Frog Mortar Creek Phase II Surface Water and Shallow Sediment Investigation Report Lockheed Martin Corporation, Martin State Airport Middle River, Maryland

Prepared for:	
Lockheed Martin Corporation	
Prepared by:	
Tetra Tech, Inc.	
Michael Mark	
Michael Martin, P.G. Project Manager	
Eric M. Samuela	

Eric Samuels Task Manager

TABLE OF CONTENTS

			Page
1	INTF	RODUCTION	1-1
2	INVE	ESTIGATION APPROACH AND METHODOLOGY	2-1
	2.1	Phase II Sampling Methodology	2-3
	2.2	Laboratory Analysis	2-4
3	INVE	ESTIGATION RESULTS	3-1
	3.1	Data Interpretation	3-1
	3.2	Surface Water	
	3.3	Sediment	
	3.4	Comparison of Surface Water and Sediment Results	3-5
	3.5	Conclusions	
4	REF	ERENCES	4-1

APPENDIX

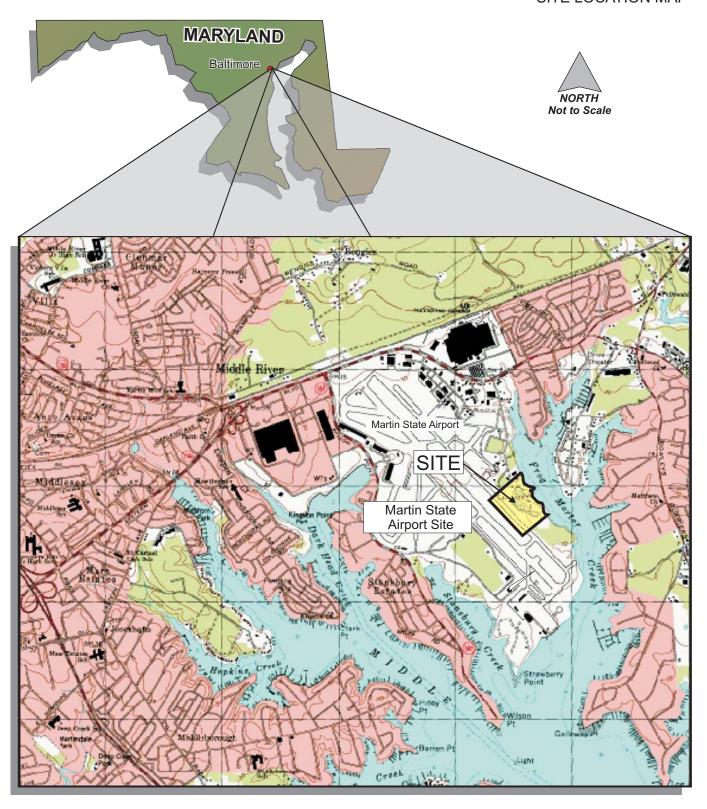
APPENDIX A – FIELD DOCUMENTATION AND CHAIN OF CUSTODY APPENDIX B – DATA VALIDATION REPORT

LIST OF FIGURES

		Page
Figure 1-1	Site Location Map	1-3
Figure 2-1	Phase II Investigation Sample Location Map	2-2
	LIST OF TABLES	
		Page
Table 2-1	Tidal Range during Sampling	2-5
Table 2-2	Water Quality Measurements	
Table 3-1	Descriptive Data for Surface Water	3-7
Table 3-2	Descriptive Data for Sediment	

Section 1 Introduction

On behalf of Lockheed Martin Corporation (Lockheed Martin), Tetra Tech, Inc. has prepared this report following completion of the Phase II Surface Water and Shallow Sediment Investigation of the potential for offsite migration of contaminants from a portion of the Martin State Airport (MSA) property to the adjacent surface water body, Frog Mortar Creek. This report presents the results from Phase II, a surface water and sediment sampling investigation that was conducted in Frog Mortar Creek in October 2007. This investigation is the second part of a three-phase investigation that includes the following phases: Phase I - the identification of groundwater seepage locations into surface water by the use of a Trident probe (Tetra Tech, 2007a); Phase II - surface water and shallow sediment sampling; and Phase III - the sampling of deeper sediments.

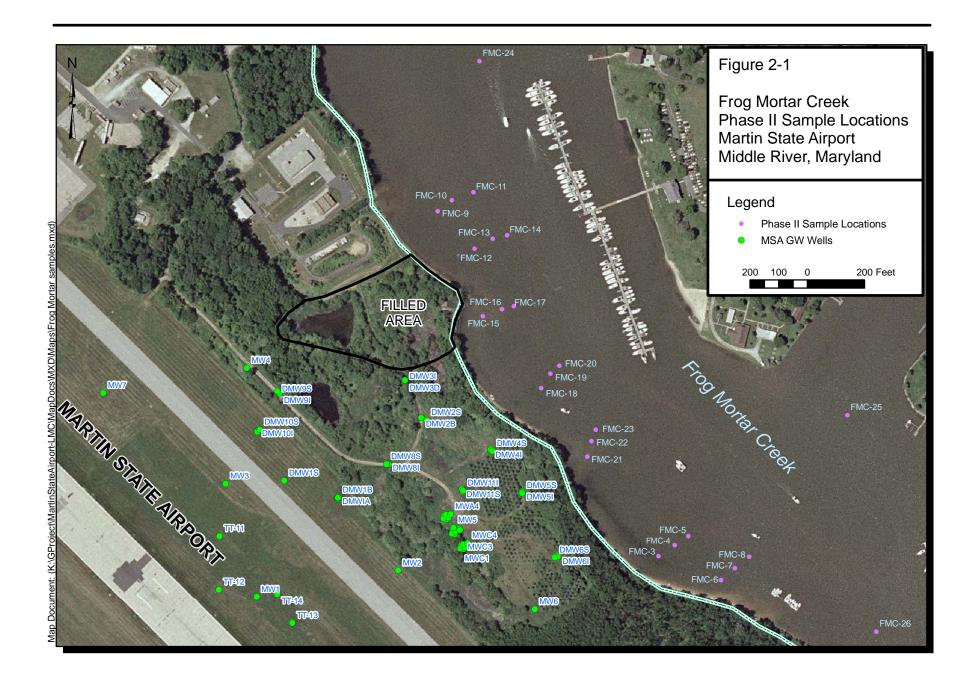

The three-phase investigation is being conducted in Frog Mortar Creek, located west of the MSA property located in Middle River, Maryland in the portion of the creek which is adjacent to the approximately 50 acre area which has been subject to extensive characterization due to historical dumping activities (Figure 1-1). The objective of the completed Phase I investigation was to identify potential groundwater discharge zones by identifying temperature and conductivity differences between the surface water and groundwater utilizing the Trident probe and to collect porewater samples from these selected areas. The objective of the Phase II surface water and sediment program is to characterize areas of groundwater seepage into the surface water body and to obtain analytical data to quantify the presence or absence of contaminants in Frog Mortar Creek which may be related to groundwater transport or erosion of soil from the MSA site.

This report is organized as follows:

- Section 1 Introduction: Presents the content and objective of the report
- <u>Section 2 Investigation Approach and Methodology</u>: Presents the technical approach to the investigation and a description of the field methodologies used for completion of Phase II;

- <u>Section 3 Sample Results</u>: Presents and discusses the findings of the Phase II Investigation; and
- <u>Section 4 References</u>: Lists the References used in the preparation of this report.

FIGURE 1-1 SITE LOCATION MAP



Investigation Approach and Methodology

Surface water and shallow sediment sampling were conducted at Frog Mortar Creek based on the results of the Phase I Investigation (Tetra Tech, 2007b) and an evaluation of historic tidal conditions and erosion characteristics of the MSA site. Multiple lines of evidence were used to identify appropriate sample locations for Phase II that would assist in characterizing potential transport of contaminants into Frog Mortar Creek from discharge of groundwater and/or erosion of surface soils. Sample locations were selected to capture both coarser grained sediments close to shore as well as finer grained sediments from the central portion of the creek bed. Figure 2-1 illustrates the Phase II sample locations.

The results of the Phase I Trident Study identified the presence of groundwater discharge at the south-end of the groundwater plume. To evaluate potential contributions from this groundwater plume, six shallow sediment samples (FMC-3 through FMC-8) were collected in this area to determine if VOCs were detectable in the creek sediments. Collocated surface water samples were collected at alternating locations to determine surface water concentrations above the sediment interface.

Significant filling has occurred over a portion of the MSA site, predominantly at the north end of the known VOC plume area. This area was once open water connected to Frog Mortar Creek but was filled sometime in the late 1950's or 1960's. The nature of the fill has not been determined in detail but this area is affected by elevated concentrations of chlorinated solvents in groundwater. Phase II sampling included three transects (FMC-9 through FMC-17) of sample locations in this area to evaluate whether direct filling or surface runoff has impacted this portion of the creek. Shallow sediments were collected at each location and collocated surface water samples were

collected at every other location. The central portion of the VOC-impacted area does not appear to have been filled significantly in the past although some materials such as large concrete blocks are present in the steeper parts of the slope leading to Frog Mortar Creek. Two transects were sampled in this area (FMC-18 through FMC-23) with sediment samples collected at each location and surface water samples collected at alternating locations.

Three additional surface water and sediment sample locations were collected upstream, downstream and across Frog Mortar Creek from MSA to provide background data. This data (FMC-24 through FMC-26) will be used as a basis of comparison to compound concentrations which may be reported in samples closer to the area of concern.

2.1 PHASE II SAMPLING METHODOLOGY

Sampling began on October 30, 2007 and was completed on November 1, 2007. Sampling was performed during periods of both rising and falling tides (Table 2-1). All sampling locations were accessed by the use of a small boat. At each transect, the boat was anchored from the bow and stern allowing movement from one sampling location to another on each transect through the tightening and releasing of the appropriate line. The boat was allowed to stabilize prior to the performance of sampling and the collection of field data. Once stable, a handheld Global Positioning System (GPS) was used to determine the position of each sample location and the information recorded into the project field log (Table 2-2).

Following collection of the GPS data, water quality measurements were taken at each transect using a Horiba U-10 Water Quality Checker. Water quality measurements recorded included pH, conductivity, and dissolved oxygen (Table 2-2). Surface water samples were collected from approximately every second sampling location. Water was collected through inert Tygon® tubing using a peristaltic pump from the sediment-surface water interface approximately one-foot above the top of the sediment. The Tygon® Tubing was replaced prior to collection of each sample. A 0.45 micron inline filter was used to collect filtered surface water samples from each surface water sample location. All surface water samples were collected using dedicated and disposable sampling equipment.

Sediment samples were collected as grab samples using a decontaminated stainless steel ponar dredge. The ponar dredge was utilized to collect shallow sediment samples from the top 6 inches of sediment. Upon sample retrieval, the initial sample volume was placed within the VOC sample container until no headspace remained. The remaining sample volume was then homogenized and placed within the other pre-cleaned sample containers supplied by the analytical laboratory. During sampling, the collected sediment samples were lithologically and visually characterized for color, sorting, grain size, and other pertinent characteristics (Table 2-2).

The stainless steel ponar dredge was decontaminated between sample locations according to the following procedure:

- Loose sediment was brushed off with a bristle brush.
- Equipment was then washed in a non-phosphate detergent solution using plastic scrub brushes.
- The equipment was then rinsed with distilled water and allowed to air dry.

2.2 LABORATORY ANALYSES

All sediment and surface water samples collected during Phase II were analyzed for VOCs using EPA Method 8260B, SVOCs using EPA Method 8270C, total priority pollutant metals using EPA Method 6020, and PCBs using EPA Method 8082. For surface water, dissolved priority pollutant metals were analyzed using EPA Method 6020B, and total and dissolved mercury were analyzed using EPA Method 7470A. In sediment, mercury was analyzed using EPA Method 7471A.

Half of the sediment samples collected during Phase II were analyzed for perchlorate using EPA Method 314, organotin using EPA Method OR560 and hexavalent chromium using EPA Method 7196A. Sediment samples were also analyzed for percent moisture. Trip Blanks and temperature blanks were submitted for QA/QC purposes. Analysis was conducted on a standard fifteen day turnaround time.

TABLE 2-1

TIDAL RANGE DURING SAMPLING FROG MORTAR CREEK PHASE II, SURFACE WATER AND SHALLOW SEDIMENT INVESTIGATION MARTIN STATE AIRPORT LOCKHEED MARTIN, MIDDLE RIVER, MARYLAND

For Tuesday	, October 30, 2007	NEXT DAY
	NOTE: NOT FOR NAVIGATION	
TIME	TIDE HEIGHT	TIDE
6:27 AM EDT	0.46 feet	Low Tide
11:04 AM EDT	1.14 feet	High Tide
4:50 PM EDT	0.08 feet	Low Tide
For Wodnosday	October 31, 2007	NEXT DAY
For Wednesday,	NOTE: NOT FOR NAVIGATION	
TIME	TIDE HEIGHT	TIDE
12:03 AM EDT	2.04 feet	High Tide
7:26 AM EDT	0.49 feet	Low Tide
12:05 PM EDT	1.13 feet	High Tide
5:55 PM EDT	0.17 feet	Low Tide
For Thursday N	ovember 4, 2007	NEXT DAY
For Thursday, N	ovember 1, 2007 NOTE: NOT FOR NAVIGATION	
TIME	TIDE HEIGHT	TIDE
1:05 AM EDT	1.89 feet	High Tide
8:24 AM EDT	0.50 feet	Low Tide
6:24 AM EDT 1:09 PM EDT	1.15 feet	
		High Tide
7:09 PM EDT	0.26 feet	Low Tide

TABLE 2-2

WATER QUALITY MEASURMENTS FROG MORTAR CREEK PHASE II, SURFACE WATER AND SHALLOW SEDIMENT INVESTIGATION MARTIN STATE AIRPORT LOCKHEED MARTIN, MIDDLE RIVER, MARYLAND

Sample		Latitude	Longitude		Cond.	DO	
Location	Date	(Deg N)	(Deg W)	рН	(mS/cm)	(mg/L)	Sediment Type
FMC-3		39°1926.450	76°2415.524	7.14	15	10.27	Brown sand F/M grain wet
FMC-4		39°1926.616	76°2415.490				Brown sand F/M grain shells wet
FMC-5		39°1926.971	76°2415.528	7.22	14.9	9.89	Brown sand F/M grain shells wet
FMC-6		39°1926.396	76°2415.108				Brown sand F/M grain shells wet
FMC-7		39°1926.890	76°2415.069	7.19	14.9	9.93	Brown sand F/M grain shells wet
FMC-8		39°1926.908	76°2414.597				Brown sand F/M grain shells wet
FMC-9		39°1938.918	76°2428.225	6.65	15.1	12.73	Olive-brown to black silt trace root matter/organics wet
FMC-10		39°1939.299	76°2427.592	6.41	15	12.79	Olive-brown to black silt trace root matter/organics wet
FMC-11		39°1939.578	76°2426.625	6.23	15.3	12.86	Olive-brown to black silt trace root matter/organics wet
FMC-12		39°1937.611	76°2426.608	6.73	15.2	11.63	Olive-brown to black silt trace root matter/organics wet
FMC-13		39°1937.961	76°2425.790	6.77	15.2	11.86	Olive-brown to black silt trace root matter/organics wet
FMC-14		39°1938.076	76°2425.153				Olive-brown to black silt trace root matter/organics wet
FMC-15		39°1935.412	76°2425.590				Olive-brown to black sand F/M grain poorly sorted trace root matter wet
FMC-16		39°1935.520	76°2425.408	5.72	14.6	10.10	Olive-brown to black sand F/M grain poorly sorted trace root matter wet
FMC-17		39°1935.627	76°2424.876				Transitional environment sand but increased silt content
FMC-18		39°1932.796	76°2423.680	6.17	14.8	10.01	Olive-brown to black silt trace root matter/organics wet
FMC-19		39°1933.287	76°2423.279				Olive-brown to black silt trace root matter/organics wet
FMC-20		39°1933.563	76°2422.872	6.48	14.7	11.31	Olive-brown to black silt trace root matter/organics wet
FMC-21		39°1930.413	76°2421.654				Olive-brown to black sand F/M grain poorly sorted trace root matter wet
FMC-22		39°1930.947	76°2421.468	6.84	14.7	11.40	Olive-brown sand F/M grain poorly sorted trace root matter wet
FMC-23		39°1931.335	76°2421.270				Brown sand F/M grain wet
FMC-24		39°1944.108	76°2426.323	6	15	13.56	Olive-brown to black silt trace root matter/organics wet
FMC-25		39°1931.783	76°2410.103	7.18	15.3	9.80	Brown sand F/M grain shells wet
FMC-26		39°1924.306	76°2408.876	6.99	15.4	9.51	Brown sand F/M grain shells wet

Section 3 Investigation Results

3.1 DATA INTERPRETATION

The initial evaluations of the analytical data from surface water and sediment samples focused on potential spatial relationships between the location of the contaminated groundwater plume at MSA and sample locations in Frog Mortar Creek. The results were also examined for similarities or differences between samples collected at site locations (i.e. adjacent to MSA) and those collected from background locations (i.e. collected upstream, downstream and across Frog Mortar Creek from MSA). Surface water and co-located sediment sample results were compared for similarities in chemicals detected to assist in developing an understanding of potential source, transport, and migration of contaminants.

3.2 SURFACE WATER

Volatile organic compounds (VOCs) were detected frequently in surface water samples (Table 3-1). Concentrations of acetone and chloromethane detected near-site were comparable to the concentrations in background samples. Concentrations of cis-1,2-dichloroethene, trichloroethene, and vinyl chloride were higher in the near-site surface water samples than they were in the background samples. The highest concentrations of VOCs were detected in sample FMC-16 which is located adjacent to the fill area. Semivolatile organic compounds (SVOCs) were detected infrequently in surface water samples with the exception of phenanthrene. Detected concentrations of phenanthrene were higher in the near-site samples than they were in the background samples. PCBs were not detected in the near-site surface samples but Aroclor-1254 was detected in one background surface water sample. Concentrations of metals were comparable in the near-site and background surface water samples with the exception of lead. Lead was detected in the near-site unfiltered samples but was not detected in the near-site filtered sample or

any of the background samples. In general concentrations of metals in the unfiltered samples were comparable to those in the filtered samples.

The following chemical-specific observations were made for the surface water results:

VOCs

- The highest concentrations of VOCs were detected in sample FMC-16 which is located adjacent to the fill area. The maximum detected concentrations of cis-1,2-dichlorothene, trichloroethene, and vinyl chloride were all found at this location.
- Cis-1,2-dichlorothene was detected in all near-site surface water samples with the exception of FMC-20. The highest concentrations of cis-1,2-dichlorothene were detected at sample locations FMC-12, FMC-13, and FMC-16. Cis-1,2-dichlorothene was not detected in any background samples.
- Trichloroethene was detected in all near-site surface water samples and one background sample (FMC-24). The highest concentrations of trichloroethene were detected at sample locations FMC-12, FMC-13, and FMC-16.
- Vinyl chloride was detected in five surface water samples adjacent to the fill area. The highest concentrations of vinyl chloride were detected at sample locations FMC-12, FMC-13, and FMC-16. Vinyl chloride was not detected in any background samples.
- Acetone and chloromethane were detected in eight surface water samples.
- Acetone was detected in all three background samples.
- Chloromethane (FMC-26) and trichloroethene (FMC-24) were each detected once in an background surface water sample.
- Overall concentrations of acetone and chloromethane were similar in the near-site and background samples. Concentrations of trichloroethene in near-site samples were higher than those detected in the background samples.

SVOCs

- Bis(2-ethylhexyl)phthalate, butyl benzyl phthalate, dibenzofuran, and 13 PAHs were detected in the near-site surface water samples. Bis(2-ethylhexyl)phthalate, butyl benzyl phthalate, diethyl phthalate, and phenanthrene were detected in the background surface water samples.
- Concentrations of bis(2-ethylhexyl)phthalate and butyl benzyl phthalate in near-site surface water samples were less than those detected in the background samples.
- Eight PAHs were detected in only one surface water sample (FMC-22).

- Phenanthrene was the most frequently detected SVOC in surface water samples.
- Concentrations of phenanthrene in near-site samples were higher than those detected in background samples.

<u>PCBs</u>

- PCBs were not detected in the near-site surface water samples.
- Aroclor-1254 was detected in one background surface water sample (FMC-26).

Metals

- Seven metals were detected in the near-site unfiltered surface water samples and six metals were detected in the near-site filtered surface water samples.
- Six metals were detected in the background unfiltered and filtered surface water samples.
- Lead was detected in 10 near-site unfiltered surface water samples but was not detected in the filtered near-site samples or unfiltered and filtered background samples.
- Arsenic, chromium, copper, nickel, selenium, and zinc were detected in all the unfiltered and filtered near-site and background surface water samples.
- Overall concentrations of metals in the unfiltered samples were comparable to those in the filtered samples.
- Concentrations of metals in near-site samples were comparable to those detected in the background samples.

3.3 SEDIMENT

Sediment concentrations were similar between background locations and site locations (Table-3-2). Most metals were detected at higher concentrations in the background samples than in the samples collected at the MSA site. Hexavalent chromium was not detected in either background or site samples. Aroclor-1254 and -1260 were rather ubiquitous with the samples collected at the site being within the range of background concentrations. Aroclor-1221, -1232, and -1248 were detected in one sample each at the site and not in background samples. SVOCs detected at the site were found in concentrations similar to the background ranges. SVOCs concentrations that exceeded the corresponding background concentrations were less than one order of magnitude higher. The highest site-related SVOC concentrations were found adjacent to

the former filled area in a rectangular area described by samples FMC-9, FMC-11, FMC-15, and FMC-17.

Volatile organic compounds (VOCs) were detected at low concentrations. Cis-1,2-dichloroethene was detected in two site samples but not in the background samples. The samples containing cis-1,2-dichloroethene were collected at locations FMC-15 and FMC-16 which are within the approximate lateral boundary of VOC-contaminated groundwater.

The following chemical-specific observations were made for the sediment results:

VOCs

- Cis-1,2-dichlorothene was detected in two samples (FMC-15 and FMC-16) adjacent to the filled area. No other VOCs were detected in the samples containing cis-1,2-dichlorothene. FMC-15 and FMC-16 are located within the approximate lateral boundary of the VOC impacted groundwater plume.
- Acetone (FMC-10) and methylene chloride (FMC-9 and FMC-12) were detected in samples adjacent to the filled area. Acetone and methylene chloride were also detected in samples FMC-7 and FMC-8 and two of the three background samples (FMC-25 and FMC-26).
- The highest concentrations of methylene chloride and cis-1,2-dichlorothene were detected in the samples collected adjacent to the filled area.

SVOCs

- Twenty-eight SVOCs were detected in the site samples and 25 SVOCs were detected in the background samples.
- Overall the concentrations of SVOCs in near-site samples were higher than those in the background samples although by less than an order of magnitude.
- SVOC concentrations were highest in the samples collected near the filled area.

PCBs

- Arcolor-1254 and -1260 were detected in 17 of 21 samples and in all three background samples at comparable concentrations.
- Aroclor-1221 (FMC-12), -1232 (FMC-13), and -1248 (FMC-13) were detected once each in near-site samples. These PCBs were not detected at background locations.

Metals

- Eleven metals were detected in the near-site and background samples.
- Overall the concentrations of metals in background samples were higher than the concentrations in near-site samples.

Hexavalent Chromium

 Hexavalent chromium was not detected in samples collected adjacent to the filled area or in the background samples.

3.4 COMPARISON OF SURFACE WATER AND SEDIMENT RESULTS

A comparison of surface and sediment results was performed to identify any apparent trends between contaminants found in both media. The following observations were made:

VOCs

- VOCs were detected more frequently in surface water than they were in sediment.
- Five VOCs were detected in surface water and three VOCs were detected in sediment.
- Acetone and cis-1,2-dichloroethene were the only VOCs detected in both surface water and sediment.
- There does not appear to be a correlation between the VOCs detected in surface water and those detected in co-located sediment samples.

SVOCs

- SVOCs were detected more frequently in sediment than they were in surface water.
- Twenty-eight SVOCs were detected in sediment while only 16 SVOCs were detected in surface water.
- All the SVOCs detected in surface water were also detected in sediment.
- There does not appear to be a correlation between the SVOCs detected in surface water
 and those detected in sediment. Concentrations of SVOCs in sediment were highest in
 samples collected near the filled area while the concentrations of SVOCs in surface water
 were highest in the sample from location FMC-22 which is downstream (south) of this
 area.

PCBs

PCBs were detected in sediment samples but were not detected in surface water samples.

Metals

- Metals were detected frequently in both surface water and sediment samples.
- Eleven metals were detected in sediment samples and seven metals were detected in surface water samples.
- There does not appear to be a correlation between metals detected in surface water samples and those detected in sediment samples.

3.5 CONCLUSIONS

Tetra Tech has completed an investigation of surface water and shallow sediment in Frog Mortar Creek at locations adjacent to and north and south of the MSA site. The results of the investigation indicate that while there may not be a correspondence in results between co-located surface water and sediment samples, groundwater discharge appears to be impacting surface water and sediment in the area of samples FMC-9 through FMC-17. These locations are within the lateral boundaries of the contaminated groundwater plume and the known fill area. Lines of evidence that support this conclusion include:

- The highest concentrations of chlorinated VOCs were found in this area.
- Degradation products of chlorinated VOCs including cis-1,2-dichlorothene and vinyl chloride were only found in near-site samples.
- Chlorinated VOCs were detected in near-site samples more frequently and at higher concentrations than in background samples.

It is recommended that the Phase III investigation focus on the areas where the highest concentrations of chlorinated VOCs were detected (i.e. in the area of samples FMC-9 through FMC-17) to further evaluate potential contaminant contributions of groundwater discharging into Frog Mortar Creek.

TABLE 3-1

DESCRIPTIVE DATA FOR SURFACE WATER FROG MORTAR CREEK PHASE II, SURFACE WATER AND SHALLOW SEDIMENT INVESTIGATION MARTIN STATE AIRPORT

LOCKHEED MARTIN, MIDDLE RIVER, MARYLAND

Parameter	Frequency of Detection	Minimum Detected Concentration	Maximum Detected Concentration	Sample of Maximum Detected	Mean of All Samples	Mean of Positive Detects	Range of Background
Volatile Organic Compounds (ug/L)				•	•		•
Acetone	8/12	2.5 J	5.4	FMC 3	3.08	3.38	2.7 J - 3.8 J
Chloromethane	8/12	0.14 J	0.26 J	FMC 3	0.280	0.170	0.14 J
cis-1,2-Dichloroethene	11/12	0.18 J	1.1	FMC 16	0.368	0.356	ND
Trichloroethene	12/12	0.32 J	3.1	FMC 16	0.889	0.889	0.27 J
Vinyl Chloride	5/12	0.13 J	0.73 J	FMC 16	0.430	0.332	ND
Semivolatile Organic Compounds (ug/I	<u>.)</u>						
Benzo(a)anthracene	1/12	0.095 J	0.095 J	FMC 22DL	0.103	0.095	ND
Benzo(a)pyrene	1/12	0.15 J	0.15 J	FMC 22DL	0.108	0.150	ND
Benzo(b)fluoranthene	1/12	0.11 J	0.11 J	FMC 22DL	0.104	0.110	ND
Benzo(g,h,i)perylene	1/12	0.26	0.26	FMC 22DL	0.117	0.260	ND
Benzo(k)fluoranthene	1/12	0.2	0.2	FMC 22DL	0.112	0.200	ND
Bis(2-ethylhexyl)phthalate	4/12	0.13 J	0.23 J	FMC 3DL	0.396	0.165	0.5 J
Butyl Benzyl Phthalate	2/12	0.17 J	0.2 J	FMC 9DL	0.458	0.185	0.15 J - 0.37 J
Carbazole	3/12	0.097 J	0.19 J	FMC 13DL	0.109	0.132	ND
Chrysene	1/12	0.16 J	0.16 J	FMC 22DL	0.108	0.160	ND
Dibenzo(a,h)anthracene	1/12	0.27	0.27	FMC 22DL	0.118	0.270	ND
Dibenzofuran	2/12	0.074 J	0.16 J	FMC 12DL	0.447	0.117	ND
Fluoranthene	2/12	0.077 J	0.08 J	FMC 13DL	0.098	0.079	ND
Fluorene	1/12	0.078 J	0.078 J	FMC 12DL	0.101	0.078	ND
Indeno(1,2,3-cd)pyrene	1/12	0.22	0.22	FMC 22DL	0.113	0.220	ND
Phenanthrene	8/12	0.069 J	0.48	FMC 12DL	0.188	0.231	0.078 J
Pyrene	1/12	0.064 J	0.064 J	FMC 13DL	0.099	0.064	ND
Metals (Unfiltered) (ug/L)							
Arsenic	12/12	2.1	3.7	FMC 5	3.22	3.22	2.2 - 3.5
Chromium	12/12	2.8 J	3.9 J	FMC 18	3.35	3.35	3.2 J - 3.6 J
Copper	12/12	4.9	7	FMC 18	6.01	6.01	4.5 - 5.8
Lead	10/12	1	1.7	FMC 12, FMC 9	1.17	1.31	ND
Nickel	12/12	2.3	2.7	FMC 12	2.45	2.45	2.2 - 2.3
Selenium	12/12	7.5	11.1	FMC 12	9.57	9.57	9.5 - 10.7
Zinc	12/12	9.1 J	15.8 J	FMC 11	12.1	12.1	5.3 J - 10.5 J
Metals (Filtered) (ug/L)							
Arsenic	12/12	1.8	4.4	FMC 16	3.21	3.21	3 - 3.8
Chromium	12/12	2.6 J	3.4 J	FMC 10, FMC 20	3.08	3.08	2.2 J - 3 J
Copper	12/12	2.9	4.1	FMC 5	3.38	3.38	3 - 4.6
Nickel	12/12	1.9	2.4	FMC 10	2.13	2.13	1.8 - 2.1
Selenium	12/12	9.1	14.3	FMC 16	11.6	11.6	9.2 - 11.5
Zinc	12/12	5.5	8.2	FMC 7	7.16	7.16	10.4

FMC - Frog Mortar Creek

ND - Not detected.

Shaded and bolded cells indicate mean of positive detections greater than background

TABLE 3-2

DESCRIPTIVE DATA FOR SEDIMENT FROG MORTAR CREEK PHASE II, SURFACE WATER AND SHALLOW SEDIMENT INVESTIGATION MARTIN STATE AIRPORT LOCKHEED MARTIN, MIDDLE RIVER, MARYLAND

PAGE 1 OF 2

	Frequency	Minimum	Maximum Datastad	Compute of Mayimayan	Maan of All	Maan of Docitive	Donne of
Parameter	of	Detected	Maximum Detected	Sample of Maximum	Mean of All	Mean of Positive	Range of
	Detection	Concentration	Concentration	Detected	Samples	Detects	Background
Volatile Organic Compounds (ug/k	g)						
Acetone	3/21	24 J	25 J	FMC-7	24.5	24.3	29 - 40
cis-1,2-Dichloroethene	2/21	4.3 J	5.8 J	FMC-15	6.82	5.05	ND
Methylene Chloride	4/21	4.6 J	31	FMC-12	7.54	13.4	9.1 - 13
Semivolatile Organic Compounds (ug/kg)						
2-Methylnaphthalene	18/21	1.8 J	85 J	FMC-9DL	42.1	48.6	75 - 86
4-Methylphenol	10/21	9.9 J	59 J	FMC-5DL	85.6	41.0	44 - 59
Acenaphthene	5/21	1.7 J	33 J	FMC-9DL	31.8	21.5	22 - 30
Acenaphthylene	21/21	2.3 J	200	FMC-9DL	83.2	83.2	110 - 160
Acetophenone	2/21	1.9 J	2.3 J	FMC-15DL	174	2.10	ND
Anthracene	20/21	2.4 J	210	FMC-9DL	93.6	95.5	110 - 170
Benzaldehyde	20/21	25 J	530 J	FMC-5DL	262	274	37 - 330
Benzo(a)anthracene	21/21	3.6 J	400	FMC-14DL, FMC-9DL	189	189	230 - 330
Benzo(a)pyrene	21/21	4.9 J	510	FMC-9DL	239	239	260 - 400
Benzo(b)fluoranthene	21/21	6.4 J	820	FMC-13DL	363	363	370 - 590
Benzo(g,h,i)Perylene	21/21	5.6 J	520	FMC-14DL, FMC-9DL	260	260	300 - 490
Benzo(k)fluoranthene	5/21	4.1 J	170	FMC-11DL	55.3	119	130 - 240
Bis(2-Ethylhexyl) Phthalate	21/21	16 J	320 J	FMC-9DL	159	159	110 - 220
Butyl Benzyl Phthalate	18/21	15 J	210 J	FMC-5DL, FMC-9DL	122	113	130 - 130
Caprolactam	13/21	23 J	270 J	FMC-9DL	162	123	210 - 210
Carbazole	7/21	15 J	35 J	FMC-14DL, FMC-9DL	26.4	28.6	29 - 29
Chrysene	21/21	4.9 J	460	FMC-9DL	212	212	270 - 430
Dibenz(a,h)anthracene	16/21	3.8 J	120 J	FMC-9DL	50.4	61.5	60 - 89
Dibenzofuran	6/21	26 J	35 J	FMC-14DL, FMC-9DL	114	30.5	30 - 41
Diethyl Phthalate	4/21	4.4 J	6.4 J	FMC-15DL	173	5.03	43 - 43
di-n-Butyl Phthalate	4/21	5.7 J	6.5 J	FMC-16DL	173	6.10	ND
di-n-Octyl Phthalate	1/21	59 J	59 J	FMC-23DL	<mark>176</mark>	59.0	ND
Fluoranthene	21/21	7.2	740	FMC-9DL	347	347	450 - 600
Fluorene	19/21	2 J	86 J	FMC-9DL	38.1	41.8	60 - 74
Indeno(1,2,3-cd)pyrene	21/21	4.4 J	430	FMC-9DL	213	213	280 - 470
Naphthalene	20/21	1.5 J	93 J	FMC-9DL	47.3	49.5	84 - 95
Phenanthrene	21/21	4.3 J	260	FMC-14DL	131	131	210 - 260
Pyrene	21/21	7.8	820	FMC-14DL	389	389	590 - 840

TABLE 3-2

DESCRIPTIVE DATA FOR SEDIMENT FROG MORTAR CREEK PHASE II, SURFACE WATER AND SHALLOW SEDIMENT INVESTIGATION MARTIN STATE AIRPORT LOCKHEED MARTIN, MIDDLE RIVER, MARYLAND PAGE 2 OF 2

Parameter	Frequency of Detection	Minimum Detected Concentration	Maximum Detected Concentration	Sample of Maximum Detected	Mean of All Samples	Mean of Positive Detects	Range of Background
PCB (ug/kg)							
Aroclor-1221	1/21	25	25	FMC-21DL	12.7	25.0	ND
Aroclor-1232	1/21	62	62	FMC-13DL	14.2	62.0	ND
Aroclor-1248	1/21	100	100	FMC-13DL	16.0	100	ND
Aroclor-1254	17/21	2.6 J	160	FMC-11DL	66.4	80.1	90 - 180
Aroclor-1260	17/21	2.7 J	89	FMC-11DL, FMC-14DL	37.8	44.8	43 - 93
Metals (mg/kg)							
Arsenic	21/21	0.4	15.8 J	FMC-8	7.0	7.0	9.4 - 12.8
Beryllium	18/21	0.15	2.4	FMC-8	1.2	1.4	1.8 - 2.2
Cadmium	18/21	0.2	7.8	FMC-19	2.6	3.0	3.1 - 4.6
Chromium	21/21	4.1 J	148 J	FMC-19	69.5	69.5	96 - 118
Copper	21/21	6.6	242	FMC-7	130.5	130.5	193 - 271
Lead	21/21	3	123	FMC-8	63.4	63.4	92.7 - 114
Mercury	16/21	0.046	0.45	FMC-11DL	0.2	0.3	0.38 - 0.65
Nickel	21/21	1.3	52.3 J	FMC-8	23.9	23.9	38 - 44
Selenium	14/21	0.99 J	3.4 J	FMC-8	1.7	2.5	2.7 - 3.2
Silver	13/21	0.37	0.85	FMC-8	0.4	0.7	0.62 - 0.72
Zinc	21/21	9.3 J	344 J	FMC-8	188.1	188.1	286 - 359

FMC - Frog Mortar Creek

ND - Not detected.

Shaded and bolded cells indicate mean of positive detections greater than background

Section 4 References

- 1. Tetra Tech, 2007a. Frog Mortar Creek Study Work Plan, Martin State Airport. February.
- 2. Tetra Tech, 2007b. Phase I Frog Mortar Creek Study Report, Martin State Airport. June.

APPENDIX A – FIELD DOCUMENTATION AND CHAIN OF CUSTODY	

CHIEF DON PROCTOR 6375 (A-10)
410918
6376 (C-130)

FMC 39	-24	1	l		1	i I	- 1
39			!				-
	1010	44	/A 8	11			
1	0 7/1	3/	70.0		,		
1 1	°24	1	1	!	1	<u> </u>	
pH	7	Con	10	Ten	6	1	0
		1	1 1		1		1
601	1.4	1				احد ا	, – , \$
EMO	-11	,					
FMC 3	~ 6 11				J /	7	_
_ 5	7]/	7.7	7	210	//	_	
	2	4 20	2.6		$\supset \nu$	\mathcal{U}	
.94		- /-		1-7.		<u>,</u>	DI
1901			10	20			, ,
6.23	/7	1 /	5.3	+,	10	/.	3
							2
ارورسا	-				+		
FMC	-/0)					
	-10 9°19 6°2	39	12	99.	ν		
7	602	42	7.5	92 0	1		
14	7		and d	' -	ه سرو ه	4	L
,,	لد مار			2		_	
1 H 6.41	16.5	, /	7.4		10		15
FMC	- 9		-			-	
				7	- /		A.
PH	ام ام		n a	/ 6		j	
6.65	16.6	15		-/	o	1	12.
3	901	739	8.9	18	\mathcal{M}^{\dagger}		
	2° a	i i	E 7	, .	1 1		

			:		:			
Fine	-06	-	39 4	19 2	6.396 N	Fne-	26	39 15 8
			760	24 15	5.108W			76° 24
	Becer	Sand	FL	m Sh	ell			
	Het.	i (1	· ·		PH	Const	Juns
· · · · · · · · · · · · · · · · · · ·					3.0	6.89	25.4	- 10
7		. !		3				
1rc	-07			12 2		Bran	Sard F	m snain
	÷ .				8.069W	bed	-	
105	<u> </u>	Cond	7 un	6	Do			
7.18	1.8 2.1	14.9	- 10	-	019			
60 ° 0	:	177. (Į.	-	253	Fore- 2	25	39 19
	<u> </u>			1484				76° 24
		Sand	F/m	5he	15			
	ve_			!		PH	cond	7un 9
							_	
FAC	08				26.908a	7.18	15.3	70
					14.5970			
- Bra	EN SAR	nd Fla	- Smark	1 5h	1	Brown	w Sand	F/M Sna
. 1						1/2	4	
We	~							
:					· · · · · · · · · · · · · · · · · · ·			
		1			p ia. s			
	5 <u></u>		-					

390 19 39°1933.563 N 24 76° 2422.872W Cand Tunb Cond Turb 00 10 150 2.14 6.48 16.0 14.7 -10 11.31 Sanc FMC - 22 39" 19 30.947N 76° 24 21. 468W 390 19 26. TMC-04 76 0 24 15 PH Cond Tunb 00 Since 11.40 5he1 6.84 14,7 red FMC - 23 18 18 71.325 N FMC - 05 24 21.276 W PH Cand TB4. Blown Savel F/m Vet 7.22 14.5 Brown Elm Shells 5200 Wef

6802064 PMC 9-14, 24, 18, 19 FMC-16 39°1935.520N frace root norther la 76° 24 25.408W IMC 15,16 1 H Temp Could Turb DO Wint prown SAND 5.72 14.1 14.6 405 10.10 FMC-17 37º1935.627 N Transitional por Sympre but inc 76° 24 24.876 W FMC-18 FMC - 21 39016 30.41 390/932.7962 76 - 24 21.63 76° 2423,680° FAC-21 pH T Cond Turb DO Olive Bacus Song 6.17 15.2 14.8 197 10.01 Panly Sonted Trace vet FMC-19 39019 33.287 N 76°2423.279W

3997937.611N 10 3901937.961 39919 38.0761 76° 2425,53W FMC-15 39°1935.412 N 76° 2425.59000

STL-4124 (0901) Client Address Telephone Number (Area Code)/Fax Number Page City State Site Contact Lab Contact Analysis (Attach list if more space is needed) Project Name and Location (State) Carrier/Waybill Number Special Instructions/ Conditions of Receipt Containers & 1 Matrix Preservatives Sample I.D. No. and Description NaOH Date Time Sed Ē (Containers for each sample may be combined on one line) 4-402 Jaks 10/3067 4-402 2010 Possible Hazard Identification Sample Disposal (A fee may be assessed if samples are retained Skin Irritant Poison B ☐ Unknown Return To Client Disposal By Lab Archive For Non-Hazard ☐ Flammable Months longer than 1 month) QC Requirements (Specify) Turn Around Time Required 7 Days 24 Hours 48 Hours 14 Days 21 Days Other_ 1. Relinquished By Date 1. Received By Date Time Time 2. Relinguished By Date 2. Received By Time Date Time 3. Relinguished By Date Time 3. Received By Time: Comments

STL-4124 (0901)																										
Client Tetra Tecl	1 WO5		Project		ager I	2	W			Ã								L)ate	2/5	70/	27	?	C	hain of Custody N	
Address 80251 Centu	na Blod Ste	9 <i>00</i>	Telephi \$/	one N	lumbe ()	r (A	rea Co	de)/	Fax N	lumbei	<u> </u>							L	ab N	umb	er				Page	of Ø
CITY	State Zip	Code 20874	Site Co	ntact	Mai	16	a P	L	ab Go	ontact	11	1		(0)			Ar mo	naly: re s	sis (i pace	Atta	ch lis need	t if ed)				
Project Name and Location (S		Willer	Carrier	Wayt	bill Nu	mbe	Ĵ							Š		S.	C								Ci-li	
Contract/Purchase Order/Quo					M:	atrix	r			Con Pres				EVICE A	2	MA	1011								Condition	nstructions/ s of Receipt
Sample I.D. No. (Containers for each sample n		Date	Time	Alf.	Aqueous	Sed	Soil		Umpres. H2SO4	HNO3	HCJ	NaOH	ZnAc/ NaOH		2	Porch	Oiga	Ŋ								
STORAGE!	FMC (1	10/3/107			S S	X								Z.											4-400	6 Hars
HAFT!	FMC (1	10/30/07		30.00		X									×											V.
FEWLIT	FILC (1	10/30/07				X.			66 (0) 66 (88							X										
FEATI	FMCIL			30	*	<							30.70				Χ									
The factor of the same of the	THEIR	i				<				1000				Х,											4-6-2	10105
FEAT2	FMC 12			9000 7000		<								3	2											V
15mg	'FMC 12				*	(X										
平分二	FUC 12				S												X									
1304-63	tmc is					K								X		1883									4-402	}ar c
FEHAN	FW1 13					X									X											1
I FEM 13	FUC 13				1	X.									·	X										
MEGNETS.	FAC 13	V		20.76	80 b	4							-85.100 -85.100				X			96						
Possible Hazard Identification Non-Hazard Flam		☐ Paisan B ☐] Unknown	360 3600	ample] Reti			nt		Dispo	sal E	By La	ıb	Archiv	e Fo	or			Mon	ths	(A fe long	e ma er tha	y be a in 1 mi	isses: onth)	sed if samples are i	retained
Turn Around Time Required									Q	C Req	uiren	nents	s (Spe													
24 Hours 48 Hours 1. Relinquished By	s 🔲 7 Days 🔲 14 Da	ays 🗌 21 Days	Date	ner	1	Tim	ie		1.	Recei	ved i	Ву					1								Date	Time
2. Relinquished By			Date			Tim	ie		2.	Recei	ved l	Зу													Date	Time
3. Relinquished By			Date			Tim	ie .		3.	Recei	ved l	3 <i>y</i>													Date	Time
Comments		200 (300 (300 (300 (300 (300 (300 (300 (1													ventió Section						andika Marka				

Client Tetra Tech WUS	Project Manager	e Mart			Date 10/30/07	Chain of Custody Number 322456
20251 Centry Blod Ste 200	Telephone Numb	ひみと こ	505)(L		Lab Number	Page of
City State Zip Code 20874	Site Contact	wige LE	ab Contact SHall	more	alysis (Attach list if e space is needed)	
Project Name and Location (State). Too Mother Mythin Stufe Hispart Creek	Carrier/Waybill N	lumbër		10 PCB	METER SC	Special Instructions/
Contract/Purchase Order/Quote No.	٨	Matrix	Containers & 1 Preservatives	Jole Lites	SES FOIL	Conditions of Receipt
Sample I.D. No. and Description (Containers for each sample may be combined on one line)	Time III	Sed Soll	HNO3 HCI NAOH ZAACI			·
WEENTH FUC 14 10/8/67		X		X		4-402 205
FORTH FMC 14				X		
CHECANTH FMC 19		1				
C FOR TH FILL 1-10						Water Control of the
WSFOR THE FUC 24	X				$\frac{1}{ x }$	
FRM 24 FM 24		7	And Americal Programs, September 1970, and Company of the Company		X	
FOR 24 FUC 24	a) and a		X		X	
FOAK 24 FMC 24					X	
W FCOR 04 FMC 24						
Possible Hazard Identification Non-Hazard Flammable Skin Irritant Poison B	Sampl Unknown	le Disposal eturn To Client	Disposal By Lab	(A fee may be ass Months longer than 1 mon	sessed if samples are retained hth)	
Turn Around Time Required 24 Hours	Other		OC Requirements (Specify			
1. Relinquished By	Date	Time	1. Received By	•		Date Time
2. Relinquished By	Date	Time	2. Received By			Date Time
3. Relinquished By	Date	Time	3. Received By			Date Time
Comments	1	· [

Tetra Tech WOS Project Manager Martin													310 (5)				D	ate 15	73.	los.	7	Cı	hain of Custody	Number
Address 20251 Centry Blud	St. 200	Telepho 3 (are production	lumbe	EC (Ar	ea Co	. 220 100 200 200	attinion and a second									La	b Num	ber			P	age	_ or _6
City/ State Town ND State Zip	Gode 20874	Site Goi	ntact	aaa	N/		La	ib Gor	itact (4)	1					ı			is (Atta ace is						
	whit creek	Carrieri												3	Ų	7.	T.						6	II
Contract/Purchase Order/Quote No.				М	atrix				Cont Pres	aine erva	ers & itive	} S			2								Conditio	Instructions/ Ins of Receipt
Sample I.D. No. and Description (Containers for each sample may be combined on one line)	Date	Time	ŧ	Aqueous	Sed	Soil	Chares.	H2SO4	HNO3	Ď	NaOH	ZnAc/ NaOH	Ţġ	Ę			Landon Landon Landon Landon							
FOR FMC 9	10/3/101			X			X						X											
FORT FUL 9							X							X										
EGM9 FMC 9																								
ECM9 FMC 9																								N _m .
FOMA FMC 9												Х.		3 (3)(3) 3 (3)(6)					Α.					
FERMINE FORC 10							×						幺											
FONTO FUC 10							<u> </u>	\$						X		10000	3857							W
FEWITTO FUC 10										X					X								0.000	
FEW TO FUC 10									Х				3/35			X								
JECHA TO FUCIO									X								X							
				Ш					1000			900	V S											
	 			4																				
Possible Hazard Identification Non-Hazard Flammable Skin Irritant	Poison B] Unknown	G (988)	imple 1 Reti			ent	Пγ	Disnas	sal E	lv La	ь Г	l Arct	nive f	or.			Months		ee ma ier tha			ed if samples an	e retained
Turn Around Time Required	QC Requirements (Specify)																							
24 Hours 48 Hours 7 Days 14 Da 1. Relinquished By	ays 🗌 21 Days	S Other														Date	Time							
2. Relinquished By		Date			Tim	9		2. F	Receiv	red l	Зу												Date	Time
3. Relinquished By		Date			Tim	e 3. Received By																		Time
Comments			XMAX.	4001144	(S. 11)			3074 A	170.350			(4)/44/65	W44 W44			0.000			alausiki	10.0000		i de la compansión de l		

Client Jetra Red V	1,65		A CO CONTRACTOR	Project Manager M. Ke. Wart in Lab Number Celephone Number (Area Code)/Fax Number Lab Number														Che	ain of Custody N	umber 8 C				
Address 20051 Ceulu	og Blu) Se	· 700	State Commission Section Secti	Z. W		r (Are	a Coo											lumbe				Pa	ige <u> </u>	of <u>0</u>
Cesmanter		Code 20874	Site Co	40	162	ű i	2	Lab	Contac H	ct 1 []			_			Analy more s	sis () pace	Attac e is n	h list eede 	if d) 	1	T		
Project Name and Location (it MD Fooge	Mentur CK	Carrier	r/Way	/bill Nu	mber	69. 69							Š	Ċ								Special	Instructions/
Contract/Purchase Order/Qu	ote No.				М	atrix			Pre	ontair eserv	ners rativ	6& 1- /es	_\ <u>\</u>		3								Condition	ns of Receipt
	n and Description may be combined on one line)	Date	Time	Air	Aqueous	peg	Š	Unpres.	H2SO4	<u> </u>	HO=N	ZnAc/ NaOH	C.		11	Ì								
行业不	Fuc 11	(0/30/07			X			1%					X											
ELACTI.	FMC 11						VA COS	X						X			Anna							
<u>ECM-TI</u>	EMC II									<u> </u>	•		8 0		×	V								
F£44	<u> </u>															/ ·						400.5		
The second secon	<u>two u </u>								2	<u>(</u>						<u> </u>								7
<u> </u>	TML 12		(19 (i) (i) (i) (i) (i)					X					ЦХ					611/01/ 611/01/ 11/01/						
FLATTIZ.	- 新公 / 今							X		V				X	X									
										/ / / / / / / / / / / / / / / / / / /						X								
	FULL 12								<u> </u>	7						N V						3233		
	IFIC 10									Name of the last o														
				90000										S SEASON	100000		10000							
Possible Hazard Identification		1			ample	000000																	d if samples are	retained
☐ Non-Hazard ☐ Flar Turn Around Time Required								Unknown											longe	r than	1 moi	nth)		
🔲 24 Hours 🔲 48 Hou	rs 🗌 7 Days 🔲 14 Da	ays 🗌 21 Days																						
1. Relinquished By	Contraction of the Contraction o		Date			Time			1. Red	ceived	I By											٦	Date	Time
2. Relinquished By			Date	Date					2. Red	ceived	Ву												Date	Time
3. Relinquished By		Date			Time			3. Red		OR OF											2000	Date	Time	

Client Totale h WOS		MikeMustin															ate	//2	, , 2	/2	در ال	-")	Сп	ain of Custody N	lumber O				
Address 20251 Century Blud	Se 200		2(er (A	rea C		5//	a.	4											lumt					Pi	age O	_ of _6	
Germanteun State Zin	60de 10874	Site Co	ntaci	1	et.	⁽⁶ 14	2	Lab C	onta	nct A	1							An mo	alys re si	is (Atta e is	ch li need	ist if ded)						
Project Name and Location (State)		Carrier	Way	bill N	umb	er 🖔											Ç		KAM								Special	Instructions/	
Contract/Purchase Order/Quote No.				N	1atri.	x			C Pr	onta ese	inei rvat	rs & ives	k L		7	3	202											ns of Receipt	
Sample I.D. No. and Description (Containers for each sample may be combined on one line)	Date	Time	Air	Aqueous	Sed.	Soll		Unpres,	H2SO4	HNO3	ξĒ	NaOH	ZnAc/ NaOH		75,		3		Ž								1980		
Fuc 13	10/30/17			X.				X							X						100.00		80.00						
FMC (3																X													
FMC B											X						X				35/43		3003	3000 3000					
Fac 13									5									父					1000					(* .	
FMC 13	J								S	(X.										
																							33.00						
																							20000						
				103							0.000 T		0.00											653					
						70000	(88)() (03)()														100000			127707	700-20 00				
Possible Hazard Identification		1	38 38	1880/JH		posa			1													(A	fee n	nay b	e as:	sesse	d if samples are	retained	
☐ Non-Hazard ☐ Flammable ☐ Skin Irritant Turn Around Time Required	Paison B] Unknown		J Re	lum	To CI	lient] Dis) L (Spec		\rchi\	re F	or _			Mor	ths	Ion	gert	han 1	mor	ntn)			
24 Hours 48 Hours 7 Days 14 Da	□ om	er	80//																										
1. Relinquished By	Date			Tin	ne			. Re	ceivi	ed B	у						1								l'	Date	Time		
2. Relinquished By		Date			Tin	ne		ź	. Re	ceivi	ed B	у															Date	Time	
3. Relinquished By	Relinquished By							3	3. Re	ceivi	ed B	у															Date	Time	
Comments																													

STL-4124 (0901)				199000000					aneana		MW.039.	2007.(8)		žestato.				\$2000C							N. College			Ministra
Fetra Tech Dus		Project Manager Mike Martin Telephone Number (Area Code)/Fax Number																Date (/)	/:	3/	le	S we	7		Cha	in of Custody N	imber O O	
20 251 Centura Blue	540 200	Telepho		lumbei S A	Area Cod	de)/Fa	X NL	ımbe	1								I	.ab I	Vum	ber					Pag	ge /	of <u></u>	2
City CORMAN TOWN State Zip	Code 20874	Site Co	AND SO	i bili s	D	2.0	S-Goi	ntact	/ 1	1						A mo	naly ore s	sis ((Att e is	ach ne	list ede	if ed)						
Project Name and Location (State)		Carrier/	Wayt	bill Nuc	nber			2 % 4					HALL		27	S .						Antonia 122				0		
Contract/Purchase Order/Quote No.		1		Ma	ıtrix			Con Pres	ntain serva			1001 1001 1001	9	537	FR. GM	7000							3			Special I Condition	nstructions is of Recei	IJ pt
Sample I.D. No. and Description (Containers for each sample may be combined on one line)	Date	Time	Air	Aqueous	Soil	Unpres	H2SO4	HNO3	Б	NaOH	ZnAc/ NaOH		Sua	13	100			88				10						
FMC 15	10/31/07)	X	X							X	K	4	Х												
FMC 16	10/31/07			2	X									Х	,													
FMC 16				\times	\times											X		X X	<>>	<	Х							
FMC 17	}										X	Y	X															
FMC 18									X	X	Z	×																
FMC 18		100 (4) (2)		X		×	V	X	X				1					X	1	4 >	Z :	X	X					
FMC 19				% S	4		77555 5857				day se		X	5/	×	×												
FMC 80				>	4	X	1/2007	0/63					×	×	X	×				77 100 100 100 100 100 100 100 100 100 100								
FMC 20			35 (A) 10 (A)	X		×	((2))	X	×	7000	35133							×	()	45	X.	X,	X					
File Q1			1500 (do 1500 (do 1500 (do 1500 (do		X	×							×	\ \	/X	X	1000					9098						
FMC 22					X	×		10000		VIII VIII			X	X	X	X		V///										
FMC 22	V		(8/49) (8/49)	X		X		X	X		80.00			3500				×	5	43	х,	X	X					
Possible Hazard Identification				70m/30	Disposal		<u>. </u>													(4	A fee	e ma	ay be	asse	essed	if samples are i	retained	
☐ Non-Hazard ☐ Flammable ☐ Skin Irritant Turn Around Time Required	☐ Skin Irritant ☐ Poison B ☐ Unknown ☐ Return To Client ☐ Disposal By La , QC Requirement											Archive For Months longer than 1 month)																
1. Relinquished By		Date	Date Time 1. Received By														1								D.	ate	Time	
2 Relinquished By		Date			Time		2. Received By																		ate	Time		
3. Relinquished By	<u> </u>	Date			Time		3. /	Rece	ived	Ву	111														D.	ate	Time	
Comments		u njim dajih andar	like stea	VV. 100 A 150 C	v0 1100 1800 00						Masa Wasy							1000		180//5					VIII VIII		villace reference of	

STL-4124 (0901)			900000	36V60V	(90%)				200000	(1000)	W. (W.)															9446901		350100000000000000000000000000000000000	
Tetra Tech Wus		Project	Project Manager														[ate (2/	3		9	7		Chai	in of Custody N	lumber		
Address 0251 Century Blu	Sto 200	Telepho 3 (one Nu) ((Are		e)/Fa. S /)					30 (d) 31 (d)						L	ab N	luml	per					Pag	je	_ of	Ž.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
City / Et Manitum (State Zip	Code 15874	Site Co	ntact	W	an.	2	Lab	Gont	tact								Ar mo	nalys re s	sis (a	Atta e is	nch ne	list ede	if d)						
Project Name and Location (State) Nai-in State Ace 701+ FlogMa	Mar Ciech	Access to an access of a												A Plai		À	,5				40.						Special	Instruction	na/
Contract/Purchase Order/Quote No.	Harpete Was No.			Mai	trix			(F	Con Pres	tain ervi	ers a	& " es	200	(8)		T.							all lun					ns of Rece	
Sample I.D. No. and Description (Containers for each sample may be combined on one line)	Date	Time	4//	Aqueous	3	ξ	Unpres	H2SO4	HN03	нсі	NaOH.	ZnAc/ NaOH		2000	1010	Š	300	2	Ë	Section 1								ı	
FM(23	19131/01				Z.		54						5	4	X	Х	X			(333)									
FMC 3	11 11				ζ.		X							X	X	X	SC.												
FM1 8"3	11 11	X								74								Y	X	×		> (43	Z					
EMC 4	10.17		Х							X	54	X	×																
FMC 5	4 11		XXX											1	Z	Ç.	2												
FMC 5	6 (1			X			X		×	Х									X	>	45	4 5	45	<					
FMC 6	(11			X	4		X						3	<u>,</u>	Z	X	X	VIII)											
FMC 7	11 11			§ \$4			Ų.							X	V	<u> </u>	X												
FMC 7	1 (1	6.75.75.85		X			4		X	X	2000								×	y	: 5	4 3	< 3	4					
IFMC8	$H_{ij}H_{ij}$			X			Ý.	(1885)						Q.	X	X	74										30 (30 (30 (6) 1 6)		
												0.0								13000									
Possible Hazard Identification Non-Hazard Flammable Skin Irritant	☐ Poison B [□ Unknown	\$95 \$250	mple L				ם 🗀) Jiene	eal.	o.,,,	aa 1	□ <i>A</i>) robi	,	ar.			Mon	the	(/ !c	i fee	ma) r tha	/be	asse nonti	ssed	if samples are	retained	
☐ Non-Hazard ☐ Flammable ☐ Skin Irritant ☐ Poison B ☐ Unknown ☐ Return To Client Turn Around Time Required												s (Spe		vi Cili	ve /				, MOI	,III 13		aige.	,			9			
24 Hours 48 Hours 7 Days 14 Days 21 Days Other																													
1. Relinquished By		Date			Time			1. R	lecei	ived	Ву															^{D.}	ate	Time	
2. Relinquished By		Date			Time			2. Received By																		D	ate	Time	
3. Relinquished By Date Time								3. R	ìecei	ived	Ву															ן ס.	ate	Time	
Comments																													

Chain of Custody Record

Severn Trent Laboratories, Inc.

STL-4124 (0901)						e in the second	0000000			www.		60)/46E,60	53.0(60)		magasit		/(w) (//i)	3.(0.16),A	All (S	Williams			Sirasin			
Client Tetra Tech NOS		Project	Mana	iger V	k	e	Vlo	ı iğ	(/	V							D	ate	(1	l_{I}	10)	7	Cha	ain of Custody N	umber O _
20251 Century Blud S	fe 200	Teleph 5		lumbe	r (Ar	ea Co	de)/Fa	ax Nu	imber								La	ab Nu	ımbe	97				Pa	ge	of
City) State Zi	20874	Site Co	ntact	W (L)	J.	12	Lal	Cor S	ntact	1/1	1					Ar mo	alys re sp	is (A pace	ttac is r	ch lis need	it if led)	w				
Project Name and Location (State) Mattin State Hisport Troat	artas Ospa	Carrier	/Wayt	oill Nu	mbe	f								<u> </u>	N T	(0)			C)		Xa (Snecial I	nstructions/
Contract/Purchase Order/Quote No.				Ma	atrix				Con Pres	taine erva	ers a ative	} 'i \$		200 12 12 12 12 12 12 12 12 12 12 12 12 12		1 Marior		Š.	Š	101					Condition	s of Receipt
Sample I.D. No. and Description (Containers for each sample may be combined on one line)	Date	Time	Ą	Aqueous	Sed.	Soil	Unpres.	H2SO4	HNO3	нсі	NaOH	ZnAc/ NaOH		3 N 2 E		S	7	Ž.	Ĭ	17	Tole	26				•
FMC 25	11/07			1	X		X							<u> </u>	X	K										
FMC 25	16 11			χ			X		X	Χ								¥	\$/	X	X	×				
FMC a6	10.00			7	X		X							4 54	×	X	,									
FMC 26	10 11			X			Х		X	X								×	Х	\checkmark	Χ.	X				
								24574 2567 2677 2677																		
															:Meney				91/4 93/4 93/4							
											Aven Prime															
															(//(T/d) () () ()											
Possible Hazard Identification Non-Hazard Flammable Skin Irritant	☐ Poison B	Unknown	N. 1986	ample] Retu			nt	97	Dispo	sal E	3y La	ь [⊒ Ar	chive i	For _		(Mont	hs		ee m ier th	ay b an 1	e ass mon	essed th)	d if samples are	retained
Turn Around Time Required 24 Hours 48 Hours 7. Days 14.0	ays 🔲 21 Days	□ Ott						l ac	Requ	uiren	nents	(Spec	cify)													
1. Relinquished By	ays 🗀 21 Days	Date	<i>iei</i>		Tim	e		1. F	Recei	ved I	Ву													[Date	Time
2 Relinquished By		Date		 	Tim	е		2. F	Recei	ved l	Ву													 	Date	Time
3. Relinquished By		Date			Tim	9		3. F	Ресеі	ved I	Ву													 -	Date	Time
Comments				Carlottio																						

APPENDIX B –DATA VALIDATION REPORT	

Tetra Tech NUS

INTERNAL CORRESPONDENCE

TO:

MIKE MARTIN

DATE:

FEBRUARY 29, 2008

FROM:

THOMAS JACKMAN

COPIES:

DV FILE

SUBJECT: ORGANIC DATA VALIDATION - VOCS/1.4-DIOXANE

LOCKHEED MIDDLE RIVER

SAMPLE DELIVERY GROUP (SDG) - 7K14155

SAMPLES:

6/Aqueous

MW-70B-111207

MW-70B-111407

MW-70B-111507

TB-111307

TB-111407

TB-111507

Overview

This sample set for the Lockheed Middle River, SDG 7K14155, consists of 3 environmental water samples and 3 trip blanks. The samples were analyzed for Volatile Organic Compounds (VOCs) and 1,4-dioxane (a SVOC). No field duplicates were included in this data set.

The samples were collected by Tetra Tech NUS, Inc. on November 12, 14, and 15, 2007 and analyzed by TestAmerica Laboratories, Inc. The samples were analyzed by SW-846 Methods 8260B and 8270C.

Summary

The findings in this report are based upon a general review of all available data including: data completeness, system performance, holding times, GC/MS tuning, initial/continuing calibrations, laboratory method blank contamination, surrogate spike, matrix spike/matrix spike duplicate (MS/MSD) results, Laboratory Control Sample (LCS) results, compound identification, compound quantitation, and detection limits. Areas of concern are listed below; documentation supporting these findings is presented in Appendix C. Qualified analytical results are presented in Appendix A. Results as reported by the laboratory are presented in Appendix B.

Major Problems

The initial calibration had the relative response factor (RRF) for tert-butyl alcohol less than the 0.05 quality control limit on 10/03/07 and continuing calibrations on 11/20/07 and 11/21/07 on instrument A3UX10. Non-detected results for tert-butyl alcohol were rejected (UR) in samples associated with these calibrations.

Minor Problems

• The following compounds were detected in laboratory method blanks and trip blanks at the following maximum concentrations.

Compound 1,2,3-Trichlorobenzene⁽¹⁾ <u>Level</u>

Action Level

 $0.57 \mu g/L$

2.85 µg/L

MEMO TO: M. MARTIN - PAGE 2 DATE: FEBRUARY 29, 2008

1,2,4-Trichlorobenzene ⁽¹⁾	0.31 μg/L	1.55 μg/L
2-Butanone ⁽²⁾	8.9 μg/L	89 μg/L
Acetone ⁽³⁾	44 μg/L	440 μg/L
Naphthalene ⁽¹⁾	0.52 μg/L	2.6 μg/L
Styrene ⁽³⁾	0.18 μg/L	0.9 μg/L
Toluene ⁽³⁾	0.22 μg/L	1.1 μg/L

- 1. Reported in laboratory blanks only.
- 2. Reported in laboratory and trip blanks.
- 3. Reported in trip blanks only.

An action level of 10X the maximum blank concentration was used for the common laboratory contaminants, acetone and 2-butanone. An action level of 5X the maximum contaminant concentration was used for the other blank contaminants to evaluate laboratory or field contamination. Dilution factors and sample aliquots were taken into consideration during the application of all action levels, if applicable.

Positive results for 2-butanone below the action level were qualified as false positives, "B". Results for the other above mentioned compounds were not qualified because they were not positively detected in any environmental samples.

 Positive results reported below the reporting limit (RL) but above the method detection limit (MDL) for the organic analyses were qualified as estimated (J).

Notes

In the VOC analysis, samples MW-70B-111207, MW-70B-111407, and MW-70B-111507 were analyzed at dilutions of 120 and 140 because of high analyte concentrations (e.g., 1,1-DCE, cis-1,2-DCE, TCE). The dilutions resulted in elevated quantitation limits for these samples.

The continuing calibration had the %D > 25% quality control limit but < 50% quality control limit for vinyl acetate on 11/20/07 @ 10:22 on instrument A3UX10. No validation actions were required because vinyl acetate was not positively detected in samples associated with this calibration.

The continuing calibration had the %D > 25% quality control limit but < 50% quality control limit for vinyl acetate on 11/21/07 @10:45 on instrument A3UX10. No validation actions were required because vinyl acetate was not positively detected in samples associated with this calibration.

Executive Summary

Laboratory Performance: 1,2,3-Trichlorobenzene, 1,2,4-trichlorobenzene, 2-butanone, and naphthalene were detected in laboratory blanks. Initial calibration and continuing calibration RRFs for tert-butyl alcohol were below the control limit resulting in the rejection of nondetected results.

Other Factors Affecting Data Quality: None.

The data for these analyses were reviewed with reference to the "Region III Modifications to the National Functional Guidelines for Organic Data Review" (9/94). The text of this report has been formulated to address only those problem areas affecting data quality.

Tetra Tech NUS Thomas Jackman MEMO TO: M. MARTIN - PAGE 3 DATE: FEBRUARY 29, 2008

Environmental Scientist

Tetra Tech NUS Joseph A. Samchuck Quality Assurance Officer

Attachments:

1. Appendix A - Qualified Analytical Results

2. Appendix B - Results as reported by the Laboratory

3. Appendix C - Support Documentation

Data Qualifier Key:

B - Positive result is considered to be an artifact of blank contamination and should not be considered present.

J - Positive result is considered estimated, "J", as a result of technical noncompliances.

U - Nondetected result.

 UR - Nondetected result is considered rejected, "UR", as a result of severe validation noncompliances.

APPENDIX A

QUALIFIED ANALYTICAL RESULTS

Data Validation Qualifier Codes:

A = Lab Blank Contamination

B = Field Blank Contamination

C = Calibration Noncompliance (e.g. % RSDs, %Ds, ICVs, CCVs, RRFs, etc.)

C01 = GC/MS Tuning Noncompliance

D = MS/MSD Recovery Noncompliance

E = LCS/LCSD Recovery Noncompliance

F = Lab Duplicate Imprecision

G = Field Duplicate Imprecision

H = Holding Time Exceedance

1 = ICP Serial Dilution Noncompliance

J = GFAA PDS - GFAA MSA's r < 0.995 / ICP PDS Recovery Noncompliance

K = ICP Interference - includes ICS % R Noncompliance

L = Instrument Calibration Range Exceedance

M = Sample Preservation Noncompliance

N = Internal Standard Noncompliance

N01 = Internal Standard Recovery Noncompliance Dioxins

N02 = Recovery Standard Noncompliance Dioxins

N03 = Clean-up Standard Noncompliance Dioxins

O = Poor Instrument Performance (e.g. base-line drifting)

P = Uncertainty near detection limit (< 2 x IDL for inorganics and <CRQL for organics)

Q = Other problems (can encompass a number of issues; e.g. chromatography,interferences, etc.)

R = Surrogates Recovery Noncompliance

S = Pesticide/PCB Resolution

T = % Breakdown Noncompliance for DDT and Endrin

U = % Difference between columns/detectors >25% for positive results determined via GC/HPLC

V = Non-linear calibrations; correlation coefficient r < 0.995

W = EMPC result

X = Signal to noise response drop

Y = Percent solids <30%

Z = Uncertainty at 2 sigma deviation is greater than sample activity

SDG: 7K14155 MEDIA: WATER DATA FRACTION: OV

nsample MRC-MW70B-111207DL samp_date 11/12/2007

 lab_id
 A7K140155001

 qc_type
 NM

units
Pct_Solids
DUP_OF:

UG/L

samp_date
lab_id
qc_type
units
Pct_Solids

DUP_OF:

nsample

MRC-MW70B-111207DL 11/12/2007 A7K140155001

NM UG/L

nsample samp_date lab_id qc_type units MRC-MW70B-111207DL

11/12/2007 A7K140155001

NM UG/L

Parameter	Result	Val Qual	Qual Code	Parameter	Result	Val Qual	Qual Code
BROMODICHLOROMETHANE	140	U		TOLUENE	140	U	
BROMOFORM	140	U		TOTAL XYLENES	290	U	
BROMOMETHANE	140	U		TRANS-1,2-DICHLOROETHENE	140	U	
CARBON DISULFIDE	140	U		TRANS-1,3-DICHLOROPROPENE	140	U	
CARBON TETRACHLORIDE	140	U		TRICHLOROETHENE	4400		
CHLOROBENZENE	140	U		TRICHLOROFLUOROMETHANE	140	U	
CHLORODIBROMOMETHANE	140	U		VINYL ACETATE	290	U	
CHLOROETHANE	140	U		VINYL CHLORIDE	140	U	
CHLOROFORM	140	U					

Parameter	Result	Val Qual	Qual Code
1,1,1,2-TETRACHLOROETHANE	140	Ū	
1,1,1-TRICHLOROETHANE	33	J	Р
1,1,2,2-TETRACHLOROETHANE	140	U	
1,1,2-TRICHLOROTRIFLUOROETHANE	140	U	
1,1-DICHLOROETHANE	97	J	Р
1,1-DICHLOROETHENE	830		
1,1-DICHLOROPROPENE	140	U	
1,2,3-TRICHLOROBENZENE	140	U	
1,2,3-TRICHLOROPROPANE	140	U	
1,2,3-TRIMETHYLBENZENE	710	U	
1,2,4-TRICHLOROBENZENE	140	U	
1,2,4-TRIMETHYLBENZENE	140	U	
1,2-DIBROMO-3-CHLOROPROPANE	290	U	
1,2-DIBROMOETHANE	140	U	
1,2-DICHLOROBENZENE	140	U	
1,2-DICHLOROETHANE	140	U	
1,2-DICHLOROPROPANE	140	U	
1,3-DICHLOROBENZENE	140	U	
1,3-DICHLOROPROPANE	140	U	
1,4-DICHLOROBENZENE	140	U	
2,2-DICHLOROPROPANE	140	Ü	
2-BUTANONE	710	U	
2-CHLOROETHYL VINYL ETHER	710	U	
2-CHLOROTOLUENE	140	U	
2-HEXANONE	710	U	
4-CHLOROTOLUENE	140	U	
4-ISOPROPYLTOLUENE	140	U	
4-METHYL-2-PENTANONE	710	U	
ACETONE	710	U	
BENZENE	140	U	
BROMOBENZENE	140	U	
BROMOCHLOROMETHANE	140	U	

BROMODICHLOROMETHANE BROMOFORM BROMOMETHANE CARBON DISULFIDE CARBON TETRACHLORIDE CHLOROBENZENE CHLORODIBROMOMETHANE CHLOROFORM CHLOROFORM CHLOROMETHANE CIS-1,2-DICHLOROPROPENE DIBROMOMETHANE DICHLORODIFLUOROMETHANE DICHLORODIFLUOROMETHANE DICHLORODIFLUOROMETHANE DICHLOROPICLUOROMETHANE DICHLOROPICLUOROMETHANE DICHLORODIFLUOROMETHANE DISOPROPYL ETHER ETHYL TERT-BUTYL ETHER ETHYLBENZENE HEXACHLOROBUTADIENE	140 140 140 140 140	U U U	
BROMOMETHANE CARBON DISULFIDE CARBON TETRACHLORIDE CHLOROBENZENE CHLORODIBROMOMETHANE CHLOROFORM CHLOROMETHANE CHLOROMETHANE CIS-1,2-DICHLOROETHENE CIS-1,3-DICHLOROPROPENE DIBROMOMETHANE DICHLORODIFLUOROMETHANE DICHLORODIFLUOROMETHANE DISOPROPYL ETHER ETHYL TERT-BUTYL ETHER ETHYLBENZENE	140 140	U	·
CARBON DISULFIDE CARBON TETRACHLORIDE CHLOROBENZENE CHLORODIBROMOMETHANE CHLOROFORM CHLOROMETHANE CHLOROMETHANE CIS-1,2-DICHLOROETHENE CIS-1,3-DICHLOROPROPENE DIBROMOMETHANE DICHLORODIFLUOROMETHANE DICHLORODIFLUOROMETHANE DISOPROPYL ETHER ETHYL TERT-BUTYL ETHER ETHYLBENZENE	140		
CARBON TETRACHLORIDE CHLOROBENZENE CHLORODIBROMOMETHANE CHLOROFORM CHLOROMETHANE CIS-1,2-DICHLOROETHENE CIS-1,3-DICHLOROPROPENE DIBROMOMETHANE DICHLORODIFLUOROMETHANE DICHLORODIFLUOROMETHANE DIISOPROPYL ETHER ETHYL TERT-BUTYL ETHER ETHYLBENZENE		U	
CHLOROBENZENE CHLORODIBROMOMETHANE CHLOROFORM CHLOROMETHANE CIS-1,2-DICHLOROETHENE CIS-1,3-DICHLOROPROPENE DIBROMOMETHANE DICHLORODIFLUOROMETHANE DISOPROPYL ETHER ETHYL TERT-BUTYL ETHER ETHYLBENZENE	140		
CHLORODIBROMOMETHANE CHLOROFORM CHLOROMETHANE CIS-1,2-DICHLOROETHENE CIS-1,3-DICHLOROPROPENE DIBROMOMETHANE DICHLORODIFLUOROMETHANE DICHLORODIFLUOROMETHANE DIISOPROPYL ETHER ETHYL TERT-BUTYL ETHER ETHYLBENZENE	140	U	
CHLOROETHANE CHLOROFORM CHLOROMETHANE CIS-1,2-DICHLOROETHENE CIS-1,3-DICHLOROPROPENE DIBROMOMETHANE DICHLORODIFLUOROMETHANE DIISOPROPYL ETHER ETHYL TERT-BUTYL ETHER ETHYLBENZENE	140	U	
CHLOROFORM CHLOROMETHANE CIS-1,2-DICHLOROETHENE CIS-1,3-DICHLOROPROPENE DIBROMOMETHANE DICHLORODIFLUOROMETHANE DIISOPROPYL ETHER ETHYL TERT-BUTYL ETHER ETHYLBENZENE	140	U	
CHLOROMETHANE CIS-1,2-DICHLOROETHENE CIS-1,3-DICHLOROPROPENE DIBROMOMETHANE DICHLORODIFLUOROMETHANE DIISOPROPYL ETHER ETHYL TERT-BUTYL ETHER ETHYLBENZENE	140	U	
CIS-1,2-DICHLOROETHENE CIS-1,3-DICHLOROPROPENE DIBROMOMETHANE DICHLORODIFLUOROMETHANE DIISOPROPYL ETHER ETHYL TERT-BUTYL ETHER ETHYLBENZENE	140	U	
CIS-1,3-DICHLOROPROPENE DIBROMOMETHANE DICHLORODIFLUOROMETHANE DIISOPROPYL ETHER ETHYL TERT-BUTYL ETHER ETHYLBENZENE	140	U	
DIBROMOMETHANE DICHLORODIFLUOROMETHANE DIISOPROPYL ETHER ETHYL TERT-BUTYL ETHER ETHYLBENZENE	150		
DICHLORODIFLUOROMETHANE DIISOPROPYL ETHER ETHYL TERT-BUTYL ETHER ETHYLBENZENE	140	U	
DIISOPROPYL ETHER ETHYL TERT-BUTYL ETHER ETHYLBENZENE	140	U	
ETHYL TERT-BUTYL ETHER ETHYLBENZENE	140	U	
ETHYLBENZENE	710	U	
	710	U	
HEXACHLOROBUTADIENE	140	U	
	140	U	
ISOPROPYLBENZENE	140	Ų	
M+P-XYLENES	290	U	
METHYL TERT-BUTYL ETHER	710	U	
METHYLENE CHLORIDE	140	U	
NAPHTHALENE	140	U	
N-BUTYLBENZENE	140	U	
N-PROPYLBENZENE	140	U	
O-XYLENE	140	U	
SEC-BUTYLBENZENE	140	U	
STYRENE	140	U	
TERT-AMYL METHYL ETHER	710	U	
TERT-BUTYLBENZENE	140	U	
TERTIARY-BUTYL ALCOHOL	2900	UR	С
TETRACHLOROETHENE	140	U	

SDG: 7K14155 MEDIA: WATER DATA FRACTION: OV

nsample samp_date

11/14/2007 A7K150199001

lab_id qc_type units

NM UG/L

Pct_Solids DUP_OF:

MRC-MW70B-111407DL

samp_date lab_id

nsample

qc_type units

MRC-MW70B-111407DL

11/14/2007 A7K150199001

NM UG/L

Pct_Solids DUP_OF:

nsample samp_date lab_id

MRC-MW70B-111407DL

11/14/2007 A7K150199001

qc_type NM units UG/L

Parameter	Result	Val Qual	Qual Code
TOLUENE	120	· U	
TOTAL XYLENES	250	U	
TRANS-1,2-DICHLOROETHENE	120	U	
TRANS-1,3-DICHLOROPROPENE	120	U	
TRICHLOROETHENE	4000		
TRICHLOROFLUOROMETHANE	120	· U	
VINYL ACETATE	250	U	
VINYL CHLORIDE	120	U	

Parameter	Result	Val Qual	Qual Code
1,1,1,2-TETRACHLOROETHANE	120	U	
1,1,1-TRICHLOROETHANE	40	J	Р
1,1,2,2-TETRACHLOROETHANE	120	U	
1,1,2-TRICHLOROTRIFLUOROETHANE	120	U	
1,1-DICHLOROETHANE	98	J	• Р
1,1-DICHLOROETHENE	800		
1,1-DICHLOROPROPENE	120	U	
1,2,3-TRICHLOROBENZENE	120	U	
1,2,3-TRICHLOROPROPANE	120	U	
1,2,3-TRIMETHYLBENZENE	620	U	
1,2,4-TRICHLOROBENZENE	120	U	
1,2,4-TRIMETHYLBENZENE	120	U	
1,2-DIBROMO-3-CHLOROPROPANE	250	U	
1,2-DIBROMOETHANE	120	U	
1,2-DICHLOROBENZENE	120	U	
1,2-DICHLOROETHANE	120	U	
1,2-DICHLOROPROPANE	120	U	
1,3-DICHLOROBENZENE	120	U	
1,3-DICHLOROPROPANE	120	U	
1,4-DICHLOROBENZENE	120	U	
2,2-DICHLOROPROPANE	120	U	
2-BUTANONE	91	В	В
2-CHLOROETHYL VINYL ETHER	620	U	
2-CHLOROTOLUENE	120	U	
2-HEXANONE	620	U	
4-CHLOROTOLUENE	120	U	
4-ISOPROPYLTOLUENE	120	U	
4-METHYL-2-PENTANONE	620	U	
ACETONE	620	U	
BENZENE	120	U	
BROMOBENZENE	120	U	
BROMOCHLOROMETHANE	120	U	

Parameter	Result	Val Qual	Qual Code
			Code
BROMODICHLOROMETHANE	120	U	
BROMOFORM	120	U	
BROMOMETHANE	120	Ű.	
CARBON DISULFIDE	120	U	
CARBON TETRACHLORIDE	120	U	
CHLOROBENZENE	120	U	
CHLORODIBROMOMETHANE	120	U	
CHLOROETHANE	120	U	
CHLOROFORM	120	U	
CHLOROMETHANE	120	U	
CIS-1,2-DICHLOROETHENE	150		
CIS-1,3-DICHLOROPROPENE	120	U	
DIBROMOMETHANE	120	U	
DICHLORODIFLUOROMETHANE	120	U	
DIISOPROPYL ETHER	620	U	
ETHYL TERT-BUTYL ETHER	620	U	
ETHYLBENZENE	120	U	
HEXACHLOROBUTADIENE	120	U ·	
ISOPROPYLBENZENE	120	U	
M+P-XYLENES	250	U	
METHYL TERT-BUTYL ETHER	620	U	
METHYLENE CHLORIDE	120	U	
NAPHTHALENE	120	U	
N-BUTYLBENZENE	120	U	
N-PROPYLBENZENE	120	U	
O-XYLENE	120	U	-
SEC-BUTYLBENZENE	.120	U	
STYRENE	120	U	
TERT-AMYL METHYL ETHER	620	U	
TERT-BUTYLBENZENE	120	U	
TERTIARY-BUTYL ALCOHOL	2500	UR	С
TETRACHLOROETHENE	120	U	

SDG: 7K14155 MEDIA: WATER DATA FRACTION: OV

nsample samp_date

11/15/2007

lab_id qc_type units

A7K160209001 NM

UG/L

Pct_Solids DUP_OF:

MRC-MW70B-111507DL

samp_date lab_id

qc_type units Pct_Solids

nsample

MRC-MW70B-111507DL

11/15/2007 A7K160209001

NM UG/L

DUP_OF:

nsample samp_date lab_id

MRC-MW70B-111507DL

11/15/2007 A7K160209001

qc_type NM units UG/L

Parameter	Result	Val Qual	Qual Code
TOLUENE	140	U	
TOTAL XYLENES	290	U	
TRANS-1,2-DICHLOROETHENE	140	U	
TRANS-1,3-DICHLOROPROPENE	140	U	
TRICHLOROETHENE	4400		
TRICHLOROFLUOROMETHANE	140	U	
VINYL ACETATE	290	U	
VINYL CHLORIDE	140	U	

	T 1	14.1	
Parameter	Result	Val Qual	Qual Code
1,1,1,2-TETRACHLOROETHANE	140	U	
1,1,1-TRICHLOROETHANE	38	J	Р
1,1,2,2-TETRACHLOROETHANE	140	U	
1,1,2-TRICHLOROTRIFLUOROETHANE	140	U	
1,1-DICHLOROETHANE	100	J	Р
1,1-DICHLOROETHENE	870		
1,1-DICHLOROPROPENE	140	U	
1,2,3-TRICHLOROBENZENE	140	U	
1,2,3-TRICHLOROPROPANE	140	U	
1,2,3-TRIMETHYLBENZENE	710	U	
1,2,4-TRICHLOROBENZENE	140	U	
1,2,4-TRIMETHYLBENZENE	140	U	
1,2-DIBROMO-3-CHLOROPROPANE	290	U	
1,2-DIBROMOETHANE	140	U	
1,2-DICHLOROBENZENE	140	U	
1,2-DICHLOROETHANE	140	U	
1,2-DICHLOROPROPANE	140	U	
1,3-DICHLOROBENZENE	140	U	
1,3-DICHLOROPROPANE	140	U	
1,4-DICHLOROBENZENE	140	U	
2,2-DICHLOROPROPANE	140	U	
2-BUTANONE	710	U	
2-CHLOROETHYL VINYL ETHER	710	U	
2-CHLOROTOLUENE	140	U	
2-HEXANONE	710	U	
4-CHLOROTOLUENE	140	υ	
4-ISOPROPYLTOLUENE	140	U	
4-METHYL-2-PENTANONE	710	U	
ACETONE	710	U	
BENZENE	140	U	
BROMOBENZENE	140	U	
BROMOCHLOROMETHANE	140	U	

Parameter	Result	Val Qual	Qual Code
BROMODICHLOROMETHANE	140	U	
BROMOFORM	140	U	
BROMOMETHANE	140	U	
CARBON DISULFIDE	140	U	
CARBON TETRACHLORIDE	140	U	
CHLOROBENZENE	140	U	
CHLORODIBROMOMETHANE	140	U	
CHLOROETHANE	140	U	
CHLOROFORM	140	U	
CHLOROMETHANE	140	U	
CIS-1,2-DICHLOROETHENE	170		
CIS-1,3-DICHLOROPROPENE	140	U	
DIBROMOMETHANE	140	U	
DICHLORODIFLUOROMETHANE	140	U	
DIISOPROPYL ETHER	710	U	·
ETHYL TERT-BUTYL ETHER	710	U	
ETHYLBENZENE	140	U	
HEXACHLOROBUTADIENE	140	U	
ISOPROPYLBENZENE	140	U	
M+P-XYLENES	290	U	
METHYL TERT-BUTYL ETHER	710	U	
METHYLENE CHLORIDE	140	U	
NAPHTHALENE	140	U	
N-BUTYLBENZENE	140	U	
N-PROPYLBENZENE	140	U	
O-XYLENE	140	U	
SEC-BUTYLBENZENE	140	U	
STYRENE	140	U	
TERT-AMYL METHYL ETHER	710	· U	
TERT-BUTYLBENZENE	140	U	
TERTIARY-BUTYL ALCOHOL	2900	UR	С
TETRACHLOROETHENE	140	U	

SDG: 7K14155 MEDIA: WATER DATA FRACTION: OV

nsample

TB-111307

samp_date lab_id

11/12/2007 A7K140155002

qc_type units

NM UG/L

Pct_Solids DUP_OF:

nsample samp_date

lab_id

units

TB-111307 11/12/2007

A7K140155002

qc_type NM UG/L

Pct_Solids DUP_OF:

nsample samp_date lab_id

TB-111307 11/12/2007 A7K140155002

qc_type NM units UG/L

——————————————————————————————————————							
Parameter	Result	Val Qual	Qual Code	Parameter	Result	Val Qual	Qual Code
ODICHLOROMETHANE	1	U		TOLUENE	0.22	J	Р
IOFORM	1	U		TOTAL XYLENES	2	U	
OMETHANE	1	U		TRANS-1,2-DICHLOROETHENE	1	U	
ON DISULFIDE	1	U		TRANS-1,3-DICHLOROPROPENE	1	U	
ON TETRACHLORIDE	1	U		TRICHLOROETHENE	1	U	
ROBENZENE	1	U		TRICHLOROFLUOROMETHANE	1	U	
RODIBROMOMETHANE	1	U		VINYL ACETATE	2	U	
ROETHANE	1	U		VINYL CHLORIDE	1	U	
ROFORM	1	U		L	·		·

Parameter	Result	Val Qual	Qual Code
1,1,1,2-TETRACHLOROETHANE	1	U	Ouc
1,1,1-TRICHLOROETHANE	1	U	
1.1.2.2-TETRACHLOROETHANE	1	U	
1,1,2-TRICHLOROTRIFLUOROETHANE	1		
1,1-DICHLOROETHANE	1	U	
1.1-DICHLOROETHENE	1	U U	
1.1-DICHLOROPROPENE	1	U.	
1,2,3-TRICHLOROBENZENE	1	U	
1,2,3-TRICHLOROPROPANE	1	U	
1,2,3-TRIMETHYLBENZENE	5	U	
1,2,4-TRICHLOROBENZENE	1	Ū	
1,2,4-TRIMETHYLBENZENE	1	U	
1,2-DIBROMO-3-CHLOROPROPANE	2	U	
1,2-DIBROMOETHANE	1	U	
1,2-DICHLOROBENZENE	1	U	
1,2-DICHLOROETHANE	1	U	
1,2-DICHLOROPROPANE	1	U	
1,3-DICHLOROBENZENE	1	U	
1,3-DICHLOROPROPANE	1	U	
1,4-DICHLOROBENZENE	1	U	
2,2-DICHLOROPROPANE	1	U	
2-BUTANONE	8.9		
2-CHLOROETHYL VINYL ETHER	5	U	
2-CHLOROTOLUENE	1	U	
2-HEXANONE	5	U	
4-CHLOROTOLUENE	1	U	
4-ISOPROPYLTOLUENE	1	U	
4-METHYL-2-PENTANONE	5	U	
ACETONE	44		
BENZENE	1	U	
BROMOBENZENE	1	U	
BROMOCHLOROMETHANE	1	U	

l alameter	nesun	Quai	Code
BROMODICHLOROMETHANE	1	U	
BROMOFORM	1	U	
BROMOMETHANE	1	U	
CARBON DISULFIDE	1	U	
CARBON TETRACHLORIDE	1	U	
CHLOROBENZENE	1	U	
CHLORODIBROMOMETHANE	1	Ü	
CHLOROETHANE	1	U	
CHLOROFORM	1	U	
CHLOROMETHANE	1	U	
CIS-1,2-DICHLOROETHENE	1	U	
CIS-1,3-DICHLOROPROPENE	1	U	
DIBROMOMETHANE	1	U	
DICHLORODIFLUOROMETHANE	1	U	
DIISOPROPYL ETHER	5	U	
ETHYL TERT-BUTYL ETHER	5	U	
ETHYLBENZENE	1	U	
HEXACHLOROBUTADIENE	1	U	
ISOPROPYLBENZENE	1	U	
M+P-XYLENES	2	U	
METHYL TERT-BUTYL ETHER	5	U	
METHYLENE CHLORIDE	1	U	
NAPHTHALENE	1	U	
N-BUTYLBENZENE	1	U	
N-PROPYLBENZENE	1	U	
O-XYLENE	1	U	
SEC-BUTYLBENZENE	1	U	1
STYRENE	0.18	J	Р
TERT-AMYL METHYL ETHER	5	U	
TERT-BUTYLBENZENE	1	U	
TERTIARY-BUTYL ALCOHOL	20	UR	С
TETRACHLOROETHENE	1	U	
			

SDG: 7K14155 MEDIA: WATER DATA FRACTION: OV

nsample samp_date TB-111407

11/14/2007 A7K150199002

lab_id qc_type units

NM UG/L

Pct_Solids

nsample samp_date

lab_id

units

qc_type

Pct_Solids

DUP_OF:

TB-111407 11/14/2007

11/14/2007 A7K150199002

NM UG/L

nsample samp_date TB-111407 11/14/2007 A7K150199002

lab_id qc_type units

NM UG/L

Parameter	Result	Val Qual	Qual Code
1,1,1,2-TETRACHLOROETHANE	1	U	
1,1,1-TRICHLOROETHANE	1	U	
1,1,2,2-TETRACHLOROETHANE	1	Ù	
1,1,2-TRICHLOROTRIFLUOROETHANE	1	U	
1,1-DICHLOROETHANE	1	U	
1,1-DICHLOROETHENE	1	U	
1,1-DICHLOROPROPENE	1	U	
1,2,3-TRICHLOROBENZENE	1	U	
1,2,3-TRICHLOROPROPANE	1	U	
1,2,3-TRIMETHYLBENZENE	5	U	
1,2,4-TRICHLOROBENZENE	1	U	
1,2,4-TRIMETHYLBENZENE	1	U -	
1,2-DIBROMO-3-CHLOROPROPANE	2	U	
1,2-DIBROMOETHANE	1	U	
1,2-DICHLOROBENZENE	1	U	
1,2-DICHLOROETHANE	1	U	
1,2-DICHLOROPROPANE	1	U	
1,3-DICHLOROBENZENE	1	U	
1,3-DICHLOROPROPANE	1	U	
1,4-DICHLOROBENZENE	1	U	
2,2-DICHLOROPROPANE	1	U	
2-BUTANONE	5	U	
2-CHLOROETHYL VINYL ETHER	5	Ü	
2-CHLOROTOLUENE	1	U	
2-HEXANONE	5	U	
4-CHLOROTOLUENE	1	U	-
4-ISOPROPYLTOLUENE	1	U	
4-METHYL-2-PENTANONE	5	U	
ACETONE	5	U	
BENZENE	1	U	
BROMOBENZENE	1	U	
BROMOCHLOROMETHANE	1	U	

Parameter	Result	Val Qual	Qual Code
BROMODICHLOROMETHANE	1	· U	
BROMOFORM	1	U	
BROMOMETHANE	1	U	
CARBON DISULFIDE	1	U	
CARBON TETRACHLORIDE	1	U	
CHLOROBENZENE	1	U	
CHLORODIBROMOMETHANE	1	U	
CHLOROETHANE	1	U	
CHLOROFORM	1	U	
CHLOROMETHANE	1	U	
CIS-1,2-DICHLOROETHENE	1	Ū	
CIS-1,3-DICHLOROPROPENE	1	U	
DIBROMOMETHANE	1	U	
DICHLORODIFLUOROMETHANE	1	U	
DIISOPROPYL ETHER	5	U	
ETHYL TERT-BUTYL ETHER	5	U	
ETHYLBENZENE	1	U	
HEXACHLOROBUTADIENE	1	U	٠.
ISOPROPYLBENZENE	1	U	
M+P-XYLENES	2	U	
METHYL TERT-BUTYL ETHER	5	U	
METHYLENE CHLORIDE	1	U	
NAPHTHALENE	1	U	
N-BUTYLBENZENE	1	U	
N-PROPYLBENZENE	1	U	
O-XYLENE	1	U	
SEC-BUTYLBENZENE	1	U	
STYRENE	1	U	
TERT-AMYL METHYL ETHER	5	U	
TERT-BUTYLBENZENE	1	U	
TERTIARY-BUTYL ALCOHOL	20	UR	С
TETRACHLOROETHENE	1	U	

Parameter	Result	Val Qual	Qual Code
TOLUENE	1	U	
TOTAL XYLENES	2	U	
TRANS-1,2-DICHLOROETHENE	1	U	
TRANS-1,3-DICHLOROPROPENE	1	U	
TRICHLOROETHENE	1	U	-
TRICHLOROFLUOROMETHANE	1	U	_
VINYL ACETATE	2	U	
VINYL CHLORIDE	1	U	

SDG: 7K14155 MEDIA: WATER DATA FRACTION: OV

nsample samp_date TB-111507 11/15/2007

A7K160209002

lab_id qc_type units

NM UG/L

Pct_Solids DUP_OF: nsample samp_date

lab_id

units

qc_type

TB-111507

UG/L

A7K160209002 NM

ls

Pct_Solids DUP_OF:

nsample samp_date lab_id TB-111507 11/15/2007 A7K160209002

NM

UG/L

qc_type units

Parameter	Result	Val Qual	Qual Code	Parameter	Result	Val Qual	Qual Code	Parame
1,1,1,2-TETRACHLOROETHANE	1	U		BROMODICHLOROMETHANE	1	U		TOLUENE
1,1,1-TRICHLOROETHANE	1	U		BROMOFORM	1	U		TOTAL XYLENES
1,1,2,2-TETRACHLOROETHANE	1	U		BROMOMETHANE	1	U		TRANS-1,2-DICHLOROE
1,1,2-TRICHLOROTRIFLUOROETHANE	1	U		CARBON DISULFIDE	1	U		TRANS-1,3-DICHLOROPI
1,1-DICHLOROETHANE	1	U		CARBON TETRACHLORIDE	1	U		TRICHLOROETHENE
1,1-DICHLOROETHENE	1	U		CHLOROBENZENE	1	U		TRICHLOROFLUOROME
1,1-DICHLOROPROPENE	1	U		CHLORODIBROMOMETHANE	1	U		VINYL ACETATE
1,2,3-TRICHLOROBENZENE	1	U		CHLOROETHANE	1	U		VINYL CHLORIDE
1,2,3-TRICHLOROPROPANE	1	U		CHLOROFORM	1	Ü		
1,2,3-TRIMETHYLBENZENE	5	U		CHLOROMETHANE	1	U		
1,2,4-TRICHLOROBENZENE	1	Ü		CIS-1.2-DICHLOROETHENE	1	U		

Parameter	Result	Val Qual	Qual Code
TOLUENE	1	U	
TOTAL XYLENES	2	U	
TRANS-1,2-DICHLOROETHENE	. 1	U	
TRANS-1,3-DICHLOROPROPENE	1	Ų	
TRICHLOROETHENE	1	U	
TRICHLOROFLUOROMETHANE	1	U	
VINYL ACETATE	2	U	
VINYL CHLORIDE	1	U	

1,1,1,2-TETRACHLOROETHANE	1	U	
1,1,1-TRICHLOROETHANE	1	U	
1,1,2,2-TETRACHLOROETHANE	1	U	
1,1,2-TRICHLOROTRIFLUOROETHANE	1	U	
1,1-DICHLOROETHANE	1	U	
1,1-DICHLOROETHENE	1	U	
1,1-DICHLOROPROPENE	1	U	
1,2,3-TRICHLOROBENZENE	1	U	
1,2,3-TRICHLOROPROPANE	1	U	
1,2,3-TRIMETHYLBENZENE	5	U	
1,2,4-TRICHLOROBENZENE	1	Ü	
1,2,4-TRIMETHYLBENZENE	1	U	
1,2-DIBROMO-3-CHLOROPROPANE	2	د	
1,2-DIBROMOETHANE	1	٦	
1,2-DICHLOROBENZENE	1	ט	
1,2-DICHLOROETHANE	1	U	
1,2-DICHLOROPROPANE	1	J	
1,3-DICHLOROBENZENE	1	U	
1,3-DICHLOROPROPANE	1	U	
1,4-DICHLOROBENZENE	1	J	
2,2-DICHLOROPROPANE	1	U	
2-BUTANONE	5	Ü	
2-CHLOROETHYL VINYL ETHER	5	U	
2-CHLOROTOLUENE	1	ט	
2-HEXANONE	.5	U	
4-CHLOROTOLUENE	1	٦	
4-ISOPROPYLTOLUENE	. 1	ט	
4-METHYL-2-PENTANONE	5	U	
ACETONE	5	U	
BENZENE	1	J	
BROMOBENZENE	1	٦	
BROMOCHLOROMETHANE	1	J	

BROMOFORM	1,	U	
BROMOMETHANE	1	Ū	
CARBON DISULFIDE	1	U	
CARBON TETRACHLORIDE	1	U	
CHLOROBENZENE	1	U	
CHLORODIBROMOMETHANE	1	U	
CHLOROETHANE	1	U	-
CHLOROFORM	1	U	
CHLOROMETHANE	1	U	
CIS-1,2-DICHLOROETHENE	1	Ū	
CIS-1,3-DICHLOROPROPENE	1	U	
DIBROMOMETHANE	1	U.	ľ
DICHLORODIFLUOROMETHANE	1	U	
DIISOPROPYL ETHER	5	U	
ETHYL TERT-BUTYL ETHER	5	U	
ETHYLBENZENE	1	U	
HEXACHLOROBUTADIENE	1	U	
ISOPROPYLBENZENE	1	U	
M+P-XYLENES	2	U	
METHYL TERT-BUTYL ETHER	5	U	
METHYLENE CHLORIDE	1	U	
NAPHTHALENE	1	U	
N-BUTYLBENZENE	1	U	
N-PROPYLBENZENE	1	U	
O-XYLENE	1	U	
SEC-BUTYLBENZENE	1	U	
STYRENE	1	U	
TERT-AMYL METHYL ETHER	5	U	
TERT-BUTYLBENZENE	1	U	
TERTIARY-BUTYL ALCOHOL	20	UR	С
TETRACHLOROETHENE	1	U	

PROJ NO: 01179

Parameter

SDG: 7K14155 MEDIA: WATER DATA FRACTION; OS

nsample samp_date MRC-MW70B-111207DL

11/12/2007

units

UG/L

NM

A7K140155001

qc_type

lab_id

Result

160

Val

samp_date lab_id

nsample

qc_type

11/14/2007 A7K150199001

MRC-MW70B-111407DL

nsample

samp_date lab_id

qc_type

Pct_Solids

DUP_OF:

11/15/2007 A7K160209001

MRC-MW70B-111507DL

NM

Pct_Solids DUP_OF:

1,4-DIOXANE

Qual

Qual Code

Pct_Solids

DUP_OF:

Parameter units Result Val Qual Qual Code 1,4-DIOXANE UG/L 140

NM

Parameter	units	Result	Val Qual	Qual Code
1,4-DIOXANE	UG/L	260		

APPENDIX B

RESULTS AS REPORTED BY THE LABORATORY

Client Sample ID: MRC-MW70B-111207

GC/MS Volatiles

Lot-Sample #...: A7K140155-001 Work Order #...: KA71H1CF Matrix...... WG

Date Sampled...: 11/12/07 16:50 Date Received..: 11/14/07 Prep Date....: 11/20/07 Analysis Date..: 11/20/07

Prep Batch #...: 7324511

Dilution Factor: 142.86 Initial Wgt/Vol: 5 mL Final Wgt/Vol.: 5 mL

Method.....: SW846 8260B

		REPORTING	
PARAMETER	RESULT	LIMIT	UNITS
Bromobenzene	ND	140	ug/L
Bromochloromethane	ND .	140	ug/L .
2-Chloroethyl vinyl ether	ND	710	ug/L
2-Butanone	ND	710	ug/L
Xylenes (total)	ND .	290	ug/L
1,2,3-Trichloropropane	ND	140	ug/L
1,1,2-Trichloro-	ND	140	ug/L
1,2,2-trifluoroethane			
cis-1,2-Dichloroethene	150	140	ug/L
trans-1,2-Dichloroethene	ND	140	ug/L
o-Xylene	ND	140	ug/L
m-Xylene & p-Xylene	ND	290	ug/L
Isopropylbenzene	ND	140	ug/L
1,2-Dibromo-3-chloro- propane	ND	290	ug/L
Dichlorodifluoromethane '	ND	140	ug/L
Trichlorofluoromethane	ND	140	ug/L
Acetone	ND	710	ug/L
Bromodichloromethane	ND	140	ug/L
n-Butylbenzene	ND	140	ug/L
sec-Butylbenzene	ND	140	ug/L
tert-Butylbenzene	ND	140	ug/L
Carbon disulfide	ND	140	ug/L
Dibromochloromethane	ND	140	ug/L
2-Chlorotoluene	ND	140	ug/L
4-Chlorotoluene	ND	140	ug/L
1,2-Dibromoethane	ND	140	ug/L
Dibromomethane	ND	140	ug/L
1,2-Dichlorobenzene	ND	140	ug/L
1,3-Dichlorobenzene	ND	140	ug/L
1,4-Dichlorobenzene	ND	140	ug/L
1,3-Dichloropropane	ND	140	ug/L
2,2-Dichloropropane	ND	140	ug/L
1,1-Dichloropropene	ND	140	ug/L
Hexachlorobutadiene	ND	140	ug/L
2-Hexanone	ND.	710	ug/L
p-Isopropyltoluene	ND	140	ug/L
tert-Butyl alcohol	ND	2900	ug/L

Client Sample ID: MRC-MW70B-111207

GC/MS Volatiles

rot-sample #:	A/K140155-001	Work Order #: KA71H1CF	Matrix WG

		REPORTING		
PARAMETER	RESULT	LIMIT	UNITS	
4-Methyl-2-pentanone	ND	710	ug/L	
Naphthalene	ND	140	ug/L	
n-Propylbenzene	ND	140	ug/L	
Styrene	ND	140	ug/L	
1,1,1,2-Tetrachloroethane	ND	140	ug/L	
1,2,3-Trichlorobenzene	ND	140	ug/L	
1,2,4-Trichloro-	ND	140	ug/L	
benzene			_	
1,2,4-Trimethylbenzene	ND	140	ug/L	
Vinyl acetate	ND	290	ug/L	
1,2,3-Trimethylbenzene	ND	710	ug/L	
Diisopropyl Ether (DIPE)	ND	710	ug/L	
Ethyl-t-Butyl Ether (ETBE)	ND	710	ug/L	
Tert-amyl methyl ether (TAME)	ND	710	ug/L	
Methyl tert-butyl ether	ND	710	ug/L	
Benzene	ND	140	ug/L	
Bromoform	ND	140	ug/L	
Bromomethane	ND	140	ug/L	
Carbon tetrachloride	ND	140	ug/L	
Chlorobenzene	ND	140	ug/L	
Chloroethane	ND	140	ug/L	
Chloroform	ND	140	ug/L	
Chloromethane	ND	140	ug/L ug/L	
1,1-Dichloroethane	97 J	140	ug/L ug/L	•
1,2-Dichloroethane	ND	140	ug/L ug/L	
1,1-Dichloroethene	830	140	ug/L	
1,2-Dichloropropane	ND	140		
cis-1,3-Dichloropropene	ND	140	ug/L	
trans-1,3-Dichloropropene	ND	140	ug/L	
Ethylbenzene	ND.	140	ug/L	
Methylene chloride	ND		ug/L	
1,1,2,2-Tetrachloroethane	ND	140	ug/L	
Tetrachloroethene	ND	140	ug/L	
Toluene	ND	140	ug/L	
1,1,1-Trichloroethane	33 J	140	ug/L	
Trichloroethene		140	ug/L	
Vinyl chloride	4400	140	ug/L	
vinyi chioride	ND	140	ug/L	
	DEDCENT	DECOMEDY		
SURROGATE	PERCENT	RECOVERY		
Dibromofluoromethane	RECOVERY 101	LIMITS		
1,2-Dichloroethane-d4	96	(73 - 122)		
Toluene-d8		(61 - 128)		
4-Bromofluorobenzene	81	(76 - 110)		
. Promotinorobelizelle	81	(74 - 116)		
NOTE(S):				

NOTE(S):

J Estimated result. Result is less than RL.

Client Sample ID: MRC-MW70B-111407

GC/MS Volatiles

Lot-Sample #...: A7K150199-001 Work Order #...: KCATK1CF Matrix...... WG

Date Sampled...: 11/14/07 14:45 Date Received..: 11/15/07 Prep Date....: 11/21/07 Analysis Date..: 11/21/07

Prep Batch #...: 7327128

Dilution Factor: 125 Initial Wgt/Vol: 5 mL Final Wgt/Vol.: 5 mL

Method....: SW846 8260B

PARAMETER RESULT LIMIT UNITS Bromobenzene ND 120 ug/L Bromochloromethane ND 120 ug/L 2-Chloroethyl vinyl ether ND 620 ug/L 2-Butanone 91 J,B 620 ug/L Xylenes (total) ND 250 ug/L 1,2,3-Trichloropropane ND 120 ug/L 1,1,2-Trichloro- ND 120 ug/L 1,2,2-trifluoroethane 150 120 ug/L cis-1,2-Dichloroethene ND 120 ug/L m-Xylene ND 120 ug/L m-Xylene & p-Xylene ND 250 ug/L Isopropylbenzene ND 120 ug/L 1,2-Dibromo-3-chloro- ND 250 ug/L propane Dichlorodifluoromethane ND 120 ug/L Trichlorofluoromethane ND 120 ug/L			REPORTI	NG
### Bromochloromethane	PARAMETER	RESULT	LIMIT	UNITS
Bromochloromethane ND 120 ug/L 2-Chloroethyl vinyl ether ND 620 ug/L 2-Butanone 91 J,B 620 ug/L Xylenes (total) ND 250 ug/L 1,2,3-Trichloropropane ND 120 ug/L 1,1,2-Trichloro- ND 120 ug/L 1,2,2-trifluoroethane ND 120 ug/L trans-1,2-Dichloroethene ND 120 ug/L o-Xylene ND 120 ug/L m-Xylene & p-Xylene ND 250 ug/L Isopropylbenzene ND 250 ug/L 1,2-Dibromo-3-chloro- ND 250 ug/L propane Dichlorodifluoromethane ND 120 ug/L	Bromobenzene	ND	120	ug/L
2-Chloroethyl vinyl ether ND 620 ug/L 2-Butanone 91 J,B 620 ug/L Xylenes (total) ND 250 ug/L 1,2,3-Trichloropropane ND 120 ug/L 1,1,2-Trichloro- ND 120 ug/L 1,2,2-trifluoroethane cis-1,2-Dichloroethene ND 120 ug/L trans-1,2-Dichloroethene ND 120 ug/L o-Xylene ND 120 ug/L m-Xylene & p-Xylene ND 250 ug/L Isopropylbenzene ND 120 ug/L	Bromochloromethane	ND	120	
2-Butanone 91 J,B 620 ug/L Xylenes (total) ND 250 ug/L 1,2,3-Trichloropropane ND 120 ug/L 1,1,2-Trichloro- ND 120 ug/L 1,2,2-trifluoroethane 150 120 ug/L cis-1,2-Dichloroethene ND 120 ug/L o-Xylene ND 120 ug/L m-Xylene & p-Xylene ND 250 ug/L Isopropylbenzene ND 120 ug/L 1,2-Dibromo-3-chloro- ND 250 ug/L propane Dichlorodifluoromethane ND 120 ug/L	2-Chloroethyl vinyl ether	ND	620	=
Xylenes (total) ND 250 ug/L 1,2,3-Trichloropropane ND 120 ug/L 1,1,2-Trichloro- ND 120 ug/L 1,2,2-trifluoroethane 150 120 ug/L cis-1,2-Dichloroethene ND 120 ug/L o-Xylene ND 120 ug/L m-Xylene & p-Xylene ND 250 ug/L Isopropylbenzene ND 120 ug/L 1,2-Dibromo-3-chloro- ND 250 ug/L propane Dichlorodifluoromethane ND 120 ug/L	2-Butanone	91 J,B	620	=
1,2,3-Trichloropropane ND 120 ug/L 1,1,2-Trichloro- ND 120 ug/L 1,2,2-trifluoroethane cis-1,2-Dichloroethene 150 120 ug/L trans-1,2-Dichloroethene ND 120 ug/L o-Xylene ND 120 ug/L m-Xylene p-Xylene ND 250 ug/L Isopropylbenzene ND 120 ug/L 1,2-Dibromo-3-chloro- ND 250 ug/L propane Dichlorodifluoromethane ND 120 ug/L		ND	250	
1,1,2-Trichloro- 1,2,2-trifluoroethane cis-1,2-Dichloroethene trans-1,2-Dichloroethene O-Xylene MD	1,2,3-Trichloropropane	ND	120	-
1,2,2-trifluoroethane cis-1,2-Dichloroethene 150 120 ug/L trans-1,2-Dichloroethene ND 120 ug/L o-Xylene ND 120 ug/L m-Xylene & p-Xylene ND 120 ug/L Isopropylbenzene ND 120 ug/L 1,2-Dibromo-3-chloro- ND 250 ug/L propane Dichlorodifluoromethane ND 120 ug/L		ND	120	-
trans-1,2-Dichloroethene ND 120 ug/L o-Xylene ND 120 ug/L m-Xylene & p-Xylene ND 250 ug/L Isopropylbenzene ND 120 ug/L 1,2-Dibromo-3-chloro- ND 250 ug/L propane Dichlorodifluoromethane ND 120 ug/L				_
o-Xylene ND 120 ug/L m-Xylene & p-Xylene ND 250 ug/L Isopropylbenzene ND 120 ug/L 1,2-Dibromo-3-chloro- ND 250 ug/L propane Dichlorodifluoromethane ND 120 ug/L	cis-1,2-Dichloroethene	150	120	uq/L
o-Xylene ND 120 ug/L m-Xylene & p-Xylene ND 250 ug/L Isopropylbenzene ND 120 ug/L 1,2-Dibromo-3-chloro- ND 250 ug/L propane Dichlorodifluoromethane ND 120 ug/L	trans-1,2-Dichloroethene	ND	120	ug/L
m-Xylene & p-Xylene ND 250 ug/L Isopropylbenzene ND 120 ug/L 1,2-Dibromo-3-chloro- ND 250 ug/L propane Dichlorodifluoromethane ND 120 ug/L		ND	120	-
Isopropylbenzene ND 120 ug/L 1,2-Dibromo-3-chloro- ND 250 ug/L propane Dichlorodifluoromethane ND 120 ug/L	m-Xylene & p-Xylene	ND	250	-
1,2-Dibromo-3-chloro- ND 250 ug/L propane Dichlorodifluoromethane ND 120 ug/L	Isopropylbenzene	ND	120	_
propane Dichlorodifluoromethane ND 120 ug/L		ND	250	
4g/E				J
		ND	120	ug/L
120 uq/L	Trichlorofluoromethane	ND	120	ug/L
Acetone ND 620 ug/L	Acetone	ND	620	
Bromodichloromethane ND 120 ug/L	Bromodichloromethane	ND	120	-
n-Butylbenzene ND 120 ug/L	n-Butylbenzene	ND	120	-
sec-Butylbenzene ND 120 ug/L	sec-Butylbenzene	ND	120	-
tert-Butylbenzene ND 120 ug/L	tert-Butylbenzene	ND	120	uq/L
Carbon disulfide ND 120 ug/L		ND	120	ug/L
Dibromochloromethane ND 120 ug/L		ND	120	ug/L
2-Chlorotoluene ND 120 ug/L		ND	120	ug/L
4-Chlorotoluene ND 120 ug/L		ND	120	ug/L
1,2-Dibromoethane ND 120 ug/L		ND	120	ug/L
Dibromomethane ND 120 ug/L		ND	120	
1,2-Dichlorobenzene ND 120 ug/L	1,2-Dichlorobenzene	ND .	120	_
1,3-Dichlorobenzene ND 120 ug/L		ND	120	ug/L
1,4-Dichlorobenzene ND 120 ug/L	1,4-Dichlorobenzene	ND	120	-
1,3-Dichloropropane ND 120 ug/L	1,3-Dichloropropane	ND	120	ug/L
2,2-Dichloropropane ND 120 ug/L	2,2-Dichloropropane	ND	120	_
1,1-Dichloropropene ND 120 ug/L	1,1-Dichloropropene	ND	120	_
Hexachlorobutadiene ND 120 ug/L	Hexachlorobutadiene	ND	120	
2-Hexanone ND 620 ug/L	2-Hexanone	ND	620	
p-Isopropyltoluene ND 120 ug/L	p-Isopropyltoluene	ND	120	-
tert-Butyl alcohol ND 2500 ug/L	tert-Butyl alcohol	ND	2500	-

Client Sample ID: MRC-MW70B-111407

GC/MS Volatiles

Lot-Sample #: A7K150199-001	Work Order #: KCATK1CF	Matrix WG
-----------------------------	------------------------	-----------

		REPORTING	
PARAMETER	RESULT	LIMIT	UNITS
4-Methyl-2-pentanone	ND	620	ug/L
Naphthalene	ND	120	ug/L
n-Propylbenzene	ND	120	ug/L
Styrene	ND	120	ug/L
1,1,1,2-Tetrachloroethane	ND	120	ug/L
1,2,3-Trichlorobenzene	ND	120	ug/L
1,2,4-Trichloro-	ND	120	ug/L
benzene			
1,2,4-Trimethylbenzene	ND	120	ug/L
Vinyl acetate	ND	250	ug/L
1,2,3-Trimethylbenzene	ND	620	ug/L
Diisopropyl Ether (DIPE)	ND	620	ug/L
Ethyl-t-Butyl Ether (ETBE)	ND	620	ug/L
Tert-amyl methyl ether (TAME)	ND	620	ug/L
Methyl tert-butyl ether	ND	620	ug/L
Benzene	ND	120	ug/L
Bromoform	ND	120	ug/L
Bromomethane	ND	120	ug/L
Carbon tetrachloride	ND	120	ug/L
Chlorobenzene	ND	120	ug/L
Chloroethane	ND	120	ug/L
Chloroform	ND	120	ug/L
Chloromethane	ND	120	ug/L
1,1-Dichloroethane	98 Ј	120	ug/L
1,2-Dichloroethane	ND	120	ug/L
1,1-Dichloroethene	800	120	ug/L
1,2-Dichloropropane	ND	120	ug/L
cis-1,3-Dichloropropene	ND	120	ug/L
trans-1,3-Dichloropropene	ND	120	ug/L
Ethylbenzene	ND	120	ug/L
Methylene chloride	ND	120	ug/L
1,1,2,2-Tetrachloroethane	ND	120	ug/L
Tetrachloroethene	ND	120	ug/L
Toluene	ND	120	ug/L
1,1,1-Trichloroethane	40 J	120	ug/L
Trichloroethene	4000	120	ug/L
Vinyl chloride	ND	120	ug/L
	•		ч9/ ш
	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS	
Dibromofluoromethane	100	(73 - 122)	
1,2-Dichloroethane-d4	94	(61 - 128)	
Toluene-d8	80	(76 - 110)	
4-Bromofluorobenzene	78	(74 - 116)	•

Client Sample ID: MRC-MW70B-111407

GC/MS Volatiles

Lot-Sample #...: A7K150199-001 Work Order #...: KCATK1CF Matrix......: WG

NOTE (S):

J Estimated result. Result is less than RL.

B Method blank contamination. The associated method blank contains the target analyte at a reportable level.

Client Sample ID: MRC-MW70B-111507

GC/MS Volatiles

Lot-Sample #...: A7K160209-001 Work Order #...: KCE511CF Matrix..... WG

Date Sampled...: 11/15/07 14:45 Date Received..: 11/16/07

Prep Date....: 11/20/07 Analysis Date..: 11/20/07

Prep Batch #...: 7324511

Dilution Factor: 142.86 Initial Wgt/Vol: 5 mL Final Wgt/Vol..: 5 mL

Method.....: SW846 8260B

		REPORTING	
PARAMETER	RESULT	LIMIT	UNITS
Bromobenzene	ND	$\frac{241111}{140}$	ug/L
Bromochloromethane	ND	140	ug/L
2-Chloroethyl vinyl ether	ND	710	ug/L
2-Butanone	ND	710	ug/L
Xylenes (total)	ND	290	ug/L
1,2,3-Trichloropropane	ND	140	ug/L
1,1,2-Trichloro-	ND	140	ug/L
1,2,2-trifluoroethane			5, —
cis-1,2-Dichloroethene	170	140	ug/L
trans-1,2-Dichloroethene	ND	140	ug/L
o-Xylene	ND	140	ug/L
m-Xylene & p-Xylene	ND	290	ug/L
Isopropylbenzene	ND	140	ug/L
1,2-Dibromo-3-chloro-	ND	290	ug/L
propane			3.
Dichlorodifluoromethane	ND	140	ug/L
Trichlorofluoromethane	ND	140	ug/L
Acetone	ND	710	ug/L
Bromodichloromethane	ND	140	ug/L
n-Butylbenzene	ND	140	ug/L
sec-Butylbenzene	ND	140	ug/L
tert-Butylbenzene	ND	140	ug/L
Carbon disulfide	ND	140	ug/L
Dibromochloromethane	ND	140	ug/L
2-Chlorotoluene	ND	140	ug/L
4-Chlorotoluene	ND	140	ug/L
1,2-Dibromoethane	ND	140	ug/L
Dibromomethane	ND	140	ug/L
1,2-Dichlorobenzene	ND	140	ug/L
1,3-Dichlorobenzene	ND	140	ug/L
1,4-Dichlorobenzene	ND	140	ug/L
1,3-Dichloropropane	ND	140	ug/L
2,2-Dichloropropane	ND	140	ug/L
1,1-Dichloropropene	ND	140	ug/L
Hexachlorobutadiene	ND	140	ug/L
2-Hexanone	ND	710	ug/L
p-Isopropyltoluene	ND	140	ug/L
tert-Butyl alcohol	ND	2900	ug/L

Client Sample ID: MRC-MW70B-111507

GC/MS Volatiles

Lot-Sample #: A7K160209-001	Work Order #: KCE511CF	Matrix WG
-----------------------------	------------------------	-----------

22.22.47.47.47.47.47.47.47.47.47.47.47.47.47.		REPORTING		
PARAMETER	RESULT	LIMIT	UNITS	
4-Methyl-2-pentanone	ND	710	ug/L	
Naphthalene	ND	140	ug/L	
n-Propylbenzene	ND	140	ug/L	
Styrene	ND	140	${ t ug/L}$	
1,1,1,2-Tetrachloroethane	ND	140	ug/L	
1,2,3-Trichlorobenzene	· ND	140	ug/L	
1,2,4-Trichloro- benzene	ND	140	ug/L	
l,2,4-Trimethylbenzene	ND	140	ug/L	
/inyl acetate	ND	290	ug/L	
l,2,3-Trimethylbenzene	ND	710	ug/L	
Diisopropyl Ether (DIPE)	ND	710	ug/L	
Ethyl-t-Butyl Ether (ETBE)	ND	710	ug/L	
Tert-amyl methyl ether (TAME)	ND	710	ug/L	
Methyl tert-butyl ether	ND	710	ug/L	
Benzene	ND	140	ug/L	
Bromoform	ND	140	ug/L	
Bromomethane	ND	140	ug/L	
Carbon tetrachloride	ND	140	ug/L	
Chlorobenzene	ND	140	ug/L	
hloroethane	ND	140	ug/L	
chloroform	ND	140	ug/L	
Chloromethane	ND	140	ug/L	
,1-Dichloroethane	100 J	140	ug/L	
,2-Dichloroethane	ND	140	ug/L	
,1-Dichloroethene	870	140	ug/L	
.,2-Dichloropropane	ND	140	ug/L	
cis-1,3-Dichloropropene	ND	140	ug/L	
rans-1,3-Dichloropropene	ND	140	ug/L	
Cthylbenzene	ND	140	ug/L	
Methylene chloride	ND	140	ug/L	
,1,2,2-Tetrachloroethane	ND	140	ug/L	
etrachloroethene	ND	140	ug/L	
oluene	ND	140	ug/L	
,1,1-Trichloroethane	38 Ј	140	ug/L	
richloroethene	4400	140	ug/L	
inyl chloride	ND	140	ug/L	
<u></u>	PERCENT	RECOVERY		
URROGATE	RECOVERY	LIMITS	_	
ibromofluoromethane	99	(73 - 122)		
,2-Dichloroethane-d4	91	(61 - 128)		
oluene-d8	83	(76 - 110)		
-Bromofluorobenzene	82	(74 - 116)		

J Estimated result. Result is less than RL.

Client Sample ID: TB-111307

GC/MS Volatiles

Lot-Sample #...: A7K140155-002 Work Order #...: KA71N1AA Matrix...... WQ

Prep Batch #...: 7324511

Method.....: SW846 8260B

		REPORTING	3
PARAMETER .	RESULT	LIMIT	UNITS '
Bromobenzene	ND	1.0	ug/L
Bromochloromethane	ND	1.0	ug/L
2-Chloroethyl vinyl ether	ND	5.0	ug/L
2-Butanone	8.9	5.0	ug/L
Xylenes (total)	ND	2.0	ug/L
1,2,3-Trichloropropane	ND	1.0	ug/L
1,1,2-Trichloro-	ND	1.0	ug/L
1,2,2-trifluoroethane			57 —
cis-1,2-Dichloroethene	ND	1.0	ug/L
trans-1,2-Dichloroethene	ND	1.0	ug/L
o-Xylene	ND	1.0	ug/L
m-Xylene & p-Xylene	ND	2.0	ug/L
Isopropylbenzene	ND	1.0	ug/L
1,2-Dibromo-3-chloro-	ND	2.0	ug/L
propane	•		J,
Dichlorodifluoromethane	ND	1.0	uq/L
Trichlorofluoromethane	ND	1.0	ug/L
Acetone	44	5.0	ug/L
Bromodichloromethane	ND	1.0	ug/L
n-Butylbenzene	ND	1.0	ug/L
sec-Butylbenzene	ND	1.0	ug/L
tert-Butylbenzene	ND	1.0	ug/L
Carbon disulfide	ND	1.0	ug/L
Dibromochloromethane	ND	1.0	ug/L
2-Chlorotoluene	ND	1.0	ug/L
4-Chlorotoluene	ND	1.0	ug/L
1,2-Dibromoethane	ND	1.0	ug/L
Dibromomethane	ND	1.0	ug/L
1,2-Dichlorobenzene	ND	1.0	ug/L
1,3-Dichlorobenzene	ND	1.0	ug/L
1,4-Dichlorobenzene	ND	1.0	ug/L
1,3-Dichloropropane	ND	1.0	ug/L
2,2-Dichloropropane	ND	1.0	ug/L
1,1-Dichloropropene	ND	1.0	ug/L
Hexachlorobutadiene	ND	1.0	ug/L
2-Hexanone	ND	5.0	ug/L
p-Isopropyltoluene	ND	1.0	ug/L
tert-Butyl alcohol	ND	20	ug/L

Client Sample ID: TB-111307

GC/MS Volatiles

Lot-Sample #: A7K140155-002	Work Order #: KA71N1AA	Matrix WO
-----------------------------	------------------------	-----------

		REPORTING		
PARAMETER	RESULT	LIMIT	UNITS	
4-Methyl-2-pentanone	ND	5.0	ug/L	
Naphthalene	ND	1.0	ug/L	
n-Propylbenzene	ND	1.0	ug/L	
Styrene	0.18 J	1.0	ug/L	
1,1,1,2-Tetrachloroethane	ND	1.0	ug/L	
1,2,3-Trichlorobenzene	ND	1.0	ug/L	
1,2,4-Trichloro-	ND	1.0	ug/L	
benzene		1.0	49/10	
1,2,4-Trimethylbenzene	ND	1.0	ug/L	
Vinyl acetate	ND	2.0	ug/L	
1,2,3-Trimethylbenzene	ND	5.0	ug/L	
Diisopropyl Ether (DIPE)	ND	5.0	ug/L ug/L	
Ethyl-t-Butyl Ether (ETBE)	ND	5.0	_	
Tert-amyl methyl ether (TAME)	ND	5.0	ug/L	
Methyl tert-butyl ether	ND	5.0	ug/L	
Benzene	ND	1.0	ug/L	
Bromoform	ND		ug/L	
Bromomethane	ND .	1.0	ug/L	
Carbon tetrachloride	ND	1.0	ug/L	
Chlorobenzene	ND	1.0	ug/L	
Chloroethane	ND	1.0	ug/L	
Chloroform		1.0	ug/L	
Chloromethane	ND	1.0	ug/L	
1,1-Dichloroethane	ND	1.0	ug/L	
1,2-Dichloroethane	ND	1.0	ug/L	
1,1-Dichloroethene	ND	1.0	ug/L	
1,2-Dichloropropane	ND	1.0	ug/L	
	ND	1.0	ug/L	
cis-1,3-Dichloropropene	ND	1.0	ug/L	
trans-1,3-Dichloropropene	ND	1.0	ug/L	
Ethylbenzene	ND	1.0	ug/L	
Methylene chloride	ND	1:0	ug/L	
1,1,2,2-Tetrachloroethane	ND	1.0	ug/L	
Tetrachloroethene	ND	1.0	ug/L	
Toluene	0.22 Ј	1.0	ug/L	
1,1,1-Trichloroethane	ND	1.0	ug/L	
Trichloroethene	ND	1.0	ug/L	
Vinyl chloride	ND	1.0	ug/L	
	PERCENT	RECOVERY		
SURROGATE	RECOVERY	LIMITS		
Dibromofluoromethane	102	(73 - 122)		
1,2-Dichloroethane-d4	97	(61 - 128)		
Toluene-d8	80	(76 - 110)		
4-Bromofluorobenzene	80	(74 - 116)		
NOTE (S):		·		

J Estimated result. Result is less than RL.

Client Sample ID: TB-111407

GC/MS Volatiles

Lot-Sample #...: A7K150199-002 Work Order #...: KCATV1AA Matrix...... WQ

Date Sampled...: 11/14/07 Date Received..: 11/15/07 Prep Date....: 11/21/07 Analysis Date..: 11/21/07

Prep Batch #...: 7327128

Dilution Factor: 1 Initial Wgt/Vol: 5 mL Final Wgt/Vol.: 5 mL

Method.....: SW846 8260B

		REPORTING	
PARAMETER	RESULT	LIMIT	UNITS
Dichlorodifluoromethane	ND	1.0	ug/L
Trichlorofluoromethane	ND	1.0	ug/L
Acetone	ND	5.0	ug/L
Bromodichloromethane	ND	1.0	ug/L
Bromobenzene	ND	1.0	ug/L
Bromochloromethane	ND	1.0	ug/L
2-Chloroethyl vinyl ether	ND	5.0	ug/L
2-Butanone	ND	5.0	ug/L
Xylenes (total)	ND	2.0	ug/L
1,2,3-Trichloropropane	ND	1.0	ug/L
1,1,2-Trichloro-	ND	1.0	ug/L
1,2,2-trifluoroethane			- -
cis-1,2-Dichloroethene	ND	1.0	ug/L
trans-1,2-Dichloroethene	ND	1.0	ug/L
o-Xylene	ND	1.0	ug/L
m-Xylene & p-Xylene	ND	2.0	ug/L
Isopropylbenzene	ND	1.0	ug/L
1,2-Dibromo-3-chloro-	ND	2.0	ug/L
propane			
n-Butylbenzene	ND	1.0	ug/L
sec-Butylbenzene	ND	1.0	ug/L
tert-Butylbenzene	ND	1.0	ug/L
Carbon disulfide	ND	1.0	ug/L
Dibromochloromethane	ND	1.0	ug/L
2-Chlorotoluene	ND	1.0	ug/L
4-Chlorotoluene	ND	1.0	ug/L
1,2-Dibromoethane	ND	1.0	ug/L
Dibromomethane	ND	1.0	ug/L
1,2-Dichlorobenzene	ND	1.0	ug/L
1,3-Dichlorobenzene	ND	1.0	ug/L
1,4-Dichlorobenzene	ND	1.0	ug/L
1,3-Dichloropropane	ND	1.0	ug/L
2,2-Dichloropropane	ND	1.0	ug/L
1,1-Dichloropropene	ND	1.0	ug/L
Hexachlorobutadiene	ND	1.0	ug/L
2-Hexanone	ND	5.0	ug/L
p-Isopropyltoluene	ND	1.0	ug/L
tert-Butyl alcohol	ND	20	ug/L
			-

Client Sample ID: TB-111407

GC/MS Volatiles

Lot-Sample #: A7K150199-002	Work Order #: KCATV1AA	Matrix WQ
-----------------------------	------------------------	-----------

		REPORTING	
PARAMETER	RESULT	LIMIT	UNITS
4-Methyl-2-pentanone	ND	5.0	ug/L
Naphthalene	ND	1.0	ug/L
n-Propylbenzene	ND	1.0	ug/L
Styrene	ND	1.0	ug/L
1,1,1,2-Tetrachloroethane	ND	1.0	ug/L
1,2,3-Trichlorobenzene	ND	1.0	ug/L
1,2,4-Trichloro- benzene	ND	1.0	ug/L
1,2,4-Trimethylbenzene	ND	1.0	ug/L
Vinyl acetate	ND	2.0	ug/L
1,2,3-Trimethylbenzene	ND	5.0	ug/L
Diisopropyl Ether (DIPE)	ND	5.0	ug/L
Ethyl-t-Butyl Ether (ETBE)	ND	5.0	ug/L
Tert-amyl methyl ether (TAME)	ND	5.0	ug/L
Methyl tert-butyl ether	ND	5.0	ug/L
Benzene	ND	1.0	ug/L
Bromoform	ND	1.0	ug/L
Bromomethane	ND	1.0	ug/L
Carbon tetrachloride	ND ·	1.0	ug/L
Chlorobenzene	ND	1.0	ug/L
Chloroethane	ND	1.0	ug/L
Chloroform	ND	1.0	ug/L
Chloromethane	ND	1.0	ug/L
1,1-Dichloroethane	ND	1.0	ug/L
1,2-Dichloroethane	ND	1.0	ug/L
1,1-Dichloroethene	ND	1.0	ug/L
1,2-Dichloropropane	ND	1.0	ug/L
cis-1,3-Dichloropropene	ND	1.0	ug/L
trans-1,3-Dichloropropene	ND	1.0	ug/L
Ethylbenzene	ND	1.0	ug/L
Methylene chloride	ND	1.0	ug/L
1,1,2,2-Tetrachloroethane	ND	1.0	ug/L
[etrachloroethene	ND	1.0	ug/L
Toluene	ND	1.0	ug/L
1,1,1-Trichloroethane	ND	1.0	ug/L
richloroethene	ND	1.0	ug/L
Jinyl chloride	ND	1.0	ug/L
	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS	
Dibromofluoromethane	99	(73 - 122)	
,2-Dichloroethane-d4	93	(61 - 128)	•
Coluene-d8	81	(76 - 110)	
l-Bromofluorobenzene	81	(74 - 116)	

Client Sample ID: TB-111507

GC/MS Volatiles

Lot-Sample #...: A7K160209-002 Work Order #...: KCE7K1AA Matrix...... WQ

Date Sampled...: 11/15/07 Date Received..: 11/16/07 Prep Date....: 11/20/07 Analysis Date..: 11/20/07

Prep Batch #...: 7324511

Method..... SW846 8260B

		REPORTIN	G
PARAMETER	RESULT	LIMIT	UNITS
Bromobenzene	ND	1.0	ug/L
Bromochloromethane	ND	1.0	ug/L
2-Chloroethyl vinyl ether	ND	5.0	ug/L
2-Butanone	ND	5.0	ug/L
Xylenes (total)	ND	2.0	ug/L
1,2,3-Trichloropropane	ND	1.0	ug/L
1,1,2-Trichloro-	ND	1.0	ug/L
1,2,2-trifluoroethane			-
cis-1,2-Dichloroethene	ND	1.0	ug/L
trans-1,2-Dichloroethene	ND	1.0	ug/L
o-Xylene	ND	1.0	ug/L
m-Xylene & p-Xylene	ND	2.0	ug/L
Isopropylbenzene	ND	1.0	ug/L
1,2-Dibromo-3-chloro-	ND	2.0	ug/L
propane			
Dichlorodifluoromethane	ND	1.0	ug/L
Trichlorofluoromethane	ND	1.0	ug/L
Acetone	ND	5.0	ug/L
Bromodichloromethane	ND	1.0	ug/L
n-Butylbenzene	ND	1.0	ug/L
sec-Butylbenzene	ND	1.0	ug/L
tert-Butylbenzene	ND	1.0	ug/L
Carbon disulfide	ND	1.0	ug/L
Dibromochloromethane	ND	1.0	ug/L
2-Chlorotoluene	ND	1.0	ug/L
4-Chlorotoluene	ND	1.0	ug/L
1,2-Dibromoethane	ND	1.0	ug/L
Dibromomethane	ND	1.0	ug/L
1,2-Dichlorobenzene	ND	1.0	ug/L
1,3-Dichlorobenzene	ND	1.0	ug/L
1,4-Dichlorobenzene	ND	1.0	ug/L
1,3-Dichloropropane	ND .	1.0	ug/L
2,2-Dichloropropane	ND	1.0	ug/L
1,1-Dichloropropene	ND	1.0	ug/L
Hexachlorobutadiene	ND	1.0	ug/L
2-Hexanone	ND	5.0	ug/L
p-Isopropyltoluene	ND	1.0	ug/L
tert-Butyl alcohol	ND	20	ug/L

Client Sample ID: TB-111507

GC/MS Volatiles

Lot-Sample #: A7K160209-002	Work Order #: KCE7K1AA	Matrix WQ
-----------------------------	------------------------	-----------

		REPORTING	
PARAMETER	RESULT	LIMIT	UNITS
4-Methyl-2-pentanone	ND	5.0	ug/L
Naphthalene	ND	1.0	ug/L
n-Propylbenzene	ND	1.0	ug/L
Styrene	ND	1.0	ug/L
1,1,1,2-Tetrachloroethane	ND	1.0	ug/L
1,2,3-Trichlorobenzene	ND	1.0	ug/L
1,2,4-Trichloro-	ND	1.0	ug/L
benzene			3
1,2,4-Trimethylbenzene	ND	1.0	ug/L
Vinyl acetate	ND	2.0	ug/L
1,2,3-Trimethylbenzene	ND	5.0	ug/L
Diisopropyl Ether (DIPE)	ND	5.0	ug/L
Ethyl-t-Butyl Ether (ETBE)	ND	5.0	ug/L
Tert-amyl methyl ether (TAME)	ND	5.0	ug/L
Methyl tert-butyl ether	ND	5.0	ug/L
Benzene	ND	1.0	ug/L
Bromoform	ND	1.0	ug/L
Bromomethane	ND	1.0	ug/L
Carbon tetrachloride	ND	1.0	ug/L
Chlorobenzene	ND	1.0	ug/L
Chloroethane	ND	1.0	ug/L
Chloroform	ND	1.0	ug/L
Chloromethane	ND	1.0	ug/L
1,1-Dichloroethane	ND	1.0	ug/L
1,2-Dichloroethane	ND	1.0	ug/L
1,1-Dichloroethene	ND	1.0	ug/L
1,2-Dichloropropane	ND	1.0	ug/L
cis-1,3-Dichloropropene	ND	1.0	ug/L
trans-1,3-Dichloropropene	ND	1.0	ug/L
Ethylbenzene	ND	1.0	ug/L
Methylene chloride	ND	1.0	ug/L
1,1,2,2-Tetrachloroethane	ND	1.0	ug/L
Tetrachloroethene	ND	1.0	ug/L
Toluene	ND	1.0	ug/L
1,1,1-Trichloroethane	ND	1.0	ug/L
Trichloroethene	ND	1.0	ug/L
Vinyl chloride	ND	1.0	ug/L
vinyi chioride	ND	1.0	ug/ ь
•	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS	
Dibromofluoromethane	99	$\frac{114113}{(73 - 122)}$	
1,2-Dichloroethane-d4	. 96	(61 - 128)	
Toluene-d8	79	(76 - 110)	
4-Bromofluorobenzene	80		
4-DIOMOTIMOTODGHZGHG	00	(74 - 116)	

Client Sample ID: MRC-MW70B-111207

GC/MS Semivolatiles

Lot-Sample #: A7K140155-00	01 Work Order #: KA71H1CG	Matrix WG
Date Sampled: 11/12/07 16:	:50 Date Received: 11/14/07	
Prep Date: 11/14/07	Analysis Date: 11/19/07	
Prep Batch #: 7318281		
Dilution Factor: 6.66	<pre>Initial Wgt/Vol: 1000 mL</pre>	Final Wqt/Vol: 2 mL
	Math-d outload north	

Method....: SW846 8270C

RROGATE trobenzene-d5 Fluorobiphenyl rphenyl-d14 enol-d5 Fluorophenol	RESULT	REPORTING LIMIT UNITS
1,4-Dioxane	160	67 ug/L
	PERCENT	RECOVERY
SURROGATE	RECOVERY	LIMITS
Nitrobenzene-d5	57	(27 - 111)
2-Fluorobiphenyl	46	(28 - 110)
Terphenyl-d14	61	(37 - 119)
Phenol-d5	20	(10 - 110)
2-Fluorophenol	32	(10 - 110)
2,4,6-Tribromophenol	62	(22 - 120)

Client Sample ID: MRC-MW70B-111407

GC/MS Semivolatiles

Lot-Sample #: Date Sampled: Prep Date: Prep Batch #: Dilution Factor:	11/14/07 14:45 11/15/07		11/15/07	Matrix: WG
		<pre>Initial Wgt/Vol: Method:</pre>		Final Wgt/Vol: 2 mL
PARAMETER 1,4-Dioxane		RESULT 140	REPORTING LIMIT 50	UNITS ug/L
SURROGATE Nitrobenzene-d5 2-Fluorobiphenyl Terphenyl-d14 Phenol-d5 2-Fluorophenol 2,4,6-Tribromophe		PERCENT RECOVERY 44 DIL 36 DIL 56 DIL 15 DIL 24 DIL 44 DIL	RECOVERY LIMITS (27 - 111) (28 - 110) (37 - 119) (10 - 110) (10 - 110) (22 - 120)	
NOTE (S) .				

DIL The concentration is estimated or not reported due to dilution or the presence of interfering analytes.

Client Sample ID: MRC-MW70B-111507

GC/MS Semivolatiles

Lot-Sample #: Date Sampled: Prep Date: Prep Batch #:	11/15/07 14:45 11/17/07	Work Order #: Date Received: Analysis Date:	11/16/07	Matrix WG
Dilution Factor:		<pre>Initial Wgt/Vol: Method:</pre>		Final Wgt/Vol: 2 mL
PARAMETER 1,4-Dioxane	·	RESULT 260	REPORTING LIMIT 120	UNITS ug/L
SURROGATE		PERCENT RECOVERY	RECOVERY LIMITS	
Nitrobenzene-d5		46 DIL	$\frac{2211113}{(27 - 111)}$	
2-Fluorobiphenyl		39 DIL	(28 - 110)	
Terphenyl-d14		83 DIL	(37 - 119)	
Phenol-d5		43 DIL	(10 - 110)	
2-Fluorophenol		34 DIL	(10 - 110)	
2,4,6-Tribromophe	nol	64 DIL	(22 - 120)	
NOTE (S):				

DIL The concentration is estimated or not reported due to dilution or the presence of interfering analytes.

APPENDIX C

SUPPORT DOCUMENTATION

CASE NARRATIVE

7K14155

The following report contains the analytical results for three water samples and three quality control samples submitted to TestAmerica North Canton by Tetra Tech NUS Inc. from the LMC-MIDDLE RIVER Site, project number 112IC001179. The samples were received November 14, 2007, November 15, 2007 and November 16, 2007, according to documented sample acceptance procedures.

This SDG consists of (3) laboratory ID's: A7K140155, A7K150199, and A7K160209.

TestAmerica utilizes USEPA approved methods in all analytical work. The samples presented in this report were analyzed for the parameter(s) listed on the analytical methods summary page in accordance with the method(s) indicated. A summary of QC data for these analyses is included at the back of the report.

TestAmerica North Canton attests to the validity of the laboratory data generated by TestAmerica facilities reported herein. All analyses performed by TestAmerica facilities were done using established laboratory SOPs that incorporate QA/QC procedures described in the applicable methods. TestAmerica's operations groups have reviewed the data for compliance with the laboratory QA/QC plan, and data have been found to be compliant with laboratory protocols unless otherwise noted below.

The test results in this report meet all NELAP requirements for parameters for which accreditation is required or available. Any exceptions to NELAP requirements are noted in this report. Pursuant to NELAP, this report may not be reproduced, except in full, without the written approval of the laboratory.

Please refer to the Quality Control Elements Narrative following this case narrative for additional quality control information.

If you have any questions, please call the Project Manager, Patrick J. O'Meara, at 330-497-9396.

This report is sequentially paginated. The final page of the report is labeled as "END OF REPORT."

SUPPLEMENTAL QC INFORMATION

SAMPLE RECEIVING

The temperatures of the coolers upon sample receipt were 1.7, 4.0, and 4.2°C.

CASE NARRATIVE (continued)

GC/MS VOLATILES

The sample(s) that contained concentrations of target analyte(s) at a reportable level in the associated Method Blank(s) were flagged with "B". All target analytes in the Method Blank must be below the reporting limit (RL) or the associated sample(s) must be ND with the exception of common laboratory contaminants.

The sample(s) that contain results between the MDL and the RL were flagged with "J". There is a possibility of false positive or mis-identification at these quantitation levels. In analytical methods requiring confirmation of the analyte reported, confirmation was performed only down to the standard reporting limit (SRL). The acceptance criteria for QC samples may not be met at these quantitation levels.

2-Chloroethyl vinyl ether cannot be reliably recovered in an acid preserved sample.

GC/MS SEMIVOLATILES

The analytical results met the requirements of the laboratory's QA/QC program.

METALS

The sample(s) that contain results between the MDL and the RL were flagged with "B". There is the possibility of false positive or mis-identification at these quantitation levels. The acceptance criteria for the ICB, CCB, and Method Blank are +/- the standard reporting limit (SRL).

No ICP MS Form IX was provided for batch(es) 7323022. The serial dilution was performed on a different sample from the same QC batch(es).

The sample duplicate RPD was outside the acceptance limits for some analytes. The result is less than five times the reporting limit; therefore, no corrective action is required. Refer to the sample duplicate report for RPDS that exceed 20%.

GENERAL CHEMISTRY

The sample duplicate data for batch(es) 7319513 is not included in this report for pH. The batch QC samples, which document the effect of a specific sample matrix on method performance, were not associated with a sample reported in this lot. The data, therefore, has no bearing on the samples reported herein. In order to document compliance with the QC requirement for a sample duplicate per 10 environmental samples, a summary of sample/QC associations has been provided following this case narrative.

TŁ	TETRA TECH NU				OF CUS	TODY			NUMBE	R	35	22		I		PAGE	1_0F	1
SAMPLE	TCOO1179 ERS (SIGNATURE) LUXUX (2	dle Rive	FIEL	JECT M JK & O OPER PIERW	ANAGE ANONS AYBILL	S LEADER NUMBER	R F	HONE N HONE N HONE N	UMBER 10.2 IUMBER 13.5	8-30	0		TATE		ANDSC	ntact: JEST	Americ
RUSHTA	RD TAT		14 day	FT)	тн (ЕТ)	SO, SW, SD, QC,	МЕТНОВ	CONTAINERS	PLAS PRES USED		or GLA				Q /q		STAN STAN	
DATE	TIME S	AMPLE ID (W 708-11120 -1143-07	Niddle	тор ВЕРТН (FT)	ВОТТОМ DEPTH (FT)	MATRIX (GW, SO, SW, SD, ETC.)	6	No. OF CONTA	3	Z	Z	1	1	OH.			co. Pumo	MANENTS Test-
	18		RIVEV	,		SW	G		<i>3.</i> ,								(2hhs. Sam	rinitis ()
	0	0																
2. RELINC	IUISHED BY	HUSK		DATE DATE	107		IME 500 IME	2. R	CEIVED	B						DATE	13-07 4-07	TIME 7500 TIME 9:40
COMMEN DISTRIBU	rs	(ACCOMPANIES SA			<i> </i> /		V (FIELD	<u> </u>	~			PINK	(FILE (COPY)		DATE		TIME

4/02R FORM NO. TINUS-001



CHAIN-OF-CUSTODY RECORD

Page 1 of 1

1 1 1 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	REPOR	1:13r	148-14	1700		**************************************		***	*****	***	****	****	1441.	::: INV	ОС	16::	****	******************	-	5 4 4 6 4 4. 5 4 4 5 6 14	777744341 64444434	***		
COMPANY TEXTO	Tech				PHO	57-5	28-302	COM	IPANY	Te	tra		ech					РНО	NEO/	1-52	8-30	22	AB PROJECT #	:
NAME NIFIE M	antin				FAX			NAM		Mi	KR.	N	lar	th	ر			FAX						
ADDRESS 20251	Centuly	Bl	id.	24	200	ク		ADD	RESS	20	25	1	Cel	All	hil	P	lva	1,1	KZ	00)	ΤL	IRNAROUND TI	ME:
CITY/ST/ZIP GEVW	Whowh,	H	7)	20	280	74		CITY	ISTIZ COE	Pin	ルが	tou	Jh.	M	7		200	370	4					
CLIENT PROJECT NAME:	Iddle River			OJECT	`#:		CLIENT P.O.#:	-l		-1 1.	<u>- E-21-, 1</u>	,		3		EOUE	STED	ΔΝΔΙ	VSES					
CLIENT PROJECT NAME: LHCED N Aquiler	estina	11	2 <u>T</u> (-ُم	111	9					ء د	/kg	(23)	TOWN SHIP THE	S. S. S.			/	/ /	/ /	′ /	/		
194701					<u> </u>			SRS			, cively		EX		, B	/	Ι.				/ /	/ /	/	
SAMPLE	DATE/TIME	COMPOSITE	<u>m</u>	景	ر ا	HH.	1 4 0 50	AIN		Ċ	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \			3/3	\$ <u></u>								COMMENTS	
IDENTIFICATION	SAMPLED	MPO	GRAB	WATER	SOIL	OTHER	LAB ID	NO.	7					$\sqrt{\pm}$	/	/ ,	/ /	/ ,	/ ,	/ ,	/ /		COMMENTS	
		8			į			# OF CONTAINERS	2	3/-	\$/~		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	lpha .										
MRC-MW 708-111407	114070245		X	X					3	1	1	1	1		·						C) 1 k	10	
TB-111407	11/4/07/000		Ø	と					2												1	ur	11/1	7
	/									<u> </u>			<u> </u>					<u></u>			,	16	55 1	
	/																							
	/																							
	/				<u> </u>																			
	/		-			-				ļ		-			-					<u> </u>				
	/					-					-		-											
	,							<u> </u>									- :							
	/	<u> </u>	-							-	-	-												_
	/							1		ļ														_
TSF# RELINQU	JISHED BY	<u></u>		TIME			ACCE	PTED .	l BY		l		DATE/	TIME		ADD:	TIONA	AL RE	MARK	 :S:			COOLER TEM	P:
1 1/1	11//	11-	4-0	1,5	00	J	417	٠	let.			12-1	4-9	15	_ረ ንለ									P:
1	vo el i	111	1./				J.	R	, - 0			1/10	1001	914								Ļ		\dashv
900		11/	14/0	717	UU	1	ery,	سير		~~		773	1-1	714	0									
				/									/											
		WH	<u>ITE</u> : L	ABOR	ATOR	Y COP	Υ	YELL	<u>OW</u> : R	EPOR	T COF	ŶΥ		P	INK:	CLIE	NT'S C	OPY						

CHAIN-OF-CUSTODY RECORD

Page ____ of ____

	**************************************	ELOKIT 16	1 1 0 14 0 1	100		79 Da. 1 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	* P & 2 4	1279				***************************************	<i>t</i> ańoje	END::	****		* 4 4 4 4	***			
COMPANY EQ	cd To	Bch		Į.	201-	5283027	COM	1PANY	18	Ar	1	180	h			PHO	501-	52	8-30	ZZ LAB	PROJECT #:
NAME MURE	Mais	fin		F	FAX		NAN	M	GE	2 1	MZ	11911	1			FAX					
ADDRESS 2025	1 CBM	Ulry	Blue	1.	#2	200_	ADD	RESS.	25	1	C8/	Hur	/_	BIU	d	\$	ZOC	2		TURN	AROUND TIME:
CITY/ST/ZIP GBPM	MORNE	JH.	D	20	287	ν <u></u>	CiTy	Y/ST/Z	BU	mo	JM	04)		17	ヽノ		20	14	,		
CLIENT PROJECT NAME	OCA RI	CLIE	NT PRO	DECT#	#: ~aL2/	CLIENT P.O.#:			Ŕ	الم		_ 1	(Car	EQUE	STED /	ANAL	YSES				
May Last	Ective		121	اسكرا	ME FO				Qvisti	7 ~	7/			EQUE	' /					//	/
MINION							ERS		1	16	14		W_ / .	/	/ . ,	/ ,	/ /	/ /	/ /		
SAMPLE	DATE/TIM	E SITISO	GRAB	ER	SOIL	LAB ID	TAIN		, <i>L</i>		N.	No.	(30'/n						//	/ o	OMMENTS
IDENTIFICATION	SAMPLED	COMPOSITE	8	WATER	SOIL		# OF CONTAINERS	1	\\/	\\)	/ /	/ /	/	/ /				
				1			#0#	"	A	<u> </u>	7/N	<u> </u>	\angle	\angle	_	\angle			/		
MRC-MW708-11150 TB-111507	में गीर्विने 14	45	X,	X			<u> </u>	3	1	1	1	1-		ļ					Dill	10/	PSY
TB-111507	11/15/04/00	(D)	X	X			-	3					-				-		1 W	11/2	
			-				-										-		1.		No TUN
	/	-	-				-	ļ	-					<u> </u>				_	(Jas	15aw	μο
	,						-						-								
	,						-	-								<u>.</u>		_			
	 		+-+											-						•	
	/		-															\neg			
	1																	-			
	/																				
	1						<u> </u>														
TSF# DELINO	UISHED BY		DATE.	TIME	215	ACCE	PTED	BY			1	DATE/TIN	4E	ADDI	TIONA	L REI	MARKS	:		COC	OLER TEMP:
SMMs	Sau Ny		200	104	47	w	1		· · · · · · · · · · · · · · · · · · ·		47	ou l	8.25								
Kin		11-1	507	193	a)			7			r <i>f-i</i>	w01 1 0	950								
				/								/		1							
		11/	HITE I	A ROP A	ATORY CO	npy	YFII	<u>.OW</u> : R	EPORT	r cop	L Y		עואום	: CLIE	JT'S C	OPV					
		<u> </u>	<u> </u>	LOOK			بالديد	<u>.~ 11</u> . 10	010	. 001	•		T 17.4 V	, CLIGI	1100	OFI					(

SDG 7K14155

SORT	UNITS	NSAMPLE	LAB_ID	QC_TYPE	SAMP_DATE	EXTR_DATE	ANAL DATE	SMP_EXTR	EXTR_ANL	SMP_ANL
HG	UG/L	MRC-MW70B-111207	A7K140155001	NM	11/12/2007	11/15/2007	11/16/2007	3	1	4
HG	UG/L	MRC-MW70B-111407	A7K150199001	NM	11/14/2007	11/16/2007	11/16/2007	2	0	2
HG	UG/L	MRC-MW70B-111507	A7K160209001	NM	11/15/2007	11/19/2007	11/20/2007	4	· 1 · · ·	5
М	UG/L	MRC-MW70B-111407	A7K150199001	NM	11/14/2007	11/16/2007	11/17/2007	2	1	3
М	UG/L	MRC-MW70B-111407	A7K150199001	NM	11/14/2007	11/16/2007	11/19/2007	2	3	5
M	UG/L	MRC-MW70B-111207	A7K140155001	NM	11/12/2007	11/15/2007	11/16/2007	3	1	. 4
М	UG/L	MRC-MW70B-111507	A7K160209001	NM	11/15/2007	11/19/2007	11/20/2007	4	1 .	5
HGF	UG/L	MRC-MW70B-111407	A7K150199001	NM	11/14/2007	11/16/2007	11/16/2007	2	. 0	2
HGF	UG/L	MRC-MW70B-111507	A7K160209001	NM	11/15/2007	11/19/2007	11/20/2007	4	1	5
HGF	UG/L	MRC-MW70B-111207	A7K140155001	NM	11/12/2007	11/15/2007	11/16/2007	3	1	4
MF	UG/L	MRC-MW70B-111207	A7K140155001	. NM	11/12/2007	11/15/2007	11/16/2007	3	1	4
MF	UG/L	MRC-MW70B-111407	A7K150199001	NM	11/14/2007	11/16/2007	11/17/2007	2	1	3
MF	UG/L	MRC-MW70B-111407	A7K150199001	NM	11/14/2007	11/16/2007	11/19/2007	2	3	5
MF	UG/L	MRC-MW70B-111507	A7K160209001	NM	11/15/2007	11/19/2007	11/20/2007	4	1	5
PH	NO UN	MRC-MW70B-111207	A7K140155001	NM	11/12/2007	11/14/2007	11/14/2007	2	0	2
				Merabas wasan a						

SORT	UNITS	NSAMPLE	LAB ID	QC_TYPE	SAMP_DATE	EXTR_DATE	ANAL_DATE	SMP_EXTR	EXTR_ANL	CMD ANU
PH	NO UN	MRC-MW70B-111507	A7K160209001	NM	11/15/2007	11/16/2007	11/16/2007	1	0	SWP_ANL
PH	NO UN	MRC-MW70B-111407	A7K150199001	NM	11/14/2007	11/15/2007	11/15/2007	1	. 0	1
OS	%	MRC-MW70B-111507DL	A7K160209001	NM	11/15/2007	11/17/2007	11/20/2007	2	3	5
OS	%	MRC-MW70B-111407DL	A7K150199001	NM ⁺	11/14/2007	11/15/2007	11/21/2007	1	6	7
os	%	MRC-MW70B-111207DL	A7K140155001	NM	11/12/2007	11/14/2007	11/19/2007	2	5.	7
os	UG/L	MRC-MW70B-111407DL	A7K150199001	NM .	11/14/2007	11/15/2007	11/21/2007	1	6	7
os	UG/L	MRC-MW70B-111507DL	A7K160209001	NM	11/15/2007	11/17/2007	11/20/2007	. 2	3	5
OS.	UG/L	MRC-MW70B-111207DL	A7K140155001	NM	11/12/2007	11/14/2007	11/19/2007	2	5	7
OV	%	MRC-MW70B-111207DL	A7K140155001	NM	11/12/2007	11/20/2007	11/20/2007	8	0	8
OV	%	MRC-MW70B-111407DL	A7K150199001	NM	11/14/2007	11/21/2007	11/21/2007	7	0	7
OV	%	MRC-MW70B-111507DL	A7K160209001	NM	11/15/2007	11/20/2007	11/20/2007	5	0	5
OV	%	TB-111307	A7K140155002	NM .	11/12/2007	11/20/2007	11/20/2007	. 8	0	8
OV	%	TB-111407	A7K150199002	NM	11/14/2007	11/21/2007	11/21/2007	7	0	7 .
OV	%	TB-111507	A7K160209002	NM	11/15/2007	11/20/2007	11/20/2007	5	0	5
OV	UG/L	MRC-MW70B-111207DL	A7K140155001	NM	11/12/2007	11/20/2007	11/20/2007	8	0	8
OV	UG/L	MRC-MW70B-111407DL	A7K150199001	NM	11/14/2007	11/21/2007	11/21/2007	7	0	7
OV	UG/L	MRC-MW70B-111507DL	A7K160209001	NM	11/15/2007	11/20/2007	11/20/2007	5	0	5
OV	UG/L	TB-111307	A7K140155002	NM .	11/12/2007	11/20/2007	11/20/2007	8	0	8
Tibineday	An	er/06-2007			-177%g (/c-100ga)			Ü	v	U

SORT	UNITS	NSAMPLE	LAB ID	QC_TYPE	SAMP_DATE	EXTR_DATE	ANAL_DATE	SMP_EXTR	EXTR_ANL	SMP_ANL
OV .	UG/L	TB-111407	A7K150199002	NM	11/14/2007	11/21/2007	11/21/2007	7	0	7
OV	UG/L	TB-111507	A7K160209002	NM	11/15/2007	11/20/2007	11/20/2007	5	0	5

METHOD BLANK REPORT

GC/MS Volatiles

Client Lot #...: 7K14155

MB Lot-Sample #: A7K200000-511

Analysis Date..: 11/20/07

Dilution Factor: 1

Work Order #...: KCM2M1AA

Matrix....: WATER

Final Wgt/Vol..: 5 mL

Prep Date....: 11/20/07

Prep Batch #...: 7324511 Initial Wgt/Vol: 5 mL

		REPORTI:	NG .	•
PARAMETER	RESULT	LIMIT	UNITS	METHOD
Acetone	ND	5.0	ug/L	SW846 8260B
Bromobenzene	ND -	1.0	ug/L	SW846 8260B
Bromochloromethane	ND	1.0	ug/L	SW846 8260B
Bromodichloromethane	ND	1.0	uq/L	SW846 8260B
2-Butanone	ND .	5.0	ug/L	SW846 8260B
n-Butylbenzene	ND .	1.0	ug/L	SW846 8260B
sec-Butylbenzene	ND	1.0	ug/L	SW846 8260B
tert-Butylbenzene	ND	1.0	ug/L	SW846 8260B
Carbon disulfide	ND	1.0	ug/L	SW846 8260B
Dibromochloromethane	ND	1.0	ug/L	SW846 8260B
1,2-Dibromo-3-chloro-	ND	2.0	ug/L	SW846 8260B
propane			, 5.	
2-Chloroethyl vinyl ether	ND	5.0	uq/L	SW846 8260B
2-Chlorotoluene	ND	1.0	ug/L	SW846 8260B
4-Chlorotoluene	ND	1.0	uq/L	SW846 8260B
1,2-Dibromoethane	ND	1.0	ug/L	SW846 8260B
Dibromomethane	ND	1.0	ug/L	SW846 8260B
1,2-Dichlorobenzene	ND	1.0	ug/L	SW846 8260B
1,3-Dichlorobenzene	ND	1.0	uq/L	SW846 8260B
1,4-Dichlorobenzene	ND	1.0	ug/L	SW846 8260B
Dichlorodifluoromethane	ND	1.0	ug/L	SW846 8260B
cis-1,2-Dichloroethene	ND	1.0	ug/L	SW846 8260B
trans-1,2-Dichloroethene	ND	1.0	ug/L	SW846 8260B
1,3-Dichloropropane	ND	1.0	ug/L	SW846 8260B
2,2-Dichloropropane	ND	1.0	ug/L	SW846 8260B
1,1-Dichloropropene	ND	1.0	ug/L	SW846 8260B
Trichlorofluoromethane	ND	1.0	ug/L	SW846 8260B
Hexachlorobutadiene	ND	1.0	ug/L	SW846 8260B
2-Hexanone	ND	5.0	ug/L	SW846 8260B
Isopropylbenzene	ND	1.0	ug/L	SW846 8260B
p-Isopropyltoluene	ND	1.0	ug/L	SW846 8260B
tert-Butyl alcohol	ND	20	ug/L	SW846 8260B
4-Methyl-2-pentanone	ND	5.0	ug/L	SW846 8260B
Naphthalene	(0.48 J)	1.0	ug/L	SW846 8260B
n-Propylbenzene	ND	1.0	ug/L	SW846 8260B
Styrene	ND	1.0	ug/L	SW846 8260B
1,1,1,2-Tetrachloroethane	ND	1.0	ug/L	SW846 8260B
1,2,3-Trichlorobenzene	8.57 J	1.0	ug/L	SW846 8260B
1,2,4-Trichloro-	(0.31 J	1.0	ug/L	SW846 8260B
benzene			.	
1,2,3-Trichloropropane	ND	1.0	ug/L	SW846 8260B

(Continued on next page)

METHOD BLANK REPORT

GC/MS Volatiles

Client Lot #...: 7K14155

Work Order #...: KCR781AA

Matrix..... WATER

MB Lot-Sample #: A7K230000-128

Prep Date....: 11/21/07

Final Wgt/Vol..: 5 mL

Analysis Date..: 11/21/07

Dilution Factor: 1

Prep Batch #...: 7327128

Initial Wgt/Vol: 5 mL

		REPORTI	NG	
PARAMETER	RESULT	LIMIT	UNITS	METHOD
Acetone	ND	5.0	ug/L	SW846 8260B
Bromobenzene	ND	1.0	ug/L	SW846 8260B
Bromochloromethane	ND	1.0	ug/L	SW846 8260B
Bromodichloromethane	NO	1.0	ug/L	SW846 8260B
2-Butanone	(0.90 J)	5.0	ug/L	SW846 8260B
n-Butylbenzene	ND	1.0	ug/L	SW846 8260B
sec-Butylbenzene	ND	1.0	ug/L	SW846 8260B
tert-Butylbenzene	ND	1.0	ug/L	SW846 8260B
Carbon disulfide	ND	1.0	ug/L	SW846 8260B
Dibromochloromethane	ND .	1.0	ug/L	SW846 8260B
1,2-Dibromo-3-chloro-	ND	2.0	ug/L	SW846 8260B
propane			J.	
2-Chloroethyl vinyl ether	ND	5.0	ug/L	SW846 8260B
2-Chlorotoluene	ND	1.0	ug/L	SW846 8260B
4-Chlorotoluene	ND	1.0	ug/L	SW846 8260B
1,2-Dibromoethane	ND	1.0	ug/L	SW846 8260B
Dibromomethane	ND	1.0	ug/L	SW846 8260B
1,2-Dichlorobenzene	ND	1.0	ug/L	SW846 8260B
1,3-Dichlorobenzene	ND.	1.0	ug/L	SW846 8260B
1,4-Dichlorobenzene	ND	1.0	ug/L	SW846 8260B
Dichlorodifluoromethane	ND	1.0	ug/L	SW846 8260B
cis-1,2-Dichloroethene	ND	1.0	ug/L	SW846 8260B
trans-1,2-Dichloroethene	ND	1.0	ug/L	SW846 8260B
1,3-Dichloropropane	ND	1.0	ug/L	SW846 8260B
2,2-Dichloropropane	ND	1.0	ug/L	SW846 8260B
1,1-Dichloropropene	ND	1.0	ug/L	SW846 8260B
Trichlorofluoromethane	ND	1.0	ug/L	SW846 8260B
Hexachlorobutadiene	ND	1.0	ug/L	SW846 8260B
2-Hexanone	ND	5.0	ug/L	SW846 8260B
Isopropylbenzene	ND .	1.0	ug/L	SW846 8260B
p-Isopropyltoluene	ND	1.0	ug/L	SW846 8260B
tert-Butyl alcohol	ND	20	ug/L	SW846 8260B
4-Methyl-2-pentanone	ND	5.0	ug/L	SW846 8260B
Naphthalene	$\left(0.52\ \mathrm{J}^{2}\right)$	1.0	ug/L	SW846 8260B
n-Propylbenzene	ND	1.0	ug/L	SW846 8260B
Styrene	ND	1.0	ug/L	SW846 8260B
1,1,1,2-Tetrachloroethane	ND	1.0	ug/L	SW846 8260B
1,2,3-Trichlorobenzene	Ø.57 J	1.0	ug/L	SW846 8260B
1,2,4-Trichloro-	Q.27 J	1.0	ug/L	SW846 8260B
benzene				
1,2,3-Trichloropropane	ND	1.0	ug/L	SW846 8260B

(Continued on next page)

5A VOLATILE ORGANIC GC/MS TUNING AND MASS CALIBRATION - BROMOFLUOROBENZENE (BFB)

Lab Name: TESTAMERICA-NORTH CANTON Contract:

Lab Code: TALCAN Case No.:

SAS No.:

SDG No.: 7K14155

Lab File ID: BFB2408

BFB Injection Date: 10/03/07

Instrument ID: A3UX10

BFB Injection Time: 1016

Matrix: (soil/water) WATER Level: (low/med) LOW Column: (pack/cap) CAP

m/e	ION ABUNDANCE CRITERIA	% RELATIVE ABUNDANCE
50 75 95 96 173 174 175 176	15.0 - 40.0% of mass 95 30.0 - 60.0% of mass 95 Base Peak, 100% relative abundance 5.0 - 9.0% of mass 95 Less than 2.0% of mass 174 50.0 - 100.0% of mass 95 5.0 - 9.0% of mass 174 Greater than 95.0%, but less than 101.0% of mass 174 5.0 - 9.0% of mass 176	16.5 46.6 100.0 6.8 0.2 (0.2)1 97.7 7.1 (7.3)1 95.8 (98.1)1 6.3 (6.6)2
·	1-Value is % of mass 174 2-Value is % of mass	ass 176

THIS TUNE APPLIES TO THE FOLLOWING SAMPLES, MS, MSD, BLANKS, AND STANDARDS:

			<u> </u>		• 1
	EPA	LAB	LAB	DATE	TIME
	SAMPLE NO.	SAMPLE ID	FILE ID	ANALYZED	ANALYZED
			1,1111,110	MINALITABL	AMALIZED
0.1	77CFFD 0 4 0			========	=======
01	VSTD040	200NG-IC	UXX7108	10/03/07	1041.
02	VSTD020	100NG-IC	UXX7109	10/03/07	1103
03	VSTD010	50NG-IC	UXX7110	10/03/07	1125
04	VSTD005	25NG-IC	UXX7111	10/03/07	1148
05	VSTD002	10NG-IC	UXX7112	10/03/07	
06	VSTD001			10/03/07	1210
	ABIDOOT	5NG-IC	UXX7113	10/03/07	1232
07					
80		<u></u>			
09					
10					
11					
12				·	· · · · · · · · · · · · · · · · · · ·
13	-	·		·	
14					
15	·				
16					
17					
18					
			· · · · · · · · · · · · · · · · · · ·		
19			-	_	
20					
21					
22				 !	
ارت					

page 1 of 1

FORM V VOA

1/87 Rev.

Report Date: 03-Oct-2007 12:07

STL Inc North Canton

INITIAL CALIBRATION DATA

Start Cal Date : 24-AUG-2007 18:07 End Cal Date : 03-OCT-2007 12:32

Quant Method : ISTD
Origin : Disabled
Target Version : 4.14
Integrator : HP RTE

Method file : \\cansvr11\dd\chem\MSV\a3ux10.i\P71003A-IC.b\8260LLUX10.m

Last Edit : 03-Oct-2007 12:48 quayler

Curve Type : Average

Calibration File Names:

Level 1: \\cansvr11\dd\chem\MSV\a3ux10.i\P71001A.b\UXX7040.D Level 2: \\cansvr11\dd\chem\MSV\a3ux10.i\P71001A.b\UXX7039.D Level 3: \\cansvr11\dd\chem\MSV\a3ux10.i\P71001A.b\UXX7038.D Level 4: \\cansvr11\dd\chem\MSV\a3ux10.i\P71001A.b\UXX7037.D Level 5: \\cansvr11\dd\chem\MSV\a3ux10.i\P71001A.b\UXX7036.D Level 6: \\cansvr11\dd\chem\MSV\a3ux10.i\P71001A.b\UXX7035.D

•	5.000	10.000	25.000	50.000	100.000	200.000	! 1	
Compound	Level 1	Level 2	Level 3	Level 4	Level 5	Level 6	RRF	% RSD
	= =========				=======	======================================	======	
8 Dichlorodifluoromethane	0.19727	0.19341	0.19404	0.18946	0.20809	0.20081	0.19718	3.33
9 Chloromethane	0.28290	0.26735	0.24358	0.24157	0.26193	0.25096	0.25805	6.12
10 Vinyl Chloride	0.27407	0.26754	0.25878	0.25102	0.26650	0.25355	0.26191	3.41
11 Bromomethane	0.13569	0.13933	0.12037	0.11115	0.13413	0.13238	•	8.37
12 Chloroethane	0.16778	0.16816	0.15803	0.14844	0.16766	0.16287	•	4.80
13 Trichlorofluoromethane	0.21689	0.21410	0.20330	0.19876	0.24323	0.24481		8.923
14 Dichlorofluoromethane	0.39658	0.46399	0.43907	0.40412	0.41293	0.40937		6.062
15 Acrolein	0.02139	0.02300	0.02249	•		0.02503[•	6.848
16 Acetone	0.10315	0.07645	0.06009	0.06847	0.062081			24.757
17 1,1-Dichloroethene	0.22736	0.22491	0.21897	0.22155	0.23159			2.512
18 Freon-113	0.19429	0.17919	0.18332	0.17965	0.19657		0.18811!	4.388
19 Iodomethane	0.39217	0.37711	0.37404		0.39983	•		3.07
20 Carbon Disulfide	0.70234	0.65684	•		0.69021	0.692591		4.457
21 Methylene Chloride	0.36502	0.30204		0.25358	0.25078	0.24751	0.27993	16.521
22 Acetonitrile	0.01484	0.01495	0.01570	0.01749	0.016061	0.01499	0.01567	6.472
23 Acrylonitrile	0.07575	0.07734		0.08616	0.08572	0.08300	0.08176	5.273
24 Methyl tert-butyl ether	0.64848	0.63417		0.67517	0.68588	0.68804	0.66475	3.269
25 trans-1,2-Dichloroethene	0.25688	0.25634		0.24924	0.26409	0.262381	0.25613	2.587
26 Hexane	0.064531	0.05830		0.06186	0.06489	0.06650	0.06276	4.919
27 Vinyl acetate	0.30446	0.31713	0.32952	0.34801	0.37904	0.37840	0.34276	9.145
28 1,1-Dichloroethane	0.38924	0.39172	0.39699	0.39781	0.40864	0.41007	0.39908	
29 tert-Butyl Alcohol	0.01268	0.01244	0.01358	0.01589	0.01381	0.01235		2.153
30 2-Butanone	0.100371	0.09328	0.090661	0.09858	0.01381	0.01235	0.01346) 9.915
31 1,2-Dichloroethene (total)	0.25799	0.257601	0.25413	0.25559	0.26641	0.09270	0.09524	3.902
32 cis-1,2-dichloroethene	0.259091	0.258861	0.26042	0.26195	0.26872	0.26473	'	1.928
33 2,2-Dichloropropane	0.21330	0.21448	0.22219	0.22930	0.24934	0.26708	0.26269	1.607
34 Bromochloromethane	0.12701	0.12531	0.13073	0.13357	0.13625	•	0.22876	6.606
35 Chloroform	0.39757	0.39589	0.40058	0.40201	0.13625	0.13500	0.13131	3.371
	1	1.55555	0.400301	0.40201	0.41030	0.40521	0.40193	1.308

VOLATILE ORGANIC GC/MS TUNING AND MASS CALIBRATION - BROMOFLUOROBENZENE (BFB)

Lab Name: TESTAMERICA-NORTH CANTON Contract:

Lab Code: TALCAN Case No.:

SAS No.:

SDG No.: 7K14155

Lab File ID: BFB2457

BFB Injection Date: 11/20/07

Instrument ID: A3UX10

BFB Injection Time: 0952

Matrix: (soil/water) WATER Level: (low/med) LOW Column: (pack/cap) CAP

m/e	ION ABUNDANCE CRITERIA	% RELATIVE ABUNDANCE
50 75 95 96 173 174 175 176	15.0 - 40.0% of mass 95 30.0 - 60.0% of mass 95 Base Peak, 100% relative abundance 5.0 - 9.0% of mass 95 Less than 2.0% of mass 174 50.0 - 100.0% of mass 95 5.0 - 9.0% of mass 174 Greater than 95.0%, but less than 101.0% of mass 174 5.0 - 9.0% of mass 176	18.2 50.0 100.0 6.5 0.4 (0.5)1 92.4 7.4 (8.0)1 90.3 (97.8)1 5.7 (6.3)2
	1-Value is % of mass 174 2-Value is % of mass 174	ass 176

THIS TUNE APPLIES TO THE FOLLOWING SAMPLES, MS, MSD, BLANKS, AND STANDARDS:

	EPA	LAB	LAB	DATE	TIME
	SAMPLE NO.	SAMPLE ID	FILE ID	ANALYZED	ANALYZED
	========	=============	==========	=======	========
01	VSTD010	50NG-CC	UXX8446	11/20/07	1022
02	VSTD010	50NG-A9CC	UXX8447	11/20/07	1043
03	KCM2M-CHK	KCM2M1AC	UXX8448	11/20/07	1105
04	KCM2M-CKDUP	KCM2M1AD	UXX8449	11/20/07	1127
05	KCM2M-BLK	KCM2M1AA	UXX8450	11/20/07	1149
	MRC-MW70B-11	KA71H1CF	UXX8456	11/20/07	1400
07	MRC-MW70B-11	KCE511CF	UXX8460	11/20/07	1528
80	TB-111507	KCE7K1AA	UXX8461	11/20/07	1552
09	TB-111307	KA71N1AA	UXX8463	11/20/07	1635
10			<u>.</u>	·	
11					
12					
13					
14					
15					
16					
17					
18					
19					
20					
21					
22					

page 1 of 1

FORM V VOA

1/87 Rev.

Data File: \\cansvr11\dd\chem\MSV\a3ux10.i\P71120A.b\UXX8446.D Report Date: 20-Nov-2007 11:01

STL Inc North Canton

CONTINUING CALIBRATION COMPOUNDS

Instrument ID: a3ux10.i Injection Date: 20-NOV-2007 10:22
Lab File ID: UXX8446.D Init. Cal. Date(s): 24-AUG-2007 03-OCT-2007
Analysis Type: WATER Init. Cal. Times: 18:07 12:32
Lab Sample ID: 50NG-CC Quant Type: ISTD
Method: \\cansvr11\\dd\chem\MSV\\a3ux10.i\\P71120A.b\\8260LLUX10.m

	1	1	CCAL MIN	1	MAX	
COMPOUND	[RRF / AMOUNT]	RF50		%D / %DRIFT		
\$ 4 Dibromofluoromethane	0.22575	0.22511	0.22511 0.010	0.282281	50.00000	
\$ 5 1,2-Dichloroethane-d4	0.26034	0.26183	0.26183 0.010	-0.571391	50.00000	
\$ 6 Toluene-d8	1.21891	1.049991	1.0499910.0101	13.85875	50.00000	•
\$ 7 Bromofluorobenzene	0.444831	0.40140	0.40140 0.010	9.76160	50.00000	-
8 Dichlorodifluoromethane	0.19718	0.20140	0.20140 0.010	-2.14057	50.00000	Averaged
9 Chloromethane	0.258051	0.23481	0.23481 0.100	9.00721	50.00000	-
10 Vinyl Chloride	0.26191	0.239891	0.23989 0.010	8.408541	20.00000	Averaged
11 Bromomethane	0.12884	0.14689	0.14689 0.010	-14.00544	50.00000	
12 Chloroethane	0.16216	0.16211	0.16211 0.010	0.028161	50.00000	=
13 Trichlorofluoromethane	0.22018	0.21367	0.21367 0.010	2.956141	50.00000	
15 Acrolein	0.023691	0.00662	0.00662 0.010	72.06690	50.00000	
16 Acetone	1001	93.379141	0.05743 0.010	6.620861	0.000e+000	Wt Linear
17 1,1-Dichloroethene	0.226341	0.20235	0.20235 0.010	10.60034	20.000001	Averaged
18 Freon-113	0.18811	0.17852	0.17852 0.010	5.09623]	50.00000	Averaged
19 Iodomethane	0.386101	0.368941	0.36894 0.010	4.444021	50.00000	Averaged
O Carbon Disulfide	0.669031	0.56665	0.56665 0.010	15.30226	50.000001	Averaged
1 Methylene Chloride	50.000001	43.80073	0.22528 0.010	12.39853	0.000e+000	Wt Linea:
2 Acetonitrile	0.01567	0.02215	0.02215 0.010	-41.35417	50.000001	Average
3 Acrylonitrile	0.08176	0.06744	0.06744 0.010	17.50749	50.00000	Average
4 Methyl tert-butyl ether	0.66475	0.557501	0.55750 0.010	16.13464	50.000001	Average
5 trans-1,2-Dichloroethene	0.25613	0.22680	0.22680 0.010	11.45007	50.00000	Average
6 Hexane	0.062761	0.054661	0.05466 0.010	12_908921	20.000001	Average
7 Vinyl acetate	0.34276	0.20004	0.20004 0.010	41.636961	50.000001	Average
8 1,1-Dichloroethane	0.399081	0.38031	0.38031 0.100	4.703501	50.000001	Average
9 tert-Butyl Alcohol	0.013461	0.01467	0.01467 0.010	-8.99763	50.000001	Average
3 2-Butanone	0.09524	0.089051	0.08905[0.010]	6.49692	50.000001	Average
31 1,2-Dichloroethene (total)	0.25941	0.239361	0.23936 0.010	7.726471	50.000001	-
cis-1,2-dichloroethene	0.262691	0.25193	0.25193 0.010	4.095881	50.000001	
3 2,2-Dichloropropane	0.22876	0.21318	0.21318 0.010	6.814221	50.000001	-
4 Bromochloromethane	0.13131	0.13962	0.13962 0.010	-6.327661	50.000001	Average
5 Chloroform	0.40193	0.40308	0.40308 0.010	-0.28719	20.00000	Average
6 Tetrahydrofuran	0.06046	0.05063	0.05063[0.010]	16.24690	50.000001	Average
7 1,1,1-Trichloroethane	0.31317	0.31694	0.31694 0.010	-1.20471	50.000001	Average
8 1,1-Dichloropropene	0.32316	0.29942!	0.29942[0.010]	7.346031	50.000001	Average
Carbon Tetrachloride	0.261691	0.27335	0.27335 0.010	-4.454601	50.000001	Average
1,2-Dichloroethane	0.307991	0.30418	0.30418 0.010	1.23642	50.000001	Average
l Benzene	1.01432	0.93241	0.93241 0.010	8.07482	50.000001	_
2 Trichloroethene	0.28313	0.28665	0.28665 0.010	-1.24384	50.000001	•
3 1,2-Dichloropropane	0.22101	0.20741	0.20741 0.010	6.15402	20.000001	•
4 1,4-Dioxane	1 25001	3813	0.00217[0.010]		0.000e+000	Linea
o Dibromomethane	0.13409	0.140091	0.14009 0.010	-4.475181	50.000001	
6 Bromodichloromethane	0.282391	0.28516	0.28516 0.010	-0.98137	50.000001	
7 2-Chloroethyl vinyl ether	0.12951	0.12223	0.12223 0.010	5,617771	50.000001	-

VOLATILE ORGANIC GC/MS TUNING AND MASS CALIBRATION - BROMOFLUOROBENZENE (BFB)

Lab Name: TESTAMERICA-NORTH CANTON Contract:

Lab Code: TALCAN Case No.:

SAS No.:

SDG No.: 7K14155

Lab File ID: BFB2459

BFB Injection Date: 11/21/07

Instrument ID: A3UX10

BFB Injection Time: 1000

Matrix: (soil/water) WATER Level: (low/med) LOW Column: (pack/cap) CAP

m/e	ION ABUNDANCE CRITERIA	% RELATIVE ABUNDANCE
50 75 95 96 173 174 175 176	15.0 - 40.0% of mass 95 30.0 - 60.0% of mass 95 Base Peak, 100% relative abundance 5.0 - 9.0% of mass 95 Less than 2.0% of mass 174 50.0 - 100.0% of mass 95 5.0 - 9.0% of mass 174 Greater than 95.0%, but less than 101.0% of mass 174 5.0 - 9.0% of mass 176	19.4 50.6 100.0 6.5 0.6 (0.6)1 93.6 7.3 (7.8)1 89.4 (95.6)1 6.2 (6.9)2
,	1-Value is % of mass 174 2-Value is % of mass 174	ss 176

THIS TUNE APPLIES TO THE FOLLOWING SAMPLES, MS, MSD, BLANKS, AND STANDARDS:

				· · · · · · · · · · · · · · · · · · ·	
	EPA	LAB	LAB	DATE	TIME
	SAMPLE NO.	SAMPLE ID	FILE ID	ANALYZED	ANALYZED
	=========	=======================================	=======================================		========
01	VSTD010	50NG-CC	UXX8501	11/21/07	1025
02	VSTD010	50NG-A9CC	UXX8502	11/21/07	1047
03	KCR78-CHK	KCR781AC	UXX8503	11/21/07	1109
04	KCR78-CKDUP	KCR781AD	UXX8504	11/21/07	
05	KCR78-EKDOF	KCR781AA		11/21/07	1131
		l	UXX8505	11/21/07	1153
06	TB-111407	KCATV1AA	UXX8525	11/21/07	1935
07	MRC-MW70B-11	KCATK1CF	UXX8530	11/21/07	2125
08					
09					
10					
11					
12		-			
13					
14					
15					
16		- · · · · · · · · · · · · · · · · · · ·			
17					
18					
19					
20		l			
21					
22				· · · · · · · · · · · · · · · · · · ·	
,					

page 1 of 1

FORM V VOA

1/87 Rev.

Data File: \\cansvr11\dd\chem\MSV\a3ux10.i\P71121A.b\UXX8501.D

Report Date: 21-Nov-2007 11:17

STL Inc North Canton

CONTINUING CALIBRATION COMPOUNDS

Instrument ID: a3ux10.i Injection Date: 21-NOV-2007 10:25

Lab File ID: UXX8501.D Init. Cal. Date(s): 24-AUG-2007 03-OCT-2007

Analysis Type: WATER Init. Cal. Times: 18:07 12
Lab Sample ID: 50NG-CC Quant Type: ISTD
Method: \\cansvr11\\dd\chem\MSV\\a3ux10.i\\P71121A.b\\8260LLUX10.m

COMPOUND		1	CCAL MIN		MAX I	
COMPOUND	RRF / AMOUNT	RF50		%D / %DRIFT		
\$ 4 Dibromofluoromethane	0.22575	0.21644	0.21644 0.010		50.000001	
\$ 5 1,2-Dichloroethane-d4	0.260341	0.24239	0.24239 0.010	6.893391	50.000001	
\$ 6 Toluene-d8	1.21891	1.04633	1.04633 0.010	14.15835	50.000001	-
\$ 7 Bromofluorobenzene	0.444831	0.39787	0.39787 0.010	10.55615	50.000001	Average
8 Dichlorodifluoromethane	0.19718	Ö.18837	0.18837 0.010	4.46631	50.000001	Average
9 Chloromethane	0.258051	0.21506	0.21506[0.100	16.66072	50.000001	Average
10 Vinyl Chloride	0.26191	0.222911	0.22291 0.010	14.888321	20.000001	Average
11 Bromomethane	0.128841	0.13605	0.13605 0.010	-5.592721	50.000001	Average
12 Chloroethane	0.16216	0.15745	0.15745 0.010	2.904321	50.000001	Average
13 Trichlorofluoromethane	0.22018	0.21928	0.21928 0.010	0.410371	50.00000	Average
15 Acrolein	0.023691	0.00478	0.00478 0.010	79.81924	50.00000	Average
16 Acetone	100	85.28791	0.05285 0.010	14.712091	0.000e+000	Wt Linea
17 1,1-Dichloroethene	0.22634	0.19390	0.19390 0.010	14.33345	20.000001	Average
18 Freon-113	0.18811	0.16577	0.16577 0.010	11.87366	50.000001	Average
19 Iodomethane	0.38610	0.34672	0.34672 0.010	10.19736	50.000001	Average
20 Carbon Disulfide	1 0.669031	0.602281	0.60228 0.010	9.97781	50.000001	Average
21 Methylene Chloride	50.000001	41.67087	0.21488 0.010	16.658251	0.000e+0001	Wt Linea
22 Acetonitrile	0.01567	0.01922	0.01922 0.010	-22.659561	50.000001	Average
3 Acrylonitrile	0.08176	0.06475	0.06475 0.010	20.804471	50.000001	Average
24 Methyl tert-butyl ether	0.66475	0.57623	0.57623 0.010	13.31614	50.000001	Average
25 trans-1,2-Dichloroethene	0.25613	0.22728	0.22728 0.010	11.26315	50.000001	Average
26 Hexane	0.062761	0.05025	0.05025 0.010	19 <u>.921</u> 991	20.000001	Average
27 Vinyl acetate	0.34276	0.20831	0.20831 0.010	39.226691	50.000001	Average
28 1,1-Dichloroethane	0.399081	0.37481	0.37481 0.100	181981	50.000001	Average
29 tert-Butyl Alcohol	0.013461	0.014891	0.01489 0.010	-10.67476	50.000001	Average
30 2-Butanone	0.095241	0.086891	0.08689 0.010	8.765171	50.000001	Average
4 31 1,2-Dichloroethene (total)	0.25941	0.24114	0.24114 0.010	7.042351	50.000001	Average
2 cis-1,2-dichloroethene	0.262691	0.25500	0.25500 0.010	2.926951	50.000001	Average
3 2,2-Dichloropropane	0.22876	0.21201	0.21201 0.010	7.323561	50.000001	Average
34 Bromochloromethane	0.13131	0.13518	0.13518 0.010	-2.94664	50.000001	Average
35 Chloroform	0.401931	0.38891	0.38891 0.010	3.238621	20.000001	Average
36 Tetrahydrofuran	0.060461	0.05872	0.05872 0.010	2.86941	50.000001	Average
37 1,1,1-Trichloroethane	0.31317	0.31428	0.31428 0.010	-0.355021	50.000001	Average
38 1,1-Dichloropropene	0.32316	0.29270	0.29270 0.010	9.424221	50.000001	Average
39 Carbon Tetrachloride	0.26169	0.25553	0.25553 0.010	2.35370	50.000001	Average
0 1,2-Dichloroethane	0.307991	0.29978	0.29978 0.010	2.666991	50.000001	Average
1 Benzene	1.01432	0.90687	0.90687 0.010	10.59295	1000001	Average
2 Trichloroethene	0.283131	0.28199	0.28199 0.010	0.40296	50.000001	Average
3 1,2-Dichloropropane	0.22101	0.208861	0.20886 0.010	5.49918	20.00000	Average
4 1,4-Dioxane	2500	3515	0.00200 0.010	-40.60871	0.000e+000	Linea
15 Dibromomethane	0.13409	0.13749	0.13749 0.010	-2.533271	50.000001	Average
16 Bromodichloromethane	0.282391	0.28900	0.28900 0.010		50.000001	Average
17 2-Chloroethyl vinyl ether	0.12951	0.11252	0.11252 0.010		50.000001	Average

CALCULATION WORKSHEET

Page 1 of 1

CLIENT:	SDG No.
MARTIN STATE AIRPORT	7K14155
SUBJECT:	
EXAMPLE CALCULATION - VOCS - WATER	
BY:	DATE:
T. JACKMAN	02/20/08

Sample MW-70B-111207	Trichloroethene
Concentration = 4400 ug/L	

EQUATION:

$$C_{W} = \frac{A_{X} \times ls \times Df}{Ais \times RRF \times V_{O}}$$

Where:

C_{w}	=	analyte concentration in water		ug/L
A _x	=	analyte response	=	1451587
ls	=	amount of internal standard	=	50 ng
Df	=	dilution factor	=	142.86
Ais	=	response of internal standard	=	1680266
RRF	=	response factor of compound	=	0.28313
Vo	=	volume of water purged	=	5 mL

Therefore: the concentration of trichloroethene in water =

C_w = 4359.0 ug/L

Tetra Tech NUS, Inc

Client Sample ID: MRC-MW70B-111207

GC/MS Volatiles

Lot-Sample #...: A7K140155-001 Work Order #...: KA71H1CF Matrix...... WG

Date Sampled...: 11/12/07 16:50 Date Received..: 11/14/07 Prep Date....: 11/20/07 Analysis Date..: 11/20/07

Prep Batch #...: 7324511

Dilution Factor: 142.86 Initial Wgt/Vol: 6 mL Final Wgt/Vol.. 5 mL Method...... SW846 8260B

		REPORTING	G
PARAMETER	RESULT	LIMIT	UNITS
Bromobenzene	ND	140	ug/L
Bromochloromethane	ND	140	${\tt ug/L}$
2-Chloroethyl vinyl ether	ND	710	ug/L
2-Butanone	ND	710	ug/L
Xylenes (total)	ND	290	ug/L
1,2,3-Trichloropropane	ND	140	ug/L
1,1,2-Trichloro-	ND	140	ug/L
1,2,2-trifluoroethane			
cis-1,2-Dichloroethene	150	140	ug/L
trans-1,2-Dichloroethene	ND	140	ug/L
o-Xylene	ND	140	ug/L
m-Xylene & p-Xylene	ND	290	ug/L
Isopropylbenzene	ND	140	ug/L
1,2-Dibromo-3-chloro-	ND	290	ug/L
propane			
Dichlorodifluoromethane	ND	140	ug/L
Trichlorofluoromethane	ND	140	ug/L
Acetone	ND	710	ug/L
Bromodichloromethane	ND	140	ug/L
n-Butylbenzene	ND	140	${\tt ug/L}$
sec-Butylbenzene	ND	140	${ t ug/L}$
tert-Butylbenzene	ND	140	ug/L
Carbon disulfide	ND	140	ug/L
Dibromochloromethane	ND	140	ug/L
2-Chlorotoluene	ND	140	ug/L
4-Chlorotoluene	ND	140	${\tt ug/L}$
1,2-Dibromoethane	ND	140	ug/L
Dibromomethane	ND	140	ug/L
1,2-Dichlorobenzene	ND	140	ug/L
1,3-Dichlorobenzene	ND	140	ug/L
1,4-Dichlorobenzene	ND	140	ug/L
1,3-Dichloropropane	ND	140	ug/L
2,2-Dichloropropane	ND	140	ug/L
1,1-Dichloropropene	ND	140	ug/L
Hexachlorobutadiene	ND	140	ug/L
2-Hexanone	ND	710	ug/L
p-Isopropyltoluene	ND	140	ug/L
tert-Butyl alcohol	ND	2900	ug/L

(Continued on next page)

Tetra Tech NUS, Inc

Client Sample ID: MRC-MW70B-111207

GC/MS Volatiles

Lot-Sample a	#: A7K140155-001	Work Order #	• KA71H1CF	Matrix	- MC
TOU DOMESTE 1	r	MOTV OTGET A	Talaa NA/IIIIUE	PIGLITA	٧٧ (3

		REPORTING	
PARAMETER	RESULT	LIMIT	UNITS
4-Methyl-2-pentanone	ND	710	ug/L
Naphthalene	ND	140	ug/L
n-Propylbenzene	ND	140	ug/L
Styrene	ND	140	ug/L
1,1,1,2-Tetrachloroethane	ND	140	ug/L
1,2,3-Trichlorobenzene	ND	140	ug/L
1,2,4-Trichloro-	ND	140	ug/L
benzene	·=	0	91
1,2,4-Trimethylbenzene	ND	140	ug/L
Vinyl acetate	ND	290	ug/L
1,2,3-Trimethylbenzene	ND	710	ug/L
Diisopropyl Ether (DIPE)	ND	710	ug/L
Ethyl-t-Butyl Ether (ETBE)	ND	710	ug/L
Tert-amyl methyl ether (TAME)	ND	710	ug/L
Methyl tert-butyl ether	ND	710	ug/L
Benzene	ND	140	ug/L ug/L
Bromoform	ND	140	ug/L ug/L
Bromomethane	ND ND	140	ug/L ug/L
Carbon tetrachloride	ND	140	ug/L ug/L
Chlorobenzene	ND	140	ug/L ug/L
Chloroethane	ND	140	ug/L ug/L
Chloroform	ND	140	ug/L ug/L
Chloromethane	ND	140	ug/L ug/L
1,1-Dichloroethane	97 J	140	ug/L ug/L
1,2-Dichloroethane	ND	140	ug/L ug/L
1,1-Dichloroethene	830	140	-
1,2-Dichloropropane	ND	140	ug/L ug/L
cis-1,3-Dichloropropene	ND ND	140	=
trans-1,3-Dichloropropene	ND ND	140	ug/L
			ug/L
Ethylbenzene Mothylene ableride	ND	140	ug/L
Methylene chloride	ND	140	ug/L
1,1,2,2-Tetrachloroethane Tetrachloroethene	ND	140	ug/L
	ND	140	ug/L
Toluene	ND	140	ug/L
1,1,1-Trichloroethane	3 3 J	140	ug/L
Trichloroethene	4400	140	ug/L
Vinyl chloride	ND	140	ug/L
	DEDCENT	DECOME	
CUDDOCATE	PERCENT	RECOVERY	
SURROGATE Dibromofluoromethana	RECOVERY	LIMITS	•
Dibromofluoromethane	101	(73 - 122)	
1,2-Dichloroethane-d4	96	(61 - 128)	
Toluene-d8	81	(76 - 110)	
4-Bromofluorobenzene	81	(74 - 116)	

NOTE(S):

J Estimated result. Result is less than RL.

Data File: \\cansvr11\dd\chem\MSV\a3ux10.i\P71120A.b\UXX8456.D

Report Date: 20-Nov-2007 15:18

STL Inc North Canton

VOLATILE REPORT SW-846 Method

Data file : \\cansvr11\\dd\chem\MSV\a3ux10.i\P71120A.b\\UXX8456.D

Lab Smp Id: KA71H1CF Client Smp ID: MRC-MW70B-111207

Inst ID: a3ux10.i

Inj Date : 20-NOV-2007 14:00 Operator : 1904 Smp Info : KA71H1CF, 0.035ML/5ML Misc Info: P71120A,8260LLUX10,,1904

Comment

Method : \\cansvr11\dd\chem\MSV\a3ux10.i\P71120A.b\8260LLUX10.m

Meth Date: 20-Nov-2007 11:01 a3ux10.i Quant Type: ISTD Cal Date : 01-OCT-2007 11:39 Cal File: UXX7037.D

Als bottle: 11

Dil Factor: 1.00000 Integrator: HP RTE

Compound Sublist: 4-8260+IX.sub

Target Version: 4.14
Processing Host: CANSVR11

Concentration Formula: Amt * DF * 1/Vo * CpndVariable

Name	Value	Description
DF Vo Va Cpnd Variable	0.03500	Dilution Factor Sample volume Injection Volume Local Compound Variable

			CONCENTRATION	NS
		QUANT SIG	ON-COLUMN F	INAL
Co	ompounds	MASS	RT EXP RT REL RT RESPONSE (ng) (ng)	ug/L)
==		====		
*	1 Fluorobenzene	96	5.383 5.372 (1.000) 1680266 50.0000	
*	2 Chlorobenzene-d5	117	8.069 8.070 (1.000) 1409557 50.0000	
*	3 1,4-Dichlorobenzene-d4	152	10.330 10.330 (1.000) 749924 50.0000	
\$	4 Dibromofluoromethane	113	4.804 4.804 (0.892) 382813 50.4608 14	441.7
\$	5 1,2-Dichloroethane-d4	65	5.088 5.088 (0.945) 421767 48.2088 13	377.4
\$	6 Toluene-d8	98	6.744 6.744 (0.836) 1399891 40.7389 13	164.0
\$	7 Bromofluorobenzene	95	9.194 9.194 (1.139) 506227 40.3686 13	153.4
	8 Dichlorodifluoromethane	85	Compound Not Detected.	
	9 Chloromethane	50	Compound Not Detected.	
	10 Vinyl Chloride	62	Compound Not Detected.	
	11 Bromomethane	94	Compound Not Detected.	
	12 Chloroethane	64	Compound Not Detected.	
	13 Trichlorofluoromethane	101	Compound Not Detected.	
	15 Acrolein	56	Compound Not Detected.	
	16 Acetone	43	Compound Not Detected.	
	17 1,1-Dichloroethene	96	2.922 2.922 (0.543) 220982 29.0530 83	30.08
	18 Freon-113	151	Compound Not Detected.	
	19 Iodomethane	142	Compound Not Detected.	
	20 Carbon Disulfide	76	Compound Not Detected.	
	21 Methylene Chloride	84	Compound Not Detected.	

Data File: $\c Nov-2007 15:18$

24 Methyl tert-butyl ether 73 25 trans-1,2-Dichloroethene 96 26 Hexane 86 27 Vinyl acetate 43	ON-COLUMN FINAL RT EXP RT REL RT RESPONSE (ng) (ug/L) Compound Not Detected. 47631 5.39564 154.16 4401 4.402 (0.818) 47631 5.39564 154.16
24 Methyl tert-butyl ether 73 25 trans-1,2-Dichloroethene 96 26 Hexane 86 27 Vinyl acetate 43 28 1,1-Dichloroethane 63 3 29 tert-Butyl Alcohol 59 30 2-Butanone 43	Compound Not Detected. Compound Not Detected. Compound Not Detected. Compound Not Detected916 3.916 (0.727) 45555 3.39680 97.051 Compound Not Detected. Compound Not Detected. 47631 5.39564 154.16
24 Methyl tert-butyl ether 73 25 trans-1,2-Dichloroethene 96 26 Hexane 86 27 Vinyl acetate 43 28 1,1-Dichloroethane 63 3 29 tert-Butyl Alcohol 59 30 2-Butanone 43	Compound Not Detected. Compound Not Detected. Compound Not Detected. Compound Not Detected916 3.916 (0.727) 45555 3.39680 97.051 Compound Not Detected. Compound Not Detected. 47631 5.39564 154.16
25 trans-1,2-Dichloroethene 96 26 Hexane 86 27 Vinyl acetate 43 28 1,1-Dichloroethane 63 3 29 tert-Butyl Alcohol 59 30 2-Butanone 43	Compound Not Detected. Compound Not Detected. Compound Not Detected916 3.916 (0.727) 45555 3.39680 97.051 Compound Not Detected. Compound Not Detected. 47631 5.39564 154.16
26 Hexane 86 27 Vinyl acetate 43 28 1,1-Dichloroethane 63 3 29 tert-Butyl Alcohol 59 30 2-Butanone 43	Compound Not Detected. Compound Not Detected. .916
27 Vinyl acetate 43 28 1,1-Dichloroethane 63 3 29 tert-Butyl Alcohol 59 30 2-Butanone 43	Compound Not Detected916
28 1,1-Dichloroethane 63 3 29 tert-Butyl Alcohol 59 30 2-Butanone 43	.916 3.916 (0.727) 4555 3.39680 97.051 Compound Not Detected. Compound Not Detected. 47631 5.39564 154.16
29 tert-Butyl Alcohol 59 30 2-Butanone 43	Compound Not Detected. Compound Not Detected. 47631 5.39564 154.16
30 2-Butanone 43	Compound Not Detected. 47631 5.39564 154.16
	47631 5.39564 154.16
M 31 1,2-Dichloroethene (total) 96	
	.401 4.402 (0.818) 47631 5.39564 154.16
32 cis-1,2-dichloroethene 96 4	
33 2,2-Dichloropropane 77	Compound Not Detected.
34 Bromochloromethane 128	Compound Not Detected.
35 Chloroform 83	Compound Not Detected.
36 Tetrahydrofuran 42 4	.650 4.650 (0.864) 4634 2.28090 65.168
37 1,1,1-Trichloroethane 97 4	.839 4.839 (0.899) 12274 1.16626 33.322
38 1,1-Dichloropropene 75	Compound Not Detected.
39 Carbon Tetrachloride 117	Compound Not Detected.
40 1,2-Dichloroethane 62	Compound Not Detected.
41 Benzene 78	Compound Not Detected
42'Trichloroethene 130 5	.691 5.691 (1.057) 1451587 152.565 4359.0
43 1,2-Dichloropropane 63	Compound Not Detected.
44 1,4-Dioxane 88	Compound Not Detected.
45 Dibromomethane 93	Compound Not Detected.
46 Bromodichloromethane 83	Compound Not Detected.
47 2-Chloroethyl vinyl ether 63	Compound Not Detected.
48 cis-1,3-Dichloropropene 75	Compound Not Detected.
49 4-Methyl-2-pentanone 43	Compound Not Detected.
50 Toluene 91	Compound Not Detected.
51 trans-1,3-Dichloropropene 75	Compound Not Detected.
52 Ethyl Methacrylate 69	Compound Not Detected.
53 1,1,2-Trichloroethane 97	Compound Not Detected.
54 1,3-Dichloropropane 76	Compound Not Detected.
55 Tetrachloroethene 164	Compound Not Detected.
56 2-Hexanone 43	Compound Not Detected.
57 Dibromochloromethane 129	Compound Not Detected.
58 1,2-Dibromoethane 107	Compound Not Detected.
59 Chlorobenzene 112	Compound Not Detected.
60 1,1,1,2-Tetrachloroethane 131	Compound Not Detected.
61 Ethylbenzene 106	Compound Not Detected.
62 m + p-Xylene 106	Compound Not Detected.
M 63 Xylenes (total) 106	Compound Not Detected.
64 Xylene-o 106	Compound Not Detected.
65 Styrene 104	Compound Not Detected.
66 Bromoform 173	Compound Not Detected.
67 Isopropylbenzene 105	Compound Not Detected.
68 1,1,2,2-Tetrachloroethane 83	Compound Not Detected.
69 1,4-Dichloro-2-butene 53	Compound Not Detected.
70 1,2,3-Trichloropropane 110	Compound Not Detected.
71 Bromobenzene 156	Compound Not Detected.
72 n-Propylbenzene 120	Compound Not Detected.
73 2-Chlorotoluene 126	Compound Not Detected.
74 1,3,5-Trimethylbenzene 105	Compound Not Detected.
75 4-Chlorotoluene 126	Compound Not Detected.

