 Benzyl Chloride	10.00000	11.07194	0.45985 0.010	10.71944	30.00000	Quadratio
79 1,4-Dichlorobenzene	0.76688	0.60760	0.60760 0.010	-20.77032	30.00000	Average:
80 p-Isopropyltoluene	0.48826	0.37251	0.37251 0.010	-23.70793	30.00000	Average:
81 1,2,3-Trimethylbenzene	10.00000	10.40171	0.44499 0.010	4.01709	30.00000	Linear
82 1,2~Dichlorobenzene	10.000001	10.71392	0.68609 0.010	7.13917	30.00000	Linear
83 N-Butylbenzene	10.000001	11.28526	0.33850 0.010	12.85260	30.00000	Linear
84 1,2,4-Trichlorobenzene	10.00000	11.17506	0.74268 0.010	11.75059	30.00000	Quadratio
85 Naphthalene	10.00000	11.45900	0.47495 0.010	14.59001	30.00000	Quadratio
86 Hexachlorobutadiene	10.000001	11.69282	0.7213210.910	16.92815	30.00000	Linear
	i i	i	1	ı	I	I.

10259332 Page 1773 of 2722 Data File: \\192.168.10.12\chem\10airD.i\031414.b\07302.d Report Date: 14-Mar-2014 13:02

Pace Analytical Services, Inc.

CONTINUING CALIBRATION COMPOUNDS

Instrument ID: 10airD.i Lab File ID: 07302.d Analysis Type: AIR Injection Date: 14-MAR-2014 12:36
Init. Cal. Date(s): 12-MAR-2014 12-MAR-2014
Init. Cal. Times: 14:36 16:56

Lab Sample ID: CCV Quant Type: ISTD

Method: \\192.168.10.12\chem\10airD.i\031414.b\T015_071-14.m

|Average %D / Drift Results. |Calculated Average %D/Drift = 9.52996 |Maximum Average %D/Drift = 30.00000 |* Passed Average %D/Drift Test.

> Page 1774 of 2722 10259332

5A - FORM V VOA VOLATILE ORGANIC INSTRUMENT PERFORMANCE CHECK BROMOFLUOROBENZENE (BFB)

EPA SAMPLE NO.

BFB

Lab Name: Pace Analytical

Contract:

Lab Code: PASI

Case No.:

SAS No.:

SDG No.: 10259332

Lab File ID: 07603BFB.D

BFB Injection Date: 03/17/2014

Instrument ID: 10AIRD

BFB Injection Time: 09:34

GC Column: J&W DB-5

ID: 0.32 (mm)

		% RELATIVE	
m/e	ION ABUNDANCE CRITERIA	ABUNDANCI	Ē
95	Base Peak, 100% relative abundance	100.00	
50	8.00 - 40.00% of mass 95	17.83	
75	30.00 - 66.00% of mass 95	54.54	
96	5.00 - 9.00% of mass 95	6.52	
173	Less than 2.00% of mass 174	0.81	(0.84)
174	50.00 - 120.00% of mass 95	96.19	
175	4.00 - 9.00% of mass 174	7.69	(8.00)
176	93.00 - 101.00% of mass 174	93.60	(97.31)
177	5.00 - 9.00% of mass 176	6.13	(6.55)

1 - Value is %mass 174

2 - Value is %mass 176

EPA SAMPLE NO.	LAB SAMPLE ID	LAB FILE ID	DATE ANALYZED	TIME ANALYZED
CAL4	CAL4	07605.D	03/17/2014	10:49
CAL5	CAL5	07606.D	03/17/2014	11:30
CAL6	CAL6	07607.D	03/17/2014	11:59
CAL1	CAL1	07609.D	03/17/2014	13:04
CAL2	CAL2	07610.D	03/17/2014	13:32
CAL3	CAL3	07611.D	03/17/2014	13:59
ICVADD (LCS)	ICVADD	07612.D	03/17/2014	14:27
ICV (LCS)	ICV	07613.D	03/17/2014	14:55

INITIAL CALIBRATION DATA

Start Cal Date : 17-MAR-2014 10:49
End Cal Date : 17-MAR-2014 13:59
Quant Method : ISTD : 4.14
Integrator : 4.14
Method file : \\192.168.10.12\chem\10airD.i\031714.b\T015_076-14.m
Last Edit : 17-MAR-2014 16:11 drandall

Calibration File Names:
Level 1: \\192.168.10.12\chem\10airD.i\031714.b\07609.d
Level 2: \\192.168.10.12\chem\10airD.i\031714.b\07610.d
Level 3: \\192.168.10.12\chem\10airD.i\031714.b\07611.d
Level 4: \\192.168.10.12\chem\10airD.i\031714.b\07605.d
Level 5: \\192.168.10.12\chem\10airD.i\031714.b\07606.d
Level 6: \\192.168.10.12\chem\10airD.i\031714.b\07607.d

_		(0.1000000	0.2000000	1.0000	10.0000	20.0000	30.0000	C	oefficients		1	%RSD
1	Compound	- 1	Level 1	Level 2	Level 3 ;	Level 4	Level 5	Level 6 Curve	ь	m1	m2	1	or R^2
==													
	1 Chlorodifluoromethane	- 1	1.61500	1.82582	1.88353	2.10432)	2.08369	2.51803 AVRG		2.00507		i	15.42405
Į.	2 Propylene	- 1	4.78595	6.68429	7.26616	5.32946	5.13691	6.44177 AVRG	1	5.94076		i	16.68744
ì	3 Dichlorodifluoromethane	- 1	0.92781	1.02132	0.98587	0.90741	1.02080	1.13330 AVRG	1	0.99942		J	8.08402
1	4 Dichlorotetrafluoroethane	- 1	1.10628	1.17604	1.20156	0.96778	0.96892	1.23301 AVRG	1	1.10893		-1	10.51708
1	5 Chloromethane	- 1	3.57915	3.80838;	3.91634	2.97298	2.91406	3.96074 AVRG	1	3.52528		i	13.33070
1	6 Vinyl chloride	- 1	3.64470	3.98003:	4.10736	3.07911	2.96596	3.96791 AVRG		3.62418		1	13.56813
1	7 1,3-Butadiene	1	6.23955	7.68052	6.32717	4.77807	4.92131	6.16422 AVRG	1	6.01847		- 1	17.69404
1	8 Bromomethane	- 1	3.08054	3.39034,	3.54267	2.98423	2.90846	3.58121 AVRG	1	3.24791		-1	9.03988
1	9 Chloroethane	- 1	10.60239	7.13295{	8.91213	7.48696	7.38851	9.87957 AVRG	1	8.56708		- 1	16.99278
1	10 Ethanol	1	7.52185	8.40089	10.88101	6.51687	6.91990	8.56907 AVRG	1	8.13493		1	19.257141
1	11 Vinyl Bromide	i	2.85668	3.61515	3.74138	3.44008	2.822351	3.34786 AVRG		3.30392!		- 1	11.64895
1	12 Isopentane	- 1	4.28182	4.43623	4.91863	4.23630	3.43107	4.27593 AVRG		4.263331		1	11.26470)
1	13 Trichlorofluoromethane	1	1.01495.	1.12937	1.06865	1.12626	0.97716)	1.07089 AVRG 1		1.06455;		1	5.66154
1	14 Acrolein	1	8.87802	8.92720	9.59840	13.94694	11.61387	14.28018 AVRG		11.20743		1	21.97456
1		- 1		1	1	1	1	1 1				1	

10259332 Page 1065 of 2722

INITIAL CALIBRATION DATA

Start Cal Date : 17-MAR-2014 10:49
End Cal Date : 17-MAR-2014 13:59
Quant Method : ISTD
Target Version : 4.14
Integrator : HP RTE
Method file : \\192.168.10.12\chem\10airD.i\031714.b\T015_076-14.m
Last Edit : 17-Mar-2014 16:11 drandall

_			0.10000000	0.2000000	1.0000 ;	10.0000	20.0000 I	30.0000	Co	efficients		%RSD
	Compound		Level 1	Level 2	Level 3	Level 4	Level 5	Level 6 Curve	ь	m1	m2	or R^2
) ==== 	15 Acetone		++-+-	18708	63044	501033	1040073	1355449 LINR	-0.03660	2.27183		0.99877
1	16 Isopropyl Alcohol	1	2.44629	3.16660	3.09776	2.54246	2.42982	2.65357 AVRG	1	2.72275		12.03819
1	17 1,1-Dichloroethene	- 1	2.37867	3.19782	2.79819	2.37189	1.98146	2.26008 AVRG	1	2.49802		17.29658
l	18 Tert Butyl Alcohol	- 1	1.80173	2.31446	1.93189	1.62506	1.42654	1.57435 AVRG	1	1.77901		17.78282
l	19 Acrylonitrile	- 1	7.35393	9.09555	8.52044	5.55188	4.46034	5.40087 AVRG	1	6.73050		27.79363
1	20 Freon 113	- 1	1.90522	2.14672	1.95952	1.76796	1.51312	1.59804 AVRG	1	1.81510		13.02551
1	21 Methylene chloride	- 1	2.05568	2.50494	3.04996	3.15005	2.68996	3.17803 AVRG	1	2.77144		15.94342
	22 Allyl Chloride	- 1	10.67346	9.256691	10.90706	7.88609	6.73295	7.32551 AVRG	1	8.79696		19.97598
1	23 Carbon Disulfide	- 1	1.06974	1.36986	1.32706	0.99113	0.969461	1.16329 AVRG	1	1.14842		14.78406
1	24 trans-1,2-dichloroethene	- 1	3.44989	4.70829	3.86239	2.83593	2.778411	3.31851 AVRG	1	3.49224		20.60141
ļ	25 Methyl Tert Butyl Ether	- 1	1.22770	1.65957	1.35792	1.11770	1.02864)	1.15095 AVRG	1	1.25708		17.99665
ì	26 Vinyl Acetate	- 1	1.57923:	2.38761	2.18743	1.28415	1.26549	1.50201 AVRG		1.70099		27.89766
I	27 1,1-Dichloroethane	- 1	1.82061	2.62447:	2.58438	1.73248	1.67144	1.89812 AVRG		2.05525		21.04316
1	29 Methyl Ethyl Ketone	[6.53403;	9.423651	9.97456	6.45370	6.980891	7.76007 AVRG	1	7.854481		19.25364
I	30 n-Hexane	- 1	2.273921	3.35407	3.90945	2.30792;	2.59677	2.71650 AVRG	!	2.85977:		22.57312
ı	31 Di-isopropyl Ether	- 1	1.57610	1.74034.	1.84396	1.04150	1.08869	1.18675 AVRG	1	1.41290;		24.79798
ı	32 cis-1,2-Dichloroethene	i	3.21750	3.51384!	4.652891	2.64727;	2.52591	2.85560 AVRG	1	3.23550		24.26023
1	33 Ethyl Acetate	- 1	1.73686	2.018201	2.53619	1.40328	1.33585	1.61544 AVRG	1	1.77430:		25.16083
1	34 Chlereform	- 1	1.21136	1.31766	1.51268	1.08567	1.10954	1.19258 AVRG	1	1.23825		12.73186
	35 Ethyl Tert+Butyl Ether	- 1	1.10436	1.33914	1.47769:	0.97138	0.99136	1.09590 AVRG	1	1.16331!		17.37113:
	36 Tetrahydrofuran	- 1	4.12468	5.18599	4.89248	3.28739	3.08490	3.87119 AVRG	1	4.07444		20.67241:
	37 1,1,1-Trichloroethane	i	1.21815	1.28939	1.24800	1.05885	1.07125	1.14442 AVRG	1	1.17168		8.13258
ı		_ 1,				1	1					_11

Page 1066 of 2722 10259332

INITIAL CALIBRATION DATA

Start Cal Date : 17-MAR-2014 10:49
End Cal Date : 17-MAR-2014 13:59
Quant Method : ISTD : 4.14
Integrator : HP RTE
Method file : \\192.168.10.12\chem\10airD.i\031714.b\T015_076-14.m
Last Edit : 17-MAR-2014 16:11 drandall

	0.1000000	0.2000000	1.0000	10.0000	20.0000	30.0000 ;	Co	efficients		%RSD
Compound	Level 1	Level 2	Level 3	Level 4	Level 5	Level 6 Curve	ь	ml	m2	or R^2
38 1,2-Dichloroethane	1.64504	1.96959;	1.88610	1.56181	1.59655	1.71150 AVRG		1.72843		9.52124
39 Benzene	1.05965	1.19222'	1.18715	0.88095	0.86298	0.98177 AVRG	1	1.02745		14.05627
40 Carbon Letrachloride	1.31400	1.34393i	1.37118	1.08093	1.11045}	1.24681 AVRG		1.24455		9.873221
41 Cyclohexane	3.08951	3.03283	3.20848	2.26276	2.21076	2.67943 AVRG		2.74729		15.77048
42 Tert Amyl Methyl Ether	0.47289	0.68133	1.09068	0.93724;	0.91467	1.03004 AVRG		0.85447		27.33003
44 2,2,4-Trimethylpentane	0.89521	1.00152	0.95267	0.71349	0.69420]	0.81751 AVRG	1	0.84577		: 14.89977
45 Heptane	2.42026	3.09013	2.82860	2.04018	1.98992	2.37009 AVRG	1	2.45653		17.64802:
46 1,2-Dichloropropane	1 2.942021	3.20709	3.42883:	2.63312	2.58660	2.96057 AVRG	1	2.95970		10.97383
47 Trichloroethene	2.76011	2.93533	2.85251	2.18644	2.12132	2.33487 AVRG	1	2.53176		14.17943:
48 Bromodichloromethane	1.24596	1.25080	1.245901	0.97172	0.97276	1.07230 AVRG	1	1.12657		12.20361
49 1,4-Dioxane	5.49009	5.89089	6.18333	4.08373	4.22611	4.57804 AVRG	1	5.07536		17.65937
50 Methylcyclohexane	5.65586	5.75393	5.76037	4.23082	4.33091	4.50231 AVRG	1	5.03904		14.994791
51 Methyl Isobutyl Ketone	1.78623	2.12971	2.05335	1.44486	1.37195	1.62194 AVRG	1	1.73467		18.01969
52 cis-1,3-Dichloropropene	1.86468	2.12418	2.06447	1.50223	1.460421	1.64372 AVRG	1	1.77662		16.006481
53 trans-1,3-Dichloropropene	1.81198	2.18513	2.06461	1.42775	1.34098	1.54781 AVRG	1	1.72971i		20.05557
55 Toluene	0.84433	C.98125	0.96693	0.71126	0.70441	0.80137 AVRG	1	0.83492;		14.41018
56 1,1,2-Trichloroethane	2.33964	2.73515	2.66792	1.95050	1.89597	2.13485 AVRG	1	2.28734		15.61676
57 Methyl Butyl Ketone	4137	7518	42291	771556	1618056	+++++ LINR	0.02055	0.61310		0.99967
58 Dibromochloromethane	0.70053	0.76895	0.80043	0.47050	0.58422	0.63696 AVRG	1	0.66027:		18.60099
59 1,2-Dibromoethane	: 0.80901;	0.89691	0.86765	0.50423	0.66022	0.66479 AVRG :	1	0.73380:		20.492201
60 Tetrachlorsethene	0.86990;	0.93602	0.91854	0.56778;	0.68935	0.72908 AVRG	1	0.78511:		18.65964
62 Chlorobenzene	0.59885	0.66783	0.67441	0.50665;	0.51467	0.54148 AVRG	1	0.58398		12.81843
	1 1	1	1	7	1	1 1	1	1		1 1

Page 1067 of 2722 10259332

INITIAL CALIBRATION DATA

Start Cal Date : 17-MAR-2014 10:49
End Cal Date : 17-MAR-2014 13:59
Quant Method : ISTD
Target Version : 4.14
Integrator : HP RTE
Method file : \\192.168.10.12\chem\10airD.i\031714.b\T015_076-14.m
Last Edit : 17-Mar-2014 16:11 drandall

 I		0.10000000	0.2000000	1.0000	10.0000	20.0000	30.0000		Co	efficients		%RSD
Compound	;	Level 1	Level 2	Level 3	Level 4	Level 5	Level 6 Cu	rve	b	ml	m2	or R^2
63 Ethyl Benzene	; - 	0.35875	0.42695	0.38847	0.27726;	0.28913	0.31538 AV			0.34266		17.19093 <-
64 m&p-Xylene	1	0.44078	0.49907	0.49962	0.36034;	0.36227	0.39662 AV	RG	1	0.42645		14.90946;
65 Bromoform	1	0.69373	0.72510	0.73391	0.476421	0.49038	0.52803 AV	RG	T	0.60793		20.073201
66 Styrene	- 1	0.74417	0.74963	0.74459	0.51057	0.51180	0.53877 AV	RG	1	0.63325		19.59322
67 o-Xylene	- 1	0.43128	0.48104:	0.47850	0.34203	0.36398	0.38474 AV	RG	1	0.41360		14.30003
68 1,1,2,2-Tetrachloroethane	- 1	0.593871	0.71992;	0.70888	0.49521	0.52371)	0.53856 AV	RG	1	0.59669		16.21082
69 lsopropylbenzene	1	0.35767:	0.39034	0.37186	0.28434	0.28592	0.31178(AV	RG	1	0.33365		13.69474
70 N-Propylbenzene	- 1	0.32819	0.34194:	0.30725	0.22366	0.23805]	0.25002 AV	RG	1	0.28152		17.91641
71 4-Ethyltoluene	- 1	0.40827	0.43596	0.40140	0.28660	0.30398	0.32717 AV	RG	1	0.36056		17,28167
72 1,3,5-Trimethylbenzene	- 1	C.47950:	0.48816	0.46407	0.32786	0.34138	0.36655 AV	RG	1	0.41125		17.93323
73 Tert-Butyl Benzene	į	C.49575	0.55000	0.51079	0.36860	0.37445	0.40544 AV	RG	i i	0.45084		17.21073
74 1,2,4-Trimethylbenzene		0.44564	0.47697	0.45754	0.34134	0.34484	0.37440 AV	RG !	i i	0.40679		14.82346
75 1,3-Dichlorobenzene	1	0.67103	0.73354	0.74940	0.52705	0.53385	0.56891 AV	RG !	:	0.63063		15.89405
76 Sec- Butylbenzene	1	0.37555	0.38709	0.34679	0.24799	0.25810	0.27822 AV	RG	1	0.31562		19.50607
78 Benzyl Chloride	- 1	7366	13505	69418	1177736	2416018!	3537721 LI	NR !	-0.01024;	0.43968		0.99649
79 1,4-Dichlorobenzene	- 1	0.65087	0.75518	0.76979;	0.53547	0.54266	0.58464 AV	RG	1	0.63977		16.1980€
80 p-Isopropyltcluene	- 1	0.46053	0.51933	0.47518	0.31832	0.33665	0.35181 AV	RG	1	0.41030		20.65893
81 1,2,3-Trimethylbenzene	- 1	0.50322	0.55133	0.52642	0.37052	0.38068	0.43256 AV	RG	1	0.46079		16.71725
82 1,2-Dichlorobenzene	- 1	0.79024	0.89440	0.85518	0.57861	0.61693	0.72372 AV	RG	1	0.74318		17.12910
83 N-But.ylbenzene	- 1	0.45356	0.50521	0.44683	0.30480	0.33405	0.36921 AV	RG	1	0.40227		19.40307
84 1,2,4-Trichlorobenzene	- 1	0.76347	1.12740	1.33199	0.63683:	0.89316	0.69760 AV	RG	1	0.90841		29.81645
85 Naphthalene	- 1	0.40291	0.75752	0.65403	0.40129	0.56204	0.44956 AV	RG	1	0.53789		27.19491
1	1		1	1		1_	I		1	I		

Page 1068 of 2722 10259332

Report Date : 18-Mar-2014 08:18

Pace Analytical Services, Inc.

INITIAL CALIBRATION DATA

Start Cal Date : 17-MAR-2014 10:49
End Cal Date : 17-MAR-2014 13:59
Quant Method : ISTD : 4.14
Integrator : HP RTE
Method file : \\192.168.10.12\chem\10airD.i\031714.b\T015_076-14.m
Last Edit : 17-Mar-2014 16:11 drandall

	- 1	0.1000000	0.2000000	1.0000	10.0000	20.0000	30.0000	1		Coefficients		%RSD
Compound	- 1	Level 1	Level 2	Level 3	Level 4	Level 5	Level 6	Curve	b	m1	m2	or R^2
	= =		:					-) ` -				
86 Hexachlorobutadiene	i	0.60383	0.81332;	0.85288	0.63886	0.91940	0.7480	9 AVRG		0.76273		16.16809
\$ 28 Hexane=d14(S) .	-1	2.31099	2.92764	2.96074	2.30415	2.24697	2.6348	1 AVRG		2.56421		12.65727
\$ 54 Toluene-d8 (S)	1	1.16263	1.18930	1.19269	1.16674	1.11191	1.1852	1 AVRG		1.16808		2.57853
\$ 77 1,4-dichlorobenzene-d4 (S)		2.15116	2.10107	2.10267	2.12797	2.13113	2.0187	5 AVRG		2.10546		2.20732
1	i		1	1	1.	1		41		.111		l

Page 1069 of 2722 10259332

INITIAL CALIBRATION DATA

Start Cal Date : 17-MAR-2014 10:49
End Cal Date : 17-MAR-2014 13:59
Quant Method : ISTD
Target Version : 4.14
Integrator : HP RTE
Method file : \\192.168.10.12\chem\10airD.i\031714.b\T015_076-14.m
Last Edit : 17-MAR-2014 16:11 drandall

Average %RSD Results.	
Calculated Average %RSD =	17.18861
Maximun Average %RSD =	30.00000
* Passed Average %RSD Test.	ı
1	1

1	Curve Formula	- 1	Units	I
1				I
1	Averaged Amt = m.1*Rsp	-1	Amount	I
1	linear Amt - b + m1*Rsp	- 1	Amount	I
1		- 1		ı

10259332 Page 1070 of 2722

5A - FORM V VOA VOLATILE ORGANIC INSTRUMENT PERFORMANCE CHECK BROMOFLUOROBENZENE (BFB)

EPA SAMPLE NO.

BFB

Lab Name: Pace Analytical

Contract:

Lab Code: **PASI**

Case No.:

SAS No.:

SDG No.: 10259332

Lab File ID: 07701BFB.D

BFB Injection Date: 03/18/2014

Instrument ID: 10AIRD

BFB Injection Time: 08:15

GC Column: J&W DB-5

ID: 0.32

(mm)

		% RELATIVE	
m/e	ION ABUNDANCE CRITERIA	ABUNDANC	E
95	Base Peak, 100% relative abundance	100.00	
50	8.00 - 40.00% of mass 95	18.78	
75	30.00 - 66.00% of mass 95	53.22	
96	5.00 - 9.00% of mass 95	7.05	
173	Less than 2.00% of mass 174	0.58	(0.60)
174	50.00 - 120.00% of mass 95	97.86	
175	4.00 - 9.00% of mass 174	7.60	(7.76)
176	93.00 - 101.00% of mass 174	93.01	(95.04)
177	5.00 - 9.00% of mass 176	5.90	(6.34)

1 - Value is %mass 174

2 - Value is %mass 176

EPA SAMPLE NO.	LAB SAMPLE ID	LAB FILE ID	DATE ANALYZED	TIME ANALYZED
CCV	CCV	07702.D	03/18/2014	08:42
LCS (LCS)	LCS	07702LCS.D	03/18/2014	08:42
CERT	CERT	07704.D	03/18/2014	09:50
BLANK (BLK)	BLANK	07704_BLANK.	03/18/2014	09:50
BCK-1-16	10259332027	07714.D	03/18/2014	14:34

Data File: \\192.168.10.12\chem\10airD.i\\031814.b\\07702.d

Report Date: 18-Mar-2014 09:05

|41 Cyclohexane

|42 Tert Amyl Methyl Ether

Pace Analytical Services, Inc.

CONTINUING CALIBRATION COMPOUNDS

Instrument ID: 10airD.i Injection Date: 18-MAR-2014 08:42

Lab File ID: 07702.d Init. Cal. Date(s): 17-MAR-2014 17-MAR-2014

Analysis Type: AIR Init. Cal. Times: 10:49 13:59

Lab Sample ID: CCV Quant Type: ISTD Method: \\192.168.10.12\chem\10airD.i\031814.b\T015 076-14.m

| CCAL | MIN | MAX | | RRF / AMOUNT| RF10 | RRF10 | RRF | %D / %DRIFT | %D / %DRIFT | CURVE TYPE | I COMPOUND | 0.99942| 0.85885| 0.85885|0.010| -14.06506| 30.00000| Averaged| |3 Dichlorodifluoromethane |4 Dichlorotetrafluoroethane | 1.10893| 1.00608| 1.00608|0.010| -9.27461| 30.00000| Averaged| 3.52528| 3.23300| 3.23300|0.010| -8.29082| 30.00000| Averaged| |5 Chloromethane |6 Vinyl chloride | 3.62418| 3.33381| 3.33381|0.010| -8.01202| 30.00000| Averaged| |7 1,3-Butadiene [6.01847] 5.46794| 5.46794|0.010| -9.14743| 30.00000| Averaged| 1 |8 Bromomethane 3.247911 7.73520| |9 Chloroethane 8.56708| 6.76371| 6.76371|0.100| -16.85603| 30.00000| Averaged| 1 8.13493| |10 Ethanol | 11 Vinyl Bromide 3.30392| 2.77754| 2.77754|0.010| -15.93184| 30.00000| Averaged| | 4.26333| 2.95825| 2.95825|0.010| -20.61168| 30.00000| Averaged|<-|12 Isopentane |13 Trichlorofluoromethane | 1.06455| 0.85313| 0.85313|0.010| -19.85977| 30.0000C| Averaged| |14 Acrolein | 11.20743| 11.86314| 11.86314|0.010| 5.85062| 30.00000| Averaged| | 10.00000| 12.17671| 1.81128|0.010| 21.76713| 30.0000C| |15 Acetone Linear 2.722 2.11525| 2.11525|0.010| -22.31196| 30.0000C| Averaged| 1.93247| 1.93247|0.010| -22.63985| 30.0000C| Averaged| |16 Isopropyl Alcohol |17 1,1-Dichloroethene 1.77901 1.31882| 1.31882|0.100| -25.86749| 30.00000| Averaged| |18 Tert Butyl Alcohol 4.62331| 4.62331|0.010| 31.30809| 30.00000| Averaged|<-|19_Acrylenitfile [6.73050] |20 Freon 113 | 1.81510| 1.40359| 1.40359|0.010| -22.67143| 30.00000| Averaged| |21 Methylene chloride | 2.77144| 2.76281| 2.76281|0.010| -0.31125| 30.00000| Averaged| |21 Mediyion| |22 Allyl Chloride | 8.79696| 6.75195| 6.75195|0.010| -23.24682| 30.00000| Averaged| | 1.14842| 0.95157| 0.95157|0.010| -17.14149| 30.00000| Averaged| 3.49224| 2.61011| 2.61011|0.010| -25.25952| 30.00000| Averaged| |23 Carbon Disulfide 2.61011| 2.61011|0.010| -25.25952| 30.00000| Averaged| 0.93212| 0.93212|0.010| -25.85049| 30.00000| Averaged| +24 trans-1,2-dichloroethene 1.25708| |25 Methyl Tert Butyl Ether 1.24961| 1.24961|0.010| -26.53604| 30.00000| Averaged| 1.70099| 126 Vinvl Acetate | 2.05525| 1.59757| 1.59757|0.010| -22.26904| 30.00000| Averaged| |27 1,1-Dichloroethane |\$ 28 Hexane-d14(S) | 2.56421| 2.24103| 2.24103|0.200| -12.60346| 30.00000| Averaged| |29 Methyl Ethyl Ketone 7.85448| 6.53545| 6.53545|0.010| -16.79344| 30.0000C| Averaged| 130 n-Hexane | 2.85977| 2.30720| 2.30720|0.010| -19.32239| 30.00000| Averaged| |31 Di-isopropyl Ether 1 3.23550| 1.05047| 1.05047|0.010| -25.65147| 30.00000| Averaged| 2.59223| 2.59223|0.010| -19.88184| 30.00000| Averaged| |32 cis-1,2-Dichloroethene 1.43241| 1.43241|0.010| -19.26896| 30.00000| Averaged| 1.77430| |33 Ethyl Acetate | 1.23825| 1.05686| 1.05686|0.010| -14.64902| 30.00000| Averaged| |34 Chloroform 1.16331 | 0.95596| 0.95596|0.010| -17.82367| 30.00000| Averaged| |35 Ethyl Tert-Butyl Ether |36 Tetrahydrofuran | 4.07444| 3.39899| 3.39899|0.010| -16.57766| 30.00000| Averaged| | 1.17168| 1.01790| 1.01790|0.010| -13.12428| 30.00000| Averaged| |37 1,1,1-Trichloroethane |38 1,2-Dichloroethane | 1.72843| 1.50278| 1.50278|0.010| -13.05509| 30.00000| Averaged| 0.97109| 0.97109|0.300| -5.48571| 30.00000| Averaged| 1.11207| 1.11207|0.010| -10.64470| 30.00000| Averaged| 139 Benzene 1.02745| |40 Carbon tetrachloride 1.24455|

> 2.44408| 0.91709|

2.747291

0.854471

10259332 Page 1795 of 2722

2.44408|0.010| -11.03666| 30.00000| Averaged|

0.91709[0.010] 7.32860[30.00000] Averaged[

Data File: $\192.168.10.12\chem\10airD.i\031814.b\07702.d$

Report Date: 18-Mar-2014 09:05

Pace Analytical Services, Inc.

CONTINUING CALIBRATION COMPOUNDS

Injection Date: 18-MAR-2014 08:42
Init. Cal. Date(s): 17-MAR-2014
Init. Cal. Times: 10:49 Instrument ID: 10airD.i Lab File ID: 07702.d Analysis Type: AIR 17-MAR-2014

Lab Sample ID: CCV Quant Type: ISTD Method: \\192.168.10.12\chem\10airD.i\031814.b\T015_076-14.m

	<u> </u>	1	CCAL MIN		MAX	
COMPOUND	RRF / AMOUNT	RF10 	RRF10 RRF	%D / %DRIFT ===================================		
44 2,2,4-Trimethylpentane	0.84577	0.72954	0.72954 0.010	-13.74242	30.00000	 Averaged
45 Heptane	[2.45653]	2.15526	2.15526 0.010	-12.26394	30.00000	Averaged
46 1,2-Dichloropropane	2.95970	2.66265	2.66265 0.010	-10.03661	30.00000	Averaged
47 Trichloroethene	2.53176	2.16392	2.16392 0.010	-14.52900	30.00000	Averaged
48 Bromodichloromethane	1.12657	0.94656	0.94656 0.010	-15.97842	30.00000	Averaged
49 1,4-Dioxane	5.07536	4.43245	4.43245 0.010	-12.66729	30.00000	Averaged
50 Methylcyclohexane	5.03904	4.25726	4.25726 0.010	-15.51444	30.00000	Averaged
51 Methyl Isobutyl Ketone	1.73467	1.49852	1.49852 0.010	-13.61391	30.00000	Averaged
52 cis-1,3-Dichloropropene	1.77662	1.48840	1.48840 0.010	-16.22273	30.00000	Averaged
53 trans-1,3-Dichloropropene	1.72971	1.35770	1.35770 0.010	-21.50737	30.00000	Averaged
\$ 54 Toluene-d8 (S)	1.16808	1.12232	1.12232 0.200	-3.91773	30.00000	Averaged
55 Toluene	0.834921	0.71580	0.71580 0.300	-14.26813	30.00000	Averaged
56 1,1,2-Trichloroethane	2.28734	1.99547	1.99547 0.010	-12.76003	30.00000	Averaged
57 Methyl Butyl Ketone	10.00000	7.99915	0.78666 0.010	-20.00845	30.00000	Linear
58 Dibromochloromethane	0.66027	0.58380	0.58380 0.010	-11.58164	30.00000	Averaged
59 1,2-Dibromoethane	0.73380	0.63920	0.63920 0.010	-12.89230	30.00000	Averaged
60 Tetrachloroethene	0.78511	0.70979	0.70979 0.010	-9.59426	30.00000	Averaged
62 Chlorobenzene	0.583981	0.52612	0.52612 0.010	-9.90765	30.00000	Averaged
63 Ethyl Benzene	0.34266	0.28273	0.28273 0.300	-17.49050	30.00000	Averaged
64 m&p-Xylene	0.42645	0.35992	0.35992 0.300	-15.60114	30.00000	Averaged
65 Bromoform	0.607931	0.50157	0.50157 0.010	-17.49466	30.00000	Averaged
66 Styrene	0.63325	0.52601	0.52601 0.010	-16.93567	30.00000	Averaged
67 o-Xylene	0.41360	0.35864	0.35864 0.300	-13.28829	30.00000	Averaged
68 1.1.2.2-Tetrachloroethane	0.596691	0.52278	0.52278 0.010			
69 Isopropylbenzene	0.33365	0.29110	0.29110 0.010	-12.75360	30.00000	Averaged
70 N-Propylbenzene	0.28152	0.23179	0.23179[0.010	-17.66573	30.00000	Averaged
71 4-Ethyltoluene	0.36056	0.30629	0.30629 0.010	-15.05173	30.00000	_
72 1,3,5-Trimethylbenzene	0.41125	0.34123	0.34123 0.010			
73 Tert-Butyl Benzene	0.450841	0.366391	0.36639[0.010			
74 1,2,4-Trimethylbenzene	0.406791	0.341281	0.34128 0.010	-16.10402	30,00000	Averaged
75 1,3-Dichlorobenzene	0.63063	0.53353	0.53353 0.010	•		
76 Sec- Butylbenzene	0.31562	0.25334	0.25334 0.010	•	•	
\$ 77 1,4-dichlorobenzene-d4 (S)	2.10546	2.05615	2.05615 0.200			-
78 Benzyl Chloride	10.000001	10.51317	0.41419 0.010			_
79.1,4-Dichlorobenzene	0.639771	0.53395	0.53395 0.010	•		
80 p-Isopropyltoluene	0.41030	0.33337	0.33337 0.010			
81 1,2,3-Trimethylbenzene	0.46079	0.37158	0.37158 0.010			
82 1,2-Dichlorobenzene	0.74318	0.573201	0.57320 0.010			
83 N-Butylbenzene	0.40227	0.30764	0.30764 0.010			
84 1,2,4-Trichlorobenzene	0.90841	0.67817	0.67817 0.010			
85 Naphthalene	0.537891	0.424201	0.42420 0.010			
86 Hexachlorobutadiene	0.76273	0.69727	0.69727 0.010			
VO VEVECITATORACEMIE	1 0.102.131	0.00/2/	0.05727[0.010	1 0.30233	30.00000	, Averaged

Page 1796 of 2722 10259332

Data File: \\192.168.10.12\chem\10airD.i\031814.b\07702.d Report Date: 18-Mar-2014 09:05

Pace Analytical Services, Inc.

CONTINUING CALIBRATION COMPOUNDS

10259332 Page 1797 of 2722

5A - FORM V VOA VOLATILE ORGANIC INSTRUMENT PERFORMANCE CHECK BROMOFLUOROBENZENE (BFB)

EPA	SAMPLE	NO.
	BFB	

Lab Name: Pace Analytical

Contract:

Lab Code: **PASI**

SAS No.:

SDG No.: 10259332

Lab File ID: 06903BFB.D

BFB Injection Date: 03/10/2014

Instrument ID: 10AIR0

BFB Injection Time: 10:47

GC Column: J&W DB-5

ID: 0.32

Case No.:

(mm)

		% RELATIVE ABUNDANCE			
m/e	ION ABUNDANCE CRITERIA				
95	Base Peak, 100% relative abundance	100.00			
50	8.00 - 40.00% of mass 95	18.00	=		
75	30.00 - 66.00% of mass 95	50.47			
96	5.00 - 9.00% of mass 95	6.68			
173	Less than 2.00% of mass 174	0.65	(0.74)		
174	50.00 - 120.00% of mass 95	86.78			
175	4.00 - 9.00% of mass 174	6.55	(7.55)		
176	93.00 - 101.00% of mass 174	84.03	(96.83)		
177	5.00 - 9.00% of mass 176	5.81	(6.91)		

1 - Value is %mass 174

2 - Value is %mass 176

EPA SAMPLE NO.	LAB SAMPLE ID	LAB FILE ID	DATE ANALYZED	TIME ANALYZED 11:12		
CAL1	CAL1	06904.D	03/10/2014			
CAL2	CAL2	06905.D	03/10/2014	11:36		
CAL3	CAL3	06906.D	03/10/2014	12:01		
CAL4	CAL4	06907.D	03/10/2014	12:28		
CAL5	CAL5	06908.D	03/10/2014	12:54		
CAL6	CAL6	06909.D	03/10/2014	13:23		
CAL7	CAL7	06910.D	03/10/2014	13:55		
ICVADDL (LCS)	ICVADDL	06911.D	03/10/2014	14:22		
ICV (LCS)	ICV	06912.D	03/10/2014	14:48		

INITIAL CALIBRATION DATA

Start Cal Date : 10-MAR-2014 11:12
End Cal Date : 10-MAR-2014 13:55
Quant Method : ISTD
Target Version : 4.14
Integrator : HP RTE
Method file : \\192.168.10.12\chem\10air0.i\031014.b\T015_069-14.m
Last Edit : 10-Mar-2014 15:12 10air0.i

Calibration File Names:
Level 1: \\192.168.10.12\chem\10air0.i\031014.b\06904.D
Level 2: \\192.168.10.12\chem\10air0.i\031014.b\06905.D
Level 3: \\192.168.10.12\chem\10air0.i\031014.b\06906.D
Level 4: \\192.168.10.12\chem\10air0.i\031014.b\06907.D
Level 5: \\192.168.10.12\chem\10air0.i\031014.b\06908.D
Level 6: \\192.168.10.12\chem\10air0.i\031014.b\06909.D
Level 7: \\192.168.10.12\chem\10air0.i\031014.b\06909.D

Compound	Level 1	0.2000000 Level 2	Level 3	Level 4	10.0000 Level 5	20.0000 Level 6	 Curve	b	Coefficients m1	m2	%RSD or R^2
	30.0000 Level 7	i I	 	!							1
1 Chlorodifluoromethane	1.79334 2.29356	1.96113	1.99290	,	,	2.21306			i 2.04583		8.3674
2 Propylene	4.42343 6.18678		5.12097	5.51810	İ		AVRG		5.43647		10.7851
3 Dichlorodifluoromethane	0.76495	0.83410	0.87557	0.92208		1.03516					13.3331
4 Dichlorotetrafluoroethane	0.88918	1.03163	1.09640	1.13448	ı		 AVRG				1 14.9549
	_ !						 		_		1

10259332 Page 79 of 2722

Start Cal Date : 10-MAR-2014 11:12
End Cal Date : 10-MAR-2014 13:55
Quant Method : ISTD
Target Version : 4.14
Integrator : HP RTE
Method file : \\192.168.10.12\chem\10air0.i\031014.b\T015_069-14.m
Last Edit : 10-Mar-2014 15:12 10air0.i

	0.1000000	0.2000000	0.5000000	1.0000	10.0000	20.0000	1 1		Coefficients		∤ %RSD
Compound	Level 1	Level 2	Level 3	Level 4	Level 5	Level 6	Curve	b	m1	m2	or R^2
	30.0000 Level 7			 							1
5 Chloromethane	2.73337 4.00112	2.95282		3.110241	3.29718	3.68451			3.258401		I I 13.5997
6 Vinyl chloride	2.80004 3.44528	3.26841 		3.36648		3.44421			3.256021		6.8490
7 l,3-Butadiene	4.03477 5.10050	5.07494	1	4.88217	4.82254	5.07005		i	4.84137		7.6865
8 Bromomethane	2.64768	3.07464		3.27756		3.34481			3.14144		 7.7639
9 Chloroethane	5.93482		7.071201	7.21214	7.08487	7.41352			7.67477		7.4136
10 Ethanol	7.86650 7.86650 10.37597		10.18409	8.95570 8.95570		9.11464			9.17462		1 10.4611
11 Vinyl Bromide	2.86110 3.47223		3.17242	3.26826 	3.15421		- AVRG	 	3.20252		 6.3960

Page 80 of 2722 10259332

INITIAL CALIBRATION DATA

Start Cal Date : 10-MAR-2014 11:12
End Cal Date : 10-MAR-2014 13:55
Quant Method : ISTD
Target Version : 4.14
Integrator : HP RTE
Method file : \\192.168.10.12\chem\10air0.i\031014.b\T015_069-14.m
Last Edit : 10-Mar-2014 15:12 10air0.i

0.1000000	0.2000000	0.5000000	1.0000	10.0000	20.0000	1		Coefficients		%RSD
Level 1	Level 2	Level 3	Level 4	Level 5		Curve	b	ml	m2	or R^2
30.0000 Level 7	 		 							i
1 2.35717 1 4.20716	2.79325 	2.80360	2.92340	3.55224	3.93266	I I				I 21.1139
1 15.21182	16.17671	14.97296	15.01228		12.23572	I I		14.02424		12.3241
		0.82954	0.84317	0,88790	1.01350			0.88952		14,6233
+++++ 2.30702		1.61026	1.72216	2.20660	2.22776			1.91867		1 19.4149
		2.16594	2.16518	i	2.38240			2.26259		1 10.6730
6.50762		6.58736	6.45656	5.646021	5.89274	[AVRG		6.49661		9.3026
1		1.94283	2.00893 2.00893		2.27191	i i				 10.9491
	Level 1 30.0000 Level 7 2.35717 4.02716 15.21182 12.88044 0.72541 1.10566 +++++ 2.30702 1.97508 2.47554 6.94453 6.50762 1.76703 1.76703	Level 1 Level 2	Level 1 Level 2 Level 3	Level 1 Level 2 Level 3 Level 4	Level 1 Level 2 Level 3 Level 4 Level 5	Level 1 Level 2 Level 3 Level 4 Level 5 Level 6	Level 1 Level 2 Level 3 Level 4 Level 5 Level 6 Curve	Level 1 Level 2 Level 3 Level 4 Level 5 Level 6 Curve b	Level 1 Level 2 Level 3 Level 4 Level 5 Level 6 Curve b m1	Level 1 Level 2 Level 3 Level 4 Level 5 Level 6 Curve b m1 m2

Page 81 of 2722 10259332

INITIAL CALIBRATION DATA

Start Cal Date : 10-MAR-2014 11:12
End Cal Date : 10-MAR-2014 13:55
Quant Method : ISTD
Target Version : 4.14
Integrator : HP RTE
Method file : \\192.168.10.12\chem\10air0.i\031014.b\T015_069-14.m
Last Edit : 10-Mar-2014 15:12 10air0.i

	0.1000000			1.0000	10.0000	20.0000			Coefficients		↑ %RSD
Compound	Level [Level 3 ,		-		Curve	ь	m1	m2	or R^2
	30.0000 Level 7		i 	 	 	========					
19 Tert Butyl Alsohol (TBA)	1.27469 1.72470	1.38691		1.22183	1.33666	1.63613	AVRG (1.39008		 15.3953
20 Freon 113	1.30782 1.94919	1.43945	1.48336	1.53997	1.63905	1.85318	I I IAVRG I		1 1.602001		1 14.3458
21 Methylene chloride	2.44829 3.81825	3.04900		2.87484 	3.18380 		AVRG		 3.10202		 14.6386
22 Allyl Chloride	8.99304 7.89769			8.01340	ì	7.64392	I I IAVRG		8.17455		8.0748
23 Carbon Disulfide	1.08017 1.25785	1.11722	1.13167	1.21676	1.16239 	1.22848	I I		1.17065		 5.5910
24 trans-1,2-dichloroethene	3.61936 3.49520	3.52832	3.78773 	3.72750 	3,26238	3.40143	I I		3.54599 ₁		 5.1614
25 Methyl Tert Butyl Ether	0.8 4133 0.87268	0.96801 	0.96981:	0.98239 					1.00829		 10.6178
	 						 !				-

10259332 Page 82 of 2722

INITIAL CALIBRATION DATA

Start Cal Date : 10-MAR-2014 11:12
End Cal Date : 10-MAR-2014 13:55
Quant Method : ISTD
Target Version : 4.14
Integrator : HP RTE
Method file : \\192.168.10.12\chem\10air0.i\031014.b\T015_069-14.m
Last Edit : 10-Mar-2014 15:12 10air0.i

	0.1000000			1.0000	10.0000			Coefficients		%RSD
Compound	Level 1	Level 2	Level 3	Level 4	Level 5	rever e	Curve	b ml	m2	or R^2
	30.0000 Level 7	ĺ	1	I	!		1 1			İ
						3.34.FE.				
26 Vinyl Acetate	1.74853 1.51458	1.875591	1.78057	1.79436	1.33253		I I I	1.64083		1 12.7178
27 1,1-Dichlorcethane	1.420591		1.59147	1.63735	1.66636					1
	1.91757						AVRG	1.67162		9.7699
29 Methyl Ethyl Ketone	6.97088	9.91072	7.27006	7,02421	6.78266			i		i
	7.64896	ا					AVRG	: 7.56219		14.1911
30 Di-isopropyl Ether	0.81519	1.01579	1.01117	1.05699	1.14732	1.30958	i i			i
	1.40572	I					AVRG	1.10882		1 17.9253
31 n-Hexane	1.93758	1.93908	2.10298	2.15944	2.19919	2.49212				
	[2.64397]	!		!	!		AVRG	2.21062		1 12,1051
32 Ethyl Acetate	1.46477	1.71527	1.90244	1.92231	1.57661	1.74783	-	 		
•	1.80554;	I		1	I		[AVRG]	1.73354!		9.6165
33 cis-1.2-Dichlorcethene		3,239441	3.31346i	3.237211	3,13147	3,31968	-			
	3.33480		i	1			AVRG	3.33210		5.8994
							-			

Page 83 of 2722 10259332

Report Date : 11-Mar-2014 14:01

Pace Analytical Services, Inc. INITIAL CALIBRATION DATA

Start Cal Date : 10-MAR-2014 11:12
End Cal Date : 10-MAR-2014 13:55
Quant Method : ISTD
Target Version : 4.14
Integrator : HP RTE
Method file : \\192.168.10.12\chem\10air0.i\031014.b\T015_069-14.m
Last Edit : 10-Mar-2014 15:12 10air0.i

Compound		0.2000C00 Level 2	0.5000000 Leve 3	1.000C Level 4	10.0000 Level 5	20.0000 Level 6	l l	b	Coefficients ml	m2	%RSD or R^2
compound								L		1112	1
	30.0000 Level 7	 	 				 				1
34 Ethyl Tert-Butyl Ether	0.75949	C.90849	0.90735	0.92644	i		AVRG		; 0.94808;		 12.30615
35 Ohloroform	1.14391	1.20832	1.15602	1.22451		1.39267	 AVRG		1 1.257971		9.11573
36 Tetrahydrofuran	2.773621 1 3.409231		3.03990	3.22107	3.23700	3.41204			3.19526		7.03644
37 1,1,1-Trichloroethane	1.00703	0.98490	0.99377	1.05122		1.23734	AVRG		1.09721		1 11.73008
38 1,2-Dichloroethane	1.69488	1.55334	1.49881.	1.56916	1.60382	1.82376	 AVRG		1 1.66769		9.45930
39 Benzene	0.90295 1.30653	0.90512	G.968851	0.98664	1.04197	1.20139	 		1.04478		1 14.71502
40 Carbon tetrachloride	0.99800 1.44353	1.01018	1.01830	1.06856		1.30065	' '		1.133081		15.15002
							 				_

Page 84 of 2722 10259332

Start Cal Date : 10-MAR-2014 11:12
End Cal Date : 10-MAR-2014 13:55
Quant Method : ISTD
Target Version : 4.14
Integrator : HP RTE
Method file : \\192.168.10.12\chem\10air0.i\031014.b\T015_069-14.m
Last Edit : 10-Mar-2014 15:12 10air0.i

	0.1000000	0.2000000	0.5000000	1.0000	10.0000	20.0000	1 1		Coefficients		%RSD
Sompound	Level 1	Level 2	Level 3	Level 4	Level 5	Level 6	Curve	b	m1	m2	or Rod
	30.0000 Level 7		i	 							
41 Cyclohexane	1.84791 1.84791	1.90208		1.99185	2.39771	2.95611	AVRG		1 2.16499		20.1650
42 Test Amyl Methyl Ether	1 +++++ 1	0.60158	0.77689	0.87327 0.87327		1.04492	1 1		1 0.88875		23.1004
44 2,2,4-Trimethylpencane	0.59958		0,59455	0.62302	0.69883		AVRG		 0.67258		1 13.9219
45 Heptane	1.99114}		1.90049	2.00239	2.02013	2.26379	AVRG		1 2.08863		 3.656
46 1,2-Dichloropropane	2.427261 3.458541	2.45000	2.629881	2.79267	2.88795	3.23289	1 1		1 2.83989		1 13.6990
47 Trichloroethene	2.29031 2.50313	2.21270	2,269381	2.31916	2.27705		AVRG		1 2.33270		4 4.5648
48 1,4-Dioxane	3.74290 5.94928	4.26081	4.858491	4.68617 4.68617	4.71161		AVRG		 4.81538		1 15.258

Page 85 of 2722 10259332

Start Cal Date : 10-MAR-2014 11:12
End Cal Date : 10-MAR-2014 13:55
Quant Method : ISTD
Target Version : 4.14
Integrator : HP RTE
Method file : \\192.168.10.12\chem\10air0.i\031014.b\T015_069-14.m
Last Edit : 10-Mar-2014 15:12 10air0.i

	0.1000000				13.0000	20.0000	1		Coefficients		%RSD
Compound	Level 1	Level 2	Level 3	Level 4	Level 5 	Level 6	Curve	ь	m1	m2	cr R^2
	j 30.0000 j	i	i	i		1	i i				i
	Level 7	I			 	 					_
49 Bromodichloromethane	1.05595	,	1.05443	1.06525	1.07884	1.21577			1		
	1.29442	1	į.			 	AVRG		1.12108:		8.46644
50 Methylcyclohexane	3.950171	4.31106	3.83767	3.90218	4.06432						
	4.37133	ţ				1	AVRG		1 4.10367:		5.31511
31 Methyl Isobutyl Ketone	1.32695	1.69501	1.80412	1.76113	1.37132	1.50294					
	1.56699	!				!	AVRG		1.57549		11.86929
52 cis-1,3-Dichloropropene	2.12350)	2.34341	1.93713	1.83374	1.58892	1.71160			-		
	1.77241	ļ					AVRG		1.90153		13.59314
53 trans-1,3-Dichloropropene	34.37	6568	17790	39339	511296	1029022			-		
	1588396	1					LINR	0.0041	4. L.52974		0.99971
55 1,1,2-Trichlorcethane	1.73572	2.11602	2.107291	2.20825	2.29048	2.50852					1
	2.57315	!			1 !		AVRG		2.21992:		12.62258
56 Toluene	0.66842	0.76617	0.75694	0.77657		0.92909				-	- -
	0.96139	į	İ				AVRG		0.81342		1 12.65344
									-		-

Page 86 of 2722 10259332

Report Date : 11-Mar-2014 14:01

Pace Analytical Services, Inc.

INITIAL CALIBRATION DATA

Start Cal Date : 10-MAR-2014 11:12
End Cal Date : 10-MAR-2014 13:55
Quant Method : ISTD
Target Version : 4.14
Integrator : HP RTE
Method file : \\192.168.10.12\chem\10air0.i\031014.b\T015_069-14.m
Last Edit : 10-Mar-2014 15:12 10air0.i

	0.1000000	0.2000000	0.50000000	1.0000	10.0000	20.6000	I i		Coefficients		%RSD
Compound	Level 1	Level 2	Level 3	Level 4	Level 5	Level 6	Curve	Ŀ	ml	m2	or R^2
	30.0000 Level 7				 						
57 Methyl Butyl Ketone	C.79886 1.02552	0.98284		1.15739	0.90668 0.90668	0.99929	AVRG (0.99697		1 12.0459
56 Dibromochloromethane	C.65631 C.82481	0.72831	0.69572	0.71409	0.71635 0.71635	0.80087	I I [AVRG [: 0.73378		 8.05473
59 1,2-Dibromoethane	G.84085 0.99574	1.01094	0.904391	0.85925		0.94429			0.91459		7.7271
60 Tetrachloroethene	0.82212	0.80949	C.84245:	0.89898	0.96196		 AVRG		0.93046!		1 13.0327
62 Chlorobenzene	0.505231	C.60618	C.61821	0.64675	 0.670 14 		I I		C.648C3		1 12.9713
63 Ethyl Benzene	0.293661	C.35681	0.36071	0.36563	 0.38461 		AVRG		: 0.37797		1 13.84980
64 m&p-Xylene	0.39732	0.43584	0.41731	0.44474	 3.46194 	0.52379	 AVRG		0,458931		11.16805
					 						-

Page 87 of 2722 10259332

Start Cal Date : 10-MAR-2014 11:12
End Cal Date : 10-MAR-2014 13:55
Quant Method : ISTD
Target Version : 4.14
Integrator : HP RTE
Method file : \\192.168.10.12\chem\10air0.i\031014.b\T015_069-14.m
Last Edit : 10-Mar-2014 15:12 10air0.i

Compound	0.1000000 Level 1	0.2000000 Level 2			10.3363 Level 5	20.0000 Level 6	Curve	Coefficients ml	m2	%RSD or R^2
	1 30.3000 Level 7									
65 Styrene	0.60663	0.74216			0.73916	0.84214	I AVRG	 0.75153		1 11.47221
66 Bromoform	0.63168		0.69979!	i		0.79391	I AVRG	 0.72083		 9.67537
67 o-Xylene	0.34083	0.39974	0.40399		0.45641	0.51734	 AVRG	 0.44138		 15.83025
68 1,1,2,2-Tetrachloroethane	0.56698 0.79820	0.61250	0.63138	į	0.70997	0.78678	 			1 12.89120
69 Isopropylbenzene	0.33492	0.30970		0.33331	0.36077	0.40424	 AVRG	! 0.35472		 11.49865
70 N-Propylibenzene	0.29999	0.29051	0.28952		0.30373	0.34755	I I	 0.31073		I 3.78360
71 4-Ethyltoluene	0.32813 0.45136		C.35548	0.35663				 0.37743		1 11.11432
	- _						 	 ; _!		

Page 88 of 2722 10259332

Start Cal Date : 10-MAR-2014 11:12
End Cal Date : 10-MAR-2014 13:55
Quant Method : ISTD
Target Version : 4.14
Integrator : HP RTE
Method file : \\192.168.10.12\chem\10air0.i\031014.b\T015_069-14.m
Last Edit : 10-Mar-2014 15:12 10air0.i

	0.1000000	0.2000000	0.50000000	1.0000	10.0000	20.0000	1 1		Coefficients		%RSD
Compound	Level 1	Level 2	Level 3	Level 4	Level 5		Curve	ь	m1	m2	or R^2
	30.3000 Level 7	 			 		 				
72 1,3,5-Trimethylbenzene	C.27501 C.44210	C.33811	C.35672	0.36172		0.43913	AVRG [(0.37319)		1 15.8684
73 Tert-Butyl Benzene	0.32844 0.51809	C.39182	C.38978	0.39959		0.49927	I I I AVRG I		0.42392		15.7432
74 1,2,4-Trimethylbenzene	0.37504 0.51036	C.36333	0.37042	0.38229	0.42509	0.48950	I I		0.41658		14.5533
75 Sec- Butylbenzene	0.323141	0.34729	0.29641	0.29648	0.33004	0.37954	1		0.33857		11.4640
76 1,3-Dichlorobenzene	0.54152 0.81678	0.62747	0.64023:	0.65373).68639 		AVRG		0.67554		 13.4662
78 Benzyl Chloride	0.53227 0.59121	0.66443	0.66356	0.60947	0.52596 0.52596	0.59022	I I AVRG		0.59745		 9.4532
79 1,4-Dichlorobenzene	0.47629 0.78511	0.54975 0.54975	0.61391	0.65225	0.67487		I I AVRG I		0.64344		16.8446
	 				 		 		_:		_

Page 89 of 2722 10259332

Start Cal Date : 10-MAR-2014 11:12
End Cal Date : 10-MAR-2014 13:55
Quant Method : ISTD
Target Version : 4.14
Integrator : HP RTE
Method file : \\192.168.10.12\chem\10air0.i\031014.b\T015_069-14.m
Last Edit : 10-Mar-2014 15:12 10air0.i

Compound	0.1000000 Level 1		0.5000000 Level 3		10.0000 Level 5	20.0000 Level 6	 Curve	b	Scefficients m2	m2	%RSD om R^2
	30.3000 Level 7			 	 	 					
80 p-Isopropyltoluene	0.38780 0.46657		C.47896	0.39454	0.40226		AVRG		: 0.42738		 8.6395
81 1,2,3-Trimethylbenzene	0.41106 0.52974		0.39371	0.38720	0.44142	0.48597			0.43775		 11.9862
82 1,2-Dichlorobenzene	0.69073		0.71387	0.70003	0.71775		AVRG		0.73850		5.8176
83 N-Butylbenzene	0.443931 0.493221	0.49763	0.52036	0.535211	0.43586		I I		0.48401		7.8348
84 1,2,4-Trichlorobenzene	1 1.23173	1.40298	1.49432	1.48910 	1.19544		I I		1.33827		10.4311
85 Naphthalene	0.62669 +++-+	C.78134	0.82725	0.82692 	0.65341		I I		0.72996		 12.6099
86 Hexachlorobutadiene	0.62004 0.62004	C.654461	0.77172	0.80364 3.80364	 1.06793 		- AVRG				 26.6920
							II				

Page 90 of 2722 10259332

Report Date : 11-Mar-2014 14:01

Pace Analytical Services, Inc.

INITIAL CALIBRATION DATA

Start Cal Date : 10-MAR-2014 11:12
End Cal Date : 10-MAR-2014 13:55
Quant Method : ISTD
Target Version : 4.14
Integrator : HP RTE
Method file : \\192.168.10.12\chem\10air0.i\031014.b\T015_069-14.m
Last Edit : 10-Mar-2014 15:12 10air0.i

	Level 1	0.2000000 Level 2	Level 3	Level 4	13.0000 Level 5	20,0000 Level 6		b	Coefficients ml	m2	%RSD or R10
; ;	30.0000 Level 7		:	İ	i i						1
IS 28 Hexane-d14(S)	2.02664;		2.10830	2.16193 		2.12256	I I		2.11000		2.64452
\$ 54 Toluene-d8 (S)	1.11151 ₁ 0.96396	i	1.06990	1.06759	ı	0.99301	I I IAVRG		1.04795		 5.21868
S 77 1,4-dichlorobenzene-d4 (S)	2.05679	2.09810]	2.25577	2.05607	1.91045	2.23144	AVRG		2.12325j		! 6.11812
1	- _						 				

Page 91 of 2722 10259332

Report Date : 11-Mar-2014 14:01

Pace Analytical Services, Inc.

INITIAL CALIBRATION DATA

Start Cal Date : 10-MAR-2014 11:12
End Cal Date : 10-MAR-2014 13:55
Quant Method : ISTD
Target Version : 4.14
Integrator : HP RTE
Method file : \\192.168.10.12\chem\10air0.i\031014.b\T015_069-14.m
Last Edit : 10-Mar-2014 15:12 10air0.i

|Average %RSD Results. Calculated Average %RSD = 11.53836 Maximum Average %RSD = 40.00000 * Passed Average %RSD Test.

Curve	Formula	Units
	== ====================================	
Average	d Amt = m1*Rsp	Amount
Linear	Amt = b + ml*Rsp	Amount
	<u> </u>	1

Page 92 of 2722 10259332

5A - FORM V VOA VOLATILE ORGANIC INSTRUMENT PERFORMANCE CHECK BROMOFLUOROBENZENE (BFB)

EPA SAMPLE NO.	
	-
BEB	

Lab Name: Pace Analytical

Contract:

Lab Code: PASI

Case No.:

SAS No.:

SDG No.: 10259332

Lab File ID: 07101BFB.D

BFB Injection Date: 03/12/2014

Instrument ID: 10AIR0

BFB Injection Time: 11:26

GC Column: J&W DB-5 ID: 0.32 (mm)

		% RELATIVE					
m/e	ION ABUNDANCE CRITERIA	ABUNDANC	E				
95	Base Peak, 100% relative abundance	100.00					
50	8.00 - 40.00% of mass 95	20.96					
75	30.00 - 66.00% of mass 95	54.57					
96	5.00 - 9.00% of mass 95	6.47					
173	Less than 2.00% of mass 174	0.96	(1.18)				
174	50.00 - 120.00% of mass 95	81.66					
175	4.00 - 9.00% of mass 174	6.09	(7.46)				
176	93.00 - 101.00% of mass 174	80.08	(98.07)				
177	5.00 - 9.00% of mass 176	5.02	(6.27)				

EPA SAMPLE NO.	LAB SAMPLE ID	LAB FILE ID	DATE ANALYZED	TIME ANALYZED
LCS for HBN 289158	[AIR/ 1638294	07103_19645.D	03/12/2014	12:31
CCV	CCV	07103.D	03/12/2014	12:31
LCS (LCS)	LCS	07103_LCS.D	03/12/2014	12:31
BLANK for HBN 2891	58 [AI 1638293	07105_19645.D	03/12/2014	13:49
BLANK (BLK)	BLANK	07105.D	03/12/2014	13:49
Ambient(1633318DUP) 1638565-DUP	07113.D	03/12/2014	17:40
SV-015-A-16	10259332001	07120.D	03/12/2014	21:04
IA-015-A-16	10259332002	07121.D	03/12/2014	21:34
SV-108-A-16	10259332003	07122.D	03/12/2014	22:03

Page 1609 of 2722 10259332

Data File: \\192.168.10.12\chem\10air0.i\031214.b\07103.D Report Date: 12-Mar-2014 12:01

Pace Analytical Services, Inc.

CONTINUING CALIBRATION COMPOUNDS

Instrument ID: 10air0.i Injection Date: 12-MAR-2014 12:31 Lab File ID: 07103.D Init. Cal. Date(s): 10-MAR-2014 Analysis Type: AIR Init. Cal. Times: 11:12 Lab Sample ID: CCV Quant Type: ISTD Method: \\192.168.10.12\chem\10air0.i\031214.b\T015_069-14.m Injection Date: 12-MAR-2014 12:31
Init. Cal. Date(s): 10-MAR-2014 10-MAR-2014
Init. Cal. Times: 11:12 13:55
Quant Type: ISTD

	!	1	CCAL MIN		MAX	
COMPOUND	RRF / AMOUNT 	RF10		' %D / %DRIFT == ==================================		
1 Chlorodifluoromethane	2.04583	1.71863	1.71863 0.01	•		
2 Propylene	5.43647	4.74300	4.74300 0.01	0 -12.75579	30.00000	Averaged
3 Dichlorodifluoromethane	0.92694	0.79182	0.79182 0.01	0 -14.57651	30.00000	Averaged
4 Dichlorotetrafluoroethane	1.14938	0.99641	0.99641 0.01	0 -13.30893	30.00000	Averaged
5 Chloromethane	3.25840	2.79458	2.79458 0.01	0 -14.23462	30.00000	Average
6 Vinyl chloride	3.25602	2.86612	2.86612 0.01	0 -11.97463	30.00000	Average
7 1,3-Butadiene	4.84187	4.18665	4.18665 0.01	0 -13.53241	30.00000	Average
8 Bromomethane	3.14144	2.75160	2.75160 0.31	0 -12.40978	30.00000	Average
9 Chloroethane	7.07477	6.16663	6.16663 0.01	0 -12.93632	30.00000	Average
10 Ethanol	9.17462	7.54701	7.54701 0.01	0 -17.74030	30.00000	Average
11 Vinyl Bromide	3.20252	2.74117	2.74117 0.01	0 -14.40570	30.00000	Average
12 Isopentane	3.22421	3.06799	3.06799 0.01	0 -4.84516	30.00000	Average
13 Acrolein	14.02424	10.20427	10.20427 0.01	0 -27.23836	30.00000	Average
14 Trichlorofluoromethane	0.88952	0.76692	0.76692 0.01	0 -13.78203	30.00000	Average
15 Acetone	1.91867	1.68060	1.68060 0.01	0 -12.40801	30.00000	Average
16 Isopropyl Alcohol	2.26259	1.85825	1.85825 0.01	0 -17.87090	30.00000	Average
17 Acrylonitrile	6.49661	4.88065	4.88065 0.01	0 -24.87385	30.00000	Average
18 1,1-Dichloroethene	2.047491	1.73115	1.73115 0.01	0 -15.45018	30.00000	
19 Tert Butyl Alcohol (TBA)	1.39008	1.17746	1.17746 0.10	00 -15.29579	30.00000	Average
20 Freon 113	1.60200	1.41347	1.41347 0.01	0 -11.76874	30.00000	_
21 Methylene chloride	3.10202	2.73071	2.73071 0.01			Average
22 Allyl Chloride	8,17455	6.25124	6.25124 0.01	.01 -23.52808	30.00000	Average
23 Carbon Disulfide	1.17065	1.02193	1.02193 0.01	0 -12.70390	30.00000	Average
24 trans-1.2-dichloroethene	3.545991	2.844561	2.84456 0.01			-
25 Methyl Tert Butyl Ether	1.00829	0.87525	0.87525 0.30	00 -13.19444	30.00000	Average
26 Vinyl Acetate	1.64083	1.16082	1.16082 0.01	.0 -29.25403	30.00000	Average
27 1,1-Dichloroethane	1.67162	1.45243	1.45243 0.01	.0 -13.11230	30.00000	Average
\$ 28 Hexane-d14(S)	2.11000	2.12440	2.12440 0.20			_
29 Methyl Ethyl Ketone	7.56219	5.90680	5.90680 0.01			-
30 Di-isopropyl Ether	1.10882	0.99174	0.99174 0.01	.01 -10.55908	30.00000	Average
31 n-Hexane	2,21062	1.91924	1.91924 0.01	.0 -13.18111	30.00000	Average
32 Ethyl Acetate	1.73354	1.32905	1.32905 0.01			
33 cis-1,2-Dichloroethene	3.33210	2.72239	2.72239 0.01			-
34 Ethyl Tert-Butyl Ether	0.94808	0.81231	0.81231 0.01			-
35 Chloroform	1.25787	1.06731	1.06731 0.01			-
36 Tetrahydrofuran	3.19526	2.72344	2.72344 0.01	•		-
37 1,1,1-Trichloroethane	1.09721	0.94033	0.94033 0.01			
38 1,2-Dichloroethane	1.66769	1.35984	1.35984 0.01			
39 Benzene	1.04478	0.91289	0.91289 0.30			
40 Carbon tetrachloride	1.13308	0.95237	0.95237(0.01			-
41 Cyclohexane	2.16499	2.10417	2.10417 0.01	-		
42 Tert Amyl Methyl Ether	0.88875	0.83968	0.8396810.01			
12 1010 mays monnys mener	1 0.00075	0.035001			1	, merage

10259332 Page 1645 of 2722 Data File: \\192.168.10.12\chem\10air0.i\031214.b\07103.D Report Date: 12-Mar-2014 12:01

Pace Analytical Services, Inc.

CONTINUING CALIBRATION COMPOUNDS

Instrument ID: 10air0.i Injection Date: 12-MAR-2014 12:31
Lab File ID: 07103.D Init. Cal. Date(s): 10-MAR-2014
Analysis Type: AIR Init. Cal. Times: 11:12
Lab Sample ID: CCV Quant Type: ISTD
Method: \\192.168.10.12\chem\10air0.i\031214.b\T015_069-14.m 10-MAR-2014

13:55

I	1	1	CCAL 1	MIN	l I	MAX	
COMPOUND	RRF / AMOUNT == =================================	RF10	RRF10 :		%D / %DRIFT		
44 2,2,4-Trimethylpentane	0.67258	0.61497	0.61497 0				
45 Heptane	2.08863	1.75894	1.75894 0	.010	-15.78491	30.00000	Averaged
46 1,2-Dichloropropane	1 2.839881	2.49950	2.49950 0	.010	-11.98595	30.00000	Averaged
47 Trichloroethene	2.33270	1.98344	1.98344 0	.010	-14.97242	30.00000	Averaged
48 1,4-Dioxane	4.81538	4.41680	4.41680 0	.010	-8.27729	30.00000	Averaged
49 Bromodichloromethane	1.12108	0.930491	0.93049 0	.010	-17.00064	30.00000	Averaged
50 Methylcyclohexane	4.10367	3.59795	3.59795 0	.010	-12.32339	30.00000	Averaged
51 Methyl Isobutyl Ketone	1.57549	1.19620	1.19620 0	.010	-24.07451	30.00000	Averaged
52 cis-1,3-Dichloropropene	1.90153	1.41279	1.41279 0	.010	-25.70256	30.00000	Averaged
53 trans-1,3-Dichloropropene	10.00000	11.83003	1.29764 0	.010	18.30032	30.00000	Linear
\$ 54 Toluene-d8 (S)	1.04795	1.07305	1.07305 0	.200	2.39544	30.00000	Averaged
55 1,1,2-Trichloroethane	2.21992	2.02772	2.02772]0	.010	-8.65778	30.00000	Averaged
56 Toluene	0.81342	0.73695	0.73695 0	.300	-9.40168	30.00000	Averaged
57 Methyl Butyl Ketone	0.99697	0.70902	0.7090210	.010	-28.88288	30.00000	
58 Dibromochloromethane	0.73378	0.56289	0.56289 0	.010	-23.28953	30.00000	Averaged
59 1,2-Dibromoethane	0.91459	0.66738	0.66738 0	.010	-27.02909	30.00000	Averaged
60 Tetrachloroethene	0.93046	0.76930	0.76930 0	.010	-17.32003	30.00000	-
62 Chlorobenzene	0.648081	0.54028	0.54028 0	.010	-16.63394	30.00000	
, 63 Ethyl Benzene	0.37797	0.30075	0.30075 0	.300			
64 m&p-Xylene	0.45893	0.36348	0.36348 0				
165 Styrene	0.75155	0.58777	0.58777 0				
66 Bromoform	0.720831	0.55624	0.55624 0				
67 o-Xylene	0.44138	0.36262	0.36262 0			•	=
68 1,1,2,2-Tetrachloroethane	0.68117	0.564361	0.56436 0				
69 Isopropylbenzene	0.35472	0.28596	0.28596 0				_
70 N-Propylbenzene	0.31073	0.24608	0.24608 0				
71 4-Ethyltoluene	0.37743	0.29947	0.29947 0				
72 1,3,5-Trimethylbenzene	0.37310	0.32112	0.32112 0				-
73 Tert-Butyl Benzene	0.42392	0.35545	0.35545 0				
74 1,2,4-Trimethylbenzene	0.41658	0.34132	0.3413210				
75 Sec- Butylbenzene	0.33857	0.26509	0.2650910				
76 1,3-Dichlorobenzene	0.67554	0.55119	0.55119 0				
\$ 77 1,4-dichlorobenzene-d4 (S)	2,12325	2.33284	2.33284 0				=
178 Benzy Chloride	0.59745	0.41095	0.41095 0				
79 1.4-Dichlorobenzene	0.64344	0.549031	0.54903 0				
80 p-Isopropyltoluene	0.42738	0.31866	0.31866 0				-
81 1,2,3-Trimethylbenzene	0.43775	0.35225]	0.35225 0				
82 1,2-Dichlorobenzene	0.73550	0.56661	0.56661 0				
B3 N-Butylbenzene	0.48401	0.332831	0.33283 0				
34 1,2,4-Trichlorobenzene	1.33827	0.88836	0.88836 0				
45 Naphthalene	0.72996	0.494371	0.4943710		/		
186 Hexachlorobutadiene	0.85004	0.807661	0.8076610			_	
Too hegaelitotopacautene	1 0.85004	1		.010			Averageu

Page 1646 of 2722 10259332

Data File: \\192.168.10.12\chem\10air0.i\031214.b\07103.D

Report Date: 12-Mar-2014 12:01

Pace Analytical Services, Inc.

CONTINUING CALIBRATION COMPOUNDS

Instrument ID: 10air0.i Lab File ID: 07103.D Analysis Type: AIR Injection Date: 12-MAR-2014 12:31
Init. Cal. Date(s): 10-MAR-2014 10-MAR-2014
Init. Cal. Times: 11:12 13:55
Quant Type: ISTD

Lab Sample ID: CCV

Method: \\192.168.10.12\chem\10air0.i\031214.b\T015_069-14.m

|Average %D / Drift Results.

|Calculated Average %D/Drift = 16.77426 |Maximun Average %D/Drift = 30.00000

|* Passed Average %D/Drift Test.

10259332 Page 1647 of 2722

5A - FORM V VOA VOLATILE ORGANIC INSTRUMENT PERFORMANCE CHECK BROMOFLUOROBENZENE (BFB)

EPA SAMPLE NO.

BFB

Lab Name: Pace Analytical

Contract:

Lab Code:

PASI

Case No.:

SAS No.:

SDG No.: 10259332

Lab File ID: 07203BFB.D

BFB Injection Date: 03/13/2014

Instrument ID: 10AIR0

BFB Injection Time: 11:44

GC Column: J&W DB-5

ID: 0.32

(mm)

		% RELATIVE				
m/e	ION ABUNDANCE CRITERIA	ABUNDANCE				
95	Base Peak, 100% relative abundance	100.00				
50	8.00 - 40.00% of mass 95	19.23				
75	30.00 - 66.00% of mass 95	53.82				
96	5.00 - 9.00% of mass 95	6.33				
173	Less than 2.00% of mass 174	0.93	(1.11)			
174	50.00 - 120.00% of mass 95	83.38	7-17			
175	4.00 - 9.00% of mass 174	6.31	(7.57)			
176	93.00 - 101.00% of mass 174	80.61	(96.67)			
177	5.00 - 9.00% of mass 176	5.19	(6.44)			

1 - Value is %mass 174

2 - Value is %mass 176

EPA SAMPLE NO.	LAB SAMPLE ID	LAB FILE ID	DATE ANALYZED	TIME ANALYZED
CAL1	CAL1	07204.D	03/13/2014	12:08
CAL2	CAL2	07205.D	03/13/2014	12:33
CAL3	CAL3	07206.D	03/13/2014	12:58
CAL4	CAL4	07207.D	03/13/2014	13:24
CAL5	CAL5	07208.D	03/13/2014	13:51
CAL6	CAL6	07209.D	03/13/2014	14:20
CAL7	CAL7	07210.D	03/13/2014	14:52
ICVADDL (LCS)	ICVADDL	07211.D	03/13/2014	15:18
ICV (LCS)	ICV	07212.D	03/13/2014	15:45
LCS (LCS)	LCS	07213.D	03/13/2014	16:12
BLANK (BLK)	BLANK	07215.D	03/13/2014	17:05
SV-015-A-16	10259332001	07231.D	03/14/2014	01:00

INITIAL CALIBRATION DATA

Start Cal Date : 13-MAR-2014 12:08
End Cal Date : 13-MAR-2014 14:52
Quant Method : ISTD
Target Version : 4.14
Integrator : HP RTE
Method file : \\192.168.10.12\chem\10air0.i\031314.b\T015_072-14.m
Last Edit : 13-MAR-2014 15:58 10air0.i

Calibration File Names:
Level 1: \\192.168.10.12\chem\10air0.i\031314.b\07204.D
Level 2: \\192.168.10.12\chem\10air0.i\031314.b\07205.D
Level 3: \\192.168.10.12\chem\10air0.i\031314.b\07206.D
Level 4: \\192.168.10.12\chem\10air0.i\031314.b\07207.D
Level 5: \\192.168.10.12\chem\10air0.i\031314.b\07208.D
Level 6: \\192.168.10.12\chem\10air0.i\031314.b\07209.D
Level 7: \\192.168.10.12\chem\10air0.i\031314.b\07209.D

Compound	0.1000000 Level 1	0.2000000 Level 2	!	! !	10.0000 Level 5 		 Curve	Coefficient b ml	m.2	%RSD or R^2
	30.0000 Level 7	 								1
1 Chlorodifluoromethane	1.09024	1.29800	1.40165		1.54016		 	 1.44 810		14.10214
2 Propylene	3.42657;		i	4.22761	i		AVRG	4.18172		 9.5923
3 Dichlorodifluoromethane	0.49437		'		,	0.76585		0.66488	i	18.1576
4 Dichloroletrafluoroethane	0.62713		0.78656	C.84342	i		AVRG	0.84080		1 17.41828
	_			 	, ,		 	 		

10259332 Page 759 of 2722

Pace Analytical Services, Inc.

INITIAL CALIBRATION DATA

Start Cal Date : 13-MAR-2014 12:08
End Cal Date : 13-MAR-2014 14:52
Quant Method : ISTD
Target Version : 4.14
Integrator : HP RTE
Method file : \\192.168.10.12\chem\10air0.i\031314.b\T015_072-14.m
Last Edit : 13-MAR-2014 15:58 10air0.i

Compound	0.1000000 Level 1		0.5000000 Level 3	1.0000 ; Level 4 ;	10.0000 Level 5	20.0000 Level 6	 Curve		coefficients ml	m2	%RSD : or R^2
	; 30.0000 ; Level 7	;	 	! !	 	 					
5 Chloromethane	1.82398 2.92168	2.20198	2.20677	2.41326	2.48360 	2.73376	 AVRG	 	2.39786		15,2188
6 Vinyl chloride	2.23269)			2.66577	2.59664	2.64252	I AVRG	, 	2.50150		8.1492
7 1,3-Butadiene	3.43584;	3.67156	3.77145	3.95042	3.77485	3.86527	I AVRG		3.77109		4.694
8 Bromomethane	2.00142	i	2.34624	2.55570	2.53729	2.54564	1		2.38782		9.121
9 Chloroethane	4.41876 5.66349	4.73086		6.00359	5.62731		AVRG		5.30956		1 10.943
10 Ethanol	+++++ 265692	1486	3527 	7 121	89575	179285	 LINR		6.53491		0.998
11 Vinyl Bromide	2.07921 : 2.61766		,	2.57271		2.59380	1		2.42053		8.256
											

Page 760 of 2722 10259332

Pace Analytical Services, Inc.

INITIAL CALIBRATION DATA

Start Cal Date : 13-MAR-2014 12:08
End Cal Date : 13-MAR-2014 14:52
Quant Method : ISTD
Target Version : 4.14
Integrator : HP RTE
Method file : \\192.168.10.12\chem\10air0.i\031314.b\T015_072-14.m
Last Edit : 13-MAR-2014 15:58 10air0.i

	0.1000000	0.2000000	0.5000000	1.0000	10.0000 I	20.0000	1 1	Co	efficients		%RSD
Compound	Level 1	Level 2	Level 3	Level 4	-	Level 6	Curve	b	ml	m2	or R^2
	30.0000 Level 7		 		·		, , , , , , , , , , , , , , , , , , ,				1
12 Isopentane	1 +++++	1.78250		2.23581	2.73806 	2.90838	, , , , , , , , , , , , , , , , , , ,		2.47680		 20.6960
13 Acrolein	491- 179782			3979 3979	58533 	117834	 LINR	i	9.70042		0.9994
14 Trichloroflucromethane	0.45946		0.56714	0.61090		0.74515	, AVRG		0.62923		 19.5159
15 Acetone	7392; 7068299;		26138	5297 4	355175		 LINR	-0.04522	1.65379		 0.9992
16 Isopropyl Alcohol	1.40960;		1.52173	J.65034		1.66751			1.61399		7.7227
17 Acrylonitrile	4.64073°	5.12052	4.92127	4.86138	4.32186	4.49616	I I AVRG	, 	4.72679		 5.6998
18 1,1-Dichloroethene	1.20990	1.40198	1.39496		•	1.66484		- 	1.49046		 12.2461
							 	-			

10259332 Page 761 of 2722

Pace Analytical Services, Inc. INITIAL CALIBRATION DATA

Start Cal Date : 13-MAR-2014 12:08
End Cal Date : 13-MAR-2014 14:52
Quant Method : ISTD
Target Version : 4.14
Integrator : HP RTE
Method file : \\192.168.10.12\chem\10air0.i\031314.b\T015_072-14.m
Last Edit : 13-MAR-2014 15:58 10air0.i

Compound	0.1000000 Level 1		0.5000000 Level 3		10.0000 Level 5	20.000G Level 6	 Curve	р	Coefficients ml	mê	%RSD or R^2
	39.0000 Level 7	İ	 	: 	 1						i
19 Tert Butyl Alcohol (TBA)	0.96042 1.28953	1.14425	0.87681	0.91832	1.00129	1.14058	I AVRG		1.04732		14.17002
20 Freon 113	C.85679	0.96869	1.07585		1.25181	1.37106	I IAVRG		1.16305		18.49480
21 Methylene chloride	+++++ 2.77025	1.74445	1.97090	2.22703	2.38635	2.57599	 AVRG		2.27916		1 16.70071
22 Allyl Chloride	6.32827 6.32827		6.29583	6.71954	,				6.21177		6.2744€
23 Carbon Disulfide	0.70072		0.85863	0.92518	0.90451		AVRG		0.86157		1 10.54578
24 trans-1,2-dichloroethene	2.54080 2.66560	i	2.91464	2.80191	i		JAVRG		2.70875		5.16984
25 Methyl Tert Butyl Ether	C.59875 C.88556	0.71187	0.73635	C.77775;	,				0.76062		 12.12595
	_						 		- 		i

Page 762 of 2722 10259332

Start Cal Date : 13-MAR-2014 12:08
End Cal Date : 13-MAR-2014 14:52
Quant Method : ISTD
Target Version : 4.14
Integrator : HP RTE
Method file : \\192.168.10.12\chem\10air0.i\031314.b\T015_072-14.m
Last Edit : 13-MAR-2014 15:58 10air0.i

	0.1000000	0.2000000	0.5000000	1.0000	10.0000	20.0000	1 1	Co	efficients		%RSD
Compound	Level 1	Level 2	Level 3	Level 4	Level 5	Level 6	Curve	b	ml	m2	or R^2
	30.0000 Level 7	 	 		 		; ; ;				:
26 Vinyl Acetate	4188 1560895	7635		,	523640	1050231	 LINR	-0.00805	1.10936		 0.9985
27 1,1-Dichloroethane	0.97761		1.15046	1.24261	1.28175	1.37386		1	1.22051;		13.2680
29 Methyl Ethyl Ketone	5.46409 5.66597		5.17352	5.03447		5.56212		į	5.42362		4.8874
30 Di-isopropyl Ether	0.61350		0.75788	0.80110	0.86204		AVRG		0.81971		1 19.0497
31 n-Hexane	1.22714		1.59049	1.66360	1.69796	1.84793	 AVRG		1.63470		15.4738
32 Ethyl Acetate	0.99757 1.37924		1.49485; 1	1.35024		1.29838	JAVRG		1.28774		1 12.3611
33 cis-1,2-Dichloroethene	2.29833	2.31623	2.56747 2.56747	2.61317		2.54926	, ,		2.48363		5.2318
				i			1		-		-;

Page 763 of 2722 10259332

Pace Analytical Services, Inc.

INITIAL CALIBRATION DATA

Start Cal Date : 13-MAR-2014 12:08
End Cal Date : 13-MAR-2014 14:52
Quant Method : ISTD
Target Version : 4.14
Integrator : HP RTE
Method file : \\192.168.10.12\chem\10air0.i\031314.b\T015_072-14.m
Last Edit : 13-MAR-2014 15:58 10air0.i

	0.1000000	0.2000000	0.5000000	1.0000	10.0000	20.0000	1 1	Coefficients		*RSD
Compound	Level 1	Level 2	Level 3	Level 4	Level 5	Level 6	Curve	b m1	m2	or R^2
	30.0000 Level 7				 					
34 Ethyl Tert-Butyl Ether	0.60430; C.84804;	0.63090		0.73024	0.73299	0.80393	I I	0.71760		1 12.362
35 Chloroform	0.729491		0.82631	C.90040	. ,	1.02921	AVRG	0.89492		1 14.664
36 Tetrahydrofuran	1.91903		2.49285	2.47426	2.43880	2.56205				9.588
37 1,1,1-Trichloroethane	0.60166	0.63629	0.722401	0.77095	0.80015	0.90683	1 1			17.579
38 1,2-Dichloroethane	0.94735		1.07305	1.13119	İ		AVRG	1.15817		1 14.633
39 Renzene	C.61498 C.97310		0.74818	0.77902	0.81864 0.81864	0.898]1	I I			16.039
40 Carbon tetrachloride	. 0.63078: 1.08117:	0.66720	0.74887	0.76874	0.81771 0.81771					1 19.69

10259332 Page 764 of 2722

Pace Analytical Services, Inc.

INITIAL CALIBRATION DATA

Start Cal Date : 13-MAR-2014 12:08
End Cal Date : 13-MAR-2014 14:52
Quant Method : ISTD
Target Version : 4.14
Integrator : HP RTE
Method file : \\192.168.10.12\chem\10air0.i\031314.b\T015_072-14.m
Last Edit : 13-MAR-2014 15:58 10air0.i

	0.1000000	0.2000000	0.5000000	1.0000	10.0000	20.0000	1 1	Coefficients		%RSD
Compound	Level 1	Level 2	Level 3	Level 4	Level 5	Level 6	Curve	b m1	m2	or R^2
	i 30.0000 : Level 7	 	 		- 					
41 Cyclohexane	1.42581 2.48399	1.44106		1.52391	1.87210	2.18587	I I	1.77600		23.5934
42 Tert Amyl Methyl Ether	+++++ 0.82775	0.45655			0.75012	0.78990	i i AVRG	0.68519		20.1080
44 2,2,4-Trimethylpentane	0.39092	0.43125	0.48147	0.49631	0.55098¦	0.58739	 AVRG	0.50854		1 16.3443
45 Heptane	1.28779	1.40353	1.41339	1.542431	1.58298 I	1.70345		1.53653		12.0697
46 1,2-Dichloropropane	1.63448	1.77345	i	i	'	2.45897	AVRG	2.12976		 16.5223
47 Trichloroethene	1.71098	1.62892			1.80880 1.80880	1.88779	I I IAVRG	1.79112		 6.0508
48 l,4-Dioxane	2.91543 4.18751	3.72967	3.76580	4.18422		3.98015		3.75320		1 11.8548
	:: !	;					- 			

Page 765 of 2722 10259332

Pace Analytical Services, Inc.

INITIAL CALIBRATION DATA

Start Cal Date : 13-MAR-2014 12:08
End Cal Date : 13-MAR-2014 14:52
Quant Method : ISTD
Target Version : 4.14
Integrator : HP RTE
Method file : \\192.168.10.12\chem\10air0.i\031314.b\T015_072-14.m
Last Edit : 13-MAR-2014 15:58 10air0.i

	0.1000000	0.2000000	0.5000000	1.0000	10.0000	20.0000	Ī	C	oefficients		*RSD
Compound	Level 1	Level 2 (Level .3	Level 4	Level 5	Level 6	Curve	ь	ml	m 2	or R^2
	30,0000 Level 7	: : : :	 	 	 						
49 Bromodichloromethane	0.63623	0.71991		0.79966		0.91051	I	 	0.80176		1 14.355
50 Methylcyclohexane	3.01400 3.34515	3.27098	3.28578	3.33529	3.24656	3.29375	AVRG	 	3.25593		3.4435
51 Methyl Isobutyl Ketone	1.14554		1.33750	1.37874	1.04187	1.11414		; ?	1.20846		1 10.210
52 cis-1,3-Dichloropropene	1.49108	1.58683	1.47459	1.43253		1.29707			1.40797		8.681
53 trans-1,3-Dichloropropene	3259	6258;	15972	33726	467522		I	0.00574	1.16789		0.999
55 1,1,2-Trichloroethane	1.31443	1.35838	1.63222	1.66117	i		AVRG	 	1.66798		1 15.660
56 Toluene	C.48721 C.74349	0.57459	0.59212	0.61931		0.70565	11		0.62524		 13.702

Page 766 of 2722 10259332

INITIAL CALIBRATION DATA

Start Cal Date : 13-MAR-2014 12:08
End Cal Date : 13-MAR-2014 14:52
Quant Method : ISTD
Target Version : 4.14
Integrator : HP RTE
Method file : \\192.168.10.12\chem\10air0.i\031314.b\T015_072-14.m
Last Edit : 13-MAR-2014 15:58 10air0.i

	0.1000000	0.2000000	0.5000000	1.0000	10.0000	20.0000	1 1	C	oefficients		%RSD
Compound	Level :	Level 2		Level 4	Level 5		Curve	b	m3	m2	or R^2
	30.0000						l :				1
	Level 7		 	 							
57 Methyl Butyl Ketone	3979	7101	16452	36048	496681	986580		1	1		i
	. 1509303			·				-0.01915			0.99732
58 Dibromochloromethane	0.44568		0.47749	0.49639	0.51717			i	i		İ
	0.61181						AVRG	l	0.50990		11.78356
59 1,2-Dibromoethane		. 0.64024	0.61880	0.66715	0.63087	0.67375		i	İ		İ
	0.72258		 :				AVRG	 	0.65813		5.23086
60 Tetrachloroethene	0.53968	0.58800		0.67462		0.76526	i i	i	i		İ
	0.81996						AVRG	 	0.68082		14.3736
62 Chlorobenzene	0.37931		0.45841	0.48766	0.51286	0.53546		i	i		
	C.55949						AVRG	 	0.48010		13.14359
63 Ethyl Benzene	0.26383	0.28588	0.28402	0.27378	0.27798	0.31005	i i	i	i		i
	0.33187			ا ا	· · · · · · · · · · · · · · · · · · ·		AVRG	 	0.28963		8.09638
64 m&p-Xylene	0.32663			C.33541	,			1			i
	0.39535				l		AVRG		0.34731		7.6323
											. ,

Page 767 of 2722 10259332

Pace Analytical Services, Inc. INITIAL CALIBRATION DATA

Start Cal Date : 13-MAR-2014 12:08
End Cal Date : 13-MAR-2014 14:52
Quant Method : ISTD
Target Version : 4.14
Integrator : HP RTE
Method file : \\192.168.10.12\chem\10air0.i\031314.b\T015_072-14.m
Last Edit : 13-Mar-2014 15:58 10air0.i

	0.1000000	0.2000000	0.5000000	1.0000	16.0000	20.0000	I I		Coefficients		1 81	RSD
Compound	Level 1	Level 2	Level 3 !	Level 4	Level 5	Level 6	Curve	p.	ml	m2	or	R^2
	30.0000				1		Ι				1	
	Level 7										:= 1 =====	
65 Styrene	0.62999		0.61777	0.56752	0.54202	0.59412			1 1		i	
	C.65495						AVRG		0.61765		9. 	.40286
66 Bromoform	0.43759		0.48397	C.48642	0.51094	0.55992			i i		i	
	0.61862						AVRG		0.50990		11.	.93645
67 o-Xylene	0.32286		0.29916	C.31331	0.32346				i i		i	
	0.4016B		 				AVRG		0.33170		11	.49023
68 1,1,2,2-Tetrachloroethane	0.38798		0.44220	0.47512	0.514921				i		i	
	0.59043	 					AVRG		0.48720		15	.0172
69 Isopropylbenzene	0.23508		0.24955	0.24684	0.26535				i i		i	
	0.31165		 				AVRG		0.26306		10	.5854
70 N-Propylbenzene	0.29260	0.24100	0.22746	0.21871	0.22397	0.24531	i i				i	
	0.26498						AVRG		C.24486		10	.7047
71 4-Ethyltoluene	0.33929		0.28085						1			
	C.32518						AVRG		0.298241		8	.8266
							1					

Page 768 of 2722 10259332

INITIAL CALIBRATION DATA

Start Cal Date : 13-MAR-2014 12:08
End Cal Date : 13-MAR-2014 14:52
Quant Method : ISTD
Target Version : 4.14
Integrator : HP RTE
Method file : \\192.168.10.12\chem\10air0.i\031314.b\T015_072-14.m
Last Edit : 13-MAR-2014 15:58 10air0.i

	0.1000000	0.2000000	0.5000000	1.0000	10.0000	20.0000		Coe	fficients		%RSD
Compound	Level l	Level 2	Level 3	Level 4	Level.5	Level 6	Curve	ь	m1	m2	or R^2
	30.0000 Level 7	 	!	i 	 			· 			.
72 1,3,5-Trimethylbenzene	0.25509	0.25284		0.26499	0.28736 	0.31596	AVRG	I	C.28046		10.0469
73 Tert-Butyl Benzene	0.327891	0.32034	0.31575	0.30022	0.32266	0.35926			0.33253		 8.4284
74 1,2,4-Trimethylbenzene	0.34039	0.30135	0.27619	0.27596	0.30148		AVRG	 	0.31724		1 12.0984
75 Sec- Butylbenzene	0.31573 0.29245	0.27400 	0.22070	0.21616	0.23634		- AVRG	 	0.26106		i 14.432
76 1,3-Dichlorobenzene	0.45672	0.48169	0.475551	0.48451	0.49567		AVRG	!	0.50396:		8.998
78 Benzyl Chloride	0.41603; 0.45509;		0.48336	0.41825	0.36574] 	0.41918	AVRG :		0.432981		9.363
79 1,4-Dichlorobenzene	0.38969 0.57376	0.42000	0.45055	0.46705	,	0.55315		 	0.47823		14.050
	-						-		i-		

Page 769 of 2722 10259332

INITIAL CALIBRATION DATA

Start Cal Date : 13-MAR-2014 12:08
End Cal Date : 13-MAR-2014 14:52
Quant Method : ISTD : 4.14
Integrator : 4.14
Last Edit : \\192.168.10.12\chem\10air0.i\031314.b\T015_072-14.m

	0.1000000	0.2000000	0.5000000	1.0000	10.0000	20.0000	Ι .		Coefficients		%RSD
Compound	Level 1	Level 2	Level 3	Level 4	Level 5		Curve	b	m1	m2	or R^2
	: 30.0000 Level 7	İ		 	 						
80 p-Isopropyltoluene	0.37886		0.35966		0.28817	0.31636	I AVRG				1 13.0624.
£1 1,2,3-Trimethylbenzene	0.33490		0.28827	0.28476		0.35405	I AVRG		0.32506		1 10.40562
62 1,2-Dichlorobenzene	0.55927		0.50136	0.50570	i	0.56512	I (AVRG		0.55134		 7.6502
63 N-Butylbenzene	6543	12561	35138	76279		2116696	1	-0.00070	0.32631		0.9981
84 1,2,4-Trichlorobenzene	2182	4353	11140	24779	382745		LINR	0.01111	0.85585		0.9997
85 Naphthalene	3849	7350	20161	439331	706535		LINE				0.9997
86 Hexachlorobutadiene	5665 +++++	10436	25040 	50 44 0	427808 427808						0.9989
]		 		

Page 770 of 2722 10259332

Pace Analytical Services, Inc.

INITIAL CALIBRATION DATA

Start Cal Date : 13-MAR-2014 12:08
End Cal Date : 13-MAR-2014 14:52
Quant Method : ISTD : 4.14
Integrator : HP RTE
Method file : \\192.168.10.12\chem\10air0.i\031314.b\T015_072-14.m
Last Edit : 13-MAR-2014 15:58 10air0.i

Compound	Level 1	0.2000000 Level 2	Level 3	1.0000 Level 4	10.0000 Level 5	20.0000 Level 6	 Curve	ь	Coefficients ml	m2	%RSD or R^2
	30.0000 Level 7	i	i	- 	: :		 				1
\$ 28 Hexane-d14(S)	2.09326	İ			2.13272	2.08766	AVRG				1 1.84233
\$ 54 Toluene-d8 (S)	1.09826	1.10133	1.08225	1.10749		1.03365	I I AVRG		1.06419		 4.27274
\$ 77 1,4-dichlorobenzene-d4 (S)	2.83795		2.57081	2.58597			I JAVRG		2.380671		20.51327
	_										1

Page 771 of 2722 10259332

Pace Analytical Services, Inc.

INITIAL CALIBRATION DATA

Start Cal Date : 13-MAR-2014 12:08
End Cal Date : 13-MAR-2014 14:52
Quant Method : ISTD : 4.14
Integrator : HP RTE
Method file : \\192.168.10.12\chem\10air0.i\031314.b\T015_072-14.m
Last Edit : 13-MAR-2014 15:58 10air0.i

Average %RSD Results.	
Calculated Average %RSD = 11	.97086
Maximum Average %RSD = 40	.00000
* Passed Average %RSD Test.	1
1	1

J	Curve	I	Formula	Ī	Units	
1:		ŀ		1		
I	Averaged	ı	Amt = ml*Rsp	1	Amount	
1	Linear	I	Amt = b + ml*Rsp	1	Amount	
1		1		1		

Page 772 of 2722 10259332

5A - FORM V VOA VOLATILE ORGANIC INSTRUMENT PERFORMANCE CHECK BROMOFLUOROBENZENE (BFB)

EPA SAMPLE NO.	
BFB	

Lab Name: Pace Analytical

Contract:

Lab Code: PASI

Case No.:

SAS No.:

SDG No.: 10259332

Lab File ID: 07301BFB.D

BFB Injection Date: 03/14/2014

Instrument ID: 10AIR0

BFB Injection Time: 10:37

GC Column: J&W DB-5

ID: 0.32 (mm)

		% RELATIVE		
m/e	ION ABUNDANCE CRITERIA	ABUNDANCE		
95	Base Peak, 100% relative abundance	100.00		
50	8.00 - 40.00% of mass 95	17.71		
75	30.00 - 66.00% of mass 95	50.24		
96	5.00 - 9.00% of mass 95	6.64		
173	Less than 2.00% of mass 174	0.58	(0.65)	
174	50.00 - 120.00% of mass 95	88.88		
175	4.00 - 9.00% of mass 174	6.52	(7.34)	
176	93.00 - 101.00% of mass 174	85.10	(95.74)	
177	5.00 - 9.00% of mass 176	5.50	(6.47)	

1 - Value is %mass 174

1 2 3 2 - Value is %mass 176

EPA SAMPLE NO.	LAB SAMPLE ID	LAB FILE ID	DATE ANALYZED	TIME ANALYZED
CCV	CCV	07302.D	03/14/2014	11:04
LCS (LCS)	LCS	07302_LCS.D	03/14/2014	11:04
BLANK (BLK)	BLANK	07305.D	03/14/2014	12:50

Data File: $\192.168.10.12\chem\10air0.i\031414.b\07302.D$ Report Date: 14-Mar-2014 10:34

Pace Analytical Services, Inc.

CONTINUING CALIBRATION COMPOUNDS

Instrument ID: 10air0.i Lab File ID: 07302.D Analysis Type: AIR Lab Sample ID: CCV Injection Date: 14-MAR-2014 11:04
Init. Cal. Date(s): 13-MAR-2014
Init. Cal. Times: 12:08
Quant Type: ISTD 13-MAR-2014

14:52

Method: \\192.168.10.12\chem\10air0.i\031414.b\T015_072-14.m

	I I		CCAL	MIN	1	MAX	1
COMPOUND	RRF / AMOUNT	RF10				%D / %DRIFT	
=====================================	==== ======= == 1.44810	1.52812	1.52812				
2 Propylene	4.18172	3.90176	3.90176	0.010	-6.69497	30.00000	Averaged
3 Dichlorodifluoromethane	0.66488	0.72609	0.726091	0.010	9.20522	30.00000	Averaged
4 Dichlorotetrafluoroethane	0.84080	0.87876	0.87876	0.010	4.51509	30.00000	Averaged
5 Chloromethane	2.39786	2.40336	2.403361	0.010	0.22910	30.00000	Averaged
6 Vinyl chloride	2.50150	2.29947	2.29947	0.010	-8.07626	30.00000	Averaged
7 1,3-Butadiene	3.77109	3.39364	3.39364	0.010	-10.00881	30.00000	Averaged
8 Bromomethane	2.38782	2.29443	2.29443	0.010	-3.91089	30.00000	Averaged
9 Chloroethane	5.30956	5.01540	5.01540	0.010	-5.54021	30.00000	Averaged
10 Ethanol	10.00000	10.85361	5.92669	0.010	8.53614	30.00000	
11 Vinyl Bromide	2.42053	2.30171	2.30171	0.010	-4.90885	30.00000	Averaged
12 Isopentane	2.4768C	2.52067	2.52067	0.010	1.77135	30.00000	Averaged
113 Acrolein	1 10.000001	11.54821	8.38747	0.010	15.48208	30.00000	-
114 Trichlorofluoromethane	0.629231	0.70742	0.707421	0.010	I 12.42572	30.00000	Averaged
15 Acetone	[10.00000]	10.47028	1.51411	0.010	4.70276	30.00000	
16 Isopropyl Alcohol	1.61399	1.48668!	1.48668				
17 Acrylonitrile	4.72679	4.069051	4.06905	0.010	-13.91506	30.00000	
118 1.1-Dichloroethene	1.49046	1.53605	1.53605				
19 Tert Butyl Alcohol (TBA)	1.04732	1.007411	1.00741				
2C Freon 113	1.16305	1.239221	1.23922				
21 Methylene chloride	2.27916	2.34299	2.34299				
22 Allyl Chloride	6.21177	5.19280	5.19280			•	
23 Carbon Disulfide	0.86157	0.84014	0.84014				-
24 trans-1,2-dichloroethene	2.70875	2.39483	2.39483			•	
25 Methyl Tert Butyl Ether	0.76062	0.75914	0.75914			•	
26 Vinyl Acetate	10.00000	11.13830	0.98884			•	-
27 1,1-Dichloroethane	1.22051	1.26234	1.26234				•
\$ 28 Hexane-d14(S)	2.09547	2.10873	2.10873				
29 Methyl Ethyl Ketone	5.42362	4.84582	4.84582				
30 Di-isopropyl Ether	0.81971	0.84215	0.84215				
31 n-Hexane	1.63470	1.61357	1.61357				
32 Ethyl Acetate	1.28774	1.14765	1.14765			•	
33 cis-1,2-Dichloroethene	1 2.483631	2.26152	2.261521				
34 Ethyl Tert-Butyl Ether	0.71760	0.70210	0.702101		•		
35 Chloroform	0.894921	0.946861	0.94686				
36 Tetrahydrofuran	1 2.384551	2.287261	2,287261		•		
37 1.1.1-Trichloroethane	0.773651	0.85474	0.85474				
38 1,2-Dichloroethane	1.158171	1.26829	1.26829				
39 Benzene	0.78468	0.764761	0.76476				
40 Carbon tetrachloride	0.81001	0.88913	0.88913				-
41 Cyclohexane	1 1.776001	1.78092	1.780921				
42 Tert Amyl Methyl Ether	0.685191	0.71070	0.71070				
, it. Tere ruly ricelly ruled	0.005151	0.730701	0.710701	0.010	1 2.1223	30.00000	Averaged

Page 1685 of 2722 10259332

Data File: \\192.168.10.12\chem\10air0.i\031414.b\07302.D

Report Date: 14-Mar-2014 10:34

Pace Analytical Services, Inc.

CONTINUING CALIBRATION COMPOUNDS

Instrument ID: 10air0.i Injection Date: 14-MAR-2014 11:04
Lab File ID: 07302.D Init. Cal. Date(s): 13-MAR-2014
Analysis Type: AIR Init. Cal. Times: 12:08
Lab Sample ID: CCV Quant Type: ISTD
Method: \\192.168.10.12\chem\10air0.i\031414.b\T015_072-14.m Injection Date: 14-MAR-2014 11:04
Init. Cal. Date(s): 13-MAR-2014
Init. Cal. Times: 12:08
Quant Type: ISTD 13-MAR-2014

14:52

	1	1	CCAL MI			MAX	
COMPOUND	RRF / AMOUNT	RF10	RRF10		%D / %DRIFT		
	======= : 0.50854	0.51627	0.51627				'
5 Heptane	1.53653	1.47146	1.47146	0.010	-4.23477	30.00000	Averaged
6 1,2-Dichloropropane	2.12976	2.05422	2.05422	0.010	-3.54662	30.00000	Averaged
7 Trichloroethene	1.79112	1.65666	1.65666	0.010	-7.50713	30.00000	Averaged
8 1,4-Dioxane	3.753201	3.39742	3.39742	0.010	-9.47939	30.00000	Averaged
19 Bromodichloromethane	0.80176	0.83673	0.83673	0.010	4.36221	30.00000	Averaged
50 Methylcyclohexane	3.25593	2.91937	2.91937	0.010	-10.33680	30.00000	Averaged
51 Methyl Isobutyl Ketone	1.20846	1.01736	1.01736	0.010	-15.81357	30.00000	Averaged
52 cis-1,3-Dichloropropene	1.40797	1.19323	1.19323	0.010	-15.25190	30.00000	Averaged
3 trans-1,3-Dichloropropene	[10.00000]	10.50384	1.11798	0.010	5.03835	30.00000	Linear
5 54 Toluene-d8 (S)	1.06419	1.04319	1.04319	0.200	-1.97319	30.00000	Averaged
55 1,1,2-Trichloroethane	1.66798	1.71946	1.71946	0.010	3.08672	30.00000	Averaged
56 Toluene	0.62524	0.62018	0.62018	0.300	-0.80853	30.00000	Averaged
57 Methyl Butyl Ketone	10.00000	11.21484	0.64806	0.010	12.14838	30.00000	Linear
8 Dibromochloromethane	0.509901	0.52878	0.52878	0.010	3.70117	30.00000	Averaged
59 1,2-Dibromoethane	0.65813	0.62113	0.62113	0.010	-5.62166	30.00000	Averaged
0 Tetrachloroethene	0.68082	0.69132	0.69132	0.010	1.54171	30.00000	Averaged
2 Chlorobenzene	0.48010	0.47633	0.47633	0.010	-0.78414	30.00000	Averaged
3 Ethyl Benzene	0.289631	0.27546	0.27546	0.300	-4.89067	30.00000	Averaged
4 m&p-Xylene	0.347311	0.33374	0.33374	0.300	-3.90678	30.00000	Average
5 Styrene	0.61765	0.53845	0.53845	0.010	-12.82328	30.00000	Average
6 Bromoform	0.50990	0.52777	0.52777	0.010	3.50568	30.00000	Average
7 o-Xylene	0.33170	0.33541	0.33541	0.300	1.12042	30.00000	Average
8 1,1,2,2-Tetrachloroethane	0.48720	0.50627	0.50627	0.010	3.91474	30.00000	Average:
9 Isopropylbenzene	0.26306	0.25908	0.25908	0.010	-1.51297	30.00000	Average
0 N-Propylbenzene	0.24486	0.22380	0.22380	0.010	-8.60036	30.00000	Average
1 4-Ethyltoluene	0.29824	0.27318	0.27318	0.010	-8.40352	30.00000	Average
2 1,3,5-Trimethylbenzene	0.28046	0.29302	0.29302	0.010	4.47885	30.00000	Average
3 Tert-Butyl Benzene	0.332531	0.32345	0.32345	0.010	-2.73030	30.00000	Average
4 1,2,4-Trimethylbenzene	0.317241	0.313471	0.31347	0.010	-1.18929	30.00000	Average
5 Sec- Butylbenzene	0.26106	0.244831	0.24483	0.010	-6.21563	30.00000	Averaged
6 1,3-Dichlorobenzene	0.50396	0.50383	0.50383	0.010	-0.02469	30.00000	Average
77 1,4-dichlorobenzene-d4 (S)	2.39067	2.07958	2.07958	0.200	-12.64744	30.00000	Average
8 Benzyl Chloride	0.43298	0.37740	0.37740	0.010	-12.83724	30.00000	Average
9 1,4-Dichlorobenzene	0.47823	0.49460	0.49460	0.010	3.42457	30.00000	Average
0 p-Isopropyltoluene	0.338281	0.28876	0.28876	0.010	-14.63957	30.00000	Average
1 1,2,3-Trimethylbenzene	0.32506	0.32536	0.32536	0.010	0.09317	30.00000	Average
2 1,2-Dichlorobenzene	0.55134	0.50748	0.50748	0.010	-7.95495	30.00000	Average
3 N-Butylbenzene	10.00000	10.56287	0.30872	0.010	5.62874	30.00000	Linea.
4 1,2,4-Trichlorobenzene	10.000001	10.63314	0.81339	0.010	6.33135	30.00000	Linea.
5 Naphthalene	1 10.000001	10.61707	0.44212			-	Linea
36 Hexachlorobutadiene	1 10,000001	10.408731	0.76444	0.010	I 4.08732	I 30.00000	Linear

Page 1686 of 2722 10259332

Data File: \\192.168.10.12\chem\10air0.i\031414.b\07302.D

Report Date: 14-Mar-2014 10:34

Pace Analytical Services, Inc.

CONTINUING CALIBRATION COMPOUNDS

Instrument ID: 10air0.i Lab File ID: 07302.D Analysis Type: AIR Lab Sample ID: CCV Init. Cal. Date(s): 13-MAR-2014 11:04
Init. Cal. Date(s): 13-MAR-2014 13-MAR-2014
Init. Cal. Times: 12:08 14:52
Quant Type: ISTD

Method: \\192.168.10.12\chem\10air0.i\031414.b\T015 072-14.m

|Average %D / Drift Results. ____ |Calculated Average %D/Drift = 6.10010 |Maximum Average %D/Drift = 30.00000 |* Passed Average %D/Drift Test.

> Page 1687 of 2722 10259332

5A - FORM V VOA VOLATILE ORGANIC INSTRUMENT PERFORMANCE CHECK BROMOFLUOROBENZENE (BFB)

EPA SAMPLE NO. BFB

Lab Name: Pace Analytical

Contract:

Lab Code: PASI

Case No.:

(mm)

SAS No.:

SDG No.: 10259332

Lab File ID: 07601BFB.D

BFB Injection Date: 03/17/2014

Instrument ID: 10AIR0

BFB Injection Time: 08:23

GC Column: J&W DB-5 ID: 0.32

		% RELATIVE	
m/e	ION ABUNDANCE CRITERIA	ABUNDANCE	Ξ
95	Base Peak, 100% relative abundance	100.00	
50	8.00 - 40.00% of mass 95	19.16	
75	30.00 - 66.00% of mass 95	50.86	
96	5.00 - 9.00% of mass 95	6.92	
173	Less than 2.00% of mass 174	0.76	(0.89)
174	50.00 - 120.00% of mass 95	86.26	<u> </u>
175	4.00 - 9.00% of mass 174	6.10	(7.07)
176	93.00 - 101.00% of mass 174	84.57	(98.04)
177	5.00 - 9.00% of mass 176	5.46	(6.46)

1 - Value is %mass 174 2 - Value is %mass 176

	EPA SAMPLE NO.	LAB SAMPLE ID	LAB FILE ID	DATE ANALYZED	TIME ANALYZED
1	LCS for HBN 289541 [AIR/	1640446	07602_19678.D	03/17/2014	08:50
2	CCV	CCV	07602.D	03/17/2014	08:50
3	LCS for HBN 289655 [AIR/	1640973	07602_19693.D	03/17/2014	08:50
4	LCS (LCS)	LCS	07602_LCS.D	03/17/2014	08:50
5	BLANK (BLK)	BLANK	07611_BLANK.	03/17/2014	13:52
3	BLANK for HBN 289541 [AI	1640445	07611_19678.D	03/17/2014	13:52
,	BLANK for HBN 289655 [AI	1640972	07611_19693.D	03/17/2014	13:52
3	SV-136-A-16	10259332013	07617.D	03/17/2014	16:34
)	SV-118-A-16	10259332005	07628.D	03/17/2014	21:25
0	SV-079-A-16	10259332009	07629.D	03/17/2014	21:50
1	SV-081-A-16	10259332011	07630.D	03/17/2014	22:14
2	IA-081-A-16	10259332012	07631.D	03/17/2014	22:44
3	IA-018-A-16	10259332022	07632.D	03/17/2014	23:18
4	SV-138-A-16	10259332023	07633.D	03/17/2014	23:50
5	IA-138-A-16	10259332024	07634.D	03/18/2014	00:19
3	SV-093-A-16	10259332025	07635.D	03/18/2014	00:49
7	IA-093-A-16	10259332026	07636.D	03/18/2014	01:23
8	BCK-1-16	10259332027	07637.D	03/18/2014	01:54
9	BCK-3-16	10259332029	07638.D	03/18/2014	02:28
0	BCK-4-16	10259332030	07639.D	03/18/2014	02:58
1	SV-DUP3-A-16	10259332032	07641.D	03/18/2014	04:03
2	IA-DUP3-A-16	10259332033	07642.D	03/18/2014	04:37

10259332 Page 1621 of 2722 Data File: \\192.168.10.12\chem\10air0.i\031714.b\07602.D Report Date: 17-Mar-2014 08:23

Pace Analytical Services, Inc.

CONTINUING CALIBRATION COMPOUNDS

Instrument ID: 10air0.i Lab File ID: 07602.D Analysis Type: AIR Lab Sample ID: CCV Injection Date: 17-MAR-2014 08:50
Init. Cal. Date(s): 13-MAR-2014 13-MAR-2014
Init. Cal. Times: 12:08 14:52
Quant Type: ISTD

Method: \\192.168.10.12\chem\10air0.i\031714.b\T015 072-14.m

	i		CCAL	MIN ;		MAX	I
COMPOUND	RRF / AMOUNT	RF10				%D / %DRIFT	•
1 Chlorodifluoromethane	1.4481C	1.31360	1.31360				•
2 Propylene	4.18172	3.47671	3.47671	0.010	-16.85937	30.00000	Averaged
3 Dichlorodifluoromethane	0.664881	0.61067	0.61067	0.010	-8.15432	30.00000	Averaged
4 Dichlorotetrafluoroethane	0.84080	0.75349	0.75349	0.010	-10.38432	30.00000	Averaged
5 Chloromethane	2.39786	2.09447	2.09447	0.010	-12.65259	30.00000	Averaged
6 Vinyl chloride	2.50150	2.08525	2.08525	0.010	-16.63998	30.00000	Averaged
7 1,3-Butadiene	3.77109	3.03717	3.03717	0.010	-19.46155	30.00000	Averaged
8 Bromomethane	2.38782	2.04290	2.04290	0.010	-14.44505	30.00000	Averaged
9 Chloroethane	5.30956	4.51055	4.51055	0.010	-15.04857	30.00000	Averaged
1C Ethanol	10.00000	11.57621	5.56218	0.010	15.76214	30.00000	_
ll Vinyl Bromide	2.42053	2.06752	2.06752	0.010	-14.58421	30.00000	Averaged
12 Isopentane	2.47680	2.27062	2.27062	0.010	-8.32460	30.00000	-
13 Acrolein	10.00000	12,58248	7.69896	0.010	25.82478	30.00000	Linear
14 Trichlorofluoromethane	0.629231	0.59710	0.59710	0.010	-5.10681	30.00000	Averaged
15 Acetone	10.00000	12.44212	1.28257	0.010	24.42121	30.00000	Linear
16 Isopropyl Alcohol	1.61399	1.37128	1.37128	0.010	-15.03830	30.00000	Averaged
17 Acrylonitrile	4.72679	3.63663	3.63663	0.010	-23.06348	30.00000	
18 1,1-Dichloroethene	1.49046	1.34294	1.34294	0.010	-9.89732	30.00000	Averaged
19 Tert Butyl Alcohol (TBA)	1.04732	0.89809	0.89809	0.100	-14.24853	30.00000	Averaged
20 Freon 113	1.16305	1.08694	1.08694	0.010	-6.54431	30.00000	Averaged
21 Methylene chloride	2.27916	2.04617	2.04617	0.010	-10.22281	30.00000	Averaged
22 Allyl Chloride	6.21177	4.69780	4.69780	0.010	-24.37264	30.00000	Averaged
23 Carbon Disulfide	0.86157	0.76106	0.76106	0.010	-11.66522	30.00000	Average
24 trans-1,2-dichloroethene	2.70875	2.15236	2.15236	0.010	-20.54053	30.00000	Averaged
25 Methyl Tert Butyl Ether	0.760621	0.67487	0.67487	0.300	-11.27467	30.00000	Averaged
26 Vinyl Acetate	10.000001	12.75440	0.86433	0.010	27.54396		_
27 1,1-Dichloroethane	1.22051	1.10494	1.10494	0.010	-9.46936	30.00000	Average
\$ 28 Hexane-d14(S)	2.09547	2.10622	2,10622	0.200	0.51304	30.00000	Averaged
29 Methyi Ethyl Ketone	5.42362	4.36416	4.36416	0.010	-19.53412	30.00000	Averaged
30 Di-isopropyl Ether	0.81971	0.732021	0.73202	0.010	-10.69742	30.00000	Averaged
31 n-Hexane	1.63470	1.43140	1.43140	0.010	-12.43681	30.00000	Average
32 Ethyl Acetate	1.28774	1.00739!	1.00739	0.010	-21.77128	30.00000	Average
33 cis-1,2-Dichloroethene	2.48363	2.04948	2.04948	0.010	-17.48029		=
34 Ethyl Tert-Butyl Ether	0.71760	0.62614	0.62614	0.010			
35 Chloroform	0.89492	0.81964	0.81964	0.010	-8.41201	30.00000	
36 Tetrahydrofuran	2.38455	2.04254	2.04254			•	
37 l,1,1-Trichloroethane	0.77365	0.72287	0.72287			•	
38 1,2-Dichloroethane	1.15817	1.06768	1.06768				
39 Benzene	0.784681	0.68469	0.68469				
40 Carbon tetrachloride	0.81001	0.74828	0.74828			•	
41 Cyclchexane	1.77600	1.55888	1.55888				
42 Tert Amyl Methyl Ether	0.68519	0.622991	0.62299			•	

10259332 Page 1729 of 2722 Data File: \\192.168.10.12\chem\10air0.i\031714.b\07602.D Report Date: 17-Mar-2014 08:23

Pace Analytical Services, Inc.

CONTINUING CALIBRATION COMPOUNDS

Instrument ID: 10air0.i Injection Date: 17-MAR-2014 08:50 Lab File ID: 07602.D Init. Cal. Date(s): 13-MAR-2014 Analysis Type: AIR Init. Cal. Times: 12:08 Lab Sample ID: CCV Quant Type: ISTD Method: \\192.168.10.12\chem\10air0.i\031714.b\T015_072-14.m Injection Date: 17-MAR-2014 08:50
Init. Cal. Date(s): 13-MAR-2014
Init. Cal. Times: 12:08
Quant Type: ISTD 13-MAR-2014

14:52

	1	1	CCAL MI	N	MAX	
COMPOUND	RRF / AMOUNT	RF10		F %D / %DRIFT == =======		
44 2,2,4-Trimethylpentane		0.45666	0.45666 0.0		•	'
45 Heptane	1.53653	1.29016	1.29016 0.0	10 -16.03408	30.00000	Averaged
46 1,2-Dichloropropane	2.12976	1.85274	1.85274 0.0	10 -13.00683	30.00000	Averaged
17 Trichloroethene	1.791121	1.51868	1.51868 0.0	10 -15.21021	30.00000	Averaged
48 1,4-Dioxane	1 3.753201	3.14447	3.14447 0.0	10 -16.21903	30.00000	Averaged
49 Bromodichloromethane	0.80176	0.71482	0.71482 0.0	10 -10.84278	30.00000	Averaged
50 Methylcyclohexane	3.255931	2.65694	2.65694 0.0	10 -18.39675	30.00000	Averaged
51 Methyl Isobutyl Ketone	1.20846	0.88871	0.88871 0.0	10 -26.45909	30.00000	Averaged
52 cis-1,3-Dichloropropene	1.40797	1.05893	1.05893 0.0	10 -24.79034	30.00000	Averaged
53 trans-1,3-Dichloropropene	10.00000	12.08889	0.97070 0.0	10 20.88888	30.00000	Linear
\$ 54 Tcluene-d8 (S)	1.06419	1.02135	1.02135 0.2	00 -4.02562	30.00000	Averaged
55 1,1,2-Trichloroethane	1.66798	1.52231	1.52231 0.0	10 -8.73300	30.00000	Average
56 Toluene	0.62524	0.55422	0.55422 0.3	00 -11.35847	30.00000	Average
57 Methyl Butyl Ketone	[10.00000]	12.22065	0.59554 0.0	10 22.20648	30.00000	Linea.
58 Dibromochloromethane	0.50990	0.48878	0.48878 0.0	10 -4.14343	30.00000	Average
59 1,2-Dibromoethane	0.65813	0.57124	0.57124 0.3	10 -13.20202	30.00000	Average
50 Tetrachloroethene	0.68082	0.65895	0.65895 0.0	10 -3.21269	30.00000	Average
52 Chlorobenzene	0.48010	0.45954	0.45954 0.0	10 -4.28280	30.00000	Average
63 Ethyl Benzene	0.28963	0.25803	0.25803 0.3			-
64 m&p-Xylene	0.34731	0.30942	0.3094210.3	00 -10.90927	30.00000	Average
65 Styrene	0.61765	0.50295	0.50295 0.0	10 -18.57010	30.00000	Average
66 Bromoform	0.50990	0.48404	0.48404 0.0			
67 o-Xylene	0.33170	0.30990	0.30990[0.3			
68 1,1,2,2-Tetrachloroethane	0.48720	0.47647	0.47647 0.0			
69 Isopropylbenzene	0.26306	0.24782	0.2478210.0			_
70 N-Propylbenzene	0.24486	0.20698	0.20698 0.0	•		
71 4-Ethyltoluene	0.29824	0.26046	0.2604610.0			
72 1,3,5-Trimethylbenzene	0.28046	0.27984	0.27984 0.0			
73 Tert-Butyl Benzene	0.33253	0.31109	0.31109[0.0			-
74 1.2.4-Trimethylbenzene	0.31724	0.29752	0.2975210.0			-
75 Sec- Butylbenzene	0.26106	0.23016	0.23016 0.0	•		
76 1,3-Dichlorobenzene	0.50396	0.48045	0.48045 0.0			-
\$ 77 1,4-dichlorobenzene-d4 (S)	2.38067	1.49798	1.49798 0.2			-
78 Benzyl Chloride	0.43298	0.34967	0.3496710.0			-
79 1,4-Dichlorobenzene	0.47823	0.47582	0.4758210.0	,		-
30 p-Isopropyltoluene	0.33828	0.27654	0.2765410.0	,		
31 1,2,3-Trimethylbenzene	0.32506	0.30748	0.30748 0.0			-
32 1,2-Dichlorobenzene	0.55134	0.489301	0.48930 0.0			
33 N-Butylbenzene	10.00000	11.44223	0.28501 0.0			_
34 1,2,4-Trichlorobenzene	10.00000	11.32155	0.76344 0.0			
85 Naphthalene	10.00000	11.321331	0.41600 0.0			
86 Hexachlorobutadiene	10.000001	11.12658	0.71622 0.0			
yo mexacinoropacedrene	10.000001	11.12030	0.71022 0.5	10 11.26576	1 30.00000	

Page 1730 of 2722 10259332

Data File: \\192.168.10.12\chem\10air0.i\031714.b\07602.D

Report Date: 17-Mar-2014 08:23

Pace Analytical Services, Inc.

CONTINUING CALIBRATION COMPOUNDS

Instrument ID: 10air0.i

Injection Date: 17-MAR-2014 08:50
Init. Cal. Date(s): 13-MAR-2014 13-MAR-2014
Init. Cal. Times: 12:08 14:52
Quant Type: ISTD Lab File ID: 07602.D Analysis Type: AIR

Lab Sample ID: CCV

Method: \\192.168.10.12\chem\10air0.1\031714.b\T015 072-14.m

|Average %D / Drift Results. |Calculated Average %D/Drift = 12.84499 |Maximum Average %D/Drift = 30.00000 |* Passed Average %D/Drift Test.

> 10259332 Page 1731 of 2722

Project:

MRC SV/IAQ Study Feb 2014 REV

Pace Project No.:

10259332

QC Batch:

AIR/19645

Analysis Method:

TO-15

QC Batch Method:

TO-15

Analysis Description:

TO15 MSV AIR Low Level

Associated Lab Samples:

10259332001, 10259332002, 10259332003

METHOD BLANK: 1638293

Matrix: Air

Associated Lab Samples:

Date: 04/17/2014 12:22 PM

10259332001, 10259332002, 10259332003

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
1,1,1-Trichloroethane	ug/m3	ND	1.1	03/12/14 13:49	
1,1,2-Trichloroethane	ug/m3	ND	0.55	03/12/14 13:49	
1,1-Dichloroethane	ug/m3	ND	0.82	03/12/14 13:49	
1,1-Dichloroethene	ug/m3	ND	0.81	03/12/14 13:49	
1,2,3-Trimethylbenzene	ug/m3	ND	1.0	03/12/14 13:49	
1,2,4-Trichlorobenzene	ug/m3	ND	1.5	03/12/14 13:49	
1,2,4-Trimethylbenzene	ug/m3	ND	1.0	03/12/14 13:49	
1,2-Dichloroethane	ug/m3	ND	0.41	03/12/14 13:49	
1,3,5-Trimethylbenzene	ug/m3	ND	1.0	03/12/14 13:49	
Benzene	ug/m3	ND	0.32	03/12/14 13:49	
Carbon tetrachloride	ug/m3	ND	0.64	03/12/14 13:49	
Chlorodifluoromethane	ug/m3	ND	0.72	03/12/14 13:49	
Chloroform	ug/m3	ND	0.99	03/12/14 13:49	
cis-1,2-Dichloroethene	ug/m3	ND	0.81	03/12/14 13:49	
Dichlorodifluoromethane	ug/m3	ND	1.0	03/12/14 13:49	
Ethylbenzene	ug/m3	ND	0.88	03/12/14 13:49	
m&p-Xylene	ug/m3	ND	1.8	03/12/14 13:49	
Methyl-tert-butyl ether	ug/m3	ND	0.73	03/12/14 13:49	
Methylene Chloride	ug/m3	ND	0.71	03/12/14 13:49	
Naphthalene	ug/m3	ND	1.1	03/12/14 13:49	
o-Xylene	ug/m3	ND	0.88	03/12/14 13:49	
Tetrachloroethene	ug/m3	ND	0.69	03/12/14 13:49	
Toluene	ug/m3	ND	0.77	03/12/14 13:49	
trans-1,2-Dichloroethene	ug/m3	ND	0.81	03/12/14 13:49	
Trichloroethene	ug/m3	ND	0.55	03/12/14 13:49	
Vinyl chloride	ug/m3	ND	0.26	03/12/14 13:49	

LABORATORY CONTROL SAMPLE:	1638294		_		
		Spike	LCS	LCS	% Rec
Parameter	Units	Conc.	Result	% Rec	Limits Qualifiers
1,1,1-Trichloroethane	ug/m3	55.5	. 64.7	117	72-128
1,1,2-Trichloroethane	ug/m3	55.5	60.7	109	72-130
1,1-Dichloroethane	ug/m3	41.2	47.4	115	68-128
1,1-Dichloroethene	ug/m3	40.3	4 7.7	118	68-130
1,2,3-Trimethylbenzene	ug/m3	50	62.1	124	60-140
1,2,4-Trichlorobenzene	ug/m3	75.5	114	151	30-150 CH,L3
1,2,4-Trimethylbenzene	ug/m3	50	61.0	122	71-140
1,2-Dichloroethane	ug/m3	41.2	50.5	123	71-132
1,3,5-Trimethylbenzene	ug/m3	50	58.1	116	73-136
Benzene	ug/m3	32.5	37.2	114	69-134
Carbon tetrachloride	ug/m3	64	76.1	119	66-134

REPORT OF LABORATORY ANALYSIS

Project:

MRC SV/IAQ Study Feb 2014

Pace Project No.:

10259332

QC Batch:

AIR/19668

Analysis Method:

TO-15

QC Batch Method:

TO-15

Analysis Description:

TO15 MSV AIR Low Level

Associated Lab Samples:

10259332021, 10259332028, 10259332034

METHOD BLANK: 1640107

Matrix: Air

Associated Lab Samples.

10259332021, 10259332028, 10259332034

Danasatas	4.1.24	Blank	Reporting		0 115
Parameter	Units	Result	Limit	Analyzed	Qualifiers
1,1,1-Trichloroethane	ug/m3	ND	1.1	03/14/14 23:29	
1,1,2-Trichloroethane	ug/m3	ND	0.55	03/14/14 23:29	
1,1-Dichloroethane	ug/m3	ND	0.82	03/14/14 23:29	
1,1-Dichloroethene	ug/m3	ND	0.81	03/14/14 23:29	
1,2,3-Trimethylbenzene	ug/m3	ND	0.20	03/14/14 23:29	
1,2,4-Trichlorobenzene	ug/m3	ND	1.5	03/14/14 23:29	
1,2,4-Trimethylbenzene	ug/m3	ND	1.0	03/14/14 23:29	
1,2-Dichloroethane	ug/m3	ND	0.41	03/14/14 23:29	
1,3,5-Trimethylbenzene	ug/m3	ND	1.0	03/14/14 23:29	
Benzene	ug/m3	ND	0.32	03/14/14 23:29	
Carbon tetrachloride	ug/m3	ND	0.64	03/14/14 23:29	
Chlorodifluoromethane	ug/m3	ND	0.20	03/14/14 23:29	
Chloroform	ug/m3	ND	0.99	03/14/14 23:29	
cis-1,2-Dichloroethene	ug/m3	ND	0.81	03/14/14 23:29	
Dichlorodifluoromethane	ug/m3	ND	1.0	03/14/14 23:29	
Ethylbenzene	ug/m3	ND	0.88	03/14/14 23:29	
m&p-Xylene	ug/m3	ND	1.8	03/14/14 23:29	
Methyl-tert-butyl ether	ug/m3	ND	0.73	03/14/14 23:29	
Methylene Chloride	ug/m3	(0.96)	0.71	03/14/14 23:29	P8
Naphthalene	ug/m3	D	1.1	03/14/14 23:29	
o-Xylene	ug/m3	ND	0.88	03/14/14 23:29	
Tetrachloroethene	ug/m3	ND	0.69	03/14/14 23:29	
Toluene	ug/m3	ND	0.77	03/14/14 23:29	
trans-1,2-Dichloroethene	ug/m3	ND	0.81	03/14/14 23:29	
Trichloroethene	ug/m3	ND	0.55	03/14/14 23:29	
Vinyl chloride	ug/m3	ND	0.26	03/14/14 23:29	

LABORATORY CONTROL SAM	MPLE: 1640108			-		
Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
1,1,1-Trichloroethane	ug/m3	55.5	60.1	108	72-128	
1,1,2-Trichloroethane	ug/m3	55.5	66.7	120	72-130	
1,1-Dichloroethane	ug/m3	41.2	41.5	101	68-128	
1,1-Dichloroethene	ug/m3	40.3	44.0	109	68-130	
1,2,3-Trimethylbenzene	ug/m3	50	57.4	115	60-140	
1,2,4-Trichlorobenzene	ug/m3	75.5	89.5	119	30-150	
1,2,4-Trimethylbenzene	ug/m3	50	57.1	114	71-140	
1,2-Dichloroethane	ug/m3	41.2	42.7	104	71-132	
1,3,5-Trimethylbenzene	ug/m3	50	57.8	116	73-136	
Benzene	ug/m3	32.5	40.0	123	69-134	
Carbon tetrachloride	ug/m3	64	67.6	106	66-134	

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

Project:

MRC SV/IAQ Study Feb 2014

Pace Project No.: 10259332

ABORATORY CONTROL SAMPLE	1640108					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Chlorodifluoromethane	ug/m3	36	32.9	91	60-140	
Chloroform	ug/m3	49.7	53.4	108	72-127	
is-1,2-Dichloroethene	ug/m3	40.3	43.7	108	71-135	
Dichlorodifluoromethane	ug/m3	50.3	54.6	109	69-125	
thylbenzene	ug/m3	44.2	51.0	116	73-139	
n&p-Xylene	ug/m3	44.2	52.2	118	73-139	
lethyl-tert-butyl ether	ug/m3	36.7	36.7	100	72-132	
lethylene Chloride	ug/m3	35.3	34.2	97	64-134	
laphthalene	ug/m3	53.3	64.8	122	61-150	
-Xylene	ug/m3	44.2	51.0	116	71-138	
etrachloroethene	ug/m3	69	91.8	133	69-136	
oluene	ug/m3	38.3	40.3	105	67-133	
ans-1,2-Dichloroethene	ug/m3	40.3	39.9	99	70-131	
richloroethene	ug/m3	54.6	64.3	118	70-135	
'inyl chloride	ug/m3	26	29.1	112	69-132	

REPORT OF LABORATORY ANALYSIS

Date: 03/19/2014 06:10 PM

Project:

MRC SV/IAQ Study Feb 2014

Pace Project No.:

10259332

QC Batch:

AIR/19645

Analysis Method:

TO-15

QC Batch Method:

TO-15

Analysis Description:

TO15 MSV AIR Low Level

Associated Lab Samples: 10259332001, 10259332002, 10259332003

METHOD BLANK: 1638293

Matrix: Air

Associated Lab Samples:

40259332001, 10259332002, 10259332003

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
1,1,1-Trichloroethane	ug/m3	ND	1.1	03/12/14 13:49	
1,1,2-Trichloroethane	ug/m3	ND	0.55	03/12/14 13:49	
1,1-Dichloroethane	ug/m3	ND	0.82	03/12/14 13:49	
1,1-Dichloroethene	ug/m3	ND	0.81	03/12/14 13:49	
1,2,3-Trimethylbenzene	ug/m3	ND	0.20	03/12/14 13:49	
1,2,4-Trichlorobenzene	ug/m3	ND	1.5	03/12/14 13:49	
1,2,4-Trimethylbenzene	ug/m3	ND	1.0	03/12/14 13:49	
1,2-Dichloroethane	ug/m3	ND	0.41	03/12/14 13:49	
1,3,5-Trimethylbenzene	ug/m3	ND	1.0	03/12/14 13:49	
Benzene	ug/m3	ND	0.32	03/12/14 13:49	
Carbon tetrachloride	ug/m3	ND	0.64	03/12/14 13:49	
Chlorodifluoromethane	ug/m3	ND	0.20	03/12/14 13:49	
Chloroform	ug/m3	ND	0.99	03/12/14 13:49	
cis-1,2-Dichloroethene	ug/m3	ND	0.81	03/12/14 13:49	
Dichlorodifluoromethane	ug/m3	ND	1.0	03/12/14 13:49	
Ethylbenzene	ug/m3	ND	0.88	03/12/14 13:49	
m&p-Xylene	ug/m3	ND	1.8	03/12/14 13:49	
Methyl-tert-butyl ether	ug/m3	ND	0.73	03/12/14 13:49	
Methylene Chloride	ug/m3	ND	0.71	03/12/14 13:49	
Naphthalene	ug/m3	ND	1.1	03/12/14 13:49	
o-Xylene	ug/m3	ND	0.88	03/12/14 13:49	
Tetrachloroethene	ug/m3	ND	0.69	03/12/14 13:49	
Toluene	ug/m3	ND	0.77	03/12/14 13:49	
trans-1,2-Dichloroethene	ug/m3	ND	0.81	03/12/14 13:49	
Trichloroethene	ug/m3	ND	0.55	03/12/14 13:49	
Vinyl chloride	ug/m3	ND	0.26	03/12/14 13:49	

LABORATORY CONTROL SAM	1PLE: (1638294)					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result ·	% Rec	Limits	Qualifiers
1,1,1-Trichloroethane	ug/m3	55.5	64.7	117	72-128	
1,1,2-Trichloroethane	ug/m3	55.5	60.7	109	72-130	
1,1-Dichloroethane	ug/m3	41.2	47.4	115	68-128	
1,1-Dichloroethene	ug/m3	40.3	47.7	118	68-130	
,2,3-Trimethylbenzene	ug/m3	50	62.1	124	60-140	
,2,4-Trichlorobenzene	ug/m3	75.5	114	<u>(151)</u>	30-150	CH,L3
,2,4-Trimethylbenzene	ug/m3	50	61.0	122	71-140	
,2-Dichloroethane	ug/m3	41.2	50.5	123	71-132	
,3,5-Trimethylbenzene	ug/m3	50	58.1	116	73-136	
Senzene	ug/m3	32.5	37.2	114	69-134	
Carbon tetrachloride	ug/m3	64	76.1	119	66-134	

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

Project:

MRC SV/IAQ Study Feb 2014

Pace Project No.: 10259332

LABORATORY CONTROL SAMPLE:	1638294					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Chlorodifluoromethane	ug/m3	36	42.8	119	60-140	
Chloroform	ug/m3	49.7	58.5	118	72-127	
cis-1,2-Dichloroethene	ug/m3	40.3	49.3	122	71-135	
Dichlorodifluoromethane	ug/m3	50.3	58.8	117	69-125	
Ethylbenzene	ug/m3	44.2	55.5	126	73-139	
n&p-Xylene	ug/m3	44.2	55.7	126	73-139	
Methyl-tert-butyl ether	ug/m3	36.7	42.2	115	72-132	
lethylene Chloride	ug/m3	35.3	40.1	114	64-134	
aphthalene	ug/m3	53.3	78.7	(148)	61-150 CF	4
-Xylene	ug/m3	44.2	53.7	122	71-138	
etrachloroethene	ug/m3	69	83.4	121	69-136	
oluene	ug/m3	38.3	42.3	110	67-133	
ans-1,2-Dichloroethene	ug/m3	40.3	50.2	125	70-131	
richloroethene	ug/m3	54.6	64.2	118	70-135	
/inyl chloride	ug/m3	26	29.5	114	69-132	

SAMPLE DUPLICATE: 16385	65		_			
Parameter	Units	10259301010 Result	Dup	DDD	Max	0 -1:5
- Farameter	— Units	Result	Result	RPD	RPD	Qualifiers
1,1,1-Trichloroethane	ug/m3	ND	ND		25	5
1,1,2-Trichloroethane	ug/m3	ND	ND		25	5
1,1-Dichloroethane	ug/m3	ND	ND		25	5
1,1-Dichloroethene	ug/m3	ND	ND		25	5
1,2,3-Trimethylbenzene	ug/m3	3.1	3.1	.7	25	5
1,2,4-Trichlorobenzene	ug/m3	ND	ND		25	i .
1,2,4-Trimethylbenzene	ug/m3	9.6	10.1	5	25	5
1,2-Dichloroethane	ug/m3	4.1	4.4	8	25	5
1,3,5-Trimethylbenzene	ug/m3	ND	2.9		25	5
Benzene	ug/m3	25.6	28.0	9	25	5
Carbon tetrachloride	ug/m3	ND	ND		25	i
Chlorodifluoromethane	ug/m3	3.1	3.5	12	25	;
Chloroform	ug/m3	ND	ND		25	;
cis-1,2-Dichloroethene	ug/m3	ND	ND		25	;
Dichlorodifluoromethane	ug/m3	2.8	2.6	7	25	;
Ethylbenzene	ug/m3	2.9	3.0	4	25	i
m&p-Xylene	ug/m3	11.2	11.5	2	25	i
Methyl-tert-butyl ether	ug/m3	ND	ND		25	i
Methylene Chloride	ug/m3	91.4	105	14	25	i
Naphthalene	ug/m3	4.3	4.6	8	25	CH
o-Xylene	ug/m3	4 .7	4.9	5	25	
Tetrachloroethene	ug/m3	8.3	8.8	5	25	
Toluene	ug/m3	175	183	5	25	
trans-1,2-Dichloroethene	ug/m3	ND	ND		25	
Trichloroethene	ug/m3	ND	ND		25	
Vinyl chloride	ug/m3	ND	ND		25	

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

Project:

MRC SV/IAQ Study Feb 2014

Pace Project No.:

10259332

QC Batch:

AIR/19661

Analysis Method:

TO-15

QC Batch Method:

TO-15

Analysis Description:

TO15 MSV AIR Low Level

Associated Lab Samples:

10259332004, 10259332005, 10259332006, 10259332007, 10259332008, 10259332009, 10259332010,

10259332011, 10259332013, 10259332014, 10259332015, 10259332016, 10259332017, 10259332018,

10259332019, 10259332020

METHOD BLANK: 1639468

Matrix: Air

Associated Lab Samples:

<u> 1025</u>9332004, 10259332005, 10259332006, 10259332007, 10259332008, 10259332009, 10259332010, 10259332011, 10259332013, 10259332014, 10259332015, 10259332016, 10259332017, 10259332018,

10259332019, 10259332020

	Blank	Reporting		
Units	Result	Limit	Analyzed	Qualifiers
ug/m3	ND ND	1.1	03/14/14 12:50	
ug/m3	ND	0.55	03/14/14 12:50	
ug/m3	ND	0.82	03/14/14 12:50	
ug/m3	NĎ	0.81	03/14/14 12:50	
ug/m3	ND	0.20	03/14/14 12:50	
ug/m3	ND	1.5	03/14/14 12:50	
ug/m3	ND	1.0	03/14/14 12:50	
ug/m3	ND	0.41	03/14/14 12:50	
ug/m3	ND	1.0	03/14/14 12:50	
ug/m3	ND	0.32	03/14/14 12:50	
ug/m3	ND	0.64	03/14/14 12:50	
ug/m3	ND	0.20	03/14/14 12:50	
ug/m3	ND	0.99	03/14/14 12:50	
ug/m3	ND	0.81	03/14/14 12:50	
ug/m3	ND	1.0	03/14/14 12:50	
ug/m3	ND	0.88	03/14/14 12:50	
ug/m3	ND	1.8	03/14/14 12:50	
ug/m3	ND	0.73	03/14/14 12:50	
ug/m3	ND	0.71	03/14/14 12:50	
ug/m3	ND	1.1	03/14/14 12:50	
ug/m3	ND	0.88	03/14/14 12:50	
ug/m3	ND	0.69	03/14/14 12:50	
ug/m3	ND	0.77	03/14/14 12:50	
ug/m3	ND	0.81	03/14/14 12:50	
ug/m3	ND	0.55	03/14/14 12:50	
ug/m3	ND	0.26	03/14/14 12:50	
	ug/m3 ug/m3	Units Result ug/m3 ND	Units Result Limit ug/m3 ND 1.1 ug/m3 ND 0.55 ug/m3 ND 0.82 ug/m3 ND 0.20 ug/m3 ND 1.5 ug/m3 ND 1.0 ug/m3 ND 1.0 ug/m3 ND 0.32 ug/m3 ND 0.64 ug/m3 ND 0.99 ug/m3 ND 0.81 ug/m3 ND 0.81 ug/m3 ND 0.73 ug/m3 ND 0.71 ug/m3 ND 0.71 ug/m3 ND 0.71 ug/m3 ND 0.88 ug/m3 ND 0.89 ug/m3 ND 0.89 ug/m3 ND 0.77 ug/m3 ND 0.89 ug/m3 ND 0.77 ug/m3 ND 0.81 ug/m3<	Units Result Limit Analyzed ug/m3 ND 1.1 03/14/14 12:50 ug/m3 ND 0.55 03/14/14 12:50 ug/m3 ND 0.82 03/14/14 12:50 ug/m3 ND 0.81 03/14/14 12:50 ug/m3 ND 0.20 03/14/14 12:50 ug/m3 ND 1.5 03/14/14 12:50 ug/m3 ND 1.0 03/14/14 12:50 ug/m3 ND 1.0 03/14/14 12:50 ug/m3 ND 0.32 03/14/14 12:50 ug/m3 ND 0.64 03/14/14 12:50 ug/m3 ND 0.64 03/14/14 12:50 ug/m3 ND 0.99 03/14/14 12:50 ug/m3 ND 0.81 03/14/14 12:50 ug/m3 ND 0.81 03/14/14 12:50 ug/m3 ND 0.88 03/14/14 12:50 ug/m3 ND 0.73 03/14/14 12:50 ug/m3 ND 0.71

LABORATORY CONTROL SAM	MPLE: 1639469					
Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
1,1,1-Trichloroethane	ug/m3	55.5	50.2	90	72-128	
1,1,2-Trichloroethane	ug/m3	55.5	53.8	97	72-130	
1,1-Dichloroethane	ug/m3	41.2	39.8	97	68-128	
1,1-Dichloroethene	ug/m3	40.3	39.1	97	68-130	
1,2,3-Trimethylbenzene	ug/m3	50	49.9	100	60-140	
1,2,4-Trichlorobenzene	ug/m3	75.5	80.2	106	30-150	
1,2,4-Trimethylbenzene	ug/m3	50	50.6	101	71-140	
1,2-Dichloroethane	ug/m3	41.2	37.6	91	71-132	

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

Project:

MRC SV/IAQ Study Feb 2014

Pace Project No.:

10259332

ABORATORY CONTROL SAMPLE:	1639469					
Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
,3,5-Trimethylbenzene	ug/m3	50	47.8	96	73-136	
enzene	ug/m3	32.5	33.3	103	69-134	
arbon tetrachloride	ug/m3	64	58.3	91	66-134	
nlorodifluoromethane	ug/m3	36	34.1	95	60-140	
loroform	ug/m3	49.7	46.9	94	72-127	
-1,2-Dichloroethene	ug/m3	40.3	44.3	110	71-135	
hlorodifluoromethane	ug/m3	50.3	46.0	92	69-125	
ylbenzene	ug/m3	44.2	46.4	105	73-139	
p-Xylene	ug/m3	44.2	45.9	104	73-139	
thyl-tert-butyl ether	ug/m3	36.7	36.7	100	72-132	
thylene Chloride	ug/m3	35.3	34.3	97	64-134	
ohthalene	ug/m3	53.3	56.6	106	61-150	
(ylene	ug/m3	44.2	43.6	99	71-138	
trachloroethene	ug/m3	69	67.9	98	69-136	
uene	ug/m3	38.3	38.6	101	67-133	
ns-1,2-Dichloroethene	ug/m3	40.3	45.6	113	70-131	
chloroethene	ug/m3	54.6	59.1	108	70-135	
nyl chloride	ug/m3	26	28.3	109	69-132	

SAMPLE DUPLICATE: 16401	09					,
		10259332019	Dup		Max	
Parameter	Units	Result	Result	RPD	RPD	Qualifiers
1,1,1-Trichloroethane	ug/m3	ND	ND		25	
1,1,2-Trichloroethane	ug/m3	ND	ND		25	
1,1-Dichloroethane	ug/m3	ND	ND		25	
1,1-Dichloroethene	ug/m3	ND	ND		25	
1,2,3-Trimethylbenzene	ug/m3	ND	ND		25	
1,2,4-Trichlorobenzene	ug/m3	ND	ND		25	
1,2,4-Trimethylbenzene	ug/m3	ND	ND		25	
1,2-Dichloroethane	ug/m3	ND	ND		25	
1,3,5-Trimethylbenzene	ug/m3	ND	ND		25	
Benzene	ug/m3	1.1	1.0	8	25	
Carbon tetrachloride	ug/m3	ND	ND		25	
Chlorodifluoromethane	ug/m3	3.6	3.5	2	25	
Chloroform	ug/m3	ND	ND		25	
cis-1,2-Dichloroethene	ug/m3	ND	ND		25	
Dichlorodifluoromethane	ug/m3	2.3	2.2	4	25	
Ethylbenzene	ug/m3	ND	ND		25	
m&p-Xylene	ug/m3	ND	ND		25	
Methyl-tert-butyl ether	ug/m3	ND	ND		25	
Methylene Chloride	ug/m3	59.8	60.1	.5	25	
Naphthalene	ug/m3	2.5	2.3	9	25	
o-Xylene	ug/m3	ND	ND		25	
Tetrachloroethene	ug/m3	ND	ND		25	
Toluene	ug/m3	2.3	2.1	10	25	
trans-1,2-Dichloroethene	ug/m3	ND	ND		25	
Trichloroethene	ug/m3	ND	ND		25	

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

Project:

MRC SV/IAQ Study Feb 2014

Pace Project No.:

10259332

SAMPLE DUPLICATE: 1640109

Parameter

10259332019 Units Result Dup Result

RPD RI

Max RPD

Qualifiers

Vinyl chloride

ug/m3

ND

ND

ח

25

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

Project:

MRC SV/IAQ Study Feb 2014

Pace Project No.:

10259332

QC Batch:

AIR/19678

Analysis Method:

TO-15

QC Batch Method:

TO-15

Analysis Description:

TO15 MSV AIR Low Level

Associated Lab Samples:

10259332012, 10259332022, 10259332023, 10259332024, 10259332025, 10259332026, 10259332030, 10259332032, 10259332033

METHOD BLANK: 1640445

Matrix: Air

Associated Lab Samples:

10259332012, 10259332022, 10259332023, 10259332024, 10259332025, 10259332026, 10259332030,

10259332032, 10259332033

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
1,1,1-Trichloroethane	ug/m3	ND	1.1	03/17/14 13:52	
1,1,2-Trichloroethane	ug/m3	ND	0.55	03/17/14 13:52	
1,1-Dichloroethane	ug/m3	ND	0.82	03/17/14 13:52	
1,1-Dichloroethene	ug/m3	ND	0.81	03/17/14 13:52	
1,2,3-Trimethylbenzene	ug/m3	ND	0.20	03/17/14 13:52	
1,2,4-Trichlorobenzene	ug/m3	ND	1.5	03/17/14 13:52	
1,2,4-Trimethylbenzene	ug/m3	ND	1.0	03/17/14 13:52	
1,2-Dichloroethane	ug/m3	ND	0.41	03/17/14 13:52	
1,3,5-Trimethylbenzene	ug/m3	ND	1.0	03/17/14 13:52	
Benzene	ug/m3	ND	0.32	03/17/14 13:52	
Carbon tetrachloride	ug/m3	ND	0.64	03/17/14 13:52	
Chlorodifluoromethane	ug/m3	ND	0.20	03/17/14 13:52	
Chloroform	ug/m3	ND	0.99	03/17/14 13:52	
cis-1,2-Dichloroethene	ug/m3	ND	0.81	03/17/14 13:52	
Dichlorodifluoromethane	ug/m3	ND	1.0	03/17/14 13:52	
Ethylbenzene	ug/m3	ND	0.88	03/17/14 13:52	
m&p-Xylene	ug/m3	ND	1.8	03/17/14 13:52	
Methyl-tert-butyl ether	ug/m3	ND	0.73	03/17/14 13:52	
Methylene Chloride	ug/m3	ND	0.71	03/17/14 13:52	
Naphthalene	ug/m3	ND	1.1	03/17/14 13:52	
o-Xylene	ug/m3	ND	0.88	03/17/14 13:52	
Tetrachloroethene	ug/m3	ND	0.69	03/17/14 13:52	
Toluene	ug/m3	ND	0.77	03/17/14 13:52	
trans-1,2-Dichloroethene	ug/m3	ND	0.81	03/17/14 13:52	
Trichloroethene	ug/m3	ND	0.55	03/17/14 13:52	
Vinyl chloride	ug/m3	ND	0.26	03/17/14 13:52	

LABORATORY CONTROL SAMP	PLE: 1640446					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
1,1,1-Trichloroethane	ug/m3	55.5	59.4	107	72-128	
1,1,2-Trichloroethane	ug/m3	55.5	60.8	110	72-130	
1,1-Dichloroethane	ug/m3	41.2	45.4	110	68-128	
1,1-Dichloroethene	ug/m3	40.3	44.7	111	68-130	
1,2,3-Trimethylbenzene	ug/m3	50	52.8	106	60-140	
1,2,4-Trichlorobenzene	ug/m3	75.5	85.4	113	30-150	
1,2,4-Trimethylbenzene	ug/m3	50	53.3	107	71-140	
1,2-Dichloroethane	ug/m3	41.2	44.6	108	71-132	
1,3,5-Trimethylbenzene	ug/m3	50	50.1	100	73-136	
Benzene	ug/m3	32.5	37.2	115	69-134	

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

Project:

MRC SV/IAQ Study Feb 2014

Pace Project No.: 10259332

LABORATORY CONTROL SAMP	LE: 1640446					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Carbon tetrachloride	ug/m3	64	69.2	108	66-134	
Chlorodifluoromethane	ug/m3	36	39.6	110	60-140	
Chloroform	ug/m3	49.7	54.2	109	72-127	
cis-1,2-Dichloroethene	ug/m3	40.3	48.8	121	71-135	
Dichlorodifluoromethane	ug/m3	50.3	54.7	109	69-125	
Ethylbenzene	ug/m3	44.2	49.5	112	73-139	
m&p-Xylene	ug/m3	44.2	49.5	112	73-139	
Methyl-tert-butyl ether	ug/m3	36.7	41.3	113	72-132	
Methylene Chloride	ug/m3	35.3	39.3	111	64-134	
Naphthalene	ug/m3	53.3	60.1	113	61-150	
o-Xylene	ug/m3	44.2	47.2	107	71-138	
Tetrachloroethene	ug/m3	69	71.2	103	69-136	
Toluene	ug/m3	38.3	43.2	113	67-133	
trans-1,2-Dichloroethene	ug/m3	40.3	50.7	126	70-131	
Trichloroethene	ug/m3	54.6	64.4	118	70-135	
Vinyl chloride	ug/m3	26	31.2	120	69-132	

REPORT OF LABORATORY ANALYSIS

Date: 03/19/2014 06:10 PM

Project:

MRC SV/IAQ Study Feb 2014

Pace Project No.:

10259332

QC Batch:

AIR/19693

Analysis Method:

TO-15

QC Batch Method:

TO-15

Analysis Description:

TO15 MSV AIR Low Level

Associated Lab Samples:

10259332027, 10259332029

METHOD BLANK: 1640972 Associated Lab Samples:

10259332027, 10259332029

Matrix: Air

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
1,1,1-Trichloroethane	ug/m3	ND	1.1	03/14/14 23:29	
1,1,2-Trichloroethane	ug/m3	ND	0.55	03/14/14 23:29	
1,1-Dichloroethane	ug/m3	ND	0.82	03/14/14 23:29	
1,1-Dichloroethene	ug/m3	ND	0.81	03/14/14 23:29	
1,2,3-Trimethylbenzene	ug/m3	ND	0.20	03/14/14 23:29	
1,2,4-Trichlorobenzene	ug/m3	ND	1.5	03/14/14 23:29	
1,2,4-Trimethylbenzene	ug/m3	ND	1.0	03/14/14 23:29	
1,2-Dichloroethane	ug/m3	ND	0.41	03/14/14 23:29	
1,3,5-Trimethylbenzene	ug/m3	ND	1.0	03/14/14 23:29	
Benzene	ug/m3	ND	0.32	03/14/14 23:29	
Carbon tetrachloride	ug/m3	ND	0.64	03/14/14 23:29	
Chlorodifluoromethane	ug/m3	ND	0.20	03/14/14 23:29	
Chloroform	ug/m3	ND	0.99	03/14/14 23:29	
cis-1,2-Dichloroethene	ug/m3	ND	0.81	03/14/14 23:29	
Dichlorodifluoromethane	ug/m3	ND	1.0	03/14/14 23:29	
Ethylbenzene	ug/m3	ND	0.88	03/14/14 23:29	
m&p-Xylene	ug/m3	ND	1.8	03/14/14 23:29	
Methyl-tert-butyl ether	ug/m3	ND	0.73	03/14/14 23:29	
Methylene Chloride	ug/m3	ND	0.71	03/17/14 13:52	
Naphthalene	ug/m3	ND	1.1	03/14/14 23:29	
o-Xylene	ug/m3	ND	0.88	03/14/14 23:29	
Tetrachloroethene	ug/m3	ND	0.69	03/14/14 23:29	
Toluene	ug/m3	ND	0.77	03/14/14 23:29	
trans-1,2-Dichloroethene	ug/m3	ND	0.81	03/14/14 23:29	
Trichloroethene	ug/m3	ND	0.55	03/14/14 23:29	
Vinyl chloride	ug/m3	ND	0.26	03/14/14 23:29	

LABORATORY CONTROL SAMPLE:	1640973					
Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
1,1,1-Trichloroethane	ug/m3	55.5	60.1	108	72-128	
1,1,2-Trichloroethane	ug/m3	55.5	66.7	120	72-130	
1,1-Dichloroethane	ug/m3	41.2	41.5	101	68-128	
1,1-Dichloroethene	ug/m3	40.3	44.0	109	68-130	
1,2,3-Trimethylbenzene	ug/m3	50	57.4	115	60-140	
1,2,4-Trichlorobenzene	ug/m3	75.5	89.5	119	30-150	
1,2,4-Trimethylbenzene	ug/m3	50	57.1	114	71-140	
1,2-Dichloroethane	ug/m3	41.2	42.7	104	71-132	
1,3,5-Trimethylbenzene	ug/m3	50	57.8	116	73-136	
Benzene	ug/m3	32.5	40.0	123	69-134	
Carbon tetrachloride	ug/m3	64	67.6	106	66-134	

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

Project:

MRC SV/IAQ Study Feb 2014

Pace Project No.: 10259332

LABORATORY CONTROL SAM	PLE: 1640973					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Chlorodifluoromethane	ug/m3	36	32.9	91	60-140	
Chloroform	ug/m3	49.7	53.4	108	72-127	
cis-1,2-Dichloroethene	ug/m3	40.3	43.7	108	71-135	
Dichlorodifluoromethane	ug/m3	50.3	54.6	109	69-125	
Ethylbenzene	ug/m3	44.2	51.0	116	73-139	
n&p-Xylene	ug/m3	44.2	52.2	118	73-139	
Methyl-tert-butyl ether	ug/m3	36.7	36.7	100	72-132	
Methylene Chloride	ug/m3	35.3	39.3	111	64-134	
Naphthalene	ug/m3	53.3	64.8	122	61-150	
-Xylene	ug/m3	44.2	51.0	116	71-138	
etrachloroethene	ug/m3	69	91.8	133	69-136	
Toluene	ug/m3	38.3	40.3	105	67-133	
rans-1,2-Dichloroethene	ug/m3	40.3	39.9	99	70-131	
richloroethene	ug/m3	54.6	64.3	118	70-135	
√inyl chloride	ug/m3	26	29.1	112	69-132	

Data File: \\192.168.10.12\chem\10air0.i\031214.b\07120.D

Report Date: 13-Mar-2014 11:48

Pace Analytical Services, Inc.

INTERNAL STANDARD COMPOUNDS AREA AND RT SUMMARY

Instrument ID: 10air0.i Lab File ID: 07120.D Lab Smp Id: 10259332001 Calibration Date: 12-MAR-2014 Calibration Time: 12:31

Level: LOW

Analysis Type: VOA Quant Type: ISTD

Sample Type: AIR

Operator: JAM Method File: \\192.168.10.12\chem\10air0.i\031214.b\T015_069-14.m

Misc Info: 19645

Test Mode:

Use Initial Calibration Level 5.

COMPOUND	STANDARD	AREA LOWER	LIMIT UPPER	SAMPLE	%DIFF
43 1,4-Difluorobenze 61 Chlorobenzene - d		451074 290142	1052506 676998		-15.48 -24.94

		RT I	JIMIT		
COMPOUND	STANDARD	LOWER	UPPER	SAMPLE	%DIFF
	=======	========	=======	=========	=====
43 1,4-Difluorobenze	6.11	5.78	6.44	6.10	-0.10
61 Chlorobenzene - d	9.20	8.87	9.53	9.19	-0.14

AREA UPPER LIMIT = + 40% of internal standard area. AREA LOWER LIMIT = - 40% of internal standard area.

RT UPPER LIMIT = + 0.33 minutes of internal standard RT. RT LOWER LIMIT = - 0.33 minutes of internal standard RT.

Page 2007 of 2722 10259332

Data File: \\192.168.10.12\chem\10air0.i\031314.b\07231.D

Report Date: 14-Mar-2014 07:46

Pace Analytical Services, Inc.

INTERNAL STANDARD COMPOUNDS AREA AND RT SUMMARY

Instrument ID: 10air0.i Lab File ID: 07231.D Lab Smp Id: 10259332001

Calibration Date: 13-MAR-2014 Calibration Time: 13:51 Analysis Type: VOA Quant Type: ISTD Level: LOW Sample Type: AIR

Operator: JAM

Method File: \\192.168.10.12\chem\10air0.i\031314.b\T015_072-14.m

Misc Info: 19645

Test Mode:

Use Initial Calibration Level 5.

COMPOUND	STANDARD	AREA LOWER	LIMIT UPPER	SAMPLE	%DIFF
43 1,4-Difluorobenze	535855		750197	579828	8.21
61 Chlorobenzene - d	325358		455501	333827	2.60

	-	RT I	·-		
COMPOUND	STANDARD	LOWER	UPPER	SAMPLE	%DIFF
	=======	========	=======	=======	======
43 1,4-Difluorobenze	6.11	5.78	6.44	6.10	-0.20
61 Chlorobenzene - d	9.20	8.87	9.53	9.19	-0.20

AREA UPPER LIMIT = + 40% of internal standard area. AREA LOWER LIMIT = - 40% of internal standard area.

RT UPPER LIMIT = + 0.33 minutes of internal standard RT. RT LOWER LIMIT = - 0.33 minutes of internal standard RT.

10259332 Page 2028 of 2722 Data File: \\192.168.10.12\chem\10air0.i\031214.b\07121.D

Report Date: 13-Mar-2014 11:50

Pace Analytical Services, Inc.

INTERNAL STANDARD COMPOUNDS AREA AND RT SUMMARY

Calibration Date: 12-MAR-2014 Calibration Time: 12:31

Level: LOW

Instrument ID: 10air0.i Lab File ID: 07121.D

Lab Smp Id: 10259332002 Analysis Type: VOA

Quant Type: ISTD Sample Type: AIR Operator: JAM

Method File: \\192.168.10.12\chem\10air0.i\031214.b\T015_069-14.m Misc Info: 19645

Test Mode:

Use Initial Calibration Level 5.

COMPOUND	STANDARD	AREA LOWER	LIMIT UPPER	SAMPLE	%DIFF
43 1,4-Difluorobenze 61 Chlorobenzene - d		1	1052506 676998		1

COMPOUND	STANDARD	RT I LOWER	JIMIT UPPER	SAMPLE	%DIFF
43 1,4-Difluorobenze		5.78	6.44	6.10	-0.10
61 Chlorobenzene - d		8.87	9.53	9.19	-0.13

AREA UPPER LIMIT = + 40% of internal standard area. AREA LOWER LIMIT = - 40% of internal standard area.

RT UPPER LIMIT = + 0.33 minutes of internal standard RT. RT LOWER LIMIT = - 0.33 minutes of internal standard RT.

Page 2037 of 2722 10259332

Data File: \\192.168.10.12\chem\10air0.i\031214.b\07122.D

Report Date: 13-Mar-2014 11:54

Pace Analytical Services, Inc.

INTERNAL STANDARD COMPOUNDS AREA AND RT SUMMARY

Instrument ID: 10air0.i Lab File ID: 07122.D Lab Smp Id: 10259332003 Calibration Date: 12-MAR-2014 Calibration Time: 12:31

Analysis Type: VOA

Level: LOW Sample Type: AIR

Quant Type: ISTD Operator: JAM

Method File: \\192.168.10.12\chem\10air0.i\031214.b\T015_069-14.m

Misc Info: 19645

Test Mode:

Use Initial Calibration Level 5.

COMPOUND	STANDARD	AREA LOWER	LIMIT UPPER	SAMPLE	%DIFF
43 1,4-Difluorobenze 61 Chlorobenzene - d					1

		RT I	· · · · · · · · · · · · · · · · · · ·		
COMPOUND	STANDARD	LOWER	UPPER	SAMPLE	%DIFF
=======================================	========	========	========		======
43 1,4-Difluorobenze	6.11	5.78	6.44	6.10	-0.10
61 Chlorobenzene - d	9.20	8.87	9.53	9.19	-0.14

AREA UPPER LIMIT = + 40% of internal standard area. AREA LOWER LIMIT = - 40% of internal standard area.

RT UPPER LIMIT = + 0.33 minutes of internal standard RT. RT LOWER LIMIT = - 0.33 minutes of internal standard RT.

10259332 Page 2052 of 2722 Data File: \\192.168.10.12\chem\10air0.i\031414.b\07314.D

Report Date: 17-Mar-2014 08:57

Pace Analytical Services, Inc.

INTERNAL STANDARD COMPOUNDS AREA AND RT SUMMARY

Calibration Date: 14-MAR-2014 Calibration Time: 11:04

Instrument ID: 10air0.i Lab File ID: 07314.D Lab Smp Id: 10259332004

Analysis Type: VOA Level: LOW Quant Type: ISTD Sample Type: AIR

Operator: JAM

Method File: \\192.168.10.12\chem\10air0.i\031414.b\T015 072-14.m

Misc Info: 19661

Test Mode:

Use Initial Calibration Level 5.

COMPOUND	STANDARD	AREA LOWER	LIMIT UPPER	SAMPLE	%DIFF
43 1,4-Difluorobenze	535855		750197	587605	9.66
61 Chlorobenzene - d	325358		455501	347632	6.85

		RT]		· · · · · · · · · · · · · · · · · · ·	
COMPOUND	STANDARD	LOWER	UPPER	SAMPLE	%DIFF
=======================================	========	========	=======	=======	======
43 1,4-Difluorobenze	6.11	5.78	6.44	6.10	-0.10
61 Chlorobenzene - d	9.20	8.87	9.53	9.19	-0.20

AREA UPPER LIMIT = + 40% of internal standard area. AREA LOWER LIMIT = - 40% of internal standard area.

RT UPPER LIMIT = + 0.33 minutes of internal standard RT. RT LOWER LIMIT = - 0.33 minutes of internal standard RT.

Page 2068 of 2722 10259332

Data File: \\192.168.10.12\chem\10air0.i\031414.b\07315.D

Report Date: 17-Mar-2014 09:01

Pace Analytical Services, Inc.

INTERNAL STANDARD COMPOUNDS AREA AND RT SUMMARY

Instrument ID: 10air0.i Lab File ID: 07315.D Lab Smp Id: 10259332005 Calibration Date: 14-MAR-2014 Calibration Time: 11:04

Level: LOW

Analysis Type: VOA Quant Type: ISTD

Sample Type: AIR

Operator: JAM

Method File: \\192.168.10.12\chem\10air0.i\031414.b\T015_072-14.m
Misc Info: 19661

Test Mode:

Use Initial Calibration Level 5.

COMPOUND	STANDARD	AREA LOWER	LIMIT UPPER	SAMPLE	%DIFF
43 1,4-Difluorobenze		321513	750197	577588	7.79
61 Chlorobenzene - d		195215	455501	331751	1.96

		RT 1	· · · · · · · · · · · · · · · · · · ·		
COMPOUND	STANDARD	LOWER	UPPER	SAMPLE	%DIFF
	=======	========	=======	========	===== =
43 1,4-Difluorobenze	6.11	5.78	6.44	6.11	0.00
61 Chlorobenzene - d	9.20	8.87	9.53	9.19	-0.13

AREA UPPER LIMIT = + 40% of internal standard area. AREA LOWER LIMIT = - 40% of internal standard area.

RT UPPER LIMIT = + 0.33 minutes of internal standard RT. RT LOWER LIMIT = - 0.33 minutes of internal standard RT.

10259332 Page 2083 of 2722 Data File: \\192.168.10.12\chem\10air0.i\031714.b\07628.D

Report Date: 18-Mar-2014 09:54

Pace Analytical Services, Inc.

INTERNAL STANDARD COMPOUNDS AREA AND RT SUMMARY

Instrument ID: 10air0.i
Lab File ID: 07628.D Lab Smp Id: 10259332005

Calibration Date: 17-MAR-2014 Calibration Time: 08:50

Analysis Type: VOA Quant Type: ISTD

Level: LOW Sample Type: AIR

Operator: JAM Method File: \\192.168.10.12\chem\10air0.i\031714.b\T015_072-14.m

Misc Info: 19661

Test Mode:

Use Initial Calibration Level 5.

		AREA	LIMIT		
COMPOUND	STANDARD	LOWER	UPPER	SAMPLE	%DIFF
=======================================	========	========	========	========	==== =
43 1,4-Difluorobenze	535855	321513	750197	417024	-22.18
61 Chlorobenzene - d	325358	195215	455501	243898	-25.04

		RT 1	LIMIT		
COMPOUND	STANDARD	LOWER	UPPER	SAMPLE	%DIFF
=======================================	=======	=========	========	=======	======
43 1,4-Difluorobenze	6.11	5.78	6.44	6.10	-0.20
61 Chlorobenzene - d		8.87	9.53	9.19	-0.20

AREA UPPER LIMIT = + 40% of internal standard area. AREA LOWER LIMIT = - 40% of internal standard area. RT UPPER LIMIT = + 0.33 minutes of internal standard RT. RT LOWER LIMIT = - 0.33 minutes of internal standard RT.

10259332 Page 2115 of 2722 Data File: \\192.168.10.12\chem\10air0.i\031414.b\07316.D

Report Date: 17-Mar-2014 09:05

Pace Analytical Services, Inc.

INTERNAL STANDARD COMPOUNDS AREA AND RT SUMMARY

Instrument ID: 10air0.i
Lab File ID: 07316.D Calibration Date: 14-MAR-2014 Calibration Time: 11:04

Lab Smp Id: 10259332006 Analysis Type: VOA Level: LOW Quant Type: ISTD Sample Type: AIR

Operator: JAM Method File: \\192.168.10.12\chem\10air0.i\031414.b\T015_072-14.m

Misc Info: 19661

Test Mode:

Use Initial Calibration Level 5.

		AREA			
COMPOUND	STANDARD	LOWER	UPPER	SAMPLE	%DIFF
=======================================	=========	=======	========	========	======
43 1,4-Difluorobenze	535855	321513	750197	606975	13.27
61 Chlorobenzene - d	325358	195215	455501	347727	6.88

		RT 1	LIMIT		
COMPOUND	STANDARD	LOWER	UPPER	SAMPLE	%DIFF
=======================================	========	========	========	=======	======
43 1,4-Difluorobenze	6.11	5.78	6.44	6.12	0.21
61 Chlorobenzene - d	9.20	8.87	9.53	9.19	-0.13

AREA UPPER LIMIT = + 40% of internal standard area. AREA LOWER LIMIT = - 40% of internal standard area.

RT UPPER LIMIT = + 0.33 minutes of internal standard RT. RT LOWER LIMIT = - 0.33 minutes of internal standard RT.

10259332

Data File: \\192.168.10.12\chem\10air0.i\031414.b\07317.D

Report Date: 17-Mar-2014 09:08

Pace Analytical Services, Inc.

INTERNAL STANDARD COMPOUNDS AREA AND RT SUMMARY

Instrument ID: 10air0.i
Lab File ID: 07317.D Calibration Date: 14-MAR-2014 Calibration Time: 11:04

Lab Smp Id: 10259332007

Analysis Type: VOA Level: LOW Quant Type: ISTD Sample Type: AIR

Operator: JAM Method File: \\192.168.10.12\chem\10air0.i\031414.b\T015 072-14.m

Misc Info: 19661

Test Mode:

Use Initial Calibration Level 5.

COMPOUND	STANDARD	AREA LOWER	LIMIT UPPER	SAMPLE	%DIFF
43 1,4-Difluorobenze	535855		750197	554869	3.55
61 Chlorobenzene - d	325358		455501	323982	-0.42

		RT I			
COMPOUND	STANDARD	LOWER	UPPER	SAMPLE	%DIFF
=======================================	========	=======	========	=======	======
43 1,4-Difluorobenze	6.11	5.78	6.44	6.10	-0.20
61 Chlorobenzene - d		8.87	9.53	9.19	l -0.20l

AREA UPPER LIMIT = + 40% of internal standard area. AREA LOWER LIMIT = - 40% of internal standard area.

RT UPPER LIMIT = + 0.33 minutes of internal standard RT. RT LOWER LIMIT = - 0.33 minutes of internal standard RT.

10259332 Page 2147 of 2722 Data File: \\192.168.10.12\chem\10air0.i\031414.b\07318.D

Report Date: 17-Mar-2014 09:10

Pace Analytical Services, Inc.

INTERNAL STANDARD COMPOUNDS AREA AND RT SUMMARY

Instrument ID: 10air0.i Lab File ID: 07318.D

Calibration Date: 14-MAR-2014 Calibration Time: 11:04

Lab Smp Id: 10259332008 Analysis Type: VOA

Level: LOW

Quant Type: ISTD

Sample Type: AIR

Operator: JAM

Method File: \\192.168.10.12\chem\10air0.i\031414.b\T015_072-14.m

Misc Info: 19661

Test Mode:

Use Initial Calibration Level 5.

COMPOUND	STANDARD	AREA LOWER	LIMIT UPPER	SAMPLE	%DIFF
43 1,4-Difluorobenze 61 Chlorobenzene - d	535855 325358		750197 455501	590220 344312	10.15

		RT I	LIMIT		_
COMPOUND	STANDARD	LOWER	UPPER	SAMPLE	%DIFF
=======================================	========	=======	========	========	======
43 1,4-Difluorobenze	6.11	5.78	6.44	6.10	-0.10
61 Chlorobenzene - d		8.87	9.53	9.19	-0.20

AREA UPPER LIMIT = + 40% of internal standard area. AREA LOWER LIMIT = - 40% of internal standard area.

RT UPPER LIMIT = + 0.33 minutes of internal standard RT. RT LOWER LIMIT = - 0.33 minutes of internal standard RT.

10259332 Page 2166 of 2722 Data File: \\192.168.10.12\chem\10air0.i\031414.b\07319.D

Report Date: 17-Mar-2014 09:16

Pace Analytical Services, Inc.

INTERNAL STANDARD COMPOUNDS AREA AND RT SUMMARY

Instrument ID: 10air0.i

Calibration Date: 14-MAR-2014

Lab File ID: 07319.D

Calibration Time: 11:04

Lab Smp Id: 10259332009

Level: LOW

Analysis Type: VOA Quant Type: ISTD

Sample Type: AIR

Operator: JAM

Method File: \\192.168.10.12\chem\10air0.i\031414.b\T015 072-14.m

Misc Info: 19661

Test Mode:

Use Initial Calibration Level 5.

COMPOUND	STANDARD	AREA LOWER	LIMIT UPPER	SAMPLE	%DIFF_
43 1,4-Difluorobenze	535855		750197	563397	5.14
61 Chlorobenzene - d	325358		455501	323671	-0.52

		RT 1			
COMPOUND	STANDARD	LOWER	UPPER	SAMPLE	%DIFF
=======================================	========	========	=======	========	=====
43 1,4-Difluorobenze	6.11	5.78	6.44	6.12	0.11
61 Chlorobenzene - d	9.20	8.87	9.53	9.19	-0.13

AREA UPPER LIMIT = + 40% of internal standard area. AREA LOWER LIMIT = - 40% of internal standard area.

RT UPPER LIMIT = + 0.33 minutes of internal standard RT. RT LOWER LIMIT = - 0.33 minutes of internal standard RT.

Page 2181 of 2722 10259332

Data File: \\192.168.10.12\chem\10air0.i\031714.b\07629.D

Report Date: 18-Mar-2014 09:57

Pace Analytical Services, Inc.

INTERNAL STANDARD COMPOUNDS AREA AND RT SUMMARY

Instrument ID: 10air0.i Lab File ID: 07629.D

Lab Smp Id: 10259332009

Analysis Type: VOA Quant Type: ISTD Operator: JAM

Calibration Date: 17-MAR-2014 Calibration Time: 08:50

Level: LOW Sample Type: AIR

Method File: \\192.168.10.12\chem\10air0.i\031714.b\T015 072-14.m

Misc Info: 19661

Test Mode:

Use Initial Calibration Level 5.

COMPOUND	STANDARD	AREA LOWER	LIMIT UPPER	SAMPLE	%DIFF
43 1,4-Difluorobenze 61 Chlorobenzene - d		321513 195215	750197 455501	393918 235818	

		RT I	TIMIT	-	
COMPOUND	STANDARD	LOWER	UPPER	SAMPLE	%DIFF
=======================================	========	========	=======	========	======
43 1,4-Difluorobenze	6.11	5.78	6.44	6.10	-0.20
61 Chlorobenzene - d	9.20	8.87	9.53	9.19	-0.13

AREA UPPER LIMIT = + 40% of internal standard area. AREA LOWER LIMIT = - 40% of internal standard area.

RT UPPER LIMIT = + 0.33 minutes of internal standard RT. RT LOWER LIMIT = - 0.33 minutes of internal standard RT.

Data File: \\192.168.10.12\chem\10air0.i\031414.b\07320.D

Report Date: 17-Mar-2014 09:19

Pace Analytical Services, Inc.

INTERNAL STANDARD COMPOUNDS AREA AND RT SUMMARY

Instrument ID: 10air0.i Lab File ID: 07320.D Lab Smp Id: 10259332010

Calibration Date: 14-MAR-2014 Calibration Time: 11:04

Analysis Type: VOA Quant Type: ISTD Operator: JAM

Level: LOW Sample Type: AIR

Method File: \\192.168.10.12\chem\10air0.i\031414.b\T015 072-14.m

Misc Info: 19661

Test Mode:

Use Initial Calibration Level 5.

	, , , ,	AREA			
COMPOUND	STANDARD	LOWER	UPPER	SAMPLE	%DIFF
======================================	=======	========	=======	=======	==== =
43 1,4-Difluorobenze	535855	321513	750197	586125	9.38
61 Chlorobenzene - d	325358	195215	455501	338725	4.11

		RT I	LIMIT		
COMPOUND	STANDARD	LOWER	UPPER	SAMPLE	%DIFF
=======================================	=======	========	========	=======	=====
43 1,4-Difluorobenze		5.78	6.44	6.10	-0.20
61 Chlorobenzene - d	9.20	8.87	9.53	9.19	-0.13
					1

AREA UPPER LIMIT = + 40% of internal standard area. AREA LOWER LIMIT = - 40% of internal standard area.

RT UPPER LIMIT = + 0.33 minutes of internal standard RT. RT LOWER LIMIT = - 0.33 minutes of internal standard RT.

10259332

Data File: \\192.168.10.12\chem\10air0.i\031414.b\07321.D

Report Date: 17-Mar-2014 09:24

Pace Analytical Services, Inc.

INTERNAL STANDARD COMPOUNDS AREA AND RT SUMMARY

Instrument ID: 10air0.i
Lab File ID: 07321.D Lab Smp Id: 10259332011

Calibration Date: 14-MAR-2014 Calibration Time: 11:04 Analysis Type: VOA Level: LOW Sample Type: AIR

Quant Type: ISTD Operator: JAM

Method File: \\192.168.10.12\chem\10air0.i\031414.b\T015 072-14.m

Misc Info: 19661

Test Mode:

Use Initial Calibration Level 5.

		AREA	LIMIT		
COMPOUND	STANDARD	LOWER	UPPER	SAMPLE	%DIFF
=======================================	=======	========	========	========	==== =
43 1,4-Difluorobenze	535855	321513	750197	559632	4.44
61 Chlorobenzene - d	325358	195215	455501	327931	0.79

		RT I	LIMIT		
COMPOUND	STANDARD	LOWER	UPPER	SAMPLE	%DIFF
_======================================	=======	========	========	=======	=====
43 1,4-Difluorobenze	6.11	5.78	6.44	6.10	-0.20
61 Chlorobenzene - d		8.87	9.53	9.19	-0.20

AREA UPPER LIMIT = + 40% of internal standard area. AREA LOWER LIMIT = - 40% of internal standard area.

RT UPPER LIMIT = + 0.33 minutes of internal standard RT. RT LOWER LIMIT = - 0.33 minutes of internal standard RT.

10259332

Data File: \\192.168.10.12\chem\10air0.i\031714.b\07630.D

Report Date: 18-Mar-2014 09:59

Pace Analytical Services, Inc.

INTERNAL STANDARD COMPOUNDS AREA AND RT SUMMARY

Calibration Date: 17-MAR-2014 Calibration Time: 08:50

Level: LOW

Sample Type: AIR

Instrument ID: 10air0.i
Lab File ID: 07630.D Lab Smp Id: 10259332011

Analysis Type: VOA

Quant Type: ISTD Operator: JAM

Method File: \\192.168.10.12\chem\10air0.i\031714.b\T015 072-14.m

Misc Info: 19661

Test Mode:

Use Initial Calibration Level 5.

***		AREA	LIMIT		
COMPOUND	STANDARD	LOWER	UPPER	SAMPLE	%DIFF
	*=======	=======	========	========	======
43 1,4-Difluorobenze	535855	321513	750197	387971	-27.60
61 Chlorobenzene - d	325358	195215	455501	234227	-28.01
]

			LIMIT		
COMPOUND	STANDARD	LOWER	UPPER	SAMPLE	%DIFF
=======================================	=======	========	#========	=======	======
43 1,4-Difluorobenze	6.11	5.78	6.44	6.10	-0.20
61 Chlorobenzene - d	9.20	8.87	9.53	9.19	-0.20

AREA UPPER LIMIT = + 40% of internal standard area. AREA LOWER LIMIT = - 40% of internal standard area.

RT UPPER LIMIT = + 0.33 minutes of internal standard RT. RT LOWER LIMIT = - 0.33 minutes of internal standard RT.

10259332 Page 2261 of 2722 Data File: \\192.168.10.12\chem\10air0.i\031714.b\07631.D

Report Date: 18-Mar-2014 10:02

Pace Analytical Services, Inc.

INTERNAL STANDARD COMPOUNDS AREA AND RT SUMMARY

Instrument ID: 10air0.i
Lab File ID: 07631.D

Lab Smp Id: 10259332012

Analysis Type: VOA Quant Type: ISTD Operator: JAM

Calibration Date: 17-MAR-2014

Calibration Time: 08:50

Level: LOW Sample Type: AIR

Method File: \\192.168.10.12\chem\10air0.i\031714.b\T015_072-14.m

Misc Info: 19678

Test Mode:

Use Initial Calibration Level 5.

COMPOUND	STANDARD	AREA LOWER	LIMIT UPPER	SAMPLE	%DIFF
43 1,4-Difluorobenze	535855		750197	417147	-22.15
61 Chlorobenzene - d	325358		455501	261858	-19.52

		RT I	LIMIT	· · · · · · · · · · · · · · · · · · ·	
COMPOUND	STANDARD	LOWER	UPPER	SAMPLE	%DIFF
=======================================	=======	========	========	=======	======
43 1,4-Difluorobenze	6.11	5.78	6.44	6.10	-0.20
61 Chlorobenzene - d	9.20	8.87	9.53	9.20	-0.07

AREA UPPER LIMIT = + 40% of internal standard area. AREA LOWER LIMIT = - 40% of internal standard area.

RT UPPER LIMIT = + 0.33 minutes of internal standard RT. RT LOWER LIMIT = - 0.33 minutes of internal standard RT.

10259332 Page 2274 of 2722 Data File: \\192.168.10.12\chem\10air0.i\031414.b\07323.D

Report Date: 17-Mar-2014 09:37

Pace Analytical Services, Inc.

INTERNAL STANDARD COMPOUNDS AREA AND RT SUMMARY

Instrument ID: 10air0.i
Lab File ID: 07323.D

Calibration Date: 14-MAR-2014 Calibration Time: 11:04

Lab Smp Id: 10259332013

Level: LOW

Analysis Type: VOA Quant Type: ISTD

Sample Type: AIR

Operator: JAM

Misc Info: 19661

Method File: \\192.168.10.12\chem\10air0.i\031414.b\T015_072-14.m

Test Mode:

Use Initial Calibration Level 5.

COMPOUND	STANDARD	AREA LOWER	LIMIT UPPER	SAMPLE	%DIFF
43 1,4-Difluorobenze	535855	321513	750197	588276	9.78
61 Chlorobenzene - d	325358	195215	455501	329736	1.35

		RT I	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · ·	
COMPOUND	STANDARD	LOWER	UPPER	SAMPLE	%DIFF
=======================================	========	========	========	========	=====
43 1,4-Difluorobenze		5.78	6.44	6.13	0.40
61 Chlorobenzene - d	9.20	8.87	9.53	9.23	0.27

AREA UPPER LIMIT = + 40% of internal standard area. AREA LOWER LIMIT = - 40% of internal standard area.

RT UPPER LIMIT = + 0.33 minutes of internal standard RT. RT LOWER LIMIT = - 0.33 minutes of internal standard RT.

10259332

Data File: \\192.168.10.12\chem\10air0.i\031714.b\07617.D

Report Date: 17-Mar-2014 15:55

Pace Analytical Services, Inc.

INTERNAL STANDARD COMPOUNDS AREA AND RT SUMMARY

Instrument ID: 10air0.i Lab File ID: 07617.D Lab Smp Id: 10259332013

Calibration Date: 17-MAR-2014 Calibration Time: 08:50

Level: LOW Sample Type: AIR

Analysis Type: VOA Quant Type: ISTD

Operator: JAM Method File: \\192.168.10.12\chem\10air0.i\031714.b\T015_072-14.m

Misc Info: 19661

Test Mode:

Use Initial Calibration Level 5.

COMPOUND	STANDARD	AREA LOWER	LIMIT UPPER	SAMPLE	%DIFF
43 1,4-Difluorobenze	535855	321513	750197	444962	
61 Chlorobenzene - d	325358	195215	455501	263884	

		RT I	LIMIT		
COMPOUND	STANDARD	LOWER	UPPER	SAMPLE	%DIFF
	=======	========	========	=======	======
43 1,4-Difluorobenze	6.11	5.78	6.44	6.10	-0.20
61 Chlorobenzene - d		8.87	9.53	9.19	-0.20
				•	

AREA UPPER LIMIT = + 40% of internal standard area. AREA LOWER LIMIT = - 40% of internal standard area.

RT UPPER LIMIT = + 0.33 minutes of internal standard RT. RT LOWER LIMIT = - 0.33 minutes of internal standard RT.

10259332 Page 2327 of 2722 Data File: \\192.168.10.12\chem\10air0.i\031414.b\07325.D

Report Date: 17-Mar-2014 09:58

Pace Analytical Services, Inc.

INTERNAL STANDARD COMPOUNDS AREA AND RT SUMMARY

Instrument ID: 10air0.i
Lab File ID: 07325.D

Calibration Date: 14-MAR-2014 Calibration Time: 11:04

Lab Smp Id: 10259332015 Analysis Type: VOA Quant Type: ISTD

Level: LOW Sample Type: AIR

Operator: JAM Method File: \\192.168.10.12\chem\10air0.i\031414.b\T015_072-14.m

Misc Info: 19661

Test Mode:

Use Initial Calibration Level 5.

		AREA	LIMIT	-	
COMPOUND	STANDARD	LOWER	UPPER	SAMPLE	%DIFF
_======================================	========	=======	=======	========	======
43 1,4-Difluorobenze	535855	321513	750197	596766	11.37
61 Chlorobenzene - d	325358	195215	455501	343866	5.69
· ·					

		RT I	LIMIT	· · · · · · · · · · · · · · · · · · ·	
COMPOUND	STANDARD	LOWER	UPPER	SAMPLE	%DIFF
=======================================	========	========	========	=======	======
43 1,4-Difluorobenze	6.11	5.78	6.44	6.10	-0.20
61 Chlorobenzene - d	9.20	8.87	9.53	9.19	-0.20

AREA UPPER LIMIT = + 40% of internal standard area. AREA LOWER LIMIT = - 40% of internal standard area.

RT UPPER LIMIT = + 0.33 minutes of internal standard RT. RT LOWER LIMIT = - 0.33 minutes of internal standard RT.

10259332 Page 2348 of 2722 Data File: \\192.168.10.12\chem\10air0.i\031414.b\07326.D

Report Date: 17-Mar-2014 10:00

Pace Analytical Services, Inc.

INTERNAL STANDARD COMPOUNDS AREA AND RT SUMMARY

Instrument ID: 10air0.i
Lab File ID: 07326.D

Lab Smp Id: 10259332016

Analysis Type: VOA Quant Type: ISTD Operator: JAM

Level: LOW Sample Type: AIR

Calibration Date: 14-MAR-2014 Calibration Time: 11:04

Method File: \\192.168.10.12\chem\10air0.i\031414.b\T015 072-14.m

Misc Info: 19661

Test Mode:

Use Initial Calibration Level 5.

		AREA	LIMIT	* · · · · ·	
COMPOUND	STANDARD	LOWER	UPPER	SAMPLE	%DIFF
=======================================	=======	========	========	=======	======
43 1,4-Difluorobenze	535855	321513	750197	592771	10.62
61 Chlorobenzene - d	325358	195215	455501	342790	5.36

		RT I	LIMIT	· · · · · · · · · · · · · · · · · · ·	
COMPOUND	STANDARD	LOWER	UPPER	SAMPLE	%DIFF
=======================================	========	=======	========	========	======
43 1,4-Difluorobenze	6.11	5.78	6.44	6.10	-0.10
61 Chlorobenzene - d	9.20	8.87	9.53	9.19	-0.20

AREA UPPER LIMIT = + 40% of internal standard area. AREA LOWER LIMIT = - 40% of internal standard area.

RT UPPER LIMIT = + 0.33 minutes of internal standard RT. RT LOWER LIMIT = - 0.33 minutes of internal standard RT.

10259332 Page 2366 of 2722 Data File: \\192.168.10.12\chem\10air0.i\031414.b\07327.D

Report Date: 17-Mar-2014 10:02

Pace Analytical Services, Inc.

INTERNAL STANDARD COMPOUNDS AREA AND RT SUMMARY

Calibration Date: 14-MAR-2014 Calibration Time: 11:04

Level: LOW

Instrument ID: 10air0.i
Lab File ID: 07327.D

Lab Smp Id: 10259332017

Analysis Type: VOA Quant Type: ISTD Operator: JAM

Sample Type: AIR

Method File: \\192.168.10.12\chem\10air0.i\031414.b\T015 072-14.m

Misc Info: 19661

Test Mode:

Use Initial Calibration Level 5.

COMPOUND	STANDARD	AREA LOWER	LIMIT UPPER	SAMPLE	%DIFF
43 1,4-Difluorobenze	535855	321513	750197	576218	7.53
61 Chlorobenzene - d	325358	195215	455501	337749	3.81

		RT 1	LIMIT		
COMPOUND	STANDARD	LOWER	UPPER	SAMPLE	%DIFF
=======================================	=======	=========	========	========	======
43 1,4-Difluorobenze	6.11	5.78	6.44	6.10	-0.20
61 Chlorobenzene - d		8.87	9.53	9.19	-0.20

AREA UPPER LIMIT = + 40% of internal standard area. AREA LOWER LIMIT = - 40% of internal standard area.

RT UPPER LIMIT = + 0.33 minutes of internal standard RT. RT LOWER LIMIT = - 0.33 minutes of internal standard RT.

10259332 Page 2382 of 2722 Data File: \\192.168.10.12\chem\10air0.i\031414.b\07328.D

Report Date: 17-Mar-2014 10:05

Pace Analytical Services, Inc.

INTERNAL STANDARD COMPOUNDS AREA AND RT SUMMARY

Instrument ID: 10air0.i
Lab File ID: 07328.D Lab Smp Id: 10259332018

Calibration Date: 14-MAR-2014 Calibration Time: 11:04

Analysis Type: VOA

Level: LOW Sample Type: AIR

Quant Type: ISTD Operator: JAM

Method File: \\192.168.10.12\chem\10air0.i\031414.b\T015 072-14.m

Misc Info: 19661

Test Mode:

Use Initial Calibration Level 5.

		AREA	LIMIT		
COMPOUND	STANDARD	LOWER	UPPER	SAMPLE	%DIFF
43 1,4-Difluorobenze 61 Chlorobenzene - d	535855 325358		750197 455501	548281 334916	2.32 2.94

		RT LIMIT			
COMPOUND	STANDARD	LOWER	UPPER	SAMPLE	%DIFF
=======================================	========	========	=======	========	=====
43 1,4-Difluorobenze	6.11	5.78	6.44	6.10	-0.20
61 Chlorobenzene - d	9.20	8.87	9.53	9.19	-0.20
l					

AREA UPPER LIMIT = + 40% of internal standard area.

AREA LOWER LIMIT = - 40% of internal standard area.

RT UPPER LIMIT = + 0.33 minutes of internal standard RT. RT LOWER LIMIT = - 0.33 minutes of internal standard RT.

Data File: \\192.168.10.12\chem\10air0.i\031414.b\07329.D

Report Date: 17-Mar-2014 10:54

Pace Analytical Services, Inc.

INTERNAL STANDARD COMPOUNDS AREA AND RT SUMMARY

Instrument ID: 10air0.i Lab File ID: 07329.D

Calibration Date: 14-MAR-2014 Calibration Time: 11:04

Lab Smp Id: 10259332019

Level: LOW

Analysis Type: VOA Quant Type: ISTD

Sample Type: AIR

Operator: JAM

Method File: \\192.168.10.12\chem\10air0.i\031414.b\T015 072-14.m

Misc Info: 19661

Test Mode:

Use Initial Calibration Level 5.

COMPOUND	STANDARD	AREA LOWER	LIMIT UPPER	SAMPLE	%DIFF
43 1,4-Difluorobenze	535855		750197	529195	-1.24
61 Chlorobenzene - d	325358		455501	330243	1.50

		RT 1	IMIT		
COMPOUND	STANDARD	LOWER	UPPER	SAMPLE	%DIFF
=======================================	=======	=========	========	========	======
43 1,4-Difluorobenze	6.11	5.78	6.44	6.10	-0.20
61 Chlorobenzene - d		8.87	9.53	9.19	-0.20

AREA UPPER LIMIT = + 40% of internal standard area. AREA LOWER LIMIT = - 40% of internal standard area.

RT UPPER LIMIT = + 0.33 minutes of internal standard RT. RT LOWER LIMIT = - 0.33 minutes of internal standard RT.

10259332 Page 2419 of 2722 Data File: \\192.168.10.12\chem\10air0.i\031414.b\07331.D

Report Date: 17-Mar-2014 10:07

Pace Analytical Services, Inc.

INTERNAL STANDARD COMPOUNDS AREA AND RT SUMMARY

Instrument ID: 10air0.i
Lab File ID: 07331.D

Calibration Date: 14-MAR-2014 Calibration Time: 11:04

Lab Smp Id: 10259332020 Analysis Type: VOA

Level: LOW

Quant Type: ISTD

Sample Type: AIR

Operator: JAM

Method File: \\192.168.10.12\chem\10air0.i\031414.b\T015 072-14.m

Misc Info: 19661

Test Mode:

Use Initial Calibration Level 5.

COMPOUND	STANDARD	AREA LOWER	LIMIT UPPER	SAMPLE	%DIFF
43 1,4-Difluorobenze 61 Chlorobenzene - d			750197 455501	516564 306542	-3.60 -5.78

		RT I	LIMIT	.,,	
COMPOUND	STANDARD	LOWER	UPPER	SAMPLE	%DIFF
=======================================	========	========	=======	========	======
43 1,4-Difluorobenze	6.11	5.78	6.44	6.09	-0.31
61 Chlorobenzene - d	9.20	8.87	9.53	9.19	-0.20

AREA UPPER LIMIT = + 40% of internal standard area.

AREA LOWER LIMIT = - 40% of internal standard area.

RT UPPER LIMIT = + 0.33 minutes of internal standard RT.

RT LOWER LIMIT = - 0.33 minutes of internal standard RT.

Page 2432 of 2722 10259332

Data File: \\192.168.10.12\chem\10airD.i\031414.b\07340.d

Report Date: 17-Mar-2014 12:16

Pace Analytical Services, Inc.