Report Date : 03-Oct-2007 12:07

STL Inc North Canton

INITIAL CALIBRATION DATA

Start Cal Date : 24-AUG-2007 18:07 End Cal Date : 03-OCT-2007 12:32

Quant Method : ISTD Origin : Disabled Target Version : 4.14 Integrator Method file : HP RTE

: \\cansvr11\dd\chem\MSV\a3ux10.i\P71003A-IC.b\8260LLUX10.m

Last Edit : 03-Oct-2007 12:48 quayler

Curve Type : Average

Compour 4	5.000	10.000	25.000	50.000	100.000	200.000		
Compound	Level 1	Level 2	Level 3	Level 4	Level 5	Level 6	RRF	% RSD
			=======	========	=======			
36 Tetrahydrofuran	0.06275		0.06109	0.06479	0.06150	0.05898	0.06046	6.3
37 1,1,1-Trichloroethane	0.30626	0.30327	0.31156	0.30825	0.32522	0.32447	0.31317	3.03
38 1,1-Dichloropropene	0.31940	0.31913	0.31559	0.31949	0.33608	0.32924	0.32316	2.43
39 Carbon Tetrachloride	0.24903	0.24429	0.24759	0.25907	0.28215	0.28805	0.26169	7.2
40 1,2-Dichloroethane	0.31695	0.29921	0.30301	0.31153	0.30919	0.30804	0.30799	2.0
41 Benzene	1.03661	1.00300	0.99398	1.01496	1.01715	1.02021	1_01433	1.4
42 Trichloroethene	0.28810	0.27551	0.27697	0.27993	0.28885	0.28941	0.28313	2.2
43 1,2-Dichloropropane	0.21324	0.21497	0.21722	0.22462	0.22640	0.22962		3.05
44 1.4-Dioxane	0.00077	0.00102	0.00101	0.00170	0.00153	0.00139	0.00124	29.06
45 Dibromomethane	0.13558	0.12550	0.13354	0.13672	0.13726	0.13595	0.13409	3.28
46 Bromodichloromethane	0.27037	0.26031	0.27793	0.28685	0.29716	0.30171	0.28239	5.62
47 2-Chloroethyl vinyl ether	0.11653	0.12061	0.12620	0.13529	0.13845	0.13995	0.12951	7.5
48 cis-1,3-Dichloropropene	0.27811	0.28828	0.30969	0.33759	0.35438	0.366421	0.32241	11.16
49 4-Methyl-2-pentanone	0.17139	0.17259	0.19024	0.19467	0.19586	0.19067	0.18590	5.92
50 Toluene	1.38223	1.39676	1.40151	1.43431	1.46800	1.47833	1.42685	2.79
51 trans-1,3-Dichloropropene	0.29203	0.30410	0.34185	0.37113	0.39908	0.41615	0.35406	
52 Ethyl Methacrylate	0.28993	0.30827	0.35307	0.37466	0.38956	0.40201	0.35292	14.21
53 1,1,2-Trichloroethane	0.26686	0.25840	0.26889	0.27836	0.27728	0.26998	•	12.78
54 1,3-Dichloropropane	0.45663	0.45316	0.46768	0.48872	0.49215	0.48976	0.26996	2.71
55 Tetrachloroethene	0.32472	0.31225	0.31478	0.30663	0.32812	•	0.47468	3.73
56 2-Hexanone	0.14774	0.16164	0.17989	0.17768	0.17835	0.32747	0.31899	2.81
57 Dibromochloromethane	0.23910	0.23839	0.26678	0.28055	0.30256	0.17429	0.16993	7.49
58 1,2-Dibromoethane	0.25955	0.25735	0.26857	0.28144		0.30906	0.27274	11.14
59 Chlorobenzene	0.95424	0.94123	0.92753	0.94555	0.29012	0.28643	0.27391	5.12
60 1,1,1,2-Tetrachloroethane	0.26114	0.26721	0.28310	0.30019	0.95993	0.95941	0.94798	1.32
61 Ethylbenzene	0.486031	0.47101	0.49427	0.50605	0.32234	0.32188	0.29264	9.07
62 m + p-Xylene	0.61440	0.61815	0.61978	0.63755	0.52399	0.51401	0.49923	3.87
63 Xylenes (total)	0.61521	0.61397	0.62245	0.635651	0.65592	0.65532	0.63352	2.98
64 Xylene-o	0.61683	0.60558	0.62781		0.65482	0.64990	0.63200	2.788
65 Styrene	0.99512	0.80358	1.02254	0.63186	0.65264	0.63905	0.62896	2.628
66 Bromoform	0.14044	0.15258	0.17172	1.07277	1.09146	1.09330	1.04440	4.520
67 Isopropylbenzene	1.40391	1.40417	•	0.18485	0.20131	0.20854	0.17658	15.212
68 1,1,2,2-Tetrachloroethane	0.629901	0.59575	1.44928	1.47834	1.54164	1.52337	1.46679	3.989
69 1,4-Dichloro-2-butene	0.07338	0.08984	0.62939	0.65038	0.65802	0.63990	0.63389	3.442
70 1,2,3-Trichloropropane	0.07338	,	0.10235	0.11351	0.13039	0.13543	0.10748	22.185
71 Bromobenzene	0.18604	0.19921	0.19030	0.20757	0.20084	0.19856	0.19708	3.921
	1 0.14021	0.75070	0.75737	0.77802	0.79675	0.79171	0.77018	2.806

CALCULATION WORKSHEET

Page 1 of 1

CLIENT:	SDG No.	
MARTIN STATE AIRPORT	7K14155	
SUBJECT:		
IOODOLO!.		
EXAMPLE CALCULATION - 1,4-DIOXA	NE IN WATER	
	NE IN WATER DATE:	

Sample ID = MW-70B-111207 Concentration = 160 ug/L

EQUATION:

$$C_{W} = \frac{A_{X} \times Is \times V_{t} \times Df}{A_{is} \times RRF \times V_{o} \times V_{i}}$$

Where:

=	analyte concentration in water		ug/l
=	analyte response	=	373492
=	amount of internal standard	=	2 ng
=	volume of final extract	=	0.002 L
=	dilution factor	=	6.667
=	response of internal standard	=	152220
=	response factor of analyte	=	0.81508
=	sample volume	=	1 L
=	volume injected	=	0.5 uL
	= = = = = = = = = = = = = = = = = = = =	 analyte response amount of internal standard volume of final extract dilution factor response of internal standard response factor of analyte sample volume 	= analyte response = = amount of internal standard = = volume of final extract = = dilution factor = = response of internal standard = = response factor of analyte = = sample volume =

Therefore: 1,4-dioxane concentration in water =

 $C_{w} = 0.1606 \text{ ng/ul}$ $C_{w} = 160.6 \text{ ug/L}$

Tetra Tech NUS, Inc

Client Sample ID: MRC-MW70B-111207

GC/MS Semivolatiles

Lot-Sample #: A7K140155-003	Work Order #: KA71H1CG	Matrix WG
Date Sampled: 11/12/07 16:5	0 Date Received: 11/14/07	
Prep Date: 11/14/07	Analysis Date: 11/19/07	
Prep Batch #: 7318281		
Prep Batch #: 7318281 Dilution Factor: 6.66	Initial Wgt/Vol 1000 ml	Final Wgt/Vol .: 2 mL
	Method SW846 8270C	

PARAMETER 1,4-Dioxane	RESULT) 160	REPORTING LIMIT UNITS ug/L
	PERCENT	RECOVERY
SURROGATE	RECOVERY	LIMITS
Nitrobenzene-d5	57	(27 - 111)
2-Fluorobiphenyl	46	(28 - 110)
Terphenyl-d14	61	(37 - 119)
Phenol-d5	20	(10 - 110)
2-Fluorophenol	32	(10 - 110)
2,4,6-Tribromophenol	62	(22 - 120)

Data File: \\cansvr11\\dd\chem\MSS\a4hp8.i\\71119a.b\KA71H1CG.D Page 1 Report Date: 21-Nov-2007 15:40

TestAmerica North Canton

Semivolatile REPORT SW-846 Method 8270

Data file : \\cansvr11\dd\chem\MSS\a4hp8.i\\71119a.b\KA71H1CG.D Lab Smp Id: ka71h1cg Client Smp ID: MRC-MW Client Smp ID: MRC-MW70B-111207

Inj Date : 19-NOV-2007 21:42

Inst ID: a4hp8.i

Misc Info:

Comment

Method : \\cansvr11\dd\chem\MSS\a4hp8.i\71119a.b\8270P.m Meth Date: 21-Nov-2007 15:33 gruberj Quant Type: ISTD Cal Date : 14-NOV-2007 16:50 Als bottle: 32 Cal File: 8AL1114.D

Dil Factor: 6.66700 Integrator: HP RTE

Compound Sublist: 1-4diox.sub

Target Version: 4.14
Processing Host: CANPMSSV01

Concentration Formula: Amt * DF * Uf * Vt/(Vo * Vi) * CpndVariable

Name	Value	Description
DF Uf Vt Vo Vi Cpnd Variable	1.000 2000.000 1000.000 0.50000	Dilution Factor ng unit correction factor Volume of final extract (uL) Volume of sample extracted (mL) Volume injected (uL) Local Compound Variable

							CONCENTRA	rions
		QUANT SIG					ON-COLUMN	FINAL
Comp	ounds	MASS	RT	EXP RT	REL RT	RESPONSE	(NG)	(ug/L)
	**************************************	====	====					=======
*	l 1,4-Dichlorobenzene-d4	152	3.522	3.524	(1.000)	152220	2.00000	(Q)
*	Naphthalene-d8	136	4.411	4.413	(1.000)	656301	2.00000	
*	3 Acenaphthene-d10	164	5.676	5.678	(1.000)	362029	2.00000	
*	4 Phenanthrene-d10	188	6.758	6.760	(1.000)	649126	2.00000	
*	5 Chrysene-d12	240	8.744	8.741	(1.000)	609321	2.00000	
*	6 Perylene-d12	264	10.196	10.184	(1.000)	552411	2.00000	
19	3 1,4-Dioxane	88	1.723	1.725	(0.489)	373492	6.02057	160.56
\$ 15	4 Nitrobenzene-d5	82	3.897	3.899	(0.883)	75751	0.42848	11.427
\$ 15	5 2-Fluorobiphenyl	172	5.166	5.168	(0.910)	77652	0.34766	9.2713
\$ 15	5 Terphenyl-d14	244	7.903	7.904	(0.904)	117991	0.45722	12.193
\$ 15	7 Phenol-d5	99	3.253	3.230	(0.924)	33475	0.22059	5.8827
\$ 15	3 2-Fluorophenol	112	2.666	2.653	(0.757)	36907	0.36035	9.6098
\$ 15	2,4,6-Tribromophenol	330	6.248	6.250	(1.101)	14868	0.69730	18.596
\$ 18	5 2-Chlorophenol-d4	132	3.373	3.370	(0.958)	55535	0.56670	15.113
\$ 181	7 1,2-Dichlorobenzene-d4	152	3.628	3.629	(1.030)	19117	0.30863	8.2306

QC Flag Legend

Report Date: 14-Nov-2007 16:53

Page 1

04mu 11/15/07

TestAmerica North Canton

INITIAL CALIBRATION DATA

Start Cal Date : 14-NOV-2007 10:57 End Cal Date : 14-NOV-2007 16:50

Quant Method : ISTD
Origin : Disabled
Target Version : 4.14
Integrator : HP RTE

Method file : \\cansvr11\\dd\\chem\MSS\\a4hp8.i\\71114a.b\\8270P.m

Last Edit : 14-Nov-2007 16:32 gruberj

Curve Type : Average

Calibration File Names:

Level 1: \\cansvrl1\dd\chem\MSS\a4hp8.i\71114a.b\8SLL1114.D Level 2: \\cansvrl1\dd\chem\MSS\a4hp8.i\71114a.b\8AL1114.D Level 3: \\cansvrl1\dd\chem\MSS\a4hp8.i\71114a.b\8AML1114.D Level 4: \\cansvrl1\dd\chem\MSS\a4hp8.i\71114a.b\8AML1114.D Level 5: \\cansvrl1\dd\chem\MSS\a4hp8.i\71114a.b\8AMM1114.D Level 5: \\cansvrl1\dd\chem\MSS\a4hp8.i\71114a.b\8AMM1114.D Level 6: \\cansvrl1\dd\chem\MSS\a4hp8.i\71114a.b\8AMH1114.D Level 7: \\cansvrl1\dd\chem\MSS\a4hp8.i\71114a.b\8AHH1114.D Level 8: \\cansvrl1\dd\chem\MSS\a4hp8.i\71114a.b\8AHH1114.D Level 9: \\cansvrl1\dd\chem\MSS\a4hp8.i\71114a.b\8AHH1114.D

	0.05000	0.25000	0.50000	1.000	2.500	5.000	l I	
Compound	[Level 1	Level 2	Level 3	Level 4	Level 5	Level 6	RRF	% RSD
•	7.500	10.000	12.500] !	 	1	
	Level 7	Level 8	Level 9	! 	! [! -	, J i	
								
198 1,4-Dioxane	+++++	0.85327		•	0.78548	0.77264	·/	
·	0.86856	0.75809	0.90200	 	 	 	0.81509	6.399
7 N-Nitrosomorpholine	+++++	0.86792	0.89435	0.89377	0.92655	0.96106	! !	
	1.01067	0.98973	1.09917		[1	0.95540	8.005
8 Ethyl methanesulfonate	 +++++	0.68523	0.72344	 0.70194	 0.72440	0.75986	[
o Benyl methanesullonate	0.75145	•			0.72440	0.75366	 0.73430	4.946
		 					 	
9 Pyridine	+++++	1.93170		,	1.97318	2.07052		
	2.24206	2.09622	2.38728	 	 	 	2.07699 	7.830
10 N-Nitrosodimethylamine	+++++	1.22244	1.26769	1.30253	1.22291	1.27602		
	1.36408	1.26679	1.42452	l	ĺ		1.29337	5.384
11 Ethyl methacrylate			1.92850					
II BENYI MECHACIYIACE	2.05124	1.92137 1.89744			1.83644	1.92723 	 1.95877	5.629
12 3-Chloropropionitrile	+++++	0.61273			0.62940	0.63763	•	
·	0.63821	0.60191	0.68356	l		 	0.62633	5.023
13 Malononitrile	+++++	1.99985	1.98014	2.01620	1.92833	2.04783	 	
•	2.04037						1.99441	3.224
				l		l <u></u>	l	

Tetra Tech NUS

INTERNAL CORRESPONDENCE

TO:

M.MARTIN

DATE:

FEBRUARY 21, 2008

FROM:

TERRI L. SOLOMON

COPIES:

DV FILE

SUBJECT:

INORGANIC DATA VALIDATION - SELECT TOTAL AND DISSOLVED

METALS, pH

LOCKHEED MARTIN MIDDLE RIVER

SAMPLE DELIVERY GROUP (SDG) - 7K14155

SAMPLES:

3/Aqueous/

MRC-MW70B-111207

MRC-MW70B-111407

MRC-MW70B-111507

<u>Overview</u>

The sample set for Lockheed Martin Middle River, SDG 7K14155, consists of three (3) aqueous environmental samples. No field duplicate pairs were included within this SDG.

All samples were analyzed for select total and dissolved metals including antimony, arsenic, barium, beryllium, cadmium, chromium, cobalt, copper, lead, mercury, molybdenum, nickel, selenium, silver, thallium, vanadium and zinc and pH. The samples were collected by Tetra Tech NUS on November 12, 14 and 15, 2007 and analyzed by Test America. Metals analyses were conducted using SW-846 method 7470A and pH analyses were conducted using SW-846 method 9040B.

The findings offered in this report are based upon a general review of all available data. The data review was based on data completeness, holding times, initial and continuing calibration verification results, laboratory method / preparation blank results, ICP interference results, laboratory control sample recoveries, laboratory duplicate results, matrix spike recoveries, ICP serial dilution results, detection limits and analyte quantitation.

Areas of concern with respect to data quality are listed below.

Major Problems - None.

Minor Problems

- The contract required detection limit (CRDL) percent recovery for mercury was > 120% quality control limit affecting samples MRC-MW70B-111507(total) and MRC-MW70B-111507(dissolved). The positive result reported for mercury for sample MRC-MW70B-111507(dissolved) was qualified as biased high, "K".
- The CRDL percent recovery for chromium was < 90% quality control limit affecting samples MRC-MW70B-111407(total) and MRC-MW70B-111407(dissolved). The nondetected results reported for chromium were qualified as biased low, "UL".

TO: M. MARTIN - PAGE 2 DATE: FEBRUARY 21, 2008

- The CRDL percent recoveries for chromium and selenium were < 90% quality control limit
 affecting samples MRC-MW70B-111507(total) and MRC-MW70B-111507(dissolved). The
 positive results and nondetects reported for chromium and selenium were qualified as biased
 low, "L" and "UL", respectively.
- The following contaminants were detected in the laboratory method/preparation blanks at the following maximum concentrations:

Analyte Antimony Barium ⁽¹⁾ Cadmium ⁽¹⁾ Chromium ⁽¹⁾ Lead ⁽¹⁾ Nickel ⁽¹⁾	Maximum Concentration 0.19 ug/L 0.042 ug/L 0.025 ug/L 0.56 ug/L 0.16 ug/L 0.30 ug/L 5.2 ug/L	Action Level 0.95 ug/L 0.21 ug/L 0.125 ug/L 2.8 ug/L 0.8 ug/L 1.5 ug/L
Affects samples 111207(dissolved).	MRC-MW70B-111207(total)	and MRC-MW70B-
Analyte Antimony Barium ⁽¹⁾ Chromium ⁽¹⁾ Cobalt Copper ⁽¹⁾ Lead ⁽¹⁾ Nickel ⁽¹⁾ Zinc ⁽¹⁾	Concentration 0.20 ug/L 0.043 ug/L 0.43 ug/L 0.031 ug/L 0.14 ug/L 0.089 ug/L 0.072 ug/L	Level 1.0 ug/L 0.215 ug/L 2.15 ug/L 0.155 ug/L 0.7 ug/L 0.445 ug/L 0.36 ug/L 9.0 ug/L
Affects samples 111407(dissolved).	MRC-MW70B-111407(total)	and MRC-MW70B-
Analyte Antimony Barium ⁽¹⁾ Beryllium Cadmium Cobalt Copper ⁽¹⁾ Lead ⁽¹⁾ Nickel ⁽¹⁾ Silver Thallium Zinc ⁽¹⁾	Concentration 0.22 ug/L 0.84 ug/L 0.038 ug/L 0.044 ug/L 0.043 ug/L 0.40 ug/L 0.65 ug/L 0.10 ug/L 0.024 ug/L 0.1 ug/L 4.6 ug/L	Level 1.1 ug/L 4.2 ug/L 0.19 ug/L 0.22 ug/L 0.215 ug/L 2.0 ug/L 3.25 ug/L 0.5 ug/L 0.12 ug/L 0.5 ug/L
Affects samples 111507(dissolved).	MRC-MW70B-111507(total)	and MRC-MW70B-

An action level of 5X the maximum contaminant level has been used to evaluate sample data for blank contamination. Sample aliquot and dilution factors, if applicable, were taken into consideration when evaluating for blank contamination. Positive results less than the blank action level reported for antimony, cadmium, chromium, copper and lead were qualified "B" as a result of laboratory blank contamination.

TO: M. MARTIN - PAGE 3
DATE: FEBRUARY 21, 2008

- The matrix spike percent recovery for silver was < 75% quality control limit affecting prep batch 7319028. The nondetected results reported for silver for samples MRC-MW70B-111207(total) and MRC-MW70B-111207(dissolved) were qualified as biased low, "UL".
- The ICP serial dilution percent differences for cobalt and nickel were > 10% quality control limit affecting batch 7319028. The positive results reported for cobalt and nickel for samples MRC-MW70B-111207(total) and MRC-MW70B-111207(dissolved) were qualified as estimated, "J".

Notes

The CRDL percent recovery for copper was > 110% quality control limit affecting samples MRC-MW70B-111507(total) and MRC-MW70B-111507(dissolved). No validation actions were warranted as the sample results were qualified as a result of blank contamination.

The ICS percent recovery for molybdenum was > 120% quality control limit affecting samples MRC-MW70B-111207(total) and MRC-MW70B-111207(dissolved). No validation actions were warranted as the sample results were nondetects.

Executive Summary

Laboratory Performance: The CRDL percent recovery for mercury was > 120% and the CRDL percent recoveries for chromium and selenium were < 90%. Several analytes were present in the laboratory method / preparation blanks.

Other Factors Affecting Data Quality: The matrix spike percent recovery for silver was < 75% quality control limit affecting prep batch 7319028. The ICP serial dilution percent differences for cobalt and nickel were > 10% quality control limit affecting batch 7319028.

The data for these analyses were reviewed with reference to Region III modifications to the "National Functional Guidelines for Inorganic Data Validation", April 1993.

The text of this report has been formulated to address only those problem areas affecting data quality.

Tetrá Tech NUS Terri L. Solomon

Tetre Tech NVS

Environmental Scientist

Joseph A. Samchuck Quality Assurance Officer

Attachments:

- 1. Appendix A Qualified Analytical Results
- 2. Appendix B Results as reported by the Laboratory
- 3. Appendix C Support Documentation

APPENDIX A QUALIFIED ANALYTICAL RESULTS

Data Validation Qualifier Codes:

A = Lab Blank Contamination

B = Field Blank Contamination

C = Calibration Noncompliance (e.g. % RSDs, %Ds, ICVs, CCVs, RRFs, etc.)

C01 = GC/MS Tuning Noncompliance

D = MS/MSD Recovery Noncompliance

E = LCS/LCSD Recovery Noncompliance

F = Lab Duplicate Imprecision

G = Field Duplicate Imprecision

H = Holding Time Exceedance

= ICP Serial Dilution Noncompliance

J = GFAA PDS-GFAA MSA's r < 0.995 / ICP PDS Recovery Noncompliance

K = ICP Interference - includes ICS % R Noncompliance

L = Instrument Calibration Range Exceedance

M = Sample Preservation Noncompliance

N = Internal Standard Noncompliance

N01 = Internal Standard Recovery Noncompliance Dioxins

N02 = Recovery Standard Noncompliance Dioxins

N03 = Clean-up Standard Noncompliance Dioxins

O - Poor Instrument Performance (e.g. base-line drifting)

P = Uncertainty near detection limit (< 2 x IDL for inorganics and <CRQL for organics)

Q = Other problems (can encompass a number of issues; e.g. chromatography,interferences, etc.)

R = Surrogates Recovery Noncompliance

S = Pesticide/PCB Resolution

T = % Breakdown Noncompliance for DOT and Endrin

U = % Difference between columns/detectors >25% for positive results determined via GC/HPLC

V = Non-linear calibrations; correlation coefficient r < 0.995

W = EMPC result

X = Signal to noise response drop

Y = Percent solids <30%

Z = Uncertainty at 2 sigma deviation is greater than sample activity.

PROJ_NO: 01179

SDG: 7K14155 MEDIA: WATER DATA FRACTION: M

nsample

MRC-MW70B-111207

80.9

samp_date 11/12/2007

lab_id qc_type units

A7K140155001

NM UG/L

Pct_Solids DUP_OF:

ZINC

nsample samp_date lab_id qc_type units

Pct_Solids

DUP_OF:

MRC-MW70B-111407

11/14/2007 A7K150199001

NM UG/L nsample samp_date lab_id qc_type units

MRC-MW70B-111507

11/15/2007 A7K160209001

NM UG/L

Pct_Solids DUP_OF:

Result	Val Qual	Qual Code
0.28	В	Α
1.3		
90		
0.21		
0.022	В	Α
0.25	В	Α
39.8	J	Ī
0.16		
0.048	В	A
0.1	U	
0.66	U	
56.8	J	ı
1.6	U	
0.021	UL	D
0.023	U	
0.25	U	
	0.28 1.3 90 0.21 0.022 0.25 39.8 0.16 0.048 0.1 0.66 56.8 1.6 0.021 0.023	Result Qual 0.28 B 1.3 90 0.21 0.022 B 0.25 B 39.8 J 0.16 0.048 B 0.1 U 0.66 U 56.8 J 1.6 U 0.021 UL 0.023 U

Parameter	Result	Val Qual	Qual Code
ANTIMONY	0.048	U	
ARSENIC	1.2		
BARIUM	84.1		
BERYLLIUM	0.2		
CADMIUM	0.014	U	
CHROMIUM	0.054	UL	С
COBALT	44.9		
COPPER	0.18	В	Α
LEAD	0.1	В	Α
MERCURY	0.1	U	
MOLYBDENUM	0.66	U	
NICKEL	62.5		
SELENIUM	1.6	U	
SILVER	0.021	U	
THALLIUM	0.023	U	
VANADIUM	0.25	U	
ZINC	98.2		
	<u> </u>		

Parameter	Result	Val Qual	Qual Code
ANTIMONY	0.32	В	Α
ARSENIC	1.1		
BARIUM	89.3		
BERYLLIUM	0.28		
CADMIUM	0.014	U	
CHROMIUM	0.054	UL	С
COBALT	46.2		
COPPER	0.13	В	Α
LEAD	0.24	В	Α
MERCURY	0.1	U	
MOLYBDENUM	0.66	U	
NICKEL	69.5		
SELENIUM	1.6	UL	С
SILVER	0.021	U	
THALLIUM	0.033	В	Α
VANADIUM	0.58		
ZINC	109	•	

PROJ_NO: 01179

SDG: 7K14155 MEDIA: WATER DATA FRACTION: MF

nsample samp_date MRC-MW70B-111207

11/12/2007

A7K140155001

lab_id qc_type units

DUP_OF:

NM

UG/L Pct_Solids

nsample samp_date

lab_id

units

qc_type

DUP_OF:

MRC-MW70B-111407 11/14/2007

A7K150199001

NM UG/L

Pct_Solids

nsample

samp_date lab_id

qc_type units

Pct_Solids DUP_OF:

MRC-MW70B-111507 11/15/2007

> A7K160209001 NM

UG/L

Parameter	Result	Val Qual	Qual Code
ANTIMONY	0.08	В	. A
ARSENIC	1.2	-	
BARIUM	84.2		-
BERYLLIUM	0.16		-
CADMIUM	0.018	В	Α
CHROMIUM	0.054	U	
COBALT	37.7	J	ı
COPPER	0.15		
LEAD	0.015	U	
MERCURY	0.1	U	-
MOLYBDENUM	0.66	U	
NICKEL	56.3	J	ı
SELENIUM	1.6	U	
SILVER	0.021	UL	D
THALLIUM	0.023	U	
VANADIUM	0.25	Ü	
ZINC	79.7		

——————————————————————————————————————			
Parameter	Result	Val Qual	Qual Code
ANTIMONY	0.048	U	
ARSENIC	1.2		
BARIUM	84		7.
BERYLLIUM	0.2		
CADMIUM	0.014	U	
CHROMIUM	0.054	UL	С
COBALT	45.4	•	
COPPER	0.13	В	Α
LEAD	0.018	В	Α
MERCURY	0.1	U	
MOLYBDENUM	0.66	U	7.
NICKEL	62.3		
SELENIUM	1.6	U	
SILVER	0.021	U	
THALLIUM	0.023	U	
VANADIUM	0.25	U	
ZINC	98.3		

Parameter	Result	Val Qual	Qual Code
ANTIMONY	0.12	В	Α
ARSENIC	1.3		
BARIUM	88.4		
BERYLLIUM	0.3		
CADMIUM	0.014	В	Α
СНПОМІИМ	0.81	L	С
COBALT	45.6		
COPPER	0.16	В	Α
LEAD	0.18	В	Α
MERCURY	0.16	K	С
MOLYBDENUM	0.66	U	
NICKEL	70.4		
SELENIUM	1.6	UL	С
SILVER	0.021	U	
THALLIUM	0.023	U	
VANADIUM	0.25	U	
ZINC	138		

PROJ_NO:

SDG: 7K14155 MEDIA: WATER DATA FRACTION: MISC

nsample samp_date

lab_id

MRC-MW70B-111207

11/12/2007

NM

A7K140155001

qc_type Pct_Solids DUP_OF:

nsample samp_date lab_id

qc_type Pct_Solids DUP_OF:

MRC-MW70B-111407

11/14/2007 A7K150199001

MM

nsample samp_date

lab_id

qc_type Pct_Solids DUP_OF:

MRC-MW70B-111507

11/15/2007 A7K160209001

NM

Parameter Result Val Qual units Qual | Code РН S.U. 6.2

01179

Parameter	units	Result	Val Qual	Qual Code
PH	S.U.	6		

Parameter	units	Result	Val Qual	Qual Code
PH	S.U.	6		

APPENDIX B RESULTS AS REPORTED BY THE LABORATORY

Metals Data Reporting Form

Sample Results

Lab Sample ID: KA71H

Client ID:

MRC-MW70B-111207

Matrix:

Water

Units: ug/L **Prep Date:** ___11/15/07

Prep Batch: 7319028

Weight:

NA

Volume:

Percent Moisture:

NA

Element	WL/ Mass	IDL	Report Limit	C		D.E.		Anal	Anal
Biement	171433	IDL	Limit	Conc	Q	DF	Instr	Date	Time
Antimony	121	0.048	2.0	0.28	В	1	ICPMS	11/16/07	18:20
Arsenic	75	0.27	5.0	1.3	В	1	ICPMS	11/16/07	18:20
Barium	135	0.021	1.0	90.0		1	ICPMS	11/16/07	18:20
Beryllium	9	0.020	1.0	0.21	В	- 1	ICPMS	11/16/07	18:20
Cadmium	111	0.014	1.0	0.022	В	1	ICPMS	11/16/07	18:20
Chromium	52	0.054	2.0	0.25	В	1	ICPMS	11/16/07	18:20
Cobalt	59	0.013	1.0	39.8		1	ICPMS	11/16/07	18:20
Copper	65	0.046	2.0	0.16	В	1	ICPMS	11/16/07	18:20
Lead	208	0.015	1.0	0.048	В	1	ICPMS	11/16/07	18:20
Molybdenum	98	0.66	2.0	0.66	U	1	ICPMS	11/16/07	18:20
Nickel	60	0.053	2.0	56.8		1	ICPMS	11/16/07	18:20
Selenium	82	1.6	5.0	1.6	U	1	ICPMS	11/16/07	18:20
Silver	107	0.021	1.0	0.021	U	1	ICPMS	11/16/07	18:20
Thallium	205	0.023	1.0	0.023	U	1	ICPMS	11/16/07	18:20
Vanadium	51	0.25	20.0	0.25	U	1	ICPMS	11/16/07	18:20
Zinc	68	0.12	20.0	80.9		1	ICPMS	11/16/07	18:20

Comments: Lot #: A7K140155 Sample #: 1

E Serial dilution percent difference not within limits

Form 1 Equivalent

U Result is less than the IDL

B Result is between IDL and RL

Metals Data Reporting Form

Sample Results

Lab Sample ID: KA71H

Client ID:

MRC-MW70B-111207

Matrix:

Water

Units: ug/L

100

Prep Date: ___11/15/07

Prep Batch: 7319028Hg

Weight: NA

Volume:

Percent Moisture:

NA

Element	WL/ Mass	IDL	Report Limit	Conc	Q	DF	Instr	Anal Date	Anal Time
Mercury	253.7	0.10	0.20	0.10	U	1	CVAA	11/16/07	11:07

Comments: Lot #: A7K140155 Sample #: 1

U Result is less than the IDL

B Result is between IDL and RL

Metals Data Reporting Form

Sample Results

Lab Sample ID: **KCATK**

Client ID:

MRC-MW70B-111407

Matrix:

Water

Units: ug/L **Prep Date:** <u>11/16/07</u>

Prep Batch: 7320027

Weight:

NA

Volume:

Percent Moisture:

Element	WL/ Mass	IDL	Report Limit	Conc	o	DF	Instr	Anal Date	Anal Time
Antimony	121	0.048	2.0	0.048	U	1	ICPMS	11/17/07	0:00
Arsenic	75	0.27	5.0	1.2	В	1	ICPMS	11/17/07	0:00
Barium	135	0.021	1.0	84.1		1	ICPMS		0:00
Beryllium	9	0.020	1.0	0.20	В	1	ICPMS		0:00
Cadmium	111	0.014	1.0	0.014	U	1	ICPMS	11/17/07	0:00
Chromium	52	0.054	2.0	0.054	U	1	ICPMS	11/19/07	14:14
Cobalt	59	0.013	1.0	44.9		1	ICPMS	11/19/07	14:14
Copper	65	0.046	2.0	0.18	В	1	ICPMS		0:00
Lead	208	0.015	1.0	0.10	В	1	ICPMS		0:00
Molybdenum	98	0.66	2.0	0.66	U	1	ICPMS	11/19/07	14:14
Nickel	60	0.053	2.0	62.5		1	ICPMS	11/17/07	0:00
Selenium	82	1.6	5.0	1.6	U	1	ICPMS	11/17/07	0:00
Silver	107	0.021	1.0	0.021	U	1	ICPMS	11/17/07	0:00
Thallium	205	0.023	1.0	0.023	U	1	ICPMS	11/17/07	0:00
Vanadium	51	0.25	20.0	0.25	U	1	ICPMS	11/19/07	14:14
Zinc	68	0.12	20.0	98.2		1	ICPMS	11/17/07	0:00

Comments: Lot #: A7K150199 Sample #: 1

E Serial dilution percent difference not within limits

Form 1 Equivalent

U Result is less than the IDL

Metals Data Reporting Form

Sample Results

Lab Sample ID:

KCATK

Client ID:

MRC-MW70B-111407

Matrix:

Water

Units:

ug/L

Prep Date:

11/16/07

Prep Batch: _7320027Hg

Weight: NA

Volume:

100

Percent Moisture:

Element	WL/ Mass	IDL	Report Limit	Conc	Q	DF	Instr	Anal Date	Anal Time
Mercury	253.7	0.10	0.20	0.10	U	1	CVAA	11/16/07	16:34

Comments: Lot #: A7K150199 Sample #: 1

Result is less than the IDL

B Result is between IDL and RL

Metals Data Reporting Form

Sample Results

Lab Sample ID:

KCE51

Client ID:

MRC-MW70B-111507

Matrix:

Water

Units: ug/L

Prep Date: 11/19/07

Prep Batch: 7323022

Weight: NA Volume: 50 Percent Moisture:

Element	WL/ Mass	IDL	Report Limit	Conc	O	DF	Instr	Anal Date	Anal Time
Antimony	121	0.048	2.0	0.32	В	1	ICPMS	11/20/07	5:30
Arsenic	75	0.27	5.0	1.1	В	1	ICPMS	11/20/07	5:30
Barium	135	0.021	1.0	89.3		1	ICPMS	I.	5:30
Beryllium	9	0.020	1.0	0.28	В	1	ICPMS		5:30
Cadmium	111	0.014	1.0	0.014	U	1	ICPMS	11/20/07	5:30
Chromium	52	0.054	2.0	0.054	U	1	ICPMS	11/20/07	5:30
Cobalt	59	0.013	1.0	46.2		1	ICPMS	11/20/07	5:30
Copper	65	0.046	2.0	0.13	В	1	l .	11/20/07	5:30
Lead	208	0.015	1.0	0.24	В	1	ICPMS		5:30
Molybdenum	98	0.66	2.0	0.66	U	1	ICPMS	11/20/07	5:30
Nickel	60	0.053	2.0	69.5		. 1	ICPMS		5:30
Selenium	82	1.6	5.0	1.6	U	1	ICPMS	11/20/07	5:30
Silver	107	0.021	1.0	0.021	U	1	ICPMS	11/20/07	5:30
Thallium	205	0.023	1.0	0.033	В	1	ICPMS		5:30
Vanadium	51	0.25	20.0	0.58	В	1	ICPMS		5:30
Zinc	68	0.12	20.0	109		1	ICPMS		5:30

Comments: Lot #: A7K160209 Sample #: 1

E Serial dilution percent difference not within limits

Form 1 Equivalent

U Result is less than the IDL

B Result is between IDL and RL

Metals Data Reporting Form

Sample Results

Lab Sample ID:

KCE51

Client ID:

MRC-MW70B-111507

Matrix:

Water

Units:

ug/L

Prep Date: 11/19/07

Prep Batch: 7323022Hg

Weight: NA

Volume:

100

Percent Moisture:

Element	WL/ Mass	IDL	Report Limit	Conc	Q	DF	Instr	Anal Date	Anal Time
Mercury	253.7	0.10	0.20	0.10	U	1	CVAA	11/20/07	11:13

Comments: Lot #: A7K160209 Sample #: 1

Result is less than the IDL

B Result is between IDL and RL

Metals Data Reporting Form

Sample Results

Lab Sample ID: KA71HF

Client ID: MRC-MW70B-111207F

Matrix: Water

Units: ug/L

Prep Date: <u>11/15/07</u>

Prep Batch: 7319028

Weight: NA

Volume:

50

Percent Moisture: NA

Element	WL/ Mass	IDL	Report Limit	Conc	o	DF	Instr	Anal Date	Anal Time
Antimony	121	0.048	2.0	0.080	В	1	ICPMS	11/16/07	18:24
Arsenic	75	0.27	5.0	1.2	В	1	ICPMS	11/16/07	18:24
Barium	135	0.021	1.0	84.2		1	ICPMS		18:24
Beryllium	9	0.020	1.0	0.16	В	1	ICPMS	1	18:24
Cadmium	111	0.014	1.0	0.018	В	1	ICPMS		18:24
Chromium	52	0.054	2.0	0.054	U	1	ICPMS	11/16/07	18:24
Cobalt	59	0.013	1.0	37.7	İ	1	ICPMS		18:24
Copper	65	0.046	2.0	0.15	В	1	ICPMS	11/16/07	18:24
Lead	208	0.015	1.0	0.015	U	1	ICPMS	11/16/07	18:24
Molybdenum	98	0.66	2.0	0.66	U	1	ICPMS	11/16/07	18:24
Nickel	60	0.053	2.0	56.3		1	ICPMS	11/16/07	18:24
Selenium	82	1.6	5.0	1.6	U	1	ICPMS	11/16/07	18:24
Silver	107	0.021	1.0	0.021	U	1	ICPMS	11/16/07	18:24
Thallium	205	0.023	1.0	0.023	υ	1	ICPMS	11/16/07	18:24
Vanadium	51	0.25	20.0	0.25	U	1	ICPMS	11/16/07	18:24
Zinc	68	0.12	20.0	79.7			ICPMS		18:24

Comments:

5.21.0

E Serial dilution percent difference not within limits

Form 1 Equivalent

U Result is less than the IDL

B Result is between IDL and RL

Metals Data Reporting Form

Sample Results

Lab Sample ID:

KA71HF

Client ID:

MRC-MW70B-111207F

Matrix: Water

ug/L

Prep Date: 11/15/07

Prep Batch: 7319028Hg

Weight: NA

Volume:

Units:

100

Percent Moisture:

Element	WL/ Mass	IDL	Report Limit	Conc	Q	DF	Instr	Anal Date	Anal Time
Mercury	253.7	0.10	0.20	0.10	U	1	CVAA	11/16/07	11:14

5.21.0

Comments:

E Serial dilution percent difference not within limits

Form 1 Equivalent

Result is less than the IDL

Result is between IDL and RL

Metals Data Reporting Form

Sample Results

Lab Sample ID:

KCATKF

Client ID: MRC-MW70B-111407F

Matrix: Water

Units:

ug/L

50

Prep Date: __11/16/07

Prep Batch: 7320027

Weight: NA

Volume:

Percent Moisture:

Element	WL/ Mass	IDL	Report Limit	Conc	Q	DF	Instr	Anal Date	Anal Time
Antimony	121	0.048	2.0	0.048	U	1	ICPMS	11/17/07	0:04
Arsenic	75	0.27	5.0	1.2	В	1	ICPMS	1	0:04
Barium	135	0.021	1.0	84.0		1	ICPMS		0:04
Beryllium	9	0.020	1.0	0.20	В	1	ICPMS	I	0:04
Cadmium	111	0.014	1.0	0.014	U	1	ICPMS	11/17/07	0:04
Chromium	52	0.054	2.0	0.054	U	1	ICPMS	11/19/07	14:18
Cobalt	59	0.013	1.0	45.4		1	ICPMS	11/19/07	14:18
Copper	65	0.046	2.0	0.13	В	1	ICPMS		0:04
Lead	208	0.015	1.0	0.018	В	1	ICPMS	11/17/07	0:04
Molybdenum	98	0.66	2.0	0.66	U	1	ICPMS	11/19/07	14:18
Nickel	60	0.053	2.0	62.3	İ	1	ICPMS		0:04
Selenium	82	1.6	5.0	1.6	U	1	ICPMS	11/17/07	0:04
Silver	107	0.021	1.0	0.021	U	1	ICPMS	11/17/07	0:04
Thallium	205	0.023	1.0	0.023	U	1	ICPMS	11/17/07	0:04
Vanadium	51	0.25	20.0	0.25	U	1	ICPMS	11/19/07	14:18
Zinc	68	0.12	20.0	98.3		1	ICPMS		0:04

Comments:

Form 1 Equivalent

Result is less than the IDL

Metals Data Reporting Form

Sample Results

Lab Sample ID:

KCATKF

Client ID:

MRC-MW70B-111407F

Matrix:

Water

Units:

ug/L

Prep Date: __11/16/07

Prep Batch: 7320027Hg

Weight: NA

Volume:

100

Percent Moisture:

Element	WL/ Mass	IDL	Report Limit	Conc	Q	DF	Instr	Anal Date	Anal Time
Mercury	253.7	0.10	0.20	0.10	U	1	CVAA	11/16/07	16:36

Comments:

5.21.0

E Serial dilution percent difference not within limits

U Result is less than the IDL

Result is between IDL and RL

Form 1 Equivalent

Metals Data Reporting Form

Sample Results

Lab Sample ID:

KCE51F

Client ID: MRC-MW70B-111507F

Matrix: Water

ug/L

Prep Date: 11/19/07

Prep Batch: 7323022

Weight: NA

Units: Volume: 50

Percent Moisture:

Element	WL/ Mass	IDL	Report Limit	Conc	Q	DF	Instr	Anal Date	Anal Time
Antimony	121	0.048	2.0	0.12	В	1	ICPMS		5:33
Arsenic	75	0.27	5.0	1.3	В	1	ICPMS	1	5:33
Barium	135	0.021	1.0	88.4		1	ICPMS	ŀ	5:33
Beryllium	9	0.020	1.0	0.30	В	1	ICPMS		5:33
Cadmium	111	0.014	1.0	0.014	В	1	ICPMS	l	5:33
Chromium	52	0.054	2.0	0.81	В	1	ICPMS		5:33
Cobalt	59	0.013	1.0	45.6		1	ICPMS		5:33
Copper	65	0.046	2.0	0.16	В	1	ICPMS		5:33
Lead	208	0.015	1.0	0.18	В	1	ICPMS		5:33
Molybdenum	98	0.66	2.0	0.66	U	1	ICPMS	11/20/07	5:33
Nickel	60	0.053	2.0	70.4		1	ICPMS		5:33
Selenium	82	1.6	5.0	1.6	บ		ICPMS	11/20/07	5:33
Silver	107	0.021	1.0	0.021	U		ICPMS	11/20/07	5:33
Thallium	205	0.023	1.0	0.023	U		ICPMS	11/20/07	5:33
Vanadium	51	0.25	20.0	0.25	U		ICPMS	11/20/07	5:33
Zinc	68	0.12	20.0	138			1	11/20/07	5:33

Comments:

5.21.0

E Serial dilution percent difference not within limits

Form 1 Equivalent

Result is less than the IDL

Result is between IDL and RL

Metals Data Reporting Form

Sample Results

Lab Sample ID:

KCE51F

Client ID: MRC-MW70B-111507F

Matrix: Water

Units:

ug/L

Prep Date: <u>11/19/07</u>

Prep Batch: 7323022Hg

Weight: NA

Volume:

100

Percent Moisture: NA

Element	WL/ Mass	IDL	Report Limit	Conc	o	DF	Instr	Anal Date	Anal Time
Mercury	253.7	0.10	0.20	0.16	В	1	CVAA	11/20/07	11:14

5.21.0

Comments:

E Serial dilution percent difference not within limits

Form 1 Equivalent

U Result is less than the IDL

Result is between IDL and RL

Tetra Tech NUS, Inc

Client Sample ID: MRC-MW70B-111207

General Chemistry

Lot-Sample #...: A7K140155-001 Work Order #...: KA71H Matrix...... WG

Date Sampled...: 11/12/07 16:50 Date Received..: 11/14/07

 PARAMETER
 RESULT
 RL
 UNITS
 METHOD
 ANALYSIS DATE
 BATCH #

 pH (liquid)
 6.2
 No Units
 SW846 9040B
 11/14/07
 7319513

Dilution Factor: 1

Tetra Tech NUS, Inc

Client Sample ID: MRC-MW70B-111407

General Chemistry

Lot-Sample #: A7K150199-001	Work Order #: KCATK	Matrix WG
Date Sampled: 11/14/07 14:45	Date Received • 11/15/07	IMCLINITIALITY WG

					PREPARATION-	PREP
PARAMETER	RESULT	RL	UNITS	METHOD	ANALYSIS DATE	BATCH #
pH (liquid)	6.0		No Units	SW846 9040B	11/15/07	7319496

Dilution Factor: 1

Tetra Tech NUS, Inc

Client Sample ID: MRC-MW70B-111507

General Chemistry

Lot-Sample #...: A7K160209-001 Work Order #...: KCE51 Matrix.....: WG

Date Sampled...: 11/15/07 14:45 Date Received..: 11/16/07

 PARAMETER
 RESULT
 RL
 UNITS
 METHOD
 ANALYSIS DATE
 BATCH #

 pH (liquid)
 6.0
 No Units
 SW846 9040B
 11/16/07
 7320508

Dilution Factor: 1

APPENDIX C SUPPORT DOCUMENTATION

ANALYTICAL REPORT

PROJECT NO. 112IC01179

LMC & MIDDLE RIVER AQUIFER SDG #: 7K14155

Michael Martin

Tetra Tech NUS Inc 20251 Century Blvd Suite 200 Germantown, MD 20874

TESTAMERICA LABORATORIES, INC.

Patrick J. O'Meara Project Manager

December 3, 2007

CASE NARRATIVE

7K14155

The following report contains the analytical results for three water samples and three quality control samples submitted to TestAmerica North Canton by Tetra Tech NUS Inc. from the LMC-MIDDLE RIVER Site, project number 112IC001179. The samples were received November 14, 2007, November 15, 2007 and November 16, 2007, according to documented sample acceptance procedures.

This SDG consists of (3) laboratory ID's: A7K140155, A7K150199, and A7K160209.

TestAmerica utilizes USEPA approved methods in all analytical work. The samples presented in this report were analyzed for the parameter(s) listed on the analytical methods summary page in accordance with the method(s) indicated. A summary of QC data for these analyses is included at the back of the report.

TestAmerica North Canton attests to the validity of the laboratory data generated by TestAmerica facilities reported herein. All analyses performed by TestAmerica facilities were done using established laboratory SOPs that incorporate QA/QC procedures described in the applicable methods. TestAmerica's operations groups have reviewed the data for compliance with the laboratory QA/QC plan, and data have been found to be compliant with laboratory protocols unless otherwise noted below.

The test results in this report meet all NELAP requirements for parameters for which accreditation is required or available. Any exceptions to NELAP requirements are noted in this report. Pursuant to NELAP, this report may not be reproduced, except in full, without the written approval of the laboratory.

Please refer to the Quality Control Elements Narrative following this case narrative for additional quality control information.

If you have any questions, please call the Project Manager, Patrick J. O'Meara, at 330-497-9396.

This report is sequentially paginated. The final page of the report is labeled as "END OF REPORT."

SUPPLEMENTAL QC INFORMATION

SAMPLE RECEIVING

The temperatures of the coolers upon sample receipt were 1.7, 4.0, and 4.2°C.

CASE NARRATIVE (continued)

GC/MS VOLATILES

The sample(s) that contained concentrations of target analyte(s) at a reportable level in the associated Method Blank(s) were flagged with "B". All target analytes in the Method Blank must be below the reporting limit (RL) or the associated sample(s) must be ND with the exception of common laboratory contaminants.

The sample(s) that contain results between the MDL and the RL were flagged with "J". There is a possibility of false positive or mis-identification at these quantitation levels. In analytical methods requiring confirmation of the analyte reported, confirmation was performed only down to the standard reporting limit (SRL). The acceptance criteria for QC samples may not be met at these quantitation levels.

2-Chloroethyl vinyl ether cannot be reliably recovered in an acid preserved sample.

GC/MS SEMIVOLATILES

The analytical results met the requirements of the laboratory's QA/QC program.

METALS

The sample(s) that contain results between the MDL and the RL were flagged with "B". There is the possibility of false positive or mis-identification at these quantitation levels. The acceptance criteria for the ICB, CCB, and Method Blank are +/- the standard reporting limit (SRL).

No ICP MS Form IX was provided for batch(es) 7323022. The serial dilution was performed on a different sample from the same QC batch(es).

The sample duplicate RPD was outside the acceptance limits for some analytes. The result is less than five times the reporting limit; therefore, no corrective action is required. Refer to the sample duplicate report for RPDS that exceed 20%.

GENERAL CHEMISTRY

The sample duplicate data for batch(es) 7319513 is not included in this report for pH. The batch QC samples, which document the effect of a specific sample matrix on method performance, were not associated with a sample reported in this lot. The data, therefore, has no bearing on the samples reported herein. In order to document compliance with the QC requirement for a sample duplicate per 10 environmental samples, a summary of sample/QC associations has been provided following this case narrative.

ANALYTICAL METHODS SUMMARY

7K14155

PARAMETER	ANALYTICAL METHOD
pH Aqueous	SW846 9040B
ICP-MS (6020)	SW846 6020
Mercury in Liquid Waste (Manual Cold-Vapor)	SW846 7470A
Semivolatile Organic Compounds by GC/MS	SW846 8270C
Volatile Organics by GC/MS	SW846 8260B

References:

SW846

"Test Methods for Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 and its updates.

SAMPLE SUMMARY

7K14155 : A7K140155

WO # SAMPLE	CLIENT SAMPLE ID	SAMPLED DATE	SAMP TIME
KA71H 001	MRC-MW70B-111207	11/12/07	16:50
KA71N 002	TB-111307	11/12/07	

NOTE(S):

- The analytical results of the samples listed above are presented on the following pages.
- All calculations are performed before rounding to avoid round-off errors in calculated results.
- Results noted as "ND" were not detected at or above the stated limit.
- This report must not be reproduced, except in full, without the written approval of the laboratory.
- Results for the following parameters are never reported on a dry weight basis: color, corrosivity, density, flashpoint, ignitability, layers, odor, paint filter test, pH, porosity pressure, reactivity, redox potential, specific gravity, spot tests, solids, solubility, temperature, viscosity, and weight.

(Continued on next page)

SAMPLE SUMMARY

7K14155 : A7K150199

<u>WO # S</u>	AMPLE#	CLIENT SAMPLE ID	 	SAMP TIME
KCATK KCATV		MRC-MW70B-111407 TB-111407	11/14/07 11/14/07	14:45

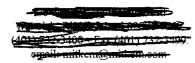
NOTE(S):

- The analytical results of the samples listed above are presented on the following pages.
- All calculations are performed before rounding to avoid round-off errors in calculated results.
- Results noted as "ND" were not detected at or above the stated limit.
- This report must not be reproduced, except in full, without the written approval of the laboratory.
- Results for the following parameters are never reported on a dry weight basis: color, corrosivity, density, flashpoint, ignitability, layers, odor, paint filter test, pH, porosity pressure, reactivity, redox potential, specific gravity, spot tests, solids, solubility, temperature, viscosity, and weight.

(Continued on next page)

SAMPLE SUMMARY

7K14155 : A7K160209


WO # SAMPLE# CLIENT SAMPLE ID	SAMPLED DATE	SAMP TIME
KCE51 001 MRC-MW70B-111507 KCE7K 002 TB-111507	11/15/07 11/15/07	14:45

NOTE(S):

- The analytical results of the samples listed above are presented on the following pages.
- All calculations are performed before rounding to avoid round-off errors in calculated results.
- Results noted as "ND" were not detected at or above the stated limit.
- This report must not be reproduced, except in full, without the written approval of the laboratory.
- Results for the following parameters are never reported on a dry weight basis: color, corrosivity, density, flashpoint, ignitability, layers, odor, paint filter test, pH, porosity pressure, reactivity, redox potential, specific gravity, spot tests, solids, solubility, temperature, viscosity, and weight.

TETRA TECH NUS, INC.		OF CUS	TODY		 • P	NUMBE	R	35	22		i		PAG	E 1 0	₌ 1	; 0
SAMPLERS (SIGNATURE) SAMPLERS (SIGNATURE) SAMPLERS (SIGNATURE)	Te	DJECT M. LKE LD OPER PRIERWA	MA ATIONS	MIN LEADEI WALA	R P	PHONE N HONE N	ーク。2 IUMBEI	}-3	022				ANDC	ONTACT:	t Ame	Fica
STANDARD TAT RUSH TAT	тор Дертн (FT)	воттом DEPTH (FT)	MATRIX (GW, SO, SW, SD, QC, ETC.)	COLLECTION METHOD GRAB (G) COMP (C)	OF CONTAINERS	PLA: PRE: USE	TAINEF STIC (P) SERVA	or GLA			TATE TIME V	Q/0	<i>()</i>	D Q		
TIME SAMPLE ID INIT 1650 NRC-MW 70B-111207 NATE INIT 10000 TB-111307 NATE RIVER			ETC.)	6	O.0N	3	Z Z	I I	I	1	Ø.			Pum Cznh San	COMMENTS o TES s-Initia notives	t-2.
																th Canton
1. REUNOUSHED BY 2. RELINQUISHED BY 3. REMUNDUISHED BY COMMENTS	PATE DATE	3/07		ME ME	2. RE	CEIVED	B			5			DAT DAT DAT	-13- a 7 -14-07 E	TIME 1500 TIME TIME	lor
DISTRIBUTION: WHITE (ACCOMPANIES SAMPLE)		Y	ELLOW)	(FIELD (COPY)				PINK	(FILE (COPY)	-		FORM	4/ M NO. ŤtNUS	100, ACO, Test.

CHAIN-OF-CUSTODY RECORD

Page <u>1</u> of <u>1</u>

NAME MIRE MANTIN FAX ADDRESS 20251 Century Blvd. #200 CITYISTIZIP GENMINTOWN, HD 20874 CITYISTIZIP GENMINTOWN, HD 20874 CILIENT PROJECT. LICIENT PROJECT. AQUITER 1854ING SAMPLE IDENTIFICATION SAMPLE IDENTIFICATION ADDRESS 20251 Century Blvd., #200 CITYISTIZIP GENMINTOWN, MD 20874 CITYISTIZIP GENMINTO	1 · 即 · · · · · · · · · · · · · · · · ·	REPO	grar:	140.00	* * 4 4 4		*****	m:	744	****	****	*****			::::IN	voje	gio::	****					* ****		
ADDRESS 20251 CENTUM BLVD. \$200 ADDRESS 20251 CENTUM BLVD. \$200 ADDRESS 20251 CENTUM BLVD. \$200 CITYSTIZIP GENERALYOUN, MD 20074 CLIENT PROJECT NAME AND BLVD. \$200 ADDRESS 20251 CENTUM BLVD. \$200 CITYSTIZIP GENERALYOUN, MD 20074 CLIENT PROJECT NAME AND BLVD. \$200 ADDRESS 20251 CENTUM BLVD. \$200 CITYSTIZIP GENERALYOUN, MD 20074 CLIENT P.O.S. AQUITED BROWNERTS AQUITED BROWNERTS ADDRESS 20251 CENTUM BLVD. \$200 CITYSTIZIP GENERALYOUN, MD 20074 CLIENT P.O.S. AQUITED BROWNERTS ACCEPTED BY DATE/TIME ADDITIONAL REMARKS: COOLER TEMP. \$200 TOTAL STREET BROWNERT BRO	COMPANY TEXT	a Tech				PHO	₩-F	528-302	COM	IPANY	Je!	tra	1	ecl	7				РНО	NEO	1-5	28-3	00	LAB PRO	ECT #:
ADDRESS 20251 CENTURY BLVD. \$7200 CITYSTIZIP GENERAL BLVD. H. H. D. 20874 CLIEST PROJECT NAME AND ADDRESS 20251 CENTURY BLVD. \$7200 CUTYSTIZIP GENERAL BLVD. H. H. D. 20874 CLIEST PROJECT NAME AND ADDRESS 20251 CENTURY BLVD. \$7200 COMMENTS 20251 CENTURY BLVD. \$7200 CO	NAME NIKO	Tartin			•				NAN	Æ.	Mi	2				ι ,								,	
CLIENT PROJECT JAMEN HOLD CLIENT PROJECT 9: LIENT PROJECT 9: LIENT PROJECT 9: AQUILLENT PROJECT 9: AQUILLE	ADDRESS 2025	1 Contribut	Lli	12	24	70	0		ADD	RESS	20	つち	51	12	بلاما	11.	, 2	111	/ 1	17	DĆ)		TURNAROU	JND TIME
SAMPLE DATETIME SAMPLED DATETIME SAMPLED SO SO SO SO SO SO SO SO SO SO SO SO SO	CITY/ST/ZIP	- didaily	11	<i>iu</i>	10/	29	711		CITY	//ST/Z	<u>امن الآل</u>	<u>مة بات</u> أيما أنه	ا حدا	<u>. Le</u>	EZEV 1	THE THE		NU	1/2	11					
SAMPLE DATETIME SAMPLED DATETIME SAMPLED SO SO SO SO SO SO SO SO SO SO SO SO SO	1 176-174	FILL AND BOOK	CLIEN	T PRO	OJECT	<u>)ひ</u> [ˈ#:	iT	CLIENT P.O.#:	<u> </u>	<u>Ot</u>	SV 47	IZVI	DI	un	1W	لا	0	WE	<u>ع ر</u>	4-		· · · · · · · · · · · · · · · · · · ·			
MRC-HW 708-11140710245 MRC-HW 708-1140710245 MRC-HW 708-1140710	LHCEN	ugale Nuer	11:	270	ر د ک	117	9						2				REQUE:	STED	ANAI	LYSES /	/	/ /	. ,	,	
MRC-HW 708-11140710245 MRC-HW 708-1140710245 MRC-HW 708-1140710	Aquier	1854ING	-4.J.	الروم	-ر <u>ر</u>	T	· ·		70	-		ي ا	iz.	3		3./									
MRC-HW 708-111407 111407 0245 MRC-HW 708-111407 111407 0245 3 1 1 1 1 PHMP TB-111407 111407 020 DATE/TIME ACCEPTED BY DATE/TIME ADDITIONAL REMARKS: COOLER TEMP: 11-14-07 500 Jack 12-14-07 500			担						NER			Solge	A W	13		E.O.		/ /	/ ,	Ι,	Ι,	/ /	/ /		
MRC-HW 708-111407 111407 0245 MRC-HW 708-111407 111407 0245 3 1 1 1 1 PHMP TB-111407 111407 020 DATE/TIME ACCEPTED BY DATE/TIME ADDITIONAL REMARKS: COOLER TEMP: 11-14-07 500 Jack 12-14-07 500			OST	3AB	TER)IC	HER	LAB ID	YTAI		1	\$ _/ &		D/C	\$ <u>`</u> \	3/								COMM	ENTS
HRC: MW 708-111407 11407 0245 XX	IDENTIFICATION	SAMPLED	OME	5	WA	S	þ		8	6	Ų"	$\langle \vec{x} \rangle$		*/	`\ \\\	/	/ /	· /	/	/ /	/ ,	/ /	,		
TB-11140+ III467 000 XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX									10#	7	3/-	9/j	₹,	₹ <u></u>	<u> </u>										
TB-11140+ III467 000 XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	MRC-MW 708-11140	714070245		X	\times						1	1	1	1									DII	MP	
1 TSF# RELINQUISHED BY DATE/TIME ACCEPTED BY DATE/TIME ADDITIONAL REMARKS: COOLER TEMP: 1 TABLE TO THE TOTAL TEMP: 1 TABLE TO THE TOTAL TEMP TO THE TOTAL TEMP TO THE TOTAL TEMP TO THE TOTAL TEMP TO THE TOTAL TEMP TO THE TOTAL TEMP TO THE TEMP TO THE TOTAL TEMP TO THE TOTAL TEMP TO THE TEMP TO	TB-111407	11/14/07/000		∞	D					2	<u> </u>								ļ				И		11
TSF# RELINQUISHED BY DATE/TIME ACCEPTED BY DATE/TIME ADDITIONAL REMARKS: COOLER TEMP:		/																					1	ES	
1 /		/																							
TSF# RELINQUISHED BY DATE/TIME ACCEPTED BY DATE/TIME ADDITIONAL REMARKS: COOLER TEMP:		/		_								ļ													-
TSF# RELINQUISHED BY DATE/TIME ACCEPTED BY DATE/TIME ADDITIONAL REMARKS: COOLER TEMP:		1								,													,		
TSF# RELINQUISHED BY DATE/TIME ACCEPTED BY DATE/TIME ADDITIONAL REMARKS: COOLER TEMP:		/						,																	
TSF# RELINQUISHED BY DATE/TIME ACCEPTED BY DATE/TIME ADDITIONAL REMARKS: COOLER TEMP:		1.							ļ																
TSF# RELINQUISHED BY DATE/TIME ACCEPTED BY DATE/TIME ADDITIONAL REMARKS: COOLER TEMP:		/												Ĺ											
TSF# RELINQUISHED BY DATE/TIME ACCEPTED BY DATE/TIME ADDITIONAL REMARKS: COOLER TEMP:		/ .																							
1. Halfhill 11-14-07 500 L. J. Loulets 12-14-07 1500		/																							
1. Halfhill 11-14-07 500 L. J. Loulets 12-14-07 1500		/						<u> </u>		<u> </u>					<u> </u>										
J. Halfhill 1500 June 2015 00 1500 June 11/15/07/ 9:40	TSF# RELINC	OUISHED BY			7		· ·	ACCE	PTED .	вү Т			4				ADDI	TIONA	AL RE	MARI	S:			COOLER	TEMP:
J Horas 11/14/07 1700 Jeny Buno 11/15/07/ 9140	J. Ha	fhill	1	1-0	15	00	9	K LUZ	حبح	kt.	,		12-	77	15	00	7								
	1 4 30	medi	////	ala	717	00	0	Derma.	B	س	no		11/15	1/07	910	fo									
			 ''	1	· · · /_			- () '					<u> </u>		<u> </u>										
WHITE: LABORATORY COPY YELLOW: REPORT COPY PINK: CLIENT'S COPY								· · · · · · · · · · · · · · · · · · ·			·		1				<u></u>								

CHAIN-OF-CUSTODY RECORD

Page _____ of ____

	REPOR	110	**********	10 TO 10 TO	*******	COM	PANY		**************************************	#1 iB! 100	******	,	erm::	P	DUCA.	ID I	7 4 M W		L	AB PROJECT	#:
COMPANY E	$\gamma \lambda \cap BC$	n_	P	223 7 - 1	5283027	.		18	rr.	4.	18	ich	· 		FROM	501	-5,	18-3	302		
NAME VICE	Margu	2	1	AX		NAM		38	1	UD	197	n			FAX						
ADDRESS 2025/	Cappella	u Pho	d	#2	00	ADD	RESS	251	(BK	Hul	n/ .	BÍU	d_{ij}	₩	20	Q.		T	URNAROUND T	IME:
CITY/ST/ZIP GRIPINA	MADIL) by	MT	30	1874)	CITY	/ST/ZI	EV	mo	ital	<u>)u)</u>	h	MĪ	ゝノ	<i>'</i>	N	74	ノ			
CLIENT PROJECT NAME	10/12 0	CLIENT PR	OJECT#	:	CLIENT P.O.#:				7.			(879.	FE DUE	STED	ANAL:	VSES					
ZIM C@IMIN	lous Kivel	112	ICC	11279			١,	S. A.	* 	~ /s	1 (Pa	Eller M.		/			/	//	/		
ROW BV	estive	,,,,		<u> </u>		83	'	14	íz,	//3	62	, ,,				/ .			/ /		
		E .		~	,	INE		1	S	3	100 T	130°	s/) /								_
SAMPLE IDENTIFICATION	DATE/TIME SAMPLED	COMPOSITE	WATER	SOIL	. LAB ID	ZINC		(4	M	/ /	WO			/ ,	/ ,	/ /	/			COMMENT	S
IDENTIFICATION		NOS O	A	°		# OF CONTAINERS	1	$\sum_{\mathbf{x}}$	ر کرو	D. W		S	/ /						•		
	10000	1	N			#		AIA AIA	<u> </u>	/ }}	7		-{	/	_	\leftarrow	\leftarrow	<u> </u>		/n/s	
MRC-MW708-111507	11/1807/1445	X	1 -				3	1	سلا	<u> </u>	1-	-	-					-41	MK	1657	
TB-1150+	11/15/01/2000	X				-	2						 					' '	- 1	2	<u> </u>
	/		-															/1	1	Ample -	this
	/		1										-					U	51.5	Ampi	\dashv
	/	 				-						-									
	/	1-1-				-							_								_
					-	-							-								-
			-			 												<u> </u>			— <u> </u>
	. /		+ +		 	 	ļ							<u> </u>							1
	/		++			+				-				 						······································	
	/		-			-		<u> </u>						<u> </u>					Album 17 1		
TOTAL O SELINOI	JISHED BY	DAT	E/TIME		ACCE	PTED	BY	l		 I	DATE/I	IME	ADD	ITION.	AL RE	MARK	S:			COOLER TEN	MP: 1
TSF# AELINQU	- do tour	NIED	1/182	25	11/1					1175	07	18:2	- 2								2
- OMMS	- UU MAY	יוניון	10.									-									{;
KOS		11-15-07	1/19.	0 /		\bigcirc	7			11-11	007	0350	>								ţ
			/								/	*									() () () () () () () () () () () () () (
		WHITE.	LAROP	ATORY CC	PY	YELI	. <u>OW</u> : F	REPOR	T COI	PY		PIN	K: CLIE	NT'S (COPY						
*		WILLE.	PUDOIM											•							È

LOIDINE.

SDG 7K14155

Thursday, December 06, 2007

SORT	UNITS	NSAMPLE	LAB_ID	QC_TYPE	SAMP_DATE	EXTR_DATE	ANAL_DATE	SMP_EXTR	EXTR_ANL	SMP_ANL
HG	UG/L	MRC-MW70B-111207	A7K140155001	NM	11/12/2007	11/15/2007	11/16/2007	3	1	4
HG	UG/L	MRC-MW70B-111407	A7K150199001	NM	11/14/2007	11/16/2007	11/16/2007	2	0	2
HG	UG/L	MRC-MW70B-111507	A7K160209001	NM	11/15/2007	11/19/2007	11/20/2007	4	1	5
M	UG/L	MRC-MW70B-111407	A7K150199001	ŅM	11/14/2007	11/16/2007	11/17/2007	2	1 .	3
M	UG/L	MRC-MW70B-111407	A7K150199001	NM	11/14/2007	11/16/2007	11/19/2007	2	3	5
M	UG/L	MRC-MW70B-111207	A7K140155001	NM	11/12/2007	11/15/2007	11/16/2007	3	. 1	4
M	UG/L	MRC-MW70B-111507	A7K160209001	NM	11/15/2007	11/19/2007	11/20/2007	4	1	5
HGF	UG/L	MRC-MW70B-111407	A7K150199001	NM	11/14/2007	11/16/2007	11/16/2007	2	0	2
HGF	UG/L	MRC-MW70B-111507	A7K160209001	NM	11/15/2007	11/19/2007	11/20/2007	4	1	5
HGF	UG/L	MRC-MW70B-111207	A7K140155001	NM	11/12/2007	11/15/2007	11/16/2007	3	1	4
MF	UG/L	MRC-MW70B-111207	A7K140155001	NM	11/12/2007	11/15/2007	11/16/2007	3	1	4
MF	UG/L	MRC-MW70B-111407	A7K150199001	NM	11/14/2007	11/16/2007	11/17/2007	2	1	3
MF	UG/L	MRC-MW70B-111407	A7K150199001	NM	11/14/2007	11/16/2007	11/19/2007	2	3	5
MF	UG/L	MRC-MW70B-111507	A7K160209001	NM	11/15/2007	11/19/2007	11/20/2007	4	1	5
PH	NO UN	MRC-MW70B-111207	A7K140155001	NM	11/12/2007	11/14/2007	11/14/2007	2	. 0	2

SORT	UNITS	NSAMPLE	LAB_ID	QC_TYPE	SAMP_DATE	EXTR_DATE	ANAL_DATE	SMP_EXTR	EXTR_ANL	SMP_ANL
PH	NO UN	MRC-MW70B-111507	A7K160209001	NM	11/15/2007	11/16/2007	11/16/2007	1	0	1
PH	NO UN	MRC-MW70B-111407	A7K150199001	NM	11/14/2007	11/15/2007	11/15/2007	1	0	1
os	%	MRC-MW70B-111507DL	.A7K160209001	NM	11/15/2007	11/17/2007	11/20/2007	2	3	. 5
os	%	MRC-MW70B-111407DL	A7K150199001	NM	11/14/2007	11/15/2007	11/21/2007	1	6	7 .
os	%	MRC-MW70B-111207DL	A7K140155001	NM	11/12/2007	11/14/2007	11/19/2007	2	5	7
os	UG/L	MRC-MW70B-111407DL	A7K150199001	NM	11/14/2007 .	11/15/2007	11/21/2007	. 1	6	7
OS	UG/L	MRC-MW70B-111507DL	A7K160209001	NM	11/15/2007	11/17/2007	11/20/2007	. 2	3	5
os	UG/L	MRC-MW70B-111207DL	A7K140155001	NM	11/12/2007	11/14/2007	11/19/2007	2	5	7
OV	%	MRC-MW70B-111207DL	A7K140155001	NM	11/12/2007	11/20/2007	11/20/2007	8	0	8
OV	%	MRC-MW70B-111407DL	A7K150199001	NM	11/14/2007	11/21/2007	11/21/2007	7	0	7
OV	%	MRC-MW70B-111507DL	A7K160209001	NM	11/15/2007	11/20/2007	11/20/2007	5	0 .	5
OV	%	TB-111307	A7K140155002	NM	11/12/2007	11/20/2007	11/20/2007	8	0	8
OV	%	TB-111407	A7K150199002	NM	11/14/2007	11/21/2007	11/21/2007	7	0 .	. 7
OV	%	TB-111507	A7K160209002	NM	11/15/2007	11/20/2007	11/20/2007	5	0	5
OV	UG/L	MRC-MW70B-111207DL	A7K140155001	NM	11/12/2007	11/20/2007	11/20/2007	8	0	8
OV	UG/L	MRC-MW70B-111407DL	A7K150199001	NM	11/14/2007	11/21/2007	11/21/2007	7	0	7
OV	UG/L	MRC-MW70B-111507DL	A7K160209001	NM	11/15/2007	11/20/2007	11/20/2007	5	0	5
OV	UG/L	TB-111307	A7K140155002	NM	11/12/2007	11/20/2007	11/20/2007	8	. 0	8

Thursday, December 06, 2007

Initial Cali	bration	Verifica	ation Stan	dard								
Instrument:	C	VAA	_			-	Units:		ug/L			
Chart Numb	oer: <u>h</u> g	<u> 341116d.</u>	prn_				Accepta	ble R	ange: 9	- 0% - 1	10%	
Standard So	urce:		Ultra				Standar	d ID:				
Element	WL/	True Conc	Ck2IC 11/16/ 9:20 A Found	07	Found	% Rec	Found	% Rec	Found	% D		%
Mercury	253.7	2.5	2.51	100.5	1 vanu		round	Rec	Found	Rec	Found	Rec

Continuing	<u>Calibra</u>	tion Ve	rification	<u> </u>								
Instrument:	C\	/AA	_				Units:	1	ug/L			
Chart Numl	oer: hg	41116d. _T	<u>orn</u>				Accepta	ble Ra	nge:8()% - 1:	20%	
Standard So	ource:		Ultra			Standar	d ID:					
	WL/		Ck6CC 11/16/0 9:24 A1	7	Ck6CC 11/16/0 9:34 Al)7	Ck6CC 11/16/0 9:50 AN	7	Ck6CC 11/16/0 10:05 A	7	Ck6CC 11/16/0 10:15 A	07
Element	Mass	True Conc	Found	% Rec	Found	% Rec	Found	% Rec	Found	% Rec	Found	% Rec
Mercury	253.7	5.0	5.04	100.7	5.36	107.3	5.42	108.4	5.51	110.2	5.51	110.1

Continuing	g Calibra	ition Ve	rification	1								
Instrument:	C\	VAA	_			-	Units:		ug/L	_		
Chart Numl	oer: <u>h</u> g	341116d. ₁	orn				Accepta	ble R	ange: 8	<u> </u>	20%	
Standard So	urce:	-	Ultra				Standar	d ID:				_
	WL/	True	Ck6CC 11/16/0 10:22 A)7 .M	Ck6CC 11/16/0 10:38 A	07 .M	Ck6CC 11/16/0 10:54 A	07) M	Ck6CC 11/16/0 11:10 A	7	Ck6CC 11/16/0 11:15 A	07 /
Element	Mass	Conc_	Found	% Rec	Found	% Rec	Found	% Rec	Found	% Rec	Found	% Rec
Mercury	253.7	5.0	5.58	111.6	5.63	112.6	5 57	1113	5.62	112.4		112.2

Continuing	<u>; Calibra</u>	ition Ve	rification	1								
Instrument:	C	VAA	_				Units:	· · · · · · · · · · · · · · · · · · ·	ug/L			<u> </u>
Chart Numb	oer: <u>h</u> g	;41116d. _[orn_				Accepta	ble Ra	ange: 80	- <u>)%</u> - 1	20%	
Standard So	urce:		Ultra				Standar	d ID:				
	WL/	T	Ck6CC 11/16/0 2:40 Pt	07 M	Ck6CC 11/16/0 2:56 PM)7 И	Ck6CC 11/16/0 3:12 Pi)7	Ck6CC 11/16/0 3:28 PM	7	Ck6CC 11/16/0 3:44 P	07
Element	Mass	True Conc	Found	% Rec	Found	% Rec	Found	% Rec	Found	% Rec	Found	% Rec
Mercury	253.7	5.0	5.58	111.7	5.49	109.8	5.57	111.5	5.62	112.4		108.4

Continuing	Calibra	ition Ve	rification	<u> </u>								
Instrument:	C <u>v</u>	VAA	<u>_</u> :				Units:		ug/L			
Chart Numb	oer: <u>h</u> g	;41116d. _]	orn				Accepta	ble R	ange: 8	0% - 1	20%	
Standard So	urce:		Ultra	···.			Standar	d ID:				
Element	WL/ Mass	True Conc	Ck6CC 11/16/0 3:59 PI Found)7	Ck6CC 11/16/0 4:15 PM	7	Ck6CC 11/16/0 4:31 Pl	07	Ck6C0 11/16/ 4:39 P	07	Found	% Rec
Mercury	253.7	5.0	5.54	110.7		111.3		110.5		111.3	_ rounu	Nec

Initial Calil	bration	Veritica	tion Stan	dard								
Instrument:	C`	VAA					Units:		ug/L			
Chart Numb	er: <u>h</u> g	g41120c.	prn				Accepta	ble Ra	ange: 9	0% - 1	10%	
Standard So	urce: _		Ultra				Standar	d ID:				
Element	WL/	True Conc	Ck2IC 11/20/0 10:08 A	07	Found	% Rec	Found	% Rec	Found	% Poo	F1	%
Mercury	253.7	2.5	2.51	100.4	Touna	Rec	rounu	Rec	Found	Rec	Found	Rec

Continuing	<u>Calibra</u>	ition Ve	rification									
Instrument:	C\	<u>/AA</u>	_	Units: ug/L								
Chart Numb	oer: <u>h</u> g	541120c.p	orn	Acceptable Range: 80% - 120%								
Standard So	ource:		Ultra	Standard ID:								
	WL/	Ck6CCV 11/20/07 10:12 AM		7 11/20/07			Ck6CC ^v 11/20/0' 10:43 Al	7	Ck6CC 11/20/0 10:58 A	7	Ck6CCV 11/20/07 11:04 AM	
Element	Mass	True Conc	Found	% Rec	Found	% Rec	Found	% Rec	Found	% Rec	Found	% Rec
Mercury	253.7	5.0	4.98	99.5	4.85	97.0	4.97	99.5	4.71	94.2	4.85	97.0

Continuing	<u>Calibra</u>	tion Ve	rification				_					
Instrument:	CV	/AA	_	Units: ug/L								
Chart Numb	oer: <u>h</u> g	41120c. _r	<u>orn</u>	Acceptable Range: 80% - 120%								
Standard So	urce:	Ultra		Standard ID:								
Element	Office Co. Co. Co. Co. Co. Co. Co. Co. Co. Co.							% Rec	Found	% Rec	Found	% Rec
Mercury	253.7	5.0	4.89	97.8	4.85	97.1						

Metals Data Reporting Form

Initial Calibration Verification Standard

Instrument:	ICPMS	Units: ug/L	
Chart Number:	111607c.rep	Acceptable Range: 90% - 110%	

Standard Source: _____ Standard ID: ____

	WL/		QC Std 11/16/0 3:58 Pl	07								
Til.	[True		%		%		%		%		%
Element	Mass	Conc	Found	Rec	Found	Rec	Found	Rec	_Found	Rec	Found	Rec
Antimony	121	25.0	23.49	94.0								Ī
Arsenic	75	25.0	25.05	100.2								
Barium	135	25.0	25.24	101.0		:						
Beryllium	9	25.0	25.26	101.1								
Cadmium	111	25.0	24.78	99.1								
Chromium	52	25.0	25.65	102.6								ł
Cobalt	59	25.0	26.37	105.5								
Copper	65	25.0	25.94	103.8								
Lead	208	25.0	26.04	104.2		ĺ						
Molybdenum	98	25.0	24.52	98.1						ļ		
Nickel	60	25.0	26.33	105.3								
Selenium	82	25.0	24.38	97.5				l		l		
Silver	107	25.0	24.95	99.8		İ		•				
Thallium	205	25.0	26.47	105.9				Ì				
Vanadium	51	25.0	25.71	102.8								
Zinc	68	25.0	25.71	102.8				į		ļ		

Metals Data Reporting Form

Continuing Calibration Verification

Instrument: ICPMS

Units: ____ug/L

Chart Number: 111607c.rep

Acceptable Range: 90% - 110%

Standard Source: _____ Standard ID: ____

			11/16/0	QC Std 6 11/16/07 4:21 PM		QC Std 6 11/16/07 6:03 PM		QC Std 6 11/16/07		QC Std 6 11/16/07		1 6 07
	WL/	True	1.2111	%	0.0311	<u>%</u>	6:54 PM	%	7:41 P		8:33 P	
Element	Mass	Conc	Found	Rec	Found	Rec	Found	Rec	Found	% Das	10 x	%
Antimony									Found	Rec	Found	Rec
1	121	50.0	47.14	94.3	47.40	94.8	47.30	94.6	47.76	95.5	48.12	96.2
Arsenic	75	50.0	48.71	97.4	49.05	98.1	48.97	97.9	48.70	97.4	50.80	101.6
Barium	135	50.0	47.96	95.9	49.15	98.3	47.79	95.6	49.88	99.8	51.32	102.6
Beryllium	9	50.0	47.33	94.7	49.08	98.2	50.38	100.8	53.29	106.6	52.88	
Cadmium	111	50.0	48.63	97.3	47.95	95.9	48.71	97.4	49.97	99.9	49.96	
Chromium	52	50.0	51.09	102.2	49.09	98.2	49.54	99.1	46.28	92.6		
Cobalt	59	50.0	49.28	98.6	50.14	100.3	49.20	98.4	48.59	97.2		
Copper	65	50.0	48.31	96.6	49.98	100.0	49.38	98.8	50.44			104.4
Lead	208	50.0	49.21	98.4	49.73	99.5	49.93			100.9	52.44	
Molybdenum	98	50.0	51.85	103.7		l		99.9	51.14	102.3	52.28	104.6
Nickel	60				46.86	93.7	47.82	95.6	49.09	98.2	48.67	97.3
l .		50.0	48.84	97.7	49.85	99.7	49.12	98.2	50.08	100.2	50.51	101.0
Selenium	82	50.0	48.88	97.8	48.41	96.8	49.74	99.5	49.43	98.9	51.83	103.7
Silver	107	50.0	48.01	96.0	49.33	98.7	48.47	96.9	50.88	101.8	51.08	102.2
Thallium	205	50.0	49.29	98.6	50.74	101.5	49.60	99.2	50.85		52.29	104.6
Vanadium	51	50.0	51.03	102.1	49.38	98.8	49.36	98.7	46.25	92.5	47.99	96.0
Zinc	68	50.0	48.45	96.9	49.11	98.2	49.63	99.3				
		·						77.3	50.70	101.4	51.14	102.3

Metals Data Reporting Form

Continuing Calibration Verification

Instrument: ICPMS Units: ug/L

Chart Number: 111607c.rep Acceptable Range: 90% - 110%

Standard Source: _____ Standard ID:

										$\overline{}$		
			QC Std 11/16/0	The state of the s	QC Std 11/16/0		QC Std		QC Std		QC Sto	
			9:25 Pi		1		11/16/0		11/16/0		11/17/	1
	WL/	True	9.23 F1	ν <u>ι</u> %	10:14 P		11:04 P		11:51 P		12:13 A	
Element	Mass	Conc	Found	Rec	Found	% Rec	Found	% Rec	Found	% Rec	Found	% Rec
Antimony	121	50.0	48.34	96.7	48.00	96.0	47.88					
Arsenic	75	50.0	48.99	98.0		97.7		95.8			l .	
Barium	135	50.0	51.78	103.6	48.38	96.8	47.85 49.80	95.7	48.92	97.8		
Beryllium	9	50.0	48.74	97.5	45.91	91.8	47.02	99.6		96.4	·	
Cadmium	111	50.0	48.61	97.2	49.39	98.8		94.0	45.71	91.4	45.15	
Chromium	52	50.0	48.35	96.7	45.64	91.3	49.57	99.1	47.63	95.3	49.25	
Cobalt	59	50.0	52.76	105.5	43.60	87.2	45.83	91.7	43.84	<u> </u>		
Copper	65	50.0	50.33	100.7	48.13	96.3	44.15 48.58	88.3	42.49	25.0		
Lead	208	50.0	50.54		49.48	99.0	50.11	97.2	48.66	97.3	48.46	
Molybdenum	98	50.0	46.77	93.5	47.22	94.4	47.73	100.2	48.97	97.9	49.55	99.1
Nickel	60	50.0	48.83	97.7	48.51	97.0	49.42	95.5	44.48	89.0 99.0		
Selenium	82	50.0	50.27	100.5		100.3		98.8	49.48		49.11	98.2
Silver	107	50.0	49.27	98.5	47.00	94.0	48.27 47.69	96.5	51.16	- 1	49.72	99.4
Thallium	205	50.0		101.5	49.00	98.0	47.69	95.4	46.00	92.0	47.99	96.0
Vanadium	51	50.0	46.58	93.2	45.44	90.9		99.8	49.03	98.1	50.60	
Zinc	68	50.0	49.96	99.9			46.21	92.4	44.19	88.4	48.06	96.1
		50.0	49.30	77.9	49.66	99.3	49.29	98.6	50.65	101.3	49.95	99.9

Metals Data Reporting Form

Initial Calibration Verification Standard

 Instrument:
 ICPMS
 Units:
 ug/L

 Chart Number:
 111907a.rep
 Acceptable Range:
 90% - 110%

Standard Source: _____ Standard ID:

	WL/		QC Std 1 11/19/07 11:26 AM									
Element	Mass	True Conc	Found	% Rec	Found	% Rec	Found	% Rec	Found	% Rec	Found	% Rec
Chromium	52	25.0	25.08	100.3					x valid	Title	Tound	Kec
Cobalt	59	25.0	25.99	ŀ		.						
Molybdenum	98	25.0	24.77	99.1		İ						İ
Vanadium	51	25.0	25.26	101.1								ļ

Metals Data Reporting Form

Continuing Calibration Verification

Instrument: ____ICPMS ____ Units: ____ug/L

Chart Number: 111907a.rep Acceptable Range: 90% - 110%

Standard Source: _____ Standard ID:

	WL/		QC Std 6 11/19/07 11:58 AM		QC Std 6 11/19/07 12:49 PM		QC Std 6 11/19/07 1:37 PM		QC Std 6 11/19/07 2:27 PM			
Element	Mass	True Conc	Found	% Rec	Found	% Rec	Found	% Rec	Found	% Rec	Found	% Rec
Chromium	52	50.0	49.07	98.1	49.65	99.3	50.22	100.4	50.35	100.7		
Cobalt	59	50.0	48.31	96.6	54.72	109.4	54.92	109.8		108.0		
Molybdenum	98	50.0	49.99	100.0	49.87	99.7	49.54	99.1	49.30	98.6		
Vanadium	51	50.0	49.31	98.6	48.08	96.2	48.36	96.7	48.60	97.2		

Metals Data Reporting Form

Initial Calibration Verification Standard

Instrument:	ICPMS	Units: ug/L	
Chart Number:	111907d.rep	Acceptable Range: 90% - 110%	

	WL/		QC Std 11/20/0 1:24 A	07								
Element	Mass	True Conc	Found	% Don	IP 1	%		%		%		%
				Rec	<u>Found</u>	Rec	Found	Rec	Found	Rec	Found	Rec
Antimony	121	25.0	24.20	96.8						ł]
Arsenic	7.5	25.0	24.39	97.6	•							
Barium	135	25.0	24.91	99.6	•			İ		ĺ		
Beryllium	9	25.0	25.23	100.9						-		
Cadmium	111	25.0	24.91	99.6		Í						İ
Chromium	52	25.0	24.45	97.8								
Cobalt	59	25.0	25.26	101.0								
Copper	65	25.0	25.00	100.0		i		Ì				1
Lead	208	25.0	25.93	103.7			,					
Molybdenum	98	25.0	25.59	102.4								
Nickel	60	25.0	25.41	101.6								
Selenium	82	25.0	24.41	97.6								
Silver	107	25.0	24.78	99.1								
Thallium	205	25.0	26.08	104.3								
Vanadium	51	25.0	24.89	99.6								
Zinc	68	25.0	25.38	101.5								

Metals Data Reporting Form

Continuing Calibration Verification

Instrument: ____ICPMS

Units: ___ ug/L

Chart Number: 111907d.rep

Acceptable Range: 90% - 110%

Standard Source: _____

Standard ID:

. —						~	- 22.				
WL/	True	11/20/0	07	11/20/0)7	11/20/0)7)	11/20/0)7 M		%
Mass	Conc	Found	Rec	Found	Rec	_Found	Rec	Found	ľ	Found	Rec
121	50.0	47.14	94.3	47.66	95.3	47 23	94.5		-		
75	50.0	48.92									
135	50.0	47.93	95.9				I				
9	50.0	48.16			- 1		1				
111	50.0	48.68					1		i i		
52	50.0	49.56			l						
59	50.0	49.10							1		
65	50.0	47.92	1		ı						
208	50.0	49.55	99.1		1				i		
98	50.0	53.97	107.9		ı		- 1				
60	50.0	47.36			1						
82	50.0	49.66									
107	50.0	48.25	96.5						l l		
205	50.0	50.07	100.1				- 1				
51	50.0	49.08			- 1				- 1		
68	50.0	48.62							i		
	Mass 121 75 135 9 111 52 59 65 208 98 60 82 107 205 51	Mass True Conc 121 50.0 75 50.0 135 50.0 9 50.0 111 50.0 52 50.0 59 50.0 208 50.0 98 50.0 82 50.0 107 50.0 205 50.0 51 50.0	WL/ True Conc Found 121 50.0 47.14 75 50.0 47.93 9 50.0 48.68 52 50.0 49.56 59 50.0 47.92 208 50.0 47.92 208 50.0 47.36 82 50.0 49.66 107 50.0 48.25 205 50.0 50.07 51 50.0 49.08	Mass True Conc Found % Rec 121 50.0 47.14 94.3 75 50.0 48.92 97.8 135 50.0 47.93 95.9 9 50.0 48.16 96.3 111 50.0 48.68 97.4 52 50.0 49.56 99.1 59 50.0 49.10 98.2 65 50.0 47.92 95.8 208 50.0 49.55 99.1 98 50.0 49.55 99.1 98 50.0 47.36 94.7 82 50.0 49.66 99.3 107 50.0 48.25 96.5 205 50.0 50.07 100.1 51 50.0 49.08 98.2	WL/ True Conc #Found % Rec Found Found 121 50.0 47.14 94.3 47.66 75 50.0 48.92 97.8 47.55 135 50.0 47.93 95.9 48.94 9 50.0 48.16 96.3 50.62 111 50.0 48.68 97.4 48.24 52 50.0 49.56 99.1 48.31 59 50.0 49.10 98.2 47.78 65 50.0 47.92 95.8 48.81 208 50.0 49.55 99.1 50.49 98 50.0 53.97 107.9 46.47 60 50.0 47.36 94.7 49.40 82 50.0 49.66 99.3 47.42 107 50.0 48.25 96.5 48.06 205 50.0 50.07 100.1 50.23 51 50.0 49.08 <td>WL/ True Conc 11/20/07 1:47 AM 11/20/07 4:27 AM Mass Conc Found Rec Found Rec 121 50.0 47.14 94.3 47.66 95.3 75 50.0 48.92 97.8 47.55 95.1 135 50.0 47.93 95.9 48.94 97.9 9 50.0 48.16 96.3 50.62 101.2 111 50.0 48.68 97.4 48.24 96.5 52 50.0 49.56 99.1 48.31 96.6 59 50.0 49.10 98.2 47.78 95.6 65 50.0 47.92 95.8 48.81 97.6 208 50.0 49.55 99.1 50.49 101.0 98 50.0 47.36 94.7 49.40 98.8 82 50.0 49.66 99.3 47.42 94.8 107 50.0 48.25 96.5<</td> <td>WL/ True Conc QC Std 6 11/20/07 1:47 AM QC Std 6 11/20/07 4:27 AM QC Std 6 11/20/07 5:16 AI 121 50.0 47.14 94.3 94.3 47.66 95.3 47.23 47.55 95.1 48.85 135 50.0 48.92 97.8 47.55 95.1 48.85 48.94 97.9 49.17 9 50.0 48.16 96.3 50.62 101.2 49.23 111 50.0 48.68 97.4 48.24 96.5 48.52 52 50.0 49.56 99.1 48.31 96.6 47.33 59 50.0 49.10 98.2 47.78 95.6 46.90 65 50.0 47.92 95.8 48.81 97.6 48.96 208 50.0 49.55 99.1 50.49 101.0 50.75 98 50.0 53.97 107.9 46.47 92.9 47.44 60 50.0 47.36 94.7 49.40 98.8 50.14 82 50.0 49.66 99.3 47.42 94.8 50.32 107 50.0 48.25 96.5 48.06 96.1 47.73 205 50.0 50.07 100.1 50.23 100.5 50.79 51 50.0 49.08 98.2 47.80 95.6 46.79</td> <td>WL/ True Conc QC Std 6 11/20/07 1:47 AM QC Std 6 11/20/07 4:27 AM QC Std 6 11/20/07 5:16 AM 121 50.0 47.14 94.3 94.3 94.5 47.66 95.3 47.23 94.5 94.5 97.7 135 50.0 48.92 97.8 47.55 95.1 48.85 97.7 48.85 97.7 95.9 48.94 97.9 49.17 98.3 9 50.0 48.16 96.3 50.62 101.2 49.23 98.5 98.5 111 50.0 48.68 97.4 48.24 96.5 48.52 97.0 48.52 97.0 97.0 48.51 99.1 48.31 96.6 47.33 94.7 95.9 50.0 49.10 98.2 47.78 95.6 46.90 93.8 46.90 93.8 48.81 97.6 48.96 97.9 48.96 97.9 93.8 48.96 97.9 93.8 48.96 97.9 93.8 48.81 97.6 48.96 97.9 47.44 94.9 49.55 99.1 50.49 101.0 50.75 101.5 50.75 101.5 50.75 101.5 98 50.0 49.55 99.1 50.49 101.0 50.75 101.5 50.75 101.5 50.0 49.66 99.3 47.42 94.8 50.32 100.6 50.0 49.66 99.3 47.42 94.8 50.32 100.6 50.0 49.66 99.3 47.42 94.8 50.32 100.6 50.79 101.6 40.77 95.5 50.0 49.08 98.2 47.80 95.6 46.79 93.6 46.79 93.6</td> <td>WL/ QC Std 6 11/20/07 1:47 AM QC Std 6 11/20/07 4:27 AM QC Std 6 11/20/07 5:16 AM QC Std AM QC Std 6 11/20/07 5:16 AM QC Std AM <th< td=""><td>WL/ True Conc % Found Rec Found % Found</td><td>WL/ QC Std 6 11/20/07 1:47 AM QC Std 6 11/20/07 4:27 AM QC Std 6 11/20/07 5:16 AM QC Std 6 11/20/07 6:08 AM Mass Conc Found Rec Found<!--</td--></td></th<></td>	WL/ True Conc 11/20/07 1:47 AM 11/20/07 4:27 AM Mass Conc Found Rec Found Rec 121 50.0 47.14 94.3 47.66 95.3 75 50.0 48.92 97.8 47.55 95.1 135 50.0 47.93 95.9 48.94 97.9 9 50.0 48.16 96.3 50.62 101.2 111 50.0 48.68 97.4 48.24 96.5 52 50.0 49.56 99.1 48.31 96.6 59 50.0 49.10 98.2 47.78 95.6 65 50.0 47.92 95.8 48.81 97.6 208 50.0 49.55 99.1 50.49 101.0 98 50.0 47.36 94.7 49.40 98.8 82 50.0 49.66 99.3 47.42 94.8 107 50.0 48.25 96.5<	WL/ True Conc QC Std 6 11/20/07 1:47 AM QC Std 6 11/20/07 4:27 AM QC Std 6 11/20/07 5:16 AI 121 50.0 47.14 94.3 94.3 47.66 95.3 47.23 47.55 95.1 48.85 135 50.0 48.92 97.8 47.55 95.1 48.85 48.94 97.9 49.17 9 50.0 48.16 96.3 50.62 101.2 49.23 111 50.0 48.68 97.4 48.24 96.5 48.52 52 50.0 49.56 99.1 48.31 96.6 47.33 59 50.0 49.10 98.2 47.78 95.6 46.90 65 50.0 47.92 95.8 48.81 97.6 48.96 208 50.0 49.55 99.1 50.49 101.0 50.75 98 50.0 53.97 107.9 46.47 92.9 47.44 60 50.0 47.36 94.7 49.40 98.8 50.14 82 50.0 49.66 99.3 47.42 94.8 50.32 107 50.0 48.25 96.5 48.06 96.1 47.73 205 50.0 50.07 100.1 50.23 100.5 50.79 51 50.0 49.08 98.2 47.80 95.6 46.79	WL/ True Conc QC Std 6 11/20/07 1:47 AM QC Std 6 11/20/07 4:27 AM QC Std 6 11/20/07 5:16 AM 121 50.0 47.14 94.3 94.3 94.5 47.66 95.3 47.23 94.5 94.5 97.7 135 50.0 48.92 97.8 47.55 95.1 48.85 97.7 48.85 97.7 95.9 48.94 97.9 49.17 98.3 9 50.0 48.16 96.3 50.62 101.2 49.23 98.5 98.5 111 50.0 48.68 97.4 48.24 96.5 48.52 97.0 48.52 97.0 97.0 48.51 99.1 48.31 96.6 47.33 94.7 95.9 50.0 49.10 98.2 47.78 95.6 46.90 93.8 46.90 93.8 48.81 97.6 48.96 97.9 48.96 97.9 93.8 48.96 97.9 93.8 48.96 97.9 93.8 48.81 97.6 48.96 97.9 47.44 94.9 49.55 99.1 50.49 101.0 50.75 101.5 50.75 101.5 50.75 101.5 98 50.0 49.55 99.1 50.49 101.0 50.75 101.5 50.75 101.5 50.0 49.66 99.3 47.42 94.8 50.32 100.6 50.0 49.66 99.3 47.42 94.8 50.32 100.6 50.0 49.66 99.3 47.42 94.8 50.32 100.6 50.79 101.6 40.77 95.5 50.0 49.08 98.2 47.80 95.6 46.79 93.6 46.79 93.6	WL/ QC Std 6 11/20/07 1:47 AM QC Std 6 11/20/07 4:27 AM QC Std 6 11/20/07 5:16 AM QC Std AM QC Std 6 11/20/07 5:16 AM QC Std AM <th< td=""><td>WL/ True Conc % Found Rec Found % Found</td><td>WL/ QC Std 6 11/20/07 1:47 AM QC Std 6 11/20/07 4:27 AM QC Std 6 11/20/07 5:16 AM QC Std 6 11/20/07 6:08 AM Mass Conc Found Rec Found<!--</td--></td></th<>	WL/ True Conc % Found Rec Found % Found	WL/ QC Std 6 11/20/07 1:47 AM QC Std 6 11/20/07 4:27 AM QC Std 6 11/20/07 5:16 AM QC Std 6 11/20/07 6:08 AM Mass Conc Found Rec Found </td

Metals Data Reporting Form

Contract.	Require	1 Detect	ion Limit	Stan	idard							
Instrumen	t:	CVAA					Units:		ug/L		-	
Chart Nun	nber: <u>h</u>	ıg41116d	l.prn				Accep	table l	Range:	<u>50% -</u>	150%	
Standard S	Source: _		Ultra	1		_	Standa	ard ID):			
Element	WL/ Mass	True Conc	% Rec	Found	% Rec	Found	% Rec	Found	% Rec			
Mercury	253.7	0.2				104114	- 1100	Tound				

Metals Data Reporting Form

Contract	Require	d Detect	tion Lim	<u>it Stan</u>	dard							
Instrumen	t:(CVAA					Units:		ug/L			
Chart Nun	nber: <u>l</u>	ng41120c	.prn			Accep	table l	Range:	50% -	150%		
Standard S	Source: _		Ultı	ra		_	Standa	ard ID	:			
WL/ Element Mass Conc Found Rec Found							Found	% Rec	Found	% Rec	Found	% Rec
Mercury	Mercury 253.7 0.2 0.29 145.6								1 ounu	Itte	round	Rec

Metals Data Reporting Form

Contract Required Detection Limit Standard

Instrument: ____ ICPMS ____ ug/L

Chart Number: 111607c.rep Acceptable Range: 50% - 150%

Element	WL/ Mass	True Conc	QC Std 11/16/0 4:07 PM	7	Found	% Rec	Found	% Doc	E. I	%		%
Antimony	121			= =	Tound	Rec	Found	Rec	Found	Rec	Found	Rec
Arsenic		2.0	1.88	94.0						ŀ		
Barium	75 125		1.98		4							
	135		1.02									
Beryllium	9	1.0	0.98	- 1								
Cadmium	111	0.5		104.3						ı		
Chromium	52	2.0		108.3								
Cobalt	59	1.0	1.06	105.8				i				,
Copper	65	2.0	2.06	103.1								
Lead	208	1.0	1.06	106.5								
Molybdenu	98	10.0	9.40	94.0						1		
Nickel	60	2.0	2.04	101.9								
Selenium	82	2.0	2.13	106.7								
Silver	107	0.5	0.51	101.7		-				ļ		Í
Thallium	205	1.0		102.5		ĺ						
Vanadium	51	5.0		104.6		l						
Zinc	68	10.0	9.92	99.2	· .							

Metals Data Reporting Form

Contract Required Detection Limit Standard

Instrument: ICPMS Units: ug/L

Chart Number: ___111907a.rep ___ Acceptable Range: __ 50% - 150%

Element	WL/ Mass	True Conc	QC Sto 11/19/0 11:35 A	07	Found	% Rec	Found	% Rec	Found	% Rec	Found	% Rec
Chromium	52	2.0	1.60	79.9)						1 Juliu	Nec
Cobalt	59	1.0	•	106.3		.		ĺ				
Molybdenu	98	10.0	9.88									
Vanadium	51	5.0	5.16	103.3						ļ		

Metals Data Reporting Form

Contract Required Detection Limit Standard

Instrument: ICPMS Units: ug/L

Chart Number: 111907d.rep Acceptable Range: 50% - 150%

						_						
	WL/		QC Std 11/20/0 1:33 AN	7								
	1 1	True		%		%		%		— <u> </u>		%
Element	Mass	Conc	Found	Rec	_Found	Rec	Found	Rec	Found	Rec	Found	Rec
Antimony	121	2.0	1.94	97.2								
Arsenic	75	2.0	1.89	94.7								
Barium	135	1.0	1.00	99.8		İ				İ		
Beryllium	9	1.0	0.93	92.6		ŀ		l				
Cadmium	111	0.5	0.48	96.3		ŀ		ĺ				
Chromium	52	2.0		79.7)	l						
Cobalt	59	1.0		103.2		l				İ		
Copper	65	2.0	2.25			[
Lead	208	1.0	1.07			:						
Molybdenu	98	10.0	9.90	99.0		- 1						
Nickel	60	2.0	2.13		•							
Selenium	82	2.0	_	75.6								
Silver	107	0.5	0.51			1		İ				
Thallium	205	1.0	1.06			.						
Vanadium	51	5.0	5.44									
Zinc	68	10.0	9.66	96.6								

Metals Data Reporting Form

Initial Calibi	ration B	lank R	esults									
Instrument:	CV	4A	_				Units:		ug/L	_		
Chart Numbe	er: <u>hg</u> 4	1116d.p	orn_									
Standard Sou	rce:		· · · ·				Standar	d ID:				
			Ck3ICl 11/16/0 9:22 Al	7								
Element	WL/ Mass	Report Limit	Found	Q	Found	Q	Found	Q	Found	Q	Found	Q
Mercury	253.7	0.2	0.1	U								

Metals Data Reporting Form

Continuing	g Calibr	ation B	lank Results	· .			
Instrument	: <u> </u>	VAA	_		Units:	ug/L	
Chart Num	ber: h	g41116d	.prn_	·		·	
Standard So	ource:				Standard ID):	
			Ck5CCB 11/16/07 9:26 AM	Ck5CCB 11/16/07 9:35 AM	Ck5CCB 11/16/07 9:51 AM	Ck5CCB 11/16/07 10:06 AM	Ck5CCB 11/16/07 10:17 AM
Element	WL/ Mass	Report Limit	Found O	Found O	Found O	Found O	Found O

0.1 U

0.1 U

0.1

253.7

0.2

0.1 U

Mercury

Metals Data Reporting Form

Continuing	g Calibra	ation B	lank Res	ults									
Instrument:	C	VAA					Units:		ug/L				
Chart Numl	ber: hg	g41116c	l.prn										
Standard So	ource: _					_	Standa	rd II):				
	Ck5CCB												
Element	WL/ Mass	Report Limit	Found	o	Found	Q	Found	Q	Found	Q	Found	O	
Mercury	253.7	0.2	0.1	U	0.1	U	0.1	U	0.1	II	0.1	TT	

0.1 U

0.1

0.1 U

0.1 U

Metals Data Reporting Form

Continuing	g Calibra	ation B	lank Resi	ults								
Instrument:	C	VAA					Units:		ug/L	-		
Chart Numl	ber: <u>h</u> g	341116c	l.prn_									
Standard So	ource: _					_	Standa	rd II):	<u>.</u>		
			Ck5CC 11/16/0 2:41 PM	7	Ck5CC 11/16/0 2:57 Pt	07	Ck5CC 11/16/0 3:14 PM	7	Ck5C0 11/16/ 3:29 P	07	Ck5C0	07
Element	WL/ Mass	Report Limit	Found	o	Found	_O	Found	Q	Found	Q	3:45 P Found	O
Mercury	253.7	0.2	0.1	U	0.1	T T	0.1	TI	0.1	TY	0.1	

Metals Data Reporting Form

	Continuing Calibration Blank Results													
Instrumen	t:C	VAA					Units:		ug/L			•		
Chart Nun	nart Number: hg41116d.prn													
Standard Source: Standard ID:												· · ·		
			Ck5CCB 11/16/07 4:00 PM		Ck5CC 11/16/0 4:16 PM	7	Ck5CC 11/16/0 4:32 PN	7	Ck5CC 11/16/0 4:40 Pi	07				
Element	WL/ Mass	Report Limit	Found	0_	Found	Q	Found	o	Found	Q	Found	0		
Mercury	253.7	0.2	0.1	U	0.1	U	0.1	U	0.1	U				

Metals Data Reporting Form

Initial Calib	ration B	lank R	esults									
Instrument:	CV.	AA				Units: ug/L						
Chart Number	hart Number: hg41120c.prn											
Standard Sou	ırce:	-		Standard ID:								
	Ck3ICB 11/20/07 10:10 AM						, <u>-</u>					
Element	WL/ Mass	Report Limit	Found	Q	Found	Q	Found	_ Q	Found	0	Found	0
Mercury	253.7	0.2	0.1	U								

Metals Data Reporting Form

Continuing Calibration Blank Results	
Instrument:CVAA	Units:ug/L
Chart Name 1 41100	··· ·

Chart Number: <u>hg41120c.prn</u>

			Ck5CCB 11/20/07 10:14 AM		Ck5CCB 11/20/07 10:29 AM		Ck5CCB 11/20/07. 10:44 AM		Ck5CCB 11/20/07 11:00 AM		Ck5CCB 11/20/07 11:05 AM	
Element	WL/ Mass	Report Limit	_Found	Q	Found	Q	Found	Q	Found	Q	Found	O
Mercury	253.7	0.2	0.1	U	0.1	U	0.1	U	0.1	U	0.1	U

Metals Data Reporting Form

Continuing	<u>Calibra</u>	ation B	lank Resi	alts	<u> </u>							
Instrument:	C	VAA			·		Units:		ug/L			
Chart Numb	oer: <u>h</u> g	g41120c	.prn					<u>-</u>				
Standard So	ource: _					_	Standa	ard IE):			
			Ck5CC 11/20/0 11:09 A	7	Ck5CC 11/20/0 11:25 A	07				-		
Element	WL/ Mass	Report Limit	Found	Q	Found	Q	Found	Q	Found	o	Found	0
Mercury	253.7	0.2	0.1	U	0.1	U						

Metals Data Reporting Form

Initial Calibration Blank Results

Instrument: ICPMS	Units: ug/L
Chart Number: 111607c.rep	
Standard Source:	Standard ID:

			QC Std 11/16/0 4:04 PN	7								
Element	WL/ <u>Mass</u>	Report Limit	Found	Q	Found	o	Found	Q	Found	Q	Found	0
Antimony	121	2	0.16	В								
Arsenic	75	5	. 0.27	U								
Barium	135	1	0.021	U								
Beryllium	9	1	0.02	U			Ī					
Cadmium	111	1	0.017	В			i		ļ			
Chromium	52	2	0.054	U			ł					
Cobalt	59	1	0.013	U								
Copper	65	2	0.046	U			j					
Lead	208	1	0.015	U			Í					
Molybdenum	98	2	0.66	U			ĺ					·
Nickel	60	2	0.053	U			·					
Selenium	82	5	1.6	U								
Silver	107	. 1	0.021	U								
Thallium	205	1	0.023	U								
Vanadium	51	20	0.25	U			,	İ				
Zinc	68	20	0.35	В				İ				

U Result is less than the IDL

Metals Data Reporting Form

Continuing Calibration Blank Results

Instrument:	<u>ICPMS</u>	Units: ug/L	
-------------	--------------	-------------	--

Chart Number: 111607c.rep

			11/16/0	QC Std 7 11/16/07 4:27 PM		$\begin{pmatrix} 7 \\ 7 \\ M \end{pmatrix}$	QC Std 11/16/0 7:00 PM	7	QC Std 11/16/0 7:47 PN	7	QC Std 11/16/0 8:39 PM)7	_
70	WL/	Report				_					0.5711	VI.	٦
Element	Mass	Limit	Found	Q	Found	Q	Found	O	Found	Q	Found	O	
Antimony	121	2	0.17	В	0.12	В	0.19	B	0.16	В	0.18	В	=
Arsenic	75	5	0.27	U	0.27	U	0.27	U	0.27	U	0.27	U	
Barium	135	1	0.021	U	0.021	U	0.021	U	0.021	U	0.021	U	
Beryllium	9	1	0.02	U	0.02	U	0.02	U	0.02	Ū	0.02	U	
Cadmium	111	. 1	0.014	U	0.014	U	0.014	U	0.014	U	0.014	U	
Chromium	52	2	0.054	U	0.054	U	0.054	U	-0.16	В	-0.2	В	
Cobalt	59	1	0.013	U	0.013	U	0.013	U	0.013	U	0.013	U	ı
Copper	65	2	0.046	U	0.046	U	0.046	U	0.046	U	0.046	U	İ
Lead	208	1	0.015	U	0.015	U	0.015	U	0.015	U	0.015	U	
Molybdenum	98	2	1.9	В	0.66	U	0.66	U	0.66	Ū	0.66	U	-
Nickel	60	2	0.053	U	0.053	U	0.053	U	0.053	U	0.053	U	-
Selenium	82	5	1.6	U	1.6	U	1.6	U	1.6	Ū	1.6	U	
Silver	. 107	1	0.021	U	0.021	U	0.021	υ	0.021	U	0.021	IJ	
Thallium	205	1	0.055	В	-0.037	В	-0.038	В	-0.038	В	0.021	U	
Vanadium	51	20	0.25	U	-0.3	В	0.25	U	0.25	U	0.025	U	
Zinc	68	20	0.19	В	0.12	U	0.16	$ B\rangle$	-0.18	В	0.12	U	

^{5.21.0}

U Result is less than the IDL

B Result is between IDL and RL

Metals Data Reporting Form

Continuing Calibration Blank Results

Instrument: ___ICPMS ____ Units: ___ug/L___

Chart Number: __111607c.rep

Standard Source:

Standard ID:

			QC Std		QC Std	7	QC Std	7	QC Std	7	QC Std	7
			11/16/0		11/16/0	7	11/16/0	11/16/07		11/16/07		7
		<u></u>	9:31 PN	<u>/I</u>	10:19 P	10:19 PM		11:10 PM		11:57 PM		$_{\rm M}$ $/$
TOTAL A	WL/	Report										
Element	Mass	Limit	Found	O	Found	Q	Found	Q	Found	Q	Found	Q
Antimony	121	2	0.21	В	0.24	В	0.26	В	0.2	B	0.2	В
Arsenic	75	5	0.27	U	0.27	U	0.27	U	0.27	U	0.27	U
Barium	135	1	0.022	В	0.021	U	0.021	U	0.021	U	0.021	U
Beryllium	9	1	0.02	U	0.02	U	0.02	U	0.02	U	0.02	U
Cadmium	111	1	0.015	В	0.014	U	0.014	U	0.014	U	0.014	U
Chromium	52	2	-0.056	В	0.18	В	-0.1	В	-0.19	В	-0.21	В
Cobalt	59	1	0.013	U	0.013	U	0.032	В	0.02	B	0.013	U
Copper	65	2	0.046	U	0.3	В	0.046	U	0.046	·U	0.046	U
Lead	208	1	0.015	U	0.29	В	0.035	В	0.015	Ū	0.015	IJ
Molybdenum	98	2	0.66	U	0.66	U	0.66	U	0.66	U	0.66	U
Nickel	60	2	0.053	U	0.053	U	0.053	U	0.053	U	0.053	U
Selenium	82	5	1.6	U	1.6	U	1.6	U	1.6	U	1.6	U
Silver	107	1	0.021	U	0.021	U	0.021	U	0.021	U	0.021	U
Thallium	205	1	0.023	U ·	-0.044	В	-0.047	В	-0.05	B	-0.047	В
Vanadium	51	20	-0.56	В	0.25	U	0.25	U	0.25	Ū	0.25	U
Zinc	68	20	0.12	U	0.46	В	0.27	В	0.23	\tilde{B}	0.12	U

U Result is less than the IDL

Metals Data Reporting Form

Initial Calibration Blank Results

Instrument: ICPMS	Units: ug/L
Chart Number: 111907a.rep	
Standard Source:	Standard ID:
QC Std 2	

			QC Std 2 11/19/07 11:32 AM									_
Element	WL/ Mass	Report Limit	Found	Q	Found	Q	Found	Q	Found	0	Found	0
Chromium	52	2	0.13	В								
Cobalt	59	1	0.013	U								
Molybdenum	98	2	0.66	U								
Vanadium	51	20	0.25	U_								

Metals Data Reporting Form

Continuing Calibration Blank Results

Instrument: ___ICPMS Units: ___ug/L

Chart Number: 111907a.rep

								_		$\overline{}$.,	
			QC Std	7	QC Std	7	QC Std	7	QC Std	7		
			11/19/0	7	11/19/0	7	11/19/0	7.)	11/19/0			
			12:04 PI	M	12:55 PI	√I_	1:43 PM	1/	2:33 PN	Λ		
	WL/	Report						rain.				
Element	Mass	Limit	Found	Q	Found	Q	Found	Q	Found	Q	Found	_ O
Chromium	52	2	0.14	В	0.23	В	0.21	В	0.21	B		
Cobalt	59	1	0.013	U	0.013	U	0.013	U	0.031	B		
Molybdenum	98	2	1.3	В	0.66	U	0.66	U	0.66	U		
Vanadium	51	20	0.25	U	-0.39	В	-0.48	В	0.25	U		

Metals Data Reporting Form

Initial Calibration Blank Results

Instrument: ICPMS	Units:ug/L	
Chart Number: 111907d.rep		
Standard Source:	Standard ID:	

			QC Std 11/20/0 1:30 AM	7								
Element	WL/ Mass	Report Limit	Found	0	Found	Q	Found	Q	Found	O	Found	0
Antimony	121	2	0.17	В					-			
Arsenic	75	5	0.27	U								
Barium	135	1	0.024	В					 			
Beryllium	9	. 1	0.02	U						į		
Cadmium	111	1	0.014	U			•					
Chromium	52	2	0.054	U								
Cobalt	59	1	0.013	U .								
Copper	65	2	0.046	U								İ
Lead	208	1	0.019	В								ĺ
Molybdenum	98	2	0.66	U	:	- 1						- 1
Nickel	60	2	0.053	U								1
Selenium	82	5	1.6	U								
Silver	107	1	0.021	U								1
Thallium	205	1	0.023	U		j						
Vanadium	51	20	0.25	U		ľ					*	
Zinc	68	20	0.12	U		ĺ				ĺ		

U Result is less than the IDL

Metals Data Reporting Form

Continuing Calibration Blank Results

Instrument: ICPMS Units: ug/L

Chart Number: 111907d.rep

	T						-					
1			QC Std		QC Std	7	QC Std	7	QC Std	7		
	i .		11/20/0	7	11/20/0	7	11/20/0	7)	11/20/0	7 🕽		
			1:53 AN	M	4:33 AN	Л	5:22 AM		6:14 AM			
İ	WL/	Report										
Element	Mass	Limit	Found	Q	Found	Q	Found	Q	Found	Q	Found	Q
Antimony	121	2	0.23	В	0.17	В	0.22	B)	0.14	В		
Arsenic	75	5	0.27	U	0.27	U	0.27	U	0.27	U		
Barium	135	1	0.031	В	0.056	В	0.061	В	0.069	\overline{B}		
Beryllium	9	1	0.034	В	0.034	В	0.038	$\overline{\mathbf{B}}$	0.031	В		
Cadmium	111	1	0.027	В	0.019	В	0.044	B	0.036	В		
Chromium	52	2	0.054	U	0.054	U	0.054	U	0.07	В		
Cobalt	59	1	0.013	В	0.015	В	0.04	В	0.043	B		
Copper	- 65	2	0.046	U	0.046	U	0.046	U	0.046	U		
Lead	208	1	0.023	В	0.24	В	0.34	$\overline{\mathbf{B}}$	0.16	В		
Molybdenum	98	2	2.9		0.66	U	0.66	U	0.66	U		
Nickel	60	2	0.053	U	0.053	U	0.06	В	0.077	B		
Selenium	82	5	1.6	U	1.6	U	1.6	U	1.6	U		
Silver	107	1	0.021	U	0.021	U	0.021	U	0.024	B		
Thallium	205	1	0.092	В	0.03	В	0.1	\overline{B}	0.06	В		
Vanadium	51	20	0.25	U	0.25	U	0.25	U	0.25	U		
Zinc	68	20	0.12	U	0.12	U	0.12	U	0.12	ט		

U Result is less than the IDL

Metals Data Reporting Form

Preparation Blank Results

Lab Sample ID: KA9W2B

Matrix: Water Units: ug/L Prep Date: 11/15/07 Prep Batch: 7319028

Weight: NA Volume: 50 Percent Moisture: NA

Flamout	WL/	YDY	Report			_		Anal	Anal
Element	Mass	IDL_	Limit	Conc	0	DF	Instr	Date	Time
Antimony	121	0.048	2.0	0.048	U	1	ICPMS	11/16/07	18:12
Arsenic	75	0.27	5.0	0.27	U	1	ICPMS	11/16/07	18:12
Barium	135	0.021	1.0	0.042	B	1	ICPMS	11/16/07	18:12
Beryllium	9	0,020	1.0	0.020	U	1	ICPMS	11/16/07	18:12
Cadmium	111	0.014	1.0	0.025	B	1	ICPMS	11/16/07	18:12
Chromium	52	0.054	2.0	9.56	B	1	ICPMS	11/16/07	18:12
Cobalt	59	0.013	1.0	-0.043	В	1	ICPMS	11/16/07	18:12
Copper	65	0.046	2.0	0.046	U	1	ICPMS	11/16/07	18:12
Lead	208	0.015	1.0	0.016	$\stackrel{\text{B}}{\longrightarrow}$	1	ICPMS	11/16/07	18:12
Molybdenum	98	0.66	2.0	0.66	U	1	ICPMS	11/16/07	18:12
Nickel	60	0.053	2.0	(0.30	B	1	ICPMS	11/16/07	18:12
Selenium	82	1.6	5.0	1.6	U	1	ICPMS	11/16/07	18:12
Silver	107	0.021	1.0	0.021	U	1	ICPMS	11/16/07	18:12
Thallium	205	0.023	1.0	-0.048	В	1	ICPMS	11/16/07	18:12
Vanadium	51	0.25	20.0	0.25	U	1	ICPMS	11/16/07	18:12
Zinc	68	0.12	20.0	5.2	B	1	ICPMS	11/16/07	18:12

KATIH DISS

Metals Data Reporting Form

Preparation Blank Results

Lab Sample ID: KA9W2B

Matrix: Water Units: ug/L Prep Date: 11/15/07 Prep Batch: 7319028Hg

Weight: NA Volume: 100 Percent Moisture: NA

Element	WL/ Mass	IDL	Report Limit	Conc	Q	DF	Instr	Anal Date	Anal Time
Mercury	253.7	0.10	0.20	0.10	U	· 1	CVAA	11/16/07	11:05

Metals Data Reporting Form

Preparation Blank Results

Lab Sample ID: KCDWPB

Matrix: Water Units: ug/L Prep Date: 11/16/07 Prep Batch: 7320027

Weight: NA Volume: 50 Percent Moisture: NA

Florent	WL/	IDY	Report					Anal	Anal
Element	Mass	<u>IDL</u>	Limit	Conc	Q	DF	Instr	<u>Date</u>	Time
Antimony	121	0.048	2.0	0.048	U	1	ICPMS	11/16/07	22:38
Arsenic	75	0.27	5.0	0.27_	U	1	ICPMS	11/16/07	22:38
Barium	135	0.021	1.0	0.043	B	1	ICPMS	11/16/07	22:38
Beryllium	9	0.020	1.0	0.020	U	1	ICPMS	11/16/07	22:38
Cadmium	111	0.014	1.0	0.014	U	1	ICPMS	11/16/07	22:38
Chromium	52	0.054	2.0	0.43	B	.1	ICPMS	11/16/07	22:38
Cobalt	59	0.013	1.0	-0.046	В	1	ICPMS	11/19/07	12:35
Copper	65	0.046	2.0	0.14	B	1	ICPMS	11/16/07	22:38
Lead	208	0.015	1.0	0.089	B	_1	ICPMS	11/16/07	22:38
Molybdenum	98	0.66	2.0	-0.76	В	1	ICPMS	11/16/07	22:38
Nickel	60	0.053	2.0	0.072	B	1.	ICPMS	11/16/07	22:38
Selenium	82	1.6	5.0	1.6	U	1	ICPMS	11/16/07	22:38
Silver	107	0.021	1.0	0.021	U	1	ICPMS	11/16/07	22:38
Thallium	205	0.023	1.0	-0.062	В	1	ICPMS	11/16/07	22:38
Vanadium	51	0.25	20.0	0.25	U	1	ICPMS	11/16/07	22:38
Zinc	68	0.12	20.0	1.8	B	1	ICPMS	11/16/07	22:38

KCATK Total KCATK dissolu

Metals Data Reporting Form

Preparation Blank Results

Lab Sample ID: KCDWPB

Matrix: Water Units: ug/L Prep Date: 11/16/07 Prep Batch: 7320027Hg

Weight: NA Volume: 100 Percent Moisture: NA

Element	WL/ Mass	IDL	Report Limit	Conc	Q	DF	Instr	Anal Date	Anal Time
Mercury	253.7	0.10	0.20	0.10	U	1	CVAA	11/16/07	16:08

Metals Data Reporting Form

Preparation Blank Results

Lab Sample ID: KCJL1B

Matrix: Water Units: ug/L Prep Date: 11/19/07 Prep Batch: 7323022

Weight: NA Volume: 50 Percent Moisture: NA

Element	WL/ Mass	IDL	Report Limit	Conc	Q	DF	Instr	Anal Date	Anal Time
Antimony	121	0.048	2.0	0.048	U	1	ICPMS	11/20/07	5:10
Arsenic	75	0.27	5.0	0.27_	U	1	ICPMS	11/20/07	5:10
Barium	135	0.021	1.0	Q.84	B	1		11/20/07	5:10
Beryllium	9	0.020	1.0	(0.022	B	1	i .	11/20/07	5:10
Cadmium	111	0.014	1.0	0.015	B	1	1	11/20/07	5:10
Chromium	52	0.054	2.0	-0.13	В	1	ICPMS	11/20/07	5:10
Cobalt	59	0.013	1.0	-0.014	В	1	ICPMS	11/20/07	5:10
Copper	65	0.046	2.0	$\bigcirc 0.40$	В	1	ICPMS	11/20/07	5:10
Lead	208	0.015	1.0	0.65	В	1	ICPMS		5:10
Molybdenum	98	0.66	2.0	0.66	U	1	ICPMS	11/20/07	5:10
Nickel	60	0.053	2.0	0.10	B	1	ICPMS	11/20/07	5:10
Selenium	. 82	1.6	5.0	1.6	U	1	ICPMS	11/20/07	5:10
Silver	107	0.021	1.0	0.021	U	1	ICPMS	11/20/07	5:10
Thallium	205	0.023	1.0	0.057	В	1	ICPMS	11/20/07	5:10
Vanadium	51	0.25	20.0	0.25	U		ICPMS	11/20/07	5:10
Zinc	68	0.12	20.0	4.6	В	1	ICPMS		5:10

KCESI TOTAL KCESI dissolved

Comments: Lot #: A7K160209

Metals Data Reporting Form

Preparation Blank Results

Lab Sample ID: KCJL1B

Matrix: Water Units: ug/L Prep Date: 11/19/07 Prep Batch: 7323022Hg

Weight: NA Volume: 100 Percent Moisture: NA

Element	WL/ Mass	IDL	Report Limit	Conc	Q	DF	Instr	Anal Date	Anal Time
Mercury	253.7	0.10	0.20	0.10	U	1	CVAA	11/20/07	11:10

Metals Data Reporting Form

Interference Check Standard A

Instrument: ICPMS	Units:	ug/L	
-------------------	--------	------	--

Chart Number: 111607c.rep Acceptable Range: 0% - 0%

				QC Std 4 11/16/07 4:11 PM				
Element	WL/ Mass	Reporting Limit	True Conc	Found	Found	Found	Found	Found
Antimony	121	2		0.210		100110	Tound	Tound
Arsenic	75	5		0.045				
Barium	135	1		0.780				
Beryllium	9	1		0.002				j
Cadmium	111	1	*	-0.150				
Chromium	52	2		1		-		
Cobalt	59	1		0.110				
Copper	65	2		2				
Lead	208	1		0.065				
Molybdenum	98	2	1000	1090				
Nickel	60	2		2				
Selenium	82	5		-0.380				
Silver	107	1		0.051				
Thallium	205	1		-0.034				
Vanadium	51	20		0.022		İ		
Zinc	68	20		3				

U Result is less than the IDL

Metals Data Reporting Form

Interference Check Standard A

Instrument: ICPMS	Units: ug/L
Chart Number: 111907a.rep	Acceptable Range:0% - 0%
Standard Source:	Standard ID:

				QC Std 4 11/19/07 11:47 AM				
Element	WL/ Mass	Reporting Limit	True Conc	Found	177			
	177455	Limit	Conc	Found	Found	Found	Found	Found
Chromium	52	2		0.650				
Cobalt	59	1		0.095				
Molybdenum	98	2	1000	930				
Vanadium	51	20	· 	0.210				

Metals Data Reporting Form

Interference	Check	Standard	Δ
	CHUCK	Standard	$\boldsymbol{\Gamma}$

Instrument: ICPMS		Units: ug/L
Chart Number: 111907d.rep	•	Acceptable Range: 0% - 0%

				QC Std 4 11/20/07 1:36 AM		· · · · · · · · · · · · · · · · · · ·		
Element	WL/ Mass	Reporting Limit	True Conc	Found	Found	Found	Found	Found
Antimony	121	2		0.220				Toulu
Arsenic	75	5		-0.120			ł	1
Barium	135	1		0.730				
Beryllium	9	1		0.012				
Cadmium	111	1		-0.250				
Chromium	52	2		0.710				•
Cobalt	59	1		0.110				
Copper	65	2		2			,	
Lead	208	1		0.029				
Molybdenum	98	2	1000	956				
Nickel	60	2		2				
Selenium	82	5		-0.870			·	
Silver	107	1		0.038				-
Thallium	205	1		-0.006	ĺ			
Vanadium	51	20		0.270				
Zinc	68	20		2				

U Result is less than the IDL

Metals Data Reporting Form

Interference Check Standard AB

Instrument:	<u>ICPMS</u>	Units:	ug/L
will cit.	1011110	Units:	ug/L

Chart Number: 111607c.rep Acceptable Range: 50% - 150%

			QC Std 11/16/0 4:15 Pl)7								
Element	WL/ Mass	True Conc	Found	% Rec	Found	% Rec	Found	% Rec	Found	% Rec	Found	% Rec
Antimony	121	100	108.4	108.4							_ X OUNG	Titte
Arsenic	75	100	L.	101.8				ł				
Barium	135	100		102.7				ł				
Beryllium	9	100	97.4	97.4				ł				
Cadmium	111	100	99.8	99.8								
Chromium	52	100	103.9	103.9				.		:		
Cobalt	59	100		101.2	•	ŀ				ĺ		
Copper	65	100	98.5	98.5								
Lead	208	100	99.7	99.7				ļ				
Molybdenum	98	1000	1220€	$\overline{}$)							
Nickel	60	100		101.4				ļ				
Selenium	82	100	105.8									
Silver	107	100	101.8									
Thallium	205	100	96.7	96.7		ļ				İ		
Vanadium	51	100	103.1									
Zinc	68	100	99.1	99.1	<u>. </u>	ŀ						

Metals Data Reporting Form

Interference Check Standard AB

Instrument: ____ICPMS Units: ___ug/L Chart Number: 111907a.rep Acceptable Range: 50% - 150% Standard Source: Standard ID:

			QC Std 11/19/0 11:51 A)7								
Element	WL/ <u>Mass</u>	True Conc	Found	% Rec	Found	% Rec	Found	% Rec	Found	% Rec	Found	% Rec
Chromium	52	100	98.7	98.7				_		Acc	Tound	- MCC
Cobalt	59	100	94.6	94.6								
Molybdenum	98	1000	1021.7	102.2								
Vanadium	51	100	98.1	98.1								

Metals Data Reporting Form

Interference Check_Standard AB

Instrument: ICPMS Units: ug/L

Chart Number: 111907d.rep Acceptable Range: 50% - 150%

	1		· · ·									
:			QC Std									
			11/20/0									
	WL/	•	1:40 A									_
Elomon4	i I	True		%		%		%		%		%
Element	Mass	Conc	Found	Rec	Found	Rec	Found	Rec	<u>Found</u>	Rec	Found	Rec
Antimony	121	100	110.1	110.1								
Arsenic	75	100	103.7	103.7	•							
Barium	135	100	103.4	103.4								
Beryllium	9	100	92.7	92.7		ļ						
Cadmium	111	100	98.2	98.2								
Chromium	52	100	102.1	102.1								
Cobalt	59	100	101.5	101.5				Ī				
Copper	65	100	99.6	99.6		1						
Lead	208	100	99.2	99.2				İ				
Molybdenum	98	1000	1103.6	110.4		ľ		l				
Nickel	60	100	100.5	100.5		l		1				
Selenium	82	100	107.6	107.6								
Silver	107	100	97.3	97.3		i						
Thallium	205	100	98.5	98.5						ĺ		
Vanadium	51	100	100.4	100.4				İ		Ī		
Zinc	68	100	101.2	101.2								

Metals Data Reporting Form

Matrix Spike Sample Results

Spike Sample ID: KA71HS

Original Sample ID: KA71H Client ID: MRC-MW70B-111207S

Matrix: Water Units: ug/L Prep Date: 11/15/07 Prep Batch: 7319028

Weight: NA Volume: 50 Percent Moisture: NA

į.	WL/	os		MS		Spike	%	os	MS		OS Anal	OS Anal	MS Anal	MS Anal
Element	Mass	Conc	Q	Conc	O	Level	Rec	DF	DF	Instr	Date	Time	Date	Time
Antimony	121	0.28	В	102		100	101.5	1	1	ICPMS	11/16/07	18:20	11/16/07	18:35
Arsenic	75	1.3	В	107		100	106.0	1	1	ICPMS	11/16/07	18:20	11/16/07	18:35
Barium	135	90.0		185		100	94.9	1	1	ICPMS	11/16/07	18:20	11/16/07	18:35
Beryllium	9	0.21	В	101		100	100.9	1	1	ICPMS	11/16/07	18:20	11/16/07	18:35
Cadmium	111	0.022	В	103	-	100	102.7	1	1	ICPMS	11/16/07	18:20	11/16/07	18:35
Chromium	52	0.25	В	94.4		100	94.2	1	1	ICPMS	11/16/07	18:20	11/16/07	18:35
Cobalt	59	39.8		128		100	88.0	1	i .	ICPMS	11/16/07	18:20	11/16/07	18:35
Copper	65	0.16	В	93.6		100	93.5	1	1	ICPMS	11/16/07	18:20	11/16/07	18:35
Lead	208	0.048	В	98.5		100	98.5	1	Ì	ICPMS	11/16/07	18:20	11/16/07	18:35
Molybdenum	98	0.66	U	81.6		100	81.6	1		ICPMS	11/16/07	18:20	11/16/07	18:35
Nickel	60	56.8		153		100	96.2	1	1	ICPMS	11/16/07	18:20	11/16/07	18:35
Selenium	82	1.6	U	116		100	116.0	1	1	ICPMS	11/16/07	18:20	11/16/07	18:35
Silver	107	0.021	U	58.6		100	58.6	1		ICPMS	11/16/07	18:20	11/16/07	18:35
Thallium	205	0.023	U	97.9		100	97.9	1		ICPMS	11/16/07	18:20	11/16/07	18:35
Vanadium	51	0.25	Ų	95.6		100	95.6	1		ICPMS	11/16/07	18:20	11/16/07	18:35
Zinc	68	80.9		189		100	107.6	1		ICPMS	11/16/07	18:20	11/16/07	18:35

Comments: Lot #: A7K140155 Sample #: 1

5.21.0

N Spike recovery failed

Form 5A Equivalent

NC Percent recovery was not calculated

^{*} Duplicate analysis RPD was not within limits

E Serial dilution percent difference not within limits
 U Result is less than the IDL

TestAmerica North Canton

Metals Data Reporting Form

Matrix	Spike	Sample	Results
		~ *****	LUBUIU

Spike Sample ID: KA71HS

Original Sample ID: KA71H Client ID: MRC-MW70B-111207S

Matrix: Water Units: ug/L Prep Date: 11/15/07 Prep Batch: 7319028Hg

Weight: NA Volume: 100 Percent Moisture: NA

Element	WL/ Mass	OS Conc	O	MS Conc	Q	Spike Level	% Rec	OS DF	MS DF	Instr	OS Anal Date	OS Anal Time	MS Anal Date	MS Anal Time
Mercury	253.7	0.10	U	1.1		1	111.3	1	1	CVAA	11/16/07	11:07	11/16/07	11:12

Comments: Lot #: A7K140155 Sample #: 1

5.21.0

N Spike recovery failed

Form 5A Equivalent

NC Percent recovery was not calculated

^{*} Duplicate analysis RPD was not within limits

E Serial dilution percent difference not within limits

Metals Data Reporting Form

Sample Duplicate RPD Report

 Duplicate Sample ID:
 KA71HX

 Original Sample ID:
 KA71H

 Client ID:
 MRC-MW70B-111207X

Matrix: Water Units: ug/L Prep Date: 11/15/07 Prep Batch: 7319028

Weight: NA Volume: 50 Percent Moisture: NA

Element	WL/ Mass	OS Conc	o	Dupe Conc	o	% RPD	OS DF	Dupe DF	Instr	OS Anal Date	OS Anal Time	Dupe Anal Date	Dupe Anal Time
Antimony	121	0.28	В	0.048	U	0.3	1	1	ICPMS	11/16/07	18:20	11/16/07	18:31
Arsenic	75	1.3	В	1.1	В	0.2	1	ŀ	ICPMS	11/16/07		11/16/07	18:31
Barium	135	90.0		81.9		9.4	1			11/16/07	l .	11/16/07	18:31
Beryllium	9	0.21	В	0.20	В	0.0	1		l	11/16/07		11/16/07	18:31
Cadmium	111	0.022	В	0.016	В	0.0	1			11/16/07	1	11/16/07	18:31
Chromium	52	0.25	В	0.28	В	0.0	1	l	ICPMS	11/16/07		11/16/07	18:31
Cobalt	59	39.8		36.4		8.9	1		ICPMS	11/16/07	18:20	11/16/07	18:31
Copper	65	0.16	В	0.22	В	0.1	1			11/16/07		11/16/07	18:31
Lead	208	0.048	В	0.051	В	0.0	1			11/16/07		11/16/07	18:31
Molybdenum	98	0.66	U	0.66	U		1			11/16/07		11/16/07	
Nickel	60	56.8		52.0		8.7	1			11/16/07	18:20	11/16/07	18:31
Selenium	82	1.6	U	1.6	บ		1			11/16/07	18:20	11/16/07	18:31
Silver	107	0.021	U	0.021	U	ŀ	1	T I		11/16/07	18:20		18:31
Thallium	205	0.023	υ	0.023	U	İ	1		1	11/16/07	18:20	11/16/07	18:31
Vanadium	51	0.25	U	0.47	В	0.4	î	. I		11/16/07	18:20	11/16/07	18:31
Zinc	68	80.9		72.8		8.1	1			11/16/07	18:20	11/16/07 11/16/07	18:31 18:31

^{5.21.0}

^{*} Duplicate analysis RPD was not within limits

U Result is less than the IDL

B Result is between IDL and RL

Metals Data Reporting Form

Sample Duplicate RPD Report

Duplicate Sample ID: KA71HX

Original Sample ID: KA71H

Client ID: MRC-MW70B-111207X

Matrix: Water Units: ug/L

Prep Date: __11/15/07

Prep Batch: 7319028Hg

Weight: NA

Volume: 100

Percent Moisture:

NA

Element	WL/ Mass	OS Conc	Q	Dupe Conc	Q	% RPD	OS DF	Dupe DF	Instr	OS Anal Date	OS Anal Time	Dupe Anal Date	Dupe Anal Time
Mercury	253.7	0.10	U	0.10	U		1	1	CVAA	11/16/07	11:07	11/16/07	11:08

Metals Data Reporting Form

Laboratory Control Sample Results

Lab Sample ID:

KA9W2C

Matrix: Water Units: ug/L

50

Prep Date: ___11/15/07

Prep Batch: 7319028

Weight: NA

Volume:

Percent Moisture:

Element	WL/ Mass	Spike Level	Conc	Percent Recovery	Q	Range	DF	Instr	Anal Date	Anal Time
Antimony	121	100	99.3	99.3		57-110	1	ICPMS	11/16/07	18:15
Arsenic	75	100	107	106.9		86-118	1	ICPMS	11/16/07	18:15
Barium	135	100	99.7	99.7		83-110	1	ICPMS	11/16/07	18:15
Beryllium	9	100	110	109.6		84-120	1	ICPMS	11/16/07	18:15
Cadmium	111	100	110	109.6		89-114	1	ICPMS	11/16/07	18:15
Chromium	52	100	108	107.7		81-110	1	ICPMS	11/16/07	18:15
Cobalt	59	100	107	107.1		82-113	1	ICPMS	11/16/07	18:15
Copper	65	100	101	101.0		82-113	1	ICPMS	11/16/07	18:15
Lead	208	100	101	101.0		84-113	1	ICPMS	11/16/07	18:15
Molybdenum	98	100	88.0	88.0		62-111	1	ICPMS	11/16/07	18:15
Nickel	60	100	98.3	98.3		80-111	1	ICPMS	11/16/07	18:15
Selenium	82	100	115	114.7		90-128		ICPMS	11/16/07	18:15
Silver	107	100	104	103.9		83-111		ICPMS	11/16/07	18:15
Thallium	205	100	98.2	98.2		82-113		ICPMS	11/16/07	18:15
Vanadium	51	100	106	105.8		82-110		i I	11/16/07	18:15
Zinc	68	100	116	115.6		90-129		l 1	11/16/07	18:15

Comments: Lot #: A7K140155

Metals Data Reporting Form

Laboratory Control Sample Results

Lab Sample ID:

KA9W2C

Matrix:

Water

Units:

ug/L

Prep Date: 11/15/07

Prep Batch: 7319028Hg

Weight:

NA

Volume:

100

Percent Moisture:

Element	WL/ Mass	Spike Level	Conc	Percent Recovery	Q	Range	DF	Instr	Anal Date	Anal Time
Mercury	253.7	5.0	5.5	110.8		81-123	1	CVAA	11/16/07	11:06

Comments: Lot #: A7K140155

Metals Data Reporting Form

Laboratory Control Sample Results

Lab Sample ID: KCDWPC

Matrix: Water Units: ug/L Prep Date: 11/16/07 Prep Batch: 7320027

Weight: NA Volume: 50 Percent Moisture: NA

Element	WL/ Mass	Spike Level	Conc	Percent Recovery	Q	Range	DF	Instr	Anal Date	Anal Time
Antimony	121	100	94.4	94.4	-	57-110	1	ICPMS	11/16/07	22:42
Arsenic	75	100	103	103.1		86-118	1	ICPMS	11/16/07	22:42
Barium	135	100	101	100.6	ł	83-110	1	ICPMS	11/16/07	22:42
Beryllium	9	100	101	100.7		84-120	1	ICPMS	11/16/07	22:42
Cadmium	111	100	108	107.8		89-114	1	ICPMS	11/16/07	22:42
Chromium	52	100	102	102.4	ļ	81-110	1	ICPMS	11/16/07	22:42
Cobalt	59	100	109	109.2	ĺ	82-113	1	ICPMS	11/19/07	12:39
Copper	65	100	94.7	94.7		82-113	1	ICPMS	11/16/07	22:42
Lead	208	100	97.7	97.7		84-113	1	ICPMS	11/16/07	22:42
Molybdenum	98	100	85.2	85.2		62-111	1	ICPMS	11/16/07	22:42
Nickel	60	100	93.5	93.5		80-111	1	ICPMS	11/16/07	22:42
Selenium	82	100	112	111.6		90-128	1	ICPMS	11/16/07	22:42
Silver	107	100	99.4	99.4		83-111	1	ICPMS	11/16/07	22:42
Thallium	205	100	96.1	96.1		82-113	1	ICPMS	11/16/07	22:42
Vanadium	51	100	101	101.2		82-110		ICPMS	11/16/07	22:42
Zinc	68	100	114	114.2		90-129	1	ICPMS	11/16/07	22:42

Metals Data Reporting Form

Laboratory Control Sample Results

Lab Sample ID: KCDWPC

Matrix: Water Units: ug/L Prep Date: 11/16/07 Prep Batch: 7320027Hg

Weight: NA Volume: 100 Percent Moisture: NA

Element	WL/ Mass	Spike Level	Conc	Percent Recovery	Q	Range	DF	Instr	Anal Date	Anal Time
Mercury	253.7	5.0	5.0	99.1		81-123	1	CVAA	11/16/07	16:09

Metals Data Reporting Form

Laboratory Control Sample Results

Lab Sample ID: KCJL1C

Matrix: Water Units: ug/L Prep Date: 11/19/07 Prep Batch: 7323022

Weight: NA Volume: 50 Percent Moisture: NA

Element	WL/ Mass	Spike Level	Conc	Percent Recovery	Q	Range	DF	Instr	Anal Date	Anal Time
Antimony	121	100	98.3	98.3		57-110	1	ICPMS	11/20/07	5:25
Arsenic	75	100	106	106.2		86-118	1	ICPMS	11/20/07	5:25
Barium	135	100	99.8	99.8	ļ	83-110	1	ICPMS	11/20/07	5:25
Beryllium	9	100	108	107.6		84-120	1	ICPMS	11/20/07	5:25
Cadmium	111	100	105	105.5		89-114	1	ICPMS	11/20/07	5:25
Chromium	52	100	103	103.2	ĺ	81-110	1	ICPMS	11/20/07	5:25
Cobalt	59	100	105	104.8		82-113	1	ICPMS	11/20/07	5:25
Copper	65	100	102	102.0		82-113	1	ICPMS	11/20/07	5:25
Lead	208	100	103	102.6		84-113	1	ICPMS	11/20/07	5:25
Molybdenum	98	100	85.8	85.8		62-111	1	ICPMS	11/20/07	5:25
Nickel	60	100	100	100.5	,	80-111	1	ICPMS	11/20/07	5:25
Selenium	82	100	115	115.5		90-128	1	ICPMS	11/20/07	5:25
Silver	107	100	102	102.0		83-111	1	ICPMS	11/20/07	5:25
Thallium	205	100	101	101.2		82-113	1	ICPMS	11/20/07	5:25
Vanadium	51	100	101	101.0		82-110		ICPMS	11/20/07	5:25
Zinc	68	100	114	114.4		90-129		ICPMS	11/20/07	5:25

Comments: Lot #: A7K160209

Metals Data Reporting Form

Laboratory Control Sample Results

Lab Sample ID: KCJL1C

Matrix: Water Units:

<u>ug/L</u> **Prep Date:** <u>11/19/07</u>

1/19/07 **Prep Batch:** 7323022Hg

Weight: NA Volume: 100 Percent Moisture: NA

Element	WL/ Mass	Spike Level	Conc	Percent Recovery	Q	Range	DF	Instr	Anal Date	Anal Time
Mercury	253.7	5.0	4.7	94.1		81-123	1	CVAA	11/20/07	11:12

Metals Data Reporting Form

Serial Dilution RPD Report

Serial Dilution Sample ID: KA71HFL

Original Sample ID: KA71HF Client ID: MRC-MW70B-111207F

Matrix: Water Units: ug/L Prep Date: 11/15/07 Prep Batch: 7319028

Weight: NA Volume: 50 Percent Moisture: NA

Element	WL/ Mass	OS Conc	Q	Serial Dilution Conc	Q	Percent Diff	OS DF	Ser Dil DF	Instr	OS Anal Date	OS Anal Time	Ser Dil Anal Date	Ser Dil Anal Time
Antimony	121	0.080	В	0.52	В		1	5	ICPMS	11/16/07	18:24	11/16/07	18:28
Arsenic	75	1.2	В	1.5	В		1	5	ICPMS	11/16/07	18:24	11/16/07	18:28
Barium	135	84.2		92.3		9.6	1	5	ICPMS	11/16/07	18:24	11/16/07	18:28
Beryllium	9	0.16	В	0.10	U		1	5	ICPMS	11/16/07	18:24	11/16/07	18:28
Cadmium	111	0.018	В	0.33	В		1	5	ICPMS	11/16/07	18:24	11/16/07	18:28
Chromium	52	0.054	U	0.27	U		1	5	ICPMS	11/16/07	18:24	11/16/07	18:28
Cobalt	59	37.7		42.3	(12.2)	1	5	ICPMS	11/16/07	18:24	11/16/07	18:28
Copper	65	0.15	В	0.73	В		1	5	ICPMS	11/16/07	18:24	11/16/07	18:28
Lead	208	0.015	U	0.075	U		1	5	ICPMS	11/16/07	18:24	11/16/07	18:28
Molybdenum	98	0.66	U	3.3	U		1	5	ICPMS	11/16/07	18:24	11/16/07	18:28
Nickel	60	56.3		63.3		1214)	1	5	ICPMS	11/16/07	18:24	11/16/07	18:28
Selenium	82	1.6	U	8.0	U		1	5	ICPMS	11/16/07	18:24	11/16/07	18:28
Silver	107	0.021	U	0.10	U		1	5	ICPMS	11/16/07	18:24	11/16/07	18:28
Thallium	205	0.023	U	0.12	U		1	5	ICPMS	11/16/07	18:24	11/16/07	18:28
Vanadium	51	0.25	U	1.2	U		1	5	ICPMS	11/16/07	18:24	11/16/07	18:28
Zinc	68	79.7		82.9	В	4.0i	1	5	ICPMS	11/16/07	18:24	11/16/07	18:28

Comments:

B Result is between IDL and RL

Metals Data Reporting Form

Serial Dilution RPD Report

Serial Dilution Sample ID:	KCATKFL

Original Sample ID: KCATKF Client ID: MRC-MW70B-111407F

Matrix: Water Units: ug/L Prep Date: 11/16/07 Prep Batch: 7320027

Weight: NA Volume: 50 Percent Moisture: NA

Element	WL/ Mass	OS Conc	o	Serial Dilution Conc	Q	Percent Diff	OS DF	Ser Dil DF	Instr	OS Anal Date	OS Anal Time	Ser Dil Anal Date	Ser Dil Anal Time
Antimony	121	0.048	U	0.24	U		1	5	ICPMS	11/17/07	0:04	11/17/07	0:07
Arsenic	75	1.2	В	1.7	В		1	5	ICPMS	11/17/07	0:04	11/17/07	0:07
Barium	135	84.0		87.5		4.17	1	5	ICPMS	11/17/07	0:04	11/17/07	0:07
Beryllium	9	0.20	В	0.24	В		1	5	ICPMS	11/17/07	0:04	11/17/07	0:07
Cadmium	111	0.014	U	0.070	U		1	5	ICPMS	11/17/07	0:04	11/17/07	0:07
Chromium	52	0.054	U	0.27	U		1	5	ICPMS	11/19/07	14:18	11/19/07	14:21
Cobalt	59	45.4		49.0		7.93	1	5	ICPMS	11/19/07	14:18	11/19/07	14:21
Copper	65	0.13	В	0.27	В		1	5	ICPMS	11/17/07	0:04	11/17/07	0:07
Lead	208	0.018	В	0.075	U		1	5	ICPMS	11/17/07	0:04	11/17/07	0:07
Molybdenum	98	0.66	U	3.3	U		1	5	ICPMS	11/19/07	14:18	11/19/07	14:21
Nickel	60	62.3		66.1		6.10	1	5	ICPMS	11/17/07	0:04	11/17/07	0:07
Selenium	82	1.6	U	8.0	U		1	5	ICPMS	11/17/07	0:04	11/17/07	0:07
Silver	107	0.021	U	0.10	U		1	5	ICPMS	11/17/07	0:04	11/17/07	0:07
Thallium	205	0.023	U	0.12	U		1	5	ICPMS	11/17/07	0:04	11/17/07	0:07
Vanadium	51	0.25	U	1.2	U		1	5	ICPMS	11/19/07	14:18	11/19/07	14:21
Zinc	68	98.3		93.5	В	4.88	1		ICPMS	11/17/07	0:04	11/17/07	0:07

Comments: _

Metals Data Reporting Form

Instrument Detection Limits

Instrument: _____CVAA Units: _____ppb

Element	Wavelength	Reporting Limit	IDL	Date of IDL
Mercury	253.700	0.2	0.10	11/07/07

Metals Data Reporting Form

Instrument Detection Limits

Instrument: <u>ICPMS</u>

Units: ____ppb

Element	Mass	Reporting Limit	IDL	Date of IDL
Antimony	121	2.0	0.048	09/18/07
Arsenic	75	5.0	0.27	09/18/07
Barium	135	1.0	0.021	09/18/07
Beryllium	9	1.0	0.020	09/18/07
Cadmium	111	1.0	0.014	09/18/07
Chromium	52	2.0	0.054	09/18/07
Cobalt	59	1.0	0.013	09/18/07
Copper	65	2.0	0.046	09/18/07
Lead	208	1.0	0.015	09/18/07
Molybdenum	98	2.0	0.66	09/18/07
Nickel	60	2.0	0.053	09/18/07
Selenium	82	5.0	1.6	09/18/07
Silver	107	1.0	0.021	09/18/07
Thallium	205	1.0	0.023	09/18/07
Vanadium	. 51	20.0	0.25	09/18/07
Zinc	68	20.0	0.12	09/18/07

Metals Data Reporting Form

Linear Dynamic Ranges

Instrument:	ICPMS	Units:	daa

Element	Wavelength /Mass	Linear Range	Date of Linear Range
Antimony	121.00	2000	04/26/07
Arsenic	75.00	5000	04/26/07
Barium	135.00	5000	04/26/07
Beryllium	9.00	2500	04/26/07
Cadmium	111.00	5000	04/26/07
Chromium	52.00	5000	04/26/07
Cobalt	59.00	5000	04/26/07
Copper	65.00	5000	04/26/07
Lead	208.00	5000	04/26/07
Molybdenum	98.00	5000	04/26/07
Nickel	60.00	5000	04/26/07
Selenium	82.00	5000	04/26/07
Silver	107.00	2000	04/26/07
Thallium	205.00	5000	04/26/07
Vanadium	51.00	5000	04/26/07
Zinc	68.00	5000	04/26/07

7319028

TestAmerica Laboratories, Inc. Metals Prep Log/ Batch Summary

Prepared By:

Lisa McGall (e-Signature)

Prep Date:

11/15/07

Lot	Work Order	-	Due Date:	11/28/07	ICP Weight	ICPMS Weight	Hg Weight
A7K150000 Water	KA9W2	В	Due Date: SDG:			50 mL	100 mL
A7K150000 Water	KA9W2	C	Due Date: SDG:			<u>50 mL</u>	100 mL
A7K140155 Water	KA71H Dissolved		Due Date: 11/28/07 SDG: 7K13126			<u>50 mL</u>	<u>100 mL</u>
A7K140155 Water	KA71H Total		Due Date: 11/28/07 SDG: 7K13126			50 mL	100 mL
A7K140155 Water	KA71H Total	S	Due Date: 11/28/07 SDG: 7K13126			50 mL	100 mL
A7K140155 Water	KA71H Total	X	Due Date: 11/28/07 SDG: 7K13126			<u>50 mL</u>	<u>100 mL</u>
	LEVEL 2						

BLANK AND CHECK STANDARD ON BATCH

MS/MSD AND PDS ON BATCH

CORRECT SPIKES ADDED

SPIKING SOLUTIONS DOCUMENTED ON BATCH LOG

>	ζ.
>	ζ
	ζ
	ζ

Comments:

B-BLANK; C-CHECK SAMPLE; L-CHECK SAMPLE DUPLICATE; P-SERIAL DILUTION; S-MATRIX SPIKE SAMPLE; D-MATRIX SPIKE DUPLICATE SAMPLE

ICPMS ELEMENTS WITHIN THE BATCH:

AG AS BA BE CD CO CR CU MO NI PB SB SE TL VX ZN

Matrix Spike Information:

KA71H

Hg

ICPMS-1

Check Sample Information:

KA9W2

Hg

ICPMS-1

Prep Method(s): SW846 3005A, SW846 7470A

TestAmerica Laboratories, Inc. Metals Prep Log/ Batch Summary

Prepared By:

Lisa McGall
(e-Signature)

Prep Date:

11/16/07

			riep Date:	11/10/07			
Lot	Work Order	-	Due Date:	11/29/07	ICP Weight	ICPMS Weight	Hg Weight
A7K160000 Water	KCDWP	В	Due Date: SDG:			50 mL	100 mL
A7K160000 Water	KCDWP	С	Due Date: SDG:			<u>50 mL</u>	<u>100 mL</u>
A7K150194 Water	KCAPK Dissolved		Due Date: 11/29/07 SDG: 7K13126			<u>50 mL</u>	<u>100 mL</u>
A7K150194 Water	KCAPK Total		Due Date: 11/29/07 SDG: 7K13126			<u>50 mL</u>	<u>100 mL</u>
A7K150194 Water	KCAPK Total	S	Due Date: 11/29/07 SDG: 7K13126			<u>50 mL</u>	<u>100 mL</u>
A7K150194 Water	KCAPK Total	X	Due Date: 11/29/07 SDG: 7K13126	·		<u>50 mL</u>	<u>100 mL</u>
A7K150194 Water	KCAPP Dissolved		Due Date: 11/29/07 SDG: 7K13126			<u>50 mL</u>	<u>100 mL</u>
A7K150194 Water	KCAPP Total		Due Date: 11/29/07 SDG: 7K13126			<u>50 mL</u>	100 mL
A7K150194 Water	KCAPV Dissolved		Due Date: 11/29/07 SDG: 7K13126			<u>50 mL</u>	<u>100 mL</u>
A7K150194 Water	KCAPV Total		Due Date: 11/29/07 SDG: 7K13126			<u>50 mL</u>	<u>100 mL</u>
A7K150194 Water	KCAP2 Dissolved		Due Date: 11/29/07 SDG: 7K13126			<u>50 mL</u>	<u>100 mL</u>
A7K150194 Water	KCAP2 Total		Due Date: 11/29/07 SDG: 7K13126			<u>50 mL</u>	100 mL
A7K150194 Water	KCAP6 Dissolved		Due Date: 11/29/07 SDG: 7K13126			<u>50 mL</u>	<u>100 mL</u>
A7K150194 Water	KCAP6 Total		Due Date: 11/29/07 SDG: 7K13126			<u>50 mL</u>	<u>100 mL</u>
A7K150194 Water	KCAQC Dissolved		Due Date: 11/29/07 SDG: 7K13126			<u>50 mL</u>	<u>100 mL</u>
A7K150194 Water	KCAQC Total		Due Date: 11/29/07 SDG: 7K13126			<u>50 mL</u>	<u>100 mL</u>
A7K150199 Water	KCATK Dissolved	•	Due Date: 11/29/07 SDG: 7K13126			<u>50 mL</u>	<u>100 mL</u>
A7K150199 Water	KCATK Total		Due Date: 11/29/07 SDG: 7K13126			<u>50 mL</u>	<u>100 mL</u>

7320027

TestAmerica Laboratories, Inc. Metals Prep Log/ Batch Summary

Prepared By:

Lisa McGall

Prep Date:

11/16/07

Work Order

Due Date: 11/29/07

ICP Weight

ICPMS Weight

Hg Weight

Lot

LEVEL 2

BLANK AND CHECK STANDARD ON BATCH

MS/MSD AND PDS ON BATCH

CORRECT SPIKES ADDED

SPIKING SOLUTIONS DOCUMENTED ON BATCH LOG

X X X

Comments:

B-BLANK; C-CHECK SAMPLE; L-CHECK SAMPLE DUPLICATE; P-SERIAL DILUTION; S-MATRIX SPIKE SAMPLE; D-MATRIX SPIKE DUPLICATE SAMPLE

ICPMS ELEMENTS WITHIN THE BATCH:

AG AS BA BE CD CO CR CU MO NI PB SB SE TL VX ZN

Matrix Spike Information:

KCAPK

Hg

ICPMS-1

Check Sample Information:

KCDWP

Hg

ICPMS-1

Prep Method(s): SW846 3005A, SW846 7470A

TestAmerica Laboratories, Inc. Metals Prep Log/ Batch Summary

Prepared By: Lisa McGall (e-Signature)

Prep Date: 11/19/07

Lot	Work Orde	er_	Due Date:	11/21/07	ICP Weight	ICPMS Weight	Hg Weight
A7K190000 Water	KCJL1	В	Due Date: SDG:			50 mL	100 mL
A7K190000 Water	KCJL1	С	Due Date: SDG:			<u>50 mL</u>	<u>100 mL</u>
A7K160209 Water	KCE51 Dissolved		Due Date: 11/21/07 SDG: 7K13126			<u>50 mL</u>	<u>100 mL</u>
A7K160209 Water	KCE51 Total		Due Date: 11/21/07 SDG: 7K13126			<u>50 mL</u>	<u>100 mL</u>
A7K160132 Water	KCEDV Dissolved		Due Date: 11/30/07 SDG: 7K13126			<u>50 mL</u>	100 mL
A7K160132 Water	KCEDV Total		Due Date: 11/30/07 SDG: 7K13126			<u>50 mL</u>	100 mL
A7K160132 Water	KCEDV Total	S	Due Date: 11/30/07 SDG: 7K13126			<u>50 mL</u>	100 mL
A7K160132 Water	KCEDV Total	X	Due Date: 11/30/07 SDG: 7K13126			<u>50 mL</u>	<u>100 mL</u>
A7K160132 Water	KCED7 Dissolved		Due Date: 11/30/07 SDG: 7K13126			<u>50 mL</u>	<u>100 mL</u>
A7K160132 Water	KCED7 Total		Due Date: 11/30/07 SDG: 7K13126			<u>50 mL</u>	<u>100 mL</u>
A7K160132 Water	KCED9 Dissolved		Due Date: 11/30/07 SDG: 7K13126			<u>50 mL</u>	<u>100 mL</u>
A7K160132 Water	KCED9 Total		Due Date: 11/30/07 SDG: 7K13126			<u>50 mL</u>	<u>100 mL</u>
A7K160132 Water	KCEEA Dissolved		Due Date: 11/30/07 SDG: 7K13126			<u>50 mL</u>	<u>100 mL</u>
A7K160132 Water	KCEEA Total		Due Date: 11/30/07 SDG: 7K13126			<u>50 mL</u>	<u>100 mL</u>
A7K160132 Water	KCEED Dissolved		Due Date: 11/30/07 SDG: 7K13126	•		<u>50 mL</u>	100 mL
A7K160132 Water	KCEED Total		Due Date: 11/30/07 SDG: 7K13126			<u>50 mL</u>	<u>100 mL</u>
A7K170226 Water	KCJC3 Dissolved		Due Date: 11/30/07 SDG: 7K13126			<u>50 mL</u>	<u>100 mL</u>
A7K170226 Water	KCJC3 Total		Due Date: 11/30/07 SDG: 7K13126			<u>50 mL</u>	100 mL
A7K170226 Water	KCJC6 Dissolved		Due Date: 11/30/07 SDG: 7K13126			<u>50 mL</u>	100 mL
A7K170226 Water	KCJC6 Total		Due Date: 11/30/07 SDG: 7K13126			<u>50 mL</u>	100 mL
A7K170226 Water	KCJC7 Dissolved		Due Date: 11/30/07 SDG: 7K13126			<u>50 mL</u>	100 mL
A7K170226 Water	KCJC7 Total	ě	Due Date: 11/30/07 SDG: 7K13126			<u>50 mL</u>	<u>100 mL</u>

7323022

TestAmerica Laboratories, Inc. Metals Prep Log/ Batch Summary

Prepared By:

Lisa McGall

Prep Date: Due Date: 11/19/07

Work Order

11/21/07

ICP Weight

ICPMS Weight

Hg Weight

Lot

LEVEL 2
BLANK AND CHECK STANDARD ON BATCH

MS/MSD AND PDS ON BATCH

CORRECT SPIKES ADDED

SPIKING SOLUTIONS DOCUMENTED ON BATCH LOG

X

X

Comments:

B-BLANK; C-CHECK SAMPLE; L-CHECK SAMPLE DUPLICATE; P-SERIAL DILUTION; S-MATRIX SPIKE SAMPLE; D-MATRIX SPIKE DUPLICATE SAMPLE

ICPMS ELEMENTS WITHIN THE BATCH:

AG AS BA BE CD CO CR CU MO NI PB SB SE TL VX ZN

Matrix Spike Information:

KCEDV

Hg

ICPMS-1

Check Sample Information:

KCJL1

Hg

ICPMS-1

Prep Method(s): SW846 3005A, SW846 7470A

Instrument Upload Run Log - Page 1:
Started Mon Nov 19 06:35:33 2007 by LISTM:
Data File: UPL\$CAN_DATA_ROOT:<LHG>HG41116D.PRN;1:

	workorder	Dilution	Date	Time	Batch	Lot	Instrum
1	. WATER		19-NOV-2007				H4
2	STD01REP1	1	16-NOV-2007 16-NOV-2007	09:12:52			H4
3	STD02REP1	1	16-NOV-2007	09:14:05			H4
4	STD03REP1		16-NOV-2007	09:15:22			
	STD04REP1	1	16-NOV-2007	09:15:22			H4
6	STD05REP1	1	16-NOV-2007 16-NOV-2007	09:17:54			H4
7	STD06REP1	1	16-NOV-2007	09.17.34			H4
8	CK2ICV	1	16-NOV-2007				H4
	CK3ICB		16-NOV-2007	09.20.39			
	CK4CRA\MRL	1	16-NOV-2007	09:22:13			
	CK6CCV	1	16-NOV-2007	09:23:40			H4
	CK5CCB		16-NOV-2007				H4
	KA7JXBT						H4
			16-NOV-2007				H4
15	KA9WTBT KA9WTCT	1	16-NOV-2007	09:28:44			H4
16	KA9WTLT	1	16-NOV-2007	09:30:00			H4
77	KATJ2T	1	16-NOV-2007	09:31:14			H4
	CK6CCV	10	16-NOV-2007 16-NOV-2007 16-NOV-2007 16-NOV-2007	09:32:27			H4
		1	16-NOV-2007	09:34:08			H4 .
	CK5CCB	1	16-NOV-2007 16-NOV-2007	09:35:31			H4
	KA7JXBT	- L	Te-MOA-500)	09:36:54			H4
	KA9WTBT	1	16-NOV-2007	09:38:11			H4
	KA9WTCT	1	16-NOV-2007	09:39:39			H4
	KA9WTLT	1	16-NOV-2007	09:40:57			H4
			16-NOV-2007	09:42:15		*	H4
			16-NOV-2007				H4
		10	16~NOV-2007	09:44:48			H4
27		1	16-NOV-2007	09:46:03			H4
		1	16-NOV-2007	09:47:28			H4
		1	16-NOV-2007	09:48:53			H4
30	CK6CCV	1	16-NOV-2007 16-NOV-2007	09:50:07			14
31		,	16-NOV-2007	09:51:20		. I	
	KA6EMT	⊥	16-NOV-2007 (09:52:43			14 14
33	KA6EMTS	1	16-NOV-2007	09:54:00			1 4 14
34	KA6EMTD	1	16-NOV-2007 (9:55:14			
35	KA7J7T	1.	16-NOV-2007 (19:56:39	,		I4
36	KA7J8T	1	16-NOV-2007 (9.57.56			14
			16-NOV-2007 (14
38	KA7VCT		16-NOV-2007				I4
			16-NOV-2007				[4
			16-NOV-2007 1				[4
			16-NOV-2007 1				[4
							4
			16-NOV-2007 1				4
			16-NOV-2007 1			H	4
1		-	16-NOV-2007 1	0:08:08		H	4

```
: Instrument Upload Run Log - Page 2:
: Started Mon Nov 19 06:35:33 2007 by LISTM :
Data File: UPL$CAN_DATA_ROOT:<LHG>HG41116D.PRN;1 :
```

#	WorkOrder	Dilution	Date	Time	Batch	Lot	Instrument
45	KA7VLT	1	16-NOV-2007	10:09:23	3		H4
46	KA7VMT	1	16-NOV-2007				H4
47	KA7VNT	1	16-NOV-2007				H4
48	KA7VPT	l.	16-NOV-2007				H4
49	KA7VRT	1	16-NOV-2007				H4
50	CK6CCV	1	16-NOV-2007				H4
51	CK5CCB	1.	16-NOV-2007				H4
52	CK6CCV	1	16-NOV-2007				H4
53	CK5CCB	1	16-NOV-2007				H4
54	KA9WLB	.1	16-NOV-2007			A7K150000	
55	KA9WLC	1	16-NOV-2007				H4
56	KA8RC	1	16-NOV-2007				H4
57	KA8TA	1	16-NOV-2007				H4
58	KA8TC	1	16-NOV-2007				
59	KA9AN	1	16-NOV-2007				
60	KA9CA	1	16-NOV-2007				
61	KA8A4	1	16-NOV-2007				H4
62	KA8R5	1	16-NOV-2007				H4
63	KA8R5F	1	16-NOV-2007				H4
64	CK6CCV	1	16-NOV-2007				H4
65	CK5CCB	1	16-NOV-2007				H4
66	KA8R6	1	16-NOV-2007	10:40:43	7319021	A7K140243	H4
67	KA8R6F	1	16-NOV-2007				H4
68	KA8R8	1	16-NOV-2007				H4
	KA8R8F	1	16-NOV-2007				H4
	KA8RK	1	16-NOV-2007	10:46:19	7319021	A7K140243	H4
	KA8RKF	1	16-NOV-2007	10:47:47	7319021	A7K140243	H4
	KA9QK	1	16-NOV-2007	10:49:03	7319021	7K13168	H4
	KA9QKS	1	16-NOV-2007	10:50:20	7319021	7K13168	H4
		1	16-NOV-2007				H4
_		1	16-NOV-2007	10:52:57	7319027	A7K150000	H4
		1	16-NOV-2007				H4
		1	16-NOV-2007				H4
		1	16-NOV-2007	10:56:52	7319027	A7K150000	H4
		1	16-NOV-2007 I			A7K140337	H4
		1	16-NOV-2007 3			A7K140337	H4
		1	16-NOV-2007 1	L1:00:39	7319027	A7K140337	H4
		1	16-NOV-2007 1	1:02:16	7319027	A7K140337	H4
		1	16-NOV-2007 1			A7K140337	H4
		1	16-NOV-2007 1			A7K150000	H4
	-	1	16-NOV-2007 1			A7K150000	H4
	No.	1	16-NOV-2007 1			7K13126	H4
		1	16-NOV-2007 1		7319028	7K13126	H4
88 (K6CCV	l .	16-NOV-2007 1	1:10:13			H4
			•				

```
: Instrument Upload Run Log - Page 3:
: Started Mon Nov 19 06:35:33 2007 by LISTM:
: Data File: UPL$CAN_DATA_ROOT:<LHG>HG41116D.PRN;1
```

#	WorkOrder	Dilution	Date	Time	Batch	Lot	Instrument
89	CK5CCB	1	16-NOV-2007	11.11.26	 :		
	KA71HS	1	16-NOV-2007			7812126	H4 H4
E I	KA71HF	1	16-NOV-2007				H4
	CK6CCV	1.	16-NOV-2007			71113120	H4
93	CK5CCB	1	16-NOV-2007	11:17:07	•		H4
94	CK6CCV	1.	16-NOV-2007				H4
95	CK5CCB	1	16-NOV-2007				H4
96	KCA3GBT	1	16-NOV-2007	14:43:03	7320029	A7K150000	H4
97	KCDWVBT	1	16-NOV-2007			A7K160000	H4
98	KCDWVCT	1	16-NOV-2007			A7K160000	
99	KA6E7T	1	16-NOV-2007	14:47:20	7320029	C7K130261	
100	KA6E7TS	1	16-NOV-2007	14:48:35	7320029	C7K130261	H4
	KA6E7TD	1	16-NOV-2007	14:49:52	7320029	C7K130261	H4
102	KA6F0T	1	16-NOV-2007	14:51:25	7320029	C7K130261	H4
	KA6FWT	1	16-NOV-2007	14:52:41	7320029	C7K130261	H4
	KA80HT	1	16-NOV-2007	14:53:59	7320029	A7K140254	H4
	KA80MT	1	16-NOV-2007			A7K140254	H4
	CK6CCV	1	16-NOV-2007				H4
	CK5CCB	1	16-NOV-2007				H4
	KA8WTT	1	16-NOV-2007			A7K140254	H4
	KA8E0T	1	16-NOV-2007			A7K140206	H4
	KA8FNT	1	16-NOV-2007			A7K140206	H4
	KA73ET	1	16-NOV-2007			A7K140164	H4
	KA73HT	1	16-NOV-2007			A7K140164	H4
	KCDWMB	1	16-NOV-2007			A7K160000	H4
	KCDWMC	1	16-NOV-2007			A7K160000	H4
	•	1	16-NOV-2007			7K15365	H4
		1	16-NOV-2007			A7K150134	H4
		1	16-NOV-2007		7320026	7K15214	H4
		1	16-NOV-2007				H4
		1.	16-NOV-2007				H4
120 I		1	16-NOV-2007			7K15214	H4
		1	16-NOV-2007			7K15214	H4
		1	16-NOV-2007			7K15214	H4
123 E		1	16-NOV-2007			7K15214	H4
		1	16-NOV-2007			7K15214	H4
		1	16-NOV-2007			7K15214	H4
		1	16-NOV-2007			7K15214	H4
127 F		1 1	16-NOV-2007			7K15214	H4
120 F		1	16-NOV-2007			7K15214	H4
		1	16-NOV-2007 1		/320026	7K15214	H4
			16-NOV-2007 1				H4
131 C			16-NOV-2007 1				H4
192 N	coall .	L	16-NOV-2007 1	12:31:09	7320026	7K15214	H4

Instrument Upload Run Log - Page 4:
Started Mon Nov 19 06:35:33 2007 by LISTM:
Data File: UPL\$CAN_DATA_ROOT:<LHG>HG41116D.PRN;1:

#	WorkOrder	Dilution	Date	Time	Batch	Lot	Instrument
133	KCC91	1	16-NOV-2007	15:32:24	7320026	A7K150354	H4
134	KCA5DBT	1	16-NOV-2007			A7K150000	
135	KCDWRBT	. 1	16-NOV-2007			A7K160000	
136	KCDWRCT	1	16-NOV-2007			A7K160000	
137	KA444T	1	16-NOV-2007			A7K130147	
138	KA44VT	1	16~NOV-2007			A7K130147	
139	KA44VTS	1	16-NOV-2007				
140	KA44VTD	1	16-NOV-2007				
141	KCDWKB	1	16-NOV-2007				
142	CK6CCV	1	16-NOV-2007			H/KT00000	H4
143	CK5CCB	1	16-NOV-2007				H4
	KCDWKC	1	16-NOV-2007			7777.60000	H4
145	KCAF9		16-NOV-2007				H4
	KCAGM	1	16-NOV-2007			A7K150167	H4
	KCAGQ	1	16-NOV-2007			A7K150167	H4
	KCCMN	1	16-NOV-2007			A7K150167	H4
	KCCMNS	1	16-NOV-2007			A7K150294	H4
	KCCMND	1	16-NOV-2007			A7K150294	H4
	KCC0D	1	16-NOV-2007			A7K150294	H4
	KCCX7	1	16-NOV-2007			A7K150318	H4
	KCC06	1				A7K150318	H4
	CK6CCV	1	16-NOV-2007 16-NOV-2007			A7K150325	H4
	CK5CCB	1	16-NOV-2007				H4
	KCC61	1					H4
	KCC6K	1	16-NOV-2007	16:02:08	7320025	A7K150342	H4
		1	16-NOV-2007	16:03:33	7320025		H4
	KCC7P	1	16-NOV-2007			A7K150342	H4
		1	16-NOV-2007			A7K150342	H4
		1	16-NOV-2007			A7K150342	H4
		1	16-NOV-2007			A7K160000	H4
			16-NOV-2007			A7K160000	H4
		1	16-NOV-2007			7K13126	H4
			16-NOV-2007			7K13126	H4
			16-NOV-2007		7320027	7K13126	H4
		1	16-NOV-2007	16:15:13			H4
		1	16-NOV-2007	16:16:26			H4
			16-NOV-2007			7K13126	H4
			16-NOV-2007			7K13126	H4
			16-NOV-2007			7K13126	H4
			16-NOV-2007			7K13126	H4
			16-NOV-2007 1			7K13126	H4
			16-NOV-2007 1			7K13126	H4
			16-NOV-2007 1			7 K1 3126	H4
		1	16-NOV-2007 1	6:27:14	7320027	7K13126	H4
T/6]	KCAPVF :	1	16-NOV-2007 1	.6:28:40	7320027	7K13126	H4

: Instrument Upload Run Log - Page 5:
: Started Mon Nov 19 06:35:33 2007 by LISTM:
: Data File: UPL\$CAN_DATA_ROOT:<LHG>HG41116D.PRN;1

#	WorkOrder	Dilution	Date	Time	Batch	Lot	Instrument
177	KCAQC	1	16-NOV-2007	16:29:55	7320027	7K13126	H4
178	CK6CCV	1	16-NOV-2007	16:31:09			H4
179	CK5CCB	1	16-NOV-2007	16:32:24			H4
180	KCAQCF	1	16-NOV-2007	16:33:38	7320027	7K13126	H4
184	KCATK	1	16-NOV-2007			7K13126	H4
182	KCATKF	1	16-NOV-2007			7K13126	H4
183	CRA	1	16-NOV-2007			,1110120	H4
184	CK6CCV	1	16-NOV-2007	16:39:36			H4
185	CK5CCB		16-NOV-2007				H4
							U4
			End	of Report			
				-			

```
: Instrument Upload Run Log - Page 1:
: Started Wed Nov 21 07:02:09 2007 by LISTM:
: Data File: UPL$CAN_DATA_ROOT:<LHG>HG41120C.PRN;1
```

#	# WorkOrder	Dilution	Date	Time	Batch	Lot	Instrument
1	L WATER		21-NOV-2007				H4
2	STD01REP1	1	20-NOV-2007	10:01:19			H4
3	STD02REP1	1	20-NOV-2007				H4
4	STD03REP1	1	20-NOV-2007				H4
5	STD04REP1	1	20-NOV-2007				H4
6	STD05REP1	1	20-NOV-2007				H4
7	STD06REP1	ı	20-NOV-2007				H4
8	CK2ICV	1	20-NOV-2007				H4
9	CK3ICB	1	20-NOV-2007	10:10:23			H4
10	CK4CRA\MRL	1	20-NOV-2007				H4
11	CK6CCV	1	20-NOV-2007				H4
12	CK5CCB	1	20-NOV-2007				H4
13	KCJLXBF	1	20-NOV-2007				H4
14	KCJLXCF	1	20-NOV-2007				H4
15	KCEFGF	1	20-NOV-2007				H4
16	KCHWRF	1	20-NOV-2007				H4
17	KCH0AF	1	20-NOV-2007				H4
18	KCHX0F	1	20-NOV-2007				H4
19	KCHX3F	1	20-NOV-2007			-	H4
20	KCHX6F	1	20-NOV-2007				H4
21	KCHX8F	1	20-NOV-2007				H4
22	KCHX9F	1	20-NOV-2007	10:27:01			H4
23	CK6CCV	1	20-NOV-2007				H4
24	CK5CCB	1	20-NOV-2007	10:29:34			H4
25	KCHXPF	1	20-NOV-2007		·		H4
26	KCHXPFS	1	20-NOV-2007	10:32:03			H4
27	KCHXPFD	1	20-NOV-2007	10:33:16			H4
28	KCHXXF	1	20-NOV-2007	10:34:32			H4
29	KCJLVB	1	20-NOV-2007	10:35:48			H4
30	KCJLVC	1	20-NOV-2007	10:37:01			H4
31	KCEFP	1	20-NOV-2007	10:38:15			H4
32	KCETL	1	20-NOV-2007	10:39:30			H4
33	KCETR	1	20-NOV-2007	10:40:44			H4
34	KCETV	1	20-NOV-2007	10:41:58			H4
		1	20-NOV-2007	10:43:27			H4
		1.	20-NOV-2007	LO:44:40			H4
37	KCETX	1	20-NOV-2007 I	LO:45:57			H4
		1	20-NOV-2007 1	LO:47:17			H4
		1	20-NOV-2007 1	LO:48:45			H4
		1	20-NOV-2007 1	0:49:58			H4
		L	20-NOV-2007 1	.0:51:25			H4
		L	20-NOV-2007 1	0:52:39			H4
		L	20-NOV-2007 1				H4
44	KCGX5	L	20-NOV-2007 1	.0:55:10			H4

: Instrument Upload Run Log - Page 2:
: Started Wed Nov 21 07:02:09 2007 by LISTM:
: Data File: UPL\$CAN_DATA_ROOT:<LHG>HG41120C.PRN;1

#	# WorkOrder	Dilution	Date	Time	Batch	Lot	Instrument
45	KCGXQ	1	20-NOV-2007	10:56:24	 1		 Н4
46	6 KCH92	1	20-NOV-2007				H4
47	7 CK6CCV	1	20-NOV-2007	10:58:54	<u>1</u>		H4
48	3 CK5CCB	1	20-NOV-2007	11:00:17	- 7		H4
4.9	KCH92S	1	20-NOV-2007				H4
50	KCH92D		20-NOV-2007				H4
51	L CK6CCV		20-NOV-2007				H4
5.2	CK5CCB		20-NOV-2007				H4
53	CK6CCV	1	20-NOV-2007				H4
54	CK5CCB	1	20-NOV-2007				H4
- 55	KCJL1B	1	20-NOV-2007			A7K190000	
56	KCJL1C	1	20-NOV-2007				H4
5 0	KCE51	1	20-NOV-2007				H4
58	KCE51F	1.	20-NOV-2007			7K14155	H4
59	KCED7	1	20-NOV-2007			7K13126	H4
60	KCED7F	1	20-NOV-2007				H4
61	KCED9	1.	20-NOV-2007				H4
62	KCED9F	1	20-NOV-2007				H4
63	KCEDV	1 .	20-NOV-2007				H4
64	KCEDVX	1	20-NOV-2007				H4
65	CK6CCV	1	20-NOV-2007				H4
66	_CK5CCB	i	20-NOV-2007				H4
67	KCEDVS	1	20-NOV-2007			7K13126	H4
68	KCEDVF		20-NOV-2007				H4
69	KCEEA	1	20-NOV-2007			7K13126	H4
70	KCEEAF	1	20-NOV-2007			7K13126	H4
71	KCEED	1	20-NOV-2007			7K13126	H4
72	KCEEDF	1	20-NOV-2007			7K13126	H4
73	KCJC3	1	20-NOV-2007			7K13126	H4
74	KCJC3F	1	20-NOV-2007			7K13126	H4
75	KCJC6	1	20-NOV-2007			7K13126	H4
76	KCJC6F	1	20-NOV-2007			7K13126	H4
77	CK6CCV	l	20-NOV-2007				H4
78	CK5CCB	1	20-NOV-2007	11:41:10			H4
79	KCJC7	1	20-NOV-2007	11:42:26	7323022	7K13126	H4
	KCJC7F	1	20-NOV-2007				H4
81	KCJL3B	1	20-NOV-2007			A7K190000	H4
82	KCJL3C	1	20-NOV-2007			A7K190000	H4
83	KCD9W	1	20-NOV-2007	11:47:50	7323023	A7K160126	H4
84	KCD9WS	1	20-NOV-2007			A7K160126	H4
	KCD9WD	1	20-NOV-2007			A7K160126	H4
	KCEA4	1	20-NOV-2007			A7K160126	H4
87	KCEAF	1	20-NOV-2007			A7K160126	H4
88	KCF53	1	20-NOV-2007			A7K160312	H4

```
Instrument Upload Run Log - Page 3:
Started Wed Nov 21 07:02:09 2007 by LISTM:
Data File: UPL$CAN_DATA_ROOT:<LHG>HG41120C.PRN;1:
```

#	WorkOrder	Dilution	Date	Time	Batch	Lot	Instrument
89	CK6CCV	1	20-NOV-2007	11:55:59			H4
90	CK5CCB	1	20-NOV-2007				H4
91	KCF6Q	1	20-NOV-2007				H4
92	KCF6T	1	20-NOV-2007				H4
93	KCF6V	1	20-NOV-2007				H4
94	KCHTD	1	20-NOV-2007				
95	KCHWP	1	20-NOV-2007	12:03:54	7323023	A7K170181	H4
96	KCHWX	1	20-NOV-2007	12:05:10	7323023		
97	KCF5RF	1	20-NOV-2007	12:06:56	7323023	A7K160311	H4
	CK6CCV	1	20-NOV-2007				H4
99	CK5CCB	1	20-NOV-2007	12:09:26			H4
100	CK6CCV	1	20-NOV-2007	12:13:08			H4
	CK5CCB	1	20-NOV-2007	12:14:32			H4
102	KCJXNBF	1	20-NOV-2007	12:15:45	7323171	A7K190000	H4
103	KCJXNC	1	20-NOV-2007			A7K190000	H4
104	KCJEJ	1	20-NOV-2007			A7K170235	H4
105	KCJEJF	1	20-NOV-2007			A7K170235	H4
106	KA81KF	1.	20-NOV-2007			7K14262	H4
107	KA824F	1	20-NOV-2007			7K14262	H4
108	KA826F	1	20-NOV-2007			7K14262	H4
109	KCFW0F	1.	20-NOV-2007			A7K160281	
110	KCFW1F	1	20-NOV-2007				H4
111	KCFW3F	1	20-NOV-2007				H4
112	CK6CCV	1	20-NOV-2007			-1/100000	H4
113	CK5CCB	1	20-NOV-2007				H4
114	KCFW6F	1	20-NOV-2007			A7K160281	H4
115	KCFWKF	1	20-NOV-2007				H4
116	KCFWKFS	1	20-NOV-2007			A7K160281	H4
117	KCFWKFD	1	20-NOV-2007			A7K160281	H4
118	KCFWVF	1	20-NOV-2007				H4
119	KCFXAF	1	20-NOV-2007				H4
120	KCFXEF	1	20-NOV-2007			A7K160281	H4
121	KCFXHF	1	20-NOV-2007				H4
122	KCF02F	1	20-NOV-2007				H4
123	KCF0RF	1	20-NOV-2007				H4
124	CK6CCV	1	20-NOV-2007			71111202	H4
125	CK5CCB	1	20-NOV-2007				H4
126		1	20-NOV-2007		7323171	7K14262	H4
127	KCHNGF	1	20-NOV-2007			7K14262	H4
128	KCHNGFS :	1	20-NOV-2007			7K14262	
			20-NOV-2007			7K14262 7K14262	H4 H4
		1	20-NOV-2007			A7K190000	
		- 1	20-NOV-2007			A7K190000	H4
		_ 1.	20-NOV-2007			A7K160247	H4
	,				2.51/0	7. VTOO74 /	H4

Instrument Upload Run Log - Page 4:
Started Wed Nov 21 07:02:09 2007 by LISTM:
Data File: UPL\$CAN_DATA_ROOT:<LHG>HG41120C.PRN;1:

133 KCFI 134 KCFI 135 KCFI 136 CK60 137 CK50 138 KCFI 139 KCFI 140 KCFI 141 KCFI 142 KCHC 143 KCHC 144 KCHC 145 KCHC 146 KCHC 147 KCHC 147 KCHC 150 KCHC 151 KCHC 151 KCHC 152 KCHC 154 KCJO 155 KCJO 156 KCG9 157 KCG9 158 KCG9 161 CK5C 162 KCG9 163 KCG9 163 KCG9 164 KCG9 165 KCG9 165 KCG9 166 KCG9 167 KCG9 167 KCG9 168 KCG9 169 KCG9 169 KCG9 160 KCG9 161 KCG9 161 KCG9 163 KCG9 164 KCG9 165 KCG9 166 KCG9 166 KCG9 166 KCG9 166 KCG9 166 KCG9 167 KCG9 167 KCG9 168 KCG9 169 KCG9 169 KCG9 160 KCG9	M9 M9F CCV CCB MM MMF NF C3 C3F C5F CFC CCV CCB DFF CCV CCB DFFF CCCV CCCB DFFF CCCCCCCCCCCCCCCCCCCCCCCCCCCCC	1 1 1 1 1 1 1 1 1 1 1 1 1 1	20-NOV-2007 20-NOV-2007	12:56:30 12:57:43 12:58:57 13:00:11 13:01:25 13:02:39 13:03:53 13:05:13 13:05:13 13:06:28 13:07:58 13:09:22 13:10:46 13:12:05 13:13:25 13:14:40 13:15:56 13:17:22 13:18:36 13:19:53 13:21:08 13:22:23	3 7323178 7 7323178 7 7323178 7 7323178 7 7323178 7 7323178 7 323178 7 323178 7 323178 7 323178 7 323178 7 323178 7 323178 7 323178 7 323178	A7K160247 A7K160247 A7K160247 A7K160247 A7K160247 A7K160247 A7K170121 A7K170121 A7K170121 A7K170121 A7K170121 A7K170121 A7K170121 A7K170121 A7K170121	H4 H4 H4 H4 H4 H4
135 KCFI 136 CK60 137 CK50 138 KCFI 139 KCFI 140 KCFI 141 KCFI 142 KCHC 143 KCHC 144 KCHC 145 KCHC 146 KCHC 147 KCHC 147 KCHC 150 KCHC 151 KCHC 151 KCHC 152 KCHC 153 KCHC 154 KCJO 155 KCJO 155 KCJO 156 KCG9 157 KCG9 158 KCG9 160 CK6C0 161 CK5C0 161 CK5C0 162 KCG9 163 KCG9 164 KCG9 165 KCG9	M9F CCV CCB MM MMF NF C3 C3 C3F CFS CFD CFS CCV CCB DFF CCV CCB DFFS DFFS DFFS DFFS DFFS DFFS DFFS DFF	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	20-NOV-2007 20-NOV-2007	12:57:43 12:58:57 13:00:11 13:01:25 13:02:39 13:03:53 13:05:13 13:06:28 13:07:58 13:09:22 13:10:46 13:12:05 13:13:25 13:14:40 13:15:56 13:17:22 13:18:36 13:19:53 13:21:08 13:22:23	3 7323178 7 7323178 7 7323178 7 7323178 7 7323178 7 7323178 7 323178 7 323178 7 323178 7 323178 7 323178 7 323178 7 323178 7 323178 7 323178	A7K160247 A7K160247 A7K160247 A7K160247 A7K160247 A7K160247 A7K170121 A7K170121 A7K170121 A7K170121 A7K170121 A7K170121 A7K170121 A7K170121 A7K170121	H4 H4 H4 H4 H4 H4 H4 H4 H4 H4 H4 H4 H4 H
136 CK60 137 CK50 138 KCFN 139 KCFN 140 KCFN 141 KCFN 142 KCHC 143 KCHC 144 KCHC 145 KCHC 146 KCHC 147 KCHC 148 CK6C 150 KCHC 151 KCHC 151 KCHC 152 KCHC 153 KCHC 154 KCJC 155 KCJC 156 KCG9 157 KCG9 158 KCG9 160 CK6C 161 CK5C 161 CK5C 162 KCG9 163 KCG9 164 KCG9 165 KCG9 165 KCG9 165 KCG9 165 KCG9 165 KCG9 166 KCG9 167 KCG9 167 KCG9 168 KCG9 169 KCG9 169 KCG9 169 KCG9 160 KCG9 160 KCG9 161 KCG9 161 KCG9 165 KCG9 165 KCG9 165 KCG9 165 KCG9 165 KCG9 165 KCG9 165 KCG9 165 KCG9 166 KCG9 167	CCV CCB MM MMF NFF C3 C3F DF DF DFF CCV CCB DFF CCV CCB DFFS DFF DFF CCV CCB DFFS DFF DFF DFF DFF DFF DFF DFF DFF DF	1 1 1 1 1 1 1 1 1 1 1 1 1 1	20-NOV-2007 20-NOV-2007	12:58:57 13:00:11 13:01:25 13:02:39 13:03:53 13:05:13 13:06:28 13:07:58 13:09:22 13:10:46 13:12:05 13:13:25 13:14:40 13:15:56 13:17:22 13:18:36 13:19:53 13:21:08 13:22:23	7 7323178 7323178 7323178 7323178 7323178 7323178 7323178 7323178 7323178 7323178 7323178 7323178 7323178	A7K160247 A7K160247 A7K160247 A7K160247 A7K160247 A7K170121 A7K170121 A7K170121 A7K170121 A7K170121 A7K170121 A7K170121 A7K170121	H4 H4 H4 H4 H4 H4 H4 H4 H4 H4 H4 H4 H4
136 CK60 137 CK50 138 KCFN 139 KCFN 140 KCFN 141 KCFN 142 KCHC 143 KCHC 144 KCHC 145 KCHC 146 KCHC 147 KCHC 148 CK6C 150 KCHC 151 KCHC 151 KCHC 152 KCHC 153 KCHC 154 KCJO 155 KCJO 156 KCG9 157 KCG9 158 KCG9 160 CK6C 161 CK5C 161 CK5C 162 KCG9 163 KCG9 164 KCG9 165 KCG9 165 KCG9 165 KCG9 165 KCG9 165 KCG9 1665 KCG9 167	CCV CCB MM MMF NFF C3 C3F DF DF DFF CCV CCB DFF CCV CCB DFFS DFF DFF CCV CCB DFFS DFF DFF DFF DFF DFF DFF DFF DFF DF	1 1 1 1 1 1 1 1 1 1 1 1 1	20-NOV-2007 20-NOV-2007	13:00:11 13:01:25 13:02:39 13:03:53 13:05:13 13:06:28 13:07:58 13:09:22 13:10:46 13:12:05 13:13:25 13:14:40 13:15:56 13:17:22 13:18:36 13:19:53 13:21:08 13:22:23	7323178 7323178 7323178 7323178 7323178 7323178 7323178 7323178 7323178 7323178 7323178 7323178 7323178	A7K160247 A7K160247 A7K160247 A7K160247 A7K170121 A7K170121 A7K170121 A7K170121 A7K170121 A7K170121 A7K170121 A7K170121	H4 H4 H4 H4 H4 H4 H4 H4 H4 H4 H4 H4
137 CK50 138 KCFN 139 KCFN 140 KCFN 141 KCFN 142 KCHC 143 KCHC 144 KCHC 145 KCHC 146 KCHC 147 KCHC 148 CK6C 150 KCHC 151 KCHC 151 KCHC 152 KCHC 153 KCHC 154 KCJO 155 KCJO 156 KCG9 157 KCG9 158 KCG9 160 CK6C 161 CK5C 161 CK5C 162 KCG9 163 KCG9 164 KCG9 165 KCG9 165 KCG9 165 KCG9 165 KCG9 165 KCG9 165 KCG9 1665 KCG9 167 KCG9 167 KCG9 168 KCG9 168 KCG9 169 KCG9 169 KCG9 169 KCG9 169 KCG9 160 KCG9 16	CCB MM MMF NFF C3 C3F DF DFS DFF CCV CCB DFFS DFF CCV CCB DFFS DFFS DFFS DFFS DFFS DFFS DFFS DFF	1 1 1 1 1 1 1 1 1 1 1 1 1 1	20-NOV-2007 20-NOV-2007	13:01:25 13:02:39 13:03:53 13:05:13 13:06:28 13:07:58 13:09:22 13:10:46 13:12:05 13:13:25 13:14:40 13:15:56 13:17:22 13:18:36 13:19:53 13:21:08 13:22:23	7323178 7323178 7323178 7323178 7323178 7323178 7323178 7323178 7323178 7323178 7323178 7323178 7323178	A7K160247 A7K160247 A7K160247 A7K170121 A7K170121 A7K170121 A7K170121 A7K170121 A7K170121 A7K170121 A7K170121 A7K170121	H4 H4 H4 H4 H4 H4 H4 H4 H4 H4 H4
139 KCFM 140 KCFM 141 KCFM 142 KCHC 143 KCHC 144 KCHL 145 KCHL 146 KCHL 147 KCHL 148 CK6C 150 KCHL 151 KCHL 152 KCHL 153 KCHL 154 KCHL 155 KCJO 156 KCG9 157 KCG9 158 KCG9 160 CK6CC 161 CK5CC 162 KCG9 163 KCG9 164 KCG9 165 KCG9 165 KCG9 165 KCG9 165 KCG9 165 KCG9 166	MMMF NFF C3 C3F DF DFF CCV CCB DFFS DFFD 1 DFFS 1 DFFS 1 DFFS 1 DFFS 1 DFFS 1 DFFS 1 DFFS 1	1 1 1 1 1 1 1 1 1 1 1 1 1	20-NOV-2007 20-NOV-2007 20-NOV-2007 20-NOV-2007 20-NOV-2007 20-NOV-2007 20-NOV-2007 20-NOV-2007 20-NOV-2007 20-NOV-2007 20-NOV-2007 20-NOV-2007 20-NOV-2007 20-NOV-2007 20-NOV-2007 20-NOV-2007 20-NOV-2007 20-NOV-2007 20-NOV-2007	13:02:39 13:03:53 13:05:13 13:06:28 13:07:58 13:09:22 13:10:46 13:12:05 13:14:40 13:15:56 13:17:22 13:18:36 13:19:53 13:21:08 13:22:23	7323178 7323178 7323178 7323178 7323178 7323178 7323178 7323178 7323178 7323178 7323178 7323178 7323178	A7K160247 A7K160247 A7K160247 A7K170121 A7K170121 A7K170121 A7K170121 A7K170121 A7K170121 A7K170121 A7K170121 A7K170121	H4 H4 H4 H4 H4 H4 H4 H4 H4 H4
140 KCFN 141 KCFN 142 KCHC 143 KCHC 144 KCHC 145 KCHC 146 KCHC 147 KCHC 148 CKGC 150 KCHC 151 KCHC 151 KCHC 153 KCHC 154 KCHC 155 KCHC 155 KCHC 156 KCG9 157 KCG9 158 KCG9 160 CKGC 161 CKGC 161 CKGC 162 KCG9 163 KCG9 164 KCG9 165 KCG9 165 KCG9 165 KCG9 165 KCG9 165 KCG9 1665 KCG9 167	MMF NFF C3 C3F DF DFS DFF CCV CCB DFFS DFFS DFFS DFFS DFFS DFFS DFFD DFFS DFFD DL DLF	1 1 1 1 1 1 1 1 1 1 1 1 1	20-NOV-2007 20-NOV-2007 20-NOV-2007 20-NOV-2007 20-NOV-2007 20-NOV-2007 20-NOV-2007 20-NOV-2007 20-NOV-2007 20-NOV-2007 20-NOV-2007 20-NOV-2007 20-NOV-2007 20-NOV-2007 20-NOV-2007 20-NOV-2007 20-NOV-2007	13:03:53 13:05:13 13:06:28 13:07:58 13:09:22 13:10:46 13:12:05 13:13:25 13:14:40 13:15:56 13:17:22 13:18:36 13:19:53 13:21:08 13:22:23	7323178 7323178 7323178 7323178 7323178 7323178 7323178 7323178 7323178 7323178 7323178 7323178	A7K160247 A7K160247 A7K160247 A7K170121 A7K170121 A7K170121 A7K170121 A7K170121 A7K170121 A7K170121 A7K170121 A7K170121	H4 H4 H4 H4 H4 H4 H4 H4 H4 H4
141 KCFN 142 KCHC 143 KCHC 144 KCHC 145 KCHC 146 KCHC 147 KCHC 148 CK6C 149 CK5C 150 KCHC 151 KCHC 151 KCHC 152 KCHC 153 KCHC 154 KCHC 155 KCHC 156 KCG9 157 KCG9 158 KCG9 160 CK6C 161 CK5C 161 CK5C 162 KCG9 163 KCG9 164 KCG9 165 KCG9 165 KCG9 165 KCG9 165 KCG9 165 KCG9 166 KCG9 167 KCG9 167 KCG9 168 KCG9 169 KCG9 169 KCG9 169 KCG9 169 KCG9 160 KCG9 161 KCG9 161 KCG9 165 KCG9 165 KCG9 165 KCG9 165 KCG9 165 KCG9 166 KCG9 166 KCG9 166 KCG9 167 KCG9 167 KCG9 168 KCG9 168 KCG9 169 KCG9 169 KCG9 169 KCG9 169 KCG9 160	NFF C3 C3F DF DFS DFD DFF CCV CCB DFFS DFFS DFFD DFFS DFFD DFFS DDL DLF	1 1 1 1 1 1 1 1 1 1 1 1 1 1	20-NOV-2007 20-NOV-2007 20-NOV-2007 20-NOV-2007 20-NOV-2007 20-NOV-2007 20-NOV-2007 20-NOV-2007 20-NOV-2007 20-NOV-2007 20-NOV-2007 20-NOV-2007 20-NOV-2007 20-NOV-2007 20-NOV-2007 20-NOV-2007	13:05:13 13:06:28 13:07:58 13:09:22 13:10:46 13:12:05 13:13:25 13:14:40 13:15:56 13:17:22 13:18:36 13:19:53 13:21:08 13:22:23	7323178 7323178 7323178 7323178 7323178 7323178 7323178 7323178 7323178 7323178 7323178	A7K160247 A7K160247 A7K170121 A7K170121 A7K170121 A7K170121 A7K170121 A7K170121 A7K170121 A7K170121 A7K170121	H4 H4 H4 H4 H4 H4 H4 H4 H4
142 KCHC 143 KCHC 144 KCHC 145 KCHC 146 KCHC 147 KCHC 148 CK6C 149 CK5C 150 KCHC 151 KCHC 152 KCHC 153 KCHC 154 KCHC 155 KCHC 156 KCG9 157 KCG9 158 KCG9 159 KCG9 160 CK6C 161 CK5C 161 CK5C 162 KCG9 163 KCG9 164 KCG9 165 KCG9 165 KCG9 165 KCG9 165 KCG9 165 KCG9 1665 KCG9 167	NFF C3 C3F DF DFS DFD CCV CCB DFFS DFFD DFFS DDFFD DFFS DDFFD DL DL DLF	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	20-NOV-2007 20-NOV-2007 20-NOV-2007 20-NOV-2007 20-NOV-2007 20-NOV-2007 20-NOV-2007 20-NOV-2007 20-NOV-2007 20-NOV-2007 20-NOV-2007 20-NOV-2007 20-NOV-2007 20-NOV-2007	13:06:28 13:07:58 13:09:22 13:10:46 13:12:05 13:13:25 13:14:40 13:15:56 13:17:22 13:18:36 13:19:53 13:21:08 13:22:23	7323178 7323178 7323178 7323178 7323178 7323178 7323178 7323178 7323178 7323178	A7K160247 A7K170121 A7K170121 A7K170121 A7K170121 A7K170121 A7K170121 A7K170121 A7K170121 A7K170121	H4 H4 H4 H4 H4 H4 H4 H4
142 KCHC 143 KCHC 144 KCHC 145 KCHC 146 KCHC 147 KCHC 148 CK6C 149 CK5C 150 KCHC 151 KCHC 152 KCHC 153 KCHC 154 KCHC 155 KCHC 156 KCG9 157 KCG9 158 KCG9 159 KCG9 160 CK6C 161 CK5C 161 CK5C 162 KCG9 163 KCG9 164 KCG9 165 KCG9 165 KCG9 165 KCG9 165 KCG9 165 KCG9 1665 KCG9 167	C3 C3F C5F CFS CFD CFF CCV CCB CFFS CFF CCB CFFS CCB CFFS CCB CFFS CCB CFFS CCB CFFS CFFS	1 1 1 1 1 1 1 1 1 1 1 1	20-NOV-2007 20-NOV-2007 20-NOV-2007 20-NOV-2007 20-NOV-2007 20-NOV-2007 20-NOV-2007 20-NOV-2007 20-NOV-2007 20-NOV-2007 20-NOV-2007 20-NOV-2007 20-NOV-2007	13:07:58 13:09:22 13:10:46 13:12:05 13:13:25 13:14:40 13:15:56 13:17:22 13:18:36 13:19:53 13:21:08 13:22:23	7323178 7323178 7323178 7323178 7323178 7323178 7323178 7323178 7323178 7323178	A7K170121 A7K170121 A7K170121 A7K170121 A7K170121 A7K170121 A7K170121 A7K170121 A7K170121	H4 H4 H4 H4 H4 H4 H4
144 KCHE 145 KCHE 146 KCHE 147 KCHE 148 CK6C 149 CK5C 150 KCHD 151 KCHD 153 KCHD 154 KCJO 155 KCJO 156 KCG9 157 KCG9 158 KCG9 160 CK6C 161 CK5C 161 CK5C 162 KCG9 164 KCG9 165 KCG9 165 KCG9 165 KCG9 1665 KCG9 167 KCG9 168 KCG9 169 169 169 169 160 160 160 160 160 160 160 160 160 160	C3F DF DFS DFD CCV CCB DFFS DFFS DFFD DLF 1	1 1 1 1 1 1 1 1	20-NOV-2007 20-NOV-2007 20-NOV-2007 20-NOV-2007 20-NOV-2007 20-NOV-2007 20-NOV-2007 20-NOV-2007 20-NOV-2007 20-NOV-2007 20-NOV-2007 20-NOV-2007 20-NOV-2007	13:09:22 13:10:46 13:12:05 13:13:25 13:14:40 13:15:56 13:17:22 13:18:36 13:19:53 13:21:08 13:22:23	7323178 7323178 7323178 7323178 7323178 7323178 7323178 7323178 7323178	A7K170121 A7K170121 A7K170121 A7K170121 A7K170121 A7K170121 A7K170121 A7K170121	H4 H4 H4 H4 H4 H4 H4
144 KCHE 145 KCHE 146 KCHE 147 KCHE 148 CK6C 149 CK5C 150 KCHD 151 KCHD 153 KCHD 154 KCJO 155 KCJO 156 KCG9 157 KCG9 158 KCG9 160 CK6C 161 CK5C 161 CK5C 162 KCG9 164 KCG9 165 KCG9 165 KCG9 165 KCG9 1665 KCG9 1665 KCG9 1665 KCG9 1665 KCG9 1665 KCG9 1665 KCG9 1665 KCG9 1665 KCG9 1665 KCG9 1665 KCG9 1665 KCG9 1665 KCG9 1665 KCG9 1665 KCG9 167 KCG9 1665 KCG9 1665 KCG9 1665 KCG9 1665 KCG9 1665 KCG9 167 KCG9 1665 KCG9 1665 KCG9 167 KCG9	DF S DFS DFD DFF CCV DCB DFFS DFFD DL DLF		20-NOV-2007 20-NOV-2007 20-NOV-2007 20-NOV-2007 20-NOV-2007 20-NOV-2007 20-NOV-2007 20-NOV-2007 20-NOV-2007 20-NOV-2007 20-NOV-2007	13:10:46 13:12:05 13:13:25 13:14:40 13:15:56 13:17:22 13:18:36 13:19:53 13:21:08 13:22:23	7323178 7323178 7323178 7323178 7323178 7323178 7323178	A7K170121 A7K170121 A7K170121 A7K170121 A7K170121 A7K170121 A7K170121	H4 H4 H4 H4 H4 H4
145 KCHE 146 KCHE 147 KCHE 148 CK6C 149 CK5C 150 KCHE 151 KCHE 152 KCHE 153 KCHE 154 KCJO 155 KCJO 156 KCG9 157 KCG9 158 KCG9 160 CK6CC 161 CK5CC 162 KCG9 163 KCG9 164 KCG9 165 KCG9 165 KCG9	OFS : OFD : OFF : OFF : CCV : CCB : OFFS : OFFD : OLF :		20-NOV-2007 20-NOV-2007 20-NOV-2007 20-NOV-2007 20-NOV-2007 20-NOV-2007 20-NOV-2007 20-NOV-2007 20-NOV-2007 20-NOV-2007	13:12:05 13:13:25 13:14:40 13:15:56 13:17:22 13:18:36 13:19:53 13:21:08 13:22:23	7323178 7323178 7323178 7323178 7323178 7323178	A7K170121 A7K170121 A7K170121 A7K170121 A7K170121 A7K170121	H4 H4 H4 H4 H4 H4
146 KCHD 147 KCHD 148 CK6C 149 CK5C 150 KCHD 151 KCHD 152 KCHD 153 KCHD 154 KCJO 155 KCJO 156 KCG9 157 KCG9 158 KCG9 160 CK6C 161 CK5C 162 KCG9 163 KCG9 164 KCG9 165 KCG9 165 KCG9 165 KCG9	OFFO : OFF : OFF : CCV : CCB : OFFS : OFFD : OLF :		20-NOV-2007 20-NOV-2007 20-NOV-2007 20-NOV-2007 20-NOV-2007 20-NOV-2007 20-NOV-2007 20-NOV-2007	13:13:25 13:14:40 13:15:56 13:17:22 13:18:36 13:19:53 13:21:08 13:22:23	7323178 7323178 7323178 7323178 7323178	A7K170121 A7K170121 A7K170121 A7K170121 A7K170121	H4 H4 H4 H4 H4
147 KCHD 148 CK6C 149 CK5C 150 KCHD 151 KCHD 152 KCHD 153 KCHD 154 KCJO 155 KCJO 156 KCG9 157 KCG9 158 KCG9 160 CK6C 161 CK5C 162 KCG9 163 KCG9 164 KCG9 165 KCG9 165 KCG9 165 KCG9	OFF CCV CCB CCCB CCCCCCCCCCCCCCCCCCCCCCCC	L L - -	20-NOV-2007 20-NOV-2007 20-NOV-2007 20-NOV-2007 20-NOV-2007 20-NOV-2007 20-NOV-2007	13:14:40 13:15:56 13:17:22 13:18:36 13:19:53 13:21:08	7323178 7323178 7323178 7323178	A7K170121 A7K170121 A7K170121 A7K170121	H4 H4 H4 H4
148 CK6C 149 CK5C 150 KCHD 151 KCHD 152 KCHD 153 KCHD 154 KCJO 155 KCJO 156 KCG9 157 KCG9 158 KCG9 160 CK6C 161 CK5C 161 KCG9 163 KCG9 164 KCG9 165 KCG9 165 KCG9 165 KCG9	CCV 1 CCB 1 DFFS 1 DFFD 1 DL 1	L L - -	20-NOV-2007 20-NOV-2007 20-NOV-2007 20-NOV-2007 20-NOV-2007 20-NOV-2007	13:15:56 13:17:22 13:18:36 13:19:53 13:21:08 13:22:23	7323178 7323178 7323178	A7K170121 A7K170121 A7K170121	H4 H4 H4 H4
149 CK5C 150 KCHD 151 KCHD 152 KCHD 153 KCHD 154 KCJO 155 KCJO 156 KCG9 157 KCG9 158 KCG9 160 CK6C 161 CK5C 162 KCG9 163 KCG9 164 KCG9 165 KCG9 165 KCG9	CCB 1 DFFS 1 DFFD 1 DL 1 DLF 1	L - -	20-NOV-2007 20-NOV-2007 20-NOV-2007 20-NOV-2007 20-NOV-2007	13:17:22 13:18:36 13:19:53 13:21:08 13:22:23	7323178 7323178 7323178	A7K170121 A7K170121	H4 H4 H4
150 KCHD 151 KCHD 152 KCHD 153 KCHD 154 KCJO 155 KCJO 156 KCG9 157 KCG9 158 KCG9 160 CK6C 161 CK5C 162 KCG9 163 KCG9 164 KCG9 165 KCG9 165 KCG9	OFFS 1 OFFD 1 OL 1 OLF 1	<u>. </u>	20-NOV-2007 20-NOV-2007 20-NOV-2007 20-NOV-2007	13:18:36 13:19:53 13:21:08 13:22:23	7323178 7323178 7323178	A7K170121 A7K170121	H4 H4
151 KCHD 152 KCHD 153 KCHD 154 KCJO 155 KCJO 156 KCG9 157 KCG9 158 KCG9 159 KCG9 160 CK6C 161 CK5C 162 KCG9 163 KCG9 164 KCG9 165 KCG9 165 KCG9	OFFD 1 OL 1 OLF 1	- - - -	20-NOV-2007 20-NOV-2007 20-NOV-2007	13:19:53 13:21:08 13:22:23	7323178 7323178	A7K170121 A7K170121	H4
152 KCHD 153 KCHD 154 KCJO 155 KCJO 156 KCG9 157 KCG9 158 KCG9 159 KCG9 160 CK6C 161 CK5C 162 KCG9 163 KCG9 164 KCG9 165 KCG9 165 KCG9	OL 1 OLF 1	· - ·	20-NOV-2007 20-NOV-2007	13:21:08 13:22:23	7323178	A7K170121	
153 KCHD 154 KCJO 155 KCJO 156 KCG9 157 KCG9 158 KCG9 160 CK6C 161 CK5C 162 KCG9 163 KCG9 164 KCG9 165 KCG9	LF 1	-	20-NOV-2007	13:22:23			H4
154 KCJ0 155 KCJ0 156 KCG9 157 KCG9 158 KCG9 159 KCG9 160 CK6C 161 CK5C 162 KCG9 163 KCG9 164 KCG9		,	20-NOV-2007	13:22:23	7373178		
155 KCJ0 156 KCG9 157 KCG9 158 KCG9 159 KCG9 160 CK6C0 161 CK5C0 162 KCG9 163 KCG9 164 KCG9 165 KCG9		•	~ O - INC) V - Z (1/11 /		7020170	A7K170121	H4
156 KCG99 157 KCG99 158 KCG99 159 KCG96 160 CK6C0 161 CK5C0 162 KCG99 163 KCG98 164 KCG99		•	20 17017 2007	13:23:41	7323181	A7K190000	H4
157 KCG94 158 KCG98 159 KCG96 160 CK6C0 161 CK5C0 162 KCG98 163 KCG98 164 KCG98		•	20-NOV-2007	13:24:55	7323181		H4
158 KCG99 159 KCG99 160 CK6CC 161 CK5CC 162 KCG99 163 KCG98 164 KCG98		•	20-NOV-2007	13:26:15	7323181	7K17102	H4
159 KCG96 160 CK6CC 161 CK5CC 162 KCG97 163 KCG98 164 KCG99			20-NOV-2007			7K17102	H4
160 CK6CC 161 CK5CC 162 KCG9 163 KCG98 164 KCG99		-	20-NOV-2007			7K17102	H4
161 CK5CC 162 KCG95 163 KCG95 164 KCG95 165 KCG95			20-NOV-2007		7323181	7K17102	H4
162 KCG97 163 KCG98 164 KCG99 165 KCG91			20-NOV-2007				H4
163 KCG98 164 KCG98 165 KCG98		_	20-NOV-2007				H4
164 KCG99	_	4	20-NOV-2007	13:34:00	7323181	7K17102	H4
165 KCG91	_	4	20-NOV-2007	13:35:15	7323181	7K17102	H4
	_	2	20-NOV-2007	13:36:40	7323181	7K17102	H4
166 VCCQT	_	2	20-NOV-2007	13:37:55	7323181	7K17102	H4
166 KCG9E 167 KCG9E	_	. 2	20-NOV-2007	13:39:22	7323181	7K17102	H4
168 KCHAA		2	0-NOV-2007	L3:40:38	7323181	7K17102	H4
169 KCHAC	_		0-NOV-2007			7K17102	H4
	_	2	0-NOV-2007	L3:43:09	7323181	7K17102	H4
170 KCHAD		2	0-NOV-2007	L3:44:24	7323181	7K17102	H4
171 KCHAE		2	0-NOV-2007 1	L3:45:40	7323181	7K17102	H4
172 CK6CC			0-NOV-2007 3				H4
173 CK5CC			0-NOV-2007 J				H4
174 KCHAF	_	2	0-NOV-2007 1	3:49:54	7323181	7K17102	H4
175 KCHAG	7 1	2	0-NOV-2007 1	.3:51:11	7323181	7K17102	H4
176 KCHAK	7 1		0-NOV-2007 1	.3:52:31 '	7323181	7K17102	H4
	7 1	2					