INTERNAL STANDARD COMPOUNDS AREA AND RT SUMMARY

Instrument ID: 10airD.i
Lab File ID: 07340.d

Lab Smp Id: 10259332021

Analysis Type: VOA Quant Type: ISTD

Level: LOW

Sample Type: AIR

Calibration Date: 14-MAR-2014 Calibration Time: 12:36

Operator: DR1
Method File: \\192.168.10.12\chem\10airD.i\031414.b\T015_071-14.m

Misc Info: 19668

Test Mode:

Use Initial Calibration Level 4. If Continuing Cal. use Initial Cal. Level 4

COMPOUND	STANDARD	AREA LOWER	LIMIT UPPER	SAMPLE	%DIFF
43 1,4-Difluorobenze	889865	533919	1245811	891798	0.22
61 Chlorobenzene - d	513489	308093	718885	468302	-8.80

		RT 1	IMIT		
COMPOUND	STANDARD	LOWER	UPPER	SAMPLE	%DIFF
=======================================	========	=======	========	========	======
43 1,4-Difluorobenze	6.41	6.08	6.74	6.40	-0.10
61 Chlorobenzene - d	10.08	9.75	10.41	10.08	-0.03

AREA UPPER LIMIT = + 40% of internal standard area. AREA LOWER LIMIT = - 40% of internal standard area.

RT UPPER LIMIT = + 0.33 minutes of internal standard RT. RT LOWER LIMIT = - 0.33 minutes of internal standard RT.

10259332 Page 2445 of 2722 Data File: \\192.168.10.12\chem\10air0.i\031714.b\07632.D

Report Date: 18-Mar-2014 10:04

Pace Analytical Services, Inc.

INTERNAL STANDARD COMPOUNDS AREA AND RT SUMMARY

Instrument ID: 10air0.i
Lab File ID: 07632.D

Calibration Date: 17-MAR-2014 Calibration Time: 08:50

Lab Smp Id: 10259332022

Level: LOW

Analysis Type: VOA Quant Type: ISTD

Sample Type: AIR

Operator: JAM Method File: \\192.168.10.12\chem\10air0.i\031714.b\T015_072-14.m

Misc Info: 19678

Test Mode:

Use Initial Calibration Level 5.

COMPOUND	STANDARD	AREA LOWER	LIMIT UPPER	SAMPLE	%DIFF
43 1,4-Difluorobenze	535855	321513	750197	416517	-22.27
61 Chlorobenzene - d	325358	195215	455501	247057	-24.07

		RT I			
COMPOUND	STANDARD	LOWER	UPPER	SAMPLE	%DIFF
43 1,4-Difluorobenze		5.78	6.44	6.10	-0.20
61 Chlorobenzene - d	9.20	8.87	9.53	9.19	-0.20

AREA UPPER LIMIT = + 40% of internal standard area. AREA LOWER LIMIT = - 40% of internal standard area.

RT UPPER LIMIT = + 0.33 minutes of internal standard RT. RT LOWER LIMIT = - 0.33 minutes of internal standard RT.

Data File: \\192.168.10.12\chem\10air0.i\031714.b\07633.D

Report Date: 18-Mar-2014 10:08

Pace Analytical Services, Inc.

INTERNAL STANDARD COMPOUNDS AREA AND RT SUMMARY

Instrument ID: 10air0.i
Lab File ID: 07633.D

Lab Smp Id: 10259332023

Analysis Type: VOA Quant Type: ISTD

Level: LOW Sample Type: AIR

Calibration Date: 17-MAR-2014 Calibration Time: 08:50

Operator: JAM Method File: \\192.168.10.12\chem\10air0.i\031714.b\T015_072-14.m

Misc Info: 19678

Test Mode:

Use Initial Calibration Level 5.

		AREA	LIMIT		
COMPOUND	STANDARD	LOWER	UPPER	SAMPLE	%DIFF
43 1,4-Difluorobenze 61 Chlorobenzene - d	535855 325358	321513 195215	750197 455501	406922 234541	-24.06 -27.91

		RT I			
COMPOUND	STANDARD	LOWER	UPPER	SAMPLE	%DIFF
=======================================	========	========	=======	=======	=====
43 1,4-Difluorobenze	6.11	5.78	6.44	6.09	-0.30
61 Chlorobenzene - d	9.20	8.87	9.53	9.19	-0.20

AREA UPPER LIMIT = + 40% of internal standard area. AREA LOWER LIMIT = - 40% of internal standard area.

RT UPPER LIMIT = + 0.33 minutes of internal standard RT. RT LOWER LIMIT = - 0.33 minutes of internal standard RT.

Data File: \\192.168.10.12\chem\10air0.i\031714.b\07634.D

Report Date: 18-Mar-2014 10:10

Pace Analytical Services, Inc.

INTERNAL STANDARD COMPOUNDS AREA AND RT SUMMARY

Instrument ID: 10air0.i Lab File ID: 07634.D

Lab Smp Id: 10259332024 Analysis Type: VOA Quant Type: ISTD

Level: LOW

Sample Type: AIR

Calibration Date: 17-MAR-2014 Calibration Time: 08:50

Operator: JAM Method File: \\192.168.10.12\chem\10air0.i\031714.b\T015 072-14.m

Misc Info: 19678

Test Mode:

Use Initial Calibration Level 5.

		AREA			
COMPOUND	STANDARD	LOWER	UPPER	SAMPLE	%DIFF
	========	========	=======	========	======
43 1,4-Difluorobenze	535855	321513	750197	407128	-24.02
61 Chlorobenzene - d		195215	455501	234286	-27.99

		RT I	JIMIT		
COMPOUND	STANDARD	LOWER	UPPER	SAMPLE	%DIFF
=======================================	========	=======	========	=======	======
43 1,4-Difluorobenze	6.11	5.78	6.44	6.10	-0.20
61 Chlorobenzene - d		8.87	9.53	9.19	-0.20

AREA UPPER LIMIT = + 40% of internal standard area. AREA LOWER LIMIT = - 40% of internal standard area.

RT UPPER LIMIT = + 0.33 minutes of internal standard RT. RT LOWER LIMIT = - 0.33 minutes of internal standard RT.

10259332 Page 2505 of 2722 Data File: \\192.168.10.12\chem\10air0.i\031714.b\07635.D

Report Date: 18-Mar-2014 10:15

Pace Analytical Services, Inc.

INTERNAL STANDARD COMPOUNDS AREA AND RT SUMMARY

Instrument ID: 10air0.i
Lab File ID: 07635.D

Lab Smp Id: 10259332025

Analysis Type: VOA Quant Type: ISTD Operator: JAM

Calibration Date: 17-MAR-2014

Calibration Time: 08:50

Level: LOW Sample Type: AIR

Method File: \\192.168.10.12\chem\10air0.i\031714.b\T015 072-14.m

Misc Info: 19678

Test Mode:

Use Initial Calibration Level 5.

		AREA	LIMIT		
COMPOUND	STANDARD	LOWER	UPPER	SAMPLE	%DIFF
43 1,4-Difluorobenze		321513	750197	399028	
61 Chlorobenzene - d	325358	195215	455501	233909	-28.11

		RT I			
COMPOUND	STANDARD	LOWER	UPPER	SAMPLE	%DIFF
=======================================	========	========	=======	=======	======
43 1,4-Difluorobenze	6.11	5.78	6.44	6.10	-0.20
61 Chlorobenzene - d		8.87	9.53	9.19	-0.20

AREA UPPER LIMIT = + 40% of internal standard area. AREA LOWER LIMIT = - 40% of internal standard area.

RT UPPER LIMIT = + 0.33 minutes of internal standard RT. RT LOWER LIMIT = - 0.33 minutes of internal standard RT.

10259332 Page 2518 of 2722 Data File: \\192.168.10.12\chem\10air0.i\031714.b\07636.D

Report Date: 18-Mar-2014 10:17

Pace Analytical Services, Inc.

INTERNAL STANDARD COMPOUNDS AREA AND RT SUMMARY

Instrument ID: 10air0.i Lab File ID: 07636.D

Lab Smp Id: 10259332026

Analysis Type: VOA Quant Type: ISTD Operator: JAM

Calibration Date: 17-MAR-2014 Calibration Time: 08:50

Level: LOW

Sample Type: AIR

Method File: \\192.168.10.12\chem\10air0.i\031714.b\T015 072-14.m

Misc Info: 19678

Test Mode:

Use Initial Calibration Level 5.

COMPOUND	STANDARD	AREA LOWER	LIMIT UPPER	SAMPLE	%DIFF
43 1,4-Difluorobenze	535855		750197	388785	-27.45
61 Chlorobenzene - d	325358		455501	226781	-30.30

		RT]			
COMPOUND	STANDARD	LOWER	UPPER	SAMPLE	%DIFF
=======================================	========	========	========	========	=====
43 1,4-Difluorobenze		5.78	6.44	6.10	-0.20
61 Chlorobenzene - d	9.20	8.87	9.53	9.19	-0.20

AREA UPPER LIMIT = + 40% of internal standard area. AREA LOWER LIMIT = - 40% of internal standard area.

RT UPPER LIMIT = + 0.33 minutes of internal standard RT. RT LOWER LIMIT = - 0.33 minutes of internal standard RT.

Data File: \\192.168.10.12\chem\10air0.i\031714.b\07637.D

Report Date: 18-Mar-2014 13:28

Pace Analytical Services, Inc.

INTERNAL STANDARD COMPOUNDS AREA AND RT SUMMARY

Instrument ID: 10air0.i Lab File ID: 07637.D Lab Smp Id: 10259332027

Calibration Date: 17-MAR-2014 Calibration Time: 08:50

Analysis Type: VOA Quant Type: ISTD Operator: JAM

Level: LOW Sample Type: AIR

Method File: \\192.168.10.12\chem\10air0.i\031714.b\T015 072-14.m

Misc Info: 19693

Test Mode:

Use Initial Calibration Level 5.

COMPOUND	STANDARD	AREA LOWER	LIMIT UPPER	SAMPLE	%DIFF
43 1,4-Difluorobenze 61 Chlorobenzene - d	005050		750197 455501	390016 230488	-27.22 -29.16

		RT I		···	
COMPOUND	STANDARD	LOWER	UPPER	SAMPLE	%DIFF
=======================================	=======	========	=======	=======	======
43 1,4-Difluorobenze	6.11	5.78	6.44	6.10	-0.20
61 Chlorobenzene - d		8.87	9.53	9.19	-0.20

AREA UPPER LIMIT = + 40% of internal standard area. AREA LOWER LIMIT = - 40% of internal standard area.

RT UPPER LIMIT = + 0.33 minutes of internal standard RT. RT LOWER LIMIT = - 0.33 minutes of internal standard RT.

10259332 Page 2546 of 2722 Data File: \\192.168.10.12\chem\10airD.i\031414.b\07337.d

Report Date: 18-Mar-2014 13:22

Pace Analytical Services, Inc.

INTERNAL STANDARD COMPOUNDS AREA AND RT SUMMARY

Instrument ID: 10airD.i
Lab File ID: 07337.d
Lab Smp Id: 10259332027

Calibration Date: 14-MAR-2014 Calibration Time: 12:36

Level: LOW

Analysis Type: VOA Quant Type: ISTD

Sample Type: AIR

Operator: DR1 Method File: \\192.168.10.12\chem\10airD.i\031414.b\T015 071-14.m

Misc Info: 19693

Test Mode:

Use Initial Calibration Level 4. If Continuing Cal. use Initial Cal. Level 4

		AREA	LIMIT		
COMPOUND	STANDARD	LOWER	UPPER	SAMPLE	%DIFF
	========		=======	=======	======
43 1,4-Difluorobenze	889865	533919	1245811	918329	3.20
61 Chlorobenzene - d	513489	308093	718885	470444	-8.38

		RT I	JIMIT		
COMPOUND	STANDARD	LOWER	UPPER	SAMPLE	%DIFF
=======================================	========	========	========	========	======
43 1,4-Difluorobenze	6.41	6.08	6.74	6.40	-0.10
61 Chlorobenzene - d		9.75	10.41	10.08	-0.03
					· ·

AREA UPPER LIMIT = + 40% of internal standard area. AREA LOWER LIMIT = - 40% of internal standard area. RT UPPER LIMIT = + 0.33 minutes of internal standard RT. RT LOWER LIMIT = - 0.33 minutes of internal standard RT.

10259332 Page 2553 of 2722 Data File: \\192.168.10.12\chem\10airD.i\031814.b\07714.d

Report Date: 18-Mar-2014 15:05

Pace Analytical Services, Inc.

INTERNAL STANDARD COMPOUNDS AREA AND RT SUMMARY

Instrument ID: 10airD.i Lab File ID: 07714.d

10airD.i Calibration Date: 18-MAR-2014 714.d Calibration Time: 08:42

Lab Smp Id: 10259332027 Analysis Type: VOA

Level: LOW Sample Type: AIR

Quant Type: ISTD Operator: DR1

Operator: DR1
Method File: \\192.168.10.12\chem\10airD.i\031814.b\T015_076-14.m

Misc Info: 19693

Test Mode:

Use Initial Calibration Level 4.
If Continuing Cal. use Initial Cal. Level 4

***	,	AREA	LIMIT		
COMPOUND	STANDARD	LOWER	UPPER	SAMPLE	%DIFF
=======================================	=======		========	=======	==== =
43 1,4-Difluorobenze	1149256	689554	1608958	856880	-25.44
61 Chlorobenzene - d	484353	290612	678094	452117	-6.66

		RT I	LIMIT		
COMPOUND	STANDARD	LOWER	UPPER	SAMPLE	%DIFF
=======================================	========	========	========	========	======
43 1,4-Difluorobenze	6.41	6.08	6.74	6.40	-0.10
61 Chlorobenzene - d	10.08	9.75	10.41	10.08	-0.06

AREA UPPER LIMIT = + 40% of internal standard area. AREA LOWER LIMIT = - 40% of internal standard area. RT UPPER LIMIT = + 0.33 minutes of internal standard RT. RT LOWER LIMIT = - 0.33 minutes of internal standard RT.

10259332 Page 2570 of 2722

Data File: \\192.168.10.12\chem\10airD.i\031414.b\07328.d

Report Date: 17-Mar-2014 12:15

Pace Analytical Services, Inc.

INTERNAL STANDARD COMPOUNDS AREA AND RT SUMMARY

Instrument ID: 10airD.i Lab File ID: 07328.d

Calibration Date: 14-MAR-2014

Calibration Time: 12:36

Lab Smp Id: 10259332028

Level: LOW

Analysis Type: VOA Quant Type: ISTD

Sample Type: AIR

Operator: DR1
Method File: \\192.168.10.12\chem\10airD.i\031414.b\T015_071-14.m

Misc Info: 19668

Test Mode:

Use Initial Calibration Level 4. If Continuing Cal. use Initial Cal. Level 4

COMPOUND	STANDARD	AREA LOWER	LIMIT UPPER	SAMPLE	%DIFF
43 1,4-Difluorobenze 61 Chlorobenzene - d			1245811 718885	965756 508475	

		RT I	LIMIT		
COMPOUND	STANDARD	LOWER	UPPER	SAMPLE	%DIFF
=======================================	=======	=======	=========	========	======
43 1,4-Difluorobenze	6.41	6.08	6.74	6.40	-0.10
61 Chlorobenzene - d	10.08	9.75	10.41	10.08	-0.03

AREA UPPER LIMIT = + 40% of internal standard area. AREA LOWER LIMIT = - 40% of internal standard area.

RT UPPER LIMIT = + 0.33 minutes of internal standard RT. RT LOWER LIMIT = - 0.33 minutes of internal standard RT.

Data File: \\192.168.10.12\chem\10air0.i\031714.b\07638.D

Report Date: 18-Mar-2014 13:28

Pace Analytical Services, Inc.

INTERNAL STANDARD COMPOUNDS AREA AND RT SUMMARY

Instrument ID: 10air0.i
Lab File ID: 07638.D

Calibration Date: 17-MAR-2014 Calibration Time: 08:50

Lab Smp Id: 10259332029 Analysis Type: VOA

Level: LOW

Quant Type: ISTD

Sample Type: AIR

Operator: JAM

Method File: \\192.168.10.12\chem\10air0.i\031714.b\T015 072-14.m

Misc Info: 19693

Test Mode:

Use Initial Calibration Level 5.

COMPOUND	STANDARD	AREA LOWER	LIMIT UPPER	SAMPLE	%DIFF
43 1,4-Difluorobenze 61 Chlorobenzene - d		321513 195215	750197 455501	371865 233468	

		RT I	IMIT	***	<u> </u>	
COMPOUND	STANDARD	LOWER	UPPER	SAMPLE	%DIFF	
=======================================	========	========	=======================================	========	== ===	
43 1,4-Difluorobenze	6.11	5.78	6.44	6.10	-0.20	
61 Chlorobenzene - d	9.20	8.87	9.53	9.19	-0.13	

AREA UPPER LIMIT = + 40% of internal standard area. AREA LOWER LIMIT = - 40% of internal standard area.

RT UPPER LIMIT = + 0.33 minutes of internal standard RT. RT LOWER LIMIT = - 0.33 minutes of internal standard RT.

10259332 Page 2600 of 2722 Data File: \\192.168.10.12\chem\10airD.i\031414.b\07326.d

Report Date: 18-Mar-2014 13:22

Pace Analytical Services, Inc.

INTERNAL STANDARD COMPOUNDS AREA AND RT SUMMARY

Instrument ID: 10airD.i
Lab File ID: 07326.d Lab Smp Id: 10259332029

Level: LOW

Calibration Date: 14-MAR-2014 Calibration Time: 12:36

Analysis Type: VOA Quant Type: ISTD Operator: DR1

Sample Type: AIR

Method File: \\192.168.10.12\chem\10airD.i\031414.b\T015 071-14.m

Misc Info: 19693

Test Mode:

Use Initial Calibration Level 4. If Continuing Cal. use Initial Cal. Level 4

		AREA	LIMIT		
COMPOUND	STANDARD	LOWER	UPPER	SAMPLE	%DIFF
=======================================	========	========	========	=======	======
43 1,4-Difluorobenze	889865	533919	1245811	973035	9.35
61 Chlorobenzene - d	513489	308093	718885	506450	-1.37
<u> </u>					

		RT I	IMIT	· · · · · · · · · · · · · · · · · · ·	
COMPOUND	STANDARD	LOWER	UPPER	SAMPLE	%DIFF
=======================================	========	=======	========	========	======
43 1,4-Difluorobenze	6.41	6.08	6.74	6.40	-0.10
61 Chlorobenzene - d	10.08	9.75	10.41	10.08	-0.06
	·				}

AREA UPPER LIMIT = + 40% of internal standard area. AREA LOWER LIMIT = - 40% of internal standard area. RT UPPER LIMIT = + 0.33 minutes of internal standard RT. RT LOWER LIMIT = - 0.33 minutes of internal standard RT.

10259332 Page 2606 of 2722 Data File: \\192.168.10.12\chem\10air0.i\031714.b\07639.D

Report Date: 18-Mar-2014 10:28

Pace Analytical Services, Inc.

INTERNAL STANDARD COMPOUNDS AREA AND RT SUMMARY

Instrument ID: 10air0.i Lab File ID: 07639.D

Lab Smp Id: 10259332030

Analysis Type: VOA

Quant Type: ISTD Operator: JAM

Calibration Date: 17-MAR-2014 Calibration Time: 08:50

Level: LOW

Sample Type: AIR

Method File: \\192.168.10.12\chem\10air0.i\031714.b\T015_072-14.m

Misc Info: 19678

Test Mode:

Use Initial Calibration Level 5.

`		AREA	LIMIT	, · · · · · · · · · · · · · · · · · · ·	
COMPOUND	STANDARD	LOWER	UPPER	SAMPLE	%DIFF
=======================================	========	========	========	========	======
43 1,4-Difluorobenze	535855	321513	75019.7	397779	-25.77
61 Chlorobenzene - d	325358	195215	455501	231971	-28.70

		RT I	LIMIT		
COMPOUND	STANDARD	LOWER	UPPER	SAMPLE	%DIFF
=======================================	=======	========	========	========	======
43 1,4-Difluorobenze	6.11	5.78	6.44	6.10	-0.20
61 Chlorobenzene - d	9.20	8.87	9.53	9.19	-0.20

AREA UPPER LIMIT = + 40% of internal standard area. AREA LOWER LIMIT = - 40% of internal standard area.

RT UPPER LIMIT = + 0.33 minutes of internal standard RT. RT LOWER LIMIT = - 0.33 minutes of internal standard RT.

Data File: \\192.168.10.12\chem\10air0.i\031714.b\07641.D

Report Date: 18-Mar-2014 10:34

Pace Analytical Services, Inc.

INTERNAL STANDARD COMPOUNDS AREA AND RT SUMMARY

Instrument ID: 10air0.i Lab File ID: 07641.D Lab Smp Id: 10259332032

Calibration Date: 17-MAR-2014 Calibration Time: 08:50

Analysis Type: VOA Quant Type: ISTD

Level: LOW Sample Type: AIR

Operator: JAM Method File: \\192.168.10.12\chem\10air0.i\031714.b\T015 072-14.m

Misc Info: 19678

Test Mode:

Use Initial Calibration Level 5.

COMPOUND	STANDARD	AREA LOWER	LIMIT UPPER	SAMPLE	%DIFF
43 1,4-Difluorobenze		321513	750197	411013	-23.30
61 Chlorobenzene - d		195215	455501	242063	-25.60

		RT 1	LIMIT		T
COMPOUND	STANDARD	LOWER	UPPER	SAMPLE	%DIFF
=======================================	========	========	=======	========	======
43 1,4-Difluorobenze	6.11	5.78	6.44	6.10	-0.20
61 Chlorobenzene - d		8.87	9.53	9.19	-0.20

AREA UPPER LIMIT = + 40% of internal standard area. AREA LOWER LIMIT = - 40% of internal standard area.

RT UPPER LIMIT = + 0.33 minutes of internal standard RT. RT LOWER LIMIT = - 0.33 minutes of internal standard RT.

Data File: \\192.168.10.12\chem\10air0.i\031814.b\07720.D

Report Date: 19-Mar-2014 09:52

Pace Analytical Services, Inc.

INTERNAL STANDARD COMPOUNDS AREA AND RT SUMMARY

Instrument ID: 10air0.i
Lab File ID: 07720.D Lab Smp Id: 10259332032

Calibration Date: 18-MAR-2014 Calibration Time: 12:26

Analysis Type: VOA

Level: LOW Sample Type: AIR

Quant Type: ISTD Operator: JAM Method File: \\192.168.10.12\chem\10air0.i\031814.b\T015 077-14.m

Misc Info: 19678

Test Mode:

Use Initial Calibration Level 5.

		AREA	LIMIT		
COMPOUND	STANDARD	LOWER	UPPER	SAMPLE	%DIFF
=======================================	========	========	========	========	======
43 1,4-Difluorobenze	418903	251342	586464	305745	-27.01
61 Chlorobenzene - d	261334	156800	365868	165915	-36.51

		RT I	LIMIT		
COMPOUND	STANDARD	LOWER	UPPER	SAMPLE	%DIFF
=======================================	=======	========	========	========	======
43 1,4-Difluorobenze	6.11	5.78	6.44	6.10	-0.20
61 Chlorobenzene - d		8.87	9.53	9.19	-0.14

AREA UPPER LIMIT = + 40% of internal standard area. AREA LOWER LIMIT = - 40% of internal standard area.

RT UPPER LIMIT = + 0.33 minutes of internal standard RT. RT LOWER LIMIT = - 0.33 minutes of internal standard RT.

Page 2658 of 2722 10259332

Data File: \\192.168.10.12\chem\10air0.i\031714.b\07642.D

Report Date: 18-Mar-2014 10:38

Pace Analytical Services, Inc.

INTERNAL STANDARD COMPOUNDS AREA AND RT SUMMARY

Instrument ID: 10air0.i
Lab File ID: 07642.D Lab Smp Id: 10259332033

Calibration Date: 17-MAR-2014 Calibration Time: 08:50

Analysis Type: VOA Quant Type: ISTD Operator: JAM

Level: LOW Sample Type: AIR

Method File: \\192.168.10.12\chem\10air0.i\031714.b\T015 072-14.m

Misc Info: 19678

Test Mode:

Use Initial Calibration Level 5.

COMPOUND	STANDARD	AREA LOWER	LIMIT UPPER	SAMPLE	%DIFF
43 1,4-Difluorobenze	535855		750197	399094	-25.52
61 Chlorobenzene - d	325358		455501	233680	-28.18

		RT I	LIMIT	-	
COMPOUND	STANDARD	LOWER	UPPER	SAMPLE	%DIFF
=======================================	========	========	========	========	======
43 1,4-Difluorobenze	6.11	5.78	6.44	6.10	-0.20
61 Chlorobenzene - d	9.20	8.87	9.53	9.19	-0.20

AREA UPPER LIMIT = + 40% of internal standard area. AREA LOWER LIMIT = - 40% of internal standard area.

RT UPPER LIMIT = + 0.33 minutes of internal standard RT. RT LOWER LIMIT = - 0.33 minutes of internal standard RT.

Data File: \\192.168.10.12\chem\10airD.i\031414.b\07335.d

Report Date: 17-Mar-2014 12:15

Pace Analytical Services, Inc.

INTERNAL STANDARD COMPOUNDS AREA AND RT SUMMARY

Instrument ID: 10airD.i Lab File ID: 07335.d

Calibration Date: 14-MAR-2014

Calibration Time: 12:36

Lab Smp Id: 10259332034 Analysis Type: VOA

Level: LOW

Quant Type: ISTD

Sample Type: AIR

Operator: DR1
Method File: \\192.168.10.12\chem\10airD.i\031414.b\T015_071-14.m

Misc Info: 19668

Test Mode:

Use Initial Calibration Level 4. If Continuing Cal. use Initial Cal. Level 4

COMPOUND	STANDARD	AREA LOWER	LIMIT UPPER	SAMPLE	%DIFF
43 1,4-Difluorobenze	889865		1245811	940645	5.71
61 Chlorobenzene - d	513489		718885	505852	-1.49

· · · · · · · · · · · · · · · · · · ·		RT 1	LIMIT		
COMPOUND	STANDARD	LOWER	UPPER	SAMPLE	%DIFF
=======================================	========	========	=======	=========	======
43 1,4-Difluorobenze	6.41	6.08	6.74	6.40	-0.10
61 Chlorobenzene - d		9.75	10.41	10.08	-0.03

AREA UPPER LIMIT = + 40% of internal standard area. AREA LOWER LIMIT = - 40% of internal standard area.

RT UPPER LIMIT = + 0.33 minutes of internal standard RT. RT LOWER LIMIT = - 0.33 minutes of internal standard RT.

10259332 Page 2688 of 2722

MIDDLE RIVER AND TILLEY CHEMICAL

AIR DATA

10259332

FRACTION	CHEMICAL	SV-DUP4-A-16	SLIND	SV-018-A-16	RPD	Q
۸٥	1,1-DICHLOROETHANE	3.2	UG/M3	3.1	3.17	0.10
٥٨	1,1-DICHLOROETHENE	192	UG/M3	230	18.01	38.00
٥	BENZENE	0.77	UG/M3	96.0	21.97	0.19
٥	CHLORODIFLUOROMETHANE	7.1	UG/M3	8.9	22.50	1.80
0	CIS-1,2-DICHLOROETHENE	13.7	UG/M3	16.3	17.33	2.60
٥٨	DICHLORODIFLUOROMETHANE	1.9	UG/M3	2.2	14.63	0:30
٥٥	METHYLENE CHLORIDE	17.8	UG/M3	19.8	10.64	2.00
٥	NAPHTHALENE	3.1	UG/M3	2.8	10.17	0:30
8	TOLUENE	2	UG/M3	2.6	26.09	09.0
0	TRICHLOROETHENE	150	UG/M3	174	14.81	24.00
۸٥	VINYL CHLORIDE	0.59	UG/M3	0.57	3.45	0.02

Current RPD Quality Control Limit: 50 %. Shaded cells indicate RPDs that exceed the applicable quality control limit.

MIDDLE RIVER AND TILLEY CHEMICAL

AIR DATA

10259332

1 1388				إ		
۵	00:00	0.70	0.30	3.30 №	6.30	1.30
RPD	0.00	8.92	9.84	200.00	59.72	8.00
IA-015-A-16	1.2	7.5	5.9	3.3	13.7	15.6
UNITS	UG/M3	UG/M3	UG/M3	UG/M3	UG/M3	UG/M3
IA-DUP3-A-16	1.2	8.2	3.2	QN	7.4	16.9
FRACTION CHEMICAL	BENZENE	CHLORODIFLUOROMETHANE	DICHLORODIFLUOROMETHANE	M+P-XYLENES 73K	METHYLENE CHLORIDE	TOLUENE
FRACTION	ò	00	0	0	00	00

Current RPD Quality Control Limit: 50 %. Shaded cells indicate RPDs that exceed the applicable quality control limit.

Page 1 of 1

MIDDLE RIVER AND TILLEY CHEMICAL AIR DATA

FRACTION	CHEMICAL	SV-DUP3-A-16	UNITS	SV-015-A-16	RPD	9	
٨٥	1,1,1-TRICHLOROETHANE	112	UG/M3	76.3		35.70	
٥٨	1,1-DICHLOROETHANE	21.6	UG/M3	14.6	38.67	7.00	
٥٨	1,1-DICHLOROETHENE	473	UG/M3	369		104.00	,
٥	BENZENE OF	8	UG/M3	0.64		0.642 A	QK.L.
٥٨	CHLORODIFLUOROMETHANE	(2.6)	UG/M3	(5,8)		3.20	
8	CHLOROFORM	93.6	UG/M3	64.7	36.51	28.90	
٥٥	CIS-1,2-DICHLOROETHENE	1260	UG/M3	1110	12.66	150.00	(
٥	DICHLORODIEL LOROMETHANE OF	ď	UG/M3	2.1	200.00	2.10	へ必然の、しょ
70	METHYLENE CHLORIDE	(18.6)	UG/M3	(31.6)	51.79		
٥٨	TOLUENE	4.6	UG/M3):-	42.74	2.50	
٥٥	TRANS-1,2-DICHLOROETHENE	37.7	UG/M3	25	40.51	12.70	
0	TRICHLOROETHENE	619	UG/M3	564	9.30	55.00	
۸٥	VINYL CHLORIDE>	7.5	UG/M3	(QN)	200.00	1.50	
		\	-)		-	

Current RPD Quality Control Limit: 50 %. Shaded cells indicate RPDs that exceed the applicable quality control limit.

Sample Calculation Example and Curve Parameters

Beginning in early January 2014, a change was made to the TO-15 methods that altered the way concentrations were calculated. Prior to retention time factor (RRF) needs to be moved from the bottom of Equation 17 from the Pace TO-15 SOP below to the top of the division sign. amount. The net result of this change is that the calculation for analyte concentration needs to be revised. Specifically, the average relative January, concentrations were calculated by response rather than by amount. The EPA TO-15 method requires that curves are evaluated by

14.17. Calculate the concentration of the sample component using Equation 17:

Equation 17

$$C_i = \frac{(A_i)(C_i)(D_j)}{(A_i)(P_i)}$$

undrana

 C_t =Concentration of compound x in ppbv;

 $_{z}$ =EICP area of the quantitation ion for compound x_{z}

C = Concentration of the internal standard associated with compound x in ppbv;

D=Ditution factor from Equation 12 (if no dilution was performed, D_i equals 1.)

 A_i =EICP area of the quantitation ion for the internal standard associated with compound x_i

 $R_i = Average$ RRF for compound x from the most recent calibration curve.

(Rsp) divided by the average RRF (m1). In the after evaluation, you can see that the equation has moved the average RRF (m1) to be multiplied Below are images of the before and after change applied in target. In the before, you can see that the amount (Amt) is equal to the response by the response (Rsp). It is important to note that this is before applying the internal standard calculation. Therefore, Rsp is equal to A_x from equation 17, and m1 is equal to R_f. Once you apply the internal standard to the revised equation 17, it should be as follows:

$$C_x = \frac{(A_x)(C_t)(D_f)(R_x)}{\frac{A}{2}}$$

Revised equation 17

Before

X Method Configuration X Integrator Type HP RTE Fraction NOA Save Method	X Signal Calibration Parameters Name: Toluene
☐ Use Method Calibration Mode By Response ☐ Help	Mass: 91.00 Target Ratio: 100.00 Cancell Helb
Max. Cal Levels B Max. Signals 3	Ratio Limits: 90.00 1120.00
Data Type. MS DATA Show Detectors High Res MS	MS Tune Ratio Divisor Signal #: ji
Select Example File:	Configure Auto Calibration Update Calibration Calibration Curve Calibration History
Falcon Integrator for HP MS DATA	Curve Type: Averaged —
◆ Use Original Integration	Curve Origin: None 🖃
✓ Use New Integrator for All Data ✓ Ose New Integrator for New Data	Calibration Curve Info.: Junt - Rsp/m1
☐ Process Mode	m1: [j.13463785e+000
Processed Data ONLY	Initial Calibration %RSD: j19.3256045
☐ Enable Continuing Calibration	Continuing Calibration RF: 1.161e+000 % Difference: 2.338
Enable Saving Method With Data	Continuing Calibration Amt: 1.018e+001 % Drift: 1.889
Tienable Sublists	Use initial Calib if no Continuing Calib

After

X X Signal Calibration Parameters X X Signal Calibration Parameters X X X X X X X X X	or Sign	Configure Auto Calibration Update Calibration Calibration History	Curve Type: Averaged —	Curve Origin: None —	Calibration Curve Info:: Amt = m1*Rsp	m1; <u>2.21392469e+000</u>	Initial Calibration %RSD: [15.3296785	Continuing Calibration RF: 2.002e+000 % Difference; [-9.556	」 Use Initial Cailb If no Continuing Cailb
integrator Type HPRTE — Fraction VOA Save Method Cancel Use Method Calibration Mod By Amount — Help Help	IS DATA	Select Example File:	Falcoir Integrator for HP MS DATA— ◆ Use Original Integrator	✓ Use New Integrator for All Data ✓ Use New Integrator for All Data	Procees Mode	- ⊋	F Enable Continuing Calibration	Enable Saving Method With Data Frable Data Versioning	F Enable Sublists

	Analytes	Instrument 10AIR0	
SAMPLE		SV-136-A-16	
COMPOUND RESPONSE	tetrachloroethene	345777	
COMPOUND RRF	tetrachloroethene	1.791	
INTERNAL STD. AREA FOR 1,4-DICHLOROBENZENE INTERNAL STD. AREA FOR CHLOROBENZENE-D5	tetrachloroethene	444962	
INTERNAL STANDARD CONCENTRATION (PPBV) INTERNAL STANDARD CONCENTRATION (PPBV)	tetrachloroethene	10	
SAMPLE DILUTION FACTOR SAMPLE DILUTION FACTOR	tetrachloroethene	1196.8	
COMPOUND CALCULATED CONCENTRATION PPBV	tetrachloroethene	16656.75296	
COMPOUND CALCULATED CONCENTRATION µg/m³ COMPOUND CALCULATED CONCENTRATION µg/m³	tetrachloroethene	89517.27360	

ANALYTICAL RESULTS

Project:

MRC SV/IAQ Study Feb 2014

Pace Project No.: 10259332

Sample: SV-136-A-16	Lab ID: 10259332013	Collected: 02/25/	14 09:10	Received: 03/	04/14 10:00	Matrix: Air	
Parameters	Results Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
TO15 MSV AIR	Analytical Method: TO-15						
Benzene	6.7 ug/m3	0.61	1.87		03/14/14 21:3	7 71-43-2	
Carbon tetrachloride	ND ug/m3	1.2	1.87		03/14/14 21:3	7 56-23-5	
Chlorodifluoromethane	ND ug/m3	0.37	1.87		03/14/14 21:3	7 75-45-6	
Chloroform	217 ug/m3	1.9	1.87		03/14/14 21:3	7 67-66-3	
Dichlorodifluoromethane	ND ug/m3	1.9	1.87		03/14/14 21:3	7 75-71-8	
1,1-Dichloroethane	1.7 ug/m3	1.5	1.87		03/14/14 21:3	7 75-34-3	
1,2-Dichloroethane	ND ug/m3	0.77	1.87		03/14/14 21:3	7 107-06-2	
1,1-Dichloroethene	ND ug/m3	1.5	1.87		03/14/14 21:3	7 75-35-4	
cis-1,2-Dichloroethene	55.2 ug/m3	1.5	1.87		03/14/14 21:3	7 156-59-2	
trans-1,2-Dichloroethene	25.3 ug/m3	1.5	1.87		03/14/14 21:3	7 156-60-5	
Ethylbenzene	1.7 ug/m3	1.6	1.87		03/14/14 21:3	7 100-41-4	
Methylene Chloride	13.5 ug/m3	1.3	1.87		03/14/14 21:3	7 75-09-2	
Methyl-tert-butyl ether	ND ug/m3	1.4	1.87		03/14/14 21:3	7 1634-04-4	
Naphthalene	9.3 ug/m3	2.0	1.87		03/14/14 21:3	7 91-20-3	
Tetrachloroethene	15.1 ug/m3	1.3	1.87		03/14/14 21:33	7 127-18-4	
Toluene	11.7 ug/m3	1.4	1.87		03/14/14 21:33	7 108-88-3	
1,2,4-Trichlorobenzene	ND ug/m3	2.8	1.87		03/14/14 21:37	7 120-82-1	
1,1,1-Trichloroethane	3.4 ug/m3	2.1	1.87		03/14/14 21:37	7 71-55-6	
1,1,2-Trichloroethane	_ ND ug/m3	1.0	1.87		03/14/14 21:37	7 79-00-5	
Trichloroethene	91000 ug/m3	658	1196.8		03/17/14 16:34	1 79-01-6	A3
1 ,2,3 Trimethylben zene	6.1 ug/m 3	0.37	1.87		03/14/14 21:37	7 526-73-8	
1,2,4-Trimethylbenzene	6.8 ug/m3	1.9	1.87		03/14/14 21:37	7 95-63-6	
1,3,5-Trimethylbenzene	5.4 ug/m3	1.9	1.87		03/14/14 21:37	7 108-67-8	
Vinyl chloride	ND ug/m3	0.49	1.87		03/14/14 21:37	7 75-01-4	
m&ρ-Xylene	4.2 ug/m3	3.3	1.87		03/14/14 21:37	7 179601-23-1	
o-Xylene	3.4 ug/m3	1.6	1.87		03/14/14 21:37	7 95-47-6	

REPORT OF LABORATORY ANALYSIS

Data File: \\192.168.10.12\chem\10air0.i\031714.b\07617.D Report Date: 17-Mar-2014 15:55

Pace Analytical Services, Inc.

TO15 Analysis (UNIX)

TO15 Analysis (UNIX)
Data file: \\192.168.10.12\chem\10air0.i\031714.b\07617.D
Lab Smp Id: 10259332013
Inj Date: 17-MAR-2014 16:34
Operator: JAM Inst ID: 10air0.i

Smp Info

Misc Info: 19661

Comment: Volatile Organic COMPOUNDS in Air

Method: \\192.168.10.12\chem\10air0.i\031714.b\T015 072-14.m

Meth Date: 17-Mar-2014 08:15 jmasterman Quant Type: ISTD

Cal Date: 13-MAR-2014 14:52 Cal File: 07210.D

Als bottle: 17

Dil Factor: 1196.80000

Integrator: HP RTE Compound Sublist: TCEo.s

Compound Sublist: TCEo.sub

Targét Version: 4.14

Concentration Formula: Amt * DF * Uf * CpndVariable

Name	Value	Description
DF Uf Cpnd Variable		Dilution Factor ng unit correction factor Local Compound Variable

						CONCENTRA	TIONS
	QUANT SIG					ON-COLUMN	FINAL
Compounds	MASS	RI	EXP RT	REL RT	RESPONSE	(ppbv)	(vdqq)
	====	====			========	=======	=======
\$ 28 Hexane-d14(S)	66	4.943	4.949	(0.811)	201 <u>554</u>	9.49.84	9.49
(* 43 1.4-Difluorobenzene	114	6.097	6.121	(1.000)	444962	X10.0000	
47 Trichloroethene	130	6.481	6.506	(1.063)	345777	13.9186	1660C
\$ 54 Toluene-d8 (S)	98	7.591	7.616	(1.245)	415000	9.92528	9.92
* 61 Chlcrobenzene - d5	117	9.186	9.210	(1.000)	263884	10.0000	
\$ 77 1,4-dichlorobenzene-d4 (S)	150	12.393	12.473	(1.349)	103336	9.32263	9,32(H)

QC Flag Legend

H - Operator selected an alternate compound hit.

Data File: \\192.168.10.12\chem\10air0.i\031714.b\07602.D

Report Date: 17-Mar-2014 08:23

Pace Analytical Services, Inc.

CONTINUING CALIBRATION COMPOUNDS

	'	1	CCAL	MIN	1	MAX	
COMPOUND	RRF / AMOUNT	RF1C	RRF10	RRF		%D / %DRIFT	
44 2,2,4-Trimethvlpentane	 0.50854			0.010	'	30.00000	
45 Heptane	1.53653	1.29016	1,29016				
46 1,2-Dichloropropane	2.12976	1.85274	1.85274			•	
47 Trichloroethene	1.79112	1.51968	1.51868				
48 1,4-Dioxane	3,753201	3.14447	3.14447				
49 Bromodichloromethane	0.80176	0.71482	0.71482				
50 Methylcyclohexane	3.25593	2.656941	2.6569410		•		
51 Methyl Isobutyl Ketone	1.20846	0.88871	0.88871				
52 cis-1,3-Dichloropropene	1.40797	1.05893	1.05893		•		
53 trans-1,3-Dichloropropene	10.000001	12.088891	0.97070]			•	-
\$ 54 Toluene-d8 (S)	1.064191	1.02135	1.021351			•	•
55 1,1,2-Trichloroethane	•						
	1.66798	1.52231	1.52231				
56 Toluene	0.62524	0.55422	0.55422				
57 Methyl Butyl Ketone	10.00000	12.22065	0.59554				
58 Dibromochloromethane	0.50990	0.48878	0.48878				
59 1,2-Dibromoethane	0.65813	0.57124	0.57124 0				
60 Tetrachloroethene	0.68082	0.65895	0.65895				
62 Chlorobenzene	0.48010	0.45954	0.45954				
63 Ethyl Benzene	0.28963	C.25803	0.25803				-
64 m&p-Xylene	0.34731	0.30942	0.30942				
65 Styrene	0.61765	0.50295	0.50295				
66 Bromoform	0.50990	0.48404	0.48404			30.00000	Average:
67 o-Xylene	0.33170	0.30990	0.30990	0.300	-6.57269	30.0000	Average
68 1,1,2,2-Tetrachloroethane	0.48720	0.47647	0.47647	0.010	-2.20182	30.00000	Average
69 Isopropylbenzene	0.26306	0.24782	0.24782	0.010	-5.79539	30.00000	Average
70 N-Propylbenzene	0.244861	C.20698	0.2069810	0.010	-15.47017	30.00000	Average
71 4-Ethyltoluene	0.29824	C.26C46	0.26046[0	0.010	-12.66917	30.00000	Average
72 1,3,5-Trimethylbenzene	0.28046	C.27984	0.27984	0.010	-0.22077	30.00000	Average
73 Tert-Butyl Benzene	'0.33253	0.31109	0.31109	0.010	-6.44641	30.00000	Average:
74 1,2,4-Trimethylbenzene	0.31724	0.297521	0.29752	0.010	-6.21566	30.00000	Average
75 Sec- Butylbenzene	0.26106	0.23016	0.23016 0	0.010	-11.83447	30.00000	Average
76 1,3-Dichloroberzene	0.50396	0.48045	0.48045	0.010	-4.66424	30.00000	Averaged
\$ 77 1,4-dichlorobenzene-d4 (S)	2.38067	1.49798	1.49798	200	-37.07740	30.00000	Averages
78 Benzyl Chloride	0.43298	C.34967	0.34967[0	0.010	-19.24035	30.00000	Averages
79 1,4-Dichlorobenzene	0.47823	0.47582	0.47582[0	0.010	-0.50369	30.00000	Averages
30 p-Isopropyltoluene	0.33828	0.27654	0.27654 0	0.010	-18.25285		_
Bl 1,2,3-Trimethylbenzene	0.32506	0.30748	0.30748 0				-
B2 1,2-Dichlorobenzene	0.55134	0.489301	0.4893010		•		-
83 N-Butylbenzene	10,000001	11.442231	0.28501 0				_
84 1,2,4-Trichlorobenzene	10.000001	11.32155	0.76344 0				
35 Naphthalene	10.00000	11.27618	0.4160010				
36 Hexachlorobutadiene	10.000301	11.12658	0.7162210		11.26576		

10259332 Page 1730 of 2722

INTERNAL CORRESPONDENCE

TO:

M. MARTIN

DATE:

MAY 23, 2014

FROM:

EDWARD SEDLMYER

COPIES:

DV FILE

SUBJECT:

ORGANIC DATA VALIDATION - VOC

MIDDLE RIVER CENTER

SDG 10263934

SAMPLES:

2/Air/VOC

IA-081-A-16R

IA-113-C-16R

Overview

The sample set for Middle River Center, SDG 10263934 consists of two (2) indoor air environmental samples. Samples were analyzed for volatile organic compounds (VOC).

The samples were collected by Tetra Tech on April 17, 2014 and analyzed by Pace Analytical. All analyses were conducted in accordance with EPA Method TO-15 analytical and reporting protocols.

The data contained in this SDG were validated with regard to the following parameters: data completeness, holding times, GC/MS tuning, initial/continuing calibrations, laboratory method blank results, surrogate spike recoveries, blank spike/blank spike duplicate results, internal standard recoveries, chromatographic resolution, compound identification, compound quantitation, and detection limits. Areas of concern are listed below.

Major

None.

<u>Minor</u>

• Positive results reported below the reporting limit but above the method detection limit were qualified as estimated, (J).

Notes

The laboratory stated in the case narrative that all surrogate recoveries were acceptable. The surrogate recoveries were not presented on a Form II but the recoveries were verified using the sample quantitation reports.

The laboratory reported the nondetected results to the reporting limit.

Samples IA-081-A-16R and IA-113-C-16R were analyzed at dilutions of 1.34 to 1.61, respectively. This accounts for the elevated detection limits for the nondetected compounds.

Executive Summary

Laboratory Performance: None.

Other Factors Affecting Data Quality: Positive results reported below the reporting limit but above the method detection limit were qualified as estimated.

The data for these analyses were reviewed with reference to EPA Compendium Method TO-15 (Jan. 1999) and USEPA National Functional Guidelines for Organic Data Validation (June 2008). The text of this report has been formulated to address only those problem areas affecting data quality.

Tetra Tech

Edward SedImyer

Chemist/Data Validator

Tetra Tech

Joseph A. Samchuck Data Validation Manager

Attachments:

Appendix A - Qualified Analytical Results

Appendix B – Results as Reported by the Laboratory

Appendix C - Support Documentation

Appendix A

Qualified Analytical Results

Qualifier Codes:

A = Lab Blank Contamination

B = Field Blank Contamination

C = Calibration Noncompliance (i.e., % RSDs, %Ds, ICVs, CCVs, RRFs, etc.)

C01 = GC/MS Tuning Noncompliance

D = MS/MSD Recovery Noncompliance

E = LCS/LCSD Recovery Noncompliance

F = Lab Duplicate Imprecision

G = Field Duplicate Imprecision

H = Holding Time Exceedance

I = ICP Serial Dilution Noncompliance

J = ICP PDS Recovery Noncompliance; MSA's r < 0.995

K = ICP Interference - includes ICS % R Noncompliance

L = Instrument Calibration Range Exceedance

M = Sample Preservation Noncompliance

N = Internal Standard Noncompliance

N01 = Internal Standard Recovery Noncompliance Dioxins

N02 = Recovery Standard Noncompliance Dioxins

N03 = Clean-up Standard Noncompliance Dioxins

O = Poor Instrument Performance (i.e., base-time drifting)

P = Uncertainty near detection limit (< 2 x IDL for inorganics and <CRQL for organics)

Q = Other problems (can encompass a number of issues; i.e.chromatography,interferences, etc.)

R = Surrogates Recovery Noncompliance

S = Pesticide/PCB Resolution

T = % Breakdown Noncompliance for DDT and Endrin

U = RPD between columns/detectors >40% for positive results determined via GC/HPLC

V = Non-linear calibrations; correlation coefficient r < 0.995

W = EMPC result

X = Signal to noise response drop

Y = Percent solids <30%

Z = Uncertainty at 2 standard deviations is greater than sample activity

Z1 = Tentatively Identified Compound considered presumptively present

Z2 = Tentatively Identified Compound column bleed

Z3 = Tentatively Identified Compound aldol condensate

PROJ_NO: 06279	NSAMPLE	IA-081-A-16R			IA-113-C-16R		
SDG: 10263934	LAB_ID	10263934001			10263934002		
FRACTION: 0V	SAMP_DATE	4/17/2014			4/17/2014		
MEDIA: AIR	QC_TYPE	ΣZ			Z		
	UNITS	UG/M3			UG/M3		
	PCT_SOLIDS						
	DUP_OF						
PARAMETER		RESULT	ΛQL	QLCD	RESULT	VQL	QLCD
1,1,1-TRICHLOROETHANE	 	0.81	_	۵	1.8	ח	
1,1,2-TRICHLOROETHANE	Ш	0.74 U)		U 68.0	ח	
1,1-DICHLOROETHANE		1.1 U	_		1.3 U	n	
1,1-DICHLOROETHENE		1.1 U	_		1.3	1.3 U	
1,2,3-TRIMETHYLBENZENE	ų.	1.3 U	_		1.6 U	n	
1,2,4-TRICHLOROBENZENE	빌	5.1 U)		6.1 U	n	
1,2,4-TRIMETHYLBENZENE	¥	1.3 U	ר		1.6 U	ם	
1,2-DICHLOROETHANE		0.55 U	· N		0.66 U	n	
1,3,5-TRIMETHYLBENZENE	무	1.2 J	ſ	Ь	4	4 U	
BENZENE		0.44			0.52 U	n	
CARBON TETRACHLORIDE	JE	0.86 U	n		1	n	
CHLORODIFLUOROMETHANE	HANE	28			4		
CHLOROFORM	; ; -	1.3	Ω		1.6	n	
CIS-1,2-DICHLOROETHENE	当	1.1	<u>כ</u>		1.3 U	n	
DICHLORODIFLUOROMETHANE	THANE	2.1			2.5		
ETHYLBENZENE		8			1.2	J	Ь
M+P-XYLENES		38.2			2	2 J	Ь
METHYL TERT-BUTYL ETHER	HER	U 86.0	n.		1.2	1.2 U	
METHYLENE CHLORIDE		1.9	7	Д	3.1	٦	Ь
NAPHTHALENE		3.6 U	n		2.1	ſ	Ь
O-XYLENE		11.6			6.0	ſ	Ь
TETRACHLOROETHENE		1.6			1.6		
TOLUENE		20.4			5.1		
TRANS-1, 2-DICHLOROETHENE	HENE	1.1	n		1.3	1.3 U	
TRICHLOROETHENE		4.1			O 68:0	⊃	
VINYL CHLORIDE		0.35 U	D		0.42 U	n	

Appendix B

Results as Reported by the Laboratory

ANALYTICAL RESULTS

Project:

112IC06279 MRC SV/IAQ

Pace Project No.:

10263934

Sample: IA-081-A-16R	Lab ID: 10263934001	Collected: 04/17/1	4 16:35	Received: 04/18/14 09:05	Matrix: Air	
Parameters	Results Units	Report Limit	DF	Prepared Analyzed	CAS No.	Qual
TO15 MSV AIR	Analytical Method: TO-15	i				
Benzene	0.44 ug/m3	0.44	1.34	04/30/14 15:2	25 71-43-2	
Carbon tetrachloride	ND ug/m3	0.86	1.34	04/30/14 15:2	25 56-23-5	
Chlorodifluoromethane	28.0 ug/m3	0.96	1.34	04/30/14 15:	25 75-45-6	
Chloroform	ND ug/m3	1.3	1.34	04/30/14 15:	25 67-66-3	
Dichlorodifluoromethane	2.1 ug/m3	. 1.4	1.34	04/30/14 15:	25 75-71-8	
1,1-Dichloroethane	ND ug/m3	1.1	1.34	04/30/14 15:	25 75-34-3	
1,2-Dichloroethane	ND ug/m3	0.55	1.34	04/30/14 15:	25 107-06-2	
1,1-Dichloroethene	ND ug/m3	1.1	1.34	04/30/14 15:	25 75-35-4	
cis-1,2-Dichloroethene	ND ug/m3	1.1	1.34	04/30/14 15:	25 156-59-2	
trans-1,2-Dichloroethene	ND ug/m3	1.1	1.34	04/30/14 15:	25 156-60-5	
Ethylbenzene	8.0 ug/m3	1.2	1.34	04/30/14 15:	25 100-41-4	
Methylene Chloride	1.9J ug/m3	4.7	1.34	04/30/14 15:	25 75-09-2	
Methyl-tert-butyl ether	ND ug/m3	0.98	1.34	04/30/14 15::	25 1634-04-4	
Naphthalene	ND ug/m3	3.6	1.34	04/30/14 15::	25 91-20-3	
Tetrachloroethene	1.6 ug/m3	0.92	1.34	04/30/14 15:	25 127-18-4	
Toluene	20.4 ug/m3	1.0	1.34	04/30/14 15::	25 108-88-3	
1,2,4-Trichlorobenzene	ND ug/m3	5.1	1.34	04/30/14 15::	25 120-82-1	
1,1,1-Trichloroethane	0.81J ug/m3	1.5	1.34	04/30/14 15::	25 71-55-6	
1,1,2-Trichloroethane	ND ug/m3	0.74	1.34	04/30/14 15:	25 79-00-5	
Trichloroethene	4.1 ug/m3	0.74	1.34	04/30/14 15::	25 79-01-6	
1,2,3-Trimethylbenzene	ND ug/m3	1.3	1.34	04/30/14 15::	25 526-73-8	
1,2,4-Trimethylbenzene	ND ug/m3	1.3	1.34	04/30/14 15::	25 95-63-6	
1,3,5-Trimethylbenzene	1.2J ug/m3	3.3	1.34	04/30/14 15::	25 108-67-8	
Vinyl chloride	ND ug/m3	0.35	1.34	04/30/14 15::	25 75-01-4	
m&p-Xylene	38.2 ug/m3	2.4	1.34	04/30/14 15::	25 179601-23-1	
o-Xylene	11.6 ug/m3	1.2	1.34	04/30/14 15::	25 95-47-6	

REPORT OF LABORATORY ANALYSIS

Page 6 of 586

ANALYTICAL RESULTS

Project:

112IC06279 MRC SV/IAQ

Pace Project No.:

10263934

Sample: IA-113-C-16R	Lab ID: 10263934002	Collected: 04/17/1	4 16:43	Received: 04/18/14 09:05 M	Matrix: Air
Parameters	Results Units	Report Limit	DF	Prepared Analyzed	CAS No. Qu
TO15 MSV AIR	Analytical Method: TO-15				
Benzene	ND ug/m3	0.52	1.61	04/30/14 15:53	71-43-2
Carbon tetrachloride	ND ug/m3	1.0	1.61	04/30/14 15:53	56-23-5
Chlorodifluoromethane	4.0 ug/m3	1.2	1.61	04/30/14 15:53	75-45-6
Chloroform	ND ug/m3	1.6	1.61	04/30/14 15:53	67-66-3
Dichlorodifluoromethane	2.5 ug/m3	1.6	1.61	04/30/14 15:53	75-71-8
1,1-Dichloroethane	ND ug/m3	1.3	1.61	04/30/14 15:53	75-34-3
1,2-Dichloroethane	ND ug/m3	0.66	1.61	04/30/14 15:53	107-06-2
1,1-Dichloroethene	ND ug/m3	1.3	1.61	04/30/14 15:53	75-35-4
cis-1,2-Dichloroethene	ND ug/m3	1.3	1.61	04/30/14 15:53	156-59-2
trans-1,2-Dichloroethene	ND ug/m3	1.3	1.61	04/30/14 15:53	156-60-5
Ethylbenzene	1.2J ug/m3	1.4	1.61	04/30/14 15:53	100-41-4
Methylene Chloride	3.1J ug/m3	5.7	1.61	04/30/14 15:53	75-09-2
Methyl-tert-butyl ether	ND ug/m3	1.2	1.61	04/30/14 15:53	1634-04-4
Naphthalene	2.1J ug/m3	4.3	1.61	04/30/14 15:53	91-20-3
Tetrachloroethene	1.6 ug/m3	1.1	1.61	04/30/14 15:53	127-18-4
Toluene	5.1 ug/m3	1.2	1.61	04/30/14 15:53	108-88-3
1,2,4-Trichlorobenzene	ND ug/m3	6.1	1.61	04/30/14 15:53	120-82-1
1,1,1-Trichloroethane	ND ug/m3	1.8	1.61	04/30/14 15:53	71-55-6
1,1,2-Trichloroethane	ND ug/m3	0.89	1.61	04/30/14 15:53	79-00-5
Trichloroethene	ND ug/m3	0.89	1.61	04/30/14 15:53	79-01-6
1,2,3-Trimethylbenzene	ND ug/m3	1.6	1.61	04/30/14 15:53	526-73-8
1,2,4-Trimethylbenzene	ND ug/m3	1.6	1.61	04/30/14 15:53	95-63-6
1,3,5-Trimethylbenzene	ND ug/m3	4.0	1.61	04/30/14 15:53	108-67-8
Vinyl chloride	ND ug/m3	0.42	1.61	04/30/14 15:53	75-01-4
m&p-Xylene	2.0J ug/m3	2.8	1.61	04/30/14 15:53	179601-23-1
o-Xylene	0.90J ug/m3	1.4	1.61	04/30/14 15:53	95-47-6

Appendix C

Support Documentation

FC046Rev.01, 03Feb2010

AIR; CHAIN-OF-CUSTODY / Analytical Request Document

The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.

Samples Intact Y/N N/A SAMPLE CONDITIONS Clean Air Act Pace Lab ID Other Sealed Cooler N/人 N/A Custody 30 ug/m²___ PPBV____ Other Voluntary Clean Up Dry Clean RCRA **60** Page: N/A N/A N/A Other Кесеіved оп Emissions Temp in °C 13045 \$1.01 Pi.01 XX Program ⊒ ≅ TIME 200 Superfund Sampling by State Report Level DATE 41814 UST Method: ACCEPTED BY / AFFILIATION **Control Number** 00 SALES OF 00 W APANAVES E 2357 Number Summa Can SAMPLER NAME AND SIGNATURE 9-82-(Final Field - psig) Canister Pressure TIME R PRINT Name of SAMPLEB (Initial Field - psig) Canister Pressure Pace Project Manager/Sales Rep. 11/14 08°15 4/11/14 16.45 DATE TH 085 4114 1635 TIME Pace Quote Reference COLLECTED 1700 Elm Street SE, Suite 200, Minneapolis, MN 55414 Air Technical Phone: 612.607.6386 company Name: RELINQUISHED PY / AFFILIATION Pace Profile #: Section C Address: 8 PID Reading (Client only Mec 51 MEDIA CODE Report Tony Project Number 37 Purchase Order No.: 11.CODE 1 Tedlar Bag 11.
1 Liter Summa Can 11.
6 Liter Summa Can 61.
Low Volume Puff Lithigh Volume Puff High Volume Puff HOther JOSSI CEMBY BUD, ATE TOO Section B ORIGINAL 081-A-16 ony apara mage tetrated GERMANTOWN, MD. 3 Hone (1988) Soal Fax 301528 300 Requested Due Date/AI: 1 'Section D Required Client Information Sample IDs MUST BE UNIQUE AIR SAMPLE ID Sompany: TETRA TECH Required Client Information: 10 ITEM #

•
ð
•
0
an)
97
O)
Ō
9
힞
9
9
Œ
Œ
Œ
Œ
Œ
Œ
Œ
Pag
Œ
Ç.
Ç.
Œ

	SMP_ANL	13	13
4	EXTR_ANL	0	0
	SMP_EXTR	13	13
	ANAL_DATE	04/30/2014	04/30/2014
	EXTR_DATE	04/30/2014	04/30/2014
	SAMP_DATE	04/17/2014	04/17/2014
	QC_TYPE	∑ Z	ΣZ
	LAB_ID	10263934002	10263934001
4	UNITS NSAMPLE	UG/M3 IA-113-C-16R	JG/M3 IA-081-A-16R
SDG 10263934	UNITS	UG/M3	UG/M3
SDG	SORT	^ 0	٨٥

May 01, 2014

Tony Apanavage Tetra Tech 20251 Century Blvd Suite 200 Germantown, MD 20874

RE: Project: 112IC06279 MRC SV/IAQ

Pace Project No.: 10263934

Dear Tony Apanavage:

Enclosed are the analytical results for sample(s) received by the laboratory on April 18, 2014. The results relate only to the samples included in this report. Results reported herein conform to the most current TNI standards and the laboratory's Quality Assurance Manual, where applicable, unless otherwise noted in the body of the report.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Scott Unze for Nathan Boberg

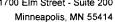
Sett C. Ung

Project Manager

Enclosures

cc: Samantha Brenner
Dawn Monico, Tetra Tech GEO

SAMPLE SUMMARY


Project:

112IC06279 MRC SV/IAQ

Pace Project No.:

10263934

Lab ID	Sample ID	Matrix	Date Collected	Date Received
10263934001	IA-081-A-16R	Air	04/17/14 16:35	04/18/14 09:05
10263934002	IA-113-C-16R	Air	04/17/14 16:43	04/18/14 09:05

(612)607-1700

SAMPLE ANALYTE COUNT

Project:

112IC06279 MRC SV/IAQ

Pace Project No.:

10263934

Lab ID	Sample ID	Method	Analysts	Analytes Reported
10263934001	IA-081-A-16R	TO-15	JAM	26
10263934002	IA-113-C-16R	TO-15	JAM	26

PROJECT NARRATIVE

Project:

112IC06279 MRC SV/IAQ

Pace Project No.:

10263934

Method:

TO-15

Description: TO15 MSV AIR

Client:

Tetra Tech GEO - Maryland

Date:

May 01, 2014

General Information:

2 samples were analyzed for TO-15. All samples were received in acceptable condition with any exceptions noted below.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Internal Standards:

All internal standards were within QC limits with any exceptions noted below.

Surrogates:

All surrogates were within QC limits with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Additional Comments:

This data package has been reviewed for quality and completeness and is approved for release.

QUALIFIERS

Project:

112IC06279 MRC SV/IAQ

Pace Project No.:

10263934

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to changes in sample preparation, dilution of the sample aliquot, or moisture content.

ND - Not Detected at or above adjusted reporting limit.

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PRL - Pace Reporting Limit.

RL - Reporting Limit.

S - Surrogate

1,2-Diphenylhydrazine (8270 listed analyte) decomposes to Azobenzene.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project:

112IC06279 MRC SV/IAQ

Pace Project No.:

10263934

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
10263934001	IA-081-A-16R	TO-15	AIR/20098		
10263934002	IA-113-C-16R	TO-15	AIR/20098		

Document Name: Air Sample Condition Upon Receipt

Document No.: F-MN-A-106-rev.09 Document Revised: 26Dec2013 Page 1 of 1

Page 1 of 1
Issuing Authority:
Pace Minnesota Quality Office

Air Sample Condition C Upon Receipt	lient Name: te fra tech		Project #	WO#	:1026393	34
	Commercial Pace	Other:	Client	1026393	 	
Tracking Number:	007 7903764	2		<u> </u>		
Custody Seal on Cooler/E	Box Present? Yes	No Seals	Intact?	Yes No	Optional: Proj. Due Date:	Proj. Name:
acking Material: Bu	bble Wrap 🔲 Bubble B	ags 🗆 Foam 🗌	None [Other:	Temp	Blank rec: Yes No
Temp. (TO17 and TO13 samp		Corrected Temp (°C):		Thermom. Used:	☐B88A912167504 ☐B88A9132521491 Person Examining Contents: <u><</u>	□72337080 □80512447 □8/4
ype of ice Received B		or	-	Date & miliais of		<u></u>
ype of ice neceived	acwer pnone				Comments:	
Chain of Custody Present	 ?	Yes No	□N/A	1.		
Chain of Custody Filled O	ut?	√ Yes □ No	□N/A	2.		
Chain of Custody Relingu		√Ýes □No	□N/A	3.		·
Sampler Name and/or Sig	nature on COC?	□¶es □No	□N/A	4.		····
Samples Arrived within H	old Time?	ØYes □No	□N/A	5.		·
Short Hold Time Analysis	(<72 hr)?	□Yes □No	□N/A	6.		
Rush Turn Around Time I	Requested?	☐Yes No	□N/A	7.		
Sufficient Volume?		□¥es □No	N/A	8.		
Correct Containers Used?	,	Ø√es □No	DN/A	9.		
-Pace Containers Used	?	☑Yes ☐No	N/A			
Containers Intact?		Yes □No	DN/A	10.		
Media: Gif C	9-			11.		
Sample Labels Match CO	2?	√Yes □No	N/A	12.		
S. J. S. J. S.						
Samples Received:			C 1 1		Stand A	Jone G
	isters		ow Controller		Sample Number	Can ID
Sample Number	(95)	Sample Number		Can ID	Sample Number	Call 1D
081-A	2357			0377		
113-C	2331	 		0311		
	1					
	 					
		<u> </u>				
	 					
		<u> </u>				
	_	 				
	<u> </u>	<u> </u>				
CLIENT NOTIFICATION/R	ESOLUTION acted:			Date/Time:	Field Data Required?	
	lution:					
Comments/Neso						
	1017.				421-14	
Project Manager Review	: 1 Dryson			Date:	4-21-14	

Note: Whenever there is a discrepancy affecting North Carolina compliance samples, a copy of this form will be sent to the North Carolina DEHNR Certification Office (i.e out of hold, incorrect preservative, out of temp, incorrect containers)

QUALITY CONTROL DATA

Project:

112IC06279 MRC SV/IAQ

Pace Project No.:

10263934

QC Batch:

AIR/20098

Analysis Method:

TO-15

QC Batch Method:

TO-15

Analysis Description:

TO15 MSV AIR Low Level

Associated Lab Samples:

10263934001, 10263934002

METHOD BLANK: 1667397

Matrix: Air

Associated Lab Samples:

10263934001, 10263934002

Parameter	Units	Blank Result	Reporting Limit	Analyzad	Qualifiers
	Units			Analyzed	
1,1,1-Trichloroethane	ug/m3	ND	1.1	04/30/14 10:27	
1,1,2-Trichloroethane	ug/m3	ND	0.55	04/30/14 10:27	
1,1-Dichloroethane	ug/m3	ND	0.82	04/30/14 10:27	
1,1-Dichloroethene	ug/m3	ND	0.81	04/30/14 10:27	
1,2,3-Trimethylbenzene	ug/m3	ND	1.0	04/30/14 10:27	
1,2,4-Trichlorobenzene	ug/m3	ND	3.8	04/30/14 10:27	
1,2,4-Trimethylbenzene	ug/m3	ND	1.0	04/30/14 10:27	
1,2-Dichloroethane	ug/m3	ND	0.41	04/30/14 10:27	
1,3,5-Trimethylbenzene	ug/m3	ND	2.5	04/30/14 10:27	
Benzene	ug/m3	ND	0.32	04/30/14 10:27	
Carbon tetrachloride	ug/m3	ND	0.64	04/30/14 10:27	
Chlorodifluoromethane	ug/m3	ND	0.72	04/30/14 10:27	
Chloroform	ug/m3	ND	0.99	04/30/14 10:27	
cis-1,2-Dichloroethene	ug/m3	ND	0.81	04/30/14 10:27	
Dichlorodifluoromethane	ug/m3	ND	1.0	04/30/14 10:27	
Ethylbenzene	ug/m3	ND	0.88	04/30/14 10:27	
m&p-Xylene	ug/m3	ND	1.8	04/30/14 10:27	
Methyl-tert-butyl ether	ug/m3	ND	0.73	04/30/14 10:27	
Methylene Chloride	ug/m3	ND	3.5	04/30/14 10:27	
Naphthalene	ug/m3	ND	2.7	04/30/14 10:27	
o-Xylene	ug/m3	ND	0.88	04/30/14 10:27	
Tetrachloroethene	ug/m3	ND	0.69	04/30/14 10:27	
Toluene	ug/m3	ND	0.77	04/30/14 10:27	
trans-1,2-Dichloroethene	ug/m3	ND	0.81	04/30/14 10:27	
Trichloroethene	ug/m3	ND	0.55	04/30/14 10:27	
Vinyl chloride	ug/m3	ND	0.26	04/30/14 10:27	

LABORATORY CONTROL SAMPL	E: 1667398					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
1,1,1-Trichloroethane	ug/m3	55.5	52.6	95	72-128	
1,1,2-Trichloroethane	ug/m3	55.5	53.2	96	72-130	
1,1-Dichloroethane	ug/m3	41.2	38.3	93	68-128	
1,1-Dichloroethene	ug/m3	40.3	39.1	97	68-130	
1,2,3-Trimethylbenzene	ug/m3	50	63.9	128	60-140	
1,2,4-Trichlorobenzene	ug/m3	75.5	85.0	113	30-150	
1,2,4-Trimethylbenzene	ug/m3	50	59.1	118	71-140	
1,2-Dichloroethane	ug/m3	41.2	39.0	95	71-132	
1,3,5-Trimethylbenzene	ug/m3	50	51.1	102	73-136	
Benzene	ug/m3	32.5	36.1	111	69-134	
Carbon tetrachloride	ug/m3	64	58.2	91	66-134	

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

10263934

Date: 05/01/2014 01:58 PM

QUALITY CONTROL DATA

Project:

112IC06279 MRC SV/IAQ

Pace Project No.:

10263934

LABORATORY CONTROL SAMPLE:	1667398				•	
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Chlorodifluoromethane	ug/m3	36	33.3	93	60-140	
Chloroform	ug/m3	49.7	47.5	96	72-127	
sis-1,2-Dichloroethene	ug/m3	40.3	42.0	104	71-135	
Dichlorodifluoromethane	ug/m3	50.3	44.7	89	69-125	
Ethylbenzene	ug/m3	44.2	47.4	107	73-139	
n&p-Xylene	ug/m3	44.2	46.3	105	73-139	
Methyl-tert-butyl ether	ug/m3	36.7	38.2	104	72-132	
/lethylene Chloride	ug/m3	35.3	29.6	84	64-134	
Naphthalene	ug/m3	53.3	61.9	116	61-150	
-Xylene	ug/m3	44.2	47.1	107	71-138	
etrachloroethene	ug/m3	69	70.9	103	69-136	
oluene	ug/m3	38.3	36.1	94	67-133	
rans-1,2-Dichloroethene	ug/m3	40.3	40.0	99	70-131	
richloroethene	ug/m3	54.6	61.0	112	70-135	
/inyl chloride	ug/m3	26	25.9	100	69-132	

Poss Analytical™
/ Pace Analytical

Instrument Run Log

Instrument: Column: J&	10AIRD &W DB-5 0.32mi	Metho m Helium Tune		l: 102	:88-9-	7	Misc. Prep. Info: ISTD Lot: 10288-9-7		Surrogate Lot: Cal. Standard:	10288–9-7 10288-8-18
Path/File	Lab ID	Matrix/Batch	Туре	DF	ρН	Method	Date & Time	Oper.	Comments	
11901BFB.D	BFB	U	Tune	1		50NG_BFB	4/29/14 08:43	JAM		
11902.D	CCV	G/	CCal	1		TO15_117-14	4/29/14 09:10	JAM		
11903.D	CCV	G/	CCal	1		TO15_117-14	4/29/14 10:16	JAM		
11905.D	CAL1	G/	Ical	1		TO15_119-14	4/29/14 11:21	JAM		
11906.D	CAL2	G/	Ical	1		TO15_119-14	4/29/14 11:49	JAM		
11907.D	CAL3	G/	Ical	1		TO15_119-14	4/29/14 12:16	JAM		
11908.D	CAL4	G/	Ical	1		TO15_119-14	4/29/14 12:44	JAM		
11909.D	CAL5	G/	Ical	1		TO15_119-14	4/29/14 13:11	JAM		
11910.D	CAL6	G/	Ical	1		TO15_119-14	4/29/14 13:41	JAM		
11911.D	CAL7	G/	Ical	1		TO15 119-14	4/29/14 14:14	JAM		
11912.D	ICV ADDL	G/	LCS	1		TO15_119-14	4/29/14 14:42	JAM		
11913.D	0	G/	Sample	1		TO15_119-14	4/29/14 15:18	JAM		
11 914 .D	ICV	G/	LCS	1		TO15_119-14	4/29/14 15:46	JAM		
11915_20112.	.D1668247	G/20112	LCS	1		TO15_119-14	4/29/14 16:14	JAM		
11915.D	LCS	G/	LCS	1		TO15_119-14	4/29/14 16:14	JAM		
11916.D	0	G/	Sample	1		TO15_119-14	4/29/14 16:41	JAM		
11917_20112.	.D1668246	G/20112	Blank	1		TO15_119-14	4/29/14 17:09	JAM		
11917.D	BLANK	G/	Blank	1		TO15_119-14	4/29/14 17:09	JAM		
11918.D	10265102001	G/20112	Sample	1.92		TO15_119-14	4/29/14 17:52	JAM		
11919.D	10265102002	G/20112	Sample	1.92		TO15_119-14	4/29/14 18:21	JAM		
11920.D	1668248	G/20112	Duplicate	1.92		TO15_119-14	4/29/14 18:50	JAM		
11921.D	10265102003	G/20112		2.01		TO15_119-14	4/29/14 19:19	JAM		

Check Maintenance Items Performed:

Replaced/Cleaned gold seal

Changed septum

Cleaned liner

Additional Comments:

10263934

Clipped column Changed trap - Lot # Cleaned MS Source

Changed column - Lot # Other minor parts replaced No maintenance performed today

File Path 1: U:\10AIRD.I\042914.B\

Matrix Codes: [G]as, [L]iquid, [S]olid, [N]one

Run order verified:

Report Date: 04/30/2014 12:56 Reviewed By/Date:

Page 15 of 586

5A - FORM V VOA VOLATILE ORGANIC INSTRUMENT PERFORMANCE CHECK BROMOFLUOROBENZENE (BFB)

EPA SAMPLE NO. **BFB**

Lab Name: Pace Analytical

Contract:

Lab Code:

PASI

Case No.:

SAS No.:

SDG No.: 10263934

Lab File ID: 11901BFB.D

BFB Injection Date: 04/29/2014

Instrument ID: 10AIRD

BFB Injection Time: 08:43

GC Column: J&W DB-5

ID: 0.32 (mm)

		% RELATIVE
m/e	ION ABUNDANCE CRITERIA	ABUNDANCE
95	Base Peak, 100% relative abundance	100.00
50	8.00 - 40.00% of mass 95	21.01
75	30.00 - 66.00% of mass 95	58.96
96	5.00 - 9.00% of mass 95	6.14
173	Less than 2.00% of mass 174	0.38 (0.46)
174	50.00 - 120.00% of mass 95	82.05
175	4.00 - 9.00% of mass 174	6.54 (7.97)
176	93.00 - 101.00% of mass 174	79.44 (96.82)
177	5.00 - 9.00% of mass 176	4.90 (6.16)

1 - Value is %mass 174

2 - Value is %mass 176

EPA SAMPLE NO.	LAB SAMPLE ID	LAB FILE ID	DATE ANALYZED	TIME ANALYZED
CAL1	CAL1	11905.D	04/29/2014	11:21
CAL2	CAL2	11906.D	04/29/2014	11:49
CAL3	CAL3	11907.D	04/29/2014	12:16
CAL4	CAL4	11908.D	04/29/2014	12:44
CAL5	CAL5	11909.D	04/29/2014	13:11
CAL6	CAL6	11910.D	04/29/2014	13:41
CAL7	CAL7	11911.D	04/29/2014	14:14
ICVADDL (LCS)	ICVADDL	11912.D	04/29/2014	14:42
ICV (LCS)	ICV	11914.D	04/29/2014	15:46

Pace Analytical Services, Inc. INITIAL CALIBRATION DATA

Start Cal Date : 29-APR-2014 11:21
End Cal Date : 29-APR-2014 14:14
Quant Method : ISTD : 4.14
Integrator : HP RTE
Method file : \\192.168.10.12\chem\10airD.i\042914.b\T015_119-14.m
Last Edit : 30-Apr-2014 10:00 10airD.i

Calibration File Names:
Level 1: \\192.168.10.12\chem\10airD.i\042914.b\11905.d
Level 2: \\192.168.10.12\chem\10airD.i\042914.b\11906.d
Level 3: \\192.168.10.12\chem\10airD.i\042914.b\11907.d
Level 4: \\192.168.10.12\chem\10airD.i\042914.b\11908.d
Level 5: \\192.168.10.12\chem\10airD.i\042914.b\11909.d
Level 6: \\192.168.10.12\chem\10airD.i\042914.b\11910.d
Level 7: \\192.168.10.12\chem\10airD.i\042914.b\11911.d

Cempound	0.1000000 - Level 1 :	Level 2	Level 3	1.0000 Level 4	10.0000 Level 5	20.0000 Level 6		b	Coefficients ml	m2	%RSD or R^2
	30.0000 ! Level 7 !	 	1	1	 		 				
1 Chlorodifluoromethane	1.10863 1.63956	1.33430		i	1.74916		AVRG				16.20499
2 Propylene	4.79658! 4.24928	5.26361	5-81292	5.79622	5.52600 	5.22214	 AVRG		5.23811:		:
	G.44404 G.66545			0.58204	0.66841 	0.66831	 		i 0.57891		1 15.95599
4 Dichlorotetrafluoroethane	0.57367	0.58133	i	0.73438	0.77302 	0.75184	I I		0.68571;		1 11.74035
	-! - _!!		:				 		;- il_		l

Page 18 of 586 10263934

INITIAL CALIBRATION DATA

Start Cal Date : 29-APR-2014 11:21
End Cal Date : 29-APR-2014 14:14
Quant Method : ISTD
Target Version : 4.14
Integrator : HP RTE
Method file : \\192.168.10.12\chem\10airD.i\042914.b\T015_119-14.m
Last Edit : 30-Apr-2014 10:00 10airD.i

Compound	0.1000000 Level 1		0.500000C Level 3			26.0000 Level 6	: Curve	Coefficients b ml	m2	. %RSD : or R^2
	30.0000 Level 7	 	I !		, 1 1		l 			
5 Chloromethane	1.79224 2.21316	1.82702 1.82702	2.20033	2.38301	2.47470 	2,42529	I IAVRG	1 2.18725		! 12.7672
6 Vinyl chloride	2,15255 2,37317	2.43416		2.62380 	2.73606 !	2.52999	 AVRG	, 2.45669		 7.85336
7 1,3-Butadiene	: 3.05638 ; 3.87216	3.882101	i	4.48777	4.65555 I	4.31839		i 4.01471		1 13.32418
8 Bromomethane	; 1.38474 ; 2.03095	1.72285	1.90099	2.19492 	2.28972	1.93163				1 15.7563
9 Chloroethane	; 3.51241 ; 4.95585	i i	4.30858	5.39917 	i	4.74270		 : 4.88 9 20		 16.21468
10 Ethanol	; 2.37597 ; 5.17615	3.90222	4.52342	5.30530 	5.34790	4.41433		 		
11 Vinyl Bromide	1.92642 1 2.08819					1.94462		2.04159		11.02861
		i ~ 		!			· _			

Page 19 of 586 10263934

Pace Analytical Services, Inc. INITIAL CALIBRATION DATA

	0.1000000				10.0000 J	20.0000	l ;		cefficients		: %KSD
Compound		Level 2	Level 3 :	Level 4		Level €	Curve	ь.	m3	m2	or R^2
	30.0000 Level 7	, 	!	i	'] i				
12 Isopentane	2.11147		2.49027	3.02685	2.89457	2.25994	I I I AVRG I	 	2.51539		1 13.1583
13 Trichlorofluoromethane	0.42664 0.65730	0.45398	0.50242	0.56726	0.62382	0.56666	I I		C.54258		1 15.7570
14 Acrolein	5.77257 7.89282	5.26361		6.58637		7.50214	I i IAVRG I	 	7.06101		 22.0578
15 Acetone	15584 1146814	12327		41748		711401	I I	-0.03602			0.995
16 Isopropyl Alcohol	1.10494	1.54946		1.90720	1.79540 	1.53976	i i IAVRG i	! !	1.62046		16.231
17 1,1-Dichdorpethene	1.00188 1.33620	3.17425 		1.36400					1.23904		10.5729
18 Test Butyl Alcohol	1.04149	1.24071 	1.64383	1.71616	1.19648		I I AVRG -		1.30578:		20.5642
					ا ــــــا		 :				

10263934 Page 20 of 586

INITIAL CALIBRATION DATA

Start Cal Date : 29-APR-2014 11:21
End Cal Date : 29-APR-2014 14:14
Quant Method : ISTD : 4.14
Integrator : HP RTE
Method file : \\192.168.10.12\chem\10airD.i\042914.b\T015_119-14.m
Last Edit : 30-Apr-2014 10:00 10airD.i

0.1000000 :	C.2000000	0.5000000	1.0000 .	10.0000	20.0000	1 (Coefficients		%RSI
Level 1	Level 2	Level 3				Curve	b	m1	m2	or R
Level 7	İ	 	; !	, 1 1		; ; 				:
3.03959 3.20226	3.63036	3.77546	4.13872	3.89070 	2.96476	 AVRG		3.52312		12.77
0.71045 1.06252	'			1.10108	0.93890	 AVRG		0.946521		i 14.76
1.98342	+++++		ı	2.18607 	1.79755	i i IAVRG		1.66363		28.11
5.09084: 4.54121;	4.284791	4.61930	5.00066)	5.29713 	4.14016	i i				1 8.68
0.66231	ı	0.60034.		0.72977 0.72977	0.59651	AVRG		1 0.608221		 14.85
1.61835 1.94776	1,58499	1.95457		2.17877 	1.80941	I :		1 1.89080		1 11.82
0.62030	0.60620			,	0.66664	i i		C.69293		9.66
	Level 1	Level 1 Level 2 30.0000 Level 7 3.03959 3.63036 3.20226	Level 1 Level 2 Level 3	Level 1 Level 2 Level 3 Level 4	Level 1 Level 2 Level 3 Level 4 Level 5	Level 1 Level 2 Level 3 Level 4 Level 5 Level 6	Level 1 Level 2 Level 3 Level 4 Level 5 Level 6 Curve	Level 1 Level 2 Level 3 Level 4 Level 5 Level 6 Curve b	Level 1 Level 2 Level 3 Level 4 Level 5 Level 6 Curve b ml	Level 1 Level 2 Level 3 Level 4 Level 5 Level 6 Curve b ml m2

Page 21 of 586 10263934

INITIAL CALIBRATION DATA

	L 0.1000000	0.2000000	0.5000000	1.0000	10.0006	20.0000			Coefficients		: %R5D
Compound	Level 1	Level 2	Level 3	Level 4	Level 5	Level 6	Curve	b	m1	m2	or R^2
	33.0000 Level 7			 	1						1
26 Vinyl Acetate	0.87005 0.86929	0.76954	0.89461	1.02673		0.76872			C.89493		1 11.925
27 1,1-Dichloroethane	0.85790	0.79669	0.95390	1.10081	1.25074	0.99782			1.00708		1 15.423
29 Methyl Ethyl Ketone	3.49025 4.34902	3.024221	3.59972	4.41507	4.91513		AVRG		3.97462		1 16.240
30 n-Hexane	++-++ ; 1.54702:	1.19518	1.54402		i		AVRG .		1.55622		14.261
31 Di-isopropy) Ether	0.76462; 0.73256!	0.73378	0.79486		0.85342	0.79632	I : LAVRG :		0.77449		7.183
32 dis-1,2-Dichlorcethene	2,01287	1.94551	2.18971	2.54325		1.93474			2.14144		10.858
33 Ethyl Acetate	0.95189; 1.02279;	1.07579	1.17627	1.25346	1.21085		I :		1.09791		10.600
							1				-:

Page 22 of 586 10263934

INITIAL CALIBRATION DATA

Start Cal Date : 29-APR-2014 11:21
End Cal Date : 29-APR-2014 14:14
Quant Method : ISTD
Target Version : 4.14
Integrator : HP RTE
Method file : \\192.168.10.12\chem\10airD.i\042914.b\T015_119-14.m
Last Edit : 30-Apr-2014 10:00 10airD.i

	0.1000000 0.200	0000 0.5000000		10.0000	20.0000		Coefficients	5	%kSD
Compound	Level 1 Leve	1 2 : Level 3		Level 5		Curve	b mi	m2	or R^2
	30.0000 Level 7	:	; ;						!
34 Chloroform	0.61229 0.	59638; 0.72224	0.78105	0.80482		AVRG	 0.71944		1 11.8470
35 Ethyl Tert-Bulyl Ether	0.79943; 0.	79998; 0.95271	0.92887	0.85251	0.71325		0.82768		1 10.7676
36 Tetrahydrofuran	3.66766; 2. : 2.57199;	86802 3.22233	3.32477	3.10665		I IAVRG	 3.04136		 13.5792
37 1,1,1-Trichloroethane	0.5950€; C. 0.81697;	65212 0.68773	2.77031	İ		AVRG :	. C.72136		1 11.1426
38 1,2-Dichloroethane	0.80681 C. 1.17673	89892 0.97174	1.09780	1.11741	1.01242	I i AVRG	: 1.01169		1 12.8951
39 Benzene		76649 0.83215	0.84424		0.62911		0.73200		13.3131
40 Carbon tetrachloride	. 0.66054 C.	61551 0.74037 	 0.78353 	0.84331		 AVRG	: : : : 0.76322	 -	! : 12.9686
	,		 	 		 		-	

Page 23 of 586 10263934

INITIAL CALIBRATION DATA

		0.50000000	1.0000	10.0000	26.0000	1		oefficients	1	%RSD
Level l	Level 2	Level 3	Level 4	Level 5	Level 6	Curve	t	ml	m2	or R^2
30.0000 Level 7	 	 				: :			 	
2.16377 1.6634E		2.39434	2.20263	2.05875	1.63834			2.04974:	i	14.1546
+++++		0.72788	0.82832	0.92897	0.82682	I I	:	C.75906	!	20.1146
		0.67803	0.70618		0.60958	i		C.64686		8.1467
		2.04932	2.00769	ı		AVRG	 	1.87205	:	9.1882
		:		2.29877	2.13928	i i AVRG	 	2.17484	: :	7.5881
	3942			193643	449574	I IQUAD :	0.003701	0.45554:		0.9999
C.61513:	C.600501	0.71455	0.72686		0.72989				 	8.3239
	Level 1	Level 1 Level 2	Level 1 Level 2 Level 3	Level 1 Level 2 Level 3 Level 4	Level 1 Level 2 Level 3 Level 4 Level 5 30.0000	Level 1 Level 2 Level 3 Level 4 Level 5 Level 6	Level 1 Level 2 Level 3 Level 4 Tovol 5 Level 6 Curve 1 30.0000	Level 1 Level 2 Level 3 Level 4 Level 5 Level 6 Curve E	Level 1 Level 2 Level 3 Level 4 Level 5 Level 6 Curve E ml 30.0000 Level 7 2.16377 2.22691 2.39434 2.20263 2.05875 1.63834 2.04974 1.66345 ++++ 0.48099 0.72788 0.82832 0.92897 0.826824 0.76138	Level 1 Level 2 Level 3 Level 4 Level 5 Level 6 Curve b m1 m2

Page 24 of 586 10263934

INITIAL CALIBRATION DATA

Start Cal Date : 29-APR-2014 11:21
End Cal Date : 29-APR-2014 14:14
Quant Method : ISTD
Target Version : 4.14
Integrator : HP RTE
Method file : \\192.168.10.12\chem\10airD.i\042914.b\T015_119-14.m
Last Edit : 30-Apr-2014 10:00 10airD.i

Level 1	Level 2	Level 3		Level 5	Level 6	Curve	b	m1	m2	1 or R^2
				1						1 0, 112
			:							1
++-++ 4.20410	4.66868		4.46588.	3.79898	3.91347	 AVRG	1	4.18674		 7.9167
+++++ 3.34857	5.51201	4,29864.	4. 28525	3.86643	3.60745	 AVRG	.	4.15306		18.3771
1.52468 1.06251	1.64984	1.46592		1.31608	1.19938	IAVRG I	1	i		1 14.5211
1.44064 1.10480;	i		1	1.30928	1.19932	I I AVRG		1.30529		: : 8.9158
1909 : +++++	4756 	10917		342871	766856	, LINR	0.01324;	1.10199		0.9998
0.36737			0.65619	0.60723	0.56997	I AVRG .		0.56130.		17.379
1.553221	1,53229	1.72991	1.75946: i	,	1.60184	i				6.635
	4.20410 ++++ 3.34857 1.52468 1.06251 1.44064 1.10480; 1909 ++++ i 0.36737; 0.52688; 1.55322i	4.20410	4.20410	4.20410	4.20410	4.20410	4.20410	4.20410	4.20410	4.20410

Page 25 of 586 10263934

INITIAL CALIBRATION DATA

Start Cal Date : 29-APR-2014 11:21
End Cal Date : 29-APR-2014 14:14
Quant Method : ISTD
Target Version : 4.14
Integrator : HP RTE
Method file : \\192.168.10.12\chem\10airD.i\042914.b\T015_119-14.m
Last Edit : 30-Apr-2014 10:00 10airD.i

	C.1000000	C.2000000	0.5000000 ,	1.0000	10.0000	20.0000	1 1	C	oefficients		%RSD
Compound	Level 1		Level 3		Level 5		Curve	b	ml	m2	or R^2
	30.0000 Level 7										l i
57 Methyl Butyl Ketone	1682	3860		23346	301003	664972	 LINR	0.00865	1		0.99993
58 Dibromochloromethane	0.42039 0.41159	C.39262		0.45729	0.42342	0.42085	I IAVRG		C.42761		6.06710
59 1,2-Dibromoethane	0.45088 0.43366	C.45021		0.52212	0.47109	0.46021	I I AVRG	 	0.46949		6.55742
60 Tetrachloroethene	C.50662: C.49184!	0.55469	0.56536	C.57757	0.54174	0.51792	 AVRG	I I	0.53653;		5.94788
62 Chioropenzene	C.36438)	0.36958	0.40938	0.43219	0.39748	0.37483	AVRG	 	0.38736		6.79533
63 Ethyl Benzene	; 5182 ; +++++		29397		833929	1926819	LINR	C.01400}	0.20041		0.99970
64 m&p-Xylene	3928	8239	24507,	52546	 688538 	1596537	, ,				:

Page 26 of 586 10263934

INITIAL CALIBRATION DATA

Start Cal Date : 29-APR-2014 11:21
End Cal Date : 29-APR-2014 14:14
Quant Method : ISTD : 4.14
Integrator : HP RTE
Method file Last Edit : \\192.168.10.12\chem\10airD.i\042914.b\T015_119-14.m

	6.10000000	0.2000000	0.50000000	1.0000 ;	10.0000	20.0000	II	С	cefficients		%KSD
Compound	Levei 1 !	Level 2	Level 3	Level 4	Lovel 5	Level 6	Curve	ь	m¹	m2	or R^2
	33.0000 Level 7				 		i				
65 Bromoform	C.42004 C.35393	0.40509	,	0.44891	0.36947	0.36427	I . IAVRG .		0.40072		9.6773
66 Styrene	2062; 1812694	4051	,	31221	450016	1053102	: LINR	0.03874	0.34290		0.9972
67 ດ-Xylene	3570	9617	27383	36860	706616	1565588	 LINR	0.30730	0.24563		0.9999
68 1,1,2,2-Tetrachloroethane	0.3845G 0.34073	0.35260	0.41465	0.43661	0.37696	0.36481		 	0.36155		 8.9144
69 Isopropylbenzene	0.28998 0.19086	0.24879		0.25326 	0.20594	0.20104	 AVRG		0.23538:		 15.5228
70 N-Propylbenzene	+-+++ 4073483	10839		75774 	10666691	2470640	 LINR	0.03363			 0.9992
71 4-Ethyltoluene	+++++ 3057758	8452 	27295	5816C:		1845068			C.20099		

Page 27 of 586 10263934

Report Date : 30-Apr-2014 10:15

Pace Analytical Services, Inc.

INITIAL CALIBRATION DATA

	0.1000000	0.2000000	0.50000000	1.0000	10.0000	20.0000	i T	Co	pefficients		*RSD
Compound	Level !	level 2		Level 4	Level 5	Level 6	Curve	b	ml	m2	or R*2
	30.0000 Jeve) 7	 		 							:
72 1,3,5-Trimethylbenzene	3460					1688125	 LINR	0.01539	0.22909	,	0.9995
73 Tert-Butyi Benzene	++-+- C.24674	0.45847	0.35677	0.34699	0.26318	0.24904	I I		0.32020		1 26.0860
74 1,2,4-Trimethylbenzene	++++÷ 0.21857	0.34338	0.29189	0.28889 	,	0.21912	1 .		0.26500		1 19.2829
73 1,3-Dichlorobenzene	0.60142 0.38532		0.51339	į	0.40554 t		AVRG		C.47044		17.7480
76 Sec- Butylbenzene	3744 3453786	i	i		966965 	2317866	ILINE	0.00929	0.17358		0.9986
78 Benzyl Chloride	3501 2342750		,	39861	6028781	1437471	 LINR	0.02936	0.26182		0.9991
79 1,4-Dichlorobenzene	0.46931 0.37148		0.48022	0.48613:	0.40159	0.38350			0.43509		11.0936
	 !			;	 	~	!				-

Page 28 of 586 10263934

Report Date : 30-Apr-2014 10:15

Pace Analytical Services, Inc. INITIAL CALIBRATION DATA

Start Cal Date : 29-APR-2014 11:21
End Cal Date : 29-APR-2014 14:14
Quant Method : ISTD
Target Version Integrator : 4.14
Method file : \\192.168.10.12\chem\10airD.i\042914.b\T015_119-14.m
Last Edit : 30-Apr-2014 10:00 10airD.i

	0.1000000				10.0000	26.0000			pefficients		: %RSD
Compound	Level 1 :	Level 2	Levei 3			Level 6	Curve	ь	m1	m2	or R^2
	30.0000 ; Level 7	!	i i 		 		! :				
80 p-Isopropyltoluene	1 ++-++	C.39148	0.32023	0.30792		0.25172	 AVRG	!	0.28760		22.2769
81 1,2,3-Trimethylbenzene	. 0.48256	0.33891	0.31728	0.31891	0.26316 	0.24992	 AVRG		0.31617		 26.0956
82 1,2-Dichlorobenzene	C.74908 C.4141C	0.58132	0.57822	C.59773	'	0.43389	 	1	0.54361		21.9162
83 N-Butylbenzene	2592	7224		55815		1829597	I I		0.20686		0.998
84 1,2,4-Trichlorobenzene	921	2246	6975	15433	212786]	526363	 LINE	C.02491	C.73813		0.9978
65 Naphthalene	1353	2734 .		23661	340101	766785	 LINR	C.01681:	C.50041		0.9999
86 Hexachloroputadiene	0.74871; 0.73965	G.645201	0.65366	0.65771	0.72977	0.68856			0.69475:		 6.3583
						===========					

Page 29 of 586 10263934

Report Date : 30-Apr-2014 10:15

Pace Analytical Services, Inc.

INITIAL CALIBRATION DATA

Start Cal Date : 29-APR-2014 11:21
End Cal Date : 29-APR-2014 14:14
Quant Method : ISTD
Target Version : 4.14
Integrator : HP RTE
Method file : \\192.168.10.12\chem\10airD.i\042914.b\T015_119-14.m
Last Edit : 30-Apr-2014 10:00 10airD.i

Compound	: 0.1000000 Level 1 !	0.2000000 Level 2			10.0000 Level 5	20.0000 Level 6	 Curve	b	Coefficients ml	m.2	%RSD or R^2
	30.0000 j Level 7			I		 	1				
28 Hexane-d14(S)	1.78262: 1.93376	1.66177	1.49128	1.84534	1.89891	1.74150 	 AVRG		1.76502		8.6330
: 54 Toluene-d8 (S)	1.22279: 1.20406:	1,20080	1.15363	1.19395	1.18181	1.24511 	 AVRG		1.20031		1 2.4263
77 1,4-dichlorobenzene-d4 (S)	2.09866 1.87271	2.08081	1.97951	1.93528	1.69051	1.83931 	 AVRG		1.92811		7.4108
							l		:		

10263934 Page 30 of 586 Data File: \\192.168.10.12\chem\10airD.i\042914.b\11914.d

Report Date: 30-Apr-2014 10:01

Pace Analytical Services, Inc.

RECOVERY REPORT

Client SDG: 042914.b

Fraction: VOA

Client Name:
Sample Matrix: GAS
Lab Smp Id: ICV
Level: LOW

Operator: JAM

Data Type: MS DATA SpikeList File: SSV_new.spk

SampleType: LCS Quant Type: ISTD

Sublist File: all.sub
Method File: \\192.168.10.12\chem\10airD.i\042914.b\T015_119-14.m

Misc Info:

	CONC	CONC		
SPIKE COMPOUND	ADDED	RECOVERED	RECOVERED	LIMITS
	ppbv	ppbv		
	PP2.	PP-		
2 Propylene	10.6	11.4	107.96	60-140
3 Dichlorodifluorome	9.60	9.21	95.98	60-140
4 Dichlorotetrafluor	11.0	9.41	85.54	60-140
5 Chloromethane	10.8	10.6	98.69	60-140
6 Vinyl chloride	9.60	10.3	107.38	60-140
7 1,3-Butadiene	9.90	10.1	101.75	60-140
8 Bromomethane	7.20	7.03	97.64	60-140
9 Chloroethane	7.60	7.58	99.67	60-140
10 Ethanol	7.90	8.99	113.82	60-140
11 Vinyl Bromide	9.70	9.60	98.99	60-140
13 Trichlorofluoromet	9.90	9.50	95.99	60-140
15 Acetone	9.40	10.5	112.13	60-140
16 Isopropyl Alcohol	10.2	11.3	110.48	60-140
17 1,1-Dichloroethene	11.5	14.1	122.48	60-140
20 Freon 113	9.30	10.9	116.94	60-140
21 Methylene chloride	9.90	10.1	102.02	60-140
23 Carbon Disulfide	10.0	7.37	73.71	60-140
24 trans-1,2-dichloro	10.2	11.3	110.55	60-140
25 Methyl Tert Butyl	9.60	10.6	110.84	60-140
27 1,1-Dichloroethane	10.2	11.3	110.97	60-140
26 Vinyl Acetate	10.3	11.1	107.82	60-140
29 Metĥyl Ethyl Keton	10.2	10.8	105.89	60-140
30 n-Hexane	10.1	10.4	103.09	60-140
32 cis-1,2-Dichloroet	10.1	11.7	116.22	60-140
33 Ethyl Acetate	10.7	11.7	109.48	60-140
34 Chloroform	10.9	11.0	101.16	60-140
36 Tetrahydrofuran	10.8	13.4	123.93	60-140
37 1,1,1-Trichloroeth	9.90	9.78	98.78	60-140
38 1,2-Dichloroethane	11.0	10.7	97.19	60-140
39 Benzene	10.6	11.2	105.76	60-140
40 Carbon tetrachlori	10.2	9.69	95.03	60-140
41 Cyclohexane	10.5	12.0	114.18	60-140
44 2,2,4-Trimethylpen	10.0	11.5	114.87	60-140
45 Heptane	11.3	12.9	113.96	60-140
46 1,2-Dichloropropan	10.1	10.8	106.74	60-140
47 Trichloroethene	9.50	11.3	119.21	60-140
48 Bromodichlorometha	9.80	10.5	106.97	60-140
49 1,4-Dioxane	9.70	10.2	105.18	60-140
51 Methyl Isobutyl Ke	9.80	12.4	126.84	60-140
52 cis-1,3-Dichloropr	11.6	13.0	112.36	60-140
		[.11

10263934 Page 415 of 586

Data File: \\192.168.10.12\chem\10airD.i\042914.b\11914.d Report Date: 30-Apr-2014 10:01

SPIKE COMPOUND	CONC ADDED ppby	CONC RECOVERED ppby	% RECOVERED	LIMITS
SPIKE COMPOUND 53 trans-1,3-Dichloro 55 Toluene 56 1,1,2-Trichloroeth 57 Methyl Butyl Keton 58 Dibromochlorometha 59 1,2-Dibromoethane 60 Tetrachloroethene 62 Chlorobenzene 63 Ethyl Benzene 64 m&p-Xylene 65 Bromoform 66 Styrene 67 o-Xylene 68 1,1,2,2-Tetrachlor 69 Isopropylbenzene 70 N-Propylbenzene 71 4-Ethyltoluene 72 1,3,5-Trimethylben 74 1,2,4-Trimethylben 76 Sec- Butylbenzene 75 1,3-Dichlorobenzen 78 Benzyl Chloride			_	60-140 60-140 60-140 60-140 60-140 60-140 60-140 60-140 60-140 60-140 60-140 60-140 60-140 60-140 60-140 60-140 60-140 60-140
79 1,4-Dichlorobenzen 82 1,2-Dichlorobenzen 83 N-Butylbenzene 84 1,2,4-Trichloroben	9.80 9.70 9.70 9.50 9.10	9.83 11.2 12.6 10.4 12.3	100.29 115.96 129.68 110.07 135.14	60-140 60-140 60-140 60-140
85 Naphthalene 86 Hexachlorobutadien	9.30 9.10	12.8 11.5	137.13 126.28	60-140 60-140

SURROGATE COMPOUND	CONC ADDED ppbv	CONC RECOVERED ppbv	% RECOVERED	LIMITS
\$ 28 Hexane-d14(S)	10.0	10.7	106.85	70-130
\$ 54 Toluene-d8 (S)	10.0	10.2	102.17	70-130
\$ 77 1,4-dichlorobenzen	10.0	10.5	105.00	70-130

10263934 Page 416 of 586

Place Applied	iool™
/ _Pace Analyt	icai_

Instrument Run Log

Instrument: Column: J	10AIRD &W DB-5 0.32mm	Meth Tune	od: Standar	d: 10	288-9	-7	Misc. Prep ISTD Lot:	. Info: 10288-9-7		Surrogate Lot: Cal. Standard:	10288-9-7 10288-8-18	
Path/File	Lab ID	Matrix/Batch	Туре	DF	рΗ	Method		Date & Time	Oper.	Comments		
12001BFB.D	BFB	L/	Tune	1		50NG BFB		4/30/14 08:35	DL1			
2002_20099	D1667404	G/20099	LCS	1		TO15_119-14		4/30/14 09:03	JAM			
12002 LCS.D		G/	LCS	1		TO15_119-14		4/30/14 09:03	JAM			
2002.D	CCV	G/	CCal	1		TO15 119-14		4/30/14 09:03	DL1			
2002 20098		G/20098	LCS	1		TO15_119-14		4/30/14 09:03	JAM			
2003.D	0	G/		1		TO15_119-14		4/30/14 09:59	JAM			
2004.D	CERT	G/	Sample	1		TO15_119-14		4/30/14 10:27	JAM			
2004 20099	D1667403	G/20099	Blank	1		TO15_119-14		4/30/14 10:27	JAM			
2004 20098		G/20098	Blank	1		TO15 119-14		4/30/14 10:27	JAM			
2005.D	10264240001	G/20098	Sample			TO15_119-14		4/30/14 11:25	JAM			
2006.D	10264229001	G/20098		1.68		TO15_119-14		4/30/14 11:57	JAM			
2007.D	10264229002	G/20098	Sample	1.74		TO15_119-14		4/30/14 12:25	JAM			
2008.D	10263139001	G/20098		1.75		TO15_119-14		4/30/14 12:59	JAM			
2009.D	10262921002	G/20098		85.76		TO15_119-14		4/30/14 13:28	JAM			
2010.D	10263100002	G/20098	Sample			TO15_119-14		4/30/14 13:57	JAM			
2011.D	92197533024	G/20099		1.39		TO15_119-14		4/30/14 14:28	JAM			
2012.D	10262921002	G/20098	Sample	85.76		TO15_119-14		4/30/14 14:56	JAM			
2013.D	10263934001	G/20098		1.34		TO15_119-14		4/30/14 15:25	JAM			
2014.D	10263934002	G/20098	Sample	1.61		TO15_119-14		4/30/14 15:53	JAM			
2015.D	30117703002	G/20098		1.44		TO15 119-14		4/30/14 16:22	JAM			
2016.D	30117703001	G/20098	Sample	107.2		TO15_119-14		4/30/14 16:50	JAM			
2010.D 2017.D	DNE	G/20030	Sample	1		TO15_119-14		4/30/14 17:17	JAM			
2017.D 2018.D	10262914002	G/20099	Sample			TO15_119-14		4/30/14 17:17	JAM			
2019.D	10262914001	G/20099	Sample			TO15_119-14		4/30/14 17:40	JAM			
2019.D 2020.D	10262914003	G/20099	Sample	2.29		TO15_119-14		4/30/14 18:45	JAM			
2020.D 2021.D	10262914004	G/20099		2.02		TO15_119-14		4/30/14 19:14	JAM			
2021.D 2022.D	10264229002	G/20098	Sample			TO15_119-14		4/30/14 19:41	JAM			
2022.D 2023.D	30117703001	G/20098	Sample			TO15_119-14		4/30/14 20:09	JAM			
2023.D 2024.D	1669764	G/20098	Duplicate			_		4/30/14 20:38	JAM			
2024.D 2025.D	10263412001	G/20098 G/20099	Sample			TO15_119-14			JAM			
2025.D 2026.D	10262933002	G/20099 G/20098	Sample			TO15_119-14 TO15_119-14		4/30/14 21:09 4/30/14 21:36	JAM			
2020.D 2027.D	10262933002	G/20098	Sample	38.8				4/30/14 22:04	JAM			
2027.D 2028.D		G/20098				TO15_119-14						
	10262933001		Sample	537.6		TO15_119-14		4/30/14 22:31	JAM			
2029.D	10262934001	G/20098		1196.8		TO15_119-14		4/30/14 22:59	JAM			
2030.D	10263139001	G/20098		17920		TO15_119-14		4/30/14 23:26	JAM			
2031.D	10262914001	G/20099	Sample	38.8		TO15_119-14		4/30/14 23:53	JAM			
2032.D	10262914002	G/20099	Sample			TO15_119-14		5/01/14 00:21	JAM			
2033.D	0	G/	Sample	1		TO15_119-14		5/01/14 00:48	JAM			
2034.D	LCS	G/	LCS	1		TO15_119-14		5/01/14 01:16	JAM			
2035.D	O DI ANIK	G/		1		TO15_119-14		5/01/14 01:43	JAM			
2036.D	BLANK	G/	Blank	1		TO15_119-14		5/01/14 02:14	JAM			
2037.D	10263933001	G/20121	Sample			TO15_119-14		5/01/14 02:43	JAM			
2038.D	10263933002	G/20121	Sample			TO15_119-14		5/01/14 03:11	JAM			
2039.D	-DUP	G/20121	Duplicate			TO15_119-14		5/01/14 03:41	JAM			
2040.D	10263933003	G/20121	Sample			TO15_119-14		5/01/14 04:09	JAM			
2041.D	10263933004	G/20121	Sample	1.34		TO15_119-14		5/01/14 04:37	JAM			

10263934

Page 16 of 586

5A - FORM V VOA VOLATILE ORGANIC INSTRUMENT PERFORMANCE CHECK BROMOFLUOROBENZENE (BFB)

EPA SAMPLE NO	
RER	

Lab Name: Pace Analytical

Contract:

Lab Code:

PASI

Case No.:

SAS No.:

SDG No.: 10263934

Lab File ID: 12001BFB.D

BFB Injection Date: 04/30/2014 BFB Injection Time: 08:35

Instrument ID: 10AIRD

GC Column: J&W DB-5 ID: 0.32 (mm)

		% RELATIVE	_		
m/e	ION ABUNDANCE CRITERIA	ABUNDANCE			
95	Base Peak, 100% relative abundance	100.00			
50	8.00 - 40.00% of mass 95	19.12			
75	30.00 - 66.00% of mass 95	58.32	,		
96	5.00 - 9.00% of mass 95	6.80			
173	Less than 2.00% of mass 174	0.70	(0.81)		
174	50.00 - 120.00% of mass 95	86.02			
175	4.00 - 9.00% of mass 174	6.35	(7.39)		
176	93.00 - 101.00% of mass 174	81.35	(94.57)		
177	5.00 - 9.00% of mass 176	5.15	(6.33)		

1 - Value is %mass 174

2 - Value is %mass 176

EPA SAMPLE NO.	LAB SAMPLE ID	LAB FILE ID	DATE ANALYZED	TIME ANALYZED
CCV	CCV	12002.D	04/30/2014	09:03
LCS for HBN 294484 [AIR/	1667398	12002_20098.D	04/30/2014	09:03
BLANK for HBN 294484 [Al	1667397	12004_20098.D	04/30/2014	10:27
IA-081-A-16R	10263934001	12013.D	04/30/2014	15:25
IA-113-C-16R	10263934002	12014.D	04/30/2014	15:53
VP-1(1657123DUP)	1669764-DUP	12024.D	04/30/2014	20:38

Data File: \\192.168.10.12\chem\10airD.i\043014.b\12002.d

Report Date: 30-Apr-2014 10:02

Pace Analytical Services, Inc.

CONTINUING CALIBRATION COMPOUNDS

Injection Date: 30-APR-2014 09:03
Init. Cal. Date(s): 29-APR-2014 29-APR-2014
Init. Cal. Times: 11:21 14:14 Instrument ID: 10airD.i Injection Date: 30-APR-2014 09:03
Lab File ID: 12002.d Init. Cal. Date(s): 29-APR-2014
Analysis Type: AIR Init. Cal. Times: 11:21
Lab Sample ID: CCV Quant Type: ISTD
Method: \\192.168.10.12\chem\10airD.i\043014.b\T015_119-14.m

A ALCO ALD TO		1		1	MAX	1
COMPOUND	RRF / AMOUNT	RF10	RRF10 RRF	%D / %DRIFT		
Chlorodifluoromethane		1.64018	1.64018 0.010			'
Propylene	5.23811	4.70295	4.70295 0.010	-10.21662	30.00000	Average
Dichlorodifluoromethane	0.57891	0.65034	0.65034 0.010	12.33937	30.00000	Average
Dichlorotetrafluoroethane	0.68571	0.76497	0.76497 0.010	11.55817	30.00000	Average
Chloromethane	2.18725	2.44491	2.44491 0.010	11.77994	30.00000	Average
Vinyl chloride	2.45669	2.46594	2.46594 0.010	0.37639	30.00000	Average
1,3-Butadiene	4.01471	4.07594	4.07594 0.010	1.52505	30.00000	Average
Bromomethane	1.92226	2.02656	2.02656 0.010	5.42594	30.00000	Average
Chloroethane	4.88920	5.02797	5.0279710.010	2.83830	30.00000	Average
C Ethanol	4.43504	5.02013	5.02013 0.100	13.19248	30.00000	Average
1 Vinyl Bromide	2.04159	2.04250	2.04250 0.010	0.04422	30.00000	Average
2 Isopentane	2.51539	2.35740	2.35740 0.010	-6.28101	30.00000	Average
3 Trichlorofluoromethane	0.54258	0.60106	0.60106 0.010	10.77789	30.00000	Average
4 Acrolein	7.06101	7.96121	7.96121 0.010	12.74891	30.00000	Average
5 Acetone	10.00000	10.24685	1.22231 0.010	2.46848	30.00000	Linea
6 Isopropyl Alcohol	1.62046	1.58275	1.58275 0.010	-2.32734	30.00000	Average
7 1,1-Dichloroethene	1.23804	1.27469	1.27469 0.010	2.95992	30.00000	Average
8 Tert Butyl Alcohol	1.30578	1.01739	1.01739 0.100	-22.08612	30.00000	Average
9 Acrylonitrile	3.52312	3.18998	3.18998 0.010	-9.45587	30.00000	Average
C Freon 113	0.94652	1.02179	1.02179 0.010	7.95314	30.00000	Average
1 Methylene chloride	1.66363	1.98498	1.98498 0.010	19.31660	30.00000	Average
2 Allyl Chloride	4.72487	4.57449	4.57449 0.010	-3.18286	30.00000	Average
3 Carbon Disulfide	0.60822	0.63465	0.63465 0.010	4.34516	30.00000	Average
4 trans-1,2-dichloroethene	1.83080	1.89579	1.89579 0.010	0.79692	30.00000	Average
5 Methyl Tert Butyl Ether	0.69293	0.66436	0.66436 0.010	-4.12300	30.00000	Average
e Vinyl Acetate	0.89493	0.86153)	0.86153 0.010	-3.73219	30.00000	Average
7 1,1-Dichloroethane	1.00708	1.08247	1.08247 0.010	7.48545	30.00000	Average
28 Hexane-d14(S)	1.76502	1.90895	1.90895 0.200	8.15422	30.00000	Average
9 Methyl Ethyl Ketone	3.97462	4.13736	4.13736 0.010	4.09468	30.00000	Average
30 n-Hexane	1.55622	1.54966	1.54966 0.010	-0.42194	30.00000	Average
1 Di-isopropyl Ether	0.77449	0.71650	0.71650 0.010	-7.48756	30.00000	Average
32 cis-1,2-Dichloroethene	2.14144	2.05312	2.05312 0.010	-4.12450	30.00000	Average
33 Ethyl Acetate	1.09791	1.015431	1.01543 0.010	-7.51234	30.00000	Average
34 Chloroform	0.71944	0.75117	0.75117 0.310	4.41144	30.00000	Average
35 Ethyl Tert-Butyl Ether	0.82768	0.70002	0.70002 0.310	-15.42388	30.00000	Average
6 Tetrahydrofuran	3.04136	2.53496	2.53496 0.010	-16.65051	30.00000	Average
37 1,1,1-Trichloroethane	0.72136	0.76063	0.76063 0.310	5.44398	30.00000	Average
38 1,2-Dichloroethane	1.01169	1.06831	1.06831 0.010	5.59674	1 30.00000	Average
9 Benzene	0.73200	0.65924	0.65924 0.300	-9.94048	30.00000	Average
O Carbon tetrachloride	0.76322	0.83856	0.83856 0.010	9.87148	30.00000	Average
1 Cyclohexane	2.04974	1.70844	1.70844 0.010	-16.651 15	30.00000	Average
2 Tert Amyl Methyl Ether	0.75906	0.72435	0.72435 0.010	-4.57305	30.00000	Average

10263934 Page 439 of 586 Data File: $\192.168.10.12\chem\10airD.i\043014.b\12002.d$ Report Date: 30-Apr-2014 10:02

Pace Analytical Services, Inc.

CONTINUING CALIBRATION COMPOUNDS

Instrument ID: 10airD.i Injection Date: 30-APR-2014 09:03
Lab File ID: 12002.d Init. Cal. Date(s): 29-APR-2014
Analysis Type: AIR Init. Cal. Times: 11:21
Lab Sample ID: CCV Quant Type: ISTD
Method: \\192.168.10.12\chem\10airD.i\043014.b\T015_119-14.m Injection Date: 30-APR-2014 09:03
Init. Cal. Date(s): 29-APR-2014 29-APR-2014
Init. Cal. Times: 11:21 14:14

COMPOUND 4 2,2,4-Trimethylpentane 5 Heptane 6 1,2-Dichloropropane 7 Trichloroethene 8 Bromodichloromethane	RRF / AMOUNT 	RF10 				
4 2,2,4-Trimethylpentane 5 Heptane 6 1,2-Dichloropropane 7 Trichloroethene	0.64686 1.87205 2.17484	0.53418	,			========
6 1,2-Dichloropropane 7 Trichloroethene	2.17484	1.51156		71 -17.41916	30.00000	Averaged
7 Trichloroethene			1.51156 0.010	-19.25623	30.00000	Averaged
		1.91454	1.91454 0.010	-11.96842	30.00000	Averaged
8 Bromodichloromethane	[10.00000]	11.15955	1.79022 0.010	11.59547	30.00000	Quadratic
	0.69034	0.69528	0.69528 0.010	0.71496	30.00000	Averaged
9 1,4-Dioxane	4.18674	3.75993	3.75993 0.010	-10.19428	30.00000	Averaged
0 Methylcyclohexane	4.15306	3.65858	3.65858 0.010	-11.90636	30.00000	Averaged
1 Methyl Isobutyl Ketone	1.37524	1.23117	1.23117 0.010	-10.47594	30.00000	Averaged
2 cis-1,3-Dichloropropene	1.30529	1.22990	1.22990 0.010	-5.77575	30.00000	Averaged
3 trans-1,3-Dichloropropene	10.00000	10.11006	1.10445 0.010	1.10061	30.00000	Linear
54 Toluene-d8 (S)	1.20031	1.32049	1.32049 0.200	10.01277	30.00000	Averaged
5 Toluene	0.56130	0.59636	0.59636 0.30	6.24578	30.00000	Averaged
66 1,1,2-Trichloroethane	1.62241	1.69146	1.69146 0.010	4.25585	30.00000	Averaged
7 Methyl Butyl Ketone	10.00000	11.05240	0.52666 0.010	10.52402	30.00000	Linear
8 Dibromochloromethane	0.42761	0.40284	0.40284 0.010	-5.79307	30.00000	Averaged
39 1,2-Dibromoethane	0.46949	0.44318	0.44318 0.010	-5.60435	30.00000	Averaged
C Tetrachloroethene	0.536531	0.52189	0.52189 0.010	-2.73000	30.00000	Averaged
2 Chlorobenzene	0.38736	0.37160	0.37160 0.01	-4.36894	30.00000	Averaged
3 Ethyl Benzene	10.000001	10.737021	0.18912 0.30	7.37015	30.00000	Linear
4 m&p-Xylene	[10.00000]	10.49026	0.23394 0.30	4.90256	30.00000	Linear
55 Bromoform	0.400721	0.36323	0.36323 0.01	9.35470	30.00000	Averaged
66 Styrene	10.00000	9.71938	0.36744 0.01	-2.80619	30.00000	Linear
57 o-Xylene	10.00000	10.66224	0.23196 0.30	6.62237	30.00000	Linear
58 1,1,2,2-Tetrachloroethane	0.38155	0.34336	0.3433610.01	01 -10.01024	30.00000	Averaged
9 Isopropylbenzene	0.23538	0.19575	0.19575 0.01	-16.83396	30.00000	Averaged
O N-Propylbenzene	[10.00000]	10.34723	0.15044 0.01	3.47235	33.00000	Linear
1 4-Ethyltoluene	10.000001	10.31621	0.20153 0.01	3.16208	30.00000	Linear
2 1,3,5-Trimethylbenzene	[10.00000]	10.23518	0.22724 0.01	2.35176	30.00000	Linear
73 Tert-Butyl Benzene	0.32020	0.25878	0.25878 0.01	-19.18154	30.00000	Averaged
4 1,2,4-Trimethylbenzene	0.26500	0.22425	0.22425 0.01	-15.37600	30.00000	Averaged
5 1,3-Dichlorobenzene	0.47044	0.38997	0.38997 0.01	-17.10518	30.00000	Averaged
76 Sec- Butyibenzene	[10.00000]	10.34535	0.16931 0.01	3.45350	30.00000	Linear
77 1,4-dichlorobenzene-d4 (S)	1.92811	2.03377	2.03377 0.20	5.47972	30.00000	Averaged
'8 Benzyl Chloride	10.00000	9.64164	0.28008 0.01	-3.58355	30.00000	Linear
'9 1.4-Dichlorobenzene	0.435091	0.40536	0.40536 0.01		30.00000	Averaged
0 p-Isopropyltoluene	0.28760	0.22730	0.22730 0.01	-20.96728	30.00000	
1 1,2,3-Trimethylbenzene	0.31617	0.24729	0.24729 0.01		30.00000	-
2 1,2-Dichlorobenzene	0.54361	0.44100	0.44100 0.01		30.00000	
3 N-Butylbenzene	10.000001	10.19666	0.20936 0.01			
34 1,2,4-Trichlorobenzene	10.000001	11.26204	0.67024 0.01	*		
35 Naphthalene	10.000001	11.60994	0.43735 0.01	•	-	
6 Hexachlorobutadiene	0.69475	0.63339	0.63339[0.01			

Page 440 of 586 10263934

Data File: \\192.168.10.12\chem\10airD.i\043014.b\12013.d

Report Date: 30-Apr-2014 15:31

Pace Analytical Services, Inc.

INTERNAL STANDARD COMPOUNDS AREA AND RT SUMMARY

Instrument ID: 10airD.i Lab File ID: 12013.d Lab Smp Id: 10263934001 Calibration Date: 30-APR-2014

Calibration Time: 09:03

Analysis Type: VOA Quant Type: ISTD

Level: LOW Sample Type: AIR

Operator: JAM

Method File: \\192.168.10.12\chem\10airD.i\043014.b\T015 119-14.m

Misc Info: 20098

Test Mode:

Use Initial Calibration Level 5. If Continuing Cal. use Initial Cal. Level 5

		AREA	LIMIT		
COMPOUND	STANDARD	LOWER	UPPER	SAMPLE	%DIFF
=======================================	========	========	========	========	======
43 1,4-Difluorobenze 61 Chlorobenzene - d	386113 173857	231668 104314	540558 243400	423357 205773	9.65 18.36

		RT I	LIMIT		
COMPOUND	STANDARD	LOWER	UPPER	SAMPLE	%DIFF
=======================================	=======	=======	========	========	======
43 1,4-Difluorobenze		6.08	6.74	6.40	-0.05
61 Chlorobenzene - d	10.09	9.76	10.42	10.09	-0.00

AREA UPPER LIMIT = + 40% of internal standard area. AREA LOWER LIMIT = - 40% of internal standard area. RT UPPER LIMIT = + 0.33 minutes of internal standard RT. RT LOWER LIMIT = - 0.33 minutes of internal standard RT.

10263934 Page 495 of 586 Data File: \\192.168.10.12\chem\10airD.i\043014.b\12014.d

Report Date: 30-Apr-2014 15:52

Pace Analytical Services, Inc.

INTERNAL STANDARD COMPOUNDS AREA AND RT SUMMARY

Instrument ID: 10airD.i Lab File ID: 12014.d

Calibration Date: 30-APR-2014 Calibration Time: 09:03

Lab Smp Id: 10263934002

Level: LOW

Analysis Type: VOA Quant Type: ISTD

Sample Type: AIR

Operator: JAM

Method File: \\192.168.10.12\chem\10airD.i\043014.b\T015 119-14.m

Misc Info: 20098

Test Mode:

Use Initial Calibration Level 5. If Continuing Cal. use Initial Cal. Level 5

		AREA	LIMIT		
COMPOUND	STANDARD	LOWER	UPPER	SAMPLE	%DIFF
=======================================	========		=======	========	======
43 1,4-Difluorobenze	386113	231668	540558	404552	4.78
61 Chlorobenzene - d	173857	104314	243400	190400	9.52

		RT I	TIMIT		
COMPOUND	STANDARD	LOWER	UPPER	SAMPLE	%DIFF
	========	========	========	=======	======
43 1,4-Difluorobenze	6.41	6.08	6.74	6.41	0.05
61 Chlorobenzene - d	10.09	9.76	10.42	10.08	-0.03

AREA UPPER LIMIT = + 40% of internal standard area. AREA LOWER LIMIT = - 40% of internal standard area. RT UPPER LIMIT = + 0.33 minutes of internal standard RT. RT LOWER LIMIT = - 0.33 minutes of internal standard RT.

10263934 Page 544 of 586 Data File: \\192.168.10.12\chem\10airD.i\043014.b\12013.d

Report Date: 30-Apr-2014 15:31

Pace Analytical Services, Inc.

Smp Info

Misc Info: 20098

: Volatile Organic COMPOUNDS in Air Comment

Method : \\192.168.10.12\chem\10airD.i\043014.b\T015_119-14.m

Meth Date : 30-Apr-2014 10:02 10airD.i Quant Type: ISTD

Cal Date : 29-APR-2014 14:14 Cal File: 11911.d

Als bottle: 13

Dil Factor: 1.34000 Integrator: HP RTE

Compound Sublist: all.sub

Target Version: 4.14

Processing Host: VIRTUALXP-96992

Concentration Formula: Amt * DF * Uf * CpndVariable

Name	Value	Description					
DF Uf Cpnd Variable		Dilution Factor ng unit correction factor Local Compound Variable					

Compounds	QUANT SIG MASS	CONCENTRATIONS ON-COLUMN FINAL RT EXP RT REL RT RESPONSE (ppbv) (ppbv)
1 Chlorodifluoromethane	51	3.118 3.124 (0.487) 162223 5.81640 7.79
2 Propylene	41	Compound Not Detected.
3 Dichlorodifluoromethane	85	3.160 3.167 (0.494) 23224 0.31757 0.426
4 Dichlorotetrailuoroethane	85	Compound Not Detected.
5 Chloromethane	50	3.268 3.272 (0.510) 5315 0.27460 0.368(M
6 Vinyl chloride	62	Compound Not Detected.
7 1,3-Butadiene	54	Compound Not Detected.
8 Bromomethane	94	Compound Not Detected.
9 Chloroethane	64	Compound Not Detected.
10 Ethanol	31	3.675 3.675 (0.574) 83413 8.73877 11.7
11 Viryl Bromide	106	Compound Not Detected.
12 Isopentane	43	3.803 3.806 (0.594) 18923 1.12432 1.51(M
13 Trichlorofluoromethane	101	3.901 3.904 (0.609) 11159 0.14302 0.192
14 Acrolein	56	Compound Not Detected.
15 Acetone	43	3.931 3.931 (0.614) 802705 24.2223 32.4
16 Isopropyl Alcohol	45	3.970 3.970 (0.620) 825851 31.6107 42.4(A
17 1,1-Dichloroethene	61	Compound Not Detected.
18 Tert Butyl Alcohol	59	Compound Not Detected.
19 Acrylonitrile	53	Compound Not Detected.
20 Freon 113	101	Compound Not Detected.
21 Methylene chloride	49	4.328 4.327 (0.676) 10460 0.41104 0.551
22 Allyl Chloride	76	Compound Not Detected.
23 Carbon Disulfide	76	Compound Not Detected.

10263934 Page 492 of 586

Data File: $\192.168.10.12\chem\10airD.i\043014.b\12013.d$ Report Date: 30-Apr-2014 15:31

			CONCENTRATIONS	
	QUANT SIG		ON-COLUMN FINAL	
Compounds	MASS	RT EXP RT REL RT RESPONSE	(ppbv) (ppbv)	
24 trans-1,2-dichloroethene	=== = 96	Compound Not Detected.		
25 Methyl Tert Butyl Ether	73	Compound Not Detected.		
26 Vinyl Acetate	43	4.892 4.832 (0.764) 7470	0.15791 0.212(M)	
27 1.1-Dichloroethane	63	Compound Not Detected.	3122(21)	
\$ 28 Hexane-d14(S)	66	4.954 4.957 (0.774) 265043	11.0499 11.0	
29 Methyl Ethyl Ketone	72	5.036 5.039 (0.786) 93286	8.75800 11.7(M)	
30 n-Hexane	- 57	5.082 5.082 (0.794) 6343		
31 Di-isopropyl Ether	45	Compound Not Detected.		
32 cis-1,2-Dichloroethene	96	Compound Not Detected.		
33 Ethyl Acetate	43	5.272 5.269 (0.823) 4010	0.10399 0.139(QM)	
34 Chloroform	83	Compound Not Detected.	, ,	
35 Ethyl Tert-Butyl Ether	59	Compound Not Detected.		
36 Tetrahydrofuran	42	5.600 5.590 (0.875) 6343	0.45568 0.611(QM)	
37 1,1,1-Trichloroethane	97	5.998 5.905 (0.921) 6397	0.10900 0.146(M)	
38 1,2-Dichloroethane	62	Compound Not Detected.		
39 Benzene	78	6.190 6.203 (0.967) 5880	0.10167 0.136	
40 Carbon tetrachloride	117	Compound Not Detected.		
41 Cyclchexane	56	Compound Not Detected.		
42 Tert Amyl Methyl Ether	73	Compound Not Detected.		5.34 = 34.45
* 43 1,4-Difluorobenzene	114	6.403 6.413 (1.000) 423357	10.0000	F 3 V 1
44 2,2,4-Trimethylpentane	57	6.577 6.590 (1.027) 96042	1.46745 1.97	5,3/4 39,43
45 Heptane	43	6.758 6.761 (1.055) 11566	0.51144 0.685(M)	
46 1,2-Dichloropropane	63	Compound Not Detected.		20,1
47 Trichloroethene	130	6.863 6.869 (1.072) 12379	0.55801 0.748	20, 1
48 Bromodichloromethane	83	Compound Not Detected.		
49 1,4-Dioxane	88	Compound Not Detected.		
50 Methylcyclohexane	98	Compound Not Detected.		
51 Methyl Isobutyl Ketone	43	Compound Not Detected.		
52 cis-1,3-Dichloropropene	75	Compound Not Detected.		
53 trans-1,3-Dichloropropene	75	Compound Not Detected.		
S 54 Toluene-d8 (S)	98	8.210 8.213 (1.282) 369961	10.4892 10.5	
55 Toluene	91	8.299 8.309 (1.296) 300323	3.98181 (5.34)	
56 1,1,2-Trichloroethane	97	Compound Not Detected.		
57 Methyl Butyl Ketone	43	Compound Not Detected.		
58 Dibromochloromethane	129	Compound Not Detected.		
59 1,2-Dibromoethane	107	Compound Not Detected.		
60 Tetrachloroethene	166	9.302 9.302 (0.922) 6805	0.17743 0.238(M)	
* 61 Chlorobenzene - d5	117	10.386 10.089 (1.000) 205773	10.0000	
62 Chlorobenzene	112	Compound Not Detected.		
63 Ethyl Benzene	91	10.437 10.440 (1.035) 125281	1.36022 1.82	
64 m&p-Xylene	91	10.604 10.611 (1.051) 536797	6.46044 8.66	
65 Bromoform	173	Compound Not Detected.		
66 Styrene	104	Compound Not Detected.		
67 o-Xylene	91	11.181 11.191 (1.109) 157534	1.95345 2.62	
68 1,1,2,2-Tetrachloroethane	83	Compound Not Detected.		
69 Isopropylbenzene	105	Compound Not Detected.		
70 N-Propylbenzene	91	12.532 12.539 (1.243) 2035	0.35120 0.471(M)	
71 4-Ethyltcluene	105	Compound Not Detected.		
72 1,3,5-Trimethylbenzene	105	12.818 12.844 (1.271) 1659	0.17240 0.231(M)	
73 Tert-Butyl Benzene	119	Compound Not Detected.		
74 1,2,4-Trimethylbenzene	105	Compound Not Detected.		
75 1,3-Dichlorobenzene	146	Compound Not Detected.		
76 Sec- Butylbenzene	105	Compound Not Detected.		
, \$ 77 1,4-dichlorobenzene-d4 (S)) 50	13.877 13.893 (1.376) 98736	9.25166 9.25	
78 Benzyl Chloride	91	Compound Not Detected.		

10263934 Page 493 of 586

APPENDIX E—	COMPARISON TO	BACKGROUND	GROUND		

TABLE E-1

COMPARISON OF ROUND 16 IAQ RESULTS TO BACKGROUND CONCENTRATIONS
LOCKHEED MARTIN MIDDLE RIVER COMPLEX, MIDDLE RIVER, MARYLAND
PAGE 1 OF 9

LOCATION ⁽¹⁾		In decaded at Ata		Maximum	Maximum	AIR-001-ER	AIR-0	001-PB	AIR-002-ER	AIR-002-PB	AIR-0	003-ER
SAMPLE ID	OSHA PEL (µg/m3)	Industrial Air Screening	KEY	Background Value - All	Background Value - Round	IA-001-ER-1	IA-001-PB-1	IA-001-PB-1-D Dup	IA-002-ER-1	IA-002-PB-1	IA-003-ER-1	IA-003-ER-1-D Dup
SAMPLE DATE	(,3, ,,	Level (µg/m3)		Rounds	16	20140226	20140226	20140226	20140226	20140226	20140226	20140226
Volatile Organic Compounds (µg/m³)												
BENZENE	319	16	ca	2.8	2.7	0.83	0.86	0.8	1.1	0.65	0.89	1.3
CARBON TETRACHLORIDE	62,900	20	ca	0.8	NA	1.5 U	1.1 U	1.1 U	1.2 U	1.2 U	1.1 U	1.1 U
CHLORODIFLUOROMETHANE	3,590,000	220,000	nc	10.8	10.8	4.8	2.8	2.6	4.3	11.5	4.5 J	12.9 J
CHLOROFORM	240,000	5.3	ca	0.48	NA	2.3 U	1.7 U	1.7 U	1.8 U	1.8 U	1.7 U	1.7 U
DICHLORODIFLUOROMETHANE	4,950,000	440	nc	4.3	3.4	2.5	2.2	2.2	2.5	2	2	2.9
1,1-DICHLOROETHANE	400,000	77	ca	NA	NA	1.9 U	1.4 U	1.4 U	1.5 U	1.5 U	1.4 U	1.4 U
1,2-DICHLOROETHANE	400,000	4.7	ca	1.1	NA	0.94 U	0.69 U	0.69 U	0.74 U	0.74 U	0.69 U	0.69 U
1,1-DICHLOROETHENE		880	nc	NA	NA	1.9 U	1.4 U	1.4 U	1.5 U	1.5 U	1.4 U	1.4 U
CIS-1,2-DICHLOROETHENE	790,000			NA	NA	1.9 U	1.4 U	1.4 U	1.5 U	1.5 U	1.4 U	1.4 U
TRANS-1,2-DICHLOROETHENE	790,000			NA	NA	1.9 U	1.4 U	1.4 U	19.9	1.5 U	17.4 J	70.1 J
ETHYLBENZENE	435,000	49	ca	2.6	2.6	2 U	1.6	1.5 U	5.2	1.2 J	5 J	17.1 J
METHYL TERT-BUTYL ETHER	180,000 ^A	470	ca	0.7	NA	1.7 U	1.2 U	1.2 U	1.3 U	1.3 U	1.2 U	1.2 U
METHYLENE CHLORIDE	87,000	2,600	nc	580	580	20.8	9.6	6.5	14.4	11.3	605 J	22.2 J
NAPHTHALENE	50,000	3.6	ca	8.1	3.5	2.5 UJ	1.2 J	1.8 U	1.9 UJ	1.3 J	1.1 J	1.8 UJ
TETRACHLOROETHENE	678,000	180	nc	1.9	1.9	1.6 U	1.2 U	1.2 U	1.2 U	1.2 U	1.2 U	1.2 U
TOLUENE	754,000	22,000	nc	24.0	24.0	2.7	1.4	1.4	14.8	3.9	14.6 J	44.7 J
1,2,4-TRICHLOROBENZENE	40,000 N	8.8	nc	0.41	NA	3.5 UJ	2.5 U	2.5 U	2.7 UJ	2.7 U	2.5 U	2.5 UJ
1,1,1-TRICHLOROETHANE	1,900,000	22,000	nc	0.95	NA	2.5 U	1.9 U	1.9 U	2 U	2 U	1.9 U	1.9 U
1,1,2-TRICHLOROETHANE	45,000	0.88	nc	NA	NA	1.3 U	0.92 U	0.92 U	0.99 U	0.99 U	0.92 U	0.92 U
TRICHLOROETHENE	537,000	8.8	nc	4.2	4.2	1.3 U	0.92 U	0.92 U	0.99 U	0.99 U	0.92 U	0.92 U
1,2,3-TRIMETHYLBENZENE	123,000	22	nc	1.4	1.4	2.3 U	0.97	0.34 U	1.8 U	0.94	0.88	1.7 U
1,2,4-TRIMETHYLBENZENE	123,000	31	nc	2.8	2.8	2.3 U	1.7	1.7 U	1.8 U	1.4 J	1.3 J	3
1,3,5-TRIMETHYLBENZENE	123,000	22	nc ⁽²⁾	1.9	1.7	2.3 U	1.5 J	1.7 U	1.8 U	1.8 U	1.4 J	1.7 U
VINYL CHLORIDE	21,560	28	ca	NA	NA	0.6 U	0.44 U	0.44 U	0.47 U	0.47 U	0.44 U	0.44 U
M+P-XYLENES	434000	440	nc	19.0	5.8	4 U	2.9 J	1.5 J	25.7	1.5 J	21.5 J	81.5 J
O-XYLENE	434000	440	nc	5.2	2.3	2 U	0.95 J	1.5 U	8.9	1.6 U	7.8 J	29.5 J
TOTAL XYLENES	434000	440	nc	8.1	8.1	0	3.85 J	1.5 J	34.6	1.5 J	29.3	111 J

TABLE E-1

COMPARISON OF ROUND 16 IAQ RESULTS TO BACKGROUND CONCENTRATIONS
LOCKHEED MARTIN MIDDLE RIVER COMPLEX, MIDDLE RIVER, MARYLAND
PAGE 2 OF 9

LOCATION ⁽¹⁾				Maximum	Maximum	AIR-	015-A	AIR-018-A	AIR-033-B	AIR-060-C	AIR-063-B	AIR-065-C
SAMPLE ID	OSHA PEL (µg/m3)	Industrial Air Screening Level (µg/m3)	KEY	Background Value - All	Background Value - Round	IA-015-A-16	IA-015-A-16-D Dup	IA-018-A-16	IA-033-B-16	IA-060-C-16	IA-063-B-16	IA-065-C-16
SAMPLE DATE		Level (µg/III3)		Rounds	16	20140225	20140225	20140225	20140224	20140224	20140224	20140224
Volatile Organic Compounds (µg/m³)												
BENZENE	319	16	ca	2.8	2.7	1.2	1.2	0.75	0.87	0.81	0.68 U	0.64
CARBON TETRACHLORIDE	62,900	20	ca	0.8	NA	1.1 U	1.6 U	1.1 U	1.2 U	1.1 U	1.3 U	1.1 U
CHLORODIFLUOROMETHANE	3,590,000	220,000	nc	10.8	10.8	7.5	8.2	2.6	42.6	9.4	6.9	23.9
CHLOROFORM	240,000	5.3	ca	0.48	NA	1.7 U	2.5 U	1.4 J	1.8 U	1.7 U	2.1 U	1.7 U
DICHLORODIFLUOROMETHANE	4,950,000	440	nc	4.3	3.4	2.9	3.2	2	3.1	2.4	2.5	2.3
1,1-DICHLOROETHANE	400,000	77	ca	NA	NA	1.4 U	2 U	1.4 U	1.5 U	1.4 U	1.7 U	1.4 U
1,2-DICHLOROETHANE	400,000	4.7	ca	1.1	NA	0.69 U	1 U	0.71 U	0.74 U	0.71 U	0.86 U	0.69 U
1,1-DICHLOROETHENE		880	nc	NA	NA	1.4 U	2 U	1.4 U	1.5 U	1.4 U	1.7 U	1.4 U
CIS-1,2-DICHLOROETHENE	790,000			NA	NA	1.4 U	2 U	1.4 U	1.5 U	1.4 U	1.7 U	1.4 U
TRANS-1,2-DICHLOROETHENE	790,000			NA	NA	1.4 U	2 U	1.4 U	1.5 U	1.4 U	1.7 U	1.4 U
ETHYLBENZENE	435,000	49	ca	2.6	2.6	0.77 J	2.2 U	1.5 U	1.7	1.5 U	1.8 U	1.5 U
METHYL TERT-BUTYL ETHER	180,000 ^A	470	ca	0.7	NA	1.2 U	1.8 U	1.3 U	1.3 U	1.3 U	1.5 U	1.2 U
METHYLENE CHLORIDE	87,000	2,600	nc	580	580	13.7 J	7.4 J	14.4	12.6	8.1	4.9 J	5.8 J
NAPHTHALENE	50,000	3.6	ca	8.1	3.5	1.8 UJ	2.1 J	2.8	4 J	3.6 J	5.6 U	5.1
TETRACHLOROETHENE	678,000	180	nc	1.9	1.9	1.2 U	1.7 U	1.2 U	1.2 U	1.2 U	1.4 U	1.2 U
TOLUENE	754,000	22,000	nc	24.0	24.0	15.6	16.9	1.7	44.1	3.8	15.1	2.1
1,2,4-TRICHLOROBENZENE	40,000 N	8.8	nc	0.41	NA	2.5 UJ	3.8 U	2.6 U	6.8 U	6.6 U	7.9 U	6.3 U
1,1,1-TRICHLOROETHANE	1,900,000	22,000	nc	0.95	NA	1.9 U	2.8 U	1.9 U	2 U	1.9 U	2.3 U	1.9 U
1,1,2-TRICHLOROETHANE	45,000	0.88	nc	NA	NA	0.92 U	1.4 U	0.96 U	0.99 U	0.96 U	1.2 U	0.92 U
TRICHLOROETHENE	537,000	8.8	nc	4.2	4.2	0.92 U	1.4 U	1	0.99 U	0.96 U	1.2 U	0.92 U
1,2,3-TRIMETHYLBENZENE	123,000	22	nc	1.4	1.4	1.7 U	0.5 U	0.35 U	0.36 U	0.35 U	0.42 U	0.34 U
1,2,4-TRIMETHYLBENZENE	123,000	31	nc	2.8	2.8	1.7 U	2.5 U	1.7 U	1.4 J	1.7 U	1.1 J	1.7 U
1,3,5-TRIMETHYLBENZENE	123,000	22	nc ⁽²⁾	1.9	1.7	1.7 U	2.5 U	1.7 U	1.8 U	1.7 U	2.1 U	1.7 U
VINYL CHLORIDE	21,560	28	ca	NA	NA	0.44 U	0.65 U	0.45 U	0.47 U	0.45 U	0.55 U	0.44 U
M+P-XYLENES	434000	440	nc	19.0	5.8	3.3	3.4 J	3.1 U	7.4	2.5 J	2.7 J	3 U
O-XYLENE	434000	440	nc	5.2	2.3	1.3 J	1.4 J	1.5 U	2.5	0.98 J	0.95 J	1.5 U
TOTAL XYLENES	434000	440	nc	8.1	8.1	4.6 J	4.8 J	0	9.9	3.48	3.65 J	0

TABLE E-1

COMPARISON OF ROUND 16 IAQ RESULTS TO BACKGROUND CONCENTRATIONS
LOCKHEED MARTIN MIDDLE RIVER COMPLEX, MIDDLE RIVER, MARYLAND
PAGE 3 OF 9

LOCATION ⁽¹⁾ SAMPLE ID SAMPLE DATE	OSHA PEL (µg/m3)	Industrial Air Screening Level (µg/m3)	KEY	Maximum Background Value - All Rounds	Maximum Background Value - Round 16	AIR-075-A IA-075-A-16 20140225	AIR-076-A IA-076-A-16 20140225	AIR-079-A IA-079-A-16 20140225	AIR-081-A IA-081-A-16 20140225	AIR-081-A IA-081-A-16R 4/17/2014	AIR-088-C IA-088-C-16 20140224	AIR-093-A IA-093-A-16 20140225
Volatile Organic Compounds (µg/m³)												
BENZENE	319	16	ca	2.8	2.7	15.9	0.96	0.88	1.4	0.44	11.8 U	0.98
CARBON TETRACHLORIDE	62,900	20	ca	0.8	NA	1.2 U	1.2 U	1.2 U	1.7 U	0.86 U	23.3 U	1.7 U
CHLORODIFLUOROMETHANE	3,590,000	220,000	nc	10.8	10.8	3.9	2.9	4.8	36.6	28	7.3 U	4.4
CHLOROFORM	240,000	5.3	ca	0.48	NA	1.9 U	1.9 U	1.9 U	2.6 U	1.3 U	36 U	2.6 U
DICHLORODIFLUOROMETHANE	4,950,000	440	nc	4.3	3.4	2.2	2.1	2.4	2.9	2.1	36.7 U	3.1
1,1-DICHLOROETHANE	400,000	77	ca	NA	NA	1.5 U	1.5 U	1.5 U	2.2 U	1.1 U	29.8 U	2.1 U
1,2-DICHLOROETHANE	400,000	4.7	ca	1.1	NA	0.77 U	0.77 U	0.77 U	1.1 U	0.55 U	14.9 U	1.1 U
1,1-DICHLOROETHENE		880	nc	NA	NA	1.5 U	1.5 U	1.5 U	2.2 U	1.1 U	29.5 U	2.1 U
CIS-1,2-DICHLOROETHENE	790,000			NA	NA	1.5 U	1.5 U	1.5 U	2.2 U	1.1 U	29.5 U	2.1 U
TRANS-1,2-DICHLOROETHENE	790,000			NA	NA	1.5 U	1.5 U	1.5 U	2.2 U	1.1 U	29.5 U	2.1 U
ETHYLBENZENE	435,000	49	ca	2.6	2.6	0.87 J	0.83 J	1.6 U	36.6	8	32 UJ	2.3 U
METHYL TERT-BUTYL ETHER	180,000 ^A	470	ca	0.7	NA	1.4 U	1.4 U	1.4 U	1.9 U	0.98 U	26.5 U	1.9 U
METHYLENE CHLORIDE	87,000	2,600	nc	580	580	14.7	9.8	12.7	37	1.9 J	33.6 J	14
NAPHTHALENE	50,000	3.6	ca	8.1	3.5	3.6	3.6	2.1	3.7	3.6 U	96.7 UJ	2.8
TETRACHLOROETHENE	678,000	180	nc	1.9	1.9	1.3 U	1.3 U	1.3 U	1.8 U	1.6	25.1 U	1.8 U
TOLUENE	754,000	22,000	nc	24.0	24.0	49.3	54.5	41.8	163	20.4	28 U	3
1,2,4-TRICHLOROBENZENE	40,000 ^N	8.8	nc	0.41	NA	2.8 U	2.8 U	2.8 U	4 U	5.1 U	137 UJ	3.9 U
1,1,1-TRICHLOROETHANE	1,900,000	22,000	nc	0.95	NA	2.1 U	2.1 U	2.1 U	3 U	0.81 J	40.4 U	2.9 U
1,1,2-TRICHLOROETHANE	45,000	0.88	nc	NA	NA	1 U	1 U	1 U	1.5 U	0.74 U	20 U	1.4 U
TRICHLOROETHENE	537,000	8.8	nc	4.2	4.2	1.6	1.9	1 U	19.2	4.1	20 U	5.9
1,2,3-TRIMETHYLBENZENE	123,000	22	nc	1.4	1.4	0.37 U	0.37 U	0.37 U	3.6	1.3 U	7.3 UJ	0.52 U
1,2,4-TRIMETHYLBENZENE	123,000	31	nc	2.8	2.8	1.9 U	1.9 U	1.9 U	11.7	1.3 U	36.3 UJ	2.6 U
1,3,5-TRIMETHYLBENZENE	123,000	22	nc ⁽²⁾	1.9	1.7	1.9 U	1.9 U	1.9 U	4.9	1.2 J	36.3 UJ	2.6 U
VINYL CHLORIDE	21,560	28	ca	NA	NA	0.49 U	0.49 U	0.49 U	0.69 U	0.35 U	9.5 U	0.67 U
M+P-XYLENES	434000	440	nc	19.0	5.8	3 J	2.9 J	2.6 J	161	38.2	64 UJ	4.5 U
O-XYLENE	434000	440	nc	5.2	2.3	1.1 J	1.2 J	0.9 J	48.5	11.6	32 UJ	2.3 U
TOTAL XYLENES	434000	440	nc	8.1	8.1	4.1 J	4.1 J	3.5 J	209.5	49.8	0	0

TABLE E-1

COMPARISON OF ROUND 16 IAQ RESULTS TO BACKGROUND CONCENTRATIONS
LOCKHEED MARTIN MIDDLE RIVER COMPLEX, MIDDLE RIVER, MARYLAND
PAGE 4 OF 9

LOCATION ⁽¹⁾ SAMPLE ID SAMPLE DATE	OSHA PEL (µg/m3)	Industrial Air Screening Level (µg/m3)	KEY	Maximum Background Value - All Rounds	Maximum Background Value - Round 16	AIR-093X-A IA-093X-A-16 20140226	AIR-094-A IA-094-A-16 20140225	AIR-101-B IA-101-B-16 20140224	AIR-102-C IA-102-C-16 20140224	AIR-105-Z IA-105-Z-16 20140224	AIR-108-A IA-108-A-16 20140225	AIR-1 IA-113-C-16 20140224
Volatile Organic Compounds (µg/m³)												
BENZENE	319	16	ca	2.8	2.7	0.58	0.93	0.65	0.61 J	1.6	0.9	1.9
CARBON TETRACHLORIDE	62,900	20	ca	0.8	NA	1.1 U	1.1 U	1.2 U	1.2 U	1.2 U	1.2 U	3.4 U
CHLORODIFLUOROMETHANE	3,590,000	220,000	nc	10.8	10.8	1.4	1.7	18.9	1.8 J	1.4	4	6.5 J
CHLOROFORM	240,000	5.3	ca	0.48	NA	1.7 U	1.7 U	1.9 U	1.9 U	1.8 U	1.8 U	5.3 U
DICHLORODIFLUOROMETHANE	4,950,000	440	nc	4.3	3.4	1.9	2.2	2.7	2.6	1.8	2.2	4.7 J
1,1-DICHLOROETHANE	400,000	77	ca	NA	NA	1.4 U	1.4 U	1.5 U	1.6 U	1.5 U	1.5 U	43.7
1,2-DICHLOROETHANE	400,000	4.7	ca	1.1	NA	0.71 U	0.71 U	0.77 U	0.8 U	0.74 U	0.74 U	2.2 U
1,1-DICHLOROETHENE		880	nc	NA	NA	0.75 J	1.4 U	1.5 U	1.6 U	1.5 U	1.5 U	17.1
CIS-1,2-DICHLOROETHENE	790,000			NA	NA	0.91 J	1.4 U	1.5 U	1.6 U	1.5 U	1.5 U	4.3 U
TRANS-1,2-DICHLOROETHENE	790,000			NA	NA	1.4 U	1.4 U	1.5 U	1.6 U	1.5 U	1.5 U	4.3 U
ETHYLBENZENE	435,000	49	ca	2.6	2.6	1.1 J	1.5 U	1.6 U	1.7 U	113	0.94 J	4.7 U
METHYL TERT-BUTYL ETHER	180,000 ^A	470	ca	0.7	NA	1.3 U	1.3 U	1.4 U	1.4 U	1.3 U	1.3 U	3.9 U
METHYLENE CHLORIDE	87,000	2,600	nc	580	580	6.6	5	11.5	8.6	14.8	8.8	79.7 J
NAPHTHALENE	50,000	3.6	ca	8.1	3.5	1.7 J	2.2	1.3 J	1.1 J	3.2 J	2.2	14.1 U
TETRACHLOROETHENE	678,000	180	nc	1.9	1.9	1.2 U	1.2 U	1.3 U	1.3 U	1.2 U	1.2 U	3.7 U
TOLUENE	754,000	22,000	nc	24.0	24.0	1.2 J	1.6	17.1	3.2	9300	43.8	24.7
1,2,4-TRICHLOROBENZENE	40,000 N	8.8	nc	0.41	NA	2.6 U	2.6 U	2.8 U	2.9 U	6.8 U	2.7 U	20 UJ
1,1,1-TRICHLOROETHANE	1,900,000	22,000	nc	0.95	NA	0.87 J	1.9 U	2.1 U	2.2 U	2 U	2 U	13.2
1,1,2-TRICHLOROETHANE	45,000	0.88	nc	NA	NA	0.96 U	0.96 U	1 U	1.1 U	0.99 U	0.99 U	2.9 U
TRICHLOROETHENE	537,000	8.8	nc	4.2	4.2	8.4	0.96 U	1 U	1.1 U	0.99 U	0.99 U	20
1,2,3-TRIMETHYLBENZENE	123,000	22	nc	1.4	1.4	0.35 U	0.35 U	0.37 U	0.39 U	0.36 U	0.36 U	1.1 U
1,2,4-TRIMETHYLBENZENE	123,000	31	nc	2.8	2.8	1.3 J	1.7 U	1.9 U	1.9 U	1.7 J	1.8 U	3.2 J
1,3,5-TRIMETHYLBENZENE	123,000	22	nc ⁽²⁾	1.9	1.7	1.7 U	1.7 U	1.9 U	1.9 U	1.8 U	1.8 U	5.3 U
VINYL CHLORIDE	21,560	28	ca	NA	NA	0.45 U	0.45 U	0.49 U	0.5 U	0.47 U	0.47 U	1.4 U
M+P-XYLENES	434000	440	nc	19.0	5.8	1.4 J	3.1 U	2.5 J	1.9 J	476	3.4	76.6 J
O-XYLENE	434000	440	nc	5.2	2.3	1.5 U	1.5 U	0.95 J	1.7 U	142	1.3 J	26.6 J
TOTAL XYLENES	434000	440	nc	8.1	8.1	1.4 J	0	3.45 J	1.9 J	618	4.7 J	103.2 J

TABLE E-1

COMPARISON OF ROUND 16 IAQ RESULTS TO BACKGROUND CONCENTRATIONS
LOCKHEED MARTIN MIDDLE RIVER COMPLEX, MIDDLE RIVER, MARYLAND
PAGE 5 OF 9

LOCATION ⁽¹⁾ SAMPLE ID SAMPLE DATE	OSHA PEL (µg/m3)	Industrial Air Screening Level (µg/m3)	KEY	Maximum Background Value - All Rounds	Maximum Background Value - Round 16	13-C IA-113-C-16-D Dup 20140224	AIR-113-C IA-113-C-16R 4/17/2014	AIR-117-A IA-117-A-16 20140225	AIR-117X-A IA-117X-A-16 20140226	AIR-118-A IA-118-A-16 20140225	AIR-121-B IA-121-B-16 20140224	AIR-123-Z IA-123-Z-16 20140224
Volatile Organic Compounds (µg/m³)												
BENZENE	319	16	ca	2.8	2.7	0.89	0.52 U	0.89	0.44 J	1	0.78	2.3
CARBON TETRACHLORIDE	62,900	20	ca	0.8	NA	1.1 U	1 U	1.2 U	1.2 U	1.2 U	1.2 U	1.2 U
CHLORODIFLUOROMETHANE	3,590,000	220,000	nc	10.8	10.8	3.1 J	4	3.5	1.5	12.4	37.5	1.3
CHLOROFORM	240,000	5.3	ca	0.48	NA	1.7 U	1.6 U	1.9 U	1.8 U	1.8 U	1.9 U	1.9 U
DICHLORODIFLUOROMETHANE	4,950,000	440	nc	4.3	3.4	2.1	2.5	2	1.4 J	1.9	1.9	2.1
1,1-DICHLOROETHANE	400,000	77	ca	NA	NA	1.4 U	1.3 U	1.5 U	1.5 U	1.5 U	1.5 U	1.5 U
1,2-DICHLOROETHANE	400,000	4.7	ca	1.1	NA	0.69 U	0.66 U	0.77 U	0.74 U	0.74 U	0.77 U	0.77 U
1,1-DICHLOROETHENE		880	nc	NA	NA	1.4 U	1.3 U	1.5 U	1.5 U	1.5 U	1.5 U	1.5 U
CIS-1,2-DICHLOROETHENE	790,000			NA	NA	1.4 U	1.3 U	1.5 U	1.5 U	1.5 U	1.5 U	1.5 U
TRANS-1,2-DICHLOROETHENE	790,000			NA	NA	1.4 U	1.3 U	1.5 U	1.5 U	1.5 U	1.5 U	1.5 U
ETHYLBENZENE	435,000	49	ca	2.6	2.6	1.5 U	1.2 J	0.84 J	1.3 J	1.4 J	1.6 U	164
METHYL TERT-BUTYL ETHER	180,000 ^A	470	ca	0.7	NA	1.2 U	1.2 U	1.4 U	1.3 U	1.3 U	1.4 U	1.4 U
METHYLENE CHLORIDE	87,000	2,600	nc	580	580	5.1 J	3.1 J	8.9	89.7	8.8	4.5 J	8.7
NAPHTHALENE	50,000	3.6	ca	8.1	3.5	3.2 J	2.1 J	2.2	1.3 J	2.2	3.4 J	5 U
TETRACHLOROETHENE	678,000	180	nc	1.9	1.9	1.2 U	1.6	1.3 U	1.2 U	1.2 U	1.3 U	1.3 U
TOLUENE	754,000	22,000	nc	24.0	24.0	1.3 U	5.1	67.5	15.7	16.5	19.4	20000
1,2,4-TRICHLOROBENZENE	40,000 N	8.8	nc	0.41	NA	6.3 U	6.1 U	2.8 U	2.7 U	2.7 U	7 U	7 U
1,1,1-TRICHLOROETHANE	1,900,000	22,000	nc	0.95	NA	1.9 U	1.8 U	2.1 U	2 U	1.2 J	2.1 U	2.1 U
1,1,2-TRICHLOROETHANE	45,000	0.88	nc	NA	NA	0.92 U	0.89 U	1 U	0.99 U	0.99 U	1 U	1 U
TRICHLOROETHENE	537,000	8.8	nc	4.2	4.2	0.92 U	0.89 U	1 U	0.99 U	5.6	1.1	1 U
1,2,3-TRIMETHYLBENZENE	123,000	22	nc	1.4	1.4	0.34 U	1.6 U	0.37 U	0.36 U	0.36 U	0.37 U	0.37 U
1,2,4-TRIMETHYLBENZENE	123,000	31	nc	2.8	2.8	0.94 J	1.6 U	1.9 U	1.2 J	1.8 U	1.9 U	1.3 J
1,3,5-TRIMETHYLBENZENE	123,000	22	nc ⁽²⁾	1.9	1.7	1.7 U	4 U	1.9 U	1.8 U	1.8 U	1.9 U	1.9 U
VINYL CHLORIDE	21,560	28	ca	NA	NA	0.44 U	0.42 U	0.49 U	0.47 U	0.47 U	0.49 U	0.49 U
M+P-XYLENES	434000	440	nc	19.0	5.8	3.4 J	2 J	2.7 J	1.9 J	5.6	2.8 J	1030
O-XYLENE	434000	440	nc	5.2	2.3	1.2 J	0.9 J	0.92 J	0.74 J	2	1.1 J	210
TOTAL XYLENES	434000	440	nc	8.1	8.1	4.6 J	2.9	3.62 J	2.64 J	7.6	3.9 J	1240

TABLE E-1

COMPARISON OF ROUND 16 IAQ RESULTS TO BACKGROUND CONCENTRATIONS
LOCKHEED MARTIN MIDDLE RIVER COMPLEX, MIDDLE RIVER, MARYLAND
PAGE 6 OF 9

LOCATION ⁽¹⁾				Maximum	Maximum	AIR-126-C	AIR-128-C	AIR-130-C	AIR-	133-C	AIR-135-C	AIR-136-A
SAMPLE ID	OSHA PEL (µg/m3)	Industrial Air Screening Level (µg/m3)	KEY	Background Value - All	Background Value - Round	IA-126-C-16	IA-128-C-16	IA-130-C-16	IA-133-C-16	IA-133-C-16-D Dup	IA-135-C-16	IA-136-A-16
SAMPLE DATE		Level (µg/III3)		Rounds	16	20140224	20140224	20140224	20140224	20140224	20140224	20140225
Volatile Organic Compounds (µg/m³)												
BENZENE	319	16	ca	2.8	2.7	0.79	0.84	1.3	0.93	0.83	0.8	0.94
CARBON TETRACHLORIDE	62,900	20	ca	0.8	NA	1.1 U	1.2 U	1.1 U	1.1 U	1.1 U	1.2 U	1.2 U
CHLORODIFLUOROMETHANE	3,590,000	220,000	nc	10.8	10.8	2	23.2	4	4.4	3.9	2.1	3.3
CHLOROFORM	240,000	5.3	ca	0.48	NA	1.7 U	1.9 U	1.7 U	1.7 U	1.7 U	1.8 U	1.8 U
DICHLORODIFLUOROMETHANE	4,950,000	440	nc	4.3	3.4	2.3	2.4	2.4	2.4	2.3	2.3	2.2
1,1-DICHLOROETHANE	400,000	77	ca	NA	NA	1.4 U	1.5 U	1.4 U	1.4 U	1.4 U	1.5 U	1.5 U
1,2-DICHLOROETHANE	400,000	4.7	ca	1.1	NA	0.71 U	0.77 U	0.69 U	0.69 U	0.69 U	0.74 U	0.74 U
1,1-DICHLOROETHENE		880	nc	NA	NA	1.4 U	1.5 U	1.4 U	1.4 U	1.4 U	1.5 U	1.5 U
CIS-1,2-DICHLOROETHENE	790,000			NA	NA	1.4 U	1.5 U	1.4 U	1.4 U	1.4 U	1.5 U	1.5 U
TRANS-1,2-DICHLOROETHENE	790,000			NA	NA	1.4 U	1.5 U	1.4 U	1.4 U	1.4 U	1.5 U	1.5 U
ETHYLBENZENE	435,000	49	ca	2.6	2.6	1.5 U	1.6 U	1.5 U	1.5 U	1.5 U	1.6 U	0.75 J
METHYL TERT-BUTYL ETHER	180,000 ^A	470	ca	0.7	NA	1.3 U	1.4 U	1.2 U	1.2 U	1.2 U	1.3 U	1.3 U
METHYLENE CHLORIDE	87,000	2,600	nc	580	580	14.6	14.5	14.1	8.4 J	1.9 J	13.2	7.3
NAPHTHALENE	50,000	3.6	ca	8.1	3.5	3.4 J	3.9 J	3.6 J	3.7 J	3.5 J	4.8 U	2.9
TETRACHLOROETHENE	678,000	180	nc	1.9	1.9	1.2 U	1.3 U	1.2 U	1.2 U	1.2 U	1.2 U	1.2 U
TOLUENE	754,000	22,000	nc	24.0	24.0	6	4.3	3.5	2.9	2.4	1.4 U	53.6
1,2,4-TRICHLOROBENZENE	40,000 ^N	8.8	nc	0.41	NA	6.6 U	7 U	6.3 U	6.3 U	6.3 U	6.8 U	2.7 U
1,1,1-TRICHLOROETHANE	1,900,000	22,000	nc	0.95	NA	1.9 U	2.1 U	1.9 U	1.9 U	1.9 U	2 U	2 U
1,1,2-TRICHLOROETHANE	45,000	0.88	nc	NA	NA	0.96 U	1 U	0.92 U	0.92 U	0.92 U	0.99 U	0.99 U
TRICHLOROETHENE	537,000	8.8	nc	4.2	4.2	0.96 U	1 U	0.92 U	1.2	1.4	0.99 U	4.2
1,2,3-TRIMETHYLBENZENE	123,000	22	nc	1.4	1.4	0.35 U	0.37 U	0.34 U	0.34 U	0.34 U	0.36 U	0.36 U
1,2,4-TRIMETHYLBENZENE	123,000	31	nc	2.8	2.8	1.7 U	1.9 U	1.7 U	1.7 U	1.7 U	1.8 U	1.8 U
1,3,5-TRIMETHYLBENZENE	123,000	22	nc ⁽²⁾	1.9	1.7	1.7 U	1.9 U	1.7 U	1.7 U	1.7 U	1.8 U	1.8 U
VINYL CHLORIDE	21,560	28	ca	NA	NA	0.45 U	0.49 U	0.44 U	0.44 U	0.44 U	0.47 U	0.47 U
M+P-XYLENES	434000	440	nc	19.0	5.8	3.1 U	2.6 J	1.6 J	2.1 J	1.9 J	3.2 U	2.6 J
O-XYLENE	434000	440	nc	5.2	2.3	1.5 U	1.1 J	1.5 U	0.84 J	1.5 U	1.6 U	0.99 J
TOTAL XYLENES	434000	440	nc	8.1	8.1	0	3.7 J	1.6 J	2.94 J	1.9 J	0	3.59 J

TABLE E-1

COMPARISON OF ROUND 16 IAQ RESULTS TO BACKGROUND CONCENTRATIONS
LOCKHEED MARTIN MIDDLE RIVER COMPLEX, MIDDLE RIVER, MARYLAND
PAGE 7 OF 9

LOCATION ⁽¹⁾		Industrial Air		Maximum	Maximum	AIR-138-A	AIR-140-B	AIR-141-C	AIR-142-C	AIR-143-C	AIR-144-C	AIR-145-C
SAMPLE ID	OSHA PEL (µg/m3)	Screening	KEY	Background Value - All	Background Value - Round	IA-138-A-16	IA-140-B-16	IA-141-C-16	IA-142-C-16	IA-143-C-16	IA-144-C-16	IA-145-C-16
SAMPLE DATE		Level (µg/m3)		Rounds	16	20140225	20140226	20140224	20140224	20140224	20140224	20140224
Volatile Organic Compounds (µg/m³)												
BENZENE	319	16	ca	2.8	2.7	1.1	0.58 U	0.92	0.67	0.81	0.71	3.6
CARBON TETRACHLORIDE	62,900	20	ca	0.8	NA	1.7 U	1.2 U	1.1 U	1.2 U	1.2 U	1.2 U	1.4
CHLORODIFLUOROMETHANE	3,590,000	220,000	nc	10.8	10.8	4.8	13.6	7.1	1.9	2.5	18	37.2
CHLOROFORM	240,000	5.3	ca	0.48	NA	2.6 U	1.8 U	1.7 U	1.9 U	1.8 U	1.9 U	1.9 U
DICHLORODIFLUOROMETHANE	4,950,000	440	nc	4.3	3.4	3	2.4	3	2	2.4	2	4.8
1,1-DICHLOROETHANE	400,000	77	ca	NA	NA	2.1 U	1.5 U	1.4 U	1.5 U	1.5 U	1.5 U	1.5 U
1,2-DICHLOROETHANE	400,000	4.7	ca	1.1	NA	1.1 U	0.74 U	0.71 U	0.77 U	0.74 U	0.77 U	0.77 U
1,1-DICHLOROETHENE		880	nc	NA	NA	2.1 U	1.5 U	1.4 U	1.5 U	1.5 U	1.5 U	1.5 U
CIS-1,2-DICHLOROETHENE	790,000			NA	NA	2.1 U	1.5 U	1.4 U	1.5 U	1.5 U	1.5 U	1.5 U
TRANS-1,2-DICHLOROETHENE	790,000			NA	NA	2.1 U	1.5 U	1.4 U	1.5 U	1.5 U	1.5 U	1.5 U
ETHYLBENZENE	435,000	49	ca	2.6	2.6	2.3 U	2.1	1.5 U	1.6 U	1.6 U	1.6 U	1.7
METHYL TERT-BUTYL ETHER	180,000 ^A	470	ca	0.7	NA	1.9 U	1.3 U	1.3 U	1.4 U	1.3 U	1.4 U	1.4 U
METHYLENE CHLORIDE	87,000	2,600	nc	580	580	17.2	18.3	7.8	3.8 J	6.1 J	6.6	1140
NAPHTHALENE	50,000	3.6	ca	8.1	3.5	3	6.5 J	4.6 U	3.4 J	4.4 J	3.6 J	4.1 J
TETRACHLOROETHENE	678,000	180	nc	1.9	1.9	1.8 U	1.2 U	1.2 U	1.3 U	1.2 U	1.3 U	1.3 U
TOLUENE	754,000	22,000	nc	24.0	24.0	2.5	84	2.1	1.4 U	1.4 U	3.5	16.2
1,2,4-TRICHLOROBENZENE	40,000 ^N	8.8	nc	0.41	NA	3.9 U	2.7 UJ	6.6 U	7 U	6.8 U	7 U	7 U
1,1,1-TRICHLOROETHANE	1,900,000	22,000	nc	0.95	NA	2.9 U	2 U	1.9 U	2.1 U	2 U	2.1 U	2.1 U
1,1,2-TRICHLOROETHANE	45,000	0.88	nc	NA	NA	1.4 U	0.99 U	0.96 U	1 U	0.99 U	1 U	1 U
TRICHLOROETHENE	537,000	8.8	nc	4.2	4.2	1.6	0.99 U	0.96 U	1 U	0.99 U	1 U	1 U
1,2,3-TRIMETHYLBENZENE	123,000	22	nc	1.4	1.4	0.52 U	1.8 U	0.35 U	0.37 U	0.36 U	0.37 U	0.37 U
1,2,4-TRIMETHYLBENZENE	123,000	31	nc	2.8	2.8	2.6 U	1.8 U	1.7 U	1.9 U	1.2 J	1.9 U	3.4
1,3,5-TRIMETHYLBENZENE	123,000	22	nc ⁽²⁾	1.9	1.7	2.6 U	1.8 U	1.7 U	1.9 U	1.8 U	1.9 U	1 J
VINYL CHLORIDE	21,560	28	ca	NA	NA	0.67 U	0.47 U	0.45 U	0.49 U	0.47 U	0.49 U	0.49 U
M+P-XYLENES	434000	440	nc	19.0	5.8	4.5 U	8.1	1.6 J	1.7 J	3.2 U	2.3 J	6.1
O-XYLENE	434000	440	nc	5.2	2.3	2.3 U	2.6	1.5 U	1.6 U	1.6 U	0.88 J	2.3
TOTAL XYLENES	434000	440	nc	8.1	8.1	0	10.7	1.6 J	1.7 J	0	3.18 J	8.4

TABLE E-1

COMPARISON OF ROUND 16 IAQ RESULTS TO BACKGROUND CONCENTRATIONS
LOCKHEED MARTIN MIDDLE RIVER COMPLEX, MIDDLE RIVER, MARYLAND
PAGE 8 OF 9

LOCATION ⁽¹⁾				Maximum	Maximum	AIR-146-C	AIR-146-VLS	AIR-147-C	AIR-1	47-VLS	AIR-148-C	AIR-148-VLS
SAMPLE ID	OSHA PEL (µg/m3)	Industrial Air Screening Level (µg/m3)	KEY	Background Value - All	Background Value - Round	IA-146-C-16	IA-146-VLS-2	IA-147-C-16	IA-147-VLS-2	IA-147-VLS-2-D Dup	IA-148-C-16	IA-148-VLS-2
SAMPLE DATE		Level (µg/III3)		Rounds	16	20140224	20140226	20140224	20140226	20140226	20140224	20140226
Volatile Organic Compounds (µg/m³)												
BENZENE	319	16	ca	2.8	2.7	0.76	0.66	0.8	2.5 J	0.92 J	0.61	0.98
CARBON TETRACHLORIDE	62,900	20	ca	0.8	NA	1.2 U	1.2 U	1.2 U	1.1 U	1.1 U	1.2 U	1.2 U
CHLORODIFLUOROMETHANE	3,590,000	220,000	nc	10.8	10.8	54.2	2.3	18.2	5	4.6	24.4	3.2
CHLOROFORM	240,000	5.3	ca	0.48	NA	1.8 U	1.9 U	1.9 U	1.7 U	1.7 U	1.9 U	1.8 U
DICHLORODIFLUOROMETHANE	4,950,000	440	nc	4.3	3.4	2.3	1.9	2.1	1.7 U	2.6	2.7	2.7
1,1-DICHLOROETHANE	400,000	77	ca	NA	NA	1.5 U	1.5 U	1.5 U	1.4 U	1.4 U	1.5 U	1.5 U
1,2-DICHLOROETHANE	400,000	4.7	ca	1.1	NA	0.74 U	0.77 U	0.77 U	0.69 U	0.69 U	0.77 U	0.74 U
1,1-DICHLOROETHENE		880	nc	NA	NA	1.5 U	1.5 U	1.5 U	1.4 U	1.4 U	1.5 U	1.5 U
CIS-1,2-DICHLOROETHENE	790,000			NA	NA	1.5 U	1.5 U	1.5 U	1.4 U	1.4 U	1.5 U	1.5 U
TRANS-1,2-DICHLOROETHENE	790,000			NA	NA	1.5 U	1.5 U	1.5 U	1.4 U	1.4 U	1.5 U	1.5 U
ETHYLBENZENE	435,000	49	ca	2.6	2.6	1.6 U	9.8	1.6 U	12.1	14.7	1.6 U	17.9
METHYL TERT-BUTYL ETHER	180,000 ^A	470	ca	0.7	NA	1.3 U	1.4 U	1.4 U	1.2 U	1.2 U	1.4 U	1.3 U
METHYLENE CHLORIDE	87,000	2,600	nc	580	580	6.7	6.8	19.1	483 J	11.7 J	11	21.9
NAPHTHALENE	50,000	3.6	ca	8.1	3.5	3.7 J	1.4 J	4.9 J	71 J	1.8 UJ	1.2 J	1.9 UJ
TETRACHLOROETHENE	678,000	180	nc	1.9	1.9	1.2 U	1.3 U	1.3 U	1.2 U	1.2 U	1.3 U	1.2 U
TOLUENE	754,000	22,000	nc	24.0	24.0	2.5	10	5.4	120 J	18.9 J	2.9	17.4
1,2,4-TRICHLOROBENZENE	40,000 N	8.8	nc	0.41	NA	6.8 U	2.8 U	7 U	2.5 UJ	2.5 UJ	2.8 U	2.7 UJ
1,1,1-TRICHLOROETHANE	1,900,000	22,000	nc	0.95	NA	2 U	2.1 U	2.1 U	1.9 U	1.9 U	2.1 U	2 U
1,1,2-TRICHLOROETHANE	45,000	0.88	nc	NA	NA	0.99 U	1 U	1 U	0.92 U	0.92 U	1 U	0.99 U
TRICHLOROETHENE	537,000	8.8	nc	4.2	4.2	0.99 U	1 U	1 U	0.92 U	0.92 U	1 U	0.99 U
1,2,3-TRIMETHYLBENZENE	123,000	22	nc	1.4	1.4	0.36 U	1.4	0.37 U	1.3 J	1.6 J	0.37 U	1.8 U
1,2,4-TRIMETHYLBENZENE	123,000	31	nc	2.8	2.8	1.8 U	2.6	1.9 U	4.1	4.9	1.9 U	2.9
1,3,5-TRIMETHYLBENZENE	123,000	22	nc ⁽²⁾	1.9	1.7	1.8 U	1.9 J	1.9 U	1.8	1.7 U	1.9 U	1.8 U
VINYL CHLORIDE	21,560	28	ca	NA	NA	0.47 U	0.49 U	0.49 U	0.44 U	0.44 U	0.49 U	0.47 U
M+P-XYLENES	434000	440	nc	19.0	5.8	2.3 J	26.1	2.7 J	31.9	38.5	2.3 J	47.9
O-XYLENE	434000	440	nc	5.2	2.3	0.88 J	6.8	1.1 J	8.5	10.3	0.93 J	12
TOTAL XYLENES	434000	440	nc	8.1	8.1	3.18 J	32.9	3.8 J	40.4	48.8	3.23 J	59.9

COMPARISON OF ROUND 16 IAQ RESULTS TO BACKGROUND CONCENTRATIONS LOCKHEED MARTIN MIDDLE RIVER COMPLEX, MIDDLE RIVER, MARYLAND PAGE 9 OF 9

TABLE E-1

LOCATION ⁽¹⁾ SAMPLE ID	OSHA PEL (µg/m3)	Industrial Air Screening Level (µg/m3)	KEY	Maximum Background Value - All	Maximum Background Value - Round	AIR-149-VLS IA-149-VLS-2	AIR-150-VLS IA-150-VLS-2	AIR-151-VLS IA-151-VLS-2	AIR-152-VLS IA-152-VLS-2
SAMPLE DATE				Rounds	16	20140226	20140226	20140226	20140226
Volatile Organic Compounds (µg/m³)	-								
BENZENE	319	16	ca	2.8	2.7	0.66	0.67	0.75	0.83
CARBON TETRACHLORIDE	62,900	20	ca	0.8	NA	1.2 U	1.2 U	1.1 U	1.2 U
CHLORODIFLUOROMETHANE	3,590,000	220,000	nc	10.8	10.8	2	2.1	2.7	3.8
CHLOROFORM	240,000	5.3	ca	0.48	NA	1.8 U	1.8 U	1.7 U	1.8 U
DICHLORODIFLUOROMETHANE	4,950,000	440	nc	4.3	3.4	1.8	1.9	2.4	2.6
1,1-DICHLOROETHANE	400,000	77	ca	NA	NA	1.5 U	1.5 U	1.4 U	1.5 U
1,2-DICHLOROETHANE	400,000	4.7	ca	1.1	NA	0.74 U	0.74 U	0.69 U	0.74 U
1,1-DICHLOROETHENE		880	nc	NA	NA	1.5 U	1.5 U	1.4 U	1.5 U
CIS-1,2-DICHLOROETHENE	790,000			NA	NA	1.5 U	1.5 U	1.4 U	1.5 U
TRANS-1,2-DICHLOROETHENE	790,000			NA	NA	1.5 U	1.5 U	1.4 U	1.5 U
ETHYLBENZENE	435,000	49	ca	2.6	2.6	10.5	12.8	1.5 U	1.6 U
METHYL TERT-BUTYL ETHER	180,000 ^A	470	ca	0.7	NA	1.3 U	1.3 U	1.2 U	1.3 U
METHYLENE CHLORIDE	87,000	2,600	nc	580	580	11.7	11.8	7.3	19.3
NAPHTHALENE	50,000	3.6	ca	8.1	3.5	1.3 J	1.3 J	1.8 UJ	1.9 UJ
TETRACHLOROETHENE	678,000	180	nc	1.9	1.9	1.2 U	1.2 U	1.2 U	1.2 U
TOLUENE	754,000	22,000	nc	24.0	24.0	9.5	11.2	5	4.4
1,2,4-TRICHLOROBENZENE	40,000 N	8.8	nc	0.41	NA	2.7 U	2.7 U	2.5 UJ	2.7 UJ
1,1,1-TRICHLOROETHANE	1,900,000	22,000	nc	0.95	NA	2 U	2 U	1.9 U	2 U
1,1,2-TRICHLOROETHANE	45,000	0.88	nc	NA	NA	0.99 U	0.99 U	0.92 U	0.99 U
TRICHLOROETHENE	537,000	8.8	nc	4.2	4.2	0.99 U	0.99 U	0.92 U	0.99 U
1,2,3-TRIMETHYLBENZENE	123,000	22	nc	1.4	1.4	1.4	1.4	1.7 U	1.8 U
1,2,4-TRIMETHYLBENZENE	123,000	31	nc	2.8	2.8	2.5	2.7	1.7 U	1.8 U
1,3,5-TRIMETHYLBENZENE	123,000	22	nc ⁽²⁾	1.9	1.7	1.9	1.9	1.7 U	1.8 U
VINYL CHLORIDE	21,560	28	ca	NA	NA	0.47 U	0.47 U	0.44 U	0.47 U
M+P-XYLENES	434000	440	nc	19.0	5.8	27.4	32.2	3 U	3.2 U
O-XYLENE	434000	440	nc	5.2	2.3	7.3	8.8	1.5 U	1.6 U
TOTAL XYLENES	434000	440	nc	8.1	8.1	34.7	41	0	0

Concentrations exceeding the maximum background value from all rounds are italicized and shaded light gray.

Concentrations exceeding the maximum background value from Round 16 are bolded and shaded dark gray.

Concentrations exceeding both the maximum background value from all rounds and the maximum background value from Round 16 are bolded with white font and shaded black.

-- = not available

J = estimated value

NA = not applicable/not available

U = not detected

USEPA = United States Environmental Protection Agency

TOTAL XYELENES values are calculated.

ca = screening value based on 1x 10⁻⁵ carcinogenic risk

nc = screening value based on noncarcinogenic hazard index = 1

A = American Council of Governmental Industrial Hygienists Theshold Limit Value

N = National Institute for Occupational Safety and Health Recommended Exposure Limit OSHA PEL = Occupational Safety and Health Administration Pemissible Exposure Limit

Screening Levels for Chemical Contaminants at Superfund

Sites May-2014

- (1) Locations AIR-081-A and AIR-113-C were resampled in April 2014 (IA-081-A-16R and IA-113-C-16R, respectively). The February 2014 trichloroethene concentrations greater than screening criteria were not confirmed in these April 2014 resamples.
- (2) Value is for 1,2,3-trimethylbenzene.

APPENDIX F—HISTORICAL DATA TABLES AND PLOTS	

location_id	former location id	Site	Area	bldg	area	sample types
AIR-001-C	SV-01-C/IAQ-C01		CBS	С	basement	
AIR-002-C	SV-02-C		CBS	С	first floor	SV
AIR-003-C	SV-03-C		CBS	С	first floor	SV
AIR-004-C	SV-04-C/C-8		CBS	С	basement	IAQ/SV
AIR-005-C	SV-05-C/IAQ-C02		CBS	С	basement	
AIR-006-C	SV-06-C		CBS	С	first floor	SV
AIR-007-C	SV-07-C/IAQ-C03		CBS	С	basement	
AIR-008-C	SV-08-C		CBS	С	first floor	SV
AIR-009-C	SV-09-C/IAQ-C04		CBS	С	basement	
AIR-010-C	SV-10-C		CBS	С	basement	SV
AIR-011-A	SV-11-A		APS	Α	first floor	SV
AIR-012-A	SV-12-A		APS	Α	first floor	SV
AIR-013-A	SV-13-A/A-6		APS	Α	first floor	SV
AIR-014-A	SV-14-A		APS	Α	first floor	SV
AIR-015-A	SV-15-A/IAQ-A05		APS	Α	first floor	IAQ/SV
AIR-016-A	SV-16-A/IAQ-A17		APS	Α	first floor	IAQ/SV
AIR-017-A	SV-17-A/IAQ-A07		APS	Α	first floor	IAQ/SV
AIR-018-A	SV-18-A/IAQ-A06		APS	Α	basement	IAQ/SV
AIR-019-A	A-1		AN	Α	first floor	IAQ
AIR-020-A	A-2		AN	Α	first floor	IAQ
AIR-021-A	A-3		AC	Α	first floor	IAQ
AIR-022-A	A-4		AC	Α	first floor	IAQ
AIR-023-A	A-5		AC	Α	first floor	IAQ
AIR-024-A	A-7		APS	Α	first floor	IAQ
AIR-024-AX	A-7-b		APS	Α	first floor	IAQ
AIR-025-A	A-8		APS	Α	first floor	IAQ
AIR-026-A	A-9		APS	Α	basement	IAQ
AIR-027-A	A-10		AS	Α	first floor	IAQ
AIR-028-A	A-11		AS	Α	first floor	IAQ
AIR-029-B	B-1		BN	В	first floor	IAQ
AIR-030-B	B-2		BN	В	first floor	IAQ
AIR-030-BX	B-2-b		BN	В	first floor	IAQ
AIR-031-B	B-3		BC	В	first floor	IAQ
AIR-032-B	B-4		ВС	В	first floor	IAQ
AIR-032-BX	B-4-b		BC	В	first floor	IAQ
AIR-033-B	SV-B-1/IAQ-B06/B-5		BBN	В	basement	IAQ/SV
AIR-034-B	ISG-05-B/IAQ-B09/B-6		BUS	В	basement	IAQ/SV
AIR-035-C	ISG-12-C/IAQ-C13/C-1		CBN	С	basement	IAQ/SV
AIR-035-CX	C-1-b		CBN	С	basement	IAQ
AIR-036-C	C-2		CN	С	first floor	IAQ
AIR-036-CX	C-2-b		CN	С	first floor	IAQ
AIR-036-CXX	(C-2-c		CN	С	first floor	IAQ
AIR-037-C	C-3		CN	С	first floor	IAQ
AIR-037-CX	C-3-b		CN	С	first floor	IAQ
AIR-038-C	C-4		CC	С	first floor	IAQ
AIR-039-C	C-5		CS	С	first floor	IAQ
AIR-040-C	C-6		CS	С	first floor	IAQ
AIR-041-C	C-7		CS	С	first floor	IAQ
AIR-041-CX	C-7-b		CS	С	first floor	IAQ
AIR-042-C	C-9		CBS	С	basement	
AIR-043-B	SV-B-4/IAQ-B12/TOO-1		BS	В	first floor	IAQ/SV
AIR-044-C	ISG-03-C/IAQ-C05/TOO-2		CBS	С	basement	
AIR-045-B	ISG-06-B/IAQ-B07/TOO-3		BUC	В	basement	
AIR-046-A	TOO-4		APS	Α	first floor	IAQ

		•				
location_id	former location id	Site	Area	_	area	sample types
AIR-046-AX	TOO-4-b		APS	A	first floor	IAQ
AIR-047-A	TOO-5		APS	A	first floor	IAQ
AIR-048-B	TOO-6		BC	В	first floor	IAQ
AIR-049-B	TOO-7		ВС	В	first floor	IAQ
AIR-050-C	ISG-14-C/IAQ-C10/TOO-8		CBC	С	basement	
AIR-051-C	ISG-13-C/IAQ-C11/TOO-9		CBN	С	basement	IAQ/SV
AIR-052-B	TOO-10		BBN	В	basement	IAQ
AIR-053-B	TOO-11		BBN	В	basement	IAQ
AIR-054-Z	TOO-6-2			Z		
AIR-055-Z	TOO-7-2			Z		
AIR-056-Z	TOO-12			Z		
AIR-057-B	ISG-04-B/IAQ-B10/TOO-13		BUS	В	basement	IAQ/SV
AIR-058-C	TOO-14		CBS	С	basement	IAQ
AIR-059-C	TOO-15		CBC	С	basement	IAQ
AIR-060-C	SV-C-3/IAQ-C09/TOO-16		CBC	С	basement	IAQ/SV
AIR-060-CX	TOO-16-b		CBC	С	basement	IAQ
AIR-061-B	ISG-07-B/IAQ-B03/TOO-17		BUN	В	basement	IAQ/SV
AIR-062-B	TOO-18		BBN	В	basement	IAQ
AIR-063-B	ISG-09-B/IAQ-B01/TOO-19		BBN	В	basement	IAQ/SV
AIR-064-B	ISG-10-B/IAQ-B02/TOO-20		BBN	В	basement	IAQ/SV
AIR-065-C	ISG-11-C/IAQ-C15/TOO-21		CBN	С	basement	IAQ/SV
AIR-066-C	TOO-22		CC	С	first floor	IAQ
AIR-067-C	TOO-23		CBS	С	first floor	IAQ
AIR-068-B	TOO-24		ВС	В	first floor	IAQ
AIR-069-B	TOO-25		BN	В	first floor	IAQ
AIR-070-A	TOO-26		AC	Α	first floor	IAQ
AIR-071-A	TOO-27		AC	Α	first floor	IAQ
AIR-072-A	TOO-28		AC	Α	first floor	IAQ
AIR-073-A	TOO-29		AS	Α	first floor	IAQ
AIR-074-A	SV-A-1/IAQ-A01		AN	Α	first floor	IAQ/SV
AIR-075-A	SV-A-2/IAQ-A10		AN	Α	first floor	IAQ/SV
AIR-076-A	SV-A-3/IAQ-A11		AN	Α	first floor	IAQ/SV
AIR-077-A	SV-A-4/IAQ-A02		AC	Α	first floor	IAQ/SV
AIR-078-A	SV-A-5/IAQ-A03		AC	A	first floor	IAQ/SV
AIR-079-A	SV-A-6/IAQ-A04		AC	A	first floor	IAQ/SV
AIR-080-A	SV-A-7/IAQ-A08		AS	A	first floor	IAQ/SV
AIR-081-A	SV-A-8/IAQ-A09		AS	Α	first floor	IAQ/SV
AIR-082-B	SV-B-2/IAQ-B04		BBN	В	basement	
AIR-083-B	SV-B-3/IAQ-B05		BUC	В	basement	
AIR-084-B	SV-B-5/IAQ-B08		BUS	В	basement	
AIR-085-B	SV-B-6/IAQ-B13		BS	В	first floor	IAQ/SV
AIR-086-C	SV-C-1/IAQ-C14		CBN	C	basement	
AIR-087-C	SV-C-2/IAQ-C08		CBC	C	basement	
AIR-087-C	SV-C-4/IAQ-C07		CBC	C	basement	
AIR-089-C	SV-C-5/IAQ-C06		CBS	C	basement	
AIR-009-C	SV-C-6/IAQ-C16		CBS	C	basement	
AIR-090-C	SV-C-7/IAQ-C12		CBN	C	basement	
AIR-092-B	ISG-08-B/IAQ-GG6		BBN	В	basement	
AIR-093-A	SV-19-A/IAQ-A12		ABS	A	basement	
AIR-094-A	SV-20-A/IAQ-A13		ABN	A	basement	
AIR-095-A	SV-21-A/IAQ-A14		AN	A	first floor	IAQ/SV
AIR-096-A	SV-22-A/IAQ-A15		AC	A	first floor	IAQ/SV
AIR-097-A	SV-23-A/IAQ-A16		AC	A	first floor	IAQ/SV
AIR-098-B	SV-24-B/IAQ-B14		BS	В	first floor	IAQ/SV

location_id	former location id	Site	Area	bldg	area	sample types
AIR-099-B	SV-25-B/IAQ-B15		BS	В	first floor	IAQ/SV
AIR-100-B	SV-26-B/IAQ-B16		BC	В	first floor	IAQ/SV
AIR-101-B	SV-27-B/IAQ-B17		BC	В	first floor	IAQ/SV
AIR-102-C	SV-28-C/IAQ-C17		CBC	С	basement	IAQ/SV
AIR-103-C	SV-29-C/IAQ-C18		CBN	С	basement	IAQ/SV
AIR-104-C	ISG-01-C/IAQ-C19		CBS	С	basement	
AIR-105-Z	SV-30-FC/IAQ-FC-30		FC	Z	first floor	IAQ/SV
AIR-106-A	SV-31-A/IAQ-A31		AC	A	first floor	IAQ/SV
AIR-107-A	SV-32-A/IAQ-A32		AC	Α	first floor	IAQ/SV
AIR-108-A	SV-33-A/IAQ-A33		APS	Α	first floor	IAQ/SV
AIR-109-A	SV-34-A/IAQ-A34		ABC	Α	basement	
AIR-110-A	SV-35-A/IAQ-A35		ABC	A	basement	
AIR-111-C	SV-36-C/IAQ-C36		CBC	C	basement	
AIR-1112-C	SV-37-C/IAQ-C37		CBS	C	basement	
AIR-112-C	SV-38-C/IAQ-C38		CBC	C	basement	
AIR-113-C	SV-39-C/IAQ-C39		CBS	C	basement	
AIR-114-C AIR-115-C	SV-40-C/IAQ-C40		CBC	C	basement	
	3V-40-C/IAQ-C40		ABC			
AIR-116-A				A	basement	
AIR-117-A			AC	A	first floor	IAQ/SV
AIR-118-A			APS	A	first floor	IAQ/SV
AIR-119-A			AC	A	first floor	IAQ/SV
AIR-120-A			AC	Α	first floor	IAQ/SV
AIR-121-B			ВС	В	first floor	IAQ/SV
AIR-122-B			BS	В	first floor	IAQ/SV
AIR-123-Z			FC	Z	first floor	IAQ/SV
AIR-124-C			CBN	С	basement	
AIR-125-C			CBN	С	basement	
AIR-126-C			CBN	С	basement	
AIR-127-C			CBC	С	basement	
AIR-128-C			CBC	С	basement	
AIR-129-C			CBC	С	basement	IAQ/SV
AIR-130-C			CBC	С	basement	IAQ/SV
AIR-131-C			CBC	С	basement	IAQ/SV
AIR-132-C			CBC	С	basement	IAQ/SV
AIR-133-C			CBC	С	basement	IAQ/SV
AIR-134-C			CBC	С	basement	IAQ/SV
AIR-135-C			CBC	С	basement	IAQ/SV
AIR-BCK-1	BCK-1				northwest	IAQ
AIR-BCK-2	BCK-2				southwest	IAQ
AIR-BCK-3	BCK-3				southeast	IAQ
AIR-BCK-4	BCK-4				northeast	IAQ
AIR-VLS-1	VLS-1			VLS	first floor	IAQ
AIR-VLS-2	VLS-2				first floor	IAQ
AIR-VLS-3	VLS-3				first floor	IAQ
AIR-VLS-4	VLS-4				first floor	IAQ
AIR-VLS-5	VLS-5				first floor	IAQ
AIR-VLS-6	VLS-6				first floor	IAQ
AIR VLS 5	VLS-7				first floor	IAQ
AIR-VLS-7	VLS-7 VLS-8				first floor	IAQ
AII V- V LO-0	V			V LO	11131 11001	// NSC

TABLE F-1

DESCRIPTIVE STATISTICS OF IAQ RESULTS, ALL BUILDINGS, ALL SAMPLING ROUNDS LOCKHEED MARTIN MIDDLE RIVER COMPLEX, MIDDLE RIVER, MARYLAND

PARAMETER	FREQUENCY OF DETECTION ⁽¹⁾	MINIMUM I	(*)	MAXIM DETECTED V	(4)	LOCATION OF MAXIMUM	SAMPLE OF MAXIMUM	MINIMUM NON- DETECT	MAXIMUM NON-DETECT	AVERAGE OF DETECTED VALUES ⁽¹⁾	AVERAGE OF	(4)	AVERAGE OF DETECTED BACKGROUND VALUES	MAXIMUM BACKGROUND VALUE	NUMBER OF EXCEENDANCES - MAXIMUM BACKGROUND VALUE ⁽¹⁾	ADJUSTED USEPA RSL INDUSTRIAL AIR ⁽²⁾	NUMBER OF EXCEENDANCES ⁽¹⁾	OSHA PEL ⁽³⁾	NUMBER OF EXCEENDANCES ⁽¹⁾
Volatile organic compounds (μg/m³)	DETECTION	VALU)E	DETECTED V	ALUE	DETECTED VALUE	DETECTED VALUE	DETECT	NON-DETECT	VALUES	ALL VALUES	DEVIATION	VALUES	VALUE	VALUE	AIR	EXCEENDANCES	OSHA PEL	EXCEENDANCES
1,1,1-TRICHLOROETHANE	114/358	0.069	ı	13.2		AIR-113-C	IA-113-C-16	0.065	40.4	0.90	0.66	1.5	0.21	0.95	32	22000 N	0	1900000	0
1,1,2-TRICHLOROETHANE	4/358	0.0925	J	0.6	1	AIR-115-C	115-C-IA-R11	0.003	20	0.33	0.38	0.96	ND	0.93	0	0.88 N ⁽⁴⁾	0	45000	0
1,1-DICHLOROETHANE	38/644	0.0923	ı	43.7	J	AIR-113-C	IA-113-C-16	0.11	29.8	2.4	0.38	2.0	ND ND	0	0	77 C	0	400000	0
1,1-DICHLOROETHANE 1,1-DICHLOROETHENE	67/471	0.042	J	62		AIR-113-C	IA-113-C-16	0.052	29.5	1.9	0.47	3.0	ND ND	0	0	880 N	0	NC	NC NC
1,2,3-TRIMETHYLBENZENE	52/245	0.445	J	4	1	AIR-133-C	IAQ-133-C-13	0.18	64	1.3	1.0	3.2	1.5	1.5	14	22 N	0	123000	0
1,2,4-TRICHLOROBENZENE	10/644	0.36	ı	1.7	1	AIR-007-C	007-C-IA-R06	0.29	150	1.1	1.3	4.6	0.41	0.41	9	8.8 N	0	40000	0
1,2,4-TRIMETHYLBENZENE	170/245	0.12	J	26	J	AIR-133-C	IAQ-133-C-13	0.12	36.3	1.6	1.5	2.1	1.8	2.8	27	31 N	0	123000	0
1,2-DICHLOROETHANE	93/471	0.06775		8		AIR-076-A	076-A-IA-R11	0.077	14.9	0.66	0.34	0.79	0.34	1.1	12	4.7 C	2	400000	0
1,3,5-TRIMETHYLBENZENE	77/245	0.1175		10	J	AIR-133-C	IAQ-133-C-13	0.13	36.3	1.2	0.84	1.7	1.5	1.9	17	22 N ⁽⁵⁾	0	123000	0
BENZENE	571/644	0.13	J	16.2		AIR-029-B	029-B-IA-R02	0.13	13	0.97	0.98	1.2	0.87	2.8	13	16 C	1	319	0
CARBON TETRACHLORIDE	389/644	0.19	J	8		AIR-143-C	IA-143-C-15	0.19	25	0.61	0.72	0.95	0.56	0.8	36	20 C	0	62900	0
CHLORODIFLUOROMETHANE	252/278	0.93		1700		AIR-001-C	IA001-C-12	0.18	8.7	39.9	36.3	136	2.4	4.7	150	220000 N	0	3590000	0
CHLOROFORM	318/644	0.076	J	4.1		AIR-094-A	094-A-IA-R09	0.073	36	0.53	0.61	1.0	0.14	0.48	146	5.3 C	0	240000	0
CIS-1,2-DICHLOROETHENE	59/644	0.098	J	9.5		AIR-001-C	001-C-IA-R06	0.095	29.5	1.1	0.46	1.1	0.56	0.56	27	NC	NC	790000	0
DICHLORODIFLUOROMETHANE	603/644	0.55	J	9.5		AIR-052-B	052-B-IA-R04	0.2	36.7	2.5	2.5	1.1	2.5	3.7	20	440 N	0	4950000	0
ETHYLBENZENE	552/644	0.13	J	164		AIR-123-Z	IA-123-Z-16	0.12	32	3.7	3.3	11.5	0.74	2.6	136	49 C	8	435000	0
M+P-XYLENES	365/386	0.25	J	1030		AIR-123-Z	IA-123-Z-16	0.22	64	14.0	13.4	61.2	2.4	19	45	440 N ⁽⁷⁾	2	434000	0
METHYL TERT-BUTYL ETHER	65/644	0.25	J	11		AIR-109-A	109-A-IA-R11	0.24	72	1.0	0.71	2.2	0.53	0.7	12	470 C	0	180000	0
METHYLENE CHLORIDE	271/471	0.335		1140		AIR-145-C	IA-145-C-16	0.14	21	14.9	9.1	56.7	30.0	580	2	2600 N ⁽⁴⁾	0	87000	0
NAPHTHALENE	272/471	0.1775		71	J	AIR-147-VLS	IA-147-VLS-2	0.19	96.7	1.7	1.4	3.2	1.4	8.1	3	3.6 C	30	50000	0
O-XYLENE	336/386	0.13	J	210		AIR-123-Z	IA-123-Z-16	0.1	32	4.4	3.9	14.6	1.0	5.2	52	440 N	0	434000	0
TETRACHLOROETHENE	292/644	0.11	J	82		AIR-045-B	045-B-IA-R04	0.11	27	1.5	1.1	3.91	0.45	1.9	31	180 N ⁽⁴⁾	0	678000	0
TOLUENE	632/644	0.53		20000		AIR-123-Z	IA-123-Z-16	0.3	28	142	139	944	2.6	24	289	22000 N	0	754000	0
TOTAL XYLENES	232/258	0.25	J	740		AIR-015-A	IA015-A-12	0.1	6.5	18.7	17.0	64.8	2.6	8.1	71	440 N	2	435000	0
TRANS-1,2-DICHLOROETHENE	18/644	0.1	J	70.1	J	AIR-003-ER	IA-003-ER-1-D	0.079	29.5	4.2	0.48	2.1	ND	0	0	NC	NC	790000	0
TRICHLOROETHENE	353/644	0.077	J	36		AIR-051-C	051-C-IA-R03-D	0.075	20	1.5	1.0	2.3	11.5	4.2	37	8.8 N ⁽⁴⁾	7	537000	0
VINYL CHLORIDE	9/644	0.065		0.39		AIR-063-B	IA-063-B-15	0.074	12	0.23	0.24	0.50	ND	0	0	28 C	0	21560	0
Tentatively identified compounds (µg/m³)																			
CHLORODIFLUOROMETHANE	23/23	0.29	NJ	57	NJ	AIR-103-C	103-C-IA-R11			16.6	16.6	17.2	2.4	10.8	110	220000 N	0	3590000	0

A bolded chemical name indicates that the chemical exceeds the industrial air RSL based on an HQ of 1 or an ILCR of 1E-05 and background. A bolded/shaded chemical exceeds the industrial air RSL based on an HQ of 1 or an ILCR of 1E-05 and background.