Instrument Upload Run Log - Page 5:
Started Wed Nov 21 07:02:09 2007 by LISTM:
Data File: UPL\$CAN_DATA_ROOT:<LHG>HG41120C.PRN;1:

#	WorkOrder	Dilution	Date	Time	Batch	Lot	Instrument
177	7 CRA	1	20-NOV-2007	13:53:47			 H4
178	3 CK6CCV	1	20-NOV-2007				H4
179	CK5CCB	1	20-NOV-2007				H4
180	CK6CCV	1	20-NOV-2007			,	H4
181	CK5CCB	1	20-NOV-2007				H4
182	KCLAGB	1	20-NOV-2007		7324013	A7K200000	H4
183	KCLAGC	1	20-NOV-2007			A7K200000	H4
184	KCKPE	1	20-NOV-2007			A7K190172	H4
185	KCJX8F	1	20-NOV-2007			A7K190117	H4
186	KCJX9F	1	20-NOV-2007			A7K190117	H4
187	KCJXAF	1 .	20-NOV-2007			A7K190117	H4
188	KCJXAFS	1.	20-NOV-2007			A7K190117	H4
189	KCJXAFD	1	20-NOV-2007			A7K190117	H4
190	KCKN9BT	1	20-NOV-2007			A7K190117	H4
191	KCLALBT	1	20-NOV-2007			A7K190000 A7K200000	
192	CK6CCV	1	20-NOV-2007		7324015	A/K200000	H4
193	CK5CCB	1	20-NOV-2007				H4
	KCLALCT	1	20-NOV-2007		7224015	778200000	H4
195	KCCEPT	1	20-NOV-2007			A7K200000	H4
	KCCEPTS	1	20-NOV-2007			A7K150259	H4
	KCCEPTD	1	20-NOV-2007			A7K150259	H4
	KCCERT	1	20-NOV-2007			A7K150259	H4
	KCD03T	1	20-NOV-2007			A7K150259	H4
	KCD05T	1	20-NOV-2007			A7K160101	H4
	KCFF7T	1	20-NOV-2007			A7K160101	H4
	KCFGHT	1	20-NOV-2007			A7K160234	H4
	KCGA9T	1	20-NOV-2007			A7K160234	H4
	CK6CCV	1	20-NOV-2007		/324015	A7K160330	H4
	CK5CCB	1					H4
	KA6GPT		20-NOV-2007		=======================================		H4
			20-NOV-2007			A7K130269	H4
	KCLAJBT		20-NOV-2007			A7K190000	H4
			20-NOV-2007			A7K200000	H4
			20-NOV-2007			A7K200000	H4
			20-NOV-2007			A7K160135	H4
			20-NOV-2007			A7K160135	H4
			20-NOV-2007			A7K160135	H4
214			20-NOV-2007		7324014	A7K160135	H4
			20-NOV-2007 1				H4
			20-NOV-2007]				H4
Z16	CK5CCB	1 :	20-NOV-2007	L6:04:54			H4

----- End of Report -----

```
Instrument Upload Run Log - Page 1:
Started Mon Nov 19 08:18:15 2007 by DAVIESB:
Data File: UPL$CAN_DATA_ROOT:<REP>111607C.REP;1:
```

#	WorkOrder	Dilution	Date 16-NOV-2007 16-NOV-2007 16-NOV-2007 16-NOV-2007 16-NOV-2007 16-NOV-2007 16-NOV-2007 16-NOV-2007 16-NOV-2007 16-NOV-2007	Time	Batch	Lot	Instrument
1	BLANK		16-NOV-2007	15:41:53	}		Т7
. 2	STANDARD 1		16-NOV-2007	15:45:29	,)		17 T7
3	STANDARD 2		16-NOV-2007	15:49:07	7 .		т7 Т7
4	STANDARD 3		16-NOV-2007	15:52:45	5		17
5	QC STD 1		16-NOV-2007	15:58:39)		17
6	QC STD 2		16-NOV-2007	16:04:32	:		I7
7	QC STD 3		16-NOV-2007	16:07:33	;		I7
8	QC STD 4	•	16-NOV-2007	16:11:22	:		I7
9	QC STD 5		16-NOV-2007	16:15:12			17
10	QC STD 6		16-NOV-2007 16-NOV-2007 16-NOV-2007 16-NOV-2007 16-NOV-2007 16-NOV-2007 16-NOV-2007	16:21:56	;	•	I7
11	QC STD 7		16-NOV-2007	16:27:48			I 7
12	KA9WOB ·		16-NOV-2007	16:30:52	7319027	A7K150000	I7
13	KA9W0C		16-NOV-2007	16:34:25	7319027	A7K150000	I 7
14	KA9P8		16-NOV-2007	16:39:28	7319027	A7K140337	I7
15	KA9P8S		16-NOV-2007	16:43:03	7319027	A7K140337	I7
16	KA9P8D		16-NOV-2007	16:46:38	7319027	A7K140337	17
17	KA9QA		16-NOV-2007 16-NOV-2007	16:51:43	7319027	A7K140337	I7
18	KA9QD		16-NOV-2007	16:55:18	7319027	A7K140337	I7
	KA7FXB		16-NOV-2007	17:00:24	7318013	A7K140000	I7
20	KA7FXC		16-NOV-2007	17:03:58	7318013	A7K140000	I7
21	KA4WO		16-NOV-2007 16-NOV-2007	17:09:01	7318013	7K13126	I7
22	QC STD 6	·	16-NOV-2007	17:14:53			I7
23	QC STD 7		16-NOV-2007	17:20:45			I7
24	KA4WOF		16-NOV-2007 16-NOV-2007 16-NOV-2007 16-NOV-2007	17:23:48	7318013	7K13126	I7
25	KA4W0S		16-NOV-2007	17:27:21	7318013	7K13126	I7
26	KA4W0D		16-NOV-2007	17:30:55	7318013	7K13126	I7
27	KA4W2		16-NOV-2007	17:35:59	7318013	7K13126	I7
28	KA4W2F		16-NOV-2007	17:39:33	7318013	7K13126	I7
29	KA4W3		16-NOV-2007	17:43:08	7318013	7K13126	I7
30	KA4W3F		16-NOV-2007	17:46:43	7318013	7K13126	I7
31	KA4W4		16-NOV-2007	17:50:19	7318013	7K13126	I7
32	KA4W4F		16-NOV-2007 16-NOV-2007 16-NOV-2007 16-NOV-2007 16-NOV-2007 16-NOV-2007 16-NOV-2007 16-NOV-2007	17:53:54	7318013	7K13126	I7
33	KA4W4FL		16-NOV-2007 16-NOV-2007 16-NOV-2007 16-NOV-2007 16-NOV-2007	17:57:31			I7
34	QC STD 6		16-NOV-2007	18:03:25			I 7
35	QC STD /		16-NOV-2007	18:09:17			I7
30	KA9WZB Wannad		16-NOV-2007	18:12:19	7319028	A7K150000	I7
	KA71H						I7
_	KA71HF		16-NOV-2007			7K13126	17
	KA71HFL		16-NOV-2007		7319028	7K13126	I7
	KA71HX		16-NOV-2007				I7
			16-NOV-2007			7K13126	I7
	KA71HS KCDV8B		16-NOV-2007			7K13126	I7
	KCDV8C		16-NOV-2007			A7K160000	I7
			16-NOV-2007 1	10:43:53	/320020	A7K160000	I7

```
Instrument Upload Run Log - Page 2:
Started Mon Nov 19 08:18:15 2007 by DAVIESB:
Data File: UPL$CAN_DATA_ROOT:<REP>111607C.REP;1
```

#	WorkOrder	Dilution	Date	Time	Batch	Lot	Instrument
45	KCANQ		16-NOV-2007	18:48:59	7320020	A7K150192	I7.
46	QC STD 6		16-NOV-2007			11/11/2000	I7
47	QC STD 7		16-NOV-2007				I7
48	KCAPE		16-NOV-2007			A7K150192	I7
49	KCAPG		16-NOV-2007			A7K150192	I7
50	KCAPL		16-NOV-2007			A7K150192	I7
51	KCAPQ		16-NOV-2007			A7K150192	I7
52	KCCV3F		16-NOV-2007			A7K150310	I7
53	KCCWGF		16-NOV-2007			A7K150310	I7
54	KCCWLF		16-NOV-2007			A7K150310	I7
55	KCCWQF		16-NOV-2007			A7K150310	I7
56	KCCWTF		16-NOV-2007			A7K150310	I7
57	KCA7W		16-NOV-2007			A7K150244	I7
58	QC STD 6		16-NOV-2007				I7
59	QC STD 7		16-NOV-2007	19:47:49			I7
60	KCA7WS		16-NOV-2007			A7K150244	I7
61	KCA7WD		16-NOV-2007			A7K150244	I7
62	KCACXF		16-NOV-2007			A7K150144	I7
63	KCADD		16-NOV-2007			A7K150144	I7
64	KCADEF		16-NOV-2007	20:06:49	7320020	A7K150144	I7
	KCADEFL		16-NOV-2007	20:10:23			17
66	KCDWXB		16-NOV-2007	20:15:27	7320030	A7K160000	17
67	KCDWXC		16-NOV-2007	20:19:02	7320030	A7K160000	I 7
68	KCADA		16-NOV-2007			A7K150144	17
69	KCADAS		16-NOV-2007	20:27:42	7320030	A7K150144	I 7
70	QC STD 6		16-NOV-2007	20:33:36			I 7
	QC STD 7		16-NOV-2007	20:39:28			I7
72	KCADAD		16-NOV-2007	20:42:32	7320030	A7K150144	I7
	KCADH		16-NOV-2007	20:47:38	7320030	A7K150144	I7
	KCADHL		16-NOV-2007	20:51:14			I7
	KCDWKB		16-NOV-2007			A7K160000	I 7
	KCDWKC		16-NOV-2007	20:59:58	7320025	A7K160000	I7
	KCAF1		16-NOV-2007	21:05:06	7320025	A7K150167	I7
	KCAF4		16-NOV-2007			A7K150167	I7
	KCAF6		16-NOV-2007	21:12:16	7320025	A7K150167	I7
80 1	KCAF9		16-NOV-2007	21:15:51	7320025	A7K150167	I7
	KCAGK		16-NOV-2007	21:19:25	7320025	A7K150167	I7
	QC STD 6		16-NOV-2007	21:25:19			I7
	QC STD 7		16-NOV-2007 2				I7
	KCAGM		16-NOV-2007 2			A7K150167	I7
	KCAGQ		16-NOV-2007 2	21:37:51	7320025	A7K150167	I7
	KCCMN		16-NOV-2007 2			A7K150294	I 7
	CCMNS		16-NOV-2007 2			A7K150294	I7
88 F	CCMND		16-NOV-2007 2	21:48:40	7320025	A7K150294	I7

Instrument Upload Run Log - Page 3:
Started Mon Nov 19 08:18:16 2007 by DAVIESB:
Data File: UPL\$CAN_DATA_ROOT:<REP>111607C.REP;1

#	WorkOrder	Dilution	Date	Time	Batch	Lot	Instrument
89	KCCX7		16-NOV-2007	21:53:47	7320025	A7K150318	T7
90	KCCOD.		16-NOV-2007	21:57:24	7320025	A7K150318	17
91	KCC06		16-NOV-2007				
92	KCC6K		16-NOV-2007				
93	KCC61		16-NOV-2007				I7
94	QC STD 6		16-NOV-2007				I7
95	QC STD 7		16-NOV-2007	22:19:59			17
96	KCC7E		16-NOV-2007	22:23:03	7320025	A7K150342	I7 ·
97	KCC7P		16-NOV-2007	22:26:38	7320025	A7K150342	I7
98	KCC8X		16-NOV-2007				_ · I7
99	KCC8XL		16-NOV-2007				I7
100	KCDWPB		16-NOV-2007	22:38:56	7320027	A7K160000	I7 Regim Co
101	KCDWPC		16-NOV-2007	22:42:33	7320027	A7K160000	17
102	KCAPK		16-NOV-2007	22:47:40	7320027	7K13126	17
103	KCAPKF		16-NOV-2007	22:51:17	7320027	7K13126	I7 .
	KCAPKX		16-NOV-2007	22:54:55	7320027	7K13126	17
	KCAPKS		16-NOV-2007	22:58:33	7320027	7K13126	17
	QC STD 6		16-NOV-2007	23:04:29			17
107	QC STD 7		16-NOV-2007	23:10:21			17
108	KCAPP		16-NOV-2007	23:13:24	7320027	7K13126	17 Rerun V Cr Co Mo
	KCAPPF		16-NOV-2007	23:16:59	7320027	7K13126	I7 1
110	KCAPV		16-NOV-2007	23:20:34	7320027	7K13126	I7
	KCAPVF		16-NOV-2007	23:24:10	7320027	7K13126	I7
	KCAP2		16-NOV-2007	23:27:46	7320027	7K13126	I7
	KCAP2F		16-NOV-2007	23:31:22	7320027	7K13126	I7 .
	KCAP6		16-NOV-2007	23:34:59	7320027	7K13126	I7
	KCAP6F		16-NOV-2007	23:38:36	7320027	7K13126	I7
116	KCAQC		16-NOV-2007	23:42:13	7320027	7K13126	17 / +2n N;
	KCAQCF		16-NOV-2007	23:45:51	7320027	7K13126	17 1 +20 Ni
	QC STD 6		16-NOV-2007	23:51:46			I7
	OC STD 7		16-NOV-2007	23:57:39			F7 0 11907 VILL
	KCATK)		17-NOV-2007	00:00:44	7320027	7K13126	12 Recur Ward Camp
_	KCATKF		17-NOV-2007	00:04:22	7320027	7K13126	17
	KCATKFL	*	17-NOV-2007	00:07:59			I7 +
	QC STD 6		17-NOV-2007	00:13:53			I7
124	QC STD 7		17-NOV-2007	00:19:45			I7

----- End of Report -----

```
: Instrument Upload Run Log - Page 1:
: Started Tue Nov 20 05:33:01 2007 by DAVIESB:
: Data File: UPL$CAN_DATA_ROOT:<REP>111907A.REP;1
```

#	WorkOrder	Dilution	Date	Time	Batch	Lot	Instrument
1	BLANK		19-NOV-2007	10:30:36	5		I7 .
2	STANDARD 1	•	19-NOV-2007	10:33 قات 10:33			I7
3	STANDARD 2		19-NOV-2007	10:36:07	7		I7
	STANDARD 3	0 0	19-NOV-2007				I7
	QC STD 1	100	19-NOV-2007				I7
	QC STD 2	120/07	19-NOV-2007				I7
	QC STD 3	1112	19-NOV-2007				I7
	QC STD 4		19-NOV-2007	10:56:16	i		I7
	BLANK		19-NOV-2007				I7
	BLANK		19-NOV-2007	11:06:23	. •		I7
	BLANK		19-NOV-2007	11:09:55			I7
	STANDARD 1		19-NOV-2007	11:13:28			17
	STANDARD 2		19-NOV-2007	11:17:01			I7
	STANDARD 3		19-NOV-2007				I7
	QC STD 1		19-NOV-2007				I7
	QC STD 2		19-NOV-2007 19-NOV-2007	11:32:13			I7
	QC STD 3		19-NOV-2007	11:35:11			I7
10	QC STD 4 Re	イ むつ	19-NOV-2007 19-NOV-2007 19-NOV-2007	11:38:55			I7
	QC SID 4 4		7.0 35055				I7
	QC STD 5		19-NOV-2007 19-NOV-2007 19-NOV-2007	11:47:51			I7
	QC STD 6		T9-NOV-2007	11:51:37			I7
	QC STD 7		,				I7
	KCA7W	E	19-NOV-2007	12:04:34			I7
			19-NOV-2007	12:07:31	7320020	A7K150244	I7
26	KCA7WD	5	19-NOV-2007	12:10:59	7320020	A7K150244	I7
	KCDWKC		19-NOV-2007	12:14:26	7320020	A7K150244	I7
	KCCMN		19-NOV-2007	17:18:35	7320025	A7K160000	I7
	KCCMNS		19-1007-2007	12:23:33	7320025	A7K150294	I7
	KCCMND		19-NOV-2007	12:27:02	7320025	A7K150294	I7
	KCDWPB		19-NOV-2007 : 19	12:30:31	7320025	A7K150294	I7
	KCDWPC		19-NOV-2007	12.33.31	7320027	A/K160000	7.
33 1	KCAPK		19-NOV-2007	12.44.00	7320027	A/A160000	I7
34 (QC STD 6		19-NOV-2007	12:49:50	7520027	/113126	I7 I7
35 (QC STD 7		19-NOV-2007				I7
36 1	KCAPKF		19-NOV-2007 1			7K13126	I7
37 I	KCAPKX		19-NOV-2007]	3:02:08	7320027	7K13126	I7
38 I	KCAPKS		19-NOV-2007 1	3:05:37	7320027	7K13126	17
39 E	KCAPP		19-NOV-2007 1			7K13126	I7 V Cr Como
40 F	KCAPPF		19-NOV-2007 1			7K13126	17 C W 1110
41 F	CAPV		19-NOV-2007 1			7K13126	I7
	CAPVF		19-NOV-2007 1			7K13126	I7
	CAP2		19-NOV-2007 1	3:24:31	7320027	7K13126	I7
44 K	CAP2F		19-NOV-2007 1	3:28:00	7320027	7K13126	I7

```
: Instrument Upload Run Log - Page 2:
: Started Tue Nov 20 05:33:02 2007 by DAVIESB :
: Data File: UPL$CAN_DATA_ROOT:<REP>111907A.REP;1
```

	workOrder	Dilution	Date	Time	Batch	Lot	Instrument
	KCAP6		19-NOV-2007	13:31:30	7320027	7K13126	I7 V CoCr Mo
	QC STD 6		19-NOV-2007				17 V C6 C7 1110
47	QC STD 7		19-NOV-2007				I7
48	KCAQC	5	19-NOV-2007			7K13126	I7 N; En
49	KCAQCF	5	19-NOV-2007				
50	KCHWJ		19-NOV-2007				I7 1 I7
51	KCHWJ		19-NOV-2007				I7
52	KCAP6F		19-NOV-2007			7K13126	VCocrmo
53	KCAQC		19-NOV-2007			7K13126	I7
54	KCAOCF	•	19-NOV-2007				I7 T
55	KCATK		19-NOV-2007				
_	KCATKF)		19-NOV-2007				I7
	KCATKFL		19-NOV-2007		7520027	/KI3I26	I7
	QC STD 6		19-NOV-2007				I7
	QC STD 7		19-NOV-2007				I7
	KCJMCB		19-NOV-2007		7222027	777100000	I7
	KCJMCC		19-NOV-2007	14.37.17	7323027	A7K190000	I7
	KCEGW		19-NOV-2007				I7
	KCEHD		19-NOV-2007	14.45.46	7323027	A/K160130	I7
	KCEHT		19-NOV-2007	14:49:13	7323027	A/K160130	I7
	KCEHX		19-107-2007	14:52:45	7323027	A/K160130	17
	KCHTQ		19-NOV-2007				I7
	KCHTQS		19-NOV-2007				I7
	KCHTQD		19-NOV-2007				17
	KCHVD		19-NOV-2007				17
	QC STD 6		19-NOV-2007		/323027	A7K170185	I7
	QC STD 7		19-NOV-2007				I7
	KCHVG		19-NOV-2007				I7
	KCHVK		19-NOV-2007	15:26:25	7323027	A7K170185	I7
	KCHVN		19-NOV-2007				· I7
	KCHVW		19-NOV-2007				I7
	KCHV2		19-NOV-2007				I7
	KCHV5		19-NOV-2007				I7
	KCHV7		19-NOV-2007			A7K170185	I7
			19-NOV-2007			A7K170185	17
	CCHWE		19-NOV-2007		7323027	A7K170185	17 PDS AT 22:
	KCHWEL		19-NOV-2007				I7 100 P18 P8
	CJMCB		19-NOV-2007		7323027	A7K190000	I7
	OC STD 6		19-NOV-2007				17
	C STD 7		L9-NOV-2007				I7
		10	L9-NOV-2007	16:11:43	323027	A7K190000	I7
	CEGW	=	L9-NOV-2007	16:16:45	323027	A7K160130	I7
	CEHD	1	L9-NOV-2007 1	16:20:16 7	323027	A7K160130	I7
	CEHT	J	L9-NOV-2007]	16:23:45 7	323027	A7K160130	17
88 K	CEHX	3	L9-NOV-2007 3	L6:27:14 7	323027	A7K160130	I7

```
Instrument Upload Run Log - Page 1:
Started Tue Nov 20 07:29:03 2007 by DAVIESB:
Data File: UPL$CAN_DATA_ROOT:<REP>111907D.REP;1:
```

· :	# WorkOrder Diluti	on Date	Time	Batch	Lot	Instrument
;	l BLANK	19-NOV-200	7 23:53:2	5		I7
;	2 STANDARD 1	19-NOV-200				17 17
	3 STANDARD 2	20-NOV-200		•		I7
4	4 STANDARD 3	20-NOV-200				I7
į	5 QC STD 1	20-NOV-200				I7
	6 QC STD 2	20-NOV-200	7 00:15:42	2		I7
	7 QC STD 3	20-NOX-200	7 00:18:40	0		I7
	QC STD 4 BOD QC STD 6 QC STD 7	1 20-NOV-200				I 7
	QC STD 5 V	20-NOV-2007	7 00:26:10)		I7
	QC STD 6	20-NOV-2007	7 00:32:50			I7
						I7
	2 KCJLXBF	20-NOV-2007	7 00:41:37	7 7323021	A7K190000	I7
	KCJLXCF	20-NOV-2007	7 00:45:08	7323021	A7K190000	I7
	KCEFGF	20-NOV-2007	00:50:09	7323021	A7K160130	17
	KCHWRF	20-NOV-2007			A7K170185	I7 .
	BLANK	20-NOV-2007				17
	STANDARD 1	20-NOV-2007	01:11:19)	÷	I7
	STANDARD 2	20-NOV-2007				17
	STANDARD 3	20-NOV-2007	01:18:29	•		17
	QC STD 1	20-NOV-2007	01:24:19	•		17
	QC STD 2	20-NOV-2007				I 7
		20-NOV-2007				I7
	QC STD 4	20-NOV-2007	01:36:49			I7
	QC STD 5	20-NOV-2007	01:40:35			I 7
	QC STD 6	20-NOV-2007	01:47:15			I.7
	QC STD 7	20-NOV-2007 20-NOV-2007	01:53:03			I7
	KCJLXBF	20-NOV-2007	01:56:02	7323021	A7K190000	I 7
	KCJLXCF KCEFGF	20-NOV-2007	01:59:33	7323021	A7K190000	I7
	KCHWRF	20-NOV-2007	02:04:34	7323021	A7K160130	I7
	KCHXPF	20-NOV-2007	02:08:05	7323021	A7K170185	I7
	ZZZZZ	20-NOV-2007	02:11:37	7323021	A7K170189	I7
	KCHXPFS	20-NOV-2007				I7
	KCHXPFD	20-NOV-2007				I7
	KCHXXF	20-NOV-2007	02:22:15	7323021	A7K170189	I7
	KCHX0F	20-NOV-2007	02:27:17	7323021		I7
	QC STD 6	20-NOV-2007		7323021	A7K170189	I7
	QC STD 7	20-NOV-2007				I7
	KCHX3F	20-NOV-2007		770000		I7
	KCHX6F	20-NOV-2007			A7K170189	I7
	KCJMEB	20-NOV-2007			A7K170189	I7
	KCJMEC	20-NOV-2007 20-NOV-2007			A7K190000	I7
	KCHP0	20-NOV-2007 20-NOV-2007			A7K190000	I7
	KCHP0S	20-NOV-2007			A7K170175	I7
	-,	20 1100 2007	03.00.24	1323028	A7K170175	I7

```
Instrument Upload Run Log - Page 2:
Started Tue Nov 20 07:29:04 2007 by DAVIESB :
Data File: UPL$CAN_DATA_ROOT:<REP>111907D.REP;1 :
```

# WorkOrder	Dilution	Date	Time	Batch	Lot	Instrument
45 KCHPOD		20-NOV-2007	03.17.54	7222020	777770175	
46 KCHQC		20-NOV-2007				
47 KCHQD		20-NOV-2007				
48 KCHQF		20-NOV-2007				- ·
49 QC STD 6		20-NOV-2007			A7K170175	I7
50 QC STD 7		20-NOV-2007				I7
51 KCHQG		20-NOV-2007			777777777	I7
52 KCHQH		20-NOV-2007			A7K170175	I7
53 KCHQJ		20-NOV-2007			A7K170175	17
54 KCHQK		20-NOV-2007			A7K170175	I7
55 KCHQM		20-NOV-2007			A7K170175	I7
56 KCHQN		20-NOV-2007			A7K170175	I7
57 KCHQP		20-NOV-2007			A7K170175	I7
58 KCHQQ		20-NOV-2007			A7K170175	I7
59 KA90R		20-NOV-2007				I7
60 KA90RL		20-NOV-2007			7K15103	I7
61 QC STD 6		20-NOV-2007				I7
62 QC STD 7		20-NOV-2007				I7
63 КСНОН						I7
64 KCHQJ		20-NOV-2007				I7
65 KCHQK		20-NOV-2007			A7K170175	I7
66 KCHQM		20-NOV-2007			A7K170175	I7
67 KCHQN		20-NOV-2007			A7K170175	I7
68 KCHQP		20-NOV-2007	04:50:14	7323028	A7K170175	I 7
69 KCHQQ		20-NOV-2007	04:53:47	7323028	A7K170175	I7 .
70 KA90R		20-NOV-2007	04:57:20	7323028	A7K170175	I7
71 KA90RL		20-NOV-2007		7323028	7K15103	I7
72 KCJL1B		20-NOV-2007				I 7
73 QC STD 6		20-NOV-2007		7323022	A7K190000	I 7
74 QC STD 7		20-NOV-2007				I7
75 KCJL1C		20-NOV-2007			•	I7
76 KCE51		20-NOV-2007			A7K190000	I7
77 KCE51F		20-NOV-2007			7K13126	I7
78 KCEDV		20-NOV-2007			7K13126	I7
70 KCEDVF		20-NOV-2007 (05:37:12	7323022	7K13126	17
80 KCEDVY		20-NOV-2007 (05:40:44	7323022	7K13126	I7
81 KCEDVS		20-NOV-2007 (7K13126	I7
82 KCED7		20-NOV-2007 (7K13126	I7
		20-NOV-2007 (7K13126	17
83 KCED7F 84 KCED9		20-NOV-2007 (7K13126	I7
85 QC STD 6		20-NOV-2007 (7323022	7K13126	I7
		20-NOV-2007 0				I7
86 QC STD 7		20-NOV-2007 0			·	I7
87 KCED9F		20-NOV-2007 0	6:17:02	7323022	7K13126	I7
88 KCEEA		20-NOV-2007 0	6:20:37	7323022	7K13126	I7

LABORATORY CONTROL SAMPLE EVALUATION REPORT

General Chemistry

METHOD

Client	Lot	# .	 7K14155

PREPARATION-PREP ANALYSIS DATE BATCH # Work Order #: KCDHH1AA LCS Lot-Sample#: A7K150000-496 11/15/07 7319496

Matrix..... WATER

pH (liquid)

PARAMETER

pH (liquid)

Work Order #: KCDKJ1AA LCS Lot-Sample#: A7K150000-513 (97 - 103) SW846 9040B

(97 - 103) SW846 9040B

11/14/07 7319513

pH (liquid)

Work Order #: KCGH61AA LCS Lot-Sample#: A7K160000-508 (97 - 103) SW846 9040B

11/16/07

7320508

Dilution Factor: 1

Dilution Factor: 1

Dilution Factor: 1

RECOVERY

LIMITS

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

PERCENT

RECOVERY

101

101

101

General Chemistry

Client Lot #...: A7K140155

Work Order #...: KA88F-SMP

Matrix....: WATER

KA88F-DUP

Date Sampled...: 11/13/07 12:00 Date Received..: 11/14/07

PARAM RESULT	DUPLICATE RESULT	UNITS	RPD_	RPD LIMIT	METHOD	PREPARATION- ANALYSIS DATE	PREP BATCH #
pH (liquid) 9.5	9.6	No Units	1.0		SD Lot-Sample #: SW846 9040B		7318479

General Chemistry

Client Lot #...: A7K140155

Work Order #...: KCAJ4-SMP

Matrix..... WATER

KCAJ4-DUP

Date Sampled...: 11/14/07 11:01 Date Received..: 11/15/07

PARAM RESULT	DUPLICATE RESULT	UNITS	RPD	RPD LIMIT	METHOD	PREPARATION- ANALYSIS DATE	PREP BATCH #
pH (liquid) 11.6	11.6	No Units			SD Lot-Sample #: SW846 9040B	A7K150177-001 11/15/07	7319496

General Chemistry

Client Lot #...: A7K140155

Work Order #...: KCCRP-SMP

Matrix....: WATER

KCCRP-DUP

Date Sampled...: 11/14/07 15:30 Date Received..: 11/15/07

PARAM RESULT	DUPLICATE RESULT	UNITSF	RPD_	RPD LIMIT	METHOD	PREPARATION- ANALYSIS DATE	PREP BATCH #
pH (liquid)					SD Lot-Sample #:	A7K150305-001	
7.9	7.9	No Units 0	0.25	(0-20)	SW846 9040B	11/15/07	7319496
		Dilution Factor	r: 1				

General Chemistry

Client Lot #...: A7K140155

Work Order #...: KCEE7-SMP

Matrix..... WATER

KCEE7-DUP

Date Sampled...: 11/15/07 10:00 Date Received..: 11/16/07

PARAM RESULT	DUPLICATE RESULT	UNITS	RPD	RPD LIMIT	METHOD	PREPARATION- ANALYSIS DATE	PREP BATCH #
pH (liquid) 8.9	8.9	No Units			SD Lot-Sample #: SW846 9040B	A7K160135-001 11/16/07	7320508

General Chemistry

Client Lot #...: A7K140155

Work Order #...: KCETR-SMP

Matrix....: WATER

KCETR-DUP

Date Sampled...: 11/15/07 10:50 Date Received..: 11/16/07

PARAM RESULT	DUPLICATE RESULT	UNITS	RPD	RPD LIMIT	METHOD	PREPARATION- ANALYSIS DATE	PREP BATCH #
pH (liquid) 7.2	7.2	No Units			SD Lot-Sample #: SW846 9040B	A7K160175-002 11/16/07	7320508

Test America-N. Canton Elan 6100 ICPMS

Quantitative Analysis Report

Sample ID:

KA71H

Sample Date/Time:

Friday, November 16, 2007 18:20:56

Method File: Dataset File: c:\elandata\Method\analysis.mth
C:\elandata\Dataset\111607C\KA71H.038

Number of Replicates:

2

SAMPR
MW70B-111207
Arsenic reported result
1.3091L

Concentration Results

		Ana	lyl Mass Cond	. Mean	Conc. RSD	Meas. Intens. Mean	Sample Unit	Blank Intensity
>		Li	6			1112198.416		1159030.058
-		Be	9	0.205144	7.849	73.001		. 3
 -		ΑI	27	43.189214	5.608	141107.119	ppb	5568.643
 >	,	Sc	45			743947.916	ppb	792459.854
		V	51	0.116704	41.417	2123.539	ppb	1524.996
ŀ		Cr	52	0.25367	4.058	10847.726	ppb	10158.213
		Cr	53	-2.235113	91.983	15365.931	ppb	17848.85
 -		Co	59	39.780847	1.322	250753.547	ppb	498.014
 -		Ni	60	56.77816	0.59	77342.096		103.001
-]		Ni	62	56.929789	1.983	11734.437		255.505
1		Cu	63	0.290749	6.997	1193.562	ppb	381.009
1		Cu	65	0.155435	11.679	397.01	ppb	197.503
1		Zn	66	79.193526	0.614	52372.36	ppb	307.006
1		Zn	67	70.573283	1.519	11061.892		3360.93
1		Zn	68	80.889748	0.177	38762.406		563.517
>		Ge	72			778740.707		814109.217
1		As	75	1.302846	9.888	1002.303		-3.677
1		Se	77	-0.464651	113.331	378.509		423.511
-		Se	82	1.197222	18.242	86.742		-4.74
 -		Мо	95	0.08223	36.755	1544.599		1564.101
1		Мо	97	0.089335	59.179	912.538		913.038
		Мо	98	0.081433	26.709	2389.285		2410.234
		Ag	107	0.010557	14.828	141.502		104.001
		Ag	109	0.006652	14.572	63.501		39
1 .		Cd	110	-0.090154	79.403	-3131.192		-3337.938
ŀ		Cd	111	0.022326	14.349	35.336		14.835
1		Cd	114	0.016327	19.61	79.331		46.978
 >		in	115			665967.455		730115.447
1		Sn	118	0.298996	11.745	1106.054		224.504
ŀ		Sn	120	0.298471	10.83	1498.53		293.955
-		Sb	121	0.279016	6.436	995.545		241.004
1		Sb	123	0.277062	0.765	764.892		196.995
1		Ba	135	90.036845	0.54	80851.462		14.5
-		Ва	137	90.387546	0.651	140453.49		25.5
>		Но	165			879180.054		956186.695
ĺ		TI	203	-0.02746	14.764	148.002		272.005
1		T!	205	-0.031928	8.079	350.508		680.023
1		Pb	208	0.048351	0.677	1409.042		903.02
j-		Bi	209			784683.413		973839.821
							1 1	

Tetra Tech NUS

INTERNAL CORRESPONDENCE

TO:

MIKE MARTIN

DATE:

FEBRUARY 27, 2008

FROM:

J.SAMCHUCK

COPIES:

DV FILE

SUBJECT: ORGANIC DATA VALIDATION - VOCS/1,4-DIOXANE

MARTIN STATE AIRPORT

SAMPLE DELIVERY GROUP (SDG) - 7K28188

SAMPLES:

6/Aqueous

RW-01S-112707

RW-01S-112807

RW-01S-113007

TB-112707

TB-112807

TB-113007

Overview

This sample set for the Martin State Airport, SDG 7K28188, consists of 3 environmental water samples and 3 trip blanks. The samples were analyzed for Volatile Organic Compounds (VOCs) and 1,4-dioxane (SVOC). No field duplicates were included in this data set.

The samples were collected by Tetra Tech NUS, Inc. on November 27, 28, and 30, 2007 and analyzed by TestAmerica Laboratories, Inc. The samples were analyzed by SW-846 Methods 8260B and 8270C.

Summary

The findings in this report are based upon a general review of all available data including: data completeness, system performance, holding times, GC/MS tuning, initial/continuing calibrations, laboratory method blank contamination, surrogate spike, matrix spike/matrix spike duplicate (MS/MSD) results, Laboratory Control Sample (LCS) results, compound identification, compound quantitation, and detection limits. Areas of concern are listed below; documentation supporting these findings is presented in Appendix C. Qualified analytical results are presented in Appendix A. Results as reported by the laboratory are presented in Appendix B.

Major Problems

The initial calibration and continuing calibration relative response factors (RRFs) for tert-butyl alcohol were less than the 0.05 quality control limit on 8/24/07 and 12/04/07 on instrument A3UX10. Non-detected results for tert-butyl alcohol were rejected (UR) in samples associated with this calibration.

Minor Problems

 The following compounds were detected in laboratory method blanks and trip blanks at the following maximum concentrations.

<u>Compound</u>

<u>Level</u>

Action Level

1,2,3-Trichlorobenzene⁽¹⁾

0.41 μg/L

2.05 μg/L

MEMO TO: M. MARTIN - PAGE 2 DATE: FEBRUARY 27, 2008

1,2,4-Trichlorobenzene ⁽¹⁾	0.23 μg/L	1.15 μg/L
Naphthalene ⁽¹⁾	0.38 μg/L	1.9 μg/L
Styrene ⁽²	0.20 μg/L	1.0 μg/L
Toluene ⁽²	0.31 μg/L	1.55 μg/L

- 1. Reported in laboratory blanks only.
- 2. Reported in trip blanks only.

An action level of 10X the maximum blank concentration was used for the common laboratory contaminants, acetone and 2-butanone. An action level of 5X the maximum contaminant concentration was used for the other blank contaminants to evaluate laboratory or field contamination. Dilution factors and sample aliquots were taken into consideration during the application of all action levels, if applicable.

Results for the other above mentioned compounds were not qualified because they were not positively detected in any environmental samples.

- The continuing calibration had the %D > 25% quality control limit but < 50% quality control limit for acetone and 2-butanone on 12/04/07 @09:13 on instrument A3UX10. Positive results were qualified as estimated (J).
- Positive results reported below the reporting limit (RL) but above the method detection limit (MDL) for the organic analyses were qualified as estimated (J).

Notes

In the VOC analysis, samples RW-01S-112707, RW-01S-112807, and RW-01S-113007, were analyzed at dilutions of 50 times because of high analyte concentrations (e.g. cis-1,2-DCE, TCE, and vinyl chloride). The dilutions resulted in elevated quantitation limits for these samples

The continuing calibration had the %D > 25% quality control limit but < 50% quality control limit for trichlorofluoromethane, vinyl acetate, 2-chloroethyl vinyl ether, 4-methyl-2-pentanone, 2-hexanone, and bromoform, on 12/4/07 on instrument A3UX10. No validation actions were required because the aforementioned compounds were not positively detected in samples associated with this calibration.

No matrix spike analyses were performed either the volatile or semivolatile fraction.

The laboratory control samples were not spiked with 1,4-dioxane. The recoveries of other spiked compounds and the surrogate recoveries in the samples were acceptable. No validation action was taken.

Executive Summary

Laboratory Performance: 1,2,3-Trichlorobenzene, 1,2,4-trichlorobenzene, toluene, styrene, and naphthalene were detected in laboratory blanks. The initial calibration and continuing RRFs for tert-butyl alcohol were below the control limit resulting in the rejection of nondetected results.

Other Factors Affecting Data Quality: None.

MEMO TO: M. MARTIN - PAGE 3 DATE: FEBRUARY 27, 2008

The data for these analyses were reviewed with reference to the "Region III Modifications to the National Functional Guidelines for Organic Data Review" (9/94). The text of this report has been formulated to address only those problem areas affecting data quality.

Terra Tech NUS Joseph Al Samchuck Quality Assurance Officer

Attachments:

1. Appendix A - Qualified Analytical Results

2. Appendix B - Results as reported by the Laboratory

3. Appendix C - Support Documentation

Data Qualifier Key:

B - Positive result is considered to be an artifact of blank contamination and should not be considered present.

J - Positive result is considered estimated, "J", as a result of technical noncompliances.

U - Nondetected result.

UR - Nondetected result is considered rejected, "UR", as a result of severe validation noncompliances.

APPENDIX A QUALIFIED ANALYTICAL RESULTS

Data Validation Qualifier Codes:

Α Lab Blank Contamination

= Field Blank Contamination В

= Calibration Noncompliance (e.g. % RSDs, %Ds, ICVs, CCVs, RRFs, etc.) С

C01 = GC/MS Tuning Noncompliance

D = MS/MSD Recovery Noncompliance

= LCS/LCSD Recovery Noncompliance Ε

F = Lab Duplicate Imprecision

G = Field Duplicate Imprecision

Н = Holding Time Exceedance

= ICP Serial Dilution Noncompliance

= GFAA PDS-GFAA MSA's r < 0.995 / ICP PDS Recovery Noncompliance

= ICP Interference - includes ICS % R Noncompliance

= Instrument Calibration Range Exceedance L

= Sample Preservation Noncompliance Μ

= Internal Standard Noncompliance Ν

N01 = Internal Standard Recovery Noncompliance Dioxins

N02 = Recovery Standard Noncompliance Dioxins

N03 = Clean-up Standard Noncompliance Dioxins

- Poor Instrument Performance (e.g. base-line drifting) O

= Uncertainty near detection limit (< 2 x IDL for inorganics and <CRQL for organics)

= Other problems (can encompass a number of issues; e.g. chromatography,interferences, etc.) Q

= Surrogates Recovery Noncompliance R

S = Pesticide/PCB Resolution

T = % Breakdown Noncompliance for DOT and Endrin

= % Difference between columns/detectors >25% for positive results determined via GC/HPLC U

V = Non-linear calibrations; correlation coefficient r < 0.995

= EMPC result

= Signal to noise response drop Х

Υ = Percent solids <30%

= Uncertainty at 2 sigma deviation is greater than sample activity Ζ

SDG: 7K28188 MEDIA: WATER DATA FRACTION: OV

nsample samp_date

11/27/2007

A7K280188001

lab_id qc_type units

NM UG/L

Pct_Solids DUP_OF:

RW-01S-112707DL

samp_date lab_id

qc_type

units

nsample

RW-01S-112707DL 11/27/2007

A7K280188001

NM UG/L

Pct_Solids DUP_OF:

nsample

RW-01S-112707DL

samp_date lab_id

11/27/2007 A7K280188001

qc_type units

NM UG/L

Pct_Solids DUP_OF:

		Val	Qual
Parameter	Result	Qual	Code
1,1,1,2-TETRACHLOROETHANE	50	U	
1,1,1-TRICHLOROETHANE	50	U	
1,1,2,2-TETRACHLOROETHANE	50	U	
1,1,2-TRICHLOROTRIFLUOROETHANE	50	U	
1,1-DICHLOROETHANE	50	U	
1,1-DICHLOROETHENE	50	U	
1,1-DICHLOROPROPENE	50	U	
1,2,3-TRICHLOROBENZENE	50	U	
1,2,3-TRICHLOROPROPANE	50	U	
1,2,3-TRIMETHYLBENZENE	250	Ú	
1,2,4-TRICHLOROBENZENE	50	U	
1,2,4-TRIMETHYLBENZENE	50	U	
1,2-DIBROMO-3-CHLOROPROPANE	100	U -	
1,2-DIBROMOETHANE	50	U	
1,2-DICHLOROBENZENE	50	U	
1,2-DICHLOROETHANE	50	U	
1,2-DICHLOROPROPANE	50	U	
1,3-DICHLOROBENZENE	50	U	
1,3-DICHLOROPROPANE	50	U	
1,4-DICHLOROBENZENE	50	U	
2,2-DICHLOROPROPANE	50	U	
2-BUTANONE	250	Ú	
2-CHLOROETHYL VINYL ETHER	250	Ü	
2-CHLOROTOLUENE	50	U	
2-HEXANONE	250	U	
4-CHLOROTOLUENE	50	U	
4-ISOPROPYLTOLUENE	50	U	
4-METHYL-2-PENTANONE	250	U	
ACETONE	250	· U	
BENZENE	50	U	
BROMOBENZENE	50	U	
BROMOCHLOROMETHANE	50	U	

Parameter	Result	Val Qual	Qual Code
BROMODICHLOROMETHANE	50	U	
BROMOFORM	50	U	
BROMOMETHANE	50	U	
CARBON DISULFIDE	50	U	
CARBON TETRACHLORIDE	50	U	
CHLOROBENZENE	50	U	
CHLORODIBROMOMETHANE	50	U	
CHLOROETHANE	50	U	
CHLOROFORM	50	U	
CHLOROMETHANE	50	U	
CIS-1,2-DICHLOROETHENE	460		
CIS-1,3-DICHLOROPROPENE	50	U	
DIBROMOMETHANE	50	U	
DICHLORODIFLUOROMETHANE	50	U	
DIISOPROPYL ETHER	250	U	
ETHYL TERT-BUTYL ETHER	250	U	
ETHYLBENZENE	50	U	
HEXACHLOROBUTADIENE	50	U	
ISOPROPYLBENZENE	50	U	
M+P-XYLENES	100	U	
METHYL TERT-BUTYL ETHER	250	U	
METHYLENE CHLORIDE	50	U	
NAPHTHALENE	50	U	
N-BUTYLBENZENE	50	U	
N-PROPYLBENZENE	50	U	
O-XYLENE	50	U	
SEC-BUTYLBENZENE	50	U	
STYRENE	50	U	
TERT-AMYL METHYL ETHER	250	U	
TERT-BUTYLBENZENE	50	U	
TERTIARY-BUTYL ALCOHOL	1000	UR	С
TETRACHLOROETHENE	50	U	

Parameter	Result	Val Qual	Qual Code
TOLUENE	50	U	-
TOTAL XYLENES	100	U	
TRANS-1,2-DICHLOROETHENE	50	U	
FRANS-1,3-DICHLOROPROPENE	50	U	
TRICHLOROETHENE	1500		
TRICHLOROFLUOROMETHANE	50	Ų	
VINYL ACETATE	100	U	
/INYL CHLORIDE	140		

SDG: 7K28188 MEDIA: WATER DATA FRACTION: OV

nsample samp_date RW-01S-112807DL

11/28/2007

lab_id qc_type A7K300135001

qc_type units NM UG/L

Pct_Solids DUP_OF: 'DL

nsample samp_date lab_id

qc_type

units

RW-01S-112807DL

11/28/2007

A7K300135001 NM

UG/L

de de

Pct_Solids DUP_OF: nsample

RW-01S-112807DL

UG/L

samp_date

11/28/2007

lab_id qc_type

units

A7K300135001 NM

Pct_Solids DUP_OF:

Parameter	Result	Val Qual	Qual Code	Parameter	Result	Val Qual	Qual Code
MODICHLOROMETHANE	50	U		TOLUENE	50	U	
MOFORM	50	U		TOTAL XYLENES	100	U	
MOMETHANE	50	U		TRANS-1,2-DICHLOROETHENE	50	U	
BON DISULFIDE	50	U		TRANS-1,3-DICHLOROPROPENE	50	U	
BON TETRACHLORIDE	50	U		TRICHLOROETHENE	1600		
PROBENZENE	11	J	Р	TRICHLOROFLUOROMETHANE	50	U	
PRODIBROMOMETHANE	50	Ü		VINYL ACETATE	100	U	
PROETHANE	50	U		VINYL CHLORIDE	200		
PROFORM	50	U		1			
			l				

Parameter	Result	Val Qual	Qual Code
			Code
1,1,1,2-TETRACHLOROETHANE	50	U	
1,1,1-TRICHLOROETHANE	50	U	
1,1,2,2-TETRACHLOROETHANE	50	U	
1,1,2-TRICHLOROTRIFLUOROETHANE	50	U	
1,1-DICHLOROETHANE	50	U	
1,1-DICHLOROETHENE	18	J	P
1,1-DICHLOROPROPENE	50	U	
1,2,3-TRICHLOROBENZENE	50	U	
1,2,3-TRICHLOROPROPANE	50	U	
1,2,3-TRIMETHYLBENZENE	250	U	
1,2,4-TRICHLOROBENZENE	50	U	
1,2,4-TRIMETHYLBENZENE	50	U	
1,2-DIBROMO-3-CHLOROPROPANE	100	U	
1,2-DIBROMOETHANE	50	U	
1,2-DICHLOROBENZENE	50	U	
1,2-DICHLOROETHANE	50	U	
1,2-DICHLOROPROPANE	50	U	
1,3-DICHLOROBENZENE	50	U	
1,3-DICHLOROPROPANE	50	U	
1,4-DICHLOROBENZENE	50	U	
2,2-DICHLOROPROPANE	50	U	
2-BUTANONE	250	U	
2-CHLOROETHYL VINYL ETHER	250	U	
2-CHLOROTOLUENE	50	U	
2-HEXANONE	250	U	
4-CHLOROTOLUENE	50	U	
4-ISOPROPYLTOLUENE	50	U	
4-METHYL-2-PENTANONE	250	U	
ACETONE	250	U	
BENZENE	50	U	
BROMOBENZENE	50	U	
BROMOCHLOROMETHANE	50	U	
L			L

Parameter	Result	Qual	Code
BROMODICHLOROMETHANE	50	U	
BROMOFORM	50	U	
BROMOMETHANE	50	U	
CARBON DISULFIDE	50	U	
CARBON TETRACHLORIDE	50	U	
CHLOROBENZENE	11	J	Р
CHLORODIBROMOMETHANE	50	Ü	
CHLOROETHANE	50	U	
CHLOROFORM	50	U	
CHLOROMETHANE	50	U	
CIS-1,2-DICHLOROETHENE	520		
CIS-1,3-DICHLOROPROPENE	50	Ü	
DIBROMOMETHANE	50	U	
DICHLORODIFLUOROMETHANE	50	U	
DIISOPROPYL ETHER	250	U	
ETHYL TERT-BUTYL ETHER	250	U	
ETHYLBENZENE	50	U	
HEXACHLOROBUTADIENE	50	U	
ISOPROPYLBENZENE	50	U	
M+P-XYLENES	100	Ü	
METHYL TERT-BUTYL ETHER	250	U	
METHYLENE CHLORIDE	50	U	
NAPHTHALENE	50	U	
N-BUTYLBENZENE	50	U	
N-PROPYLBENZENE	50	U	
O-XYLENE	50	U	
SEC-BUTYLBENZENE	50	U	
STYRENE	50	U	
TERT-AMYL METHYL ETHER	250	Ü	
TERT-BUTYLBENZENE	50	U	
TERTIARY-BUTYL ALCOHOL	1000	UR	С
TETRACHLOROETHENE	50	U	

SDG: 7K28188 MEDIA: WATER DATA FRACTION: OV

nsample RW-01S-113007DL

samp_date 11/30/2007 lab_id A7L010216001

NM qc_type units UG/L

Pct_Solids DUP_OF:

nsample RW-01S-113007DL samp_date 11/30/2007 A7L010216001 lab_id

NM qc_type units UG/L

Pct_Solids DUP_OF:

nsample samp_date

lab_id

RW-01S-113007DL

11/30/2007 A7L010216001

NM qc_type units UG/L

Pct_Solids DUP_OF:

Parameter	Result	Val Qual	Qual Code	Parameter	Result	Val Qual	Qual Code	Parameter	Result	Val Qual	Qual Code
,1,2-TETRACHLOROETHANE	50	U		BROMODICHLOROMETHANE	50	U		TOLUENE	50	U	
,1-TRICHLOROETHANE	50	U		BROMOFORM	50	U		TOTAL XYLENES	100	U	
,2,2-TETRACHLOROETHANE	50	Ü		BROMOMETHANE	50	U		TRANS-1,2-DICHLOROETHENE	50	U	
,2-TRICHLOROTRIFLUOROETHANE	50	U		CARBON DISULFIDE	50	U		TRANS-1,3-DICHLOROPROPENE	50	U	
-DICHLOROETHANE	50	U		CARBON TETRACHLORIDE	50	U		TRICHLOROETHENE	1600		
-DICHLOROETHENE	50	U		CHLOROBENZENE	19	J	Р	TRICHLOROFLUOROMETHANE	50	U	
-DICHLOROPROPENE	50	U		CHLORODIBROMOMETHANE	50	U		VINYL ACETATE	100	U	
,3-TRICHLOROBENZENE	50	U		CHLOROETHANE	50	U		VINYL CHLORIDE	770		
,3-TRICHLOROPROPANE	50	U		CHLOROFORM	50	U					
A TOMETHIN DENZENE	050			OUI ODOMETIMALE		11					

*			1		1	-	
1,1,1,2-TETRACHLOROETHANE	50	U		BROMODICHLOROMETHANE	50	U	
1,1,1-TRICHLOROETHANE	50	U		BROMOFORM	50	Ü	
1,1,2,2-TETRACHLOROETHANE	50	Ü		BROMOMETHANE	50	U	
1,1,2-TRICHLOROTRIFLUOROETHANE	50	U		CARBON DISULFIDE	50	U	
1,1-DICHLOROETHANE	50	U		CARBON TETRACHLORIDE	50	U	
1,1-DICHLOROETHENE	50	U		CHLOROBENZENE	19	J	Р
1,1-DICHLOROPROPENE	50	U		CHLORODIBROMOMETHANE	50	U	
1,2,3-TRICHLOROBENZENE	50	U		CHLOROETHANE	50	U	
1,2,3-TRICHLOROPROPANE	50	U		CHLOROFORM	50	Ú	
1,2,3-TRIMETHYLBENZENE	250	U		CHLOROMETHANE	50	U	
1,2,4-TRICHLOROBENZENE	50	U		CIS-1,2-DICHLOROETHENE	450		
1,2,4-TRIMETHYLBENZENE	50	U		CIS-1,3-DICHLOROPROPENE	50	U	
1,2-DIBROMO-3-CHLOROPROPANE	100	U		DIBROMOMETHANE	50	U	
1,2-DIBROMOETHANE	50	U		DICHLORODIFLUOROMETHANE	50	U.	
1,2-DICHLOROBENZENE	50	U		DIISOPROPYL ETHER	250	U	
1,2-DICHLOROETHANE	50	U		ETHYL TERT-BUTYL ETHER	250	U	
1,2-DICHLOROPROPANE	50	U		ETHYLBENZENE	50	U	
1,3-DICHLOROBENZENE	50	U		HEXACHLOROBUTADIENE	50	U	
1,3-DICHLOROPROPANE	50	U		ISOPROPYLBENZENE	50	U	
1,4-DICHLOROBENZENE	50	U		M+P-XYLENES	100	U	
2,2-DICHLOROPROPANE	50	U		METHYL TERT-BUTYL ETHER	250	U	
2-BUTANONE	250	U		METHYLENE CHLORIDE	50	U	
2-CHLOROETHYL VINYL ETHER	250	U		NAPHTHALENE	50	U	
2-CHLOROTOLUENE	50	U		N-BUTYLBENZENE	50	U	
2-HEXANONE	250	U		N-PROPYLBENZENE	50	U	
4-CHLOROTOLUENE	50	U		O-XYLENE	50	U	
4-ISOPROPYLTOLUENE	50	U		SEC-BUTYLBENZENE	50	U	
4-METHYL-2-PENTANONE	250	υ		STYRENE	50	U	
ACETONE	250	U		TERT-AMYL METHYL ETHER	250	U	
BENZENE	50	U		TERT-BUTYLBENZENE	50	U ,	
BROMOBENZENE	50	U		TERTIARY-BUTYL ALCOHOL	1000	UR	С
BROMOCHLOROMETHANE	50	U		TETRACHLOROETHENE	50	U	

SDG: 7K28188 MEDIA: WATER DATA FRACTION: OV

nsample samp_date TB-112707 11/27/2007

11/27/2007 A7K280188002

lab_id qc_type units

NM UG/L

Pct_Solids

nsample samp_date lab_id

qc_type

units

TB-112707 11/27/2007 A7K280188002

NM UG/L

Pct_Solids DUP_OF: nsample samp_date TB-112707 11/27/2007

lab_id

A7K280188002 NM

qc_type units

UG/L

Pct_Solids DUP_OF:

Val Qual

Parameter	Result	Val Qual	Qual Code
1,1,1,2-TETRACHLOROETHANE	1	U	
1,1,1-TRICHLOROETHANE	1	Ü	
1,1,2,2-TETRACHLOROETHANE	1	U	
1,1,2-TRICHLOROTRIFLUOROETHANE	1	Ų	
1,1-DICHLOROETHANE	1	U	
1,1-DICHLOROETHENE	1	υ	
1,1-DICHLOROPROPENE	1	U	-
1,2,3-TRICHLOROBENZENE	0.28	J	Р
1,2,3-TRICHLOROPROPANE	1	Ū	
1,2,3-TRIMETHYLBENZENE	5	U	
1,2,4-TRICHLOROBENZENE	1	Ú	
1,2,4-TRIMETHYLBENZENE	1	U	
1,2-DIBROMO-3-CHLOROPROPANE	2	U	
1,2-DIBROMOETHANE	1	U	
1,2-DICHLOROBENZENE	1	U	
1,2-DICHLOROETHANE	1	U	
1,2-DICHLOROPROPANE	1	U	
1,3-DICHLOROBENZENE	1	U	
1,3-DICHLOROPROPANE	1	U	
1,4-DICHLOROBENZENE	1	U	
2,2-DICHLOROPROPANE	1	U	
2-BUTANONE	5.8	J	С
2-CHLOROETHYL VINYL ETHER	5	U	
2-CHLOROTOLUENE	1	U	
2-HEXANONE	5	U	
4-CHLOROTOLUENE	1	U	
4-ISOPROPYLTOLUENE	1	U	
4-METHYL-2-PENTANONE	5	U	
ACETONE	27	J	С
BENZENE	1	U	
BROMOBENZENE	1	U	
BROMOCHLOROMETHANE	1	U	

Parameter	Result	Qual	Code
BROMODICHLOROMETHANE	1	U	
BROMOFORM	1	U	
BROMOMETHANE	1	U	
CARBON DISULFIDE	1	U	
CARBON TETRACHLORIDE	1	U	
CHLOROBENZENE	1	U	
CHLORODIBROMOMETHANE	1	U	
CHLOROETHANE	1	U	
CHLOROFORM	1	U	
CHLOROMETHANE	1	U	
CIS-1,2-DICHLOROETHENE	1	U	
CIS-1,3-DICHLOROPROPENE	1	U	
DIBROMOMETHANE	1	U	
DICHLORODIFLUOROMETHANE	1	U	
DIISOPROPYL ETHER	5	U	
ETHYL TERT-BUTYL ETHER	5	U	
ETHYLBENZENE	1	U	
HEXACHLOROBUTADIENE	1	U	
ISOPROPYLBENZENE	1	U	
M+P-XYLENES	2	U	
METHYL TERT-BUTYL ETHER	5	U	
METHYLENE CHLORIDE	1	U	
NAPHTHALENE	0.37	J	Р
N-BUTYLBENZENE	1	U	
N-PROPYLBENZENE	1	U	
O-XYLENE	1	U	
SEC-BUTYLBENZENE	1	U	
STYRENE	0.2	J	Р
TERT-AMYL METHYL ETHER	. 5	U	
TERT-BUTYLBENZENE	1	U	
TERTIARY-BUTYL ALCOHOL	20	UR	C
TETRACHLOROETHENE	1	U	

Parameter	Result	Val Qual	Qual Code	
TOLUENE	0.31	J	Р	
TOTAL XYLENES	2	U		
TRANS-1,2-DICHLOROETHENE	1	U		
TRANS-1,3-DICHLOROPROPENE	1	U		
TRICHLOROETHENE	1	U		
TRICHLOROFLUOROMETHANE	1	U		
VINYL ACETATE	2	U		
VINYL CHLORIDE	1	U		

SDG: 7K28188 MEDIA: WATER DATA FRACTION: OV

nsample samp_date TB-112807

11/28/2007

lab_id qc_type

NM

UG/L units

Pct_Solids DUP OF:

A7K300135002 lab_id

qc_type units

> Pct_Solids DUP_OF:

nsample samp_date TB-112807 11/28/2007

A7K300135002

NM UG/L

units Pct_Solids

nsample

lab_id

qc_type

samp_date

DUP_OF: Val Parameter Result Qual TOLUENE 0.27 TOTAL XYLENES 2 TRANS-1,2-DICHLOROETHENE 1 TRANS-1,3-DICHLOROPROPENE 1 TRICHLOROETHENE 1

TRICHLOROFLUOROMETHANE

VINYL ACETATE

VINYL CHLORIDE

TB-112807

11/28/2007

NM

UG/L

A7K300135002

Qual

Code

P

J

U

U

U

U

U 1

U

2 U

Parameter	Result	Val Qual	Qual Code
1,1,1,2-TETRACHLOROETHANE	1	U	
1,1,1-TRICHLOROETHANE	1	U	
	1	U	
1,1,2,2-TETRACHLOROETHANE	1	U	
1,1,2-TRICHLOROTRIFLUOROETHANE	1	U	
1,1-DICHLOROETHANE			
1,1-DICHLOROETHENE	1	U	
1,1-DICHLOROPROPENE	1	U	
1,2,3-TRICHLOROBENZENE	1	<u>U</u>	<u></u>
1,2,3-TRICHLOROPROPANE	1	U	
1,2,3-TRIMETHYLBENZENE	5	U	
1,2,4-TRICHLOROBENZENE	1	U	
1,2,4-TRIMETHYLBENZENE	1	U	
1,2-DIBROMO-3-CHLOROPROPANE	2	U	
1,2-DIBROMOETHANE	1	U	
1,2-DICHLOROBENZENE	1	U	
1,2-DICHLOROETHANE	1	U	
1,2-DICHLOROPROPANE	1	U	
1,3-DICHLOROBENZENE	1	U	
1,3-DICHLOROPROPANE	1	U	
1,4-DICHLOROBENZENE	1	U	
2,2-DICHLOROPROPANE	1	U	
2-BUTANONE	6.1	J	С
2-CHLOROETHYL VINYL ETHER	5	U	
2-CHLOROTOLUENE	1	U	
2-HEXANONE	5	U	
4-CHLOROTOLUENE	1	U	
4-ISOPROPYLTOLUENE	1	U	
4-METHYL-2-PENTANONE	5	U	
ACETONE	. 30	J	С
BENZENE	1	U	
BROMOBENZENE	1	U	
BROMOCHLOROMETHANE	1	U	

Dovemeter	Decult	Val	Qual Code
Parameter	Result	Qual	Code
BROMODICHLOROMETHANE	1	U	
BROMOFORM	1	U	
BROMOMETHANE	1	U	
CARBON DISULFIDE	1	U	
CARBON TETRACHLORIDE	1	U	
CHLOROBENZENE	1	U	
CHLORODIBROMOMETHANE	1	U	
CHLOROETHANE	1	U	
CHLOROFORM	1	U	
CHLOROMETHANE	1	U	
CIS-1,2-DICHLOROETHENE	1	U	
CIS-1,3-DICHLOROPROPENE	1	U	
DIBROMOMETHANE	1	U	
DICHLORODIFLUOROMETHANE	1	U	
DIISOPROPYL ETHER	5	U	
ETHYL TERT-BUTYL ETHER	5	U	
ETHYLBENZENE	1	U	
HEXACHLOROBUTADIENE	1	U	
ISOPROPYLBENZENE	1	U	-
M+P-XYLENES	2	U	
METHYL TERT-BUTYL ETHER	5	U	
METHYLENE CHLORIDE	1	U	
NAPHTHALENE	1	U	
N-BUTYLBENZENE	1	U	
N-PROPYLBENZENE	1	U	
O-XYLENE	1	U	
SEC-BUTYLBENZENE	1	U	
STYRENE	0.17	J	Р
TERT-AMYL METHYL ETHER	5	U	
TERT-BUTYLBENZENE	1	U	
TERTIARY-BUTYL ALCOHOL	20	UR	С
TETRACHLOROETHENE	1	U	

SDG: 7K28188 MEDIA: WATER DATA FRACTION: OV

nsample samp_date TB-113007 11/30/2007

lab_id A7L010216002

qc_type units

NM UG/L

Pct_Solids DUP_OF:

nsample samp_date TB-113007 11/30/2007 A7L010216002

lab_id qc_type

NM UG/L

Pct_Solids DUP_OF:

units

nsample samp_date TB-113007 11/30/2007

lab_id qc_type

A7L010216002 NM

UG/L

units Pct_Solids DUP_OF:

Parameter	Result	Val Qual	Qual Code
1,1,1,2-TETRACHLOROETHANE	1	U	
1,1,1-TRICHLOROETHANE	1	U	
1,1,2,2-TETRACHLOROETHANE	1	U	
1,1,2-TRICHLOROTRIFLUOROETHANE	1	U	
1,1-DICHLOROETHANE	1	U	
1,1-DICHLOROETHENE	1	U	
1,1-DICHLOROPROPENE	1	U	
1,2,3-TRICHLOROBENZENE	1	U	
1,2,3-TRICHLOROPROPANE	. 1	U	
1,2,3-TRIMETHYLBENZENE	5	U	-
1,2,4-TRICHLOROBENZENE	1	U	
1,2,4-TRIMETHYLBENZENE	1	U	Ü
1,2-DIBROMO-3-CHLOROPROPANE	2	U	
1,2-DIBROMOETHANE	. 1	U	
1,2-DICHLOROBENZENE	1	U	
1,2-DICHLOROETHANE	1	U	
1,2-DICHLOROPROPANE	1	U -	
1,3-DICHLOROBENZENE	1	U	
1,3-DICHLOROPROPANE	1	U	
1,4-DICHLOROBENZENE	1	U	
2,2-DICHLOROPROPANE	1	U	
2-BUTANONE	6.3	J	С
2-CHLOROETHYL VINYL ETHER	5	U	
2-CHLOROTOLUENE	1	U	
2-HEXANONE	5	U	
4-CHLOROTOLUENE	1	· U	
4-ISOPROPYLTOLUENE	1	Ū	
4-METHYL-2-PENTANONE	5	U	
ACETONE	28	J	С
BENZENE	1	U	
BROMOBENZENE	. 1	U	
BROMOCHLOROMETHANE	1	U	
·			

Parameter	Result	Val Qual	Qual Code
BROMODICHLOROMETHANE	1	U	
BROMOFORM	1	U	
BROMOMETHANE	1	U	
CARBON DISULFIDE	1	U	
CARBON TETRACHLORIDE	1	Ū	
CHLOROBENZENE	. 1	U	
CHLORODIBROMOMETHANE	1	U	
CHLOROETHANE	1	U	
CHLOROFORM	1	U	
CHLOROMETHANE	1	U	-
CIS-1,2-DICHLOROETHENE	1	U	
CIS-1,3-DICHLOROPROPENE	1	U	
DIBROMOMETHANE	1	U	
DICHLORODIFLUOROMETHANE	1	U	
DIISOPROPYL ETHER	5	U	
ETHYL TERT-BUTYL ETHER	5	U	
ETHYLBENZENE	1	U	
HEXACHLOROBUTADIENE	1	U	
ISOPROPYLBENZENE	1	U	
M+P-XYLENES	2	U	
METHYL TERT-BUTYL ETHER	5	U	
METHYLENE CHLORIDE	1	U	
NAPHTHALENE	1	U	
N-BUTYLBENZENE	1	U ·	
N-PROPYLBENZENE	1	U	
O-XYLENE	1	U	
SEC-BUTYLBENZENE	1	U	
STYRENE	0.16	J	Р
TERT-AMYL METHYL ETHER	5	U	
TERT-BUTYLBENZENE	1	U	
TERTIARY-BUTYL ALCOHOL	20	UR	С
TETRACHLOROETHENE	1	U	

Parameter	Result	Val Qual	Qual Code
TOLUENE	0.22	J	Р
TOTAL XYLENES	2	U	
TRANS-1,2-DICHLOROETHENE	1	U	
TRANS-1,3-DICHLOROPROPENE	1	U	
TRICHLOROETHENE	1	U	
TRICHLOROFLUOROMETHANE	1	U	
VINYL ACETATE	2	U	
VINYL CHLORIDE	1	U	

00998

SDG: 7K28188 MEDIA: WATER DATA FRACTION: OS

nsample samp_date

lab_id

units

DUP_OF:

RW-01S-112707DL

11/27/2007

A7K280188001 NM

qc_type UG/L Pct_Solids

nsample samp_date

lab_id qc_type units

Pct_Solids

DUP_OF:

RW-01S-112807DL 11/28/2007

A7K300135001 NM

UG/L

samp_date lab_id qc_type units Pct_Solids

DUP_OF:

nsample

RW-01S-113007DL 11/30/2007

- A7L010216001 NM

UG/L

Parameter	Result	Val Qual	Qual Code
1,4-DIOXANE	96		

Parameter	Result	Val Qual	Qual Code
1,4-DIOXANE	250		·

Parameter	Result	Val Qual	Qual Code
1,4-DIOXANE	230		

APPENDIX B RESULTS AS REPORTED BY THE LABORATORY

Client Sample ID: RW-01S-112707

GC/MS Volatiles

Lot-Sample #...: A7K280188-001 Work Order #...: KC0W21CD Matrix......: WG

Date Sampled...: 11/27/07 14:10 Date Received..: 11/28/07 Prep Date....: 12/04/07 Analysis Date..: 12/04/07

Prep Date....: 12/04/07
Prep Batch #...: 7339112

Dilution Factor: 50 Initial Wgt/Vol: 5 mL Final Wgt/Vol.: 5 mL

Method.....: SW846 8260B

·		REPORTING	G
PARAMETER	RESULT	LIMIT	UNITS
Bromobenzene	ND	50	ug/L
Bromochloromethane	ND	50	ug/L
2-Chloroethyl vinyl ether	ND	250	ug/L
2-Butanone	ND	250	ug/L
Xylenes (total)	ND	100	ug/L
1,2,3-Trichloropropane	ND	50	${\tt ug/L}$
1,1,2-Trichloro-	ND	50	ug/L
1,2,2-trifluoroethane			
cis-1,2-Dichloroethene	460	50	ug/L
trans-1,2-Dichloroethene	ND	50	${\tt ug/L}$
o-Xylene	ND	50	ug/L
m-Xylene & p-Xylene	ND	100	ug/L
Isopropylbenzene	ND	50	ug/L
1,2-Dibromo-3-chloro-	ND	100	ug/L
propane			•
Dichlorodifluoromethane	ND	50	ug/L
Trichlorofluoromethane	ND	50	${\tt ug/L}$
Acetone	ND	250	ug/L
Bromodichloromethane	ND	50	ug/L
n-Butylbenzene	ND	50	ug/L
sec-Butylbenzene	ND	50	${\tt ug/L}$
tert-Butylbenzene	ND	50	${\tt ug/L}$
Carbon disulfide	ND	50	${\tt ug/L}$
Dibromochloromethane	ND	50	ug/L
2-Chlorotoluene	ND	50	ug/L
4-Chlorotoluene	ND	50	ug/L
1,2-Dibromoethane	ND	50	ug/L
Dibromomethane	ND	50	ug/L
1,2-Dichlorobenzene	ND	50	ug/L
1,3-Dichlorobenzene	ND	50	ug/L
1,4-Dichlorobenzene	ND	50	ug/L
1,3-Dichloropropane	ND	50	ug/L
2,2-Dichloropropane	ND	50	${\tt ug/L}$
1,1-Dichloropropene	ND	50	ug/L
Hexachlorobutadiene	ND	50	ug/L
2-Hexanone	ND	250	ug/L
p-Isopropyltoluene	ND	50	ug/L
tert-Butyl alcohol	ND	1000	ug/L

Client Sample ID: RW-01S-112707

GC/MS Volatiles

Lot-Sample #: A7K280188-001	Work Order #: KC0W21CD	Matrix WG
-----------------------------	------------------------	-----------

		REPORTING	
PARAMETER	RESULT	LIMIT	UNITS
4-Methyl-2-pentanone	ND	250	ug/L
Naphthalene	ND	50	ug/L
n-Propylbenzene	ND	50 .	ug/L
Styrene	ND	50	ug/L
1,1,1,2-Tetrachloroethane	ND	50	ug/L
1,2,3-Trichlorobenzene	ND	50	ug/L
1,2,4-Trichloro-	ND	50	ug/L
benzene	2,12		49, 1
1,2,4-Trimethylbenzene	ND	50	ug/L
Vinyl acetate	ND	100	ug/L
1,2,3-Trimethylbenzene	ND	250	ug/L
Diisopropyl Ether (DIPE)	ND	250	ug/L
Ethyl-t-Butyl Ether (ETBE)	ND	250	ug/L
Tert-amyl methyl ether (TAME)	ND	250	ug/L
Methyl tert-butyl ether	ND	250	ug/L
Benzene	ND	50	ug/L
Bromoform	ND	50	ug/L
Bromomethane	ND	50	ug/L
Carbon tetrachloride	ND	50	ug/L
Chlorobenzene	ND	50	ug/L
Chloroethane	ND	50	ug/L
Chloroform	ND	50	ug/L
Chloromethane	ND	50	ug/L
1,1-Dichloroethane	ND	50	ug/L
1,2-Dichloroethane	ND	50	
1,1-Dichloroethene	ND	50	ug/L ug/L
1,2-Dichloropropane	ND	50	
cis-1,3-Dichloropropene	ND	50	ug/L
trans-1,3-Dichloropropene	ND	50	ug/L
Ethylbenzene		50	ug/L
Methylene chloride	ND		ug/L
	ND	50 50	ug/L
1,1,2,2-Tetrachloroethane Tetrachloroethene	ND	50	ug/L
Toluene	ND	50	ug/L
	ND	50	ug/L
1,1,1-Trichloroethane	ND	50	ug/L
Trichloroethene	1500	50	ug/L
Vinyl chloride	140	50	ug/L
•	PERCENT	DECOMEDA	
SURROGATE		RECOVERY	
Dibromofluoromethane	RECOVERY	LIMITS	•
1,2-Dichloroethane-d4	92 79	(73 - 122)	
Toluene-d8		(61 - 128)	
4-Bromofluorobenzene	84	(76 - 110)	
4-promotinotopenseue	9.5	(74 - 116)	

Client Sample ID: RW-01S-112807

GC/MS Volatiles

Lot-Sample #...: A7K300135-001 Work Order #...: KC6WJ1CF Matrix.....: WG

Date Sampled...: 11/28/07 23:00 Date Received..: 11/30/07 Prep Date....: 12/04/07 Analysis Date..: 12/04/07

Prep Batch #...: 7339112

Dilution Factor: 50 Initial Wgt/Vol: 5 mL Final Wgt/Vol.: 5 mL

Method.....: SW846 8260B

		REPORTING	3
PARAMETER	RESULT	LIMIT	UNITS
2,2-Dichloropropane	ND	50	ug/L
1,1,1,2-Tetrachloroethane	ND	50	ug/L
1,2,3-Trichlorobenzene	ND	. 50	ug/L
1,2,4-Trichloro-	ND	50	ug/L
benzene			
1,2,4-Trimethylbenzene	ND	50	ug/L
Vinyl acetate	ND	100	ug/L
1,2,3-Trimethylbenzene	ND .	250	ug/L
Diisopropyl Ether (DIPE)	ND .	250	ug/L
Ethyl-t-Butyl Ether (ETBE)	ND	250	ug/.L
Tert-amyl methyl ether (TAME)	ND	250	ug/L
Methyl tert-butyl ether	ND	250	ug/L
Bromobenzene	ND	50	ug/L
Bromochloromethane	ND	50	ug/L
2-Chloroethyl vinyl ether	ND	250	ug/L
2-Butanone	ND	250	ug/L
Xylenes (total)	ND	100	ug/L
1,2,3-Trichloropropane	ND	50	ug/L
1,1,2-Trichloro-	ND	50	ug/L
1,2,2-trifluoroethane			
cis-1,2-Dichloroethene	520	50	ug/L
trans-1,2-Dichloroethene	ND	50	ug/L
o-Xylene	ND	50	ug/L
m-Xylene & p-Xylene	ND .	100	ug/L
Isopropylbenzene	ND	50	ug/L
1,2-Dibromo-3-chloro-	ND	100	ug/L
propane			
Dichlorodifluoromethane	ND	50	ug/L
Trichlorofluoromethane	ND	50	ug/L
Acetone	ND	250	ug/L
Bromodichloromethane	ND	50	ug/L
n-Butylbenzene	ND	50	ug/L
sec-Butylbenzene	ND	50	ug/L
tert-Butylbenzene	ND	50	ug/L
Carbon disulfide	ND	50	ug/L
Dibromochloromethane	ND	50	ug/L
2-Chlorotoluene	ND	50	ug/L
4-Chlorotoluene	ND	50	ug/L

Client Sample ID: RW-01S-112807

GC/MS Volatiles

Lot-Sample #: A7K300135-001	Work Order #: KC6WJ1CF	Matrix WG
-----------------------------	------------------------	-----------

		REPORTING	
PARAMETER	RESULT	LIMIT	UNITS
1,2-Dibromoethane	ND	50	ug/L
Dibromomethane	ND	50	ug/L
1,2-Dichlorobenzene	ND	50	ug/L
1,3-Dichlorobenzene	ND	50	ug/L
1,4-Dichlorobenzene	ND	50	ug/L
1,3-Dichloropropane	ND	50	ug/L
1,1-Dichloropropene	ND	50	ug/L
Hexachlorobutadiene	ND	50	ug/L
2-Hexanone	ND	250	ug/L
p-Isopropyltoluene	ND	50	ug/L
tert-Butyl alcohol	ND	1000	ug/L
4-Methyl-2-pentanone	ND	250	ug/L
Naphthalene	ND	50	ug/L
n-Propylbenzene	ND	50	ug/L
Styrene	ND	50	ug/L
Benzene	ND	50	ug/L
Bromoform	ND	50	ug/L
Bromomethane	ND	50	ug/L
Carbon tetrachloride	ND	50	ug/L
Chlorobenzene	11 J	50	ug/L
Chloroethane	ND	50	ug/L
Chloroform	ND	50	ug/L
Chloromethane	ND	50	ug/L
1,1-Dichloroethane	ND	50	ug/L
1,2-Dichloroethane	ND	50	ug/L
1,1-Dichloroethene	18 J	50	ug/L
1,2-Dichloropropane	ND	50	ug/L
cis-1,3-Dichloropropene	ND	50	ug/L
trans-1,3-Dichloropropene	ND	50	ug/L
Ethylbenzene	ND	50	ug/L
Methylene chloride	ND	50	ug/L
1,1,2,2-Tetrachloroethane	ND	50	_
Tetrachloroethene	ND ND	50	ug/L ug/L
Toluene	ND ND	50 ·	ug/L ug/L
1,1,1-Trichloroethane	ND ND	50	=
Trichloroethene	1600	50 50	ug/L
Vinyl chloride	200	50 50	ug/L
ATHAT CHIOTINE	200	Ju	ug/L
	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS	
Dibromofluoromethane	92	$\frac{11M115}{(73 - 122)}$	<u>.</u>
1,2-Dichloroethane-d4	80	(73 - 122) (61 - 128)	
Toluene-d8	83	• • • • • • • • • • • • • • • • • • • •	
TOTACHE GO		(76 - 110) (74 - 116)	
4-Bromofluorobenzene	96		

J Estimated result. Result is less than RL.

Client Sample ID: RW-01S-113007

GC/MS Volatiles

Lot-Sample #...: A7L010216-001 Work Order #...: KC97L1CE Matrix...... WG

Date Sampled...: 11/30/07 11:00 Date Received..: 12/01/07 Prep Date....: 12/04/07 Analysis Date..: 12/04/07

Prep Batch #...: 7339112

Dilution Factor: 50 Initial Wgt/Vol: 5 mL Final Wgt/Vol.: 5 mL

Method.....: SW846 8260B

		REPORTING	
PARAMETER	RESULT	LIMIT	UNITS
1,2,3-Trichlorobenzene	ND	50	ug/L
1,2,4-Trichloro-	ND ·	50	ug/L
benzene			
Ethyl-t-Butyl Ether (ETBE)	ND	250	ug/L
Bromobenzene	ND	50	ug/L
Bromochloromethane	ND	50	ug/L
2-Chloroethyl vinyl ether	ND	250	ug/L
2-Butanone	ND	250	ug/L
Xylenes (total)	ND	100	ug/L
1,2,3-Trichloropropane	ND	50	ug/L
1,1,2-Trichloro-	ND	50	ug/L
1,2,2-trifluoroethane			
cis-1,2-Dichloroethene	450	50	ug/L
trans-1,2-Dichloroethene	ND	50	ug/L
o-Xylene	ND	50	ug/L
m-Xylene & p-Xylene	ND	100	ug/L
Isopropylbenzene	ND	50	ug/L
1,2-Dibromo-3-chloro-	ND	100	ug/L
propane			
Dichlorodifluoromethane	ND	50	ug/L
Trichlorofluoromethane	ND	50	ug/L
Acetone	ND	250	ug/L
Bromodichloromethane	ND	50	ug/L
n-Butylbenzene	ND	50	ug/L
sec-Butylbenzene	ND	50	ug/L
tert-Butylbenzene	ND	50	ug/L
Carbon disulfide	ND	50	ug/L
Dibromochloromethane	ND	50	ug/L
2-Chlorotoluene	ND	50	ug/L
4-Chlorotoluene	ND	50	ug/L
1,2-Dibromoethane	ND	50	ug/L
Dibromomethane	ND	50	ug/L
1,2-Dichlorobenzene	ND	50	ug/L
1,3-Dichlorobenzene	ND	50	ug/L
1,4-Dichlorobenzene	ND	50	ug/L
1,3-Dichloropropane	ND	50	ug/L
2,2-Dichloropropane	ND	50	ug/L
1,1-Dichloropropene	ND	50	ug/L

Client Sample ID: RW-01S-113007

GC/MS Volatiles

Lot-Sample #:	A7L010216-001	Work Order	#: KC97L1CE	Matrix WG
---------------	---------------	------------	-------------	-----------

		REPORTIN	
PARAMETER	RESULT	LIMIT	UNITS
exachlorobutadiene	ND	50	ug/L
-Hexanone	ND	250	ug/L
-Isopropyltoluene	ND	50	ug/L
ert-Butyl alcohol	ND	1000	ug/L
-Methyl-2-pentanone	ND	250	ug/L
aphthalene	ND .	50	ug/L
-Propylbenzene	ND	50	ug/L
tyrene	ND	50	ug/L
.,1,1,2-Tetrachloroethane	ND	50	ug/L
,2,4-Trimethylbenzene	ND	50	ug/L
inyl acetate	ND	100	ug/L
,2,3-Trimethylbenzene	ND	250	ug/L
iisopropyl Ether (DIPE)	ND	250	ug/L
ert-amyl methyl ether (TAME)	ND	250	ug/L
ethyl tert-butyl ether	ND	250	ug/L
enzene	ND	50	ug/L
romoform	ND	50	ug/L
romomethane	ND	50	ug/L
arbon tetrachloride	ND	50	ug/L
Chlorobenzene	19 J	50	ug/L
hloroethane	ND	50	ug/L
hloroform	ND	50	ug/L
hloromethane	ND	50	ug/L
,1-Dichloroethane	ND	50	ug/L
,2-Dichloroethane	ND	50	ug/L
,1-Dichloroethene	ND	50	ug/L
,2-Dichloropropane	ND	50	ug/L
eis-1,3-Dichloropropene	ND	50	ug/L
rans-1,3-Dichloropropene	ND	50	ug/L
thylbenzene	ND	50	ug/L
Methylene chloride	ND	50	ug/L
,1,2,2-Tetrachloroethane	ND	50	ug/L ug/L
etrachloroethene	ND	50	_
Coluene	ND	50	ug/L
,1,1-Trichloroethane	ND ND	50	ug/L
richloroethene	1600	50 50	ug/L
/inyl chloride	770		ug/L
THYL CHIOLIUE	770	50	ug/L
	PERCENT	RECOVERY	
URROGATE	RECOVERY	LIMITS	
ibromofluoromethane	93	(73 - 12	2)
,2-Dichloroethane-d4	80	(61 - 12	
oluene-d8	85	(76 - 11	
-Bromofluorobenzene	96	(74 - 11	

NOTE(S):

J Estimated result. Result is less than RL.

Client Sample ID: TB-112707

GC/MS Volatiles

Lot-Sample #...: A7K280188-002 Work Order #...: KCOXE1AA Matrix...... WQ

 Date Sampled...:
 11/27/07
 Date Received...:
 11/28/07

 Prep Date.....:
 12/04/07
 Analysis Date...:
 12/04/07

Prep Batch #...: 7339112

Dilution Factor: 1 Initial Wgt/Vol: 5 mL Final Wgt/Vol.: 5 mL

Method.....: SW846 8260B

		REPORTING	
PARAMETER	RESULT	LIMIT	UNITS
Bromobenzene	ND	1.0	ug/L
Bromochloromethane	ND	1.0	ug/L
2-Chloroethyl vinyl ether	ND	5.0	ug/L
2-Butanone	5.8	5.0	ug/L
Xylenes (total)	ND	2.0	ug/L
1,2,3-Trichloropropane	ND	1.0	ug/L
1,1,2-Trichloro-	ND	1.0	ug/L
1,2,2-trifluoroethane			
cis-1,2-Dichloroethene	ND	1.0	ug/L
trans-1,2-Dichloroethene	ND	1.0	ug/L
o-Xylene	ND	1.0	ug/L
m-Xylene & p-Xylene	ND	2.0	ug/L
Isopropylbenzene	ND	1.0	ug/L
1,2-Dibromo-3-chloro-	ND	2.0	ug/L
propane			
Dichlorodifluoromethane	ND	1.0	· ug/L
Trichlorofluoromethane	ND	1.0	ug/L
Acetone	27	5.0	ug/L
Bromodichloromethane	ND	1.0	ug/L
n-Butylbenzene	ND	1.0	ug/L
sec-Butylbenzene	ND	1.0	ug/L
tert-Butylbenzene	ND	1.0	ug/L
Carbon disulfide	ND	1.0	ug/L
Dibromochloromethane	ND ·	1.0	ug/L
2-Chlorotoluene	ND	1.0	ug/L
4-Chlorotoluene	ND	1.0	ug/L
1,2-Dibromoethane	ND	1.0	ug/L
Dibromomethane	ND	1.0	ug/L
1,2-Dichlorobenzene	ND	1.0	ug/L
1,3-Dichlorobenzene	ND	1.0	ug/L
1,4-Dichlorobenzene	ND	1.0	ug/L
1,3-Dichloropropane	ND	1.0	ug/L
2,2-Dichloropropane	ND	1.0	ug/L
1,1-Dichloropropene	ND	1.0	ug/L
Hexachlorobutadiene	ND	1.0	ug/L
2-Hexanone	ND	5.0	ug/L
p-Isopropyltoluene	ND	1.0	ug/L
tert-Butyl alcohol	ND	20	ug/L

Client Sample ID: TB-112707

GC/MS Volatiles

Lot-Sample #: A7K280188-002	Work Order	#: KCOXE1AA	Matrix WQ
------------------------------------	------------	-------------	-----------

		REPORTING	
PARAMETER	RESULT	LIMIT	UNITS
4-Methyl-2-pentanone	ND	5.0	ug/L
Naphthalene	0.37 J,B	1.0	ug/L
n-Propylbenzene	ND	1.0	ug/L
Styrene	0.2 0 J	1.0	ug/L
1,1,1,2-Tetrachloroethane	ND	1.0	ug/L
1,2,3-Trichlorobenzene	0.28 J,B	1.0	ug/L
1,2,4-Trichloro-	ND	1.0	ug/L
benzene			3.
1,2,4-Trimethylbenzene	ND	1.0	ug/L
Vinyl acetate	ND	2.0	ug/L
1,2,3-Trimethylbenzene	ND	5.0	ug/L
Diisopropyl Ether (DIPE)	ND	5.0	ug/L
Ethyl-t-Butyl Ether (ETBE)	ND	5.0	ug/L
Tert-amyl methyl ether (TAME)	ND	5.0	ug/L
Methyl tert-butyl ether	ND	5.0	ug/L
Benzene	ND	1.0	ug/L
Bromoform	ND	1.0	ug/L
Bromomethane	ND	1.0	ug/L
Carbon tetrachloride	ND	1.0	ug/L
Chlorobenzene	ND	1.0	ug/L
Chloroethane	ND	1.0	ug/L
Chloroform	ND	1.0	ug/L
Chloromethane	ND	1.0	ug/L
1,1-Dichloroethane	ND	1.0	ug/L
1,2-Dichloroethane	ND	1.0	ug/L
1,1-Dichloroethene	ND	1.0	ug/L
1,2-Dichloropropane	ND	1.0	ug/L
cis-1,3-Dichloropropene	ND	1.0	ug/L
trans-1,3-Dichloropropene	ND	1.0	ug/L
Ethylbenzene	ND	1.0	ug/L
Methylene chloride	ND	1.0	ug/L
1,1,2,2-Tetrachloroethane	ND	1.0	ug/L
Tetrachloroethene	ND	1.0	ug/L
Toluene	0.31 J	1.0	ug/L
1,1,1-Trichloroethane	ND	1.0	ug/L
Trichloroethene	ND	1.0	ug/L
Vinyl chloride	ND	1.0	ug/L
	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS	
Dibromofluoromethane	91	(73 - 122)	•
1,2-Dichloroethane-d4	79	(61 - 128)	
Toluene-d8	83	(76 - 110)	
4-Bromofluorobenzene	98	(74 - 116)	

Client Sample ID: TB-112707

GC/MS Volatiles

Lot-Sample #...: A7K280188-002 Work Order #...: KC0XE1AA Matrix...... WQ

NOTE(S):

J Estimated result. Result is less than RL.

B Method blank contamination. The associated method blank contains the target analyte at a reportable level.

Client Sample ID: TB-112807

GC/MS Volatiles

Lot-Sample #...: A7K300135-002 Work Order #...: KC6W11AA Matrix...... WQ

Date Sampled...: 11/28/07 Date Received..: 11/30/07
Prep Date....: 12/04/07 Analysis Date..: 12/04/07

Prep Batch #...: 7339112

Dilution Factor: 1 Initial Wgt/Vol: 5 mL Final Wgt/Vol.: 5 mL

Method.....: SW846 8260B

		REPORTING	
PARAMETER	RESULT	LIMIT	UNITS
Bromobenzene	ND	1.0	ug/L
Bromochloromethane	ND	1.0	ug/L
2-Chloroethyl vinyl ether	ND	5.0	ug/L
2-Butanone	6.1	5.0	ug/L
Xylenes (total)	ND	2.0	ug/L
1,2,3-Trichloropropane	ND	1.0	ug/L
1,1,2-Trichloro-	ND	1.0	ug/L
1,2,2-trifluoroethane			
cis-1,2-Dichloroethene	ND	1.0	ug/L
trans-1,2-Dichloroethene	ND	1.0	ug/L
o-Xylene	ND	1.0	ug/L
m-Xylene & p-Xylene	ND	2.0	ug/L
Isopropylbenzene	ND	1.0	ug/L
1,2-Dibromo-3-chloro-	ND	2.0	ug/L
propane			
Dichlorodifluoromethane	ND	1.0	ug/L
Trichlorofluoromethane	ND	1.0	ug/L
Acetone	30	5.0	ug/L
Bromodichloromethane	ND	1.0	ug/L
n-Butylbenzene	ND	1.0	ug/L
sec-Butylbenzene	ND	1.0	ug/L
tert-Butylbenzene	ND	1.0	${\tt ug/L}$
Carbon disulfide	ND ·	1.0	ug/L
Dibromochloromethane	ND	1.0	ug/L
2-Chlorotoluene	ND	1.0	ug/L
4-Chlorotoluene	ND	1.0	ug/L
1,2-Dibromoethane	ND	1.0	ug/L
Dibromomethane	ND	1.0	ug/L
1,2-Dichlorobenzene	ND	1.0	ug/L
1,3-Dichlorobenzene	ND	1.0	ug/L
1,4-Dichlorobenzene	ND	1.0	ug/L
1,3-Dichloropropane	ND	1.0	ug/L
2,2-Dichloropropane	ND	1.0	ug/L
1,1-Dichloropropene	ND	1.0	ug/L
Hexachlorobutadiene	ND	1.0	ug/L
2-Hexanone	ND	5.0	${\tt ug/L}$
p-Isopropyltoluene	ND	1.0	ug/L
tert-Butyl alcohol	ND	20	ug/L

Client Sample ID: TB-112807

GC/MS Volatiles

Lot-Sample #: A7K300135-002	Work Order #: KC6W11AA	Matrix WQ
-----------------------------	------------------------	-----------

ON DN METED	DECLIE	REPORTING	
PARAMETER	RESULT	LIMIT	UNITS
-Methyl-2-pentanone	ND	5.0	ug/L
Japhthalene	ND	1.0	ug/L
-Propylbenzene	ND	1.0	${ t ug/L}$
tyrene	0.1 7 J	1.0	ug/L
,1,1,2-Tetrachloroethane	ND	1.0	ug/L
,2,3-Trichlorobenzene	ND	1.0	${ t ug/L}$
,2,4-Trichloro- benzene	ND	1.0	ug/L
,2,4-Trimethylbenzene	ND	1.0	ug/L
inyl acetate	ND	2.0	ug/L
,2,3-Trimethylbenzene	ND	5.0	ug/L
iisopropyl Ether (DIPE)	ND	5.0	ug/L
thyl-t-Butyl Ether (ETBE)	ND	5.0	ug/L
ert-amyl methyl ether (TAME)	ND	5.0	ug/L
ethyl tert-butyl ether	ND	5.0	ug/L
enzene	ND	1.0	
comoform			ug/L
•	ND	1.0.	ug/L
omomethane	ND	1.0	ug/L
rbon tetrachloride	ND	1.0	ug/L
lorobenzene	ND	1.0	ug/L
loroethane	ND	1.0	ug/L
loroform	ND	1.0	ug/L
loromethane	ND	1.0	ug/L
1-Dichloroethane	ND	1.0	ug/L
2-Dichloroethane	ND	1.0	ug/L
1-Dichloroethene	ND	1.0	ug/L
2-Dichloropropane	ND	1.0	ug/L
s-1,3-Dichloropropene	ND	1.0	ug/L
cans-1,3-Dichloropropene	ND	1.0	ug/L
hylbenzene	ND	1.0	ug/L
ethylene chloride	ND	1.0	ug/L
1,2,2-Tetrachloroethane	ND	1.0	
trachloroethene	ND		ug/L
luene		1.0	ug/L
	0.27 J	1.0	ug/L
1,1-Trichloroethane	ND	1.0	ug/L
cichloroethene	ND	1.0	ug/L
nyl chloride	ND	1.0	ug/L
IRROGATE	PERCENT RECOVERY	RECOVERY LIMITS	
bromofluoromethane	94	(73 - 122)
,2-Dichloroethane-d4	79	(61 - 128	•
oluene-d8	82	(76 - 110	
-Bromofluorobenzene	99 .	(76 - 116)	

NOTE (S):

J Estimated result. Result is less than RL.

Client Sample ID: TB-113007

GC/MS Volatiles

Lot-Sample #...: A7L010216-002 Work Order #...: KC97M1AA Matrix...... WQ

Date Sampled...: 11/30/07 Date Received..: 12/01/07

Prep Date....: 12/04/07
Prep Batch #...: 7339112
Analysis Date..: 12/04/07

Dilution Factor: 1 Initial Wgt/Vol: 5 mL Final Wgt/Vol.: 5 mL

Method..... SW846 8260B

		REPORTING	
PARAMETER	RESULT	LIMIT	UNITS
Bromobenzene	ND .	1.0	ug/L
Bromochloromethane	ND	1.0	ug/L
2-Chloroethyl vinyl ether	ND	5.0	ug/L
2-Butanone	6.3	5.0	ug/L
Xylenes (total)	ND	2.0	ug/L
1,2,3-Trichloropropane	ND	1.0	ug/L
1,1,2-Trichloro-	ND	1.0	ug/L
1,2,2-trifluoroethane			_
cis-1,2-Dichloroethene	ND	1.0	ug/L
trans-1,2-Dichloroethene	ND	1.0	ug/L
o-Xylene	ND	1.0	ug/L
m-Xylene & p-Xylene	ND	2.0	ug/L
Isopropylbenzene	ND	1.0	ug/L
1,2-Dibromo-3-chloro-	ND .	2.0	ug/L
propane Dichlorodifluoromethane	ND	1.0	/ T
Trichlorofluoromethane	ND	1.0	ug/L
Acetone	28	5.0	ug/L
Bromodichloromethane	ND		ug/L
n-Butylbenzene	ND ND	1.0	ug/L
sec-Butylbenzene	ND	1.0	ug/L
tert-Butylbenzene	ND		ug/L
Carbon disulfide	ND	1.0	ug/L
Dibromochloromethane	ND ·	1.0	ug/L
2-Chlorotoluene	ND	1.0	ug/L
4-Chlorotoluene	ND	1.0	ug/L
1,2-Dibromoethane	ND	1.0	ug/L
Dibromomethane	ND ND		ug/L
1,2-Dichlorobenzene	ND ND	1.0	ug/L
1,3-Dichlorobenzene	ND ND	1.0	ug/L
1,4-Dichlorobenzene		1.0	ug/L
1,3-Dichloropropane	ND	1.0	ug/L
	ND	1.0	ug/L
2,2-Dichloropropane	ND	1.0	ug/L
1,1-Dichloropropene Hexachlorobutadiene	ND	1.0	ug/L
2-Hexanone	ND	1.0	ug/L
	ND	5.0	ug/L
p-Isopropyltoluene	ND	1.0	ug/L
tert-Butyl alcohol	ND	20	ug/L

Client Sample ID: TB-113007

GC/MS Volatiles

Lot-Sample #:	A7L010216-002	Work Order #	: KC97M1AA	Matrix WO
---------------	---------------	--------------	------------	-----------

		REPORTING	
PARAMETER	RESULT	LIMIT	UNITS
4-Methyl-2-pentanone	ND	5.0	ug/L
Naphthalene	ND	1.0	ug/L
n-Propylbenzene	ND	1.0	ug/L
Styrene	0.16 J	1.0	ug/L
1,1,1,2-Tetrachloroethane	ND	1.0	${ t ug/L}$
1,2,3-Trichlorobenzene	ND	1.0	ug/L
1,2,4-Trichloro- benzene	ND	1.0	ug/L
1,2,4-Trimethylbenzene	ND	1.0	ug/L
inyl acetate	ND	2.0	ug/L
.,2,3-Trimethylbenzene	ND	5.0	ug/L
Diisopropyl Ether (DIPE)	ND	5.0	ug/L
Ethyl-t-Butyl Ether (ETBE)	ND	5.0	ug/L
Cert-amyl methyl ether (TAME)	ND	5.0	ug/L
Methyl tert-butyl ether	ND	5.0	ug/L
Benzene	ND	1.0	ug/L
Bromoform	ND	1.0	ug/L
Bromomethane	ND	1.0	ug/L
Carbon tetrachloride	ND	1.0	ug/L
Chlorobenzene	ND	1.0	ug/L
Chloroethane	ND	1.0	ug/L
Chloroform	ND	1.0	ug/L
hloromethane	ND	1.0	ug/L
,1-Dichloroethane	ND	1.0	ug/L
,2-Dichloroethane	ND	1.0	ug/L
1,1-Dichloroethene	ND	1.0	ug/L
,2-Dichloropropane	ND	1.0	ug/L
:is-1,3-Dichloropropene	ND	1.0	ug/L
rans-1,3-Dichloropropene	ND ·	1.0	ug/L
thylbenzene	ND	1.0	ug/L
Methylene chloride	ND	1.0	ug/L
.,1,2,2-Tetrachloroethane	ND	1.0	ug/L
etrachloroethene	ND		_
oluene	0.22 J	1.0	ug/L
		1.0	ug/L
.,1,1-Trichloroethane	ND	1.0	ug/L
richloroethene	ND	1.0	ug/L
inyl chloride	ND	1.0	ug/L
URROGATE	PERCENT	RECOVERY	
oibromofluoromethane	RECOVERY	LIMITS	2)
	93	(73 - 12	
.,2-Dichloroethane-d4	79	(61 - 12	•
Toluene-d8	83	(76 - 11	
-Bromofluorobenzene	98	(74 - 11	6)

NOTE (S):

J Estimated result. Result is less than RL.

Client Sample ID: RW-01S-112707

GC/MS Semivolatiles

-	11/27/07 14:10 11/28/07	Work Order #: Date Received: Analysis Date:	11/28/07	Matrix: WG	
Dilution Factor:	5	<pre>Initial Wgt/Vol:</pre>	1050 mL	Final Wgt/Vol: 2 mI	,
		Method:	SW846 8270	C	
•				•	
			REPORTING		
PARAMETER		RESULT	LIMIT	UNITS	
1,4-Dioxane		96	5 0	ug/L	
		PERCENT	RECOVERY		
SURROGATE		RECOVERY	LIMITS		
Nitrobenzene-d5		59 DIL	(27 - 111)		
2-Fluorobiphenyl		58 DIL	(28 - 110)		
Terphenyl-d14		76 DIL	(37 - 119)		
Phenol-d5		23 DIL	(10 - 110)		
2-Fluorophenol		35 DIL	(10 - 110)		
2,4,6-Tribromophe	enol	74 DIL	(22 - 120)		
NOTE (C)					

DIL The concentration is estimated or not reported due to dilution or the presence of interfering analytes.

Client Sample ID: RW-01S-112807

GC/MS Semivolatiles

• • • • • • • • • • • • • • • • • • •	11/28/07 23:00 12/02/07	Work Order #: Date Received: Analysis Date:	11/30/07	Matrix: WG
-		T 11 1 7 77 1 77 7	1040 -	7 1 7 1 77 1 0 7
Dilution Factor:	6.66	Initial Wgt/Vol:		3 -
		Method:	SW846 8270	C
PARAMETER		RESULT	REPORTING LIMIT	UNITS
1,4-Dioxane		250	67	ug/L
•				3
		PERCENT	RECOVERY	
SURROGATE		RECOVERY	LIMITS	
Nitrobenzene-d5		72 DIL	(27 - 111)	
2-Fluorobiphenyl	,	69 DIL	(28 - 110)	
Terphenyl-d14		87 DIL	(37 - 119)	
Phenol-d5		65 DIL	(10 - 110)	
2-Fluorophenol		61 DIL	(10 - 110)	
2,4,6-Tribromophe	enol	66 DIL	(22 - 120)	•
NOTE (S) •				

DIL The concentration is estimated or not reported due to dilution or the presence of interfering analytes.

Client Sample ID: RW-01S-113007

GC/MS Semivolatiles

Lot-Sample #: A7L010216-00 Date Sampled: 11/30/07 11: Prep Date: 12/04/07 Prep Batch #: 7338055		12/01/07	Matrix WG
Dilution Factor: 10	<pre>Initial Wgt/Vol: Method</pre>		Final Wgt/Vol: 2 mL
		REPORTING	
PARAMETER	RESULT	LIMIT	UNITS
1,4-Dioxane	230	100	ug/L
SURROGATE	PERCENT RECOVERY	RECOVERY LIMITS	
Nitrobenzene-d5	51 DIL	(27 - 111)	
2-Fluorobiphenyl	53 DIL	(28 - 110)	
Terphenyl-d14	63 DIL	(37 - 119)	
Phenol-d5	41 DIL	(10 - 110)	
2-Fluorophenol	38 DIL	(10 - 110)	
2,4,6-Tribromophenol	77 DIL	(22 - 120)	
NOTE (C)			

DIL The concentration is estimated or not reported due to dilution or the presence of interfering analytes.

APPENDIX C SUPPORT DOCUMENTATION

ANALYTICAL REPORT

MSA PUMP TEST 01 SDG #: 7K28188

Michael Martin

Tetra Tech NUS Inc 20251 Century Blvd Suite 200 Germantown, MD 20874

TESTAMERICA LABORATORIES, INC.

Project Manager (

December 20, 2007

CASE NARRATIVE

7K28188

The following report contains the analytical results for three water samples and three quality control samples submitted to TestAmerica North Canton by Tetra Tech NUS Inc. from the MSA-PUMP TEST 01 Site. The samples were received December 01, 2007, November 28, 2007 and November 30, 2007, according to documented sample acceptance procedures.

This SDG consists of (3) laboratory ID's: A7K280188, A7K300135, and A7L010216.

TestAmerica utilizes USEPA approved methods in all analytical work. The samples presented in this report were analyzed for the parameter(s) listed on the analytical methods summary page in accordance with the method(s) indicated. Preliminary results were provided to Dev Murali, John Poremba, and Michael Martin on December 17, 2007. A summary of QC data for these analyses is included at the back of the report.

TestAmerica North Canton attests to the validity of the laboratory data generated by TestAmerica facilities reported herein. All analyses performed by TestAmerica facilities were done using established laboratory SOPs that incorporate QA/QC procedures described in the applicable methods. TestAmerica's operations groups have reviewed the data for compliance with the laboratory QA/QC plan, and data have been found to be compliant with laboratory protocols unless otherwise noted below.

The test results in this report meet all NELAP requirements for parameters for which accreditation is required or available. Any exceptions to NELAP requirements are noted in this report. Pursuant to NELAP, this report may not be reproduced, except in full, without the written approval of the laboratory.

Please refer to the Quality Control Elements Narrative following this case narrative for additional quality control information.

If you have any questions, please call the Project Manager, Patrick J. O'Meara, at 330-497-9396.

This report is sequentially paginated. The final page of the report is labeled as "END OF REPORT."

SUPPLEMENTAL QC INFORMATION

SAMPLE RECEIVING

The temperatures of the coolers upon sample receipt were 0.6, 2.2, and 3.0°C.

CASE NARRATIVE (continued)

SAMPLE RECEIVING (continued)

See TestAmerica's Cooler Receipt Form for additional information.

GC/MS VOLATILES

The sample(s) that contained concentrations of target analyte(s) at a reportable level in the associated Method Blank(s) were flagged with "B". All target analytes in the Method Blank must be below the reporting limit (RL) or the associated sample(s) must be ND with the exception of common laboratory contaminants.

The sample(s) that contain results between the MDL and the RL were flagged with "J". There is a possibility of false positive or mis-identification at these quantitation levels. In analytical methods requiring confirmation of the analyte reported, confirmation was performed only down to the standard reporting limit (SRL). The acceptance criteria for QC samples may not be met at these quantitation levels.

2-Chloroethyl vinyl ether cannot be reliably recovered in an acid preserved sample.

GC/MS SEMIVOLATILES

The analytical results met the requirements of the laboratory's QA/QC program.

METALS

The sample(s) that contain results between the MDL and the RL were flagged with "B". There is the possibility of false positive or mis-identification at these quantitation levels. The acceptance criteria for the ICB, CCB, and Method Blank are +/- the standard reporting limit (SRL).

The matrix spike/sample duplicate(s) for sample(s) RW-01S-112707 had recoveries outside acceptance limits. However, since the associated method blank(s) and laboratory control sample(s) were in control, no corrective action was necessary.

GENERAL CHEMISTRY

The sample duplicate data for batch(es) 7333064 is not included in this report for pH. The batch QC samples, which document the effect of a specific sample matrix on method performance, were not associated with a sample reported in this lot. The data, therefore, has no bearing on the samples reported herein. In order to document compliance with the QC requirement for a sample duplicate per 10 environmental samples, a summary of sample/QC associations has been provided following this case narrative.

OUALITY CONTROL ELEMENTS NARRATIVE

TestAmerica North Canton (formerly STL North Canton) conducts a quality assurance/quality control (QA/QC) program designed to provide scientifically valid and legally defensible data. Toward this end, several types of quality control indicators are incorporated into the QA/QC program, which is described in detail in QA Policy, QA-003. These indicators are introduced into the sample testing process to provide a mechanism for the assessment of the analytical data.

OC BATCH

Environmental samples are taken through the testing process in groups called QUALITY CONTROL BATCHES (QC batches). A QC batch contains up to twenty environmental samples of a similar matrix (water, soil) that are processed using the same reagents and standards. TestAmerica North Canton (formerly STL North Canton) requires that each environmental sample be associated with a QC batch.

Several quality control samples are included in each QC batch and are processed identically to the twenty environmental samples.

For SW846/RCRA methods, QC samples include a METHOD BLANK (MB), a LABORATORY CONTROL SAMPLE (LCS) and, where appropriate, a MATRIX SPIKE/MATRIX SPIKE DUPLICATE (MS/MSD) pair or a MATRIX SPIKE/SAMPLE DUPLICATE (MS/DU) pair. If there is insufficient sample to perform an MS/MSD or an MS/DU, then a LABORATORY CONTROL SAMPLE DUPLICATE (LCSD) is included in the QC batch.

For 600 series/CWA methods, QC samples include a METHOD BLANK (MB), a LABORATORY CONTROL SAMPLE (LCS) and, where appropriate, a MATRIX SPIKE (MS). An MS is prepared and analyzed at a 10% frequency for GC Methods and at a 5% frequency for GC/MS methods.

LABORATORY CONTROL SAMPLE

The Laboratory Control Sample is a QC sample that is created by adding known concentrations of a full or partial set of target analytes to a matrix similar to that of the environmental samples in the QC batch. Multi peak responders may not be included in the target spike list due to co-elution. The LCS analyte recovery results are used to monitor the analytical process and provide evidence that the laboratory is performing the method within acceptable guidelines. All control analytes indicated by a bold type in the LCS must meet acceptance criteria. Failure to meet the established recovery guidelines requires the repreparation and reanalysis of all samples in the QC batch. Comparison of only the failed parameters from the first batch are evaluated. The only exception to the rework requirement is that if the LCS recoveries are biased high and the associated sample is ND (non-detected) for the parameter(s) of interest, the batch is acceptable.

At times, a Laboratory Control Sample Duplicate (LCSD) is also included in the QC batch. An LCSD is a QC sample that is created and handled identically to the LCS. Analyte recovery data from the LCSD is assessed in the same way as that of the LCS. The LCSD recoveries, together with the LCS recoveries, are used to determine the reproducibility (precision) of the analytical system. Precision data are expressed as relative percent differences (RPDs). If the RPD fails for an LCS/LCSD and yet the recoveries are within acceptance criteria, the batch is still acceptable.

METHOD BLANK

The Method Blank is a QC sample consisting of all the reagents used in analyzing the environmental samples contained in the QC batch. Method Blank results are used to determine if interference or contamination in the analytical system could lead to the reporting of false positive data or elevated analyte concentrations. All target analytes must be below the reporting limits (RL) or the associated sample(s) must be ND except under the following circumstances:

• Common organic contaminants may be present at concentrations up to 5 times the reporting limits. Common metals contaminants may be present at concentrations up to 2 times the reporting limit, or the reported blank concentration must be twenty fold less than the concentration reported in the associated environmental samples. (See common laboratory contaminants listed in the table.)

Volatile (GC or GC/MS)	Semivolatile (GC/MS)	Metals ICP-MS	Metals ICP Trace
Methylene Chloride,	Phthalate Esters	Copper, Iron, Zinc,	Copper, Iron, Zinc, Lead
Acetone, 2-Butanone	· ·	Lead, Calcium,	
		Magnesium, Potassium,	
		Sodium, Barium,	
		Chromium, Manganese	

QUALITY CONTROL ELEMENTS NARRATIVE (continued)

- Organic blanks will be accepted if compounds detected in the blank are present in the associated samples at levels 10 times the blank level. Inorganic blanks will be accepted if elements detected in the blank are present in the associated samples at 20 times the blank level.
- Blanks will be accepted if the compounds/elements detected are not present in any of the associated environmental samples.

Failure to meet these Method Blank criteria requires the repreparation and reanalysis of all samples in the QC batch.

MATRIX SPIKE/MATRIX SPIKE DUPLICATE

A Matrix Spike and a Matrix Spike Duplicate are a pair of environmental samples to which known concentrations of a full or partial set of target analytes are added. The MS/MSD results are determined in the same manner as the results of the environmental sample used to prepare the MS/MSD. The analyte recoveries and the relative percent differences (RPDs) of the recoveries are calculated and used to evaluate the effect of the sample matrix on the analytical results. Due to the potential variability of the matrix of each sample, the MS/MSD results may not have an immediate bearing on any samples except the one spiked; therefore, the associated batch MS/MSD may not reflect the same compounds as the samples contained in the analytical report. When these MS/MSD results fail to meet acceptance criteria, the data is evaluated. If the LCS is within acceptance criteria, the batch is considered acceptable.

For certain methods, a Matrix Spike/Sample Duplicate (MS/DU) may be included in the QC batch in place of the MS/MSD. For the parameters (i.e. pH, ignitability) where it is not possible to prepare a spiked sample, a Sample Duplicate may be included in the QC batch. However, a Sample Duplicate is less likely to provide usable precision statistics depending on the likelihood of finding concentrations below the standard reporting limit. When the Sample Duplicate result fails to meet acceptance criteria, the data is evaluated.

For certain methods (600 series methods/CWA), a Matrix Spike is required in place of a Matrix Spike/Matrix Spike Duplicate (MS/MSD) or Matrix Spike/Sample Duplicate (MS/DU).

The acceptance criteria do not apply to samples that are diluted.

SURROGATE COMPOUNDS

In addition to these batch-related QC indicators, each organic environmental and QC sample is spiked with surrogate compounds. Surrogates are organic chemicals that behave similarly to the analytes of interest and that are rarely present in the environment. Surrogate recoveries are used to monitor the individual performance of a sample in the analytical system.

If surrogate recoveries are biased high in the LCS, LCSD, or the Method Blank, and the associated sample(s) are ND, the batch is acceptable. Otherwise, if the LCS, LCSD, or Method Blank surrogate(s) fail to meet recovery criteria, the entire sample batch is reprepared and reanalyzed. If the surrogate recoveries are outside criteria for environmental samples, the samples will be reprepared and reanalyzed unless there is objective evidence of matrix interference or if the sample dilution is greater than the threshold outlined in the associated method SOP.

The acceptance criteria do not apply to samples that are diluted. All other surrogate recoveries will be reported.

For the GC/MS BNA methods, the surrogate criterion is that two of the three surrogates for each fraction must meet acceptance criteria. The third surrogate must have a recovery of ten percent or greater.

For the Pesticide and PCB methods, the surrogate criterion is that one of two surrogate compounds must meet acceptance criteria. The second surrogate must have a recovery of 10% or greater.

TestAmerica North Canton (formerly STL North Canton) Certifications and Approvals:

California (#01144CA), Connecticut (#PH-0590), Florida (#E87225),

Illinois (#200004), Kansas (#E10336), Minnesota (#39-999-348), New Jersey (#OH001), New York (#10975), OhioVAP (#CL0024), West Virginia (#210), Wisconsin (#999518190), NAVY, ARMY, USDA Soil Permit,

N:\QAQC\Customer Service\Narrative - Combined RCRA CWA 061807.doc

ANALYTICAL METHODS SUMMARY

7K28188

PARAMETER	ANALYTICAL METHOD
pH Aqueous	SW846 9040B
ICP-MS (6020)	SW846 6020
Mercury in Liquid Waste (Manual Cold-Vapor)	SW846 7470A
Semivolatile Organic Compounds by GC/MS	SW846 8270C
Volatile Organics by GC/MS	SW846 8260B

References:

SW846

"Test Methods for Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 and its updates.

SAMPLE SUMMARY

7K28188 : A7K280188

<u>WO # </u> <u>S</u>	SAMPLE#	CLIENT SAMPLE ID	 SAMPLED DATE	SAMP TIME
KC0W2 KC0XE	001 002	RW-01S-112707 TB-112707	11/27/07 11/27/07	14:10

NOTE(S):

- The analytical results of the samples listed above are presented on the following pages.
- All calculations are performed before rounding to avoid round-off errors in calculated results.
- Results noted as "ND" were not detected at or above the stated limit.
- This report must not be reproduced, except in full, without the written approval of the laboratory.
- Results for the following parameters are never reported on a dry weight basis: color, corrosivity, density, flashpoint, ignitability, layers, odor, paint filter test, pH, porosity pressure, reactivity, redox potential, specific gravity, spot tests, solids, solubility, temperature, viscosity, and weight.

(Continued on next page)

SAMPLE SUMMARY

7K28188 : A7K300135

WO # SAMPLE	CLIENT SAMPLE ID	SAMPLED DATE	SAMP TIME
KC6WJ 001	RW-01S-112807	11/28/07	
KC6W1 002	TB-112807	11/28/07	

NOTE(S):

- The analytical results of the samples listed above are presented on the following pages.
- All calculations are performed before rounding to avoid round-off errors in calculated results.
- Results noted as "ND" were not detected at or above the stated limit.
- This report must not be reproduced, except in full, without the written approval of the laboratory.
- Results for the following parameters are never reported on a dry weight basis: color, corrosivity, density, flashpoint, ignitability, layers, odor, paint filter test, pH, porosity pressure, reactivity, redox potential, specific gravity, spot tests, solids, solubility, temperature, viscosity, and weight.

(Continued on next page)

SAMPLE SUMMARY

7K28188 : A7L010216

WO # S	AMPLE#	CLIENT SAMPLE ID	 SAMPLED DATE	SAMP TIME
KC97L KC97M	001 002	RW-01S-113007 TB-113007	11/30/07 11/30/07	11:00

NOTE(S):

- The analytical results of the samples listed above are presented on the following pages.
- All calculations are performed before rounding to avoid round-off errors in calculated results.
- Results noted as "ND" were not detected at or above the stated limit.
- This report must not be reproduced, except in full, without the written approval of the laboratory.
- Results for the following parameters are never reported on a dry weight basis: color, corrosivity, density, flashpoint, ignitability, layers, odor, paint filter test, pH, porosity pressure, reactivity, redox potential, specific gravity, spot tests, solids, solubility, temperature, viscosity, and weight.

Chain of Custody Record

STL-4124 (0901) Client Chain of Custody Number 322429 Page Analysis (Attach list if more space is needed) Special Instructions/ Conditions of Receipt Containers & Matrix Preservatives Sample I.D. No. and Description Date Time (Containers for each sample may be combined on one line) Possible Hazard Identification Sample Disposal (A fee may be assessed if samples are retained Non-Hazard ☐ Flammable ☐ Skin Irritant ☐ Poison B Disposal By Lab Archive For ☐ Unknown ☐ Return To Client Months longer than 1 month) Turn Around Time Required QC Requirements (Specify) 24 Hours 48 Hours 7 Days 14 Days 21 Days Other_ 1. Received By 1750 2: Received By 3. Relinguished By Date Comments DISTRIBUTION: WHITE - Returned to Client with Report: CANARY - Stays with the Sample; PINK - Field Copy

Chain of Custody Record

Severn Trent Laboratories, Inc.

STL-4124 (0901)		· · · · · · · · · · · · · · · · · · ·	•		
Client Tetra Tech	Project	Mike Mar	ATIU .	Date 11/2	2807 Chain of Custody Number 322963
20251 Century Blyd, #2	DO Teleph	none Number (Area Code 301-528)/Fax Number 3022	Lab Numbe	Page 1 of 1
GREMANOWH HD 208:	74 Ra	d Kolbera	Lab Contact	Analysis (Attact more space is n	h list if eeded)
Project Name and Location (State) MSA - Pumo Test &1	Carrier	r/Waybill Number		1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Special Instructions/
Contract/Purchase Order/Quote No.		Matrix	Containers & Preservatives	श्रुव ब्रह्म	Conditions of Receipt
Sample I.D. No. and Description (Containers for each sample may be combined on one line)	Date Time	Alf Aqueous Sed. Soil	Unpress. H2SO4 HNO3 HCI NaOH ZnAc/ NaOH	1 # # B B B B	
RW-015-112807 11	28/47/2300		X	3	Martin Stat
		X		1	AIRPORT
		$ \alpha $		1 1	Pump Test 1
			X	1 1 1	0 RW-91S
V	\ \V		X	1 1	
TB-112867	V 0000	X		2	136hts GW
					Sampling
	•				
Possible Hazard Identification Non-Hazard Flammable Skin Irritant Points	son B Unknowi	Sample Disposal Return To Client	Disposal By Lab	Archive For Months	(A fee may be assessed if samples are retained longer than 1 month)
Turn Around Time Required	21 Days Dot		QC Requirements (Specify	1)	
1. Relinfulished By	Date 1	Time	1. Received By	You A	Date Time V.OS
2. Relinguistied By	Date	29/07 163	2. Received By	Mg ~	Date 11/30/17 9:50
3. Relinquished By	Date	Time	3. Received By	J	Date Time
Comments					
DISTRIBUTION: WHITE - Returned to Client with Report; CANAR	RY - Stays with the Sam	nple; PINK - Field Copy			

Chain of Custody Record

STL-4124 (0901)			<u> </u>							•	•			4	
Teth Tech	Project Ma	nager R Ma	Hi	n						Date 11/2	30/4	74		Chain of Custody Number 32296	1
20251 Century Blvd, \$200	301		} -	30.	22					Lab N	umber	-		Page 1 of	1
Germantown 100 20074	Site Conta	Kolbero	Lab	Contac	t			1 1/4	A:	nalysis (/ pre space	Attach li is need	ist if ded)	1 1		
MSA NUMP TEST A 1	Carrier/Wa	ıybill Number _	X					17						Special Instru	ıctions/
Contract/Purchase Order/Qubte No.		Matrix	y .	Coi Pre	ntaine serva	ers & tives			夏 交					Conditions of	Receipt
Sample I.D. No. and Description (Containers for each sample may be combined on one line) Date	Time ই	Aqueous Sed. Soil	Unpres	HZSO4 HNO3	HCI	NaOH ZnAc/ NaOH	1/2	10	Ksol 14-1-	pt					
RW-018-113007 11/30/07	1100	X			X					·				Martin St	ate
	++-	λ		X					+			\sqcup	- -	Airport	- (
	-		X	X					-		-	╁		@RW-b	T 1
			X						_					W KW - W	<u></u>
TB-113007 V	0000	$X \sqcup$			X									172 hrs ar	
					-	_			-			-	- -	1 SAMplin	9
					+	-		+	-			\vdash	+		
					T			$\dagger \dagger$			_				
Possible Hazard Identification		Sample Disposal													ton
•		Return To Cli	ent [Dispe			☐ Arc	hive For	·	Monti	(A fe hs long	ee may ger than	be asse	essed if samples are retaine h)	Cant
24 Hours	Other_					ents (Spe	1			1		· · · · · · · · · · · · · · · · · · ·	<u> </u>		th
1. Relinquisted by Cla LUNU	1130	77 Time		1. Rece	eived B		[A	4	en	of	THI	YN		Date Time	0308
2. Relinquished By	Date	Time	10	2. Rece	ived B	y 7								Date Time	- Ca
3. Relinquished By	Date	Time		3. Песе	ived B	у								Date Time	estAmerica
Comments	·		4	· · ·										<u> </u>	stAr
DISTRIBUTION: WHITE - Returned to Client with Report: CANARY - Stays with	h the Sample;	PINK - Field Cop	Ż.					··		•					——————————————————————————————————————

TestAmerica Cooler Receipt Form/Narrative Lot !	Number: 71/4-010216					
North Canton Facility , , , , , , , , , , , , , , , , , , ,	77083					
Client TETRA TECH Project MSA 10MV 1831	Quote # 7400					
Cooler Received on IDEC 200 Opened on IDEC 200	By By					
FedEx Client Drop Off UPS DHL FAS TestAmerica Co	ourier (Signature)					
Stetson US Cargo Other						
TestAmerica Cooler # Foam Box ☐ Client Cool. 1. Were custody seals on the outside of the cooler? Yes ■ No ☐ In						
If YES, Quantity 100	ntact? Yes 🚾 No 📙 NA 📙					
Were custody seals on the outside of cooler signed and dated?	res 🖴 No 🖂 NA 🖂					
	es No 📮					
If YES, are there any exceptions						
	es A No 🗆					
A Did you sign the gustody manner in the appropriate place?	Relinquished by client? Yes No					
 4. Did you sign the custody papers in the appropriate place? 5. Packing material used: Bubble Wrap	other PLASTIC AR LOSSE ICE					
6. Cooler temperature upon receipt <u>7.7</u> °C (see back of form for multiple	coolers/temps)					
METHOD: IR Other						
COOLANT: Wet Ice Blue Ice Dry Ice Water	None					
7. Did all bottles arrive in good condition (Unbroken)?	Yes S No					
8. Could all bottle labels and/or tags be reconciled with the COC?9. Were samples at the correct pH upon receipt?	Yes ➡ No □ Yes ➡ No □ NA □					
10. Were correct bottles used for the tests indicated?	Yes S No 🗌					
11. Were air bubbles >6 mm in any VOA vials?	Yes No NA NA					
12. Sufficient quantity received to perform indicated analyses?	Yes No 🗌					
13. Was a Trip Blank present in the cooler? Yes 🔁 No 🗌 Were VOAs or	the COC? Yes 🔼 No 🗌					
Contacted PM Date by	via Voice Mail 🗌 Verbal 🔲 Other 🗍					
Concerning 14. CHAIN OF CUSTODY						
The following discrepancies occurred:						
CAM ALET HET INDICATED FOR MALYSIT ON COC will						
CAMART HOT WOIGHTED FOUR AN	ALUSIT ON COCI-Will					
tog for tests listed on cock	Alysis on Coci-will					
tog for texts listed on cock	ALYSIS ON COC will					
tog for tests listed on cock	ALYSIS ON COC will					
tog for tests listed on cock	ALVSI ON COC will					
tog for tests listed on cock	ALYSIS ON COC.—will					
tog for tests listed on cock	ALYSIS ON COC.—will					
Tog for tests listed on Cock 15. SAMPLE CONDITION	Alysis on Coc.—will					
15. SAMPLE CONDITION Sample(s) were received after the re	ecommended holding time had expired.					
15. SAMPLE CONDITION Sample(s) were received after the residence of the sample of the	putt not X'ed.					
15. SAMPLE CONDITION Sample(s) were received after the result in the sample of the sa	ecommended holding time had expired were received in a broken container.					
15. SAMPLE CONDITION Sample(s) Sample(s) Were received after the residence of the sample of the sam	ecommended holding time had expired were received in a broken container.					
15. SAMPLE CONDITION Sample(s) were received after the result of Sample(s) 16. SAMPLE PRESERVATION Sample(s) were further precommended pH level(s). Nitric Acid Lot #071707-HNO3 - Sulfuric Acid Lot #	ecommended holding time had expired were received in a broken container. eserved in sample receiving to meet 092006-H2SO4: Sodium Hydroxide Lot #					
15. SAMPLE CONDITION Sample(s) Sample(s) Were received after the residence of the sample of the sam	ecommended holding time had expired were received in a broken container. eserved in sample receiving to meet 092006-H2SO4: Sodium Hydroxide Lot #					
15. SAMPLE CONDITION Sample(s) were received after the response of the sample of the	ecommended holding time had expired were received in a broken container. eserved in sample receiving to meet 092006-H2SO4: Sodium Hydroxide Lot #					
15. SAMPLE CONDITION Sample(s) were received after the reside Sample(s) 16. SAMPLE PRESERVATION Sample(s) were further properties of the properties of th	ecommended holding time had expired were received in a broken container. eserved in sample receiving to meet 092006-H2SO4; Sodium Hydroxide Lot # Acetate Lot # 050205-CH3COO2ZN/NaOH					
15. SAMPLE CONDITION Sample(s) were received after the reside Sample(s) 16. SAMPLE PRESERVATION Sample(s) were further properties of the properties of th	ecommended holding time had expired were received in a broken container. eserved in sample receiving to meet 092006-H2SO4; Sodium Hydroxide Lot # Acetate Lot # 050205-CH3COO2ZN/NaOH bubble > 6 mm in diameter (Notify PM)					
15. SAMPLE CONDITION Sample(s) were received after the reside Sample(s) 16. SAMPLE PRESERVATION Sample(s) were further properties of the properties of th	ecommended holding time had expired were received in a broken container. eserved in sample receiving to meet 092006-H2SO4; Sodium Hydroxide Lot # Acetate Lot # 050205-CH3COO2ZN/NaOH pubble > 6 mm in diameter (Notify PM) Date Initials					
15. SAMPLE CONDITION Sample(s) were received after the reside Sample(s) 16. SAMPLE PRESERVATION Sample(s) were further properties of the properties of th	ecommended holding time had expired were received in a broken container. eserved in sample receiving to meet 092006-H2SO4; Sodium Hydroxide Lot # Acetate Lot # 050205-CH3COO2ZN/NaOH pubble > 6 mm in diameter (Notify PM) Date Initials					
15. SAMPLE CONDITION Sample(s) were received after the reside Sample(s) 16. SAMPLE PRESERVATION Sample(s) were further properties of the properties of th	ecommended holding time had expired were received in a broken container. eserved in sample receiving to meet 092006-H2SO4; Sodium Hydroxide Lot # Acetate Lot # 050205-CH3COO2ZN/NaOH pubble > 6 mm in diameter (Notify PM) Date Initials					
15. SAMPLE CONDITION Sample(s) were received after the reside Sample(s) 16. SAMPLE PRESERVATION Sample(s) were further properties of the properties of th	ecommended holding time had expired were received in a broken container. eserved in sample receiving to meet 092006-H2SO4; Sodium Hydroxide Lot # Acetate Lot # 050205-CH3COO2ZN/NaOH pubble > 6 mm in diameter (Notify PM) Date Initials					
15. SAMPLE CONDITION Sample(s) were received after the reside Sample(s) 16. SAMPLE PRESERVATION Sample(s) were further properties of the properties of th	ecommended holding time had expired were received in a broken container. eserved in sample receiving to meet 092006-H2SO4; Sodium Hydroxide Lot # Acetate Lot # 050205-CH3COO2ZN/NaOH pubble > 6 mm in diameter (Notify PM) Date Initials					
15. SAMPLE CONDITION Sample(s) were received after the reside Sample(s) 16. SAMPLE PRESERVATION Sample(s) were further properties of the properties of th	ecommended holding time had expired were received in a broken container. eserved in sample receiving to meet 092006-H2SO4; Sodium Hydroxide Lot # Acetate Lot # 050205-CH3COO2ZN/NaOH pubble > 6 mm in diameter (Notify PM) Date Initials					

SW846 8260B SURROGATE RECOVERY

Lab Name: TestAmerica Laboratories, Inc.

Client: Tetra Tech NUS, Inc

Lab Code: TALCAN

SDG No: 7K28188

Lot #: A7K280188

Extraction: XXI25QK01

	CLIENT ID.	SRG01	SRG02	SRG03	SRG04	TOT OUT
		======	======	======	======	======
01	RW-01S-112707	92	79	84	95	00
02	TB-112707	91 .	79	83	98	00
03	INTRA-LAB QC	95	80	82	98	00
04	METHOD BLK. KDF231AA	92	80	83	95	00
05	LCS KDF231AC	93	82	88	105	00
06	LAB MS/MSD D	91	78	.88	101	00
07	LCSD KDF231AD	94	77	88	105	00
80	LAB MS/MSD S	90	81	88	102	00

SURROGE	ATES	QC LIMITS
SRG01	= Dibromofluoromethane	(73-122)
SRG02	= 1,2-Dichloroethane-d4	(61-128)
SRG03	= Toluene-d8	(76-110)
SRG04	= 4-Bromofluorobenzene	(74-116)

FORM II

[#] Column to be used to flag recovery values

^{*} Values outside of required QC Limits

D System monitoring Compound diluted out

SW846 8260B SURROGATE RECOVERY

Lab Name: TestAmerica Laboratories, Inc.

Client: Tetra Tech NUS, Inc

Lab Code: TALCAN

SDG No: 7K28188

Lot #: A7K300135

Extraction: XXI25QK01

-	CLIENT ID.	SRG01	SRG02	SRG03	SRG04	TOT OUT
	CHIBNI 1D.	 =		======	======	101 001 =====
		!				!
01	INTRA-LAB QC	95	80	_82	98	_00
02	RW-01S-112807	92	80	_83	_96	00
03	TB-112807	94	79	82	_99	00
04	METHOD BLK. KDF231AA	92	80	83	95	00
05	LCS KDF231AC	93	82	_88	105	00
06	LAB MS/MSD D	91	78	_88	101	00
07	LCSD KDF231AD	94	77	88	1.05	00
08	LAB MS/MSD S	90	81	88	102	00

SURROGA	TES		<u>Q</u> (LIMITS
SRG01	=	Dibromofluoromethane	(73-122)
SRG02	=	1,2-Dichloroethane-d4	(61-128)
SRG03	=	Toluene-d8	. (76-110)
SRG04	=	4-Bromofluorobenzene	(74-116)

- # Column to be used to flag recovery values
- * Values outside of required QC Limits
- D System monitoring Compound diluted out

FORM II

LABORATORY CONTROL SAMPLE DATA REPORT

GC/MS Volatiles

Client Lot #...: 7K28188 Work Order #...: KDF231AC-LCS Matrix...... WATER

LCS Lot-Sample#: A7L050000-112 KDF231AD-LCSD

Prep Date....: 12/04/07 Analysis Date..: 12/04/07

Prep Batch #...: 7339112

Dilution Factor: 1 Final Wgt/Vol..: 5 mL

Initial Wgt/Vol: 5 mL

PARAMETER	SPIKE AMOUNT	MEASURED AMOUNT	UNITS	PERCENT RECOVERY	RPD	METHOD
Benzene	10	8.9	ug/L	89		SW846 8260B
	10	8.9	ug/L	89	0.060	SW846 8260B
Chlorobenzene	10	9.4	ug/L	94		SW846 8260B
	10	9.3	ug/L	93	1.6	SW846 8260B
1,1-Dichloroethene	. 10	8.8	ug/L	88		SW846 8260B
	10	8.8	ug/L	88	0.45	SW846 8260B
Toluene	10	8.9	ug/L	89		SW846 8260B
	10	8.9	ug/L	89	0.30	SW846 8260B
Trichloroethene	10	9.6	ug/L	96		SW846 8260B
	10	9.9	ug/L	99	3.0	SW846 8260B
			PERCENT	RECOVERY		
SURROGATE			RECOVERY	LIMITS		
			RECOVERY 93	LIMITS (73 - 122)	
				· · · · · · · · · · · · · · · · · · ·	•	
Dibromofluoromethane			93	(73 - 122)	
Dibromofluoromethane			93 94	(73 - 122 (73 - 122)	
SURROGATE Dibromofluoromethane 1,2-Dichloroethane-d4 Toluene-d8			93 94 82	(73 - 122 (73 - 122 (61 - 128))	
Dibromofluoromethane 1,2-Dichloroethane-d4			93 94 82 77	(73 - 122 (73 - 122 (61 - 128 (61 - 128)))	
Dibromofluoromethane 1,2-Dichloroethane-d4			93 94 82 77 88	(73 - 122 (73 - 122 (61 - 128 (61 - 128 (76 - 110))))	

NOIE (5):

Calculations are performed before rounding to avoid round-off errors in calculated results.

8A VOLATILE INTERNAL STANDARD AREA SUMMARY

Lab Name: TESTAMERICA-NORTH CANTON Contract:

Lab Code: TALCAN Case No.: SAS No.: SDG No.: 7K28188

Lab File ID (Standard): UXX8815 Date Analyzed: 12/04/07

Instrument ID: A3UX10 Time Analyzed: 0913

Matrix: (soil/water) WATER Level: (low/med) LOW Column: (pack/cap) CAP

		IS1(CBZ) AREA #	RT	IS2 (DCB) AREA #	RT	IS3 AREA #	RT
			1/1		======	711(1121 17	=====
	12 HOUR STD	1293987	8.07	953152	10.33	1592288	5.37
	UPPER LIMIT	2587974	8.57	1906304	10.83	3184576	5.87
	LOWER LIMIT	646994	7.57	476576	9.83	796144	4.87
	EPA SAMPLE NO.						=====
			=====	=======	=====	========	
01 02 03 04	KDF23-CHK KDF23-CKDUP KDF23-BLK RW-01S-11270	1357493 1369939 1326511 1288448	8.07 8.07 8.07 8.07	987903 975724 889327 859248	10.33 10.33 10.33	1636828 1649427 1617028 1586507	5.37 5.37 5.37 5.38
05 06	RW-01S-11280 RW-01S-11300	1313489 1257807	8.07 8.07	861782 852843	10.33	1630822 1555465	5.37 5.37
07 08 09	TB-112707 TB-112807 TB-113007	1286526 1244046 1273806	8.07 8.07 8.07	895575 867325 873699	10.33 10.33 10.33	1586368 1554141 1572820	5.37 5.37 5.37
10 11							
12 13							
14 15							
16 17							
18 19							
20 21							
22				l	l	l	

IS1 (CBZ) = Chlorobenzene-d5
IS2 (DCB) = 1,4-Dichlorobenzene-d4

UPPER LIMIT = +100% of internal standard area.

= Fluorobenzene LOWER LIMIT = - 50%

of internal standard area.

Column used to flag internal standard area values with an asterisk.

page 1 of 1

FORM VIII VOA

1/87 Rev.

5A VOLATILE ORGANIC GC/MS TUNING AND MASS CALIBRATION - BROMOFLUOROBENZENE (BFB)

Lab Name: TESTAMERICA-NORTH CANTON Contract:

Lab Code: TALCAN Case No.: SAS No.: SDG No.: 7K28188

Lab File ID: BFB2379 BFB Injection Date: 08/24/07

Instrument ID: A3UX10 BFB Injection Time: 1743

Matrix: (soil/water) WATER Level: (low/med) LOW Column: (pack/cap) CAP

m/e	ION ABUNDANCE CRITERIA		ELATIVE INDANCE
50 75 95 96 173 174 175 176	15.0 - 40.0% of mass 95 30.0 - 60.0% of mass 95 Base Peak, 100% relative abundance 5.0 - 9.0% of mass 95 Less than 2.0% of mass 174 50.0 - 100.0% of mass 95 5.0 - 9.0% of mass 174 Greater than 95.0%, but less than 101.0% of mass 174 5.0 - 9.0% of mass 176	16.5 46.7 100.0 6.8 0.1 88.1 6.6 86.5 5.7	(0.2)1 (7.5)1 (98.2)1 (6.6)2
	1-Value is % of mass 174 2-Value is % of mass	ss 176	<u> </u>

THIS TUNE APPLIES TO THE FOLLOWING SAMPLES, MS, MSD, BLANKS, AND STANDARDS:

page 1 of 1

FORM V VOA

1/87 Rev.

Report Date: 27-Nov-2007 12:39

STL Inc North Canton

INITIAL CALIBRATION DATA

Start Cal Date : 24-AUG-2007 18:07 : 27-NOV-2007 11:13 End Cal Date Quant Method : ISTD Origin : Disabled : 4.14 Target Version : HP RTE Integrator Method file Last Edit : 27-Nov-2007 12:38 a3ux10.i Curve Type : Average

Calibration File Names:

Level 1: \cansvr11\dd\chem\MSV\a3ux10.i\P71001A.b\UXX7040.D Level 2: \cansvr11\dd\chem\MSV\a3ux10.i\P71001A.b\UXX7039.D Level 3: \cansvr11\dd\chem\MSV\a3ux10.i\P71001A.b\UXX7038.D Level 4: \cansvr11\dd\chem\MSV\a3ux10.i\P71001A.b\UXX7037.D Level 5: \cansvr11\dd\chem\MSV\a3ux10.i\P71001A.b\UXX7036.D Level 6: \cansvr11\dd\chem\MSV\a3ux10.i\P71001A.b\UXX7035.D

	5.000	10.000	25.000	50.000	100.000	200.000		
Compound	Level 1	Level 2	Level 3	Level 4	Level 5	Level 6	RRF	% RSD
		=======	=========					
8 Dichlorodifluoromethane	0.24575	0.25361	0.24484	0.23749	0.25036	0.23518	0.24454	2.92
9 Chloromethane	0.37286	0.38694	0.35386	0.33997	0.33904	0.33510	0.35463	5.93
10 Vinyl Chloride	0.36815	0.36686	0.35228	0.34885	0.35450	0.34423	0.35581	2.72
11 Bromomethane	0.21275	0.20933	0.19805	0:18307	0.18768	0.20274	0.19894	5.93
12 Chloroethane	0.24962	0.23180	0.22887	0.22476	0.23495	0.23985	0.23497	3.75
13 Trichlorofluoromethane	0.26672	0.27704	0.27006	0.25182	0.28889	0.31323	0.27796	7.60
14 Dichlorofluoromethane	0.39658	0.46399	0.43907	0.40412	0.41293	0.40937	0.42101	6.0
15 Acrolein	0.05002	0.05052	0.05169	0.05089	0.05322	0.05532	0.05194	3.84
16 Acetone	0.14630	0.12409	0.09856	0.08931	0.08583	0.08155	0.10427	24.5
17 1,1-Dichloroethene	0.30020	0.33175	0.30945	0.32570	0.32642	0.32911	0.32044	3.9
18 Freon-113	0.22403	0.24198	0.24114	0.24214	0.24232	0.25256	0.24070	3.8
19 Iodomethane	0.48779	0.51887	0.51552	0.51770	0.52171	0.53568	0.51621	3. 0
20 Carbon Disulfide	0.90564	0.96787	0.94704	0.99945	1.01469	1.03997	0.97911	4.9
21 Methylene Chloride	0.47561	0.43909	0.36782	0.36744	0.35533	0.34918	0.39241	13.2
22 Acetonitrile	0.03856	0.03635	0.03447	0.03279	0.03323	0.03290	0.03472	6.6
23 Acrylonitrile	0.10617	0.11240	0.11253	0.10609	0.10921	0.11254	0.10982[2.8
24 Methyl tert-butyl ether	0.84113	0.89184	0.88392	0.88260	0.91891	0.92033	0.88979	3.2
25 trans-1,2-Dichloroethene	0.33566	0.35489	0.34834	0.34640	0.36088	0.35654	0.35045	2.5
26 Hexane	0.05501	0.05481	0.05747	0.06217	0.06211	0.06547	0.05951	7.3
27 Vinyl acetate	0.28256	0.29379	0.32386	0.33232	0.34288	0.36939	0.32413	9.8
28 1,1-Dichloroethane	0.49571	0.52154	0.51197	0.52001	0.52548	0.52785	0,51709	2.28
29 tert-Butyl Alcohol	0.02408	0.02519	0.02480	0.02471	0.02459	0.02252	[0.02431	او. 3
30 2-Butanone	0.14458	0.12404	0.10997	0.09746	0.09895	0.09794	0.11216	16.87
31 1,2-Dichloroethene (total)	0.32348	0.33871	0.33469	0.33209	0.34401	0.34030	0.33555	2.16
32 cis-1,2-dichloroethene	0.31130	0.32254	0.32105	0.31778	0.32715	0.32405	0.32064	1.72
33 2,2-Dichloropropane	0.26460	0.27563	0.28748	0.30785	0.31524	0.31152	0.29372	7.13
34 Bromochloromethane	0.14755	0.15881	0.15290	0.15747	0.16156	0.16004	0.15639	3.3
35 Chloroform	0.46626	0.50469	0.50526	0.49818	0.50818	0.50344	0.49767	3.16

STL Inc North Canton

INITIAL CALIBRATION DATA

Start Cal Date : 24-AUG-2007 18:07 End Cal Date : 27-NOV-2007 11:13

Quant Method : ISTD Origin : Disabled Target Version : 4.14 Integrator : HP RTE

: \\cansvr11\dd\chem\MSV\a3ux10.i\P71127A-IC.b\8260LLUX10.m : 27-Nov-2007 12:38 a3ux10.i Method file

Last Edit

Curve Type : Average

		1 10 000	1 05 000	1 50 000			. 	
Commo accord	5.000	10.000	25.000	50.000	100.000	200.000		
Compound	Level 1	Level 2	Level 3	Level 4	Level 5	Level 6	RRF	% RSD
36 Tetrahydrofuran	0.19117		•	•	•		•	•
37 1,1,1-Trichloroethane	0.37266		•		•			•
38 1,1-Dichloropropene	0.34346					•		
39 Carbon Tetrachloride	0.27405			•		•	•	•
40 1,2-Dichloroethane	0.33268		•	•	•		•	
41 Benzene	1.07102		,	1.10853				<u>'</u>
42 Trichloroethene	. 0.27804	0.31918	'	•			•	•
43 1,2-Dichloropropane	0.23112	0.25761	•			•	•	
44 1,4-Dioxane	0.00269							•
45 Dibromomethane	0.15545							
46 Bromodichloromethane	0.13545							
47 2-Chloroethyl vinyl ethe								
48 cis-1,3-Dichloropropene	0.28022							
49 4-Methyl-2-pentanone	0.18281							
50 Toluene	1.21065		•					
51 trans-1.3-Dichloroproper			•					•
52 Ethyl Methacrylate	0.26450	0.29178						
53 1.1.2-Trichloroethane	0.26684					•		
54 1,3-Dichloropropane	0.2884			'				
55 Tetrachloroethene	0.43891	0.47620						
56 2-Hexanone	0.29294							
57 Dibromochloromethane	0.14948							
58 1,2-Dibromoethane	0.25176							
59 Chlorobenzene	1.00653	1.03142					**-:	'
60 1,1,1,2-Tetrachloroethar		0.29378						
61 Ethylbenzene	0.47758	0.49980						
62 m + p-Xylene	0.59434	0.66943					0.52378	
63 Xylenes (total)	0.59434	0.65248	0.65109					
64 Xylene-o	0.55832	0.61857	0.62667		0.66762			
65 Styrene	0.94058	1.05116						
66 Bromoform	0.14711			•				
67 Isopropylbenzene	1.31606		1.46267		!			6.89
68 1,1,2,2-Tetrachloroethan	• •	0.69573		•				
69 1,4-Dichloro-2-butene	0.05759	0.07550	•	•	0.11978	•		30.113
70 1,2,3-Trichloropropane	0.09759	0.20595		0.03862	0.21654		0.03681	2.275
71 Bromobenzene	0.20952	0.20595	0.20614	0.21443	0.84069	0.86804		2.498
/1 DIGNODEHZEHE	1 0.00081	0.82012	0.83149	0.823001	0.04009	0.00004	0.83258	2.498
		l				l		

Report Date : 27-Nov-2007 12:39

STL Inc North Canton

INITIAL CALIBRATION DATA

Start Cal Date : 24-AUG-2007 18:07 End Cal Date : 27-NOV-2007 11:13

: ISTD Quant Method Origin : Disabled Target Version : 4.14 : HP RTE Integrator

: \\cansvr11\dd\chem\MSV\a3ux10.i\P71127A-IC.b\8260LLUX10.m : 27-Nov-2007 12:38 a3ux10.i Method file

Last Edit

Curve Type : Average

Compound	Level 1	Level 2	Level 3	50.000 Level 4	100.000 Level 5	200.000 Level 6	RRF	% RSD
	mesesses					meser o		
72 n-Propylbenzene	0.78403		1		0.93676	•		
73 2-Chlorotoluene	0.74983	0.76797	0.77166	0.77454	0.78499	0.80714	0.77602	2.459
74 1,3,5-Trimethylbenzene	2.06968	2.32499	2.47880	2.50066	2.55647	2.68627	2.43614	8.798
75 4-Chlorotoluene	0.72850	0.81136	0.81171	0.80020	0.80721	0.83074	0.79829	4.46
76 tert-Butylbenzene	2.10970	2.12194	2.13852	2.19360	2.27201	2.33214	2.19465	4.10
77 1,2,4-Trimethylbenzene	2.16479	2.47313	2.52899	2.56139	2.62859	2.72421	2.51352	7.62
78 sec-Butylbenzene	2.59297	3.03741	3.03542	3.08944	3.19200	3.28035	3.03793	7.83
79 4-Isopropyltoluene	2.23409	2.49003	2.57922	2.68547	2.74154	2.83796	2.59472	8.27
80 1,3-Dichlorobenzene	1.49303	1.56896	1.52030	1.51748	1.54280	1.57631	1.53648	2.09
81 1,4-Dichlorobenzene	1.63215	1.59297	1.57622	1.55462	1.57790	1.62633	1.59337	1.90
82 n-Butylbenzene	1.81524	2.03269	2.12107	2.24462	2.30987	2.37725	2,15012	9.59
83 1,2-Dichlorobenzene	1.48681	1.49379	1.47670	1.44020	1.46624	1.48517	1.47482	1.31
84 1,2-Dibromo-3-chloropropane	0.10342	0.11195	0.11786	0.11909	0.12398	0.12355	0.11664	6.70
85 1,2,4-Trichlorobenzene	0.91052	0.92921	0.90665	0.90221	0.88838	0.84867	0.89761	3.05
86 Hexachlorobutadiene	0.40033	0.39991	0.35984	0.35979	0.35277	0.33495	0.36793	7.21
87 Naphthalene	1.73786	1.95219	2.02555	2.06586	2.02171	1.79200	1.93253	7.035
88 1,2,3-Trichlorobenzene	0.86295	0.87050	0.84590	0.80491	0.75242	0.67207	0.80146	9.613
89 Ethyl Ether	0.19934	0.21448	0.21027	0.19876	0.20808	0.20503	0.20599	3.009
90 Ethanol	+++++	+++++	+++++	++++	+++++	+++++	++++	++++
91 3-Chloropropene	0.14183	0.15727	0.15525	0.14717	0.15190	0.14848	0.15032	3.768
92 Isopropyl Ether	0.21867	0.23523	0.23348	0.22721	0.23331	0.22917	0.22951	2.65
93 2-Chloro-1,3-butadiene	0.33114	0.35533	0.36114	0.33994	0.34957	0.33912	0.34604	3.254
94 Propionitrile	0.02384	0.02401	0.02605	0.02456	0.02789	0.02731	0.02561	6.78 0
95 Ethyl Acetate	0.17352	0.15095	0.15184	0.15041	0.15613	0.16057	0.15724	5.636
96 Methacrylonitrile	0.15756	0.11423	0.12688	0.11046	0.11926	0.12023	0.12477	13.634
97 Isobutanol	0.00886]	0.00780	0.00662	0.00647	0.00758	0.00719	-0.00742	> 11.807
98 Cyclohexane	0.48663	0.52935	0.53046	0.56144	0.56941	0.57498	0.54205	6.161
99 n-Butanol	0.00735	0.00641	0.00614	0.00544	0.00622	0.00571	0.00621	10.656
00 Methyl Methacrylate	0.18089	0.14946	0.14397	0.14146	0.14784	0.14564	0.15154	9.668
01 2-Nitropropane	0.04626	0.04303	0.04025	0.03988	0.04207	0.04272	0.04237	5.430
02 Chloropicrin	+++++	+++++	+++++	+++++	+++++	++++	++++	++++
03 Cyclohexanone	0.01698	0.01444	0.01395	0.01245	0.01401	0.01349	0.01422	10.652
04 Pentachloroethane	+++++	+++++	+++++	+++++	+++++	+++++	+++++	+++++
05 Benzyl Chloride	+++++	+++++	+++++	+++++	+++++	+++++]	+++++	+++++
34 Thiophene	+++++ [+++++	+++++	+++++	+++++	+++++	+++++	+++++
35 Crotononitrile(1st Isomer)	+++++	+++++	+++++	+++++	+++++	+++++	+++++	+++++

Report Date : 27-Nov-2007 12:39

STL Inc North Canton

INITIAL CALIBRATION DATA

Start Cal Date : 24-AUG-2007 18:07 End Cal Date : 27-NOV-2007 11:13

Quant Method : ISTD : Disabled Origin Target Version : 4.14 Integrator : HP RTE

: \\cansvr11\dd\chem\MSV\a3ux10.i\P71127A-IC.b\8260LLUX10.m : 27-Nov-2007 12:38 a3ux10.i Method file

Last Edit

Curve Type : Average

		5.000	10.000	25.000	50.000	100.000	200.000	1		ı
i	Compound	Level 1	Level 2	Level 3	Level 4	Level 5	Level 6	RRF	% RSD	i
										i
1	36 Crotononitrile (2nd Isomer)	+++++	+++++	+++++	+++++	++++	+++++	+++++	+++++	<-
M 1	.37 Total Crotononitrile	+++++	+++++	+++++	++++	+++++	+++++	+++++	+++++	<-
1	38 Paraldehyde	++++	+++++	+++++	++++	++++	+++++	+++++	+++++	<-
1	39 3,3,5-Trimethylcyclohexanone	++++	+++++	+++++	+++++	+++++	++++	++++	+++++	<-
1	40 1-Chlorohexane	0.37395	0.35068	0.34673	0.36307	0.39816	0.39419	0.37113	5.841	
1	41 1,3,5-Trichlorobenzene	1.05114	1.09289	1.04918	1.04579	1.03480	1.03259	1.05107	2.079	
1	43 Methyl Acetate	0.23100	0.22055	0.21679	0.20598	0.21256	0.21848	0.21756	3.847	
1	44 Methylcyclohexane	0.48180	0.49450	0.52848	0.56132	0.56646	0.56612	0.53311	7.089	
1	45 Dimethoxymethane	0.22576	0.20895	0.21122	0.20176	0.20151	0.20889	0.20968	4.220	
1	46 2-Methylnaphthalene	1.09935	1.11825	1.11010	1.12578	1.17773	1.12435	1.12593	2.417	1 .
1	47 Tetrahydrothiophene	+++++	+++++	+++++	+++++	+++++	++++	+++++	+++++	<-
1	48 1,4-Dichlorobutane	++++	+++++	+++++	+++++	+++++	+++++	+++++	+++++	<-
1	49 Vinyl Acetate-86	0.02887	0.03413	0.03782	0.03614	0.03791	0.04081	0.03595	11.426	
1	50 1,3-Butadiene	+++++	++++	+++++	+++++	++++	+++++	+++++	+++++	<-
1	51 Ethyl Acrylate	+++++	+++++	+++++	+++++	++++	+++++	++++	+++++	<-
1	52 n-Heptane	0.27692	0.25385	0.26154	0.26213	0.29744	0.28396	0.27264	6.024	1
1	53 t-Butyl ethyl ether	0.72418	0.70330	0.72316	0.72510	0.79110	0.82383	0.74844	6.356	l
] 1	54 t-Amyl methyl ether	0.56638	0.57491	0.57732	0.58836	0.64432	0.66701	0.60305	6.960	1
1	55 1,2,3-Trimethylbenzene	2.42489	2.55415	2.64856	2.70152	2.95105	3.01801	2.71636	8.430	
		******			******			******		
\$	4 Dibromofluoromethane	0.25779	0.25823	0.25685	0.25860	0.26210	0.26486	0.25974	1.186	
\$	5 1,2-Dichloroethane-d4	0.29690	0.28437	0.27044	0.29783	0.28848	0.28889	0.28782	3.468	1
\$	6 Toluene-d8	0.98102	1.04226	1.07111	1.08634	1.13950	1.22175	1.09033	7.600]
\$	7 Bromofluorobenzene	0.41283	0.42554	0.43143	0.43485	0.43382	0.44797	0.43108	2.688	}
1		i	ı		. 1	. 1				1

5A VOLATILE ORGANIC GC/MS TUNING AND MASS CALIBRATION - BROMOFLUOROBENZENE (BFB)

Lab Name: TESTAMERICA-NORTH CANTON Contract:

Lab Code: TALCAN Case No.:

SAS No.:

SDG No.: 7K28188

Lab File ID: BFB2473

BFB Injection Date: 12/04/07

Instrument ID: A3UX10

BFB Injection Time: 0849

Matrix: (soil/water) WATER Level: (low/med) LOW Column: (pack/cap) CAP

m/e	ION ABUNDANCE CRITERIA	% RELATIVE ABUNDANCE
50 75 95 96 173 174 175 176	15.0 - 40.0% of mass 95 30.0 - 60.0% of mass 95 Base Peak, 100% relative abundance 5.0 - 9.0% of mass 95 Less than 2.0% of mass 174 50.0 - 100.0% of mass 95 5.0 - 9.0% of mass 174 Greater than 95.0%, but less than 101.0% of mass 174 5.0 - 9.0% of mass 176	16.9 47.0 100.0 6.5 0.4 (0.4)1 98.9 7.4 (7.5)1 98.0 (99.2)1 6.8 (6.9)2
l <u></u> l	1-Value is % of mass 174 2-Value is % of mass	II

THIS TUNE APPLIES TO THE FOLLOWING SAMPLES, MS, MSD, BLANKS, AND STANDARDS:

	EPA	LiAB	LAB	DATE	TIME
	SAMPLE NO.	SAMPLE ID	FILE ID	ANALYZED	ANALYZED
	========		=========	========	=======
01	VSTD010	50NG-CC	UXX8815	12/04/07	0913
02	VSTD010	50NG-CC	UXX8816	12/04/07	0939
03	KDF23-CHK	KDF231AC	UXX8818	12/04/07	1023
04	KDF23-CKDUP	KDF231AD	UXX8819	12/04/07	1046
05	KDF23-BLK	KDF231AA	UXX8820	12/04/07	1108
	RW-01S-11270	KC0W21CD	UXX8823	12/04/07	1215
07	RW-01S-11280	KC6WJ1CF	UXX8827	12/04/07	1344
80			UXX8828	12/04/07	1406
09	TB-112707	KC0XE1AA	UXX8833	12/04/07	1556
10	TB-112807	KC6W11AA	UXX8834	12/04/07	1618
11	TB-113007	KC97M1AA	UXX8835	12/04/07	1640
12					
13					
14					
15					
16					
17					
18		·			
19		! ·	<u></u>		
20				·	
21					
22			l		

page 1 of 1

FORM V VOA

1/87 Rev.

Data File: \\cansvr11\dd\chem\MSV\a3ux10.i\P71204A.b\UXX8815.D

Report Date: 04-Dec-2007 10:12

STL Inc North Canton

CONTINUING CALIBRATION COMPOUNDS

Instrument ID: a3ux10.i

Injection Date: 04-DEC-2007 09:13
Init. Cal. Date(s): 24-AUG-2007 27-NOV-2007 Lab File ID: UXX8815.D

Analysis Type: WATER Init. Cal. Times: 18:07 11
Lab Sample ID: 50NG-CC Quant Type: ISTD
Method: \\cansvr11\\dd\\chem\\MSV\\a3ux10.i\\P71204A.b\\8260LLUX10.m 11:13

	1	1	CCAL	MIN	ţ		ĺ	MAX	
COMPOUND.	RRF / AMOUNT	RF50							CURVE TYP
4 Dibromofluoromethane	== ===================================	0.243221	0.24322		•	6.36040		50.00000	
5 1,2-Dichloroethane-d4	0.28782	0.22410	0.22410		•				-
6 Toluene-d8	1.09033					22.13903		50.00000	-
7 Bromofluorobenzene	0.43108	0.96456	0.96456			11.53526		50.000001	_
Dichlorodifluoromethane	0.24454	0.45171	0.45171			-4.78599		50.000001	,
Chloromethane	0.24454		0.255801			-4.60652		50.000001	•
0 Vinyl Chloride		0.286651	0.28665			19.16769		50.000001	-
1 Bromomethane	0.35581	0.32325	0.32325			9.15143		20.00000	_
	0.19894	0.20823	0.20823			-4.66894		50.000001	-
2 Chloroethane	0.23497	0.20913	0.20913			10.99833		50.000001	-
3 Trichlorofluoromethane	0.277961	0.37767	JA 0.377671		_	35.87185		50.000001	•
5 Acrolein	0.05194	0.03073						50.000001	-
6 Acetone	100	65.27681	0.06031		-				Wt Linea:
7 1,1-Dichloroethene	0.32044	0.29079[0.29079			9.25238		20.00000	-
8 Freon-113	0.24070	0.25628	0.25628	0.010		-6.47405]	50.000001	Average
9 Iodomethane	0.51621	0.52332	0.52332	0.010		-1.37595	I	50.000001	Average
O Carbon Disulfide	0.97911	0.86436	0.864361	0.010	1 :	11.72016	1	50.000001	Average
1 Methylene Chloride	0.392411	0.29885		0.010	1 3	23.84258	I	50.000001	Average
2 Acetonitrile	0.034721	0.02279	0.02279	0.010	ير ا	34.36821		50.00000	Average
3 Acrylonitrile	0.10982	0.07688	0.07688	0.010	(C	29.99847	/	50.000001	Average
4 Methyl tert-butyl ether	0.889791	0.719861	0.71986	0.010	ı ``	19 .097 99	ĺ	50.000001	Average
5 trans-1,2-Dichloroethene	0.35045	0.31518	0.31518	0.010	3	10.06526	1	50.000001	Average
6 Hexane	0.05951	0.06058	0.06058	0.010		-1.80630	ı	20.000001	Average
7 Vinyl acetate	0.32413	0.20828	0.20828	0.010	1	35.74188		50.000001	Average
8 1.1-Dichloroethane	0.51709	0.434171	0.43417	0.100	ı `_	6.03627	Ī	50.000001	Average
9 tert-Butyl Alcohol	0.02431	0.01652	0.01652	0.010	P. 17	32.05506		50.000001	Average
0 2-Butanone	1001	68.052451	0.07061	0.010	**		•	000e+0001	Wt Linear
31 1,2-Dichloroethene (total)	0.33555	0.31249	0.312491	0.010		6.87305	ı	50.000001	Average
2 cis-1,2-dichloroethene	0.32064	0.309791	0.30979			3.38407		50.000001	•
3 2,2-Dichloropropane	[0.29372]	0.29353	0.29353			0.06423		50.000001	-
4 Bromochloromethane	0.15639	0.16527	0.16527			-5.68098		50.000001	•
5 Chloroform	0.497671	0.460091	0.460091			7.55066		20.000001	-
6 Tetrahydrofuran	50.000001	28.78571	0.052291		-	-	`		Wt Linear
7 1,1,1-Trichloroethane	0.39943	0.40303	0.40303		-	0.90261		50.000001	
8 1,1-Dichloropropene	0.35935	0.32642	0.32642			9.16347		50.000001	-
9 Carbon Tetrachloride	0.31294	0.352042	0.352042			2.49714		50.000001	-
0 1,2-Dichloroethane	0.35087	0.332041	0.296631			.5.46094		50.000001	-
1 Benzene	1 1.111251	1.002591	1.002591			9.77796		50.00000; 50.000001	-
2 Trichloroethene	1 0.300371	0.307261							Average
3 1,2-Dichloropropane		•	0.30726			2.29386		50.000001	Average
	0.25113	0.20455	0.20455		-	8.55058		20.00000)	Average
4 1,4-Dioxane	0.002981	0.00195	0.00195		~	4.61592	_	50.000001	Average
5 Dibromomethane	0.15803	0.14345	0.14345			9.22068		50.000001	Average
6 Bromodichloromethane	[0.32199]	0.29314	0.29314			8.95960		50.000001	Averaged
7 2-Chloroethyl vinyl ether	0.12915	0.08824	0.088241	0.010	P	67500	· /	50.000001	Average

Data File: \\cansvr11\dd\chem\MSV\a3ux10.i\P71204A.b\UXX8815.D

Report Date: 04-Dec-2007 10:12

STL Inc North Canton

CONTINUING CALIBRATION COMPOUNDS

Instrument ID: a3ux10.i Injection Date: 04-DEC-2007 09:13
Lab File ID: UXX8815.D Init. Cal. Date(s): 24-AUG-2007 27-NOV-2007
Analysis Type: WATER Init. Cal. Times: 18:07 11:13
Lab Sample ID: 50NG-CC Quant Type: ISTD
Method: \\cansvr11\\dd\chem\\MSV\a3ux10.i\\P71204A.b\\8260LLUX10.m

1	11	1	CCAL MIN	l	MAX	1
COMPOUND	RRF / AMOUNT	RF50 [%D / %DRIFT		
48 cis-1,3-Dichloropropene	0.35190	0.29357	0.29357 0.010			
49 4-Methyl-2-pentanone	0.20817	0.135381	0.13538(0.010			_
50 Toluene	1.33216	1.246291	1.24629 0.010		4.	
51 trans-1,3-Dichloropropene	0.36342	0.30240	0.30240 0.010			
52 Ethyl Methacrylate	0.325551	0.24908	0.24908 0.010			
53 1,1,2-Trichloroethane	0.275751	0.244561	0.24456 0.010			
54 1,3-Dichloropropane	0.48188	0.39169	0.39169 0.010			•
55 Tetrachloroethene	0.30025	0.30887	0.30887 0.010			
56 2-Hexanone	0.17531	0.10871	0.10871 0.010			-
57 Dibromochloromethane	0.288691	0.294761	0.29476 0.010			
58 1,2-Dibromoethane	0.27766	0.25773	0.25773 0.010			•
59 Chlorobenzene	1.01394	0.96315	0.96315 0.300			
60 1,1,1,2-Tetrachloroethane	0.31454	0.363931	0.36393 0.010			-
61 Ethylbenzene	0.523781	0.50710	0.50710 0.010			
62 m + p-Xylene	0.67586	0.65987	0.65987 0.010	•		
M 63 Xylenes (total)	0.663601	0.67338	0.67338 0.010			
64 Xylene-o	0.639081	0.700401	0.70040 0.010			
65 Styrene	1 1.09491	1.14795	1.14795 0.010			
66 Bromoform	0.17779	0.232631	0.23263 0.100			
67 Isopropylbenzene	1.472991	1.69370	1.69370 0.010	-		
68 1,1,2,2-Tetrachloroethane	0.68514	0.55291	0.5529110.300			
69 1,4-Dichloro-2-butene	50.000001	49.98420	0.10637 0.010		0.000e+000	
70 1,2,3-Trichloropropane	0.21139	0.17922	0.17922 0.010		50.00000	
71 Bromobenzene	0.832681	0.730231	0.73023 0.010		50.00000	•
72 n-Propylbenzene	0.89764	0.791661	0.79166 0.010		50.00000	-
73 2-Chlorotoluene	0.77602	0.69367	0.69367 0.010		50.00000	
74 1,3,5-Trimethylbenzene	1 2.436141	2.24573	2.24573 0.010		50.00000	
75 4-Chlorotoluene	0.79829	0.727971	0.72797 0.010			-
76 tert-Butylbenzene	1 2.19465	2.11499	2.11499 0.010		50.00000	•
77 1,2,4-Trimethylbenzene	2.51352	2.34916	2.34916[0.010]		50.00000	
78 sec-Butylbenzene	3.037931	2.97755]	2.97755 0.010	•	50.00000	
79 4-Isopropyltoluene	1 2.59472	2.58378			50.00000	
80 1,3-Dichlorobenzene	1 1.53648	1.46863	2.58378 0.010		50.00000	
81 1,4-Dichlorobenzene	1.59337		1.46863[0.010]		50.00000	
82 n-Butylbenzene	2.15012	1.51115 2.12709	1.51115 0.010	5.15975	50.00000	
83 1,2-Dichlorobenzene		· ·	2.12709 0.010	1.07125	50.00000	
84 1,2-Dibromo-3-chloropropane		1.36480	1.36480[0.010]		50.00000	-
85 1,2,4-Trichlorobenzene		0.09791	0.09791 0.010	16.05674	50.00000	•
86 Hexachlorobutadiene	0.89761	0.886781	0.88678 0.010	1.20621	50.00000	-
87 Naphthalene	0.367931	0.45778	0.45778[0.010]	-24.420951	50.00000	
•	1.932531	1.62783	1.62783 0.010	15.76713	50.00000	-
	0.80146	0.780041	0.78004 0.010	2.67245	50.00000	•
98 Cyclohexane	[0.54205]	0.50831	0.50831 0.010	6.22313	50.00000	
143 Methyl Acetate	0.21756	0.13318	0.13318 0.010	38.784821	50.00000	Averaged

Data File: \\cansvr11\\dd\chem\MSV\a3ux10.i\\P71204A.b\\UXX8815.D

Report Date: 04-Dec-2007 10:12

STL Inc North Canton

CONTINUING CALIBRATION COMPOUNDS

Instrument ID: a3ux10.i

Injection Date: 04-DEC-2007 09:13

Lab File ID: UXX8815.D

Init. Cal. Date(s): 24-AUG-2007 27-NOV-2007

Analysis Type: WATER

Init. Cal. Times: 18:07
Quant Type: ISTD

11:13

Lab Sample ID: 50NG-CC

Method: \\cansvr11\dd\chem\MSV\a3ux10.i\P71204A.b\8260LLUX10.m

·	1	.		CCAL	MIN	1	MAX	
COMPOUND	RRE	/ AMOUNT	RF50	RRF50	RRF 9	&D / %DRIFT %I	/ %DRIFT	CURVE TYPE
======================================	===== ===				-		======	
144 Methylcyclohexane	1	0.53311	0.59411	0.59	9411 0.010	-11.44228	50.000001	Averaged
141 1,3,5-Trichlorobenzene	1	1.05107	1.05862	1.05	862 0.010	-0.71890	50.000001	Averagedi
149 Vinyl Acetate-86	1	0.035951	0.02962	0.02	962 0.010	17.58596	50.00000	Averaged
1	11	I			1 1:	1	. 1	1

Data File: \\cansvr11\dd\chem\MSV\a3ux10.i\P71204A.b\UXX8816.D

Report Date: 04-Dec-2007 10:12

STL Inc North Canton

CONTINUING CALIBRATION COMPOUNDS

Instrument ID: a3ux10.i Injection Date: 04-DEC-2007 09:39

Injection Bate: 04-BEC-2007 09:39
Init. Cal. Date(s): 24-AUG-2007 27-NOV-2007
Init. Cal. Times: 18:07 11:13
Quant Type: ISTD Lab File ID: UXX8816.D Analysis Type: WATER

Lab Sample ID: 50NG-CC

Method: \\cansvr11\dd\chem\MSV\a3ux10.i\P71204A.b\8260LLUX10.m

	1	1	. 1	CCAL	MIN	1 1	MAX	
COMPOUND	RRF	/ AMOUNT!	RF50	RRF50	RRF	%D / %DRIFT %	/ %DRIFT	CURVE TYPE
	··		=======================================					
14 Dichlorofluoromethane	1	0.42101	0.44969	0.449	96910.010	-6.81227	50.00000	Averaged
89 Ethyl Ether	1	0.20599	0.17523	0.175	523 0.010	14.93605	50.000001	Averaged
91 3-Chloropropene	1	0.15032	0.15117	0.151	17 0.010	-0.56883]	50.000001	Averaged
92 Isopropyl Ether	1	0.22951	0.24173	0.241	173 0.010	-5.32306	50.000001	Averaged
93 2-Chloro-1,3-butadiene	1	0.34604	0.30564		64 0.010	11.67539	50.000001	Averaged
94 Propionitrile	1	0.02561	0.024641	// 0.024	164 0.010	3.79204	50.000001	Averaged
95 Ethyl Acetate	1	0.15724!	0.12037	0.120	37 0.010	23.44853	50.00000	Averaged
96 Methacrylonitrile	1	0.12477	0.10007[0.100	07 0.010	19.79597	50.00000	Averaged
97 Isobutanol	ı	0.00742	0.005661	/ //_0.005	66 0.010	23,72044	50.000001	Averaged
99 n-Butanol	l	0.00621		0.004	31 0.010	30.687551	50.000001	Averaged
100 Methyl Methacrylate	1	0.15154	0.10039	0.100	39 0.010	33.752471	50.00000	Averaged
101 2-Nitropropane	1	0.04237	0.03395	0.033	395 0.010	19.87690	50.00000	Averaged
103 Cyclohexanone	1	0.01422	0.01552	0.015	52 0.010	-9.17534	50.000001	Averaged
146 2-Methylnaphthalene	1	1.12593	0.74619	0.746	519 0.010	33.72640	50.000001	Averaged
153 t-Butyl ethyl ether	1	0.74844	0.78337	0.783	37 0.010	-4.665921	50.00000	Averaged
154 t-Amyl methyl ether	1	0.60305	0.65345	0.653	345 0.010	-8.35708	50.000001	Averaged
155 1,2,3-Trimethylbenzene	1	2.71636	2.40779	2.407	779 0.010	11.35957	50.00000	Averaged
· -	1	1			1			

GC/MS Volatiles

Client Lot #...: 7K28188 Work Order #...: KDF231AA Matrix..... WATER

MB Lot-Sample #: A7L050000-112

Prep Date....: 12/04/07 Final Wgt/Vol..: 5 mL

Analysis Date..: 12/04/07 Prep Batch #...: 7339112

Dilution Factor: 1 Initial Wgt/Vol: 5 mL

		REPORTING		
PARAMETER	RESULT	LIMIT	UNITS	METHOD
m-Xylene & p-Xylene	ND	2.0	ug/L	SW846 8260B
1,2,3-Trimethylbenzene	ND	5.0	ug/L	SW846 8260B
Diisopropyl Ether (DIPE)	ND	5.0	ug/L	SW846 8260B
Ethyl-t-Butyl Ether (ETBE	ND	5.0	ug/L	SW846 8260B
Tert-amyl methyl ether (T	ND	5.0	ug/L	SW846 8260B
Acetone	ND	5.0	ug/L	SW846 8260B
Bromobenzene	ND	1.0	ug/L	SW846 8260B
Bromochloromethane	ND	1.0	ug/L	SW846 8260B
Bromodichloromethane	ND	1.0	ug/L	SW846 8260B
2-Butanone	ND	5.0	ug/L	SW846 8260B
n-Butylbenzene	ND	1.0	ug/L	SW846 8260B
sec-Butylbenzene	ND	1.0	ug/L	SW846 8260B
tert-Butylbenzene	ND	1.0	ug/L	SW846 8260B
Carbon disulfide	ND	1.0	ug/L	SW846 8260B
Dibromochloromethane	ND	1.0	ug/L	SW846 8260B
1,2-Dibromo-3-chloro-	ND	2.0	ug/L	SW846 8260B
propane				
2-Chloroethyl vinyl ether	ND	5.0	ug/L	SW846 8260B
2-Chlorotoluene	ND	1.0	ug/L	SW846 8260B
4-Chlorotoluene	ND	1.0	ug/L	SW846 8260B
1,2-Dibromoethane	ND	1.0	ug/L	SW846 8260B
Dibromomethane	ND	1.0	${\tt ug/L}$	SW846 8260B
1,2-Dichlorobenzene	ND	1.0	ug/L	SW846 8260B
1,3-Dichlorobenzene	ND	1.0	ug/L	SW846 8260B
1,4-Dichlorobenzene	ND	1.0	ug/L	SW846 8260B
Dichlorodifluoromethane	ND .	1.0	.ug/L	SW846 8260B
cis-1,2-Dichloroethene	ND	1.0	ug/L	SW846 8260B
trans-1,2-Dichloroethene	ND	1.0	ug/L	SW846 8260B
1,3-Dichloropropane	ND	1.0	ug/L	SW846 8260B
2,2-Dichloropropane	ND	1.0	ug/L	SW846 8260B
1,1-Dichloropropene	ND	1.0	ug/L	SW846 8260B
Trichlorofluoromethane	ND	1.0	ug/L	SW846 8260B
Hexachlorobutadiene	ND	1.0	ug/L	SW846 8260B
2-Hexanone	ND	5.0	ug/L	SW846 8260B
Isopropylbenzene	ND	1.0	ug/L	SW846 8260B
p-Isopropyltoluene	ND	1.0	ug/L	SW846 8260B
tert-Butyl alcohol	ND	20	ug/L	SW846 8260B
4-Methyl-2-pentanone	ND	5.0	ug/L	SW846 8260B
Naphthalene	0.38 J	1.0	ug/L	SW846 8260B
n-Propylbenzene	ND	1.0	ug/L	SW846 8260B
Styrene	ND .	1.0	ug/L	SW846 8260B

(Continued on next page)

GC/MS Volatiles

Client Lot #: 7K28188	Work Order	#: KDF23	1AA	Matrix WATER
		REPORTI	NG	
PARAMETER	RESULT	LIMIT	UNITS	METHOD
1,1,1,2-Tetrachloroethane	ND	1.0	${\tt ug/L}$	SW846 8260B
1,2,3-Trichlorobenzene	0.41 J	1.0	ug/L	SW846 8260B
1,2,4-Trichloro- benzene	0.23 Ј	1.0	ug/L	SW846 8260B
1,2,3-Trichloropropane	ND	1.0	ug/L	SW846 8260B
1,1,2-Trichloro-	ND	1.0	ug/L	SW846 8260B
1,2,2-trifluoroethane			5,	
1,2,4-Trimethylbenzene	ND	1.0	ug/L	SW846 8260B
Vinyl acetate	ND	2.0	ug/L	SW846 8260B
o-Xylene	ND	1.0	ug/L	SW846 8260B
Xylenes (total)	ND	2.0	ug/L	SW846 8260B
Methyl tert-butyl ether	ND	5.0	ug/L	SW846 8260B
Benzene	ND	1.0	ug/L	SW846 8260B
Bromoform	ND	1.0	ug/L	SW846 8260B
Bromomethane	ND	1.0	ug/L	SW846 8260B
Carbon tetrachloride	ND	1.0	ug/L	SW846 8260B
Chlorobenzene	ND	1.0	ug/L	SW846 8260B
Chloroethane	ND	1.0	ug/L	SW846 8260B
Chloroform	ND	1.0	ug/L	SW846 8260B
Chloromethane	ND	1.0	ug/L	SW846 8260B
1,1-Dichloroethane	ND	1.0	ug/L	SW846 8260B
1,2-Dichloroethane	ND .	1.0	ug/L	SW846 8260B
1,1-Dichloroethene	ND	1.0	ug/L	SW846 8260B
1,2-Dichloropropane	ND .	1.0	ug/L	SW846 8260B
cis-1,3-Dichloropropene	ND	1.0	ug/L	SW846 8260B
trans-1,3-Dichloropropene	ND	1.0	ug/L	SW846 8260B
Ethylbenzene	ND	1.0	ug/L	SW846 8260B
Methylene chloride	ND	1.0	ug/L	SW846 8260B
1,1,2,2-Tetrachloroethane	ND	1.0	ug/L	SW846 8260B
Tetrachloroethene	ND	1.0	ug/L	SW846 8260B
Toluene	ND	1.0	ug/L	SW846 8260B
1,1,1-Trichloroethane	ND	1.0	ug/L	SW846 8260B
Trichloroethene	ND	1.0	ug/L	SW846 8260B
Vinyl chloride	ND	1.0	ug/L	SW846 8260B
	PERCENT	RECOVERY	ď	
SURROGATE	RECOVERY	LIMITS	<u> </u>	
Dibromofluoromethane	92	(73 - 12	22)	
1,2-Dichloroethane-d4	80	(61 - 12	28)	
Toluene-d8	83	(76 - 11	LO)	
4-Bromofluorobenzene	95	(74 - 11	L6)	

NOTE(S):

J Estimated result. Result is less than RL.

LABORATORY CONTROL SAMPLE EVALUATION REPORT

GC/MS Volatiles

Client Lot #...: 7K28188 Work Order #...: KDF231AC-LCS Matrix...... WATER

LCS Lot-Sample#: A7L050000-112 KDF231AD-LCSD

Prep Date....: 12/04/07 Analysis Date..: 12/04/07

Prep Batch #...: 7339112

Dilution Factor: 1 Final Wgt/Vol..: 5 mL

Initial Wgt/Vol: 5 mL

	PERCENT	RECOVERY	RPD	
PARAMETER	RECOVERY	LIMITS	RPD LIMITS	METHOD
Benzene	89	(80 - 116)		SW846 8260B
	89	(80 - 116)	0.060 (0-20)	SW846 8260B
Chlorobenzene	94	(76 - 117)	•	SW846 8260B
	93	(76 - 117)	1.6 (0-20)	SW846 8260B
1,1-Dichloroethene	88	(63 - 130)		SW846 8260B
	88	(63 - 130)	0.45 (0-20)	SW846 8260B
Toluene	89	(74 - 119)		SW846 8260B
	89	(74 - 119)	0.30 (0-20)	SW846 8260B
Trichloroethene	96	(75 - 122)		SW846 8260B
	99	(75 - 122)	3.0 (0-20)	SW846 8260B
		PERCENT	RECOVERY	
SURROGATE		RECOVERY	LIMITS	
Dibromofluoromethane		93	(73 - 122)	•
		94	(73 - 122)	
1,2-Dichloroethane-d4		82	(61 - 128)	
		77	(61 - 128)	
Toluene-d8		88	(76 - 110)	
		88	(76 - 110)	
4-Bromofluorobenzene		105	(74 - 116)	
		105	(74 - 116)	

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

MATRIX SPIKE SAMPLE EVALUATION REPORT

GC/MS Volatiles

Client Lot #...: 7K28188 Work Order #...: KC45A1AT-MS Matrix.....: WATER

MS Lot-Sample #: A7K290302-014 KC45A1AU-MSD

Date Sampled...: 11/28/07 10:00 Date Received..: 11/29/07 Prep Date.....: 12/04/07 Analysis Date..: 12/04/07

Prep Batch #...: 7339112

Dilution Factor: 1 Initial Wgt/Vol: 5 mL Final Wgt/Vol.: 5 mL

	PERCENT	RECOVERY		RPD		
PARAMETER	RECOVERY	LIMITS	RPD	LIMITS	METHO	D
Benzene	86	(78 - 118)			SW846	8260B
	86	(78 - 118)	0.12	(0-20)	SW846	8260B
Chlorobenzene	82	(76 - 117)			SW846	8260B
	85	(76 - 117)	3.6	(0-20)	SW846	8260B
1,1-Dichloroethene	79	(62 - 130)			SW846	8260B
	82	(62 - 130)	4.6	(0-20)	SW846	8260B
Toluene	86	(70 - 119)		•	SW846	8260B
	87	(70 - 119)	1.3	(0-20)	SW846	8260B
Trichloroethene	89	(62 - 130)			SW846	8260B
	93	(62 - 130)	4.9	(0-20)	SW846	8260B
		PERCENT		RECOVERY		
SURROGATE	_	RECOVERY		LIMITS	_	
Dibromofluoromethane		90		(73 - 122)	
		91		(73 - 122)	
1,2-Dichloroethane-d4		81		(61 - 128)	
		78		(61 - 128)	
Toluene-d8		.88		(76 - 110)	
		88		(76 - 110)	
4-Bromofluorobenzene		102		(74 - 116)	
		101		(74 - 116)	
•						

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

MATRIX SPIKE SAMPLE DATA REPORT

GC/MS Volatiles

Client Lot #...: 7K28188 Work Order #...: KC45A1AT-MS Matrix..... WATER

MS Lot-Sample #: A7K290302-014 KC45A1AU-MSD

Date Sampled...: 11/28/07 10:00 Date Received..: 11/29/07 Prep Date....: 12/04/07 Analysis Date..: 12/04/07

Prep Batch #...: 7339112

Dilution Factor: 1 Initial Wqt/Vol: 5 mL Final Wqt/Vol.: 5 mL

	SAMPLE	SPIKE	MEASRD		PERCNT		
PARAMETER	AMOUNT	AMT	AMOUNT	UNITS	RECVRY	RPD	METHOD
Benzene	ND	10	8.6	ug/L	86	-	SW846 8260B
	ND	10	8.6	ug/L	86	0.12	SW846 8260B
Chlorobenzene	ND	10	8.2	ug/L	82		SW846 8260B
	ND	10	8.5	ug/L	85	3.6	SW846 8260B
1,1-Dichloroethene	ND	10	7.9	ug/L	79		SW846 8260B
	ND	10	8.2	ug/L	82	4.6	SW846 8260B
Toluene	ND	10	8.6	ug/L	86		SW846 8260B
	ND	10	8.7	ug/L	87	1.3	SW846 8260B
Trichloroethene	ND	10	8.9	ug/L	89		SW846 8260B
	ND	10	9.3	ug/L	93	4.9	SW846 8260B

	PERCENT	RECOVERY
SURROGATE	RECOVERY	LIMITS
Dibromofluoromethane	90	(73 - 122)
	91	(73 - 122)
1,2-Dichloroethane-d4	81	(61 - 128)
	78	(61 - 128)
Toluene-d8	88	(76 - 110)
	88	(76 - 110)
4-Bromofluorobenzene	102	(74 - 116)
	101	(74 - 116)

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

GC/MS Semivolatiles

Client Lot #...: 7K28188 Work Order #...: KC08E1AA Matrix..... WATER

MB Lot-Sample #: A7K280000-281

Final Wgt/Vol..: 2 mL Prep Date....: 11/28/07

Analysis Date..: 11/30/07 Prep Batch #...: 7332281

Dilution Factor: 1 Initial Wgt/Vol: 1000 mL

		REPORTING	
PARAMETER	RESULT	LIMIT UNITS	METHOD
1,4-Dioxane	ND	10 ug/L	SW846 8270C
	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS	
Nitrobenzene-d5	54	(27 - 111)	
2-Fluorobiphenyl	52	(28 - 110)	
Terphenyl-d14	73	(37 - 119)	
Phenol-d5	30	(10 - 110)	
2-Fluorophenol	43	(10 - 110)	·
2,4,6-Tribromophenol	45	(22 - 120)	

NOTE(S):

GC/MS Semivolatiles

Client Lot #...: 7K28188 Work Order #...: KDC7G1AA Matrix......: WATER

MB Lot-Sample #: A7L040000-055

Prep Date.....: 12/04/07 Final Wgt/Vol..: 2 mL

Analysis Date.: 12/07/07 Prep Batch #...: 7338055

Dilution Factor: 1 Initial Wgt/Vol: 1000 mL

 PARAMETER
 RESULT
 LIMIT
 UNITS
 METHOD

 1,4-Dioxane
 ND
 10
 ug/L
 SW846 8270C

1,4 Dioxane	ND	10 49/1	5,010 02,700
	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS	
Nitrobenzene-d5	76	(27 - 111)	
2-Fluorobiphenyl	59	(28 - 110)	
Terphenyl-d14	78	(37 - 119)	
Phenol-d5	61	(10 - 110)	
2-Fluorophenol	63	(10 - 110)	
2,4,6-Tribromophenol	60	(22 - 120)	

NOTE (S):

GC/MS Semivolatiles

Client Lot #...: 7K28188 Work Order #...: KC88X1AA Matrix.... WATER

MB Lot-Sample #: A7L010000-042

Prep Date....: 12/02/07 Final Wgt/Vol..: 2 mL

Prep Batch #...: 7335042 Analysis Date..: 12/05/07

Dilution Factor: 1 Initial Wgt/Vol: 1000 mL

REPORTING

PARAMETER	RESULT	LIMIT	UNITS	METHOD
1,4-Dioxane	ND	10	ug/L	SW846 8270C

	PERCENT	RECOVERY
SURROGATE	RECOVERY	LIMITS
Nitrobenzene-d5	73	(27 - 111)
2-Fluorobiphenyl	67	(28 - 110)
Terphenyl-d14	87	(37 - 119)
Phenol-d5	64 .	(10 - 110)
2-Fluorophenol	62	(10 - 110)
2,4,6-Tribromophenol	61	(22 - 120)

NOTE(S):

SW846 8270C SURROGATE RECOVERY

Lab Name: TestAmerica Laboratories, Inc. Client: Tetra Tech NUS, Inc

Lab Code: TALCAN

SDG No: 7K28188

Lot #: A7K280188

Extraction: XXI54QL01

-	CLIENT ID.	SRG01	SRG02	SRG03	SRG04	SRG05	SRG06	TOT OUT
		======	======	======	======	======	======	======
01	RW-01S-112707	59 D	58 D	76 D	23 D	35 D	74 D	00
02	METHOD BLK. KC08E1AA	54	52	73	30	43	45	00
03	LCS KC08E1AC	54	53	54 .	28	41 .	53	00
04	LCSD KC08E1AD	59	58	79	29	43	64	00

SURROGATES	QC LIMITS
SRG01 = Nitrobenzene-d5	(27-111)
SRG02 = 2-Fluorobiphenyl	(28-110)
SRG03 = Terphenyl-d14	(37-119)
SRG04 = Phenol-d5	(10-110)
SRG05 = 2-Fluorophenol	(10-110)
SRG06 = 2,4,6-Tribromophenol	(22-120).

- # Column to be used to flag recovery values
- * Values outside of required QC Limits
- D System monitoring Compound diluted out

FORM II

SW846 8270C SURROGATE RECOVERY

Lab Name: TestAmerica Laboratories, Inc.

Client: Tetra Tech NUS, Inc

Lab Code: TALCAN

SDG No: 7K28188

Lot #: A7K300135

Extraction: XXI51QL01

	•	•							
-	CLIENT ID.		SRG01	SRG02	SRG03	SRG04	SRG05	SRG06	TOT OUT
		=======================================	======	======	=======	======	======	======	======
01	INTRA-LAB QC	·	72	67	88	_65	.64	_60	_00
02	RW-01S-112807		72 D	69 D	87 D	65 D	61 D	66 D	00
03	METHOD BLK. KC88X1AA		73	67	87	64	62	_61	00
04	LCS KC88X1AC		79	75	91	72	73	70	00
05.	LAB MS/MSD D		73	. 67	82	_67 <u>·</u>	_66	64	_00
-06	LAB MS/MSD S	······································	76	72 .	86	_69	_67	_68	_00
1									

	SURROGATES		0	C LIMITS
۰	SRG01 =	Nitrobenzene-d5	· (27-111)
	SRG02 . =	2-Fluorobiphenyl	(28-110)
	SRG03 =	Terphenyl-d14	. (37-119)
	SRG04 =	Phenol-d5	. (10-110)
	SRG05 =	2-Fluorophenol	 . (10-110)
	SRG06 =	2,4,6-Tribromophenol	(22-120)

- # Column to be used to flag recovery values
- * Values outside of required QC Limits
- D System monitoring Compound diluted out

FORM II

SW846 8270C SURROGATE RECOVERY

Lab Name: TestAmerica Laboratories, Inc.

Client: Tetra Tech NUS, Inc

Lab Code: TALCAN

SDG No: 7K28188

Lot #: A7L010216

Extraction: XXI51QL01

_	CLIENT ID.	SRG01	SRG02	SRG03	SRG04	SRG05	SRG06	TOO TOT
	=======================================	======	======	======	======		======	======
01	RW-01S-113007	51 D	53 D	63 D	41 D	38 D	77 D	00
02	INTRA-LAB QC	70	55	68	58	52	52	00
03	METHOD BLK. KDC7G1AA	76 ·	59	78	61	63	60	00
04	LCS KDC7G1AC	74	61	68	59	61	63.	0.0
0.5	LAB MS/MSD D	75	60	59	57	55	46	.00
06	LAB MS/MSD S	82	62	63	61	58	49	00

SURROGATES		•	QC LIMITS
SRG01 =	Nitrobenzene-d5		(27-111)
SRG02 =	2-Fluorobiphenyl		(28-110)
SRG03 =	Terphenyl-d14		(37-119)
SRG04 =	Phenol-d5	:	(10-110)
SRG05 =	2-Fluorophenol		(10-110)
SRG06 =	2,4,6-Tribromophenol		(22-120)

- # Column to be used to flag recovery values
- Values outside of required QC Limits
- D System monitoring Compound diluted out

FORM II

5B SEMIVOLATILE ORGANIC GC/MS TUNING AND MASS CALIBRATION - DECAFLUOROTRIPHENYLPHOSPHINE (DFTPP)

Lab Name: TESTAMERICA-NORTH CANTON Contract:

Lab Code: TALCAN Case No.: SAS No.:

SDG No.: 7K28188

Lab File ID: 2DF1130

DFTPP Injection Date: 11/30/07

DFTPP Injection Time: 0715

Instrument ID: A4AG2

m/e	ION ABUNDANCE CRITERIA	% RELATIVE ABUNDANCE
=====	20.0	41 0
51	30.0 - 60.0% of mass 198 Less than 2.0% of mass 69	41.2
68 69	Mass 69 relative abundance	43.4
70	Less than 2.0% of mass 69	0.1 (0.3)1
127	40.0 - 60.0% of mass 198	49.5
197	Less than 1.0% of mass 198	0.0
198	Base Peak, 100% relative abundance	100.0
199	5.0 - 9.0% of mass 198	6.5
275	10.0 - 30.0% of mass 198	28.7
365	Greater than 1.0% of mass 198	3.5
441	Present, but less than mass 443	12.2
442	Greater than 40.0% of mass 198	86.4
443	17.0 - 23.0% of mass 442	16.2 (18.8)2
1		

1-Value is % of mass 69 2-Value is % of mass 442

THIS TUNE APPLIES TO THE FOLLOWING SAMPLES, MS, MSD, BLANKS, AND STANDARDS:

	TID3	T 3.5	T 3 D	73,000	TITME!
	EPA	LAB	LAB	DATE	TIME
	SAMPLE NO.	SAMPLE ID	FILE ID	ANALYZED	ANALYZED
	=======================================		=======================================	=========	=======
01	SSTD009	L9	2SHHH1130	11/30/07	0726
02	SSTD008	L8	2SHH1130	11/30/07	0747
03	SSTD007	L7	2SH1130	11/30/07	0804
04	SSTD006	L6	2SMH1130	11/30/07	0821
05	SSTD005	L5	2SMM1130	11/30/07	0838
06	SSTD004	L4	2SM1130	11/30/07	0856
07	SSTD003	L3	2SML1130	11/30/07	0913
08	SSTD002	L2	2SL1130	11/30/07	0930
09	SSTD001	L1	2SLL1130	11/30/07	0947
10	KC08EBLK	KC08E1AA	KC08E1AA	11/30/07	1256
11	KC08ECHK	KC08E1AC	KC08E1AC	11/30/07	1313
12	KC08ECKDUP	KC08E1AD	KC08E1AD	11/30/07	1330
13	1.000000000		1.0001111	,,	2000
14					
15					
16	· · · · · · · · · · · · · · · · · · ·				
17					
					
18					
19	<u> </u>				
20					
21					
22					}

page 1 of 1

FORM V SV

0/12/N)

TestAmerica North Canton

INITIAL CALIBRATION DATA

Start Cal Date : 30-NOV-2007 07:26 End Cal Date : 30-NOV-2007 12:22

Quant Method : ISTD
Origin : Disabled
Target Version : 4.14
Integrator : HP RTE

Method file : \\cansvr11\\dd\\chem\\MSS\\a4ag2.i\\71130A.b\\8270p.m

Last Edit : 30-Nov-2007 12:51 hulat

Curve Type : Average

Calibration File Names:

Calibracion rite Names.										
Level 1:	: \'	\cansvrl1\dd	\chem\MSS	\a4ag2.i\	\71130A.b\	\2SLL1130.D				
Level 2:	: \'	cansvrl1\dd	\chem\MSS	\a4ag2.i\	\71130A.b\	\2AL1130.D				
Level 3:	: \'	\cansvr11\dd	$\chem\MSS$	\a4ag2.i\	(71130A.b\	\2AML1130.D				
Level 4:	: \'	\cansvr11\dd	\chem\MSS	\a4ag2.i\	\71130A.b\	\2AM1130.D				
Level 5:	: \'	cansvr11\dd	\chem\MSS	\a4ag2.i\	\71130A.b\	(2AMM1130.D				
Level 6:	: \'	cansvr11\dd	$\chem\MSS$	\a4ag2.i\	71130A.b\	2AMH1130.D				
Level 7:	: \'	cansvr11\dd	\chem\MSS	\a4ag2.i\	71130A.b\	\2AH1130.D				
Level 8:	: '\	cansvr11\dd	$\chem\MSS$	\a4ag2.i\	\71130A.b\	2AHH1130.D				
Level 9:	: \'\	cansvr11\dd	\chem\MSS	\a4ag2.i\	71130A.b\	(2AHHH1130.D				

	0.05000	0.25000	0.50000	1.000	2.500	5.000		,]
Compound	Level 1	Level 2	Level 3	Level 4	Level 5	Level 6	RRF	% RSD	ļ
							j I	1	
	7.500	10.000	12.500	! `	[f		f	[[1
	Level 7	Level 8 ======	Level 9	l !	 	! !	 	 	 -
.98 1,4-Dioxane	+++++	0.36570		,	•	0.47159	•		<u> </u>
20 1/1 22014110	0.41000		•	•			0.43726	14.891	. <
	-				, 	' 			÷
7 N-Nitrosomorpholine	j +++++] 0.81602	0.83709	0.81267	0.84689	0.87962	İ		Ì
- -	0.91009	0.93850	0.95708	[j	0.87474	6.352	<
							. 		1
8 Ethyl methanesulfonate	+++++	0.47105	0.45888	0.47514	0.45842	0.48036			
	0.49216	0.51103	0.52902	· ·			0.48451	5.155	<
	-								
9 Pyridine	+++++	1.07685	•		1.27131	1.36558			Ţ
	1.33654	1.50455	1.68382				1.32067	15.830	<
4.0.00 000 0000 0000 0000 0000 0000 000	-		1			0.75368		 -	1
10 N-Nitrosodimethylamine	+++++ 0.79027	0.74150			0.77641	0.75368	 0.79692	l 8.222	 -
	-1	U.88886 	1	! !	 	 	0.79092	0.222 	1
11 Ethyl methacrylate	+++++	l +++++	+++++	++++	+++++	· +++++	l 		1
II Don't modulor, race	1 +++++	+++++	++++		1 1		' +++++ ´	' +++++	
	-						' 	 	i
12 3-Chloropropionitrile	+++++	0.77179	0.76956	0.77843	0.80191	0.82798	i I		i
	0.76554	0.86951	0.88287	[j i		0.80845	5.781	. <
	-								1
13 Malononitrile) +++++	+++++	++++	+++++	+++++	+++++	l		1
	+++++	+++++	+++++				+++++	++++	<
	-								1

5B SEMIVOLATILE ORGANIC GC/MS TUNING AND MASS CALIBRATION - DECAFLUOROTRIPHENYLPHOSPHINE (DFTPP)

Lab Name: TESTAMERICA-NORTH CANTON Contract:

Lab Code: TALCAN Case No.:

No.: SAS No.:

SDG No.: 7K28188

Lab File ID: 2DF1202

DFTPP Injection Date: 12/02/07

Instrument ID: A4AG2

DFTPP Injection Time: 1053

m/e	ION ABUNDANCE CRITERIA	% RELATIVE ABUNDANCE
=====		40.5
51	30.0 - 60.0% of mass 198	
68	Less than 2.0% of mass 69	0.0 (0.0)1
69	Mass 69 relative abundance	42.1
70	Less than 2.0% of mass 69	0.0 (0.0)1
127	40.0 - 60.0% of mass 198	48.4
197	Less than 1.0% of mass 198	0.0
198	Base Peak, 100% relative abundance	100.0
199	5.0 - 9.0% of mass 198	6.6
275	10.0 - 30.0% of mass 198	27.9
365	Greater than 1.0% of mass 198	3.5
441	Present, but less than mass 443	13.0
442	Greater than 40.0% of mass 198	91.5
443	17.0 - 23.0% of mass 442	17.1 (18.7)2
	1 Walton in % of many 60	

1-Value is % of mass 69

2-Value is % of mass 442

THIS TUNE APPLIES TO THE FOLLOWING SAMPLES, MS, MSD, BLANKS, AND STANDARDS:

	EPA	LAB	LAB	DATE	TIME
	SAMPLE NO.	SAMPLE ID	FILE ID	ANALYZED	ANALYZED
					=========
01	SSTD006	L6	2SMH1202	12/02/07	1104
		l	KC0W21CE	12/02/07	2107
02	RW-01S-11270	KC0W21CE	ACOW21CE	12/02/07	2107
03					
04					
05					
06					
07					
08					
09					
10					
11					
12					
13			·		
14					
15					
16					
17					
18					
19					
20					
21					
22					

page 1 of 1

FORM V SV

TestAmerica North Canton

CONTINUING CALIBRATION COMPOUNDS

Instrument ID: a4ag2.i Lab File ID: 2SMH1202.D

Injection Date: 02-DEC-2007 11:04
Init. Cal. Date(s): 30-NOV-2007 30-NOV-2007 12:22

Analysis Type: Init. Cal. Times: 07:26

Lab Sample ID: L6 Quant Type: ISTD Method: \cansvr11\dd\chem\MSS\a4ag2.i\71202A.b\8270p.m

	<u> </u>		CCAL	MIN		MAX	
COMPOUND	RRF / AMOUNT	RF5	RRF5	RRF	%D / %DRIFT	%D / %DRIFT	CURVE TYP
			=========	=====		 	=======
198 1,4-Dioxane	0.43726	0.48784	0.48784	0.010	11.56803	50.00000	Average
9 Pyridine	5.00000	5.21853	1.36866	0.010	-4.37067	0.000e+000	Quadrati
10 N-Nitrosodimethylamine	0.79692	0.80912	0.80912	0.010	-1.53022	50.00000	Average
12 3-Chloropropionitrile	0.80845	0.80689	0.80689	0.010	0.19255	50.00000	Average
209 Benzaldehyde	0.94211	0.91597	0.91597	0.010	2.77538	50.00000	Average
21 Aniline	5.00000	5.41882	2.28447	0.010	-8.37648	0.000e+000	Quadrati
22 Phenol	1.91735	1.90080	1.90080	0.010	0.86312	20.00000	Average
23 bis(2-Chloroethyl)ether	1.57450	1.50268	1.50268	0.010	4.56176	50.00000	Average
24 2-Chlorophenol	1.60689	1.55410	1.55410	0.010	3.28546	50.00000	Average
26 1,3-Dichlorobenzene	1.47525	1.49385	1.49385	0.010	-1.26070	50.00000	Average
27 1,4-Dichlorobenzene	0.93350	0.89713	0.89713	0.010	3.89653	20.00000	Average
28 1,2-Dichlorobenzene	1.48780	1.47084	1.47084	0.010	1.14033	50.00000	Average
29 Benzyl Alcohol	1.02687	1.02678	1.02678	0.010	0.00864	50.00000	Average
30 2-Methylphenol	1.46038	1.40026	1.40026	0.010	4.11640	50.00000	Average
31 bis(2-Chloroisopropyl)ether	2.12928	2.04908	2.04908	0.010	3.76627	50.00000	Average
37 Acetophenone	1.97499	1.90064	1.90064	0.010	3.76432	50.00000	Average
32 N-Nitroso-di-n-propylamine	1.14586	1.11262	1.11262	0.050	2.90089	50.00000	Average
192 4-Methylphenol	1.52006	1.50577		0.010	0.94027	50.00000	Average
34 Hexachloroethane	0.54567	0.54239				50.00000	Average
35 Nitrobenzene	0.37343	0.37583	0.37583			50.00000	Average
41 Isophorone	0.62762	0.61746				50.00000	Average
42 2-Nitrophenol	5.00000	4.97148				0.000e+000	Quadrati
43 2,4-Dimethylphenol	0.39016	0.37944				50.00000	Average
44 bis(2-Chloroethoxy)methane	0.38418	0.37677	'			50.00000	_
46 2,4-Toluenediamene	5.00000	4.74383				0.000e+000	_
47 1,3,5-Trichlorobenzene	0.27854	0.26855			'		
48 2,4-Dichlorophenol	0.28207	0.28286					_
49 Benzoic Acid	10.00000	9.80829				0.000e+000	
50 1,2,4-Trichlorobenzene	0.28046	0.27657					
51 Naphthalene	1.00028	1.03369					
52 4-Chloroaniline	0.46194	0.53350					
56 Hexachlorobutadiene	0.15952	0.15573	0.15573	'			
210 Caprolactam	5.00000	4.93485	0.10636	'		0.000e+000	•
57 1,2,3-Trichlorobenzene	0.25695	0.25471	0.25471				
59 4-Chloro-3-Methylphenol	0.32511	0.31466					
= =			•				
52 2-Methylnaphthalene	0.59947	0.59114		'			
63 1-Methylnaphthalene	0.65616	0.64360		'			
64 Hexachlorocyclopentadiene	5.00000	5.18870	0.39971			0.000e+000	
56 2,4,6-Trichlorophenol	5.00000	4.97455	0.39964	'		0.000e+000	
67 2,4,5-Trichlorophenol	5.00000	4.97950	0.42956	'		0.000e+000	
211 1,1'-Biphenyl	1.59129	1.65923		'			
58 1,2,3,5-Tetrachlorobenzene	0.56907	0.57397	0.57397	0.010	-0.85982	50.00000	Average

SEMIVOLATILE ORGANIC GC/MS TUNING AND MASS CALIBRATION - DECAFLUOROTRIPHENYLPHOSPHINE (DFTPP)

Lab Name: TESTAMERICA-NORTH CANTON Contract:

Lab Code: TALCAN Case No.:

SAS No.:

SDG No.: 7K28188

Lab File ID: 1DF1203

DFTPP Injection Date: 12/03/07

DFTPP Injection Time: 1032 Instrument ID: A4HP10

m/e	ION ABUNDANCE CRITERIA	% RELATIVE ABUNDANCE
=====	20 0 CO 09 of mag 100	40.7
51	30.0 - 60.0% of mass 198	0.6 (1.0)1
68	Less than 2.0% of mass 69	56.6
69	Mass 69 relative abundance	
70	Less than 2.0% of mass 69	0.2 (0.4)1
127	40.0 - 60.0% of mass 198	59.6
197	Less than 1.0% of mass 198	0.5
198	Base Peak, 100% relative abundance	100.0
199	5.0 - 9.0% of mass 198	7.0
275	10.0 - 30.0% of mass 198	23.8
365	Greater than 1.0% of mass 198	2.6
441	Present, but less than mass 443	8.8
442	Greater than 40.0% of mass 198	58.4
443	17.0 - 23.0% of mass 442	10.8 (18.5)2

1-Value is % of mass 69 2-Value is % of mass 442

THIS TUNE APPLIES TO THE FOLLOWING SAMPLES, MS, MSD, BLANKS, AND STANDARDS:

				· · · · · · · · · · · · · · · · · · ·	
	EPA	LAB	LAB	DATE	TIME
	SAMPLE NO.	SAMPLE ID	FILE ID	ANALYZED	ANALYZED
0.1	agmoor.	TE	1SMM1203	12/03/07	1055
01	SSTD005	L5			1.
02	SSTD004	L4	1SM1203	12/03/07	1114
03	SSTD003	L3	1SML1203	12/03/07	1133
04	SSTD002	L2	1SL1203	12/03/07	1152
05	SSTD001	Li	1SLL1203	12/03/07	1211
06	SSTD009	L9	1HHH1203	12/03/07	1230
07	SSTD008	L8	1SHH1203	12/03/07	1249
		1	1SH1203	12/03/07	
80	SSTD007	L7			1308
09	SSTD006	L6	1SMH1203	12/03/07	1327
10					
11	,				
12				-	
13					
14					
15		<u></u>			
16					
17	· · · · · · · · · · · · · · · · · · ·				
18					
19		<u></u>			
20		<u> </u>			
21					
22					
	l	l ì	l		

page 1 of 1

FORM V SV

M1214

Report Date: 04-Dec-2007 09:25

Page 1

TestAmerica North Canton

INITIAL CALIBRATION DATA

Start Cal Date : 03-DEC-2007 10:55 End Cal Date : 03-DEC-2007 16:45

Quant Method : ISTD
Origin : Disabled
Target Version : 4.14
Integrator : HP RTE

Method file : \\cansvr11\dd\chem\MSS\a4hp10.i\71203A.b\8270p.m

Last Edit : 04-Dec-2007 09:20 gruberj

Curve Type : Average

Calibration File Names:

3.D
.D
3.D
.D
3.D
3.D
.D
3.D
3.D

	0.05000	0.25000	0.50000	1.000	2.500	5.000			ł
Compound	Level 1	Level 2	Level 3	Level 4	Level 5	Level 6	RRF	% RSD	
	7.500 Level 7	10.000 Level 8	12.500 Level 9	[]	 			 	
198 1,4-Dioxane		0.77328	, ,	0.76107	0.78422			 	1
	0.74865	0.79691	0.83677 	 			0.76834	5.135	1
7 N-Nitrosomorpholine	 +++++ 1.03122	1.01384 1.17264	0.87438	0.94530 	0.93404	0.99871	1.01383	 10.025	 <
			ii						İ
8 Ethyl methanesulfonate	+++++ 0.73670	0.84729		0.72579	0.72591	0.74624	0.76026	 7.817 	 -
9 Pyridine	+++++ 2.15911	1.90218		ı	2.25086	2.03809	2.12734	10.358	
		2.44635 							.
10 N-Nitrosodimethylamine	1.28704	1.15058	'	1.22733	1.47983	1.26733	1.32094	 10.364	 - -
11 Ethyl methacrylate	+++++	 +++++ +++++	 +++++	 +++++ [[+++++	+++++	+++++	 +++++	· <
12 3-Chloropropionitrile	+++++	 0.85400 1.08359	 0.88821 1.04770	0.90322	1.05822	0.97275	0.97078	 8.833	
13 Malononitrile	 +++++	+++++	 +++++	+++++	+++++	 - +++++		 .	1
	++++	+++++	+++++	ı	l		+++++	++++	<

5B SEMIVOLATILE ORGANIC GC/MS TUNING AND MASS CALIBRATION - DECAFLUOROTRIPHENYLPHOSPHINE (DFTPP)

Lab Name: TESTAMERICA-NORTH CANTON ? Contract:

Lab Code: TALCAN Case No.:

SAS No.:

SDG No.: 7K28188

Lab File ID: 7DF1211

DFTPP Injection Date: 12/11/07

Instrument ID: A4HP7

DFTPP Injection Time: 1519

m/e	ION ABUNDANCE CRITERIA	% RELATIVE ABUNDANCE
====		=======================================
51	30.0 - 60.0% of mass 198	46.0
68	Less than 2.0% of mass 69	0.5 (1.2)1
69	Mass 69 relative abundance	42.0
70	Less than 2.0% of mass 69	0.2 (0.4)1
127	40.0 - 60.0% of mass 198	49.0
197	Less than 1.0% of mass 198	0.0
198	Base Peak, 100% relative abundance	100.0
199	5.0 - 9.0% of mass 198	6.4
275	10.0 - 30.0% of mass 198	16.2
365	Greater than 1.0% of mass 198	1.3
441	Present, but less than mass 443	9.5
442	40.0 - 100.0% of mass 198	60.6
443	17.0 - 23.0% of mass 442	11.7 (19.3)2

1-Value is % of mass 69 2-Value is % of mass 442

THIS TUNE APPLIES TO THE FOLLOWING SAMPLES, MS, MSD, BLANKS, AND STANDARDS:

	EPA	LAB	LAB	DATE	TIME
	SAMPLE NO.	SAMPLE ID	FILE ID	ANALYZED	ANALYZED
0.1			E CD M 61 01 1	20/22/07	
01	SSTD005	L5	7SMM1211	12/11/07	1535
02	SSTD004	L4	7SM1211	12/11/07	1555
03	SSTD003	L3	7SML1211	12/11/07	1615
04	SSTD002	L2	7SL1211	12/11/07	1635
05	· · · · · · · · · · · · · · · · · · ·	Li	7SLL1211	12/11/07	1655
06	SSTD009	L9	7HHH1211	12/11/07	1715
				12/11/07	
07	SSTD008	T8	7SHH1211	12/11/07	1735
98	SSTD007	L7	7SH1211	12/11/07	1755
09	SSTD006	L6	7SMH1211	12/11/07 12/11/07	1815
10	RW-015-11300	KC97L1CF	KC97L1CF	12/11/07	1955
11				,,	
12		 .			
12					
13					
14					
15		·			
16			·		
					
22					
17 18 19 20 21 22					

page 1 of 1

FORM V SV

Report Date : 12-Dec-2007 08:17

Page 1

TestAmerica North Canton

INITIAL CALIBRATION DATA

Start Cal Date : 11-DEC-2007 15:35 End Cal Date : 11-DEC-2007 18:15 Quant Method : ISTD Origin : Disabled

Origin : Disabled
Target Version : 4.14
Integrator : HP RTE

Method file : \\cansvr11\dd\chem\MSS\a4hp7.i\71211a.b\8270P.m

Last Edit : 11-Dec-2007 18:47 a4hp7.i

Curve Type : Average

Calibration File Names:

	1 0.05000 1	0.25000	0.50000	1.000	2.500	5.000 l			1
Compound	0.03000 Level 1	Level 2	Level 3	Level 4		Level 6	RRF	% RSD	
-							. 1		I
	7.500	10.000	12.500			[<u> </u>			!
	Level 7 	Level 8	Level 9	· · · · · · · · · · · · · · · · · · ·	 	[!1			
198 1,4-Dioxane	=======	0.74749	0.71112			! !			<u> </u>
	0.72425	0.84632	0.82368		İ	į, į	0.75379	7.000	 <-
7 N-Nitrosomorpholine		+++++	+++++	+++++		 +++++			1
/ N-RECESSOROLPROTITIE	+++++	+++++	++++				+++++	+++++	, <-
									!
8 Ethyl methanesulfonate	+++++	+++++	+++++	++++	+++++	+++++ 1	+++++	++++	 <-
	+++++ 	+++++			 				1
9 Pyridine	+++++	1.57872	1.69572	1.81856	1.87307	1.51351	İ		İ
	1.90215	2.25961	2.23253		1		1.85923	14.776	<-
10 N-Nitrosodimethylamine	 +++++	1.08685	1.09291	1.18964	1.15790	 1.09510			1
•	1.18769	1.36109	1.32658		ĺ		1.18722	8.890	<-
11 Ethyl methacrylate	 +++++	1.39718	1.42305	1.50982	1.53627	 1.46473			
II Benyi mechaciyiace	1.54148	1.79068	1.75834	•	1		1.55269	9.424	 <-
]
12 3-Chloropropionitrile	+++++	0.99014			1.09299	1.03537			
	1.05300 	1.19969	1.16948		 	! }	1.08727	6.341	<-
13 Malononitrile	+++++	2.11923	2.14453	2.25001	2.37158	2.18436	i		i
	2.18948	2.54880	2.39269				2.27508	6.553	<-

5B SEMIVOLATILE ORGANIC GC/MS TUNING AND MASS CALIBRATION - DECAFLUOROTRIPHENYLPHOSPHINE (DFTPP)

Lab Name: TESTAMERICA-NORTH CANTON Contract:

Lab Code: TALCAN Case No.:

SAS No.:

SDG No.: 7K28188

Lab File ID: 8DF1128

DFTPP Injection Date: 11/28/07

Instrument ID: A4HP8

DFTPP Injection Time: 1044

m/e ION ABUNDANCE CRITERIA	% RELATIVE ABUNDANCE
51	52.7 0.0 (0.0)1 83.6 0.4 (0.5)1 57.1 0.0 100.0 7.2 23.9 4.1 6.6 42.6 8.1 (18.9)2

1-Value is % of mass 69 2-Value is % of mass 442

THIS TUNE APPLIES TO THE FOLLOWING SAMPLES, MS, MSD, BLANKS, AND STANDARDS:

			· · · · · · · · · · · · · · · · · · ·		
	EPA	LAB	LAB	DATE	TIME
	SAMPLE NO.	SAMPLE ID	FILE ID	ANALYZED	ANALYZED
01	SSTD005	L5	8SMM1128	11/28/07	1119
02	SSTD004	L4	8SM1128	11/28/07	1138
03	SSTD003	L3	8SML1128	11/28/07	1157
04	SSTD002	L2	8SL1128	11/28/07	1216
05		L1	8SLL1128	11/28/07	1235
06	SSTD001	L9	8HHH1128	11/28/07	1254
07	SSTD009	L8	8SHH1128	11/28/07	1313
	li de la companya de la companya de la companya de la companya de la companya de la companya de la companya de			11/28/07	
80	SSTD007	L7	8SH1128	11/28/07	1332
09	SSTD006	L6	8SMH1128	11/28/07	1352
10					
11					
12					
13					
14					
15					
16					
17					
18					
19					
20					
21					
22					
	l 	l!	l		

page 1 of 1

FORM V SV

TestAmerica North Canton

INITIAL CALIBRATION DATA

Start Cal Date : 28-NOV-2007 11:19 End Cal Date : 28-NOV-2007 13:52

Quant Method : ISTD Origin : Disabled Target Version : 4.14 : HP RTE Integrator

: \\cansvr11\dd\chem\MSS\a4hp8.i\71128a.b\8270P.m : 28-Nov-2007 13:15 gruberj Method file

Last Edit

Curve Type : Average

Calibration File Names:

***************************************	0.05000	0.25000	0.50000	1.000	2.500	5.000			1
Compound	Level 1	Level 2	Level 3	Level 4	Level 5	Level 6	RRF	% RSD	į
	7.500	10.000	j 12.500		 		 		1
	Level 7	Level 8	Level 9		 	 			-1
198 1,4-Dioxane	+++++	0.90066	<u>.</u>		•			and the second of the second	İ
	0.96074	1.01479	1.04886		 		0.97241	6.462	! -ተ
7 N-Nitrosomorpholine	+++++	+++++	 +++++	+++++	+++++	+++++	i		i
	+++++	+++++	+++++	 	 		+++++ 	+++++	 -
8 Ethyl methanesulfonate	+++++	+++++	, +++++	+++++	+++++	+++++	į		i
	+++++ 	++++	+++++ 		 	 	+++++	+++++	 -
9 Pyridine	+++++	2.09764	2.10120	2.12621	2.47979	2.34272			İ
	2.36683	2.59626 	2.70376 	 	[[]	 	2.35180	9.889	(- -
10 N-Nitrosodimethylamine	+++++	1.40707	1.37717	'	1.60584	1.48207	į		į
*******************************	1.48464 	1.58594	1.67637	 	 	.	1.50834	6.916	() -1
11 Ethyl methacrylate	+++++	2.11069	•		2.39374	2.15305	į		į
	2.25900	2.41177	2.50891 		 		2.26808	6.643	 -
12 3-Chloropropionitrile	+++++	0.71879	•		0.73725	0.71845	į		i
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	0.70094	0.72383	0.78058		 		0.72225	4.226	∏ -1
13 Malononitrile	+++++	2.11732	•		2.44553	2.36110	i		i
	2.19716	2.35987	2.45028		 		2.31845	4.996	1
			 						1

5B SEMIVOLATILE ORGANIC GC/MS TUNING AND MASS CALIBRATION - DECAFLUOROTRIPHENYLPHOSPHINE (DFTPP)

Lab Name: TESTAMERICA-NORTH CANTON Contract:

Lab Code: TALCAN Case No.:

SAS No.:

SDG No.: 7K28188

Lab File ID: 8DF1205

DFTPP Injection Date: 12/05/07

Instrument ID: A4HP8

DFTPP Injection Time: 1414

m/e	ION ABUNDANCE CRITERIA	% RELATIVE ABUNDANCE
51 68 69 70 127 197 198 199 275 365 441 442 443	30.0 - 60.0% of mass 198 Less than 2.0% of mass 69 Mass 69 relative abundance Less than 2.0% of mass 69 40.0 - 60.0% of mass 198 Less than 1.0% of mass 198 Base Peak, 100% relative abundance 5.0 - 9.0% of mass 198 10.0 - 30.0% of mass 198 Greater than 1.0% of mass 198 Present, but less than mass 443 Greater than 40.0% of mass 198 17.0 - 23.0% of mass 442	47.8 0.2 ( 0.2)1 79.7 0.4 ( 0.5)1 56.9 0.0 100.0 6.6 23.6 4.3 7.9 45.9 9.5 ( 20.8)2
1		·

1-Value is % of mass 69

2-Value is % of mass 442

THIS TUNE APPLIES TO THE FOLLOWING SAMPLES, MS, MSD, BLANKS, AND STANDARDS:

	EPA SAMPLE NO.	LAB SAMPLE ID	LAB FILE ID	DATE ANALYZED	TIME ANALYZED
01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20	SAMPLE NO.  SSTD006 KC88XBLK KC88XCHK RW-01S-11280	L6 KC88X1AA KC88X1AC KC6WJ1CG	8SMH1205 KC88X1AA KC88X1AC KC6WJ1CG	12/05/07 12/05/07 12/05/07 12/05/07	1432 1606 1624 2023
21 22					

page 1 of 1

FORM V SV

Data File: \\cansvr11\dd\chem\MSS\a4hp8.i\71205a.b\8SMH1205.D Page 3 Report Date: 05-Dec-2007 14:39

# TestAmerica North Canton

#### CONTINUING CALIBRATION COMPOUNDS

3.60190[0.010]

0.59602 | 0.010 |

-1.28474

~2,23416|

28-NOV-2007

Instrument ID: a4hp8.i Injection Date: 05-DEC-2007
Lab File ID: 8SMH1205.D Init. Cal. Date(s): 28-NOV-2
Analysis Type: Init. Cal. Times: 11:19
Lab Sample ID: L6 Quant Type: ISTD
Method: \\cansvr11\\dd\\chem\\MSS\\a4hp8.i\\71205a.b\\8270p.m

13:52

50.00000 | Averaged

50.00000 Averaged

M 195 Cresols, total

|101 Diphenylamine

	I	 	CCAL	MIN		MAX	
COMPOUND ·	RRF / AMOUNT	RF5	RRF5	RRF	%D / %DRIFT	%D / %DRIFT	CURVE TYPE
	=   ========			=====	=========		
142 Benzo(k) fluoranthene	1.33757	1.43476	1.43476	0.010	-7.26669	50.00000	Averaged
146 Benzo(a)pyrene	1.14837	1.20937	1.20937	0.010	-5.31191	20.00000	Averaged
149 Indeno(1,2,3-cd)pyrene	1.32007	1.38020	1.38020	0.010	-4.55478	50.00000	Averaged)
150 Dibenz(a,h)anthracene	1.13741	1.20519	1.20519	0.010	-5.95935	50.00000	Averaged
151 Benzo(g,h,i)perylene	1.10322	1.12819	1.12819	0.010	2.26400	50.00000	Averaged
198 1,4-Dioxane	0.97241	0.82393	0.82393	0.019	15.26993	50.00000	Averaged
\$ 154 Nitrobenzene-d5	0.65581	0.67127	0.67127	0.010	2.35697	50.00000	Averaged
\$ 155 2-Fluorobiphenyl	1.40480	1.44606	1.44606	0.010	-2.93700	50.00000	Averaged
\$ 156 Terphenyl-d14	0.93041	1.00429	1.00429	0.010	-7.94064	50.00000	Averaged
\$ 157 Phenol-d5	2.39011	2.45909	2.45909	0.010	-2.88640	50.00000	Averaged
\$ 158 2-Fluorophenol	1.51064	1.47031	1.47031	0.010	2.67014	50.00000	Averaged
\$ 159 2,4,6-Tribromophenol	0.17351	0.17036	0.17036	0.010	1.81311	50.00000	Averaged
\$ 186 2-Chlorophenol-d4	1.43749	1.44074	1.44074	0.010	-0.22617	50.00000	Averaged
\$ 187 1,2-Dichlorobenzene-d4	0.87886	0.91278	0.91278	0.010	-3.85916	50.00000	Averaged

3.60190

0.59602

3.55621

0.58300|

# SEMIVOLATILE INTERNAL STANDARD AREA SUMMARY

Lab Name: TESTAMERICA-NORTH CANTON Contract:

Lab Code: TALCAN

Case No.:

SAS No.:

SDG No.: 7K28188

Lab File ID (Standard): 2SMH1202

Date Analyzed: 12/02/07

Instrument ID: A4AG2

Time Analyzed: 1104

-		IS1 (DCB)		IS2 (NPT)		IS3 (ANT)	
		AREA #	RT	AREA #	RT	AREA #	RT
=		========	=====		=====		======
	12 HOUR STD	435041	3.71	1917585	4.61	959455	5.88
=		=======================================	4 01	2025170	======	7 01 001 0	======
_	UPPER LIMIT	870082	4.21	3835170	5.11	1918910	6.38
-	LOWER LIMIT	217521	3.21	958793	4.11	479728	5.38
=	========	=========	=====	========	=====	=========	=====
	EPA SAMPLE						-
	NO.		:				
		=========	======	========	=====	=======================================	======
01 E	RW-01S-11270	345702	3.71	1566634	4.61	867382	5.88
03 -				<del></del>			
04							
05							
06							
07							
08 -							
10 -							
11 -	<del></del>						<del></del>
12							
13							
14							
15 16	· · · · · · · · · · · · · · · · · · ·			· · · · · · · · · · · · · · · · · · ·			
17 -						<del></del>	
18 -							
19							
20							
21							
22							

= 1,4-Dichlorobenzene-d4 IS1 (DCB)

UPPER LIMIT = +100%

= Naphthalene-d8 IS2 (NPT) = Acenaphthene-d10 IS3 (ANT)

of internal standard area. LOWER LIMIT = - 50%

of internal standard area.

# Column used to flag internal standard area values with an asterisk.

page 1 of 1

FORM VIII SV-1

#### 8B SEMIVOLATILE INTERNAL STANDARD AREA SUMMARY

Lab Name: TESTAMERICA-NORTH CANTON Contract:

Lab Code: TALCAN Case No.: SAS No.: SDG No.: 7K28188

Lab File ID (Standard): 7SMH1211 Date Analyzed: 12/11/07

Instrument ID: A4HP7 Time Analyzed: 1815

		IS1 (DCB) AREA #	RT	IS2 (NPT) AREA #	RT	IS3 (ANT) AREA #	RT
	12 HOUR STD	399282	3.59	1762610	4.48	856886	5.75
	UPPER LIMIT	798564	4.09	3525220	4.98	1713772	6.25
	LOWER LIMIT	199641	3.09	881305	3.98	428443	5.25
	EPA SAMPLE NO.						
01 02	RW-01S-11300	462034	3.58	1928086	4.48	955221	5.75
03 04							
05 06							
07 08 09							
10 11							
12 13							
14 15							
16 17 18							
19 20				·			
21 22							

(DCB) = 1,4-Dichlorobenzene-d4 IS1

IS2 (NPT)

= Naphthalene-d8

IS3 (ANT) = Acenaphthene-d10 UPPER LIMIT = +100%

of internal standard area.

LOWER LIMIT = - 50% of internal standard area.

# Column used to flag internal standard area values with an asterisk.

page 1 of 1

FORM VIII SV-1

#### 8B SEMIVOLATILE INTERNAL STANDARD AREA SUMMARY

Lab Name: TESTAMERICA-NORTH CANTON Contract:

Lab Code: TALCAN SAS No.: SDG No.: 7K28188 Case No.:

Lab File ID (Standard): 8SMH1205 Date Analyzed: 12/05/07

Time Analyzed: 1432 Instrument ID: A4HP8

				·			
		IS1 (DCB) AREA #	RT	IS2 (NPT) AREA #	RT	IS3 (ANT) AREA #	RT
	12 HOUR STD	136642	3.38	590108	4.27	321875	5.54
	UPPER LIMIT	273284	3.88	1180216	4.77	643750	6.04
	LOWER LIMIT	68321	2.88	295054	3.77	160938	5.04
	EPA SAMPLE						
01 02 03 04 05 06 07 08 09 10	KC88XBLK KC88XCHK RW-01S-11280	166215 151012 164476	3.38 3.38 3.38	694424 662338 697517	4.27 4.27 4.27	395151 362058 391784	5.54 5.54 5.54 5.54
12 13 14 15 16 17 18 19							
20 21 22							

IS1 (DCB) = 1,4-Dichlorobenzene-d4 = Naphthalene-d8 IS2 (NPT)

= Acenaphthene-d10

UPPER LIMIT = +100%

of internal standard area.

LOWER LIMIT = - 50%

of internal standard area.

# Column used to flag internal standard area values with an asterisk.

page 1 of 1

IS3

(TVA)

FORM VIII SV-1

#### SW846 8270C METHOD BLANK SUMMARY

BLANK WORKORDER NO.

Lab	Name:	TestAmeri	ca La	boratori	.es,	Inc.

Lab Code: TALCAN

SDG Number: 7K28188

Lab File ID: KC08E1AA.

Lot Number: A7K280188

Date Analyzed: 11/30/07

Time Analyzed: 12:56

Matrix: WATER

GC Column: DB-5.625

Date Extracted:11/28/07

2 COLUMNI: DD-3.025 1D.

Extraction Method: 3510C

Instrument ID: AG2

Level: (low/med) LOW

THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES, LCS, LCSD, MS , MSD:

			SAMPLE		LAB	DATE	TIME
CLIENT II		1	WORK ORDE		FILE ID	ANALYZED	ANALYZED
01 RW-01S-112707		·	KC0W21CE		KC0W21CE.	12/02/07	21:07
02 CHECK SAMPLE	· · · · · · · · · · · · · · · · · · ·		KC08E1AC	C	KC08E1AC.	11/30/07	13:13
03 DUPLICATE CHE	ECK	i	KC08E1AD	L	KC08E1AD.	11/30/07	13:30
04							
05		i					
06			•				
07							
08			-			<u> </u>	
09				·	l <u></u>		
10					l		
11		[					
12		]					
13	•			· .			•
14					l <u></u>		
15							
16							·
17							
18			· · ·				
19			<u>-</u>				<u> </u>
20			·			·	
21	•						
22			·			<u> </u>	
.23					<del></del>		
24							
25	·		· · · ·				
26	· · · · · · · · · · · · · · · · · · ·	· .	· · · · · · · · · · · · · · · · · · ·			<u> </u>	
27		1					••
28		1.					
29	·		• • •				
30			·	·			

COMMEN	TS:		٠	٠.	•		· .				
·					 				 · · ·	 	•
			:		 •	<u> </u>					_
						٠.	FORM	IV			

# SW846 8270C METHOD BLANK SUMMARY

BLANK WORKORDER NO.
| KDC7G1AA |

Lab	Name:	TestAmeric	a La	boratori	ies,	Inc.
-----	-------	------------	------	----------	------	------

Lab Code: TALCAN

SDG Number: 7K28188

Lab File ID: KDC7G1AA.

Lot Number: A7L010216

Date Analyzed: 12/07/07

Time Analyzed: 13:01

Matrix: WATER

Date Extracted: 12/04/07

GC Column: DB-5MS

TD. 10

Extraction Method: 3520C

Instrument ID: HP10

Level: (low/med) LOW

THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES, LCS, LCSD, MS , MSD:

			_	
.	SAMPLE	LAB	DATE	TIME
CLIENT ID.	WORK ORDER #	FILE ID	ANALYZED	ANALYZED
	= =====================================			========
01 RW-01S-113007	KC97L1CF	KC97L1CF.	12/11/07	19:55
2 INTRA-LAB QC	KDCFE1AA	KDCFE1AA.	12/07/07	18:49
3 LAB MS/MSD	KDCFE1AL S	KDCFE1AL.	12/07/07	19:07
4 LAB MS/MSD	KDCFE1AM D	KDCFE1AM.	12/07/07	19:25
5 CHECK SAMPLE	KDC7G1AC C	KDC7G1AC.	12/07/07	13:19
6				
7				
8				<u> </u>
9			<u> </u>	
.0				
1				
2	,			· · · · · · · · · · · · · · · · · · ·
3	·			<u> </u>
4				
5		·	· .	
6		<u> </u>	·	
7				
8				:
9	• •			
0				
1		·		
2		<u> </u>		
3				• .
4				
5		<u> </u>		
6				
7.	_l			•
8			[	<del> </del>
9				
0		-		

COMMENTS:				. •	
	·.	. `	•	 _ •	
	•			 •	
<del></del>				 	

#### SW846 8270C METHOD BLANK SUMMARY

ID: .00

BLANK WORKORDER NO.

Lab Name: TestAmerica Laboratories, Inc.

Lab Code: TALCAN

SDG Number: 7K28188

Lab File ID: KC88X1AA.

Lot Number: A7K300135

Date Analyzed: 12/05/07

Time Analyzed: 16:06

Matrix: WATER

.

Date Extracted:12/02/07

GC Column: DB 5.625

Extraction Method: 3520C

Instrument ID: HP8

Level: (low/med) LOW

THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES, LCS, LCSD, MS, MSD:

	SAMPLE	LAB	DATE	TIME
CLIENT ID.	WORK ORDER #	FILE ID	ANALYZED	ANALYZED
=======================================	=========		========	========
01 INTRA-LAB QC	KC4CG1AE	KC4CG1AE.	12/05/07	16:43
02 LAB MS/MSD	KC4CG1AF S	KC4CG1AF.	12/05/07	17:01
03 LAB MS/MSD	KC4CG1AG D	KC4CG1AG.	12/05/07	17:19
04 RW-01S-112807	KC6WJ1CG	KC6WJ1CG.	12/05/07	20:23
05 CHECK SAMPLE	KC88X1AC C	KC88X1AC.	12/05/07	16:24
06		l		
07				
08				
09				· · · · · · · · · · · · · · · · · · ·
10				
11	•			
12				
13				
14		·		<u> </u>
15				
16			·	
17				
18				
19			[	
20				
21				!
22				
23				
24				··
25			<u> </u>	
26				
27				
28				
29				
30			•	<u></u>

COMMENTS:	•		
	•	•	
			 -

# LABORATORY CONTROL SAMPLE EVALUATION REPORT

#### GC/MS Semivolatiles

Client Lot #...: 7K28188 Work Order #...: KC08E1AC-LCS Matrix...... WATER

LCS Lot-Sample#: A7K280000-281 KC08E1AD-LCSD

**Prep Date....:** 11/28/07 **Analysis Date..:** 11/30/07

Prep Batch #...: 7332281

Dilution Factor: 1 Final Wgt/Vol..: 2 mL

Initial Wgt/Vol: 1000 mL

	PERCENT	RECOVERY		RPD	
PARAMETER	RECOVERY	LIMITS	RPD	LIMITS	METHOD
1,2,4-Trichloro-	54	(25 - 110)			SW846 8270C
benzene					
	56	(25 - 110)	3.6	(0-30)	SW846 8270C
•					
Acenaphthene	53	(40 - 110)			SW846 8270C
	61	<b>(40 - 110)</b>	14	(0-30)	SW846 8270C
2,4-Dinitrotoluene	61	(52 - 123)		•	SW846 8270C
	78	(52 - 123)	25	(0-30)	SW846 8270C
Pyrene	61	(55 - 120)			SW846 8270C
	76	(55 - 120)	23	(0-30)	SW846 8270C
N-Nitrosodi-n-propyl- amine	58	(37 - 121)			SW846 8270C
	60	(37 - 121)	3.3	(0-30)	SW846 8270C
1,4-Dichlorobenzene	85	(19 - 110)			SW846 8270C
1,4 Dichiolopenzene	87	(19 - 110)	1.7	(0-30)	SW846 8270C
Pentachlorophenol	52	(26 - 110)	1.7	(000)	SW846 8270C
rentaciiorophenor	65 _.	(26 - 110)	22	(0-30)	SW846 8270C
Phenol	28	(20 - 110) $(14 - 112)$	22	(0-30)	SW846 8270C
rnenor	29	(14 - 112) $(14 - 112)$	2.8	(0.20)	
2-Chlorophenol	49		2.0	(0-30)	SW846 8270C
z-chrorophenor	49	(27 - 110)	0 11	(0.20)	SW846 8270C
A Chloro 2 mothylphonol		(27 - 110)	0.11	(0-30)	SW846 8270C
4-Chloro-3-methylphenol	50	(39 - 110)	10	(0.00)	SW846 8270C
A Mitarakan 1	58	(39 - 110)	13	(0-30)	SW846 8270C
4-Nitrophenol	27	(12 - 130)			SW846 8270C
	29	(12 - 130)	8.8	(0-30)	SW846 8270C
		PERCENT	RECOV	ERY	
SURROGATE		RECOVERY	LIMIT	S	
Nitrobenzene-d5		54	(27 -	111)	
		. 59	(27 -	111)	
2-Fluorobiphenyl		53	(28 -	110)	
		58	(28 -	110)	•
Terphenyl-d14		54	(37 -	119)	
		79	(37 -	119)	
Phenol-d5		28	(10 -		
		29	(10 -		
2-Fluorophenol		41	(10 -		
<del>-</del>		43	(10 -		
		-	·		

(Continued on next page)

# LABORATORY CONTROL SAMPLE EVALUATION REPORT

#### GC/MS Semivolatiles

Client Lot #...: 7K28188 Work Order #...: KC08E1AC-LCS Matrix.....: WATER

LCS Lot-Sample#: A7K280000-281 KC08E1AD-LCSD

 SURROGATE
 RECOVERY
 LIMITS

 2,4,6-Tribromophenol
 53
 (22 - 120)

 64
 (22 - 120)

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

# LABORATORY CONTROL SAMPLE DATA REPORT

# GC/MS Semivolatiles

Client Lot #...: 7K28188 Work Order #...: KC08E1AC-LCS Matrix...... WATER

LCS Lot-Sample#: A7K280000-281 KC08E1AD-LCSD

**Prep Date....:** 11/28/07 **Analysis Date..:** 11/30/07

Prep Batch #...: 7332281

Dilution Factor: 1 Final Wgt/Vol..: 2 mL

Initial Wgt/Vol: 1000 mL

	SPIKE	MEASURE	D	PERCENT		
PARAMETER	AMOUNT	AMOUNT	UNITS	RECOVERY	RPD	METHOD
1,2,4-Trichloro-	20	11	ug/L	54		SW846 8270C
benzene						
	20	11	ug/L	56	3.6	SW846 8270C
Acenaphthene	20	11	ug/L	53		SW846 8270C
	2 <b>0</b>	12	ug/L	61	14	SW846 8270C
2,4-Dinitrotoluene	20	12	ug/L	61		SW846 8270C
	20	16	ug/L	78	25	SW846 8270C
Pyrene	2 <b>0</b>	12	ug/L	61		SW846 8270C
	20	15	ug/L	76	23	SW846 8270C
N-Nitrosodi-n-propyl- amine	20	12	ug/L	58		SW846 8270C
	20	12	ug/L	60	3.3	SW846 8270C
1,4-Dichlorobenzene	20	17	ug/L	85		SW846 8270C
	20	17	ug/L	87	1.7	SW846 8270C
Pentachlorophenol	20	10	ug/L	52		SW846 8270C
	20	13	ug/L	65	22	SW846 8270C
Phenol	20	5.6	ug/L	28		SW846 8270C
,	20	5.8	ug/L	29	2.8	SW846 8270C
2-Chlorophenol	20	9.7	ug/L	49		SW846 8270C
	20	9.7	ug/L	49	0.11	SW846 8270C
4-Chloro-3-methylphenol	20	10	ug/L	5 <b>0</b>		SW846 8270C
	20	12	ug/L	58	13	SW846 8270C
4-Nitrophenol	20	5.4	ug/L	27		SW846 8270C
	20	5.9	ug/L	29	8.8	SW846 8270C
			PERCENT	RECOVERY		
SURROGATE	_		RECOVERY	LIMITS		
Nitrobenzene-d5			54	(27 - 111	.)	
			59	(27 - 111	.)	
2-Fluorobiphenyl			53	(28 - 110	))	
			58	(28 - 110	)	
Terphenyl-d14			54	(37 - 119	))	
			79	(37 - 119	1)	
Phenol-d5			28	(10 - 110	)	
			29	(10 - 110	)	
0 73						

(Continued on next page)

41

43

(10 - 110)

(10 - 110)

2-Fluorophenol

# LABORATORY CONTROL SAMPLE DATA REPORT

#### GC/MS Semivolatiles

Client Lot #...: 7K28188 Work Order #...: KC08E1AC-LCS Matrix..... WATER

LCS Lot-Sample#: A7K280000-281 KC08E1AD-LCSD

SURROGATE PERCENT RECOVERY LIMITS

 2,4,6-Tribromophenol
 53
 (22 - 120)

 64
 (22 - 120)

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

#### LABORATORY CONTROL SAMPLE EVALUATION REPORT

# GC/MS Semivolatiles

Client Lot #...: 7K28188 Work Order #...: KC88X1AC Matrix....: WATER

LCS Lot-Sample#: A7L010000-042

Prep Date....: 12/02/07 Analysis Date..: 12/05/07

Prep Batch #...: 7335042

Dilution Factor: 1 Final Wgt/Vol..: 2 mL

Initial Wgt/Vol: 1000 mL

	PERCENT	RECOVERY	
PARAMETER	RECOVERY	LIMITS	METHOD
1,2,4-Trichloro-	62	(25 - 110)	SW846 8270C
benzene			
Acenaphthene	71	(40 - 110)	SW846 8270C
2,4-Dinitrotoluene	84	(52 - 123)	SW846 8270C
Pyrene	77	<b>(55 - 120)</b>	SW846 8270C
N-Nitrosodi-n-propyl-	76	(37 - 121)	SW846 8270C
amine			
1,4-Dichlorobenzene	100	(19 - 110)	SW846 8270C
Pentachlorophenol	40	(26 - 110)	SW846 8270C
Phenol	70	(14 - 112)	SW846 8270C
2-Chlorophenol	71	(27 - 110)	SW846 8270C
4-Chloro-3-methylphenol	68	(39 - 110)	SW846 8270C
4-Nitrophenol	68	(12 - 130)	SW846 8270C
		PERCENT	RECOVERY
SURROGATE		RECOVERY	LIMITS
Nitrobenzene-d5		79	(27 - 111)
2-Fluorobiphenyl		75	(28 - 110)
Terphenyl-d14		91	(37 - 119)
Phenol-d5		72	(10 - 110)
2-Fluorophenol		73	(10 - 110)
2,4,6-Tribromophenol		70	(22 - 120)
- -			,

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

#### LABORATORY CONTROL SAMPLE DATA REPORT

#### GC/MS Semivolatiles

Client Lot #...: 7K28188 Work Order #...: KC88X1AC Matrix......: WATER

LCS Lot-Sample#: A7L010000-042

**Prep Date....:** 12/02/07 **Analysis Date..:** 12/05/07

**Prep Batch #...:** 7335042

Dilution Factor: 1

Final Wgt/Vol..: 2 mL

Initial Wgt/Vol: 1000 mL

	SPIKE	MEASURED		PERCENT	
PARAMETER	AMOUNT	AMOUNT	UNITS	RECOVERY	METHOD
1,2,4-Trichloro-	20	12	ug/L	62	SW846 8270C
benzene					
Acenaphthene	20	14	ug/L	71	SW846 8270C
2,4-Dinitrotoluene	20	17	ug/L	84	SW846 8270C
Pyrene	20	15	ug/L	77	SW846 8270C
N-Nitrosodi-n-propyl-	20	15	ug/L	76	SW846 8270C
amine		•			
1,4-Dichlorobenzene	20	20	ug/L	100	SW846 8270C
Pentachlorophenol	20	7.9	ug/L	40	SW846 8270C
Phenol	20	14	ug/L	70	SW846 8270C
2-Chlorophenol	20	14	ug/L	71	SW846 8270C
4-Chloro-3-methylphenol	20	14	ug/L	68	SW846 8270C
4-Nitrophenol	20	14	ug/L	68	SW846 8270C
		PERCENT	RECOVERY		
SURROGATE		RECOVERY	LIMITS		
Nitrobenzene-d5		79	(27 - 111)	<del>)</del>	
2-Fluorobiphenyl		75	(28 - 110	)	
Terphenyl-d14		91	(37 - 119	)	•
Phenol-d5		72	(10 - 110	)	
2-Fluorophenol		73	(10 - 110	)	
2,4,6-Tribromophenol	•	70	(22 - 120	)	

#### NOTE(S):

 $\label{lem:calculations} \textbf{Calculations are performed before rounding to avoid round-off errors in calculated results.}$ 

# LABORATORY CONTROL SAMPLE EVALUATION REPORT

#### GC/MS Semivolatiles

Client Lot #...: 7K28188 Work Order #...: KDC7G1AC Matrix..... WATER

LCS Lot-Sample#: A7L040000-055

**Prep Date....:** 12/04/07 Analysis Date..: 12/07/07

**Prep Batch #...:** 7338055

Dilution Factor: 1 Final Wgt/Vol..: 2 mL

Initial Wgt/Vol: 1000 mL

·	PERCENT	RECOVERY	
PARAMETER	RECOVERY	LIMITS	METHOD
1,2,4-Trichloro-	51	(25 - 110)	SW846 8270C
benzene			
Acenaphthene	64	(40 - 110)	SW846 8270C
2,4-Dinitrotoluene	70	(52 - 123)	SW846 8270C
Pyrene	63	(55 - 120)	SW846 8270C
N-Nitrosodi-n-propyl- amine	74	(37 - 121)	SW846 8270C
1,4-Dichlorobenzene	81	(19 - 110)	SW846 8270C
Pentachlorophenol	44	(26 - 110)	SW846 8270C
Phenol	59	(14 - 112)	SW846 8270C
2-Chlorophenol	58	(27 - 110)	SW846 8270C
4-Chloro-3-methylphenol	65	(39 - 110)	SW846 8270C
4-Nitrophenol	73	(12 ~ 130)	SW846 8270C
		PERCENT	RECOVERY
SURROGATE		RECOVERY	LIMITS
Nitrobenzene-d5		74	(27 - 111)
2-Fluorobiphenyl		61	(28 - 110)
Terphenyl-d14		68	(37 - 119)
Phenol-d5		59	(10 - 110)
2-Fluorophenol		61	(10 - 110)
2,4,6-Tribromophenol		63	(22 - 120)

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

# LABORATORY CONTROL SAMPLE DATA REPORT

#### GC/MS Semivolatiles

Client Lot #...: 7K28188 Work Order #...: KDC7G1AC Matrix......: WATER

LCS Lot-Sample#: A7L040000-055

Prep Date....: 12/04/07 Analysis Date..: 12/07/07

Prep Batch #...: 7338055

Dilution Factor: 1

Final Wgt/Vol..: 2 mL

Initial Wgt/Vol: 1000 mL

	SPIKE	MEASURED		PERCENT		
PARAMETER	TUOMA	AMOUNT	UNITS	RECOVERY	METHOD	
1,2,4-Trichloro-	20	10	ug/L	51	SW846 8270C	
benzene						
Acenaphthene	20	13	ug/L	64	SW846 8270C	
2,4-Dinitrotoluene	20	14	ug/L	70	SW846 8270C	
Pyrene	20	13	ug/L	63	SW846 8270C	
N-Nitrosodi-n-propyl-	20	15	ug/L	74	SW846 8270C	
amine						
1,4-Dichlorobenzene	20	16	ug/L	81	SW846 8270C	
Pentachlorophenol	20	8.9	ug/L	44	SW846 8270C	
Phenol	20	12	ug/L	59	SW846 8270C	
2-Chlorophenol	20	12	ug/L	58	SW846 8270C	
4-Chloro-3-methylphenol	20	13	ug/L	65	SW846 8270C	
4-Nitrophenol	20	15	ug/L	73	SW846 8270C	
		PERCENT	RECOVERY			
SURROGATE		RECOVERY	LIMITS	_		
Nitrobenzene-d5		74	(27 - 111	)		
2-Fluorobiphenyl		61	(28 - 110)	)		
Terphenyl-d14		68	(37 - 119)	)		
Phenol-d5		59	(10 - 110)	)		
2-Fluorophenol		61	(10 - 110)	)		
2,4,6-Tribromophenol		63	(22 - 120)	)		

# NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

#### MATRIX SPIKE SAMPLE EVALUATION REPORT

#### GC/MS Semivolatiles

Client Lot #...: 7K28188 Work Order #...: KC4CG1AF-MS Matrix.....: WATER

**MS Lot-Sample #:** A7K290238-009 KC4CG1AG-MSD

Date Sampled...: 11/28/07 15:20 Date Received..: 11/29/07
Prep Date....: 12/02/07 Analysis Date..: 12/05/07

Prep Batch #...: 7335042

Dilution Factor: 1 Initial Wgt/Vol: 525 mL Final Wgt/Vol.: 2 mL

		_			_	
	PERCENT	RECOVERY		RPD		
PARAMETER	RECOVERY_	LIMITS	RPD	LIMITS	METHO	)
1,2,4-Trichloro- benzene	61	(25 - 110)			SW846	8270C
	64	(25 - 110)	5.6	(0-30)	SW846	8270C
Acenaphthene	69	(36 - 110)				8270C
	69	(36 - 110)	0.82	(0-30)		8270C
2,4-Dinitrotoluene	79	(46 - 119)				8270C
	83	(46 - 119)	4.9	(0-30)		8270C
Pyrene	74	(54 - 115)				8270C
	77	(54 - 115)	3.7	(0-30)		8270C
N-Nitrosodi-n-propyl- amine	73	(25 - 119)			SW846	8270C
	75	(25 - 119)	2.4	(0-30)	SW846	8270C
1,4-Dichlorobenzene	98	(17 - 110)			SW846	8270C
	102	(17 - 110)	4.3	(0-30)	SW846	8270C
Pentachlorophenol	44	(23 - 110)				8270C
•	48	(23 - 110)	9.3	(0-30)	SW846	8270C
Phenol	66	(16 - 110)			SW846	8270C
	68	(16 - 110)	3.6	(0-30)	SW846	8270C
2-Chlorophenol	65	(26 - 110)			SW846	8270C
_	69	(26 - 110)	6.2	(0-30)		8270C
4-Chloro-3-methylphenol	66	(33 - 110)				8270C
<del>-</del>	68	(33 - 110)	2.6	(0-30)		8270C
4-Nitrophenol	70	(13 - 127)			SW846	8270C
- -	68	(13 - 127)	2.6	(0-30)		8270C
		PERCENT		RECOVERY		
SURROGATE	_	RECOVERY		LIMITS		
Nitrobenzene-d5		76		(27 - 113		*
		73		(27 - 113		
2-Fluorobiphenyl		72		(28 - 110	))	
		67		(28 - 110		
Terphenyl-d14		86 .		(37 - 119)		
		82		(37 - 119)		
Phenol-d5		69		(10 - 110		
		67		(10 - 110	))	
2-Fluorophenol		67		(10 - 110	))	
		66		(10 - 110)	))	

(Continued on next page)

# MATRIX SPIKE SAMPLE EVALUATION REPORT

#### GC/MS Semivolatiles

Client Lot #...: 7K28188 Work Order #...: KC4CG1AF-MS Matrix.....: WATER

MS Lot-Sample #: A7K290238-009 KC4CG1AG-MSD

SURROGATE	PERCENT RECOVERY	RECOVERY LIMITS
2,4,6-Tribromophenol	68 64	(22 - 120) (22 - 120)

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

#### MATRIX SPIKE SAMPLE DATA REPORT

# GC/MS Semivolatiles

Client Lot #...: 7K28188 Work Order #...: KC4CG1AF-MS Matrix.....: WATER

Prep Date....: 12/02/07 Analysis Date.:: 12/05/07

Prep Batch #...: 7335042

Dilution Factor: 1 Initial Wgt/Vol: 525 mL Final Wgt/Vol.: 2 mL

	SAMPLE	SPIKE	MEASRD		PERCNT			
PARAMETER	AMOUNT	AMT .	AMOUNT	UNITS	RECVRY	RPD	METHO	
1,2,4-Trichloro-	ND	38	23	ug/L	61		SW846	8270C
benzene						•		
	ND	38	25	ug/L	64	5.6	SW846	8270C
Acenaphthene	ND	38	26	ug/L	69		SW846	8270C
	ND	38	26	ug/L	69	0.82	SW846	8270C
2,4-Dinitrotoluene	ND	38	30	${ m ug/L}$	79		SW846	8270C
	ND	38	32	ug/L	83	4.9	SW846	8270C
Pyrene	ND	38	28	ug/L	74		SW846	8270C
	ND	38	29	${\tt ug/L}$	77	3.7	SW846	8270C
N-Nitrosodi-n-propyl- amine	ND	38	28	ug/L	73		SW846	8270C
	ND	38	29	ug/L	75	2.4	SW846	8270C
1,4-Dichlorobenzene	ND	38	37	ug/L	98		SW846	8270C
	ND	38	39	ug/L	102	4.3	SW846	8270C
Pentachlorophenol	ND	38	17	ug/L	44		SW846	8270C
	ND	38	18	ug/L	48	9.3	SW846	8270C
Phenol	ND	38	25	ug/L	66		SW846	8270C
	ND	38	26	ug/L	68	3.6	SW846	8270C
2-Chlorophenol	ND	38	25	ug/L	65		SW846	8270C
	ND	38	26	ug/L	69	6.2	SW846	8270C
4-Chloro-3-methylphenol	ND	38	25	ug/L	66		SW846	8270C
•	ND	38	26	ug/L	68	2.6	SW846	8270C
4-Nitrophenol	ND	38	26	ug/L	70		SW846	8270C
	ND ·	38	26	ug/L	68	2.6	SW846	8270C
		P	ERCENT		RECOVERY			
SIIRROGATE		D	ECOVERY		T.TMTTS			

	PERCENT	RECOVERY
SURROGATE	RECOVERY	LIMITS
Nitrobenzene-d5	76	(27 - 111)
	73	(27 - 111)
2-Fluorobiphenyl	72	(28 - 110)
	67	(28 - 110)
Terphenyl-d14	86	(37 - 119)
	82	(37 - 119)
Phenol-d5	69	(10 - 110)
	67	(10 - 110)
2-Fluorophenol	67	(10 - 110)
	66	(10 - 110)

(Continued on next page)

#### MATRIX SPIKE SAMPLE DATA REPORT

# GC/MS Semivolatiles

Client Lot #...: 7K28188 Work Order #...: KC4CG1AF-MS Matrix.....: WATER

MS Lot-Sample #: A7K290238-009 KC4CG1AG-MSD

 SURROGATE
 PERCENT RECOVERY LIMITS

 2,4,6-Tribromophenol
 68 (22 - 120) 64 (22 - 120)

NOTE (S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

#### MATRIX SPIKE SAMPLE EVALUATION REPORT

# GC/MS Semivolatiles

Client Lot #...: 7K28188 Work Order #...: KDCFE1AL-MS Matrix..... WATER

MS Lot-Sample #: A7L030168-003 KDCFE1AM-MSD

Date Sampled...: 11/29/07 09:30 Date Received..: 11/30/07 Prep Date....: 12/04/07 Analysis Date..: 12/07/07

Prep Batch #...: 7338055

Dilution Factor: 1 Initial Wgt/Vol: 525 mL Final Wgt/Vol.: 2 mL

		<b>3</b> , *			
	PERCENT	RECOVERY		RPD	,
PARAMETER	RECOVERY	LIMITS	RPD	LIMITS	METHOD
1,2,4-Trichloro-	57	(25 - 110)			SW846 8270C
benzene					•
	55	(25 ~ 110)	3.0	(0-30)	SW846 8270C
Acenaphthene	65	(36 - 110)			SW846 8270C
	65	(36 - 110)	0.01	(0-30)	SW846 8270C
2,4-Dinitrotoluene	75	(46 - 119)			SW846 8270C
	76	(46 - 119)	1.2	(0-30)	SW846 8270C
Pyrene	63	(54 - 115)			SW846 8270C
	62	(54 - 115)	0.67	(0-30)	SW846 8270C
N-Nitrosodi-n-propyl- amine	84	(25 - 119)			SW846 8270C
	78	(25 - 119)	7.3	(0-30)	SW846 8270C
1,4-Dichlorobenzene	87	(17 - 110)			SW846 8270C
	79	(17 - 110)	10	(0-30)	SW846 8270C
Pentachlorophenol	39	(23 - 110)			SW846 8270C
	33	(23 - 110)	18	(0-30)	SW846 8270C
Phenol	63	(16 - 110)			SW846 8270C
	60	(16 - 110)	4.8	(0-30)	SW846 8270C
2-Chlorophenol	57	(26 - 110)			SW846 8270C
-	55	(26 - 110)	4.8	(0-30)	SW846 8270C
4-Chloro-3-methylphenol	61	(33 - 110)			SW846 8270C
	59	(33 - 110)	2.7	(0-30)	SW846 8270C
4-Nitrophenol	78	(13 - 127)	,		SW846 8270C
•	80	(13 - 127)	2.8	(0-30)	SW846 8270C
		PERCENT		RECOVERY	
SURROGATE	_	RECOVERY		LIMITS	
Nitrobenzene-d5	-	82		(27 - 111	L)
•		75		(27 - 111	L)
2-Fluorobiphenyl		62		(28 - 110)	))
		60		(28 - 110	
Terphenyl-d14		63		(37 - 119	
- <b>-</b>	•	59		(37 - 119	
Phenol-d5		61		(10 - 110	
		57		(10 - 110	
2-Fluorophenol		58		(10 - 110	
•		55		(10 - 110	
		- <del>-</del>		, = 0	• •

(Continued on next page)

#### MATRIX SPIKE SAMPLE EVALUATION REPORT

# GC/MS Semivolatiles

Client Lot #...: 7K28188 Work Order #...: KDCFE1AL-MS Matrix....: WATER MS Lot-Sample #: A7L030168-003 KDCFE1AM-MSD

SURROGATE	PERCENT RECOVERY	RECOVERY LIMITS
2,4,6-Tribromophenol	49 46	(22 - 120) (22 - 120)

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

#### MATRIX SPIKE SAMPLE DATA REPORT

# GC/MS Semivolatiles

Client Lot #...: 7K28188 Work Order #...: KDCFE1AL-MS Matrix.....: WATER

MS Lot-Sample #: A7L030168-003 KDCFE1AM-MSD

Date Sampled...: 11/29/07 09:30 Date Received..: 11/30/07 Prep Date....: 12/04/07 Analysis Date..: 12/07/07

Prep Batch #...: 7338055

Dilution Factor: 1 Initial Wgt/Vol: 525 mL Final Wgt/Vol.: 2 mL

	SAMPLE	SPIKE	MEASRD		PERCNT		
PARAMETER	AMOUNT	AMT	AMOUNT	UNITS	RECVRY	RPD	METHOD
1,2,4-Trichloro-	ND	38	22	ug/L	57		SW846 8270C
benzene							
	ND	38	21	ug/L	55	3.0	SW846 8270C
Acenaphthene	ND	38	25	ug/L	65		SW846 8270C
	ND	38	25	ug/L	65	0.01	SW846 8270C
2,4-Dinitrotoluene	ND	38	28	ug/L	75		SW846 8270C
	ND	38	29	ug/L	76	1.2	SW846 8270C
Pyrene	· ND	38	24	ug/L	63		SW846 8270C
	ND	38	24	ug/L	62	0.67	SW846 8270C
N-Nitrosodi-n-propyl-	ND	38	32	ug/L	84		SW846 8270C
amine							
	ND	38	30	ug/L	78	7.3	SW846 8270C
1,4-Dichlorobenzene	ND	38	33	ug/L	87		SW846 8270C
	ND	38	30	ug/L	79	10	SW846 8270C
Pentachlorophenol	ND	38	15	ug/L	39		SW846 8270C
· -	ND	38	13	ug/L	33	18	SW846 8270C
Phenol	ND	38	24	ug/L	63		SW846 8270C
	ND	38	23	ug/L	60	4.8	SW846 8270C
2-Chlorophenol	ND	38	22	ug/L	57		SW846 8270C
-	ND	38	21	ug/L	55	4.8	SW846 8270C
4-Chloro-3-methylphenol	ND	38	23	ug/L	61		SW846 8270C
<b>4</b> *	ND	38	23	ug/L	59	2.7	SW846 8270C
4-Nitrophenol	ND	38	30	ug/L	78		SW846 8270C
<b>F</b>	ND	38	31	ug/L		2.8	SW846 8270C

	PERCENT	RECOVERY
SURROGATE	RECOVERY	LIMITS
Nitrobenzene-d5	82	(27 - 111)
	75	(27 - 111)
2-Fluorobiphenyl	62	(28 - 110)
	60	(28 - 110)
Terphenyl-d14	63	(37 - 119)
	59	(37 - 119)
Phenol-d5	61	(10 - 110)
•	57	(10 - 110)
2-Fluorophenol	58	(10 - 110)
	55	(10 - 110)

(Continued on next page)

#### MATRIX SPIKE SAMPLE DATA REPORT

#### GC/MS Semivolatiles

 Client Lot #...: 7K28188
 Work Order #...: KDCFE1AL-MS
 Matrix.....: WATER

 MS Lot-Sample #: A7L030168-003
 KDCFE1AM-MSD

 SURROGATE
 PERCENT RECOVERY LIMITS

 2,4,6-Tribromophenol
 49 (22 - 120) 46 (22 - 120)

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

Bold print denotes control parameters

RE

SAMPLE CALC

**SAMPLE ID RW-01S-112707** 

IS AREA

DILUTION COMPOUND OF INTEREST AREA IS AMOUNT (NG) Volume Purged (ML)

1586507 50

1384948 5 0.3004

AVE RRF CONCENTRATION PPB

1453.13

Data File: \\cansvr11\dd\chem\MSV\a3ux10.i\P71204A.b\UXX8823.D

Report Date: 04-Dec-2007 13:55

#### STL Inc North Canton

VOLATILE REPORT SW-846 Method

Data file : \\cansvr11\dd\chem\MSV\a3ux10.i\P71204A.b\UXX8823.D

Lab Smp Id: KCOW21CD Client Smp ID: RW-01S-112707

Inj Date : 04-DEC-2007 12:15

Operator: 1904 Inst ID: a3ux10.i

Smp Info : KCOW21CD, 0.1ML/5ML

Misc Info: P71204A, 8260LLUX10,,1904

Comment

Method : \\cansvr11\\dd\chem\MSV\a3ux10.i\P71204A.b\\8260LLUX10.m

Meth Date: 04-Dec-2007 10:12 a3ux10.i Quant Type: ISTD

Als bottle: 9

Dil Factor: 1.00000

Integrator: HP RTE Compound Sublist: 4-8260+IX.sub

Target Version: 4.14
Processing Host: CANSVR11

Concentration Formula: Amt * DF * 1/Vo * CpndVariable

Name	Value	Description
DF Vo	1.000	Dilution Factor Sample volume
Va	100.000	Injection Volume
Cpnd Variable		Local Compound Variable

			CONCENT	RATIONS
		QUANT SIG	ON-COLUMN	FINAL
Compo	ounds	MASS	RT EXP RT REL RT RESPONSE ( ng)	( ug/L)
		====	==== ==================================	******
* ]	Fluorobenzene	96	5.383 5.374 (1.000) 1586507 50.0000	
* 2	Chlorobenzene-d5	117	8.069 8.072 (1.000) 1288448 50.0000	
* 3	3 1,4-Dichlorobenzene-d4	152	10.329 10.332 (1.000) 859248 50.0000	
\$ 4	Dibromofluoromethane	113	4.803 4.794 (0.892) 377947 45.8588	458.59
\$ 5	1,2-Dichloroethane-d4	65	5.087 5.090 (0.945) 362775 39.7233	397.23
\$ 6	5 Toluene-d8	98 '	6.743 6.746 (0.836) 1182500 42.0869	420.87
\$ 7	Bromofluorobenzene	95	9.193 9.184 (1.139) 529105 47.6313	476.31
8	B Dichlorodifluoromethane	85	Compound Not Detected.	
9	Chloromethane	50	Compound Not Detected.	
10	) Vinyl Chloride	62	1.845 1.848 (0.343) 159308 14.1106	141.10
13	Bromomethane	94	Compound Not Detected.	
12	2 Chloroethane	64	Compound Not Detected.	
13	3 Trichlorofluoromethane	101	Compound Not Detected.	
15	Acrolein	56	Compound Not Detected.	
16	Acetone	43	Compound Not Detected.	
17	1 1,1-Dichloroethene	96	Compound Not Detected.	
18	Freon-113	151	Compound Not Detected.	
19	3 Iodomethane	142	Compound Not Detected.	
20	Carbon Disulfide	76	Compound Not Detected.	
21	. Methylene Chloride	84	3.324 3.327 (0.618) 12105 0.97219	9.722

Data File:  $\c NSVr11\d Chem\MSV\a3ux10.i\P71204A.b\UXX8823.D$  Report Date: 04-Dec-2007 13:55

				CONCENTRA	ATIONS
		QUANT SIG		ON-COLUMN	FINAL
Co	ompounds	MASS	RT EXP RT REL RT RESPONSE	( ng)	( ug/L)
==		====	==== ======= ==========================	======	======
	24 Methyl tert-butyl ether	73	Compound Not Detected.		
	25 trans-1,2-Dichloroethene	96	Compound Not Detected.		
	26 Hexane	86	Compound Not Detected.		
	27 Vinyl acetate	43	Compound Not Detected.		
	28 1,1-Dichloroethane	63	Compound Not Detected.		
	29 tert-Butyl Alcohol	59	Compound Not Detected.		
	30 2-Butanone	43	Compound Not Detected.		
М	31 1,2-Dichloroethene (total)	96	466657	45.8673	458.67
	32 cis-1,2-dichloroethene	96	4.400 4.403 (0.818) 466657	45.8673	458.67
	33 2,2-Dichloropropane	77	Compound Not Detected.		
	34 Bromochloromethane	128	Compound Not Detected.		•
	35 Chloroform	83	Compound Not Detected.		
	36 Tetrahydrofuran	42	Compound Not Detected.		
	37 1,1,1-Trichloroethane	97	Compound Not Detected.		
	38 1,1-Dichloropropene	75	Compound Not Detected.		
	39 Carbon Tetrachloride	117	Compound Not Detected.		
	40 1,2-Dichloroethane	62	5.158 5.161 (0.958) 9777	0.87818	8.782
	41 Benzene	78	Compound Not Detected	_	
	42 Trichloroethene	130	5.690 5.693 (1.057) 1384948	) _{145.312}	1453.1
	43 1,2-Dichloropropane	63	Compound Not Detected.		
	44 1,4-Dioxane	88	5.986 5.989 (1.112) 4051	42.8171	428.17
	45 Dibromomethane	93	Compound Not Detected.		
	46 Bromodichloromethane	83	Compound Not Detected.		
	47 2-Chloroethyl vinyl ether	63	Compound Not Detected.		
	48 cis-1,3-Dichloropropene	75	Compound Not Detected.		
	49 4-Methyl-2-pentanone	43	Compound Not Detected.		
	50 Toluene	91	Compound Not Detected.		
	51 trans-1,3-Dichloropropene	75	Compound Not Detected.		
	52 Ethyl Methacrylate	69	Compound Not Detected.		
	53 1,1,2-Trichloroethane	97	Compound Not Detected.		
	54 1,3-Dichloropropane	76	Compound Not Detected.		
	55 Tetrachloroethene	164	Compound Not Detected.		
	56 2-Hexanone	43	Compound Not Detected.		
	57 Dibromochloromethane	129	Compound Not Detected.		
	58 1,2-Dibromoethane	107	Compound Not Detected.		•
	59 Chlorobenzene	112	Compound Not Detected.		
	60 1,1,1,2-Tetrachloroethane	131	Compound Not Detected.		
	61 Ethylbenzene	106	Compound Not Detected.		
	62 m + p-Xylene	106	Compound Not Detected.		
М	63 Xylenes (total)	106	Compound Not Detected.		
	64 Xylene-o	106	Compound Not Detected.		
	65 Styrene	104	Compound Not Detected.		
	66 Bromoform	173	Compound Not Detected.		
	67 Isopropylbenzene	105	Compound Not Detected.		
	68 1,1,2,2-Tetrachloroethane	83	Compound Not Detected.		
	69 1,4-Dichloro-2-butene	53	Compound Not Detected.	,	
	70 1,2,3-Trichloropropane	110	Compound Not Detected.		
	71 Bromobenzene	156	Compound Not Detected.		
	72 n-Propylbenzene	120	Compound Not Detected.		
	73 2-Chlorotoluene	126	Compound Not Detected.		
	74 1,3,5-Trimethylbenzene	105	Compound Not Detected.		
	75 4-Chlorotoluene	126	Compound Not Detected.		
	'2 4 OUTOTOCOTREUE	120	compound not betected.		

SAMPLE CALC

SAMPLE ID: RW-01S-112707

COMPOUND: 1,4-DIOXANE

IS AREA

DILUTION COMPOUND OF INTEREST AREA IS AMOUNT (NG)

Final Extract Volume (uL) AVE RRF CONCENTRATION PPB 2000

0.4373

95.55

345702

5

379138

2

Sample Volume (ML) 1050

Injection volume (uL) 0.5

Data File: \\cansvr11\\dd\chem\MSS\a4ag2.i\\71202A.b\\KC0W21CE.D Page 1

Report Date: 03-Dec-2007 08:09

#### TestAmerica North Canton

Semivolatile REPORT SW-846 Method 8270

Data file: \\cansvr11\dd\chem\MSS\a4ag2.i\71202A.b\KC0W21CE.D

Lab Smp Id: KC0W21CE Client Smp ID: RW-01S-112707

: 02-DEC-2007 21:07 Inj Date

: 046900 In: : KCOW21CE,71202A.b,8270P,14D.SUB Inst ID: a4ag2.i Operator

Smp Info

Misc Info:

Comment

: \\cansvr11\dd\chem\MSS\a4ag2.i\71202A.b\8270p.m Method Meth Date: 03-Dec-2007 08:04 hulat Quant Type: ISTD Cal File: 2AML1130.D Cal Date : 30-NOV-2007 12:04

Als bottle: 37

Dil Factor: 5.00000

Compound Sublist: 14D.SUB Integrator: HP RTE

Target Version: 4.14

Processing Host: CANPMSSV04

Concentration Formula: Amt * DF * Uf * Vt/(Vo * Vi) * CpndVariable

Name	Value	Description
DF	5.000	Dilution Factor
Uf	1.000	ng unit correction factor
۷t	2000.000	Volume of final extract (uL)
Vo	1050.000	Volume of sample extracted (mL)
Vi	0.50000	Volume injected (uL)
Cpnd Variable		Local Compound Variable

				CONCENTRA	ATIONS
QUANT SIG	•			ON-COLUMN	FINAL
MASS	RT	EXP RT R	EL RT RESPONSE	( NG)	( ug/L)
	====			======	======
152	3.707	3.713 (1.	000) 345702	2.00000	(Q)
136	4.607	4.613 (1.	000) 1566634	2.00000	
164	5.877	5.883 (1.	000) 867382	2.00000	
188	6.971	6.971 (1.	000) 1567149	2.00000	
240	8.954	8.960 (1.	000) 1614512	2.00000	
264	10.524	10.524 (1.	000) 1589504	2.00000	
88	1.878	1.889 (0.	507) 379138	5.01638	95.550 (QM)
82	4.089	4.089 (0.	888) 179045	0.58696	11.180
172	5.366	5.366 (0.	913) 348151	0.57566	10.965
244	8.112	8.113 (0.	906) 544541	0.76053	14.486
99	3.401	3.407 (0.	917) 107168	0.34037	6.4832
112	2.825	2.830 (0.	762) 119840	0.52638	10.026
330	6.454	6.454 (1.	098) 81623	1.10648	21.076
	MASS 152 136 164 188 240 264 88 82 172 244 99 112	MASS RT  152 3.707 136 4.607 164 5.877 188 6.971 240 8.954 264 10.524 88 1.878 82 4.089 172 5.366 244 8.112 99 3.401 112 2.825	MASS RT EXP RT R	MASS         RT         EXP RT         REL RT         RESPONSE           152         3.707         3.713         (1.000)         345702           136         4.607         4.613         (1.000)         1566634           164         5.877         5.883         (1.000)         867382           188         6.971         6.971         (1.000)         1567149           240         8.954         8.960         (1.000)         1614512           264         10.524         10.524         (1.000)         1589504           88         1.878         1.889         (0.507)         379138           82         4.089         4.089         (0.888)         179045           172         5.366         5.366         (0.913)         348151           244         8.112         8.113         (0.906)         544541           99         3.401         3.407         (0.917)         107168           112         2.825         2.830         (0.762)         119840	MASS         RT         EXP RT         REL RT         RESPONSE         ( NG)           152         3.707         3.713 (1.000)         345702         2.00000           136         4.607         4.613 (1.000)         1566634         2.00000           164         5.877         5.883 (1.000)         867382         2.00000           188         6.971         6.971 (1.000)         1567149         2.00000           240         8.954         8.960 (1.000)         1614512         2.00000           264         10.524         10.524 (1.000)         1589504         2.00000           88         1.878         1.889 (0.507)         379138         5.01638           82         4.089         4.089 (0.888)         179045         0.58696           172         5.366         5.366 (0.913)         348151         0.57566           244         8.112         8.113 (0.906)         544541         0.76053           99         3.401         3.407 (0.917)         107168         0.34037           112         2.825         2.830 (0.762)         119840         0.52638

QC Flag Legend

Q - Qualifier signal failed the ratio test.



## **Tetra Tech NUS**

#### INTERNAL CORRESPONDENCE

TO:

M.MARTIN

DATE:

**FEBRUARY 28, 2008** 

FROM:

**TERRI L. SOLOMON** 

COPIES:

**DV FILE** 

SUBJECT:

INORGANIC DATA VALIDATION - VOCS, 1,4-DIOXANE, SELECT METALS,

SELECT DISSOLVED METALS, pH

**LOCKHEED MIDDLE RIVER** 

SAMPLE DELIVERY GROUP (SDG) - 7L12224

SAMPLES:

9/Aqueous/

MW74A-121107

MW74A-121207 RW-01I-121207 MW74A-121407 RW-01I121407

RW-01I-121107 TB-121107

TB-121207

TB-121407

#### Overview

The sample set for Lockheed Middle River, SDG 7L12224, consists of nine (9) aqueous environmental samples. No field duplicate pairs were included within this SDG.

All samples were analyzed for volatile organic compounds (VOCs). Samples MW74A-121107, MW74A-121207, MW74A-121407, RW-01I-121107, RW-01I-121207 and RW-01I121407 were also analyzed for 1,4-dioxane, select total and dissolved metals including antimony, arsenic, barium, beryllium, cadmium, chromium, cobalt, copper, lead, mercury, molybdenum, nickel, selenium, silver, thallium, vanadium and zinc, and pH. The samples were collected by Tetra Tech NUS on December 11, 12 and 14, 2007 and analyzed by Test America. VOC analyses were conducted using SW-846 method 8260B and 1,4-dioxane analyses were conducted using SW-846 method 6020. Mercury analyses were conducted using SW-846 method 6020. Mercury analyses were conducted using SW-846 method 9040B.

The findings offered in this report are based upon a general review of all available data. The data review was based on data completeness, holding times, initial and continuing calibration verification results, surrogate recoveries, laboratory method / preparation blank results, ICP interference results, laboratory control sample recoveries, matrix spike / matrix spike duplicate recoveries, laboratory duplicate results, ICP serial dilution results, internal standard results, detection limits and analyte quantitation.

Areas of concern with respect to data quality are listed below.

### Major Problems

 Several initial and continuing calibration relative response factors (RRFs) for tertiary-butyl alcohol were < 0.05 quality control limit affecting all samples. The nondetected results reported for tertiary-butyl alcohol were qualified as rejected, "UR". TO: M. MARTIN - PAGE 2 DATE: FEBRUARY 28, 2008

#### Minor Problems

- The initial calibration relative standard deviation (%RSD) on 12-20-07 instrument A3UX10 for acetone was > 30% quality control limit affecting all samples. The positive result reported for acetone for sample TB-121207 was qualified as estimated, "J".
- The continuing calibration percent difference (%D) on 12-21-07 10:52 instrument A3UX10 for vinyl acetate was > 50% quality control limit affecting samples MW74A-121207, RW-01I-121207 and TB-121207. The nondetected results reported for vinyl acetate in the affected samples were qualified as estimated, "UJ.
- The following contaminants were detected in the laboratory method/preparation blanks at the following maximum concentrations:

	<u>Maximum</u>	<u>Action</u>
<u>Analyte</u>	<u>Concentration</u>	<u>Level</u>
1,2,3-trichlorobenzene ⁽¹⁾	0.51 ug/L	2.55 ug/L
1,2,4-trichlorobenzene ⁽¹⁾	0.27 ug/L	1.35 ug/ <b>L</b>
Chloroform ⁽¹⁾	0.22 ug/L	1.1 ug/L
Naphthalene ⁽¹⁾	0.63 ug/L	3.15 ug/L

Maximum concentration present in a trip blank affecting samples MW74A-121107 and RW-01I-121107.

	<u>Maximum</u>	<u>Action</u>
<u>Analyte</u>	<u>Concentration</u>	<u>Level</u>
1,2,3-trichlorobenzene ⁽²⁾	0.54 ug/L	2.7 ug/L
1,2,4-trichlorobenzene ⁽²⁾	0.28 ug/L	1.4 ug/L
Acetone ⁽³⁾	1.5 ug/L	7.5 ug/ <b>L</b> .
Naphthalene ⁽²⁾	0.60 ug/L	3.0 ug/L

(2) Maximum concentration present in a method blank affecting samples MW74A-121207 and RW-01I-121207.

Maximum concentration present in a trip blank affecting samples MW74A-121207 and RW-01I-121207.

	<u>Maximum</u>	<u>Action</u>
<u>Analyte</u>	<u>Concentration</u>	<u>Level</u>
1,2,3-trichlorobenzene ⁽⁴⁾	0.52 ug/L	2.6 ug/L
1,2,4-trichlorobenzene ⁽⁵⁾	0.24 ug/L	1.2 ug/L
Naphthalene ⁽⁵⁾	0.49 ug/L	2.45 ug/L

(4) Maximum concentration present in a method blank affecting samples MW74A-121407 and RW-01I121407.

⁽⁵⁾ Maximum concentration present in a trip blank affecting samples MW74A-121407 and RW-01I121407.

	<u>Maximum</u>	<u>Action</u>
<u>Analyte</u>	Concentration	<u>Level</u>
Antimony	0.081 ug/L	0.405 ug/L
Chromium	0.33 ug/L	1.65 ug/L
Copper ⁽⁶⁾	0.061 ug/L	0.305 ug/L
Thallium ⁽⁶⁾	0.035 ug/L	0.175 ug/L
Zinc ⁽⁶⁾	2.3 ug/L.	11.5 ug/L

TO: M. MARTIN – PAGE 3 DATE: FEBRUARY 28, 2008

(6) Maximum concentration present in an aqueous preparation blank.

An action level of 5X the maximum contaminant level has been used to evaluate sample data for blank contamination. Sample aliquot and dilution factors, if applicable, were taken into consideration when evaluating for blank contamination. Positive results less than the blank action level reported for 1,2,4-trichlorobenzene, antimony, chromium and zinc were qualified "B" as a result of laboratory blank contamination.

- The ICP interference percent recovery for molybdenum was < 80% quality control limit affecting all samples. The positive and nondetected results reported for molybdenum were qualified as biased low, "L" and "UL", respectively
- The ICP serial dilution percent difference for cobalt was > 10% quality control limit affecting all samples. The positive results reported for cobalt were qualified as estimated, "J".

#### Notes

The continuing calibration %Ds on 12-26-07 10:14 for acetone and tertiary-butyl alcohol were > 25% quality control limit affecting samples MW74A-121407 and RW-01I121407. No validation actions were warranted for acetone as all sample results were nondetects. No validation actions were warranted for tertiary-butyl alcohol as all samples were rejected for a more severe noncompliance.

The contract required detection limit (CRDL) percent recovery for chromium was > 110% quality control limit affecting all samples. No validation actions were required as all results for chromium were either nondetects or were qualified as a result of blank contamination.

The nondetected results for the VOC and 1,4-dioxane analyses were reported to the reporting limit.

Positive results reported below the reporting limit (RL) but above the method detection limit (MDL) for the organic analyses were qualified as estimated, "J".

#### **Executive Summary**

**Laboratory Performance:** Several initial and continuing calibration RRFs for tertiary-butyl alcohol were < 0.05 quality control limit affecting all samples. The initial calibration %RSD for acetone was > 30% quality control limit affecting all samples. The continuing calibration %D on 12-21-07 10:52 for vinyl acetate was > 50% quality control limit affecting samples MW74A-121207, RW-011-121207 and TB-121207. Several contaminants were present in the laboratory method / preparation blanks. The ICP interference percent recovery for molybdenum was < 80% quality control limit affecting all samples.

Other Factors Affecting Data Quality: The ICP serial dilution percent difference for cobalt was > 10% quality control limit affecting all samples.

TO: M. MARTIN – PAGE 4 DATE: FEBRUARY 28, 2008

The data for these analyses were reviewed with reference to Region III modifications to the "National Functional Guidelines for Inorganic Data Validation", April 1993 and the "National Functional guidelines for Organic Data Review", September 1994.

The text of this report has been formulated to address only those problem areas affecting data quality.

Tetra Tech NUS Terri L. Solomon

Yerra Tech NUS

**Environmental Scientist** 

Joseph A. Samchuck Quality Assurance Officer

#### Attachments:

- 1. Appendix A Qualified Analytical Results
- 2. Appendix B Results as reported by the Laboratory
- 3. Appendix C Support Documentation

# APPENDIX A QUALIFIED ANALYTICAL RESULTS

## **Data Validation Qualifier Codes:**

A = Lab Blank Contamination

B = Field Blank Contamination

C = Calibration Noncompliance (e.g. % RSDs, %Ds, ICVs, CCVs, RRFs, etc.)

C01 = GC/MS Tuning Noncompliance

D = MS/MSD Recovery Noncompliance

E = LCS/LCSD Recovery Noncompliance

F = Lab Duplicate Imprecision

G = Field Duplicate Imprecision

H = Holding Time Exceedance

I = ICP Serial Dilution Noncompliance

J = GFAA PDS - GFAA MSA's r < 0.995 / ICP PDS Recovery Noncompliance

K = ICP Interference - includes ICS % R Noncompliance

L = Instrument Calibration Range Exceedance

M = Sample Preservation Noncompliance

N = Internal Standard Noncompliance

N01 = Internal Standard Recovery Noncompliance Dioxins

N02 = Recovery Standard Noncompliance Dioxins

N03 = Clean-up Standard Noncompliance Dioxins

O = Poor Instrument Performance (e.g. base-line drifting)

P = Uncertainty near detection limit (< 2 x IDL for inorganics and <CRQL for organics)

Q = Other problems (can encompass a number of issues; e.g. chromatography,interferences, etc.)

R = Surrogates Recovery Noncompliance

S = Pesticide/PCB Resolution

T = % Breakdown Noncompliance for DDT and Endrin

U = % Difference between columns/detectors >25% for positive results determined via GC/HPLC

V = Non-linear calibrations; correlation coefficient r < 0.995

W = EMPC result

X = Signal to noise response drop

Y = Percent solids <30%

Z = Uncertainty at 2 sigma deviation is greater than sample activity

nsample samp_date MW74A-121107DL

12/11/2007

lab_id A7L120224001 NM qc_type units UG/L

Pct_Solids DUP_OF:

nsample samp_date lab_id

qc_type units

Pct_Solids DUP_OF:

MW74A-121107DL

12/11/2007 A7L120224001

NM UG/L

nsample samp_date lab_id

MW74A-121107DL

12/11/2007 A7L120224001

qc_type NM UG/L

Pct_Solids DUP_OF:

units

Parameter	Result	Val Qual	Qual Code	Parameter	Result	Val Qual	Qual Code	Parameter	Result	Val Qual	Qual Code
1,1,2-TETRACHLOROETHANE	1700	U		BROMODICHLOROMETHANE	1700	U		TOLUENE	1700	U	
,1-TRICHLOROETHANE	1700	U		BROMOFORM	1700	U		TOTAL XYLENES	3300	U	
1,2,2-TETRACHLOROETHANE	1700	U		BROMOMETHANE	1700	U		TRANS-1,2-DICHLOROETHENE	1700	U	
1,2-TRICHLOROTRIFLUOROETHANE	1700	U		CARBON DISULFIDE	1700	U		TRANS-1,3-DICHLOROPROPENE	1700	U	
I-DICHLOROETHANE	1700	U		CARBON TETRACHLORIDE	1700	U		TRICHLOROETHENE	64000		
I-DICHLOROETHENE	1700	U		CHLOROBENZENE	1700	U		TRICHLOROFLUOROMETHANE	1700	U	
I-DICHLOROPROPENE	1700	U		CHLORODIBROMOMETHANE	1700	U		VINYL ACETATE	3300	U	
2,3-TRICHLOROBENZENE	1700	U		CHLOROETHANE	1700	U		VINYL CHLORIDE	1700	U	
2,3-TRICHLOROPROPANE	1700	U		CHLOROFORM	1700	Ú					<u> </u>
3.TDIMETHVI RENZENE	9300	11		CULODOMETHANE	1700	11		•			

Parameter	Result	Val Qual	Qual Code
1,1,1,2-TETRACHLOROETHANE	1700	U	
1,1,1-TRICHLOROETHANE	1700	U	
1,1,2,2-TETRACHLOROETHANE	1700	Ū	
1,1,2-TRICHLOROTRIFLUOROETHANE	1700	U	
1,1-DICHLOROETHANE	1700	U	
1,1-DICHLOROETHENE	1700	U	
1,1-DICHLOROPROPENE	1700	U	· · · · · · · · · · · · · · · · · · ·
1,2,3-TRICHLOROBENZENE	1700	U	
1,2,3-TRICHLOROPROPANE	1700	U	
1,2,3-TRIMETHYLBENZENE	8300	U	
1,2,4-TRICHLOROBENZENE	1700	U	
1,2,4-TRIMETHYLBENZENE	1700	υ	
1,2-DIBROMO-3-CHLOROPROPANE	3300	U	
1,2-DIBROMOETHANE	1700	U	
1,2-DICHLOROBENZENE	1700	U	
1,2-DICHLOROETHANE	1700	U	
1,2-DICHLOROPROPANE	1700	U	
1,3-DICHLOROBENZENE	1700	Ų	
1,3-DICHLOROPROPANE	1700	U	
1,4-DICHLOROBENZENE	1700	U	
2,2-DICHLOROPROPANE	1700	U	
2-BUTANONE	8300	U	
2-CHLOROETHYL VINYL ETHER	8300	U	
2-CHLOROTOLUENE	1700	U	
2-HEXANONE	8300	U	
4-CHLOROTOLUENE	1700	U	
4-ISOPROPYLTOLUENE	1700	U	
4-METHYL-2-PENTANONE	8300	U	
ACETONE	8300	U	
BENZENE	1700	U	
BROMOBENZENE	1700	U	
BROMOCHLOROMETHANE	1700	U	

BROMODICHLOROMETHANE	1700	U	
BROMOFORM	1700	U	
BROMOMETHANE	1700	U	
CARBON DISULFIDE	1700	U	
CARBON TETRACHLORIDE	1700	U	
CHLOROBENZENE	1700	U	
CHLORODIBROMOMETHANE	1700	U	
CHLOROETHANE	1700	U	
CHLOROFORM	1700	U	
CHLOROMETHANE	1700	U	
CIS-1,2-DICHLOROETHENE	2800		
CIS-1,3-DICHLOROPROPENE	1700	U	
DIBROMOMETHANE	1700	Ų	
DICHLORODIFLUOROMETHANE	1700	U	
DIISOPROPYL ETHER	8300	U	
ETHYL TERT-BUTYL ETHER	8300	U	
ETHYLBENZENE	1700	U	
HEXACHLOROBUTADIENE	1700	U	
ISOPROPYLBENZENE	1700	U	
M+P-XYLENES	3300	U	
METHYL TERT-BUTYL ETHER .	8300	U	
METHYLENE CHLORIDE	1700	U	
NAPHTHALENE	1700	U	
N-BUTYLBENZENE	1700	U	
N-PROPYLBENZENE	1700	U	
O-XYLENE	1700	U	
SEC-BUTYLBENZENE	1700	U	
STYRENE	1700	U	
TERT-AMYL METHYL ETHER	8300	U	
TERT-BUTYLBENZENE	1700	U	
TERTIARY-BUTYL ALCOHOL	33000	UR	С
TETRACHLOROETHENE	1700	U	

nsample samp_date MW74A-121207DL

Val

Qual

12/12/2007

A7L140260001

lab_id qc_type units

NM UG/L

Pct_Solids DUP_OF:

nsample samp_date lab_id qc_type

MW74A-121207DL 12/12/2007 A7L140260001

NM UG/L

Pct_Solids

nsample samp_date lab_id

12/12/2007 A7L140260001 NM

UG/L

MW74A-121207DL

qc_type units

Pct_Solids DUP_OF:

DUP_OF:

units

Parameter	Result	Val Qual	Qual Code
BROMODICHLOROMETHANE	1700	Ú	
BROMOFORM	1700	Ú	
BROMOMETHANE	1700	U	
CARBON DISULFIDE	1700	U	
CARBON TETRACHLORIDE	1700	Ü	
CHLOROBENZENE	1700	U	
CHLORODIBROMOMETHANE	1700	U	
CHLOROETHANE	1700	U	
CHLOROFORM	1700	Ü	
CHLOROMETHANE	1700	U	
CIS-1,2-DICHLOROETHENE	2300		
CIS-1 3-DICHI OPOPPODENE	1700		

Parameter TOLUENE	Result	Val Qual	Qual Code
	1700	Ü	-
TOTAL XYLENES	3300	U	
TRANS-1,2-DICHLOROETHENE	1700	U	
TRANS-1,3-DICHLOROPROPENE	1700	U	
TRICHLOROETHENE	64000		
TRICHLOROFLUOROMETHANE	1700	U	
VINYL ACETATE	3300	UJ	С
VINYL CHLORIDE	1700	U	

Parameter	Result	Qual	Code
1,1,1,2-TETRACHLOROETHANE	1700	U	
1,1,1-TRICHLOROETHANE	1700	U	-
1,1,2,2-TETRACHLOROETHANE	1700	U	
1,1,2-TRICHLOROTRIFLUOROETHANE	1700	U	
1,1-DICHLOROETHANE	1700	U	
1,1-DICHLOROETHENE	1700	U	
1,1-DICHLOROPROPENE	1700	U	
1,2,3-TRICHLOROBENZENE	1700	Ú	
1,2,3-TRICHLOROPROPANE	1700	U	
1,2,3-TRIMETHYLBENZENE	8300	U	
1,2,4-TRICHLOROBENZENE	1700	U	
1,2,4-TRIMETHYLBENZENE	1700	U	
1,2-DIBROMO-3-CHLOROPROPANE	3300	U	
1,2-DIBROMOETHANE	1700	U	
1,2-DICHLOROBENZENE	1700	U	
1,2-DICHLOROETHANE	1700	U	
1,2-DICHLOROPROPANE	1700	U	
1,3-DICHLOROBENZENE	1700	U	
1,3-DICHLOROPROPANE	1700	U	
1,4-DICHLOROBENZENE	1700	U	
2,2-DICHLOROPROPANE	1700	U	
2-BUTANONE	8300	U	
2-CHLOROETHYL VINYL ETHER	8300	υ	
2-CHLOROTOLUENE	1700	U	
2-HEXANONE	8300	U	
4-CHLOROTOLUENE	1700	U	
4-ISOPROPYLTOLUENE	1700	U	
4-METHYL-2-PENTANONE	8300	U	
ACETONE	8300	U	
BENZENE	1700	U	
BROMOBENZENE	1700	U	
BROMOCHLOROMETHANE	1700	U	

i alametei	Hesuit	Quai	Code
BROMODICHLOROMETHANE	1700	U	
BROMOFORM	1700	Ų	
BROMOMETHANE	1700	U	
CARBON DISULFIDE	1700	U	
CARBON TETRACHLORIDE	1700	Ų	† <del></del> -
CHLOROBENZENE	1700	Ų	
CHLORODIBROMOMETHANE	1700	U	-
CHLOROETHANE	1700	U	
CHLOROFORM	1700	Ü	
CHLOROMETHANE	1700	U	
CIS-1,2-DICHLOROETHENE	2300		
CIS-1,3-DICHLOROPROPENE	1700		
DIBROMOMETHANE	1700	U	
DICHLORODIFLUOROMETHANE	1700	U	
DIISOPROPYL ETHER	8300	U	
ETHYL TERT-BUTYL ETHER	8300	U	
ETHYLBENZENE	1700	U	
HEXACHLOROBUTADIENE	1700	U	
ISOPROPYLBENZENE	1700	U	
M+P-XYLENES	3300	U	
METHYL TERT-BUTYL ETHER	8300	U	
METHYLENE CHLORIDE	1700	U	
NAPHTHALENE	1700	U	
N-BUTYLBENZENE	1700	U	
N-PROPYLBENZENE	1700	U	
O-XYLENE	1700	U	
SEC-BUTYLBENZENE	1700	U	
STYRENE	1700	U	
TERT-AMYL METHYL ETHER	8300	U	
TERT-BUTYLBENZENE	1700	U	
TERTIARY-BUTYL ALCOHOL	33000	UR	С
TETRACHLOROETHENE	1700	U	
<del></del>			

nsample

MW74A-121407DL

samp_date lab_id 12/14/2007 A7L150155001

qc_type units NM UG/L

Pct_Solids DUP_OF:

nsample samp_date lab_id

qc_type

units

MW74A-121407DL

12/14/2007 A7L150155001

NM

UG/L

Pct_Solids DUP_OF:

nsample

MW74A-121407DL

samp_date

12/14/2007 A7L150155001

qc_type units

lab_id

NM UG/L

Pct_Solids DUP_OF:

Parameter	Result	Val Qual	Qual Code
1,1,1,2-TETRACHLOROETHANE	2000	U	
1,1,1-TRICHLOROETHANE	2000	U	
1,1,2,2-TETRACHLOROETHANE	2000	U	
1,1,2-TRICHLOROTRIFLUOROETHANE	2000	U	
1,1-DICHLOROETHANE	2000	U	
1,1-DICHLOROETHENE	2000	U	
1,1-DICHLOROPROPENE	2000	U	
1,2,3-TRICHLOROBENZENE	2000	Ų	
1,2,3-TRICHLOROPROPANE	2000	U	
1,2,3-TRIMETHYLBENZENE	10000	U	
1,2,4-TRICHLOROBENZENE	2000	U	
1,2,4-TRIMETHYLBENZENE	2000	U	
1,2-DIBROMO-3-CHLOROPROPANE	4000	U	
1,2-DIBROMOETHANE	2000	U	
1,2-DICHLOROBENZENE	2000	U	
1,2-DICHLOROETHANE	2000	U	
1,2-DICHLOROPROPANE	2000	U	
1,3-DICHLOROBENZENE	2000	U	
1,3-DICHLOROPROPANE	2000	U	
1,4-DICHLOROBENZENE	2000	U	
2,2-DICHLOROPROPANE	2000	U	,
2-BUTANONE	10000	U	
2-CHLOROETHYL VINYL ETHER	10000	U	
2-CHLOROTOLUENE	2000	U	
2-HEXANONE	10000	U	
4-CHLOROTOLUENE	2000	U	
4-ISOPROPYLTOLUENE	2000	U	
4-METHYL-2-PENTANONE	10000	U	
ACETONE	10000	U	
BENZENE	2000	Ų	
BROMOBENZENE	2000	U	
BROMOCHLOROMETHANE	2000	U	

Parameter	Result	Vai Qual	Qual Code
BROMODICHLOROMETHANE	2000	U	
BROMOFORM	2000	U	
BROMOMETHANE	2000	U	
CARBON DISULFIDE	2000	U	
CARBON TETRACHLORIDE	2000	U	
CHLOROBENZENE	2000	U	
CHLORODIBROMOMETHANE	2000	U	
CHLOROETHANE	2000	U	
CHLOROFORM	2000	Ü	
CHLOROMETHANE	2000	U	
CIS-1,2-DICHLOROETHENE	2100		
CIS-1,3-DICHLOROPROPENE	2000	U	
DIBROMOMETHANE	2000	U	
DICHLORODIFLUOROMETHANE	2000	U	
DIISOPROPYL ETHER	10000	U	
ETHYL TERT-BUTYL ETHER	10000	U	
ETHYLBENZENE	2000	U	
HEXACHLOROBUTADIENE	2000	U	
ISOPROPYLBENZENE	2000	U	
M+P-XYLENES	4000	U	
METHYL TERT-BUTYL ETHER	10000	U	
METHYLENE CHLORIDE	2000	U	
NAPHTHALENE	2000	U	
N-BUTYLBENZENE	2000	U,	
N-PROPYLBENZENE	2000	U	
O-XYLENE	2000	U	
SEC-BUTYLBENZENE	2000	U	
STYRENE .	2000	U	
TERT-AMYL METHYL ETHER	10000	U	
TERT-BUTYLBENZENE	2000	U	
TERTIARY-BUTYL ALCOHOL	40000	UR	С
TETRACHLOROETHENE	2000	U	

Parameter	Result	Val Qual	Qual Code
TOLUENE	2000	U	
TOTAL XYLENES	4000	U	
TRANS-1,2-DICHLOROETHENE	2000	U	
TRANS-1,3-DICHLOROPROPENE	2000	U	
TRICHLOROETHENE	68000		
TRICHLOROFLUOROMETHANE	2000	U	
VINYL ACETATE	4000	U	
VINYL CHLORIDE	2000	U	

nsample samp_date RW-01I-121107DL

12/11/2007

lab_id qc_type units

A7L120224003

NM UG/L

Pct_Solids DUP_OF:

nsample samp_date lab_id qc_type

units

Pct_Solids

DUP_OF:

RW-01I-121107DL 12/11/2007

A7L120224003 NM

nsample samp_date

units

RW-01I-121107DL

12/11/2007 A7L120224003

lab_id qc_type NM

UG/L

Pct_Solids DUP_OF:

UG/L

Parameter	Result	Val Qual	Qual Code
1,1,1,2-TETRACHLOROETHANE	420	U	
1,1,1-TRICHLOROETHANE	420	U	
1,1,2,2-TETRACHLOROETHANE	420	U	,
1,1,2-TRICHLOROTRIFLUOROETHANE	420	U	
1,1-DICHLOROETHANE	420	Ū	
1,1-DICHLOROETHENE	420	Ū	
1,1-DICHLOROPROPENE	420	U	
1,2,3-TRICHLOROBENZENE	420	U	-
1,2,3-TRICHLOROPROPANE	420	U	-
1,2,3-TRIMETHYLBENZENE	2100	Ū	
1,2,4-TRICHLOROBENZENE	150	В	Α
1,2,4-TRIMETHYLBENZENE	420	U	
1,2-DIBROMO-3-CHLOROPROPANE	830	U	
1,2-DIBROMOETHANE	420	Ü	
1,2-DICHLOROBENZENE	420	U	
1,2-DICHLOROETHANE	100	J	P
1,2-DICHLOROPROPANE	420	υ	
1,3-DICHLOROBENZENE	420	U	·
1,3-DICHLOROPROPANE	420	U	
1,4-DICHLOROBENZENE	420	U	
2,2-DICHLOROPROPANE	420	U	-: -
2-BUTANONE	2100	U	
2-CHLOROETHYL VINYL ETHER	2100	U	
2-CHLOROTOLUENE	420	U	
2-HEXANONE	2100	U	
4-CHLOROTOLUENE	420	U	
I-ISOPROPYLTOLUENE	420	U	
I-METHYL-2-PENTANONE	2100	U	
ACETONE	2100	U	
BENZENE	420	Ū	
BROMOBENZENE	420	U	
BROMOCHLOROMETHANE	420	U	

Parameter	Result	Val Qual	Qual Code
BROMODICHLOROMETHANE	420	Ü	
BROMOFORM	420	U	
BROMOMETHANE	420		
CARBON DISULFIDE	420		
CARBON TETRACHLORIDE	420	Ü	
CHLOROBENZENE	420	· Ü	-
CHLORODIBROMOMETHANE	420	U	
CHLOROETHANE	420	Ū	
CHLOROFORM	420	Ü	-
CHLOROMETHANE	420	U	
CIS-1,2-DICHLOROETHENE	1100		
CIS-1,3-DICHLOROPROPENE	420	U	
DIBROMOMETHANE	420	U	
DICHLORODIFLUOROMETHANE	420	U	
DIISOPROPYL ETHER	2100	U	
ETHYL TERT-BUTYL ETHER	2100	U	
ETHYLBENZENE	420	U	
HEXACHLOROBUTADIENE	420	Û	
ISOPROPYLBENZENE	420	U	
M+P-XYLENES	830	U	
METHYL TERT-BUTYL ETHER	2100	U	_
METHYLENE CHLORIDE	420	U	
NAPHTHALENE	420	U	
N-BUTYLBENZENE	420	U	
N-PROPYLBENZENE	420	U	
O-XYLENE	420	U	_
SEC-BUTYLBENZENE	420	U	
STYRENE	420	U	
TERT-AMYL METHYL ETHER	2100	U	
TERT-BUTYLBENZENE	420	U	
TERTIARY-BUTYL ALCOHOL	8300	UR	С
TETRACHLOROETHENE	420	U	

Parameter	Result	Val Qual	Qual Code
TOLUENE	420	U	
TOTAL XYLENES	830	U	
TRANS-1,2-DICHLOROETHENE	420	U	
TRANS-1,3-DICHLOROPROPENE	420	Ü	
TRICHLOROETHENE	9600		
TRICHLOROFLUOROMETHANE	420	U	
VINYL ACETATE	830	U	2.100
VINYL CHLORIDE	240	J	Р

SDG: 7L12224 MEDIA: WATER DATA FRACTION: OV

nşample samp_date RW-01I-121207DL

12/12/2007

lab_id qc_type units

A7L140260003 NM

UG/L

Pct_Solids DUP_OF:

nsample samp_date lab_id

RW-01I-121207DL

12/12/2007 A7L140260003

NM UG/L

Pct_Solids DUP_OF:

qc_type

units

nsample samp_date

lab_id

qc_type

RW-01I-121207DL

12/12/2007 A7L140260003

NM UG/L

units Pct_Solids DUP_OF:

				·
Parameter	Result	Val Qual	Qual	5
	riesuit	Qual	Code	Parameter
BROMODICHLOROMETHANE	330	U		TOLUENE
BROMOFORM	330	U		TOTAL XYLENES
BROMOMETHANE	330	C		TRANS-1,2-DICHLOROETHENE
CARBON DISULFIDE	330	U		TRANS-1,3-DICHLOROPROPENE
CARBON TETRACHLORIDE	330	U	-	TRICHLOROETHENE
CHLOROBENZENE	330	U		TRICHLOROFLUOROMETHANE
CHLORODIBROMOMETHANE	330	U		VINYL ACETATE
CHLOROETHANE	330	U		VINYL CHLORIDE
CHLOROFORM	330	U		
CHLOROMETHANE	330	U		
CIS 1.2 DICHI ODOETHENE	1500			

Parameter	Result	Val Qual	Qual Code
TOLUENE	330	U	
TOTAL XYLENES	670	U	
TRANS-1,2-DICHLOROETHENE	330	U	
TRANS-1,3-DICHLOROPROPENE	330	Ũ	
TRICHLOROETHENE	11000		
TRICHLOROFLUOROMETHANE	330	U	-
VINYL ACETATE	670	UJ	С
VINYL CHLORIDE	260	J	Р

Parameter	Result	Val Qual	Qual Code
1,1,1,2-TETRACHLOROETHANE	330	U	
1,1,1-TRICHLOROETHANE	330	U	
1,1,2,2-TETRACHLOROETHANE	330	U	
1,1,2-TRICHLOROTRIFLUOROETHANE	330	U	
1,1-DICHLOROETHANE	330	Ū	
1,1-DICHLOROETHENE	330	U	-
1,1-DICHLOROPROPENE	330	U	
1,2,3-TRICHLOROBENZENE	330	U	
1,2,3-TRICHLOROPROPANE	330	U	
1,2,3-TRIMETHYLBENZENE	1700	U	
1,2,4-TRICHLOROBENZENE	240	В	Α
1,2,4-TRIMETHYLBENZENE	330	U	
1,2-DIBROMO-3-CHLOROPROPANE	670	U	
1,2-DIBROMOETHANE	330	U	
1,2-DICHLOROBENZENE	330	Ū	
1,2-DICHLOROETHANE	85	J	Р
1,2-DICHLOROPROPANE	330	U	
1,3-DICHLOROBENZENE	330	U	
1,3-DICHLOROPROPANE	330	U	
1,4-DICHLOROBENZENE	330	U	
2,2-DICHLOROPROPANE	330	U	
2-BUTANONE	1700	U	
2-CHLOROETHYL VINYL ETHER	1700	U	
2-CHLOROTOLUENE	330	U	
2-HEXANONE	1700	U	
4-CHLOROTOLUENE	330	U	
4-ISOPROPYLTOLUENE	330	Ú	
4-METHYL-2-PENTANONE	1700	U	
ACETONE	1700	U	
BENZENE	330	Ų	
BROMOBENZENE	330	U	
BROMOCHLOROMETHANE	330	U	

				330		
330	U		CHLORODIBROMOMETHANE	<del></del>		
330	U		CHLOROETHANE	330		<del> </del>
330	U		CHLOROFORM			-
1700	U		CHLOROMETHANE			<del>                                     </del>
240	В	Α	CIS-1,2-DICHLOROETHENE			
330	U		CIS-1,3-DICHLOROPROPENE		11	·
670	U		DIBROMOMETHANE			<del>                                     </del>
330	U		DICHLORODIFLUOROMETHANE			<del> </del>
330	Ū	-	DIISOPROPYL ETHER			
85	J	Р	ETHYL TERT-BUTYL ETHER			
330	U		ETHYLBENZENE			
330	U		HEXACHLOROBUTADIENE			<u> </u>
330	U		ISOPROPYLBENZENE			<del> </del>
330	U		M+P-XYLENES			-
330	U		METHYL TERT-BUTYL ETHER			<del> </del>
1700	U		METHYLENE CHLORIDE			
1700	U		NAPHTHALENE			
330	U		N-BUTYLBENZENE			
1700	U		N-PROPYLBENZENE	330	U ·	
330	U		O-XYLENE	330	U	
330	U		SEC-BUTYLBENZENE			
1700	U		STYRENE	<del></del>		
1700	Ü		TERT-AMYL METHYL ETHER	-		
330	U		TERT-BUTYLBENZENE			
330	U		TERTIARY-BUTYL ALCOHOL	6700		С
330	U	-	TETRACHLOROETHENE	330	U	
	330 330 1700 240 330 670 330 330 330 330 1700 1700 330 1700 330 1700 330 330 330	330 U 330 U 1700 U 240 B 330 U 670 U 330 U 85 J 330 U 330 U 330 U 330 U 330 U 330 U 330 U 330 U 330 U 1700 U 1700 U 330 U 1700 U 330 U 1700 U 330 U 1700 U 330 U 330 U	330 U 330 U 1700 U 240 B A 330 U 670 U 330 U 85 J P 330 U 330 U 330 U 330 U 330 U 330 U 330 U 330 U 330 U 330 U 330 U 1700 U 1700 U 330 U 1700 U 330 U 1700 U 330 U 330 U 330 U 330 U	330	330	330

SDG: 7L12224 MEDIA: WATER DATA FRACTION: OV

nsample samp_date RW-01I121407DL

12/14/2007

lab_id qc_type A7L150155003

NM units UG/L

Pct_Solids DUP OF

lab_id qc_type . units

nsample RW-01I121407DL samp_date

12/14/2007 A7L150155003

NM UG/L

Pct_Solids DUP_OF:

nsample samp_date RW-011121407DL

12/14/2007 A7L150155003

lab_id qc_type

NM UG/L

Pct_Solids DUP_OF:

units

1,1,1,2-TETRACHLOROETHANE 1,1,1-TRICHLOROETHANE 1,1,2-TETRACHLOROETHANE 1,1,2-TRICHLOROETHANE 1,1-DICHLOROETHANE 1,1-DICHLOROETHANE 1,1-DICHLOROETHENE 1,1-DICHLOROPROPENE 1,2,3-TRICHLOROBENZENE 1,2,3-TRICHLOROPROPANE 1,2,3-TRIMETHYLBENZENE 2 1,2,4-TRICHLOROBENZENE 1,2,4-TRICHLOROBENZENE 1,2,4-TRIMETHYLBENZENE 2 1,2-DIBROMO-3-CHLOROPROPANE 1,2-DIBROMOETHANE	420 420 420 420 420 420 420 420	Val Qual U U U U U	Qual Code
1,1,1-TRICHLOROETHANE 1,1,2,2-TETRACHLOROETHANE 1,1,2-TRICHLOROTRIFLUOROETHANE 1,1-DICHLOROETHANE 1,1-DICHLOROETHENE 1,1-DICHLOROPROPENE 1,2,3-TRICHLOROBENZENE 1,2,3-TRICHLOROPROPANE 1,2,3-TRICHLOROBENZENE 2,2,3-TRICHLOROBENZENE 1,2,4-TRICHLOROBENZENE 1,2,4-TRICHLOROBENZENE 1,2,4-TRIMETHYLBENZENE 2,1,2-DIBROMO-3-CHLOROPROPANE 1,2-DIBROMOETHANE	420 420 420 420 420 420	U U U U	
1,1,2,2-TETRACHLOROETHANE 1,1,2-TRICHLOROTRIFLUOROETHANE 1,1-DICHLOROETHANE 1,1-DICHLOROETHENE 1,1-DICHLOROPROPENE 1,2,3-TRICHLOROBENZENE 1,2,3-TRICHLOROPROPANE 1,2,3-TRICHLOROBENZENE 2,2,4-TRICHLOROBENZENE 1,2,4-TRICHLOROBENZENE 1,2,4-TRIMETHYLBENZENE 2,1,2,4-TRIMETHYLBENZENE 1,2,2-DIBROMO-3-CHLOROPROPANE 1,2-DIBROMOETHANE	420 420 420 420 420	U U U	
1,1,2-TRICHLOROTRIFLUOROETHANE 1,1-DICHLOROETHANE 1,1-DICHLOROETHENE 1,1-DICHLOROPROPENE 1,2,3-TRICHLOROBENZENE 1,2,3-TRICHLOROPROPANE 1,2,3-TRIMETHYLBENZENE 2:1,2,4-TRICHLOROBENZENE 1,2,4-TRIMETHYLBENZENE 1,2,4-TRIMETHYLBENZENE 1,2-DIBROMO-3-CHLOROPROPANE 1,2-DIBROMOETHANE	420 420 420 420	U U	
1,1-DICHLOROETHANE 1,1-DICHLOROETHENE 1,1-DICHLOROPROPENE 1,2,3-TRICHLOROBENZENE 1,2,3-TRICHLOROPROPANE 1,2,3-TRIMETHYLBENZENE 2,2-TRIMETHYLBENZENE 1,2,4-TRICHLOROBENZENE 1,2,4-TRIMETHYLBENZENE 1,2-DIBROMO-3-CHLOROPROPANE 1,2-DIBROMOETHANE	420 420 420	U	
1,1-DICHLOROETHENE 1,1-DICHLOROPROPENE 1,2,3-TRICHLOROBENZENE 1,2,3-TRICHLOROPROPANE 1,2,3-TRIMETHYLBENZENE 2,2-TRIMETHYLBENZENE 1,2,4-TRICHLOROBENZENE 1,2,4-TRIMETHYLBENZENE 1,2-DIBROMO-3-CHLOROPROPANE 1,2-DIBROMOETHANE	420 420	Ü	
1,1-DICHLOROPROPENE 1,2,3-TRICHLOROBENZENE 1,2,3-TRICHLOROPROPANE 1,2,3-TRICHLOROPROPANE 1,2,3-TRIMETHYLBENZENE 2 1,2,4-TRICHLOROBENZENE 1,2,4-TRIMETHYLBENZENE 1,2-DIBROMO-3-CHLOROPROPANE 1,2-DIBROMOETHANE	420		+
1,2,3-TRICHLOROBENZENE 1,2,3-TRICHLOROPROPANE 1,2,3-TRIMETHYLBENZENE 2 1,2,4-TRICHLOROBENZENE 1,2,4-TRIMETHYLBENZENE 1,2-DIBROMO-3-CHLOROPROPANE 1,2-DIBROMOETHANE		U	
1,2,3-TRICHLOROPROPANE 1,2,3-TRIMETHYLBENZENE 2 1,2,4-TRICHLOROBENZENE 1,2,4-TRIMETHYLBENZENE 1,2-DIBROMO-3-CHLOROPROPANE 1,2-DIBROMOETHANE 2	420		
1,2,3-TRIMETHYLBENZENE 2,4-TRICHLOROBENZENE 1,2,4-TRIMETHYLBENZENE 1,2-DIBROMO-3-CHLOROPROPANE 1,2-DIBROMOETHANE 2		U	1
1,2,4-TRICHLOROBENZENE 1,2,4-TRIMETHYLBENZENE 1,2-DIBROMO-3-CHLOROPROPANE 1,2-DIBROMOETHANE	420	Ü	
1,2-4-TRIMETHYLBENZENE 1,2-DIBROMO-3-CHLOROPROPANE 1,2-DIBROMOETHANE	100	Ü	
1,2-DIBROMO-3-CHLOROPROPANE 8 1,2-DIBROMOETHANE 2	240	B	A
1,2-DIBROMOETHANE	420	U	<del>                                     </del>
	330	U	<del> </del>
1,2-DICHLOROBENZENE	120	U	
	120	U	<del> </del>
1,2-DICHLOROETHANE	120	U	
	120	Ū	<del>                                     </del>
1,3-DICHLOROBENZENE	120	Ū	
1,3-DICHLOROPROPANE	20	U	<del></del>
1,4-DICHLOROBENZENE	120	U	
2,2-DICHLOROPROPANE 4	20	Ü	
2-BUTANONE 21	00	U	
2-CHLOROETHYL VINYL ETHER 21	00	U	
2-CHLOROTOLUENE 4	20	U	
OUEVANOUE	00	U	
4-CHLOROTOLUENE 4	20	U	
4-ISOPROPYLTOLUENE 4	20	U	
4-METHYL-2-PENTANONE 21	00	Ū	
ACETONE 21	00	U	
BENZENE 4	20	U	
COLIODENIE	20	Ū	
BROMOCHLOROMETHANE 4:		- 1	

BROMODICHLOROMETHANE BROMOFORM BROMOFORM BROMOMETHANE CARBON DISULFIDE CARBON TETRACHLORIDE CHLOROBENZENE CHLORODIBROMOMETHANE CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROMETHANE CHLOROMETHANE CHLOROMETHANE CHLOROMETHANE CHLOROMETHANE CIS-1,2-DICHLOROFORDENE DIBROMOMETHANE CIS-1,3-DICHLOROPROPENE DICHLORODIFLUOROMETHANE DICHLORODIFLUOROMETHANE DICHLORODIFLUOROMETHANE DICHLORODIFLUOROMETHANE DICHLORODIFLUOROMETHANE DICHLORODIFLUOROMETHANE DICHLORODIFLUOROMETHANE DICHLOROMETHANE DICHLOROMETHANE DICHLOROMETHANE DICHLOROMETHANE DICHLOROMETHANE DICHLOROMETHANE DICHLOROMETHANE DICHLOROMETHANE DICHLOROMETHANE DICHLOROMETHANE DICHLOROMETHANE DICHLOROMETHANE DICHLOROMETHANE DICHLOROMETHANE DICHLOROMETHANE DICHLOROMETHANE DICHLOROMETHANE DICHLOROMETHANE DICHLOROMETHANE DICHLOROMETHANE DICHLOROMETHANE DICHLOROMETHANE DICHLOROMETHANE DICHLOROMETHANE DICHLOROMETHANE DICHLOROMETHANE DICHLOROMETHANE DICHLOROMETHANE DICHLOROMETHANE DICHLOROMETHANE DICHLOROMETHANE DICHLOROMETHANE DICHLOROMETHANE DICHLOROMETHANE DICHLOROMETHANE DICHLOROMETHANE DICHLOROMETHANE DICHLOROMETHANE DICHLOROMETHANE DICHLOROMETHANE DICHLOROMETHANE DICHLOROMETHANE DICHLOROMETHANE DICHLOROMETHANE DICHLOROMETHANE DICHLOROMETHANE DICHLOROMETHANE DICHLOROMETHANE DICHLOROMETHANE DICHLOROMETHANE DICHLOROMETHANE DICHLOROMETHANE DICHLOROMETHANE DICHLOROMETHANE DICHLOROMETHANE DICHLOROMETHANE DICHLOROMETHANE DICHLOROMETHANE DICHLOROMETHANE DICHLOROMETHANE DICHLOROMETHANE DICHLOROMETHANE DICHLOROMETHANE DICHLOROMETHANE DICHLOROMETHANE DICHLOROMETHANE DICHLOROMETHANE DICHLOROMETHANE DICHLOROMETHANE DICHLOROMETHANE DICHLOROMETHANE DICHLOROMETHANE DICHLOROMETHANE DICHLOROMETHANE DICHLOROMETHANE DICHLOROMETHANE DICHLOROMETHANE DICHLOROMETHANE DICHLOROMETHANE DICHLOROMETHANE DICHLOROMETHANE DICHLOROMETHANE DICHLOROMETHANE DICHLOROMETHANE DICHLOROMETHANE DICHLOROMETHANE DICHLOROMETHANE DICHLOROMETHANE DICHLOROMETHANE DICHLOROMETHANE DICHLOROMETHANE DICHLOROMETHANE DICHLOROMETHANE DICHLOROMETHANE DICHLOROMETHANE DICHLOROMETHANE DICHLOROMETHANE DICHLOROMETHANE DICHLO		Parameter	Result	Val Qual	Qual Code
BROMOMETHANE	7	BROMODICHLOROMETHANE	420	U	
CARBON DISULFIDE         420         U           CARBON TETRACHLORIDE         420         U           CHLOROBENZENE         420         U           CHLOROBENZENE         420         U           CHLOROBENSENE         420         U           CHLOROETHANE         420         U           CHLOROFORM         420         U           CHLOROMETHANE         420         U           CIS-1,2-DICHLOROPROPENE         420         U           DIBROMOMETHANE         420         U           DIBROMOMETHANE         420         U           DICHLORODIFLUOROMETHANE         420         U           DISOPROPYL ETHER         2100         U           ETHYL TERT-BUTYL ETHER         2100         U           ETHYLBENZENE         420         U           HEXACHLOROBUTADIENE         420         U           METHYL TERT-BUTYL ETHER         2100         U           METHYL TERT-BUTYL ETHER         2100         U           METHYLENE CHLORIDE         420         U           N-BUTYLBENZENE         420         U           N-PROPYLBENZENE         420         U           N-PROPYLBENZENE         420         U<		BROMOFORM	420	U	-
CARBON TETRACHLORIDE         420         U           CHLOROBENZENE         420         U           CHLORODIBROMOMETHANE         420         U           CHLOROFORM         420         U           CHLOROFORM         420         U           CHLOROMETHANE         420         U           CIS-1,2-DICHLOROPROPENE         420         U           DIBROMOMETHANE         420         U           DICHLORODIFLUOROMETHANE         420         U           DIISOPROPYL ETHER         2100         U           ETHYL TERT-BUTYL ETHER         2100         U           ETHYLBENZENE         420         U           HEXACHLOROBUTADIENE         420         U           METHYL TERT-BUTYL ETHER         2100         U           METHYL TERT-BUTYL ETHER         2100         U           METHYL TERT-BUTYL ETHER         2100         U           METHYLENE CHLORIDE         420         U           N-PROPYLBENZENE         420         U           N-PROPYLBENZENE         420         U           N-PROPYLBENZENE         420         U           N-PROPYLBENZENE         420         U           N-PROPYLBENZENE         420 </td <td>1</td> <td>BROMOMETHANE</td> <td>420</td> <td>U</td> <td><u> </u></td>	1	BROMOMETHANE	420	U	<u> </u>
CHLOROBENZENE         420         U           CHLORODIBROMOMETHANE         420         U           CHLOROFORM         420         U           CHLOROMETHANE         420         U           CHLOROMETHANE         420         U           CIS-1,2-DICHLOROPENEHNE         1700           CIS-1,3-DICHLOROPROPENE         420         U           DIBROMOMETHANE         420         U           DISOPROPYL ETHER         2100         U           ETHYL TERT-BUTYL ETHER         2100         U           ETHYLBENZENE         420         U           HEXACHLOROBUTADIENE         420         U           M+P-XYLENES         830         U           METHYL TERT-BUTYL ETHER         2100         U           METHYL TERT-BUTYL ETHER         2100         U           METHYLENE CHLORIDE         420         U           NAPHTHALENE         420         U           N-BUTYLBENZENE         420         U           N-PROPYLBENZENE         420         U           N-PROPYLBENZENE         420         U           N-PROPYLBENZENE         420         U           SEC-BUTYLBENZENE         420         U      <	]	CARBON DISULFIDE	420	U	
CHLORODIBROMOMETHANE         420         U           CHLOROETHANE         420         U           CHLOROFORM         420         U           CHLOROMETHANE         420         U           CIS-1,2-DICHLOROETHENE         1700         U           CIS-1,3-DICHLOROPROPENE         420         U           DIBROMOMETHANE         420         U           DISOPROPYL ETHER         2100         U           ETHYL TERT-BUTYL ETHER         2100         U           ETHYLBENZENE         420         U           HEXACHLOROBUTADIENE         420         U           ISOPROPYLBENZENE         420         U           M+P-XYLENES         830         U           METHYL TERT-BUTYL ETHER         2100         U           METHYLENE CHLORIDE         420         U           NAPHTHALENE         420         U           N-BUTYLBENZENE         420         U           N-PROPYLBENZENE         420         U           N-PROPYLBENZENE         420         U           SEC-BUTYLBENZENE         420         U           SEC-BUTYLBENZENE         420         U           TERT-AMYL METHYL ETHER         2100         U<		CARBON TETRACHLORIDE	420	U	
CHLOROETHANE         420         U           CHLOROFORM         420         U           CHLOROMETHANE         420         U           CIS-1,2-DICHLOROETHENE         1700         U           CIS-1,3-DICHLOROPROPENE         420         U           DIBROMOMETHANE         420         U           DISOPROPYL ETHER         2100         U           ETHYL TERT-BUTYL ETHER         2100         U           ETHYLBENZENE         420         U           HEXACHLOROBUTADIENE         420         U           ISOPROPYLBENZENE         420         U           M+P-XYLENES         830         U           METHYL TERT-BUTYL ETHER         2100         U           METHYLENE CHLORIDE         420         U           NAPHTHALENE         420         U           NAPHTHALENE         420         U           N-PROPYLBENZENE         420         U           N-PROPYLBENZENE         420         U           N-PROPYLBENZENE         420         U           SEC-BUTYLBENZENE         420         U           SEC-BUTYLBENZENE         420         U           TERT-AMYL METHYL ETHER         2100         U		CHLOROBENZENE	420	U	
CHLOROFORM	]	CHLORODIBROMOMETHANE	420	U	
CHLOROMETHANE         420         U           CIS-1,2-DICHLOROETHENE         1700         U           CIS-1,3-DICHLOROPROPENE         420         U           DIBROMOMETHANE         420         U           DICHLORODIFLUOROMETHANE         420         U           DISOPROPYL ETHER         2100         U           ETHYL TERT-BUTYL ETHER         2100         U           ETHYLBENZENE         420         U           HEXACHLOROBUTADIENE         420         U           M-P-XYLENES         830         U           METHYL TERT-BUTYL ETHER         2100         U           METHYL TERT-BUTYL ETHER         2100         U           METHYLENE CHLORIDE         420         U           NAPHTHALENE         420         U           N-PROPYLBENZENE         420         U           N-PROPYLBENZENE         420         U           N-PROPYLBENZENE         420         U           SEC-BUTYLBENZENE         420         U           SEC-BUTYLBENZENE         420         U           TERT-AMYL METHYL ETHER         2100         U           TERT-BUTYLBENZENE         420         U           TERTIARY-BUTYL ALCOHOL		CHLOROETHANE	420	U	-
CIS-1,2-DICHLOROETHENE         1700           CIS-1,3-DICHLOROPROPENE         420         U           DIBROMOMETHANE         420         U           DICHLORODIFLUOROMETHANE         420         U           DIISOPROPYL ETHER         2100         U           ETHYL TERT-BUTYL ETHER         2100         U           ETHYLBENZENE         420         U           HEXACHLOROBUTADIENE         420         U           ISOPROPYLBENZENE         420         U           M+P-XYLENES         830         U           METHYL TERT-BUTYL ETHER         2100         U           METHYLENE CHLORIDE         420         U           NAPHTHALENE         420         U           N-BUTYLBENZENE         420         U           N-PROPYLBENZENE         420         U           N-PROPYLBENZENE         420         U           SEC-BUTYLBENZENE         420         U           STYRENE         420         U           TERT-AMYL METHYL ETHER         2100         U           TERT-BUTYLBENZENE         420         U           TERTIARY-BUTYL ALCOHOL         8300         UR         C		CHLOROFORM	420	Ū	
CIS-1,3-DICHLOROPROPENE         420         U           DIBROMOMETHANE         420         U           DICHLORODIFLUOROMETHANE         420         U           DIISOPROPYL ETHER         2100         U           ETHYL TERT-BUTYL ETHER         2100         U           ETHYLBENZENE         420         U           HEXACHLOROBUTADIENE         420         U           ISOPROPYLBENZENE         420         U           M+P-XYLENES         830         U           METHYL TERT-BUTYL ETHER         2100         U           METHYLENE CHLORIDE         420         U           NAPHTHALENE         420         U           N-BUTYLBENZENE         420         U           N-PROPYLBENZENE         420         U           O-XYLENE         420         U           SEC-BUTYLBENZENE         420         U           STYRENE         420         U           TERT-AMYL METHYL ETHER         2100         U           TERT-BUTYLBENZENE         420         U           TERTIARY-BUTYL ALCOHOL         8300         UR         C		CHLOROMETHANE	420	U	
DIBROMOMETHANE         420         U           DICHLORODIFLUOROMETHANE         420         U           DIISOPROPYL ETHER         2100         U           ETHYL TERT-BUTYL ETHER         2100         U           ETHYLBENZENE         420         U           HEXACHLOROBUTADIENE         420         U           ISOPROPYLBENZENE         420         U           M+P-XYLENES         830         U           METHYL TERT-BUTYL ETHER         2100         U           METHYLENE CHLORIDE         420         U           NAPHTHALENE         420         U           N-BUTYLBENZENE         420         U           N-PROPYLBENZENE         420         U           O-XYLENE         420         U           SEC-BUTYLBENZENE         420         U           STYRENE         420         U           TERT-AMYL METHYL ETHER         2100         U           TERT-BUTYLBENZENE         420         U           TERTIARY-BUTYL ALCOHOL         8300         UR         C		CIS-1,2-DICHLOROETHENE	1700	-	
DICHLORODIFLUOROMETHANE		CIS-1,3-DICHLOROPROPENE	420	U	
DIISOPROPYL ETHER         2100 U           ETHYL TERT-BUTYL ETHER         2100 U           ETHYLBENZENE         420 U           HEXACHLOROBUTADIENE         420 U           ISOPROPYLBENZENE         420 U           M+P-XYLENES         830 U           METHYL TERT-BUTYL ETHER         2100 U           METHYLENE CHLORIDE         420 U           NAPHTHALENE         420 U           N-BUTYLBENZENE         420 U           O-XYLENE         420 U           SEC-BUTYLBENZENE         420 U           SEC-BUTYLBENZENE         420 U           TERT-AMYL METHYL ETHER         2100 U           TERT-BUTYLBENZENE         420 U           TERT-BUTYLBENZENE         420 U           TERTIARY-BUTYL ALCOHOL         8300 UR         C		DIBROMOMETHANE	420	U	
ETHYL TERT-BUTYL ETHER         2100         U           ETHYLBENZENE         420         U           HEXACHLOROBUTADIENE         420         U           ISOPROPYLBENZENE         420         U           M+P-XYLENES         830         U           METHYL TERT-BUTYL ETHER         2100         U           METHYLENE CHLORIDE         420         U           NAPHTHALENE         420         U           N-BUTYLBENZENE         420         U           N-PROPYLBENZENE         420         U           O-XYLENE         420         U           SEC-BUTYLBENZENE         420         U           STYRENE         420         U           TERT-AMYL METHYL ETHER         2100         U           TERT-BUTYLBENZENE         420         U           TERTIARY-BUTYL ALCOHOL         8300         UR         C		DICHLORODIFLUOROMETHANE	420	U	
SEC-BUTYLBENZENE   420 U   HEXACHLOROBUTADIENE   420 U   ISOPROPYLBENZENE   420 U   M+P-XYLENES   830 U   METHYL TERT-BUTYL ETHER   2100 U   METHYLENE CHLORIDE   420 U   NAPHTHALENE   420 U   N-BUTYLBENZENE   420 U   N-PROPYLBENZENE   420 U   SEC-BUTYLBENZENE   420 U   STYRENE   420 U   TERT-AMYL METHYL ETHER   2100 U   TERT-BUTYLBENZENE   420 U   TERT-BUTYLBENZENE   420 U   TERT-BUTYLBENZENE   420 U   TERT-BUTYLBENZENE   420 U   TERT-BUTYLBENZENE   420 U   TERT-BUTYLBENZENE   420 U   TERT-BUTYLBENZENE   420 U   TERT-BUTYLBENZENE   420 U   TERT-BUTYLBENZENE   420 U   TERT-BUTYLBENZENE   420 U   TERT-BUTYLBENZENE   420 U   TERT-BUTYLBENZENE   420 U   TERT-BUTYLBENZENE   420 U   TERT-BUTYLBENZENE   420 U   TERT-BUTYLBENZENE   420 U   TERT-BUTYLBENZENE   420 U   TERT-BUTYLBENZENE   420 U   TERT-BUTYLBENZENE   420 U   TERT-BUTYLBENZENE   420 U   TERT-BUTYLBENZENE   420 U   TERT-BUTYLBENZENE   420 U   TERT-BUTYLBENZENE   420 U   TERT-BUTYLBENZENE   420 U   TERT-BUTYLBENZENE   420 U   TERT-BUTYLBENZENE   420 U   TERT-BUTYLBENZENE   420 U   TERT-BUTYLBENZENE   420 U   TERT-BUTYLBENZENE   420 U   TERT-BUTYLBENZENE   420 U   TERT-BUTYLBENZENE   420 U   TERT-BUTYLBENZENE   420 U   TERT-BUTYLBENZENE   420 U   TERT-BUTYLBENZENE   420 U   TERT-BUTYLBENZENE   420 U   TERT-BUTYLBENZENE   420 U   TERT-BUTYLBENZENE   420 U   TERT-BUTYLBENZENE   420 U   TERT-BUTYLBENZENE   420 U   TERT-BUTYLBENZENE   420 U   TERT-BUTYLBENZENE   420 U   TERT-BUTYLBENZENE   420 U   TERT-BUTYLBENZENE   420 U   TERT-BUTYLBENZENE   420 U   TERT-BUTYLBENZENE   420 U   TERT-BUTYLBENZENE   420 U   TERT-BUTYLBENZENE   420 U   TERT-BUTYLBENZENE   420 U   TERT-BUTYLBENZENE   420 U   TERT-BUTYLBENZENE   420 U   TERT-BUTYLBENZENE   420 U   TERT-BUTYLBENZENE   420 U   TERT-BUTYLBENZENE   420 U   TERT-BUTYLBENZENE   420 U   TERT-BUTYLBENZENE   420 U   TERT-BUTYLBENZENE   420 U   TERT-BUTYLBENZENE   420 U   TERT-BUTYLBENZENE   420 U   TERT-BUTYLBENZENE   420 U   TERT-BUTYLBENZENE   420 U   TERT-BUTYLBENZENE   420 U   TERT-BUTYLBENZENE   420 U   TERT-BUTYLBENZ		DIISOPROPYL ETHER	2100	U	
HEXACHLOROBUTADIENE   420 U   ISOPROPYLBENZENE   420 U   M+P-XYLENES   830 U   METHYL TERT-BUTYL ETHER   2100 U   METHYLENE CHLORIDE   420 U   NAPHTHALENE   420 U   N-BUTYLBENZENE   420 U   N-PROPYLBENZENE   420 U   O-XYLENE   420 U   SEC-BUTYLBENZENE   420 U   STYRENE   420 U   TERT-AMYL METHYL ETHER   2100 U   TERT-BUTYLBENZENE   420 U   TERT-BUTYLBENZENE   420 U   TERT-BUTYLBENZENE   420 U   TERT-BUTYLBENZENE   420 U   TERT-BUTYLBENZENE   420 U   TERT-BUTYLBENZENE   420 U   TERT-BUTYLBENZENE   420 U   TERT-BUTYLBENZENE   420 U   TERT-BUTYLBENZENE   420 U   TERT-BUTYLBENZENE   420 U   TERT-BUTYLBENZENE   420 U   TERT-BUTYLBENZENE   420 U   TERT-BUTYLBENZENE   420 U   TERT-BUTYLBENZENE   420 U   TERT-BUTYLBENZENE   420 U   TERT-BUTYLBENZENE   420 U   TERT-BUTYLBENZENE   420 U   TERT-BUTYLBENZENE   420 U   TERT-BUTYLBENZENE   420 U   TERT-BUTYLBENZENE   420 U   TERT-BUTYLBENZENE   420 U   TERT-BUTYLBENZENE   420 U   TERT-BUTYLBENZENE   420 U   TERT-BUTYLBENZENE   420 U   TERT-BUTYLBENZENE   420 U   TERT-BUTYLBENZENE   420 U   TERT-BUTYLBENZENE   420 U   TERT-BUTYLBENZENE   420 U   TERT-BUTYLBENZENE   420 U   TERT-BUTYLBENZENE   420 U   TERT-BUTYLBENZENE   420 U   TERT-BUTYLBENZENE   420 U   TERT-BUTYLBENZENE   420 U   TERT-BUTYLBENZENE   420 U   TERT-BUTYLBENZENE   420 U   TERT-BUTYLBENZENE   420 U   TERT-BUTYLBENZENE   420 U   TERT-BUTYLBENZENE   420 U   TERT-BUTYLBENZENE   420 U   TERT-BUTYLBENZENE   420 U   TERT-BUTYLBENZENE   420 U   TERT-BUTYLBENZENE   420 U   TERT-BUTYLBENZENE   420 U   TERT-BUTYLBENZENE   420 U   TERT-BUTYLBENZENE   420 U   TERT-BUTYLBENZENE   420 U   TERT-BUTYLBENZENE   420 U   TERT-BUTYLBENZENE   420 U   TERT-BUTYLBENZENE   420 U   TERT-BUTYLBENZENE   420 U   TERT-BUTYLBENZENE   420 U   TERT-BUTYLBENZENE   420 U   TERT-BUTYLBENZENE   420 U   TERT-BUTYLBENZENE   420 U   TERT-BUTYLBENZENE   420 U   TERT-BUTYLBENZENE   420 U   TERT-BUTYLBENZENE   420 U   TERT-BUTYLBENZENE   420 U   TERT-BUTYLBENZENE   420 U   TERT-BUTYLBENZENE   420 U   TERT-BUTYLBENZENE   420 U   TERT-BUTYLBENZENE   42		ETHYL TERT-BUTYL ETHER	2100	U	
ISOPROPYLBENZENE		ETHYLBENZENE	420	Ű	
M+P-XYLENES       830       U         METHYL TERT-BUTYL ETHER       2100       U         METHYLENE CHLORIDE       420       U         NAPHTHALENE       420       U         N-BUTYLBENZENE       420       U         N-PROPYLBENZENE       420       U         O-XYLENE       420       U         SEC-BUTYLBENZENE       420       U         STYRENE       420       U         TERT-AMYL METHYL ETHER       2100       U         TERT-BUTYLBENZENE       420       U         TERTIARY-BUTYL ALCOHOL       8300       UR       C	ı	HEXACHLOROBUTADIENE	420	U	
METHYL TERT-BUTYL ETHER         2100         U           METHYLENE CHLORIDE         420         U           NAPHTHALENE         420         U           N-BUTYLBENZENE         420         U           N-PROPYLBENZENE         420         U           O-XYLENE         420         U           SEC-BUTYLBENZENE         420         U           STYRENE         420         U           TERT-AMYL METHYL ETHER         2100         U           TERT-BUTYLBENZENE         420         U           TERTIARY-BUTYL ALCOHOL         8300         UR         C		ISOPROPYLBENZENE	420	U	
METHYLENE CHLORIDE         420 U           NAPHTHALENE         420 U           N-BUTYLBENZENE         420 U           N-PROPYLBENZENE         420 U           O-XYLENE         420 U           SEC-BUTYLBENZENE         420 U           STYRENE         420 U           TERT-AMYL METHYL ETHER         2100 U           TERT-BUTYLBENZENE         420 U           TERT-BUTYLBENZENE         420 U           TERTIARY-BUTYL ALCOHOL         8300 UR		M+P-XYLENES	830	U	
NAPHTHALENE         420         U           N-BUTYLBENZENE         420         U           N-PROPYLBENZENE         420         U           O-XYLENE         420         U           SEC-BUTYLBENZENE         420         U           STYRENE         420         U           TERT-AMYL METHYL ETHER         2100         U           TERT-BUTYLBENZENE         420         U           TERTIARY-BUTYL ALCOHOL         8300         UR         C	l	METHYL TERT-BUTYL ETHER	2100	U	
N-BUTYLBENZENE         420         U           N-PROPYLBENZENE         420         U           O-XYLENE         420         U           SEC-BUTYLBENZENE         420         U           STYRENE         420         U           TERT-AMYL METHYL ETHER         2100         U           TERT-BUTYLBENZENE         420         U           TERTIARY-BUTYL ALCOHOL         8300         UR         C	ı		420	U	
N-PROPYLBENZENE 420 U  O-XYLENE 420 U  SEC-BUTYLBENZENE 420 U  STYRENE 420 U  TERT-AMYL METHYL ETHER 2100 U  TERT-BUTYLBENZENE 420 U  TERT-BUTYLBENZENE 420 U  TERTIARY-BUTYL ALCOHOL 8300 UR C		NAPHTHALENE	420	U	
O-XYLENE         420         U           SEC-BUTYLBENZENE         420         U           STYRENE         420         U           TERT-AMYL METHYL ETHER         2100         U           TERT-BUTYLBENZENE         420         U           TERTIARY-BUTYL ALCOHOL         8300         UR         C	Į	N-BUTYLBENZENE	420	U	
SEC-BUTYLBENZENE   420 U     STYRENE   420 U		N-PROPYLBENZENE	420	U	
STYRENE         420 U           TERT-AMYL METHYL ETHER         2100 U           TERT-BUTYLBENZENE         420 U           TERTIARY-BUTYL ALCOHOL         8300 UR         C	L		420	Ü	
TERT-AMYL METHYL ETHER         2100 U           TERT-BUTYLBENZENE         420 U           TERTIARY-BUTYL ALCOHOL         8300 UR         C	Į	SEC-BUTYLBENZENE	420	U	
TERT-BUTYLBENZENE 420 U TERTIARY-BUTYL ALCOHOL 8300 UR C	Ŀ	STYRENE	420	Ü	
TERTIARY-BUTYL ALCOHOL 8300 UR C		TERT-AMYL METHYL ETHER	2100	U	
COCO CIT C	[	TERT-BUTYLBENZENE	420	U	
TETRACHLOROETHENE 420 U	ᆫ		8300	UR	С
	Ľ	FETRACHLOROETHENE	420	U	

Parameter	Result	Val Qual	Quai Code
TOLUENE	420	U	
TOTAL XYLENES	830	Ü	-
TRANS-1,2-DICHLOROETHENE	420	U	-
TRANS-1,3-DICHLOROPROPENE	420	U	
TRICHLOROETHENE	13000		
TRICHLOROFLUOROMETHANE	420	U	
VINYL ACETATE	830	U	
VINYL CHLORIDE	320	J	Р

nsample samp_date TB-121107

12/11/2007 lab_id A7L120224002

qc_type units

NM UG/L

Pct_Solids

nsample samp_date lab_id

units

TB-121107 12/11/2007

qc_type

A7L120224002 NM

UG/L

Pct_Solids DUP_OF:

nsample samp_date lab_id

TB-121107 12/11/2007 A7L120224002

NM UG/L

Pct_Solids DUP_OF:

qc_type

units

DUP_OF:			
Parameter	Result	Val Qual	Qual Code
1,1,1,2-TETRACHLOROETHANE	1	Ü	<del>  -</del>
1,1,1-TRICHLOROETHANE	1	U	
1,1,2,2-TETRACHLOROETHANE	1	U	
1,1,2-TRICHLOROTRIFLUOROETHANE	1	U	h
1,1-DICHLOROETHANE	1	U	T
1,1-DICHLOROETHENE	1	U	T -
1,1-DICHLOROPROPENE	1	Ü	
1,2,3-TRICHLOROBENZENE	0.51	J	Р
1,2,3-TRICHLOROPROPANE	1	U	
1,2,3-TRIMETHYLBENZENE	5	Ū	
1,2,4-TRICHLOROBENZENE	0.27	Ĵ	Р
1,2,4-TRIMETHYLBENZENE	1	Ü	
1,2-DIBROMO-3-CHLOROPROPANE	2	Ü	
1,2-DIBROMOETHANE	1	U	
1,2-DICHLOROBENZENE	1	U	-
1,2-DICHLOROETHANE	1	U	
1,2-DICHLOROPROPANE	1	U	
1,3-DICHLOROBENZENE	1	U	-
1,3-DICHLOROPROPANE	1	U	
1,4-DICHLOROBENZENE	1	U	
2,2-DICHLOROPROPANE	1	U	
2-BUTANONE	5	U	
2-CHLOROETHYL VINYL ETHER	5	U	
2-CHLOROTOLUENE	1	U	
2-HEXANONE	5	U	
4-CHLOROTOLUENE	1	U	
4-ISOPROPYLTOLUENE	1	U	
4-METHYL-2-PENTANONE	5	U	
ACETONE	5	U	
BENZENE	1	U	
BROMOBENZENE	1	U	
BROMOCHLOROMETHANE	1	U	

Parameter	Result	Val Qual	Qual Code
BROMODICHLOROMETHANE	1	U	
BROMOFORM	1	U	
BROMOMETHANE	. 1	U	
CARBON DISULFIDE	1	U	
CARBON TETRACHLORIDE	1	U	
CHLOROBENZENE	1	U	
CHLORODIBROMOMETHANE	1	U	
CHLOROETHANE	1	U	
CHLOROFORM	0.22	J	Р
CHLOROMETHANE	1	U	
CIS-1,2-DICHLOROETHENE	1	U	
CIS-1,3-DICHLOROPROPENE	1	U	
DIBROMOMETHANE	1	Ü	-
DICHLORODIFLUOROMETHANE	1	U	
DIISOPROPYL ETHER	5	U	
ETHYL TERT-BUTYL ETHER	5	Ü	
ETHYLBENZENE	1	U	
HEXACHLOROBUTADIENE	1	Ü	
ISOPROPYLBENZENE	1	Ú	
M+P-XYLENES	2	U	
METHYL TERT-BUTYL ETHER	5	Ü	
METHYLENE CHLORIDE	1,	Ü	
NAPHTHALENE	0.63	J	Р
N-BUTYLBENZENE	1	U	
N-PROPYLBENZENE	1	U	
O-XYLENE	1	U	
SEC-BUTYLBENZENE	1	U	
STYRENE	1	U	-
TERT-AMYL METHYL ETHER	5	U	
TERT-BUTYLBENZENE	1	U	
TERTIARY-BUTYL ALCOHOL	20	UR	С
TETRACHLOROETHENE	1	U	

Parameter	Result	Val Qual	Qual Code
OLUENE	1	Ü	
TOTAL XYLENES	2	U	
RANS-1,2-DICHLOROETHENE	1	U	
RANS-1,3-DICHLOROPROPENE	1	U	
RICHLOROETHENE	1	U	
RICHLOROFLUOROMETHANE	1	Ũ	
/INYL ACETATE	2	U	
INYL CHLORIDE	1	U	-

SDG: 7L12224 MEDIA: WATER DATA FRACTION: OV

nsample samp_date

TB-121207

12/12/2007

lab_id ac_tyne A7L140260002

qc_type units

NM UG/L

Pct_Solids DUP_OF:

nsample samp_date

TB-121207

12/12/2007 A7L140260002

qc_type units

lab_id

NM UG/L

Pct_Solids DUP_OF: nsample

TB-121207

samp_date lab_id 12/12/2007 A7L140260002

qc_type units NM UG/L

Pct_Solids DUP_OF:

Parameter	Result	Val Qual	Qual Code
1,1,1,2-TETRACHLOROETHANE	1	U	
1,1,1-TRICHLOROETHANE	1	U	<del> </del>
1,1,2,2-TETRACHLOROETHANE	1	U	
1,1,2-TRICHLOROTRIFLUOROETHANE	1	<del>-</del> Ū	
1,1-DICHLOROETHANE	1	U	
1,1-DICHLOROETHENE	1	U	
1,1-DICHLOROPROPENE	1	U	<u> </u>
1,2,3-TRICHLOROBENZENE	1		
1,2,3-TRICHLOROPROPANE	1	Ū	
1,2,3-TRIMETHYLBENZENE	5	U	
1,2,4-TRICHLOROBENZENE	1	U	
1,2,4-TRIMETHYLBENZENE	1	U	
1,2-DIBROMO-3-CHLOROPROPANE	2	U	
1,2-DIBROMOETHANE	1	U.	
1,2-DICHLOROBENZENE	1	U	
1,2-DICHLOROETHANE		U	
1,2-DICHLOROPROPANE	1	U	
1,3-DICHLOROBENZENE	1	U	
1,3-DICHLOROPROPANE	1	U	
1,4-DICHLOROBENZENE	1	Ū	
2,2-DICHLOROPROPANE	1	U	
2-BUTANONE	5	U	
2-CHLOROETHYL VINYL ETHER	5	U	
2-CHLOROTOLUENE	1	U	
2-HEXANONE	5	U	_
4-CHLOROTOLUENE	1	Ü.	
4-ISOPROPYLTOLUENE	1	U	
4-METHYL-2-PENTANONE	5	U	
ACETONE	1.5	J	CP
BENZENE	1	U	
BROMOBENZENE	1	U	
BROMOCHLOROMETHANE	1	U	

	Parameter	Result	Val Qual	Quai Code
	BROMODICHLOROMETHANE	1	U	<del></del>
1	BROMOFORM	1	U	
	BROMOMETHANE	1	U	
	CARBON DISULFIDE	1	U	
	CARBON TETRACHLORIDE	1	U	
	CHLOROBENZENE	1	U	
	CHLORODIBROMOMETHANE	1	U	
	CHLOROETHANE	1	U	
	CHLOROFORM	1	U	
	CHLOROMETHANE	1	U	
	CIS-1,2-DICHLOROETHENE	1	U	
	CIS-1,3-DICHLOROPROPENE	1	U	-
	DIBROMOMETHANE	1	U	
	DICHLORODIFLUOROMETHANE	1	U	
	DIISOPROPYL ETHER	5	U	
ļ	ETHYL TERT-BUTYL ETHER	. 5	U	
	ETHYLBENZENE	1	U	
ļ	HEXACHLOROBUTADIENE	1	U	
	ISOPROPYLBENZENE	1	U	
ļ	M+P-XYLENES	2	U	
	METHYL TERT-BUTYL ETHER	5	U	
	METHYLENE CHLORIDE	1	U	
	NAPHTHALENE	1	U	
	N-BUTYLBENZENE	1	U	
	N-PROPYLBENZENE	1	U	
	O-XYLENE	1	U	
	SEC-BUTYLBENZENE	1	U	
	STYRENE	1	U	
}	TERT-AMYL METHYL ETHER	5	U	
ŀ	TERT-BUTYLBENZENE	1	Ū	
- 1	TERTIARY-BUTYL ALCOHOL	20	UR	С
ļ	TETRACHLOROETHENE	1	U	

Parameter	Result	Val Qual	Qual Code
TOLUENE	1	Ü	<u> </u>
TOTAL XYLENES	2	U	
TRANS-1,2-DICHLOROETHENE	1	U	
TRANS-1,3-DICHLOROPROPENE	1	U	
TRICHLOROETHENE	1	U	
TRICHLOROFLUOROMETHANE	1	U	
VINYL ACETATE	2	UJ	С
VINYL CHLORIDE	1	U	

SDG: 7L12224 MEDIA: WATER DATA FRACTION: OV

nsample samp_date

TB-121407

12/14/2007

lab_id

A7L150155002

qc_type units NM UG/L

Pct_Solids DUP_OF: nsample samp_date lab_id qc_type

TB-121407 12/14/2007 A7L150155002

NM UG/L

Pct_Solids DUP_OF:

units

nsample samp_date lab_id TB-121407 12/14/2007 A7L150155002

qc_type

NM UG/L

Pct_Solids DUP_OF:

——————————————————————————————————————			
Parameter	Result	Val Qual	Qua Code
1,1,1,2-TETRACHLOROETHANE	1	U	-
1,1,1-TRICHLOROETHANE	1	U	1
1,1,2,2-TETRACHLOROETHANE	1	U	<b>—</b>
1,1,2-TRICHLOROTRIFLUOROETHANE	1	U	-
1,1-DICHLOROETHANE	1	U	
1,1-DICHLOROETHENE	1	Ū	
1,1-DICHLOROPROPENE	1	U	
1,2,3-TRICHLOROBENZENE	0.48	J	Р
1,2,3-TRICHLOROPROPANE	1	U	
1,2,3-TRIMETHYLBENZENE	5	U	
1,2,4-TRICHLOROBENZENE	0.24	J	Р
1,2,4-TRIMETHYLBENZENE	1	U	
1,2-DIBROMO-3-CHLOROPROPANE	2	U	
1,2-DIBROMOETHANE	1	U	
1,2-DICHLOROBENZENE	1	U	
1,2-DICHLOROETHANE	1	U	_
1,2-DICHLOROPROPANE	1	U	
1,3-DICHLOROBENZENE	1	U	
1,3-DICHLOROPROPANE	1	U	
1,4-DICHLOROBENZENE	1	U	
2,2-DICHLOROPROPANE	1	U	
2-BUTANONE	5	Ü	
2-CHLOROETHYL VINYL ETHER	5	U	
2-CHLOROTOLUENE	1	U	
2-HEXANONE	5	U	
4-CHLOROTOLUENE	1	U	
4-ISOPROPYLTOLUENE	1	U	
4-METHYL-2-PENTANONE	5	U	-
ACETONE	5	U	
BENZENE	1	U	
BROMOBENZENE	1	U	
BROMOCHLOROMETHANE	1	U	

Paramete	er	Result	Val Qual	Qual Code
BROMODICHLOROMETHA	NE	1	Ű	
BROMOFORM		1	Ü	
BROMOMETHANE		1	U	
CARBON DISULFIDE		1	U	
CARBON TETRACHLORIDI	Ξ	1	Ų	
CHLOROBENZENE		1	U	
CHLORODIBROMOMETHA	NE	1	U	
CHLOROETHANE		1	Ū	-
CHLOROFORM		1	Ū	
CHLOROMETHANE	-	1	Ü	
CIS-1,2-DICHLOROETHENE		1	U	
CIS-1,3-DICHLOROPROPE	VE	1	Ū	-
DIBROMOMETHANE		1	Ū	
DICHLORODIFLUOROMETI	HANE	1	Ü	
DIISOPROPYL ETHER		5	U	
ETHYL TERT-BUTYL ETHE	R	5	U	
ETHYLBENZENE		1	U	
HEXACHLOROBUTADIENE		1	U	
ISOPROPYLBENZENE		1	U	
M+P-XYLENES		2	U	
METHYL TERT-BUTYL ETH	ER .	5	U	
METHYLENE CHLORIDE		1	U	
NAPHTHALENE		0.49	J	Р
N-BUTYLBENZENE		1	U	
N-PROPYLBENZENE	-	1	U	
O-XYLENE		1	U	
SEC-BUTYLBENZENE	-	1	U	
STYRENE		1	U	
TERT-AMYL METHYL ETHE	R	5	Ü	
TERT-BUTYLBENZENE		1	U	
TERTIARY-BUTYL ALCOHO	L	20	UR	С
TETRACHLOROETHENE		1	Ū	

Result	Val Qual	Qual Code
1	U	
2	U	
1	U	
1	U	
1	U	******
1	U	
2	U	
1	U	
	1 2 1 1 1 1 1 1	Result Qual

00886

SDG: 7L12224 MEDIA: WATER DATA FRACTION: OS

nsample samp_date

lab_id

qc_type

12/11/2007

A7L120224001

NM

UG/L

units Pct_Solids

DUP_OF:

MW74A-121107

nsample samp_date lab_id

A7L140260001 qc_type

units Pct_Solids DUP_OF:

MW74A-121207

12/12/2007

NM

UG/L

nsample samp_date

lab_id qc_type units

Pct_Solids DUP_OF:

MW74A-121407

12/14/2007 A7L150155001 NM

UG/L

Parameter	Result	Val Qual	Qual Code
1,4-DIOXANE	10	U	

Parameter	Result	Val Qual	Qual Code
1,4-DIOXANE	10	U	

Parameter	Result	Val Qual	Qual Code
1,4-DIOXANE	10	U	

00886

SDG: 7L12224 MEDIA: WATER DATA FRACTION: OS

nsample samp_date

lab_id

qc_type

RW-01I-121107DL

12/11/2007

A7L120224003

NM

units UG/L

Pct_Solids DUP_OF:

nsample samp_date lab_id

12/12/2007 A7L140260003 qc_type NM

units Pct_Solids DUP_OF:

RW-01I-121207DL

samp_date lab_id

qc_type units

Pct_Solids DUP_OF:

1,4-DIOXANE

Parameter

nsample

RW-01I121407DL

12/14/2007 A7L150155003

NM UG/L

Val Qual Result Qual Code

270

Parameter	Result	Val Qual	Qual Code
1,4-DIOXANE	90		

Parameter	Result	Val Qual	Qual Code
1,4-DIOXANE	210		

UG/L

00886 SDG: 7L12224 MEDIA: WATER DATA FRACTION: M

nsample samp_date MW74A-121107 12/11/2007

nsample samp_date lab_id

MW74A-121207 12/12/2007

nsample samp_date MW74A-121407

lab_id qc_type

A7L120224001 NM

qc_type units

A7L140260001 NM

UG/L

lab_id

12/14/2007 A7L150155001 NM

units Pct_Solids UG/L

qc_type units Pct_Solids

UG/L

DUP_OF:

Pct_Solids DUP_OF:

Parameter	Result	Val Qual	Qual Code
ANTIMONY	0.26	В	Α
ARSENIC	0.43		
BARIUM	39.3	•	
BERYLLIUM	2		
CADMIUM	0.54		
CHROMIUM	0.2	В	Α
COBALT	31.9	J	1
COPPER	6.7		
LEAD	0.29		
MERCURY	0.1	U	
MOLYBDENUM	0.58	UL	K
NICKEL	13.2	-	
SELENIUM	1.2	U	
SILVER	0.01	U	
THALLIUM	0.074	В	Α
VANADIUM	0.27	U	
ZINC	630		

Parameter	Result	Val Qual	Qual Code
ANTIMONY	0.079	В	Α
ARSENIC	0.43		
BARIUM	42.6		
BERYLLIUM	2.6		
CADMIUM	0.24		
CHROMIUM	0.14	U	
COBALT	39.9	J	I
COPPER	8.5		
LEAD	0.24		
MERCURY	0.1	U	
MOLYBDENUM	0.58	UL	К
NICKEL	15.4		
SELENIUM	1.4		
SILVER	0.01	Ų	
THALLIUM	0.054	В	Α
VANADIUM	0.27	U	
ZINC	143		

Parameter	Result	Val Qual	Qual Code
ANTIMONY	0.055	U	
ARSENIC	0.5		
BARIUM	45.3		
BERYLLIUM	2.8		
CADMIUM	0.23		
CHROMIUM	0.14	U	
COBALT	45.4	J	ı
COPPER	9.8		
LEAD	0.22		
MERCURY	0.1	U	
MOLYBDENUM	0.58	UL	K
NICKEL	17		
SELENIUM	1.3		
SILVER	0.01	U	
THALLIUM	0.048	В	Α
VANADIUM	0.27	U	
ZINC	91.5		

SDG: 7L12224 MEDIA: WATER DATA FRACTION: M

nsample samp_date

lab_id

units

qc_type

Pct_Solids

VANADIUM

ZINC.

RW-01I-121107

12/11/2007

A7L120224003

2.2

233

NM UG/L

nsample samp_date

12/12/2007 lab_id A7L140260003 qc_type

RW-01I-121207

NM UG/L

Pct_Solids DUP_OF:

units

nsample

samp_date lab_id

qc_type

units

RW-01I121407 12/14/2007 A7L150155003

NM UG/L

Pct_Solids DUP_OF:

DUP_OF:			
Parameter	Result	Val Qual	Qual Code
ANTIMONY	0.23	В	Α
ARSENIC	1.6		
BARIUM	104		
BERYLLIUM	1.5	,,,,	
CADMIUM	219		
CHROMIUM	1.3	В	Α
COBALT	195	j	I
COPPER	7.1		
LEAD	0.14		
MERCURY	0.1	Ū	
MOLYBDENUM	0.61	L	К
NICKEL	72.7		
SELENIUM	4.6		
SILVER	0.014		
THALLIUM	0.098	В	Α

Parameter	Result	Val Qual	Qual Code
ANTIMONY	0.055	U	
ARSENIC	1.7		
BARIUM	113		
BERYLLIUM	1.9		
CADMIUM	273		
CHROMIUM	1.4	В	Α
COBALT	241	J	1
COPPER	20.9		
LEAD	0.09		
MERCURY	0.1	U	
MOLYBDENUM	0.58	UL	К
NICKEL	83.2		
SELENIUM	5.5		
SILVER	0.01	U	
THALLIUM	0.092	В	Α
VANADIUM	2.5		
ZINC	281	-	

Parameter	Result	Val Qual	Qual Code
ANTIMONY	0.055		
	0.055	U	
ARSENIC	1.4		
BARIUM	103		
BERYLLIUM	1.9	-	
CADMIUM	259		
СНВОМІИМ	1.2	В	Α
COBALT	244	J	ı
COPPER	22.7		
LEAD	0.078		
MERCURY	0.21		
MOLYBDENUM	0.58	UL	K
NICKEL	79.8		
SELENIUM	4		
SILVER	0.01	U	
THALLIUM	0.098	В	Α
VANADIUM	2.7		
ZINC	283	V1-V1-L	

SDG: 7L12224 MEDIA: WATER DATA FRACTION: MF

nsample samp_date MW74A-121107 12/11/2007

nsample samp_date lab_id

MW74A-121207 12/12/2007

nsample samp_date lab_id

MW74A-121407

lab_id qc_type

A7L120224001 NM

UG/L

qc_type units

A7L140260001 NM UG/L

qc_type units ·

12/14/2007 A7L150155001 NM

UG/L

Pct_Solids

units

DUP_OF:

Pct_Solids DUP_OF:

Pct_Solids

Parameter	Result	Val Qual	Qual Code
ANTIMONY	0.059	В	А
ARSENIC	0.52		
BARIUM	38.3	•	
BERYLLIUM	1.8	***	
CADMIUM	0.47		
CHROMIUM	0.14	U	
COBALT	31.1	J	1
COPPER	6.5		
LEAD	0.55		
MERCURY	0.1	Ü	
MOLYBDENUM	0.58	UL	K
NICKEL	12.7		
SELENIUM	1.2		
SILVER	0.01	U	
THALLIUM	0.054	В	Α
VANADIUM	0.27	U	
ZINC	622		

		Val	Qual
Parameter	Result	Qual	Code
ANTIMONY	0.055	U	
ARSENIC	0.54		
BARIUM	39.7		
BERYLLIUM	2.2		
CADMIUM	0.18		
CHROMIUM	0.14	U	
COBALT	36.9	J	1
COPPER	8		
LEAD	0.25		
MERCURY	0.1	U	
MOLYBDENUM	0.58	UL	K
NICKEL	14		
SELENIUM	1.2	U	
SILVER	0.01	U	
THALLIUM	0.045	В	Α
VANADIUM	0.27	U	
ZINC	134	- S	

D		Val	Qual
Parameter	Result	Quai	Code
ANTIMONY	0.056	В	Α
ARSENIC	0.5		
BARIUM	43.7		
BERYLLIUM	2.8		
CADMIUM	0.21		
CHROMIUM	0.14	U	
COBALT	43.9	J	I
COPPER	9.5		
LEAD	0.23		
MERCURY	0.1	Ū	
MOLYBDENUM	0.58	UL	К
NICKEL	16.4		
SELENIUM	1.2	U	
SILVER	0.01	U	
THALLIUM	0.059	В	Α
VANADIUM	0.27	U	
ZINC	91.1		

SDG: 7L12224 MEDIA: WATER DATA FRACTION: MF

nsample samp_date lab_id

RW-01I-121107

12/11/2007

UG/L

A7L120224003 NM

lab_id qc_type units Pct_Solids

DUP_OF:

nsample

samp_date

RW-01I-121207 12/12/2007 A7L140260003

NM UG/L nsample samp_date lab_id qc_type units

Pct_Solids

DUP_OF:

RW-01|121407 12/14/2007 A7L150155003

NM UG/L

Pct_Solids

qc_type

units

Parameter	Result	Val Qual	Qual Code
ANTIMONY	0.14	В	A
ARSENIC	1.7		
BARIUM	106		
BERYLLIUM	1.4	·61-	
CADMIUM	218		
CHROMIUM	1.2	В	Α
COBALT	198	J	1
COPPER	6.6		
LEAD	0.2		
MERCURY	0.1	U	
MOLYBDENUM	0.73	L	К
NICKEL	74.2		
SELENIUM	5	,	
SILVER	0.01	U	
THALLIUM	0.084	В	Α
VANADIUM	2.1	****	
ZINC	233	-	

Parameter	Result	Val Qual	Qual Code
ANTIMONY	0.44		
ARSENIC	0.8		
BARIUM	113		
BERYLLIUM	1.9		
CADMIUM	267		
CHROMIUM	1.3	В	Α
COBALT	242	J	1
COPPER	20.9		
LEAD	0.12		
MERCURY	0.1	U	
MOLYBDENUM	0.58	UL	К
NICKEL	82.7		-
SELENIUM	2.9		
SILVER	0.01	U	
THALLIUM	0.09	В	Α
VANADIUM	2.5		
ZINC	272		

Dorometer	Daguit	Val	Qual
Parameter	Result	Qual	Code
ANTIMONY	0.055	U	
ARSENIC	1		
BARIUM	106		
BERYLLIUM	2		
CADMIUM	267		
CHROMIUM	1.2	В	Α
COBALT	254	J	1
COPPER	24		
LEAD	0.19		
MERCURY	0.1	U	
MOLYBDENUM	0.58	UL	K
NICKEL	82.8		
SELENIUM ·	2.7		
SILVER	0.01	U	
THALLIUM	0.1	В	Α
VANADIUM	2.6		
ZINC	370		

00886

SDG: 7L12224 MEDIA: WATER DATA FRACTION: MISC

nsample samp_date

lab_id

12/11/2007

NM

A7L120224001

qc_type

Pct_Solids DUP_OF:

MW74A-121107

nsample samp_date

lab_id

DUP_OF:

qc_type Pct_Solids MW74A-121207

12/12/2007

A7L140260001

NM

nsample

samp_date lab_id

12/14/2007 A7L150155001

MW74A-121407

NM

qc_type Pct_Solids

Parameter	units	Result	Vai Qual	Qual Code
PH	S.U.	5.1		

Parameter	units	Result	Val Qual	Qual Code
PH	S.U.	5		

	Parameter	units	Result	Val Qual	Qual Code
PH		S.U.	4.8		

00886

SDG: 7L12224 MEDIA: WATER DATA FRACTION: MISC

nsample samp_date

lab_id

RW-01I-121107

12/11/2007

A7L120224003

NM

qc_type Pct_Solids

lab_id

nsample RW-01I-121207 samp_date

12/12/2007

A7L140260003 NM

nsample samp_date lab_id qc_type

Pct_Solids

12/14/2007 A7L150155003

NM

RW-01I121407

qc_type Pct_Solids DUP_OF:

DUP_OF:

Parameter	units	Result	Val Qual	Qual Code
PH	S.U.	4.8		

Parameter	units	Result	Val Qual	Qual Code
PH	S.U.	4.7		

Parameter	units	Result	Val Qual	Qual Code
PH	S.U.	4.6		

# APPENDIX B RESULTS AS REPORTED BY THE LABORATORY

#### Client Sample ID: MW74A-121107

#### GC/MS Volatiles

Lot-Sample #...: A7L120224-001 Work Order #...: KD05R1CF Matrix...... WG

Date Sampled...: 12/11/07 12:00 Date Received..: 12/12/07 Prep Date....: 12/20/07 Analysis Date..: 12/20/07

Prep Batch #...: 7354500

Dilution Factor: 1666.67 Initial Wgt/Vol: 5 mL Final Wgt/Vol.: 5 mL

Method.....: SW846 8260B

		REPORTING		
PARAMETER	RESULT	LIMIT	UNITS	MDL
Acetone	ND	. 8300	ug/L	1800
Bromobenzene	ND	1700	ug/L	220
Bromochloromethane	ND	1700	ug/L	480
Bromodichloromethane	ND	1700	ug/L	250
2-Butanone	ND	8300	ug/L	950
n-Butylbenzene	ND	1700	ug/L	200
sec-Butylbenzene	ND	1700	ug/L	220
tert-Butylbenzene	ND	1700	ug/L	220
Carbon disulfide	ИD	1700	ug/L	220
Dibromochloromethane	ND	1700	ug/L	300
1,2-Dibromo-3-chloro-	ND.	3300	ug/L	1100
propane				
2-Chloroethyl vinyl ether	ND	8300	ug/L	1700
2-Chlorotoluene	ND	1700	ug/L	180
4-Chlorotoluene	ND	1700	ug/L	300
1,2-Dibromoethane	ND	1700	ug/L	400
Dibromomethane	ND	1700	ug/L	470
1,2-Dichlorobenzene	ND	1700	ug/L	220
1,3-Dichlorobenzene	ND	1700	ug/L	230
1,4-Dichlorobenzene	ND	1700	ug/L	220
Dichlorodifluoromethane	ND .	1700	ug/L	520
cis-1,2-Dichloroethene	2800	1700	ug/L	280
trans-1,2-Dichloroethene	ND	1700	ug/L	320
1,3-Dichloropropane	ND	1700	ug/L	270
2,2-Dichloropropane	ND	1700	ug/L	220
1,1-Dichloropropene	ND	1700	ug/L	220
Trichlorofluoromethane	ND	1700	ug/L	350
Hexachlorobutadiene	ND	1700	ug/L	500
2-Hexanone	ND	8300	ug/L	680
Isopropylbenzene	ND	1700	ug/L	220
p-Isopropyltoluene	ND	1700	ug/L	200
tert-Butyl alcohol	ND	33000	ug/L	6500
4-Methyl-2-pentanone	ND	8300	ug/L	530
Naphthalene	ND	1700	ug/L	400
n-Propylbenzene	ND	1700	ug/L	230
Styrene	ND	1700	ug/L	180
1,1,1,2-Tetrachloroethane	ND	1700	ug/L	380
1,2,3-Trichlorobenzene	ND	1700	ug/L	280

(Continued on next page)

# Client Sample ID: MW74A-121107

## GC/MS Volatiles

Lot-Sample #: A7L120224-001	Work Order #: KD05R1CF	Matrix WG
-----------------------------	------------------------	-----------

DADAMORES		REPORTIN	G		
PARAMETER	RESULT	LIMIT	UNITS	MDL	
1,2,4-Trichloro-	ND	1700	ug/L	250	
benzene			<i>5</i>	230	
1,2,3-Trichloropropane	ND	1700	ug/L	720	
1,1,2-Trichloro-	ND	1700	ug/L	470	
1,2,2-trifluoroethane		- : • •	49/1	470	
1,2,4-Trimethylbenzene	ND	1700	ug/L	200	
Vinyl acetate	ND	3300	ug/L		
o-Xylene	ND	1700	ug/L ug/L	320	
Xylenes (total)	ND	3300		230	
Methyl tert-butyl ether	ND	8300	ug/L	470	
m-Xylene & p-Xylene	ND	3300	ug/L	280	
1,2,3-Trimethylbenzene	ND	8300	ug/L	400	
Diisopropyl Ether (DIPE)	ND		ug/L	9.8	
Ethyl-t-Butyl Ether (ETBE)	ND	8300	ug/L	2500	
Tert-amyl methyl ether (TAME)	ND	8300	ug/L	180	
Benzene	ND	8300	ug/L	110	
Bromoform	ND	1700	ug/L	220	
Bromomethane		1700	ug/L	1100	
Carbon tetrachloride	ND	1700	ug/L	680	
Chlorobenzene	ND	1700	ug/L	220	
Chloroethane	ND	1700	ug/L	250	
Chloroform	ND	1700	ug/L	480	
Chloromethane	ND	1700	ug/L	270	
1,1-Dichloroethane	ND	1700	ug/L	500	
1,2-Dichloroethane	ND	1700	ug/L	250	
1,1-Dichloroethene	ND	1700	ug/L	370	
1,2-Dichloropropane	ND	1700	ug/L	320	
	ND	1700	ug/L	300	
cis-1,3-Dichloropropene	ND	1700	ug/L	230	
trans-1,3-Dichloropropene	ND	1700	ug/L	320	
Ethylbenzene	ND	1700	ug/L	280	
Methylene chloride	ND	1700	ug/L	550	
1,1,2,2-Tetrachloroethane	ND	1700	ug/L	300	
Tetrachloroethene	ND	1700	ug/L	480	
Toluene	ND	1700	ug/L	220	
1,1,1-Trichloroethane	ND	1700	ug/L	370	
Trichloroethene	64000	1700	ug/L	280	
Vinyl chloride	ND	1700	ug/L	370	
		2.00	ug/ ii	370	
	PERCENT	RECOVERY			
SURROGATE	RECOVERY	LIMITS			
Dibromofluoromethane	90	$\frac{111113}{(73 - 122)}$	-		
1,2-Dichloroethane-d4	88	(61 - 128)			
Toluene-d8	89	(76 - 110)			
4-Bromofluorobenzene	87	(74 - 116)			
	- *	(14 - 170)			

#### Client Sample ID: MW74A-121207

#### GC/MS Volatiles

Lot-Sample #...: A7L140260-001 Work Order #...: KD7CM1CF Matrix...... WG

Date Sampled...: 12/12/07 21:00 Date Received..: 12/14/07 Prep Date....: 12/21/07 Analysis Date..: 12/21/07

Prep Batch #...: 7358112

Dilution Factor: 1666.67 Initial Wgt/Vol: 5 mL Final Wgt/Vol.: 5 mL

Method.....: SW846 8260B

		REPORTIN	IG	
PARAMETER	RESULT	LIMIT	UNITS	MDL
Acetone	ND	8300	ug/L	1800
Bromobenzene	ND	1700	ug/L	220
Bromochloromethane	ND .	1700	ug/L	480
Bromodichloromethane	ND	1700	ug/L	250
2-Butanone	ND	8300	ug/L	950
n-Butylbenzene	ND	1700	ug/L	200
sec-Butylbenzene	ND .	1700	ug/L	220
tert-Butylbenzene	ND	1700	ug/L	220
Carbon disulfide	ND	1700	ug/L	220
Dibromochloromethane	ND	1700	ug/L	300
1,2-Dibromo-3-chloro-	ND	3300	ug/L	1100
propane				
2-Chloroethyl vinyl ether	ND	8300	ug/L	1700
2-Chlorotoluene	ND	1700	ug/L	180
4-Chlorotoluene	ND	1700	ug/L	300
1,2-Dibromoethane	ND	1700	ug/L	400
Dibromomethane	ND	1700	ug/L	470
1,2-Dichlorobenzene	ND .	1700	ug/L	220
1,3-Dichlorobenzene	ND ·	1700	ug/L	230
1,4-Dichlorobenzene	ND	1700	ug/L	220
Dichlorodifluoromethane	ND	1700	ug/L	520
cis-1,2-Dichloroethene	2300	1700	ug/L	280
trans-1,2-Dichloroethene	ND	1700	ug/L	320
1,3-Dichloropropane	ND	1700	ug/L	270
2,2-Dichloropropane	ND	1700	ug/L	220
1,1-Dichloropropene	ND	1700	ug/L	220
Trichlorofluoromethane	ND	1700	ug/L	350
Hexachlorobutadiene	ND	1700	ug/L	500
2-Hexanone	ND	8300	ug/L	680
Isopropylbenzene	ND	1700	ug/L	220
p-Isopropyltoluene	ND	1700	ug/L	200
tert-Butyl alcohol	ND	33000	ug/L	6500
4-Methyl-2-pentanone	ND	8300	ug/L	530
Naphthalene .	ND	1700	ug/L	400
n-Propylbenzene	ND	1700	ug/L	230
Styrene	ND	1700	ug/L	180
1,1,1,2-Tetrachloroethane	ND	1700	ug/L	380
1,2,3-Trichlorobenzene	ND	1700	ug/L	280

(Continued on next page)

# Client Sample ID: MW74A-121207

## GC/MS Volatiles

Lot-Sample #: A7L140260-001	Work Order #: KD7CM1CF	Matrix WG
-----------------------------	------------------------	-----------

		REPORTIN	IG		
PARAMETER	RESULT	LIMIT	UNITS	MDL	
1,2,4-Trichloro-	ND	1700	ug/L	250	
benzene					
1,2,3-Trichloropropane	ND	1700	ug/L	720	
1,1,2-Trichloro-	ND	1700	ug/L	470	
1,2,2-trifluoroethane					
1,2,4-Trimethylbenzene	ND	17.00	ug/L	200	
Vinyl acetate	ND	3300	ug/L	320	
o-Xylene	ND	1700	ug/L	230	
Xylenes (total)	ND	3300	ug/L	470	
Methyl tert-butyl ether	ND	8300	ug/L	280	
m-Xylene & p-Xylene	ND	3300	ug/L	400	
1,2,3-Trimethylbenzene	ND	8300	ug/L	9.8	
Diisopropyl Ether (DIPE)	ND	8300	ug/L	2500	
Ethyl-t-Butyl Ether (ETBE)	ND	8300	ug/L	180	
Tert-amyl methyl ether (TAME)	ND	8300	ug/L	110	
Benzene	ND	1700	ug/L	220	
Bromoform	ND	1700	ug/L	1100	
Bromomethane	ND	1700	ug/L	680	
Carbon tetrachloride	ND	1700	ug/L	220	
Chlorobenzene	ND	1700	ug/L	250	
Chloroethane	ND	1700	ug/L	480	
Chloroform	ND	1700	ug/L	270	
Chloromethane	ND	1700	ug/L	500	
1,1-Dichloroethane	ND	1700	ug/L	250	
1,2-Dichloroethane	ND	1700	ug/L	370	
1,1-Dichloroethene	ND	1700	ug/L	320	
1,2-Dichloropropane	ND	1700	ug/L	300	
cis-1,3-Dichloropropene	ND _.	1700	ug/L	230	
trans-1,3-Dichloropropene	ND	1700	ug/L	320	
Ethylbenzene	ND	1700	ug/L	280	
Methylene chloride	ND	1700	ug/L	550	
1,1,2,2-Tetrachloroethane	ND	1700	ug/L	300	
Tetrachloroethene	ND	1700	ug/L	480	
Toluene	ND	1700	ug/L	220	
1,1,1-Trichloroethane	ND	1700	ug/L	370	
Trichloroethene	64000	1700	ug/L	280	
Vinyl chloride	ND	1700	ug/L	370	
	PERCENT	RECOVERY			
SURROGATE	RECOVERY	LIMITS			
Dibromofluoromethane	88	(73 - 122	2)		
1,2-Dichloroethane-d4	87	(61 - 128	3)		
Toluene-d8	95	(76 - 110	0)		
4-Bromofluorobenzene	87	(74 - 116	6)		

#### Client Sample ID: MW74A-121407

#### GC/MS Volatiles

Lot-Sample #...: A7L150155-001 Work Order #...: KD88H1AA Matrix..... WG

Date Sampled...: 12/14/07 08:30 Date Received..: 12/15/07 Analysis Date..: 12/26/07

Prep Date....: 12/26/07

Prep Batch #...: 7361128

Dilution Factor: 2000 Initial Wgt/Vol: 5 mL Final Wqt/Vol..: 5 mL

Method.....: SW846 8260B

		REPORTING		
PARAMETER	RESULT	LIMIT	UNITS	MDL
Bromobenzene	ND	2000	ug/L	2.60
Bromochloromethane	ND	2000	ug/L	580
2-Chloroethyl vinyl ether	ND	10000	ug/L	2000
2-Butanone	ND .	10000	ug/L	1100
Xylenes (total)	ND	4000	ug/L	560
1,2,3-Trichloropropane	ND	2000	ug/L	860
1,1,2-Trichloro-	ND	2000	ug/L	560.
1,2,2-trifluoroethane				
cis-1,2-Dichloroethene	2100	2000	ug/L	340
trans-1,2-Dichloroethene	ND	2000	ug/L	380 .
o-Xylene	ND	2000	ug/L	280
m-Xylene & p-Xylene	ND	4000	ug/L	480
Isopropylbenzene	ND	2000	ug/L	260
1,2-Dibromo-3-chloro-	ND	4000	ug/L	1300
propane				
Dichlorodifluoromethane	ND .	2000	ug/L	620
Trichlorofluoromethane	ND	2000	ug/L	420
Acetone	ND	10000	ug/L	2200
Bromodichloromethane	ND	2000	ug/L	300
n-Butylbenzene	ND	2000	ug/L	240
sec-Butylbenzene	ND	2000	ug/L	260
tert-Butylbenzene	ND	2000	ug/L	260
Carbon disulfide	ND	2000	ug/L	260
Dibromochloromethane	ND	2000	ug/L	360
2-Chlorotoluene	ND	2000	ug/L	220
4-Chlorotoluene	ND	2000	ug/L	360
1,2-Dibromoethane	ND	2000	ug/L	480
Dibromomethane	ND	2000	ug/L	560
1,2-Dichlorobenzene	ND	2000	ug/L	260
1,3-Dichlorobenzene	ND	2000	ug/L	280
1,4-Dichlorobenzene	ND	2000	ug/L	260
1,3-Dichloropropane	ND	2000	ug/L	320
2,2-Dichloropropane	ND	2000	ug/L	260
1,1-Dichloropropene	ND	2000	ug/L	260
Hexachlorobutadiene	ND .	2000	ug/L	600
2-Hexanone	ND	10000	ug/L	820
p-Isopropyltoluene	ND	2000	ug/L	240
tert-Butyl alcohol	ND	40000	ug/L	7800

(Continued on next page)

## Client Sample ID: MW74A-121407

#### GC/MS Volatiles

Lot-Sample #: A7L150155-001	Work Order #: KD88H1AA	Matrix: WG
-----------------------------	------------------------	------------

		REPORTING		
PARAMETER	RESULT	LIMIT	UNITS	MDL
4-Methyl-2-pentanone	ND	10000	ug/L	640
Naphthalene	ND	2000	ug/L	480
n-Propylbenzene	ND	2000	ug/L	280
Styrene	ND	2000	ug/L	220
1,1,1,2-Tetrachloroethane	ND	2000	ug/L	460
1,2,3-Trichlorobenzene	ND	2000	ug/L	340
1,2,4-Trichloro-	ND	2000	ug/L	300
benzene			J.	
1,2,4-Trimethylbenzene	ND	2000	ug/L	240
Vinyl acetate	ND	4000	ug/L	380
1,2,3-Trimethylbenzene	ND	10000	ug/L	12
Diisopropyl Ether (DIPE)	ND	10000	ug/L	3000
Ethyl-t-Butyl Ether (ETBE)	ND	10000	ug/L	220
Tert-amyl methyl ether (TAME)	ND	10000	ug/L	130
Methyl tert-butyl ether	ND	10000	ug/L	340
Benzene	ND	2000	ug/L	260
Bromoform	ND	2000	ug/L	1300
Bromomethane	ND	2000	ug/L	820
Carbon tetrachloride	ND	2000	ug/L	260
Chlorobenzene	ND	2000	ug/L	300
Chloroethane	ND	2000	ug/L	580
Chloroform	ND	2000	ug/L	320
Chloromethane	ND	2000	ug/L	600
1,1-Dichloroethane	ND	2000	ug/L	300
1,2-Dichloroethane	ND	2000	ug/L	440
1,1-Dichloroethene	ND	2000	ug/L	380
1,2-Dichloropropane	ND	2000	ug/L	360
cis-1,3-Dichloropropene	ND	2000	ug/L	280
trans-1,3-Dichloropropene	ND	2000	ug/L	. 380
Ethylbenzene	ND	2000	ug/L	340
Methylene chloride	ND	2000	ug/L	660
1,1,2,2-Tetrachloroethane	ND	2000	ug/L	360
Tetrachloroethene	ND	2000	ug/L	580
Toluene	ND	2000	ug/L	260
1,1,1-Trichloroethane	ND	2000	ug/L	440
Trichloroethene	68000	2000	ug/L	340
Vinyl chloride	ND	2000	ug/L	440
	PERCENT	RECOVERY		
SURROGATE	RECOVERY	LIMITS		
Dibromofluoromethane	87	(73 - 122)		
1,2-Dichloroethane-d4	79	(61 - 128)		
Toluene-d8	94	(76 - 110)		
4-Bromofluorobenzene	82	(74 - 116)		

#### Client Sample ID: RW-01I-121107

#### GC/MS Volatiles

Lot-Sample #...: A7L120224-003 Work Order #...: KD0811CF Matrix...... WG

Date Sampled...: 12/11/07 12:30 Date Received..: 12/12/07 Prep Date....: 12/20/07 Analysis Date..: 12/20/07

Prep Batch #...: 7354500

Dilution Factor: 416.67 Initial Wgt/Vol: 5 mL Final Wgt/Vol.: 5 mL

Method.....: SW846 8260B

		REPORTIN		
PARAMETER	RESULT	LIMIT	ÚNITS	MDL
Acetone	ND	2100	ug/L	460
Bromobenzene	ND	420	ug/L	54
Bromochloromethane	ND	420	ug/L	120
Bromodichloromethane	ND	420	ug/L	63
2-Butanone	ND	2100	ug/L	240
n-Butylbenzene	ND	420	ug/L	50
sec-Butylbenzene	ND	420	ug/L	54
tert-Butylbenzene	ND	420	ug/L	54
Carbon disulfide	ND	420	ug/L	54
Dibromochloromethane	ND	420	ug/L	75
1,2-Dibromo-3-chloro-	ND	830	ug/L	280
propane			_	
2-Chloroethyl vinyl ether	ND	2100	ug/L	410
2-Chlorotoluene	ND	420	ug/L	46
4-Chlorotoluene	ND	420	ug/L	. 75
1,2-Dibromoethane	ND	420	ug/L	100
Dibromomethane	ND	420	ug/L	120
1,2-Dichlorobenzene	ND	420	ug/L	54
1,3-Dichlorobenzene	ND	420	ug/L	58
1,4-Dichlorobenzene	ND	420	ug/L	54
Dichlorodifluoromethane	ND	420	ug/L	130
cis-1,2-Dichloroethene	1100	420	ug/L	71
trans-1,2-Dichloroethene	ND	420	ug/L	79
1,3-Dichloropropane	ND	420	ug/L	67
2,2-Dichloropropane	ND	420	ug/L	54
1,1-Dichloropropene	ND	420	ug/L	54
Trichlorofluoromethane	ND	420	ug/L	88
Hexachlorobutadiene	ND	420 •	ug/L	130
2-Hexanone	ND	2100	ug/L	170
Isopropylbenzene	ND	420	ug/L	54
p-Isopropyltoluene	ND	420	ug/L	50
tert-Butyl alcohol	ND	8300	ug/L	1600
4-Methyl-2-pentanone	ND	2100	ug/L	130
Naphthalene	ND	420	ug/L	100
n-Propylbenzene	ND	420	ug/L	58
Styrene	ND	420	ug/L	46
1,1,1,2-Tetrachloroethane	ND	420	ug/L	96
	ND	420	uq/L	90

#### Client Sample ID: RW-01I-121107

#### GC/MS Volatiles

Lot-Sample #...: A7L120224-003 Work Order #...: KD0811CF Matrix..... WG

		REPORTING			
PARAMETER	RESULT	LIMIT	UNITS	MDL	
1,2,4-Trichloro-	150 J,B	420	ug/L	63	
benzene			•		
1,2,3-Trichloropropane	ND	420	ug/L	180	
1,1,2-Trichloro-	ND	420	ug/L	120	
1,2,2-trifluoroethane					
1,2,4-Trimethylbenzene	ND	420	ug/L	50	
Vinyl acetate	ND	830	ug/L	79	
o-Xylene	ND	420	ug/L	58	
Xylenes (total)	ND	830	ug/L	120	
Methyl tert-butyl ether	ND	2100	ug/L	71	
m-Xylene & p-Xylene	ND	830	ug/L	100	
1,2,3-Trimethylbenzene	ND	2100	ug/L	2.5	
Diisopropyl Ether (DIPE)	ND	2100	ug/L	630	
Ethyl-t-Butyl Ether (ETBE)	ND	2100	ug/L	46	
Tert-amyl methyl ether (TAME)	ND	2100	ug/L	28	
Benzene	ND	420	ug/L	54	
Bromoform	ND	420	ug/L	270	
Bromomethane	ND	420	ug/L	170	
Carbon tetrachloride	ND	420	ug/L	54	
Chlorobenzene	ND	420	ug/L	63	
Chloroethane	ND	420	ug/L	120	
Chloroform	ND	420	ug/L	67	
Chloromethane	ND	420	ug/L	130	
1,1-Dichloroethane	ND	420	ug/L	63	
1,2-Dichloroethane	100 J	420	ug/L	92	
1,1-Dichloroethene	ND	420	ug/L	79	
1,2-Dichloropropane	ND	420	ug/L	75	
cis-1,3-Dichloropropene	ND	420	ug/L	58	
trans-1,3-Dichloropropene	ND	420	ug/L	79	
Ethylbenzene	ND	420	ug/L	71	
Methylene chloride	ND	420	ug/L	140	
1,1,2,2-Tetrachloroethane	ND	420	ug/L	75	
Tetrachloroethene	ND	420	ug/L	120	
Toluene	ND	420	ug/L	54	
1,1,1-Trichloroethane	ND	420	ug/L	92	
Trichloroethene	9600	420	ug/L	71	
Vinyl chloride	2 <b>40</b> J	420	ug/L	92	
<del>-</del>			-		
	PERCENT	RECOVERY			
SURROGATE	RECOVERY	LIMITS			
Dibromofluoromethane	90	(73 - 122	2)		
1,2-Dichloroethane-d4	89	(61 - 128	3)		
Toluene-d8	89	(76 - 110	))		
4-Bromofluorobenzene	86	(74 - 116	5)		

Client Sample ID: RW-01I-121107

## GC/MS Volatiles

Lot-Sample #...: A7L120224-003 Work Order #...: KD0811CF

Matrix..... WG

#### NOTE(S):

J Estimated result. Result is less than RL.

B Method blank contamination. The associated method blank contains the target analyte at a reportable level.

#### Client Sample ID: RW-01I-121207

#### GC/MS Volatiles

Lot-Sample #...: A7L140260-003 Work Order #...: KD7EX1CF Matrix...... WG

Date Sampled...: 12/12/07 22:45 Date Received..: 12/14/07

Prep Date....: 12/21/07 Analysis Date..: 12/21/07

Prep Batch #...: 7358112

Dilution Factor: 333.33 Initial Wgt/Vol: 5 mL Final Wgt/Vol.: 5 mL

Method.....: SW846 8260B

		REPORTIN		
PARAMETER	RESULT	LIMIT	UNITS	MDL
Acetone	MD ND	1700	ug/L	370
Bromobenzene	ND	330	ug/L	43
Bromochloromethane	ND	330	ug/L	97
Bromodichloromethane	ND	330	ug/L	50
2-Butanone	ND	1700	ug/L	190
n-Butylbenzene	ND	330	ug/L	40
sec-Butylbenzene	ND	330	ug/L	43
tert-Butylbenzene	ND	330	ug/L	43
Carbon disulfide	ND	330	ug/L	43
Dibromochloromethane	ND	330	ug/L	60
1,2-Dibromo-3-chloro-	ND	670	ug/L	220
propane				
2-Chloroethyl vinyl ether	ND	1700	ug/L	330
2-Chlorotoluene	ND	330	ug/L	37
4-Chlorotoluene	ND	330	ug/L	60
1,2-Dibromoethane	ND .	330	ug/L	80
Dibromomethane	ND	330	ug/L	93
1,2-Dichlorobenzene	ND	330	ug/L	43
1,3-Dichlorobenzene	ND	330	ug/L	47
1,4-Dichlorobenzene	ND	330	ug/L	43
Dichlorodifluoromethane	ND	330	ug/L	100
cis-1,2-Dichloroethene	1500	330	ug/L	57
trans-1,2-Dichloroethene	ND	330	ug/L	63
1,3-Dichloropropane	ND	330	ug/L	53
2,2-Dichloropropane	ND	330	ug/L	43
1,1-Dichloropropene	ND	330	ug/L	43
Trichlorofluoromethane	ND	330	ug/L	70
Hexachlorobutadiene	ND	330	ug/L	100
2-Hexanone	ND	1700	ug/L	140
Isopropylbenzene	ND	330	ug/L	43
p-Isopropyltoluene	ND	330	ug/L	40
tert-Butyl alcohol	ND	6700	ug/L	1300
4-Methyl-2-pentanone	ND	1700	ug/L	110
Naphthalene	ND	330	ug/L	80
n-Propylbenzene	ND	330	ug/L	47
Styrene	ND	330	ug/L	37
1,1,1,2-Tetrachloroethane	ND	330	ug/L	77
1,2,3-Trichlorobenzene	ND	330	ug/L	57

# Client Sample ID: RW-01I-121207

#### GC/MS Volatiles

Lot-Sample #: A7L140260-003	Work Order #: KD7EX1CF	Matrix WG
-----------------------------	------------------------	-----------

		REPORTING			
PARAMETER	RESULT	LIMIT	UNITS	MDL	
1,2,4-Trichloro-	240 J,B	330	ug/L	50	
benzene			3.		
1,2,3-Trichloropropane	ND	330	ug/L	140	
1,1,2-Trichloro-	ND	330	ug/L	93	
1,2,2-trifluoroethane			J		
1,2,4-Trimethylbenzene	ND	330	ug/L	40	
Vinyl acetate	ND	670	ug/L	63	
o-Xylene	ND	330	ug/L	47	
Xylenes (total)	ND	670	ug/L	93	
Methyl tert-butyl ether	ND	1700	ug/L	57	
m-Xylene & p-Xylene	ND .	670	ug/L	80	
1,2,3-Trimethylbenzene	ND	1700	ug/L	2.0	
Diisopropyl Ether (DIPE)	ND ·	1700	ug/L	500	
Ethyl-t-Butyl Ether (ETBE)	ND	1700	ug/L	37	
Tert-amyl methyl ether (TAME)	ND	1700	ug/L	22	
Benzene	ND	330	ug/L	43	
Bromoform	ND	330	ug/L	210	
Bromomethane	ND .	330	ug/L	140	
Carbon tetrachloride	ND	330	ug/L	43	
Chlorobenzene	ND	330	ug/L	50	
Chloroethane	ND	330	ug/L	97	
Chloroform	ND	330	ug/L	53	
Chloromethane	ND	330	ug/L	100	
1,1-Dichloroethane	ND	330	ug/L	50	
1,2-Dichloroethane	85 J	330	ug/L	73	
1,1-Dichloroethene	ND	330	ug/L	63	
1,2-Dichloropropane	ND	330	ug/L	60	
cis-1,3-Dichloropropene	ND	330	ug/L	47	
trans-1,3-Dichloropropene	ND	330	ug/L	63	
Ethylbenzene	ND	330	uq/L	57	
Methylene chloride	ND	330	ug/L	110	•
1,1,2,2-Tetrachloroethane	ND	330	ug/L	60	
Tetrachloroethene	ND	330	ug/L	97	
Toluene	ND	330	ug/L	43	•
1,1,1-Trichloroethane	ND	330	ug/L	73	
Trichloroethene	11000	330	ug/L	57	
Vinyl chloride	260 Ј	330	ug/L	73	
			ug/ 2	73	
	PERCENT	RECOVERY			
SURROGATE	RECOVERY	LIMITS			
Dibromofluoromethane	86	(73 - 122	2)		
1,2-Dichloroethane-d4	85	(61 - 128			
Toluene-d8	91	(76 - 110			
4-Bromofluorobenzene	88	(74 - 116			
		•	•		

Client Sample ID: RW-01I-121207

GC/MS Volatiles

Lot-Sample #...: A7L140260-003 Work Order #...: KD7EX1CF

Matrix..... WG

NOTE(S):

J Estimated result. Result is less than RL.

B Method blank contamination. The associated method blank contains the target analyte at a reportable level.

#### Client Sample ID: RW-01I121407

#### GC/MS Volatiles

Lot-Sample #...: A7L150155-003 Work Order #...: KD88Q1AM Matrix..... WG

Date Sampled...: 12/14/07 10:40 Date Received..: 12/15/07

Prep Date....: 12/26/07
Prep Batch #...: 7361128 Analysis Date..: 12/26/07

Dilution Factor: 416.67 Initial Wqt/Vol: 5 mL Final Wgt/Vol..: 5 mL

Method..... SW846 8260B

		REPORTING		
PARAMETER	RESULT	LIMIT	UNITS	MDL
Bromobenzene	ND	420	ug/L	54
Bromochloromethane	ND	420	ug/L	120
2-Chloroethyl vinyl ether	ND	2100	ug/L	410
2-Butanone	ND	2100	ug/L	240
Xylenes (total)	ND	830	ug/L	120
1,2,3-Trichloropropane	ND	420	ug/L	180
1,1,2-Trichloro-	ND	420	ug/L	120
1,2,2-trifluoroethane				
cis-1,2-Dichloroethene	1700	420	ug/L	71
trans-1,2-Dichloroethene	ND	420	ug/L	79
o-Xylene	ND	420	ug/L	58
m-Xylene & p-Xylene	ND	830	ug/L	100
Isopropylbenzene	ND	420	ug/L	54
1,2-Dibromo-3-chloro-	ND	830	ug/L	280
propane				
Dichlorodifluoromethane	ND	420	ug/L	130
Trichlorofluoromethane	ND	420	ug/L	88
Acetone	ND	2100	ug/L	460
Bromodichloromethane	ND	420	ug/L	63
n-Butylbenzene	ND	420	ug/L	50
sec-Butylbenzene	ND	420	ug/L	54
tert-Butylbenzene	ND	420	ug/L	54
Carbon disulfide	ND	420	ug/L	54
Dibromochloromethane	ND	420	ug/L	75
2-Chlorotoluene	ND	420	ug/L	46
4-Chlorotoluene	ND	420	ug/L	75
1,2-Dibromoethane	ND	420	ug/L	100
Dibromomethane	ND	420	ug/L	120
1,2-Dichlorobenzene	ND	420	ug/L	54
1,3-Dichlorobenzene	ND	420	ug/L	58
1,4-Dichlorobenzene	ND	420	ug/L	54
1,3-Dichloropropane	ND	420	ug/L	67
2,2-Dichloropropane	ND	420	ug/L	54
1,1-Dichloropropene	ND	420	ug/L	54
Hexachlorobutadiene	ND	420	ug/L	130
2-Hexanone	ND	2100	ug/L	170
p-Isopropyltoluene	ND	420	ug/L	50
tert-Butyl alcohol	ND	8300	ug/L	1600

# Client Sample ID: RW-01I121407

## GC/MS Volatiles

Lot-Sample #: A7L150155-003	Work Order #: KD88Q1AM	Matrix: WG
-----------------------------	------------------------	------------

		REPORTING			
PARAMETER	RESULT	LIMIT	UNITS	MDL	
4-Methyl-2-pentanone	ND	2100	ug/L	130	
Naphthalene	ND	420	ug/L	100	
n-Propylbenzene	ND	420	ug/L	58	
Styrene	ND	420	ug/L	46	
1,1,1,2-Tetrachloroethane	ND	420	ug/L	96	
1,2,3-Trichlorobenzene	. ND	420	ug/L	71	
1,2,4-Trichloro-	240 J,B	420	ug/L	63	
benzene			J.		
1,2,4-Trimethylbenzene	ND	420	ug/L	50	
Vinyl acetate	ND	830	ug/L	79	
1,2,3-Trimethylbenzene	ND .	2100	ug/L	2.5	
Diisopropyl Ether (DIPE)	ND	2100	ug/L	630	
Ethyl-t-Butyl Ether (ETBE)	ND	2100	ug/L	46	•
Tert-amyl methyl ether (TAME)	ND	2100	ug/L	28	
Methyl tert-butyl ether	ND	2100	ug/L	71	
Benzene	ND	420	ug/L	54	
Bromoform	ND	420	ug/L	270	
Bromomethane	ND	420	ug/L	170	
Carbon tetrachloride	ND	420	ug/L	54	
Chlorobenzene	ND	420	ug/L	63	
Chloroethane	ND	420	ug/L	120	
Chloroform	ND	420	ug/L	67	
Chloromethane	ND	420	ug/L	130	
1,1-Dichloroethane	ND	420	ug/L	63	
1,2-Dichloroethane	ND	420	ug/L	92	
1,1-Dichloroethene	ND	420	ug/L	79	
1,2-Dichloropropane	ND	420	ug/L	75	•
cis-1,3-Dichloropropene	ND	420	ug/L	58	
trans-1,3-Dichloropropene	ND	420	ug/L	79	
Ethylbenzene	ND	420	ug/L	71	
Methylene chloride	ND	420	ug/L	140	
1,1,2,2-Tetrachloroethane	ND	420	ug/L	75	
Tetrachloroethene	ND	420	ug/L	120	
Toluene	ND	420	ug/L	54	
1,1,1-Trichloroethane	ND	420	ug/L	92	
Trichloroethene	13000	420	ug/L	71	
Vinyl chloride	320 Ј	420	ug/L	92	
-		220	ug/ L	52	
	PERCENT	RECOVERY			
SURROGATE	RECOVERY	LIMITS			
Dibromofluoromethane	88	$\frac{211115}{(73 - 122)}$	-		
1,2-Dichloroethane-d4	79	(61 - 128)			
Toluene-d8	94	(76 - 110)			
4-Bromofluorobenzene	81	(74 - 116)			
		, , , , , , , , , , , , , , , , , , , ,			

Client Sample ID: RW-01I121407

## GC/MS Volatiles

Lot-Sample #...: A7L150155-003 Work Order #...: KD88Q1AM

Matrix..... WG

#### NOTE(S):

J Estimated result. Result is less than RL.

B Method blank contamination. The associated method blank contains the target analyte at a reportable level.