Footnotes:

- 1 Sample and duplicate are considered as two separate samples when determining the minimum and maximum concentrations. Sample and duplicate are considered as one sample when determining frequency of detection, average, standard deviation, and the number of samples exceeding screening criteria.
- 2 USEPA Regional Screening Levels (RSLs) for Chemical Contaminants at Superfund Sites, May 2014. RSLs for carcinogens are adjusted to represent a lifetime cancer risk of 1E-05. RSLs for noncarcinogens were not adjusted and are based on hazard quotient (HQ) of 1.
- 3 Occupational Safety and Health Administration (OSHA) Permissible Exposure Limit (PEL).
- 4 One-tenth the noncarcinogenic value is less than the carcinogenic value; therefore, the noncarcinogenic value is presented.
- 5 The value for 1,2,3-trimethylbenzene is presented for 1,3,5-trimethylbenzene.
- 6 The value for m-xylene and p-xylene is presented for m+p-xylenes.

Definitions:

C = Carcinogen

HQ = hazard quotient

ILCR = Incremental lifetime cancer risk

J = Estimated value.

N = Noncarcinogen

NA = Not applicable/not available

NC = No criterion available

ND = Not detected

RSL = Regional Screening Level

TABLE F-2

DESCRIPTIVE STATISTICS OF SV RESULTS, ALL BUILDINGS, ALL SAMPLING ROUNDS LOCKHEED MARTIN MIDDLE RIVER COMPLEX, MIDDLE RIVER, MARYLAND

PARAMETER	FREQUENCY OF DETECTION ⁽¹⁾	MINIMUM VALU		MAXIN DETECTED		LOCATION OF MAXIMUM DETECTED VALUE	SAMPLE OF MAXIMUM DETECTED VALUE	MINIMUM NON- DETECT	MAXIMUM NON- DETECT	AVERAGE OF DETECTED VALUES ⁽¹⁾	AVERAGE OF ALL VALUES ⁽¹⁾	STANDARD DEVIATION ⁽¹⁾	USEPA RSL - INDUSTRIAL AIR DIVIDED BY 0.03 ⁽²⁾	NUMBER OF EXCEENDANCES ⁽¹⁾
Volatile organic compounds (μg/m³)	_									•				
1,1,1-TRICHLOROETHANE	175/323	0.094	J	2200		AIR-102-C	SV-102-C-15	0.065	360	147.9	81.3	268	733333 N	0
1,1,2-TRICHLOROETHANE	5/323	2		11		AIR-018-A	018-A-SV-RS-R11	0.11	620	4.7	3.6	22.4	29.3 N ⁽³⁾	0
1,1-DICHLOROETHANE	188/456	0.05	J	78600		AIR-018-A	018-A-SV-R02	0.04	2388	1207	502	4229	2567 C	20
1,1-DICHLOROETHENE	174/456	0.064	J	130000		AIR-018-A	018-A-SV-RS-R11	0.052	280	4418	1687	9823	29333 N	11
1,2,3-TRIMETHYLBENZENE	131/211	0.345		4140		AIR-081-A	SV-081-A-16	0.18	1400	97.4	69.5	394	733 N	3
1,2,4-TRICHLOROBENZENE	10/474	0.36	J	18		AIR-075-A	SV-075-A-15	0.29	118773	3.2	113	1480	293 N	0
1,2,4-TRIMETHYLBENZENE	168/211	0.4825		7200		AIR-081-A	SV-081-A-15	0.23	420	149	121	740	1033 N	4
1,2-DICHLOROETHANE	58/438	0.082	J	750		AIR-018-A	018-A-SV-R09	0.077	420	16.4	4.1	38.1	157 C	1
1,3,5-TRIMETHYLBENZENE	132/211	0.545		3500		AIR-081-A	SV-081-A-16	0.18	440	64.6	43.3	279	733 N ⁽⁴⁾	3
BENZENE	335/474	0.09	J	24000	J	AIR-018-A	018-A-SV-R08	0.073	10542	44.2	42.3	575	533 C	1
CARBON TETRACHLORIDE	216/474	0.14	J	430		AIR-063-B	063-B-SV-R06	0.26	20758	7.4	25.8	259	667 C	0
CHLORODIFLUOROMETHANE	184/244	0.645		1500		AIR-133-C	SV133-C-12	0.18	1100	31.2	26.9	111	7333333 N	0
CHLOROFORM	377/474	0.087	J	680		AIR-136-A	SV-136-A-14	0.15	16115	25.5	36.5	208	177 C	12
CIS-1,2-DICHLOROETHENE	230/474	0.09375		1550000		AIR-001-C	001-C-SV-R02	0.095	520	23344	11329	88324	8667 N ⁽⁵⁾	29
DICHLORODIFLUOROMETHANE	380/474	0.25	J	150	J	AIR-018-A	018-A-SV-R08	0.2	16318	5.4	23.4	204	14667 N	0
ETHYLBENZENE	363/474	0.13	J	8100	J	AIR-018-A	018-A-SV-R08	0.12	14334	85.8	81.8	402	1633 C	6
M+P-XYLENES ⁽⁶⁾	275/293	0.24	J	31000		AIR-107-A	107-A-SV-R11	0.22	14334	502	493	2674	14667 N ⁽⁶⁾	4
METHYL TERT-BUTYL ETHER	41/474	0.2325		4050	J	AIR-010-C	010-C-SV-R00	0.24	57685	350	87.1	754	15667 C	0
METHYLENE CHLORIDE	166/438	0.335		13000	J	AIR-133-C	SV-133-C-13-D	0.14	1900	78.8	37.6	347	86667 N ⁽³⁾	0
NAPHTHALENE	358/434	0.2	J	4800	J	AIR-102-C	102-C-SV-R11	0.19	650	181	151	418	120 C	114
O-XYLENE	267/293	0.095		12000		AIR-107-A	107-A-SV-R11	0.1	14334	182	187	926	14667 N	0
TETRACHLOROETHENE	325/474	0.11	J	4470	_	AIR-018-A	018-A-SV-R02	0.27	22378	56.1	59.6	370	6000 N ⁽³⁾	0
TOLUENE	447/474	0.12	J	10000		AIR-050-C	050-C-SV-R06	0.4	12436	105	112	592	733333 N	0
TOTAL XYLENES	140/181	0.9	J	12000		AIR-102-C	SV-102-C-13	1	1300	363	295	1060	14667 N	0
TRANS-1,2-DICHLOROETHENE	150/474	0.17	J	5930		AIR-001-C	001-C-SV-R02	0.079	13084	373	127	627	8667 N	0
TRICHLOROETHENE	435/474	0.06175		6200000		AIR-018-A	018-A-SV-R02	0.075	22.2	30137	27658	302242	293 N ⁽³⁾	156
VINYL CHLORIDE	81/474	0.078	J	110000		AIR-126-C	SV-126-C-13	0.074	8436	3210	557	5946	933 C	9

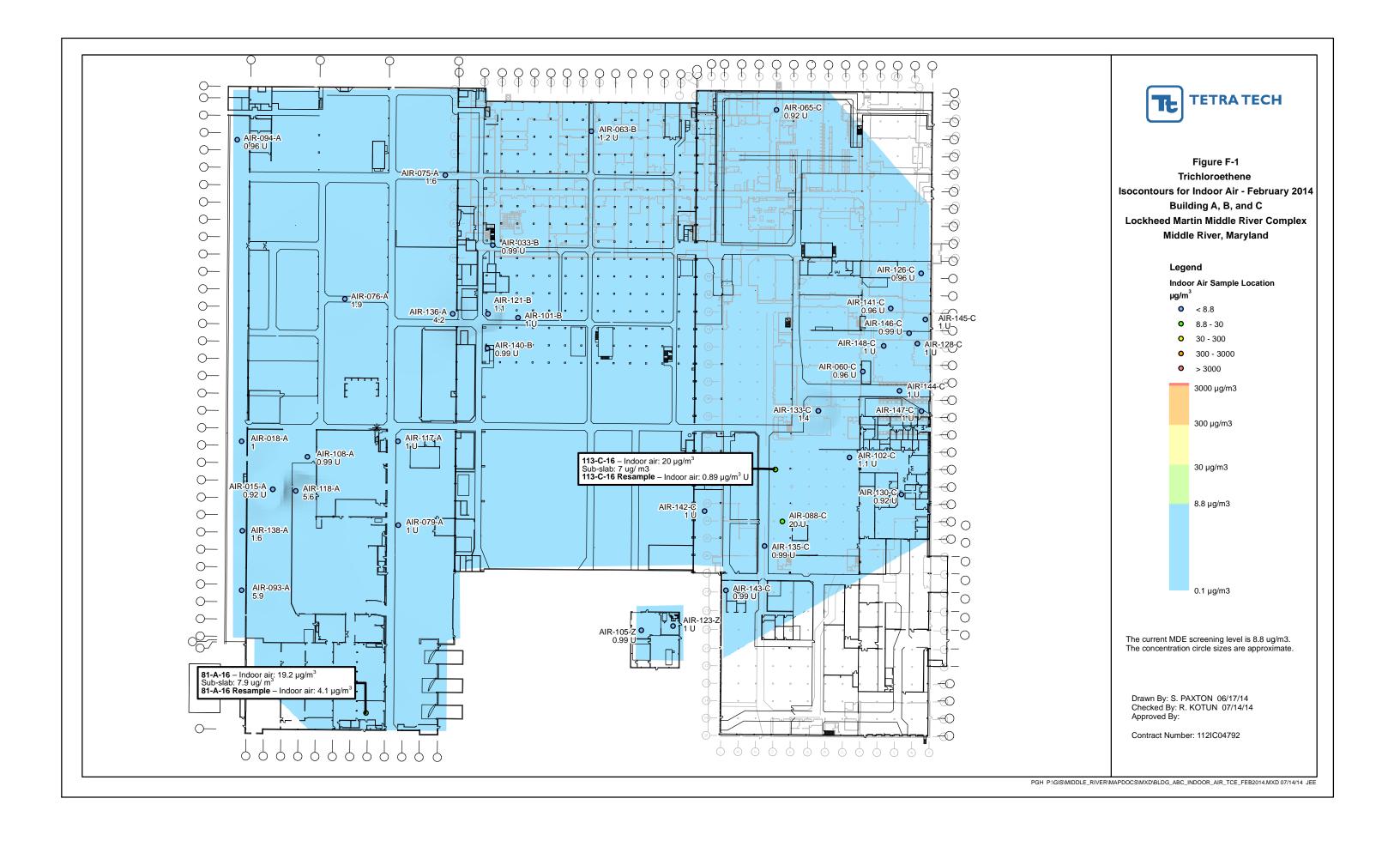
A bolded chemical name indicates that the chemical exceeds the industrial air RSL divided by 0.03 based on an HQ of 0.1 or an ILCR of 1E-06. A bolded/shaded chemical name indicates that the chemical exceeds the industrial air RSL divided by 0.03 based on an HQ of 1 or an ILCR of 1E-05.

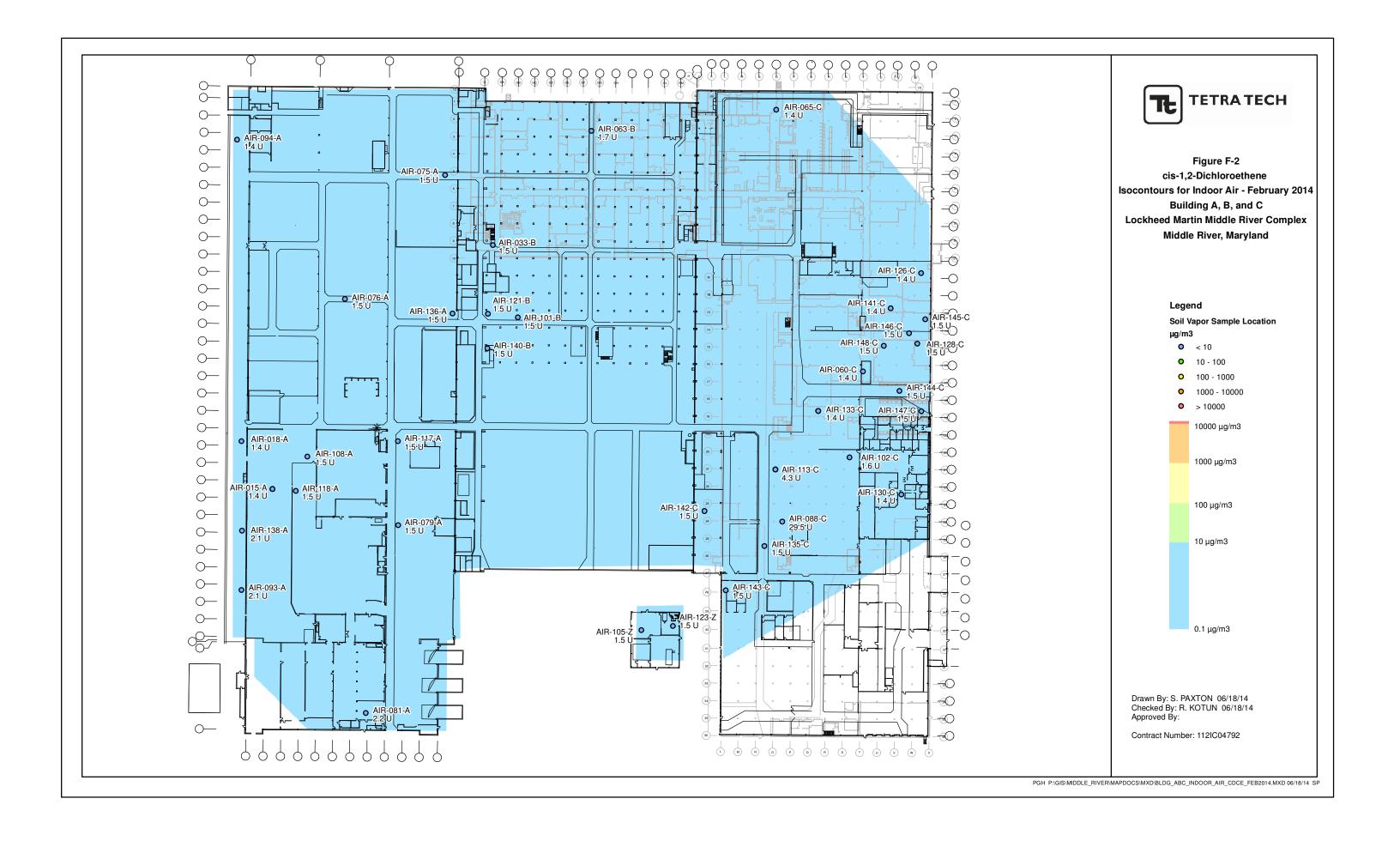
Footnotes:

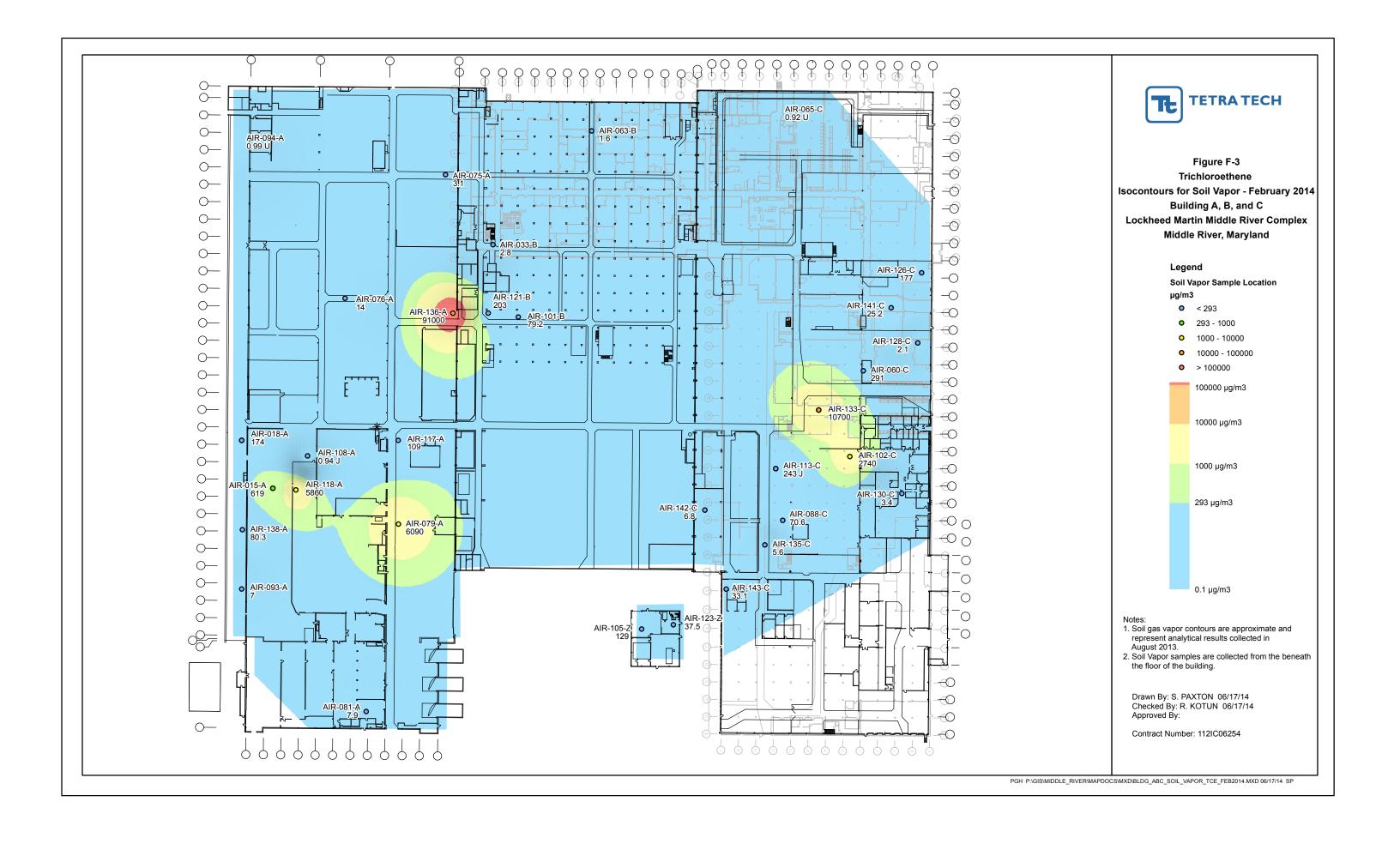
- 1 Sample and duplicate are considered as two separate samples when determining the minimum and maximum concentrations. Sample and duplicate are considered as one sample when determining frequency of detection, average, standard deviation, and the number of samples exceeding screening criteria.
- 2 USEPA Regional Screening Levels (RSLs) for Chemical Contaminants at Superfund Sites, November 2013, divided by an attenuation factor of 0.03. RSLs for carcinogens were adjusted to be based on a lifetime cancer risk of 1E-05. RSLs for noncarcinogens were not adjusted and represent a hazard quotient (HQ) of 1.
- 3 One-tenth the noncarcinogenic value is less than the carcinogenic value; therefore, the noncarcinogenic value is presented.
- 4 The value for 1,2,3-trimethylbenzene is presented for 1,3,5-trimethylbenzene.
- 5 The value for trans-1,2-dichloroethene is presented for cis-1,2-dichloroethene.
- 6 The value for m-xylene and p-xylene is presented for m+p-xylenes.

Definitions:

C = Carcinogen


HQ = hazard quotient


ILCR = Incremental lifetime cancer risk


J = Estimated value

N = Noncarcinogen

RSL = Regional Screening Level

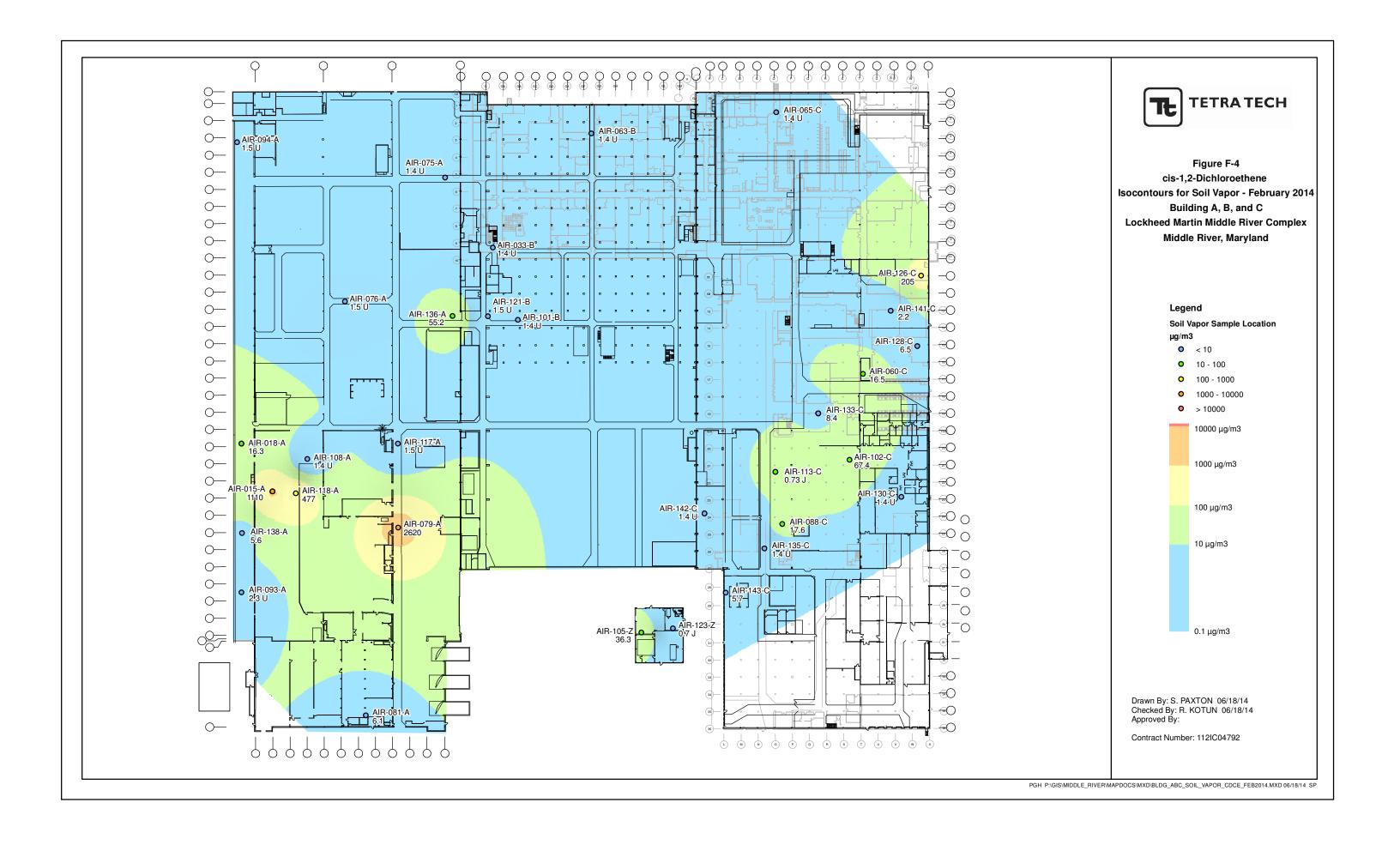


Figure F-9
Building C Historical Maximum IAQ
TCE Concentrations

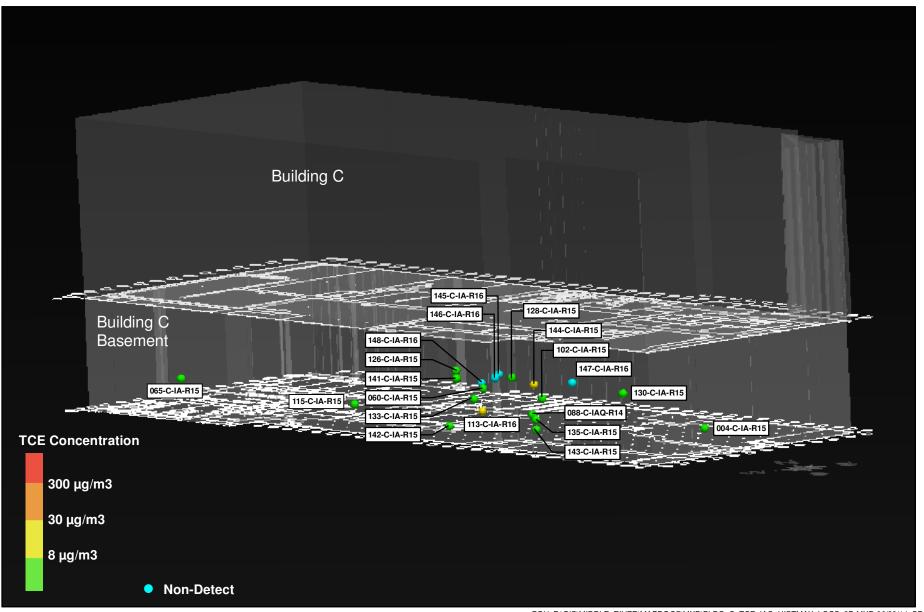


Figure F-5
Building A Historical Maximum IAQ
TCE Concentrations

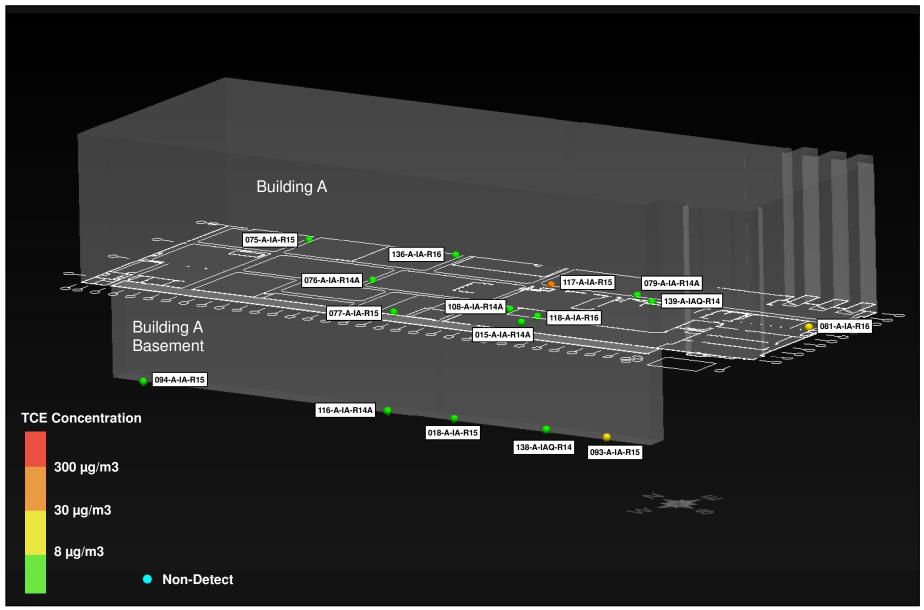


Figure F-6
Building A Historical Maximum SV
TCE Concentrations

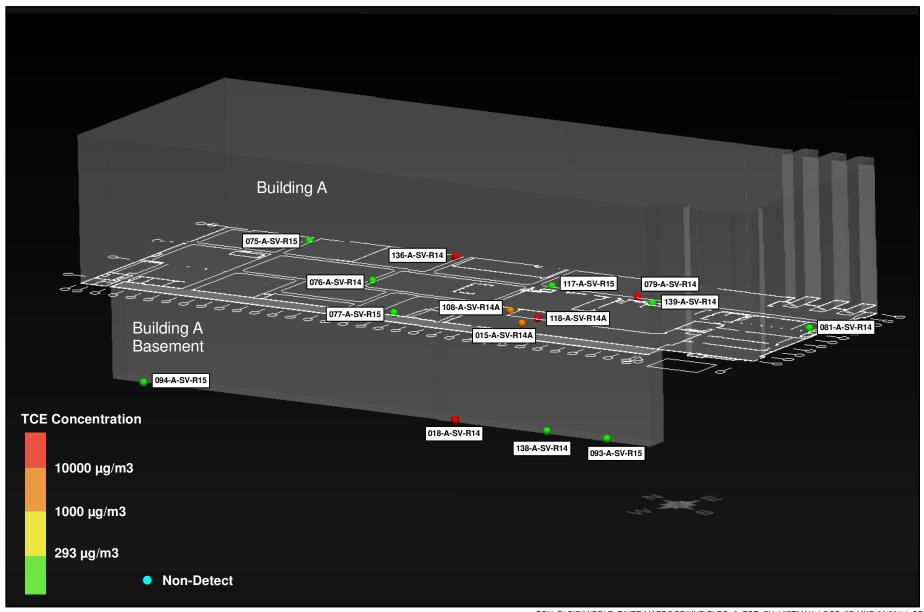


Figure F-7 Building B Historical Maximum IAQ TCE Concentrations

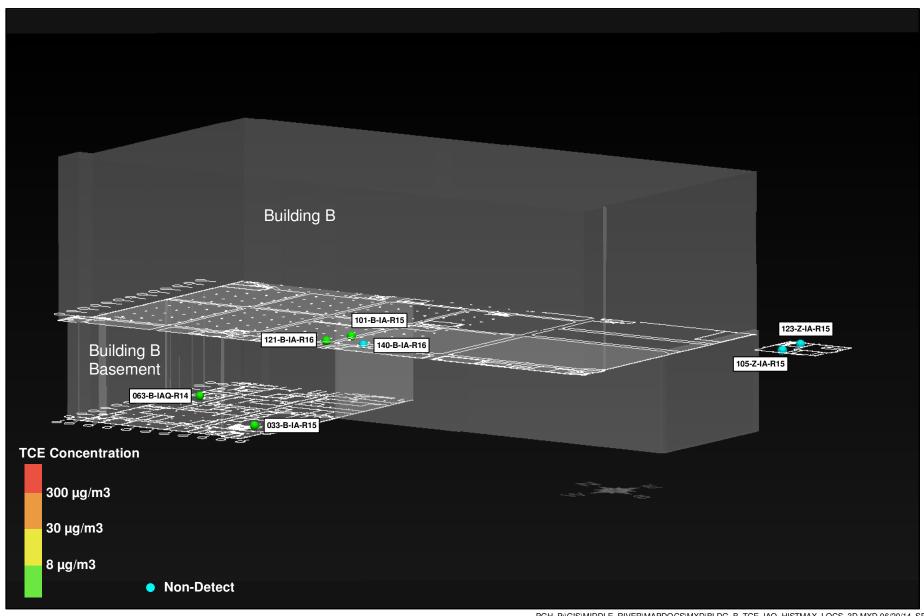


Figure F-8
Building B Historical Maximum SV
TCE Concentrations

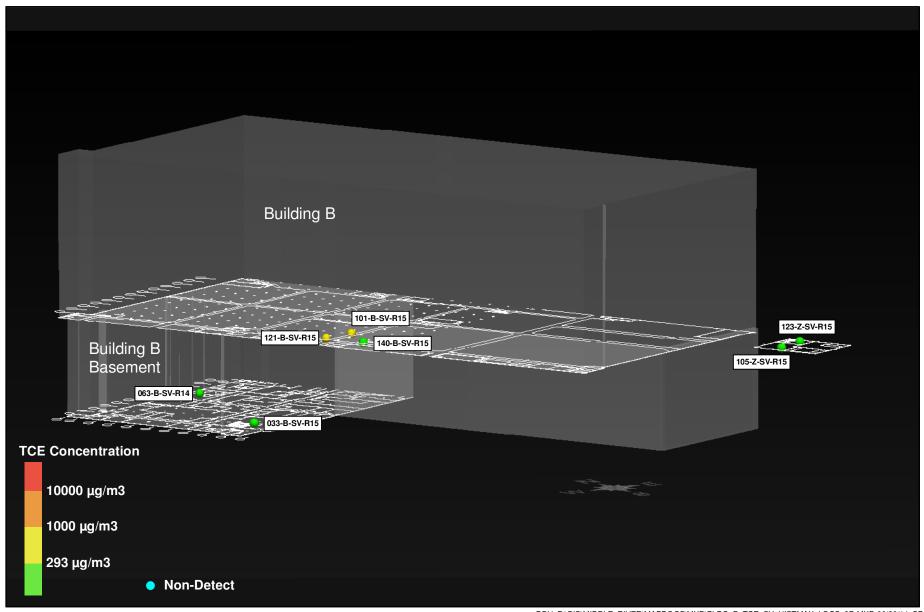


Figure F-10 Building C Historical Maximum SV TCE Concentrations

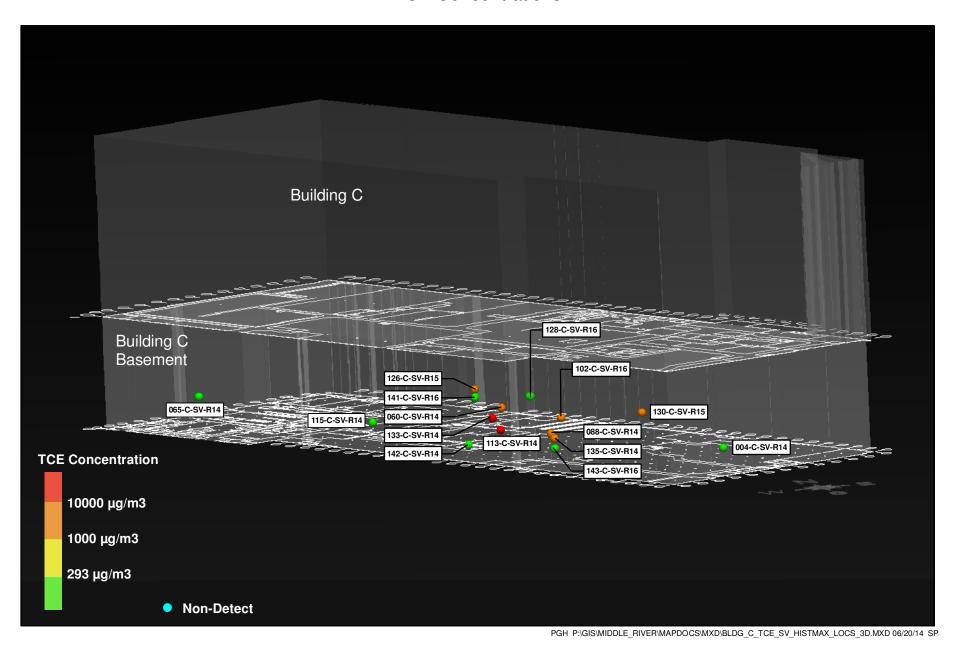


Figure F-11 Building A Historical Maximum IAQ Naphthalene Concentrations

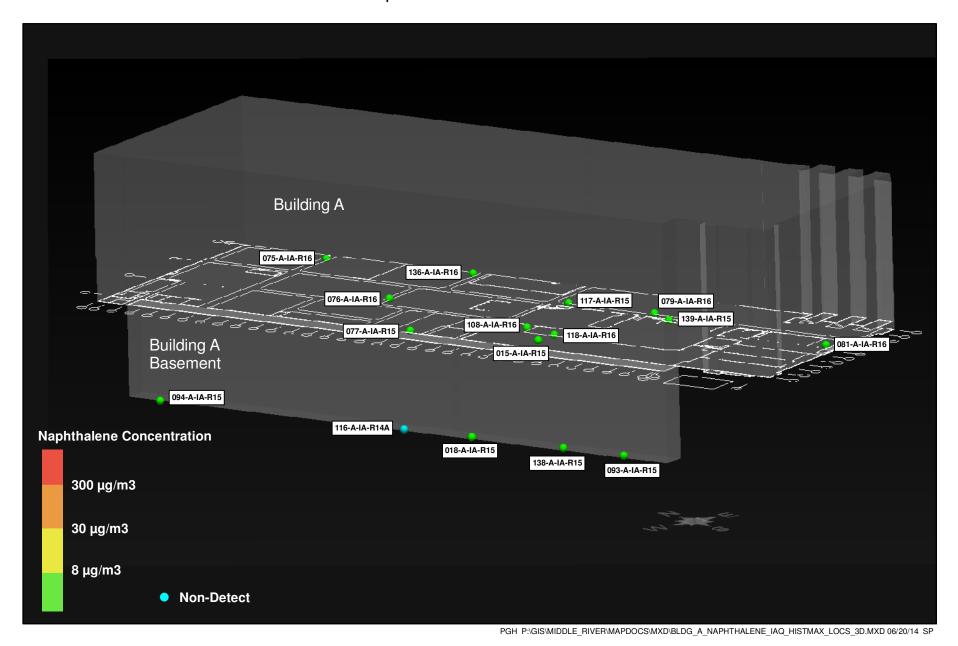


Figure F-12 Building A Historical Maximum SV Naphthalene Concentrations

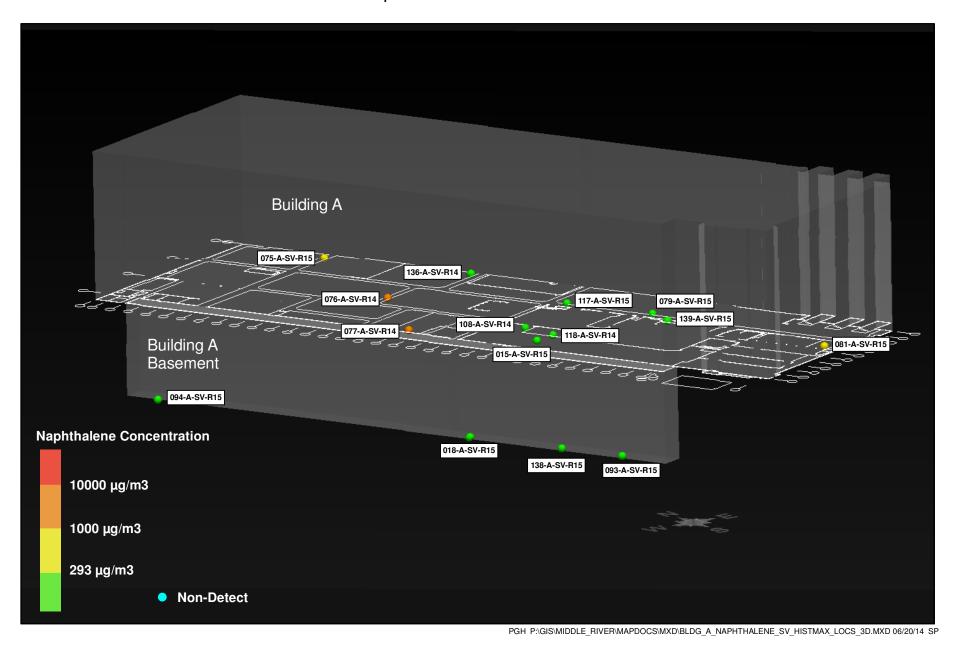


Figure F-13 Building B Historical Maximum IAQ Naphthalene Concentrations

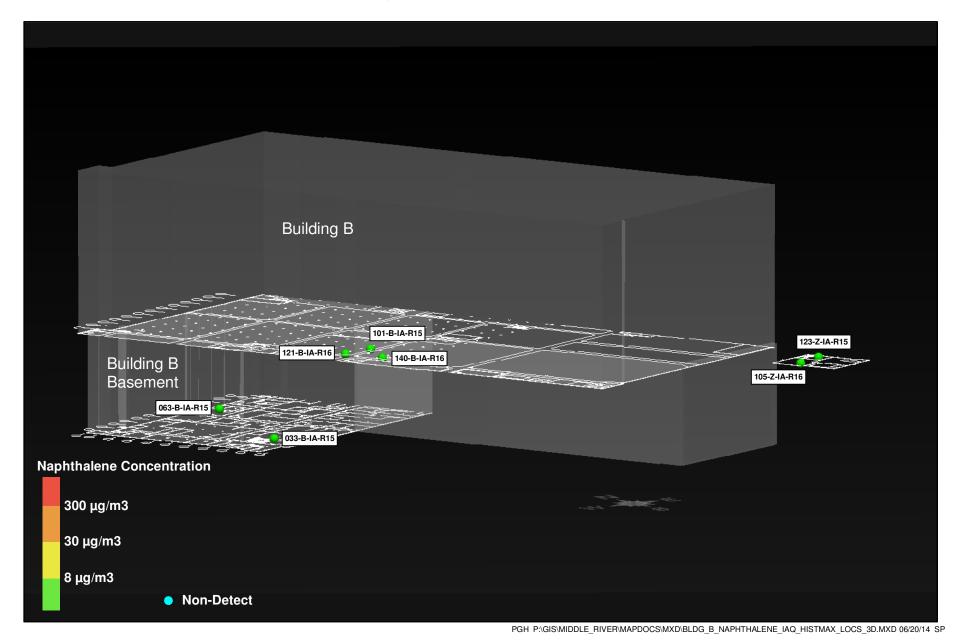


Figure F-14 Building B Historical Maximum SV Naphthalene Concentrations

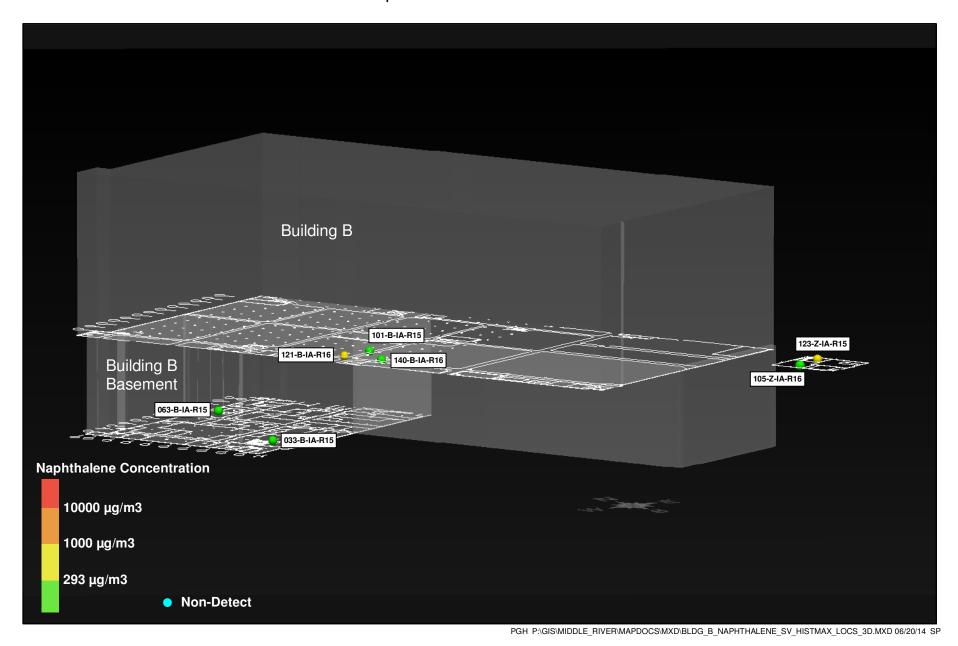


Figure F-15 Building C Historical Maximum IAQ Naphthalene Concentrations

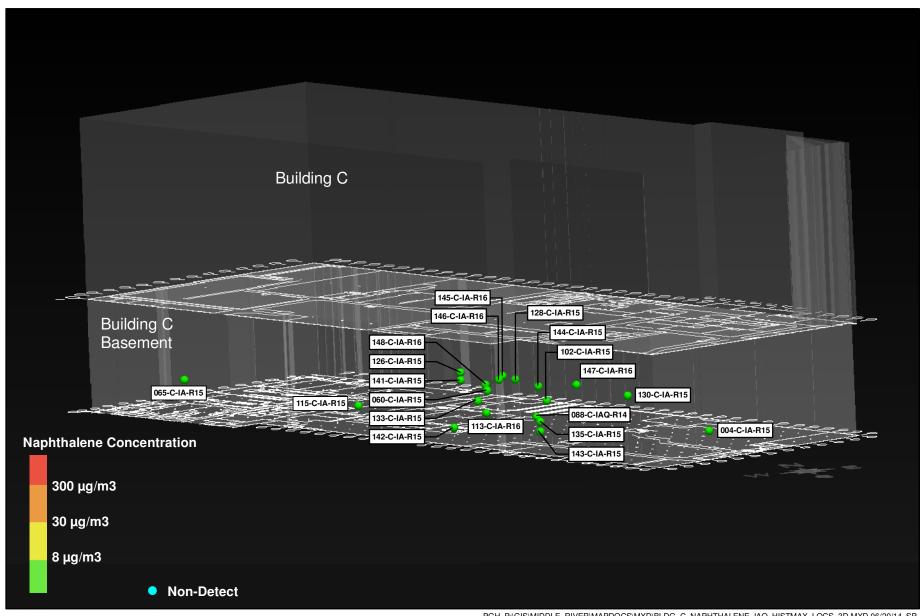


Figure F-16 Building C Historical Maximum SV Naphthalene Concentrations

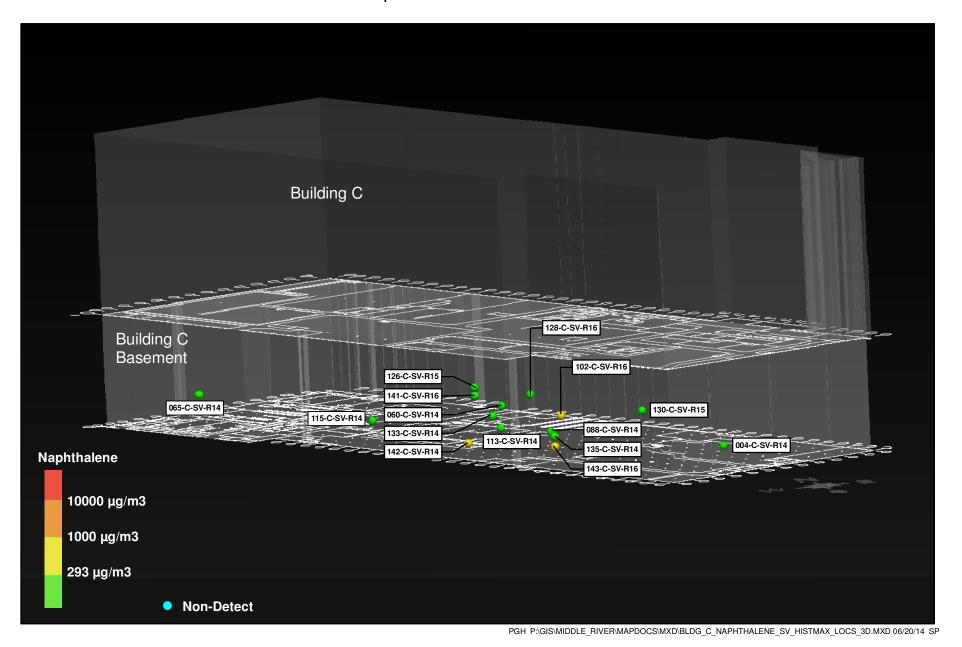


Figure F-17 Naphthalene Results Indoor Air Monitoring Locations for Building A, Round 16, February 2014

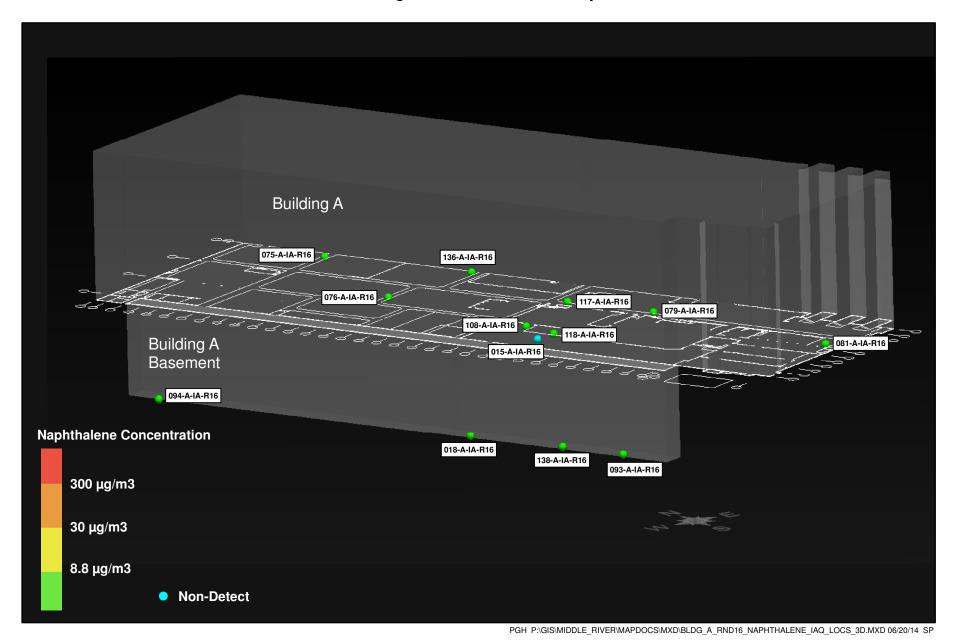


Figure F-18 Naphthalene Results Sub-Slab Vapor Monitoring Locations for Building A, Round 16, February 2014



Figure F-19 Naphthalene Results for Indoor Air Monitoring Locations for Building B, Round 16, February 2014

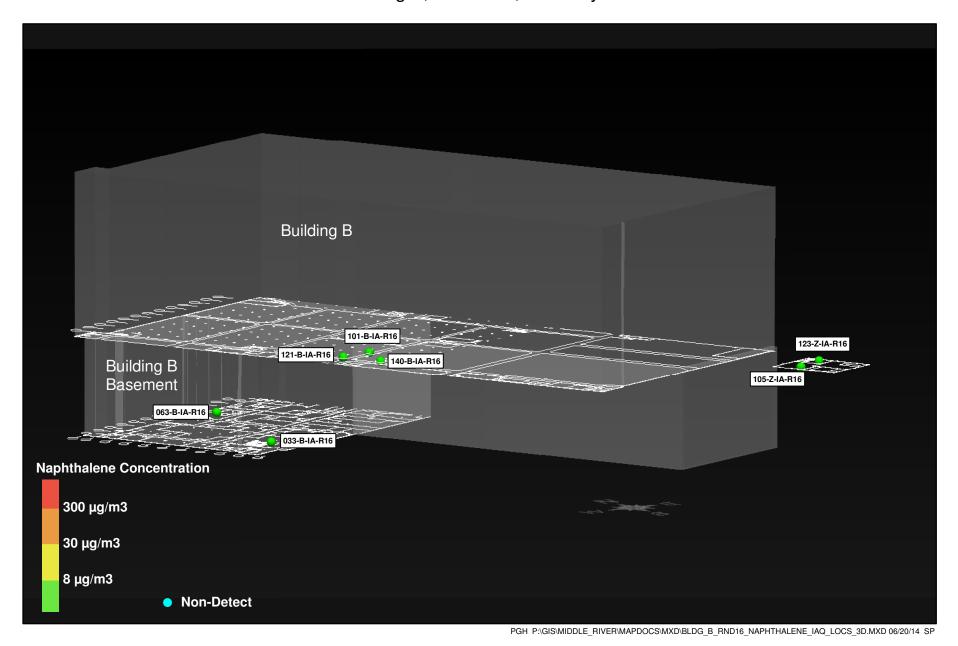


Figure F-20 Naphthalene Results for Sub-Slab Vapor Monitoring Locations for Building B, Round 16, February 2014

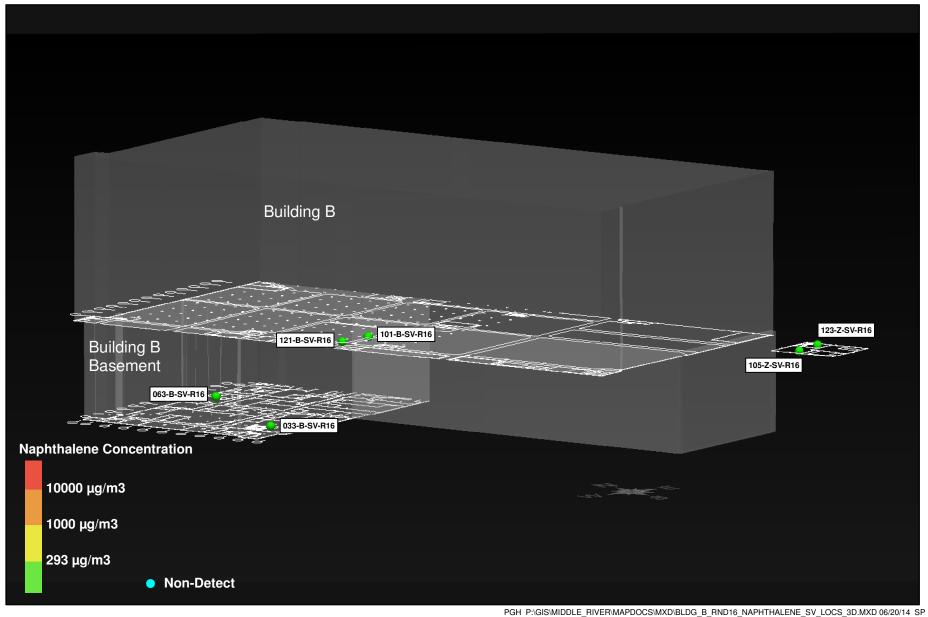
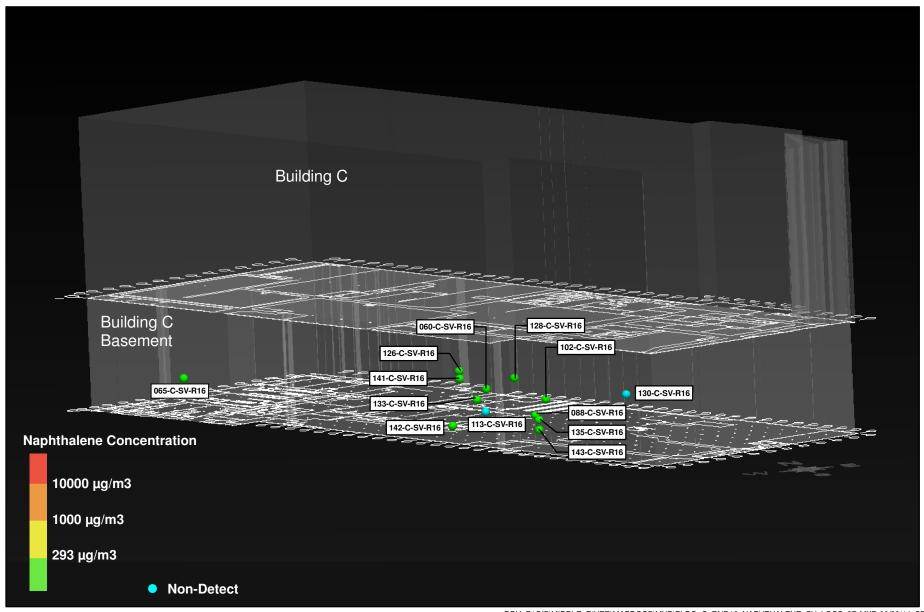



Figure F-21 Naphthalene Results for Indoor Air Monitoring Locations for Building C, Round 16, February 2014

Figure F-22 Naphthalene Results for Sub-Slab Vapor Monitoring Locations for Building C, Round 16, February 2014

APPENDIX G—SSD-SYSTEM REMEDIAL ACTION PROGRESS REPORT #20

Remedial Action Progress Report #20 October 1, 2013 through March 31, 2014 Sub-Slab Depressurization Systems Buildings A and C Lockheed Martin Middle River Complex 2323 Eastern Boulevard Middle River, Maryland

Prepared f	or:
------------	-----

Lockheed Martin Corporation

Prepared by:

Tetra Tech, Inc.

April 29, 2014, Revised July 14, 2014

Michael Martin, P.G. Regional Manager

Milal Mart

Peter Rich, P.E. Project Manager

TABLE OF CONTENTS

<u>Section</u>		<u>Page</u>	
ACR	ONYM	S	iv
1.0	INTR	ODUCTION	1-1
1.1	SITE	LOCATION AND BACKGROUND INFORMATION	1-1
1.2	DES	CRIPTION OF SSD SYSTEMS	1-1
1	.2.1	Building A System	1-1
1	.2.2	Building C System	1-2
2.0	SITE	ACTIVITIES	2-1
2.1	BIW	EEKLY MONITORING	2-1
2	2.1.1	General System Monitoring	2-1
2	2.1.2	Vacuum Influence Monitoring.	2-3
2	2.1.3	Adjustments in Extraction Laterals and Wells	2-5
2.2	MON	NTHLY VAPOR SAMPLING	2-5
2.3	DIFF	FERENTIAL PRESSURE MONITORING	2-7
2.4	QUA	RTERLY SYSTEM CHECKS	2-8
2.4	SYS	ΓΕΜ MAINTENANCE	2-10
2.5	GAC	AND PPZ CHANGE-OUTS	2-11
2.6	SYS	ΓΕΜ SHUTDOWNS	2-11
2	2.6.1	Operator-Controlled Shutdowns	2-11
2	2.6.2	Alarmed and Other Shutdowns	2-11
2	2.6.3	System Uptime	2-12
2.7	REM	IEDIATION SUMMARY	2-12
2	2.7.1	Building A System	2-12

2.	.7.2 Building C System	2-13			
3.0	CONCLUSIONS AND RECOMMENDATIONS	3-1			
3.1	SYSTEM PERFORMANCE	3-1			
3.2	CONTINUED MONITORING	3-2			
3.3	FUTURE PLANS	3-2			
4.0	REFERENCES	4-1			
APPENDICES					
APPE	ENDIX A — SYSTEM FIELD DATA SHEETS				
APPE	ENDIX B — QUARTERLY SYSTEM CHECKS FORMS				
APPE	ENDIX C — 24-HOUR VACUUM MONITORING DATA GRAPHS				
APPE	ENDIX D — ANALYTICAL REPORTS				

LIST OF FIGURES

Figure 1: SSD System Locations Figure 2: Building A SSD System Layout Figure 3: Building A SSD System Process and Instrumentation Diagram Figure 4: Building C SSD System Layout Figure 5: Building C SSD System Process and Instrumentation Diagram Figure 6: Induced Vacuum – Building A SSD System Figure 7: Induced Vacuum – Building C SSD System – South Basement Area Figure 8: Induced Vacuum – Building C SSD System – Mid-Basement Area Figure 9: Influence of SSD Extraction Laterals – Building A Plating Shop & Basement Figure 10: Influence of SSD Extraction Wells – Building C – South Basement Area Figure 11: Influence of SSD Extraction Wells – Building C Mid-Basement Area Figure 12: Building A SSD System – Influent VOC Concentrations Figure 13: Building C SSD System – Influent VOC Concentrations

LIST OF TABLES

Table 1: Building A Influent Laboratory Data Summary
 Table 2: Building A Mid-GAC Laboratory Data Summary
 Table 3: Building A Effluent Laboratory Data Summary
 Table 4: Building C Influent Laboratory Data Summary
 Table 5: Building C Mid-GAC Laboratory Data Summary
 Table 6: Building C Effluent Laboratory Data Summary

This page intentionally left blank.

ACRONYMS

μg/m³ micrograms per cubic meter
GAC granular activated-carbon

lbs/day pounds per day
lbs/month pounds per month
LCD liquid crystal display

mA milliamp

MDE Maryland Department of the Environment

MRAS Middle River Aircraft Systems

OM&M operation, maintenance, and monitoring

% percent

PPZ potassium permanganate zeolite
SCFM standard cubic feet per minute
SSD sub-slab depressurization

Tetra Tech, Inc.

TO-15 Toxic Organic Method -15

USEPA United States Environmental Protection Agency

VMP vapor monitoring point

VOC volatile organic compounds

WC water column

This page intentionally left blank.

Section 1 Introduction

1.1 SITE LOCATION AND BACKGROUND INFORMATION

This report documents the monitoring activities completed from October 1, 2013 to March 31, 2014 [23rd and 24th quarters of operation] for the sub-slab depressurization systems operating in the Building A plating shop and basement and the Building C basement of the Middle River Aircraft Systems facilities located at Lockheed Martin Corporation's Middle River Complex in Middle River, Maryland. The locations of these systems are shown in Figure 1. The purpose of these remedial systems is to control and remove volatile organic compounds in sub-slab vapor, thus preventing their migration into indoor air. The systems are operated in accordance with the operation, maintenance, and monitoring manuals for the Building A and Building C systems, respectively (Tetra Tech, Inc., 2012, 2013).

1.2 DESCRIPTION OF SSD SYSTEMS

1.2.1 Building A System

The sub-slab depressurization system in the Building A plating shop and basement consists of four horizontal soil-vapor-extraction laterals, designated North, South, Basement North, and Basement South (Figure 2). These laterals serve as conduits for drawing air from directly beneath the building slab to prevent vapor intrusion into indoor air. Sub-slab vapors are pulled through the extraction laterals using a single 10 horsepower regenerative blower mounted on a skid; a moisture separator, filters, and vacuum, pressure, and temperature gauges are also mounted on the skid (referred to as "blower skid"). Following extraction, the vapors enter the moisture separator where entrained condensate droplets are removed to reduce potential fouling of vapor lines and saturation of vapor-phase carbon. The extracted vapors are then filtered to remove volatiles using two 400-pound granular activated carbon units in-series before discharge to the atmosphere via an exhaust stack that extends above the roof of the building (Figure 3).

1.2.2 Building C System

The sub-slab depressurization system in the Building C basement consists of two vertical soil vapor extraction wells (SSD-21-C and SSD-23-C) in the south basement area and nine vertical soil vapor extraction wells (SSD-26-C, SSD-27-C, SSD-28-C, SSD-29-C, SSD-30-C, SSD-31-C, SSD-32-C, SSD-33-C, and SSD-34-C) in the mid-basement area (Figure 4). These wells are connected to the blower skid and serve as conduits for drawing air from directly beneath the building slab to prevent vapor intrusion into indoor air. The vapors are pulled through the extraction wells using a single 7.5 horsepower regenerative blower mounted on a blower skid. Following extraction, the vapors enter a moisture separator (MS-1) where entrained condensate droplets are removed to reduce fouling in the vapor lines and saturation of the vapor-phase carbon. The extracted vapors are then pushed through a heat exchanger to cool the air temperature, and another moisture separator (MS-2) to remove any remaining entrained condensate droplets before entering the granular activated carbon units. The vapors are treated using two 400-pound granular activated carbon units and one 600-pound potassium permanganate zeolite unit (to remove residual vinyl chloride) in-series before being discharged to the atmosphere via an exhaust stack that extends above the roof of the building (Figure 5).

The Building C system is also equipped with one drain for each granular activated carbon and potassium permanganate zeolite unit, five pipe sumps (PS-1 [near SSD-25-C and column N26], PS-2 [near SSD-30-C and column N26], PS-3 [near SSD-27-C and column O20], PS-4 [near SSD-32-C and column R19], and PS-5 [near SSD-29-C and column V12]), and one exhaust stack sump. The sumps are installed at low points along the header pipe to allow drainage of condensation in the pipe.

This page intentionally left blank.

Section 2 Site Activities

2.1 BIWEEKLY MONITORING

Biweekly site visits were conducted to monitor the performance of the sub-slab depressurization (SSD) systems and to make necessary adjustments to optimize remediation effectiveness. Visits were conducted during the 23rd quarter of operation (2013) on:

- October 10, 2013
- October 23, 2013 (Building C) and October 24, 2013 (Building A)
- November 7, 2013

- November 22, 2013
- December 5, 2013
- December 18, 2013

Visits were also conducted during the 24th quarter of operation (2014) on:

- January 3, 2014
- January 13, 2014
- January 30, 2014
- February 14, 2014

- February 27, 2014
- March 12, 2014 (Building C) and March 13, 2014 (Building A)
- March 28, 2014

Each biweekly site visit was conducted in accordance with the latest operation, maintenance, and monitoring (OM&M) manuals (Tetra Tech, Inc. [Tetra Tech], 2012, 2013), and included general system monitoring, vacuum influence monitoring, and any necessary adjustment to extraction wells. Biweekly system check forms are in Appendix A.

2.1.1 General System Monitoring

Vacuum, temperature, and pressure gauge readings on the blower skid were checked, vacuum and velocity at each extraction lateral/well was measured, the condition of system components were checked, and moisture separators/sumps were emptied as necessary. The specific tasks performed follow:

1. Recording:

- a. vacuum post-knockout tank (moisture separator) (Building A only)
- b. vacuum pre-air filter
- c. vacuum post-air filter
- d. pressure post-blower
- e. temperature post-blower
- f. temperature post-heat exchanger (Building C only)
- g. system flow
- h. time counter display (Building C only)
- i. vacuum from each extraction lateral/well
- j. velocity from each extraction lateral/well
- k. vacuum from each vapor monitoring point (VMP)
- 2. Checking the following for damage, leaks, and/or signs of heat stress:
 - a. system components
 - b. granular activated carbon (GAC) units
 - c. potassium permanganate zeolite (PPZ) unit (Building C only)
 - d. GAC and PPZ flex hoses and fittings
- 3. Checking the following for water/condensate, and draining as necessary:
 - a. moisture separators
 - b. pipe sumps (Building C only)
 - c. exhaust stack sump (Building C only)
 - d. GAC and PPZ drains (Building C only)
- 4. Confirming that zip ties on the GAC units and PPZ (Building C only) unit cam locks are present and secure
- 5. Confirming that the ambient air valve is closed
- 6. Noting any adjustments to extraction laterals/wells
- 7. Turning systems off and checking that flow, pressure, and vacuum gauges fall to zero; checking that temperature gauges fall

During the October 1, 2013 through March 31, 2014 reporting period, the Building A moisture separator was drained on the following days:

- October 24, 2013 1.25 gallons
- December 2, 2013 17.5 gallons
- January 13, 2014 32.0 gallons
- February 25, 2014 26.5 gallons

Approximately 32 gallons were drained from MS-1 in Building C on December 7, 2013. MS-2 and pipe sumps PS-1 through PS-5 were not drained during the reporting period because no condensate accumulated.

The exhaust stack sump in Building C was drained on the following days during the reporting period:

- October 23, 2013 0.25 gallon
- November 22, 2013 1.75 gallons
- December 5, 2013 0.5 gallon
- December 18, 2013 0.5 gallon
- January 3, 2014 0.16 gallon
- January 13, 2014 0.5 gallon

- January 30, 2014 0.5 gallon
- February 14, 2014 0.25 gallon
- February 27, 2014 1.0 gallon
- March 12, 2014 0.25 gallon
- March 28, 2014 0.5 gallon

2.1.2 Vacuum Influence Monitoring

The objective for both buildings' SSD systems is to maintain a vacuum influence (differential versus indoor air) of at least 0.01 inches water column (WC) in the target areas. Vacuum influence monitoring at permanent sub-slab VMPs was conducted using a dual port manometer (Fieldpiece Instruments, Inc. model SDMN5) during each biweekly site visit to determine the area of system influence and to identify short-circuiting or other problems, which would be indicated by a significant drop in vacuum in one or more of the permanent VMPs.

Seven of eight VMPs (SSD-1-A, SSD-11-A, SSD-13-A, SSD-2-A, SSD-16-A, 015-A, and SSD-3-A) in the Building A plating shop, and three out of five VMPs (SSD-20-A, SSD-21-A, and SSD-22-A) in the Building A basement (Figure 2) consistently exceeded the vacuum

influence objective with vacuums ranging from 0.04 to 1.25 inches WC and 0.10 to 0.83 inches WC, respectively. The remaining VMP in the Building A plating shop (SSD-12-A) showed readings alternating between pressure and vacuum during the February 27, 2014 biweekly system check. The remaining two VMPs in the Building A basement (018-A and SSD-19-A) showed vacuum influences ranging from 0.00 to 0.08 inches WC and from 0.00 to 0.01 inches WC, respectively. No short-circuiting was identified at the Building A SSD system during the reporting period. Note that VMP 018-A is considered unreliable because of periodic water infiltration; as such, it is not included in the figure (Figure 6) showing induced vacuum in Building A over time.

Four VMPs (001-C, SSD-24-C, SSD-3-C, and SSD-4-C) in the south basement area, and five VMPs (135-C, 113-C, 133-C, 060-C, and 127-C) in the mid-basement area of Building C, consistently exceeded the vacuum influence objective with vacuums ranging from 0.02 to 3.24 inches WC and 0.04 to 23.80 inches WC, respectively. The remaining ten VMPs, three (SSD-2-C, SSD-22-C, and SSD-25-C) in the south basement area and seven (088-C, 087-C, 134-C, 111-C, 141-C, 050-C, and 126-C) in the mid-basement area, had vacuums ranging between 0.00 to 0.10 inches WC and -0.81 (a pressure reading indicating higher pressure in the sub-slab than in indoor air) to 0.01 inches WC, respectively. Because readings at VMPs 087-C and 134-C consistently show no vacuum influence, they were removed from the biweekly system checks beginning January 1, 2014. No-short-circuiting was identified at the Building C SSD system during the reporting period. Figures 7 and 8 show induced vacuum in the south- and mid-basement areas of Building C over time.

The induced vacuum measurements indicate the systems are performing as designed. Extraction laterals in the Building A plating shop induce a vacuum influence over an approximate 5,600-square foot area, encompassing all VMPs that showed elevated volatile organic compound (VOC) concentrations before system startup. The extraction laterals in the Building A basement induce a vacuum influence over an approximate 2,400-square foot area, and encompasses three of four VMPs installed to measure the system induced vacuum in the basement (Figure 9). The extraction wells in the Building C south basement and the extraction wells in the mid-basement areas of Building C induce vacuum influence over approximate 3,900-square feet, and estimated 37,500 square feet (the monitoring network is not adequate to estimate the area of influence),

respectively. Five of eight VMPs within the Building C mid-basement area show vacuum influence (Figures 10 and 11); additional monitoring points will be needed to determine an accurate area of influence. Recommended locations for these locations have been provided previously via email (Tetra Tech, 2014).

2.1.3 Adjustments in Extraction Laterals and Wells

No adjustments were made to the extraction laterals in the Building A plating shop and basement during the October 1, 2013 to March 31, 2014 reporting period. In Building C, the following adjustments were made:

- On November 7, 2013, SSD-27-C (near column P19A) and SSD-32-C (near column R19) in the mid-basement area were adjusted to 15 percent (%) and 30% open, respectively, to reduce elevated flow rates at these two wells.
- On December 7, 2013, SSD-21-C (in the south basement area) was closed because the basement flooded. SSD-27-C (in the mid-basement area) was temporarily adjusted to 100% open to keep the system vacuum at its normal operating level (see Section 2.6.2.).
- On December 18, 2013, SSD-21-C and SSD-27-C were returned to their normal operating positions.
- On December 23, 2013, SSD-27-C and SSD-32-C were opened to 100% to increase air flow after a high temperature post-heat exchanger alarm, resulting in a lower post-heat exchanger temperature (see Section 2.6.2).
- On January 3, 2014, SSD-27-C and SSD-32-C were returned to their normal operating positions.

2.2 MONTHLY VAPOR SAMPLING

Monthly grab vapor samples were collected from each SSD system at the influent, mid-GAC, and effluent locations of the treatment units on October 10, November 7, and December 5 in 2013 and January 13, February 14, and March 12 in 2014. The Building A effluent sample collected on December 5, 2013 was re-collected on December 18, 2013 because the silicon tubing on the sampling port came loose during sample collection.

Samples were collected directly from the appropriate sample ports by connecting a clean one-liter Summa® canister under vacuum, to silicon tubing at each sample port and opening the canister valve for approximately one minute. A moisture filter was added to the sampling

apparatus starting in December 2013; a moisture filter was attached to the end of the silicon tubing using a piece of Teflon tubing before attaching the Summa® canister to the sampling port. Samples were labeled A-INFLUENT, A-MID-GAC, A-EFFLUENT, C-INFLUENT, C-MID-GAC, and C-EFFLUENT, and were shipped to an accredited laboratory¹ for VOC analysis by United States Environmental Protection Agency (USEPA) Toxic Organic Method 15 (TO-15). In October and November 2013, the samples were shipped to TestAmerica in Knoxville, Tennessee. The December 2013 through March 2014 samples were shipped to Pace Analytical Services, Inc. (Pace Analytical) in Minneapolis, Minnesota (new project laboratory).

Laboratory results are summarized in Tables 1 through 6, and laboratory reports are in Appendix D. Two compounds (chlorodifluoromethane and 1,2,3-trimethylbenzene) were added to the analyte list when the project laboratory was switched from TestAmerica to Pace Analytical in December 2013. These two compounds were detected in the December 2013 Building A effluent sample at concentrations of 856 micrograms per cubic meter (μ g/m³) and 12 μ g/m³, respectively, but as tentatively identified compounds due to temporary laboratory limitations. In January, February, and March 2014, chlorodifluoromethane was detected in all samples, in concentrations ranging from 1.7 μ g/m³ to 13.3 μ g/m³. 1,2,3-Trimethylbenzene was detected in Building A effluent (1.4 μ g/m³) and Building C influent (5.5 μ g/m³) samples in February 2014, but was detected in all Building C samples (0.94-5.9 μ g/m³) in March 2014.

Several other compounds not previously detected when TestAmerica was the project Laboratory were detected and reported in several samples in Pace Analytical results. More specifically, the following were detected:

- naphthalene was detected at the influent, mid-GAC, and effluent of both systems
- trans-1,2-dichloroethene was detected at the influent, mid-GAC, and effluent of both systems
- dichlorodifluoromethane was detected at the influent, mid-GAC, and effluent of the Building C system

¹ National Environmental Laboratory Accreditation Program (NELAP) and United States Department of Defense (DoD) Environmental Laboratory Accreditation Program (DoD ELAP)

- 1,2-dichloroethane was detected at the influent of the Building A system and at the effluent of the Building C system
- 1,2,3-trimethylbenzene was detected at the mid-GAC of the Building C system
- 1,1-dichloroethane, methyl-tert-butyl ether, 1,2,4-trichlorobenzene, and 1,1,2-trichloroethane were detected in the effluent of the Building C system

During the reporting period, total influent VOC concentrations for both SSD systems remained relatively consistent (with the exception of the January 2014 result for Building A) with concentrations ranging from 1,539 μg/m³ to 3,802 μg/m³ at Building A and from 183 μg/m³ to 437 μg/m³ at Building C. The January 2014 lab result for Building A showed an abnormally high total influent VOC concentration (11,567 μg/m³) due to a high toluene concentration (9,820 μg/m³). This toluene level appears to be a one-time occurrence, as a concentration this high has not been detected during any other sampling period. Furthermore, no construction was occurring near the Building A system during this time. Excluding the outlier (January 2014) result, average influent VOC concentrations at the Building A system were approximately 4% lower than detected during the previous quarter (October 1, 2013 to December 31, 2013), and 27% lower than reported in the previous semi-annual reporting period (April 1, 2013 to September 30, 2013). Average influent VOC concentrations at the Building C system were approximately 12.8% lower than the previous quarter, and 59% lower than reported in the previous semi-annual reporting period.

2.3 DIFFERENTIAL PRESSURE MONITORING

Twenty-four (24)-hour differential pressure-monitoring was conducted quarterly at the Building A plating shop and basement, from November 2013 and March 2014. Differential pressure-monitoring at Building C was conducted monthly through November 2013 (October and November 2013) then quarterly (March 2014) at both the south- and mid-basement areas. The purpose of the monitoring was to quantify differential pressure changes over daily cycles. During each monitoring event, up to three VMPs were selected for monitoring in each of the three areas. If more than three VMPs had vacuum readings within the target range, the VMPs selected for monitoring were alternated during quarterly monitoring events. Differential pressure was measured using Dwyer MS-121 Magnesense® differential pressure transmitters with low range 4-20 milliamp (mA) outputs and liquid crystal displays (LCDs) with a vacuum range of 0.0

to 0.5-inch WC (accuracy to 0.005-inch WC). The data was recorded on Dwyer DW-USB programmable data-loggers set to record at five-minute intervals. After 24 continuous hours of data collection, the equipment was retrieved and the data downloaded. Results were graphed for analysis; graphs are in Appendix C.

At Building A, SSD-1-A, SSD-21-A, and SSD-22-A were monitored in November 2013 and SSD-11-A, SSD-12-A, and SSD-13-A were monitored in March 2014. Differential pressure data from SSD-12-A (March 2014) showed pressure readings (approximately -0.016 inches WC) for the first five hours of monitoring followed by vacuum readings of approximately 0.15 inches WC for the remaining 19 hours of monitoring. The cause for this fluctuation is unknown, and past data do not reveal any major fluctuations. The data from SSD-11-A also showed an increase in vacuum after five hours of monitoring. SSD-12-C will likely be monitored during the next 24-hour monitoring event to determine if fluctuations reoccur. The differential pressure data collected at the other VMPs showed fluctuations of less than 0.09 inches WC over their 24-hour monitoring periods.

In the south basement area of Building C, 001-C, SSD-2-C, and SSD-24-C were monitored in October and November 2013 and 001-C, SSD-3-C, and SSD-24-C were monitored in March 2014. Collected data showed no significant fluctuations over the 24-hour monitoring periods.

In the mid-basement area of Building C, only one VMP (135-C) had a vacuum reading within the 0.0-0.5 inches WC range; therefore, it was the only VMP monitored during the reporting period. Data collected showed no significant fluctuations over the 24-hour monitoring periods.

2.4 QUARTERLY SYSTEM CHECKS

Quarterly system checks were completed on December 2, 2013 and March 17, 2014 and included the following tasks:

- 1. inspecting the condition of the following:
 - a. system components
 - b. system piping
 - c. pre-blower air filter and intake (ambient) air filter; replacing as necessary
 - d. GAC and PPZ units

- e. GAC and PPZ units sample ports
- f. VMP well lids, bolts, and sample tubing
- 2. checking that a system shutdown occurs, the control panel alarm light is illuminated, and the auto-dialer is activated upon activation of the following fail-safe switches for the Building A system:
 - a. high water level
 - b. high pressure
 - c. high temperature
 - d. low pressure
- 3. checking that a system shutdown occurs, the control panel alarm light is illuminated, and the auto-dialer is activated upon activation of the following fail-safe switches for the Building C system:
 - a. high temperature post-blower
 - b. high temperature post-heat exchanger
 - c. high water level MS-1
 - d. high water level MS-2
 - e. high pressure
 - f. low vacuum
- checking vacuum relief valve for proper operation
- measuring and recording amperage draw on blower
- checking that auto-dialer is activated when power is turned off
- checking auto-dialer batteries and replacing as necessary
- confirming that a fire extinguisher is next to the system
- cleaning the system and area around the system

The completed quarterly system check forms are in Appendix B. No problems were identified with the Building A system during the December 2013 quarterly system checks. However, while checking alarm and auto-dialer responses during the March 2014 quarterly system checks, the Building A auto-dialer initially would not call out when the system was manually turned off. When hand pressure was applied to one of the relays, the auto-dialer activated, but continued to call out even after alarm acknowledgement. When hand pressure was applied a second time, the auto-dialer acknowledged the alarm and returned to normal operating condition. This temporary malfunction could be indicative of a relay going bad, and will be periodically checked during bi-

weekly system checks. No other problems were identified during the quarterly system checks, and the Building A system is running within normal operating parameters.

During the December 2013 quarterly system checks at the Building C system, the field team observed damage at one of the bollards surrounding the system equipment after being hit by a forklift operated by a Middle River Aircraft Systems (MRAS) employee. MRAS maintenance staff fixed the bollard in early January 2014. The field team also noted that VMP 133-C was no longer flush with the floor. This VMP will be repaired or replaced during the planned VMP additions in Building C. No other problems were identified during the December 2013 quarterly system checks, and no problems were identified during the March 2014 quarterly system checks. The Building C system is running within normal operating parameters.

2.5 SYSTEM MAINTENANCE

No non-routine maintenance was completed for the Building A system during the reporting period. The following non-routine items were completed for the Building C system during the reporting period:

- December 2, 2013 rewired vacuum switch around the time delay so that the system triggers a low vacuum alarm when the blower shuts down (issue discovered November 19, 2013)
- December 18, 2013 dog-ears on SSD-24-C and SSD-25-C were retapped (issue discovered November 22, 2013)
- January 30, 2014 placed electrical tape over hole in mid-GAC flex hose (issue discovered January 30, 2014)
- March 12, 2014 wrapped electrical tape around the influent end of the flex hose for system influent, mid-GAC, post-GAC, and system effluent to create a better seal (issue discovered March 12, 2014)
- March 17, 2014 replaced mid-GAC flex hose that was temporarily fixed on January 30, 2014
- March 17, 2014 added double band clamps to the influent end of flex hose for system influent, mid-GAC, post-GAC, and system effluent (replaces temporary fix on March 12, 2014)
- March 28, 2014 fixed kinks in tubing at VMPs 001-C, SSD-2-C, SSD-3-C, and SSD-4-C

2.6 GAC AND PPZ CHANGE-OUTS

A GAC change-out occurred at Building A on October 24, 2013 and at Building C on March 6, 2014. Change-outs were conducted by removing the lead GAC unit (the spent unit) from the system, moving the lag GAC unit into the lead GAC position, and adding a new GAC unit to the lag GAC position. The Building C PPZ unit was not changed out during the reporting period.

2.7 SYSTEM SHUTDOWNS

2.7.1 Operator-Controlled Shutdowns

Both the Building A and Building C systems were briefly turned off during each biweekly system check to: (1) confirm that flow, pressure, and vacuum gauges fall to zero thereby indicating proper operation, and (2) check and drain (as necessary) condensate accumulation in the moisture separators and sumps. Both systems were also briefly turned off during quarterly system checks to test proper operation of the fail-safe alarms. In addition, the Building A system was turned off on October 24, 2013 for approximately one hour to conduct a GAC change-out (the Building C GAC change-out occurred on March 6, 2014, occurred while the system was down for an alarm). Finally, the Building A system was turned off on February 23, 2014 for approximately 22 hours and the Building C system was turned off on February 24, 2014 for approximately 21 hours for semi-annual sub-slab vapor sampling.

2.7.2 Alarmed and Other Shutdowns

There were no alarmed shutdowns at the Building A system during the reporting period. Building C system alarmed shutdowns during the reporting period were as follows:

- October 28, 2013 high pressure alarm: The system was down for approximately five hours; upon response to the alarm, no issues were found and the system was restarted.
- October 30, 2013 high pressure alarm: The system was down for approximately two hours; upon response to the alarm, no issues were found and the system was restarted.
- November 19, 2013 motor starter tripped (no alarm): The system was down for an unknown amount of time. To prevent this type of incident from occurring in the future, on December 5, 2013, the low vacuum alarm was rewired around the motor starter time delay so the system triggers a low vacuum alarm when the blower is turned off.

- December 6, 2013 high liquid level alarm at MS-1: The system was down for approximately 15 hours; upon response to the alarm, SSD-21-C was found to be pulling water that had traveled into the sub-slab after an MRAS employee left the water running in a machine. Approximately 32 gallons were drained from the moisture separator and the system was restarted. To prevent additional water from entering the system, SSD-21-C was closed and SSD-27-C was opened to 100 % to keep the system vacuum at normal operation level. SSD-21-C was reopened and SSD-27-C was reset to its initial operating position on December 18, 2013.
- December 23, 2013 post heat exchanger high temperature alarms: The system was down for approximately seven hours; upon response to the alarm, no clear reason for the increased temperature was identified. As a temporary solution, SSD-27-C and SSD-32-C were opened to 100 % to increase system flow and to decrease the temperature. On January 3, 2014, S&S Technologies (SSD system installation subcontractor) determined that the air flow vent on the heat exchanger was clogged with dirt/dust, preventing proper air flow across the exchanger. The dirt/dust was removed, and SSD-27-C and SSD-32-C were returned to their normal operating positions. To prevent this incident from occurring again, the additional task of cleaning the air flow vent on the heat exchanger has been added to quarterly system checks.
- March 5, 2014 high pressure alarm: The system was down for approximately 17 hours; upon response to the alarm, no clear reason for the high pressure was identified. A planned GAC change-out was conducted based on the vapor sample results and the system was restarted.

2.7.3 System Uptime

During the October 1, 2013 to March 31, 2014 reporting period, the Building A SSD system was off for approximately 23 hours total, and the Building C system was off for approximately 66 hours; this is equivalent to a greater than 98% uptime for both systems. The downtime associated with the tripped motor starter in the Building C system (November 2013) is not included in the downtime hours because the system was down for an unknown amount of time. In addition, the uptime calculation includes the brief periods of time the systems were turned off for biweekly and quarterly system checks.

2.8 REMEDIATION SUMMARY

2.8.1 Building A System

Continuous operation of the SSD system in the Building A plating shop began on March 31, 2008, while continuous operation of the SSD system expansion in the Building A basement began on October 22, 2010. Extraction points were placed based upon pilot test results and were

set to maximize vacuum influence at a total flow of approximately 140 standard cubic feet per minute (SCFM). In the plating shop, flow from the north lateral has been kept slightly higher than that from the south lateral due to the former's greater length. In the basement, flow from the south lateral had been kept slightly higher than that of the north lateral, again due to its greater length, but was adjusted to 100% open on March 29, 2012 to maximize flow.

Since system start-up on March 31, 2008, total influent VOCs have decreased from 94,310 μg/m³ to 3,802 μg/m³, which is a 96 % reduction in influent concentrations. The two main chemicals of concern, 1,1,1-trichloroethane and trichloroethene, have typically each accounted for 30-55 % of total influent VOCs. Individual VOC percentages compared to the sum of all measured VOCs have remained relatively constant[DLM1]. No changes in influent concentrations were apparent after the addition of the basement extraction laterals in 2010. VOCs trends for the Building A system are shown in Tables 1 through 3 and on Figure 12.

During this reporting period, VOC mass removal rates for the Building A system ranged from 0.021-0.166 pounds per day (lbs/day), based on influent concentrations. The total VOC mass removed was approximately 11.13 pounds; total removal since system start-up in March 2008 is approximately 108.46 pounds. VOC mass removal rates are far lower than the levels requiring Maryland Department of Environment (MDE) permitting [20 lbs/day VOCs, 20 pounds per year vinyl chloride].

2.8.2 Building C System

Continuous operation of the SSD system in the Building C south basement area began on March 31, 2008, while continuous operation of the SSD system expansion in the mid-basement area of Building C began on May 16, 2013. Based on pilot test results, extraction points were set at locations that maximize vacuum influence, at a total flow of approximately 170 SCFM. In the south basement area, SSD-23-C was shut off after the expansion to promote higher flow rates from the new mid-basement-area extraction wells. Vacuum influence in the south basement area has been maintained with only SSD-21-C operating, and flow rates and vacuum influence has been increasing at the mid-basement points since expansion startup in May 2013. On November 7, 2013, SSD-27-C and SSD-32-C were closed to approximately 15% and 30%, respectively, to promote higher flow rates at the other extraction wells in the mid-basement area.

From system start-up on March 31, 2008 to April 8, 2013, and before the system expansion, total influent VOCs had decreased from 31,170 $\mu g/m^3$ to 117 $\mu g/m^3$, which is a 99.6% reduction in influent concentrations. Trichloroethene and cis-1,2-dichloroethene comprised approximately 44-50%, and 29-38% of total VOCs, respectively. Following startup of the Building C system expansion in May 2013, influent VOCs increased to 3,080 $\mu g/m^3$, and have since decreased to 321 $\mu g/m^3$, which is an 89.6 % reduction in influent concentrations. Trichloroethene and cis-1,2-dichloroethene, now typically account for 68-87% and 0-8.4% of the total influent VOCs, respectively. VOCs trends for the Building C system are shown in Tables 4 through 6 and on Figure 13.

During this reporting period, VOC mass removal rates in Building C ranged from 0.077-0.213 pounds per month (lbs/month). The total VOC mass removed in Building C was approximately 0.843 pounds; total removal since system start-up in March 2008 is 7.75 pounds. The VOC mass removal for Building C is far lower than levels requiring MDE permitting.

This page intentionally left blank.

Conclusions and Recommendations

3.1 SYSTEM PERFORMANCE

Induced vacuum levels over time indicate the sub-slab depressurization systems are performing as designed (Figures 6, 7, and 8). The extraction laterals in the Building A plating shop induce a vacuum influence over an approximate 5,600-square foot area, encompassing all vapor monitoring points that showed elevated volatile organic compound concentrations before system startup. The extraction laterals in the Building A basement induce a vacuum influence over an approximate 1,875-square foot area, encompassing three of four vapor monitoring points installed to measure the system induced vacuum in the basement (Figure 9). The Building C south basement area extraction wells induce a vacuum influence over an approximate 4,200-square foot area, while the extraction wells in the mid-basement area induce vacuum influence over an approximate 37,500 square foot area; five of eight vapor monitoring points within the target area show vacuum influence to date (Figures 10 and 11). Additional monitoring points will be needed to accurately determine the area of influence in the mid-basement area of Building C.

The sub-slab depressurization systems have removed volatile organic compound mass and treated emissions with granular activated carbon and potassium permanganate zeolite (in Building C only). During the lifespan of system operation, twenty-three 200-pound and five 400-pound granular activated carbon units have been used for the Building A system. Seventeen 200-pound units and one 400-pound granular activated carbon unit have been used for the Building C system (the 600-pound potassium permanganate zeolite unit has not been changed out since its installation in April 2013.). These counts do not include the two granular activated carbon units currently attached to each system. Approximately 61 pounds of granular activated carbon have been used per pound of volatiles removed by the Building A system, and

approximately 490 pounds of granular activated carbon have been used per pound of volatiles removed in the Building C system. Note that granular activated carbon removal efficiency is reduced as vapor concentrations decrease. Influent volatile organic compound concentrations for both systems have decreased significantly since startup of the systems on March 31, 2008, with fluctuations occurring within the decreasing trend (see Figures 12 and 13).

3.2 CONTINUED MONITORING

The Building A and Building C systems will continue to be operated uninterrupted in the next quarter (25th quarter, April 1 to June 30, 2014) in order to maintain the vapor migration barrier. Operation, maintenance, and monitoring activities will include biweekly monitoring, monthly vapor sampling, quarterly 24-hour vacuum monitoring, quarterly system checks, and system maintenance. Granular activated carbon change-outs will occur when the laboratory result from the sample collected at the mid-point of the granular activated carbon unit reaches 50 percent of the influent reading, or as determined based on change-out history and laboratory results trends. Potassium permanganate zeolite change-outs are not anticipated for the next quarter. The next remedial action progress report will be completed in July 2014.

3.3 FUTURE PLANS

Additional vapor monitoring points in the Building C mid-basement area have been proposed and may be installed during the next quarter (25th quarter, April 1 to June 30, 2014) of operation. The proposed locations have been provided previously in an email from Tetra Tech Inc. to CDM (Tetra Tech, 2014). The installation of the proposed vapor monitoring points will provide additional vacuum data that would be used to better define system influence in the mid-basement area.

This page intentionally left blank.

Section 4 References

- 1. Tetra Tech, Inc. (Tetra Tech), 2012. Operation And Maintenance Manual, Building A Sub Slab Depressurization System, Lockheed Martin Corporation, Middle River Complex, Middle River, Maryland. January.
- 2. Tetra Tech, Inc. (Tetra Tech), 2013. Operation and Maintenance Manual: Sub Slab Depressurization System—Building C, Lockheed Martin Middle River Complex, 2323 Eastern Boulevard, Middle River, Maryland. July.
- 3. Tetra Tech, Inc. (Tetra Tech), 2014. Email communication between M. Martin (Tetra Tech) and C. Silver (CDM) re: proposed monitoring locations for the Building C sub-slab depressurization system. March 31, 2014

Building A Influent (µg/m³) LABORATORY DATA SUMMARY

SSD System O&M, Middle River Complex, Middle River, Maryland

/		/		/	, ,	,	/	ø /	/	/	San /	nples ar	alyzed /	by EF	A Met	hod TO-1	5 ø /	/	,	, _ ,	, ,	, ,	,	/	,	/
			/	Chicomon	hang.	Dich.	900 100 100 100 100 100 100 100 100 100		/,		, /	/		/	_ /	hod TO-1	Trich, Trich, Topology	, /	No composition of the second	1,35	Vinu Vinu	88 / S	280 - K. W. W. W. W. W. W. W. W. W. W. W. W. W.	e / /		Wass fibs ramp.
				/ , &	5		/ ¿Š	12-01 Contrarie	Jehoroethan 2	Eth.	*/_ /	Nebu.		Zono della conditiona con della con della con della con della con della con della con della con della con della con della con della con della con della con della con della con della con della con della conditiona con della con della conditiona con della conditiona con della conditiona con della conditiona con della conditiona con della conditiona con della conditiona con della conditiona con della conditiona con della conditiona con della conditiona conditiona con della conditiona con della conditiona con della conditiona condi		/20/		Trich,	/ ,5%				هجبر /	'/ /	,	/
	^R O _M		//		/E/	,5 ⁰ /		\.do*/		.00°/	Methy	& /	Zer.	/ Š*/	/		ž ⁰ /	ou /				opiooide m. km	* V	Supplied to the supplied to th	/ ئ	(Vepsell)
/ "	1	ر ا	ş°/;	,	& / {	ÿ/ ¾	§ / S		\$ \ S	\$ / 3	\$ \ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	ž / ż	žo / ,	ž / ş	§/,	;	· / 👌	ξ ⁰ / ;		ئے / ^{انتق} ا		لاً, ﴿ ثَحْ				
/ % /	/ 2/2	880%	/ ở	/ 🖔	/ 🔅	/ 20	/ 2	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	/ 2	/#¥	No.	/ × [∞]	/ 🏂	, Out	1.00	12	/ L ^{igh}	/ ¿¿ç	\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \	1 3		1	<u>/ *</u>	Ž	/ Woo	No Sept
3/31/2008 4/2/2008	NA 140	ND ND	N/A N/A	ND ND	8,300 3,800	ND ND	2,100 660	ND ND	7,900 4,500	300	ND ND	ND ND	ND ND	330 ND	ND ND	30,000 16,000	44,000 34,000	ND ND	ND ND	ND ND	ND ND	1,100	280	94,310 58,960	1.190 0.740	3.570 1.480
4/4/2008	140	ND	N/A	ND	2,300	ND	460	ND	3,300	ND	ND	ND	ND	ND	ND	13,000	30,000	ND	ND	ND	ND	ND	ND	49,060	0.620	4.340
4/11/2008 4/17/2008	140 112	ND ND	N/A N/A	ND ND	1,100 2,000	ND ND	280 480	ND ND	1,500 2,200	ND ND	ND ND	ND ND	ND ND	120 120	ND ND	9,100 11,000	14,000 18,000	ND ND	ND ND	ND ND	ND ND	ND 110	ND ND	26,100 33,910	0.330	1.980 2.380
4/24/2008	84 84	ND	N/A	ND	930	ND	260	ND	1,200	ND ND	ND ND	ND	ND	86	ND	6,500	8,600	ND	ND	ND	ND	ND ND	ND ND	17,576	0.130	3.510
5/21/2008 6/19/2008	70	ND 180	N/A N/A	ND ND	1,000 720	ND ND	320 180	ND ND	950 760	ND	ND	ND ND	ND ND	ND	ND ND	6,000 4,800	5,500 7,100	ND ND	ND ND	ND ND	ND ND	ND	ND	13,770 13,740	0.100 0.090	3.100 2.700
7/18/2008 8/12/2008	84 56	ND ND	N/A N/A	ND ND	350 470	ND ND	110 150	ND ND	430 400	ND ND	ND ND	ND ND	ND ND	ND 28	ND ND	3,200 2,900	3,700 3,400	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	7,790 7,348	0.060	1.860 1.240
9/11/2008	80	ND	N/A	ND	380	ND	130	ND	430	ND	17	ND	70	52	ND	1,900	2,700	32	ND	ND	ND	ND	ND	5,711	0.040	2.440
11/18/2008 12/18/2008	84 84	ND ND	N/A N/A	ND ND	1,300 420	ND ND	300 120	ND ND	1,100 380	ND ND	ND ND	ND ND	ND ND	72	ND ND	6,500 2,300	7,200 4,100	ND ND	ND ND	ND ND	ND ND	ND 53	ND ND	16,472 7,373	0.105 0.056	3.142 1.724
1/22/2009	84	ND	N/A	ND	380	ND	110	ND	380	ND	ND	ND	ND	ND 24	ND	2,100	2,100	ND	ND	ND	ND	ND	ND	5,070	0.038	1.185
2/20/2009 3/18/2009	84 28	ND ND	N/A N/A	ND ND	270 620	ND ND	78 470	ND ND	260 150	ND ND	ND ND	ND ND	ND ND	24 ND	ND ND	1,600 3,800	1,600 3,700	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	3,832 8,740	0.029 0.063	0.809 1.946
4/17/2009 5/20/2009	56 NA	ND ND	N/A N/A	ND ND	360 200	ND ND	100 62	ND ND	220 140	ND ND	ND ND	ND ND	ND ND	ND 32	ND ND	1,900 1,700	2,400 1,500	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	4,980 3,634	0.056 0.041	1.677
6/23/2009	134	ND	N/A	ND	280	ND	77	ND	200	ND	ND	ND	ND	19	ND	1,700	1,800	ND	ND	ND	ND	ND	ND	4,076	0.049	1.471
7/23/2009 8/28/2009	129 NA	ND ND	N/A N/A	ND ND	250 280	ND ND	68 79	ND ND	180 200	ND ND	27	ND ND	ND ND	13 42	ND ND	1,400 1,900	1,700 1,900	14 ND	ND ND	ND ND	ND ND	ND ND	ND ND	3,652 4,401	0.044	1.352 1.568
9/28/2009	125	ND	N/A	ND	150	ND	40	ND ND	110	ND ND	ND	ND ND	ND	13	ND	870	1,000	ND	ND	ND	ND	ND	ND	2,183	0.025	0.735
10/27/2009 11/24/2009	NA 130	ND ND	N/A N/A	ND ND	230 180	ND ND	64 43	ND	210 180	ND	ND ND	ND	ND ND	20 14	ND ND	1,500 1,200	1,400 1,100	ND ND	ND ND	ND ND	ND ND	9.7 ND	ND ND	3,434 2,717	0.026 0.032	0.803
12/23/2009 1/19/2010	132 130	ND ND	N/A N/A	ND ND	190 240	ND ND	48 67	ND ND	180 180	ND ND	ND ND	ND ND	ND ND	39 16	ND ND	1,100 1,500	1,300 1,600	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	2,857 3,603	0.035 0.042	1.074
2/17/2010	130	ND	N/A	ND	140	ND	35	ND	120	ND	ND	ND	ND	24	ND	760	930	ND	ND	ND	ND	ND	ND	2,009	0.023	0.657
3/17/2010 4/16/2010	120 120	ND ND	N/A N/A	ND ND	250 160	ND ND	62 41	ND ND	190 160	ND ND	ND ND	ND ND	ND ND	21 ND	ND ND	1,500 1,100	1,900 1,000	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	3,923 2,461	0.042	1.302 0.796
5/13/2010	119	ND	N/A	ND	170	ND	42	ND	170	19	ND	ND	ND	95	ND	960	1,100	ND	18	ND	ND	75	23	2,672	0.029	0.886
6/18/2010 7/19/2010	110	ND ND	N/A N/A	ND ND	96 220	ND ND	24 52	ND ND	110 180	12 ND	ND ND	ND ND	ND ND	15	ND ND	630 1,500	600 1,500	12 ND	130 24	28	ND ND	50	26	1,733 3,476	0.017	0.514 1.066
8/19/2010 9/17/2010	110 108	ND ND	N/A N/A	ND ND	200 140	ND ND	45 35	ND ND	170 150	ND ND	ND ND	ND ND	ND ND	12 29	ND ND	1,200 860	1,100 1,100	16 20	ND ND	ND ND	ND ND	ND ND	ND ND	2,743 2,334	0.027 0.023	0.841
10/12/2010 ^a	100	ND	N/A	ND	170	ND	40	ND	140	ND	ND	ND	ND	940	ND	1,100	1,400	20	ND	ND	ND	89	33	3,932	0.035	1.060
11/2/2010 12/1/2010	138 138	ND ND	N/A N/A	ND ND	150 120	ND ND	34 28	ND ND	100 110	ND 42	ND ND	ND ND	ND ND	71 54	ND ND	920 790	1,200 970	53 13	ND ND	ND ND	ND ND	14 170	ND 31	2,542 2,328	0.032	0.946
1/5/2011	133	ND	N/A	ND	150	ND	34	ND	130	14	ND	ND	ND	13	ND	860	1,200	ND	ND	ND	ND	47	10	2,458	0.029	0.882
2/7/2011 3/3/2011	130 130	ND ND	N/A N/A	ND ND	130 390	ND ND	32 98	ND ND	160 350	ND 19	ND ND	ND ND	ND ND	23	ND ND	910 2,800	900 2,500	ND ND	ND ND	ND ND	ND ND	29 61	ND ND	2,184 6,241	0.026	0.766 2.188
4/14/2011 5/6/2011	125 130	ND ND	N/A N/A	ND ND	150 150	ND ND	36 39	ND ND	160 150	ND ND	30	ND ND	ND ND	10	ND ND	900 880	1,100 890	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	2,386 2,109	0.027 0.025	0.804
6/9/2011	150	ND	N/A	ND	240	ND	59	ND	190	ND	ND	ND	ND	35	ND	1,600	1,600	20	ND	ND	ND	ND	ND	3,744	0.050	1.515
7/11/2011 8/3/2011	128 160	ND ND	N/A N/A	ND ND	200	ND ND	51 44	ND ND	170 160	ND ND	40 ND	ND ND	ND ND	81 29	ND ND	1,300 1,200	1,300 1,400	ND ND	ND ND	ND ND	ND ND	26	ND ND	3,168 3,033	0.036	1.094
9/15/2011	160	12	N/A	ND	130	ND	29	ND	130	ND	ND	ND	ND	11	ND	750	990	12	ND	ND	ND	ND	ND	2,064	0.030	0.891
10/18/2011 11/8/2011	160 165	8.3 10	N/A N/A	ND ND	120 140	ND ND	28 34	ND ND	93 110	ND ND	ND ND	ND ND	ND ND	51 9.2	ND ND	730	780 930	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	1,720 1,963	0.025	0.767
12/6/2011	160	7.3	N/A	ND	130	ND	29	ND	110	ND	ND	ND	ND	46	ND	600	800	ND	ND	ND	ND	ND	ND	1,722	0.025	0.768
1/3/2012 2/16/2012	165 160	ND ND	N/A N/A	ND ND	130 140	ND ND	30 31	ND ND	140 110	ND ND	ND ND	ND ND	ND ND	16 ND	ND ND	590 760	980	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	1,746 2,021	0.026	0.803 0.843
3/15/2012 4/16/2012	160 158	ND ND	N/A N/A	ND ND	160 170	ND ND	36 34	ND ND	130 140	ND ND	ND ND	ND ND	ND ND	14 ND	ND ND	880 880	1,100 1,300	ND ND	ND ND	ND ND	ND ND	ND 20	ND ND	2,320 2,544	0.033	1.034 1.084
5/9/2012	159	ND	N/A	ND	290	ND	56	ND	200	ND	ND	ND	ND	32	ND	1,700	2,300	ND	ND	ND	ND	ND	ND	4,578	0.065	2.029
6/4/2012 7/5/2012	159 162	ND ND	N/A N/A	ND ND	320 250	ND ND	66 50	ND ND	200 180	ND ND	ND ND	ND ND	ND ND	ND 16	ND ND	1,700 1,300	2,100 1,300	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	4,386 3,096	0.063 0.045	1.881 1.398
8/15/2012 9/12/2012	164 165	ND ND	N/A N/A	ND ND	150 110	ND ND	30 23	ND ND	130 120	ND ND	ND ND	ND ND	ND ND	22 170	ND ND	730 560	1,000 720	17	ND ND	ND ND	ND ND	ND 11	ND ND	2,079 1,714	0.031 0.025	0.950
10/18/2012	160	ND	N/A	ND	190	ND	36	ND	180	ND	ND	ND	ND	ND	ND	1,000	1,400	ND	ND	ND	ND	ND	ND	2,806	0.040	1.251
11/13/2012 12/6/2012	161 160	ND ND	N/A N/A	ND ND	120 130	ND ND	23 21	ND ND	140 120	ND ND	ND ND	ND ND	ND ND	ND 8	ND ND	600 590	910 1,000	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	1,793 1,869	0.026 0.027	0.779
1/4/2013	160	ND	N/A	ND	130	ND	24	ND	190	ND	ND	ND	ND	ND	ND	630	950	ND	ND	ND	ND	ND	ND	1,924	0.028	0.858
2/6/2013 3/7/2013	160 160	ND ND	N/A N/A	ND ND	130 140	ND ND	26 30	ND ND	130 94	ND ND	ND ND	ND ND	ND ND	ND 10	ND ND	560 670	860 1,100	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	1,706 2,044	0.025	0.687 0.911
4/8/2013 ^b	150	ND	N/A	ND	2,200	ND	290	ND	1,500	ND	ND	ND	ND	ND	ND	2,900	5,900	ND	ND	ND	ND	ND	ND	12,790	0.172	5.174
5/10/2013 6/5/2013	150 155	ND ND	N/A N/A	ND ND	140 100	11 ND	29 22	ND ND	130 110	ND ND	ND ND	ND ND	ND ND	14 ND	ND ND	730 530	1,200 790	17	ND ND	ND ND	ND ND	ND ND	ND ND	2,271 1,552	0.031	0.949
7/3/2013 8/14/2013	159 160	ND ND	N/A N/A	ND ND	160 180	ND ND	33 34	ND ND	100 120	ND ND	ND ND	ND ND	ND ND	ND 15	ND ND	820 780	1,100 1,300	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	2,213 2,429	0.032 0.035	0.981
9/9/2013	160	ND	N/A	ND	100	ND	16	ND	90	ND	ND	ND	ND	ND	ND	410	630	ND	ND	ND	ND	ND	ND	1,246	0.018	0.538
10/10/2013 11/7/2013	160 160	ND ND	N/A N/A	ND ND	220 200	ND ND	39 39	ND ND	190 170	ND ND	ND ND	ND ND	ND ND	15 11	ND ND	810 930	1,400 1,500	16 41	ND ND	ND ND	ND ND	ND ND	ND ND	2,690 2,891	0.039	1.199 1.247
12/5/2013	160	0.94	ND	21.2	165	ND	30.7	ND	132	ND	4.4	ND	ND	12.2	2.5	883	1,530	ND	ND	ND	ND	ND	ND	2,782	0.040	1.240
1/13/2014	160 153	ND ND	6.5 2.4	11.6 7.4	173 126	2.2 ND	29.3 21.2	ND ND	141 92.7	1.8	3.3 2.1	4.9	ND	9,820 15.3	ND ND	570 429	795 843	ND ND	1.9 ND	ND ND	ND ND	4.3 ND	1.7 ND	11,567 1,539	0.166	5.157 0.593
2/14/2014 3/12/2014	100	ND	2.4	ND	176	2.0	29.3	36.4	130	ND	ND	ND	3.6	9.1	ND	1,310	2,100	ND	ND	ND	ND	3.0	ND	3,802	0.021	1.695

ND - non-detect (pelow detection limit)

NA - not applicable (samples not analyzed for compound)

Completed system expansion in Building A basement on October 22, 2010.

Increase in concentrations following 19-day system shutdown due to blower failure. Blower was replaced on 4/8/13.

Samples analyzed from 4/2/08 to 117/713 were analyzed by Test America

Samples analyzed from 12/5/13 to present were analyzed by Pace Analytical

Building A Mid-GAC (μg/m³) LABORATORY DATA SUMMARY SSD System O&M, Middle River Complex, Middle River, Maryland Samples analyzed by EPA Method ΤΩ-15

	,	,	,	,	, ,	,					analyz			lethod]	O-15		•	, ,	,	,	,	,	/
/	/		Che	/ ži /	Dichloroging	e / £	ş /						/ /	/ /	Trick.	'& /	Moromoon 51,2,4	Timeny Men	Vinu Inethylbo	/ & /		<i>a.</i> /	
			/ 8		/ %		Choroethane	Ethu	e /	New Chlorie	§ /	Tolur	ø/		/ *	\$0.			N /	\$ ^X /	ON THE PROPERTY OF THE PROPERT	ğ /	Samas (Instant)
	,	/ /		/_/	/ 🔊 /	,	/ Š. /		Mett.	/ 👸	/ _{&} ,	/ 👸	'//	Chorenes		Trict.	, ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' '		/ žž	n. Y.	/ ¿*	/ /	Mass (Ingilla)
		/ پي			ģ/ģ		20/	ž ^e /	50°/	50/	Terra	ž ² /			ž ^E /				, <u>i</u> e /	**************************************	å/	2	
O O O O O O O O O O O O O O O O O O O	Benz		۶/ ﴿	30/.;	¥/,z°	/ 5	Š/ Š		\$ / \$	\$/		20/10/		ž/ ;	`/્રફ	ž. / ž		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	} / <u>}</u>	š/ ¾	څ / ۴	10 July 10 Jul	188
/ Q° 4/2/2008	6.9	N/A	/ G ND	ND	/ Q* ND	ND	ND	/ 🐼 ND	ND.	/ 😽	ND ND	ND ND	/ Q ND	ND	/ A	/ A	ND	ND	ND ND	/ E	/ o	7	0.000
4/24/2008	ND	N/A	ND	810	ND	240	2,200	ND	ND	ND	ND	ND	ND	2,100	ND	ND	ND	ND	ND	ND	ND	5,350	0.040
5/21/2008 6/19/2008	ND 110	N/A N/A	ND ND	280 2,300	ND ND	100 830	740 2,200	ND ND	ND 53	ND ND	ND ND	ND ND	ND ND	410 1,200	11 ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	1,541 6,693	0.010 0.040
7/18/2008 8/12/2008	ND ND	N/A N/A	ND 15	60 60	ND ND	27 130	270 400	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	100 1,500	ND 30	ND 16	ND ND	ND ND	ND ND	ND ND	ND ND	457 2,151	0.003 0.010
9/11/2008	ND	N/A	15	ND	ND	170	520	ND	ND	ND	ND	ND	ND	890	53	30	ND	ND	ND	ND	ND	1,678	0.010
11/18/2008 12/18/2008	ND ND	N/A N/A	ND ND	ND 98	ND ND	60 38	97 330	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	150 51	180 18	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	487 535	0.003 0.004
1/22/2009	ND	N/A	ND	42	ND	19	490	ND	ND	ND	ND	ND	ND	25	12	11	ND	ND	ND	ND	ND	599	0.005
2/20/2009 3/18/2009	ND ND	N/A N/A	ND ND	220 210	ND ND	91 69	310 280	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	380 1,900	68 190	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	1,069 2,649	0.008
4/17/2009	ND	N/A	ND	ND 440	ND	ND 42	140	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	140	0.002
5/20/2009 6/23/2009	ND ND	N/A N/A	ND ND	110 66	ND ND	42 130	140 320	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	200 82	ND ND	ND 18	ND ND	ND ND	ND ND	ND ND	ND ND	492 616	0.006 0.007
7/23/2009 8/28/2009	ND ND	N/A N/A	ND ND	250 330	ND ND	88 130	210 290	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	890 1,100	ND ND	12 14	ND ND	ND ND	ND ND	ND ND	ND ND	1,450 1,864	0.017
9/28/2009	ND	N/A	ND	130	ND	38	110	ND	ND	ND	ND	ND	ND	580	ND	ND	ND	ND	ND	ND	ND	858	0.010
10/27/2009 11/24/2009	ND ND	N/A N/A	ND ND	170 250	ND ND	94 84	260 210	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	180 710	35	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	739 1,254	0.009 0.015
12/23/2009	ND	N/A	ND	28	ND	30	180	ND	ND	ND	ND	ND	ND	19	29	ND	ND	ND	ND	ND	ND	286	0.003
1/19/2010 2/17/2010	ND ND	N/A N/A	ND ND	190 ND	ND ND	100	260 110	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	16 16	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	566 226	0.007 0.003
3/17/2010 4/16/2010	ND ND	N/A N/A	ND ND	ND 260	ND ND	ND 89	19 200	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND 600	ND 14	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	19 1,163	0.000 0.013
5/13/2010	13	N/A	ND	260	ND	61	180	15	ND	ND	ND	67	ND	1,300	14 ND	13	12	ND	ND	55	16	1,921	0.013
6/18/2010 7/19/2010	ND ND	N/A N/A	ND ND	20 74	ND ND	ND 24	19 89	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	18 87	ND ND	ND ND	76 11	16 ND	ND ND	25	14 ND	149 285	0.002
8/19/2010	ND	N/A	ND	210	ND	55	210	ND	ND	ND	ND	ND	ND	720	ND	13	ND	ND	ND	ND	ND	1,208	0.012
9/17/2010 10/12/2010	ND ND	N/A N/A	ND ND	330 400	ND ND	110 81	310 170	ND ND	ND ND	ND ND	ND ND	ND 32	ND ND	430 1,000	ND 49	24 17	ND ND	ND ND	ND ND	ND ND	ND ND	1,204 1,749	0.01191 0.0173
11/2/2010	ND	N/A	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.00	0.00
12/1/2010 1/5/2011	ND ND	N/A N/A	ND ND	ND ND	ND ND	ND ND	ND 24	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND 20	11	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	55	0.00014 0.00054
2/7/2011 3/3/2011	ND ND	N/A N/A	ND ND	13 15	ND ND	9	95 120	ND ND	ND ND	ND ND	ND ND	ND 66	ND ND	53 44	12 16	20 13	ND ND	ND ND	ND ND	ND 18	ND ND	202	0.00199
4/14/2011	ND	N/A	ND	110	ND	40	310	ND	25	ND	ND	ND	ND	48	ND	13	ND	ND	ND	ND	ND	546	0.0054
5/6/2011 6/9/2011	ND 14	N/A N/A	ND 23	150 760	ND ND	51 190	240 340	ND ND	ND ND	ND ND	ND ND	ND 26	ND ND	70 440	34 51	ND 20	ND ND	ND ND	ND ND	ND ND	ND ND	545 1,864	0.00539 0.01843
7/11/2011 8/3/2011	11 ND	N/A N/A	ND ND	320 320	ND ND	92 60	220 170	ND ND	21	ND ND	ND ND	67	ND ND	320 110	16	ND ND	ND ND	ND ND	ND ND	29 ND	10	1,067 660	0.01055 0.00653
9/15/2011	ND	N/A	ND	170	ND	35	140	ND	ND	ND	ND	ND	ND	200	ND	ND	ND	ND	ND	ND	ND	545	0.00539
10/18/2011 11/8/2011	ND ND	N/A N/A	ND ND	110 130	ND ND	27 33	80 110	ND ND	ND ND	ND ND	ND ND	22 ND	ND ND	200 330	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	439 603	0.00434
12/6/2011	ND	N/A	ND	140	ND	36	140	ND	ND	ND	ND	ND	ND	310	ND	ND	ND	ND	ND	ND	ND	626	0.00619
1/3/2012 2/16/2012	ND ND	N/A N/A	ND ND	71 120	ND ND	19 26	82 130	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	200 430	ND 11	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	372 717	0.00368
3/15/2012 4/16/2012	ND ND	N/A N/A	ND ND	190 260	ND ND	37 48	210 200	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	480 640	38 34	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	955	0.00944 0.01169
5/9/2012	ND	N/A	ND	140	ND	26	140	ND	ND	ND	ND	ND	ND	76	14	ND	ND	ND	ND	ND	ND	396	0.00392
6/4/2012 7/5/2012	ND ND	N/A N/A	ND ND	170 320	ND ND	35 74	170 260	ND ND	ND 19	ND ND	ND ND	ND ND	ND ND	120 210	63 26	ND 12	ND ND	ND ND	ND ND	ND ND	ND ND	558 921	0.00552 0.00911
8/15/2012	ND	N/A	ND	240	ND	40	130	ND	ND	ND	ND	10	ND	420	20	13	ND	ND	ND	ND	ND	873	0.00863
9/12/2012 10/18/2012	ND ND	N/A N/A	ND ND	180 160	ND ND	43 29	140 95	ND ND	ND ND	ND ND	ND ND	14 ND	ND ND	34 25	13 28	ND	ND ND	ND ND	ND ND	ND ND	ND ND	437 337	0.00432
11/13/2012 12/6/2012	ND ND	N/A N/A	ND ND	89 86	ND ND	16 14	94 92	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	20 26	21 20	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	240 238	0.00237 0.00235
1/4/2013	ND	N/A	ND	97	ND	21	130	ND	ND	ND	ND	ND	ND	88	15	ND	ND	ND	ND	ND	ND	351	0.00233
2/6/2013 3/7/2013	ND ND	N/A N/A	ND ND	120 180	ND ND	32 46	120 150	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	180 150	19 37	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	471 563	0.00466 0.00557
4/8/2013	ND	N/A	ND	66	ND	15	46	ND	ND	ND	ND	ND	ND	43	92	ND	ND	ND	ND	ND	ND	262	0.00259
5/10/2013 6/5/2013	ND ND	N/A N/A	ND ND	380 210	ND ND	73 33	210 160	ND ND	ND ND	ND ND	ND 23	ND ND	ND ND	170 460	31 15	16	ND ND	ND ND	ND ND	ND ND	ND ND	880 901	0.0087
7/3/2013	21	N/A	ND	330	ND	78	200	ND	ND	ND	ND	ND	ND	38	42	ND	ND	ND	ND	ND	ND	709	0.00701
8/14/2013 9/9/2013	50 17	N/A N/A	ND ND	390 180	ND ND	59 23	120 110	ND ND	20 ND	ND ND	ND ND	7.3	ND ND	63 50	66 21	ND	ND ND	ND ND	ND ND	ND ND	ND ND	786 401	0.00778 0.00397
10/10/2013	29	N/A	ND	190	ND	33	120	ND	ND	ND	ND	9.9	ND	170	32	ND	ND	ND	ND	ND	ND	584	0.00577
11/7/2013 12/5/2013	38 31.8	N/A ND	ND ND	260 107	ND 2.9	48 18.8	95 51.6	ND ND	6.0	5.9	ND ND	4.7	ND ND	38 34.1	39 43.5	ND ND	3.2	ND ND	ND ND	ND ND	ND ND	518 310	0.00512 0.00306
1/13/2014 2/14/2014	ND 55.1	3.9 3.1	1.6 3.1	162 189	2.2	22.4 31.0	113.0 166	1.9 ND	2.3	4.7 ND	42.1	64.0	ND 2.5	19.3 64.8	4.9 54.9	ND ND	3.7 ND	1.7 ND	ND ND	7.4 ND	2.5	450 572	0.00445 0.00566
3/12/2014	24.5	4.5	ND	154	2.0	24.5	134	ND	28.1	ND	ND	3.4	ND	38.5	47.5	ND	ND	ND	ND	ND	ND	461	0.00366
ND - non-detec	t (holow	detection	limit)																				

ND - non-detect (below detection limit)

N/A - not applicable (samples not analyzed for compound)
Samples analyzed from 4/2/08 to 11/7/13 were analyzed by Test America

Samples analyzed from 12/5/13 to present were analyzed by Pace Analytical

Building A Effluent (µg/m³) LABORATORY DATA SUMMARY SSD System 0&M, Middle River Complex, Middle River, Maryland Samples analyzed by EPA Method TO-15

	,	,	,	,	,	,	,	,	Sa	amples a	nalyzed	by EPA		TO-15	,	,	,	,	,	,	,	_
/	/		Choch on the NA	Dichoroneha.	on allinor on the state of the	• /							Trich,	, /	Notation of the state of the st	Timenyllonza.	Timethyllonize	Vimon Williams	° /	/ 。	. /	
			/ 👸			Choroenano	Ethy.		Naph.		Tolues		1		/ %	/ ½×	\ \sigma_{\sigma_0}^{\infty}	` / ¸&``		Sath Cathers		100 CS (109m3)
	/	/ /	\ \stack_{\infty} /	/ ¿Š. /			/ 5° /	/ & /	/ žio /	/ /	/ ½ /	/ /	. 5 ⁰ /	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	/ ¿Š /				/ & /	/ ₹ /	/ /	
		. /	ë /			.go/.	Ž	Methy	New Ch	, °	& /	. / .	, ž	Trich	0	, ž	, jo	, jo	Chloride m Xm	8	. /	ass (loss)
/ 。	80.00	kg \ "J	ž / .š		/ 8	§ / 8				Ď / Ž	0 000				\$ / å	5 / 4	5 / B	٤ / ٤	٤, 🖯 ج	See 14		
0946	/ &	/ 🔅	/ Š	130	12	/ 2	/ ^w	/ 20	/ ॐ	/ ž	/ 👌	12.	/ Light	/ ¿¿٥	\ X.	\ \x,	\ S.	/ ½	/ <i>it</i>	\	100	/ West
3/31/2008	ND		,				Z				ND		140		1 4/7 1	-	.,,			ND	0.0	0.000
4/2/2008 4/4/2008	ND ND	ND ND	N/A N/A	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	N/A N/A	ND ND	ND ND	ND 110	ND ND	ND ND	0.0 110	0.000
4/11/2008	ND	ND	N/A	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	N/A	ND	ND	ND	ND	ND	0.0	0.000
4/17/2008	ND	ND	N/A	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	N/A	ND	ND	ND	ND	ND	0.0	0.000
4/24/2008 5/21/2008	ND ND	30	N/A N/A	ND ND	13 ND	470	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	N/A N/A	ND ND	ND ND	ND ND	ND ND	ND ND	483 0.0	0.004
6/19/2008	76	67	N/A	ND	65	2,200	ND	ND	ND	ND	ND	ND	ND	ND	N/A	ND	ND	ND	ND	ND	2,408	0.015
8/1/2008 8/12/2008	ND	14	N/A	ND	15	300	ND	ND	ND	ND	ND	ND	ND	ND	N/A	ND	ND	ND	ND	ND	315 371	0.005
9/11/2008	ND ND	55	N/A N/A	ND ND	42 ND	310 46	ND ND	19 18	ND ND	ND ND	ND ND	ND 11	ND ND	ND ND	N/A N/A	ND ND	ND ND	ND ND	ND ND	ND ND	75	0.005
11/18/2008	ND	ND	N/A	ND	ND	ND	ND	61	ND	ND	ND	ND	ND	ND	N/A	ND	ND	ND	ND	ND	61	0.000
1/22/2009	ND ND	ND ND	N/A N/A	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	N/A N/A	ND ND	ND ND	ND ND	ND ND	ND ND	0.0	0.000
2/20/2009	ND	10	N/A	ND	ND	110	ND	ND	ND	ND	ND	ND	ND	ND	N/A	ND	ND	ND	ND	ND	120	0.000
3/18/2009	ND	ND	N/A	ND	ND	14	ND	ND	ND	ND	ND	ND	ND	ND	N/A	ND	ND	ND	ND	ND	14	0.000
4/17/2009 5/20/2009	ND ND	64 9.9	N/A N/A	ND ND	20 ND	53 46	ND ND	ND ND	ND ND	ND ND	ND ND	26 38	ND ND	ND ND	N/A N/A	ND ND	ND ND	ND ND	ND ND	ND ND	163 63	0.001
6/23/2009	ND	11.0	N/A	ND	ND	ND	ND	ND	ND	ND	ND	44	ND	ND	N/A	ND	ND	ND	ND	ND	55	0.000
7/23/2009	ND	ND 52	N/A	ND	21	190	ND	ND	ND	ND	ND 77	ND 250	ND	ND	N/A	ND	ND	ND	ND	ND	211	0.002
8/28/2009 9/28/2009	ND ND	52 27	N/A N/A	ND ND	29 19	46 100	ND ND	ND ND	ND ND	ND ND	7.7	250 93	ND ND	ND ND	N/A N/A	ND ND	ND ND	ND ND	ND ND	ND ND	385 239	0.003
10/27/2009	ND	ND	N/A	ND	ND	ND	ND	ND	ND	ND	40	24	ND	ND	N/A	ND	ND	ND	ND	ND	64	0.001
11/24/2009 12/23/2009	ND ND	ND 21	N/A N/A	ND ND	ND 10	53 11	ND ND	ND ND	ND ND	ND ND	ND 8.8	21 190	ND 16	ND ND	N/A N/A	ND ND	ND ND	ND ND	ND ND	ND ND	74 257	0.001
1/19/2010	ND	27	N/A	ND	10	18	ND	ND	ND	ND	ND	200	ND	ND	N/A	ND	ND	ND	ND	ND	255	0.003
2/17/2010	ND	ND	N/A	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	N/A	ND	ND	ND	ND	ND	0.0	0.000
3/17/2010 4/16/2010	ND ND	11 12	N/A N/A	ND ND	ND 9.4	20 330	ND ND	ND ND	ND ND	ND ND	ND ND	17 27	11 31	ND ND	N/A N/A	ND ND	ND ND	ND ND	ND ND	ND ND	59 409	0.001
5/13/2010	7.2	250	N/A	ND	57.0	160	19	ND	ND	ND	58	1,100	24	12	N/A	33	ND	ND	77	24	1,720	0.019
6/18/2010 7/19/2010	ND ND	ND 8.7	N/A N/A	ND ND	ND ND	90 100	ND ND	ND ND	ND	ND ND	ND ND	ND 40	ND 16	ND ND	N/A N/A	62 ND	13 ND	ND ND	16 ND	9.3 ND	165 165	0.002
8/19/2010	ND	90	N/A	ND	47	270	ND	ND	ND ND	ND	ND	41	ND	15	N/A	ND	ND	ND	ND	ND	463	0.002
9/17/2010	ND	88	N/A	ND	39	260	ND	ND	ND	ND	ND	120	ND	ND	N/A	ND	ND	ND	ND	ND	507	0.01
10/12/2010 11/2/2010	ND ND	81 ND	N/A N/A	ND ND	10 ND	58	ND ND	ND ND	ND ND	ND ND	16 ND	360 ND	30 ND	17	N/A N/A	ND ND	ND ND	ND ND	ND ND	ND ND	572 0.0	0.01
12/1/2010	ND	ND	N/A	ND	ND	ND	ND	ND	ND	ND	ND	14.0	ND	ND	N/A	ND	ND	ND	ND	ND	14	0.000
1/5/2011 2/7/2011	ND ND	ND ND	N/A N/A	ND ND	ND ND	ND 24	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND 14	ND 21	N/A N/A	ND ND	ND ND	ND ND	ND ND	ND ND	0.0 59	0.000
3/3/2011	120	ND	N/A	ND	ND	25	ND	ND	ND	ND	58	ND	ND	19	N/A	ND	ND	ND	23	ND	222	0.002
4/14/2011	ND	ND	N/A	ND	ND	110	ND	23	ND	ND	55	ND	ND	ND	N/A	ND	ND	ND	11	ND	188	0.002
5/6/2011 6/9/2011	ND ND	8.8 59.0	N/A N/A	ND ND	ND 91	170 580	ND ND	ND ND	ND ND	ND ND	ND 30	21 34	19 ND	ND 19	N/A N/A	ND ND	ND ND	ND ND	ND ND	ND ND	219 813	0.002
7/11/2011	ND	ND	N/A	ND	ND	ND	13	21	ND	ND	100	26	ND	ND	N/A	ND	ND	ND	43	17	160	0.002
8/3/2011 9/15/2011	ND ND	ND 100	N/A N/A	ND ND	ND 41	19 150	ND ND	ND ND	ND ND	ND ND	11 ND	20 12	ND ND	ND ND	N/A N/A	ND ND	ND ND	ND ND	ND ND	ND ND	50 303	0.001
10/18/2011	ND	130	N/A	ND	35	77	ND	ND	ND	ND	25	ND	ND	ND	N/A	ND	ND	ND	ND	ND	267	0.003
11/8/2011	ND	150	N/A	ND	39	95	ND	ND	ND	ND	ND	15	ND	ND	N/A	ND	ND	ND	ND	ND	299	0.003
12/6/2011 1/3/2012	ND ND	150 56	N/A N/A	ND ND	37 15	110 67	ND ND	ND ND	ND ND	ND ND	ND ND	16 20	ND 11	ND ND	N/A N/A	ND ND	ND ND	ND ND	ND ND	ND ND	313 169	0.003
2/16/2012	ND	85	N/A	ND	24	100	ND	ND	ND	ND	ND	52	ND	ND	N/A	ND	ND	ND	ND	ND	261	0.003
3/15/2012	ND	82 180	N/A	ND	19	100	ND	ND	ND	ND	ND	45	ND 12	ND	N/A	ND	ND	ND	ND	ND	246	0.002
4/16/2012 5/9/2012	ND	180 ND	N/A N/A	ND	ND	240 ND	ND	ND	ND	ND	ND	140 ND	ND	ND	N/A N/A	ND	ND	ND	ND	ND	0.0	0.000
6/4/2012	ND	ND	N/A	ND	ND	12	9.6	ND	ND	ND	9.1	ND	18	ND	N/A	ND	ND	ND	42	12	49	0.001
7/5/2012 8/15/2012	ND ND	ND 130	N/A N/A	ND ND	ND 38	87 210	ND ND	ND ND	ND ND	ND ND	26 8.7	ND ND	ND ND	ND ND	N/A N/A	ND ND	ND ND	ND ND	ND ND	ND ND	113 387	0.001
9/12/2012	ND	ND	N/A	ND	ND	ND	ND	ND	ND	ND	13	ND	ND	ND	N/A	ND	ND	ND	ND	ND	13	0.000
10/18/2012 11/13/2012	ND ND	ND ND	N/A N/A	ND ND	ND ND	9.8 48	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	13 ND	ND ND	N/A N/A	ND ND	ND ND	ND ND	ND ND	ND ND	23 48	0.000
12/6/2012	ND	8.8	N/A	ND	ND	63	ND	ND	ND	ND	ND	ND	13	ND	N/A	ND	ND	ND	ND	ND	85	0.001
1/4/2013	ND	33	N/A	ND	12	100	ND	ND	ND	ND	ND	ND	ND	ND	N/A	ND	ND	ND	ND	ND	145	0.001
2/6/2013 3/7/2013	ND ND	77 130	N/A N/A	ND ND	28 40	150 140	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	11 ND	ND ND	N/A N/A	ND ND	ND ND	ND ND	ND ND	ND ND	266 310	0.003
4/8/2013	ND	56	N/A	ND	16	55	ND	ND	ND	ND	ND	ND	42	ND	N/A	ND	ND	ND	ND	ND	169	0.002
5/10/2013	ND ND	180 86	N/A N/A	ND ND	38 21	190 110	ND ND	ND ND	ND ND	ND ND	ND ND	12 ND	16 ND	ND ND	N/A N/A	ND ND	ND ND	ND ND	ND ND	ND ND	436 217	0.004
6/5/2013 7/3/2013	ND	ND	N/A N/A	ND	ND	ND ND	ND	ND	ND	ND	ND	ND	ND	ND	N/A N/A	ND	ND	ND	ND	ND	0.0	0.002
8/14/2013	ND	8.2	N/A	ND	ND	52	ND	17	ND	ND	ND	ND	16	ND	N/A	ND	ND	ND	ND	ND	93	0.001
9/9/2013 10/10/2013	ND ND	15 270	N/A N/A	ND ND	ND 66	180 190	ND ND	ND ND	ND ND	ND ND	ND 11	ND ND	ND 13	12 15	N/A N/A	ND ND	ND ND	ND ND	ND ND	ND ND	207 565	0.002
11/7/2013	ND	ND	N/A	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	N/A	ND	ND	ND	ND	ND	0	0.000
12/5/2013 1/13/2014	0.97	1.9	856	ND 2.3	3.0 5.9	14.8 31.3	ND 10	105 1.8	ND 5.7	1.6 ND	3.0 22.2	ND	1.8 ND	ND	12	ND 4.0	ND ND	ND ND	ND 5.8	ND 2.2	1000	0.010
2/14/2014	1.7 0.65	6.4 42.6	12.5 1.7	2.3	26	111	1.9 ND	1.8 ND	ND	ND	4.0	ND 2.4	10	ND ND	1.4 ND	ND	ND	ND	5.8 ND	ND	97 200	0.001
3/12/2014	2.0	ND	13.3	2.3	ND	ND	3.5	35.2	ND	2.6	36.5	ND	1.2	ND	ND	3.0	ND	ND	7.7	2.9	100	0.001
ND - non-detect					-1\																	

NA - not applicable (samples not analyzed for compound)

The Chlorodifluoromethane and 1,2,3-Trimethylbenzene concentrations reported in the 12/5/2013 sample were reported as tenatively identified compounds and were converted from 238 ppbv and 2.3. ppbv, respectively.

Samples analyzed from 4/2/08 to 11/7/13 were analyzed by Test America Samples analyzed from 12/5/13 to present were analyzed by Pace Analytical

Building C Influent (µg/m³) LABORATORY DATA SUMMARY

SSD System O&M, Middle River Complex, Middle River, Maryland

	,	,		,	,	,	,	,	,		D Sy				River Co	EPA Me	thod TC			,	,		,	, ,	,	,
	,		/	Solino O	/ 'ç'	ø//	Den School	, ₉ ,	et la	,		Ι,	/。/	/ /		Tick.	ç [©]	2	and and and and and and and and and and	ou 25'E' 740	ou would min	ç ^o /	370 370	\ _e /		Mass (10s
	,					cis.	ائ. /		\$ /	Eth. Ochlorochane		Napu Chi		Zour Cother	*/ /	/ Š	1,12.17.ic	Fillip On Oc. 1.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.					/ 3		Mass. (190ms)	/ & /
		Ben,	/ ø/				ö	Paring Tar	20	0 / 0 ≥ /	Meri	\g'\	Tetralene	\sec.	_/	.z. /	, <u>, , , , , , , , , , , , , , , , , , </u>	\$ <u>\$</u>	ineti.	ineti.	Jour /	m.t.	/ & /	/。/	/ کی	Mass (18c)
/ 🚜	/ 8	1000 (SO)	, / Š	/ کو	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	0 ;	ý Æ	5/	9/	Ġ.				10/10/10/	, / j	٤ / عَ					¥ / <u>\$</u>	\$ / \ \$	§ / s			
3/31/2008	/ 炎 [*] 55	ND ND	/ රි N/A	ND	ND	ි/ ප් 25,000	ND ND	ND.	ND	320	ND	ND	ND ND	ND ND	ND ND	/ 🎺 550	ND ND	N/A	990	740	2,100	/ & · 1,100	<u>ੂੰ</u> 370	29,700	0.1500	0.450
4/2/2008	57	ND	N/A	ND	ND	2,700	ND	ND	ND	ND	ND	ND	ND	ND	ND	84	ND	N/A	63	56	320	65	ND	3,223	0.0200	0.430
4/4/2008 4/11/2008	60 65	ND ND	N/A N/A	ND ND	ND ND	6,600 4,100	ND ND	ND ND	32 ND	44 ND	ND ND	ND ND	ND ND	ND ND	ND ND	440 600	ND ND	N/A N/A	180 73	170 61	690 370	180 48	68	8,156 5,204	0.0500	0.350
4/17/2008 4/24/2008	60 63	ND ND	N/A N/A	ND ND	ND	2,900 2,600	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND 28	ND ND	ND ND	670 750	ND ND	N/A N/A	69 85	55 70	190 130	34 32	ND 17	3,884 3,663	0.0200 0.0200	0.140 0.540
5/21/2008	60	ND	N/A	ND	ND	1,600	ND	ND	ND	ND	ND	ND	17	ND	ND	650	ND	N/A	65	51	41	15	ND	2,424	0.0100	0.310
6/19/2008 7/18/2008	60 54	7.4 ND	N/A N/A	ND ND		300 1,300	ND ND	ND ND		ND ND	ND ND	ND ND	ND 14	110 ND	ND ND	ND 440	ND ND	N/A N/A	23 45	19 36	8 35	9 ND	ND ND	467 1,870	0.0030	0.090
8/13/2008	60 60	ND	N/A	16	ND	410	ND	ND ND	ND ND	ND	ND	ND ND	ND ND	ND ND	ND 13	58	ND	N/A	ND ND	ND ND	13	ND ND	ND	497 911	0.0030	0.093
9/11/2008 11/12/2008	62	ND ND	N/A N/A	ND ND		730 390	ND ND	ND		ND ND	18	ND	ND	ND	ND	130 110	ND ND	N/A N/A	ND	ND	20 17	ND	ND ND	517	0.0050	0.305 0.086
12/18/2008 1/22/2009	66 67	ND ND	N/A N/A	ND ND		420 810	ND ND	ND ND		ND ND	ND ND	ND ND	ND 170	ND ND	ND ND	150 580	ND ND	N/A N/A	ND 37	ND 29	22 38	ND 17	ND 14	592 1,664	0.0035	0.105
2/21/2009	65	ND	N/A	ND	ND	630	ND	ND	ND	ND	ND	ND	140	ND	ND	270	ND	N/A	39	34	25	16	12	1,138	0.0068	0.204
3/18/2009 4/17/2009	66 66	ND ND	N/A N/A	ND ND	ND ND	460 200	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	160 46	ND ND	ND ND	350 86	ND ND	N/A N/A	62 19	51 16	16 6.1	14 ND	13 ND	1,099 373	0.0067	0.200
5/20/2009	64	ND	N/A	ND	ND	210 190	ND ND	ND	ND	ND	ND	ND	24	ND ND	ND ND	79	ND ND	N/A	14	14	5.7	ND	ND	347	0.0020	0.060
5/23/2009 7/23/2009	56 60	ND ND	N/A N/A	ND ND	ND	150	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND	ND	58 55	ND	N/A N/A	ND ND	ND ND	ND ND	ND ND	ND ND	248 205	0.0011	0.037
3/28/2009 9/28/2009	NA NA	ND ND	N/A N/A	ND ND	ND ND	720 39	ND ND	ND ND	ND ND	ND ND	17 110	ND ND	ND ND	ND ND	ND ND	160 16	ND ND	N/A N/A	ND ND	ND ND	13 ND	ND ND	ND ND	910 165	0.0049	0.147 0.027
10/27/2009	60	ND	N/A	ND	ND	200	ND	ND	ND	ND	ND	ND	ND	ND	ND	64	ND	N/A	ND	ND	ND	ND	ND	264	0.0014	0.043
11/24/2009 12/23/2009	60 65	ND ND	N/A N/A	ND ND	ND ND	190 96	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND 26	ND ND	75 45	ND ND	N/A N/A	ND ND	ND ND	ND ND	ND 8.7	ND ND	265 167	0.0000	0.000
1/19/2010	65	ND	N/A	ND		140	ND	ND		ND	ND	ND	ND	ND	ND	57	ND	N/A	ND	ND	ND	ND	ND	197	0.0012	0.035
2/17/2010 3/17/2010	68 65	ND ND	N/A N/A	ND ND	ND ND	100 87	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	37 33	ND ND	N/A N/A	ND ND	ND ND	ND ND	ND ND	ND ND	137 120	0.0008	0.025
/16/2010 5/13/2010	65 68	ND 58	N/A N/A	ND ND	ND ND	110 65	ND ND	ND ND	ND ND	ND 38	ND ND	ND ND	ND ND	ND 220	ND ND	39 22	ND ND	N/A N/A	ND 25	ND ND	ND ND	ND 140	ND 39	149 428	0.0009 0.0026	0.026 0.078
/18/2010	66	ND	N/A	ND		72	ND	ND		ND	ND	ND	ND	ND	ND	25	ND	N/A	83	17	ND	30	17	197	0.0026	0.078
7/19/2010 3/19/2010	60 61	ND ND	N/A N/A	ND ND	ND ND	68 100	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	34 31	ND ND	N/A N/A	ND ND	ND ND	ND ND	ND ND	ND ND	102 131	0.0006	0.017
/17/2010	63	ND	N/A	ND	ND	70	ND	ND	ND	ND	ND	ND	ND	ND	ND	33	ND	N/A	ND	ND	ND	ND	ND	103	0.0006	0.018
10/12/2010 11/2/2010	60 65	10 ND	N/A N/A	ND ND	ND ND	160 65	ND ND	ND ND	ND ND	11 ND	ND ND	ND ND	ND ND	130 ND	110.0 ND	70 35	ND ND	N/A N/A	ND ND	ND ND	ND ND	23 ND	ND ND	491 100	0.0026	0.079
12/1/2010	65	ND	N/A	ND	ND	120	ND	ND	ND	ND	ND	ND	19	ND	ND	89	ND	N/A	ND	ND	ND	ND	ND	228	0.0013	0.040
1/5/2011 2/7/2011	68 70	ND ND	N/A N/A	ND ND		160 180	ND ND	ND ND	_	ND ND	ND ND	ND ND	94 120	7.7	ND ND	250 270	ND ND	N/A N/A	ND ND	ND ND	9 ND	ND ND	ND ND	520 570	0.0032	0.095 0.108
3/3/2011 1/14/2011	69 65	ND ND	N/A N/A	ND ND		170 130	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	110 37	34 10	ND ND	180 90	ND ND	N/A N/A	ND ND	ND ND	ND ND	ND ND	ND ND	494 267	0.0031	0.092
5/6/2011	70	8	N/A	ND	ND	100	ND	ND	ND	16	ND	ND	19	ND	ND	82	ND	N/A	ND	ND	ND	9	ND	225	0.0014	0.044
5/9/2011 7/11/2011	55 51	26 20	N/A N/A	ND ND		97 74	ND ND	ND ND		ND ND	ND 37	ND ND	ND ND	14 62	ND ND	63 26	ND ND	N/A N/A	ND ND	ND ND	ND ND	ND 21	ND ND	200 219	0.0010	0.030
3/3/2011	50	14	N/A	ND	ND	76	ND	ND	ND	ND	ND	ND	ND	ND	ND	34	ND	N/A	ND	ND	ND	ND	ND	124	0.0006	0.017
0/15/2011 0/25/2011	48 55	10 ND	N/A N/A	ND ND		22 38	ND ND	ND ND	ND ND	ND ND	ND 27	ND ND	ND ND	ND 20	ND ND	ND ND	ND ND	N/A N/A	ND ND	ND ND	ND ND	ND 11	ND ND	32 85	0.0001	0.004
1/8/2011	55 55	12	N/A	ND		45	ND	ND		ND	ND	ND	ND	ND	ND	16	ND	N/A	ND ND	ND	ND	ND ND	ND	73	0.0004 0.0004	0.011
12/6/2011 1/3/2012	55 50	ND ND	N/A N/A	ND ND	ND ND	62 55	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	21 21	ND ND	N/A N/A	ND	ND ND	ND ND	ND	ND ND	83 76	0.0003	0.013
2/16/2012 3/15/2012	54 55	ND ND	N/A N/A	ND ND	ND ND	76 93	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND 16	ND ND	ND ND	43 58	ND ND	N/A N/A	ND ND	ND ND	ND ND	ND ND	ND ND	119 167	0.0006	0.017 0.026
1/16/2012	54	ND	N/A	ND	ND	64	ND	ND	ND	ND	ND	ND	16	ND	ND	56	ND	N/A	ND	ND	ND	ND	ND	136	0.0007	0.020
5/9/2012 6/4/2012	51 52	ND ND	N/A N/A	ND ND		72 71	ND ND		ND ND			ND ND	20 17	9.8 ND	ND ND	65 50	ND ND	N/A N/A	ND ND	ND ND	ND ND	ND ND	ND ND	167 138	0.0008	0.024
3/16/2012 3/12/2012	49 30	ND	N/A	ND	ND	39	ND	ND	ND	ND	ND	ND	ND	ND 23	ND	19 22	ND	N/A	ND ND	ND	ND	ND	ND	58	0.0003	0.008
9/12/2012 10/18/2012	65	ND ND	N/A N/A	ND ND	ND ND	41 95	ND ND	ND ND		ND ND	ND ND	ND ND	ND ND	ND	ND ND	45	ND ND	N/A N/A	ND ND	ND ND	ND ND	ND ND	ND ND	86 140	0.0002	0.007
11/13/2012 ^a 12/6/2012	61	ND	N/A	ND		18	ND	ND			ND	ND	ND	ND	ND	270	ND	N/A	ND	ND	ND E 3	31	16	288	0.0016	0.047
12/6/2012 1/4/2013	62 56	ND ND	N/A N/A	ND ND	_	70 66	ND ND		ND ND	_	ND ND	ND ND	22 42	ND ND	ND ND	91 110	ND ND	N/A N/A	ND ND	ND ND	5.3	ND ND	ND ND	188 218	0.0010	0.033
2/6/2013	60 57	ND ND	N/A N/A	ND ND	ND	49 60	ND ND		ND		ND ND	ND ND	29 45	ND ND	ND ND	91 100	ND ND	N/A N/A	ND ND	ND ND	ND ND	ND ND	ND ND	169 205	0.0009	0.026
8///2013 1/8/2013	57 57	ND	N/A N/A			44	ND		ND			ND	45 21	ND	ND	52	ND ND	N/A N/A	ND	ND	ND	ND	ND	117	0.0001	0.033
5/10/2013 ^b	112	ND	N/A	ND		120	ND					ND	ND	ND	ND	2,900	ND	N/A	ND	ND	ND	80	ND 1E	3,020	0.0304	0.943
6/5/2013 7/3/2013	161 182	ND 12	N/A N/A	ND ND	ND 12	10 ND	ND ND	ND ND	ND ND	9.4	ND ND	ND ND	ND ND	ND ND	ND ND	460 290	50 16	N/A N/A	ND 11	ND ND	ND ND	31 43	15 23	520 350	0.0075 0.0057	0.226 0.178
3/14/2013 3/9/2013	180 182	ND ND	N/A N/A	ND ND	ND ND	ND ND	ND ND	ND ND	_	ND ND	20	ND ND	ND ND	ND ND	ND ND	210 150	18	N/A N/A	ND ND	ND ND	ND ND	20	11	248 150	0.0040 0.0025	0.124 0.074
10/10/2013	190	14	N/A	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	200	16	N/A	ND	ND	ND	20	10	230	0.0039	0.122
11/7/2013 12/5/2013	160 154	13 6.3	N/A ND	ND ND		18 13	_		ND ND			ND 33.9	ND 5.4	ND 4.0	ND ND	280 228	ND ND	N/A ND	ND 4.8	ND 2.4	ND ND	45 30.4	24 16.1	321 316	0.0046	0.138
1/13/2014	175	13.7	4.7	ND	ND	5.7	ND	ND	ND	10.3	3.4	22.6	5.6	49.6	ND	298	ND	5.5	17.8	ND	ND	49.1	19.3	437	0.0069	0.213
2/14/2014 3/12/2014	168 175	1.8 9.1	4.5 3.0	ND 3.2	ND ND	2.3 4.9	2.2	ND ND	ND ND	2.1 5.9		5.3 11.5	3.3	2.7 6.0	ND ND	157 261	ND ND	ND 1.6	2.8 6.0	ND 3.0	ND ND	8.9 25.3	4.7 12.3	183 321	0.0028	0.077
D - non-detect				J.2		, ,	1		. 40	, 0.0				, 5.0			. 10		, 5.0	. 5.0				V-1	3.0000	000

^{| 3/12/2014 | 175 | 9.1 | 3.0 | 3.2 | \}textsf{ND} | 4.9 | 2.2 | \textsf{ND} | \textsf{

Building C Mid-GAC (µg/m³) LABORATORY DATA SUMMARY SSD System O&M, Middle River Complex, Middle River, Maryland

	,		,	,	,	,	,	y Syste		les analy		EPA M			;		,	,	, ,		,	,
/	/	/	Dich.	Cis.7.3	~ /	. /	/ /							, , ,	/ /	T. 2.4 Trimenyme	Trimenylle	Tumenty Table 1720	/ پ			
			/.		Z 1,1,0.	Tr. Tr. Tr. Tr. Tr. Tr. Tr. Tr. Tr. Tr.	SERVINE CONTROL		/.8		/ ,	, /	Trick, of	,	/%	· / .	,		\$ /	M's of M'	ř /	Mass (Instrumy)
			/ ¸&		/ ુર્જ		*** /	/ ہ	S. Chloride	/ _ /	Town	/ /	/ ¸&	1,1,2,1,4 (1) 01/0/10 10 10 10 10 10 10 10 10 10 10 10 10 1	1,23 (000, 22)		, Ž	'/ <u>\$</u>	/ & /	بخ /		
	/	·/			ë /	20°/	20	ž. /	& /	, je	& ⁰ /	_ /	,ž" /	/ Š /.	Z 2 %			Jou /		& /	<i>".</i> /	& / *
/ _ø	Benz	§ / ¿	خ / فح	<u> </u>	Ÿ/ \$	\$ / \$	§ / §			چ چر / پنج	0,000		`/;						قد / عَ	§ / _3		
410 10000	/ &	<u>/ & </u>	/ 🕉	1/8	/ 1/2	/ 1/2	4	Methy	Nepp.	/ ½~	<u>/ 🔊</u>	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	/ XX	1,7	7 3	/ '×	\ 's,	/ <u>ż</u> k.	opio M. K. W. K. W. K. W. K. W. K. W. W. K. W. W. K. W. K. W. K. W. K. W. K. W. K. W. K. W. K. W. K. W. K. W. K. W. K. W. K. W. K. W. W. K. W. W. K. W. W. K. W. W. K. W. W. K. W. W. W. K. W. W. W. K. W. W. W. W. W. W. W. W. W. W. W. W. W.	/3	70	OCS (In Street)
4/2/2008 4/24/2008	ND ND	N/A N/A	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	720 230	ND ND	ND ND	720 230	0.004
5/21/2008 6/19/2008	ND 28	N/A N/A	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	50 51	ND ND	ND ND	50 79	0.000
7/18/2008	ND	N/A	ND	150	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND ND	ND	ND	40	ND	ND	190	0.001
8/13/2008 9/11/2008	ND ND	N/A N/A	ND ND	750 13	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	15 10	ND ND	ND ND	765 23	0.004
11/12/2008	ND	N/A	ND	160	ND	ND	ND	50	ND	ND	ND	ND	ND	ND	ND	ND	ND	17	ND	ND	227	0.001
12/18/2008	ND ND	N/A N/A	ND ND	180 13	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	25 35	ND ND	ND ND	205 48	0.001
2/20/2009	ND	N/A	ND	14	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	15	ND	ND	29	0.000
3/18/2009 4/17/2009	ND ND	N/A N/A	ND ND	100 340	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	19 7.1	ND ND	ND ND	119 347	0.001 0.002
5/20/2009 6/23/2009	ND ND	N/A N/A	ND ND	70	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND 5.2	ND ND	ND ND	0.0 75	0.000
7/23/2009	ND	N/A	ND	360	ND	ND	ND	21	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	381	0.002
8/28/2009 9/28/2009	ND ND	N/A N/A	ND ND	ND ND	ND ND	ND ND	ND ND	20 ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	20 0.0	0.000
10/27/2009	ND	N/A	ND	13	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	13	0.000
11/24/2009 12/23/2009	ND ND	N/A N/A	ND ND	23 23	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND 13	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	23 36	0.000
1/19/2010 2/17/2010	ND ND	N/A N/A	ND ND	21 23	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	21 23	0.000
3/17/2010	ND	N/A	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.0	0.000
4/16/2010 5/13/2010	ND 15	N/A N/A	ND ND	9.6	ND ND	ND ND	9.8	ND ND	ND ND	ND ND	ND 51	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND 36	ND 10	0.0 85	0.000
6/18/2010	ND	N/A	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	79	16	ND	26	15	95	0.001
7/19/2010 8/19/2010	11 ND	N/A N/A	ND ND	ND 15	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	11 15	0.000
9/17/2010	35	N/A	ND	26	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	61	0.000
10/12/2010 11/2/2010	ND ND	N/A N/A	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	24 ND	ND ND	ND ND	ND ND	ND 12	ND ND	ND ND	ND ND	ND ND	36 12	0.000
12/1/2010 1/5/2011	ND ND	N/A N/A	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND 9	ND ND	ND ND	0.0 9	0.000
2/7/2011	ND	N/A	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.0	0.000
3/3/2011 4/14/2011	ND ND	N/A N/A	ND ND	20 180	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	20 180	0.000
5/6/2011	ND	N/A	ND	ND 47	ND	ND	11	ND	ND	ND ND	ND 42	ND	ND	ND	ND	ND	ND	ND	ND	ND	11	0.000
6/9/2011 7/11/2011	32 29	N/A N/A	ND ND	17 160	ND ND	ND ND	ND ND	ND 28	ND ND	ND	13 74	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND 24	ND 8.9	62 291	0.000
8/3/2011 9/15/2011	25 22	N/A N/A	ND ND	ND 12	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	25 34	0.000
10/25/2011	16	N/A	ND	19	ND	ND	ND	24	ND	ND	20	ND	ND	ND	ND	ND	ND	ND	13	ND	79	0.000
11/8/2011 12/6/2011	16 8.4	N/A N/A	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	16 8.4	0.000
1/3/2012	ND	N/A	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.0	0.000
2/16/2012 3/15/2012	ND ND	N/A N/A	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	0.0	0.000
4/16/2012 5/9/2012	ND ND	N/A N/A	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	0.0	0.000
6/4/2012	ND	N/A	ND	ND	ND	ND	8.7	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	8.7	0.000
8/15/2012 9/12/2012	ND ND	N/A N/A	ND ND	28	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND 19	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	28.0 19.0	0.000
10/18/2012	ND	N/A	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.0	0.000
11/13/2012* 12/6/2012	ND ND	N/A N/A	ND ND	9.3	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND 57	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	0.0 66.3	0.000
1/4/2013 2/6/2013	ND ND	N/A N/A	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	21 24	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	21.0 24.0	0.000
3/7/2013	ND	N/A	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	19	ND	ND	ND	ND	ND	ND	ND	19.0	0.000
4/8/2013 5/10/2013	ND ND	N/A N/A	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	19 87	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	19.0 87.0	0.000
6/5/2013	ND	N/A	ND	28	ND	ND	ND	ND	ND	ND	ND	ND	ND	19	ND	ND	ND	ND	ND	ND	47.0	0.000
7/3/2013 8/14/2013	9.9	N/A N/A	ND ND	34 17	ND ND	ND ND	ND ND	21 17	ND ND	ND ND	ND ND	ND ND	14 12	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	69.0 55.9	0.001 0.001
9/9/2013 10/10/2013	ND 11	N/A N/A	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND	ND ND	0.0 11.0	0.000
11/7/2013	11	N/A	ND	9.3	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND ND	11	ND	ND	ND ND	ND	31.3	0.000
12/5/2013 1/13/2014	10.9 8.3	N/A 4.2	8.6 2.2	7.4 11.0	ND ND	ND ND	ND 1.7	6.4 2.4	ND 4.8	ND ND	2.5 21.3	ND 3.0	10.7 124	ND ND	ND ND	ND 2.7	ND ND	ND ND	ND 5.8	ND 2.4	46.5 185.6	0.000
2/14/2014	5.8	6.1	2.0	5.7	ND	ND	ND	ND	2.5	ND	ND	ND	256	ND	ND	ND	ND	ND	ND	ND	278.1	0.003
3/12/2014 ND - non-detect	13.5 (below d	3.7 letection	2.4 limit)	10.5	ND	ND	3.7	ND	ND	18.2	12.5	ND	5.6	ND	5.9	15.3	4.4	ND	17.1	7.6	95.7	0.001
	,		7	d for com																		

N/A - not applicable (samples not analyzed for compound)

Sampling not conducted in July 2012 due to shutdown test.

*November 2012 sample collected while four new extraction wells intalled in October 2012 were operating (November 5-26, 2012). Wells temporarily closed until May 16, 2013. Samples analyzed from 4/2/08 to 11/7/13 were analyzed by Test America

Samples analyzed from 12/5/13 to present were analyzed by Pace Analytical

Building C Effluent (µg/m³)

LABORATORY DATA SUMMARY

yland

yland

yland

yland

yland

yland

yland

yland

yland

yland

yland

yland

yland

yland

yland

yland

yland

yland

yland

yland

yland

yland

yland

yland

yland

yland

yland

yland

yland

yland

yland

yland

yland

yland

yland

yland

yland

yland

yland

yland

yland

yland

yland

yland

yland

yland

yland

yland

yland

yland

yland

yland

yland

yland

yland

yland

yland

yland

yland

yland

yland

yland

yland

yland

yland

yland

yland

yland

yland

yland

yland

yland

yland

yland

yland

yland

yland

yland

yland

yland

yland

yland

yland

yland

yland

yland

yland

yland

yland

yland

yland

yland

yland

yland

yland

yland

yland

yland

yland

yland

yland

yland

yland

yland

yland

yland

yland

yland

yland

yland

yland

yland

yland

yland

yland

yland

yland

yland

yland

yland

yland

yland

yland

yland

yland

yland

yland

yland

yland

yland

yland

yland

yland

yland

yland

yland

yland

yland

yland

yland

yland

yland

yland

yland

yland

yland

yland

yland

yland

yland

yland

yland

yland

yland

yland

yland

yland

yland

yland

yland

yland

yland

yland

yland

yland

yland

yland

yland

yland

yland

yland

yland

yland

yland

yland

yland

yland

yland

yland

yland

yland

yland

yland

yland

yland

yland

yland

yland

yland

yland

yland

yland

yland

yland

yland

yland

yland

yland

yland

yland

yland

yland

yland

yland

yland

yland

yland

yland

yland

yland

yland

yland

yland

yland

yland

yland

yland

yland

yland

yland

yland

yland

yland

yland

yland

yland

yland

yland

yland

yland

yland

yland

yland

yland

yland

yland

yland

yland

yland

yland

yland

yland

yland

yland

yland

yland

yland

yland

yland

yland

yland

yland

yland

yland

yland

yland

yland

yland

yland

yland

yland

yland

yland

yland

yland

yland

yland

yland

yland

yland

yland

yland

yland

yland

yland

yland

yland

yland

yland

yland

yland

yland

yland

yland

yland

yland

yland

yland

yland

yland

yland

yland

yl SSD System O&M. Middle River Complex. Middle River, Maryland ampic and a second Samples analyzed by EPA Method TO-15 o Togy VOS (199113) ol 7.7 Denoonan TO NOT THE PROPERTY OF THE PRO S 1.2 Dichooman 6 Person Coerters of 7.24 Tringen Williams é carbon tetración d Cis.7.2. Dichlorosy 4 1.23 Timenyuse FE FINNORSON Z Dichlo collino. ol Viny Chloride √ Chorodinor | Chorotom 7 Owene 0.0 0.000 170 0.002 360 0.004 575 0.006 3/31/2008 4/2/2008 4/4/2008 4/11/2008 25 4/17/2008 100 100 0.001 4/24/2008 ND 5/23/2008 ND 6/19/2008 51 260 52 54 260 0.003 52 0.001 155 0.002 50 29 16 6.1 16 31 29 0.000 26 0.000 97 0.001 7/18/2008 8/13/2008 9/11/2008 10 28 11/12/2008 ND 12/18/2008 ND 47 63 0.001 31 0.000 29 0.000 7 0.000 26 0.000 2/4/2009 2/20/2009 29 3/18/2009 26 4/17/2009 5/20/2009 6/23/2009 9 0.000 0.0 0.000 8.9 5.5 6 0.000 29 0.000 0.0 0.000 0.0 0.000 9.4 7/23/2009 29 8/28/2009 9/28/2009 10/27/2009 ND 0.0 0.000 11/24/2009 12/23/2009 1/19/2010 0.0 0.000 10 0.000 0.0 0.000 10 ND ND ND ND ND ND ND ND ND ND ND ND 2/17/2010 ND ND N/A N/A 0.0 0.000 3/17/2010 ND 4/16/2010 ND 5/13/2010 36 0.0 0.000 0.0 0.000 31 24 140 89 248 0.002 248 0.002 84 0.001 10 0.000 0.0 0.000 13 0.000 198 0.002 0.0 0.000 24 0.000 16 6/18/2010 68 28 16 10 9/17/2010 13 10/12/2010 11/2/2010 12/1/2010 21 42 110 25 24 12 0.000 5 0.000 0.0 0.000 13 0.000 1/5/2011 12 2/7/2011 3/3/2011 4/14/2011 13 26 0.000 17 0.000 146 0.001 11 15 5/6/2011 6/9/2011 7/11/2011 8.4 9.5 8.9 61 21 21 0.000 0.0 0.000 44 0.000 0.0 0.000 21 8/3/2011 9/15/2011 ND 23 21 11/8/2011 12/6/2011 0.0 0.000 1/3/2012 2/16/2012 3/15/2012 0.0 0.000 0.0 0.000 0.0 0.000 0.0 0.000 0.0 0.000 15 0.000 0.0 0.000 4/16/2012 ND ND ND ND 8/15/2012 9/12/2012 10/18/2012 11/13/2012 12/6/2012 22 0.000 0.0 0.000 0.0 0.000 0.0 0.000

22

ND 3.5 ND 26.3 4.5 4.0

2.3

3.3 3.6

ND ND 29 ND 17 ND

13.9 ND ND 2.3 ND 4.8 1.3 2.1 3.0

20

13.7

2.4 2.4 2.9

0.0 0.000 5.3 0.000 0.0 0.000

0.0 0.000 44 0.000 0.0 0.000

35 0.000 23 0.000 0.0 0.000 11 0.000

30 0.000 49 0.000 65 0.001 98 0.001

39 0.000

ND ND

ND ND

3.4 2.8

4.9 2.3 ND 7.3 ND ND 6.1 4.3 ND 5.1 2.3 ND

34

ND N/A 3.7 ND 3.8 1.7

19 094

3/12/2014 6.9

1/4/2013

3/7/2013

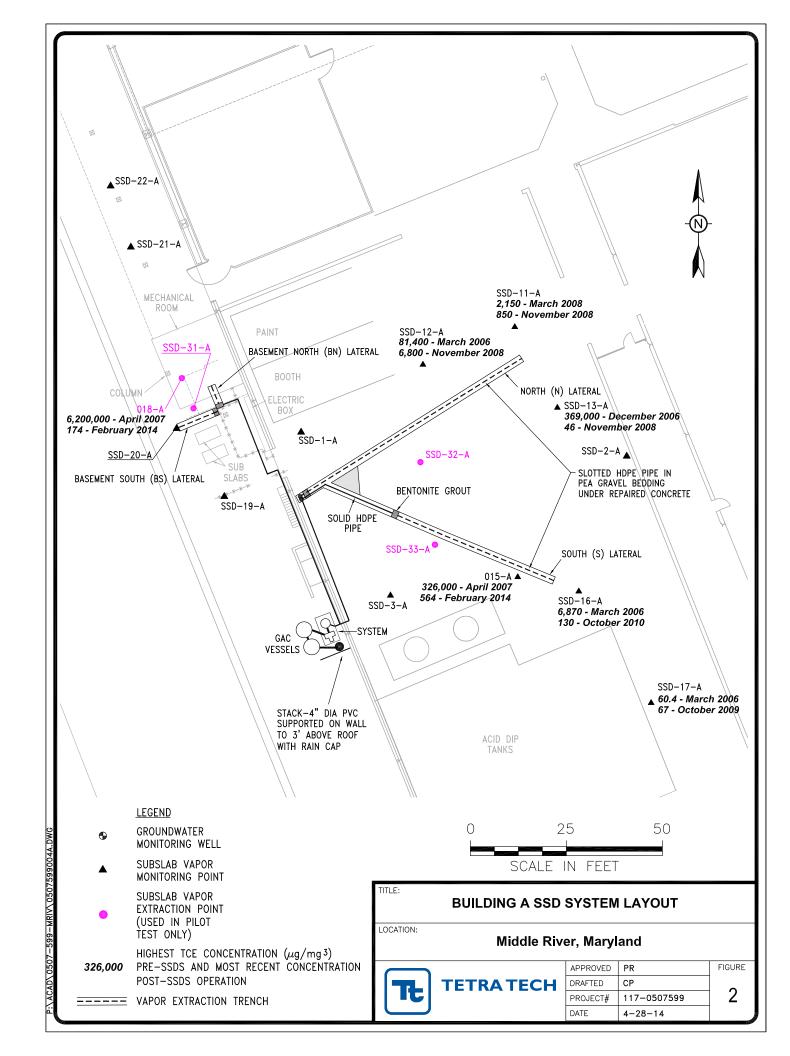
4/8/2013 5/10/2013 9.9 6/5/2013 ND 7/3/2013 6.4

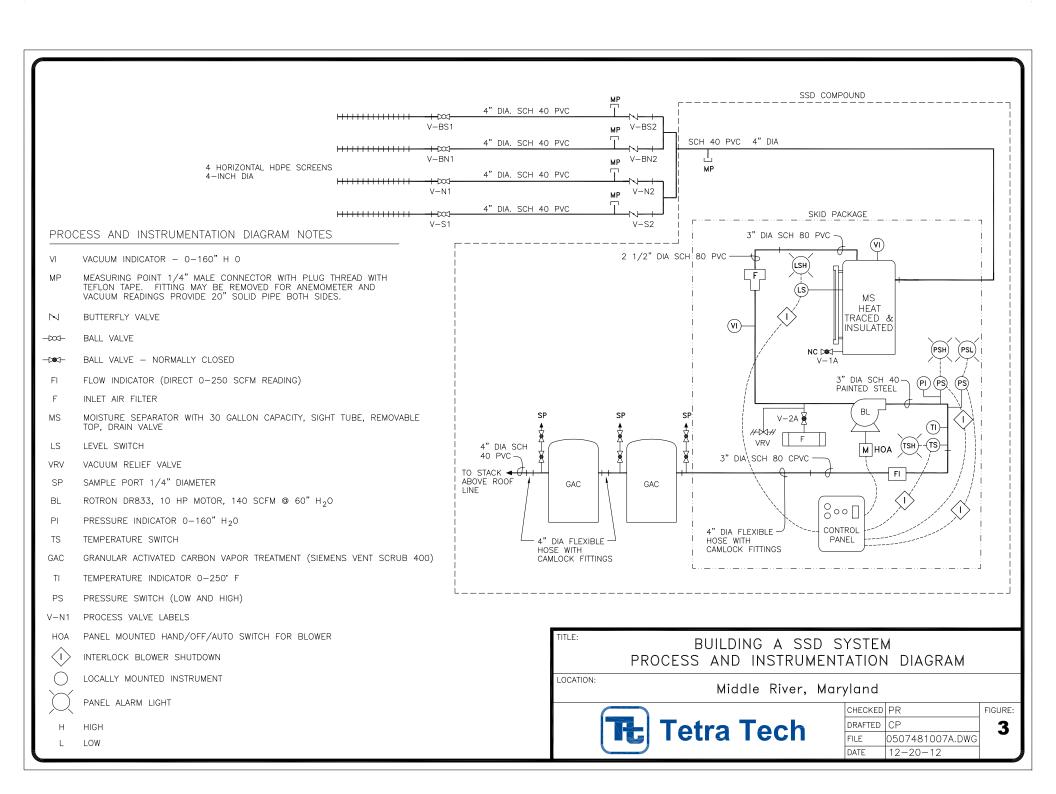
8/14/2013

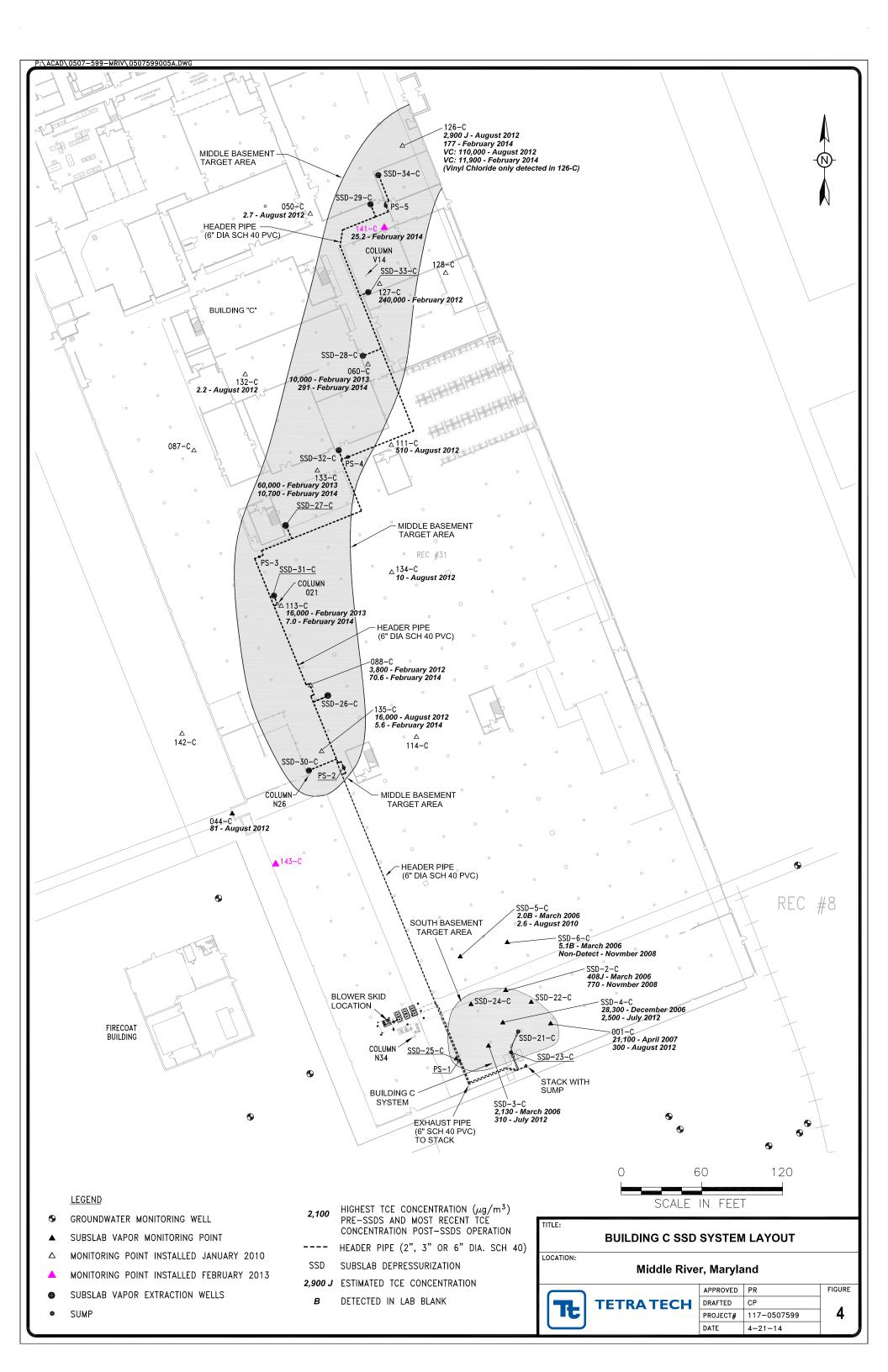
N/A - not applicable (samples not analyzed for compound)

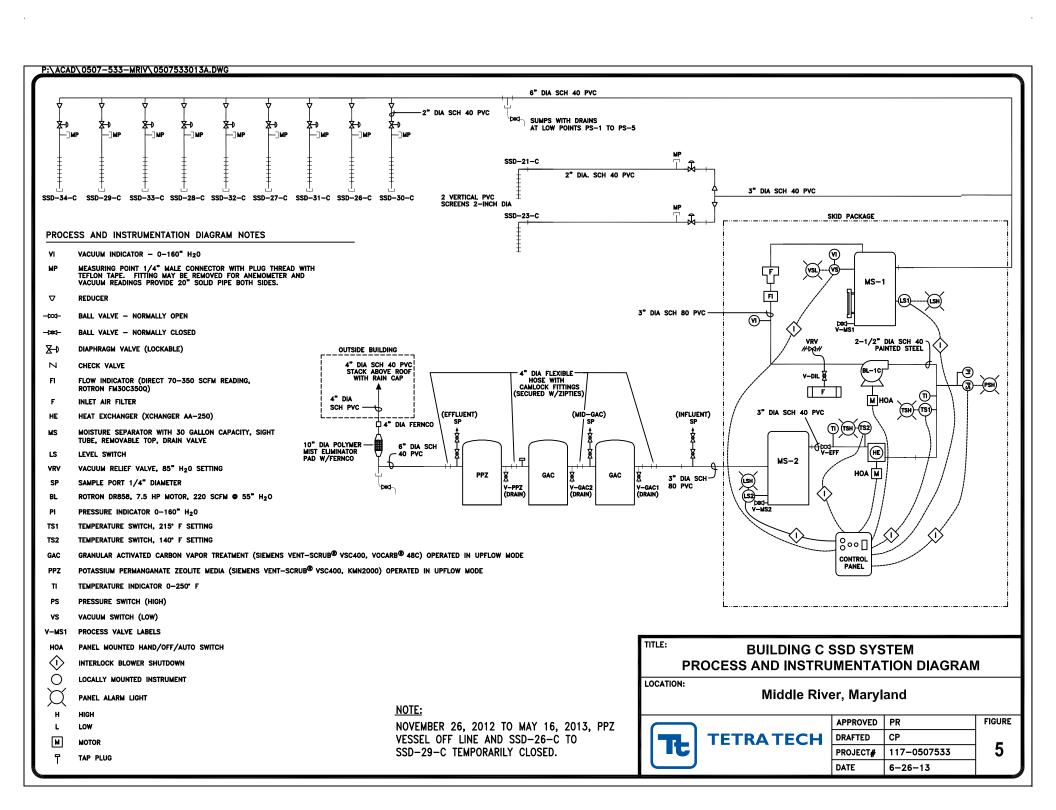
Sampling not conducted in July 2012 due to shutdown test plan


9.2 4.5


November 2012 sample collected after the potassium permanganate zeolite (PPZ) unit. PPZ unit was taken offline prior to the December 2012 sample Samples analyzed from 4/2/08 to 11/7/13 were analyzed by Test America


ND ND
2.1 ND
8.2 ND
7.0 2.5


Samples analyzed from 12/5/13 to present were analyzed by Pace Analytical


FIGURES

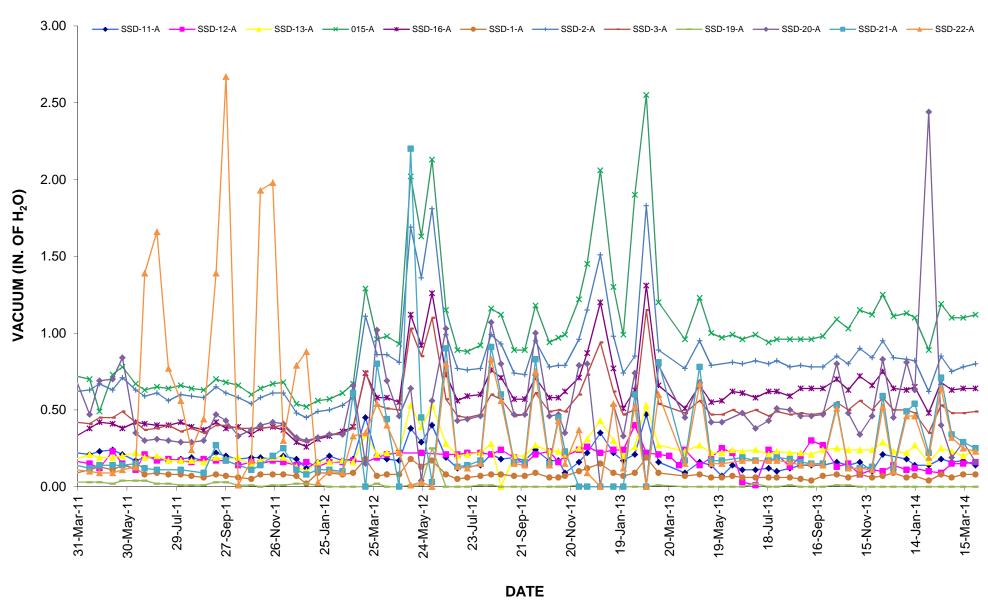
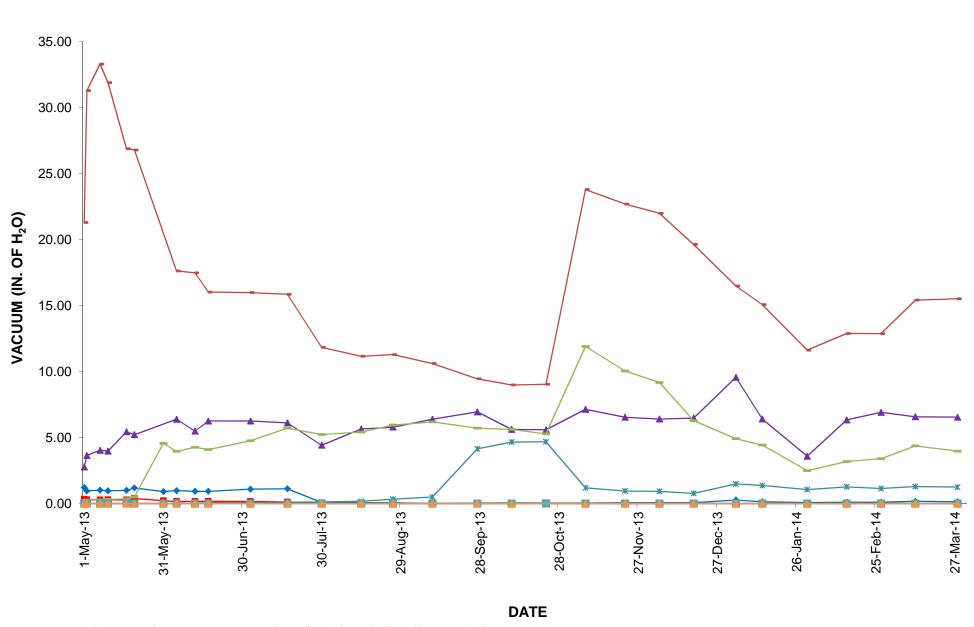


FIGURE 6 INDUCED VACUUM BUILDING A SSD SYSTEM

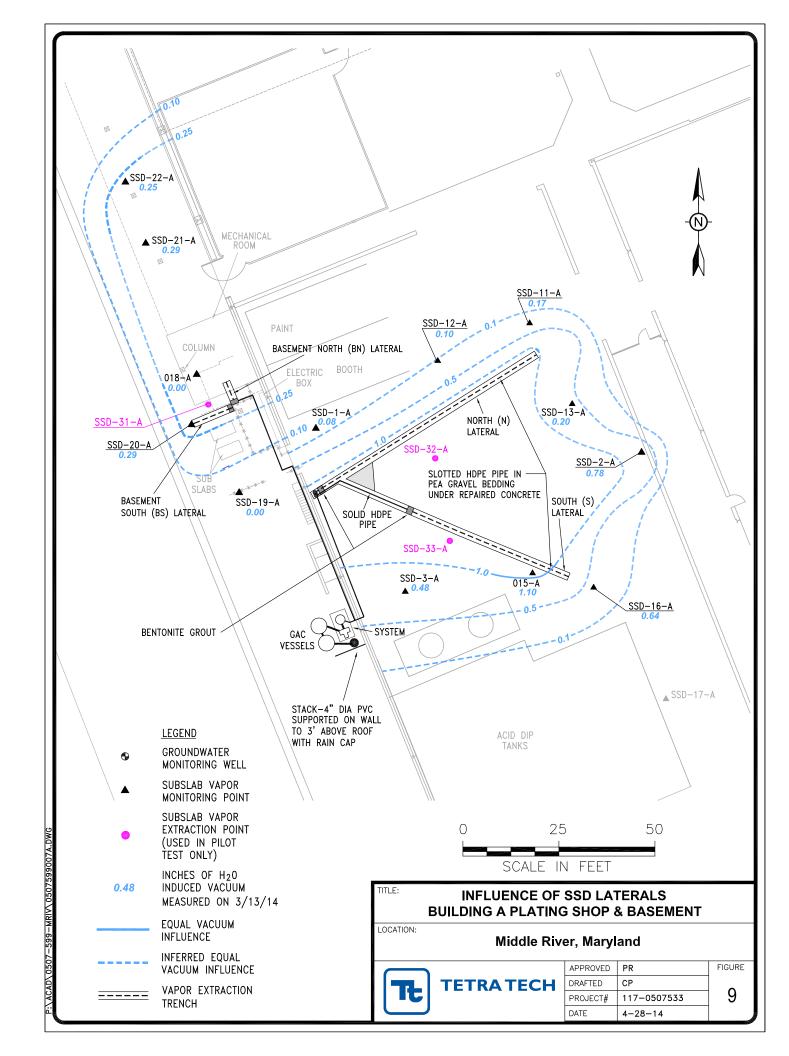
All vacuum readings are instantaneous readings collected during the bi-weekly system checks. Only the past three years of vacuum data are depicted above.

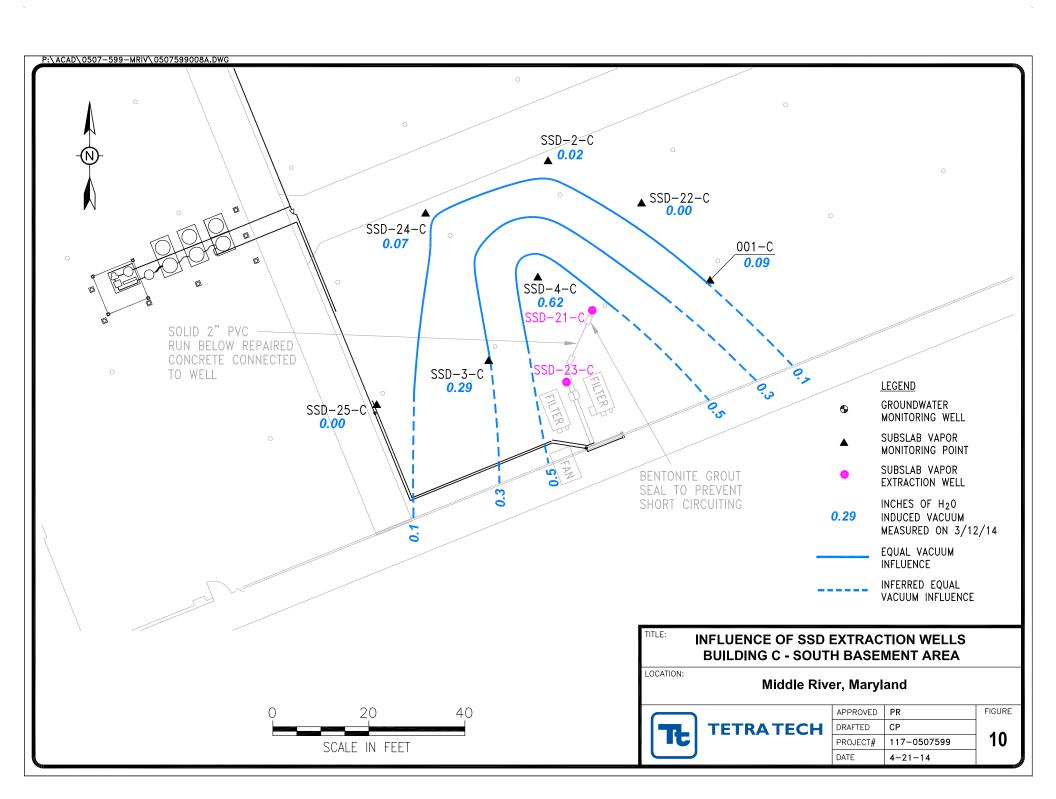
FIGURE 7
INDUCED VACUUM
BUILDING C SSD SYSTEM - SOUTH-BASEMENT AREA



DATE

All vacuum readings are instantaneous readings collected during the bi-weekly system checks. Only the past three years of vacuum data are depicted above.


FIGURE 8
INDUCED VACUUM
BUILDING C SSD SYSTEM - MID-BASEMENT AREA


● 088-C ◆ 113-C → 111-C ● 060-C − 127-C ● 050-C ↑ 126-C

All vacuum readings are instantaneous readings collected during the bi-weekly system checks.

Sub-slab vapor monitoring points routinely monitored beginning May 1, 2013 following second-phase system expansion in the middle basement area of Building C.