## Client Sample ID: TB-121107

#### GC/MS Volatiles

Lot-Sample #...: A7L120224-002 Work Order #...: KD08T1AA Matrix...... WQ

Date Sampled...: 12/11/07 Date Received..: 12/12/07 Prep Date....: 12/20/07 Analysis Date..: 12/20/07

Prep Batch #...: 7354500 Analysis Date..: 12/20/0

Dilution Factor: 1 Initial Wgt/Vol: 5 mL Final Wgt/Vol.: 5 mL

Method.....: SW846 8260B

		REPORTING			
PARAMETER	RESULT	LIMIT	UNITS	MDL	
Acetone	ND	5.0	ug/L	$-\frac{1}{1.1}$	
Bromobenzene	ND	1.0	ug/L	0.13	
Bromochloromethane	ND	1.0	ug/L	0.29	
Bromodichloromethane	ND	1.0	ug/L	0.15	
2-Butanone	ND	5.0	ug/L	0.57	
n-Butylbenzene	ND	1.0	ug/L	0.12	
sec-Butylbenzene	ND	1.0	ug/L	0.13	
tert-Butylbenzene	ND	1.0	ug/L	0.13	
Carbon disulfide	ND	1.0	ug/L	0.13	
Dibromochloromethane	ND	1.0	ug/L	0.18	
1,2-Dibromo-3-chloro-	ND	2.0	ug/L	0.67	
propane			5,	0.01	
2-Chloroethyl vinyl ether	ND	5.0	ug/L	0.99	
2-Chlorotoluene	ND	1.0	ug/L	0.11	
4-Chlorotoluene	ND	1.0	ug/L	0.18	
1,2-Dibromoethane	ND	1.0	ug/L	0.24	
Dibromomethane	ND	1.0	ug/L	0.28	
1,2-Dichlorobenzene	ND	1.0	ug/L	0.13	
1,3-Dichlorobenzene	ND	1.0	ug/L	0.14	
1,4-Dichlorobenzene	ND	1.0	ug/L	0.13	
Dichlorodifluoromethane	ND	1.0	ug/L	0.31	
cis-1,2-Dichloroethene	ND	1.0	ug/L	0.17	
trans-1,2-Dichloroethene	ND	1.0	ug/L	0.19	
1,3-Dichloropropane	ND	1.0	ug/L	0.16	
2,2-Dichloropropane	ND	1.0	ug/L	0.13	
1,1-Dichloropropene	ND	1.0	ug/L	0.13	
Trichlorofluoromethane	ND	1.0	ug/L	0.21	
Hexachlorobutadiene	ND	1.0	ug/L	0.30	
2-Hexanone	ND	5.0	uq/L	0.41	
Isopropylbenzene	ND	1.0	ug/L	0.13	
p-Isopropyltoluene	ND	1.0	ug/L	0.12	
tert-Butyl alcohol	ND	20	ug/L	3.9	
4-Methyl-2-pentanone	ND	5.0	ug/L	0.32	
Naphthalene	0.63 J,B	1.0	ug/L	0.24	
n-Propylbenzene	ND	1.0	ug/L	0.14	
Styrene	ND	1.0	ug/L	0.11	
1,1,1,2-Tetrachloroethane	ND	1.0	ug/L	0.23	
1,2,3-Trichlorobenzene	0.51 Ј,В	1.0	ug/L	0.17	

# Client Sample ID: TB-121107

#### GC/MS Volatiles

Lot-Sample #: A	A7L120224-002	Work Order	#: KD08T1AA	Matrix	WQ
-----------------	---------------	------------	-------------	--------	----

PARAMETER		REPORTING			
1,2,4-Trichloro-	PARAMETER	RESULT	LIMIT	UNITS	MDL
Debate	1,2,4-Trichloro-	0.27 J,B	1.0		
1,2-Trichloro-	benzene			-	
1,1,2-Trichloro-	1,2,3-Trichloropropane	ND	1.0	ug/L	0.43
1,2,2-triflucroethane 1,2,4-Trimethylbenzene ND 1.0 ug/L 0.12 Vinyl acetate ND 2.0 ug/L 0.19 o-Xylene ND 1.0 ug/L 0.14 Xylenes (total) ND 2.0 ug/L 0.28 Methyl tert-butyl ether ND 5.0 ug/L 0.27 Methyl tert-butyl ether ND 5.0 ug/L 0.17 m-Xylene & p-Xylene ND 2.0 ug/L 0.24 1,2,3-Trimethylbenzene ND 5.0 ug/L 0.0059 Diisopropyl Ether (DIPE) ND 5.0 ug/L 0.0059 Diisopropyl Ether (ETRE) ND 5.0 ug/L 0.15 Tert-abutyl ether (TAME) ND 5.0 ug/L 0.11 Tert-abutyl ether (TAME) ND 5.0 ug/L 0.13 Bromoform ND 1.0 ug/L 0.13 Bromoform ND 1.0 ug/L 0.13 Bromoform ND 1.0 ug/L 0.41 Carbon tetrachloride ND 1.0 ug/L 0.13 Chlorobrane ND 1.0 ug/L 0.15 Chlorothane ND 1.0 ug/L 0.15 Chlorothane ND 1.0 ug/L 0.15 Chlorothane ND 1.0 ug/L 0.16 Chlorothane ND 1.0 ug/L 0.16 Chlorothane ND 1.0 ug/L 0.16 Chlorothane ND 1.0 ug/L 0.15 1,2-Dichloroethane ND 1.0 ug/L 0.15 1,2-Dichloropopane ND 1.0 ug/L 0.19 1,2-Dichloropopane ND 1.0 ug/L 0.19 1,2-Dichloropopane ND 1.0 ug/L 0.19 1,2-Dichloropopane ND 1.0 ug/L 0.19 Ethylbenzene ND 1.0 ug/L 0.19 Ethylbenzene ND 1.0 ug/L 0.19 Tetrachloroethane ND 1.0 ug/L 0.19 Tetrachloroethane ND 1.0 ug/L 0.19 Tetrachloroethane ND 1.0 ug/L 0.19 Tetrachloroethane ND 1.0 ug/L 0.19 Tetrachloroethane ND 1.0 ug/L 0.19 Tetrachloroethane ND 1.0 ug/L 0.19 Tetrachloroethane ND 1.0 ug/L 0.19 Tetrachloroethane ND 1.0 ug/L 0.19 Tetrachloroethane ND 1.0 ug/L 0.19 Tetrachloroethane ND 1.0 ug/L 0.19 Tetrachloroethane ND 1.0 ug/L 0.19 Tetrachloroethane ND 1.0 ug/L 0.19 Tetrachloroethane ND 1.0 ug/L 0.19 Tetrachloroethane ND 1.0 ug/L 0.19 Tetrachloroethane ND 1.0 ug/L 0.19 Tetrachloroethane ND 1.0 ug/L 0.19 Tetrachloroethane ND 1.0 ug/L 0.19 Tetrachloroethane ND 1.0 ug/L 0.19 Tetrachloroethane ND 1.0 ug/L 0.19 Tetrachloroethane ND 1.0 ug/L 0.19 Tetrachloroethane ND 1.0 ug/L 0.19 Tetrachloroethane ND 1.0 ug/L 0.19 Tetrachloroethane ND 1.0 ug/L 0.19 Tetrachloroethane ND 1.0 ug/L 0.22 Trichloroethane ND 1.0 ug/L 0.22 Trichloroethane ND 1.0 ug/L 0.22 Tetrachloroethane ND 1.0 ug/L 0.22 Tetrachloroethane ND 1.0 ug/L 0.22 Tetrachloroethane ND 1.0	1,1,2-Trichloro-	ND	1.0	_	
Variety   Variety   Variety   Variety   Variety   Variety   Variety   Variety   Variety   Variety   Variety   Variety   Variety   Variety   Variety   Variety   Variety   Variety   Variety   Variety   Variety   Variety   Variety   Variety   Variety   Variety   Variety   Variety   Variety   Variety   Variety   Variety   Variety   Variety   Variety   Variety   Variety   Variety   Variety   Variety   Variety   Variety   Variety   Variety   Variety   Variety   Variety   Variety   Variety   Variety   Variety   Variety   Variety   Variety   Variety   Variety   Variety   Variety   Variety   Variety   Variety   Variety   Variety   Variety   Variety   Variety   Variety   Variety   Variety   Variety   Variety   Variety   Variety   Variety   Variety   Variety   Variety   Variety   Variety   Variety   Variety   Variety   Variety   Variety   Variety   Variety   Variety   Variety   Variety   Variety   Variety   Variety   Variety   Variety   Variety   Variety   Variety   Variety   Variety   Variety   Variety   Variety   Variety   Variety   Variety   Variety   Variety   Variety   Variety   Variety   Variety   Variety   Variety   Variety   Variety   Variety   Variety   Variety   Variety   Variety   Variety   Variety   Variety   Variety   Variety   Variety   Variety   Variety   Variety   Variety   Variety   Variety   Variety   Variety   Variety   Variety   Variety   Variety   Variety   Variety   Variety   Variety   Variety   Variety   Variety   Variety   Variety   Variety   Variety   Variety   Variety   Variety   Variety   Variety   Variety   Variety   Variety   Variety   Variety   Variety   Variety   Variety   Variety   Variety   Variety   Variety   Variety   Variety   Variety   Variety   Variety   Variety   Variety   Variety   Variety   Variety   Variety   Variety   Variety   Variety   Variety   Variety   Variety   Variety   Variety   Variety   Variety   Variety   Variety   Variety   Variety   Variety   Variety   Variety   Variety   Variety   Variety   Variety   Variety   Variety   Variety   Variety   Variety   Variety   Vari	1,2,2-trifluoroethane			J.	
Vinyl acetate         ND         2.0         ug/L         0.19           o-Xylene         ND         1.0         ug/L         0.14           Xylenes (total)         ND         2.0         ug/L         0.28           Methyl tert-butyl ether         ND         5.0         ug/L         0.17           m-Xylene & p-Xylene         ND         5.0         ug/L         0.24           1,2,3-Trimethylbenzene         ND         5.0         ug/L         0.0059           Diisopropyl Ether (PIPE)         ND         5.0         ug/L         1.5           Ethyl-t-Butyl Ether (ETBE)         ND         5.0         ug/L         0.11           Tert-amyl methyl ether (TAME)         ND         5.0         ug/L         0.67           Benzene         ND         1.0         ug/L         0.64           Bromoform         ND         1.0         ug/L         0.64           Bromoform         ND         1.0         ug/L         0.41           Carbon tetrachloride         ND         1.0         ug/L         0.15           Chlorosthane         ND         1.0         ug/L         0.15           Chlorosthane         ND         1.0         ug/L <td>1,2,4-Trimethylbenzene</td> <td>ND</td> <td>1.0</td> <td>ug/L</td> <td>0.12</td>	1,2,4-Trimethylbenzene	ND	1.0	ug/L	0.12
o-Xylene         ND         1.0         ug/L         0.14           Xylenes (total)         ND         2.0         ug/L         0.28           Methyl tert-butyl ether         ND         5.0         ug/L         0.28           m-Xylene & p-Xylene         ND         5.0         ug/L         0.24           1,2,3-Trimethylbenzene         ND         5.0         ug/L         0.0059           Diisopropyl Ether (BTBE)         ND         5.0         ug/L         0.0059           Diisopropyl Ether (BTBE)         ND         5.0         ug/L         0.11           Tert-amyl methyl ether (ETBE)         ND         5.0         ug/L         0.067           Benzene         ND         1.0         ug/L         0.067           Benzene         ND         1.0         ug/L         0.067           Benzene         ND         1.0         ug/L         0.013           Bromoform         ND         1.0         ug/L         0.03           Bromoform         ND         1.0         ug/L         0.13           Chloroform         ND         1.0         ug/L         0.15           Chloroform         0.22 J         1.0         ug/L <td< td=""><td>Vinyl acetate</td><td>ND</td><td>2.0</td><td>_</td><td></td></td<>	Vinyl acetate	ND	2.0	_	
Xylenes (total)         ND         2.0         ug/L         0.28           Methyl tert-butyl ether         ND         5.0         ug/L         0.17           m-Xylene & p-Xylene         ND         2.0         ug/L         0.24           1,2,3-Trimethylbenzene         ND         5.0         ug/L         0.0059           Diisopropyl Ether (DIPE)         ND         5.0         ug/L         1.5           Ethyl-t-Butyl Ether (ETBE)         ND         5.0         ug/L         0.11           Tert-amyl methyl ether (TAME)         ND         5.0         ug/L         0.11           Tert-amyl methyl ether (TAME)         ND         1.0         ug/L         0.64           Benzene         ND         1.0         ug/L         0.64           Bromoform         ND         1.0         ug/L         0.64           Bromomethane         ND         1.0         ug/L         0.13           Bromomethane         ND         1.0         ug/L         0.15           Chlorostrace         ND         1.0         ug/L         0.15           Chlorostrace         ND         1.0         ug/L         0.30           1,1-Dichlorosthane         ND         1.0 <td>o-Xylene</td> <td>ND .</td> <td>1.0</td> <td>-</td> <td></td>	o-Xylene	ND .	1.0	-	
Methyl tert-butyl ether         ND         5.0         ug/L         0.17           m-Xylene & p-Xylene         ND         2.0         ug/L         0.24           1,2,3-Trimethylbenzene         ND         5.0         ug/L         0.0059           Diisopropyl Ether (DIPE)         ND         5.0         ug/L         1.5           Ethyl-t-Butyl Ether (ETBE)         ND         5.0         ug/L         0.67           Tert-amyl methyl ether (TAME)         ND         5.0         ug/L         0.67           Benzene         ND         1.0         ug/L         0.67           Benzene         ND         1.0         ug/L         0.64           Bromoform         ND         1.0         ug/L         0.41           Carbon tetrachloride         ND         1.0         ug/L         0.41           Carbon tetrachloride         ND         1.0         ug/L         0.13           Chlorofene         ND         1.0         ug/L         0.13           Chlorofene         ND         1.0         ug/L         0.29           Chloroform         0.22 J         1.0         ug/L         0.30           Chloroform         ND         1.0         ug/L<	Xylenes (total)	ND	2.0		0.28
m-xylene & p-xylene	Methyl tert-butyl ether	ND	5.0	_	
1,2,3-Trimethylbenzene   ND		ND		_	
Diisopropyl Ether (DIPE)   ND   5.0    ug/L   0.11	1,2,3-Trimethylbenzene	ND		_	
Ethyl-t-Butyl Ether (ETBE) ND 5.0 ug/L 0.11 Tert-amyl methyl ether (TAME) ND 5.0 ug/L 0.067 Benzene ND 1.0 ug/L 0.13 Bromoform ND 1.0 ug/L 0.64 Bromomethane ND 1.0 ug/L 0.41 Carbon tetrachloride ND 1.0 ug/L 0.13 Chlorobenzene ND 1.0 ug/L 0.15 Chloroethane ND 1.0 ug/L 0.29 Chloroform 0.22 J 1.0 ug/L 0.30 Chloromethane ND 1.0 ug/L 0.30 Chloromethane ND 1.0 ug/L 0.30 Chloromethane ND 1.0 ug/L 0.15 1,2-Dichloroethane ND 1.0 ug/L 0.15 1,2-Dichloroethane ND 1.0 ug/L 0.15 1,2-Dichloropropene ND 1.0 ug/L 0.19 1,2-Dichloropropene ND 1.0 ug/L 0.19 Cis-1,3-Dichloropropene ND 1.0 ug/L 0.19 Ethylbenzene ND 1.0 ug/L 0.19 Ethylbenzene ND 1.0 ug/L 0.19 Ethylbenzene ND 1.0 ug/L 0.19 Ethylene chloride ND 1.0 ug/L 0.33 1,1,2,2-Tetrachloroethane ND 1.0 ug/L 0.33 1,1,2,2-Tetrachloroethane ND 1.0 ug/L 0.29 Toluene ND 1.0 ug/L 0.29 Toluene ND 1.0 ug/L 0.29 Trichloroethene ND 1.0 ug/L 0.29 Trichloroethene ND 1.0 ug/L 0.29 Trichloroethene ND 1.0 ug/L 0.22 Trichloroethene ND 1.0 ug/L 0.22 Trichloroethene ND 1.0 ug/L 0.22 Trichloroethene ND 1.0 ug/L 0.22 Trichloroethene ND 1.0 ug/L 0.22 Trichloroethene ND 1.0 ug/L 0.22 Trichloroethene ND 1.0 ug/L 0.22 Trichloroethene ND 1.0 ug/L 0.22 Trichloroethene ND 1.0 ug/L 0.22 Trichloroethene ND 1.0 ug/L 0.22 Trichloroethene ND 1.0 ug/L 0.22 Trichloroethene ND 1.0 ug/L 0.22 Trichloroethene ND 1.0 ug/L 0.22 Trichloroethene ND 1.0 ug/L 0.22 Trichloroethene ND 1.0 ug/L 0.22 Trichloroethene ND 1.0 ug/L 0.22 Trichloroethene ND 1.0 ug/L 0.22 Trichloroethene ND 1.0 ug/L 0.22 Trichloroethene ND 1.0 ug/L 0.22	Diisopropyl Ether (DIPE)	ND			
Tert-amyl methyl ether (TAME)   ND   5.0   ug/L   0.067		ND			
Benzene   ND				_	
Bromoform   ND		ND			
Bromomethane	Bromoform			-	
Carbon tetrachloride	Bromomethane			_	
Chlorobenzene ND 1.0 ug/L 0.15 Chloroethane ND 1.0 ug/L 0.29 Chloroform 0.22 J 1.0 ug/L 0.16 Chloromethane ND 1.0 ug/L 0.30 1,1-Dichloroethane ND 1.0 ug/L 0.15 1,2-Dichloroethane ND 1.0 ug/L 0.22 1,1-Dichloroethane ND 1.0 ug/L 0.19 1,2-Dichloropropane ND 1.0 ug/L 0.19 1,2-Dichloropropene ND 1.0 ug/L 0.18 cis-1,3-Dichloropropene ND 1.0 ug/L 0.14 trans-1,3-Dichloropropene ND 1.0 ug/L 0.19 Ethylbenzene ND 1.0 ug/L 0.17 Methylene chloride ND 1.0 ug/L 0.33 1,1,2,2-Tetrachloroethane ND 1.0 ug/L 0.33 1,1,2,2-Tetrachloroethane ND 1.0 ug/L 0.29 Toluene ND 1.0 ug/L 0.29 Toluene ND 1.0 ug/L 0.29 Toluene ND 1.0 ug/L 0.22 Trichloroethene ND 1.0 ug/L 0.22 Trichloroethene ND 1.0 ug/L 0.22 Trichloroethene ND 1.0 ug/L 0.22 Trichloroethene ND 1.0 ug/L 0.22 Trichloroethene ND 1.0 ug/L 0.22 Trichloroethene ND 1.0 ug/L 0.22 Trichloroethene ND 1.0 ug/L 0.22 Trichloroethene ND 1.0 ug/L 0.22 Trichloroethene ND 1.0 ug/L 0.22 Trichloroethene ND 1.0 ug/L 0.22 Trichloroethane ND 1.0 ug/L 0.22 Trichloroethane ND 1.0 ug/L 0.22 Trichloroethane ND 1.0 ug/L 0.22 Trichloroethane ND 1.0 ug/L 0.22 Trichloroethane ND 1.0 ug/L 0.22 Trichloroethane ND 1.0 ug/L 0.22 Trichloroethane ND 1.0 ug/L 0.22 Trichloroethane ND 1.0 ug/L 0.22 Trichloroethane ND 1.0 ug/L 0.22 Trichloroethane ND 1.0 ug/L 0.22 Trichloroethane ND 1.0 ug/L 0.22 Trichloroethane ND 1.0 ug/L 0.22	Carbon tetrachloride			-	
Chloroethane         ND         1.0         ug/L         0.29           Chloroform         0.22 J         1.0         ug/L         0.16           Chloromethane         ND         1.0         ug/L         0.30           1,1-Dichloroethane         ND         1.0         ug/L         0.15           1,2-Dichloroethane         ND         1.0         ug/L         0.22           1,1-Dichloroethane         ND         1.0         ug/L         0.19           1,2-Dichloropropane         ND         1.0         ug/L         0.18           cis-1,3-Dichloropropene         ND         1.0         ug/L         0.14           trans-1,3-Dichloropropene         ND         1.0         ug/L         0.19           Ethylbenzene         ND         1.0         ug/L         0.17           Methylene chloride         ND         1.0         ug/L         0.33           1,1,2,2-Tetrachloroethane         ND         1.0         ug/L         0.29           Toluene         ND         1.0         ug/L         0.29           Toluene         ND         1.0         ug/L         0.22           Trichloroethane         ND         1.0         ug/L				-	
Chloroform         0.22 J         1.0 ug/L         0.16           Chloromethane         ND         1.0 ug/L         0.30           1,1-Dichloroethane         ND         1.0 ug/L         0.15           1,2-Dichloroethane         ND         1.0 ug/L         0.22           1,1-Dichloroethene         ND         1.0 ug/L         0.19           1,2-Dichloropropane         ND         1.0 ug/L         0.18           cis-1,3-Dichloropropene         ND         1.0 ug/L         0.19           Ethylbenzene         ND         1.0 ug/L         0.19           Ethylbenzene         ND         1.0 ug/L         0.33           1,1,2,2-Tetrachloroethane         ND         1.0 ug/L         0.18           Tetrachloroethene         ND         1.0 ug/L         0.29           Toluene         ND         1.0 ug/L         0.29           Toluene         ND         1.0 ug/L         0.22           Trichloroethane         ND         1.0 ug/L         0.22           Trichloroethene         ND         1.0 ug/L         0.22           Toluene         ND         1.0 ug/L         0.22           Toluene         ND         1.0 ug/L         0.22	Chloroethane			_	
Chloromethane	Chloroform				
1,1-Dichloroethane       ND       1.0       ug/L       0.15         1,2-Dichloroethane       ND       1.0       ug/L       0.22         1,1-Dichloroethene       ND       1.0       ug/L       0.19         1,2-Dichloropropane       ND       1.0       ug/L       0.18         cis-1,3-Dichloropropene       ND       1.0       ug/L       0.14         trans-1,3-Dichloropropene       ND       1.0       ug/L       0.19         Ethylbenzene       ND       1.0       ug/L       0.17         Methylene chloride       ND       1.0       ug/L       0.33         1,1,2,2-Tetrachloroethane       ND       1.0       ug/L       0.29         Toluene       ND       1.0       ug/L       0.29         Toluene       ND       1.0       ug/L       0.29         Toluene       ND       1.0       ug/L       0.22         Trichloroethene       ND       1.0       ug/L       0.22         Trichloride       ND       1.0       ug/L       0.22         Toluene-d8       RECOVERY       LIMITS         Dibromofluoromethane       89       (61 - 128)         Toluene-d8       89	Chloromethane			_	
1,2-Dichloroethane       ND       1.0       ug/L       0.22         1,1-Dichloroethene       ND       1.0       ug/L       0.19         1,2-Dichloropropane       ND       1.0       ug/L       0.18         cis-1,3-Dichloropropene       ND       1.0       ug/L       0.14         trans-1,3-Dichloropropene       ND       1.0       ug/L       0.19         Ethylbenzene       ND       1.0       ug/L       0.17         Methylene chloride       ND       1.0       ug/L       0.33         1,1,2,2-Tetrachloroethane       ND       1.0       ug/L       0.18         Tetrachloroethene       ND       1.0       ug/L       0.29         Toluene       ND       1.0       ug/L       0.29         Toluene       ND       1.0       ug/L       0.22         Trichloroethane       ND       1.0       ug/L       0.22         Trichloroethene       ND       1.0       ug/L       0.22         Toluene       ND       1.0       ug/L       0.22         Toluene       ND       1.0       ug/L       0.22         Toluene       ND       1.0       ug/L       0.22	1,1-Dichloroethane	ND		_	
1,1-Dichloroethene       ND       1.0       ug/L       0.19         1,2-Dichloropropane       ND       1.0       ug/L       0.18         cis-1,3-Dichloropropene       ND       1.0       ug/L       0.14         trans-1,3-Dichloropropene       ND       1.0       ug/L       0.19         Ethylbenzene       ND       1.0       ug/L       0.17         Methylene chloride       ND       1.0       ug/L       0.33         1,1,2,2-Tetrachloroethane       ND       1.0       ug/L       0.18         Tetrachloroethene       ND       1.0       ug/L       0.29         Toluene       ND       1.0       ug/L       0.13         1,1,1-Trichloroethane       ND       1.0       ug/L       0.22         Trichloroethene       ND       1.0       ug/L       0.17         Vinyl chloride       ND       1.0       ug/L       0.22         PERCENT       RECOVERY         SURROGATE       RECOVERY       LIMITS         Dibromofluoromethane       89       (61 - 128)         Toluene-d8       89       (76 - 110)		ND		-	
1,2-Dichloropropane       ND       1.0       ug/L       0.18         cis-1,3-Dichloropropene       ND       1.0       ug/L       0.14         trans-1,3-Dichloropropene       ND       1.0       ug/L       0.19         Ethylbenzene       ND       1.0       ug/L       0.17         Methylene chloride       ND       1.0       ug/L       0.33         1,1,2,2-Tetrachloroethane       ND       1.0       ug/L       0.18         Tetrachloroethene       ND       1.0       ug/L       0.29         Toluene       ND       1.0       ug/L       0.13         1,1,1-Trichloroethane       ND       1.0       ug/L       0.22         Trichloroethene       ND       1.0       ug/L       0.17         Vinyl chloride       ND       1.0       ug/L       0.22         PERCENT       RECOVERY         LIMITS       0.22         Dibromofluoromethane       89       (61 - 128)         Toluene-d8       89       (61 - 128)         Toluene-d8       89       (76 - 110)				-	
cis-1,3-Dichloropropene       ND       1.0       ug/L       0.14         trans-1,3-Dichloropropene       ND       1.0       ug/L       0.19         Ethylbenzene       ND       1.0       ug/L       0.17         Methylene chloride       ND       1.0       ug/L       0.33         1,1,2,2-Tetrachloroethane       ND       1.0       ug/L       0.29         Toluene       ND       1.0       ug/L       0.29         Toluene       ND       1.0       ug/L       0.13         1,1,1-Trichloroethane       ND       1.0       ug/L       0.22         Trichloroethene       ND       1.0       ug/L       0.17         Vinyl chloride       ND       1.0       ug/L       0.22         PERCENT       RECOVERY         LIMITS       0.22         Dibromofluoromethane       89       (73 - 122)         1,2-Dichloroethane-d4       89       (61 - 128)         Toluene-d8       89       (76 - 110)		ND			
trans-1,3-Dichloropropene       ND       1.0       ug/L       0.19         Ethylbenzene       ND       1.0       ug/L       0.17         Methylene chloride       ND       1.0       ug/L       0.33         1,1,2,2-Tetrachloroethane       ND       1.0       ug/L       0.18         Tetrachloroethene       ND       1.0       ug/L       0.29         Toluene       ND       1.0       ug/L       0.13         1,1,1-Trichloroethane       ND       1.0       ug/L       0.22         Trichloroethene       ND       1.0       ug/L       0.17         Vinyl chloride       ND       1.0       ug/L       0.22         PERCENT       RECOVERY         SURROGATE       RECOVERY       LIMITS         Dibromofluoromethane       89       (61 - 128)         Toluene-d8       89       (73 - 122)         1,2-Dichloroethane-d4       89       (61 - 128)         Toluene-d8       89       (76 - 110)				-	
Ethylbenzene         ND         1.0         ug/L         0.17           Methylene chloride         ND         1.0         ug/L         0.33           1,1,2,2-Tetrachloroethane         ND         1.0         ug/L         0.18           Tetrachloroethene         ND         1.0         ug/L         0.29           Toluene         ND         1.0         ug/L         0.13           1,1,1-Trichloroethane         ND         1.0         ug/L         0.22           Trichloroethene         ND         1.0         ug/L         0.17           Vinyl chloride         ND         1.0         ug/L         0.22           PERCENT         RECOVERY           SURROGATE         RECOVERY         LIMITS           Dibromofluoromethane         89         (73 - 122)           1,2-Dichloroethane-d4         89         (61 - 128)           Toluene-d8         89         (76 - 110)				-	
Methylene chloride         ND         1.0         ug/L         0.33           1,1,2,2-Tetrachloroethane         ND         1.0         ug/L         0.18           Tetrachloroethane         ND         1.0         ug/L         0.29           Toluene         ND         1.0         ug/L         0.13           1,1,1-Trichloroethane         ND         1.0         ug/L         0.22           Trichloroethane         ND         1.0         ug/L         0.17           Vinyl chloride         ND         1.0         ug/L         0.22           PERCENT         RECOVERY           SURROGATE         RECOVERY         LIMITS           Dibromofluoromethane         89         (61 - 128)           1,2-Dichloroethane-d4         89         (61 - 128)           Toluene-d8         89         (76 - 110)		ND		_	
1,1,2,2-Tetrachloroethane       ND       1.0       ug/L       0.18         Tetrachloroethene       ND       1.0       ug/L       0.29         Toluene       ND       1.0       ug/L       0.13         1,1,1-Trichloroethane       ND       1.0       ug/L       0.22         Trichloroethene       ND       1.0       ug/L       0.17         Vinyl chloride       ND       1.0       ug/L       0.22         PERCENT       RECOVERY         SURROGATE       RECOVERY       LIMITS         Dibromofluoromethane       89       (73 - 122)         1,2-Dichloroethane-d4       89       (61 - 128)         Toluene-d8       89       (76 - 110)	=			_	
Tetrachloroethene         ND         1.0         ug/L         0.29           Toluene         ND         1.0         ug/L         0.13           1,1,1-Trichloroethane         ND         1.0         ug/L         0.22           Trichloroethene         ND         1.0         ug/L         0.17           Vinyl chloride         ND         1.0         ug/L         0.22           PERCENT         RECOVERY           LIMITS         Dibromofluoromethane         89         (73 - 122)           1,2-Dichloroethane-d4         89         (61 - 128)           Toluene-d8         89         (76 - 110)				_	
Toluene				_	
1,1,1-Trichloroethane       ND       1.0       ug/L       0.22         Trichloroethene       ND       1.0       ug/L       0.17         Vinyl chloride       ND       1.0       ug/L       0.22         PERCENT       RECOVERY         SURROGATE       RECOVERY       LIMITS         Dibromofluoromethane       89       (73 - 122)         1,2-Dichloroethane-d4       89       (61 - 128)         Toluene-d8       89       (76 - 110)					
Trichloroethene         ND         1.0         ug/L         0.17           Vinyl chloride         ND         1.0         ug/L         0.22           PERCENT         RECOVERY         LIMITS           Dibromofluoromethane         89         (73 - 122)           1,2-Dichloroethane-d4         89         (61 - 128)           Toluene-d8         89         (76 - 110)	1,1,1-Trichloroethane			_	
Vinyl chloride         ND         1.0         ug/L         0.22           PERCENT         RECOVERY         RECOVERY         LIMITS           Dibromofluoromethane         89         (73 - 122)         (61 - 128)           1,2-Dichloroethane-d4         89         (61 - 128)         (76 - 110)					
SURROGATE         RECOVERY         LIMITS           Dibromofluoromethane         89         (73 - 122)           1,2-Dichloroethane-d4         89         (61 - 128)           Toluene-d8         89         (76 - 110)	Vinvl chloride			_	
SURROGATE         RECOVERY         LIMITS           Dibromofluoromethane         89         (73 - 122)           1,2-Dichloroethane-d4         89         (61 - 128)           Toluene-d8         89         (76 - 110)	, <b>,</b>		1.0	49/1	0.22
SURROGATE         RECOVERY         LIMITS           Dibromofluoromethane         89         (73 - 122)           1,2-Dichloroethane-d4         89         (61 - 128)           Toluene-d8         89         (76 - 110)		PERCENT	RECOVERY		
Dibromofluoromethane       89       (73 - 122)         1,2-Dichloroethane-d4       89       (61 - 128)         Toluene-d8       89       (76 - 110)	SURROGATE				•
1,2-Dichloroethane-d4 89 (61 - 128) Toluene-d8 89 (76 - 110)				_ }	
Toluene-d8 89 (76 - 110)					
(10 220)	•		·		
$\frac{1}{4}$ DIOMOTITUOIODENZENE 00 (74 - 110)	4-Bromofluorobenzene	88	(74 - 116)		

Client Sample ID: TB-121107

## GC/MS Volatiles

Lot-Sample #...: A7L120224-002 Work Order #...: KD08T1AA

Matrix..... WQ

#### NOTE(S):

J Estimated result. Result is less than RL.

B Method blank contamination. The associated method blank contains the target analyte at a reportable level.

#### Client Sample ID: TB-121207

#### GC/MS Volatiles

Lot-Sample #...: A7L140260-002 Work Order #...: KD7DD1AA Matrix...... WQ

Date Sampled..: 12/12/07 Date Received.: 12/14/07

Prep Date....: 12/21/07 Analysis Date..: 12/21/07

Prep Batch #...: 7358112

Dilution Factor: 1 Initial Wgt/Vol: 5 mL Final Wgt/Vol.: 5 mL

Method.....: SW846 8260B

		REPORTIN	G	•
PARAMETER	RESULT	LIMIT	UNITS	MDL
Acetone	1.5 J	5.0	ug/L	1.1
Bromobenzene	ND	1.0	ug/L	0.13
Bromochloromethane	ND	1.0	ug/L	0.29
Bromodichloromethane	ND	1.0	ug/L	0.15
2-Butanone	ND	5.0	ug/L	0.57
n-Butylbenzene	ND	1.0	ug/L	0.12
sec-Butylbenzene	ND	1.0	ug/L	0.13
tert-Butylbenzene	ND	1.0	ug/L	0.13
Carbon disulfide	ND	1.0	ug/L	0.13
Dibromochloromethane	ND	1.0	ug/L	0.18
1,2-Dibromo-3-chloro-	ND	2.0	ug/L	0.67
propane				
2-Chloroethyl vinyl ether	ND	5.0	ug/L	0.99
2-Chlorotoluene	ND	1.0	ug/L	0.11
4-Chlorotoluene	ND	1.0	ug/L	0.18
1,2-Dibromoethane	ND	1.0	ug/L	0.24
Dibromomethane	ND	1.0	ug/L	0.28
1,2-Dichlorobenzene	ND	1.0	ug/L	0.13
1,3-Dichlorobenzene	ND	1.0	ug/L	0.14
1,4-Dichlorobenzene	ND	1.0	ug/L	0.13
Dichlorodifluoromethane	ND	1.0	ug/L	0.31
cis-1,2-Dichloroethene	ND	1.0	ug/L	0.17
trans-1,2-Dichloroethene	ND	1.0	ug/L	0.19
1,3-Dichloropropane	ND	1.0	ug/L	0.16
2,2-Dichloropropane	ND	1.0	ug/L	0.13
1,1-Dichloropropene	ND	1.0	ug/L	0.13
Trichlorofluoromethane	ND	1.0	ug/L	0.21
Hexachlorobutadiene	ND	1.0	ug/L	0.30
2-Hexanone	ND	5.0	ug/L	0.41
Isopropylbenzene	ND	1.0	ug/L	0.13
p-Isopropyltoluene	ND	1.0	ug/L	0.12
tert-Butyl alcohol	ND	20	ug/L	3.9
4-Methyl-2-pentanone	ND	5.0	ug/L	0.32
Naphthalene	ND	1.0	ug/L	0.24
n-Propylbenzene	ND	1.0	ug/L	0.14
Styrene	ND	1.0	ug/L	0.11
1,1,1,2-Tetrachloroethane	ND	1.0	ug/L	0.23
1,2,3-Trichlorobenzene	ND	1.0	ug/L	0.17

# Client Sample ID: TB-121207

## GC/MS Volatiles

Lot-Sample #: A7L140260-002	Work Order #: KD7DD1AA	Matrix WQ
-----------------------------	------------------------	-----------

		REPORTING	G		
PARAMETER	RESULT	LIMIT	UNITS	MDL	
1,2,4-Trichloro-	ND	1.0	ug/L	0.15	—
benzene			5,	0.10	
1,2,3-Trichloropropane	ND	1.0	ug/L	0.43	
1,1,2-Trichloro-	ND	1.0	ug/L	0.28	
1,2,2-trifluoroethane		_,,	497.5	0.20	
1,2,4-Trimethylbenzene	ND	1.0	ug/L	0.12	
Vinyl acetate	ND	2.0	ug/L	0.19	
o-Xylene	ND	1.0	ug/L	0.14	
Xylenes (total)	ND	2.0	ug/L	0.28	
Methyl tert-butyl ether	ND	5.0	ug/L	0.17	
m-Xylene & p-Xylene	ND	2.0	ug/L	0.24	
1,2,3-Trimethylbenzene	ND	5.0	ug/L	0.0059	
Diisopropyl Ether (DIPE)	ND	5.0	ug/L		
Ethyl-t-Butyl Ether (ETBE)	ND	5.0	ug/L	1.5	
Tert-amyl methyl ether (TAME)	ND	5.0	ug/L ug/L	0.11	
Benzene	ND	1.0	=	0.067	
Bromoform	ND	1.0	ug/L	0.13	
Bromomethane	ND	1.0	ug/L	0.64	
Carbon tetrachloride	ND	1.0	ug/L	0.41	
Chlorobenzene	ND		ug/L	0.13	
Chloroethane	ND	1.0	ug/L	0.15	
Chloroform	ND	1.0	ug/L	0.29	
Chloromethane	ND	1.0	ug/L	0.16	
1,1-Dichloroethane	ND	1.0	ug/L	0.30	
1,2-Dichloroethane	ND	1.0	ug/L	0.15	
1,1-Dichloroethene	ND	1.0	ug/L	0.22	
1,2-Dichloropropane		1.0	ug/L	0.19	
cis-1,3-Dichloropropene	ND	1.0	ug/L	0.18	
trans-1,3-Dichloropropene	ND	1.0	ug/L	0.14	
Ethylbenzene	ND	1.0	ug/L	0.19	
Methylene chloride	ND	1.0	ug/L	0.17	
1,1,2,2-Tetrachloroethane	ND	1.0	ug/L	0.33	
Tetrachloroethene	ND	1.0	ug/L	0.18	
Toluene	ND	1.0	ug/L	0.29	
	ND	1.0	ug/L	0.13	
1,1,1-Trichloroethane Trichloroethene	ND	1.0	ug/L	0.22	
	ND	1.0	ug/L	0.17	
Vinyl chloride	ND	1.0	ug/L	0.22	
	PERCENT	RECOVERY			
SURROGATE	RECOVERY	LIMITS	_		
Dibromofluoromethane	86	(73 - 122)	)		
1,2-Dichloroethane-d4	85	(61 - 128)			
Toluene-d8	93	(76 - 110)		•	
4-Bromofluorobenzene	88	(74 - 116)			
NOME (a)					

NOTE (S):

J Estimated result. Result is less than RL.

#### Client Sample ID: TB-121407

#### GC/MS Volatiles

Lot-Sample #...: A7L150155-002 Work Order #...: KD88N1AA Matrix......: WQ

Prep Batch #...: 7360129

Dilution Factor: 1 Initial Wgt/Vol: 5 mL Final Wgt/Vol.: 5 mL

**Method.....** SW846 8260B

		REPORTING		
PARAMETER	RESULT	LIMIT	UNITS	MDL
Bromobenzene	ND	1.0	ug/L	0.13
Bromochloromethane	ND	1.0	ug/L	0.29
2-Chloroethyl vinyl ether	ND	5.0	ug/L	0.99
2-Butanone	ND ·	5.0	ug/L	0.57
Xylenes (total)	ND	2.0	ug/L	0.28
1,2,3-Trichloropropane	ND	1.0	ug/L	0.43
1,1,2-Trichloro-	ND	1.0	ug/L	0.28
1,2,2-trifluoroethane				
cis-1,2-Dichloroethene	ND	1.0	ug/L	0.17
trans-1,2-Dichloroethene	ND	1.0	ug/L	0.19
o-Xylene	ND	1.0	ug/L	0.14
m-Xylene & p-Xylene	ND	2.0	ug/L	0.24
Isopropylbenzene	ND	1.0	ug/L	0.13
1,2-Dibromo-3-chloro- propane	ND	2.0	ug/L	0.67
Dichlorodifluoromethane	ND	1.0	uq/L	0.31
Trichlorofluoromethane	ND	1.0	ug/L	0.21
Acetone	ND	5.0	ug/L	1.1
Bromodichloromethane	ND	1.0	ug/L	0.15
n-Butylbenzene	ND	1.0	uq/L	0.12
sec-Butylbenzene	ND	1.0	ug/L	0.13
tert-Butylbenzene	ND	1.0	ug/L	0.13
Carbon disulfide	ND	1.0	ug/L	0.13
Dibromochloromethane	ND	1.0	ug/L	0.18
2-Chlorotoluene	ND	1.0	ug/L	0.11
4-Chlorotoluene	ND	1.0	ug/L	0.18
1,2-Dibromoethane	ND	1.0	ug/L	0.24
Dibromomethane	ND	1.0	ug/L	0.28
1,2-Dichlorobenzene	ND	1.0	ug/L	0.13
1,3-Dichlorobenzene	ND	1.0	ug/L	0.14
1,4-Dichlorobenzene	ND	1.0	ug/L	0.13
1,3-Dichloropropane	ND	1.0	ug/L	0.16
2,2-Dichloropropane	ND	1.0	ug/L	0.13
1,1-Dichloropropene	ND	1.0	ug/L	0.13
Hexachlorobutadiene	ND	1.0	ug/L	0.30
2-Hexanone	ND	5.0	ug/L	0.41
p-Isopropyltoluene	ND	1.0	ug/L	0.12
tert-Butyl alcohol	ND	20	ug/L	3.9

# Client Sample ID: TB-121407

# GC/MS Volatiles

		REPORTIN	G		
PARAMETER	RESULT	LIMIT	UNITS	MDL	
4-Methyl-2-pentanone	ND	5.0	ug/L	0.32	
Naphthalene	0.49 J,B	1.0	ug/L	0.24	
n-Propylbenzene	ND	1.0	ug/L	0.14	
Styrene	ND	1.0	ug/L	0.11	
1,1,1,2-Tetrachloroethane	ND	1.0	ug/L	0.23	
1,2,3-Trichlorobenzene	0.48 J,B	1.0	ug/L	0.17	
1,2,4-Trichloro-	0.24 J,B	1.0	ug/L	0.15	
benzene			<b>J</b> -	0.20	
1,2,4-Trimethylbenzene	ND	1.0	ug/L	0.12	
Vinyl acetate	ND	2.0	ug/L	0.19	
1,2,3-Trimethylbenzene	ND	5.0	ug/L	0.0059	
Diisopropyl Ether (DIPE)	ND	5.0	ug/L	1.5	
Ethyl-t-Butyl Ether (ETBE)	ND	5.0	ug/L	0.11	
Tert-amyl methyl ether (TAME)	ND	5.0	ug/L	0.067	
Methyl tert-butyl ether	ND	5.0	ug/L	0.17	
Benzene	ND	1.0	ug/L	0.17	
Bromoform	ND	1.0	ug/L	0.64	
Bromomethane	ND	1.0	ug/L	0.41	
Carbon tetrachloride	ND	1.0	ug/L	0.13	
Chlorobenzene	ND	1.0	ug/L	0.15	
Chloroethane	ND	1.0	ug/L	0.15	
Chloroform	ND	1.0	ug/L	0.16	
Chloromethane	ND	1.0	ug/L ug/L		
1,1-Dichloroethane	ND	1.0	ug/L	0.30	
1,2-Dichloroethane	ND	1.0	ug/L	0.15	
1,1-Dichloroethene	NĎ	1.0	ug/L ug/L	0.22	
1,2-Dichloropropane	ND	1.0	ug/L ug/L	0.19	
cis-1,3-Dichloropropene	ND	1.0		0.18	
trans-1,3-Dichloropropene	ND	1.0	ug/L ug/L	0.14	
Ethylbenzene	ND	1.0		0.19	
Methylene chloride	ND	1.0	ug/L	0.17	
1,1,2,2-Tetrachloroethane	ND	1.0	ug/L	0.33	
Tetrachloroethene	ND	1.0	ug/L	0.18	
Toluene	ND	1.0	ug/L	0.29	
1,1,1-Trichloroethane	ND	1.0	ug/L	0.13	
Trichloroethene	ND	1.0	ug/L	0.22	
Vinyl chloride	ND	1.0	ug/L	0.17	
•	ND	1.0	ug/L	0.22	
	PERCENT	RECOVERY			
SURROGATE	RECOVERY	LIMITS			
Dibromofluoromethane	86	$\frac{111113}{(73 - 122)}$	_ \		
1,2-Dichloroethane-d4	79	(61 - 128)			
Toluene-d8	92	(76 - 110)			
4-Bromofluorobenzene	87	(76 - 110) (74 - 116)			
	<del>-</del> ·	(74 - 110)			

Client Sample ID: TB-121407

## GC/MS Volatiles

Lot-Sample #...: A7L150155-002 Work Order #...: KD88N1AA Matrix...... WQ

NOTE(S):

J Estimated result. Result is less than RL.

B Method blank contamination. The associated method blank contains the target analyte at a reportable level.

# Client Sample ID: MW74A-121107

Lot-Sample #: A7L120224-001 Date Sampled: 12/11/07 12:00 Prep Date: 12/14/07 Prep Batch #: 7348035	Work Order #: Date Received: Analysis Date:	12/12/07	Matrix	«: WG	į
Dilution Factor: 1	<pre>Initial Wgt/Vol: Method:</pre>		<b>Final</b> C	Wgt/Vol: 2	mL
		REPORTING			
PARAMETER	RESULT	LIMIT	UNITS	MDL	
1,4-Dioxane	ND	10	ug/L	1.3	
	PERCENT	RECOVERY			
SURROGATE	RECOVERY	LIMITS			
Nitrobenzene-d5	66	$\frac{2111113}{(27 - 111)}$			
2-Fluorobiphenyl	60	(28 - 110)			
Terphenyl-d14	71	(37 - 119)			
Phenol-d5	18	(10 - 110)	4		
2-Fluorophenol	29				
2,4,6-Tribromophenol	66	(10 - 110) (22 - 120)			

# Client Sample ID: MW74A-121207

Lot-Sample #: A7L140260-001 Date Sampled: 12/12/07 21:00 Prep Date: 12/16/07 Prep Batch #: 7349042	Work Order #: Date Received: Analysis Date:	12/14/07	Matrix	WG
Dilution Factor: 1	<pre>Initial Wgt/Vol: Method:</pre>			Wgt/Vol: 2 mL
		REPORTING		
PARAMETER	RESULT	LIMIT	UNITS	MDL
1,4-Dioxane	ND	10	ug/L	1.3
	PERCENT	RECOVERY	•	
SURROGATE	RECOVERY	LIMITS		
Nitrobenzene-d5	69	(27 - 111)		
2-Fluorobiphenyl	65	(28 - 110)		
Terphenyl-d14	81	(37 - 119)		
Phenol-d5	65	(10 - 110)		
2-Fluorophenol	58	(10 - 110)		
2,4,6-Tribromophenol	63	(22 - 120)		

## Client Sample ID: MW74A-121407

Lot-Sample #: A7L150155-00 Date Sampled: 12/14/07 08: Prep Date: 12/17/07 Prep Batch #: 7351049		: 12/15/07	Matri	x WG
Dilution Factor: 1	<pre>Initial Wgt/Vol: Method</pre>			Wgt/Vol: 2 mL
		REPORTING		
PARAMETER	RESULT	LIMIT	UNITS	MDL
1,4-Dioxane	ND	10	ug/L	1.3
	PERCENT	RECOVERY		
SURROGATE	RECOVERY	LIMITS		
Nitrobenzene-d5	64	(27 - 111)	•	
2-Fluorobiphenyl	69	(28 - 110)		
Terphenyl-d14	88	(37 - 119)		
Phenol-d5	60	(10 - 110)		
2-Fluorophenol	59	(10 - 110)		
2,4,6-Tribromophenol	85	(22 - 120)		

# Client Sample ID: RW-01I-121107

Lot-Sample #: A7L120224-00 Date Sampled: 12/11/07 12: Prep Date: 12/14/07 Prep Batch #: 7348035		12/12/07	Matri.	<b>x:</b> WG
Dilution Factor: 2	<pre>Initial Wgt/Vol: Method</pre>		<b>Final</b>	Wgt/Vol: 2 mL
PARAMETER  1,4-Dioxane	RESULT 90	REPORTING LIMIT 20	UNITS ug/L	MDL
SURROGATE Nitrobenzene-d5 2-Fluorobiphenyl Terphenyl-d14 Phenol-d5 2-Fluorophenol 2,4,6-Tribromophenol	PERCENT RECOVERY 86 DIL 73 DIL 85 DIL 22 DIL 38 DIL 82 DIL	RECOVERY LIMITS (27 - 111) (28 - 110) (37 - 119) (10 - 110) (10 - 110) (22 - 120)	ug/L	2.6
NOTE(S):	•			

DIL The concentration is estimated or not reported due to dilution or the presence of interfering analytes.

# Client Sample ID: RW-01I-121207

Lot-Sample #: A7L140260-003 Date Sampled: 12/12/07 22:4 Prep Date: 12/16/07 Prep Batch #: 7349042		12/14/07	Matrix	<b>⊀</b> WG
Dilution Factor: 5	<pre>Initial Wgt/Vol: Method</pre>		Final	Wgt/Vol: 2 mL
		REPORTING		
PARAMETER	RESULT	LIMIT	UNITS	MDL
1,4-Dioxane	210	50	ug/L	6.5
	PERCENT	RECOVERY		
SURROGATE	RECOVERY	LIMITS		
Nitrobenzene-d5	60 DIL	$\frac{317113}{(27 - 111)}$		
2-Fluorobiphenyl	56 DIL	(28 - 110)		
Terphenyl-d14	72 DIL	(37 - 119)	•	
Phenol-d5	55 DIL	(10 - 110)		
2-Fluorophenol	54 DIL	(10 - 110)		
2,4,6-Tribromophenol	62 DIL	(22 - 120)		•
NOTE(S):				

DIL The concentration is estimated or not reported due to dilution or the presence of interfering analytes.

## Client Sample ID: RW-01I121407

Lot-Sample #: A7L150155-003 Date Sampled: 12/14/07 10:40 Prep Date: 12/17/07 Prep Batch #: 7351049		12/15/07	Matrix	<b>×:</b> ₩G
Dilution Factor: 6.66	<pre>Initial Wgt/Vol:</pre>	1040 mL	Final	Wgt/Vol: 2 mL
	Method:	SW846 8270	С	
		REPORTING		
PARAMETER	RESULT	LIMIT	UNITS	MDL
1,4-Dioxane	270	67	ug/L	8.7
	PERCENT	RECOVERY		
SURROGATE	RECOVERY	LIMITS		
Nitrobenzene-d5	75 DIL	(27 - 111)		
2-Fluorobiphenyl	75 DIL	(28 - 110)		
Terphenyl-d14	87 DIL ·	(37 - 119)		
Phenol-d5	65 DIL	(10 - 110)		
2-Fluorophenol	68 DIL	(10 - 110)		
2,4,6-Tribromophenol	77 DIL	(22 - 120)		
NOTE(S):				

DIL The concentration is estimated or not reported due to dilution or the presence of interfering analytes.

# Metals Data Reporting Form

Sample Results

Lab Sample ID: KD05R Client ID:

MW74A-121107

Matrix: Water

**Units:** ug/L **Prep Date:** 12/18/2007

**Prep Batch:** 7352026

Weight: NA

Volume:

50

Percent Moisture: NA

Element	WL/ Mass	IDL	Report Limit	Conc	Q	DF	Instr	Anal Date	Anal Time
Antimony	121	0.055	2.0	0.26	В	1	ICPMS	12/19/2007	13:12
Arsenic	75	0.26	5.0	0.43	В	1	ICPMS	12/19/2007	13:12
Barium	135	0.061	1.0	39.3		1	ICPMS	12/19/2007	13:12
Beryllium	9	0.033	1.0	2.0		1	ICPMS	12/19/2007	13:12
Cadmium	111	0.019	1.0	0.54	В	1	ICPMS	12/19/2007	13:12
Chromium	52	0.14	2.0	0.20	В	1	ICPMS	12/19/2007	13:12
Cobalt	59	0.022	1.0	31.9	E	1	ICPMS	12/19/2007	13:12
Copper	65	0.056	2.0	6.7	1	1	ICPMS	12/19/2007	13:12
Lead	208	0.065	1.0	0.29	В	. 1	ICPMS	12/19/2007	13:12
Molybdenum	98	0.58	2.0	0.58	UN	1	ICPMS	12/19/2007	13:12
Nickel	60	0.076	2.0	13.2		1	ICPMS	12/19/2007	13:12
Selenium	82	1.2	5.0	1.2	U	1	ICPMS	12/19/2007	13:12
Silver	107	0.010	1.0	0.010	U	1	ICPMS	12/19/2007	13:12
Thallium	205	0.027	1.0	0.074	В	1	ICPMS	12/19/2007	13:12
Vanadium	51	0.27	20.0	0.27	U	1	ICPMS	12/19/2007	13:12
Zinc	68	0.81	20.0	630		1	ICPMS	12/19/2007	13:12

Comments: Lot #: A7L120224 Sample #: 1

E Serial dilution percent difference not within limits

Form 1 Equivalent

U Result is less than the IDL

# Metals Data Reporting Form

Sample Results

Lab Sample ID: ____

KD05R

**Client ID:** MW74A-121107

Matrix:

Water

**Units:** 

ug/L

**Prep Date:** 12/18/2007

Prep Batch: <u>7352026-Hg</u>

Weight: NA

Volume:

100

Percent Moisture:

Element	WL/ Mass	IDL	Report Limit	Conc	O	DF	Instr	Anal Date	Anal Time
Mercury	253.7	0.10	0.20	0.10	U	1		12/19/2007	

Comments: Lot #: A7L120224 Sample #: 1

Result is less than the IDL

Result is between IDL and RL

# Metals Data Reporting Form

Sample Results

Lab Sample ID: KD7CM Client ID:

MW74A-121207

Matrix:

Water

**Units:** ug/L **Prep Date:** <u>12/18/2007</u>

Prep Batch:

Weight: NA

Volume:

50

Percent Moisture:

NA

Element	WL/ Mass	IDL	Report Limit	Conc	Q	DF	Instr	Anal Date	Anal Time
Antimony	121	0.055	2.0	0.079	В	1	ICPMS	12/19/2007	13:50
Arsenic	75	0.26	5.0	0.43	В	1	ICPMS	12/19/2007	13:50
Barium	135	0.061	1.0	42.6		1	ICPMS	12/19/2007	13:50
Beryllium	9	0.033	1.0	2.6		1	ICPMS	12/19/2007	13:50
Cadmium	111	0.019	1.0	0.24	В	1	ICPMS	12/19/2007	13:50
Chromium	52	0.14	2.0	0.14	U	1	ICPMS	12/19/2007	13:50
Cobalt	59	0.022	1.0	39.9	E	1	ICPMS	12/19/2007	13:50
Copper	65	0.056	2.0	8.5	İ	1	ICPMS	12/19/2007	13:50
Lead	208	0.065	1.0	0.24	В	1	ICPMS	12/19/2007	13:50
Molybdenum	98	0.58	2.0	0.58	UN	1	ICPMS	12/19/2007	13:50
Nickel	60	0.076	2.0	15.4		1	ICPMS	12/19/2007	13:50
Selenium	82	1.2	5.0	1.4	В	. 1	ICPMS	12/19/2007	13:50
Silver	107	0.010	1.0	0.010	U	1	ICPMS	12/19/2007	13:50
Thallium	205	0.027	1.0	0.054	В	1	J I	12/19/2007	ı,
Vanadium	51	0.27	20.0	0.27	U	1	1 1	12/19/2007	
Zinc_	68	0.81	20.0	143		1	ICPMS	12/19/2007	13:50

Comments: Lot #: A7L140260 Sample #: 1

E Serial dilution percent difference not within limits

Form 1 Equivalent

U Result is less than the IDL

# Metals Data Reporting Form

Sample Results

Lab Sample ID:

KD7CM

**Client ID:** MW74A-121207

Matrix:

Water

**Units:** ug/L

**Prep Date:** 12/18/2007

**Prep Batch:** 7352026-Hg

Weight: NA

Volume:

100

Percent Moisture: NA

Element	WL/ Mass	IDL	Report Limit	Conc	o	DF	Instr	Anal Date	Anal Time
Mercury	253.7	0.10	0.20	0.10	U	1	CVAA	12/19/2007	9:46

Comments: Lot #: A7L140260 Sample #: 1

U Result is less than the IDL

# Metals Data Reporting Form

Sample Results

Lab Sample ID: KD88H

Client ID:

MW74A-121407

Matrix: Water

Units: ug/L

**Prep Date:** <u>12/18/2007</u>

**Prep Batch:** 7352026

Weight: NA

Volume:

50

Percent Moisture:

NA

	XX/T /	· · · · · · · · · · · · · · · · · · ·	-	T			<del></del>		
Element	WL/ Mass	IDL	Report Limit	Conc	0	DF	Instr	Anal Date	Anal Time
Antimones	101								
Antimony	121	0.055	2.0	0.055	U	1	ICPMS	12/19/2007	14:05
Arsenic	75	0.26	5.0	0.50	В	1	ICPMS	12/19/2007	14:05
Barium	135	0.061	1.0	45.3		1	ICPMS	12/19/2007	14:05
Beryllium	9	0.033	1.0	2.8	1	1	ICPMS	12/19/2007	14:05
Cadmium	111	0.019	1.0	0.23	В	1	ICPMS	12/19/2007	14:05
Chromium	52	0.14	2.0	0.14	U	1	ICPMS	12/19/2007	14:05
Cobalt	59	0.022	1.0	45.4	E	1		12/19/2007	
Copper	65	0.056	2.0	9.8	l	1	1	12/19/2007	
Lead	208	0.065	1.0	0.22	В	1		12/19/2007	
Molybdenum	98	0.58	2.0	0.58	UN	1		12/19/2007	
Nickel	60	0.076	2.0	17.0	l	1		12/19/2007	
Selenium	82	1.2	5.0	1.3	В			12/19/2007	
Silver	107	0.010	1.0	0.010	U	1	ICPMS	12/19/2007	
Thallium	205	0.027	1.0	0.048	В			12/19/2007	ſ
Vanadium	51	0.27	20.0	0.27	U			12/19/2007	
Zine	68	0.81	20.0	91.5				12/19/2007	

Comments: <u>Lot #: A7L150155 Sample #: 1</u>

E Serial dilution percent difference not within limits

Form 1 Equivalent

U Result is less than the IDL

B Result is between IDL and RL

# Metals Data Reporting Form

Sample Results

Lab Sample ID:

KD88H

Client ID:

MW74A-121407

Matrix:

Water

Units: ug/L

**Prep Date:** <u>12/18/2007</u>

**Prep Batch:** 7352026-Hg

Weight: NA

Volume:

100

Percent Moisture: NA

Element	WL/ Mass	IDL	Report <u>Limit</u>	Conc	Q	DF	Instr	Anal Date	Anal Time
Mercury	253.7	0.10	0.20	0.10	U	1	CVAA	12/19/2007	9:54

Comments: Lot #: A7L150155 Sample #: 1

E Serial dilution percent difference not within limits

U Result is less than the IDL

B Result is between IDL and RL

# Metals Data Reporting Form

Sample Results

Lab Sample ID:

KD081

Client ID: RW-01I-121107

Matrix:

Water

Units:

ug/L

Prep Date: 12/18/2007

**Prep Batch:** 7352026

Weight: NA

Volume:

50

Percent Moisture:

NA

	WL/		Report	<del></del>	1		<del></del>	· · · · · ·	<del></del>
Element	Mass	IDL	Limit	Conc	Q	DF	Instr	Anal Date	Anal Time
Antimony	121	0.055	2.0	0.23	В	1	ICPMS	12/19/2007	
Arsenic	75	0.26	5.0	1.6	В	1		12/19/2007	
Barium	135	0.061	1.0	104		1	1	12/19/2007	
Beryllium	9	0.033	1.0	1.5		1		12/19/2007	
Cadmium	111	0.019	1.0	219		1	1	12/19/2007 12/19/2007	
Chromium	52	0.14	2.0	1.3	В	1	1 1	12/19/2007 12/19/2007	
Cobalt	59	0.022	1.0	195	E	1	] ]	12/19/2007 12/19/2007	
Copper	65	0.056	2.0	7.1		1	1 1	12/19/2007 12/19/2007	13:42
Lead	208	0.065	1.0	0.14	В	1		12/19/2007	
Molybdenum	98	0.58	2.0	0.61	BN	_		12/19/2007	
Nickel	60	0.076	2.0	72.7	221		! [	12/19/2007 12/19/2007	13:42
Selenium	82	1.2	5.0	4.6	В		l 1	12/19/2007	
Silver	107	0.010	1.0	0.014	В			12/19/2007	13:42
Thallium	205	0.027	1.0	0.098	В			12/19/2007	13:42
Vanadium	51	0.27	20.0	2.2	В			12/19/2007	13:42
Zinc	68	0.81	20.0	233		i		12/19/2007	13:42

Comments: Lot #: A7L120224 Sample #: 3

E Serial dilution percent difference not within limits

Form 1 Equivalent

Result is less than the IDL

B Result is between IDL and RL

# Metals Data Reporting Form

Sample Results

Lab Sample ID:

KD081

**Client ID:** RW-01I-121107

Matrix:

Water

Units:

ug/L

**Prep Date:** __12/18/2007

**Prep Batch:** 7352026-Hg

Weight: NA

Volume:

100

Percent Moisture: NA

Element	WL/ Mass	IDL	Report Limit	Conc	Q_	DF	Instr	Anal Date	Anal Time
Mercury	253.7	0.10	0.20	0.10	U	1	CVAA	12/19/2007	9:44

Comments: Lot #: A7L120224 Sample #: 3

U Result is less than the IDL

# Metals Data Reporting Form

Sample Results

Matrix: Water

Lab Sample ID: KD7EX

**Units:** 

**Client ID:** RW-01I-121207

ug/L Prep Date: 12/18/2007 Prep Batch: 7352026

Weight: NA Volume: 50 Percent Moisture: NA

Element	WL/ Mass	TD.I	Report	- C-				Anal	Anal
Element	171455	IDL	Limit	Conc	Q	DF	Instr	Date	Time
Antimony	121	0.055	2.0	0.055	U	1	ICPMS	12/19/2007	13:57
Arsenic	75	0.26	5.0	1.7	В	1	ICPMS	12/19/2007	13:57
Barium	135	0.061	1.0	113	'	1	<b>ICPMS</b>	12/19/2007	13:57
Beryllium	9	0.033	1.0	1.9	]	1	ICPMS	12/19/2007	13:57
Cadmium	111	0.019	1.0	273		1	ICPMS	12/19/2007	13:57
Chromium	52	0.14	2.0	1.4	В	1	ICPMS	12/19/2007	13:57
Cobalt	59	0.022	1.0	241	E	1	ICPMS	12/19/2007	13:57
Copper	65	0.056	2.0	20.9		1	ICPMS	12/19/2007	13:57
Lead	208	0.065	1.0	0.090	В	1	ICPMS	12/19/2007	13:57
Molybdenum	98	0.58	2.0	0.58	UN	1	ICPMS	12/19/2007	13:57
Nickel	60	0.076	2.0	83.2		1	ICPMS	12/19/2007	13:57
Selenium	82	1.2	5.0	5.5		1	ICPMS	12/19/2007	13:57
Silver	107	0.010	1.0	0.010	U	1	ICPMS	12/19/2007	13:57
Thallium	205	0.027	1.0	0.092	В	1	ICPMS	12/19/2007	13:57
Vanadium	51	0.27	20.0	2.5	В	1	ICPMS	12/19/2007	13:57
Zinc	68	0.81	20.0	281		1	ICPMS	12/19/2007	13:57

Comments: Lot #: A7L140260 Sample #: 3

E Serial dilution percent difference not within limits

Form 1 Equivalent

U Result is less than the IDL

# Metals Data Reporting Form

Sample Results

Lab Sample ID: KD7EX

**Client ID:** RW-01I-121207

Matrix: Water

Units: ug/L **Prep Date:** 12/18/2007

**Prep Batch:** 7352026-Hg

Weight: NA

Volume: 100

Percent Moisture: NA

Element	WL/ Mass	IDL	Report Limit	Conc	Q	DF	Instr	Anal Date	Anal- Time
Mercury	253.7	0.10	0.20	0.10	U	1	CVAA	12/19/2007	9:49

Comments: <u>Lot #: A7L140260 Sample #: 3</u>

U Result is less than the IDL

# Metals Data Reporting Form

Sample Results

Lab Sample ID:

KD88Q

Client ID:

RW-01I121407

Matrix: Water

Units:

ug/L

**Prep Date:** 12/18/2007

**Prep Batch:** 7352026

Weight: NA

Volume:

50

Percent Moisture:

NA

Element	WL/ Mass	IDL	Report Limit	Conc	o	DF	Instr	Anal Date	Anal Time
Antimony	121	0.055	2.0	0.055	U	1	ICPMS	12/19/2007	
Arsenic	75	0.26	5.0	1.4	В	1	l .	12/19/2007	1
Barium	135	0.061	1.0	103		1		12/19/2007	1
Beryllium	9	0.033	1.0	1.9		1		12/19/2007	
Cadmium	111	0.019	1.0	259		1		12/19/2007	•
Chromium	52	0.14	2.0	1.2	В	1		12/19/2007	
Cobalt	59	0.022	1.0	244	E	1		12/19/2007 12/19/2007	
Copper	65	0.056	2.0	22.7			: 1	12/19/2007 12/19/2007	
Lead	208	0.065	1.0	0.078	В	1	1	12/19/2007 12/19/2007	
Molybdenum	98	0.58	2.0	0.58	UN	1		12/19/2007 12/19/2007	
Nickel	60	0.076	2.0	79.8		_		12/19/2007 12/19/2007	
Selenium	82	1.2	5.0	4.0	В			12/19/2007 12/19/2007	
Silver	107	0.010	1.0	0.010	U			12/19/2007	14:26
Thallium	205	0.027	1.0	0.098	В			12/19/2007	
Vanadium	51	0.27	20.0	2.7	В			12/19/2007	
Zinc	68	0.81	20.0	283				12/19/2007	

Comments: <u>Lot #: A7L150155 Sample #: 3</u>

Result is between IDL and RL

Form 1 Equivalent

Result is less than the IDL

# Metals Data Reporting Form

Sample Results

Lab Sample ID:

KD88Q

Client ID:

RW-01I121407

Matrix:

Water

**Units:** 

ug/L 100

**Prep Date:** 12/18/2007

**Prep Batch:** 7352026-Hg

Weight: NA

Volume:

Percent Moisture:

Element	WL/ Mass	IDL	Report Limit	Conc	Q	DF	Instr	Anal Date	Anal Time
Mercury	253.7	0.10	0.20	0.21		1	CVAA	12/19/2007	

Comments: Lot #: A7L150155 Sample #: 3

# Metals Data Reporting Form

Sample Results

Lab Sample ID: KD05RF Client ID: MW74A-121107F

Matrix:

Water

Units: ug/L

Volume:

**Prep Date:** <u>12/18/2007</u>

**Prep Batch:** 7352026

Weight: NA

50

Percent Moisture: ____NA

Element	WL/ Mass	IDL	Report Limit	Conc	o	DF	Instr	Anal Date	Anal Time
Antimony	121	0.055	2.0	0.059	В	1	ICPMS	12/19/2007	13:30
Arsenic	75	0.26	5.0	0.52	В	1	ICPMS	12/19/2007	13:30
Barium	135	0.061	1.0	38.3	İ	1	ICPMS	12/19/2007	13:30
Beryllium	9	0.033	1.0	1.8	j	1 .	1	12/19/2007	
Cadmium	111	0.019	1.0	0.47	В	1	ICPMS	12/19/2007	13:30
Chromium	52	0.14	2.0	0.14	U	1	ICPMS	12/19/2007	13:30
Cobalt	59	0.022	1.0	31.1	E	1	ICPMS	12/19/2007	13:30
Copper	65	0.056	2.0	6.5		1	ICPMS	12/19/2007	13:30
Lead	208	0.065	1.0	0.55	В	1	ICPMS	12/19/2007	13:30
Molybdenum	98	0.58	2.0	0.58	UN	1	ICPMS	12/19/2007	13:30
Nickel	60	0.076	2.0	12.7		1	ICPMS	12/19/2007	13:30
Selenium	82	1.2	5.0	1.2	В	1	ICPMS	12/19/2007	13:30
Silver	107	0.010	1.0	0.010	U	1		12/19/2007	
Thallium	205	0.027	1,0	0.054	В	1	i i	12/19/2007	
Vanadium	51	0.27	20.0	0.27	U		l I	12/19/2007	
Zinc	68	0.81	20.0	622		1		12/19/2007	13:30

Comments: Lot #: A7L120224 Sample #: 1

E Serial dilution percent difference not within limits

Form 1 Equivalent

U Result is less than the IDL

## Metals Data Reporting Form

Sample Results

Lab Sample ID:

KD05RF

Client ID:

MW74A-121107F

Matrix:

Water

ug/L Units:

**Prep Date:** 12/18/2007

Prep Batch: 7352026-Hg

Weight: NA

Volume:

100

Percent Moisture: NA

Element	WL/ Mass	IDL	Report Limit	Conc	o	DF	Instr	Anal Date	Anal Time
Mercury	253.7	0.10	0.20	0.10	U	1	CVAA	12/19/2007	

Comments: Lot #: A7L120224 Sample #: 1

5.21.0

Serial dilution percent difference not within limits

U Result is less than the IDL

## Metals Data Reporting Form

Sample Results

Lab Sample ID: KD7CMF Client ID:

MW74A-121207F

Matrix:

Water

**Units:** 

ug/L

Report

Limit

2.0

5.0

1.0

1.0

1.0

2.0

1.0

2.0

1.0

2.0

2.0

5.0

1.0

1.0

20.0

20.0

**Prep Date:** 12/18/2007

Prep Batch:

7352026

Weight: NA

Element

Antimony

Arsenic

Barium

Beryllium

Cadmium

Chromium

Molybdenum

Cobalt

Copper

Lead

Nickel

Silver

Zinc -

Selenium

Thallium

Vanadium

Volume:

WL/

Mass

121

75

135

111

52

59

65

208

98

60

82

107

205

51

68

50

IDL

0.055

0.26

0.061

0.033

0.019

0.14

0.022

0.056

0.065

0.58

0.076

0.010

0.027

0.27

0.81

1.2

Percent Moisture:

Conc

0.055

0.54

39.7

2.2

0.18

0.14

36.9

8.0

0.25

0.58

14.0

1.2

0.010

0.045

0.27

134

UN

U

U

В

U

1

1

1

1

1

1

1

NA

o	DF	Instr	Anal Date	Anal Time
U	1	ICPMS	12/19/2007	13:53
В	1	ICPMS	12/19/2007	13:53
	1	ICPMS	12/19/2007	13:53
	1	ICPMS	12/19/2007	13:53
В	1	ICPMS	12/19/2007	13:53
U	1	ICPMS	12/19/2007	13:53
E	1	ICPMS	12/19/2007	13:53
	1	ICPMS	12/19/2007	13:53
В	1	ICPMS	12/19/2007	13.53

ICPMS 12/19/2007

ICPMS 12/19/2007

ICPMS 12/19/2007

ICPMS 12/19/2007

ICPMS 12/19/2007

ICPMS 12/19/2007

ICPMS 12/19/2007

13:53

13:53

13:53

13:53

13:53

13:53

13:53

Comments:

5.21.0

Serial dilution percent difference not within limits

U Result is less than the IDL

Result is between IDL and RL

## Metals Data Reporting Form

Sample Results

Lab Sample ID:

KD7CMF

Client ID: MW74A-121207F

Matrix: Water

Units:

ug/L

**Prep Date:** <u>12/18/2007</u>

**Prep Batch:** 7352026-Hg

Weight: NA

Volume:

100

Percent Moisture: NA

Element	WL/ Mass	IDL	Report Limit	Conc	Q	DF	Instr	Anal Date	Anal Time
Mercury	253.7	0.10	0.20	0.10	U	1	CVAA	12/19/2007	9:48

Comments:

5.21.0

E Serial dilution percent difference not within limits

U Result is less than the IDL

## Metals Data Reporting Form

Sample Results

Lab Sample ID: KD88HF

**Client ID:** MW74A-121407F

Matrix:

Water

Units: __ug/L

**Prep Date:** 12/18/2007

**Prep Batch:** 7352026

Weight: NA

Volume: 50

Percent Moisture: NA

Element	WL/ Mass	IDL	Report Limit	Conc	Q	DF	Instr	Anal Date	Anal Time
Antimony	121	0.055	2.0	0.056	В	1	ICPMS	12/19/2007	14:22
Arsenic	75	0.26	5.0	0.50	В	1	ICPMS	12/19/2007	ļ
Barium	135	0.061	1.0	43.7		1		12/19/2007	
Beryllium	9	0.033	1.0	2.8		1	1	12/19/2007	
Cadmium	111	0.019	1.0	0.21	В	1	i .	12/19/2007	i .
Chromium	52	0.14	2.0	0.14	U	1	· .	12/19/2007	
Cobalt	59	0.022	1.0	43.9	E	1	1	12/19/2007	
Copper	65	0.056	2.0	9.5		1		12/19/2007	
Lead	208	0.065	1.0	0.23	В	1		12/19/2007	
Molybdenum	98	0.58	2.0	0.58	UN			12/19/2007	
Nickel	60	0.076	2.0	16.4			į .	12/19/2007	
Selenium	82	1.2	5.0	1.2	U			12/19/2007	
Silver	107	0.010	1.0	0.010	U		1	12/19/2007	
Thallium	205	0.027	1.0	0.059	В			12/19/2007	
Vanadium	51	0.27	20.0	0.27	U			12/19/2007	
Zinc	68	0.81	20.0	91.1				12/19/2007	

Comments: _

5.21.0

E Serial dilution percent difference not within limits

U Result is less than the IDL

B Result is between IDL and RL

## Metals Data Reporting Form

Sample Results

KD88HF Lab Sample ID:

**Client ID:** MW74A-121407F

Matrix: Water

**Units:** ug/L **Prep Date:** 12/18/2007

**Prep Batch:** 7352026-Hg

Weight: NA

Volume:

100

Percent Moisture:

Element	WL/ Mass	IDL	Report Limit	Conc	Q	DF	Instr	Anal Date	Anal Time
Mercury	253.7	0.10	0.20	0.10	U	1	CVAA	12/19/2007	9:56

Comments:

5.21.0

E Serial dilution percent difference not within limits

U Result is less than the IDL

## Metals Data Reporting Form

Sample Results

Lab Sample ID: KD081F

**Client ID:** RW-01I-121107F

Matrix: Water

**Units:** ug/L

50

**Prep Date:** <u>12/18/2007</u>

Prep Batch:

Weight: NA

Volume:

Percent Moisture: NA

Element	WL/	IDI	Report					Anal	Anal
Element	Mass	IDL	<u>Limit</u>	Conc	Q	DF	Instr	Date	Time
Antimony	121	0.055	2.0	0.14	В	1	ICPMS	12/19/2007	13:46
Arsenic	75	0.26	5.0	1.7	В	1	ICPMS	12/19/2007	13:46
Barium	135	0.061	1.0	106		1	ICPMS	12/19/2007	13:46
Beryllium	9	0.033	1.0	1.4		1	ICPMS	12/19/2007	13:46
Cadmium	111	0.019	1.0	218		1	ICPMS	12/19/2007	13:46
Chromium	52	0.14	2.0	1.2	В	1	ICPMS	12/19/2007	13:46
Cobalt	59	0.022	1.0	198	E	1	ICPMS	12/19/2007	13:46
Copper	65	0.056	2.0	6.6		1	ICPMS	12/19/2007	13:46
Lead	208	0.065	1.0	0.20	В	1	ICPMS	12/19/2007	13:46
Molybdenum	98	0.58	2.0	0.73	BN	1		12/19/2007	
Nickel	60	0.076	2.0	74.2		1	ICPMS	12/19/2007	13:46
Selenium	82	1.2	5.0	5.0		1		12/19/2007	
Silver	107	0.010	1.0	0.010	U	1		12/19/2007	
Thallium	205	0.027	1.0	0.084	В	1	1 1	12/19/2007	
Vanadium	51	0.27	20.0	2.1	В		1 1	12/19/2007	
Zinc	68	0.81	20.0	233		1	ł I	12/19/2007	i i

Comments: Lot #: A7L120224 Sample #: 3

E Serial dilution percent difference not within limits

Form 1 Equivalent

U Result is less than the IDL

## Metals Data Reporting Form

Sample Results

Lab Sample ID:

KD081F

**Client ID:** RW-01I-121107F

Matrix: Water

**Units:** 

ug/L

**Prep Date:** 12/18/2007

**Prep Batch:** 7352026-Hg

Weight: ___ NA

Volume:

100

Percent Moisture: NA

Element	WL/ Mass	IDL	Report Limit	Conc	Q	DF	Instr	Anal Date	Anal Time
Mercury	253.7	0.10	0.20	0.10	U	1	CVAA	12/19/2007	9:45

Comments: Lot #: A7L120224 Sample #: 3

U Result is less than the IDL

## Metals Data Reporting Form

Sample Results

Lab Sample ID: KD7EXF

**Client ID:** RW-01I-121207F

Matrix: Water

Units: ug/L

**Prep Date:** 12/18/2007

**Prep Batch:** 7352026

Weight: NA

Volume: 50

Percent Moisture: ____NA

Element	WL/ Mass	IDL	Report Limit	Conc	Q	DF	Instr	Anal Date	Anal Time
Antimony	121	0.055	2.0	0.44	В	1	ICPMS	12/19/2007	14:01
Arsenic	75	0.26	5.0	0.80	В	1	ICPMS	12/19/2007	14:01
Barium	135	0.061	1.0	113		1	ICPMS	12/19/2007	14:01
Beryllium	9	0.033	1.0	1.9		1	ICPMS	12/19/2007	14:01
Cadmium	111	0.019	1.0	267		1	ICPMS	12/19/2007	14:01
Chromium	52	0.14	2.0	1.3	В	1	ICPMS	12/19/2007	14:01
Cobalt	59	0.022	1.0	242	E	1	ICPMS	12/19/2007	14:01
Copper	65	0.056	2.0	20.9		1	ICPMS	12/19/2007	14:01
Lead	208	0.065	1.0	0.12	В	1	ICPMS	12/19/2007	14:01
Molybdenum	98	0.58	2.0	0.58	UN	1	ICPMS	12/19/2007	14:01
Nickel	60	0.076	2.0	82.7		1	ICPMS	12/19/2007	14:01
Selenium	82	1.2	5.0	2.9	В	1	ICPMS	12/19/2007	14:01
Silver	107	0.010	1.0	0.010	U,	1	ICPMS	12/19/2007	14:01
Thallium	205	0.027	1.0	0.090	В	1	ICPMS	12/19/2007	14:01
Vanadium	51	0.27	20.0	2.5	В	1	ICPMS	12/19/2007	14:01
Zinc	68	0.81	20.0	272		1		12/19/2007	14:01

Comments: 5.21.0

E Serial dilution percent difference not within limits

Form 1 Equivalent

U Result is less than the IDL

B Result is between IDL and RL

## Metals Data Reporting Form

Sample Results

Lab Sample ID:

KD7EXF

**Client ID:** RW-01I-121207F

Matrix: Water

**Units:** 

ug/L

**Prep Date:** <u>12/18/2007</u>

**Prep Batch:** 7352026-Hg

Weight: NA

Volume:

100

Percent Moisture: NA

Element	WL/ Mass	IDL	Report Limit	Conc	Q	DF	Instr	Anal Date	Anal Time
Mercury	253.7	0.10	0.20	0.10	U	1	CVAA	12/19/2007	9:53

5.21.0

Comments:

E Serial dilution percent difference not within limits

U Result is less than the IDL

B Result is between IDL and RL

## Metals Data Reporting Form

Sample Results

Lab Sample ID: KD88QF

**Client ID:** RW-01I121407F

Matrix: Water

Units: ug/L

**Prep Date:** 12/18/2007

Prep Batch: _7352026

Weight: NA

Volume: 50 Percent Moisture:

Element	WL/ Mass	IDL_	Report Limit	Conc	o	DF	Instr	Anal Date	Anal Time
Antimony	121	0.055	2.0	0.055	U	1	ICPMS	12/19/2007	
Arsenic	75	0.26	5.0	1.0	В	1		12/19/2007	
Barium	135	0.061	1.0	106		1		12/19/2007 12/19/2007	E .
Beryllium	9	0.033	1.0	2.0		1	i .	12/19/2007	•
Cadmium	111	0.019	1.0	267		1	1	12/19/2007 12/19/2007	
Chromium	52	0.14	2.0	1.2	В	1		12/19/2007 12/19/2007	•
Cobalt	59	0.022	1.0	254	E	1	1 1	12/19/2007 12/19/2007	_
Copper	65	0.056	2.0	24.0		1	1	12/19/2007 12/19/2007	
Lead	208	0.065	1.0	0.19	В		, ,	12/19/2007 12/19/2007	
Molybdenum	98	0.58	2.0	0.58	UN			12/19/2007 12/19/2007	_
Nickel	60	0.076	2.0	82.8				12/19/2007 12/19/2007	
Selenium	82	1.2	5.0	2.7	В			12/19/2007	
Silver	107	0.010	1.0	0.010	U			12/19/2007	
Thallium	205	0.027	1.0	0.10	В	-		12/19/2007	
Vanadium	51	0.27	20.0	2.6	В			2/19/2007	
Zinc	68	0.81	20.0	370			1	2/19/2007	

5.21.0

E Serial dilution percent difference not within limits

Result is less than the IDL

Result is between IDL and RL

## Metals Data Reporting Form

Sample Results

KD88QF Lab Sample ID:

**Client ID:** RW-01I121407F

Matrix: Water

Units: ug/L

100

**Prep Date:** 12/18/2007

**Prep Batch:** 7352026-Hg

Weight: NA

Volume:

Percent Moisture: NA

Element	WL/ Mass	IDL	Report Limit	Conc	Q	DF	Instr	Anal Date	Anal Time
Mercury	253.7	0.10	0.20	0.10	U	1	CVAA	12/19/2007	9:58

Comments:

5.21.0

E Serial dilution percent difference not within limits

U Result is less than the IDL

Result is between IDL and RL

#### Client Sample ID: MW74A-121107

#### General Chemistry

Lot-Sample #...: A7L120224-001 Work Order #...: KD05R Matrix...... WG

Date Sampled...: 12/11/07 12:00 Date Received..: 12/12/07

 PARAMETER
 RESULT
 RL
 UNITS
 METHOD
 PREPARATION PREPARATION PREPARATION PREPARATION PREPARATION PREPARATION PREPARATION PREPARATION PREPARATION PREPARATION PREPARATION PREPARATION PREPARATION PREPARATION PREPARATION PREPARATION PREPARATION PREPARATION PREPARATION PREPARATION PREPARATION PREPARATION PREPARATION PREPARATION PREPARATION PREPARATION PREPARATION PREPARATION PREPARATION PREPARATION PREPARATION PREPARATION PREPARATION PREPARATION PREPARATION PREPARATION PREPARATION PREPARATION PREPARATION PREPARATION PREPARATION PREPARATION PREPARATION PREPARATION PREPARATION PREPARATION PREPARATION PREPARATION PREPARATION PREPARATION PREPARATION PREPARATION PREPARATION PREPARATION PREPARATION PREPARATION PREPARATION PREPARATION PREPARATION PREPARATION PREPARATION PREPARATION PREPARATION PREPARATION-</t

#### Client Sample ID: MW74A-121207

#### General Chemistry

Lot-Sample #...: A7L140260-001 Work Order #...: KD7CM Matrix.....: WG
Date Sampled...: 12/12/07 21:00 Date Received..: 12/14/07

PREPARATION- PREP

 PARAMETER
 RESULT
 RL
 UNITS
 METHOD
 ANALYSIS DATE
 BATCH #

 pH (liquid)
 5.0
 No Units
 SW846 9040B
 12/14/07
 7348558

#### Client Sample ID: MW74A-121407

#### General Chemistry

Lot-Sample #: A7L150155-001	Work Order #: KD88H	Matrix WG
Date Sampled: 12/14/07 08:30	Date Received: 12/15/07	

pH (liquid)	4.8		No Units	SW846 9040B	12/15/07	7349150
PARAMETER	RESULT_	RL	UNITS	METHOD	ANALYSIS DATE	BATCH #
	•				PREPARATION-	PREP

#### Client Sample ID: RW-01I-121107

#### General Chemistry

Lot-Sample #...: A7L120224-003 Work Order #...: KD081 Matrix.....: WG

Date Sampled...: 12/11/07 12:30 Date Received..: 12/12/07

 PARAMETER
 RESULT
 RL
 UNITS
 METHOD
 PREPARATION PREPARATION PREPARATION PREPARATION PREPARATION PREPARATION PREPARATION PREPARATION PREPARATION PREPARATION PREPARATION PREPARATION PREPARATION PREPARATION PREPARATION PREPARATION PREPARATION PREPARATION PREPARATION PREPARATION PREPARATION PREPARATION PREPARATION PREPARATION PREPARATION PREPARATION PREPARATION PREPARATION PREPARATION PREPARATION PREPARATION PREPARATION PREPARATION PREPARATION PREPARATION PREPARATION PREPARATION PREPARATION PREPARATION PREPARATION PREPARATION PREPARATION PREPARATION PREPARATION PREPARATION PREPARATION PREPARATION PREPARATION PREPARATION PREPARATION PREPARATION PREPARATION PREPARATION PREPARATION PREPARATION PREPARATION PREPARATION PREPARATION PREPARATION PREPARATION PREPARATION PREPARATION PREPARATION PREPARATION-</t

#### Client Sample ID: RW-01I-121207

#### General Chemistry

Lot-Sample #: A7L140260-003	Work Order #: KD7EX	Matrix WG
Data Ca1-4 - 10/10/07 00:/	15 D-t- D 10/24/07	*

Date Sampled...: 12/12/07 22:45 Date Received..: 12/14/07

pH (liquid)	4.7		No Units	SW846 9040B	12/14/07	7348558
PARAMETER	RESULT	RL	UNITS	METHOD	ANALYSIS DATE	BATCH #
					PREPARATION-	PREP

#### Client Sample ID: RW-01I121407

#### General Chemistry

**Lot-Sample #...:** A7L150155-003 **Work Order #...:** KD88Q **Matrix.....:** WG

Date Sampled...: 12/14/07 10:40 Date Received..: 12/15/07

 PARAMETER
 RESULT
 RL
 UNITS
 METHOD
 ANALYSIS DATE
 BATCH # 7349150

 pH (liquid)
 4.6
 No Units
 SW846 9040B
 12/15/07
 7349150

## APPENDIX C SUPPORT DOCUMENTATION



## ANALYTICAL REPORT

PUMP TEST 4 @ MRC SDG #: 7L12224

Michael Martin

Tetra Tech NUS Inc 20251 Century Blvd Suite 200 Germantown, MD 20874

TESTAMERICA LABORATORIES, INC.

Patrick J. O'Meara Project Manager

January 4, 2008

#### **CASE NARRATIVE**

7L12224

The following report contains the analytical results for seven water samples and two quality control samples submitted to TestAmerica North Canton by Tetra Tech NUS Inc. from the PUMP TEST 4@ MRC Site. The samples were received December 12, 2007, December 14, 2007 and December 15, 2007, according to documented sample acceptance procedures.

This SDG consists of (3) laboratory ID's: A7L120224, A7L140260, and A7L150155.

TestAmerica utilizes USEPA approved methods in all analytical work. The samples presented in this report were analyzed for the parameter(s) listed on the analytical methods summary page in accordance with the method(s) indicated. Preliminary results were provided to Dev Murali, John Poremba, and Michael Martin on January 03, 2008. A summary of QC data for these analyses is included at the back of the report.

TestAmerica North Canton attests to the validity of the laboratory data generated by TestAmerica facilities reported herein. All analyses performed by TestAmerica facilities were done using established laboratory SOPs that incorporate QA/QC procedures described in the applicable methods. TestAmerica's operations groups have reviewed the data for compliance with the laboratory QA/QC plan, and data have been found to be compliant with laboratory protocols unless otherwise noted below.

Any reference within this document to Severn Trent Laboratories, Inc. or STL, should be understood to refer to TestAmerica Laboratories, Inc. (formerly known as Severn Trent Laboratories, Inc.)

The test results in this report meet all NELAP requirements for parameters for which accreditation is required or available. Any exceptions to NELAP requirements are noted in this report. Pursuant to NELAP, this report may not be reproduced, except in full, without the written approval of the laboratory.

Please refer to the Quality Control Elements Narrative following this case narrative for additional quality control information.

If you have any questions, please call the Project Manager, Patrick J. O'Meara, at 330-497-9396.

This report is sequentially paginated. The final page of the report is labeled as "END OF REPORT."

## **CASE NARRATIVE (continued)**

#### SUPPLEMENTAL OC INFORMATION

#### SAMPLE RECEIVING

The temperatures of the coolers upon sample receipt were 0.2, 2.6, and 2.9°C.

Sample(s) MW74A-121207 and RW-01I-121207 were received in the laboratory after the recommended holding time for the pH test had expired.

#### **GC/MS VOLATILES**

The sample(s) that contained concentrations of target analyte(s) at a reportable level in the associated Method Blank(s) were flagged with "B". All target analytes in the Method Blank must be below the reporting limit (RL) or the associated sample(s) must be ND with the exception of common laboratory contaminants.

The sample(s) that contain results between the MDL and the RL were flagged with "J". There is a possibility of false positive or mis-identification at these quantitation levels. In analytical methods requiring confirmation of the analyte reported, confirmation was performed only down to the standard reporting limit (SRL). The acceptance criteria for QC samples may not be met at these quantitation levels.

2-Chloroethyl vinyl ether cannot be reliably recovered in an acid preserved sample.

#### **GC/MS SEMIVOLATILES**

Batch(es) 7351049 had recoveries and/or RPD's out high in the LCS. Since there were no hits for 1,4-Dichlorobenzene detected in any of the associated samples, no corrective action was necessary.

#### **METALS**

The sample(s) that contain results between the MDL and the RL were flagged with "B". There is the possibility of false positive or mis-identification at these quantitation levels. The acceptance criteria for the ICB, CCB, and Method Blank are +/- the standard reporting limit (SRL).

Serial dilution of a sample in this lot indicates that physical and chemical interferences were present. Refer to the sample report pages for the affected analytes flagged with "E".

## **CASE NARRATIVE (continued)**

#### **METALS** (continued)

The matrix spike sample duplicate(s) for MW74A-121107 had recoveries and RPDs outside acceptance limits. However, since the associated method blank(s) and laboratory control sample(s) were in control, no corrective action was necessary.

#### **GENERAL CHEMISTRY**

The analytical results met the requirements of the laboratory's QA/QC program.

## **ANALYTICAL METHODS SUMMARY**

#### 7L12224

PARAMETER	ANALYTICAL METHOD
pH Aqueous	SW846 9040B
ICP-MS (6020)	SW846 6020
Mercury in Liquid Waste (Manual Cold-Vapor)	SW846 7470A
Semivolatile Organic Compounds by GC/MS	SW846 8270C
Volatile Organics by GC/MS	SW846 8260B

#### References:

SW846

"Test Methods for Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 and its updates.

### **SAMPLE SUMMARY**

7L12224 : A7L120224

WO # S	SAMPLE#	CLIENT SAMPLE ID	SAMP DATE	
KD05R KD08T KD081	001 002 003	MW74A-121107 TB-121107 RW-01I-121107	12/1	1/07 12:00 1/07 1/07 12:30
MOTE (S)	. •			

#### 1011107.

- The analytical results of the samples listed above are presented on the following pages.
- All calculations are performed before rounding to avoid round-off errors in calculated results.
- Results noted as "ND" were not detected at or above the stated limit.
- This report must not be reproduced, except in full, without the written approval of the laboratory.
- Results for the following parameters are never reported on a dry weight basis: color, corrosivity, density, flashpoint, ignitability, layers, odor, paint filter test, pH, porosity pressure, reactivity, redox potential, specific gravity, spot tests, solids, solubility, temperature, viscosity, and weight.

(Continued on next page)

### **SAMPLE SUMMARY**

7L12224 : A7L140260

<u>WO #</u> S	AMPLE#	CLIENT SAMPLE ID	SAMPLED DATE	SAMP TIME
KD7CM KD7DD	001 002	MW74A-121207 TB-121207	12/12/07 12/12/07	21:00
KD7EX	003	RW-01I-121207	12/12/07	22:45
NOTE (S)	:			

- The analytical results of the samples listed above are presented on the following pages.
- All calculations are performed before rounding to avoid round-off errors in calculated results.
- Results noted as "ND" were not detected at or above the stated limit.
- This report must not be reproduced, except in full, without the written approval of the laboratory.
- Results for the following parameters are never reported on a dry weight basis: color, corrosivity, density, flashpoint, ignitability, layers, odor, paint filter test, pH, porosity pressure, reactivity, redox potential, specific gravity, spot tests, solids, solubility, temperature, viscosity, and weight.

(Continued on next page)

#### SAMPLE SUMMARY

7L12224 : A7L150155

<u>WO # </u>	SAMPLE#	CLIENT SAMPLE ID	SAMPLED DATE	SAMP TIME
KD88H KD88N KD88O	001 002 003	MW74A-121407 TB-121407 RW-01I121407	12/14/07 12/14/07 12/14/07 12/14/07	
NOTE (S)	) =			

- The analytical results of the samples listed above are presented on the following pages.
- All calculations are performed before rounding to avoid round-off errors in calculated results.
- Results noted as "ND" were not detected at or above the stated limit.
- This report must not be reproduced, except in full, without the written approval of the laboratory.
- Results for the following parameters are never reported on a dry weight basis: color, corrosivity, density, flashpoint, ignitability, layers, odor, paint filter test, pH, porosity pressure, reactivity, redox potential, specific gravity, spot tests, solids, solubility, temperature, viscosity, and weight.

## Chain of Custody Record



Severn Trent Laboratories, Inc.

STL-4124 (0901)		·					·····								e gr
Tetra Tech		M	Manager IKE	2 /	Uar	tin		, • .			Date 12	111	<b>1</b>	Chain of Custo	2560
20251 Century Blv	1,4200			er (Area 52		55 5	52					Number		Page /	of
GERMANTOWN Blate Zip	0874	Site Col	dk	alb	30 Lab	Contact			-VI	10 m	ore spac	(Attach lis ce is need	st if led)		
Project Name and Location (State)  #UNP TEST 4 @ MRC	~	Carrier/	Waybill N	umber	<i>J</i>		٠.		RAS	3	POXINE			Spec	ial Instructions/
Confract/Purchase Order/Quote No.			N	fatrix		Contai Presen	ners & vatives			THE P	90			Condi	tions of Receipt
Sample I.D. No. and Description (Containers for each sample may be combined on one line)	Date	Time	Air Aqueous	Sed.	Unpres	HZSO4 HNO3	NaOH ZnAc/ NaOH	3	40	37	14				<b>a</b> 1
MW74A-121107	12/11/07 12	200	X			X		3	1					Outo	10 105
			Λ χ)			X			1	1			_	Wi	a upc
		1-1	X		$ \chi$					<u>1</u>				do.	V 1/1
		V	X		X						1		1.	70	21144
TB-121107 RW-011-121107	<u> </u>	200	X	_		X	$1 \perp$	12	ــــــــــــــــــــــــــــــــــــــ						
KW-011-121197	12/11/07 13	230	X					_ 3	1	_	-			Pur	Ub JED,
			n			カ	1 1 1		<del>  -2- </del>	1		1 .		2	@ MSB
			X		X					1				bal	dow
					M						1				haff
Possible Hazard Identification	<u> </u>		Sample	Disposa	$\frac{1}{t}$										
☐ Non-Hazard ☐ Flammable ☐ Skin Irritant ☐ Turn Around Time Required	Poison B 🔲 L	Jnknown	1	um To C	li <b>e</b> nt [	Disposal		] Arci	hive Fo	or	Mor	(A feaths longe	e may be ass er than 1 mon	sessed if samples anth)	are retained (
24 Hours 48 Hours 7 Days 14 Day	rs 🔲 21 Days	☐ Othe	r		1	QC Require	ments (Spec	oity) <b>1</b>			,				<del></del>
1. Relinquished By SILVINO da Lut Tr.		Date 12	p7	Time		1. Retei ed	u.	1	N	K				Date 12-1/-6	Time
2. Relinquished By	,	Oate [*]	· 	Time		2. Received	Ву		7		>			Date 12-12-2	Time
3. Relinquished By		Date	,	Time		3. Received	Ву 🗸				$\mathcal{T}$			Date	Time
Comments		l			1										1 to 1 to 1 to 1 to 1 to 1 to 1 to 1 to
DISTRIBUTION: WHITE - Returned to Client with Report; C.	ANARY - Stays with t	the Sampi	e; PINK	Field Co	P					•					

# n of lody Record



Severn Trent Laboratories, Inc.

(0901)												·			
Jetha Tech		Project Ma MLH	B	Ma	M	'n						Date 12/12/07		Chain of Custody I	Number 061
20251 Century Blu	d, \$200	Telephone	1-i	er (Area ( 528	·- E	555	2					Lab Number		Page 1	_ of
Sermantown MD &	0874	Site Conta	( P	sdb	MG Lat	Contact				<u>~~</u>	Analy more	sis (Attach list if space is needed)	····		
oiget Name and Location (State)  1 UMD 185 4 WR iontract/Purchase Order/Quote No.	C	Carrier/Wa	ybill Nu	ımber	J				12	T S	- Thoy I had			Special	Instructions/
	•		М	atrix		Contai Preser	ners & vatives		<u> </u>	250				Condition	ns of Receipt
Sample I.D. No. and Description (Containers for each sample may be combined on one line)	Date	Time 🔻	Aqueous	Sed.	Unpres.	HZSO4 HIVO3	NaOH ZnAc/	LOBA	5/5	10/Q	40,	‡			
_MW74A-12-12-07	12/12/07-2	100	X			X			3					Pump	Test L
		1	X		-	X	<del>      .</del>		1				11	@ MI	RC
			X		X	X)	++	H		1	1		+	(36h)	rs/middle
			X	11	X		11				1			10P M	idly
78 - 121207		200	X			X			2						
RW-01I-121207	12/12/07 2:	245	X	1	-   ',	X	7		3						
			X	++		X X	+ -			1	-		++	Pump"	Test Z
			n		X		-	$\Box$			1			⊢® Mε	Smiddle.
	V		V)		X						1			(36h)	DIMICAIO
Possible Hazard Identification			Same/a	Disposal										Lotto	in hall
	Poison B U	i	•	urn To Cli	ient [	Disposal	By Lab		Archive	For		(A fee may t Months longer than	be asses 1 month)	sed if samples are	retained
24 Hours	ys 🔲 21 Days	Other_				OC Require	ments (Sp	ecity)	Λ		,				
1. Relinguished By  81 WIND da LUZ, Tr.		Date 1213-0	<b>)</b>	Time Q c	am	1. Received	By	1	to	W	4			Date 12-13-07	Time Time Time
2. Relinquished By		Date		Time		2. Received	By S	<u></u>			V			Date	Time
3. Relinquished By	1	Date		Time		3. Received	Ву							1214-67 Date	Time
Comments									<b></b>						
ISTRIBUTION: WHITE - Returned to Client with Report; C	ANARY - Stave with th	a Samola	DINIK	Field Car	;										

## Chain of Custody Record



Severn Trent Laboratories, Inc.

STL-4124 (0901)							
ietra Tech		Project Manage MIKK	MAK	tin	Date 12	14/07	Chain of Custody Number 322562
20251 Century Blud	#200	Telephone Nur 30 l		)/Fax Number -5552	Lab Num	ber	1 1
Germantown Space Z	20874	Site Contact		Lab Contact	Analysis (Atta more space is	ich list if needed)	Page of
Project Name and Location (State) 4@ MI	RC "	Carrier/Waybill	Number J				
Contract/Purchase Order/Quote No.			Matrix	Containers & Preservatives			Special Instructions/ Conditions of Receipt
Sample I.D. No. and Description (Containers for each sample may be combined on one line	Date Tii	Aqueous	Sed.	Unpres. H2SO4 HNO3 HC! NaOH NaOH	14288		
MW74A-121407	12/14/07 08	30 X	1	X	3		Pumo Test 4
			7		1		@ MRC
		$\frac{1}{\lambda}$		X	1 1 1		(Encl/72hrs)
	V \	/   X		X	7		
RW-011121407	12/14/07 10.	140 X			2		
100 012/21707	12/19/07/18.	<del>90</del>   \( \hat{\chi}			3 11		
		×			1		
	1 1	<u> </u>		X	1		
Possible Hazard Identification  Non-Hazard Flammable Skin Irritant	☐ Poison B ☐ Unk		le Disposal eturn To Client	☐ Disposal By Lab	Archive For Months	(A fee may be assesse	ed if samples are retained
Turn Around Time Required  24 Hours  48 Hours  7 Days  14 Days		Other		QC Requirements (Specify	)	longer than 1 month)	
SIVINO da LUZTV		7/14/07	Time. 1315	1. Received by	Part		Date Time 21356
2. Relinquished By	De	ate 1	Time	2. Beneived By	Manage		Date Time
3. Relinquished By	Da	ate	Time	3. Received By	margues	<u> </u>	Date Time
Comments		<u> </u>					
DISTRIBUTION: WHITE - Returned to Client with Report:	CANARY - Stays with the	Sample: PINK	- Field Copy				

Bren **S S** 

SDG

SORT	ONITS	SON STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE S	LAB_ID	QC_TYPE	SAMP DATE EXTR DATE	EXTR DATE	ANAL_DATE SMP_EXTR EXTR_ANL	SMP_EXTR		SMP_ANL
ЬĞ	UG/L	MW74A-121107	A7L120224001	NM	12/11/2007	12/18/2007	12/19/2007			8
5 E	NG/L	MW74A-121207	A7L140260001	N N	12/12/2007	12/18/2007	12/19/2007	φ	-	2
9 1	UG/L	MW74A-121407	A7L150155001	N N	12/14/2007	12/18/2007	12/19/2007	4	<del>-</del>	rv
HG	UG/L	RW-011-121107	A7L120224003	ΣZ	12/11/2007	12/18/2007	12/19/2007	<b>L</b>	-	∞
E E	NG/L	RW-011-121207	A7L140260003	- M	12/12/2007	12/18/2007	12/19/2007	φ	-	7
g E	UG/L	RW-011121407	A7L150155003	Ν N	12/14/2007	12/18/2007	12/19/2007	4	-	r2
×	UG/L	MW74A-121107	A7L120224001	W.	12/11/2007	12/18/2007	12/19/2007	7	-	∞
∑	NG/L	RW-011121407	A7L150155003	N N	12/14/2007	12/18/2007	12/19/2007	4	-	Ŋ
Σ	UG/L	RW-011-121207	A7L140260003	NZ	12/12/2007	12/18/2007	12/19/2007	9	-	7
Σ	NG/L	RW-011-121107	A7L120224003	ΣZ	12/11/2007	12/18/2007	12/19/2007	7	•	<b>∞</b>
∑	NG/L	MW74A-121407	A7L150155001	N N	12/14/2007.	12/18/2007	12/19/2007	4	-	ટ
≅	NG/L	MW74A-121207	A7L140260001	N Z	12/12/2007	12/18/2007	12/19/2007	9	-	7
НGF	NG/L	RW-011-121207	A7L140260003	ΣZ	12/12/2007	12/18/2007	12/19/2007	9	<del></del>	7
HGF	UG/L	RW-011-121107	A7L120224003	WN	12/11/2007	12/18/2007	12/19/2007	7	-	∞
HGF	UG/L	MW74A-121207	A7L140260001	ΣN	12/12/2007	12/18/2007	12/19/2007	ဖ	-	7

Tuesday, January 08; 2008

Page 1 of 4

SORT	UNITS	NSAMPLE	LAB_ID	QC_TYPE	SAMP_DATE	EXTR_DATE	ANAL_DATE	SMP_EXTR	EXTR_ANL	SMP_ANL
HGF	UG/L	MW74A-121107	A7L120224001	NM	12/11/2007	12/18/2007	12/19/2007	7	1	8
HGF	UG/L	RW-01l121407	A7L150155003	NM .	12/14/2007	12/18/2007	12/19/2007	4	1	5
HGF	UG/L	MW74A-121407	A7L150155001	NM	12/14/2007	12/18/2007	12/19/2007	4	1	5
MF	UG/L	MW74A-121107	A7L120224001	NM	12/11/2007	12/18/2007	12/19/2007	. 7	1	8
MF	UG/L	RW-01l121407	A7L150155003	NM	12/14/2007	12/18/2007	12/19/2007	4	1	5 .
MF	UG/L	RW-01I-121207	A7L140260003	NM	12/12/2007	12/18/2007	12/19/2007	6	1	7
MF	UG/L	RW-01I-121107	A7L120224003	NM	12/11/2007	12/18/2007	12/19/2007	7.	1	8
MF	UG/L	MW74A-121407	A7L150155001	NM .	12/14/2007	12/18/2007	12/19/2007	4	1	5
MF	UG/L	MW74A-121207	A7L140260001	NM	12/12/2007	12/18/2007	12/19/2007	6	1 .	7
PH	NO UN	MW74A-121407	A7L150155001	NM	12/14/2007	12/15/2007	12/15/2007	1	. 0	1
PH	NO UN	MW74A-121207	A7L140260001	NM	12/12/2007	12/14/2007	12/14/2007	2	0	2
PH	NO UN	MW74A-121107	A7L120224001	NM	12/11/2007	12/12/2007	12/12/2007	1	0.	1
PH	NO UN	RW-01l121407	A7L150155003	NM	12/14/2007	12/15/2007	12/15/2007	1	0	1
PH	NO UN	RW-01I-121207	A7L140260003	NM	12/12/2007	12/14/2007	12/14/2007	2	0	2
PH	NO UN	RW-01I-121107	A7L120224003	NM	12/11/2007	12/12/2007	12/12/2007	1	0	1
os	%	MW74A-121207	A7L140260001	NM	12/12/2007	12/16/2007	12/27/2007	4	11	15
os	%	RW-01l121407DL	A7L150155003	NM	12/14/2007	12/17/2007	12/21/2007	3	4	7 ,
os	%	MW74A-121107	A7L120224001	NM .	12/11/2007	12/14/2007	12/26/2007	3	12	15

Tuesday, January 08, 2008

SORT	UNITS	NSAMPLE	LAB_ID	QC_TYPE	SAMP_DATE	EXTR_DATE	ANAL_DATE	SMP_EXTR	EXTR_ANL	SMP_ANL
OS	%	RW-01I-121107DL	A7L120224003	NM	12/11/2007	12/14/2007	12/27/2007	3	13	16
OS	%	RW-01I-121207DL	A7L140260003	NM	12/12/2007	12/16/2007	12/29/2007	4	13	17
os	%	MW74A-121407	A7L150155001	NM	12/14/2007	12/17/2007	12/20/2007	3	3	6
os	UG/L	MW74A-121207	A7L140260001	NM	12/12/2007	12/16/2007	12/27/2007	4	11	15
os	UG/L	MW74A-121407	A7L150155001	NM	12/14/2007	12/17/2007	12/20/2007	3	3	6
os	UG/L	RW-01I-121107DL	A7L120224003	NM	12/11/2007	12/14/2007	· 12/27/2007	3	13	16
os	UG/L	RW-01I-121207DL	A7L140260003	NM	12/12/2007	12/16/2007	12/29/2007	4	13	17
os	UG/L	RW-01l121407DL	A7L150155003	NM	12/14/2007	12/17/2007	12/21/2007	3	4	7
os	UG/L	MW74A-121107	A7L120224001	NM	12/11/2007	12/14/2007	12/26/2007	3	12	15
OV	%	RW-01I-121207DL	A7L140260003	NM	12/12/2007	12/21/2007	12/21/2007	9	0	9
OV	%	TB-121407	A7L150155002	NM	12/14/2007	12/24/2007	12/24/2007	10	0	10
OV	%	TB-121207	A7L140260002	NM	12/12/2007	12/21/2007	12/21/2007	9	0	9
OV	%	RW-01l121407DL	A7L150155003	NM	12/14/2007	12/26/2007	12/26/2007	12	0	12
OV	%	RW-01I-121107DL	A7L120224003	NM	12/11/2007	12/20/2007	12/20/2007	9	0	9
OV	%	MW74A-121407DL	A7L150155001	NM	12/14/2007	12/26/2007	12/26/2007	12	0	12
OV	% .	MW74A-121207DL	A7L140260001	NM	12/12/2007	12/21/2007	12/21/2007	9	0	9
OV	%	MW74A-121107DL	A7L120224001	NM	12/11/2007	12/20/2007	12/20/2007	9	0	9
OV	%	TB-121107	A7L120224002	NM	12/11/2007	12/20/2007	12/20/2007	9	0	9
Tuesday,	January	08, 2008						Programme and the second second	P	age 3 of 4

SORT	UNITS	NSAMPLE	LAB ID	QC_TYPE	SAMP_DATE	EXTR_DATE	ANAL_DATE	SMP_EXTR	EXTR_ANL	SMP_ANL
OV	UG/L	MW74A-121107DL	A7L120224001	NM ·	12/11/2007	12/20/2007	12/20/2007	9	O	9
OV	UG/L	MW74A-121207DL	A7L140260001	NM	12/12/2007	12/21/2007	12/21/2007	9	0	9
OV	UG/L	MW74A-121407DL	A7L150155001	NM	12/14/2007	12/26/2007	12/26/2007	12	. 0	12
OV	UG/L	RW-01I-121107DL	A7L120224003	NM	12/11/2007	12/20/2007	12/20/2007	9	0	9
OV	UG/L	RW-01I-121207DL	A7L140260003	NM	12/12/2007	12/21/2007	12/21/2007	9	0	9
OV	UG/L	RW-01I121407DL	A7L150155003	NM	12/14/2007	12/26/2007	12/26/2007	12	0	12
OV	UG/L	TB-121107	A7L120224002	NM	12/11/2007	12/20/2007	12/20/2007	9	0	9
· OV	UG/L	TB-121207	A7L140260002	NM	12/12/2007	12/21/2007	12/21/2007	9	0	9
OV	UG/L	TB-121407	A7L150155002	NM	12/14/2007	12/24/2007	12/24/2007	10	0	10

Tuesday: January 08, 2008

## 5A VOLATILE ORGANIC GC/MS TUNING AND MASS CALIBRATION - BROMOFLUOROBENZENE (BFB)

Lab Name: TESTAMERICA-NORTH CANTON Contract:

Lab Code: TALCAN Case No.: SAS No.: SDG No.: 7L12224

Lab File ID: BFB2497 BFB Injection Date: 12/20/07

Instrument ID: A3UX10 BFB Injection Time: 0836

Matrix: (soil/water) WATER Level: (low/med) LOW Column: (pack/cap) CAP

m/e	ION ABUNDANCE CRITERIA	% RELATIVE ABUNDANCE
50 75 95 96 173 174 175 176	15.0 - 40.0% of mass 95 30.0 - 60.0% of mass 95 Base Peak, 100% relative abundance 5.0 - 9.0% of mass 95 Less than 2.0% of mass 174 50.0 - 100.0% of mass 95 5.0 - 9.0% of mass 174 Greater than 95.0%, but less than 101.0% of mass 174 5.0 - 9.0% of mass 176	16.4 46.9 100.0 7.0 0.4 (0.4)1 98.3 7.1 (7.3)1 99.0 (100.8)1 6.4 (6.4)2
	1-Value is 2 of mass 174 2-Value is 2 of mass	occ 176

THIS TUNE APPLIES TO THE FOLLOWING SAMPLES, MS, MSD, BLANKS, AND STANDARDS:

	EPA	LAB	LAB	DATE	TIME
	SAMPLE NO.	SAMPLE ID	FILE ID	ANALYZED	ANALYZED
		=========	=======================================	=======	=======
01	VSTD040	200NG-IC	UXX9353	12/20/07	0902
02	VSTD020	100NG-IC	UXX9354	12/20/07	0925
.03	VSTD010	50NG-IC	UXX9355	12/20/07	0947
04	VSTD005	25NG-IC	UXX9356	12/20/07	1009
05	VSTD002	10NG-IC	UXX9357	12/20/07	1031
06	VSTD001	5NG-IC	UXX9358	12/20/07	1053
07	VSTD010	50NG-A9CC	UXX9360	12/20/07	1152
08	KEK1J-CHK	KEK1J1AC	UXX9362	12/20/07	1237
09	KEK1J-BLK	KEK1J1AA	UXX9363	12/20/07	1259
10	MW74A-121107	KD05R1CF	UXX9365	12/20/07	1343
11	RW-01I-12110	KD0811CF	UXX9366	12/20/07	1405
12	TB-121107	KD08T1AA	UXX9374	12/20/07	1701
13				,,	
14					
15				<del></del>	
16					
17					
18				<del></del>	
19					
20					
21					
22					

page 1 of 1

FORM V VOA

1/87 Rev.

Report Date : 20-Dec-2007 11:15

#### STL Inc North Canton

#### INITIAL CALIBRATION DATA

Start Cal Date : 24-AUG-2007 18:07 End Cal Date : 20-DEC-2007 10:53 Quant Method ISTD Origin : Disabled Target Version : 4.14 : HP RTE Integrator Method file : \\cansvr11\dd\chem\MSV\a3ux10.i\P71220A-IC.b\8260LLUX10.m Last Edit : 20-Dec-2007 11:09 a3ux10.i Curve Type Calibration File Names: Level 1: Level 2: Level 3: \\cansvr11\dd\chem\MSV\a3ux10.i\P71001A.b\UXX7040.D Level 4: Level 5: \\cansvr11\dd\chem\MSV\a3ux10.i\P71001A.b\UXX7035.D

-		·							
		5.000	10.000	25.000	50.000	100.000	200.000		
l	Compound	Level 1	Level 2	Level 3	Level 4	Level 5	Level 6	RRF	* RSD
]=		-	=======		=======	=======	=======		, 
ļ	8 Dichlorodifluoromethane	0.20274							
1	9 Chloromethane	0.31789	0.31036	0.29869	0.26822	0.29604	0.27400		•
1	10 Vinyl Chloride	0.35132	0.32182	0.33524	0.30676	0.33449	0.31346	0.32718	
l	11 Bromomethane	0.20972	0.19922	0.20463	0.18571	0.20899	0.19765		
1	12 Chloroethane	0.22509	0.20600	0.20920	0.19138	0.21449	0.20202		
ŀ	13 Trichlorofluoromethane	0.22388	0.21152	0.24874	0.23173	0.25671	•		
1	14 Dichlorofluoromethane	0.44593	0.43540	0.40932	0.40424	0.41723		0.42044	
	15 Acrolein	0.02015	0.01881	0.01545	0.01315	0.01677		0.01625	
1	16 Acetone	0.11701	0.08541	0.06640	0.057931			0.07368	
1	17 1,1-Dichloroethene	0.28152	0.26916	0.27893	0.27358			0.28031	
	18 Freon-113	0.22883	0.22810	0.22280	0.22606	0.22664	0.21824	0.22511	
1	19 Iodomethane	0.46888	0.48081	0.48112	0.48161	0.51126	0.48906	0.48545	
1	20 Carbon Disulfide	0.78337	0.78598	0.80483		0.85201	0.83537	0.81069	
1	21 Methylene Chloride	0.46911	0.36325	0.32204	0.31035	0.31558	0.29888	0.34654	
1	22 Acetonitrile	0.03122	0.02963	0.02712	0.02530	0.026981	0.02444	0.02745	9.357
1	23 Acrylonitrile	0.08265	0.08139	0.08384	0.07671	0.08528	0.08311	0.02745	
1	24 Methyl tert-butyl ether	0.71878	0.70989i	0.71297	0.72772	0.776591	0.75663	0.73376	
]	25 trans-1,2-Dichloroethene	0.29645	0.28737]	0.29945	0.28977	0.31322	0.30772	0.29900	3.362
j	26 Hexane	0.06097	0.06217	0.06290	0.06592	0.06127	0.06085	0.06234	3.080
ļ	27 Vinyl acetate	0.22104	0.21486	0.21867	0.22672	0.22985	0.23976	0.22515	,
]	28 1,1-Dichloroethane	0.41753	0.40270	0.41625	0.42246	0.43859	0.42199	0.41992	3.986 2.767
	29 tert-Butyl Alcohol	0.02018	0.02126	0.02019	0.020391	0.02048	0.01856		•
	30 2-Butanone	0.08947	0.08294	0.07954	0.07692	0.02048	0.07848	0.02017	
M	31 1,2-Dichloroethene (total)	0.28875	0.28599	0.28727	0.28666	0.30465	0.29632	0.08139	5.485
	32 cis-1,2-dichloroethene	0.28104	0.28461	0.27509	0.28355	0.296081	0.28492	0.29161	2.545
]	33 2,2-Dichloropropane	0.23702	0.24068	0.25678	0.26370	0.28150	0.27562	0.25922	2.413
l	34 Bromochloromethane	0.13614	0.13700	0.14410	0.14383	0.28130	0.2/362		6.961
1	35 Chloroform	0.41149	0.41479	0.42285	0.41672	0.14318	0.41428	0.14233	3.457
Ĺ_		i		U. T. Z. D. D. J.	0.410/2	0.43132	0.41478	0.41861	1.763
			<del></del>						

Report Date : 20-Dec-2007 11:15

#### STL Inc North Canton

#### INITIAL CALIBRATION DATA

Start Cal Date : 24-AUG-2007 18:07 End Cal Date : 20-DEC-2007 10:53

Quant Method : ISTD Origin : Disabled Target Version : 4.14 Integrator Method file : HP RTE

: \\cansvrl1\dd\chem\MSV\a3uxl0.i\P71220A-IC.b\8260LLUX10.m : 20-Dec-2007 11:09 a3ux10.i

Last Edit

Curve Type : Average

					<u> </u>			
	5.000	10.000	25.000	50.000	100.000	200.000	l	
Compound	Level 1	Level 2	Level 3	Level 4	Level 5	Level 6	RRF	% RSD
	:		=======================================	=======	=======			=======
36 Tetrahydrofuran	0.05191	0.04754	0.05255	0.05279	0.05459	0.05269	0.05201	4.549
37 1,1,1-Trichloroethane	0.31765		0.33369	0.34716	0.36515	0.35342	0.33872	5.912
38 1,1-Dichloropropene	0.30384	0.31393	0.31815]	0.32337	0.33283	0.33055	0.32044	3.383
39 Carbon Tetrachloride	0.24622	0.26655	0.27654	0.28345	0.30900	0.30942	0.28186	8.736
40 1,2-Dichloroethane	0.28069	0.28572	0.29231	0.29786	0.29616	0.29316	0.29098	2.249
41 Benzene	1.04785	0.98714	1.00413	1.03791	1.05296	1.03981	1.02830	2.571
42 Trichloroethene	0.27595	0.27943	0.28064	0.29091	0.29649	0.28931	0.28545	2.785
43 1,2-Dichloropropane	0.20815	0.21685	0.22204	0.23141	0.23241	0.22947	0.22339	4.292
44 1,4-Dioxane	0.00252	0.00257	0.00274	0.00300	0.00278	0.00224	0.00264	9.834
45 Dibromomethane	0.12569	0.13063	0.13196]	0.13668	0.14126	0.13495	0.13353	4.018
46 Bromodichloromethane	0.24861	0.24867	0.25595	0.27930	0.29354	0.28954	0.26927	7.663
47 2-Chloroethyl vinyl ether	0.09651	0.10366	0.10825	0.11768	0.12311	0.12630		10.372
48 cis-1,3-Dichloropropene	0.23870	0.25708	0.29065	0.32678	0.33859	0.35072	0.30042	15.229
49 4-Methyl-2-pentanone	0.15969	0.15772	0.15882	0.16423	0.17969]	0.17482	0.16583	5.581
50 Toluene	1.27404	1.33258	1.37705	1.42923	1.42745	1.42703	1.37790	4.630
51 trans-1,3-Dichloropropene	0.25070	0.27813	0.31023	0.34405	0.36345	0.37434	•	15.347
52 Ethyl Methacrylate	0.25588	0.29872	0.31735	0.34420	0.36009	0.36153	0.32296	12.719
53 1,1,2-Trichloroethane	0.26972	0.26241	0.25748	0.26665	0.25805	0.25325	0.26126	2.364
54 1,3-Dichloropropane	0.43403	0.45089	0.43745	0,46273	0.45435	0.45174	0.44853	2.410
55 Tetrachloroethene	0.31814	0.32530	0.31610	0.31908	0.31911	0.31957	0.31955	0.964
56 2-Hexanone	0.13520	0.13919	0.14150	0.13656	0.15369	0.14908	0.14254	5.147
57 Dibromochloromethane	0.21555	0.23683	0.24151	0.26564	0.28162	0.28853	0.25495	11.116
58 1,2-Dibromoethane	0.24763	0.25430	0.25306	0.26716	0.26511	0.26275	0.25833	3.009
59 Chlorobenzene	0.95736	0.98736	0.95880	0.98539	0.99105	0.99247	0.97874	1.656
60 1,1,1,2-Tetrachloroethane	0.27719	0.29341	0.30369	0.32605	0.34632	0.33943	0.31435	8.679
61 Ethylbenzene	0.46397	0.48330	0.49938	0.53434	0.54421	0.54041	0.51093	6.566
62 m + p-Xylene	0.59486	0.61553	0.64079	0.67521	0.69327	0.69453	0.65237	6.420
M 63 Xylenes (total)	0.58000	0.61473	0.64357	0.67783	0.698861	0.69424	0.65154	7.294
64 Xylene-o	0.55027	0.61313	0.64913	0.68306	0.71005	0.69366	0.64988	9.209
65 Styrene	0.89015	0.97189	1.03214	1.11580	1.16169	1.16548	1.05619	10.533
66 Bromoform	0.13166	0.13769	0.14437	0.16685	0.18273	0.19247	0.159301	15.781
67 Isopropylbenzene	1.33166	1.43893	1.54125	1.62084	1.70328	1.69373	1.55495	9.500
68 1,1,2,2-Tetrachloroethane	0.55426	0.55705	0.55556	0.57082	0.56512	0.55375	0.55942	1.243
69 1,4-Dichloro-2-butene	0.05074	0.04153	0.05335	0.06023	0.07273	0.08467	0.06054	26.011
70 1,2,3-Trichloropropane	0.17349	0.16861	0.17336	0.17789	0.07273	0.17049	0.08054	1.959
71 Bromobenzene	0.68909	0.69356	0.71201	0.74277	0.75627	0.74454	0.72304	
<u></u> i	i		1		1.75027	0./4434	0.72304	3.960
					l_			I

Report Date : 20-Dec-2007 11:15

#### STL Inc North Canton

#### INITIAL CALIBRATION DATA

: 24-AUG-2007 18:07 : 20-DEC-2007 10:53 : ISTD Start Cal Date End Cal Date

Quant Method Õrigin : Disabled Target Version : 4.14 Integrator Method file : HP RTE

: \\cansvrl1\dd\chem\MSV\a3ux10.i\P71220A-IC.b\8260LLUX10.m : 20-Dec-2007 11:09 a3ux10.i

Last Edit

Curve Type : Average

	5.000	10.000	25.000	50.000	100.000		' —	
Compound	Level 1	Level 2	Level 3	Level 4	Level 5	Level 6	RRF	% RSD
		'		•			'	•
72 n-Propylbenzene	0.710,06		0.76865	0.82751	0.84666			
73 2-Chlorotoluene	0.60555	0.67269	0.66054	0.71238	0.73349	0.71676	0.68357	6.91
74 1,3,5-Trimethylbenzene	1.95923	2.13940	2.23038	2.43251	2.49196	2.50338		•
75 4-Chlorotoluene	0.67701	0.67164	0.69680	0.73676	0.74542	0.72580	0.70890	4.43
76 tert-Butylbenzene	1.78545	1.97704	2.09663	2.27628	2.22611	2.32757	2.11485	9.72
77 1,2,4-Trimethylbenzene	2.06350	2.27520	2.34175	2.48949	2.54164	2.55464	2.37770	8.00
78 sec-Butylbenzene	2.67524	2.87110	2.94891	3.16748	3.24895	3.24570	3.02623	7.69
79 4-Isopropyltoluene	2.22984	2.45577	2.53662	2.76120	2.84909	2.87665	2.61820	9.72
80 1,3-Dichlorobenzene	1.47354	1.46053	1.44425	1.51715	1.52846	1.51002	1.48899	2.29
81 1,4-Dichlorobenzene	1.61160	1.53190	1.52507	1.57130	1.57217	1.56303	1.56251	2.00
82 n-Butylbenzene	1.90277	1.95304	2.12406	2.28151	2.39086	2.40706	2.17655	10.01
83 1,2-Dichlorobenzene	1.41917	1.39111	1.39733	1.43843	1.43202	1.42234	1.41673	1.33
84 1,2-Dibromo-3-chloropropane	0.08336	0.08311	0.08820	0.09585	0.10070	0.10057	0.09196	8.86
85 1,2,4-Trichlorobenzene	0.90369	0.92312	0.93091	0.99954	1.00240	0.95743	.0.95285	4.31
86 Hexachlorobutadiene	0.52761	0.49669	0.47721	0.48553	0.48065	0.46805	0.48929	4.29
87 Naphthalene	1.55249	1.69892	1.77292	2.00943	2.02757	1.81830	1.81327	10.08
88 1,2,3-Trichlorobenzene	0.93773	0.91508	0.89355	0.92744	0.90118	0.81728	0.89871	4.79
89 Ethyl Ether	0.23494	0.22097	0.21205]	0.21340	0.21624	0.21521	0.21880	3.87
90 Ethanol	+++++	+++++	+++++	+++++	+++++	++++	+++++	+++++
91 3-Chloropropene	0.12167	0.12213	0.12247	0.12372	0.13375	0.13173	0.12591	4.26
92 Isopropyl Ether	0.21653	0.21980	0.21348	0.22235	0.23672	0.23358	0.22375	4.19
93 2-Chloro-1,3-butadiene	0.40584	0.41296	0.39650	0.40692	0.44389	0.43034	0.41607	4.24
94 Propionitrile	0.03122	0.03512	0.03464	0.03511	0.03710	0.03716	0.03506	6.18
95 Ethyl Acetate	0.21804	0.19987	0.18040	0.18597	0.19546	0.19159	0.19522	6.72
96 Methacrylonitrile	0.14295	0.13064	0.14535	0.13921	0.14180	0.14179	0.14029	3.65
97 Isobutanol	0.00896	0.00864	0.00986	0.01002	0.01003	0.00991	0.00957	6.34
98 Cyclohexane	0.43568	0.44074	0.45086	0.46725	0.46841	0.45921	0.45369	3.00
99 n-Butanol	0.00924	0.00830	0.00827	0.00903	0.00911	0.00913	0.00885	4.98
100 Methyl Methacrylate	0.17045	0.16980	0.17378	0.18501	0.18867	0.19488}	0.18043	
101 2-Nitropropane	0.04253	0.04255	0.04038	0.04230	0.04732	0.05127	0.04439	
102 Chloropicrin	+++++	+++++	+++++	+++++	+++++	+++++	+++++	++++
103 Cyclohexanone	0.03313	0.03017	0.03084	0.03187	0.03471	0.03253	,	5.08
104 Pentachloroethane	+++++	+++++	+++++	+++++	+++++	+++++	+++++	+++++
105 Benzyl Chloride	+++++	+++++	+++++	+++++	+++++ 1	+++++	+++++	+++++
134 Thiophene	+++++	++++	+++++	+++++	+++++	+++++	+++++ I	+++++
135 Crotononitrile(1st Isomer)	+++++	+++++	+++++	+++++	+++++	+++++	+++++	+++++



Report Date : 20-Dec-2007 11:15

#### STL Inc North Canton

#### INITIAL CALIBRATION DATA

Start Cal Date : 24-AUG-2007 18:07 End Cal Date : 20-DEC-2007 10:53

Quant Method : ISTD Origin : Disabled Target Version : 4.14 Integrator : HP RTE

Method file : \\cansvr11\dd\chem\MSV\a3ux10.i\P71220A-IC.b\8260LLUX10.m : 20-Dec-2007 11:09 a3ux10.i

Last Edit

Curve Type : Average

- 1			5.000	10.000	25.000	50.000	100.000	200.000	J	I	- I
İ	C	ompound	Level 1	Level 2	Level 3	Level 4	Level 5	Level 6	RRF	% RSD	ĺ
-   :	====			========	======						=100
ŀ	136	Crotononitrile(2nd Isomer)	+++++	+++++	+++++	+++++	++++	+++++	+++++	+++++	<-
1	M 13:	Total Crotononitrile	+++++	+++++	++++	+++++	++++	+++++	+++++	1 +++++	<-
1	138	Paraldehyde	+++++	+++++	+++++	+++++	+++++	+++++	+++++	+++++	<-
	139	3,3,5-Trimethylcyclohexanone	+++++	+++++	+++++	++++	+++++	+++++	+++++		<-
-	140	1-Chlorohexane	0.37395	0.35068	0.34673	0.36307	0.39816	0.39419	0.37113	5.841	•
	141	1,3,5-Trichlorobenzene	1.03424	1.05203	1.04990	1.10880	1.13439	1.11167	1.08184	•	,
1	143	Methyl Acetate	0.18124	0.17003	0.16196	0.15835	0.16589	0.16367	0.16686		•
- 1	144	Methylcyclohexane	0.48390	0.48123	0.50538	0.51644	0.51760	•			•
1	145	Dimethoxymethane	0.22576	0.20895	0.21122	0.20176	0.20151	0.20889			•
	146	2-Methylnaphthalene	0.63922	0.67370	0.72718	0.83346	0.81355	0.65386	0.72349		:
	147	Tetrahydrothiophene	+++++	++++	++++	+++++	+++++	+++++	+++++		<-
H	148	1,4-Dichlorobutane	+++++	+++++	++++	+++++	+++++	++++	+++++		l<-
-	149	Vinyl Acetate-86	0.02295	0.02500	0.02765	0.03068	0.03130	0.03183	0.02824		:
l	150	1,3-Butadiene	+++++	++++	+++++	+++++	+++++	+++++	++++	++++	l<-
-	151	Ethyl Acrylate	+++++	+++++	+++++	++++	+++++	+++++	++++	++++	<-
[	152	n-Heptane	0.27692	0.25385	0.26154	0.26213	0.29744	0.283961	0.27264		•
1	153	t-Butyl ethyl ether	0.72418	0.70330	0.72316	0.72510	0.79110	0.82383	0.74844	6.356	•
ŀ	154	t-Amyl methyl ether	0.56638	0.57491	0.57732	0.58836	0.644321	0.66701			•
1	155	1,2,3-Trimethylbenzene	2.42489	2.55415	2.64856	2.70152	2.95105	3.01801	2.71636		
-								========			:
\$	4	Dibromofluoromethane	0.22646	0.22751	0.22820	0.23814	0.24166	0.23275	0.23245	2.691	
\$	5	1,2-Dichloroethane-d4	0.24636	0.23806	0.23396	0.24433	0.25697	0.24656	0.24437		•
\$	6	Toluene-d8	1.09277	1.15384	1.16630	1.23407	1.21573	1.20716	1.17831	4.394	,
\$	7	Bromofluorobenzene	0.42837	0.44375	0.45916	0.46864	0.477501	0.45765	0.45584	3.860	:
1_			i	. i	i	i			1.2000.	3.000	1

Data File: \cansvr11\dd\chem\MSV\a3ux10.i\P71220A-IC.b\UXX9360.D

Report Date: 20-Dec-2007 12:08

#### TestAmerica North Canton

#### CONTINUING CALIBRATION COMPOUNDS

Instrument ID: a3ux10.i Injection Date: 20-DEC-2007 11:52

Lab File ID: UXX9360.D Init. Cal. Date(s): 24-AUG-2007 20-DEC-2007

Analysis Type: WATER Init. Cal. Times: 18:07 10:53
Lab Sample ID: 50NG-A9CC Quant Type: ISTD
Method: \cansvr11\dd\chem\MSV\a3ux10.i\P71220A-IC.b\8260LLUX10.m

t	1	i	1	CCAL   MIN	1	MAX 1	I
COMPOUND	RRF	/ AMOUNT!	RF50	RRF50   RRF   %	D / %DRIFT %[	/ %DRIFT(	URVE TYPE!
	==== ====		======= ==	======= ==== =		-	
14 Dichlorofluoromethane	1 :	0.420441	0.40923	0.40923 0.010	2.667091	50.00000	Averaged
89 Ethyl Ether	1	0.21880;	0.18720	0.18720 0.010	14.444531	50.000001	Averaged
91 3-Chloropropene	1	0.12591	0.13190	0.13190 0.010	-4.76062	50.000001	Averaged
92 Isopropyl Ether	1	0.22375	0.211621	0.21162 0.010	5.41908	50.000001	Averaged
93 2-Chloro-1,3-butadiene	1	0.41607	0.274251	0.27425 0.010	34.08628	50.00000	Averaged
94 Propionitrile	1	0.03506	0.02615	0.02615[0.010]	25.41792	50.000001	Averaged!
195 Ethyl Acetate	1	0.19522	0.14818	0.14818 0.010	24.09595	50.000001	Averaged
96 Methacrylonitrile	1	0.14029	0.10137	0.10137 0.010	27.743941	50.000001	Averaged
97 Isobutanol	1	0.00957	0.00617	0.00617 0.010	35.58116	50.000001	Averaged <
99 n-Butanol	1	0.00885	0.00528	0.00528 0.010	40.25407	50.000001	Averaged <
100 Methyl Methacrylate	1	0.18043	0.13148	0.13148 0.010	27.13005	50.000001	Averaged
101 2-Nitropropane	1	0.04439	0.02024	0.02024 0.010	54.41544	50.000001	Averaged <
1103 Cyclohexanone	1	0.03221	0.01604	0.01604 0.010	50.20580	50.000001	Averaged <
146 2-Methylnaphthalene	1	0.723491	0.70963	0.70963 0.010	1.91611	50.000001	Averaged
140 1-Chlorohexane	1	0.37113	0.35311	0.35311 0.010	4.854571	50.000001	Averaged
152 n-Heptane	.1	0.27264	0.30913	0.30913 0.010	-13.38368	50.000001	Averaged!
153 t-Butyl ethyl ether	ı	0.74844	0.73738	0.73738 0.010	1.47801	50.00000	Averaged
154 t-Amyl methyl ether	1	0.60305	0.61554	0.61554 0.010	-2.07145	50.00000	Averaged
155 1,2,3-Trimethylbenzene	1	2.716361	2.55332	2.55332[0.010]	6.00210	50.00000	Averaged
T	1	ı	1	1 1	I	1	1

# 5A VOLATILE ORGANIC GC/MS TUNING AND MASS CALIBRATION - BROMOFLUOROBENZENE (BFB)

Lab Name: TESTAMERICA-NORTH CANTON Contract:

Lab Code: TALCAN Case No.: SAS No.: SDG No.: 7L12224

Lab File ID: BFB2499 BFB Injection Date: 12/21/07

Instrument ID: A3UX10 BFB Injection Time: 1013

Matrix: (soil/water) WATER Level: (low/med) LOW Column: (pack/cap) CAP

m/e	ION ABUNDANCE CRITERIA	% RELATIVE ABUNDANCE
50 75 95 96 173 174 175 176	15.0 - 40.0% of mass 95 30.0 - 60.0% of mass 95 Base Peak, 100% relative abundance 5.0 - 9.0% of mass 95 Less than 2.0% of mass 174 50.0 - 100.0% of mass 95 5.0 - 9.0% of mass 174 Greater than 95.0%, but less than 101.0% of mass 174 5.0 - 9.0% of mass 176	15.1 46.2 100.0 7.1 0.4 ( 0.5)1 92.0 6.8 ( 7.4)1 87.8 ( 95.5)1 5.9 ( 6.7)2
'	1-Value is % of mass 174 2-Value is % of mass	ass 176

THIS TUNE APPLIES TO THE FOLLOWING SAMPLES, MS, MSD, BLANKS, AND STANDARDS:

	1 777		77 10 700		
	EPA	LAB	LAB	DATE	TIME
	SAMPLE NO.	SAMPLE ID	FILE ID	ANALYZED	ANALYZED
	=======================================	================	==========	=======	=======
01	VSTD010	50NG-CC	UXX9410	12/21/07	1052
02	VSTD010	50NG-A9CC	UXX9411	12/21/07	1114
03	KEQ1H-CHK	KEQ1H1AC	UXX9412	12/21/07	1137
04	KEQ1H-CKDUP	KEQ1H1AD	UXX9413	12/21/07	1158
05		KEQ1H1AA	UXX9414	12/21/07	1220
	MW74A-121207		UXX9415	12/21/07	1310
07	RW-01I-12120	KD7EX1CF	UXX9416	12/21/07	1332
08	TB-121207	KD7DD1AA	UXX9417	12/21/07	1354
09				,,	
10	<del></del>				
11					
12					
13					
14					
15				<del></del>	
16					
17	-				
18					
19					
20	<del></del>				
21					
22					

page 1 of 1

FORM V VOA

1/87 Rev.

Data File: \\cansvr11\dd\chem\MSV\a3ux10.i\P71221A.b\UXX9410.D

Report Date: 21-Dec-2007 11:41

#### STL Inc North Canton

#### CONTINUING CALIBRATION COMPOUNDS

Lab File ID: UXX9410.D Init. Cal. Date(s): 24-AUG-2007 20-DEC-2007

Analysis Type: WATER Init. Cal. Times: 18:07 10:53

Lab Sample ID: 50NG-CC Quant Type: ISTD

Method: \\cansvr11\dd\chem\MSV\a3ux10.i\P71221A.b\8260LLUX10.m

	11	1	CCAL   MIN	1 1	MAX	1
COMPOUND	[RRF / AMOUNT]	RF50		%D / %DRIFT		
\$ 4 Dibromofluoromethane	I 0.232451	0.19838	0.19838 0.01			
\$ 5 1,2-Dichloroethane-d4	0.244371	0.207661	0.20766 0.01	0  15.02392	50.00000	
\$ 6 Toluene-d8	1.17831	1.10710	1.10710]0.01	0  6.04346	50.00000	_
\$ 7 Bromofluorobenzene	0.455841	0.41236	0.4123610.01			
8 Dichlorodifluoromethane	0.203231	0.18194	0.18194 0.01	0  10.47374	50.00000	-
9 Chloromethane	0.29420	0.25235	0.25235 0.10			-
10 Vinyl Chloride	0.327181	0.28969	0.28969[0.01			
11 Bromomethane	0.200991	0.16344	0.16344 0.01			_
12 Chloroethane	0.208031	0.17569	0.17569 0.01			-
13 Trichlorofluoromethane	0.236881	0.19224	0.19224 0.01			-
15 Acrolein	1 5001	170	0.00529 0.01			Quadratic
16 Acetone	100	91.899681	0.05620 0.01			Wt Linear
17 1,1-Dichloroethene	0.28031	0.254691	0.25469 0.01			
18 Freon-113	0.22511	0.20073	0.20073 0.01			
19 Iodomethane	0.485451	0.432341	0.4323410.01			-
20 Carbon Disulfide	0.81069	0.71415	0.71415 0.01			-
21 Methylene Chloride	1 50.000001	42.88818	0.27125 0.01			Wt Linear
22 Acetonitrile	0.027451	0.02271	0.02271 0.01			
23 Acrylonitrile	0.082171	0.07132	0.07132 0.01			-
24 Methyl tert-butyl ether	0.733761	0.66511	0.66511 0.01			-
25 trans-1,2-Dichloroethene	0.299001	0.274601	0.27460 0.01			
26 Hexane	0.06234	0.060441	0.06044 0.01			-
27 Vinyl acetate	0.22515	0.106991	0.10699 0.01			=
28 1,1-Dichloroethane	0.41992	0.393861	0.3938610.10			
29 tert-Butyl Alcohol	0.020171	0.01674)	0.01674 0.01	•		
30 2-Butanone	0.081391	0.072921	0.07292 0.01			-
M 31 1,2-Dichloroethene (total)	0.29161	0.26712	0.26712 0.01	•		=
32 cis-1,2-dichloroethene	0.284221	0.259641	0.25964 0.01			-
33 2,2-Dichloropropane	0.259221	0.232661	0.23266 0.01			=
34 Bromochloromethane	0.142331	0.232001	0.13372 0.01			
35 Chloroform	0.41861	0.13372		•		
36 Tetrahydrofuran	0.05201		0.37940 0.01			
37 1,1,1-Trichloroethane	0.338721	0.05037	0.05037[0.01			
38 1,1-Dichloropropene	0.33872	0.29905	0.29905 0.01			-
39 Carbon Tetrachloride	0.32044	0.30363	0.3036310.01			<del>-</del>
40 1,2-Dichloroethane		0.243991	0.24399 0.01			•
·		0.273291	0.27329 0.01			-
41 Benzene	1.02830	0.96164	0.96164 0.01			
42 Trichloroethene	0.28545	0.26995	0.26995 0.01			-
43 1,2-Dichloropropane	0.223391	0.212951	0.21295 0.01			-
44 1,4-Dioxane	0.002641	0.00182	0.00182 0.01			-
45 Dibromomethane	0.133531	0.12532	0.12532 0.01			-
46 Bromodichloromethane	0.269271	0.24323	0.24323 0.01			
47 2-Chloroethyl vinyl ether	0.11259	0.10196	0.10196 0.01	01 9.434521	50.00000	Averaged

Data File: \\cansvr11\dd\chem\MSV\a3ux10.i\P71221A.b\UXX9410.D

Report Date: 21-Dec-2007 11:41

#### STL Inc North Canton

# CONTINUING CALIBRATION COMPOUNDS

Instrument ID: a3ux10.i Injection Date: 21-DEC-2007 10:52

Lab File ID: UXX9410.D Init. Cal. Date(s): 24-AUG-2007 20-DEC-2007

Analysis Type: WATER Lab Sample ID: 50NG-CC Init. Cal. Times: 18:07 10:53

Quant Type: ISTD

Method: \\cansvr11\dd\chem\MSV\a3ux10.i\P71221A.b\8260LLUX10.m

COMPOUND	<u>                                          _     _     _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _   _  </u>	1	CCAL   MIN			I
	RRF / AMOUNT	RF50	RRF50   RRF	%D / %DRIFT	%D / %DRIFT	CURVE TYPE
8 cis-1,3-Dichloropropene	50.000001	43.85013	0.29061 0.010		0.000e+000	
9 4-Methyl-2-pentanone	0.16583	0.14213	0.14213 0.010	14.29288		
0 Toluene	1.37790	1.42159	1.42159 0.010	-3.17090		
1 trans-1,3-Dichloropropene	1 50.000001	44.09613	0.31192 0.010		0.000e+000	
2 Ethyl Methacrylate	0.32296	0.30928	0.30928[0.010]	4.23443		
3 1,1,2-Trichloroethane	0.261261	0.25752]	0.25752 0.010	1.43351		
4 1,3-Dichloropropane	0.44853	0.44641	0.44641 0.010	0.47281		
5 Tetrachloroethene	0.31955	0.32224	0.32224 0.010	-0.84341		•
6 2-Hexanone	0.14254;	0.13186	0.13186 0.010	7.492961		
7 Dibromochloromethane	0.25495	0.24255	0.24255 0.010	4.86382		
3 1,2-Dibromoethane	0.258331	0.255231	0.25523 0.010	1.20046		
9 Chlorobenzene	0.978741	0.95950	0.95950 0.300	1.96582		
1,1,1,2-Tetrachloroethane	0.31435	0.29134	0.29134 0.010	7.320021		• • • • • • • • • • • • • • • • • • • •
l Ethylbenzene	0.51093	0.51451	0.51451 0.010	-0.69993	20.000001	
2 m + p-Xylene	0.65237	0.66061	0.66061 0.010	-1.26361	50.000001	
63 Xylenes (total)	0.65154	0.65911	0.65911 0.010	-1.16213	50.000001	
1 Xylene-o	0.64988	0.65611	0.65611 0.010	-0.958391	50.000001	-
Styrene	1.056191	1.062241	1.06224 0.010	-0.572721	50.000001	-
5 Bromoform	1 50.000001	39.93909	0.14163[0.100]		0.000e+0001	
Isopropylbenzene	1.55495	1.54985	1.54985 0.010	0.32771	50.000001	
3 1,1,2,2-Tetrachloroethane	0.55942	0.544841	0.54484 0.300	2.60738	50.000001	
1,4-Dichloro-2-butene	1 50.000001	52.96157	0.06884 0.010		0.000e+000	
1,2,3-Trichloropropane	0.17328	0.17115	0.17115 0.010	1.23003	50.000001	Averaged
Bromobenzene	0.72304	0.72091	0.72091 0.010	0.29417	50.000001	Averaged
n-Propylbenzene	0.782691	0.79877	0.79877 0.010	-2.05454	50.000001	Averaged
2-Chlorotoluene	0.683571	0.69275	0.69275 0.010	-1.34358	50.000001	Averaged!
1,3,5-Trimethylbenzene	[ 2.29281]	2.33628	2.33628 0.010	-1.89580	50.000001	Averaged!
4-Chlorotoluene	1 0.708901	0.70542	0.70542 0.010	0.491961	50.000001	Averaged
tert-Butylbenzene	[ 2.11485]	2.16106	2.16106 0.010	-2.18498	50.000001	Averaged
1,2,4-Trimethylbenzene	1 2.377701	2.39678	2.39678 0.010	-0.802221	50.000001	Averaged
sec-Butylbenzene	1 3.026231	3.02577	3.02577 0.010	0.01508	50.00000	Averaged
4-Isopropyltoluene	1 2.61820	2.653341	2.65334 0.010	-1.34239	50.000001	Averaged
1,3-Dichlorobenzene	1 1.488991	1.45221	1.45221 0.010	2.470381	50.000001	Averaged
1,4-Dichlorobenzene	1.56251	1.50702	1.50702 0.010	3.55136	50.000001	-
n-Butylbenzene	1 2.17655	2.202001	2:20200[0.010]	-1.16908	50.000001	Averaged
1,2-Dichlorobenzene	1.41673	1.38186	1.38186 0.010	2.46152	50.000001	Averaged
1,2-Dibromo-3-chloropropane	0.09196	0.07690	0.07690 0.010	16.37943		Averaged
1,2,4-Trichlorobenzene	0.952851	0.84647	0.84647 0.010	11.16390	50.000001	Averaged
Hexachlorobutadiene	0.489291	0.43495	0.43495 0.010			Averaged
Naphthalene	1.81327	1.537591	1.53759 0.010	11.10684	50.000001	Averaged
1,2,3-Trichlorobenzene	0.89871	0.73813	0.73813 0.010	15.20340	50.000001	Averaged
Cyclohexane	0.453691	0.43274	0.43274 0.010	17.86769  4.61878	50.000001	Averaged  Averaged
Cyclonexame						

Data File: \\cansvr11\dd\chem\MSV\a3ux10.i\P71221A.b\UXX9410.D

Report Date: 21-Dec-2007 11:41

## STL Inc North Canton

# CONTINUING CALIBRATION COMPOUNDS

Instrument ID: a3ux10.i

Injection Date: 21-DEC-2007 10:52

Lab File ID: UXX9410.D

Init. Cal. Date(s): 24-AUG-2007 20-DEC-2007 Init. Cal. Times: 18:07 10:53 Quant Type: ISTD

Analysis Type: WATER
Lab Sample ID: 50NG-CC

Method: \cansvr11\dd\chem\MSV\a3ux10.i\P71221A.b\8260LLUX10.m

	1		i	CCAL	MIN	ı	MAX	1
COMPOUND	RRF		RF50	RRF50	RRF  %[	) / %DRIFT %D	/ %DRIFT C	URVE TYPE!
=====================================	===== ===	=======================================			== ==== ==		======= =	=======
144 Methylcyclohexane	1	0.50401	0.46945		45 0.010	6.858441	50.000001	Averagedi
141 1,3,5-Trichlorobenzene	. 1	1.08184	1.01513	1.015	13 0.010	6.16593	50.000001	Averagedi
149 Vinyl Acetate-86	1	0.028241	0.01489	0.014	89 0.010	47.26529	50.000001	Averagedi
1	1							i

Data File: \\cansvr11\dd\chem\MSV\a3ux10.i\P71221A.b\UXX9411.D

Report Date: 21-Dec-2007 11:41

#### STL Inc North Canton

#### CONTINUING CALIBRATION COMPOUNDS

Instrument ID: a3ux10.i

Injection Date: 21-DEC-2007 11:14

Lab File ID: UXX9411.D

Init. Cal. Date(s): 24-AUG-2007 20-DEC-2007 Init. Cal. Times: 18:07 10:53 Quant Type: ISTD

Analysis Type: WATER

Lab Sample ID: 50NG-A9CC

Method: \\cansvr11\dd\chem\MSV\a3ux10.i\P71221A.b\8260LLUX10.m

	1	1	1	CCAL   MIN	ı	MAX j	1
COMPOUND	RRF	/ AMOUNT	RF50	RRF50   RRF  %1	O / %DRIFT(%D	/ %DRIFT	CURVE TYPE!
	===== ====	====== =:	=======================================		======= ==	=======	=======
14 Dichlorofluoromethane	1	0.42044	0.41572	0.41572 0.010	1.12318	50.000001	Averaged
89 Ethyl Ether	l	0.218801	0.19052	0.19052 0.010	12.92587	50.000001	Averaged
91 3-Chloropropene	1	0.12591	0.13691	0.13691 0.010	-8.73858	50.000001	Averaged
92 Isopropyl Ether	1	0.22375	0.22179	0.22179 0.010	0.87228	50.000001	Averaged
93 2-Chloro-1,3-butadiene	1	0.41607	0.27181	0.27181 0.010	34.67309	50.000001	Averaged!
94 Propionitrile	1	0.035061	0.02478	0.02478 0.010	29.31342	50.000001	Averagedi
95 Ethyl Acetate	I	0.19522	0.14356	0.14356 0.010	26.46141!	50.000001	Averaged
96 Methacrylonitrile	1	0.14029	0.10140	0.10140 0.010	27.72018	50.000001	Averaged
97 Isobutanol	1	0.00957	0.00612	0.00612 0.010	36.02912	50.000001	Averaged
99 n-Butanol	ı	0.00885	0.00483	0.00483 0.010	45.40643	50.000001	Averaged
100 Methyl Methacrylate	!	0.18043	0.12800	0.12800 0.010	29.05965	50.000001	Averaged
101 2-Nitropropane	1	0.044391	0.02091	0.02091[0.010]	52.89918	50.000001	Averaged
103 Cyclohexanone	1	0.03221	0.01512	0.01512 0.010	53.05147	50.000001	Averaged
146 2-Methylnaphthalene	1	0.723491	0.794371	0.79437 0.010	-9.79620	50.000001	Averaged!
153 t-Butyl ethyl ether	I	0.74844	0.74225	0.74225 0.010	0.82727	50.000001	Averaged
154 t-Amyl methyl ether	1	0.60305	0.60169	0.60169 0.010	0.22608	50.000001	Averaged
155 1,2,3-Trimethylbenzene	ı	2.71636	2.59054	2.59054[0.010]	4.63203	50.000001	Averaged
	ı	1	1	1 1	1	1	

#### 5A VOLATILE ORGANIC GC/MS TUNING AND MASS CALIBRATION - BROMOFLUOROBENZENE (BFB)

Lab Name: TESTAMERICA-NORTH CANTON Contract:

Lab Code: TALCAN Case No.: SAS No.: SDG No.: 7L12224

Lab File ID: BFB2503 BFB Injection Date: 12/24/07

Instrument ID: A3UX10 BFB Injection Time: 1000

Matrix: (soil/water) WATER Level: (low/med) LOW Column: (pack/cap) CAP

m/e	ION ABUNDANCE CRITERIA	% RELATIVE ABUNDANCE
50 75 95 96 173 174 175 176	15.0 - 40.0% of mass 95 30.0 - 60.0% of mass 95 Base Peak, 100% relative abundance 5.0 - 9.0% of mass 95 Less than 2.0% of mass 174 50.0 - 100.0% of mass 95 5.0 - 9.0% of mass 174 Greater than 95.0%, but less than 101.0% of mass 174 5.0 - 9.0% of mass 176	17.2 44.7 100.0 7.5 0.4 ( 0.6)1 69.0 6.0 ( 8.6)1 69.0 (100.0)1 3.8 ( 5.6)2
	1-Value is % of mass 174 2-Value is % of m	occ 176

THIS TUNE APPLIES TO THE FOLLOWING SAMPLES, MS, MSD, BLANKS, AND STANDARDS:

	EPA	LAB	LAB	DATE	TIME
	SAMPLE NO.	SAMPLE ID	FILE ID	ANALYZED	ANALYZED
0.7	77000010	FONG GG	TTUTOEOE	70/04/05	7.040
01	VSTD010	50NG-CC	UXX9525	12/24/07	1042
02	VSTD010	50NG-A9CC	UXX9526	12/24/07	1218
03	KERPO-CHK	KERP01AC	UXX9527	12/24/07	1240
04	KERPO-CKDUP	KERP01AD	UXX9528	12/24/07	1301
05	KERPO-BLK	KERP01AA	UXX9529	12/24/07	1324
	B	1			1
06	TB-121407	KD88N1AA	UXX9535	12/24/07	1538
07					
80					
09			· · · · · · · · · · · · · · · · · · ·		
10					
11					
12					
13					
14					
15					
16				<del></del>	
17					
18					
19					
20					
21			[ <del></del> ]		
22					
44					

page 1 of 1

FORM V VOA

1/87 Rev.

Data File: \\cansvr11\dd\chem\MSV\a3ux10.i\P71224A.b\UXX9525.D

Report Date: 24-Dec-2007 12:39

## STL Inc North Canton

#### CONTINUING CALIBRATION COMPOUNDS

Instrument ID: a3ux10.i Injection Date: 24-DEC-2007 10:42

Lab File ID: UXX9525.D Init. Cal. Date(s): 24-AUG-2007 20-DEC-2007

Analysis Type: WATER Init. Cal. Times: 18:07 10:53

Lab Sample ID: 50NG-CC Quant Type: ISTD

Method: \\cansvr11\dd\chem\MSV\a3ux10.i\P71224A.b\8260LLUX10.m

COMPOUND	1	1	CCAL   MI		•	1
COMPOUND	RRF / AMOUNT	RF50		F  %D / %DRIF		
\$ 4 Dibromofluoromethane	0.23245	0.20527	0.2052710.0			
\$ 5 1,2-Dichloroethane-d4	0.244371	0.21160	0.21160 0.0			
\$ 6 Toluene-d8	1.17831	1.13196	1.13196 0.0			
\$ 7 Bromofluorobenzene	1 0.45584]	0.408891	0.40889 0.0			
8 Dichlorodifluoromethane	0.203231	0.17942	0.17942 0.0			,
9 Chloromethane	0.294201	0.26791	0.26791 0.1			
10 Vinyl Chloride	0.32718	0.28358	0.28358 0.0			
11 Bromomethane	0.200991	0.16442	0.16442 0.0			
12 Chloroethane	0.20803	0.17821	0.17821 0.0			
13 Trichlorofluoromethane	0.236881	0.21124	0.21124 0.0			-
15 Acrolein	5001	247]	0.0083210.0		5  30.00000 5  0.000e+000	
16 Acetone	1 1001	83.64145	0.05171 0.0		51 0.000e+000	
17 1,1-Dichloroethene	0.28031	0.23463	0.23463 0.0			
18 Freon-113	0.225111	0.18491)	0.18491 0.0			,
19 Iodomethane	0.485451	0.409011	0.40901 0.0			
20 Carbon Disulfide	0.81069	0.67941	0.67941 0.0			-
21 Methylene Chloride	1 50.000001	41.29336	0.26174 0.0			
22 Acetonitrile	0.02745	0.024931	0.0249310.0		3  0.000e+000	
23 Acrylonitrile	0.08217	0.024931				-
24 Methyl tert-butyl ether	0.733761	0.60941]	0.07693 0.0			
25 trans-1,2-Dichloroethene	0.29900		0.6094110.03			
26 Hexane		0.26416	0.26416 0.0			
27 Vinyl acetate	,	0.05862	0.05862 0.03			
28 1,1-Dichloroethane		0.23759	0.23759[0.03			•
29 tert-Butyl Alcohol	,,	0.377151	0.37715 0.10			-
30 2-Butanone	0.02017	0.015311	0.01531 0.0			-
M 31 1,2-Dichloroethene (total)	0.08139	0.078241	0.0782410.01			
32 cis-1,2-dichloroethene	0.29161	0.26134	0.26134 0.01			
33 2,2-Dichloropropane	1 0.284221	0.25852	0.25852 0.01			,
• •	0.259221	0.21760	0.21760 0.01			
34 Bromochloromethane 35 Chloroform '	0.142331	0.13186	0.13186 0.01			Averaged
	0.41861	0.36918	0.36918 0.01		20.000001	Averaged
36 Tetrahydrofuran	0.05201	0.047621	0.04762 0.01		50.000001	Averaged
37 1,1,1-Trichloroethane	0.33872	0.29215	0.29215 0.01		50.000001	Averaged
38 1,1-Dichloropropene	0.32044	0.29007	0.29007 0.01	.01 9.47980	1 50.000001	Averaged
39 Carbon Tetrachloride	0.28186	0.24370	0.24370 0.01	0  13.53914	1 50.000001	Averaged
0 1,2-Dichloroethane	0.290981	0.25150	0.25150 0.01	0  13.56979	50.000001	Averaged
11 Benzene	1.02830	0.955441	0.95544 0.01	01 7.08602	50.000001	Averaged
2 Trichloroethene	0.28545	0.26708	0.26708 0.01	01 6.43715	50.000001	Averaged
3 1,2-Dichloropropane	0.223391	0.21394	0.21394 0.01	0  4.22869	20.000001	Averaged
4 1,4-Dioxane	0.002641	0.00208	0.00208 0.01	0  21.10550	50.000001	Averaged
5 Dibromomethane	0.13353	0.12349	0.12349 0.01	0  7.51924	50.000001	Averaged
6 Bromodichloromethane	0.269271	0.24756	0.24756 0.01	0  8.06347	50.000001	Averaged
7 2-Chloroethyl vinyl ether	0.11259	0.11145	0.11145 0.01	0] 1.01278	1 50.000001	Averaged

Data File: \\cansvr11\dd\chem\MSV\a3ux10.i\P71224A.b\UXX9525.D Report Date: 24-Dec-2007 12:39

#### STL Inc North Canton

#### CONTINUING CALIBRATION COMPOUNDS

Instrument ID: a3ux10.i Injection Date: 24-DEC-2007 10:42

Lab File ID: UXX9525.D Analysis Type: WATER Lab Sample ID: 50NG-CC Init. Cal. Date(s): 24-AUG-2007 20-DEC-2007 Init. Cal. Times: 18:07 10:53

Init. Cal. Times: 18:07

Quant Type: ISTD

Method: \\cansvr11\dd\chem\MSV\a3ux10.i\P71224A.b\8260LLUX10.m

I .	1	I	CCAL   MIN	i i	MAX	1 1
COMPOUND	RRF / AMOUNT	RF50	RRF50   RRF	%D / %DRIFT	%D / %DRIFT	CURVE TYPE
48 cis-1,3-Dichloropropene	50.00000	44.62633	0.29603 0.010			=======    Wt Linear!
49 4-Methyl-2-pentanone	0.16583	0.15518]	0.15518 0.010			
50 Toluene	1 1.37790	1.37995	1.37995 0.010			
51 trans-1,3-Dichloropropene	50.00000	43.98425	0.31108 0.010			Wt Linear
52 Ethyl Methacrylate	0.322961	0.28198	0.28198 0.010			
53 1,1,2-Trichloroethane	0.26126	0.24757	0.24757 0.010			
54 1,3-Dichloropropane	0.44853	0.42682	0.4268210.010			
55 Tetrachloroethene	0.31955	0.30710	0.30710 0.010	-		
56 2-Hexanone	0.14254	0.12607	0.12607 0.010			
57 Dibromochloromethane	0.25495	0.25102]	0.2510210.010			. ,
158 1,2-Dibromoethane	0.258331	0.241691	0.24169 0.010			
59 Chlorobenzene	0.97874	0.90928	0.9092810.300	•		
60 1,1,1,2-Tetrachloroethane	0.31435	0.30512	0.30512 0.010			
61 Ethylbenzene	0.51093	0.49154	0.49154 0.010			
62 m + p-Xylene	0.65237]	0.62785	0.62785 0.010	•		
M 63 Xylenes (total)	0.65154	0.633441	0.63344 0.010			
64 Xylene-o	0.649881	0.64464	0.6446410.0101			
65 Styrene	1 1.056191	1.01425	1.01425 0.010	-	50.00000	
66 Bromoform	1 50.000001	45.68401	0.16339 0.100		0.000e+000	
67 Isopropylbenzene	1.55495	1.49180	1.49180 0.010		50.00000	
68 1,1,2,2-Tetrachloroethane	0.559421	0.53691	0.53691 0.300		50.00000	
69 1,4-Dichloro-2-butene	1 50.000001	67.61230	0.09078 0.010	•	0.000e+000	
70 1,2,3-Trichloropropane	0.17328	0.16527	0.16527 0.010		50.000001	
71 Bromobenzene	0.72304	0.68512	0.68512 0.010	•	50.000001	
72 n-Propylbenzene	0.782691	0.74685	0.74685 0.010	4.579241	50.000001	
73 2-Chlorotoluene	0.683571	0.655651	0.65565 0.010	4.084431	50.000001	
74 1,3,5-Trimethylbenzene	2.29281	2.20847	2.20847[0.010]	3.67854	50.000001	
75 4-Chlorotoluene	0.708901	0.67277	0.67277 0.010	5.09677	50.000001	-
76 tert-Butylbenzene	2.11485	2.06204	2.06204 0.010	2.496841	50.000001	
77 1,2,4-Trimethylbenzene	1 2.377701	2.243621	2.24362 0.010	5.639301	50.000001	
78 sec-Butylbenzene	3.026231	2.87609	2.87609 0.010	4.96130		•
79 4-Isopropyltoluene	2.618201	2.457201	2.45720 0.010	6.149291	50.000001	
80 1,3-Dichlorobenzene	1 1 488991	1.37260	1.37260 0.010	7.81643	50.000001	-
81 1,4-Dichlorobenzene	1.56251	1.45006	1.45006[0.010]		50.000001	
82 n-Butylbenzene	2.17655	2.042621	2.04262[0.010]	7.19699	50.000001	3
83 1,2-Dichlorobenzene	1 1.41673	1.33041	1.33041 0.010	6.153221	50.000001	Averaged
84 1,2-Dibromo-3-chloropropane	0.09196	0.083581	0.08358[0.010]	6.09269	50.000001	=
85 1,2,4-Trichlorobenzene	1 0.952851	0.844001	0.84400 0.010	9.11376	50.000001	Averaged!
86 Hexachlorobutadiene	0.489291	0.424241		11.42313	50.000001	Averaged
87 Naphthalene	1 1.81327	1.497431	0.42424[0.010]	13.29518;	50.000001	Averaged
88 1,2,3-Trichlorobenzene	0.89871		1.49743 0.010	17.41860	50.000001	Averaged
98 Cyclohexane		0.74167	0.74167[0.010]	17.47405	50.000001	Averaged
143 Methyl Acetate	,,	0.41926	0.41926[0.010]	7.589011	50.000001	Averaged
cyı ncecace	0.16686	0.14249[	0.14249 0.010	14.60600	50.00000	Averaged

Data File: \\cansvr11\dd\chem\MSV\a3ux10.i\P71224A.b\UXX9525.D

Report Date: 24-Dec-2007 12:39

#### STL Inc North Canton

# CONTINUING CALIBRATION COMPOUNDS

Instrument ID: a3ux10.i

Injection Date: 24-DEC-2007 10:42

Lab File ID: UXX9525.D Init. Cal. Date(s): 24-AUG-2007 20-DEC-2007 Analysis Type: WATER Init. Cal. Times: 18:07 10:53 Lab Sample ID: 50NG-CC Quant Type: ISTD Method: \\cansvr11\\dd\chem\MSV\a3ux10.i\P71224A.b\\8260LLUX10.m

1	I	. 1	1	CCAL	MIN	I	MAX	1
[ COMPOUND	RRF	/ AMOUNT!	RF50	RRF50	RRF	%D / %DRIFT %D	/ %DRIFT C	URVE TYPE
	=== ===	====== =	======= ==	=======	=== ==== :	====== ==	=======================================	========
144 Methylcyclohexane	1	0.50401	0.46122	0.46	122 0.010	8.490221	50.000001	Averaged!
141 1,3,5-Trichlorobenzene	1	1.08184	0.98082	0.980	082[0.010]	9.33755	50.00000	Averaged
149 Vinyl Acetate-86	1	0.02824	0.03266	0.032	266 0.010	-15.68623	50.000001	Averaged
	I	<u> </u>	I_		111_	1	11_	1

Data File: \\cansvr11\dd\chem\MSV\a3ux10.i\P71224A.b\UXX9526.D

Report Date: 24-Dec-2007 12:33

#### TestAmerica North Canton

#### CONTINUING CALIBRATION COMPOUNDS

Instrument ID: a3ux10.i

Injection Date: 24-DEC-2007 12:18

Lab File ID: UXX9526.D

Init. Cal. Date(s): 24-AUG-2007 20-DEC-2007 Init. Cal. Times: 18:07 10:53

Analysis Type: WATER

Lab Sample ID: 50NG-A9CC

Quant Type: ISTD Method: \\cansvr11\dd\chem\MSV\a3ux10.i\P71224A.b\8260LLUX10.m

	· I	_ !	1	CCAL   MIN	1	MAX	1
COMPOUND	RRI	7 / AMOUNT	RF50	RRF50   RRF  %1	) / %DRIFT %D	/ %DRIFT	CURVE TYPE!
			======= ==		======= ==	=======================================	=======
14 Dichlorofluoromethane	I	0.42044	0.37310	0.37310 0.010	11.26061	50.000001	Averaged
89 Ethyl Ether	I	0.21880	0.16794	0.16794 0.010	23.24575	50.000001	Averaged
91 3-Chloropropene	1	0.12591	0.12198	0.12198 0.010	3.12351	50.000001	Averaged
92 Isopropyl Ether	i	0.22375	0.21020	0.21020 0.010	6.05192	50.000001	Averaged
93 2-Chloro-1,3-butadiene	1	0.416071	0.25608	0.25608 0.010	38.45408	50.000001	Averaged
94 Propionitrile	ı	0.035061	0.02574	0.02574 0.010	26.59310;	50.000001	Averaged
95 Ethyl Acetate	1	0.195221	0.13635	0.13635 0.010	30.15716	50.000001	Averaged
96 Methacrylonitrile	1	0.14029	0.09578	0.09578 0.010	31.73016	50.000001	Averaged
97 Isobutanol	1	0.00957	0.00626	0.00626 0.010	34.60582	50.000001	Averaged]
99 n-Butanol	1	0.00885	0.00484	0.00484 0.010	45.31047	50.000001	Averaged <
100 Methyl Methacrylate	1	0.18043	0.10991	0.10991[0.010]	39.083941	50.000001	Averaged!
101 2-Nitropropane	I	0.04439	0.01872	0.01872 0.010	57.84079	50.000001	Averaged
103 Cyclohexanone	i	0.03221	0.01324	0.01324 0.010	58.90638	50.000001	Averaged
146 2-Methylnaphthalene	I	0.723491	0.69853	0.69853 0.010	3.45059	50.000001	Averaged
153 t-Butyl ethyl ether	ı	0.74844	0.66024	0.66024 0.010	11.78472	50.000001	Averaged
154 t-Amyl methyl ether	1	0.60305	0.54347	0.54347 0.010	9.87966	50.000001	Averaged]
155 1,2,3-Trimethylbenzene	1	2.71636	2.44409	2.44409 0.010	10.02328	50.000001	Averaged
	1	1	1	1 1	1	,	

# VOLATILE ORGANIC GC/MS TUNING AND MASS CALIBRATION - BROMOFLUOROBENZENE (BFB)

Lab Name: TESTAMERICA-NORTH CANTON Contract:

Lab Code: TALCAN Case No.: SAS No.: SDG No.: 7L12224

Lab File ID: BFB2504 BFB Injection Date: 12/26/07

Instrument ID: A3UX10 BFB Injection Time: 0951

Matrix: (soil/water) WATER Level: (low/med) LOW Column: (pack/cap) CAP

m/e	ION ABUNDANCE CRITERIA	% RELATIVE ABUNDANCE
50	15.0 ~ 40.0% of mass 95	15.4
75	30.0 - 60.0% of mass 95	43.7
95	Base Peak, 100% relative abundance	100.0
96	5.0 - 9.0% of mass 95	7.2
173	Less than 2.0% of mass 174	0.4 (0.5)1
174	50.0 - 100.0% of mass 95	80.3
175	5.0 - 9.0% of mass 174	5.5 ( 6.8)1
176	Greater than 95.0%, but less than 101.0% of mass 174	76.4 ( 95.1)1
177	5.0 - 9.0% of mass 176	5.4 ( 7.1)2
	1-Value is % of mass 174 2-Value is % of mass	gg 176

THIS TUNE APPLIES TO THE FOLLOWING SAMPLES, MS, MSD, BLANKS, AND STANDARDS:

	EPA	LAB	LAB	באותות ב	I I I I I I I I I I I I I I I I I I I
	ì			DATE	TIME
	SAMPLE NO.	SAMPLE ID	FILE ID	ANALYZED	ANALYZED
		=========	=========	=======	========
01		50NG-CC	UXX9554	12/26/07	1014
02	VSTD010	50NG-A9CC	UXX9555	12/26/07	1036
03	KETQ2-CHK	KETQ21AC	UXX9556	12/26/07	1058
04	KETQ2-CKDUP	KETQ21AD	UXX9557	12/26/07	1121
05	KETQ2-BLK	KETQ21AA	UXX9558	12/26/07	1143
06	MW74A-121407	KD88H1AA	UXX9565	12/26/07	1507
07	RW-01I121407	KD88QLAM	UXX9566	12/26/07	1530
08		_		, -,	, ———
09					
10					
11					
12					
13					·
14		<del></del>			
15					
16					
17			<del></del>		
18					
19					
20					
21					
22					

page 1 of 1

FORM V VOA

1/87 Rev.

Data File: \\cansvr11\\dd\chem\MSV\a3ux10.i\\P71226A.b\\UXX9554.D Report Date: 26-Dec-2007 10:57

#### STL Inc North Canton

# CONTINUING CALIBRATION COMPOUNDS

Instrument ID: a3ux10.i Injection Date: 26-DEC-2007 10:14

Init. Cal. Date(s): 24-AUG-2007 20-DEC-2007 Init. Cal. Times: 18:07 10:53 Quant Type: ISTD

Lab File ID: UXX9554.D Analysis Type: WATER Lab Sample ID: 50NG-CC

Method: \cansvr11\dd\chem\MSV\a3ux10.i\P71226A.b\8260LLUX10.m

COMPOUND		1	CCAL   MIN			
COMPOUND	RRF / AMOUNT	RF50	RRF50   RRF	%D / %DRIFT!	%D / %DRIFT	CURVE TYPE
\$ 4 Dibromofluoromethane	0.23245	0.20755	0.20755 0.010	10.71224	50.000001	
\$ 5 1,2-Dichloroethane-d4	0.244371	0.19538	0.19538 0.010	20.049031		Average
\$ 6 Toluene-d8	1.17831	1.15390	1.15390[0.010]	2.07129	50.000001	Average
\$ 7 Bromofluorobenzene	0.455841	0.40120	0.40120 0.010	11.987121		
8 Dichlorodifluoromethane	0.203231	0.20755	0.20755 0.010	-2.12526	50.000001	Average
9 Chloromethane	0.294201	0.28108	0.28108 0.100	4.46131	50.000001	_
10 Vinyl Chloride	0.32718	0.30641	0.30641 0.010	6.349201	20.000001	Average
11 Bromomethane	0.200991	0.18137	0.18137[0.010]	9.76191	50.000001	Average
12 Chloroethane	0.208031	0.18554	0.18554 0.010	10.81206	50.000001	Average
13 Trichlorofluoromethane	0.236881	0.24669	0.24669 0.010	-4.14250	50.000001	Average
15 Acrolein	1 5001	2951	0.01010 0.010		0.000e+0001	-
16 Acetone	1001	73.58471	0.04623 0.010			
17 1,1-Dichloroethene	0.28031	0.274861	0.27486[0.010]	1.941271	20.000001	Average
18 Freon-113	0.22511	0.22953	0.22953 0.010	-1.96425	50.000001	Average
19 Iodomethane	0.48545	0.470341	0.47034 0.010	3.113531	50.000001	Average
20 Carbon Disulfide	0.81069	0.826691	0.82669[0.010]	-1.97384	50.000001	Average
21 Methylene Chloride	1 50.000001	47.15456	0.29669 0.010		0.000e+000	_
2 Acetonitrile	1 0.027451	0.02242	0.02242 0.010	18.32971	50.000001	Average
3 Acrylonitrile	0.08217	0.069891	0.06989 0.010	14.93495	50.000001	-
4 Methyl tert-butyl ether	0.733761	0.65128	0.65128 0.010	11.24157	50.000001	Average Average
5 trans-1,2-Dichloroethene	1 0.299001	0.28792	0.28792 0.010	3.70391	50.000001	
6 Hexane	0.062341	0.06858	0.06858 0.010	-10.00296	20.000001	Average
7 Vinyl acetate	0.22515	0.18597	0.18597[0.010]	17.402481	50.000001	Average
8 1,1-Dichloroethane	0.41992	0.41330	0.41330 0.100	1.57631	50.000001	Average
9 tert-Butyl Alcohol	0.02017	0.014491)	0.01449 0.010	28.16333		Average
0 2-Butanone	i 0.08139	0.067691	0.06769 0.010	16.832591	50.000001	Average
31 1,2-Dichloroethene (total)	0.29161	0.283251	0.28325 0.010	2.864001		Average
2 cis-1,2-dichloroethene	0.284221	0.278591	0.27859[0.010]	1.980421	50.000001	Average
3 2,2-Dichloropropane	0.259221	0.23134	0.23134 0.010	1.360421	50.000001	Average
4 Bromochloromethane	0.142331	0.14148	0.14148 0.010	0.59970	50.000001	Average
5 Chloroform	0.41861	0.394681	0.39468[0.010]	5.71551		Averaged
6 Tetrahydrofuran	0.05201	0.04620	0.04620 0.010		20.000001	Averaged
7 1,1,1-Trichloroethane	0.33872	0.33109	0.33109[0.010]	11.17226	50.000001	Averaged
8 1,1-Dichloropropene	0.320441	0.331037	0.32103 0.010	2.25238	50.000001	Averaged
9 Carbon Tetrachloride	0.28186	0.321031		-0.18308	50.000001	Average
0 1,2-Dichloroethane	1 0.290981	0.26121	0.27030[0.010]	4.102111	50.000001	Averaged
1 Benzene			0.26121 0.010	10.23176	50.000001	Averaged
2 Trichloroethene		1.02387	1.02387[0.010]	0.43126	50.000001	Averaged
3 1,2-Dichloropropane	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	0.28860	0.28860[0.010]	-1.10163	50.000001	Averaged
1 1,4-Dioxane		0.22778	0.22778 0.010	-1.96802	20.000001	Average
5 Dibromomethane		0.00199	0.00199 0.010	24.52247	50.000001	Averaged
		0.13256	0.13256 0.010	0.72449	50.000001	Averaged
6 Bromodichloromethane	0.269271	0.26116	0.26116 0.010	3.01317	50.000001	Averaged
7 2-Chloroethyl vinyl ether	0.11259	0.09902	0.09902 0.010	12.04977	50.000001	Averaged

Data File: \\cansvr11\dd\chem\MSV\a3ux10.i\P71226A.b\UXX9554.D

Report Date: 26-Dec-2007 10:57

# STL Inc North Canton

# CONTINUING CALIBRATION COMPOUNDS

Instrument ID: a3ux10.i Injection Date: 26-DEC-2007 10:14

Lab File ID: UXX9554.D Init. Cal. Date(s): 24-AUG-2007 20-DEC-2007 Analysis Type: WATER Init. Cal. Times: 18:07 10:53
Lab Sample ID: 50NG-CC Quant Type: ISTD
Method: \\cansvr11\\dd\chem\MSV\\a3ux10.i\\P71226A.b\\8260LLUX10.m

COMPOUND	1	1	CCAL   MIN			l I
COMPOUND	RRF / AMOUNT	RF50	RRF50   RRF	AD / %DRIFT	%D / %DRIFT	CURVE TYPE
48 cis-1,3-Dichloropropene	50.000001	45.88788	0.30483[0.010]		0.000e+000	
49 4-Methyl-2-pentanone	0.16583	0.136931	0.13693 0.010	17.42479		
50 Toluene	I 1.37790 _I	1.49859	1.49859 0.010	-8.75902		
51 trans-1,3-Dichloropropene	1 50.000001	44.07001	0.31172 0.010		0.000e+000	
52 Ethyl Methacrylate	0.322961	0.286401	0.28640[0.010]	11.32108		
3 1,1,2-Trichloroethane	0.26126	0.26760	0.26760 0.010	-2.42720	· ·	. , ,
54 1,3-Dichloropropane	0.44853	0.446421	0.44642 0.010	0.47117		
55 Tetrachloroethene	0.31955	0.34291	0.34291 0.010	-7.309891		J
66 2-Hexanone	0.14254	0.11815	0.11815 0.010	17.105881		
7 Dibromochloromethane	0.254951	0.26874	0.26874 0.010	-5.409691		
8 1,2-Dibromoethane	0.258331	0.24932	0.24932 0.010	3.488461		
9 Chlorobenzene	0.97874	0.97593	0.97593[0.300]	0.28740	-	•
0 1,1,1,2-Tetrachloroethane	0.31435	0.32343	0.32343 0.010	-2.890081		
1 Ethylbenzene	0.510931	0.533231	0.53323[0.010]	-4.364701		
2 m + p-Xylene	0.65237	0.69110]	0.69110 0.010	-5.93791		
63 Xylenes (total)	0.651541	0.69130	0.69130 0.010	-6.10202	50.000001	
4 Xylene-o	0.64988	0.69168	0.69168 0.010	-6.43150	50.000001	
5 Styrene	1.056191	1.07350	1.07350 0.010	-1.63896	50.000001	
6 Bromoform	1 50.000001	45.23423]	0.16168 0.100		0.000e+000	
7 Isopropylbenzene	1.55495	1.64568	1.64568[0.010]	-5.834681	50.000001	-
8 1,1,2,2-Tetrachloroethane	0.559421	0.54056	0.54056 0.300	3.37169	50.000001	
9 1,4-Dichloro-2-butene	50.000001	50.062041	0.06458[0.010]		0.000e+0001	3
0 1,2,3-Trichloropropane	0.17328	0.16091	0.16091 0.010	7.139771	50.000001	
1 Bromobenzene	0.723041	0.692861	0.69286 0.010	4.17478	50.000001	Averaged
2 n-Propylbenzene	0.782691	0.81082	0.81082 0.010	-3.594251	50.000001	Averaged
3 2-Chlorotoluene	0.68357	0.709491	0.70949 0.010	-3.79247	50.000001	Averaged
4 1,3,5-Trimethylbenzene	2.29281	2.409031	2.40903 0.010	-5.06861	50.000001	Averaged
5 4-Chlorotoluene	0.708901	0.70059	0.70059[0.010]	1.17293	50.000001	Averaged
6 tert-Butylbenzene	2.11485	2.21487	2.21487 0.010	-4.729391	50.000001	Averaged
7 1,2,4-Trimethylbenzene	2.37770	2.44365	2.44365 0.010	-2.77374	50.000001	Averaged
8 sec-Butylbenzene	3.026231	3.21045]	3.21045[0.010]	-6.087391	50.000001	Averaged
9 4-Isopropyltoluene	1 2.618201	2.77502	2.77502 0.010	-5.98975	50.000001	Averaged
0 1,3-Dichlorobenzene	1.488991	1.466971	1.46697[0.010]	1.47918	50.000001	Averaged
l 1,4-Dichlorobenzene	1 1.562511	1.52488	1.52488[0.010]	2.40858	50.000001	Averaged
2 n-Butylbenzene	1 2.17655	2.334851	2.33485[0.010]	-7.272831	50.000001	-
3 1,2-Dichlorobenzene	1 1.416731	1.44225	1.44225[0.010]	-1.80128	50.000001	Averaged
1,2-Dibromo-3-chloropropane	0.09196	0.08410	0.08410 0.010	8.547591	50.000001	Averaged
5 1,2,4-Trichlorobenzene	1 0.952851	0.89742	0.89742 0.010	5.81734	50.000001	Averaged
Hexachlorobutadiene	0.489291	0.50573	0.50573 0.010	-3.360761	50.000001	Averaged
Naphthalene	1.81327	1.48027	1.48027[0.010]	18.36474	50.000001	Averaged
3 1,2,3-Trichlorobenzene	0.89871	0.76071	0.76071 0.010	15.355691		Averaged
3 Cyclohexane	0.453691	0.49726	0.49726 0.010	-9.603861	50.000001	Averaged
I3 Methyl Acetate		3.13,201	0.99/2010.0101	- 9.00386	50.000001	Averagedi

Data File: \\cansvr11\dd\chem\MSV\a3ux10.i\P71226A.b\UXX9554.D Report Date: 26-Dec-2007 10:57

# STL Inc North Canton

# CONTINUING CALIBRATION COMPOUNDS

Instrument ID: a3ux10.i Lab File ID: UXX9554.D

Injection Date: 26-DEC-2007 10:14

Init. Cal. Date(s): 24-AUG-2007 20-DEC-2007

Init. Cal. Times: 18:07

Analysis Type: WATER Lab Sample ID: 50NG-CC

Quant Type: ISTD

Method: \\cansvrll\dd\chem\MSV\a3ux10.i\P71226A.b\8260LLUX10.m

	1			CCAL	I MIN I			
I COMPOUND	IRRE	· / AMOUNT!	RF50			1	MAX	ļ
1				RRF50	RRF  %1	O / %DRIFT %[	) / %DRIFT (	CURVE TYPE
		=======================================	=======		===[==========		=======-1-	
144 Methylcyclohexane	1	0.50401	0.54742		742 0,010	-8.61176I	50.000001	
141 1,3,5-Trichlorobenzene	1	1.081841	1.11232					Averaged
1140 115-117 7-11 1 05	•		.1.11232	1.112	232 0.010	-2.81723	50.000001	Averaged
149 Vinyl Acetate-86	!	0.02824	0.02712	0.027	712 0.010	3.939081	50.000001	Averagedi
I	1				!!	ii		I

Data File: \\cansvr11\dd\chem\MSV\a3ux10.i\P71226A.b\UXX9555.D

Report Date: 26-Dec-2007 10:52

# TestAmerica North Canton

#### CONTINUING CALIBRATION COMPOUNDS

Instrument ID: a3ux10.i

Injection Date: 26-DEC-2007 10:36

Lab File ID: UXX9555.D

Init. Cal. Date(s): 24-AUG-2007 20-DEC-2007 18:07

Analysis Type: WATER

Init. Cal. Times:

10:53

Lab Sample ID: 50NG-A9CC

Quant Type: ISTD

Method: \\cansvr11\dd\chem\MSV\a3ux10.i\P71226A.b\8260LLUX10.m

	1	1	1	CCAL   MIN	1	MAX j	1
COMPOUND	RRF	/ AMOUNT	RF50	RRF50   RRF	%D / %DRIFT %D	/ %DRIFT	CURVE TYPE
						======	=======================================
14 Dichlorofluoromethane	ļ	0.420441	0.36614	0.36614 0.010	12.91563	50.000001	Averaged
89 Ethyl Ether	i	0.21880	0.15199	0.15199 0.010	30.53690	50.000001	Averaged
91 3-Chloropropene	1	0.12591	0.11688	0.11688 0.010	7.16826	50.000001	Averaged
92 Isopropyl Ether	I	0.22375	0.19684	0.19684 0.010	12.02601	50.000001	Averaged
93 2-Chloro-1,3-butadiene	1	0.41607	0.23026	0.23026 0.010	44.65900	50.000001	Averaged
94 Propionitrile	1	0.03506	0.02352	0.02352 0.010	32.90708	50.000001	Averaged
95 Ethyl Acetate	1.	0.19522	0.12355	0.12355 0.010	36.71565	50.000001	Averaged
96 Methacrylonitrile	1	0.14029	0.09259	0.09259 0.010	34.00255	50.000001	Averaged
97 Isobutanol	1	0.00957	0.005201	0.00520 0.010	45.64615	50.000001	Averaged <
99 n-Butanol	1	0.008851	0.004271	0.00427 0.010	51.73402	50.00000!	Averagedi
100 Methyl Methacrylate	1	0.18043	0.10704	0.10704 0.010	40.67654	50.000001	Averaged
101 2-Nitropropane	1	0.044391	0.02011	0.02011 0.010	54.692431	50.000001	Averaged!<
103 Cyclohexanone	.1	0.03221	0.01064	0.01064 0.010	66.97805	50.000001	Averaged
146 2-Methylnaphthalene	I	0.72349	0.44965	0.44965 0.010	37.85091	50.000001	Averaged
153 t-Butyl ethyl ether	1	0.74844	0.58229	0.58229 0.010	22.20042	50.000001	Averaged
154 t-Amyl methyl ether	1	0.60305	0.48443	0.48443 0.010	19.66931	50.000001	Averaged
155 1,2,3-Trimethylbenzene	1	2.716361	2.17001	2.17001 0.010	20.11346	50.000001	Averaged
	1	1	Ì	1 1	1	1	1

KEK1J1AA

#### SW846 8260B METHOD BLANK SUMMARY

Lab Name: TestAmerica Laboratories, Inc.

Lab Code: TALCAN

SDG Number:7L12224

Lab File ID: UXX9363.D

Lot Number: A7L120224

Date Analyzed: 12/20/07

Time Analyzed: 12:59

Matrix: WATER

Date Extracted:12/20/07

GC Column: DB 624 ID: .18

Extraction Method: 5030B/8260B

Instrument ID: UX10

Level: (low/med) LOW

THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES, LCS, LCSD, MS, MSD:

_					
-		SAMPLE	LAB	DATE	TIME
	CLIENT ID.	WORK ORDER #	FILE ID	ANALYZED	ANALYZED
		=======================================	=======================================	=======	========
01	MW74A-121107	KD05R1CF	UXX9365.D	12/20/07	13:43
02	TB-121107	KD08T1AA	UXX9374.D	12/20/07	17:01
03	RW-01I-121107	KD0811CF	UXX9366.D	12/20/07	14:05
04	INTRA-LAB QC	KD7TX1AA	UXX9364.D	12/20/07	13:21
05	LAB MS/MSD	KD7TX1AC S	UXX9372.D	12/20/07	16:17
06	LAB MS/MSD	KD7TX1AD D	UXX9373.D	12/20/07	16:39
07	CHECK SAMPLE	KEK1J1AC C	UXX9362.D	12/20/07	12:37
08					
09					l
10					
11					
12					
13					
14					
15					
16					
17					
18					
19					
20	·				
21					
22					
23					
24					
25					
26			.		
27					
28					
29					
30		J <del></del>			
	1	·			

COMMENTS:		

#### GC/MS Volatiles

Client Lot #...: 7L12224 Work Order #...: KEK1J1AA Matrix..... WATER

MB Lot-Sample #: A7L200000-500

Prep Date....: 12/20/07 Final Wgt/Vol..: 5 mL

Analysis Date..: 12/20/07 Prep Batch #...: 7354500

Dilution Factor: 1 Initial Wgt/Vol: 5 mL

		REPORTI	NG	
PARAMETER	RESULT	LIMIT	UNITS	METHOD
Acetone	ND	5.0	ug/L	SW846 8260B
Bromobenzene	ND	1.0	ug/L	SW846 8260B
Bromochloromethane	ND	1.0	ug/L	SW846 8260B
Bromodichloromethane	ND	1.0	ug/L	SW846 8260B
2-Butanone	ND	5.0	ug/L	SW846 8260B
n-Butylbenzene	ND	1.0	ug/L	SW846 8260B
sec-Butylbenzene	ND	1.0	ug/L	SW846 8260B
tert-Butylbenzene	ND	1.0	ug/L	SW846 8260B
Carbon disulfide	ND	1.0	ug/L	SW846 8260B
Dibromochloromethane	ND	1.0	ug/L	SW846 8260B
2-Chloroethyl vinyl ether	ND	5.0	ug/L	SW846 8260B
2-Chlorotoluene	ND	1.0	ug/L	SW846 8260B
4-Chlorotoluene	ND -	1.0	ug/L	SW846 8260B
1,2-Dibromoethane	ND .	1.0	ug/L	SW846 8260B
Dibromomethane	ND	1.0	ug/L	SW846 8260B
1,2-Dichlorobenzene	ND	1.0	ug/L	SW846 8260B
1,3-Dichlorobenzene	ND	1.0	ug/L	SW846 8260B
1,4-Dichlorobenzene	ND	1.0	ug/L	SW846 8260B
Dichlorodifluoromethane	ND	1.0	ug/L ´	SW846 8260B
cis-1,2-Dichloroethene	ND	1.0	ug/L	SW846 8260B
trans-1,2-Dichloroethene	ND	1.0	ug/L	SW846 8260B
1,3-Dichloropropane	ND	1.0	ug/L	SW846 8260B
2,2-Dichloropropane	ND	1.0	ug/L	SW846 8260B
1,1-Dichloropropene	ND ·	1.0	ug/L	SW846 8260B
Trichlorofluoromethane	ND	1.0	ug/L	SW846 8260B
Hexachlorobutadiene	ND	1.0	ug/L	SW846 8260B
2-Hexanone	ND	5.0	ug/L	SW846 8260B
Isopropylbenzene	ND	1.0	ug/L	SW846 8260B
p-Isopropyltoluene	ND.	1.0	ug/L	SW846 8260B
Naphthalene	(0.52 J	1.0	ug/L	SW846 8260B
n-Propylbenzene	ND	1.0	ug/L	SW846 8260B
Styrene	ND	1.0	ug/L	SW846 8260B
1,1,1,2-Tetrachloroethane	ND	1.0	ug/L	SW846 8260B
1,2,3-Trichlorobenzene	(0.49  J)	1.0	ug/L	SW846 8260B
1,2,4-Trichloro-	(0.24  J)	1.0	ug/L	SW846 8260B
benzene				
1,2,3-Trichloropropane	ND	1.0	ug/L	SW846 8260B
1,1,2-Trichloro-	ND	1.0	ug/L	SW846 8260B
1,2,2-trifluoroethane				
1,2,4-Trimethylbenzene	ND	1.0	ug/L	SW846 8260B
Vinyl acetate	ND	2.0	ug/L	SW846 8260B

(Continued on next page)

#### GC/MS Volatiles

		REPORTING			
PARAMETER	RESULT	LIMIT	UNITS	METHOD	
o-Xylene	ND	1.0	ug/L	SW846 8260B	
m-Xylene & p-Xylene	ND	2.0	ug/L	SW846 8260B	
1,2-Dibromo-3-chloro- propane	ND	2.0	ug/L	SW846 8260B	
4-Methyl-2-pentanone	ND	5.0	ug/L	SW846 8260B	
Methyl tert-butyl ether	ND	5.0	ug/L	SW846 8260B	
Diisopropyl Ether (DIPE)	ND	5.0	ug/L	SW846 8260B	
Xylenes (total)	ND	2.0	ug/L	SW846 8260B	
tert-Butyl alcohol	ND	20	ug/L	SW846 8260B	
1,2,3-Trimethylbenzene	ND	5.0	ug/L	SW846 8260B	
Ethyl-t-Butyl Ether (ETBE	ND	5.0	ug/L	SW846 8260B	
Tert-amyl methyl ether (T	ND	5.0	ug/L	SW846 8260B	
Benzene	ND	1.0	ug/L	SW846 8260B	
Bromoform	ND	1.0	ug/L	SW846 8260B	
Bromomethane	ND	1.0	ug/L	SW846 8260B	
Carbon tetrachloride	ND	1.0	ug/L	SW846 8260B	
Chlorobenzene	ND	1.0	ug/L	SW846 8260B	
Chloroethane	ND	1.0	ug/L	SW846 8260B	
Chloroform	ND	1.0	ug/L	SW846 8260B	
Chloromethane	ND	1.0	ug/L	SW846 8260B	
1,1-Dichloroethane	ND	1.0	ug/L	SW846 8260B	
1,2-Dichloroethane	ND	1.0	ug/L	SW846 8260B	
1,1-Dichloroethene	ND	1.0	ug/L	SW846 8260B	
1,2-Dichloropropane	ND	1.0	ug/L	SW846 8260B	
cis-1,3-Dichloropropene	ND	1.0	ug/L	SW846 8260B	
trans-1,3-Dichloropropene	ND	1.0	ug/L	SW846 8260B	
Ethylbenzene	ND	1.0	ug/L	SW846 8260B	
Methylene chloride	ND	1.0	ug/L	SW846 8260B	
1,1,2,2-Tetrachloroethane	ND	1.0	ug/L	SW846 8260B	
Tetrachloroethene	ND	1.0	ug/L	SW846 8260B	
Toluene	ND	1.0	ug/L	SW846 8260B	
l,1,1-Trichloroethane	ND	1.0	ug/L	SW846 8260B	
Trichloroethene	ND	1.0	ug/L	SW846 8260B	
Vinyl chloride	ND	1.0	ug/L	SW846 8260B	
	PERCENT	RECOVER	Y		
SURROGATE	RECOVERY	<u>LIMITS</u>			
Dibromofluoromethane	87	(73 - 122)			

(61 - 128)

(76 - 110)

(74 - 116)

# NOTE(S):

Toluene-d8

Calculations are performed before rounding to avoid round-off errors in calculated results.

88

90

87

1,2-Dichloroethane-d4

4-Bromofluorobenzene

J Estimated result. Result is less than RL.

KEQ1H1AA

#### SW846 8260B METHOD BLANK SUMMARY

Lab Name: TestAmerica Laboratories, Inc.

Lab Code: TALCAN

SDG Number: 7L12224

Lab File ID: UXX9414.D

Lot Number: A7L140260

Date Analyzed: 12/21/07

Time Analyzed: 12:20

Matrix: WATER

Date Extracted:12/21/07

GC Column: DB 624 ID: .18

Extraction Method: 5030B/8260B

Instrument ID: UX10

Level: (low/med) LOW

THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES, LCS, LCSD, MS, MSD:

-						
		SAMPLE		LAB	DATE	TIME
	CLIENT ID.	WORK ORDER	#	FILE ID	ANALYZED	ANALYZED
	=======================================	=========	===	==========	========	
01	INTRA-LAB QC	KD6781AA		UXX9434.D	12/21/07	20:08
02	LAB MS/MSD	KD6781AC	S	UXX9436.D	12/21/07	20:52
03	LAB MS/MSD	KD6781AD	D	UXX9437.D	12/21/07	21:14
04	MW74A-121207	KD7CM1CF		UXX9415.D	12/21/07	13:10
05	TB-121207	KD7DD1AA		UXX9417.D	12/21/07	13:54
06	RW-01I-121207	KD7EX1CF		UXX9416.D	12/21/07	13:32
07	CHECK SAMPLE	KEQ1H1AC	C	UXX9412.D	12/21/07	11:37
80	DUPLICATE CHECK	KEQ1H1AD	L _	UXX9413.D	12/21/07	11:58
09						
10						
11						
12						
13						
14						
1.5						
16						 I.
17						
18						
19						
20						
21						
22						
23						
24						
25						
26						
27						
28						
29						
30						

COMMENTS:		

#### GC/MS Volatiles

Client Lot #...: 7L12224 Work Order #...: KEQ1H1AA Matrix...... WATER

MB Lot-Sample #: A7L240000-112

Prep Date.....: 12/21/07 Final Wgt/Vol..: 5 mL

Analysis Date.: 12/21/07 Prep Batch #...: 7358112
Dilution Factor: 1 Initial Wqt/Vol: 5 mL

# REPORTING

		REPORTI	NG	
PARAMETER	RESULT	LIMIT	UNITS	METHOD
Acetone	ND	5.0	ug/L	SW846 8260B
Bromobenzene	ND .	1.0	ug/L	SW846 8260B
Bromochloromethane	ND	1.0	ug/L	SW846 8260B
Bromodichloromethane	ND	1.0	ug/L	SW846 8260B
2-Butanone	ND	5.0	ug/L	SW846 8260B
n-Butylbenzene	ND	1.0	ug/L	SW846 8260B
sec-Butylbenzene	ND	1.0	ug/L	SW846 8260B
tert-Butylbenzene	ND	1.0	ug/L	SW846 8260B
Carbon disulfide	ND	1.0	ug/L	SW846 8260B
Dibromochloromethane	ND	1.0	ug/L	SW846 8260B
1,2-Dibromo-3-chloro- propane	ND	2.0	ug/L	SW846 8260B
2-Chlorotoluene	ND	1.0	ug/L	SW846 8260B
4-Chlorotoluene	ND	1.0	ug/L	SW846 8260B
Dibromomethane	.ND	1.0	ug/L	SW846 8260B
1,2-Dichlorobenzene	ND	1.0	ug/L	SW846 8260B
1,3-Dichlorobenzene	ND	1.0	ug/L	SW846 8260B
1,4-Dichlorobenzene	ND	1.0	ug/L	SW846 8260B
Dichlorodifluoromethane	ND	1.0	ug/L	SW846 8260B
cis-1,2-Dichloroethene	ND	1.0	ug/L	SW846 8260B
trans-1,2-Dichloroethene	ND	1.0	ug/L	SW846 8260B
1,3-Dichloropropane	ND	1.0	ug/L	SW846 8260B
2,2-Dichloropropane	ND	1.0	ug/L	SW846 8260B
1,1-Dichloropropene	ND	1.0	ug/L	SW846 8260B
Trichlorofluoromethane	ND .	1.0	ug/L	SW846 8260B
Hexachlorobutadiene	ND	1.0	ug/L	SW846 8260B
2-Hexanone	ND	5.0	ug/L	SW846 8260B
Isopropylbenzene	ND	1.0	ug/L	SW846 8260B
p-Isopropyltoluene	ND	1.0	ug/L	SW846 8260B
4-Methyl-2-pentanone	ND	5.0	ug/L	SW846 8260B
Naphthalene	(0.60 J)	1.0	ug/L	SW846 8260B
n-Propylbenzene	ND	1.0	ug/L	SW846 8260B
Styrene	ND	1.0	ug/L	SW846 8260B
1,1,1,2-Tetrachloroethane	ND	1.0	ug/L	SW846 8260B
1,2,4-Trichloro-	(0.28 J)	1.0	ug/L	SW846 8260B
benzene			J.	
1,2,3-Trichloropropane	ND	1.0	ug/L	SW846 8260B
1,2,4-Trimethylbenzene	ND	1.0	ug/L	SW846 8260B
Vinyl acetate	ND	2.0	ug/L	SW846 8260B
Xylenes (total)	ND	2.0	ug/L	SW846 8260B
Methyl tert-butyl ether	ND	5.0	ug/L	SW846 8260B

(Continued on next page)

## GC/MS Volatiles

Client Lot #	F: 7L12224	Work Order #: KEQ1H1AA	Matrix WATER

		REPORTING	3	
PARAMETER	RESULT	LIMIT	UNITS	METHOD
2-Chloroethyl vinyl ether	ND	5.0	ug/L	SW846 8260B
1,2-Dibromoethane	ND	1.0	ug/L	SW846 8260B
tert-Butyl alcohol	ND	20	ug/L	SW846 8260B
1,2,3-Trichlorobenzene	0.54 J	1.0	ug/L	SW846 8260B
1,1,2-Trichloro-	ND	1.0	ug/L	SW846 8260B
1,2,2-trifluoroethane				
o-Xylene	ND	1.0	ug/L	SW846 8260B
m-Xylene & p-Xylene	ND	2.0	ug/L	SW846 8260B
1,2,3-Trimethylbenzene	ND	5.0	ug/L	SW846 8260B
Diisopropyl Ether (DIPE)	ND	5.0	ug/L	SW846 8260B
Ethyl-t-Butyl Ether (ETBE	ND	5.0	ug/L	SW846 8260B
Tert-amyl methyl ether (T	ND	5.0	ug/L	SW846 8260B
Benzene	ND	1.0	ug/L	SW846 8260B
Bromoform	ND	1.0	ug/L	SW846 8260B
Bromomethane	ЙD	1.0	ug/L	SW846 8260B
Carbon tetrachloride	ND	1.0	ug/L	SW846 8260B
Chlorobenzene	ND.	1.0	ug/L	SW846 8260B
Chloroethane	ND	1.0	ug/L	SW846 8260B
Chloroform	ND .	1.0	ug/L	SW846 8260B
Chloromethane	ND	1.0	ug/L	SW846 8260B
1,1-Dichloroethane	ND	1.0	ug/L	SW846 8260B
1,2-Dichloroethane	ND	1.0	ug/L	SW846 8260B
1,1-Dichloroethene	ND	1.0	ug/L	SW846 8260B
1,2-Dichloropropane	ND	1.0	ug/L	SW846 8260B
cis-1,3-Dichloropropene	ND	1.0	ug/L	SW846 8260B
trans-1,3-Dichloropropene	ND	1.0	ug/L	SW846 8260B
Ethylbenzene	ND	1.0	ug/L	SW846 8260B
Methylene chloride	ND	1.0	ug/L	SW846 8260B
1,1,2,2-Tetrachloroethane	ND	1.0	ug/L	SW846 8260B
Tetrachloroethene	ND	1.0	ug/L	SW846 8260B
Toluene	ND	1.0	ug/L	SW846 8260B
1,1,1-Trichloroethane	ND	1.0	ug/L	SW846 8260B
Trichloroethene	ND	1.0	ug/L	SW846 8260B
Vinyl chloride	ND	1.0	ug/L	SW846 8260B
	опости	DECOMENT		
SURROGATE	PERCENT	RECOVERY		
Dibromofluoromethane	RECOVERY 85	LIMITS		
1,2-Dichloroethane-d4	85 85	(73 - 122	•	
Toluene-d8	91	(61 - 128 (76 - 110	•	
4-Bromofluorobenzene	89	,	•	
4 promotinotopenzene	OF	(74 - 116	))	

NOTE(S):

 $\label{lem:calculations} \textbf{Calculations are performed before rounding to avoid round-off errors in calculated results.}$ 

J Estimated result. Result is less than RL.

#### SW846 8260B METHOD BLANK SUMMARY

BLANK WORKORDER NO	
KERPO1AA	

7.2h	Name ·	TestAmerica	Laboratories.	Tnc
Lab	name:	TestAmerica	hanoratories,	Inc.

Lab Code: TALCAN

SDG Number: 7L12224

Lab File ID: UXX9529.D

Lot Number: A7L150155

Date Analyzed: 12/24/07

Time Analyzed: 13:24

Matrix: WATER

Date Extracted:12/24/07

GC Column: DB 624 ID: .18

Extraction Method: 5030B/8260B

Instrument ID: UX10

Level: (low/med) LOW

THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES, LCS, LCSD, MS , MSD:

		SAMPLE	LAB	DATE	TIME
	CLIENT ID.	WORK ORDER #	FILE ID	ANALYZED	ANALYZED
		============	= =====================================	========	========
01	TB-121407	KD88N1AA	UXX9535.D	12/24/07	15:38
02	INTRA-LAB QC	KEP651AA	UXX9530.D	12/24/07	13:46
03	LAB MS/MSD	KEP651AC S	UXX9533.D	12/24/07	14:53
04	LAB MS/MSD	KEP651AD D	UXX9534.D	12/24/07	15:15
05	CHECK SAMPLE	KERP01AC C	UXX9527.D	12/24/07	12:40
06	DUPLICATE CHECK	KERP01AD L	UXX9528.D	12/24/07	13:01
07					
08					
09					
10					
11					
12					
13		·			
14					
15					
16					
17					
18					
19					
20					
21	· · · · · · · · · · · · · · · · · · ·				
22					
23					
24					
25					
26	·				
27					
28					
29					
30					

COMMENTS:	
	**************************************

#### GC/MS Volatiles

Client Lot #...: 7L12224

MB Lot-Sample #: A7L260000-129

Prep Date....: 12/24/07

Work Order #...: KERP01AA

Matrix..... WATER

Analysis Date..: 12/24/07

Dilution Factor: 1

Prep Batch #...: 7360129
Initial Wgt/Vol: 5 mL

Final Wgt/Vol..: 5 mL

		REPORTI	NG	
PARAMETER	RESULT	LIMIT	UNITS	METHOD
Acetone	ND	5.0	ug/L	SW846 8260B
Bromobenzene	ND	1.0	ug/L	SW846 8260B
Bromochloromethane	ND	1.0	ug/L	SW846 8260B
Bromodichloromethane	ND	1.0	ug/L	SW846 8260B
2-Butanone	ND	5.0	ug/L	SW846 8260B
n-Butylbenzene	ND	1.0	ug/L	SW846 8260B
sec-Butylbenzene	ND	1.0	ug/L	SW846 8260B
tert-Butylbenzene	. ND	1.0	ug/L	SW846 8260B
Carbon disulfide	ND	1.0	ug/L	SW846 8260B
Dibromochloromethane	ND	1.0	ug/L	SW846 8260B
1,2-Dibromo-3-chloro-	ND	2.0	ug/L	SW846 8260B
propane				
1,2-Dibromoethane	ND	1.0	ug/L	SW846 8260B
Dibromomethane	ND	1.0	ug/L	SW846 8260B
1,2-Dichlorobenzene	ND	1.0	ug/L	SW846 8260B
1,3-Dichlorobenzene	ND	1.0	ug/L	SW846 8260B
1,4-Dichlorobenzene	ND	1.0	ug/L	SW846 8260B
Dichlorodifluoromethane	ND	1.0	ug/L	SW846 8260B
cis-1,2-Dichloroethene	ND	1.0	ug/L	SW846 8260B
trans-1,2-Dichloroethene	ND	1.0	ug/L	SW846 8260B
Trichlorofluoromethane	ND	1.0	ug/L	SW846 8260B
2-Hexanone	ND	5.0	ug/L	SW846 8260B
Isopropylbenzene	ND	1.0	ug/L	SW846 8260B
Diisopropyl Ether (DIPE)	ND	5.0	ug/L	SW846 8260B
p-Isopropyltoluene	ND	1.0	ug/L	SW846 8260B
tert-Butyl alcohol	ND	20	ug/L	SW846 8260B
4-Methyl-2-pentanone	ND	5.0	ug/L	SW846 8260B
Naphthalene	(0.53  J)	1.0	ug/L	SW846 8260B
n-Propylbenzene	ND	1.0	ug/L	SW846 8260B
Styrene	ND	1.0	ug/L	SW846 8260B
1,1,1,2-Tetrachloroethane	ND	1.0	ug/L	SW846 8260B
1,2,3-Trichlorobenzene	0.54 I	1.0	ug/L	SW846 8260B
1,2,4-Trichloro-	0.24 J	1.0	ug/L	SW846 8260B
benzene			J.	2002
1,2,3-Trichloropropane	ND	1.0	ug/L	SW846 8260B
1,2,4-Trimethylbenzene	ND	1.0	ug/L	SW846 8260B
o-Xylene	ND	1.0	ug/L	SW846 8260B
Xylenes (total)	ND	2.0	ug/L	SW846 8260B
Methyl tert-butyl ether	ND	5.0	ug/L	SW846 8260B
m-Xylene & p-Xylene	ND	2.0	uq/L	SW846 8260B
2-Chloroethyl vinyl ether	ND	5.0	ug/L	SW846 8260B
			<b>.</b>	. 2.0 02002

(Continued on next page)

#### GC/MS Volatiles

		REPORTI	NG	
PARAMETER	RESULT	LIMIT	UNITS	METHOD
2-Chlorotoluene	ND	1.0	ug/L	SW846 8260B
4-Chlorotoluene	ND	1.0	ug/L	SW846 8260B
1,3-Dichloropropane	ND	1.0	ug/L	SW846 8260B
2,2-Dichloropropane	ND	1.0	ug/L	SW846 8260B
1,1-Dichloropropene	ND	1.0	ug/L	SW846 8260B
Hexachlorobutadiene	ND	1.0	ug/L	SW846 8260B
1,1,2-Trichloro- 1,2,2-trifluoroethane	ND	1.0	ug/L	SW846 8260B
Vinyl acetate	ND	2.0	ug/L	SW846 8260B
1,2,3-Trimethylbenzene	ND	5.0	ug/L	SW846 8260B
Ethyl-t-Butyl Ether (ETBE	ND ·	5.0	ug/L	SW846 8260B
Tert-amyl methyl ether (T	ND	5.0	ug/L	SW846 8260B
Benzene	ND	1.0	ug/L	SW846 8260B
Bromoform	ND	1.0	ug/L	SW846 8260B
Bromomethane	ND	1.0	ug/L	SW846 8260B
Carbon tetrachloride	ND	1.0	ug/L	SW846 8260B
Chlorobenzene	ND	1.0	ug/L	SW846 8260B
Chloroethane	ND	1.0	ug/L	SW846 8260B
Chloroform	ND	1.0	ug/L	SW846 8260B
Chloromethane	ND	1.0	ug/L	SW846 8260B
l,1-Dichloroethane	ND	1.0	ug/L	SW846 8260B
1,2-Dichloroethane	ND	1.0	ug/L	SW846 8260B
1,1-Dichloroethene	ND .	1.0	ug/L	SW846 8260B
1,2-Dichloropropane	ND	1.0	ug/L	SW846 8260B
cis-1,3-Dichloropropene	ND	1.0	ug/L	SW846 8260B
trans-1,3-Dichloropropene	ND	1.0	ug/L	SW846 8260B
Ethylbenzene	ND	1.0	ug/L	SW846 8260B
Methylene chloride	ND	1.0	ug/L	SW846 8260B
1,1,2,2-Tetrachloroethane	ND	1.0	ug/L	SW846 8260B
Tetrachloroethene	ND	1.0	ug/L	SW846 8260B
<b>Toluene</b>	ND	1.0	ug/L	SW846 8260B
1,1,1-Trichloroethane	ND	1.0	ug/L	SW846 8260B
Trichloroethene	ND	1.0	ug/L	SW846 8260B
Vinyl chloride	ND	1.0	ug/L	SW846 8260B
	PERCENT	RECOVERY	ď	
SURROGATE	RECOVERY	LIMITS		
Dibromofluoromethane	86	(73 - 12		
l,2-Dichloroethane-d4	79	(61 - 12		
Toluene-d8	90	(76 - 11	•	
4-Bromofluorobenzene	87	(74 - 11)	L6)	

# NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

J Estimated result. Result is less than RL.

#### SW846 8260B METHOD BLANK SUMMARY

BTWNY	WORKORDER	MO.
KE	ETQ21AA	
1		1

Lab Name: TestAmerica Laboratories, Inc.

Lab Code: TALCAN

SDG Number: 7L12224

Lab File ID: UXX9558.D

Lot Number: A7L150155

Date Analyzed: 12/26/07

Time Analyzed: 11:43

Matrix: WATER

Date Extracted: 12/26/07

GC Column: DB 624

ID: .18

Extraction Method: 5030B/8260B

Instrument ID: UX10

Level: (low/med) LOW

THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES, LCS, LCSD, MS, MSD:

-		SAMPLE		LAB	DATE	TIME
	CLIENT ID.	WORK ORDE	۲ #	FILE ID	ANALYZED	ANALYZED
	======================================	=========	====		========	=======
01	MW74A-121407	KD88H1AA		UXX9565.D	12/26/07	15:07
02	RW-01I121407	KD88Q1AM		UXX9566.D	12/26/07	15:30
03	INTRA-LAB QC	KED5A1AA		UXX9559.D	12/26/07	12:04
04	LAB MS/MSD	KED5A1AC	S	UXX9568.D	12/26/07	16:16
05	LAB MS/MSD	KED5A1AD	D	UXX9569.D	12/26/07	16:38
06	CHECK SAMPLE	KETQ21AC	C	UXX9556.D	12/26/07	10:58
07	DUPLICATE CHECK	KETQ21AD	L	UXX9557.D	12/26/07	11:21
08						
09						
10						
11	<u> </u>					
12		]				
13						
14						
15						
16						
17						
18		Í .				
19		İ				
20		i				
21						
22				i		
23						
24						
25						
26					-	
27						
28			•			
29						
30						

COMMENTS:		
	···	

#### GC/MS Volatiles

Client Lot #...: 7L12224 Work Order #...: KETQ21AA Matrix..... WATER

MB Lot-Sample #: A7L270000-128

Prep Date....: 12/26/07 Final Wgt/Vol..: 5 mL

Analysis Date..: 12/26/07 Prep Batch #...: 7361128

Dilution Factor: 1 Initial Wgt/Vol: 5 mL

		REPORTI	NG	
PARAMETER	RESULT	LIMIT	UNITS	METHOD
Acetone	ND	5.0	ug/L	SW846 8260B
Bromobenzene	ND	1.0	ug/L	SW846 8260B
Bromochloromethane	ND	1.0	ug/L	SW846 8260B
Bromodichloromethane	ND	1.0	ug/L	SW846 8260B
2-Butanone	ND	5.0	ug/L	SW846 8260B
n-Butylbenzene	ND	1.0	ug/L	SW846 8260B
sec-Butylbenzene	ND	1.0	ug/L	SW846 8260B
tert-Butylbenzene	ND	1.0	ug/L	SW846 8260B
Carbon disulfide	ND	1.0	ug/L	SW846 8260B
Dibromochloromethane	ND	1.0	ug/L	SW846 8260B
2-Chlorotoluene	ND	1.0	ug/L	SW846 8260B
4-Chlorotoluene	ND	1.0	ug/L	SW846 8260B
Dibromomethane	ND	1.0	ug/L	SW846 8260B
1,2-Dichlorobenzene	ND	1.0	ug/L	SW846 8260B
1,3-Dichlorobenzene	ND	1.0	ug/L	SW846 8260B
1,4-Dichlorobenzene	ND	1.0	ug/L	SW846 8260B
Dichlorodifluoromethane	ND	1.0	ug/L	SW846 8260B
cis-1,2-Dichloroethene	ND	1.0	ug/L	SW846 8260B
trans-1,2-Dichloroethene	ND	1.0	ug/L	SW846 8260B
1,3-Dichloropropane	ND	1.0	ug/L	SW846 8260B
2,2-Dichloropropane	ŅD	1.0	ug/L	SW846 8260B
1,1-Dichloropropene	ND	1.0	ug/L	SW846 8260B
Trichlorofluoromethane	ND	1.0	ug/L	SW846 8260B
Hexachlorobutadiene	ND	1.0	ug/L	SW846 8260B
2-Hexanone	ND	5.0	ug/L	SW846 8260B
Isopropylbenzene	ND	1.0	ug/L	SW846 8260B
p-Isopropyltoluene	ND	1.0	ug/L	SW846 8260B
Naphthalene	(0.43 J)	1.0	ug/L	SW846 8260B
n-Propylbenzene	ND	1.0	ug/L	SW846 8260B
Styrene	ND	1.0	ug/L	SW846 8260B
1,1,1,2-Tetrachloroethane	ND	1.0	ug/L '	SW846 8260B
1,2,3-Trichlorobenzene	(0.52 J)	1.0	ug/L	SW846 8260B
1,2,4-Trichloro-	8.23 J	1.0	ug/L	SW846 8260B
benzene				
1,2,3-Trichloropropane	ND	1.0	ug/L	SW846 8260B
1,1,2-Trichloro-	ND	1.0	ug/L	SW846 8260B
1,2,2-trifluoroethane				
1,2,4-Trimethylbenzene	ND	1.0	ug/L	SW846 8260B
o-Xylene	ND	1.0	ug/L	SW846 8260B
m-Xylene & p-Xylene	ND	2.0	ug/L	SW846 8260B
1,2-Dibromo-3-chloro-	ND	2.0	ug/L	SW846 8260B
propane	•			

(Continued on next page)

## GC/MS Volatiles

		REPORTI	NG	
PARAMETER	RESULT	LIMIT	UNITS	METHOD
1,2-Dibromoethane	ND	1.0	ug/L	SW846 8260B
4-Methyl-2-pentanone	ND	5.0	ug/L	SW846 8260B
Methyl tert-butyl ether	ND	5.0	ug/L	SW846 8260B
Xylenes (total)	ND	2.0	ug/L	SW846 8260B
Vinyl acetate	ND	2.0	ug/L	SW846 8260B
2-Chloroethyl vinyl ether	ND	5.0	ug/L	SW846 8260B
tert-Butyl alcohol	ND	20	ug/L	SW846 8260B
1,2,3-Trimethylbenzene	ND	5.0	ug/L	SW846 8260B
Diisopropyl Ether (DIPE)	ND	5.0	ug/L	SW846 8260B
Ethyl-t-Butyl Ether (ETBE	ND	5.0	ug/L	SW846 8260B
Tert-amyl methyl ether (T	ND	5.0	ug/L	SW846 8260B
Benzene	ND	1.0	ug/L	SW846 8260B
Bromoform	ND	1.0	ug/L	SW846 8260B
Bromomethane	ND	1.0	uq/L	SW846 8260B
Carbon tetrachloride	ND	1.0	ug/L	SW846 8260B
Chlorobenzene	ND	1.0	ug/L	SW846 8260B
Chloroethane	ND	1.0	ug/L	SW846 8260B
Chloroform	ND	1.0	ug/L	SW846 8260B
Chloromethane	ND	1.0	ug/L	SW846 8260B
l,1-Dichloroethane	ND	1.0	ug/L	SW846 8260B
l,2-Dichloroethane	ND	1.0	ug/L	SW846 8260B
l,1-Dichloroethene	ND	1.0	ug/L	SW846 8260B
l,2-Dichloropropane	ND	1.0	ug/L	SW846 8260B
cis-1,3-Dichloropropene	ND	1.0	ug/L	SW846 8260B
trans-1,3-Dichloropropene	ND	1.0	ug/L	SW846 8260B
Ethylbenzene	ND	1.0	ug/L	SW846 8260B
Methylene chloride	ND	1.0	ug/L	SW846 8260B
l,1,2,2-Tetrachloroethane	ND	1.0	ug/L	SW846 8260B
Tetrachloroethene	ND	1.0	ug/L	SW846 8260B
l'oluene	ND	1.0	ug/L	SW846 8260B
1,1,1-Trichloroethane	ND	1.0	ug/L	SW846 8260B
Prichloroethene	ND	1.0	ug/L	SW846 8260B
inyl chloride	ND	1.0	ug/L	SW846 8260B
	PERCENT	RECOVERY		
URROGATE	RECOVERY	LIMITS	<u>_</u>	
Dibromofluoromethane	88	(73 - 12	2)	
,2-Dichloroethane-d4	80	(61 - 12	8)	
Coluene-d8	95 .	(76 - 11	0)	
-Bromofluorobenzene	86	(74 - 11	6)	•

MOTE (2)

Calculations are performed before rounding to avoid round-off errors in calculated results.

J Estimated result. Result is less than RL.

#### SW846 8260B SURROGATE RECOVERY

Lab Name: TestAmerica Laboratories, Inc.

Client: Tetra Tech NUS, Inc

Lab Code: TALCAN

SDG No: 7L12224

Lot #: A7L120224

Extraction: XXI25QK01

	CLIENT ID.	SRG01	SRG02	SRG03	SRG04	TOT OUT
	=======================================	======	======	======	=======	======
01	MW74A-121107	90	88	89	87	00
02	TB-121107	89	89	_89	88	00
03	RW-01I-121107	90	89	89	86	00
04	INTRA-LAB QC	90	88	88	87	00
05	METHOD BLK. KEKIJIAA	87	88	90	87	00
06	LCS KEK1J1AC	90	85	91	94	00
07	LAB MS/MSD D	90	87	93 ·	95	00
08	LAB MS/MSD S	90	88	89	94	00

SURROGAT	<u>ES</u>	QC LIMITS
SRG01	= Dibromofluoromethane	( 73-122)
SRG02	= 1,2-Dichloroethane-d4	( 61-128)
SRG03	= Toluene-d8	( 76-110)
SRG04	= 4-Bromofluorobenzene	( 74-116)

- # Column to be used to flag recovery values
- * Values outside of required QC Limits
- D System monitoring Compound diluted out

FORM II

#### SW846 8260B SURROGATE RECOVERY

Lab Name: TestAmerica Laboratories, Inc.

Client: Tetra Tech NUS, Inc

Lab Code: TALCAN

SDG No: 7L12224

Lot #: A7L140260

Extraction: XXI25QK01

_						
	CLIENT ID.	SRG01	SRG02	SRG03	SRG04	TOT OUT
	=======================================	======	======	======	======	======
01	INTRA-LAB QC	88	_ 85	90	_84	00
02	MW74A-121207	88	87	95	87	00
03	TB-121207	86	85	93	88	00
04	RW-01I-121207	86	85	91	88	00 [
05	METHOD BLK. KEQ1H1AA	85	85	91	89	[
06	LCS KEQ1H1AC	88	84	92	93	00
07	LAB MS/MSD D	88	82	92	93	00 .
08	LCSD KEQ1H1AD	86	84	94	90	0.0
09	LAB MS/MSD S	89	85	93	94	00

SURROGA	TES	QC LIMITS
SRG01	= Dibromofluoromethane	( 73-122)
SRG02	= 1,2-Dichloroethane-d4	( 61-128)
SRG03	= Toluene-d8	( 76-110)
SRG04	= 4-Bromofluorobenzene	( 74-116)

- # Column to be used to flag recovery values
- * Values outside of required QC Limits
- D System monitoring Compound diluted out

FORM II

#### SW846 8260B SURROGATE RECOVERY

Lab Name: TestAmerica Laboratories, Inc.

Client: Tetra Tech NUS, Inc

Lab Code: TALCAN

SDG No: 7L12224

Lot #: A7L150155

Extraction: XXI25QK01

CLIENT ID	•	SRG01	SRG02	SRG03	SRG04	TOT OUT
=======================================		==== ======	======	======	======	======
01 MW74A-121407	· · · · · · · · · · · · · · · · · · ·	87	79	94	82	00
02 TB-121407		86	79	92	87	00
03 RW-011121407		. 88	79	94	81	00
04 INTRA-LAB QC		86	78	94	85	00 .
05 INTRA-LAB QC		87	78	90	86	00
06 METHOD BLK. KI	ERP01AA	86	79	90	87	00
07 METHOD BLK. K	ETQ21AA	88	80	95	86	00
08 LCS KERP01AC		86	78	94	92	00
09 LCS KETQ21AC		86	81	96	90	00
10 LAB MS/MSD D		87	82	95	89	00
11 LAB MS/MSD D		86	77	94	93	00
12 LCSD KERP01AD		86	77	95	94	00
13 LCSD KETQ21AD		89	83	96	91	00
14 LAB MS/MSD S		85	77	98	85	00
15 LAB MS/MSD S		88	81	_93	91	00

SURROGA	TES	QC LIMITS
SRG01	<pre>= Dibromofluoromethane</pre>	(73-122)
SRG02	= 1,2-Dichloroethane-d4	( 61-128)
SRG03	= Toluene-d8	( 76-110)
SRG04	= 4-Bromofluorobenzene	( 74-116)

FORM II

[#] Column to be used to flag recovery values

^{*} Values outside of required QC Limits

D System monitoring Compound diluted out

#### SW846 8260B CHECK SAMPLE RECOVERY

Lab Name: TestAmerica Laboratories, Inc. Client: Tetra Tech NUS, Inc

Lab Code: TALCAN

SDG No: 7L12224

Lot #: A7L240000

NOTES(S):

WO #: KEQ1H1AC BATCH: 7358112

COMPOUND	SPIKE ADDED (ug/L )	SAMPLE CONCENT. (ug/L )	% REC	QC LIMITS REC	  QUAL
=======================================	===	== ========	=   =====	========	========
1,1-Dichloroethene	10	9.3	93	63- 130	İ
Trichloroethene_	10	9.5	95	75- 122	
Benzene	10	9.3	93	80- 116	
Toluene	10	9.9	99	74 - 119	
Chlorobenzene	10	9.8	98	76- 117	

	•		
			•
* Values outside of QC limits		•	
Spike Recovery:0 out of	5 outside limits		. •
COMMENTS:	·		
			-

#### SW846 8260B CHECK SAMPLE DUPLICATE RECOVERY

Lab Name: TestAmerica Laboratories, Inc. Client: Tetra Tech NUS, Inc

Lab Code: TALCAN

SDG No: 7L12224

Lot #: A7L240000

NOTES(S):

WO #: KEQ1H1AD BATCH: 7358112

COMPOUND	SPIKE ADDED (ug/L )	SAMPLE CONCENT. (ug/L )	% REC	QC LIMITS REC	QUAL
=====================================	=======================================	=======================================	=====	========	========
1,1-Dichloroethene	10	9.4	94	63- 130	
Trichloroethene	10	9.9	99	75- 122	
Benzene	10	9.6	96	80- 116	
Toluene	10	10	104	74- 119	
Chlorobenzene	10	10	100	76- 117	

•		
* Values outside of QC limits		
Spike Recovery:0 out of	5 outside limits	
COMMENTS:		•
		· · · · · · · · · · · · · · · · · · ·

#### SW846 8260B CHECK SAMPLE RECOVERY

Lab Name: TestAmerica Laboratories, Inc. Client: Tetra Tech NUS, Inc

Lab Code: TALCAN

SDG No: 7L12224

Lot #: A7L200000

NOTES (S):

WO #: KEK1J1AC BATCH: 7354500

COMPOUND	SPIKE ADDED (ug/L)	SAMPLE CONCENT. (ug/L)	% REC	QC LIMITS REC	    QUAL  =======
1,1-Dichloroethene	10	9.7	97	63- 130	
Trichloroethene	10	9.6	96	75- 122	
Benzene	10	9.5	95	80- 116	
Toluene	10	9.7	. 97	74 - 119	
Chlorobenzene	10	9.6	96	76- 117	

•			
		· · · · · · · · · · · · · · · · · · ·	
Values outside of QC limits			
spike Recovery:0 out of	5 outside limits		
COMMENTS:			•
	:		<del></del>
*	•	-	-

### SW846 8260B CHECK SAMPLE RECOVERY

Lab Name: TestAmerica Laboratories, Inc. Client: Tetra Tech NUS, Inc

Lab Code: TALCAN

SDG No: 7L12224

Lot #: A7L260000

NOTES(S):

WO #: KERPO1AC BATCH: 7360129

	SPIKE ADDED	SAMPLE CONCENT.	%	QC LIMITS	
COMPOUND	(ug/L )	(ug/L )	REC	REC	QUAL
=======================================	=== =========	=== ===================================	= =====	========	=======
1,1-Dichloroethene	10	9.1	91	63- 130	İ
Trichloroethene	10	9.6	96	75 - 122	
Benzene	10	9.4	94	80- 116	
Toluene	10	10	100	74 - 119	
Chlorobenzene	10	9.7	97	76- 117	

				,				
							•	
						•		
·								
Values outside of QC limit	s							
_								
•								
pike Recovery:0 out o	£ 5	outside	limits					
	<del></del>							
OMMENTS:								
								-
					<del></del>			_

## SW846 8260B CHECK SAMPLE DUPLICATE RECOVERY

Lab Name: TestAmerica Laboratories, Inc. Client: Tetra Tech NUS, Inc

Lab Code: TALCAN

SDG No: 7L12224

Lot #: A7L260000

NOTES(S):

WO #: KERPO1AD BATCH: 7360129

COMPOUND	SPIKE ADDED (ug/L )	SAMPLE CONCENT. (ug/L )	% REC	QC LIMITS REC	QUAL
1,1-Dichloroethene	10	9.3	93	63- 130	
Trichloroethene	10	9.9	99	75 - 122	2
Benzene	10	9.8	98	80- 116	5
Toluene	10	11	1.05	74 - 119	9
Chlorobenzene	10	10	100	76- 11	7

•					
Values outside of	QC limits				
pike Recovery:	0 out of	5 outside	limits		
COMMENTS:	·				
	• • • • • • • • • • • • • • • • • • • •			<del></del>	

# SW846 8260B CHECK SAMPLE RECOVERY

Lab Name: TestAmerica Laboratories, Inc. Client: Tetra Tech NUS, Inc

Lab Code: TALCAN

SDG No: 7L12224

Lot #: A7L270000

WO #: KETQ21AC BATCH: 7361128

COMPOUND	SPIKE ADDED (ug/L )	SAMPLE CONCENT. (ug/L )	% REC	QC LIMITS REC	QUAL
=======================================	==   ==============	==   ========	=   =====	=========	
1,1-Dichloroethene	10	8.9	89	63- 130	
Trichloroethene	10	9.6	96	75- 122	
Benzene	10	9.4	94	80- 116	
Toluene	10	10	102	74- 119	i
Chlorobenzene	10	9.6	96	76- 117	i ———

•			
	·		
* Values outside of QC lim	its		
Spike Recovery:0 out	of5 outside l	limits	
COMMENTS:	•		

NOTES (S):

# SW846 8260B CHECK SAMPLE DUPLICATE RECOVERY

Lab Name: TestAmerica Laboratories, Inc. Client: Tetra Tech NUS, Inc

Lab Code: TALCAN

SDG No: 7L12224

Lot #: A7L270000

WO #: KETQ21AD BATCH: 7361128

COMPOUND	SPIKE ADDED (ug/L )	SAMPLE CONCENT. (ug/L)	% REC	QC LIMITS REC	    QUAL
1,1-Dichloroethene	10	9.4	94	63- 130	
Trichloroethene	10	10	100	75- 122	
Benzene	10	9.7	97	80- 116	
Toluene	10	11	105	74 - 119	
Chlorobenzene	10	9.9	99	76- 117	

						•			
									-
Values outside	of Q	C lim	its						
ike Recovery:	0	out	of	5	outside	limits			
MMENTS:									
									•

Lab Name: TestAmerica Laboratories, Inc. Client: Tetra Tech NUS, Inc

Lab Code: TALCAN

SDG No: 7L12224

Matrix Spike ID: LAB MS/MSD

Lot #: A7L140306

NOTES(S):

WO #: KD7TX1AC BATCH: 7354500

COMPOUND	SPIKE ADDED (ug/L )	SAMPLE CONCENT. (ug/L)	MS CONCENT. (ug/L )	MS % REC	LIMITS REC	QUAL
	=======	=======	========	=====	========	========
1,1-Dichloroethene	10	1.3	1.0	91	62- 130	
Trichloroethene	10	14	23	90	62- 130	
Benzene	10	ND	8.9	89	78- 118	1
Toluene	10	ND	9.0	. 90	70- 119	
Chlorobenzene	10	ND	8.9	89	<u>76- 117</u>	

Lab Name: TestAmerica Laboratories, Inc. Client: Tetra Tech NUS, Inc

Lab Code: TALCAN

SDG No: 7L12224

Matrix Spike ID: LAB MS/MSD

Lot #: A7L140306

NOTES(S):

WO #: KD7TX1AD BATCH: 7354500

	SPIKE	MSD	MSD	•			
	ADDED	CONCENT.	%	ે જ	QC I	LIMITS	]
COMPOUND	(ug/L )	(ug/L )	REC	RPD	RPD	REC	QUAL
=======================================	========	=======	=====	======	====	=======	========
1,1-Dichloroethene	10	11	95	3.9	20	_ 62- 130	i .
Trichloroethene	10	24	95	2.2	20	62- 130	
Benzene	10	9.4	94	5.5	20	78- 118	
Toluene	10	9.8	98	7.9	20	70- 119	
Chlorobenzene	10	9.4	94	4.6	20	76- 117	

							,
						·	
						•	
		•					
4 Column to	o he meed .	to flag reco	T bre vrav	מפנג לבני כום	with an	a a t o mi alc	
		-	very and k	FD Values	with an	ascerisk	
* Values o	utside of (	QC limits					
					•		
RPD: 0	out of	5 outsi	de limits				
оріке кесо	very:	out of	5 outs	ide limits	3		
COMMENTS:							
		•					
	•	•					

Lab Name: TestAmerica Laboratories, Inc. Client: Tetra Tech NUS, Inc

Lab Code: TALCAN

SDG No: 7L12224

Matrix Spike ID: LAB MS/MSD

Lot #: A7L140235

NOTES(S):

WO #: KD6781AC BATCH: 7358112

	SPIKE	SAMPLE	MS	MS		
	ADDED	CONCENT.	CONCENT.	%	LIMITS	İ
COMPOUND	(ug/L )	(ug/L )	(ug/L )	REC	REC	QUAL
=======================================	_=======	=======	=======	=====	=======	========
1,1-Dichloroethene	67	ND	63	95	62- 130	<u> </u>
Trichloroethene	67	72	130	90	62- 130	
Benzene	67	ND	64	96	78- 118	
Toluene	67	ND	67	101	70- 119	
Chlorobenzene	67	ND	64	96	76- 117	

# Column to be used to flag recovery and RPD values with * Values`outside of QC limits	an asterisk
RPD:0 out of0 outside limits Spike Recovery:0 out of5 outside limits	•
COMMENTS:	

Lab Name: TestAmerica Laboratories, Inc. Client: Tetra Tech NUS, Inc

Lab Code: TALCAN

SDG No: 7L12224

Matrix Spike ID: LAB MS/MSD

Lot #: A7L140235

NOTES(S):

WO #: KD6781AD BATCH: 7358112

	SPIKE	MSD	MSD				
	ADDED	CONCENT.	%	앙	QC I	LIMITS	
COMPOUND	(ug/L )	(ug/L )	REC	RPD	RPD	REC	QUAL
	=======	=======	=====	======	====	=======	========
1,1-Dichloroethene	67	63	95	0.050	20	62130	Ì
Trichloroethene	67	140	96	3.1	20	62- 130	
Benzene	67	64	96	0.10	20	78- 118	
Toluene	67	65	98	2.8	20	70- 119	
Chlorobenzene	67	64	96	0.74	20	76- 117	

Column to be used to flag recovery and RPD values with an asterisk Values outside of QC limits	
RPD:0 out of5 outside limits  Spike Recovery:0 out of5 outside limits	
COMMENTS:	

Lab Name: TestAmerica Laboratories, Inc. Client: Tetra Tech NUS, Inc

Lab Code: TALCAN

SDG No: 7L12224

Matrix Spike ID: LAB MS/MSD

Lot #: A7L220131

NOTES(S):

WO #: KEP651AC BATCH: 7360129

COMPOUND	SPIKE ADDED (ug/L )	SAMPLE CONCENT. (ug/L)	MS CONCENT. (ug/L)	MS % REC	LIMITS REC	QUAL
=======================================	=======	=======	========	=====	=======	========
1,1-Dichloroethene	10000	ND	9100	91	62- 130	l
Trichloroethene	10000	ND	9700	97	62- 130	
Benzene	10000	ND	9800	98	78- 118	
Toluene	10000	ND	10000	101	70- 119	
Chlorobenzene	10000	NĎ	9800	98	76- 117	

			•
		·	
# Column to * Values ou		to flag recovery and RPD values with an aster QC limits	isk
		0 outside limits 0 out of5 outside limits	
COMMENTS:			
	<del></del>		

Lab Name: TestAmerica Laboratories, Inc. Client: Tetra Tech NUS, Inc

Lab Code: TALCAN

SDG No: 7L12224

Matrix Spike ID: LAB MS/MSD

Lot #: A7L220131

NOTES(S):

WO #: KEP651AD BATCH: 7360129

1	SPIKE	MSD	MSD			***************************************	<u> </u>
	ADDED	CONCENT.	왕	%	QC I	LIMITS	
COMPOUND	(ug/L )	(ug/L )	REC	RPD	RPD	REC	QUAL
	_=======	=======	=====	======	====		========
1,1-Dichloroethene	10000	9100	91	0.16	20	62- 130	
Trichloroethene	10000	9900	99	1.4	20	62- 130	
Benzene	10000	9800	98	0.22	20	78- 118	
Toluene	10000	10000	103	2.6	20	70- 119	1
Chlorobenzene	10000	9900	99	1.4	20	76- 117	

						•			
						-			
Column	to be	used to	flag re	covery an	d RPD v	values	with a	n asteri	.sk
/alues	outsid	e of QC	limits						
_		-		. ,				-	
				side limi 5 o		limit	_		
rke ked	covery:		Out OL	5	ucside	111111111	0		•
MMENTS:	:			•					
						·			

Lab Name: TestAmerica Laboratories, Inc. Client: Tetra Tech NUS, Inc

Lab Code: TALCAN

SDG No: 7L12224

Matrix Spike ID: LAB MS/MSD

Lot #: A7L180274

NOTES (S):

WO #: KED5A1AC BATCH: 7361128

COMPOUND	SPIKE ADDED (ug/L )	SAMPLE CONCENT. (ug/L)	MS CONCENT. (ug/L )	MS % REC	LIMITS REC	QUAL
Trichloroethene	=======  10	======  ND	=======  9.4	=====   94	========   62- 130	======   
Benzene	10	ND	9.0	90	78~ 118	!!
Toluene	10	ND	10	102	70- 119	
Chlorobenzene	10	ND	9.3	93	76- 117	
1,1-Dichloroethene	10	ND	8.3	83	62- 130	

			•			
•	·					
			•			
‡ Column to	be used t	o flag recovery	and RPD value	s with an a	sterisk	
Values ou	utside of Ç	C limits		•		
		0 outside l				
3pike Recov	rery:0	out of 5	outside limi	ts		
2016/22/20						
COMMENTS:			•			
			·			

Lab Name: TestAmerica Laboratories, Inc. Client: Tetra Tech NUS, Inc

Lab Code: TALCAN

SDG No: 7L12224

Matrix Spike ID: LAB MS/MSD

Lot #: A7L180274

NOTES(S):

WO #: KED5A1AD BATCH: 7361128

	SPIKE	MSD	MSD		-		1
·	ADDED	CONCENT.	용	%	QC I	LIMITS	
COMPOUND	(ug/L )	(ug/L )	REC	RPD	RPD	REC	QUAL
=======================================	=======	======	=====	======	====	=======	=======
1,1-Dichloroethene	10	8.7	87	5.1	20	62- 130	)
Trichloroethene	10	9.8	98	3.9	20	62- 130	0
Benzene	10	9.4	94	4.0	20	78- 118	3
Toluene	10	10	103	1.4	20	70- 119	
Chlorobenzene	10	9.7	97	4.1	20	76- 117	,

Column to be used to flag recovery and RPD values with an asterisk Values outside of QC limits
RPD: 0 out of 5 outside limits
Spike Recovery:0 out of5 outside limits
COMMENTS:

Lab Name: TESTAMERICA-NORTH CANTON Contract:

Lab Code: TALCAN Case No.: SAS No.: SDG No.: 7L12224

Lab File ID (Standard): UXX9355 Date Analyzed: 12/20/07

Instrument ID: A3UX10 Time Analyzed: 0947

Matrix: (soil/water) WATER Level: (low/med) LOW Column: (pack/cap) CAP

		IS1 (CBZ)		IS2 (DCB)		IS3	<del></del> :
		AREA #	RT	AREA #	RT	AREA #	RT
	12 HOUR STD	1511586	8.07	960030	10.33	1935999	5.37
	UPPER LIMIT	3023172	8.57	1920060	10.83	3871998	5.87
	LOWER LIMIT	755793	7.57	480015	9.83	968000	4.87
	EPA SAMPLE NO.	=======================================	=====		=====		=====
01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21	E=====================================	1476404 1399133 1402288 1417092 1426069	8.07 8.07 8.07 8.07 8.07	966300 892729 866552 861486 879072	10.33 10.33 10.33 10.33 10.33	1915239 1895410 1874566 1893501 1887208	5.37 5.37 5.37 5.37 5.37
22							

of internal standard area.

# Column used to flag internal standard area values with an asterisk.

page 1 of 1

FORM VIII VOA

Lab Name: TESTAMERICA-NORTH CANTON Contract:

Lab Code: TALCAN Case No.: SAS No.: SDG No.: 7L12224

Lab File ID (Standard): UXX9410 Date Analyzed: 12/21/07

Instrument ID: A3UX10 Time Analyzed: 1052

Matrix: (soil/water) WATER Level: (low/med) LOW Column: (pack/cap) CAP

		IS1 (CBZ)		IS2 (DCB)		IS3	
		AREA #	RT =====	AREA #	RT	AREA #	RT
	12 HOUR STD	1547774	8.07	979567	10.33	2143809	5.37
	UPPER LIMIT	3095548	8.57	1959134	10.83	4287618	5.87
	LOWER LIMIT	773887	7.57	489784	9.83	1071905	4.87
	EPA SAMPLE NO.				======		
01 02 03 04 05 06 07 08 09 10 12 13 14 15 16 17 18	E=====================================	1594629 1606746 1499094 1458687 1481574 1457426	8.07 8.07 8.07 8.07 8.07 8.07	1008989 1010030 924830 889353 919863 906126	10.32 10.33 10.33 10.32 10.32	2107693 2151884 2066906 2094588 2067428 2052019	5.37 5.37 5.37 5.37 5.37 5.37
21 22							

IS1 (CBZ) = Chlorobenzene-d5 UPPER LIMIT = +100%

IS2 (DCB) = 1,4-Dichlorobenzene-d4 of internal standard area.

IS3 = Fluorobenzene LOWER LIMIT = - 50%

of internal standard area.

# Column used to flag internal standard area values with an asterisk.

page 1 of 1

FORM VIII VOA

Lab Name: TESTAMERICA-NORTH CANTON Contract:

Lab Code: TALCAN Case No.: SAS No.: SDG No.: 7L12224

Lab File ID (Standard): UXX9525 Date Analyzed: 12/24/07

Instrument ID: A3UX10 Time Analyzed: 1042

Matrix: (soil/water) WATER Level: (low/med) LOW Column: (pack/cap) CAP

		IS1(CBZ) AREA #	RT	IS2 (DCB) AREA #	RT	IS3 AREA #	RT
		AICEA #	17.1	AUA #		711177 #	T/T
	12 HOUR STD	1509794	8.07	974993	10.33	2084498	5.37
	UPPER LIMIT	3019588	8.57	1949986	10.83	4168996	5.87
	LOWER LIMIT	754897	7.57	487497	9.83	1042249	4.87
	EPA SAMPLE NO.						
01 02 03 04 05 06 07 08 09 10 11 12 13 14 15	KERPO-CHK KERPO-CKDUP KERPO-BLK TB-121407	1565257 1538409 1466848 1435646	8.07 8.07 8.07 8.07	1004101 1026305 930315 916894	10.33 10.32 10.33 10.32	2121251 2071732 2033593 2035922	5.37 5.37 5.37 5.37
16 17 18							
19 20 21					· · · · · · · · · · · · · · · · · · ·		
22							

IS1 (CBZ) = Chlorobenzene-d5 UPPER LIMIT = +100%

IS2 (DCB) = 1,4-Dichlorobenzene-d4 of internal standard area.

IS3 = Fluorobenzene LOWER LIMIT = - 50%

of internal standard area.

# Column used to flag internal standard area values with an asterisk.

page 1 of 1

FORM VIII VOA

Lab Name: TESTAMERICA-NORTH CANTON Contract:

Lab Code: TALCAN Case No.: SAS No.: SDG No.: 7L12224

Lab File ID (Standard): UXX9554 Date Analyzed: 12/26/07

Instrument ID: A3UX10 Time Analyzed: 1014

Matrix: (soil/water) WATER Level: (low/med) LOW Column: (pack/cap) CAP

-		IS1 (CBZ)		IS2 (DCB)		IS3	
.  _		AREA #	RT	AREA #	RT	AREA #	RT
	12 HOUR STD	1128852	8.07	735555	10.33	1563755	5.37
	UPPER LIMIT	2257704	8.57	1471110	10.83	3127510	5.87
	LOWER LIMIT	564426	7.57	367778	9.83	781878	4.87
	EPA SAMPLE NO.		=====		=====		======
01 K 02 K 03 K 04 M	ETQ2-CHK ETQ2-CKDUP ETQ2-BLK W74A-121407 W-01I121407	1147629 1144695 1084496 1119980 1115510	8.07 8.07 8.07 8.07 8.07	751277 751445 673547 680138 664362	10.32 10.32 10.33 10.33 10.33	1598337 1580979 1584011 1611440 1581599	5.38 5.37 5.37 5.37 5.37

IS1 (CBZ) = Chlorobenzene-d5

IS2 (DCB) = 1,4-Dichlorobenzene-d4
IS3 = Fluorobenzene

UPPER LIMIT = +100% of internal standard area.

LOWER LIMIT = - 50%

of internal standard area.

# Column used to flag internal standard area values with an asterisk.

page 1 of 1

FORM VIII VOA

RW-011121407 1,2,4-trichlorobenzene rep. result 340 ug/L (36525 / 50 ng) (1000ml) (109) = 240.41 ug/L

15 (0,01 à 1000) \a3ux10.i\P71226A.b\UXX9566.D Data File:

Report Date: 26-Dec-2007 16:07

### STL Inc North Canton

VOLATILE REPORT SW-846 Method

Data file: \\cansvr11\dd\chem\MSV\a3ux10.i\P71226A.b\UXX9566.D

Lab Smp Id: KD88Q1AM

Client Smp ID: RW-01I121407

Inj Date : 26-DEC-2007 15:30

Operator : 1904 Inst ID: a3ux10.i

Smp Info : KD88Q1AM, 0.012ML/5ML Misc Info : P71226A, 8260LLUX10,,1904

Comment

: \\cansvr11\dd\chem\MSV\a3ux10.i\P71226A.b\8260LLUX10.m Method

Meth Date: 26-Dec-2007 11:02 quayler Quant Type: ISTD Cal Date : 01-OCT-2007 11:39 Cal File: UXX7037.D

Als bottle: 13

Dil Factor: 1.00000 Integrator: HP RTE

Compound Sublist: 4-8260+IX.sub

Target Version: 4.14 Processing Host: CANSVR11

Concentration Formula: Amt * DF * 1/Vo * CpndVariable

Name	Value	Description
DF Vo Va Cpnd Variable	1.000 0.01200 100.000	Dilution Factor Sample volume Injection Volume Local Compound Variable

	FINAL ug/L)
	ng/L)
Compounds MASS RT EXP RT REL RT RESPONSE ( ng) (	ug/L/
* 1 Fluorobenzene 96 5.372 5.371 (1.000) 1581599 50.0000	
* 2 Chlorobenzene-d5 117 8.069 8.069 (1.000) 1115510 50.0000	
* 3 1,4-Dichlorobenzene-d4 152 10.330 10.329 (1.000) 664362 50.0000	
\$ 4 Dibromofluoromethane 113 4.804 4.803 (0.894) 322912 43.9161	3659.7
\$ 5 1,2-Dichloroethane-d4 65 5.088 5.087 (0.947) 304474 39.3886	3282.4
\$ 6 Toluene-d8 98 6.744 6.743 (0.836) 1234916 46.9758	3914.6
\$ 7 Bromofluorobenzene 95 9.182 9.193 (1.138) 412633 40.5736	3381.1
8 Dichlorodifluoromethane 85 Compound Not Detected.	
9 Chloromethane 50 Compound Not Detected.	
10 Vinyl Chloride 62 1.857 1.845 (0.346) 39876 3.85296	321.08
11 Bromomethane 94 Compound Not Detected.	
12 Chloroethane 64 Compound Not Detected.	
13 Trichlorofluoromethane 101 Compound Not Detected.	
15 Acrolein 56 Compound Not Detected.	
16 Acetone 43 Compound Not Detected.	
17 1,1-Dichloroethene 96 Compound Not Detected.	
18 Freon-113 151 Compound Not Detected.	
19 Iodomethane 142 Compound Not Detected.	
20 Carbon Disulfide 76 Compound Not Detected.	
21 Methylene Chloride 84 Compound Not Detected.	

22 Acetonitrile

41

Compound Not Detected.

23 Acrylonitrile

3 Compound Not Detected.

Data File: \\cansvr11\dd\chem\MSV\a3ux10.i\P71226A.b\UXX9566.D Report Date: 26-Dec-2007 16:07

			CONCENTRATIONS
Compounds	QUANT SIG	DM CVD DM DDI DM DDGDQVQD	ON-COLUMN FINAL
Compounds	MASS	RT EXP RT REL RT RESPONSE	( ng) ( ug/L)
24 Methyl tert-butyl ether	73	Compound Not Detected.	********
25 trans-1,2-Dichloroethene	96	·	
26 Hexane	86	Compound Not Detected. Compound Not Detected.	
27 Vinyl acetate	43	Compound Not Detected.	
28 1,1-Dichloroethane	63	Compound Not Detected.	
29 tert-Butyl Alcohol	-59	Compound Not Detected.	
30 2-Butanone	. 43	Compound Not Detected.	
M 31 1,2-Dichloroethene (total)		179135	19.9254 1660.4
32 cis-1,2-dichloroethene	96	4.401 4.401 (0.819) 179135	19.9254 1660.4
33 2,2-Dichloropropane	77	Compound Not Detected.	19.9234 1000.4
34 Bromochloromethane	128		
35 Chloroform	83	Compound Not Detected.	
36 Tetrahydrofuran	42	Compound Not Detected.	
37 1,1,1-Trichloroethane	97	Compound Not Detected.	
	75	Compound Not Detected.	
38 1,1-Dichloropropene 39 Carbon Tetrachloride		Compound Not Detected.	
40 1,2-Dichloroethane	117 62	Compound Not Detected. 5.159 5.158 (0.960) 9251	1 00007 00 750
41 Benzene	78		1.00507 83.756
42 Trichloroethene	130	Compound Not Detected.	150 005 10040
	. 63	5.691 5.690 (1.059) 1434834	158.905 13242
43 1,2-Dichloropropane 44 1,4-Dioxane	88	Compound Not Detected.	
45 Dibromomethane	93	Compound Not Detected.	
46 Bromodichloromethane	83	Compound Not Detected.	
	63	Compound Not Detected.	
47 2-Chloroethyl vinyl ether	75	Compound Not Detected.	
48 cis-1,3-Dichloropropene 49 4-Methyl-2-pentanone	43	Compound Not Detected.	•
50 Toluene	91	Compound Not Detected.	
	75	Compound Not Detected.	
51 trans-1,3-Dichloropropene	69	Compound Not Detected.	
52 Ethyl Methacrylate 53 1,1,2-Trichloroethane	. 97 .	Compound Not Detected.	
54 1,3-Dichloropropane	76	Compound Not Detected.	
55 Tetrachloroethene	164	Compound Not Detected.	
56 2-Hexanone	43	Compound Not Detected.	
57 Dibromochloromethane	129	Compound Not Detected.	
58 1.2-Dibromoethane	107	Compound Not Detected.	
59 Chlorobenzene	112	Compound Not Detected.	
60 1,1,1,2-Tetrachloroethane	131	Compound Not Detected.	
	131	Compound Not Detected.	
61 Ethylbenzene 62 m + p-Xylene	106	Compound Not Detected.	
- <del>-</del>		Compound Not Detected.	
M 63 Xylenes (total) 64 Xylene-o	106	Compound Not Detected.	
•	106	Compound Not Detected.	
65 Styrene	104	Compound Not Detected.	
66 Bromoform	173	Compound Not Detected.	
67 Isopropylbenzene	105	Compound Not Detected.	
68 1,1,2,2-Tetrachloroethane	83	Compound Not Detected.	
69 1,4-Dichloro-2-butene	53	Compound Not Detected.	
70 1,2,3-Trichloropropane	110	Compound Not Detected.	
71 Bromobenzene	156	Compound Not Detected.	
72 n-Propylbenzene	120	Compound Not Detected.	
73 2-Chlorotoluene	126	Compound Not Detected.	
74 1,3,5-Trimethylbenzene	105	Compound Not Detected.	
75 4-Chlorotoluene	126	Compound Not Detected.	

76 tert-Butylbenzene77 1,2,4-Trimethylbenzene

119 105

Compound Not Detected.
Compound Not Detected.

Data File: \\cansvr11\dd\chem\MSV\a3ux10.i\P71226A.b\UXX9566.D Report Date: 26-Dec-2007 16:07

			CONCENTRA	ATIONS
•	QUANT SIG		ON-COLUMN	FINAL
Compounds	MASS	RT EXP RT REL RT RESPONSE	( ng)	( ug/L)
=======================================	<b>2</b> 522		======	
78 sec-Butylbenzene	105	Compound Not Detected.		
79 4-Isopropyltoluene	119	Compound Not Detected.		
80 1,3-Dichlorobenzene	146	Compound Not Detected.		
81 1,4-Dichlorobenzene	146	Compound Not Detected.		
82 n-Butylbenzene	91	Compound Not Detected.		
83 1,2-Dichlorobenzene	146	Compound Not Detected.		
84 1,2-Dibromo-3-chloropropane	157	Compound Not Detected.		
85 1,2,4-Trichlorobenzene	180	12.341 12.340 (1.195) 36525	2.88491	240.41
86 Hexachlorobutadiene	225	Compound Not Detected.		
87 Naphthalene	128	Compound Not Detected.		
88 1,2,3-Trichlorobenzene	180	Compound Not Detected.		
14 Dichlorofluoromethane	67	Compound Not Detected.		
89 Ethyl Ether	59	Compound Not Detected.		
91 3-Chloropropene	76	Compound Not Detected.		
92 Isopropyl Ether	87	Compound Not Detected.		
93 2-Chloro-1,3-butadiene	53	Compound Not Detected.		
94 Propionitrile	54	Compound Not Detected.		
95 Ethyl Acetate	43	Compound Not Detected.		
96 Methacrylonitrile	41	Compound Not Detected.		
97 Isobutanol	41	Compound Not Detected.		
99 n-Butanol	56	Compound Not Detected.		
100 Methyl Methacrylate	41	Compound Not Detected.		
101 2-Nitropropane	41	Compound Not Detected.		
103 Cyclohexanone	. 55	Compound Not Detected.		
98 Cyclohexane	56	Compound Not Detected.		
143 Methyl Acetate	43	Compound Not Detected.		
144 Methylcyclohexane	83	Compound Not Detected.		
141 1,3,5-Trichlorobenzene	180	Compound Not Detected.		
146 2-Methylnaphthalene	142	Compound Not Detected.		
149 Vinyl Acetate-86	86	Compound Not Detected.		
153 t-Butyl ethyl ether	59	Compound Not Detected.		
154 t-Amyl methyl ether	73	Compound Not Detected.		
155 1,2,3-Trimethylbenzene	105	Compound Not Detected.		

# SEMIVOLATILE ORGANIC GC/MS TUNING AND MASS CALIBRATION - DECAFLUOROTRIPHENYLPHOSPHINE (DFTPP)

Lab Name: TESTAMERICA-NORTH CANTON Contract:

Lab Code: TALCAN Case No.: SAS No.: SDG No.: 7L12224

Lab File ID: 2DF1213 DFTPP Injection Date: 12/13/07

Instrument ID: A4AG2 DFTPP Injection Time: 1520

m/e	ION ABUNDANCE CRITERIA	% RELATIVE ABUNDANCE
51 68 69 70 127 197 198 199 275 365 441 442 443	30.0 - 60.0% of mass 198 Less than 2.0% of mass 69 Mass 69 relative abundance Less than 2.0% of mass 69 40.0 - 60.0% of mass 198 Less than 1.0% of mass 198. Base Peak, 100% relative abundance 5.0 - 9.0% of mass 198 10.0 - 30.0% of mass 198 Greater than 1.0% of mass 198 Present, but less than mass 443 Greater than 40.0% of mass 198 17.0 - 23.0% of mass 442	39.2 0.7 ( 1.8)1 39.0 0.1 ( 0.2)1 51.3 0.4 100.0 6.5 24.5 3.4 10.9 78.2 14.6 ( 18.6)2
	1-Value is % of mass 69 2-Value is % of mass	SS 442

THIS TUNE APPLIES TO THE FOLLOWING SAMPLES, MS, MSD, BLANKS, AND STANDARDS:

	1-	<u></u>			
	EPA	LAB	LAB	DATE	TIME
	SAMPLE NO.	SAMPLE ID	FILE ID	ANALYZED	ANALYZED
	========	=======================================	==========	=======	=======
01	SSTD009	L9	2SHHH1213	12/13/07	1531
02	SSTD008	L8	2SHH1213	12/13/07	1554
03	SSTD007	L7	2SH1213	12/13/07	1611
04	SSTD006	L6	2SMH1213	12/13/07	1628
05	SSTD005	L5	2SMM1213	12/13/07	1646
06	SSTD004	L4	2SM1213	12/13/07	1703
07	SSTD003	L3	2SML1213	12/13/07	1720
80	SSTD002	L2	2SL1213	12/13/07	1737
09	SSTD001	L1	2SLL1213	12/13/07	1754
10				12/13/0/	1/54
11					
12					
13				<u>.</u>	
14					
15					
16					
17					<del></del>
18					
19					
20					
21					
22					
			i.		

page 1 of 1

FORM V SV

# INITIAL CALIBRATION DATA

ourno fakrlet

Start Cal Date : 10-DEC-2007 07:13
End Cal Date : 13-DEC-2007 20:42

Quant Method : ISTD
Origin : Disabled
Target Version : 4.14
Integrator : HP RTE

Method file : \\cansvr11\dd\chem\MSS\a4ag2.i\71213A.b\8270p.m

Last Edit : 14-Dec-2007 06:14 hulat

Curve Type : Average

### Calibration File Names.

Calibi	.al.	LOI	л гтте ман	ies:					
Level	1:	\'	\cansvr11\	/dd/	chem'	\MSS\	∖a4ag2.i\	\71213A.b\	\2SLL1213.D
Level	2:	\'	\cansvr11\	/dd\	chem'	\MSS\	∖a4ag2.i\	\71213A.b\	(2AL1213.D
Level	3:	1.	\cansvrl1\	\dd\	chem'	\MSS\	∖a4ag2.i\	\71213A.b\	2AML1213.D
Level									(2AM1213.D
									(2AMM1213.D
Level	6:	//	\cansvrl1\	/dd/	chem'	\RSS\	\a4ag2.i\	\71213A.b\	(2AMH1213.D
Level	7:	1,	cansvr11\	/dd\	chem'	\MSS\	∖a4ag2.i\	,71213A.b\	(2AH1213.D
Level	8:	/'	cansvr11\	/dd	chem'	\MSS\	\a4ag2.i\	\71213A.b\	(2AHH1213.D
Level	9:	/ '	cansvrl1\	/dd\	chem'	\MSS\	∖a4ag2.i\	\71213A.b\	2AHHH1213.D

	0.05000	0.25000	0.50000	1.000	2.500	5.000	l	]
Compound	Level 1	Level 2	Level 3	Level 4	Level 5	Level 6	RRF	% RSD
	7.500	10.000	12.500				! ]	 
•	Level 7		Level 9	]			]	ļ
198 1,4-Dioxane	======    ++++	0.41047		0.52554	'	!	•	 
	0.48361	0.52470	0.53699				0.48554	8.69
7 N-Nitrosomorpholine	   +++++	0.70792	0.73112	0.72899	0.71692	0.73534		
	0.78891	0.75946	0.79651		1		0.74565	4.38
8 Ethyl methanesulfonate	   +++++	0.43324	0.42482	0.41056	0.40759	0.42051		<del></del>
<u>-</u>	0.43364	0.42483	0.45202		[		0.42590	3.31
9 Pyridine	   +++++	1.15123	1.17962	1.24870	1.20475	1.23991	 	
•	1.26359	1.48042	1.43030	<u>.</u>			1.27482	9.268
10 N-Nitrosodimethylamine	   +++++	0.65384	0.67671	0.74427	0.72057	0.67406	 	 
-	0.69638	0.78049	0.77712			İ	0.71543	6.737
11 Ethyl methacrylate	   +++++	+++++	+++++	+++++	+++++	+++++	<i></i>   	<b>-</b>
	+++++	+++++	+++++				+++++	+++++
12 3-Chloropropionitrile	   ++++	0.70593	0.71569	0.75207	   0.75116	0.72125	 	 
	0.73207	0.81258	0.78859	'			0.74742	4.961
13 Malononitrile	   ++++	 +++++	+++++	++++	+++++	+++++	 	
· · · · · · · · · · · · · · · · · · ·	+++++	+++++	+++++		, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		+++++	+++++

# INITIAL CALIBRATION DATA

Start Cal Date : 10-DEC-2007 07:13 End Cal Date : 13-DEC-2007 20:42

Quant Method : ISTD Origin : Disabled Target Version : 4.14 Integrator : HP RTE

Method file : \\cansvr11\\dd\chem\MSS\a4ag2.i\71213A.b\8270p.m Last Edit : 14-Dec-2007 06:14 hulat

Curve Type : Average

	0.05000	0.25000	0.50000	1.000	2.500	1 5.000	1	1	_
Compound	Level 1	Level 2	Level 3	Level 4	2.500   Level 5	5.000   Level 6	RRF	% RSD	
						İ	Ť	İ	
	7.500 Level 7	10.000   Level 8	12.500 Level 9	] 		 	j		
				, 		=======	  =======		_
237 3,4-Dichloronitrobenzene	+++++	+++++	+++++	+++++	+++++	+++++		İ	
	+++++	+++++ 	+++++ 	 	. 	1	+++++	+++++	
238 Bis(2-hydroxyphenyl)methane	+++++	++++	+++++	+++++	+++++	+++++			-
	+++++	+++++	+++++	[	1	İ	+++++		
239 Bis (4-hydroxyphenyl) methane		+++++		   +++++	+++++	   +++++			-
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	+++++	+++++	+++++				1 +++++	!   +++++	
040 4 (%)							İ		_
240 4-Chlorophenol	+++++	+++++	+++++	+++++ 	+++++	+++++ 	1		
				 	 	 	+++++ 	+++++ 	_
241 2,3-Dichlorophenol	+++++	+++++	+++++	++++	+++++	++++	i İ	İ	
	+++++ 	†++++ 	+++++				+++++	+++++	
242 2,5-Dichlorophenol	+++++	+++++	+++++	++++	+++++		 	 	-
	+++++	++++	+++++		İ	İ	+++++	+++++	
243 Octachlorostyrene	   +++++	+++++	<b></b>     +++++	+++++					-
	+++++	+++++	+++++	*****	+++++	++++	   +++++	   +++++	
									-
244 Octachlorocyclopentene	+++++     +++++	+++++	+++++	++++	+++++	++++			
		TTTTT 	TTTTT 	 	.========	****		+++++	_
5 154 Nitrobenzene-d5	0.33390			0.30027	0.31630	0.29513		Ī	
 	0.31202	0.34552	0.35826	j	ļ		0.31804	7.152	2
155 2-Fluorobiphenyl	1.39485	1.28800	1.30360	1.35697	1.34829	1.30223	 		,
	1.28365	1.43620	1.39136				1.34502	4.043	ţ
3 156 Terphenyl-d14	1.01316	0.82724	0.00001				!		
seephonys unt	0.89490	1.00224	0.86237	0.88987  	0.90608  	0.89374  	0.91879	7.024	
	i	i							.
						i			j

# INITIAL CALIBRATION DATA

Start Cal Date : 10-DEC-2007 07:13 End Cal Date : 13-DEC-2007 20:42

Quant Method : ISTD
Origin : Disabled
Target Version : 4.14
Integrator : HP RTE

Method file : \\cansvr11\\dd\chem\MSS\a4ag2.i\71213A.b\8270p.m

Last Edit : 14-Dec-2007 06:14 hulat

Curve Type : Average

	0.05000	0.25000	0.50000	1.000	2.500	5.000	t	<del>:</del>
Compound	Level 1	Level 2	Level 3	Level 4	="	Level 6	RRF	   % RSD
								• 1000
•	7.500	10.000	12.500				1	
	Level 7	Level 8	Level 9		Ī		[	l
\$ 157 Phenol-d5	=======				=======	<b>88</b> ===0==	'	
, 137 FRENOT-QS	1.71133    1.67578			1.60008	1.64797	1.60788	'	l i
	1.8/5/8	1.90211	1.84030				1.67886	7.210
158 2-Fluorophenol	1.18214	1.13780	1.15830	1.25315	1.26799	1.18340		
	1.23057	1.37980		.,	1.20,55	1.10040	   1.23942	6.932
		i						
159 2,4,6-Tribromophenol	+++++	0.16763	0.17397	0.19098	0.18781	0.18375		. '
	0.19246	0.21507	0.20738	.	. 1	i	0.18988	8.300
186 2-Chlorophenol-d4								
166 2-Chiorophenoi-q4	+++++	1.31248	•	1.39785	1.43423	1.35078	F	
	1.40796	1.60856	1.57111	1	[	[	1.42746	7.586
187 1,2-Dichlorobenzene-d4	+++++	0.83574	0.86667	0.900761	0.88974	0.85869		
	0.85663	0.95938		3.200701	3.003/4]	1 600001	0.88781	4.757
		i		, [		·		
				i	i	,	i I	i

SEMIVOLATILE ORGANIC GC/MS TUNING AND MASS CALIBRATION - DECAFLUOROTRIPHENYLPHOSPHINE (DFTPP)

Lab Name: TESTAMERICA-NORTH CANTON & Contract:

Lab Code: TALCAN Case No.: SAS No.: SDG No.: 7L12224

Lab File ID: 2DF1220

DFTPP Injection Date: 12/20/07

Instrument ID: A4AG2

DFTPP Injection Time: 1559

m/e	ION ABUNDANCE CRITERIA	% RELATIVE ABUNDANCE
51 68 69 70 127 197 198 199 275 365 441 442 443	30.0 - 60.0% of mass 198 Less than 2.0% of mass 69 Mass 69 relative abundance Less than 2.0% of mass 69 40.0 - 60.0% of mass 198 Less than 1.0% of mass 198 Base Peak, 100% relative abundance 5.0 - 9.0% of mass 198 10.0 - 30.0% of mass 198 Greater than 1.0% of mass 198 Present, but less than mass 443 Greater than 40.0% of mass 198 17.0 - 23.0% of mass 442	34.2 0.6 ( 1.6)1 36.0 0.1 ( 0.4)1 50.3 0.5 100.0 6.9 25.5 3.4 12.6 87.9 16.5 ( 18.8)2
	1-Value is % of mass 69 2-Value is % of mass 69	GG 442

THIS TUNE APPLIES TO THE FOLLOWING SAMPLES, MS, MSD, BLANKS, AND STANDARDS:

	EPA	LAB	T 375		
	SAMPLE NO.		LAB	DATE	TIME
	SAMPLE NO.	SAMPLE ID	FILE ID	ANALYZED	ANALYZED
0.7	GGTTD 0.0.5	=======================================	===========	========	========
01	SSTD006	L6	2SMH1220	12/20/07	1615
02	KD927BLK	KD9271AA	KD9271AA	12/20/07	1650
03	KD927CHK	KD9271AC	KD9271AC	12/20/07	1707
04	KD927CKDUP	KD9271AD	KD9271AD	12/20/07	1724
05	MW74A-121407	KD88H1CG	KD88H1CG	12/20/07	2251
06	RW-01I121407	KD88Q1CG	KD88Q1CG	12/21/07	0000
07	_				0000
08				<del></del>	
09					
10					
11					
12	<del></del>				
13					
14					
15					
16					
17					
18					
19					
20	<del></del>				
	<del></del>				
21					
22					

page 1 of 1

FORM V SV

Page 1

Data File: \\cansvr11\dd\chem\MSS\a4ag2.i\71220A.b\2SMH1220.D

Report Date: 21-Dec-2007 09:12

# TestAmerica North Canton

# CONTINUING CALIBRATION COMPOUNDS

Instrument ID: a4ag2.i

Injection Date: 20-DEC-2007 16:15

Lab File ID: 2SMH1220.D Analysis Type:

Init. Cal. Date(s): 10-DEC-2007 13-DEC-2007

Init. Cal. Times:

07:13 20:42

Quant Type: ISTD

Lab Sample ID: L6 Quant Type: ISTD Method: \\cansvr11\\dd\\chem\\MSS\\a4ag2.i\\71220A.b\\8270P.m

	! <del></del>	!	CCAL	MIN	1	MAX	1
COMPOUND	RRF / AMOUNT	RF5	RRF5	RRF	%D / %DRIFT	%D / %DRIFT	CURVE TYP
		=======================================		=====	========		
198 1,4-Dioxane	0.48554	0.49703	0.49703	0.010	-2.36629	50.00000	Average
9 Pyridine	1.27482	1.14749	1.14749	0.010	9.98814	50.00000	Average
10 N-Nitrosodimethylamine	0.71543	0.65685	0.65685	0.010	8.18803	50.00000	
12 3-Chloropropionitrile	0.74742	0.68615	0.68615	0.010	8.19761	50.00000	Averaged
209 Benzaldehyde	5.00000	4.73491	0.66900	0.010	5.30188	0.000e+000	_
21 Aniline	1.96912	1.52268	1.52268	0.010	22.67215	50.00000	
22 Phenol	1.67272	1.56077	1.56077	0.010	6.69280	20.00000	Averaged
23 bis(2-Chloroethyl)ether	1.25198	1.48868	1.48868	0.010	-18.90587		
24 2-Chlorophenol	1.50682	1.43828	1.43828	0.010	4.54866		
26 1,3-Dichlorobenzene	1.43423	1.41579	1.41579	0.010			
27 1,4-Dichlorobenzene	0.88384	0.93303	0.93303	0.010			5
28 1,2-Dichlorobenzene	1.38661	1.34700	1.34700	0.010	2.85684		
29 Benzyl Alcohol	0.93153	0.90588	0.90588	•	2.75417		
30 2-Methylphenol	1.26710	1.22833	1.22833		3.05981	50.00000	Averaged
31 bis(2-Chloroisopropyl)ether	1.76276	1.57001	1.57001	,	10.93467		-
37 Acetophenone	1.81827	1.73648	1.73648		4.49801		
32 N-Nitroso-di-n-propylamine	0.92699	0.87156	0.87156		5.97955		Averaged
92 4-Methylphenol	1.39194	1.32665	1.32665		4.69070	50.00000	<b>J</b>
4 Hexachloroethane	0.50991	0.50407	0.50407	•	1.14597		Averaged
5 Nitrobenzene	0.30288	0.28816	0.28816	•	4.85826	50.00000	Averaged
1 Isophorone	0.53744	0.52208	0.52208	•	2.85806	50.00000  50.00000	Averaged
2 2-Nitrophenol	0.19493	0.19096	0.19096	•	2.03541		Averaged
3 2,4-Dimethylphenol	0.35682	0.33731	0.33731		•	20.00000	Averaged
4 bis(2-Chloroethoxy)methane	0.33682	0.33030	0.33030 0		5.46784	50.00000	Averaged
6 2,4-Toluenediamene	5.00000	4.49550	0.18790	,	1.93612	50.00000	Averaged
7 1,3,5-Trichlorobenzene	0.27514	0.27277	0.18790 0			0.000e+000	
8 2,4-Dichlorophenol	0.28332	0.28041	•	•	0.86135	50.00000	Averaged
9 Benzoic Acid	10.00000	9.69272	0.28041 0		1.02642	20.00000	Averaged
0 1,2,4-Trichlorobenzene	0.28153		0.21926		•	0.000e+000	Quadratic
1 Naphthalene	0.98798]	0.28364	0.28364 0		-0.75076	50.00000	Averaged
2 4-Chloroaniline	0.41361	0.95674	0.95674 0	•	3.16196	50.00000]	Averaged
6 Hexachlorobutadiene	•	0.41750	0.41750 0		-0.94097	50.00000	Averaged
10 Caprolactam	0.15751	0.16248	0.16248 0	•	-3.15738	20.00000	Averaged
7 1,2,3-Trichlorobenzene	0.10206	0.11011	0.11011 0		-7.88977	50.00000	Averaged
9 4-Chloro-3-Methylphenol	0.26110	0.26000	0.26000 0	- 1	0.42105	50.00000	Averaged
,	0.29916	0.29804	0.29804 0		0.37200	20.00000	Averaged
2 2-Methylnaphthalene	0.59198	0.58568	0.58568 0	,	1.06463	50.00000	Averaged
3 1-Methylnaphthalene	0.64923	0.64476	0.64476 0	.010	0.68842	50.00000	Averaged
Hexachlorocyclopentadiene	0.37952	0.35233	0.35233   0	.050	7.16472	50.00000	Averaged
5 2,4,6-Trichlorophenol	0.38939	0.38412	0.38412 0	.010	1.35334	20.00000	Averaged
2,4,5-Trichlorophenol	0.40946	0.40049	0.40049 0	.010	2.19090	50.00000	Averaged
1 1,1'-Biphenyl	1.57883	1.50244	1.50244 0	.010	4.83889	50.00000	Averaged
1,2,3,5-Tetrachlorobenzene	0.52998	0.51122	0.51122 0	1	3.54032	50.000001	Averaged

# CONTINUING CALIBRATION COMPOUNDS

Instrument ID: a4ag2.i Injection Date: 20-DEC-2007 16:15
Lab File ID: 2SMH1220.D Init. Cal. Date(s): 10-DEC-2007 13-DEC-2007
Analysis Type: Init. Cal. Times: 07:13 20:42
Lab Sample ID: L6 Quant Type: ISTD
Method: \\cansvr11\\dd\chem\MSS\a4ag2.i\\71220A.b\\8270P.m

COMPOUND  70 2-Chloronaphthalene			CCAL RRF5	MIN RRF	•	MAX	!
					IAD / ADKIET.	'I%D / %DRIFT	CURVE TYPE
70 2-Chloronaphthalene							
	1.16859	1.11387					
73 2-Nitroaniline	0.32271	0.31273		•	•		
74 1,2,3,4-Tetrachlorobenzene	0.48107	0.47328			•	•	
76 Dimethylphthalate	1.34402	1.36933			•	•	
78 2,6-Dinitrotoluene	0.29259	0.31279			•	•	
79 Acenaphthylene	1.90107	1.85646			•	•	
80 1,2-Dinitrobenzene	0.15209	0.15741				•	. ,
81 3-Nitroaniline	0.33168	0.34418					
82 Acenaphthene	1.20899	1.17719	1.17719	0.010	2.63057	•	
83 2,4-Dinitrophenol	10.00000	9.24269	0.21834	0.050		0.000e+000	
85 4-Nitrophenol	0.20758	0.21309					•
86 Dibenzofuran	1.69866	1.65198	1.65198	0.010	2.74814		
87 2,4-Dinitrotoluene	0.39773	0.44013	0.44013	0.010			
91 2,3,5,6-Tetrachlorophenol	0.34691	0.34694	0.34694	0.010	-0.00950		
93 Diethylphthalate	1.36848	1.43140	1.43140	0.010	-4.59763		
94 Fluorene	1.39480	1.40356	1.40356	0.010	-0.62814	50.00000	
95 4-Chlorophenyl-phenylether	0.63281	0.65440	0.65440	0.010	-3.41305		
96 4-Nitroaniline	0.36236	0.38657	0.38657	0.010	-6.68083		
98 4,6-Dinitro-2-methylphenol	5.00000	4.49655	0.15394	0.010	10.06909	0.000e+000	- •
99 N-Nitrosodiphenylamine	0.58970	0.57417	0.57417	0.010	2.63346		
00 1,2-Diphenylhydrazine	0.72623	0.65042	0.65042	0.010	10.43892	50.00000j	
06 4-Bromophenyl-phenylether	0.20608	0.20504	0.20504	0.010	0.50316	50.00000	Averaged
.07 Hexachlorobenzene	0.23332	0.23179	0.23179	0.010	0.65689	50.00000	Averaged
212 Atrazine	0.21238	0.21762	0.21762	0.010	-2.46413	50.00000	- •
.11 Pentachlorophenol	10.00000	10.62171	0.16724	0.010	-6.21710	20.00000	Quadratic
.15 Phenanthrene	1.21351	1.16578	1.16578	0.010	3.93265	50.00000	Averaged
.16 Anthracene	1.19896	1.18613	1.18613	0.010	1.07032	50.00000	Averaged
19 Carbazole	1.08647	1.07704	1.07704	0.010	0.86789	50.00000	Averaged
20 Di-n-Butylphthalate	1.30928	1.38279	1.38279	0.010	-5.61448	50.00000	Averaged
23 Fluoranthene	1.19072	1.22509	1.22509	0.010	-2.88695	20.00000	Averaged
24 Benzidine	0.80231	0.75422	0.75422	0.010	5.99366	50.00000	Averaged
25 Pyrene	1.35505	1.31005	1.31005	0.010	3.32095	50.00000	Averaged
31 Butylbenzylphthalate	0.64139	0.61474	0.61474	0.010	4.15600	50.00000	Averaged
33 3,3'-Dimethoxybenzidine	0.29729	0.28195	0.28195	0.010	5.16027	50.00000	Averaged
35 3,3'-Dichlorobenzidine	0.49843	0.48833	0.48833 0	0.010	2.02490	50.00000	Averaged
36 Benzo(a)Anthracene	1.35300	1.28711	1.28711	0.010	4.86973	50.00000	Averaged
37 Chrysene	1.24199	1.19222	1.19222 0	0.010	4.00667	50.00000	Averaged
38 4,4'-Methylene bis(o-chloro	0.23719	0.24209	0.24209	.010	-2.06525	50.00000	Averaged
39 bis(2-ethylhexyl)Phthalate	0.91552	0.88977	0.88977 0	.010	2.81269	50.00000	Averaged
40 Di-n-octylphthalate	5.00000	4.71751	1.47685 0		•	0.000e+000	Quadratic
41 Benzo(b)fluoranthene	1.32205	1.34841	1.34841 0	.010	-1.99320	50.00000	Averaged
42 Benzo(k)fluoranthene	1.34984	1.28078	1.28078		5.11624	50.00000	Averaged
	li_	i	i	i	i	1	-31

Data File: \\cansvr11\dd\chem\MSS\a4ag2.i\71220A.b\2SMH1220.D Page 3

Report Date: 21-Dec-2007 09:12

## TestAmerica North Canton

# CONTINUING CALIBRATION COMPOUNDS

Instrument ID: a4ag2.i Injection Date: 20-DEC-2007 16:15
Lab File ID: 2SMH1220.D Init. Cal. Date(s): 10-DEC-2007 13-DEC-2007
Analysis Type: Init. Cal. Times: 07:13 20:42
Lab Sample ID: L6 Quant Type: ISTD
Method: \\cansvrll\\dd\\chem\\MSS\\a4ag2.i\\71220A.b\\8270P.m

	·		CCAL	MIN	1	MAX	l
COMPOUND	RRF / AMOUNT	RF5	RRF5	RRF	%D / %DRIFT	%D / %DRIFT	CURVE TYP
======================================	==== ==================================		=========	=====	========		========
146 Benzo(a)pyrene	1.19217	1.16229	1.16229	0.010	2.50634	20.00000	Average
149 Indeno(1,2,3-cd)pyrene	1.30270	1.29892	1.29892	0.010	0.29075	50.00000	
150 Dibenz(a,h)anthracene	1.11571	1.12199	1.12199	0.010	-0.56284	50.00000	_
151 Benzo(g,h,i)perylene	1.08764	1.08948	1.08948	0.010	-0.16938	50.00000	_
\$ 154 Nitrobenzene-d5	0.31804	0.30042	0.30042	0.010	5.54205	50.00000	
\$ 155 2-Fluorobiphenyl	1.34502	1.27573	1.27573	0.010	5.15163		•
\$ 156 Terphenyl-d14	0.91879	0.90887	0.90887	0.010	1.07972	50.00000	Average
157 Phenol-d5	1.67886	1.56916	1.56916	0.010	6.53416	50.000001	Average
158 2-Fluorophenol	1.23942	1.20364	1.20364	0.010	2.88691		Average
159 2,4,6-Tribromophenol	0.18988	0.20907	0.20907	0.010	-10.10372		Average
\$ 186 2-Chlorophenol-d4	1.42746	1.37726	1.37726	0.010	3.51670	50.00000	Average
187 1,2-Dichlorobenzene-d4	0.88781	0.87252	0.87252	0.010			Average
1 195 Cresols, total	2.65905	2.55498	2.55498	0.010	,		Average
01 Diphenylamine	0.58970	0.57417	0.57417	0.010		50.00000	Average
		i	i	i	1	1	52450

## 5B

# SEMIVOLATILE ORGANIC GC/MS TUNING AND MASS CALIBRATION - DECAFLUOROTRIPHENYLPHOSPHINE (DFTPP)

Lab Name: TESTAMERICA-NORTH CANTON | Contract:

Lab Code: TALCAN Case No.: SAS No.: SDG No.: 7L12224

Lab File ID: 2DF1221

DFTPP Injection Date: 12/21/07

Instrument ID: A4AG2

DFTPP Injection Time: 0916

m/e	ION ABUNDANCE CRITERIA	% RELATIVE ABUNDANCE
51 68 69 70 127 197 198 199 275 365 441 442 443	30.0 - 60.0% of mass 198 Less than 2.0% of mass 69 Mass 69 relative abundance Less than 2.0% of mass 69 40.0 - 60.0% of mass 198 Less than 1.0% of mass 198 Base Peak, 100% relative abundance 5.0 - 9.0% of mass 198 10.0 - 30.0% of mass 198 Greater than 1.0% of mass 198 Present, but less than mass 443 Greater than 40.0% of mass 198 17.0 - 23.0% of mass 442	36.2 0.6 ( 1.6)1 37.7 0.2 ( 0.5)1 51.7 0.5 100.0 6.6 25.2 3.5 11.7 82.2 15.6 ( 19.0)2
1	1-Value is % of mass 69 2-Value is % of mass	ass 442

THIS TUNE APPLIES TO THE FOLLOWING SAMPLES, MS, MSD, BLANKS, AND STANDARDS:

	EPA SAMPLE NO.	LAB SAMPLE ID	LAB FILE ID	DATE ANALYZED	TIME ANALYZED
01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18	SAMPLE NO.  ===================================	L6 KD5PD1AA KD5PD1AC KD5PD1AD	2SMH1221 KD5PD1AA KD5PD1AC KD5PD1AD	12/21/07 12/21/07 12/21/07 12/21/07	ANALYZED  0932 1137 1155 1212
21 22					

page 1 of 1

FORM V SV

Zbfizera

Page 1

Data File: \\cansvr11\dd\chem\MSS\a4ag2.i\71221A.b\2SMH1221.D

Report Date: 21-Dec-2007 09:58

### TestAmerica North Canton

## CONTINUING CALIBRATION COMPOUNDS

Instrument ID: a4ag2.i

Injection Date: 21-DEC-2007 09:32

Lab File ID: 2SMH1221.D

Init. Cal. Date(s): 10-DEC-2007 13-DEC-2007

Analysis Type: Init. Cal. Times:

07:13 20:42

Lab Sample ID: L6 Quant Type: ISTD

Method: \CANSVR11\dd\chem\MSS\a4aq2.i\71221A.b\8270P.m

	ļ	Į.	CCAL	MIN	1	MAX	
COMPOUND	RRF / AMOUNT	:	RRF5		%D / %DRIFT		,
198 1,4-Dioxane	•				*	•	
9 Pyridine	0.48554	•			•	•	
•	1.27482	•				•	
10 N-Nitrosodimethylamine	0.71543	•	'			•	
12 3-Chloropropionitrile	0.74742		'		•	•	
209 Benzaldehyde	5.00000	•			•	0.000e+000	, -
21 Aniline	1.96912	•	•			•	•
22 Phenol	1.67272	•	•				
23 bis(2-Chloroethyl)ether	1.25198	•	1.16503	0.010	6.94473	50.00000	Average
24 2-Chlorophenol	1.50682	1.40633	1.40633	0.010	6.66882	50.00000	Average
26 1,3-Dichlorobenzene	1.43423		1.38150	0.010	3.67709	50.00000	Average
27 1,4-Dichlorobenzene	0.88384	0.84422	0.84422	0.010	4.48252	20.00000	Average
28 1,2-Dichlorobenzene	1.38661	1.33389	1.33389	0.010	3.80237	50.00000	Average
29 Benzyl Alcohol	0.93153	0.86901	0.86901	0.010	6.71210	50.00000	Average
30 2-Methylphenol	1.26710	1.15168	1.15168	0.010	9.10926	50.00000	Average
31 bis(2-Chloroisopropyl)ether	1.76276	1.34256	1.34256	0.010	23.83746	50.00000	Average
37 Acetophenone	1.81827	1.68632	1.68632	0.010	7.25704	50.00000	Average
32 N-Nitroso-di-n-propylamine	0.92699	0.83950	0.83950	0.050	9.43820	50.00000	Average
192 4-Methylphenol	1.39194	1.27880	1.27880	0.010	8.12853	50.00000	Average
34 Hexachloroethane	0.50991	0.48865	0.48865	0.010	4.17005	50.00000	Average
35 Nitrobenzene	0.30288	0.28552	0.28552	0.010]	5.72924	50.00000	Average
11 Isophorone	0.53744	0.49309	0.49309	0.010	8.25185	50.00000	Average
42 2-Nitrophenol	0.19493	0.19221	0.19221	0.010	1.39621	20.00000	Average
43 2,4-Dimethylphenol	0.35682	0.33463	0.33463	0.010	6.21719	50.00000	Average
44 bis(2-Chloroethoxy)methane	0.33682	0.31667	0.31667	0.010	5.98052	50.00000	Average
16 2,4-Toluenediamene	5.00000	4.26352	0.18188	0.010	14.72959	0.000e+000	_
17 1,3,5-Trichlorobenzene	0.27514	0.27057	0.27057	0.010	1.66062	50.00000	Average
18 2,4-Dichlorophenol	0.28332	0.27636	0.27636	•	2.45684	20.00000	Average
19 Benzoic Acid	10.00000	8.41429	0.18647			0.000e+000	_
0 1,2,4-Trichlorobenzene	0.28153	0.28126	0.28126		0.09480	50.000001	Average
51 Naphthalene	0.98798	0.91010	0.91010		7.88245	50.00000	Average
52 4-Chloroaniline	0.41361	0.39148	0.39148	٠.	5.35012	50.00000]	Average
66 Hexachlorobutadiene	0.15751	0.16259	0.16259	•	-3.22828	20.000001	Average
210 Caprolactam	0.10206	0.09780	0.09780	•	4.17406	50.00000	Average
7 1,2,3-Trichlorobenzene	0.26110	0.25650	0.25650		1.76226	50.00000	Average
9 4-Chloro-3-Methylphenol	0.29916	0.28649	0.28649		4.23481	20.00000	Average
2 2-Methylnaphthalene	0.59198	0.56809	0.56809				_
3 1-Methylnaphthalene			•	•	4.03621	50.00000	Average
4 Hexachlorocyclopentadiene	0.64923	0.62385	0.62385	•	3.90866	50.00000	Average
• •	0.37952	0.37855	0.37855 0	•	0.25501	50.00000	Average
66 2,4,6-Trichlorophenol	0.38939	0.38017	0.38017 0		2.36851	20.00000]	Average
7 2,4,5-Trichlorophenol	0.40946	0.40422	0.40422 0	•	1.28050	50.00000	Averaged
11 1,1'-Biphenyl	1.57883	1.51916	1.51916		3.77944	50.00000	Averaged
8 1,2,3,5-Tetrachlorobenzene	0.52998	0.52658	0.52658	.010	0.64162	50.00000	Averaged
	_				1.		

Data File: \\cansvr11\dd\chem\MSS\a4ag2.i\71221A.b\2SMH1221.D Page 2

Report Date: 21-Dec-2007 09:58

### TestAmerica North Canton

## CONTINUING CALIBRATION COMPOUNDS

Instrument ID: a4ag2.i Injection Date: 21-DEC-2007 Lab File ID: 2SMH1221.D Init. Cal. Date(s): 10-DEC-2 Analysis Type: Init. Cal. Times: 07:13 Lab Sample ID: L6 Quant Type: ISTD Method: \CANSVR11\dd\chem\MSS\a4ag2.i\71221A.b\8270P.m Injection Date: 21-DEC-2007 09:32
Init. Cal. Date(s): 10-DEC-2007 13-DEC-2007
Init. Cal. Times: 07:13 20:42
Quant Times: 1STD

			CCAL	MIN	J	XAM	1
COMPOUND	RRF / AMOUNT	RF5	RRF5	RRF	%D / %DRIFT	%D / %DRIFT	CURVE TYP
	== ======	=========================	~	====	=========	========	
70 2-Chloronaphthalene	1.16859	1.14015	1.14015	0.010	2.43414	50.00000	Average
73 2-Nitroaniline	0.32271	0.31328	0.31328	0.010	2.92287	50.00000	Average
74 1,2,3,4-Tetrachlorobenzene	0.48107	0.48006	0.48006	0.010	0.20876	50.00000	Average
76 Dimethylphthalate	1.34402	1.31211	1.31211	0.010	2.37423	50.00000	Average
78 2,6-Dinitrotoluene	0.29259	0.31378	0.31378	0.010	-7.24228	50.00000	Average
79 Acenaphthylene	1.90107	1.85720	1.85720	0.010	2.30757	50.00000	Average
80 1,2-Dinitrobenzene	0.15209	0.15666	0.15666	0.010	-3.00509	50.00000	Average
81 3-Nitroaniline	0.33168	0.33403	0.33403	0.010	-0.71009	50.00000	Average
82 Acenaphthene	1.20899	1.14195	1.14195	0.010	5.54545	20.00000	Average
83 2,4-Dinitrophenol	10.00000	7.68091	0.17762	0.050	23.19085	0.000e+000	Quadrati
85 4-Nitrophenol	0.20758	0.19595	0.19595	0.050	5.60250	50.00000	Average
86 Dibenzofuran	1.69866	1.61413	1.61413	0.010	4.97599	50.00000	Average
87 2,4-Dinitrotoluene	0.39773	0.41243	0.41243	0.010	-3.69717	50.00000	Average
91 2,3,5,6-Tetrachlorophenol	0.34691	0.32184	0.32184	0.010	7.22515	50.00000	Average
93 Diethylphthalate	1.36848	1.32260	1.32260	0.010	3.35261	50.00000	Average
94 Fluorene	1.39480	1.33352	1.33352	0.010	4.39361	50.00000	Average
95 4-Chlorophenyl-phenylether	0.63281	0.62312	0.62312	0.010	1.53131	50.00000	Average
96 4-Nitroaniline	0.36236	0.35629	0.35629	0.010	1 67545	50.00000	Average
98 4,6-Dinitro-2-methylphenol	5.00000	3.90683	0.13189	0.010	21.86345	0.000e+000	Quadrati
99 N-Nitrosodiphenylamine	0.58970	0.56443	0.56443	0.010	4.28611	20.00000	Average
100 1,2-Diphenylhydrazine	0.72623	0.64858	0.64858 0	0.010	10.69294	50.00000	_
106 4-Bromophenyl-phenylether	0.20608	0.20509	0.20509 0	0.010	0.48115	50.00000	Average
107 Hexachlorobenzene	0.23332	0.23115	0.23115 0	0.010	0.93244	50.00000	Average
212 Atrazine	0.21238	0.20691	0.20691 0	0.010	2.57700	50.00000	Average
111 Pentachlorophenol	10.00000	9.16406	0.14248 0	0.010	8.35937	20.00000	Quadrati
115 Phenanthrene	1.21351	1.15449	1.15449 0	.010	4.86296		Average
116 Anthracene	1.19896	1.16528	1.16528 0	0.010	2.80929	50.00000	Average
19 Carbazole	1.08647	1.03326	1.03326 0	0.010	4.89753	50.00000	_
.20 Di-n-Butylphthalate	1.30928	1.32872	1.32872 0	0.010	-1.48487	50.00000	_
.23 Fluoranthene	1.19072	1.15634	1.15634 0	.010	2.88705	20.000001	Average
.24 Benzidine	0.80231	0.70391	0.70391 0		12.26434	50.00000	-
.25 Pyrene	1.35505	1.29131	1.29131 0	•	4.70339	50.00000	Average
.31 Butylbenzylphthalate	0.64139	0.61905	0.61905 0	•	3.48357	50.00000	Average
33 3,3'-Dimethoxybenzidine	0.29729	0.27801	0.27801 0		6.48404	50.00000	Average
35 3,3'-Dichlorobenzidine	0.49843	0.49466	0.49466 0		0.75579	50.00000	Average
36 Benzo(a)Anthracene	1.35300	1.27997	1.27997 0		5.39784	50.00000	Average
37 Chrysene	1.24199	1.15471	1.15471 0		7.02722	50.000001	Average
38 4,4'-Methylene bis(o-chloro	0.23719	0.23439	0.23439 0	•	1.17999	50.000001	Average
39 bis(2-ethylhexyl)Phthalate	0.91552	0.87185	0.87185 0		4.76992	50.00000	Average
40 Di-n-octylphthalate	5.00000	4.62618	1.44571 0	•		0.000e+000	_
41 Benzo(b) fluoranthene	1.32205	1.30305	1.30305 0	•	1.43788	50.00000	Average
42 Benzo(k) fluoranthene	1.34984	1.26116	1.26116 0		6.56912	50.000001	Average
12 Schill (N) Littoralichene	1 1.34304	1.50110	1.20110	.010	0.20217	50.000001	Average

Data File: \\cansvr11\dd\chem\MSS\a4ag2.i\71221A.b\2SMH1221.D Page 3

Report Date: 21-Dec-2007 09:58

### TestAmerica North Canton

## CONTINUING CALIBRATION COMPOUNDS

Instrument ID: a4ag2.i

Injection Date: 21-DEC-2007 09:32

Lab File ID: 2SMH1221.D

Init. Cal. Date(s): 10-DEC-2007 13-DEC-2007
Init. Cal. Times: 07:13 20:42

Analysis Type:

Lab Sample ID: L6 Quant Type: ISTD Method: \\CANSVR11\dd\chem\MSS\a4ag2.i\71221A.b\8270P.m

	1		CCAL	MIN	1	MAX	 
COMPOUND	RRF / AMOUNT	RF5	RRF5	RRF	%D / %DRIFT	%D / %DRIFT	CURVE TYPE
	=				=======		======
146 Benzo(a)pyrene	1.19217	1.14409	1.14409	0.010	4.03296	20.00000	Averaged
149 Indeno(1,2,3-cd)pyrene	1.30270	1.28337	1.28337	0.010	1.48408	50.00000	Averaged
150 Dibenz(a,h)anthracene	1.11571	1.10994	1.10994	0.010	0.51715	50.00000	Averaged
151 Benzo(g,h,i)perylene	1.08764	1.07770	1.07770	0.010	0.91316	50.00000	Averaged
\$ 154 Nitrobenzene-d5	0.31804	0.29543	0.29543	0.010	7.10870	50.00000	Averaged
\$ 155 2-Fluorobiphenyl	1.34502	1.30822	1.30822	0.010	2.73559	50.00000	Averaged
\$ 156 Terphenyl-d14	0.91879	0.89577	0.89577	0.010	2.50477	50.00000	Averaged
\$ 157 Phenol-d5	1.67886	1.54392	1.54392	0.010	8.03794	50.00000	Averaged
\$ 158 2-Fluorophenol	1.23942	1.16482	1.16482	0.010	6.01915	50.00000	Averaged
\$ 159 2,4,6-Tribromophenol	0.18988	0.19974	0.19974	0.010	-5.19253	50.00000	Averaged
\$ 186 2-Chlorophenol-d4	1.42746	1.34914	1.34914	0.010	5.48666	50.00000	Averaged
\$ 187 1,2-Dichlorobenzene-d4	0.88781	0.84530	0.84530	0.010	4.78759	50.00000	Averaged
M 195 Cresols, total	2.65905	2.43048	2.43048	0.010	8.59583	50.00000	Averaged
101 Diphenylamine	0.58970	0.56443	0.56443	0.010	4.28611	50.00000	Averaged
[	_		1				i

# 5B SEMIVOLATILE ORGANIC GC/MS TUNING AND MASS CALIBRATION - DECAFLUOROTRIPHENYLPHOSPHINE (DFTPP)

Lab Name: TESTAMERICA-NORTH CANTON | Contract:

Lab Code: TALCAN Case No.:

SAS No.:

SDG No.: 7L12224

Lab File ID: 2DF1226

DFTPP Injection Date: 12/26/07

Instrument ID: A4AG2

DFTPP Injection Time: 1719

m/e	ION ABUNDANCE CRITERIA	% RELATIVE ABUNDANCE
51 68 69 70 127 197 198 199 275 365 441 442 443	30.0 - 60.0% of mass 198  Less than 2.0% of mass 69  Mass 69 relative abundance  Less than 2.0% of mass 69  40.0 - 60.0% of mass 198  Less than 1.0% of mass 198  Base Peak, 100% relative abundance  5.0 - 9.0% of mass 198  10.0 - 30.0% of mass 198  Greater than 1.0% of mass 198  Present, but less than mass 443  Greater than 40.0% of mass 198  17.0 - 23.0% of mass 442	46.0 0.7 ( 1.5)1 45.1 0.2 ( 0.5)1 54.7 0.5 100.0 6.7 23.3 2.8 8.0 55.3 10.4 ( 18.9)2
	1-Value is % of mass 69 2-Value is % of mass	ass 442

THIS TUNE APPLIES TO THE FOLLOWING SAMPLES, MS, MSD, BLANKS, AND STANDARDS:

	EPA	LAB	LAB	DATE	TIME
	SAMPLE NO.	SAMPLE ID	FILE ID	ANALYZED	ANALYZED
	========	=======================================	==========	========	=======
01	SSTD006	L6	2SMH1226	12/26/07	1811
02	SSTD005	L5	2SMM1226	12/26/07	1828
03	SSTD004	L4	2SM1226	12/26/07	1846
04	SSTD003	L3	2SML1226	12/26/07	1904
05	SSTD002	L2	2SL1226	12/26/07	1922
06	SSTD001	Ll	2SLL1226	12/26/07	1939
07	SSTD007	L7	2SH1226	12/26/07	1957
08	SSTD008	L8	2SHH1226	12/26/07	2015
09	SSTD009	L9	2HHH1226	12/26/07	2033
10	MW74A-121107	KD05R1CG	KD05R1CG	12/26/07	2255
11					
12					
13					
14					
15					
16 17					
18					
19					
20					
21					
22					
22					

page 1 of 1

FORM V SV

Report Date : 27-Dec-2007 11:05

Page 1

## TestAmerica North Canton

# INITIAL CALIBRATION DATA

Start Cal Date : 26-DEC-2007 18:11 End Cal Date : 26-DEC-2007 20:33 Quant Method ISTD :

Õrigin : Disabled Target Version : 4.14 Integrator Method file : HP RTE

: \\cansvr11\dd\chem\MSS\a4ag2.i\71226A.b\8270p.m : 27-Dec-2007 11:04 ulmanm

Last Edit

Curve Type : Average

## Calibration File Names:

CATIDIACIOI I III I IVANICO.								
Level 1: \\cansvrl1\\dd\chem\MSS\a4ag2.i\\71226A.b\\2SLL1								
Level 2: \\cansvr11\dd\chem\MSS\a4ag2.i\71226A.b\2SL12	26.D							
Level 3: \\cansvr11\dd\chem\MSS\a4ag2.i\71226A.b\2SML1								
Level 4: \\cansvr11\dd\chem\MSS\a4ag2.i\71226A.b\2SM12								
Level 5: \\cansvr11\dd\chem\MSS\a4ag2.i\71226A.b\2SMM1								
Level 6: \\cansvr11\dd\chem\MSS\a4ag2.i\71226A.b\2SMH1								
Level 7: \\cansvr11\dd\chem\MSS\a4ag2.i\71226A.b\2SH12								
Level 8: \\cansvr11\dd\chem\MSS\a4ag2.i\71226A.b\2SHH1								
Level 9: \\cansvr11\dd\chem\MSS\a4ag2.i\71226A.b\2HHH1	226.D							

								,
	0.05000	0.25000	0.50000	1.000	2.500	5.000	·	[
Compound	Level 1	Level 2	Level 3	Level 4	Level 5	Level 6	RRF	% RSD
	7.500	10.000	   12.500	 		 	[ ]	}
		•	'	 	1	!	1	<u> </u>
	Level 7	Level 8	Level 9	 	[ i	 	<u> </u>	1
00 1 4 2	=======	0.52275		<u>'</u>	•	•	========	======== 
.98 1,4-Dioxane	+++++	•	•	•	1 0.45447	0.4360 <i>3</i>		1 10 00
	0.53124	0.61085	0.51101	<u> </u> 	[ [	! !	0.51616	10.03
7 N-Nitrosomorpholine	+++++	<b></b>   +++++	+++++	+++++		<b></b>   +++++		]
/ N-MICIOSOMOIPHOITHE	:			<b>*****</b> 1	) +++++ 1	<del>                                    </del>	1	l I
	+++++	+++++	+++++	l 1	 	J 1	+++++ 	+++++ 
8 Ethyl methanesulfonate	+++++	   +++++	+++++	1 +++++	+++++	,   +++++	 	i 1
o Ethyl methanesullonate	+++++	++++	++++	<del>******</del> 	<del></del>		!   +++++	;   +++++
	1			 	 	 		
9 Pyridine	+++++	1.04890	1.05924	1.18693	1.16802	1.22701	]	! 
2 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1.23743			•	<b>-</b> 1.20002	=	1.22628	'   12.23:
				 	ı 	 		
10 N-Nitrosodimethylamine	1 +++++	0.59376	0.64289	0.74215	0.69442	0.72819	' 	i İ
	0.67646			•	!	1	0.71412	,   11.85
	1				, 	' 		
11 Ethyl methacrylate	1 +++++	++++	++++	+++++	1   +++++	++++	, 	, 
	1 +++++	+++++	+++++			1	+++++	,   +++++
						 	, 	' 
12 3-Chloropropionitrile	+++++	0.75580	0.82832	0.88788	l 0.80759	0.84912		, 
	0.77563	0.85067	0.85989				0.82686	5.39
		 			, 	, 	, 	
13 Malononitrile	+++++	+++++	+++++	+++++	+++++	+++++		İ
• •	+++++	+++++	+++++				+++++	·   +++++
			,		i	;	í	, !

# INITIAL CALIBRATION DATA

Start Cal Date : 26-DEC-2007 18:11

End Cal Date

: 26-DEC-2007 20:33

Quant Method

: ISTD

Origin

: Disabled

Target Version : 4.14

Integrator

: HP RTE

Method file

: \\cansvrl1\dd\chem\MSS\a4ag2.i\71226A.b\8270p.m : 27-Dec-2007 11:04 ulmanm

Last Edit Curve Type

: Average

Compound	0.05000	0.25000   Level 2	0.50000   Level 3	1.000	2.500	5.000	! ==	İ
				Level 4	Level 5	Level 6		% RSD
	7.500	10.000	12.500	i	i	į.	ĺ	
	Level 7	Level 8	Level 9		ļ.	!	1	1
237 3,4-Dichloronitrobenzene	= ======   +++++	+++++	++++	+++++	+++++	   +++++	-	
	++++	+++++	+++++	1			++++	+++++
238 Bis(2-hydroxyphenyl)methane	-    +++++	   +++++						
	++++	+++++	+++++	+++++	{ +++++ [	+++++ 	+++++	+++++
	-		İ	,	i			
239 Bis(4-hydroxyphenyl)methane	+++++	+++++	+++++   +++++	+++++	+++++	+++++	!	!
	-			 	 	 	+++++ 	+++++
240 4-Chlorophenol	+++++	+++++	+++++	++++	J +++++	+++++	ĺ	
	+++++	+++++	+++++	<u> </u>	1	1	+++++	++++
241 2,3-Dichlorophenol	+++++	+++++	+++++	++++	]   +++++	   +++++	 	 
	+++++	+++++	+++++	İ	į	i	+++++	   +++++
242 2,5-Dichlorophenol	·    +++++	   +++++		++++				
,	+++++	+++++	+++++	+++++	+++++ 	+++++ 	+++++	   +++++
						, 		
243 Octachlorostyrene	+++++	+++++	+++++	+++++	+++++	++++	!	
		+++++ 	+++++		 	 	+++++	+++++
244 Octachlorocyclopentene	+++++ [	++++	+++++	++++	+++++	++++	i I	
	+++++	+++++	+++++	Į		1	++++	+++++
154 Nitrobenzene-d5	0.23618	0.27464	0.25366	0.31844	0.30278	0.32555		
	0.31949	0.36251	0.35403	1	j		0.30525	14.101
155 2-Fluorobiphenyl	1.46038	1.32822	1.34312					
	1.33451	1.52842		1.41977	1.33958	1.37218	   1.40579	5.800
		i						
156 Terphenyl-d14	0.97606  0.87755	0.83304		0.87222	0.85424	0.89295	· ·	
		0.9886.0 	0.97402	 	 		0.89938  	7.072
	İİ	i						

#### INITIAL CALIBRATION DATA

Start Cal Date : 26-DEC-2007 18:11 End Cal Date : 26-DEC-2007 20:33

Quant Method : ISTD
Origin : Disabled
Target Version : 4.14
Integrator : HP RTE

Method file : \\cansvr11\\dd\chem\MSS\a4ag2.i\71226A.b\8270p.m

Last Edit : 27-Dec-2007 11:04 ulmanm

Curve Type : Average

	0.25000	0.50000	1.000	2.500	5.000	l	
Level 1	Level 2	Level 3	Level 4	Level 5	Level 6	RRF	% RSD
		<del>-</del>					l
7.500	10.000	12.500	[	!		l	1
Level 7				[			
1 40221	'						
	' '	•	•	1.55248 	1.63978		!   9.586
-			; 	 		1	
1.12713	1.08786	1.14345	1.26698	1.17988	1.22877		!   •
1.26673	1.42792	1.39861		<b>!</b>		1.23637	9.51
- [ ]			<u>-</u>			<b></b>	
+++++	0.12002	0.12866	0.14425	0.14957	0.15232		
0.15913	0.19058	0.19890	1			0.15543	17.66
-							
			•	1.27184	1.35251		
1 1.34818	1.52137	1.52018				1.36775	7.95
+++++	0.87763	0.87338	0.91953	   0.84347	0.88673	<b></b>	<del></del>
	•			0.54547		0.89623	4.883
-				 			
	Level 7   1.49321   1.63413   1.12713   1.26673     +++++   0.15913     +++++   1.34818 	Level 7   Level 8	Level 7   Level 8   Level 9	Level 7   Level 8   Level 9	7.500   10.000   12.500	7.500   10.000   12.500	7.500   10.000   12.500

Data File: \\cansvr11\dd\chem\MSS\a4ag2.i\71226A.b\2TCLICV.D Report Date: 27-Dec-2007 12:39

Page 1

# TestAmerica North Canton

# CONTINUING CALIBRATION COMPOUNDS

Instrument ID: a4ag2.i

Injection Date: 26-DEC-2007 20:51

Lab File ID: 2TCLICV.D

Init. Cal. Date(s): 26-DEC-2007 26-DEC-2007

Analysis Type: Init. Cal. Times: 18:11

20:33

Lab Sample ID: L6

Quant Type: ISTD

Method: \\CANSVR11\dd\chem\MSS\a4ag2.i\71226A.b\8270P.m

I	. II	1	CCAL   MIN	I MAX I
COMPOUND	RRF / AMOUNT	RF5		%D / %DRIFT %D / %DRIFT CURVE TY
=====================================		.48195	0.48195 0.010	6.62691  50.00000  Averag
9 Pyridine	1 1.226281	1.19585	1.19585 0.010	
10 N-Nitrosodimethylamine	0.71412	0.70413	0.70413[0.010]	
12 3-Chloropropionitrile	0.826861	0.82376	0.82376 0.010	1.39764  50.00000  Averag
209 Benzaldehyde	0.807361	0.75241]	0.75241 0.010	0.37481  50.00000  Average
21 Aniline	1 1.94174	1.833601	1.83360 0.010	6.80606  50.00000  Average 5.56952  50.00000  Average
22 Phenol	1 1.699271	1.59043	1.59043 0.010	
23 bis(2-Chloroethy1)ether	1.47498	1.40751	1.40751 0.010	
24 2-Chlorophenol	1.44880	1.39025	1.39025[0.010]	
26 1,3-Dichlorobenzene	1.39215	1.33219	1.33219 0.010	
27 1,4-Dichlorobenzene	0.879021	0.86751	0.86751 0.010	
28 1,2-Dichlorobenzene	1 1.37089	1.30921	1.30921[0.010]	*
29 Benzyl Alcohol	0.896261	0.91813	0.91813 0.010	
30 2-Methylphenol	1.309911	1.26239	1.2623910.010	•
31 bis(2-Chloroisopropyl)ether	1 2.048351	1.91575	1.91575[0.010]	
37 Acetophenone	1.82330	1.75589	1.75589 0.010	
32 N-Nitroso-di-n-propylamine	5.000001	4.941131	0.9481210.0501	
192 4-Methylphenol	1 1.37441	1.33275	1.33275 0.010	1.17730  0.000e+000  Quadrati
34 Hexachloroethane	0.509231	0.49764	0.49764 0.010	3.03165  50.00000  Average
35 Nitrobenzene	0.31207	0.324351		2.27538  50.00000  Average
41 Isophorone	0.552131	0.54827	0.32435 0.010	-3.93459  50.00000  Average
42 2-Nitrophenol	1 5.000001	4.899481	0.17668 0.010	0.69960  50.00000  Average
43 2,4-Dimethylphenol	0.35667	0.346041		2.01044  0.000e+000  Quadrati
44 bis (2-Chloroethoxy) methane	0.357061	0.34407	0.34604 0.010	2.98010  50.00000  Average
46 2,4-Toluenediamene	0.18317	0.34407	0.34407 0.010	3.63844  50.00000  Average
47 1,3,5-Trichlorobenzene	0.26026		0.18067[0.010]	1.36443  50.00000  Average
48 2,4-Dichlorophenol	1 0.267331	0.24852	0.24852 0.010	4.51395  50.00000  Average
49 Benzoic Acid	1 10.000001	0.26311	0.26311 0.010	1.57676  20.00000  Average
50 1,2,4-Trichlorobenzene	i 0.27000	10.75387	0.21702 0.010	-7.53869  0.000e+000  Quadrati
51 Naphthalene	0.27000	0.25769	0.25769 0.010	4.55810  50.00000  Average
52 4-Chloroaniline		0.938261	0.93826 0.010	3.42584  50.00000  Average
56 Hexachlorobutadiene		0.41165	0.41165 0.010	0.66929  50.00000  Average
210 Caprolactam	0.15585	0.15212	0.15212 0.010	2.38874  20.00000  Average
•	5.000001	5.08683	0.09897 0.010	-1.73659  0.000e+000  Quadrati
57 1,2,3-Trichlorobenzene	0.24837	0.23857	0.23857 0.010	3.94514  50.00000  Average
59 4-Chloro-3-Methylphenol	0.31097	0.29774	0.29774 0.010	4.25289  20.00000  Average
2 2-Methylnaphthalene	0.594791	0.57300	0.57300 0.010	3.66351  50.00000  Average
53 1-Methylnaphthalene	0.657361	0.62038	0.62038 0.010	5.62502  50.00000  Average
54 Hexachlorocyclopentadiene	5.000001	5.038281	0.33185 0.050	-0.76559  0.000e+000  Quadrati
56 2,4,6-Trichlorophenol	0.37157	0.36493	0.36493 0.010	1.78802  20.00000  Average
67 2,4,5-Trichlorophenol	0.403221	0.37403	0.37403 0.010	7.23836  50.00000  Average
211 1,1'-Biphenyl	1 1.62461	1.50237	1.50237 0.010	7.52389  50.00000  Average
68 1,2,3,5-Tetrachlorobenzene	0.52818	0.49340	0.49340 0.010	6.58540  50.00000  Average
	_			11

Data File: \\cansvr11\dd\chem\MSS\a4ag2.i\71226A.b\2TCLICV.D Page 2

Report Date: 27-Dec-2007 12:39

#### TestAmerica North Canton

#### CONTINUING CALIBRATION COMPOUNDS

Instrument ID: a4ag2.i Injection Date: 26-DEC-2007 20:51

Lab File ID: 2TCLICV.D Init. Cal. Date(s): 26-DEC-2007 26-DEC-2007

Analysis Type: Init. Cal. Times: 18:11 20:33

Lab Sample ID: L6 Quant Type: ISTD

Method: \\CANSVR11\dd\chem\MSS\a4ag2.i\71226A.b\8270P.m

	11	I	CCAL   MIN	1	MAX	į.
COMPOUND	RRF / AMOUNT	RF5			%D / %DRIFT	
70 2-Chloronaphthalene		1.09343	1.09343 0.010	   5.44192		=======   Averaged
73 2-Nitroaniline	1 5.000001	5.10780	0.34219 0.010		0.000e+000	-
74 1,2,3,4-Tetrachlorobenzene	0.476731	0.45556	0.45556(0.010)	4.44171		
76 Dimethylphthalate	1.33932	1.29064	1.29064[0.010]	3.634701		-
78 2,6-Dinitrotoluene	5.000001	5.14240	0.28665 0.010		0.000e+000	
79 Acenaphthylene	1.91594	1.91433	1.91433[0.010]	0.084051		
80 1,2-Dinitrobenzene	1 5.000001	4.979891	0.15129 0.010		0.000e+000	-
81 3-Nitroaniline	5.00000	4.97153	0.32155 0.010		0.000e+000	
82 Acenaphthene	1.24561	1.15384	1.15384 0.010	7.366801		
83 2,4-Dinitrophenol	10.000001	10.67389	0.19381 0.050		0.000e+000	_
85 4-Nitrophenol	1 5.000001	4.989321	0.20556[0.050]		0.000e+000	
86 Dibenzofuran	1 1.75235	1.66311	1.66311 0.010	5.092921		
87 2,4-Dinitrotoluene	5.00000	5.11931	0.39907 0.010		0.000e+0001	•
91 2,3,5,6-Tetrachlorophenol	0.336991	0.32550	0.32550 0.010	3.40865		
93 Diethylphthalate	1.584251	1.40243	1.4024310.0101	11.47657		•
94 Fluorene	1.453181	1.36085	1.36085 0.010	6.353451		-
95 4-Chlorophenyl-phenylether	0.64312	0.61267	0.61267 0.010	4.735451		
96 4-Nitroaniline	1 5.000001	5.15318	0.35735 0.010		0.000e+000	-
98 4,6-Dinitro-2-methylphenol	5.000001	5.00045	0.13157 0.010		0.000e+000	
99 N-Nitrosodiphenylamine	0.604881	0.57497	0.57497 0.010	4.945001	20.000001	
100 1,2-Diphenylhydrazine	0.792001	0.76751	0.76751 0.010	3.092821	50.000001	•
106 4-Bromophenyl-phenylether	0.19927	0.19282	0.19282 0.010	3.236111	50.000001	-
107 Hexachlorobenzene	0.206451	0.19472	0.19472 0.010	5.680631	50.000001	-
212 Atrazine	0.19142	0.20509	0.20509 0.010	-7.14087		•
111 Pentachlorophenol	1 10.000001	9.86802	0.14435 0.010	1.31976		Quadratic
115 Phenanthrene	1 1.17718	1.11721	1.11721 0.010	5.094671	50.000001	
116 Anthracene	1.137971	1.12875!	1.12875 0.010	0.81044		-
119 Carbazole	1.085991	1.058391	1.05839 0.010	2.54209	50.000001	-
120 Di-n-Butylphthalate	1.230061	1.31527	1.31527 0.010		50.000001	-
123 Fluoranthene	1.15573	1.150851	1.15085[0.010]	0.422481		-
124 Benzidine	1 5:000001	5.41176	0.66589 0.010		20.000001	-
125 Pyrene	1.31524	1.30215	1.30215 0.010		0.000e+000	
131 Butylbenzylphthalate	1. 5.000001	5.02125	0.61670 0.010	0.99583		Averaged
133 3,3'-Dimethoxybenzidine	1 5.000001	6.45874]			0.000e+0001	
135 3,3'-Dichlorobenzidine	1 5.000001	4.986031	0.23216 0.010		0.000e+000	
136 Benzo(a) Anthracene			0.45245 0.010		0.000e+000	
137 Chrysene	1.29769	1.24138	1.24138 0.010	4.33912	50.000001	-
138 4,4'-Methylene bis(o-chloro	1.21650	1.14285	1.14285 0.010	6.053561	50.000001	
		5.13373	0.22902 0.010		0.000e+000	
139 bis(2-ethylhexyl)Phthalate	5.000001	4.888291	0.84979 0.010		0.000e+000	
140 Di-n-octylphthalate	5.000001	4.79761	1.43275[0.010]		0.000e+0001	
141 Benzo(b) fluoranthene	1.30677	1.199691	1.19969[0.010]	8.19427	50.000001	•
142 Benzo(k)fluoranthene	1.34593	1.35125	1.35125 0.010	-0.395281	50.000001	Averaged

Data File: \\cansvr11\dd\chem\MSS\a4ag2.i\71226A.b\2TCLICV.D

Page 3

Report Date: 27-Dec-2007 12:39

#### TestAmerica North Canton

#### CONTINUING CALIBRATION COMPOUNDS

Instrument ID: a4aq2.i

Injection Date: 26-DEC-2007 20:51

Lab File ID: 2TCLICV.D

Init. Cal. Date(s): 26-DEC-2007 26-DEC-2007

Analysis Type:

18:11

Init. Cal. Times:

Lab Sample ID: L6 Quant Type: ISTD 20:33

Method: \CANSVR11\dd\chem\MSS\a4ag2.i\71226A.b\8270P.m

ı	1		ı	CCAL   MIN		MAX !	1
COMPOUND	RRE	F / AMOUNT	RF5	RRF5   RRF   R	D / %DRIFT	%D / %DRIFT	CURVE TYPE!
				====== ==== =	======		=======================================
146 Benzo(a)pyrene	1	1.15545	1.11893	1.11893 0.010	3.16060	20.00000	Averaged
1149 Indeno(1,2,3-cd)pyrene	1	1.22477	1.23781	1.23781 0.010	-1.06501	50.000001	Averaged
150 Dibenz(a,h)anthracene	1	1.06556	1.07711	1.07711 0.010	-1.08391	50.000001	Averaged
151 Benzo(g,h,i)perylene	1	1.05419	1.02459	1.02459 0.010	2.80814	50.000001	Averaged
\$ 154 Nitrobenzene-d5	1	0.30525	0.337341	0.33734 0.010	-10.51266	50.000001	Averagedi
\$ 155 2-Fluorobiphenyl	1	1.40579	1.35041	1.35041 0.010	3.939531	50.000001	Averaged
\$ 156 Terphenyl-d14	1	0.89938	0.87847	0.8784710.0101	2.32453	50.000001	Averaged!
\$ 157 Phenol-d5	1	1.63618	1.60072	1.60072 0.010	2.16701	50.000001	Averaged
\$ 158 2-Fluorophenol	1	1.23637	1.18667	1.18667 0.010	4.02007	50.000001	Averaged
\$ 159 2,4,6-Tribromophenol	1	5.00000	5.11718	0.15929 0.010	-2.34351	0.000e+0001	Quadratic
\$ 186 2-Chlorophenol-d4	1	1.36775	1.27514	1.27514 0.010	6.770991	50.000001	Averaged
\$ 187 1,2-Dichlorobenzene-d4	1	0.89623	0.849331	0.84933 0.010	5.232761	100000.00	Averaged
M 195 Cresols, total	1	2.684321	2.59514	2.59514 0.010	3.32236	50.000001	Averaged
101 Diphenylamine	1	0.60488	0.574971	0.57497 0.010	4.945001	50.00000	Averaged!
I	1	I				I	I

# SEMIVOLATILE ORGANIC GC/MS TUNING AND MASS CALIBRATION - DECAFLUOROTRIPHENYLPHOSPHINE (DFTPP)

5B

Lab Name: TESTAMERICA-NORTH CANTON | Contract:

Lab Code: TALCAN Case No.: SAS No.: SDG No.: 7L12224

Lab File ID: 2DF1227

DFTPP Injection Date: 12/27/07

Instrument ID: A4AG2

DFTPP Injection Time: 1317

m/e	ION ABUNDANCE CRITERIA	% RELATIVE ABUNDANCE
55 68 69 70 12 19 198 199 275 365 441 442 443	Less than 2.0% of mass 69  Mass 69 relative abundance Less than 2.0% of mass 69  40.0 - 60.0% of mass 198  Less than 1.0% of mass 198  Base Peak, 100% relative abundance 5.0 - 9.0% of mass 198  10.0 - 30.0% of mass 198  Greater than 1.0% of mass 198  Present, but less than mass 443  Greater than 40.0% of mass 198  17.0 - 23.0% of mass 442	43.1 0.6 (1.5)1 42.9 0.2 (0.4)1 52.9 0.5 100.0 6.9 25.2 3.3 9.9 69.9 13.1 (18.8)2
	1-Value is % of mass 69 2-Value is % of mass 69	agg 442

THIS TUNE APPLIES TO THE FOLLOWING SAMPLES, MS, MSD, BLANKS, AND STANDARDS:

	EPA SAMPLE NO.	LAB SAMPLE ID	LAB FILE ID	DATE ANALYZED	TIME ANALYZED
01 02 03 04 05	SSTD006 RW-01I-12110	L6 KD0811CG	2SMH1227 KD0811CG	12/27/07 12/27/07	1334
07 08 09 10 11					
13 14 15 16 17					
18 19 20 21 22					

page 1 of 1

FORM V SV

1/87 Rev.



Data File: \\cansvr11\dd\chem\MSS\a4ag2.i\71227A.b\2SMH1227.D

Report Date: 27-Dec-2007 16:54

Page 1

# TestAmerica North Canton

# CONTINUING CALIBRATION COMPOUNDS

Instrument_ID: a4ag2.i___

Injection Date: 27-DEC-2007 13:34

Init. Cal. Date(s): 26-DEC-2007 26-DEC-2007

Init. Cal. Times: 18:11 20:33

Quant Type: ISTD Lab File ID: 2SMH1227.D

Analysis Type: Lab Sample ID: L6

Method: \\CANSVR11\dd\chem\MSS\a4ag2.i\71227A.b\8270P.m

	l	ļ	CCAL	MIN	l	MAX	
COMPOUND	RRF / AMOUNT	RF5		•	%D / %DRIFT	•	•
======================================	  0.51616	  0.51657	0.51657	•	-0.08038	•	•
9 Pyridine	1.22628	1.28549	•	•		•	
10 N-Nitrosodimethylamine	0.71412	0.76570			•	•	
10 N-Nitrosodimethylamine 12 3-Chloropropionitrile	0.82686	0.76570		•		•	
209 Benzaldehyde	0.82586	0.69413			•	•	
-			•		•'		
21 Aniline	1.94174	1.98696			•	•	
22 Phenol	1.69927	1.70182	1.70182			•	_
23 bis(2-Chloroethyl)ether	1.47498	1.30278	1.30278			•	_
24 2-Chlorophenol	1.44880	1.42669	1.42669	'			_
26 1,3-Dichlorobenzene	1.39215	1.36833	1.36833		'		_
27 1,4-Dichlorobenzene	0.87902	0.84559	0.84559		'		-
28 1,2-Dichlorobenzene	1.37089	1.34434	1.34434				_
29 Benzyl Alcohol	0.89626	0.92369	0.92369				-
30 2-Methylphenol	1.30991	1.27456	1.27456	•			•
31 bis(2-Chloroisopropyl)ether	2.04835	1.98474	1.98474			50.00000	Average
37 Acetophenone	1.82330	1.75036	1.75036	0.010	4.00046	50.00000	Average
32 N-Nitroso-di-n-propylamine	5.00000	5.05386	0.97210	0.050	-1.07726	0.000e+000	Quadrat:
.92 4-Methylphenol	1.37441	1.36708	1.36708	0.010	0.53330	50.00000	Average
4 Hexachloroethane	0.50923	0.51624	0.51624	0.010	-1.37656	50.00000	Average
S Nitrobenzene	0.31207	0.34195	0.34195	0.010	-9.57211	50.00000	Average
1 Isophorone	0.55213	0.56675	0.56675	0.010	-2.64849	50.00000	Average
2 2-Nitrophenol	5.00000	5.29406	0.19252	0.010	-5.88123	0.000e+000	Quadrat
3 2,4-Dimethylphenol	0.35667	0.36738	0.36738	0.010	-3.00291	50.00000	Average
4 bis(2-Chloroethoxy)methane	0.35706	0.35084	0.35084	0.010	1.74295	50.00000	Average
6 2,4-Toluenediamene	0.18317	0.12904	0.12904	0.010	29.54913	50.00000	Average
7 1,3,5-Trichlorobenzene	0.26026	0.25750	0.25750	0.010	1.06389	50.00000	Average
18 2,4-Dichlorophenol	0.26733	0.27782	0.27782	0.010	-3.92414	20.00000	Average
9 Benzoic Acid	10.00000	10.78591	0.21779	0.010	-7.85913	0.000e+000	Quadrati
0 1,2,4-Trichlorobenzene	0.27000	0.26566	0.26566	0.010	1.60647	50.00000	Average
1 Naphthalene	0.97154	0.96439	0.96439	0.010	0.73602	50.00000	Average
2 4-Chloroaniline	0.41442	0.39312	0.39312	0.010	5.14045	50.00000	-
6 Hexachlorobutadiene	0.15585	0.15400	0.15400		1.18415	20.00000	Average
10 Caprolactam	5.00000	5.24690	0.10248	0.010	-4.93798i	0.000e+000	_
7 1,2,3-Trichlorobenzene	0.24837	0.24527	0.24527	•	1.24747	50.000001	Average
9 4-Chloro-3-Methylphenol	0.31097	0.30935	0.30935	•	0.52032	20.00000	Average
2 2-Methylnaphthalene	0.59479	0.58175	0.58175	•	•		Average
3 1-Methylnaphthalene	0.65736	0.63272	0.63272	•	3.74762	50.00000	Average
4 Hexachlorocyclopentadiene	5.00000	5.79055	0.83272	•		0.000e+000	
6 2,4,6-Trichlorophenol	0.37157	0.39439	0.39439	•	-6.14224	20.00000	Average
7 2,4,5-Trichlorophenol	0.40322	0.39439	0.41498		-8.14224	50.000001	_
11 1,1'-Biphenyl	•	•	1.60947	,	•	•	Average
	1.62461	1.60947	•	•	0.93150	50.00000	Average
8 1,2,3,5-Tetrachlorobenzene	0.52818	0.52668	0.52668	0.010	0.28485	50.00000	Average
	_					.	

130

Data File: \\cansvr11\dd\chem\MSS\a4ag2.i\71227A.b\2SMH1227.D Page 2

Report Date: 27-Dec-2007 16:54

# TestAmerica North Canton

# CONTINUING CALIBRATION COMPOUNDS

Instrument ID: a4ag2.i Injection Date: 27-DEC-2007 13:34

Init. Cal. Date(s): 26-DEC-2007 Init. Cal. Times: 18:11 Quant Type: ISTD Lab File ID: 2SMH1227.D Analysis Type: 26-DEC-2007

20:33

Lab Sample ID: L6 Quant Type: ISTD Method: \CANSVR11\dd\chem\MSS\a4ag2.i\71227A.b\8270P.m

72   Nitroaniline		<del></del>						
70 2-Chioromaphthalene		1		CCAL			1	
	COMPOUND	RRF / AMOUNT	RF5	RRF5	RRF	%D / %DRIFT	%D / %DRIFT	CURVE TYPE
32 - Nitroaniline		.=   ========	======================================			=======		
1,2,3,4-Tetrachlorobenzeme	70 2-Chloronaphthalene	1.15636	1.15376	1.15376	0.010	0.22450	50.00000	Averaged
6 Dimethylphthalate	3 2-Nitroaniline	5.00000	5.67657	0.38677	0.010	-13.53148	0.000e+000	Quadratic
8 2,6-Dinitrotoluene   5.00000   5.46530   0.30706   0.10   -9.30602   0.000e+000   Quadrat 9 Acenaphthylene   1.91594   2.02240   2.02240   0.02240   -5.55616   50.00000   Averag 0 1,2-Dinitrobenzene   5.00000   5.14179   0.34863   0.010   -6.34161   0.000e+000   Quadrat 2 Acenaphthene   1.24561   1.22712   0.34863   0.010   -6.34533   0.00e+000   Quadrat 3 2,4-Dinitrophenol   10.00000   12.09887   0.22761   0.550   -20.98857   0.000e+000   Quadrat 3 2,4-Dinitrophenol   10.00000   12.09887   0.22761   0.550   -20.98857   0.000e+000   Quadrat 5 4-Nitrophenol   5.00000   5.67403   0.23868   0.550   -13.48070   0.00e+000   Quadrat 5 4-Nitrophenol   5.00000   5.67403   0.23868   0.550   -13.48070   0.00e+000   Quadrat 1 2.35,6-Tetrachlorophenol   0.33699   0.34437   0.34437   0.010   -4.88436   0.000e+000   Quadrat 1 2.35,6-Tetrachlorophenol   0.33699   0.34437   0.34437   0.010   -2.18986   50.00000   Averag 3 24-Dinitrotoluene   1.45318   1.43115   1.43115   0.010   1.51576   50.00000   Averag 5 4-Nitrophinalite   0.64312   0.62498   0.62488   0.010   2.82080   50.00000   Averag 5 4-Chlorophenyl-phenylether   0.64312   0.62498   0.62488   0.010   2.82080   50.00000   Averag 6 4-Nitrophylhydraine   0.60488   0.56145   0.56145   0.010   -16.71392   0.000e+000   Quadrat 1 2.3549   0.100   0.1000   0.0000   Averag 6 4-Nitrophylhydrazine   0.7920   0.6196   0.60488   0.20288   0.000   -1.80889   50.00000   Averag 6 4-Nitrophylhydrazine   0.7920   0.6196   0.60488   0.20288   0.20288   0.000   -1.80889   50.00000   Averag 6 4-Parmophenyl-phenylether   0.19927   0.20288   0.20288   0.20288   0.000   -1.80889   50.00000   Averag 6 4-Parmophenyl-phenylether   0.19927   0.20288   0.20288   0.000   -1.80889   50.00000   Averag 6 4-Parmophenyl-phenylether   0.19927   0.20288   0.20288   0.000   -1.80889   50.00000   Averag 7   Average 6 4-Parmophenyl-phenylether   0.19927   0.20288   0.20288   0.000   -2.97545   50.00000   Averag 7   Average 6 4-Parmophenyl-phenylether   0.19927   0.20288   0.20288   0.000   -2.97545   50.0	4 1,2,3,4-Tetrachlorobenzene	0.47673	0.47205	0.47205	0.010	0.98157	50.00000	Averaged
9 Acenaphthylene   1.91594   2.02240   2.02240   0.010   -5.55616   50.00000   Average   1.2-Dinitrobenzene   5.00000   5.31708   0.16269   0.010   -6.31516   0.000e+000   Quadrat   3.Nitroaniline   5.00000   5.31708   0.18269   0.010   -6.83583   0.000e+000   Quadrat   2.000e+001   0.00000   2.09887   0.22761   0.550   -20.98867   0.000e+000   Quadrat   0.00000   2.09887   0.22761   0.550   -20.98867   0.000e+000   Quadrat   0.00000   5.4401   0.00000   5.0403   0.23868   0.550   -20.98867   0.000e+000   Quadrat   0.00000   0.00000   0.00000   0.00000   0.00000   0.00000   0.00000   0.00000   0.00000   0.00000   0.00000   0.0000000   0.00000   0.00000   0.00000   0.00000   0.00000   0.00000   0.00000   0.00000   0.00000   0.00000   0.00000   0.00000   0.00000   0.00000   0.00000   0.00000   0.00000   0.00000   0.00000   0.00000   0.00000   0.00000   0.00000   0.00000   0.00000   0.00000   0.00000   0.00000   0.00000   0.00000   0.00000   0.00000   0.00000   0.00000   0.00000   0.00000   0.00000   0.00000   0.00000   0.00000   0.00000   0.00000   0.00000   0.00000   0.00000   0.00000   0.00000   0.00000   0.00000   0.00000   0.00000   0.00000   0.00000   0.00000   0.00000   0.00000   0.00000   0.00000   0.00000   0.00000   0.00000   0.00000   0.00000   0.00000   0.00000   0.00000   0.00000   0.00000   0.000000   0.0000000   0.000000   0.000000   0.000000   0.000000   0.0000000   0.00000000	6 Dimethylphthalate	1.33932	1.33445	1.33445	0.010	0.36396	50.00000	Averaged
10   1,2-Dinitrobenzene   5.00000   5.31708   0.16269   0.010   -6.34161   0.000e+0000   Quadrat   13-Nitroaniline   5.00000   5.34179   0.34863   0.010   -6.34583   0.000e+0000   Quadrat   24-Dinitrophenol   10.00000   12.09887   0.22761   0.500   -20.98867   0.000e+0000   Quadrat   0.54-Nitrophenol   5.00000   5.67403   0.23868   0.050   -13.48070   0.000e+0000   Quadrat   0.55-00000   0.567403   0.23868   0.050   -13.48070   0.000e+0000   Quadrat   0.55-00000   0.567403   0.23868   0.050   -13.48070   0.000e+0000   Quadrat   0.55-00000   0.567403   0.23868   0.050   -13.48070   0.000e+0000   Quadrat   0.55-00000   0.567403   0.23868   0.050   -13.48070   0.000e+0000   Quadrat   0.55-00000   0.567403   0.34437   0.010   -4.88436   0.000e+0000   Quadrat   0.55-00000   0.34698   0.34437   0.34437   0.010   -2.18986   0.00000   Averag   0.55-00000   Averag   0.55-00000   Averag   0.55-00000   0.34698   0.56498   0.010   0.55-00000   Averag   0.564-00000   0.56498   0.010   0.55-00000   Averag   0.564-000000   0.56498   0.010   0.56498   0.010   0.56498   0.00000   Averag   0.000000   0.56498   0.010   0.56498   0.010   0.56498   0.00000   Averag   0.000000   0.56498   0.010   0.56498   0.010   0.56498   0.010   0.56498   0.010   0.56498   0.010   0.56498   0.010   0.56498   0.010   0.56498   0.010   0.56498   0.010   0.56498   0.010   0.56498   0.010   0.56498   0.010   0.56498   0.010   0.56498   0.010   0.56498   0.010   0.56498   0.010   0.56498   0.010   0.56498   0.010   0.56498   0.010   0.56498   0.010   0.56498   0.010   0.56498   0.010   0.56498   0.010   0.56498   0.010   0.56498   0.010   0.56498   0.010   0.56498   0.010   0.56498   0.010   0.56498   0.010   0.56498   0.010   0.56498   0.010   0.56498   0.010   0.56498   0.010   0.56498   0.010   0.56498   0.010   0.56498   0.010   0.56498   0.010   0.56498   0.010   0.56498   0.010   0.56498   0.010   0.56498   0.010   0.56498   0.010   0.56498   0.010   0.56498   0.010   0.56498   0.010   0.56498   0.010   0.56498   0.010   0.56498   0.010   0.56	8 2,6-Dinitrotoluene	5.00000	5.46530	0.30706	0.010	-9.30602	0.000e+000	Quadratic
1 3-Nitroaniline   5.00000   5.34179   0.34863   0.010   -6.83583   0.000e+000   Quadrat	9 Acenaphthylene	1.91594	2.02240	2.02240	0.010	-5.55616	50.00000	Averaged
2   Acenaphthene   1.24561   1.22712   1.22712   0.010   1.48449   20.00000   Average   3.2.4-Dinitrophenol   10.00000   12.09887   0.22761   0.050   -20.98867   0.0000+000   Quadrat   5.4-Nitrophenol   5.00000   5.67403   0.23668   0.050   -3.48070   0.0000+000   Quadrat   0.0000+000   Control   1.74980   50.00000   Average   7.2.4-Dinitrotocluene   5.00000   5.24422   0.40990   0.010   -4.84348   0.0000+000   Quadrat   1.23.5, 5Tetrachlorophenol   0.33699   0.34437   0.34437   0.010   -2.18986   50.00000   Average   3.2.4, 5.6-Tetrachlorophenol   0.33699   0.34437   0.34437   0.010   1.40091   50.00000   Average   3.2.4-1000-1000   3.40000   3.40000   3.40000   3.40000   3.40000   3.400000   3.40000   3.40000   3.40000   3.40000   3.40000   3.40000   3.40000   3.40000   3.40000   3.40000   3.40000   3.40000   3.40000   3.40000   3.40000   3.40000   3.40000   3.40000   3.40000   3.40000   3.40000   3.40000   3.40000   3.40000   3.40000   3.40000   3.40000   3.40000   3.40000   3.40000   3.40000   3.40000   3.40000   3.40000   3.40000   3.40000   3.40000   3.40000   3.40000   3.40000   3.40000   3.40000   3.40000   3.40000   3.40000   3.40000   3.40000   3.40000   3.40000   3.40000   3.40000   3.40000   3.40000   3.40000   3.40000   3.40000   3.40000   3.40000   3.40000   3.40000   3.40000   3.40000   3.40000   3.40000   3.40000   3.40000   3.40000   3.40000   3.40000   3.40000   3.40000   3.40000   3.40000   3.40000   3.40000   3.40000   3.40000   3.40000   3.40000   3.40000   3.40000   3.40000   3.400000   3.400000   3.400000   3.400000   3.400000   3.400000   3.400000   3.400000   3.400000   3.400000   3.400000   3.400000   3.400000   3.400000   3.400000   3.400000   3.4000000   3.4000000   3.4000000   3.4000000000000000000000000000000000000	0 1,2-Dinitrobenzene	5.00000	5.31708	0.16269	0.010	-6.34161	0.000e+000	Quadratio
32 2,4-Dinitrophenol   10.00000   12.09887   0.22761   0.050   -20.98867   0.000e+000   Quadrat   54-Nitrophenol   5.00000   5.67403   0.23868   0.050   -13.48070   0.000e+000   Quadrat   60 Dibenzofuran   1.75235   1.72169   1.72169   0.010   1.74980   50.00000   Averag   72,4-Dinitrotoluene   5.00000   5.24422   0.40990   0.010   -4.88436   0.000e+000   Quadrat   12.3,5,6-Tetrachiorophenol   0.33699   0.34437   0.34437   0.010   -4.88436   0.000e+000   Quadrat   12.3,5,6-Tetrachiorophenol   1.58425   1.41947   1.41947   0.010   10.40091   50.00000   Averag   4 Fluorene   1.45318   1.43115   1.43115   0.101   1.51576   50.00000   Averag   4 Fluorene   1.45318   1.43115   1.43115   0.101   1.51576   50.00000   Averag   54.4-Chlorophenyl-phenylether   0.64312   0.62498   0.62498   0.010   2.82080   50.00000   Averag   64.Nitroaniline   5.00000   5.34740   0.37290   0.010   -6.94795   0.000e+000   Quadrat   9 N-Nitrosodiphenylamine   0.60488   0.56145   0.56145   0.010   7.17913   20.00000   Averag   0.00000   0.00000   0.00000   0.00000   0.00000   0.00000   0.00000   0.00000   0.00000   0.00000   0.00000   0.00000   0.00000   0.00000   0.00000   0.00000   0.00000   0.00000   0.00000   0.00000   0.00000   0.00000   0.00000   0.00000   0.00000   0.00000   0.00000   0.00000   0.00000   0.00000   0.00000   0.00000   0.000000   0.00000   0.00000   0.00000   0.00000   0.00000   0.00000   0.00000   0.00000   0.00000   0.00000   0.00000   0.00000   0.000000   0.000000   0.000000   0.000000   0.000000   0.000000   0.000000   0.00000000	1 3-Nitroaniline	5.00000	5.34179	0.34863	0.010	-6.83583	0.000e+000	Quadratio
5 4 Nitrophemol         5.00000         5.67403         0.23868   0.050         -13.48070         0.000e+000         Quadrat 6 Dibenzofuran           6 Dibenzofuran           1.752355         1.72169         1.72169   0.010         1.74980         50.00000         Averag 7 2,4-Dinitrotoluene           50.00000         5.24422   0.40990   0.010         -4.88436   0.000e+000         Quadrat 6 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 Acenaphthene	1.24561	1.22712	1.22712	0.010	1.48449	20.00000	Averaged
1.75235	3 2,4-Dinitrophenol	10.00000	12.09887	0.22761	0.050	-20.98867	0.000e+000	Quadratio
17 2,4-Dinitrotoluene	5 4-Nitrophenol	5.00000	5.67403	0.23868	0.050	-13.48070	0.000e+000	Quadratic
12 2,3,5,6-Tetrachlorophenol   0.33699   0.34437   0.34437   0.010   -2.18986   50.00000   Averag at Fluorene   1.58425   1.41947   1.41947   0.010   10.40091   50.00000   Averag at Fluorene   1.45318   1.43115   1.43115   0.010   1.51576   50.00000   Averag at Fluorene   1.45318   1.43115   1.43115   0.010   1.51576   50.00000   Averag at Fluorene   1.45318   1.43115   0.010   1.51576   50.00000   Averag at Fluorene   1.45318   1.43115   0.010   1.51576   50.00000   Averag at Fluorene   5.00000   5.34740   0.37290   0.010   -6.94795   0.000e+000   Quadrat at Fluorene   0.64312   0.56445   0.5145   0.010   -16.71392   0.000e+000   Quadrat at Fluorene   0.6488   0.56145   0.56145   0.010   -16.71392   0.000e+000   Quadrat at Fluorene   0.79200   0.81906   0.81906   0.010   -3.41659   50.00000   Averag at Fluorene   0.79200   0.81906   0.81906   0.010   -3.41659   50.00000   Averag at Fluorene   0.20645   0.21259   0.21259   0.010   -2.97245   50.00000   Averag at Arrazine   0.19122   0.20375   0.20375   0.010   -6.44439   50.00000   Averag at Arrazine   0.19142   0.20375   0.20375   0.010   -6.44439   50.00000   Averag at Fluorenthrene   1.17718   1.19600   1.19680   0.010   -1.66655   50.00000   Averag at Fluorenthrene   1.13797   1.16622   1.16622   0.010   -2.65781   50.00000   Averag at Fluorenthrene   1.31524   1.37555   1.37555   0.010   -4.02489   20.00000   Averag at Fluorenthrene   1.15573   1.20225   1.20225   0.010   -4.02489   20.00000   Averag at Fluorenthrene   1.31524   1.37804   1.37804   0.010   -4.02489   20.00000   Averag at Fluorenthrene   1.31524   1.37804   1.37804   0.010   -4.02489   20.00000   Averag at Fluorenthrene   1.31524   1.37804   1.37804   0.010   -4.02489   20.00000   Averag at Fluorenthrene   1.31524   1.37804   1.37804   0.0000   -4.02489   20.00000   Averag at Fluorenthrene   1.31524   1.37804   1.37804   0.0000   -4.02489   20.00000   Averag at Fluorenthrene   1.31524   1.37804   1.37804   0.0000   -4.02489   20.00000   Averag at Fluorenthrene   1.29769   1.28432   0.010	6 Dibenzofuran	1.75235	1.72169	1.72169	0.010	1.74980	50.00000	Averaged
3 Diethylphthalate	7 2,4-Dinitrotoluene	5.00000	5.24422	0.40990	0.010	-4.88436	0.000e+000	Quadratio
4 Fluorene   1.45318   1.43115   1.43115   0.010   1.51576   50.00000   Average   54-Chlorophenyl-phenylether   0.64312   0.62498   0.62498   0.010   2.82080   50.00000   Average   64-Nitroaniline   5.00000   5.34740   0.37290   0.010   -6.94795   0.000e+0000   Quadrate   98   4.6-Dinitro-2-methylphenol   5.00000   5.83570   0.15923   0.010   -16.71392   0.000e+0000   Quadrate   98   7.00000   7.17913   20.00000   Average   0.79200   0.81906   0.81906   0.010   -3.41659   50.00000   Average   0.79200   0.81906   0.81906   0.010   -3.41659   50.00000   Average   0.64-Bromophenyl-phenylether   0.19927   0.20288   0.20288   0.010   -1.80889   50.00000   Average   0.64-Bromophenyl-phenylether   0.19927   0.20288   0.20288   0.010   -1.80889   50.00000   Average   0.204645   0.21259   0.22259   0.010   -2.97245   50.00000   Average   1.24 trazine   0.19142   0.20375   0.20375   0.010   -6.44439   50.00000   Average   1.24 trazine   0.19142   0.20375   0.20375   0.010   -6.44439   50.00000   Average   1.24 trazine   0.19142   0.20375   0.20375   0.010   -6.44439   50.00000   Average   1.24 trazine   1.17718   1.19680   1.19680   0.010   -1.66655   50.00000   Average   1.24 trazine   1.3397   1.16822   1.16822   0.010   -2.65781   50.00000   Average   1.24 trazine   1.3573   1.20225   1.20225   0.010   -3.70466   50.00000   Average   1.24 trazine   1.3573   1.20225   1.20225   0.010   -3.70466   50.00000   Average   1.24 trazine   1.35573   1.20225   0.010   -3.70466   50.00000   Average   1.24 trazine   1.23006   1.37555   1.37555   0.010   -1.66555   50.00000   Average   1.24 trazine   1.23006   1.37595   1.37595   0.010   -1.474056   0.000e+000   Quadrate   1.24 trazine   1.24 trazine   1.24 trazine   1.24 trazine   1.24 trazine   1.24 trazine   1.24 trazine   1.24 trazine   1.24 trazine   1.24 trazine   1.24 trazine   1.24 trazine   1.24 trazine   1.24 trazine   1.24 trazine   1.24 trazine   1.24 trazine   1.24 trazine   1.24 trazine   1.24 trazine   1.26 trazine   1.24 trazine   1.24 trazine   1.24 trazine   1.24	1 2,3,5,6-Tetrachlorophenol	0.33699	0.34437	0.34437	0.010	-2.18986	50.00000	Averaged
10   10   10   10   10   10   10   10	3 Diethylphthalate	1.58425	1.41947	1.41947	0.010	10.40091	50.00000	Averaged
6 4-Nitroaniline   5.00000   5.34740   0.37290   0.010   -6.94795   0.000e+000   Quadrat   4.6-Dinitro-2-methylphenol   5.00000   5.83570   0.15923   0.010   -16.71392   0.000e+000   Quadrat   9 N-Mitrosodiphenylamine   0.60488   0.56145   0.56145   0.010   7.17913   20.00000   Averag   0.1,2-Diphenylhydrazine   0.79200   0.81906   0.81906   0.010   -3.41659   50.00000   Averag   0.4-Bromophenyl-phenylether   0.19927   0.20288   0.20288   0.010   -1.80889   50.00000   Averag   0.20485   0.21259   0.21259   0.010   -2.97245   50.00000   Averag   0.20485   0.21259   0.21259   0.010   -2.97245   50.00000   Averag   12 Atrazine   0.19142   0.20375   0.20375   0.010   -6.44439   50.00000   Averag   12 Pentachlorophenol   10.00000   9.80595   0.14333   0.010   1.94053   20.00000   Averag   13 Pentachlorophenol   1.17718   1.19680   1.19680   0.010   -1.66655   50.00000   Averag   14 Carbazole   1.08599   1.12622   1.16822   0.010   -2.65781   50.00000   Averag   19 Carbazole   1.08599   1.12622   1.12622   0.010   -3.70466   50.00000   Averag   12 Carbazole   1.08599   1.12622   1.20225   0.010   -4.02489   20.00000   Averag   12 Pyrene   1.31541   1.37804   1.37804   0.010   -4.74456   0.000e+000   Quadrat   1.370   1.3704   0.010   -4.77455   50.00000   Averag   18 Utylbenzylphthalate   5.00000   5.28803   0.65345   0.010   -5.60386   0.000e+000   Quadrat   33 3,3'-Dimethoxybenzidine   5.00000   5.28803   0.65345   0.010   -5.76054   0.000e+000   Quadrat   36 Benzo(a) Anthracene   1.29769   1.28422   1.28432   0.010   1.03078   50.0000   Averag   37 Chrysene   1.21650   1.19330   1.19330   0.010   1.90666   50.00000   Averag   39 bis (2-ethylbexyl)Phthalate   5.00000   5.23325   0.91771   0.010   -4.66502   0.000e+000   Quadrat   40 Di-n-octylphthalate   5.00000   5.23325   0.91771   0.010   -5.84573   0.000e+000   Quadrat   41 Benzo(b)fluoranthene   1.30677   1.26684   1.26684   0.010   5.84573   0.000e+000   Quadrat   41 Benzo(b)fluoranthene   1.30677   1.26684   1.26684   0.010   3.05594   50.00000   Averag   1.	4 Fluorene	1.45318	1.43115]	1.43115	0.010	1.51576	50.00000	Averaged
8 4,6-Dinitro-2-methylphenol   5.00000   5.83570   0.15923   0.010   -16.71392   0.000e+000   Quadrat   9 N-Nitrosodiphenylamine   0.60488   0.56145   0.56145   0.010   7.17913   20.00000   Averag   00.1,2-Diphenylphydrazine   0.79200   0.81906   0.81906   0.010   -3.41659   50.00000   Averag   04.8 promophenyl-phenylether   0.19927   0.20288   0.20288   0.010   -1.80889   50.00000   Averag   0.70645   0.21259   0.21259   0.010   -2.97245   50.00000   Averag   0.70645   0.21259   0.20375   0.0000   -2.97245   50.00000   Averag   0.70645   0.21259   0.20375   0.0000   -6.44439   50.00000   Averag   1.200000   Averag   1.200000   Averag   1.200000   Averag   1.200000   Averag   1.200000   Averag   1.200000   Averag   1.200000   Averag   1.200000   Averag   1.200000   Averag   1.200000   Averag   1.200000   Averag   1.200000   Averag   1.200000   Averag   1.200000   Averag   1.200000   Averag   1.200000   Averag   1.200000   Averag   1.200000   Averag   1.200000   Averag   1.200000   Averag   1.200000   Averag   1.200000   Averag   1.200000   Averag   1.2000000   Averag   1.2000000   Averag   1.2000000   Averag   1.2000000   Averag   1.20000000   Averag   1.2000000   Averag   1.2000000   Averag   1.200000000   Averag   1.2000000000000000000000000000000000000	5 4-Chlorophenyl-phenylether	0.64312	0.62498	0.62498	0.010	2.82080	50.00000	Averaged
9 N-Nitrosodiphenylamine	6 4-Nitroaniline	5.00000	5.34740	0.37290	0.010	-6.94795	0.000e+000	Quadratio
00 1,2-Diphenylhydrazine   0.79200   0.81906   0.81906   0.010   -3.41659   50.00000   Averag	8 4,6-Dinitro-2-methylphenol	5.00000	5.83570	0.15923	0.010	-16.71392	0.000e+000	Quadratic
06 4-Bromophenyl-phenylether         0.19927         0.20288         0.20288         0.010         -1.80889         50.00000         Average of Hexachlorobenzene           07 Hexachlorobenzene         0.20645         0.21259         0.21259         0.010         -2.97245         50.00000         Average of Hexachlorophenol         0.19142         0.20375         0.20375         0.010         -6.44439         50.00000         Average of Hexachlorophenol         10.00000         9.80595         0.14333         0.010         -1.94053         20.00000         Quadrate of Hexachlorophenol         1.17718         1.19680         0.110         -1.66655         50.00000         Average of Hexachlorophenol         1.17718         1.19680         1.19680         0.010         -1.66655         50.00000         Average of Average of Average of Average of Average of Average of Average of Average of Average of Average of Average of Average of Average of Average of Average of Average of Average of Average of Average of Average of Average of Average of Average of Average of Average of Average of Average of Average of Average of Average of Average of Average of Average of Average of Average of Average of Average of Average of Average of Average of Average of Average of Average of Average of Average of Average of Average of Average of Average of Average of Average of Average of Average of Average of Average of Average of Average of Average of Average of Average of Average of Average of Average of Average of Average of Average of Average of Average of Average of Average of Average of Average of Average of Average of Ave	9 N-Nitrosodiphenylamine	0.60488	0.56145	0.56145	0.010	7.17913	20.00000	Averaged
07 Hexachlorobenzene         0.20645         0.21259         0.21259         0.01259         0.0000         -2.97245         50.00000         Average           12 Atrazine         0.19142         0.20375         0.20375         0.0007         -6.44439         50.00000         Average           11 Pentachlorophenol         10.00000         9.80595         0.14333         0.010         1.94053         20.00000         Quadrat           15 Phenanthrene         1.17718         1.19680         1.19680         0.010         -1.66655         50.00000         Average           16 Anthracene         1.13797         1.16822         1.16822         0.010         -2.65781         50.00000         Average           20 Di-n-Butylphthalate         1.23006         1.37555         1.37555         0.370466         50.00000         Average           21 Fluoranthene         1.15573         1.20225         1.20225         0.010         -4.02489         20.00000         Average           24 Benzidine         5.00000         5.73703         0.71483         0.010         -4.77455         50.00000         Average           31 Butylbenzylphthalate         5.00000         5.28803         0.65345         0.010         -5.76054         0.000e+000         Qu	00 1,2-Diphenylhydrazine	0.79200	0.81906	0.81906	0.010	-3.41659	50.00000	Averaged
12 Atrazine   0.19142   0.20375   0.20375   0.010   -6.44439   50.0000   Average   1 Pentachlorophenol   10.0000   9.80595   0.14333   0.010   1.94053   20.00000   Quadrat   1.9600   1.19600   0.010   -1.66655   50.0000   Average   1.17718   1.19680   1.19680   0.010   -2.65781   50.0000   Average   1.13797   1.16822   1.16822   0.010   -2.65781   50.0000   Average   1.2620   1.12622   0.12622   0.12622   0.12622   0.12622   0.12622   0.12622   0.12622   0.12622   0.12622   0.12622   0.12622   0.12622   0.12622   0.12622   0.12622   0.12622   0.12622   0.12622   0.12622   0.12622   0.12622   0.12622   0.12622   0.12622   0.12622   0.12622   0.12622   0.12622   0.12622   0.12622   0.12622   0.12622   0.12622   0.12622   0.12622   0.12622   0.12622   0.12622   0.12622   0.12622   0.12622   0.12622   0.12622   0.12622   0.12622   0.12622   0.12622   0.12622   0.12622   0.12622   0.12622   0.12622   0.12622   0.12622   0.12622   0.12622   0.12622   0.12622   0.12622   0.12622   0.12622   0.12622   0.12622   0.12622   0.12622   0.12622   0.12622   0.12622   0.12622   0.12622   0.12622   0.12622   0.12622   0.12622   0.12622   0.12622   0.12622   0.12622   0.12622   0.12622   0.12622   0.12622   0.12622   0.12622   0.12622   0.12622   0.12622   0.12622   0.12622   0.12622   0.12622   0.12622   0.12622   0.12622   0.12622   0.12622   0.12622   0.12622   0.12622   0.12622   0.12622   0.12622   0.12622   0.12622   0.12622   0.12622   0.12622   0.12622   0.12622   0.12622   0.12622   0.12622   0.12622   0.12622   0.12622   0.12622   0.12622   0.12622   0.12622   0.12622   0.12622   0.12622   0.12622   0.12622   0.12622   0.12622   0.12622   0.12622   0.12622   0.12622   0.12622   0.12622   0.12622   0.12622   0.12622   0.12622   0.12622   0.12622   0.12622   0.12622   0.12622   0.12622   0.12622   0.12622   0.12622   0.12622   0.12622   0.12622   0.12622   0.12622   0.12622   0.12622   0.12622   0.12622   0.12622   0.12622   0.12622   0.126222   0.126222   0.12622   0.126222   0.126222   0.126222   0.126222   0.126222	06 4-Bromophenyl-phenylether	0.19927	0.20288	0.20288	0.010	-1.80889	50.00000	Averaged
11 Pentachlorophenol   10.00000   9.80595   0.14333   0.010   1.94053   20.00000   Quadrat   15 Phenanthrene   1.17718   1.19680   1.19680   0.010   -1.66655   50.00000   Average   1.13797   1.16822   1.16822   0.010   -2.65781   50.00000   Average   1.08599   1.12622   1.12622   0.010   -3.70466   50.00000   Average   20 Di-n-Butylphthalate   1.23006   1.37555   1.37555   0.010   -11.82787   50.00000   Average   23 Fluoranthene   1.15573   1.20225   1.20225   0.010   -4.02489   20.00000   Average   24 Benzidine   5.00000   5.73703   0.71483   0.010   -14.74056   0.000e+000   Quadrate   25 Pyrene   1.31524   1.37804   1.37804   0.010   -4.77455   50.00000   Average   3.33*Dimethoxybenzidine   5.00000   5.28803   0.65345   0.010   -5.76054   0.000e+000   Quadrate   3.33*Dimethoxybenzidine   5.00000   7.51519   0.28593   0.010   -50.30386   0.000e+000   Quadrate   3.33*Dimethoxybenzidine   5.00000   5.24542   0.47889   0.010   -4.90831   0.000e+000   Quadrate   3.33*Dimethoxybenzidine   5.00000   5.24542   0.47889   0.010   -4.90831   0.000e+000   Quadrate   3.44*Dethylene bis (o-chloro   5.00000   5.39351   0.24267   0.010   -7.87022   0.000e+000   Quadrate   4.4*Dethylene bis (o-chloro   5.00000   5.23325   0.91771   0.010   -4.66502   0.000e+000   Quadrate   4.0000   5.23325   0.91771   0.010   -5.84573   0.000e+000   Quadrate   4.0000   5.29229   1.60364   0.010   -5.84573   0.000e+000   Quadrate   4.0000   5.29229   1.60364   0.010   -5.84573   0.000e+000   Quadrate   4.0000   5.29229   1.60364   0.010   -5.84573   0.000e+000   Quadrate   4.00000   5.29229   1.60364   0.010   -5.84573   0.000e+000   Quadrate   4.00000   5.29229   1.60364   0.010   -5.84573   0.000e+000   Quadrate   4.00000   5.29229   1.60364   0.010   -5.84573   0.000e+000   Quadrate   4.00000   5.29229   1.60364   0.010   -5.84573   0.000e+000   Quadrate   4.000000   5.29229   1.60364   0.010   -5.84573   0.000e+000   Quadrate   4.00000000000000000000000000000000000	07 Hexachlorobenzene	0.20645	0.21259	0.21259	0.010	-2.97245	50.00000	Averaged
1.5 Phenanthrene   1.17718   1.19680   1.19680   0.010   -1.66655   50.00000   Average   1.13797   1.16822   1.16822   0.010   -2.65781   50.00000   Average   1.08599   1.12622   1.12622   0.010   -3.70466   50.00000   Average   20 Di-n-Butylphthalate   1.23006   1.37555   1.37555   0.010   -11.82787   50.00000   Average   23 Fluoranthene   1.15573   1.20225   1.20225   0.010   -4.02489   20.00000   Average   24 Benzidine   5.00000   5.73703   0.71483   0.010   -14.74056   0.000e+000   Quadrate   25 Pyrene   1.31524   1.37804   1.37804   0.010   -4.77455   50.00000   Average   3.331-Dimethoxybenzidine   5.00000   5.28803   0.65345   0.010   -5.76054   0.000e+000   Quadrate   3.331-Dimethoxybenzidine   5.00000   7.51519   0.28593   0.010   -50.30386   0.000e+000   Quadrate   3.331-Dichlorobenzidine   5.00000   5.24542   0.47889   0.010   -4.90831   0.000e+000   Quadrate   3.29769   1.28432   1.28432   0.010   1.03078   50.00000   Average   3.241-Methylene bis (o-chloro   5.00000   5.33351   0.24267   0.010   -7.87022   0.000e+000   Quadrate   4.4"-Methylene bis (o-chloro   5.00000   5.23325   0.91771   0.010   -4.66502   0.000e+000   Quadrate   4.0000   0.00000   0.00000   0.000000   0.0000000   0.00000000	12 Atrazine	0.19142	0.20375	0.20375	0.010	-6.44439	50.00000	Averaged
16 Anthracene       1.13797        1.16822        1.16822        0.010        -2.65781        50.00000        Averag         19 Carbazole       1.08599        1.12622        1.12622        0.010        -3.70466        50.00000        Averag         20 Di-n-Butylphthalate       1.23006        1.37555        1.37555        0.010        -1.82787        50.00000        Averag         23 Fluoranthene       1.15573        1.20225        1.20225        0.010        -4.02489        20.00000        Averag         24 Benzidine       5.00000        5.73703        0.71483        0.010        -14.74056        0.000e+000        Quadrat         25 Pyrene       1.31524        1.37804        1.37804        0.010        -4.77455        50.00000        Averag         31 Butylbenzylphthalate       5.00000        5.28803        0.65345        0.010        -5.76054        0.000e+000        Quadrat         33 3,3'-Dichlorobenzidine       5.00000        7.51519        0.28593        0.010        -5.030386        0.000e+000        Quadrat         36 Benzo(a) Anthracene       1.29769        1.28432        1.28432        0.010        1.03078        50.00000        Averag         37 Chrysene       1.21650	11 Pentachlorophenol	10.00000	9.80595	0.14333	0.010	1.94053	20.00000	Quadratio
19 Carbazole   1.08599  1.12622  1.12622 0.010  -3.70466  50.00000  Average   1.23006  1.37555  1.37555 0.010  -11.82787  50.00000  Average   1.2573  1.20225  1.20225 0.010  -4.02489  20.00000  Average   1.15573  1.20225  1.20225 0.010  -4.02489  20.00000  Average   1.2573  1.20225  1.20225 0.010  -4.02489  20.00000  Average   1.31524  1.37804  1.37804 0.010  -4.77455  50.0000  Average   1.31524  1.37804  1.37804 0.010  -4.77455  50.0000  Average   1.31524  1.37804  1.37804 0.010  -5.76054 0.000e+000  Quadrate   5.00000  5.28803  0.65345 0.010  -5.76054 0.000e+000  Quadrate   3.33'-Dimethoxybenzidine   5.00000  7.51519  0.28593 0.010  -50.30386 0.000e+000  Quadrate   3.33'-Dichlorobenzidine   5.00000  5.24542  0.47889 0.010  -4.90831 0.000e+000  Quadrate   3.33'-Dichlorobenzidine   5.00000  5.24542  0.47889 0.010  1.03078  50.0000  Average   3.29769  1.28432  1.28432 0.010  1.03078  50.0000  Average   3.29769  1.28432  1.28432 0.010  1.90666  50.0000  Average   3.44'-Methylene bis(o-chloro   5.00000  5.39351  0.24267 0.010  -7.87022 0.000e+000  Quadrate   4.4'-Methylene bis(o-chloro   5.00000  5.23325 0.91771 0.010  -4.66502 0.000e+000  Quadrate   4.0000  Di-n-octylphthalate   5.00000  5.29229  1.60364 0.010  -5.84573 0.000e+000  Quadrate   4.0000  Di-n-octylphthalate   5.00000  5.29229  1.60364 0.010  -5.84573 0.000e+000  Quadrate   4.0000  Di-n-octylphthalate   5.00000  5.29229  1.60364 0.010  -5.84573 0.000e+000  Quadrate   4.0000  Di-n-octylphthalate   5.00000  5.29229  1.60364 0.010  -5.84573 0.000e+000  Quadrate   4.0000  Di-n-octylphthalate   5.00000  5.29229  1.60364 0.010  -5.84573 0.000e+000  Quadrate   4.0000  Di-n-octylphthalate   5.00000  5.29229  1.60364 0.010  -5.84573 0.0000  Di-n-octylphthalate   5.00000  5.29229  1.60364 0.010  -5.84573 0.00000  Di-n-octylphthalate   5.00000  Di-n-octylphthalate   5.00000  Di-n-octylphthalate   5.00000  Di-n-octylphthalate   5.00000  Di-n-octylphthalate   5.00000  Di-n-octylphthalate   5.00000  Di-n-octylphthalate   5.00000  Di-n-octylphthalate   5.00000  Di-n	15 Phenanthrene	1.17718	1.19680	1.19680	0.010	-1.66655	50.00000	Averaged
1.23006	.16 Anthracene	1.13797	1.16822	1.16822	0.010	-2.65781	50.00000	Averaged
23 Fluoranthene   1.15573   1.20225   1.20225   0.010   -4.02489   20.00000   Average   24 Benzidine   5.00000   5.73703   0.71483   0.010   -14.74056   0.000e+000   Quadrate   25 Pyrene   1.31524   1.37804   1.37804   0.010   -4.77455   50.00000   Average   31 Butylbenzylphthalate   5.00000   5.28803   0.65345   0.010   -5.76054   0.000e+000   Quadrate   33 3,3'-Dimethoxybenzidine   5.00000   7.51519   0.28593   0.010   -50.30386   0.000e+000   Quadrate   35 3,3'-Dichlorobenzidine   5.00000   5.24542   0.47889   0.010   -4.90831   0.000e+000   Quadrate   36 Benzo (a) Anthracene   1.29769   1.28432   1.28432   0.010   1.03078   50.00000   Average   37 Chrysene   1.21650   1.19330   1.19330   0.010   1.90666   50.00000   Average   34 4,4'-Methylene bis (o-chloro   5.00000   5.39351   0.24267   0.010   -7.87022   0.000e+000   Quadrate   39 bis (2-ethylhexyl) Phthalate   5.00000   5.23325   0.91771   0.010   -4.66502   0.000e+000   Quadrate   40 Di-n-octylphthalate   5.00000   5.29229   1.60364   0.010   -5.84573   0.000e+000   Quadrate   41 Benzo (b) fluoranthene   1.30677   1.26684   1.26684   0.010   3.05594   50.00000   Average   4.00000   4.000000   4.00000000   4.0000000000	19 Carbazole	1.08599	1.12622	1.12622	0.010	-3.70466	50.00000	Averaged
24 Benzidine   5.00000   5.73703   0.71483   0.010   -14.74056   0.000e+000   Quadrat   25 Pyrene   1.31524   1.37804   1.37804   0.010   -4.77455   50.0000   Averag   31 Butylbenzylphthalate   5.00000   5.28803   0.65345   0.010   -5.76054   0.000e+000   Quadrat   33 3,3'-Dimethoxybenzidine   5.00000   7.51519   0.28593   0.010   -50.30386   0.000e+000   Quadrat   35 3,3'-Dichlorobenzidine   5.00000   5.24542   0.47889   0.010   -4.90831   0.000e+000   Quadrat   36 Benzo (a) Anthracene   1.29769   1.28432   1.28432   0.010   1.03078   50.0000   Averag   37 Chrysene   1.21650   1.19330   1.19330   0.010   1.90666   50.0000   Averag   38 4,4'-Methylene bis (o-chloro   5.00000   5.39351   0.24267   0.010   -7.87022   0.000e+000   Quadrat   39 bis (2-ethylhexyl) Phthalate   5.00000   5.23325   0.91771   0.010   -4.66502   0.000e+000   Quadrat   40 Di-n-octylphthalate   5.00000   5.29229   1.60364   0.010   -5.84573   0.000e+000   Quadrat   41 Benzo (b) fluoranthene   1.30677   1.26684   1.26684   0.010   3.05594   50.00000   Averag	20 Di-n-Butylphthalate	1.23006	1.37555	1.37555	0.010	-11.82787	50.00000	Averaged
25 Pyrene   1.31524  1.37804  1.37804  0.010  -4.77455  50.00000  Average	23 Fluoranthene	1.15573	1.20225	1.20225	0.010	-4.02489	20.00000	Averaged
31 Butylbenzylphthalate   5.00000  5.28803  0.65345 0.010  -5.76054  0.000e+000  Quadrat 33 3,3'-Dimethoxybenzidine   5.00000  7.51519  0.28593 0.010  -50.30386  0.000e+000  Quadrat 35 3,3'-Dichlorobenzidine   5.00000  5.24542  0.47889 0.010  -4.90831  0.000e+000  Quadrat 36 Benzo(a)Anthracene   1.29769  1.28432  1.28432 0.010  1.03078  50.00000  Average 37 Chrysene   1.21650  1.19330  1.19330 0.010  1.90666  50.00000  Average 38 4,4'-Methylene bis(o-chloro   5.00000  5.39351  0.24267 0.010  -7.87022  0.000e+000  Quadrat 39 bis(2-ethylhexyl)Phthalate   5.00000  5.23325  0.91771 0.010  -4.66502  0.000e+000  Quadrat 40 Di-n-octylphthalate   5.00000  5.29229  1.60364 0.010  -5.84573  0.000e+000  Quadrat 41 Benzo(b)fluoranthene   1.30677  1.26684  1.26684 0.010  3.05594  50.00000  Average	24 Benzidine	5.00000	5.73703	0.71483	0.010	-14.74056	0.000e+000	Quadratio
33 3,3'-Dimethoxybenzidine   5.00000  7.51519  0.28593 0.010  -50.30386  0.000e+000  Quadrat 35 3,3'-Dichlorobenzidine   5.00000  5.24542  0.47889 0.010  -4.90831  0.000e+000  Quadrat 36 Benzo(a)Anthracene   1.29769  1.28432  1.28432 0.010  1.03078  50.00000  Average 37 Chrysene   1.21650  1.19330  1.19330 0.010  1.90666  50.00000  Average 38 4,4'-Methylene bis(o-chloro   5.00000  5.39351  0.24267 0.010  -7.87022  0.000e+000  Quadrat 39 bis(2-ethylhexyl)Phthalate   5.00000  5.23325  0.91771 0.010  -4.66502  0.000e+000  Quadrat 40 Di-n-octylphthalate   5.00000  5.29229  1.60364 0.010  -5.84573  0.000e+000  Quadrat 41 Benzo(b)fluoranthene   1.30677  1.26684  1.26684 0.010  3.05594  50.00000  Average	25 Pyrene	1.31524	1.37804	1.37804	0.010	-4.77455	50.00000	Averaged
35 3,3'-Dichlorobenzidine   5.00000  5.24542  0.47889 0.010  -4.90831  0.000e+000  Quadrat 36 Benzo(a)Anthracene   1.29769  1.28432  1.28432 0.010  1.03078  50.00000  Average 37 Chrysene   1.21650  1.19330  1.19330 0.010  1.90666  50.00000  Average 38 4,4'-Methylene bis(o-chloro   5.00000  5.39351  0.24267 0.010  -7.87022  0.000e+000  Quadrat 39 bis(2-ethylhexyl)Phthalate   5.00000  5.23325  0.91771 0.010  -4.66502  0.000e+000  Quadrat 40 Di-n-octylphthalate   5.00000  5.29229  1.60364 0.010  -5.84573  0.000e+000  Quadrat 41 Benzo(b)fluoranthene   1.30677  1.26684  1.26684 0.010  3.05594  50.00000  Average	31 Butylbenzylphthalate	5.00000	5.28803	0.65345	0.010	-5.76054	0.000e+000	Quadratio
36 Benzo(a) Anthracene       1.29769        1.28432        1.28432        0.010        1.03078        50.00000        Averag         37 Chrysene       1.21650        1.19330        1.19330        0.010        1.90666        50.00000        Averag         38 4,4'-Methylene bis(o-chloro       5.00000        5.39351        0.24267 0.010        -7.87022        0.000e+000        Quadrat         39 bis(2-ethylhexyl)Phthalate       5.00000        5.23325        0.91771 0.010        -4.66502        0.000e+000        Quadrat         40 Di-n-octylphthalate       5.00000        5.29229        1.60364 0.010        -5.84573        0.000e+000        Quadrat         41 Benzo(b)fluoranthene       1.30677        1.26684        1.26684 0.010        3.05594        50.00000        Averag	33 3,3'-Dimethoxybenzidine	5.00000	7.51519	0.28593	0.010	-50.30386	0.000e+000	Quadratio
37 Chrysene   1.21650   1.19330   1.19330   0.010   1.90666   50.00000   Averago   38 4,4'-Methylene bis(o-chloro   5.00000   5.39351   0.24267   0.010   -7.87022   0.000e+000   Quadrato   39 bis(2-ethylhexyl)Phthalate   5.00000   5.23325   0.91771   0.010   -4.66502   0.000e+000   Quadrato   40 Di-n-octylphthalate   5.00000   5.29229   1.60364   0.010   -5.84573   0.000e+000   Quadrato   41 Benzo(b)fluoranthene   1.30677   1.26684   1.26684   0.010   3.05594   50.00000   Averago	35 3,3'-Dichlorobenzidine	5.00000	5.24542	0.47889	0.010	-4.90831	0.000e+000	Quadratio
38 4,4'-Methylene bis(o-chloro   5.00000  5.39351  0.24267 0.010  -7.87022  0.000e+000  Quadrat 39 bis(2-ethylhexyl)Phthalate   5.00000  5.23325  0.91771 0.010  -4.66502  0.000e+000  Quadrat 40 Di-n-octylphthalate   5.00000  5.29229  1.60364 0.010  -5.84573  0.000e+000  Quadrat 41 Benzo(b)fluoranthene   1.30677  1.26684  1.26684 0.010  3.05594  50.00000  Average	36 Benzo(a)Anthracene	1.29769	1.28432	1.28432	0.010	1.03078	50.00000	Averaged
39 bis(2-ethylhexyl)Phthalate   5.00000  5.23325  0.91771 0.010  -4.66502  0.000e+000  Quadrat. 40 Di-n-octylphthalate   5.00000  5.29229  1.60364 0.010  -5.84573  0.000e+000  Quadrat. 41 Benzo(b)fluoranthene   1.30677  1.26684  1.26684 0.010  3.05594  50.00000  Average	37 Chrysene	1.21650	1.19330	1.19330	0.010	1.90666	50.00000	Averaged
40 Di-n-octylphthalate   5.00000  5.29229  1.60364 0.010  -5.84573  0.000e+000  Quadrat 41 Benzo(b) fluoranthene   1.30677  1.26684  1.26684 0.010  3.05594  50.00000  Average	38 4,4'-Methylene bis(o-chloro	5.00000	5.39351	0.24267	0.010	-7.87022	0.000e+000	Quadratio
41 Benzo(b) fluoranthene   1.30677  1.26684   1.26684   0.010   3.05594   50.00000   Average	39 bis(2-ethylhexyl)Phthalate	5.00000	5.23325	0.91771	0.010		•	
	40 Di-n-octylphthalate	5.00000	5.29229	1.60364	0.010	-5.84573	0.000e+000	Quadratic
42 Benzo(k)fluoranthene   1.34593  1.41879  1.41879 0.010  -5.41317  50.00000  Averago	41 Benzo(b)fluoranthene	1.30677	1.26684	1.26684	0.010	3.05594	50.00000	Averaged
	42 Benzo(k)fluoranthene	1.34593	1.41879	1.41879	0.010	-5.41317	50.00000]	Averaged
		_1						

Data File: \\cansvr11\dd\chem\MSS\a4ag2.i\71227A.b\2SMH1227.D Page 3

Report Date: 27-Dec-2007 16:54

# TestAmerica North Canton

#### CONTINUING CALIBRATION COMPOUNDS

26-DEC-2007

Instrument ID: a4ag2.i Injection Date: 27-DEC-2007 13:34
Lab File ID: 2SMH1227.D Init. Cal. Date(s): 26-DEC-2007 2
Analysis Type: Init. Cal. Times: 18:11 2
Lab Sample ID: L6 Quant Type: ISTD Analysis Type: Init. Cal. Times: 18:11
Lab Sample ID: L6 Quant Type: ISTD
Method: \CANSVR11\dd\chem\MSS\a4ag2.i\71227A.b\8270P.m 20:33

	]		CCAL	MIN	]	MAX	
COMPOUND	RRF / AMOUNT	RF5	RRF5	RRF	%D / %DRIFT	%D / %DRIFT	CURVE TYPE
	=   =======	_======================================			========	=======================================	
146 Benzo(a)pyrene	1.15545	1.17162	1.17162	0.010	-1.39993	20.00000	Averaged
149 Indeno(1,2,3-cd)pyrene	1.22477	1.30655	1.30655	0.010	-6.67719	50.00000	Averaged
150 Dibenz(a,h)anthracene	1.06556	1.12792	1.12792	0.010	-5.85221	50.00000	Averaged
151 Benzo(g,h,i)perylene	1.05419	1.10856	1.10856	0.010	-5.15753	50.00000	Averaged
\$ 154 Nitrobenzene-d5	0.30525	0.34457	0.34457	0.010	-12.88171	50.00000	Averaged
\$ 155 2-Fluorobiphenyl	1.40579	1.40386	1.40386	0.010	0.13726	50.00000	Averaged
\$ 156 Terphenyl-d14	0.89938	0.89139	0.89139	0.010	0.88833	50.00000	Averaged
\$ 157 Phenol-d5	1.63618	1.64069	1.64069	0.010	-0.27556	50.00000	Averaged
\$ 158 2-Fluorophenol	1.23637	1.21537	1.21537	0.010	1.69860	50.00000	Averaged
\$ 159 2,4,6-Tribromophenol	5.00000	5.32461	0.16661	0.010	-6.49226	0.000e+000	Quadratic
\$ 186 2-Chlorophenol-d4	1.36775	1.32634	1.32634	0.010	3.02763	50.00000	Averaged
\$ 187 1,2-Dichlorobenzene-d4	0.89623	0.86561	0.86561	0.010	3.41579	50.00000	Averaged
M 195 Cresols, total	2.68432	2.64165	2.64165	0.010	1.58976	50.00000	Averaged
101 Diphenylamine	0.60488	0.56145	0.56145	0.010	7.17913	50.00000	Averaged
	_		· · · · · · · · · · · · · · · · · · ·		l		

# 5B SEMIVOLATILE ORGANIC GC/MS TUNING AND MASS CALIBRATION - DECAFLUOROTRIPHENYLPHOSPHINE (DFTPP)

Lab Name: TESTAMERICA-NORTH CANTON Contract:

Lab Code: TALCAN Case No.:

SAS No.: SDG No.: 7L12224

Lab File ID: 7DF1219

DFTPP Injection Date: 12/19/07

Instrument ID: A4HP7

DFTPP Injection Time: 1415

m/e	ION ABUNDANCE CRITERIA	% RELATIVE ABUNDANCE
51 68 69 70 127 197 198 199 275 365 441 442 443	30.0 - 60.0% of mass 198 Less than 2.0% of mass 69 Mass 69 relative abundance Less than 2.0% of mass 69 40.0 - 60.0% of mass 198 Less than 1.0% of mass 198 Base Peak, 100% relative abundance 5.0 - 9.0% of mass 198 10.0 - 30.0% of mass 198 Greater than 1.0% of mass 198 Present, but less than mass 443 40.0 - 100.0% of mass 198 17.0 - 23.0% of mass 442	45.6 0.6 ( 1.4)1 45.3 0.2 ( 0.3)1 50.3 0.0 100.0 6.6 18.4 1.7 11.1 72.1 13.8 ( 19.1)2
·	1-Value is % of mass 69 2-Value is % of mass	ass 442

THIS TUNE APPLIES TO THE FOLLOWING SAMPLES, MS, MSD, BLANKS, AND STANDARDS:

	EPA SAMPLE NO.	LAB	LAB	DATE	TIME
	SAMPLE NO.	SAMPLE ID	FILE ID	ANALYZED	ANALYZED
01	SSTD005	L5	7SMM1219	12/19/07	1440
02	SSTD004	L4	7SM1219	12/19/07	1500
03	SSTD003	L3	7SML1219	12/19/07	1519
04	SSTD002	L2	7SL1219	12/19/07	1539
05	SSTD001	L1	7SLL1219	12/19/07	1559
06	SSTD009	L9	7HHH1219	12/19/07	1618
07	SSTD008	L8	7SHH1219	12/19/07	1638
80	SSTD007	L7	7SH1219	12/19/07	1658
09	SSTD006	L6	7SMH1219	12/19/07	1718
10		<u> </u>			
11 12					
13					
14		·			
15					
16				· · · · · · · ·	
17					
18					
19					
20					· · ·
21					
22					

page 1 of 1

FORM V SV

1/87 Rev.

TestAmerica North Canton OKMV
INITIAL CALIBRATION DATA 12/207

Start Cal Date : 19-DEC-2007 14:40 End Cal Date : 19-DEC-2007 17:18

Quant Method : ISTD
Origin : Disabled
Target Version : 4.14
Integrator : HP RTE

Method file : \\cansvrl1\\dd\chem\MSS\a4hp7.i\\71219a.b\\8270P.m

Last Edit : 19-Dec-2007 17:50 a4hp7.i

Curve Type : Average

Calibration File Names:

Level 1: \cansvrll\dd\chem\MSS\a4hp7.i\71219a.b\7SLL1219.D Level 2: \cansvrll\dd\chem\MSS\a4hp7.i\71219a.b\7SLL1219.D Level 3: \cansvrll\dd\chem\MSS\a4hp7.i\71219a.b\7SML1219.D Level 4: \cansvrll\dd\chem\MSS\a4hp7.i\71219a.b\7SML1219.D Level 5: \cansvrll\dd\chem\MSS\a4hp7.i\71219a.b\7SMM1219.D Level 6: \cansvrll\dd\chem\MSS\a4hp7.i\71219a.b\7SMH1219.D Level 7: \cansvrll\dd\chem\MSS\a4hp7.i\71219a.b\7SMH1219.D Level 8: \cansvrll\dd\chem\MSS\a4hp7.i\71219a.b\7SHH1219.D Level 8: \cansvrll\dd\chem\MSS\a4hp7.i\71219a.b\7SHH1219.D Level 9: \cansvrll\dd\chem\MSS\a4hp7.i\71219a.b\7SHH1219.D

									_
	0.05000	0.25000	0.50000	1.000	2.500	5.000	l		1
Compound	Level 1	Level 2	Level 3	Level 4	Level 5	Level 6	RRF	% RSD	İ
	[								1
	7.500	10.000	12.500		!	1			ļ
	Level 7	Level 8	Level 9		<u> </u>				ļ
	===   ======		=======	'				#2E2=====	۱.
198 1,4-Dioxane	++++	0.68360	,	•	0.70441	0.64887			
	0.67512	0.79867	0.77775	<u> </u>	ļ 1	]	0.71349	7.199	71
7 N-Nitrosomorpholine	+++++	+++++	+++++	   +++++		++++	1		1
/ N-NICLOSOMOIPHOITHE	+++++	+++++	++++	<del>+++++</del> 	<del>+++++</del> 	<del>*****</del> 	   +++++	+++++	1
				: !	! 	 	!		. [
8 Ethyl methanesulfonate	+++++	++++	++++	   +++++	!   +++++	;   +++++	 		i
	1 +++++	+++++	+++++	1	, I		'   +++++	++++	i
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~						, 	 	 	ij
9 Pyridine	+++++	1.41816	1.53380	1.69648	1.76636	1.73004	İ		i
-	1.78552	2.07130	2.12743		<u> </u>	· [1.76614	13.624	١Ì
									٠
10 N-Nitrosodimethylamine	++++	1.04054	1.06911	1.09721	1.10151	1.05377	1		I
	1.08332	1.25401	1.25437]		1.11923	7.664	<u>.</u>
									۱
11 Ethyl methacrylate	+++++	1.33360	1.38204	1.40134	1.41570	1.32917			ŀ
	1.36400	1.60011	1.58638				1.42654	7.514	١
									1
12 3-Chloropropionitrile	+++++	0.89308	0.92679	0.94487	0.94519	0.90787			1
	[0.90266]	1.01131	1.03056				0.94529	5.352	:1
							ļ <u> </u>		ij
13 Malononitrile	+++++	1.98441			2.07686	1.94205	' '		ļ
	1.90438	2.14126	2.19949	!			2.04967	5.028	١.
· · · · · · · · · · · · · · · · · · ·									1
					l	ļ	I		١.

INITIAL CALIBRATION DATA

Start Cal Date : 19-DEC-2007 14:40 End Cal Date : 19-DEC-2007 17:18

Quant Method : ISTD Origin : Disabled Target Version : 4.14

Integrator : HP RTE

Method file : \\cansvr11\\dd\chem\MSS\a4hp7.i\\71219a.b\\8270P.m

Last Edit : 19-Dec-2007 17:50 a4hp7.i

Curve Type : Average

	0.05000	0.25000	0.50000	1.000	2.500	5.000	Ī]
Compound	Level 1	Level 2	Level 3	Level 4	Level 5	Level 6	RRF	% RSD
	7.500	10.000	12.500]	!
	Level 7	Level 8	Level 9	1		İ	į	i
227 Parathion	+++++	======== +++++	+++++	+++++	======= +++++			
	+++++	+++++	+++++		1 11111	+++++	! 	+++++
228 Isodrin	+++++	 +++++	 +++++	+++++	 +++++			
	+++++	+++++	++++	1		,	+++++	+++++
229 Kepone	+++++	+++++] +++++	+++++	 +++++	 	
	+++++	+++++	+++++				! +++++	1 +++++
231 Acrylamide	+++++	+++++		 +++++	+++++	+++++]	
	+++++	+++++	+++++				1 +++++	++++
232 2-Methylcyclohexanone	+++++	+++++		 +++++	+++++	 +++++	 	
	+++++	+++++	+++++				++++	 +++++
233 3-Methylcyclohexanone		+++++	 . +++++	+++++	+++++	+++++	 	
	+++++	+++++	+++++	İ	1		++++	 ++++
234 4-Methylcyclohexanone		+++++	 +++++	+++++	+++++	+++++		
	+++++	+++++	+++++	i	ĺ		+++++	+++++
235 Tributyl phosphate		+++++	+++++	+++++	+++++	+++++		
	+++++	+++++	+++++	İ	į	Ì	+++++	+++++
154 Nitrobenzene-d5	0.37766	0.35644	0.36309	0.38448	0.38503	0.36884		
	0.38027	0.42140		ĺ	, į	į	0.38455	6.139
155 2-Fluorobiphenyl	1.33093	1.19573	1.19211	1.27253	1.26175	1.33529		
	1.34603	1.48526	1.45582	. !	į		1.31949	7.777
156 Terphenyl-d14	0.80092	0.76836	0.78276	0.82323	0.84836	0.90031	 	
	0.87782	0.95923	0.92301	į	į		0.85378	7.720
	· . !				!			

INITIAL CALIBRATION DATA

Start Cal Date : 19-DEC-2007 14:40 End Cal Date : 19-DEC-2007 17:18

Quant Method : ISTD
Origin : Disabled
Target Version : 4.14
Integrator : HP RTE

Method file : \\cansvr11\dd\chem\MSS\a4hp7.i\71219a.b\8270P.m

Last Edit : 19-Dec-2007 17:50 a4hp7.i

Curve Type : Average

	0.05000	0.25000	0.50000	1.000	2.500	5.000	1	
Compound	Level 1	Level 2	Level 3	Level 4	Level 5	Level 6	RRF	% RSD
•								ĺ
	7.500	10.000	12.500]	1			ŀ
	Level 7	Level 8	Level 9		l	Ì	!	
					=======	=======		*****
\$ 157 Phenol-d5	2.00012				2.21118	2.25132		!
	2.28351	2.58411	2.59542		l		2.25174	9.731
158 2-Fluorophenol								
150 2-11010pheno1	1.36561			1.48729	1.49785	1.48793	i	
	1.54292	1.80107	1.80923				1.53308	10.761
5 159 2,4,6-Tribromophenol	 +++++	0.00006				~		
200 B/1/0 IIIDIOMOPHENOI	0.14340	0.09386		0.11890	0.12325	0.13038	1	
	0.14340	199861.0	0.15778	į	[0.12889	18.241
186 2-Chlorophenol-d4	++++	1.20039	1.30871	1.36240	1 75400			
2	1.49191	1.71707	1.70719	1.30240	1.36499	1.43187	1	
			1.70715	l 		ļ	1.44807	12.699
187 1,2-Dichlorobenzene-d4	+++++	0.82175	0.83717	0.86627	0.85963	0.90954		
	0.88278	1.01372	1.00603	3.00027	1.00000	1.20254	0.89961	0 105
				1	1	ا ا ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ	1.02201	8.125
<u></u>	iii	i			1			

5B SEMIVOLATILE ORGANIC GC/MS TUNING AND MASS CALIBRATION - DECAFLUOROTRIPHENYLPHOSPHINE (DFTPP)

Lab Name: TESTAMERICA-NORTH CANTON | Contract:

Lab Code: TALCAN Case No.:

SAS No.:

SDG No.: 7L12224

Lab File ID: 7DF1227

DFTPP Injection Date: 12/27/07

Instrument ID: A4HP7

DFTPP Injection Time: 0920

m/e	ION ABUNDANCE CRITERIA	% RELATIVE ABUNDANCE
51 68 69 70 127 197 198 199 275 365 441 442 443	30.0 - 60.0% of mass 198 Less than 2.0% of mass 69 Mass 69 relative abundance Less than 2.0% of mass 69 40.0 - 60.0% of mass 198 Less than 1.0% of mass 198 Base Peak, 100% relative abundance 5.0 - 9.0% of mass 198 10.0 - 30.0% of mass 198 Greater than 1.0% of mass 198 Present, but less than mass 443 40.0 - 100.0% of mass 198 17.0 - 23.0% of mass 442	49.7 0.7 (1.4)1 49.7 0.2 (0.5)1 51.8 0.0 100.0 6.8 18.9 1.9 9.9 62.9 12.0 (19.2)2

1-value is % of mass 69

2-Value is % of mass 442

THIS TUNE APPLIES TO THE FOLLOWING SAMPLES, MS, MSD, BLANKS, AND STANDARDS:

	I —————	T			
	EPA	LAB	LAB	DATE	TIME
	SAMPLE NO.	SAMPLE ID	FILE ID	ANALYZED	ANALYZED
	=========	========			AWALLEDED
01	SSTD006	L6	7SMH1227	10/07/07	
				12/27/07	0939
02	KD8WKBLK	KD8WK1AA	KD8WK1AA	12/27/07	0958
03	KD8WKCHK	KD8WK1AC	KD8WK1AC	12/27/07	1017
04	KD8WKCKDUP	KD8WK1AD	KD8WK1AD	12/27/07	1036
05	MW74A-121207	KD7CM1CG	KD7CM1CG	12/27/07	1655
06				22/21/01	1000
07					
08					
09					
10					
11					
12					
13					
14					
15	—·				
16					
17					_
18					
19					
20					
21					
22					
22					

page 1 of 1

FORM V SV

1/87 Rev.

Data File: \\cansvr11\dd\chem\MSS\a4hp7.i\71227a.b\7SMH1227.D Page 1

Report Date: 27-Dec-2007 09:53

TestAmerica North Canton

CONTINUING CALIBRATION COMPOUNDS

Instrument ID: a4hp7.i Injection Date: 27-DEC-2007 09:39
Lab File ID: 7SMH1227.D Init. Cal. Date(s): 19-DEC-2007 19-DEC-2007
Analysis Type: Init. Cal. Times: 14:40 17:18
Lab Sample ID: L6 Quant Type: ISTD
Method: \\cansvr11\\dd\chem\\MSS\a4hp7.i\\71227a.b\\8270p.m

I	1	ı	CCAL	MIN	<u> </u>	MAX	
COMPOUND	RRF / AMOUNT	RF5	RRF5	•	, %D / %DRIFT	•	CURVE TYPE
		i				=======================================	
9 Pyridine	1.76614	1.69553	1.69553	0.010	3.99805	50.00000	Averaged
10 N-Nitrosodimethylamine	1.11923	1.02957	1.02957	0.010	8.01089	50.00000	Averaged
11 Ethyl methacrylate	1.42654	1.35227	1.35227	0.010	5.20641	50.00000	Averaged
12 3-Chloropropionitrile	0.94529	0.89648	0.89648	0.010	5.16364	50.00000	Averaged
13 Malononitrile	2.04967	1.96027	1.96027	0.010	4.36153	50.00000	Averaged
209 Benzaldehyde	1.10309	0.92986	0.92986	0.010	15.70448	50.00000	Averaged
21 Aniline	2.80366	2.68370	2.68370	0.010	4.27898	50.00000	Averaged
22 Phenol	2.36876	2.25797	2.25797	0.010	4.67728	20.00000	Averaged
23 bis(2-Chloroethyl)ether	1.74088	1.63688	1.63688	0.010	5.97385	50.00000	Averaged
24 2-Chlorophenol	1.57068	1.56521	1.56521	0.010	0.34822	50.00000	Averaged
26 1,3-Dichlorobenzene	1.47172	1.47993	1.47993	0.010	-0.55808	50.00000	Averaged
27 1,4-Dichlorobenzene	0.90993	0.89834	0.89834	0.010	1.27344	20.00000	Averaged
28 1,2-Dichlorobenzene	1.41091	1.44456	1.44456	0.010	-2.38477	50.00000	Averaged
29 Benzyl Alcohol	1.21389	1.10793	1.10793	0.010	8.72874	50.00000	Averaged
30 2-Methylphenol	1.59902	1.53162	1.53162	0.010	4.21468	50.00000	Averaged
31 bis(2-Chloroisopropyl)ether	2.47891	2.37433	2.37433	0.010	4.21881	50.00000	Averaged
37 Acetophenone	2.12136	2.04165	2.04165	0.010	3.75755	50.00000	Averaged
32 N-Nitroso-di-n-propylamine	1.23499	1.20594	1.20594	0.050	2.35159	50.00000	Averaged
192 4-Methylphenol	1.70745	1.72857	1.72857	0.010	-1.23732	50.00000	Averaged
34 Hexachloroethane	0.52249	0.53485	0.53485	0.010	-2.36702	50.00000	Averaged
35 Nitrobenzene	0.38916	0.39003	0.39003	0.010	-0.22313	50.00000	Averaged
41 Isophorone	0.69768	0.70348	0.70348	0.010	-0.83005	50.00000	Averaged
42 2-Nitrophenol	0.18068	0.20046	0.20046	0.010	-10.94990	20.00000	Averaged
43 2,4-Dimethylphenol	0.36711	0.38449	0.38449	0.010	-4.73451	50.00000	Averaged
44 bis (2-Chloroethoxy) methane	0.45372	0.45859	0.45859	0.010	-1.07386	50.00000	Averaged
46 2,4-Toluenediamene	5.00000	6.21777	0.14455	0.010	-24.35540	0.000e+000	Quadratic
47 1,3,5-Trichlorobenzene	0.23882	0.25500	0.25500	0.010	-6.77557	50.00000	Averaged
48 2,4-Dichlorophenol	0.26361	0.28248	0.28248	0.010	-7.15950	20.00000	Averaged
49 Benzoic Acid	10.00000	10.34705	0.24147	0.010	-3.47053	0.000e+000	Quadratic
50 1,2,4-Trichlorobenzene	0.25002	0.25908	0.25908	0.010	-3.62534	50.00000	Averaged
51 Naphthalene	0.97048	1.02417	1.02417	0.010	-5.53213	50.00000	Averaged
52 4-Chloroaniline	0.42087	0.41879	0.41879	0.010	0.49399	50.00000	Averaged
56 Hexachlorobutadiene	0.10356	0.11459	0.11459	0.010	-10.65188	20.00000	Averaged
210 Caprolactam	5.00000	5.31164	0.12254	0.010	-6.23278	0.000e+000	Quadratic
57 1,2,3-Trichlorobenzene	0.22973	0.24300	0.24300	0.010	-5.77664	50.00000	Averaged
59 4-Chloro-3-Methylphenol	0.31474	0.32435	0.32435	0.010	-3.05437	20.00000	Averaged
62 2-Methylnaphthalene	0.57162	0.60220	0.60220	0.010	-5.34955	50.00000	Averaged
63 1-Methylnaphthalene	0.62681	0.65502	0.65502	0.010	-4.50014	50.00000	Averaged
64 Hexachlorocyclopentadiene	0.26404	0.23675	0.23675	0.050	10.33347	50.00000	
66 2,4,6-Trichlorophenol	5.00000	5.05476	0.37686	0.010	-1.09511	0.000e+000	Quadratic
67 2,4,5-Trichlorophenol	0.37380	0.38364	0.38364	0.010	-2.63235	50.00000	Averaged
211 1,1'-Biphenyl	1.50362	1.56993	1.56993	0.010	-4.41008		Averaged
<u> </u>			i	i	i	!i	ii

CONTINUING CALIBRATION COMPOUNDS

Instrument ID: a4hp7.i Lab File ID: 7SMH1227.D Injection Date: 27-DEC-2007 09:39
Init. Cal. Date(s): 19-DEC-2007 19-DEC-2007

Analysis Type:

Init. Cal. Times: 14:40

17:18

Lab Sample ID: L6 Quant Type: ISTD

Method: \\cansvr11\dd\chem\MSS\a4hp7.i\71227a.b\8270p.m

		1	CCAL	MIN	1	1 2500	
COMPOUND	RRF / AMOUNT	RF5	RRF5		 &D	MAX	l
		=======================================			ı İ⊴n \ ≲DKILL	%D / %DRIFT	CURVE TYPE
68 1,2,3,5-Tetrachlorobenzene	0.43626					_	•
70 2-Chloronaphthalene	1.15105			•	• •	•	:
73 2-Nitroaniline	0.41531	•		•			•
74 1,2,3,4-Tetrachlorobenzene	0.39713	•	'	•	•		
76 Dimethylphthalate	1.24564						
78 2,6-Dinitrotoluene	5.00000		0.29554			0.000e+000	
79 Acenaphthylene	1.91978	2.08546				•	
80 1,2-Dinitrobenzene	5.00000	5.05106					
81 3-Nitroaniline	5.00000	5.06793	0.36782	'		•	
82 Acenaphthene	1.14534	1.23437	1.23437			•	
83 2,4-Dinitrophenol	10.00000	11.02567	0.20322				
85 4-Nitrophenol	5.00000	•	0.15604				~
86 Dibenzofuran	1.60564	1.67385	1.67385	•			
87 2,4-Dinitrotoluene	5.00000	5.16702	0.38420				
91 2,3,5,6-Tetrachlorophenol	5.00000	4.88061	0.27716	•		0.000e+000	~
93 Diethylphthalate	1.24917	1.28364	1.28364	,			
94 Fluorene	1.30258	1.38080	1.38080	•			1
95 4-Chlorophenyl-phenylether	0.52694	0.55758	0.55758			,	-
96 4-Nitroaniline	0.35216	0.39515	0.39515	,	•	- 1	
98 4,6-Dinitro-2-methylphenol	5.00000	5.49889	0.15122	•		0.000e+000	2
99 N-Nitrosodiphenylamine	5.00000	5.14970	0.62250		•	0.000e+000	
100 1,2-Diphenylhydrazine	1.03913	1.06984	1.06984				Averaged
106 4-Bromophenyl-phenylether	0.16730	0.17983	0.17983		-7.49018	50.000001	- •
107 Hexachlorobenzene	0.17959	0.19135	0.19135		-6.54791	,	Averaged
212 Atrazine	0.16555	0.18871	0.18871		•	50.000001	Averaged
111 Pentachlorophenol	10.00000	9.98855	0.12441	•		0.000e+000[٠,
115 Phenanthrene	1.18735	1.25668	1.25668	•	-5.83915	50.00000	Averaged
116 Anthracene	1.14444	1.24688	1.24688	•	-8.95137	50.000001	Averaged
119 Carbazole	1.11311	1.19078	1.19078	•	-6.97782	50.00000	Averaged
120 Di-n-Butylphthalate	1.31155	1.52492	1.52492	0.010	-16.26794	50.00000	Averaged
123 Fluoranthene	1.07946	1.18426	1.18426	•	-9.70819	20.00000	Averaged
124 Benzidine	5.00000	5.02820	0.82736		-0.56408		Quadratic
125 Pyrene	1.46561	1.57246	1.57246	0.010	-7.29028	50.00000	Averaged
131 Butylbenzylphthalate	5.00000	5.22255	0.79942		-4.45094	•	
133 3,3'-Dimethoxybenzidine	5.00000	5.94947	0.31535		-18.98934	0.000e+000	Quadratic
135 3,3'-Dichlorobenzidine	0.43868	0.48590	0.48590	,	-10.76401	50.00000	Averaged
136 Benzo(a)Anthracene	1.31362	1.34110	1.34110	•	-2.09138	50.00000	Averaged
137 Chrysene	1.21722	1.25679	1.25679		-3.25058	50.00000	Averaged
138 4,4'-Methylene bis(o-chloro	0.20279	0.23167	0.23167 0	•	-14.23719	50.00000	Averaged
139 bis(2-ethylhexyl)Phthalate	1.03509	1.13010	1.13010	•	-9.17947	50.00000	Averaged
140 Di-n-octylphthalate	5.00000	5.18981	2.02369	•	-3.79625	0.000e+000	Quadratic
141 Benzo(b) fluoranthene	5.00000	5.27572	1.37319 0		•	0.000e+000	Quadratic
·	i	i		i		1	1

Data File: \\cansvr11\\dd\chem\MSS\a4hp7.i\71227a.b\7SMH1227.D Page 3

Report Date: 27-Dec-2007 09:53

TestAmerica North Canton

CONTINUING CALIBRATION COMPOUNDS

Instrument ID: a4hp7.i Injection Date: 27-DEC-2007 09:39
Lab File ID: 7SMH1227.D Init. Cal. Date(s): 19-DEC-2007 19-DEC-2007
Analysis Type: Init. Cal. Times: 14:40 17:18
Lab Sample ID: L6 Quant Type: ISTD
Method: \\cansvr11\\dd\chem\MSS\a4hp7.i\\71227a.b\\8270p.m

		l	CCAL	MIN		MAX	
COMPOUND	RRF / AMOUNT	RF5	RRF5	RRF	%D / %DRIFT	%D / %DRIFT	CURVE TYPE
	====	=======================================	=========	=====	=========	=========	
142 Benzo(k) fluoranthene	1.25667	1.29197	1.29197	0.010	-2.80906	50.00000	Averaged
146 Benzo(a)pyrene	5.00000	5.04578	1.19046	0.010	-0.91555	0.000e+000	Quadratic
149 Indeno(1,2,3-cd)pyrene	5.00000	4.91592	1.32516	0.010	1.68163	0.000e+000	Quadratic
50 Dibenz(a,h)anthracene	5.00000	4.93222	1.15605	0.010	1.35559		
51 Benzo(g,h,i)perylene	5.00000	5.02810	1.09058	0.010	-0.56195		
.98 1,4-Dioxane	0.71349	0.65175	0.65175	0.010	8.65321		
: 154 Nitrobenzene-d5	0.38455	0.38187	0.38187	0.010	0.69811		
155 2-Fluorobiphenyl	1.31949	1.36691	1.36691	0.010		•	
156 Terphenyl-d14	0.85378	0.93887	0.93887	0.010			Averaged
157 Phenol-d5	2.25174	2,22214	2.22214	0.010	1.31472		Averaged
158 2-Fluorophenol	1.53308	1.48986	1.48986				
159 2,4,6-Tribromophenol	5.00000	5.04319	0.13794		-0.86380		
186 2-Chlorophenol-d4	1.44807	1.44653	1.44653	•		50.000001	
187 1,2-Dichlorobenzene-d4	0.89961	0.91688	0.91688	•	,	•	Averaged
195 Cresols, total	3.34943	3.26019	3.26019			,	
01 Diphenylamine	5.00000	5.14970	0.62250	,	-2.99406	0.000e+000	Averaged
	1	1		0.0101	-2.33406	0.00000	Quadratic

5B SEMIVOLATILE ORGANIC GC/MS TUNING AND MASS CALIBRATION - DECAFLUOROTRIPHENYLPHOSPHINE (DFTPP)

Lab Name: TESTAMERICA-NORTH CANTON: Contract:

Lab Code: TALCAN Case No.: SAS No.

SAS No.: SDG No.: 7L12224

Lab File ID: 7DF1228

DFTPP Injection Date: 12/28/07

Instrument ID: A4HP7

DFTPP Injection Time: 1412

m/e	ION ABUNDANCE CRITERIA	% RELATIVE ABUNDANCE
51 68 69 70 127 197 198 199 275 365 441 442 443	30.0 - 60.0% of mass 198 Less than 2.0% of mass 69 Mass 69 relative abundance Less than 2.0% of mass 69 40.0 - 60.0% of mass 198 Less than 1.0% of mass 198 Base Peak, 100% relative abundance 5.0 - 9.0% of mass 198 10.0 - 30.0% of mass 198 Greater than 1.0% of mass 198 Present, but less than mass 443 40.0 - 100.0% of mass 198 17.0 - 23.0% of mass 442	49.5 0.6 (1.3)1 49.0 0.2 (0.3)1 51.7 0.0 100.0 6.8 18.5 1.8 11.0 70.1 13.4 (19.1)2
	1-Value is % of mass 69 2-Value is % of mass	ass 442

THIS TUNE APPLIES TO THE FOLLOWING SAMPLES, MS, MSD, BLANKS, AND STANDARDS:

	EPA	T 770	T.7.0		
		LAB	LAB	DATE	TIME
	SAMPLE NO.	SAMPLE ID	FILE ID	ANALYZED	ANALYZED
0.7	=========	=======================================	==========	========	========
01	SSTD005	L5	7SMM1228	12/28/07	1432
02	SSTD004	L4	7SM1228	12/28/07	1452
03	SSTD003	L3	7SML1228	12/28/07	1511
04	SSTD002	L2	7SL1228	12/28/07	1531
05	SSTD001	L1	7SLL1228	12/28/07	1551
06	SSTD009	L9	7HHH1228	12/28/07	1610
07	SSTD008	L8	7SHH1228	12/28/07	1630
08	SSTD007	L7	7SH1228	12/28/07	1649
09	SSTD006	L6	7SMH1228	12/28/07	1709
10	RW-01I-12120	KD7EX1CG	KD7EX1CG	12/29/07	0145
11				12/25/01	07.42
12				*	· · · · · · · · · · · · · · · · · · ·
13	· · · · · · · · · · · · · · · · · · ·				
14					
15					
16	***************************************				
17				·]	
18	·				
19					
20					
21					
22					
22	 !				

page 1 of 1

FORM V SV

1/87 Rev.

INITIAL CALIBRATION DATA

Start Cal Date : 28-DEC-2007 14:32 : 28-DEC-2007 17:09 End Cal Date

Quant Method : ISTD Origin : Disabled Target Version : 4.14 : HP RTE Integrator

: \\cansvr11\dd\chem\MSS\a4hp7.i\71228a.b\8270P.m : 02-Jan-2008 17:05 ulmanm Method file

Last Edit

Curve Type : Average

Calibration File Names:

Level 1: \\cansvr11\\dd\chem\MSS\a4hp7.i\\71228a.b\\7SLL1228.D Level 2: \\cansvr11\dd\chem\MSS\a4hp7.i\71228a.b\7SL1228.D Level 3: \\cansvr11\dd\chem\MSS\a4hp7.i\71228a.b\7SML1228.D \\cansvr11\dd\chem\MSS\a4hp7.i\71228a.b\7SM1228.D \\cansvr11\dd\chem\MSS\a4hp7.i\71228a.b\7SMM1228.D Level 4: Level 5: Level 6: Level 7: \\cansvr11\dd\chem\MSS\a4hp7.i\71228a.b\7SH1228.D Level 8: \\cansvr11\dd\chem\MSS\a4hp7.i\71228a.b\7SH1228.D Level 9: \cansvr11\dd\chem\MSS\a4hp7.i\71228a.b\7HHH1228.D

······································	· · · · · · · · · · · · · · · · · · ·								_
	0.05000	0.25000	0.50000	1.000	2.500	5.000	l	Ι	
Compound	Level 1	Level 2	Level 3	Level 4	Level 5	Level 6	RRF	% RSD	
							1	1	
	7.500	10.000	12.500	[!	ł	1	1	
	Level 7	Level 8	Level 9]			1		
		=======				=======			=
198 1,4-Dioxane	+++++	0.58311	0.49115	0.61578	0.63600	0.61879	İ		
	0.60803	0.69655	0.61740	1	1	ļ	0.60835	9.456	5
				-					-
7 N-Nitrosomorpholine	+++++	+++++	+++++	+++++	+++++	+++++			
	+++++	+++++	+++++	ļ		1	+++++	+++++	
									-
8 Ethyl methanesulfonate	+++++	++++	+++++	+++++	+++++	+++++			
	+++++	+++++	++++		!	 -	+++++	+++++	
]								-
9 Pyridine	+++++	1.33534		•	1.68900	1.63857			
	1.67672	1.90887	1.83271	!	!	ļ	1.63633	12.954	ł
								~	•
10 N-Nitrosodimethylamine	+++++	0.90281	'		1.04214	0.96715			_
	0.98375	1.15619	1.11078	1	!		1.00290	10.960)
	[٠
11 Ethyl methacrylate	+++++	1.24916		•	1.33875	1.24991			
	1.23945	1.46195	1.36096		,		1.28731	8.407	7
10.0 @hlassansadasidasida		0.000							•
12 3-Chloropropionitrile	+++++	0.86540			0.91306	0.86867			
	0.83470	0.97275	0.97906	1	1	l '	0.89177	7.361	L
12 Malananihmila		1 70750	1 20001		1 0 00077		 		•
13 Malononitrile	+++++	1.78769	1.79201	•	2.09017	1.85377			
	1.79900	1.99123	1.96755		1		1.92503	7.039	,
	:								•
				l	1				_

INITIAL CALIBRATION DATA

Start Cal Date : 28-DEC-2007 14:32

End Cal Date : 28-DEC-2007 17:09
Quant Method : ISTD
Origin : Disabled
Target Version : 4.14

Integrator : HP RTE

Method file : \\cansvr11\\dd\chem\MSS\a4hp7.i\\71228a.b\\8270P.m

Last Edit : 02-Jan-2008 17:05 ulmanm

Curve Type : Average

									_
	0.05000	0.25000	0.50000	1.000	2.500	5.000	l		1
Compound	Level 1	Level 2	Level 3	Level 4	Level 5	Level 6	RRF	% RSD	1
1]							1
	7.500	10.000	12.500	1		1		1	1
 	Level 7	Level 8	Level 9	1	1	!	ļ		1
227 Parathion	+++++	+++++	+++++	=======================================	========		=======	=========	=
	+++++	+++++	+++++	+++++ 	+++++	+++++	1	 	1
~	[! 	! !	! !	+++++	++++	< -
228 Isodrin	+++++	++++	, +++++	, +++++	+++++	+++++	1		1
	+++++	+++++	{ +++++	1	1		' +++++	1 +++++	! <-
			-			[1
229 Kepone	+++++	+++++	++++	+++++	++++	+++++	i .		i
	+++++	+++++	++++	j	i .		+++++	+++++	<-
									1
231 Acrylamide	+++++	++++	+++++	+++++	+++++	++++	1	1	1
	+++++	+++++	+++++		1	1	+++++	++++	<-
222 2 Mathed and barrens						 :			ľ
232 2-Methylcyclohexanone	[+++++	+++++	++++	+++++	+++++	++++	ļ •]	1
	+++++ 	+++++	+++++]		+++++	++++	<-
233 3-Methylcyclohexanone	+++++	+++++	+++++	 +++++	- 	 +++++		 	
	+++++	++++	+++++	 	TTTTT	*****	+++++	! +++++	 <-
						 		+++++ 	< -
234 4-Methylcyclohexanone	+++++	+++++	+++++	++++	+++++	· +++++	' :]	-	1
	+++++	+++++	+++++	i			' +++++	· +++++	 <-
								 	l
235 Tributyl phosphate	+++++	++++	+++++	+++++	+++++	+++++	j		İ
	+++++	+++++	++++	i	1		+++++	++++	<-
			========	=========	========				
\$ 154 Nitrobenzene-d5	0.37812	0.32502	•	0.39506	0.39769	0.38935			ļ
	0.38405	0.42896	0.41808	ļ	l	Ì	0.38717	7.744	l
\$ 155 2-Fluorobiphenyl									
4 199 5-KINOTODIDUGUĀI	1.26834	1.19945	1.25040	1.30038	1.32369	1.30645			1
	1.29845	1.46206	1.41078		}		1.31333	6.086	ĺ
\$ 156 Terphenyl-d14	0.94046	0.79198	0.80156	0.87082	0.88084	0.89318			 -
· · · · · · · · · · · · · · · · · · ·	0.87557	1.00665	0.94648	1.07002	U.UOU04	0.02318	0.88973	7.689	l I
	-			1	l	! ii	I	7.009	l l
	_i i	i	1	i i	ı	1	,		
						·			•

INITIAL CALIBRATION DATA

Start Cal Date : 28-DEC-2007 14:32 End Cal Date : 28-DEC-2007 17:09

Quant Method : ISTD
Origin : Disabled
Target Version : 4.14
Integrator : HP RTE

Method file : \\cansvr11\\dd\chem\MSS\a4hp7.i\\71228a.b\\8270P.m

Last Edit : 02-Jan-2008 17:05 ulmanm

Curve Type : Average

	0.05000	0.25000	0.50000	1.000	2.500	5.000		·
Compound	Level 1	Level 2	Level 3	Level 4	Level 5	Level 6	RRF	% RSD
	7.500	10.000	12.500				1	
	Level 7	Level 8	Level 9	•				
			=======		=======	=======		========
157 Phenol-d5	2.08440	1.90698	2.05330	2.23250	2.23744	2.12601	<u>'</u>	
	2.21663	2,50330	2.49217				2.20586	8.866
						-		
158 2-Fluorophenol	1.35257				1.45430	1.41042	,	
	1.40784	1.66121	1.57458				1.43388	8.276
159 2,4,6-Tribromophenol	+++++	0.10577			0.12878	0.13061	•	
	0.13843	0.15515	0.15136			İ	0.13115	12.901
					1 2 47 57 5			
186 2-Chlorophenol-d4	+++++	1.22322			1.41515	1.38489		 11 655
	1.43614	1.62742	1.70051] 	 	1.42885	11.635
		0.00050		0.88082	0.89505	0.87708		
187 1,2-Dichlorobenzene-d4	+++++	0.82059		0.88082	נטפעט.ט ן	0.87708 	l l 0.89033	l 5.900
	0.87663	0.97801	0.95286		 	l I	0.03033) 5.900
							!	
	I j		l		l		l	l

Data File: \\cansvrl1\dd\chem\MSS\a4hp7.i\71228a.b\ICVTCL.D

Page 1

Report Date: 02-Jan-2008 17:23

TestAmerica North Canton

CONTINUING CALIBRATION COMPOUNDS

Instrument ID: a4hp7.i
Lab File ID: ICVTCL.D

Injection Date: 28-DEC-2007 17:29

Init. Cal. Date(s): 28-DEC-2007 28-DEC-2007

Analysis Type:

Init. Cal. Times: 14:32

17:09

Lab Sample ID: icvtcl Quant Type: ISTD Method: \\cansvrl1\\dd\chem\MSS\a4hp7.i\71228a.b\8270p.m

	1	1	CCAL MIN	l	MAX	ı
COMPOUND	RRF / AMOUNT	RF5	RRF5 RRF	%D / %DRIFT	%D / %DRIFT	CURVE TYPE
	1.636331	1.67783	1.67783 0.010			
10 N-Nitrosodimethylamine	1 1.002901	0.98551	0.98551 0.010			•
11 Ethyl methacrylate	1 1.28731	1.25108	1.25108 0.010			
12 3-Chloropropionitrile	0.89177	0.89147	0.8914710.010			
13 Malononitrile	1.92503	1.90537	1.90537 0.010			
209 Benzaldehyde	1 1.11085	1.03968	1.03968 0.010			
21 Aniline	1 2.606551	2.68870	2.68870 0.010			
22 Phenol	2.27737	2.18748	2.18748 0.010			
23 bis(2-Chloroethyl)ether	1.96147	1.80459	1.80459[0.010]			. , ,
24 2-Chlorophenol	1 1.548211	1.51216	1.51216 0.010			
26 1,3-Dichlorobenzene	1.44614	1.41249			50.00000	-
27 1,4-Dichlorobenzene	1 0.97487	0.96758	1.41249 0.010	2.326911	50.00000	
28 1,2-Dichlorobenzene	1.40461	1.38919	0.96758 0.010		20.00000	•
29 Benzyl Alcohol	1 1.21724	1.18685	1.38919 0.010	1.097931	50.00000	,
30 2-Methylphenol	1 1.60084	1.58622	1.18685 0.010	2.496681	50.000001	
31 bis(2-Chloroisopropyl)ether	1 2.511431	2.41333;	1.5862210.0101	0.91332	50.000001	
37 Acetophenone	2.14800	2.913331	2.41333 0.010	3.906241	50.000001	-
32 N-Nitroso-di-n-propylamine	1 1.23509		2.08878 0.010	2.75706	50.000001	J
192 4-Methylphenol	1 1.755451	1.19493 1.74357	1.1949310.0501	3.25168	50.000001	
34 Hexachloroethane	1 0.540831		1.74357 0.010	0.676461	50.000001	-
35 Nitrobenzene	0.39507	0.538931	0.53893 0.010	0.35161	50.000001	Averaged
11 Isophorone	0.699481	0.38393	0.38393 0.010	2.81843	50.000001	Averaged
42 2-Nitrophenol		0.68130	0.68130 0.010	2.598981	50.000001	Averaged
43 2,4-Dimethylphenol		0.18892	0.18892 0.010	1.42301	20.000001	Averaged
44 bis(2-Chloroethoxy)methane	1 01371001	0.36774	0.36774 0.010	1.69350	50.000001	Averaged
16 2,4-Toluenediamene	0.45568	0.43671	0.43671 0.010	4.16167	50.000001	Averaged
47 1,3,5-Trichlorobenzene	1 5.000001	5.864661	0.14861[0.010]		0.000e+000	Quadratic
18 2,4-Dichlorophenol	0.242071	0.23537	0.23537[0.010]	2.769861	50.000001	Averaged
9 Benzoic Acid	1 0.27018	0.26976	0.26976 0.010	0.15732	20.000001	Averaged
00 1,2,4-Trichlorobenzene	, 10,00000	10.07052	0.25183 0.010	-0.705241	0.000e+000J	Quadratic
il Naphthalene		0.24747	0.24747 0.010	0.950061	50.000001	Averaged
2 4-Chloroaniline	. 1.000251	0.994991	0.9949910.0101	3.88853	50.000001	Averaged
6 Hexachlorobutadiene	0.42547	0.41690	0.41690 0.010	2.01276	50.000001	Averaged
10 Caprolactam	I 0.10785	0.10622	0.10622 0.010	1.51495	20.000001	Averaged
7 1,2,3-Trichlorobenzene	1 5.000001	4.939481	0.11533 0.010	1.21037	0.000e+0001	Quadratic
9 4-Chloro-3-Methylphenol	0.23241	0.22500	0.22500 0.010	3.18983	50.000001	Averaged
	0.31715	0.31352	0.31352 0.010	1.14433	20.000001	Averaged
2 2-Methylnaphthalene	1 0.578631	0.56025	0.56025 0.010	3.17562	50.000001	Averaged
3 1-Methylnaphthalene	1 0.635071	0.62061;	0.62061 0.010	2.27722	50.000001	Averaged
4 Hexachlorocyclopentadiene	0.26919	0.27175	0.27175 0.050	-0.95149	50.000001	Averaged
6 2,4,6-Trichlorophenol	0.35870	0.35637	0.35637 0.010	0.64925	20.00000	Averaged
7 2,4,5-Trichlorophenol	0.384341	0.37885	0.37885 0.010	1.42817	50.000001	Averagedi
11 1,1'-Biphenyl	1 1.56345	1.46554	1.46554 0.010	6.26230	50.000001	Averaged
	1	1				31

Data File: \\cansvr11\dd\chem\MSS\a4hp7.i\71228a.b\ICVTCL.D Report Date: 02-Jan-2008 17:23

Page 2

TestAmerica North Canton

CONTINUING CALIBRATION COMPOUNDS

Instrument ID: a4hp7.i

Injection Date: 28-DEC-2007 17:29

Lab File ID: ICVTCL.D Analysis Type:

Init. Cal. Date(s): 28-DEC-2007 28-DEC-2007

Init. Cal. Times: 14:32

17:09

Lab Sample ID: icvtcl

Quant Type: ISTD

Method: \\cansvrl1\dd\chem\MSS\a4hp7.i\71228a.b\8270p.m

COMPOUND		I .	CCAL MIN		MAX	t
	RRF / AMOUNT	RF5	RRF5 RRF	%D / %DRIFT	' %D / %DRIFT	CURVE TYPE
68 1,2,3,5-Tetrachlorobenzene	0.44385	0.42854	0.42854 0.010			
70 2-Chloronaphthalene	1 1.171221	1.13981	1.13981 0.010			
73 2-Nitroaniline	0.42212	0.41981	0.41981 0.010			
74 1,2,3,4-Tetrachlorobenzene	0.40676	0.389631	0.38963[0.010]	0.54712		
76 Dimethylphthalate	1 1.259121	1.23137	1.23137 0.010	4.21327		-
78 2,6-Dinitrotoluene	0.28161	0.28750	0.28750 0.010	2.20436		
79 Acenaphthylene	1 2.006421	1.96831	1.96831 0.010	-2.09143		
80 1,2-Dinitrobenzene	0.14850	0.15271	0.15271 0.010	1.89924		,
81 3-Nitroaniline	1 5.000001	4.961941	0.36212 0.010	-2.83784		
82 Acenaphthene	1.18721	1.13687	1.13687[0.010]		1 0.000e+0001	
83 2,4-Dinitrophenol	1 10.000001	9.81398	0.19787 0.050	4.24019		-
85 4-Nitrophenol	0.16352	0.16471	0.16471 0.050		0.000e+0001	
86 Dibenzofuran	1.64156	1.57942		-0.72264		•
87 2,4-Dinitrotoluené	1 5.000001	5.009971	1.57942 0.010	3.78568		
91 2,3,5,6-Tetrachlorophenol	1 5.000001	4.89910	0.37863 0.010		0.000e+000	
93 Diethylphthalate	1 1.269901	1.24598	0.27240 0.010		0.000e+0001	
94 Fluorene	1 1.324141	1.288861	1.24598 0.010	1.88402		-
95 4-Chlorophenyl-phenylether	0.53526	0.51902	1.28886 0.010	2.66441		-
96 4-Nitroaniline	0.363291	0.373991	0.51902 0.010	3.03391		
98 4,6-Dinitro-2-methylphenol	1 5.00000]		0.37399 0.010	-2.94675		,
99 N-Nitrosodiphenylamine	0.59324	4.84121 0.58235	0.14118 0.010		0.000e+000	
100 1,2-Diphenylhydrazine	. 1.04729		0.58235 0.010	1.83487	• •	Averaged
106 4-Bromophenyl-phenylether	0.16689]	1.00870	1.00870 0.010	3.68563		Averaged
107 Hexachlorobenzene		0.16530	0.16530 0.010	0.95674		Averaged
212 Atrazine		0.17444	0.17444 0.010	3.17373;	50.000001	Averaged
11 Pentachlorophenol		0.18047	0.18047[0.010]	-2.18640	50.000001	Averaged
15 Phenanthrene		9.657591	0.12563 0.010	3.424141	0.000e+000	Quadratic
16 Anthracene		1.147591	1.14759 0.010	4.89381	50.000001	Averaged
19 Carbazole	1 1.16659	1.14381	1.14381 0.010	1.95248	50.000001	Averaged
20 Di-n-Butylphthalate	1.12625	1.10506	1.10506[0.010]	1.88173	50.00000	Averaged
23 Fluoranthene	1 1.36707	1.38975	1.38975 0.010	-1.65900!	50.000001	Averaged
24 Benzidine	1.092481	1.08227	1.08227 0.010	0.93401	20.000001	Averaged
25 Pyrene	1 5.000001	4.99140	0.85116 0.010	0.17200	0.000e+000	Quadratic!
-	1 1.49863	1.51534	1.51534 0.010	-1.11508	10000001	Averaged
31 Butylbenzylphthalate	1 5.000001	4.960491	0.76790 0.010	0.79014	0.000e+000!	Quadratic
33 3,3'-Dimethoxybenzidine	5.000001	5.40659	0.27491 0.010	-8.13180	0.000e+000	Quadratic
35 3,3'-Dichlorobenzidine	0.452251	0.465271	0.46527 0.010	-2.87929[50.000001	Averaged
36 Benzo(a)Anthracene	1.32552	1.29374	1.29374 0.010	2.397391	50.000001	Averaged
37 Chrysene	1.21437	1.18295	1.18295 0.010	2.58738	50.000001	Averaged
38 4,4'-Methylene bis(o-chloro	l 5.000001	4.77415	0.21569 0.010	4.51693	0.000e+000J	Quadratic
39 bis(2-ethylhexyl)Phthalate	1.06403	1.08327	1.08327 0.010	-1.80817	50.000001	Averaged
40 Di-n-octylphthalate	1 5.000001	4.77885	1.82312 0.010	4.423091	0.000e+000	
41 Benzo(b)fluoranthene	1.24007	1.18392	1.18392 0.010	4.52779]	50.000001	Averaged
. <u> </u>		1	111	1		-51

Data File: \\cansvr11\dd\chem\MSS\a4hp7.i\71228a.b\ICVTCL.D Report Date: 02-Jan-2008 17:23

Page 3

TestAmerica North Canton

CONTINUING CALIBRATION COMPOUNDS

Instrument ID: a4hp7.i

Injection Date: 28-DEC-2007 17:29

Lab File ID: ICVTCL.D Init. Cal. Date(s): 28-DEC-2007 28-DEC-2007 Analysis Type:

Init. Cal. Times: Lab Sample ID: icvtcl Quant Type: ISTD

14:32 17:09

Method: \\cansvrl1\dd\chem\MSS\a4hp7.i\71228a.b\8270p.m

1	1	1	1	CCAL MIN	1	MAX I	
COMPOUND	. RRF	/ AMOUNT	RF5	RRF5 RRF %	D / %DRIFT %D		CURVE TYPE
	==== ====	====== ==	====== =:	======= ===== =	====== ==	=======================================	
142 Benzo(k)fluoranthene	1	1.27431	1.27935	1.27935 0.010	-0.395021	50.000001	
146 Benzo(a)pyrene	1	1.12792	1.105961	1.10596 0.010	1.947221		Averaged
149 Indeno(1,2,3-cd)pyrene	ı	1.279461	1.267251	1.26725 0.010		20.000001	Averaged
150 Dibenz(a,h)anthracene	1	1.090941	1.089681	1.08968[0.010]	0.953961	50.000001	Averaged
151 Benzo(g,h,i)perylene		1.083421	1.058521	·	0.11522	50.000001	Averaged
198 1,4-Dioxane		0.608351		1.05852 0.010	2.29820	50.000001	Averaged
\$ 154 Nitrobenzene-d5		•	0.60213	0.60213 0.010	1.02223	50.000001	Averaged
\$ 155 2-Fluorobiphenyl		0.38717	0.36167	0.36167 0.010	6.58764	50.000001	Averaged
\$ 156 Terphenyl-d14	1	1.313331	1.29789	1.29789 0.010	1.17597	50.000001	Averaged
	ı	0.88973	0.87995	0.87995 0.010	1.09928	50.000001	Averaged
\$ 157 Phenol-d5	· I	2.20586	2.16950	2.16950 0.010	1.64820	50.000001	Averaged
\$ 158 2-Fluorophenol	1	1.43388	1.41913	1.41913 0.010	1.028761	50.000001	Averaged
\$ 159 2,4,6-Tribromophenol	J	0.13115	0.13177;	0.13177 0.010	-0.469161	50.000001	Averaged
\$ 186 2-Chlorophenol-d4	1	1.42885	1.40014	1.4001410.0101	2.009271	50.000001	=
\$ 187 1,2-Dichlorobenzene-d4	1	0.890331	0.870491	0.87049 0.010	2.228241		Averaged
M 195 Cresols, total	1	3.388811	3.329791	3.32979 0.010		50.000001	Averaged
101 Diphenylamine	1	0.593241	0.582351		1.74170	50.000001	Averaged
		0.000241	0.302351	0.58235 0.010	1.83487	50.000001	Averaged
	'		'				

SW846 8270C METHOD BLANK SUMMARY

BLANK WORKORDER NO.