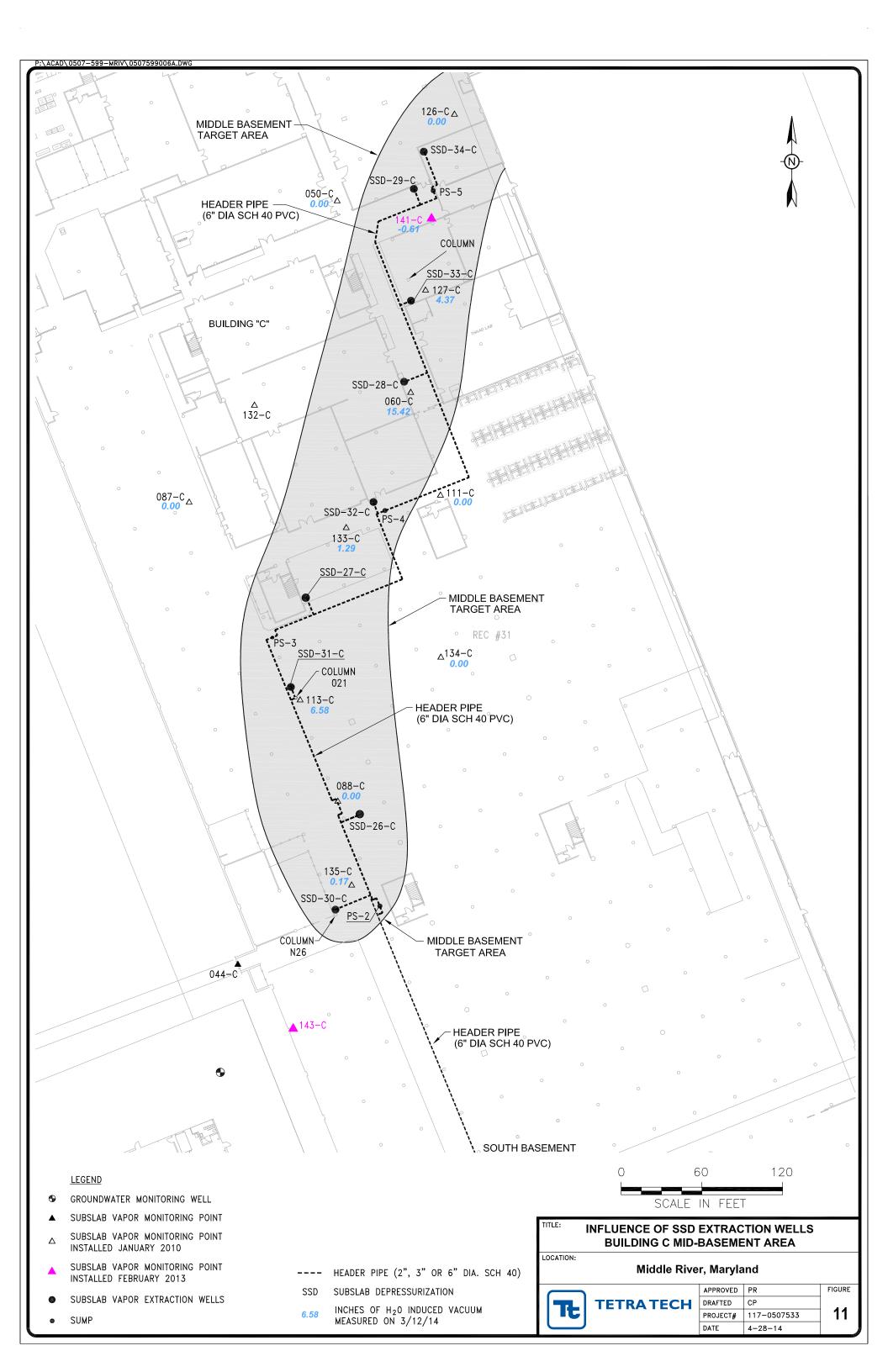


FIGURE 12
BUILDING A SSD SYSTEM
INFLUENT VOC CONCENTRATIONS

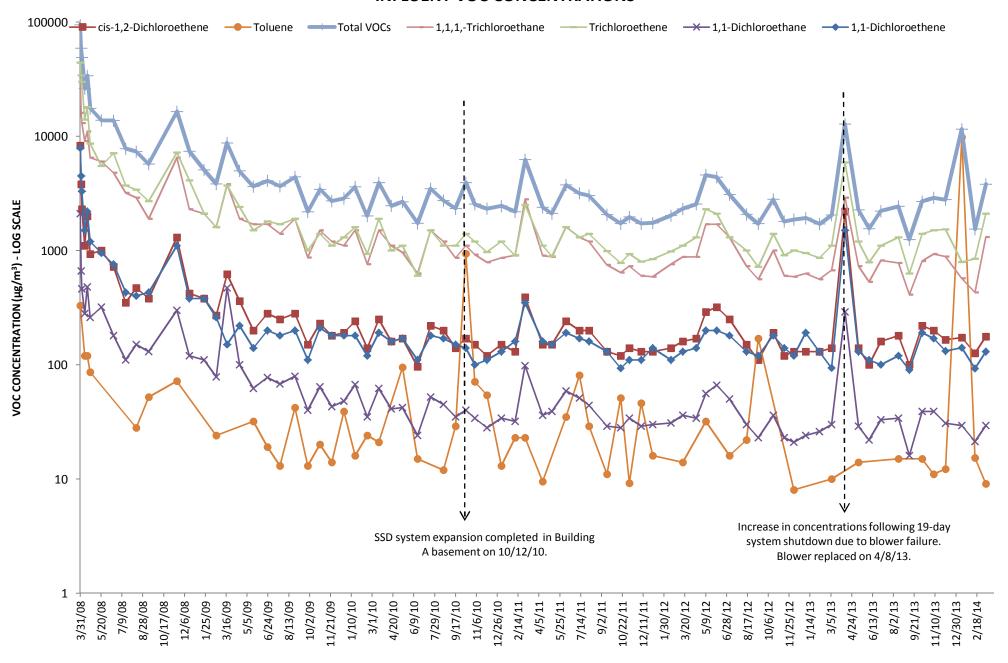
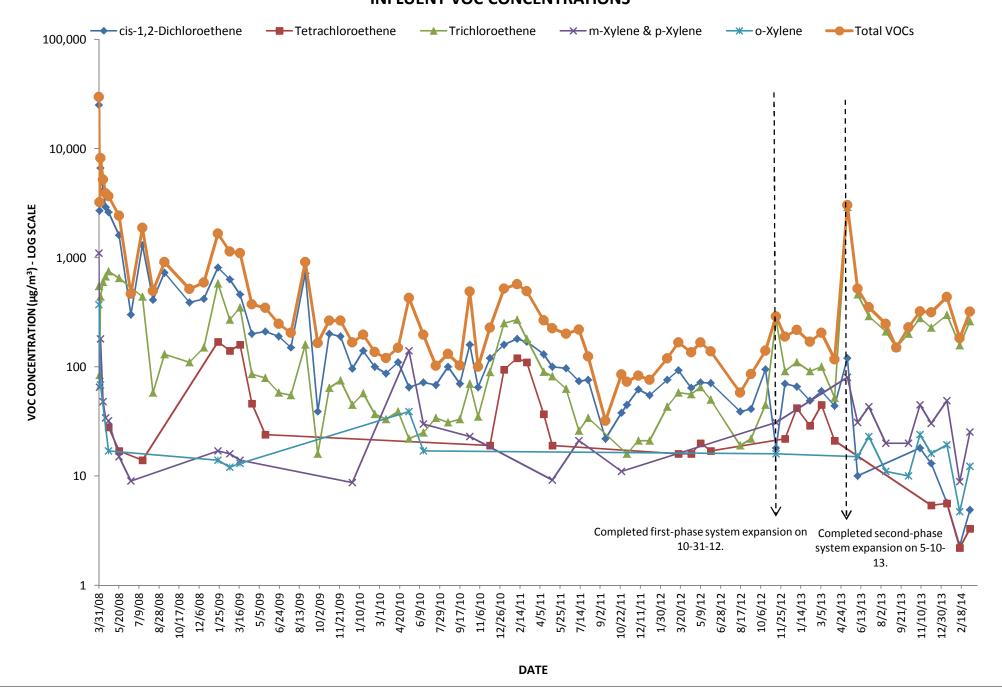



FIGURE 13
BUILDING C SSD SYSTEM
INFLUENT VOC CONCENTRATIONS

APPENDIX A—SYSTEM FIELD DATA SHEETS

Interest	Date: <u>/0 / / /</u>	01/3	Time:	Personi	nel: DLM		Room Temp: _	
Time			GE	NERAL SYSTE	M MONITORING	3	en en en en en en en en en en en en en e	%
N/A 3 0 1 1 1 1 1 1 1 1 1	Time	post-KO	pre-Filter	post-Filter	of Filter*	post-Blower		Flow (scfm)
LEG VACUUM AND VELOCITY MONITORING	N/A .		 				//2	160
Vacuum	* Replace filter if >2				•	<u>-</u>		
Comments Comments	 		LEG VAC	CUUM AND VE	OCITY MONITO	ORING"		· · · · · · · · · · · · · · · · · · ·
North Leg - Ground Floor N/A South Leg - Ground Floor North Leg - Basement South Leg - Basement South Leg - Basement Well Time Vacuum (in. H ₂ O) SSD-1-A SSD-1-A SSD-11-A SSD-11-A SSD-13-A SSD-13-A SSD-13-A SSD-13-A SSD-13-A SSD-13-A SSD-13-A SSD-13-A SSD-14-A SSD-15-A SSD-15-A SSD-16-A O. O. O. O. O. O. O. O. O. O. O. O. O. O					_			
South Leg - Ground Floor North Leg - Basement South Leg - Basement Flow = Velocity x 0.0873 VACUUM MONITORING Well Time (in. H ₂ O) SSD-1-A SSD-12-A SSD-11-A SSD-13-A SSD-13-A SSD-2-A SSD-16-A O.05 SSD-16-A O.17O O15-A SSD-19-A O.05 SSD-3-A O.55 SSD-19-A O.05 SSD-2-A O.05 SSD-							Comm	ents
North Leg - Basement South Leg - Basement Flow = Velocity x 0.0873 VACUUM MONITORING Well Time Vacuum (in. H ₂ O) SSD-1-A SSD-12-A SSD-11-A SSD-13-A SSD-2-A SSD-16-A O. 70 O15-A SSD-16-A O. 70 O15-A SSD-19-A O. 70 O15-A SSD-2-A O. 70 O15-A O. 70			N/A					
South Leg - Basement 1,3			 					
VACUUM MONITORING Well Time Vacuum (in. H ₂ O) SSD-1-A N/A O.OS SSD-12-A SSD-11-A SSD-11-A O.OS SSD-13-A O.OS SSD-13-A O.OS SSD-16-A O.OS O.O								<u>-</u> -
VACUUM MONITORING Well Time Vacuum (in. H ₂ O) SSD-1-A N/A O.OS SSD-12-A SSD-11-A SSD-11-A SSD-13-A SSD-13-A SSD-2-A O.OS SSD-2-A O.OS SSD-2-A O.OS SSD-2-A O.OS SSD-2-A O.OS SSD-16-A O.OS O.			V	1,24	934	81.5		
Time	<u> </u>		<u> </u>	1		_	_	
SSD-1-A SSD-11-A SSD-11-A SSD-11-A SSD-11-A SSD-13-A SSD-13-A SSD-13-A SSD-13-A SSD-13-A SSD-13-A SSD-16-A SSD-16-A SSD-16-A SSD-16-A SSD-16-A SSD-16-A SSD-19-A SSD-19-A SSD-19-A SSD-19-A SSD-19-A SSD-20-A SSD-21-A SSD-22-A SSD-22-A SSD-22-A SSD-22-A SSD-21-A SSD-22-A SSD-	, VAC	JUUM MONITO	<u> </u>		1. Was the blow	· ·	on arrival?	
SSD-12-A SSD-11-A SSD-11-A SSD-13-A SSD-13-A SSD-13-A SSD-13-A SSD-16-A SSD-16-A SSD-16-A SSD-16-A SSD-19-A SSD-19-A SSD-20-A SSD-21-A SSD	Well	Time			VES)		:	
SSD-12-A SSD-11-A SSD-13-A SSD-13-A SSD-13-A Comment: 3. Was the blower ambient air valve open? YES NO 4. Was there water in the knockout tank? YES NO Volume: 5. Was the vacuum/flow on either leg adjusted? YES NO SSD-19-A OLD O18-A SSD-20-A SSD-21-A SSD-21-A SSD-22-A MONTHLY VAPOR SAMPLING Location Time Canister ID A-INFLUENT A-INFLUENT A-MID GAC A-EFFLUENT A-MID GAC A-EFFLUENT A-MID GAC A-EFFLUENT A-MID GAC A-EFFLUENT A-MID GAC A-	000%	1/0				any alarm con	ditions upon ar	rival?
3. Was the blower ambient air valve open? YES NO YES NO YES NO YES NO YES NO YES NO YES NO YES NO YES NO YOUME: 5. Was the vacuum/flow on either leg adjusted? YES NO Comment: 6. Are there any leaks or damage to system hose YES NO SSD-21-A SSD-21-A SSD-22-A MONTHLY VAPOR SAMPLING Location Time Canister ID A-INFLUENT A-MID GAC A-MID GAC A-EFFLUENT A-EFFLUENT A-MID GAC A-EFFLUENT A-MID GAC A-EFFLUENT A-MID GAC A-MID G		N/A				WO)	•	
YES NO SSD-13-A SSD-16-A O15-A SSD-3-A SSD-3-A SSD-3-A SSD-3-A SSD-19-A O18-A SSD-20-A SSD-21-A SSD-22-A MONTHLY VAPOR SAMPLING Location A-INFLUENT A-MID GAC A-EFFLUENT I447 L-5178 YES NO Volume: SWas there water in the knockout tank? YES NO Volume: SWas the vacuum/flow on either leg adjusted? YES NO Comment: 6. Are there any leaks or damage to system hose YES NO 7. Is there any damage to system components? YES NO 8. Are all locks and zip-ties secure? YES NO 9. Do the these fall to zero when system is turned Flow Gauge YES Pressure Gauges Vacuum Gauges Vacuum Gauges 10. Was there a GAC change out?			0.79					
4. Was there water in the knockout tank? SSD-16-A O15-A SSD-3-A SSD-3-A O18-A SSD-20-A SSD-21-A SSD-21-A SSD-22-A MONTHLY VAPOR SAMPLING Location Time Canister ID A-INFLUENT A-MID GAC A-MID GAC A-EFFLUENT TIME TIME TIME TIME CANIST ID A-EFFLUENT A-MID GAC A-MID GAC SSD-2-A A-MID GAC A-MID GAC SSD-2-A A-MID GAC			0.10				valve open?	
SSD-16-A O15-A SSD-3-A SSD-19-A O18-A SSD-20-A SSD-21-A SSD-22-A MONTHLY VAPOR SAMPLING Location A-INFLUENT A-EFFLUENT Time Canister ID A-EFFLUENT A-EFFLUENT Time Canister ID A-EFFLUENT Time Canist				- 1			-11110	
5. Was the vacuum/flow on either leg adjusted? YES NO Comment: 6. Are there any leaks or damage to system hose YES NO SSD-20-A SSD-20-A SSD-21-A SSD-22-A MONTHLY VAPOR SAMPLING Location Time Canister ID A-INFLUENT 1445 L-A7073 A-MID GAC 1446 09639 A-EFFLUENT 1447 L-5178 5. Was the vacuum/flow on either leg adjusted? YES NO 7. Is there any damage to system components? YES NO 8. Are all locks and zip-ties secure? YES NO 9. Do the these fall to zero when system is turned. Flow Gauge YES YES Vacuum Gauges YES Vacuum Gauges YES Vacuum Gauges 10. Was there a GAC change out?			3,02					
SSD-3-A SSD-19-A O18-A SSD-20-A SSD-21-A SSD-22-A MONTHLY VAPOR SAMPLING Location A-INFLUENT JU45 L-A7073 A-MID GAC JU46 O9639 A-EFFLUENT JU47 L-5178 YES NO Comment: 6. Are there any leaks or damage to system hose YES NO 7. Is there any damage to system components? YES NO 8. Are all locks and zip-ties secure? YES NO 9. Do the these fall to zero when system is turned Flow Gauge YES Vacuum Gauges YES Vacuum Gauges YES 10. Was there a GAC change out?			1/0				•	
Comment: O18-A O18-A SSD-20-A SSD-21-A SSD-22-A MONTHLY VAPOR SAMPLING Location A-INFLUENT A-EFFLUENT THE Comment: Comment: 6. Are there any leaks or damage to system hose YES NO 7. Is there any damage to system components? YES NO 8. Are all locks and zip-ties secure? YES NO 9. Do the these fall to zero when system is turned Flow Gauge YES Pressure Gauges Vacuum Gauges Vacuum Gauges Vacuum Gauges 10. Was there a GAC change out?			755				ther leg adjuste	3 0 ? `\
6. Are there any leaks or damage to system hose SSD-20-A SSD-21-A SSD-22-A MONTHLY VAPOR SAMPLING Location Time Canister ID A-INFLUENT A-INFLUENT A-EFFLUENT A-EFFLUENT THE CANON CONTROL						(NO)		
SSD-20-A SSD-21-A SSD-22-A SSD			003			v leaks or dam:	ane to evetem i	200002
7. Is there any damage to system components? YES NO 8. Are all locks and zip-ties secure? WONTHLY VAPOR SAMPLING Location Time Canister ID A-INFLUENT 1445 L-A7073 A-MID GAC 1446 09639 A-EFFLUENT 1447 L-5178 7. Is there any damage to system components? YES NO 9. Do the these fall to zero when system is turned auges Flow Gauge YES Vacuum Gauges YES 10. Was there a GAC change out?		1	<u> </u>				age to system i	10363:
SSD-22-A YES NO 8. Are all locks and zip-ties secure? YES NO 9. Do the these fall to zero when system is turned Flow Gauge YES NO Pressure Gauges YES NO 1447 1447 1-5178 YES NO YES NO 9. Do the these fall to zero when system is turned Flow Gauge YES YES 10. Was there a GAC change out?			0.53				tem componen	ts?
MONTHLY VAPOR SAMPLING Location Time Canister ID A-INFLUENT 1445 L-A7073 A-MID GAC 1446 09639 A-EFFLUENT 1447 L-5178 YES NO 9. Do the these fall to zero when system is turned flow Gauge Flow Gauge YES Pressure Gauges YES Vacuum Gauges YES 10. Was there a GAC change out?	SSD-22-A	V	051	%				
A-INFLUENT 1445 L-A7073 A-MID GAC 1446 09 639 A-EFFLUENT 1447 L-5178 9. Do the these fall to zero when system is turned Flow Gauge YES Pressure Gauges VES Vacuum Gauges YES 10. Was there a GAC change out?				, , , , , , , , , , , , , , , , , , ,	8. Are all locks	and zip-ties se	cure?	
A-INFLUENT 1445 L-A7073 A-MID GAC 1446 09639 A-EFFLUENT 1447 L-5178 The Gauge YES Pressure Gauges YES Vacuum Gauges YES 10. Was there a GAC change out?	MONTH	ILY VAPOR SA	MPLING		(YES)	NO		
A-MID GAC 1446 09639 A-EFFLUENT 1447 L-5178 Pressure Gauges VES Vacuum Gauges VES 10. Was there a GAC change out?	Location	Time	Canister ID		9. Do the these	fall to zero wh	en system is tu	ırned off?
A-EFFLUENT 1447 L-5178 Vacuum Gauges (YES) 10. Was there a GAC change out?	A-INFLUENT_	1445	L-A7073			Flow Gauge	(YES)	NO
10. Was there a GAC change out?	A-MID GAC	1446	09639		Pi	essure Gauges		NO
	A-EFFLUENT	1447	L-5178		٧	acuum Gauges	(YES),	NO
ADDITIONAL COMMENTS. $V = 0$					10. Was there a	GAC change	out?	
ADDITIONAL COMMENTS:	ADDITIONAL C	COMMENTS:			YES	(NO)	-	
11. How many unused GAC units are at this locat	<u>-</u>				11. How many	unused GAC u	nits are at this	location?
NEW	V				NEW		-	
SPENT O	·		$\overline{}$		SPENT	<u> </u>	•	
FIELD REP. SIGNATURE: A MUMIL Time:		A(2)	I Mas				

LMC Middle River Complex, Middle River, Maryland

_ Date:	10/24/13	Time: <u>0940</u>	Personnel: Dustin Cates	Room Temp: 50°F
		GENER	AL SYSTEM MONITORING	

1			GE	NERAL SYSTE	M MONITORING	3		
	Time	Vacuum post-KO (in. H₂O)	Vacuum pre-Filter (in. H₂O)	Vacuum post-Filter (in. H₂O)	Diff Pressure of Filter* (in. H ₂ O)	Pressure post-Blower (in. H ₂ O)	Temp (°F)	Flow (scfm)
	0940	1,8	11	16.5	5,5	0	100	160

* Replace filter if >25 in. H₂O

	LEG VA	CUUM AND VE	OCITY MONIT	ORING	-
Location	Time	Vacuum (in. H₂O)	Velocity (ft/min)	Flow** (scfm)	Comments
North Leg - Ground Floor	0945	-0.42	555	48,45	
South Leg - Ground Floor	0950	-1.19	360	31,43	
North Leg - Basement	1045	-1,00	2	0,17	
South Leg - Basement	1040	-0.96	960	83,81	

^{**} Flow = Velocity x 0.0873

VAC	UUM MONITOF	RING
Well	Time	Vacuum (in. H₂O)
SSD-1-A		-0.06
SSD-12-A		-0.10
SSD-11-A		-0.14
3SD-13-A		-0.24
SSD-2-A		-0.80
SSD-16-A		-0,63
015-A		-1.03
SSD-3-A		-0.50
SSD-19-A		-0.01
018-A		-0,07
SSD-20-A		-0.48
SSD-21-A		-0,12
SSD-22-A		-0112

▼MONTH	ILY VAPOR SAI	MPLING.
Location	Time	∠Canister ID
A-INFLUENT		
A-MID GAC		
A-EFFLUENT		

1	ADDITIONAL COMMENTS:
	System shut down - 1055
-	5tart System - 1155
	V /

a d	011	
960	83,81	
		··
1. Was the blow	wer running up	on arrival?
YES	NO	
2. Where there	any alarm con	ditions upon arrival?
YES	NO	
Comment:	744	
3. Was the blov	wer ambient air	valve open?
YES	CON	
4. Was there w	ater in the knoo	
(YES)	NO	Volume: 1,25g1
5. Was the vac	uum/flow on eit	ther leg adjusted?
YES	(NO)	•
Comment:		
6. Are there an	y leaks or dama	age to system hoses?
YES	(NO)	
	~ ~ ~	em components?
YES	(NO)	
8. Are all locks	-	cure?
(YES)	NO	
9. Do the these	fall to zero wh	en system is turned off?
	Flow Gauge	(ES) NO
	essure Gauges	(YES) NO
V	acuum Gauges	(YES) NO
	GAC change	out?
(YES)	NO	
11. How many	unused GAC ui	nits are at this location?
NEW .		
SPENT		

Date: 11 7	13	Time: 1000	·	nel: \overline{DLM}	<u> </u>	oom Temp:	· · · · ·
·					<u> </u>		
				M MONITORING	·		
Time	Vacuum post-KO	Vacuum pre-Filter	Vacuum post-Filter	Diff Pressure of Filter*	Pressure post-Blower	Temp	Flow
	(in. H ₂ O)	(in. H ₂ O)	(in. H ₂ O)	(in. H ₂ O)	(in. H ₂ O)	(°F)	(scfm
1004	3	11	9	3	0	107	1600
* Replace filter if >							
	· .	LEG VAC	CUUM AND VEI	LOCITY MONITO		g g	-
Location		Time	Vacuum (in. H₂O)	Velocity . (ft/min)	Flow** (scfm)	Comn	nente
North Leg - Gro	ound Floor	1016	0.46	619	.54.0	Conn	1161112
South Leg - Gre		1015	130	404	35.3		
North Leg - Bas		1029	0,90	C CONTRACTOR	55.5 6.5	· 	
South Leg - Ba		1038	0.86	970	84.7		
** Flow = Velocity >		1 -0.0	<u> </u>		01.1		·
VAC	CUUM MONITO	RING		1. Was the blo	wer running upo	n arrival?	•
Well	Time	Vacuum		YES	NO		
Well	Time	(in. H₂O)		2. Where there	any al <u>ar</u> m cond	itions upon a	rrival?
SSD-1-A	1017	0,08		YES	(NO)	4	
SSD-12-A	1019	0.11	••	Comment:		•	
SSD-11-A	1090	0,16		3. Was the blow	wer ambient air	valve open?	
3SD-13-A	1099	<u>Р</u> 6.0		YES	(NO)	in the second	
SSD-2-A	1033_	0,90		4. Was there w	ater in the knoc	kout tank?	
SSD-16-A	1094	0.72		YES	(NO)	Volume:	
015-A	1035	1.15		5. Was the vac	uum/flow on eitl	her leg adjust	ed?
SSD-3-A	1030	0.56		YES	(NO)		
SSD-19-A	1033	D'00					
018-A	1039	0.00			y leaks or dama	ge to system	hoses?
SSD-20-A	1041	0,34		YES	(NO.)		
SSD-21-A	1034	 5/19 	_		damage to syste	em componer	ıts?
SSD-22-A	1036	0.10		YES	and zip-ties sec		
MONTH	ILY VAPOR SA	MPLING		YES YES	NO	zure?	
Location	Time	Canister ID			fall to zero whe	en system is t	urned off
A-INFLUENT	1006	09591			Flow Gauge		20 NO
A-MID GAC	1007	09579		Pi	essure Gauges	YES	NO
A-EFFLUENT	1008	10759			acuum Gauges	(YES)	NO
				10. Was there a	GAC change o	ut?	
ADDITIONAL C	COMMENTS:			YES			
				11. How many	unused GAC un	its are at this	location?
				NEW	0		
<u>-</u>				SPENT			
			M				
FIELD REP. SI	GNATURE: <i>&</i>	Janus O	11/11/11/11	<u> </u>	•	Time:	

Date: 11/20	113	Time: 1314	Personi	nel: DLM		Room Temp:	<u>.</u>
*				-	·		
L		GE	NERAL SYSTE	M MONITORING	à		
Time	Vacuum post-KO (in. H ₂ O)	Vacuum pre-Filter (in. H₂O)	Vacuum post-Filter (in. H₂O)	Diff Pressure of Filter* (in. H ₂ O)	Pressure post-Blower (in. H₂O)	Temp (°F)	Flow (scfm)
1300	ð.0	11	17	6	0	105	160
* Replace filter if >2	25 in. H₂O		•			* A	
		LEG VA	CUUM AND VEI	OCITY MONITO			
ļ ·		` <u></u>	Vacuum	Velocity	Flow**	_	
Location		Time	(in. H ₂ O)	(ft/min)	(scfm)	Comm	ents
North Leg - Gro		1324	0.44	1710	50.5		
South Leg - Gro		1397	1,25				
North Leg - Bas		1345	89.0	51	4.5		
South Leg - Bas ** Flow = Velocity x		1347	0.91	1000	87.8		<u> </u>
			1		_		
VACUUM MONITORING					wer running up	on arrival?	
Well	Time	Vacuum (in. H ₂ O)	YES NO 2. Where there any alarm conditions upon arrive				_
	:2011					ditions upon ar	rival?
SSD-1-A	1334	0.06		YES	\emptyset		
SSD-12-A	/334	0.14	, i	· · · · · · · · · · · · · · · · · · ·			
SSD-11-A	<u> 1336</u>	0.10	ý		wer ambient air	valve open?	
SD-13-A	1337	0,24		YES	(NO)		
SSD-2-A	/338	0.84			ater in the knoo		
SSD-16-A	/339	0.60		YES		Volume:	
015-A	1341	1.13			uum/flow on eit	ther leg adjuste	ed?
SSD-3-A	<u> /342</u>	0.50		YES	(NO)		
SSD-19-A	1349	0'00		Comment:		- Constitution	% #
018-A		0.05 4	AOUDDIS.		y leaks or dama	age to system h	oses?
SSD-20-A	1355	0,46		YES	(NO)		
SSD-21-A	1350	0.13	ji.	-	damage to syst	em component	ts?
SSD-22-A	1951	0.11		YES	(NO)		
MONTH	U V VAROR CA	MOUNC	í	(-2)	and zip-ties se	cure?	
Location	LY VAPOR SA	,		YES	NO		
	Time	Canister ID		9. Do the these	fall to zero wh		
A-INFLUENT A-MID GAC	-NB	N/A			Flow Gauge	YES	\sim
A-EFFLUENT		1			ressure Gauges		NO
A-LIT-LOENT	<u> </u>	l V			acuum Gauges	(ES)	NO
ADDITIONAL COMMENTS:				YES	a GAC change o	out?	
			•	11. How many	unused GAC ui	nits are at this l	ocation?
				NEW	<u> </u>		
		$\overline{}$		SPENT			
FIELD REP. SIG	GNATURE: <u>4</u>	James J	Millio	<u> </u>		Time: <u>/430</u>)

1015	110	\(\int_{10}\)	۸	2000			
Date: <u>IO/ 5</u>	113	Time: 1436	O Person	nel: <u>ULM</u>	F	Room Temp:	·
. <u>*</u>	· · · · · · · · · · · · · · · · · · ·	GE	NERAL SYSTE	M MONITORING			
4	Vacuum	Vacuum	Vacuum	Diff Pressure	Pressure	-	
Time	post-KO	pre-Filter	post-Filter	of Filter*	post-Blower	Temp	Flow
	(in. H ₂ O)	(in. H ₂ O)	(in. H ₂ O)	(in. H ₂ O)	(in. H ₂ O)	(°F)	(scfm)
1401 * Replace filter if >2	3.75	38.	16	5	0	/05	160
Replace filter if >2	25 In. H ₂ O	LEC VA	CHILLA AND VE	LOCITY MONITO	DINO		
-		LEG VA	Vacuum 1	Velocity	Flow**	1	N:
Location		Time	(in. H ₂ O)	(ft/min)	(scfm)	Comm	onte
North Leg - Gro	und Floor	1447	0.51	690			icura
South Leg - Gro		1448	1,44	437	(60.2 · 36.3	· · · · · · · · · · · · · · · · · · ·	
North Leg - Bas		1507	1,25	31	3 .7		
South Leg - Bas		1308	1,00	953	83.1		
** Flow = Velocity x		1 1000	700	1 708	03.1		
VAC	UUM MONITO	RING		1. Was-the blo	wer running up	on arrival?	
Vacuum			i	YES	NO .		
Well	Time	(in. H ₂ O)			any alarm con	ditions upon ar	rival?
SSD-1-A	1450	0.07	1	YES	NO		
SSD-12-A	1451	0.14	1	Comment:			
SSD-11-A	1455	Q.01 v	rying voc.		wer ambient air	· :	
,3SD-13-A	1456	0,39	YES (NO)				
SSD-2-A	1458	0,95	1	4. Was there w	ater in the know	ckout tank?	•
SSD-16-A	1459	0.75]	YES	(NO)	Volume:	
015-A	/500	<i>(</i> , 2)5		5. Was the vac	uum/flow on ei	ther leg adjuste	ed?
SSD-3-A	1500	0,58		YES	(NO)	<u> </u>	
SSD-19-A	1510	0,00		Comment:			
018-A	1516	$O.\infty$		6. Are there an	y leaks or dama	age to system h	noses?
SSD-20-A	1517	උ, පිනි		YES	(NO)	-	
SSD-21-A	1512	0,59		7. Is there any	damage to syst	tem component	ts?
SSD-22-A	1513	0.53		YES	(NO)	•	
-	-		•	8. Are all locks	and zip-ties se	cure?	
MONTH	LY VAPOR SA	MPLING		(YES)	NO		
Location	Time	Canister ID		9. Do the these	fall to zero wh		
A-INFLUENT	1426	3551			Flow Gauge	YES ~	5000
A-MID GAC	1438	<i>8</i> 574		Pi	ressure Gauges	(YES)	NO
A-EFFLUENT	1430	<i>മ</i> 538		V	acuum Gauges	VES	NO
				10. Was there a	a GAC change o	out?	
ADDITIONAL C	OMMENTS:			YES	(NO)		
_		*		11. How many	unused GAC ui	nits are at this l	location?
				NEW	O		
: -			·a .	SPENT			
	1	Daniel	Maria				
FIELD REP. SIG	GNATURE: 炬	Wille J	41/11/11/11/11			Time:	
	_						

Date: <u>13 18</u>	113	Time:	Person	nel: <u>DLM</u>	R	oom Temp: _	
		CE	NEDAL SVSTE	M MONITORING	<u> </u>	1.	<u> </u>
	Vacuum	Vacuum	Vacuum	Diff Pressure			1
Time	post-KO	pre-Filter	post-Filter	of Filter*	post-Blower	Temp	Flow
Title	(in. H ₂ O)	(in. H ₂ O)	(in. H ₂ O)	(in. H ₂ O)	(in. H ₂ O)	(°F)	(scfm)
	2.25	11	17	(0		94	160
Replace filter if >2	25 in. H₂O	•	•		· · · · · · · · · · · · · · · · · · ·	•	
		LEG VAC		LOCITY MONIT			
			Vacuum	Velocity	Flow**	_	
Location	 	Time	(in. H ₂ O)	(ft/min)	(scfm)	Comn	nents
North Leg - Gro		N/A	0,45	604	59.5		
South Leg - Gro	-	 	1.27	406	35.4		
North Leg - Bas	·		89.0	35	3.1		
South Leg - Bas		<u> </u>	0,93	1000	87.8		·
** Flow = Velocity x			` •				
VAC	UUM MONITO		ļ		wer running upo	on arrival?	
Well	Time	Vacuum		(YES)	NO		
		(in. H₂O)		2. Where there	any alarm cond	litions upon a	rrival?
SSD-1-A '	W/A	0.09		YES	(NO)		
SSD-12-A		0.11		Comment:			
SSD-11-A		N/A*		3. Was the blo	wer ambient air	valve open?	
SD-13-Aد	·	0.83		YES	(NO)		
SSD-2-A		0,84		4. Was there w	ater in the knoc	kout tank?	
SSD-16-A		0.64		YES	(ON)	Volume:	
015-A		1.17		5. Was the vac	cuum/flow on eit	her leg adjust	ed?
SSD-3-A		0.50	1	YES	(NO)		
SSD-19-A		0.00	1	Comment:			
018-A		0.04		6. Are there an	y leaks or dama	ge to system	hoses?
SSD-20-A		0.45		YES	(NO)		
SSD-21-A		0.12	1	7. Is there any	damage to syste	em componen	ıts?
SSD-22-A	1	0.10	1	YES	(NO)	•	
	_		•	8. Are all locks	and zip-ties see	cure?	
MONTH	ILY VAPOR SA	MPLING		(YES)	NO		
Location	Time	Canister ID		9. Do the these	e fall to zero whe	en system is t	urned off?
A-INFLUENT	ZA	NIA	1		Flow Gauge	(III)	NO
A-MID GAC		1	1	Р	ressure Gauges	(XES)	NO
A-EFFLUENT	$\overline{}$	\ \tag{\psi}	1		/acuum Gauges	YES	NO
			• 	10. Was there	a GAC-change o	ut?	
ADDITIONAL C				YES	(NQ		
				11. How many	unused GAC un	its are at this	location?
			-	NEW			
•	·		-	SPENT			
- · · · ·	2	\	D but -	_			
FIELD REP. SI	GNATURE:	seelle 7	Mmull	4		Time:	
			1 W - U - U		-		

LMC Middle River Complex, Middle River, Maryland

Date: <u>1/3///</u>		Time:	Person	nel: <u>DLM</u>	<u> </u>	oom Temp:	
		GE	NERAL SYSTE	M MONITORING	.	" I had an	·
	Vacuum	Vacuum	Vacuum	Diff Pressure	Pressure	Tomas	Flow
Time	post-KO	pre-Filter	post-Filter	of Filter*	post-Blower	Temp (°F)	(scfm
	(in. H ₂ O)	(in. H ₂ O)	(in. H ₂ O)	(in. H ₂ O)	(in. H ₂ O)		 `
Replace filter if >25	2.35	19	R		0	84	160
		LECVA	CILIBA AND VE	LOCITY MONITO	DINO		
		LEG VA	Vacuum	Velocity	Flow**		·_
Location		Time	(in. H ₂ O)	(ft/min)	(scfm)	Comm	nents
North Leg - Grou	ınd Floor	NIA	0,46	637	55.6		
South Leg' - Ground Floor			1,32	368	39.1		
North Leg - Basement			1.30	15	1.3		-
South Leg - Base		V	122	1057	93.3		"
* Flow = Velocity x (0.0873				,		
VACI	ЈИМ МОИІТО	RING	1	1. Was the blo	wer running upo	on arrival?	
Well .	Time	Vacuum	1	(YES)	NO	•	
iveli .		(in. H ₂ O)		2. Where there	any alarm cond	litions upon a	rrival?
SSD-1-A	N/A	0,06		YES	(NO)		
SSD-12-A		0.09		Comment:			
SD-11-A		0.18 -	Nocetto	3. Was the blo	wer ambient air	valve open?	
SD-13-Aگر		<u> </u>		YES	(NO)		
SSD-2-A		0.83		4. Was there w	ater in the knoc	kout tank?	
SSD-16-A		0.63		(YES)	NO	Volume:	
D15-A		1.13		5. Was the vac	uum/flow on eit	her leg adjust	ed?
SSD-3-A		0.50		YES	(NO)		
SSD-19-A		0.00		Comment:			
018-A		0'00		6. Are there an	y leaks₋or dama	ge to system	hoses?
SSD-20-A		0.8		YES	(NO)		
SSD-21-A		0,49			damag e t o syst	em componen	ts?
SSD-22-A		0.46		YES	(NO)		
MONTH	V V 1000 0 1	11011110	1	/	and zip-ties se		
	LY VAPOR SA	1		(YES)	NO		<i>,</i> •
ocation	Time	Canister ID		9. Do the these	fall to zero who	-	
4-INFLUENT	<u>N/A</u>	N/A		_	Flow Gauge	XES	NO
A-MID GAC A-EFFLUENT	-\ /_				ressure Gauges	YES	NO
			I		acuum Gauges	YES \	NO
ADDITIONAL CO	OMMENTS:			YES	a GAC change o	out?	
<u></u>			•	11. How many	unused GAC ur	nits are at this	location?
			_	NEW	O		
			n , ~	SPENT			
	n)	Janua L	Mhhhll	72			
FIELD REP. SIG	NATURE: 🔼	Mulle 1	1/14/14/14/14	/		Time:	

16

∪ate: <u> </u>		Time:	Person	nei: <u>シム/// / ,</u>	<i>///</i> ! R	oom Temp: _		
		GE	NERAL SYSTE	M MONITORING		•		
Time	Vacuum post-KO (in. H₂O)	Vacuum pre-Filter (in. H ₂ O)	Vacuum post-Filter (in. H₂O)	Diff Pressure of Filter* (in. H ₂ O)	Pressure post-Blower (in. H ₂ O)	Temp (°F)	Flow (scfm	
11155	2.25	11.00	16.00	5.00	0.00	98	160	
Replace filter if >2	25 in. H ₂ O						i .	
		LEG VAC		LOCITY MONITO			-	
ocation		Time	Vacuum (in. H₂O)	Velocity (ft/min)	Flow** (scfm)	Comi	ments	
North Leg - Gro	und Floor	1901	のよる	637	55,6			
Soùth Leg - Gro	ound Floor	/200	1,00	388	33.9			
North Leg - Bas	sement	1221		90	7,9			
South Leg - Bas		7331	1.31 1.35	1004	87.6			
Flow = Velocity x	0.0873			<u> </u>				
VAC	OTINOM MUU	RING		1. Was the blo	wer running upo	on arrival?		
Well Time Vacuum			(YES	NO				
V C II	, Time	(in. H ₂ O)		2. Where there any alarm conditions upon arrival?				
SD-1-A	1205	0.07		YES	NO			
SD-12-A	1907	0'19		Comment:				
SD-11-A	1209	0.14		3. Was the blower ambient air valve open?				
SD-13-A	1211	0.87	8	YES	MO			
SD-2-A	/2/3	0.82		4. Was there w	ater in the knoc	kout tank?		
SD-16-A	1215	0,65		(E)	NO	Volume: <u>~</u>	<u>32 gal</u>	
15-A	1217	1.10		5. Was the vac	uum/flow on eit	her leg adjus	ted?	
SD-3-A	1219	0.48		YES	(N)			
SD-19-A	/გგ5	0.00		Comment:	_			
18-A	1034		.00	6. Are there an	y leaks or dama	ge to system	hoses?	
SD-20-A	/229	0,63	_	YES	MO		<i>3</i>	
SD-21-A	<i>1</i> 230	0.54			damage_to syst	em compone	nts?	
ŠD-22-A	1932	0,46		YES	(NØ	_		
			-	8. Are all locks	and zip-ties se	cure?	•	
MONTH	ILY VAPOR SA	MPLING		Y€8)	NO			
ocation	Time	Canister ID		9. Do the these	e fall to zero who	en system is	turned off?	
-INFLUENT	1471	1427			Flow Gauge	YES	NO	
-MID GAC	1144	1441		Р	ressure Gauges	ES	NO	
-EFFLUENT	1147	1378			/acuum Gauges	YES	NO	
ADDITIONAL C	COMMENTS:		• ·	10. Was there	a GAC change o	out?	γ - 2 . °	
					unused GAC ur	nits are at this	s location?	
			•	NEW		y are at till?	, 1000000111	
				SPENT				
		A . L	m/ -	OI LIVI				
FIELD REP. SI	GNATHEE.	Faller F	[[[] [BA]]A]	e		Time:		
ILLD REF. 30	WITH ORE.	Marie O	· WIWW		=	1 IIIIG:		

Date:/3/	14	Time: <u>1106</u>	Personi	nel: DLM/2	<u> 597 </u>	loom Temp: _	
,		GE	NERAL SYSTE	M MONITORING	3		
Time	Vacuum post-KO (in. H ₂ O)	Vacuum pre-Filter (in. H₂O)	Vacuum post-Filter (in. H₂O)	Diff Pressure of Filter* (in. H₂O)	Pressure post-Blower (in. H₂O)	Temp (°F)	Flow (scfm)
1106	225	1)	16	5	Ø	86	160
* Replace filter if >2	25 In. H ₂ O	·					·
		LEG VAC	Vacuum	LOCITY MONITO Velocity	ORING Flow**	-U	
Location		Time	(in. H ₂ O)	(ft/min) (scfm) Comments			nents
North Leg - Gro	und Floor	1115	60,44	654	57.1		
South Leg - Gro	ound Floor	1118	1.04	370	32.3	-	. <u> </u>
North Leg - Bas	sement	1143	1.09	.55	4.8	-	•
South Leg - Bas	sement	1147	1,05	8801	95.0		
** Flow = Velocity x	0.0873				,,,,,,		
VAC	OTINOM MUU:	RING		1. Was the blo	wer running upo	on arrival?	
Well Time Vacuum				YES	NO		
Wen	Time	(in. H ₂ O)		2. Where there	any alarm cond	litions upon a	rrival?
SSD-1-A	1/2/	0,04		YES	(NO)		
SSD-12-A	1183	80.0		Comment:			
SSD-11-A	1/25	0,14 vo	nable	3. Was the blower ambient air valve open?			
SD-13-A	1/28	0.16		YES	NO	•	
SSD-2-A	1131	69.0		4. Was there w	ater in the knoo	kout tank?	
SSD-16-A	1134	0.48		(ES)	NO	Volume:w	drained
015-A	//36	0.89		5. Was the vac	uum/flow on eit	her leg adjust	ed?
SSD-3-A	1140	0.35		YES	(NO)		
SSD-19-A	1149	0.00	, ,	Comment:			
018-A		Not Accessib	e (locked	6. Are there an	y leaks or dama	ige to system	hoses?
SSD-20-A	1200	BUMAOS	(door)	YES	(NO)		
SSD-21-A	1155	0.32		7. Is there any	damage to syst	em componer	ıts?
SSD-22-A	1156	0,19		YES	(NO)		
	<u>-</u>		•	8. Are all locks	and zip-ties se	cure?	
MONTH	ILY VAPOR SA			YES	NO		7-
Location	Time	Canister ID		9. Do the these	e fall to zero wh	en system is t	urned off?
A-INFLUENT	N/A	AIA			Flow Gauge	(VES)	NO
A-MID GAC				Р	ressure Gauges	(ÝEŠ)	NO
A-EFFLUENT	V	V		\	/acuum Gauges	(YES)	NO
ADDITIONAL COMMENTS:				10. Was there a GAC change out? YES NO 11. How many unused GAC units are at this location?			
<u> </u>			'a	NEW SPENT			
FIELD REP. SI	GNATURE: _\(\int \)	Dawn J M	outer		-	Time:	

Date: <u>0/14</u>	114	Time:	Person	nel: <u>D.m</u>		Room Temp:		
-					- Carrier Self	<u>:</u>	· · · · · · · · · · · · · · · · · · ·	
	T. Wanner			M MONITORING		T	T-X	
Time	Vacuum post-KO	Vacuum pre-Filter	Vacuum post-Filter	Diff Pressure of Filter*	Pressure post-Blower	Temp	Flow	
Time	(in. H ₂ O)	(in. H ₂ O)	in. H₂O)	(in. H ₂ O)	(in: H ₂ O)	(°F)	(scfm)	
N/A	<i>d. 25</i>	11	17	(11.1120)	(1178/1)20)	98	153	
* Replace filter if >		<u> </u>		' ' ' ' '	<u></u>	-		
		LEG VAC	UUM AND VE	LOCITY MONITO		1	-	
			Vacuum	Velocity	Flow**	<u> </u>		
Location		Time	(in. H ₂ O)	(ft/min)	(scfm)	Comm	nents	
North Leg - Gro	ound Floor	N/A	0,47	633	55.3	e de la companya de l	<u> </u>	
South Leg - Ground Floor			<i>l.</i> 33	387	33.8	·	:	
North Leg - Basement			1,40	106	9.3		¥.,	
	South Leg - Basement			981	85.6			
** Flow = Velocity >	k 0.0873	<u>• </u>						
VAC	CUUM MONITO	RING		1. Was the blo	wer running up	oon arrival?		
Well Time Vacuum				(YES)	NO NO			
		(in. H ₂ O)		2. Where there any alarm conditions upon arrival?				
SSD-1-A	N/A	0.08		YES	(NO)			
SSD-12-A	.	0.14		Comment:				
S <u>SD-11-A</u>		0.18		3. Was the blo	wer ambient ai	r valve open?	·	
.SD-13-A		0,25	•	YES	(Ng)			
SSD-2-A		0.85		4. Was there w	ater in the kno	ckout tank?	(~15 g	
SSD-16-A		80.0		(YES)	NO	Volume: Not-	Drawes	
015-A		1.19	,		uum/f <u>lo</u> w on e	ither leg adjust	-	
SSD-3-A		053	6.1	YES	(NO)			
SSD-19-A		000		Comment:				
018-A		0.00			v leaks or dam	age to system i	hoses?	
SSD-20-A		0.40		YES	NÔ			
SSD-21-A		071				tem componen	ts?	
SSD-22-A		0.64		YES	(NO)	icin componen		
		7.07	l	8. Are all locks		ecure?		
MONTI	HLY VAPOR SA	MPLING		YES	NO			
Location	Time	Canister ID		9. Do the these	e fall to zero wi	nen system is tı	urned off?	
A-INFLUENT	1635	<u> </u>			Flow Gauge		NO	
A-MID GAC	1620	2557		Р	ressure Gauges	X	NO	
A-EFFLUENT	1639	2454			/acuum Gauges	X	NO	
	1	9107			a GAC change			
ADDITIONAL (COMMENTS:			YES	NO		•	
				11. How many	unused GAC u	ınits are at this	location?	
			_	NEW				
				SPENT		_		
	.(1) In	1			_		
FIELD REP. S	GNATURE: 🃈	Janu SM	MILLE			Time:		

Date: <u>別</u> お7	114	Time: <u>/200</u>	Personi	nel: DLM	R	oom Temp: _	
1		GE	NERAL SYSTE	M MONITORING	G .	<u>. </u>	
Time	Vacuum post-KO (in. H₂O)	Vacuum pre-Filter (in. H₂O)	Vacuum post-Filter (in. H₂O)	Diff Pressure of Filter* (in. H ₂ O)	Pressure post-Blower (in. H ₂ O)	Temp (°F)	Flow (scfm)
1809	<i>a</i> 0	- /1	17	6		90	160
* Replace filter if >2	25 in. H₂O				res		
A STATE		LEG VAC		LOCITY MONITO Velocity	ORING Flow**		
Location		Time	Vacuum (in. H₂O)	(ft/min)	(scfm)	Comn	nents
North Leg - Gro	und Floor	1206	0,44	603	52.6		·
South Leg - Gro	ound Floor	1208	1.26	<i>38</i> 0	33.2		
North Leg - Bas		1224	1.19	2)	1.8	·	
South Leg - Bas ** Flow = Velocity x		1996	1.13	1088	95.0		
		DING	1	1 Was the blo	wer running upo	n arrival?	
Well	VACUUM MONITORING Vacuum Vell Time (* 11.0)			VES VES	NO	ni ailivai:	
Well	lille	(in. H₂O)		2. Where there	any alarm cond	litions upon a	rrival?
SSD-1-A	1209	0.06		YES	NO		
SSD-12-A	N/A	N/A*	ļ	Comment:	·		
S <u>SD-11-A</u>	1313	0.16		3. Was the blo	wer ambient air	valve open?	
,SD-13-A	1216	0.33		YES	(NO)		
SSD-2-A	1918	0.75		4. Was there w	ater in the knoc	kout tank?	med NOG
SSD-16-A	1219	0.63		YES	(NO)	Kout tank? Volume: <u>Solls</u>	ns on 3/3
015-A	1221	1,10		5. Was the vac	cuum/flow on eit	her leg adjust	ed?
SSD-3-A	<i>Ja</i> 88	0,48		YES	(NO)		
SSD-19-A	1339	0.00	H ₂ O	Comment:			
018-A	(235	ĎÖ			ny leaks or dama	ge to system	hoses?
SSD-20-A	/238	0/1/4 NO	umpkilt90	YES	(NO)		
SSD-21-A	/230	0,34] "	7. Is there any	damage to syst	em componer	nts?
SSD-22-A	<u> </u>	<u> 0.3a </u>	j	YES	(NO)		F-1
			1	(s and zip-ties sec	cure?	
	ILY VAPOR SA	1	-{	YES	NO ,		. "
Location	Time	Canister ID	-	9. Do the thes	e fall to zero who		
A-INFLUENT	N/A	N/A	-	-	Flow Gauge	YES/ VES	NO
A-MID GAC A-EFFLUENT		 	1		Pressure Gauges Vacuum Gauges		NO NO
A-ELTI-LOENT	<u>, ₹</u>	<u> </u>	j		a GAC change o	1112	NO
ADDITIONAL O	COMMENTS:			YES	NO		
*Couldn't g	get reading.	kept bouncing	1	11. How many	unused GAC ur	its are at this	location?
hetween t	osteve and	regative valo	ජ	NEW	'		
and zero	<u>)</u>	, J	_	SPENT	<u> </u>		
FIELD REP. SI	GNATURE:	Janu Jr	Minia		_	Time:	

_Date: <u>3/13</u>	<u> </u>	Time:	Personi	nel: <u>DLM</u>	F	Room Temp:		
)		- (10 6)						
<u></u>			NERAL SYSTE		3	-		
	Vacuum	Vacuum	Vacuum	Diff Pressure	Pressure	Temp	Flow	
Time	post-KO (in. H ₂ O)	pre-Filter	post-Filter	of Filter*	post-Blower	(°F)	(scfm)	
		(in. H ₂ O)	(in. H ₂ O)	(in. H₂O)	(in. H ₂ O)			
* Replace filter if >2	3.35 7 5 in. H.O	11	<u> </u>	6	O	86	160	
		I EG VA	<u>")</u> CUUM AND VEI	OCITY MONIT	DRING	· .	·	
		LEG VA	Vacuum	Velocity	Flow**			
Location		Time	(in H ₂ O)	(ft/min)	(scfm)	Comme	ents	
North Leg - Gro	und Floor	1145.	OHS	545	47.6	-	·	
South Leg - Gro		1146	1,30	370	32.3			
North Leg - Bas		1157	1119	84	7.3			
South Leg - Bas		1159	1.12	10(25	93.0			
** Flow = Velocity x	0.0873	1100			1010			
VAC	UUM MONITOR	RING]	1. Was <u>th</u> e blo	wer running up	on arrival?		
Well	T:	Vacuum		(YES)	NO		•	
well	Time	(in. H₂O)	2. Where there any alarm conditions upon arrival?					
SSD-1-A	1147	80.0		YES	NO			
SSD-12-A	1148	0.10	Ì	Comment:	$\overline{}$			
SSD-11-A	1149	0.17	3. Was the blower am <u>bi</u> ent air valve open?					
SD-13-A	1149	0,30	1	YES	(NO)			
SSD-2-A	/150	0.78	1	4. Was there w	ater in the know	kout tank?	*	
SSD-16-A	1151	0.64	1	YES		Volume:		
015-A	(152	1,10	1	5. Was the vac	uum/flow on eit		d?	
SSD-3-A	1154	0.48	1	YES	(NO)	.		
SSD-19-A	1201	0.00] .	Comment:				
018-A	1807	0,00		6. Are there an	y leaks_or dama	age to system h	oses?	
SSD-20-A	1911	0,09		YES	NO			
SSD-21-A	1203	0,29	1	7. Is there any	damage to syst	em component	s?	
SSD-22-A	1204	0,35	1	YES	(NO)	-	•	
	•		•	8. Are all locks	and zip-ties se	cure?		
MONTH	LY VAPOR SAI	MPLING		YES)	NO			
Location	Time	Canister ID		9. Do the these	fall to zero wh	en system is tu	rned off?	
A-INFLUENT	1256	2460			Flow Gauge	(YES)	NO.	
A-MID GAC	1957	୬ ୳୵୳		P	ressure Gauges	(YES)	NO	
A-EFFLUENT	1358	3587		V	acuum Gauges	(YES)	NO	
Col	lected on	3/10/14		10. Was there	a GAC <u>ch</u> ange d	out?		
ADDITIONAL C	OMMENTS:			YES	(NO)			
			_	11. How many	unused GAC ur	nits are at this l	ocation?	
			NEW O					
			_	SPENT				
	, ,	1 d	10/1-					
FIELD REP. SIG	SNATURE: //	MING J-11	Monica		-	Time:		

Date: 3/38	3/14	Time: <u>//3</u> 0	Personi	nel: DLM	F	Room Temp:		
`I		GE	NERAL SYSTE	M MONITORING	3	··· · -	·	
Time	Vacuum post-KO (in. H₂O)	Vacuum pre-Filter (in. H₂O)	Vacuum post-Filter (in. H₂O)	Diff Pressure of Filter* (in. H ₂ O)	Pressure post-Blower (in. H₂O)	Temp (°F)	Flow (scfm)	
1140	3,0	11	17	(0	0	99	155	
* Replace filter if >2				- 4. · 	<u> </u>	<u></u>		
		LEG VAC	CUUM AND VE	OCITY MONITO				
Location Time		Time	Vacuum (in. H ₂ O)	Velocity (ft/min)	Flow** (scfm)	Comments		
North Leg - Gro	North Leg - Ground Floor			6 3915 64				
South Leg - Gro		1145	1,25	395	34.5			
North Leg - Bas	ement	1208	1.14	3 .	_ 0.5	1		
South Leg - Bas		/209	1.09	1015	2.88			
** Flow = Velocity x	0.0873		•					
VAC	OTINOM MUU			1. Was the blower running upon arrival?				
Well	Time	Vacuum		(ES)	NO _.			
	1	(in. H ₂ O)				ditions upon ar	rival?	
SSD-1-A	1152	80.0		YES	NO			
SSD-12-A	//53	0.11		Comment:		•		
- ^I S <u>SD-11-A</u> ,∕SD-13-A	//55	0.14			wer ambient air	valve open?		
SSD-13-A		0.80		YES	ater in the know	aleaest tamle?		
SSD-16-A	1200	0.64		YES	NO NO	Volume:		
015-A	1801	1.13	5. Was the vacuum/flow on either leg adjuste					
SSD-3-A	1204	0,49				inci icg dajaste	, u :	
SSD-19-A	12/1	0.00		Comment:	•			
018-A	N/A	N/A		6. Are there an	y leaks or dama	age to system h	oses?	
SSD-20-A	Mark 125	1 COME C	16;H20	YES	NO	-		
SSD-21-A	/214	0.25	-, 0	7. Is there any	damage to sys	tem component	ts?	
SSD-22-A	1916	0.83		YES	(NO)			
MONTH					and zip-ties se	ecure?		
	ILY VAPOR SAI			YES	NO			
Location	Time	Canister ID		9. Do the these		en system is tu		
A-INFLUENT A-MID GAC	NIA	NIA		D	Flow Gauge ressure Gauges		NO	
A-EFFLUENT	1	1.			ressure Gauges /acuum Gauges		NO NO	
7 2 1 2 2 1 1		V			a GAC <u>c</u> hange (NO	
ADDITIONAL C	OMMENTS:			YES	(NO)	Juli		
				11. How many	unused GAC u	nits are at this l	ocation?	
				NEW				
				SPENT				
FIELD REP. SIG	GNATURE:	Tana F	Monico	-	_	Time: /330	2	

LMC Middle River Complex, Middle River, Maryland

)ate: <u>/0//0//3</u> Time:		Personnel: DLM				
1. Was the system running upon arrival? NO 2. Where there any alarm conditions upon the system running upon arrival?		8. Was there a KMnO ₄ change out? YES 9. How many GAC units are at this location? NEW O SPENT O O O O O O O O O O O O O				
Comment:		10. How many KMnO ₄ units are at this location?				
3. Is the blower ambient air valve open? YES NO 4. Are there any leaks or damage to systematics.	em hoses?	NEW SPENT O 11. How many water drums are on-site? EMPTY PART FULL/ FULL				
YES NO 5. Is there any damage to system components		12. Are water drums in good condition and labeled? NO				
YES (NO) 6. Are all locks and zip-ties secure?		13. Do the these fall to zero when system is turned off?				
YES NO 7. Was there a GAC change out?		Flow Gauge YES NO Pressure Gauges YES NO				
YES (NO)		Vaçuum Gauges (YES) NO				
	GENERAL SY	YSTEM MONITORING				

<u>~</u> ┦_	GENERAL SYSTEM MONITORING							
\int	Time	Vacuum pre-Filter (in. H₂O)	Vacuum post-Filter (in. H ₂ O)	Diff Pressure of Filter* (in. H₂O)	Flow (scfm)	Pressure post-Blower (in. H ₂ O)	Temp post-Blower (°F)	Temp post-HE (°F)
	NIA	37	34	7	190	45	166	60

14. How many hours are displayed on the time counter? 3446, 3

EXTRACTION WELL VACUUM AND VELOCITY MONITORING							
Location	Time	Vacuum (in. H₂O)	Velocity (ft/min)	Flow** (scfm)	Vacuum/Flow Adjustment	Comments	
SSD-21-C	N/A	14,63	/205	<u> </u>		*	
SSD-23-C			- CLOSED -				
SSD-30-C		23,3	50	1.1		*7, 100	
SSD-26-C		00.7	<i>ನ</i> 33	5.1		* 4 Lower than	
SSD-31-C		33,6	<u> </u> রূপুর্ম	65		M	
SSD-27-C		13.15	>max	NA			
SSD-32-C		15,09	3500	76.3		a v 🚧 a	
SSD-28-C		21.6	571	12.4		.	
SSD-33-C		20	1609	35.			
3SD-29-C		1600.7	ほう	3.3			
ತSD-34-C	_ 1/	31,7	936	5.1			

<u> </u>			VMP VACUUN	MONITORING	à	. *	
VMP *	Time	Vacuum (in. H₂O)	Comments	VMP	Time	Vacuum (in. H₂O)	Comments
001-C	N/A	0.31		087-C	N/A	0.0	
SSD-22-C	j	NIA	Heavy Egoto	133-C	- 1	4.66	
SSD-2-C 🦠		0.06	7,1	134-C		0.00	
SSD-24-C	(a) (b) (b) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c	0.18		111-C		0,00	
SSD-25-C 🥂		0.01		060-C		8.90	
SSD-3-C		7:02		127-C		5,62	The state of
SSD-4-C		2.07		141-C	1	-0.60	Physical Designation
135-C		0,05		050-C		0,00	
088-C		0.00		126-C		0.00	
113-C		5,62	-		9.1		74 <u>2</u> s

MOISTURE SEPARATOR, SUMP, AND DRAIN MONITORING								
Location		s Water?	Water Drain	red?	/ Volume Drained \	Valves C	losed?	
Moisture Separ	rators	,			***		•	
MS-1	YES	(NO)	YES	NO	NIA	(YES)	NO	
MS-2	YES	(10m)	YES	NO_		YEST	NO	
`?ipe Sumps						7		
PS-1	YES	(NO)	YES	04	N/A	····· (YES)	NO	
PS-2	YES	(NO)	~YES	NO			NO	
PS-3	YES	COM	-YES	NO_		(YES')	NO	
PS-4	YES	NO>	YES :	NO		(YES)	NO	
、PS-5	YES	(NO)	YES	OM	V	(YES)	NO	
System Sumps								
Exhaust Stack Sump	YES	(A)	YES	NO	N/A	YES	NO	
GAC and PPZ Drains								
Lead GAC	YES		<u> УЕЗ</u>	OM	N/A	(XES)	NO	
Lag GAC	YES	(MO)	-YES	NO		(YES)	NO	
PPZ	YES		YES	NO	V	(YES)	NO	

MONTHLY VAPOR SAMPLING							
Location		Time	Canister ID	Comments			
C-INFLUENT	17.5	1101	10796				
C-MID GAC	* \$	1120	10795				
C-EFFLUENT		1183	L-A7II7	· · · · · · · · · · · · · · · · · · ·			

C-EFFLUEN1	1103	LAIN	
ADDITIONAL COMMENTS:	Si Si		

	<u> </u>	•		
2		Maria	 	-
FIELD REP. SIGNATURE:	Mull T	MUNICA D.	 Time:	
	•			

LMC Middle River Complex, Middle River, Maryland

)ate: 10/23/13 Time: 100	personnel: <u>Dustin Cutes</u>
Was the system running upon arrival? NO	8. Was there a KMnO, change out?
2. Where there any alarm conditions upon arrival? YES Comment:	9. How many GAC units are at this location? NEW SPENT O 10. How many KMnO ₄ units are at this location?
3. Is the blower ambient air valve open? YES NO 4. Are there any leaks or damage to system hoses?	NEW SPENT O 11. How many water drums are on-site? EMPTY 2 PART FULL / FULL
YES NO 5. Is there any damage to system components? YES NO	12. Are water drums in good condition and labeled? NO Comment:
6. Are all locks and zip-ties secure? YES NO 7. Was there a GAC change out? YES NO	13. Do the these fall to zero when system is turned off? Flow Gauge YES NO Pressure Gauges YES NO Vacuum Gauges YES NO

_[GENERAL SYSTEM MONITORING								
	Time	Vacuum pre-Filter (in. H₂O)	Vacuum post-Filter (in. H ₂ O)	Diff Pressure of Filter* (in. H ₂ O)	Flow (scfm)	Pressure post-Blower (in. H ₂ O)	Temp post-Blower (°F)	Temp post-HE (°F)	
	1010	23	. 33	10	185	46	164	62	

^{*} Replace filter if >25 in. H₂O

14. How many hours are displayed on the time counter? 3756.4

EXTRACTION WELL VACUUM AND VELOCITY MONITORING								
Location	Time	Vacuum (in. H₂O)	Velocity (ft/min)	Flow** (scfm)	Vacuum/Flow Adjustment	Comments		
SSD-21-C		- 13.67	₹1148	25.03	2			
SSD-23-C		-4.2	10	0.22				
SSD-30-C		-221	70	1,53				
SSD-26-C		-21,7	270	5,89				
SSD-31-C		-21.4	284	6.19				
SSD-27-C		-11.12	Max	NA				
SSD-32-C		-14,29	3420	74.56				
SSD-28-C		-20.4	664	14,48		4		
SSD-33-C		-19.5	1635	35,64				
SSD-29-C	- "	-20,7	107	2.33		£ .		
SSD-34-C		-20.8	7	0.15		·		

^{**} Flow = Velocity x 0.0218

VMP VACUUM MONITORING								
VMP	Time	Vacuum (in. H ₂ O)	Comments	VMP	Time	Vacuum (in. H₂O)	Comments	
001-C		-0,23	24hotest 24	087-C		0,00		
SSD-22-C		-0.03		133-C		-4,68	well cap not	
SSD-2-C		-0,09	24hrtest 45	134-C	==	0.01		
SSD-24-C		-0,13	24hr test L6			0.0		
SSD-25-C		-0,02		060-C		-9.04		
SSD-3-C		-0,84		127-C		-5,28		
SSD-4-C		-1,81		141-C	·	0.81		
135-C		-0,04	144, test-26 16/24/13 1355	050-C		-0.01		
088-C		0.0		126-C		0.02		
113-C		-5,59						

	R	MOISTURE SEI	PARATOR, SUI	/IP, AND DRAIN	MONITORING		
Location	Contains	Water?	Water D	rained?	Volume Drained	Valves C	losed?
Moisture Separat	ors					-	
MS-1	YES	(NO)	YES	(NO)	NA	VES	NO
MS-2	YES	(No)	YES	(VO)	NA	(YES)	NO
Pipe Sumps							
PS-1	YES	€ 00/	YES	(NQ)	NA	YES	NO
PS-2	YES	(NO)	YES	(NO)	1/4	(YES)	NO ·
PS-3	YES	(NO)	YES	(NQ)	NA	(YES)	NO
PS-4	YES	(NO	YES	(NO)	NA	(YES)	NO
PS-5	YES	(NO)	YES	(NO)	NA	(YÉS)	NO
System Sumps							
Exhaust Stack Sump	(YES)	NO	YES	NO	0.25gd	YES	NO
GAC and PPZ Di	ains .						
Lead GAC	YES	(NQ)	YES	(QA)	NA	(YEŞ)	NO
Lag GAC	YES	(NO)	YES	MQ)	NA	(YES)	NO
PPZ	YES	(NO)	YES	(ON	NA	(YES)	NO

MONTHLY VAPOR SAMPLING								
Location	Time	Canister ID	Comments					
C-INFLUENT								
C-MID GAC								
C-EFFLUENT								

ADDITIONAL COMMENTS: 1227 Turn off system 1250 Turn system on	, 24hr testing stateda
-1348, 1340, +1410 2.	
FIELD REP. SIGNATURE: Lotus Color	Time: _/500

LMC Middle River Complex, Middle River, Maryland

ate:, 11/7//3	ime: <u>0800</u> Personnel: <u>DLM</u>
Was the system running upon arrival? NO	8. Was there a KMnO, change out? YES NO
2. Where there any alarm conditions upon YES (NO)	arrival? 9. How many GAC units are at this location? NEW SPENT SPENT
Comment:	10. How many KMnO ₄ units are at this location?
3. Is the blower ambient air valve open?	NEW SPENTO
YES (NO)	11. How many water drums are on-site?
4. Are there any leaks or damage to system	
YES NO	12. Are water drums in good condition and labeled?
5. Is there any damage to system compon	nts? (YES) NO
YĖS (NO)	Comment:
6. Are all locks and zip-ties secure?	13. Do the these fall to zero when system is turned off?
(YES) NO	Flow Gauge (YES) NO
7. Was there a GAC <u>ch</u> ange out?	Pressure Gauges YES NO
YES NO	Vacuum Gauges YES NO
	ENERAL SYSTEM MONITORING

_[G	ENERAL SYSTE	M MONITORI	NG		
	71ess=30 Time 130=58	Vacuum pre-Filter (in. H₂O)	Vacuum post-Filter (in. H₂O)	Diff Pressure of Filter* (in. H ₂ O)	Flow (scfm)	Pressure post-Blower (in. H ₂ O)	Temp post-Blower (°F)	Temp post-HE (°F)
<u> </u>	08141	53	56	3	160	34	180	ଜ ର
	Replace filter if >2	5 in, H ₂ O	34		185	46	163	69

Vocusing Relief @ 90

14. How many hours are displayed on the time counter? 41076

	- I	Manus	Velocity	Flow**	Vacuum/Flow	
Location	Time	Vacuum (in. H₂O)	(ft/min)	(scfm)	Adjustment	Comments
SSD-21-C	7090	27.8	1959	42.7		
SSD-23-C			-CLOSET)		+	/ (
SSD-30-C	6090	53.0	60	1.3		450
SSD-26-C	900	49.1	HaO	NA		
SSD-31-C	0854	53.6	H50	N/A		
SSD-27-C	0830	1.09	1163	25.4	75%Ope	3
SSD-32-C	0830	a.4à	ררוו	25.7	135600pe	
SSD-28-C	0836	50.5	990	21.6		
SSD-33-C	0838	45,7	3979	64.9		
3SD-29-C	0842	49.8	H20	NIA		
SSD-34-C	0844	50,9	30	0.7		A ₂ O

	VMP VACUUM MONITORING											
VMP	Time	Vacuum (in. H ₂ O)	Comments	VMP	Time	Vacuum (in. H₂O)	Comments					
001-C 🤚 🚎	8090	0.45	· .	98 7-C								
SSD-22-C	070	0.0		133-C	0830	1.19						
SSD-2-C	0917	D010		134-C								
SSD-24-C	0993	0.3		111-C	083A	0.00						
SSD-25-C	0924	0.0	÷,	060-C	0835	23,8						
SSD-3-C	0931	1:57		127-C	O84O	11.91						
SSD-4-C	P190	3.34		141-C	0845	-0,58						
135-C	600	0.04		050-C	0847	0,00						
088-C	P380	0.00		126-C	0849	0,00						
113-C	0856	7.14	•	,	•3							
2570 -3	0913	0.01	e.	eler 1	9		<u> </u>					

		MOISTURE SI	EPARATOR, SUM	IP, AND DRA	IN MONITORING	: """	/m
Location	cation • Contains Water?		Contains Water? Water Drained?		Volume Drained	Valves Closed?	
Moisture Sepa	rators					* •	
MS-1	YES	(DA)	YES	(ya)		YES	NO
MS-2	YES	(ON)	YES	(NO)		(YES)	NO
Pipe Sumps					14.		
PS-1	YES 🦂	(M)	YES	(NO)		(YES)	NO
PS-2	YES	(NO)	YES	(NO)		(YES)	NO
PS-3	YES	(NQ)	YES	(MO)		(YES)	NO
PS-4	YES	(MG)	YES	(MQ)		YES	NO
PS-5	YES	(NO)	YES	(NO)		(YES)	NO
System Sumps							
Exhaust Stack Sump	YES	NO	YES	NO	Few	YES	NO
GAC and PPZ	Drains		<u> </u>				
Lead GAC	YES	(QIA)	-YES	40		YES	NO
Lag GAC	YES	(40)	, YES	NO		YES	NO
PPZ	YES	(NO)	YES-	NO_		(YES)	NO

	MONTHLY VAPOR SAMPLING										
Location Time Canister ID Comments											
C-INFLUENT	0933	09583	2 collected After								
C-MID GAC	0934	10756	(Well Adjustment								
C-EFFLUENT	0935	10782	J The state of the								

ADDITIONAL COMMENTS:	
FIELD REP. SIGNATURE:	Time

LMC Middle River Complex, Middle River, Maryland

ate: <u>11/03/13</u> Tin	:	
1. Was the system running upon arrival? NO NO NO NO NO NO NO NO NO N	8. Was there a KMnO ₄ change out? YES Val? 9. How many GAC units are at this location?	
YES NO Comment:	NEW <u>3.</u> SPENT <u>O</u> 10. How many KMnO ₄ units are at this location?	
3. Is the blower ambient air valve open? YES NO 4. Are there any leaks or damage to system in the system in the system in the system.	NEW / SPENT O 11. How many water drums are on-site? Ses? EMPTY 3 PART FULL / FULL	
YES NO 5. Is there any damage to system componen YES NO	7 YES NO Comment:	}
6. Are all locks and zip-ties secure?	13. Do the these fall to zero when system is turned	
7. Was there a GAC change out?	Flow Gauge (YES) No Pressure Gauges (YES) No	_
YES NO	Vacuum Gauges (YES) Note The Property of the P	၁ ——

_[GENERAL SYSTEM MONITORING										
	Time	Vacuum pre-Filter (in. H₂O)	Vacuum post-Filter (in. H ₂ O)	Diff Pressure of Filter* (in. H ₂ O)	Flow (scfm)	Pressure post-Blower (in. H ₂ O)	Temp post-Blower (°F)	Temp post-HE (°F)				
	1114	56	.59	3	154	32	190	62				

^{*} Replace filter if >25 in. H₂O

14. How many hours are displayed on the time counter? 4/9%.4

	E	EXTRACTION V	VELL VACUUM	AND VELOCIT	TY MONITORING	3
Location	Time	Vacuum (in. H₂O)	Velocity (ft/min)	Flow** (scfm)	Vacuum/Flow Adjustment	Comments
SSD-21-C	1/30	25.1	<i>3</i> 394	50.0	None	
SSD-23-C			CLOSED			-
SSD-30-C	1194	51.7	1462	31.9	None	Hao
SSD-26-C	1125	48.6	NIA	N/A	None	Hao: variable vac
SSD-31-C	1127	47.3	NIA	NIA	None	450; variable vac
SSD-27-C	1131	101.16	1031	aa.3	None	10-)
SSD-32-C	1133	2.35	1031	33,5	None	
SSD-28-C	1136	49.8	1812	39.5	None	
SSD-33-C	1138	44.3	3115	67,9	None	
3SD-29-C	1140	49.2	NA	N/A	None	Ho; variable vac.
.3SD-34-C	iiча	505	917	90.0	None	Hoj varable vac.

LMC Middle River Complex, Middle River, Maryland

<u> </u>	e to the second		VMP VACUUN	MONITORING	G		
VMP	Time	Vacuum (in. H₂O)	Comments	VMP	Time	Vacuum (in, H₂O)	Comments
001-C	1202	0.45		087-C			Not Measure
SSD-22-C	1819	0,00	-	133-C	1800	0,95	
SSD-2-C	18/61	80,0 £	3	134-C			Not measure
SSD-24-C	1216	™O.∂a	in the second se	111-C	1/58	3 0.00	
SSD-25-C	<i>\aa</i> 3	00	1 N	060-C	//54	₹22.7	
SSD-3-C	1837	1.35		127-C	1/52	10,05	
SSD-4-C	1825	3,96	3	141-C	1144	-0,64	_
135-C	1208 1208	0,06	Section 200	050-C	1146	000	
088-C	12000	0.00	4	126-C	1149	0.00	
113-C	1904	654	Variable vac			٠-	_

	<u></u>	MOISTURE SE	PARATOR, SUM	IP, AND DRAII	N MONITORING		
Location	Contains Water?		ation Contains Water? Water Drained?		Volume Drained	Valves Closed?	
Moisture Separa	ntors					in	
MS-1	YES	NO)	+YES	NO	NIA	- (VES)	NO
MS-2	YES	(NO)	YES	NO-		YES	NO
ੇipe Sumps	ţ				egi. Propries		
PS-1	YES	(NO)	YES	NO-	NIA	(YES)	NO
PS-2	YES	(NO)	YES	NO		(ÆŠ)	NO
PS-3	YES	(NO)	Y ES -	NO		(ES)	NO
PS-4	YES	(NO)	YES	NO_		(YES)	NO
PS-5	YES	(NO)	YES	NO-	V	(YES)	NO
System Sumps			_				
Exhaust Stack Sump	YES	NO	YES	NO	1,7590	YES	NO
GAC and PPZ D)rains						·-
Lead GAC	YES	(NO)	-YES-	NO-	N/A	(YES)	NO
Lag GAC	YES	(NO)	YES	NO-		(YES)	NO
PPZ	YES	(NO)	-YES	NO	1	(YES)	NO

MONTHLY VAPOR SAMPLING								
Location	⊸ Time	Canister ID	Comments					
C-INFLUENT	NIA	N/A	·					
C-MID GAC			···.					
C-EFFLUENT	1/	V						

Δ	חח	ITIC	NI.	ΔI.	വ	RAR	MEI	VTS:
_	uu			4 L	LU		VI C I	V 1 33:

_SSD-24-C needs retapped.			
	204		
FIELD REP. SIGNATURE: Wall & Manuel		Time: <u>1307</u>	

Page 2 of 2

LMC Middle River Complex, Middle River, Maryland

ate: <u>/3/5//3</u>	Time: <u>/200</u>	OO Personnel: DLm				
Was the system running upon arriva (YES) NO	!?	8. Was there a KMnO ₄ change out?				
2. Where there any alarm conditions up YES Comment:		9. How many GAC units are at this location? NEW				
3. Is the blower ambient air valve open YES NO 4. Are there any leaks or damage to sys		NEW/ SPENT SPENT 11. How many water drums are on-site? EMPTY PART FULL/_ FULL				
YES YES NO S. Is there any damage to system comp		12. Are water drums in good condition and labeled? VES NO Comment:				
6. Are all locks and zip-ties secure?		13. Do the these fall to zero when system is turned off? Flow Gauge YES NO				
7. Was there a GAC change out? YES NO		Pressure Gauges YES NO Vacuum Gauges YES NO				
	CENEDAL SVST	EM MONITOPING				

	GENERAL SYSTEM MONITORING								
Time	Vacuum pre-Filter (in. H₂O)	Vacuum post-Filter (in. H ₂ O)	Diff Pressure of Filter* (in. H ₂ O)	Flow (scfm)	Pressure post-Blower (in. H₂O)	Temp post-Blower (°F)	Temp post-HE (°F)		
1200	53	56	3	154	34	186	64		

14. How many hours are displayed on the time counter? 4508.6

		EXTRACTION V	VELL VACUUM	AND VELOCIT	Y MONITORING	G
Location	Time	Vacuum (in. H₂O)	Velocity (ft/min)	Flow** (scfm)	Vacuum/Flow Adjustment	Comments
SSD-21-C	1214	<i>3</i> 3,8	<i>ã</i> 000	43.6	None	
SSD-23-C			-CLOSET)			
SSD-30-C	1217	49.0	1301	56.4	None	H-0
SSD-26-C	1319	47.0	NIA	NIA	None	HOO! Vorable Inc.
SSD-31-C	1000	47.5	NA	N/A	None	160 ?
SSD-27-C	1224	1,03	935	20.4	None	-0-
SSD-32-C	1226	2.19	1031	89.5	None	
SSD-28-C	7861	469	/200	∞.∂	None	
SSD-33-C	/239	40.8	3074	50.0	None	
3SD-29-C	/ə31	47.5	N/A	NIA	None	Hao; varable vae
SSD-34-C	/233	48.1	/3/0	28.6	None	HO

^{**} Flow = Velocity x 0.0218

LMC Middle River Complex, Middle River, Maryland

			VMP VACUUN	MONITORING	9		1. 1.
VMP	Time	Vacuum (in. H₂O)	Comments	VMP	Time	Vacuum (in. H₂O)	Comments
001-C °	1316	0.38		087-C	N/A	N/A	No Longer Montion
SSD-22-C	1313	$\circ \omega$	5	133-C	1955	0.93	SmKma
SSD-2-C	/3/1	0.07		134-C	NA	N/A	No Longer
SSD-24-C	/309	0.94	· - 34	111-C	/353	0.00	
SSD-25-C	1303	0,00		060-C	1851	<i>a</i> a.0	*. · · ·
SSD-3-C	/320	1.18	,	127-C	1246	9.18	-3
SSD-4-C	/3/8	2,47		141-C	/235	0.55%	
135-C	1304	0,06	Ų i	050-C	<i>(</i> 837	0,0	Remove?
088-C	/300	0.00		126-C	1240	0.0	
113-C	/300	6.41	Variablevar	,);			

	N	IOISTURE SE	PARATOR, SUN	IP, AND DRAI	N MONITORING					
Location	Contains	Water?	Water Dr	Water Drained? Volume Drained		Valves Closed?				
Moisture Separators										
MS-1	YES	(<u>V</u> Q)	Y ES	N O	NA	(YES)	NO			
MS-2	YES	(NO)	YES	NO		(YES)	NO			
Pipe Sumps				· ·	···		· · · ·			
/ PS-1	YES	(NO)	YES	NO-	NIA	(YES)	NO			
PS-2	YES	(NQ)	-YES	NO		(YES)	NO			
PS-3	YES	(NO)	-YES	NO-		(YES)	NO			
PS-4	YES	(NO)	YES	NO .		(YES)	NO			
PS-5	YES	(NO)	-YES	NO		(YES)	NO			
System Sumps			-				000			
Exhaust Stack Sump	YES	, NO	YES	NO	1/2 901	YES	NO			
GAC and PPZ [Drains				· · · · · · · · · · · · · · · · · · ·		*			
Lead GAC	YES	(NO)	YES	NO	LAW	YES)	NO			
Lag GAC	YES	(AQ)	YES	NO		(XEC)	NO			
PPZ	YES	(NO)	YES-	NO		(YES)	NO			

MONTHLY VAPOR SAMPLING Location Time Canister ID Comments								
C-MID GAC	1207	3550	· · · · · · · · · · · · · · · · · · ·					
C-EFFLUENT	1208	8558						

ADDITIONAL COMMENTS:	·*		
·	শ		
<u></u>	0 0		
FIELD REP. SIGNATURE:	Tawe & Million	Time:	

Page 2 of 2

LMC Middle River Complex, Middle River, Maryland

Pate: <u>/2/18//3</u> Time:	Personnel: DLM
1. Was the system running upon arrival? YES NO 2. Where there any alarm conditions upon arrival? YES NO Comment: 3. Is the blower ambient air valve open? YES NO 4. Are there any leaks or damage to system hoses?	8. Was there a KMnO ₄ change out? YES 9. How many GAC units are at this location? NEW SPENT O 10. How many KMnO ₄ units are at this location? NEW SPENT O 11. How many water drums are on-site? EMPTY PART FULL FULL FULL
YES NO 5. Is there any damage to system components? YES NO 6. Are all locks and zip-ties secure? YES NO 7. Was there a GAC change out? YES NO	12. Are water drums in good condition and labeled? YES NO Comment: 13. Do the these fall to zero when system is turned off? Flow Gauge YES NO Pressure Gauges VES NO Vacuum Gauges VES NO

$\neg ackslash ackslash$	GENERAL SYSTEM MONITORING							
	Time	Vacuum pre-Filter (in. H₂O)	Vacuum post-Filter (in. H₂O)	Diff Pressure of Filter* (in. H ₂ O)	Flow (scfm)	Pressure post-Blower (in. H ₂ O)	Temp post-Blower (°F)	Temp post-HE (°F)
		48	53	7	9	36	180	63

^{*} Replace filter if >25 in. H₂O

14. How many hours are displayed on the time counter? 48068

	EXTRACTION WELL VACUUM AND VELOCITY MONITORING							
Location	Time	Vacuum (in. H ₂ O)	Velocity (ft/min)	Flow** (scfm)	Vacuum/Flow Adjustment	Comments		
SSD-21-C	1215	15.43	NIA	N/A	Open ~25%	Hoo: Variable vac		
SSD-23-C			CLOSED .		March	0		
SSD-30-C	LAMA	43.8	13 13	20.3	ATT MATTERS	400		
SSD-26-C		43.2	NS/A	N/A	None'	Hao: ranable vac.		
SSD-31-C		38,9	NA	N/A	None	140! Vacioble vac		
SSD-27-C	1824	40000 1.48	1330	6.26	Olegen Land	20		
SSD-32-C		2.04	981	21.4	None			
SSD-28-C		41,3	1412	30.8	None			
SSD-33-C		3(0.2	2291	499	None			
SSD-29-C		42.1	NIA	N/A	None	Has variable vac-		
SSD-34-C		42.8	1326	28.9	1	40. Variable vel		

VMP VACUUM MONITORING								
VMP	Time	Vacuum (in. H₂O)	Comments	VMP	Time	Vacuum ⊸ (in. H₂O)	Comments	
001-C	NA	0.12	j.	087-C	N/A	NA		
SSD-22-C	3	0.00		133-C	3	0.17		
SSD-2-C		0.03	***	134-C		NIA		
SSD-24-C		80.0		111-C		0,00	<u> </u>	
SSD-25-C		0.00	i-a	060-C		19.64		
SSD-3-C		0.42		127-C	:	6,28		
SSD-4-C		88.0		141-C	:	-0.55		
135-C		0.06		050-C		6.00		
088-C	_	0.00		126-C		0,00		
113-C		6.48	Variable vac			-		

		MOISTURE SE	PARATOR, SUM	IP, AND DRAI	N MONITORING		
Location	Contains	Water?	Water D	rained?	Volume Drained	Valves C	losed?
Moisture Separa	ators	\sim					
MS-1	YES	(мо)	YES	NO->	NA	(XES)	NO
MS-2	YES	(NO)	~YES -	NO	1	(YES)	NO
Pipe Sumps					· · · · · · ·		
/ PS-1	YES	(NO,)	₹ YES	NO	A)/A	(YES)	NO
PS-2	YES	(NO)	-YES	NO	j	(YES)	NO
PS-3	YES	(NO)	YES	NO		(YÉS)	NO
PS-4	YES	(NO)	YES:	NO		(XES)	NO
PS-5	YES	(NO)	~YES	NO_	1/	(YES)	NO
System Sumps					· · · · · · · · · · · · · · · · · · ·		
Exhaust Stack Sump	YES	NO	YES	NO	~/3gal	YES	NO
GAC and PPZ I	Drains				7		
Lead GAC	YES	(NO)	YES-	—————————————————————————————————————	N/A	(Y ĘS)	NO
Lag GAC	YES	(AO)	YES	<u> </u>		(XESS)	NO
PPZ	YES	(NO)	~¥ES~~~	NO	1/	(YES)	NO

MONTHLY VAPOR SAMPLING						
Location Time Canister ID Comments						
C-INFLUENT	N/A	N/A				
C-MID GAC						
C-EFFLUENT		1 1				

,-····	ADDITIONAL COMMENTS: Bollard infront of		pernoved and l	oem fixed	
				7	
	FIELD REP. SIGNATURE:	Deux J	Milas		Time:

ate: <u>1/3/</u>	14		me: 1130		Personnel:	Tym	
1. Was the sys	tem running up	pon arrival?		8. Was there a	KMnO, chang	e out?	
2. Where there any alarm conditions upon arrival? YES NO Comment:				NEW 10. How many	న KMnO₄ units a	t this location? SPENT re at this locati	on?
3. Is the blower ambient air valve open? YES NO 11. How many water drums are 4. Are there any leaks or damage to system hoses? EMPTY/ PART							
5. Is there any damage to system components?			12. Are water of YES Comment:	NO	condition and I	abeled?	
6. Are all locks YES 7. Was there a	NO				se fall to zero v Flow Gauge ressure Gauges	vhen system is YES	turned off? NO NO
YES	(NO)			V	acuum Gauges	YES	≒ NO
		G	ENERAL SYSTI	EM MONITORII	NG		
Time	Vacuum pre-Filter (in. H₂O)	Vacuum post-Filter (in. H₂O)	Diff Pressure of Filter* (in. H ₂ O)	Flow (scfm)	Pressure post-Blower (in. H ₂ O)	Temp post-Blower (°F)	Temp post-HE (°F)
NIA	91	30	9	196	51		
* Replace filter if >2 Fee Well Atj	25 in. H ₂ O HO	47	٦		49	152	83
	hours are disp		\$	5183.1	-		`

- WILE - H		THEOSCIE				
	7	EXTRACTION W			Y MONITORING	3
Location	Time	Vacuum (in. H₂O)	Velocity (ft/min)	Flow** (scfm)	Vacuum/Flow Adjustment	Comments
SSD-21-C	N/A	3.10	ල්බර්	13.6		
SSD-23-C	1		CLOSED			***
SSD-30-C		18,29	767	しょうえ		
SSD-26-C		18.06	(C)	19.1		
SSD-31-C		17.18	.971	91,9		,
SSD-27-C		9.14	3647	79,5	VRL - 1279	37.9
SSD-32-C	·	10.97	3343	70.7	Ree = 3.35	2 C. O
SSD-28-C		16,43	876	19.1		
SSD-33-C		14.78	1806	39.4		
SSD-29-C		6891	435	9,48		
3SD-34-C	1/	1(0,8)	(18)	13.5		

LMC Middle River Complex, Middle River, Maryland

<u>) </u>		<i>i</i> ,	VMP VACUUM	MONITORING	à	78.2	
VMP	Time	Vacuum (in. H₂O)	Comments	VMP	Time	Vacuum (in. H₂O)	Comments
001-C	NJA	0.09		113-C	NIA	9,57	
SSD-22-C	1	00,0		133-C		1,49	
SSD-2-C		0.03		111-C		0.00	
SSD-24-C		0.04		060-C	,	16.49	
SSD-25-C		0.00		127-C		4,92	
SSD-3-C		0,29	:	141-C		-0.51	_
SSD-4-C	·	0.60	. 1	050-C		0.00	
135-C		0.37		126-C		000	
088-C ,		0.00	,		1		

-		MOISTURE SE	PARATOR, SUM	P, AND DRA	IN MONITORING		
Location	Contain	s Water?	Water Dr	ained?	Volume Drained	Valves C	losed?
Moisture Separa	ators						
MS-1	YES	NO	YES	NO		(YES)	NO
MS-2	YES	NO	YES	NO	,	(YES)	NO
Pipe Sumps							
PS-1	YES	(ои)	YES	NO		(XES)	NO
PS-2	YES	NO	YES	NO		(XEC)	NO
PS-3	YES	NO	YES	NO		YES	NO [*]
PS-4	YES	NO	YES	NO		(YES)	NO
PS-5	YES	NO	YES	NO		(YES)	NO
System Sumps							
Exhaust Stack Sump	YES	NO	YES	NO	200Z	YES	NO
GAC and PPZ D	<i>Drains</i>			* .			
Lead GAC	YES	NO	YES	NO		(YES)	NO
Lag GAC	YES	NO	YES	NO		(YES)	NO
PPZ	YES	NO	YES	NO		(YES)	NO

MONTHLY VAPOR SAMPLING					
Location Time Canister ID Comments					
C-INFLUENT	NIA	NIA			
C-MID GAC)		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
C-EFFLUENT	V	l V			

ΙΩΝΔΙ	COMI	JENTS:

FIELD REP. SIGNATURE: _

VMP VOCUSION MEOSUREMENTE	. collected after adjust	tments to 8SD-27-1	C and SSD-32-C

Time: _____

LMC Middle River Complex, Middle River, Maryland

ate: 1113 114 Time:	Personnel: DLm /Jm
Was the system running upon arrival? NO	8. Was there a KMnO ₄ change out?
2. Where there any alarm conditions upon arrival?	9. How many GAC units are at this location?
YES (NO)	NEW SPENT O
Comment:	10. How many KMnO ₄ units are at this location?
3. Is the blower ambient air valve open?	NEW
YES (NO)	11. How many water drums are on-site?
4. Are there any leaks or damage to system hoses?	EMPTY PART FULL FULL FULL
YES (NO)	12. Are water drums in good condition and labeled?
5. Is there any damage to system components?	(YES) NO
YES (NO)	Comment:
6. Are at locks and zip-ties secure?	13. Do the these fall to zero when system is turned off?
(YES') NO	Flow Gauge VES NO
7. Was there a GAC change out?	Pressure Gauges VES NO
YES NO	Vacuum Gauges (YES) NO
GENERAL SV	STEM MONITORING

_[-		G	ENERAL SYSTE	M MONITORII	NG		
	Time	Vacuum pre-Filter (in. H ₂ O)	Vacuum post-Filter (in. H ₂ O)	Diff Pressure of Filter* (in. H ₂ O)	Flow (scfm)	Pressure post-Blower (in. H ₂ O)	Temp post-Blower (°F)	Temp post-HE (°F)
	9:16	36	43	7	175	49	160	ゲス

^{*} Replace filter if >25 in. H₂O

14. How many hours are displayed on the time counter? 5420.3

	I	EXTRACTION V	VELL VACUUM	AND VELOCIT	Y MONITORING	3
Location	Time	Vacuum (in. H₂O)	Velocity (ft/min)	Flow** (scfm)	Vacuum/Flow Adjustment	Comments
SSD-21-C	9:26	5.11	943	20.6	N/A	
SSD-23-C	CLOSED					•
SSD-30-C	୯୨ବ୍ୟ	339	1111	24.2	N/A	
SSD-26-C	C933	33.8	76	15.6	NIA	Hao; varang velocit
SSD-31-C	0926	31,5	ลมรี	46.1	NIA	33.
SSD-27-C	0941	1.13	1113	24,3	NIA	
SSD-32-C	C942	3.10	1545	33,7	NIA	
SSD-28-C	0945	31.5	14/1	30.8	NA	
SSD-33-C	0948	27.4	3936	63.8	N/A	
`SD-29-C	0950	33.8	1158	25,34	NIA	Han
ى/SD-34-C	CA53	32.9	1109	6,46	NIA	H20

,)			VMP VACUUN	MONITORIN	G		
VMP	Time	Vacuum (in. H₂O)	Comments	VMP	Time	Vacuum (in. H₂Ó)	Comments
001-C	1035	0.10	*	113-C	1001	6.41	yaryma va
SSD-22-C	1032	0.001		133-C	1015	<i>L</i> 37	90
SSD-2-C	1039	0,00		111-C	1013	0.00	
SSD-24-C	1008	0.04		060-C	1009	15.08	
SSD-25-C	6POI	0.00		127-C	1006	4.43	
SSD-3-C	1039	0.32	·	141-C	0956	-0,58	
SSD-4-C	1037	O'연		050-C	(000)	0,00	
135-C	1024	0.14		126-C	1004	0.00	
088-C	1003	0.00					

	M	OISTURE SE	PARATOR, SUI	MP, AND DRAIN	MONITORING	May an	
Location	Contains Water?		Water D	rained?	Volume Drained	Valves C	losed?
Moisture Separa	itors						
MS-1	YES	NO	YES	NO_	N/A	XES	NO .
MS-2	YES	(NO)	YES	NO	N/A	YES	NO
Pipe Sumps		\mathcal{L}					
PS-1	YES	(NO)	~-YES	NO	N/A	(YES)	NO
_/ PS-2	YES	(NO)	YES	NO-	1	YES	NO
PS-3	YES	(NO)	-YES	NO-		(XE)	NO
PS-4	YES	(04-)	+YES	NO-		(YES)	" NO
PS-5	YES	(NO)	~YES	NO-		(YES	NO
System Sumps					•		*
Exhaust Stack Sump	YES	NO	YES	NO	1/2 901	YES	NO
GAC and PPZ I	Drains			- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	J		
Lead GAC	YES	(MO)	YES-	NONO	NA	YES)	NO
Lag GAC	YES	(NQ)	, YE8	NO		(YES)	NO
PPZ	YES	(NO)	YES	И Ө	V	(YES)	NO

MONTHLY VAPOR SAMPLING								
Location	Time	Canister ID	Comments					
C-INFLUENT	1324	1401						
C-MID GAC	1326	/367						
C-EFFLUENT	13,29	1373						

ADDITIONAL COMMENTS: Bollard is back in place	·····
FIELD REP. SIGNATURE:	Time:

LMC Middle River Complex, Middle River, Maryland

Jate: 1/30/14 Time: 0910	O Personnel: DLM PP
1. Was the system running upon arrival? NO 2. Where there any alarm conditions upon arrival? YES NO Comment: 3. Is the blower ambient air valve open? YES NO	8. Was there a KMnO ₄ change out? YES 9. How many GAC units are at this location? NEW 10. How many KMnO ₄ units are at this location? NEW SPENT 11. How many water drums are on-site?
4. Are there any leaks or damage to system hoses? YES NO Hole in mid-6AC Flex hose 5. Is there any damage to system components? YES NO	PART FULL FULL 12. Are water drums in good condition and labeled? YES NO Comment:
6. Are all locks and zip-ties secure? NO	13. Do the these fall to zero when system is turned off? Flow Gauge YES NO
7. Was there a GAC change out? YES NO	Pressure Gauges YES NO Vacuum Gauges YES NO
GENERAL SY	YSTEM MONITORING

ا_			G	ENERAL SYSTE	M MONITORI	NG .		
	Time	Vacuum pre-Filter (in. H₂O)	Vacuum post-Filter (in. H₂O)	Diff Pressure of Filter* (in. H ₂ O)	Flow (scfm)	Pressure post-Blower (in. H ₂ O)	Temp post-Blower (°F)	Temp post-HE (°F)
	0913	30	37	7	178	58	158	. 76

^{*} Replace filter if >25 in. H₂O

14. How many hours are displayed on the time counter? <u>Ø気分入フ</u>

		EXTRACTION V	WELL VACUUM	AND VELOCI	TY MONITORING	ì
Location	Time	Vacuum (in. H₂O)	Velocity (ft/min)	Flow** (scfm)	Vacuum/Flow Adjustment	Comments
SSD-21-C	0928	3.84	80	17.7	None	
SSD-23-C						closed
SSD-30-C	0934	27.9	87	17.9		1
SSD-26-C	0935	27.3	580	13.6		Hist: vac vel.
SSD-31-C	093>	25,2	1999	436		1,0-1
SSD-27-C	0944	0.96	9.54	20.8		
SSD-32-C	09 45	278	1315	28.6		
SSD-28-C	0947	249	1629	35.5		
SSD-33-C	0949	209	3040	66.3		
SSD-29-C	0952	26.8	490	10.7		150
3SD-34-C	0954	26,8	811	17.7		- -

VMP VACUUM MONITORING											
VMP	Time	Vacuum (in. H₂O)	Comments	VMP	Time	Vacuum (in. H₂O)	Comments				
001-C	1029	0,05		113-C	1018	3.81	vac.				
SSD-22-C	1028	Q		133-C	10'14	1.00	'				
SSD-2-C	1026	Ø	tubin meditix	111-C	1011						
SSD-24-C	1024	0,0>		060-C	1008	11.63					
SSD-25-C	1035	0		127-C	1005	2,49					
SSD-3-C	1032	070		141-C	0958	-0,66	os pressure				
SSD-4-C	1030	0,42		050-C	0959	Ø	1				
135-C	1022	0,07		126-C	1002	Ø					
088-C	1020	Ø									

	l	MOISTURE SE	PARATOR, SUM	P, AND DRAI	N MONITORING	i	
Location	Contains Water?		Contains Water? Water Drained? Volume Drained		Volume Drained	Valves Closed?	
Moisture Separa	ators						
MS-1	YES	Ø	YES	NO	NA	(ES)	NO
MS-2	YES	(A)	Y ES	NO	1/1	(ES)	NO
Pipe Sumps	A Maria	1.					
PS-1	YES	ND	Y E8	NO	1/4	ES	NO
PS-2	YES	(NO)	Y ES	NO.	, <i>VA</i> _	ES	NO
PS-3	YES	MO)	YES	NO -	1/24	(ES)	NO
PS-4	YES	MO	Y ES	NO	114	VES.	NO
PS-5	YES	(NO)	YES	NO-	NA	(YE8	NO
System Sumps				wall to the			1,
Exhaust Stack Sump	(ES)	NO	VES	NO	0,5991	YES	NO
GAC and PPZ L	Drains				<u> </u>		·
Lead GAC	YES	(40)	Y ES	NO	NA	(ES)	NO
Lag GAC	YES	(NO)	Y ES	NO	NA	(YES)	NO
PPZ	(Y.ES)	NO	₹	NO	drops	(ES)	NO

MONTHLY VAPOR SAMPLING							
Location	Time	Canister ID	Comments				
C-INFLUENT	NIA	NA					
C-MID GAC			**************************************				
C-EFFLUENT	V	V					

ADDITIONAL COMMENTS:	patched will electron hole placed in Mid	TCAI TOPE. I-GAC Flex hose	
<u> </u>			
FIELD REP. SIGNATURE:	and I Malue	Time:	
	Page 2 of 2	•	

LMC Middle River Complex, Middle River, Maryland

2. Where there any alarm conditions upon arrival? YES NO Comment: NO Solution 10. How many 10. How many 11. How many 12. Are water of the property of the pro	Personnel: DLM
YES NO 6. Are all locks and zip-ties secure? YES NO 7. Was there a GAC change out? YES NO V	KMnO ₄ change out? NO ACC units are at this location? SPENT KMnO ₄ units are at this location? SPENT water drums are on-site? Y PART FULL Irums in good condition and labeled?
7. Was there a GAC change out? YES NO V	NO
	Flow Gauge YES NO essure Gauges YES NO
LI GENERAL SYSTEM MONITORIA	acuum Gauges (YES) NO IG

_ <u>[</u>	GENERAL SYSTEM MONITORING								
	Time	Vacuum pre-Filter (in. H ₂ O)	Vacuum post-Filter (in. H ₂ O)	Diff Pressure of Filter* (in. H ₂ O)	Flow (scfm)	Pressure post-Blower (in. H ₂ O)	Temp post-Blower (°F)	Temp post-HE (°F)	
		38	38	6	168	59	171	98	

The state of the state of

14. How many hours are displayed on the time counter? (93.3

EXTRACTION WELL VACUUM AND VELOCITY MONITORING								
Location	Time	Vacuum (in. H₂O)	Velocity (ft/min)	Flow** (scfm)	Vacuum/Flow Adjustment	Comments		
SSD-21-C	N/A	4,23	785	17.1				
SSD-23-C			CLOSED +					
SSD-30-C		986	395	8.6	1-1			
SSD-26-C		9.86	246	15 17		<i>I</i> 150		
SSD-31-C	İ	37.3	1679	Ğ. 39				
SSD-27-C	1	1.17	1077	23.5				
SSD-32-C		3.09	1348	29.4				
SSD-28-C		86.3	1531	33.2				
SSD-33-C		22.0	2867	(a).5				
SSD-29-C		37.6	ゴカ	3.9				
პSD-34-C	V	37.7	16	1.1				

^{*} Replace filter if >25 in. H_2O

). ;-	VMP VACUUM MONITORING							
VMP	Time	Vacuum (in. H₂O)	Comments	VMP	Time	Vacuum (in. H₂O)	Comments	
001-C	N/A	0.07		113-C	N/A	(0.34		
SSD-22-C		000		133-C		1,27		
SSD-2-C	42.	0.01		111-C	1	0.00	, K.	
SSD-24-C	1 1 1	0.03	A	060-C		12.89		
SSD-25-C		0.00		127-C		3.19		
SSD-3-C		୍ଠ,ରା	· .	141-C		-0.53		
SSD-4-C	196. 1 (K.)	0.45	,	050-C	1.4	0.00		
135-C	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0.10	. *	126-C	1	0,00		
088-C	1	0.0			1	, i		
			S			1 1 1		

		MOISTURE SEI	PARATOR, SUM	IP, AND DRAII	N MONITORING	·.	
Location	Contains Water?		Water Drained?		Volume Drained	Valves Closed?	
Moisture Separa	ators		¥ ,	. '4			
MS-1	YES	(SHE)	YES-	NO	NA	(ES)	NO
MS-2	YES	(NO)	YES	NO ·	1	(VES)	NO
Pipe Sumps				<u> </u>			· · · · · · · · · · · · · · · · · · ·
-\PS-1	YES	(NO)	YES	NO	N/A	(ES)	NO
_{ PS-2	YES	(NO)	YES	NO		(YES)	NO
PS-3	YES	(AUC)	YES	NO		(ES)	NO
PS-4	YES	YNG	YES	NO		YES '	NO
PS-5	YES	(NO)	- YES	NO		(YES)	NO
System Sumps	A. A.				1. A. A. A. A. A. A. A. A. A. A. A. A. A.		
Exhaust Stack Sump	YES	NO	YES	NO	1/4 901	YES	NO
GAC and PPZ [<i>Drains</i>		Market St.	4			
Lead GAC	YES	(NO)	YES	NO	N/A	(YES)	NO
Lag GAC	YES	(NO)	~ YES	NO	1	(XES)	NO
PPZ	YES	(O)	YES	NO.	V	(YES')	NO

MONTHLY VAPOR SAMPLING								
Location Time Canister ID Comments								
C-INFLUENT	15 50	8571						
C-MID GAC	1552	<i>\$</i> 855	4					
C-EFFLUENT	1554	<i>\$</i> 459						

ADDITIONAL CO	OMMENTS:	
EIEI N DED SIGI	NATURE NAME & MANIELL	Time

LMC Middle River Complex, Middle River, Maryland

)ate: <u>2/37/14</u>	ne: 1004 Personnel: DLM
1. Was the system running upon arrival? YES NO 2. Where there any alarm conditions upon YES Comment: 3. Is the blower ambient air valve open?	8. Was there a KMnO, change out? YES YES Orival? 9. How many GAC units are at this location? NEW 10. How many KMnO, units are at this location? NEW NEW NEW SPENT
YES (NO)	11. How many water drums are on-site?
4. Are there any leaks or damage to system	
YES (NO) 5. Is there any damage to system componing YES (NO)	12. Are water drums in good condition and labeled? Its? NO Comment:
6. Are all locks and zip-ties secure?	13. Do the these fall to zero when system is turned off?
(YES) NO	Flow Gauge (YES) NO
7. Was there a GAC change out?	Pressure Gauges VES NO
YES (NO)	Vacuum Gauges YES NO
	NERAL SYSTEM MONITORING

		GENERAL SYSTEM MONITORING								
	Time	Vacuum pre-Filter (in. H ₂ O)	Vacuum post-Filter (in. H ₂ O)	Diff Pressure of Filter* (in. H ₂ O)	Flow (scfm)	Pressure post-Blower (in. H ₂ O)	Temp post-Blower (°F)	Temp post-HE (°F)		
	1010	33	38	5	15 15	59	173	84		
_	Replace filter if >	25 in. H ₂ O				• •		•		

^{14.} How many hours are displayed on the time counter? 6466.0

	EXTRACTION WELL VACUUM AND VELOCITY MONITORING							
Location	Time	Vacuum (in. H₂O)	Velocity (ft/min)	Flow** (scfm)	Vacuum/Flow Adjustment	Comments		
SSD-21-C	1016	4.40	753	16.4	None.			
SSD-23-C			CLOSED -			- · · · · · · · · · · · · · · · · · · ·		
SSD-30-C	/0a0	20.3	406	8.9	None	HaO		
SSD-26-C	1023	29.6	317	6.9	None	H20		
SSD-31-C	1034	28.9	1440	31.4	None			
SSD-27-C	1027	1.19	8901	23.9	None			
SSD-32-C	1029	2.93	1361	29:7	None			
SSD-28-C	1031	28.0	1409	30.7	None			
SSD-33-C	1038	23.6	3018	65.8	None			
SSD-29-C	1034	29,4	446	9,5	None	H20		
3SD-34-C	1037	39,4	636	13.9	None	Hio		
* Flow = Velocity			· · · · · · · · · · · · · · · · · · ·					

LMC Middle River Complex, Middle River, Maryland

,			VMP VACUUM MONITORING			The state of the s	
VMP	Time	Vacuum (in. H₂O)	Comments	VMP	Time	√ Vacuum (in. H₂O)	Comments
001-C	MINA V	0,09		113-C	1058	(0,9)	Tig.
SSD-22-C	L N/A	N/A	Not Accessibl	133-C	/053	1,14	
SSD-2-C	1110	00		111-C	1055	0,0	
SSD-24-C	9	₹ 00 00		060-C	/05C	88.61	
SSD-25-C	1117	6	<u> </u>	127-C	1047	3,40	
SSD-3-C	116	- رئ ف	A	141-C	1039	+0.56	
SSD-4-C	100	0,47	4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	050-C	1041	0.0	· :
135-C	1102	0.10	111	126-C	1043	0.0	
088-C	1100	0,0					

1

MOISTURE SEPARATOR, SUMP, AND DRAIN MONITORING							·
Location	Contains	Water?	Water Dra	ined?	Volume Drained	Valves C	losed?
Moisture Separa	ators						, T
MS-1	YES	(NO)	YES	ON	N/A	(YES	NO
MS-2	YES	(NO)	YES	<u> </u>	1	(ŶĔŠ)	NO
Pipe Sumps				i jedina s			
-\ PS-1	YES	N O	YES	NO	N/A	(YES)	NO
_/ PS-2	YES	(NG)	YES-	OV	1	(YES)	NO
PS-3	YES	ON)	*YES	ОМ		(YES)	NO
PS-4	YES	E	YES	NO		YES	NO .
PS-5	YES	(N)	YES	<u> </u>	4	(YES)	NO
System Sumps							
Exhaust Stack Sump	YES	NO	YES	NO	1901	YES	NO
GAC and PPZ D	Drain's	_		_			Free Ay of Lond
Lead GAC	YES	(S)	YES	(NO)	NIA	(YES)	NO
Lag GAC	(YEŞ)	NO	(YES)	NO	14102	(YEŞ)	NO
PPZ	(YES)	ОИ	(YES)	NO	4102	(YES)	NO

MONTHLY VAPOR SAMPLING								
Location	Time	Canister ID	Comments					
C-INFLUENT	NIA	NIA						
C-MID GAC								
C-EFFLUENT		W						

ADDITIONAL COMMENTS:	
FIELD REP. SIGNATURE: Dans & Millie	Time:

LMC Middle River Complex, Middle River, Maryland

ate: 3/18/14 Time: 13	50 Personnel: DLM
1. Was the system running upon arrival? YES NO 2. Where there any alarm conditions upon arrival? YES NO Comment:	8. Was there a KMnO ₄ change out? YES NO 9. How many GAC units are at this location? NEW SPENT 10. How many KMnO ₄ units are at this location?
3. Is the blower ambient air valve open? YES NO 4. Are there any leaks or damage to system hoses?	NEW SPENT
YES NO 5. Is there any damage to system components? YES NO	12. Are water drums in good condition and labeled? YES NO Comment:
6. Are all locks and zip-ties secure? YES NO 7. Was there a GAC change out?	13. Do the these fall to zero when system is turned off? Flow Gauge (ES) NO Pressure Gauges (VES) NO
(YES) NO 3/6/14 GENERAL ST	Vacuum Gauges (YES) NO YSTEM MONITORING

		GENERAL SYSTEM MONITORING								
	Time	Vacuum pre-Filter (in. H ₂ O)	Vacuum post-Filter (in. H₂O)	Diff Pressure of Filter* (in. H ₂ O)	Flow (scfm)	Pressure post-Blower (in. H ₂ O)	Temp post-Blower (°F)	Temp post-HE (°F)		
	1354	38	44	6	175	38	158	86		
7	' Replace filter if >	25 in. H ₂ O								

^{14.} How many hours are displayed on the time counter?

Location	Time	Vacuum (in. H₂O)	Velocity (ft/min)	Flow** (scfm)	Vacuum/Flow Adjustment	Comments
SSD-21-C	/359	5.42	847	15	None	1
SSD-23-C			- CLOSED		1	-
SSD-30-C	1403	34.9	N/A	NA	None	H_0
SSD-26-C	1404	34,9	NIA	MA	None	H-0
SSD-31-C	1406	33.6	150%	32.8	None	7
SSD-27-C	1409	1,33	1183	25.8	None	
SSD-32-C	1410	3,34	1496	33.6	None	
SSD-28-C	1418	33.3	1573	34.3	None	
SSD-33-C	1414	27.2	3388	73.9	None	
SD-29-C	1416	34.1	1061	23.1	None	Hao
3SD-34-C	1418	34,2	1947	97.9	None	HOO

LMC Middle River Complex, Middle River, Maryland

()	_		VMP VACUUN	MONITORING	G	te.	·-
· •	VMP	Time	Vacuum (in. H₂O)	Comments	VMP	Time	Vacuum (in. H₂O)	Comments
A	001-C	/450	8		113-C	/437	6,58	variable
	SSD-22-C	1448	ó Ó		133-C	1434	1,39	130.300
	SSD-2-C	1446	0.02	>	111-C	1432	00.0	
A	SSD-24-C	1443	70,0		060-C	1430	15.42	
	SSD-25-C	1453	0,00	4.,	127-C	1457	4.37	
*	SSD-3-C	1451	0.39		141-C	1420	-0.61	
	SSD-4-C	1444	0.62	<i>ii</i> . –	050-C	/425	9	
*	135-C	1440	0.17	·, ·	126-C	1424	\mathcal{O}	
	088-C	1439	0.00			•		

		MOISTURE SE	PARATOR, SUM	P, AND DRAI	N MONITORING	_	
Location	Contains	Water?	Water Drained?		Volume Drained	Valves Closed?	
Moisture Separa	tors						** *** *** **** **** **** **** **** ****
MS-1	YES	(OM)	YES-	NO	AIN	(ES)	NO
MS-2	YES	(NO)	YES	NO	1	(YES)	NO
Pipe Sumps			Jan.	*		3. T. T.	Page 1
PS-1	YES	(NO)	YES	NO	AIA	(YES)	NO
PS-2	YES	(NO)	YES	NO	1	(YES)	NO
PS-3	YES	(NO)	.X ES	NO		YES)	NO
PS-4	YES	(NO)	YES	<u> </u>		YES	NO
PS-5	YES	(NO)	-YES	МО		(ES)	NO
System Sumps			· · · · · · · · · · · · · · · · · · ·				
Exhaust Stack Sump	YES	NO	YES	NO	1/4901	YES	NO
GAC and PPZ D	rains		4				
Lead GAC	YES	(MG)	YES		NA	(YES)	NO
Lag GAC	YES	(NO.)	YES	NO -		(XES)	NO
PPZ	YES	(NO)	YES	NO.	V	(YES)	NO

MONTHLY VAPOR SAMPLING								
Location	Time	Canister ID	Comments					
C-INFLUENT	1330	9511	-					
C-MID GAC	1331	240Co	.					
C-EFFLUENT	1330	2006	~					

ADDITIONAL COMMENTS:				
	=	-		

FIELD REP. SIGNATURE:

Time: <u>15/5</u>

LMC Middle River Complex, Middle River, Maryland

)ate: 3128/14	Time: <u>0940</u>	Personnel:	DLM	
1. Was the system running upon arrival NO 2. Where there any alarm conditions upon NO YES NO	Υ	there a KMnO ₄ chang ES NO many GAC units are a	at this location	
Comment:	10. Ho	w many KMnO ₄ units a	•	
3. Is the blower ambient air valve open? YES NO 4. Are there any leaks or damage to syst YES NO 5. Is there any damage to system compo	11. Ho tem hoses? 12. Are	NEW / / w many water drums a EMPTY O PAF water drums in good NO	SPENT ire on-site? RT FULL/	O FULL 3
6. Are all locks and zip-ties secure?	13. Do	the these fall to zero v	vhen system is	turned off?
(YES) NO		Flow Gauge		NO
7. Was there a GAC change out?		Pressure Gauges	VES	NO
YES (NO)		Vacuum Gauges	YES	NO
_	GENERAL SYSTEM MO	NITORING		
Vacuum Vacuum	Diff Proceure	Dropoure	T	_

Diff Pressure	Flow	Pressure	Temp	Ŧ
of Filter* (in. H₂O)	(scfm)	post-Blower (in. H ₂ O)	post-Blower (°F)	Temp post-HE (°F)
3	189	42	156	84
_	3			

^{14.} How many hours are displayed on the time counter? 7141.3

	E	EXTRACTION W	VELL VACUUM	AND VELOCIT	Y MONITORING	G
Location	Time	Vacuum (in. H₂O)	Velocity (ft/min)	Flow** (scfm)	Vacuum/Flow Adjustment	Comments
SSD-21-C	0951	5.33	831	18.1	None	
SSD-23-C			CLOSED			
SSD-30-C	0956	35.1	1150	a5.6	None	variable vel.: Ha
SSD-26-C	0959	34.8	NIA	NIA	None	Hoo
SSD-31-C	1001	33.6	9831	91.7	None	420
SSD-27-C	1004	1.34	1188	25.9	None	0
SSD-32-C	1000	3.30	151	3a.9	None	
SSD-28-C	1007	31.9	1647	35.9	None	
SSD-33-C	1009	36.5	3401	74.1	None	
3 <u>SD-29-C</u>	1011	33,9	956	30.5	None	Ho
SD-34-C	1013	34.0	361	7.9	None	HOO

LMC Middle River Complex, Middle River, Maryland

		19.	VMP VACUUN	MONITORING	à		
VMP	Time	Vacuum (in. H₂O)	Comments	VMP	Time	Vacuum (in. H₂O)	Comments
001-C	1047	0.07		113-C	/033	6.55	·.
SSD-22-C	NA	_N/A	Not Access.	133-C	1030	1.25	
SSD-2-C	1045	0.00		111-C	เดลา	000	-
SSD-24-C	1040	20.0		060-C	1025	15.52	
SSD-25-C	1050	0,00		127-C	/099	3,98	
SSD-3-C	1048	0,24		141-C	1016	-0.61	· · · · · ·
SSD-4-C	1043	0,54	•	050-C	100		2
135-C	1036	0.14		126-C	8101	8	
088-C	1035	0.00					

		MOISTURE SE	PARATOR, SUM	P, AND DRAI	N MONITORING		•
Location	Contains Water?		Water Drained?		Volume Drained	Valves C	losed?
Moisture Separa	itors						
MS-1	YES	(NO)	YES	NO_	NIA	(ES)	NO
MS-2	YES	(M)	YES	<u></u> -QИ	1	(ES)	NO
Pipe Sumps							
PS-1	YES	(M)	YES	—_ИО	NIA	(YES)	NO
PS-2	YES	NO	YES	NO		(YES)	NO
PS-3	YES	(NO)	Y ES ——	NO		(YES)	NO
PS-4	YES	(NO)	Y ES	NO_		(FES)	NO
PS-5	YES	(NO)	Y ES	NO.		(YES)	NO
System Sumps							
Exhaust Stack Sump	YES	NO	(SES)	NO	12901	YES	NO
GAC and PPZ D	Prains						
Lead GAC	YES	(NQ)	YES	NO_	NA	(YES)	NO
Lag GAC	YES	(NQ)	YES	NO		(YES)	NO
PPZ	YES	(NO)	YES	NO		(YES)	NO

MONTHLY VAPOR SAMPLING							
Location	Time	Canister ID	Comments				
C-INFLUENT	NA	N/A					
C-MID GAC							
C-EFFLUENT		V					

ADDITIONAL (COMMENTS:			
	•		 	

FIELD REP. SIGNATURE: West of Munico Time: 1115

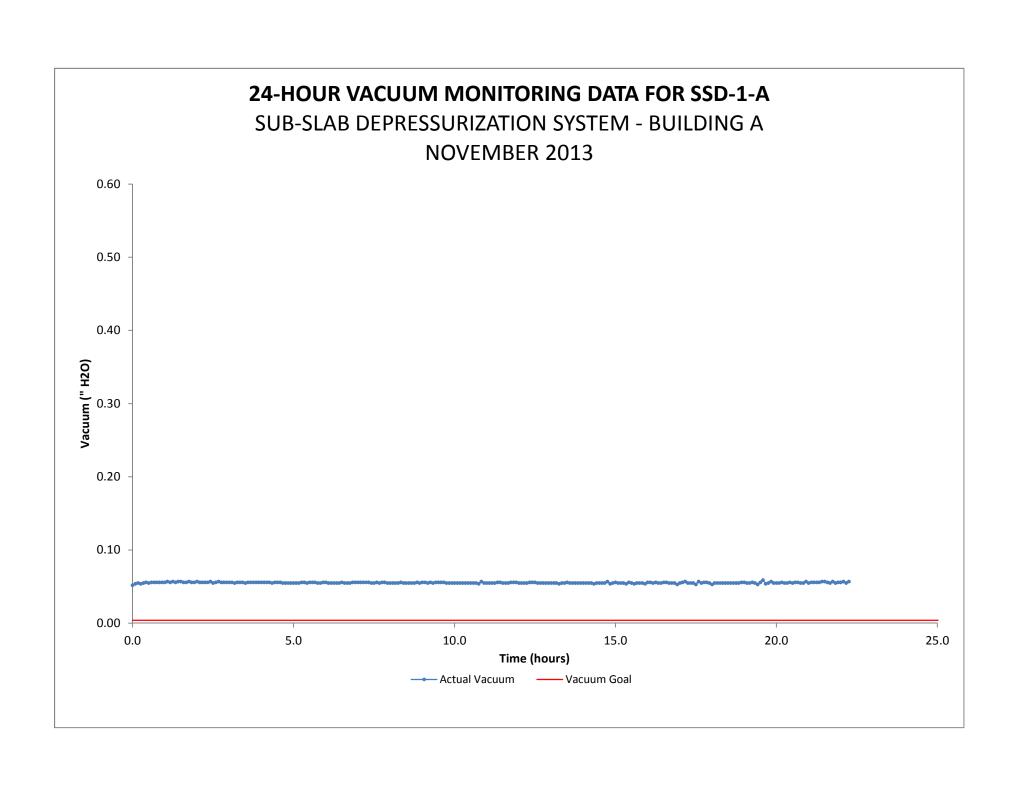
APPENDIX B—QUARTERLY SYSTEM CHECKS FORMS

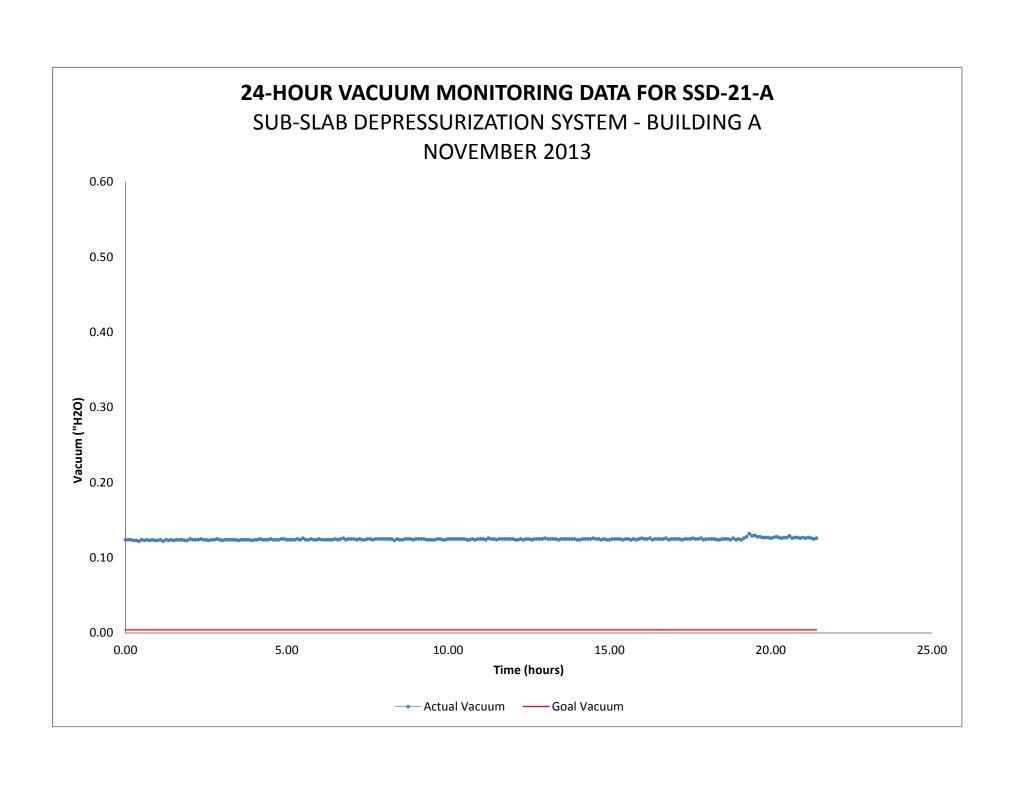
SSD SYSTEM QUARTERLY SYSTEM CHECK - BUILDING A LMC MIDDLE RIVER COMPLEX, MIDDLE RIVER, MARYLAND

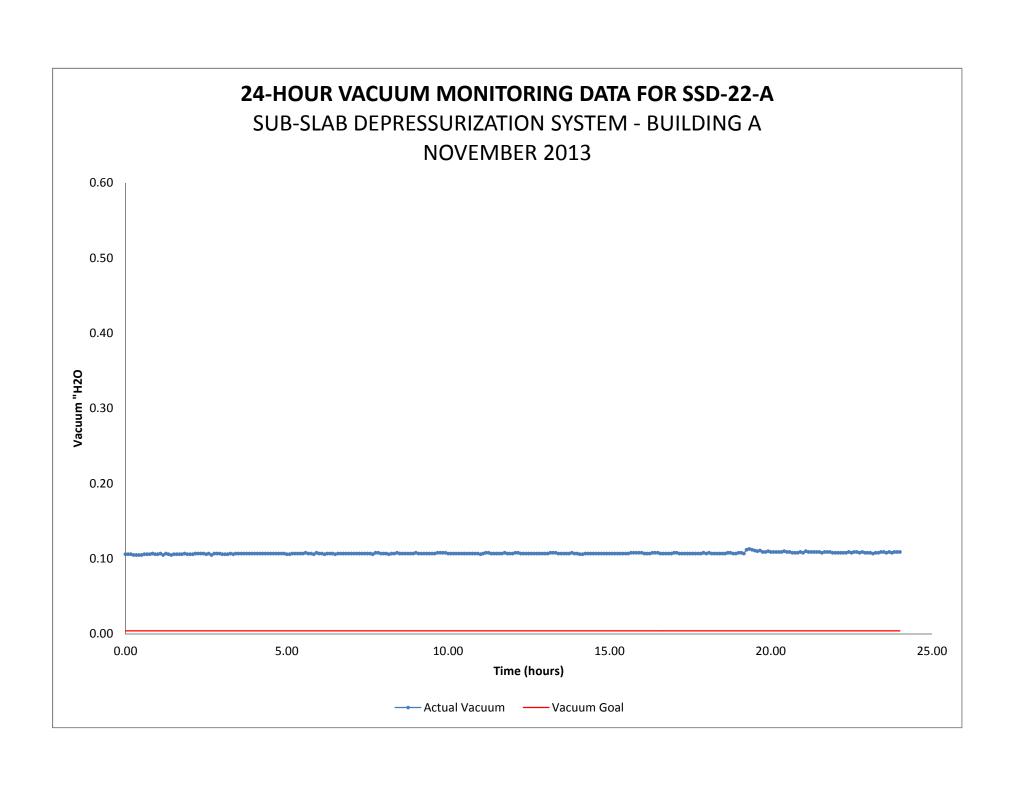
ecked System Components? ecked System Pipes for Leaks? YES	NO	
ecked System Pipes for Leaks? YES		Comments:
$\stackrel{\smile}{=}$	NO	Comments:
sually Inspected Air Filter?	NO	Need Replaced? YES NO (replace filter when AP = 2-3 in. Hg)
sually Inspected Intake Air Filter? YES	NO	Need Replaced? YES NO (replace filter when AP = 2-3 in. Hg)
ecked Vacuum Relief Valve? YES	NO	Comments:
easured and Recorded Amperage Draw on	Blower?	Yellow = <u>4,92</u> Orange = <u>5,63</u> Brown = <u>4,75</u>
e all components returned to system operat	ing position	
eaned System and Area Around System?	(YES)	NO Comments:
ecked that Fire Extinguisher is Near Syster	n'i YES) NO
STEM ALARM SWITCHES AND AUTO-DI	ALER	
ecked Water Level Switch? YES	NO	Did Auto-Dialer Indicate Zone 1 Alarm? (YES) NO
ecked Pressure Switch? YES	NO	Did Auto-Dialer Indicate Zone 2 Alarm? YES NO
ecked Temperature Switch? YES) NO	Did Auto-Dialer Indicate Zone 3 Alarm? (YES) NO
ecked Low Pressure Switch? YES	NO	Did Auto-Dialer Indicate Zone 4 Alarm? YES NO
the Auto-Dialer Batteries Need Replaced?	YES	NO
ARBON UNITS		
ecked GAC Units for Corrosion and Leaks?	YES	NO Comments:
ecked Condition of Sample Ports?	YES	NO Comments:
mber of used GAC Units On-site:		Contain Non-Haz Waste Labels? (YES) NO
mber of Unused GAC Units On-site:)	
CUUM MONITORING POINTS		
ecked Condition of Well Lids and Bolts?	YES	NO Comments:
ecked Condition of Tubing and Seal?	YES	NO Comments:
17.5 gal dramed from 1	noistur	e Jeperator

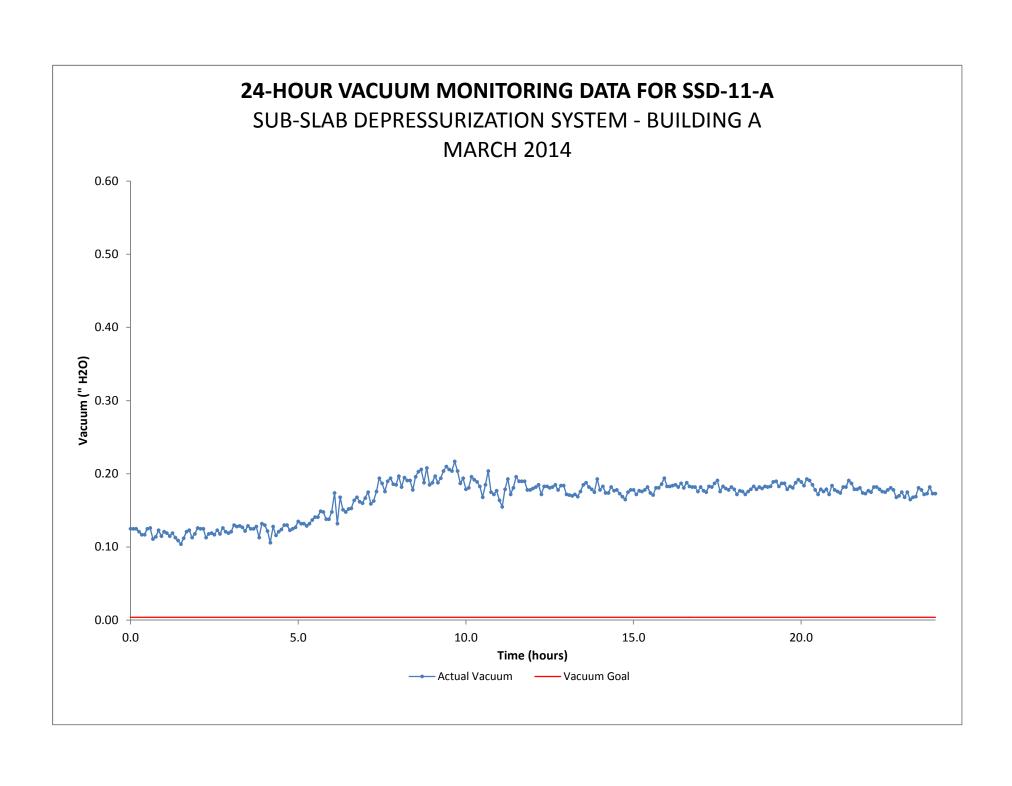
SSD SYSTEM QUARTERLY SYSTEM CHECK - BUILDING A LMC MIDDLE RIVER COMPLEX, MIDDLE RIVER, MARYLAND

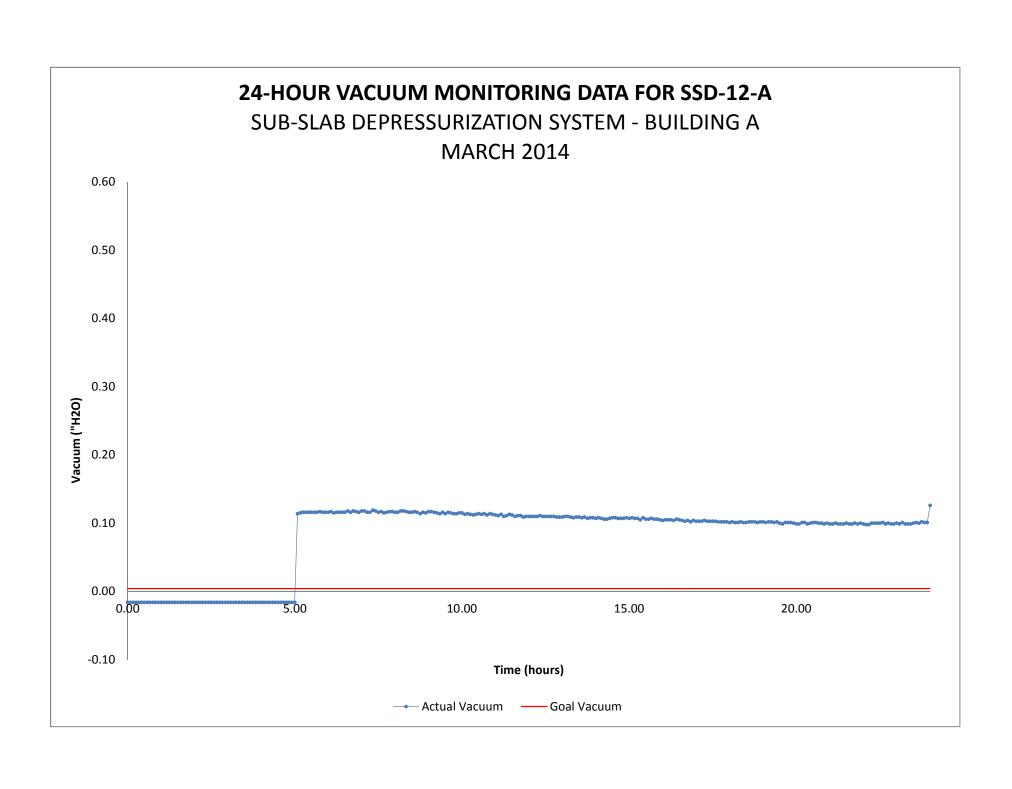
System Components? YES NO Comments:	1 201 - 11 201
System Pipes for Leaks? YES NO Comments:	
nspected Air Filter? YES NO Need Replaced (replaced	Programmer (NO) Programmer (NO) Programmer (NO)
nspected Intake Air Filter? YES NO Need Replaced (replaced	? YES NO e filter when AP = 2-3 in. Hg)
Vacuum Relief Valve? YES NO Comments:	
and Recorded Amperage Draw on Blower? Yellow = 5.10	Orange = 5,55Brown = 5,40
mponents returned to system operating position? YES	NO
System and Area Around System? YES Oor	nments:
that Fire Extinguisher is Near System? (YES) NO	
ALARM SWITCHES AND AUTO-DIALER	
Water Level Switch? YES NO Did Auto-Dialer	Indicate Zone 1 Alarm? (YES) NO
Pressure Switch? YES NO Did Auto-Dialer	Indicate Zone 2 Alarm? YES NO
Temperature Switch? YES NO Did Auto-Dialer	Indicate Zone 3 Alarm? YES NO
Low Pressure Switch? YES NO Did Auto-Dialer	Indicate Zone 4 Alarm? YES NO
nto-Dialer Batteries Need Replaced? YES NO Re	placed as part of troubl
<u>UNITS</u>	
GAC Units for Corrosion and Leaks? YES NO Corr	nments;
Condition of Sample Ports?	nments:
f used GAC Units On-site: Contain Non-Ha	az Waste Labels? (YES) NO
f Unused GAC Units On-site:	
MONITORING POINTS	
Condition of Well Lids and Bolts? YES NO Com	nments:
Condition of Tubing and Seal? YES NO Com	nments:
Condition of Well Lids and Bolts? Condition of Tubing and Seal? VES NO Com VAL COMMENTS CONTROL OF CALOUT OF	nments:

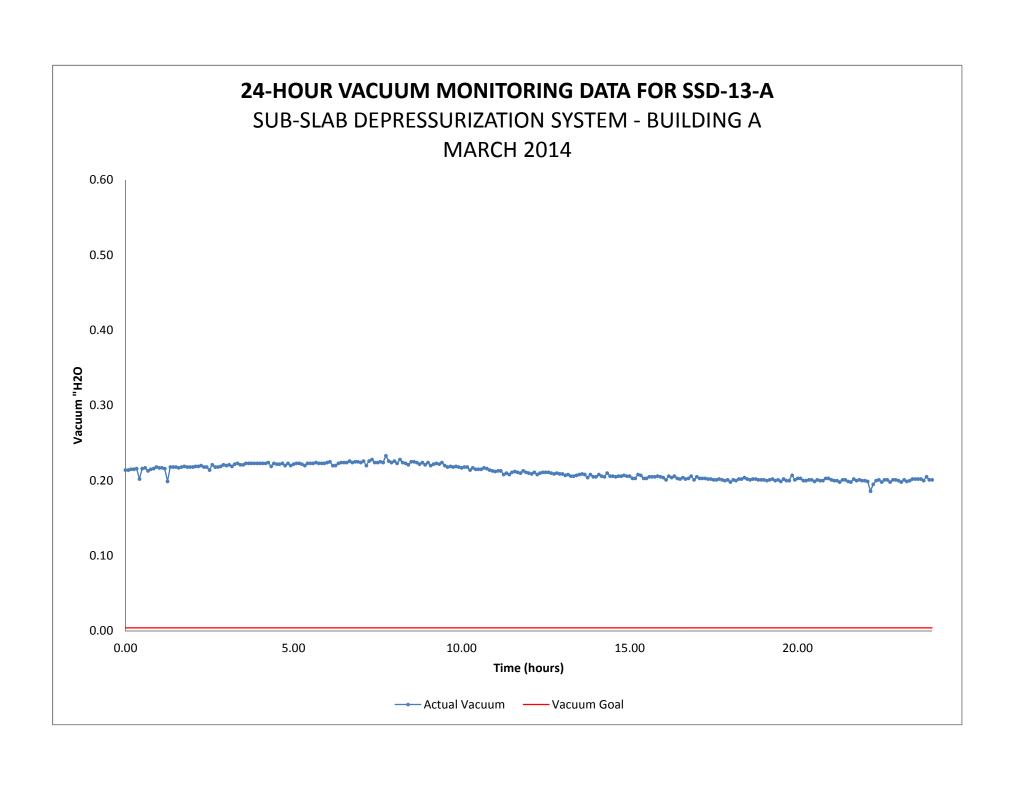

SSD SYSTEM QUARTERLY SYSTEM CHECK - BUILDING C LMC MIDDLE RIVER COMPLEX, MIDDLE RIVER, MARYLAND

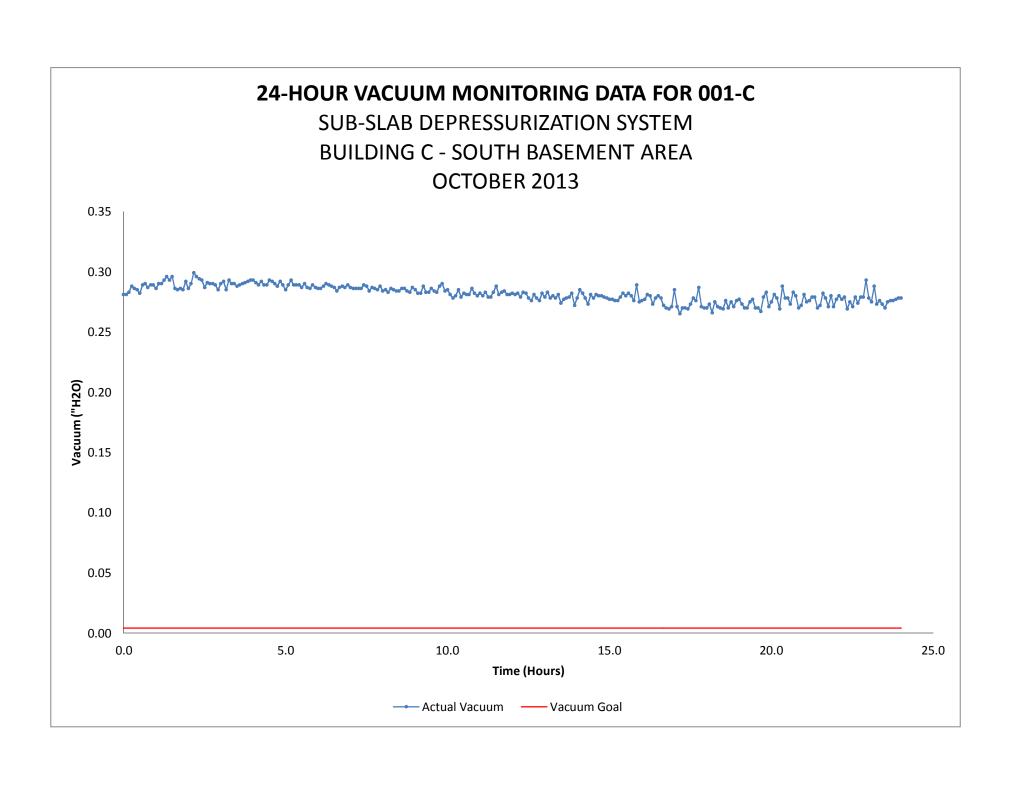

Date: 10/0//3	Гіте:	Quarter: 4 Personnel: DLM & M5
GENERAL SYSTEM		
Checked System Components?	YES NO	Comments:
Checked System Pipes for Leaks?	YES NO	Comments:
Visually Inspected Air Filter?	YES NO	Need Replaced? YES NO (replace filter when AP = 2-3 in. Hg)
Visually Inspected Intake Air Filter?	YES NO	Need Replaced? YES NO
Checked Vacuum Relief Valve?	YES NO	Comments:
Measured and Recorded Amperage [Oraw on Blower?	Scange Yellow Yellow Hack = 11.78
Are all components returned to system	m operating position	? (YES) NO
Cleaned System and Area Around Sy	stem? (YES	NO Comments:
Checked that Fire Extinguisher Near	System? YES) NO
SYSTEM ALARM SWITCHES AND A		
Checked Post-Blower Temp. Switch	YES NO	Did Auto-Dialer Indicate Zone 1 Alarm? (YES) NO
Checked Post-Hex Temp. Switch?	(YES) NO	Did Auto-Dialer Indicate Zone 2 Alarm? (YES) NO
Checked MS-1 Water Level Switch?	(YES) NO	Did Auto-Dialer Indicate Zone 3 Alarm? (YES) NO
Checked MS-2 Water Level Switch?	(YES) NO	Did Auto-Dialer Indicate Zone 4 Alarm? (YES) NO
Checked High Pressure Switch?	YES NO	Did Auto-Dialer Indicate Zone 5 Alarm? (YES) NO
Checked Low Vacuum Switch?	\searrow	
	YES NO	Did Auto-Dialer Indicate Zone 6 Alarm? YES NO
Do the Auto-Dialer Batteries Need Re	eplaced? YES	(NO)
<u>CARBON UNITS</u>		
Checked GAC Units for Corrosion and	d Leaks? YES	NO Comments:
Checked Condition of Sample Ports?	(YES)	NO Comments:
Number of used GAC/PPZ Units On-s	site:	Contain Non-Haz Waste Labels? YES NO NIA
Number of Unused GAC/PPZ Units C)n-site: <u> </u>	<u> </u>
VACUUM MONITORING POINTS		\
Checked Condition of Well Lids and I	Bolts? YES	NO Comments: 135-C Sinking; SSD-24-C ne
Checked Condition of Tubing and Se	al? YES	NO Comments:
ADDITIONAL COMMENTS Ballard to Front of PP	z unit was	hit by forklist - Needs replaced repaired
Personnel's Signature:	I Mlerin	Date: <u>13/3/13</u>

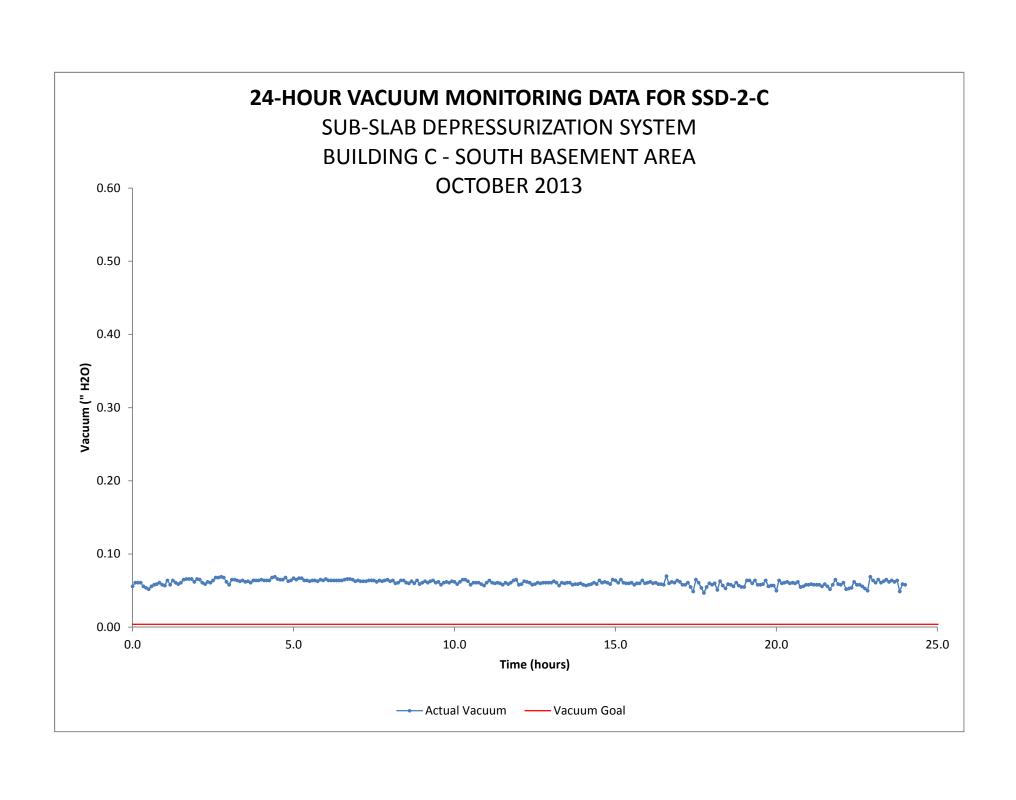

SSD SYSTEM QUARTERLY SYSTEM CHECK - BUILDING C LMC MIDDLE RIVER COMPLEX, MIDDLE RIVER, MARYLAND

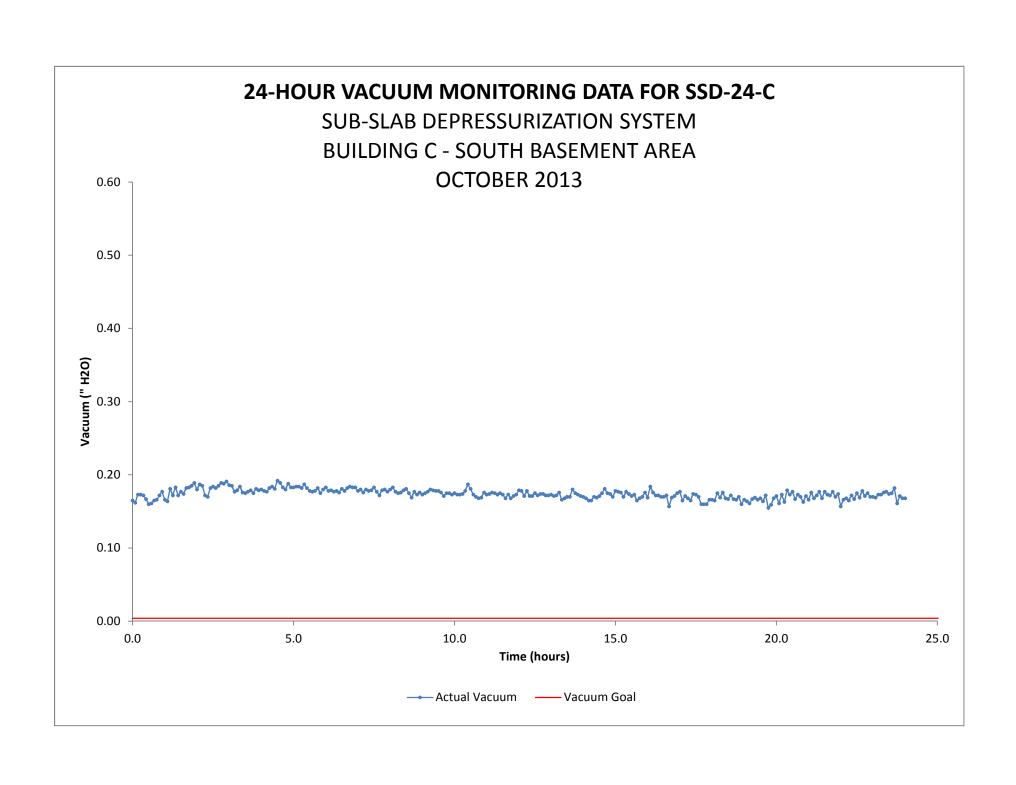

Date: 3117/14	Time:	53	Quarter: Personnel: DLM MS
GENERAL SYSTEM			
Checked System Components?	YES	NO	Comments:
Checked System Pipes for Leaks?	YES	NO	Comments:
Visually Inspected Air Filter?	YES	NO	Need Replaced? YES NO (replace filter when AP = 2-3 in. Hg)
Visually Inspected Intake Air Filter	YES	NO	Need Replaced? YES NO
Checked Vacuum Relief Valve?	YES	NO	Comments:
Measured and Recorded Amperag	e Draw on Blo	ower?	Yellow = 11.43 Orange = 9.04 Brown = 13.03
Are all components returned to sys	tem operatino	position?	n? (YES) NO
Cleaned System and Area Around	System?	YES	NO Comments:
Checked that Fire Extinguisher Ne	ar System?	YES) NO
SYSTEM ALARM SWITCHES AN	D AUTO-DIA	<u>LER</u>	
Checked Post-Blower Temp. Switch	h YES	NO	Did Auto-Dialer Indicate Zone 1 Alarm? YES
Checked Post-Hex Temp. Switch?	YES	NO	Did Auto-Dialer Indicate Zone 2 Alarm? YES NO
Checked MS-1 Water Level Switch	? YES	NO	Did Auto-Dialer Indicate Zone 3 Alarm? YES NO
Checked MS-2 Water Level Switch	? YES	NO	Did Auto-Dialer Indicate Zone 4 Alarm? YES NO
Checked High Pressure Switch?	YES	NO	Did Auto-Dialer Indicate Zone 5 Alarm? YES NO
Checked Low Vacuum Switch?	YES	NO	Did Auto-Dialer Indicate Zone 6 Alarm? YES NO
Do the Auto-Dialer Batteries Need	Replaced?	YES	NO
CARBON UNITS			
Checked GAC Units for Corrosion	and Leaks?	YES	NO Comments:
Checked Condition of Sample Port	s?	YES	NO Comments:
Number of used GAC/PPZ Units O	n-site: l	/ 0	Contain Non-Haz Waste Labels? YES NO
Number of Unused GAC/PPZ Units	s On-site:	<u> </u>	<u>1</u>
VACUUM MONITORING POINTS			
Checked Condition of Well Lids an	d Bolts?	YES	NO Comments:
Checked Condition of Tubing and	Seal?	YES	NO Comments:
		1	had a hole. Double banded influent ere Shahtly leaking.
Personnel's Signature:	U. J. 11.	Mull	Date: 3/17/14

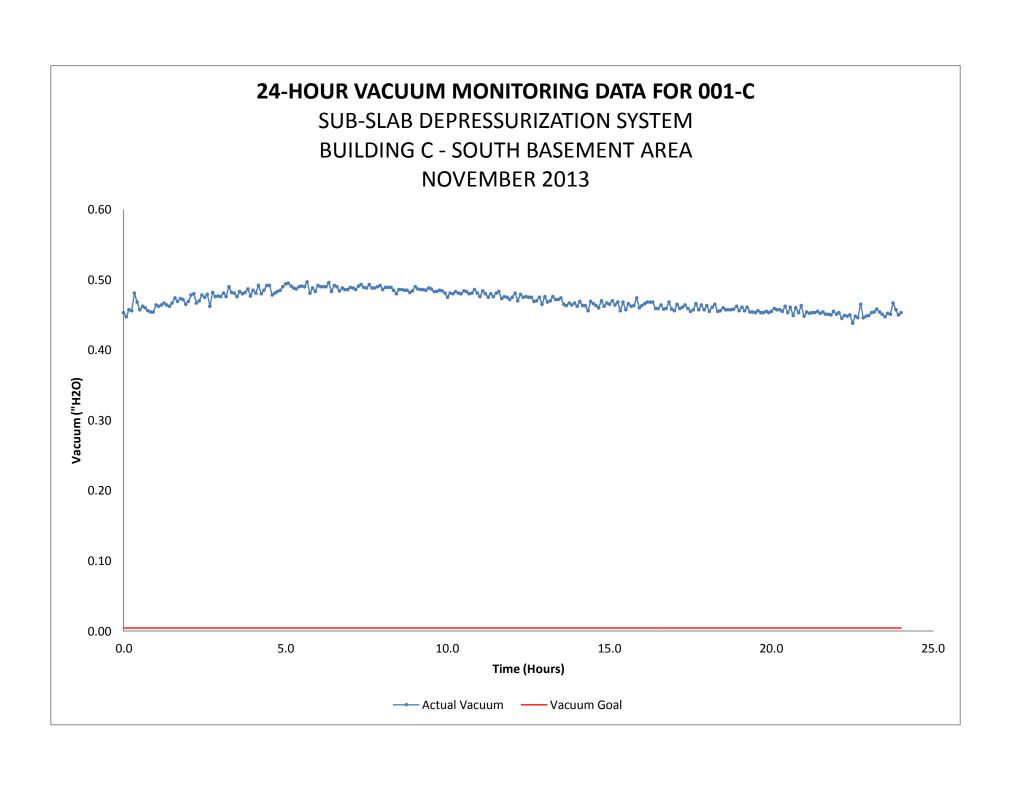

APPENDIX C—24-HOUR VACUUM MONITORING DATA GRAPHS	

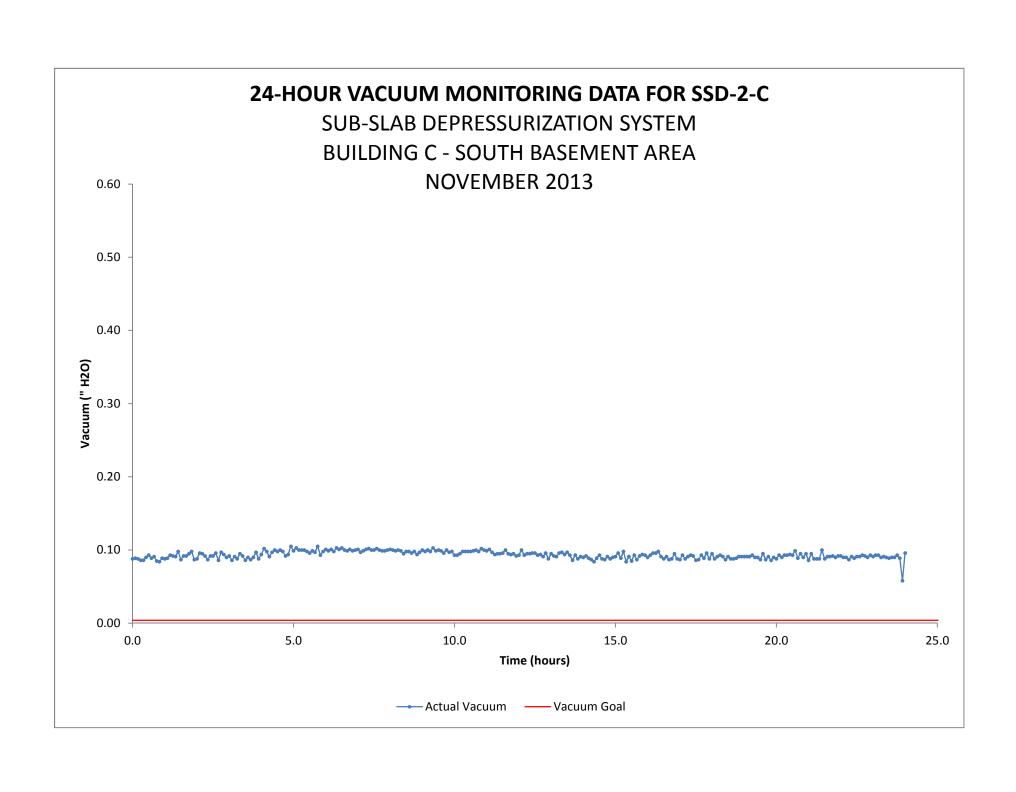


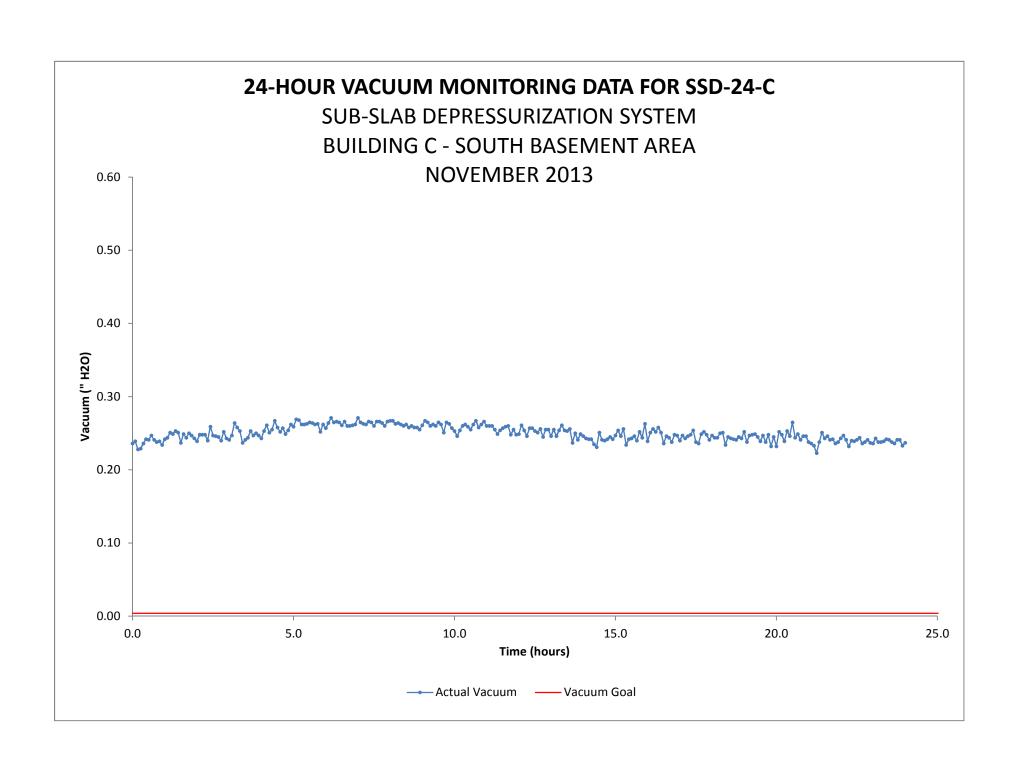




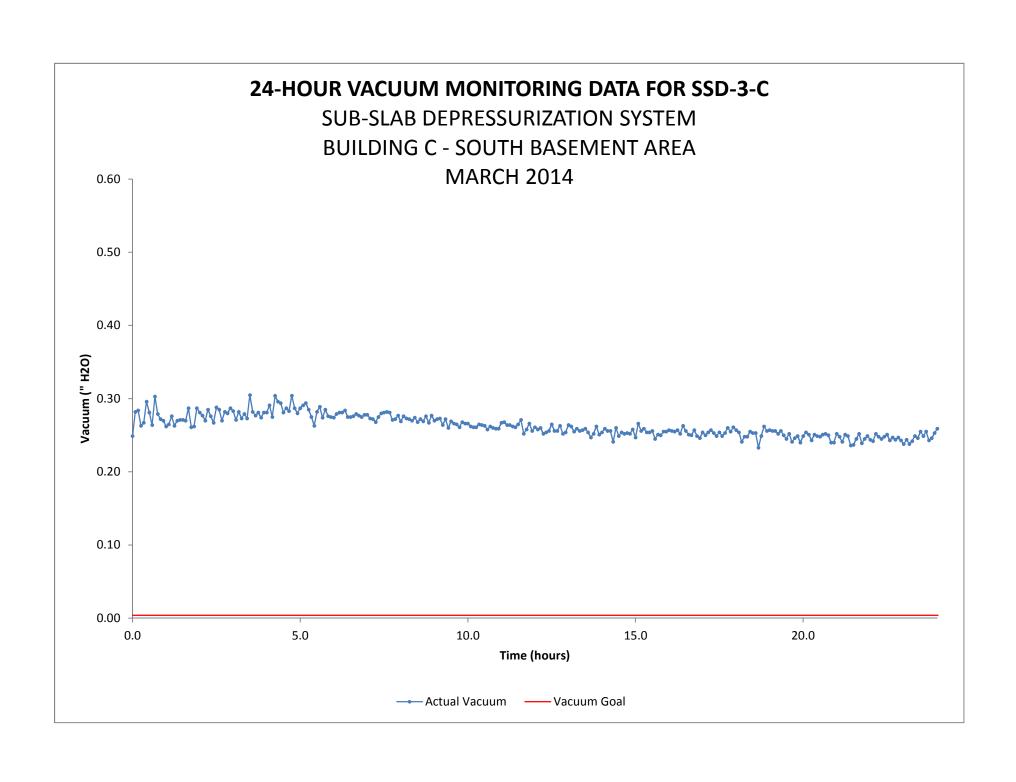


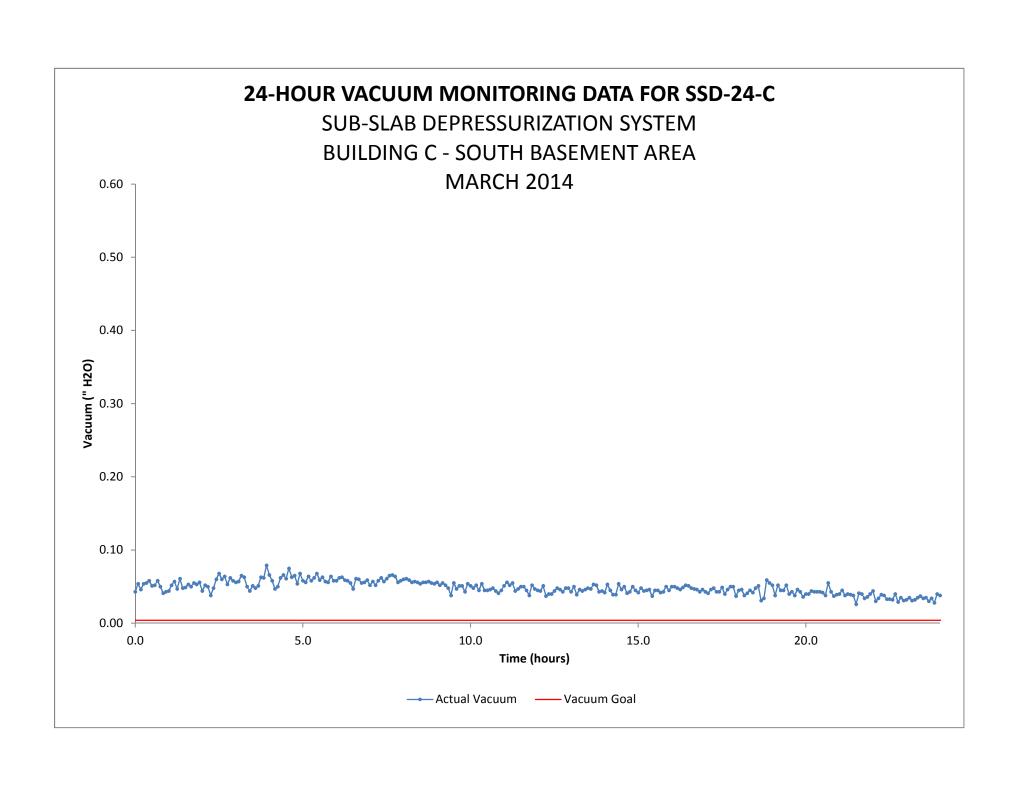


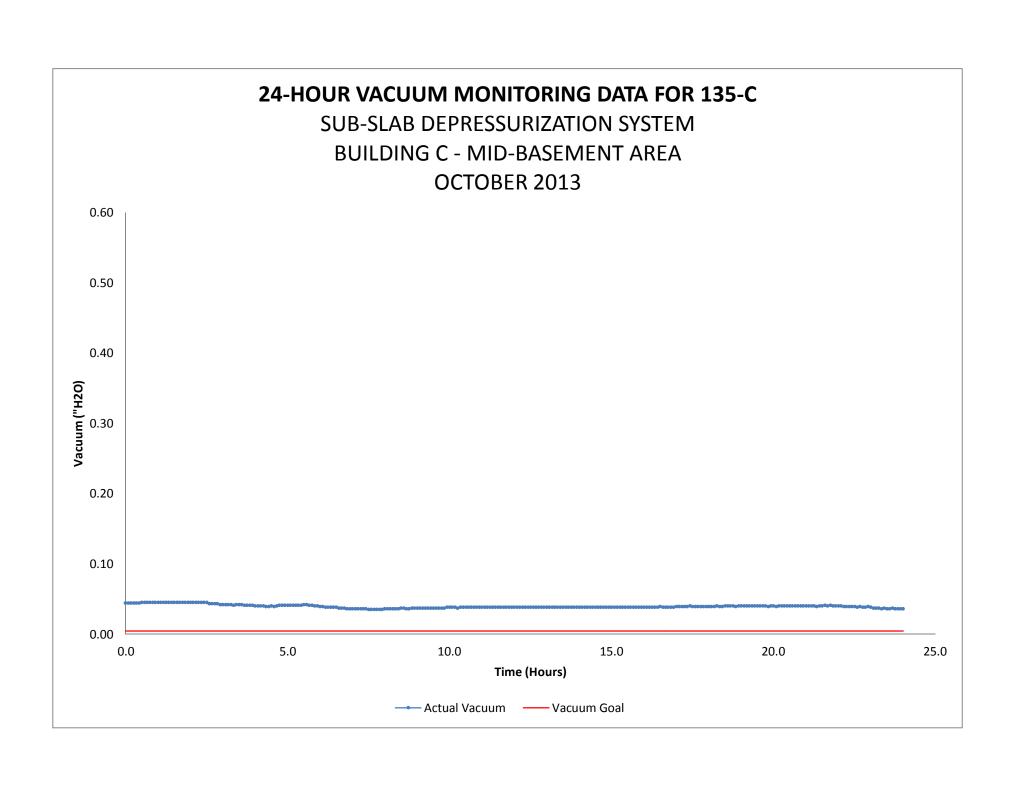


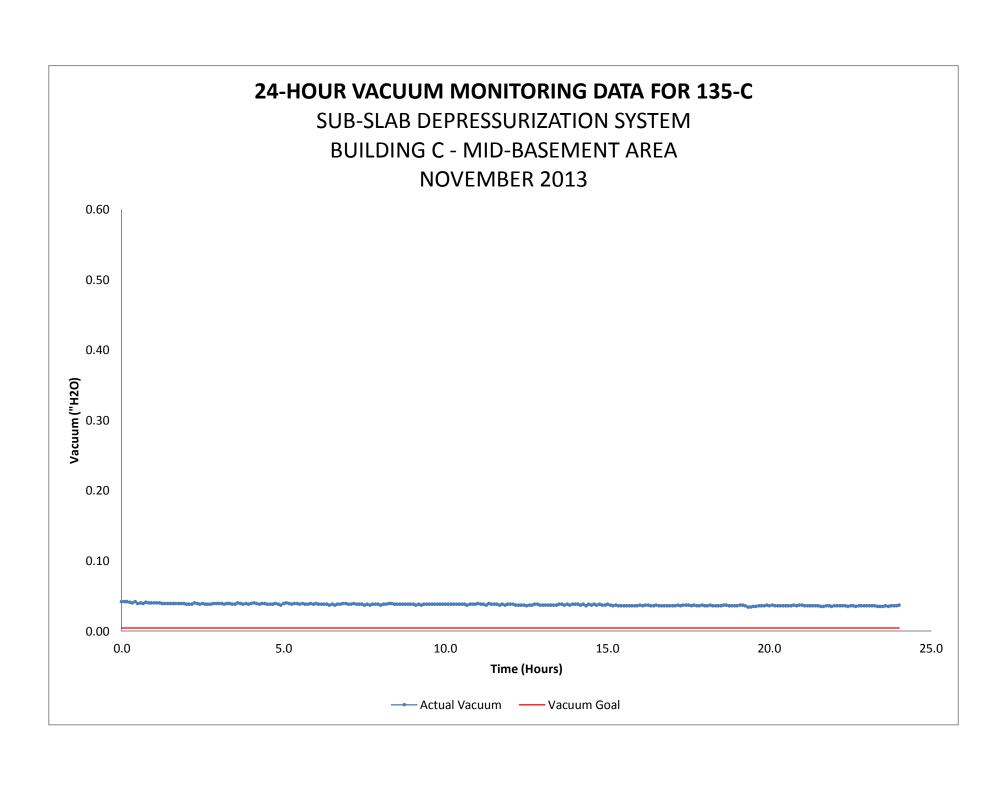


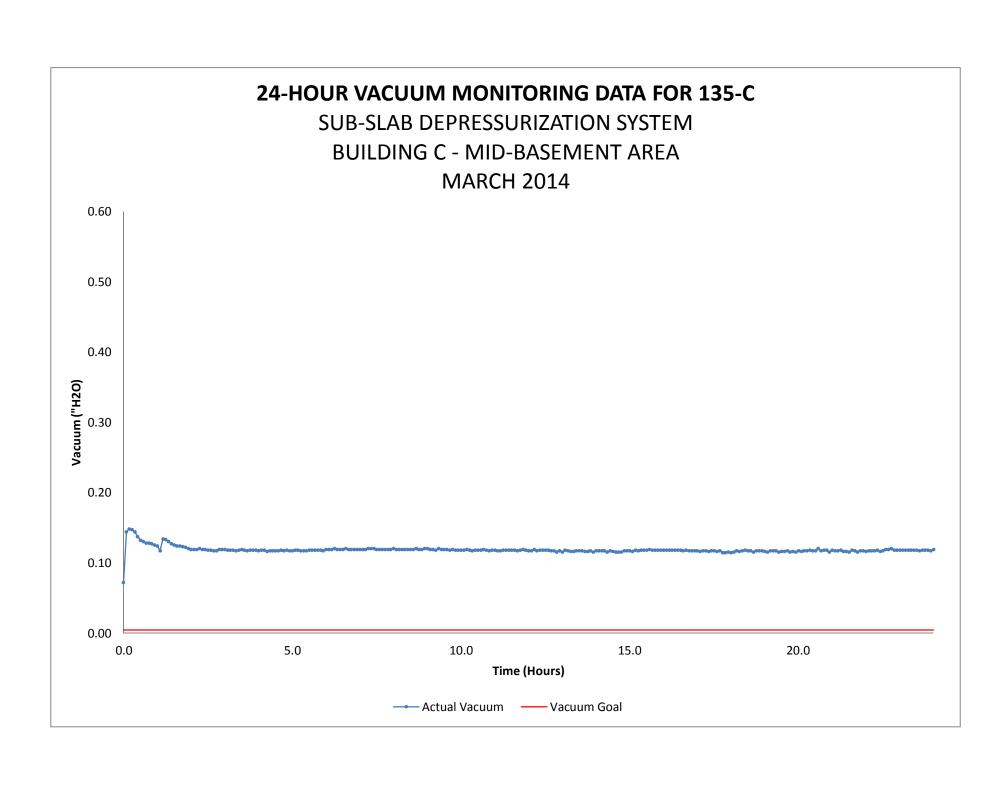












APPENDIX D—ANALYTICAL REPORTS

APPENDIX D—ANALYTICAL REPORTS

INTERNAL CORRESPONDENCE

TO:

P. RICH

DATE:

APRIL 15, 2014

FROM:

A. COGNETTI

COPIES:

DV FILE

SUBJECT:

ORGANIC DATA VALIDATION - VOC

LOCKHEED MARTIN CORPORATION (LMC) - MIDDLE RIVER

SAMPLE DELIVERY GROUP (SDG) - 140-278-1

SAMPLES:

6/Air/VOC

A-EFFLUENT

A-INFLUENT

A-MID GAC

C-EFFLUENT

C-INFLUENT

C-MID GAC

Overview

The sample set for LMC – Middle River, SDG 140-278-1 consisted of six (6) air samples. All samples were analyzed for volatile organic compounds (VOC). No field duplicate pair is included in this SDG.

The samples were collected by Geo Trans on October 10, 2013 and analyzed by Test America Laboratories, Inc. All analyses were conducted in accordance with EPA Method TO-15 analytical and reporting protocols.

The data contained in this SDG were validated with regard to the following parameters: data completeness, holding times, GC/MS tuning, initial/continuing calibrations, laboratory method blank results, surrogate spike recoveries, blank spike results, internal standard recoveries, chromatographic resolution, compound identification, compound quantitation, and detection limits. Areas of concern are listed below.

Major

No major noncompliances were noted.

Minor

- The initial calibration relative standard deviations (%RSDs) for carbon tetrachloride and hexachlorobutadiene were greater than the 30% quality control limit on September 25, 2013 on instrument MG. The nondetected carbon tetrachloride and hexachlorobutadiene results were qualified as estimated (UJ).
- The continuing calibration percent differences (%Ds) for chloromethane and 1,2-dichloro-1,1,2,2-tetrafluoroethane were greater than the 30% quality control limit on October 15, 2013 @ 14:30 on instrument MG. The nondetected chloromethane and 1,2-dichloro-1,1,2,2,-tetrafluoroethane were qualified as estimated (UJ) in the affected samples.

Notes

The chain of custody indicated that no gauges were provided with the summa canisters. This means that the canister pressure before and after sampling could not be evaluated. No validation action was taken.

Nondetected results were reported to the reporting limit.

The number of analytes reported by Test America is 39.

TO: P. Rich FROM: A. Cognetti

SDG: 140-278-1 DATE: April 15, 2014 PAGE 2

Executive Summary

Laboratory Performance: The initial calibration %RSDs for carbon tetrachloride and hexachlorobutadiene exceeded quality control limits. The continuing calibration %Ds for chloromethane and 1,2-dichloro-1,1,2,2-tetrafluoroethane exceeded quality control limits.

Other Factors Affecting Data Quality: None.

The data for these analyses were reviewed with reference to USEPA National Functional Guidelines for Organic Data Validation (June 2008) and EPA Method TO-15. The text of this report has been formulated to address only those problem areas affecting data quality.

Tetra Tech Ann Cognetti

Chemist/Data Validator

Tétra Tech

Joseph A. Samchuck Data Validation Manager

Attachments:

Appendix A - Qualified Analytical Results

Appendix B - Results as Reported by the Laboratory

Appendix C - Support Documentation

Appendix A

Qualified Analytical Results

Qualifier Codes:

A = Lab Blank Contamination

B = Field Blank Contamination

C = Calibration Noncompliance (i.e., % RSDs, %Ds, ICVs, CCVs, RRFs, etc.)

C01 = GC/MS Tuning Noncompliance

D = MS/MSD Recovery Noncompliance

E = LCS/LCSD Recovery Noncompliance

F = Lab Duplicate Imprecision

G = Field Duplicate Imprecision

H = Holding Time Exceedance

I = ICP Serial Dilution Noncompliance

J = ICP PDS Recovery Noncompliance; MSA's r < 0.995

K = ICP Interference - includes ICS % R Noncompliance

L = Instrument Calibration Range Exceedance

M = Sample Preservation Noncompliance

N = Internal Standard Noncompliance

N01 = Internal Standard Recovery Noncompliance Dioxins

N02 = Recovery Standard Noncompliance Dioxins

N03 = Clean-up Standard Noncompliance Dioxins

O = Poor Instrument Performance (i.e., base-time drifting)

P = Uncertainty near detection limit (< 2 x IDL for inorganics and <CRQL for organics)

Q = Other problems (can encompass a number of issues; i.e.chromatography,interferences, etc.)

R = Surrogates Recovery Noncompliance

S = Pesticide/PCB Resolution

T = % Breakdown Noncompliance for DDT and Endrin

U = RPD between columns/detectors >40% for positive results determined via GC/HPLC

V = Non-linear calibrations; correlation coefficient r < 0.995

W = EMPC result

X = Signal to noise response drop

Y = Percent solids <30%

Z = Uncertainty at 2 standard deviations is greater than sample activity

Z1 = Tentatively Identified Compound considered presumptively present

Z2 = Tentatively Identified Compound column bleed

Z3 = Tentatively Identified Compound aidol condensate

PROJ NO: 03265 NSAMPLE	E A-EFFLUENT	L			A-INFLUENT			A-MID GAC			C-EFFLUENT	ト	
					140-278-1			140-278-2			140-278-6		
FRACTION: OV-M3 SAMP_DATE	ATE 10/10/2013	3			10/10/2013			10/10/2013			10/10/2013		
MEDIA: AIR QC_TYPE	N N				ΣZ			NN			ΝN		
UNITS	UG/M3				UG/M3			UG/M3			UG/M3		į
PCT_SOLIDS	SOIT												
PARAMETER	RESULT	loy		Olco	RESULT	Ν̈́	OLCD	RESULT	Vol.	OLCD	RESULT	VQL	arcp
1,1,1-TRICHLOROETHANE		1 -			810			170				11 U	
1,1,2,2-TETRACHLOROETHANE		14 U				14 U	;	14	5			14 U	
1,1,2-TRICHLOROETHANE		11 U				11 U		11 U	_			11 U	
1,1,2-TRICHLOROTRIFLUOROETHANE	N.	15 U				15 U		15	ח			15 U	
1,1-DICHLOROETHANE		99			6	39		33				8.1 U	
1,1-DICHLOROETHENE		190			16	190		120				7.9 U	
1,2,4-TRICHLOROBENZENE		74 U			7	74 U		74 U	_			74 U	
1,2,4-TRIMETHYLBENZENE		9.8 U			6	9.8 U		9.8 U	D			9.8 U	
1,2-DIBROMOETHANE		15 U			1	15 U		15 U	_			15 U	
1,2-DICHLOROBENZENE		12 U				12 U		12 U	_				
1,2-DICHLOROETHANE	:	8.1 U			8	8.1 U		8.1 U	D			8.1 U	
1,2-DICHLOROPROPANE		9.2 U			6	9.2 U		9.2 U	n			9.2 U	
1,2-DICHLOROTETRAFLUOROETHANE	INE	14 U	S			14 UJ	S	14 UJ	3	ပ			ပ
1,3,5-TRIMETHYLBENZENE		9.8 ∪			6	9.8 U		9.8 U	_				
1,3-DICHLOROBENZENE		12 U				12 U		12 U	_			12 U	
1,4-DICHLOROBENZENE		12 U				12 U		12	D			12 U	
BENZENE		6.4 U			9	6.4 U		29					
BENZYL CHLORIDE		21 U				21 U		21	n			21 U	
BROMOMETHANE		7.8 U			7	7.8 U		7.8 U	_			7.8 U	
CARBON TETRACHLORIDE	,	13 UJ	ပ		•	13 UJ	O	13 UJ	3	S		13 UJ	ပ
CHLOROBENZENE		9.2 U			6	9.2 U		9.2 U	_			9.2 U	
CHLOROETHANE		5.3 U			5	5.3 U		5.3 U	D			5.3 U	
CHLOROFORM		9.8	S		6	9.8 UJ	O	9.8 UJ	3	S		9.8 UJ	ပ
CHLOROMETHANE		10 U				10 U		10 U	D	į		10 U	
CIS-1,2-DICHLOROETHENE		270			22	220		190					
CIS-1,3-DICHLOROPROPENE		9.1 U			6	9.1 U		9.1 U	_ _			9.1 U	
DICHLORODIFLUOROMETHANE		9.9 U			6	9.9 U		0.6 0.8	D			9.9 U	
ETHYLBENZENE		8.7 U			8	8.7 U		8.7 U	n			8.7 U	
HEXACHLOROBUTADIENE		110 UJ	၁		11	110 UJ	ပ	110 UJ	UJ	င	1	110 UJ	ပ
M+P-XYLENES		8.7 U			8	8.7 U		8.7 U	n			8.7 U	
METHYLENE CHLORIDE		17 · U				17 U			n				
O-XYLENE		8.7 U			8	8.7 U		8.7	ם			8.7 U	
STYRENE		8.5 U			8	8.5 U		8.5	D			8.5 U	
TETRACHLOROETHENE		14 U			-	14 U		4-	⊃				
TOLUENE		11				15		9.9				7.5 U	

PROJ NO: 03265	NSAMPLE	C-INFLUENT		C-MID GAC		
SDG: 140-278-1	LAB ID	140-278-4		140-278-5		
FRACTION: OV-M3	SAMP DATE	10/10/2013		10/10/2013		
MEDIA: AIR	QC_TYPE	WN		ΣZ		
-	UNITS	UG/M3		UG/M3		
	PCT_SOLIDS					
	DUP_OF					
PARAMETER		RESULT VQL	alcd	RESULT	ΛαΓ	arcd
1,1,1-TRICHLOROETHANE	ш	11 U		1	11 U	
1,1,2,2-TETRACHLOROETHANE	HANE	14 U		14	14 U	
1,1,2-TRICHLOROETHANE	ш	11 U		11	11 U	
1,1,2-TRICHLOROTRIFLUOROETHANE	OROETHANE	16		15	15 U	
1,1-DICHLOROETHANE		8.1 U		8.1	8.1 U	
1,1-DICHLOROETHENE		U 6.7		7.9	7.9 U	
1,2,4-TRICHLOROBENZENE	٦	74 U		74	74 U	
1,2,4-TRIMETHYLBENZENE	4	0.8 U		8.6	9.8 U	
1,2-DIBROMOETHANE		15 U		15	15 U	
1,2-DICHLOROBENZENE		12 U		12	12 U	
1,2-DICHLOROETHANE		8.1 U		8.1	8.1 U	
1,2-DICHLOROPROPANE		9.2 U		9.2	9.2 U	
1,2-DICHLOROTETRAFLUOROETHANE	JOROETHANE	14 UJ	ပ	14	14 U	
1,3,5-TRIMETHYLBENZENE	IE .	9.8 U		9.6	9.8 U	
1,3-DICHLOROBENZENE		12 U		12	12 U	
1,4-DICHLOROBENZENE		12 U		12	12 U	
BENZENE	!	14		1		
BENZYL CHLORIDE		21 U		21	21 U	
BROMOMETHANE		7.8 U		7.8	7.8 U	
CARBON TETRACHLORIDE	E	13 UJ	ပ	13	13 UJ	S
CHLOROBENZENE		9.2 U		9.5	9.2 U	
CHLOROETHANE		5.3 U		5.3	5.3 U	
CHLOROFORM		9.8 UJ	ပ	9.6	9.8 U	
CHLOROMETHANE		10 U		10	10 U	
CIS-1,2-DICHLOROETHENE	밎	U 6.7		7.9	7.9 U	
CIS-1,3-DICHLOROPROPENE	ENE	9.1 O		9.1	n	
DICHLORODIFLUOROMETHANE	THANE	O 6.6		6.6	n	
ETHYLBENZENE		8.7 U		8.7	n	
HEXACHLOROBUTADIENE	Е	110 UJ	ပ	110	110 UJ	ပ
M+P-XYLENES		20		8.7	8.7 U	
METHYLENE CHLORIDE		17 U		17	17 U	
O-XYLENE		10		8.7	8.7 U	
STYRENE		8.5 ∪		8.5	D	
TETRACHLOROETHENE		14 U		14	14 U	_
		1 2 1		7 1 1 1	-	

PROJ NO: 03265	NSAMPLE	A-EFFLUENT			A-INFLUENT	⊨		A-MID GAC			C-EFFLUENI			
SDG: 140-278-1	LAB ID	140-278-3			140-278-1			140-278-2			140-278-6			
FRACTION: OV-M3	SAMP DATE 10/10/2013	10/10/2013			10/10/2013			10/10/2013			10/10/2013			
MEDIA: AIR	QC_TYPE	ΣZ			ΣZ			NM			ΣN			
	UNITS	UG/M3			UG/M3			UG/M3			UG/M3			
	PCT_SOLIDS													
	DUP OF													
PARAMETER		RESULT	Val	Val alcd	RESULT	Хø	arcd	RESULT	VQL	arcp	RESULT	ΛΩΓ	alcd	
TRANS-1,3-DICHLOROPROPENE	OPENE	9.1)		0,	9.1 U		9.1 U	n		9.1	ם -		
TRICHLOROETHENE		13	-		4	1400		32			1	11 0		
TRICHLOROFLUOROMETHANE	THANE	15				16		1	11 O		-	1 0		
VINYL CHLORIDE		5.1	ם		4)	5.1 U		5.1	5.1 U		5.1	5.1 U		

PROJ NO: 03265	NSAMPLE	C-INFLUENT			C-MID GAC		
SDG: 140-278-1	LAB_ID	140-278-4			140-278-5		
FRACTION: OV-M3	SAMP_DATE	10/10/2013			10/10/2013		
MEDIA: AIR	QC_TYPE	ΣZ	:		MN		
	UNITS	UG/M3			UG/M3		
	PCT_SOLIDS					!	
	DUP_OF						
PARAMETER		RESULT	VAL ALCD	arcp	RESULT	VQL	arcd
TRANS-1,3-DICHLOROPROPENE	OPENE	9.1	ם		9.1	D.	
TRICHLOROETHENE		200			11 0	ก	
TRICHLOROFLUOROMETHANE	HANE	11 U	ח		11 U	ם	
VINYL CHLORIDE		5.1 U	n		5.1 L	n	

Appendix B

Results as Reported by the Laboratory

Lab Name: TestAmerica Knoxville Job No.: 140-278-1 SDG No.: Lab Sample ID: 140-278-3 Client Sample ID: A-EFFLUENT Lab File ID: GI15P103.D Matrix: Air Analysis Method: TO-15 Date Collected: 10/10/2013 14:47 Date Analyzed: 10/15/2013 20:25 Sample wt/vol: 20(mL) Soil Aliquot Vol: Dilution Factor: 1 Soil Extract Vol.: GC Column: RTX-5 ID: 0.32(mm) Level: (low/med) Low % Moisture: Analysis Batch No.: 299 Units: ug/m3

CAS NO.	COMPOUND NAME	MOLECULAR WEIGHT	RESULT	Q	RL	
71-43-2	Benzene	78.11	ND		6.4	
100-44-7	Benzyl chloride	126.58	ND		21	
74-83-9	Bromomethane	94.94	ND		7.8	
56-23-5	Carbon tetrachloride	153.81	ND		13	
108-90-7	Chlorobenzene	112.56	ND		9.2	
75-00-3	Chloroethane	64.52	ND		5.3	
67-66-3	Chloroform	119.38	ND		9.8	
74-87-3	Chloromethane	50.49	ND		10	
95-50-1	1,2-Dichlorobenzene	147.00	ND		12	
541-73-1	1,3-Dichlorobenzene	147.00	ND		12	
106-46-7	1,4-Dichlorobenzene	147.00	ND		12	
75-71-8	Dichlorodifluoromethane	120.91	ND		9.9	
75-34-3	1,1-Dichloroethane	98.96	66		8.1	
107-06-2	1,2-Dichloroethane	98.96	ND		8.1	
75-35-4	1,1-Dichloroethene	96.94	190		7.9	
156-59-2	cis-1,2-Dichloroethene	96.94	270		7.9	
78-87-5	1,2-Dichloropropane	112.99	ND		9.2	
10061-01-5	cis-1,3-Dichloropropene	110.97	ND	-	9.1	
10061-02-6	trans-1,3-Dichloropropen	110.97	ND		9.1	
76-14-2	1,2-Dichloro-1,1,2,2-tet rafluoroethane	170.92	ND		14	
100-41-4	Ethylbenzene	106.17	ND		8.7	
75-69-4	Trichlorofluoromethane	137.37	15		11	
87-68-3	Hexachlorobutadiene	260.76	ND		110	
75-09-2	Methylene Chloride	84.93	ND		17	
100-42-5	Styrene	104.15	ND		8.5	
79-34-5	1,1,2,2-Tetrachloroethan e	167.85	ND		14	
127-18-4	Tetrachloroethene	165.83	ND		14	
108-88-3	Toluene	92.14	11		7.5	
120-82-1	1,2,4-Trichlorobenzene	181.45	ND		74	
71-55-6	1,1,1-Trichloroethane	133.41	ND		11	
79-00-5	1,1,2-Trichloroethane	133.41	ND		11	
79-01-6	Trichloroethene	131.39	13		11	
76-13-1	1,1,2-Trichloro-1,2,2-tr ifluoroethane	187.38	ND		15	

Job No.: 140-278-1
Lab Sample ID: 140-278-3
Lab File ID: GI15P103.D
Date Collected: 10/10/2013 14:47
Date Analyzed: 10/15/2013 20:25
Dilution Factor: 1
GC Column: RTX-5 ID: 0.32 (mm)
Level: (low/med) Low
Units: ug/m3

CAS NO.	COMPOUND NAME	MOLECULAR WEIGHT	RESULT	Q	RL	
95-63-6	1,2,4-Trimethylbenzene	120.20	ND		9.8	
108-67-8	1,3,5-Trimethylbenzene	120.20	ND		9.8	
75-01-4	Vinyl chloride	62.50	ND		5.1	
95-47-6	o-Xylene	106.17	ND		8.7	
179601-23-1	m-Xylene & p-Xylene	106.17	ИД		8.7	
106-93-4	1,2-Dibromoethane (EDB)	187.87	ND		15	

CAS NO.	SURROGATE	%REC	Q	LIMITS
460-00-4	4-Bromofluorobenzene (Surr)	99		60-140

Lab Name: TestAmerica Knoxville	Job No.: 140-278-1
SDG No.:	
Client Sample ID: A-INFLUENT	Lab Sample ID: 140-278-1
Matrix: Air	Lab File ID: GI15P101.D
Analysis Method: TO-15	Date Collected: 10/10/2013 14:45
Sample wt/vol: 20(mL)	Date Analyzed: 10/15/2013 18:46
Soil Aliquot Vol:	Dilution Factor: 1
Soil Extract Vol.:	GC Column: RTX-5 ID: 0.32 (mm)
% Moisture:	Level: (low/med) Low
Analygic Ratch No · 200	Units: wa/m3

CAS NO.	COMPOUND NAME	MOLECULAR WEIGHT	RESULT	Q	RL	
71-43-2	Benzene	78.11	ND		6.4	
100-44-7	Benzyl chloride	126.58	ND		21	
74-83-9	Bromomethane	94.94	ND		7.8	
56-23-5	Carbon tetrachloride	153.81	ND		13	
108-90-7	Chlorobenzene	112.56	ND		9.2	
75-00-3	Chloroethane	64.52	ND		5.3	
67-66-3	Chloroform	119.38	ND		9.8	
74-87-3	Chloromethane	50.49	ND		10	
95-50-1	1,2-Dichlorobenzene	147.00	ND		12	
541-73-1	1,3-Dichlorobenzene	147.00	ND		12	
106-46-7	1,4-Dichlorobenzene	147.00	ND		12	
75-71-8	Dichlorodifluoromethane	120.91	ND		9.9	
75-34-3	1,1-Dichloroethane	98.96	39.		8.1	
107-06-2	1,2-Dichloroethane	98.96	ND		8.1	
75-35-4	1,1-Dichloroethene	96.94	190		7.9	
156-59-2	cis-1,2-Dichloroethene	96.94	220.		7.9	
78-87-5	1,2-Dichloropropane	112.99	ND		9.2	
10061-01-5	cis-1,3-Dichloropropene	110.97	ND		9.1	
10061-02-6	trans-1,3-Dichloropropen	110.97	ND		9.1	
76-14-2	1,2-Dichloro-1,1,2,2-tet rafluoroethane	170.92	ND		14	
100-41-4	Ethylbenzene	106.17	ND		8.7	
75-69-4	Trichlorofluoromethane	137.37	16		11	
87-68-3	Hexachlorobutadiene	260.76	ND		110	
75-09-2	Methylene Chloride	84.93	ND		17	
100-42-5	Styrene	104.15	ND		8.5	·
79-34-5	1,1,2,2-Tetrachloroethan e	167.85	ND		14	
127-18-4	Tetrachloroethene	165.83	ND		14	
108-88-3	Toluene	92.14	15		7.5	
120-82-1	1,2,4-Trichlorobenzene	181.45	ND		74	
71-55-6	1,1,1-Trichloroethane	133.41	810.		11	
79-00-5	1,1,2-Trichloroethane	133.41	ND		11	
79-01-6	Trichloroethene	131.39	1400		11	
76-13-1	1,1,2-Trichloro-1,2,2-tr ifluoroethane	187.38	ND		15	

Lab Name: TestAmerica Knoxville	Job No.: 140-278-1				
SDG No.:					
Client Sample ID: A-INFLUENT	Lab Sample ID: 140-278-1				
Matrix: Air	Lab File ID: GI15P101.D				
Analysis Method: TO-15	Date Collected: 10/10/2013 14:45				
Sample wt/vol: 20(mL)	Date Analyzed: 10/15/2013 18:46				
Soil Aliquot Vol:	Dilution Factor: 1				
Soil Extract Vol.:	GC Column: RTX-5 ID: 0.32 (mm)				
% Moisture:	Level: (low/med) Low				
Analysis Batch No.: 299	Units: ug/m3				

CAS NO.	COMPOUND NAME	MOLECULAR WEIGHT	RESULT	Q	RL	
95-63-6	1,2,4-Trimethylbenzene	120.20	ND	-	9.8	
108-67-8	1,3,5-Trimethylbenzene	120.20	ND		9.8	
75-01-4	Vinyl chloride	62.50	ND		5.1	
95-47-6	o-Xylene	106.17	ND		8.7	
179601-23-1	m-Xylene & p-Xylene	106.17	ND		8.7	
106-93-4	1,2-Dibromoethane (EDB)	187.87	ND		15	

CAS NO.	SURROGATE	%REC	Q	LIMITS
460-00-4	4-Bromofluorobenzene (Surr)	101		60-140

Lab Name: TestAmerica Knoxville	Job No.: 140-278-1
SDG No.:	
Client Sample ID: A-MID GAC	Lab Sample ID: <u>140-278-2</u>
Matrix: Air	Lab File ID: GI15P102.D
Analysis Method: TO-15	Date Collected: 10/10/2013 14:46
Sample wt/vol: 20(mL)	Date Analyzed: 10/15/2013 19:36
Soil Aliquot Vol:	Dilution Factor: 1
Soil Extract Vol.:	GC Column: RTX-5 ID: 0.32(mm)
% Moisture:	Level: (low/med) Low
Analysis Batch No.: 299	Units: ug/m3

CAS NO.	COMPOUND NAME	MOLECULAR WEIGHT	RESULT	Q	RL	
71-43-2	Benzene	78.11	29 -		6.4	
100-44-7	Benzyl chloride	126.58	ND		21	
74-83-9	Bromomethane	94.94	ND		7.8	
56-23-5	Carbon tetrachloride	153.81	ND		13	
108-90-7	Chlorobenzene	112.56	ND		9.2	
75-00-3	Chloroethane	64.52	ND		5.3	
67-66-3	Chloroform	119.38	ND	-	9.8	
74-87-3	Chloromethane	50.49	ND	-	10	
95-50-1	1,2-Dichlorobenzene	147.00	ND		12	
541-73-1	1,3-Dichlorobenzene	147.00	ND		12	
106-46-7	1,4-Dichlorobenzene	147.00	ND		12	
75-71-8	Dichlorodifluoromethane	120.91	ND		9.9	
75-34-3	1,1-Dichloroethane	98.96	33 ,	-	8.1	
107-06-2	1,2-Dichloroethane	98.96	ND		8.1	
75-35-4	1,1-Dichloroethene	96.94	120		7.9	
156-59-2	cis-1,2-Dichloroethene	96.94	190.		7.9	
78-87-5	1,2-Dichloropropane	112.99	ND		9.2	
10061-01-5	cis-1,3-Dichloropropene	110.97	ND		9.1	
10061-02-6	trans-1,3-Dichloropropen	110.97	ND		9.1	
76-14-2	1,2-Dichloro-1,1,2,2-tet rafluoroethane	170.92	ND		14	
100-41-4	Ethylbenzene	106.17	ND		8.7	
75-69-4	Trichlorofluoromethane	137.37	ND		11	
87-68-3	Hexachlorobutadiene	260.76	ND		110	
75-09-2	Methylene Chloride	84.93	ND		17	
100-42-5	Styrene	104.15	ND		8.5	
79-34-5	1,1,2,2-Tetrachloroethan e	167.85	ND		14	
127-18-4	Tetrachloroethene	165.83	ND		14	
108-88-3	Toluene	92.14	9.9		7.5	
120-82-1	1,2,4-Trichlorobenzene	181.45	ND		74	
71-55-6	1,1,1-Trichloroethane	133.41	170 /		11	
79-00-5	1,1,2-Trichloroethane	133.41	ND		11	
79-01-6	Trichloroethene	131.39	32		11	
76-13-1	1,1,2-Trichloro-1,2,2-tr ifluoroethane	187.38	ND		15	

Lab Name: TestAmerica Knoxville Job No.: 140-278-1 SDG No.: Client Sample ID: A-MID GAC Lab Sample ID: 140-278-2 Lab File ID: GI15P102.D Matrix: Air Date Collected: 10/10/2013 14:46 Analysis Method: TO-15 Sample wt/vol: 20(mL) Date Analyzed: 10/15/2013 19:36 Soil Aliquot Vol: Dilution Factor: 1 Soil Extract Vol.: GC Column: RTX-5 ID: 0.32 (mm) Level: (low/med) Low % Moisture: Analysis Batch No.: 299 Units: ug/m3

CAS NO.	COMPOUND NAME	MOLECULAR WEIGHT	RESULT	Q	RL	
95-63-6	1,2,4-Trimethylbenzene	120.20	ND		9.8	
108-67-8	1,3,5-Trimethylbenzene	120.20	ND		9.8	
75-01-4	Vinyl chloride	62.50	ND		5.1	
95-47-6	o-Xylene	106.17	ND		8.7	
179601-23-1	m-Xylene & p-Xylene	106.17	ND		8.7	
106-93-4	1,2-Dibromoethane (EDB)	187.87	ND		15	

CAS NO.	SURROGATE	%REC	Q	LIMITS
460-00-4	4-Bromofluorobenzene (Surr)	98		60-140

Lab Name: TestAmerica Knoxville Job No.: 140-278-1 SDG No.: Lab Sample ID: 140-278-6 Client Sample ID: C-EFFLUENT Lab File ID: GI15P106.D Matrix: Air Analysis Method: TO-15 Date Collected: 10/10/2013 11:23 Sample wt/vol: 20(mL) Date Analyzed: 10/15/2013 22:53 Dilution Factor: 1 Soil Aliquot Vol: GC Column: RTX-5 ID: 0.32(mm) Soil Extract Vol.: Level: (low/med) Low % Moisture: Analysis Batch No.: 299 Units: ug/m3

CAS NO.	COMPOUND NAME	MOLECULAR WEIGHT	RESULT	Q	RL	
71-43-2	Benzene	78.11	11		6.4	
100-44-7	Benzyl chloride	126.58	ND		21	
74-83-9	Bromomethane	94.94	ND		7.8	
56-23-5	Carbon tetrachloride	153.81	ND	-	13	
108-90-7	Chlorobenzene	112.56	ND		9.2	
75-00-3	Chloroethane	64.52	ND		5.3	
67-66-3	Chloroform	119.38	ND		9.8	
74-87-3	Chloromethane	50.49	ND		10	
95-50-1	1,2-Dichlorobenzene	147.00	ND		12	
541-73-1	1,3-Dichlorobenzene	147.00	ND		12	
106-46-7	1,4-Dichlorobenzene	147.00	ND		12	
75-71-8	Dichlorodifluoromethane	120.91	ND		9.9	·
75-34-3	1,1-Dichloroethane	98.96	ND		8.1	
107-06-2	1,2-Dichloroethane	98.96	ND		8.1	
75-35-4	1,1-Dichloroethene	96.94	ND		7.9	
156-59-2	cis-1,2-Dichloroethene	96.94	ND		7.9	
78-87-5	1,2-Dichloropropane	112.99	ND		9.2	
10061-01-5	cis-1,3-Dichloropropene	110.97	ND		9.1	
10061-02-6	trans-1,3-Dichloropropen e	110.97	ND		9.1	, ,
76-14-2	1,2-Dichloro-1,1,2,2-tet rafluoroethane	170.92	ND		14	·
100-41-4	Ethylbenzene	106.17	ND		8.7	
75-69-4	Trichlorofluoromethane	137.37	ND		11	
87-68-3	Hexachlorobutadiene	260.76	ND		110	•
75-09-2	Methylene Chloride	84.93	ND		17	
100-42-5	Styrene	104.15	ND		8.5	
79-34-5	1,1,2,2-Tetrachloroethan e	167.85	ND		14	
127-18-4	Tetrachloroethene	165.83	ND		14	
108-88-3	Toluene	92.14	ND		7.5	
120-82-1	1,2,4-Trichlorobenzene	181.45	ND		74	
71-55-6	1,1,1-Trichloroethane	133.41	ND		11	
79-00-5	1,1,2-Trichloroethane	133.41	ND		11	
79-01-6	Trichloroethene	131.39	ND		11	
76-13-1	1,1,2-Trichloro-1,2,2-tr ifluoroethane	187.38	ND		15	-

Lab Name: TestAmerica Knoxville	Job No.: 140-278-1
SDG No.:	
Client Sample ID: C-EFFLUENT	Lab Sample ID: 140-278-6
Matrix: Air	Lab File ID: GI15P106.D
Analysis Method: TO-15	Date Collected: 10/10/2013 11:23
Sample wt/vol: 20(mL)	Date Analyzed: 10/15/2013 22:53
Soil Aliquot Vol:	Dilution Factor: 1
Soil Extract Vol.:	GC Column: RTX-5 ID: 0.32 (mm)
% Moisture:	Level: (low/med) Low
Analysis Batch No.: 299	Units: ug/m3

CAS NO.	COMPOUND NAME	MOLECULAR WEIGHT	RESULT	Q	RL	
95-63-6	1,2,4-Trimethylbenzene	120.20	ND		9.8	
108-67-8	1,3,5-Trimethylbenzene	120.20	ND		9.8	
75-01-4	Vinyl chloride	62.50	ND		5.1	
95-47-6	o-Xylene	106.17	ND		8.7	
179601-23-1	m-Xylene & p-Xylene	106.17	ND		8.7	
106-93-4	1,2-Dibromoethane (EDB)	187.87	ND		15	

CAS NO.	SURROGATE	%REC	Q	LIMITS
460-00-4	4-Bromofluorobenzene (Surr)	99		60-140

Lab Name: TestAmerica Knoxville Job No.: 140-278-1 SDG No.: Client Sample ID: C-INFLUENT Lab Sample ID: 140-278-4 Lab File ID: GI15P104.D Matrix: Air Date Collected: 10/10/2013 11:21 Analysis Method: TO-15 Sample wt/vol: 20(mL) Date Analyzed: 10/15/2013 21:15 Soil Aliquot Vol: Dilution Factor: 1 GC Column: RTX-5 ID: 0.32 (mm) Soil Extract Vol.: Level: (low/med) Low % Moisture: Analysis Batch No.: 299 Units: ug/m3

CAS NO.	COMPOUND NAME	MOLECULAR WEIGHT	RESULT	Q	RL	
71-43-2	Benzene	78.11	14		6.4	
100-44-7	Benzyl chloride	126.58	ND		21	
74-83-9	Bromomethane	94.94	ND		7.8	
56-23-5	Carbon tetrachloride	153.81	ND		13	
108-90-7	Chlorobenzene	112.56	ND		9.2	
75-00-3	Chloroethane	64.52	ND		5.3	
67-66-3	Chloroform	119.38	ND		9.8	
74-87-3	Chloromethane	50.49	ND		10	
95-50-1	1,2-Dichlorobenzene	147.00	ND		12	
541-73-1	1,3-Dichlorobenzene	147.00	ND		12	
106-46-7	1,4-Dichlorobenzene	147.00	ND	-	12	
75-71-8	Dichlorodifluoromethane	120.91	ND		9.9	
75-34-3	1,1-Dichloroethane	98.96	ND		8.1	
107-06-2	1,2-Dichloroethane	98.96	ND		8.1	
75-35-4	1,1-Dichloroethene	96.94	ND		7.9	
156-59-2	cis-1,2-Dichloroethene	96.94	ND		7.9	
78-87-5	1,2-Dichloropropane	112.99	ND		9.2	
10061-01-5	cis-1,3-Dichloropropene	110.97	ND		9.1	
10061-02-6	trans-1,3-Dichloropropen e	110.97	ND		9.1	
76-14-2	1,2-Dichloro-1,1,2,2-tet rafluoroethane	170.92	ND		14	
100-41-4	Ethylbenzene	106.17	ND		8.7	
75-69-4	Trichlorofluoromethane	137.37	ND		11	
87-68-3	Hexachlorobutadiene	260.76	ND		110	
75-09-2	Methylene Chloride	84.93	ND		17	
100-42-5	Styrene	104.15	ND		8.5	
79-34-5	1,1,2,2-Tetrachloroethan e	167.85	ND		14	
127-18-4	Tetrachloroethene	165.83	ND		14	
108-88-3	Toluene	92.14	ND		7.5	
120-82-1	1,2,4-Trichlorobenzene	181.45	ND		74	
71-55-6	1,1,1-Trichloroethane	133.41	ND		11	
79-00-5	1,1,2-Trichloroethane	133.41	ND		11	
79-01-6	Trichloroethene	131.39	200		11	
76-13-1	1,1,2-Trichloro-1,2,2-tr ifluoroethane	187.38	16		15	

Lab Name: TestAmerica Knoxville Job No.: 140-278-1 SDG No.: Client Sample ID: C-INFLUENT Lab Sample ID: 140-278-4 Matrix: Air Lab File ID: GI15P104.D Analysis Method: TO-15 Date Collected: 10/10/2013 11:21 Sample wt/vol: 20(mL) Date Analyzed: 10/15/2013 21:15 Dilution Factor: 1 Soil Aliquot Vol: GC Column: RTX-5 ID: 0.32 (mm) Soil Extract Vol.: Level: (low/med) Low % Moisture: Analysis Batch No.: 299 Units: ug/m3

CAS NO.	COMPOUND NAME	MOLECULAR WEIGHT	RESULT	Q	RL	
95-63-6	1,2,4-Trimethylbenzene	120.20	ND		9.8	
108-67-8	1,3,5-Trimethylbenzene	120.20	ND		9.8	
75-01-4	Vinyl chloride	62.50	ND		5.1	
95-47-6	o-Xylene	106.17	10		8.7	
179601-23-1	m-Xylene & p-Xylene	106.17	20		8.7	
106-93-4	1,2-Dibromoethane (EDB)	187.87	ND		15	***************************************

CAS NO.	SURROGATE	%REC	Q	LIMITS
460-00-4	4-Bromofluorobenzene (Surr)			60-140.