Lab	Name:	TestAmerica	Laboratories,	Inc.

Lab Code: TALCAN

SDG Number: 7L12224

Lab File ID: KD5PD1AA.

Lot Number: A7L120224

Date Analyzed: 12/21/07

Time Analyzed: 11:37

Matrix: WATER

Date Extracted: 12/14/07

GC Column: DB-5.625 ID: .18

Extraction Method: 3520C

Instrument ID: AG2

Level: (low/med) LOW

THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES, LCS, LCSD, MS , MSD:

	1				<u> </u>
		SAMPLE	LAB	DATE	TIME
	CLIENT ID.	WORK ORDER #	FILE ID	ANALYZED	ANALYZED
	=======================================	======================================	: ===================================	========	========
01	MW74A-121107	KD05R1CG	KD05R1CG.	12/26/07	22:55
02	RW-01I-121107	KD0811CG	KD0811CG.	12/27/07	17:22
.03	CHECK SAMPLE	KD5PD1AC C	KD5PD1AC.	12/21/07	11:55
04	DUPLICATE CHECK	KD5PD1AD L	KD5PD1AD.	12/21/07	12:12
05		· ·			
06					
07					
80					-
09					
10					
11					
12					· · · · · ·
13					
14				i i	
15					
16				<u> </u>	
17			·		
18					
19					·
20				[
21					
22				!——— -	
23			-		
24					
25					
26				[<u>·</u>
27					
28					
29					
			!		
30		· · · · · · · · · · · · · · · · · · ·			

	•		 	 	
				 · · ·	
		 •	 		,
COMMENTS:					

METHOD BLANK REPORT

GC/MS Semivolatiles

Client Lot #...: 7L12224 Wo:

Work Order #...: KD5PD1AA

Matrix....: WATER

MB Lot-Sample #: A7L140000-035

Prep Date....: 12/14/07

Final Wqt/Vol..: 2 mL

Analysis Date..: 12/21/07

Dilution Factor: 1

Prep Batch #...: 7348035

Initial Wgt/Vol: 1000 mL

REPORTING

PARAMETER	RESULT	LIMIT	UNITS	METHOD
1,4-Dioxane	ND	10	ug/L	SW846 8270C
	PERCENT	RECOVERY	•	
SURROGATE	RECOVERY	LIMITS		
Nitrobenzene-d5	70	(27 - 11	1)	
2-Fluorobiphenyl	62	(28 - 11	.0)	
Terphenyl-d14	69	(37 - 11	9)	
Phenol-d5	31	(10 - 11	0)	
2-Fluorophenol	50	(10 - 11	0)	
2,4,6-Tribromophenol	66	(22 - 12	0)	

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

KD9271AA

SW846 8270C METHOD BLANK SUMMARY

Lab Na	ame: Te	estAmerica	Laboratories	. Inc.
--------	---------	------------	--------------	--------

Lab Code: TALCAN SDG Number:7L12224

Lab File ID: KD9271AA. Lot Number: A7L150155

Date Analyzed: 12/20/07 Time Analyzed: 16:50

Matrix: WATER Date Extracted:12/17/07

GC Column: DB-5.625 ID: .18 Extraction Method: 3520C

Instrument ID: AG2 Level: (low/med) LOW

THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES, LCS, LCSD, MS, MSD:

Ī		SAMPLE		LAB	DATE	TIME
ļ	CLIENT ID.	WORK ORDER		FILE ID	ANALYZED	ANALYZED
=			==		1	•
•	MW74A-121407	KD88H1CG		KD88H1CG.	12/20/07	22:51
	RW-01I121407	KD88Q1CG		KD88Q1CG.	12/21/07	00:00
	CHECK SAMPLE	KD9271AC C		KD9271AC.	12/20/07	17:07
	OUPLICATE CHECK	KD9271AD L		KD9271AD.	12/20/07	17:24
05 _				·	- [
06 _					_ [· · · · · · · · · · · · · · · · · · ·
07					_	
08 _						
09 _						
10 _		, ,	!		_	
11 <u>·</u>	·	<u> </u>	!	·	_	
12 _		:			_	
13 _			l		_	
14			1	·	_	
15 _					_	
16		l	_			
17 _			_1			
18 _						
19						
20 _						
21 _						
22			i			
23			_ [
24			٦į.			
25			_j.			
26			Ti.			÷
27			i			
28			i			
			:-		¦	
29		•	- 1		i l	

		TODM TV	"
COMMENTS:	•		•

METHOD BLANK REPORT

GC/MS Semivolatiles

Client Lot #...: 7L12224

Work Order #...: KD9271AA

Matrix..... WATER

MB Lot-Sample #: A7L170000-049

Prep Date....: 12/17/07

Final Wgt/Vol..: 2 mL

Analysis Date..: 12/20/07

Dilution Factor: 1

Prep Batch #...: 7351049

Initial Wgt/Vol: 1000 mL

REPORTING

PARAMETER	RESULT	LIMIT	UNITS	METHOD
1,4-Dioxane	ND	10	ug/L	SW846 8270C
	PERCENT	RECOVER	Y	
SURROGATE	RECOVERY	LIMITS		
Nitrobenzene-d5	72	(27 - 1)	11)	
2-Fluorobiphenyl	72	(28 - 1)	10)	
Terphenyl-d14	91	(37 - 1	19)	
Phenol-d5	67	(10 - 1)	10)	
2-Fluorophenol	71	(10 - 1)	10)	
2,4,6-Tribromophenol	81	(22 - 1)	20)	

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

SW846 8270C METHOD BLANK SUMMARY

BLANK WORKORDER NO.

Lab Name: TestAmerica Laboratories, Inc.

Lab Code: TALCAN

SDG Number: 7L12224

Lab File ID: KD8WK1AA.

Lot Number: A7L140260

Date Analyzed: 12/27/07

Time Analyzed: 09:58

Matrix: WATER

Date Extracted:12/16/07

Extraction Method: 3520C

GC Column: DB-5.625 ID: .32

Instrument ID: HP7

Level: (low/med) LOW

THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES, LCS, LCSD, MS , MSD:

		SAMPLE	LAB	DATE	TIME
	CLIENT ID.	WORK ORDER #	FILE ID	ANALYZED	ANALYZED
	_======================================	= =====================================	= ===========	=======	
	MW74A-121207	KD7CM1CG	KD7CM1CG.	12/27/07	16:55
02		KD7EX1CG	KD7EX1CG.	12/29/07	01:45
03		KD8WK1AC C	KD8WK1AC.	12/27/07	10:17
04	DUPLICATE CHECK	KD8WKlAD L	KD8WK1AD.	12/27/07	10:36
05			1		
06					
07					
08				·	
0.9					
10				<u> </u> -	[
11				¦	
12		· · · · · · · · · · · · · · · · · · ·		!!-	
13				! <u> </u> -	
14					
15				-	
16				-	
17			l — — — — — — — — — — — — — — — — — — —		
18					
19					
20		[
21					
22				_	
23					[
24		- 			
25				·	
26					
27					
28				<u>-</u> -	
29					1··
30					
30 _			<u> </u>		

COMMENTS:	•	•	
		·	
			_

METHOD BLANK REPORT

GC/MS Semivolatiles

Client Lot #...: 7L12224

Work Order #...: KD8WK1AA

Matrix..... WATER

MB Lot-Sample #: A7L150000-042

Prep Date....: 12/16/07

Analysis Date..: 12/27/07

Prep Batch #...: 7349042

Final Wgt/Vol..: 2 mL

Dilution Factor: 1

Initial Wgt/Vol: 1000 mL

REPORTING

PARAMETER	RESULT	LIMIT	UNITS	METHOD
1,4-Dioxane	ND	10	ug/L	SW846 8270C
	PERCENT	RECOVERY		

	PERCENT	RECOVERY		
SURROGATE	RECOVERY	LIMITS		
Nitrobenzene-d5	56	(27 - 111)		
2-Fluorobiphenyl	50 .	(28 - 110)		
Terphenyl-d14	61	(37 - 119)		
Phenol-d5	55	(10 - 110)		
2-Fluorophenol	54	(10 - 110)		
2,4,6-Tribromophenol	4 4	(22 - 120)		

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

SW846 8270C SURROGATE RECOVERY

Lab Name: TestAmerica Laboratories, Inc.

Client: Tetra Tech NUS, Inc

Lab Code: TALCAN SDG No: 7L12224

Lot #: A7L120224

Extraction: XXI51QL01

LIENT ID.	SRG01	SRG02	SRG03	SRG04	SRG05	SRG06	TOT OUT
	==== ====	======	======	======	======	=======	======
-121107	66	_60	71	18	29	66	00
I-121107	86 D	73 D	85 D	22 D	38 D	82 D	00
D BLK. KD5PD1AA	70	62	69	31	50	66	00
D5PD1AC	62	51	66	29	47	65	00
KD5PD1AD	65	49	·60	30	47	68	00
	-121107 I-121107 D BLK. KD5PD1AA D5PD1AC	-121107 66 I-121107 86 D D BLK. KD5PD1AA 70 D5PD1AC 62	-121107 66 60 1-121107 86 D 73 D 70 62 51 65 62 51	-121107	-121107	-121107	Total Contro

SURROGATES				QC LIMITS
SRG01	=	Nitrobenzene-d5		(27-111)
SRG02	_ =	2-Fluorobiphenyl		(28-110)
SRG03	. =	Terphenyl-d14		(37-119)
SRG04	=	Phenol-d5		(10-110)
SRG05	=	2-Fluorophenol		(10-110)
SRG06	=	2,4,6-Tribromophenol		(22-120)

FORM II

[#] Column to be used to flag recovery values

Values outside of required QC Limits

D System monitoring Compound diluted out

SW846 8270C SURROGATE RECOVERY

Lab Name: TestAmerica Laboratories, Inc.

Client: Tetra Tech NUS, Inc

Lab Code: TALCAN

SDG No: 7L12224

Lot #: A7L140260

Extraction: XXI51QL01

	CLIENT ID.	SRG01	SRG02	SRG03	SRG04	SRG05	SRG06	TOT OUT
	=======================================	======	======	======	======	======	======	l=====
01	MW74A-121207	69	65	81	65	58	63	1 oo 1
02	RW-01I-121207	60 D	56 D	72 D	55 D	54 D	62 D	00
03	METHOD BLK. KD8WK1AA	56	50	61	55	54	44	00
04	LCS KD8WK1AC	83	79	92	75	76	79	.00
05	LCSD KD8WK1AD	82	78	84	75	74	78	00

SURROGA'	<u>res</u> .	QC LIMITS
SRG01	= Nitrobenzene-d5	(27-111)
SRG02	= 2-Fluorobiphenyl	(28-110)
SRG03	= Terphenyl-d14	(37-119)
SRG04	= Phenol-d5	(10-110)
SRG05	= 2-Fluorophenol	(10-110)
SRG06	= 2,4,6-Tribromophenol	(22-120)

FORM II

[#] Column to be used to flag recovery values

^{*} Values outside of required QC Limits

D System monitoring Compound diluted out

SW846 8270C SURROGATE RECOVERY

Lab Name: TestAmerica Laboratories, Inc.

Client: Tetra Tech NUS, Inc

Lab Code: TALCAN

SDG No: 7L12224

Lot #: A7L150155

Extraction: XXI51QL01

CLIENT ID.	SRG01	SRG02	SRG03	SRG04	SRG05	SRG06	TOT OUT
	======	======	======	======	======	======	======
01 MW74A-121407	64	69	88	60	59	85	00
02 RW-01I121407	75 D	75 D	87 D	65 D	68 D	77 D	00
METHOD BLK. KD9271AA	72	72	91	67	71	81	00.
4 LCS KD9271AC	76	74	85	65	73	82	00
5 LCSD KD9271AD	70	72	83	65	67	81	00

SURROGA	ATES .	QC LIMITS
SRG01	= Nitrobenzene-d5	(27-111)
SRG02	= 2-Fluorobiphenyl	(28-110)
SRG03	= Terphenyl-d14	(37-119)
SRG04	= Phenol-d5	(10-110)
SRG05	= 2-Fluorophenol	(10-110)
SRG06	= 2,4,6-Tribromophenol	(22-120)

FORM II

[#] Column to be used to flag recovery values

^{*} Values outside of required QC Limits

D System monitoring Compound diluted out

SW846 8270C CHECK SAMPLE RECOVERY

Lab Name: TestAmerica Laboratories, Inc.

Client: Tetra Tech NUS, Inc

Lab Code: TALCAN

SDG No: 7L12224

Lot #: A7L140000

WO #: KD5PD1AC BATCH: 7348035

COMPOUND	SPIKE ADDED (ug/L)	SAMPLE CONCENT. (ug/L)	% REC	QC LIMITS REC	QUAL
1,2,4-Trichlorobenzene	20	=====================================	====	========	========
Acenaphthene	20	10	32	25- 110	
2,4-Dinitrotoluene	20	15	52	40- 110	
Pyrene	20	13	74	52 - 123	
N-Nitrosodi-n-propylamine	20	12	63	55- 120	
1,4-Dichlorobenzene	20	, 10	50	37- 121	
Pentachlorophenol	20	9.5	48	19- 110	·
Phenol	20	6.0	30	26- 110	
2-Chlorophenol	20	12	58	14- 112	
4-Chloro-3-methylphenol	20	12	59	27- 110	
4-Nitrophenol	20	6.9	35	39- 110 12- 130	

NOTES	101	
MOTES	เรา	1

Spike Recovery:	0	out of	11 outside	limits
COMMENTS:	•			

FORM III

* Values outside of QC limits

SW846 8270C CHECK SAMPLE DUPLICATE RECOVERY

Lab Name: TestAmerica Laboratories, Inc.

Client: Tetra Tech NUS, Inc

Lab Code: TALCAN

SDG No: 7L12224

Lot #: A7L140000

WO #: KD5PD1AD BATCH: 7348035

COMPOUND	SPIKE ADDED (ug/L)	SAMPLE CONCENT. (ug/L)	% REC	QC LIMITS REC	QUAL
1,2,4-Trichlorobenzene	20	7.5	37	25- 110	=======
Acenaphthene	20	11	54	40- 110	
2,4-Dinitrotoluene	20	15	76	52 - 123	
Pyrene	20	12	62	55- 120	
N-Nitrosodi-n-propylamine	20	12	62	37- 121	
1,4-Dichlorobenzene	20 .	12	59.	19- 110	
Pentachlorophenol	20	10	52	26- 110	·
Phenol	20	5.9	29	14 - 112	
2-Chlorophenol	20	12	59	27- 110	
4-Chloro-3-methylphenol	20	12	59	39- 110	
4-Nitrophenol	20	7.1	35	12- 130	

NOTES(S):			
	•		

* Values outside of QC limits

Spike Recovery:	0	out of	11	outside	limits	
COMMENTS:						
· · · · · · · · · · · · · · · · · · ·						

FORM III

SW846 8270C CHECK SAMPLE RECOVERY

Lab Name: TestAmerica Laboratories, Inc.

Client: Tetra Tech NUS, Inc

Lab Code: TALCAN

SDG No: 7L12224

Lot #: A7L150000

WO #: KD8WK1AC BATCH: 7349042

 COMPOUND ====================================	SPIKE ADDED (ug/L)	SAMPLE CONCENT. (ug/L)	% REC	QC LIMITS REC	QUAL
1,2,4-Trichlorobenzene	20 .	12	59	25- 110	========
Acenaphthene	20	17	83	40- 110	ļ-
2,4-Dinitrotoluene	20 .	18	88	52- 123	
Pyrene	20	17	85	55- 120	
N-Nitrosodi-n-propylamine	20	16	80	37- 121	
1,4-Dichlorobenzene	20	17	84	19- 110	
Pentachlorophenol	20	14	68	26- 110	
Phenol	20	14	71	14- 112	
2-Chlorophenol	20	15	74	27- 110	
4-Chloro-3-methylphenol	20	15	76	39- 110	
4-Nitrophenol	20	17	83	12- 130	

NOTES(S):		

* Values outside of QC limits

Spike Recovery: __0 out of __11 outside limits

COMMENTS:

FORM III

SW846 8270C CHECK SAMPLE DUPLICATE RECOVERY

Lab Name: TestAmerica Laboratories, Inc.

Client: Tetra Tech NUS, Inc

Lab Code: TALCAN

SDG No: 7L12224

Lot #: A7L150000

WO #: KD8WK1AD BATCH: 7349042

COMPOUND	SPIKE ADDED (ug/L)	SAMPLE CONCENT. (ug/L)	% REC	QC LIMITS REC	QUAL
1,2,4-Trichlorobenzene	20	11	56	25- 110	====== ===
Acenaphthene	20	16	82	40- 110	
2,4-Dinitrotoluene	20	17	86	52 - 123	
Pyrene	20	17	83	55- 120	**************************************
N-Nitrosodi-n-propylamine	20	16	81	37- 121	
1,4-Dichlorobenzene	20	16	80	19- 110	
Pentachlorophenol	20	14	70	26- 110	
Phenol	20	14	70	14 - 112	
2-Chlorophenol	20	14	. 72	27- 110	
4-Chloro-3-methylphenol	20	1.5	74	39- 110	
4-Nitrophenol	20	16	80	12- 130	

Notes (s) :		•	

* Values outside of QC limits

Spike Recovery:	0 out of	11	outside limits
COMMENTS:	· : ,		

FORM III

SW846 8270C CHECK SAMPLE RECOVERY

Lab Name: TestAmerica Laboratories, Inc.

Client: Tetra Tech NUS, Inc

Lab Code: TALCAN

SDG No: 7L12224

Lot #: A7L170000

WO #: KD9271AC BATCH: 7351049

COMPOUND	SPIKE ADDED (ug/L)	SAMPLE CONCENT. (ug/L)	% REC	QC LIMITS REC	QUAL
======================================	=======================================	=======================================	: =====	=========	========
1,2,4-Trichlorobenzene	20	16	82	25- 110	İ
Acenaphthene	20	16	79	40- 110	
2,4-Dinitrotoluene	20	18	91	52 - 123	
Pyrene	20	16	79	55- 120	
N-Nitrosodi-n-propylamine	20	16	80-1	37- 121	
1,4-Dichlorobenzene	20	27	136*) 19- 110	a
Pentachlorophenol	20	14	1072	26- 110	
Phenol	20	15	73	14- 112	
2-Chlorophenol	20	14	69	27- 110	
4-Chloro-3-methylphenol	20	15	77	39- 110	
4-Nitrophenol	20	15	77	12- 130	

NOTES (S):

* Values	outside	of Ç)C	limits			,
Spike Rec	overy:	1		out of	11	outside	limits
COMMENTS:							

FORM III

a Spiked analyte recovery is outside stated control limits.

SW846 8270C CHECK SAMPLE DUPLICATE RECOVERY.

Lab Name: TestAmerica Laboratories, Inc. Client: Tetra Tech NUS, Inc

Lab Code: TALCAN

SDG No: 7L12224

Lot #: A7L170000

WO #: KD9271AD BATCH: 7351049

COMPOUND	SPIKE ADDED (ug/L)	SAMPLE CONCENT. (ug/L)	% REC	QC LIMITS REC	 QUAL
	******	=======================================	= =====	========	========
1,2,4-Trichlorobenzene	20	16	79	25- 110	
Acenaphthene	20	16	78	40- 110	
2,4-Dinitrotoluene	20	19	93	52- 123	
Pyrene	20	16	80	55- 120	
N-Nitrosodi-n-propylamine	20	15	77	37- 121	
1,4-Dichlorobenzene	20	25	123*	19- 110	a
Pentachlorophenol	20	15	73	26- 110	
Phenol	20	14	71	14 - 112	
2-Chlorophenol	20	14	72	27- 110	
4-Chloro-3-methylphenol	20	15	75	39- 110	
4-Nitrophenol	20	16	78	12- 130	

NOTES(S):

⁺ Val	ues	outside	of	QC	limits				
								٠.	
Spike	Rec	covery:		1	out of.	11	outside	limits	
OMME	NTS:	:				٠.			
		• • •					·		

FORM III

a Spiked analyte recovery is outside stated control limits.

8B SEMIVOLATILE INTERNAL STANDARD AREA SUMMARY

Lab Name: TESTAMERICA-NORTH CANTON : Contract:

Lab Code: TALCAN Case No.: SAS No.: SDG No.: 7L12224

Lab File ID (Standard): 2SMH1220 Date Analyzed: 12/20/07

Instrument ID: A4AG2 Time Analyzed: 1615

		IS1 (DCB)	г	TOO (MIDIN)		7.70 (
	 	AREA #	RT	IS2 (NPT) AREA #	RT	IS3 (ANT) AREA #	RT
	12 HOUR STD	276268	3.54	1189295	4.44	664995	5.70
	UPPER LIMIT	552536	4.04	2378590	4.94	1329990	6.20
	LOWER LIMIT	138134	3.04	594648	3.94	332498	5.20
	EPA SAMPLE NO.						=====
01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22	KD927BLK KD927CHK KD927CKDUP MW74A-121407 RW-01I121407	250971 278797 282477 299597 319115	3.54 3.54 3.54 3.54 3.54	1090266 1218284 1244501 1298337 1348012	4.44 4.44 4.44 4.44	611667 692246 687064 702686 703407	5.70 5.70 5.70 5.70 5.70

(DCB) = 1,4-Dichlorobenzene-d4 IS2

UPPER LIMIT = +100%

= Naphthalene-d8 = Acenaphthene-d10 (NPT) IS3 (ANT)

of internal standard area.

LOWER LIMIT = - 50%

of internal standard area.

Column used to flag internal standard area values with an asterisk.

page 1 of 1

FORM VIII SV-1

8C SEMIVOLATILE INTERNAL STANDARD AREA SUMMARY

Lab Name: TESTAMERICA-NORTH CANTON | Contract:

Lab File ID (Standard): 2SMH1220

Lab Code: TALCAN Case No.: SAS No.:

Date Analyzed: 12/20/07

SDG No.: 7L12224

Instrument ID: A4AG2 Time Analyzed: 1615

		IS4 (PHN)		IS5 (CRY)	· -	IS6 (PRY)	
		AREA #	RT	AREA #	RT	AREA #	RT
	12 HOUR STD	1212878	6.79	1221237	8.74	1221281	10.16
	UPPER LIMIT	2425756	7.29	2442474	9.24	2442562	10.66
	LOWER LIMIT	606439	6.29	610619	8.24	610641	9.66
	EPA SAMPLE NO.				=====	=======	======
	=============	========	=====	========	=====	========	=====
01 02	KD927BLK KD927CHK	1142450	6.79	1158552	8.74	1195408	10.16
03	KD927CHK KD927CKDUP	1248151 1270039	6.79 6.79	1233042 1260883	8.75	1252721	10.17
04	MW74A-121407	1274518	6.79	1238021	8.75 8.75	1282232 1236498	10.17 10.18
05	RW-01I121407	1219338	6.79	1190610	8.74	1224326	10.18
06					0.,_	1221320	10.17
07 08							
09							
10							
11							
12							
13 14					_		
15							
16			 -				
17			· ·				
18			·				
19							
20							-
21 22		 	.				
22	l.			I.			

(PHN) = Phenanthrene-d10 IS5 (CRY)

UPPER LIMIT = +100%

= Chrysene-d12 = Perylene-d12 IS6 (PRY)

of internal standard area.

LOWER LIMIT = - 50%

of internal standard area.

Column used to flag internal standard area values with an asterisk.

page 1 of 1

FORM VIII SV-2

8B SEMIVOLATILE INTERNAL STANDARD AREA SUMMARY

Lab Name: TESTAMERICA-NORTH CANTON : Contract:

Lab Code: TALCAN Case No.: SAS No.: SDG No.: 7L12224

Lab File ID (Standard): 2SMH1221 Date Analyzed: 12/21/07

Instrument ID: A4AG2 Time Analyzed: 0932

			····				
		IS1 (DCB) AREA #	RT	IS2 (NPT) AREA #	RT	IS3 (ANT) AREA #	RT
	12 HOUR STD	303306	3.50	1286239	4.39	677486	5.65
	UPPER LIMIT	606612	4.00	2572478	4.89	1354972	6.15
	LOWER LIMIT	15 1653	3.00	643120	3.89	338743	5.15
	EPA SAMPLE NO.	:::::::::::::::::::::::::::::::::::::			=====	========	
01 02 03 04 05 06 07 08 09 11 12 13 14 15	KD5 PDBLK KD5 PDCHK KD5 PDCKDUP	280263 270200 280463	3.50 3.50 3.50	1167388 1134468 1210344	4.39 4.39 4.39	621801 601488 640633	5.65 5.65 5.65
16 17 18 19 20 21							
22							

IS1 IS2

of internal standard area.

(NPT) = Naphthalene-d8 (ANT) = Acenaphthene-d10 LOWER LIMIT = - 50% IS3

of internal standard area.

Column used to flag internal standard area values with an asterisk.

page 1 of 1

FORM VIII SV-1

8C SEMIVOLATILE INTERNAL STANDARD AREA SUMMARY

Lab Name: TESTAMERICA-NORTH CANTON : Contract:

Case No.:

Lab Code: TALCAN

SAS No.:

SDG No.: 7L12224

Lab File ID (Standard): 2SMH1221

Date Analyzed: 12/21/07

Instrument ID: A4AG2

Time Analyzed: 0932

		IS4 (PHN)		IS5 (CRY)		TOC (DDV)	
		AREA #	RT	AREA #	RT	IS6 (PRY) AREA #	RT
	12 HOUR STD	1163066	6.74	1124040	8.68	1129397	10.06
	UPPER LIMIT	2326132	7.24	2248080	9.18	2258794	10.56
	LOWER LIMIT	581533	6.24	562020	8.18	564699	9.56
	EPA SAMPLE NO.	=======	=====	=======	=====	=======	=====
01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18	KD5PDBLK KD5PDCHK KD5PDCKDUP	1059513 1050012 1116319	6.74 6.74 6.74	985012 998166 1107316	8.68 8.68 8.69	977343 974917 1070531	10.06 10.07 10.07
20 21							
22							

= Phenanthrene-d10 IS4 (PHN)

UPPER LIMIT = +100%

IS5 (CRY) = Chrysene-d12 IS6 (PRY) = Perylene-d12

of internal standard area.

LOWER LIMIT = - 50%

of internal standard area.

Column used to flag internal standard area values with an asterisk.

page 1 of 1

FORM VIII SV-2

8B SEMIVOLATILE INTERNAL STANDARD AREA SUMMARY

Lab Name: TESTAMERICA-NORTH CANTON Contract:

Case No.:

Lab Code: TALCAN

SAS No.:

SDG No.: 7L12224

Lab File ID (Standard): 2SMH1226

Date Analyzed: 12/26/07

Instrument ID: A4AG2

Time Analyzed: 1811

		IS1 (DCB)		IS2 (NPT)		IS3 (ANT)	7
	=========	AREA #	RT	AREA #	RT	AREA #	RT
	12 HOUR STD	243967	3.65	1009273	4.55	523671	5.82
	UPPER LIMIT	487934	4.15	2018546	5.05	1047342	6.32
	LOWER LIMIT	121984	3.15	504637	4.05	261836	5.32
	EPA SAMPLE NO.	=== ======	=====	=======	=====		=====
01 02 03 04 05 06 07 08 09 10 11 12 13	MW74A-121107	298933	3.65	1230828	4.54	654414	5.81
15 16 17							
18 19							
20 21 22							

IS1 (DCB) = 1,4-Dichlorobenzene-d4

UPPER LIMIT = +100%

IS2 (NPT) IS3 (ANT)

= Naphthalene-d8 = Acenaphthene-d10

of internal standard area.

LOWER LIMIT = - 50%

of internal standard area.

Column used to flag internal standard area values with an asterisk.

page 1 of 1

FORM VIII SV-1

8C SEMIVOLATILE INTERNAL STANDARD AREA SUMMARY

Lab Name: TESTAMERICA-NORTH CANTON | Contract:

Lab Code: TALCAN

Case No.:

SAS No.:

SDG No.: 7L12224

Lab File ID (Standard): 2SMH1226

Date Analyzed: 12/26/07

Instrument ID: A4AG2

Time Analyzed: 1811

		IS4 (PHN)	Γ	IS5 (CRY)		TOC (DOTE)	т——
		AREA #	RT	AREA #	RT	IS6(PRY) AREA #	RT
	12 HOUR STD	905978	6.91	846770	8.89	770455	10.42
	UPPER LIMIT	1811956	7.41	1693540	9.39	1540910	10.92
	LOWER LIMIT	452989 =======	6.41	423385	8.39	385228	9.92
	EPA SAMPLE NO.		:			=======	=====
01 02	======= MW74A-121107	1155918	6.91	======== 1100429	8.88	1063768	10.42
02 03 04							
05 06							
07 08							
09 10							
11 12							
13 14							
15 16							
17 18							
19 20 21							
22							

IS4 (PHN)

= Phenanthrene-d10

(CRY) (PRY) = Chrysene-d12 = Perylene-d12

UPPER LIMIT = +100%

of internal standard area.

LOWER LIMIT = - 50%

of internal standard area.

Column used to flag internal standard area values with an asterisk.

page 1 of 1

IS5

IS6

FORM VIII SV-2

8B SEMIVOLATILE INTERNAL STANDARD AREA SUMMARY

Lab Name: TESTAMERICA-NORTH CANTON | Contract:

Lab Code: TALCAN

Case No.:

SAS No.:

SDG No.: 7L12224

Lab File ID (Standard): 2SMH1227

Date Analyzed: 12/27/07

Instrument ID: A4AG2

Time Analyzed: 1334

		IS1 (DCB) AREA #	RT	IS2(NPT) AREA #	DIII	IS3 (ANT)	
		AUA #		AREA #	ľ	AREA #	RT
	12 HOUR STD	278992	3.54	1142314	4.44	560631	5.70
	UPPER LIMIT	557984	4.04	2284628	4.94	1121262	6.20
	LOWER LIMIT	139496	3.04	571157	3.94	280316	5.20
	EPA SAMPLE NO.				=====	=======	
01 02	RW-01I-12110	272353	3.54	1161301	4.43	580563	5.70
03 04							
05 06							
07 08 09							
10 11	<u> </u>						
12 13							
14 15							
16 17							
18							
20 21							
22						· · · · · · · · · · · · · · · · · · ·	

IS1 (DCB) = 1,4-Dichlorobenzene-d4

UPPER LIMIT = +100%

IS2 IS3 (ANT) = Naphthalene-d8 = Acenaphthene-d10

of internal standard area.

LOWER LIMIT = - 50% of internal standard area.

Column used to flag internal standard area values with an asterisk.

page 1 of 1

FORM VIII SV-1

8C SEMIVOLATILE INTERNAL STANDARD AREA SUMMARY

Lab Name: TESTAMERICA-NORTH CANTON | Contract:

Lab Code: TALCAN Case No.: SAS No.: SDG No.: 7L12224

Lab File ID (Standard): 2SMH1227 Date Analyzed: 12/27/07

Instrument ID: A4AG2 Time Analyzed: 1334

	1	· · · · · · · · · · · · · · · · · · ·					
		IS4 (PHN) AREA #	RT	IS5 (CRY) AREA #	RT	IS6(PRY) AREA #	RT
	12 HOUR STD	948218	6.79	887757	8.76	830501	10.21
	UPPER LIMIT	1896436	7.29	1775514	9.26	1661002	10.71
	LOWER LIMIT	474109	6.29	443879	8.26	415251	9.71
	EPA SAMPLE NO.	·	=====		=====	========	======
01 02	RW-01I-12110	1023676	6.79	919611	8.75	875601	10.19
03 04							
05 06 07							
07 08 09							
10							
12 13							
14 15							
16 17							
18							
20 21	-						
22							

IS4 = Phenanthrene-d10 (PHN)

IS5 (CRY) = Chrysene-d12

IS6 = Perylene-d12 (PRY)

UPPER LIMIT = +100%

of internal standard area. LOWER LIMIT = - 50%

of internal standard area.

Column used to flag internal standard area values with an asterisk.

page 1 of 1

FORM VIII SV-2

8B SEMIVOLATILE INTERNAL STANDARD AREA SUMMARY

Lab Name: TESTAMERICA-NORTH CANTON Contract:

Lab Code: TALCAN Case No.: SAS No.: SDG No.: 7L12224

Lab File ID (Standard): 7SMH1227 Date Analyzed: 12/27/07

Instrument ID: A4HP7 Time Analyzed: 0939

		IS1 (DCB)		IS2 (NPT)	<u> </u>	IS3 (ANT)	······
		AREA #	RT	AREA #	RT-	AREA #	RT
	12 HOUR STD	217544	3.39	927248	4.28	450858	5.54
	UPPER LIMIT	435088	3.89	1854496	4.78	901716	6.04
	LOWER LIMIT	108772	2.89	463624	3.78	225429	5.04
	EPA SAMPLE NO.		=====	=======	=====		
01 02 03 04 05 06 07 08 09 10 12 13 14 15 16 17 18	KD8WKBLK KD8WKCHK KD8WKCKDUP MW74A-121207	204409 195930 175278 195857	3.39 3.39 3.39	886955 843215 780346 881191	4.28 4.28 4.28 4.28	434581 416330 381978 435514	5.54 5.54 5.54 5.54
21 22							

IS1 (DCB) = 1,4-Dichlorobenzene-d4
IS2 (NPT) = Naphthalene-d8

UPPER LIMIT = +100%

IS2 (NPT) = Naphthalene-d8
IS3 (ANT) = Acenaphthene-d10

of internal standard area.

(ANT) = Acenaphthene-d10 LOWER LIMIT = - 50%

of internal standard area.

Column used to flag internal standard area values with an asterisk.

page 1 of 1

FORM VIII SV-1

8C SEMIVOLATILE INTERNAL STANDARD AREA SUMMARY

Lab Name: TESTAMERICA-NORTH CANTON Contract:

Lab Code: TALCAN Case No.: SAS No.: SDG No.: 7L12224

Lab File ID (Standard): 7SMH1227 Date Analyzed: 12/27/07

Instrument ID: A4HP7 Time Analyzed: 0939

		IS4 (PHN)		TCE (CDV)	· -	TAC (553)	· · · · · · · · · · · · · · · · · · ·
		AREA #	RT	IS5(CRY) AREA #	RT	IS6 (PRY) AREA #	RT
	12 HOUR STD	686439	6.62	552444	8.57	536395	9.91
	UPPER LIMIT	1372878	7.12	1104888	9.07	1072790	10.41
	LOWER LIMIT	343220	6.12	276222	8.07	268198	9.41
	EPA SAMPLE NO.	=======	=====		=====	========	=====
	========	========	======	========	=====	========	=====
01 02	KD8WKBLK KD8WKCHK	683896 650324	6.62 6.62	528453 517147	8.58 8.57	516367 498045	9.91
03 04	KD8WKCKDUP MW74A-121207	587713 710623	6.62 6.62	479211 555274	8.57 8.57	451138 532371	9.91
05 06							
07 08							
09			<u></u>				
10 11							
12	· · · · · · · · · · · · · · · · · · ·						
13 14							
15 16							
17							
18 19							
20							
22							
20 21							

IS4 (PHN) = Phenanthrene-d10

= Chrysene-d12 = Perylene-d12 IS5 (CRY)

IS6 (PRY) UPPER LIMIT = +100%

of internal standard area.

LOWER LIMIT = - 50%

of internal standard area.

Column used to flag internal standard area values with an asterisk.

page 1 of 1

FORM VIII SV-2

8B SEMIVOLATILE INTERNAL STANDARD AREA SUMMARY

Lab Name: TESTAMERICA-NORTH CANTON (Contract:

Lab Code: TALCAN Case No.: SAS No.: SDG No.: 7L12224

Lab File ID (Standard): 7SMH1228 Date Analyzed: 12/28/07

Instrument ID: A4HP7 Time Analyzed: 1709

1		TC1 (DCD)		TGO (NDW)		T 700 (7277)	
		IS1 (DCB) AREA #	RT	IS2 (NPT) AREA #	RT	IS3 (ANT) AREA #	
12	HOUR SID	147686	3.57	657208	4.47	317983	5.73
UPI	PER LIMIT	295372	4.07	1314416	4.97	635966	6.23
	WER LIMIT	73843	3.07	328604	3.97	158992	5.23
EPA	A SAMPLE NO.						
1	D1I-12120	187462	3.57	809579	4.47	386738	5.73
04							· ·
06 07 08							
09							
11 12 13							
14							
16							
18 19 20							
21							

IS1 (DCB) = 1,4-Dichlorobenzene-d4

UPPER LIMIT = +100%

IS2 (NPT) = Naphthalene-d8
IS3 (ANT) = Acenaphthene-d10

of internal standard area.

LOWER LIMIT = - 50%

of internal standard area.

Column used to flag internal standard area values with an asterisk.

page 1 of 1

FORM VIII SV-1

8C SEMIVOLATILE INTERNAL STANDARD AREA SUMMARY

Lab Name: TESTAMERICA-NORTH CANTON : Contract:

Lab Code: TALCAN

Case No.:

SAS No.:

SDG No.: 7L12224

Lab File ID (Standard): 7SMH1228

Date Analyzed: 12/28/07

Instrument ID: A4HP7

Time Analyzed: 1709

		IS4 (PHN)		IS5 (CRY)	1	IS6 (PRY)	r
		AREA #	RT	AREA #	RT	AREA #	RT
	12 HOUR STD	482999	6.82	386468	8.79	372293	10.29
	UPPER LIMIT	965998	7.32	772936	9.29	744586	10.79
	LOWER LIMIT	241500	6.32	193234	8.29	186147	9.79
	EPA SAMPLE NO.		=====	=======	=====	========	=====
01 02	RW-01I-12120	618586	6.82	483910	8.78	478836	10.27
03 04							
05 06							
07 08							
09 10				· · · · · · · · · · · · · · · · · · ·			
11 12							
13 14							
15 16							
17 18							
19 20							
21 22							
•		·	I				

(PHN) = Phenanthrene-d10 IS4

(CRY) = Chrysene-d12 (PRY) = Perylene-d12 IS5 IS6

UPPER LIMIT = +100%

of internal standard area.

LOWER LIMIT = - 50%

of internal standard area.

Column used to flag internal standard area values with an asterisk.

page 1 of 1

FORM VIII SV-2

Initial Calif	oration	V erifica	ition Stan	dard				_				
Instrument:	C	/AA	_				Units:		ug/L	_		
Chart Numb	er: <u>h</u> g	541219a. _]	orn				Accepta	ble Ra	ange: 9	0% - 1	10%	
Standard So	urce:		Ultra				Standar	d ID:				
	WL/	True	Ck2IC 12/19/20 7:55 A	07		%		%		%		%
Element	Mass	Conc	Found	Rec	Found	Rec	Found	Rec	Found	Rec	Found	Rec
Mercury	253.7	2.5	2.47	98.7					-			

Continuing Cali	bration Ve	erification									
Instrument:	CVAA	_ .		Units: ug/L							
Chart Number:	hg41219a.	prn		Acceptable R	ange: 80% - 1	20%					
Standard Source:		Ultra		Standard ID:							
		Ck6CCV	Ck6CCV	Ck6CCV	Ck6CCV	Ck6CCV					

	NA/T /		Ck6CCV 12/19/2007 7:58 AM		Ck6CCV 12/19/2007 8:08 AM		Ck6CCV 12/19/2007 9:19 AM		Ck6CCV 12/19/2007 9:34 AM		Ck6CCV 12/19/2007 9:51 AM	
Element	WL/ Mass	True Conc	Found	% Rec	Found	% Rec	Found	% Rec	Found	% Rec	Found	% Rec
Mercury	253.7	5.0	5.04	100.9			4.87	97.4	4.76	95.2	4.78	95.5

Continuing	<u>Calibra</u>	tion Ve	rification									
Instrument:	C	VAA	_				Units:		ug/L			
Chart Numb	oer: <u>h</u> g	,41219a. ₁	<u>orn</u>				Accepta	ıble Ra	ange: 8	0% - 1	20%	
Standard So	ource:		Ultra				Standar	d ID:				
	WL/		Ck6CC 12/19/20 10:07 A	007 M		·						
Element	Mass	True Conc	Found	% Rec	Found	% Rec	Found	% Rec	Found	% Rec	Found	% Rec
Mercury	253.7	5.0	4.82	96.4								

Metals Data Reporting Form

Initial Calibration Verification Standard

Instrument:	<u>ICPMS</u>	Units:	ug/L	
			,	

Chart Number: 121907a.rep Acceptable Range: 90% - 110%

Standard Source: _____ Standard ID: ____

	WL/		QC Sto 12/19/20 9:26 A	007								
Element	Mass	True Conc	Found	% Rec	Found	% Rec	Found	% Rec	Found	% Rec	Found	% Rec
Antimony	121	25.0	24.61	98.5	· · · · · · · · · · · · · · · · · · ·						Tound	- Kee
Arsenic	75	25.0	24.59	98.4				ŀ				İ
Barium	135	25.0	24.86	99.4								
Beryllium	9	25.0	25.13	100.5								
Cadmium	. 111	25.0	25.25	101.0								
Chromium	52	25.0	25.64	102.5								
Cobalt	59	25.0	25.34	101.4								
Copper	65	25.0	25.05	100.2								
Lead	208	25.0		102.0				1				
Molybdenum	98	25.0	25.54	102.2		l						
Nickel	60	25.0	25.47	101.9				ļ				
Selenium	82	25.0	25.34	101.4								ĺ
Silver	107	25.0	25.63	102.5		l						i
Thallium	205	25.0	26.52	106.1								l
Vanadium	51	25.0	24.92	99.7								
Zinc	68	25.0	25.27	101.1				-]				

Metals Data Reporting Form

Continuing Calibration Verification

Instrument: ICPMS Units: ug/L

Chart Number: 121907a.rep Acceptable Range: 90% - 110%

Standard Source: _____ Standard ID: ___

			12/19/20	QC Std 6 12/19/2007 9:50 AM		6 107	QC Std 12/19/20	007	QC Std 6 12/19/2007		QC Sto 12/19/20	007
	WL/	True	9.30 AI	<u>%</u>	12:24 P	<u>₩</u>	1:19 PI	V1 %	2:11 P		3:05 P	
Element	Mass	Conc	Found	_Rec	Found	Rec	<u>Fo</u> und	Rec	Found	% Rec	Found	% Rec
Antimony	121	50.0	50.86	101.7	49.38	98.8	48.65		48.73	97.5	48.59	
Arseniċ	75	50.0	49.46	98.9	49.10	98.2	48.40	96.8	48.93	97.9	49.21	98.4
Barium	135	50.0	51.07	102.1	49.51	99.0	48.40	96.8	48.54		48.82	
Beryllium	9	50.0	48.48	97.0	50.92	101.8	49.13	98.3	48.42	96.8	47.12	
Cadmium	- 111	50.0	49.47	98.9	51.18	102.4	49.98		49.46	98.9	50.01	100.0
Chromium	52	50.0	50.55	101.1	48.34	96.7	48.19	96.4	48.24	96.5	47.33	94.7
Cobalt	59	50.0	48.14	96.3	49.34	98.7	49.41	98.8	48.31	96.6	48.70	
Copper	65	50.0	48.63	97.3	49.75	99.5	49.40	98.8	47.51	95.0	48.05	96.1
Lead	208	50.0	50.02	100.0	49.90	99.8	50.19	100.4	48.78	97.6	49.85	99.7
Molybdenum	98	50.0	51.91	103.8	49.95	99.9	48.01	96.0	45.93	91.9	45.92	91.8
Nickel	60	50.0	47.70	95.4	49.66	99.3	49.00	98.0	47.44	94.9	47.75	95.5
Selenium	82	50.0	49.30	98.6	49.25	98.5	49.39	98.8	51.90		53.90	107.8
Silver	107	50.0	49.81	99.6	53.70	107.4	51.36	102.7	49.75	99.5	49.73	99.5
Thallium	205	50.0	51.95	103.9	51.12	102.2	51.38	102.8	49.02	98.0	50.69	101.4
Vanadium	51	50.0	50.11	100.2	47.81	95.6	46.89	93.8	46.90	93.8	46.77	93.5
Zinc	68	50.0	48.62	97.2	50.59	101.2	49.49	99.0	49.68	99.4	49.77	99.5

Contract	Require	d Detect	tion Limit	t Star	ıdard							
Instrumen	t:	CVAA					Units:		ug/L			
Chart Nun	nber: <u>l</u>	ng41219a	ı.prn				Accep	table]	Range:	50% -	150%	
Standard S	Source: _	· · · · · · · · · · · · · · · · · · ·	Ultra	1			Standa	ard ID):			
Element	WL/ Ck4CRA\MRL 12/19/2007 7:57 AM %						Found	% Rec	Found	% Rec	Found	% Bas
Mercury	253.7	0.2	0.20	99.1		Rec	x ound	Rec	rounu	Rec	Found	Rec

Metals Data Reporting Form

Contract Required Detection Limit Standard

 Instrument:
 ICPMS
 Units:
 ug/L

 Chart Number:
 121907a.rep
 Acceptable Range:
 50% - 150%

Standard Source: _____ Standard ID:

	_					_						
	WL/		QC Std 12/19/20 9:35 Al	07				·				
		True		%		%	W. 1.2	%		%	***	%
Element	Mass	Conc	Found	Rec	<u>Found</u>	Rec	Found	Rec	Found	Rec	Found	Rec
Antimony	121	2.0	1.98	99.2								
Arsenic	75	2.0	2.12	105.9				j				
Barium	135	1.0	1.03	102.6				1				
Beryllium	9	1.0	0.93	92.6				ŀ				
Cadmium	111	0.5	0.54	107.6				- 1				
Chromium	52	2.0	2.34	(116.9)			ļ		Ì		
Cobalt	59	1.0		105.8								
Copper	65	2.0		106.8								
Lead	208	1.0	1.04	104.5						İ		
Molybdenu	98	10.0		103.0				į				
Nickel	60	2.0	2.18	109.1								
Selenium	82	2.0	1.84	92.1								
Silver	107	0.5	0.53	106.8		.						
Thallium	205	1.0		106.7		ł				l		
Vanadium	51	5.0		101.9				i				
Zinc	68	10.0	9.88	98.8		ŀ						

Initial Calib	ration B	lank R	esults									
Instrument:	CV	AA	_				Units:		ug/L	_		
Chart Numbe	er: <u>hg</u> 4	1219а.г	orn									
Standard Sou	rce:						Standar	d ID:				
	WL/	Report	Ck3IC 12/19/20 7:56 Al	007							·	
Element	Mass	Limit	Found	Q	Found	Q.	Found	Q	Found	o	Found	0
Mercury	253.7	0.2	0.1	U								

Metals Data Reporting Form

Continuing Calibration Blank Results Instrument: ____CVAA Units: ug/L Chart Number: hg41219a.prn Standard Source: Standard ID: Ck5CCB Ck5CCB Ck5CCB Ck5CCB Ck5CCB 12/19/2007 12/19/2007 12/19/2007 12/19/2007 12/19/2007 8:00 AM 8:09 AM 9:20 AM 9:36 AM 9:52 AM WL/ Report Element Mass Limit Found Q **Found** Found Found Found Mercury 253.7 0.2

0.1

U

0.1

U

0.1 U 0.1 U

-0.1

В

Continuing	g Calibra	ation B	lank Res	ults								
Instrument:	<u>C</u>	VAA				-	Units:		ug/L			
Chart Numb	ber: <u>h</u> g	g41219a	.prn									
Standard So	ource:			<u>.</u>		_	Standa	ard II):			
	XX/T /		Ck5CC 12/19/20 10:08 A	007								
Element	WL/ Mass	Report Limit	Found	0	Found	Q	Found	Q	Found	Q	Found	Q
Mercury	253.7	0.2	0.1	U								

Metals Data Reporting Form

Initial Calibration Blank Results

Instrument: ICPMS	Units:ug/L
Chart Number: 121907a.rep	•
Standard Source:	Standard ID:

			QC Ste 12/19/20 9/82 AN	07						· ·		
Element	WL/ Mass	Report Limit	Found	Q.	Found	Q	Found	Q	Found	Q	Found	Q
Antimony	121	2	0.13	В								
Arsenic	75	5	0.26	U								
Barium	135	1	0.061	U					ļ			
Beryllium	- 9	1	0.033	U								
Cadmium	111	1	0.019	U								
Chromium	52	2	0.29	В								
Cobalt	59	1	0.022	U								
Copper	65	2	0.056	U			5 					
Lead	208	. 1	0.065	U								
Molybdenum	98	2	0.58	U								
Nickel	60	2	0.076	U			,				,	
Selenium	82	5	1.2	U				i				
Silver	107	1	0.012	В								
Thallium	205	1	0.027	U								
Vanadium	51	20	0.27	U								
Zinc	68	20	0.81	U								

Metals Data Reporting Form

Continuing Calibration Blank Results

Instrument: ___ICPMS ___ Units: ___ ug/L

Chart Number: 121907a.rep

Standard Source: _____ Sta

	<u> </u>				Standard ID:										
			QC Sidi 12/19/20 9:58 At	07	QC Std 12/19/20 12:32 PI	07)	QC Std 12/19/20 1:27 PM	07	QC Std 12/19/20 2:19 PM	07	QC Std 12/19/20 3:13 PM	007			
Element	WL/ Mass	Report Limit	Found	0	Found	0	Found	0	Found	0	Found	0			
Antimony	121	2	0.092	В	0.078	В	0.081	B)	0.081	В	0.07				
Arsenic	75	5	0.26	U	0.26	U	0.26	Ū	0.26	U.	0.07	U			
Barium	135	1	0.061	U	0.061	U	0.061	U	0.061	U	0.061	U			
Beryllium	9	1	0.033	U	0.033	U	0.033	U	0.033	U	0.033	U			
Cadmium	111	1	0.019	U	0.019	U	0.019	U	0.019	_U	0.019	U			
Chromium	52	2	0.27	В	0.31	В	0.3	В	0.33	B)	0.29	В			
Cobalt	59	1	0.022	U	0.022	U	0.022	U	0.022	U	0.022	U			
Copper	65	2	0.056	U	0.056	U	0.056	U	0.056	Ū	0.056	U			
Lead	208	1	0.065	U	0.065	U	0.065	U	0.065	U	0.065	U			
Molybdenum	98	2	0.93	В	0.58	U	0.58	U	0.58	U	0.58	U			
Nickel	60	2	0.076	U	0.076	U	0.076	U	0.076	U	0.076	U			
Selenium	82	5	1.2	U	1.2	U	1.2	U	1.2	U	1.2	U			
Silver	107	1	0.013	В	0.01	U	0.01	U	0.01	U	0.01	U			
Thallium	205	1	0.059	В	0.027	U	0.027	υ	0.027	U	0.027	U			
Vanadium	51	20	0.27	U	0.27	U	0.27	U	0.27	U	0.27	U			
Zinc	68	20	0.81	U	0.81	U	0.81	U	0.81	U	0.81	U			

^{5.21.0}

U Result is less than the IDL

Metals Data Reporting Form

Preparation Blank Results

Lab Sample ID: KECKWB

Matrix: Water Units: ug/L Prep Date: 12/18/2007 Prep Batch: 7352026

Weight: NA Volume: 50 Percent Moisture: NA

	WL/		Report					Anal	Anal
Element	Mass	IDL	Limit	Conc	Q	DF	Instr	Date	Time
Antimony	121	0.055	2.0	0.055	U	1	ICPMS	2/19/2007	13:03
Arsenic	75	0.26	5.0	0.26	U	1	ICPMS	12/19/2007	
Barium	135	0.061	1.0	0.061	U	1	ICPMS	2/19/2007	
Beryllium	9	0.033	1.0	0.033	U	1	ICPMS	2/19/2007	
Cadmium	111	0.019	1.0	0.019	U	1	ICPMS	2/19/2007	
Chromium	52	0.14	2.0	0.14	U	1	ICPMS	2/19/2007	
Cobalt	59	0.022	1.0	0.022_	U	1	į	2/19/2007	
Copper	65	0.056	2.0	0.061	В	1		12/19/2007	
Lead	208	0.065	1.0	0.065	0	1	1	12/19/2007	13:03
Molybdenum	98	0.58	2.0	0.58	U	-1		2/19/2007	13:03
Nickel	60	0.076	2.0	0.076	U	1		12/19/2007	13:03
Selenium	82	1.2	5.0	1.2	U	1		2/19/2007	13:03
Silver	107	0.010	1.0	0.010	U	1		2/19/2007	13:03
Thallium	205	0.027	1.0	0.035	\mathbf{B}		i 1	12/19/2007	13:03
Vanadium	51	0.27	20.0	0.27	_U		1	2/19/2007	13:03
Zinc	68	0.81	20.0	2.3	В			12/19/2007	13:03

Comments: Lot #: A7L140260

Metals Data Reporting Form

Preparation Blank Results

Lab Sample ID: KECKWB

Matrix: Water Units: 119/1.

Water Units: ug/L Prep Date: 12/18/2007 Prep Batch: 7352026-Hg

Weight: NA Volume: 100 Percent Moisture: NA

Element	WL/ Mass	IDL	Report Limit	Conc	o	DF	Instr	Anal Date	Anal Time
Mercury	253.7	0.10	0.20	0.10	U	1	CVAA	2/19/2007	

Metals Data Reporting Form

Interference Check Standard A

Instrument:	ICPMS	Units:	ug/L		
Chart Number: _	121907a.rep	Acceptable R	ange:	0% - 0%	

Standard Source: _____ Standard ID: ____

				QC Std 4 12/19/2007 9:39 AM				
Element	WL/ Mass	Reporting <u>Limit</u>	True Conc	Found	Found	Found	Found	Found
Antimony	121	2		0.160				
Arsenic	75	5		0.085				
Barium	135	1		0.700				
Beryllium	9	1		0.008				!
Cadmium	111	1		0.059				
Chromium	52	2		1				
Cobalt	59	1		0.084				
Copper	65	2		2				* .
Lead	208	1		0.037			,	
Molybdenum	98	2		694		!	,	
Nickel	60	2		. 2				
Selenium	82	5		-0.660		·		i
Silver	107	1		0.052				
Thallium	205	1		0.002	ĺ		i	
Vanadium	51	20		-0.021				
Zinc	68	20		2			,	

U Result is less than the IDL

Metals Data Reporting Form

Interference Check Standard AB

Instrument:	ICPMS	Units:	ug/L	
-------------	-------	--------	------	--

Chart Number: 121907a.rep Acceptable Range: 50% - 150%

Standard Source: _____ Standard ID: ____

			QC Std 12/19/20 9:43 A	007					·			• .
171	WL/	True	_	%		%		%		%		%
Element	Mass	Conc	Found	Rec	<u>Found</u>	Rec	Found	Rec	<u>Found</u>	Rec	Found	Rec
Antimony	121	100	111.5	111.5								
Arsenic	75	100	103.0	103.0								
Barium	135	100	106.2	106.2								
Beryllium	9	100	100.8	100.8				ļ				
Cadmium	111	100	99.6	99.6				,				
Chromium	52	100	99.9	99.9								
Cobalt	59	100	99.5	99.5						İ		j
Copper	65	100	98.1	98.1				ĺ				.
Lead	208	100	98.1	98.1								
Molybdenum	98	1000	725.0	72.5) .					i		
Nickel	60	100	98.6	98.6		ľ						
Selenium	82	100	108.6	108.6		.						
Silver	107	100	95.5	95.5						ĺ		
Thallium	205	100	98.4	98.4		ŀ		1				1
Vanadium	51	100	98.1	98.1								
Zinc	68	100	99.8	99.8							•	

U Result is less than the IDL

Metals Data Reporting Form

Matrix Spike Sample Results

Spike Sample ID: KD05RS

Original Sample ID: KD05R Client ID: MW74A-121107S

Matrix: Water Units: ug/L Prep Date: 12/18/2007 Prep Batch: 7352026

Weight: NA Volume: 50 Percent Moisture: NA

											os	os	MS	MS
Element	WL/ Mass	OS Conc	Q	MS Conc	Q	Spike Level	% _Rec	OS DF	MS DF	Instr	Anal Date	Anal Time	Anal Date	Anal Time
Antimony	121	0.26	В	98.1		100	97.8	1	1	ICPMS	12/19/2007	13:12	12/19/2007	13:37
Arsenic	75	0.43	В	102		100	101.4	1	1	ICPMS	12/19/2007	13:12	12/19/2007	13:37
Barium	135	39.3		131		100	91.5	1	1	ICPMS	12/19/2007	13:12	12/19/2007	13:37
Beryllium	9	2.0		106		100	104.1	1	1	ICPMS	12/19/2007	13:12	12/19/2007	13:37
Cadmium	111	0.54	В	103		100	102.9	1	1	ICPMS	12/19/2007	13:12	12/19/2007	13:37
Chromium	52	0.20	В	83.3		100	83.1	1	1	ICPMS	12/19/2007	13:12	12/19/2007	13:37
Cobalt	59	31.9		120		100	88.4	1	1	ICPMS	12/19/2007	13:12	12/19/2007	13:37
Copper	65	6.7		99.2		100	92.6	1.	1	ICPMS	12/19/2007	13:12	12/19/2007	13:37
Lead	208	0.29	В	94.5		100	94.2	1	1	ICPMS	12/19/2007	13:12	12/19/2007	13:37
Molybdenum	98	0.58	U	79.2	N	100	79.2	1 .	1	ICPMS	12/19/2007	13:12	12/19/2007	13:37
Nickel	60	13.2		105		100	91.5	1	1	ICPMS	12/19/2007	13:12	12/19/2007	13:37
Selenium	82	1.2	U	115		100	115.3	1	1	ICPMS	12/19/2007	13:12	12/19/2007	13:37
Silver	107	0.010	U	93.4		100	93.4	1	1	ICPMS	12/19/2007	13:12	12/19/2007	13:37
Thallium	205	0.074	В	93.4		100	93.4	1	1	ICPMS	12/19/2007	13:12	12/19/2007	13:37
Vanadium	51	0.27	U	82.8		100	82.8	1	1	ICPMS	12/19/2007	13:12	12/19/2007	13:37
Zinc	68	630		723	NC	100		1	1	ICPMS	12/19/2007	13:12	12/19/2007	13:37

Comments: Lot #: A7L120224 Sample #: 1

5.21.0

N Spike recovery failed

Form 5A Equivalent

NC Percent recovery was not calculated

^{*} Duplicate analysis RPD was not within limits

E Serial dilution percent difference not within limits

Metals Data Reporting Form

Matrix Spike Sample Results

Spike Sample ID: KD05RS

Original Sample ID: KD05R Client ID: MW74A-121107S

Matrix: Water Units: ug/L Prep Date: 12/18/2007 Prep Batch: 7352026-Hg

Weight: NA Volume: 100 Percent Moisture: NA

											os	os	MS	MS
	WL/	os		MS		Spike	%	os	MS		Anal	Anal	Anal	Anal
Element	Mass	Conc	Q	Conc	Q	Level	Rec	_DF	DF	Instr	Date	Time	Date	Time
Mercury	253.7	0.10	IJ	0.89		1	88.6	1	1	CVAA	12/19/2007	9:38	12/19/2007	9:41

Comments: Lot #: A7L120224 Sample #: 1

5.21.0

N Spike recovery failed

Form 5A Equivalent

NC Percent recovery was not calculated

^{*} Duplicate analysis RPD was not within limits

E Serial dilution percent difference not within limits

Metals Data Reporting Form

Sample Duplicate RPD Report

Duplicate Sample ID: KD05RX

Original Sample ID: KD05R Client ID: MW74A-121107X

Matrix: Water Units: ug/L Prep Date: 12/18/2007 Prep Batch: 7352026

Weight: NA Volume: 50 Percent Moisture: NA

									l	os	os	Dupe	Dupe
	WL/	OS		Dupe		%	OS.	Dupe	ļ	Anal	Anal	Anal	Anal
Element	Mass	Conc	Q	Conc	Q	RPD	DF	DF	Instr	Date	Time	Date	Time
Antimony	121	0.26	В	0.055	U	0.2	1	1	ICPMS	2/19/200	13:12	12/19/2007	13:33
Arsenic	75	0.43	В	0.62	В	0.2	1	1	ICPMS	2/19/200	13:12	12/19/2007	13:33
Barium	135	39.3		38.7		1.5	1	1	ICPMS	2/19/200	13:12	12/19/2007	13:33
Beryllium	9	2.0		1.8		0.2	. 1	1	ICPMS	2/19/200	13:12	12/19/2007	13:33
Cadmium	111	0.54	В	0.50	В	0.0	1	1	ICPMS	2/19/200	13:12	12/19/2007	13:33
Chromium	52	0.20	В	0.14	U	0.1	1	1	ICPMS	2/19/200	13:12	12/19/2007	13:33
Cobalt	59	31.9		31.3		1.7	1	1	ICPMS	2/19/200	13:12	12/19/2007	13:33
Copper	65	6.7		6.5		0.1	1	1	ICPMS	2/19/200	13:12	12/19/2007	13:33
Lead	208	0.29	В	0.28	В	0.0	1	1	ICPMS	2/19/200	13:12	12/19/2007	13:33
Molybdenum	98	0.58	UN	0.58	U		1	1	ICPMS	2/19/200	13:12	12/19/2007	13:33
Nickel	60	13.2		12.9		2.3	1	1	ICPMS	2/19/200	13:12	12/19/2007	13:33
Selenium	82	1.2	U	1.2	·U		1	1	ICPMS	2/19/200	13:12	12/19/2007	13:33
Silver	107	0.010	U	0.010	U		1	1	ICPMS	2/19/200	13:12	12/19/2007	13:33
Thallium	205	0.074	В	0.049	В	0.0	1	1	ICPMS	2/19/200	13:12	12/19/2007	13:33
Vanadium	51	0.27	U	0.27	U		1	1	ICPMS	2/19/200	13:12	12/19/2007	13:33
Zinc	68	630	<u> </u>	630		0.0	1	1	ICPMS	2/19/200	13:12	12/19/2007	13:33

^{5.21.0}

^{*} Duplicate analysis RPD was not within limits

U Result is less than the IDL

B Result is between IDL and RL

Metals Data Reporting Form

Sample Duplicate RPD Report

Duplicate Sample ID: KD05RX

Original Sample ID: KD05R Client ID: MW74A-121107X

Matrix: Water Units: ug/L Prep Date: 12/18/2007 Prep Batch: 7352026-Hg

Weight: NA Volume: 100 Percent Moisture: NA

Element	WL/ Mass	OS Conc	0	Dupe Conc	0	% RPD	OS DF	Dupe DF	Instr	OS Anal Date	OS Anal Time	Dupe Anal Date	Dupe Anal Time
			Ĭ		1					2.00	<u> </u>	Dute	A A
Mercury	253.7	0.10	U	0.10	U		1	1	CVAA	2/19/200	9:38	12/19/2007	9:40

Metals Data Reporting Form

Laboratory Control Sample Results

Lab Sample ID: KECKWC

Matrix: Water Units: ug/L Prep Date: 12/18/2007 Prep Batch: 7352026

Weight: NA Volume: 50 Percent Moisture: NA

Element	WL/ Mass	Spike Level	Conc	Percent Recovery	Q	Range	DF	Instr	Anal Date	Anal Time
Biement		Bever	Conc	Recovery	V	Kange	DI.	Ilisti	Date	111116
Antimony	121	100	90.5	90.5		57-110	1	ICPMS	2/19/2001	13:07
Arsenic	75	100	103	102.7		86-118	1	ICPMS	2/19/2001	13:07
Barium	135	100	93.9	93.9		83-110	1	ICPMS	2/19/2007	13:07
Beryllium	9	100	106	105.5		84-120	1	ICPMS	2/19/2001	13:07
Cadmium	111	100	105	104.9		89-114	1	ICPMS	2/19/2001	13:07
Chromium	52	100	84.6	84.6		81-110	1	ICPMS	2/19/2001	13:07
Cobalt	59	100	91.5	91.5		82-113	1	ICPMS	2/19/2001	13:07
Copper	65	100	96.9	96.9		82-113	1	ICPMS	2/19/2001	13:07
Lead	208	100	96.5	96.5		84-113	1	ICPMS	2/19/2001	13:07
Molybdenum	98	100	81.2	81.2		62-111	1	ICPMS	2/19/2001	13:07
Nickel	60	100	94.4	94.4		80-111	1	ICPMS	2/19/2001	13:07
Selenium	82	100	113	112.9		90-128	1	ICPMS	2/19/2001	13:07
Silver	107	100	102	102.1		83-111	1	ICPMS	2/19/2007	13:07
Thallium	205	100	94.1	94.1		82-113	1	ICPMS	2/19/2001	13:07
Vanadium	51	100	82.7	82.7		82-110	1	ICPMS	2/19/2007	13:07
Zinc	68	100	117	117.1		90-129	1	ICPMS	2/19/2007	13:07

Comments: Lot #: A7L140260

NC Percent recovery was not calculated

Metals Data Reporting Form

Laboratory Control Sample Results

Lab Sample ID: KECKWC

Matrix: Water Units: ug/L Prep Date: 12/18/2007 Prep Batch: 7352026-Hg

Weight: NA Volume: 100 Percent Moisture: NA

Element	WL/ Mass	Spike Level	Conc	Percent Recovery	Q	Range	DF	Instr	Anal Date	Anal Time
Mercury	253.7	5.0	4.5	89.8	·	81-123	1	CVAA	2/19/2007	9:37

Metals Data Reporting Form

Serial Dilution RPD Report

Serial Dilution Sample ID: ____ KD88QFL

Original Sample ID: KD88QF Client ID: RW-01I121407F

Matrix: Water Units: ug/L Prep Date: 12/18/2007 Prep Batch: 7352026

Weight: NA Volume: 50 Percent Moisture: NA

Element	WL/ Mass	OS Conc	Q	Serial Dilution Conc	Q	Percent Diff	OS DF	Ser Dil DF	Instr	OS Anal Date	OS Anal Time	Ser Dil Anal Date	Ser Dil Anal Time
Antimony	121	0.055	U	0.28	U		1	5.	ICPMS	12/19/2007	14:29	12/19/2007	14:33
Arsenic	75	1.0	В	1.3	В		1	5	F	12/19/2007	14:29	12/19/2007	
Barium	135	106		111		4.3	1	5.	ICPMS	12/19/2007	14:29	12/19/2007	14:33
Beryllium	9	2.0		1.8	В	10	1	5	ICPMS	12/19/2007	14:29	12/19/2007	14:33
Cadmium	111	267		271		1.7	1	5	ICPMS	12/19/2007	14:29	12/19/2007	14:33
Chromium	52	1.2	В	1.1	В		1	5	ICPMS	12/19/2007	14:29	12/19/2007	14:33
Cobalt	59	254		296	E	16.5	1	5	ICPMS	12/19/2007	14:29	12/19/2007	14:33
Copper	65	24.0		25.8		7.5	1	5	ICPMS	12/19/2007	14:29	2/19/2007	14:33
Lead	208	0.19	В	0.32	U		1	5	ICPMS	12/19/2007	14:29	12/19/2007	14:33
Molybdenum	98	0.58	UN	2.9	U		1	5	ICPMS	12/19/2007	14:29	12/19/2007	14:33
Nickel	60	82.8		90.3		9.06	1	5	ICPMS	12/19/2007	14:29	2/19/2007	14:33
Selenium	82	2.7	В	6.0	U		1	5	ICPMS	12/19/2007	14:29	12/19/2007	14:33
Silver	107	0.010	U	0.050	U		1	5	ICPMS	12/19/2007	14:29	12/19/2007	14:33
Thallium	205	0.10	В	0.14	U		1	5	ICPMS	12/19/2007	14:29	12/19/2007	14:33
Vanadium	51	2.6	В	1.8	В		1	5	ICPMS	12/19/2007	14:29	12/19/2007	14:33
Zinc	- 68	370		365		1.35	1	5	ICPMS	12/19/2007	14:29	2/19/2007	14:33

Comments: _

E Serial dilution percent difference not within limits

Form 9 Equivalent

Metals Data Reporting Form

Instrument Detection Limits

Instrument: <u>CVAA</u>

Units: ____ppb

Element	Wavelength	Reporting Limit	IDL	Date of IDL	
Mercury	253.700	0.2	0.10	11/7/2007	

Metals Data Reporting Form

Instrument Detection Limits

Instrument: ICPMS

Units: ppb

Element	Mass	Reporting Limit	IDL	Date of IDL
Antimony	121	2.0	0.055	12/14/2007
Arsenic	75	5.0	0.26	12/14/2007
Barium	135	1.0	0.061	12/14/2007
Beryllium	9	1.0	0.033	12/14/2007
Cadmium	111	1.0	0.019	12/14/2007
Chromium	52	2.0	0.14	12/14/2007
Cobalt	59	1.0	0.022	12/14/2007
Copper	65	2.0	0.056	12/14/2007
Lead	208	1.0	0.065	12/14/2007
Molybdenum	98	2.0	0.58	12/14/2007
Nickel	60	2.0	0.076	12/14/2007
Selenium	82	5.0	1.2	12/14/2007
Silver	107	1.0	0.010	12/14/2007
Thallium	205	1.0	0.027	12/14/2007
Vanadium	51	20.0	0.27	12/14/2007
Zinc	68	20.0	0.81	12/14/2007

Metals Data Reporting Form

Linear Dynamic Ranges

Instrument: ICPMS Units: ppb

Element	Wavelength /Mass	Linear Range	Date of Linear Range
Antimony	121.00	2000	4/26/2007
Arsenic	75.00	5000	4/26/2007
Barium	135.00	-5000	4/26/2007
Beryllium	9.00	2500	4/26/2007
Cadmium	111.00	5000	4/26/2007
Chromium	52.00	5000	4/26/2007
Cobalt	59.00	5000	4/26/2007
Copper	65.00	5000	4/26/2007
Lead	208.00	5000	4/26/2007
Molybdenum	98.00	5000	4/26/2007
Nickel	60.00	5000	4/26/2007
Selenium	82.00	5000	4/26/2007
Silver	107.00	2000	4/26/2007
Thallium	205.00	5000	4/26/2007
Vanadium	51.00	5000	4/26/2007
Zinc	68.00	5000	4/26/2007

Batch Number: 7352026

TestAmerica Laboratories, Inc. Metals Prep Log/ Batch Summary

Prepared By:

Lisa McGall (e-Signature)

Prep Date:

12/18/07

Lot	Work Order		Due Date:	12/26/07	IOD W. C.		
	- voix order	-			ICP Weight	ICPMS Weight	Hg Weight
A7L180000 Water	KECKW	В	Due Date: SDG:			<u>50 mL</u>	100 mL
A7L180000 Water	KECKW	С	Due Date: SDG:			<u>50 mL</u>	<u>100 mL</u>
A7L120224 Water	KD05R Dissolved		Due Date: 12/26/07 SDG: 7L12224			50 mL	<u>100 mL</u>
A7L120224 Water	KD05R Total		Due Date: 12/26/07 SDG: 7L12224			<u>50 mL</u>	<u>100 mL</u>
A7L120224 Water	KD05R Total	S	Due Date: 12/26/07 SDG: 7L12224			<u>50 mL</u>	<u>100 mL</u>
A7L120224 Water	KD05R Total	X	Due Date: 12/26/07 SDG: 7L12224			<u>50 mL</u>	100 mL
A7L120224 Water	KD081 Dissolved		Due Date: 12/26/07 SDG: 7L12224			<u>50 mL</u>	<u>100 mL</u>
A7L120224 Water	KD081 Total		Due Date: 12/26/07 SDG: 7L12224			<u>50 mL</u>	<u>100 mL</u>
A7L140260 Water	KD7CM Dissolved		Due Date: 12/28/07 SDG: 7L12224			<u>50 mL</u>	<u>100 mL</u>
A7L140260 Water	KD7CM Total		Due Date: 12/28/07 SDG: 7L12224			<u>50 mL</u>	<u>100 mL</u>
A7L140260 Water	KD7EX Dissolved		Due Date: 12/28/07 SDG: 7L12224			<u>50 mL</u>	100 mL
A7L140260 Water	KD7EX Total		Due Date: 12/28/07 SDG: 7L12224			<u>50 mL</u>	<u>100 mL</u>
A7L150155 Water	KD88H Dissolved		Due Date: 12/28/07 SDG: 7L12224			<u>50 mĽ</u>	100 mL
A7L150155 Water	KD88H Total		Due Date: 12/28/07 SDG: 7L12224			<u>50 mL</u>	100 mL
A7L150155 Water	KD88Q Dissolved		Due Date: 12/28/07 SDG: 7L12224			<u>50 mL</u>	<u>100 mL</u>
A7L150155 Water	KD88Q Total		Due Date: 12/28/07 SDG: 7L12224			<u>50 mL</u>	100 mL
	LEVEL 2						
	· -						

BLANK AND CHECK STANDARD ON BATCH MS/MSD AND PDS ON BATCH CORRECT SPIKES ADDED SPIKING SOLUTIONS DOCUMENTED ON BATCH LOG

Comments:

B-BLANK; C-CHECK SAMPLE; L-CHECK SAMPLE DUPLICATE; P-SERIAL DILUTION; S-MATRIX SPIKE SAMPLE; D-MATRIX SPIKE DUPLICATE SAMPLE

ICPMS ELEMENTS WITHIN THE BATCH:

AG AS BA BE CD CO CR CU MO NI PB SB SE TL VX ZN

Batch Number:

7352026

TestAmerica Laboratories, Inc. Metals Prep Log/ Batch Summary

Prepared By:

Lisa McGall (e-Signature)

Prep Date:

12/18/07

Due Date:

12/26/07

ICP Weight

ICPMS Weight

Hg Weight

Matrix Spike Information:

KD05R

Lot

Work Order

Hg

ICPMS-1

Check Sample Information:

KECKW

Hg

ICPMS-1

Prep Method(s): SW846 3005A, SW846 7470A

```
: Instrument Upload Run Log - Page 1 : Started Thu Dec 20 06:28:54 2007 by LISTM : Data File: UPL$CAN_DATA_ROOT:<LHG>HG41219A.PRN;1 :
```

_	#	WorkOrder	Dilution	Date	Time	Batch	Lot	Instrument
	1	WATER		20-DEC-2007				H4
	2	STD01REP1	1	19-DEC-2007	07:45:39			H4
	3	STD01REP1	1	19-DEC-2007	07:46:53	•		H4
	4	STD02REP1	1 -	19-DEC-2007	07:48:18			H4
	5	STD03REP1	1	19-DEC-2007	07:49:34			H4
	6	STD04REP1	1	19-DEC-2007	07:51:09			H4
	7	STD05REP1	1	19-DEC-2007	07:52:25			H4 .
	8	STD06REP1	1	19-DEC-2007	07:53:41			H4
	9	CK2ICV	1	19-DEC-2007	07:55:05			H4
:	10	CK3ICB	1	19-DEC-2007	07:56:19			H4
-	11	CK4CRA\MRL	1 .	19-DEC-2007	07:57:35			H4
-	12	CK6CCV	1	19-DEC-2007	07:58:51			H4
-	13	CK5CCB	1	19-DEC-2007	08:00:04			H4
.1	L4	KECLVB	1	19-DEC-2007	08:01:19			H4
J	L5	KECLVC	1	19-DEC-2007	08:03:02			H4
]	L6	KDJ0X	1	19-DEC-2007	08:04:25			H4
J	L7	KDJ0XX	1	19-DEC-2007	08:05:39			H4
1	18	KDJOXS	1	19-DEC-2007	08:06:52			H4
1	١9	CK6CCV	1	19-DEC-2007	08:08:07			H4
2	20	CK5CCB	1	19-DEC-2007	08:09:21			H4
2	2.1	CK6CCV	1	19-DEC-2007	09:19:35			H4
2	22	CK5CCB	1	19-DEC-2007	09:20:51			H4
2	23	KD39CBT	1	19-DEC-2007	09:22:14	7352029	A7L130000	H4
.2	24	KECK2BT	1	19-DEC-2007	09:23:32	7352029	A7L180000	H4
2	:5	KECK2CT	1	19-DEC-2007	09:24:50	7352029	A7L180000	H4
2	6	KDQ07T	1	19-DEC-2007	09:26:05	7352029	A7L080105	H4
.2	7	KDQ1CT	1	19-DEC-2007	09:27:22	7352029	A7L080105	H4
2	8	KDQ1DT	1	19-DEC-2007	09:28:36	7352029	A7L080105	H4
2	9	KDQ1DTS	1	19-DEC-2007	09:29:52	7352029	A7L080105	H4
3	0	KDQ1DTD	1	19-DEC-2007	09:31:08	7352029	A7L080105	H4
3	1	KDQ1KT	1	19-DEC-2007	09:32:21	7352029	A7L080105	H4
3	2	KECKWB	1.	19-DEC-2007	09:33:35	7352026	A7L180000	H4
3	3	CK6CCV	1.	19-DEC-2007	09:34:50			H4
3	4	CK5CCB	1	19-DEC-2007	09:36:12			H4
		_	1	19-DEC-2007	09:37:32	7352026	A7L180000	H4
		_ /	1	19-DEC-2007	09:38:51	7352026	7L12224	H4
3	7	KD05RX	1	19-DEC-2007	09:40:20	7352026	7L12224	H4
			1	19-DEC-2007	09:41:34	7352026	7L12224	H4
3	۶ ک	KD05RF)	1	19-DEC-2007	09:42:49	7352026	7L12224	H4
	•		1	19-DEC-2007	09:44:15	7352026	7L12224	H4
	•		1	19-DEC-2007	09:45:29	7352026	7L12224	H4 ·
			1	19-DEC-2007			7L12224	H4
			1	19-DEC-2007	09:48:24	7352026	7L12224	H4
4	4 🤇	KD7EX	1	19-DEC-2007	09:49:38	7352026	7L12224	H4

----- (continued) -----

: Instrument Upload Run Log - Page 2: Started Thu Dec 20 06:28:54 2007 by LISTM: Data File: UPL\$CAN_DATA_ROOT:<LHG>HG41219A.PRN;1

#	WorkOrder	Dilution	Date	Time	Batch	Lot	Instrument
45	CK6CCV	1	19-DEC-2007	09:51:02			H4
46	CK5CCB	1	19-DEC-2007	09:52:19			H4
47		1	19-DEC-2007	09:53:33	7352026	7L12224	H4
48	(KD88H)	1	19-DEC-2007			7L12224	H4
49	(KD88HF)	1	19-DEC-2007	09:56:17	7352026	7L12224	H4
50	(KD88Q)	1	19-DEC-2007	09:57:40	7352026	7L12224	H4
51	(KD88QF)	1	19-DEC-2007	09:58:55	7352026	7L12224	H4
52	KECKNBF	1	19-DEC-2007	10:00:09	7352023	A7L180000	H4
53	KECKNC	1	19-DEC-2007	10:01:33	7352023	A7L180000	H4
54	KD291	1	19-DEC-2007	10:02:53	7352023	7L12171	H4
55	KD291F	1	19-DEC-2007	10:04:13	7352023	7L12171	H4
56	KD29E	1	19-DEC-2007	10:05:32	7352023	7L12171	H4
57	CK6CCV	1	19-DEC-2007	10:07:16			H4
58	CK5CCB	1	19-DEC-2007	10:08:34			H4
59	KD29ES	1	19-DEC-2007	10:09:51	7352023 ·	7L12171	H4
60	KD29ED	1	19-DEC-2007			7L12171	H4
61	KD29EF	1	19-DEC-2007	10:12:36	7352023	7L12171	H4
62	KD29P	1	19-DEC-2007	10:13:51	7352023	7L12171	H4
63	KD3A1	1	19-DEC-2007	10:15:19	7352023	7L12171	H4
64	KD3A1F	1	19-DEC-2007	10:16:38	7352023	7L12171	H4
65	KD3A7	1	19-DEC-2007	10:17:56	7352023	7L12171	H4
66	KD3A7F	1	19-DEC-2007	10:19:11	7352023	7L12171	H4
67	KD3AA	1	19-DEC-2007	10:20:48	7352023	7L12171	H4
68	KD3AAF	1	19-DEC-2007	10:22:27	7352023	7L12171	H4
69	CK6CCV	1	19-DEC-2007	10:23:41			H4
70	CK5CCB	1	19-DEC-2007	10:24:56			H4
71	KD3AL	1	19-DEC-2007	10:26:10	7352023	7L12171	H4
. 72	KD3ALF	1	19-DEC-2007	10:27:25	7352023	7L12171	H4
73	KD9L3	1	19-DEC-2007	10:28:51	7352023	A7L150186	H4
74	KD6VM	1	19-DEC-2007	10:30:11	7352023	A7L140206	H4
75	KECKQB	1	19-DEC-2007	10:31:26	7352024	A7L180000	H4
7.6	KECKQC	1	19-DEC-2007	10:32:41	7352024	A7L180000	H4
77	KDWE5	1	19-DEC-2007	10:34:07	7352024	7L11157	H4
78	KDWF4	1	19-DEC-2007	10:35:23	7352024	7L11157	H4
79	KDWF6	1	19-DEC-2007	10:36:39	7352024	7L11157	H4
80	KDWF7	1	19-DEC-2007	10:38:05	7352024	7L11157	H4
81	CK6CCV	1	19-DEC-2007	10:39:19			H4
82	CK5CCB	1	19-DEC-2007	10:40:43			H4
83	KDWF8	1	19-DEC-2007	10:41:56	7352024	7L11157	H4
84	KDWF8S	1	19-DEC-2007	10:43:14	7352024	7L11157	H4
85	KDWF8D	1	19-DEC-2007	10:44:39	7352024	7L11157	H4
86	KDWGD	1	19-DEC-2007	10:45:58	7352024	7L11157	H4
87	KDWGE	1	19-DEC-2007	10:47:14	7352024	7L11157	H4
88	KD1LH	1	19-DEC-2007	10:48:33	7352024	7L11157	H4

----- (continued) -----

: Instrument Upload Run Log - Page 3:
: Started Thu Dec 20 06:28:54 2007 by LISTM:
: Data File: UPL\$CAN_DATA_ROOT:<LHG>HG41219A.PRN;1

# 	workurder	Dilution	Date	Time	Batch	Lot	Instrume
89	KD1LT	1	19-DEC-2007	10.49.50	7352024	7111157	
90	KD4G6	1	19-DEC-2007	10.51.1	7352024	7111157	
91	KD4G9		19-DEC-2007	10.52.3	7352024	7111157	H4
92	KD4HA	1	19-DEC-2007	10.52.54	7352024	/TTTT2/	H4
	CK6CCV	1	19-DEC-2007	10.55.50	7352024	\TTT72\	H4
	CK5CCB		19-DEC-2007				H4
	KD4HC		19-DEC-2007			Gr	H4
	KD4HE						H4
	KD4HK		19-DEC-2007				
	KD624		19-DEC-2007	TT:00:T8	7352024	7L11157	H4
		1	19-DEC-2007	11:01:44	7352024	7L11157	
	KD880		19-DEC-2007	11:03:00	7352024	7 L 11157	H4
	KD881		19-DEC-2007	11:04:19	7352024	7L11157	H4
			19-DEC-2007	11:05:35	7352024	7L11157	H4
	KD88L		19-DEC-2007	11:06:50	7352024	7L11157	H4
	KECKTB		19-DEC-2007	11:08:05	7352025	A7L180000	H4
	KECKTC		19-DEC-2007			A7L180000	H4
	CK6CCV		19-DEC-2007			•	H4
	CK5CCB		19-DEC-2007			• •	H4
		1	19-DEC-2007	11:13:38	7352025	7L12148	H4
			19-DEC-2007	11:14:57	7352025	7L12148	H4
		1	19-DEC-2007	11:16:23	7352025	7L12148	H4
	KD1KP		19-DEC-2007	11:17:59	7352025	7L12148	
	KD4 KJ	1	19-DEC-2007			7L12148	
	KD4KM	1	19-DEC-2007	11:20:44	7352025	7L12148	
113	KD66T	1	19-DEC-2007	11:22:14		7L12148	
114	KD7TA	1	19-DEC-2007	11:23:35	7352025	A7T-140332	H4
115	KD7TAS	1	19-DEC-2007	11:24:52	7352025	A7T-140332	на.
116	KD7TAD	1	19-DEC-2007	11:26:20	7352025	Δ7T.140332	H4
117 (CK6CCV	1 .	19-DEC-2007	11:27:36		11/1140332	
118 (CK5CCB		19-DEC-2007				H4
119 I	KD7TN		19-DEC-2007			771140220	H4
120 H			19-DEC-2007	11.31.24	7352025	A71140332	H4
		1	10 DEC 2007	77 20 67		A/LI40332	
	CK5CCB	- 1	19-DEC-2007 19-DEC-2007 19-DEC-2007	11.24.17			H4
	CK6CCV	_ 1	19-DEC-2007	10.31.10			H4
		1.	19-DEC-2007	12:31:19			H4
			DEC 2007 .	12.72.70			H4
		1	19-DEC-2007 :	12:34:03	7352022		
			19~DEC-2007			A7L180000	
			19-DEC-2007			7L13360	H4
			19-DEC-2007			7L13386	H4
			19-DEC-2007 1			7L13408	H4
			19-DEC-2007 1			7L13408	H4
			19-DEC-2007 1			7L13408	H4
132 K	D5EE 1	<u>.</u>	19-DEC-2007 1	2:43:14	7352022	7L10182	H4

```
: Instrument Upload Run Log - Page 4:
: Started Thu Dec 20 06:28:55 2007 by LISTM:
: Data File: UPL$CAN_DATA_ROOT:<LHG>HG41219A.PRN;1:
```

			Date				Instrument
			19-DEC-2007				
134	KD5V6F	1	19-DEC-2007	12:46:18	7352022	71.14106	H4
135	CKECCA	1	19-DEC-2007	12.47.42	,552622		H4
136	CK5CCB	1	19-DEC-2007	12.47.42			H4
137	KD5V7	1	19-DEC-2007	12:50:00	7352022		
			19-DEC-2007				
			19-DEC-2007			7L14106	
140	KD514	1	19-DEC-2007	12.53.56	7352022	7L13324	H4
141	KD514 KD517	1	19-DEC-2007	12.55.30	7352022	7L13324	
142	KD7XV	1	19 DEC 2007	12.55.11	7352022		
143	KD817	1	19-DEC-2007	12.57.39	7352022	A71.150133	H4
144	KD821	1	19-DEC-2007	12:58:54	7352022	A7T.150133	на
145	KD822	1	19-DEC-2007 19-DEC-2007 19-DEC-2007 19-DEC-2007	13.00.09	7352022	A71.150133	H4
146	KD7HO	1	19-DEC-2007 19-DEC-2007 19-DEC-2007	13:01:24	7352022	71,14273	H4
147	CKECCA	1	19-DEC-2007	13:02:47	,002022	,,	H4
			19-DEC-2007				H4
140	areaan	7	10 DEC 2007	14.70.47			TTA
150	CK5CCB	1	19-DEC-2007	14:21:30			H4
151	KEA0EBE	1	19-DEC-2007 19-DEC-2007 19-DEC-2007 19-DEC-2007 19-DEC-2007 19-DEC-2007 19-DEC-2007	14:22:43	7353026	A7L170000	H4
152	KEEWFBE	1	19-DEC-2007	14:24:06	7353026	A7L190000	H4
153	KEEWFCE	1	19-DEC-2007	14:25:39	7353026	A7L190000	H4
154	KDR8EE	1	19-DEC-2007	14:27:13	7353026	A7L100108	H4
155	KDR8EEX	1	19-DEC-2007	14:28:26	7353026	A7L100108	H4
156	KDR8EES	1	19-DEC-2007	14:29:42	7353026	A7L100108	H4
157	KDR8FE	1	19-DEC-2007	14:31:01	7353026	A7L100108	H4
158	KDR9GE	1	19-DEC-2007	14:32:24	7353026	A7L100108	H4
	KDR9KE		19-DEC-2007				H4
160	KDR9LE	1	19-DEC-2007	14:34:57	7353026	A7L100108	H4
161	CK6CCV	1	19-DEC-2007	14:36:10			H4
162	CK5CCB	1	19-DEC-2007	14:37:33			H4
	KDR9NE		19-DEC-2007		7353026	A7L100108	H4
	KDTA2E	1	19-DEC-2007	14:40:13	7353026	A7L100108	H4
	KDTA3E	1 '	19-DEC-2007 19-DEC-2007 19-DEC-2007	14:41:26	7353026	A7L100108	H4
	KDTA9E	1	19-DEC-2007	14:42:49	7353026	A7L100108	H4
167	KDTAAE	1	19-DEC-2007	14:44:26	7353026	A7L100108	H4
168	KDTACE	1	19-DEC-2007	14:45:50	7353026		H4
169	KDTC4E	1	19-DEC-2007	14:47:17	7353026	A7L100108	H4
170	KDTC8E	1	19-DEC-2007	14:48:32	7353026	A7L100108	H4
171	KDTCCE	1	19-DEC-2007	14:50:06	7353026	A7L100108	H4
172	KDTCDE	1	19-DEC-2007	14:51:26	7353026	A7L100108	H4
173	CK6CCV	1	19-DEC-2007	14:52:45			H4
174	CK5CCB	1	19-DEC-2007	14:54:04			H4
175	KDTCGE	1	19-DEC-2007	14:55:19	7353026	A7L100108	H4
176	KDTCME	1	19-DEC-2007	14:56:37	7353026	A7L100108	H4

----- (continued) ------

```
: Instrument Upload Run Log - Page 5:
: Started Thu Dec 20 06:28:55 2007 by LISTM:
: Data File: UPL$CAN_DATA_ROOT:<LHG>HG41219A.PRN;1
```

	rkOrder Dilutio	n Date	Time	Batch	Lot 	Instrume
179 KEEWDBE 180 KEEWDCE 181 KDTCXEX 182 KDTCXEX 183 KDTCXES 184 KDTD0E 185 CK6CCV 186 CK5CCB 187 KDTDAE 188 KDTDGE 189 KDTE3E 190 KDTFDE 191 CK6CCV 192 CK5CCB 193 CK6CCV 194 CK5CCB 195 KEA04BT 196 KEEV6BT 197 KEEV6CT 198 KD1TLT 199 KD1TLTS 200 KD1TLTD 201 KD1TXT 202 KD4NOT 204 KD4P3T 205 CK6CCV 206 CK5CCB 207 KD4P4T 208 KD4P6T 209 KD4P7T 210 KD4P7T 211 KD4QAT 212 KD4QCT 213 KD4QCT 214 KD4QGT 215 KD4QGT	TCVE 1	19-DEC-2007				
180 KEEWDCE 181 KDTCXES 182 KDTCXES 183 KDTCXES 184 KDTD0E 185 CK6CCV 186 CK5CCB 187 KDTDAE 188 KDTDGE 189 KDTE3E 190 KDTFDE 191 CK6CCV 192 CK5CCB 193 CK6CCV 194 CK5CCB 195 KEA04BT 196 KEEV6BT 197 KEEV6CT 198 KD1TLT 199 KD1TLTS 200 KD1TLTD 201 KD1TXT 202 KD4NOT 201 KD4P3T 202 KD4P0T 203 KD4P0T 204 KD4P3T 205 CK6CCV 206 CK5CCB 207 KD4P4T 208 KD4P6T 209 KD4P7T 210 KD4P9T 211 KD4QAT 212 KD4QCT 213 KD4QCT 214 KD4QCT 215 KD4QCT 215 KD4QGT	AOTBE 1	19-DEC-2007	14:59:22	7353025	A71.170000	H4
181 KDTCXE 182 KDTCXES 183 KDTCXES 184 KDTD0E 185 CK6CCV 186 CK5CCB 187 KDTDAE 188 KDTDGE 189 KDTE3E 190 KDTFDE 191 CK6CCV 192 CK5CCB 193 CK6CCV 194 CK5CCB 195 KEA04BT 196 KEEV6BT 197 KEEV6CT 198 KD1TLT 199 KD1TLTS 200 KD1TLTD 201 KD1TXT 202 KD4NOT 203 KD4POT 204 KD4P3T 205 CK6CCV 206 CK5CCB 207 KD4P4T 208 KD4P6T 209 KD4P7T 210 KD4P7T 211 KD4QAT 212 KD4QCT 213 KD4QCT 214 KD4QCT 215 KD4QFT 215 KD4QGT	EWDBE 1	19-DEC-2007	15:00:35	7353025	A7T.190000	II4
182 KDTCXEX 183 KDTCXES 184 KDTD0E 185 CK6CCV 186 CK5CCB 187 KDTDAE 188 KDTDGE 189 KDTE3E 190 KDTFDE 191 CK6CCV 192 CK5CCB 193 CK6CCV 194 CK5CCB 195 KEA04BT 196 KEEV6BT 197 KEEV6CT 198 KD1TLT 199 KD1TLTS 200 KD1TLTD 201 KD1TXT 202 KD4NOT 203 KD4POT 204 KD4P3T 205 CK6CCV 206 CK5CCB 207 KD4P4T 208 KD4P6T 209 KD4P7T 210 KD4P7T 210 KD4P7T 211 KD4QAT 212 KD4QCT 213 KD4QCT 214 KD4QCT 215 KD4QCT 215 KD4QCT 216 KD4QCT 217 KD4QCT 217 KD4QCT 218 KD4QCT 218 KD4QCT 219 KD4QCT 219 KD4QCT 211 KD4QCT 211 KD4QCT 211 KD4QCT 212 KD4QCT 213 KD4QCT 214 KD4QCT 215 KD4QCT 215 KD4QCT 216 KD4QCT 217 KD4QCT 217 KD4QCT 218 KD4QCT 218 KD4QCT 219 KD4QCT 219 KD4QCT 219 KD4QCT 219 KD4QCT 219 KD4QCT 219 KD4QCT 219 KD4QCT 210 KD4QCT 210 KD4QCT 211 KD4QCT 211 KD4QCT 211 KD4QCT 212 KD4QCT 213 KD4QCT 214 KD4QCT 215 KD4QCT 215 KD4QCT 215 KD4QCT 215 KD4QCT 216 KD4QCT 217 KD4QCT 217 KD4QCT 218	EWDCE 1	19-DEC-2007	15:01:52	7353025	A71.190000	11- 4
183 KDTCXES 184 KDTD0E 185 CK6CCV 186 CK5CCB 187 KDTDAE 188 KDTDGE 189 KDTE3E 190 KDTFDE 191 CK6CCV 192 CK5CCB 193 CK6CCV 194 CK5CCB 195 KEA04BT 196 KEEV6BT 197 KEEV6CT 198 KD1TLT 199 KD1TLTS 200 KD1TLTD 201 KD1TXT 202 KD4N0T 203 KD4P0T 204 KD4P3T 205 CK6CCV 206 CK5CCB 207 KD4P4T 208 KD4P6T 209 KD4P7T 210 KD4P9T 211 KD4QAT 212 KD4QCT 213 KD4QCT 214 KD4QCT 215 KD4QGT	TCXE 1	19-DEC-2007	15:03:18	7353025	277.700100	II4
184 KDTDOE 185 CK6CCV 186 CK5CCB 187 KDTDAE 188 KDTDGE 189 KDTE3E 190 KDTFDE 191 CK6CCV 192 CK5CCB 193 CK6CCV 194 CK5CCB 195 KEA04BT 196 KEEV6BT 197 KEEV6CT 198 KD1TLT 199 KD1TLTS 200 KD1TLTD 201 KD1TXT 202 KD4NOT 203 KD4POT 204 KD4P3T 205 CK6CCV 206 CK5CCB 207 KD4P4T 208 KD4P6T 209 KD4P7T 210 KD4P9T 211 KD4QAT 212 KD4QCT 213 KD4QCT 214 KD4QET 215 KD4QGT	TCXEX 1	19-DEC-2007	15:04:33	7353025	A77.100108	H4
185 CK6CCV 186 CK5CCB 187 KDTDAE 188 KDTDGE 189 KDTE3E 190 KDTFDE 191 CK6CCV 192 CK5CCB 193 CK6CCV 194 CK5CCB 195 KEA04BT 196 KEEV6BT 197 KEEV6CT 198 KD1TLT 199 KD1TLTS 200 KD1TLTD 201 KD1TXT 202 KD4NOT 203 KD4POT 204 KD4P3T 205 CK6CCV 206 CK5CCB 207 KD4P4T 208 KD4P6T 209 KD4P7T 210 KD4P9T 211 KD4QAT 212 KD4QCT 213 KD4QCT 214 KD4QCT 215 KD4QGT	TCXES 1	19-DEC-2007				
186 CK5CCB 187 KDTDAE 188 KDTDGE 189 KDTE3E 190 KDTFDE 191 CK6CCV 192 CK5CCB 193 CK6CCV 194 CK5CCB 195 KEA04BT 196 KEEV6BT 197 KEEV6CT 198 KD1TLT 199 KD1TLTS 200 KD1TLTD 201 KD1TXT 202 KD4NOT 203 KD4POT 204 KD4P3T 205 CK6CCV 206 CK5CCB 207 KD4P4T 208 KD4P6T 209 KD4P7T 210 KD4P9T 211 KD4QAT 211 KD4QCT 213 KD4QCT 214 KD4QGT	TDOE 1	19-DEC-2007	15:07:05	7353025	A75.100100	H4
187 KDTDAE 188 KDTDGE 189 KDTE3E 190 KDTFDE 191 CK6CCV 192 CK5CCB 193 CK6CCV 194 CK5CCB 195 KEA04BT 196 KEEV6BT 197 KEEV6CT 198 KD1TLT 200 KD1TLTD 201 KD1TXT 202 KD4NOT 203 KD4POT 204 KD4P3T 205 CK6CCV 206 CK5CCB 207 KD4P4T 208 KD4P6T 209 KD4P7T 210 KD4P9T 211 KD4QAT 212 KD4QCT 213 KD4QET 215 KD4QGT	6CCV 1	19-DEC-2007	15:08:21	,555025	MITTOOTOO	п 4 Н4
188 KDTDGE 189 KDTE3E 190 KDTFDE 191 CK6CCV 192 CK5CCB 193 CK6CCV 194 CK5CCB 195 KEA04BT 196 KEEV6BT 197 KEEV6CT 198 KD1TLT 199 KD1TLTS 200 KD1TLTD 201 KD1TXT 202 KD4NOT 203 KD4POT 204 KD4P3T 205 CK6CCV 206 CK5CCB 207 KD4P4T 208 KD4P6T 209 KD4P7T 210 KD4P9T 211 KD4QAT 212 KD4QCT 213 KD4QCT 214 KD4QGT 215 KD4QGT	5CCB 1	19-DEC-2007				
189 KDTE3E 190 KDTFDE 191 CK6CCV 192 CK5CCB 193 CK6CCV 194 CK5CCB 195 KEA04BT 196 KEEV6BT 197 KEEV6CT 198 KD1TLT 199 KD1TLTS 200 KD1TLTD 201 KD1TXT 202 KD4NOT 203 KD4POT 204 KD4P3T 205 CK6CCV 206 CK5CCB 207 KD4P4T 208 KD4P6T 209 KD4P7T 210 KD4P9T 211 KD4QAT 212 KD4QCT 213 KD4QCT 214 KD4QGT 215 KD4QGT	FDAE 1	19-DEC-2007			771100100	H4
190 KDTFDE 191 CK6CCV 192 CK5CCB 193 CK6CCV 194 CK5CCB 195 KEA04BT 196 KEEV6BT 197 KEEV6CT 198 KD1TLT 199 KD1TLTS 200 KD1TLTD 201 KD1TXT 202 KD4NOT 203 KD4POT 204 KD4P3T 205 CK6CCV 206 CK5CCB 207 KD4P4T 208 KD4P6T 209 KD4P7T 210 KD4P9T 211 KD4QAT 212 KD4QCT 213 KD4QCT 214 KD4QGT	IDGE 1	19-DEC-2007 1	15.12.39	7353025	A71100108	H4
190 KDTFDE 191 CK6CCV 192 CK5CCB 193 CK6CCV 194 CK5CCB 195 KEA04BT 196 KEEV6BT 197 KEEV6CT 198 KD1TLT 199 KD1TLTS 200 KD1TLTD 201 KD1TXT 202 KD4NOT 203 KD4POT 204 KD4P3T 205 CK6CCV 206 CK5CCB 207 KD4P4T 208 KD4P6T 209 KD4P7T 210 KD4P9T 211 KD4QAT 212 KD4QCT 213 KD4QCT 214 KD4QGT 215 KD4QGT	TE3E 1	19-DEC-2007 1	15.12.33	7353025	A7L100108	H4
191 CK6CCV 192 CK5CCB 193 CK6CCV 194 CK5CCB 195 KEA04BT 196 KEEV6BT 197 KEEV6CT 198 KD1TLT 199 KD1TLTS 200 KD1TLTD 201 KD1TXT 202 KD4NOT 203 KD4POT 204 KD4P3T 205 CK6CCV 206 CK5CCB 207 KD4P4T 208 KD4P6T 209 KD4P7T 210 KD4P9T 211 KD4QAT 212 KD4QCT 213 KD4QCT 214 KD4QGT 215 KD4QGT	TFDE 1	19-DEC-2007 1	15.15.10	7353025	A/LI00108	H4
192 CK5CCB 193 CK6CCV 194 CK5CCB 195 KEA04BT 196 KEEV6BT 197 KEEV6CT 198 KD1TLT 199 KD1TLTS 200 KD1TLTD 201 KD1TXT 202 KD4NOT 203 KD4POT 204 KD4P3T 205 CK6CCV 206 CK5CCB 207 KD4P4T 208 KD4P6T 209 KD4P7T 210 KD4P9T 211 KD4QAT 212 KD4QCT 213 KD4QET 215 KD4QGT	SCCV 1	19-DEC-2007 1			W\TT00T08	
193 CK6CCV 194 CK5CCB 195 KEA04BT 196 KEEV6BT 197 KEEV6CT 198 KD1TLT 199 KD1TLTS 200 KD1TLTD 201 KD1TXT 202 KD4NOT 203 KD4POT 204 KD4P3T 205 CK6CCV 206 CK5CCB 207 KD4P4T 208 KD4P6T 209 KD4P7T 210 KD4P9T 211 KD4QAT 212 KD4QCT 213 KD4QCT 214 KD4QET 215 KD4QGT		19-DEC-2007 1	_			H4
194 CK5CCB 195 KEA04BT 196 KEEV6BT 197 KEEV6CT 198 KD1TLT 199 KD1TLTS 200 KD1TLTD 201 KD1TXT 202 KD4NOT 203 KD4POT 204 KD4P3T 205 CK6CCV 206 CK5CCB 207 KD4P4T 208 KD4P6T 209 KD4P7T 210 KD4P9T 211 KD4QAT 212 KD4QCT 213 KD4QET 215 KD4QGT		19-DEC-2007 1				H4
195 KEA04BT 196 KEEV6BT 197 KEEV6CT 198 KD1TLT 199 KD1TLTS 200 KD1TLTD 201 KD1TXT 202 KD4NOT 203 KD4POT 204 KD4P3T 205 CK6CCV 206 CK5CCB 207 KD4P4T 208 KD4P6T 209 KD4P7T 210 KD4P9T 211 KD4QAT 212 KD4QCT 213 KD4QDT 214 KD4QET 215 KD4QGT		19-DEC-2007 1				H4
196 KEEV6BT 197 KEEV6CT 198 KD1TLT 199 KD1TLTS 200 KD1TLTD 201 KD1TXT 202 KD4N0T 203 KD4P0T 204 KD4P3T 205 CK6CCV 206 CK5CCB 207 KD4P4T 208 KD4P6T 209 KD4P7T 210 KD4P9T 211 KD4QAT 212 KD4QCT 213 KD4QDT 214 KD4QET 215 KD4QGT						H4
197 KEEV6CT 198 KD1TLT 199 KD1TLTS 200 KD1TLTD 201 KD1TXT 202 KD4N0T 203 KD4P0T 204 KD4P3T 205 CK6CCV 206 CK5CCB 207 KD4P4T 208 KD4P6T 209 KD4P7T 210 KD4P9T 211 KD4QAT 212 KD4QCT 213 KD4QDT 214 KD4QET 215 KD4QGT		19-DEC-2007 1	5:30:09	7353021	A7L170000	H4
198 KD1TLT 199 KD1TLTS 200 KD1TLTD 201 KD1TXT 202 KD4NOT 203 KD4POT 204 KD4P3T 205 CK6CCV 206 CK5CCB 207 KD4P4T 208 KD4P6T 209 KD4P7T 210 KD4P9T 211 KD4QAT 212 KD4QCT 213 KD4QCT 214 KD4QET 215 KD4QGT	-	19-DEC-2007 1	5:32:01	7353021		
199 KD1TLTS 200 KD1TLTD 201 KD1TXT 202 KD4NOT 203 KD4POT 204 KD4P3T 205 CK6CCV 206 CK5CCB 207 KD4P4T 208 KD4P6T 209 KD4P7T 210 KD4P9T 211 KD4QAT 212 KD4QCT 213 KD4QCT 214 KD4QET 215 KD4QGT		19-DEC-2007 1				
200 KD1TLTD 201 KD1TXT 202 KD4N0T 203 KD4P0T 204 KD4P3T 205 CK6CCV 206 CK5CCB 207 KD4P4T 208 KD4P6T 209 KD4P7T 210 KD4P9T 211 KD4QAT 212 KD4QCT 213 KD4QCT 214 KD4QET 215 KD4QGT		19-DEC-2007 1				
201 KD1TXT 202 KD4N0T 203 KD4P0T 204 KD4P3T 205 CK6CCV 206 CK5CCB 207 KD4P4T 208 KD4P6T 209 KD4P7T 210 KD4P9T 211 KD4QAT 212 KD4QCT 213 KD4QDT 214 KD4QET 215 KD4QGT		19-DEC-2007 1	.5:36:00	7353021		
202 KD4N0T 203 KD4P0T 204 KD4P3T 205 CK6CCV 206 CK5CCB 207 KD4P4T 208 KD4P6T 209 KD4P7T 210 KD4P9T 211 KD4QAT 212 KD4QCT 213 KD4QDT 214 KD4QET 215 KD4QGT		19-DEC-2007 1				
203 KD4P0T 204 KD4P3T 205 CK6CCV 206 CK5CCB 207 KD4P4T 208 KD4P6T 209 KD4P7T 210 KD4P9T 211 KD4QAT 212 KD4QCT 213 KD4QDT 214 KD4QET 215 KD4QFT 216 KD4QGT		19-DEC-2007 1				
204 KD4P3T 205 CK6CCV 206 CK5CCB 207 KD4P4T 208 KD4P6T 209 KD4P7T 210 KD4P9T 211 KD4QAT 212 KD4QCT 213 KD4QDT 214 KD4QET 215 KD4QFT 216 KD4QGT		19-DEC-2007 1				
205 CK6CCV 206 CK5CCB 207 KD4P4T 208 KD4P6T 209 KD4P7T 210 KD4P9T 211 KD4QAT 212 KD4QCT 213 KD4QCT 214 KD4QET 215 KD4QFT 216 KD4QGT	POT 1	19-DEC-2007 1	5:41:31	7353021	Å7L130327	H4
206 CK5CCB 207 KD4P4T 208 KD4P6T 209 KD4P7T 210 KD4P9T 211 KD4QAT 212 KD4QCT 213 KD4QDT 214 KD4QET 215 KD4QFT 216 KD4QGT	P3T 1	19-DEC-2007 1	5:42:46	7353021	A7L130327	H4
207 KD4P4T 208 KD4P6T 209 KD4P7T 210 KD4P9T 211 KD4QAT 212 KD4QCT 213 KD4QDT 214 KD4QET 215 KD4QFT 216 KD4QGT		19-DEC-2007 1				H4
208 KD4P6T 209 KD4P7T 210 KD4P9T 211 KD4QAT 212 KD4QCT 213 KD4QDT 214 KD4QET 215 KD4QFT 216 KD4QGT	CCB 1	19~DEC-2007 1				H4
209 KD4P7T 210 KD4P9T 211 KD4QAT 212 KD4QCT 213 KD4QDT 214 KD4QET 215 KD4QFT 216 KD4QGT	P4T 1	19-DEC-2007 1				H4
210 KD4P9T 211 KD4QAT 212 KD4QCT 213 KD4QDT 214 KD4QET 215 KD4QFT 216 KD4QGT	P6T 1	19-DEC-2007 1				H4
211 KD4QAT 212 KD4QCT 213 KD4QDT 214 KD4QET 215 KD4QFT 216 KD4QGT	P7T 1	19-DEC-2007 1				H4
212 KD4QCT 213 KD4QDT 214 KD4QET 215 KD4QFT 216 KD4QGT		19-DEC-2007 1				H4
213 KD4QDT 214 KD4QET 215 KD4QFT 216 KD4QGT		19-DEC-2007 1	5:51:52	7353021	A7L130327	H4
214 KD4QET 215 KD4QFT 216 KD4QGT					A7L130327	H4
215 KD4QFT 216 KD4QGT		19-DEC-2007 15	5:54:24	7353021	A7L130327	H4
216 KD4QGT		19-DEC-2007 15	5:55:40	7353021	A7L130327	H4
		19-DEC-2007 15	5:57:18	7353021	A7L130327	H4
217 CK6CCV		19-DEC-2007 15	5:58:42	7353021	A7L130327	H4
		19-DEC-2007 15	5:59:58		•	H4
218 CK5CCB		19-DEC-2007 16				H4
219 KD36PT		19-DEC-2007 16		7353021	A7L130271	H4
220 KEA10BT	LOBT 1	19-DEC-2007 16	5:03:43	7353020	A7L170000	H4

```
: Instrument Upload Run Log - Page 6:
: Started Thu Dec 20 06:28:55 2007 by LISTM :
: Data File: UPL$CAN_DATA_ROOT:<LHG>HG41219A.PRN;1 :
```

221 KEEV4BT 1 19-DEC-2007 16:05:00 7353020 A7L190000 H4 222 KEEV4CT 1 19-DEC-2007 16:06:13 7353020 A7L190000 H4 223 KDVD1T 1 19-DEC-2007 16:07:29 7353020 A7L100226 H4 224 KDVD1TS 1 19-DEC-2007 16:08:42 7353020 A7L100226 H4 225 KDVD1TD 1 19-DEC-2007 16:09:58 7353020 A7L100226 H4	
222 KEEV4CT 1 19-DEC-2007 16:06:13 7353020 A7L190000 H4 223 KDVD1T 1 19-DEC-2007 16:07:29 7353020 A7L100226 H4 224 KDVD1TS 1 19-DEC-2007 16:08:42 7353020 A7L100226 H4	
223 KDVD1T 1 19-DEC-2007 16:07:29 7353020 A7L100226 H4 224 KDVD1TS 1 19-DEC-2007 16:08:42 7353020 A7L100226 H4	
224 KDVD1TS 1 19-DEC-2007 16:08:42 7353020 A7L100226 H4	
225 KDVD1TD 1 19-DEC-2007 16:09:58 7353020 A77.100226 H4	
226 KDVD9T 1 19-DEC-2007 16:11:13 7353020 A7L100226 H4	
227 KDVEDT 1 19-DEC-2007 16:12:39 7353020 A7L100226 H4	
228 KDVEFT 1 19-DEC-2007 16:13:56 7353020 A7L100226 H4	
229 CK6CCV 1 19-DEC-2007 16:15:09 H4	
230 CK5CCB 1 19-DEC-2007 16:16:26 H4	
231 KDVEHT 1 19-DEC-2007 16:17:42 7353020 A7L100226 H4	
232 KDVEMT 1 19-DEC-2007 16:18:57 7353020 A7L100226 H4	
233 KDVENT 1 19-DEC-2007 16:20:24 7353020 A7L100226 H4	
234 KDVERT 1 19-DEC-2007 16:21:40 7353020 A7L100226 H4	
235 KDVEWT 1 19-DEC-2007 16:22:54 7353020 A7L100226 H4	
236 KEAWJBT 1 19-DEC-2007 16:24:10 7353032 A7L170000 H4	
237 KEEWRBT 1 19-DEC-2007 16:25:28 7353032 A7L190000 H4	
238 KEEWRCT 1 19-DEC-2007 16:26:52 7353032 A7L190000 H4	
239 KDXD3T 1 19-DEC-2007 16:28:06 7353032 A7L110281 H4	
240 KDXDCT 1 19-DEC-2007 16:29:32 7353032 A7L110281 H4	
241 CK6CCV 1 19-DEC-2007 16:30:46 H4	
242 CK5CCB 1 19-DEC-2007 16:32:04 H4	
243 KD360T 1 19-DEC-2007 16:33:18 7353032 A7L130271 H4	
244 KD360TS 1 19-DEC-2007 16:34:33 7353032 A7L130271 H4	
245 KD360TD 1 19-DEC-2007 16:35:47 7353032 A7L130271 H4	
246 KD365T 1 19-DEC-2007 16:37:03 7353032 A7L130271 H4	
247 KD36RT 10 19-DEC-2007 16:38:23 7353032 A7L130271 H4	
248 KEEV2B 1 19-DEC-2007 16:39:37 7353019 A7L190000 H4	
249 KEEV2C 1 19-DEC-2007 16:41:02 7353019 A7L190000 H4	
250 KED5A 1 19-DEC-2007 16:42:19 7353019 A7L180274 H4	
251 KED5AS 1 19-DEC-2007 16:43:34 7353019 A7L180274 H4	
252 KED5AD 1 19-DEC-2007 16:45:00 7353019 A7L180274 H4	
253 CK6CCV 1 19-DEC-2007 16:46:16 H4	
254 CK5CCB 1 19-DEC-2007 16:47:50 H4	
255 KED5AF 1 19-DEC-2007 16:49:05 7353019 A7L180274 H4	
256 KED5AFS 1 19-DEC-2007 16:50:22 7353019 A7L180274 H4	
257 KED5AFD 1 19-DEC-2007 16:51:40 7353019 A7L180274 H4	
258 KED5W 1 19-DEC-2007 16:52:55 7353019 A7L180274 H4	
259 KED5WF 1 19-DEC-2007 16:54:31 7353019 A7L180274 H4	
260 KED5X 1 19-DEC-2007 16:56:17 7353019 A7L180274 H4	
261 KED5XF 1 19-DEC-2007 16:57:31 7353019 A7L180274 H4	
262 KEC26 1 19-DEC-2007 16:58:56 7353019 A7L180139 H4	
263 KEC3A 1 19-DEC-2007 17:00:15 7353019 A7L180139 H4	
264 KEC3E 1 19-DEC-2007 17:01:50 7353019 A7L180139 H4	

```
: Instrument Upload Run Log - Page 7:
: Started Thu Dec 20 06:28:55 2007 by LISTM :
: Data File: UPL$CAN_DATA_ROOT:<LHG>HG41219A.PRN;1 :
```

#	WorkOrder	Dilution	Date	Time	Batch	Lot	Instrument
265			19-DEC-2007				
266	CK5CCB	1	19-DEC-2007	17:04:29			H4
267	KEC8V	1	19-DEC-2007	17:05:55	7353019		
268	KEDWL	1	19-DEC-2007	17:07:11	7353019	7L18248	H4
269	KEDWP	1	19-DEC-2007	17:08:26	7353019	7L18248	H4
270	KEDWR KEDWT	1	19-DEC-2007 19-DEC-2007	17:09:52	7353019	7L18248	H4
271	KEDWT	1	19-DEC-2007	17:11:18	7353019	7L18248	H4
272	KEDWV	1	19-DEC-2007	17:12:37	7353019	7L18248	
273	KEDWW	1	19-DEC-2007	17:14:03	7353019	7L18248	
274	KEDXL	1	19-DEC-2007	17:15:19	7353019	7L18253	H4
275	KEDXT	1	19-DEC-2007	17:16:35	7353019	7L18253	H4
276	KEEVTB	1	19-DEC-2007	17:17:53	7353016	A7L190000	H4
277	CK6CCV	1	19-DEC-2007 19-DEC-2007	17:19:20			H4
278	CK5CCB	1	19-DEC-2007	17:20:45			H4
279	KEEVTC	1	19-DEC-2007	17:21:59	7353016	A7L190000	H4
280	KD9CG	1	19-DEC-2007	17:23:15	7353016	7L12148	H4
281	KD9CGS	1	19-DEC-2007	17:24:35	7353016	7L12148	H4
282	KD9CGD	1	19-DEC-2007 19-DEC-2007 19-DEC-2007	17:25:53	7353016	7L12148	H4
283	KD9CK	1	19-DEC-2007	17:27:08	7353016	7L12148	H4
284	KD9CM	.1	19-DEC-2007	17:28:34	7353016	7L12148	H4
285	KD9CN	1	19-DEC-2007	17:29:49	7353016	7L12148	H4
286	KEEV0B	1	19-DEC-2007	17:31:07	7353018	A7L190000	H4
287	KEEV0C	1	19-DEC-2007 19-DEC-2007 19-DEC-2007	17:32:24	7353018	A7L190000	H4
288	KEDCP	1	19-DEC-2007	17:33:43	7353018	A7L180176	H4
289	CK6CCV	1	19-DEC-2007	17:34:59			H4
290	CKSCCB	Τ.	19-DEC-2007	17:36:23			H4
			19-DEC-2007				
292	KEDCPD	1	19-DEC-2007	17:39:08	7353018	A7L180176	H4
293	CRA	1	19-DEC-2007	17:40:24			H4
294	CK6CCV CK5CCB	1	19-DEC-2007 19-DEC-2007	17:41:39			H4
295	CK5CCB	1	19-DEC-2007	17:42:56			H4
			_	_			

------ End of Report

```
: Instrument Upload Run Log - Page 1:
: Started Thu Dec 20 06:04:29 2007 by DAVIESB :
: Data File: UPL$CAN_DATA_ROOT:<REP>121907A.REP;1 :
```

#	WorkOrder	Dilution	Date	Time	Batch	Lot	Instrument
1	. BLANK		19-DEC-2007 19-DEC-2007 19-DEC-2007 19-DEC-2007 19-DEC-2007	7 00.04.57			
	BLANK		19-DEC-2007	7 09:04:57			17
3	STANDARD 1		19~DEC~2007	7 09:09:20			T./
	STANDARD 2		19-DEC-2007	7 09:15:03			17
5	STANDARD 3	•	19-DEC-2007	09:10:47			17
. 6	OC STD 1		19-DEC-2007	09:20:32			17
7	QC STD 1 QC STD 2 QC STD 3 QC STD 4 QC STD 5 QC STD 6 QC STD 7		19-DEC-2007	09:20:32			17
8	OC STD 3		19-DEC-2007	09:32:31			17
9	OC STD 4		19-DEC-2007	09:35:39			17
10	OC STD 5		19-DEC-2007	09:39:34			<u> </u>
11	OC STD 6		19-DEC-2007	09:43:31			17
1.2	OC STD 7		19-DEC-2007	09:50:22			17
13	KD91PB		19-DEC-2007	10-01-00	7251005	T	17
14	KD91PC		19-DEC-2007	10:01:08	7351025	A7L170000	17
15	KD3E0	•	19-DEC-2007	10:04:46	7351025	A7L170000	I7
16	KD467		19 DEC 2007	10:09:54	7351025	71.13172	I7
17	KD47H		19-DEC-2007	10:13:33	7351025	A7L130390	I7
18	KID1 AT		19-DEC-2007	10:17:11	7351025	A7L130390	I7
19	KD9C.TE		19-DEC-2007	10:20:50	7351025	7L12241	17
20	KD91PB KD91PC KD3F0 KD467 KD47H KD1AT KD9CJF KD9CQF KD9CTF		19-DEC-2007	10:24:29	7351025	A7L150166	I7
21	KDacar		19-DEC-2007	10:58:10	7351025	A7L150166	I7
22	OC COD C	•	10 550 555-				
23	QC STD 7 KD9CVF KD9CWF KD9C0F KD9C2F KD9C4F ZZZZZ		19-DEC-2007	10:38:40			I7
24	KDOCAL /		19-DEC-2007	10:46:19			I 7
25	KDOCME		19-DEC-2007	10:49:45	7351025	A7L150166	I7
25	KDOCME		19-DEC-2007	10:53:26	7351025	A7L150166	I7
27	KDacar		19-DEC-200/	10:57:06	7351025	A7L150166	I7
28	KD9CAF	•	19-DEC-2007	11:00:44	7351025	A7L150166	I7
29	77777		19-DEC-2007	11:04:23	7351025	A7L150166	I7
30	KD0XV		19-DEC-2007	11:08:02			I7
	KD0XVS		T3-DBC-2001	TT:TT:40	7351025	A71320202	T7
32	KDUXXD		19-DEC-2007	11:15:20	7351025	A7L120202	I7
33	KD6XG		19-DEC-2007	11:19:00	7351025	A7L120202	I7
3.4	KD6XG		19-DEC-200/	11:24:11	7351025	A7L140217	
32	QC STD 6		19-DEC-2007	TT:3T:01			I7
35	QC STD 7 KD6XGL KECLDB		19-DEC-2007	11:38:39			.I7
37	KEGI DD VDGVGTI		19-DEC-2007	11:41:48			I7
30	KECHDD		19-DEC-2007	11:46:59	7352034	A7L180000	I7
	KECLDC		19-DEC-2007			A7L180000	I7
	KD80Q KD80QS		19-DEC-2007			A7L150124	I 7
			19-DEC-2007			A7L150124	I7
	KD80QD		19-DEC-2007			A7L150124	17
	KD800 KD803		19-DEC-2007			A7L150124	I7
			19-DEC-2007		7352034	A7L150124	I7
44	KD803L	-	19-DEC-2007	12:15:40			I 7
			/ao=+-	1 \			

----- (continued)

```
Instrument Upload Run Log - Page 2: Started Thu Dec 20 06:04:29 2007 by DAVIESB : Data File: UPL$CAN_DATA_ROOT:<REP>121907A.REP;1
```

# WorkOrder	Dilution	Date	Time	Batch	Lot	Instrument
45 KECLDB		19-DEC-2007	12:20:50	7352034	A7L180000	 I7
46 QC STD 6		19-DEC-2007				I7
47 QC STD 7	,	19-DEC-2007	12:32:07	7		I7
48 KECLDC	, 10				A7L180000	
49 KD80Q		19-DEC-2007				
50 KD80QS	10	19-DEC-2007				
51 KD80QD	10	19-DEC-2007	12:47:00	7352034		
52 KD800		19-DEC-2007	12:51:21	7352034	A7L150124	
53 KD803		19-DEC-2007				
54 KD803L		19-DEC-2007	12:58:44	:		I7
55 KECKWB		19-DEC-2007	13:03:53	7352026	A7L180000	I7
56 KECKWC		19-DEC-2007	13:07:32	7352026	A7L180000	I7
57(KD05R)		19-DEC-2007 19-DEC-2007 19-DEC-2007 19-DEC-2007 19-DEC-2007	13:12:42	7352026	7L12224	I 7
58 QC STD 6		19-DEC-2007	13:19:32			I 7
59 <u>QC STD</u> 7		19-DEC-2007	13:27:10			I7 .
60(KD05RF)		19-DEC-2007	13:30:19	7352026	7L12224	17
61 KDOSRX		19-DEC-2007	13:33:59	7352026	7L12224	1 7
62 KD05RS		19-DEC-2007	13:37:41	7352026	7L12224	I7
63 (KD08)	*	19-DEC-2007	13:42:52	7352026	7L12224	I7
64 (KD081F)		19-DEC-2007	13:46:33	7352026	7L12224	I7
65 (KD7CM)		19-DEC-2007	13:50:15	7352026	7L12224	I7
66 KD7CMF		19-DEC-2007	13:53:57	7352026	7L12224	I7
67 (KD7EX)		19-DEC-2007	13:57:39	7352026	7L12224	I7
68 KD7EXF		19-DEC-2007	14:01:20	7352026	7L12224	. I7
69 (KD88H)		19-DEC-2007 19-DEC-2007	14:05:00	7352026	7L12224	
70 QC STD 6		19-DEC-2007	14:11:49			I7
71 OC STD 7		19-DEC-2007	14:19:28			I7
72 KD88HF		19-DEC-2007	14:22:36	7352026	7L12224	I7
73 (KD88Q)		19-DEC-2007	14:26:17	7352026	7L12224	I7
74 KD88QF		19-DEC-2007	14:29:57	7352026	7L12224	17
75 KD88QFL		19-DEC-2007	14:33:38			17
76 KECKTB		19-DEC-2007	14:38:49	7352025	A7L180000	I 7
77 KECKTC		19-DEC-2007	14:42:31	7352025	A7L180000	I7
78 KD1JD		19-DEC-2007	14:47:42	7352025	7L12148	I7
79 KD1JK		19-DEC-2007				I7
80 KD1KK		19-DEC-2007			7L12148	I7
81 KD1KP		19-DEC-2007	14:58:50	7352025	7L12148	I7
82 QC STD 6		19-DEC-2007	15:05:41			I7
83 QC STD 7		19-DEC-2007				I 7
84 KD4KJ		19-DEC-2007	15:16:28	7352025	7L12148	I7
85 KD4KM		19-DEC-2007	15:20:08	7352025	7L12148	I7
86 KD66T		19-DEC-2007		7352025	7L12148	I7
87 KD66TL		19-DEC-2007				17
88 KD7TA	•	19-DEC-2007	15:31:11	7352025	A7L140332	17

SAMPLE MW74A-121107 rep. result for arsenic 0.43 ug/L

Test America-N. Canton Elan 6100 ICPMS

Quantitative Analysis Report

Sample ID:

KD05R

Sample Date/Time:

Wednesday, December 19, 2007 13:12:42

Method File:

c:\elandata\Method\analysis.mth

Dataset File:

C:\elandata\Dataset\121907A\KD05R.057

Number of Replicates:

2

Concentration Results

Concentration						
		•	onc. Mean	Conc. RSD	Meas. Intens. Mean Sample Uni	
>	Li	6			1397331.806 ppb	1593740.204
-	Be	9	1.956756	8.69	• • • • • • • • • • • • • • • • • • • •	0.5
.]-	Αl	27	373.648546	0.837		6637.617
>	Sc	45			767679.484 ppb	814659.007
 -	Ti	49	0.834918	1.755		347.008
	ν.	51	-0.305144	42.583	601.198 ppb	2764.149
	Cr	52	0.204272	34.962	12052.21 ppb	10317.328
	Cr	53	15.499211	24.87	22150.572 ppb	9857.01
	Mn	55	422.019401	0.45	4320129.835 ppb	946.041
	Fe	54	17.449764	41.684	116488.244 ppb	106749.489
	Fe	57	175.141748	1.487	42584.301 ppb	7957.296
	Co	59	31.892866	0.937	231374.487 ppb	103.001
ĺ	Ni	60	13.167189	0.663	19259.166 ppb	.52.001
İ	Ni	62	12.744479	1.475		168.003
· 1	Cu	63	6.766161	1.125	19823.443 ppb	288.506
İ	Cu	65	6.670499	2.793		131.502
· j	Zn	66	653.08511	1.589	458589.387 ppb	414.01
İ	Zn	67	547.840485	0.817		1984.158
İ	Zn	68	629.918644	1.77	322835.739 ppb	571.017
>	Ge	. 72			862375.749 ppb	825747.567
	As	75	0.430915	> 3.376	977.307 ppb	571.744
•	Se	77	5.113729	25.694	705.525 ppb	320.507
-	Se	82	1.130898	13.47		-59.821
-	Мо	95	0.591271	0.259	1240.066 ppb	251.005
j	Мо	97	0.595061	3.148	795.53 ppb	168.503
İ	Мо	98	0.559887	3.051	1940.932 ppb	422.456
j	Ag	107	0.004294	39.053		92.001
i	Ag	109	0.006211	71.192	96.001 ppb	69.001
İ	Cď	110	-0.060257	133.473	-3707.071 ppb	-3712.457
	Cd	111	0.541545	3.445	621.133 ppb	2.1
ĺ	Cd	114	0.550754	1.8	1463.207 ppb	8.914
; >	ln	115			816792.958 ppb	833096.107
İ	Sb	121	0.255703	9.678	929.04 ppb	62.001
i	Sb	123	0.259339	9.179	720.462 ppb	50.501
i	Ва	135	39.290448	1.622	41590.871 ppb	22.5
j-	Ba	137	39.136217	1.495	71254.974 ppb	41.5
>	Но	165		30	1046305.483 ppb	1086070.651
i	TI	203	0.073876	2.825	393.009 ppb	62.501
	Ti	205	0.073795	0.141	929.54 ppb	168.003
i	Pb	208	0.294879	0.351	5070.899 ppb	796.517
- -	Bi	209	5.25 157 5	0.001	921060.77 ppb	1102784.251
ı	٠,	200			021000.77 ppb	1102104.201

QC Calculated Values

QO Outoutated Ya	lucs			
		/IMass Q0	C Std % Recov Int Std % ReSpike % Recovery	Dilution % Diff
>	Li	6	87.676	
-	Be	9		
-	Αl	27		
>	Sc	45	94.233	
-	Ti	49		
	V	51		
	Cr	52		
	Cr	53		
	Mn	55		
	Fe	54		
	Fe	57		
	Co	59		
	Ni	60		
	Ni	62		•
	Cu	63		
	Cu	65		
1	Zn	66		
	Zn	67		
	Zn	68		
>	Ge	72	104.436	
	As	75		
	Se	77		
-	Se	82		
-	Мо	95		
	Мо	97		
1	Мо	98		
	Ag	107		
	Ag	109		
	Cd	110		
	Cd	111		
	Cd	114		
>	ln	115	98.043	
	Sb	121		
	Sb	123		
	Ba	135		
 -	Ba	137		
>	Но	165	96.339	
	ΤI	203		
	Tl	205		
	Pb	208		
-	Bi	209		
QC Out Of Limits				

Measurement Type Analyl Mass Out of Limits Message

Folder: 1219A Protocol: 1219HG4 ***POST-RUN REPORT***

т 2		C					**PC	ST-RU									
Li:	ne 	Conc.	Uni	TS 	SD,	/RSD 		1		2 		} 		4 		5	
**	* Sai	mple I	D: KD	7EXF				Seq	: 4	6	09:	53:3	3 1:	9 De	c 07	HG	
Нg	(.0545	ppb		.00	000	•	0545									=
***	Sar	mple I	D: KD	==== 88H	=====			Seq	: 4	= == = 7	09:	54:5	1 19	9 De	==== c 07	HG	
Hg	(.0116	ppb		.00	000	•	0116									=
***	Sar	mple I	D: KD8	38HF				Seq	===== : 48	===== B	09:	56:1	7 19	Dec	==== = 07	HG	=====
Hg	(0448	ppb		.00	00	- (0448									
***	San	mple II	o: KD8	38Q			:===:	Seq:				57:40					
Hg	$\overline{}$	2101	ppb		.00	00	. 2	2101			-	_					1407
=== ***	Sam	ple II	===== D: KD8	88QF		====	====	Seq:				<u> </u>		====	=====	<u> </u>	10
Ħg	(0400	ppb	•	.00	00	. (0400									=
***	==== Sam	ple II	: KEC	KNBF			====	Seq:	51	-===	10:	00:09	19	Dec	: 07	HG	====
Нg	(0200)	ppb		.00	73520. 00		200									. =
***	Sam	ple II	: KEC	KNC		====:		Seq:	52	==== !	10:0	01:33	19	Dec	07	HG	
Hg	4	.659	ppb		.00	00 ,	4.	659									. =
***	Sam	ple ID	: KD2	91				Seq:	53		10:0	02:53	19	Dec	07	HG	
Hg	€.	0402	ppb		.000	00	0	402									-
***	Sam	ple ID	: KD2	91F			====	Seq:	54	===	10:0	4:13	19	Dec	07	HG	3555==
Hg	(.	0249	ppb		.000	00	.0	249									=
***	Sam	ole ID	: KD2	9E			:===	Seq:	55		10:0	5:32	19	Dec	07	HG	=====
Нд	$\left(\cdot \right)$	0336)	ppb		.000	0	.0	336									
*** Line Hg	Chec F]	ck Star Lag %1	ndard: Rcv. 6.39	For	Ck6CC ind 820	True 5.00	נט	Seq: nits ppb	56	SD/1		7:16	19	Dec	07	HG	
*** Line Hg			ndard: Rcv.	For	Ck5CC ind 1209	B True	Ur	Seq: nits opb	57	SD/I		8:34	19	Dec	07	HG	
***	Samp	ole ID:	: KD29	ES				Seq:	58		10:0	9:51	19	Dec	07	HG	=
Нg	(.9	678)	ppb		.000	0 .	.96	578									
	====				====		====	=====	====	- -	=====	====	===	**===	====	=====	

LABORATORY CONTROL SAMPLE EVALUATION REPORT

General Chemistry

Client Lot #...: 7L12224 Matrix..... WATER PERCENT RECOVERY PREPARATION-PREP PARAMETER RECOVERY LIMITS METHOD ANALYSIS DATE BATCH # pH (liquid) Work Order #: KD17A1AA LCS Lot-Sample#: A7L120000-573 101 (97 - 103)SW846 9040B 12/12/07 7346573 Dilution Factor: 1 pH (liquid) Work Order #: KD93R1AA LCS Lot-Sample#: A7L140000-558 (97 - 103) SW846 9040B 101 12/14/07 7348558 Dilution Factor: 1 pH (liquid) Work Order #: KD9RK1AA LCS Lot-Sample#: A7L150000-150 102 (97 - 103) SW846 9040B 12/15/07 7349150 Dilution Factor: 1

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

General Chemistry

Client Lot #...: A7L120224

Work Order #...: KD0L6-SMP

Matrix....: WATER

KD0L6-DUP

Date Sampled...: 12/10/07 14:07 Date Received..: 12/12/07

PARAM RESULT	DUPLICATE RESULT	UNITS R	RPI PD LIM		PREPARATION- ANALYSIS DATE	PREP BATCH #
pH (liquid)			,	SD Lot-Sample	#: A7L120171-006	
13.0	13.0	No Units 0	.0 (0-	20) SW846 9040B	12/12/07	7346573
		Dilution Factor	1			

General Chemistry

Client Lot #...: A7L120224

Work Order #...: KD6Q3-SMP

Matrix....: WATER

KD6Q3-DUP

Date Sampled...: 12/13/07 14:00 Date Received..: 12/14/07

PARAM RESULT	DUPLICATE RESULT	UNITS RPD	RPD LIMIT	METHOD	PREPARATION- ANALYSIS DATE	PREP
TINGET TOPOST			_ <u></u>	- PETHOD	ANALISIS DAIE	DAICH #
pH (liquid)				SD Lot-Sample #:	A7L140197-001	
8.2	8.2	No Units 0.49	(0-20)	SW846 9040B	12/14/07	7348558
		Dilution Factor: 1				

General Chemistry

Client Lot #...: A7L120224

Work Order #...: KD7EX-SMP

Matrix..... WG

KD7EX-DUP

Date Sampled...: 12/12/07 22:45 Date Received..: 12/14/07

DUPLICATE RPD PREPARATION-PREP PARAM RESULT RESULT UNITS RPD LIMIT METHOD ANALYSIS DATE BATCH # pH (liquid) SD Lot-Sample #: A7L140260-003 4.7 4.7 No Units 1.1 (0-20)SW846 9040B 12/14/07 7348558 Dilution Factor: 1

General Chemistry

Client Lot #...: A7L120224

Work Order #...: KD817-SMP

Matrix..... WATER

KD817-DUP

Date Sampled...: 12/14/07 10:00 Date Received..: 12/15/07

DUPLICATE RPD PREPARATION-PREP PARAM RESULT RESULT UNITS LIMIT RPD METHOD ANALYSIS DATE BATCH # pH (liquid) SD Lot-Sample #: A7L150133-001 7.8 7.8 No Units 0.0 (0-20) SW846 9040B 12/15/07 7349150 Dilution Factor: 1

Tetra Tech NUS

INTERNAL CORRESPONDENCE

TO: MIKE MARTIN DATE: MARCH 4, 2008

FROM: THOMAS JACKMAN COPIES: DV FILE

SUBJECT:ORGANIC DATA VALIDATION - VOCS/SVOCS/PCBS

MARTIN STATE AIRPORT

SAMPLE DELIVERY GROUP (SDG) - C7K020216

SAMPLES: 17/Aqueous

 FMC 3
 FMC 5
 FMC 7
 FMC 9

 FMC 10
 FMC 11
 FMC 12
 FMC 13

 FMC 16
 FMC 18
 FMC 20
 FMC 22

FMC 24 FMC 25 FMC 26

TripBlank#1 TripBlank#2

Overview

This sample set for the Martin State Airport, SDG C7K020216, consists of 15 environmental water samples and 2 trip blanks. The samples were analyzed for Volatile Organic Compounds (VOCs), Semivolatile Organic Compounds (SVOCs), and Polychlorinated Biphenyls(PCBs). No field duplicates were included in this data set.

The samples were collected by Tetra Tech NUS, Inc. on October 30, 31, and November 1, 2007 and analyzed by TestAmerica Laboratories, Inc. The samples were analyzed by SW-846 Methods 8260B, 8270C, and 8082.

Summary

The findings in this report are based upon a general review of all available data including: data completeness, system performance, holding times, GC/MS tuning, initial/continuing calibrations, laboratory method blank contamination, surrogate spike, matrix spike/matrix spike duplicate (MS/MSD) results, Laboratory Control Sample (LCS) results, compound identification, compound quantitation, and detection limits. Areas of concern are listed below; documentation supporting these findings is presented in Appendix C. Qualified analytical results are presented in Appendix A. Results as reported by the laboratory are presented in Appendix B.

Major Problems

None.

MEMO TO: DATE: M. MARTIN - PAGE 2

MARCH 4, 2008

Minor Problems

 The following compounds were detected in trip blanks at the following maximum concentrations.

Compound	<u>Level</u>	Action Level
Acetone	11 μg/L	110 μg/L
Toluene	0.39 μg/L	1.95 μg/L
Chloromethane	0.15 μg/L	0.75 μg/L

An action level of 10X the maximum blank concentration was used for acetone, a common laboratory contaminant. An action level of 5X the maximum contaminant concentration was used for toluene and chloromethane to evaluate laboratory or field contamination. Dilution factors and sample aliquots were taken into consideration in the application of all action levels, if applicable.

Positive results for acetone, chloromethane, and toluene below the action level were qualified as false positives, "B".

- The LCS associated with batch 7312657 analyzed on 11/08/07 @22:03 on instrument HP6 had high recoveries for acetone (394%) and 1,2-dibromoethane (124%). Positive results for acetone were qualified as biased high (K) in samples associated with this LCS. No results for 1,2-dibromoethane were because this analyte was not positively detected in any samples. Note that most results for acetone were qualified (B) due to blank contamination, as discussed above.
- Positive results reported below the reporting limit (RL) but above the method detection limit (MDL) for the organic analyses were qualified as estimated (J).

Notes

The continuing calibration had the %D > 25% quality control limit but < 50% quality control limit for 4-nitrophenol on 11/21/07 @01:55 on instrument 733. No validation actions were required because 4-nitrophenol was not positively detected in samples associated with this calibration.

The continuing calibration had the %D > 25% quality control limit but < 50% quality control limit for 4-nitrophenol on 11/22/07 @05:04 on instrument 733. No validation actions were required because 4-nitrophenol was not positively detected in samples associated with this calibration.

The continuing calibration had the %D > 25% quality control limit but < 50% quality control limit for hexachlorocyclopentadiene on 11/26/07 @02:03 on instrument 733. No validation actions were required because hexachlorocyclopentadiene was not positively detected in samples associated with this calibration.

The SVOC matrix spike/matrix spike duplicate recoveries for a number of analytes in the laboratory MS/MSD for batch 7311333 were low. No validation actions were taken because the associated LCS results were acceptable and because the unspiked sample was not one of the environmental samples included in this SDG.

Executive Summary

Laboratory Performance: LCS recoveries for several VOCs were high resulting in the qualification of data. Continuing calibration %Ds for several VOCs exceeded QC limits.

MEMO TO: M. MARTIN - PAGE 3 DATE: MARCH 4, 2008

Other Factors Affecting Data Quality: Three VOCs were detected in the trip blanks resulting in the qualification of data.

The data for these analyses were reviewed with reference to the "Region III Modifications to the National Functional Guidelines for Organic Data Review" (9/94). The text of this report has been formulated to address only those problem areas affecting data quality.

Tetra Tech NUS Thomas Jackman Environmental Scientist

Tetra Tech NUS Joseph A. Samchuck Quality Assurance Officer

Attachments:

1. Appendix A - Qualified Analytical Results

2. Appendix B - Results as reported by the Laboratory

3. Appendix C - Support Documentation

Data Qualifier Key:

B - Positive result is considered to be an artifact of blank contamination and should not be considered present.

J - Positive result is considered estimated, "J", as a result of technical noncompliances.

 Positive result is considered as biased high, a result of technical noncompliances. Quantitation limit is probably higher.

U - Nondetected result.

APPENDIX A

QUALIFIED ANALYTICAL RESULTS

Data Validation Qualifier Codes:

A = Lab Blank Contamination

B = Field Blank Contamination

C = Calibration Noncompliance (e.g. % RSDs, %Ds, ICVs, CCVs, RRFs, etc.)

C01 = GC/MS Tuning Noncompliance

D = MS/MSD Recovery Noncompliance

E = LCS/LCSD Recovery Noncompliance

F = Lab Duplicate Imprecision

G = Field Duplicate Imprecision

H = Holding Time Exceedance

I = ICP Serial Dilution Noncompliance

J = GFAA PDS - GFAA MSA's r < 0.995 / ICP PDS Recovery Noncompliance

K = ICP Interference - includes ICS % R Noncompliance

L = Instrument Calibration Range Exceedance

M = Sample Preservation Noncompliance

N = Internal Standard Noncompliance

N01 = Internal Standard Recovery Noncompliance Dioxins

N02 = Recovery Standard Noncompliance Dioxins

N03 = Clean-up Standard Noncompliance Dioxins

O = Poor Instrument Performance (e.g. base-line drifting)

P = Uncertainty near detection limit (< 2 x IDL for inorganics and <CRQL for organics)

Q = Other problems (can encompass a number of issues; e.g. chromatography,interferences, etc.)

R = Surrogates Recovery Noncompliance

S = Pesticide/PCB Resolution

T = % Breakdown Noncompliance for DDT and Endrin

U = % Difference between columns/detectors >25% for positive results determined via GC/HPLC

V = Non-linear calibrations; correlation coefficient r < 0.995

W = EMPC result

X = Signal to noise response drop

Y = Percent solids <30%

Z = Uncertainty at 2 sigma deviation is greater than sample activity

SDG: C7K020216 MEDIA: WATER DATA FRACTION: OV

nsample

FMC 10

10/30/2007

samp_date lab_id

C7K020216003

qc_type

NM

Pct_Solids DUP_OF:

nsample samp_date

lab_id

FMC 10

10/30/2007

C7K020216003

qc_type Pct_Solids DUP_OF:

NM

nsample samp_date FMC 11

10/30/2007 C7K020216004

NM

Pct_Solids

qc_type DUP_OF:

lab_id

	·	1.11		·····
Parameter	units	Result	Val Qual	Qual Code
1,1,1-TRICHLOROETHANE	UG/L	1	U	
1,1,2,2-TETRACHLOROETHANE	UG/L	1	U	
1,1,2-TRICHLOROETHANE	UG/L	i	Ŭ	
1,1,2-TRICHLOROTRIFLUOROET	UG/L	1	U	-
1,1-DICHLOROETHANE	UG/L	1	U	
1,1-DICHLOROETHENE	UG/L	1	U	
1,2,4-TRICHLOROBENZENE	UG/L	1	U	•
1,2-DIBROMO-3-CHLOROPROPA	UG/L	1	U	
1,2-DIBROMOETHANE	UG/L	1	U	
1,2-DICHLOROBENZENE	UG/L	1	U	
1,2-DICHLOROETHANE	UG/L	1	U	
1,2-DICHLOROPROPANE	UG/L	1	U	
1,3-DICHLOROBENZENE	UG/L	1	U	
1,4-DICHLOROBENZENE	UG/L	1	U	
2-BUTANONE	UG/L	5	U	
2-HEXANONE	UG/L	5	U	
4-METHYL-2-PENTANONE	UG/L	5	U	
ACETONE	UG/L	5	U	
BENZENE	UG/L	1	U	
BROMODICHLOROMETHANE	UG/L	1	U	
BROMOFORM	UG/L	1	Ú	
BROMOMETHANE	UG/L	1	Ü	
CARBON DISULFIDE	UG/L	1.	U	
CARBON TETRACHLORIDE	UG/L	1	U	
CHLOROBENZENE	UG/L	1	U	
CHLORODIBROMOMETHANE	UG/L	1	U	
CHLOROETHANE	UG/L	1	U	
CHLOROFORM	UG/L	1	U	
CHLOROMETHANE	UG/L	1	U	
CIS-1,2-DICHLOROETHENE	UG/L	0.19	J	Р
CIS-1,3-DICHLOROPROPENE	UG/L	1	U	
CYCLOHEXANE	UG/L	1	U	
DICHLORODIFLUOROMETHANE	UG/L	1	U	
		•		_

Parameter	units	Result	Val	Qual
raiametei	uriits	nesuit		
			Qual	Code
ETHYLBENZENE	UG/L	1	U	
ISOPROPYLBENZENE	UG/L	1	U	
METHYL ACETATE	UG/L	1	U	
METHYL CYCLOHEXANE	UG/L	1	U	
METHYL TERT-BUTYL ETHER	UG/L	1	U	
METHYLENE CHLORIDE	UG/L	1	U	٠.
STYRENE	UG/L	1	U	
TETRACHLOROETHENE	UG/L	1	Ü	
TOLUENE	UG/L	1	U	
TOTAL XYLENES	UG/L	3	U	
TRANS-1,2-DICHLOROETHENE	UG/L	1	U	
TRANS-1,3-DICHLOROPROPENE	UG/L	1	U	
TRICHLOROETHENE	UG/L	0.35	J	Р
TRICHLOROFLUOROMETHANE	UG/L	1	U	
VINYL CHLORIDE	UG/L	1	U	

Parameter	units	Result	Val	Quai
			Qual	Code
1,1,1-TRICHLOROETHANE	UG/L	1	U	
1,1,2,2-TETRACHLOROETHANE	UG/L	1	U	
1,1,2-TRICHLOROETHANE	UG/L	1	U	
1,1,2-TRICHLOROTRIFLUOROET	UG/L	1	· U	
1,1-DICHLOROETHANE	UG/L	1	U	
1,1-DICHLOROETHENE	UG/L	1	U	
1,2,4-TRICHLOROBENZENE	UG/L	1	U	
1,2-DIBROMO-3-CHLOROPROPA	UG/L	1	U	
1,2-DIBROMOETHANE	UG/L	. 1	U	
1,2-DICHLOROBENZENE	UG/L	1	U	
1,2-DICHLOROETHANE	UG/L	1	U	
1,2-DICHLOROPROPANE	UG/L	1	U	
1,3-DICHLOROBENZENE	UG/L	1	U	
1,4-DICHLOROBENZENE	UG/L	1	U	
2-BUTANONE	UG/L	. 5	U	
2-HEXANONE	UG/L	5	U	
4-METHYL-2-PENTANONE	UG/L	5	U	
ACETONE	UG/L	3.2	В	В
BENZENE	UG/L	1	U	
BROMODICHLOROMETHANE	UG/L	1	Ü	
BROMOFORM	UG/L	1	U	
BROMOMETHANE	UG/L	1	U	
CARBON DISULFIDE	UG/L	1	U	
CARBON TETRACHLORIDE	UG/L	1	U	
CHLOROBENZENE	UG/L	1	U	
CHLORODIBROMOMETHANE	UG/L	1	U	
CHLOROETHANE	UG/L	1	U	
CHLOROFORM	UG/L	1	U	
CHLOROMETHANE	UG/L	0.16	В	В
CIS-1,2-DICHLOROETHENE	UG/L	0.26	J	Р
CIS-1,3-DICHLOROPROPENE	UG/L	1	U	
CYCLOHEXANE	UG/L	1	U	
DICHLORODIFLUOROMETHANE	UG/L	1	U	

SDG: C7K020216 MEDIA: WATER DATA FRACTION: OV

nsample

FMC 11

samp_date

10/30/2007

lab_id

C7K020216004

qc_type.

NM

Pct_Solids DUP_OF:

nsample samp_date

lab_id

FMC 12

NM

10/30/2007

C7K020216005

qc_type Pct_Solids DUP_OF:

nsample

samp_date

10/30/2007 C7K020216005

FMC 12

NM

qc_type

Pct_Solids

DUP_OF:

lab_id

Parameter	units	Result	Val Qual	Qual Code
ETHYLBENZENE	UG/L	1	υ	
ISOPROPYLBENZENE	UG/L	1	U	
METHYL ACETATE	UG/L	1	U	
METHYL CYCLOHEXANE	UG/L	1	U	
METHYL TERT-BUTYL ETHER	UG/L	1	U	
METHYLENE CHLORIDE	UG/L	1	U	
STYRENE	UG/L	1	U	
TETRACHLOROETHENE	UG/L	1	U	
TOLUENE	UG/L	1	U	
TOTAL XYLENES	UG/L	3	U	
TRANS-1,2-DICHLOROETHENE	UG/L	1	U	
TRANS-1,3-DICHLOROPROPENE	UG/L	1	U	
TRICHLOROETHENE	UG/L	0.63	J	P
TRICHLOROFLUOROMETHANE	UG/L	1	U	
VINYL CHLORIDE	UG/L	0.18	· J	F
	•			

	units	Result	Val Qual	Qual Code
1,1,1-TRICHLOROETHANE	UG/L	1	U	
1,1,2,2-TETRACHLOROETHANE	UG/L	1	U	
1,1,2-TRICHLOROETHANE	UG/L	1	U	
1,1,2-TRICHLOROTRIFLUOROET	UG/L	1	U	
1,1-DICHLOROETHANE	UG/L	1	U	
1,1-DICHLOROETHENE	UG/L	1	U	
1,2,4-TRICHLOROBENZENE	UG/L	1	U	
1,2-DIBROMO-3-CHLOROPROPA	UG/L	1	U	
1,2-DIBROMOETHANE	UG/L	1	U	
1,2-DICHLOROBENZENE	UG/L	1	U	
1,2-DICHLOROETHANE	UG/L	1	U	
1,2-DICHLOROPROPANE	UG/L	1	U	
1,3-DICHLOROBENZENE	UG/L	1	U	
1,4-DICHLOROBENZENE	UG/L	1	U	
2-BUTANONE	UG/L	5	U	
2-HEXANONE	UG/L	5	U	
4-METHYL-2-PENTANONE	UG/L	5	U	
ACETONE	UG/L	5	U	
BENZENE	UG/L	1	U	
BROMODICHLOROMETHANE	UG/L	1	U	
BROMOFORM	UG/L	1	U	
BROMOMETHANE	UG/L	1	U	
CARBON DISULFIDE	UG/L	1	U	
CARBON TETRACHLORIDE	UG/L	1	U	
CHLOROBENZENE	UG/L	1	U	
CHLORODIBROMOMETHANE	UG/L	1	U	
CHLOROETHANE	UG/L	1	U	
CHLOROFORM	UG/L	1	U	
CHLOROMETHANE	UG/L	1	U	
CIS-1,2-DICHLOROETHENE	UG/L	0.52	J	Р
CIS-1,3-DICHLOROPROPENE	UG/L	1	U	
CYCLOHEXANE	UG/L	1	U	
DICHLORODIFLUOROMETHANE	UG/L	1	U	

Parameter	units	Result	Val Qual	Qual Code
ETHYLBENZENE	UG/L	1	U	
ISOPROPYLBENZENE	UG/L	1	U	
METHYL ACETATE	UG/L	1	U	
METHYL CYCLOHEXANE	UG/L	1	U	
METHYL TERT-BUTYL ETHER	UG/L	1	. U	
METHYLENE CHLORIDE	UG/L	1	U	
STYRENE	UG/L	1	U	
TETRACHLOROETHENE	UG/L	1	U	
TOLUENE	UG/L	1	U	
TOTAL XYLENES	UG/L	3	U	
TRANS-1,2-DICHLOROETHENE	UG/L	1	U	
TRANS-1,3-DICHLOROPROPENE	UG/L	1	U	
TRICHLOROETHENE	UG/L	1.3		
TRICHLOROFLUOROMETHANE	UG/L	1	U	
VINYL CHLORIDE	UG/L	0.29	J	Р
	<u> </u>			

SDG: C7K020216 MEDIA: WATER DATA FRACTION: OV

nsample samp_date FMC 13

NM

10/30/2007

lab_id qc_type C7K020216006

Pct_Solids DUP_OF:

nsample samp_date

lab_id

FMC 13

10/30/2007 C7K020216006

qc_type Pct_Solids NM

DUP_OF:

nsample

FMC 16

samp_date lab_id

10/31/2007 C7K020216007

qc_type

NM

Pct_Solids DUP_OF:

Parameter	units	Result	Val Qual	Qual Code
1,1,1-TRICHLOROETHANE	UG/L	1	U	
1,1,2,2-TETRACHLOROETHANE	UG/L	1	U	
1,1,2-TRICHLOROETHANE	UG/L	1	U	
1,1,2-TRICHLOROTRIFLUOROET	UG/L	1	U	
1,1-DICHLOROETHANE	UG/L	1	Ü	
1,1-DICHLOROETHENE	UG/L	1	, U	
1,2,4-TRICHLOROBENZENE	UG/L	1	U	
1,2-DIBROMO-3-CHLOROPROPA	UG/L	1	U	
1,2-DIBROMOETHANE	UG/L	1	U	
1,2-DICHLOROBENZENE	UG/L	1	U	
1,2-DICHLOROETHANE	UG/L	1	U	
1,2-DICHLOROPROPANE	UG/L	1	U	
1,3-DICHLOROBENZENE	UG/L	1	U	
1,4-DICHLOROBENZENE	UG/L	1	U	
2-BUTANONE	UG/L	5	U	
2-HEXANONE	UG/L	5	U	
4-METHYL-2-PENTANONE	UG/L	- 5	U	
ACETONE	UG/L	5	U	
BENZENE	UG/L	1	U	
BROMODICHLOROMETHANE	UG/L	1	U	
BROMOFORM	UG/L	1	U	
BROMOMETHANE	UG/L	1	U	**
CARBON DISULFIDE	UG/L	1	U	
CARBON TETRACHLORIDE	UG/L	1	U	
CHLOROBENZENE	UG/L	1	U	
CHLORODIBROMOMETHANE	UG/L	1	· U	
CHLOROETHANE	UG/L	1	U	
CHLOROFORM	UG/L	1	U	
CHLOROMETHANE	UG/L	0.18	В	Ē
CIS-1,2-DICHLOROETHENE	UG/L	0.5	J	F
CIS-1,3-DICHLOROPROPENE	UG/L	1	U	
CYCLOHEXANE	UG/L	1	U	
DICHLORODIFLUOROMETHANE	UG/L	1	U	

Parameter	units	Result	Val Qual	Quai Code
ETHYLBENZENE	UG/L	1	U	
ISOPROPYLBENZENE	UG/L	1	U	
METHYL ACETATE	UG/L	1	Ú	
METHYL CYCLOHEXANE	UG/L	1	U	
METHYL TERT-BUTYL ETHER	UG/L	1	U	
METHYLENE CHLORIDE	UG/L	1	U	
STYRENE	UG/L	1	U	
TETRACHLOROETHENE	UG/L	1	U	
TOLUENE	UG/L	1	U	-
TOTAL XYLENES	UG/L	3	U	
TRANS-1,2-DICHLOROETHENE	UG/L	1	U	
TRANS-1,3-DICHLOROPROPENE	UG/L	1	U	
TRICHLOROETHENE	UG/L	2.2		
TRICHLOROFLUOROMETHANE	UG/L	1	Ú	
VINYL CHLORIDE	UG/L	0.33	J	Р

Parameter	units	Result	Val Qual	Qual Code
1,1,1-TRICHLOROETHANE	UG/L	1	U	
1,1,2,2-TETRACHLOROETHANE	UG/L	1	U	
1,1,2-TRICHLOROETHANE	UG/L	1	U	
1,1,2-TRICHLOROTRIFLUOROET	UG/L	1	U	
1,1-DICHLOROETHANE	UG/L	1	U	
1,1-DICHLOROETHENE	UG/L	1	U	
1,2,4-TRICHLOROBENZENE	UG/L	1	U	
1,2-DIBROMO-3-CHLOROPROPA	UG/L	1	U	
1,2-DIBROMOETHANE	UG/L	1	U	
1,2-DICHLOROBENZENE	UG/L	1	U	
1,2-DICHLOROETHANE	UG/L	1	U	
1,2-DICHLOROPROPANE	UG/L	1	U	
1,3-DICHLOROBENZENE	UG/L	1	U	
1,4-DICHLOROBENZENE	UG/L	1	U	
2-BUTANONE	UG/L	5	U	
2-HEXANONE	UG/L	5	U	
4-METHYL-2-PENTANONE	UG/L	5	U	
ACETONE	UG/L	3.1	. В	В
BENZENE	UG/L	1	U	
BROMODICHLOROMETHANE	UG/L	1	U	
BROMOFORM	UG/L	1	U	
BROMOMETHANE	UG/L	1	Ų	
CARBON DISULFIDE	UG/L	1	U	
CARBON TETRACHLORIDE	UG/L	1	U	
CHLOROBENZENE	UG/L	. 1	U	
CHLORODIBROMOMETHANE	UG/L	1	Ų	
CHLOROETHANE	UG/L	1	U	
CHLOROFORM	UG/L	1	U	
CHLOROMETHANE	UG/L	0.14	В	В
CIS-1,2-DICHLOROETHENE	UG/L	1.1		
CIS-1,3-DICHLOROPROPENE	UG/L	1	U	
CYCLOHEXANE	UG/L	1	U	
DICHLORODIFLUOROMETHANE	UG/L	1	U	

00998

SDG: C7K020216 MEDIA: WATER DATA FRACTION: OV

nsample

FMC 16

samp_date

10/31/2007

lab_id

C7K020216007

qc_type
Pct_Solids

NM

Pct_Solids DUP_OF: nsample samp_date

lab_id

FMC 18

10/31/2007

NM

C7K020216008

qc_type
Pct_Solids
DUP_OF:

nsample samp_date

lab_id

FMC 18

10/31/2007 C7K020216008

qc_type NM

Pct_Solids DUP_OF:

		DUF

Parameter	units	Result	Val	Qual
			Qual	Code
ETHYLBENZENE	UG/L	1	U	
ISOPROPYLBENZENE	UG/L	1	Ü	
METHYL ACETATE	UG/L	1	U	
METHYL CYCLOHEXANE	UG/L	1	U	
METHYL TERT-BUTYL ETHER	UG/L	1	U	
METHYLENE CHLORIDE	UG/L	1	U	
STYRENE	UG/L	1	U	
TETRACHLOROETHENE	UG/L	1	U	
TOLUENE	UG/L	1	U	
TOTAL XYLENES	UG/L	3	U	" <u>-</u>
TRANS-1,2-DICHLOROETHENE	UG/L	1	U	
TRANS-1,3-DICHLOROPROPENE	UG/L	1	U	
TRICHLOROETHENE	UG/L	3.1		
TRICHLOROFLUOROMETHANE	UG/L	1	U	
VINYL CHLORIDE	UG/L	0.73	J	. P
				•

Parameter	units	Result	Val Qual	Qual Code
1,1,1-TRICHLOROETHANE	UG/L	1	U	
1,1,2,2-TETRACHLOROETHANE	UG/L	. 1	U	
1,1,2-TRICHLOROETHANE	UG/L	1	U	
1,1,2-TRICHLOROTRIFLUOROET	UG/L	1	Ū	
1,1-DICHLOROETHANE	UG/L	. 1	U	
1,1-DICHLOROETHENE	UG/L	1	U	
1,2,4-TRICHLOROBENZENE	UG/L	1	U	
1,2-DIBROMO-3-CHLOROPROPA	UG/L	1	U	
1,2-DIBROMOETHANE	UG/L	1	U	
1,2-DICHLOROBENZENE	UG/L	1	U	
1,2-DICHLOROETHANE	UG/L	1	U	
1,2-DICHLOROPROPANE	UG/L	1	U	
1,3-DICHLOROBENZENE	UG/L	1	Ü	
1,4-DICHLOROBENZENE	UG/L	1	U	
2-BUTANONE	UG/L	5	U	
2-HEXANONE	UG/L	5	U	
4-METHYL-2-PENTANONE	UG/L	5	U	
ACETONE	UG/L	2.8	В	В
BENZENE	UG/L	1	U	
BROMODICHLOROMETHANE	ÙG/L	1	U	
BROMOFORM	UG/L	1	U	
BROMOMETHANE	UG/L	1	Ü	
CARBON DISULFIDE	UG/L	1	U	
CARBON TETRACHLORIDE	UG/L	1	U	
CHLOROBENZENE	UG/L	1	U	
CHLORODIBROMOMETHANE	UG/L	1	U	
CHLOROETHANE	UG/L	1	U	
CHLOROFORM	UG/L	1	U	
CHLOROMETHANE	UG/L	0.14	В	В
CIS-1,2-DICHLOROETHENE	UG/L	0.22	J	Р
CIS-1,3-DICHLOROPROPENE	UG/L	1	U	
CYCLOHEXANE	UG/L	1	U	
DICHLORODIFLUOROMETHANE	UG/L	1	Ü	

Parameter	units	Result	Val Qual	Qual Code
ETHYLBENZENE	UG/L	1	U	
ISOPROPYLBENZENE	UG/L	1	U	
METHYL ACETATE	UG/L	1	U	
METHYL CYCLOHEXANE	UG/L	1	U	
METHYL TERT-BUTYL ETHER	UG/L	1	U	
METHYLENE CHLORIDE	UG/L	1	U	
STYRENE	UG/L	1	U	
TETRACHLOROETHENE	UG/L	1	U	
TOLUENE	UG/L	1	Ü	
TOTAL XYLENES	UG/L	3	U	
TRANS-1,2-DICHLOROETHENE	UG/L	1	U	
TRANS-1,3-DICHLOROPROPENE	UG/L	1	U	
TRICHLOROETHENE	UG/L	0.4	J	Р
TRICHLOROFLUOROMETHANE	UG/L	1	U	
VINYL CHLORIDE	UG/L	1	· U	
	-			

SDG: C7K020216 MEDIA: WATER DATA FRACTION: OV

nsample samp_date FMC 20

10/31/2007

lab_id

C7K020216009

qc_type

NM

Pct_Solids DUP_OF:

nsample samp_date

lab_id

FMC 20

qc_type Pct_Solids 10/31/2007 C7K020216009

NM

DUP_OF:

nsample

lab_id

FMC 22

samp_date

10/31/2007 C7K020216010

NM

qc_type Pct_Solids DUP_OF:

Parameter	units	Result	Val Qual	Qual Code
1,1,1-TRICHLOROETHANE	UG/L	1	U	
1,1,2,2-TETRACHLOROETHANE	UG/L	1	U	
1,1,2-TRICHLOROETHANE	UG/L	1	U	
1,1,2-TRICHLOROTRIFLUOROET	UG/L	1	U	
1,1-DICHLOROETHANE	UG/L	1	U	
1,1-DICHLOROETHENE	UG/L	1	U	
1,2,4-TRICHLOROBENZENE	UG/L	1	U	
1,2-DIBROMO-3-CHLOROPROPA	UG/L	1	U	
1,2-DIBROMOETHANE	UG/L	1	U	
1,2-DICHLOROBENZENE	UG/L	1	U	
1,2-DICHLOROETHANE	UG/L	1	U	
1,2-DICHLOROPROPANE	UG/L	1	U	
1,3-DICHLOROBENZENE	UG/L	1	U	
1,4-DICHLOROBENZENE	UG/L	1	U	
2-BUTANONE	UG/L	- 5	U	
2-HEXANONE	UG/L	5	U	
4-METHYL-2-PENTANONE	UG/L	5	U	
ACETONE	UG/L	5	U	
BENZENE	UG/L	1	U	
BROMODICHLOROMETHANE	UG/L	1	U	***
BROMOFORM	UG/L	1	U	
BROMOMETHANE	UG/L	1	U	
CARBON DISULFIDE	UG/L	1	U	
CARBON TETRACHLORIDE	UG/L	1	U	
CHLOROBENZENE	UG/L	1	U	
CHLORODIBROMOMETHANE	UG/L	1	U	
CHLOROETHANE	UG/L	1	U	
CHLOROFORM	UG/L	1	U	v-184
CHLOROMETHANE	UG/L	0.14	В	В
CIS-1,2-DICHLOROETHENE	UG/L	1	Ü	*
CIS-1,3-DICHLOROPROPENE	UG/L	1	Ü	
CYCLOHEXANE	UG/L	. 1	U	
DICHLORODIFLUOROMETHANE	UG/L	1	U	

Parameter	units	Result	Val Qual	Qual Code
ETHYLBENZENE	UG/L	1	Ū	
ISOPROPYLBENZENE	UG/L	1	U	
METHYL ACETATE	UG/L	1	U	
METHYL CYCLOHEXANE	UG/L	1	U	
METHYL TERT-BUTYL ETHER	UG/L	1	U	
METHYLENE CHLORIDE	UG/L	1	U	
STYRENE	UG/L	1	U	
TETRACHLOROETHENE	UG/L	1	U	
TOLUENE	UG/L	1	U	
TOTAL XYLENES	UG/L	3	U	
TRANS-1,2-DICHLOROETHENE	UG/L	1	U	
TRANS-1,3-DICHLOROPROPENE	UG/L	1	U	
TRICHLOROETHENE	UG/L	0.36	J	Р
TRICHLOROFLUOROMETHANE	UG/L	1	Ü	
VINYL CHLORIDE	UG/L	1	Ū	

Parameter	units	Result	Val Qual	Qual Code
1,1,1-TRICHLOROETHANE	UG/L	1	U	
1,1,2,2-TETRACHLOROETHANE	UG/L	1	U	
1,1,2-TRICHLOROETHANE	UG/L	1	U	
1,1,2-TRICHLOROTRIFLUOROET	UG/L	1	U	
1,1-DICHLOROETHANE	UG/L	1	U	
1,1-DICHLOROETHENE	UG/L	1	U	
1,2,4-TRICHLOROBENZENE	UG/L	1	U	
1,2-DIBROMO-3-CHLOROPROPA	UG/L	1	U	
1,2-DIBROMOETHANE	UG/L	1	U	
1,2-DICHLOROBENZENE	UG/L	1	U	
1,2-DICHLOROETHANE	UG/L	1	U	
1,2-DICHLOROPROPANE	UG/L	1	U	
1,3-DICHLOROBENZENE	UG/L	1	U	
1,4-DICHLOROBENZENE	UG/L	1	u	
2-BUTANONE	UG/L	5	u	
2-HEXANONE	UG/L	. 5	u	
4-METHYL-2-PENTANONE	UG/L	5	U	
ACETONE	UG/L	2.6	В	В
BENZENE	UG/L	1	U	
BROMODICHLOROMETHANE	UG/L	1	U	
BROMOFORM	UG/L	1	U	
BROMOMETHANE	UG/L	1	U	
CARBON DISULFIDE	UG/L	1	U	
CARBON TETRACHLORIDE	UG/L	1	U	
CHLOROBENZENE	UG/L	1	U	
CHLORODIBROMOMETHANE	UG/L	1	U	
CHLOROETHANE	UG/L	1	U	
CHLOROFORM	UG/L	1	U	
CHLOROMETHANE	UG/L	0.15	В	В
CIS-1,2-DICHLOROETHENE	UG/L	0.3	J	P
CIS-1,3-DICHLOROPROPENE	UG/L	1	U	<u>.</u>
CYCLOHEXANE	UG/L	1	U	
DICHLORODIFLUOROMETHANE	UG/L	1	U	

SDG: C7K020216 MEDIA: WATER DATA FRACTION: OV

nsample samp_date FMC 22

10/31/2007

lab_id

C7K020216010

qc_type

NM

Pct_Solids DUP_OF:

lab_id qc_type

nsample samp_date

FMC 24 10/30/2007 C7K020216001

NM

Pct_Solids DUP_OF:

nsample samp_date lab_id qc_type

FMC 24 10/30/2007 C7K020216001

NM

Pct_Solids DUP_OF:

		γ		
Parameter	units	Result	Val	Qual
			Qual	Code
ETHYLBENZENE	UG/L	1	U	
ISOPROPYLBENZENE	UG/L	1	· U	
METHYL ACETATE	UG/L	1	U	
METHYL CYCLOHEXANE	UG/L	1	U	
METHYL TERT-BUTYL ETHER	UG/L	1	U	
METHYLENE CHLORIDE	UG/L	1	U	
STYRENE	UG/L	1	U	-
TETRACHLOROETHENE	UG/L	1	Ū	
TOLUENE	UG/L	1	U	
TOTAL XYLENES	UG/L	3	U	
TRANS-1,2-DICHLOROETHENE	UG/L	1	U	
TRANS-1,3-DICHLOROPROPENE	UG/L	1	U	
TRICHLOROETHENE	UG/L	0.45	J	P
TRICHLOROFLUOROMETHANE	UG/L	1,	Ü	
VINYL CHLORIDE	UG/L	1	U	

Parameter	units	Result	Val Qual	Qual Code
1,1,1-TRICHLOROETHANE	UG/L	1	U	-
1,1,2,2-TETRACHLOROETHANE	UG/L	1	Ü	
1,1,2-TRICHLOROETHANE	UG/L	1	U	
1,1,2-TRICHLOROTRIFLUOROET	UG/L	1	U	
1,1-DICHLOROETHANE	UG/L	. 1	U	
1,1-DICHLOROETHENE	UG/L	1	U	
1,2,4-TRICHLOROBENZENE	UG/L	1	U	
1,2-DIBROMO-3-CHLOROPROPA	UG/L	1	U	
1,2-DIBROMOETHANE	UG/L	1	U	
1,2-DICHLOROBENZENE	UG/L	1	U	
1,2-DICHLOROETHANE	UG/L	1	U	
1,2-DICHLOROPROPANE	UG/L	1	U	
1,3-DICHLOROBENZENE	UG/L	1	U	
1,4-DICHLOROBENZENE	UG/L	1	U	
2-BUTANONE	UG/L	5	U	
2-HEXANONE	UG/L	5	U	
4-METHYL-2-PENTANONE	UG/L	5	U	
ACETONE	UG/L	2.8	В	В
BENZENE	UG/L	1	U	-
BROMODICHLOROMETHANE	UG/L	1	U	
BROMOFORM	UG/L	1	U	
BROMOMETHANE	UG/L	1	U	
CARBON DISULFIDE	UG/L	1	U	
CARBON TETRACHLORIDE	UG/L	1	U	
CHLOROBENZENE	UG/L	1	U	
CHLORODIBROMOMETHANE	UG/L	1	U	
CHLOROETHANE	UG/L	1	Ü	
CHLOROFORM	UG/L	1	U	
CHLOROMETHANE	UG/L	1	U	
CIS-1,2-DICHLOROETHENE	UG/L	1	U	$\overline{}$
CIS-1,3-DICHLOROPROPENE	UG/L	1	U	
CYCLOHEXANE	UG/L	1	U	
DICHLORODIFLUOROMETHANE	UG/L	1	υ	

·			
units	Result	Val	Qual
		Qual	Code
UG/L	1	U	
UG/L	1	U	
UG/L	1,	Ū	
UG/L	1	Ū	
UG/L	1	U	
UG/L	3	U	
UG/L	1	U	
UG/L	1	U	
UG/L	0.27	J	Р
UG/L	1	U	7
UG/L	. 1	U	***
	UG/L UG/L UG/L UG/L UG/L UG/L UG/L UG/L	UG/L 1 UG/L 1 UG/L 1 UG/L 1 UG/L 1 UG/L 1 UG/L 1 UG/L 1 UG/L 1 UG/L 1 UG/L 1 UG/L 1 UG/L 1 UG/L 1 UG/L 1 UG/L 1 UG/L 3	Qual UG/L 1 U UG/L 1 U UG/L 1 U UG/L 1 U UG/L 1 U UG/L 1 U UG/L 1 U UG/L 1 U UG/L 1 U UG/L 1 U UG/L 1 U UG/L 1 U UG/L 1 U UG/L 1 U UG/L 1 U UG/L 1 U UG/L 1 U UG/L 3 U UG/L 1 U

SDG: C7K020216 MEDIA: WATER DATA FRACTION: OV

nsample samp_date

FMC 25

11/1/2007

lab_id

C7K020216014

qc_type

NM

Pct_Solids DUP_OF: nsample samp_date

lab_id

FMC 25

11/1/2007

C7K020216014

qc_type
Pct_Solids

NM

Pct_Solids DUP_OF: nsample samp_date FMC 26

NM

lab_id

11/1/2007 C7K020216015

qc_type

Pct_Solids DUP_OF:

Parameter	units	Result	Val Quai	Qual Code
1,1,1-TRICHLOROETHANE	UG/L	1	U	
1,1,2,2-TETRACHLOROETHANE	UG/L	1	U	
1,1,2-TRICHLOROETHANE	UG/L	1	U	
1,1,2-TRICHLOROTRIFLUOROET	UG/L	1	U	
1,1-DICHLOROETHANE	UG/L	1	IJ	
1,1-DICHLOROETHENE	UG/L	1	U	
1,2,4-TRICHLOROBENZENE	UG/L	. 1	U	
1,2-DIBROMO-3-CHLOROPROPA	UG/L	1	U	***
1,2-DIBROMOETHANE	UG/L	1	U	
1,2-DICHLOROBENZENE	UG/L	1	U	**
1,2-DICHLOROETHANE	UG/L	1	U	
1,2-DICHLOROPROPANE	UG/L	1	U	
1,3-DICHLOROBENZENE	UG/L	. 1	U	
1,4-DICHLOROBENZENE	UG/L	1	U	
2-BUTANONE	UG/L	5	Ű	-
2-HEXANONE	UG/L	5	U	
4-METHYL-2-PENTANONE	UG/L	5	U	
ACETONE	UG/L	3.8	В	E
BENZENE	UG/L	1	U	
BROMODICHLOROMETHANE	UG/L	1	Ü	
BROMOFORM	UG/L	1	Ŭ	
BROMOMETHANE	UG/L	1	U	
CARBON DISULFIDE	UG/L	1	U	

UG/L

UG/L

UG/L

UG/L

UG/L

UG/L

UG/L

UG/L

UG/L

UG/L

U

U

U

U

U

Ų

U

U

U

U

Parameter	units	Result	Val Qual	Qual Code
ETHYLBENZENE	UG/L	1	U	
ISOPROPYLBENZENE.	UG/L	1	U	***
METHYL ACETATE	UG/L	1	Ü	
METHYL CYCLOHEXANE	UG/L	1	U	-
METHYL TERT-BUTYL ETHER	UG/L	1	U	
METHYLENE CHLORIDE	UG/L	1	U	
STYRENE	UG/L	1	U	
TETRACHLOROETHENE	UG/L	1	U	
TOLUENE	UG/L	1	U	
TOTAL XYLENES	UG/L	3	U	~
TRANS-1,2-DICHLOROETHENE	UG/L	1	U	
TRANS-1,3-DICHLOROPROPENE	UG/L	1	U	
TRICHLOROETHENE	UG/L	1	U	
TRICHLOROFLUOROMETHANE	UG/L	1	U	
VINYL CHLORIDE	UG/L	1	U	

Parameter	units	Result	Val	Qual
			Qual	Code
1,1,1-TRICHLOROETHANE	UG/L	1	U	
1,1,2,2-TETRACHLOROETHANE	UG/L	1	U	
1,1,2-TRICHLOROETHANE	UG/L	1	Ū	
1,1,2-TRICHLOROTRIFLUOROET	UG/L	1	U	
1,1-DICHLOROETHANE	UG/L	1	U	
1,1-DICHLOROETHENE	UG/L	1	U	
1,2,4-TRICHLOROBENZENE	UG/L	1	U	
1,2-DIBROMO-3-CHLOROPROPA	UG/L	1	U	
1,2-DIBROMOETHANE	UG/L	1	U	
1,2-DICHLOROBENZENE	UG/L	1	U	
1,2-DICHLOROETHANE	UG/L	1	U	
1,2-DICHLOROPROPANE	UG/L	1	U	
1,3-DICHLOROBENZENE	UG/L	1	U	
1,4-DICHLOROBENZENE	UG/L	. 1	U	
2-BUTANONE	UG/L	5	U	
2-HEXANONE	UG/L	5	U	
4-METHYL-2-PENTANONE	UG/L	5	U	
ACETONE	UG/L	2.7	В	В
BENZENE	UG/L	1	U	
BROMODICHLOROMETHANE	UG/L	1	U	
BROMOFORM	UG/L	1	U	
BROMOMETHANE	UG/L	1	U	
CARBON DISULFIDE	UG/L	1	U	
CARBON TETRACHLORIDE	UG/L	1	U	
CHLOROBENZENE	UG/L	1	U	
CHLORODIBROMOMETHANE	UG/L	1	U	
CHLOROETHANE	UG/L	1	U	
CHLOROFORM	UG/L	1	U	
CHLOROMETHANE	UG/L	0.14	В	В
CIS-1,2-DICHLOROETHENE	UG/L	1	U	
CIS-1,3-DICHLOROPROPENE	UG/L	1	U	
CYCLOHEXANE	UG/L	1	U	
DICHLORODIFLUOROMETHANE	UG/L	1	U	

CARBON TETRACHLORIDE

CHLORODIBROMOMETHANE

CIS-1,2-DICHLOROETHENE

CIS-1,3-DICHLOROPROPENE

DICHLORODIFLUOROMETHANE

CHLOROBENZENE

CHLOROETHANE

CHLOROMETHANE

CHLOROFORM

CYCLOHEXANE

SDG: C7K020216 MEDIA: WATER DATA FRACTION: OV

nsample samp_date

FMC 26

11/1/2007

lab_id

C7K020216015

qc_type

NM

Pct_Solids DUP_OF:

samp_date lab_id qc_type

nsample FMC 3 10/31/2007 C7K020216011

NM

Pct_Solids DUP_OF:

nsample samp_date FMC 3

10/31/2007 C7K020216011

NM

qc_type Pct_Solids DUP_OF:

lab_id

units	Result	Val	Qual Code
110/		Guur	
UG/L	1	U	-
UG/L	1	U	
UG/L	3	U	
UG/L	1	U	****
UG/L	1	U	
UG/L	1	Ü	
UG/L	1	Ü	
UG/L	1	U	***
	UG/L UG/L UG/L UG/L UG/L UG/L UG/L UG/L	UG/L 1 UG/L 1 UG/L 1 UG/L 1 UG/L 1 UG/L 1 UG/L 1 UG/L 1 UG/L 1 UG/L 1 UG/L 1 UG/L 1 UG/L 1 UG/L 1 UG/L 1 UG/L 1 UG/L 1 UG/L 1 UG/L 1	Qual UG/L 1 U

Parameter	units	Result	Val Qual	Qual Code
1,1,1-TRICHLOROETHANE	UG/L	1	U	
1,1,2,2-TETRACHLOROETHANE	UG/L	1	U	****
1,1,2-TRICHLOROETHANE	UG/L	1	U	
1,1,2-TRICHLOROTRIFLUOROET	UG/L	1	U	
1,1-DICHLOROETHANE	UG/L	1	U	
1,1-DICHLOROETHENE	UG/L	1	U	
1,2,4-TRICHLOROBENZENE	UG/L	1	U	
1,2-DIBROMO-3-CHLOROPROPA	UG/L	1	U	_
1,2-DIBROMOETHANE	UG/L	1	U	
1,2-DICHLOROBENZENE	UG/L	1	U	
1,2-DICHLOROETHANE	UG/L	1	Ü	
1,2-DICHLOROPROPANE	UG/L	1	U	
1,3-DICHLOROBENZENE	UG/L	1	U	
1,4-DICHLOROBENZENE	UG/L	1	U	
2-BUTANONE	UG/L	5	U	
2-HEXANONE	UG/L	5	U	
4-METHYL-2-PENTANONE	UG/L	5	U	
ACETONE	UG/L	5.4	В	В
BENZENE	UG/L	1	U	-
BROMODICHLOROMETHANE	UG/L	1	U	
BROMOFORM	UG/L	1	U	
BROMOMETHANE	UG/L	1	U	-
CARBON DISULFIDE	UG/L	1	U	
CARBON TETRACHLORIDE	UG/L	1	U	
CHLOROBENZENE	UG/L	1	U	
CHLORODIBROMOMETHANE	UG/L	1	U	
CHLOROETHANE	UG/L	1	U	
CHLOROFORM	UG/L	1	U	
CHLOROMETHANE	UG/L	0.26	В	В
CIS-1,2-DICHLOROETHENE	UG/L	0.25	J	P
CIS-1,3-DICHLOROPROPENE	UG/L	1	U	
CYCLOHEXANE	UG/L	1	U	
DICHLORODIFLUOROMETHANE	UG/L	1	U	

Parameter	units	Result	Val Qual	Qual Code
ETHYLBENZENE	UG/L	1.	U	
ISOPROPYLBENZENE	UG/L	1	U	
METHYL ACETATE	UG/L	1	U	
METHYL CYCLOHEXANE	UG/L	1	U	
METHYL TERT-BUTYL ETHER	UG/L	1	U	
METHYLENE CHLORIDE	UG/L	1	U	
STYRENE	UG/L	1	U	
TETRACHLOROETHENE	UG/L	1	U	
TOLUENE	UG/L	1	U	
TOTAL XYLENES	UG/L	3	U	
TRANS-1,2-DICHLOROETHENE	UG/L	1	U	
TRANS-1,3-DICHLOROPROPENE	UG/L	1	U	
TRICHLOROETHENE	UG/L	0.53	J	Р
TRICHLOROFLUOROMETHANE	UG/L	1	U	
VINYL CHLORIDE	UG/L	1	U	

SDG: C7K020216 MEDIA: WATER DATA FRACTION: OV

nsample

FMC 5

samp_date lab_id

10/31/2007

qc_type

C7K020216012 NM

Pct_Solids DUP_OF:

nsample samp_date FMC 5

10/31/2007

lab_id qc_type C7K020216012 NM

Pct_Solids DUP_OF:

nsample

samp_date lab_id

FMC 7

10/31/2007 C7K020216013

NM

qc_type Pct_Solids DUP_OF:

Parameter	units	Result	Val Qual	Qual Code
1,1,1-TRICHLOROETHANE	UG/L	1	U	
1,1,2,2-TETRACHLOROETHANE	UG/L	1	Ū	
1,1,2-TRICHLOROETHANE	UG/L	1	Ú	
1,1,2-TRICHLOROTRIFLUOROET	UG/L	1	U	
1,1-DICHLOROETHANE	UG/L	1	U	
1,1-DICHLOROETHENE	UG/L	1	U	
1,2,4-TRICHLOROBENZENE	UG/L	1	U	
1,2-DIBROMO-3-CHLOROPROPA	UG/L	1	U	
1,2-DIBROMOETHANE	UG/L	1	U	
1,2-DICHLOROBENZENE	UG/L	1	U	
1,2-DICHLOROETHANE	UG/L	1	U	•
1,2-DICHLOROPROPANE	UG/L	1	U	
1,3-DICHLOROBENZENE	UG/L	1	Ü	
1,4-DICHLOROBENZENE	UG/L	1	Ú	****
2-BUTANONE	UG/L	5	U	
2-HEXANONE	UG/L	5	U	
4-METHYL-2-PENTANONE	UG/L	5	U	
ACETONE	UG/L	2.8	В	۰В
BENZENE	UG/L	1	U	
BROMODICHLOROMETHANE	UG/L	1	U	
BROMOFORM	UG/L	1	U	
BROMOMETHANE	UG/L	1	U	
CARBON DISULFIDE	UG/L	1	U	*
CARBON TETRACHLORIDE	UG/L	1	U	
CHLOROBENZENE	UG/L	1	Ü	
CHLORODIBROMOMETHANE	UG/L.	1	Ú	
CHLOROETHANE	UG/L	1	U	
CHLOROFORM	UG/L	1	U	
CHLOROMETHANE	UG/L	1	U	
CIS-1,2-DICHLOROETHENE	UG/L	0.18	J	Р
CIS-1,3-DICHLOROPROPENE	UG/L	1	U	
CYCLOHEXANE	UG/L	1	U	V4F4
DICHLORODIFLUOROMETHANE	UG/L	1	U	

Parameter	units	Result	Val Qual	Qual Code
ETHYLBENZENE	UG/L	1	U	
ISOPROPYLBENZENE	UG/L	1	U	
METHYL ACETATE	UG/L	1	U	
METHYL CYCLOHEXANE	UG/L	1	U	
METHYL TERT-BUTYL ETHER	UG/L	1	U	
METHYLENE CHLORIDE	UG/L	1	· U	Al-kA
STYRENE	UG/L	1	U	
TETRACHLOROETHENE	UG/L	1	U	
TOLUENE	UG/L	1	U	**
TOTAL XYLENES	UG/L	3	U	
TRANS-1,2-DICHLOROETHENE	UG/L	1	Ü	,
TRANS-1,3-DICHLOROPROPENE	UG/L	1	U	
TRICHLOROETHENE	UG/L	0.5	J	Р
TRICHLOROFLUOROMETHANE	UG/L	1	U	
VINYL CHLORIDE	UG/L	1	U	

Parameter	units	Result	Val	Qual
			Qual	Code
1,1,1-TRICHLOROETHANE	UG/L	1	U	
1,1,2,2-TETRACHLOROETHANE	UG/L	1	U	
1,1,2-TRICHLOROETHANE	UG/L	1	Ü	
1,1,2-TRICHLOROTRIFLUOROET	UG/L	1	U	
1,1-DICHLOROETHANE	UG/L	1	U	
1,1-DICHLOROETHENE	UG/L	1	U	
1,2,4-TRICHLOROBENZENE	UG/L	1	U	
1,2-DIBROMO-3-CHLOROPROPA	UG/L	1	U	
1,2-DIBROMOETHANE	UG/L	. 1	U	
1,2-DICHLOROBENZENE	UG/L	1	U	
1,2-DICHLOROETHANE	UG/L	1	U	
1,2-DICHLOROPROPANE	UG/L	1	U	
1,3-DICHLOROBENZENE	UG/L	1	U	
1,4-DICHLOROBENZENE	UG/L	1	U	
2-BUTANONE	UG/L	5	U	
2-HEXANONE	UG/L	5	U	
4-METHYL-2-PENTANONE	UG/L	5	U	
ACETONE	UG/L	4.6	В	В
BENZENE	UG/L	1	U	
BROMODICHLOROMETHANE	UG/L	1	U	
BROMOFORM	UG/L	1	U	
BROMOMETHANE	UG/L	1	U	
CARBON DISULFIDE	UG/L	1	U	
CARBON TETRACHLORIDE	UG/L	1	U	
CHLOROBENZENE	UG/L	1	U	
CHLORODIBROMOMETHANE	UG/L	1	U	
CHLOROETHANE	UG/L	1	U	
CHLOROFORM	UG/L	1	U	
CHLOROMETHANE	UG/L	0.19	В	В
CIS-1,2-DICHLOROETHENE	UG/L	0.18	J	P
CIS-1,3-DICHLOROPROPENE	UG/L	1	U	
CYCLOHEXANE	UG/L	1	U	
DICHLORODIFLUOROMETHANE	UG/L	1	U	

SDG: C7K020216 MEDIA: WATER DATA FRACTION: OV

nsample

FMC 7

samp_date

10/31/2007

lab_id qc_type C7K020216013

Pct_Solids DUP_OF:

NM

lab_id qc_type Pct_Solids DUP_OF:

nsample samp_date FMC 9

10/30/2007 C7K020216002

NM

nsample samp_date lab_id qc_type

FMC 9

10/30/2007 C7K020216002

NM

units	Result	Val Qual	Qual Code
UG/L	1	U	
UG/L	1	U	
UG/L	1	U	
UG/L	1	U	
UG/L	1	U	
UG/L	1	U	
UG/L	1	U	
UG/L	1	U	
UG/L	1	U	
UG/L	3	Ü	
UG/L	1	Ŭ	
UG/L	1	U	
UG/L	0.53	J	P
UG/L	. 1	U	
UG/L	1	· U	
	UG/L UG/L UG/L UG/L UG/L UG/L UG/L UG/L	UG/L 1 UG/L 1 UG/L 1 UG/L 1 UG/L 1 UG/L 1 UG/L 1 UG/L 1 UG/L 1 UG/L 1 UG/L 1 UG/L 1 UG/L 1 UG/L 1 UG/L 1 UG/L 1 UG/L 3 UG/L 1 UG/L 1 UG/L 1	UG/L 1 U UG/L 1 U UG/L 1 U UG/L 1 U UG/L 1 U UG/L 1 U UG/L 1 U UG/L 1 U UG/L 1 U UG/L 3 U UG/L 1 U UG/L 1 U UG/L 0.53 J UG/L 1 U UG/L 1 U

Parameter	units	Result	Val Qual	Qual Code
1,1,1-TRICHLOROETHANE	UG/L	1	U	
1,1,2,2-TETRACHLOROETHANE	UG/L	1	U	
1,1,2-TRICHLOROETHANE	UG/L	1	U	
1,1,2-TRICHLOROTRIFLUOROET	UG/L	-1	Ų	
1,1-DICHLOROETHANE	UG/L	1	U	
1,1-DICHLOROETHENE	UG/L	1	U	
1,2,4-TRICHLOROBENZENE	UG/L	1	U	
1,2-DIBROMO-3-CHLOROPROPA	UG/L	1	U	
1,2-DIBROMOETHANE	UG/L	1	U	. ,
1,2-DICHLOROBENZENE	UG/L	1	U	
1,2-DICHLOROETHANE	UG/L	1	U	
1,2-DICHLOROPROPANE	UG/L	1	U	
1,3-DICHLOROBENZENE	UG/L	1	Ú	
1,4-DICHLOROBENZENE	UG/L	1	. U	
2-BUTANONE	UG/L	5	U	
2-HEXANONE	UG/L	5	U	
4-METHYL-2-PENTANONE	UG/L	5	U	
ACETONE	UG/L	2.5	В	В
BENZENE	UG/L	1	U	
BROMODICHLOROMETHANE	UG/L	1	U	
BROMOFORM	UG/L	1	U	
BROMOMETHANE	UG/L	1	U	
CARBON DISULFIDE	UG/L	1	U	
CARBON TETRACHLORIDE	UG/L	1	U	
CHLOROBENZENE	UG/L	1	U	
CHLORODIBROMOMETHANE	UG/L	1	U	
CHLOROETHANE	UG/L	1	U	
CHLOROFORM	UG/L	. 1	J	
CHLOROMETHANE	UG/L	1	IJ	
CIS-1,2-DICHLOROETHENE	UG/L	0.22	J	Р
CIS-1,3-DICHLOROPROPENE	UG/L	1	Ü	
CYCLOHEXANE	UG/L	1	Ü	
DICHLORODIFLUOROMETHANE	UG/L	1	U	

Parameter	units	Result	Val Qual	Qual Code
ETHYLBENZENE	UG/L	1	U	
ISOPROPYLBENZENE	UG/L	1	U	
METHYL ACETATE	UG/L	1	U	
METHYL CYCLOHEXANE	UG/L	1	U	
METHYL TERT-BUTYL ETHER	UG/L	1	U	
METHYLENE CHLORIDE	UG/L	1	U	
STYRENE	UG/L	1	U	
TETRACHLOROETHENE	UG/L	1	U	
TOLUENE	UG/L	1	U	
TOTAL XYLENES	UG/L	3	U	
TRANS-1,2-DICHLOROETHENE	UG/L	1	U	
TRANS-1,3-DICHLOROPROPENE	UG/L	1	U	
TRICHLOROETHENE	UG/L	0.32	J	Р
TRICHLOROFLUOROMETHANE	UG/L	1	U	
VINYL CHLORIDE	UG/L	0.13	J	Р

SDG: C7K020216 MEDIA: WATER DATA FRACTION: OV

nsample samp_date

TripBlank#1

10/30/2007

C7K020216016

qc_type Pct_Solids

lab_id

NM

Pct_Solids DUP_OF:

nsample samp_date lab_id

DUP_OF:

TripBlank#1 1.0/30/2007 C7K020216016

NM

qc_type Pct_Solids nsample samp_date lab_id qc_type TripBlank#2 10/30/2007 C7K020216017

NM

		,		
Parameter	units	Result	Val Qual	Qual Code
1,1,1-TRICHLOROETHANE	UG/L	1	U	
1,1,2,2-TETRACHLOROETHANE	UG/L	1	U	
1,1,2-TRICHLOROETHANE	UG/L	1	U	
1,1,2-TRICHLOROTRIFLUOROET	UG/L	. 1	U	
1,1-DICHLOROETHANE	UG/L	1	U	
1,1-DICHLOROETHENE	UG/L	1	U	
1,2,4-TRICHLOROBENZENE	UG/L	1	U	
1,2-DIBROMO-3-CHLOROPROPA	UG/L	1	U	
1,2-DIBROMOETHANE	UG/L	1	U	
1,2-DICHLOROBENZENE	UG/L	1	U	
1,2-DICHLOROETHANE	UG/L	1	U	
1,2-DICHLOROPROPANE	UG/L	1	U	
1,3-DICHLOROBENZENE	UG/L	1	U	
1,4-DICHLOROBENZENE	UG/L	1	U	
2-BUTANONE	UG/L	5	U	
2-HEXANONE	UG/L	5	U	
4-METHYL-2-PENTANONE	UG/L	5	U	
ACETONE	UG/L	3.3	j	EP
BENZENE	UG/L	1	U	
BROMODICHLOROMETHANE	UG/L	1	U	
BROMOFORM	UG/L	1	U	
BROMOMETHANE	UG/L	1	U	
CARBON DISULFIDE	UG/L	1	U	
CARBON TETRACHLORIDE	UG/L	1	U	
CHLOROBENZENE	UG/L	1	U	
CHLORODIBROMOMETHANE	UG/L	1	Ü	
CHLOROETHANE	UG/L	1	U	
CHLOROFORM	UG/L	1	U	
CHLOROMETHANE	UG/L	1	U	
CIS-1,2-DICHLOROETHENE	UG/L	1	U	
CIS-1,3-DICHLOROPROPENE	UG/L	1	U	
CYCLOHEXANE	UG/L	1	U	
DICHLORODIFLUOROMETHANE	UG/L	1	U	

Parameter ·	units	Result	Val Qual	Qual Code
ETHYLBENZENE	UG/L	1	Ú	
ISOPROPYLBENZENE	UG/L	1	U	
METHYL ACETATE	UG/L	1	U	
METHYL CYCLOHEXANE	UG/L	1	U	
METHYL TERT-BUTYL ETHER	UG/L	1	U	
METHYLENE CHLORIDE	UG/L	1	U	
STYRENE	UG/L	1	U	
TETRACHLOROETHENE	UG/L	1	U	
TOLUENE	UG/L	0.24	J	Р
TOTAL XYLENES	UG/L	3	U	
TRANS-1,2-DICHLOROETHENE	UG/L	1	U	
TRANS-1,3-DICHLOROPROPENE	UG/L	1	U	
TRICHLOROETHENE	UG/L	1	U	
TRICHLOROFLUOROMETHANE	UG/L	. 1	U	
VINYL CHLORIDE	UG/L	1	U	

Parameter	units	Result	Val	Qual
			Qual	Code
1,1,1-TRICHLOROETHANE	UG/L	1	U	
1,1,2,2-TETRACHLOROETHANE	UG/L	1	U	
1,1,2-TRICHLOROETHANE	UG/L	1	U	
1,1,2-TRICHLOROTRIFLUOROET	UG/L	1	U	
1,1-DICHLOROETHANE	UG/L	1	U	
1,1-DICHLOROETHENE	UG/L	1	U	
1,2,4-TRICHLOROBENZENE	UG/L	1	U	
1,2-DIBROMO-3-CHLOROPROPA	UG/L	1	U	
1,2-DIBROMOETHANE	UG/L	1	U	
1,2-DICHLOROBENZENE	UG/L	1	, U	
1,2-DICHLOROETHANE	UG/L	1	U	
1,2-DICHLOROPROPANE	UG/L	. 1	U	
1,3-DICHLOROBENZENE	UG/L	1	U	
1,4-DICHLOROBENZENE	UG/L	1	U	
2-BUTANONE	UG/L	5	U	
2-HEXANONE	UG/L	5	U	
4-METHYL-2-PENTANONE	UG/L	5	U	
ACETONE	UG/L	11	K	E
BENZENE	UG/L	1	Ü	
BROMODICHLOROMETHANE	UG/L	1	U	
BROMOFORM	UG/L	1	U	
BROMOMETHANE	UG/L	1	U	
CARBON DISULFIDE	UG/L	1	Ü	
CARBON TETRACHLORIDE	UG/L	1	U	
CHLOROBENZENE	UG/L	1	U	
CHLORODIBROMOMETHANE	UG/L	1	U	
CHLOROETHANE	UG/L	1	U	
CHLOROFORM	UG/L	1	U	
CHLOROMETHANE	UG/L	0.15	J	. Р
CIS-1,2-DICHLOROETHENE	UG/L	1	U	
CIS-1,3-DICHLOROPROPENE	UĞ/L	. 1	U	
CYCLOHEXANE	UG/L	1	U	
DICHLORODIFLUOROMETHANE	UG/L	1	U	
		L	1	

00998 SDG: C7K020216 MEDIA: WATER DATA FRACTION: OV

nsample

TripBlank#2

samp_date

10/30/2007

lab_id

C7K020216017

qc_type

NM

				
Parameter	units	Result	Val Qual	Qual Code
ETHYLBENZENE	UG/L	1	U	
ISOPROPYLBENZENE	UG/L	, 1	U	
METHYL ACETATE	UG/L	1	U	
METHYL CYCLOHEXANE	UG/L	1	Ü	
METHYL TERT-BUTYL ETHER	UG/L	1	. U	
METHYLENE CHLORIDE	UG/L	1	U	
STYRENE	UG/L	1	U	
TETRACHLOROETHENE	UG/L	1	U	,
TOLUENE	UG/L	0.39	J	Р
TOTAL XYLENES	UG/L	3	Ū	
TRANS-1,2-DICHLOROETHENE	UG/L	1	U	
TRANS-1,3-DICHLOROPROPENE	UG/L	1	Ű	
TRICHLOROETHENE	UG/L	1	Ü	
TRICHLOROFLUOROMETHANE	UG/L	1	U	
VINYL CHLORIDE	UG/L	1	U	

SDG: C7K020216 MEDIA: WATER DATA FRACTION: OS

nsample samp_date FMC-10DL

10/30/2007

lab_id

C7K020216003

qc_type Pct_Solids

DUP_OF:

NM

samp_date lab_id

nsample

FMC 10DL 10/30/2007

C7K020216003

NM

qc_type Pct_Solids DUP_OF:

nsample samp_date FMC 11DL 10/30/2007

lab_id

C7K020216004 NM

qc_type Pct_Solids

DUP_OF:

Parameter	units	Result	Val Qual	Qual Code
1,1-BIPHENYL	UG/L	1.1	U	
2,2'-OXYBIS(1-CHLOROPROPAN	UG/L	0.21	U	
2,4,5-TRICHLOROPHENOL	UG/L	1.1	U	
2,4,6-TRICHLOROPHENOL	UG/L	1.1	U	
2,4-DICHLOROPHENOL	UG/L	0.21	U	
2,4-DIMETHYLPHENOL	UG/L	1.1	U	
2,4-DINITROPHENOL	UG/L	5.3	U	
2,4-DINITROTOLUENE	UG/L	. 1.1	U	
2,6-DINITROTOLUENE	UG/L	1.1	U	
2-CHLORONAPHTHALENE	UG/L	0.21	U	
2-CHLOROPHENOL	UG/L	1.1	U	
2-METHYLNAPHTHALENE	UG/L	0.21	U	
2-METHYLPHENOL	UG/L	1.1	U	,
2-NITROANILINE	UG/L	5.3	Ų	
2-NITROPHENOL	UG/L	1.1	U	
3,3'-DICHLOROBENZIDINE	UG/L	1.1	U	
3-NITROANILINE	UG/L	5.3	U	
4,6-DINITRO-2-METHYLPHENOL	UG/L	5.3	U	
4-BROMOPHENYL PHENYL ETH	UG/L	1.1	U	
4-CHLORO-3-METHYLPHENOL	UG/L	1.1	U	
4-CHLOROANILINE	UG/L	1.1	U	
4-CHLOROPHENYL PHENYL ETH	UG/L	1.1	U	
4-METHYLPHENOL	UG/L	1.1	U	
4-NITROANILINE	UG/L	5.3	U	
4-NITROPHENOL	UG/L	5.3	U	
ACENAPHTHENE	UG/L	0.21	Ü	
ACENAPHTHYLENE	UG/L	0.21	U	
ACETOPHENONE	UG/L	1.1	U	
ANTHRACENE	UG/L	0.21	U	
ATRAZINE	UG/L	1.1	U	
BENZALDEHYDE	UG/L	1.1	U	****
BENZO(A)ANTHRACENE	UG/L	0.21	U	
BENZO(A)PYRENE	UG/L	0.21	U	