Lab Name: TestAmerica Knoxville Job No.: 140-278-1 SDG No.: Client Sample ID: C-MID GAC Lab Sample ID: 140-278-5___ Lab File ID: GJ16P109.D Matrix: Air Analysis Method: TO-15 Date Collected: 10/10/2013 11:22 Date Analyzed: 10/17/2013 00:25 Sample wt/vol: 20(mL) Dilution Factor: 1 Soil Aliquot Vol: Soil Extract Vol.: GC Column: RTX-5 ID: 0.32 (mm) Level: (low/med) Low % Moisture: Analysis Batch No.: 301 Units: ug/m3

CAS NO.	COMPOUND NAME	MOLECULAR WEIGHT	RESULT	Q	RL	
71-43-2	Benzene	78.11	11		6.4	
100-44-7	Benzyl chloride	126.58	ND		21	
74-83-9	Bromomethane	94.94	ND	-	7.8	
56-23-5	Carbon tetrachloride	153.81	ND		13	
108-90-7	Chlorobenzene	112.56	ND		9.2	
75-00-3	Chloroethane	64.52	ND		5.3	
67-66-3	Chloroform	119.38	ND		9.8	
74-87-3	Chloromethane	50.49	ND		10	• • • • • • • • • • • • • • • • • • • •
95-50-1	1,2-Dichlorobenzene	147.00	ND		12	
541-73-1	1,3-Dichlorobenzene	147.00	ND		12	
106-46-7	1,4-Dichlorobenzene	147.00	ND		12	
75-71-8	Dichlorodifluoromethane	120.91	ND		9.9	
75-34-3	1,1-Dichloroethane	98.96	ND		8.1	
107-06-2	1,2-Dichloroethane	98.96	ND		8.1	
75-35-4	1,1-Dichloroethene	96.94	ND		7.9	
156-59-2	cis-1,2-Dichloroethene	96.94	ND		7.9	
78-87-5	1,2-Dichloropropane	112.99	ND		9.2	
10061-01-5	cis-1,3-Dichloropropene	110.97	ND		9.1	
10061-02-6	trans-1,3-Dichloropropen	110.97	ND		9.1	
76-14-2	1,2-Dichloro-1,1,2,2-tet rafluoroethane	170.92	ND		14	
100-41-4	Ethylbenzene	106.17	ND		8.7	
75-69-4	Trichlorofluoromethane	137.37	ND		11	
87-68-3	Hexachlorobutadiene	260.76	ND		110	
75-09-2	Methylene Chloride	84.93	ND		17	
100-42-5	Styrene	104.15	ND		8.5	
79-34-5	1,1,2,2-Tetrachloroethan e	167.85	ND		14	
127-18-4	Tetrachloroethene	165.83	ND		14	
108-88-3	Toluene	92.14	ND		7.5	
120-82-1	1,2,4-Trichlorobenzene	181.45	ND		74	
71-55-6	1,1,1-Trichloroethane	133.41	ND		11	
79-00-5	1,1,2-Trichloroethane	133.41	ND		11	
79-01-6	Trichloroethene	131.39	ND		11	
76-13-1	1,1,2-Trichloro-1,2,2-tr ifluoroethane	187.38	ND		15	

Lab Name: TestAmerica Knoxville	Job No.: 140-278-1
SDG No.:	
Client Sample ID: C-MID GAC	Lab Sample ID: 140-278-5
Matrix: Air	Lab File ID: GJ16P109.D
Analysis Method: TO-15	Date Collected: 10/10/2013 11:22
Sample wt/vol: 20(mL)	Date Analyzed: 10/17/2013 00:25
Soil Aliquot Vol:	Dilution Factor: 1
Soil Extract Vol.:	GC Column: RTX-5 ID: 0.32 (mm)
% Moisture:	Level: (low/med) Low
Analysis Batch No.: 301	Units: ug/m3

CAS NO.	COMPOUND NAME	MOLECULAR WEIGHT	RESULT	Q	RL	
95-63-6	1,2,4-Trimethylbenzene	120.20	ND		9.8	
108-67-8	1,3,5-Trimethylbenzene	120.20	ND		9.8	
75-01-4	Vinyl chloride	62.50	ND		5.1	
95-47-6	o-Xylene	106.17	ND		8.7	
179601-23-1	m-Xylene & p-Xylene	106.17	ND		8.7	
106-93-4	1,2-Dibromoethane (EDB)	187.87	ND		15	

CAS NO.	SURROGATE	%REC	Q	LIMITS
460-00-4	4-Bromofluorobenzene (Surr)	100		60-140

Appendix C

Support Documentation

Job Narrative 140-278-1

Comments

No additional comments.

The samples were received on 10/14/2013 10:20 AM; the samples arrived in good condition, properly preserved and, where required, on ice.

Air - GC/MS VOA

Method(s) TO-15: EPA methods TO-14A and TO-15 specify the use of humidified "zero air" as the blank reagent for canister cleaning, instrument calibration and sample analysis. Ultra-high purity humidified nitrogen from a cryogenic reservoir is used in place of "zero air"

Although the tune is flagged outside control for mass 176 at 94.29% in batch 299, the mass met the requirement for TO-15 analysis,

Method(s) TO-15: The continuing calibration verification (CCV) associated with batch 299 exhibited % difference of > 30% for the following analyte(s): Chloromethane and 1,2-dichlorotetrafluoroethane; however the results were within the LCS acceptance limits. The EPA method requires that all target analytes in the continuing calibration verification standard be within 30% difference from the initial calibration. According to the laboratory standard operating procedure, the continuing calibration is acceptable if it meets the laboratory control sample acceptance criteria.

No other analytical or quality issues were noted.

Samples Relinquished by

Date/Time: /O/////3 (Date/Time:

0

Canisters Received by:

Date/Time:

Received by

100 P

10:20

Relinquished by:

TAL Knoxville

5815 Middlebrook Pike Knoxville, TN 37921 phone 865-291-3000 fax 865-584-4315

Canister Samples Chain of Custody Record

TestAmeric

THE LEADER IN ENVIRONMENTAL TESTING

TestAmerica assumes no liability with respect to the collection and shipment of these samples

Special Instructions/QC Requirements & Comments: Sampled by : Site/location: 1mc -mRC Address: 51 Franklin St. ? City/State/Zip Annapolis mp Phone: 410-990-4607 FAX: 410-990-4749 Project Name: 5500em Company: letro lech Client Contact Information -MIDGAC EFFLUENT HUFLUENT M HTTCEN! HUFLUENT Sample Identification GRC GRC 100 start Phone: 410-990-4607
Site Contact: Jawn Monico
TAL Contact: Jawn Monico Project Manager: Peter Rich olioli3 Start Start Stop Stop Standard (Specify) Rush (Specify) Interior Interior 1000 145 1 THN Time Start 16 9hhl **Analysis Turnaround Time** 123 Time Stop Z Pressure (inches of Hg) Z P Vacuum in Field, "Hg (Start) Ambient Ambient femperature (Fahrenheit) Canister Vacuum in Field, 'Hg (Stop) A A Canister Flow Controller Sampled By: DLM N D 40-278 Chain of Custody 1-A7117 K-Brord-1 10795 1-5178 X 16796 09639X Canister ID RECEIVED TO-15 6-CANS cooler TO-14A Cooler EPA 3C EPA 25C 14 20 Ø, 6 13 ASTM D-1946 212 Ambie NT 으 Other (Please specify in notes section) 80291519940 CUSTODY SEA COCs Indoor Air Ambient Air emp Soll Gas Landfill Gas Other (Please specify in notes section)

TestAmerica Knoxville - Air Canister Initial Pressure Check

						Pressure @ Receipt	
Analyst	Date	Time	Sample ID	6 L	11.	(-in or +psig)	Comments
NRS	10/15/2013	9;41	140-278-a-1		Х	0.0	
NRS	10/15/2013	9:42	140-278-a-2		х	0.0	
NRS	10/15/2013	9:43	140-278-a-3		х	0.0	
NRS	10/15/2013	9:44	140-278-a-4		х	0.8	
NRS	10/15/2013	9:45	140-278-a-5		Х	0.6	
NRS	10/15/2013	9:46	140-278-a-6		Х	0.0	
		· · · · · · · · · · · · · · · · · · ·					
		1.423-1.44	· .				
							
		·					
	-	5,514.6					
		*.40 =					
						····	
							-
							
		. A salaye . P.					
						· · · · · · · · · · · · · · · · · · ·	e en en en en en en en en en en en en en
			~				
		er a commente de la commente del commente del commente de la commente del la commente de la comm					
						· · · · · · · · · · · · · · · · · · ·	

Login Sample Receipt Checklist

Client: Tetra Tech GEO

Job Number: 140-278-1

List Source: TestAmerica Knoxville

Login Number: 278 List Number: 1

Creator: Dameron, Bryan K

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	N/A	
Cooler Temperature is acceptable.	N/A	
Cooler Temperature is recorded.	N/A	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	N/A	CHECKED IN LAB
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	N/A	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	N/A	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	N/A	
Multiphasic samples are not present.	N/A	
Samples do not require splitting or compositing.	N/A	
Residual Chlorine Checked.	N/A	

Method Summary

Client: Tetra Tech GEO

Project/Site: Middle River LMC

TestAmerica Job ID: 140-278-1

 Method
 Method Description
 Protocol
 Laboratory

 TO-15
 Volatile Organic Compounds in Ambient Air
 EPA
 TAL KNX

Protocol References:

EPA = US Environmental Protection Agency

Laboratory References:

TAL KNX = TestAmerica Knoxville, 5815 Middlebrook Pike, Knoxville, TN 37921, TEL (865)291-3000

FORM V AIR - GC/MS VOA INSTRUMENT PERFORMANCE CHECK

Lab Name: TestAmerica Knoxville Job No.: 140-278-1

SDG No.:

Lab File ID: GBFBI25.D BFB Injection Date: 09/25/2013

Instrument ID: MG BFB Injection Time: 09:57

Analysis Batch No.: 249

M/E	ION ABUNDANCE CRITERIA		ATIVE DANCE
50	15.0 - 40.0 % of mass 95	17.0	
75	30.0 - 60.0 % of mass 95	52.6	
95	Base Peak, 100% relative abundance	100.0	
96	5.0 - 9.0 % of mass 95	6.7	
173	Less than 2.0 % of mass 174	0.6	(0.5)1
174	50.0 - 120.00 % of mass 95	104.1	
175	5.0 - 9.0 % of mass 174	7.3	(7.1)1
176	95.0 - 101.0 % of mass 174	100.7	(96.7)1
177	5.0 - 9.0 % of mass 176	6.6	(6.5)2

1-Value is % mass 174

2-Value is % mass 176

THIS CHECK APPLIES TO THE FOLLOWING SAMPLES, MS, MSD, BLANKS AND STANDARDS:

CLIENT SAMPLE ID	LAB SAMPLE ID	LAB FILE ID	DATE ANALYZED	TIME ANALYZED
	IC 140-249/2	GICI251.D	09/25/2013	10:26
	IC 140-249/3	GICI252.D	09/25/2013	11:15
	IC 140-249/4	GICI253.D	09/25/2013	12:04
	IC 140-249/5	GICI254.D	09/25/2013	12:53
	IC 140-249/6	GICI255.D	09/25/2013	13:42
	ICIS 140-249/7	GICI256.D	09/25/2013	14:34
	IC 140-249/8	GICI257.D	09/25/2013	15:23
	IC 140-249/10	GICI259.D	09/25/2013	17:02
	ICV 140-249/13	GICVI25.D	09/25/2013	18:43
	IC 140-249/17	GICI258R.D	09/26/2013	08:28

AIR - GC/MS VOA INITIAL CALIBRATION DATA INTERNAL STANDARD CURVE EVALUATION FORM VI

Analy Batch No.: Job No.: 140-278-1 Lab Name: TestAmerica Knoxville

249

Calibration ID:

08:28

09/26/2013

SDG No.:

Z Heated Purge: (Y/N) ID: 0.32 (mm) RTX-5 GC Column: MG Instrument ID:

Calibration End Date: Calibration Start Date:

10:26 09/25/2013

Calibration Files:

LEVEL:	LAB SAMPLE ID:	LAB FILE ID:
Level 1	IC 140-249/2	GICI251.D
Level 2	IC 140-249/3	GICI252.D
Level 3	IC 140-249/4	GICI253.D
Level 4	IC 140-249/5	GICI254.D
Level 5	IC 140-249/6	GICI255.D
Level 6	ICIS 140-249/7	GIC1256.D
Level 7	IC 140-249/8	GICI257.D
Level 8	IC 140-249/17	GICI258R.D
Level 9	IC 140-249/10	GICI259.D

ANALYTE			RRF			CURVE	00	COEFFICIENT	#	MIN RRF	%RSD #	MAX	R^2	#	MIN R^2
	LVL 1 LVL 6	LVL 2 LVL 7	LVL 3	LVL 4 LVL 9	LVL 5	TYPE	щ	M1 M2				%KSD	OK COD	>	OK COD
Chlorodifluoromethane	0.4721	0.4249	0.3348	0.3546	0.3305	Ave		0.3550			17.0	30.0			
Propene	0.3063	0.9669	0.5628	0.6728	0.4993	Ave		0.6128			28.0	30.0		-	
	0.5076	0.5280	0.7265	0.4385											
Dichlorodifluoromethane	4.4455	4.2347	3.1117	3.8364	3.4821	Ave		3.6649			13.0	30.0			
Chloromethane	3.4729	3.6374	3.8023	2.9610	0.1812	Ave		0.1852			23.0	30.0		_	
	0.1515	0.1658	0.1884	0.1410										_	
1,2-Dichloro-1,1,2,2-tetrafluoroethane	3.4380	3.0026	2.5182	2.6601	2.2268	Ave		2.4304			22.0	30.0			
	2.0869	2.0757	2.1605	1.7049											
Acetaldehyde	+++++	+++++	0.2537	0.3360	0.2042	Ave		0.2083			33.0	40.0			
	0.2052	0.1518	0.1756	0.1311				-							
Vinyl chloride	1.0511	0.8540	0.7593	0.8034	0.6808	Ave		0.7588			17.0	30.0			
	0.6486	0.7025	9601.0	0.6202	•										
Butane	1.0881	1.1193	0.8567	0.9898	0.8168	Ave		0.8792			17.0	30.0			
	0.7408	0.7900	0.8166	0.6951							-				
1,3-Butadiene	0.8876	0.6140	0.5732	0.5475	0.4672	Ave		0.5373			28.0	30.0			
	0.4099	0.4612	0.4642	0.4113											
Bromomethane	1.4534	1.2256	1.1003	1.0298	0.9511	Ave		1.0197			21.0	30.0			
	0.8497	0.9194	0.8663	0.7814											
Chloroethane	0.6278	0.5578	0.4853	0.4175	0.3868	Ave		0.4326		-	24.0	30.0			
	0.3609	0.3781	0.3619	0.3173											
Ethanol	+ + + + + +	0.2407	0.1583	0.1519	0.1326 Ave	Ave		0.1469			28.0	40.0		-	
	0.1351	0.1316	0.1211	0.1041											
Vinyl bromide	1,4609	1.3849	1.1352	1.1578	1.0480 Ave	Ave		1.1150			18.0	30.0			
	0.9820	1.0330	0.9960	0.8372			-						-		

Page 113 of 260

AIR - GC/MS VOA INITIAL CALIBRATION DATA INTERNAL STANDARD CURVE EVALUATION FORM VI

249 Analy Batch No.: Job No.: 140-278-1 Lab Name: TestAmerica Knoxville

GC Column: MG Instrument ID: SDG No.:

09/26/2013 08:28 Calibration End Date:

10:26

09/25/2013

Calibration Start Date:

 \mathbf{z} Heated Purge: (Y/N) Calibration ID:

0.32 (mm)

ID:

RTX-5

ANALYTE			RRF			CURVE	COE	COEFFICIENT	# MIN RRF	%RSD #	MAX	R^2	#	MIN R^2
	LVL 1	LVL 2	LVL 3		LVL 5	ядхл	В	M1 M2			4KSD	O. A. C. C. C. C. C. C. C. C. C. C. C. C. C.		700
	TAL 6	LVL 7	LVL 8	LVL 9										
2-Methylbutane	1.1113	0.7482	0.7870	0.6765	0.6203	Ave		0.6961		26.0	30.0			
	0.077	0.0017	1150.0	7 2025	-	6		2 000 5		0 11	200			
Trichlorofluoromethane	3.6911	3.9261	3.7176	3.1532	4.0423	D V C) -	•			
Acrolein	++++	+++++	0.1626	0.1645	0.1499	Ave		0.1676		7.2	30.0		_	
	0.1729	0.1761	0.1871	0.1602									_	
Acetonitrile	+ 1	+ 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	0.1933	0.1499	0.1427	Ave		0.1633		13.0	30.0			
カンペナへから	0.1553	0.1608	0.1953	0.1456	0.4456	Ave		0.3768		30.0	30.0			
Acerone	0.5203	0.3056	0.3769	0.2358))								
Pentane	0.1308	0.1739	0.1703	0.1889	0.1793	Ave		0.1661		11.0	30.0			
	0.1601		0.1797	0.1412									+	
Isopropyl alcohol	1.0608		0.7644	0.7808	0.6701	Ave		0.7590		19.0	30.0		_	
	0.6829		0.7524	0.5643							0			
Ethyl ether	0.5911	0.5077	0.4012	0.4306	0.3980	Ave		0.4629		15.0	30.0			
	0.4472		0.5249							,			-	
1,1-Dichloroethene	1.0433	0.8876	0.9077	0.9089	0.9039	Ave		0.9015		0.8	30.0			
	0.8524		0.9266							,				
Acrylonitrile	0.3404	0.3568	0.2790	0.2815	0.2978	Ave		0.3222		11.0	30.0			
	0.3266	0.3454	0.3745										+	
1,1,2-Trichloro-1,2,2-trifluoroethane	2.3304	2.1045	2.1296	2.0892	2.0661	Ave		2.0415		χ χ	30.0			
tert-Rutyl alcohol	+++++	+++++	1.1267		1.0096	Ave		1.0790		11.0	30.0			
	1.0329	1.0820	1.1567	0.8945										
Methylene Chloride	+++++	+++++	0.8877	0.7631	0.7535	Ave		0.7302		12.0	30.0			
	0.6943		0.7164	0.5895						,			+	
3-Chloropropene	0.8079	0.6954	0.7127	0.6500	0.6092	Ave		0.6283		17.0	30.0			
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0.30/9		0.6340		7 4947	0770		77777		8.2	30.0			
carbon arsurine	2 2869	2.4978	2.5509	2.0978)								
2-Mothylnentane	1.6654	1.3365	1.3712	-	1.2745	Ave		1.2993		14.0	40.0			
	1.1989		1.2863	0.9885										
trans-1,2-Dichloroethene	1.2226	1.1381	1.1024	1.0752	1.0620	Ave		1.0668		6.8	30.0	_	_	
	1.0131		1.0531											
Methyl tert-butyl ether	1.9536		1.7063		1.6514	Ave		1.9689		13.0	30.0			
	2.1285		2.2448							-			1	
1,1-Dichloroethane	1.5303	1,3855	1.4354	1.4007	1.3441	Ave		1.3635		9./	30.0			
	1,0101	L.0001			0 8919	Otto	-	1 0499		20.0	30.0			
Vinyl acetate	1.1838	1.2840	1.3318	1.1301	C160.0			CC FO: T)	,			

30.0

7.8

0.1875

Ave

0.1904

0.1648

0.1955

0.1722

0.1701

0.1747

1,2-Dichloropropane

Heptane

Trichloroethene

Dibromomethane

0.1988

0.1604

Ave

0.1482

0.1354 0.5021 0.3557

0.5069

0.1670 0.4120 0.4460

0.1678 0.1591 0.4536 0.4201

0.4038

30.0

0.4379

0.3039

Ave

0.3217

0.3396

0.3149

0.3219

30.0

8.3

30.0

Page 114 of 260

AIR - GC/MS VOA INITIAL CALIBRATION DATA INTERNAL STANDARD CURVE EVALUATION

MIN R^2 OR COD # R^2 OR COD \mathbf{z} 249 40.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 40.0 30.08 30.08 30.08 30.0 78 MAX %RSD Heated Purge: (Y/N) Analy Batch No.: Calibration ID: 35.0 25.0 28.0 15.0 8.2 15.0 9.3 17.0 5.6 7.4 19.0 8.7 8.1 %RSD 4.5 8.7 6.7 MIN RRF # M2COEFFICIENT 08:28 2.6968 0.0323 1.2338 2.1283 0.5325 0.3600 0.4667 0.3019 0.9359 0.9076 0.4549 0.3206 0.0882 0.1129 0.7159 0.5767 M10.32 (mm) 09/26/2013 щ ID: CURVE TYPE Ave Ave Ave Ave Ave Ave Ave Ave Ave Ave 1.0951 Ave Ave Ave Ave 0.0279 Ave Ave 0.2545 0.5042 0.7092 0.5228 0.9569 0.7330 2.0686 0.3738 2.6943 0.3073 0.0901 0.5138 0.3604 Calibration End Date: LVL 140-278-1 RTX-5 2.2303 1.7959 0.3565 0.4595 2.7918 0.0727 0.5614 0.4389 0.5728 0.0325 0.1245 0.3157 1.1562 0.2687 0.9691 0.6866 0.3451 0.0916 0.3840 0.5916 0.4404 0.5398 LVL Column: 0.2911 0.9298 0.9795 0.8283 2.5533 0.3333 0.3020 0.1006 0.5145 0.5176 0.8156 0.0326 0.1187 0.1166 2.2547 2.0357 0.5243 0.7170 Job No.: 0.5287 0.9683 2.8000 0.4945 0.0326 0.3602 0.3687 0.7654 1.0461 0.2501 0.3701 0.5261 LVL RRF SS 0.3113 1.0764 2.2608 0.3543 0.0822 0.0924 0.5907 0.5429 0.0314 0.3544 0.7181 0.5089 2.8274 0.7611 1.0461 0.4378 0.9875 1.0720 0.5307 2.7648 0.3468 0.0448 0.1215 0.3831 0.4911 LVL 2 LVL 7 0.3324 0.2893 0.9326 0.9127 0.6033 0.5093 0.3609 0.4892 0.0343 0.0305 0.1061 0.1111 0.3605 0.7294 0.9510 0.5113 2.9158 2.6031 0.3491 0.0902 0.4908 2.3826 2.0081 1.0244 0.8718 10:26 LVL 09/25/2013 TestAmerica Knoxville Calibration Start Date: ANALYTE cis-1,2-Dichloroethene 2,2,4-Trimethylpentane MG 1, 1, 1-Trichloroethane Carbon tetrachloride 2,3-Dimethylpentane 1,2-Dichloroethane ID: 2-Butanone (MEK) Tetrahydrofuran Ethyl acetate Instrument Cyclohexane Lab Name: Chloroform Thiophene 1-Butanol SDG No. C6 Range Benzene Hexane

AIR - GC/MS VOA INITIAL CALIBRATION DATA INTERNAL STANDARD CURVE EVALUATION FORM VI

249 Analy Batch No.: N YOL

Lab Name: TestAmerica Knoxville		dot —	Job No.:	140-278	3-1					Analy B	Analy Batch No.:	: 249		
SDG No.:				•										
Instrument ID: MG		GC	Column:	: RTX-5	10	ID:	0.32 (mm)	u)		Heated	Purge: ((Y/N) N		
Calibration Start Date: 09/25/2013	10:26	Cal	Calibration	End	Date:	09/26/201	/2013	08:28		Calibration	tion ID:	78		
THATAMA			THE CHAIN			CURVE	COE	COEFFICIENT	#	MIN RRE	%RSD #		R^2 #	MIN R^2
		LVL 2	1	LVL 4	LVL 5	TYPE	В	M1	M2			%RSD OR	COD	OR COD
	9	LVL 7	LVL 8											
Bromodichloromethane	0.5404 0	0.5330	0.5903	0.5801	0.5354	Ave		0.5420			6.9	30.0		
1,4-Dioxane		0.0671	0.0733	0.0663	0.0672	Ave		0.0670			8.5	30.0		
Methyl methacrylate	1	0.1387	0.1229	0.1046	0.1112	Ave		0.1371			17.0	30.0		
Methylcyclohexane	0.3361 0	0.3512	0.4129	0.4088	0.3893	Ave		0.3786			8.3	40.0		
4-Methyl-2-pentanone (MIBK)	-	0.2046	0.2384	0.2135	0.1950	Ave		0.2070			6.6	30.0		
cis-1,3-Dichloropropene		0.3059	0.3247	0.3427	0.3124	Ave		0.3179			9.3	30.0		
trans-1,3-Dichloropropene		0.3389	0.3561	0.3791	0.3519	Ave		0.3637			7.1	30.0		
Toluene Range	<u> </u>	1.7949	1.7513	1.7723	1.5906	Ave		1.7386			6.3	30.0	-	
Toluene	ļ	0.8140	0.7371	0.8011	0.7100	Ave		0.7704			5.0	30.0		
1,1,2-Trichloroethane		0.2276	0.2226	0.2241	0.1979	Ave		0.2146				30.0		
2-Methylthiophene		0.6958	0.7137	0.7696	0.7053	Ave		0.7255	•		6.5	40.0		
3-Methylthiophene		0.7076	0.7095	0.7931	0.7215	Ave		0.7365			7.7	40.0		
2-Hexanone		0.1014	0.1256	0.1183	0.1195	Ave		0.1185			15.0	30.0		
Octane		0.2386	0.2856	0.2911	0.2735	Ave		0.2643			10.0	30.0		
C8 Range		1.7885	2.0411	2.0192	1.7389	Ave		1.7765			10.0	30.0		
Dibromochloromethane		0.5639	0.6583	0.7101	0.6780	Ave		0.6570			10.0	30.0		
1,2-Dibromoethane (EDB)		0.4745	0.4902	0.5167	0.4745	Ave		0.4902			5.1	30.0		
Tetrachloroethene	0.4536 (0.4314	0.4901	0.4808	0.4352	Ave		0.4399			7.4	30.0		!
2,3-Dimethylheptane		0.5259	0.4983	0.5152	0.4424	Ave		0.4635			13.0	40.0		
Chlorobenzene	0.7703	0.7625	0.8001	0.8250	0.7352	Ave		0.7740			4.4	30.0		

Note: The m1 coefficient is the same as Ave RRF for an Ave curve type.

30.0 30.0

12.0

9.0

0.8719

0.8188

0.9544

0.8739

1.4974 0.7440 0.8675

Ave Ave

1.2091

30.0

11.0

0.9821 1.3657

Ave

0.8574

1.1195

1.2015

1.3736

1.2695

1,2,4-Trimethylbenzene

1,3-Dichlorobenzene

sec-Butylbenzene

0.9596 1.3519

1.0174

1.1644 1.4684 1.6286

1.0767

AIR - GC/MS VOA INITIAL CALIBRATION DATA INTERNAL STANDARD CURVE EVALUATION FORM VI

MIN R^2 OR COD # R^2 OR COD z 249 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 40.0 30.0 30.0 30.0 30.0 78 (X/N)MAX %RSD Analy Batch No.: Calibration ID: Purge: 7.6 11.0 12.0 9.5 13.0 13.0 14.0 22.0 8.4 11.0 17.0 10.0 21.0 7.9 8.0 8.7 %RSD Heated MIN RRF # M2COEFFICIENT 0.4678 0.4245 0.3610 1.1471 0.3489 0.5572 0.5453 0.7979 0.2131 1.2181 08:28 0.8380 0.5917 0.4716 0.3739 1.1872 0.9477 0.7587 Ā 0.32 (mm 09/26/2013 М ID: CURVE TYPE Ave Ave Ave Ave Ave Ave Ave Ave Ave Ave Ave Ave Ave Ave Ave Ave 0.9989 0.8853 0.5448 0909.0 0.7344 0.3239 0.4228 0.8191 0.7212 0.4306 0.1804 1.1200 0.3585 1.0633 0.5169 0.4262 Calibration End Date: Γ NI 140-278-1 RTX-5 0.2139 1.1569 1.2342 0.3348 0.4006 1.0921 0.5413 0.7982 0.4689 0.7604 0.3256 0.5253 0.6222 0.4088 1.0833 0.4034 0.5346 0.6012 0.1944 0.3817 0.6050 0.4793 0.8043 $\Gamma \Lambda \Gamma$ GC Column: 1.1446 0.3867 1.1105 1.2930 0.7158 0.4660 0.2230 0.5607 0.6484 0.3663 0.6504 Job No.: 0.9046 0.3355 0.3626 0.4816 0.6195 0.8390 0.4905 0.4022 0.5652 0.4101 1.0119 0.4737 0.7482 0.4227 1.1181RRF LVL 0.8913 0.2297 0.2399 1.2071 1.4215 0.3495 0.4169 0.5987 0.3872 0.9708 0.7765 0.8597 0.3251 0.4674 0.9212 1.4384 0.4659 1.2314 0.6701 0.8135 0.5303 0.3612 0.4241 0.7721 0.3997 7 $\Gamma\Lambda\Gamma$ 0.4646 0.3359 0.1998 0.2202 1.0511 1.3290 0.2849 0.3200 0.3030 0.3817 0.4171 0.2819 0.4051 0.6942 0.9419 0.9113 0.9280 1.0120 0.8188 LVL 1 LVL 6 0.6670 10:26 09/25/2013 TestAmerica Knoxville Start Date: ANALYTE 1,1,2,2-Tetrachloroethane 1, 3, 5-Trimethylbenzene 1,2,3-Trichloropropane ΜG Alpha Methyl Styrene m-Xylene & p-Xylene tert-Butylbenzene Instrument ID: 2-Ethylthiophene Isopropylbenzene 2-Chlorotoluene 4-Ethyltoluene Calibration Propylbenzene Ethylbenzene Lab Name: SDG No.: Bromoform o-Xylene Styrene Nonane Decane

AIR - GC/MS VOA INITIAL CALIBRATION DATA INTERNAL STANDARD CURVE EVALUATION FORM VI

249 Analy Batch No.: Job No.: 140-278-1 Lab Name: TestAmerica Knoxville

Heated Purge: (Y/N) 0.32 (mm) ID: RTX-5 GC Column: MG Instrument ID:

z

Calibration ID:

08:28

09/26/2013

Calibration End Date:

09/25/2013 10:26

Calibration Start Date:

SDG No.:

TIDES TALK			0			TIPAL	74400	CERTICIENT	# MTN BBF	# CS38	MAX	R^2	MIN R^2	2
ANALITE			PARE			TYPE.	77700)	%RSD (٥		_
	LVL 1	LVL 2	LVL 3	LVL 4	LVL 5		<u>-</u> 	M1 M2						
	LVL 6	LVL 7	LVL 8	FAT 9			-			_				T
Benzyl chloride	0.4840	0.6593	0.7837	0.7143	0.6524	Ave	0.	0.7284		17.0	30.0			
	0.7820		0.7995	0.7702										\exists
1,4-Dichlorobenzene	6789.0	0.8303	0.9574	0.9298	0.7963	Ave	0.	0.8409	-	11.0	30.0			
	0.8398		1 2520	1,1350	-		-	1 2567		0 71	30 0			Τ
4-Isopropyltoluene	0.9321	1.5580	1.3379	1.1/03	1.094/	Ave	- -	7007		· •	2		-	
1.2 3-Trimethvlhenzene	0.6617	0.9137	0.8646	0.7804	0.7027	Ave	0.	0.8365		12.0	40.0			
	0.8920	0.9830	0.8673	0.8631										
Butylcyclohexane	0.6019	0.7689	0.7862	0.8716	0.7285	Ave	0.	0.7353		11.0	40.0			_
1	0.7465	0.7736	0.6982	0.6424										
Indane	0.8021	1.0056	0.9890	0.9384	0.8627	Ave	0.	0.9531		8.6	40.0			
	1.0165	1.1101	0.9705	0.8829									į	
1,2-Dichlorobenzene	0.7235	0.8521	0.8889	0.8727	0.7472	Ave	0.	0.7997		8.6	30.0			
	0.8025		0.7606	0.6698			-							Ī
Butylbenzene	0.7035		1.0687	0.9540	0.8178	Ave		0.9436		13.0	30.0			_
•	0.9633	1.1122	0.9343	0.9294										7
Indene	0.6075		0.9610	0.8575	0.7894	Ave		0.8874		15.0	40.0			
	0.9575		0.9432	0.8973										
Undecane	0.2795	0.5104	0.5183	0.4730	0.4107	Ave	· 	0.4497		17.0	30.0			
	0.4832	0.5176	0.4393	0.4152				:						
1,2-Dimethy1-4-Ethylbenzene	0.7648	1.3338	1.3171	1.1784	1.0150	Ave	1.	1.1778		17.0	40.0			
	1.1618	1.4174	1.1685	1.2433										
1,2,4,5-Tetramethylbenzene	0.7713	1.3780	1.3729	1.2307	1.0335	Ave	1.	1.1812		17.0	40.0			
	1.1024	1.3953	1.1193	1.2274										T
1,2,3,5-Tetramethylbenzene	0.4733	0.8970	0.8433	0.7702	0.6447	Ave	· 0	0.7414		18.0	40.0			
	0.6843	0.8605	0.6991	0.8004										
1,2,3,4-Tetramethylbenzene	0.6884		1.1184	0.9803	0.8268	Ave	· -	0.9372		17.0	40.0			-
	0.7844		0.8441	0.9702										T
Dodecane	+++++	0.4450	0.5963	0.5171	0.3780	Ave	· -	0.4301		30.0	30.0			
	0.2154	0.4287	+++++	+++++										
1,2,4-Trichlorobenzene	0.6276	0.7173	0.7480	0.6107	0.4270	Ave	<u>.</u>	0.5569		30.0	30.0			_
	0.2880	0.4796	+++++	+++++					-			-		Ī
Naphthalene	+++++	+++++	1,0333	0.8541	0.6121	Ave	0.	0.6808		30.0	30.0			
	0.4412	0.7095	0.5016	0.6138										
Benzo(b)thiophene	0.6043	0.7602	0.8254	0.6755	0.4880	Ave	0.	0.5604	_	31.0	40.0			
	0.3243	0.5408	0.3584	0.4669										
Hexachlorobutadiene	+++++	0.5208	0.3736	0.3450	0.2504	Ave		0.2939		39.0	30.0			
	0.1990		0.1948	0.2025	\rightarrow		-	0		_	4			
1,2,3-Trichlorobenzene	0.3076	0.4162	0.4203	0.3342	0.2335	Ave	э́ 	0.2730		39.0	30.0			
	0.1278		0.1395	0.2201						_				

Page 117 of 260

AIR - GC/MS VOA INITIAL CALIBRATION DATA INTERNAL STANDARD CURVE EVALUATION FORM VI

249 Analy Batch No.: Job No.: 140-278-1 Lab Name: TestAmerica Knoxville SDG No.:

08:28 ID: 0.32 (mm) 09/26/2013 Calibration End Date: RTX-5 GC Column: 09/25/2013 MG Instrument ID:

10:26

Calibration Start Date:

Heated Purge: (Y/N) Calibration ID:

z

R^2 # MIN R^2	OR COD						
R^2	OR COD						
MAX	*RSD	40.0		40.0		30.0	
%RSD #		40.0		37.0		2.0	
MIN RRF 81		4	-	3	1		
#							_
ī	M2						
COEFFICIENT	M1	0.0793		0.0715		0.6940	
D	В						
CURVE	TYPE	Ave		Ave		Ave	
E)	LVL 5	0.0788		0.0637		0.6734 0.7088 Ave	
	LVL 4 LVL 9	0.1371	+++++	0.1132 0.0637 Ave	+++++	0.6734	0.6872
RRF	LVL 3 LVL 8	0.1012	0.0461	0.0850	+++++	0.6731	0.6950
	LVL 1 LVL 2 LVL 6 LVL 7	0.0942	0.0560	0.0722 0.0863	0.0431	0.7114	0.6991 0.7010 0.
	LVL 1 LVL 6	0.0761	0.0448	0.0722	0.0368	0.6969	0.6991
ANALYTE		2-Methylnaphthalene		1-Methylnaphthalene		4-Bromofluorobenzene (Surr)	

Page 118 of 260

FORM V AIR - GC/MS VOA INSTRUMENT PERFORMANCE CHECK

Lab Name: TestAmerica Knoxville Job No.: 140-278-1

SDG No.:

Lab File ID: GBFBJ15.D BFB Injection Date: 10/15/2013

Instrument ID: MG BFB Injection Time: 14:02

Analysis Batch No.: 299

M/E	ION ABUNDANCE CRITERIA	% RELATIVE ABUNDANCE
50	15.0 - 40.0 % of mass 95	16.3
75	30.0 - 60.0 % of mass 95	48.9
95	Base Peak, 100% relative abundance	100.0
96	5.0 - 9.0 % of mass 95	6.9
173	Less than 2.0 % of mass 174	0.6 (0.6)1
174	50.0 - 120.00 % of mass 95	96.0
175	5.0 - 9.0 % of mass 174	6.6 (6.9)1
176	95.0 - 101.0 % of mass 174	(90.5)(94.3)1
177	5.0 - 9.0 % of mass 176	6.0 (6.6)2

1-Value is % mass 174

2-Value is % mass 176

THIS CHECK APPLIES TO THE FOLLOWING SAMPLES, MS, MSD, BLANKS AND STANDARDS:

CLIENT SAMPLE ID	LAB SAMPLE ID	LAB FILE ID	DATE ANALYZED	TIME ANALYZED
	CCVIS 140-299/2	GCCVJ15.D	10/15/2013	14:30
	MB 140-299/3	GBLKI15.D	10/15/2013	16:52
A-INFLUENT	140-278-1	GI15P101.D	10/15/2013	18:46
A-MID GAC	140-278-2	GI15P102.D	10/15/2013	19:36
A-EFFLUENT	140-278-3	GI15P103.D	10/15/2013	20:25
C-INFLUENT	140-278-4	GI15P104.D	10/15/2013	21:15
C-EFFLUENT	140-278-6	GI15P106.D	10/15/2013	22:53

Lab Name: TestAmerica Knoxville Job No.: 140-278-1

Instrument ID: MG Calib Start Date: 09/25/2013 10:26

GC Column: RTX-5 ID: 0.32(mm) Calib End Date: 09/26/2013 08:28

Lab File ID: GCCVJ15.D Conc. Units: ppb v/v Heated Purge: (Y/N) N

ANALYTE	CURVE	AVE RRF	RRF	MIN RRF	CALC AMOUNT	SPIKE AMOUNT	%D	MAX %D
Chlorodifluoromethane	Ave	0.3550	0.3258		1.84	2.00	-8.2	30.0
Propene	Ave	0.6128	0.7101		2.32	2.00	15.9	30.0
Dichlorodifluoromethane	Ave	3.665	3.523		1.92	2.00	-3.9	30.0
Chloromethane	Ave	0.1852	0.1275		1.38	2.00	-31.1*	30.0
1,2-Dichloro-1,1,2,2-tetrafl uoroethane	Ave	2.430	1.671		1.37	2.00	-31.3*	30.0
Acetaldehyde	Ave	0.2083	0.1342		6.44	10.0	-35.6	50.0
Vinyl chloride	Ave	0.7588	0.5606		1.48	2.00	-26.1	30.0
1,3-Butadiene	Ave	0.5373	0.3792		1.41	2.00	-29.4	30.0
Butane	Ave	0.8792	0.6644		1.51	2.00	-24.4	30.0
Bromomethane	Ave	1.020	0.7761		1.52	2.00	-23.9	30.0
Chloroethane	Ave	0.4326	0.3103		1.43	2.00	-28.3	30.0
Ethanol	Ave	0.1469	0.1016		6.92	10.0	-30.8	50.0
Vinyl bromide	Ave	1.115	0.8067		1.45	2.00	-27.6	30.0
2-Methylbutane	Ave	0.6961	0.5392		1.55	2.00	-22.5	30.0
Trichlorofluoromethane	Ave	3.995	3.552		1.78	2.00	-11.1	30.0
Acrolein	Ave	0.1676	0.2129		2.54	2.00	27.0	30.0
Acetonitrile	Ave	0.1633	0.2138		2.62	2.00	30.9*	30.0
Acetone	Ave	0.3768	0.4310		2.29	2.00	14.4	30.0
Pentane	Ave	0.1661	0.1917		2.31	2.00	15.4	30.0
Isopropyl alcohol	Ave	0.7590	0.7327		1.93	2.00	-3.5	30.0
Ethyl ether	Ave	0.4629	0.6550		2.83	2.00	41.5*	30.0
1,1-Dichloroethene	Ave	0.9015	0.9038		2.01	2.00	0.3	30.0
Acrylonitrile	Ave	0.3222	0.4296		2.67	2.00	33.4*	30.0
1,1,2-Trichloro-1,2,2-triflu oroethane	Ave	2.042	1.991		1.95	2.00	-2.5	30.0
tert-Butyl alcohol	Ave	1.079	1.018		1.89	2.00	-5.6	30.0
Methylene Chloride	Ave	0.7302	0.7531		2.06	2.00	3.1	30.0
3-Chloropropene	Ave	0.6283	0.6281		2.00	2.00	-0.0	30.0
Carbon disulfide	Ave	2.478	2.690		2.17	2.00	8.6	30.0
2-Methylpentane	Ave	1.299	1.571		2.42	2.00	20.9	50.0
trans-1,2-Dichloroethene	Ave	1.067	1.078		2.02	2.00	1.0	30.0
Methyl tert-butyl ether	Ave	1.969	2.382		2.42	2.00	21.0	30.0
1,1-Dichloroethane	Ave	1.363	1.512		2.22	2.00	10.9	30.0
Vinyl acetate	Ave	1.050	1.589		3.03	2.00	51.3*	30.0
Hexane	Ave	0.5767	0.6094		2.11	2.00	5.7	30.0
2-Butanone (MEK)	Ave	0.3019	0.3468		2.30	2.00	14.9	30.0
cis-1,2-Dichloroethene	Ave	0.9359	1.011		2.16	2.00	8.0	30.0
Ethyl acetate	Ave	0.9076	1.264		2.79	2.00	39.3*	30.0
Chloroform	Ave	2,128	2.104		1.98	2.00	-1.2	30.0
Tetrahydrofuran	Ave	0.4549	0.6580		2.89	2.00	44.6*	30.0
1,1,1-Trichloroethane	Ave	2.697	2.577		1.91	2.00	-4.4	30.0
	1							

Lab Name: TestAmerica Knoxville Job No.: 140-278-1

SDG No.:

Lab Sample ID: CCVIS 140-299/2 Calibration Date: 10/15/2013 14:30

Instrument ID: MG Calib Start Date: 09/25/2013 10:26

GC Column: RTX-5 ID: 0.32(mm) Calib End Date: 09/26/2013 08:28

Lab File ID: GCCVJ15.D Conc. Units: ppb v/v Heated Purge: (Y/N) N

ANALYTE	CURVE TYPE	AVE RRF	RRF	MIN RRF	CALC AMOUNT	SPIKE AMOUNT	%D	MAX D%
1,2-Dichloroethane	Ave	0.3206	0.3021		1.88	2.00	-5.8	30.0
Cyclohexane	Ave	0.0882	0.0940		2.13	2.00	6.6	30.0
Benzene	Ave	0.5325	0.5723		2.15	2.00	7.5	30.0
Carbon tetrachloride	Ave	0.4667	0.4369		1.87	2.00	-6.4	30.0
1-Butanol	Ave	0.0323	0.0322		1.99	2.00	-0.4	30.0
2,3-Dimethylpentane	Ave	0.1129	0.1267		2.24	2.00	12.2	50.0
Thiophene	Ave	0.3600	0.3845		2.14	2.00	6.8	50.0
2,2,4-Trimethylpentane	Ave	0.7159	0.8365		2.34	2.00	16.8	30.0
Heptane	Ave	0.1875	0.2123		2.26	2.00	13.2	30.0
1,2-Dichloropropane	Ave	0.1604	0.1839		2.29	2.00	14.7	30.0
Trichloroethene	Ave	0.4379	0.3850		1.76	2.00	-12.1	30.0
Dibromomethane	Ave	0.3039	0.2830		1.86	2.00	-6.9	30.0
Bromodichloromethane	Ave	0.5420	0.5284		1.95	2.00	-2.5	30.0
1,4-Dioxane	Ave	0.0670	0.0623		1.86	2.00	-7.0	30.0
Methyl methacrylate	Ave	0.1371	0.1864		2.72	2.00	35.9*	30.0
Methylcyclohexane	Ave	0.3786	0.4066		2.15	2.00	7.4	50.0
4-Methyl-2-pentanone (MIBK)	Ave	0.2070	0.2130		2.06	2.00	2.9	30.0
cis-1,3-Dichloropropene	Ave	0.3179	0.3530		2.22	2.00	11.0	30.0
trans-1,3-Dichloropropene	Ave	0.3637	0.4135		2.27	2.00	13.7	30.0
Toluene	Ave	0.7704	0.8551		2.22	2.00	11.0	30.0
1,1,2-Trichloroethane	Ave	0.2146	0.2369		2.21	2.00	10.4	30.0
2-Methylthiophene	Ave	0.7255	0.8221		2.27	2.00	13.3	50.0
3-Methylthiophene	Ave	0.7365	0.8390		2.28	2.00	13.9	50.0
2-Hexanone	Ave	0.1185	0.1321		2.23	2.00	11.5	30.0
Octane	Ave	0.2643	0.3069		2.32	2.00	16.1	30.0
Dibromochloromethane	Ave	0.6570	0.6916		2.11	2.00	5.3	30.0
1,2-Dibromoethane (EDB)	Ave	0.4902	0.5087		2.08	2.00	3.8	30.0
Tetrachloroethene	Ave	0.4399	0.4174		1.90	2.00	-5.1	30.0
2,3-Dimethylheptane	Ave	0.4635	0.5448		2.35	2.00	17.5	50.0
Chlorobenzene	Ave	0.7740	0.7933		2.05	2.00	2.5	30.0
Ethylbenzene	Ave	0.9477	1.108		2.34	2.00	16.9	30.0
2-Ethylthiophene	Ave	0.8380	0.9663		2.31	2.00	15.3	50.0
m-Xylene & p-Xylene	Ave	0.7587	0.8875		4.68	4.00	17.0	30.0
Nonane	Ave	0.3489	0.4580		2.63	2.00	31.3*	30.0
Styrene	Ave	0.5572	0.6898		2.48	2.00	23.8	30.0
Bromoform	Ave	0.5453	0.6509		2.39	2.00	19.4	30.0
o-Xylene	Ave	0.7979	0.9390		2.35	2.00	17.7	30.0
1,1,2,2-Tetrachloroethane	Ave	0.4716	0.5624	·	2.39	2.00	19.3	30.0
1,2,3-Trichloropropane	Ave	0.2131	0.2215		2.08	2.00	4.0	30.0
Isopropylbenzene	Ave	1.218	1.401		2.30	2.00	15.1	30.0
Propylbenzene	Ave	0.3610	0.4232		2.34	2.00	17.2	30.0

 Lab Name:
 TestAmerica Knoxville
 Job No.:
 140-278-1

 SDG No.:
 Lab Sample ID:
 CCVIS 140-299/2
 Calibration Date:
 10/15/2013 14:30

Instrument ID: MG Calib Start Date: 09/25/2013 10:26

GC Column: RTX-5 ID: 0.32 (mm) Calib End Date: 09/26/2013 08:28

Lab File ID: GCCVJ15.D Conc. Units: ppb v/v Heated Purge: (Y/N) N

ANALYTE	CURVE TYPE	AVE RRF	RRF	MIN RRF	CALC AMOUNT	SPIKE AMOUNT	%D	MAX %D
2-Chlorotoluene	Ave	0.3739	0.3996		2.14	2.00	6.9	30.0
4-Ethyltoluene	Ave	1.187	1.410		2.38	2.00	18.8	30.0
1,3,5-Trimethylbenzene	Ave	0.5917	0.7002		2.37	2.00	18.3	30.0
Alpha Methyl Styrene	Ave	0.4678	0.5874		2.51	2.00	25.6	30.0
Decane	Ave	0.4245	0.5656	-	2.66	2.00	33.2*	30.0
tert-Butylbenzene	Ave	1.147	1.328		2.32	2.00	15.8	30.0
1,2,4-Trimethylbenzene	Ave	0.9821	1.156		2.35	2.00	17.7	30.0
sec-Butylbenzene	Ave	1.366	1.625		2.38	2.00	19.0	30.0
1,3-Dichlorobenzene	Ave	0.8719	0.8673		1.99	2.00	-0.5	30.0
Benzyl chloride	Ave	0.7284	0.8958	-	2.46	2.00	23.0	30.0
1,4-Dichlorobenzene	Ave	0.8409	0.8527		2.03	2.00	1.4	30.0
4-Isopropyltoluene	Ave	1.257	1.480		2.36	2.00	17.8	30.0
1,2,3-Trimethylbenzene	Ave	0.8365	0.9711		2.32	2.00	16.1	50.0
Butylcyclohexane	Ave	0.7353	0.8648		2.35	2.00	17.6	50.0
Indane	Ave	0.9531	1.095		2.30	2.00	14.9	50.0
1,2-Dichlorobenzene	Ave	0.7997	0.8102		2.03	2.00	1.3	30.0
Butylbenzene	Ave	0.9436	1.135		2.40	2.00	20.2	30.0
Indene	Ave	0.8874	1.061		2.39	2.00	19.6	50.0
Undecane	Ave	0.4497	0.6336		2.82	2.00	40.9*	30.0
1,2-Dimethyl-4-Ethylbenzene	Ave	1.178	1.345		2.28	2.00	14.2	50.0
1,2,4,5-Tetramethylbenzene	Ave	1.181	1.316		2.23	2.00	11.4	50.0
1,2,3,5-Tetramethylbenzene	Ave	0.7414	0.8164		2.20	2.00	10.1	50.0
1,2,3,4-Tetramethylbenzene	Ave	0.9372	1.012		2.16	2.00	8.0	50.0
Dodecane	Ave	0.4301	0.4274		1.99	2.00	-0.6	30.0
1,2,4-Trichlorobenzene	Ave	0.5569	0.4756		1.71	2.00	-14.6	30.0
Naphthalene	Ave	0.6808	0.7295		2.14	2.00	7.2	30.0
Benzo(b)thiophene	Ave	0.5604	0.4987		1.78	2.00	-11.0	50.0
Hexachlorobutadiene	Ave	0.2939	0.2604		1.77	2.00	-11.4	30.0
1,2,3-Trichlorobenzene	Ave	0.2730	0.2091		1.53	2.00	-23.4	30.0
2-Methylnaphthalene	Ave	0.0793	0.0421		6.65	12.5	-46.8	50.0
1-Methylnaphthalene	Ave	0.0715	0.0338		5.91	12.5	-52.7*	50.0
4-Bromofluorobenzene (Surr)	Ave	0.6940	0.6879		3.96	4.00	-0.9	30.0

FORM IV AIR - GC/MS VOA METHOD BLANK SUMMARY

Lab Name: TestAmerica Knoxville	Job No.: 140-278-1
SDG No.:	
Lab File ID: GBLKI15.D	Lab Sample ID: MB 140-299/3
Matrix: Air	Heated Purge: (Y/N) N
Instrument ID: MG	Date Analyzed: 10/15/2013 16:52
GC Column: RTX-5 ID: 0.32(mm)	

THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES:

CLIENT SAMPLE ID	LAB SAMPLE ID	LAB FILE ID	DATE ANALYZED
	LCS 140-299/1002	GCCVJ15-LCS	10/15/2013 14:30
A-INFLUENT	140-278-1	GI15P101.D	10/15/2013 18:46
A-MID GAC	140-278-2	GI15P102.D	10/15/2013 19:36
A-EFFLUENT	140-278-3	GI15P103.D	10/15/2013 20:25
C-INFLUENT	140-278-4	GI15P104.D	10/15/2013 21:15
C-EFFLUENT	140-278-6	GI15P106.D	10/15/2013 22:53

Lab Name: TestAmerica Knoxville	Job No.: 140-278-1				
SDG No.:					
Client Sample ID:	Lab Sample ID: MB 140-299/3				
Matrix: Air	Lab File ID: GBLKI15.D				
Analysis Method: TO-15	Date Collected:				
Sample wt/vol: 200(mL)	Date Analyzed: 10/15/2013 16:52				
Soil Aliquot Vol:	Dilution Factor: 1				
Soil Extract Vol.:	GC Column: RTX-5 ID: 0.32 (mm)				
% Moisture:	Level: (low/med) Low				
Analysis Batch No.: 299	Units: ppb v/v				

CAS NO.	COMPOUND NAME	MOLECULAR WEIGHT	RESULT	Q	RL	
71-43-2	Benzene	78.11	ND		0.20	
100-44-7	Benzyl chloride	126.58	ND		0.40	
74-83-9	Bromomethane	94.94	ND		0.20	
56-23-5	Carbon tetrachloride	153.81	ND		0.20	
108-90-7	Chlorobenzene	112.56	ND		0.20	
75-00-3	Chloroethane	64.52	ND		0.20	
67-66-3	Chloroform	119.38	ND		0.20	
74-87-3	Chloromethane	50.49	ND		0.50	
95-50-1	1,2-Dichlorobenzene	147.00	ND		0.20	
541-73-1	1,3-Dichlorobenzene	147.00	ND		0.20	
106-46-7	1,4-Dichlorobenzene	147.00	ND		0.20	·
75-71-8	Dichlorodifluoromethane	120.91	ND		0.20	
75-34-3	1,1-Dichloroethane	98.96	ND		0.20	
107-06-2	1,2-Dichloroethane	98.96	ND		0.20	
75-35-4	1,1-Dichloroethene	96.94	ND		0.20	
156-59-2	cis-1,2-Dichloroethene	96.94	ND		0.20	
78-87-5	1,2-Dichloropropane	112.99	ND		0.20	
10061-01-5	cis-1,3-Dichloropropene	110.97	ND		0.20	
10061-02-6	trans-1,3-Dichloropropen	110.97	ND		0.20	
76-14-2	1,2-Dichloro-1,1,2,2-tet rafluoroethane	170.92	ND		0.20	
100-41-4	Ethylbenzene	106.17	ND		0.20	
75-69-4	Trichlorofluoromethane	137.37	ND		0.20	
87-68-3	Hexachlorobutadiene	260.76	ND		1.0	
75-09-2	Methylene Chloride	84.93	ND		0.50	
100-42-5	Styrene	104.15	ND		0.20	
79-34-5	1,1,2,2-Tetrachloroethan e	167.85	ND		0.20	
127-18-4	Tetrachloroethene	165.83	ND		0.20	
108-88-3	Toluene	92.14	ND		0.20	
120-82-1	1,2,4-Trichlorobenzene	181.45	ND		1.0	
71-55-6	1,1,1-Trichloroethane	133.41	ND		0.20	
79-00-5	1,1,2-Trichloroethane	133.41	ND		0.20	
79-01-6	Trichloroethene	131.39	ND		0.20	
76-13-1	1,1,2-Trichloro-1,2,2-tr ifluoroethane	187.38	ND		0.20	

Client Sample ID: Lab Sample ID: MB 140-299/3 Matrix: Air Lab File ID: GBLKI15.D Analysis Method: TO-15 Date Collected: Sample wt/vol: 200(mL) Date Analyzed: 10/15/2013 16:52 Soil Aliquot Vol: Soil Extract Vol.: GC Column: RTX-5 ID: 0.32(mm) MB 140-299/3 Lab File ID: MB 140-299/3 Lab File ID: GBLKI15.D Date Collected: Date Collected: Date Collected: Dilution Factor: 1 Level: (low/med) Low	Lab Name: TestAmerica Knoxville	Job No.: 140-278-1
Matrix: Air Lab File ID: GBLKI15.D Analysis Method: TO-15 Date Collected: Sample wt/vol: 200(mL) Date Analyzed: 10/15/2013 16:52 Soil Aliquot Vol: Soil Extract Vol.: GC Column: RTX-5 ID: 0.32(mm) Moisture: Level: (low/med) Low	SDG No.:	
Analysis Method: TO-15 Date Collected: Sample wt/vol: 200(mL) Date Analyzed: 10/15/2013 16:52 Soil Aliquot Vol: Dilution Factor: 1 GC Column: RTX-5 ID: 0.32(mm) Moisture: Level: (low/med) Low	Client Sample ID:	Lab Sample ID: MB 140-299/3
Sample wt/vol: 200(mL) Date Analyzed: 10/15/2013 16:52 Soil Aliquot Vol: Soil Extract Vol.: GC Column: RTX-5 ID: 0.32(mm) Level: (low/med) Low	Matrix: Air	Lab File ID: GBLKI15.D
Soil Aliquot Vol: Soil Extract Vol.: GC Column: RTX-5 ID: 0.32 (mm) Moisture: Level: (low/med) Low	Analysis Method: TO-15	Date Collected:
Soil Extract Vol.: Soil Extract Vol.: GC Column: RTX-5 ID: 0.32 (mm) Level: (low/med) Low	Sample wt/vol: 200(mL)	Date Analyzed: 10/15/2013 16:52
% Moisture: Level: (low/med) Low	Soil Aliquot Vol:	Dilution Factor: 1
	Soil Extract Vol.:	GC Column: RTX-5 ID: 0.32 (mm)
Analysis Batch No.: 299 Units: ppb v/v	% Moisture:	Level: (low/med) Low
	Analysis Batch No.: 299	Units: ppb v/v

CAS NO.	COMPOUND NAME	MOLECULAR WEIGHT	RESULT	Q	RL	
95-63-6	1,2,4-Trimethylbenzene	120.20	ND	7	0.20	
108-67-8	1,3,5-Trimethylbenzene	120.20	ND		0.20	
75-01-4	Vinyl chloride	62.50	ND		0.20	
95-47-6	o-Xylene	106.17	ND		0.20	
179601-23-1	m-Xylene & p-Xylene	106.17	ND		0.20	
106-93-4	1,2-Dibromoethane (EDB)	187.87	ND		0.20	

CAS NO.	SURROGATE	%REC	Q	LIMITS
460-00-4	4-Bromofluorobenzene (Surr)	98		60-140

Lab Name: TestAmerica Knoxville	Job No.: 140-278-1
SDG No.:	
Client Sample ID:	Lab Sample ID: MB 140-299/3
Matrix: Air	Lab File ID: GBLKI15.D
Analysis Method: TO-15	Date Collected:
Sample wt/vol: 200(mL)	Date Analyzed: 10/15/2013 16:52
Soil Aliquot Vol:	Dilution Factor: 1
Soil Extract Vol.:	GC Column: RTX-5 ID: 0.32 (mm)
% Moisture:	Level: (low/med) Low
Analysis Batch No.: 299	Units: ug/m3

CAS NO.	COMPOUND NAME	MOLECULAR WEIGHT	RESULT	Q	RL	
71-43-2	Benzene	78.11	ND		0.64	
100-44-7	Benzyl chloride	126.58	ND		2.1	
74-83-9	Bromomethane	94.94	ND		0.78	
56-23-5	Carbon tetrachloride	153.81	ND		1.3	
108-90-7	Chlorobenzene	112.56	ND		0.92	
75-00-3	Chloroethane	64.52	ND		0.53	
67-66-3	Chloroform	119.38	ND		0.98	
74-87-3	Chloromethane	50.49	ND		1.0	
95-50-1	1,2-Dichlorobenzene	147.00	ND		1.2	
541-73-1	1,3-Dichlorobenzene	147.00	ND		1.2	
106-46-7	1,4-Dichlorobenzene	147.00	ND		1.2	
75-71-8	Dichlorodifluoromethane	120.91	ND		0.99	
75-34-3	1,1-Dichloroethane	98.96	ND		0.81	
107-06-2	1,2-Dichloroethane	98.96	ND		0.81	
75-35-4	1,1-Dichloroethene	96.94	ND		0.79	
156-59-2	cis-1,2-Dichloroethene	96.94	ND		0.79	
78-87-5	1,2-Dichloropropane	112.99	ND		0.92	
10061-01-5	cis-1,3-Dichloropropene	110.97	ND		0.91	
10061-02-6	trans-1,3-Dichloropropen	110.97	ND		0.91	
76-14-2	1,2-Dichloro-1,1,2,2-tet rafluoroethane	170.92	ND		1.4	
100-41-4	Ethylbenzene	106.17	ND		0.87	
75-69-4	Trichlorofluoromethane	137.37	ND		1.1	
87-68-3	Hexachlorobutadiene	260.76	ND		11	
75-09-2	Methylene Chloride	84.93	ND		1.7	
100-42-5	Styrene	104.15	ND		0.85	
79-34-5	1,1,2,2-Tetrachloroethan e	167.85	ND		1.4	
127-18-4	Tetrachloroethene	165.83	ND		1.4	
108-88-3	Toluene	92.14	ND		0.75	
120-82-1	1,2,4-Trichlorobenzene	181.45	ND		7.4	
71-55-6	1,1,1-Trichloroethane	133.41	ND		1.1	
79-00-5	1,1,2-Trichloroethane	133.41	ND		1.1	
79-01-6	Trichloroethene	131.39	ND		1.1	
76-13-1	1,1,2-Trichloro-1,2,2-tr ifluoroethane	187.38	ND		1.5	

Lab Name: TestAmerica Knoxville	Job No.: 140-278-1
SDG No.:	
Client Sample ID:	Lab Sample ID: MB 140-299/3
Matrix: Air	Lab File ID: GBLKI15.D
Analysis Method: TO-15	Date Collected:
Sample wt/vol: 200(mL)	Date Analyzed: 10/15/2013 16:52
Soil Aliquot Vol:	Dilution Factor: 1
Soil Extract Vol.:	GC Column: RTX-5 ID: 0.32 (mm)
% Moisture:	Level: (low/med) Low
Analysis Batch No.: 299	Units: ug/m3

CAS NO.	COMPOUND NAME	MOLECULAR WEIGHT	RESULT	Q	RL	
95-63-6	1,2,4-Trimethylbenzene	120.20	ND		0.98	
108-67-8	1,3,5-Trimethylbenzene	120.20	ND		0.98	
75-01-4	Vinyl chloride	62.50	ND		0.51	
95-47-6	o-Xylene	106.17	ND		0.87	
179601-23-1	m-Xylene & p-Xylene	106.17	ND		0.87	
106-93-4	1,2-Dibromoethane (EDB)	187.87	ND		1.5	

CAS NO.	SURROGATE	%REC	Q	LIMITS
460-00-4	4-Bromofluorobenzene (Surr)	98		60-140

FORM V AIR - GC/MS VOA INSTRUMENT PERFORMANCE CHECK

Lab Name: TestAmerica Knoxville Job No.: 140-278-1

SDG No.:

Lab File ID: GBFBJ16.D BFB Injection Date: 10/16/2013

Instrument ID: MG BFB Injection Time: 13:05

Analysis Batch No.: 301

M/E	ION ABUNDANCE CRITERIA	% RELA UNDANCE CRITERIA ABUND.	
50	15.0 - 40.0 % of mass 95	15.6	
75	30.0 - 60.0 % of mass 95	51.5	
95	Base Peak, 100% relative abundance	100.0	
96	5.0 - 9.0 % of mass 95	6.7	
173	Less than 2.0 % of mass 174	0.7	(0.6)1
174	50.0 - 120.00 % of mass 95	112.4	
175	5.0 - 9.0 % of mass 174	7.9	(7.0)1
176	95.0 - 101.0 % of mass 174	107.0	(95.2)1
177	5.0 - 9.0 % of mass 176	7.1	(6.6)2

1-Value is % mass 174

2-Value is % mass 176

THIS CHECK APPLIES TO THE FOLLOWING SAMPLES, MS, MSD, BLANKS AND STANDARDS:

CLIENT SAMPLE ID	LAB SAMPLE ID	LAB FILE ID	DATE ANALYZED	TIME ANALYZED
	CCVIS 140-301/2	GCCVJ16.D	10/16/2013	13:35
	MB 140-301/3	MB200mL.D	10/16/2013	16:03
C-MID GAC	140-278-5	GJ16P109.D	10/17/2013	00:25

Lab Name: TestAmerica Knoxville Job No.: 140-278-1

SDG No.:

Lab Sample ID: CCVIS 140-301/2 Calibration Date: 10/16/2013 13:35

Instrument ID: MG Calib Start Date: 09/25/2013 10:26

GC Column: RTX-5 ID: 0.32 (mm) Calib End Date: 09/26/2013 08:28

Lab File ID: GCCVJ16.D Conc. Units: ppb v/v Heated Purge: (Y/N) N

ANALYTE	CURVE TYPE	AVE RRF	RRF	MIN RRF	CALC AMOUNT	SPIKE AMOUNT	%D	MAX %D
Chlorodifluoromethane	Ave	0.3550	0.4175		2.35	2.00	17.6	30.0
Propene	Ave	0.6128	0.5040		1.64	2.00	-17.8	30.0
Dichlorodifluoromethane	Ave	3.665	4.432		2.42	2.00	20.9	30.0
1,2-Dichloro-1,1,2,2-tetraf1	Ave	2.430	2.921		2.40	2.00	20.2	30.0
uoroethane Chloromethane	Ave	0.1852	0.2229		2.41	2.00	20.4	30.0
Acetaldehyde	Ave	0.2083	0.1675		8.04	10.0	-19.6	50.0
Vinyl chloride	Ave	0.7588	0.1073		2.50	2.00	25.1	30.0
1,3-Butadiene	Ave	0.7388	0.6114		2.28	2.00	13.8	30.0
Butane	Ave	0.3373	1.113		2.53	2.00	26.6	30.0
Bromomethane	Ave	1.020	1.264		2.33	2.00	23.9	30.0
Chloroethane		0.4326	0.5041		2.48	2.00	16.5	30.0
	Ave	0.4326	0.1602	·	10.9	10.0	9.0	50.0
Ethanol	Ave		i	·		2.00	16.8	30.0
Vinyl bromide	Ave	1.115 0.6961	1.303		2.34	2.00	-0.4	30.0
2-Methylbutane	Ave		0.6936		1.99		22.3	30.0
Trichlorofluoromethane	Ave	3.995	4.884	<u> </u>	2.45	2.00		
Acrolein	Ave	0.1676	0.1060		1.26	2.00	-36.8*	30.0
Acetonitrile	Ave	0.1633	0.0994		1.22	2.00	-39.1*	30.0
Acetone	Ave	0.3768	0.2376			2.00	<u>-36.9*</u>	30.0
Pentane	Ave	0.1661	0.1657		1.99	2.00	-0.3	30.0
Isopropyl alcohol	Ave	0.7590	0.6492		1.71	2.00	-14.5	30.0
Ethyl ether	Ave	0.4629	0.3041		1.31	2.00	-34.3*	30.0
1,1-Dichloroethene	Ave	0.9015	0.9448		2.10	2.00	4.8	30.0
Acrylonitrile	Ave	0.3222	0.2070		1.28	2.00	35_8*	30.0
1,1,2-Trichloro-1,2,2-triflu oroethane	Ave	2.042	2.134		2.09	2.00	4.5	30.0
tert-Butyl alcohol	Ave	1.079	1.109		2.06	2.00	2.8	30.0
Methylene Chloride	Ave	0.7302	0.6865		1.88	2.00	-6.0	30.0
3-Chloropropene	Ave	0.6283	0.6097		1.94	2.00	-3.0	30.0
Carbon disulfide	Ave	2.478	2.534		2.05	2.00	2.3	30.0
2-Methylpentane	Ave	1.299	1.062		1.64	2.00	-18.2	50.0
trans-1,2-Dichloroethene	Ave	1.067	1.034		1.94	2.00	-3.0	30.0
Methyl tert-butyl ether	Ave	1.969	1.662		1.69	2.00	-15.6	30.0
1,1-Dichloroethane	Ave	1.363	1.229		1.80	2.00	-9.9	30.0
Vinyl acetate	Ave	1.050	0.6704		1,28	2.00	-36.1*	30.0
Hexane	Ave	0.5767	0.4407		1.53	2.00	-23.6	30.0
2-Butanone (MEK)	Ave	0.3019	0.2152		1.43	2.00	-28.7	30.0
cis-1,2-Dichloroethene	Ave	0.9359	0.9302		1.99	2.00	-0.6	30.0
Ethyl acetate	Ave	0.9076	0.6645		1.46	2.00	-26.8	30.0
Chloroform	Ave	2.128	2.144		2.01	2.00	0.7	30.0
Tetrahydrofuran	Ave	0.4549	0.2959		1.30	2.00	-35.0*	30.0
1,1,1-Trichloroethane	Ave	2.697	2.907		2.16	2.00	7.8	30.0

Lab Name: TestAmerica Knoxville Job No.: 140-278-1

SDG No.:

Lab Sample ID: CCVIS 140-301/2 Calibration Date: 10/16/2013 13:35

Instrument ID: MG Calib Start Date: 09/25/2013 10:26

GC Column: RTX-5 ID: 0.32(mm) Calib End Date: 09/26/2013 08:28

Lab File ID: GCCVJ16.D Conc. Units: ppb v/v Heated Purge: (Y/N) N

ANALYTE	CURVE TYPE	AVE RRF	RRF	MIN RRF	CALC AMOUNT	SPIKE AMOUNT	%D	MAX %D
1,2-Dichloroethane	Ave	0.3206	0.3243		2.02	2.00	1.2	30.0
Cyclohexane	Ave	0.0882	0.0842		1.91	2.00	-4.6	30.0
Benzene	Ave	0.5325	0.4651		1.75	2.00	-12.7	30.0
Carbon tetrachloride	Ave	0.4667	0.5879		2.52	2.00	26.0	30.0
1-Butanol	Ave	0.0323	0.0300		1.86	2.00	-7.1	30.0
2,3-Dimethylpentane	Ave	0.1129	0.1106		1.96	2.00	-2.0	50.0
Thiophene	Ave	0.3600	0.3518		1.95	2.00	-2.3	50.0
2,2,4-Trimethylpentane	Ave	0.7159	0.6481		1.81	2.00	-9.5	30.0
Heptane	Ave	0.1875	0.1807		1.93	2.00	-3.6	30.0
1,2-Dichloropropane	Ave	0.1604	0.1296		1.62	2.00	-19.2	30.0
Trichloroethene	Ave	0.4379	0.5032		2.30	2.00	14.9	30.0
Dibromomethane	Ave	0.3039	0.3217		2.12	2.00	5.9	30.0
Bromodichloromethane	Ave	0.5420	0.6001		2.21	2.00	10.7	30.0
1,4-Dioxane	Ave	0.0670	0.0674		2.01	2.00	0.6	30.0
Methyl methacrylate	Ave	0.1371	0.1155		1.69	2.00	-15.7	30.0
Methylcyclohexane	Ave	0.3786	0.3840		2.03	2.00	1.4	50.0
4-Methyl-2-pentanone (MIBK)	Ave	0.2070	0.1991		1.92	2.00	-3.8	30.0
cis-1,3-Dichloropropene	Ave	0.3179	0.3065		1.93	2.00	-3.6	30.0
trans-1,3-Dichloropropene	Ave	0.3637	0.3409		1.87	2.00	-6.3	30.0
Toluene	Ave	0.7704	0.6561		1.70	2.00	-14.8	30.0
1,1,2-Trichloroethane	Ave	0.2146	0.1834		1.71	2.00	-14.5	30.0
2-Methylthiophene	Ave	0.7255	0.6868		1.89	2.00	-5.3	50.0
3-Methylthiophene	Ave	0.7365	0.6990		1.90	2.00	-5.1	50.0
2-Hexanone	Ave	0.1185	0.1163		1.96	2.00	-1.8	30.0
Octane	Ave	0.2643	0.2730		2.07	2.00	3.3	30.0
Dibromochloromethane	Ave	0.6570	0.7599		2.31	2.00	15.7	30.0
1,2-Dibromoethane (EDB)	Ave	0.4902	0.4800		1.96	2.00	-2.1	30.0
Tetrachloroethene	Ave	0.4399	0.4825		2.19	2.00	9.7	30.0
2,3-Dimethylheptane	Ave	0.4635	0.3796		1.64	2.00	-18.1	50.0
Chlorobenzene	Ave	0.7740	0.7644		1.98	2.00	-1.2	30.0
Ethylbenzene	Ave	0.9477	0.8006		1.69	2.00	-15.5	30.0
2-Ethylthiophene	Ave	0.8380	0.7928		1.89	2.00	-5.4	50.0
m-Xylene & p-Xylene	Ave	0.7587	0.6619		3.49	4.00	-12.8	30.0
Nonane	Ave	0.3489	0.3110		1.78	2.00	-10.9	30.0
Styrene	Ave	0.5572	0.5230		1.88	2.00	-6.1	30.0
Bromoform	Ave	0.5453	0.7320		2.68	2.00	34.2*	30.0
o-Xylene	Ave	0.7979	0.6856		1.72	2.00	-14.1	30.0
1,1,2,2-Tetrachloroethane	Ave	0.4716	0.4156		1.76	2.00	-11.9	30.0
1,2,3-Trichloropropane	Ave	0.2131	0.2002		1.88	2.00	-6.0	30.0
Isopropylbenzene	Ave	1.218	1.092		1.79	2.00	-10.3	30.0
Propylbenzene	Ave	0.3610	0.3394		1.88	2.00	-6.0	30.0

Lab Name: TestAmerica Knoxville Job No.: 140-278-1

SDG No.:

Lab Sample ID: CCVIS 140-301/2 Calibration Date: 10/16/2013 13:35

Instrument ID: MG Calib Start Date: 09/25/2013 10:26

GC Column: RTX-5 ID: 0.32(mm) Calib End Date: 09/26/2013 08:28

Lab File ID: GCCVJ16.D Conc. Units: ppb v/v Heated Purge: (Y/N) N

ANALYTE	CURVE TYPE	AVE RRF	RRF	MIN RRF	CALC AMOUNT	SPIKE AMOUNT	%D	MAX %D
2-Chlorotoluene	Ave	0.3739	0.3756		2.01	2.00	0.4	30.0
4-Ethyltoluene	Ave	1.187	1.113		1.87	2.00	-6.3	30.0
1,3,5-Trimethylbenzene	Ave	0.5917	0.5855		1.98	2.00	-1.1	30.0
Alpha Methyl Styrene	Ave	0.4678	0.4895		2.09	2.00	4.6	30.0
Decane	Ave	0.4245	0.3745		1.76	2.00	-11.8	30.0
tert-Butylbenzene	Ave	1.147	1.150		2.00	2.00	0.2	30.0
1,2,4-Trimethylbenzene	Ave	0.9821	0.997		2.03	2.00	1.5	30.0
sec-Butylbenzene	Ave	1.366	1.346		1.97	2.00	-1.4	30.0
1,3-Dichlorobenzene	Ave	0.8719	0.9313		2.14	2.00	6.8	30.0
Benzyl chloride	Ave	0.7284	0.8105		2.23	2,00	11.3	30.0
1,4-Dichlorobenzene	Ave	0.8409	0.9148		2.18	2.00	8.8	30.0
4-Isopropyltoluene	Ave	1.257	1.352		2.15	2.00	7.6	30.0
1,2,3-Trimethylbenzene	Ave	0.8365	0.8600		2.06	2.00	2.8	50.0
Butylcyclohexane	Ave	0.7353	0.7386		2.01	2.00	0.4	50.0
Indane	Ave	0.9531	0.9575		2.01	2.00	0.5	50.0
1,2-Dichlorobenzene	Ave	0.7997	0.8417		2.11	2.00	5.3	30.0
Butylbenzene	Ave	0.9436	0.9615		2.04	2.00	1.9	30.0
Indene	Ave	0.8874	0.9561		2.15	2.00	7.7	50.0
Undecane	Ave	0.4497	0.3925		1.75	2.00	-12.7	30.0
1,2-Dimethyl-4-Ethylbenzene	Ave	1.178	1.337		2.27	2.00	13.5	50.0
1,2,4,5-Tetramethylbenzene	Ave	1.181	1.353		2.29	2.00	14.5	50.0
1,2,3,5-Tetramethylbenzene	Ave	0.7414	0.8469		2.28	2.00	14.2	50.0
1,2,3,4-Tetramethylbenzene	Ave	0.9372	1.086		2.32	2.00	15.9	50.0
Dodecane	Ave	0.4301	0.3514		1.63	2.00	-18.3	30.0
1,2,4-Trichlorobenzene	Ave	0.5569	0.5217		1.87	2.00	-6.3	30.0
Naphthalene	Ave	0.6808	0.8186		2.40	2.00	20.2	30.0
Benzo(b)thiophene	Ave	0.5604	0.6367		2.27	2.00	13.6	50.0
Hexachlorobutadiene	Ave	0.2939	0.2931		1.99	2.00	-0.3	30.0
1,2,3-Trichlorobenzene	Ave	0.2730	0.2813		2.06	2.00	3.1	30.0
2-Methylnaphthalene	Ave	0.0793	0.0796	· · · · · · · · · · · · · · · · · · ·	12.5	12.5	0.4	50.0
1-Methylnaphthalene	Ave	0.0715	0.0632		11.1	12.5	-11.6	50.0
4-Bromofluorobenzene (Surr)	Ave	0.6940	0.7269		4.19	4.00	4.7	30.0

FORM IV AIR - GC/MS VOA METHOD BLANK SUMMARY

Lab Name: TestAmerica Knoxville	Job No.: 140-278-1
SDG No.:	
Lab File ID: MB200mL.D	Lab Sample ID: MB 140-301/3
Matrix: Air	Heated Purge: (Y/N) N
Instrument ID: MG	Date Analyzed: 10/16/2013 16:03
GC Column: RTX-5 ID: 0.32 (mm)	

THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES:

CLIENT SAMPLE ID	LAB SAMPLE ID	LAB FILE ID	DATE ANALYZED
	LCS 140-301/1002	GCCVJ16-LCS	10/16/2013 13:35
C-MID GAC	140-278-5	GJ16P109.D	10/17/2013 00:25

Lab Name: TestAmerica Knoxville	Job No.: 140-278-1
SDG No.:	
Client Sample ID:	Lab Sample ID: MB 140-301/3
Matrix: Air	Lab File ID: MB200mL.D
Analysis Method: TO-15	Date Collected:
Sample wt/vol: 200(mL)	Date Analyzed: 10/16/2013 16:03
Soil Aliquot Vol:	Dilution Factor: 1
Soil Extract Vol.:	GC Column: RTX-5 ID: 0.32 (mm)
% Moisture:	Level: (low/med) Low
Analysis Batch No.: 301	Units: ppb v/v

CAS NO.	COMPOUND NAME	MOLECULAR WEIGHT	RESULT	Q	RL	
71-43-2	Benzene	78.11	ND		0.20	
100-44-7	Benzyl chloride	126.58	ND		0.40	
74-83-9	Bromomethane	94.94	ND		0.20	
56-23-5	Carbon tetrachloride	153.81	ND		0.20	
108-90-7	Chlorobenzene	112.56	ND		0.20	
75-00-3	Chloroethane	64.52	NĎ	<u>-</u>	0.20	
67-66-3	Chloroform	119.38	ND		0.20	
74-87-3	Chloromethane	50.49	ND		0.50	
95-50-1	1,2-Dichlorobenzene	147.00	ND		0.20	
541-73-1	1,3-Dichlorobenzene	147.00	ND		0.20	
106-46-7	1,4-Dichlorobenzene	147.00	. ND		0.20	
75-71-8	Dichlorodifluoromethane	120.91	ND		0.20	
75-34-3	1,1-Dichloroethane	98.96	ND		0.20	
107-06-2	1,2-Dichloroethane	98.96	ND		0.20	
75-35-4	1,1-Dichloroethene	96.94	ND		0.20	
156-59-2	cis-1,2-Dichloroethene	96.94	ND		0.20	
78-87-5	1,2-Dichloropropane	112.99	ND	-	0.20	
10061-01-5	cis-1,3-Dichloropropene	110.97	ND		0.20	
10061-02-6	trans-1,3-Dichloropropen e	110.97	ND		0.20	
76-14-2	1,2-Dichloro-1,1,2,2-tet rafluoroethane	170.92	ND		0.20	·
100-41-4	Ethylbenzene	106.17	ND		0.20	
75-69-4	Trichlorofluoromethane	137.37	ND		0.20	
87-68-3	Hexachlorobutadiene	260.76	ИД		1.0	
75-09-2	Methylene Chloride	84.93	ND		0.50	
100-42-5	Styrene	104.15	ND		0.20	
79-34-5	1,1,2,2-Tetrachloroethan e	167.85	ND		0.20	
127-18-4	Tetrachloroethene	165.83	ND		0.20	
108-88-3	Toluene	92.14	ND		0.20	
120-82-1	1,2,4-Trichlorobenzene	181.45	ND		1.0	
71-55-6	1,1,1-Trichloroethane	133.41	ND		0.20	
79-00-5	1,1,2-Trichloroethane	133.41	ND		0.20	
79-01-6	Trichloroethene	131.39	ND		0.20	
76-13-1	1,1,2-Trichloro-1,2,2-tr ifluoroethane	187.38	ND		0.20	

Lab Name: TestAmerica Knoxville	Job No.: 140-278-1
SDG No.:	
Client Sample ID:	Lab Sample ID: MB 140-301/3
Matrix: Air	Lab File ID: MB200mL.D
Analysis Method: TO-15	Date Collected:
Sample wt/vol: 200(mL)	Date Analyzed: 10/16/2013 16:03
Soil Aliquot Vol:	Dilution Factor: 1
Soil Extract Vol.:	GC Column: RTX-5 ID: 0.32 (mm)
% Moisture:	Level: (low/med) Low
Analysis Batch No.: 301	Units: ppb v/v

CAS NO.	COMPOUND NAME	MOLECULAR WEIGHT	RESULT	Q	RL	
95-63-6	1,2,4-Trimethylbenzene	120.20	ND		0.20	
108-67-8	1,3,5-Trimethylbenzene	120.20	ND		0.20	_
75-01-4	Vinyl chloride	62.50	ND		0.20	
95-47-6	o-Xylene	106.17	ND		0.20	
179601-23-1	m-Xylene & p-Xylene	106.17	ND		0.20	
106-93-4	1,2-Dibromoethane (EDB)	187.87	ND		0.20	

CAS NO.	SURROGATE	%REC	Q	LIMITS
460-00-4	4-Bromofluorobenzene (Surr)	100		60-140

Lab Name: TestAmerica Knoxville	Job No.: 140-278-1
SDG No.:	
Client Sample ID:	Lab Sample ID: MB 140-301/3
Matrix: Air	Lab File ID: MB200mL.D
Analysis Method: TO-15	Date Collected:
Sample wt/vol: 200(mL)	Date Analyzed: 10/16/2013 16:03
Soil Aliquot Vol:	Dilution Factor: 1
Soil Extract Vol.:	GC Column: RTX-5 ID: 0.32 (mm)
% Moisture:	Level: (low/med) Low
Analysis Batch No.: 301	Units: ug/m3

CAS NO.	COMPOUND NAME	MOLECULAR WEIGHT	RESULT	Q	RL	
71-43-2	Benzene	78.11	ND		0.64	
100-44-7	Benzyl chloride	126.58	ND		2.1	
74-83-9	Bromomethane	94.94	ND		0.78	
56-23-5	Carbon tetrachloride	153.81	ND		1.3	
108-90-7	Chlorobenzene	112.56	ND		0.92	
75-00-3	Chloroethane	64.52	ND		0.53	
67-66-3	Chloroform	119.38	ND		0.98	•
74-87-3	Chloromethane	50.49	ND		1.0	•
95-50-1	1,2-Dichlorobenzene	147.00	ND		1.2	
541-73-1	1,3-Dichlorobenzene	147.00	ND		1.2	_
106-46-7	1,4-Dichlorobenzene	147.00	ND		1.2	
75-71-8	Dichlorodifluoromethane	120.91	ND		0.99	
75-34-3	1,1-Dichloroethane	98.96	ND		0.81	
107-06-2	1,2-Dichloroethane	98.96	ND		0.81	
75-35-4	1,1-Dichloroethene	96.94	ND		0.79	
156-59-2	cis-1,2-Dichloroethene	96.94	ND		0.79	
78-87-5	1,2-Dichloropropane	112.99	ND		0.92	
10061-01-5	cis-1,3-Dichloropropene	110.97	ND		0.91	
10061-02-6	trans-1,3-Dichloropropen	110.97	ND		0.91	
76-14-2	1,2-Dichloro-1,1,2,2-tet rafluoroethane	170.92	ND		1.4	
100-41-4	Ethylbenzene	106.17	ND		0.87	
75-69-4	Trichlorofluoromethane	137.37	ND		1.1	
87-68-3	Hexachlorobutadiene	260.76	ND		11	
75-09-2	Methylene Chloride	84.93	ND		1.7	
100-42-5	Styrene	104.15	ND		0.85	
79-34-5	1,1,2,2-Tetrachloroethan e	167.85	ND		1.4	
127-18-4	Tetrachloroethene	165.83	ND		1.4	
108-88-3	Toluene	92.14	ND		0.75	
120-82-1	1,2,4-Trichlorobenzene	181.45	ND		7.4	
71-55-6	1,1,1-Trichloroethane	133.41	ND		1.1	
79-00-5	1,1,2-Trichloroethane	133.41	ND		1.1	
79-01-6	Trichloroethene	131.39	ND		1.1	
76-13-1	1,1,2-Trichloro-1,2,2-tr ifluoroethane	187.38	ND		1.5	

Lab Name: TestAmerica Knoxville	Job No.: 140-278-1	
SDG No.:		
Client Sample ID:	Lab Sample ID: MB 140-301/3	
Matrix: Air	Lab File ID: MB200mL.D	
Analysis Method: TO-15	Date Collected:	
Sample wt/vol: 200(mL)	Date Analyzed: 10/16/2013 16:03	
Soil Aliquot Vol:	Dilution Factor: 1	
Soil Extract Vol.:	GC Column: RTX-5 ID: 0	0.32 (mm)
% Moisture:	Level: (low/med) Low	
Analysis Batch No.: 301	Units: ug/m3	

CAS NO.	COMPOUND NAME	MOLECULAR WEIGHT	RESULT	Q	RL	
95-63-6	1,2,4-Trimethylbenzene	120.20	ND		0.98	
108-67-8	1,3,5-Trimethylbenzene	120.20	ND		0.98	
75-01-4	Vinyl chloride	62.50	ND		0.51	
95-47-6	o-Xylene	106.17	ND		0.87	
179601-23-1	m-Xylene & p-Xylene	106.17	ND		0.87	
106-93-4	1,2-Dibromoethane (EDB)	187.87	ND		1.5	

CAS NO.	SURROGATE	%REC	Q	LIMITS
460-00-4	4-Bromofluorobenzene (Surr)	100		60-140

FORM II AIR - GC/MS VOA SURROGATE RECOVERY

Lab Nam	e: TestAmerica Knoxville	Job No.	: 140-278-1
SDG No.	·	· · · · · · · · · · · · · · · · · · ·	
Matrix:	Air	Level:	Low

GC Column (1): RTX-5 ID: 0.32 (mm)

, 			
Client Sample ID	Lab Sample ID	BFB	#
A-INFLUENT	140-278-1	101	
A-MID GAC	140-278-2	98	
A-EFFLUENT	140-278-3	99	_
C-INFLUENT	140-278-4	98	
C-MID GAC	140-278-5	100	
C-EFFLUENT	140-278-6	99	
	MB 140-299/3	98	
	MB 140-301/3	100	
	LCS 140-299/1002	99	
	LCS 140-301/1002	105	

 $\frac{\text{QC LIMITS}}{60-140}$

BFB = 4-Bromofluorobenzene (Surr)

Column to be used to flag recovery values

FORM II TO-15

FORM III AIR - GC/MS VOA LAB CONTROL SAMPLE RECOVERY

Lab Name:	TestAmerica	Knoxville	Job No.:	140-278-1	

SDG No.:

Matrix: Air Level: Low Lab File ID: GCCVJ15-LCS.d

Lab ID: LCS 140-299/1002 Client ID:

	SPIKE	LCS	LCS	QC	
	ADDED	CONCENTRATION	કુ	LIMITS	#
COMPOUND	(ppb v/v)	(ppb v/v)	REC	REC	
Benzene	2.00	2.15	107	70-130	
Benzyl chloride	2.00	2.46	123	70-130	
Bromomethane	2.00	1.52	76	70-130	
Carbon tetrachloride	2.00	1.87	94	70-130	-
Chlorobenzene	2.00	2.05	103	70-130	
Chloroethane	2.00	1.43	72	70-130	
Chloroform	2.00	1.98	99	70-130	
Chloromethane	2.00	1.38	69	60-140	
1,2-Dichlorobenzene	2.00	2.03	101	70-130	
1,3-Dichlorobenzene	2.00	1.99	99	70-130	
1,4-Dichlorobenzene	2.00	2.03	101	70-130	
Dichlorodifluoromethane	2.00	1.92	96	60-140	
1,1-Dichloroethane	2.00	2.22	111	70-130	
1,2-Dichloroethane	2.00	1.88	94	70-130	
1,1-Dichloroethene	2.00	2.01	100	70-130	
cis-1,2-Dichloroethene	2.00	2.16	108	70-130	
1,2-Dichloropropane	2.00	2.29	115	70-130	
cis-1,3-Dichloropropene	2.00	2.22	111	70-130	
trans-1,3-Dichloropropene	2.00	2.27	114	70-130	
1,2-Dichloro-1,1,2,2-tetrafluo	2.00	1.37	69	60-140	
roethane					
Ethylbenzene	2.00	2.34	117		
Trichlorofluoromethane	2.00	1.78	89		
Hexachlorobutadiene	2.00	1.77	89		
Methylene Chloride	2.00	2.06	103		
Styrene	2.00	2.48	124	70-130	
1,1,2,2-Tetrachloroethane	2.00	2.39	119	70-130	
Tetrachloroethene	2.00	1.90	95	70-130	
Toluene	2.00	2.22	111	70-130	
1,2,4-Trichlorobenzene	2.00	1.71	85	60-140	
1,1,1-Trichloroethane	2.00	1.91	96	70-130	
1,1,2-Trichloroethane	2.00	2.21	110	70-130	
Trichloroethene	2.00	1.76	88	70-130	
1,1,2-Trichloro-1,2,2-trifluor	2.00	1.95	98	70-130	
oethane 1,2,4-Trimethylbenzene	2.00	2.35	118	70-130	
1,3,5-Trimethylbenzene	2.00	2.33	118		
Vinyl chloride	2.00	1.48	74		
o-Xylene	2.00	2.35	118		
m-Xylene & p-Xylene	4.00	4.68	117		
1,2-Dibromoethane (EDB)	2.00	2.08	104		
TYZ DIDIOMOGCHANE (EDD)	2.00	2.00	1 104		

[#] Column to be used to flag recovery and RPD values

FORM III TO-15

FORM III AIR - GC/MS VOA LAB CONTROL SAMPLE RECOVERY

Lab Name: TestAmerica Knoxville Job No.: 140-278-1

SDG No.:

Matrix: Air Level: Low Lab File ID: GCCVJ16-LCS.d

Lab ID: LCS 140-301/1002 Client ID:

	SPIKE	LCS	LCS	QC	
	ADDED	CONCENTRATION	용	LIMITS	#
COMPOUND	(ppb v/v)	(ppb v/v)	REC	REC	
Benzene	2.00	1.75	87	70-130	
Benzyl chloride	2.00	2.23	111	70-130	
Bromomethane	2.00	2.48	124	70-130	
Carbon tetrachloride	2.00	2.52	126	70-130	•
Chlorobenzene	2.00	1.98	99	70-130	
Chloroethane	2.00	2.33	117	70-130	
Chloroform	2.00	2.01	101	70-130	
Chloromethane	2.00	2.41	120	60-140	
1,2-Dichlorobenzene	2.00	2.11	105	70-130	
1,3-Dichlorobenzene	2.00	2.14	107	70-130	
1,4-Dichlorobenzene	2.00	2.18	109	70-130	
Dichlorodifluoromethane	2.00	2.42	121	60-140	
1,1-Dichloroethane	2.00	1.80	90		
1,2-Dichloroethane	2.00	2.02	101	70-130	
1,1-Dichloroethene	2.00	2.10	105	70-130	
cis-1,2-Dichloroethene	2.00	1.99	99	70-130	
1,2-Dichloropropane	2.00	1.62	81	70-130	
cis-1,3-Dichloropropene	2.00	1.93	96	70-130	
trans-1,3-Dichloropropene	2.00	1.87	94	70-130	
1,2-Dichloro-1,1,2,2-tetrafluo	2.00	2.40	120		
roethane					
Ethylbenzene	2.00	1.69	84		
Trichlorofluoromethane	2.00	2.45	122	60-140	
Hexachlorobutadiene	2.00	1.99	100		
Methylene Chloride	2.00	1.88	94		
Styrene	2.00	1.88	94		
1,1,2,2-Tetrachloroethane	2.00	1.76	88		
Tetrachloroethene	2.00	2.19	110		
Toluene	2.00	1.70	85		
1,2,4-Trichlorobenzene	2.00	1.87	94		
1,1,1-Trichloroethane	2.00	2.16	108	70-130	
1,1,2-Trichloroethane	2.00	1.71	85		
Trichloroethene	2.00	2.30	115		
1,1,2-Trichloro-1,2,2-trifluor	2.00	2.09	105	70-130	
oethane					
1,2,4-Trimethylbenzene	2.00	2.03	101		
1,3,5-Trimethylbenzene	2.00	1.98	99		
Vinyl chloride	2.00	2.50	125		
o-Xylene	2.00	1.72	86		
m-Xylene & p-Xylene	4.00	3.49	87		
1,2-Dibromoethane (EDB)	2.00	1.96	98	70-130	

 $[\]mbox{\#}$ Column to be used to flag recovery and RPD values

FORM VIII AIR - GC/MS VOA INTERNAL STANDARD AREA AND RETENTION TIME SUMMARY

Lab Name: TestAmerica Knoxville	Job No.: 140-278-1
SDG No.:	
Sample No.: ICIS 140-249/7	Date Analyzed: 09/25/2013 14:34
Instrument ID: MG	GC Column: RTX-5 ID: 0.32(mm)
Lab File ID (Standard): GICI256.D	Heated Purge: (Y/N) N
Calibration ID: 78	

CBM DFB CBZ AREA # RT # RT # AREA # RT # AREA # 1693892 16.44 1756224 11.81 INITIAL CALIBRATION MID-POINT 415229 9.67 2371449 16.77 UPPER LIMIT 581321 10.00 2458714 12.14 16.11 1053734 11.48 1016335 LOWER LIMIT 249137 9.34 LAB SAMPLE ID CLIENT SAMPLE ID 513114 9.67 2370537 11.81 2181773 16.44 ICV 140-249/13

CBM = Chlorobromomethane (IS)

DFB = 1,4-Difluorobenzene

CBZ = Chlorobenzene-d5 (IS)

Area Limit = 60%-140% of internal standard area RT Limit = \pm 0.33 minutes of internal standard RT

Column used to flag values outside QC limits

FORM VIII TO-15

FORM VIII

AIR - GC/MS VOA INTERNAL STANDARD AREA AND RETENTION TIME SUMMARY

Lab Name: TestAmerica Knoxville Job No.: 140-278-1 SDG No.: Sample No.: CCVIS 140-299/2 Date Analyzed: 10/15/2013 14:30 GC Column: RTX-5 ID: 0.32 (mm) Instrument ID: MG Lab File ID (Standard): GCCVJ15.D Heated Purge: (Y/N) N Calibration ID: 78

		CBM		DFB		CBZ	
		AREA #	RT #	AREA #	RT #	AREA #	RT #
12/24 HOUR STD		472006	9.67	2134375	11.80	1900827	16.43
UPPER LIMIT		660808	10.00	2988125	12.13	2661158	16.76
LOWER LIMIT		283204	9.34	1280625	11.47	1140496	16.10
LAB SAMPLE ID	CLIENT SAMPLE ID						
LCS 140-299/1002		472006	9.67	2134375	11.80	1900827	16.43
MB 140-299/3		422807	9.66	1757919	11.80	1604848	16.43
140-278-1	A-INFLUENT	363481	9.67	1394782	11.81	1400088	16.43
140-278-2	A-MID GAC	452550	9.67	2077885	11.80	1874785	16.43
140-278-3	A-EFFLUENT	331870	9.67	1368744	11.81	1365361	16.43
140-278-4	C-INFLUENT	394754	9.68	1648992	11.81	1521757	16.43
140-278-6	C-EFFLUENT	365768	9.66	1519537	11.80	1391040	16.43

CBM = Chlorobromomethane (IS)

DFB = 1,4-Difluorobenzene

CBZ = Chlorobenzene-d5 (IS)

Area Limit = 60%-140% of internal standard area RT Limit = \pm 0.33 minutes of internal standard RT

Column used to flag values outside QC limits

FORM VIII TO-15

FORM VIII

AIR - GC/MS VOA INTERNAL STANDARD AREA AND RETENTION TIME SUMMARY

Lab Name: TestAmerica Knoxville

SDG No.:

Sample No.: CCVIS 140-301/2

Date Analyzed: 10/16/2013 13:35

Instrument ID: MG

GC Column: RTX-5

ID: 0.32 (mm)

Lab File ID (Standard): GCCVJ16.D

Heated Purge: (Y/N) N

Calibration ID: 78

CBM DFB CBZ AREA # RT # AREA # RT # AREA # RT # 246715 983785 11.80 943446 16.43 12/24 HOUR STD 9.67 UPPER LIMIT 345401 10.00 1377299 12.13 1320824 16.76 16.10 LOWER LIMIT 148029 9.34 590271 11.47 566068 LAB SAMPLE ID CLIENT SAMPLE ID 943446 16.43 LCS 140-301/1002 983785 11.80 246715 9.67 MB 140-301/3 274519 9.68 1121269 11.81 1042848 16.43

290615

9.66

CBM = Chlorobromomethane (IS)

DFB = 1,4-Difluorobenzene

CBZ = Chlorobenzene-d5 (IS)

Area Limit = 60%-140% of internal standard area RT Limit = \pm 0.33 minutes of internal standard RT

C-MID GAC

Column used to flag values outside QC limits

FORM VIII TO-15

140-278-5

1130401

1205712

11.80

16.42

Ample Calculation

FORM I AIR - GC/MS VOA ORGANICS ANALYSIS DATA SHEET

Lab Name: TestAmerica Knoxville Job No.: 140-278-1 SDG No.: Client Sample ID: A-INFLUENT Lab Sample ID: 140-278-1 Matrix: Air Lab File ID: GI15P101.D Analysis Method: TO-15 Date Collected: 10/10/2013 14:45 Date Analyzed: 10/15/2013 18:46 Sample wt/vol: (20(mL) Soil Aliquot Vol: Dilution Factor: 1 Soil Extract Vol.: GC Column: RTX-5 ID: 0.32 (mm) % Moisture: Level: (low/med) Low Analysis Batch No.: 299 Units: ug/m3

CAS NO.	COMPOUND NAME	MOLECULAR WEIGHT	RESULT	Q	RL	
71-43-2	Benzene	78.11	ND		6.4	
100-44-7	Benzyl chloride	126.58	ND		21	
74-83-9	Bromomethane	94.94	ND		7.8	
56-23-5	Carbon tetrachloride	153.81	ND		13	
108-90-7	Chlorobenzene	112.56	ND		9.2	
75-00-3	Chloroethane	64.52	ND		5.3	
67-66-3	Chloroform	119.38	ND		9.8	
74-87-3	Chloromethane	50.49	ND		10	
95-50-1	1,2-Dichlorobenzene	147.00	ND	-	12	
541-73-1	1,3-Dichlorobenzene	147.00	ND		12	
106-46-7	1,4-Dichlorobenzene	147.00	ND		12	
75-71-8	Dichlorodifluoromethane	120.91	ND		9.9	
75-34-3	1,1-Dichloroethane	98.96	39		8.1	
107-06-2	1,2-Dichloroethane	98.96	ND		8.1	
75-35-4	1,1-Dichloroethene	96.94	190		7.9	
156-59-2	cis-1,2-Dichloroethene	96.94	220		7.9	
78-87-5	1,2-Dichloropropane	112.99	ND		9.2	
10061-01-5	cis-1,3-Dichloropropene	110.97	ND		9.1	
10061-02-6	trans-1,3-Dichloropropen	110.97	ND		9.1	
76-14-2	1,2-Dichloro-1,1,2,2-tet rafluoroethane	170.92	ND		14	-
100-41-4	Ethylbenzene	106.17	ND		8.7	
75-69-4	Trichlorofluoromethane	137.37	16		11	
87-68-3	Hexachlorobutadiene	260.76	ND		110	
75-09-2	Methylene Chloride	84.93	ND		17	
100-42-5	Styrene	104.15	ND		8.5	
79-34-5	1,1,2,2-Tetrachloroethan e	167.85	ND		14	
127-18-4	Tetrachloroethene	165.83	ND		14	
108-88-3	Toluene	92.14	15		7.5	
120-82-1	1,2,4-Trichlorobenzene	181.45	ND		74	
71-55-6	1,1,1-Trichloroethane	133.41	810		11	
79-00-5	1,1,2-Trichloroethane	133.41	ND		11	
79-01-6	Trichloroethene	131.39	1400	>	11	
76-13-1	1,1,2-Trichloro-1,2,2-tr ifluoroethane	187.38	ND		15	

Report Date: 16-Oct-2013 16:10:14

Chrom Revision: 2.1 16-Sep-2013 13:53:52

rille

Janual Calculation

tation Report

TestAmerica Knoxville

Target Compound Quantitation Report

Data File:

\\KNXCHROM\ChromData\MG\20131015-133.b\GI15P101.D

Lims ID:

140-2<u>78-A-1</u>

Client ID:

(A-INFLUENT)

Sample Type:

Client

Inject. Date:

15-Oct-2013 18:46:30

ALS Bottle#: Dil. Factor:

Lab Sample ID:

1

Worklist Smp#:

4

Purge Vol: Sample Info: 500.000 mL

Misc. Info.: Operator ID: 140-278-a-1

G101513,TO15,1-all.sub,,,,140-0000133-004

403648

Instrument ID:

MG

1.0000

Method:

Limit Group:

MSA TO14A_15 Routine ICAL

Last Update:

16-Oct-2013 16:10:14

Calib Date:

26-Sep-2013 08:28:30

Integrator:
Quant Method:

RTE Internal Standard

ID Type: Quant By: Deconvolution ID Initial Calibration

Last ICal File:

\\KNXCHROM\ChromData\MG\20131001-110.b\GICI258R.D

Column 1:

RTX-5 (0.32 mm)

Detector

MS SCAN

Process Host:

XAWRK036

First Level Reviewer: barlozhetskayaa

Date:

16-Oct-2013 16:10:14

_ inst zero. He instruction zeriozinational year			Pate.			01 20 10 101101		
Compound	Sig	RT (min.)	Adj RT (min.)	DIt RT (min.)	Q	Response	On-Col Amt ppb v/v	Flags
* 1 Chlorobromomethane (IS)	128	9.673	9.668	0.005	69	363481	4.00	
* 2 1,4-Difluorobenzene	114	11.808	11.803	0.005	92	1394782	4.00	
* 3 Chlorobenzene-d5 (IS)	117	16.430	16.430	0.0	83	1400088	4.00	
\$ 4 4-Bromofluorobenzene (Surr)	95	18.031	18.031	0.0	96	981457	4.04	
20 Trichlorofluoromethane	101	5.807	5.785	0.022	93	41229	0.1136	
27 1,1-Dichloroethene	96	6.589	6.573	0.016	96	160893	1.96	
31 Methylene Chloride	84	6.977	6.966	0.011	67	4711	0.0710	
37 1,1-Dichloroethane	63	8.293	8.282	0.011	97	48207	0.3891	
41 cis-1,2-Dichloroethene	96	9.323	9.317	0.006	86	190136	2.24	
43 Chloroform	83	9.689	9.673	0.016	16	3229	0.0167	
45 1,1,1-Trichloroethane	97	10.714	10.709	0.006	93	1450600	5.92	
56 Trichloroethene	130	12.499	12.493	0.006	94	1634243) 10.7	
65 Toluene	91	14.494	14.489	0.005	92	42669	0.1582	

FORM VI

AIR - GC/MS VOA INITIAL CALIBRATION DATA INTERNAL STANDARD CURVE EVALUATION

Lab Name: TestAmerica Knoxville		Job No.: 140-278-1		Analy Batch No.: 249
SDG No.:				
Instrument ID: MG		GC Column: RTX-5	ID: 0.32 (mm)	Heated Purge: (Y/N) N
Calibration Start Date: 09/25/2013 10:26	10:26	Calibration End Date: 09/26/2013 08:28	09/26/2013 08:28	Calibration ID: 78
ANALYTE		RRF	CURVE COEFFICIENT	T # MIN RRF %RSD # MAX R^2 # MIN R^2

0.3219 0.3149 0.3396 0.3217 0.2981 Ave 0.3039 0.2909 0.3081 0.2866 0.2533	0.4201 0.4460 0.4038 0.3557	0.4120 0.5069	0.1670 0.1670 0.1854 Ave 0.1004 0.1591 0.1670 0.1609 0.1354	0 1070 0 1071 0 1070 0 1	0.1722 0.1988	0.6996 0.7377 0.7170 0.5916	0.7181 0.7654	Thiophene 0.3605 0.3544 0.3602 0.3840 0.3604 Ave 0.3600 0.3532 0.3831 0.3687 0.3157	0.1111 0.1215 0.1166 0.0972	0.1034 0.1187	0.0305 0.0314 0.0326 0.0245	1-Butanol 0.0343 0.0448 0.0326 0.0325 0.0279 Ave 0.0323	0.3687 0.8156	0.5093 0.5429 0.5176 0.4389	Benzene 0.6033 0.5907 0.5145 0.5614 0.5138 Ave 0.5325	0.0874 0.0924 0.0865 0.0727	0.0822 0.1006	0.3431 0.3543 0.3431 0.3073 AVe 0.3206 0.3037 0.3037 0.3020 0.2679	2.6031 2.7648 2.5533 2.3212		0.4770 0.5307 0.5243 0.4595	0.4911 0.3701	2.1180 2.0357 1.7959	2 326 2 2020 2 2027	1.0720	0.9127 0.9875 0.9795 0.8599	0.8950 0.9298	0.2893 0.3113 0.2911 0.2823	0.4378 0.2501	C6 Range 1.8730 1.7503 1.2614 1.1562 1.0951 Ave 1.2338 1.0244 1.0461 1.0461 0.8512	0.4908 0.5089 0.5287 0.4404	0 8718 0 7611 0 5261	1 tvt	LVL 6 LVL 7 LVL 8 LVL 9 B M1 M2
3039		0.4379	0.1604	0 1604	0.1875		0.7159	0.3600		0.1129		0.0323	0.4667		0.5325		0.0882	0.3206		2.6968		0.4549	111111111111111111111111111111111111111	2 1283	0.9076		0.9359	1	0.3019	1.2338		0 5767		
8.3		11.0 30.0	00.0		7.8 30.0		7.4 30.0	40.0		8.1 40.0		17.0 30.0	35.0 * 30.0	_	9.3 30.0		8.7 30.0	80.0	_	6.7 30.0		15.0 30.0		30 0	15.0 30.0		4.5 30.0		19.0 30.0	28.0 30.0		0.50 0.00		

Note: The ml coefficient is the same as Ave RRF for an Ave curve type.

Tetra Tech

INTERNAL CORRESPONDENCE

TO:

P. RICH

DATE:

DECEMBER 4, 2013

FROM:

A. COGNETTI

COPIES:

DV FILE

SUBJECT:

ORGANIC DATA VALIDATION - VOC

LOCKHEED MARTIN CORPORATION (LMC) - MIDDLE RIVER

SAMPLE DELIVERY GROUP (SDG) - 140-414-1

SAMPLES:

6/Air/VOC

A-EFFLUENT

A-INFLUENT

A-MID GAC

C-EFFLUENT

C-INFLUENT

C-MID GAC

Overview

The sample set for LMC – Middle River, SDG 140-414-1 consisted of six (6) air samples. All samples were analyzed for volatile organic compounds (VOC). No field duplicate pair is included in this SDG.

The samples were collected by Geo Trans on November 7, 2013 and analyzed by Test America Laboratories, Inc. All analyses were conducted in accordance with EPA Method TO-15 analytical and reporting protocols.

The data contained in this SDG were validated with regard to the following parameters: data completeness, holding times, GC/MS tuning, initial/continuing calibrations, laboratory method blank results, surrogate spike recoveries, blank spike results, internal standard recoveries, chromatographic resolution, compound identification, compound quantitation, and detection limits. Areas of concern are listed below.

Major

No major noncompliances were noted.

Minor

No minor noncompliances were noted.

Notes

The chain of custody indicated that no gauges were provided with the summa canisters. This means that the canister pressure before and after sampling could not be evaluated. No validation action was taken.

Nondetected results were reported to the reporting limit.

Executive Summary

Laboratory Performance: None.

Other Factors Affecting Data Quality: None.

P. Rich TO: FROM: A. Cognetti

SDG: 140-414-1

DATE: December 4, 2013

The data for these analyses were reviewed with reference to Region III modifications to U.S. EPA National Functional Guidelines for Organic Data Validation (Sept. 1994) and EPA Method TO-15. The text of this report has been formulated to address only those problem areas affecting data quality.

PAGE 2

Ann Cognetti

Chemist/Data Validator

Tetra Tech

Joseph A. Samchuck Quality Assurance Officer

Attachments:

Appendix A - Qualified Analytical Results

Appendix B – Results as Reported by the Laboratory

Appendix C – Support Documentation

Appendix A

Qualified Analytical Results

Qualifier Codes:

A = Lab Blank Contamination

B = Field Blank Contamination

C = Calibration Noncompliance (i.e., % RSDs, %Ds, ICVs, CCVs, RRFs, etc.)

C01 = GC/MS Tuning Noncompliance

D = MS/MSD Recovery Noncompliance

E = LCS/LCSD Recovery Noncompliance

F = Lab Duplicate Imprecision

G = Field Duplicate Imprecision

H = Holding Time Exceedance

I = ICP Serial Dilution Noncompliance

J = ICP PDS Recovery Noncompliance; MSA's r < 0.995

K = ICP Interference - includes ICS % R Noncompliance

L = Instrument Calibration Range Exceedance

M = Sample Preservation Noncompliance

N = Internal Standard Noncompliance

N01 = Internal Standard Recovery Noncompliance Dioxins

N02 = Recovery Standard Noncompliance Dioxins

N03 = Clean-up Standard Noncompliance Dioxins

O = Poor Instrument Performance (i.e., base-time drifting)

P = Uncertainty near detection limit (< 2 x IDL for inorganics and <CRQL for organics)

Q = Other problems (can encompass a number of issues; i.e.chromatography,interferences, etc.)

R = Surrogates Recovery Noncompliance

S = Pesticide/PCB Resolution

T = % Breakdown Noncompliance for DDT and Endrin

U = RPD between columns/detectors >40% for positive results determined via GC/HPLC

V = Non-linear calibrations; correlation coefficient r < 0.995

W = EMPC result

X = Signal to noise response drop

Y = Percent solids <30%

Z = Uncertainty at 2 standard deviations is greater than sample activity

Z1 = Tentatively Identified Compound considered presumptively present

Z2 = Tentatively Identified Compound column bleed

Z3 = Tentatively Identified Compound aldol condensate

PROJ_NO: 03265 NSAMPLE	A-EFFLUENT-140-414-1	A-INFLUE	A-INFLUENT-140-414-1		A-MID GAC-140-414-1	4-1	C-EFFLUENT-140-414-1	₹.
		140-414-1			140-414-2		140-414-6	
FRACTION: OV-M3 SAMP_DATE	TE 11/7/2013	11/7/2013			11/7/2013		11/7/2013	
MEDIA: AIR QC_TYPE	WN	ž			WN		N	
STIND	UG/M3	UG/M3			UG/M3		UG/M3	
PCT_SOLIDS	SO							
PARAMETER	RESULT VOL OLCD	SD RESULT	NOL IQI	OLCD	RESULT	GLCD	RESULT	arco
1,1,1-TRICHLOROETHANE	11 D				38		11 U	
1,1,2,2-TETRACHLOROETHANE	14 U		14 U		1 D	:	14 U	
1,1,2-TRICHLOROETHANE	11 U		11		11 0		11 U	
1,1,2-TRICHLOROTRIFLUOROETHANE	E 15 U		15 U		15 U		15 U	
1,1-DICHLOROETHANE	8.1 U		39		48		8.1 U	
1,1-DICHLOROETHENE	7.9 U		170		95		7.9 U	
1,2,4-TRICHLOROBENZENE	74 U		74 U		74 U		74 U	
1,2,4-TRIMETHYLBENZENE	9.8 U		9.8 U		0.8 U		9.8 U	
1,2-DIBROMOETHANE	15 U		15 U		15 U		15 U	
1,2-DICHLOROBENZENE	12 U		12 U		12 U		12 U	
1,2-DICHLOROETHANE	8.1 U		8.1 U		8.1 U		8.1 U	
1,2-DICHLOROPROPANE	9.2 U		9.2 U		9.2 U		9.2 U	
1,2-DICHLOROTETRAFLUOROETHANE	IE 14 U		14 U		14 U		14 U	
1,3,5-TRIMETHYLBENZENE	0 8.8		9.8 U		9.8 U		9.8 U	
1,3-DICHLOROBENZENE	12 U		12 U	-	12 U		12 U	
1,4-DICHLOROBENZENE	12 U		12 U		12 U		12 U	
BENZENE	0.4 U		6.4 U		38		10	
BENZYL CHLORIDE	21 U		21 U		21 U		21 U	
BROMOMETHANE	7.8 U		7.8 U		7.8 U		7.8 U	
CARBON TETRACHLORIDE	13 U		13 U		13 U		13 U	
CHLOROBENZENE	9.2 U		9.2 U		9.2 U		9.2 U	
CHLOROETHANE	5.3 U		5.3 U		5.3 U		5.3 U	
CHLOROFORM	9.8 U		9.8 U		9.8 U		U 8.6	
CHLOROMETHANE	10 U		10 U		10 U		10 U	
CIS-1,2-DICHLOROETHENE	U 6.7		200		260		U 6.7	
CIS-1,3-DICHLOROPROPENE	9.1 U		9.1 U		9.1 U		9.1 U	
DICHLORODIFLUOROMETHANE	U 8.9		0.9 U		9.9 U		0.6 O	
ETHYLBENZENE	U 7.8		8.7 U		8.7 U		8.7 U	
HEXACHLOROBUTADIENE	110 U		110 U		110 U		110 U	
M+P-XYLENES	U 7.8		8.7 U		8.7 U		8.7 U	
METHYLENE CHLORIDE	U 71		17 U		U 71		20	
O-XYLENE	U 7.8		8.7 U		8.7 U		8.7 U	
STYRENE	8.5 U		8.5 U		8.5 U		8.5 U	
TETRACHLOROETHENE	14 U		14 U		14 U			
TOI LICH	0 2 2		11		7.5 U		7.5 U	

PROJ_NO: 03265	NSAMPLE	C-INFLUENT-140-414-1	414-1	C-MID GAC-140-414-1	
SDG: 140-414-1	LAB_ID	140-414-4		140-414-5	
FRACTION: OV-M3	SAMP_DATE	11/7/2013		11/7/2013	
MEDIA: AIR	QC_TYPE	ΣZ		N.	
	UNITS	UG/M3		UG/M3	
	PCT_SOLIDS				
PARAMETER	5	RESULT VQL	L QLCD	RESULT VOL OI	OLCD
1,1,1-TRICHLOROETHANE	Шл	7		11 U	
1,1,2,2-TETRACHLOROETHANE	THANE	14 U		14 U	
1,1,2-TRICHLOROETHANE	빚	11 U		11 D	
1,1,2-TRICHLOROTRIFLUOROETHANE	UOROETHANE	15 U		15 U	
1,1-DICHLOROETHANE		8.1 U		8.1 U	
1,1-DICHLOROETHENE		U 6.7		U 6.7	
1,2,4-TRICHLOROBENZENE	E N	74 U		74 U	
1,2,4-TRIMETHYLBENZENE	NE.	9.8 U		11	
1,2-DIBROMOETHANE		15 U		15 U	
1,2-DICHLOROBENZENE	111	12 U		12 U	
1,2-DICHLOROETHANE		8.1 U		8.1 U	
1,2-DICHLOROPROPANE	ш	9.2 U		9.2 U	
1,2-DICHLOROTETRAFLUOROETHANE	UOROETHANE	14 U		14 U	
1,3,5-TRIMETHYLBENZENE	.NE	9.8 U		9.8 U	
1,3-DICHLOROBENZENE		12 U	-	12 U	
1,4-DICHLOROBENZENE		12 U	-	12 U	
BENZENE		13		11	
BENZYL CHLORIDE		21 U		21 U	
BROMOMETHANE		7.8 U		7.8 U	
CARBON TETRACHLORIDE	IDE	13 U		13 U	
CHLOROBENZENE		9.2 U		9.2 U	
CHLOROETHANE		5.3 U		5.3 U	
CHLOROFORM		9.8 U		9.8 U	
CHLOROMETHANE		10 U		10 U	
CIS-1,2-DICHLOROETHENE	ENE	18		9.3	
CIS-1,3-DICHLOROPROPENE	JENE	9.1 U		9.1 U	
DICHLORODIFLUOROMETHANE	ETHANE	0.9 U		U 6.6	
ETHYLBENZENE		8.6		8.7 U	
HEXACHLOROBUTADIENE	NE	110 U		110 U	
M+P-XYLENES		45		8.7 U	
METHYLENE CHLORIDE		U 71		17 U	
O-XYLENE		24		8.7 U	
STYRENE		8.5 U		8.5 U	
TETRACHLOROETHENE		14 U		14 U	
ENE L		7.5 U		7.5 U	

PROJ_NO: 03265	NSAMPLE	A-EFFLUENT-140-414-1	T-140-414	-	A-INFLUENT-140-414-1	140-414-	_	A-MID GAC-140-414-1	40-414-1		C-EFFLUENT-140-414-1	-140-414	-
SDG: 140-414-1	LAB_ID	140-414-3			140-414-1			140-414-2			140-414-6		
FRACTION: OV-M3	SAMP_DATE	11/7/2013			11/7/2013		İ	11/7/2013			11/7/2013		
MEDIA: AIR	QC_TYPE	ΣN			ΣZ			NZ.			ΣŽ		
	UNITS	UG/M3			UG/M3			UG/M3			UG/M3		
	PCT_SOLIDS												
	DUP_OF											İ	
PARAMETER		RESULT	VQL	QLCD	RESULT	Val alcb	alcd	RESULT	VQL QLCD	alcd	RESULT	Val	alcd
TRANS-1,3-DICHLOROPROPENE	ROPENE	6	9.1 U		9.1	ם		9.1	n		9.1	כ	
TRICHLOROETHENE		-	11 U		1500			39			-	11 U	
TRICHLOROFLUOROMETHANE	THANE	1	11 U		41			1	11 U		-	11 U	
VINYL CHLORIDE		5.	5.1 U		5.1	ם		5.1 U	n		5.1 U	U	

PROJ_NO: 03265	NSAMPLE	C-INFLUENT-140-414-1	140-414	-	C-MID GAC-140-414-1	10-414-	
SDG: 140-414-1	LAB_ID	140-414-4			140-414-5	į	
FRACTION: OV-M3	SAMP_DATE	11/7/2013			11/7/2013	i.	
MEDIA: AIR	QC_TYPE	∑ Z			∑ N		
	UNITS	UG/M3			UG/M3		
	PCT_SOLIDS			:			
	DUP_OF						
PARAMETER		RESULT	ΛαΓ	arcp	RESULT	VQL	alcd
TRANS-1,3-DICHLOROPROPENE	SOPENE	9.1	ח		9.1	J	
TRICHLOROETHENE		280			11 U	_ 	
TRICHLOROFLUOROMETHANE	THANE	11 0	D		11 U	_	
VINYL CHLORIDE		5.1			5.1	_	

Appendix B

Results as Reported by the Laboratory

Lab Name: TestAmerica Knoxville	Job No.: 140-414-1
SDG No.:	
Client Sample ID: A-EFFLUENT	Lab Sample ID: 140-414-3
Matrix: Air	Lab File ID: RK08Pos09.D
Analysis Method: TO-15	Date Collected: 11/07/2013 10:08
Sample wt/vol: 20(mL)	Date Analyzed: 11/09/2013 02:53
Soil Aliquot Vol:	Dilution Factor: 1
Soil Extract Vol.:	GC Column: RTX-5 ID: 0.32 (mm)
% Moisture:	Level: (low/med) Low
Analysis Batch No.: 405	Units: ug/m3

CAS NO.	COMPOUND NAME	MOLECULAR WEIGHT	RESULT	Q	RL	
71-43-2	Benzene	78.11	ND		6.4	
100-44-7	Benzyl chloride	126.58	ND		21	
74-83-9	Bromomethane	94.94	ND		7.8	
56-23-5	Carbon tetrachloride	153.81	ND		13	
108-90-7	Chlorobenzene	112.56	ND	•	9.2	
75-00-3	Chloroethane	64.52	ND	-	5.3	
67-66-3	Chloroform	119.38	ND		9.8	
74-87-3	Chloromethane	50.49	ND		10	
95-50-1	1,2-Dichlorobenzene	147.00	ND		12	
541-73-1	1,3-Dichlorobenzene	147.00	ND		12	
106-46-7	1,4-Dichlorobenzene	147.00	ND		12	
75-71-8	Dichlorodifluoromethane	120.91	ND		9.9	
75-34-3	1,1-Dichloroethane	98.96	ND		8.1	
107-06-2	1,2-Dichloroethane	98.96	ND		8.1	
75-35-4	1,1-Dichloroethene	96.94	ND		7.9	
156-59-2	cis-1,2-Dichloroethene	96.94	ND		7.9	
78-87-5	1,2-Dichloropropane	112.99	ND		9.2	
10061-01-5	cis-1,3-Dichloropropene	110.97	ND		9.1	
10061-02-6	trans-1,3-Dichloropropen	110.97	ND		9.1	
76-14-2	1,2-Dichloro-1,1,2,2-tet rafluoroethane	170.92	ND		14	
100-41-4	Ethylbenzene	106.17	ND		8.7	
75-69-4	Trichlorofluoromethane	137.37	ND		11	
87-68-3	Hexachlorobutadiene	260.76	ND		110	
75-09-2	Methylene Chloride	84.93	ND		17	
100-42-5	Styrene	104.15	ND		8.5	
79-34-5	1,1,2,2-Tetrachloroethan e	167.85	ND		14	
127-18-4	Tetrachloroethene	165.83	ND		14	
108-88-3	Toluene	92.14	ND		7.5	
120-82-1	1,2,4-Trichlorobenzene	181.45	ND		74	
71-55-6	1,1,1-Trichloroethane	133.41	ND		11	
79-00-5	1,1,2-Trichloroethane	133.41	ND		11	
79-01-6	Trichloroethene	131.39	ND		11	
76-13-1	1,1,2-Trichloro-1,2,2-tr ifluoroethane	187.38	ND		15	

Lab Name: TestAmerica Knoxville

SDG No.:

Client Sample ID: A-EFFLUENT

Lab Sample ID: 140-414-3

Matrix: Air

Lab File ID: RK08Pos09.D

Analysis Method: TO-15

Date Collected: 11/07/2013 10:08

Sample wt/vol: 20(mL)

Date Analyzed: 11/09/2013 02:53

Soil Aliquot Vol:

Soil Extract Vol.:

GC Column: RTX-5

ID: 0.32(mm)

% Moisture:

Level: (low/med) Low

Analysis Batch No.: 405

Units: ug/m3

CAS NO.	COMPOUND NAME	MOLECULAR WEIGHT	RESULT	Q	RL	
95-63-6	1,2,4-Trimethylbenzene	120.20	ND		9.8	
108-67-8	1,3,5-Trimethylbenzene	120.20	ND		9.8	
75-01-4	Vinyl chloride	62.50	ND		5.1	
95-47-6	o-Xylene	106.17	ND		8.7	
179601-23-1	m-Xylene & p-Xylene	106.17	ND		8.7	
106-93-4	1,2-Dibromoethane (EDB)	187.87	ND		15	

CAS NO.	SURROGATE	%REC	Q ·	LIMITS
460-00-4	4-Bromofluorobenzene (Surr)	96		60-140

SDG No.:

Client Sample ID: A-INFLUENT

Lab Sample ID: 140-414-1

Matrix: Air

Lab File ID: RK08Pos13.D

Analysis Method: TO-15

Date Collected: 11/07/2013 10:06

Sample wt/vol: 20(mL) Date Analyzed: 11/09/2013 06:02

Soil Aliquot Vol: _____ Dilution Factor: 1

Lab Name: TestAmerica Knoxville Job No.: 140-414-1

 Soil Extract Vol.:
 GC Column:
 RTX-5
 ID:
 0.32 (mm)

% Moisture: Level: (low/med) Low

Analysis Batch No.: 405 Units: ug/m3

CAS NO.	COMPOUND NAME	MOLECULAR WEIGHT	RESULT	Q	RL	
71-43-2	Benzene	78.11	ND		6.4	
100-44-7	Benzyl chloride	126.58	ND		21	
74-83-9	Bromomethane	94.94	ND		7.8	
56-23-5	Carbon tetrachloride	153.81	ND		13	
108-90-7	Chlorobenzene	112.56	ND		9.2	
75-00-3	Chloroethane	64.52	ND		5.3	
67-66-3	Chloroform	119.38	ND		9.8	
74-87-3	Chloromethane	50.49	ND		10	
95-50-1	1,2-Dichlorobenzene	147.00	ND		12	
541-73-1	1,3-Dichlorobenzene	147.00	ND		12	
106-46-7	1,4-Dichlorobenzene	147.00	ND		12	
75-71-8	Dichlorodifluoromethane	120.91	ND		9.9	
75-34-3	1,1-Dichloroethane	98.96	39		8.1	
107-06-2	1,2-Dichloroethane	98.96	ND		8.1	
75-35-4	1,1-Dichloroethene	96.94	170		7.9	
156-59-2	cis-1,2-Dichloroethene	96.94	200		7.9	
78-87-5	1,2-Dichloropropane	112.99	ND		9.2	
10061-01-5	cis-1,3-Dichloropropene	110.97	ND		9.1	
10061-02-6	trans-1,3-Dichloropropen e	110.97	ND		9.1	
76-14-2	1,2-Dichloro-1,1,2,2-tet rafluoroethane	170.92	ND		14	
100-41-4	Ethylbenzene	106.17	ND		8.7	
75-69-4	Trichlorofluoromethane	137.37	41		11	
87-68-3	Hexachlorobutadiene	260.76	ND		110	
75-09-2	Methylene Chloride	84.93	ND		17	
100-42-5	Styrene	104.15	ND		8.5	
79-34-5	1,1,2,2-Tetrachloroethan e	167.85	ND		14	
127-18-4	Tetrachloroethene	165.83	ND		14	
108-88-3	Toluene	92.14	11		7.5	
120-82-1	1,2,4-Trichlorobenzene	181.45	ND		74	
71-55-6	1,1,1-Trichloroethane	133.41	930		11	
79-00-5	1,1,2-Trichloroethane	133.41	ND		11	
79-01-6	Trichloroethene	131.39	1500		11	
76-13-1	1,1,2-Trichloro-1,2,2-tr ifluoroethane	187.38	ND		15	

Lab Name: TestAmerica Knoxville Job No.: 140-414-1 SDG No.: Client Sample ID: A-INFLUENT Lab Sample ID: 140-414-1 Matrix: Air Lab File ID: RK08Pos13.D Date Collected: 11/07/2013 10:06 Analysis Method: TO-15 Sample wt/vol: 20(mL) Date Analyzed: 11/09/2013 06:02 Soil Aliquot Vol: Dilution Factor: 1 GC Column: RTX-5 ID: 0.32(mm) Soil Extract Vol.: Level: (low/med) Low % Moisture: Units: ug/m3 Analysis Batch No.: 405

CAS NO.	COMPOUND NAME	MOLECULAR WEIGHT	RESULT	Q	RL	
95-63-6	1,2,4-Trimethylbenzene	120.20	ND		9.8	
108-67-8	1,3,5-Trimethylbenzene	120.20	ND		9.8	
75-01-4	Vinyl chloride	62.50	ND		5.1	
95-47-6	o-Xylene	106.17	ND	-	8.7	
179601-23-1	m-Xylene & p-Xylene	106.17	ND		8.7	
106-93-4	1,2-Dibromoethane (EDB)	187.87	ND		15	

CAS NO.	SURROGATE	%REC	Q	LIMITS
460-00-4	4-Bromofluorobenzene (Surr)	99		60-140

Lab Name: TestAmerica Knoxville Job No.: 140-414-1

SDG No.:

Client Sample ID: A-MID GAC Lab Sample ID: 140-414-2

Matrix: Air Lab File ID: RK08Pos11.D

Analysis Method: TO-15 Date Collected: 11/07/2013 10:07

Sample wt/vol: 20(mL) Date Analyzed: 11/09/2013 04:27

Soil Aliquot Vol: Dilution Factor: 1

Soil Extract Vol.: GC Column: RTX-5 ID: 0.32(mm)

% Moisture: Level: (low/med) Low

Analysis Batch No.: 405 Units: ug/m3

CAS NO.	COMPOUND NAME	MOLECULAR WEIGHT	RESULT	Q	RL	
71-43-2	Benzene	78.11	38		6.4	
100-44-7	Benzyl chloride	126.58	ND		21	
74-83-9	Bromomethane	94.94	ND		7.8	
56-23-5	Carbon tetrachloride	153.81	ND		13	
108-90-7	Chlorobenzene	112.56	ND		9.2	
75-00-3	Chloroethane	64.52	ND		5.3	
67-66-3	Chloroform	119.38	ND		9.8	
74-87-3	Chloromethane	50.49	ND		10	
95-50-1	1,2-Dichlorobenzene	147.00	ND		12	
541-73-1	1,3-Dichlorobenzene	147.00	ND		12	
106-46-7	1,4-Dichlorobenzene	147.00	ND		12	
75-71-8	Dichlorodifluoromethane	120.91	ND		9.9	
75-34-3	1,1-Dichloroethane	98.96	48		8.1	
107-06-2	1,2-Dichloroethane	98.96	ND		8.1	
75-35-4	1,1-Dichloroethene	96.94	95		7.9	
156-59-2	cis-1,2-Dichloroethene	96.94	260		7.9	
78-87-5	1,2-Dichloropropane	112.99	ND		9.2	
10061-01-5	cis-1,3-Dichloropropene	110.97	ND		9.1	
10061-02-6	trans-1,3-Dichloropropen	110.97	ND		9.1	
76-14-2	1,2-Dichloro-1,1,2,2-tet rafluoroethane	170.92	ND		14	
100-41-4	Ethylbenzene	106.17	ND		8.7	
75-69-4	Trichlorofluoromethane	137.37	ND		11	
87-68-3	Hexachlorobutadiene	260.76	ND		110	
75-09-2	Methylene Chloride	84.93	ND		17	
100-42-5	Styrene	104.15	ND		8.5	
79-34-5	1,1,2,2-Tetrachloroethan e	167.85	ND		14	
127-18-4	Tetrachloroethene	165.83	ND		14	
108-88-3	Toluene	92.14	ND		7.5	
120-82-1	1,2,4-Trichlorobenzene	181.45	ND		74	
71-55-6	1,1,1-Trichloroethane	133.41	38		11	
79-00-5	1,1,2-Trichloroethane	133.41	ND		11	
79-01-6	Trichloroethene	131.39	39		11	
76-13-1	1,1,2-Trichloro-1,2,2-tr ifluoroethane	187.38	ND		15	

Lab Name: TestAmerica Knoxville	Job No.: 140-414-1
SDG No.:	
Client Sample ID: A-MID GAC	Lab Sample ID: 140-414-2
Matrix: Air	Lab File ID: RK08Pos11.D
Analysis Method: TO-15	Date Collected: 11/07/2013 10:07
Sample wt/vol: 20(mL)	Date Analyzed: 11/09/2013 04:27
Soil Aliquot Vol:	Dilution Factor: 1
Soil Extract Vol.:	GC Column: RTX-5 ID: 0.32 (mm)
% Moisture:	Level: (low/med) Low
Analysis Batch No.: 405	Units: ug/m3

CAS NO.	COMPOUND NAME	MOLECULAR WEIGHT	RESULT	Q	RL	
95-63-6	1,2,4-Trimethylbenzene	120.20	ND		9.8	
108-67-8	1,3,5-Trimethylbenzene	120.20	ND		9.8	
75-01-4	Vinyl chloride	62.50	ND		5.1	
95-47-6	o-Xylene	106.17	ND		8.7	
179601-23-1	m-Xylene & p-Xylene	106.17	ND		8.7	
106-93-4	1,2-Dibromoethane (EDB)	187.87	ND		15	

CAS NO.	SURROGATE	%REC	Q	LIMITS
460-00-4	4-Bromofluorobenzene (Surr)	98		60-140

Lab Name: TestAmerica Knoxville	Job No.: 140-414-1	
SDG No.:		
Client Sample ID: C-EFFLUENT	Lab Sample ID: 140-414-6	
Matrix: Air	Lab File ID: RK08Pos10.D	
Analysis Method: TO-15	Date Collected: 11/07/2013	09:35
Sample wt/vol: 20(mL)	Date Analyzed: 11/09/2013 0	3:40
Soil Aliquot Vol:	Dilution Factor: 1	
Soil Extract Vol.:	GC Column: RTX-5	ID: <u>0.32(mm)</u>
% Moisture:	Level: (low/med) Low	
Analysis Ratch No · 405	Units: ua/m3	

CAS NO.	COMPOUND NAME	MOLECULAR WEIGHT	RESULT	Q	RL	
71-43-2	Benzene	78.11	10		6.4	
100-44-7	Benzyl chloride	126.58	ND		21	
74-83-9	Bromomethane	94.94	ND		7.8	
56-23-5	Carbon tetrachloride	153.81	ND		13	
108-90-7	Chlorobenzene	112.56	ND		9.2	
75-00-3	Chloroethane	64.52	ND		5.3	
67-66-3	Chloroform	119.38	ND	"	9.8	
74-87-3	Chloromethane	50.49	ND		10	
95-50-1	1,2-Dichlorobenzene	147.00	ND		12	
541-73-1	1,3-Dichlorobenzene	147.00	ND		12	
106-46-7	1,4-Dichlorobenzene	147.00	ND		12	
75-71-8	Dichlorodifluoromethane	120.91	ND		9.9	
75-34-3	1,1-Dichloroethane	98.96	ND		8.1	
107-06-2	1,2-Dichloroethane	98.96	ND		8.1	
75-35-4	1,1-Dichloroethene	96.94	ND		7.9	
156-59-2	cis-1,2-Dichloroethene	96.94	ND		7.9	
78-87-5	1,2-Dichloropropane	112.99	ND		9.2	
10061-01-5	cis-1,3-Dichloropropene	110.97	ND		9.1	
10061-02-6	trans-1,3-Dichloropropen e	110.97	ND		9.1	
76-14-2	1,2-Dichloro-1,1,2,2-tet rafluoroethane	170.92	ND		14	
100-41-4	Ethylbenzene	106.17	ND		8.7	
75-69-4	Trichlorofluoromethane	137.37	ND		11	
87-68-3	Hexachlorobutadiene	260.76	ND		110	
75-09-2	Methylene Chloride	84.93	20		17	
100-42-5	Styrene	104.15	ND	-	8.5	
79-34-5	1,1,2,2-Tetrachloroethan e	167.85	ND		14	
127-18-4	Tetrachloroethene	165.83	ND		14	
108-88-3	Toluene	92.14	ND		7.5	
120-82-1	1,2,4-Trichlorobenzene	181.45	ND		74	
71-55-6	1,1,1-Trichloroethane	133.41	ND		11	
79-00-5	1,1,2-Trichloroethane	133.41	ND		11	
79-01-6	Trichloroethene	131.39	ND		11	
76-13-1	1,1,2-Trichloro-1,2,2-tr ifluoroethane	187.38	ND		15	

Lab Name: TestAmerica Knoxville	Job No.: 140-414-1
SDG No.:	
Client Sample ID: C-EFFLUENT	Lab Sample ID: 140-414-6
Matrix: Air	Lab File ID: RK08Pos10.D
Analysis Method: TO-15	Date Collected: 11/07/2013 09:35
Sample wt/vol: 20(mL)	Date Analyzed: 11/09/2013 03:40
Soil Aliquot Vol:	Dilution Factor: 1
Soil Extract Vol.:	GC Column: RTX-5 ID: 0.32 (mm)
% Moisture:	Level: (low/med) Low
Analysis Batch No.: 405	Units: ug/m3

CAS NO.	COMPOUND NAME	MOLECULAR WEIGHT	RESULT	Q	RL	
95-63-6	1,2,4-Trimethylbenzene	120.20	ND		9.8	
108-67-8	1,3,5-Trimethylbenzene	120.20	ND		9.8	
75-01-4	Vinyl chloride	62.50	ND		5.1	
95-47-6	o-Xylene	106.17	ND		8.7	
179601-23-1	m-Xylene & p-Xylene	106.17	ND		8.7	
106-93-4	1,2-Dibromoethane (EDB)	187.87	ND		15	

CAS NO.	SURROGATE	%REC	Q	LIMITS
460-00-4	4-Bromofluorobenzene (Surr)	97		60-140

Lab Name: TestAmerica Knoxville Job No.: 140-414-1 SDG No.: Lab Sample ID: 140-414-4 Client Sample ID: C-INFLUENT Lab File ID: RK08Pos14.D Matrix: Air Date Collected: 11/07/2013 09:33 Analysis Method: TO-15 Date Analyzed: 11/09/2013 06:51 Sample wt/vol: 20(mL) Soil Aliquot Vol: Dilution Factor: 1 GC Column: RTX-5 ID: 0.32(mm) Soil Extract Vol.: Level: (low/med) Low % Moisture: Analysis Batch No.: 405 Units: ug/m3

CAS NO.	COMPOUND NAME	MOLECULAR WEIGHT	RESULT	Q	RL	
71-43-2	Benzene	78.11	13		6.4	
100-44-7	Benzyl chloride	126.58	ND		21	
74-83-9	Bromomethane	94.94	ND		7.8	
56-23-5	Carbon tetrachloride	153.81	ND		13	
108-90-7	Chlorobenzene	112.56	ND		9.2	
75-00-3	Chloroethane	64.52	ND		5.3	
67-66-3	Chloroform	119.38	ND		9.8	
74-87-3	Chloromethane	50.49	ND		10	
95-50-1	1,2-Dichlorobenzene	147.00	ND	-	12	
541-73-1	1,3-Dichlorobenzene	147.00	ND		12	
106-46-7	1,4-Dichlorobenzene	147.00	ND		12	
75-71-8	Dichlorodifluoromethane	120.91	ND		9.9	
75-34-3	1,1-Dichloroethane	98.96	ND		8.1	
107-06-2	1,2-Dichloroethane	98.96	ND		8.1	
75-35-4	1,1-Dichloroethene	96.94	ND		7.9	
156-59-2	cis-1,2-Dichloroethene	96.94	18		7.9	
78-87-5	1,2-Dichloropropane	112.99	ND		9.2	
10061-01-5	cis-1,3-Dichloropropene	110.97	ND		9.1	
10061-02-6	trans-1,3-Dichloropropen e	110.97	ND		9.1	
76-14-2	1,2-Dichloro-1,1,2,2-tet rafluoroethane	170.92	ND		14	
100-41-4	Ethylbenzene	106.17	9.8		8.7	
75-69-4	Trichlorofluoromethane	137.37	ND		11	-
87-68-3	Hexachlorobutadiene	260.76	ND		110	
75-09-2	Methylene Chloride	84.93	ND		17	
100-42-5	Styrene	104.15	ND		8.5	
79-34-5	1,1,2,2-Tetrachloroethan e	167.85	ND		14	
127-18-4	Tetrachloroethene	165.83	ND		14	
108-88-3	Toluene	92.14	ND		7.5	
120-82-1	1,2,4-Trichlorobenzene	181.45	ND		74	
71-55-6	1,1,1-Trichloroethane	133.41	ND		11	
79-00-5	1,1,2-Trichloroethane	133.41	ND		11	
79-01-6	Trichloroethene	131.39	280		11	
76-13-1	1,1,2-Trichloro-1,2,2-tr ifluoroethane	187.38	ND		15	

Lab Name: TestAmerica Knoxville	Job No.: 140-414-1
SDG No.:	
Client Sample ID: C-INFLUENT	Lab Sample ID: 140-414-4
Matrix: Air	Lab File ID: RK08Pos14.D
Analysis Method: TO-15	Date Collected: 11/07/2013 09:33
Sample wt/vol: 20(mL)	Date Analyzed: 11/09/2013 06:51
Soil Aliquot Vol:	Dilution Factor: 1
Soil Extract Vol.:	GC Column: RTX-5 ID: 0.32(mm)
% Moisture:	Level: (low/med) Low
Analysis Batch No.: 405	Units: ug/m3

CAS NO.	COMPOUND NAME	MOLECULAR WEIGHT	RESULT	Q	RL	
95-63-6	1,2,4-Trimethylbenzene	120.20	ND		9.8	
108-67-8	1,3,5-Trimethylbenzene	120.20	ND		9.8	
75-01-4	Vinyl chloride	62.50	ND		5.1	
95-47-6	o-Xylene	106.17	24		8.7	
179601-23-1	m-Xylene & p-Xylene	106.17	45		8.7	
106-93-4	1,2-Dibromoethane (EDB)	187.87	ND		15	

CAS NO.	SURROGATE	%REC	Q	LIMITS
460-00-4	4-Bromofluorobenzene (Surr)	9.9		60-140

Lab Name: TestAmerica Knoxville	Job No.: 140-414-1
SDG No.:	
Client Sample ID: C-MID GAC	Lab Sample ID: 140-414-5
Matrix: Air	Lab File ID: RK08Pos12.D
Analysis Method: TO-15	Date Collected: 11/07/2013 09:34
Sample wt/vol: 20(mL)	Date Analyzed: 11/09/2013 05:15
Soil Aliquot Vol:	Dilution Factor: 1
Soil Extract Vol.:	GC Column: RTX-5 ID: 0.32(mm)
% Moisture:	Level: (low/med) Low
Analysis Batch No.: 405	Units: ug/m3

CAS NO.	COMPOUND NAME	MOLECULAR WEIGHT	RESULT	Q	RL	
71-43-2	Benzene	78.11	11		6.4	
100-44-7	Benzyl chloride	126.58	ND		21	
74-83-9	Bromomethane	94.94	ND		7.8	
56-23-5	Carbon tetrachloride	153.81	ND		13	
108-90-7	Chlorobenzene	112.56	ND		9.2	
75-00-3	Chloroethane	64.52	ND		5.3	
67-66-3	Chloroform	119.38	ND		9.8	
74-87-3	Chloromethane	50.49	ND		10	
95-50-1	1,2-Dichlorobenzene	147.00	ND ·		12	
541-73-1	1,3-Dichlorobenzene	147.00	ND		12	
106-46-7	1,4-Dichlorobenzene	147.00	ND		12	
75-71-8	Dichlorodifluoromethane	120.91	ND		9.9	
75-34-3	1,1-Dichloroethane	98.96	ND	•	8.1	
107-06-2	1,2-Dichloroethane	98.96	ND	•	8.1	
75-35-4	1,1-Dichloroethene	96.94	ND		7.9	
156-59-2	cis-1,2-Dichloroethene	96.94	9.3		7.9	
78-87-5	1,2-Dichloropropane	112.99	ND		9.2	
10061-01-5	cis-1,3-Dichloropropene	110.97	ND		9.1	
10061-02-6	trans-1,3-Dichloropropen e	110.97	ND		9.1	
76-14-2	1,2-Dichloro-1,1,2,2-tet rafluoroethane	170.92	ND		14	
100-41-4	Ethylbenzene	106.17	ND		8.7	
75-69-4	Trichlorofluoromethane	137.37	ND		11	
87-68-3	Hexachlorobutadiene	260.76	ND		110	
75-09-2	Methylene Chloride	84.93	ND		17	
100-42-5	Styrene	104.15	ND		8.5	
79-34-5	1,1,2,2-Tetrachloroethan e	167.85	ND		14	
127-18-4	Tetrachloroethene	165.83	ND		14	
108-88-3	Toluene	92.14	ND		7.5	
120-82-1	1,2,4-Trichlorobenzene	181.45	ND		74	
71-55-6	1,1,1-Trichloroethane	133.41	ND		11	
79-00-5	1,1,2-Trichloroethane	133.41	ND		11	
79-01-6	Trichloroethene	131.39	ND		11	
76-13-1	1,1,2-Trichloro-1,2,2-tr ifluoroethane	187.38	ND		15	•

Job No.: 140-414-1
Lab Sample ID: 140-414-5
Lab File ID: RK08Pos12.D
Date Collected: 11/07/2013 09:34
Date Analyzed: 11/09/2013 05:15
Dilution Factor: 1
GC Column: RTX-5 ID: 0.32 (mm)
Level: (low/med) Low
Units: ug/m3

CAS NO.	COMPOUND NAME	MOLECULAR WEIGHT	RESULT	Q	RL	
95-63-6	1,2,4-Trimethylbenzene	120.20	11		9.8	
108-67-8	1,3,5-Trimethylbenzene	120.20	ND		9.8	
75-01-4	Vinyl chloride	62.50	ND		5.1	
95-47-6	o-Xylene	106.17	ND		8.7	
179601-23-1	m-Xylene & p-Xylene	106.17	ND		8.7	
106-93-4	1,2-Dibromoethane (EDB)	187.87	ND		15	

CAS NO.	SURROGATE	%REC	Q	LIMITS
460-00-4	4-Bromofluorobenzene (Surr)	99		60-140

Appendix C

Support Documentation

TestAmerica Knoxville

5815 Middlebrook Pike

Knoxville, TN 37921 phone 865.291.3000 fax 865.584.4315

Canister Samples Chain of Custody Record

TestAmerica Laboratories, Inc. assumes no liability with respect to the collection and shipment of these samples.

TestAmerica THE LEADER IN ENVIRONMENTAL TESTING

TestAmerica Laboratories, Inc.

(See below for Add'1 Items) Sample Specific Notes: For Lab Use Only Walk-in Client: lob / SDG No.: ab Sampling: 1 cooler Fer Ex 80336873A147 COOLER NO CUSTODY SEA! 140-414 Chain of Custody Office (Please specify in notes section) esa llifbas. SBD lioi GCANS, NO Flows 1iA InsidmA €-O. 81/21 A9 KECKIVED. 8836 \ 246 \ 1945 \ 3588 EPA 25C / 25.3 Samples Collected By: Dawn Monico SPA 3C HGA-AM (MIS / wo1 / pts / peW) st-O Canister 09579 10759 09583 10756 10782 09591 0 N/A Ž Š ¥ Ϋ́ ¥ in Field, Canister Temperature (Fahrenheit) Temperature (Fahrenheit) Ϋ́ × ۲ N/A × ¥ Vacuum in Field, 'Hg Canister Ambient Ambient Anaylsis Turnaround Time Ν Ϋ́ Š ξ Š ¥ Site Contact: Dawn Monico TA Contact: Terry Walker Wasmund Email: peter.rich@tetratech.com Time Stop Project Manager: Peter Rich ¥ Š ¥ Ϋ́ ž ξ Standard (Specific): Phone: 410-990-4607 Rush (Specifiy) 100% 0557 1007 SSS 933. 13 1000 Time Start Interior Interior Sample Date(s) 1111 Start Start Stop Stop Special Instructions/QC Requirements & Comments: Sample Identification Address: 51 Franklin Street Suite 400 City/State/Zip: Annapolis, MD 21403 Company Name: Tetra Tech Client Contact Information Project Name: SSD O&M Site/Location: LMC MRC O #: 117-0507532.02 Phone: 410-990-4607 FAX: 410-990-4749 -EFFLUENT CEFFLUENT VINFLUENT A-INFLUENT A-MID GAC C-MID GAC Page 227 οf 229

Samples Relinquis

Shipper Name:

Form No. CA-C-Wi-003, Rev. 1.1, dated 05/14/2013

00:00

Received by:

. Condition:

Opened by:

Date / Time: Date / Time:

Job Narrative 140-414-1

Receipt

The samples were received on 11/8/2013 10:00 AM; the samples arrived in good condition, properly preserved and, where required, on ice.

Air - GC/MS VOA

Method(s) TO-15: EPA methods TO-14A and TO-15 specify the use of humidified "zero air" as the blank reagent for canister cleaning, instrument calibration and sample analysis. Ultra-high purity humidified nitrogen from a cryogenic reservoir is used in place of "zero air" by TestAmerica Knoxville.

No other analytical or quality issues were noted.

Comments

No additional comments.

Method Summary

Client: Tetra Tech GEO

Project/Site: Middle River LMC

TestAmerica Job ID: 140-414-1

TAL KNX

EPA

Method	Method Description	Protocol	Laboratory

Protocol References:

TO-15

EPA = US Environmental Protection Agency

Volatile Organic Compounds in Ambient Air

Laboratory References:

TAL KNX = TestAmerica Knoxville, 5815 Middlebrook Pike, Knoxville, TN 37921, TEL (865)291-3000

Sample Summary

Client: Tetra Tech GEO

Project/Site: Middle River LMC

TestAmerica Job ID: 140-414-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
140-414-1	A-INFLUENT	Air	11/07/13 10:06	11/08/13 10:00
140-414-2	A-MID GAC	Air	11/07/13 10:07	11/08/13 10:00
140-414-3	A-EFFLUENT	Air	11/07/13 10:08	11/08/13 10:00
140-414-4	C-INFLUENT	Air	11/07/13 09:33	11/08/13 10:00
140-414-5	C-MID GAC	Air	11/07/13 09:34	11/08/13 10:00
140-414-6	C-EFFLUENT	Air	11/07/13 09:35	11/08/13 10:00

TestAmerica Knoxville - Air Canister Initial Pressure Check

				ľ		Pressure @ Receipt	
Analyst	Date	Time	Sample ID	6 L	1 L	(-in or +psig)	Comments
NRS	11/8/2013	3:25	140-414-A-1		x	0.0	NAPPEN,
NRS	11/8/2013	3:26	140-414-A-2		X	0.0	
NRS	11/8/2013	3:27	140-414-A-3		x	0.0	
NRS	11/8/2013	3:28			×	-0.7	
NRS	11/8/2013	3:29		-	x	-0.5	
NRS	11/8/2013		140-414-A-6		×	0.0	
141/2	11/0/2015	3.30	240 414 A 0		<u> </u>	0.0	
		74		 		<u> </u>	
				 			
				 		<u> </u>	
		1000				<u> </u>	
		AND COMPANY OF THE PROPERTY OF					Constitution (Sept. 1923)
		5.0K) W					
			e de la companya de l				
			CONTRACTOR OF A				
			nerica Ki	<u> </u>		1,4344	Check
		1 A 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		ļ			
	<u> </u>	* 3-10 10 100		<u> </u>		- ipt	Contracts
		rime	on the second				COMPLESS
	***	3.25		 		هه <u>هومطانيه .</u>	And the state of t
		3,26 (8)	Control of				
		3.27	140-414-A				
		3.28	African Commence				
		3.20	140-454			- Act Berts	And the second of the second o
		3:30 g	,140-413				6.0000-0.000-0.000
			Marianian and a second				
		manufakti inim	***			· · · · · · · · · · · · · · · · · · ·	The state of the s
				<u> </u>	ļ	- consequent	A STATE OF THE STA
			L. Charles				
-			1/10				
· · · · · · · · · · · · · · · · · · ·		Wan San		ļ			Display No. 2010
		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	77 March 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			e commente e e	Constitution of the Consti
					· · · ;		Name of the state
		20 8 - 20 - 20 - 20 - 20 - 20 - 20 - 20					The state of the s
-		10.10,100	Amin's	<u> </u>			
			Biseti.	<u> </u>			
			Activity of the second	<u> </u>			and the contract of the contra
			CONTRACTORY	<u> </u>		· · · · · · · · · · · · · · · · · · ·	
				<u> </u>			and the Arthur and the property of
			4144	ļ			
				ļ			
		1000		<u> </u>			
		in Vitalia apote					

MS038 r10, 10/1/13/2013

Page 228 of 229

Login Sample Receipt Checklist

Client: Tetra Tech GEO

Job Number: 140-414-1

Login Number: 414 List Number: 1

Creator: Wilson, Ken

List Source: TestAmerica Knoxville

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	N/A	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	N/A	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	N/A	CHECKED IN LAB
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	N/A	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	N/A	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	N/A	
Multiphasic samples are not present.	N/A	
Samples do not require splitting or compositing.	N/A	
Residual Chlorine Checked.	N/A	

	SMP_ANL	2.21875	416666	.277777	116666	388888	138888	2.21875	416666	777777	116666(388888	138888
# A	EXTR_ANL SI	0	0	0	0	0	0	0	0	0	0	0	0
	SMP_EXTR E	2.21875	.416666	777777	116666	388888	13888	2.21875	416666	777777	116666	388888	138888
	ANAL_DATE	11/09/2013	11/09/2013	11/09/2013	11/09/2013	11/09/2013	11/09/2013	11/09/2013	11/09/2013	11/09/2013	11/09/2013	11/09/2013	11/09/2013
	EXTR_DATE A		11/09/2013	11/09/2013	11/09/2013	11/09/2013	11/09/2013	11/09/2013	11/09/2013	11/09/2013	11/09/2013	11/09/2013	11/09/2013
	SAMP_DATE EX								·		·		
	QC_TYPE SAMP	11/07/2013	11/07/2013	11/07/2013	11/07/2013	11/07/2013	11/07/2013	11/07/2013	11/07/2013	11/07/2013	11/07/2013	11/07/2013	11/07/2013
	ဗ	N	Z	W N	N N	N N	N N	Z	N Z	Z	Z	NZ Z	N N
	LAB_ID	140-414-5	140-414-4	140-414-6	140-414-2	140-414-1	140-414-3	140-414-5	140-414-4	140-414-6	140-414-2	140-414-1	140-414-3
	NSAMPLE	C-MID GAC	C-INFLUENT	C-EFFLUENT	A-MID GAC	A-INFLUENT	A-EFFLUENT	C-MID GAC	C-INFLUENT	C-EFFLUENT	A-MID GAC	A-INFLUENT	UG/M3 A-EFFLUENT
SDG 140-414-1	UNITS	PPB V/	PPB V/	PPB V/	PPB \//	PPB V/ v	PPB V/	UG/M3	UG/M3	UG/M3	UG/M3	UG/M3	UG/M3
SDG	SORT	٨٥	00	۸٥	00	٥٥	۸٥	00	00	0	00	^ 0	00

FORM V AIR - GC/MS VOA INSTRUMENT PERFORMANCE CHECK

Lab Name: TestAmerica Knoxville Job No.: 140-414-1

SDG No.:

Lab File ID: RBFBJ17.D BFB Injection Date: 10/17/2013

Instrument ID: MR BFB Injection Time: 17:01

Analysis Batch No.: 305

M/E	ION ABUNDANCE CRITERIA	"	ATIVE DANCE
50	15.0 - 40.0 % of mass 95	20.6	
75	30.0 - 60.0 % of mass 95	47.7	
95	Base Peak, 100% relative abundance	100.0	
96	5.0 - 9.0 % of mass 95	6.9	
173	Less than 2.0 % of mass 174	0.5	(0.5)1
174	50.0 - 120.00 % of mass 95	90.6	
175	5.0 - 9.0 % of mass 174	6.4	(7.0)1
176	95.0 - 101.0 % of mass 174	86.3	(95.2)1
177	5.0 - 9.0 % of mass 176	5.7	(6.6)2

1-Value is % mass 174

2-Value is % mass 176

THIS CHECK APPLIES TO THE FOLLOWING SAMPLES, MS, MSD, BLANKS AND STANDARDS:

CLIENT SAMPLE ID	LAB SAMPLE ID	LAB FILE ID	DATE ANALYZED	TIME ANALYZED
	IC 140-305/3	RJ170003.D	10/17/2013	18:16
	IC 140-305/4	RJ170003R.	10/17/2013	19:05
	IC 140-305/5	RJ170004.D	10/17/2013	19:53
	IC 140-305/6	RJ170005.D	10/17/2013	20:41
	IC 140-305/7	RJ170006.D	10/17/2013	21:30
	IC 140-305/8	RJ170007.D	10/17/2013	22:18
	IC 140-305/9	RJ170008.D	10/17/2013	23:06
	IC 140-305/10	RJ170009.D	10/17/2013	23:54
	IC 140-305/11	RJ170010.D	10/18/2013	00:43
	ICV 140-305/15	RJ170011R. D	10/18/2013	03:54

AIR - GC/MS VOA INITIAL CALIBRATION DATA INTERNAL STANDARD CURVE EVALUATION FORM VI

305 Analy Batch No.: Job No.: 140-414-1 TestAmerica Knoxville Lab Name:

z Heated Purge: (Y/N) ID: 0.32 (mm) GC Column: RTX-5 MRInstrument ID:

86 Calibration ID: 10/18/2013 00:43 Calibration End Date: 10/17/2013 18:16 Calibration Start Date:

Calibration Files:

SDG No.:

LEVEL:	LAB SAMPLE ID:	LAB FILE ID:
Level 1	IC 140-305/3	RJ170003.D
Level 2	IC 140-305/4	RJ170003R.D
Level 3	IC 140-305/5	RJ170004.D
Level 4	IC 140-305/6	RJ170005.D
Level 5	IC 140-305/7	RJ170006.D
Level 6	IC 140-305/8	RJ170007.D
Level 7	IC 140-305/9	RJ170008.D
Level 8	IC 140-305/10	RJ170009.D
Level 9	IC 140-305/11	RJ170010.D

ANALYTE			RRF			CURVE	COEFFICIENT	#	MIN RRF	%RSD #			# MIN R^2
	LVL 1	LVL 2	LVL 3	LVL 4	LVL 5	TYPE	B M1	M2			*RSD	OR COD	OR COD
	TVL 6	LVL 7	LVL 8	LVL 9									
Chlorodifluoromethane	0.4233	0.3982	0.3538	0.3523	0.3001	Ave	0.3218			20.0	30.0		
	0.2887	0.2908	0.2548	0.2344									
Dichlorodifluoromethane	3.3906	3.3302	2.3921	3.1272	2.9643	Ave	2.8002			15.0	30.0		
	2.3600	2.7350	2.5916	2.3106									
Chloromethane	0.5598	0.5217	0.4719	0.4704	0.4031	Ave	0.4193			23.0	30.0		
	0.3808	0.3774	0.3335	0.2548									
1,2-Dichloro-1,1,2,2-tetrafluoroethane	2.7141	2.6992	2.5708	2.7020	2.5203	Ave	2.4551			12.0	30.0		
	2.4039	2.4705	2.1609	1.8543									
Acetaldehyde	++++	+++++	+++++	0.7976	0.4897	Ave	0.4612			40.0	40.0		
	0.4263	0.4337	0.3559	0.2640						1			
Vinyl chloride	1.4015	1.4070	1.3046	1.3480	1.2182	Ave	1.2046			16.0	30.0		
	1.1709	1.1420	0.9999	0.8496									
1,3-Butadiene	1.1477	1.1085	1.0816	1.0815	0.9744	Ave	0.9665			16.0	30.0		
	0.9332	0.9003	0.7983	0.6731									
Butane	+++++	+++++	2.7255	2.1107	1.8554	Ave	1.8272			27.0	30.0		_
	1.7600	1.6784	1.4666	1.1941									
Bromomethane	1.3285	1.3249	1.2188	1,2615	1.1464	Ave	1.1577			13.0	30.0		
	1.1263	1.1186	1.0068	0.8878									
Chloroethane	0.8145	0.7722	0.7318	0.7335	0.6471	Ave	0.6680			16.0	30.0		
	0.6366	0.6270	0.5612	0.4877									
Ethanol	+++++	+++++	0.6555	0.5058	0.4369	Ave	0.4251			30.0	40.0		
	0.4077	0.3836	0.3252	0.2609								-	
Vinyl bromide	1.3461	1.2767	1.2099		1.1627	Ave	1.1651		_	11.0	30.0		
	1.1425	1.1439	1.0280	0.9196									
2-Methylbutane	+++++	+++++	2.2701		1.4946	Ave	1.4931		-	28.0	30.0		
	1.4412	1.3791	1.1850	0.9714		-			_				

Page 99 of 229

AIR - GC/MS VOA INITIAL CALIBRATION DATA INTERNAL STANDARD CURVE EVALUATION FORM VI

Analy Batch No.: Job No.: 140-414-1 Lab Name: TestAmerica Knoxville

305

GC Column: RTX-5 10/17/2013 Calibration Start Date:

Instrument ID: MR

SDG No.:

z 98 Heated Purge: (Y/N) Calibration ID: 00:43 ID: 0.32 (mm) 10/18/2013 Calibration End Date: 18:16

ANALYTE			RRF			CURVE	COE	COEFFICIENT	#	MIN RRF	%RSD #	MAX	R^2	# MIN R^2
	LVL 1	LVL 2	LVL 3	LVL 4	LVL 5	ਜ਼ੂਜ਼ ਸ਼ੁਸ਼ੂਸ਼ ਸ਼ੁਸ਼ੂਸ਼	В	M1	M2			*KSD	UN COD	OK COD
	FVL 6	LVL 7	LVL 8	LVL 9										
Trichlorofluoromethane	4.0994	4.0459	3.6398	3.7029	3.3949	Ave		3.5214			11.0	30.0		
	3.3246	3.4394	3.1199	2.9256							-			
Acrolein	+++++	+++++	0.9736	0.6843	0.6736	Ave		0.6546			24.0	30.0		
Acetonitrile	+++++	0.7121	0.6523	0.6659	0.6374	Ave		0.6269			6.6	30.0		
	0.6520	0.6128	0.5747	0.5083										
Acetone	+++++	+++++	++++	+++++	0.9992	Ave		0.8722			17.0	30.0		
	0.8065	1.0282	0.8530	0.6743									-	
Pentane	0.4216	0.3804	0.3282	0.2970	0.2731	Ave		0.3057			20.0	30.0		
- 1	0.2743	0.2807	0.2561	0.2398							_			
Isopropyl alcohol	+++++	++++++	3.1726	2.7736	2.6247	Ave	.,	2.5541			15.0	30.0		
	2.5266	2.5678	2.2183	1.9952										
Ethyl ether	1.9701	1.9246	1.7648	1.8365	1.7316	Ave		1.6921			14.0	30.0		
	1.6511	1.6768	1.4242	1.2490							_			
1,1-Dichloroethene	1.3853	1.3265	1.1016	1.1557	1.0679	Ave		1.1495	_		11.0	30.0		
	1.0862	1.1283	1.0582	1.0355					-		-			
Acrylonitrile	1,4913	1.3981	1.2469	1.2702	1,2158	Ave		1.2565			в. 6	30.0		
	1.2174	1.2426	1.1327	1.0938										
tert-Butyl alcohol	3.9125	3.6601	2.9732	2.9390	2,7127	Ave		2.9792			16.0	30.0		
	2.8076	2.7876	2.5847	2.4355										
1,1,2-Trichloro-1,2,2-trifluoroethane	2.5945	2.4958	2.3883	2.4926	2.3272	Ave		2.3904			5.3	30.0		
	2,3316	2.4366	2.2549	2.1919										
Methylene Chloride	+ + + + +	+ + + + +	1.7535	1.1551	1.0142	Ave		1.1178		_	26.0	30.0		
	0.9833	1.0491	0.9448	0.9248		_	-							
3-Chloropropene	1.3449	1.2609	1.1667	1.1989	1.0816	Ave		1.1317			11.0	30.0		
	1.1020	1.1167	0.9854	0.9285										
Carbon disulfide	4.1540	3.9969	3.7608	3.8977	3.6357	Ave		3.7543			6.3	30.0		
	3.6162	3.7932	3.5033	3.4312		_				:				
trans-1,2-Dichloroethene	1.8012	1.4809	1.3381	1.3939	1.3081	Ave		1.3944			12.0	30.0		
	1.3048	1.3787	1.27/1	1.266/							-			
2-Methylpentane	4.4162	4.2475	3.8342	3.8844	3.6065	Ave		3.7012			13.0	40.0		
	3.5187	3.6406	3,2335	2.9295								,		-
Methyl tert-butyl ether	3.7571	3.6874	3.5364	3.7647	3.5504	Ave	,	3.5669		_	4.9	30.0	_	
	3.5282	3.6648	3.3609	3.2522										
1,1-Dichloroethane	2.6559	2.5242	2.3826	2.5605	2.3703	Ave		2.4020			8.9	30.0		
	2.3251	2.4361	2.2146	2.1487										
Vinyl acetate	3.9514	4.0364	3.9703	4.0591	3.9310	Ave	(.,	3.8952			4.8	30.0		
	3.8856	4.0391	3.6896	3.4941										
2-Butanone (MEK)	++++++	++++++	1.1324	0.7671	0.6575	Ave		0.7394		_	24.0	30.0		
	0.6544	0.7096	0.6381	0.6167			_		_		_			

Note: The ml coefficient is the same as Ave RRF for an Ave curve type.

AIR - GC/MS VOA INITIAL CALIBRATION DATA INTERNAL STANDARD CURVE EVALUATION FORM VI

Lab Name: TestAmerica Knoxville		dol	b No.:	140-414	4-1				Analy	Analy Batch No.:	No.:	305		
SDG No.:														
Instrument ID: MR		25	Column:	RTX-	L	ID:	0.32 (mm)	m)	Heated	d Purge		(Y/N) N		
Calibration Start Date: 10/17/2013	18:16	Ca	Calibration	End	Date:	10/18/201	3/2013	00:43	Calib	Calibration	ID:	98		
ANALYTE			RRF			CURVE	CC	COEFFICIENT	WIW #	RRF %RSD	#	-	2 #	MIN R^2
	LVL 1 LVL 6	LVL 2 LVL 7	LVL 3	LVL 4 LVL 9	LVL 5	TYPE	щ	M1	M2			%RSD OR COD		OR COD
C6 Range	2.5681	3.2156	4.6511	3.6603	3.3055	Ave		3.3749		17.	0.	30.0		
Нехапе	1.2617	1.6571	1.4427	1.4084	1.2973	Ave		1.3909		16.0		30.0		
cis-1,2-Dichloroethene	1.4523	1.3173	1.2715	1.3391	1.2493	Ave	-	1.2907		5.	ω.	30.0	<u>-</u>	
Ethyl acetate	3.7912	3.6355	3.4373	3.6547	3.4426	Ave		3.4518		7.	7.4	30.0	,	
Chloroform	2.6732	2.5664	2.4694	2.2442	2.4513	Ave		2.4666		.5.	7	30.0		
Tetrahydrofuran	1.9908	1.9349	1.8653	1.9526	1.8388	Ave		1.8333		7.	4	30.0		
1,1,1-Trichloroethane	2.6615	2.5967	2.4628	2.6471	2.4948	Ave		2.5063		4	4.8	30.0		
1,2-Dichloroethane	0.3868	0.3930	0.3670	0.3939	0.3713	Ave		0.3731		4.	4	30.0		
Benzene	0.8611	0.8512	0.7664	0.8129	0.7669	Ave		0.7868		9	8.9	30.0		
1-Butanol	0.1610	0.1623	0.1354	0.1152	0.1119	Ave		0.1230		21.0		30.0		•
Cyclohexane	0.1563	0.1420	0.1330	0.1390	0.1335	Ave		0.1357		8	8.1	30.0		
Carbon tetrachloride	0.5534	0.5674	0.5301	0.5370	0.4922	Ave		0.5423		.v.	2.0	30.0		
2,3-Dimethylpentane	0.1906	0.1832	0.1726	0.1850	0.1768	Ave		0.1795		κ	3.7	40.0		
Thiophene	0.4889	0.4781	0.4614	0.4932	0.4644	Ave		0.4750		œ.	3.0	40.0		
2,2,4-Trimethylpentane	1.7457	1.7290	1.5998	1.7058	1.5989	Ave		1.6228		9	₽.	30.0		
Heptane	0.3421	0.3193	0.2975	0.3186	0.2998	Ave		0.3067		9	0.9	30.0		
1,2-Dichloropropane	0.3407	0.3342	0.3202	0.3420	0.3227	Ave		0.3249		4	4.2	30.0		
Trichloroethene	0.3705	0.3704		0.3714	0.3544	Ave		0.3651		m	3.3	30.0	-	
Dibromomethane	0.3305	0.3264	0.3079	0.3314	0.3126	Ave		0.3226		2.	o	30.0		
Bromodichloromethane	0.5398	0.5264	0.5044	0.5579	0.5463	Ave		0.5496		4.	4.7	30.0		

Note: The ml coefficient is the same as Ave RRF for an Ave curve type.

FORM VI AIR - GC/MS VOA INITIAL CALIBRATION DATA INTERNAL STANDARD CURVE EVALUATION

Analy Batch No.: 305		Heated Purge: (Y/N) N	Calibration ID: 86
		ID: 0.32 (mm)	10/18/2013 00:43
Job No.: 140-414-1		GC Column: RTX-5	Calibration End Date:
Knoxville			:: 10/17/2013 18:16
Lab Name: TestAmerica Knoxville	SDG No.:	Instrument ID: MR	Calibration Start Date:

ANALYTE			RRF			CURVE	COE	COEFFICIENT	_	# MIN RRF	%RSD #	# MAX	R^2 #	
	LVL 1	LVL 2	LVL 3	LVL 4	LVL 5	TYPE	В	M1	M2			%RSD	OR COD	OR COD
1,4-Dioxane	0.1502	0.1392	0.1322	0.1489	0.1440	Ave		0.1437			4.3	30.0		
Methyl methacrylate	0.4784	0.4364	0.4158	0.4483	0.4423	Ave	ļ <u>.</u>	0.4400			5.7	30.0		
Methylcyclohexane	0.5029	0.5010	0.4731	0.5035	0.4767	Ave	-	0.4861			3.2	40.0		
4-Methyl-2-pentanone (MIBK)	0.8193	0.8271	0.7245	0.6833	0.7520	Ave		0.7661			5.9	30.0		
cis-1,3-Dichloropropene	0.4467	0.4287	0.4147	0.4488	0.4356	Ave		0.4395			3.1	30.0		
trans-1,3-Dichloropropene	0.4962	0.4889	0.4778	0.5087	0.4896	Ave		0.5191			6.9	30.0		
Toluene	1.7023	1.6501	1.2927	1.1497	1.0922	Ave		1.2870			18.0	30.0		
Toluene Range	3.7352	5.8368	2.8394	4.5120	4.2671	Ave		3.9901			26.0	30.0		
1,1,2-Trichloroethane	0.3148	0.3170	0.3072	0.3304	0.3103	Ave		0.3248			4.7	30.0		
2-Methylthiophene	0.9511	0.9361	0.8954	0.9578	0.9291	Ave		0.9679			5.7	40.0		
3-Methylthiophene	1.0100	0.9523	0.9221	0.9900	0.9502	Ave		0.9933			5.3	40.0		
2-Hexanone	0.4715	0.4820	0.4213	0.4341	0.4216	Ave		0.4629			7.0	30.0		
Octane	0.4123	0.3988	0.3836	0.4048	0.3853	Ave		0.3951			5.9	30.0		
C8 Range	8.6295	7.2922	6.0731	5.8262	5.2839	Ave		5.7574			25.0	30.0		
Dibromochloromethane	0.5771	0.5647	0.5428	0.6051	0.6225	Ave		0.6382			12.0	30.0		
1,2-Dibromoethane (EDB)	0.5651	0.5767	0.5487	0.5925	0.5770	Ave		0.5998			6.3	30.0		
Tetrachloroethene	0.4078	0.4202	0.3791	0.4064	0.3914	Ave		0.4096			5.1	30.0		
Chlorobenzene	0.9222	0.9279	0.8641	0.9298	0.8784	Ave		0.8912			3.7	30.0		
2,3-Dimethylheptane	1.3714	1.3360	1.2384	1.3188	1.2629	Ave		1.2778			7.9	40.0		
Ethylbenzene	1.4790	1.4620	1.3874	1.4670	1.4101	Ave		1.4032			4.6	30.0		

Page 102 of 229

30.0 30.0

1.2172

0.7226

20.0 7.6 30.0 30.0 30.0 30.0

1.5357

Ave

1.4938 1.0223

1.6061 1.6448 1.4890 1.4842

1.5992

0.6522 0.8795 1.2079 1.0928

0.5576 0.9164 1.1897 1.4067

0.8091 0.9075 0.5401 0.8220 1.2182

0.5762 0.8468 1.1221 1.2445 1.5172 1.7605

1.5808 1.4875 1.0025

1.6016 1.7562 1.4839 1.6356

1,2,4-Trimethylbenzene

tert-Butylbenzene

Decane

1,3-Dichlorobenzene

sec-Butylbenzene

Benzyl chloride

1.6667

7.7

7.5 16.0

1.3066

1.2881

2.1841 2.1975 1.2109 1.4039

1.0502

1.1048 2.1483

2.1687

1.1348 2.0518 2.3773

1.0145 1.1131 2.1749 2.3709

2.2540 1.0721

Ave Ave Ave

1.0183

1,5765 0.9634

30.0 30.0 30.0

0.8606

Ave Ave Ave Ave

0.8238 0.7129 1.1852

0.8927

0.8898

0.9861

0.8158

1,3,5-Trimethylbenzene

Alpha Methyl Styrene

1.8114 1.8174 0.8330

1.7251
1.7724
0.7879

AIR - GC/MS VOA INITIAL CALIBRATION DATA INTERNAL STANDARD CURVE EVALUATION FORM VI

Lab Name: TestAmerica Knoxville	le		Jo Jo	Job No.:	140-414-1	4-1					Analy E	Analy Batch No.:	305	5	
SDG No.:															
Instrument ID: MR			OS	GC Column:	1: RTX-5	5	ID:	0.32 (mm)	om)		Heated	Heated Purge: (Y/N)	(Y/N)	Z	
Calibration Start Date: 10/1	10/17/2013 18	18:16	Ca	librati	Calibration End Date:	Date:	10/18	10/18/2013	00:43		Calibra	Calibration ID:): 86		
ANALYTE				RRF			CURVE	5	COEFFICIENT	E	# MIN RRF	&RSD	# MAX		# MIN R^2
	LVL	LVL 1 LVL 6	LVL 2 LVL 7	LVL 3 LVL 8	LVL 4 LVL 9	LVL 5	TYPE	В	M1	M2			*RSD	OR COD	OR COD
2-Ethylthiophene	1.	1.0741	1.0747	1.0280	1.1140	1.0701 Ave	Ave		1.0606			3.3	40.0		
m-Xylene & p-Xylene	i i	1.1853	1.1570	1.1030		1.1396	Ave		1.1212			5.5	30.0		
Bromoform	0 0	0.5393	0.5360	0.5151	+	0.6264	Ave		0.6230			15.0	30.0		
Styrene	0 0	0.7345	0.7149	0.7373		0.8444	Ave		0.8111			8.4	30.0		
Nonane	0.0	0.9548	0.9526	0.9082		0.9229	Ave		0.9294			6.3	30.0		
o-Xylene		1.2156	1.1998	1.1380		1,1645	Ave		1.1544			5.1	30.0		
1,1,2,2-Tetrachloroethane	0 0		0.9612	0.8836		0.8200	Ave		0.8554			6.9	30.0		
1,2,3-Trichloropropane	000	 	0.2553	0.2469		0.2564	Ave		0.2633			4.9	30.0		
Isopropylbenzene		1.8568	1.7955	1.7205		1.7653	Ave		1.7603			5.7	30.0		
Propylbenzene	0 0	0.4936	0.4932	0.4739		0.4981	Ave		0.5068			5.3	30.0		
2-Chlorotoluene	0.0	0.4485	0.4333	0.4150		0.4313	Ave		0.4301			4.6	30.0		
4-Ethyltoluene	i i	1.8780	1.8323	1.7251		1.7701	Ave		1.8401			5.0	30.0		
		1000	0110	0,000	0000	00000	-		0000			7	0 00		

Note: The ml coefficient is the same as Ave RRF for an Ave curve type.

FORM VI AIR - GC/MS VOA INITIAL CALIBRATION DATA INTERNAL STANDARD CURVE EVALUATION

z 305 86 Heated Purge: (Y/N) Analy Batch No.: Calibration ID: 00:43 ID: 0.32 (mm) 10/18/2013 Calibration End Date: Job No.: 140-414-1 GC Column: RTX-5 10/17/2013 18:16 TestAmerica Knoxville Calibration Start Date: Instrument ID: MR Lab Name: SDG No.:

ANALYTE			RRF			CURVE	COEFFICIENT	# MIN RRF	RRF %RSD #	MAX	R^2 #	MIN R^2
	LVL 1	LVL 2	LVL 3	LVL 4	LVL 5	TYPE	B M1 M2				OR COD	OR COD
		LVL 7	TAT 8	- 1								
1,4-Dichlorobenzene	1.0399	1.0291	0.9740	1.0414	1.0349	Ave	1.0864		7.8	30.0		
4-Isopropyltoluene	1.8550	1.8392	1.7505	1.9705	1.9733	Ave	2.0135		9.5	30.0		
1,2,3-Trimethylbenzene	1.3397	1.3404	1.2621	1.3410	1.3237	Ave	1.3915		7.0	40.0		
Butylcyclohexane	1.1185	1.1319	1.0772	1,1364	1.1192	Ave	1.1648		7.0	40.0		
1,2-Dichlorobenzene	1.0111	0.9827	0.9336	0.9888	0.9944	Ave	1.0483		8.5	30.0		
Indane	1.4199	1.4047	1.3109	1.4043	1.3897	Ave	1.4411		6.2	40.0		
Indene	1.2251	1.2327	1.2259	1.3658	1.4108	Ave	1.4563		15.0	40.0		
Butylbenzene	1.7703	1.7111	1.6552	1.7601	1.7628	Ave	1,8228		8.0	30.0		
1,2-Dimethyl-4-Ethylbenzene	1.8463	1.8406	1.7172	1.8571	1.8543	Ave	1.9298		8.4	40.0		
Undecane	1.3955	1.4180	1.3333	1.4385	1.4653	Ave	1.4357		9.6	30.0		
1,2,4,5-Tetramethylbenzene	1.9835	1.9591	1.8388	1.9627	1.9705	Ave	2.0265		7.2	40.0		
1,2,3,5-Tetramethylbenzene	1.2500	1.2550	1.1523	1.2158	1.2239	Ave	1.2805		7.1	40.0		
1,2,3,4-Tetramethylbenzene	1.7394	1.6965	1.5707	1.6487	1.6787	Ave	1.7145		6.2	40.0		
Dodecane	1.5433	1.5740	1.4958	1.5373	1.6748	Ave	1.5331	-	11.0	30.0		
1,2,4-Trichlorobenzene	1.0364	1.0729	0.9671	1.0093	1.0665	Ave	1.1014		9.5	30.0		
Naphthalene	2.3905	2.4390	2.2500	2.2847	2.3892	Ave	2.4255		6.5	30.0		
Benzo(b)thiophene	1.6317	1.7175	1.5732	1.6871	1.6533	Ave	1.6963		6.0	40.0		
Hexachlorobutadiene	0.9570	0.9401	0.8471	0.8647	0.9330	Ave	0.9758		11.0	30.0		
1,2,3-Trichlorobenzene	1.0958	1.1362	1.0123	1.0464	1.1008	Ave	1.1188		7.1	30.0		
2-Methylnaphthalene	0.3067	0.3250	0.3781	0.3713	0.4728	Ave	0.4040		17.0	40.0		

Note: The ml coefficient is the same as Ave RRF for an Ave curve type.

FORM VI AIR - GC/MS VOA INITIAL CALIBRATION DATA INTERNAL STANDARD CURVE EVALUATION

Analy Batch No.: 305		Heated Purge: (Y/N) N	Calibration ID: 86
		ID: 0.32 (mm)	10/18/2013 00:43
Job No.: 140-414-1		GC Column: RTX-5	Calibration End Date: 10/18/2013 00:43
Lab Name: TestAmerica Knoxville	SDG No.:	Instrument ID: MR	Calibration Start Date: 10/17/2013 18:16

# MIN R^2						-
# #	<i></i>		-			
	ON COD					
			40.0		30.0	
#		_	C	_		
*RSL			14.0		0.9	
MIN RRF %RSD # MAX						
#						
· ·	M2					
COEFFICIENT	M1		0.3593		0.6916	
נ	В					
CURVE	JA X.E.		Ave		Ave	
	LVL 5		0.4182		0.7308 Ave	
	LVL 4	LVL 9	0.3473 0.3311 0.4182 Ave	++++++	0.7159	0.6479
RRF	LVL 3	LVL 8		0.3978	0	
	LVL 2	LVL 7	0.2875 0.3082	0.3553 0.4285	0.6926 0.6988	0.7457 0.6695
	LVL 1	TAT 6	0.2875	0.3553	0.6926	0.7457
ANALYTE			1-Methylnaphthalene		4-Bromofluorobenzene (Surr)	

Page 105 of 229

FORM V AIR - GC/MS VOA INSTRUMENT PERFORMANCE CHECK

Lab Name: TestAmerica Knoxville Job No.: 140-414-1

SDG No.:

Lab File ID: RBFBK08.D BFB Injection Date: 11/08/2013

Instrument ID: MR BFB Injection Time: 14:59

Analysis Batch No.: 405

M/E	ION ABUNDANCE CRITERIA		ATIVE DANCE
50	15.0 - 40.0 % of mass 95	19.4	
75	30.0 - 60.0 % of mass 95	46.5	
95	Base Peak, 100% relative abundance	100.0	
96	5.0 - 9.0 % of mass 95	6.9	
173	Less than 2.0 % of mass 174	0.5	(0.5)1
174	50.0 - 120.00 % of mass 95	100.4	
175	5.0 - 9.0 % of mass 174	7.0	(7.0)1
176	95.0 - 101.0 % of mass 174	96.6	(96.2)1
177	5.0 - 9.0 % of mass 176	6.3	(6.5)2

1-Value is % mass 174

2-Value is % mass 176

THIS CHECK APPLIES TO THE FOLLOWING SAMPLES, MS, MSD, BLANKS AND STANDARDS:

CLIENT SAMPLE ID	LAB SAMPLE ID	LAB FILE ID	DATE ANALYZED	TIME ANALYZED
	LCS 140-405/1002	RCCVK08-LC	11/08/2013	15:25
	MB 140-405/3	MB200mL.D	11/08/2013	17:32
A-EFFLUENT	140-414-3	RK08Pos09.	11/09/2013	02:53
C-EFFLUENT	140-414-6	RK08Pos10.	11/09/2013	03:40
A-MID GAC	140-414-2	RK08Pos11.	11/09/2013	04:27
C-MID GAC	140-414-5	RK08Pos12.	11/09/2013	05:15
A-INFLUENT	140-414-1	RK08Pos13.	11/09/2013	06:02
C-INFLUENT	140-414-4	RK08Pos14.	11/09/2013	06:51 _

FORM VII AIR - GC/MS VOA CONTINUING CALIBRATION DATA

Lab Name: TestAmerica Knoxville Job No.: 140-414-1

SDG No.:

Lab Sample ID: CCVIS 140-405/2 Calibration Date: 11/08/2013 15:25

Instrument ID: MR Calib Start Date: 10/17/2013 18:16

GC Column: RTX-5 ID: 0.32(mm) Calib End Date: 10/18/2013 00:43

Lab File ID: RCCVK08.D Conc. Units: ppb v/v Heated Purge: (Y/N) N

ANALYTE	CURVE TYPE	AVE RRF	RRF	MIN RRF	CALC AMOUNT	SPIKE AMOUNT	%D	MAX %D
Chlorodifluoromethane	Ave	0.3218	0.3322		2.06	2.00	3.2	30.0
Dichlorodifluoromethane	Ave	2.800	3.623		2.59	2.00	29.4	30.0
Chloromethane	Ave	0.4193	0.4197		2.00	2.00	0.1	30.0
1,2-Dichloro-1,1,2,2-tetrafl uoroethane	Ave	2.455	2.865		2.33	2.00	16.7	30.0
Acetaldehyde	Ave	0.4612	0.4220		9.15	10.0	-8.5	50.0
Vinyl chloride	Ave	1.205	1.240		2.06	2.00	3.0	30.0
1,3-Butadiene	Ave	0.9665	0.9577		1.98	2.00	-0.9	30.0
Butane	Ave	1.827	1.782		1.95	2.00	-2.5	30.0
Bromomethane	Ave	1.158	1.182		2.04	2.00	2.1	30.0
Chloroethane	Ave	0.6680	0.6370		1.91	2.00	-4.6	30.0
Ethanol	Ave	0.4251	0.3924		9.23	10.0	-7.7	50.0
Vinyl bromide	Ave	1.165	1.221		2.10	2.00	4.8	30.0
2-Methylbutane	Ave	1.493	1.369		1.83	2.00	-8.3	30.0
Acrolein	Ave	0.6546	0.6514		1.99	2.00	-0.5	30.0
Trichlorofluoromethane	Ave	3.521	3.777		2.15	2.00	7.3	30.0
Acetonitrile	Ave	0.6269	0.6682		2.13	2.00	6.6	30.0
Acetone	Ave	0.8722	0.7523			2.00	-13.8	30.0
Isopropyl alcohol	Ave	2.554	2.688		2.10	2.00	5.2	30.0
Pentane	Ave	0.3057	0.2999		1.96	2.00	-1.9	30.0
Ethyl ether	Ave	1.692	1.713		2.03	2.00	1.3	30.0
1,1-Dichloroethene	Ave	1.149	1.220		2.12	2.00	6.2	30.0
Acrylonitrile	Ave	1,257	1.309	·	2.08	2.00	4.2	30.0
tert-Butyl alcohol	Ave	2.979	2.946		1.98	2.00	-1.1	30.0
1,1,2-Trichloro-1,2,2-triflu oroethane	Ave	2.390	2.680		2.24	2.00	12.1	30.0
Methylene Chloride	Ave	1.118	1.118		2.00	2.00	0.0	30.0
3-Chloropropene	Ave	1.132	1.096		1.94	2.00	-3.2	30.0
Carbon disulfide	Ave	3.754	4.063		2.16	2.00	8.2	30.0
trans-1,2-Dichloroethene	Ave	1.394	1.464		2.10	2.00	5.0	30.0
2-Methylpentane	Ave	3.701	3.806		2.06	2.00	2.8	50.0
Methyl tert-butyl ether	Ave	3.567	3.796		2.13	2.00	6.4	30.0
1,1-Dichloroethane	Ave	2.402	2.565		2.14	2.00	6.8	30.0
Vinyl acetate	Ave	3.895	4.122		2.12	2.00	5.8	30.0
2-Butanone (MEK)	Ave	0.7394	0.6825		1.85	2.00	-7.7	30.0
Hexane	Ave	1.391	1.355		1.95	2.00	-2.6	30.0
cis-1,2-Dichloroethene	Ave	1.291	1.361		2.11	2.00	5.5	30.0
Ethyl acetate	Ave	3.452	3.587		2.08	2.00	3.9	30.0
Chloroform	Ave	2.467	2.617		2.12	2.00	6.1	30.0
Tetrahydrofuran	Ave	1.833	1.904		2.08	2.00	3.8	30.0
1,1,1-Trichloroethane	Ave	2.506	2.657		2.12	2.00	6.0	30.0
1,2-Dichloroethane	Ave	0.3731	0.3913		2.10	2.00	4.9	30.0

FORM VII AIR - GC/MS VOA CONTINUING CALIBRATION DATA

Lab Name: TestAmerica Knoxville Job No.: 140-414-1

SDG No.:

Lab Sample ID: CCVIS 140-405/2 Calibration Date: 11/08/2013 15:25

Instrument ID: MR Calib Start Date: 10/17/2013 18:16

GC Column: RTX-5 ID: 0.32(mm) Calib End Date: 10/18/2013 00:43

Lab File ID: RCCVK08.D Conc. Units: ppb v/v Heated Purge: (Y/N) N

ANALYTE	CURVE TYPE	AVE RRF	RRF	MIN RRF	CALC AMOUNT	SPIKE AMOUNT	%D	MAX %D
1-Butanol	Ave	0.1230	0.1177		1.91	2.00	-4.3	30.0
Benzene	Ave	0.7868	0.8396		2.13	2.00	6.7	30.0
Cyclohexane	Ave	0.1357	0.1446		2.13	2.00	6.5	30.0
Carbon tetrachloride	Ave	0.5423	0.6215		2.29	2.00	14.6	30.0
2,3-Dimethylpentane	Ave	0.1795	0.1913		2.13	2.00	6.5	50.0
Thiophene	Ave	0.4750	0.5086		2.14	2.00	7.1	50.0
2,2,4-Trimethylpentane	Ave	1.623	1.731		2.13	2.00	6.6	30.0
Heptane	Ave	0.3067	0.3225	~	2.10	2.00	5.2	30.0
1,2-Dichloropropane	Ave	0.3249	0.3485		2.15	2.00	7.3	30.0
Trichloroethene	Ave	0.3651	0.3983		2.18	2.00	9.1	30.0
Dibromomethane	Ave	0.3226	0.3557		2.20	2.00	10.2	30.0
Bromodichloromethane	Ave	0.5496	0.5858		2.13	2.00	6.6	30.0
1,4-Dioxane	Ave	0.1437	0.0099			2.00	-93.1*	30.0
Methyl methacrylate	Ave	0.4400	0.4587		2.08	2.00	4.2	30.0
Methylcyclohexane	Ave	0.4861	0.5124		2.11	2.00	5.4	50.0
4-Methyl-2-pentanone (MIBK)	Ave	0.7661	0.6844		1.79	2.00	-10.7	30.0
cis-1,3-Dichloropropene	Ave	0.4395	0.4629		2.11	2.00	5.3	30.0
trans-1,3-Dichloropropene	Ave	0.5191	0.5736		2.21	2.00	10.5	30.0
Toluene	Ave	1.287	1.299		2.02	2.00	1.0	30.0
1,1,2-Trichloroethane	Ave	0.3248	0.3646		2.24	2.00	12.2	30.0
2-Methylthiophene	Ave	0.9679	1.105		2.28	2.00	14.1	50.0
3-Methylthiophene	Ave	0.9933	1.122		2.26	2.00	13.0	50.0
2-Hexanone	Ave	0.4629	0.2187		0.945	2.00	-52.8*	30.0
Octane	Ave	0.3951	0.4541		2.30	2.00	14.9	30.0
Dibromochloromethane	Ave	0.6382	0.6974		2.19	2.00	9.3	30.0
1,2-Dibromoethane (EDB)	Ave	0.5998	0.6584		2.20	2.00	9.8	30.0
Tetrachloroethene	Ave	0.4096	0.4686	<u> </u>	2.29	2.00	14.4	30.0
Chlorobenzene	Ave	0.8912	0.9371		2.10	2.00	5.1	30.0
2,3-Dimethylheptane	Ave	1.278	1.419		2.22	2.00	11.0	50.0
Ethylbenzene	Ave	1.403	1.494		2.13	2.00	6.5	30.0
2-Ethylthiophene	Ave	1.061	1.135		2.14	2.00	7.0	50.0
m-Xylene & p-Xylene	Ave	1.121	1.226	- · · · · · - · · - · · · · · · · · · ·	4.37	4.00	9.3	30.0
Bromoform	Ave	0.6230	0.5073		1.63	2.00	-18.6	30.0
Styrene	Ave	0.8111	0.9329		2.30	2.00	15.0	30.0
Nonane	Ave	0.9294	1.054		2.27	2.00	13.4	30.0
o-Xylene	Ave	1.154	1.252		2.17	2.00	8.5	30.0
1,1,2,2-Tetrachloroethane	Ave	0.8554	0.9400		2.20	2.00	9.9	30.0
1,2,3-Trichloropropane	Ave	0.2633	0.2943		2.23	2.00	11.7	30.0
Isopropylbenzene	Ave	1.760	2.031	<u></u>	2.31	2.00	15.4	30.0
Propylbenzene	Ave	0.5068	0.5876		2.32	2.00	15.9	30.0
2-Chlorotoluene	Ave	0.4301	0.4939		2.30	2.00	14.8	30.0

FORM VII AIR - GC/MS VOA CONTINUING CALIBRATION DATA

Lab Name: TestAmerica Knoxville Job No.: 140-414-1

SDG No.:

Lab Sample ID: CCVIS 140-405/2 Calibration Date: 11/08/2013 15:25

Instrument ID: MR Calib Start Date: 10/17/2013 18:16

GC Column: RTX-5 ID: 0.32(mm) Calib End Date: 10/18/2013 00:43

Lab File ID: RCCVK08.D Conc. Units: ppb v/v Heated Purge: (Y/N) N

ANALYTE	CURVE TYPE	AVE RRF	RRF	MIN RRF	CALC AMOUNT	SPIKE AMOUNT	% D	MAX %D
4-Ethyltoluene	Ave	1.840	2.053		2.23	2.00	11.6	30.0
1,3,5-Trimethylbenzene	Ave	0.8606	0.9659		2.24	2.00	12.2	30.0
Alpha Methyl Styrene	Ave	0.7226	0.8311		2.30	2.00	15.0	30.0
Decane	Ave	1.217	1.353		2.22	2.00	11.2	30.0
tert-Butylbenzene	Ave	1.667	1.865		2.24	2.00	11.9	30.0
1,2,4-Trimethylbenzene	Ave	1.536	1.733		2.26	2.00	12.9	30.0
1,3-Dichlorobenzene	Ave	1.072	1.207		2.25	2.00	12.6	30.0
sec-Butylbenzene	Ave	2.254	2.524		2.24	2.00	12.0	30.0
Benzyl chloride	Ave	1.307	1.469		2.25	2.00	12.5	30.0
1,4-Dichlorobenzene	Ave	1.086	1.247		2.29	2.00	14.7	30.0
4-Isopropyltoluene	Ave	2.014	2.302		2.29	2.00	14.3	30.0
1,2,3-Trimethylbenzene	Ave	1.392	1.509		2.17	2.00	8.4	50.0
Butylcyclohexane	Ave	1.165	1.284		2.20	2.00	10.2	50.0
1,2-Dichlorobenzene	Ave	1.048	1.184		2.26	2.00	12.9	30.0
Indane	Ave	1.441	1.641		2.28	2.00	13.9	50.0
Indene	Ave	1.456	1.617		2.22	2.00	11.0	50.0
Butylbenzene	Ave	1.823	2.012		2.21	2.00	10.4	30.0
1,2-Dimethyl-4-Ethylbenzene	Ave	1.930	2.106		2.18	2.00	9.1	50.0
Undecane	Ave	1.436	1.632		2.27	2.00	13.7	30.0
1,2,4,5-Tetramethylbenzene	Ave	2.026	2.162		2.13	2.00	6.7	50.0
1,2,3,5-Tetramethylbenzene	Ave	1.281	1.334		2.08	2.00	4.1	50.0
1,2,3,4-Tetramethylbenzene	Ave	1.715	1.778		2.07	2.00	3.7	50.0
Dodecane	Ave	1.533	1.667		2.17	2.00	8.7	30.0
1,2,4-Trichlorobenzene	Ave	1.101	1.185		2.15	2.00	7.6	30.0
Naphthalene	Ave	2.425	2.452		2.02	2.00	1.1	30.0
Benzo(b)thiophene	Ave	1.696	1.673		1.97	2.00	-1.4	50.0
Hexachlorobutadiene	Ave	0.9758	1.070		2.19	2.00	9.7	30.0
1,2,3-Trichlorobenzene	Ave	1.119	1.186		2.12	2.00	6.0	30.0
2-Methylnaphthalene	Ave	0.4040	0.4191		13.0	12.5	3.7	50.0
1-Methylnaphthalene	Ave	0.3593	0.3606		12.5	12.5	0.4	50.0
4-Bromofluorobenzene (Surr)	Ave	0.6916	0.7742		4.48	4.00	12.0	30.0

FORM IV AIR - GC/MS VOA METHOD BLANK SUMMARY

Lab Name: TestAmerica Knoxville	Job No.: 140-414-1
SDG No.:	
Lab File ID: MB200mL.D	Lab Sample ID: MB 140-405/3
Matrix: Air	Heated Purge: (Y/N) N
Instrument ID: MR	Date Analyzed: 11/08/2013 17:32
GC Column: RTX-5 ID: 0.32 (mm)	

THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES:

		LAB	
CLIENT SAMPLE ID	LAB SAMPLE ID	FILE ID	DATE ANALYZED
	LCS 140-405/1002	RCCVK08-LCS	11/08/2013 15:25
		.d	
A-EFFLUENT	140-414-3	RK08Pos09.D	11/09/2013 02:53
C-EFFLUENT	140-414-6	RK08Pos10.D	11/09/2013 03:40
A-MID GAC	140-414-2	RK08Pos11.D	11/09/2013 04:27
C-MID GAC	140-414-5	RK08Pos12.D	11/09/2013 05:15
A-INFLUENT	140-414-1	RK08Pos13.D	11/09/2013 06:02
C-INFLUENT	140-414-4	RK08Pos14.D	11/09/2013 06:51

FORM I AIR - GC/MS VOA ORGANICS ANALYSIS DATA SHEET

Lab Name: TestAmerica Knoxville

SDG No.:

Client Sample ID:

Lab Sample ID: MB 140-405/3

Matrix: Air

Lab File ID: MB200mL.D

Analysis Method: TO-15

Date Collected:

Sample wt/vol: 200(mL)

Date Analyzed: 11/08/2013 17:32

Soil Aliquot Vol:

Soil Extract Vol.:

GC Column: RTX-5

ID: 0.32(mm)

% Moisture:

Level: (low/med) Low

Analysis Batch No.: 405

Units: ug/m3

CAS NO.	COMPOUND NAME	MOLECULAR WEIGHT	RESULT	Q	RL	
71-43-2	Benzene	78.11	ND		0.64	
100-44-7	Benzyl chloride	126.58	ND		2.1	
74-83-9	Bromomethane	94.94	. ND		0.78	
56-23-5	Carbon tetrachloride	153.81	ND		1.3	
108-90-7	Chlorobenzene	112.56	ND		0.92	
75-00-3	Chloroethane	64.52	ND		0.53	
67-66-3	Chloroform	119.38	ND		0.98	
74-87-3	Chloromethane	50.49	ND		1.0	
95-50-1	1,2-Dichlorobenzene	147.00	ND		1.2	
541-73-1	1,3-Dichlorobenzene	147.00	ND		1.2	
106-46-7	1,4-Dichlorobenzene	147.00	ND		1.2	
75-71-8	Dichlorodifluoromethane	120.91	ND		0.99	-
75-34-3	1,1-Dichloroethane	98.96	ND		0.81	
107-06-2	1,2-Dichloroethane	98.96	ND		0.81	
75-35-4	1,1-Dichloroethene	96.94	ND		0.79	
156-59-2	cis-1,2-Dichloroethene	96.94	ND		0.79	
78-87-5	1,2-Dichloropropane	112.99	ND		0.92	
10061-01-5	cis-1,3-Dichloropropene	110.97	ND		0.91	
10061-02-6	trans-1,3-Dichloropropen	110.97	ND		0.91	
76-14-2	1,2-Dichloro-1,1,2,2-tet rafluoroethane	170.92	ND		1.4	
100-41-4	Ethylbenzene	106.17	ND		0.87	
75-69-4	Trichlorofluoromethane	137.37	ND		1.1	
87-68-3	Hexachlorobutadiene	260.76	ND		11	
75-09-2	Methylene Chloride	84.93	ND		1.7	
100-42-5	Styrene	104.15	ND		0.85	
79-34-5	1,1,2,2-Tetrachloroethan e	167.85	ND		1.4	
127-18-4	Tetrachloroethene	165.83	ND		1.4	
108-88-3	Toluene	92.14	ND		0.75	
120-82-1	1,2,4-Trichlorobenzene	181.45	ND		7.4	
71-55-6	1,1,1-Trichloroethane	133.41	ND		1.1	
79-00-5	1,1,2-Trichloroethane	133.41	ND		1.1	-
79-01-6	Trichloroethene	131.39	ND		1.1	
76-13-1	1,1,2-Trichloro-1,2,2-tr ifluoroethane	187.38	ND		1.5	

FORM I AIR - GC/MS VOA ORGANICS ANALYSIS DATA SHEET

Lab Name: TestAmerica Knoxville	Job No.: 140-414-1
SDG No.:	
Client Sample ID:	Lab Sample ID: MB 140-405/3
Matrix: Air	Lab File ID: MB200mL.D
Analysis Method: TO-15	Date Collected:
Sample wt/vol: 200(mL)	Date Analyzed: 11/08/2013 17:32
Soil Aliquot Vol:	Dilution Factor: 1
Soil Extract Vol.:	GC Column: RTX-5 ID: 0.32(mm)
% Moisture:	Level: (low/med) Low
Analysis Batch No.: 405	Units: ug/m3

CAS NO.	COMPOUND NAME	MOLECULAR WEIGHT	RESULT	Q	RL	
95-63-6	1,2,4-Trimethylbenzene	120.20	ND		0.98	
108-67-8	1,3,5-Trimethylbenzene	120.20	ND		0.98	
75-01-4	Vinyl chloride	62.50	ND		0.51	
95-47-6	o-Xylene	106.17	ND		0.87	
179601-23-1	m-Xylene & p-Xylene	106.17	ND		0.87	
106-93-4	1,2-Dibromoethane (EDB)	187.87	ND		1.5	

CAS NO.	SURROGATE	%REC	Q	LIMITS
460-00-4	4-Bromofluorobenzene (Surr)	101		60-140

FORM II AIR - GC/MS VOA SURROGATE RECOVERY

Lab Name	: TestAmerica Knoxville	Job No.	: 140-414-1
SDG No.:			
Matrix:	Air	Level:	Low

GC Column (1): RTX-5 ID: 0.32 (mm)

Lab Sample ID	BFB	#
140-414-1	99	-
140-414-2	98	
140-414-3	96	-
140-414-4	99	
140-414-5	99	
140-414-6	97	
MB 140-405/3	101	
LCS 140-405/1002	112	
	140-414-1 140-414-2 140-414-3 140-414-4 140-414-5 140-414-6 MB 140-405/3	140-414-1 99 140-414-2 98 140-414-3 96 140-414-4 99 140-414-5 99 140-414-6 97 MB 140-405/3 101

 $\frac{\text{QC LIMITS}}{60-140}$

BFB = 4-Bromofluorobenzene (Surr)

Column to be used to flag recovery values

FORM II TO-15

FORM III AIR - GC/MS VOA LAB CONTROL SAMPLE RECOVERY

Lab Name	e: TestAmerica Knox	ville	Job No.: 140-414-1	
SDG No.:				
Matrix:	Air	Level: Low	Lab File ID: RCCVK08-LCS.d	
Lab ID:	LCS 140-405/1002		Client ID:	

	SPIKE	LCS	LCS	QC	
	ADDED	CONCENTRATION	용	LIMITS	#
COMPOUND	(ppb v/v)	(ppb v/v)	REC	REC	
Benzene	2.00	2.13	107	70-130	
Benzyl chloride	2.00	2.25	112	70-130	
Bromomethane	2.00	2.04	102	70-130	
Carbon tetrachloride	2.00	2.29	115	70-130	
Chlorobenzene	2.00	2.10	105	70-130	-
Chloroethane	2.00	1.91	95	70-130	
Chloroform	2.00	2.12	106	70-130	
Chloromethane	2.00	2.00	100	60-140	
1,2-Dichlorobenzene	2.00	2.26	113	70-130	
1,3-Dichlorobenzene	2.00	2.25	113	70-130	
1,4-Dichlorobenzene	2.00	2.29	115	70-130	
Dichlorodifluoromethane	2.00	2.59	129	60-140	
1,1-Dichloroethane	2.00	2.14	107	70-130	
1,2-Dichloroethane	2.00	2.10	105	70-130	
1,1-Dichloroethene	2.00	2.12	106	70-130	
cis-1,2-Dichloroethene	2.00	2.11	105	70-130	
1,2-Dichloropropane	2.00	2.15	107	70-130	
cis-1,3-Dichloropropene	2.00	2.11	105	70-130	
trans-1,3-Dichloropropene	2.00	2.21	111	70-130	
1,2-Dichloro-1,1,2,2-tetrafluo	2.00	2.33	117	60-140	
roethane					
Ethylbenzene	2.00	2.13	106	1	
Trichlorofluoromethane	2.00	2.15	107	-1.	
Hexachlorobutadiene	2.00	2.19	110	.1.	
Methylene Chloride	2.00	2.00	100	.1.	
Styrene	2.00	2.30	115	I	
1,1,2,2-Tetrachloroethane	2.00	2.20	110	1	
Tetrachloroethene	2.00	2.29	114	70-130	
Toluene	2.00	2.02	101	70-130	
1,2,4-Trichlorobenzene	2.00	2.15	108	60-140	
1,1,1-Trichloroethane	2.00	2.12	106	 	
1,1,2-Trichloroethane	2.00	2.24	112		
Trichloroethene	2.00	2.18	109	 	
1,1,2-Trichloro-1,2,2-trifluor oethane	2.00	2.24	112	70-130	
1,2,4-Trimethylbenzene	2.00	2.26	113	70-130	
1,3,5-Trimethylbenzene	2.00	2.24	112		
Vinyl chloride	2.00	2.06	103		
o-Xylene	2.00	2.17	103		-
m-Xylene & p-Xylene	4.00	4.37	109		
1,2-Dibromoethane (EDB)	2.00	2.20	110		
T'S-DIDIOMOGRHQUE (FDR)	2.00	2.20	1 110	/0-130	

[#] Column to be used to flag recovery and RPD values

FORM VIII AIR - GC/MS VOA INTERNAL STANDARD AREA AND RETENTION TIME SUMMARY

Lab Name: TestAmerica Knoxville Job No.: 140-414-1

SDG No.:

Sample No.: CCVIS 140-405/2 Date Analyzed: 11/08/2013 15:25

Instrument ID: MR GC Column: RTX-5 ID: 0.32(mm)

Lab File ID (Standard): RCCVK08.D Heated Purge: (Y/N) N

Calibration ID: 86

		CBM		DFB		CBZ	
		AREA #	RT #	AREA #	RT #	AREA #	RT #
12/24 HOUR STD		566304	8.62	2720290	10.89	2169084	17.17
UPPER LIMIT		792826	8.95	3808406	11.22	3036718	17.50
LOWER LIMIT		339782	8.29	1632174	10.56	1301450	16.84
LAB SAMPLE ID	CLIENT SAMPLE ID						
LCS 140-405/1002		566304	8.62	2720290	10.89	2169084	17.17
MB 140-405/3		459216	8.62	2218465	10.88	2037870	17.16
140-414-3	A-EFFLUENT	446883	8.63	2148416	10.89	1959950	17.16
140-414-6	C-EFFLUENT	410503	8.63	1985252	10.90	1836862	17.16
140-414-2	A-MID GAC	403160	8.63	1924544	10.90	1750132	17.16
140-414-5	C-MID GAC	391992	8.63	1873929	10.89	1667126	17.16
140-414-1	A-INFLUENT	423768	8.63	2020496	10.90	1849685	17.16
140-414-4	C-INFLUENT	423622	8.63	2019238	10.89	1836954	17.16

CBM = Chlorobromomethane (IS)

DFB = 1,4-Difluorobenzene

CBZ = Chlorobenzene-d5 (IS)

Area Limit = 60%-140% of internal standard area RT Limit = \pm 0.33 minutes of internal standard RT

Column used to flag values outside QC limits

FORM VIII TO-15

Sample Calculation

FORM I AIR - GC/MS VOA ORGANICS ANALYSIS DATA SHEET

Job No.: 140-414-1 Lab Name: TestAmerica Knoxville SDG No.: Client Sample ID: A-INFLUENT Lab Sample ID: 140-414-1 Lab File ID: RK08Pos13.D Matrix: Air Analysis Method: TO-15 Date Collected: 11/07/2013 10:06 Date Analyzed: 11/09/2013 06:02 Sample wt/vol: 20(mL) Dilution Factor: 1 Soil Aliquot Vol: GC Column: RTX-5 ID: 0.32 (mm) Soil Extract Vol.: Level: (low/med) Low % Moisture: Analysis Batch No.: 405 Units: ug/m3

CAS NO.	COMPOUND NAME	MOLECULAR WEIGHT	RESULT	Q	RL	
71-43-2	Benzene	78.11	ND		6.4	
100-44-7	Benzyl chloride	126.58	ND		21	
74-83-9	Bromomethane	94.94	ND		7.8	
56-23-5	Carbon tetrachloride	153.81	ND		13	
108-90-7	Chlorobenzene	112.56	ND		9.2	
75-00-3	Chloroethane	64.52	ND		5.3	
67-66-3	Chloroform	119.38	ND		9.8	
74-87-3	Chloromethane	50.49	ND		10	
95-50-1	1,2-Dichlorobenzene	147.00	ND		12	
541-73-1	1,3-Dichlorobenzene	147.00	ND	-	12	
106-46-7	1,4-Dichlorobenzene	147.00	ND		12	
75-71-8	Dichlorodifluoromethane	120.91	ND		9.9	
75-34-3	1,1-Dichloroethane	98.96	39		8.1	
107-06-2	1,2-Dichloroethane	98.96	ND		8.1	
75-35-4	1,1-Dichloroethene	96.94	170		7.9	
156-59-2	cis-1,2-Dichloroethene	96.94	200		7.9	
78-87-5	1,2-Dichloropropane	112.99	ND		9.2	
10061-01-5	cis-1,3-Dichloropropene	110.97	ND		9.1	
10061-02-6	trans-1,3-Dichloropropen e	110.97	ND		9.1	
76-14-2	1,2-Dichloro-1,1,2,2-tet rafluoroethane	170.92	ND		14	
100-41-4	Ethylbenzene	106.17	ND		8.7	-
75-69-4	Trichlorofluoromethane	137.37	41		11	
87-68-3	Hexachlorobutadiene	260.76	ND		110	
75-09-2	Methylene Chloride	84.93	ND		17	
100-42-5	Styrene	104.15	ND		8.5	
79-34-5	1,1,2,2-Tetrachloroethan e	167.85	ND		14	,
127-18-4	Tetrachloroethene	165.83	ND		14	
108-88-3	Toluene	92.14	11		7.5	
120-82-1	1,2,4-Trichlorobenzene	181.45	ND		74	
71-55-6	1,1,1-Trichloroethane	133.41	930		11	
79-00-5	1,1,2-Trichloroethane	133.41	ND.		11	
79-01-6	Trichloroethene	131.39	1500	ر	11	
76-13-1	1,1,2-Trichloro-1,2,2-tr ifluoroethane	187.38	ND	•	15	

Report Date: 11-Nov-2013 11:46:12

Chrom Revision: 2.1 15-Oct-2013 07:52:24

TestAmerica Knoxville
Target Compound Quantitation Report

Sample Paladatton

Data File:

\\KNXCHROM\ChromData\MR\20131108-191.b\RK08Pos13.D

Lims ID:

140-414-A-1

Lab Sample ID:

140-414-1

Client ID:

A-INFLUENT

Sample Type:

Client

Inject. Date:

09-Nov-2013 06:02:30

ALS Bottle#: Dil. Factor:

13

Worklist Smp#:

17

Purge Vol: Sample Info: 500.000 mL

140-414-a-1

R110813,TO15,140-0000191-017

KIIUBI

-017

1.0000

Misc. Info.: Operator ID:

403648

Instrument ID:

MR

Method:

\\KNXCHROM\ChromData\MR\20131108-191.b\MR_TO15.m

Limit Group: Last Update: MSA TO14A_15 Routine ICAL

11-1

11-Nov-2013 11:46:12

Calib Date:

18-Oct-2013 00:43:30

Integrator:

RTE

ID Type:

Deconvolution ID

Quant Method:

Internal Standard

RTX-5 (0.32 mm)

Quant By:

Initial Calibration

Last ICal File:

\\KNXCHROM\ChromData\MR\20131016-137.b\RJ170010.D

Column 1 : Process Host:

XAWRK001

Detector

MS SCAN

First Level Reviewer: barlozhetskayaa

Date:

11-Nov-2013 11:46:12

	<u> </u>	т . т							
			RT	Adj RT	Dlt RT			On-Col Amt	
	Compound	Sig	(min.)	(min.)	(min.)	Q	Response	ppb v/v	Flags
* 1 Chlorobrom	omethane (IS)	128	8.625	8.619	0.006	99	9 423768	4.00	
* 2 1,4-Difluoro		114	10.895	10.890	0.005	9	5 2020496	4.00	
* 3 Chlorobenz	ene-d5 (IS)	117	17.156	17.172	-0.016	8	7 1849685	4.00	
\$ 4 4-Bromoflu	orobenzene (Surr)	95	19.900	19.916	-0.016	9	5 1261097	3.94	
8 Dichlorodiflu	ıoromethane	85	3.551	3.545	0.006	9:	3 8615	0.0290	
20 Trichloroflu	oromethane	101	5.012	5.012	0.0	98	8 108847	0.2918	
27 1,1-Dichlore	oethene	96	5.724	5.724	0.0	9	5 210071	1.73	
31 Methylene	Chloride	84	6.058	6.063	-0.005	89	9 7859	0.0664	
37 1,1-Dichlore	oethane	63	7.309	7.304	0.005	99	9 98370	0.3866	
41 cis-1,2-Dich	nloroethene	96	8.301	8.296	0.005	9.	7 276364	2.02	
43 Chloroform		83	8.652	8.646	0.006	60	12098	0.0463	
45 1,1,1-Trichl	oroethane	97	9.693	9.687	0.006	9	7 1808117	6.81	
56 Trichloroeth	nene	130	11.704	11.698	0.006	98	8 2085242	11.3	
65 Toluene		91	14.303	14.303	0.0	92	2 68969	0.1159	

FORM VI AIR - GC/MS VOA INITIAL CALIBRATION DATA INTERNAL STANDARD CURVE EVALUATION

Lample Calculation

Lab Name: TestAmerica Knoxville		Job No.: 140-414-1		Analy Batch No.: 305
SDG No.:				
Instrument ID: MR		GC Column: RTX-5	ID: 0.32 (mm)	Heated Purge: (Y/N) N
Calibration Start Date: 10/17/2013 18:16	18:16	Calibration End Date: 10/18/2013 00:43	10/18/2013 00:43	Calibration ID: 86
				=

ANALYTE			RRF			CURVE	COE	COEFFICIENT	#	MIN RRF	%RSD #		R^2 #	
	LVL 1	LVL 2 LVL 7	LVL 3	LVL 4 LVL 9	LVL 5	⊢ ተ የ	. w	MI	м2			0		() () () () () () () () () ()
C6 Range	2.5681	3.2156	4.6511 3.2237	3.6603	3.3055	Ave		3.3749			17.0	30.0		
Hexane	1.8027 1.2617	1.6571 1.3247	1.4427 1.1953	1.4084 1.1278	1.2973	Ave		1.3909			16.0	30.0		
cis-1,2-Dichloroethene	1.4523 1.2358	1.3173	1.2715 1.2177	1.3391 1.2183	1.2493	Ave		1.2907			5.8	30.0		
Ethyl acetate	3.7912 3.4574	3.6355	3.4373 3.1632	3.6547 2.9627	3.4426	Ave		3.4518			7.4	30.0		
Chloroform	2.6732	2.5664	2.4694 2.2967	2.6031 2.2442	2.4513	Ave		2.4666			5.7	30.0		
Tetrahydrofuran	1.9908	1.9349 1.8568	1.8653 1.6750	1.9526 1.5662	1.8388	Ave		1.8333			7.4	30.0		
1,1,1-Trichloroethane	2.6615 2.4195	2.5967 2.5778	2.4628	2.6471	2.4948	Ave		2.5063			4.8	30.0		
1,2-Dichloroethane	0.3868	0.3930	0.3670 0.3532	0.3939 0.3485	0.3713	Ave		0.3731			4.4	30.0	,	
Benzene	0.8611 0.7617	0.8512 0.8145	0.7664 0.7546	0.8129 0.6918	0.7669	Ave		0.7868			6.8	30.0		
1-Butanol	0.1610 0.1145	0.1623 0.1160	0.1354	0.1152 0.0860	0.1119	Ave		0.1230			21.0	30.0		
Cyclohexane	0.1563 0.1314	0.1420 0.1409	0.1330 0.1295	0.1390	0.1335	Ave		0.1357			8.1	30.0		
Carbon tetrachloride	0.5534 0.5547	0.5674 0.5788	0.5301 0.5123	0.5370 0.5552	0.4922	Ave		0.5423			5.0	30.0		
2,3-Dimethylpentane	0.1906 0.1737	0.1832 0.1859	0.1726 0.1743	0.1850 0.1737	0.1768	Ave		0.1795			3.7	40.0		
Thiophene	0.4889 0.4579	0.4781 0.4943	0.4614	0.4932	0.4644	Ave		0.4750			3.0	40.0		
2,2,4-Trimethylpentane	1.7457 1.5817	1.7290 1.6668	1.5998 1.5309	1.7058 1.4465	1.5989	Ave		1.6228			6.1	30.0		
Heptane	0.3421 0.2893	0.3193	0.2975	0.3186 0.2850	0.2998	Ave	_	0.3067			6.0	30.0		
1,2-Dichloropropane	0.3407	0.3342	0.3202	0.3420	0.3227	Ave		0.3249			4.2	30.0		
Trichloroethene	0.3705 0.3534	0.3704	0.3442	0.3714	0.3544	Ave	\bigcap	0.3651			3.3	30.0		
Dibromomethane	0.3305	0.3264 0.3324	0.3079	0.3314	0.3126	Ave		0.3226			2.9	30.0	_	
Bromodichloromethane	0.5398	0.5264	0.5044	0.5579	0.5463	Ave		0.5496			4.7	30.0	<u> </u>	

Note: The ml coefficient is the same as Ave RRF for an Ave curve type.

INTERNAL CORRESPONDENCE

TO:

P. RICH

DATE:

FEBRUARY 19, 2014

FROM:

A. COGNETTI

COPIES:

DV FILE

SUBJECT:

ORGANIC DATA VALIDATION - VOC

LOCKHEED MARTIN CORPORATION (LMC) – MIDDLE RIVER SAMPLE DELIVERY GROUPS (SDGs) – 10252866 and 10251738

SAMPLES:

6/Air/VOC

A-EFFLUENT

A-INFLUENT

A-MID GAC

C-EFFLUENT

C-INFLUENT

C-MID GAC

Overview

The sample sets for LMC – Middle River, SDGs 10252866 and 10251738 consisted of six (6) air samples. All samples were analyzed for volatile organic compounds (VOC). No field duplicate pair is included in this SDG.

The samples were collected by Geo Trans on December 5 and 18, 2013 and analyzed by PACE Analytical. All analyses were conducted in accordance with EPA Method TO-15 analytical and reporting protocols.

The data contained in this SDG were validated with regard to the following parameters: data completeness, holding times, GC/MS tuning, initial/continuing calibrations, laboratory method blank results, surrogate spike recoveries, blank spike results, internal standard recoveries, chromatographic resolution, compound identification, compound quantitation, and detection limits. Areas of concern are listed below.

Major

No major noncompliances were noted.

<u>Minor</u>

- The internal standard area for 1,4-difluorobenzene was outside quality control limits in sample A-EFFLUENT. The detected and nondetected results quantitated using this internal standard were qualified as estimated (J) and (UJ), respectively.
- The analytes chlorodifluoromethane and 1,2,3-trimethylbenzene were reported as tentatively identified compounds (TICs). These analytes were only found in sample A-EFFLUENT. The TICs were qualified as presumptively present (NJ). Results reported in ppbv units were converted to ug/m³.

<u>Notes</u>

The chain of custody indicated that no gauges were provided with the summa canisters. This means that the canister pressure before and after sampling could not be evaluated. No validation action was taken.

The data reviewer determined that carbon tetrachloride was not reported in sample A-EFFLUENT. A request was made to the laboratory and they provided the missing result.

As indicated in the comments section on the chain of custody record from December 18, 2013, the laboratory was instructed to analyze sample A-Influent if the original sample collected on December 5, 2013 for A-Influent was not usable. The original sample for A-Influent was analyzed by the laboratory and

TO: P. Rich FROM: A. Cognetti

SDG: 10252866 and 10251738

DATE: February 19, 2014

was considered usable. Therefore, sample A-Influent collected on December 18, 2013 was not analyzed by the laboratory. No action was validation required.

PAGE 2

The A-Effluent sample collected on December 5, 2013 was not analyzed by the laboratory but the A-Effluent sample collected on December 18, 2013 was analyzed. No action was validation required.

Nondetected results were reported to the reporting limit.

Executive Summary

Laboratory Performance: The internal standard 1,4-difluorobenzene was low in sample A-Effluent.

Other Factors Affecting Data Quality: None.

The data for these analyses were reviewed with reference to Region III modifications to U.S. EPA National Functional Guidelines for Organic Data Validation (Sept. 1994) and EPA Method TO-15. The text of this report has been formulated to address only those problem areas affecting data quality.

Tetra Tech Ann Cognetti

Chemist/Data Validator

Tetra Tech

/Joseph A. Samchuck
Data Validation Manager

Attachments:

Appendix A – Qualified Analytical Results

Appendix B - Results as Reported by the Laboratory

Appendix C – Support Documentation

Appendix A

Qualified Analytical Results

Qualifier Codes:

A = Lab Blank Contamination

B = Field Blank Contamination

C = Calibration Noncompliance (i.e., % RSDs, %Ds, ICVs, CCVs, RRFs, etc.)

C01 = GC/MS Tuning Noncompliance

D = MS/MSD Recovery Noncompliance

E = LCS/LCSD Recovery Noncompliance

F = Lab Duplicate Imprecision

G = Field Duplicate Imprecision

H = Holding Time Exceedance

I = ICP Serial Dilution Noncompliance

J = ICP PDS Recovery Noncompliance; MSA's r < 0.995

K = ICP Interference - includes ICS % R Noncompliance

L = Instrument Calibration Range Exceedance

M = Sample Preservation Noncompliance

N = Internal Standard Noncompliance

N01 = Internal Standard Recovery Noncompliance Dioxins

N02 = Recovery Standard Noncompliance Dioxins

N03 = Clean-up Standard Noncompliance Dioxins

O = Poor Instrument Performance (i.e., base-time drifting)

P = Uncertainty near detection limit (< 2 x IDL for inorganics and <CRQL for organics)

Q = Other problems (can encompass a number of issues; i.e.chromatography,interferences, etc.)

R = Surrogates Recovery Noncompliance

S = Pesticide/PCB Resolution

T = % Breakdown Noncompliance for DDT and Endrin

U = RPD between columns/detectors >40% for positive results determined via GC/HPLC

V = Non-linear calibrations; correlation coefficient r < 0.995

W = EMPC result

X = Signal to noise response drop

Y = Percent solids <30%

Z = Uncertainty at 2 standard deviations is greater than sample activity

Z1 = Tentatively Identified Compound considered presumptively present

Z2 = Tentatively Identified Compound column bleed

Z3 = Tentatively Identified Compound aldol condensate

PROJ_NO: 03265	NSAMPLE	A-INFLUENT		A-MID GAC		C-EFFLUENT		C-INFLUENT	
SDG: 10251738	LAB_ID	10251738001		10251738002		10251738005		10251738003	
FRACTION: OV	SAMP_DATE	12/5/2013		12/5/2013		12/5/2013		12/5/2013	
MEDIA: AIR	QC_TYPE	NA		NM		NA		NN	
	UNITS	UG/M3		UG/M3		UG/M3		UG/M3	
	PCT_SOLIDS								
	DUP_OF								
PARAMETER		RESULT VQL	L QLCD	RESULT	VQL QLCD	RESULT	Val alcd	RESULT	Val alcd
1,1,1-TRICHLOROETHANE		883		34.1		1.9 U		1.7	n
1,1,2-TRICHLOROETHANE		0.92 U		1.6	J	0.92 U		98.0	n
1,1-DICHLOROETHANE		30.7		18.8		1.4 U		1.3	U
1,1-DICHLOROETHENE		132		51.6		1.4 U		1.3 U	Ū
1,2,4-TRICHLOROBENZENE	ш	2.5 U		4.3	n	2.5 U	· ·	2.4	n
1,2,4-TRIMETHYLBENZENE	111	1.7 U		3.2		4.9		4.8	
1,2-DICHLOROETHANE		U 69.0		1.2 U	n	0.69 U	1	0.64	Ŋ
1,3,5-TRIMETHYLBENZENE	111	1.7 U		2.8	n	2.3		2.4	
BENZENE		0.94		31.8		9.3		6.3	
CARBON TETRACHLORIDE	111	1.1 U		1.8		1.1	n	1 U	n
CHLOROFORM		21.2		2.8	n	1.7 U		1.6 U	ח
CIS-1,2-DICHLOROETHENE	Įi l	165		107		2.1		13	
DICHLORODIFLUOROMETHANE	HANE	1.7 U		2.9		9.2		9.9	
ETHYLBENZENE		1.5 U		2.5 U	ח	1.5	ס	7.3	
M+P-XYLENES		3 0		5 U	n	3 0		30.4	
METHYL TERT-BUTYL ETHER	IER	1.2 U		2.1	U	1.2 U		1.1	n
METHYLENE CHLORIDE		4.4		9		13.9		4.1	
NAPHTHALENE		1.8 U		5.9		1.8 U		33.9	į
O-XYLENE		1.5 U		2.5	n	1.5 U		16.1	
TETRACHLOROETHENE		1.2 U		1.9	n	1.2 U		5.4	
TOLUENE		12.2		4.7		3.5		4	
TRANS-1,2-DICHLOROETHENE	ENE	2.5		2.3	D	1.4	D	1.3	D.
TRICHLOROETHENE		1530		43.5		3.7		228	
VINYL CHLORIDE		0.44 U		0.73	n	0.44 U		0.41	n

PROJ_NO: 03265	NSAMPLE	C-MID GAC	
SDG: 10251738	LAB_ID	10251738004	
FRACTION: 0V	SAMP_DATE	12/5/2013	
MEDIA: AIR	QC_TYPE	NM	
	UNITS	UG/M3	
	PCT_SOLIDS		
	DUP_OF		
PARAMETER		RESULT VAL	. QLCD
1,1,1-TRICHLOROETHANE		1.9 U	
1,1,2-TRICHLOROETHANE		0.92 U	
1,1-DICHLOROETHANE		1.4 U	
1,1-DICHLOROETHENE		1.4 U	
1,2,4-TRICHLOROBENZENE	ш	2.5 U	
1,2,4-TRIMETHYLBENZENE	ш	U 7.1	
1,2-DICHLOROETHANE		U 69.0	
1,3,5-TRIMETHYLBENZENE	Ш	U 7.1	
BENZENE		10.9	
CARBON TETRACHLORIDE	E	1.1 U	
CHLOROFORM		1.7 U	
CIS-1,2-DICHLOROETHENE	E	7.4	
DICHLORODIFLUOROMETHANE	HANE	8.6	
ETHYLBENZENE		1.5 U	
M+P-XYLENES		3 0	
METHYL TERT-BUTYL ETHER	HER	1.2 U	
METHYLENE CHLORIDE		6.4	
NAPHTHALENE		1.8 U	
O-XYLENE		1.5 U	
TETRACHLOROETHENE		1.2 U	
TOLUENE		2.5	
TRANS-1,2-DICHLOROETHENE	HENE	1.4 U	
TRICHLOROETHENE		10.7	
VINYL CHLORIDE		0.44 U	

PROJ_NO: 03265	NSAMPLE	A-EFFLUENT	1_	
SDG: 10252866	LAB_ID	10252866002		
FRACTION: OV	SAMP_DATE	12/18/2013		
MEDIA: AIR	QC_TYPE	ΣX		
	UNITS	UG/M3		
	PCT_SOLIDS			
	DUP_OF			
PARAMETER		RESULT	ΛΩΓ	arcd
1,1,1-TRICHLOROETHANE	111	1.9	1.9 UJ	z
1,1,2-TRICHLOROETHANE		0.92	_	
1,1-DICHLOROETHANE		3	7	z
1,1-DICHLOROETHENE		14.8	7	z
1,2,4-TRICHLOROBENZENE	¥	2.5	_	
1,2,4-TRIMETHYLBENZENE	Ш	1.7) 	
1,2-DICHLOROETHANE		LU 69.0	3	z
1,3,5-TRIMETHYLBENZENE	ш	1.7	1.7 U	
BENZENE		0.97	_	z
CARBON TETRACHLORIDE	3(1.1	n	z
CHLOROFORM		1.7	1.7 UJ	z
CIS-1,2-DICHLOROETHENE	Щ	1.9		z
DICHLORODIFLUOROMETHANE	THANE	1.7	n	z
ETHYLBENZENE		1.5	ם	
M+P-XYLENES		3	3 U	
METHYL TERT-BUTYL ETHER	HER	1.2	S	z
METHYLENE CHLORIDE		105	ſ	z
NAPHTHALENE		1.8	ם	
O-XYLENE		1.5	Ω	
TETRACHLOROETHENE		1.6		
TOLUENE		က		
TRANS-1,2-DICHLOROETHENE	TENE	1.4	3	z
TRICHLOROETHENE		1.8		
VINYI CHI ORIDE		0.44	3	z

PROJ_NO: 03265	NSAMPLE	A-EFFLUENT		
SDG: 10252866	LAB_ID	10252866002		
FRACTION: TICOV	SAMP_DATE 12/18/2013	12/18/2013		
MEDIA: AIR	QC_TYPE	NN		
	UNITS	UG/M3		
	PCT_SOLIDS			
	DUP_OF			
PARAMETER		RESULT	NOL	QLCD
1,2,3-TRIMETHYLBENZENE	Ξ	11	11 NJ	Z1
CHLORODIFLUOROMETHANE	ANE	N 288	ĈN.	Z1

Appendix B

Results as Reported by the Laboratory

Project:

SSD-04M

Pace Project No.:

Date: 03/06/2014 10:37 AM

10252866

Sample: A-EFFLUENT	Lab ID: 10252866002	Collected: 12/18/13	14:32	Received: 12/19/13 10:25	Matrix: Air	
Parameters	Results Units	Report Limit	DF	Prepared Analyzed	CAS No.	Qual
TO15 MSV AIR (TICS)	Analytical Method: TO-15	j				
Benzene	0.97 ug/m3	0.55	1.68	12/31/13 23:	48 71-43-2	
Carbon tetrachloride	ND ug/m3	1.1	1.68	12/31/13 23:	48 56-23-5	
Chloroform	ND ug/m3	1.7	1.68	12/31/13 23:	48 67-66-3	
Dichlorodifluoromethane	ND ug/m3	1.7	1.68	12/31/13 23:	48 75-71-8	
1,1-Dichloroethane	3.0 ug/m3	1.4	1.68	12/31/13 23:	48 75-34-3	
1,2-Dichloroethane	ND ug/m3	0.69	1.68	12/31/13 23:	48 107-06-2	
1,1-Dichloroethene	14.8 ug/m3	1.4	1.68	12/31/13 23:	48 75-35-4	
cis-1,2-Dichloroethene	1.9 ug/m3	1.4	1.68	12/31/13 23:	48 156-59-2	
trans-1,2-Dichloroethene	ND ug/m3	1.4	1.68	12/31/13 23:	48 156-60-5	
Ethylbenzene	ND ug/m3	1.5	1.68	12/31/13 23:	48 100-41-4	
Methylene Chloride	105 ug/m3	1.2	1.68	12/31/13 23:	48 75-09-2	
Methyl-tert-butyl ether	ND ug/m3	1.2	1.68	12/31/13 23:	48 1634-04-4	
Naphthalene	ND ug/m3	1.8	1.68	12/31/13 23:	48 91-20-3	
Tetrachloroethene	1.6 ug/m3	1.2	1.68	12/31/13 23:	48 127-18-4	
Toluene	3.0 ug/m3	1.3	1.68	12/31/13 23:	48 108-88-3	
1,2,4-Trichlorobenzene	ND ug/m3	2.5	1.68	12/31/13 23:	48 120-82-1	
1,1,1-Trichloroethane	ND ug/m3	1.9	1.68	12/31/13 23:	48 71-55-6	
1,1,2-Trichloroethane	ND ug/m3	0.92	1.68	12/31/13 23:	48 79-00-5	
Trichloroethene	1.8 ug/m3	0.92	1.68	12/31/13 23:	48 79-01-6	
1,2,4-Trimethylbenzene	ND ug/m3	1.7	1.68	12/31/13 23:	48 95-63-6	
1,3,5-Trimethylbenzene	ND ug/m3	1.7	1.68	12/31/13 23:	48 108-67-8	
Vinyl chloride	ND ug/m3	0.44	1.68	12/31/13 23:	48 75-01-4	
m&p-Xylene	ND ug/m3	3.0	1.68	12/31/13 23:	48 179601-23-1	
o-Xylene	ND ug/m3	1.5	1.68	12/31/13 23:	48 95-47-6	
Tentatively Identified Compounds	ŭ					
Difluorochloromethane	238 ppbv		1.68	12/31/13 23:	48 75-45-6	N
Benzene, 1,2,3-trimethy	2.3 ppbv		1.68	12/31/13 23:	48 526-73-8	N

REPORT OF LABORATORY ANALYSIS

Project:

117-0507599.20 LMC MRC SSDOem

Pace Project No.:

Date: 01/10/2014 12:50 PM

10251738

Sample: A-INFLUENT	Lab ID: 10251738001	Collected: 12/05/1	3 14:26	Received: 12/09/13 10:20 Matrix: Air	
Parameters	Results Units	Report Limit	DF	Prepared Analyzed CAS No	o. Qual
TO15 MSV AIR (TICS)	Analytical Method: TO-15				
Benzene	0.94 ug/m3	0.55	1.68	12/20/13 23:12 71-43-2	
Carbon tetrachloride	ND ug/m3	1.1	1.68	12/20/13 23:12 56-23-5	
Chloroform	21.2 ug/m3	1.7	1.68	12/20/13 23:12 67-66-3	
Dichlorodifluoromethane	ND ug/m3	1.7	1.68	12/20/13 23:12 75-71-8	
1,1-Dichloroethane	30.7 ug/m3	1.4	1.68	12/20/13 23:12 75-34-3	
1,2-Dichloroethane	ND ug/m3	0.69	1.68	12/20/13 23:12 107-06-2	
1,1-Dichloroethene	132 ug/m3	1.4	1.68	12/20/13 23:12 75-35-4	
cis-1,2-Dichloroethene	165 ug/m3	1.4	1.68	12/20/13 23:12 156-59-2	
trans-1,2-Dichloroethene	2.5 ug/m3	1.4	1.68	12/20/13 23:12 156-60-5	
Ethylbenzene	ND ug/m3	1.5	1.68	12/20/13 23:12 100-41-4	
Methylene Chloride	4.4 ug/m3	1.2	1.68	12/20/13 23:12 75-09-2	
Methyl-tert-butyl ether	ND ug/m3	1.2	1.68	12/20/13 23:12 1634-04-4	1
Naphthalene	ND ug/m3	1.8	1.68	12/20/13 23:12 91-20-3	
Tetrachloroethene	ND ug/m3	1.2	1.68	12/20/13 23:12 127-18-4	
Toluene	12.2 ug/m3	1.3	1.68	12/20/13 23:12 108-88-3	
1,2,4-Trichlorobenzene	ND ug/m3	2.5	1.68	12/20/13 23:12 120-82-1	
1,1,1-Trichloroethane	883 ug/m3	37.3	33.6	12/22/13 05:10 71-55-6	
1,1,2-Trichloroethane	ND ug/m3	0.92	1.68	12/20/13 23:12 79-00-5	
Trichloroethene	1530 ug/m3	18.5	33.6	12/22/13 05:10 79-01-6	
1,2,4-Trimethylbenzene	ND ug/m3	1.7	1.68	12/20/13 23:12 95-63-6	
1,3,5-Trimethylbenzene	ND ug/m3	1.7	1.68	12/20/13 23:12 108-67-8	
Vinyl chloride	ND ug/m3	0.44	1.68	12/20/13 23:12 75-01-4	
m&p-Xylene	ND ug/m3	3.0	1.68	12/20/13 23:12 179601-2	3-1
o-Xylene	ND ug/m3	1.5	1.68	12/20/13 23:12 95-47-6	

REPORT OF LABORATORY ANALYSIS

Project:

117-0507599.20 LMC MRC SSDOem

Pace Project No.:

Date: 01/10/2014 12:50 PM

10251738

Sample: A-MID GAC	Lab ID: 10251738002	Collected: 12/05/1	3 14:28	Received:	12/09/13 10:20	Matrix: Air	
Parameters	Results Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
TO15 MSV AIR (TICS)	Analytical Method: TO-15						
Benzene	31.8 ug/m3	0.92	2.82		12/22/13 03:4	4 71-43-2	
Carbon tetrachloride	ND ug/m3	1.8	2.82		12/22/13 03:4	4 56-23-5	
Chloroform	ND ug/m3	2.8	2.82		12/22/13 03:4	4 67-66-3	
Dichlorodifluoromethane	2.9 ug/m3	2.8	2.82		12/22/13 03:4	4 75-71-8	
1,1-Dichloroethane	18.8 ug/m3	2.3	2.82		12/22/13 03:4	4 75-34-3	
1,2-Dichloroethane	ND ug/m3	1.2	2.82		12/22/13 03:4	4 107-06-2	
1,1-Dichloroethene	51.6 ug/m3	2.3	2.82		12/22/13 03:4	4 75-35-4	
cis-1,2-Dichloroethene	107 ug/m3	2.3	2.82		12/22/13 03:4	4 156-59-2	
trans-1,2-Dichloroethene	ND ug/m3	2.3	2.82		12/22/13 03:4	4 156-60-5	
Ethylbenzene	ND ug/m3	2.5	2.82		12/22/13 03:4	4 100-41-4	
Methylene Chloride	6.0 ug/m3	2.0	2.82		12/22/13 03:4	4 75-09-2	
Methyl-tert-butyl ether	ND ug/m3	2.1	2.82		12/22/13 03:4	4 1634-04-4	
Naphthalene	5.9 ug/m3	3.0	2.82		12/22/13 03:4	4 91-20-3	
Tetrachloroethene	ND ug/m3	1.9	2.82		12/22/13 03:4	4 127-18-4	
Toluene	4.7 ug/m3	2.2	2.82		12/22/13 03:4	4 108-88-3	
1,2,4-Trichlorobenzene	ND ug/m3	4.3	2.82		12/22/13 03:4	4 120-82-1	
1,1,1-Trichloroethane	34.1 ug/m3	3.1	2.82		12/22/13 03:4	4 71-55-6	
1,1,2-Trichloroethane	ND ug/m3	1.6	2.82		12/22/13 03:4	4 79-00-5	
Trichloroethene	43.5 ug/m3	1.6	2.82		12/22/13 03:4	4 79-01-6	
1,2,4-Trimethylbenzene	3.2 ug/m3	2.8	2.82		12/22/13 03:4	4 95-63-6	
1,3,5-Trimethylbenzene	ND ug/m3	2.8	2.82		12/22/13 03:4	4 108-67-8	
Vinyl chloride	ND ug/m3	0.73	2.82		12/22/13 03:4	4 75-01-4	
m&p-Xylene	ND ug/m3	5.0	2.82		12/22/13 03:4	4 179601-23-1	
o-Xylene	ND ug/m3	2.5	2.82		12/22/13 03:4	4 95-47-6	

Project:

117-0507599.20 LMC MRC SSDOem

Pace Project No.:

10251738

Sample: C-EFFLUENT	Lab ID: 10251738005	Collected: 12/05/1	3 12:08	Received:	12/09/13 10:20	Matrix: Air	
Parameters	Results Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
TO15 MSV AIR (TICS)	Analytical Method: TO-15						
Benzene	9.3 ug/m3	0.55	1.68		12/21/13 01:1	6 71-43-2	
Carbon tetrachloride	ND ug/m3	1.1	1.68		12/21/13 01:1	6 56-23-5	
Chloroform	ND ug/m3	1.7	1.68		12/21/13 01:1	6 67-66-3	
Dichlorodifluoromethane	9.2 ug/m3	1.7	1.68		12/21/13 01:1	6 75-71 - 8	
1,1-Dichloroethane	ND ug/m3	1.4	1.68		12/21/13 01:1	6 75-34-3	
1,2-Dichloroethane	ND ug/m3	0.69	1.68		12/21/13 01:1	6 107-06-2	
1,1-Dichloroethene	ND ug/m3	1,4	1.68		12/21/13 01:1	6 75-35-4	
cis-1,2-Dichloroethene	2.1 ug/m3	1.4	1.68		12/21/13 01:1	6 156-59-2	
trans-1,2-Dichloroethene	ND ug/m3	1.4	1.68		12/21/13 01:1	6 156-60-5	
Ethylbenzene	ND ug/m3	1.5	1.68		12/21/13 01:1	6 100-41-4	
Methylene Chloride	13.9 ug/m3	1.2	1.68		12/21/13 01:1	6 75-09-2	
Methyl-tert-butyl ether	ND ug/m3	1.2	1.68		12/21/13 01:1	6 1634-04-4	
Naphthalene	ND ug/m3	1.8	1.68		12/21/13 01:1	6 91-20-3	
Tetrachloroethene	ND ug/m3	1.2	1.68		12/21/13 01:1	6 127-18-4	
Toluene	3.5 ug/m3	1.3	1.68		12/21/13 01:1	6 108-88-3	
1,2,4-Trichlorobenzene	ND ug/m3	2.5	1.68		12/21/13 01:1	6 120-82-1	
1,1,1-Trichloroethane	ND ug/m3	1.9	1.68		12/21/13 01:1	6 71-55-6	
1,1,2-Trichloroethane	ND ug/m3	0.92	1.68		12/21/13 01:1	6 79-00-5	
Trichloroethene	3.7 ug/m3	0.92	1.68		12/21/13 01:1	6 79-01-6	
1,2,4-Trimethylbenzene	4.9 ug/m3	1.7	1.68		12/21/13 01:1	6 95-63-6	
1,3,5-Trimethylbenzene	2.3 ug/m3	1.7	1.68		12/21/13 01:1	6 108-67-8	
Vinyl chloride	ND ug/m3	0.44	1.68		12/21/13 01:1	6 75-01-4	
m&p-Xylene	ND ug/m3	3.0	1.68		12/21/13 01:1	6 179601-23-1	
o-Xylene	ND ug/m3	1.5	1.68		12/21/13 01:1	6 95-47-6	

Project:

117-0507599.20 LMC MRC SSDOem

Pace Project No.:

Date: 01/10/2014 12:50 PM

10251738

Sample: C-INFLUENT	Lab ID: 10251738003	Collected: 12/05/13 12:06		Received: 12/09/13 10:20	Matrix: Air
Parameters	Results Units	Report Limit	DF	Prepared Analyzed	CAS No. Qu
TO15 MSV AIR (TICS)	Analytical Method: TO-15				
Benzene	6.3 ug/m3	0.51	1.57	12/21/13 00:1	4 71-43-2
Carbon tetrachloride	ND ug/m3	1.0	1.57	12/21/13 00:14	4 56-23-5
Chloroform	ND ug/m3	1.6	1.57	12/21/13 00:14	4 67-66-3
Dichlorodifluoromethane	6.6 ug/m3	1.6	1.57	12/21/13 00:14	4 75-71-8
1,1-Dichloroethane	ND ug/m3	1.3	1.57	12/21/13 00:14	4 75-34-3
1,2-Dichloroethane	ND ug/m3	0.64	1.57	12/21/13 00:14	4 107-06-2
1,1-Dichloroethene	ND ug/m3	1.3	1.57	12/21/13 00:14	4 75-35-4
cis-1,2-Dichloroethene	13.0 ug/m3	1.3	1.57	12/21/13 00:1	4 156-59-2
trans-1,2-Dichloroethene	ND ug/m3	1.3	1.57	12/21/13 00:14	4 156-60-5
Ethylbenzene	7.3 ug/m3	1.4	1.57	12/21/13 00:14	4 100-41-4
Methylene Chloride	4.1 ug/m3	1.1	1.57	12/21/13 00:14	4 75-09-2
Methyl-tert-butyl ether	ND ug/m3	1.1	1.57	12/21/13 00:14	4 1634-04-4
Naphthalene	33.9 ug/m3	1.7	1.57	12/21/13 00:1	4 91-20-3
Tetrachloroethene	5.4 ug/m3	1.1	1.57	12/21/13 00:1	4 127-18-4
Toluene	4.0 ug/m3	1.2	1.57	12/21/13 00:1	4 108-88-3
1,2,4-Trichlorobenzene	ND ug/m3	2.4	1.57	12/21/13 00:1-	4 120-82-1
1,1,1-Trichloroethane	ND ug/m3	1.7	1.57	12/21/13 00:1	4 71-55-6
1,1,2-Trichloroethane	ND ug/m3	0.86	1.57	12/21/13 00:1	4 79-00-5
Trichloroethene	228 ug/m3	0.86	1.57	12/21/13 00:1	4 79-01-6
1,2,4-Trimethylbenzene	4.8 ug/m3	1.6	1.57	12/21/13 00:1	4 95-63-6
1,3,5-Trimethylbenzene	2.4 ug/m3	1.6	1.57	12/21/13 00:1	4 108-67-8
Vinyl chloride	ND ug/m3	0.41	1.57	12/21/13 00:1-	4 75-01-4
m&p-Xylene	30.4 ug/m3	2.8	1.57	12/21/13 00:1	4 179601-23-1
o-Xylene	16.1 ug/m3	1.4	1.57	12/21/13 00:1	4 95-47-6

REPORT OF LABORATORY ANALYSIS

Project:

117-0507599.20 LMC MRC SSDOem

Pace Project No.:

Date: 01/10/2014 12:50 PM

10251738

Sample: C-MID GAC Parameters	Lab ID: 10251738004	Collected: 12/05/13 12:07		Received: 12/09/13 10:20	Matrix: Air	
	Results Units	Report Limit	DF	Prepared Analyze	d CAS No.	Qual
TO15 MSV AIR (TICS)	Analytical Method: TO-15					
Benzene	10.9 ug/m3	0.55	1.68	12/21/13 0	0:45 71-43-2	
Carbon tetrachloride	ND ug/m3	1.1	1.68	12/21/13 0	0:45 56-23-5	
Chloroform	ND ug/m3	1.7	1.68	12/21/13 0	0:45 67-66-3	
Dichlorodifluoromethane	8.6 ug/m3	1.7	1.68	12/21/13 0	0:45 75-71-8	
1,1-Dichloroethane	ND ug/m3	1.4	1.68	12/21/13 0	0:45 75-34-3	
1,2-Dichloroethane	ND ug/m3	0.69	1.68	12/21/13 0	0:45 107-06-2	
1,1-Dichloroethene	ND ug/m3	1.4	1.68	12/21/13 0	0:45 75-35-4	
cis-1,2-Dichloroethene	7.4 ug/m3	1.4	1.68	12/21/13 0	0:45 156-59-2	
trans-1,2-Dichloroethene	ND ug/m3	1.4	1.68	12/21/13 0	0:45 156-60-5	
Ethylbenzene	ND ug/m3	1.5	1.68	12/21/13 0	0:45 100-41-4	
Methylene Chloride	6.4 ug/m3	1.2	1.68	12/21/13 0	0:45 75-09-2	
Methyl-tert-butyl ether	ND ug/m3	1.2	1.68	12/21/13 0	0:45 1634-04-4	
Naphthalene	ND ug/m3	1.8	1.68	12/21/13 0	0:45 91-20-3	
Tetrachloroethene	ND ug/m3	1.2	1.68	12/21/13 0	0:45 127-18-4	
Toluene	2.5 ug/m3	1.3	1.68	12/21/13 0	0:45 108-88-3	
1,2,4-Trichlorobenzene	ND ug/m3	2.5	1.68	12/21/13 0	0:45 120-82-1	
1,1,1-Trichloroethane	ND ug/m3	1.9	1.68	12/21/13 0	0:45 71-55-6	
1,1,2-Trichloroethane	ND ug/m3	0.92	1.68	12/21/13 0	0:45 79-00-5	
Trichloroethene	10.7 ug/m3	0.92	1.68	12/21/13 0	0:45 79-01-6	
1,2,4-Trimethylbenzene	ND ug/m3	1.7	1.68	12/21/13 0	0:45 95-63-6	
1,3,5-Trimethylbenzene	ND ug/m3	1.7	1.68	12/21/13 0	0:45 108-67-8	
Vinyl chloride	ND ug/m3	0.44	1.68	12/21/13 0	0:45 75-01-4	
m&p-Xylene	ND ug/m3	3.0	1.68	12/21/13 0	0:45 179601-23-1	
o-Xylene	ND ug/m3	1.5	1.68	12/21/13 0	0:45 95-47-6	

Appendix C

Support Documentation

Minneapolis, MN 55414 (612)607-1700

PROJECT NARRATIVE

Project:

117-0507599.20 LMC MRC SSDOem

Pace Project No.:

10251738

Method:

TO-15

Description: TO15 MSV AIR (TICS) Client:

Tetra Tech GEO - Maryland

Date:

January 10, 2014

General Information:

5 samples were analyzed for TO-15. All samples were received in acceptable condition with any exceptions noted below.

The samples were analyzed within the method required hold times with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

internal Standards:

All internal standards were within QC limits with any exceptions noted below.

Surrogates:

All surrogates were within QC limits with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Additional Comments:

Sample Comments:

Chlorodifluoromethane (CAS 75-45-6) and 1,2,3-Trimethylbenzene (CAS 526-73-8) were not present as a tentatively idenfied compounds (TIC) in this GCMS analysis.

- A-INFLUENT (Lab ID: 10251738001)
- A-MID GAC (Lab ID: 10251738002)
- C-INFLUENT (Lab ID: 10251738003)
- C-MID GAC (Lab ID: 10251738004)
- C-EFFLUENT (Lab ID: 10251738005)

This data package has been reviewed for quality and completeness and is approved for release.

REPORT OF LABORATORY ANALYSIS

AIR: CHAIN-OF-CUSTODY / Analytical Request Document

The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.

Pace Analytical" www.passiabs.com

300 Ly Notons Analyze 3 \mathcal{E}_{λ} Samples Intact Y/N Y/N Y/N M oot SAMPLE CONDITIONS Clean Air Act Pace Lab ID XVoluntary Clean Up Dry Clean RCRA Other ug/m³ mg/m³ PPBV X PPMV Other Sealed Cooler ō N/A N/A Cretody Page: Other N/A N/A **G**V N/A Received on Superfund Emissions O° ni qmeT 17909 Sampling by State \times \times \times × TIME 36.01 129-13 Report Level DATE ocation of UST Method: ACCEPTED BY / AFFILIATION on SI Franklin St. Suite UCO, Annapolis, MD Pace Quote Reference. **Control Number** Z Pace Project Manager/Sales Rep. Nicole Benjamin 2574 2538 80 Number Summa NASSE Can Attention Inang Brinding SAMPLER NAME AND SIGNATURE (Final Field - psig) Canister Pressure TIME OPICC A N Company Name Fetra Tech (Initial Field - psig) Cantater Pressure DATE TIME A N Invoice Information: DATE COLLECTED Pace Profile #: RELINQUISHED BY / AFFILIATION Section C £28 **43**8 200 88 02 H S/S/C/ UK 52 TIME POSITE START Project Name mRC SSD Oem Project Numbey/7-056759-30 Dawn. Manico Ctetratch. DATE Address 51 Franklin St. Suit 400 Town Manico PID Reading (Client only) Report To: Perfect Rich Required Project Information: MEDIA
Tediar Bag
Teliar Summa Can 1LC
Low Volume Puff
High Volume Puff
Hyph Volume Puff
PM10 Section B OHIGINAL A-INFLENT may have Beer, Rich @ tehatech, Con 410-990-4607 410-990-4749 'Section D Required Client Information Annapolis, M.D. 21401 Sample IDs MUST BE UNIQUE **AIR SAMPLE ID** NFLUENT UENT 40 -TAPLUENT Company Tetro Tech CEX moisture. Required Client Information: Requested Due Date/TAT: 4 Comments: Section A ILEM # Page 17 of 19

Document Name: Air Sample Condition Upon Receipt Document Revised: 19Sep2013 Page 1 of 1

Pac	e Analytical [*]		Documen F-MN-A-10			Issuing Authority: Pace Minnesota Quality Of	fice
Air Sample Condition Cli	ent Name:		ı	Project #:	LIC	H·102517	o
Upon Receipt	Tetra Tec	<mark>ኢ</mark>			WU:	#:102517:	56
Courier: Fe		USPS,	□Cli	ient			
	ommercial Pace	Other:	_		10251		
Tracking Number: -8	047599259	67			.ULU.		
Custody Seal on Cooler/Bo	ox Present? Yes	[7No	Seals In	tact?]Yes 🗹 No	Optional: Proj. Due Date:	Proj. Name:
	bble Wrap Bubble	e Bags		None	Other:		
_	_	-				☐B88A912167504	72337080
Temp. (TO17 and TO13 sampl		Corrected Tem	p (°C): /		Thermom. Used:	B88A9132521491	12-9-13
Temp should be above freezi	ng to 6°C Correction Fac	ctor:			Date & Initials of	Person Examining Contents:	Car (2-10)
			<u></u>		<u> </u>	Comments:	
Chain of Custody Present?		Yes	No	□N/A	1.		
Chain of Custody Filled Ou			□No	□N/A	3.		
Chain of Custody Relinquis		<u> </u>	□No	□N/A	4.		
Sampler Name and/or Sign		¶Ŷes	□No	□N/A			
Samples Arrived within Ho		✓Yes	□No	□N/A	5. 6.		
Short Hold Time Analysis		Yes		□n/a □n/a	7.		
Rush Turn Around Time R	equestea?	Yes ☑Yes	□No	□N/A □N/A	8.		
Sufficient Volume?			No	□N/A	9.		
Correct Containers Used?		res ✓Yes	_ :				
-Pace Containers Used?	, 		No	□N/A	10.		
Containers Intact? Media: Ar Ca		✓Yes	No	∏n/a	11.		
		Yes	 П _{No}	□n/a	12.		
Sample Labels Match COC				LIN/A	12.		
Samples Received:	6 Lir Can	5					
Canis	sters		Flow	Controllers		Stand A	
Sample Number	Can ID	Sample I	Number	_	Can ID	Sample Number	Can ID
A-INFLUENT	<u> </u>						
A-MIDGAC	2574						
CINFLUENI	2529						
C-MIOGAC	2556						
C- EFFLUENT	2558				· · · · · · · · · · · · · · · · · · ·		
DONOT Analyze	2528						
· ·					, 		
							·
-							
<u> </u>							
CLIENT NOTIFICATION/RE	SOLUTION			,		Field Data Required?	∐Yes □No
	acted: DALW N	CONICO. L	Mad.		Date/Time:	12/10/13	
	ution: CHLORODI	_			1,23 TR	METHILBENDE	VILL BE
Ropontess	AS TIC'S	UNTIL	201		7	7	
			3	- C			
	11/2					ullalia	
Project Manager Review:	creancy affecting North G	arolina compliani	re sampler	a comment	Date:	ent to the North Carolina DEHNR	Certification Office (i.e out
Note: Whenever there is a dis nold, incorrect preservative, o	ut of temp, incorrect conta	iners)	oc admples	, a copy or	and forth will be st		
	Contract and Contr						

SAMPLE SUMMARY

Project:

117-0507599.20 LMC MRC SSDOem

Pace Project No.:

10251738

Lab ID	Sample ID	Matrix	Date Collected	Date Received
10251738001	A-INFLUENT	Air	12/05/13 14:26	12/09/13 10:20
10251738002	A-MID GAC	Air	12/05/13 14:28	12/09/13 10:20
10251738003	C-INFLUENT	Air	12/05/13 12:06	12/09/13 10:20
10251738004	C-MID GAC	Air	12/05/13 12:07	12/09/13 10:20
10251738005	C-EFFLUENT	Air	12/05/13 12:08	12/09/13 10:20

REPORT OF LABORATORY ANALYSIS

M	
SS	
	0000000
	50000
	50000
	50000
	10251738
	10251738
	10251738
	10251738
	10251738
	10251738
	10251738
	10251738
	10251738
	10251738
	10251738
	10251738
	10251738
	10251738
	10251738
	10251738
	10251738
	10251738
	10251738
	10251738
	10251738
	10251738

SORT	UNITS	UNITS NSAMPLE	LAB_ID	QC_TYPE	SAMP_DATE	EXTR_DATE	ANAL_DATE	SMP_EXTR	EXTR_ANL	SMP_ANL
	UG/M3	UG/M3 C-MID GAC	10251738004	ΣZ	12/05/2013	12/21/2013	12/21/2013	16	0	
	UG/M3	UG/M3 C-INFLUENT	10251738003	W Z	12/05/2013	12/21/2013	12/21/2013	16	0	
	UG/M3	UG/M3 C-EFFLUENT	10251738005	W Z	12/05/2013	12/21/2013	12/21/2013	16	0	
	UG/M3	A-MID GAC	10251738002	∑	12/05/2013	12/22/2013	12/22/2013	17	0	
	UG/M3	A-INFLUENT	10251738001	W Z	12/05/2013	12/22/2013	12/22/2013	17	0	
	UG/M3	UG/M3 A-INFLUENT	10251738001	ΣZ	12/05/2013	12/20/2013	12/20/2013	15	0	

PROJECT NARRATIVE

Project:

SSD-04M

Pace Project No.:

10252866

Method: TO-15

Description: TO15 MSV AIR (TICS)
Client: Tetra Tech GEO - Maryland

Date:

January 10, 2014

General Information:

1 sample was analyzed for TO-15. All samples were received in acceptable condition with any exceptions noted below.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Internal Standards:

All internal standards were within QC limits with any exceptions noted below.

QC Batch: AIR/19087

IQ: The internal standard recoveries associated with this sample exceed the lower control limit. The reported results should be considered estimated values.

· A-EFFLUENT (Lab ID: 10252866002)

Surrogates:

All surrogates were within QC limits with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Additional Comments:

Sample Comments:

ChlorodiFluoromethane (CAS 75-45-6) was present as a tentatively identified compound (TIC) in this GCMS analysis at an estimated concentration of 141.7974 ppby.

• A-EFFLUENT (Lab ID: 10252866002)

1,2,3 Trimethylbenzene (CAS 108-67-8) was present as a tentatively identified compound (TIC) in this GCMS analysis at an estimated concentration of 1.3714 ppbv.

• A-EFFLUENT (Lab ID: 10252866002)

This data package has been reviewed for quality and completeness and is approved for release.

REPORT OF LABORATORY ANALYSIS

ATTACHMENT A

PACE ANALYTICAL SERVICES MINNEAPOLIS - PLEASE FILL IN QLs and MDLs.

Analyte	Industrial Air Screening Level (ug/m³)	QL (ug/m²)	MDL (ug/m³)	
Benzene	16	0.33	0.16	
Carbon Tetrachloride	20	0.64	0.32	-reported a
Chlorodifluoromethane	220,000	1.00	0.50 -	-reportic
Chloroform	5	0.99	0.50	-
Dichlorodifluoromethane	440	1.01	0.50	;
1,1-Dichloroethane	77	0.82	0,42	
1,2-Dichloroethane	5	0.41	0.21	
1,1-Dichloroethene	880	0.81	0.40	
Cis-1,2-Dichloroethene	NA NA	0.81	0.15	
Trans-1,2-Dichloroethene	260	0.81	0.40	
Ethylbenzene	49	0.88	0.12	
Methyl t-Butyl-Ether	470	0.73	0.09	
Methylene Chloride	2600	0.71	0.35	
Naphthalene	3.6	1.07	0.53	1
Tetrachloroethene	175	0.69	0.35	
Toluene	22,000	0.77	0.38]
1,2,4-Trichlorobenzene	9	1.51	0.76	ľ
1,1,1-Trichloroethane	22,000	1,11	0.56	
1,1,2-Trichloroethane	8	0.55	0.28	
Trichloroethene	8.8 ^M	0.55	0.27	hos
1,2,3-Trimethylbenzene	22 ^A	1.00	0,50 —	reported Til
1,2,4-Trimethylbenzene	31 ^A	1.00	0.50	1
1,3,5-Trimethylbenzene	NA NA	1.00	0.13	1
Vinyl Chloride	28	0.26	0.13	1
Xylenes (total)	440	2.65	1.32 \	1

M = Maryland Department of the Environment's screening level for trichloroethene
A = American Council of Governmental Industrial Hygienists Theshold Limit Value Industrial Air Screening Levels from USEPA Regional Screening Levels for Chemical Contaminants at Superfund Sites May-12

nas xylene mep xylene D-xylene

5A - FORM V VOA VOLATILE ORGANIC INSTRUMENT PERFORMANCE CHECK BROMOFLUOROBENZENE (BFB)

EPA	SAN	1PL	E.	NO	

BFB

Lab Name: Pace Analytical

Contract:

Lab Code: F

PASI

Case No.:

SAS No.:

SDG No.: 10251738

Lab File ID: 35401BFB.D

BFB Injection Date: 12/20/2013

Instrument ID: 10AIRD BFB Injection Time: 13:17

GC Column: J&W DB-5 ID: 0.32 (mm)

		% RELATIVE	
m/e	ION ABUNDANCE CRITERIA	ABUNDANCE	
95	Base Peak, 100% relative abundance	100.00	
50	8.00 - 40.00% of mass 95	18.81	
75	30.00 - 66.00% of mass 95	49.76	
96	5.00 - 9.00% of mass 95	6.69	
173	Less than 2.00% of mass 174	0.46	(0.57)
174	50.00 - 120.00% of mass 95	80.71	
175	4.00 - 9.00% of mass 174	6.77	(8.39)
176	93.00 - 101.00% of mass 174	78.74	(97.56)
177	5.00 - 9.00% of mass 176	4.94	(6.28)

1 - Value is %mass 174 2 - Value is %mass 176

	EPA SAMPLE NO.	LAB SAMPLE ID	LAB FILE ID	DATE ANALYZED	TIME ANALYZED
1	CAL1	CAL1	35402.D	12/20/2013	13:44
2	CAL2	CAL2	35403.D	12/20/2013	14:11
3	CAL3	CAL3	35404.D	12/20/2013	14:40
4	CAL4	CAL4	35405.D	12/20/2013	15:08
5	CAL5	CAL5	35406.D	12/20/2013	15:38
6	CAL6	CAL6	35407.D	12/20/2013	16:12
7	ICV (LCS)	ICV	35408.D	12/20/2013	16:41
8	LCS for HBN 281887 [AIR/	1599770	35409LT.D	12/20/2013	17:09
9	LCS (LCS)	LCS	35409.D	12/20/2013	17:09
10	CERT	CERT	35413.D	12/20/2013	19:10
11	BLANK for HBN 281887 [AI	1599769	35413LT.D	12/20/2013	19:10
12	A-INFLUENT	10251738001	35421.D	12/20/2013	23:12
13	C-INFLUENT	10251738003	35423.D	12/21/2013	00:14
14	C-MID GAC	10251738004	35424.D	12/21/2013	00:45
15	C-EFFLUENT	10251738005	35425.D	12/21/2013	01:16

Report Date: 20-Dec-2013 18:44

Pace Analytical Services, Inc.

INITIAL CALIBRATION DATA

Calibration File Names:
Level 1: \\192.168.10.12\chem\10airD.i\122013.b\35402.d
Level 2: \\192.168.10.12\chem\10airD.i\122013.b\35403.d
Level 3: \\192.168.10.12\chem\10airD.i\122013.b\35404.d
Level 4: \\192.168.10.12\chem\10airD.i\122013.b\35405.d
Level 5: \\192.168.10.12\chem\10airD.i\122013.b\35406.d
Level 6: \\192.168.10.12\chem\10airD.i\122013.b\35407.d

Compound	ĺ	.1000000 Level 1	0.2000000 Level 2	1.0000 Level 3	10.0000 Level 4	20.0000 Level 5	30.0000 Level 6 Curve	р	pefficients ml	m2		%RSD or R^2
1 Propylene	== ==	+++++	0.465681	0,34162	C.30405	0.30553	0.29746 AVRG		0.34287			20.64774
2 Dichlorodifluoromethane	i	2,90911	2.439031	1,969601	1.737081	1.664631	1.51725 AVRG	i	2.03945			26.1804
3 Dichlorotetraflucroethane	i	2.24787	1.83960	1.47208	1.32798	1.32163	1.19027 AVRG	i	1.56657			25.6316
4 Chioromethane	1	0.82471	0.63160	0.48674	0.45484	0.48447	0.46953 AVRG	1	C.55865		1 2	26.00192
5 Vinyl chloride	1	C.75094:	0.58705	0.46693	0.44006	0.47454	0.47820 AVRG	1	0.53294		2	22.17873
6 1,3-Butadiene		0.50140	0.41708	0.32284	0.293051	0.31784	0.32359 AVRG	1	0.36263		2	22,12199
7 Bromomethane		0.79720	0.66569	0.53989	0.49707	0.52582	0.50237 AVRG	i	0.58800		1 2	20.34862
8 Chlcroethane		0.26647	0.25488	0.20114	0.19584:	0.20820	0.20610 AVRG	1	0.22210]	13.68854
9 Ethanol		0.28048	0.32761	0.24847	0.18792	0.18955	0.22327 AVRG	1	0.242881		1 2	22.45573
10 Vinyl Bromide		0.75870	C.64346	0.50074	0.475091	0.48997	0.47217 AVRG	1	0.55669!		1 2	21.21183
11 Acrolein		0.14765	0.19857	0.14055	0.14245	0.15313	0.15081 AVRG	1	0.15553;		1	13.90312
12 Trichlorofluoromethane		2.34643	1.93587	1.52380	1.37090.	1.34137	1.19236 AVRG	1	1.61845		1 2	27.06373
13 Acetone		+4++-	1.32361	0.98602	0.81334	0.81600	0.82040 AVRG	1	0.95187:		1 2	23.15359
14 Isopropyl Alcohol		1.11134	0.90360	0.72234	0.63800:	0.63146	0.68313 AVRG	1	0.78164		1 2	24.27275

Report Date: 20-Dec-2013 18:44

Pace Analytical Services, Inc.

INITIAL CALIBRATION DATA

| Start Cal Date | 20-DEC-2013 13:44 | 20-DEC-2013 16:12 | 20-DEC-2013 16:12 | 20-DEC-2013 16:12 | 20-DEC-2013 16:12 | 20-DEC-2013 16:12 | 20-DEC-2013 16:12 | 20-DEC-2013 17:05 | 20-DEC-2013 17:05 | 20-DEC-2013 17:05 | 20-DEC-2013 17:05 | 20-DEC-2013 17:05 | 20-DEC-2013 17:05 | 20-DEC-2013 17:05 | 20-DEC-2013 17:05 | 20-DEC-2013 17:05 | 20-DEC-2013 17:05 | 20-DEC-2013 17:05 | 20-DEC-2013 17:05 | 20-DEC-2013 17:05 | 20-DEC-2013 17:05 | 20-DEC-2013 17:05 | 20-DEC-2013 17:05 | 20-DEC-2013 17:05 | 20-DEC-2013 13:44 | 20-DEC-2013 16:12 | 20-DEC-

ī			0.1000000	0.2000000	1.0000	10.0000	20.0000	30.0000	Co	efficients		Т	%RSD
L	Compound		Level 1	Level 2	Level 3	Level 4	Level 5	Level 6 Curve	b	ml	m2		or R^2
-	15 1,1-Dichloroethene		1,23308	0.99976	0.80816	0.75046	0.73518	0.66616 AVRG		C.86547		1	24.58605
1	16 Asrylonitrile		0.39346	0.33492	0.29083	0.28948	0.30555	0.28559 AVRG	1	0.31646			13.23984
1	17 Tert Butyl Alcohol		1.70303	1.45614	1.14549	1.07866	1.00745	0.91417 AVRG	1	1.21749			24.73058
1	18 Freon 113	1	1.63702	1.45140	1.13030	1.02364	1.03369	0.92787 AVRG	1	1.20066			23.31633
1	19 Methylene chloride	į	12955	20785	73717	686745	1420379	2048419 LINR	-0.01726	0.53392			0.99902
1	20 Allyl Chloride	- 1	0.32593	0.26107	0.20004	C.19710:	0.21690	0.20379 AVRG	1	0.23414			21.69754
1	21 Carbon Disulfide	- 1	2.32416	1.84853	1.43336	1.35753:	1.38841	1.29460 AVRG	į.	1.60777		1	25.04063
1	22 trans-1,2-dichloroethene	1	0.92811	0.70094	0.51346!	0.48018	0.56065	0.58140 AVRG	1	0.62746			26.387091
1	23 Methyl Tert Butyl Ether	1	2.09871	1.91336	1.42095	1.37453	1.64156)	1.58673 AVRG !		1.67264		1	16.91087:
1	24 Vinyl Acetate	1	1.11849;	1.29468	1.12132	1.15279	1.18159	1.14381 JAVRG		1.16878		i	5.63340
1	25 1,1-Dichloroethane	1	1.26836	1.37388	1.06634	0.98209	1.006591	0.97937 AVRG		1.11277		i	15.07419
1	27 Methyl Ethyl Ketone	1	0.45483	0.33931	0.28229;	0.26496	0.26883	0.26544 AVRG		0.31244			24.04478
1	28 n-Hexane	1	1.22633	1.10709	0.83464	0.70928	0.68358	0.68503 AVRG :	1	0.874331			27.02311
1	29 cis-1,2-Dichloroethene	1	0.92902	0.81654	0.67857	0.64173	0.623541	0.62309 AVRG	į	0.71875			17.54815
ļ	30 Ethyl Acetate	1	1.43666,	1.17768	1.02971	1.02339	0.98633	0.98413 AVRG	1	1.10632		i	15.98113
Ł	31 Chloroform	- 1	1.97273!	1.90285	1.55105	1.39153	1.37564	1.30561/AVRG	1	1.58324		i	18.12€7€
ì	32 Tetrahydroiuran	1	0.723221	0.55008	0.47202	0.47494	0.47745	0.47779 AVRG	1	0.52925!		1	18.82186
1	33 1,1,1-Trichloroethane	1	2.15001	1.91308.	1.60592	1.49296	1.42250	1.37296 AVRG	1	1.65957		1	18.54842
1	34 1,2-Dichloroethane	i	1.44049	1.25106	1.08344	1.03161	1.02128	1.00334 AVRG	1	1.13854		1	15.23006
ī	35 Benzene		2.67327	2.47469	2.00012	1.78410	1.66213	1.58262 AVRG	1	2.029491		1	22.12791
1	36 Carbon tetrachloride		2.06666	1.88150.	1.54996	1.45141	1.34918	1.23427 AVRG	1	1.58883		1	20.24882
1	37 Cyclohexane		1.20265	1.02269;	0.83329	0.70166	0.67003	0.66563 AVRG	1	0.84932		1	25.94806
1			1		1	:						_1_	

Report Date : 20-Dec-2013 18:44

Pace Analytical Services, Inc.

INITIAL CALIBRATION DATA

Start Cal Date : 20-DEC-2013 13:44
End Cal Date : 20-DEC-2013 16:12
Quant Method : ISTD : 4.14
Integrator : HP RTE
Method file : \\192.168.10.12\chem\10airD.i\122013.b\T015_354-13.m
Last Edit : 20-Dec-2013 17:05 jmasterman

ı		(0.10 0 00000	0.20000000	1.0000	10.0000	20.0000	30.0000	Co	efficients		*RSD
1	Cempound		Level 1	Level 2	Level 3	Lovel 4	Level 5	Level 6 Curve	b	ml	m2	or R^2
1	39 2,2,4-Trimethylpentane	;	3.27445	3.C3254	2.60671	2.23348	2.19232	2.08250 AVRG		2.57033		19.09996
1	40 Heptane	1	1.10438	1.00748;	0.85247;	0.76075	0.73906	0.72660 AVRG	1	C.96512		18.17714
1	41 1,2-Dichloropropane	i	0.80758	0.78181	0.64601	0.57241	0.56963	0.56330[AVRG	1	0.65679		16.94626
L	42 Trichloroethene	- 1	0.91743	0.85574:	0.741321	0.70035	0.69583	0.69465 AVRG	1	0.76755		12.48351
L	43 1,4-Dioxane	- 1	0.46642	0.428991	0.34978	0.30199	0.26782	0.33025 AVRG	1	0.35754		21.26383
L	44 Bromodichloromethane	- 1	2.30690	1.81903.	1.62669	1.51450	1.46393	1.38329 AVRG	1	1.63422		14.38054
L	45 Methyl Isobutyl Ketone	- 1	1.59610	1.35914	1.12022	1.08762	1.05340	1.02840 AVRG	1	1.20748		18.58575
L	46 cis-1,3-Dichloropropene	1	1.29285	1.15676	1.04834	1.02665	1.01487	1.00550 AVRG	1	1.09083		19.38232
L	47 trans-1,3-Dichloropropene	- 1	1.32580	1.16648	1.07916	1.06478	1.09516	1.08205 AVRG	1	1.13557		8.79151
1	49 Toluene	1	3.69300	2.97013	2.52063	2.14799	2.04078	1.93010 AVRG	1	2.55044		26.52921
1	50 1,1,2-Trichloroethane	- 1	1.10791	0.92299	0.81958	0.73050	0.72429	0.71401 AVRG	1	0.83655		18.53890
1	51 Methyl Butyl Ketone	- 1	2.56312	2.45689	2.19927	2.30468	2.18032	2.13811 AVRG	1	2.30707		7.36222
1	52 Dibromochloromethane	- 1	3,69168	2.88411	2.57522	2.63458	2.58076	2.47983 AVRG	1	2.80769		16.16743
1	53 1,2-Dibromoethane	1	3,58806	2.84973:	2.40742	2.45038	2.36815	2.22545 AVRG	1	2.64820		19.09251
1	54 Tetrachloroethene	- 1	3.05035	2.62583;	2.20296	2.19258	2.13702	2.08755 AVRG	İ	2.38271		15.93480
1	56 Chlorobenzene	- 1	4.93862	3.87733	3.18224	3.18073	3.05953	3.02239 AVRG	1	3.54347		21.21530
1	57 Ethyl Benzene	- 1	9.08776	7.25376	6.04439	5.79633	5.32296	4.78303 AVRG	1	6.38137		24.49472
1	58 map-Xylene	- 1	7.49006	5.41193;	4.73031	4.70191	4.39133	4.12974 AVRG	1	5.14254		23.87552
1	59 Bromoform	- 1	3.88635	2.655281	2.39313	2.56353	2.41836	2,25270 AVRG		2.69489		22.27330
1	60 Styrene	i	4.95670	3.54103:	3.20681	3.28429	3.046651	2.89598 AVRG :		3.48858		21.54927
1	61 o-Xylene	i	7.54760	5.59977	4.780331	4.60038	4.22576]	3.95617 AVRG :		5.11500		25.80313
1	62 1,1,2,2-Tetrachloroethane	i	5.07641	3.688301	2.99448	3.246171	2.957321	2.62535 AVRG		3.43134		25.64515
1		i	i	1	1		1	1		1		I

Report Date : 20-Dec-2013 18:44

Pace Analytical Services, Inc.

INITIAL CALIBRATION DATA

1	Compound	i	0.1000000 Level 1	0.200000C . Level 2 :	1.0000 Level 3	10.0000 Level 4	20.0000 Level 5	30.0000 Level 6 Curve	b	efficients m1	m2		%RSD i
	63 Isopropylbenzene	=:	+++++	7.39472	6,01939	5.98208	5.384031	4.869091AVRG		5.929861			15.95324
í	64 N-Propylbenzene		4++4+	8.69381	7.277191	7.39504	6.300531	5.42230[AVRG	i	7.01757			17.56178:
i	65 4-Ethyltoluene	i	8.723781	6.81029	5.81309	5.93451	5.378041	4.70864[AVRG	Ī	6.22806)		Ì	22.544341
i	66 1,3,5-Trimethylbenzene	-	8.04188	5.80663	5.11884	5.29988	4.66261	4.09780 AVRG	1	5.504611		Ī	24.91909
i	67 1,2,4-Trimethylbenzene	- 1	8.21583	6.02649	4.86202	5.31896	4.76687	4.06060 AVRG	1	5.54179:		1	26.38673.
1	68 1,3-Dichlorobenzene	- 1	4.19786	3.27005	2.65626	3.15818;	2.88574	2.43925 AVRG	1	3.10122		1	19.96607
1	69 Sec- Butylbenzene		11.01176	8.47925	6.43040	7.31397;	6.42181	5.24523 AVRG	1	7,48373:		l l	27.19810
1	71 Benzyl Chloride	i	4.35219	3.30482;	3.22418	4.61387	4.324201	3.58761 AVRG	1	3.90114;		1	15.39112
1	72 1.4-Dichlorobenzene	i	4.00474	3.18996	2.61313	3.10458	2.87163	2.38306 AVRG	1	3.02785;		1	18.67473
1	73 1,2-Dichlorobenzene	!	3.89406	2.95247:	2.42197	2.92038	2,80499	2.30979 AVRG	1	2.88394:		1	19.46529:
1	74 N-Butylbenzene	- 1	6.67500	5.58303,	4.85592	5.69379	5.29284	4.59156 AVRG	1	5.44869		1	13.46742:
1	75 1,2,4-Trichlorobenzene	- 1	1.43214	1.01065	1.10564	1.58464	1.59525	1.75557 AVRG	1	1.41398:		1	20.90173;
1	76 Naphthalene	- 1	3.63127	2.70621	2.41087	3.04662	2.987641	3.21061 AVRG	1	2.99887		!	13.97792
1	77 Hexachloroputadiene	-	2.83341	2.08681	1.58900	1.67596	1.631561	1.61271 AVRG	1	1.90491		1	25.79805
== S	26 Hexane-d14(S)		0.464271	0.48609:	0.474801	0.480171	0.489901	0.49919 AVRG		0.48240			2.527111
IS.	48 Toluene-d8 (S)		0.790561	0.84527	0.834981	0.796371	0.831971	0.849031AVRG	:	0.82470		:	3.039631
15	70 1,4-dichlorobenzene-d4 (S)		0.426231	0.40723	0.41542	0.472961	0.400231	0.35673 AVRG		0.41313		ì	9.146491
1	70 174 Vitaliai Grenzelle Grenzelle	i	0.12025	i .		0.1.2501	0.700201	11_		i			1

5A - FORM V VOA VOLATILE ORGANIC INSTRUMENT PERFORMANCE CHECK BROMOFLUOROBENZENE (BFB)

EPA SAMPLE NO.

BFB

Lab Name: Pace Analytical

Contract:

Lab Code:

PASI

Case No.:

SAS No.:

SDG No.: 10251738

Lab File ID: 35503BFB.D

BFB Injection Date: 12/21/2013

Instrument ID: 10AIRD

BFB Injection Time: 16:27

GC Column: J&W DB-5 ID: 0.32 (mm)

		% RELATIVE	
m/e	ION ABUNDANCE CRITERIA	ABUNDANCE	
95	Base Peak, 100% relative abundance	100.00	
50	8.00 - 40.00% of mass 95	19.96	
75	30.00 - 66.00% of mass 95	48.63	
96	5.00 - 9.00% of mass 95	6.65	
173	Less than 2.00% of mass 174	0.51 (0	.56)
174	50.00 - 120.00% of mass 95	91.70	
175	4.00 - 9.00% of mass 174	7.00 (7	.64)
176	93.00 - 101.00% of mass 174	87.34 (95	25)
177	5.00 - 9.00% of mass 176	5.69 (6	.51)

1 - Value is %mass 174

2 - Value is %mass 176

	EPA SAMPLE NO.	LAB SAMPLE ID	LAB FILE ID	DATE ANALYZED	TIME ANALYZED
1	CAL1	CAL1	35505.D	12/21/2013	17:25
2	CAL2	CAL2	35506.D	12/21/2013	17:53
3	CAL3	CAL3	35507.D	12/21/2013	18:21
4	CAL4	CAL4	35508.D	12/21/2013	18:49
5	CAL5	CAL5	35509.D	12/21/2013	19:20
6	CAL6	CAL6	35510.D	12/21/2013	19:53
7	ICV (LCS)	ICV	35513.D	12/21/2013	21:16
8	LCS (LCS)	LCS	35514.D	12/21/2013	21:45
9	BLANK (BLK)	BLANK	35517.D	12/21/2013	23:14
10	A-MID GAC	10251738002	35526.D	12/22/2013	03:44
11	A-INFLUENT	10251738001	35529.D	12/22/2013	05:10

Report Date : 22-Dec-2013 10:30

Pace Analytical Services, Inc.

INITIAL CALIBRATION DATA

Start Cal Date
End Cal Date
Quant Method
Target Version
Integrator
Method file
Last Edit

: 21-DEC-2013 17:25
: 21-DEC-2013 19:53
: 4.14
: ISTD
: 4.14
: HP RTE
: \\192.168.10.12\chem\10airD.i\122113.b\T015_355-13.m

Calibration File Names:
Level 1: \\192.168.10.12\chem\10airD.i\122113.b\35505.d
Level 2: \\192.168.10.12\chem\10airD.i\122113.b\35506.d
Level 3: \\192.168.10.12\chem\10airD.i\122113.b\35507.d
Level 4: \\192.168.10.12\chem\10airD.i\122113.b\35508.d
Level 5: \\192.168.10.12\chem\10airD.i\122113.b\35509.d
Level 6: \\192.168.10.12\chem\10airD.i\122113.b\35509.d

 	Compound	1	0.1000000 Level 1	0.2000000 Level 2	1.0000 Level 3	10.0000 Level 4	20.0000 Level 5	30.0000 Level 6 Curve	Co b	eificients mi	m2		%RSD or R^2
=												==	
1	1 Propylene	- 1	0.37492	0.32371	0.26840	0.33367	0.33174	0.33114 AVRG	1	0.32726		I	10.42942
	2 Dichlorodifluoromethane	- 1	2.25974	1.95143	1.59198	1.99285	1.83628	1.71030 AVRG	1	1.89043			12.40691
	3 Dichlorotetrafluorcethane	- 1	1.78686	1.57321	1.33377	1.60635	1.44496	1.35916 AVRG	1	1.51739			11.32457
1	4 Chioromethane	- 1	0.68278	0.58785	0.49105	0.60234	0.56130	0.53674 AVRG	1	0.57701		1	11.29614
1	5 Vinyl chloride	- 1	0.61052	0.53249	0.45362	0.58502	0.55741	0.55997 AVRG	1	0.54984			9.84107
1	6 1,3-Butadiene	- 1	0.40211	0.34506	0.30244	0.38316	0.37440	0.38063 AVRG	1	0.36463			9.77303
1	7 Bromomethane	- 1	0.70308	0.60752	0.50729	0.60821	0.58488	0.58027 AVRG	1	0.59854		1	10.55357
1	8 Chloroethane	- 1	0.28924	0.24475	0.20412	0.252221	0.24852	0.24942 AVRG	1	0.24805		1	10.90249
1	9 Ethanol	- 1	0.28831	0.28746	0.20718	0.28325	0.25184	0.26269 AVRG	1	0.26346		1	11.86806
1	10 Vinyl Bromide	- 1	0.63082	0.54869	0.45467	0.58149	0.55987	0.54386 AVRG	1	0.55323		1	10-44151
1	11 Acrolein	- 1	0.26522	0.19492	0.18051	0.18300	0.17720	0.17303 AVRG	1	0.19565		1	17.82592
1	12 Trichlorofluoromethane	i	1.84590	1.63615	1.41445	1.671391	1.52025	1.44311 AVRG	1	1.58854		ı	10.20838
ĺ	13 Acetone	i	+-44+	1.59663	1.14924	1.05678	0.989031	0.99350 AVRG	1	1.15704		ı	21.96365
ı	14 Isopropyl Alcohol	i	0.91373	0.82295	0.63892	0.88122	0.80476	0.89755 AVRG	1	0.81471		ı	10.84030
1		i	i	i	i		i	i i	i	1		ı	1

Report Date : 22-Dec-2013 10:30

Pace Analytical Services, Inc.

INITIAL CALIBRATION DATA

Start Cal Date : 21-DEC-2013 17:25
End Cal Date : 21-DEC-2013 19:53
Quant Method : ISTD : 4.14
Integrator : HP RTE
Method file : \\192.168.10.12\chem\10airD.i\122113.b\T015_355-13.m
Last Edit : 22-Dec-2013 10:27 drandall

		- 1	0.1000000:	0.2000000	1.0000	10.0000	20.0000	30.0000	Co	efficients		%RSD	-,
1	Compound	_ !	Level l	Level 2	Level 3	tevel 4	level 5	Level 6 Curve	ь	ml	m2	or R^2	
1	15 1,1-Dichloroethene		0,997731	0.92186	0.77352	0.90364	0.83770	0.80620 AVRG		0.87344		9.508	
1	16 Acrylonitrile	- 1	0.375291	0.31659	0.28565}	0.36912:	0.34803	0.34069 AVRG	1	0.33923		9.914	97
1	17 Tert Butyl Alcohol	- 1	1.02827	0.99979	0.90188	1.11913:	1.00709	0.98284 AVRG	1	1.00650		6.984	74
1	18 Freon 113	- 1	1.39835	1.22702	1.05871	1.24046	1.14870	1.10069 AVRG	1	1.19566		10.178	381
1	19 Methylene chloride	- 1	++-+-	1.20716	0.80273	0.69047	0.65561	0.63571 AVRG	1	0.79834		29.748	551
1	20 Allyl Chloride	- 1	0.23504	0.20588	0.18270	0.244261	0.23593	0.23073 AVRG	1	0.22242		10.523	291
1	21 Carbon Disulfide	- 1	1.84832	1.54811	1.34365	1.62828;	1.58339	1.55366 AVRG	1	1.58423		10.248	401
1	22 trans-1,2-dichloroethene	- 1	0.62002	0.54064	0.47437	0.58950:	0.57840	0.56706 AVRG	1	0.56167		8.920	1191
1	23 Methyl Tert Butyl Ether	- 1	1.57137	1.40208	1.20163	1.52242;	1.49009	1.50097 AVRG	1	1.44810		9.168	701
1	24 Vinyl Acetate	- 1	1.30690	1.10085	0.97310	1.29126	1.25092	1.19585 AVRG	1	1.18648		10.831	81
1	25 1,1-Dichloroethane	- 1	1.16982	1.02292	0.85833	1.03938;	0.99146	0.93766 AVRG	1	1.00326		10.442	751
1	27 Methyl Ethyl Ketone	- 1	0.29427	0.25299	0.19100	0.25605	0.24952	0.25250 AVRG	1	0.24939		13.287	36
1	28 n-Hexane	- 1	1.10240	0.84393	0.69042	C.75680	0.75501	0.71085 AVRG	1	0.80990		18.857	91
1	29 cis-1,2-Dichloroethene	1	C.68502	0.57417	0.52056	0.71513	0.68321	0.67071 AVRG	1	0.64147		11.886	531
1	30 Ethyl Acetate	1	1.19571	1.07519	0.86316	1.23133	1.17547	1.16223 AVRG	1	1.11718		12.069	881
1	31 Chloroform	- 1	1.64363	1.46596	1.19665	1.600941	1.51307	1.48321 AVRG	1	1.48391		10.565	37
1	32 Tetrahydrofuran	- 1	2567	4680	20635	294598 [584475	908184 LINR	0.00804	0.52886		0.999	581
1	33 1,1,1-Trichloroethane	- 1	1.68945	1.35712	1.22977	1.65657	1.53348	1.46303 AVRG	1	1.48824		11.849	87
1	34 1,2-Dichloroethane	- 1	1.24991	1.06301	0.89354	1.22916	1.14768	1.10203 AVRG	1	1.11422		11.647	521
1	35 Benzene	1	2.04611	1.739281	1.46536	1.88206	1.79633	1.72739 AVRG	1	1.77609		10.825	321
1	36 Carbon tetrachloride	1	1.72987	1.47617	1.27282	1.64518	1.48307	1.35079 AVRG	1	1.49298		11.537	21
1	37 Cyclohexane	1	0.847431	0.71186;	0.65581	0.809941	0.76793	0.73807 AVRG	1	0.75517		9.119	451
1		1_	I	I								I	

Report Date: 22-Dec-2013 10:30

Pace Analytical Services, Inc.

INITIAL CALIBRATION DATA

	0.1000000 !	0.2000000	1.0000	10.0000	20.0000	30.0000		ಿಂ	officients		%RSD	,
Compound	Level 1	Level 2	Level 3	Level 4	Level 5	Level 6	Curve	b	m1	m2	or Ra	
39 2,2,4-Trimethylpentane	2.82239		2.00959	2.61061	2.46242	2.41783			2.45170		10.99	
40 Heptane	C.89995;	0.76834	0.67709	0.89275	0.84460	0.84790[AVRG		0.82177		10.34	.586
41 1,2-Dichleropropane	C.71687;	0.59206	0.51211	0.67088	0.63804	0.62771	AVRG		0.62628		11.18	660
42 Trichloroethene	0.88561	0.76469	0.63667	0.88535	0.85080	0.82347	AVRG		0.80776		11.78	447
43 1,4-Dioxane	1569	2854	13865	223515	388835	5955521	LTNR	-0.01638	0.34918		0.99	592
44 Bromodichloromethane	1.58124	1.40049	1.20028	1.71454	1.60983	1.51315	AVRG		1.50326;		12.06	737
45 Methyl isobutyl Ketone	4788	8497	43044	683851+	1359440	20575241	LINR	0.00488;	1.20752		0.99	1960
46 dis-1,3-Dichleropropene	4665.	8367	38416	595744	1232760	1818440	LINR	0.00461!	1.07389:		0.99	955
47 trans-1,3-Dichloropropene	1 4002	7585	36119	647752	1307880	1962661	LINR	0.008251	1.15569		0.99	961
49 Toluene	1 2.85760	2.33331	1.85971	2.35651	2.19463	2.025641	AVRG	1	2.27123		15.13	064
50 1,1,2-Trichloroethane	G.84258	0.69912	0.59441	0.82903	0.77386	0.717501	AVRG	1	0.74275		12.47	432
51 Methyl Butyl Ketone	4350;	6864	37994	684762	1.332200	1978501	LINR	0.009291	2.51912		0.99	1929
52 Dibromochloromethane	7038	12290	55107	847269	1646209	2328738	LINR	-0.00853	2.99643		0.99	840
53 1,2-Dipromoethage	6269	11201	47473	716550	1404059	20345451	LINR	-C.GO165	2.59986;		0.99	1927
54 Tetrachloroethene	2.45594	2.05453	1.73966	2.62124,	2.45198	2.46135	AVRG	1	2.297451		14.44	.725
56 Chlorobenzene	3.11231;	2.84974	2.35556	3.46675	3.32753	3.30167	AVRG I	1	3.06893		13.34	.089
57 Ethyl Benzene	12306	23555	104760	1564968	2968411	4313105	LINR	-0.00685	5.50934		0.99	1 865
58 map-Xylene	10815	17780	81641	1241584;	2410825	3519784	LINE	-0.00081	4.49040		0.99	1922
59 Bromoform	[6160]	11170	481821	741372	1410189	2004088	LINE ;	-0.01154	2.57576		0.99	1804
60 Styrene	5721	10755	526501	860855	1656311	2413686	LINR :	-0.00052	3.08531		0.99	1897
61 o-Xylene	11069	18840	849591	1211473	2389461	3368716	LINR :	-0.008691	4.33424		0.99	1864
62 1,1,2,2-Tetrachloroethane	74531	13222	58616	826545	15628931	22005591	LINE	-0.01742	2.83301		0.99	#75b
	i1			1	1	1		1	1_			

Report Date : 22-Dec-2013 10:30

Pace Analytical Services, Inc.

INITIAL CALIBRATION DATA

!	Compound		.1000000 : Level 1 :	0.2000C00 : Level 2 :	1.000C Level 3	10.0000 Level 4	20.0000 Level 5	30.0000 Level 6 Curve	Co b	officients m:	m2	%RSD or R^2
l se	63 Isopropylbenzene		5.15619	4.64115	4.04671	5.92419	5.30496	5.10836 AVRG		5.03024		12.62088
I	64 N-Propylbenzene		14958	27302	126456	1854869	3333580	4602758 QUAD	0.01366	0.12334	0.00274	0.99946
1	65 4-Ethyltoluene	1	10759.	20127	99920	1517714	2663684	3708022 QUAD	0.01354	0.15233	0.00430	0.99899
i	66 1,3,5-Trimethylbenzene	1	10054	18868	90751	1309999	2393232	3294864 QUAD	0.01432	C.17437	0.00515	0.9996€
l .	67 1,2,4-Trimethylbenzene	1	8375	15912	86253	1305227	22751801	3184400 QUAD	0.01320	0.17910	0.00571	0.99876
l	68 1,3-Dichlorobenzene	i	6280 -	11689	57338	855653	1496220	2078914 QUAD	0.01305	0.26867	0.01409!	0.99897
I	69 Sec- Butylbenzene	- 1	13534	248691	127164	1790378	30863871	4240161 QUAD	0.01301	0.12358	0.00389	0.99899
1	71 Benzyl Chloride	- 1	4215	10008	45313	1093541	1961577	2703038 QUAD	0.02501	0.20457	0.008371	0.99929
1	72 1,4-Dichlorobenzene	- 1	7084 :	12716	56378	85279C	1488598	2046348 QUAD	0.01407	C.26142;	0.01597	0.99914
1	73 1,2-Dichlorobenzene	- 1	6109:	10531	52558	8409361	1433558	1925991 QUAD	0.01863	0.24090	0.02297	0.99923
1	74 N-Butylbenzene	- 1	8037 (15000	87459	1565497	27271291	3697330 QUAD	0.02096	0.13514	0.00552	0.99931
1	75 1,2,4-Trichlorobenzene	- 1	1768	3078	204391	526030	10760001	1657224 LINR	0.035271	2.09962:		0.99904
I	76 Naphthalene	- 1	3003 (6179	37905:	1042113	2150376	3261750 LINR	0.03292!	4.15079		0.99949
Į.	77 Hexachlorobutadione	- 1	40031	7066	31517.	498492	1003062	1491665 LINR	0.01197	1.89550	:	0.99972
=== S	26 Hexane-d14(S)		0.47307	0.49069	0.45488	0.42800	0.442641	0.44567 AVRG		0.45583.		4.96904
\$	48 Toluene-d8 (S)	1	0.82875	0.81645	0.82722	0.79718	0.809471	0.80692 AVRG		0.81433.	1	1.50537
\$	70 1,4-dichlorobenzene-d4 (S)	- 1	0.40842	0.41530	0.45403	0.45175	0.37364	0.36993JAVRG		0.41218:	1	8.82183
1		- 1	1	1	i	1	1	1 !			1	

Report Date : 22-Dec-2013 10:30

Pace Analytical Services, Inc.

INITIAL CALIBRATION DATA

Start Cal Date : 21-DEC-2013 17:25
End Cal Date : 21-DEC-2013 19:53
Quant Method : ISTD
Target Version : 4.14
Integrator : \192.168.10.12\chem\10airD.i\122113.b\T015_355-13.m
Last Edit : 22-Dec-2013 10:27 drandall

	_
Average %RSD Results.	
	= :
Calculated Average %RSD = 16.20190	
Maximum Average %RSD = 40.00000	
* Passed Average %RSD Test.	
4	

1	Curve Formula	I	Units	1
į		- -		-
1	Averaged Amt = Rsp/ml	1	Response	1
1	Linear Amt = b + Rsp/m1	1	Response	İ
ì	Quad $+$ Amt = b + m1*Rsp + m2*Rsp^2	1	Response	1
ì		1_		J.

Project:

117-0507599.20 LMC MRC SSDOem

Pace Project No.:

10251738

QC Batch:

AIR/18997

Analysis Method:

TO-15

QC Batch Method:

TO-15

Analysis Description:

TO15 MSV AIR Low Level

Associated Lab Samples:

10251738001, 10251738003, 10251738004, 10251738005

METHOD BLANK: 1599769

Matrix: Air

Associated Lab Samples:

Date: 01/10/2014 12:50 PM

10251738001, 10251738003, 10251738004, 10251738005

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
1,1,1-Trichloroethane	ug/m3	ND	1.1	12/20/13 19:10	
1,1,2-Trichloroethane	ug/m3	ND	0.55	12/20/13 19:10	
1,1-Dichloroethane	ug/m3	ND	0.82	12/20/13 19:10	
1,1-Dichloroethene	ug/m3	ND	0.81	12/20/13 19:10	
1,2,4-Trichlorobenzene	ug/m3	ND	1.5	12/20/13 19:10	
1,2,4-Trimethylbenzene	ug/m3	ND	1.0	12/20/13 19:10	
1,2-Dichloroethane	ug/m3	ND	0.41	12/20/13 19:10	
1,3,5-Trimethylbenzene	ug/m3	ND	1.0	12/20/13 19:10	
Benzene	ug/m3	ND	0.32	12/20/13 19:10	
Carbon tetrachloride	ug/m3	ND	0.64	12/20/13 19:10	
Chloroform	ug/m3	ND	0.99	12/20/13 19:10	
cis-1,2-Dichloroethene	ug/m3	ND	0.81	12/20/13 19:10	
Dichlorodifluoromethane	ug/m3	ND	1.0	12/20/13 19:10	
Ethylbenzene	ug/m3	ND	0.88	12/20/13 19:10	
m&p-Xylene	ug/m3	ND	1.8	12/20/13 19:10	
Methyl-tert-butyl ether	ug/m3	ND	0.73	12/20/13 19:10	
Methylene Chloride	ug/m3	ND	0.71	12/20/13 19:10	
Naphthalene	ug/m3	ND	1.1	12/20/13 19:10	
o-Xylene	ug/m3	ND	0.88	12/20/13 19:10	
Tetrachloroethene	ug/m3	ND	0.69	12/20/13 19:10	
Toluene	ug/m3	ND	0.77	12/20/13 19:10	
trans-1,2-Dichloroethene	ug/m3	ND	0.81	12/20/13 19:10	
Trichloroethene	ug/m3	ND	0.55	12/20/13 19:10	
Vinyl chloride	ug/m3	ND	0.26	12/20/13 19:10	

LABORATORY CONTROL SAMPLE:	1599770					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
1,1,1-Trichloroethane	ug/m3	55.5	50.2	91	69-131	
1,1,2-Trichloroethane	ug/m3	55.5	51.7	93	68-132	
1,1-Dichloroethane	ug/m3	41.2	39.2	95	66-131	
1,1-Dichloroethene	ug/m3	40.3	35.8	89	64-136	
1,2,4-Trichlorobenzene	ug/m3	75.5	89.4	118	30-150	
1,2,4-Trimethylbenzene	ug/m3	50	43.7	87	71-135	
1,2-Dichloroethane	ug/m3	41.2	38.9	95	66-136	
1,3,5-Trimethylbenzene	ug/m3	50	44.9	90	69-136	
Benzene	ug/m3	32.5	29.3	90	72-136	
Carbon tetrachloride	ug/m3	64	58.5	91	64-133	
Chloroform	ug/m3	49.7	46.5	94	66-129	
cis-1,2-Dichloroethene	ug/m3	40.3	36.8	91	73-135	
Dichlorodifluoromethane	ug/m3	50.3	42.9	85	64-131	

REPORT OF LABORATORY ANALYSIS

Project:

117-0507599.20 LMC MRC SSDOem

Pace Project No.: 10251738

Date: 01/10/2014 12:50 PM

LABORATORY CONTROL SAMPI	LE: 1599770					
Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
Ethylbenzene	ug/m3	44.2	39.8	90	74-136	
m&p-Xylene	ug/m3	44.2	39.7	90	72-135	
Methyl-tert-butyl ether	ug/m3	36.7	31.8	87	71-134	
Methylene Chloride	ug/m3	35.3	36.7	104	59-140	
Naphthalene	ug/m3	53.3	55.9	105	30-150	
o-Xylene	ug/m3	44.2	39.3	89	74-135	
Tetrachloroethene	ug/m3	69	62.4	90	66-135	
Toluene	ug/m3	38.3	34.0	89	71-134	
trans-1,2-Dichloroethene	ug/m3	40.3	32.5	81	68-129	
Trichloroethene	ug/m3	54.6	50.7	93	68-134	
Vinyl chloride	ug/m3	26	23.3	90	64-134	

Project:

117-0507599.20 LMC MRC SSDOem

Pace Project No.:

10251738

QC Batch:

AIR/19003

Analysis Method:

TO-15

QC Batch Method:

TO-15

Analysis Description:

TO15 MSV AIR Low Level

Associated Lab Samples:

10251738002

METHOD BLANK: 1600628

Associated Lab Samples:

Date: 01/10/2014 12:50 PM

10251738002

Matrix: Air

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
1,1,1-Trichloroethane	ug/m3	ND	1.1	12/21/13 23:14	
1,1,2-Trichloroethane	ug/m3	ND	0.55	12/21/13 23:14	
1,1-Dichloroethane	ug/m3	ND	0.82	12/21/13 23:14	
1,1-Dichloroethene	ug/m3	ND	0.81	12/21/13 23:14	
1,2,4-Trichlorobenzene	ug/m3	ND	1.5	12/21/13 23:14	
1,2,4-Trimethylbenzene	ug/m3	ND	1.0	12/21/13 23:14	
1,2-Dichloroethane	ug/m3	ND	0.41	12/21/13 23:14	
1,3,5-Trimethylbenzene	ug/m3	ND	1.0	12/21/13 23:14	
Benzene	ug/m3	ND	0.32	12/21/13 23:14	
Carbon tetrachloride	ug/m3	ND	0.64	12/21/13 23:14	
Chloroform	ug/m3	ND	0.99	12/21/13 23:14	
cis-1,2-Dichloroethene	ug/m3	ND	0.81	12/21/13 23:14	
Dichlorodifluoromethane	ug/m3	ND	1.0	12/21/13 23:14	
Ethylbenzene	ug/m3	ND	0.88	12/21/13 23:14	
m&p-Xylene	ug/m3	ND	1.8	12/21/13 23:14	
Methyl-tert-butyl ether	ug/m3	ND	0.73	12/21/13 23:14	
Methylene Chloride	ug/m3	ND	0.71	12/21/13 23:14	
Naphthalene	ug/m3	ND	1.1	12/21/13 23:14	
o-Xylene	ug/m3	ND	0.88	12/21/13 23:14	
Tetrachloroethene	ug/m3	ND	0.69	12/21/13 23:14	
Toluene	ug/m3	ND	0.77	12/21/13 23:14	
trans-1,2-Dichloroethene	ug/m3	ND	0.81	12/21/13 23:14	
Trichloroethene	ug/m3	ND	0.55	12/21/13 23:14	
Vinyl chloride	ug/m3	ND	0.26	12/21/13 23:14	

LABORATORY CONTROL SAMPLE:	1600629					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
1,1,1-Trichloroethane	ug/m3	55.5	59.8	108	69-131	
1,1,2-Trichloroethane	ug/m3	55.5	62.6	113	68-132	
1,1-Dichloroethane	ug/m3	41.2	43.9	107	66-131	
1,1-Dichloroethene	ug/m3	40.3	42.5	105	64-136	
1,2,4-Trichlorobenzene	ug/m3	75.5	73.5	97	30-150	
1,2,4-Trimethylbenzene	ug/m3	50	57.2	114	71-135	
1,2-Dichloroethane	ug/m3	41.2	44.5	108	66-136	
1,3,5-Trimethylbenzene	ug/m3	50	56.5	113	69-136	
Benzene	ug/m3	32.5	35.2	108	72-136	
Carbon tetrachloride	ug/m3	64	69.7	109	64-133	
Chloroform	ug/m3	49.7	53.8	108	66-129	
cis-1,2-Dichloroethene	ug/m3	40.3	44.6	110	73-135	
Dichlorodifluoromethane	ug/m3	50.3	53.6	107	64-131	

REPORT OF LABORATORY ANALYSIS

Project:

117-0507599.20 LMC MRC SSDOem

Pace Project No.:

Date: 01/10/2014 12:50 PM

10251738

LABORATORY CONTROL SAMPLE:	1600629					
Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
Ethylbenzene	ug/m3	44.2	48.5	110	74-136	
m&p-Xylene	ug/m3	44.2	48.2	109	72-135	
Methyl-tert-butyl ether	ug/m3	36.7	39.2	107	71-134	
Methylene Chloride	ug/m3	35.3	30.7	87	59-140	
Naphthalene	ug/m3	53.3	51.7	97	30-150	
o-Xylene	ug/m3	44.2	49.4	112	74-135	
Tetrachloroethene	ug/m3	69	76.3	111	66-135	
Toluene	ug/m3	38.3	40.1	105	71-134	
trans-1,2-Dichloroethene	ug/m3	40.3	43.6	108	68-129	
Trichloroethene	ug/m3	54.6	60.7	111	68-134	
Vinyl chloride	ug/m3	26	27.7	106	64-134	

Data File: \\192.168.10.12\chem\10airD.i\122013.b\35421.d

Report Date: 26-Dec-2013 13:11

Pace Analytical Services, Inc.

INTERNAL STANDARD COMPOUNDS AREA AND RT SUMMARY

Instrument ID: 10airD.i

Lab File ID: 35421.d

Lab Smp Id: 10251738001 A-INFLUENT

Calibration Date: 20-DEC-2013 Calibration Time: 15:08

Level: LOW Sample Type: AIR

Analysis Type: VOA Quant Type: ISTD

Operator: AH2

Method File: \\192.168.10.12\chem\10airD.i\122013.b\T015 354-13.m

Misc Info: 18997

Test Mode:

Use Initial Calibration Level 4. If Continuing Cal. use Initial Cal. Level 4

COMPOUND	STANDARD	AREA LOWER	LIMIT UPPER	SAMPLE	%DIFF
38 1,4-Difluorobenze		774788	1807838	1440292	11.54
55 Chlorobenzene - d		346663	808881	648804	12.29

		RT I	IMIT		
COMPOUND	STANDARD	LOWER	UPPER	SAMPLE	%DIFF
=======================================	========	=======	========	========	======
38 1,4-Difluorobenze	6.09	5.76	6.42	6.09	0.00
55 Chlorobenzene - d	9.68	9.35	10.01	9.68	-0.03

AREA UPPER LIMIT = + 40% of internal standard area. AREA LOWER LIMIT = - 40% of internal standard area.

RT UPPER LIMIT = + 0.33 minutes of internal standard RT. RT LOWER LIMIT = - 0.33 minutes of internal standard RT.

Data File: \\192.168.10.12\chem\10airD.i\122113.b\35529.d

Report Date: 22-Dec-2013 11:09

Pace Analytical Services, Inc.

INTERNAL STANDARD COMPOUNDS AREA AND RT SUMMARY

Instrument ID: 10airD.i

Lab File ID: 35529.d

Lab Smp Id: 10251738001 A- INFLUENT

Analysis Type: VOA

Quant Type: ISTD

Level: LOW

Sample Type: AIR

Calibration Date 21-DEC-2013 Calibration Time: 18:49

Operator: DR1 Method File: \\192.168.10.12\chem\10airD.i\122113.b\T015 355-13.m Misc Info:

Test Mode:

Use Initial Calibration Level 4. If Continuing Cal. use Initial Cal. Level 4

		AREA	LIMIT		
COMPOUND	STANDARD	LOWER	UPPER	SAMPLE	%DIFF
38 1,4-Difluorobenze 55 Chlorobenzene - d	543955 258909	326373 155345	761537 362473	551343 280171	1.36 8.21

		RT I	TIMIT		
COMPOUND	STANDARD	LOWER	UPPER	SAMPLE	%DIFF
38 1,4-Difluorobenze	6.09	5.76	6.42	6.09	0.00
55 Chlorobenzene - d	9.68	9.35	10.01	9.69	0.00

AREA UPPER LIMIT = + 40% of internal standard area. AREA LOWER LIMIT = - 40% of internal standard area. RT UPPER LIMIT = + 0.33 minutes of internal standard RT. RT LOWER LIMIT = - 0.33 minutes of internal standard RT.

Data File: \\192.168.10.12\chem\10airD.i\122113.b\35526.d

Report Date: 26-Dec-2013 12:51

Pace Analytical Services, Inc.

INTERNAL STANDARD COMPOUNDS AREA AND RT SUMMARY

Instrument ID: 10airD.i

A-MID GAC

Calibration Date: 21-DEC-2013 Calibration Time: 18:49

Lab File ID: 35526.d Lab Smp Id: 10251738002

Level: LOW

Analysis Type: VOA

Sample Type: AIR

Quant Type: ISTD

Operator: DR1 Method File: \\192.168.10.12\chem\10airD.i\122113.b\T015 355-13.m

Misc Info: 19003

Test Mode:

Use Initial Calibration Level 4. If Continuing Cal. use Initial Cal. Level 4

COMPOUND	STANDARD	AREA LOWER	LIMIT UPPER	SAMPLE	%DIFF
38 1,4-Difluorobenze		326373	761537	518690	-4.64
55 Chlorobenzene - d		155345	362473	258455	-0.18

		RT 1	IMIT		
COMPOUND	STANDARD	LOWER	UPPER	SAMPLE	%DIFF
=======================================	=========	=======		========	======
38 1,4-Difluorobenze	6.09	5.76	6.42	6.09	-0.00
55 Chlorobenzene - d		9.35	10.01	9.68	-0.00

AREA UPPER LIMIT = + 40% of internal standard area. AREA LOWER LIMIT = - 40% of internal standard area.

RT UPPER LIMIT = + 0.33 minutes of internal standard RT. RT LOWER LIMIT = - 0.33 minutes of internal standard RT.

Data File: \\192.168.10.12\chem\10airD.i\122013.b\35423.d

Report Date: 26-Dec-2013 13:12

Pace Analytical Services, Inc.

INTERNAL STANDARD COMPOUNDS AREA AND RT SUMMARY

Instrument ID: 10airD.i

Calibration Date: 20-DEC-2013 Calibration Time: 15:08

Lab File ID: 35423.d Lab Smp Id: 10251738003 (- INFLUENT

Level: LOW

Analysis Type: VOA

Sample Type: AIR

Quant Type: ISTD

Operator: DR1

Method File: \\192.168.10.12\chem\10airD.i\122013.b\T015 354-13.m

Misc Info: 18997

Test Mode:

Use Initial Calibration Level 4. If Continuing Cal. use Initial Cal. Level 4

		AREA	LIMIT		
COMPOUND	STANDARD	LOWER	UPPER	SAMPLE	%DIFF
_======================================	========	=======	========	========	======
38 1,4-Difluorobenze	1291313	774788	1807838	1382333	7.05
55 Chlorobenzene - d	577772	346663	808881	643897	11.44

		RT 1	LIMIT		
COMPOUND	STANDARD	LOWER	UPPER	SAMPLE	%DIFF
=======================================	========	========		=======	======
38 1,4-Difluorobenze	6.09	5.76	6.42	6.09	0.00
55 Chlorobenzene - d	9.68	9.35	10.01	9.68	-0.03
		<u> </u>			

AREA UPPER LIMIT = + 40% of internal standard area. AREA LOWER LIMIT = - 40% of internal standard area. RT UPPER LIMIT = + 0.33 minutes of internal standard RT. RT LOWER LIMIT = - 0.33 minutes of internal standard RT.

Data File: \\192.168.10.12\chem\10airD.i\122013.b\35424.d

Report Date: 26-Dec-2013 13:12

Pace Analytical Services, Inc.

INTERNAL STANDARD COMPOUNDS AREA AND RT SUMMARY

Instrument ID: 10airD.i Lab File ID: 35424.d Lab Smp Id: 10251738004 C-MID GAC

Calibration Date: 20-DEC-2013 Calibration Time: 15:08

Level: LOW

Analysis Type: VOA

Quant Type: ISTD

Sample Type: AIR

Operator: DR1

Method File: \\192.168.10.12\chem\10airD.i\122013.b\T015 354-13.m

Misc Info: 18997

Test Mode:

Use Initial Calibration Level 4. If Continuing Cal. use Initial Cal. Level 4

		AREA	LIMIT		
COMPOUND	STANDARD	LOWER	UPPER	SAMPLE	%DIFF
=======================================	========	=======	========	=======	======
38 1,4-Difluorobenze	1291313	774788	1807838	1408268	9.06
55 Chlorobenzene - d		346663	808881	669133	15.81

		RT I	JIMIT		
COMPOUND	STANDARD	LOWER	UPPER	SAMPLE	%DIFF
=======================================	========	=======	========	========	======
38 1,4-Difluorobenze	6.09	5.76	6.42	6.09	0.00
55 Chlorobenzene - d	9.68	9.35	10.01	9.68	-0.03

AREA UPPER LIMIT = + 40% of internal standard area. AREA LOWER LIMIT = - 40% of internal standard area. RT UPPER LIMIT = + 0.33 minutes of internal standard RT. RT LOWER LIMIT = - 0.33 minutes of internal standard RT. Data File: \\192.168.10.12\chem\10airD.i\122013.b\35425.d

Report Date: 26-Dec-2013 13:12

Pace Analytical Services, Inc.

INTERNAL STANDARD COMPOUNDS AREA AND RT SUMMARY

Instrument ID: 10airD.i

Calibration Date: 20-DEC-2013 Calibration Time: 15:08

Lab File ID: 35425.d Lab Smp Id: 10251738005 C-EFFLUENT

Level: LOW

Analysis Type: VOA

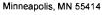
Quant Type: ISTD

Sample Type: AIR

Operator: DR1

Method File: \\192.168.10.12\chem\10airD.i\122013.b\T015 354-13.m

Misc Info: 18997


Test Mode:

Use Initial Calibration Level 4. If Continuing Cal. use Initial Cal. Level 4

		AREA	LIMIT		
COMPOUND	STANDARD	LOWER	UPPER	SAMPLE	%DIFF
=======================================	========	========	========	========	======
38 1,4-Difluorobenze	1291313	774788	1807838	1413899	9.49
55 Chlorobenzene - d	577772	346663	808881	655407	13.44
			,		

		RT I	JIMIT		
COMPOUND	STANDARD	LOWER	UPPER	SAMPLE	%DIFF
=======================================	=======	=======	=======	=======	======
38 1,4-Difluorobenze	6.09	5.76	6.42	6.09	0.00
55 Chlorobenzene - d		9.35	10.01	9.68	-0.03

AREA UPPER LIMIT = + 40% of internal standard area. AREA LOWER LIMIT = - 40% of internal standard area. RT UPPER LIMIT = + 0.33 minutes of internal standard RT. RT LOWER LIMIT = - 0.33 minutes of internal standard RT.

(612)607-1700

ANALYTICAL RESULTS

Project:

117-0507599.20 LMC MRC SSDOem

Pace Project No.:

Date: 01/10/2014 12:50 PM

10251738

Sample: A-INFLUENT	Lab ID: 10251738001	Collected: 12/05/1	13 14:26	Received: 1	12/09/13 10:20	Matrix: Air	
Parameters	Results Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
TO15 MSV AIR (TICS)	Analytical Method: TO-15	5					
Benzene	0.94 ug/m3	0.55	1.68		12/20/13 23:1:	2 71-43-2	
Carbon tetrachloride	ND ug/m3	1.1	1.68		12/20/13 23:1:	2 56-23-5	
Chloroform	21.2 ug/m3	1.7	1.68		12/20/13 23:1:	2 67-66-3	
Dichlorodifluoromethane	ND ug/m3	1.7	1.68		12/20/13 23:1:	2 75-71-8	
1,1-Dichloroethane	30.7 ug/m3	1.4	1.68		12/20/13 23:1:	2 75-34-3	
1,2-Dichloroethane	ND ug/m3	0.69	1.68		12/20/13 23:1:	2 107-06-2	
1,1-Dichloroethene	132 ug/m3	1.4	1.68		12/20/13 23:1:	2 75-35-4	
cis-1,2-Dichloroethene	165 ug/m3	1.4	1.68		12/20/13 23:1:	2 156-59-2	
trans-1,2-Dichloroethene	2.5 ug/m3	1.4	1.68		12/20/13 23:1:	2 156-60-5	
Ethylbenzene	ND ug/m3	1.5	1.68		12/20/13 23:1:	2 100-41-4	
Methylene Chloride	4.4 ug/m3	1.2	1.68		12/20/13 23:1:	2 75-09-2	
Methyl-tert-butyl ether	ND ug/m3	1.2	1.68		12/20/13 23:1:	2 1634-04-4	
Naphthalene	ND ug/m3	1.8	1.68		12/20/13 23:1:	2 91-20-3	
Tetrachloroethene	ND ug/m3	1.2	1.68		12/20/13 23:1:	2 127-18-4	
Toluene	12.2 ug/m3	1.3	1.68		12/20/13 23:1:	2 108-88-3	
1,2,4-Trichlorobenzene	ND ug/m3	2.5	1.68		12/20/13 23:1:	2 120-82-1	
1,1,1-Trichloroethane	883 ug/m3	37.3	33.6		12/22/13 05:1	0 71-55-6	
1,1,2-Trichloroethane	N <u>D_ug</u> /m3	0.92	1.68		12/20/13 23:1:	2 79-00-5	
Trichloroethene	1530 ug/m3	18.5	(33.6)		12/22/13 05:1	0 79-01-6	
1,2,4-Trimethylbenzene	ND ug/m3	1.7	1.68		12/20/13 23:1:	2 95-63-6	
1,3,5-Trimethylbenzene	ND ug/m3	1.7	1.68		12/20/13 23:1:	2 108-67-8	
Vinyl chloride	ND ug/m3	0.44	1.68		12/20/13 23:1:	2 75-01-4	
m&p-Xylene	ND ug/m3	3.0	1.68		12/20/13 23:1:	2 179601-23-1	
o-Xylene	ND ug/m3	1.5	1.68		12/20/13 23:1	2 95-47-6	

$$\frac{371931}{551343*}$$
 33.6* $\frac{10}{0.80776}$ = 280.61 PPbV

REPORT OF LABORATORY ANALYSIS

Sample Calculation

Data File: \\192.168.10.12\chem\10airD.i\122113.b\35529.d

Report Date: 22-Dec-2013 11:09

Pace Analytical Services, Inc.

TO15 Analysis (UNIX)
Data file: \\192.168.10.12\chem\10airD.i\\122113.b\\35529.d
Lab Smp Id: 10251738001 A-INFLUENT
Inj Date: 22-DEC-2013 05:10
Operator: DR1 Operator

Smp Info Misc Info:

: Volatile Organic COMPOUNDS in Air Comment

Method

: \\192.168.10.12\chem\10airD.i\122113.b\T015 355-13.m : 22-Dec-2013 10:30 drandall Quant Type: ISTD : 21-DEC-2013 19:53 Cal File: 35510.d Meth Date: 22-Dec-2013 10:30 drandall Cal Date: 21-DEC-2013 19:53
Als bottle: 27

Dil Factor: 33.60000

Integrator: HP RTE Compound Sublist: all.sub

Target Version: 4.14

Processing Host: 10MNCREINDL

Concentration Formula: Amt * DF * Uf * CpndVariable

Name	Value	Description
DF Uf Cpnd Variable	33.600 1.000	Dilution Factor ng unit correction factor Local Compound Variable

		CONCENTRATIONS
	QUANT SIG	ON-COLUMN FINAL
Compounds	MASS	RT EXP RT REL RT RESPONSE (ppbv) (ppbv)
1 Propylene	41	Compound Not Detected.
2 Dichlorodifluoromethane	85	Compound Not Detected.
3 Dichlorotetrafluoroethane	85	Compound Not Detected.
4 Chloromethane	50	Compound Not Detected.
5 Vinyl chloride	62	Compound Not Detected.
6 1,3-Butadiene	54	Compound Not Detected.
7 Bromomethane	94	Compound Not Detected.
8 Chloroethane	64	Compound Not Detected.
9 Ethanol	31	3.510 3.484 (0.577) 4382 0.30168 10.1(MH)
10 Vinyl Bromide	106	Compound Not Detected.
11 Acrolein	56	Compound Not Detected.
12 Trichlorofluoromethane	101	3.696 3.694 (0.607) 15311 0.17482 5.87
13 Acetone	43	3.739 3.727 (0.614) 168880 2.64734 89.0
14 Isopropyl Alcohol	45	3.762 3.749 (0.618) 54924 1.22275 41.1(Q)
15 1,1-Dichlorcethene	61	3.975 3.976 (0.653) 55800 1.15872 38.9
16 Acrylonitrile	53	Compound Not Detected.
17 Tert Butyl Alcohol	59	Compound Not Detected.
18 Freon 113	101	Compound Not Detected.
19 Methylene chloride	49	4.090 4.091 (0.672) 5175 0.11757 3.95
20 Allyl Chloride	76	Compound Not Detected.
21 Carbon Disulfide	76	Compound Not Detected.
22 trans-1,2-dichloroethene	96	Compound Not Detected.
23 Methyl Tert Butyl Ether	73	Compound Not Detected.

Sample Calculation

Data File: $\192.168.10.12\chem\10airD.i\122113.b\35529.d$ Report Date: 22-Dec-2013 11:09

-		QUANT SIG	CONCENTRATIONS ON-COLUMN FINAL
	ompounds 	MASS	RT EXP RT REL RT RESPONSE (ppbv) (ppbv)
	24 Vinyl Acetate	43	Compound Not Detected.
	25 1,1-Dichloroethane	63	4.579 4.582 (0.752) 15276 0.27617 9.28
ş	26 Hexane-d14(S)	66	4.693 4.697 (0.771) 263517 10.4855 10.5
	27 Methyl Ethyl Ketone	72	4.792 4.776 (0.787) 5117 0.37215 12.5(M)
	28 n-Hexane	57	Compound Not Detected.
	29 cis-1,2-Dichloroethene	96	4.972 4.976 (0.817) 55574 1.57136 52.8(Q)
	30 Ethyl Acetate	43	Compound Not Detected.
	31 Chloroform	83	Compound Not Detected.
	32 Tetrahydrofuran	42	Compound Not Detected.
	33 1,1,1-Trichloroethane	97	5.589 5.596 (0.918) 388931 4.74000 159
	34 1,2-Dichloroethane	62	Compound Not Detected.
	35 Benzene	78	Compound Not Detected.
	36 Carbon tetrachloride	117	Compound Not Detected.
	37 Cyclohexane	56	Compound Not Detected.
*	38 1,4-Difluorobenzene	114	6.087 6.091 (1.000) 551343 10.0000
	39 2,2,4-Trimethylpentane	57	Compound Not Detected.
	40 Heptane	43	Compound Not Detected.
	41 1,2-Dichloropropane	63	Compound Not Detected.
	42 Trichloroethene	130	6.523 6.534 (1.072) 371931 8.35135 281
	43 1,4-Dioxane	88	Compound Not Detected.
	44 Bromodichloromethane	83	Compound Not Detected.
	45 Methyl Isobutyl Ketone	43	Compound Not Detected.
	46 cis-1,3-Dichloropropene	75	Compound Not Detected.
	47 trans-1,3-Dichloropropene	75	Compound Not Detected.
Ş	48 Toluene-d8 (S)	98	7.838 7.845 (1.288) 447034 9.95674 9.96
	49 Toluene	91	7.933 7.934 (1.303) 16081 0.12842 4.31
	50 1,1,2-Trichloroethane	97	Compound Not Detected.
	51 Methyl Butyl Ketone	43	Compound Not Detected.
	52 Dibromochloromethane	129	Compound Not Detected.
	53 1,2-Dibromoethane 54 Tetrachloroethene	107 166	Compound Not Detected. Compound Not Detected.
4	55 Chlorobenzene - d5	117	9.685 9.688 (1.000) 280171 10.0000
,	56 Chlorobenzene	112	Compound Not Detected.
	57 Ethyl Benzene	91	Compound Not Detected.
	58 m&p-Xylene	91	Compound Not Detected.
	59 Bromoform	173	Compound Not Detected.
	60 Styrene	104	Compound Not Detected.
	61 o-Xylene	91	Compound Not Detected.
	62 1,1,2,2-Tetrachloroethane	83	Compound Not Detected.
	63 Isopropylbenzene	105	Compound Not Detected.
	64 N-Propylbenzene	91	Compound Not Detected.
	65 4-Ethyltoluene	105	Compound Not Detected.
	66 1,3,5-Trimethylbenzene	105	Compound Not Detected.
	67 1,2,4-Trimethylbenzene	105	Compound Not Detected.
	68 1,3-Dichlorobenzene	146	Compound Not Detected.
	69 Sec- Butylbenzene	105	Compound Not Detected.
\$	70 1,4-dichlorobenzene-d4 (S)	150	13.446 13.453 (1.388) 112564 9.74743 9.75
	71 Berzyl Chloride	91	Compound Not Detected.
	72 1,4-Dichlorobenzene	146	Compound Not Detected.
	73 1,2-Dichlorobenzene	146	Compound Not Detected.
	74 N-Butylbenzene	91	Compound Not Detected.
	75 1,2,4-Trichlorobenzene	180	Compound Not Detected.
	76 Naphthalene	128	Compound Not Detected.
	77 Hexachlorobutadiene	225	Compound Not Detected.

Report Date : 22-Dec-2013 10:30

Sample Calculation

Pace Analytical Services, Inc.

INITIAL CALIBRATION DATA

ī		; 0	.1000000	0.2000000	1.0000	10.0000	20.0000	30.0000	Co	efficients		%RSD
İ	Compound		Level 1	Level 2	Level 3	Level 4	Level 5	Level 6 Curve	b	ml	m2	or R^2
=:	39 2,2,4-Trimethylpentane		2.82239	2.38735	2.00959	2.61061	2.46242	2.41783 AVRG	1	2.45170:		10.99819
1	40 Heptane	- 1	0.89995	0.76834	0.67709	0.89275:	0.84460	0.84790 AVRG	1	0.82177		10.34586
1	41 1,2-Dichloropropane	1	0.71687	0.59206	0.51211	C.67088:	0.63804	0.62771 AVRG	1	0.62628.		11.18660
	42 Trichloroethene	i	0.98561	0.76469	0.63667	C.88535	0.85080	0.82347 AVRG :	L,	0.80776		1 10.784471
1	43 1,4-Dioxane	1	1569	2854	13865	223515	388835	595552 LINR	-0.01638	0.34918		0.995921
ı	44 Bromodichloromethane	1	1.58124	1.40049	1.20028	1.71454	1.60983	1.51315 AVRG	1	1.50326		12.06737
L	45 Methyl lsobutyl Ketone	- 1	4768	8497:	43044	683851	1359440	2057524 LINR	C.00488	1.20752;		0.99960
1	46 cis-1,3-Dichloropropene	- 1	46651	83671	38416	595744	1232760	1818440 LINR	0.00461	1.07389		0.99955
	47 trans-1,3-Dichloropropene	- 1	40021	7585:	36119	6477521	1307880	1962661 LINR	0.00825	1.15569		0.99961
ł	49 Toluene	- 1	.2.85760	2.33331.	1.85971	2.35651	2.19463	2.02564 AVRG	1	2.27123		15.13064
ı	50 1,1,2-Trichloroethane	- 1	0.84258	0.69912.	0.59441	0.82903	0.77386	0.71750 AVRG	1	0.74275		[12.47432]
ı	51 Methyl Butyl Ketone	1	4350	6864	37994	6847621	13322001	1976501 LINE	0.009291	2.51912		0.999291
i	52 Dibromochloromethane	i	7038	12290	55107	8472691	16462091	2326738 LINR	-0.00853	2.99643		0.99840
1	53 1,2-Dibromoethane	1	62691	11201	47473	716550	1404059	2034545 LINR	-0.00165	2.59986		0.99927
ı	54 Tetrachloroethene	- 1	2.45594	2.05453	1.73966!	2.62124	2.45198	2.46135 AVRG	1	2.29745		14.44725
ı	56 Chlorobenzene	- 1	3.11231	2.84974	2.35556:	3.46675	3.32753	3.30167 AVRG	1	3.06893		13.34089
ı	57 Ethvl Benzene	1	12306	23555	104760	1564968	2968411	4313105 LINR	-0.00685	5.50934		0.99865
ı	58 map-Xylene	- 1	10815	17780	81641	1241584	2410825	3519784 LINR	-0.00081	4.49040		0.99922
1	59 Bromoform	1	61601	11170	48182	741372	1410189	2004086 LINR	-0.01154	2.5757€		0.99804
1	60 Styrene	1	5721	10755	52650.	860855	1658311	2413686 L1NR	-0.000521	3.38531		0.99897
ı	61 o-Xvlese	!	11069;	18840	84959:	1211473	2389461	3366716 LINR	-0.00869:	4.33424		0.99864
i	62 1,1,2,2-Tetrachloroethane	i	74531	132221	58616+	826545	1562893	2200559 L1NR	-0.01742	2.83301		0.99755
1		1	1	1		1	1	1 1				1

AIR: CHAIN-OF-CUSTODY / Analytical Request Document

Pace Analytical ® www.pacelabs.com

The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.

YN YN **W**W Samples Intact Y/N SAMPLE CONDITIONS Clean Air Act Pace Lab 1D Sealed Cooler ō Ŋλ N/A N/A N/A RCRA Custody ug/m³ PPBV Other eэĮ other 似人 N/A N/A N/A Received on Dry Clean ∑ Emissions ANG J° ni qmeT 17955 ≥ BD × Program 500 TIME É Superfund Voluntary Clean Up Sampling by State D-61-C1 Report Level DATE ocation of UST Method: ACCEPTED BY / AFFILIATION **Control Number** Address 51 Franklin St. Suite 400, Annapolis Pace Quote Reference: EC 0 1 Number Summa Can Pace Project Manager/Sales Rep. Benjamen NICole Benjamen N/4-M/A SAMPLER NAME AND SIGNATURE (Final Field - psig) Canister Pressure TIME Attention, Trans Company Name: Telfa Tech (Initial Field - psig) Canister Pressure DATE N/A TIME Invoice Information: COLLECTED AIBIB 1420 NA RELINQUISHED BY / AFFILIATION **₩** Section C COMPOSITE START ENDASRAB DATE Montas PID Reading (Client only) Report To Peler Rich Section B Required Project Information: MEDIA CODE Project Name: O 477 SSD O 477 Project Number: Copy To Dawn Only sande A-INFLUENT
If original sample from
19/5 15 not usable, MEDIA CODE
Tediar Bag
1 Liter Summa Can 1LC
6 Liter Summa Can 8LC
Low Volume Puff LVP
High Volume Puff HVP
Other
PM10 Purchase Order No.: Valid Media Codes
MEDIA Address 1 Franklin St Sule 40 'Section D Required Client Information Peter, Rich @ Tetra Tech MD 21403 -INFLUENT Sample IDs MUST BE UNIQUE AIR SAMPLE ID company. Tetra Tech Required Client Information: 4/10-990-4607 Requested Due Date/TAT: Annapolis, # M3TI

1700 Elm Street SE, Suite 200, Minneapolis, MN 55414 Air Technical Phone: 612.607.6386

Pace Analytical*

Document Name: Air Sample Condition Upon Receipt

Document No.: F-MN-A-106-rev.07

Document Revised: 28Jan2013

Page 1 of 1
Issuing Authority:
Pace Minnesota Quality Office

Sample Condition C Upon Receipt	lient Name:		Project #:	WO#	: 1025286	6
	tetra t		<u>.</u> .	######################################		~
	ed Ex UPS		Client			
acking Number:	Commercial Pace 80957871	Other: 15イみ		10252866	5	
<u></u> -			Intact?	es 🗆 No	Optional: Proj. Due Date:	Proj. Name:
istody Seal on Cooler/E مر	-	_				
acking Material: 🔼 🗷 🗷	ubble Wrap Bubb	le Bags Foam		Other:		. /
	oles only) (°C): cing to 6°C Correction Fa	Corrected Temp (°C):			B88A912167504 B8051	
emp snouid be above freez	ing to 6 C Correction Fa		_	ste a miliais or r	Comments:	7
Chain of Custody Present	?	ZYes □No	□N/A			
Chain of Custody Filled O		☐Yes ☐No		2.		
Chain of Custody Relingu		Yes No	□N/A	3.		
Sampler Name and/or Sig		☑Yes □No	□N/A	1 .		
Samples Arrived within H		☑Yes □No	□n/a	5		
Short Hold Time Analysis	(<72 hr)?	□Yes ☑ No	□N/A	5.		
Rùsh Turn Around Time I	Requested?	□Yes ☑No	□n/a	7.	·	·
Sufficient Volume?		☑Yes □No	□N/A	8	,	· · · · · · · · · · · · · · · · · · ·
Correct Containers Used?)	☑Ŷes □No	□n/a	9.		
-Pace Containers Used	?	□Ŷes □No	□N/A			
Containers Intact?			□N/A	10.		·
Media: Aw (~~			11.		
Sample Labels Match CO	C?	∐Yes □No	□N/A	12.	······································	
Samples Received:	21.00	en				
Can	isters	Flo	w Controllers		Stand A	lone G
Sample Number	Can ID	Sample Number		Can ID	Sample Number	Can ID
Influent	1022					-
Effluent	(027					
· · · · · · · · · · · · · · · · · · ·						
						
· · · · · · · · · · · · · · · · · · ·						
			•			
<u> </u>			1			
LIENT NOTIFICATION/R	ESOLUTION				Field Data Required?	∐Yes □No
			D	ate/Time:	· .	
						
		5			12/19/13	
Project Manager Review ote: Whenever there is a di	: / //			Date:	・グラ・レリン	

SAMPLE SUMMARY

Project:

SSD-04M

Pace Project No.:

10252866

Lab ID	Sample ID	Matrix	Date Collected	Date Received
10252866002	A-EFFLUENT	Air	12/18/13 14:32	12/19/13 10:25

REPORT OF LABORATORY ANALYSIS

	SMP_ANL	13	13
	EXTR_ANL	0	0
	SMP_EXTR	13	13
	ANAL_DATE	12/31/2013	12/31/2013
	EXTR_DATE	12/31/2013	12/31/2013
	SAMP_DATE	12/18/2013	12/18/2013
	QC_TYPE	N N	NZ Z
	LAB_ID	10252866002	10252866002
	UNITS NSAMPLE	A-EFFLUENT	A-EFFLUENT
SDG 10252866	UNITS	PPBV	UG/M3
SDG SDG	SORT		

5A - FORM V VOA VOLATILE ORGANIC INSTRUMENT PERFORMANCE CHECK BROMOFLUOROBENZENE (BFB)

EPA	SAMP	LE	NO.	
	BFB			

Lab Name: Pace Analytical

Contract:

Lab Code:

PASI

Case No.:

ID: 0.32

SAS No.:

SDG No.: 10252866

Lab File ID: 36501BFB.D

BFB Injection Date: 12/31/2013

Instrument ID: 10AIR0 BFB Injection Time: 08:53

GC Column: J&W DB-5

(mm)

		% RELATIVE		
m/e	ION ABUNDANCE CRITERIA	ABUNDANCE		
95	Base Peak, 100% relative abundance	100.00		
50	8.00 - 40.00% of mass 95	20.36		
75	30.00 - 66.00% of mass 95	44.08		
96	5.00 - 9.00% of mass 95	6.17		
173	Less than 2.00% of mass 174	0.78	(0.91)	
174	50.00 - 120.00% of mass 95	85.33		
175	4.00 - 9.00% of mass 174	6.93	(8.12)	
176	93.00 - 101.00% of mass 174	82.23	(96.37)	
177	5.00 - 9.00% of mass 176	5.57	(6.77)	

1 - Value is %mass 174

2 - Value is %mass 176

EPA SAMPLE NO.	LAB SAMPLE ID	LAB FILE ID	DATE ANALYZED	TIME ANALYZED
CAL5	CAL5	36503.D	12/31/2013	10:25
CAL6	CAL6	36504.D	12/31/2013	11:20
CAL7	CAL7	36505.D	12/31/2013	11:52
CAL1	CAL1	36507.D	12/31/2013	12:42
CAL2	CAL2	36508.D	12/31/2013	13:08
CAL3	CAL3	36509.D	12/31/2013	13:33
CAL4	CAL4	36510.D	12/31/2013	14:00
ICV (LCS)	ICV	36514.D	12/31/2013	16:58
LCS for HBN 282765 [AIR/	1603693	36515T.D	12/31/2013	17:25
LCS (LCS)	LCS	36515.D	12/31/2013	17:25
IC	IC	36518.D	12/31/2013	18:49
BLANK for HBN 282765 [Al	1603692	36518T.D	12/31/2013	18:49
A-EFFLUENT	10252866002	36528.D	12/31/2013	23:48

Pace Analytical Services, Inc.

INITIAL CALIBRATION DATA

Start Cal Date : 31-DEC-2013 10:25
End Cal Date : 31-DEC-2013 14:00
Quant Method : ISTD
Target Version : 4.14
Integrator : HP RTE
Method file : \\192.168.10.12\chem\10air0.i\010214.b\T015_365-13.m
Last Edit : 02-Jan-2014 10:07 ahamilton

Calibration File Names:

	\\192.168.10.12\chem\10air0.i\123113.b\36507.D
	\\192.168.10.12\chem\10air0.i\123113.b\36508.D
	\\192.168.10.12\chem\10air0.i\123113.b\36509.D
	\\192.168.10.12\chem\10air0.i\123113.b\36510.D
	\\192.168.10.12\chem\10air0.i\123113.b\36503.D
	\\192.168.10.12\chem\10air0.i\123113.b\36504.D
Level 7:	\\192.168.10.12\chem\10air0.i\123113.b\36505.D

Compound		1 1	C.2000000 Level 2	Level 3	1.000C Level 4	10.0000 Level 5				Coefficients ml	m2	%RSD or R^2
	30.0	0000	 			 						
1 Propylene		3757 3757 725505	6190;	i	22940	i		LINR		0.39477		0.999
2 Dichlorodifluoromethane	i	12022 50286	19715	40514						1.18353		0.996
3 Dichlorotetrafluoroethane		12267 12267 194587		40945	74238	779852	149373		-0.03934	1.15059		0.996
4 Chloromethane	+-	577 1 -++-	9562 !					LINR	-0.02672	0.56391		0.995
	_		!					_				_'

Pace Analytical Services, Inc.

INITIAL CALIBRATION DATA

Start Cal Date : 31-DEC-2013 10:25
End Cal Date : 31-DEC-2013 14:00
Quant Method : ISTD
Target Version : 4.14
Integrator : \\192.168.10.12\chem\l0air0.i\010214.b\T015_365-13.m
Last Edit : 02-Jan-2014 10:07 ahamilton

	0.1000000 ;	0.20000000	0.5000000	1.0000 -	10.0000	20.0000	1 1	C	oefficients		%RSD
Compound	Level 1		Level 3			Level 6	Curve	b	- m1	m2	or R^2
	30.0000 Level 7										
5 Vinyl chloride	4757; 1013853	8327 	172281	32553	345078	685440	 LINR	-0.01950			0.999
6 1,3-Butadiene	3522 762562	6231 i	12885,	2 4 055	260561]	520232	LINR	-0.01982	i		0.999
7 Bromomethane	4393; 928766;	7631	15716:	29324	315216	629997	I I	-0.01984	C.5C273		0.99
8 Chloroethane	2200: 486797;	3873	8142	15491	164171	329118	LINR		C.26326		0.99
9 Ethanol	0.35513 0.24570		0.27037	0.26160	0.28605	0.25300	 AVRG		0.200001		14.50
10 Vinyl Bromide	C.70990 C.49262		0.56354	0.52876 	0.51830	0.49756			0.56152		: 14.03
11 Acrolein	1061 30 4 973		3678 I	6791 6791	109484 	215378			0.16833		3.99
							:				-;

Pace Analytical Services, Inc.

INITIAL CALIBRATION DATA

Start Cal Date : 31-DEC-2013 10:25
End Cal Date : 31-DEC-2013 14:00
Quant Method : ISTD
Target Version : 4.14
Integrator : \\192.168.10.12\chem\10air0.i\010214.b\T015_365-13.m
Last Edit : 02-Jan-2014 10:07 ahamilton

	0.10000000	0.2000000	0.5000000	1.0000	10.0000	20.0000	1 1	Co	efficients		%RSD
Compound	Level 1	Level 2	Level 3	Level 4	Level 5	Level 6	Curve	b	m1	m2	or R^2
	30.0000 Level 7						·				
12 Trichlorofluoromethane	2.17170 1.25649	1.88117			1.42890	1.30846	IAVRG	 	 1.60092		20.4578
13 Acctone	18288			86994		+++++	 LINR	-0.04398	0.96863		1 0.99764
14 Isopropyl Alcohol	1.13856		1.16091	1.05536	0.91461	0.79289	AVRG	i	C.98569		16.34320
15 1,1-Dichloroethene	1.25827 0.71788	1.16195	1.02797	0.94279	0.86512	0.77995	IAVRG		C.96485		20.4917
16 Acrylonitrile	0.41089		0.36335	0.33627	0.38051	0.34897			C.36397		9.4369
17 Tert Butyl Alcohol (TBA)	1.40552		1.44086		i		AVRG		1.26738		21.33958
18 Freon 113	1.808911	1.56671	1.35048		1.13094			 	1.28043		25.4313

Pace Analytical Services, Inc.

INITIAL CALIBRATION DATA

Start Cal Date : 31-DEC-2013 10:25
End Cal Date : 31-DEC-2013 14:00
Quant Method : ISTD
Target Version : 4.14
Integrator : HP RTE
Method file : \\192.168.10.12\chem\10air0.i\010214.b\T015_365-13.m
Last Edit : 02-Jan-2014 10:07 ahamilton

	0.1000000				10.0000	20.0000			Coefficients		%RSD
Compound	Level 1	Level 2	Level 3	Level 4 ;	Level 5	Level 6	Curve	b	ml	m2	or R^2
	30.0000 Level 7	1	 	 !							
19 Methylene chloride	1.25113:	1.02936	0.85143		0.69009	0.62500	AVRG		C.82772		29.07126
20 Allyl Chloride	769. 388956:		3452		136926	273461	LINR	-0.00091	0.21512		0.99799
21 Carbon Disulfide	13240 2603946	21503	43839	83311 ·	900514	1799419	 LINR		1.41710:		0.9991
22 Urans-1,2-dichloroethene	C.48400	0.54093	,	C.55076	0.55537	0.50662	 AVRG		0.54536		7.2521
23 Methyl Tert Butyl Ether	2.12936: 1.30787	,			1.51302	1.37941			1.633131		: 17.6636
34 Vinyl Acetate	7075	11269;	23137	42362,	904032	1759217	LINR	-0.00936			0.9959
25 1,1-Dichloroethane	1.64964	1.41214	1,24238	1.15488:	i	0.97250	AVRG I		1.20424:		21.2994
							:				- ;

Pace Analytical Services, Inc.

INITIAL CALIBRATION DATA

Start Cal Date : 31-DEC-2013 10:25
End Cal Date : 31-DEC-2013 14:00
Quant Method : ISTD
Target Version : 4.14
Integrator : HP RTE
Method file : \\192.168.10.12\chem\10air0.i\010214.b\T015_365-13.m
Last Edit : 02-Jan-2014 10:07 ahamilton

	0.1000000	0.2000000	0.50000000	1.0000	10.0000	20.0000	1		Coefficients		%RSD
Compound		Level 2			Level 5	Level 6	Curve	ь	m1	m2	or R^2
	30.0000 . Level 7		1								
27 Meti:yl Ethyl Ketone	0.30599; 0.24888;	i	0.26421	0.28492	0.28763	0.26221	 AVRG		0.27261		7.5829
28 n-Hexane	1.47940		1.09886	1.07175		0.87305	AVRG		1.08019		21.3534
29 cis-1,2-Dichloroethene	0.72924	0.69513	0.58830	0.56754	0.60084	0.55438	1		C.60941		1 12.2139
30 Ethyl Acetate	1.50641		1.05448	1.19585	 1.28038 		AVRG		1.20800		13.383
31 Chioroform	1.67700	1.49204	1.32780	1.25080	1.19748	1.10937	AVRG		1.30442		1 16.5286
32 Tetrahydrofuran	0.98505 0.64836	0.86799	0.74306	0.70666		0.66294			C.76094		1 16.0566
33 1,1,1-Trichloroethane	1.67787 1.9638C		1.26742	1.18573	1.18207	1.09533			1.28300		 17.718:
	:				 				· 		- :

Pace Analytical Services, Inc.

INITIAL CALIBRATION DATA

Compound	0.1000000 Level 1	0.2000000 Level 2	0.50000000 Level 3		10.3000 Level 5	20.0000 Level 6	l Curve		cefficients ml	m2	%RSD or R^2
·	 30.0000 Level 7	·································	 	 	 		 	 		; ;	
34 1,2-Dichloroethane	1.05527	0.93677		,	i	0.75816	 AVRG		0.85953		13.1017
35 Benzene	2.65595 1.24376	2.22901	1.97463	1.83398	1.73512	1.45953		i	1.87600	 	25.1670
36 Carbon tetrachloride	1.35463		1.10006	1.00069		1.08168	AVRG	:	1.13185		11.1305
37 Cyclohexane	0.53181		1.06975	1.30861	0.89457		AVRG		o.90622	 	28.8491
39 2,2,4-Trimethylpentane	4.28851 2.35192	3.73908	3.27554;	,	2.94066 	2.58096	 AVRG		3.18577;	, 	20.9817
40 Heptane	12346 1544922	18080	34602	62741;	,	1163689	 QUAD	0.00099	i	0.19393	0.9999
41 1,2-Dichloropropane	1.07932 0.50713		0.76252	C.72585	0.674641				0.74726	 	25.7413
		i		:							

Pace Analytical Services, Inc.

INITIAL CALIBRATION DATA

Start Cal Date : 31-DEC-2013 10:25
End Cal Date : 31-DEC-2013 14:00
Quant Method : ISTD
Target Version : 4.14
Integrator : \\192.168.10.12\chem\10air0.i\010214.b\T015_365-13.m
Last Edit : 02-Jan-2014 10:07 ahamilton

Compound	0.1000000 Level 1	0.2000000 Level 2		1.0000 Level 4	10.0000 Level 5	20.0000 Level 6	Curro		cefficients ml	m2	%RSD or R^2
Collipound	 30.0000 Level 7	 		 		_	I I			ing.	
42 Trichloroethene	1.03732	0.90201	0.81535 	0.77909 	0.74227	0.69191	 AVRG	!	0.80117	******	1 16.7408
43 1,4-Dioxane	0.34920	0.26785	0.31557	0.27912 		0.25641	AVRG	i	0.28412		1 13.3471
44 Bromodichloremethane	1.63117	1.44552		1.22289	1.26273	1.16562	 AVRG		1.30437		13.8544
45 Methyl Isobutyl Ketone	8302 2352794	13439		56142;	866168 	1667921	 LINR		1,30056		0.9968
46 cis-1,3-Dichloropropene	0.94932	0.82928	0.88643	0.85098	0.97548 	0.93442	 AVRG	i i	0.90612		5.8616
47 trans-1,3-Dichloropropene	4615 1712673	7671	16868	33370		1150785		G.00895	0.93148		0.9998
49 Toluene	3.55404 1.70416	2.77344				1.88642			2.37272		1 26.2884
	-: 	 		!							

Pace Analytical Services, Inc.

INITIAL CALIBRATION DATA

Start Cal Date : 31-DEC-2013 10:25
End Cal Date : 31-DEC-2013 14:00
Quant Method : ISTD : 4.14
Integrator : 4.14
EHP RTE
Method file : \\192.168.10.12\chem\10air0.i\010214.b\T015_365-13.m
Last Edit : 02-Jan-2014 10:07 ahamilton

	C.1000000	0.2000000	0.5000000	1.0000	10.0000	20.0000	1 1	Co	pefficients		%RSD
Compound	Level 1	Level 2	Level 3	Level 4		Level 6	Curve	b	ml	m2 i	or R^2
	30.0000 Level 7	i	 	İ						 	========
50 1,1,2-Trichloroethane	1.14361	0.97750 			0.73738	0.66923	I I		0.81051		23.0685
51 Methyl Butyl Ketone	7566 2331783	12665	27197	52700		1658414	JQUAD	C.01712	0.26770	0.01651	0.9998
52 Dibromochloromethane	2.71385		2.24273	2.17900		2.49083	, ,		2.43375	 	8.7173
53 1,2-Dibromoethane	2.39161 2.09019		2.20653	2.09103	2.46460	2.23029	JAVRG		2.22400	 	6.8406
54 Tetrachloroethene	2.91125 1.88974		İ	2.13462	2.23978	2.04588	AVRG		2.28475	 	14.7865
56 Chlorobenzene	4.22085 2.99121	3.74820 3.74820	3.34376	3.10362	3.41873	3.12394	J I		3.42147		12.6640
57 Ethyl Benzene	6.64413 4.58737		,	5.11056			j I		5.37752		12.6019
) 				

Pace Analytical Services, Inc.

INITIAL CALIBRATION DATA

Start Cal Date : 31-DEC-2013 10:25
End Cal Date : 31-DEC-2013 14:00
Quant Method : ISTD
Target Version : 4.14
Integrator : 4.14
Ether Method file : \\192.168.10.12\chem\10air0.i\010214.b\T015_365-13.m
Last Edit : 02-Jan-2014 10:07 ahamilton

	0.1000000	0.2000000	0.5000000	:.0000	10.0000	20.0000	1		oeff:clents		%RSD
Compound	Level 1	Level 2		Level 4	Level 5		Curve	ь	m1	m2	or R^2
	30.0000 Level 7	 	! 								1
58 m&p-Xylene	5.68292 3.85790	4.81196		4.21050	4.50616	4.04736	I JAVRG		4.49644		1 13.520
59 Bromoform	5112	8454	19512	368B 4	715762	1442713	 LINR		İ		0.997
60 Styrene	6515	11613;		58088	803571	1554736	 LINR		2.65882		 0.995
61 o-Xylene	5.47963 3.68615	4.90099	4.30424	4.19325	4.37053	3.93212	 AVRG	 	4.40956		1 13.723
62 1,1,2,2-Tetrachloroethane	3.54543 2.60243	3.14066	2.81617;		3.06341	2.75348	I AVRG		2.94883		11.022
63 Isopropylbenzene	5.41849 4.89749	5.85708;	5.45315i	5.29381	i	5.17723	I IAVRG		 5.40995		6.147
64 N-Propylbenzene	16690		7680 4 ;	152280				-0.00943	 6.32381		0.996
		;									

Pace Analytical Services, Inc.

INITIAL CALIBRATION DATA

Start Cal Date : 31-DEC-2013 10:25
End Cal Date : 31-DEC-2013 14:00
Quant Method : ISTD
Target Version : 4.14
Integrator : 4.14
EHP RTE
Method file : \\192.168.10.12\chem\10air0.i\010214.b\T015_365-13.m
Last Edit : 02-Jan-2014 10:07 ahamilton

	0.1000000	0.2000000	0.5000000	1.0000	10.0000	20.0000	T i	Co	efficients		%RSD
Compound	Level 1	Level 2	Level 3	Level 4	Level 5	Level €	Curve	b	m1	m2	or R^2
	30.0000 Level 7			 			 			; ; ;	
65 4-Ethyltoluene	13483 4228009	22778 	58059 	119079	1530430	2929635	I DAUQI	0.00840:	0.15682		0.999
66 1,3,5-Trimethylbenzene	5.51351 4.26304	6.0361 4		4.89489;	4.96412	4.63268			5.04771	·	11.473
67 1,2,4-Trimethylbenzene	10438 3744197	21855		100090	1299821 	2593484	DAUQ	0.00890	0.18734	,	0.999
68 1,3-Dichlorobenzene	7741 2379270	12500	32017 	64342		1694147	daugi	0.01316	0.26474	0.01560	0.99
69 Sec- Butylbenzene	14920 4665691	24398	70 ⁻ 793	150994	1797703	3407693	I DAUQI	0.61428	0.11239	0.00554	0.999
71 Renzyl Chloride	7517 2870914	12316	26976 	62125	1100532	2058968	I DAUQ	0.02209	0.19077		0.99
72 1,4-Dichlorobenzene	2.85085	2.94184	2.71684		,	2.78896		 	2.84672	i	6.29
•======================================								-	-		

Pace Analytical Services, Inc.

INITIAL CALIBRATION DATA

Start Cal Date : 31-DEC-2013 10:25
End Cal Date : 31-DEC-2013 14:00
Quant Method : ISTD : 4.14
Integrator : 4.14
HP RTE
Method file : \\192.168.10.12\chem\10air0.i\010214.b\T015_365-13.m
Last Edit : 02-Jan-2014 10:07 ahamilton

	0.1000000	0.2000000 :	0.5000000	1.0000	10.0000	20.0000	1 1	Co	efficients	1	%R5D
Compound	Level 1 :	Level 2		Level 4	Level 5		Curve	р	m1	m2 i	or R^2
	30.0000 Level 7	:	! !	 						!	
73 1,2-Dichlorobenzene	6944 2369920		24856:	60629	822410	1609604	 LINR	1	ī		0.9968
74 N-Butylbenzene	10672 3856946	17626			1437308	2692303	QUAD I	0.01786	0.15996	0.00628	0.9994
75 1,2,4-Trichlorobenzene	3273	i	11854		511871 	+++++	LINR	0.02182	1.92165		0.9982
76 Naphthalene	7255 7255 +-+++	11313	2 4 908	50732 -	1	+++++	LINR		3.97631	 	0.998
77 Hexachlorobutadiene	4255 +-+++	7850				+++++	! LINR	0.01000	1.69538	 	0.999
26 Hexane-d14(S)	0.54867 	i	0.55798	0.54797	0.53835		 AVRG		C.54192		2.3530
48 Toluene-d8 (S)	0.84241: 0.83410:		0.83431	G.81392	0.81631	0.82896	 AVRG		C.82980	: :	1.310

Pace Analytical Services, Inc.

INITIAL CALIBRATION DATA

Start Cal Date : 31-DEC-2013 10:25
End Cal Date : 31-DEC-2013 14:00
Quant Method : ISTD : 4.14
Integrator : 4.14
HP RTE
Method file : \\192.168.10.12\chem\10air0.i\010214.b\T015_365-13.m
Last Edit : 02-Jan-2014 10:07 ahamilton

Compound		C.2000000 Level 2						b	Coefficients m1	m2	%RSD or R^2
							-1				1
	30.0000 Level 7		1				1				1
				,							
\$ 70 1,4-dichlorobenzene-d4 (S)	0.20054		0.23735 	0.26651	0.22536 	0.21369 	IAVRG		0.22557		1 10.5443
									-		.

Pace Analytical Services, Inc.

INITIAL CALIBRATION DATA

Start Cal Date : 31-DEC-2013 10:25
End Cal Date : 31-DEC-2013 14:00
Quant Method : ISTD
Target Version : 4.14
Integrator : 4.14
EHP RTE
Method file : \\192.168.10.12\chem\10air0.i\010214.b\T015_365-13.m
Last Edit : 02-Jan-2014 10:07 ahamilton

Average %RSD Results.	1
======================================	
Calculated Average %RSD =	17.42353 I
Maximun Average %RSD =	40.00000
<pre>j* Passed Average %RSD Test.</pre>	I
1	ı

Curve Formula	Units
Averaged Amt = Rsp/ml	Response
Linear Amt = b + Rsp/ml	Response
Quad Amt = b + m1*Rsp + m2*Rsp^2	Response
1	1

QUALITY CONTROL DATA

Project:

SSD-04M

Pace Project No.:

10252866

QC Batch:

AIR/19087

Analysis Method:

TO-15

QC Batch Method: TO-15

Analysis Description:

Matrix: Air

TO15 MSV AIR Low Level

Associated Lab Samples: METHOD BLANK: 1603692

10252866002

Associated Lab Samples:

Date: 03/06/2014 10:37 AM

10252866002

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
1,1,1-Trichloroethane	ug/m3	ND	1.1	12/31/13 18:49	
1,1,2-Trichloroethane	ug/m3	ND	0.55	12/31/13 18:49	
1,1-Dichloroethane	ug/m3	ND	0.82	12/31/13 18:49	
1,1-Dichloroethene	ug/m3	ND	0.81	12/31/13 18:49	
1,2,4-Trichlorobenzene	ug/m3	ND	1.5	12/31/13 18:49	
1,2,4-Trimethylbenzene	ug/m3	ND	1.0	12/31/13 18:49	
1,2-Dichloroethane	ug/m3	ND	0.41	12/31/13 18:49	
1,3,5-Trimethylbenzene	ug/m3	ND	1.0	12/31/13 18:49	
Benzene	ug/m3	ND	0.32	12/31/13 18:49	
Carbon tetrachloride	ug/m3	ND	0.64	12/31/13 18:49	
Chloroform	ug/m3	ND	0.99	12/31/13 18:49	
sis-1,2-Dichloroethene	ug/m3	ND	0.81	12/31/13 18:49	
Dichlorodifluoromethane	ug/m3	ND	1.0	12/31/13 18:49	
thylbenzene	ug/m3	ND	0.88	12/31/13 18:49	
n&p-Xylene	ug/m3	ND	1.8	12/31/13 18:49	
Methyl-tert-butyl ether	ug/m3	ND	0.73	12/31/13 18:49	
Methylene Chloride	ug/m3	ND	0.71	12/31/13 18:49	
Naphthalene	ug/m3	ND	1.1	12/31/13 18:49	
o-Xylene	ug/m3	ND	0.88	12/31/13 18:49	
Tetrachloroethene	ug/m3	ND	0.69	12/31/13 18:49	
Toluene	ug/m3	ND	0.77	12/31/13 18:49	
rans-1,2-Dichloroethene	ug/m3	ND	0.81	12/31/13 18:49	
Trichloroethene	ug/m3	ND	0.55	12/31/13 18:49	
Vinyl chloride	ug/m3	ND	0.26	12/31/13 18:49	

LABORATORY CONTROL SAMPLE:	1603693					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
1,1,1-Trichloroethane	ug/m3	55.5	51.4	93	69-131	-
1,1,2-Trichloroethane	ug/m3	55.5	50.6	91	68-132	
1,1-Dichloroethane	ug/m3	41.2	37.1	90	66-131	
1,1-Dichloroethene	ug/m3	40.3	36.6	91	64-136	
1,2,4-Trichlorobenzene	ug/m3	75.5	71.7	95	30-150	
1,2,4-Trimethylbenzene	ug/m3	50	50.6	101	71-135	
1,2-Dichloroethane	ug/m3	41.2	40.3	98	66-136	
1,3,5-Trimethylbenzene	ug/m3	50	48.0	96	69-136	
Benzene	ug/m3	32.5	30.5	94	72-136	
Carbon tetrachloride	ug/m3	64	67.9	106	64-133	
Chloroform	ug/m3	49.7	46.1	93	66-129	
cis-1,2-Dichloroethene	ug/m3	40.3	40.3	100	73-135	
Dichlorodifluoromethane	ug/m3	50.3	57.7	115	64-131	

QUALITY CONTROL DATA

Project:

SSD-04M

Pace Project No.:

10252866

LABORATORY CONTROL SAMPLE:	1603693					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Ethylbenzene	ug/m3	44.2	42.9	97	74-136	
m&p-Xylene	ug/m3	44.2	42.4	96	72-135	
Methyl-tert-butyl ether	ug/m3	36.7	34.6	94	71-134	
Methylene Chloride	ug/m3	35.3	29.9	85	59-140	
Naphthalene	ug/m3	53.3	51.2	96	30-150	
o-Xylene	ug/m3	44.2	42.0	95	74-135	
Tetrachloroethene	ug/m3	69	65.0	94	66-135	
Toluene	ug/m3	38.3	34.6	90	71-134	
trans-1,2-Dichloroethene	ug/m3	40.3	40.9	101	68-129	
Trichloroethene	ug/m3	54.6	51.9	95	68-134	
Vinyl chloride	ug/m3	26	28.4	109	64-134	

Data File: \\192.168.10.12\chem\10air0.i\123113.b\\36528.D

Report Date: 02-Jan-2014 14:35

Pace Analytical Services, Inc.

INTERNAL STANDARD COMPOUNDS AREA AND RT SUMMARY

Instrument ID: 10air0.i

Calibration Date: 02-JAN-2014

Calibration Time: 09:41

Lab File ID: 36528.D Lab Smp Id: 10252866001

A-EFFLUENT

Level: LOW

Analysis Type: VOA Quant Type: ISTD

Sample Type: AIR

Operator: AH2 Method File: \\192.168.10.12\chem\10air0.i\123113.b\T015 365-13.m

Misc Info: 19087

Test Mode:

Use Initial Calibration Level 5.

COMPOUND	STANDARD	AREA LOWER	LIMIT UPPER	SAMPLE	%DIFF	
38 1,4-Difluorobenze	582685	349611	815759	312563	-46.36	3 -
55 Chlorobenzene - d	271957	163174	380740	172936	-36.41	

		RT I			
COMPOUND	STANDARD	LOWER	UPPER	SAMPLE	%DIFF
=======================================	=======	========	========	=======	=====
38 1,4-Difluorobenze	6.68	6.35	7.01	6.67	-0.09
55 Chlorobenzene - d	9.85	9.52	10.18	9.84	-0.06

AREA UPPER LIMIT = + 40% of internal standard area. AREA LOWER LIMIT = - 40% of internal standard area. RT UPPER LIMIT = + 0.33 minutes of internal standard RT. RT LOWER LIMIT = - 0.33 minutes of internal standard RT.

Internal Std Reference

Data File: \\192.168.10.12\chem\10air0.i\123113.b\36528.D

Report Date: 02-Jan-2014 14:35

Pace Analytical Services, Inc.

TO15 Analysis (UNIX)
Data file: \\192.168.10.12\chem\10air0.i\123113.b\36528.D
Lab Smp Id: 10252866001
Ini Date : 31 DB2 2012 1

Inj Date : 31-DEC-2013 23:48

: AH2 Inst ID: 10air0.i Operator

Smp Info

Misc Info: 19087

: Volatile Organic COMPOUNDS in Air Comment

Method : \\192.168.10.12\chem\10air0.i\123113.b\T015 365-13.m

Meth Date : 02-Jan-2014 14:13 ahamilton Quant Type: ISTD

Cal Date : 31-DEC-2013 14:00 Cal File: 36510.D

Als bottle: 28

Dil Factor: 1.68000

Integrator: HP RTE Compound Sublist: all.sub

Target Version: 4.14

Concentration Formula: Amt * DF * Uf * CpndVariable

Name	Value	Description
DF Uf		Dilution Factor ng unit correction factor
Cpnd Variable		Local Compound Variable

Compounds		QUANT SIG MASS	RT	EXP RT		RESPONSE	CONCENTRA ON-COLUMN (ppbv)	ATIONS FINAL (ppbv)
1 Propylene		41	3.950		(0.592)	11491	0.68761	1.16(QMH)
2 Dichlorod	ifluoromethane	85	Cor	mpound No	t Detecte	ed.		
3 Dichlorote	etrafluoroethane	85	Cor	npound No	t Detecte	ed.		
4 Chlorometh	nane	50	4.074	4.075	(0.611)	9768	0.28697	0.482
5 Vinyl chlo	oride	62	Cor	npound No	t Detecte	ed.		
6 1,3-Butad	iene	54	Cor	mpound No	t Detecte	ed.		
7 Bromometha	ane	94	Cor	mpound No	t Detecte	ed.		
8 Chloroetha	ane	64	Cor	mpound No	t Detecte	ed.		
9 Ethanol		31	4.434	4.441	(0.664)	28810	3.22190	5.41(M)
10 Vinyl Bro	nide	106	Cor	npound No	t Detecte	ed.		
11 Acrolein		56	Cor	npound No	t Detecte	ed.		
12 Trichloro	fluoromethane	101	4.620	4.627	(0.692)	56050	1.12013	1.88
13 Acetone		43	4.639	4.639	(0.695)	281585	8.86088	14.9(M)
14 Isopropyl	Alcohol	45	Cor	npound No	t Detecte	ed.		
15 1,1-Dichlo	oroethene	61	4.881	4.881	(0.731)	65964	2.18731	3.67
16 Acrylonit	rile	53	Cor	mpound No	t Detecte	ed.		
17 Tert Buty	l Alcohol (TBA)	59	Cor	mpound No	t Detecte	ed.		
- 18 Freon 113		101	Cor	mpound No	t Detecte	ed.		
19 Methylene	chloride	49	4.974	4.974	(0.745)	456567	17.6476	29.6
20 Allyl Chlo	oride	76	Cor	npound No	t Detecte	ed.		
21 Carbon Dis	sulfide	76	5.129	5.129	(0.769)	24241	0.32088	0.539
22 trans-1,2	-dichloroethene	96	Cor	mpound No	t Detecte	ed.		
23 Methyl Te	rt Butyl Ether	73	Cor	mpound No	t Detecte	ed.		
24 Vinyl Acet	tate	43	Сог	mpound No	t Detecte	ed.		

Internal 5td Reference

Data File: $\192.168.10.12\chem\10air0.i\123113.b\36528.D$ Report Date: 02-Jan-2014 14:35

								CONCENTRA	TIONS
			QUANT SIG					ON-COLUMN	FINAL
Co	ompo	unds	MASS	RT	EXP RT	REL RT	RESPONSE	(ppbv)	(ppbv)
===							=======		======
	25	1,1-Dichloroethane	63	5.402		(0.809)	16358	0.43459	0.730
Ş	26	Hexane-d14(S)	66	5.482	5.489	(0.822)	197 771	11.6953	11.7
	27	Methyl Ethyl Ketone	72	5.544	5.545	(0.831)	4252	0.49902	0.838(QM)
	28	n-Hexane	57	5.582	5.589	(0.836)	39916	1.18225	1.99(QM)
	29	cis-1,2-Dichloroethene	96	5.743	5.737	(0.861)	5419	0.28449	0.478(Q)
	30	Ethyl Acetate	43	Comp	pound No	t Detecte	d.		
	31	Chloroform	83	Comp	pound No	t Detecte	d.		
	32	Tetrahydrofuran	42	Com	pound No	t Detecte	d.		
	33	1,1,1-Trichloroethane	97	6.283	6.283	(0.941)	5219	0.13014	0.219(a)
		1,2-Dichloroethane	62	Comp	pound No	t Detecte	d.		
		Benzene	78	6.531	6.538	(0.979)	10481	0.17874	0.300(a)
		Carbon tetrachloride	117	Com		t Detecte	d.		
		Cyclohexane	56		•	t Detecte			
		1,4-Difluorobenzene	114	6.673		(1.000)	312563	10.0000	
7		2,2,4-Trimethylpentane	57			t Detecte		201000	
		Heptane	43	6.946		(1.041)	7725	0.18609	0.313(aM)
		1,2-Dichloropropane	63			t Detecte		0.10009	0.313(an)
		Trichloroethene	130	7.083		(1.061)	4891	0.19532	0.328(a)
			88			ot Detecte		0.19332	0.320(a)
		1,4-Dioxane							
		Bromodichloromethane	83	-		ot Detecte			
		Methyl Isobutyl Ketone	43	-		t Detecte			
		cis-1,3-Dichloropropene	75 	-		ot Detecte			
		trans-1,3-Dichloropropene	75			ot Detecte			
ş		Toluene-d8 (S)	98	8.212		(1.231)	279179	10.7640	10.8
		Toluene	91	8.292		(1.243)	34301	0.46251	0.777
	50	1,1,2-Trichloroethane	97	-		ot Detecte			
		Methyl Butyl Ketone	43			ot Detecte			
	52	Dibromochloromethane	129	Comp	pound No	ot Detecte	d.		
	53	1,2-Dibromoethane	107	Comp	pound No	t Detecte	d.		
	54	Tetrachloroethene	166	9.161	9.161	(0.931)	5364	0.13576	0.228(a)
*	55	Chlorobenzene - d5	117	9.843	9.844	(1.000)	172936	10.0000	
	56	Chlorobenzene	112	Com	pound No	ot Detecte	d.		
	57	Ethyl Benzene	91	Com	pound No	ot Detecte	d.		
	58	m&p-Xylene	91	Com	pound No	t Detecte	d.		
	59	Bromoform	173	Comp	pound No	t Detecte	d.		
	60	Styrene	104	Com	pound No	t Detecte	d.		
	61	o-Xylene	91	Com	pound No	ot Detecte	d.		
	62	1,1,2,2-Tetrachloroethane	83	Com	pound No	ot Detecte	d.		
	63	Isopropylbenzene	105	Com	pound No	ot Detecte	d.		
	64	N-Propylbenzene	91			ot Detecte			
	65	4-Ethyltoluene	105	Com	pound No	ot Detecte	d.		
		1,3,5-Trimethylbenzene	105		•	t Detecte			
		1,2,4-Trimethylbenzene	105		12.648		4167	0.13418	0.225(a)
		1,3-Dichlorcbenzene	146			t Detecte			,
		Sec- Butylbenzene	105	-	-	ot Detecte			
ş		1,4-dichlorobenzene-d4 (S)	152			(1.321)	34309	8.79498	8.79
Ą			91			(1.321) ot Detecte		0./2420	0.19
		Benzyl Chloride		-	-	ot Detecte ot Detecte			
		1,4-Dichlorobenzene	146						
		1,2-Dichlorobenzene	146			ot Detecte			
		N-Butylbenzene	91			ot Detecte			
		1,2,4-Trichlorobenzene	180			ot Detecte			
		Naphthalene	128	-	-	ot Detecte			
	77	Hexachlorobutadiene	225	Com	pound No	ot Detecte	a.		

Data File: \\192.168.10.12\chem\10air0.i\123113.b\36528.D

Report Date: 02-Jan-2014 14:35

Pace Analytical Services, Inc.

TENTATIVELY IDENTIFIED COMPOUNDS

Client Name:

Lab Smp Id: 10252866001
Operator: AH2
Sample Location:
Sample Matrix: AIR

Analysis Type: VOA Inj Date: 31-DEC-2013 23:48

Client SDG: 123113.b

Sample Date: Sample Point: Date Received:

Level: LOW

CONCENTRATION UNITS: (ug/L or ug/KG) ppbv

Number TICs found: 2

CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q
	Difluorochloromethane Benzene, 1,2,3-trimethyl-	3.932 12.474	238	NJ NJ

Data File: \\192.168.10.12\chem\10air0.1\123113.b\36528.D

Report Date: 02-Jan-2014 14:35

Pace Analytical Services, Inc.

TO15 Analysis (UNIX)

Data file : \\192.168.10.12\chem\10air0.i\123113.b\36528.D Lab Smp Id: 10252866001

Inj Date : 31-DEC-2013 23:48

Inst ID: 10air0.i Operator : AH2

Smp Info

Misc Info : 19087

Comment : Volatile Organic COMPOUNDS in Air

: \\192.168.10.12\chem\10air0.i\123113.b\T015_365-13.m Method

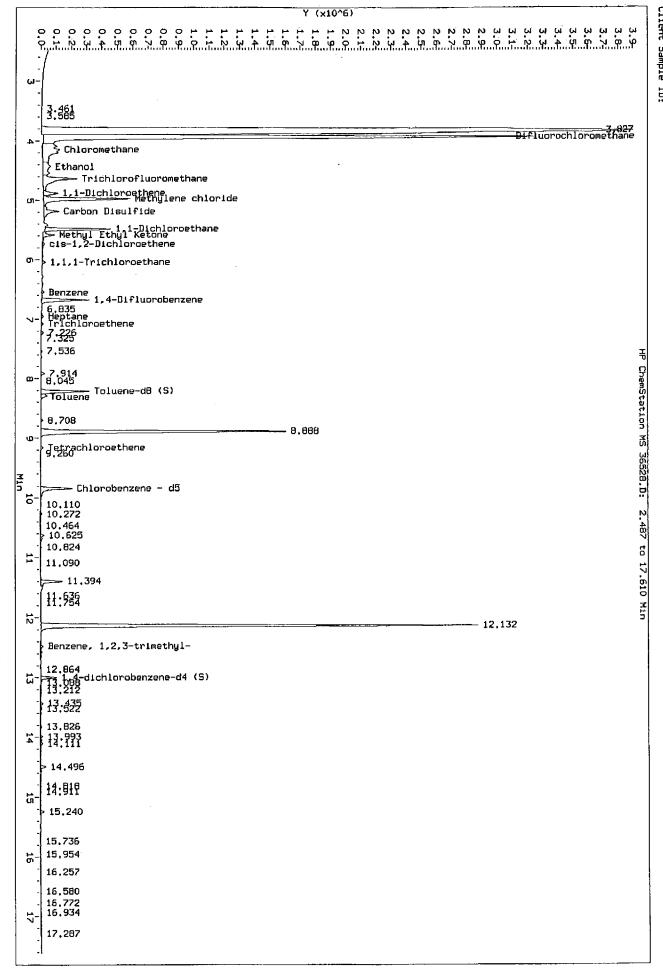
Meth Date: 02-Jan-2014 14:13 ahamilton Quant Type: ISTD Cal Date : 31-DEC-2013 14:00
Als bottle: 28
Dil Factor: 1.68000 Cal File: 36510.D

Integrator: HP RTE Compound Sublist: all.sub

Target Version: 4.14

Concentration Formula: Amt * DF * Uf * CondVariable

Name	Value	Description
DF Uf		Dilution Factor ng unit correction factor
Cpnd Variable		Local Compound Variable


IS	TD	RT	AREA	AMOUNT
==		****		22222
*	38 1,4-Difluorobenzene	6.674	701926	10.000
*	55 Chlorobenzene - d5	9.844	543379	10.000

		CONCENT	RATIONS		QU	ANT	
RT	AREA	ON-COL(ppbv)	FINAL (ppbv)	QUAL	LIBRARY	LIB ENTRY	CPND #
	. ====			====	#=====================================	******	* = * = * =
Difluoro	chlorometh	ane		CAS	#: 75-45-6		
3.932	9953140	141.797378	238	83	NISTO5.L	1809	38 (ML)
Benzene,	1,2,3-tri	methyl-		CAS	#: 526-73-8		
12.474	74520	1.37142601	2.30	5	NIST05.L	9117	55 (L)

QC Flag Legend

M - Compound response manually integrated.

L - Operator selected an alternate library search match.

INTERNAL CORRESPONDENCE

TO:

P. RICH

DATE:

MARCH 10, 2014

FROM:

A. COGNETTI

COPIES:

DV FILE

SUBJECT:

ORGANIC DATA VALIDATION - VOC

LOCKHEED MARTIN CORPORATION (LMC) - MIDDLE RIVER

SAMPLE DELIVERY GROUP (SDG) - 10254930

SAMPLES:

6/Air/VOC

A-EFFLUENT

A-INFLUENT

A-MID GAC

C-EFFLUENT

C-INFLUENT

C-MID GAC

Overview

The sample set for LMC – Middle River, SDG 10254930 consisted of six (6) air samples. All samples were analyzed for volatile organic compounds (VOC). No field duplicate pair is included in this SDG.

The samples were collected by Geo Trans on January 13, 2014 and analyzed by PACE Analytical. All analyses were conducted in accordance with EPA Method TO-15 analytical and reporting protocols.

The data contained in this SDG were validated with regard to the following parameters: data completeness, holding times, GC/MS tuning, initial/continuing calibrations, laboratory method blank results, surrogate spike recoveries, blank spike results, internal standard recoveries, chromatographic resolution, compound identification, compound quantitation, and detection limits. Areas of concern are listed below.

Major

No major noncompliances were noted.

Minor

 The internal standard area of 1,4-difluorobenzene was outside quality control limits in the diluted sample analysis of C-INFLUENT on January 24, 2014. Trichloroethene was the only analyte reported from this analytical run. The detected trichloroethene result was qualified as estimated (J) in sample C-INFLUENT.

<u>Notes</u>

The chain of custody indicated that no gauges were provided with the summa canisters. This means that the canister pressure before and after sampling could not be evaluated. No validation action was taken.

Nondetected results were reported to the reporting limit.

Executive Summary

Laboratory Performance: The internal standard area of 1,4-difluorobenzene was outside quality control limits in sample C-INFLUENT.

Other Factors Affecting Data Quality: None.

TO: P. Rich FROM: A. Cognetti SDG: 10254930

DATE: March 10, 2014

PAGE 2

The data for these analyses were reviewed with reference to Region III modifications to U.S. EPA National Functional Guidelines for Organic Data Validation (Sept. 1994) and EPA Method TO-15. The text of this report has been formulated to address only those problem areas affecting data quality.

Ann Cognetti

Chemist/Data Validator

// étra Tech

Joseph A. Samchuck Data Validation Manager

Attachments:

Appendix A – Qualified Analytical Results

Appendix B – Results as Reported by the Laboratory

Appendix C - Support Documentation

Appendix A

Qualified Analytical Results

Qualifier Codes:

A = Lab Blank Contamination

B = Field Blank Contamination

C = Calibration Noncompliance (i.e., % RSDs, %Ds, ICVs, CCVs, RRFs, etc.)

C01 = GC/MS Tuning Noncompliance

D = MS/MSD Recovery Noncompliance

E = LCS/LCSD Recovery Noncompliance

F = Lab Duplicate Imprecision

G = Field Duplicate Imprecision

H = Holding Time Exceedance

I = ICP Serial Dilution Noncompliance

J = ICP PDS Recovery Noncompliance; MSA's r < 0.995

K = ICP Interference - includes ICS % R Noncompliance

L = Instrument Calibration Range Exceedance

M = Sample Preservation Noncompliance

N = Internal Standard Noncompliance

N01 = Internal Standard Recovery Noncompliance Dioxins

N02 = Recovery Standard Noncompliance Dioxins

N03 = Clean-up Standard Noncompliance Dioxins

O = Poor Instrument Performance (i.e., base-time drifting)

P = Uncertainty near detection limit (< 2 x IDL for inorganics and <CRQL for organics)

Q = Other problems (can encompass a number of issues; i.e.chromatography,interferences, etc.)

R = Surrogates Recovery Noncompliance

S = Pesticide/PCB Resolution

T = % Breakdown Noncompliance for DDT and Endrin

U = RPD between columns/detectors >40% for positive results determined via GC/HPLC

V = Non-linear calibrations; correlation coefficient r < 0.995

W = EMPC result

X = Signal to noise response drop

Y = Percent solids <30%

Z = Uncertainty at 2 standard deviations is greater than sample activity

Z1 = Tentatively Identified Compound considered presumptively present

Z2 = Tentatively Identified Compound column bleed

Z3 = Tentatively Identified Compound aldol condensate

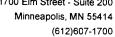
PROJ NO: 03265	NSAMPLE	A-EFFLUENT 20140113	0140113	A-INFLUENT 20140113	20140113	A-MID GAC 20140113	0140113	C-EFFLUENT 20140113	13
	LAB_ID	10254930003		10254930001		10254930002		10254930006	
	SAMP_DATE	1/13/2014		1/13/2014		1/13/2014		1/13/2014	
	QC_TYPE	Z		ZM		Z		M	
	STINU	UG/M3		UG/M3		UG/M3		UG/M3	
	PCT_SOLIDS								
	DUP_OF								
PARAMETER		RESULT	VQL QLCD	RESULT	VOL QLCD	RESULT	VQL QLCD	RESULT VQL	QLCD
1,1,1-TRICHLOROETHANE		1.7 U		570		19.3		1.7 U	
1,1,2-TRICHLOROETHANE		0.86 U	J	0.86	U	0.86	U	0.86 U	
1,1-DICHLOROETHANE		5.9		29.3		22.4		1.3 U	
1,1-DICHLOROETHENE	•	31.3		141		113		1.3 U	
1,2,3-TRIMETHYLBENZENE	=======================================	1.4		0.31 U	C	0.31 U	U	1.7	
1,2,4-TRICHLOROBENZENE	Е	2.4 U	_	2. 4 U	C	2.4 U	U	2.4 U	
1,2,4-TRIMETHYLBENZENE	111	4		1.9		3.7		7.3	
1,2-DICHLOROETHANE		0.64 U		0.64 U	U	0.64	U	0.64 U	
1,3,5-TRIMETHYLBENZENE	111	1.6 U		1.6 U	C	1.7		1.6 U	
BENZENE		1.7		0.51 U	c	0.51 U	U	4.8	
CARBON TETRACHLORIDE	Е	1 U) 		1 U	1	1 U	1 U	
CHLORODIFLUOROMETHANE	NE	12.5		6.5		3.9		4.3	
CHLOROFORM		1.6 U		11.6		1.6		1.6	
CIS-1,2-DICHLOROETHENE	E	6.4		173		162		8.2	
DICHLORODIFLUOROMETHANE	HANE	2.3		2.2		2.2		1.6 U	
ETHYLBENZENE		1.9		1.8		1.9		1.4 U	
M+P-XYLENES		5.8		4.3	_	7.4		3.6	
METHYL TERT-BUTYL ETHER	ĖR	1.1 U		1.1	U	1.1 U	C	1.1 U	
METHYLENE CHLORIDE		1.8	_	3.3		2.3		2.3	
NAPHTHALENE		5.7		4.9		4.7		4.8	
O-XYLENE		2.2		1.7		2.5		1.4 U	
TETRACHLOROETHENE		1.1 U		1.1	U	42.1		1.1 U	
TOLUENE		22.2		9820		64		26.3	
TRANS-1,2-DICHLOROETHENE	ENE	1.3 U		1.3	Ū	1.3	1.3 U	1.3 U	
TRICHLOROETHENE		0.86 U		795		4.9		3.8	_
VINYL CHLORIDE		0.41 U		0.41 U	C	0.41 U	_	0.41 U	

PROJ_NO: 03265 SDG: 102549300 C.NIPLUENT_20140113 C.MID GAC_20140113 SDG: 102549300 SAMP_LER C.NIPLUENT_20140113 C.MID GAC_20140113 FRACTION: OV		C	0.41 U		_	0.47 U		VINYL CHLORIDE
NSAMPLE C-INFLUENT_20140113 C-MID GAC_20140113 LAB_ID 10254930004 10254930005 SAMIP_DATE 1/13/2014 10254930005 SAMIP_DATE 1/13/2014 10254930005 SAMIP_DATE 1/13/2014 10254930005 NM			124	Z	ت	298		TRICHLOROETHENE
NSAMPLE C-INFLUENT_20140113 C-MID GAC_20140113 LAB_ID 10254930004 10254930005 SAMP_DATE 1/13/2014 10254930005 SAMP_DATE 1/13/2014 10254930005 SAMP_DATE 1/13/2014 10254930005 NM		C	1.3		<u></u>	1.5	THENE	TRANS-1,2-DICHLOROE
NSAMPLE C-INFLUENT_20140113 C-MID GAC_20140113 LAB_ID 10254930004 10254930005 SAMP_DATE 1/13/2014 113/2014 OC_TYPE NM 1/13/2014 113/2014 PCT_SOLIDS 2 U 0 0 0.86 U 1.5 U			21.3			49.6		TOLUENE
NSAMPLE C-INFLUENT_20140113 C-MID GAC_20140113 LAB_ID 10254930004 10254930005 SAMP_DATE 1/13/2014 1/13/2014 CTYPE NM		_	1.1			5.6		TETRACHLOROETHENE
NSAMPLE C-INFLUENT_20140113 C-MID GAC_20140113 LAB_ID 10254930004 10254930005 SAMP_DATE 1/13/2014 1/13/2014 QC_TYPE NM			2.4			19.3		O-XYLENE
NSAMPLE C-INFLUENT_20140113 C-MID GAC_20140113 LAB_ID 10254930004 10254930005 SAMP_DATE 1/13/2014 11/3/2014 QC_TYPE NM UG/M3 UG/M3 UG/M3 PCT_SOLIDS 2 UG/M3 DUP_OF RESULT VQL QLCD RESULT VQL 0.86 U 1.5 U 1.3 U 1.3 U 1.3 U 1.4 U 1.5 U 1.			4.8			22.6		NAPHTHALENE
NSAMPLE C-INFLUENT_20140113			2.4			3.4		METHYLENE CHLORIDE
NSAMPLE C-INFLUENT_20140113 C-MID GAC_20140113 LAB_ID 10254930004 10254930005 SAMP_DATE 1/13/2014 11/3/2014 QC_TYPE NM		C	1.1		C		TER	METHYL TERT-BUTYL E
NSAMPLE C-INFLUENT_20140113			5.8			49.1		M+P-XYLENES
NSAMPLE C-INFLUENT_20140113			1.7			10.3		ETHYLBENZENE
NSAMPLE C-INFLUENT_20140113			2.2				THANE	DICHLORODIFLUOROME
NSAMPLE C-INFLUENT 20140113 C-MID GAC 20140113 LAB_ID 10254930004 10254930005 SAMP_DATE 1/13/2014 11/3/2014 QC_TYPE NM			11			5.7	NE	CIS-1,2-DICHLOROETHE
NSAMPLE C-INFLUENT 20140113 C-MID GAC 20140113 LAB_ID 10254930004 10254930005 SAMP_DATE 1/13/2014 11/3/2014 QC_TYPE NM NM I/13/2014 UNITS UG/M3 PCT_SOLIDS 2 U QLCD RESULT VQL QLCD RESULT VQL 3 DUP_OF RESULT 1.5 U 1.3 U 1.		_	1.6		_	1.8		CHLOROFORM
NSAMPLE C-INFLUENT 20140113 C-MID GAC 20140113 LAB ID 10254930004 10254930005 SAMP DATE 1/13/2014 1/13/2014 QC_TYPE NM NM I/13/2014 UNITS UG/M3 PCT_SOLIDS DUP_OF RESULT VQL QLCD RESULT VQL 0.86 U 1.5 U 1.3 U 1			4.2			4.7	HANE	CHLORODIFLUOROMET
NSAMPLE C-INFLUENT_20140113		_			_		윤	CARBON TETRACHLORI
NSAMPLE C-INFLUENT_20140113			8.3			13.7		BENZENE
NSAMPLE C-INFLUENT_20140113 C-MID GAC_20140113 LAB_ID		_	1.6		_	1.8	NE	1,3,5-TRIMETHYLBENZE
NSAMPLE C-INFLUENT_20140113 C-MID GAC_20140113 LAB_ID 10254930004 10254930005 SAMP_DATE 1/13/2014 1/13/2014 QC_TYPE NM		C	0.64		_	0.74		1,2-DICHLOROETHANE
NSAMPLE C-INFLUENT_20140113			2.7			17.8	NE	1,2,4-TRIMETHYLBENZE
NSAMPLE C-INFLUENT_20140113		_	2.4		_		NE	1,2,4-TRICHLOROBENZE
NSAMPLE C-INFLUENT_20140113 C-MID GAC_20140113 LAB_ID 10254930004 10254930005 SAMP_DATE 1/13/2014 1/13/2014 QC_TYPE NM NM UNITS UG/M3 UG/M3 PCT_SOLIDS VQL QLCD VQL DUP_OF RESULT VQL QLCD RESULT VQL NE 0.99 U 0.86 U NE 1.5 U 1.3 U 1.5 U 1.3 U		_	0.31			5.5	NE	1,2,3-TRIMETHYLBENZE
3265 NSAMPLE C-INFLUENT_20140113 C-MID GAC_20140113 330 LAB_ID 10254930004 10254930005 DV SAMP_DATE 1/13/2014 1/13/2014 1/13/2014 QC_TYPE NM NM NM NM UNITS UG/M3 UG/M3 UG/M3 UG/M3 PCT_SOLIDS PCT_SOLIDS VQL QLCD RESULT VQL OROETHANE RESULT VQL QLCD RESULT VQL OROETHANE 0.99 U 0.86 U OETHANE 1.5 U 1.3 U		C	1.3		_	1.5		1,1-DICHLOROETHENE
3265 NSAMPLE C-INFLUENT_20140113 C-MID GAC_20140113 330 LAB_ID 10254930004 10254930005 DV SAMP_DATE 1/13/2014 1/13/2014 QC_TYPE NM NM UNITS UG/M3 UG/M3 PCT_SOLIDS PCT_SOLIDS UG/M3 DUP_OF RESULT VQL QLCD RESULT VQL OROETHANE RESULT QLCD RESULT VQL 0.99 U 0.86 U		_	1.3		C	1.5		1,1-DICHLOROETHANE
3265 NSAMPLE C-INFLUENT_20140113 C-MID GAC_20140113 330 LAB_ID 10254930004 10254930005 DV SAMP_DATE 1/13/2014 1/13/2014 QC_TYPE NM NM UNITS UG/M3 UG/M3 PCT_SOLIDS UG/M3 DUP_OF RESULT VQL QCD RESULT VQL QCD RESULT VQL		_	0.86		C	0.99	E	1,1,2-TRICHLOROETHAN
3265 NSAMPLE C-INFLUENT_20140113 C-MID GAC_20140113 330 LAB_ID 10254930004 10254930005 OV SAMP_DATE 1/13/2014 1/13/2014 1/13/2014 UNITS NM NM NM PCT_SOLIDS PCT_SOLIDS UG/M3 UG/M3 DUP_OF RESULT VQL QLCD RESULT VQL			3		_	2	m	1,1,1-TRICHLOROETHAN
DUP_OF C-INFLUENT_20140113 D3265 LAB_ID C-INFLUENT_20140113 COV SAMP_DATE 1/1254930004 UNITS NM UG/M3 UG/M3	QLCD			QLCD	δ			PARAMETER
D3265 NSAMPLE C-INFLUENT_20140113 930 LAB_ID 10254930004 OV SAMP_DATE 1/13/2014 QC_TYPE NM UNITS UG/M3 PCT_SOLIDS							DUP_OF	
D3265 NSAMPLE C-INFLUENT_20140113 930 LAB_ID 10254930004 OV SAMP_DATE 1/13/2014 QC_TYPE NM UNITS UG/M3							PCT_SOLIDS	
930 LAB_ID 10254930004 OV SAMP_DATE 1/13/2014 QC_TYPE NM			UG/M3			UG/M3	STINU	
NSAMPLE C-INFLUENT_20140113 LAB_ID 10254930004 SAMP_DATE 1/13/2014			Z			NM	QC_TYPE	MEDIA: AIR
NSAMPLE C-INFLUENT_20140113 LAB_ID 10254930004			1/13/2014			1/13/2014	SAMP_DATE	FRACTION: OV
NSAMPLE C-INFLUENT_20140113			10254930005			10254930004	LAB_ID	SDG: 10254930
)140113	C-MID GAC_20	13	201401	C-INFLUENT_2	NSAMPLE	PROJ_NO: 03265

Appendix B

Results as Reported by the Laboratory

Project:

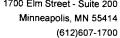

117-0507599.20 SSD Oem

Pace Project No.:

Date: 01/31/2014 05:37 PM

10254930

Sample: A-EFFLUENT	Lab ID: 10254930003	Collected: 01/13/14	11:47	Received: 01/15/14 10:15	Matrix: Air	
Parameters	Results Units	Report Limit	DF	Prepared Analyzed	CAS No.	Qual
TO15 MSV AIR	Analytical Method: TO-15					
Benzene	1.7 ug/m3	0.51	1.57	01/21/14 23:	24 71-43-2	
Carbon tetrachloride	ND ug/m3	1.0	1.57	01/21/14 23:	24 56-23-5	
Chlorodifluoromethane	12.5 ug/m3	0.31	1.57	01/21/14 23:	24 75-45-6	
Chloroform	ND ug/m3	1.6	1.57	01/21/14 23:	24 67-66-3	
Dichlorodifluoromethane	2.3 ug/m3	1.6	1.57	01/21/14 23:	24 75-71-8	
1,1-Dichloroethane	5.9 ug/m3	1.3	1.57	01/21/14 23:	24 75-34-3	
1,2-Dichloroethane	ND ug/m3	0.64	1.57	01/21/14 23:	24 107-06-2	
1,1-Dichloroethene	31.3 ug/m3	1.3	1.57	01/21/14 23:	24 75-35-4	
cis-1,2-Dichloroethene	6.4 ug/m3	1.3	1.57	01/21/14 23:	24 156-59-2	
trans-1,2-Dichloroethene	ND ug/m3	1.3	1.57	01/21/14 23:	24 156-60-5	
Ethylbenzene	1.9 ug/m3	1.4	1.57	01/21/14 23:	24 100-41-4	
Methylene Chloride	1.8 ug/m3	1.1	1.57	01/21/14 23:	24 75-09-2	
Methyl-tert-butyl ether	ND ug/m3	1.1	1.57	01/21/14 23:	24 1634-04-4	
Naphthalene	5.7 ug/m3	1.7	1.57	01/21/14 23:	24 91-20-3	
Tetrachloroethene	ND ug/m3	1.1	1.57	01/21/14 23:	24 127-18-4	
Toluene	22.2 ug/m3	1.2	1.57	01/21/14 23:	24 108-88-3	
1,2,4-Trichlorobenzene	ND ug/m3	2.4	1.57	01/21/14 23:	24 120-82-1	
1,1,1-Trichloroethane	ND ug/m3	1.7	1.57	01/21/14 23:	24 71-55-6	
1,1,2-Trichloroethane	ND ug/m3	0.86	1.57	01/21/14 23:	24 79-00-5	
Trichloroethene	ND ug/m3	0.86	1.57	01/21/14 23:	24 79-01-6	
1,2,3-Trimethylbenzene	1.4 ug/m3	0.31	1.57	01/21/14 23:	24 526-73-8	
1,2,4-Trimethylbenzene	4.0 ug/m3	1.6	1.57	01/21/14 23:	24 95-63-6	
1,3,5-Trimethylbenzene	ND ug/m3	1.6	1.57	01/21/14 23:	24 108-67-8	
Vinyl chloride	ND ug/m3	0.41	1.57	01/21/14 23:	24 75-01-4	
m&p-Xylene	5.8 ug/m3	2.8	1.57	01/21/14 23:	24 179601-23-1	
o-Xylene	2.2 ug/m3	1.4	1.57	01/21/14 23:	24 95-47-6	


Project:

117-0507599.20 SSD Oem

Pace Project No.: 10254930

Date: 01/31/2014 05:37 PM

Sample: A-INFLUENT	Lab ID: 10254930001	Collected: 01/13/1	14 11:49	Received: 01/15/14 10:1	5 Matrix: Air	
Parameters	Results Units	Report Limit	DF	Prepared Analyz	ed CAS No.	Qual
TO15 MSV AIR	Analytical Method: TO-15					
Benzene	ND ug/m3	0.51	1.57	01/21/14 1	9:48 71-43-2	
Carbon tetrachloride	ND ug/m3	1.0	1.57	01/21/14 1	9:48 56-23-5	
Chlorodifluoromethane	6.5 ug/m3	0.31	1.57	01/21/14 1	9:48 75-45-6	
Chloroform	11.6 ug/m3	1.6	1.57	01/21/14 1	9:48 67-66-3	
Dichlorodifluoromethane	2.2 ug/m3	1.6	1.57	01/21/14 1	9:48 75-71-8	
1,1-Dichloroethane	29.3 ug/m3	1.3	1.57	01/21/14 1	9:48 75-34-3	
1,2-Dichloroethane	ND ug/m3	0.64	1.57	01/21/14 1	9:48 107-06-2	
1,1-Dichloroethene	141 ug/m3	1.3	1.57	01/21/14 1	9:48 75-35-4	
cis-1,2-Dichloroethene	173 ug/m3	1.3	1.57	01/21/14 1	9:48 156-59-2	
rans-1,2-Dichloroethene	ND ug/m3	1.3	1.57	01/21/14 1	9:48 156-60-5	
Ethylbenzene	1.8 ug/m3	1.4	1.57	01/21/14 1	9:48 100-41-4	
Methylene Chloride	3.3 ug/m3	1.1	1.57	01/21/14 1	9:48 75-09-2	
Methyl-tert-butyl ether	ND ug/m3	1.1	1.57	01/21/14 1	9:48 1634-04-4	
Naphthalene	4.9 ug/m3	1.7	1.57	01/21/14 1	9:48 91-20-3	
Tetrachloroethene	ND ug/m3	1,1	1.57	01/21/14 1	9:48 127-18-4	
Toluene	9820 ug/m3	96.7	125.6	01/24/14 2	1:10 108-88-3	A 3
1,2,4-Trichlorobenzene	ND ug/m3	2.4	1.57	01/21/14 1	9:48 120-82-1	
1,1,1-Trichloroethane	570 ug/m3	139	125.6	01/24/14 2	1:10 71-55-6	A 3
1,1,2-Trichloroethane	ND ug/m3	0.86	1.57	01/21/14 1	9:48 79-00-5	
Trichloroethene	795 ug/m3	69.1	125.6	01/24/14 2	1:10 79-01-6	A3
1,2,3-Trimethylbenzene	ND ug/m3	0.31	1.57	01/21/14 1	9:48 526-73-8	
1,2,4-Trimethylbenzene	1.9 ug/m3	1.6	1.57	01/21/14 1	9:48 95-63-6	
1,3,5-Trimethylbenzene	ND ug/m3	1.6	1.57	01/21/14 1	9:48 108-67-8	
Vinyl chloride	ND ug/m3	0.41	1.57	01/21/14 1	9:48 75-01-4	
m&p-Xylene	4.3 ug/m3	2.8	1.57	01/21/14 1	9:48 179601-23-1	
o-Xylene	1.7 ug/m3	1.4	1.57	01/21/14 1	9:48 95-47-6	

Project:

117-0507599.20 SSD Oem

Pace Project No.:

Date: 01/31/2014 05:37 PM

10254930

Sample: A-MID GAC	Lab ID: 10254930002	Collected: 01/13/14	11:44	Received: 01/15/14 10:1	Matrix: Air	
Parameters	Results Units	Report Limit	DF	Prepared Analyze	d CAS No.	Qual
TO15 MSV AIR	Analytical Method: TO-15					
Benzene	ND ug/m3	0.51	1.57	01/21/14 2	2:54 71-43-2	
Carbon tetrachloride	ND ug/m3	1.0	1.57	01/21/14 2	2:54 56-23-5	
Chlorodifluoromethane	3.9 ug/m3	0.31	1.57	01/21/14 2	2:54 75-45-6	
Chloroform	1.6 ug/m3	1.6	1.57	01/21/14 2	2:54 67-66-3	
Dichlorodifluoromethane	2.2 ug/m3	1.6	1.57	01/21/14 2	2:54 75-71-8	
1,1-Dichloroethane	22.4 ug/m3	1.3	1.57	01/21/14 2	2:54 75-34-3	
1,2-Dichloroethane	ND ug/m3	0.64	1.57	01/21/14 2	2:54 107-06-2	
1,1-Dichloroethene	113 ug/m3	1.3	1.57	01/21/14 2	2:54 75-35-4	
cis-1,2-Dichloroethene	162 ug/m3	1.3	1.57	01/21/14 2	2:54 156-59-2	
trans-1,2-Dichloroethene	ND ug/m3	1.3	1.57	01/21/14 2	2:54 156-60-5	
Ethylbenzene	1.9 ug/m3	1.4	1.57	01/21/14 2	2:54 100-41-4	
Methylene Chloride	2.3 ug/m3	1.1	1.57	01/21/14 2	2:54 75-09-2	
Methyl-tert-butyl ether	ND ug/m3	1.1	1.57	01/21/14 2	2:54 1634-04-4	
Naphthalene	4.7 ug/m3	1.7	1.57	01/21/14 2	2:54 91-20-3	
Tetrachloroethene	42.1 ug/m3	1.1	1.57	01/21/14 2	2:54 127-18-4	
Toluene	64.0 ug/m3	1.2	1.57	01/21/14 2	2:54 108-88-3	
1,2,4-Trichlorobenzene	ND ug/m3	2.4	1.57	01/21/14 2	2:54 120-82-1	
1,1,1-Trichloroethane	19.3 ug/m3	1.7	1.57	01/21/14 2	2:54 71-55-6	
1,1,2-Trichloroethane	ND ug/m3	0.86	1.57	01/21/14 2	2:54 79-00-5	
Trichloroethene	4.9 ug/m3	0.86	1.57	01/21/14 2	2:54 79-01-6	
1,2,3-Trimethylbenzene	ND ug/m3	0.31	1.57	01/21/14 2	2:54 526-73-8	
1,2,4-Trimethylbenzene	3.7 ug/m3	1.6	1.57	01/21/14 2	2:54 95-63-6	
1,3,5-Trimethylbenzene	1.7 ug/m3	1.6	1.57	01/21/14 2	2:54 108-67-8	
Vinyl chloride	ND ug/m3	0.41	1.57	01/21/14 2	2:54 75-01-4	
m&p-Xylene	7.4 ug/m3	2.8	1.57	01/21/14 2	2:54 179601-23-1	
o-Xylene	2.5 ug/m3	1.4	1.57	01/21/14 2	2:54 95-47-6	

(612)607-1700

ANALYTICAL RESULTS

Project:

117-0507599.20 SSD Oem

Pace Project No.:

Date: 01/31/2014 05:37 PM

10254930

Sample: C-EFFLUENT	Lab ID: 10254930006	Collected: 01/13/14	4 13:29	Received: 01/15/14 10:15	Matrix: Air
Parameters	Results Units	Report Limit	DF	Prepared Analyzed	CAS No. Qu
TO15 MSV AIR	Analytical Method: TO-15				
Benzene	4.8 ug/m3	0.51	1.57	01/21/14 20:50	71-43-2
Carbon tetrachloride	ND ug/m3	1.0	1.57	01/21/14 20:50	56-23-5
Chlorodifluoromethane	4.3 ug/m3	0.31	1.57	01/21/14 20:50	75-45-6
Chloroform	1.6 ug/m3	1.6	1.57	01/21/14 20:50	67-66-3
Dichlorodifluoromethane	ND ug/m3	1.6	1.57	01/21/14 20:50	75-71-8
1,1-Dichloroethane	ND ug/m3	1.3	1.57	01/21/14 20:50	75-34-3
1,2-Dichloroethane	ND ug/m3	0.64	1.57	01/21/14 20:50	107-06-2
1,1-Dichloroethene	ND ug/m3	1.3	1.57	01/21/14 20:50	75-35-4
cis-1,2-Dichloroethene	8.2 ug/m3	1.3	1.57	01/21/14 20:50	156-59-2
trans-1,2-Dichloroethene	ND ug/m3	1.3	1.57	01/21/14 20:50	156-60-5
Ethylbenzene	ND ug/m3	1.4	1.57	01/21/14 20:50	100-41-4
Methylene Chloride	2.3 ug/m3	1.1	1.57	01/21/14 20:50	75-09-2
Methyl-tert-butyl ether	ND ug/m3	1.1	1.57	01/21/14 20:50	1634-04-4
Naphthalene	4.8 ug/m3	1.7	1.57	01/21/14 20:50	91-20-3
Tetrachloroethene	ND ug/m3	1.1	1.57	01/21/14 20:50	127-18-4
Toluene	26.3 ug/m3	1.2	1.57	01/21/14 20:50	108-88-3
1,2,4-Trichlorobenzene	ND ug/m3	2.4	1.57	01/21/14 20:50	120-82-1
1,1,1-Trichloroethane	ND ug/m3	1.7	1.57	01/21/14 20:50	71-55-6
1,1,2-Trichloroethane	ND ug/m3	0.86	1.57	01/21/14 20:50	79-00-5
Trichloroethene	3.8 ug/m3	0.86	1.57	01/21/14 20:50	79-01-6
1,2,3-Trimethylbenzene	1.7 ug/m3	0.31	1.57	01/21/14 20:50	526-73-8
1,2,4-Trimethylbenzene	7.3 ug/m3	1.6	1.57	01/21/14 20:50	95-63-6
1,3,5-Trimethylbenzene	ND ug/m3	1.6	1.57	01/21/14 20:50	108-67-8
Vinyl chloride	ND ug/m3	0.41	1.57	01/21/14 20:50	75-01-4
m&p-Xylene	3.6 ug/m3	2.8	1.57	01/21/14 20:50	179601-23-1
o-Xylene	ND ug/m3	1.4	1.57	01/21/14 20:50	95-47-6

Minneapolis, MN 55414 (612)607-1700

ANALYTICAL RESULTS

Project:

117-0507599.20 SSD Oem

Pace Project No.:

Date: 01/31/2014 05:37 PM

10254930

Sample: C-INFLUENT	Lab ID: 10254930004	Collected: 01/13/14 13:2	4 Received: 01/15/14 10:15 Ma	atrix: Air
Parameters	Results Units	Report Limit DF	Prepared Analyzed	CAS No. Qual
TO15 MSV AIR	Analytical Method: TO-15			
Benzene	13.7 ug/m3	0.58 1.8	01/21/14 22:23	71-43-2
Carbon tetrachloride	ND ug/m3	1.2 1.8	01/21/14 22:23	56-23-5
Chlorodifluoromethane	4.7 ug/m3	0.36 1.8	01/21/14 22:23	75-45-6
Chloroform	ND ug/m3	1.8 1.8	01/21/14 22:23	67 - 66-3
Dichlorodifluoromethane	ND ug/m3	1.8 1.8	01/21/14 22:23	75-71-8
1,1-Dichloroethane	ND ug/m3	1.5 1.8	01/21/14 22:23	75-34-3
1,2-Dichloroethane	ND ug/m3	0.74 1.8	01/21/14 22:23	107-06-2
1,1-Dichloroethene	ND ug/m3	1.5 1.8	01/21/14 22:23	75-35-4
cis-1,2-Dichloroethene	5.7 ug/m3	1.5 1.8	01/21/14 22:23	156-59-2
rans-1,2-Dichloroethene	ND ug/m3	1.5 1.8	01/21/14 22:23	156-60-5
Ethylbenzene	10.3 ug/m3	1.6 1.8	01/21/14 22:23	100-41-4
Methylene Chloride	3.4 ug/m3	1.3 1.8	01/21/14 22:23	75-09-2
Methyl-tert-butyl ether	ND ug/m3	1.3 1.8	01/21/14 22:23	1634-04-4
Naphthalene	22.6 ug/m3	1.9 1.8	01/21/14 22:23	91-20-3
Tetrachloroethene	5.6 ug/m3	1.2 1.8	01/21/14 22:23	127-18-4
Toluene	49.6 ug/m3	1.4 1.8	01/21/14 22:23	108-88-3
1,2,4-Trichlorobenzene	ND ug/m3	2.7 1.8	01/21/14 22:23	120-82-1
1,1,1-Trichloroethane	ND ug/m3	2.0 1.8	01/21/14 22:23	71-55-6
1,1,2-Trichloroethane	ND ug/m3	0.99 1.8	01/21/14 22:23	79-00-5
Trichloroethene	298 ug/m3	4.1 7.4	01/24/14 20:44	79-01-6 IS
1,2,3-Trimethylbenzene	5.5 ug/m3	0.36 1.8	01/21/14 22:23	526-73-8
1,2,4-Trimethylbenzene	17.8 ug/m3	1.8 1.8	01/21/14 22:23	95-63-6
1,3,5-Trimethylbenzene	ND ug/m3	1.8 1.8	01/21/14 22:23	108-67-8
√inyl chloride	ND ug/m3	0.47 1.8	01/21/14 22:23	75-01-4
n&p-Xylene	49.1 ug/m3	3.2 1.8	01/21/14 22:23	179601-23-1
o-Xylene	19.3 ug/m3	1.6 1.8	01/21/14 22:23	95-47-6

Project:

117-0507599.20 SSD Oem

Pace Project No.:

10254930

Sample: C-MID GAC	Lab ID: 10254930005	Collected: 01/13/14	13:26	Received: 01/15/14 10:1	Matrix: Air	
Parameters	Results Units	Report Limit	DF	Prepared Analyze	d CAS No.	Qual
TO15 MSV AIR	Analytical Method: TO-15					
Benzene	8.3 ug/m3	0.51	1.57	01/21/14 2	1:52 71-43-2	
Carbon tetrachloride	ND ug/m3	1.0	1.57	01/21/14 2	1:52 56-23-5	
Chlorodifluoromethane	4.2 ug/m3	0.31	1.57	01/21/14 2	1:52 75-45-6	
Chloroform	ND ug/m3	1.6	1.57	01/21/14 2	1:52 67-66-3	
Dichlorodifluoromethane	2.2 ug/m3	1.6	1.57	01/21/14 2	1:52 75-71-8	
1,1-Dichloroethane	ND ug/m3	1.3	1.57	01/21/14 2	1:52 75-34-3	
1,2-Dichloroethane	ND ug/m3	0.64	1.57	01/21/14 2	1:52 107-06-2	
1,1-Dichloroethene	ND ug/m3	1.3	1.57	01/21/14 2	1:52 75-35-4	
cis-1,2-Dichloroethene	11.0 ug/m3	1.3	1.57	01/21/14 2	1:52 156-59-2	
trans-1,2-Dichloroethene	ND ug/m3	1.3	1.57	01/21/14 2	1:52 156-60-5	
Ethylbenzene	1.7 ug/m3	1.4	1.57	01/21/14 2	1:52 100-41-4	
Methylene Chloride	2.4 ug/m3	1.1	1.57	01/21/14 2	1:52 75-09-2	
Methyl-tert-butyl ether	ND ug/m3	1.1	1.57	01/21/14 2	1:52 1634-04-4	
Naphthalene	4.8 ug/m3	1.7	1.57	01/21/14 2	1:52 91-20-3	
Tetrachloroethene	ND ug/m3	1.1	1.57	01/21/14 2	1:52 127-18-4	
Toluene	21.3 ug/m3	1.2	1.57	01/21/14 2	1:52 108-88-3	
1,2,4-Trichlorobenzene	ND ug/m3	2.4	1.57	01/21/14 2	1:52 120-82-1	
1,1,1-Trichloroethane	3.0 ug/m3	1.7	1.57	01/21/14 2	1:52 71-55-6	
1,1,2-Trichloroethane	ND ug/m3	0.86	1.57	01/21/14 2	1:52 79-00-5	
Trichloroethene	124 ug/m3	0.86	1.57	01/21/14 2	1:52 79-01-6	
1,2,3-Trimethylbenzene	ND ug/m3	0.31	1.57	01/21/14 2	1:52 526-73-8	
1,2,4-Trimethylbenzene	2.7 ug/m3	1.6	1.57	01/21/14 2	1:52 95-63-6	
1,3,5-Trimethylbenzene	ND ug/m3	1.6	1.57	01/21/14 2	1:52 108-67-8	
Vinyl chloride	ND ug/m3	0.41	1.57	01/21/14 2	1:52 75-01-4	
m&p-Xylene	5.8 ug/m3	2.8	1.57	01/21/14 2	1:52 179601-23-1	
o-Xylene	2.4 ug/m3	1.4	1.57	01/21/14 2	1:52 95-47-6	

Appendix C

Support Documentation

PROJECT NARRATIVE

Project:

117-0507599.20 SSD Oem

Pace Project No.:

10254930

Method:

TO-15

Description: TO15 MSV AIR

Client:

Tetra Tech GEO - Maryland

Date:

January 31, 2014

General Information:

6 samples were analyzed for TO-15. All samples were received in acceptable condition with any exceptions noted below.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Internal Standards:

All internal standards were within QC limits with any exceptions noted below.

QC Batch: AIR/19292

- IS: The internal standard recovery associated with this result exceeds the lower control limit. The reported result should be considered an estimated value.
 - C-INFLUENT (Lab ID: 10254930004)
 - Trichloroethene

Surrogates:

All surrogates were within QC limits with any exceptions noted below.

Method Blank

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Additional Comments:

Analyte Comments:

QC Batch: AIR/19292

A3: The sample was analyzed by serial dilution.

- · A-INFLUENT (Lab ID: 10254930001)
 - 1,1,1-Trichloroethane
 - Toluene

PROJECT NARRATIVE

Project:

117-0507599.20 SSD Oem

Pace Project No.:

10254930

Method: TO-15

Description: TO15 MSV AIR

Client:

Tetra Tech GEO - Maryland

Date:

January 31, 2014

Analyte Comments:

QC Batch: AIR/19292

A3: The sample was analyzed by serial dilution.

• A-INFLUENT (Lab ID: 10254930001)

Trichloroethene

This data package has been reviewed for quality and completeness and is approved for release.

REPORT OF LABORATORY ANALYSIS

AIR: CHAIN-OF-CUSTODY / Analytical Request Document

The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.

Pace Analytical" www.pacelabs.com

N/A N/A Samples Intact Y/N 0284830 SAMPLE CONDITIONS Clean Air Act Pace Lab ID 500 700 005 000 00g Reporting Units
ug/m³ X mg/m³
PPBV PPMV ر ه Š Sealed Cooler N/A N/A Custody X Voluntary Clean Up Dry Clean RCRA Page: 90| Other ЙW N/A N/A N/A Received on Emissions 18336 O° ni qmeT Sampling by State DD P1:01 $\times \times \times \times$ Program 6.15 TIME Superfund 1.1514 Report Level DATE ocation of UST Method: ACCEPTED BY / AFFILIATION Control Number 401 373 378 Number Summa <u>ت</u> Can 641 Attention Inang Parinding SAMPLER NAME AND SIGNATURE (Final Field - psig) 1300 TIME Canister Pressure 보 (Initial Field - psig) Canister Pressure Pace Project Manager/Sales Rep. Malle IIVIN DATE TIME A Pace Quote Reference: COMPOSITE Invoice Information: COLLECTED DATE RELINQUISHED BY / AFFILIATION Company Name Pace Profile #: Section C Address: TIME PHI 1113/11 1149 Address: 51 Franklin St. Still Copy Town, Monico Bring Dolls, MD Olle Down. Monico @ Fetra Etha Email Feter. Rich @ Tetra Tech. Com DATE 8 Project Name Och Report Peter Rich Section B Required Project Information: MEDIA CODE Plo - 990-4601 410-990 - 474 9 Requested Due Date/TAT: 'Section D Required Client Information Sample IDs MUST BE UNIQUE **AIR SAMPLE ID** EFFLUENT -HNFLUENT D GAC CompanyTetraTech Required Client Information: Comments 10 9 # MBTI

Document Name: Air Sample Condition Upon Receipt

Document No.: F-MN-A-106-rev.07 Document Revised: 28Jan2013 Page 1 of 1

Issuing Authority: Pace Minnesota Quality Office

930

ite: Proj. Name:
_ 80512447 / _ 72337080
ts: <u>Clf 1.15.19</u>
s:
· · · · · · · · · · · · · · · · · · ·

tand Alone G
Can ID
· · · · · · · · · · · · · · · · · · ·
ired? Yes No
DEHNR Certification Office (i.e. c
_

(612)607-1700

SAMPLE SUMMARY

Project:

117-0507599.20 SSD Oem

Pace Project No.:

10254930

Lab ID	Sample ID	Matrix	Date Collected	Date Received
10254930001	A-INFLUENT	Air	01/13/14 11:49	01/15/14 10:15
10254930002	A-MID GAC	Air	01/13/14 11:44	01/15/14 10:15
10254930003	A-EFFLUENT	Air	01/13/14 11:47	01/15/14 10:15
10254930004	C-INFLUENT	Air	01/13/14 13:24	01/15/14 10:15
10254930005	C-MID GAC	Air	01/13/14 13:26	01/15/14 10:15
10254930006	C-EFFLUENT	Air	01/13/14 13:29	01/15/14 10:15

REPORT OF LABORATORY ANALYSIS

							*	77.00 mm (mm (mm (mm (mm (mm (mm (mm (mm (m
							SORT	SDG
UG/M3	UG/M3	UG/M3	UG/M3	UG/M3	UG/M3	UG/M3	UNITS	SDG 10254930
A-INFLUENT	A-INFLUENT	A-MID GAC	C-EFFLUENT	C-INFLUENT	C-INFLUENT	C-MID GAC	NSAMPLE	30
10254930001	10254930001	10254930002	10254930006	10254930004	10254930004	10254930005	LAB_ID	
Z	Z	Z Z	Z S	Z Z	Z	Z	QC_TYPE	
01/13/2014	01/13/2014	01/13/2014	01/13/2014	01/13/2014	01/13/2014	01/13/2014	SAMP_DATE	
01/21/2014	01/24/2014	01/21/2014	01/21/2014	01/21/2014	01/24/2014	01/21/2014	EXTR_DATE	
01/21/2014	01/24/2014	01/21/2014	01/21/2014	01/21/2014	01/24/2014	01/21/2014	ANAL_DATE	
œ	1	æ	8	8	11	œ	SMP_EXTR	
0	0	0	0	0	0	0	EXTR_ANL	
œ	11	æ	œ	œ	11	&	SMP_ANL	
	A-INFLUENT 10254930001 NM 01/13/2014 01/21/2014	A-INFLUENT 10254930001 NM 01/13/2014 01/24/2014 A-INFLUENT 10254930001 NM 01/13/2014 01/21/2014	A-MID GAC 10254930002 NM 01/13/2014 01/21/2014 A-INFLUENT 10254930001 NM 01/13/2014 01/24/2014 A-INFLUENT 10254930001 NM 01/13/2014 01/21/2014	C-EFFLUENT 10254930006 NM 01/13/2014 01/21/2014 A-MID GAC 10254930002 NM 01/13/2014 01/21/2014 A-INFLUENT 10254930001 NM 01/13/2014 01/24/2014 A-INFLUENT 10254930001 NM 01/13/2014 01/21/2014	C-INFLUENT 10254930004 NM 01/13/2014 01/21/2014 01/21/2014 01/21/2014 C-EFFLUENT 10254930006 NM 01/13/2014 01/21/2014 01/21/2014 01/21/2014 A-MID GAC 10254930002 NM 01/13/2014 01/21/2014 01/21/2014 01/21/2014 A-INFLUENT 10254930001 NM 01/13/2014 01/21/2014 01/21/2014 01/21/2014 A-INFLUENT 10254930001 NM 01/13/2014 01/21/2014 01/21/2014 01/21/2014	C-INFLUENT 10254930004 NM 01/13/2014 01/24/2014 01/24/2014 01/24/2014 01/24/2014 C-INFLUENT 10254930006 NM 01/13/2014 01/21/2014 01/21/2014 01/21/2014 01/21/2014 A-MID GAC 10254930002 NM 01/13/2014 01/21/2014 01/21/2014 01/21/2014 01/21/2014 A-INFLUENT 10254930001 NM 01/13/2014 01/21/2014 01/21/2014 01/21/2014 1 A-INFLUENT 10254930001 NM 01/13/2014 01/21/2014 01/21/2014 01/21/2014 1	C-MID GAC 10254930005 NM 01/13/2014 01/21/2014 01/21/2014 8 0 C-INFLUENT 10254930004 NM 01/13/2014 01/24/2014 01/24/2014 11 0 C-INFLUENT 10254930004 NM 01/13/2014 01/21/2014 01/21/2014 8 0 A-MID GAC 10254930002 NM 01/13/2014 01/21/2014 01/21/2014 8 0 A-INFLUENT 10254930001 NM 01/13/2014 01/21/2014 01/21/2014 8 0 A-INFLUENT 10254930001 NM 01/13/2014 01/21/2014 01/21/2014 8 0 A-INFLUENT 10254930001 NM 01/13/2014 01/21/2014 01/21/2014 11 0 A-INFLUENT 10254930001 NM 01/13/2014 01/21/2014 01/21/2014 8 0	UNITS NSAMPLE LAB_ID QC_TYPE SAMP_DATE EXTR_DATE ANAL_DATE SMP_EXTR_ EXTR_ANL UG/M3 C-MIDGAC 10254930005 N/M 01/13/2014 01/21/2014 01/21/2014 8 0 UG/M3 C-INFLUENT 10254930004 N/M 01/13/2014 01/21/2014 01/21/2014 11 0 UG/M3 C-INFLUENT 10254930004 N/M 01/13/2014 01/21/2014 01/21/2014 8 0 UG/M3 C-EFFLUENT 10254930006 N/M 01/13/2014 01/21/2014 01/21/2014 8 0 UG/M3 A-MIDGAC 10254930002 N/M 01/13/2014 01/21/2014 01/21/2014 8 0 UG/M3 A-INFLUENT 10254930001 N/M 01/13/2014 01/21/2014 01/21/2014 8 0 UG/M3 A-INFLUENT 10254930001 N/M 01/13/2014 01/21/2014 01/21/2014 8 0 UG/M3 A-INFLUENT 10254930001 N/M <t< td=""></t<>

5A - FORM V VOA VOLATILE ORGANIC INSTRUMENT PERFORMANCE CHECK BROMOFLUOROBENZENE (BFB)

EPA SAMPLE NO.	
BFB	

Lab Name: Pace Analytical

Contract:

Lab Code:

PASI

Case No.:

SAS No.:

SDG No.: 10254930

Lab File ID: 02102BFB.D

BFB Injection Date: 01/21/2014

BFB Injection Time: 08:42

Instrument ID: 10AIR7 GC Column: J&W DB-5

ID: 0.32 (mm)

		% RELATIVE	
m/e	ION ABUNDANCE CRITERIA	ABUNDANCE	
95	Base Peak, 100% relative abundance	100.00	
50	8.00 - 40.00% of mass 95	17.21	
75	30.00 - 66.00% of mass 95	59.57	
96	5.00 - 9.00% of mass 95	7.00	-
173	Less than 2.00% of mass 174	0.96	(0.98)
174	50.00 - 120.00% of mass 95	98.05	
175	4.00 - 9.00% of mass 174	7.12	(7.26)
176	93.00 - 101.00% of mass 174	98.41	(100.36)
177	5.00 - 9.00% of mass 176	6.35	(6.46)

1 - Value is %mass 174

2 - Value is %mass 176

	EPA SAMPLE NO.	LAB SAMPLE ID	LAB FILE ID	DATE ANALYZED	TIME ANALYZED
1	CAL1	CAL1	02103.D	01/21/2014	09:08
2	CAL2	CAL2	02104.D	01/21/2014	09:35
3	CAL3	CAL3	02105.D	01/21/2014	10:02
4	CAL4	CAL4	02106.D	01/21/2014	10:30
5	CAL5	CAL5	02107.D	01/21/2014	10:59
6	CAL6	CAL6	02108.D	01/21/2014	11:30
7	CAL7	CAL7	02109.D	01/21/2014	12:04
8	ICV (LCS)	ICV	02110.D	01/21/2014	12:32
9	ICV (LCS)	ICV	02111.D	01/21/2014	13:00
10	LCS for HBN 284998 [AIR/	1615890	02112LL.D	01/21/2014	13:29
11	LCS (LCS)	LCS	02112.D	01/21/2014	13:29
12	BLANK for HBN 284998 [AI	1615889	02115LL.D	01/21/2014	15:04
13	BLANK (BLK)	BLANK	02115B.D	01/21/2014	15:04
14	A-INFLUENT	10254930001	02124.D	01/21/2014	19:48
15	C-EFFLUENT	10254930006	02126.D	01/21/2014	20:50
16	C-EFFLUENT(1609250DU	1615904-DUP	02127.D	01/21/2014	21:21
17	C-MID GAC	10254930005	02128.D	01/21/2014	21:52
18	C-INFLUENT	10254930004	02129.D	01/21/2014	22:23
19	A-MID GAC	10254930002	02130.D	01/21/2014	22:54
20	A-EFFLUENT	10254930003	02131.D	01/21/2014	23:24

Pace Analytical Services, Inc.

INITIAL CALIBRATION DATA

Start Cal Date : 21-JAN-2014 09:08
End Cal Date : 21-JAN-2014 12:04
Quant Method : ISTD : 4.14
Integrator : HP RTE
Method file : \\192.168.10.12\chem\10air7.i\012114.b\T015_021-14.m
Last Edit : 21-Jan-2014 15:48 drandall

Calibration File Names:
Level 1: \\192.168.10.12\chem\10air7.i\012114.b\02103.D
Level 2: \\192.168.10.12\chem\10air7.i\012114.b\02104.D
Level 3: \\192.168.10.12\chem\10air7.i\012114.b\02105.D
Level 4: \\192.168.10.12\chem\10air7.i\012114.b\02106.D
Level 5: \\192.168.10.12\chem\10air7.i\012114.b\02107.D
Level 6: \\192.168.10.12\chem\10air7.i\012114.b\02108.D
Level 7: \\192.168.10.12\chem\10air7.i\012114.b\02108.D

Compound	0.1000000 Level 1	Level 2	0.5000000 Level 3	Level 4	10.0000 Level 5	-	 Curve	Coefficients ml	m2	%RSD or R^2
	30.0000 Level 7		i I	!			 			
1 Chlorodifluoromethane	2.31614 3.01550		2.45505		2.75602	2.84642	AVRG	 		9.9418
2 Propylene	10.47855- 10.02447:	10.22610	11.14823	10.47451	10.92324		AVRG	1 10.47174		1 3.8206
3 Dichlorediffuoremethane	C.66806; C.99989	C.74712	0.73951	0.74235;			AVRG	0.80030		1 14.1295
4 Dichlorotetralluoroethane	0.93089 1.19167		0.98100	1.00905		1.10697		 1.03766		! 8.4200
			 i					 - <i></i> -		- -

Pace Analytical Services, Inc.

INITIAL CALIBRATION DATA

Start Cal Date : 21-JAN-2014 09:08
End Cal Date : 21-JAN-2014 12:04
Quant Method : ISTD
Target Version : 4.14
Integrator : \192.168.10.12\chem\10air7.i\012114.b\T015_021-14.m
Last Edit : 21-Jan-2014 15:48 drandall

	0.10000000	0.2000000	0.5000000	1.0000	10.0000	20.0000			Coefficients		%RSD
Compound	Level 1	Level 2	Level 3	Level 4	Level 5	Level 6	Curve	ь	m2	m2	or R^2
	30.0000 Level 7	 	 	 	 						
5 Chioromethane	4.27573 4.59599	4.429791	4.25272	4.52033	4 - 47677 	4.47368	AVRG				2.8390
6 Vinyl chloride	3.94533! 4.49341	3.78708	3.96338	4.09628	4.09214	4.16986			4.07821		5.4546
7 1,3-Butadiene	6.14132 7.77861	7.35024		7.20152	7.27847	7,59637			7.26715		7.3558
8 Bromomethane	2.40992! 3.14412	2.94576		2.91816	3.04647	3,12435			2.93715		 8.4478
9 Chloroethane	7.48791 8.50725;	6.86327		8.02124	8.26360	8.43698			7,89798 7,89798		7.4662
10 Ethanol	8.73799; 12.60991;	10.63624	11.95820	11.67614	11.92952	12,69108	l AVRG		1 11.46129		1 12.0353
11 Vinyl Bromide	2.58133. 2.92919:	2.8863 4 ·	2.96502	3.03516	2.84874	2.83059			2.86805		5.0403
·			 		 		- 		-!		

Pace Analytical Services, Inc.

INITIAL CALIBRATION DATA

Start Cal Date : 21-JAN-2014 09:08
End Cal Date : 21-JAN-2014 12:04
Quant Method : ISTD
Target Version : 4.14
Integrator : HP RTE
Method file : \\192.168.10.12\chem\10air7.i\012114.b\T015_021-14.m
Last Edit : 21-Jan-2014 15:48 drandall

	0.1000000	C.2000000	0.50000000	1.0000 .	10.0000	20.0000	I !	C	cefficients		⊦ %RSD
Compound		Level 2				Level 6	Curve	b	m1	m2	or R^2
	30.0000 Level 7	 	 	: :	 						
12 Isopentane	5.45895 5.04415	i			5.24832	4.92599	 AVRG	 	5.16376		4.49275
13 Acrolein	+++++	18.46774	15.42362	İ		13.60826	 AVRG	 	15.11805		14.35168
14 Trichleroflueromethane	0.58756	C.61143	0.59907	C.61435	0.65962	0.72233	I IAVRG I		0.65548		11.66914
15 Acetone	10393 1740523	15370	27808 	56230	505862) 1	1092224	 LINR		2.19726		0.99930
16 Isopropyl Alcohol	3.24072; 3.19470;	3.27997	3.35896			3.10386	 AVRG	İ	3.23722		6.0396
17 Acrylonitrile	8.54445 6.30612	8.13487	7.39498	7.10371	6.64823 	6.28875	 AVRG	i	7.20302		1 12.23837
18 1,1-Dishloroethene	1.68266 2.24558	1.94236	1.90714.	2.02294	1.98469 	2.10240			1.98397		 8.78834
					1		[·

Pace Analytical Services, Inc.

INITIAL CALIBRATION DATA

	0.1000000	0.2000000	0.50000000	1.0000	10.0000	20.0000	1		Coefficients		%RSD
Compound	Level 1	Level 2	Level 3	Level 4	Level 5		Curve	ь	ml	m2	or R^2
	30.0000 ; Level 7 :	 	[! !
19 Tert Butyl Alcohol (TBA)	1.50603,		1.79054		1.62088	1.70010	I I				8.2808
20 Freon 113	1.21127:	1.31476		1.30030		1.34010	1 AVRG		1 1.30551		4.8209
21 Methylene chloride	2.93069		3.76853	4.16126		4.05242			3.72813		1 12.867
22 Allyl Chioride	7.23311 7.10121		i	6.94730	 6.73817 		AVRG		6.89007		 5.159
23 Carbon Disulfide	0.75994		0.99263	1.05032	i		AVRG		 1.00123		13.525
24 trans-1,2-dichloroethene	2.85753 2.77150		2.91308	2.83305	2.704431	2.72997	 AVRG		2.76597		4.310
25 Methyl Tert Butyl Ether	0.90927 1.05542	0.98513	0.99246	0.99070					0.98719:		I I 4.326
	·	:			 						

Pace Analytical Services, Inc.

INITIAL CALIBRATION DATA

Start Cal Date : 21-JAN-2014 09:08
End Cal Date : 21-JAN-2014 12:04
Quant Method : ISTD : 4.14
Integrator : +P RTE
Method file : \\192.168.10.12\chem\10air7.i\012114.b\T015_021-14.m
Last Edit : 21-Jan-2014 15:48 drandall

Level 1	Level 2	* 101								
11		Level 3	Level 4	Level 5		Curve	b	m1	m2	or R^2
30.0000 Level 7	 	İ	 							
1.83246 1.67749	1.84335			1.66986	1.65910					9.5011
1.54788	1.55522	İ	i	1.67952	1.77784	I AVRG		1.69107		6.8092
	6.04368		6.14854	6.12906	6.23009	I : [AVRG		6.04944		9.1034
2.52673			2.60406	2.49825	2.46435	I I		2.49511		2.7150
1.47782	1.51149	1.63486	1.62331;	1.42574 	1.36866	AVRG		1.49665		i 6.7356
1.81521 1.97326	2.21465		2.23175	1.96867 	1.92051			2.05712		 8.7672
1 11 11	2.67876	2.92870 			2.64120	i i				 4.2063
	1.83246 1.67749 1.54788 1.87057 4.83906 6.48475 2.45711 2.52673 1.47782 1.43466 1.97326 1.97326	30.0000	30,0000	30.0000	30.0000	30.0000	30.0000	30.0000	30.0000	30.0000

Pace Analytical Services, Inc.

INITIAL CALIBRATION DATA

Start Cal Date : 21-JAN-2014 09:08
End Cal Date : 21-JAN-2014 12:04
Quant Method : ISTD
Target Version : 4.14
Integrator : HP RTE
Method file : \\192.168.10.12\chem\10air7.i\012114.b\T015_021-14.m
Last Edit : 21-Jan-2014 15:48 drandall

	0.1000000	0.2000000	0.5000000	1.0000	10.0000	20.0000	1 1		Coefficients		1 %RSD
Compound	Level 1	Level 2	Level 3	Level 4	,		Curve	ь	m1	m2	or R^2
	30.0000 Level 7		 	 	! !						
34 Ethyl Tert-Butyl Ether	1.08939 1.17152		1.19511		1.10980	1.11656	 AVRG		1.14524		3.4859
35 Chloroform	0.96352	0.99132	,	C.98074	1.00656	1.08821	 AVRG		1.02606		7.6794
36 Tetrahydrofuran	4.61893 4.82413		5.29004	4.895691	4,95179	4.80300			5.01298		7.3353
37 1,1,1-Trichloroethane	0.78038		0.82178	0.83538		0.90952			0.85828		 8.1091
38 1,2-Dichloroethane	1.26266	1.34527	1.34848		1.38238	1.50760	I : AVRG :				 9.6504
39 Benzene	0.96308		1.02974	0.97570	,	1.00852	 : AVRG		0.99832		 3.830/
40 Carbon tetrachloride	0.71936		0.75521	0.76888 0.76888	0.75711				0.78048		 7.972
	· · · · · · · · · · · · · · · · · · ·		!	 			 		_		-

Pace Analytical Services, Inc. INITIAL CALIBRATION DATA

Start Cal Date : 21-JAN-2014 09:08
End Cal Date : 21-JAN-2014 12:04
Quant Method : ISTD
Target Version : 4.14
Integrator : \\192.168.10.12\chem\10air7.i\012114.b\T015_021-14.m
Last Edit : 21-Jan-2014 15:48 drandall

	0.1000000	C.2000000	0.5000000	1.0000	10.3000	20.0000			Coefficients		%RSD
Compound	Level 1	Level 2	Level 3	Level 4	Level 5	Level 6	Curve!	ь	m².	m2	or R^2
	30.0000 Level 7	 							,,,		
41 Cyclohexane	3.49754	3.43638 	3.55395	3.34545	3.11767	2.93916					7.631
42 Tert Amyl Methyl Ether	+++++				1.07304	1.10185					20.506
44 2,2,4-Trimethylpentane	1.02993	İ	İ			0.94617			1.00610		4.872
45 Heptane	3.91862 3.13006				3.46149	3,26155			3.55054		8.004
46 1,2-Dichloropropane	3.26715 3.42017		3.46903	3.84296	3.336671	3,36483	I I				5.686
47 Trichloroethene	2.23034 2.02096		2.22975	2.36802	i	2.05226	[AVRG		i 2.19743		 6.350
48 1,4-Diexane	5.90793; 5.37654;	6.13692	5.50831	5.80033		4.97228			. 		1 9.89

Pace Analytical Services, Inc.

INITIAL CALIBRATION DATA

Level 1	Level 2	Toyol 3	T 1							
			Level 4	Level 5		Curve	ь	m1	m2	or R^2
30.0000 ! Level 7	1	1	, 							!
1.03959	0.97218		,	0.93180	1.00670	AVRG				5.970
5.63924 4.16617	4.77316	4.70761	4.61525		4.12679	 AVRG				11.656
2.65910 2.18072	2.95158	2.77067	2.69229	i	2.15848			i		12.132
2.07525 1.76557	1.83620	1.77343	1.76455		1.68800			1.79638		7.506
2.04229 1.55530	1.96597	1.92002	1.70331	i				1.72997		14.28
2.40658	2.60884	2.33550	i I	2.20478	2.14086	AVRG		2.32784		7.186
0.69056	0.76078 0.76078	0.79047			0.75050	i				5.460
	Level 7	Level 7	Level 7	Level 7	Level 7	Level 7	Level 7	Level 7	Level 7	Level 7

Pace Analytical Services, Inc. INITIAL CALIBRATION DATA

	0.10000000	0.2000000	0.50000000	1.0000	10.0000	20.0000	1 :	04	oeificients		%RSD
Compound	Level i	Level 2	level 3	Level 4	Level 5		Curve;	ь	ml.	m2	er R^2
	30.0000 Level 7		 								
57 Methyl Butyl Ketone	3348	5946	14423			1042472	 LINR	0.02254	0.97406		0.99951
58 Dibromochloromethane	0.51654	C.53384	0.53366	0.51074	0.46553	0.46431	 AVRG		0.49809		6.63099
59 1,2-Dibromoethane	0.63534 0.59399	C.70690	0.71905	0.68492	0.62430	0.60786	1	i	0.65320		7.63964
6C Tetrachloroethene	0.58301 0.51689		0.64027	0.626231	0.56197		AVRG		0.58520		8.9580
62 Chlorobenzene	0.50615		0.52073				AVRG		0.49423		7.46168
63 Ethyl Benzene	. 11820 - 6363699	İ	674371			4069581			0.25790		; ; ; ; ; ; ; ;
64 m&p-Xylene	:	19683	546501		 1488519 			0.01120	0.30970		; ; ; 0.99996
			;				! !				· · · · · · · · · · · · · · · · · · ·

Pace Analytical Services, Inc.

INITIAL CALIBRATION DATA

I	0.1000000	0.2000000	0.5000000	1.0000	10.0000	20.0000	1 1	00	pefficients	·	%RSD
Compound	Level :	Level 2		Level 4	level 5		Curve	ь	m?	m .2	or R^2
 	30.0000 Ievel 7		 		 		 				
65 Bromoform	9443	17278			1218927 	2751202	 LINR	0.00847	0.38287		 0.99982
66 Styrene	5456 3994036	i	30795 	70880	1327229	2466449		0.03009	0.41378		 0.99915
67 c-Xylene	10720 5409905	21137	599 1 5		1535484 	3458926	LINR	0.00700	0.30350		 0.99991
68 1,1,2,2-Tetrachloroethane	0.52457		1	,	0.56303 	0.55418	I I IAVRG I		C.59171		9.42196
69 Isopropylbenzene	0.26908 0.23747		0.30806	G.28729	0.238 4 5	0.23537	I I AVRG		C.26947		 12.35173
7C N-Propylbenzene	14486 7825052	27048 ;	76239 	168506		5018184		0.00621	i		 0.99984
71 4-Ethyltoluene	10772 6560866		607221	134010:	18296431		 LINR	0.01470	0.25077		
I	_		i				ll				I

Pace Analytical Services, Inc. INITIAL CALIBRATION DATA

Start Cal Date : 21-JAN-2014 09:08
End Cal Date : 21-JAN-2014 12:04
Quant Method : ISTD
Target Version : 4.14
Integrator : HP RTE
Method file : \\192.168.10.12\chem\10air7.i\012114.b\T015_021-14.m
Last Edit : 21-Jan-2014 15:48 drandall

	0.1000000	0.2000000	0.5000000	1.0000	10.0000	20.0000	Ī :	0	oefficients		%RSD
Compound	Level i	Level 2			Level 5	-	Curve	ь	ml	m2	or R^2
	30.0000 Level 7	 	 	 							 -
72 1,3,5-Trimethylbenzene	11814	24038		133562		3840967	 LINR	C.01195	0.26997		 0.9999
73 Tert-Butyl Benzene	11304	20905		123088	1736310	4008064	,	0.01847	0.25878		 0.9998
74 1,2,4-Trimethylbenzene	10585 6164429	21533	56502	127139	17242461			0.01321	0.26606		0.999
75 1,3-Dichlorobenzene	7724 4091500	13857;	i	77750			LINR .		0.40147		0.999
76 Sec- Butylbenzene	++-+- 0.21102:	C.32869		0.27547		0.20363	 AVRG	i 1	C.25449		21.147.
78 Benzyl Chloride	7989 4462629	14083 	33429	75923 I				İ	0.36812		0.999
79 1,4-Dichlorobenzene	8798 3891626	 147 1 2 	33859	71993			LINR	0.02617	0.42549		1 0.999
		:			 		 				

Pace Analytical Services, Inc.

INITIAL CALIBRATION DATA

Start Cal Date : 21-JAN-2014 09:08
End Cal Date : 21-JAN-2014 12:04
Quant Method : ISTD
Target Version : 4.14
Integrator : HP RTE
Method file : \\192.168.10.12\chem\10air7.i\012114.b\T015_021-14.m
Last Edit : 21-Jan-2014 15:48 drandall

	0.1000000	0.2000000	0.5000000	1.0000 .	10.0000	20.0000	1 3	C	cefficients		%RSD
Compound		Level 2	Level 3	Level 4			Curve	Ł.	m1	m2	or R^2
	30.0000 Level 7			! 	İ						
80 p-Isopropyltoluene	+++++ C.25468	0.37434	0.37213	C.34477		0.25068			0.31008		19.302
81 1,2,3-Trimethylbenzene	+++++ 0.31090		0.44057	0.38923 ⁻	0.31147		AVRG	 	0.36091		16.494
82 1,2-Dichlorobenzene	7124 3342752		29089	63695	896995		LINR	0.02125	C.49388		0.999
83 N-Butylbenzene	90481 35940031		50454	118990	1665506		LINR	0.00340	0.29098		0.999
84 1,2,4-Trichlorobenzene	3155 2283543		12750	28262	562589		LINE	0.04324	0.72672		 0.998
85 Naphthalene	3456 347117		16237	38608	814085		 LINR	0.04662	0.49510		0.99 ⁻
86 Hexachlorobutadiene	C.62548 C.57513		0.72379	C.71469:	0.56144			 	0.63726		1 21.32
=======================================		.==							:	========	

Pace Analytical Services, Inc.

INITIAL CALIBRATION DATA

Start Cal Date : 21-JAN-2014 09:08
End Cal Date : 21-JAN-2014 12:04
Quant Method : ISTD
Target Version : 4.14
Integrator : \\192.168.10.12\chem\10air7.i\012114.b\T015_021-14.m
Last Edit : 21-Jan-2014 15:48 drandall

	0.1000000 .	C.200000C ;	0.5000000	1.0000 :	10.0000	20.0000	I		Coefficients		%RSD
Compound	Level 1			Level 4		Level 6	Curve	, b	m:	m2	or R^2
	30.0000 Level 7	i		 	İ		 	 			
28 Hexane-d14(S)	2.15646	2.15088;		 2.16994 		2.35064	•		1 2.235321		4.82655
54 Poluene-d8 (S)	1.28834	1.32190	1,27853	 1.29465 	1.32492		AVRG	 i	1.32343		3.2364
77 1,4-dichlorobenzene-d4 (S)	2.31289	2.22256	2,21502	2.06562 2.06562	1.84338		 AVRG		2.08584		8.8681

Pace Analytical Services, Inc.

INITIAL CALIBRATION DATA

Start Cal Date : 21-JAN-2014 09:08
End Cal Date : 21-JAN-2014 12:04
Quant Method : ISTD
Target Version : 4.14
Integrator : \192.168.10.12\chem\10air7.i\012114.b\T015_021-14.m
Last Edit : 21-Jan-2014 15:48 drandall

	_
Average %RSD Results.	Ī
	=
Calculated Average %RSD = 8.56199	ı
Maximum Average %RSD = 30.00000	1
* Passed Average %RSD Test.	1
1	1

Curve Formula	Ī	Units	i
====== ===============================	1:		4
Averaged Amt = ml*Rsp	I	Amount	į
Linear Amt = b + m1*Rsp	1	Amount	
II	J,		

5A - FORM V VOA VOLATILE ORGANIC INSTRUMENT PERFORMANCE CHECK BROMOFLUOROBENZENE (BFB)

EPA SAMPLE NO.

BFB

Lab Name: Pace Analytical

Contract:

Lab Code: PASI

Case No.:

SAS No.:

SDG No.: 10254930

Lab File ID: 02301BFB.D

BFB Injection Date: 01/23/2014

Instrument ID: 10AIR7

BFB Injection Time: 15:56

GC Column: J&W DB-5

ID: 0.32

(mm)

		% RELATIVE	
m/e	ION ABUNDANCE CRITERIA	ABUNDANCI	=
95	Base Peak, 100% relative abundance	100.00	
50	8.00 - 40.00% of mass 95	16.96	
75	30.00 - 66.00% of mass 95	55.83	
96	5.00 - 9.00% of mass 95	6.53	
173	Less than 2.00% of mass 174	0.51	(0.48)
174	50.00 - 120.00% of mass 95	106.93	
175	4.00 - 9.00% of mass 174	7.95	(7.43)
176	93.00 - 101.00% of mass 174	106.92	(99.99)
177	5.00 - 9.00% of mass 176	6.94	(6.49)

1 - Value is %mass 174

2 - Value is %mass 176

EPA SAMPLE NO.	LAB SAMPLE ID	LAB FILE ID	DATE ANALYZED	TIME ANALYZED
CAL2	CAL2	02303.D	01/23/2014	16:49
CAL3	CAL3	02304.D	01/23/2014	17:16
CAL4	CAL4	02305.D	01/23/2014	17:45
CAL5	CAL5	02306.D	01/23/2014	18:13
CAL6	CAL6	02307.D	01/23/2014	18:43
CAL7	CAL7	02308.D	01/23/2014	19:17
CAL1	CAL1	02327.D	01/24/2014	04:32
ICV (LCS)	ICV	02336.D	01/24/2014	09:24
LCS (LCS)	LCS	02337.D	01/24/2014	09:52
CERT	CERT	02340.D	01/24/2014	11:19

Pace Analytical Services, Inc.

INITIAL CALIBRATION DATA

Start Cal Date : 23-JAN-2014 16:23
End Cal Date : 24-JAN-2014 04:32
Quant Method : ISTD : 4.14
Integrator : HP RTE
Method file : \\192.168.10.12\chem\10air7.i\012314.b\T015_022-14.m
Last Edit : 24-Jan-2014 10:46 drandall

Calibration File Names:
Level 1: \\192.168.10.12\chem\10air7.i\012314.b\02327.D
Level 2: \\192.168.10.12\chem\10air7.i\012314.b\02303.D
Level 3: \\192.168.10.12\chem\10air7.i\012314.b\02304.D
Level 4: \\192.168.10.12\chem\10air7.i\012314.b\02305.D
Level 5: \\192.168.10.12\chem\10air7.i\012314.b\02306.D
Level 6: \\192.168.10.12\chem\10air7.i\012314.b\02307.D
Level 7: \\192.168.10.12\chem\10air7.i\012314.b\02308.D

Compound	0.1000000 Level 1	0.2000000 Level 2	20.02	Level 4		20.0000 Level 6	 Curve	Coefficients m1	m2	%RSD or R^2
	30.0000 Level 7			·						
1 Chlorodifluoromethane	. 3.37783 . 4.72370	i	4.24085	3.96453			AVRG			1 11.3635
2 Propylene	24.45865 1 16.30300	16.34721		17.44796	16.44232	16.31678	 AVRG			17.0708
3 Dichlorodifluoromethane	1.14008 1.63292		1.23711	1.20626	1.24046	1.43271	 AVRG			13.1199
4 Dichlorotetrafluoroethane	1.64650			1.66484		1.79726		1.77318		7.4406
				 				 		

Pace Analytical Services, Inc.

INITIAL CALIBRATION DATA

Start Cal Date : 23-JAN-2014 16:23
End Cal Date : 24-JAN-2014 04:32
Quant Method : ISTD
Target Version : 4.14
Integrator : HP RTE
Method file : \\192.168.10.12\chem\10air7.i\012314.b\T015_022-14.m
Last Edit : 24-Jan-2014 10:46 drandall

	C.1000000			1.0000 Level 4		20.0000 Level 6		b	Coefficients ml	m2	%RSD or R^2
Compound	Lovel 1 	Peact N	:		 	Teve_ 0	Jurve	ь	IIIT	2025	OI K 2
	30.0000 Level 7		!	 	İ						
5 Chloromethane	7.60148 7.29742	8.07658 	7.21312	6.92826 	6.77306	6.94503	 AVRG		7.26214		6.2431
6 Vinyl chloride	6.51556 7.56213	7.63796	6.85812	7.03662 	6.90094 6.90094	7.31218			7.11764		5.7056
7 1,3-Butadiene	 14.04917 12.99302	14.04055 14.04055		12.64795	12.31589 	12.88264	AVRG :		13.00683		5.9269
8 Bromomethane	4.94037; 5.60288	6.18999 		5.28740	5.30848 	5.54355	I I AVRG		5.44026		7.288
9 Chloroethane	12.72377. 15.39715:	15.82319 15.82319	i i		14.43521	15.13917	I I			-	7.2030
10 Ethanol	+++++ ! 22.14790	j		21.66776	20.13793 	22.64093			 20.89481		9.3419
11 Vinyl Bromide	5.45095 4.97235		5.18525	4.87002	4.88864	4.90285			- - ! 5.20533		- 9.0940
	 				I		- 		- - _ _		- _

Pace Analytical Services, Inc.

INITIAL CALIBRATION DATA

	0.1000000	0.2000000	0.5000000	1.0000	10.0000	20.0000			Coefficients		%RSD
Compound	Level 1	Level 2	Level 3	Level 4	Level 5		Curve	b	m1	m2	or R^2
	30.0000 Level 7	 	 	, 	1		ļ [
12 isopentane	9,1306C 9,1306C 8,45666	8.87683	10.04756		8.71338 	8.53889	! JAVRG		9.08971		6.97222
13 Acrolein	+-+++ 23.76987	46.53364	29.23765	31,25916		23.73640	J JAVRG		29.70434		29.84164
14 Trichlorofluoromethane	0.95210 1.26437	i	1.07491;		,	1.16275 	I AVRG		1.10457		 9.45692
15 Acetone	+-+++ 1189664		23176		320067	l	 I.INR		3,60141		0.9996
16 Isopropyl Alcohol	5.20167 5.33632:			5.26067	i	5.53533 	 AVRG		5.371971		 5.72380
17 Abrylonitrile	10.71536	13.29884	12.95879	12.85307	11.38702	10.74293 	 AVRG				9.8237
18 1,1-Dichleroethene	3.02597 3.65869					3.46331	 AVRG		- 3.44553		6,2995
					 						

Pace Analytical Services, Inc.

INITIAL CALIBRATION DATA

Start Cal Date : 23-JAN-2014 16:23
End Cal Date : 24-JAN-2014 04:32
Quant Method : ISTD
Target Version : 4.14
Integrator : HP RTE
Method file : \\192.168.10.12\chem\10air7.i\012314.b\T015_022-14.m
Last Edit : 24-Jan-2014 10:46 drandall

, , , , , , , , , , , , , , , , , , , ,	0.1000000	0.2000000	0.5000000	1.0000	10.0000	20.0000	1		Coefficients		%RSD
Compound	Level :		Level 3			Level 6	Curve	ь	mī.	m2	or R^2
	30.0000 Level 7	į	I :		 		. 				
19 Tert Butyl Alcohol (TBA)	2.14034 2.72574'	2.59186		2.49571	2.37134	2.56085	 AVRG		 2.47940		7.4906
20 Freon 113	2,01044 · 2,30535)	2.54624	2.34549	2.25647	,	2.24647	. . AVRG		2.27361		7.0811
21 Mothylene chloride	5.38256 6.82097	5.62437	6.74211	6.70988		6.78749	 AVRG				9.5532
22 Allyl Chloride	12.45520 13.21235	14.54344	14.10161	13.27025	13.24882	13.48358	 AVRG				 5.0121
23 Carbon Disulfide	1.59585 2.11795	1.97728	1.95114	1.89029	1.97265	2.04148			i 1.93523		 8.5768
24 trans-1,2-dichloroethene	4.48392 4.87723	5.50748	4.96170	4.70672	4.75506	4.85212	 AVRG		i		 6.5072
25 Methyl fort Butyl Ether	1.43590			1.55468	,	1.66169			- 1.64196		 8.3915
	:						 		:		_

Pace Analytical Services, Inc.

INITIAL CALIBRATION DATA

Start Cal Date : 23-JAN-2014 16:23
End Cal Date : 24-JAN-2014 04:32
Quant Method : ISTD
Target Version : 4.14
Integrator : HP RTE
Method file : \\192.168.10.12\chem\10air7.i\012314.b\T015_022-14.m
Last Edit : 24-Jan-2014 10:46 drandall

Compound	0.1000000 Level 1	0.2600000 : Level 2 :	Level 3	1.000C Level 4	10.0000 Level 5	20.0000 Level 6	Curve	b	Coefficients ml	m2	%RSD or R^2
	30.0000 Level 7	 	 	 	 						
26 Vinyl Acetate	3.64801 2.87233		3.88 5 78	3.59378	2,84003 	2.90182	 AVRG ↓				1 15.42004
27 1,1-Dichioroethane	2.75570	3.19679	3.15779	3.00915		3.16551	: AVRG !		3.08417		5.72183
29 Methyl Ethyl Ketone	9.06050	13.52751;	12.18400	11.90275	11.76811 	11.88816	I IAVRG :				11.35375
30 n-Hexane	4.39732 4.04189	4.86092!	4.72389	4.44940	4.42306	3.99569	AVRG I		4.41317 4.41317		7.22986
31 Di-isopropyl Ether	+++++ 2.28138	3.04963:			2.41568 	2.27496	 AVRG				
32 ELhyl Acetate	3.25441 3.27081		3.64047	3.60712	3.32944 	3.30092	 AVRG		3.55014		1 12.02537
33 cis-1,2-Dichloroethene	4.99262 4.74409	5.57950	5.08219 	4.96316	,	4.67621			4.94"/27 4.94"/27		6.70585
							ii				_

Pace Analytical Services, Inc.

INITIAL CALIBRATION DATA

Start Cal Date : 23-JAN-2014 16:23
End Cal Date : 24-JAN-2014 04:32
Quant Method : ISTD
Target Version : 4.14
Integrator : \\192.168.10.12\chem\10air7.i\012314.b\T015_022-14.m
Last Edit : 24-Jan-2014 10:46 drandall

		0.2000000		1.0000	10.0000	20.0000	I i		Coefficients		: %RSD
Compound	Level 1	Level 2	Level 3	Level 4			Curve	ь	ml	m2	or R^2
	30.0000 Level 7						 				i
34 Ethyl Tert-Butyl Ether	1.69925; 1.85406;		1.92872	1.81193		1.78869					6.666
35 Chloroform	1.52669		1.91171	1.82068		1.89553	 AVRG		1.84615		 8.979
36 Tetrabydrofuran	10.11901 8.56783		9.54006	8.65946		8.51891	1 1		9.19069		! 8.936
37 1,1,1-Trichloroethane	1.30096; 1.57554;		1.47149:	1.41845	1.36835		NVRG :		1.46898		 8.659
38 1,2-Dichloroethane	2.05732 2.64147	i	2.271291	2.22679	i i		AVRG				l ; 9.354
39 Benzene	1.61828: 1.77298;	2.03202	1.75024	1.78071 1.78071	1.63205		 				 7.798
40 Carbon tetrachloride	1.29223; 1.35322;		1.38703	1.25863					 1.31863		9.979
					 	 - 	 		 		

Pace Analytical Services, Inc.

INITIAL CALIBRATION DATA

Compound		C.20000000 Level 2	Level 3	1.0000 Level 4		20.0000 Level 6	 Curve		Coefficients ml	m2	%RSD or R^2
	30.0000 Level 7		 	; ; !		 					
41 Cyclohexane	5.34903	6.33166	5.62484	5.35166	4.90017	4.77911			5.30025		10.59479
42 Tert Amyl Mothyl Biher	1.78309	0.79143	1.12963		1.53534	1.69091 	 AVRG	:	1.37813		 27.0352
44 2,2,4-Trimethylpentane	1.62524 1.58389	1.85764	1.77256:		1.53633	1.55779 			1.65927		 7.1702
45 Heptane	4.81440 5.18344	7.10949	,	5.94176		, 5.32746 			5.7 39 52		1 13.8022
46 1,2-Dichloropropane	5.30992 5.82885	i	5.93070:		5.53756	5.68363	I AVRG I		5.78971		5.6813
47 Trichloroethene	3.39606 3.20204	4.17699	3.57281	3.71400	3.21204	3.22025			3.49917		1 10.23891
48 1,4-Dioxane	*++++ 8.97329		9,10118	9.236231		6.50189			9.22905		16.1175
											. I

Pace Analytical Services, Inc.

INITIAL CALIBRATION DATA

Start Cal Date : 23-JAN-2014 16:23
End Cal Date : 24-JAN-2014 04:32
Quant Method : ISTD : 4.14
Integrator : 4.14
End Cal Date : 4.14
Integrator : 192.168.10.12\chem\l0air7.i\012314.b\T015_022-14.m
Last Edit : 24-Jan-2014 10:46 drandall

	0.1000000	0.2000000	0.5000000	1.0000	10.0000	20.0000	1 1	Coefficient	3	%RSD
Compound	Level 1	Level 2		Level 4	Level 5	Level 6	Curve	b ml	m2	or R^2
	30.0000 Level 7	 	1	, 			, ,] ,	-		
49 Bromodichloromethane	1.65226		1.73140		1.51303	1.67469	I I	 1.70320	 	 6.82818
50 Methylcyclohcxane	6.24407 6.86748			7.27923	6.562 4 91	6.64504	I IAVRG :	 	 	9.04438
51 Methyl Isobutyl Ketone	- 3.99536 3.54811	4.850621	4.10190	3.96453 i	3.44432	3.49835	 AVRG	 3.91474	 	1 12.55300
52 cis-1,3-Dichloropropene	2.86700 2.99835			2.94751	2.65319 			; 3.00305		9.7471
53 trans-1,3-Dichloropropene	2.78579		2.89581	2.757 4 7		2.44423		; ! 2.72801		1 12.1201
55 1,1,2-Trichloroethane	3.56131 3.63404		4.04829	3.90236	3.44024	3.49737		3.75944	i I	9.07660
56 Toluene	1.01277 1.26426	1.343731 i	1.36317	1.2557C i				1.23337	 	9.4985
	-						- 			_:

Pace Analytical Services, Inc. INITIAL CALIBRATION DATA

	: C.100000C	0.2000000 :	0.50000000	1.0000	10.0000	20.0006	i i	0	oeffic1ents		1	%RSD
Compound		Level 2		Level 4			Curve	b	ml	m2	1 1	or R^2
	30.0000 Level 7		 	;								
57 Methyl Buryl Ketone	1948 180966	4566,	11293	24055	3098221	702876		0.02266				0.99941
58 Dibromochioromethane	5015 2522104		27428	53558	i		 LINR	0.01479	i			0.99997
59 1,2-Dibromoethane	2.23269		2.18115.	2.14430	1.83026	1.81773		i	2.04584		:	11.31360
60 Tetrachlorpethene	1.78596	ı		1.79045	1.55933 	1.52252	AVRG		1.69721			10.1399
62 Chlorobenzene	1.52248	1.59418			1.33397 1.33397	1.31583	 AVRG	 	1.45444		 	9.76932
63 Ethyl Benzene	0.84186	i	0.91820 	1	0.75912 0.75912	0.75647	I I AVRG	i	0.84401			10.27966
64 m&p-Xylene	1.10279	1.18313	1.11324		0.93208		 AVRG	 	1.03307		İ	10.16151
	 										_	

Pace Analytical Services, Inc.

INITIAL CALIBRATION DATA

Start Cal Date : 23-JAN-2014 16:23
End Cal Date : 24-JAN-2014 04:32
Quant Method : ISTD
Target Version : 4.14
Integrator : \\192.168.10.12\chem\10air7.i\012314.b\T015_022-14.m
Last Edit : 24-Jan-2014 10:46 drandall

0.1000000	0.2000000	0.50000000	1.0000	10.0000	20.0006	1 :	С	oefficients		%RSD
Level 1	Level 2	Level 3				Curve	b	ml	m2	or R^2
30.0000 Level 7		 	 							 -
5134	10595		56845	838798	1850069	 LINR :		1.09992		0.9999
7113		254361		716707	1626130	I i [LINR	0.02605			 0.9990
1.06733	1.14508	1.12267	1.01533			AVRG		1.00806		1 10.6591
		2.19190	2.13488		1.74405	i		1.96832		11.7399
		0.79181	0.76547	0.66644			 	C.721921		 8.2079
0.62483		;						C.72432;		15.0746
	18353						0.01491	0.73726		0.9999
	Level	Level 1 Level 2 30.0000 1evel 7 5134 10595 3034244 7113 9707 2764133 1.06733 1.14508 0.90036 1.97501 2.25950 1.73377 0.69230 0.79438 0.67151 0.76209 0.89736 0.62493 8328 18353	Level 1 Level 2 Level 3	Level 1 Level 2 Level 3 Level 4	Level 1 Level 2 Level 3 Level 4 Level 5	Level 1 Level 2 Level 3 Level 4 Level 5 Level 6 30.0000	Level 1 Level 2 Level 3 Level 4 Level 5 Level 6 Curve	Level 1 Level 2 Level 3 Level 4 Level 5 Level 6 Curve b	Level 1 Level 2 Level 3 Level 4 Level 5 Level 6 Curve: b ml	Level 1 Level 2 Level 3 Level 4 Level 5 Level 6 Curve b m1 m2

Pace Analytical Services, Inc.

INITIAL CALIBRATION DATA

Start Cal Date : 23-JAN-2014 16:23
End Cal Date : 24-JAN-2014 04:32
Quant Method : ISTD
Target Version : 4.14
Integrator : \\192.168.10.12\chem\10air7.i\012314.b\T015_022-14.m
Last Edit : 24-Jan-2014 10:46 drandall

	0.1000000	0.2000000	0.5000000	1.0000	10.0000	30.0000	1 :	С	oefficients		%RSD
Compound	Level 1	Level 2	Leve_ 3	Level 4	Level 5	Level 6	Curve	b	ml	m2	or R^2
	30.0000 Level 7		' - 					•			
72 1,3,5-Trimethylbenzene	8730 4202510;	18393			i	2580533	LINR	0.00957			 0.9999
73 Tert-Butyl Benzene	8421 4497549	17085	44313;	86860	1183582	2716701	 LINR	0.02188	0.74486;		0.999
74 1,2,4-Trimethylbenzene	8321 4315923	15952	42035			2628842	 LINR	0.01774	0.77444		 0.999
75 1,3-Dichlorobenzene	5529. 2931001:			55071	754428	1759996	 LINR	0.02620	1.14439		0.999
76 Sec- Butyibenzene	10451 5602941	21740	'	111681		3425362		0.01686	0.59588		0.999
78 Benzyl Chloride	2690 3052296		24895	50845	806554		 LINR	0.032081	İ		1 0.999
79 1,4-Dichlerobenzene	5181 2741838		 26016 	52973	714344		 LINR	0.03127	1.22508		 0.999

Pace Analytical Services, Inc.

INITIAL CALIBRATION DATA

Start Cal Date : 23-JAN-2014 16:23
End Cal Date : 24-JAN-2014 04:32
Quant Method : ISTD
Target Version : 4.14
Integrator : \192.168.10.12\chem\10air7.i\012314.b\T015_022-14.m
Last Edit : 24-Jan-2014 10:46 drandall

	0.1000000	C.200000C	0.50000000	1.0000	10.0000	20.0000	1	C	oefficients		%RSD
Compound	Level :	Level 2 .	Level 3	Level 4	Level 5	Level 6	Curve	ь	ml	m2	or R^2
	30.0000 Level 7	 		 	 		 				!
80 p~Isopropylto)uene	t+-++ 0.73098	1.13149		0.96929	0.75868	0.74683	 AVRG		0.89325		 19.0678
81 1,2,3-Trimethylbenzene	1.04177	1.26841		1.13797	0.92625	0.92224	 AVRG	 	1.06896		14.9279
82 1,2-Dich]crocenzene	1.70175	2.14581	2.02678	1.98304	,	1.47756			1.75686		16.6139
83 N-Butylbenzene	7044		38792	79219	1088921		LINE	0.00862	0.87534		0.9999
84 1,2,4-Trichlorobenzene	2439 1605756		11509	24352	395121	930192	1	0.03946	2.10385		0.9980
85 Naphthalene	3231		16909	34445	553795		LINE	0.04311	1.45959		0.9974
86 Hexachlorobutadiene			2.00991	1.95526	1.68389	1.66545			1.91084		17,7950

Pace Analytical Services, Inc.

INITIAL CALIBRATION DATA

Start Cal Date : 23-JAN-2014 16:23
End Cal Date : 24-JAN-2014 04:32
Quant Method : ISTD
Target Version : 4.14
Integrator : HP RTE
Method file : \\192.168.10.12\chem\10air7.i\012314.b\T015_022-14.m
Last Edit : 24-Jan-2014 10:46 drandall

Level 1	Level 2	Level 3			20.0000 Level 6	 Curve		Coefficient: ml	m2	%RSD or R^2
30.0000 Level 7	 		. ! ! !			1 1 1				
	2.75400	2.60250	2.61582 	2.95550	3.06518	 AVRG		I		11.7732
			'		0.97762	ĺ	 	 0.99560	 	7.3413
		1.40599	 1.43100 	1.41104			 	1.41524		5.8964
	Level 1 30.0000 Level 7 2.37023 3.35464 0.90329 1.02022	Level 1 7.evel 2 30.0000 Level 7 2.37023 2.75400 3.35464 0.90929 1.13337 1.02022	30.0000 Level 7	Level 1 7evel 2 Level 3 Level 4	Level 1 7evel 2 Level 3 Level 4 Level 5 30.0000 Level 7 2.37023 2.75400 2.60250 2.61582 2.95550 3.35464 0.90329 1.13337 1.30278 0.99839 0.92754 1.02022 1.56740 1.44673 1.40599 1.43100 1.41104	Level 1 7evel 2 Level 3 Level 4 Level 5 Level 6	Level 1 Tevel 2 Level 3 Level 4 Level 5 Level 6 Curve 30.0000	Level 1 Tevel 2 Level 3 Level 4 Level 5 Level 6 Curve b	Level 1 Tevel 2 Level 3 Level 4 Level 5 Level 6 Curve: b m]	Level 1 Tevel 2 Level 3 Level 4 Level 5 Level 6 Curve b m] m2 30.0000

Pace Analytical Services, Inc.

INITIAL CALIBRATION DATA

Average %RSD Results.	ı
	1
Calculated Average %RSD = 12.70809	ĺ
Maximun Average %RSD = 30.00000	ı
Passed Average %RSD Test.	ı
l	I

Curve Formula	Ī	Units	į
	1:		Ī
Averaged Amt = ml*Rsp	1	Amount	Ī
Linear Amt = b + m1*Rsp	1	Amount	İ
II	1		ı

5A - FORM V VOA VOLATILE ORGANIC INSTRUMENT PERFORMANCE CHECK BROMOFLUOROBENZENE (BFB)

EPA SAMPLE NO.

BFB

Lab Name: Pace Analytical

Contract:

Lab Code: PASI

Case No.:

SAS No.:

SDG No.: 10254930

Lab File ID: 02401BFB.D

BFB Injection Date: 01/24/2014

Instrument ID: 10AIR7

BFB Injection Time: 14:52

GC Column: J&W DB-5

ID: 0.32

(mm)

		% RELATIVE		
m/e	ION ABUNDANCE CRITERIA	ABUNDANCE		
95	Base Peak, 100% relative abundance	100.00		
50	8.00 - 40.00% of mass 95	18.28		
75	30.00 - 66.00% of mass 95	64.13		
96	5.00 - 9.00% of mass 95	6.67		
173	Less than 2.00% of mass 174	0.70 (0.6	3 7)	
174	50.00 - 120.00% of mass 95	105.20		
175	4.00 - 9.00% of mass 174	7.56 (7.1	18)	
176	93.00 - 101.00% of mass 174	104.44 (99.2	28)	
177	5.00 - 9.00% of mass 176	6.53 (6.2	25)	

1 - Value is %mass 174

2 - Value is %mass 176

EPA SAMPLE NO.	LAB SAMPLE ID	LAB FILE ID	DATE ANALYZED	TIME ANALYZED
LCS (LCS)	LCS	02402L.D	01/24/2014	15:21
CCV	CCV	02402.D	01/24/2014	15:21
IC	IC	02405.D	01/24/2014	17:26
C-INFLUENT	10254930004	02412.D	01/24/2014	20:44
A-INFLUENT	10254930001	02413.D	01/24/2014	21:10

Data File: \\192.168.10.12\chem\10air7.i\012414.b\02402.D

Report Date: 24-Jan-2014 15:58

Pace Analytical Services, Inc.

CONTINUING CALIBRATION COMPOUNDS

Injection Date: 24-JAN-2014 15:21 Instrument ID: 10air7.i

Lab File ID: 02402.D Init. Cal. Date(s): 23-JAN-2014 24-JAN-2014
Analysis Type: AIR Init. Cal. Times: 16:23 04:32
Lab Sample ID: CCV Quant Type: ISTD
Method: \\192.168.10.12\chem\10air7.i\012414.b\T015_022-14.m

	I I	1	CCAL MIN		MAX	l
COMPOUND	RRF / AMOUNT	RF10 !	· ·	%D / %DRIFT		
1 Chlorodifluoromethane	==== =================================	4.12775	4.12775 0.010	-2.61433		•
2 Propylene	[17.67745]	18.56582	18.56582 0.010	5.02545	30.00000	Averaged
3 Dichlorodifluoromethane	1.33365	1.18782	1.18782 0.010	-10.93428	30.00000	Averaged
4 Dichlorotetrafluoroethane	1.77318	1.58314	1.58314 0.010	-10.71733	30.00000	Averaged
5 Chloromethane	7.26214	6.73154	6.73154 0.010	-7.30628	30.00000	Averaged
6 Vinyl chloride	7.11764	6.73827	6.73827 0.010	-5.33009	30.00000	Averaged
7 1,3-Butadiene	13.00683	12.56959	12.56959 0.010	-3.36163	30.00000	Averaged
8 Bromomethane	5.44026	4.92435	4.92435 0.010	-9.48325	30.00000	Averaged
9 Chloroethane	14.51281	13.59109	13.59109 0.010	-6.35106	30.00000	Averaged
10 Ethanol	20.89481	19.31857	19.31857 0.005	-7.54372	30.00000	Averaged
11 Vinyl Bromide	5.20533	4.52043	4.52043 0.010	-13.15771	30.00000	Averaged
12 Isopentane	9.08971	8.85353	8.85353 0.010	-2.59837	30.00000	Averaged
13 Acrolein	[29.70434]	23.34513	23.34513 0.010	-21.40833	30.00000	Averaged
14 Trichlorofluoromethane	1.10457	0.93393	0.93393 0.010	-15.44885	30.00000	Averaged
15 Acetone	10.00000	11.42541	3.04724 0.010	14.25415	30.00000	Linear
16 Isopropyl Alcohol	5.37197	4.65371	4.65371 0.010	-13.37054	30.00000	Averaged
17 Acrylonitrile	11.99267	10.98786	10.98786 0.010	-8.37852	30.00000	Averaged
18 1,1-Dichloroethene	3.44553	2.96175	2.96175 0.010	-14.04096	30.00000	Averaged
19 Tert Butyl Alcohol (TBA)	2.47940	2.20709	2.20709 0.010	-10.98307	30.00000	Averaged
20 Freon 113	2.27361	1.97401	1.97401 0.010	-13.17744	30.00000	Averaged
21 Methylene chloride	[6.38682]	6.11727	6.11727 0.010	-4.22035	30.00000	Averaged
22 Allyl Chloride	13.47361	11.88170	11.88170 0.010	-11.81498	30.00000	Averaged
23 Carbon Disulfide	1.93523	1.73854	1.73854 0.010	-10.16389	30.00000	Averaged
24 trans-1,2-dichloroethene	1.87761	4.31686	4.31686 0.010	-11.49634	30.00000	Averaged
25 Methyl Tert Butyl Ether	1.64196	1.40989	1.40989 0.010	-14.13393	30.00000	Averaged
26 Vinyl Acetate	3.32959	2.71978	2.71978 0.010	-18.31481	30.00000	Averaged
27 1,1-Dichloroethane	3.08417	2.68442	2.68442 0.010	-12.96118	30.00000	Averaged
\$ 28 Hexane-d14(S)	2.81684	2.59632	2.59632 0.010	-7.82868	30.00000	Averaged
29 Methyl Ethyl Ketone	11.71783	9.82867	9.82867 0.010	-16.12211	30.00000	Averaged
30 n-Hexane	4.41317	4.00381	4.00381 0.010	-9.27583	30.00000	Averaged
31 Di-isopropyl Ether	2.58711	2.23050	2.23050 0.010	-13.78428	30.00000	Averaged
32 Ethyl Acetate	3.55014	3.04659	3.04659 0.010	-14.18397	30.00000	Averaged
33 cis-1,2-Dichloroethene	4.94727	4.06610	4.06610 0.010	-17.81128	30.00000	Averaged
34 Ethyl Tert-Butyl Ether	1.83789	1.58183	1.58183 0.010	-13.93239	30.00000	Averaged
35 Chloroform	1.84615	1.51399	1.51399 0.010	-17.99178	30.00000	Averaged
36 Tetrahydrofuran	9.19069	7.80938	7.80938 0.010	-15.02937	30.00000	Averaged
37 1,1,1-Trichloroethane	1.46898	1.22682	1.22682 0.010	-16.48483	30.00000	i Averaged
38 1,2-Dichloroethane	2.35970	2.00126	2.00126 0.010	-15.19014	30.00000	Averaged
39 Benzene	1.75795	1.61741	1.61741 0.010	-7.99488	30.00000	Averaged
40 Carbon tetrachloride	1.31863	1.07144	1.07144 0.310	-18.74622	30.00000	Averaged
41 Cyclohexane	5.30025	4.95435	4.95435 0.010	-6.52624	30.00000	Averaged
42 Tert Amyl Methyl Ether	1.37813	1.53014	1.53014 0.010	11.03034	30.00000	Averaged
	1 1	1	I		I	1

Data File: \\192.168.10.12\chem\10air7.i\012414.b\02402.D

Report Date: 24-Jan-2014 15:58

Pace Analytical Services, Inc.

CONTINUING CALIBRATION COMPOUNDS

Injection Date: 24-JAN-2014 15:21 Instrument ID: 10air7.i

Lab File ID: 02402.D Init. Cal. Date(s): 23-JAN-2014 24-JAN-2014 Analysis Type: AIR Init. Cal. Times: 16:23 04:32 Lab Sample ID: CCV Quant Type: ISTD Method: \\192.168.10.12\chem\10air7.i\012414.b\T015_022-14.m

	I			MIN		MAX	l
COMPOUND	RRF / AMOUNT	RF10	RRF10		%D / %DRIFT	%D / %DRIFT	CURVE TYPE =========
44 2,2,4-Trimethylpentane	1.65927	1.61395	1.61395				•
45 Heptane	5.73952	5.78219	5.78219	0.010	0.74344	30.00000	Averages
46 1,2-Dichloropropane	5.78971	5.50697	5.50697	0.010	-4.88365	30.00000	Averaged
47 Trichloroethene	3.49917	3.31689	3.31689	0.010	-5.20926	30.00000	Average:
48 1,4-Dioxane	9.22905	7.22239	7.22239	0.010	-21.74292	30.00000	Averaged
49 Bromodichloromethane	1.70320	1.43923	1.43923	0.010	-15.49846	30.00000	Average:
50 Methylcyclohexane	6.99374	6.66073	6.66073	0.010	-4.76153	30.00000	Averaged
51 Methyl Isobutyl Ketone	3.91474	3.55270	3.55270	0.010	-9.24811	30.00000	Averaged
52 cis-1,3-Dichloropropene	3.00305	2.654991	2.65499	0.010	-11.59048	30.00000	Averaged
53 trans-1,3-Dichloropropene	2.72801	2.26289	2.26289	0.010	-17.04974	30.00000	Average:
\$ 54 Toluene-d8 (S)	0.99560	0.96503	0.96503	0.010	-3.07046	30.00000	Average:
55 1,1,2-Trichloroethane	3.759441	3.38575	3.38575	0.010	-9.94001	30.00000	Averaged
56 Toluene	1.23337	1.16581	1.16581	0.010	-5.47804	30.00000	Average:
57 Methyl Butyl Ketone	10.000001	10.07119	2.89302	0.010	0.71191	30.00000	Linear
58 Dibromochloromethane	10.00000	11.07333	1.21138	0.010	10.73326	30.00000	Linea:
59 1,2-Dibromoethane	2.04584	1.70393	1.70393	0.010	-16.71271	30.00000	Averaged
60 Tetrachloroethene	1.69721	1.44008	1.44008	0.010	-15.15012	30.00000	Average
62 Chlorobenzene	1.45444	1.279411	1.279411	0.010	-12.03417	30.00000	Average
63 Ethyl Benzene	0.84401	0.704221	0.704221			30.00000	Average
64 m&p-Xylene	1.03307	0.845021	0.84502	0.010	-18.20305	30.00000	_
65 Bromoform	10.000001	11.34762	0.98390	0.010	13.47622	30.00000	Linea,
66 Styrene	[10.00000]	10.38267	1.20524	0.010	3.82670	30.00000	Linea
67 o-Xylene	1.00806	0.80316	0.80316	0.010	-20.32656	30.00000	Average
68 1,1,2,2-Tetrachloroethane	1.96832	1.54435	1.54435			30.00000	Average
69 Isopropylbenzene	0.72192	0.59041	0.59041				_
70 N-Propylbenzene	0.72432	0.54311	0.54311				
71 4-Ethyltoluene	10.00000	11.24927	0.66419				-
72 1,3,5-Trimethylbenzene	10.000001	11,22318	0.71383				Linea
73 Tert-Butyl Benzene	10.00000	11.00271	0.69071			-	
74 1.2.4-Trimethylbenzene	1 10.000001	11.34754	0.69331			,	
75 1,3-Dichlorobenzene	10.000001	10.96633	1.06909				
76 Sec- Butylbenzene	10.00000	11.45518	0.52796			•	
\$ 77 1.4-dichlorobenzene-d4 (S)	1.41524	1,29252	1.292521				
78 Benzyl Chloride	10.00000	11.41103	0.98530				
79 1.4-Dichlorobenzene	10.000001	11.01971	1.144181				
80 p-Isopropyltoluene	0.89325	0.66457	0.66457				
81 1,2,3-Trimethylbenzene	1.06896	0.800601	0.800601				
82 1.2-Dichlorobenzene	1.75686	1.334601	1.33460				
83 N-Butylberzene	10.00000	11.92558	0.739351				
84 1,2,4-Trichlorobenzene	10.00000	10.87924	2.00661				="
85 Naphthalene	10.00000	10.51469	1.447491				•
86 Hexachlorobutadiene	1.91084	1.35282	1.35282				
oo Hevaciitotobucadiele	1.91004	1.33207	1202061	0.010	23.20232	1 30.00000	i Averagei

Data File: \\192.168.10.12\chem\10air7.i\012414.b\02402.D

Report Date: 24-Jan-2014 15:58

Pace Analytical Services, Inc.

CONTINUING CALIBRATION COMPOUNDS

Injection Date: 24-JAN-2014 15:21

Init. Cal. Date(s): 23-JAN-2014 24-JAN-2014 Init. Cal. Times: 16:23 04:32

Instrument ID: 10air7.i Injection Date: 24-JAN-2014 15:21
Lab File ID: 02402.D Init. Cal. Date(s): 23-JAN-2014
Analysis Type: AIR Init. Cal. Times: 16:23
Lab Sample ID: CCV Quant Type: ISTD
Method: \\192.168.10.12\chem\10air7.i\012414.b\T015_022-14.m

|Average %D / Drift Results.

|Calculated Average %D/Drift = 12.23265 |
|Maximun Average %D/Drift = 30.00000 |

|* Passed Average %D/Drift Test.

QUALITY CONTROL DATA

Project:

117-0507599.20 SSD Oem

Pace Project No.:

10254930

QC Batch:

AIR/19292

Analysis Method:

TO-15

QC Batch Method:

TO-15

Analysis Description:

TO15 MSV AIR Low Level

Associated Lab Samples:

10254930001, 10254930002, 10254930003, 10254930004, 10254930005, 10254930006

METHOD BLANK: 1615889

Matrix: Air

Associated Lab Samples:

Date: 01/31/2014 05:37 PM

 $10254930001,\,10254930002,\,10254930003,\,10254930004,\,10254930005,\,10254930006$

·	•	Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
1,1,1-Trichloroethane	ug/m3	ND	1.1	01/21/14 15:04	
1,1,2-Trichloroethane	ug/m3	ND	0.55	01/21/14 15:04	
1,1-Dichloroethane	ug/m3	ND	0.82	01/21/14 15:04	
1,1-Dichloroethene	ug/m3	ND	0.81	01/21/14 15:04	
1,2,3-Trimethylbenzene	ug/m3	ND	0.20	01/21/14 15:04	
1,2,4-Trichlorobenzene	ug/m3	ND	1.5	01/21/14 15:04	
1,2,4-Trimethylbenzene	ug/m3	ND	1.0	01/21/14 15:04	
1,2-Dichloroethane	ug/m3	ND	0.41	01/21/14 15:04	
1,3,5-Trimethylbenzene	ug/m3	ND	1.0	01/21/14 15:04	
Benzene	ug/m3	ND	0.32	01/21/14 15:04	
Carbon tetrachloride	ug/m3	ND	0.64	01/21/14 15:04	
Chlorodifluoromethane	ug/m3	ND	0.20	01/21/14 15:04	
Chloroform	ug/m3	ND	0.99	01/21/14 15:04	
cis-1,2-Dichloroethene	ug/m3	ND	0.81	01/21/14 15:04	
Dichlorodifluoromethane	ug/m3	ND	1.0	01/21/14 15:04	
Ethylbenzene	ug/m3	ND	0.88	01/21/14 15:04	
m&p-Xylene	ug/m3	ND	1.8	01/21/14 15:04	
Methyl-tert-butyl ether	ug/m3	ND	0.73	01/21/14 15:04	
Methylene Chloride	ug/m3	ND	0.71	01/21/14 15:04	
Naphthalene	ug/m3	ND	1.1	01/21/14 15:04	
o-Xylene	ug/m3	ND	0.88	01/21/14 15:04	
Tetrachloroethene	ug/m3	ND	0.69	01/21/14 15:04	
Toluene	ug/m3	ND	0.77	01/21/14 15:04	
trans-1,2-Dichloroethene	ug/m3	ND	0.81	01/21/14 15:04	
Trichloroethene	ug/m3	ND	0.55	01/21/14 15:04	
Vinyl chloride	ug/m3	ND	0.26	01/21/14 15:04	

LABORATORY CONTROL SAMPLE	E: 1615890					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
1,1,1-Trichloroethane	ug/m3	55.5	52.1	94	72-128	
1,1,2-Trichloroethane	ug/m3	55.5	56.8	102	72-130	
1,1-Dichloroethane	ug/m3	41.2	39.4	96	68-128	
1,1-Dichloroethene	ug/m3	40.3	38.4	95	68-130	
1,2,3-Trimethylbenzene	ug/m3	50	51.6	103	60-140	
1,2,4-Trichlorobenzene	ug/m3	75.5	63.0	84	30-150	
1,2,4-Trimethylbenzene	ug/m3	50	45.3	91	71-140	
1,2-Dichloroethane	ug/m3	41.2	38.7	94	71-132	
1,3,5-Trimethylbenzene	ug/m3	50	46.2	92	73-136	
Benzene	ug/m3	32.5	32.5	100	69-134	
Carbon tetrachloride	ug/m3	64	60.7	95	66-134	

REPORT OF LABORATORY ANALYSIS

(612)607-1700

QUALITY CONTROL DATA

Project:

117-0507599.20 SSD Oem

Pace Project No.: 10254930

Date: 01/31/2014 05:37 PM

LABORATORY CONTROL SAMPLE:	1615890					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Chlorodifluoromethane	ug/m3	36	33.3	93	60-140	
Chloroform	ug/m3	49.7	46.9	94	72-127	
cis-1,2-Dichloroethene	ug/m3	40.3	40.4	100	71-135	
Dichlorodifluoromethane	ug/m3	50.3	46.7	93	69-125	
Ethylbenzene	ug/m3	44.2	42.6	96	73-139	
m&p-Xylene	ug/m3	44.2	42.8	97	73-139	
Methyl-tert-butyl ether	ug/m3	36.7	36.2	99	72-132	
Methylene Chloride	ug/m3	35.3	32.5	92	64-134	
Naphthalene	ug/m3	53.3	44.4	83	61-150	
o-Xylene	ug/m3	44.2	42.0	95	71-138	
Tetrachloroethene	ug/m3	69	70.8	103	69-136	
Toluene	ug/m3	38.3	38.1	99	67-133	
trans-1,2-Dichloroethene	ug/m3	40.3	39.9	99	70-131	
Trichloroethene	ug/m3	54.6	56.2	103	70-135	
Vinyl chloride	ug/m3	26	25.9	100	69-132	

SAMPLE DUPLICATE: 161596	04					
		10254930006	Dup		Max	
Parameter	Units	Result	Result	RPD	RPD	Qualifiers
1,1,1-Trichloroethane	ug/m3	ND	ND		25	
1,1,2-Trichloroethane	ug/m3	ND	ND		25	
1,1-Dichloroethane	ug/m3	ND	ND		25	
1,1-Dichloroethene	ug/m3	ND	ND		25	
1,2,3-Trimethylbenzene	ug/m3	1.7	1.7	5	25	
1,2,4-Trichlorobenzene	ug/m3	ND	ND		25	
1,2,4-Trimethylbenzene	ug/m3	7.3	7.5	3	25	
1,2-Dichloroethane	ug/m3	ND	ND		25	
1,3,5-Trimethylbenzene	ug/m3	ND	3.7		25	
Benzene	ug/m3	4.8	4.8	.4	25	
Carbon tetrachloride	ug/m3	ND	ND		25	
Chlorodifluoromethane	ug/m3	4.3	4.1	4	25	
Chloroform	ug/m3	1.6	1.7	6	25	
cis-1,2-Dichloroethene	ug/m3	8.2	8.2	.4	25	
Dichlorodifluoromethane	ug/m3	ND	ND		25	
Ethylbenzene	ug/m3	ND	1.3J		25	
m&p-Xylene	ug/m3	3.6	3.6	.02	25	
Methyl-tert-butyl ether	ug/m3	ND	ND		25	
Methylene Chloride	ug/m3	2.3	2.3	1	25	
Naphthalene	ug/m3	4.8	4.7	1	25	
o-Xylene	ug/m3	ND	1.4		25	
Tetrachloroethene	ug/m3	ND	ND		25	
Toluene	ug/m3	26.3	23.8	10	25	
trans-1,2-Dichloroethene	ug/m3	ND	ND		25	
Trichloroethene	ug/m3	3.8	3.6	7	25	
Vinyl chloride	ug/m3	ND	ND		25	

REPORT OF LABORATORY ANALYSIS

Data File: \\192.168.10.12\chem\10air7.i\012114.b\02131.D

Report Date: 28-Jan-2014 11:04

Pace Analytical Services, Inc.

INTERNAL STANDARD COMPOUNDS AREA AND RT SUMMARY

Instrument ID: 10air7.i

Calibration Date: 21-JAN-2014 Calibration Time: 10:59

Lab File ID: 02131.D Lab Smp Id: 10254930003 Analysis Type: VOA Quant Type: ISTD

A-EFFLUENT

Level: LOW

Sample Type: AIR

Operator: DR1

Method File: \\192.168.10.12\chem\10air7.i\012114.b\T015 021-14.m

Misc Info: 19292

Test Mode:

Use Initial Calibration Level 5.

COMPOUND	STANDARD	AREA LOWER	LIMIT UPPER	SAMPLE	%DIFF
43 1,4-Difluorobenze 61 Chlorobenzene - d			1441976 662059	1081492 520375	5.00

		RT I			
COMPOUND	STANDARD	LOWER	UPPER	SAMPLE	%DIFF
=======================================	========	========	=======	========	======
43 1,4-Difluorobenze	5.52	5.19	5.85	5.51	-0.05
61 Chlorobenzene - d	8.49	8.16	8.82	8.48	-0.04

AREA UPPER LIMIT = + 40% of internal standard area. AREA LOWER LIMIT = - 40% of internal standard area.

Data File: \\192.168.10.12\chem\10air7.i\012114.b\02124.D

Report Date: 28-Jan-2014 11:04

Pace Analytical Services, Inc.

INTERNAL STANDARD COMPOUNDS AREA AND RT SUMMARY

Instrument ID: 10air7.i

Calibration Date: 21-JAN-2014 Calibration Time: 10:59

Lab File ID: 02124.D

Lab Smp Id: 10254930001 A-INFLUENT

Level: LOW

Analysis Type: VOA Quant Type: ISTD 1.57X

Sample Type: AIR

Operator: DR1

Method File: \\192.168.10.12\chem\10air7.i\012114.b\T015 021-14.m

Misc Info: 19292

Test Mode:

Use Initial Calibration Level 5.

COMPOUND	STANDARD	AREA LOWER	LIMIT UPPER	SAMPLE	%DIFF
43 1,4-Difluorobenze		617990	1441976	827555	-19.65
61 Chlorobenzene - d		283739	662059	420487	-11.08

		RT I	LIMIT		
COMPOUND	STANDARD	LOWER	UPPER	SAMPLE	%DIFF
=======================================	========	========		=======	======
43 1,4-Difluorobenze	5.52	5.19	5.85	5.52	0.06
61 Chlorobenzene - d	8.49	8.16	8.82	8.51	0.23

AREA UPPER LIMIT = + 40% of internal standard area. AREA LOWER LIMIT = - 40% of internal standard area.

Data File: \\192.168.10.12\chem\10air7.i\012414.b\02413.D

Report Date: 28-Jan-2014 11:05

Pace Analytical Services, Inc.

INTERNAL STANDARD COMPOUNDS AREA AND RT SUMMARY

Instrument ID: 10air7.i

Calibration Date: 24-JAN-2014

Calibration Time: 15:21

Lab File ID: 02413.D Lab Smp Id: 10254930001 Analysis Type: VOA A-INFLUENT Quant Type: ISTD

Level: LOW

Sample Type: AIR

Operator: AH2

125.6X

Method File: \\192.168.10.12\chem\10air7.i\012414.b\T015 022-14.m

Misc Info: 19292

Test Mode:

Use Initial Calibration Level 5.

COMPOUND	STANDARD	AREA LOWER	LIMIT UPPER	SAMPLE	%DIFF
43 1,4-Difluorobenze 61 Chlorobenzene - d		645808 567386		956681 718080	-11.12 -24.06

		RT I			
COMPOUND	STANDARD	LOWER	UPPER	SAMPLE	%DIFF
=======================================	=======	========	=======	=======	======
43 1,4-Difluorobenze	5.52	5.19	5.85	5.51	-0.12
61 Chlorobenzene - d	8.48	8.15	8.81	8.48	-0.04

AREA UPPER LIMIT = + 40% of internal standard area. AREA LOWER LIMIT = - 40% of internal standard area.

Data File: \\192.168.10.12\chem\10air7.i\012114.b\02130.D

Report Date: 28-Jan-2014 11:04

Pace Analytical Services, Inc.

INTERNAL STANDARD COMPOUNDS AREA AND RT SUMMARY

Instrument ID: 10air7.i

Calibration Date: 21-JAN-2014 Calibration Time: 10:59

Level: LOW

Lab File ID: 02130.D Lab Smp Id: 10254930002 A - MID GAC Analysis Type: VOA Quant Type: ISTD

Sample Type: AIR

Operator: DR1

Method File: \\192.168.10.12\chem\10air7.i\012114.b\T015 021-14.m

Misc Info: 19292

Test Mode:

Use Initial Calibration Level 5.

COMPOUND	STANDARD	AREA LOWER	LIMIT UPPER	SAMPLE	%DIFF
43 1,4-Difluorobenze		617990	1441976	1104200	7.21
61 Chlorobenzene - d		283739	662059	525854	11.20

		RT I	LIMIT	-	
COMPOUND	STANDARD	LOWER	UPPER	SAMPLE	%DIFF
=======================================	========	=======	========	========	======
43 1,4-Difluorobenze	5.52	5.19	5.85	5.51	-0.06
61 Chlorobenzene - d	8.49	8.16	8.82	8.48	-0.04

AREA UPPER LIMIT = + 40% of internal standard area. AREA LOWER LIMIT = - 40% of internal standard area.

Data File: \\192.168.10.12\chem\10air7.i\012114.b\02126.D

Report Date: 28-Jan-2014 11:04

Pace Analytical Services, Inc.

INTERNAL STANDARD COMPOUNDS AREA AND RT SUMMARY

Instrument ID: 10air7.i

Calibration Date: 21-JAN-2014 Calibration Time: 10:59

Lab File ID: 02126.D Lab Smp Id: 10254930006

Level: LOW

Analysis Type: VOA Quant Type: ISTD C-EFFLUENT

Sample Type: AIR

Operator: DR1
Method File: \\192.168.10.12\chem\10air7.i\012114.b\T015_021-14.m

Misc Info: 19292

Test Mode:

Use Initial Calibration Level 5.

		AREA	LIMIT		
COMPOUND	STANDARD	LOWER	UPPER	SAMPLE	%DIFF
=======================================	=========	=======	========	=======	=====
43 1,4-Difluorobenze	1029983	617990	1441976	1009940	-1.95
61 Chlorobenzene - d	472899	283739	662059	481429	1.80

COMPOUND	STANDARD	RT I LOWER	LIMIT UPPER	SAMPLE	%DIFF
43 1,4-Difluorobenze		5.19	5.85	5.51	-0.06
61 Chlorobenzene - d		8.16	8.82	8.48	-0.04

AREA UPPER LIMIT = + 40% of internal standard area. AREA LOWER LIMIT = - 40% of internal standard area.

Data File: \\192.168.10.12\chem\10air7.i\012114.b\02129.D

Report Date: 28-Jan-2014 11:04

Pace Analytical Services, Inc.

INTERNAL STANDARD COMPOUNDS AREA AND RT SUMMARY

Calibration Date: 21-JAN-2014 Calibration Time: 10:59

CINFLUENT

Level: LOW

Instrument ID: 10air7.i Lab File ID: 02129.D Lab Smp Id: 10254930004 Analysis Type: VOA Quant Type: ISTD

Sample Type: AIR

Operator: DR1

Method File: \\192.168.10.12\chem\10air7.i\012114.b\T015 021-14.m

1.8X

Misc Info: 19292

Test Mode:

Use Initial Calibration Level 5.

COMPOUND	STANDARD	AREA LOWER	LIMIT UPPER	SAMPLE	%DIFF
43 1,4-Difluorobenze		617990	1441976	1076043	4.47
61 Chlorobenzene - d		283739	662059	533955	12.91

		RT I	JIMIT	· · · · · · · · · · · · · · · · · · ·	
COMPOUND	STANDARD	LOWER	UPPER	SAMPLE	%DIFF
=======================================	=======	========	========	=======	======
43 1,4-Difluorobenze		5.19	5.85	5.52	0.06
61 Chlorobenzene - d	8.49	8.16	8.82	8.49	-0.00

AREA UPPER LIMIT = + 40% of internal standard area. AREA LOWER LIMIT = - 40% of internal standard area.

Data File: \\192.168.10.12\chem\10air7.i\012414.b\02412.D

Report Date: 28-Jan-2014 11:05

Pace Analytical Services, Inc.

trichloroethene

INTERNAL STANDARD COMPOUNDS AREA AND RT SUMMARY

Instrument ID: 10air7.i Lab File ID: 02412.D

Calibration Date: 24-JAN-2014

Calibration Time: 15:21

Lab Smp Id: 10254930004 (-INFLUENT

Level: LOW

Analysis Type: VOA 7.4X

Quant Type: ISTD

Sample Type: AIR

Operator: AH2

Method File: \\192.168.10.12\chem\10air7.i\012414.b\T015_022-14.m

Misc Info: 19292

Test Mode:

Use Initial Calibration Level 5.

COMPOUND	STANDARD	AREA LOWER	LIMIT UPPER	SAMPLE	%DIFF	
43 1,4-Difluorobenze 61 Chlorobenzene - d	1076347 945644	645808 567386		6374 2 6 645777	-40.78 -31.71	<-

		RT I	LIMIT		
COMPOUND	STANDARD	LOWER	UPPER	SAMPLE	%DIFF
=======================================	========	=======	========	========	======
43 1,4-Difluorobenze	5.52	5.19	5.85	5.51	-0.12
61 Chlorobenzene - d	8.48	8.15	8.81	8.48	-0.08

AREA UPPER LIMIT = + 40% of internal standard area. AREA LOWER LIMIT = - 40% of internal standard area. RT UPPER LIMIT = + 0.33 minutes of internal standard RT. RT LOWER LIMIT = - 0.33 minutes of internal standard RT.

Data File: \\192.168.10.12\chem\10air7.i\012114.b\02128.D

Report Date: 28-Jan-2014 11:04

Pace Analytical Services, Inc.

INTERNAL STANDARD COMPOUNDS AREA AND RT SUMMARY

Instrument ID: 10air7.i
Lab File ID: 02128.D

Calibration Date: 21-JAN-2014 Calibration Time: 10:59

Lab Smp Id: 10254930005 CMID GAC

Level: LOW

Analysis Type: VOA

Sample Type: AIR

Quant Type: ISTD

Operator: DR1

Method File: \\192.168.10.12\chem\10air7.i\012114.b\T015_021-14.m

Misc Info: 19292

Test Mode:

Use Initial Calibration Level 5.

COMPOUND	STANDARD	AREA LOWER	LIMIT UPPER	SAMPLE	%DIFF
43 1,4-Difluorobenze 61 Chlorobenzene - d		617990	1441976 662059	1040915 502922	1.06 6.35

		RT I	LIMIT		
COMPOUND	STANDARD	LOWER	UPPER	SAMPLE	%DIFF
=======================================	========	=======	=======	========	======
43 1,4-Difluorobenze	5.52	5.19	5.85	5.51	-0.06
61 Chlorobenzene - d		8.16	8.82	8.48	-0.04

AREA UPPER LIMIT = + 40% of internal standard area. AREA LOWER LIMIT = - 40% of internal standard area.

Pace Analytical"

Instrument Run Log

/ / 400/ 11/4/ 11/04/						
Instrument: 10AIR7 Column: J&W DB-5 0.32mm	Method: Tune Standard: 10288-3-8	10288-3-8	Misc. Prep. Info: ISTD Lot: 10288-3-8		Surrogate Lot: Cal. Standard:	Surrogate Lot: 10288-3-8 Cal. Standard: 10288-5-4/10288-5-5
Path/File Lab ID	Matrix/Batch Type DF pH Method	F pH Method	Date & Time	Oper.	Oper. Comments	

Check Maintenance It Changed septu Cleaned liner Replaced/Clear Additional Comments	02427.D	02426.D	02425.D	02424.D	02423.D	02422.D	02421.D	02420.D	02419.D	02418.D	02417.D	02416.D	02415.D	02414.D	02413.D	02412.D	02411.D	02410.D	02409.D	02408.D	02407.D	02406.D	02405LL.D	02405.D	02405A.D	02404.D	02403.D	02402LL.D	02402.D	02402A.D	02402L.D	02401BFB.D	Path/File
Check Maintenance Items Performed: Changed septum Cleaned liner Replaced/Cleaned gold seal Additional Comments:	CERT	CERT	CERT	0	10255176001	10255486002	10255486001	92186736021	92186864002	92186864005	92186864004	92186864001	92186864003	10255043002	10254930001	10254930004	10255103002	-DUP	10255529002	1615611	10255529001	10255714001	1615280	ਨ	1615282	ਨ	0	1615281	CCV	1615283	CCS	BFB	Lab ID
	ହ	ହ	ହ	ହ	G/19275	ହ	ହ	G/19275	G/19275	G/19275	G/19275	G/19275	G/19275	G/19275	G/19292	G/19292	G/19242	ହ	G/19276	G/19276	G/19276	G/19275	G/19275	ହ	G/19276	ହ	ହ	G/19275	ହ	G/19276	ହ	て	Matrix/Batch
Clipped column Changed trap - Lot # Cleaned MS Source	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Duplicate	Sample	Sample	Blank	Sample	Blank	Sample	Sample	CS	CCal	CS	CS	Tune	Type
ot #	-	_	_	_	1.57	8.4	1.49	1.34	1.49	1.39	1.39	1.44	1.39	350.4	125.6	7.4	1075.2	1715.2		1.34	1.34	1.49	_	_	_	_	_	_	_	-	_	_	묶
Changed column - Lot # Other minor parts replaced No maintenance performed today	TO15_022-14	TO15_022-14	TO15_022-14	TO15_022-14	TO15_022-14	TO15_022-14	TO15_022-14	TO15_022-14	TO15_022-14	TO15_022-14	TO15_022-14	TO15_022-14	TO15_022-14	TO15_022-14	TO15_022-14	TO15_022-14	TO15_022-14	TO15_022-14	TO15_022-14	TO15_022-14	TO15_022-14	TO15_022-14	TO15_022-14	TO15_022-14	TO15_022-14	TO15_022-14	TO15_022-14	TO15_022-14	TO15_022-14	TO15_022-14	TO15_022-14	50NG_BFB	pH Method
Lot # replaced erformed today	1/25/14 14:59	1/25/14 14:28	1/25/14 13:57	1/25/14 13:26	1/25/14 02:12	1/25/14 01:40	1/25/14 01:13	1/25/14 00:42	1/25/14 00:11	1/24/14 23:40	1/24/14 23:09	1/24/14 22:38	1/24/14 22:07	1/24/14 21:36	1/24/14 21:10	1/24/14 20:44	1/24/14 20:17	1/24/14 19:51	1/24/14 19:25	1/24/14 18:59	1/24/14 18:28	1/24/14 17:57	1/24/14 17:26	1/24/14 17:26	1/24/14 17:26	1/24/14 16:49	1/24/14 16:18	1/24/14 15:21	1/24/14 15:21	1/24/14 15:21	1/24/14 15:21	1/24/14 14:52	Date & Time
	AH2	AH2	AH2	AH2	AH2	AH2	AH2	AH2	AH2	AH2	AH2	AH2	AH2	AH2	AH2	AH2	AH2	AH2	AH2	AH2	AH2	AH2	AH2	AH2	AH2	AH2	AH2	AH2	모	AH2	몼	DR.1	Oper.
																																	Comments

File Path 1: U:\10AIR7.\\012414.B\
Matrix Codes: [G]as, [L]iquid, [S]olid, [N]one

Run order verified:

Report Date: 01/28/2014 15:04 Reviewed By/Date:

Sample Calculation Example and Curve Parameters

amount. The net result of this change is that the calculation for analyte concentration needs to be revised. Specifically, the average relative retention time factor (RRF) needs to be moved from the bottom of Equation 17 from the Pace TO-15 SOP below to the top of the division sign. January, concentrations were calculated by response rather than by amount. The EPA TO-15 method requires that curves are evaluated by Beginning in early January 2014, a change was made to the TO-15 methods that altered the way concentrations were calculated. Prior to

14.17. Calculate the concentration of the sample component using Equation 17:

Equation 17

$$T_{\alpha} = \frac{(A_{\alpha})(C_{i})(D_{f})}{(A_{i})(R_{\alpha})}$$

where:

C_x=Concentration of compound x in ppbv;
 A_x=EICP area of the quantitation ion for compound x;
 C_x=Concentration of the internal standard associated with compound x in ppbv;

D=Dilution factor from Equation 12 (if no dilution was performed, D_cequals 1.)

 A_i =EICP area of the quantitation ion for the internal standard associated with compound x_i =Average RRF for compound x from the most recent calibration curve.

equation 17, and m1 is equal to R_f. Once you apply the internal standard to the revised equation 17, it should be as follows: by the response (Rsp). It is important to note that this is before applying the internal standard calculation. Therefore, Rsp is equal to A_x from Below are images of the before and after change applied in target. In the before, you can see that the amount (Amt) is equal to the response (Rsp) divided by the average RRF (m1). In the after evaluation, you can see that the equation has moved the average RRF (m1) to be multiplied

$$C_x = \frac{(A_x)(C_t)(D_t)(R_x)}{A_t}$$

Revised equation 17

Project:

117-0507599.20 SSD Oem

Pace Project No.:

Date: 01/31/2014 05:37 PM

10254930

Sample: A-INFLUENT	Lab ID: 10254930001	Collected: 01/13/1	4 11:49	Received: 01/15/14 10:15	Matrix: Air	
Parameters	Results Units	Report Limit	DF	Prepared Analyzed	CAS No.	Qua
TO15 MSV AIR	Analytical Method: TO-15					
Benzene	ND ug/m3	0.51	1.57	01/21/14 19:48	3 71-43-2	
Carbon tetrachloride	ND ug/m3	1.0	1.57	01/21/14 19:48	3 56-23-5	
Chlorodifluoromethane	6.5 ug/m3	0.31	1.57	01/21/14 19:48	3 75-45-6	
Chloroform	11.6 ug/m3	1.6	1.57	01/21/14 19:48	8 67-66-3	
Dichlorodifluoromethane	2.2 ug/m3	1.6	1.57	01/21/14 19:48	3 75-71-8	
1,1-Dichloroethane	29.3 ug/m3	1.3	1.57	01/21/14 19:48	3 75-34-3	
1,2-Dichloroethane	ND ug/m3	0.64	1.57	01/21/14 19:48	3 107-06-2	
1,1-Dichloroethene	141 ug/m3	1.3	1.57	01/21/14 19:48	3 75-35-4	
cis-1,2-Dichloroethene	173 ug/m3	1.3	1.57	01/21/14 19:48	3 156-59-2	
rans-1,2-Dichloroethene	ND ug/m3	1.3	1.57	01/21/14 19:48	3 156-60-5	
Ethylbenzene	1.8 ug/m3	1.4	1.57	01/21/14 19:48	3 100-41-4	
Methylene Chloride	3.3 ug/m3	1.1	1.57	01/21/14 19:48	3 75-09-2	
Methyl-tert-butyl ether	ND ug/m3	1.1	1.57	01/21/14 19:48	3 1634-04-4	
Naphthalene	4.9 ug/m3	1.7	1.57	01/21/14 19:48	3 91-20-3	
Tetrachloroethene	ND ug/m3	1.1	1.57	01/21/14 19:48	3 127-18-4	
Toluene	9820 ug/m3	96.7	125.6	01/24/14 21:10	108-88-3	A3
1,2,4-Trichlorobenzene	ND ug/m3	2.4	1.57	01/21/14 19:48	3 120-82-1	
1,1,1-Trichloroethane	570 ug/m3	139	125.6	01/24/14 21:10	71-55-6	A3
1,1,2-Trichloroethane	ND <u>ug/m</u> 3	0.86	1.57	01/21/14 19:48	3 79-00-5	
Trichloroethene	795 ug/m3	69.1	125.6	01/24/14 21:10	79-01-6	A3
1,2,3-Trimethylbenzene	ND ug/m3	0.31	1.57	01/21/14 19:48	3 526-73-8	
1,2,4-Trimethylbenzene	1.9 ug/m3	1.6	1.57	01/21/14 19:48	3 95-63-6	
1,3,5-Trimethylbenzene	ND ug/m3	1.6	1.57	01/21/14 19:48	3 108-67-8	
Vinyl chloride	ND ug/m3	0.41	1.57	01/21/14 19:48	3 75-01-4	
m&p-Xylene	4.3 ug/m3	2.8	1.57	01/21/14 19:48	3 179601-23-1	
o-Xylene	1.7 ug/m3	1.4	1.57	01/21/14 19:48	3 95-47-6	

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

Sample Calculation

CONCENTRATIONS

Data File: \\192.168.10.12\chem\10air7.i\012414.b\02413.D

Report Date: 28-Jan-2014 11:05

Pace Analytical Services, Inc.

Inj Date : 24-JAN-2014 21:10

Operator : AH2 Inst ID: 10air7.i A-INFLUENT

Smp Info

Misc Info: 19292

Comment : Volatile Organic COMPOUNDS in Air

Method : \\192.168.10.12\chem\10air7.i\012414.b\T015_022-14.m

Meth Date : 25-Jan-2014 18:02 ahamilton Quant Type: ISTD

Cal Date : 23-JAN-2014 19:17 Cal File: 02308.D

Als bottle: 13

Dil Factor: 125.60000

Integrator: HP RTE Compound Sublist: all.sub

Target Version: 4.14

Processing Host: 10MNCREINDL

Concentration Formula: Amt * DF * Uf * CpndVariable

Name	Value	Description
DF Uf		Dilution Factor ng unit correction factor
Cpnd Variable		Local Compound Variable

							CONCENTRA	ATIONS
		QUANT SIG					ON-COLUMN	FINAL
Compounds		MASS	RT	EXP RT		RESPONSE	(ppbv)	(ppbv)
	rodifiuoromethane	==== 51		====== mpound Not			======	======
2 Propy		41		mpound Not				
	ylene Lorodifluoromethane	85		mpound Not				
	lorotetrafluoroethane	65 85		-				
				mpound Not				
	romethane	50		mpound Not				
_	l chloride	62		mpound Not				
7 1,3-E	Butadiene	54	Co	mpound Not	. Delecte	d.		
8 Bromo	omethane	94	Coi	mpound Not	Detecte	d.		
9 Chlor	roethane	64	Cor	mpound Not	Detecte	d.		
10 Ethar	nol	31	Cor	mpound Not	Detecte	d.		
11 Vinyl	l Bromide	106	Cor	mpound Not	Detecte	d.		
12 Isope	entane	43	Cor	mpound Not	Detecte	ed.		
13 Acrol	lein	56	Cor	mpound Not	Detecte	·d.		
14 Trick	nlorofluoromethane	101	Cor	mpound Not	Detecte	·d.		
15 Aceto	one	43	3.730	3.711 (0.677)	15130	0.17641	22.2(M)
16 Isopi	ropyl Alcohol	45	Cor	mpound Not	Detecte	d.		
17 Acryl	lonitrile	53	Cor	mpound Not	Detecte	d.		
18 1,1-1	Dichloroethene	61	3.907	3.914 (0.709)	7849	0.28269	35.5(M)
19 Tert	Butyl Alcohol (TBA)	59	Cor	mpound Not	Detecte	ed.		
20 Freor	n 113	101	Cor	mpound Not	Detecte	ed.		
21 Methy	ylene chloride	49	3.995	3.992 (0.725)	4930	0.32913	41.3
22 Allyl	1 Chloride	76	Cor	mpound Not	Detecte	ed.		
23 Carbo	on Disulfide	76	Cor	mpcund Not	Detecte	d.		

Sample Calculation

Data File: \\192.168.10.12\chem\10air7.i\012414.b\02413.D Report Date: 28-Jan-2014 11:05

		CONCENTRATIONS
	QUANT SIG	ON-COLUMN FINAL
Compounds	MASS	RT EXP RT REL RT RESPONSE (ppbv) (ppbv)
=======================================	====	
24 trans-1,2-dichloroethene	96	Compound Not Detected.
25 Methyl Tert Butyl Ether	73	Compound Not Detected.
26 Vinyl Acetate	43	Compound Not Detected.
27 1,1-Dichloroethane	63	Compound Not Detected.
\$ 28 Hexane-d14(S)	66	4.440 4.443 (0.806) 387171 11.3998 11.4
29 Methyl Ethyl Ketone	72	Compound Not Detected.
3C n-Hexane	57	Compound Not Detected.
31 Di-isopropyl Ether	45	Compound Not Detected.
32 Ethyl Acetate	43	Compound Not Detected.
33 cis-1,2-Dichloroethene	96	4.662 4.669 (3.846) 6402 0.33107 41.6(M)
34 Ethyl Tert-Butyl Ether	59	Compound Not Detected.
35 Chloroform	83	Compound Not Detected.
36 Tetrahydrofuran	42	Compound Not Detected.
37 1,1,1-Trichloroethane	97	5.146 5.156 (0.934) 53248 0.81762 103
38 1,2-Dichloroethane	62	Compound Not Detected.
	78	•
39 Benzene		Compound Not Detected.
40 Carbon tetrachloride	117	Compound Not Detected.
41 Cyclchexane	56	Compound Not Detected.
42 Tert Amyl Methyl Ether	73	Compound Not Detected.
* 43 1,4-Difluorobenzene	114	5.508 5.525 (1.000) 956681 10.0000
44 2,2,4-Trimethylpentane	5 7	Compound Not Detected.
45 Heptane	43	Compound Not Detected.
46 1,2-Dichloropropane	63	Compound Not Detected.
47 Trichloroethene	130	5.878 5.891 (1.067) (31662) 1.15807 145
48 1,4-Dioxane	88	Compound Not Detected.
49 Bromodichloromethane	83	Compound Not Detected.
50 Methylcyclohexane	9 8	Compound Not Detected.
51 Methyl Isobutyl Ketone	43	Compound Not Detected.
52 cis-1,3-Dichloropropene	75	Compound Not Detected.
53 trans-1,3-Dichloropropene	75	Compound Not Detected.
\$ 54 Toluene-d8 (\$)	98	6.937 6.950 (1.259) 971475 10.1100 10.1
55 1,1,2-Trichloroethane	97	Compound Not Detected.
56 Toluene	91	7.012 7.026 (1.273) 1583391 20.4134 2560
57 Methyl Butyl Ketone	43	Compound Not Detected.
58 Dibromochloromethane	129	
		Compound Not Detected.
59 1,2-Dibromoethane	107	Compound Not Detected.
60 Tetrachloroethene	166	Compound Not Detected.
* 61 Chlorobenzene - d5	117	8.480 8.493 (1.000) 718080 10.0000
62 Chlorobenzene	112	Compound Not Detected.
63 Ethyl Benzene	91	Compound Not Detected.
64 m&p-Xylene	91	Compound Not Detected.
65 Bromoform	173	Compound Not Detected.
66 Styrene	104	Compound Not Detected.
67 o-Xylene	91	Compound Not Detected.
68 1,1,2,2-Tetrachloroethane	83	Compound Not Detected.
69 Isopropylbenzene	105	Compound Not Detected.
70 N-Propylbenzene	91	Compound Not Detected.
71 4-Ethyltoluene	105	Compound Not Detected.
72 1,3,5-Trimethylbenzene	105	Compound Not Detected.
73 Tert-Butyl Benzene	119	Compound Not Detected.
74 1,2,4-Trimethylbenzene	105	Compound Not Detected.
75 1,3-Dichlorobenzene	146	Compound Not Detected.
76 Sec- Butylbenzene	105	Compound Not Detected.
-	150	11.686 11.713 (1.378) 429857 8.47192 8.47
\$ 77 1,4-dichlorobenzene-d4 (S)		
78 Benzyl Chloride	91	Compound Not Detected.

Report Date : 24-Jan-2014 10:52

Sample Calculation

Pace Analytical Services, Inc.

INITIAL CALIBRATION DATA

Start Cal Date : 23-JAN-2014 16:23
End Cal Date : 24-JAN-2014 04:32
Quant Method : ISTD : 4.14
Integrator : 4.14
Method file : \\192.168.10.12\chem\10air7.i\012314.b\T015_022-14.m
Last Edit : 24-Jan-2014 10:46 drandall

Compound	0.1000000 Level 1	0.20000000 Level 2	0.500000C Level 3	1.0000 Level 4	10.0000 Level 5	20.0000 Level 6		ь	Coefficients ml	m2:	: %RSD : or R^2
	30.0000 Level 7	 									: : :
41 Cyclobexane	5.34903 4.76528	6.33166	5.62484		4.90017	4.77911			 5.30025		10.5947
42 Tert Amyl Methyl Ether	+-+++	0.79143		1.33837 _i		1.69091			1.37813		27.0352
44 2,2,4-Trimethylpentane	1.62524	1.85764	1.77256	1.68144;	1.53633	1.55779			1.65927		 7.1702
45 Heptane	4.81440 5.18344		6,38025	5.94176	5.41986		AVRG		5.73952		 13.8022
46 1,2-Dichloropropane	5.30992 5.82885		5.93070	5.88811:	5.53756	5.68363	AVRG		5.78971		5.6813
47 TrichCorpethene	3.39606	4.17699			3.23204	3.22025	I I AVRG		3.49917)	 10.2389
48 1,4-Dioxane	8.97329			9.236231		8.50189			9.22905		1 16.1175
		 			 <u> </u>		I				_

INTERNAL CORRESPONDENCE

TO:

P. RICH

DATE:

MARCH 10, 2014

FROM:

A. COGNETTI

COPIES:

DV FILE

SUBJECT:

ORGANIC DATA VALIDATION - VOC

LOCKHEED MARTIN CORPORATION (LMC) - MIDDLE RIVER

SAMPLE DELIVERY GROUP (SDG) - 10257905

SAMPLES:

6/Air/VOC

A-EFFLUENT

A-INFLUENT

A-MID GAC C-MID GAC

C-EFFLUENT C-INFLUENT

<u>Overview</u>

The sample set for LMC – Middle River, SDG 10257905 consisted of six (6) air samples. All samples were analyzed for volatile organic compounds (VOC). No field duplicate pair is included in this SDG.

The samples were collected by Geo Trans on February 14, 2014 and analyzed by PACE Analytical. All analyses were conducted in accordance with EPA Method TO-15 analytical and reporting protocols.

The data contained in this SDG were validated with regard to the following parameters: data completeness, holding times, GC/MS tuning, initial/continuing calibrations, laboratory method blank results, surrogate spike recoveries, blank spike results, internal standard recoveries, chromatographic resolution, compound identification, compound quantitation, and detection limits. Areas of concern are listed below.

Major

No major noncompliances were noted.

Minor

No minor noncompliances were noted.

Notes

The chain of custody indicated that no gauges were provided with the summa canisters. This means that the canister pressure before and after sampling could not be evaluated. No validation action was taken.

Nondetected results were reported to the reporting limit.

Executive Summary

Laboratory Performance: None.

Other Factors Affecting Data Quality: None.

TO: P. Rich FROM: A. Cognetti SDG: 10257905

DATE: March 10, 2014

PAGE 2

The data for these analyses were reviewed with reference to Region III modifications to U.S. EPA National Functional Guidelines for Organic Data Validation (Sept. 1994) and EPA Method TO-15. The text of this report has been formulated to address only those problem areas affecting data quality.

Ann Cognetti

Chemist/Data Validator

Tetra Tech

Joseph A. Samchuck Data Validation Manager

Attachments:

Appendix A – Qualified Analytical Results Appendix B – Results as Reported by the Laboratory

Appendix C – Support Documentation

Appendix A

Qualified Analytical Results

Qualifier Codes:

A = Lab Blank Contamination

B = Field Blank Contamination

C = Calibration Noncompliance (i.e., % RSDs, %Ds, ICVs, CCVs, RRFs, etc.)

C01 = GC/MS Tuning Noncompliance

D = MS/MSD Recovery Noncompliance

E = LCS/LCSD Recovery Noncompliance

F = Lab Duplicate Imprecision

G = Field Duplicate Imprecision

H = Holding Time Exceedance

I = ICP Serial Dilution Noncompliance

J = ICP PDS Recovery Noncompliance; MSA's r < 0.995

K = ICP Interference - includes ICS % R Noncompliance

L = Instrument Calibration Range Exceedance

M = Sample Preservation Noncompliance

N = Internal Standard Noncompliance

N01 = Internal Standard Recovery Noncompliance Dioxins

N02 = Recovery Standard Noncompliance Dioxins

N03 = Clean-up Standard Noncompliance Dioxins

O = Poor Instrument Performance (i.e., base-time drifting)

P = Uncertainty near detection limit (< 2 x IDL for inorganics and <CRQL for organics)

Q = Other problems (can encompass a number of issues; i.e.chromatography,interferences, etc.)

R = Surrogates Recovery Noncompliance

S = Pesticide/PCB Resolution

T = % Breakdown Noncompliance for DDT and Endrin

U = RPD between columns/detectors >40% for positive results determined via GC/HPLC

V = Non-linear calibrations; correlation coefficient r < 0.995

W = EMPC result

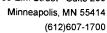
X = Signal to noise response drop

Y = Percent solids <30%

Z = Uncertainty at 2 standard deviations is greater than sample activity

Z1 = Tentatively Identified Compound considered presumptively present

Z2 = Tentatively Identified Compound column bleed


Z3 = Tentatively Identified Compound aldol condensate

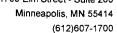
PROJ NO: 03265 NSAMPLE	A- EFFLUENT_20120214	A- INFLUENT_20120214	A- MID GAC_20120214	C-EFFLUENT_20120214
		10257905001	10257905002	10257905006
		2/14/2014	2/14/2014	2/14/2014
MEDIA: AIR QC_TYPE	NZ.	ΣZ	NA	NA.
	UG/M3	UG/M3	UG/M3	UG/M3
PCT_SOLIDS	DS			
DUP_OF				
PARAMETER	RESULT VOL QLCD	RESULT VOL QLCD	RESULT VOL QLCD	RESULT VOL ALCD
1,1,1-TRICHLOROETHANE	2.4	429	64.8	3.6
1,1,2-TRICHLOROETHANE	0.86 U	1.3 U	1.1 U	3.1
1,1-DICHLOROETHANE	26	21.2	31	2.5
1,1-DICHLOROETHENE	111	92.7	166	2.4
1,2,3-TRIMETHYLBENZENE	0.53 U	0.81 U	1.2 U	8.7
1,2,4-TRICHLOROBENZENE	2.4 U	3.6 U	2.9 U	3.3
1,2,4-TRIMETHYLBENZENE	1.6 U	2.4 U	1.9 U	6.1
1,2-DICHLOROETHANE	0.64 U	0.98 U	0.8 U	2.4
1,3,5-TRIMETHYLBENZENE	1.6 U	2.4 U	1.9 U	4.3
BENZENE	0.65	U 82.0	55.1	9.9
CARBON TETRACHLORIDE	1 0	1.5 U	1.2 U	3.3
CHLORODIFLUOROMETHANE	1.7	2.4	3.1	10.6
CHLOROFORM	1.6 U	7.4	3.1	3.8
CIS-1,2-DICHLOROETHENE	42.6	126	189	7
DICHLORODIFLUOROMETHANE	2.1	2.4 U	2.8	4.5
ETHYLBENZENE	U 4.1	2.1 U	1.7 U	2.9
M+P-XYLENES	2.8 U	4.2 U	3.4 ∪	3.4
METHYL TERT-BUTYL ETHER	1.1 U	1.8 U	1.4 U	2.1
METHYLENE CHLORIDE	J.1 U	2.1	1.4 U	1.3
NAPHTHALENE	1.7 U	2.6 U	2.1 U	3
O-XYLENE	1.4 U	2.1 U	1.7 U	2.8
TETRACHLOROETHENE	1.1 0	1.7 U	1.3 U	4.5
TOLUENE	4	15.3	1.5 U	4
TRANS-1,2-DICHLOROETHENE	1.3 U	1.9 U	2.5	2.3
TRICHLOROETHENE	10	843	54.9	5.7
VINYL CHLORIDE	0.41 U	0.62 U	0.5 U	0.44 U

PROJ_NO: 03265	NSAMPLE	C-INFLUENT_20120214	201202	14	C-MID GAC_20120214	1214
SDG: 10257905	LAB_ID	10257905004			10257905005	
FRACTION: OV	SAMP_DATE	2/14/2014			2/14/2014	
MEDIA: AIR	QC_TYPE	ΣZ		:	ΣN	
	UNITS	UG/M3			UG/M3	
	PCT_SOLIDS					
	DUP_OF					
PARAMETER		RESULT	ΛαΓ	arcd	RESULT VQL	L QLCD
1,1,1-TRICHLOROETHANE	ш	1.7	_		1.7 U	
1,1,2-TRICHLOROETHANE	ш	98.0	_		0.86 U	
1,1-DICHLOROETHANE		1.3)		1.3 U	
1,1-DICHLOROETHENE		1.3	_		1.3 U	
1,2,3-TRIMETHYLBENZENE	¥	0.53	ם		0.53 U	
1,2,4-TRICHLOROBENZENE	NE	2.4	n		2.4 U	
1,2,4-TRIMETHYLBENZENE	Ä	2.8			1.6 U	
1,2-DICHLOROETHANE		0.64	Π		0.64 U	
1,3,5-TRIMETHYLBENZENE	VE.	1.6	n		1.6 U	
BENZENE		1.8			5.8	
CARBON TETRACHLORIDE	JE	1	D		1 U	
CHLORODIFLUOROMETHANE	HANE	4.5			6.1	
CHLOROFORM		1.6)		1.6 U	
CIS-1,2-DICHLOROETHENE	빚	2.3			5.7	
DICHLORODIFLUOROMETHANE	THANE	2.2			2	
ETHYLBENZENE		2.1			1.4 U	
M+P-XYLENES		8.9			2.8 U	
METHYL TERT-BUTYL ETHER	HER	1.1	n		1.1 U	
METHYLENE CHLORIDE		1.1	n		1.1 U	
NAPHTHALENE		5.3			2.5	
O-XYLENE		4.7		j	1.4 U	
TETRACHLOROETHENE		2.2			1.1 U	_
TOLUENE		2.7			1.2 U	
TRANS-1,2-DICHLOROETHENE	HENE	1.3	⊃		1.3 U	
TRICHLOROETHENE		157			256	
VINYL CHLORIDE		0.41 U	<u> </u>		0.41 U	

Appendix B

Results as Reported by the Laboratory

Project:


117-0507599 SSD Oem

Pace Project No.: 10257905

Date: 03/04/2014 04:14 PM

Sample: A-Effluent	Lab ID: 10257905003	Collected: 02/14/14 16	:29 Received: 02/17/14 10:00 Matrix: Air
Parameters	Results Units	Report Limit DF	Prepared Analyzed CAS No. Qu
TO15 MSV AIR	Analytical Method: TO-15		
Benzene	0.65 ug/m3	0.51 1.5	7 02/28/14 08:53 71-43-2
Carbon tetrachloride	ND ug/m3	1.0 1.5	7 02/28/14 08:53 56-23-5
Chlorodifluoromethane	1.7 ug/m3	0.53 2.63	76 03/02/14 18:57 75-45-6
Chloroform	ND ug/m3	1.6 1.5	7 02/28/14 08:53 67-66-3
Dichlorodifluoromethane	2.1 ug/m3	1.6 1.5	7 02/28/14 08:53 75-71-8
1,1-Dichloroethane	26.0 ug/m3	1.3 1.5	7 02/28/14 08:53 75-34-3
1,2-Dichloroethane	ND ug/m3	0.64 1.5	7 02/28/14 08:53 107-06-2
1,1-Dichloroethene	111 ug/m3	1.3 1.5	7 02/28/14 08:53 75-35-4
cis-1,2-Dichloroethene	42.6 ug/m3	1.3 1.5	7 02/28/14 08:53 156-59-2
trans-1,2-Dichloroethene	ND ug/m3	1.3 1.5	7 02/28/14 08:53 156-60-5
Ethylbenzene	ND ug/m3	1.4 1.5	7 02/28/14 08:53 100-41-4
Methylene Chloride	ND ug/m3	1.1 1.5	7 02/28/14 08:53 75-09-2
Methyl-tert-butyl ether	ND ug/m3	1.1 1.5	7 02/28/14 08:53 1634-04-4
Naphthalene	ND ug/m3	1.7 1.5	7 02/28/14 08:53 91-20-3
Tetrachloroethene	ND ug/m3	1.1 1.5	7 02/28/14 08:53 127-18-4
Toluene	4.0 ug/m3	1.2 1.5	7 02/28/14 08:53 108-88-3
1,2,4-Trichlorobenzene	ND ug/m3	2.4 1.5	7 02/28/14 08:53 120-82-1
1,1,1-Trichloroethane	2.4 ug/m3	1.7 1.5	7 02/28/14 08:53 71-55-6
1,1,2-Trichloroethane	ND ug/m3	0.86 1.5	7 02/28/14 08:53 79-00-5
Trichloroethene	10 ug/m3	0.86 1.5	7 02/28/14 08:53 79-01-6
1,2,3-Trimethylbenzene	ND ug/m3	0.53 2.63	76 03/02/14 18:57 526-73-8
1,2,4-Trimethylbenzene	ND ug/m3	1.6 1.5	02/28/14 08:53 95-63-6
1,3,5-Trimethylbenzene	ND ug/m3	1.6 1.5	7 02/28/14 08:53 108-67-8
Vinyl chloride	ND ug/m3	0.41 1.5	7 02/28/14 08:53 75-01-4
m&p-Xylene	ND ug/m3	2.8 1.5	7 02/28/14 08:53 179601-23-1
o-Xylene	ND ug/m3	1.4 1.5	02/28/14 08:53 95-47-6

REPORT OF LABORATORY ANALYSIS

Project:

117-0507599 SSD Oem

Pace Project No.:

Date: 03/04/2014 04:14 PM

10257905

Sample: A- Influent	Lab ID: 10257905001	Collected: 02/14/14	16:25	Received: 02/17/14 10:	00 Matrix: Air	
Parameters	Results Units	Report Limit	DF	Prepared Analy:	zed CAS No.	Qua
TO15 MSV AIR	Analytical Method: TO-15					
Benzene	ND ug/m3	0.78	2.4	02/28/14	07:51 71-43-2	
Carbon tetrachloride	ND ug/m3	1.5	2.4	02/28/14	07:51 56-23-5	
Chlorodifluoromethane	2.4 ug/m3	0.81	4.032	03/02/14	20:21 75-45-6	
Chloroform	7.4 ug/m3	2.4	2.4	02/28/14	07:51 67 - 66-3	
Dichlorodifluoromethane	ND ug/m3	2.4	2.4	02/28/14	07:51 75-71-8	
1,1-Dichloroethane	21.2 ug/m3	2.0	2.4	02/28/14	07:51 75-34-3	
1,2-Dichloroethane	ND ug/m3	0.98	2.4	02/28/14	07:51 107-06-2	
1,1-Dichloroethene	92.7 ug/m3	1.9	2.4	02/28/14	07:51 75-35-4	
cis-1,2-Dichloroethene	126 ug/m3	1.9	2.4	02/28/14	07:51 156-59-2	
trans-1,2-Dichloroethene	ND ug/m3	1.9	2.4	02/28/14	07:51 156-60-5	
Ethylbenzene	ND ug/m3	2.1	2.4	02/28/14	07:51 100-41-4	
Methylene Chloride	2.1 ug/m3	1.7	2.4	02/28/14	07:51 75-09-2	
Methyl-tert-butyl ether	ND ug/m3	1.8	2.4	02/28/14	07:51 1634-04-4	
Naphthalene	ND ug/m3	2.6	2.4	02/28/14	07:51 91-20-3	
Tetrachloroethene	ND ug/m3	1.7	2.4	02/28/14	07:51 127-18-4	
Toluene	15.3 ug/m3	1.8	2.4	02/28/14	07:51 108-88-3	
1,2,4-Trichlorobenzene	ND ug/m3	3.6	2.4	02/28/14	07:51 120-82-1	
1,1,1-Trichloroethane	429 ug/m3	2.7	2.4	02/28/14	07:51 71-55-6	
1,1,2-Trichloroethane	ND ug/m3	1.3	2.4	02/28/14	07:51 79-00-5	
Trichloroethene	843 ug/m3	26.4	48	02/28/14	15:45 79-01-6	
1,2,3-Trimethylbenzene	ND ug/m3	0.81	4.032	03/02/14	20:21 526-73-8	
1,2,4-Trimethylbenzene	ND ug/m3	2.4	2.4	02/28/14	07:51 95-63-6	
1,3,5-Trimethylbenzene	ND ug/m3	2.4	2.4	02/28/14	07:51 108-67-8	
Vinyl chloride	ND ug/m3	0.62	2.4	02/28/14	07:51 75-01-4	
m&p-Xylene	ND ug/m3	4.2	2.4	02/28/14	07:51 179601-23-1	
o-Xylene	ND ug/m3	2.1	2.4	02/28/14	07:51 95-47-6	

Project:

117-0507599 SSD Oem

Pace Project No.: 10257905

Date: 03/04/2014 04:14 PM

Sample: A- Mid Gac	Lab ID: 10257905002	Collected: 02/14/14 16:27	Received: 02/17/14 10:00 Matrix: Air
Parameters	Results Units	Report Limit DF	Prepared Analyzed CAS No. Qu
TO15 MSV AIR	Analytical Method: TO-15		
Benzene	55.1 ug/m3	0.63 1.94	02/28/14 08:22 71-43-2
Carbon tetrachloride	ND ug/m3	1.2 1.94	02/28/14 08:22 56-23-5
Chlorodifluoromethane	3.1 ug/m3	1.2 5.7618	03/02/14 18:28 75-45-6
Chloroform	3.1 ug/m3	1.9 1.94	02/28/14 08:22 67-66-3
Dichlorodifluoromethane	2.8 ug/m3	2.0 1.94	02/28/14 08:22 75-71-8
1,1-Dichloroethane	31.0 ug/m3	1.6 1.94	02/28/14 08:22 75-34-3
1,2-Dichloroethane	ND ug/m3	0.80 1.94	02/28/14 08:22 107-06-2
1,1-Dichloroethene	166 ug/m3	1.6 1.94	02/28/14 08:22 75-35-4
cis-1,2-Dichloroethene	189 ug/m3	1.6 1. 94	02/28/14 08:22 156-59-2
trans-1,2-Dichloroethene	2.5 ug/m3	1.6 1.94	02/28/14 08:22 156-60-5
Ethylbenzene	ND ug/m3	1.7 1.94	02/28/14 08:22 100-41-4
Methylene Chloride	ND ug/m3	1.4 1.94	02/28/14 08:22 75-09-2
Methyl-tert-butyl ether	ND ug/m3	1.4 1.94	02/28/14 08:22 1634-04-4
Naphthalene	ND ug/m3	2.1 1.94	02/28/14 08:22 91-20-3
Tetrachloroethene	ND ug/m3	1.3 1.94	02/28/14 08:22 127-18-4
Toluene	ND ug/m3	1.5 1.94	02/28/14 08:22 108-88-3
1,2,4-Trichlorobenzene	ND ug/m3	2.9 1.94	02/28/14 08:22 120-82-1
1,1,1-Trichloroethane	64.8 ug/m3	2.2 1.94	02/28/14 08:22 71-55-6
1,1,2-Trichloroethane	ND ug/m3	1.1 1.94	02/28/14 08:22 79-00-5
Trichloroethene	54.9 ug/m3	1.1 1.94	02/28/14 08:22 79-01-6
1,2,3-Trimethylbenzene	ND ug/m3	1.2 5.7618	03/02/14 18:28 526-73-8
1,2,4-Trimethylbenzene	ND ug/m3	1.9 1.94	02/28/14 08:22 95-63-6
1,3,5-Trimethylbenzene	ND ug/m3	1.9 1.94	02/28/14 08:22 108-67-8
Vinyl chloride	ND ug/m3	0.50 1.94	02/28/14 08:22 75-01-4
m&p-Xyleпе	ND ug/m3	3.4 1.94	02/28/14 08:22 179601-23-1
o-Xylene	ND ug/m3	1.7 1.94	02/28/14 08:22 95-47-6

REPORT OF LABORATORY ANALYSIS

Project:

117-0507599 SSD Oem

Pace Project No.:

Date: 03/04/2014 04:14 PM

10257905

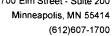
Sample: C-Effluent	Lab ID: 10257905006	Collected: 02/14/14 15:54	4 Received: 02/17/14 10:00 Matrix: Air
Parameters	Results Units	Report Limit DF	Prepared Analyzed CAS No. Qu
TO15 MSV AIR	Analytical Method: TO-15		
Benzene	6.6 ug/m3	0.55 1.68	02/28/14 10:26 71-43-2
Carbon tetrachloride	3.3 ug/m3	1.1 1.68	02/28/14 10:26 56-23-5
Chlorodifluoromethane	10.6 ug/m3	0.77 3.8472	03/02/14 19:53 75-45-6
Chloroform	3.8 ug/m3	1.7 1.68	02/28/14 10:26 67-66-3
Dichlorodifluoromethane	4.5 ug/m3	1.7 1.68	02/28/14 10:26 75-71-8
1,1-Dichloroethane	2.5 ug/m3	1.4 1.68	02/28/14 10:26 75-34-3
1,2-Dichloroethane	2.4 ug/m3	0.69 1.68	02/28/14 10:26 107-06-2
1,1-Dichloroethene	2.4 ug/m3	1.4 1.68	02/28/14 10:26 75-35-4
cis-1,2-Dichloroethene	7.0 ug/m3	1.4 1.68	02/28/14 10:26 156-59-2
trans-1,2-Dichloroethene	2.3 ug/m3	1.4 1.68	02/28/14 10:26 156-60-5
Ethylbenzene	2.9 ug/m3	1.5 1.68	02/28/14 10:26 100-41-4
Methylene Chloride	1.3 ug/m3	1.2 1.68	02/28/14 10:26 75-09-2
Methyl-tert-butyl ether	2.1 ug/m3	1.2 1.68	02/28/14 10:26 1634-04-4
Naphthalene	3.0 ug/m3	1.8 1.68	02/28/14 10:26 91-20-3
Tetrachloroethene	4.5 ug/m3	1.2 1.68	02/28/14 10:26 127-18-4
Toluene	4.0 ug/m3	1.3 1.68	02/28/14 10:26 108-88-3
1,2,4-Trichlorobenzene	3.3 ug/m3	2.5 1.68	02/28/14 10:26 120-82-1
1,1,1-Trichloroethane	3.6 ug/m3	1.9 1.68	02/28/14 10:26 71-55-6
1,1,2-Trichloroethane	3.1 ug/m3	0.92 1.68	02/28/14 10:26 79-00-5
Trichloroethene	5.7 ug/m3	0.92 1.68	02/28/14 10:26 79-01-6
1,2,3-Trimethylbenzene	8.7 ug/m3	0.77 3.8472	03/02/14 19:53 526-73-8
1,2,4-Trimethylbenzene	6.1 ug/m3	1.7 1.68	02/28/14 10:26 95-63-6
1,3,5-Trimethylbenzene	4.3 ug/m3	1.7 1.68	02/28/14 10:26 108-67-8
Vinyl chloride	ND ug/m3	0.44 1.68	02/28/14 10:26 75-01-4
m&p-Xylene	3.4 ug/m3	3.0 1.68	02/28/14 10:26 179601-23-1
o-Xylene	2.8 ug/m3	1.5 1.68	02/28/14 10:26 95-47-6

Minneapolis, MN 55414 (612)607-1700

ANALYTICAL RESULTS

Project:

117-0507599 SSD Oem


Pace Project No.:

Date: 03/04/2014 04:14 PM

10257905

Sample: C-Influent	Lab ID: 10257905004	Collected: 02/14/14 1	5:50 Received	I: 02/17/14 10:00 I	Matrix: Air	
Parameters	Results Units	Report Limit D	F Prepare	ed Analyzed	CAS No.	Qual
TO15 MSV AIR	Analytical Method: TO-15					
Benzene	1.8 ug/m3	0.51 1.	57	02/28/14 09:24	1 71-43-2	
Carbon tetrachloride	ND ug/m3	1.0 1.	57	02/28/14 09:24	1 56-23-5	
Chlorodifluoromethane	4.5 ug/m3	0.53 2.6	376	03/02/14 20:49	75-45-6	
Chloroform	ND ug/m3	1.6 1.	57	02/28/14 09:24	1 67-66-3	
Dichlorodifluoromethane	2.2 ug/m3	1.6 1.	57	02/28/14 09:24	1 75-71-8	
1,1-Dichloroethane	ND ug/m3	1.3 1.	57	02/28/14 09:24	75-34-3	
1,2-Dichloroethane	ND ug/m3	0.64 1.	57	02/28/14 09:24	1 107-06-2	
1,1-Dichloroethene	ND ug/m3	1.3 1.	57	02/28/14 09:24	75-35-4	
cis-1,2-Dichloroethene	2.3 ug/m3	1.3 1.	57	02/28/14 09:24	1 156-59-2	
trans-1,2-Dichloroethene	ND ug/m3	1.3 1.	57	02/28/14 09:24	1 156-60-5	
Ethylbenzene	2.1 ug/m3	1.4 1.	57	02/28/14 09:24	1 100-41-4	
Methylene Chloride	ND ug/m3	1.1 1.	57	02/28/14 09:24	75-09-2	
Methyl-tert-butyl ether	ND ug/m3	1.1 1.	57	02/28/14 09:24	1 1634-04-4	
Naphthalene	5.3 ug/m3	1.7 1.	57	02/28/14 09:24	91-20-3	
Tetrachloroethene	2.2 ug/m3	1.1 1.	57	02/28/14 09:24	1 127-18-4	
Toluene	2.7 ug/m3	1.2 1.	57	02/28/14 09:24	1 108-88-3	
1,2,4-Trichlorobenzene	ND ug/m3	2.4 1.	57	02/28/14 09:24	1 120-82-1	
1,1,1-Trichloroethane	ND ug/m3	1.7 1.	57	02/28/14 09:24	1 71-55-6	
1,1,2-Trichloroethane	ND ug/m3	0.86 1.	57	02/28/14 09:24	1 79-00-5	
Trichloroethene	157 ug/m3	0.86 1.	57	02/28/14 09:24	1 79-01-6	
1,2,3-Trimethylbenzene	ND ug/m3	0.53 2.6	376	03/02/14 20:49	526-73-8	
1,2,4-Trimethylbenzene	2.8 ug/m3	1.6 1.	57	02/28/14 09:24	95-63-6	
1,3,5-Trimethylbenzene	ND ug/m3	1.6 1.	57	02/28/14 09:24	1 108-67-8	
Vinyl chloride	ND ug/m3	0.41 1.	57	02/28/14 09:24	1 75-01-4	
m&p-Xylene	8.9 ug/m3	2.8 1.	57	02/28/14 09:24	179601-23-1	
o-Xylene	4.7 ug/m3	1.4 1.	57	02/28/14 09:24	95-47-6	

REPORT OF LABORATORY ANALYSIS

Project:

117-0507599 SSD Oem

Pace Project No.:

Date: 03/04/2014 04:14 PM

10257905

Sample: C-Mid Gac	Lab ID: 10257905005	Collected: 02/14/14 15:	52 Received: 02/17/14 10:00 Matrix: Air	
Parameters	Results Units	Report Limit DF	Prepared Analyzed CAS No. C	Qual
TO15 MSV AIR	Analytical Method: TO-15			
Benzene	5.8 ug/m3	0.51 1.57	7 02/28/14 09:54 71-43-2	
Carbon tetrachloride	ND ug/m3	1.0 1.57	7 02/28/14 09:54 56-23-5	
Chlorodifluoromethane	6.1 ug/m3	0.53 2.637	76 03/02/14 19:25 75-45-6	
Chloroform	ND ug/m3	1.6 1.57	7 02/28/14 09:54 67-66-3	
Dichlorodifluoromethane	2.0 ug/m3	1.6 1.57	7 02/28/14 09:54 75-71-8	
1,1-Dichloroethane	ND ug/m3	1.3 1.57	7 02/28/14 09:54 75-34-3	
1,2-Dichloroethane	ND ug/m3	0.64 1.57	7 02/28/14 09:54 107-06-2	
1,1-Dichloroethene	ND ug/m3	1.3 1.57	7 02/28/14 09:54 75-35-4	
cis-1,2-Dichloroethene	5.7 ug/m3	1.3 1.57	7 02/28/14 09:54 156-59-2	
trans-1,2-Dichloroethene	ND ug/m3	1.3 1.57	7 02/28/14 09:54 156-60-5	
Ethylbenzene	ND ug/m3	1.4 1.57	7 02/28/14 09:54 100-41-4	
Methylene Chloride	ND ug/m3	1.1 1.57	7 02/28/14 09:54 75-09-2	
Methyl-tert-butyl ether	ND ug/m3	1.1 1.57	7 02/28/14 09:54 1634-04-4	
Naphthalene	2.5 ug/m3	1.7 1.57	7 02/28/14 09:54 91-20-3	
Tetrachloroethene	ND ug/m3	1.1 1.57	7 02/28/14 09:54 127-18-4	
Toluene	ND ug/m3	1.2 1.57	7 02/28/14 09:54 108-88-3	
1,2,4-Trichlorobenzene	ND ug/m3	2.4 1.57	7 02/28/14 09:54 120-82-1	
1,1,1-Trichloroethane	ND ug/m3	1.7 1.57	7 02/28/14 09:54 71-55-6	
1,1,2-Trichloroethane	ND ug/m3	0.86 1.57	7 02/28/14 09:54 79-00-5	
Trichloroethene	256 ug/m3	0.86 1.57	7 02/28/14 09:54 79-01-6	
1,2,3-Trimethylbenzene	ND ug/m3	0.53 2.637	76 03/02/14 19:25 526-73-8	
1,2,4-Trimethylbenzene	ND ug/m3	1.6 1.57	7 02/28/14 09:54 95-63-6	
1,3,5-Trimethylbenzene	ND ug/m3	1.6 1.57	7 02/28/14 09:54 108-67-8	
Vinyl chloride	ND ug/m3	0.41 1.57	7 02/28/14 09:54 75-01-4	
m&p-Xylene	ND ug/m3	2.8 1.57	7 02/28/14 09:54 179601-23-1	
o-Xylene	ND ug/m3	1.4 1.57	7 02/28/14 09:54 95-47-6	

REPORT OF LABORATORY ANALYSIS

Appendix C

Support Documentation

PROJECT NARRATIVE

Project:

117-0507599 SSD Oem

Pace Project No.:

10257905

Method: TC

TO-15

Description: TO15 MSV AIR

Client:

Tetra Tech GEO - Maryland

Date:

March 04, 2014

General Information:

6 samples were analyzed for TO-15. All samples were received in acceptable condition with any exceptions noted below.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Internal Standards:

All internal standards were within QC limits with any exceptions noted below.

Surrogates:

All surrogates were within QC limits with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Additional Comments:

This data package has been reviewed for quality and completeness and is approved for release.

AIR: CHAIN-OF-CUSTODY / Analytical Request Document

The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.

Pace Analytical"
www.pacelabs.com

Samples Intact Y/N Y/N Y/N SAMPLE CONDITIONS Clean Air Act Pace Lab ID Reporting Units
ug/m² mg/m²
PPBV PPMV Sealed Cooler Ø ₹ N/A N/A 000 500 Voluntary Clean Up Dry Clean RCRA 5 Cretody $\overline{\circ}$ 3 0 00 Page: eo| 9 Ø Other N/A N/A N从 JEST HOUS STOT Received on Superfund Emissions may O° ni qmeT 14766 QUE イメイメ Program TIME 3 Location of Sampling by State イルブ DATE Report Level UST Method: **Control Number** ACCEPTED BY / AFFILIATION paco 666666 800 - 166 800 - 166 800 - 106 800 Number Summa Can SAMPLER NAME AND SIGNATURE (Final Field - psig) 1430 TIME (Initial Field - psig) Canister Pressure ace Project Manager/Sales Rep. /FS/V DATE TIME CARD 4 ace Quote Reference: DATE COLLECTED Company Name: PANK THUMO ace Profile #: RELINQUISHED BY / AFFILIATION 1.00N#2014 | 1.00N | 1 Section C Attention: Address: DATE Project Number 117-05075P PID Reading (Cllent only) MEDIA CODE Required Project Information. Tedlar Bag TB
Tedlar Bag TB
TLiter Summa Can 1LC
6 Liter Summa Can 6LC
Low Volume Puff LVP
High Volume Puff HVP
Other urchase Order No.: Section B Report To: Copy To: mail To:

Defect, Cych & Arratech, Com
Mon. 96 4 (LOT)
Requested Due Date/TAT: 'Section D Required Client Information **AIR SAMPLE ID** Sample IDs MUST BE UNIQUE -INFLUENT - EFFLUEN Acarthro & -MID GAC -INFLUENT C-MIED GAC EFFLUENT Soft yes Required Client Information: Per Tech ITEM # Page 16 of 17

Pace Analytical*

Document Name: Air Sample Condition Upon Receipt

Document No.: F-MN-A-106-rev.09 Document Revised: 26Dec2013 Page 1 of 1

Issuing Authority: Pace Minnesota Quality Office

Linea Bossint	ient Name:		Project #	[™] WO#	: 1025790	05	
Courier: ZF	ommercial Pace	USPS [_ Client	102579	1111		
racking Number:	64864972563						
ustody Seal on Cooler/B	ox Present? Yes	No Seals	Intact?	Yes No	Optional: Proj. Due Date:	Proj. Name:	
acking Material: Bubble Wrap Bubble Bags Foam N			None	Other:	her: Temp Blank rec: Yes		
		orrected Temp (°C):	Thermom. Used:		□888A912167504 □72337080 □888A9132521491 □80512447		
emp should be above freez	ing to 6°C Correction Factor	·	_	Date & Initials of	Person Examining Contents:	9221714	
oe of ice Received 🔲 🛭 🖽	ue 🗌 Wet 🔎 None						
					Comments:		
Chain of Custody Present		Ves □No		1.			
Chain of Custody Filled Out?		Yes No		2.			
Chain of Custody Relinquished?		Yes No		3.			
Sampler Name and/or Signature on COC?		Yes No		4.	·		
Samples Arrived within Ho	Yes No		5.	·			
Short Hold Time Analysis		Yes No		6.			
Rush Turn Around Time F	Requested?	Yes No		7.			
Sufficient Volume?		Yes No		8.		· · · · · · · · · · · · · · · · · · ·	
Correct Containers Used?		Yes No		9.			
Tada da kanana a da kanana a da kanana a da kanana a da kanana a da kanana a da kanana a da kanana a da kanana						····-	
Containers Intact? Yes No			N/A	10.			
Media: Eir ton				11.			
Sample Labels Match COC	?	Yés No	D □N/A	12.			
Samples Received:							
Canisters		Flow Controllers		Stand Alone G			
Sample Number	Can ID	Sample Number		Can ID	Sample Number	Can ID	
4 influent	2508					 	
A mid yac	2557	·					
A effluent	2454	···					
c influent	2571						
C Mid yec	2255						
C effluent	2459					_	
<u>-</u>							
····							
						<u> </u>	
LIENT NOTIFICATION/R	ESOLUTION				Field Data Required	? Yes No	
Person Contacted:				Date/Time:	·		
Comments/Resol	ution:						

Project Manager Review:

Note: Whenever there is a discrepancy affecting North Carolina compliance samples, a copy of this form will be sent to the North Carolina DEHNR Certification Office (i.e. out of hold, incorrect preservative, out of temp, incorrect containers)

SDG 10257905

SORT	UNITS	NSAMPLE	LAB_ID	QC_TYPE	SAMP_DATE	EXTR_DATE	ANAL_DATE	SMP_EXTR	EXTR_ANL	SMP_ANL
	UG/M3	C-MID GAC	10257905005	WN	02/14/2014	03/02/2014	03/02/2014	16	0	16
	UG/M3	C-MID GAC	10257905005	N Z	02/14/2014	02/28/2014	02/28/2014	14	0	14
	UG/M3	C-INFLUENT	10257905004	N N	02/14/2014	03/02/2014	03/02/2014	16	0	16
	UG/M3	C-INFLUENT	10257905004	W.	02/14/2014	02/28/2014	02/28/2014	14	0	14
	UG/M3	C-EFFLUENT	10257905006	∑ Z	02/14/2014	03/02/2014	03/02/2014	16	0	16
	UG/M3	C-EFFLUENT	10257905006	N N	02/14/2014	02/28/2014	02/28/2014	41	0	14
	UG/M3	A-EFFLUENT	10257905003	N N	02/14/2014	03/02/2014	03/02/2014	16	0	16
	UG/M3	A-EFFLUENT	10257905003	∑ Z	02/14/2014	02/28/2014	02/28/2014	14	0	14
	UG/M3	A- MID GAC	10257905002	N Z	02/14/2014	03/02/2014	03/02/2014	16	0	16
	UG/M3	A- MID GAC	10257905002	N Z	02/14/2014	02/28/2014	02/28/2014	14	0	14
	UG/M3	A- INFLUENT	10257905001	N Z	02/14/2014	03/02/2014	03/02/2014	16	0	16
	UG/M3	A- INFLUENT	10257905001	ΣZ	02/14/2014	02/28/2014	02/28/2014	14	0	14

Minneapolis, MN 55414 (612)607-1700

SAMPLE SUMMARY

Project:

117-0507599 SSD Oem

Pace Project No.:

10257905

Lab ID	Sample ID	Matrix	Date Collected	Date Received
10257905001	A- Influent	Air	02/14/14 16:25	02/17/14 10:00
10257905002	A- Mid Gac	Air	02/14/14 16:27	02/17/14 10:00
10257905003	A-Effluent	Air	02/14/14 16:29	02/17/14 10:00
10257905004	C-Influent	Air	02/14/14 15:50	02/17/14 10:00
10257905005	C-Mid Gac	Air	02/14/14 15:52	02/17/14 10:00
10257905006	C-Effluent	Air	02/14/14 15:54	02/17/14 10:00

REPORT OF LABORATORY ANALYSIS

5A - FORM V VOA VOLATILE ORGANIC INSTRUMENT PERFORMANCE CHECK BROMOFLUOROBENZENE (BFB)

EPA SAMPLE NO.

BFB

Lab Name: Pace Analytical

Contract:

Lab Code: **PASI**

Case No.:

SAS No.:

SDG No.: 10257905

Lab File ID: 05801BFB.D

BFB Injection Date: 02/27/2014

Instrument ID: 10AIRD

BFB Injection Time: 13:20

GC Column: J&W DB-5 ID: 0.32

(mm)

		% RELATIVE	
m/e	ION ABUNDANCE CRITERIA	ABUNDANCE	Ē
95	Base Peak, 100% relative abundance	100.00	
50	8.00 - 40.00% of mass 95	22.30	
75	30.00 - 66.00% of mass 95	55.93	
96	5.00 - 9.00% of mass 95	6.87	
173	Less than 2.00% of mass 174	0.92	(1.12)
174	50.00 - 120.00% of mass 95	82.30	
175	4.00 - 9.00% of mass 174	6.43	(7.82)
176	93.00 - 101.00% of mass 174	82.39	(100.11)
177	5.00 - 9.00% of mass 176	5.07	(6.15)

1 - Value is %mass 174

2 - Value is %mass 176

	EPA SAMPLE NO.	LAB SAMPLE ID	LAB FILE ID	DATE ANALYZED	TIME ANALYZED
1	CAL4	CAL4	05803.D	02/27/2014	14:24
2	CAL5	CAL5	05804.D	02/27/2014	14:55
3	CAL6	CAL6	05805.D	02/27/2014	15:29
4	CAL1	CAL1	05807.D	02/27/2014	16:23
5	CAL2	CAL2	05808.D	02/27/2014	16:50
6	CAL3	CAL3	05809.D	02/27/2014	17:19
7	ICVADDN'L (LCS)	ICVADDN'L	05810.D	02/27/2014	17:47
8	ICV (LCS)	ICV	05811.D	02/27/2014	18:15
9	LCS (LCS)	LCS	05812.D	02/27/2014	18:44
10	LCS for HBN 287898 [AIR/	1632767	05812L.D	02/27/2014	18:44
11	BLANK for HBN 287898 [Al	1632768	05814L.D	02/27/2014	19:42
12	BLANK	BLANK	05814.D	02/27/2014	19:42
13	0	0	05816.D	02/27/2014	20:40
14	A- Influent	10257905001	05839.D	02/28/2014	07:51
15	A- Mid Gac	10257905002	05840.D	02/28/2014	08:22
16	A-Effluent	10257905003	05841.D	02/28/2014	08:53
17	C-Influent	10257905004	05842.D	02/28/2014	09:24
18	C-Mid Gac	10257905005	05843.D	02/28/2014	09:54
19	C-Effluent	10257905006	05844.D	02/28/2014	10:26

Pace Analytical Services, Inc.

INITIAL CALIBRATION DATA

Start Cal Date : 27-FEB-2014 14:24
End Cal Date : 27-FEB-2014 17:19
Quant Method : ISTD : 4.14
Integrator : 4.14
HP RTE
Method file : \\192.168.10.12\chem\10airD.i\022714.b\T015_058-14.m
Last Edit : 28-Feb-2014 13:47 ahamilton

Calibration File Names:
Level 1: \\192.168.10.12\chem\10airD.i\022714.b\05807.d
Level 2: \\192.168.10.12\chem\10airD.i\022714.b\05808.d
Level 3: \\192.168.10.12\chem\10airD.i\022714.b\05809.d
Level 4: \\192.168.10.12\chem\10airD.i\022714.b\05803.d
Level 5: \\192.168.10.12\chem\10airD.i\022714.b\05804.d
Level 6: \\192.168.10.12\chem\10airD.i\022714.b\05805.d

Compound		0.1000000 Level 1	0.2000000 level 2	1.0000 Level 3	10.0000 Level 4	20.0000 Level 5	30.0000 Level 6 Curve	b	Coefficients m1	m2	%RSD or R^2
======================================											
1 Chlorodifluorcmethane		0.98193	1.05129	1.28926	1.47263	1.68332	1.82705 AVRG		1.38425		24.4998
2 Propylene		4.36764	5.23273	5.84069!	5.365971	6.11454	6.65802 AVRG		5.59660		14.1831
3 Dichlorodifluoromethane		0.65054	0.709971	0.82320	0.72598	0.85546	0.88635 AVRG		0.77525		12.0062
4 Dichlorotetrafluoroethane		0.78681	0.86806	1.03646	0.89906	1.04634	1.09521 AVRG		0.95531		12.69960
5 Chicromethane		2.30244	2.27976	2.89865	2.71355	3.25524	3.37014 AVRG		2.80330		16.4840
6 Vinyl chloride	!	2.33873	2.87511	3.33381	2.89552	3.17959	3.37527 AVRG		2.99967		12.8966
7 1,3-Butadiene	- 1	4.04743.	4.17752	5.23761	4.57880	5.14134	5.27267 AVRG		4.74256		11.6044
8 Bromomethane	1	2.00491	2.442041	2.87558	2.49560	2.73796	2.79398 AVRG ·		2.55835		12.51023
9 Chloroethane	- 1	4.93517	5.71382	7.43836	6.49082	7.36969	7.38432 AVRG		6.55536		15.95173
10 Ethanol	- 1	7.52398	8.32664	11.17923	9.35931	11.09658	11.65881 AVRG		9.85743;		17.31383
11 Vinyl Bromide		2.15214	2.763921	3.03078	2.51389	2.79957	2.84890 AVRG		2.68487		. 11.52811
12 Isotentane	i	2.88434	3.298631	4.15611	3.86480	4.53288	4.60708 AVRG		3.89064:		17.65839
13 Trichloroflucromethane	1	0.61980	0.64811:	0.78681	0.71513	0.81203	0.86665 AVRG		0.74142;		13.06535
14 Adrolein	i	12.36362	9.81286	10.21546	9.659551	10.733991	11.17709 AVRG		10.66043		9.4657
I	-			1	i	i	I				

Pace Analytical Services, Inc.

INITIAL CALIBRATION DATA

Start Cal Date : 27-FEB-2014 14:24
End Cal Date : 27-FEB-2014 17:19
Quant Method : ISTD : 4.14
Integrator : 4.14
End Cal Date : 4.14
Integrator : 4.14
End Cal Date : 4.14
End Cal Date : 4.14
End Cal Date : 4.14
End Cal Date : 4.14
End Cal Date : 4.14
End Cal Date : 4.14
End Cal Date : 4.14
End Cal Date : 4.14
End Cal Date : 4.14
End Cal Date : 4.14
End Cal Date : 4.14
End Cal Date : 4.14
End Cal Date : 4.14
End Cal Date : 4.14
End Cal Date : 4.14
End Cal Date : 4.14
End Cal Date : 4.14
End Cal Date : 4.14
End Cal Date : 4.14
End Cal Date : 4.14
End Cal Date : 4.14
End Cal Date : 4.14
End Cal Date : 4.14
End Cal Date : 4.14
End Cal Date : 4.14
End Cal Date : 4.14
End Cal Date : 4.14
End Cal Date : 4.14
End Cal Date : 4.14
End Cal Date : 4.14
End Cal Date : 4.14
End Cal Date : 4.14
End Cal Date : 4.14
End Cal Date : 4.14
End Cal Date : 4.14
End Cal Date : 4.14
End Cal Date : 4.14
End Cal Date : 4.14
End Cal Date : 4.14
End Cal Date : 4.14
End Cal Date : 4.14
End Cal Date : 4.14
End Cal Date : 4.14
End Cal Date : 4.14
End Cal Date : 4.14
End Cal Date : 4.14
End Cal Date : 4.14
End Cal Date : 4.14
End Cal Date : 4.14
End Cal Date : 4.14
End Cal Date : 4.14
End Cal Date : 4.14
End Cal Date : 4.14
End Cal Date : 4.14
End Cal Date : 4.14
End Cal Date : 4.14
End Cal Date : 4.14
End Cal Date : 4.14
End Cal Date : 4.14
End Cal Date : 4.14
End Cal Date : 4.14
End Cal Date : 4.14
End Cal Date : 4.14
End Cal Date : 4.14
End Cal Date : 4.14
End Cal Date : 4.14
End Cal Date : 4.14
End Cal Date : 4.14
End Cal Date : 4.14
End Cal Date : 4.14
End Cal Date : 4.14
End Cal Date : 4.14
End Cal Date : 4.14
End Cal Date : 4.14
End Cal Date : 4.14
End Cal Date : 4.14
End Cal Date : 4.14
End Cal Date : 4.14
End Cal Date : 4.14
End Cal Date : 4.14
End Cal Date : 4.14
End Cal Date : 4.14
End Cal Date : 4.14
End Cal Date : 4.14
End Cal Date : 4.14
End Cal Date : 4.14
End Cal Date : 4.14
End Cal Date : 4.14
End Cal Date : 4.14
End Cal Date : 4.14
End Cal Date : 4.14
End Cal Date : 4.14
End Cal Date : 4.14
End Cal Date : 4.14
End Cal Date :

1	·	i	0.10000000	0.20000000	1.0000	10.0000	20.0000	30.0000	1 0	cefficients		€KSD
1	Compound	- 1	Level 1	Level 2	Level 3 !	Level 4	Lovel 5	Level 6 Curv	el b	m1	m2	or R^2
==		== =										
	15 Acetone		1.05479		1.78431.	1.90119	2 .1 7168	2.30496 AVRG		1.75787.		27.505531
	16 lsopropyl Alcohol		2.12042!	2.52769	2.86065	2.37996	2.44817	2.75460 AVRG	· i	2.51525:		[10.60020]
	17 1,1-Dichloroethene		1.46036	1.74637	2.02498	1.74619	1.97001	2.16568 AVRG	· [1.85227,		13.61477
	18 Tert Butyl Alcohol	- 1	1.33698	1.57078	1.80433;	1.42408	1.57852	1.79016 AVRG	1 :	1.58414:		11.90525
	19 Acrylonitrile		5.61850	6.15240	5.83065,	4.63071	5.C9877	5.55892 AVRG		5.48166:		9.88169
1	20 Freon 113	- 1	1.11212	1.24098	1.44377	1.26882	1.39106	1.46571 AVRG	1	1.32041		10.36620
1	21 Methylene chloride	- 1	45€7⊹	6185	226161	146815	291775	453086 LINE	-0.06661.	3.30123		0.99758
1	22 Allyl Chloride	- 1	6.27164.	6.33415	7.98980	6.40980	7.28047	7.03796 AVRG	- 1	6.88730		9.859991
1	23 Carbon Disulfide	- 1	0.74182	C.82657	1.06694	0.92531	1.03667	1.06365 AVRG	- 1	0.94349		14.45774
1	24 trans-1,2-dichloroethene	- 1	2.22893	2.62437	3.02724	2.55825	2.76915	2.90361 AVRG	T i	2.68526		10.52971
1	25 Methyl Tort Butyl Ether	- 1	0.96772	1.11151	1.22597	1.01923	1.12723	1.15243 AVRG	· [1.10068		8.4751C
1	26 Vinyl Acetate	- 1	1.56429	1.59384	1.65757	1.33787	1.50321	1.53922 AVRG	- 1	1.53267		7.09944
1	27 1,1-Dichloroethane	- 1	1.32062	1.51207!	1.65882	1.49449	1.68482	1.72354 AVRG	- 1	1.56572		9.71901
1	29 Mothyl Ethyl Ketone	- 1	6.880€2.	7.09970:	7.409601	6.25291	6.81977	6.82709 AVRG	- 1	6.88162		5.54634
1	30 n-Hexane	- 1	1.86988;	2.09079	2.65253	2.39180	2.71905	2.65894 AVRG	- 1	2.39715		14.56143
1	31 Di-isopropyl Ether	- 1	0.93808	1.09856	1.26036	1.18698	1.31487	1.34689 AVRG	1 1	1.19096		12.84355
1	32 cis-1,2-Dichloroethene	- 1	2.552491	3.16942	3.33079	2.87028	2.89755	2.95734 AVRG	- 1	2.96298		9.04735
1	33 Ethyl Acetate	- 1	1.44086	1.47109	1.63264	1.58567	1.68647	1.87908 AVRG	1 1	1.61597		9.86436
1	34 Chloroform	- 1	0.95162	1.06646	1.13936	1.03240	1.11763	1.21729 AVRG	1 1	1.08746		8.46658
1	35 Ethyl Tert-Butyl Ether	i	0.885591	1.10936	1.184941	1.04995	1.08561	1.16533 AVRG	!	1.08013		9.96157
!	36 Tetrahydrofuran	i	3,64361	3.60506	3.79637	3.66422	3.673341	4.24231 AVRC	i	3.77082		6.35888
1	37 1,1,1-Trichloroethanc	1	C.96693	1.00309	1.10645	1.02549	1.027641	1.10038 AVRG	1	1.03833		5.29419
1		i	I		i	1	1	i	i	i		1

Pace Analytical Services, Inc.

INITIAL CALIBRATION DATA

1		. (0.1000000	0.2000000	1.0000	10.0000	20.0000	30.000C	1 0	oefficients		- 1	%RSD
1	Compound		Level 1	Level 2	Level 3	Level 4	Level 5	Level 6 Curve		ml	m2	i	or R^2
==		2 21							1			= : =	
!	38 1,2-Dichloroethane	!	1.20193	1.24985	1.43358	2.36024	1.43492	1.53941 JAVRG		1.36999			9.21770
- 1	39 Benzene	U	0.90105	1.06122	1.06390	0.95291.	1.01791	1.05335 AVRG		0.99839			6.21408
-	40 Carbon tetrachloride	1	0.95010	C.95527	1.05446		0.97820	1.09374 AVRG		0.98702			6.99865
- 1	41 Syclohexane	-1	2.04904	2.26351	2.357081	2.48238	2.69018	2.86133 AVRG	1 1	2.45059			11.99609
-	42 Tert Amyl Methyl Ether	-1	11197	12367	36471	363052	809927	1280341 LINR	-0.01380	1.16040		i	0.99985
	44 2,2,4-Trimethylpentane	-1	0.67592	0.73016	0.77405!	0.72007;	0.75820	0.79056 AVRG	1	0.74149		- 1	5.604291
-1	45 Heptane	-1	2.28801	2.29501:	2.29881	2.26587	2.44503	2.63551 AVRG	1	2.37137		- 1	6.09261
-	46 l,2-Dichloropropane	1	2.84801	2.75150	2.83434	2.535791	2.75693	2.88322 AVRG	1 1	2.76830		- 1	4.52315.
1	47 Trichloroethene	1	2.48567	2.77196	2.71093	2.04767	2.12263	2.12707 AVRG	1 1	2.37765		- 1	13.49726
1	48 Bromodichloromethane	1	1.00246	1.02028;	1.05007:	0.86257	0.97324	1.02336 AVRG	1 1	0.98866		- 1	6.75503.
1	49 1,4-Dioxane	1	5.59203	5.73675	6.04660	4.84879	5.74127	5.28940 AVRG	1 1	5.54247		- 1	7.565381
1	50 Methylcyclohexane	1	5.53337	5.47316	5.52377	4.07646	4.61790	4.43391 AVRG	1 :	4.94310		- 1	13.05640
1	51 Methyl Isobutyl Ketone	1	1.49390	1.51500	1.63956	1.34455	1.47095	1.59540 AVRG	1 ;	1.50990		-	6.83569
1	52 dis-1,3-Dichlaropropene	1	1.87062	1.82129	1.87270	1.45077	1.54289	1.55795 AVRG	1 :	1.68604		- 1	11.23645
1	53 trans-1,3-Dichloropropene	1	1.76623	1.95586	1.89688	1.23598	1.376811	1.40647 AVRG	1	1.60637		1	18.92191
1	55 Toluene	1	0.7757€	0.86965	0.91117	0.69955	0.77975	0.78686 AVRG	i	0.80379		i	9.373721
1	56 1,1,2-Trichloroethane	i	2.15117	2.28157	2.43185	1.85608	2.040971	2.105971AVRG	i .	2.14460		i	9.25072
1	57 Methyl Butyl Ketone	i	0.83640	0.93524	0.955691	0.83275	0.934251	0.95110 AVRG	i i	0.90757		Ĺ	6.30095
1	58 Dibromochloromethane	i	0.615201	0.71417	0.745531	0.598011	0.632691	0.61828 AVRG	i	0.653981		i	9,268301
i	59 1.2-Dibromoethane	i	0.67592:	0.788871	0.364061	0.724821	0.760561	0.712001AVRG	i :	0.754371		i	8.809541
i	60 Tetrachloroethene	1	C.77655	0.98659	1.077401	0.840581	0.852081	0.789351AVRG		0.88709		i	13,45967!
í	62 Chlorobenzene	1	0.54122	0.68231	0.720271	0.61138	0.599071	0.58146[AVRG		0.61762		i	10.051241
i	is onese eventually	,	0.04122	0.002011	0.72027	0.011001	0.5550.1	1	1	0.01/02		i	10.03124
'-		-'-		!-			·		. '			- '	

Pace Analytical Services, Inc.

INITIAL CALIBRATION DATA

Start Cal Date : 27-FEB-2014 14:24
End Cal Date : 27-FEB-2014 17:19
Quant Method : ISTD
Target Version : 4.14
Integrator : 4.14
Ether Method file : \\192.168.10.12\chem\10airD.i\022714.b\T015_058-14.m
Last Edit : 28-Feb-2014 13:47 ahamilton

1		1 3	0.10000000	0.2000000	1.00000	10.0000	20.0000	30.0000	I I	Co	efficients		-1	%RSD
1	Compound		Level 1	Level 2	Level 3	Level 4	Level 5		Curve	b	m)	m2.		or R^2
1=	63 Ethyl Benzene	 	0.32223	0.39869	0.40031	0.33395	0.34939	0.33942			0.35733		1	9.46585
1	64 m&p-Xylene	- 1	0.39486	0.51380	0.49072	0.42220	0.43976	0.42704	LAVRG	1	0.44790		-1	10.06882
1	65 Bromoform	- 1	0.57969	0.73333	0.75501	0.56167	0.56446	0.56637	IAVRG	1	0.62676		-1	14.58582
1	66 Styrene	- 1	0.64155	0.77051	0.76264	0.60810	0.61003	0.60504	[AVRG]	1	0.66631		-1	11.82865
1	67 o-Xylene	- 1	0.38139	0.43951	0.47686	0.40214	0.44231	0.43886	AVRG	1	0.43018		-1	7.81758!
1	68 1,1,2,2-Tetrachloroethane	- 1	0.44517	0.59541	0.69174	0.57563	0.61908	0.59550	AVRG	1	0.58709		-1	13.70885
1	69 Isopropylbenzene	1	0.27136	0.34372	0.39472	0.32952	0.33859	0.33211	AVRG	1	0.33500		-1	11.74754
1	7C N-Propylbenzene	- 1	0.24191	0.31036	0.30773	0.25757	0.272661	0.27004	AVRG	1	0.27671		-1	9.87461
1	71 4-Ethyitoluene	- 1	0.32142	0.39040	0.42939	0.33455	0.348451	0.33925	AVRG	1	0.36058		- [11.39266
1	72 1,3,5-Trimethylbenzene	- 1	0.34451	0.45219	0.45918	0.38027	0.394001	0.39247	AVRG	1	0.40377		-1	10.90999
1	73 Tert-Butyl Benzene	1	0.37111	0.48775	0.52717	0.42184	0.417€3	0.42436	AVRG	1	0.44164		- [12.68065
1	74 1,2,4-Trimethylbenzene	- 1	0.32517	0.42647	0.46206	0.38413	0.39752	0.40014	AVRG	1	0.39925		-1	11.42604
1	75 1,3-Dichlorobenzene	- 1	0.47772	0.66036	0.75156	0.56386	0.55596	0.56138	AVRG	1	0.59514		- 1 -	16.14516
1	76 Sec- Butylbenzene	- 1	0.25173	0.33388	0.34763	0.27892	0.28815	0.29392	AVRG	1	0.29904		Ţ	11.92986
1	78 Benzyl Chloride	- 1	36521	57371	287871	5362361	1206265	1837727	LINR	0.02407	0.47283		1	0.99966
1	79 1,4-Dichlorobenzeno	- 1	0.49480	0.64215	0.73994	0.58595	0.56325	0.56262	AVRG	1	0.59812		-1	14.05843
1	8C p-Isopropyltcluene	- 1	0.36031	0.453741	0.47426	0.392251	0.37325	0.37193	AVRG	1	C.40429		1	11.82671
1	81 1,2,3-Trimethylbenzene	- 1	0.36712	0.46485	0.50159	0.41191.	0.41993	0.41336	AVRG	1	0.42980			10.91256
1	82 1,2-Dichlorobenzene	- 1	0.54677	0.76245	0.80207	0.63355	0.63575	0.61009	AVRG	1	0.66511			14.59621
1	83 N=Butylbenzene	1	0.31259	0.40603	0.41735!	0.34100	0.36162	0.36231	AVRG	1	C.36715			10.83089
1	84 1,2,4-Trichlorobennene	- 1	0.54584	1.01139	1.34232	0.93899.	0.92186	0.94866	AVRG	1	0.95151			26.66758
1	85 Naphthalene	i	0.34581	0.€1900	0.73755;	0.58818	0.57392	0.59327	AVRG	1	0.57629			22.13858
1		1	1	1	i		1		1 .1.					1

Pace Analytical Services, Inc.

INITIAL CALIBRATION DATA

Start Cal Date : 27-FEB-2014 14:24
End Cal Date : 27-FEB-2014 17:19
Quant Method : ISTD
Target Version : 4.14
Integrator : 4.14
End Cal Date : 28-Feb-2014 13:47 ahamilton

Compound	i	Level 1	6.2000000 Level 2	Level 3	10.0000 Level 4	20.0000 Level 5	30.0000 Level 6 Curve	ь	Coefficients ml	m2	: %RSD . or R^2
86 Hexachlorobutadiene		0.48791	0.81009	1.06225	0.86107	0.88047			0.83087!		22.690
28 Hexane-d14(S)	1	2.32775	2.17118:	2.22313	2.16816	2.28968	2.32318 AVRG		2.25051;		3.241
54 Toluene-d8 (S)	-1	1.20324	1.12861	1.13572	1.03271	1.10865	1.16297 AVRG		1.12865		5.073
77 1,4-dichlorobenzene-d4 (S)	1	2.48090	2.48147.	2.18697	2.19757	2.08679	2.06923 AVRG		2.25049		8.263
	1	1		1	1	1	- L		1		i

Pace Analytical Services, Inc.

INITIAL CALIBRATION DATA

Start Cal Date : 27-FEB-2014 14:24
End Cal Date : 27-FEB-2014 17:19
Quant Method : ISTD
Target Version : 4.14
Integrator : HP RTE
Method file : \\192.168.10.12\chem\10airD.i\022714.b\T015_058-14.m
Last Edit : 28-Feb-2014 13:47 ahamilton

|Average %RSD Results. | Calculated Average %RSD = 11.56466 | Maximum Average %RSD = 30.00000 |* Passed Average %RSD Test.

	_		_
Curve Formula		Units	i
	- 4		=
Averaged Amt = ml*Rsp	1	Amount	i
Linear Amt = b + m1*Rsp	1	Amount	- 1
l	J		_1

5A - FORM V VOA VOLATILE ORGANIC INSTRUMENT PERFORMANCE CHECK BROMOFLUOROBENZENE (BFB)

EPA SAMPLE NO.	
BFB	

Lab Name: Pace Analytical

Contract:

Lab Code:

PASI

Case No.:

SAS No.:

SDG No.: 10257905

Lab File ID: 05901BFB.D

BFB Injection Date: 02/28/2014

Instrument ID: 10AIRD

BFB Injection Time: 11:55

GC Column: J&W DB-5

ID: 0.32 (mm)

		% RELATIVE	
m/e	ION ABUNDANCE CRITERIA	ABUNDANCE	
95	Base Peak, 100% relative abundance	100.00	
50	8.00 - 40.00% of mass 95	19.92	
75	30.00 - 66.00% of mass 95	51.82	
96	5.00 - 9.00% of mass 95	6.51	
173	Less than 2.00% of mass 174	0.55 (0.65)
174	50.00 - 120.00% of mass 95	85.32	
175	4.00 - 9.00% of mass 174	6.40 (7.50)
176	93.00 - 101.00% of mass 174	84.11 (9	98.58)
177	5.00 - 9.00% of mass 176	5.37 (6.39)

1 - Value is %mass 174

2 - Value is %mass 176

EPA SAMPLE NO.	LAB SAMPLE ID	LAB FILE ID	DATE ANALYZED	TIME ANALYZED
LCS (LCS)	LCS	05902LCS.D	02/28/2014	12:24
CCV	CCV	05902.D	02/28/2014	12:24
CERT	CERT	05904.D	02/28/2014	13:47
A- Influent	10257905001	05907.D	02/28/2014	15:45

Data File: \\192.168.10.12\chem\10airD.i\022814.b\05902.d

Report Date: 28-Feb-2014 12:57

Pace Analytical Services, Inc.

CONTINUING CALIBRATION COMPOUNDS

Instrument ID: 10airD.i Injection Date: 28-FEB-2014 12:24

Lab File ID: 05902.d Init. Cal. Date(s): 27-FEB-2014 27-FEB-2014 Analysis Type: AIR Init. Cal. Times: 14:24 17:19
Lab Sample ID: CCV Quant Type: ISTD
Method: \\192.168.10.12\chem\10airD.i\022814.b\T015_058-14.m

	I		CCAL MIN	•	MAX	I
COMPOUND	RRF / AMOUNT	RF10	RRF10 RRF 	%D./ %DRIFT 		
1 Chlorodifluoromethane	1.38425	1.65494	1.65494 0.01	•		•
2 Propylene	5.59660	5.77976	5.77976 0.010	3.27264	30.00000	Averaged
3 Dichlorodifluoromethane	0.77525	0.80768	0.80768 0.010	4.18291	30.00000	Averaged
4 Dichlorotetrafluoroethane	0.95531	0.99681	0.99681 0.010	4.34409	30.00000	Averaged
5 Chloromethane	2.80330	2.98198	2.98198 0.010	6.37418	30,00000	Averaged
6 Vinyl chloride	1 2.999671	3.09973	3.09973 0.010	3.33568	30.00000	Averaged
7 1,3-Butadiene	4.742561	4.90367	4.90367 0.010	3.39712	30.00000	Averaged
8 Bromomethane	2.55835	2.70355	2.70355 0.010	5.67580	30.00000	Averaged
9 Chloroethane	[6.55536]	6.82715	6.82715 0.010	4.14607	30.00000	Averaged
10 Ethanol	9.85743	10.27407	10.27407 0.100	4.22671	30.00000	Averaged
11 Vinyl Bromide	[2.68487]	2.68145	2.68145 0.010	-0.12730	30.00000	Averaged
12 Isopentane	3.89064	4.21243	4.21243 0.010	8.27083	30.00000	Averaged
13 Trichlorofluoromethane	1.32038	1.35927	1.35927 0.01	2.94557	30.00000	Averaged
14 Acrolein	10.66043	10.32075	10.32075 0.010	-3.18630	30.00000	Averaged
15 Acetone	1.75787	2.11232	2.11232 0.010	20.16340	30.00000	Averaged
16 Isopropyl Alcohol	2.51525	2.64163	2.64163(0.010	5.02451	30.00000	Averaged
17 1,1-Dichloroethene	1.85227	1.86413	1.86413[0.010	0.64068	1 30.00000	Averaged
18 Tert Butyl Alcohol	1.58414	1.62878	1.62878 0.10	2.81819	30.00000	Averaged
19 Acrylonitrile	5.48166	4.84135	4.84135 0.010	-11.68088	30.00000	Averaged
20 Freon 113	1.32041	1.35927	1.35927[0.010	2.94324	30.00000	Averaged
21 Methylene chloride	10.00000	10.38496	2.98725 0.010	3.84960	30.00000	Linear
22 Allyl Chloride	6.88730	6.84386	6.84386 0.010	-0.63077	30.00000	Averaged
23 Carbon Disulfide	0.943491	0.98342	0.98342 0.010	4.23192	30.00000	Averaged
24 trans-1,2-dichloroethene	2.68526	2.70534	2.70534 0.010	0.74768	30.00000	Averaged
25 Methyl Tert Butyl Ether	1.10068	1.06146	1.06146 0.010	-3.56300	30.00000	Averaged
26 Vinyl Acetate	1.53267	1.46006	1.46006 0.010	-4.73742	30.00000	Averaged
27 1,1-Dichloroethane	1.56572	1.58449	1.58449 0.01	1.19839	30.00000	Averaged
\$ 28 Hexane-d14(S)	2.25051	2.37766)	2.37766 0.20	5.64965	30.00000	Averaged
29 Methyl Ethyl Ketone	6.88162	6.62757	6.62757 0.010	-3.69166	30.00000	Averaged
30 n-Hexane	2.39715	2.466301	2.46630 0.010	2.88458	30.00000	Averaged
31 Di-isopropyl Ether	1.19096	1.23197	1.23197 0.010	3.44393	30.00000	Averaged
32 cis-1,2-Dichloroethene	2.96298	2.68086	2.68086 0.010	-9.52156	30.00000	Averaged
33 Ethyl Acetate	1.61597	1.53327	1.53327 0.01	-5.11770	30.00000	Averaged
34 Chloroform	1.08746	1.06347	1.06347 0.010	-2.20605	30.00000	Averaged
35 Ethyl Tert-Butyl Ether	1.08013	1.00606	1.00606 0.010		30.00000	Averaged
36 Tetrahydrofuran	3.77082	3.51611	3.51611 0.010	-6.75478	30.00000	Averaged
37 1,1,1-Trichloroethane	1.038331	0.983021	0.98302 0.010	-5.32690		
38 1,2-Dichloroethane	1.369991	1.337391	1.33739 0.01			Averaged
39 Benzene	0.998391	0.92726	0.92726 0.30	•		
40 Carbon tetrachloride	0.987021	0.933521	0.9335210.01		•	
41 Cyclohexane	2,450591	2.40236	2.4023610.01	•	•	
42 Tert Amyl Methyl Ether	10.000001	10.90786	1.05053[0.01			
	1 1	1		I	1	

Data File: \\192.168.10.12\chem\10airD.i\022814.b\05902.d

Report Date: 28-Feb-2014 12:57

Pace Analytical Services, Inc.

CONTINUING CALIBRATION COMPOUNDS

Injection Date: 28-FEB-2014 12:24 Instrument ID: 10airD.i

Lab File ID: 05902.d Init. Cal. Date(s): 27-FEB-2014 27-FEB-2014 Analysis Type: AIR Init. Cal. Times: 14:24 17:19
Lab Sample ID: CCV Quant Type: ISTD
Method: \\192.168.10.12\chem\10airD.i\022814.b\T015_058-14.m

COMPOUND	 RRF / AMOUNT	RF10	CCAL MIN RRF10 RRF	 %D / %DRIFT	MAX %n / %DRIFT	ן ורוומעד דעספ
COMPOUND		•	RREIU RRE	•		
44 2,2,4-Trimethylpentane	0.74149	0.68982	0.68982 0.310	-6,96883	30.00000	Averaged
45 Heptane	2.37137	2.26265	2.26265 0.010	-4.58492	30.00000	Averaged
46 1,2-Dichloropropane	2.76830	2.58980	2.58980 0.010	-6.44793	30.00000	Averaged
47 Trichlorcethene	2.37765	2.13002	2.13002 0.010	-10.41507	30.00000	Averaged
48 Bromodichloromethane	0.98866	0.93043	0.93043 0.010	-5.88980	30.00000	Averaged
49 1,4-Dioxane	5.54247	4.53945	4.53945 0.010	-18.09693	30.00000	Averaged
50 Methylcyclohexane	4.94310	4.13612	4.13612 0.010	-16.32534	30.00000	Averaged
51 Methyl Isobutyl Ketone	1.50990	1.43041	1.43041 0.010	-5.26441	30.00000	Averaged
52 cis-1,3-Dichloropropene	1.68604	1.48138	1.48138 0.010	-12.13815	30.00000	Averaged
53 trans-1,3-Dichloropropene	1.60637	1.37841	1.37841 0.010	-14.19114	30.00000	Averaged
\$ 54 Toluene-dB (S)	1.12865	1.18129	1.18129 0.200	4.66400	30.00000	Averaged
55 Toluene	0.80379	0.76507	0.76507 0.300	-4.81718	30.00000	Averaged
56 1,1,2-Trichloroethane	2.14460	2.03477	2.03477 0.010	-5.12115	30.00000	Averaged
57 Methyl Butyl Ketone	0.907571	0.87347	0.87347 0.010	-3.75711	30.00000	Averaged
58 Dibromochloromethane	0.653981	0.59770	0.59770 0.010	-8.60533	30.00000	Averaged
59 1,2-Dibromoethane	0.75437	0.70645	0.70645 0.010	-6.35272	30.00000	Averaged
60 Tetrachloroethene	0.88709	0.82511	0.82511 0.010	-6.98751	30.00000	Averaged
62 Chlorobenzene	0.61762	0.55967	0.55967 0.010	-9.38200	30.00000	Averaged
53 Ethyl Benzene	0.35733	0.32690	0.32690 0.300	-8.51474	30.00000	Averaged
54 m&p-Xylene	0.44790	0.39574	0.39574 0.300	-11.64493	30.00000	Averaged
65 Bromoform	0.62676	0.54773	0.54773 0.010	-12.60819	30.00000	Averaged
66 Styrene	0.66631	0.57815	0.57815 0.010	-13.23052	30.00000	Averaged
57 o-Xylene	0.43019	0.39765	0.39765 0.300	-7.56280	30.00000	Averaged
58 1,1,2,2-Tetrachloroethane	0.58709	0.56107	0.56107 0.010	-4.43116	30.00000	Averaged
69 Isopropylbenzene	0.33500	0.31626	0.31626 0.010	-5.59364	30.00000	Averaged
70 N-Propyibenzene	0.27671	0.25088	0.25088 0.310	-9.33478	30.00000	Averaged
71 4-Ethyltoluene	0.36058	0.33622	0.33622 0.010	-6.75593	30.00000	Averaged
72 1,3,5-Trimethylbenzene	0.40377	0.37375	0.37375 0.310	-7.43386	30.00000	Averaged
/3 Tert-Butyl Benzene	0.44164	0.39602	0.39602 0.010	-10.33134	30.00000	Averaged
74 1,2,4-Trimethylbenzene	0.39925	0.36534	0.36534 0.010	-8.49297	30.00000	Averaged
75 1,3-Dichlorobenzene	0.59514	0.55220	0.55220 0.010	-7.21498	30.00000	Averaged
76 Sec- Butylbenzene	0.29904	0.26906	0.26906 0.010	-10.02446	30.00000	Averaged
77 1,4-dichlorobenzene-d4 (S)	2.25049	2.20197	2.20197 0.200	-2.15594	30.00000	Averaged
78 Benzyl Chloride	10.000001	10.08199	0.48045 0.010	0.81995	30.00000	Linea:
79 1,4-Dichlorobenzene	0.59812	0.55833	0.55833 0.010	-6.65229	30.00000	Averaged
30 p-Isopropyltoluene	0.40429	0.38029	0.38029 0.010	-5.93535	30.00000	Averaged
31 1,2,3-Trimethylbenzene	0.42980	0.40651	0.40651 0.010	-5.41753	30.00000	Averaged
32 1,2-Dichlorobenzene	0.66511	0.61945	0.61945 0.010	-6.86555	30.00000	Averaged
33 N-Butylbenzene	0.36715	0.33384	0.33384 0.010	-9.07298	30.00000	Averaged
34 1,2,4-Trichlorobenzene	0.95151	0.91679	0.91679 0.010	-3.64870	30.00000	Averaged
35 Naphthalene	0.57629	0.55032	0.55032 0.010		30.00000	Averaged
86 Hexachlorobutadiene	0.83087	0.83344	0.83344 0.010		30.00000	Averaged
	_			l	<u> </u>	

Data File: \\192.168.10.12\chem\10airD.i\022814.b\05902.d

Report Date: 28-Feb-2014 12:57

Pace Analytical Services, Inc.

CONTINUING CALIBRATION COMPOUNDS

Instrument ID: 10airD.i Injection Date: 28-FEB-2014 12:24

Lab File ID: 05902.d Analysis Type: AIR Init. Cal. Date(s): 27-FEB-2014 27-FEB-2014 Init. Cal. Times: 14:24 17:19

Lab Sample ID: CCV Quant Type: ISTD Method: \\192.168.10.12\chem\10airD.i\022814.b\T015_058-14.m

|Average %D / Drift Results.

| Passed Average %D/Drift Test.

5A - FORM V VOA VOLATILE ORGANIC INSTRUMENT PERFORMANCE CHECK BROMOFLUOROBENZENE (BFB)

EPA SAMPLE NO.

BFB

Lab Name: Pace Analytical

Contract:

Lab Code:

PASI

Case No.:

SAS No.:

SDG No.: 10257905

Lab File ID: 06101BFB.D

BFB Injection Date: 03/02/2014

Instrument ID: 10AIRD

BFB Injection Time: 11:33

GC Column: J&W DB-5

ID: 0.32 (mm)

		% RELATIVE	
m/e	ION ABUNDANCE CRITERIA	ABUNDANCE	
95	Base Peak, 100% relative abundance	100.00	
50	8.00 - 40.00% of mass 95	20.06	
75	30.00 - 66.00% of mass 95	58.91	
96	5.00 - 9.00% of mass 95	7.18	
173	Less than 2.00% of mass 174	0.00 (0.00)
174	50.00 - 120.00% of mass 95	85.52	
175	4.00 - 9.00% of mass 174	6.96 (8.14)
176	93.00 - 101.00% of mass 174	84.97 (99.36)
177	5.00 - 9.00% of mass 176	5.26 (6.19)

1 - Value is %mass 174

2 - Value is %mass 176

	EPA SAMPLE NO.	LAB SAMPLE ID	LAB FILE ID	DATE ANALYZED	TIME ANALYZED
1	CAL1	CAL1	06102.D	03/02/2014	12:00
2	CAL2	CAL2	06103.D	03/02/2014	12:27
3	CAL3	CAL3	06104.D	03/02/2014	12:54
4	CAL4	CAL4	06105.D	03/02/2014	13:21
5	CAL5	CAL5	06106.D	03/02/2014	13:49
6	CAL6	CAL6	06107.D	03/02/2014	14:18
7	ICVADD (LCS)	ICVADD	06109.D	03/02/2014	15:12
8	ICV (LCS)	ICV	06110.D	03/02/2014	15:39
9	LCS for HBN 287898 [AIR/	1632767	06111ADD.D	03/02/2014	16:05
10	BLANK for HBN 287898 [AI	1632768	06115ADD.D	03/02/2014	18:01
11	A- Mid Gac	10257905002	06116.D	03/02/2014	18:28
12	A-Effluent	10257905003	06117.D	03/02/2014	18:57
13	C-Mid Gac	10257905005	06118.D	03/02/2014	19:25
14	C-Effluent	10257905006	06119.D	03/02/2014	19:53
15	A- Influent	10257905001	06120.D	03/02/2014	20:21
16	C-Influent	10257905004	06121.D	03/02/2014	20:49

Report Date: 03-Mar-2014 11:26

Pace Analytical Services, Inc.

INITIAL CALIBRATION DATA

Calibration File Names:
Level 1: \\192.168.10.12\chem\10airD.i\030214.b\06102.d
Level 2: \\192.168.10.12\chem\10airD.i\030214.b\06103.d
Level 3: \\192.168.10.12\chem\10airD.i\030214.b\06104.d
Level 4: \\192.168.10.12\chem\10airD.i\030214.b\06105.d
Level 5: \\192.168.10.12\chem\10airD.i\030214.b\06106.d
Level 6: \\192.168.10.12\chem\10airD.i\030214.b\06107.d

1		- 1	0.1000000	C.2000000 +	1.0000	10.0000	20.0000	30.0000		efficients		1	*RSD
1	Compound	- !	Level 1	Level 2 .	Level 3	Level 4	Level 5	Level 6 Curve	b	m1	m2	i 	or R^2
]=:	1 Chlorodifluoromethane	== =	0.95124:	1.09325:	1,30954:	1.59538	1.73861	1.71802 AVRG		1,401041	AC		23.838981
1		- 1	4.18251:		5,71798:	5.20960:	5.404921	5.09058 AVRG		4.990561			12.14855
1	2 Propylene	- !	0.52363:	0.54749	0.67865	0.65455	•	0.756791AVRG		0.65067			14.956541
!	3 Dichlorodifluoromethane	!					0.74292						
1	4 Dichlorotetrafluoroethane		0.62831:	0.68588:	0.84176.	0.80715;	0.834411	0.87€78 AVRG		0.77905		1	12.67344
1	5 Chioromethane		1.90662.	2.38485;	2.65435!	2.58723	2.72636	2.79837[AVRG		2.509631		1	13.05247
1	6 Vinyl chloride	- 1	2.39940	2.47730:	3.00443	2.80539	2.91567	2.91407 AVRG	;	2.75271		1	9.18186
1	7 1,3-Butadiene	- 1	4.00128	4.34867:	4.86918	4.48718	4.62966	4.67954 AVRG		4.50258		1	6.71506
1	8 Bromomethane	- 1	1.77632	1.96151:	2.33355;	2.36283;	2.36387	2.39396[AVRG		2.19867		1	11.95043
1	9 Chloroethane	- 1	4,70392	5.28100	6.16206;	6.10702	6.34712	6.28704 AVRG		5.81469		1	11.48873
1	10 Ethanol	- 1	3,93620	4.82698	7.44002;	6.60585	6.19472	+++++ AVRG		5.80075		1	24.25055
1	11 Vinyl Bromide	- 1	1.94897	2.21002	2.63253:	2.36636	2.41012	2.44139 AVRG		2.334901		1	9.97274
1	12 isopentane	- 1	2.33864	2.54831	3.19417:	3.032381	3.11478	3.11755[AVRG	i	2.89097		1	12.33520
1	13 Trichlorofluoromethane	- 1	0.50776	0.55665	0.66248:	0.64250	0.68942	0.74863[AVRG		0.63457		1	13.91971!
1	14 Acrolein	- 1	6.32845	6.77144	8.291991	9.84282	9.42178	9.59064 AVRG +	:	8.37452		1	18.10524;
1		- 1			1	1	1	1 :	1	1		1	

Pace Analytical Services, Inc.

INITIAL CALIBRATION DATA

1	0.100			0.2000000	1.0000	10.0000	20.0000	30.0000	Co	efficients		%RSD
1	Compound		Level 1	level 2	Level 3	Level 4	Level 5	Level 6 Curve	b	ml	m2	or R^2
1 ===	15 Acetone		8913		542791	461970			-0.02706.	1.63462		0.99967
1	16 Isopropyl Alcohol		1.63443	1.99309	2.28356:	1.89234	1.85765	2.10089 AVRG		1.96033		11.33069
1	17 1,1-Dichloroethene		1.11171	1.33140	1.59799:	1.53800	1.62676	1.67776 AVRG	í	1.48060		14.66239
1	18 Test Butyl Alcohol	1	1.08474	1.17904	1.33585;	1.23548	1.26002	1.30542 AVRG		1.23343		7.38208
1	19 Acrylonitrile	1	3.32146	4.06922	5.08055;	4.23042	4.25469	4.22731 AVRG	1	4.19728		13.34586
1	20 Freon 113	1	0.87794	0.983891	1.21425	1.15334	1.19532	1.25121 AVRG	1	1.11266		13.31127
1	21 Methylene chloride	1	69231	11655	421371	291906	607865	971561 LINR	-C.04008;	2.61235		0.99967
I	22 Allyl Chloride	1	3.94505	4.71216	5.54736	5.30877	5.54280	5.59156 AVRG	1	5.10795		12.88348
I	23 Carbon Disulfide	- 1	0.58132	0.70192	0.85619	0.78889	0.81410	0.82472 AVRG	1	0.76119		13.46105
Ĺ	24 trans-1,2-dichloroethene	- 1	1.87604	2,17399	2.41863	2.33269	2.33984	2.33727 AVRG	1	2.24474		8.79139
1	25 Methyl Tert Butyl Ether		0.69481	0.75926	0.89375	0.85240	0.82785	0.86657 AVRG	1	0.81577		9.16916
ı	26 Vinvl Acetate		0.87849	1.05757	1.19291	1.04862	1.058€9	1.08751 AVRG :	1	1.05396		9.60932
Ī	27 1,1-Dichloroethane	1	1.00476	1.17535	1.34155	1.33157	1.37309	1.40752 AVRG	1	1.27231		12.06050
1	29 Methyl Ethyl Ketone	- 1	3.89038	5.98528	5.50962	5.223021	5.49016	5.37513 AVRG	1	5.24560		13.56211
I	30 n-Hexane	- 1	1.49611:	1.97183	2.25318	1.98200	2.05671	2.10929 AVRG	1	1.97819		13.01498
Ļ	31 Di-isopropyl Ether	- 1	0.79132	0.86480	1.05336	0.92445	0.944891	0.95626 AVRG	1	0.92251		9.61096
1	32 cis-1,2-Dichloroethene		2.29730	2.13221	2.72962	2.46228	2.440571	2.36717 AVRG	1	2.40486		8.26162
1	33 Ethyl Acetate	- 1	1.15527	1.42630	1.47406	1.30525	1.32986	1.29695 AVRG	1	1.33128		8.38154
1	34 Chloroform		0.75449	0.79733	0.93004	0.857621	0.90353	0.94782 AVRG	1	C.86514		8.86656
Ī	35 Ethyl Tert-Butyl Ether	- 1	0.79392	0.90374	1.00855	C.88784;	0.89424	0.91011 AVRG	1	0.899731		1 7.59239
ı	36 Tetrahydrofuran	- 1	2.95505;	3.42841	3.79311	3.21766	3.23263	3.06786 AVRG	1	3.28245		1 9.05784
T	37 1,1,1-Trichloroethanc	i	0.68264:	0.72941	0.85654	0.83833	0.86164	0.89309 AVRG	1	0.80878		1 10.60402
1		i	:	i	i		i	i i	1			

Report Date : 03-Mar-2014 11:26

Pace Analytical Services, Inc.

INITIAL CALIBRATION DATA

Start Cal Date : 02-MAR-2014 12:00
End Cal Date : 02-MAR-2014 14:18
Quant Method : ISTD
Target Version : 4.14
Integrator : \192.168.10.12\chem\l0airD.i\030214.b\T015_061-14.m
Last Edit : 03-MAR-2014 09:17 10airD.i

1	· · · · · · · · · · · · · · · · · · ·		0.10000000	C.2000000	1.0000	10.0000	20.0000	30.0000 ;	Co	efficients		T	%RSD
 	Compound		Level 1	Level 2	Level 3	Level 4	Level 5	Levei 6 Curve	b	ml	m2		or R^2
i	38 1,2-Dichloroethane		0.89862	,	1.21375	1.18344	1.26063	1.29677 AVRG		1.14940		- ,	13.11183
1	39 Benzene	- 1	0.69674	0.78585	0.94506!	0.79930.	0.80928	0.79410 AVRG	1	0.80506:			9.91750
ł	40 Carbon tetrachloride	- 1	0.65801	0.71480	0.90044	0.80124;	0.88207	0.94286 AVRG	1	0.81670		i	13.71752
	41 Cyclohexane	- 1	1.89018	2.18840	2.60933	2.12380!	2.12090	2.12424 AVRG	1	2.17614		1	10.83664
ł	42 Tert Amyl Methyl Ether	- 1	207591	26627	77597	8269651	1752318	2977260 L1NR	-0.00029	0.85776		1	0.99917
1	44 2,2,4-Trimethylpentane	- 1	0.569571	0.67359	0.75052	0.66199	0.66292	0.65778 AVRG	1	0.66273		1	8.67582
1	45 Heptane	- 1	1.71052	1.96207	2.15590;	1.92383	1.951361	1.91345 AVRG	1	1.93619		1	7.33223
	46 1,2-Dichloropropane	- 1	2.087521	2.32683;	2.63332	2.51369	2.46517	2.40099[AVRG		2.40459		1	7.768691
	47 Trichloroethene	- 1	1.83148	1.97605:	2.22979	2.01197	2.013921	1.95134 [AVRG		2.00243		1	6.49002
	48 Bromodichloromethane	- 1	0.67672	0.69980	0.95089	0.74294	0.78894	0.89734 AVRG		0.76111		1	8.75151
	49 1,4-Dioxane	- 1	4.17504	5.24108.	4.89251	4.25112	3.79867	5.00472 AVRG		4.56052		1	12.386231
1	50 Methylcyclohexane	- 1	4.22786	3.88674;	4.57068	3.66358	3.73977	3.72187 AVRG		3.96842		1	9.034381
	51 Methyl Isobutyl Ketone	- 1	1.27535;	1.44759	1.60217	1.27197	1.26798	1.30331 AVRG +		1.36140		1	10.01250!
	52 cis-1,3-Dichloropropene	- 1	1.29131	1.31114	1.54365	1.26900	1.27938	1.34075 AVRG	1	1.33921		1	7.71622.
1	53 trans-1,3-Dichloropropene	- 1	1.16796	1.36361	1.45117	1.10382	1.12905	1.17418 AVRG ;	1	1.23163		1	11.47255
1	55 Toluene	1	0.58656	0.61899	0.76313	0.62422	0.62257	0.63607[AVRG :	1	0.64193		1	9.60410;
1	56 1,1,2-Trichloroethane		1.36893	1.78480	2.02556	1.69944	1.70116	1.73417 AVRG .	1	1.72234		1	11.84547
1	57 Methyl Buryl Ketone		0.90636	0.88909	0.89596	0.75120	0.76881	0.76472 AVRG	1	0.82935		1	9.00460:
1	58 Dibromochloromethane		0.49503	0.56128	0.62071	0.53409	0.56498	0.56456 AVRG	1	0.55511;		i	8.00795:
1	59 1,2-Dibromoethane		0.55826	0.62925	0.68884	0.62224	0.630691	0.61124 AVRG	1	0.62325			6.71269!
ļ	60 Tetrachloroethene		0.61343	0.72609	0.78854;	0.69521	0.70819	0.68199 AVRG		0.70224.			8.15499
(62 Chicrobenzenc		0.42186	0.50195	0.58271	0.50865	0.50620	0.50112 AVRG	i	0.50375			10.11469)
1		1	1	1	1	1		1 1	1				i

Report Date : 03-Mar-2014 11:26

Pace Analytical Services, Inc.

INITIAL CALIBRATION DATA

Start Cal Date : 02-MAR-2014 12:00
End Cal Date : 02-MAR-2014 14:18
Quant Method : ISTD
Target Version : 4.14
Integrator : \\192.168.10.12\chem\10airD.i\030214.b\T015_061-14.m
Last Edit : 03-Mar-2014 09:17 10airD.i

		1 0	.10000000	C.2000000	1.0000	10.0000	20.0000	30.0000	Co	oefficients		%RSD
-	oound		Level 1	Level 2	Level 3	Level 4	Level 5	Level 6 Curve:	ь	m1	m2	or R^2
	thyl Benzene	-:	0.26147	0.29251	0.30765	0.27612	0.27634	0.26771 AVRG		0.28030		6.06151
64 m	ap-Xylene	1	0.32213	0.36178	0.38576	0.33422:	0.34260	0.34444 AVRG :		0.34849	- 1	6.43622
65 F	Promoform	1	0.47752	0.54044	0.55727	0.45789	0.47473	0.47279 AVRG		0.49678	1	8.30420
66.5	Styrene	1	0.596971	0.61837	0.62560	0.48926	0.49059	0.47443 AVRG		0.54921		13.00855
67 c	-Xylene	1	0.32972;	0.34551	0.36499	0.31591	0.33394	0.33028 AVRG :	į.	0.33671	1	4.98444
68 1	.,1,2,2-Tetrachloroethane		0.44010	0.50567	0.55515	0.48278	0.48309	0.48562 AVRG :		C.49207	1	7.64387
69 I	sopropylbenzene		0.24780	0.27724	0.30854	0.26210.	0.26827	0.27093 AVRG :		G.27248	1	7.44918
70 N	-Propylbenzene		0.22763	0.23569	0.24724	0.20553	0.21408	0.21679 AVRG :	:	0.22449	1	6.84263
71 4	I-Ethyltoluene		0.29875	0.32291	0.32236	0.26708	0.28635	0.28304 AVRG :	1	0.29675	1	7.56639
72 1	,3,5-Trimethylbenzene		C.32807	0.35340	0.34466	0.30056:	0.31415	0.31294 AVRG		0.32563	1	6.23435
73.7	ert-Butyl Benzene		0.36888	0.39444	0.40491	0.33143;	0.33812	0.34491 AVRG :		0.36378	1	8.44482
74 1	,2,4-Trimethylbenzene		C.34360.	0.34375	0.35579	0.30031	0.31406	0.31785 AVRG	1	0.32923	1	6.54108
75 1	,3-Dichlorobenzene		C.53493:	C.59198	0.61895	0.49516	0.50076	0.50617 AVRG	1	0.54132	- 1	9.65039
76 €	Sec- Butylbenzene		0.25834;	0.27439	0.27143	0.22331	0.22874	0.23717 AVRG	1	0.24890	1	8.88532
78 E	Benzyl Chloride		7910;	13982	69609	1154055	2527707	3903159 LINR	0.01198	C.36666	1	0.9998€
79 1	,4-Dichlorobenzene	1	0,48371	0.54198	0.61535	0.51884	0.50790	0.50963 AVRG	1	0.52957	1	8.69360
80 g	-Isopropyltcluene	1	0.35104;	0.36198	0.35815	0.29455	0.30458	0.30946 AVRG	1	0.32996	I	9.17491
81 1	,2,3-Trimethylbenzene	1	0.33793	C.36841	0.38192.	0.32407	0.33734	0.35398 AVRG	1	0.35061	- 1	6.18304
82 1	,2-Dichlorobenzene	1	0.59315:	C.62185	0.68327	0.55543	0.57641}	0.57298 AVRG	1	0.60051	1	7.71432
83 N	-Butylbenzene	1	0.32310;	0.35060	0.31936	0.27541	0.288911	0.29398 AVRG	1	0.30856	1	8.92628
84 1	,2,4-Trichlerobenzene	1	50341	8924	42239	592542	12848671	1942967 LINR	-0.00059	0.734451	1	0.99954
85 N	aphthalene	1	6775;	12056	66478	887022	1995891	3012244 LINR	0.00587	0.473321	1	0.99958
		1	1	1		1	1	1 1	1	1	1	1

Report Date: 03-Mar-2014 11:26

Pace Analytical Services, Inc.

INITIAL CALIBRATION DATA

Start Cal Date : 02-MAR-2014 12:00
End Cal Date : 02-MAR-2014 14:18
Quant Method : ISTD
Target Version : 4.14
Integrator : \192.168.10.12\chem\10airD.i\030214.b\T015_061-14.m
Last Edit : 03-MAR-2014 09:17 10airD.i

	0.1000000	0.2000000	1.0000	10.0000	20.0000	30.0000		Coefficients		%RSD
Compound	Level 1	Level 2	Level 3	Level 4	Level 5	Level 6 Curve	el b	ml	m2	or R^2

86 Hexachlorobutadiene	C.57881	0.62599	0.76656	0.66954	0.69342	0.75601 JAVRG	I	0.68172		10.71888
3 28 Hexane-d14(S)	2.11817	2.10276.	2.13636:	2.17011	2.18981	2.20074 AVRG	I	2.15299		1.85103
54 Toluene-dB (S)	1.13207	1.10581:	1.11264	1.07620	1.08546	1.12517 AVRG	I	1.10622		1.98091
77 1,4-dichlorobenzene-d4 (S)	2.12675	2.15862	2.00981	1.91053	2.00952	2.03827 JAVRG	I	2.04225		4.38898
				1	1	1	I			1

Report Date : 03-Mar-2014 11:26

Pace Analytical Services, Inc.

INITIAL CALIBRATION DATA

Start Cal Date : 02-MAR-2014 12:00
End Cal Date : 02-MAR-2014 14:18
Quant Method : ISTD
Target Version : 4.14
Integrator : \192.168.10.12\chem\10airD.i\030214.b\T015_061-14.m
Last Edit : 03-Mar-2014 09:17 10airD.i

Average %RSD Results.	
Calculated Average %RSD =	9.97310
Maximum Average %RSD =	30.00000
* Passed Average %RSD Test	
T	I

Curve Formula	Units	1
==::====== ===========================		-
Averaged Amt = m1*Rsp	Amount	1
Linear Amt = 5 + m1*Rsp	Amount	1
l	.1	J

QUALITY CONTROL DATA

Project:

117-0507599 SSD Oem

Pace Project No.:

10257905

QC Batch:

AIR/19526

Analysis Method:

TO-15

QC Batch Method:

TO-15

Analysis Description:

TO15 MSV AIR Low Level

Associated Lab Samples:

10257905001, 10257905002, 10257905003, 10257905004, 10257905005, 10257905006

METHOD BLANK: 1632768

Matrix: Air

Associated Lab Samples:

Date: 03/04/2014 04:14 PM

 $10257905001,\,10257905002,\,10257905003,\,10257905004,\,10257905005,\,10257905006$

	,	Blank	Reporting	, ,	
Parameter	Units	Result	Limit	Analyzed	Qualifiers
1,1,1-Trichloroethane	ug/m3	ND	1.1	02/27/14 19:42	
1,1,2-Trichloroethane	ug/m3	ND	0.55	02/27/14 19:42	
1,1-Dichloroethane	ug/m3	ND	0.82	02/27/14 19:42	
1,1-Dichloroethene	ug/m3	ND	0.81	02/27/14 19:42	
1,2,3-Trimethylbenzene	ug/m3	ND	0.20	03/02/14 18:01	
1,2,4-Trichlorobenzene	ug/m3	ND	1.5	02/27/14 19:42	
1,2,4-Trimethylbenzene	ug/m3	ND	1.0	02/27/14 19:42	
1,2-Dichloroethane	ug/m3	ND	0.41	02/27/14 19:42	
1,3,5-Trimethylbenzene	ug/m3	ND	1.0	02/27/14 19:42	
Benzene	ug/m3	ND	0.32	02/27/14 19:42	
Carbon tetrachloride	ug/m3	ND	0.64	02/27/14 19:42	
Chlorodifluoromethane	ug/m3	ND	0.20	03/02/14 18:01	
Chloroform	ug/m3	ND	0.99	02/27/14 19:42	
cis-1,2-Dichloroethene	ug/m3	ND	0.81	02/27/14 19:42	
Dichlorodifluoromethane	ug/m3	ND	1.0	02/27/14 19:42	
Ethylbenzene	ug/m3	ND	0.88	02/27/14 19:42	
m&p-Xylene	ug/m3	ND	1.8	02/27/14 19:42	
Methyl-tert-butyl ether	ug/m3	ND	0.73	02/27/14 19:42	
Methylene Chloride	ug/m3	ND	0.71	02/27/14 19:42	
Naphthalene	ug/m3	ND	1.1	02/27/14 19:42	
o-Xylene	ug/m3	ND	0.88	02/27/14 19:42	
Tetrachloroethene	ug/m3	ND	0.69	02/27/14 19:42	
Toluene	ug/m3	ND	0.77	02/27/14 19:42	
trans-1,2-Dichloroethene	ug/m3	ND	0.81	02/27/14 19:42	
Trichloroethene	ug/m3	ND	0.55	02/27/14 19:42	
Vinyl chloride	ug/m3	ND	0.26	02/27/14 19:42	•

LABORATORY CONTROL SAMP	PLE: 1632767					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
1,1,1-Trichloroethane	ug/m3	55.5	57.8	104	72-128	
1,1,2-Trichloroethane	ug/m3	55.5	58.4	105	72-130	
1,1-Dichloroethane	ug/m3	41.2	39.9	97	68-128	
1,1-Dichloroethene	ug/m3	40.3	39.5	98	68-130	
1,2,3-Trimethylbenzene	ug/m3	50	51.1	102	60-140	
1,2,4-Trichlorobenzene	ug/m3	75.5	73.1	97	30-150	
1,2,4-Trimethylbenzene	ug/m3	50	50.5	101	71-140	
1,2-Dichloroethane	ug/m3	41.2	42.0	102	71-132	
1,3,5-Trimethylbenzene	ug/m3	50	52.0	104	73-136	
Benzene	ug/m3	32.5	32.8	101	69-134	
Carbon tetrachloride	ug/m3	64	67.5	105	66-134	

REPORT OF LABORATORY ANALYSIS

1700 Elm Street - Suite 200 Minneapolis, MN 55414 (612)607-1700

QUALITY CONTROL DATA

Project:

117-0507599 SSD Oem

Pace Project No.:

Date: 03/04/2014 04:14 PM

10257905

LABORATORY CONTROL SAMPL	E: 1632767					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Chlorodifluoromethane	ug/m3	36	31.1	86	60-140	· · · · · ·
Chloroform	ug/m3	49.7	49.3	99	72-127	
cis-1,2-Dichloroethene	ug/m3	40.3	41.8	104	71-135	
Dichlorodifluoromethane	ug/m3	50.3	48.9	97	69-125	
Ethylbenzene	ug/m3	44.2	46.3	105	73-139	
m&p-Xylene	ug/m3	44.2	45.3	103	73-139	
Methyl-tert-butyl ether	ug/m3	36.7	37.4	102	72-132	
Methylene Chloride	ug/m3	35.3	37.6	106	64-134	
Naphthalene	ug/m3	53.3	51.4	96	61-150	
o-Xylene	ug/m3	44.2	44.6	101	71-138	
Tetrachloroethene	ug/m3	69	66.6	96	69-136	
Toluene	ug/m3	38.3	40.2	105	67-133	
trans-1,2-Dichloroethene	ug/m3	40.3	39.1	97	70-131	
Trichloroethene	ug/m3	54.6	56.8	104	70-135	
Vinyl chloride	ug/m3	26	25.2	97	69-132	

REPORT OF LABORATORY ANALYSIS

Data File: \\192.168.10.12\chem\10airD.i\022714.b\05841.d

Report Date: 28-Feb-2014 13:29

Pace Analytical Services, Inc.

INTERNAL STANDARD COMPOUNDS AREA AND RT SUMMARY

Instrument ID: 10airD.i Lab File ID: 05841.d

Calibration Date: 27-FEB-2014

Calibration Time: 14:24

Lab Smp Id: 10257905003

Analysis Type: VOA

A-Effluent 1.57X

Level: LOW

Sample Type: AIR

Quant Type: ISTD Operator: AH2

Method File: \\192.168.10.12\chem\10airD.i\022714.b\T015_058-14.m

Misc Info: 19526

Test Mode:

Use Initial Calibration Level 4. If Continuing Cal. use Initial Cal. Level 4

		AREA	LIMIT		
COMPOUND	STANDARD	LOWER	UPPER	SAMPLE	%DIFF
=======================================	========	========	========	========	======
43 1,4-Difluorobenze	411323	246794	575852	534425	29.93
61 Chlorobenzene - d	0.00100	160890	375410	318011	18.59

		RT 1	TIMIT		
COMPOUND	STANDARD	LOWER	UPPER	SAMPLE	%DIFF
=======================================	=======	=======	=======	========	=== ==
43 1,4-Difluorobenze	6.40	6.07	6.73	6.40	-0.05
61 Chlorobenzene - d		9.75	10.41	10.07	-0.03

AREA UPPER LIMIT = + 40% of internal standard area. AREA LOWER LIMIT = - 40% of internal standard area.

Data File: \\192.168.10.12\chem\10airD.i\030214.b\06117.d

Report Date: 03-Mar-2014 09:38

Pace Analytical Services, Inc.

INTERNAL STANDARD COMPOUNDS AREA AND RT SUMMARY

Instrument ID: 10airD.i

Calibration Date: 02-MAR-2014 Calibration Time: 13:21

Lab File ID: 06117.d Lab Smp Id: 10257905003 A-E-ff | Vent

Level: LOW

Analysis Type: VOA Quant Type: ISTD

2.6376X

Sample Type: AIR

Operator: AH2

Method File: \\192.168.10.12\chem\10airD.i\030214.b\T015 061-14.m

Misc Info: 19526

Test Mode:

Use Initial Calibration Level 4. If Continuing Cal. use Initial Cal. Level 4

COMPOUND	STANDARD	AREA LOWER	LIMIT UPPER	SAMPLE	%DIFF
43 1,4-Difluorobenze	709746		993644	726179	2.32
61 Chlorobenzene - d	424828		594759	426871	0.48

		RT I	TIMIT		
COMPOUND	STANDARD	LOWER	UPPER	SAMPLE	%DIFF
43 1,4-Difluorobenze 61 Chlorobenzene - d	6.41 10.09	6.08 9.76	6.74 10.42	6.40	-0.10 -0.06
					_

AREA UPPER LIMIT = + 40% of internal standard area. AREA LOWER LIMIT = - 40% of internal standard area.

Data File: \\192.168.10.12\chem\10airD.i\022714.b\05839.d

Report Date: 28-Feb-2014 13:24

Pace Analytical Services, Inc.

INTERNAL STANDARD COMPOUNDS AREA AND RT SUMMARY

Instrument ID: 10airD.i

Calibration Date: 27-FEB-2014

Calibration Time: 14:24

Lab File ID: 05839.d Lab Smp Id: 10257905001

A-Influent

Level: LOW

Analysis Type: VOA Quant Type: ISTD

Sample Type: AIR

Operator: AH2

Method File: \\192.168.10.12\chem\10airD.i\022714.b\T015 058-14.m

Misc Info: 19526

Test Mode:

Use Initial Calibration Level 4. If Continuing Cal. use Initial Cal. Level 4

		AREA	LIMIT		
COMPOUND	STANDARD	LOWER	UPPER	SAMPLE	%DIFF
	========	=======	=======	========	======
43 1,4-Difluorobenze	411323	246794	575852	541972	31.76
61 Chlorobenzene - d	268150	160890	375410	326517	21.77

COMPOUND	STANDARD	LOWER	JIMIT UPPER	SAMPLE	%DIFF
43 1,4-Difluorobenze 61 Chlorobenzene - d		6.07 9.75	6.73	6.41	0.05 -0.03

AREA UPPER LIMIT = + 40% of internal standard area. AREA LOWER LIMIT = - 40% of internal standard area.

Data File: \\192.168.10.12\chem\10airD.i\022814.b\05907.d

Report Date: 28-Feb-2014 16:54

Pace Analytical Services, Inc.

INTERNAL STANDARD COMPOUNDS AREA AND RT SUMMARY

Instrument ID: 10airD.i Lab File ID: 05907.d

Calibration Date: 28-FEB-2014

Calibration Time: 12:24

Lab Smp Id: 10257905001

Analysis Type: VOA

A-Influent

Level: LOW

Sample Type: AIR

Quant Type: ISTD Operator: AH2

Method File: \\192.168.10.12\chem\10airD.i\022814.b\T015 058-14.m

Misc Info: 19526

Test Mode:

Use Initial Calibration Level 4. If Continuing Cal. use Initial Cal. Level 4

		AREA	LIMIT	-	
COMPOUND	STANDARD	LOWER	UPPER	SAMPLE	%DIFF
=======================================	========	========	========	========	======
43 1,4-Difluorobenze	411323	246794	575852	326936	-20.52
61 Chlorobenzene - d		160890	375410	249517	-6.95

		RT I			
COMPOUND	STANDARD	LOWER	UPPER	SAMPLE	%DIFF
=======================================		========	=======	========	======
43 1,4-Difluorobenze	6.40	6.07	6.73	6.40	-0.10
61 Chlorobenzene - d	10.08	9.75	10.41	10.07	-0.07

AREA UPPER LIMIT = + 40% of internal standard area. AREA LOWER LIMIT = - 40% of internal standard area.

Data File: \\192.168.10.12\chem\10airD.i\030214.b\06120.d

Report Date: 03-Mar-2014 09:41

Pace Analytical Services, Inc.

INTERNAL STANDARD COMPOUNDS AREA AND RT SUMMARY

Instrument ID: 10airD.i

Calibration Date: 02-MAR-2014

Calibration Time: 13:21

Lab File ID: 06120.d Lab Smp Id: 10257905001

A-Influent

Level: LOW

Analysis Type: VOA Quant Type: ISTD

4.032X

Sample Type: AIR

Operator: AH2

Method File: \\192.168.10.12\chem\10airD.i\030214.b\T015_061-14.m

Misc Info: 19526

Test Mode:

Use Initial Calibration Level 4. If Continuing Cal. use Initial Cal. Level 4

		AREA	LIMIT	-	
COMPOUND	STANDARD	LOWER	UPPER	SAMPLE	%DIFF
=======================================	========	=======	========	========	======
43 1,4-Difluorobenze	709746	425848	993644	746821	5.22
61 Chlorobenzene - d	424828	254897	594759	446573	5.12

		RT I	LIMIT		
COMPOUND	STANDARD	LOWER	UPPER	SAMPLE	%DIFF
=======================================	=======	========		=======	======
43 1,4-Difluorobenze	6.41	6.08	6.74	6.40	-0.10
61 Chlorobenzene - d		9.76	10.42	10.08	-0.06

AREA UPPER LIMIT = + 40% of internal standard area. AREA LOWER LIMIT = - 40% of internal standard area.

Data File: \\192.168.10.12\chem\10airD.i\022714.b\05840.d

Report Date: 28-Feb-2014 13:28

Pace Analytical Services, Inc.

INTERNAL STANDARD COMPOUNDS AREA AND RT SUMMARY

Instrument ID: 10airD.i

A-Mid GAC

Calibration Date: 27-FEB-2014

Calibration Time: 14:24

Lab File ID: 05840.d Lab Smp Id: 10257905002 Analysis Type: VOA Quant Type: ISTD

Level: LOW

Sample Type: AIR

Operator: AH2

Method File: \\192.168.10.12\chem\10airD.i\022714.b\T015 058-14.m

1.94 X

Misc Info: 19526

Test Mode:

Use Initial Calibration Level 4. If Continuing Cal. use Initial Cal. Level 4

		AREA	LIMIT		
COMPOUND	STANDARD	LOWER	UPPER	SAMPLE	8DIFF
=======================================	========	========	========	=======	======
43 1,4-Difluorobenze	411323	246794	575852	552423	34.30
61 Chlorobenzene - d	268150	160890	375410	324290	20.94

COMPOUND	STANDARD	RT I LOWER	JIMIT UPPER	SAMPLE	%DIFF
43 1,4-Difluorobenze 61 Chlorobenzene - d		6.07 9.75	6.73	6.40	-0.00 -0.00

AREA UPPER LIMIT = + 40% of internal standard area.

AREA LOWER LIMIT = - 40% of internal standard area.

Data File: \\192.168.10.12\chem\10airD.i\030214.b\06116.d

Report Date: 03-Mar-2014 15:34

Pace Analytical Services, Inc.

INTERNAL STANDARD COMPOUNDS AREA AND RT SUMMARY

Instrument ID: 10airD.i

Calibration Date: 02-MAR-2014 Calibration Time: 13:21

Lab File ID: 06116.d Lab Smp Id: 10257905002 Analysis Type: VOA Quant Type: ISTD

A-MIDGAC

Level: LOW

5,7618X

Sample Type: AIR

Operator: AH2

Method File: \\192.168.10.12\chem\10airD.i\030214.b\T015 061-14.m

Misc Info: 19526

Test Mode:

Use Initial Calibration Level 4. If Continuing Cal. use Initial Cal. Level 4

COMPOUND	STANDARD	AREA LOWER	LIMIT UPPER	SAMPLE	%DIFF
43 1,4-Difluorobenze		425848	993644	723205	1.90
61 Chlorobenzene - d		254897	594759	417893	-1.63

		RT I	TIMIT		
COMPOUND	STANDARD	LOWER	UPPER	SAMPLE	%DIFF
=======================================	=======	=========			= = = = =
43 1,4-Difluorobenze		6.08	6.74	6.40	-0.10
61 Chlorobenzene - d	10.09	9.76	10.42	10.08	-0.06
					l

AREA UPPER LIMIT = + 40% of internal standard area. AREA LOWER LIMIT = - 40% of internal standard area.

Data File: \\192.168.10.12\chem\10airD.i\022714.b\05844.d

Report Date: 28-Feb-2014 13:35

Pace Analytical Services, Inc.

INTERNAL STANDARD COMPOUNDS AREA AND RT SUMMARY

Instrument ID: 10airD.i Lab File ID: 05844.d

Calibration Date: 27-FEB-2014 Calibration Time: 14:24

Lab Smp Id: 10257905006

C-Effluent

Level: LOW

Analysis Type: VOA

1.68X Quant Type: ISTD

Sample Type: AIR

Operator: AH2

Misc Info: 19526

Method File: \\192.168.10.12\chem\10airD.i\022714.b\T015 058-14.m

Test Mode:

Use Initial Calibration Level 4. If Continuing Cal. use Initial Cal. Level 4

		11111111	LIMIT		
COMPOUND	STANDARD	LOWER	UPPER	SAMPLE	%DIFF
43 1,4-Difluorobenze 61 Chlorobenzene - d		246794 160890	575852 375410	544945 310377	32.49 15.75

		RT I	JIMIT	•	
COMPOUND	STANDARD	LOWER	UPPER	SAMPLE	%DIFF
=======================================	========	=======	=======	========	======
43 1,4-Difluorobenze	6.40	6.07	6.73	6.40	-0.00
61 Chlorobenzene - d	10.08	9.75	10.41	10.07	-0.03

AREA UPPER LIMIT = + 40% of internal standard area. AREA LOWER LIMIT = - 40% of internal standard area. RT UPPER LIMIT = + 0.33 minutes of internal standard RT. RT LOWER LIMIT = - 0.33 minutes of internal standard RT.

Data File: \\192.168.10.12\chem\10airD.i\030214.b\06119.d

Report Date: 03-Mar-2014 09:40

Pace Analytical Services, Inc.

INTERNAL STANDARD COMPOUNDS AREA AND RT SUMMARY

Instrument ID: 10airD.i

Calibration Date: 02-MAR-2014

Calibration Time: 13:21

Lab File ID: 06119.d Lab Smp Id: 10257905006 (-Influent Analysis Type: VOA Quant Type: ISTD 38472X

Level: LOW

Sample Type: AIR

Operator: AH2
Method File: \\192.168.10.12\chem\10airD.i\030214.b\T015_061-14.m

Misc Info: 19526

Test Mode:

Use Initial Calibration Level 4.

If Continuing Cal. use Initial Cal. Level 4

COMPOUND	STANDARD	AREA LOWER	LIMIT UPPER	SAMPLE	*DTFF
======================================	========	========	======================================	========	======
43 1,4-Difluorobenze	709746	425848	993644	756621	6.60
61 Chlorobenzene - d	424828	254897	594759	436055	2.64

		RT 1			
COMPOUND	STANDARD	LOWER	UPPER	SAMPLE	%DIFF
=======================================	========	=======	========	========	======
43 1,4-Difluorobenze	6.41	6.08	6.74	6.40	-0.10
61 Chlorobenzene - d		9.76	10.42	10.08	-0.10

AREA UPPER LIMIT = + 40% of internal standard area.

AREA LOWER LIMIT = - 40% of internal standard area.

Data File: \\192.168.10.12\chem\10airD.i\022714.b\05842.d

Report Date: 28-Feb-2014 13:30

Pace Analytical Services, Inc.

INTERNAL STANDARD COMPOUNDS AREA AND RT SUMMARY

Instrument ID: 10airD.i

C-Influen+

Calibration Date: 27-FEB-2014

Calibration Time: 14:24

Lab File ID: 05842.d Lab Smp Id: 10257905004

Analysis Type: VOA Quant Type: ISTD

Level: LOW 1.57X Sample Type: AIR

Operator: AH2

Method File: \\192.168.10.12\chem\10airD.i\022714.b\T015 058-14.m

Misc Info: 19526

Test Mode:

Use Initial Calibration Level 4. If Continuing Cal. use Initial Cal. Level 4

COMPOUND	STANDARD	AREA LOWER	LIMIT UPPER	SAMPLE	%DIFF
43 1,4-Difluorobenze 61 Chlorobenzene - d			575852 375410	520118 318311	26.45 18.71

		RT 1	LIMIT		
COMPOUND	STANDARD	LOWER	UPPER	SAMPLE	%DIFF
=======================================	=======	========	========	========	======
43 1,4-Difluorobenze	6.40	6.07	6.73	6.41	0.05
61 Chlorobenzene - d		9.75	10.41	10.08	-0.00

AREA UPPER LIMIT = + 40% of internal standard area. AREA LOWER LIMIT = - 40% of internal standard area.

Data File: \\192.168.10.12\chem\10airD.i\030214.b\06121.d

Report Date: 03-Mar-2014 09:41

Pace Analytical Services, Inc.

INTERNAL STANDARD COMPOUNDS AREA AND RT SUMMARY

Instrument ID: 10airD.i
Lab File ID: 06121.d

Calibration Date: 02-MAR-2014

Calibration Time: 13:21

Lab Smp Id: 10257905004

C-Influent

Analysis Type: VOA Quant Type: ISTD

7.6376X

Level: LOW Sample Type: AIR

Operator: AH2

Method File: \\192.168.10.12\chem\10airD.i\030214.b\T015_061-14.m

Misc Info: 19526

Test Mode:

Use Initial Calibration Level 4. If Continuing Cal. use Initial Cal. Level 4

		AREA	LIMIT		
COMPOUND	STANDARD	LOWER	UPPER	SAMPLE	%DIFF
=======================================	========	=======	=========	=======	======
43 1,4-Difluorobenze	709746	425848	993644	778461	9.68
61 Chlorobenzene - d		254897	594759	458093	7.83

		RT LIMIT			
COMPOUND	STANDARD	LOWER	UPPER	SAMPLE	%DIFF
=======================================	========	========	===== ===	========	======
43 1,4-Difluorobenze	6.41	6.08	6.74	6.41	-0.05
61 Chlorobenzene - d	10.09	9.76	10.42	10.08	-0.06
<u> </u>					

AREA UPPER LIMIT = + 40% of internal standard area. AREA LOWER LIMIT = - 40% of internal standard area.

Data File: \\192.168.10.12\chem\10airD.i\022714.b\05843.d

Report Date: 28-Feb-2014 13:32

Pace Analytical Services, Inc.

INTERNAL STANDARD COMPOUNDS AREA AND RT SUMMARY

Instrument ID: 10airD.i
Lab File ID: 05843.d

Calibration Date: 27-FEB-2014 Calibration Time: 14:24

C-MID GAC

Level: LOW

1,57X

Sample Type: AIR

Lab Smp Id: 10257905005 Analysis Type: VOA Quant Type: ISTD Operator: AH2

Method File: \\192.168.10.12\chem\10airD.i\022714.b\T015 058-14.m Misc Info: 19526

Test Mode:

Use Initial Calibration Level 4. If Continuing Cal. use Initial Cal. Level 4

COMPOUND	STANDARD	AREA LOWER	LIMIT UPPER	SAMPLE	%DIFF
43 1,4-Difluorobenze 61 Chlorobenzene - d			575852 375410	553562 324894	34.58 21.16

		RT LIMIT		,	
COMPOUND	STANDARD	LOWER	UPPER	SAMPLE	%DIFF
=======================================	=======	========	========	=======	======
43 1,4-Difluorobenze		6.07	6.73	6.40	-0.00
61 Chlorobenzene - d	10.08	9.75	10.41	10.07	-0.03

AREA UPPER LIMIT = + 40% of internal standard area. AREA LOWER LIMIT = - 40% of internal standard area.

Data File: \\192.168.10.12\chem\10airD.i\030214.b\06118.d

Report Date: 03-Mar-2014 09:39

Pace Analytical Services, Inc.

INTERNAL STANDARD COMPOUNDS AREA AND RT SUMMARY

Instrument ID: 10airD.i

Lab File ID: 06118.d Lab Smp Id: 10257905005 Analysis Type: VOA Quant Type: ISTD

C-MID GAC 2.6376X

Calibration Date: 02-MAR-2014 Calibration Time: 13:21

Level: LOW

Sample Type: AIR

Operator: AH2

Method File: \\192.168.10.12\chem\10airD.i\030214.b\T015 061-14.m

Misc Info: 19526

Test Mode:

Use Initial Calibration Level 4. If Continuing Cal. use Initial Cal. Level 4

	······································	AREA	LIMIT		
COMPOUND	STANDARD	LOWER	UPPER	SAMPLE	%DIFF
=======================================	========	========	========	========	======
43 1,4-Difluorobenze	709746	425848	993644	742170	4.57
61 Chlorobenzene - d		254897	594759	436280	2.70

		RT LIMIT			
COMPOUND	STANDARD	LOWER	UPPER	SAMPLE	%DIFF
=======================================	========	=======	========	========	=====
43 1,4-Difluorobenze 61 Chlorobenzene - d		6.08 9.76	6.74 10.42	6.40 10.08	-0.10 -0.07

AREA UPPER LIMIT = + 40% of internal standard area. AREA LOWER LIMIT = - 40% of internal standard area.

Sample Calculation Example and Curve Parameters

amount. The net result of this change is that the calculation for analyte concentration needs to be revised. Specifically, the average relative retention time factor (RRF) needs to be moved from the bottom of Equation 17 from the Pace TO-15 SOP below to the top of the division sign. January, concentrations were calculated by response rather than by amount. The EPA TO-15 method requires that curves are evaluated by Beginning in early January 2014, a change was made to the TO-15 methods that altered the way concentrations were calculated. Prior to

14.17. Calculate the concentration of the sample component using Equation 17:

Equation 17

$$C_{x} = \frac{(Ax)(Cx)(Dy)}{(Ax)(Rx)}$$

 C_i =Concentration of compound x in ppbv;

 A_x =EICP area of the quantitation ion for compound x_z C=Concentration of the internal standard associated with compound x in ppb y_z

 D_j =Dilution factor from Equation 12 (if no dilution was performed, D_j -equals 1.) A_j =EICP area of the quantitation ion for the internal standard associated with compound x_i

 R_j =Average RRF for compound x from the most recent calibration curve.

equation 17, and m1 is equal to R_f. Once you apply the internal standard to the revised equation 17, it should be as follows: by the response (Rsp). It is important to note that this is before applying the internal standard calculation. Therefore, Rsp is equal to A_x from (Rsp) divided by the average RRF (m1). In the after evaluation, you can see that the equation has moved the average RRF (m1) to be multiplied Below are images of the before and after change applied in target. In the before, you can see that the amount (Amt) is equal to the response

$$C_x = \frac{(A_x)(C_t)(D_f)(R_x)}{A_t}$$

Revised equation 17

Project:

117-0507599 SSD Oem

Pace Project No.:

10257905

Sample: A-Influent	Lab ID: 10257905001	Collected: 02/14/14	16:25	Received: 02/17/14 10:00	Matrix: Air	
Parameters	Results Units	Report Limit	DF	Prepared Analyze	d CAS No.	Qual
TO15 MSV AIR	Analytical Method: TO-15					
Benzene	ND ug/m3	0.78	2.4	02/28/14 07	:51 71-43-2	
Carbon tetrachloride	ND ug/m3	1.5	2.4	02/28/14 07	:51 56-23-5	
Chlorodifluoromethane	2.4 ug/m3	0.81	4.032	03/02/14 20	:21 75-45-6	
Chloroform	7.4 ug/m3	2.4	2.4	02/28/14 07	:51 67-66-3	
Dichlorodifluoromethane	ND ug/m3	2.4	2.4	02/28/14 07	:51 75-71-8	
1,1-Dichloroethane	21.2 ug/m3	2.0	2.4	02/28/14 07	:51 75-34-3	
1,2-Dichloroethane	ND ug/m3	0.98	2.4	02/28/14 07	:51 107-06-2	
1,1-Dichloroethene	92.7 ug/m3	1.9	2.4	02/28/14 07	:51 75-35-4	
cis-1,2-Dichloroethene	126 ug/m3	1.9	2.4	02/28/14 07	:51 156-59-2	
trans-1,2-Dichloroethene	ND ug/m3	1.9	2.4	02/28/14 07	:51 156-60-5	
Ethylbenzene	ND ug/m3	2.1	2.4	02/28/14 07	:51 100-41-4	
Methylene Chloride	2.1 ug/m3	1.7	2.4	02/28/14 07	:51 75-09-2	
Methyl-tert-butyl ether	ND ug/m3	1.8	2.4	02/28/14 07	:51 1634-04-4	
Naphthalene	ND ug/m3	2.6	2.4	02/28/14 07	:51 91-20-3	
Tetrachloroethene	ND ug/m3	1.7	2.4	02/28/14 07	:51 127-18-4	
Toluene	15.3 ug/m3	1.8	2.4	02/28/14 07	:51 108-88-3	
1,2,4-Trichlorobenzene	ND ug/m3	3.6	2.4	02/28/14 07	:51 120-82-1	
1,1,1-Trichloroethane	429 ug/m3	2.7	2.4	02/28/14 07	:51 71-55-6	
1,1,2-Trichloroethane	ND_ug/m3	1.3	2.4	02/28/14 07	:51 79-00-5	
Trichloroethene	843 ug/m3	26.4	48	02/28/14 15	:45 79-01-6	
1,2,3-Trimethylbenzene	ND ug/m3	0.81	4.032	03/02/14 20	:21 526-73-8	
1,2,4-Trimethylbenzene	ND ug/m3	2.4	2.4	02/28/14 07	:51 95-63-6	
1,3,5-Trimethylbenzene	ND ug/m3	2.4	2.4	02/28/14 07	:51 108-67-8	
Vinyl chloride	ND ug/m3	0.62	2.4	02/28/14 07	:51 75-01-4	
m&p-Xylene	ND ug/m3	4.2	2.4	02/28/14 07	:51 179601-23-1	
o-Xylene	ND ug/m3	2.1	2.4	02/28/14 07	:51 95-47-6	

$$\frac{44226}{326936} + 48 \times \frac{10}{2.37785} = 27.31 ppb V$$

New calc.

44226 + 48* 10 * 2.37785 = 154.40pplov

154.40 pphv + 131.49/mole vais 24.45 L/mole

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.. 829. 8 ug/m3 Page 6 of 17

Sample Calculation

Data File: \\192.168.10.12\chem\10airD.i\022814.b\05907.d

Report Date: 28-Feb-2014 16:54

Pace Analytical Services, Inc.

TO15 Analysis (UNIX)
Data file: \\192.168.10.12\chem\10airD.i\022814.b\05907.d

Lab Smp Id: 10257905001

Inj Date : 28-FEB-2014 15:45

A-Influent Inst ID: 10airD.i Operator : AH2

Smp Info

Misc Info: 19526

Comment : Volatile Organic COMPOUNDS in Air

Method : \\192.168.10.12\chem\10airD.i\022814.b\T015_058-14.m

Meth Date : 28-Feb-2014 12:55 ahamilton Quant Type: ISTD

Cal Date : 27-FEB-2014 15:29 Cal File: 05805.d

Als bottle: 5

Dil Factor: 48.00000 Integrator: HP RTE

Compound Sublist: MD.sub

Target Version: 4.14 Processing Host: 10MNSKAUFMANM72

Concentration Formula: Amt * DF * Uf * CpndVariable

Name	Value	Description
DF Uf Cpnd Variable	48.000 1.000	Dilution Factor ng unit correction factor Local Compound Variable

			CONCENTRATIONS
	ompounds	QUANT SIG MASS	ON-COLUMN FINAL RT EXP RT REL RT RESPONSE (ppbv) (ppbv)
	1 Chlorodifluoromethane	==== 51	Compound Not Detected.
	3 Dichlorodifluoromethane	85	Compound Not Detected.
	6 Vinyl chloride	62	Compound Not Detected.
	17 1,1-Dichloroethene	61	4.206 4.210 (0.658) 10467 0.59301 28.5
	21 Methylene chloride	49	Compound Not Detected.
	24 trans-1,2-dichloroethene	96	Compound Not Detected.
	25 Methyl Tert Butyl Ether	73	Compound Not Detected.
	27 1,1-Dichloroethane	63	4.839 4.846 (0.757) 2611 0.12504 6.00(M)
\$	28 Hexane-d14(S)	66	4.954 4.961 (0.774) 169371 11.6589 11.6
	32 cis-1,2-Dichloroethene	96	5.246 5.259 (0.820) 6441 0.58374 28.0
	34 Chloroform	83	Compound Not Detected.
	37 1,1,1-Trichloroethane	97	5.892 5.902 (0.921) 63808 2.02651 97.3
	38 1,2-Dichloroethane	62	Compound Not Detected.
	39 Benzene	78	Compound Not Detected.
	40 Carbon tetrachloride	117	Compound Not Detected.
*	43 1,4-Difluorobenzene	114	6.397 6.410 (1.000) 3 <u>26936</u> 10.0000
	47 Trichloroethene	130	6.856 6.866 (1.072) (44226) 3.21635 154
\$	54 Toluene-d8 (S)	98	8.194 8.207 (1.281) 283231 9.77772 9.78
	55 Toluene	91	Compound Not Detected.
	56 1,1,2-Trichloroethane	97	Compound Not Detected.
	60 Tetrachloroethene	166	Compound Not Detected.
*	61 Chlorobenzene - d5	117	10.070 10.083 (1.000) 249517 10.0000
	63 Ethyl Benzene	91	Compound Not Detected.

Report Date : 28-Feb-2014 14:13

Sample Calculation

Pace Analytical Services, Inc.

INITIAL CALIBRATION DATA

,-		. (0.10000000	0.2000000	1.0000	10.0000	20.0000	30.0000	Cor	efficients	8RSD
I	Compound		Level 1 :	Level 2	Level 3	Level 4	Level 5	Level 6 Curve	b	m1 m2	or R^2
	38 1,2-Dichloroethane	:	1.20193	1.24985	1.43358	1.36024	1.43492	1.53941 AVRG		1.36999	9.21770
I	39 Benzene		0.90105i	1.00122	1.06390	0.95291	1.01791	1.05335 AVRG	1	0.99839	6.21408
1	40 Carbon tetrachloride		0.95010;	0.95527	1.05446	0.90038	0.97820	1.08374 AVRG	1	0.98702	6.99865
1	41 Cyclohexane		2.04904	2.26351	2.35708	2.48238	2.69018	2.86133 AVRG	1	2.45059	11.99609
1	42 Tert Amyl Methyl Ether		11197	12367	36471	363052	809927	1280341 LINR	-0.01380	1.16040	0.99985
1	44 2,2,4-Trimethylpentane		C.67592.	0.73016	0.77405	0.72007	0.75820	0.79056 AVRG	1	0.74149	1 5.60429
L	45 Heptane		2.28801	2.29501	2.29881	2.26587	2.44503	2.63551 AVRG	1	2.37137	6.09261
L	46 1,2-Dichloropropane		2.84801.	2.75150	2.83434	2.53579	2.75693	2.89322 AVRG	1	2.76830	4.52315
1	47 Trichlorgethene		2.48567:	2.77196	2.71093	2.04767	2.12263	2.12707 AVRG		2.37765	13.49726
1	48 Bromodichloromethane		1.00246	1.02028	1.05007	0.8€257	0.97324	1.02336 AVRG	7	0.988661	6.75503
L	49 1,4-Dioxane	1	5.59203;	5.73675	6.04660	4.84879	5.74127	5.28940 AVRG	1	5.54247	7.56538
L	50 Methylcyclohexane	1	5.53337.	5.47316	5.52377	4.07646	4.61790	4.43391 AVRG	1	4.94310	13.05640
1	51 Methyl Isobutyl Ketone		1.49390	1.51500	1.63956	1.34455	1.47095	1.59540 AVRG	1	1.50990	6.83569
1	52 cis-1,3-Dichloropropene	i	1.87062:	1.82129	1.87270	1.45077	1.54289	1.55795 AVRG	1	1.68604	11.23645
1	53 trans-1,3+Dichloropropene	1	1.76623	1.95586	1.89688	1.23598	1.37681	1.40647 AVRG	1	1.60637	18.92191
ı	55 Toluene		C.77576	0.86965	0.91117	0.69955	0.77975	0.78686 AVRG	1	0.80379	9.37372
L	56 1,1,2-Trichloroethane	1	2.15117	2.28157	2.43185	1.85608	2.04097	2.10597 AVRG	1	2.14460	9.25072
ı	57 Methyl Butyl Ketone		0.83640	0.93524	0.95569	0.83275	0.93425	0.95110 AVRG	1	0.90757	6.30095
L	58 Dibromochloromethane		0.61520	0.71417	0.74553	0.59801	0.63269	0.61828 AVRG	1	0.65398	9.26830
ı	59 1,2-Dibromoethane		0.67592	0.78897	0.86406	0.72482	0.76056	0.71200 AVRG	1	0.75437	8.80954
ı	60 Tetrachloroethene		C.77655	0.98659	1.07740	0.840581	0.85208	0.78935 AVRG	1	0.88709	13.45967
1	62 Chilorobenzene		0.54122	0.65231	0.72027	0.61138:	0.59907	0.58146 AVRG	1	0.61762	10.05124
1				1	1	:	1	1 1	1		

Tetra Tech

INTERNAL CORRESPONDENCE

TO:

P. RICH

DATE:

APRIL 14, 2014

FROM:

A. COGNETTI

COPIES:

DV FILE

SUBJECT:

ORGANIC DATA VALIDATION - VOC

LOCKHEED MARTIN CORPORATION (LMC) – MIDDLE RIVER

SAMPLE DELIVERY GROUP (SDG) - 10260309

SAMPLES:

6/Air/VOC

A-EFFLUENT

A-INFLUENT

A-MID GAC

C-EFFLUENT

C-INFLUENT

C-MID GAC

<u>Overview</u>

The sample set for LMC – Middle River, SDG 10260309 consisted of six (6) air samples. All samples were analyzed for volatile organic compounds (VOC). No field duplicate pair is included in this SDG.

The samples were collected by Geo Trans on March 12, 2014 and analyzed by PACE Analytical. All analyses were conducted in accordance with EPA Method TO-15 analytical and reporting protocols.

The data contained in this SDG were validated with regard to the following parameters: data completeness, holding times, GC/MS tuning, initial/continuing calibrations, laboratory method blank results, surrogate spike recoveries, blank spike results, internal standard recoveries, chromatographic resolution, compound identification, compound quantitation, and detection limits. Areas of concern are listed below.

Major

No major noncompliances were noted.

Minor

• The laboratory control sample (LCS) percent recoveries (%Rs) of 1,1-dichloroethane, 1.1-dichloroethene and dichlorodifluoromethane were greater than the upper quality control limit in batch 1644037. The detected 1,1-dichloroethane, 1.1-dichloroethene and dichlorodifluoromethane results were qualified as estimated (J) in the affected samples.

Notes

The chain of custody indicated that no gauges were provided with the summa canisters. This means that the canister pressure before and after sampling could not be evaluated. No validation action was taken.

Nondetected results were reported to the reporting limit.

Executive Summary

Laboratory Performance: The LCS %Rs of 1,1-dichloroethane, 1.1-dichloroethene and dichlorodifluoromethane exceeded quality control limits.

Other Factors Affecting Data Quality: None.

TO:

P. Rich

FROM: A. Cognetti

SDG: 10260309

DATE: April 14, 2014

The data for these analyses were reviewed with reference to USEPA National Functional Guidelines for Organic Data Validation (June 2008) and EPA Method TO-15. The text of this report has been formulated to address only those problem areas affecting data quality.

PAGE 2

Ann Cognetti

Chemist/Data Validator

Tetra Tech

Joseph A. Samchuck Data Validation Manager

Attachments:

Appendix A - Qualified Analytical Results

Appendix B - Results as Reported by the Laboratory

Appendix C – Support Documentation

Appendix A

Qualified Analytical Results

Qualifier Codes:

A = Lab Blank Contamination

B = Field Blank Contamination

C = Calibration Noncompliance (i.e., % RSDs, %Ds, ICVs, CCVs, RRFs, etc.)

C01 = GC/MS Tuning Noncompliance

D = MS/MSD Recovery Noncompliance

E = LCS/LCSD Recovery Noncompliance

F = Lab Duplicate Imprecision

G = Field Duplicate Imprecision

H = Holding Time Exceedance

I = ICP Serial Dilution Noncompliance

J = ICP PDS Recovery Noncompliance; MSA's r < 0.995

K = ICP Interference - includes ICS % R Noncompliance

L = Instrument Calibration Range Exceedance

M = Sample Preservation Noncompliance

N = Internal Standard Noncompliance

N01 = Internal Standard Recovery Noncompliance Dioxins

N02 = Recovery Standard Noncompliance Dioxins

N03 = Clean-up Standard Noncompliance Dioxins

O = Poor Instrument Performance (i.e., base-time drifting)

P = Uncertainty near detection limit (< 2 x IDL for inorganics and <CRQL for organics)

Q = Other problems (can encompass a number of issues; i.e.chromatography,interferences, etc.)

R = Surrogates Recovery Noncompliance

S = Pesticide/PCB Resolution

T = % Breakdown Noncompliance for DDT and Endrin

U = RPD between columns/detectors >40% for positive results determined via GC/HPLC

V = Non-linear calibrations; correlation coefficient r < 0.995</p>

W = EMPC result

X = Signal to noise response drop

Y = Percent solids <30%

Z = Uncertainty at 2 standard deviations is greater than sample activity

Z1 = Tentatively Identified Compound considered presumptively present

Z2 = Tentatively Identified Compound column bleed

Z3 = Tentatively Identified Compound aldol condensate

SDG: 10260309 FRACTION: OV-M3 MEDIA: AIR MEDIA: AIR MEDIA: AIR UNITS PARAMETER 1,1,2-TRICHLOROETHANE 1,1,1-TRICHLOROETHANE	A-EFFLOEN 20140312 10260309003 3/12/2014 NM UG/M3 VQL Q RESULT VQL Q 0.92 U	0 VQL QLCD		U VQL	OLCD	10260309002 3/12/2014 NM UG/M3 RESULT VQL 38.5 0.92	<u>ν</u> ΩΓ	OTCD	10260309006 3/12/2014 NM UG/M3 UG/M3 RESULT VQL Q	VQL 6	
LAB_ID SAMP_DATE QC_TYPE UNITS PCT_SOLIDS DUP_OF OETHANE OETHANE	1.9	P P	310	U VQL	OLCD			QLCD QLCD	14 14 Og		2
SAMP_DATE QC_TYPE UNITS PCT_SOLIDS DUP_OF NE	1.9		310	U VQL	OLCD			QLCD QLCD	4 4	VQL	2
QC_TYPE UNITS PCT_SOLIDS DUP_OF	1.9		M3 SULT 1310 0.92	U VQL	OLCD			QLCD	7	νοι	2
PCT_SOLIDS DUP_OF	1.9	<u>ြ</u>	1310	VQL	QLCD			alco	- - -	VQL	2
PCT_SOLIDS DUP_OF	1.9	<u>ြ</u>	1310	U VQL	QLCD			alco		νοι	2
DUP_OF	1.9 0.92	P	1310	U	QLCD			QLCD		VQL	5
NE NE	1.9 0.92		1310 0.92	L VQL	QLCD			QLCD		ဉ်	
1,1,1-TRICHLOROETHANE 1,1,2-TRICHLOROETHANE	1.9 L 0.92 L 1.4 L		1310 0.92			38.5 0.92	C				מרכים
1,1,2-TRICHLOROETHANE	0.92 t		0.92			0.92	C			1.9 U	
1 1 DIOUI OROFTHANE	1.4	-		•					0.9	0.92 U	
י, - טיטורטועטר וויסוער			29.3	_	Ш	24.5				1.4	
1,1-DICHLOROETHENE	1.4 U		130 J		E	134				1.4	
1,2,3-TRIMETHYLBENZENE	0.34 ∪		0.34	C		1.7 U	C		0.94	4	
1,2,4-TRICHLOROBENZENE	12.7 U		12.7	_		2.5 U	_		12.	12.7 U	
1,2,4-TRIMETHYLBENZENE	3		1.7 U	C		1.7 U	C		5.1	_	
1,2-DICHLOROETHANE	0.69 U		36.4			0.69 U	C		0.69	39	
1,3,5-TRIMETHYLBENZENE	1.7	U	1.7	C		1.7 U	_		2.3	ω	
BENZENE	2		0.55	_		24.5			6.9	.9	
CARBON TETRACHLORIDE	1.1	U	1.1	_		1.1	C			1.1 C	
CHLORODIFLUOROMETHANE	13.3		2.4			4.5			2.5	Ċī	
CHLOROFORM	1.7 U	י י	1.7	U		1.7 U	C			1.7 U	
CIS-1,2-DICHLOROETHENE	1.4	n	176			154				1.4	
DICHLORODIFLUOROMETHANE	2.3 J	m	2	٦	Е	2.2			2.	2.2 J	m
ETHYLBENZENE	3.5		1.5	C		1.5 U	_			1.5 U	
M+P-XYLENES	7.7		3			ω	3 U			3 ∪	
METHYL TERT-BUTYL ETHER	1.2 เ	U	1.2	_		1.2 U	_			1.2 U	
METHYLENE CHLORIDE	35.2		5.9	C		28.1			13.7	.7	
NAPHTHALENE	8.9 (8.9 U	C		1.8 U	_		88	8.9 U	
O-XYLENE	2.9		1.5 U	C		1.5 U	_			1.5 U	
TETRACHLOROETHENE	2.6		3.6			1.2 U	_		1.	1.2 U	
TOLUENE	36.5		9.1			3.4			ω	3.2	
TRANS-1,2-DICHLOROETHENE	1.4		1.4	C		1.4 U	C			1.4 U	
TRICHLOROETHENE	1.2		2100			47.5				1.9	
VINYL CHLORIDE	0.44 U		0.44 U	C		0.44 U	_		0.4	0.44 U	

1 of 2 4/14/2014

		C	LO 1100 17	•	C-IVIID-GAC_20140312	201403	Z
	LAB_ID	10260309004			10260309005	5	
<u>×</u> 3	SAMP_DATE	3/12/2014			3/12/2014		
	QC_TYPE	Z			Z		
	UNITS	UG/ M 3			UG/M3		
	PCT_SOLIDS						
	DUP_OF						
PARAMETER		RESULT	δΓ	QLCD	RESULT	۷QL	QLCD
1,1,1-TRICHLOROETHANE		1.9	_		1	1.9 U	
1,1,2-TRICHLOROETHANE		0.92 U	_		9.0	0.92 U	
1,1-DICHLOROETHANE		1.4 U	C		1	1.4 U	
1,1-DICHLOROETHENE		1.4 U	_		1	1.4 U	
1,2,3-TRIMETHYLBENZENE		1.6			5	5.9	_
1,2,4-TRICHLOROBENZENE		12.7	U		12.7	.7 U	
1,2,4-TRIMETHYLBENZENE		6			15.3	ω	
1,2-DICHLOROETHANE		0.69	_		0.69	9	
1,3,5-TRIMETHYLBENZENE		ဒ			4	4.4	
BENZENE		9.1			13.5	.5	
CARBON TETRACHLORIDE		1.1	_		1	1.1	
CHLORODIFLUOROMETHANE	NE	3			3	3.7	
CHLOROFORM		3.2			_	1.7 U	
CIS-1,2-DICHLOROETHENE		4.9			10.5	.5	
DICHLORODIFLUOROMETHANE	HANE	2.2	J	E	2	2.4 J	ш
ETHYLBENZENE		5.9			3	3.7	
M+P-XYLENES		25.3			17.1	<u> </u>	
METHYL TERT-BUTYL ETHER	ER	1.2	U		_	1.2 U	
METHYLENE CHLORIDE		5.9	_		5	5.9 U	
NAPHTHALENE		11.5			8	8.9 U	
O-XYLENE		12.3			7	7.6	
TETRACHLOROETHENE		3.3			18.2	2	
TOLUENE		6			12.5	Ċī	
TRANS-1,2-DICHLOROETHENE	ENE	1.4	_			1.4	
TRICHLOROETHENE		261			5	5.6	
VINYL CHLORIDE		0.44 U	C		0.4	0.44 U	

Appendix B

Results as Reported by the Laboratory

Project:

117-0507599.20 SSD O&M

Pace Project No.: 10260309

Sample: A-Effluent	Lab ID: 10260309003	Collected: 03/12/1	4 12:58	Received: 03	3/14/14 08:54	Matrix: Air	
Parameters	Results Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
TO15 MSV AIR	Analytical Method: TO-15						
Benzene	2.0 ug/m3	0.55	1.68		03/25/14 00:48	3 71-43-2	
Carbon tetrachloride	ND ug/m3	1.1	1.68		03/25/14 00:48	56-23-5	
Chlorodifluoromethane	13.3 ug/m3	0.34	1.68		03/25/14 00:48	75-45-6	
Chloroform	ND ug/m3	1.7	1.68		03/25/14 00:48	8 67-66-3	
Dichlorodifluoromethane	2.3 ug/m3	1.7	1.68		03/25/14 00:48	3 75-71-8	L1
1,1-Dichloroethane	ND ug/m3	1.4	1.68		03/25/14 00:48	75-34-3	
1,2-Dichloroethane	ND ug/m3	0.69	1.68		03/25/14 00:48	3 107-06-2	
1,1-Dichloroethene	ND ug/m3	1.4	1.68		03/25/14 00:48	75-35-4	
cis-1,2-Dichloroethene	ND ug/m3	1.4	1.68		03/25/14 00:48	156-59-2	
trans-1,2-Dichloroethene	ND ug/m3	1.4	1.68		03/25/14 00:48	156-60-5	
Ethylbenzene	3.5 ug/m3	1.5	1.68		03/25/14 00:48	3 100-41-4	
Methylene Chloride	35.2 ug/m3	5.9	1.68		03/25/14 00:48	75-09-2	
Methyl-tert-butyl ether	ND ug/m3	1.2	1.68		03/25/14 00:48	1634-04-4	
Naphthalene	ND ug/m3	8.9	1.68		03/25/14 00:48	91-20-3	
Tetrachloroethene	2.6 ug/m3	1.2	1.68		03/25/14 00:48	127-18-4	
Toluene	36.5 ug/m3	1.3	1.68		03/25/14 00:48	108-88-3	
1,2,4-Trichlorobenzene	ND ug/m3	12.7	1.68		03/25/14 00:48	120-82-1	
1,1,1-Trichloroethane	ND ug/m3	1.9	1.68		03/25/14 00:48	71-55-6	
1,1,2-Trichloroethane	ND ug/m3	0.92	1.68		03/25/14 00:48	79-00-5	
Trichloroethene	1.2 ug/m3	0.92	1.68		03/25/14 00:48	79-01-6	
1,2,3-Trimethylbenzene	ND ug/m3	0.34	1.68		03/25/14 00:48	526-73-8	
1,2,4-Trimethylbenzene	3.0 ug/m3	1.7	1.68		03/25/14 00:48	95-63-6	
1,3,5-Trimethylbenzene	ND ug/m3	1.7	1.68		03/25/14 00:48	108-67-8	
Vinyl chloride	ND ug/m3	0.44	1.68		03/25/14 00:48	75-01-4	
m&p-Xylene	7.7 ug/m3	3.0	1.68		03/25/14 00:48	179601-23-1	
o-Xylene	2.9 ug/m3	1.5	1.68		03/25/14 00:48	95-47-6	

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

Project:

117-0507599.20 SSD O&M

Pace Project No.: 10260309

Sample: A-Influent	Lab ID: 10260309001	Collected: 03/12/1	4 12:56	Received: 03/14/14 08:54	Matrix: Air	
Parameters	Results Units	Report Limit	DF	Prepared Analyzed	CAS No.	Qua
TO15 MSV AIR	Analytical Method: TO-15					
Benzene	ND ug/m3	0.55	1.68	03/25/14 02:	38 71-43-2	
Carbon tetrachloride	ND ug/m3	1.1	1.68	03/25/14 02:	38 56-23-5	
Chlorodifluoromethane	2.4 ug/m3	0.34	1.68	03/25/14 02:	38 75-45-6	
Chloroform	ND ug/m3	1.7	1.68	03/25/14 02:	38 67-66-3	
Dichlorodifluoromethane	2.0 ug/m3	1.7	1.68	03/25/14 02:	38 75-71-8	L1
1,1-Dichloroethane	29.3 ug/m3	1.4	1.68	03/25/14 02:	38 75-34-3	L1
1,2-Dichloroethane	36.4 ug/m3	0.69	1.68	03/25/14 02:	38 107-06-2	
1,1-Dichloroethene	130 ug/m3	1.4	1.68	03/25/14 02:	38 75-35-4	L1
cis-1,2-Dichloroethene	176 ug/m3	1.4	1.68	03/25/14 02:	38 156-59-2	
trans-1,2-Dichloroethene	ND ug/m3	1.4	1.68	03/25/14 02:	38 156-60-5	
Ethylbenzene	ND ug/m3	1.5	1.68	03/25/14 02:	38 100-41-4	
Methylene Chloride	ND ug/m3	5.9	1.68	03/25/14 02:	38 75-09-2	
Methyl-tert-butyl ether	ND ug/m3	1.2	1.68	03/25/14 02:	38 1634-04-4	
Naphthalene	ND ug/m3	8.9	1.68	03/25/14 02:	38 91-20-3	
Tetrachloroethene	3.6 ug/m3	1.2	1.68	03/25/14 02:	38 127-18-4	
Toluene	9.1 ug/m3	1.3	1.68	03/25/14 02:	38 108-88-3	
1,2,4-Trichlorobenzene	ND ug/m3	12.7	1.68	03/25/14 02:	38 120-82-1	
1,1,1-Trichloroethane	1310 ug/m3	117	105.5	03/26/14 13:	57 71-55-6	
1,1,2-Trichloroethane	ND ug/m3	0.92	1.68	03/25/14 02:	38 79-00-5	
Trichloroethene	2100 ug/m3	58.0	105.5	03/26/14 13:	57 79-01-6	
1,2,3-Trimethylbenzene	ND ug/m3	0.34	1.68	03/25/14 02:	38 526-73-8	
1,2,4-Trimethylbenzene	ND ug/m3	1.7	1.68	03/25/14 02:	38 95-63-6	
1,3,5-Trimethylbenzene	ND ug/m3	1.7	1.68	03/25/14 02:	38 108-67-8	
Vinyl chloride	ND ug/m3	0.44	1.68	03/25/14 02:	38 75-01- 4	
m&p-Xylene	3.0 ug/m3	3.0	1.68	03/25/14 02:	38 179601-23-1	
o-Xylene	ND ug/m3	1.5	1.68	03/25/14 02:	38 95-47-6	

REPORT OF LABORATORY ANALYSIS

Project:

117-0507599.20 SSD O&M

Pace Project No.: 10260309

Sample: A-Mid-GAC	Lab ID: 10260309002	Collected: 03/12/14	4 12:57	Received: 03/14/14 08:54	Matrix: Air	
Parameters	Results Units	Report Limit	DF	Prepared Analyzed	CAS No.	Qual
TO15 MSV AIR	Analytical Method: TO-15					
Benzene	24.5 ug/m3	0.55	1.68	03/26/14 01:	13 71-43-2	
Carbon tetrachloride	ND ug/m3	1.1	1.68	03/26/14 01:	13 56-23-5	
Chlorodifluoromethane	4.5 ug/m3	1.2	1.68	03/26/14 01:	13 75-45-6	
Chloroform	ND ug/m3	1.7	1.68	03/26/14 01:	13 67-66-3	
Dichlorodifluoromethane	2.2 ug/m3	1.7	1.68	03/26/14 01:	13 75-71-8	
1,1-Dichloroethane	24.5 ug/m3	1.4	1.68	03/26/14 01:	13 75-34-3	
1,2-Dichloroethane	ND ug/m3	0.69	1.68	03/26/14 01:	13 107-06-2	
1,1-Dichloroethene	134 ug/m3	1.4	1.68	03/26/14 01:	13 75-35-4	
cis-1,2-Dichloroethene	154 ug/m3	1.4	1.68	03/26/14 01:	13 156-59-2	
trans-1,2-Dichloroethene	ND ug/m3	1.4	1.68	03/26/14 01:	13 156-60-5	
Ethylbenzene	ND ug/m3	1.5	1.68	03/26/14 01:	13 100-41-4	
Methylene Chloride	28.1 ug/m3	1.2	1.68	03/26/14 01:	13 75-09-2	
Methyl-tert-butyl ether	ND ug/m3	1.2	1.68	03/26/14 01:	13 1634-04-4	
Naphthalene	ND ug/m3	1.8	1.68	03/26/14 01:	13 91-20-3	
Tetrachloroethene	ND ug/m3	1.2	1.68	03/26/14 01:	13 127-18-4	
Toluene	3.4 ug/m3	1.3	1.68	03/26/14 01:	13 108-88-3	
1,2,4-Trichlorobenzene	ND ug/m3	2.5	1.68	03/26/14 01:	13 120-82-1	
1,1,1-Trichloroethane	38.5 ug/m3	1.9	1.68	03/26/14 01:	13 71-55-6	
1,1,2-Trichloroethane	ND ug/m3	0.92	1.68	03/26/14 01:	13 79-00-5	
Trichloroethene	47.5 ug/m3	0.92	1.68	03/26/14 01:	13 79-01-6	
1,2,3-Trimethylbenzene	ND ug/m3	1.7	1.68	03/26/14 01:	13 526-73-8	
1,2,4-Trimethylbenzene	ND ug/m3	1.7	1.68	03/26/14 01:	13 95-63-6	
1,3,5-Trimethylbenzene	ND ug/m3	1.7	1.68	03/26/14 01:	13 108-67-8	
Vinyl chloride	ND ug/m3	0.44	1.68	03/26/14 01:	13 75-01-4	
m&p-Xylene	ND ug/m3	3.0	1.68	03/26/14 01:	13 179601-23-1	
o-Xylene	ND ug/m3	1.5	1.68	03/26/14 01:	13 95-47-6	

REPORT OF LABORATORY ANALYSIS

Project:

117-0507599.20 SSD O&M

Pace Project No.:

10260309

Sample: C-Effluent	Lab ID: 10260309006	Collected: 03/12/1	4 13:32	Received: 03/14/14 08	:54 Matrix: Air	
Parameters	Results Units	Report Limit	DF	Prepared Anal	yzed CAS No.	Qua
TO15 MSV AIR	Analytical Method: TO-15					
Benzene	6.9 ug/m3	0.55	1.68	03/25/14	1 02:11 71-43-2	
Carbon tetrachloride	ND ug/m3	1.1	1.68	03/25/14	102:11 56-23-5	
Chlorodifluoromethane	2.5 ug/m3	0.34	1.68	03/25/14	1 02:11 75-45-6	
Chloroform	ND ug/m3	1.7	1.68	03/25/14	102:11 67-66-3	
Dichlorodifluoromethane	2.2 ug/m3	1.7	1.68	03/25/14	102:11 75-71-8	L1
1,1-Dichloroethane	ND ug/m3	1.4	1.68	03/25/14	102:11 75-34-3	
1,2-Dichloroethane	ND ug/m3	0.69	1.68	03/25/14	02:11 107-06-2	
1,1-Dichloroethene	ND ug/m3	1.4	1.68	03/25/14	102:11 75-35-4	
cis-1,2-Dichloroethene	ND ug/m3	1.4	1.68	03/25/14	102:11 156-59-2	
trans-1,2-Dichloroethene	ND ug/m3	1.4	1.68	03/25/14	102:11 156-60-5	
Ethylbenzene	ND ug/m3	1.5	1.68	03/25/14	1 02:11 100-41-4	
Methylene Chloride	13.7 ug/m3	5.9	1.68	03/25/14	102:11 75-09-2	
Methyl-tert-butyl ether	ND ug/m3	1.2	1.68	03/25/14	102:11 1634-04-4	
Naphthalene	ND ug/m3	8.9	1.68	03/25/14	102:11 91-20-3	
Tetrachloroethene	ND ug/m3	1.2	1.68	03/25/14	102:11 127-18-4	
Toluene	3.2 ug/m3	1.3	1.68	03/25/14	102:11 108-88-3	
1,2,4-Trichlorobenzene	ND ug/m3	12.7	1.68	03/25/14	102:11 120-82-1	
1,1,1-Trichloroethane	ND ug/m3	1.9	1.68	03/25/14	1 02:11 71-55-6	
1,1,2-Trichloroethane	ND ug/m3	0.92	1.68	03/25/14	102:11 79-00-5	
Trichloroethene	1.9 ug/m3	0.92	1.68	03/25/14	102:11 79-01-6	
1,2,3-Trimethylbenzene	0.94 ug/m3	0.34	1.68	03/25/14	102:11 526-73-8	
1,2,4-Trimethylbenzene	5.1 ug/m3	1.7	1.68	03/25/14	1 02:11 95-63-6	
1,3,5-Trimethylbenzene	2.3 ug/m3	1.7	1.68	03/25/14	102:11 108-67-8	
Vinyl chloride	ND ug/m3	0.44	1.68	03/25/14	02:11 75-01-4	
n&p-Xylene	ND ug/m3	3.0	1.68	03/25/14	02:11 179601-23-	1
o-Xylene	ND ug/m3	1.5	1.68	03/25/14	02:11 95-47-6	

REPORT OF LABORATORY ANALYSIS

Project:

117-0507599.20 SSD O&M

Pace Project No.: 10260309

Sample: C-Influent	Lab ID: 10260309004	Collected: 03/12/1	4 13:30	Received: 0	3/14/14 08:54	Matrix: Air	
Parameters	Results Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
TO15 MSV AIR	Analytical Method: TO-15						
Benzene	9.1 ug/m3	0.55	1.68		03/25/14 01:1	71-43-2	
Carbon tetrachloride	ND ug/m3	1.1	1.68		03/25/14 01:1	5 56-23-5	
Chlorodifluoromethane	3.0 ug/m3	0.34	1.68		03/25/14 01:1	75-45-6	
Chloroform	3.2 ug/m3	1.7	1.68		03/25/14 01:1	5 67-66-3	
Dichlorodifluoromethane	2.2 ug/m3	1.7	1.68		03/25/14 01:1	5 75-71-8	L1
1,1-Dichloroethane	ND ug/m3	1.4	1.68		03/25/14 01:15	5 75-34-3	
1,2-Dichloroethane	ND ug/m3	0.69	1.68		03/25/14 01:19	5 107-06-2	
1,1-Dichloroethene	ND ug/m3	1.4	1.68		03/25/14 01:19	5 75-35-4	
cis-1,2-Dichloroethene	4.9 ug/m3	1.4	1.68		03/25/14 01:19	5 156-59-2	
trans-1,2-Dichloroethene	ND ug/m3	1.4	1.68		03/25/14 01:19	5 156-60-5	
Ethylbenzene	5.9 ug/m3	1.5	1.68		03/25/14 01:19	5 100-41-4	
Methylene Chloride	ND ug/m3	5.9	1.68		03/25/14 01:19	5 75-09-2	
Methyl-tert-butyl ether	ND ug/m3	1.2	1.68		03/25/14 01:19	5 1634-04-4	
Naphthalene	['] 11.5 ug/m3	8.9	1.68		03/25/14 01:1	5 91-20-3	
Tetrachloroethene	3.3 ug/m3	1.2	1.68		03/25/14 01:1	5 127-18-4	
Toluene	6.0 ug/m3	1.3	1.68		03/25/14 01:1	5 108-88-3	
1,2,4-Trichlorobenzene	ND ug/m3	12.7	1.68		03/25/14 01:1	5 120-82-1	
1,1,1-Trichloroethane	ND ug/m3	1.9	1.68		03/25/14 01:1	5 71-55-6	
1,1,2-Trichloroethane	ND ug/m3	0.92	1.68		03/25/14 01:1	5 79-00-5	
Trichloroethene	261 ug/m3	0.92	1.68		03/25/14 01:1	5 79-01-6	
1,2,3-Trimethylbenzene	1.6 ug/m3	0.34	1.68		03/25/14 01:1	5 526-73-8	
1,2,4-Trimethylbenzene	6.0 ug/m3	1.7	1.68		03/25/14 01:1	5 95-63-6	
1,3,5-Trimethylbenzene	3.0 ug/m3	1.7	1.68		03/25/14 01:1	5 108-67-8	
Vinyl chloride	ND ug/m3	0.44	1.68		03/25/14 01:1	5 75-01 -4	
m&p-Xylene	25.3 ug/m3	3.0	1.68		03/25/14 01:1	5 179601-23-	I
o-Xylene	12.3 ug/m3	1.5	1.68		03/25/14 01:1	5 95-47-6	

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

Project:

117-0507599.20 SSD O&M

Pace Project No.:

10260309

Sample: C-Mid-GAC	Lab ID: 1026030900	5 Collected: 03/12/1	4 13:31	Received: 03/14/14 08:54	Matrix: Air	
Parameters	Results Units	Report Limit	DF	Prepared Analyzed	CAS No.	Qua
TO15 MSV AIR	Analytical Method: TO-	15				
Benzene	13.5 ug/m3	0.55	1.68	03/25/14 01:43	3 71-43-2	
Carbon tetrachloride	ND ug/m3	1.1	1.68	03/25/14 01:4	3 56-23-5	
Chlorodifluoromethane	3.7 ug/m3	0.34	1.68	03/25/14 01:4	3 75-45-6	
Chloroform	ND ug/m3	1.7	1.68	03/25/14 01:4	3 67-66-3	
Dichlorodifluoromethane	2.4 ug/m3	1.7	1.68	03/25/14 01:4	3 75-71-8	L1
1,1-Dichloroethane	ND ug/m3	1.4	1.68	03/25/14 01:4	3 75-34-3	
1,2-Dichloroethane	ND ug/m3	0.69	1.68	03/25/14 01:4	3 107-06-2	
1,1-Dichloroethene	ND ug/m3	1.4	1.68	03/25/14 01:4	3 75-35-4	
cis-1,2-Dichloroethene	10.5 ug/m3	1.4	1.68	03/25/14 01:4	3 156-59-2	
trans-1,2-Dichloroethene	ND ug/m3	1.4	1.68	03/25/14 01:4		
Ethylbenzene	3.7 ug/m3	1.5	1.68	03/25/14 01:4	3 100-41-4	
Methylene Chloride	ND ug/m3	5.9	1.68	03/25/14 01:4	3 75-09-2	
Methyl-tert-butyl ether	ND ug/m3	1.2	1.68	03/25/14 01:4	3 1634-04-4	
Naphthalene	ND ug/m3	8.9	1.68	03/25/14 01:4	3 91-20-3	
Tetrachloroethene	18.2 ug/m3	1.2	1.68	03/25/14 01:4	3 127-18-4	
Toluene	12.5 ug/m3	1.3	1.68	03/25/14 01:4	3 108-88-3	
1,2,4-Trichlorobenzene	ND ug/m3	12.7	1.68	03/25/14 01:4	3 120-82-1	
1,1,1-Trichloroethane	ND ug/m3	1.9	1.68	03/25/14 01:4	3 71-55-6	
1,1,2-Trichloroethane	ND ug/m3	0.92	1.68	03/25/14 01:4	3 79-00-5	
Trichloroethene	5.6 ug/m3	0.92	1.68	03/25/14 01:4	3 79-01-6	
1,2,3-Trimethylbenzene	5.9 ug/m3	0.34	1.68	03/25/14 01:4	3 526-73-8	
1,2,4-Trimethylbenzene	15.3 ug/m3	1.7	1.68	03/25/14 01:4	3 95-63-6	
1,3,5-Trimethylbenzene	4.4 ug/m3	1.7	1.68	03/25/14 01:4	3 108-67-8	
Vinyl chloride	ND ug/m3	0.44	1.68	03/25/14 01:4	3 75-01-4	
m&p-Xylene	17.1 ug/m3	3.0	1.68	03/25/14 01:4	3 179601-23-1	l
o-Xylene	7.6 ug/m3	1.5	1.68	03/25/14 01:4	3 95-47-6	

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

Appendix C

Support Documentation

PROJECT NARRATIVE

Project:

117-0507599.20 SSD O&M

Pace Project No.:

10260309

Method:

TO-15

Description: TO15 MSV AIR

Client:

Tetra Tech GEO - Maryland

Date:

March 26, 2014

General Information:

6 samples were analyzed for TO-15. All samples were received in acceptable condition with any exceptions noted below.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Internal Standards:

All internal standards were within QC limits with any exceptions noted below.

Surrogates:

All surrogates were within QC limits with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

QC Batch: AIR/19758

L1: Analyte recovery in the laboratory control sample (LCS) was above QC limits. Results may be biased high.

- LCS (Lab ID: 1644037)
 - 1,1-Dichloroethane
 - 1,1-Dichloroethene
 - · Dichlorodifluoromethane

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Additional Comments:

This data package has been reviewed for quality and completeness and is approved for release.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

FC046Rev.01, 03Feb2010

pol

AIR: CHAIN-OF-CUSTODY / Analytical Request Document

The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately

N/A N/A N/A Samples Intact SAMPLE CONDITIONS Clean Air Act Other Pace Lab ID mg/m, ealed Cooler 500 200 ر ر ر SS ١œ٠ N/A N/A N/A 3 Custody 30 RCRA ug/m² X PPBV Other Other AND CA N/X N/人 N/A Ресеічед оп Superfund Emissions T Dry Clean 15068 J. ni qmeT CHE imes imes imes imes imes imes085V TIME ≝ XVoluntary Clean Up Location of Sampling by State Report Level DATE 77716 UST Method: Control Number ACCEPTED BY / AFFILIATION Flow 2474 2587 2006 2006 <u>0</u> Number Summa Can SAMPLER NAME AND SIGNATURE (Final Field - psig) 630 Canister Pressure TIME (bisq - bleii lettinl) Canister Pressure Pace Project Manager/Sales Rep. Slishy DATE Pace Quote Reference: DATE COLLECTED Inglier. Company Name: Pace Profile #: RELINQUISHED BY / AFFILIATION Section C 16 kg 8 28 3011000 [33) Address: TIME Project Number: 117-0507599.30 DATE COPY TO DUES MONICO Cell PID Reading (Client only) Report To: Peter Rich 딜 प् ਪੁ Required Project Information: MEDIA CODE Project Name SSD Purchase Order No.: Tedlar Bag
1 Lifer Summa Can 1
6 Liter Summa Can 6
Low Volume Puff L
High Volume Puff F
Other Section B Dawn. Marico CTeha Tech. Sinkto Section D Required Client Information **AIR SAMPLE ID** Sample IDs MUST BE UNIQUE Anapolis, MD 21401 A-EFFLUENT -HAPLUENT -MID-GAG NFLOENT Addies Franklin St. company Tetra Tech 418-490-460T° Required Client Information: Requested Due Date/TAT: [Section A ILEM #

1700 Elm Street SE, Suite 200, Minneapolis, MN 55414 Air Technical Phone: 612.607.6386

ORIGINAL

Pace Analytical www.pacelabs.com

Document Name:
Air Sample Condition Upon Receipt
Document No.:

Document Revised: 26Dec2013
Page 1 of 1
Issuing Authority:
Pace Minnesota Quality Office

Courier: Fed Expression For Expression Fracking Number: Communication Fed Expression Fracking Material: Bubble Femp. (TO17 and TO13 samples or Femp should be above freezing to pe of ice Received Blue	resent? Yes Wrap Bubble Bag	} No	Seals In		102603	O9 Optional:	Proj. Due Date:	Proj. Name:
ustody Seal on Cooler/Box Pricking Material: Bubble of the	resent? Yes Wrap Bubble Bag nly) (°C): Correction Factor	} No s ∏Foam	Seals In	tact? [102603	Optional:	Proj. Due Date:	Proj. Name:
cking Material: Bubble bent of the Bubble of	Wrap Bubble Bag	s Foam		tact? [∃Yes ⊒No	Optional:	Proj. Due Date:	Proj. Name:
emp. (TO17 and TO13 samples or emp should be above freezing to	nly) (°C): C		□No			L		* 1 -
emp should be above freezing to	6°C Correction Factor	orrected Temp		ne [Other:		Temp	Blank rec: Yes
·			(°C): _		Thermom. Used:	□B88A91	2167504 32521491	72337080 80512447
pe of ice Received Blue		:			Date & Initials of			\$ 71414
	☐ WetNone						Comments:	
Chain of Custody Present?		Ves	□No	□N/A	1.			
Chain of Custody Filled Out?		Yes	□No	N/A	2.	·		
Chain of Custody Relinquished	?	Yes	□No	□N/A	3.			
Sampler Name and/or Signatur	re on COC?	∠ Yes	□No	□N/A	4.		· ·	
Samples Arrived within Hold Ti	ime?	Ves	□No	□N/A	5.			·
Short Hold Time Analysis (<72	hr)?	□Yes	No	□n/a	6.			
Rush Turn Around Time Reque	ested?	Yes	No	□N/A	7.			· · · · · · · · · · · · · · · · · · ·
Sufficient Volume?	<u></u>	Ves	□No	□N/A	8.		<u></u>	
Correct Containers Used?		Yes	□No	□N/A	9.			
-Pace Containers Used?		Yes	□No	□N/A				
Containers Intact?		Yes	□No	□N/A	10.			
Media: air can					11.			
Sample Labels Match COC?		Yes	□No	□N/A	12.			
Samples Received:								
Canisters	5		Flow	Controlle	rs .		Stand	Alone G
Sample Number	Can ID	Sample Ni	umber		Can ID	Sam	ple Number	Can ID
A- influent :	2460							
A-mid-gac =	2474							
A- efflient 2	2587							<u> </u>
C- 1/4/100-4 2	-5 1		~					
	2406							
C-effluent 7	2206							<u> </u>
								<u> </u>
								<u> </u>
								<u> </u>
								<u> </u>
LIENT NOTIFICATION/RESOL								? □Yes □No
	d:				Date/Time:	<u> </u>		
Comments/Resolution	n:							
								
· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	i		1			1	

hold, incorrect preservative, out of temp, incorrect containers)

SAMPLE SUMMARY

Project:

117-0507599.20 SSD O&M

Pace Project No.:

10260309

Lab ID	Sample ID	Matrix	Date Collected	Date Received
10260309001	A-Influent	Air	03/12/14 12:56	03/14/14 08:54
10260309002	A-Mid-GAC	Air	03/12/14 12:57	03/14/14 08:54
10260309003	A-Effluent	Air	03/12/14 12:58	03/14/14 08:54
10260309004	C-Influent	Air	03/12/14 13:30	03/14/14 08:54
10260309005	C-Mid-GAC	Air	03/12/14 13:31	03/14/14 08:54
10260309006	C-Effluent	Air	03/12/14 13:32	03/14/14 08:54

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

5A - FORM V VOA VOLATILE ORGANIC INSTRUMENT PERFORMANCE CHECK BROMOFLUOROBENZENE (BFB)

EPA SAMPLE NO. BFB

Lab Name: Pace Analytical

Contract:

Lab Code:

PASI

Case No.:

ID: 0.32

SAS No.:

SDG No.: 10260309

Lab File ID: 08301BFB.D

BFB Injection Date: 03/24/2014

BFB Injection Time: 10:26

Instrument ID: 10AIRD

GC Column: J&W DB-5

(mm)

		% RELATIVE	
m/e	ION ABUNDANCE CRITERIA	ABUNDANCE	
95	Base Peak, 100% relative abundance	100.00	
50	8.00 - 40.00% of mass 95	20.33	
75	30.00 - 66.00% of mass 95	55.09	
96	5.00 - 9.00% of mass 95	6.94	
173	Less than 2.00% of mass 174	0.00	(0.00)
174	50.00 - 120.00% of mass 95	93.48	
175	4.00 - 9.00% of mass 174	7.19	(7.69)
176	93.00 - 101.00% of mass 174	93.20	(99.70)
177	5.00 - 9.00% of mass 176	6.50	(6.97)

1 - Value is %mass 174

2 - Value is %mass 176

EPA SAMPLE NO.	LAB SAMPLE ID	LAB FILE ID	DATE ANALYZED	TIME ANALYZED
CAL1	CAL1	08302.D	03/24/2014	10:53
CAL2	CAL2	08303.D	03/24/2014	11:20
CAL3	CAL3	08304.D	03/24/2014	11:48
CAL4	CAL4	08305.D	03/24/2014	12:16
CAL5	CAL5	08306.D	03/24/2014	12:43
CAL6	CAL6	08307.D	03/24/2014	13:12
ICVADD (LCS)	ICVADD	08309.D	03/24/2014	14:07
ICV (LCS)	ICV	08310.D	03/24/2014	14:35
LCS for HBN 290234 [AIR/	1644037	08311L.D	03/24/2014	15:02
BLANK for HBN 290234 [AI	1644036	08313L.D	03/24/2014	15:58
AMS 03-030814-TO15(163	1644262-DUP	08316.D	03/24/2014	17:49
A-Effluent	10260309003	08331.D	03/25/2014	00:48
C-Influent	10260309004	08332.D	03/25/2014	01:15
C-Mid-GAC	10260309005	08333.D	03/25/2014	01:43
C-Effluent	10260309006	08334.D	03/25/2014	02:11
A-Influent	10260309001	08335.D	03/25/2014	02:38

Page 693 of 916 10260309

INITIAL CALIBRATION DATA

Start Cal Date : 24-MAR-2014 10:53
End Cal Date : 24-MAR-2014 13:12
Quant Method : ISTD
Target Version : 4.14
Integrator : HP RTE
Method file : \\192.168.10.12\chem\10airD.i\032414.b\T015_083-14.m
Last Edit : 24-Mar-2014 14:54 ahamilton

Calibration File Names:
Level 1: \\192.168.10.12\chem\10airD.i\032414.b\08302.d
Level 2: \\192.168.10.12\chem\10airD.i\032414.b\08303.d
Level 3: \\192.168.10.12\chem\10airD.i\032414.b\08305.d
Level 4: \\192.168.10.12\chem\10airD.i\032414.b\08305.d
Level 5: \\192.168.10.12\chem\10airD.i\032414.b\08306.d
Level 6: \\192.168.10.12\chem\10airD.i\032414.b\08307.d

 Compound	0.1000000 Level 1	0.2000000 Level 2	1.0000 Level 3	10.0000 Level 4	20.0000 Level 5	30.0000 Level 6 Curve	b	Coefficients m1	m2	%RSD ; or R^2 ;
1 Chlorodifluoromethane	1.64100	2.35279	2.35078	2.55057	2.42617	2.40721 AVRG		2.28809		14.21571:
2 Propylene	6.12548	7.76873	7.51419	7.70216	6.77247	6.33641 AVRG	J	7.03657	1	10.24259:
3 Dichlorodifluoromethane	0.59959	0.96537	0.88786	0.99871:	0.93255	1.01831 AVRG		0.90040	1	17.16726:
4 Dichlorotetrafluoroethane	0.81970	1.12967	1.05246	1.22991	1.05809	1.11680 AVRG		1.06777	1	12.86781;
5 Chloromethane	1 2.82261	3.48714	3.59589	4.08535;	3.50263	3.63160 AVRG	. 1	3.52087	1	11.54092;
6 Vinyl chloride	2,64572	3.80854	3.70589	4.41227;	3.70430	3.59055 AVRG	1	3.64455	1	15.63834
7 1,3-Butadiene	5.23013	5.60071	6.48065	7.26093	6.07555	6.27873 AVRG	1	6.15445	1	11.52001
8 Bromomethane	1 2.17502	2.75925	2.95478[3.49897:	2.99378	3.04780 AVRG		2.90493	1	14.90741
9 Chloroethane	6.42036	6.73064	8.72847	9.86201	8.56138	8.24426 AVRG		8.09119	1	16.04708;
10 Ethanol	3.65849	6.20747	6.83076;	8.59628	11.81841	++++ AVRG		7.42228	1	40.807691<-
11 Vinyl Bromide	1 2.09056	3.09626	3.04535	3.71710	3.01987	2.94481 AVRG		2.98566	1	17.434891
12 Isopentane	2.29317	3.23874	3.61765;	5.237681	4.046181	4.00055 AVRG	;	3.73899	1	26.10695
13 Trichlorofluoromethane	0.62051	0.85667	0.90366;	0.99226	0.97011	0.94259 AVRG	,	0.88097	1	15.48693
14 Acrolein	10.06554	14.11462	14.76303!	17.06319	15.21356	13.75402 AVRG		14.16233	1	16.35762
l	1	ll	1		1	1 1	1			!

Page 27 of 916 10260309

INITIAL CALIBRATION DATA

Start Cal Date : 24-MAR-2014 10:53
End Cal Date : 24-MAR-2014 13:12
Quant Method : ISTD
Target Version : 4.14
Integrator : HP RTE
Method file : \\192.168.10.12\chem\10airD.i\032414.b\T015_083-14.m
Last Edit : 24-Mar-2014 14:54 ahamilton

		0.10000000	0.2000000	1.0000	10.0000	20.0000	30.0000 /	Co	efficients		%RSD
Compound	!	Level 1	Level 2	Level 3	Level 4	Level 5	Level 6 Curve	ь	ml	m2	or R^2
15 Acetone		12675	215451	86989	. 338316	7943391	1187691 LINR :	-0.05759	2.10638;		0.99769
16 lsopropvl Alcohol	i	1.59940	2.35964	2.60609	2.82249	3.30486	+++++ AVRG		2.53849		24.90858
17 1,1-Dichloroethene	1	1.61259	2.18131	2.27206	2.41038	2.14980	2.25614 AVRG		2.147051		12.90242
18 Tert Butyl Alcohol	1	0.96169	1.49063	1.58553	1.73656	1.914711	+++++ AVRG		1.53782:		1 23.40013
19 Acrylonitrile	1	3.98656	6.39816	5.79334	6.28472	5.32197	5.51733 AVRG		5.55035		15.73942
20 Freon 113	1	1.09441	1.43806	1.64567	1.75221	1.51535	1.53055 AVRG	1	1.49604		15.07294
21 Methylene chloride	1	++++	2.14072	3.759241	3.30603	3.03764	2.98633 AVRG	1	3.04599		19.41905
22 Allyl Chloride	1	6.44150	9.63925	12.878221	8.37078	7.49502	7.32559 AVRG	1	8.69173		26.68089
23 Carbon Disulfide	1	0.74888	1.07559	1.42925:	1.18784	1.07580	1.01963 AVRG	1	1.08950		20.37495
24 trans-1,2-dichloroethene	1	2.75374	3.73471	3.45470;	3.284771	3.00015	2.89262 AVRG	1	3.18678		11.66125
25 Methyl Tert Butyl Ether	1	0.85956	1.34191	1.23766;	1.27058;	1.16455	1.07149 AVRG	1	1.15763		14.93399
26 Vinyl Acetate	1	1.37719	1.88864	1.97661;	1.53727	1.52544	1.43750 AVRG	1	1.62377		15.26754
27 1,1-Dichloroethane	1	1.69210	2.23703	2.26501	1.92240:	1.86349	1,81838 AVRG	1	1.96640		11.86306
29 Methyl Ethyl Ketone		5.65883	7.00280	7.11711	7.05725;	7.21117	6.87597 AVRG	1	6.82052		8.50483
30 n-Hexane	6	2.69927	2.66019	3.55122	2.84144	2.75758	2.62275 AVRG	1	2.85541		12.23774
31 Di-isopropyl Ether		1.45397:	1.44901	1.74861	1.29516!	1.29605	1.29325 AVRG	1	1.42268		12.45336
32 cis-1,2-Dichloroethene	1	3.60234	3.17732	3.62146	3.344071	3.18509	3.05601 AVRG	1	3.33105		7.08752
33 Ethyl Acetate	1	1.82243!	1.88126	1.92859	1.87497	1.76726	1.71742 AVRG	1	1.83199		4.29909
34 Chloroform	- 1	1.09176	1.17613	1.21002	1.26652	1.24603	1.19726 AVRG	1	1.19795		5.13390
35 Ethyl Tert-Butyl Ether	- 1	1.39753	1.43272:	1.24334	1.27302	1.22297	1.13657 AVRG	1	1.28436		8.68682
36 Tetrahydrofuran	i	4.96885	4.73814	4.16518	4.68952	4.440351	3.90683 AVRG	1	4.48481		8.79880
37 1,1,1-Trichloroethane	1	0.99664	1.16449	1.15926	1.14414	1.18757	1.10165 AVRG	1	1.12563		6.15938
1	- 1	1	1	1	1	i	i i	1	1		1

Page 28 of 916 10260309

INITIAL CALIBRATION DATA

Start Cal Date : 24-MAR-2014 10:53
End Cal Date : 24-MAR-2014 13:12
Quant Method : ISTD : 4.14
Integrator : 4.14
HP RTE
Method file : \\192.168.10.12\chem\10airD.i\032414.b\T015_083-14.m
Last Edit : 24-Mar-2014 14:54 ahamilton

1		1 0	.1000000 :	0.2000000	1.0000	10.0000	20.0000	30.0000	Co	efficients		Π	%RSD
1	Compound	1	Level 1	Level 2	Level 3	Level 4	Level 5	Level 6 Curve	ь	m1	m2	1	or R^2
	38 1,2-Dichloroethane		1.61748	1.58686	1.70922	1.70697;	1.76800	1.66922 AVRG		1.67629		- -	3.95200
1	39 Benzene	1	1.05524	1.16740	1.11549	1.07673;	1.10084	1.03069 AVRG	1	1.09107		1	4.42459
1	40 Carbon tetrachloride	- 1	1.12246	1.25760	1.25332	1.13869;	1.22886	1.22979 AVRG	1	1.205121		1	4.90855
1	41 Cyclohexane	1	2.61274	3.12767	2.88500	2.93674	2.88820	2.7:360 AVRG	1	2.86066			6.28303
1	42 Tert Amyl Methyl Ether	1	+++++	0.65510	1.03622	1.14228	1.14856	1.02874 AVRG	1	1.00218!		1	20.16647
1	44 2,2,4-Trimethylpentane		0.84168	0.90056	0.85706	0.93818	0.90923	0.82071 AVRG	1	0.87790			5.13094
1	45 Heptane		2.57039	3.04668	2.71875	2.77099	2.65477	2.44705 AVRG	1	2.70144			7.55725
1	46 1,2-Dichloropropane		2.71425	3.48399	3.35284	3.49527	3.22389	2.95022 AVRG	1	3.20341		-	9.77272
ļ	47 Trichloroethene		2.58625	2.76172	2.63937	2.70962	2.55867	2.32423 AVRG	1	2.59664		1	5.90615
[48 Bromodichloromethane	1	1.09054	1.14912	1.11152	1.09055	1.11363	1.03736 AVRG	1	1.09879		-	3.36248
t	49 1,4-Dioxane	1	949	28331	13320	146842	+++++	+++++ LINR	0.00386	4.97859		i	0.99996
1	50 Methylcyclohexane	İ	6.44150	6.05150	5,18750!	5.07769	5.285051	4.64299 AVRG	1	5.44770		-1	12.26128
1	51 Methyl Iscbutyl Ketone	1	1.49585	2.27065	1.87645	1.73284	1.91945	1.62326 AVRG	1	1.81975		1	14.89894
1	52 cis-1,3-Dichloropropene	- 1	1.50583	1.97731	1.94797	1.74825	1.857401	1.60336 AVRG	1	1.77336		!	10.70658
1	53 trans-1,3-Dichloropropene	- 1	1.54224	2.19749	1.79781;	1.60059	1.615921	1.46119 AVRG	1	1.70252		i	15.67085
1	55 Toluene	-	0.55518	0.87779;	0.84272!	0.83804	0.85241	0.77792[AVRG :	1	0.79068		i	15.17430
1	56 1,1,2-Trichloroethane	-	1.62870	2.42117	2.31452	2.27342	2.37138	2.08652 AVRG	1	2.18262		1	13.50208
1	57 Methyl Butyl Ketone	- 1	1.11808	1.11164;	0.99211	0.87612	0.89946	0.88781 AVRG	1	0.98087		İ	11.38135
1	58 Dibromochloromethane		0.61401	0.68016	0.65859	0.64476	0.63328	0.61978 AVRG ;	1	0.64176		1	3.87478
1	59 1,2-Dibromoethane	-	0.72341	0.79784	0.72087	0.70818	0.70609	0.66142 AVRG	1	0.71964			6.16282
1	60 Tetrachloroethene	- 1	0.71535	0.86409	0.82294	0.77098	0.76651	0.71125 AVRG	1	0.77519		i	7.72823
1	62 Chlorobenzene	- 1	0.55501	0.56014	0.59016;	0.58071	0.57042	0.53812 AVRG !	1	0.56576			3.30816
1							1	1 1	1			_i_	

Page 29 of 916 10260309

INITIAL CALIBRATION DATA

Start Cal Date : 24-MAR-2014 10:53
End Cal Date : 24-MAR-2014 13:12
Quant Method : ISTD
Target Version : 4.14
Integrator : 4.14
Method file : \\192.168.10.12\chem\10airD.i\032414.b\T015_083-14.m
Last Edit : 24-Mar-2014 14:54 ahamilton

,		. 0	.1000000	0.2000000	1.0000	10.0000 -	20.3000	30.0000	Co	efficients		*RSD
į	Compound	1	Level 1	Level 2	Level 3	Level 4	Level 5	Level 6 Curve	b	ml	m2	or R^2
1==	63 Ethyl Benzene		C.39088	0.42404	0.33879;	C.33855	0.31565	0.30866 AVRG		0.35276		12.83696
Ĺ	64 m&p-Xylene	i	0.46611:	0.55008;	0.43394	C.40287	0.429921	0.39760 AVRG	1	0.44675		12.59953
Ĺ	65 Bromoform	1	0.57097.	0.62600	0.59781	0.52378	0.52859	0.50745 AVRG		0.55910		8.37445
l	66 Styrene	1	+++++ ;	C.84367	0.67472	0.57372	0.56995	0.51618 AVRG		0.63565;		20.39456
1	67 o-Xylene		0.47246	0.46019	0.39989	0.38918	0.40254	0.39158 AVRG	1	0.41931		8.81538
L	68 1,1,2,2-Tetrachloroethane	1	0.53224	0.56383	0.58637	0.55515	0.55865	0.55230 AVRG	1	0.55809		3.14832
ı	69 Isopropylbenzene	- 1	0.33001	0.35771	0.329321	0.30895	0.30463	0.29776 AVRG	1	0.32140		6.88725
1	70 N-Propylbenzene	1	0.32086	0.343591	0.26550;	0.24530	0.23684	0.25734 AVRG	1	0.27824		15.65413
1	71 4-Ethyltcluene	1	0.38483	0.41929;	0.33007	C.31726	0.31508	0.31968 AVRG	1	0.34770		12.59590
1	72 1,3,5-Trimethylbenzene	- 1	0.46203;	0.46531	0.38901	0.37037	0.35618	0.35770 AVRG	1	0.40010		12.65633
i	73 Tort-Butyl Benzene	1	0.51440	0.52072	0.41979	0.39225	0.37505	0.38512)AVRG	1	0.434561		15.19230
1	74 1,2,4-Trimethylbenzene	1	0.43262	0.43499	0.38418	0.35779	0.34933[0.36052 AVRG		0.38657,		9.92773
1	75 1,3-Dichlorobenzene	- 1	0.56535	0.61130	0.58946	0.56806	0.52890	0.56143 AVRG	1	0.57075		4.87390
1	76 Sec- Butylbenzene	- 1	0.27623	0.29488	0.293031	0.27082	0.24738	0.26908 AVRG	1	0.27524		6.36999
1	78 Benzyl Chloride	- 1	C.56953	0.641001	0.56711	0.46500	0.39127	0.42817 AVRG	1	0.51035		18.95418
1	79 1,4-Dichlorobenzene	- 1	0.55270	0.65114;	0.62824	0.58622	0.51074	0.57174 AVRG	1	0.58346		8.72711
ı	80 p-Isopropyltoluene	- 1	0.40180	0.40965	0.38140	0.34987	0.33596	0.36397 AVRG	1	0.37377		7.78000
1	81 1,2,3-Trimethylbenzene	- 1	0.42298	0.50475	0.44122	0.41047	0.36334	0.40160 AVRG	1	0.42406		11.15206
1	82 1,2-Dichlorobenzene		0.64896	0.88371	0.78406	0.61965	0.57437	0.64179 AVRG	1	0.69159		16.80396
ı	83 N-But.ylbenzene	1	0.39183	0.58498	0.42498	0.34218	0.34420	0.35436 AVRG	4	0.40709;		22.81883
1	84],2,4-Trichlorobenzene	- 1	3912	5041	28444!	533178	11679081	1932659 LINR	0.03348	0.66297		0.99902
1	85 Naphthalene	- 1	4306	7091!	45834	8350521	1796273	3043046 LINR	0.03673	0.42332		0.998201
1		- 1	1			1	1	11_				

Page 30 of 916 10260309

Report Date : 24-Mar-2014 14:58

Pace Analytical Services, Inc.

INITIAL CALIBRATION DATA

Start Cal Date : 24-MAR-2014 10:53
End Cal Date : 24-MAR-2014 13:12
Quant Method : ISTD
Target Version : 4.14
Integrator : HP RTE
Method file : \\192.168.10.12\chem\10airD.i\032414.b\T015_083-14.m
Last Edit : 24-Mar-2014 14:54 ahamilton

1	1 0	.1000000	0.2000000 .	1.0000	10.0000	20.0000	30.0000	1	Coet	fficients		1 %1	RSD
Compound	1	Level 1	Level 2	Level 3	Level 4	Level 5	Level 6 Curve	d -		m2	m2	or	R^2
	= ==												
86 Hexachlorobutadiene	1	0.77931	0.95599;	1.09093	0.65418	0.75155[0.71174 AVRG	1	1	C.82228:		19.	.76761
======================================													
\$ 28 Hexane-d14(S)	1	2.296891	2.425961	2.49759	2.32152	2.30837	2.43919 AVRG	1	1	2.38159:		3.	.5074€
\$ 54 Toluene-d8 (S)	1	0.89743	1.16949	1.15204	1.15091	1.194421	1.17230 AVRG	1	- 1	1.12276:		9.	.93377
\$ 77 1,4-dichlorobenzene-d4 (S)	1	2.19763	2.31553	1.91965	1.77864	1.73482	2.00254 AVRG	1	1	1.99147;		11.	.53750
l	_1				l	1		1		I		l	

Page 31 of 916 10260309

5A - FORM V VOA VOLATILE ORGANIC INSTRUMENT PERFORMANCE CHECK BROMOFLUOROBENZENE (BFB)

EPA SAMPLE NO.	
BFB	

Lab Name: Pace Analytical

Contract:

Lab Code:

PASI

Case No.:

SAS No.:

SDG No.: 10260309

Lab File ID: 08401BFB.D

BFB Injection Date: 03/25/2014

Instrument ID: 10AIRD BFB Injection Time: 10:05

GC Column: J&W DB-5 ID: 0.32 (mm)

		% RELATIVE	
m/e	ION ABUNDANCE CRITERIA	ABUNDANCE	
95	Base Peak, 100% relative abundance	100.00	
50	8.00 - 40.00% of mass 95	18.20	
75	30.00 - 66.00% of mass 95	54.79	
96	5.00 - 9.00% of mass 95	6.60	
173	Less than 2.00% of mass 174	0.00	(0.00)
174	50.00 - 120.00% of mass 95	92.96	
175	4.00 - 9.00% of mass 174	7.41	(7.97)
176	93.00 - 101.00% of mass 174	90.74	(97.61)
177	5.00 - 9.00% of mass 176	6.25	(6.89)

1 - Value is %mass 174

2 - Value is %mass 176

	EPA SAMPLE NO.	LAB SAMPLE ID	LAB FILE ID	DATE ANALYZED	TIME ANALYZED
1	CAL4	CAL4	08403.D	03/25/2014	11:09
2	CAL5	CAL5	08404.D	03/25/2014	11:36
3	CAL6	CAL6	08405.D	03/25/2014	12:04
4	CAL1	CAL1	08407.D	03/25/2014	12:59
5	CAL2	CAL2	08408.D	03/25/2014	13:27
6	CAL3	CAL3	08409.D	03/25/2014	13:55
7	ICVADD (LCS)	ICVADD	08410.D	03/25/2014	14:33
8	ICV (LCS)	ICV	08411.D	03/25/2014	15:00
9	LCS (LCS)	LCS	08412.D	03/25/2014	15:28
10	LCS for HBN 290310 [AIR/	1644402	08412L.D	03/25/2014	15:28
11	BLANK	BLANK	08414.D	03/25/2014	16:24
12	BLANK for HBN 290310 [AI	1644401	08414L.D	03/25/2014	16:24
13	A-Mid-GAC	10260309002	08433.D	03/26/2014	01:13
14	Effluent (After(1641142D	1645107-DUP	08438.D	03/26/2014	03:31

Page 697 of 916 10260309

INITIAL CALIBRATION DATA

Start Cal Date : 25-MAR-2014 11:09
End Cal Date : 25-MAR-2014 13:55
Quant Method : ISTD
Target Version : 4.14
Integrator : HP RTE
Method file : \\192.168.10.12\chem\10airD.i\032514.b\T015_084-14.m
Last Edit : 26-Mar-2014 10:03 drandall

Calibration File Names:
Level 1: \\192.168.10.12\chem\10airD.i\032514.b\08407.d
Level 2: \\192.168.10.12\chem\10airD.i\032514.b\08408.d
Level 3: \\192.168.10.12\chem\10airD.i\032514.b\08409.d
Level 4: \\192.168.10.12\chem\10airD.i\032514.b\08403.d
Level 5: \\192.168.10.12\chem\10airD.i\032514.b\08404.d
Level 6: \\192.168.10.12\chem\10airD.i\032514.b\08405.d

!		1.1	0.1000000	0.2000000	1.0000	10.0000	20.0000	30.0000		efficients		%RSD
l !	Compound		Level 1	Level 2	Level 3	Level 4	Level 5	Level 6 Curve	ь	m1	т.2	or R^2
1	1 Chlorodifluoromethane		1.94861	2.77922	2.733231	2.365921	2.40850	2.54167 AVRG		2.462861		12,26454
i	2 Propylene	i	5.009861	8.636021	8.587301	7.03651	6.70854	6.673691AVRG		7.108651		19.16331
ĺ	3 Dichlorodifluoromethane	i	0.82869	1.09290	1.10018	0.91692	0.95199	0.988221AVRG	i	0.97982		10.69585
ı	4 Dichlorotetrafluoroethane	- 1	0.88646	1.26807	1.30815	1.09261	1.10447	1.16040 AVRG	i	1.13669		13.21464
I	5 Chloromethane	- 1	2.88328	4.19457	4.33665	3.59476	3.61605	3.75953 AVRG	1	3.73081		13.83932
I	€ Vinyl chloride	- 1	3.33922	4.88204	4.28699	3.72473	3.77885	3.82299 AVRG	1	3.97247		13.54895
ı	7 1,3-Butadiene	- 1	5.34494	8.05239	7.24068	6.21509	6.17038	6.34781 AVRG	1	6.56188		14.42965
1	8 Bromomethane	- 1	2.48811	3.55715	3.64588	3.05173	3.04418	3.22597 AVRG	1	3.16884		13.19585
1	9 Chloroethane	- 1	6.01553	8.79906	9.41595	7.84720	8.42889	9.14026 AVRG	1	8.27448		. 14.93602
1	10 Ethanol	1	5.18844	7.82187	9.37737	8.56183	8.47604	+++++ AVRG	1	7.88511		: 20.36067
ı	11 Vinyl Bromide	- 1	2.71973	3.80574	3.80791	3.05156	3.18625	3.17588 AVRG	1	3.29118		13.17470
L	12 Isopentane	-1	3.46263	4.886561	5.05974	4.077361	4.19583	4.19384 AVRG	1	4.31266		13.49334
ı	13 Trichlorofluoromethane	- 1	0.82044	0.99293	1.07086	C.89042	0.93208	1.02020[AVRG	1	0.95449		9.59236
ı	14 Acrolein	- 1	8.87913	13.30571	16.35250	12.13567i	12.23161	12.48958 AVRG	1	12.56570		19.09319
ı		1	1	1	1	1	1	1 1	1	1		T.

10260309 Page 390 of 916

INITIAL CALIBRATION DATA

		1	0.1000000	0.20000000	1.0000 10.0000 ; 2	20.0000 30.0000	30.0000	Co	efficients		%RSD	
C	Compound	- 1	Level 1	Level 2	Level 3	level 4	Level 5	Level 6 Curve	b	m1	m 2	or R^2
1	15 Acetone		1.00333	1.48173	2.19122	2.25311	2.26259	2.51907[AVRG		1.951847		29.76022
1	6 isopropyl Alcohol	1	2.41942	2.85225:	3.24139	2.68181	2.62191	2.94629 AVRG	1	2.79384		10.24014
1	7 1,1-Dichloroethene	i	2.27746	2.38195	2.77124	2.16381	2.26864	2.36229 AVRG		2.37090		8.89823
1	18 Tert Butyl Alcohol	1	1.47530	1.50452	2.10585	1.63674	1.68053	1.75125 AVRG		1.69237;		13.47634
1	9 Acrylonitrile	1	6.64848	6.48674	8.83836	5.66741	5.64821	5.76088 AVRG ;	· 1	6.508351		18.76125
1 2	20 Freen 113	1	1.95891;	1.65074	2.07032;	1.58293	1.64994	1.63958 AVRG		1.75874:		11.53435
1 2	1 Mcthylene chloride	1	6065:	10806	30543:	2269391	4732051	736496 LINR	-0.03040	3.59595:		0.99974
1 2	22 Allyl Chloride	1	8.44667	7.70399	8.97601	7.25027	7.420981	7.29042 AVRG	1	7.84806		9.01371
1 2	3 Carbon Disulfide	1	0.94319	1.12017	1.64807	1.15910	1.21840	1.38883 AVRG	1	1.24629		19.58517
2	24 trans-1,2-dichloroethene	1	2.99231	3.42196	4.96873	3.33055	3.634451	3.33367 AVRG	1	3.61361		19.24439
2	25 Mothyl Tert Butyl Ether	1	0.99197	1.11005	1.69914	1.24720	1.484251	1.20885 AVRG	1	1.29024		20.05399
2	26 Vinyl Acetate	1	1,58303	1.74067	2.29203	1.56584	1.58195	1.53370 AVRG	1	1.71620		16.96481
2	27 1,1-Dichloroethane	1	1.87337	1.94610	2.64436	1.94432	1.96995	1.91507 AVRG	1	2.04886		14.33033
1 2	9 Methyl Ethyl Ketone	1	7.01466	7.11270	12.18231	9.28364;	7.81433	8.59211 AVRG		8.66663		22.26449
3	30 n-Hexane	- 1	2.85601	2.66786:	4.16052	3.80885	3.43903	2.95668 AVRG	1	3.31482		17.75549
1 3	31 Di-isopropyl Ether	-	1.44164	1.283791	2.06802	1.57854	1.66202	1.29606 AVRG	1	1.55501		18.82929
. 3	32 cis-1,2-Dichloroethene	i	4.12920	3.69138;	4.00134	3.10575	3.08880	3.01759 AVRG	1	3.50568		14.21069
1 3	33 Ethyl Acetate	- 1	1.87899	1.92413	2.13823	1.74171	1.70871	1.68534 AVRG	1	1.84618		9.32292
1 3	34 Chicroform	- 1	1.36808	1.27583	1.42091	1.19077	1.24052	1.24205 AVRG	1	1.28969		6.76219
1 3	35 Ethyl Tert-Butyl Ether	i	1.34085	1.29894	1.452921	1.17875	1.22694	1.15350 AVRG	1	1.27532		8.79459
] 3	36 Tetrahydrofuran	i	5.444921	4.35839	5.40414.	4.23153	4.23995	4.06439 AVRG	1	4.62388		13.56730
] 3	37 1,1,1-Trichloroethane	i	1.07392	1.22551	1.40706,	1.12634	1.15197	1.27605 AVRG	1	1.21014		9.93812
1		i		i		i	i	i .	1	1		1

Page 391 of 916 10260309

INITIAL CALIBRATION DATA

Start Cal Date : 25-MAR-2014 11:09
End Cal Date : 25-MAR-2014 13:55
Quant Method : ISTD
Target Version : 4.14
Integrator : HP RTE
Method file : \\192.168.10.12\chem\10airD.i\032514.b\T015_084-14.m
Last Edit : 26-Mar-2014 10:03 drandall

_			0.1000000 I	0.2000000	1.0000	10.0000 I	20.0000 I	30.0000		Co	efficients		-	%RSD
į	Cempound	į	Level 1	Level 2	Level 3	Level 4	Level 5	Level 6 Curve	ь		m:	m2	1	or R^2
	38 1.2-Dichloroethane		1.70061	1.76079	2.04851;	1.68409	- 1.712461	1.86670 AVRG			1.79553		!-	7.82080
i	39 Benzene	i	1.00185	1.17508	1.38574	1.03207	1.01106	1.05359 AVRG		i	1.10990		1	13.42479
1	40 Carbon tetrachloride	1	1.07747	1.18218	1.38531	1.11252	1.17061	1.29486 AVRG		-	1.20382		- 1	9.62292
ĺ	41 Cyclohexane	1	2.81361	3.158051	3.67819	2.77047	2.772361	2.88211 AVRG		1	3.01247		- 1	11.84966
i	42 Tert Amyl Methyl Ether	1	+++++	0.67731	1.17126	1.10566	1.143071	1.08808 AVRG		1	1.03708		- 1	19.64175:
1	44 2,2,4-Trimethylpentane		0.88714	0.97204:	1.08393	0.87729.	0.872191	0.87357[AVRG		1	C.92769		- 1	9.21892
ı	45 Heptane	1	2.44997	3.13122	3.31544	2.59759	2.56520	2.53139 AVRG :			2.76513		- 1	13.12794:
ı	46 1,2-Dichleropropane	- 1	2.91943	3.637991	4.00735	3.26142	3.20669	3.17308 AVRG			3.36766		- 1	11.56364
1	47 Trichloroethene	- 1	2.45292	2.79490	3.22222	2.58458	2.50100	2.54560 AVRG		1	2.68354		- 1	10.77327
1	48 Bromodichloromethane	-1	1.02195	1.16823	1.36923	1.06900	1.09130	1.12357 AVRG		- 1	1.14054		- 1	10.73555
1	49 1,4-Dioxane	- 1	4.97318	6.07867	6.75187	5.63830	5.24110	5.42064 AVRG		- 1	5.68396		- 1	11.31730
1	50 Methylcyclohexane	- 1	4.76948	5.55259	6.38741	5.33019	4.75276	4.91133 AVRG		-	5.283961		- 1	11.90221
	51 Methyl Isobutyl Ketone	-1	1.61439	2.11860	2.42532	1.71376	1.73287	1.74430 AVRG		-	1.89154			16.57961
1	52 cis-1,3-Dichloropropene	- 1	1.64901;	2.05860	2.42437	1.73035	1.70742	1.78846 AVRG			1.89303		- 1	15.69070
1	53 trans-1,3-Dichloropropene	- 1	1.56781	2.22603	2.42085	1.55932	1.54140	1.57492 AVRG			1.81505		- 1	21.96860
1	55 Toluene	-1	0.70891	0.92923	1.08224;	0.82014	0.83882	0.82424 AVRG		- 1	0.86726		- 1	14.58634
1	56 1,1,2-Trichloroethane	- 1	2.10078	2.59491	3.03726	2.26200	2.28318	2.25506 AVRG		- 1	2.42220		1	14.11392
1	57 Methyl Butyl Ketone	- 1	0.84345	1.05229	1.17996	0.86324	0.87720	0.85152 AVRG			0.94461		1	14.74903
1	58 Dibromochloromethane	- 1	0.57124	0.70860	0.80413	0.59659	0.61228	0.60722 AVRG		- 1	0.65001			13.67407
1	59 1,2-Dibromoethane	1	0.58047	0.77017	0.92909	0.67959	0.67656	0.66101 AVRG		- 1	0.71615		- 1	16.82792
1	60 Tetrachloroethene		0.69924	0.84502	0.96651	0.75210	0.754431	0.72375 AVRG		- 1	0.79018		- 1	12.59339
ì	62 Chlorobenzene		0.44646	0.61597.	0.75787	0.56230:	0.56093	0.54691 AVRG		i	0.58174		- 1	17.61756
I		!	1	1	1_	i	1			1			_1.	

Page 392 of 916 10260309

INITIAL CALIBRATION DATA

Start Cal Date : 25-MAR-2014 11:09
End Cal Date : 25-MAR-2014 13:55
Quant Method : ISTD
Target Version : 4.14
Integrator : +P RTE
Method file : \\192.168.10.12\chem\10airD.i\032514.b\T015_084-14.m
Last Edit : 26-Mar-2014 10:03 drandall

1		1	0.10000000	0.2000000 j	1.0000	10.0000	20.0000	30.0000		Coefficients		%RSD
1	Compound	1	Level 1	Level 2	Level 3	Level 4	Level 5	Level 6 Curve	b	m1	m.2	or R^2
==		-!-										
	63 Ethyl Benzene	1	0.28656	C.38933:	0.42029	0.31485	0.31515	0.30713 AVRG		0.33888	- 1	15.64796 <
	64 m&p+Xylene		0.40285	C.47872	0.51182	0.39933	0.40424	0.39245 AVRG		0.43157	- 1	11.72614
	65 Bromoform		0.46815	C.61150	0.73398	0.53032	0.52100	0.52180 AVRG ;		0.56446	- 1	16.82563
	66 Styrene	į	0.59696;	0.78425	0.84120	0.57447	0.56010	0.54722[AVRG		0.65070	- 1	19.64965
1	67 o-Xylene	-	0.37026	0.44366	0.52394	0.39565	0.38544	0.38825 AVRG		0.41787	- 1	13.79090
	68 1,1,2,2-Tetrachloroethane		0.46058	0.59111	0.731401	0.56551	0.56769	0.54158 AVRG		0.57631	- 1	15.33720
1	69 Isopropylbenzene	-	0.2709€	0.34478	0.40818!	0.30931	0.30793	0.30474 AVRG		0.324321	1	14.57739
i	7C N-Propylbenzene	1	0.24747	0.33997	0.343071	0.25189	0.24927	0.26066 AVRG		0.28205	1	16.41283
ı	71 4-Ethyltoluene		0.32864	0.42452	0.44317	0.32747	0.32937	0.31423 AVRG		0.36123		15.73090
1	72 1,3,5-Trimethylbenzene	1	0.37757	0.44659	0.49337	0.37033	0.376631	0.40098 AVRG		0.41091	1	11.97360
1	73 Tert+Butyl Benzene	1	0.41525	0.52554	0.56680	0.39197	0.38870	0.43291 AVRG		0.45353		16.47063
1	74 1,2,4-Trimethylbenzene	1	0.35090	0.43074	0.51058	0.36546	0.363891	0.4]067 AVRG		: 0.405371		14.81015:
1	75 1,3-Dichlorobenzene	1	0.48732	0.65826	0.81409	0.62840	0.59842	0.61360 AVRG		0.63335	1	16.74669
1	76 Sec- Butylbenzene	1	0.26219	0.36539	0.37360	0.29540.	0.27816	0.29559 AVRG		0.31172	1	14.92064;
1	78 Benzyl Chloride	1	0.51055	0.59716	0.75166	0.49365;	0.47218	0.47268 AVRG		0.54965	1	19.87289;
1	79 1,4-Dichlorobenzene	1	0.49275	0.66697	0.79677	0.63689	0.63604	0.62171 AVRG		0.64186	1	15.15756
1	80 p-Isopropyltoluene		0.36347	0.42587;	0.50109	0.42414	0.40109	0.43425 AVRG		0.424991	1	10.64559
1	81 1,2,3+Trimethylbenzene	1	0.434101	C.48996!	0.54461	0.49247	0.45797	0.48767 AVRG		0.48446	1	7.70157
1	82 1,2-Dichlorobenzene	ı	0.68712	C.75674	0.91346	C.76396	0.782971	0.69699 AVRG		0.76697	1	10.61037
t	83 N-Butylbenzene	1	0.42302	C.42004	0.48873	0.42047	0.419791	0.43384 AVRG		0.43432	1	6.25964
ŧ	84 1,2,4-Trichlorobenzene	1	0.81762	1.11564	1.36900	0.97118	0.98432	0.98775 AVRG		1.04092	1	17.92031
1	85 Naphthalene	1	C.664671	0.87928	0.88267	0.62286	0.61608	0.62235 AVRG		0.71465	1	18.18957
ı		1	J	1	1	1	1	1 1		1 1	1	1

Page 393 of 916 10260309

Report Date : 26-Mar-2014 10:04

Pace Analytical Services, Inc. INITIAL CALIBRATION DATA

Start Cal Date : 25-MAR-2014 11:09
End Cal Date : 25-MAR-2014 13:55
Quant Method : ISTD
Target Version : 4.14
Integrator : \\192.168.10.12\chem\10airD.i\032514.b\T015_084-14.m
Last Edit : 26-Mar-2014 10:03 drandall

	-	0.10000000	0.2000000	1.0000	10.0000	20.0000	30.0000		Co	efficients		i	%RSD
Compound	- 1	Level 1	Level 2	Level 3	Level 4	Level 5	Level 6 Curve	b		ml	m2	1	or R^2
						=======================================					~	==	
86 Hexachlorobutadiene	1	0.61276	0.92395	1.07531;	0.96217;	1.04118			-	0.94985		1	18.62339
				2.93971	2.537941	2.675211	3.060461AVRG			2.74249			9,27912
28 Hexane-d14(S)	- 1	2.85298:	2.38862						- 1			1	
54 Toluene-d8 (S)		1.21827;	1.20451;	1.17372	1.17289	1.17151	1.21618 AVRG			1.19285		1	1.89178
3 77 1,4-dichlorobenzene-d4 (S)	- 1	2.14595	2.15947	2.03595	2.08983	2.085381	1.87752 AVRG		:	. 2.06553		1	4.95404
	- 1	1		1	1	1	1		i	1		i	

Page 394 of 916 10260309

INITIAL CALIBRATION DATA

Start Cal Date : 25-MAR-2014 11:09
End Cal Date : 25-MAR-2014 13:55
Quant Method : ISTD
Target Version : 4.14
Integrator : HP RTE
Method file : \\192.168.10.12\chem\10airD.i\032514.b\T015_084-14.m
Last Edit : 26-Mar-2014 10:03 drandall

	-
Average %RSD Results.	1
	= }
Calculated Average %RSD = 14.53365	1
Maximum Average %RSD = 30.00000	1
* Passed Average %RSD Test.	1
1	1

Curve Formula	ĮŲ	nits	ı
	1		l
Averaged Amt = m1*Rsp	1	Amount	ĺ
Linear Amt = b + ml*Rsp	1	Amount	ı
			ı

Page 395 of 916 10260309

5A - FORM V VOA VOLATILE ORGANIC INSTRUMENT PERFORMANCE CHECK BROMOFLUOROBENZENE (BFB)

EPA SAMPLE NO.	
BFB	

Lab Name: Pace Analytical

Contract:

Lab Code:

PASI

Case No.:

SAS No.:

SDG No.: 10260309

Lab File ID: 08501BFB.D

BFB Injection Date: 03/26/2014

Instrument ID: 10AIRD BFB Injection Time: 10:23

GC Column: J&W DB-5

ID: 0.32 (mm)

		% RELATIVE	
m/e	ION ABUNDANCE CRITERIA	ABUNDANCE	
95	Base Peak, 100% relative abundance	100.00	
50	8.00 - 40.00% of mass 95	20.16	
75	30.00 - 66.00% of mass 95	56.03	
96	5.00 - 9.00% of mass 95	6.64	
173	Less than 2.00% of mass 174	0.00	(0.00)
174	50.00 - 120.00% of mass 95	90.39	
175	4.00 - 9.00% of mass 174	6.80	(7.52)
176	93.00 - 101.00% of mass 174	89.73	(99.27)
177	5.00 - 9.00% of mass 176	5.57	(6.21)

1 - Value is %mass 174

2 - Value is %mass 176

EPA SAMPLE NO	LAB SAMPLE ID	LAB FILE ID	DATE ANALYZED	TIME ANALYZED
LCS (LCS)	LCS	08502LCS.D	03/26/2014	10:51
CCV	CCV	08502.D	03/26/2014	10:51
BLANK	BLANK	08504_BLANK.	03/26/2014	11:58
A-Influent	10260309001	08508.D	03/26/2014	13:57

Data File: \\192.168.10.12\chem\10airD.i\032614.b\08502.d

Report Date: 26-Mar-2014 11:15

Pace Analytical Services, Inc.

CONTINUING CALIBRATION COMPOUNDS

Instrument ID: 10airD.i

Injection Date: 26-MAR-2014 10:51
Init. Cal. Date(s): 25-MAR-2014 25-MAR-2014
Init. Cal. Times: 11:09 13:55
Quant Type: ISTD Lab File ID: 08502.d Init. Cal. Date(s): 25-MAR-2014
Analysis Type: AIR Init. Cal. Times: 11:09
Lab Sample ID: CCV Quant Type: ISTD
Method: \\192.168.10.12\chem\10airD.i\032614.b\T015_084-14.m

	I	4	CCAL MIN	l	MAX	I
COMPOUND	RRF / AMOUNT	RF10	•		%D / %DRIFT	
1 Chlorodifluoromethane	2.46286	2.22802	2.22802 0.010			
2 Propylene	7.10865	6.66488	6.66488 0.010	-6.24274	30,00000	. Averaged
3 Dichlorodifluoromethane	0.97982	0.83409	0.83409 0.010	-14.87327	30.00000	Averaged
4 Dichlorotetrafluoroethane	1.13669	0.99751	0.99751 0.010	-12.24469	30.00000	Averaged
5 Chloromethane	3.73081	3.29787	3.29787 0.010	-11.60437	30.00000	Averaged
6 Vinyl chloride	3.97247	3.48809	3.48809 0.010	-12.19340	30.00000	Averaged
7 1,3-Butadiene	6.56188	5.66457	5.66457 0.010	-13.67457	30.00000	Averaged
8 Bromomethane	3.16884	2.86145	2.86145 0.010	-9.70020	30.00000	Averaged
9 Chloroethane	8.27448	7.81105	7.81105 0.010	-5.60069	30.00000	Averaged
10 Ethanol	7.88511	7.58170	7.58170 0.100	-3.84782	30.00000	Averaged
11 Vinyl Bromide	3.29118	2.90428	2.90428 0.010	-11.75555	30.00000	Averaged
12 Isopentane	4.31266	4.01336	4.01336 0.010	-6.94002	30.00000	Averaged
13 Trichlorofluoromethane	0.95449	0.82250	0.82250 0.010	-13.82796	30.00000	Averaged
14 Acrolein	12.56570	11.80915	11.80915 0.010	-6.02077	30.00000	Averaged
15 Acetone	1.95184	2.09346	2.09346 0.010	7.25542	30.00000	Averaged
16 Isopropyl Alcohol	2.79384	2.49882	2.49882 0.010	-10.55981	30.00000	Averaged
17 1,1-Dichloroethene	2.37090	1.96832	1.96832 0.010	-16.97994	30.00000	Averaged
18 Tert Butyl Alcohol	1.69237	1.50207	1.50207 0.100	-11.24439	30.00000	Averaged
19 Acrylonitrile	6.50835	5.25870	5.25870 0.010	-19.20072	30.00000	Averaged
20 Freon 113	1.75874	1.44786	1.44786 0.010	-17.67612	30.00000	Averaged
21 Methylene chloride	10.00000	11.33686	3.08907 0.010		30.00000	Linear
22 Allyl Chloride	7.84806	6.91038	6.91038 0.010	-11.94793	30.00000	Averaged
23 Carbon Disulfide	1.24629	1.07738	1.07738 0.010	-13.55338	30.00000	Averaged
24 trans-1,2-dichloroethene	3.61361	3.06665	3.06665 0.010	-15.13632	30.00000	Averaged
25 Methyl Tert Butyl Ether	1.29024	1.08104	1.08104 0.010	-16.21440	30.00000	Averaged
26 Vinyl Acetate	1.71620	1.50605	1.50605 0.010	-12.24559	30.00000	Averaged
27 1,1-Dichloroethane	2.04886	1.82110	1.82110 0.010	-11.11675	30.00000	Averaged
\$ 28 Hexane-d14(S)	2.74249	2.76128	2.76128 0.200	0.68529	30.00000	Averaged
29 Methyl Ethyl Ketone	8.66663	9.00079	9.00079 0.010	3.85572	30.00000	Averaged
30 n-Hexane	3.31482	3.38052	3.38052 0.010	1.98178	30.00000	Averaged
31 Di-isopropyl Ether	1.55501	1.56873	1.56873 0.010	0.88220	30.00000	Averaged
32 cis-1,2-Dichloroethene	3.50568	2.92434	2.92434 0.010	-16.58276	30.00000	Averaged
33 Ethyl Acetate	1.84618	1.63398	1.63398 0.010	-11.49418	30,00000	Averaged
34 Chloroform	1.28969	1.11854	1.11854 0.010	-13.27122	30.00000	Averaged
35 Ethyl Tert-Butyl Ether	1.27532	1.10788	1.10788 0.010	-13.12905	30.00000	Averaged
36 Tetrahydrofuran	4.62388	4.24400	4.24400 0.010	-8.21578	30.00000	Averaged
37 1,1,1-Trichloroethane	1.21014	1.06202	1.06202 0.010	-12.23998	30.00000	Averaged
38 1,2-Dichloroethane	1.79553	1.57871	1.57871 0.010			-
39 Benzene	1.10990	1.00665	1.00665 0.300			-
40 Carbon tetrachloride	1.20382	1.02024	1.02024 0.010			Averaged
41 Cyclohexane	3.01247	2.63904	2.63904 0.010		•	-
42 Tert Amyl Methyl Ether	1.03708	1.020321	1.0203210.010			-
		!		1	1	J

Page 705 of 916 10260309

Data File: \\192.168.10.12\chem\10airD.i\032614.b\08502.d Report Date: 26-Mar-2014 11:15

Pace Analytical Services, Inc.

CONTINUING CALIBRATION COMPOUNDS

Instrument ID: 10airD.i Injection Date: 26-MAR-2014 10:51
Lab File ID: 08502.d Init. Cal. Date(s): 25-MAR-2014
Analysis Type: AIR Init. Cal. Times: 11:09
Lab Sample ID: CCV Quant Type: ISTD
Method: \\192.168.10.12\chem\10airD.i\032614.b\T015_084-14.m Injection Date: 26-MAR-2014 10:51
Init. Cal. Date(s): 25-MAR-2014 25-MAR-2014
Init. Cal. Times: 11:09 13:55
Quant Type: ISTD

	i		CCAL MII	1	MAX	İ
COMPOUND	RRF / AMOUNT	RF10	RRF10 RRI	%D / %DRIFT		
44 2,2,4-Trimethylpentane		0.85796	0.85796 0.0	,		•
45 Heptane	2.76513	2.50247	2.50247 0.0	.0 -9.49928	30.00000	Averaged
46 1,2-Dichloropropane	3.36766	3.00794	3.00794 0.0	.0 -10.68145	30.00000	Averaged
47 Trichloroethene	2.68354	2.39393	2.39393 0.0	.0 -10.79207	30.00000	Averaged
48 Bromodichloromethane	1.14054	0.98610	0.98610 0.0	.0 -13.54093	30.00000	Averaged
49 1,4-Dioxane	5.68396	4.89505	4.89505 0.0	.0 -13.87951	30.00000	Averaged
50 Methylcyclohexane	5.28396	4.85408	4.85408[0.0	0 -8.13552	30.00000	Averaged
51 Methyl Isobutyl Ketone	1.89154	1.63434	1.63434 0.0	.0 -13.59762	30.00000	Averaged
52 cis-1,3-Dichloropropene	1.89303	1.64852	1.64852 0.0	0 -12.91673	30.00000	Averaged
53 trans-1,3-Dichloropropene	1.81505	1.46650	1.46650 0.0	.0 -19.20350	30.00000	Averaged
\$ 54 Toluene-d8 (S)	1.19285	1.21375	1.21375 0.20	00 1.75266	30.00000	Averaged
55 Toluene	0.86726	0.77567	0.77567 0.30	00 -10.56134	30.00000	Averaged
56 1,1,2-Trichloroethane	2.42220	2.14640	2.14640 0.0	.0 -11.38625	30.00000	Averaged
57 Methyl Butyl Ketone	0.94461	0.78001	0.78001 0.0	.0 -17.42464	30.00000	Averaged
58 Dibromochloromethane	0.65001	0.53983	0.53983 0.0	.0 -16.95018	30.00000	Averaged
59 1,2-Dibromoethane	0.71615	0.63989	0.63989 0.0	.0 -10.64869	30.00000	Averaged
0 Tetrachloroethene	0.79018	0.68912	0.68912 0.0	.0 -12.78956	30.00000	Average
62 Chlorobenzene	0.58174	0.51315	0.51315 0.0	0 -11.79087	30.00000	Average
33 Ethyl Benzene	0.338881	0.29148	0.29148 0.30	00 -13.98761	30.00000	Average
64 m&p-Xylene	0.43157	0.36493	0.36493 0.30	00] -15.44060	30.00000	Average
55 Bromcform	0.56446	0.47248	0.4724810.0	.0 -16.29502	30.00000	Average
56 Styrene	0.65070	0.51613	0.51613 0.0	.0 -20.68065	30.00000	Average
57 o-Xylene	0.41787	0.34529	0.34529 0.30	00 -17.36738	30.00000	Average
88 1,1,2,2-Tetrachloroethane	0.57631	0.51548	0.5154810.0	.0 -10.55590	30.00000	Average
69 Isopropylbenzene	0.32432	0.27907	0.27907[0.0	.0 -13.94972	30.00000	Average
70 N-Propylbenzene	0.28205	0.22617	0.22617[0.0	.0 -19.81223	30.00000	Average
71 4-Ethyltoluene	0.36123	0.293171	0.29317 0.0	.01 -18.84201	30.00000	Average
72 1,3,5-Trimethylbenzene	0.41091	0.34695	0.34695 0.0	0 -15.56586	30.00000	Average
73 Tert-Butyl Benzene	0.45353	0.35236	0.35236 0.0	10 -22.30721	30.00000	Average
74 1,2,4-Trimethylbenzene	0.40537	0.32763	0.32763[0.0	0 -19.17804	30.00000	Average
75 1,3-Dichlorobenzene	0.63335	0.53266	0.53266[0.0	10 -15.89792	30.00000	Average
76 Sec- Butylbenzene	0.31172	0.24412	0.24412 0.0	0 -21.68761	30.00000	Average
77 1,4-dichlorobenzene-d4 (S)	2.06553	2.04114	2.04114 0.2	00 -1.18117	30.00000	Average
78 Benzyl Chloride	0.54965	0.40076	0.40076 0.0	10 -27.08752	30.00000	Average
79 1,4-Dichlorobenzene	0.64186	0.53685	0.53685 0.0	10 -16.35937	30.00000	Average
30 p-Isopropyltoluene	0.424991	0.31771	0.31771 0.0	0 -25.24098	30.00000	Average
31 1,2,3-Trimethylbenzene	0.484461	0.36148	0.36148 0.0	10 -25.38454	30.00000	Average
32 1,2-Dichlorobenzene	0.76687	0.59600	0.59600 0.0	10 -22.28222	30.00000	Average
33 N-Butylbenzene	0.43432	0.30804	0.30804 0.0	10 -29.07579	30.00000	Average
84 1,2,4-Trichlorobenzene	1.04092	0.93769	0.93769 0.0	-9.91703	30.00000	Averaged
35 Naphthalene	0.71465	0.59755	0.59755 0.0	10 -16.38652	30.00000	Average
86 Hexachlorobutadiene	0.94985	0.93311	0.93311 0.0	10 -1.76258	30.00000	Averaged
	I		I	_1	1	

Page 706 of 916 10260309

Data File: \\192.168.10.12\chem\10airD.i\032614.b\08502.d

Report Date: 26-Mar-2014 11:15

Pace Analytical Services, Inc.

CONTINUING CALIBRATION COMPOUNDS

Instrument ID: 10airD.i

Injection Date: 26-MAR-2014 10:51
Init. Cal. Date(s): 25-MAR-2014 25-MAR-2014
Init. Cal. Times: 11:09 13:55
Quant Type: ISTD Lab File ID: 08502.d Analysis Type: AIR

Lab Sample ID: CCV

Method: \\192.168.10.12\chem\10airD.i\032614.b\T015 084-14.m

|Average %D / Drift Results. ______

|Calculated Average %D/Drift = 12.81967 |Maximun Average %D/Drift = 30.00000

|* Passed Average %D/Drift Test.

Page 707 of 916 10260309

Project:

117-0507599.20 SSD O&M

Pace Project No.:

10260309

QC Batch:

AIR/19758

Analysis Method:

TO-15

QC Batch Method:

TO-15

Analysis Description:

TO15 MSV AIR Low Level

Associated Lab Samples:

10260309001, 10260309003, 10260309004, 10260309005, 10260309006

METHOD BLANK: 1644036

Matrix: Air

Associated Lab Samples:

10260309001, 10260309003, 10260309004, 10260309005, 10260309006

Danamatan	11-4-	Blank	Reporting		0 15
Parameter	Units	Result	Limit	Analyzed	Qualifiers
1,1,1-Trichloroethane	ug/m3	ND	1.1	03/24/14 15:58	
1,1,2-Trichloroethane	ug/m3	ND	0.55	03/24/14 15:58	
1,1-Dichloroethane	ug/m3	ND	0.82	03/24/14 15:58	
1,1-Dichloroethene	ug/m3	ND	0.81	03/24/14 15:58	
1,2,3-Trimethylbenzene	ug/m3	ND	0.20	03/24/14 15:58	
1,2,4-Trichlorobenzene	ug/m3	ND	7.5	03/24/14 15:58	
1,2,4-Trimethylbenzene	ug/m3	ND	1.0	03/24/14 15:58	
1,2-Dichloroethane	ug/m3	ND	0.41	03/24/14 15:58	
1,3,5-Trimethylbenzene	ug/m3	ND	1.0	03/24/14 15:58	
Benzene	ug/m3	ND	0.32	03/24/14 15:58	
Carbon tetrachloride	ug/m3	ND	0.64	03/24/14 15:58	
Chlorodifluoromethane	ug/m3	ND	0.20	03/24/14 15:58	
Chloroform	ug/m3	ND	0.99	03/24/14 15:58	
cis-1,2-Dichloroethene	ug/m3	ND	0.81	03/24/14 15:58	
Dichlorodifluoromethane	ug/m3	ND	1.0	03/24/14 15:58	
Ethylbenzene	ug/m3	ND	0.88	03/24/14 15:58	
m&p-Xylene	ug/m3	ND	1.8	03/24/14 15:58	
Methyl-tert-butyl ether	ug/m3	ND	0.73	03/24/14 15:58	
Methylene Chloride	ug/m3	ND	3.5	03/24/14 15:58	
Naphthalene	ug/m3	ND	5.3	03/24/14 15:58	
o-Xylene	ug/m3	ND	0.88	03/24/14 15:58	
Tetrachloroethene	ug/m3	ND	0.69	03/24/14 15:58	
Toluene	ug/m3	ND	0.77	03/24/14 15:58	
trans-1,2-Dichloroethene	ug/m3	ND	0.81	03/24/14 15:58	
Trichloroethene	ug/m3	ND	0.55	03/24/14 15:58	
Vinyl chloride	ug/m3	ND	0.26	03/24/14 15:58	

LABORATORY CONTROL SAMPLE:	1644037					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
1,1,1-Trichloroethane	ug/m3	55.5	52.9	95	72-128	
1,1,2-Trichloroethane	ug/m3	55.5	50.6	91	72-130	
1,1-Dichloroethane	ug/m3	41.2	55.3	(134)	68-128 L	1
1,1-Dichloroethene	ug/m3	40.3	54.0	(134)	68-130 L	1
1,2,3-Trimethylbenzene	ug/m3	50	53.3	107	60-140	
1,2,4-Trichlorobenzene	ug/m3	75.5	89.4	118	30-150	
1,2,4-Trimethylbenzene	ug/m3	50	54.2	108	71-140	
1,2-Dichloroethane	ug/m3	41.2	39.5	96	71-132	
1,3,5-Trimethylbenzene	ug/m3	50	55.2	110	73-136	
Benzene	ug/m3	32.5	30.6	94	69-134	
Carbon tetrachloride	ug/m3	64	65.8	103	66-134	

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

10260309

Project:

117-0507599.20 SSD O&M

Pace Project No.:

10260309

ABORATORY CONTROL SAMPLE:	1644037					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
orodifluoromethane	ug/m3	36	44.9	125	60-140	
roform	ug/m3	49.7	47.0	95	72-127	
,2-Dichloroethene	ug/m3	40.3	40.6	101	71-135	
lorodifluoromethane	ug/m3	50.3	63.4	(126)	69-125 L	1
benzene	ug/m3	44.2	4 6.1	104	73-139	
Xylene	ug/m3	44.2	47.4	107	73-139	
/l-tert-butyl ether	ug/m3	36.7	46.6	127	72-132	
lene Chloride	ug/m3	35.3	43.0	122	64-134	
halene	ug/m3	53.3	63.9	120	61-150	
ne	ug/m3	44.2	44.9	102	71-138	
chloroethene	ug/m3	69	66.6	97	69-136	
ne	ug/m3	38.3	35.4	92	67-133	
1,2-Dichloroethene	ug/m3	40.3	51.1	127	70-131	
proethene	ug/m3	54.6	54.2	99	70-135	
chloride	ug/m3	26	34.1	131	69-132	

SAMPLE DUPLICATE: 164420	~ -	10260152009	Dup		Max	
Parameter	Units	Result	Result	RPD	RPD	Qualifier
1,1,1-Trichloroethane	ug/m3	ND	ND		25	
1,1,2-Trichloroethane	ug/m3	ND	ND		25	
1,1-Dichloroethane	ug/m3	ND	ND		25	
1,1-Dichloroethene	ug/m3	ND	ND		25	
1,2,3-Trimethylbenzene	ug/m3	ND	ND		25	
1,2,4-Trichlorobenzene	ug/m3	ND	ND		25	
1,2,4-Trimethylbenzene	ug/m3	ND	ND		25	
1,2-Dichloroethane	ug/m3	ND	ND		25	
1,3,5-Trimethylbenzene	ug/m3	ND	ND		25	
Benzene	ug/m3	0.71	0.74	4	25	
Carbon tetrachloride	ug/m3	ND	ND		25	
Chlorodifluoromethane	ug/m3	2.5	2.6	2	25	
Chloroform	ug/m3	ND	ND		25	
cis-1,2-Dichloroethene	ug/m3	ND	ND		25	
Dichlorodifluoromethane	ug/m3	2.1	2.2	3	25	L1
Ethylbenzene	ug/m3	ND	ND		25	
m&p-Xylene	ug/m3	ND	ND		25	
Methyl-tert-butyl ether	ug/m3	ND	ND		25	
Methylene Chloride	ug/m3	7.9	4.2J		25	
Naphthalene	ug/m3	ND	3.1J		25	
o-Xylene	ug/m3	ND	ND		25	
Tetrachloroethene	ug/m3	ND	ND		25	
Toluene	ug/m3	ND	.89J		25	
trans-1,2-Dichloroethene	ug/m3	ND	ND		25	
Trichloroethene	ug/m3	ND	ND		25	
Vinyl chloride	ug/m3	ND	ND		25	

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

10260309

Project:

117-0507599.20 SSD O&M

Pace Project No.:

10260309

QC Batch:

AIR/19764

Analysis Method:

TO-15

QC Batch Method:

TO-15

Analysis Description:

TO15 MSV AIR Low Level

Associated Lab Samples:

10260309002

METHOD BLANK: 1644401

Matrix: Air

Associated Lab Samples:

10260309002

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
1,1,1-Trichloroethane	ug/m3	ND ND	1.1	03/25/14 16:24	
1,1,2-Trichloroethane	ug/m3	. ND	0.55	03/25/14 16:24	
1,1-Dichloroethane	ug/m3	ND	0.82	03/25/14 16:24	
1,1-Dichloroethene	ug/m3	ND	0.81	03/25/14 16:24	
1,2,3-Trimethylbenzene	ug/m3	ND	1.0	03/25/14 16:24	
1,2,4-Trichlorobenzene	ug/m3	ND	1.5	03/25/14 16:24	
1,2,4-Trimethylbenzene	ug/m3	ND	1.0	03/25/14 16:24	
1,2-Dichloroethane	ug/m3	ND	0.41	03/25/14 16:24	
1,3,5-Trimethylbenzene	ug/m3	ND	1.0	03/25/14 16:24	
Benzene	ug/m3	ND	0.32	03/25/14 16:24	
Carbon tetrachloride	ug/m3	ND	0.64	03/25/14 16:24	
Chlorodifluoromethane	ug/m3	ND	0.72	03/25/14 16:24	
Chloroform	ug/m3	ND	0.99	03/25/14 16:24	
cis-1,2-Dichloroethene	ug/m3	ND	0.81	03/25/14 16:24	
Dichlorodifluoromethane	ug/m3	ND	1.0	03/25/14 16:24	
Ethylbenzene	ug/m3	ND	0.88	03/25/14 16:24	
m&p-Xylene	ug/m3	ND	1.8	03/25/14 16:24	
Methyl-tert-butyl ether	ug/m3	ND	0.73	03/25/14 16:24	
Methylene Chloride	ug/m3	ND	0.71	03/25/14 16:24	
Naphthalene	ug/m3	ND	1.1	03/25/14 16:24	
o-Xylene	ug/m3	ND	0.88	03/25/14 16:24	
Tetrachloroethene	ug/m3	ND	0.69	03/25/14 16:24	
Toluene	ug/m3	ND	0.77	03/25/14 16:24	
trans-1,2-Dichloroethene	ug/m3	ND	0.81	03/25/14 16:24	
Trichloroethene	ug/m3	ND	0.55	03/25/14 16:24	
Vinyl chloride	ug/m3	ND	0.26	03/25/14 16:24	

LABORATORY CONTROL SAMPLE:	1644402					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
1,1,1-Trichloroethane	ug/m3	55.5	60.2	109	72-128	
1,1,2-Trichloroethane	ug/m3	55.5	61.4	111	72-130	
1,1-Dichloroethane	ug/m3	41.2	43.0	105	68-128	
1,1-Dichloroethene	ug/m3	40.3	45.0	111	68-130	
1,2,3-Trimethylbenzene	ug/m3	50	46.7	93	60-140	
1,2,4-Trichlorobenzene	ug/m3	75.5	69.7	92	30-150	
1,2,4-Trimethylbenzene	ug/m3	50	54.1	108	71-140	
1,2-Dichloroethane	ug/m3	41.2	44.5	108	71-132	
1,3,5-Trimethylbenzene	ug/m3	50	55.1	110	73-136	
Benzene	ug/m3	32.5	35.5	109	69-134	
Carbon tetrachloride	ug/m3	64	69.9	109	66-134	

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

Date: 03/26/2014 04:44 PM 10260309

Project:

117-0507599.20 SSD O&M

Pace Project No.:

10260309

BORATORY CONTROL SAMPLE:	1644402					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
orodifluoromethane	ug/m3	36	38.9	108	60-140	
roform	ug/m3	49.7	54.7	110	72-127	
-Dichloroethene	ug/m3	40.3	47.3	117	71-135	
rodifluoromethane	ug/m3	50.3	55.6	111	69-125	
penzene	ug/m3	44.2	46.8	106	73-139	
(ylene	ug/m3	44.2	47.4	107	73-139	
l-tert-butyl ether	ug/m3	36.7	36.5	99	72-132	
ene Chloride	ug/m3	35.3	35.6	101	64-134	
nalene	ug/m3	53.3	55.0	103	61-150	
ne	ug/m3	44.2	48.1	109	71-138	
hloroethene	ug/m3	69	70.8	103	69-136	
ne	ug/m3	38.3	41.8	109	67-133	
,2-Dichloroethene	ug/m3	40.3	39.3	98	70-131	
roethene	ug/m3	54.6	58.7	107	70-135	
chloride	ug/m3	26	28.8	111	69-132	

SAMPLE DUPLICATE: 164510		92193694002	Dup		Max	
Parameter	Units	Result	Result	RPD	RPD	Qualifiers
1,1,1-Trichloroethane	ug/m3	ND ND	ND		25	
1,1,2-Trichloroethane	ug/m3	ND	ND		25	
1,1-Dichloroethane	ug/m3	ND	ND		25	
1,1-Dichloroethene	ug/m3	ND	ND		25	
1,2,3-Trimethylbenzene	ug/m3	ND	ND		25	
1,2,4-Trichlorobenzene	ug/m3	ND	ND		25	
1,2,4-Trimethylbenzene	ug/m3	2.4	2.5	1	25	
1,2-Dichloroethane	ug/m3	ND	ND		25	
1,3,5-Trimethylbenzene	ug/m3	ND	.74J		25	
Benzene	ug/m3	0.63	0.63	.6	25	
Carbon tetrachloride	ug/m3	ND	ND		25	
Chlorodifluoromethane	ug/m3	6.8	5.7	17	25	
Chloroform	ug/m3	ND	ND		25	
cis-1,2-Dichloroethene	ug/m3	ND	ND		25	
Dichlorodifluoromethane	ug/m3	1.8	1.6	13	25	
Ethylbenzene	ug/m3	ND	.91J		25	
m&p-Xylene	ug/m3	3.4	3.3	· 1	25	
Methyl-tert-butyl ether	ug/m3	ND	ND		25	
Methylene Chloride	ug/m3	2.7	2.5	9	25	
Naphthalene	ug/m3	ND	.94J		25	
o-Xylene	ug/m3	1.6	ND		25	
Tetrachloroethene	ug/m3	1.2	1.2	1	25	
Toluene	ug/m3	5.1	5.5	8	25	
rans-1,2-Dichloroethene	ug/m3	ND	ND		25	
Trichloroethene	ug/m3	ND	ND		25	
Vinyl chloride	ug/m3	ND	ND		25	

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

Data File: \\192.168.10.12\chem\10airD.i\032414.b\08331.d

Report Date: 25-Mar-2014 09:12

A-Effluent

Pace Analytical Services, Inc.

INTERNAL STANDARD COMPOUNDS AREA AND RT SUMMARY

Instrument ID: 10airD.i Lab File ID: 08331.d

Lab Smp Id: 10260309003

Analysis Type: VOA Quant Type: ISTD Operator: DR1

Calibration Date: 24-MAR-2014 Calibration Time: 12:16

Level: LOW

Sample Type: AIR

Method File: \\192.168.10.12\chem\10airD.i\032414.b\T015_083-14.m Misc Info: 19758

Test Mode:

Use Initial Calibration Level 4. If Continuing Cal. use Initial Cal. Level 4

		AREA	LIMIT		
COMPOUND	STANDARD	LOWER	UPPER	SAMPLE	%DIFF
=======================================	========	========	========	=======	======
43 1,4-Difluorobenze	733615	440169	1027061	828315	12.91
61 Chlorobenzene - d	376768	226061	527475	422184	12.05
İ					į

	RT LIMIT				
COMPOUND	STANDARD	LOWER	UPPER	SAMPLE	%DIFF
=======================================	=========	=======	========	========	======
43 1,4-Difluorobenze	6.41	6.08	6.74	6.41	0.05
61 Chlorobenzene - d	10.09	9.76	10.42	10.08	-0.03

AREA UPPER LIMIT = + 40% of internal standard area. AREA LOWER LIMIT = - 40% of internal standard area. RT UPPER LIMIT = + 0.33 minutes of internal standard RT. RT LOWER LIMIT = - 0.33 minutes of internal standard RT.

10260309 Page 833 of 916 Data File: \\192.168.10.12\chem\10airD.i\032414.b\08335.d

Report Date: 25-Mar-2014 08:33

Pace Analytical Services, Inc.

A-Influent 1.68X

Calibration Date: 24-MAR-2014 Calibration Time: 12:16

Level: LOW

INTERNAL STANDARD COMPOUNDS AREA AND RT SUMMARY

Instrument ID: 10airD.i
Lab File ID: 08335.d

Lab Smp Id: 10260309001

Analysis Type: VOA Quant Type: ISTD

Operator: DR1

Sample Type: AIR

Method File: \\192.168.10.12\chem\10airD.i\032414.b\T015 083-14.m Misc Info: 19758

Test Mode:

Use Initial Calibration Level 4. If Continuing Cal. use Initial Cal. Level 4

		AREA			
COMPOUND	STANDARD	LOWER	UPPER	SAMPLE	%DIFF
	=======	=======	========	========	=====
43 1,4-Difluorobenze	733615	440169	1027061	938958	27.99
61 Chlorobenzene - d	376768	226061	527475	463652	23.06

-		RT I	JIMIT			
-	COMPOUND	STANDARD	LOWER	UPPER	SAMPLE	%DIFF
-1	=======================================	========	=======	====== = =	========	======
1	43 1,4-Difluorobenze	6.41	6.08	6.74	6.41	0.10
	61 Chlorobenzene - d	10.09	9.76	10.42	10.09	0.00
1						

AREA UPPER LIMIT = + 40% of internal standard area. AREA LOWER LIMIT = - 40% of internal standard area. RT UPPER LIMIT = + 0.33 minutes of internal standard RT. RT LOWER LIMIT = - 0.33 minutes of internal standard RT.

10260309 Page 774 of 916 Data File: \\192.168.10.12\chem\10airD.i\032614.b\08508.d

Report Date: 26-Mar-2014 14:18

Pace Analytical Services, Inc.

A-Influent 105,5X

INTERNAL STANDARD COMPOUNDS AREA AND RT SUMMARY

Instrument ID: 10airD.i Lab File ID: 08508.d

Lab Smp Id: 10260309001

Analysis Type: VOA Quant Type: ISTD Operator: DR1

Calibration Date: 26-MAR-2014 Calibration Time: 10:51

Level: LOW

Sample Type: AIR

Method File: \\192.168.10.12\chem\10airD.i\032614.b\T015_084-14.m

Misc Info: 19758

Test Mode:

Use Initial Calibration Level 4. If Continuing Cal. use Initial Cal. Level 4

GOMBOINE	GERNADA DO	11111111	LIMIT	GAMPIE	0,5,7,7,7
COMPOUND	STANDARD	LOWER	UPPER	SAMPLE =======	%DIFF ======
43 1,4-Difluorobenze 61 Chlorobenzene - d				532947 280771	-33.04 -28.56

	RT I	JIMIT			
COMPOUND	STANDARD	LOWER	UPPER	SAMPLE	%DIFF
=======================================	=======	=======			======
43 1,4-Difluorobenze	6.41	6.08	6.74	6.41	-0.10
61 Chlorobenzene - d	10.09	9.76	10.42	10.08	-0.03

AREA UPPER LIMIT = + 40% of internal standard area. AREA LOWER LIMIT = - 40% of internal standard area. RT UPPER LIMIT = + 0.33 minutes of internal standard RT. RT LOWER LIMIT = - 0.33 minutes of internal standard RT.

10260309 Page 800 of 916 Data File: \\192.168.10.12\chem\10airD.i\032514.b\08433.d

Report Date: 26-Mar-2014 08:58

A-MID GAC

Calibration Date: 25-MAR-2014 Calibration Time: 11:09

Level: LOW

Sample Type: AIR

Pace Analytical Services, Inc.

INTERNAL STANDARD COMPOUNDS AREA AND RT SUMMARY

Instrument ID: 10airD.i Lab File ID: 08433.d

Lab Smp Id: 10260309002

Analysis Type: VOA Quant Type: ISTD

Operator: DR1

Method File: \\192.168.10.12\chem\10airD.i\032514.b\T015 084-14.m

Misc Info: 19764

Test Mode:

Use Initial Calibration Level 4. If Continuing Cal. use Initial Cal. Level 4

		AREA LIMIT			
COMPOUND	STANDARD	LOWER	UPPER	SAMPLE	%DIFF
=======================================	========	=======	========	========	======
43 1,4-Difluorobenze	795942	477565	1114319	669670	-15.86
61 Chlorobenzene - d	392996	235798	550194	339357	-13.65

	RT LIMIT				
COMPOUND	STANDARD	LOWER	UPPER	SAMPLE	%DIFF
=======================================	=======	========	========	========	======
43 1,4-Difluorobenze 61 Chlorobenzene - d		6.08 9.76	6.74 10.42	6.41 10.08	-0.05 -0.03
or enforobenzene d					

AREA UPPER LIMIT = + 40% of internal standard area. AREA LOWER LIMIT = - 40% of internal standard area.

RT UPPER LIMIT = + 0.33 minutes of internal standard RT. RT LOWER LIMIT = - 0.33 minutes of internal standard RT.

Data File: \\192.168.10.12\chem\10airD.i\032414.b\08334.d

Report Date: 25-Mar-2014 09:14

Pace Analytical Services, Inc.

C- Effluent

INTERNAL STANDARD COMPOUNDS AREA AND RT SUMMARY

Instrument ID: 10airD.i Lab File ID: 08334.d

Lab Smp Id: 10260309006

Analysis Type: VOA Quant Type: ISTD Operator: DR1

Calibration Date: 24-MAR-2014 Calibration Time: 12:16

Level: LOW Sample Type: AIR

Method File: \\192.168.10.12\chem\10airD.i\032414.b\T015 083-14.m

Misc Info: 19758

Test Mode:

Use Initial Calibration Level 4. If Continuing Cal. use Initial Cal. Level 4

	AREA LIMIT				
COMPOUND	STANDARD	LOWER	UPPER	SAMPLE	%DIFF
=======================================	========	=======		========	======
43 1,4-Difluorobenze	733615	440169	1027061	900357	22.73
61 Chlorobenzene - d		226061	527475	459301	21.91

		RT LIMIT			
COMPOUND	STANDARD	LOWER	UPPER	SAMPLE	%DIFF
	========	========	========	========	======
43 1,4-Difluorobenze 61 Chlorobenzene - d	6.41 10.09	6.08 9.76	6.74 10.42	6.41 10.08	0.05 -0.03
					l

AREA UPPER LIMIT = + 40% of internal standard area. AREA LOWER LIMIT = - 40% of internal standard area. RT UPPER LIMIT = + 0.33 minutes of internal standard RT. RT LOWER LIMIT = - 0.33 minutes of internal standard RT.

Page 901 of 916

C-Influent

Data File: \\192.168.10.12\chem\10airD.i\032414.b\08332.d

Report Date: 25-Mar-2014 09:12

Pace Analytical Services, Inc.

INTERNAL STANDARD COMPOUNDS AREA AND RT SUMMARY

Instrument ID: 10airD.i Lab File ID: 08332.d Lab Smp Id: 10260309004 Calibration Date: 24-MAR-2014 Calibration Time: 12:16

Analysis Type: VOA Quant Type: ISTD

Level: LOW Sample Type: AIR

Quant Type: ISTD Operator: DR1

Method File: \\192.168.10.12\chem\10airD.i\032414.b\T015_083-14.m

Misc Info: 19758

Test Mode:

Use Initial Calibration Level 4.
If Continuing Cal. use Initial Cal. Level 4

COMPOUND STANDARD		AREA LOWER	LIMIT UPPER	SAMPLE	%DIFF
43 1,4-Difluorobenze		440169	1027061	903560	23.17
61 Chlorobenzene - d		226061	527475	447011	18.64

		RT I	LIMIT		
COMPOUND	STANDARD	LOWER	UPPER	SAMPLE	%DIFF
=======================================	========	=======	========	========	======
43 1,4-Difluorobenze		6.08	6.74	6.41	0.10
61 Chlorobenzene - d	10.09	9.76	10.42	10.09	0.00

AREA UPPER LIMIT = + 40% of internal standard area. AREA LOWER LIMIT = - 40% of internal standard area. RT UPPER LIMIT = + 0.33 minutes of internal standard RT. RT LOWER LIMIT = - 0.33 minutes of internal standard RT.

Data File: \\192.168.10.12\chem\10airD.i\032414.b\08333.d

Report Date: 25-Mar-2014 09:13

Pace Analytical Services, Inc.

C-MIN GAC

Calibration Date: 24-MAR-2014 Calibration Time: 12:16

Level: LOW

INTERNAL STANDARD COMPOUNDS AREA AND RT SUMMARY

Instrument ID: 10airD.i Lab File ID: 08333.d Lab Smp Id: 10260309005

Analysis Type: VOA

Quant Type: ISTD Operator: DR1

Sample Type: AIR

Method File: \\192.168.10.12\chem\10airD.i\032414.b\T015_083-14.m Misc Info: 19758

Test Mode:

Use Initial Calibration Level 4. If Continuing Cal. use Initial Cal. Level 4

COMPOUND	STANDARD	AREA LOWER	LIMIT UPPER	SAMPLE	%DIFF
43 1,4-Difluorobenze	733615		1027061	885489	20.70
61 Chlorobenzene - d	376768		527 47 5	449811	19.39

		RT I	IMIT		
COMPOUND	STANDARD	LOWER	UPPER	SAMPLE	%DIFF
43 1,4-Difluorobenze 61 Chlorobenzene - d	6.41	6.08	6.74	6.41	0.00

AREA UPPER LIMIT = + 40% of internal standard area. AREA LOWER LIMIT = - 40% of internal standard area. RT UPPER LIMIT = + 0.33 minutes of internal standard RT. RT LOWER LIMIT = - 0.33 minutes of internal standard RT.

10260309 Page 880 of 916

(612)607-1700

ANALYTICAL RESULTS

sample Calculation

Project:

117-0507599.20 SSD O&M

Pace Project No.:

10260309

Sample: A-Influent	Lab ID: 10260309001	Collected: 03/12/14 12:5	66 Received: 03/14/14 08:54 N	fatrix: Air
Parameters	Results Units	Report Limit DF	Prepared Analyzed	CAS No. Qua
TO15 MSV AIR	Analytical Method: TO-15		,	
Benzene	ND ug/m3	0.55 1.68	03/25/14 02:38	71-43-2
Carbon tetrachloride	ND ug/m3	1.1 1.68	03/25/14 02:38	56-23-5
Chlorodifluoromethane	2.4 ug/m3	0.34 1.68	03/25/14 02:38	75-45-6
Chloroform	ND ug/m3	1.7 1.68	03/25/14 02:38	67-66-3
Dichlorodifluoromethane	2.0 ug/m3	1.7 1.68	03/25/14 02:38	75-71-8 L1
1,1-Dichloroethane	29.3 ug/m3	1.4 1.68	03/25/14 02:38	75-34-3 L1
1,2-Dichloroethane	36.4 ug/m3	0.69 1.68	03/25/14 02:38	107-06-2
1,1-Dichloroethene	130 ug/m3	1.4 1.68	03/25/14 02:38	75-35-4 L1
cis-1,2-Dichloroethene	176 ug/m3	1.4 1.68	03/25/14 02:38	156-59-2
trans-1,2-Dichloroethene	ND ug/m3	1.4 1.68	03/25/14 02:38	156-60-5
Ethylbenzene	ND ug/m3	1.5 1.68	03/25/14 02:38	100-41-4
Methylene Chloride	ND ug/m3	5.9 1.68	03/25/14 02:38	75-09-2
Methyl-tert-butyl ether	ND ug/m3	1.2 1.68	03/25/14 02:38	1634-04-4
Naphthalene	ND ug/m3	8.9 1.68	03/25/14 02:38	91-20-3
Tetrachloroethene	3.6 ug/m3	1.2 1.68	03/25/14 02:38	127-18-4
Toluene	9.1 ug/m3	1.3 1.68	03/25/14 02:38	108-88-3
1,2,4-Trichlorobenzene	ND ug/m3	12.7 1.68	03/25/14 02:38	120-82-1
1,1,1-Trichloroethane	1310 ug/m3	117 105.5	03/26/14 13:57	71-55-6
1,1,2-Trichloroethane	ND ua/m3	0.92 1.68	03/25/14 02:38	79-00-5
Trichloroethene	2100 ug/m3	58.0 (105.5	03/26/14 13:57	79-01-6
1,2,3-Trimethylbenzene	ND ug/m3	0.34 1.68	03/25/14 02:38	526-73-8
1,2,4-Trimethylbenzene	ND ug/m3	1.7 1.68	03/25/14 02:38	95-63-6
1,3,5-Trimethylbenzene	ND ug/m3	1.7 1.68	03/25/14 02:38	108-67-8
Vinyl chloride	ND ug/m3	0.44 1.68	03/25/14 02:38	75-01-4
m&p-Xylene	3.0 ug/m3	3.0 1.68	03/25/14 02:38	179601-23-1
o-Xylene	ND ug/m3	1.5 1.68	03/25/14 02:38	95-47-6

REPORT OF LABORATORY ANALYSIS

Sample Calculation 8.a A-Influent

Data File: \\192.168.10.12\chem\10airD.i\032614.b\08508.d

Report Date: 26-Mar-2014 14:18

Pace Analytical Services, Inc.

TO15 Analysis (UNIX)

Data file: \\192.168.10.12\chem\10airD.i\032614.b\08508.d Lab Smp Id: 10260309001 Inj Date: 26-MAR-2014 13:57 Operator: DR1 Inst ID: 10airD.i

Smp Info :

Misc Info: 19758

: Volatile Organic COMPOUNDS in Air Comment

Method : \\192.168.10.12\chem\\10airD.i\\032614.b\\T015_084-14.m

Meth Date : 26-Mar-2014 11:13 drandall Quant Type: ISTD

Cal Date : 25-MAR-2014 13:55 Cal File: 08409.d

Als bottle: 6

Dil Factor: 105.50000 Integrator: HP RTE

Compound Sublist: all.sub

Target Version: 4.14

Processing Host: 10MNCREINDL

Concentration Formula: Amt * DF * Uf * CpndVariable

Name	Value	Description					
DF Uf	105.500	Dilution Factor ng unit correction factor					
Cpnd Variable		Local Compound Variable					

		CONCENTRA	CONCENTRATIONS			
	QUANT SIG	ON-COLUMN	FINAL			
Compounds	MASS	RT EXPRO REL RT RESPONSE (ppbv)	(ppbv)			
1 Chlorodifluoromethane	==== 51	Compound Not Detected.				
2 Propylene	41	Compound Not Detected.				
3 Dichlorodifluoromethane	85	Compound Not Detected.				
4 Dichlorotetrafluoroethar	ne 85	Compound Not Detected.				
5 Chloromethane	50	Compound Not Detected.				
6 Vinyl chloride	62	Compound Not Detected.				
7 1,3-Butadiene	54	Compound Not Detected.				
8 Bromomethane	94	Compound Not Detected.				
9 Chloroethane	64	Compound Not Detected.				
10 Ethanol	31	Compound Not Detected.				
11 Vinyl Bromide	106	Compound Not Detected.				
12 Isopentane	43	Compound Not Detected.				
13 Trichlorofluoromethane	101	Compound Not Detected.				
14 Acrolein	56	Compound Not Detected.				
15 Acetone	43	3.954 3.957 (0.617) 51742 1.89498	200			
16 Isopropyl Alcohol	45	4.036 4.010 (0.630) 7423 0.38913	41.0(QM)			
17 1,1-Dichloroethene	61	4.213 4.210 (0.658) 12549 0.55826	58.9			
18 Tert Butyl Alcohol	59	Compound Not Detected.				
19 Acrylonitrile	53	Compound Not Detected.				
20 Freon 113	101	Compound Not Detected.				
21 Methylene chloride	49	Compound Not Detected.				
22 Allyl Chloride	76	Compound Not Detected.				
23 Carbon Disulfide	76	4.475 4.472 (0.699) 15108 0.35330	37.3(M)			
24 trans-1,2-dichloroethene	96	Compound Not Detected.				

10260309 Page 797 of 916

Sample Calculation

Data File: \\192.168.10.12\chem\10airD.i\032614.b\08508.d Report Date: 26-Mar-2014 14:18

				CONCENTRATIONS			
		QUANT SIG		ON-COLUMN FINAL			
Comp	pounds	MASS	RT EXP RT REL RT RESPONSE	(ppbv) (ppbv)			
	E Mothyl Tant Dunyl Dth	72		=======================================			
	25 Methyl Tert Butyl Ether	73	Compound Not Detected.				
	26 Vinyl Acctate	43	Compound Not Detected.				
	7 1,1-Dichloroethane	63	4.846 4.843 (0.775) 2968	0.11410 12.0(MH)			
	8 Hexane-d14(S)	66	4.961 4.961 (0.774) 208346	10.7213 10.7			
	9 Methyl Ethyl Ketone	72	5.066 5.053 (0.791) 1711	0.27824 29.4(Q)			
	0 n-Hexane	57	Compound Not Detected.				
	1 Di-isopropyl Ether	45	Compound Not Detected.				
	32 cis-1,2-Dichloroethene	96	5.256 5.256 (0.820) 9712	0.63885 67.4(Q)			
	3 Ethyl Acetate	43	Compound Not Detected.				
	4 Chloroform	83	Compound Not Detected.				
	5 Ethyl Tert-Butyl Ether	59	Compound Not Detected.				
	6 Tetrahydrofuran	42	Compound Not Detected.				
	7 1,1,1-Trichloroethane	97	5.899 5.899 (0.921) 98701	2.24116 236			
	8 1,2-Dichloroethane	62	Compound Not Detected.				
	9 Benzene	78	Compound Not Detected.				
	0 Carbon tetrachloride	117	Compound Not Detected.				
	1 Cyclohexane	56	Compound Not Detected.				
	2 Tert Amyl Methyl Ether	73	Compound Not Detected.				
	3 1,4-Difluorobenzene	114	6.407 (1.000) 532947	10.0000			
	4 2,2,4-Trimethylpentane	57	Compound Not Detected.				
	5 Heptane	43	Compound Not Detected.				
	6 1,2-Dichloropropane	63	Compound Not Detected.				
(7 Trichloroethene 8 Bromodichloromethane	130	6.859 6.859 (1.071) 72214) 3.63618 384			
		83 .	Compound Not Detected.				
	9 1,4-Dioxane	88	Compound Not Detected.				
	C Methylcyclohexane	98	Compound Not Detected.				
	1 Methyl Isobutyl Ketone	43	Compound Not Detected.				
	2 cis-1,3-Dichloropropene	75	Compound Not Detected.				
	3 trans-1,3-Dichloropropene	75	Compound Not Detected.				
	4 Toluene-d8 (S)	98	8.204 8.207 (1.280) 475456	10.6417 10.6			
	5 Toluene	91	Compound Not Detected.				
	6 1,1,2-Trichloroethane	97	Compound Not Detected.				
	7 Methyl Butyl Ketone	43	Compound Not Detected.				
	8 Dibromochloromethane	129	Compound Not Detected.				
	9 1,2-Dibromoethane	107	Compound Not Detected.				
	0 Tetrachloroethene	166	Compound Not Detected.				
	1 Chlorobenzene - d5	117	10.083 10.083 (1.000) 280771	10.0000			
	2 Chlorobenzene	112	Compound Not Detected.				
	3 Ethyl Benzene	91	Compound Not Detected.				
	4 m&p-Xylene	91	Compound Not Detected.				
	5 Bromoform	173	Compound Not Detected.				
	6 Styrene	104	Compound Not Detected.				
	7 o-Xylene	91	Compound Not Detected.				
	8 1,1,2,2-Tetrachloroethane	83	Compound Not Detected.				
	9 Isopropylbenzene	105	Compound Not Detected.				
	0 N-Propylbenzene	91	Compound Not Detected.				
	1 4-Ethyltoluene	105	Compound Not Detected.				
	2 1,3,5-Trimethylbenzene	105	Compound Not Detected.				
	3 Tert-Butyl Benzene	119	Compound Not Detected.				
	4 1,2,4-Trimethylbenzene	105	Compound Not Detected.				
	5 1,3-Dichlorobenzene	146	Compound Not Detected.				
	6 Sec- Butylbenzene	105	Compound Not Detected.				
	7 1,4-dichlorobenzene-d4 (S)	150	13.874 13.877 (1.376) 116423	8.56483 8.56			
7	8 Benzyl Chloride	91	Compound Not Detected.				

10260309 Page 798 of 916

Report Date: 26-Mar-2014 10:04

Pace Analytical Services, Inc.

INITIAL CALIBRATION DATA

Start Cal Date : 25-MAR-2014 11:09
End Cal Date : 25-MAR-2014 13:55
Quant Method : ISTD
Target Version : 4.14
Integrator : \\192.168.10.12\chem\10airD.i\032514.b\T015_084-14.m
Last Edit : 26-Mar-2014 10:03 drandall

	I C	.1000000	0.2000000	1.0000	10.0000	1 20.000C I	30.0000 :		Coefficients		-	%RSD
Compound		Level 1	Level 2	Level 3	Level 4	Level 5	Level 6 [Curve]	b	ml	m2	Ī	or R^2 :
38 1.2-Dichleroethane		1.70061:	1,760791		1.684091	1.71246			1.795531		-!-	7.82080
39 Benzene	- 1	1.00185	1.175081	1.38574	1.032071	1.01106	1.05359 AVRG		1.10990			13.42479
1 40 Carbon tetrachloride	- 1	1.07747	1.18218		1.11252:	1.17061	1.09399 AVRG		1.203821			9-62292
41 Cyclohexane		2.81361:	3.15805		2.77047	2.772361	2.88211 AVRG		3.01247			11.84966
42 Tert Amyl Methyl Ether	- !	44+44	0.677311		1.10566	1.143071	1.08808 AVKG		1.03708			19.64175:
44 2.2.4-Trimethylpentane	- !	0.88714:	0.972041		0.87729	0.872191	0.87357 AVRG		0.927691			9.218921
	!	2.44997	3.13122	3.31544	2.597591	2.565201	2.53139 AVRG		1 2.765131		-	13.127941
45 Heptane			3.637991		3.261421				3.367661		- 1	11.563641
4€ 1.2-Dichloropropane	!	2.91943				3.206691	3.17308 AVRG		2.683541	-,	- 1	10.773271
47 Trichloroethene	- 1	2.45292	2.79490	3.222221	2.58458	2.50100	2.54560 AVRG				- 1	
48 Bromodichloromethane	i	1.02195	1.16823,	1.36923	1.06900	1.09130	1.12357 AVRG		1.14054		- 1	10.73555
49 1,4-Dioxane	:	4.97318	6.07867(5.63830	5.24110	5.42064 AVRG		5.68396		1	11.31730
50 Methylcyclohexane	i	4.76948	5.552591		5.33019	4.75276	4.91133 AVRG		5.28396		- 1	11.90221
51 Methyl Isobutyl Ketone	-	1.61439	2.11860	2.42532	1.71376	1.73287	1.74430 AVRG		1.89154		ı	16.57961
52 cis-1,3-Dichloropropene	- 1	1.64901	2.05860	2.42437	1.73035	1.707421	1.78846 AVRG		1.89303		-	15.69070
53 trans-1,3-Dichloropropene	-	1.56781	2.22603	2.42085	1.55932	1.54140	1.57492 AVRG		1.81505		- 1	21.96860
55 Toluene	- 1	0.70891	0.92923	1.08224	0.82014	0.83882	0.82424 AVRG		0.86726		-1	14.58634
56 1,1,2-Trichloroethane		2.10078	2.59491	3.03726	2.26200	2.28318	2.25506 AVRG		1 2.42220;			14.11392
J 57 Methyl Butyl Ketone	- 1	0.84345	1.05229	1.17996	0.86324	0.87720	0.85152 AVRG ·		0.94461		- 1	14.74903
58 Dibromochloromethane		0.57124!	0.70860	0.80413	0.59659	0.61228	0.60722 AVRG .		0.65001;		-1	13.67407
59 1,2-Dibromoethane	1	0.58047;	0.77017	0.92909	0.67959	0.67656	0.66101 AVRG		0.71615		-1	16.82792
60 Tetrachloroethene	- 1	0.69924	C.84502	0.96651	0.75210	0.75443	0.72375 AVRG :		C.79018		-1	12.59339
62 Chlorobenzene	- 1	0.44646	C.61597	0.75787	0.56230	0.56093	0.54691 AVRG :		C.58174		1	17.61756
1	1		1	1	1	1	1 1		1		_1_	1