Parameter	units	Result	Val Qual	Qual Code
BENZO(B)FLUORANTHENE	UG/L	0.21	Ú	
BENZO(G,H,I)PERYLENE	UG/L	0.21	U	
BENZO(K)FLUORANTHENE	UG/L	0.21	U	
BIS(2-CHLOROETHOXY)METHAN	UG/L	1.1	U	
BIS(2-CHLOROETHYL)ETHER	UG/L	0.21	U	
BIS(2-ETHYLHEXYL)PHTHALATE	UG/L	0.13	J	Р
BUTYL BENZYL PHTHALATE	UG/L	1.1	U	
CAPROLACTAM	UG/L	1.1	U	
CARBAZOLE	UG/L	0.097	J	Р
CHRYSENE	UG/L	0.21	U	
DIBENZO(A,H)ANTHRACENE	UG/L	0.21	U	
DIBENZOFURAN	UG/L	0.074	J	Р
DIETHYL PHTHALATE	UG/L	1.1	U	
DIMETHYL PHTHALATE	UG/L	1.1	· U	
DI-N-BUTYL PHTHALATE	UG/L	1.1	U	
DI-N-OCTYL PHTHALATE	UG/L	1.1	· U	
FLUORANTHENE	UG/L	0.21	U	
FLUORENE	UG/L	0.21	Ų	
HEXACHLOROBENZENE	UG/L	0.21	U	
HEXACHLOROBUTADIENE	UG/L	0.21	U	
HEXACHLOROCYCLOPENTADIE	UG/L	1.1	Ũ	
HEXACHLOROETHANE	UG/L	. 1.1	U	
INDENO(1,2,3-CD)PYRENE	UG/L	0.21	U	
ISOPHORONE	UG/L	1.1	U	
NAPHTHALENE	UG/L	0.21	U	
NITROBENZENE	UG/L	0.21	U	
N-NITROSO-DI-N-PROPYLAMINE	UG/L	0.21	U	
N-NITROSODIPHENYLAMINE	UG/L	0.21	U	
PENTACHLOROPHENOL	UG/L	1.1	U	
PHENANTHRENE	UG/L	0.32		
PHENOL	UG/L	0.21	U	
PYRENE	UG/L	0.21	U	

Parameter	units	Result	Val Qual	Qual Code
1,1-BIPHENYL	UG/L	1.1	U	
2,2'-OXYBIS(1-CHLOROPROPAN	UG/L	0.22	U	
2,4,5-TRICHLOROPHENOL	UG/L	1,1	U	
2,4,6-TRICHLOROPHENOL	UG/L	1.1	U	
2,4-DICHLOROPHENOL	UG/L	0.22	U	
2,4-DIMETHYLPHENOL	UG/L	1.1	U	
2,4-DINITROPHENOL	UG/L	5.5	U	
2,4-DINITROTOLUENE	UG/L	1.1	U	
2,6-DINITROTOLUENE	UG/L	1.1	U	
2-CHLORONAPHTHALENE	UG/L	0.22	U	
2-CHLOROPHENOL	UG/L	1.1	U	
2-METHYLNAPHTHALENE	UG/L	0.22	U	
2-METHYLPHENOL	UG/L	1.1	U	
2-NITROANILINE	UG/L	5.5	U	
2-NITROPHENOL	UG/L	1.1	U	
3,3'-DICHLOROBENZIDINE	UG/L	1.1	U	
3-NITROANILINE	UG/L	5.5	U	
4,6-DINITRO-2-METHYLPHENOL	UG/L	5.5	U	
4-BROMOPHENYL PHENYL ETH	UG/L	1.1	U	
4-CHLORO-3-METHYLPHENOL	UG/L	1.1	U	
4-CHLOROANILINE	UG/L	1.1	Ų	
4-CHLOROPHENYL PHENYL ETH	UG/L	1.1	U	
4-METHYLPHENOL	UG/L	1.1	U	
4-NITROANILINE	UG/L	5.5	U	
4-NITROPHENOL	UG/L	5.5	U	
ACENAPHTHENE	UG/L	0.22	U	
ACENAPHTHYLENE	UG/L	0.22	U	
ACETOPHENONE	UG/L	1.1	U	
ANTHRACENE	UG/L	0.22	U	
ATRAZINE	UG/L	1.1	U	
BENZALDEHYDE	UG/L	1.1	U	
BENZO(A)ANTHRACENE	UG/L	0.22	U	
BENZO(A)PYRENE	UG/L	0.22	U	

SDG: C7K020216 MEDIA: WATER DATA FRACTION: OS

nsample

FMC 11DL

samp_date

10/30/2007

lab_id qc_type

DUP_OF:

C7K020216004

Pct_Solids

NM

qc_type Pct_Solids DUP_OF:

lab_id

nsample samp_date FMC 12DL

10/30/2007

C7K020216005

NM

nsample samp_date lab_id

FMC 12DL

10/30/2007 C7K020216005

NM

qc_type Pct_Solids

DUP_OF:

Parameter	Danasatan		D	17-1	0 1
BENZO(G,H,I)PERYLENE	Parameter	units	Result	Val Qual	Qual Code
BENZO(G,H,I)PERYLENE	BENZO(B)FLUORANTHENE	UG/I	0.22	·····	
BENZO(K)FLUORANTHENE					
BIS(2-CHLOROETHOXY)METHAN				Ū	
BIS(2-CHLOROETHYL)ETHER UG/L 0.22 U BIS(2-ETHYLHEXYL)PHTHALATE UG/L 1.1 U BUTYL BENZYL PHTHALATE UG/L 1.1 U CAPROLACTAM UG/L 1.1 U CARBAZOLE UG/L 0.22 U CHRYSENE UG/L 0.22 U DIBENZO(A,H)ANTHRACENE UG/L 0.22 U DIBENZOFURAN UG/L 0.22 U DIBENZOFURAN UG/L 1.1 U DIBENZOFURAN UG/L 1.1 U DIBENZOFURAN UG/L 1.1 U DIBENZOFURAN UG/L 1.1 U DIBENZOFURAN UG/L 1.1 U DIBENZOFURAN UG/L 1.1 U DISETHYL PHTHALATE UG/L 1.1 U DIMETHYL PHTHALATE UG/L 1.1 U DI-N-BUTYL PHTHALATE UG/L 1.1 U FLUORANTHENE UG/L 0.22		UG/L			
BIS(2-ETHYLHEXYL)PHTHALATE		UG/L	0.22	U	
BUTYL BENZYL PHTHALATE		UG/L		U	
CAPROLACTAM UG/L 1.1 U CARBAZOLE UG/L 0.22 U CHRYSENE UG/L 0.22 U DIBENZOFURAN UG/L 0.22 U DIBENZOFURAN UG/L 1.1 U DIETHYL PHTHALATE UG/L 1.1 U DIMETHYL PHTHALATE UG/L 1.1 U DI-N-BUTYL PHTHALATE UG/L 1.1 U DI-N-BUTYL PHTHALATE UG/L 1.1 U DI-N-BUTYL PHTHALATE UG/L 1.1 U DI-N-BUTYL PHTHALATE UG/L 1.1 U DI-N-BUTYL PHTHALATE UG/L 1.1 U DI-N-BUTYL PHTHALATE UG/L 1.1 U DI-N-BUTYL PHTHALATE UG/L 1.1 U DI-N-BUTYL PHTHALATE UG/L 0.22 U FLUORATE UG/L 0.22 U FLUORATE UG/L 0.22 U HEXACHLOROBENZENE UG/L 0.22		UG/L	1.1	U	
CHRYSENE DIBENZO(A,H)ANTHRACENE UG/L DIBENZOFURAN UG/L DIETHYL PHTHALATE UG/L DI-N-BUTYL PHTHALATE UG/L DI-N-OCTYL PHTHALATE UG/L FLUORANTHENE UG/L HEXACHLOROBENZENE HEXACHLOROETHANE UG/L			- :	U	
CHRYSENE UG/L 0.22 U DIBENZO(A,H)ANTHRACENE UG/L 0.22 U DIBENZOFURAN UG/L 1.1 U DIETHYL PHTHALATE UG/L 1.1 U DIMETHYL PHTHALATE UG/L 1.1 U DI-N-BUTYL PHTHALATE UG/L 1.1 U DI-N-OCTYL PHTHALATE UG/L 1.1 U FLUORANTHENE UG/L 0.22 U FLUORENE UG/L 0.22 U HEXACHLOROBENZENE UG/L 0.22 U HEXACHLOROBUTADIENE UG/L 0.22 U HEXACHLOROCYCLOPENTADIE UG/L 1.1 U HEXACHLOROETHANE UG/L 1.1 U INDENO(1,2,3-CD)PYRENE UG/L 0.22 U ISOPHORONE UG/L 0.22 U NAPHTHALENE UG/L 0.22 U N-NITROSO-DI-N-PROPYLAMINE UG/L 0.22 U N-NITROSODIPHENYLAMINE UG/L	CARBAZOLE	UG/L	0.22	U	
DIBENZOFURAN UG/L 1.1 U DIETHYL PHTHALATE UG/L 1.1 U DIMETHYL PHTHALATE UG/L 1.1 U DI-N-BUTYL PHTHALATE UG/L 1.1 U DI-N-OCTYL PHTHALATE UG/L 1.1 U FLUORANTHENE UG/L 0.22 U FLUORENE UG/L 0.22 U HEXACHLOROBENZENE UG/L 0.22 U HEXACHLOROBUTADIENE UG/L 0.22 U HEXACHLOROCYCLOPENTADIE UG/L 1.1 U HEXACHLOROETHANE UG/L 1.1 U INDENO(1,2,3-CD)PYRENE UG/L 0.22 U ISOPHORONE UG/L 0.22 U NAPHTHALENE UG/L 0.22 U NITROBENZENE UG/L 0.22 U N-NITROSO-DI-N-PROPYLAMINE UG/L 0.22 U N-NITROSODIPHENYLAMINE UG/L 0.22 U PENTACHLOROPHENOL UG/L	CHRYSENE	UG/L	0.22	U	
DIETHYL PHTHALATE UG/L 1.1 U DIMETHYL PHTHALATE UG/L 1.1 U DI-N-BUTYL PHTHALATE UG/L 1.1 U DI-N-OCTYL PHTHALATE UG/L 1.1 U FLUORANTHENE UG/L 0.22 U FLUORENE UG/L 0.22 U HEXACHLOROBENZENE UG/L 0.22 U HEXACHLOROBUTADIENE UG/L 0.22 U HEXACHLOROCYCLOPENTADIE UG/L 1.1 U HEXACHLOROETHANE UG/L 1.1 U INDENO(1,2,3-CD)PYRENE UG/L 0.22 U ISOPHORONE UG/L 0.22 U NAPHTHALENE UG/L 0.22 U NITROBENZENE UG/L 0.22 U N-NITROSO-DI-N-PROPYLAMINE UG/L 0.22 U N-NITROSODIPHENYLAMINE UG/L 0.22 U PENTACHLOROPHENOL UG/L 0.26 U PHENANTHRENE UG/L	DIBENZO(A,H)ANTHRACENE	UG/L	0.22	· U	
DIMETHYL PHTHALATE UG/L 1.1 U DI-N-BUTYL PHTHALATE UG/L 1.1 U DI-N-OCTYL PHTHALATE UG/L 1.1 U FLUORANTHENE UG/L 0.22 U FLUORENE UG/L 0.22 U HEXACHLOROBENZENE UG/L 0.22 U HEXACHLOROBUTADIENE UG/L 0.22 U HEXACHLOROCYCLOPENTADIE UG/L 1.1 U HEXACHLOROETHANE UG/L 1.1 U INDENO(1,2,3-CD)PYRENE UG/L 0.22 U ISOPHORONE UG/L 0.22 U NAPHTHALENE UG/L 0.22 U NITROBENZENE UG/L 0.22 U N-NITROSO-DI-N-PROPYLAMINE UG/L 0.22 U N-NITROSODIPHENYLAMINE UG/L 0.22 U PENTACHLOROPHENOL UG/L 0.26 U PHENANTHRENE UG/L 0.26 U PHENOL UG/L <	DIBENZOFURAN	UG/L	1.1	U	
DI-N-BUTYL PHTHALATE UG/L 1.1 U DI-N-OCTYL PHTHALATE UG/L 1.1 U FLUORANTHENE UG/L 0.22 U FLUORENE UG/L 0.22 U HEXACHLOROBENZENE UG/L 0.22 U HEXACHLOROBUTADIENE UG/L 0.22 U HEXACHLOROCYCLOPENTADIE UG/L 1.1 U HEXACHLOROETHANE UG/L 1.1 U INDENO(1,2,3-CD)PYRENE UG/L 0.22 U ISOPHORONE UG/L 0.22 U NAPHTHALENE UG/L 0.22 U NITROBENZENE UG/L 0.22 U N-NITROSO-DI-N-PROPYLAMINE UG/L 0.22 U N-NITROSODIPHENYLAMINE UG/L 0.22 U PENTACHLOROPHENOL UG/L 0.26 U PHENANTHRENE UG/L 0.26 U PHENOL UG/L 0.22 U	DIETHYL PHTHALATE	UG/L	1.1	U	
DI-N-OCTYL PHTHALATE UG/L 1.1 U FLUORANTHENE UG/L 0.22 U FLUORENE UG/L 0.22 U HEXACHLOROBENZENE UG/L 0.22 U HEXACHLOROBUTADIENE UG/L 0.22 U HEXACHLOROCYCLOPENTADIE UG/L 1.1 U HEXACHLOROETHANE UG/L 1.1 U INDENO(1,2,3-CD)PYRENE UG/L 0.22 U ISOPHORONE UG/L 0.22 U NAPHTHALENE UG/L 0.22 U NITROBENZENE UG/L 0.22 U N-NITROSO-DI-N-PROPYLAMINE UG/L 0.22 U N-NITROSODIPHENYLAMINE UG/L 0.22 U PENTACHLOROPHENOL UG/L 0.22 U PHENANTHRENE UG/L 0.26 PHENOL UG/L 0.22 U	DIMETHYL PHTHALATE	UG/L	1.1	U	. ,
FLUORANTHENE UG/L 0.22 U FLUORENE UG/L 0.22 U HEXACHLOROBENZENE UG/L 0.22 U HEXACHLOROBUTADIENE UG/L 0.22 U HEXACHLOROCYCLOPENTADIE UG/L 1.1 U HEXACHLOROETHANE UG/L 1.1 U INDENO(1,2,3-CD)PYRENE UG/L 0.22 U ISOPHORONE UG/L 1.1 U NAPHTHALENE UG/L 0.22 U NITROBENZENE UG/L 0.22 U N-NITROSO-DI-N-PROPYLAMINE UG/L 0.22 U N-NITROSODIPHENYLAMINE UG/L 0.22 U PENTACHLOROPHENOL UG/L 0.22 U PHENANTHRENE UG/L 0.26 U PHENOL UG/L 0.22 U	DI-N-BUTYL PHTHALATE	UG/L	1.1	U	
FLUORENE UG/L 0.22 U HEXACHLOROBENZENE UG/L 0.22 U HEXACHLOROBUTADIENE UG/L 0.22 U HEXACHLOROCYCLOPENTADIE UG/L 1.1 U HEXACHLOROETHANE UG/L 1.1 U INDENO(1,2,3-CD)PYRENE UG/L 0.22 U ISOPHORONE UG/L 0.22 U NAPHTHALENE UG/L 0.22 U NITROBENZENE UG/L 0.22 U N-NITROSO-DI-N-PROPYLAMINE UG/L 0.22 U N-NITROSODIPHENYLAMINE UG/L 0.22 U PENTACHLOROPHENOL UG/L 0.22 U PHENANTHRENE UG/L 0.26 P PHENOL UG/L 0.22 U	DI-N-OCTYL PHTHALATE	UG/L	1.1	U	
HEXACHLOROBENZENE	FLUORANTHENE	UG/L	0.22	U	
HEXACHLOROBUTADIENE UG/L 0.22 U HEXACHLOROCYCLOPENTADIE UG/L 1.1 U HEXACHLOROETHANE UG/L 1.1 U INDENO(1,2,3-CD)PYRENE UG/L 0.22 U ISOPHORONE UG/L 1.1 U NAPHTHALENE UG/L 0.22 U NITROBENZENE UG/L 0.22 U N-NITROSO-DI-N-PROPYLAMINE UG/L 0.22 U N-NITROSODIPHENYLAMINE UG/L 0.22 U PENTACHLOROPHENOL UG/L 1.1 U PHENANTHRENE UG/L 0.26 PHENOL UG/L 0.22 U	FLUORENE	UG/L	0.22	U	
HEXACHLOROCYCLOPENTADIE UG/L 1.1 U HEXACHLOROETHANE UG/L 1.1 U INDENO(1,2,3-CD)PYRENE UG/L 0.22 U ISOPHORONE UG/L 1.1 U NAPHTHALENE UG/L 0.22 U NITROBENZENE UG/L 0.22 U N-NITROSO-DI-N-PROPYLAMINE UG/L 0.22 U N-NITROSODIPHENYLAMINE UG/L 0.22 U PENTACHLOROPHENOL UG/L 1.1 U PHENANTHRENE UG/L 0.26 PHENOL UG/L 0.22 U	HEXACHLOROBENZENE	UG/L	0.22	U	
HEXACHLOROETHANE	HEXACHLOROBUTADIENE	UG/L	0.22	U	
INDENO(1,2,3-CD)PYRENE	HEXACHLOROCYCLOPENTADIE	UG/L	1.1	U	
ISOPHORONE	HEXACHLOROETHANE	UG/L	1.1	U	
NAPHTHALENE UG/L 0.22 U NITROBENZENE UG/L 0.22 U N-NITROSO-DI-N-PROPYLAMINE UG/L 0.22 U N-NITROSODIPHENYLAMINE UG/L 0.22 U PENTACHLOROPHENOL UG/L 1.1 U PHENANTHRENE UG/L 0.26 PHENOL UG/L 0.22 U	INDENO(1,2,3-CD)PYRENE	UG/L	0.22	U	
NITROBENZENE UG/L 0.22 U N-NITROSO-DI-N-PROPYLAMINE UG/L 0.22 U N-NITROSODIPHENYLAMINE UG/L 0.22 U PENTACHLOROPHENOL UG/L 1.1 U PHENANTHRENE UG/L 0.26 D PHENOL UG/L 0.22 U	ISOPHORONE	UG/L	1.1	U	
N-NITROSO-DI-N-PROPYLAMINE UG/L 0.22 U N-NITROSODIPHENYLAMINE UG/L 0.22 U PENTACHLOROPHENOL UG/L 1.1 U PHENANTHRENE UG/L 0.26 PHENOL UG/L 0.22 U	NAPHTHALENE	UG/L	0.22	U	
N-NITROSODIPHENYLAMINE UG/L 0.22 U PENTACHLOROPHENOL UG/L 1.1 U PHENANTHRENE UG/L 0.26 UG/L PHENOL UG/L 0.22 U		UG/L	0.22	Ü	
PENTACHLOROPHENOL UG/L 1.1 U PHENANTHRENE UG/L 0.26 PHENOL UG/L 0.22 U	N-NITROSO-DI-N-PROPYLAMINE	UG/L	0.22	U	
PHENANTHRENE UG/L 0.26 PHENOL UG/L 0.22 U	N-NITROSODIPHENYLAMINE	UG/L	0.22	U	
PHENOL UG/L 0.22 U	PENTACHLOROPHENOL	UG/L	1.1	U	
	PHENANTHRENE	UG/L	0.26		
PYRENE UG/L 0.22 U		UG/L	0.22	U	
- · · · · · · · · · · · · · · · · · · ·	PYRENE	UG/L	0.22	U	

Parameter	units	Result	Val Qual	Qual Code
1,1-BIPHENYL	UG/L	1	U	
2,2'-OXYBIS(1-CHLOROPROPAN	UG/L	0.21	U	
2,4,5-TRICHLOROPHENOL	UG/L	1	U	
2,4,6-TRICHLOROPHENOL	UG/L	1	U	
2,4-DICHLOROPHENOL	UG/L	0.21	U	
2,4-DIMETHYLPHENOL	UG/L	1	U	
2,4-DINITROPHENOL	UG/L	5.2	U	
2,4-DINITROTOLUENE	UG/L	1	U	
2,6-DINITROTOLUENE	UG/L	1	U	
2-CHLORONAPHTHALENE	UG/L	0.21	U	
2-CHLOROPHENOL	UG/L	1	U	
2-METHYLNAPHTHALENE	UG/L	0.21	U	
2-METHYLPHENOL	UG/L	1	U	
2-NITROANILINE	UG/L	5.2	U	
2-NITROPHENOL	UG/L	1	U	
3,3'-DICHLOROBENZIDINE	UG/L	. 1	U	
3-NITROANILINE	UG/L	5.2	U	
4,6-DINITRO-2-METHYLPHENOL	UG/L	5.2	U	
4-BROMOPHENYL PHENYL ETH	UG/L	1	U	
4-CHLORO-3-METHYLPHENOL	UG/L	1	U	
4-CHLOROANILINE	UG/L	1	Ü	
4-CHLOROPHENYL PHENYL ETH	UG/L	1	U	
4-METHYLPHENOL	UG/L	1	U	
4-NITROANILINE	UG/L	5.2	U	
4-NITROPHENOL	UG/L	5.2	U	
ACENAPHTHENE	UG/L	0.21	U	
ACENAPHTHYLENE	UG/L	0.21	U	
ACETOPHENONE	UG/L	1	U	
ANTHRACENE	UG/L	0.21	U	
ATRAZINE	UG/L	1	U	
BENZALDEHYDE	UG/L	1	U	
BENZO(A)ANTHRACENE	UG/L	0.21	U	
BENZO(A)PYRENE	UG/L	0.21	U	

units	Result	Val	Qual Code
110/	0.04		Code
	0.21		
	1	U	
UG/L	1	U	
UG/L	1	U	
UG/L	0.11	J	Р
UG/L	0.21	U	
UG/L	0.21	U	
UG/L	0.16	J	. Р
UG/L	1	U	
UG/L	1	U	-
UG/L	1	U	
UG/L	1	U	
UG/L	0.077	J	Р
UG/L	0.078	J	Р
UG/L	0.21	U	
UG/L	0.21	U	
UG/L	1	U	
UG/L	1	U	
UG/L	0.21	U	
UG/L	1	U	
UG/L	0.21	U	
UG/L	0.21	U	
UG/L	0.21	U	
UG/L	0.21	U	
UG/L	1	U	
UG/L	0.48		
UG/L	0.21	U	
UG/L	0.21	U	
	UG/L UG/L UG/L UG/L UG/L UG/L UG/L UG/L	UG/L 0.21 UG/L 0.21 UG/L 0.21 UG/L 0.21 UG/L 1 UG/L 0.21 UG/L 1 UG/L 1 UG/L 0.11 UG/L 0.21 UG/L 0.21 UG/L 0.21 UG/L 0.16 UG/L 1 UG/L 1 UG/L 1 UG/L 1 UG/L 1 UG/L 1 UG/L 1 UG/L 1 UG/L 1 UG/L 1 UG/L 1 UG/L 0.077 UG/L 0.078 UG/L 0.21	Qual UG/L 0.21 U UG/L 0.21 U UG/L 0.21 U UG/L 1 U UG/L 1 U UG/L 1 U UG/L 0.21 U UG/L 0.21 U UG/L 0.21 U UG/L 1 U UG/L 1 U UG/L 1 U UG/L 1 U UG/L 1 U UG/L 1 U UG/L 1 U UG/L 1 U UG/L 0.077 J UG/L 0.078 J UG/L 0.21 U UG/L 0.21 U UG/L 1 U UG/L 1 U UG/L 1 U UG/L 0.24 U UG/L 0.48 UG/L 0.21 U UG/L 0.48 UG/L 0.21 U

SDG: C7K020216 MEDIA: WATER DATA FRACTION: OS

nsample samp_date FMC 13DL 10/30/2007

NM

lab_id

C7K020216006

qc_type Pct_Solids DUP_OF:

nsample samp_date lab_id

qc_type

Pct_Solids

DUP_OF:

FMC 13DL 10/30/2007 C7K020216006

NM

nsample samp_date lab_id qc_type

FMC 16DL 10/31/2007

C7K020216007

NM

				
Parameter	units	Result	Val Qual	Qual Code
1,1-BIPHENYL	UG/L	1.1	U	
2,2'-OXYBIS(1-CHLOROPROPAN	UG/L	0.22	U	
2,4,5-TRICHLOROPHENOL	UG/L	1.1	U	
2,4,6-TRICHLOROPHENOL	UG/L	1.1	Ü	
2,4-DICHLOROPHENOL	UG/L	0.22	U	
2,4-DIMETHYLPHENOL	UG/L	1.1	U	
2,4-DINITROPHENOL	UG/L	5.4	U	
2,4-DINITROTOLUENE	UG/L	1.1	U	
2,6-DINITROTOLUENE	UG/L	1.1	U	
2-CHLORONAPHTHALENE	UG/L	0.22	U	
2-CHLOROPHENOL	UG/L	1.1	U	
2-METHYLNAPHTHALENE	UG/L	0.22	U	
2-METHYLPHENOL	UG/L	1.1	U	
2-NITROANILINE	UG/L	5.4	U	
2-NITROPHENOL	UG/L	1.1	U	
3,3'-DICHLOROBENZIDINE	UG/L	1.1	υ	
3-NITROANILINE	UG/L	5.4	U	
4,6-DINITRO-2-METHYLPHENOL	UG/L	5.4	U	
4-BROMOPHENYL PHENYL ETH	UG/L	1.1	U	
4-CHLORO-3-METHYLPHENOL	UG/L	1.1	U	
4-CHLOROANILINE	UG/L	1.1	U	.,,
4-CHLOROPHENYL PHENYL ETH	UG/L	1.1	U	
4-METHYLPHENOL	UG/L	1.1	Ü	
4-NITROANILINE	UG/L	5.4	U	
4-NITROPHENOL	UG/L	5.4	U	
ACENAPHTHENE	UG/L	0.22	U	
ACENAPHTHYLENE	UG/L	0.22	U	
ACETOPHENONE	UG/L	1.1	U	
ANTHRACENE	UG/L	0.22	U	
ATRAZINE	UG/L	1.1	U	
BENZALDEHYDE	UG/L	1.1	U	
BENZO(A)ANTHRACENE	UG/L	0.22	U	
BENZO(A)PYRENE	UG/L	0.22	U	

Parameter	units	Result	Val Qual	Qual Code
BENZO(B)FLUORANTHENE	UG/L	0.22	U	
BENZO(G,H,I)PERYLENE	UG/L	0.22	U	
BENZO(K)FLUORANTHENE	UG/L	0.22	Ű	
BIS(2-CHLOROETHOXY)METHAN	UG/L	1,1	U	
BIS(2-CHLOROETHYL)ETHER	UG/L	0.22	U	,
BIS(2-ETHYLHEXYL)PHTHALATE	UG/L	1.1	U	
BUTYL BENZYL PHTHALATE	UG/L	0.17	J	Р
CAPROLACTAM	UG/L	1.1	U	
CARBAZOLE	UG/L	0.19	J	Р
CHRYSENE	UG/L	0.22	U	
DIBENZO(A,H)ANTHRACENE	UG/L	0.22	U	
DIBENZOFURAN	UG/L	1,1	U	
DIETHYL PHTHALATE	UG/L	1.1	U	
DIMETHYL PHTHALATE	UG/L	1.1	U	
DI-N-BUTYL PHTHALATE	UG/L	1.1	U	·
DI-N-OCTYL PHTHALATE	UG/L	1.1	U	
FLUORANTHENE	UG/L	0.08	J	Р
FLUORENE	UG/L	0.22	U	
HEXACHLOROBENZENE	UG/L	0.22	. U	
HEXACHLOROBUTADIENE	UG/L	0.22	U	
HEXACHLOROCYCLOPENTADIE	UG/L	1.1	U	
HEXACHLOROETHANE	UG/L	1.1	U	
INDENO(1,2,3-CD)PYRENE	UG/L	0.22	U	
ISOPHORONE	UG/L	1.1	Ü	
NAPHTHALENE	UG/L	0.22	U	
NITROBENZENE	UG/L	0.22	Ü	
N-NITROSO-DI-N-PROPYLAMINE	UG/L	0.22	U	
N-NITROSODIPHENYLAMINE	UG/L	0.22	U	
PENTACHLOROPHENOL	UG/L	1.1	U	
PHENANTHRENE	UG/L	0.42		
PHENOL	UG/L	0.22	Ú	
PYRENE	UG/L	0.064	J	Р

Parameter	units	Result	Val Qual	Qual Code
1,1-BIPHENYL	UG/L	1.1	U	
2,2'-OXYBIS(1-CHLOROPROPAN	UG/L	0.22	. U	
2,4,5-TRICHLOROPHENOL	UG/L	1.1	U	
2,4,6-TRICHLOROPHENOL	UG/L	1.1	U	
2,4-DICHLOROPHENOL	UG/L	0.22	U	
2,4-DIMETHYLPHENOL	UG/L	1.1	U	
2,4-DINITROPHENOL	UG/L	5.4	U	
2,4-DINITROTOLUENE	UG/L	1.1	U	
2,6-DINITROTOLUENE	UG/L	1.1	U	
2-CHLORONAPHTHALENE	UG/L	0.22	U	
2-CHLOROPHENOL	UG/L	1.1	U	
2-METHYLNAPHTHALENE	UG/L	0.22	Ú	
2-METHYLPHENOL	UG/L	1.1	U	
2-NITROANILINE	UG/L	5.4	U	
2-NITROPHENOL	UG/L	1.1	U	
3,3'-DICHLOROBENZIDINE	UG/L	1.1	Ü	
3-NITROANILINE	UG/L	5.4	U	
4,6-DINITRO-2-METHYLPHENOL	UG/L	5.4	U	
4-BROMOPHENYL PHENYL ETH	UG/L	1.1	U	
4-CHLORO-3-METHYLPHENOL	UG/L	1.1	U	
4-CHLOROANILINE	UG/L	1.1	U	
4-CHLOROPHENYL PHENYL ETH	UG/L	1.1	U	
4-METHYLPHENOL	UG/L	1.1	Ū	
4-NITROANILINE	UG/L	5.4	U	
4-NITROPHENOL	UG/L	5.4	U	
ACENAPHTHENE :	UG/L	0.22	U	
ACENAPHTHYLENE	UG/L	0.22	U	
ACETOPHENONE	UG/L	1.1	U	
ANTHRACENE	UG/L	0.22	U	
ATRAZINE	UG/L	1.1	U	
BENZALDEHYDE	UG/L	1.1	U	-
BENZO(A)ANTHRACENE	UG/L	0.22	U	
BENZO(A)PYRENE	UG/L	0.22	U	

SDG: C7K020216 MEDIA: WATER DATA FRACTION: OS

nsample samp_date

FMC 16DL

10/31/2007 C7K020216007

lab_id qc_type

NM

Pct_Solids
DUP_OF:

nsample samp_date lab_id FMC 18DL 10/31/2007 C7K020216008

NM

40

Pct_Solids DUP_OF:

qc_type

nsample samp_date lab_id

FMC 18DL 10/31/2007 C7K020216008

NM

Pct_Solids DUP_OF:

qc_type

Parameter	units	Result	Val	Qual
			Qual	Code
BENZO(B)FLUORANTHENE	UG/L	0.22	U	
BENZO(G,H,I)PERYLENE	UG/L	0.22	Ü	
BENZO(K)FLUORANTHENE	UG/L	0.22	U	
BIS(2-CHLOROETHOXY)METHAN	UG/L	1.1	U	·
BIS(2-CHLOROETHYL)ETHER	UG/L	0.22	U	
BIS(2-ETHYLHEXYL)PHTHALATE	UG/L	0.16	J	F
BUTYL BENZYL PHTHALATE	UG/L	1.1	U	
CAPROLACTAM	UG/L	1.1	U	
CARBAZOLE	UG/L	0.22	U	
CHRYSENE	UG/L	0.22	U	
DIBENZO(A,H)ANTHRACENE	UG/L	0.22	U	
DIBENZOFURAN	UG/L	1.1	Ū	
DIETHYL PHTHALATE	UG/L	1.1	U	
DIMETHYL PHTHALATE	UG/L	1.1	U	
DI-N-BUTYL PHTHALATE	UG/L	1.1	U	
DI-N-OCTYL PHTHALATE	UG/L	1.1	U	
FLUORANTHENE	UG/L	0.22	U	
FLUORENE	UG/L	0.22	U	
HEXACHLOROBENZENE	UG/L	0.22	U	
HEXACHLOROBUTADIENE	UG/L	0.22	U	
HEXACHLOROCYCLOPENTADIE	UG/L	1.1	U	-
HEXACHLOROETHANE	UG/L	1.1	U	
INDENO(1,2,3-CD)PYRENE	UG/L	0.22	U	
SOPHORONE	UG/L	1.1	U	
NAPHTHALENE	UG/L	0.22	U	
NITROBENZENE	UG/L	0.22	U	
N-NITROSO-DI-N-PROPYLAMINE	UG/L	0.22	U	
V-NITROSODIPHENYLAMINE	UG/L	0.22	U	
PENTACHLOROPHENOL	UG/L	1.1	U	
PHENANTHRENE	UG/L	0.22	U	
PHENOL	UG/L	0.22	U	
PYRENE	UG/L	0.22	Ü	

	Parameter	units	Result	Val Qual	Qual Code
1	1,1-BIPHENYL	UG/L	1.1	U	
1	2,2'-OXYBIS(1-CHLOROPROPAN	UG/L	0.22	U	
	2,4,5-TRICHLOROPHENOL	UG/L	1.1	U	
1	2,4,6-TRICHLOROPHENOL	UG/L	1.1	U	
1	2,4-DICHLOROPHENOL	UG/L	0.22	U	
	2,4-DIMETHYLPHENOL	UG/L	1.1	U	
	2,4-DINITROPHENOL	UG/L	5.5	U	
	2,4-DINITROTOLUENE	UG/L	1.1	U	
	2,6-DINITROTOLUENE	UG/L	1.1	U	
	2-CHLORONAPHTHALENE	UG/L	0.22	U	
	2-CHLOROPHENOL	UG/L	1.1	U	
	2-METHYLNAPHTHALENE	UG/L	0.22	U	
	2-METHYLPHENOL	UG/L	1.1	U	
	2-NITROANILINE	UG/L	5.5	U	
	2-NITROPHENOL	UG/L	1.1	U	
	3,3'-DICHLOROBENZIDINE	UG/L	1.1	U	
	3-NITROANILINE	UG/L	5.5	U	
	4,6-DINITRO-2-METHYLPHENOL	UG/L	5.5	U	
	4-BROMOPHENYL PHENYL ETH	UG/L	1.1	U	
	4-CHLORO-3-METHYLPHENOL	UG/L	1.1	U	
	4-CHLOROANILINE	UG/L	1.1	U	
	4-CHLOROPHENYL PHENYL ETH	UG/L	1.1	U	
	4-METHYLPHENOL	UG/L	1.1	U	
	4-NITROANILINE	UG/L	5.5	U	
	4-NITROPHENOL	UG/L	5.5	U	
	ACENAPHTHENE	UG/L	0.22	U	
	ACENAPHTHYLENE	UG/L	0.22	U	
	ACETOPHENONE	UG/L	1.1	U	
	ANTHRACENE	UG/L	0.22	U	
	ATRAZINE	UG/L	1.1	U	
	BENZALDEHYDE	UG/L	1.1	U	
	BENZO(A)ANTHRACENE	UG/L	0.22	U	
	BENZO(A)PYRENE	UG/L	0.22	U	

Parameter	units	Result	Val Qual	Qual Code
BENZO(B)FLUORANTHENE	UG/L	0.22	U	
BENZO(G,H,I)PERYLENE	UG/L	0.22	U	
BENZO(K)FLUORANTHENE	UG/L	0.22	U	
BIS(2-CHLOROETHOXY)METHAN	UG/L	1.1	U	
BIS(2-CHLOROETHYL)ETHER	UG/L	0.22	U	
BIS(2-ETHYLHEXYL)PHTHALATE	UG/L	1.1	U	
BUTYL BENZYL PHTHALATE	UG/L	1.1	U	
CAPROLACTAM	UG/L	1.1	U	
CARBAZOLE	UG/L	0.22	U	
CHRYSENE	UG/L	0.22	U	
DIBENZO(A,H)ANTHRACENE	UG/L	0.22	U	770
DIBENZOFURAN	UG/L	1.1	U	
DIETHYL PHTHALATE	UG/L	1.1	U	
DIMETHYL PHTHALATE	UG/L	1.1	U	
DI-N-BUTYL PHTHALATE	UG/L	1.1	U	
DI-N-OCTYL PHTHALATE	UG/L	1.1	· U	
FLUORANTHENE	UG/L	0.22	U	-
FLUORENE	UG/L	0.22	Ų	
HEXACHLOROBENZENE	UG/L	0.22	U	
HEXACHLOROBUTADIENE	UG/L	0.22	U	
HEXACHLOROCYCLOPENTADIE	UG/L	1.1	U	
HEXACHLOROETHANE	UG/L	1.1	U	
INDENO(1,2,3-CD)PYRENE	UG/L	0.22	U	
ISOPHORONE	UG/L	1.1	U	
NAPHTHALENE	UG/L	0.22	U	
NITROBENZENE	UG/L	0.22	U	
N-NITROSO-DI-N-PROPYLAMINE	UG/L	0.22	U	
N-NITROSODIPHENYLAMINE	UG/L	0.22	U	
PENTACHLOROPHENOL	UG/L	1.1	U	
PHENANTHRENE	UG/L	0.13	J	Р
PHENOL	UG/L	0.22	U	
PYRENE	UG/L	0.22	U	

SDG: C7K020216 MEDIA: WATER DATA FRACTION: OS

nsample samp_date FMC 20DL

10/31/2007

lab_id

C7K020216009

qc_type Pct_Solids

DUP_OF:

NM

nsample samp_date

lab_id

qc_type

FMC 20DL 10/31/2007

C7K020216009

NM

Pct_Solids DUP_OF:

nsample

samp_date lab_id

FMC 22DL 10/31/2007

C7K020216010

NM

Pct_Solids DUP_OF:

qc_type

		·		
Parameter	units	Result	Val Qual	Qual Code
1,1-BIPHENYL	UG/L	0.99	U	
2,2'-OXYBIS(1-CHLOROPROPAN	UG/L	0.2	U	
2,4,5-TRICHLOROPHENOL	UG/L	0.99	U	
2,4,6-TRICHLOROPHENOL	UG/L	0.99	U	
2,4-DICHLOROPHENOL	UG/L	0.2	U	
2,4-DIMETHYLPHENOL	UG/L	0.99	Ü	
2,4-DINITROPHENOL	UG/L	5	U	
2,4-DINITROTOLUENE	UG/L	0.99	U	
2,6-DINITROTOLUENE	UG/L	0.99	U	
2-CHLORONAPHTHALENE	UG/L	0.2	U	
2-CHLOROPHENOL	UG/L	0.99	U	
2-METHYLNAPHTHALENE	UG/L	0.2	U	
2-METHYLPHENOL	UG/L	0.99	Ü	
2-NITROANILINE	UG/L	5	U	
2-NITROPHENOL	UG/L	0.99	U	
3,3'-DICHLOROBENZIDINE	UG/L	0.99	U	
3-NITROANILINE	UG/L	5	U	-
4,6-DINITRO-2-METHYLPHENOL	UG/L	5	Ü	-
4-BROMOPHENYL PHENYL ETH	UG/L	0.99	U	
4-CHLORO-3-METHYLPHENOL	UG/L	0.99	Ü	
4-CHLOROANILINE	UG/L	0.99	U	
4-CHLOROPHENYL PHENYL ETH	UG/L	0.99	U	-
4-METHYLPHENOL	UG/L	0.99	U	•
4-NITROANILINE	UG/L	5	U	
4-NITROPHENOL	UG/L	5	Ü	
ACENAPHTHENE	UG/L	0.2	U	
ACENAPHTHYLENE	UG/L	0.2	U	
ACETOPHENONE	UG/L	0.99	U	
ANTHRACENE	UG/L	0.2	U	
ATRAZINE	UG/L	0.99	U	
BENZALDEHYDE	UG/L	0.99	U	
BENZO(A)ANTHRACENE	UG/L	0.2	U	
BENZO(A)PYRENE	UG/L	0.2	U	

Parameter	units	Result	Val Qual	Qual Code
BENZO(B)FLUORANTHENE	UG/L	0.2	U	
BENZO(G,H,I)PERYLENE	UG/L	0.2	U	
BENZO(K)FLUORANTHENE	UG/L	0.2	U	
BIS(2-CHLOROETHOXY)METHAN	UG/L	0.99	U	*
BIS(2-CHLOROETHYL)ETHER	UG/L	0.2	U	
BIS(2-ETHYLHEXYL)PHTHALATE	UG/L	0.99	U	
BUTYL BENZYL PHTHALATE	UG/L	0.99	U	
CAPROLACTAM	UG/L	0.99	U	
CARBAZOLE	UG/L	0.2	U	
CHRYSENE	UG/L	0.2	U	
DIBENZO(A,H)ANTHRACENE	UG/L	. 0.2	U	
DIBENZOFURAN	UG/L	0.99	U	
DIETHYL PHTHALATE	UG/L	0.99	U	
DIMETHYL PHTHALATE	UG/L	0.99	U	
DI-N-BUTYL PHTHALATE	UG/L	0.99	U	****
DI-N-OCTYL PHTHALATE	UG/L	0.99	U	
FLUORANTHENE	UG/L	0.2	U	~~
FLUORENE	UG/L	0.2	U	
HEXACHLOROBENZENE	UG/L	0.2	U	
HEXACHLOROBUTADIENE	UG/L	0.2	U	
HEXACHLOROCYCLOPENTADIE	UG/L	0.99	U	
HEXACHLOROETHANE	UG/L	0.99	U	
INDENO(1,2,3-CD)PYRENE	UG/L	0.2	U	
ISOPHORONE	UG/L	0.99	U	
NAPHTHALENE	UG/L	0.2	U	
NITROBENZENE	UG/L	0.2	U	
N-NITROSO-DI-N-PROPYLAMINE	UG/L	0.2	U	
N-NITROSODIPHENYLAMINE	UG/L	0.2	U	
PENTACHLOROPHENOL	UG/L	0.99	U	
PHENANTHRENE	UG/L	0.084	J	Р
PHENOL	UG/L	0.2	U	
PYRENE	UG/L	0.2	U	

1,1-BIPHENYL UG/L 0.96 U 2,2'-OXYBIS(1-CHLOROPROPAN) UG/L 0.19 U 2,4,5-TRICHLOROPHENOL UG/L 0.96 U 2,4,6-TRICHLOROPHENOL UG/L 0.96 U 2,4-DICHLOROPHENOL UG/L 0.19 U 2,4-DIMETHYLPHENOL UG/L 0.96 U 2,4-DINITROPHENOL UG/L 4.8 U 2,4-DINITROTOLUENE UG/L 0.96 U 2,6-DINITROTOLUENE UG/L 0.96 U 2-CHLORONAPHTHALENE UG/L 0.96 U 2-CHLOROPHENOL UG/L 0.96 U 2-METHYLNAPHTHALENE UG/L 0.96 U 2-METHYLPHENOL UG/L 0.96 U 2-NITROANILINE UG/L 0.96 U 3-NITROANILINE UG/L 0.96 U 3-NITROANILINE UG/L 4.8 U 4-BROMOPHENYL PHENYL ETH UG/L 0.96 U 4-CHLORO-3-METHYLPHENOL UG/L 0.96 U 4-CHLOROPHENYL PHENYL ETH	Parameter	units	Result	Val	Qual
2,2'-OXYBIS(1-CHLOROPROPAN UG/L 0.19 U 2,4,5-TRICHLOROPHENOL UG/L 0.96 U 2,4,6-TRICHLOROPHENOL UG/L 0.96 U 2,4-DICHLOROPHENOL UG/L 0.19 U 2,4-DIMETHYLPHENOL UG/L 0.96 U 2,4-DINITROPHENOL UG/L 0.96 U 2,4-DINITROPHENOL UG/L 0.96 U 2,4-DINITROTOLUENE UG/L 0.96 U 2,6-DINITROTOLUENE UG/L 0.96 U 2-CHLORONAPHTHALENE UG/L 0.19 U 2-CHLOROPHENOL UG/L 0.96 U 2-METHYLPHENOL UG/L 0.19 U 2-METHYLPHENOL UG/L 0.96 U 2-NITROANILINE UG/L 0.96 U 3,3'-DICHLOROBENZIDINE UG/L 0.96 U 3,3'-DICHLOROBENZIDINE UG/L 0.96 U 4.8 U 4,6-DINITRO-2-METHYLPHENOL UG/L 4.8 U 4,6-DINITRO-2-METHYLPHENOL UG/L 4.8 U 4-BROMOPHENYL PHENYL ETH UG/L 0.96 U 4-CHLORO-3-METHYLPHENOL UG/L 0.96 U 4-CHLORO-3-METHYLPHENOL UG/L 0.96 U 4-CHLOROPHENYL PHENYL ETH UG/L 0.96 U 4-CHLOROPHENYL PHENYL ETH UG/L 0.96 U 4-CHLOROPHENYL PHENYL ETH UG/L 0.96 U 4-CHLOROPHENYL PHENYL ETH UG/L 0.96 U 4-CHLOROPHENYL PHENYL ETH UG/L 0.96 U 4-CHLOROPHENYL PHENYL ETH UG/L 0.96 U 4-CHLOROPHENYL PHENYL ETH UG/L 0.96 U 4-CHLOROPHENYL PHENYL ETH UG/L 0.96 U 4-CHLOROPHENYL PHENYL ETH UG/L 0.96 U 4-CHLOROPHENYL PHENYL ETH UG/L 0.96 U 4-CHLOROPHENYL PHENYL ETH UG/L 0.96 U 4-CHLOROPHENYL PHENYL ETH UG/L 0.96 U 4-METHYLPHENOL UG/L 4.8 U	·			Qual	Code
2,4,5-TRICHLOROPHENOL UG/L 0.96 U 2,4,6-TRICHLOROPHENOL UG/L 0.96 U 2,4-DICHLOROPHENOL UG/L 0.19 U 2,4-DINITROPHENOL UG/L 0.96 U 2,4-DINITROPHENOL UG/L 0.96 U 2,4-DINITROTOLUENE UG/L 0.96 U 2,6-DINITROTOLUENE UG/L 0.96 U 2-CHLORONAPHTHALENE UG/L 0.96 U 2-CHLOROPHENOL UG/L 0.96 U 2-METHYLNAPHTHALENE UG/L 0.96 U 2-METHYLPHENOL UG/L 0.96 U 2-NITROANILINE UG/L 0.96 U 3,3'-DICHLOROBENZIDINE UG/L 0.96 U 3-NITROANILINE UG/L 4.8 U 4,6-DINITRO-2-METHYLPHENOL UG/L 4.8 U 4-BROMOPHENYL PHENYL ETH UG/L 0.96 U 4-CHLORO-3-METHYLPHENOL UG/L 0.96 U 4-CHLOROPHENYL PHENYL ETH UG/L 0.96 U 4-CHLOROPHENYL PH	1,1-BIPHENYL	UG/L	0.96	Ū	
2,4,6-TRICHLOROPHENOL UG/L 0.96 U 2,4-DICHLOROPHENOL UG/L 0.19 U 2,4-DIMETHYLPHENOL UG/L 0.96 U 2,4-DINITROPHENOL UG/L 4.8 U 2,4-DINITROTOLUENE UG/L 0.96 U 2,6-DINITROTOLUENE UG/L 0.96 U 2-CHLORONAPHTHALENE UG/L 0.19 U 2-CHLOROPHENOL UG/L 0.96 U 2-METHYLNAPHTHALENE UG/L 0.96 U 2-METHYLPHENOL UG/L 0.96 U 2-NITROANILINE UG/L 0.96 U 3,3'-DICHLOROBENZIDINE UG/L 0.96 U 3,-NITROANILINE UG/L 4.8 U 4,6-DINITRO-2-METHYLPHENOL UG/L 4.8 U 4-BROMOPHENYL PHENYL ETH UG/L 0.96 U 4-CHLORO-3-METHYLPHENOL UG/L 0.96 U 4-CHLOROPHENYL PHENYL ETH UG/L 0.96 U 4-CHLOROPHENYL PHENYL ETH UG/L 0.96 U 4-METHYLPHEN	2,2'-OXYBIS(1-CHLOROPROPAN	UG/L	0.19	U	
2,4-DICHLOROPHENOL UG/L 0.19 U 2,4-DIMETHYLPHENOL UG/L 0.96 U 2,4-DINITROPHENOL UG/L 4.8 U 2,4-DINITROTOLUENE UG/L 0.96 U 2,6-DINITROTOLUENE UG/L 0.96 U 2,6-DINITROTOLUENE UG/L 0.96 U 2-CHLORONAPHTHALENE UG/L 0.96 U 2-CHLOROPHENOL UG/L 0.96 U 2-METHYLPHENOL UG/L 0.96 U 2-NITROANILINE UG/L 4.8 U 2-NITROPHENOL UG/L 0.96 U 3,3'-DICHLOROBENZIDINE UG/L 0.96 U 3-NITROANILINE UG/L 4.8 U 4,6-DINITRO-2-METHYLPHENOL UG/L 4.8 U 4-BROMOPHENYL PHENYL ETH UG/L 0.96 U 4-CHLORO-3-METHYLPHENOL UG/L 0.96 U 4-CHLOROPHENYL PHENYL ETH UG/L 0.96 U 4-CHLOROPHENYL PHENYL ETH UG/L 0.96 U 4-METHYLPHENOL	2,4,5-TRICHLOROPHENOL	UG/L	0.96	U	
2,4-DIMETHYLPHENOL UG/L 0.96 U 2,4-DINITROPHENOL UG/L 4.8 U 2,4-DINITROTOLUENE UG/L 0.96 U 2,6-DINITROTOLUENE UG/L 0.96 U 2-CHLORONAPHTHALENE UG/L 0.19 U 2-CHLOROPHENOL UG/L 0.96 U 2-METHYLNAPHTHALENE UG/L 0.96 U 2-METHYLPHENOL UG/L 0.96 U 2-NITROANILINE UG/L 4.8 U 2-NITROPHENOL UG/L 0.96 U 3-NITROANILINE UG/L 0.96 U 4-6-DINITRO-2-METHYLPHENOL UG/L 4.8 U 4-BROMOPHENYL PHENYL ETH UG/L 0.96 U 4-CHLORO-3-METHYLPHENOL UG/L 0.96 U 4-CHLOROANILINE UG/L 0.96 U 4-CHLOROPHENYL PHENYL ETH UG/L 0.96 U 4-METHYLPHENOL UG/L 0.96 U 4-METHYLPHENOL UG/L 0.96 U 4-METHYLPHENOL UG/L	2,4,6-TRICHLOROPHENOL	UG/L	0.96	U	
2,4-DINITROPHENOL UG/L 4.8 U 2,4-DINITROTOLUENE UG/L 0.96 U 2,6-DINITROTOLUENE UG/L 0.96 U 2-CHLORONAPHTHALENE UG/L 0.19 U 2-CHLOROPHENOL UG/L 0.96 U 2-METHYLNAPHTHALENE UG/L 0.96 U 2-METHYLPHENOL UG/L 0.96 U 2-MITROANILINE UG/L 4.8 U 2-NITROPHENOL UG/L 0.96 U 3,3'-DICHLOROBENZIDINE UG/L 0.96 U 3-NITROANILINE UG/L 4.8 U 4,6-DINITRO-2-METHYLPHENOL UG/L 4.8 U 4-BROMOPHENYL PHENYL ETH UG/L 0.96 U 4-CHLORO-3-METHYLPHENOL UG/L 0.96 U 4-CHLOROPHENYL PHENYL ETH UG/L 0.96 U 4-CHLOROPHENYL PHENYL ETH UG/L 0.96 U 4-METHYLPHENOL UG/L 0.96 U 4-METHYLPHENOL UG/L 4.8 U	2,4-DICHLOROPHENOL	UG/L	0.19	U	
2,4-DINITROTOLUENE	2,4-DIMETHYLPHENOL	UG/L	0.96	U	
2,6-DINITROTOLUENE UG/L 0.96 U 2-CHLORONAPHTHALENE UG/L 0.19 U 2-CHLOROPHENOL UG/L 0.96 U 2-METHYLNAPHTHALENE UG/L 0.19 U 2-METHYLPHENOL UG/L 0.96 U 2-NITROANILINE UG/L 4.8 U 2-NITROPHENOL UG/L 0.96 U 3,3'-DICHLOROBENZIDINE UG/L 0.96 U 3-NITROANILINE UG/L 4.8 U 4,6-DINITRO-2-METHYLPHENOL UG/L 4.8 U 4-BROMOPHENYL PHENYL ETH UG/L 0.96 U 4-CHLORO-3-METHYLPHENOL UG/L 0.96 U 4-CHLOROANILINE UG/L 0.96 U 4-CHLOROPHENYL PHENYL ETH UG/L 0.96 U 4-CHLOROPHENYL PHENYL ETH UG/L 0.96 U 4-METHYLPHENOL UG/L 0.96 U 4-NITROANILINE UG/L 4.8 U	2,4-DINITROPHENOL	UG/L	4.8	U	
2-CHLORONAPHTHALENE UG/L 0.19 U 2-CHLOROPHENOL UG/L 0.96 U 2-METHYLNAPHTHALENE UG/L 0.19 U 2-METHYLPHENOL UG/L 0.96 U 2-NITROANILINE UG/L 4.8 U 2-NITROPHENOL UG/L 0.96 U 3,3'-DICHLOROBENZIDINE UG/L 0.96 U 3-NITROANILINE UG/L 4.8 U 4,6-DINITRO-2-METHYLPHENOL UG/L 4.8 U 4-BROMOPHENYL PHENYL ETH UG/L 0.96 U 4-CHLORO-3-METHYLPHENOL UG/L 0.96 U 4-CHLOROANILINE UG/L 0.96 U 4-CHLOROPHENYL PHENYL ETH UG/L 0.96 U 4-CHLOROPHENYL PHENYL ETH UG/L 0.96 U 4-CHLOROPHENYL PHENYL ETH UG/L 0.96 U 4-CHLOROPHENYL PHENYL ETH UG/L 0.96 U 4-METHYLPHENOL UG/L 0.96 U 4-METHYLPHENOL UG/L 0.96 U 4-METHYLPHENOL UG/L 0.96 U	2,4-DINITROTOLUENE	UG/L	0.96	U	
2-CHLOROPHENOL UG/L 0.96 U 2-METHYLNAPHTHALENE UG/L 0.19 U 2-METHYLPHENOL UG/L 0.96 U 2-NITROANILINE UG/L 4.8 U 2-NITROPHENOL UG/L 0.96 U 3,3'-DICHLOROBENZIDINE UG/L 0.96 U 3-NITROANILINE UG/L 4.8 U 4,6-DINITRO-2-METHYLPHENOL UG/L 4.8 U 4-BROMOPHENYL PHENYL ETH UG/L 0.96 U 4-CHLORO-3-METHYLPHENOL UG/L 0.96 U 4-CHLOROANILINE UG/L 0.96 U 4-CHLOROPHENYL PHENYL ETH UG/L 0.96 U 4-CHLOROPHENYL PHENYL ETH UG/L 0.96 U 4-CHLOROPHENYL PHENYL ETH UG/L 0.96 U 4-METHYLPHENOL UG/L 0.96 U 4-METHYLPHENOL UG/L 0.96 U 4-METHYLPHENOL UG/L 0.96 U	2,6-DINITROTOLUENE	UG/L	0.96	U	
2-METHYLNAPHTHALENE UG/L 0.19 U 2-METHYLPHENOL UG/L 0.96 U 2-NITROANILINE UG/L 4.8 U 2-NITROPHENOL UG/L 0.96 U 3,3'-DICHLOROBENZIDINE UG/L 0.96 U 3-NITROANILINE UG/L 4.8 U 4-6-DINITRO-2-METHYLPHENOL UG/L 4.8 U 4-BROMOPHENYL PHENYL ETH UG/L 0.96 U 4-CHLORO-3-METHYLPHENOL UG/L 0.96 U 4-CHLOROANILINE UG/L 0.96 U 4-CHLOROANILINE UG/L 0.96 U 4-CHLOROPHENYL PHENYL ETH UG/L 0.96 U 4-CHLOROPHENYL PHENYL ETH UG/L 0.96 U 4-METHYLPHENOL UG/L 0.96 U 4-METHYLPHENOL UG/L 0.96 U	2-CHLORONAPHTHALENE	UG/L	0.19	U	
2-METHYLPHENOL	2-CHLOROPHENOL	UG/L	0.96	U	
2-NITROANILINE	2-METHYLNAPHTHALENE	UG/L	0.19	U	
2-NITROPHENOL UG/L 0.96 U 3,3'-DICHLOROBENZIDINE UG/L 0.96 U 3-NITROANILINE UG/L 4.8 U 4,6-DINITRO-2-METHYLPHENOL UG/L 4.8 U 4-BROMOPHENYL PHENYL ETH UG/L 0.96 U 4-CHLORO-3-METHYLPHENOL UG/L 0.96 U 4-CHLOROANILINE UG/L 0.96 U 4-CHLOROPHENYL PHENYL ETH UG/L 0.96 U 4-CHLOROPHENYL PHENYL ETH UG/L 0.96 U 4-METHYLPHENOL UG/L 0.96 U 4-METHYLPHENOL UG/L 4.8 U	2-METHYLPHENOL	UG/L	0.96	U	
3,3'-DICHLOROBENZIDINE UG/L 0.96 U 3-NITROANILINE UG/L 4.8 U 4,6-DINITRO-2-METHYLPHENOL UG/L 4.8 U 4-BROMOPHENYL PHENYL ETH UG/L 0.96 U 4-CHLORO-3-METHYLPHENOL UG/L 0.96 U 4-CHLOROANILINE UG/L 0.96 U 4-CHLOROPHENYL PHENYL ETH UG/L 0.96 U 4-CHLOROPHENYL PHENYL ETH UG/L 0.96 U 4-METHYLPHENOL UG/L 0.96 U 4-NITROANILINE UG/L 4.8 U	2-NITROANILINE	UG/L	4.8	U	
3-NITROANILINE	2-NITROPHENOL	UG/L	0.96	U	*
4,6-DINITRO-2-METHYLPHENOL UG/L 4.8 U 4-BROMOPHENYL PHENYL ETH UG/L 0.96 U 4-CHLORO-3-METHYLPHENOL UG/L 0.96 U 4-CHLOROANILINE UG/L 0.96 U 4-CHLOROPHENYL PHENYL ETH UG/L 0.96 U 4-METHYLPHENOL UG/L 0.96 U 4-MITROANILINE UG/L 4.8 U	3,3'-DICHLOROBENZIDINE	UG/L	0.96	U	
4-BROMOPHENYL PHENYL ETH UG/L 0.96 U 4-CHLORO-3-METHYLPHENOL UG/L 0.96 U 4-CHLOROANILINE UG/L 0.96 U 4-CHLOROPHENYL PHENYL ETH UG/L 0.96 U 4-METHYLPHENOL UG/L 0.96 U 4-NITROANILINE UG/L 4.8 U	3-NITROANILINE	UG/L	4.8	U	
4-CHLORO-3-METHYLPHENOL UG/L 0.96 U 4-CHLOROANILINE UG/L 0.96 U 4-CHLOROPHENYL PHENYL ETH UG/L 0.96 U 4-METHYLPHENOL UG/L 0.96 U 4-NITROANILINE UG/L 4.8 U	4,6-DINITRO-2-METHYLPHENOL	UG/L	4.8	U	
4-CHLOROANILINE UG/L 0.96 U 4-CHLOROPHENYL PHENYL ETH UG/L 0.96 U 4-METHYLPHENOL UG/L 0.96 U 4-NITROANILINE UG/L 4.8 U	4-BROMOPHENYL PHENYL ETH	UG/L	0.96	U	
4-CHLOROPHENYL PHENYL ETH UG/L 0.96 U 4-METHYLPHENOL UG/L 0.96 U 4-NITROANILINE UG/L 4.8 U	4-CHLORO-3-METHYLPHENOL	UG/L	0.96	U	
4-METHYLPHENOL UG/L 0.96 U 4-NITROANILINE UG/L 4.8 U	4-CHLOROANILINE	UG/L	0.96	U	
4-NITROANILINE UG/L 4.8 U	4-CHLOROPHENYL PHENYL ETH	UG/L	0.96	U	· ·
0.0.2 1.0	4-METHYLPHENOL	UG/L	0.96	U	
4-NITROPHENOL LIG/L 4.8 LI	4-NITROANILINE	UG/L	4.8	U	
	4-NITROPHENOL	UG/L	4.8	U	
ACENAPHTHENE UG/L 0.19 U	ACENAPHTHENE	UG/L	0.19	U	
ACENAPHTHYLENE UG/L 0.19 U	ACENAPHTHYLENE	UG/L	0.19	U	
ACETOPHENONE UG/L 0.96 U	ACETOPHENONE	UG/L	0.96	U	
ANTHRACENE UG/L 0.19 U	ANTHRACENE	UG/L	0.19		
ATRAZINE UG/L 0.96 U	ATRAZINE	UG/L			
BENZALDEHYDE UG/L 0.96 U	BENZALDEHYDE	UG/L			
DENIZO(A) ANTI-LIDA CENTE	BENZO(A)ANTHRACENE				P
		UG/L			P

SDG: C7K020216 MEDIA: WATER DATA FRACTION: OS

nsample samp_date FMC 22DL

10/31/2007

lab_id

C7K020216010

qc_type

NM

Pct_Solids DUP_OF:

nsample samp_date FMC 24DL

10/30/2007 C7K020216001

NM

nsample samp_date lab_id

FMC 24DL 10/30/2007

C7K020216001

NM

qc_type Pct_Solids DUP_OF:

Pct_Solids

lab_id

qc_type

DUP_OF:

Parameter	units	Result	Val Qual	Qual Code
BENZO(B)FLUORANTHENE	UG/L	0.11	J	Р
BENZO(G,H,I)PERYLENE	UG/L	0.26		*****
BENZO(K)FLUORANTHENE	UG/L	0.2		
BIS(2-CHLOROETHOXY)METHAN	UG/L	0.96	U	
BIS(2-CHLOROETHYL)ETHER	UG/L	0.19	U	
BIS(2-ETHYLHEXYL)PHTHALATE	UG/L	0.96	U	
BUTYL BENZYL PHTHALATE	UG/L	0.96	U	
CAPROLACTAM	UG/L	0.96	U	
CARBAZOLE	UG/L	0.19	U	
CHRYSENE	UG/L	0.16	J	Р
DIBENZO(A,H)ANTHRACENE	UG/L	0.27	Ť	u.s
DIBENZOFURAN	UG/L	0.96	U	
DIETHYL PHTHALATE	UG/L	0.96	U	
DIMETHYL PHTHALATE	UG/L	0.96	U	
DI-N-BUTYL PHTHALATE	UG/L	0.96	U	
DI-N-OCTYL PHTHALATE	UG/L	0.96	U	
FLUORANTHENE	UG/L	0.19	Ū	***
FLUORENE	UG/L	0.19	U	
HEXACHLOROBENZENE	UG/L	0.19	U	
HEXACHLOROBUTADIENE	UG/L	0.19	U	
HEXACHLOROCYCLOPENTADIE	UG/L	0.96	U	
HEXACHLOROETHANE	UG/L	0.96	U	
INDENO(1,2,3-CD)PYRENE	UG/L	0.22		,
ISOPHORONE	UG/L	0.96	U	
NAPHTHALENE	UG/L	0.19	U	
NITROBENZENE	UG/L	0.19	U	
N-NITROSO-DI-N-PROPYLAMINE	UG/L	0.19	U	
N-NITROSODIPHENYLAMINE	UG/L	0.19	U	
PENTACHLOROPHENOL	UG/L	0.96	U	
PHENANTHRENE	UG/L	0.19	U	
PHENOL	UG/L	0.19	U	
PYRENE	UG/L	0.19	U	

Parameter	units	Result	Val Qual	Qual Code
1,1-BIPHENYL	UG/L	1.2	Ú	
2,2'-OXYBIS(1-CHLOROPROPAN	UG/L	0.24	U	
2,4,5-TRICHLOROPHENOL	UG/L	1.2	U	
2,4,6-TRICHLOROPHENOL	UG/L	1.2	U	
2,4-DICHLOROPHENOL	UG/L	0.24	U	
2,4-DIMETHYLPHENOL	UG/L	1.2	U	
2,4-DINITROPHENOL	UG/L	6	Ū	
2,4-DINITROTOLUENE	UG/L	1.2	Ü	
2,6-DINITROTOLUENE	UG/L	1.2	U	
2-CHLORONAPHTHALENE	UG/L	0.24	U	
2-CHLOROPHENOL	UG/L	1.2	U	
2-METHYLNAPHTHALENE	UG/L	0.24	U	
2-METHYLPHENOL	UG/L	1.2	U	
2-NITROANILINE	UG/L	6	U	
2-NITROPHENOL	UG/L	1.2	U	
3,3'-DICHLOROBENZIDINE	UG/L	1.2	U	
3-NITROANILINE	UG/L	6	Ü	
4,6-DINITRO-2-METHYLPHENOL	UG/L	6	U	
4-BROMOPHENYL PHENYL ETH	UG/L	1.2	U	
4-CHLORO-3-METHYLPHENOL	UG/L	1.2	U	
4-CHLOROANILINE	UG/L	1.2	U	
4-CHLOROPHENYL PHENYL ETH	UG/L	1.2	Ų	
4-METHYLPHENOL	UG/L	1.2	U	
4-NITROANILINE	UG/L	6	Ū	
4-NITROPHENOL	UG/L	6	U	
ACENAPHTHENE	UG/L	0.24	U	
ACENAPHTHYLENE	UG/L	0.24	U	
ACETOPHENONE	UG/L	1.2	U	
ANTHRACENE	UG/L	0.24	U	
ATRAZINE	UG/L	1.2	U	
BENZALDEHYDE	UG/L.	1.2	U	
BENZO(A)ANTHRACENE	UG/L	0.24	U	
BENZO(A)PYRENE	UG/L	0.24	U	

Parameter	units	Result	Val Qual	Qual Code
BENZO(B)FLUORANTHENE	UG/L	0.24	U	
BENZO(G,H,I)PERYLENE	UG/L	0.24	U	
BENZO(K)FLUORANTHENE	UG/L	0.24	U	
BIS(2-CHLOROETHOXY)METHAN	UG/L	1.2	U	
BIS(2-CHLOROETHYL)ETHER	UG/L	0.24	U	
BIS(2-ETHYLHEXYL)PHTHALATE	UG/L	0.5	J	Р
BUTYL BENZYL PHTHALATE	UG/L	0.37	J	Р
CAPROLACTAM	UG/L	1.2	U	
CARBAZOLE	UG/L	0.24	U	
CHRYSENE	UG/L	0.24	U	
DIBENZO(A,H)ANTHRACENE	UG/L	0.24	U	
DIBENZOFURAN	UG/L	1.2	U	
DIETHYL PHTHALATE	UG/L	1.2	U	
DIMETHYL PHTHALATE	UG/L	1.2	U	
DI-N-BUTYL PHTHALATE	UG/L	1.2	U	
DI-N-OCTYL PHTHALATE	UG/L	1.2	. U	,
FLUORANTHENE	UG/L	0.24	Ũ	-
FLUORENE	UG/L	0.24	U	
HEXACHLOROBENZENE	UG/L	0.24	U	
HEXACHLOROBUTADIENE	UG/L	0.24	U	
HEXACHLOROCYCLOPENTADIE	UG/L	1.2	U	
HEXACHLOROETHANE	UG/L	1.2	U	
NDENO(1,2,3-CD)PYRENE	UG/L	0.24	U	
SOPHORONE	UG/L	1.2	U	
NAPHTHALENE	UG/L	0.24	U	
NITROBENZENE	UG/L	0.24	Ú	
N-NITROSO-DI-N-PROPYLAMINE	UG/L	0.24	U	
N-NITROSODIPHENYLAMINE	UG/L	0.24	U	
PENTACHLOROPHENOL	UG/L	1.2	U	
PHENANTHRENE	UG/L	0.24	Ű	
PHENOL	UG/L	0.24	U	
PYRENE	UG/L	0.24	U	

SDG: C7K020216 MEDIA: WATER DATA FRACTION: OS

nsample

FMC 25DL

11/1/2007

samp_date lab_id C7K020216014

qc_type

NM

samp_date lab_id

FMC 25DL 11/1/2007

NM

C7K020216014

qc_type Pct_Solids DUP_OF:

nsample

nsample

samp_date lab_id

FMC 26DL

11/1/2007 C7K020216015

NM

qc_type Pct_Solids DUP_OF:

Parameter	units	Result	Val Qual	Qual Code
1,1-BIPHENYL	UG/L	0.96	U	
2,2'-OXYBIS(1-CHLOROPROPAN	UG/L	0.19	U	
2,4,5-TRICHLOROPHENOL	UG/L	0.96	U	
2,4,6-TRICHLOROPHENOL	UG/L	0.96	U	
2,4-DICHLOROPHENOL	UG/L	0.19	,U	
2,4-DIMETHYLPHENOL	UG/L	0.96	U	
2,4-DINITROPHENOL	UG/L	4.8	٠U	
2,4-DINITROTOLUENE	UG/L	0.96	U	
2,6-DINITROTOLUENE	UG/L	0.96	U	
2-CHLORONAPHTHALENE	UG/L	0.19	U	
2-CHLOROPHENOL	UG/L	0.96	U	
2-METHYLNAPHTHALENE	UG/L	0.19	U	
2-METHYLPHENOL	UG/L	0.96	U	
2-NITROANILINE	UG/L	4.8	U	
2-NITROPHENOL	UG/L	0.96	U	
3,3'-DICHLOROBENZIDINE	UG/L	0.96	U	
3-NITROANILINE	UG/L	4.8	U	
4,6-DINITRO-2-METHYLPHENOL	UG/L	4.8	U	
4-BROMOPHENYL PHENYL ETH	UG/L	0.96	U	
4-CHLORO-3-METHYLPHENOL	UG/L	0.96	U	
4-CHLOROANILINE	UG/L	0.96	U	
4-CHLOROPHENYL PHENYL ETH	UG/L	0.96	U	
4-METHYLPHENOL	UG/L	0.96	U	
4-NITROANILINE	UG/L	4.8	U	
4-NITROPHENOL	UG/L	4.8	U	
ACENAPHTHENE	UG/L	0.19	U	
ACENAPHTHYLENE	UG/L	0.19	U	
ACETOPHENONE	UG/L	0.96	U	
ANTHRACENE	UG/L	0.19	IJ	
ATRAZINE	UG/L	0.96	U	
BENZALDEHYDE	UG/L	0.96	U	
BENZO(A)ANTHRACENE	UG/L	0.19	U	
BENZO(A)PYRENE	UG/L	0.19	Ü	

Parameter	units	Result	Val Qual	Qual Code
BENZO(B)FLUORANTHENE	UG/L	0.19	U	
BENZO(G,H,I)PERYLENE	UG/L	0.19	U	
BENZO(K)FLUORANTHENE	UG/L	0.19	U	
BIS(2-CHLOROETHOXY)METHAN	UG/L	0.96	U	
BIS(2-CHLOROETHYL)ETHER	UG/L	0.19	U	
BIS(2-ETHYLHEXYL)PHTHALATE	UG/L	0.96	U	
BUTYL BENZYL PHTHALATE	UG/L	0.15	J	Р
CAPROLACTAM	UG/L	0.96	U	
CARBAZOLE	UG/L	0.19	U	
CHRYSENE	UG/L	0.19	U	
DIBENZO(A,H)ANTHRACENE	UG/L	0.19	U	
DIBENZOFURAN	UG/L	0.96	U	
DIETHYL PHTHALATE	UG/L	0.38	· J	Р
DIMETHYL PHTHALATE	UG/L	0.96	U	
DI-N-BUTYL PHTHALATE	UG/L	0.96	U	
DI-N-OCTYL PHTHALATE	UG/L	0.96	U	
FLUORANTHENE	UG/L	0.19	U	
FLUORENE	UG/L	0.19	U	
HEXACHLOROBENZENE	UG/L	0.19	U	
HEXACHLOROBUTADIENE	UG/L	0.19	U	
HEXACHLOROCYCLOPENTADIE	UG/L	0.96	U	
HEXACHLOROETHANE	UG/L	0.96	U	
INDENO(1,2,3-CD)PYRENE	UG/L	0.19	U	
ISOPHORONE	UG/L	0.96	U	
NAPHTHALENE	UG/L	0.19	U	
NITROBENZENE	UG/L	0.19	U	
N-NITROSO-DI-N-PROPYLAMINE	UG/L	0.19	U	
N-NITROSODIPHENYLAMINE	UG/L	0.19	U	
PENTACHLOROPHENOL	UG/L	0.96	U	
PHENANTHRENE	UG/L	0.078	J	Р
PHENOL	UG/L	0.19	U	
PYRENE	UG/L	0.19	U	

Parameter	units	Result	Val	Qual
			Qual	Code
1,1-BIPHENYL	UG/L	0.96	U	
2,2'-OXYBIS(1-CHLOROPROPAN	UG/L	0.19	U	
2,4,5-TRICHLOROPHENOL	UG/L	0.96	U	
2,4,6-TRICHLOROPHENOL	UG/L	0.96	U	
2,4-DICHLOROPHENOL	UG/L	0.19	U	
2,4-DIMETHYLPHENOL	UG/L	0.96	U	
2,4-DINITROPHENOL	UG/L	4.8	U	
2,4-DINITROTOLUENE	UG/L	0.96	U	
2,6-DINITROTOLUENE	UG/L	0.96	U	
2-CHLORONAPHTHALENE	UG/L	0.19	U	
2-CHLOROPHENOL	UG/L	0.96	Ü	
2-METHYLNAPHTHALENE	UG/L	0.19	U	
2-METHYLPHENOL	UG/L	0.96	U	
2-NITROANILINE	UG/L	4.8	U	
2-NITROPHENOL	UG/L	0.96	U	
3,3'-DICHLOROBENZIDINE	UG/L	0.96	U	
3-NITROANILINE	UG/L	4.8	U	
4,6-DINITRO-2-METHYLPHENOL	UG/L	4.8	U	
4-BROMOPHENYL PHENYL ETH	UG/L	0.96	U	
4-CHLORO-3-METHYLPHENOL	UG/L	0.96	U	
4-CHLOROANILINE	UG/L	0.96	U	
4-CHLOROPHENYL PHENYL ETH	UG/L	0.96	U	
4-METHYLPHENOL	UG/L	0.96	U	
4-NITROANILINE	UG/L	4.8	U	
4-NITROPHENOL	UG/L	4.8	U	
ACENAPHTHENE	UG/L	0.19	U	
ACENAPHTHYLENE	UG/L	0.19	U	
ACETOPHENONE	UG/L	0.96	U	
ANTHRACENE	UG/L	0.19	U	
ATRAZINE	UG/L	0.96	U	
BENZALDEHYDE	UG/L	0.96	U	
BENZO(A)ANTHRACENE	UG/L	0.19	Ū	
BENZO(A)PYRENE	UG/L	0.19	U	
• / • • • • • • •	_			

SDG: C7K020216 MEDIA: WATER DATA FRACTION: OS

nsample samp_date FMC 26DL

11/1/2007 C7K020216015

lab_id qc_type

NM

Pct_Solids DUP_OF:

nsample samp_date

lab_id

qc_type

DUP_OF:

FMC 3DL

10/31/2007

C7K020216011

Pct_Solids

NM

nsample samp_date

lab_id

FMC 3DL

10/31/2007

C7K020216011

NM

qc_type Pct_Solids

DUP_OF:

				···
Parameter	units	Result	Val Qual	Qual Code
BENZO(B)FLUORANTHENE	UG/L	0.19	U	
BENZO(G,H,I)PERYLENE	UG/L	0.19	U	
BENZO(K)FLUORANTHENE	UG/L	0.19	Ũ	
BIS(2-CHLOROETHOXY)METHAN	UG/L	0.96	U	
BIS(2-CHLOROETHYL)ETHER	UG/L	0.19	Ū	
BIS(2-ETHYLHEXYL)PHTHALATE	UG/L	0.96	U	
BUTYL BENZYL PHTHALATE	UG/L	0.96	U	
CAPROLACTAM	UG/L	0.96	U	
CARBAZOLE	UG/L	0.19	Ū	
CHRYSENE	UG/L	0.19	U	
DIBENZO(A,H)ANTHRACENE	UG/L	0.19	U	,
DIBENZOFURAN	UG/L	0.96	U	
DIETHYL PHTHALATE	UG/L	0.96	U	
DIMETHYL PHTHALATE	UG/L	0.96	U	
DI-N-BUTYL PHTHALATE	UG/L	0.96	U	***
DI-N-OCTYL PHTHALATE	UG/L	0.96	U	
FLUORANTHENE	UG/L	0.19	U	
FLUORENE	UG/L	0.19	U	
HEXACHLOROBENZENE	UG/L	0.19	U	
HEXACHLOROBUTADIENE	UG/L	0.19	U	
HEXACHLOROCYCLOPENTADIE	UG/L	0.96	U	
HEXACHLOROETHANE	UG/L	0.96	U	
INDENO(1,2,3-CD)PYRENE	UG/L	0.19	U	
ISOPHORONE	UG/L	0.96	U	
NAPHTHALENE	UG/L	0.19	U	
NITROBENZENE	UG/L	0.19	U	
N-NITROSO-DI-N-PROPYLAMINE	UG/L	0.19	Ü	
N-NITROSODIPHENYLAMINE	UG/L	0.19	U	
PENTACHLOROPHENOL	UG/L	0.96	U	•
PHENANTHRENE	UG/L	0.19	Ü	
PHENOL	UG/L	0.19	U	
PYRENE	UG/L	0.19	U	

Parameter	units	Result	Val Qual	Quai Code
1,1-BIPHENYL	UG/L	0.98	U	
2,2'-OXYBIS(1-CHLOROPROPAN	UG/L	0.2	U	
2,4,5-TRICHLOROPHENOL	UG/L	0.98	U	
2,4,6-TRICHLOROPHENOL	UG/L	0.98	U	-
2,4-DICHLOROPHENOL	UG/L	0.2	U	
2,4-DIMETHYLPHENOL	UG/L	0.98	U	
2,4-DINITROPHENOL	UG/L	4.9	U	
2,4-DINITROTOLUENE	UG/L	0.98	U	
2,6-DINITROTOLUENE	UG/L	0.98	U	
2-CHLORONAPHTHALENE .	UG/L	0.2	U	
2-CHLOROPHENOL	UG/L	0.98	U	
2-METHYLNAPHTHALENE	UG/L	0.2	U	
2-METHYLPHENOL	UG/L	0.98	U	
2-NITROANILINE	UG/L	4.9	U	
2-NITROPHENOL	UG/L	0.98	U	
3,3'-DICHLOROBENZIDINE	UG/L	0.98	U	
3-NITROANILINE	UG/L	4.9	U	
4,6-DINITRO-2-METHYLPHENOL	UG/L	4.9	U	
4-BROMOPHENYL PHENYL ETH	UG/L	0.98	U	
4-CHLORO-3-METHYLPHENOL	UG/L	0.98	U	
4-CHLOROANILINE	.UG/L	0.98	U	
4-CHLOROPHENYL PHENYL ETH	UG/L	0.98	U	
4-METHYLPHENOL	UG/L	0.98	U	
4-NITROANILINE	UG/L	4.9	U	
4-NITROPHENOL	UG/L	4.9	U	
ACENAPHTHENE	UG/L	0.2	U	
ACENAPHTHYLENE	UG/L	0.2	U	
ACETOPHENONE	UG/L	0.98	Ū	
ANTHRACENE	UG/L	0.2	U	
ATRAZINE	UG/L	0.98	U	
BENZALDEHYDE	UG/L	0.98	U	
BENZO(A)ANTHRACENE	UG/L	0.2	U	
BENZO(A)PYRENE	.UG/L	0.2	Ū	

Parameter	units	Result	Val Qual	Qual Code
BENZO(B)FLUORANTHENE	UG/L	0.2	U	
BENZO(G,H,I)PERYLENE	UG/L	0.2	U	
BENZO(K)FLUORANTHENE	UG/L	0.2	U	
BIS(2-CHLOROETHOXY)METHAN	UG/L	0.98	U	
BIS(2-CHLOROETHYL)ETHER	UG/L	0.2	U	
BIS(2-ETHYLHEXYL)PHTHALATE	UG/L	0.23	J	Р
BUTYL BENZYL PHTHALATE	UG/L	0.98	U	*****
CAPROLACTAM	UG/L	0.98	U	
CARBAZOLE	UG/L	0.2	U	
CHRYSENE	UG/L	0.2	U	
DIBENZO(A,H)ANTHRACENE	UG/L	0.2	U	
DIBENZOFURAN	UG/L	0.98	U	
DIETHYL PHTHALATE	UG/L	0.98	U	
DIMETHYL PHTHALATE	UG/L	0.98	U	
DI-N-BUTYL PHTHALATE	UG/L	0.98	U	
DI-N-OCTYL PHTHALATE	UG/L	0.98	U	-,-
FLUORANTHENE	UG/L	0.2	U	
FLUORENE	UG/L	0.2	U	
HEXACHLOROBENZENE	UG/L	0.2	U	
HEXACHLOROBUTADIENE	UG/L	0.2	U	
HEXACHLOROCYCLOPENTADIE	UG/L	0.98	U	
HEXACHLOROETHANE	UG/L	0.98	U	
INDENO(1,2,3-CD)PYRENE	UG/L	0.2	U	
ISOPHORONE	UG/L	0.98	U	
NAPHTHALENE	UG/L	0.2	U	
NITROBENZENE	UG/L	0.2	U	
N-NITROSO-DI-N-PROPYLAMINE	UG/L	0.2	U	
N-NITROSODIPHENYLAMINE	UG/L	0.2	U	
PENTACHLOROPHENOL	UG/L	0.98	U	
PHENANTHRENE	UG/L	0.069	J	Р
PHENOL	UG/L	0.2	U	
PYRENE	UG/L	0.2	U	
			,	

SDG: C7K020216 MEDIA: WATER DATA FRACTION: OS

nsample

FMC 5DL

samp_date lab_id 10/31/2007

qc_type

C7K020216012 NM

_type

Pct_Solids DUP_OF: nsample samp_date

lab_id

DUP_OF:

FMC 5DL 10/31/2007

10/31/2007 C7K020216012

qc_type Pct_Solids NM

020210012

nsample samp_date lab_id qc_type FMC 7DL

10/31/2007 C7K020216013

NM

F

Parameter	units	Result	Val Qual	Qual Code
1,1-BIPHENYL	UG/L	0.96	U	
2,2'-OXYBIS(1-CHLOROPROPAN	UG/L	0.19	U	
2,4,5-TRICHLOROPHENOL	UG/L	0.96	U	
2,4,6-TRICHLOROPHENOL	UG/L	0.96	U	
2,4-DICHLOROPHENOL	UG/L	0.19	U	
2,4-DIMETHYLPHENOL	UG/L	0.96	U	
2,4-DINITROPHENOL	UG/L	4.8	U	
2,4-DINITROTOLUENE	UG/L	0.96	U	
2,6-DINITROTOLUENE	UG/L	0.96	U	
2-CHLORONAPHTHALENE	UG/L	0.19	Ü	
2-CHLOROPHENOL	UG/L	0.96	U	
2-METHYLNAPHTHALENE	UG/L	0.19	U	
2-METHYLPHENOL	UG/L	0.96	U	
2-NITROANILINE	UG/L	4.8	U	
2-NITROPHENOL	UG/L	0.96	U	
3,3'-DICHLOROBENZIDINE	UG/L	0.96	U	
3-NITROANILINE	UG/L	4.8	U	
4,6-DINITRO-2-METHYLPHENOL	UG/L	4.8	U	
4-BROMOPHENYL PHENYL ETH	UG/L	0.96	Ü	
4-CHLORO-3-METHYLPHENOL	UG/L	0.96	U	
4-CHLOROANILINE	UG/L	0.96	U	
4-CHLOROPHENYL PHENYL ETH	UG/L	0.96	U	
4-METHYLPHENOL	UG/L	0.96	U	
4-NITROANILINE	UG/L	4.8	U	
4-NITROPHENOL	UG/L	4.8	U	
ACENAPHTHENE	UG/L	0.19	U	
ACENAPHTHYLENE	UG/L	0.19	U	
ACETOPHENONE	UG/L	0.96	U	
ANTHRACENE	UG/L	0.19	U	
ATRAZINE	UG/L	0.96	υ	
BENZALDEHYDE	UG/L	0.96	Ű	
BENZO(A)ANTHRACENE	UG/L	0.19	U	
BENZO(A)PYRENE	UG/L	0.19	U	

Parameter	units	Result	Val Qual	Qual Code
BENZO(B)FLUORANTHENE	UG/L	0.19	U	
BENZO(G,H,I)PERYLENE	UG/L	0.19	Ú	
BENZO(K)FLUORANTHENE	UG/L	0.19	U	T-10
BIS(2-CHLOROETHOXY)METHAN	UG/L	0.96	U	
BIS(2-CHLOROETHYL)ETHER	UG/L	0.19	U	
BIS(2-ETHYLHEXYL)PHTHALATE	UG/L	0.96	U	
BUTYL BENZYL PHTHALATE	UG/L	0.96	Ü	
CAPROLACTAM	UG/L	0.96	U	
CARBAZOLE	UG/L	0.19	U	
CHRYSENE	UG/L	0.19	U	
DIBENZO(A,H)ANTHRACENE	UG/L	0.19	, U	
DIBENZOFURAN	UG/L	0.96	U	
DIETHYL PHTHALATE	UG/L	0.96	U	
DIMETHYL PHTHALATE	UG/L	0.96	U	
DI-N-BUTYL PHTHALATE	UG/L	0.96	U	
DI-N-OCTYL PHTHALATE	UG/L	0.96	U	
FLUORANTHENE	UG/L	0.19	U	2331.
FLUORENE	UG/L	0.19	U	
HEXACHLOROBENZENE	UG/L	0.19	U	
HEXACHLOROBUTADIENE	UG/L	0.19	U	
HEXACHLOROCYCLOPENTADIE	UG/L	0.96	U	
HEXACHLOROETHANE	UG/L	0.96	Ú	
INDENO(1,2,3-CD)PYRENE	UG/L	0.19	U	
ISOPHORONE	UG/L	0.96	U	
NAPHTHALENE	UG/L	0.19	U	
NITROBENZENE	UG/L	0.19	U	
N-NITROSO-DI-N-PROPYLAMINE	UG/L	0.19	U	
N-NITROSODIPHENYLAMINE	UG/L	0.19	U	
PENTACHLOROPHENOL	UG/L	0.96	U	
PHENANTHRENE	UG/L	0.088	J	Р
PHENOL	UG/L	0.19	U	
PYRENE	UG/L	0.19	U	

1,1-BIPHENYL 2,2'-OXYBIS(1-CHLOROPROPAN UG/L 0.19 U 2,4,5-TRICHLOROPHENOL UG/L 0.97 U 2,4,6-TRICHLOROPHENOL UG/L 0.97 U 2,4-6-TRICHLOROPHENOL UG/L 0.97 U 2,4-DICHLOROPHENOL UG/L 0.19 U 2,4-DIMETHYLPHENOL UG/L 0.97 U 2,4-DINITROPHENOL UG/L 0.97 U 2,4-DINITROPHENOL UG/L 0.97 U 2,4-DINITROTOLUENE UG/L 0.97 U 2,6-DINITROTOLUENE UG/L 0.97 U 2-CHLORONAPHTHALENE UG/L 0.19 U 2-CHLOROPHENOL UG/L 0.97 U 2-METHYLNAPHTHALENE UG/L 0.19 U 2-METHYLPHENOL UG/L 0.97 U 2-NITROANILINE UG/L 0.97 U 3,3'-DICHLOROBENZIDINE UG/L 0.97 U 3,3'-DICHLOROBENZIDINE UG/L 0.97 U 4-CHLORO-3-METHYLPHENOL UG/L 4.8 U 4-BROMOPHENYL PHENYL ETH UG/L 0.97 U 4-CHLORO-3-METHYLPHENOL UG/L 0.97 U 4-CHLORO-3-METHYLPHENOL UG/L 0.97 U 4-CHLOROPHENYL PHENYL ETH UG/L 0.97 U 4-CHLOROPHENYL PHENYL ETH UG/L 0.97 U 4-CHLORO-3-METHYLPHENOL UG/L 0.97 U 4-CHLOROPHENYL PHENYL ETH UG/L 0.97 U 4-CHLOROPHENYL PHENYL ETH UG/L 0.97 U 4-CHLOROPHENYL PHENYL ETH UG/L 0.97 U 4-METHYLPHENOL UG/L 0.97 U 4-METHYLPHENOL UG/L 0.97 U 4-METHYLPHENOL UG/L 0.97 U 4-METHYLPHENOL UG/L 0.97 U 4-NITROPHENOL UG/L 0.97 U 4-NITROPHENOL UG/L 0.97 U 4-CENAPHTHENE UG/L 0.19 U ACENAPHTHYLENE UG/L 0.19 U ACENAPHTHYLENE UG/L 0.19 U ACENAPHTHYLENE UG/L 0.97 U ANTHRACENE UG/L 0.97 U BENZALDEHYDE UG/L 0.97 U BENZALDEHYDE	Parameter	units	Result	Val Qual	Qual Code
2,2'-OXYBIS(1-CHLOROPROPAN UG/L 0.19 U 2,4,5-TRICHLOROPHENOL UG/L 0.97 U 2,4,6-TRICHLOROPHENOL UG/L 0.97 U 2,4-DICHLOROPHENOL UG/L 0.19 U 2,4-DIMETHYLPHENOL UG/L 0.97 U 2,4-DINITROPHENOL UG/L 4.8 U 2,4-DINITROTOLUENE UG/L 0.97 U 2,4-DINITROTOLUENE UG/L 0.97 U 2,6-DINITROTOLUENE UG/L 0.97 U 2-CHLORONAPHTHALENE UG/L 0.97 U 2-CHLOROPHENOL UG/L 0.97 U 2-METHYLNAPHTHALENE UG/L 0.97 U 2-METHYLPHENOL UG/L 0.97 U 2-METHYLPHENOL UG/L 0.97 U 2-NITROANILINE UG/L 0.97 U 2-NITROPHENOL UG/L 0.97 U 3,3'-DICHLOROBENZIDINE UG/L 0.97 U 3,3'-DICHLOROBENZIDINE UG/L 0.97 U 4-BROMOPHENYL PHENYL ETH	4.4.5151.510.0				Code
2,4,5-TRICHLOROPHENOL UG/L 0.97 U 2,4,6-TRICHLOROPHENOL UG/L 0.97 U 2,4-DICHLOROPHENOL UG/L 0.19 U 2,4-DIMETHYLPHENOL UG/L 0.97 U 2,4-DINITROPHENOL UG/L 4.8 U 2,4-DINITROTOLUENE UG/L 0.97 U 2,6-DINITROTOLUENE UG/L 0.97 U 2-CHLORONAPHTHALENE UG/L 0.19 U 2-CHLOROPHENOL UG/L 0.97 U 2-METHYLNAPHTHALENE UG/L 0.97 U 2-METHYLPHENOL UG/L 0.97 U 2-METHYLPHENOL UG/L 0.97 U 2-NITROANILINE UG/L 0.97 U 3-NITROANILINE UG/L 0.97 U 3-NITROANILINE UG/L 0.97 U 4-BROMOPHENYL PHENYL ETH UG/L 4.8 U 4-BROMOPHENYL PHENYL ETH UG/L 0.97 U 4-CHLORO-3-METHYLPHENOL UG/L 0.97 U 4-CHLOROPHENYL PHENYL ETH					
2,4,6-TRICHLOROPHENOL UG/L 0.97 U 2,4-DICHLOROPHENOL UG/L 0.19 U 2,4-DIMETHYLPHENOL UG/L 0.97 U 2,4-DINITROPHENOL UG/L 4.8 U 2,4-DINITROTOLUENE UG/L 0.97 U 2,6-DINITROTOLUENE UG/L 0.97 U 2,6-DINITROTOLUENE UG/L 0.97 U 2-CHLORONAPHTHALENE UG/L 0.19 U 2-CHLOROPHENOL UG/L 0.97 U 2-METHYLNAPHTHALENE UG/L 0.97 U 2-METHYLPHENOL UG/L 0.97 U 2-METHYLPHENOL UG/L 0.97 U 2-METHYLPHENOL UG/L 0.97 U 2-METHYLPHENOL UG/L 0.97 U 3,3'-DICHLOROBENZIDINE UG/L 0.97 U 3,3'-DICHLOROBENZIDINE UG/L 0.97 U 4,6-DINITRO-2-METHYLPHENOL UG/L 4.8 U 4-BROMOPHENYL PHENYL ETH UG/L 0.97 U 4-CHLORO-3-METHYLPHENOL	-				
2,4-DICHLOROPHENOL UG/L 0.19 U 2,4-DIMETHYLPHENOL UG/L 0.97 U 2,4-DINITROPHENOL UG/L 4.8 U 2,4-DINITROTOLUENE UG/L 0.97 U 2,6-DINITROTOLUENE UG/L 0.97 U 2-CHLORONAPHTHALENE UG/L 0.19 U 2-CHLOROPHENOL UG/L 0.97 U 2-METHYLNAPHTHALENE UG/L 0.97 U 2-METHYLPHENOL UG/L 0.97 U 2-METHYLPHENOL UG/L 0.97 U 2-NITROANILINE UG/L 0.97 U 2-NITROPHENOL UG/L 0.97 U 3,3'-DICHLOROBENZIDINE UG/L 0.97 U 3,3'-DICHLOROBENZIDINE UG/L 0.97 U 4,6-DINITRO-2-METHYLPHENOL UG/L 4.8 U 4-BROMOPHENYL PHENYL ETH UG/L 0.97 U 4-CHLORO-3-METHYLPHENOL UG/L 0.97 U 4-CHLOROPHENYL PHENYL ETH UG/L 0.97 U 4-CHLOROPHENYL PHENYL E					
2,4-DIMETHYLPHENOL UG/L 0.97 U 2,4-DINITROPHENOL UG/L 4.8 U 2,4-DINITROTOLUENE UG/L 0.97 U 2,6-DINITROTOLUENE UG/L 0.97 U 2-CHLORONAPHTHALENE UG/L 0.19 U 2-CHLOROPHENOL UG/L 0.97 U 2-METHYLNAPHTHALENE UG/L 0.97 U 2-METHYLPHENOL UG/L 0.97 U 2-NITROANILINE UG/L 0.97 U 2-NITROPHENOL UG/L 0.97 U 3,3'-DICHLOROBENZIDINE UG/L 0.97 U 3,3'-DICHLOROBENZIDINE UG/L 0.97 U 4,6-DINITRO-2-METHYLPHENOL UG/L 4.8 U 4,6-DINITRO-2-METHYLPHENOL UG/L 4.8 U 4-BROMOPHENYL PHENYL ETH UG/L 0.97 U 4-CHLORO-3-METHYLPHENOL UG/L 0.97 U 4-CHLORO-3-METHYLPHENOL UG/L 0.97 U 4-CHLORO-3-METHYLPHENOL UG/L 0.97 U 4-METHYLP					
2,4-DINITROPHENOL UG/L 4.8 U 2,4-DINITROTOLUENE UG/L 0.97 U 2,6-DINITROTOLUENE UG/L 0.97 U 2-CHLORONAPHTHALENE UG/L 0.19 U 2-CHLOROPHENOL UG/L 0.97 U 2-METHYLNAPHTHALENE UG/L 0.19 U 2-METHYLPHENOL UG/L 0.97 U 2-NITROANILINE UG/L 4.8 U 2-NITROPHENOL UG/L 0.97 U 3,3'-DICHLOROBENZIDINE UG/L 0.97 U 3-NITROANILINE UG/L 0.97 U 4,6-DINITRO-2-METHYLPHENOL UG/L 4.8 U 4-BROMOPHENYL PHENYL ETH UG/L 0.97 U 4-CHLORO-3-METHYLPHENOL UG/L 0.97 U 4-CHLORO-3-METHYLPHENOL UG/L 0.97 U 4-CHLOROPHENYL PHENYL ETH UG/L 0.97 U 4-CHLORO-3-METHYLPHENOL UG/L 0.97 U 4-CHLOROPHENYL PHENYL ETH UG/L 0.97 U 4-METHYLPHE	· · · · · · · · · · · · · · · · · · ·		L		
2,4-DINITROTOLUENE UG/L 0.97 U 2,6-DINITROTOLUENE UG/L 0.97 U 2-CHLORONAPHTHALENE UG/L 0.19 U 2-CHLOROPHENOL UG/L 0.97 U 2-METHYLNAPHTHALENE UG/L 0.19 U 2-METHYLPHENOL UG/L 0.97 U 2-NITROANILINE UG/L 4.8 U 2-NITROPHENOL UG/L 0.97 U 3,3'-DICHLOROBENZIDINE UG/L 0.97 U 3-NITROANILINE UG/L 4.8 U 4,6-DINITRO-2-METHYLPHENOL UG/L 4.8 U 4-BROMOPHENYL PHENYL ETH UG/L 0.97 U 4-CHLORO-3-METHYLPHENOL UG/L 0.97 U 4-CHLORO-3-METHYLPHENOL UG/L 0.97 U 4-CHLORO-3-METHYLPHENOL UG/L 0.97 U 4-CHLORO-3-METHYLPHENOL UG/L 0.97 U 4-CHLORO-BENYL PHENYL ETH UG/L 0.97 U 4-CHLORO-BENYL PHENYL ETH UG/L 0.97 U 4-MIT				-	
2,6-DINITROTOLUENE UG/L 0.97 U 2-CHLORONAPHTHALENE UG/L 0.19 U 2-CHLOROPHENOL UG/L 0.97 U 2-METHYLNAPHTHALENE UG/L 0.19 U 2-METHYLPHENOL UG/L 0.97 U 2-MITROANILINE UG/L 4.8 U 2-NITROPHENOL UG/L 0.97 U 3,3'-DICHLOROBENZIDINE UG/L 0.97 U 3-NITROANILINE UG/L 4.8 U 4,6-DINITRO-2-METHYLPHENOL UG/L 4.8 U 4-BROMOPHENYL PHENYL ETH UG/L 0.97 U 4-CHLORO-3-METHYLPHENOL UG/L 0.97 U 4-CHLORO-3-METHYLPHENOL UG/L 0.97 U 4-CHLORO-BENYL PHENYL ETH UG/L 0.97 U 4-CHLORO-BENYL PHENYL ETH UG/L 0.97 U 4-CHLORO-BENYL PHENYL ETH UG/L 0.97 U 4-METHYLPHENOL UG/L 0.97 U 4-NITROANILINE UG/L 0.97 U 4-NITROPHENOL <td></td> <td></td> <td>4.8</td> <td></td> <td></td>			4.8		
2-CHLORONAPHTHALENE		UG/L	0.97	U	
2-CHLOROPHENOL 2-METHYLNAPHTHALENE UG/L 2-METHYLPHENOL UG/L 2-METHYLPHENOL UG/L 2-NITROANILINE UG/L 2-NITROPHENOL UG/L 3,3'-DICHLOROBENZIDINE UG/L 3-NITROANILINE UG/L 4.8 U 4,6-DINITRO-2-METHYLPHENOL UG/L 4-BROMOPHENYL PHENYL ETH UG/L 4-CHLORO-3-METHYLPHENOL UG/L 4-CHLOROANILINE UG/L 4-CHLOROPHENYL PHENYL ETH UG/L 4-CHLOROPHENYL PHENYL ETH UG/L 4-METHYLPHENOL UG/L 4-NITROANILINE UG/L 4-NITROANILINE UG/L 4-NITROPHENOL UG/L 4-RETHYLPHENOL UG/L	2,6-DINITROTOLUENE	UG/L	0.97	U	
2-METHYLNAPHTHALENE	2-CHLORONAPHTHALENE	UG/L	0.19	U	
2-METHYLPHENOL UG/L 0.97 U 2-NITROANILINE UG/L 4.8 U 2-NITROPHENOL UG/L 0.97 U 3,3'-DICHLOROBENZIDINE UG/L 0.97 U 3-NITROANILINE UG/L 4.8 U 4,6-DINITRO-2-METHYLPHENOL UG/L 4.8 U 4-BROMOPHENYL PHENYL ETH UG/L 0.97 U 4-CHLORO-3-METHYLPHENOL UG/L 0.97 U 4-CHLOROPHENYL PHENYL ETH UG/L 0.97 U 4-CHLOROPHENYL PHENYL ETH UG/L 0.97 U 4-METHYLPHENOL UG/L 0.97 U 4-NITROANILINE UG/L 0.97 U 4-NITROANILINE UG/L 4.8 U 4-NITROPHENOL UG/L 4.8 U ACENAPHTHENE UG/L 0.19 U ACENAPHTHENE UG/L 0.19 U ACETOPHENONE UG/L 0.97 U ANTHRACENE UG/L 0.19 U ATRAZINE UG/L 0.97 U BENZALDEHYDE UG/L 0.97 U BENZALDEHYDE UG/L 0.97 U BENZALDEHYDE UG/L 0.97 U	2-CHLOROPHENOL	UG/L	0.97	U	
2-NITROANILINE	2-METHYLNAPHTHALENE	UG/L	0.19	U	
2-NITROPHENOL	2-METHYLPHENOL	UG/L	0.97	U	
3,3'-DICHLOROBENZIDINE	2-NITROANILINE	UG/L	4.8	U	
3-NITROANILINE	2-NITROPHENOL	UG/L	0.97	U	
4,6-DINITRO-2-METHYLPHENOL UG/L 4.8 U 4-BROMOPHENYL PHENYL ETH UG/L 0.97 U 4-CHLORO-3-METHYLPHENOL UG/L 0.97 U 4-CHLOROPHENYL PHENYL ETH UG/L 0.97 U 4-CHLOROPHENYL PHENYL ETH UG/L 0.97 U 4-METHYLPHENOL UG/L 0.97 U 4-NITROANILINE UG/L 4.8 U 4-NITROPHENOL UG/L 4.8 U ACENAPHTHENE UG/L 0.19 U ACENAPHTHYLENE UG/L 0.19 U ACETOPHENONE UG/L 0.97 U ANTHRACENE UG/L 0.19 U ATRAZINE UG/L 0.97 U BENZALDEHYDE UG/L 0.19 U BENZO(A)ANTHRACENE UG/L 0.19 U	3,3'-DICHLOROBENZIDINE	UG/L	0.97	U	
4-BROMOPHENYL PHENYL ETH UG/L 0.97 U 4-CHLORO-3-METHYLPHENOL UG/L 0.97 U 4-CHLOROANILINE UG/L 0.97 U 4-CHLOROPHENYL PHENYL ETH UG/L 0.97 U 4-METHYLPHENOL UG/L 0.97 U 4-NITROANILINE UG/L 4.8 U 4-NITROPHENOL UG/L 4.8 U ACENAPHTHENE UG/L 0.19 U ACENAPHTHYLENE UG/L 0.19 U ACETOPHENONE UG/L 0.97 U ANTHRACENE UG/L 0.19 U ATRAZINE UG/L 0.97 U BENZALDEHYDE UG/L 0.97 U BENZO(A)ANTHRACENE UG/L 0.19 U	3-NITROANILINE	UG/L	4.8	U	:
4-CHLORO-3-METHYLPHENOL UG/L 0.97 U 4-CHLOROANILINE UG/L 0.97 U 4-CHLOROPHENYL PHENYL ETH UG/L 0.97 U 4-METHYLPHENOL UG/L 0.97 U 4-NITROANILINE UG/L 4.8 U 4-NITROPHENOL UG/L 4.8 U ACENAPHTHENE UG/L 0.19 U ACENAPHTHYLENE UG/L 0.19 U ACETOPHENONE UG/L 0.97 U ANTHRACENE UG/L 0.97 U ATRAZINE UG/L 0.97 U BENZALDEHYDE UG/L 0.97 U BENZO(A)ANTHRACENE UG/L 0.19 U	4,6-DINITRO-2-METHYLPHENOL	UG/L	4.8	U	
4-CHLOROANILINE UG/L 0.97 U 4-CHLOROPHENYL PHENYL ETH UG/L 0.97 U 4-METHYLPHENOL UG/L 0.97 U 4-NITROANILINE UG/L 4.8 U 4-NITROPHENOL UG/L 4.8 U ACENAPHTHENE UG/L 0.19 U ACENAPHTHYLENE UG/L 0.19 U ACETOPHENONE UG/L 0.97 U ANTHRACENE UG/L 0.97 U ATRAZINE UG/L 0.97 U BENZALDEHYDE UG/L 0.97 U BENZO(A)ANTHRACENE UG/L 0.19 U	4-BROMOPHENYL PHENYL ETH	UG/L	0.97	U	
4-CHLOROPHENYL PHENYL ETH UG/L 0.97 U 4-METHYLPHENOL UG/L 0.97 U 4-NITROANILINE UG/L 4.8 U 4-NITROPHENOL UG/L 4.8 U ACENAPHTHENE UG/L 0.19 U ACENAPHTHYLENE UG/L 0.19 U ACETOPHENONE UG/L 0.97 U ANTHRACENE UG/L 0.19 U ATRAZINE UG/L 0.97 U BENZALDEHYDE UG/L 0.97 U BENZO(A)ANTHRACENE UG/L 0.19 U	4-CHLORO-3-METHYLPHENOL	UG/L	0.97	U	
4-METHYLPHENOL UG/L 0.97 U 4-NITROANILINE UG/L 4.8 U 4-NITROPHENOL UG/L 4.8 U ACENAPHTHENE UG/L 0.19 U ACENAPHTHYLENE UG/L 0.19 U ACETOPHENONE UG/L 0.97 U ANTHRACENE UG/L 0.19 U ATRAZINE UG/L 0.97 U BENZALDEHYDE UG/L 0.97 U BENZO(A)ANTHRACENE UG/L 0.19 U	4-CHLOROANILINE	UG/L	0.97	U	
4-NITROANILINE	4-CHLOROPHENYL PHENYL ETH	UG/L	0.97	U	
4-NITROPHENOL UG/L 4.8 U ACENAPHTHENE UG/L 0.19 U ACENAPHTHYLENE UG/L 0.19 U ACETOPHENONE UG/L 0.97 U ANTHRACENE UG/L 0.19 U ATRAZINE UG/L 0.97 U BENZALDEHYDE UG/L 0.97 U BENZO(A)ANTHRACENE UG/L 0.19 U	4-METHYLPHENOL	UG/L	0.97	U	
ACENAPHTHENE UG/L 0.19 U ACENAPHTHYLENE UG/L 0.19 U ACETOPHENONE UG/L 0.97 U ANTHRACENE UG/L 0.19 U ATRAZINE UG/L 0.97 U BENZALDEHYDE UG/L 0.97 U BENZO(A)ANTHRACENE UG/L 0.19 U	4-NITROANILINE	UG/L	4.8	U	
ACENAPHTHYLENE UG/L 0.19 U ACETOPHENONE UG/L 0.97 U ANTHRACENE UG/L 0.19 U ATRAZINE UG/L 0.97 U BENZALDEHYDE UG/L 0.97 U BENZO(A)ANTHRACENE UG/L 0.19 U	4-NITROPHENOL	UG/L	4.8	U	
ACETOPHENONE UG/L 0.97 U ANTHRACENE UG/L 0.19 U ATRAZINE UG/L 0.97 U BENZALDEHYDE UG/L 0.97 U BENZO(A)ANTHRACENE UG/L 0.19 U	ACENAPHTHENE	UG/L	0.19	U	
ANTHRACENE UG/L 0.19 U ATRAZINE UG/L 0.97 U BENZALDEHYDE UG/L 0.97 U BENZO(A)ANTHRACENE UG/L 0.19 U	ACENAPHTHYLENE	UG/L	0.19	U	
ANTHRACENE UG/L 0.19 U ATRAZINE UG/L 0.97 U BENZALDEHYDE UG/L 0.97 U BENZO(A)ANTHRACENE UG/L 0.19 U	ACETOPHENONE	UG/L	0.97	U	
BENZALDEHYDE UG/L 0.97 U BENZO(A)ANTHRACENE UG/L 0.19 U	ANTHRACENE		0.19	U	
BENZO(A)ANTHRACENE UG/L 0.19 U	ATRAZINE	UG/L	0.97	U	
BENZO(A)ANTHRACENE UG/L 0.19 U	BENZALDEHYDE	UG/L	0.97	Ū	
· · · · · · · · · · · · · · · · · · ·	BENZO(A)ANTHRACENE			Ú	
	BENZO(A)PYRENE	UG/L	0.19	U	

SDG: C7K020216 MEDIA: WATER DATA FRACTION: OS

nsample

FMC 7DL

samp_date lab_id

10/31/2007 C7K020216013

qc_type DUP_OF: NM

Pct_Solids

nsample samp_date

lab_id

qc_type

FMC 9DL

10/30/2007

C7K020216002

NM

Pct_Solids DUP_OF:

nsample

FMC 9DL 10/30/2007

NM

samp_date lab_id

C7K020216002

qc_type Pct_Solids

DUP_OF;

Parameter	units	Result	Val Qual	Qual Code
BENZO(B)FLUORANTHENE	UG/L	0.19	U	
BENZO(G,H,I)PERYLENE	UG/L	0.19	U	
BENZO(K)FLUORANTHENE	UG/L	0.19	Ü	
BIS(2-CHLOROETHOXY)METHAN	UG/L	0.97	Ü	
BIS(2-CHLOROETHYL)ETHER	UG/L	0.19	U	
BIS(2-ETHYLHEXYL)PHTHALATE	UG/L	0.97	U	
BUTYL BENZYL PHTHALATE	UG/L	0.97	U	
CAPROLACTAM	UG/L	0.97	U	
CARBAZOLE	UG/L	0.19	Ű	
CHRYSENE	UG/L	0.19	U	
DIBENZO(A,H)ANTHRACENE	UG/L	0.19	U	
DIBENZOFURAN	UG/L	0.97	U	_
DIETHYL PHTHALATE	UG/L	0.97	U	
DIMETHYL PHTHALATE	UG/L	0.97	U	
DI-N-BUTYL PHTHALATE	UG/L	0.97	U	
DI-N-OCTYL PHTHALATE	UG/L	0.97	U	
FLUORANTHENE	UG/L	0.19	U	
FLUORENE	UG/L	0.19	U	
HEXACHLOROBENZENE	UG/L	0.19	U	
HEXACHLOROBUTADIENE	UG/L	0.19	U	
HEXACHLOROCYCLOPENTADIE	UG/L	0.97	U	
HEXACHLOROETHANE	UG/L	0.97	U	
INDENO(1,2,3-CD)PYRENE	UG/L	0.19	U	
ISOPHORONE	UG/L	0.97	U	
NAPHTHALENE	UG/L	0.19	U	
NITROBENZENE	UG/L	0.19	U	
N-NITROSO-DI-N-PROPYLAMINE	UG/L	0.19	U	
N-NITROSODIPHENYLAMINE	UG/L	0.19	U	
PENTACHLOROPHENOL	UG/L	0.97	U	
PHENANTHRENE	UG/L	0.19	. U	
PHENOL	UG/L	0.19	U	
PYRENE	UG/L	0.19	U	

Parameter	units	Result	Val Qual	Qual Code
1,1-BIPHENYL	UG/L	1	U	
2,2'-OXYBIS(1-CHLOROPROPAN	UG/L	0.2	U	
2,4,5-TRICHLOROPHENOL	UG/L	1	U	
2,4,6-TRICHLOROPHENOL	UG/L	1	U	
2,4-DICHLOROPHENOL	UG/L	0.2	U	
2,4-DIMETHYLPHENOL	UG/L	1	U	
2,4-DINITROPHENOL	UG/L	5.1	U	
2,4-DINITROTOLUENE	UG/L	1	U	
2,6-DINITROTOLUENE	UG/L	1	U	
2-CHLORONAPHTHALENE	UG/L	0.2	U	
2-CHLOROPHENOL	UG/L	1	ľ	
2-METHYLNAPHTHALENE	UG/L	0.2	U	
2-METHYLPHENOL	UG/L	. 1	U	
2-NITROANILINE	UG/L	5.1	U	
2-NITROPHENOL	UG/L	1	U	
3,3'-DICHLOROBENZIDINE	UG/L	1	U	
3-NITROANILINE	UG/L	5.1	U	
4,6-DINITRO-2-METHYLPHENOL	UG/L	5.1	U	
4-BROMOPHENYL PHENYL ETH	UG/L	1	U	
4-CHLORO-3-METHYLPHENOL	UG/L	1	U	
4-CHLOROANILINE	UG/L	1	U	
4-CHLOROPHENYL PHENYL ETH	UG/L	1	U	
4-METHYLPHENOL	UG/L	1	U	
4-NITROANILINE	UG/L	5.1	U	
4-NITROPHENOL	UG/L	5.1	U	
ACENAPHTHENE	UG/L	0.2	U	
ACENAPHTHYLENE	UG/L	0.2	Ű	
ACETOPHENONE	UG/L	1	Ū	
ANTHRACENE	UG/L	0.2	U	
ATRAZINE	UG/L	1	U	
BENZALDEHYDE	UG/L	1	U	
BENZO(A)ANTHRACENE	UG/L	0.2	Ü	
BENZO(A)PYRENE	UG/L	0.2	U	

Parameter	units	Result	Val Qual	Qual Code
				Code
BENZO(B)FLUORANTHENE	UG/L	0.2	U	
BENZO(G,H,I)PERYLENE	UG/L	0.2	U	
BENZO(K)FLUORANTHENE	UG/L	0.2	U	
BIS(2-CHLOROETHOXY)METHAN	UG/L	1	U	
BIS(2-CHLOROETHYL)ETHER	UG/L	0.2	U	
BIS(2-ETHYLHEXYL)PHTHALATE	UG/L	0.14	J	Р
BUTYL BENZYL PHTHALATE	UG/L	0.2	J	Р
CAPROLACTAM	UG/L	1	U	
CARBAZOLE	UG/L	0.2	U	
CHRYSENE	UG/L	0.2	U	
DIBENZO(A,H)ANTHRACENE	UG/L	0.2	U	
DIBENZOFURAN	UG/L	1	U	
DIETHYL PHTHALATE	UG/L	1	U	
DIMETHYL PHTHALATE	UG/L	1	U	
DI-N-BUTYL PHTHALATE	UG/L	1	U	
DI-N-OCTYL PHTHALATE	UG/L	1	U	
FLUORANTHENE	UG/L	0.2	U	
FLUORENE	UG/L	0.2	U	
HEXACHLOROBENZENE	UG/L	0.2	U	
HEXACHLOROBUTADIENE	UG/L	0.2	U	
HEXACHLOROCYCLOPENTADIE	UG/L	1	U	
HEXACHLOROETHANE	UG/L	1	U	
INDENO(1,2,3-CD)PYRENE	UG/L	0.2	U	
ISOPHORONE	UG/L	1	U	
NAPHTHALENE	UG/L	0.2	U	
NITROBENZENE	UG/L	0.2	U	
N-NITROSO-DI-N-PROPYLAMINE	UG/L	0.2	. U	
N-NITROSODIPHENYLAMINE	UG/L	0.2	U	
PENTACHLOROPHENOL	UG/L	1	U	
PHENANTHRENE	UG/L	0.2	U	
PHENOL	UG/L	0.2	U	
PYRENE	UG/L	0.2	U	

00998

SDG: C7K020216 MEDIA: WATER DATA FRACTION: PEST/PCB

nsample samp_date FMC 10DL

10/30/2007 C7K020216003

nsample samp_date lab_id

FMC 11DL

10/30/2007 C7K020216004

nsample samp_date lab_id

FMC 12DL 10/30/2007 C7K020216005

NM.

qc_type Pct_Solids DUP_OF:

lab_id

NM

qc_type Pct_Solids DUP_OF:

NM

qc_type Pct_Solids

DUP_OF:

Val Parameter Result units Qual Qual Code AROCLOR-1016 UG/L 0.42 U AROCLOR-1221 UG/L U 0.42 AROCLOR-1232 UG/L 0.42 U AROCLOR-1242 U UG/L 0.42 AROCLOR-1248 UG/L 0.42 U AROCLOR-1254 UG/L 0.42 U AROCLOR-1260 UG/L 0.42 U

Parameter	units	Result	Val Qual	Qual Code
AROCLOR-1016	UG/L	0.4	U	
AROCLOR-1221	UG/L	0.4	U	
AROCLOR-1232	UG/L	0.4	U	
AROCLOR-1242	UG/L	0.4	U	
AROCLOR-1248	UG/L	0.4	U	
AROCLOR-1254	UG/L	0.4	U	
AROCLOR-1260	UG/L	0.4	U	

Parameter	units	Result	Val	Qual
			Qual	Code
AROCLOR-1016	UG/L	0.39	U	
AROCLOR-1221	UG/L	0.39	U	
AROCLOR-1232	UG/L	0.39	U	
AROCLOR-1242	UG/L	0.39	U	
AROCLOR-1248	UG/L	0.39	U	
AROCLOR-1254	UG/L	0.39	U	
AROCLOR-1260	UG/L	0.39	U	

00998

SDG: C7K020216 MEDIA: WATER DATA FRACTION: PEST/PCB

nsample samp_date FMC 13DL

10/30/2007 C7K020216006 nsample samp_date lab_id

FMC 16DL 10/31/2007

nsample samp_date FMC 18DL 10/31/2007

lab_id qc_type

NM

qc_type

C7K020216007 ΝM

lab_id qc_type

C7K020216008 NM

Pct_Solids DUP_OF:

Pct_Solids DUP_OF:

Pct_Solids

DUP_OF:

Parameter	units	Result	Val Qual	Qual Code
AROCLOR-1016	UG/L	0.38	U	
AROCLOR-1221	UG/L	0.38	U	
AROCLOR-1232	UG/L	0.38	U	
AROCLOR-1242	UG/L	0.38	U	
AROCLOR-1248	UG/L	0.38	C	
AROCLOR-1254	UG/L	0.38	U	
AROCLOR-1260	UG/L	0.38	U	

		- ·		
Parameter	units	Result	Val	Qual
			Qual	Code
AROCLOR-1016	UG/L	0.41	U	
AROCLOR-1221	UG/L	0.41	U	
AROCLOR-1232	UG/L	0.41	U	
AROCLOR-1242	UG/L	0.41	U	
AROCLOR-1248	UG/L	0.41	U	
AROCLOR-1254	UG/L	0.41	U	
AROCLOR-1260	UG/L	0.41	U	

units	Result	Val	Qual
		Qual	Code
UG/L	0.41	U	
UG/L	0.41	C	
UG/L	0.41	U	
	UG/L UG/L UG/L UG/L UG/L	UG/L 0.41 UG/L 0.41 UG/L 0.41 UG/L 0.41 UG/L 0.41 UG/L 0.41	Qual UG/L 0.41 U UG/L 0.41 U UG/L 0.41 U UG/L 0.41 U UG/L 0.41 U UG/L 0.41 U UG/L 0.41 U

00998

SDG: C7K020216 MEDIA: WATER DATA FRACTION: PEST/PCB

nsample samp_date FMC 20DL

10/31/2007

samp_date C7K020216009 lab_id

10/31/2007 C7K020216010

NM

FMC 22DL

samp_date lab_id

nsample

FMC 24DL 10/30/2007 C7K020216001

lab_id qc_type

NM

qc_type Pct_Solids qc_type

NM

Pct_Solids

DUP_OF:

DUP_OF:

nsample

Parameter	units	Result	Val Qual	Qual Code
AROCLOR-1016	UG/L	0.39	U	
AROCLOR-1221	UG/L	0.39	U	
AROCLOR-1232	UG/L	0.39	U	
AROCLOR-1242	UG/L	0.39	U	
AROCLOR-1248	UG/L	0.39	U	
AROCLOR-1254	UG/L	0.39	Ü	
AROCLOR-1260	UG/L	0.39	Ū	

Parameter	units	Result	Val Qual	Qual Code
AROCLOR-1016	UG/L	0.38	U	
AROCLOR-1221	UG/L	0.38	U	
AROCLOR-1232	UG/L	0.38	U	
AROCLOR-1242	UG/L	0.38	U	
AROCLOR-1248	UG/L	0.38	U	
AROCLOR-1254	UG/L	0.38	U	
AROCLOR-1260	UG/L	0.38	U	

Parameter	units	Result	Val Qual	Qual Code
AROCLOR-1016	UG/L	0.4	U	
AROCLOR-1221	UG/L	0.4	U	
AROCLOR-1232	UG/L	0.4	U	
AROCLOR-1242	UG/L	0.4	U	
AROCLOR-1248	UG/L	0.4	U	
AROCLOR-1254	UG/L	0.4	U	
AROCLOR-1260	UG/L	0.4	U	

SDG: C7K020216 MEDIA: WATER DATA FRACTION: PEST/PCB

00998

nsample samp_date

lab_id

FMC 25DL

11/1/2007

C7K020216014

NM

samp_date lab_id qc_type

nsample

11/1/2007 C7K020216015

FMC 26DL

NM

nsample

samp_date lab_id qc_type

Pct_Solids

DUP_OF:

FMC 3DL 10/31/2007 C7K020216011

NM

qc_type Pct_Solids DUP_OF:

Parameter	units	Result	Val Qual	Qual Code
AROCLOR-1016	UG/L	0.38	U	
AROCLOR-1221	UG/L	0.38	J	
AROCLOR-1232	UG/L	0.38	U	
AROCLOR-1242	UG/L	0.38	U	
AROCLOR-1248	UG/L	0.38	Ú	
AROCLOR-1254	. UG/L	0.38	U	
AROCLOR-1260	UG/L	0.38	U	

units	Result	Val Qual	Qual Code
UG/L	0.38	U	•
UG/L	0.38	U	
UG/L	0.42		
UG/L	0.38	U	
	UG/L UG/L UG/L UG/L UG/L UG/L	UG/L 0.38 UG/L 0.38 UG/L 0.38 UG/L 0.38 UG/L 0.38 UG/L 0.42	Qual UG/L 0.38 U UG/L 0.38 U UG/L 0.38 U UG/L 0.38 U UG/L 0.38 U UG/L 0.38 U UG/L 0.42

units	Result	Val	Qual
		Qual	Code
UG/L	0.38	U	
	UG/L UG/L UG/L UG/L UG/L UG/L UG/L	UG/L 0.38 UG/L 0.38 UG/L 0.38 UG/L 0.38 UG/L 0.38 UG/L 0.38	UG/L 0.38 U UG/L 0.38 U UG/L 0.38 U UG/L 0.38 U UG/L 0.38 U UG/L 0.38 U UG/L 0.38 U

00998

SDG: C7K020216 MEDIA: WATER DATA FRACTION: PEST/PCB

nsample samp_date

lab_id

FMC 5DL

10/31/2007

C7K020216012

qc_type Pct_Solids

DUP_OF:

NM

Pct_Solids DUP_OF:

nsample

samp_date 10/31/2007 lab_id C7K020216013

qc_type

nsample

samp_date lab_id

FMC 9DL 10/30/2007

C7K020216002

NM

qc_type Pct_Solids DUP_OF:

Parameter	units	Result	Val Qual	Qual Code
AROCLOR-1016	UG/L	0.38	U	
AROCLOR-1221	UG/L	0.38	U	
AROCLOR-1232	UG/L	0.38	U	
AROCLOR-1242	UG/L	0.38	U	
AROCLOR-1248	UG/L	0.38	Ú	
AROCLOR-1254	UG/L	0.38	U	
AROCLOR-1260	UG/L	0.38	U	

Parameter	units	Result	Val Qual	Qual Code
			Quai	Oode
AROCLOR-1016	UG/L	0.38	U	
AROCLOR-1221	UG/L	0.38	U	
AROCLOR-1232	UG/L	0.38	U	
AROCLOR-1242	UG/L	0.38	U	***
AROCLOR-1248	UG/L	0.38	U	*****
AROCLOR-1254	UG/L	0.38	U	
AROCLOR-1260	UG/L	0.38	U	

FMC 7DL

NM

Parameter	units	Result	Val Qual	Qual Code
AROCLOR-1016	UG/L	0.4	U	_
AROCLOR-1221	UG/L	0.4	U	
AROCLOR-1232	UG/L	0.4	U	
AROCLOR-1242	UG/L	0.4	U	
AROCLOR-1248	UG/L	0.4	U	***************************************
AROCLOR-1254	UG/L	0.4	U	
AROCLOR-1260	UG/L	0.4	U	

APPENDIX B

RESULTS AS REPORTED BY THE LABORATORY

GC/MS VOLATILE SUMMARY

Client Sample ID: FMC 24

GC/MS Volatiles

 Lot-Sample #...:
 C7K020216-001
 Work Order #...:
 KAEX31AD
 Matrix......
 WATER

 Date Sampled...:
 10/30/07
 Date Received...
 11/02/07
 MS Run #.....
 7312348

 Prep Date.....:
 11/08/07
 Analysis Date...
 11/09/07

 Prep Date....: 11/08/07
 Analysis Date..: 11/09/07

 Prep Batch #...: 7312657
 Analysis Time..: 00:03

Dilution Factor: 1 Initial Wgt/Vol: 5 mL Final Wgt/Vol.: 5 mL

Analyst ID....: 403419 Instrument ID..: HP6

Method.....: SW846 8260B

		REPORTI	1 G	
PARAMETER	RESULT	LIMIT	UNITS	MDL
Acetone	2.8 J	5.0	ug/L	2.5
Benzene	ND	1.0	ug/L	0.19
Bromodichloromethane	ND	1.0	ug/L	0.099
Bromoform	ND	1.0	ug/L	0.27
Bromomethane	ND	1.0	ug/L	0.18
2-Butanone	ND	5.0	ug/L	0.65
Carbon disulfide	ND	1.0	ug/L	0.11
Carbon tetrachloride	ND	1.0	ug/L	0.22
Chlorobenzene	ND	1.0	ug/L	0.33
Chloroethane	ND	1.0	ug/L	0.11
Chloroform	ND	1.0	ug/L	0.068
Chloromethane	ND	1.0	ug/L	0.14
Cyclohexane	ND	1.0	ug/L	0.11
Dibromochloromethane	ND	1.0	ug/L	0.20
1,2-Dibromo-3-chloro-	ND	1.0	ug/L	0.26
propane			wg/ 2	0.20
1,2-Dibromoethane	ND	1.0	ug/L	0.15
1,3-Dichlorobenzene	ND	1.0	ug/L	0.10
1,4-Dichlorobenzene	ND	1.0	ug/L ug/L	0.10
1,2-Dichlorobenzene	ND	1.0	ug/L	0.086
Dichlorodifluoromethane	ND	1.0	ug/L	0.23
1,1-Dichloroethane	ND	1.0	ug/L	0.23
1,2-Dichloroethane	ND	1.0	ug/L	0.076
1,1-Dichloroethene	ND	1.0	ug/L	0.17
cis-1,2-Dichloroethene	ND	1.0	ug/L	0.090
trans-1,2-Dichloroethene	ND	1.0	ug/L	0.097
1,2-Dichloropropane	ND	1.0	ug/L	0.24
cis-1,3-Dichloropropene	ND	1.0	ug/L	0.13
trans-1,3-Dichloropropene	ND	1.0	ug/L	0.16
Ethylbenzene	ND	1.0	ug/L	
2-Hexanone	ND	5.0	ug/L ug/L	0.066
Isopropylbenzene	ND	1.0	ug/L	0.55
Methyl acetate	ND	1.0	ug/L	0.27
Methylene chloride	ND	1.0	ug/L ug/L	0.17
Methylcyclohexane	ND	1.0	- '	0.19
4-Methyl-2-pentanone	ND	5.0	ug/L	0.18
Methyl tert-butyl ether	ND		ug/L	0.61
1	MD	1.0	ug/L	0.13

Client Sample ID: FMC 24

GC/MS Volatiles

Lot-Sample #: C7K020216-001	Work Order #:	KAEX31AD	Matrix WATER		
PARAMETER	RESULT	REPORTING LIMIT	UNITS	MDL	
Styrene	ND	1.0	ug/L		
1,1,2,2-Tetrachloroethane	ND	1.0	ug/L	0.25	
1,2,4-Trichloro- benzene	ND	1.0	ug/L	0.22 0.11	
Tetrachloroethene	ND	1.0	ug/L	0.088	
1,1,1-Trichloroethane	ND	1.0	ug/L	0.11	
1,1,2-Trichloroethane	ND	1.0	ug/L	0.11	
Trichloroethene	0.27 J	1.0	ug/L	0.22	
Trichlorofluoromethane	ND	1.0	ug/L	0.17	
1,1,2-Trichloro- 1,2,2-trifluoroethane	ND	1.0	ug/L	0.14	
Toluene	ND	1.0	ug/L	0,21	
Vinyl chloride	ND	1.0	ug/L		
Xylenes (total)	ND	3.0	ug/L	0.11 0.20	
SURROGATE	PERCENT RECOVERY	RECOVERY			
Toluene-d8	94	LIMITS			
1,2-Dichloroethane-d4	114	(71 - 118)			
4-Bromofluorobenzono	444	(64 - 135)			

(70 - 118)

(64 - 128)

93

110

4-Bromofluorobenzene

Dibromofluoromethane

NOTE(S):

I Estimated result. Result is less than RL.

Client Sample ID: FMC 9

GC/MS Volatiles

Lot-Sample #...: C7K020216-002 Work Order #...: KAE051AN Matrix....: WATER Date Sampled...: 10/30/07 Date Received..: 11/02/07 MS Run #....: 7312348 **Prep Date....:** 11/08/07 **Analysis Date..:** 11/09/07

Prep Batch #...: 7312657 Analysis Time..: 00:27

Dilution Factor: 1 Initial Wgt/Vol: 5 mL Final Wgt/Vol..: 5 mL

Analyst ID....: 403419 Instrument ID..: HP6

Method....: SW846 8260B

PARAMETER		REPORTI	NG		
Acetone	RESULT	LIMIT	UNITS	MDL	
Benzene	2.5 J	5.0	ug/L	2.5	
Bromodichloromethane	ND	1.0	\mathtt{ug}/\mathtt{L}	0.19	
Bromoform	ND	1.0	ug/L	0.099	
Bromomethane	ND	1.0	ug/L	0.27	
2-Butanone	ND	1.0	${\tt ug/L}$	0.18	
Carbon disulfide	ND	5.0	ug/L	0.65	
··	ND	1.0	ug/L	0.11	
Carbon tetrachloride	ND	1.0	ug/L	0.22	
Chlorobenzene	ND	1.0	ug/L	0.33	
Chloroethane	ND	1.0	ug/L	0.11	
Chloroform	ND	1.0	ug/L	0.068	
Chloromethane	ND	1.0	ug/L	0.14	
Cyclohexane	ND	1.0	ug/L	0.11	
Dibromochloromethane	ND	1.0	ug/L	0.20	
1,2-Dibromo-3-chloro-	ND	1.0	ug/L	0.26	
propane			·3/	0.20	
1,2-Dibromoethane	ND	1.0	ug/L	0.15	
1,3-Dichlorobenzene	ND	1.0	ug/L	0.10	
1,4-Dichlorobenzene	ND	1.0	ug/L	0.10	
1,2-Dichlorobenzene	ND	1.0	ug/L	0.086	
Dichlorodifluoromethane	ND	1.0	ug/L	0.23	
1,1-Dichloroethane	ND	1.0	ug/L	0.19	
1,2-Dichloroethane	ND	1.0	ug/L	0.076	
1,1-Dichloroethene	ND	1.0	ug/L	0.17	
cis-1,2-Dichloroethene	0.22 J	1.0	ug/L	0.090	
trans-1,2-Dichloroethene	ND	1.0	ug/L	0.097	
1,2-Dichloropropane	ND	1.0	ug/L	0.037	
cis-1,3-Dichloropropene	ND	1.0	ug/L	0.24	
trans-1,3-Dichloropropene	ND	1.0	ug/L	0.13	
Ethylbenzene	ND	1.0	ug/L		
2-Hexanone	ND	5.0	ug/L	0.066	
Isopropylbenzene	ND	1.0	ug/L	0.55	
Methyl acetate	ND	1.0	ug/L	0.27	
Methylene chloride	ND	1.0		0.17	
Methylcyclohexane	ND	1.0	ug/L	0.19	
4-Methyl-2-pentanone	ND	5.0	ug/L	0.18	
Methyl tert-butyl ether	ND	1.0	ug/L	0.61	
	•,-	1.0	ug/L	0.13	

Client Sample ID: FMC 9

GC/MS Volatiles

Lot-Sample #: C7K020216-002 Work	Order #:	KAE051AN	Matrix	พลฑฅ๖
----------------------------------	----------	----------	--------	-------

PARAMETER	DD412	REPORTIN	īG	
Styrene	RESULT	LIMIT	UNITS	MDL
1,1,2,2-Tetrachloroethane	ND	1.0	ug/L	0.25
1,2,4-Trichloro-	ND	1.0	ug/L	0.22
benzene	ND	1.0	ug/L	0.11
Tetrachloroethene	ND	1.0	ug/L	0.088
1,1,1-Trichloroethane	ND	1.0	ug/L	0.11
1,1,2-Trichloroethane	ND	1.0	ug/L	0.11
Trichloroethene	0.32 J	1.0	ug/L	0.22
Trichlorofluoromethane	ND	1.0	ug/L	0.17
1,1,2-Trichloro- 1,2,2-trifluoroethane	ND	1.0	ug/L	0.14
Toluene	ND	1.0	ug/L	0.21
Vinyl chloride	0.13 J	1.0	ug/L	
Xylenes (total)	ND	3.0	ug/L	0.11 0.20
	PERCENT	RECOVERY		
SURROGATE	RECOVERY	LIMITS		
Toluene-d8	101	$\frac{21713}{(71 - 118)}$		
1,2-Dichloroethane-d4	118		•	
4-Bromofluorobenzene	92	(64 - 135	•	
Dibromofluoromethane	113	(70 - 118 (64 - 128		
NOTE(S):				

J Estimated result. Result is less than RL.

Client Sample ID: FMC 10

GC/MS Volatiles

 Lot-Sample #...:
 C7K020216-003
 Work Order #...:
 KAE071AN
 Matrix......
 WATER

 Date Sampled...:
 10/30/07
 Date Received..:
 11/02/07
 MS Run #.....
 7312348

 Prep Date....:
 11/08/07
 Analysis Date..:
 11/09/07

Prep Batch #...: 7312657 Analysis Time..: 00:50

Dilution Factor: 1 Initial Wgt/Vol: 5 mL Final Wgt/Vol.: 5 mL

Analyst ID....: 403419 Instrument ID..: HP6

Method..... SW846 8260B

PARAMETER	RESULT	REPORTI			
Acetone	ND ND	<u>LIMIT</u>	UNITS	MDL MDL	
Benzene	ND	5.0	ug/L	2.5	
Bromodichloromethane	ND	1.0	ug/L	0.19	
Bromoform	ND	1.0	ug/L	0.099	
Bromomethane	ND	1.0	ug/L	0.27	
2-Butanone	ND	1.0	ug/L	0.18	
Carbon disulfide	ND	5.0	ug/L	0.65	
Carbon tetrachloride	ND	1.0	ug/L	0.11	
Chlorobenzene	•	1.0	ug/L	0.22	
Chloroethane	ND	1.0	ug/L	0.33	
Chloroform	ND	1.0	ug/L	0.11	
Chloromethane	ND	1.0	ug/L	0.068	
Cyclohexane	ND	1.0	ug/L	0.14	
Dibromochloromethane	ND	1.0	${ t ug/L}$	0.11	
1,2-Dibromo-3-chloro-	ND	1.0	ug/L	0.20	
	ND	1.0	ug/L	0.26	
propane 1,2-Dibromoethane					
1,3-Dichlorobenzene	ND	1.0	ug/L	0.15	
	ND	1.0	ug/L	0.10	
1,4-Dichlorobenzene	ND	1.0	ug/L	0.10	
1,2-Dichlorobenzene	ND	1.0	ug/L	0.086	
Dichlorodifluoromethane	ND	1.0	ug/L	0.23	
1,1-Dichloroethane	ND	1.0	ug/L	0.19	
1,2-Dichloroethane	ND	1.0	ug/L	0.076	
1,1-Dichloroethene	ND	1.0	ug/L	0.17	
cis-1,2-Dichloroethene	0.19 J	1.0	ug/L	0.090	
trans-1,2-Dichloroethene	ND	1.0	ug/L	0.097	
1,2-Dichloropropane	ND	1.0	ug/L	0.24	
cis-1,3-Dichloropropene	ND	1.0	ug/L	0.13	
trans-1,3-Dichloropropene	ND	1.0	ug/L	0.16	
Ethylbenzene	ND	1.0	ug/L	0.066	
2-Hexanone	ND	5.0	ug/L	0.55	
Isopropylbenzene	ND	1.0	ug/L	0.27	
Methyl acetate	ND	1.0	ug/L	0.17	
Methylene chloride	ND	1.0	ug/L	0.19	
Methylcyclohexane	ND	1.0	ug/L	0.18	
4-Methyl-2-pentanone	ND	5.0	ug/L	0.61	
Methyl tert-butyl ether	ND	1.0	ug/L	0.13	

Client Sample ID: FMC 10

GC/MS Volatiles

LOC-Sample #: C7K020216-003	Work Order #: KAE071AN	Matrix WATER
-----------------------------	------------------------	--------------

PARAMETER		REPORTIN	IG	
	RESULT	LIMIT	UNITS	MDL
Styrene	ND	1.0	ug/L	0.25
1,1,2,2-Tetrachloroethane	ND	1.0	ug/L	0.22
1,2,4-Trichloro- benzene	ND	1.0	ug/L	0.11
Tetrachloroethene	ND	1.0	33 <i>m</i> /T	
1,1,1-Trichloroethane	ND	1.0	ug/L	0.088
1,1,2-Trichloroethane	ND	· -	ug/L	0.11
Trichloroethene	0.35 J	1.0	ug/L	0.11
Trichlorofluoromethane	ND	1.0	ug/L	0.22
1,1,2-Trichloro-		1.0	${\tt ug/L}$	0.17
1,2,2-trifluoroethane	ND	1.0	ug/L	0.14
Toluene	ND	1 0	4	
Vinyl chloride	ND	1.0	ug/L	0.21
Xylenes (total)	· -	1.0	ug/L	0.11
,	ND	3.0	ug/L	0.20
CVID DOCK TO	PERCENT	RECOVERY		
SURROGATE	RECOVERY	LIMITS		
Foluene-d8	99	(71 - 118	3)	
1,2-Dichloroethane-d4	118 ,	(64 - 135	•	
1-Bromofluorobenzene	96	(70 - 118		
Dibromofluoromethane	110	(64 - 128	•	
NOTE(S):		, 120		

J Estimated result. Result is less than RL.

Client Sample ID: FMC 11

GC/MS Volatiles

Lot-Sample #...: C7K020216-004 Work Order #...: KAE1A1AD

Date Sampled...: 10/30/07 Date Received..: 11/02/07

Prep Date....: 11/08/07 Analysis Date..: 11/09/07

Prep Batch #...: 7312657 Analysis Time..: 01:13

Dilution Factor: 1 Initial Wgt/Vol: 5 mL

Analyst ID...: 403419 Instrument ID.:: HP6

Method.....: SW846 8260B

PARAMETER	B7015 =	REPORTI	NG	
Acetone	RESULT	LIMIT	UNITS	MDL
Benzene	3.2 J	5.0	ug/L	2.5
Bromodichloromethane	ND	1.0	ug/L	0.19
Bromoform	ND	1.0	ug/L	0.099
Bromomethane	ND	1.0	ug/L	0.27
2-Butanone	ND	1.0	ug/L	0.18
Carbon disulfide	ND	5.0	ug/L	0.65
Carbon tetrachloride	ND	1.0	ug/L	0.11
Chlorobenzene	ND	1.0	ug/L	0.22
Chloroethane	ND	1.0	\mathtt{ug}/\mathtt{L}	0.33
Chloroform	ND	1.0	\mathtt{ug}/\mathtt{L}	0.11
Chloromethane	ND	1.0	ug/L	0.068
Cyclohexane	0.16 Ј	1.0	ug/L	0.14
Dibromochloromethane	ND	1.0	ug/L	0.11
	ND	1.0	ug/L	0.20
1,2-Dibromo-3-chloro-	ND	1.0	ug/L	0.26
propane			•	
1,2-Dibromoethane	ND	1.0	ug/L	0.15
1,3-Dichlorobenzene	ND	1.0	ug/L	0.10
1,4-Dichlorobenzene	ND	1.0	ug/L	0.10
1,2-Dichlorobenzene	ND	1.0	ug/L	0.086
Dichlorodifluoromethane	ND	1.0	ug/L	0.23
1,1-Dichloroethane	ND	1.0	ug/L	0.19
1,2-Dichloroethane	ND	1.0	ug/L	0.076
1,1-Dichloroethene	ND	1.0	ug/L	0.17
cis-1,2-Dichloroethene	0.26 J	1.0	ug/L	0.090
trans-1,2-Dichloroethene	ND	1.0	ug/L	0.097
1,2-Dichloropropane	ND	1.0	ug/L	0.24
cis-1,3-Dichloropropene	ND	1.0	ug/L	0.13
trans-1,3-Dichloropropene	ND	1.0	ug/L	0.16
Ethylbenzene	ND	1.0	ug/L	0.066
2-Hexanone	ND	5.0	ug/L	0.55
Isopropylbenzene	ND	1.0	ug/L	0.27
Methyl acetate	ND	1.0	ug/L	0.17
Methylene chloride	ND	1.0	ug/L	0.19
Methylcyclohexane	ND	1.0	ug/L	0.19
4-Methyl-2-pentanone	ND	5.0	ug/L	0.18
Methyl tert-butyl ether	ND	1.0	ug/L	
			ид/ п	0.13

Client Sample ID: FMC 11

GC/MS Volatiles

255 Scalpic #: C/R020216-004	Work Order #:	KAE1A1AD	Matrix:	WATER
	"		Macila	WATER

PARAMETER		REPORTIN	īG ·		
	RESULT	LIMIT	UNITS	MDL	
Styrene	ND	1.0	ug/L	0.25	
1,1,2,2-Tetrachloroethane	ND	1.0	ug/L	0.22	* .
1,2,4-Trichloro-	ND	1.0	ug/L	0.11	
benzene			-		
Tetrachloroethene	ND	1.0	ug/L	0.088	
1,1,1-Trichloroethane	ND	1.0	ug/L	0.11	
1,1,2-Trichloroethane	ND	1.0	ug/L ug/L		
Trichloroethene	0.63 Ј	1.0	ug/L ug/L	0.11	
Trichlorofluoromethane	ND	1.0	ug/L	0.22	
1,1,2-Trichloro-	ND	1.0	ug/L	0.17	
1,2,2-trifluoroethane		2.0	ug/L	0.14	
Toluene	ND	1.0	1100 /7	0.01	
Vinyl chloride	0.18 J	1.0	ug/L	0.21	
Xylenes (total)	ND	3.0	ug/L	0.11	
	112	. 3.0	ug/L	0.20	
.*	PERCENT	BEGOVERN			
SURROGATE	RECOVERY	RECOVERY			
Toluene-d8	100	LIMITS			
1,2-Dichloroethane-d4	121	(71 - 118	· ·	•	
4-Bromofluorobenzene	93	(64 - 135	•		
Dibromofluoromethane		(70 - 118			•
	109	(64 - 128	3)		
NOTE(S):					

J Estimated result. Result is less than RL.

Client Sample ID: FMC 12

GC/MS Volatiles

Lot-Sample #...: C7K020216-005 Work Order #...: KAEIDIAN Matrix....: WATER Date Sampled...: 10/30/07 Date Received..: 11/02/07 MS Run #....: 7312348 Prep Date....: 11/08/07 Analysis Date..: 11/09/07 Prep Batch #...: 7312657 Analysis Time..: 01:37 Dilution Factor: 1 Initial Wgt/Vol: 5 mL Final Wgt/Vol..: 5 mL

Analyst ID....: 403419 Instrument ID..: HP6

Method.....: SW846 8260B

PARAMETER		REPORTI	NG		
Acetone	RESULT	LIMIT	UNITS	MDL	
Benzene	ND	5.0	ug/L	2.5	
Bromodichloromethane	ND	1.0	ug/L	0.19	
Bromoform	ND	1.0	ug/L	0.099	
Bromomethane	ND	1.0	ug/L	0.27	
	ND	1.0	ug/L	0.18	
2-Butanone	ND	5.0	ug/L	0.65	
Carbon disulfide	ND	1.0	ug/L	0.11	
Carbon tetrachloride	ND	1.0	ug/L	0.22	
Chlorobenzene	ND	1.0	ug/L	0.33	
Chloroethane	ND	1.0	ug/L	0.11	
Chloroform	ND	1.0	ug/L	0.068	
Chloromethane	ND	1.0	ug/L	0.14	
Cyclohexane	ND	1.0	ug/L		
Dibromochloromethane	ND	1.0	ug/L	0.11	
1,2-Dibromo-3-chloro-	ND	1.0	ug/L ug/L	0.20	
propane		1.0	ug/L	0.26	
1,2-Dibromoethane	ND	1.0	/*		
1,3-Dichlorobenzene	ND	1.0	ug/L	0.15	
1,4-Dichlorobenzene	ND	1.0	ug/L	0.10	
1,2-Dichlorobenzene	ND	1.0	ug/L	0.10	
Dichlorodifluoromethane	ND	1.0	ug/L	0.086	
l,1-Dichloroethane	ND		ug/L	0.23	
l,2-Dichloroethane	ND	1.0	ug/L	0.19	
l,1-Dichloroethene	ND	1.0	ug/L	0.076	
cis-1,2-Dichloroethene	0.52 J	1.0	ug/L	0.17	
rans-1,2-Dichloroethene	ND	1.0	ug/L	0.090	
,2-Dichloropropane	ND	1.0	ug/L	0.097	
is-1,3-Dichloropropene	ND	1.0	ug/L	0.24	
rans-1,3-Dichloropropene	ND	1.0	ug/L	0.13	
thylbenzene		1.0	ug/L	0.16	
Hexanone	ND ND	1.0	ug/L	0.066	
sopropylbenzene		5.0	ug/L	0.55	
ethyl acetate	ND	1.0	ug/L	0.27	
ethylene chloride	ND	1.0	ug/L	0.17	
ethylcyclohexane	ND	1.0	ug/L	0.19	
-Methyl-2-pentanone	ND	1.0	ug/L	0.18	
ethyl tert-butyl ether	ND	5.0	ug/L	0.61	
compridence output etner	ND	1.0	ug/L	0.13	
			- ·		

Client Sample ID: FMC 12

GC/MS Volatiles

Lot-Sample #: C7K020216-005	Work Order #:	KAE1D1AN	Matrix,	WATER
PARAMETER	RESULT	REPORTING LIMIT	UNITS	
Styrene	ND	1.0	ug/L	MDL
1,1,2,2-Tetrachloroethane	ND	1.0	_	0.25
1,2,4-Trichloro- benzene	ND	1.0	ug/L ug/L	0.22 0.11
Tetrachloroethene	ND	1.0	/T	
1,1,1-Trichloroethane	ND	1.0	ug/L	0.088
1,1,2-Trichloroethane	ND	1.0	ug/L	0.11
Trichloroethene	1.3	1.0	ug/L	0.11
Trichlorofluoromethane	ND	1.0	ug/L	0.22
1,1,2-Trichloro-	ND	1.0	ug/L	0.17
1,2,2-trifluoroethane			ug/L	0.14
Toluene	ND	1.0	/7	
Vinyl chloride	0.29 J	1.0	ug/L	0.21
Xylenes (total)	ND	3.0	ug/L ug/L	0.11 0.20
	PERCENT	RECOVERY		
SURROGATE	RECOVERY	LIMITS		
Toluene-d8	96	(71 - 118)		
1,2-Dichloroethane-d4	122	(64 - 135)		
4-Bromofluorobenzene	91	(70 - 118)		
Dibromofluoromethane	113	(64 - 128)		
NOTE(S):				

J Estimated result. Result is less than RL.

Client Sample ID: FMC 13

GC/MS Volatiles

Lot-Sample #...: C7K020216-006 Work Order #...: KAE1F1AN Matrix..... WATER Date Sampled...: 10/30/07 Date Received..: 11/02/07 MS Run #..... 7312348 **Prep Date....:** 11/08/07 Analysis Date..: 11/09/07 Prep Batch #...: 7312657 Analysis Time..: 02:00 Dilution Factor: 1 Initial Wgt/Vol: 5 mL Final Wgt/Vol..: 5 mL Analyst ID....: 403419 Instrument ID..: HP6 Method....: SW846 8260B

REPORTING

		REPORTING			
PARAMETER	RESULT	LIMIT	UNITS	MDL	
Acetone	ND	5.0	ug/L	2.5	
Benzene	ND	1.0	ug/L	0.19	
Bromodichloromethane	ND	1.0	ug/L	0.099	
Bromoform	ND	1.0	ug/L	0.27	
Bromomethane	ND	1.0	ug/L	0.18	
2-Butanone	ND	5.0	ug/L	0.65	
Carbon disulfide	ND	1.0	ug/L	0.11	
Carbon tetrachloride	ND	1.0	ug/L	0.22	
Chlorobenzene	ND	1.0	ug/L	0.33	
Chloroethane	ND	1.0	ug/L	0.11	
Chloroform	ND	1.0	ug/L	0.068	
Chloromethane	0.18 J	1.0	ug/L	0.14	
Cyclohexane	ND	1.0	ug/L	0.11	
Dibromochloromethane	ND	1.0	ug/L	0.11	*
1,2-Dibromo-3-chloro-	ND	1.0	ug/L	0.26	
propane			ug/ II	0.26	
1,2-Dibromoethane	ND	1.0	ug/L	0.15	
1,3-Dichlorobenzene	ND	1.0	ug/L	0.15	
1,4-Dichlorobenzene	ND	1.0	ug/L	0.10 0.10	
1,2-Dichlorobenzene	ND	1.0	ug/L ug/L		
Dichlorodifluoromethane	ND	1.0	ug/L ug/L	0.086	
1,1-Dichloroethane	ND	1.0	ug/L ug/L	0.23	
1,2-Dichloroethane	ND	1.0	ug/L ug/L	0.19 0.076	
1,1-Dichloroethene	ND	1.0	ug/L	0.17	
cis-1,2-Dichloroethene	0.50 J	1.0	ug/L		
trans-1,2-Dichloroethene	ND	1.0	ug/L	0.090	
1,2-Dichloropropane	ND	1.0	ug/L ug/L	0.097	
cis-1,3-Dichloropropene	ND	1.0	_	0.24	
trans-1,3-Dichloropropene	ND	1.0	ug/L	0.13	
Ethylbenzene	ND	1.0	ug/L	0.16	
2-Hexanone	ND	5.0	ug/L	0.066	
Isopropylbenzene	ND	1.0	ug/L	0.55	
Methyl acetate	ND	1.0	ug/L	0.27	
Methylene chloride	ND	1.0	ug/L	0.17	
Methylcyclohexane	ND	1.0	ug/L	0.19	
4-Methyl-2-pentanone	ND	5.0	ug/L	0.18	
Methyl tert-butyl ether	ND		ug/L	0.61	
2	ND	1.0	ug/L	0.13	

Client Sample ID: FMC 13

GC/MS Volatiles

Lot-Sample #: C7K020216-006	Work Order #	: KAE1F1AN	Matrix WATER		
PARAMETER	RESULT	REPORTING			
Styrene	ND ND	LIMIT	UNITS	MDL	
1,1,2,2-Tetrachloroethane	ND	1.0	ug/L	0.25	
1,2,4-Trichloro-	ND	1.0	ug/L	0.22	
benzene	MD	1.0	ug/L	0.11	
Tetrachloroethene	ND	1.0	vo /T	0.000	
1,1,1-Trichloroethane	ND	1.0	ug/L	0.088	
1,1,2-Trichloroethane	ND	1.0	ug/L	0.11	
Trichloroethene	2.2	1.0	ug/L	0.11	
Trichlorofluoromethane	ND		ug/L	0.22	
1,1,2-Trichloro-	ND	1.0	ug/L	0.17	
1,2,2-trifluoroethane	MD	1.0	ug/L	0.14	
Toluene	ND	1.0	/ 7		
Vinyl chloride	0.33 ர	1.0	ug/L	0.21	
Xylenes (total)	ND		ug/L	0.11	
, , , , , , , , , , , , , , , , , , , ,	1410	3.0	ug/L	0.20	
	PERCENT	RECOVERY			
SURROGATE	RECOVERY	LIMITS			
Toluene-d8	97	$\frac{211118}{(71 - 118)}$			
1,2-Dichloroethane-d4	118	(64 - 135)	*		
4-Bromofluorobenzene	93	(70 - 118)			
Dibromofluoromethane	111	(64 - 128)			

J Estimated result. Result is less than RL.

NOTE(S):

Client Sample ID: FMC 16

GC/MS Volatiles

Lot-Sample #...: C7K020216-007 Work Order #...: KAElJIAN Matrix....: WATER Date Sampled...: 10/31/07 Date Received..: 11/02/07 MS Run #..... 7312348 **Prep Date....:** 11/08/07 Analysis Date..: 11/09/07 Prep Batch #...: 7312657 Analysis Time..: 02:24 Dilution Factor: 1 Final Wgt/Vol..: 5 mL

Initial Wgt/Vol: 5 mL Analyst ID....: 403419 Instrument ID..: HP6

Method.....: SW846 8260B

PARAMETER		REPORTI	NG		
Acetone	RESULT	LIMIT	UNITS	MDL	
Benzene	3.1 J	5.0	ug/L	2.5	
Bromodichloromethane	ND	1.0	ug/L	0.19	
Bromoform	ND	1.0	ug/L	0.099	
Bromomethane	ND	1.0	ug/L	0.27	
2-Butanone	ND	1.0	ug/L	0.18	
Carbon disulfide	ND	5.0	ug/L	0.65	
Carbon tetrachloride	ND	1.0	ug/L	0.11	
Chlorobenzene	ND	1.0	ug/L	0.22	
Chloroethane	ND	1.0	${\tt ug/L}$	0.33	
Chloroform	ND	1.0	ug/L	0.11	
Chloromethane	ND	1.0	ug/L	0.068	
Cyclohexane	0.14 J	1.0	ug/L	0.14	
Dibromochloromethane	ND	1.0	ug/L	0.11	
	ND	1.0	ug/L	0.20	
1,2-Dibromo-3-chloro-	ND	1.0	ug/L	0.26	
propane					
1,2-Dibromoethane	ND	1.0	ug/L	0.15	
1,3-Dichlorobenzene	ND	1.0	ug/L	0.10	
1,4-Dichlorobenzene	ND	1.0	ug/L	0.10	
1,2-Dichlorobenzene	ND	1.0	ug/L	0.086	
Dichlorodifluoromethane	ND	1.0	ug/L	0.23	
1,1-Dichloroethane	ND	1.0	ug/L	0.19	
1,2-Dichloroethane	ND	1.0	ug/L	0.076	
1,1-Dichloroethene	ND	1.0	ug/L	0.17	
cis-1,2-Dichloroethene	1.1	1.0	ug/L	0.090	
trans-1,2-Dichloroethene	ND	1.0	ug/L	0.097	
1,2-Dichloropropane	ND	1.0	ug/L	0.24	
cis-1,3-Dichloropropene	ND	1.0	ug/L	0.13	
trans-1,3-Dichloropropene	ND	1.0	ug/L	0.16	
Ethylbenzene	ND	1.0	ug/L	0.066	
2-Hexanone	ND	5.0	ug/L	0.55	
Isopropylbenzene	ND	1.0	ug/L	0.27	
Methyl acetate	ND	1.0	ug/L	0.17	
Methylene chloride	ND	1.0	ug/L	0.19	
Methylcyclohexane	ND	1.0	ug/L	0.18	
4-Methyl-2-pentanone	ND	5.0	ug/L	0.18	
Methyl tert-butyl ether	ND	1.0	ug/L	0.81	
		- · •	~5/ 2	0.13	

Client Sample ID: FMC 16

GC/MS Volatiles

Lot-Sample #: C7K020216-007	Work Order #:	KAEIJIAN	Matrix.	···· WATER
PARAMETER	RESULT	REPORTING LIMIT	UNITS	MDI
Styrene	ND	1.0	ug/L	MDL
1,1,2,2-Tetrachloroethane	ND	1.0	- ·	0.25
1,2,4-Trichloro- benzene	ND	1.0	ug/L ug/L	0.22 0.11
Tetrachloroethene 1,1,1-Trichloroethane	ND ND	1.0	ug/L	0.088
1,1,2-Trichloroethane	ND	1.0	ug/L	0.11
Trichloroethene Trichlorofluoromethane 1,1,2-Trichloro- 1,2,2-trifluoroethane	3.1 ND ND	1.0 1.0 1.0	ug/L ug/L ug/L ug/L	0.11 0.22 0.17 0.14
Toluene Vinyl chloride Kylenes (total)	ND 0.73 J ND	1.0 1.0 3.0	ug/L ug/L ug/L	0.21 0.11 0.20
GURROGATE Foluene-d8 1,2-Dichloroethane-d4	PERCENT RECOVERY 97 119	RECOVERY <u>LIMITS</u> (71 - 118) (64 - 135)		

94

107

(64 - 135)

(70 - 118)

(64 - 128)

NOTE(S):

4-Bromofluorobenzene

Dibromofluoromethane

J Estimated result. Result is less than RL.

Client Sample ID: FMC 18

GC/MS Volatiles

Lot-Sample #...: C7K020216-008 Work Order #...: KAE1K1AN Matrix....: WATER Date Sampled...: 10/31/07 Date Received..: 11/02/07 MS Run #..... 7312348 **Prep Date....:** 11/08/07 Analysis Date..: 11/09/07 Prep Batch #...: 7312657

Analysis Time..: 02:47 Dilution Factor: 1 Initial Wgt/Vol: 5 mL

Final Wgt/Vol..: 5 mL Analyst ID....: 403419 Instrument ID..: HP6

Method..... SW846 8260B

		REPORTI	ING		
PARAMETER	RESULT	LIMIT	UNITS	MDL	
Acetone	2.8 J	5.0	ug/L	2.5	
Benzene	ND	1.0	ug/L	0.19	
Bromodichloromethane	ND	1.0	ug/L	0.099	
Bromoform	ND	1.0	ug/L	0.27	
Bromomethane	ND	1.0	ug/L	0.18	
2-Butanone	ND	5.0	ug/L	0.65	
Carbon disulfide	ND	1.0	ug/L	0.11	
Carbon tetrachloride	ND	1.0	ug/L	0.22	
Chlorobenzene	ND	1.0	ug/L	0.33	
Chloroethane	ND	1.0	ug/L	0.11	
Chloroform	ND	1.0	ug/L	0.068	
Chloromethane	0.14 J	1.0	ug/L	0.14	
Cyclohexane	ND	1.0	ug/L	0.11	
Dibromochloromethane	ND	1.0	ug/L	0.20	
1,2-Dibromo-3-chloro-	ND	1.0	ug/L	0.26	
propane			49/11	0.26	
1,2-Dibromoethane	ND	1.0	ug/L	0.15	
1,3-Dichlorobenzene	ND	1.0	ug/L	0.10	
1,4-Dichlorobenzene	ND	1.0	ug/L	0.10	
1,2-Dichlorobenzene	ND	1.0	ug/L	0.086	
Dichlorodifluoromethane	ND	1.0	ug/L	0.23	
1,1-Dichloroethane	ND	1.0	ug/L	0.23	
1,2-Dichloroethane	ND	1.0	ug/L	0.076	
1,1-Dichloroethene	ND	1.0	ug/L	0.17	
cis-1,2-Dichloroethene	0.22 ј	1.0	ug/L	0.090	
trans-1,2-Dichloroethene	ND	1.0	ug/L	0.090	
1,2-Dichloropropane	ND	1.0	ug/L	0.24	
cis-1,3-Dichloropropene	ND	1.0	ug/L		
trans-1,3-Dichloropropene	ND	1.0	ug/L ug/L	0.13	
Ethylbenzene	ND	1.0	ug/L	0.16	
2-Hexanone	ND	5.0	ug/L	0.066	
Isopropylbenzene	ND	1.0	ug/L ug/L	0.55	
Methyl acetate	ND	1.0	ug/L ug/L	0.27	
Methylene chloride	ND	1.0		0.17	
Methylcyclohexane	ND	1.0	ug/L	0.19	
4-Methyl-2-pentanone	ND	5.0	ug/L	0.18	
Methyl tert-butyl ether	ND	1.0	ug/L	0.61	
	-112	1.0	ug/L	0.13	

Client Sample ID: PMC 18

GC/MS Volatiles

Lot-Sample #: C7K020216-008	Work Order #: KAE1K1AN	Matrix WATER
-----------------------------	------------------------	--------------

		REPORTING	G	
PARAMETER	RESULT	LIMIT	UNITS	MDL
Styrene	ND	1.0	ug/L	0.25
1,1,2,2-Tetrachloroethane	ND	1.0	ug/L	0.22
1,2,4-Trichloro- benzene	ND	1.0	ug/L	0.11
Tetrachloroethene	ND	1.0	ug/L	0.088
1,1,1-Trichloroethane	ND	1.0	ug/L	0.11
1,1,2-Trichloroethane	ND	1.0	ug/L	0.11
Trichloroethene	0.40 J	1.0	ug/L	0.22
Trichlorofluoromethane	ND	1.0	ug/L	0.17
1,1,2-Trichloro- 1,2,2-trifluoroethane	ND	1.0	ug/L	0.14
Toluene	ND	1.0	ug/L	0.21
Vinyl chloride	ND	1.0	ug/L	0.11
Xylenes (total)	ND	3.0	ug/L	0.20
	PERCENT	RECOVERY		
SURROGATE	RECOVERY	LIMITS		
Toluene-d8	98	(71 - 118	3)	
1,2-Dichloroethane-d4	122	(64 - 135	•	
4-Bromofluorobenzene	93	(70 - 118		
Dibromofluoromethane	113	(64 - 128	•	
NOTE(S):	÷			

J Estimated result. Result is less than RL.

Client Sample ID: FMC 20

GC/MS Volatiles

Lot-Sample #: C7K020216-009	Work Order #: KAE1P1AN	Matrix WATER
Date Sampled: 10/31/07	Date Received: 11/02/07	MS Run # 7312348
Prep Date: 11/08/07	Analysis Date: 11/09/07	
Prep Batch #: 7312657	Analysis Time: 03:34	
Dilution Factor: 1	Initial Wgt/Vol: 5 mL	Final Wgt/Vol: 5 mL
Analyst ID: 403419	Instrument ID · ND6	go, 101 5 IIID

Method.....: SW846 8260B

		REPORTIN	IG .		
PARAMETER	RESULT	LIMIT	UNITS	MDL	
Acetone	ND	5.0	ug/L	2.5	
Benzene	ND	1.0	ug/L	0.19	
Bromodichloromethane	ND	1.0	ug/L	0.099	
Bromoform	ND	1.0	ug/L	0.27	
Bromomethane	ND	1.0	ug/L	0.18	
2-Butanone	ND	5.0	ug/L	0.65	
Carbon disulfide	ND	1.0	ug/L	0.11	
Carbon tetrachloride	ND	1.0	ug/L	0.22	
Chlorobenzene	ND	1.0	ug/L	0.33	
Chloroethane	ND	1.0	ug/L	0.11	
Chloroform	ND	1.0	ug/L	0.068	
Chloromethane	0.14 J	1.0	ug/L	0.14	
Cyclohexane	ND	1.0	ug/L	0.11	
Dibromochloromethane	ND	1.0	ug/L	0.20	
1,2-Dibromo-3-chloro-	ND	1.0	ug/L	0.26	
propane			3,	*****	
1,2-Dibromoethane	ND	1.0	ug/L	0.15	
1,3-Dichlorobenzene	ND	1.0	ug/L	0.10	
1,4-Dichlorobenzene	ND	1.0	ug/L	0.10	
1,2-Dichlorobenzene	ND	1.0	ug/L	0.086	
Dichlorodifluoromethane	ND	1.0	ug/L	0.23	
1,1-Dichloroethane	ND	1.0	ug/L	0.19	
1,2-Dichloroethane	ND	1.0	ug/L	0.076	
1,1-Dichloroethene	ND	1.0	ug/L	0.17	
cis-1,2-Dichloroethene	ND	1.0	ug/L	0.090	
trans-1,2-Dichloroethene	ND	1.0	ug/L	0.097	
1,2-Dichloropropane	ND	1.0	ug/L	0.24	
cis-1,3-Dichloropropene	ND	1.0	ug/L	0.13	
trans-1,3-Dichloropropene	ND	1.0	ug/L	0.16	
Ethylbenzene	ND	1.0	ug/L	0.066	
2-Hexanone	ND	5.0	ug/L	0.55	
Isopropylbenzene	ND	1.0	ug/L	0.27	
Methyl acetate	ND	1.0	ug/L	0.17	
Methylene chloride	ND	1.0	ug/L	0.19	
Methylcyclohexane	ND	1.0	ug/L	0.18	
4-Methyl-2-pentanone	ND	5.0	ug/L	0.61	
Methyl tert-butyl ether	ND	1.0	ug/L	0.13	

Client Sample ID: FMC 20

GC/MS Volatiles

Lot-Sample #: C7K020216-009	Work Order #	KAE1P1AN	1P1AN Matrix:	
PARAMETER		REPORTING		
	RESULT	LIMIT	UNITS	MDL
Styrene	ND	1.0	ug/L	0.25
1,1,2,2-Tetrachloroethane	ND	1.0	ug/L	0.22
1,2,4-Trichloro-	ND	1.0	ug/L	0.11
benzene		•	٠.	
Tetrachloroethene	ND	1.0	ug/L	0.088
1,1,1-Trichloroethane	ND	1.0	ug/L	0.11
1,1,2-Trichloroethane	ND	1.0	ug/L	0.11
Trichloroethene	0.36 J	1.0	ug/L	0.22
Trichlorofluoromethane	ND	1.0	ug/L	0.17
1,1,2-Trichloro-	ND	1.0	ug/L	0.14
1,2,2-trifluoroethane			J.	
Toluene	ND	1.0	ug/L	0.21
Vinyl chloride	ND	1.0	ug/L	0.11
Xylenes (total)	ND	3.0	ug/L	0.20
	PERCENT	RECOVERY		
SURROGATE	RECOVERY	LIMITS		
Toluene-d8	98	(71 - 118)		
1,2-Dichloroethane-d4	122	(64 - 135)		•
4-Bromofluorobenzene	97	(70 - 118)		
Dibromofluoromethane	113	(64 - 128)		

J Estimated result. Result is less than RL.

NOTE(S):

Client Sample ID: FMC 22

GC/MS Volatiles

Lot-Sample #...: C7K020216-010 Work Order #...: KAE1R1AN Matrix...: WATER

Date Sampled...: 10/31/07 Date Received..: 11/02/07 MS Run #....: 7312348

 Prep Date....: 11/08/07
 Analysis Date..: 11/09/07

 Prep Batch #...: 7312657
 Analysis Time..: 03:57

Dilution Factor: 1 Initial Wgt/Vol: 5 mL Final Wgt/Vol.: 5 mL

Analyst ID....: 403419 Instrument ID..: HP6

Method.....: SW846 8260B

		REPORTI	REPORTING		
PARAMETER	RESULT	LIMIT	UNITS	MDL	
Acetone	2.6 J	5.0	ug/L	2.5	*****
Benzene	ND	1.0	ug/L	0.19	
Bromodichloromethane	ND	1.0	ug/L	0.099	
Bromoform	ND	1.0	ug/L	0.27	
Bromomethane	ND	1.0	ug/L	0.18	
2-Butanone	ND	5.0	ug/L	0.65	
Carbon disulfide	ND	1.0	ug/L	0.11	
Carbon tetrachloride	ND	1.0	ug/L	0.22	
Chlorobenzene	ND	1.0	ug/L	0.33	
Chloroethane	ND	1.0	ug/L	0.11	
Chloroform	ND	1.0	ug/L	0.068	
Chloromethane	0.15 Ј	1.0	ug/L	0.14	
Cyclohexane	ND	1.0	ug/L	0.11	
Dibromochloromethane	ND	1.0	ug/L	0.20	
1,2-Dibromo-3-chloro-	ND	1.0	ug/L	0.26	
propane			49/11	0.26	
1,2-Dibromoethane	ND	1.0	ug/L	0.15	
1,3-Dichlorobenzene	ND	1.0	ug/L	0.10	
1,4-Dichlorobenzene	ND	1.0	ug/L	0.10	
1,2-Dichlorobenzene	ND	1.0	ug/L	0.086	
Dichlorodifluoromethane	ND	1.0	ug/L	0.23	
1,1-Dichloroethane	ND	1.0	ug/L	0.19	
1,2-Dichloroethane	ND	1.0	ug/L	0.076	
1,1-Dichloroethene	ND	1.0	ug/L	0.17	
cis-1,2-Dichloroethene	0.30 J	1.0	ug/L	0.090	
trans-1,2-Dichloroethene	ND	1.0	ug/L	0.097	
1,2-Dichloropropane	ND	1.0	ug/L	0.24	
cis-1,3-Dichloropropene	ND	1.0	ug/L	0.13	
trans-1,3-Dichloropropene	ND	1.0	ug/L	0.15	
Ethylbenzene	ND	1.0	ug/L	0.066	
2-Hexanone	ND	5.0	ug/L	0.55	
Isopropylbenzene	ND	1.0	ug/L	0.55	
Methyl acetate	ND	1.0	ug/L	0.17	
Methylene chloride	ND	1.0	ug/L		
Methylcyclohexane	ND	1.0	ug/L ug/L	0.19 0.18	
4-Methyl-2-pentanone	ND	5.0	ug/L		
Methyl tert-butyl ether	ND	1.0	-	0.61	
-4	-12	1.0	ug/L	0.13	

Client Sample ID: FMC 22

GC/MS Volatiles

Matrix..... WATER

		REPORTIN	IG	
PARAMETER	RESULT	LIMIT	UNITS	MDL
Styrene	ND	1.0	ug/L	0.25
1,1,2,2-Tetrachloroethane	ND	1.0	ug/L	0.22
1,2,4-Trichloro- benzene	ND	1.0	ug/L	0.11
Tetrachloroethene	ND	1.0	ug/L	0.088
1,1,1-Trichloroethane	ND	1.0	ug/L	0.11
1,1,2-Trichloroethane	ND	1.0	ug/L	0.11
Trichloroethene	0.45 J	1.0	ug/L	0.22
Trichlorofluoromethane	ND	1.0	ug/L	0.17
1,1,2-Trichloro- 1,2,2-trifluoroethane	ND	1.0	ug/L	0.14
Toluene	ND	1.0	ug/L	0.21
Vinyl chloride	ND	1.0	ug/L	0.11
Xylenes (total)	ND	3.0	ug/L	0.20
	PERCENT	RECOVERY		

SURROGATE	PERCENT RECOVERY	RECOVERY LIMITS	
Toluene-d8	98	(71 - 118)	
1,2-Dichloroethane-d4	122	(64 - 135)	
4-Bromofluorobenzene	93	(70 - 118)	
Dibromofluoromethane	112	(64 - 128)	

Lot-Sample #...: C7K020216-010 Work Order #...: KAE1R1AN

NOTE(S):

J Estimated result. Result is less than RL.

Client Sample ID: FMC 3

GC/MS Volatiles

Lot-Sample #...: C7K020216-011 Work Order #...: KAE101AN Date Sampled...: 10/31/07

Prep Date....: 11/08/07 **Prep Batch #...:** 7312657

Dilution Factor: 1 Analyst ID....: 403419 Date Received..: 11/02/07 Analysis Date..: 11/09/07

Analysis Time..: 04:20 Initial Wgt/Vol: 5 mL

Instrument ID..: HP6

Method..... SW846 8260B

REPORTING

Matrix....: WATER MS Run #..... 7312348

Final Wgt/Vol..: 5 mL

		REPORTI.	NG		
PARAMETER	RESULT	LIMIT	UNITS	MDL	
Acetone	5.4	5.0	ug/L	2.5	
Benzene	ND	1.0	ug/L	0.19	
Bromodichloromethane	ND	1.0	ug/L	0.099	
Bromoform	ND	1.0	ug/L	0.27	
Bromomethane	ND	1.0	ug/L	0.18	
2-Butanone	ND	5.0	ug/L	0.65	
Carbon disulfide	ND	1.0	ug/L	0.11	
Carbon tetrachloride	ND	1.0	ug/L	0.22	
Chlorobenzene	ND	1.0	ug/L	0.33	
Chloroethane	ND	1.0	ug/L	0.11	
Chloroform	ND	1.0	ug/L	0.068	
Chloromethane	0.26 J	1.0	ug/L	0.14	
Cyclohexane	ND	1.0	ug/L	0.11	
Dibromochloromethane	ND	1.0	ug/L	0.20	
1,2-Dibromo-3-chloro- propane	ND	1.0	ug/L	0.26	
1,2-Dibromoethane	ND	1.0	ug/L	0.15	
1,3-Dichlorobenzene	ND	1.0	ug/L ug/L	0.10	
1,4-Dichlorobenzene	ND	1.0	ug/L	0.10	
1,2-Dichlorobenzene	ND	1.0	ug/L	0.10	
Dichlorodifluoromethane	ND	1.0	ug/L	0.23	
1,1-Dichloroethane	ND	1.0	ug/L	0.23	
1,2-Dichloroethane	ND	1.0	ug/L	0.076	
1,1-Dichloroethene	ND	1.0	ug/L	0.17	
cis-1,2-Dichloroethene	0.25 J	1.0	ug/L	0.090	
trans-1,2-Dichloroethene	ND	1.0	ug/L	0.097	
1,2-Dichloropropane	ND	1.0	ug/L	0.24	
cis-1,3-Dichloropropene	ND	1.0	ug/L	0.13	
trans-1,3-Dichloropropene	ND	1.0	ug/L	0.16	
Ethylbenzene	ND	1.0	ug/L	0.066	
2-Hexanone	ND	5.0	ug/L	0.55	
Isopropylbenzene	ND	1.0	ug/L	0.27	
Methyl acetate	ND	1.0	ug/L	0.17	
Methylene chloride	ND	1.0	ug/L	0.19	
Methylcyclohexane	ND .	1.0	ug/L	0.19	
4-Methyl-2-pentanone	ND	5.0	ug/L	0.61	
Methyl tert-butyl ether	ND	1.0	ug/L	0.13	
- -		- •	31	4.22	

Client Sample ID: FMC 3

GC/MS Volatiles

Lot-Sample #: C7K020216-011	Work Order	#: KAE101AN	Matrix:	WATER
-----------------------------	------------	-------------	---------	-------

		REPORTIN	G		
PARAMETER	RESULT	LIMIT	UNITS	MDL	
Styrene	ND	1.0	ug/L	0.25	
1,1,2,2-Tetrachloroethane	ND	1.0	ug/L	0.22	
1,2,4-Trichloro-	ND	1.0	ug/L	0.11	
benzene			57		
Tetrachloroethene	ND	1.0	ug/L	0.088	
1,1,1-Trichloroethane	ND	1.0	ug/L	0.11	
1,1,2-Trichloroethane	ND	1.0	ug/L	0.11	
Trichloroethene	0.53 J	1.0	ug/L	0.22	
Trichlorofluoromethane	ND	1.0	ug/L	0.17	
1,1,2-Trichloro-	ND	1.0	ug/L	0.14	
1,2,2-trifluoroethane			5,7 —	0.22	
Toluene	ND	1.0	ug/L	0.21	
Vinyl chloride	ND	1.0	ug/L	0.11	
Xylenes (total)	ND	3.0	ug/L	0.20	
	PERCENT	RECOVERY			
SURROGATE	RECOVERY	LIMITS			
Toluene-d8	92	(71 - 118	3)		
1,2-Dichloroethane-d4	122	(64 - 135	-		
4-Bromofluorobenzene	93	(70 - 118			
Dibromofluoromethane	117	(64 - 128	•		
NOTE (S):					

J Estimated result. Result is less than RL.

Client Sample ID: FMC 5

GC/MS Volatiles

Lot-Sample #...: C7K020216-012 Work Order #...: KAE151AN Matrix....: WATER

Date Sampled...: 10/31/07 Date Received..: 11/02/07 MS Run #....: 7312348

Prep Date....: 11/08/07 Analysis Date..: 11/09/07 Prep Batch #...: 7312657 Analysis Time..: 04:43

Dilution Factor: 1 Initial Wgt/Vol: 5 mL Final Wgt/Vol.: 5 mL

Analyst ID....: 403419 Instrument ID..: HP6

Method.....: SW846 8260B

		REPORTING			
PARAMETER	RESULT	LIMIT	UNITS	MDL	
Acetone	2.8 J	5.0	ug/L	2.5	
Benzene	ND	1.0	ug/L	0.19	
Bromodichloromethane	ND	1.0	ug/L	0.099	
Bromoform	ND	1.0	ug/L	0.27	
Bromomethane	ND	1.0	ug/L	0.18	
2-Butanone	ND	5.0	ug/L	0.65	
Carbon disulfide	ND	1.0	ug/L	0.11	
Carbon tetrachloride	ND	1.0	ug/L	0.22	
Chlorobenzene	ND	1.0	ug/L	0.33	
Chloroethane	ND	1.0	ug/L	0.11	
Chloroform	ND	1.0	ug/L	0.068	
Chloromethane	ND	1.0	ug/L	0.14	
Cyclohexane	ND	1.0	ug/L	0.11	
Dibromochloromethane	ND	1.0	ug/L	0.20	
1,2-Dibromo-3-chloro-	ND	1.0	ug/L	0.26	:
propane			- -		
1,2-Dibromoethane	ND	1.0	ug/L	0.15	
1,3-Dichlorobenzene	ND	1.0	ug/L	0.10	
1,4-Dichlorobenzene	ND	1.0	ug/L	0.10	
1,2-Dichlorobenzene	ND	1.0	ug/L	0.086	
Dichlorodifluoromethane	ND	1.0	ug/L	0.23	
1,1-Dichloroethane	ND	1.0	ug/L	0.19	
1,2-Dichloroethane	ND	1.0	ug/L	0.076	
1,1-Dichloroethene	ND	1.0	ug/L	0.17	
cis-1,2-Dichloroethene	0.18 J	1.0	ug/L	0.090	
trans-1,2-Dichloroethene	ND	1.0	ug/L	0.097	
1,2-Dichloropropane	ND	1.0	ug/L	0.24	
cis-1,3-Dichloropropene	ND	1.0	ug/L	0.13	
trans-1,3-Dichloropropene	ND	1.0	ug/L	0.16	
Ethylbenzene	ND	1.0	ug/L	0.066	
2-Hexanone	ND	5.0	ug/L	0.55	
Isopropylbenzene	ND	1.0	ug/L	0.27	
Methyl acetate	ND	1.0	ug/L	0.17	
Methylene chloride	ND	1.0	ug/L	0.19	
Methylcyclohexane	ND	1.0	ug/L	0.18	
4-Methyl-2-pentanone	ND	5.0	ug/L	0.61	
Methyl tert-butyl ether	ND	1.0	ug/L	0.13	

Client Sample ID: FMC 5

GC/MS Volatiles

Lot-Sample #: C7K020216-012	Work Order #: KAE151AN	Matrix WATER
-----------------------------	------------------------	--------------

		REPORTIN	G	
PARAMETER	RESULT	LIMIT	UNITS	MDL
Styrene	ND	1.0	ug/L	0.25
1,1,2,2-Tetrachloroethane	ND	1.0	ug/L	0.22
1,2,4-Trichloro-	ND	1,0	ug/L	0.11
benzene			37	0.11
Tetrachloroethene	ND	1.0	ug/L	0.088
1,1,1-Trichloroethane	ND	1.0	ug/L	0.11
1,1,2-Trichloroethane	ND	1.0	ug/L	0.11
Trichloroethene	0.50 J	1.0	ug/L	0.22
Trichlorofluoromethane	ND	1.0	ug/L	0.17
1,1,2-Trichloro-	ND	1.0	ug/L	0.14
1,2,2-trifluoroethane			ug/ 1	0.14
Toluene	ND	1.0	ug/L	0.21
Vinyl chloride	ND	1.0	ug/L	0.11
Xylenes (total)	ND	3.0	ug/L	0.20
		• • •	49,1	0.20
	PERCENT	RECOVERY		•
SURROGATE	RECOVERY	LIMITS		
Toluene-d8	95	(71 - 118	2)	
1,2-Dichloroethane-d4	118	(64 - 135	•	
4-Bromofluorobenzene	97	(70 - 118		
Dibromofluoromethane	113	(64 - 128	•	

NOTE (S):

J Estimated result. Result is less than RL.

Client Sample ID: FMC 7

GC/MS Volatiles

Lot-Sample #: Date Sampled: Prep Date:	10/31/07 11/08/07	Work Order #: Date Received: Analysis Date:	11/02/07	Matrix: MS Run #:	
Prep Batch #:	7312657	Analysis Time:	05:07		
Dilution Factor:	1	Initial Wgt/Vol:		Final Wgt/Vol:	5 mL
Analyst ID:	403419	Instrument ID:	HP6		
		Method:	SW846 8260B		

REPORTING PARAMETER RESULT LIMIT

PARAMETER	RESULT	LIMIT	UNITS	MDL
Acetone	4.6 J	5.0	ug/L	2.5
Benzene	ND	1.0	ug/L	0.19
Bromodichloromethane	ND	1.0	ug/L	0.099
Bromoform	ND	1.0	ug/L	0.27
Bromomethane	ND	1.0	ug/L	0.18
2-Butanone	ND	5.0	ug/L	0.65
Carbon disulfide	ND	1.0	ug/L	0.11
Carbon tetrachloride	ND	1.0	ug/L	0.22
Chlorobenzene	ND	1.0	ug/L	0.33
Chloroethane	ND	1.0	ug/L	0.11
Chloroform	ND	1.0	ug/L	0.068
Chloromethane	0.19 Ј	1.0	ug/L	0.068
Cyclohexane	ND	1.0	ug/L	
Dibromochloromethane	ND	1.0	ug/L	0.11
1,2-Dibromo-3-chloro-	ND	1.0	ug/L ug/L	0.20
propane		1.0	ug/L	0.26
1,2-Dibromoethane	ND	1.0	~ /T	0.15
1,3-Dichlorobenzene	ND	1.0	ug/L ug/L	0.15
1,4-Dichlorobenzene	ND	1.0	-	0.10
1,2-Dichlorobenzene	ND	1.0	ug/L	0.10
Dichlorodifluoromethane	ND	1.0	ug/L	0.086
1,1-Dichloroethane	ND	1.0	ug/L	0.23
1,2-Dichloroethane	ND	1.0	ug/L	0.19
1,1-Dichloroethene	ND	1.0	ug/L	0.076
cis-1,2-Dichloroethene	0.18 Ј	1.0	ug/L	0.17
trans-1,2-Dichloroethene	ND	1.0	ug/L	0.090
1,2-Dichloropropane	ND	1.0	ug/L	0.097
cis-1,3-Dichloropropene	ND		ug/L	0.24
trans-1,3-Dichloropropene	ND	1.0	ug/L	0.13
Ethylbenzene	ND	1.0	ug/L	0.16
2-Hexanone	ND	1.0	ug/L	0.066
Isopropylbenzene	ND	5.0	ug/L	0.55
Methyl acetate	ND	1.0	ug/L	0.27
Methylene chloride	ND	1.0	ug/L	0.17
Methylcyclohexane	ND	1.0	ug/L	0.19
4-Methyl-2-pentanone	ND ND	1.0	ug/L	0.18
Methyl tert-butyl ether		5.0	ug/L	0.61
cere-bucyr ecner	ND	1.0	ug/L	0.13

Client Sample ID: FMC 7

GC/MS Volatiles

LOC-Sample #: C7K020216-01	Work Order #: KAE191AN	Matrix WATED
----------------------------	------------------------	--------------

DADAMONO		REPORTING	}	
PARAMETER	RESULT	LIMIT	UNITS	MDL
Styrene	ND	1.0	ug/L	0.25
1,1,2,2-Tetrachloroethane	ND	1.0	ug/L	0.22
1,2,4-Trichloro-	ND	1.0	ug/L	0.11
benzene			3,	*****
Tetrachloroethene	ND	1.0	ug/L	0.088
1,1,1-Trichloroethane	ND	1.0	ug/L	0.11
1,1,2-Trichloroethane	ND	1.0	ug/L	0.11
Trichloroethene	0.53 J	1.0	ug/L	0.22
Trichlorofluoromethane	ND	1.0	ug/L	0.17
1,1,2-Trichloro-	ND	1.0	ug/L	0.14
1,2,2-trifluoroethane			3,	
Toluene	ND	1.0	uq/L	0.21
Vinyl chloride	ND	1.0	ug/L	0.11
Xylenes (total)	ND	3.0	ug/L	0.11
			ug/ <u>D</u>	0.20
	PERCENT	RECOVERY		
SURROGATE	RECOVERY	LIMITS		
Toluene-d8	94	(71 - 118	<u>, </u>	
1,2-Dichloroethane-d4	125	(64 - 135)		
4-Bromofluorobenzene	93	(70 - 118)		
Dibromofluoromethane	1.08	(64 - 128)		
NOTE(S):		,	•	

J Estimated result. Result is less than RL.

Client Sample ID: FMC 25

GC/MS Volatiles

 Lot-Sample #...:
 C7K020216-014
 Work Order #...:
 KAE2E1AN
 Matrix...:
 WATER

 Date Sampled...:
 11/01/07
 Date Received..:
 11/02/07
 MS Run #...:
 7312348

 Prep Date....:
 11/08/07
 Analysis Date..:
 11/09/07

Prep Batch #...: 7312657 Analysis Time..: 05:30

Dilution Factor: 1 Initial Wgt/Vol: 5 mL Final Wgt/Vol.: 5 mL

Analyst ID....: 403419 Instrument ID..: HP6

Method.....: SW846 8260B

PARAMETER	RESULT	REPORTI			
Acetone	3.8 J	LIMIT	UNITS	MDL	
Benzene	ND	5.0	ug/L	2.5	
Bromodichloromethane	ND	1.0	ug/L	0.19	
Bromoform	ND	1.0	ug/L	0.099	
Bromomethane	ND	1.0	ug/L	0.27	
2-Butanone	ND	1.0	ug/L	0.18	
Carbon disulfide	ND	5.0	ug/L	0.65	
Carbon tetrachloride	ND	1.0	ug/L	0.11	
Chlorobenzene	ND	1.0	ug/L	0.22	
Chloroethane		1.0	ug/L	0.33	
Chloroform	ND	1.0	ug/L	0.11	
Chloromethane	ND	1.0	\mathtt{ug}/\mathtt{L}	0.068	
Cyclohexane	ND	1.0	ug/L	0.14	
Dibromochloromethane	ND	1.0	ug/L	0.11	
1,2-Dibromo-3-chloro-	ND	1.0	ug/L	0.20	
propane	ND	1.0	ug/L	0.26	
1,2-Dibromoethane	3.773	_			
1,3-Dichlorobenzene	ND	1.0	ug/L	0.15	
1,4-Dichlorobenzene	ND	1.0	ug/L	0.10	
1,2-Dichlorobenzene	ND	1.0	ug/L	0.10	
Dichlorodifluoromethane	ND	1.0	\mathtt{ug}/\mathtt{L}	0.086	
1,1-Dichloroethane	ND	1.0	ug/L	0.23	
1,2-Dichloroethane	ND	1.0	ug/L	0.19	
1,1-Dichloroethene	ND	1.0	ug/L	0.076	
cis-1,2-Dichloroethene	ND	1.0	ug/L	0.17	
trans-1,2-Dichloroethene	ND	1.0	ug/L	0.090	
1,2-Dichloropropane	ND	1.0	ug/L	0.097	
	ND	1.0	ug/L	0.24	
cis-1,3-Dichloropropene	ND	1.0	ug/L	0.13	
trans-1,3-Dichloropropene	ND	1.0	ug/L	0.16	
Ethylbenzene 2-Hexanone	ND	1.0	ug/L	0.066	
· 	ND	5.0	ug/L	0.55	
Isopropylbenzene	ND	1.0	ug/L	0.27	
Methyl acetate	ND	1.0	ug/L	0.17	
Methylene chloride	ND	1.0	\mathtt{ug}/\mathtt{L}	0.19	
Methylcyclohexane	ND	1.0	ug/L	0.18	
4-Methyl-2-pentanone	ND	5.0	u g/L	0.61	
Methyl tert-butyl ether	ND	1.0	ug/L	0.13	

Client Sample ID: FMC 25

GC/MS Volatiles

Lot-Sample #: C7K0202	16-014 Work Order	#: KAE2E1AN	Matrix	WATER
-----------------------	-------------------	-------------	--------	-------

PARAMETER	RESULT	REPORTING LIMIT		1007
Styrene	ND	1.0	UNITS ug/L	MDL 0.25
1,1,2,2-Tetrachloroethane	ND	1.0	ug/L	
1,2,4-Trichloro- benzene	ND	1.0	ug/L	0.22 0.11
Tetrachloroethene	ND	1.0	ug/L	0.088
1,1,1-Trichloroethane	ND	1.0	ug/L	0.11
1,1,2-Trichloroethane	ND	1.0	ug/L	0.11
Trichloroethene	ND	1.0	ug/L	0.11
Trichlorofluoromethane	ND	1.0	ug/L	0.17
1,1,2-Trichloro-	ND	1.0	ug/L	0.14
1,2,2-trifluoroethane			•	
Toluene	ND	1.0	ug/L	0.21
Vinyl chloride	ND	1.0	ug/L	0.11
Xylenes (total)	ND	3.0	ug/L	0.20
	PERCENT	RECOVERY		
SURROGATE	RECOVERY	LIMITS		
Toluene-d8	99	(71 - 118)		
1,2-Dichloroethane-d4	121	(64 - 135)		
4-Bromofluorobenzene	94	(70 - 118)		
Dibromofluoromethane	111	(64 - 128)		
NOTE(S):				

J Estimated result. Result is less than RL.

Client Sample ID: FMC 26

GC/MS Volatiles

Lot-Sample #: C7K020216-015 Date Sampled: 11/01/07 Prep Date: 11/08/07	Work Order #: KAE2J1AN Date Received: 11/02/07 Analysis Date: 11/09/07	Matrix: WATER MS Run #: 7312348
Prep Batch #: 7312657	Analysis Time: 05:53	•
Dilution Factor: 1	Initial Wgt/Vol: 5 mL	Final Wgt/Vol: 5 mL
Analyst ID: 403419	Instrument ID: HP6	

Method.....: SW846 8260B

		REPORTII	NG		
PARAMETER	RESULT	LIMIT	UNITS	MDL	
Acetone	2.7 J	5.0	ug/L	2.5	
Benzene	ND	1.0	ug/L	0.19	
Bromodichloromethane	ND	1.0	ug/L	0.099	
Bromoform	, ND	1.0	ug/L	0.27	
Bromomethane	ND	1.0	ug/L	0.18	
2-Butanone	ND	5.0	ug/L	0.65	
Carbon disulfide	ND	1.0	ug/L	0.11	
Carbon tetrachloride	ND	1.0	ug/L	0.22	
Chlorobenzene	ND	1.0	ug/L	0.33	
Chloroethane	ND	1.0	ug/L	0.11	
Chloroform	ND	1.0	ug/L	0.068	
Chloromethane	0.14 J	1.0	ug/L	0.14	
Cyclohexane	ND	1.0	ug/L	0.11	
Dibromochloromethane	ND	1.0	ug/L	0.20	
1,2-Dibromo-3-chloro-	ND	1.0	ug/L	0.26	
propane					
1,2-Dibromoethane	ND	1.0	ug/L	0.15	
1,3-Dichlorobenzene	ND	1.0	ug/L	0.10	
1,4-Dichlorobenzene	ND	1.0	ug/L	0.10	
1,2-Dichlorobenzene	ND	1.0	ug/L	0.086	
Dichlorodifluoromethane	ND	1.0	ug/L	0.23	
1,1-Dichloroethane	ND	1.0	ug/L	0.19	
1,2-Dichloroethane	ND	1.0	ug/L	0.076	
1,1-Dichloroethene	ND	1.0	ug/L	0.17	
cis-1,2-Dichloroethene	ND	1.0	ug/L	0.090	
trans-1,2-Dichloroethene	ND	1.0	ug/L	0.097	
1,2-Dichloropropane	ND	1.0	ug/L	0.24	
cis-1,3-Dichloropropene	ND	1.0	ug/L	0.13	
trans-1,3-Dichloropropene	ND	1.0	ug/L	0.16	
Ethylbenzene	ND	1.0	ug/L	0.066	
2-Hexanone	ND	5.0	ug/L	0.55	
Isopropylbenzene	ND	1.0	ug/L	0.27	
Methyl acetate	ND	1.0	ug/L	0.17	
Methylene chloride	ND	1.0	ug/L	0.19	
Methylcyclohexane	ND	1.0	ug/L	0.18	
4-Methyl-2-pentanone	ND	5.0	ug/L	0.61	
Methyl tert-butyl ether	ND	1.0	ug/L	0.13	

Client Sample ID: FMC 26

GC/MS Volatiles

Lot-Sample #: C7K020216-0				C WAT
PARAMETER	RESULT	REPORTING LIMIT	UNITS	MDL
Styrene	ND	1.0	ug/L	0.25
1,1,2,2-Tetrachloroethane	ND	1.0	ug/L	0.23
1,2,4-Trichloro- benzene	ND	1.0	ug/L	0.11
Tetrachloroethene	ND	1.0	ug/L	0.088
1,1,1-Trichloroethane	ND	1.0	ug/L	0.11
1,1,2-Trichloroethane	ND	1.0	ug/L	0.11
Trichloroethene	ND	1.0	ug/L	0.22
Trichlorofluoromethane	ND	1.0	ug/L	0.22
1,1,2-Trichloro- 1,2,2-trifluoroethane	ND	1.0	ug/L	0.14
Toluene	ND	1.0	ug/L	0,21
Vinyl chloride	ND	1.0	ug/L ug/L	0.21
Xylenes (total)	ND	3.0	ug/L	0.20
	PERCENT	RECOVERY		
SURROGATE	RECOVERY	LIMITS		
Toluene-d8	96	(71 - 118)	· ·	
1,2-Dichloroethane-d4	126	(64 - 135)		
1-Promoflyonohouses		,== ±55,		

(70 - 118)

(64 - 128)

92

113

NOTE(S):

4-Bromofluorobenzene

Dibromofluoromethane

I Estimated result. Result is less than RL.

Client Sample ID: TripBlank#1

GC/MS Volatiles

Lot-Sample #...: C7K020216-016 Work Order #...: KAE2L1AA Matrix...: WATER

Date Sampled...: 10/30/07 Date Received..: 11/02/07 MS Run #...: 7312348

Prep Date....: 11/08/07 Analysis Date..: 11/09/07

Prep Batch #...: 7312657 Analysis Time..: 03:10

Dilution Factor: 1 Initial Wgt/Vol: 5 mL Final Wgt/Vol..: 5 mL

Analyst ID....: 403419 Instrument ID.: HP6

Method.....: SW846 8260B

		REPORTI	NG		
PARAMETER	RESULT	LIMIT	UNITS	MDL	
Acetone	3.3 J	5.0	ug/L	2.5	
Benzene	ND	1.0	ug/L	0.19	
Bromodichloromethane	ND	1.0	ug/L	0.099	
Bromoform	ND	1.0	ug/L	0.27	
Bromomethane	ND	1.0	ug/L	0.18	
2-Butanone	ND	5.0	ug/L	0.65	
Carbon disulfide	ND	1.0	ug/L	0.11	
Carbon tetrachloride	ND	1.0	ug/L	0.22	
Chlorobenzene	ND	1.0	ug/L	0.33	
Chloroethane	ND	1.0	ug/L	0.11	
Chloroform	ND	1.0	ug/L	0.068	
Chloromethane	ND	1.0	ug/L	0.14	
Cyclohexane	ND	1.0	ug/L	0.11	
Dibromochloromethane	ND	1.0	ug/L	0.20	
1,2-Dibromo-3-chloro-	ND	1.0	ug/L	0.26	
propane	•	•	3,	0.20	
1,2-Dibromoethane	ND	1.0	ug/L	0.15	
1,3-Dichlorobenzene	ND	1.0	ug/L	0.10	
1,4-Dichlorobenzene	ND	1.0	ug/L	0.10	
1,2-Dichlorobenzene	ND	1.0	ug/L	0.086	
Dichlorodifluoromethane	ND	1.0	ug/L	0.23	
1,1-Dichloroethane	ND	1.0	ug/L	0.19	
1,2-Dichloroethane	ND	1.0	ug/L	0.076	
1,1-Dichloroethene	ND	1.0	ug/L	0.17	
cis-1,2-Dichloroethene	ND	1.0	ug/L	0.090	
trans-1,2-Dichloroethene	ND	1.0	ug/L	0.097	
1,2-Dichloropropane	ND	1.0	ug/L	0.24	
cis-1,3-Dichloropropene	ND	1.0	ug/L	0.13	
trans-1,3-Dichloropropene	ND	1.0	ug/L	0.16	
Ethylbenzene	ND	1.0	ug/L	0.066	
2-Hexanone	ND	5.0	ug/L	0.55	
Isopropylbenzene	ND	1.0	ug/L	0.27	
Methyl acetate	ND	1.0	ug/L	0.17	
Methylene chloride	ND	1.0	ug/L	0.19	
Methylcyclohexane	ND	1.0	ug/L	0.18	
4-Methyl-2-pentanone	ND	5.0	ug/L	0.61	
Methyl tert-butyl ether	ND	1.0	ug/L	0.13	
				· ,	

Client Sample ID: TripBlank#1

GC/MS Volatiles

Lot-Sample #: C7K020216-016	Work Order #: KAE2L1AA	Matrix WATER

	REPORTING		
RESULT	LIMIT	UNITS	MDL
ND	1.0		0.25
ND	1.0	- :.	0.22
ND	1.0	•	0.11
		3/	
ND	1.0	11cr/T.	0.088
ND			0.11
ND	· •		0.11
ND		_	0.22
ND		- :	0.17
ND		•	0.14
		ug/L	0.14
0.24 Ј	1.0	ng/t.	0.21
ND		-	0.11
ND	3.0	ug/L	0.20
PERCENT	RECOVERY		
		-	
123			
92	•		
116	(64 - 128)		
	ND 23	ND 1.0 ND	ND 1.0 ug/L ND 1.0 ug/L

J Estimated result. Result is less than RL.

Client Sample ID: TripBlank#2

GC/MS Volatiles

Lot-Sample #...: C7K020216-017 Work Order #...: KAE211AA Matrix...: WATER Date Sampled...: 10/30/07 Date Received..: 11/02/07 Prep Date....: 11/08/07 Analysis Date..: 11/09/07 Prep Batch #...: 7312657 Analysis Time..: 06:17 Dilution Factor: 1 Initial Wgt/Vol: 5 mL Analyst ID....: 403419 Instrument ID..: HP6

Method.....: SW846 8260B

REPORTING PARAMETER RESULT LIMIT UNITS MDL Acetone 11 5.0 uq/L 2.5 Benzene ND 1.0 ug/L 0.19 Bromodichloromethane ND 1.0 uq/L 0.099 Bromoform ND 1.0 ug/L 0.27 Bromomethane ND 1.0 ug/L 0.18 2-Butanone ND 5.0 ug/L 0.65 Carbon disulfide ND 1.0 ug/L 0.11 Carbon tetrachloride ND 1.0 ug/L 0.22 Chlorobenzene ND 1.0 uq/L 0.33 Chloroethane ND 1.0 ug/L 0.11 Chloroform ND 1.0 ug/L 0.068 Chloromethane 0.15 J 1.0 uq/L 0.14 Cyclohexane ND 1.0 ug/L 0.11 Dibromochloromethane ND 1.0 ug/L 0.20 1,2-Dibromo-3-chloro-ND 1.0 ug/L 0.26 propane 1,2-Dibromoethane ND 1.0 uq/L 0.15 1,3-Dichlorobenzene ND 1.0 ug/L 0.10 1,4-Dichlorobenzene ND 1.0 ug/L 0.10 1.2-Dichlorobenzene ND 1.0 ug/L 0.086 Dichlorodifluoromethane ND 1.0 ug/L 0.23 1,1-Dichloroethane ND 1.0 ug/L 0.19 1,2-Dichloroethane ND 1.0 ug/L 0.076 1,1-Dichloroethene ND 1.0 ug/L 0.17 cis-1,2-Dichloroethene ND ug/L 1.0 0.090 trans-1,2-Dichloroethene ND 1.0 ug/L 0.097 1,2-Dichloropropane ND 1.0 ug/L 0.24 cis-1,3-Dichloropropene ND 1.0 ug/L 0.13 trans-1,3-Dichloropropene ND 1.0 ug/L 0.16 Ethylbenzene ND 1.0 ug/L 0.066 2-Hexanone ND 5.0 uq/L 0.55 Isopropylbenzene ND 1.0 ug/L 0.27 Methyl acetate ND 1.0 ug/L 0.17 Methylene chloride ND 1.0 ug/L 0.19 Methylcyclohexane ND 1.0 ug/L 0.18 4-Methyl-2-pentanone ND 5.0 ug/L 0.61 Methyl tert-butyl ether ND 1.0 ug/L 0.13

Client Sample ID: TripBlank#2

GC/MS Volatiles

Lot-Sample #: C7K020216-017	Work Order	: KAE211AA	Matrix:	WATER
-----------------------------	------------	------------	---------	-------

		REPORTIN	1G		
PARAMETER	RESULT	LIMIT	UNITS	MDL	
Styrene	ND	1.0	ug/L	0.25	
1,1,2,2-Tetrachloroethane	ND	1.0	ug/L	0.22	
1,2,4-Trichloro- benzene	ND	1.0	ug/L	0.11	
Tetrachloroethene	ND	1.0	ug/L	0.088	
1,1,1-Trichloroethane	ND	1.0	ug/L	0.11	
1,1,2-Trichloroethane	ND	1.0	ug/L	0.11	
Trichloroethene	ND	1.0	ug/L	0.22	
Trichlorofluoromethane	ND	1.0	ug/L	0.17	
1,1,2-Trichloro- 1,2,2-trifluoroethane	ND	1.0	ug/L	0.14	
Toluene	0.39 J	1.0	ug/L	0.21	
Vinyl chloride	ND	1.0	ug/L	0.11	
Xylenes (total)	ND	3.0	ug/L	0.20	
	PERCENT	RECOVERY	· [
SURROGATE	RECOVERY	LIMITS			
Toluene-d8	93	(71 - 11	.8)		
1,2-Dichloroethane-d4	122	(64 - 13	5)		
4-Bromofluorobenzene	91	(70 - 11	.8)		
Dibromofluoromethane	111	(64 - 12	-		

I Estimated result. Result is less than RL.

GC/MS SEMIVOLATILE SUMMARY

Client Sample ID: FMC 24

GC/MS Semivolatiles

Lot-Sample #...: C7K020216-001 Work Order #...: KAEX31AC Matrix...: WATER

Date Sampled...: 10/30/07 13:35 Date Received..: 11/02/07 09:20 MS Run #...: 7310082

Prep Date...: 11/06/07 Analysis Date..: 11/24/07

Prep Batch #...: 7310138 Analysis Time..: 11:21

Dilution Factor: 1.19 Initial Wgt/Vol: 840 mL Final Wgt/Vol.: 1 mL

Analyst ID....: 003200 Instrument ID.:: 733

Method....: SW846 8270C

		REPORTING				
PARAMETER	RESULT	LIMIT	UNITS	MDL		
Acenaphthene	ND	0.24	ug/L	0.062		
Acenaphthylene	ND	0.24	ug/L	0.055		
Acetophenone	ND	1.2	ug/L	0.055		
Anthracene	ND	0.24	ug/L	0.060		
Atrazine	ND	1.2	ug/L	0.046		
Benzo(a) anthracene	ND .	0.24	ug/L	0.049		
Benzo(a)pyrene	ND	0.24	ug/L	0.052		
Benzo(b)fluoranthene	ND	0.24	ug/L	0.037		
Benzo(ghi)perylene	ND	0.24	ug/L	0.033		
Benzo(k)fluoranthene	ND	0.24	ug/L	0.047		
Benzaldehyde	ND	1.2	ug/L	0.064		
1,1'-Biphenyl	ND	1.2	ug/L	0.072		
bis(2-Chloroethoxy)	ND	1.2	ug/L	0.14		
methane	•					
bis(2-Chloroethyl)-	ND	0.24	ug/L	0.055		
ether		•				
bis(2-Ethylhexyl)	0.50 J	1.2	ug/L	0.14		
phthalate						
4-Bromophenyl phenyl	ND	1.2	ug/L	0.059		
ether			_			
Butyl benzyl phthalate	0.37 J	1.2	ug/L	0.16		
Caprolactam	ND	1.2	ug/L	0.22		
Carbazole	ND	0.24	ug/L	0.062		
4-Chloroaniline	ND	1.2	ug/L	0.055		
4-Chloro-3-methylphenol	ND	1.2	ug/L	0.070		
2-Chloronaphthalene	ND	0.24	ug/L	0.053		
2-Chlorophenol	ND	1.2	ug/L	0.054		
4-Chlorophenyl phenyl	ND	1.2	ug/L	0.051		
ether						
Chrysene	ND	0.24	ug/L	0.042		
Dibenz(a,h)anthracene	ND	0.24	ug/L	0.041		
Dibenzofuran	ND	1.2	ug/L	0.064		
3,3'-Dichlorobenzidine	ND	1.2	ug/L	0.049		
2,4-Dichlorophenol	ND	0.24	ug/L	0.058		
Diethyl phthalate	ND	1.2	ug/L	0.29		
2,4-Dimethylphenol	ND	1.2	ug/L	0.062		
Dimethyl phthalate	ND	1.2	ug/L	0.050		

Client Sample ID: FMC 24

GC/MS Semivolatiles

Lot-Sample #...: C7K020216-001 Work Order #...: KAEX31AC Matrix..... WATER

		REPORTIN	1G	
PARAMETER	RESULT	LIMIT	UNITS	MDL
Di-n-butyl phthalate	ND	1.2	ug/L	0.055
4,6-Dinitro-	ND	6.0	ug/L	1.7
2-methylphenol		÷	3,	
2,4-Dinitrophenol	ND	6.0	ug/L	1.5
2,4-Dinitrotoluene	ND	1.2	ug/L	0.054
2,6-Dinitrotoluene	ND	1.2	ug/L	0.060
Di-n-octyl phthalate	ND	1.2	ug/L	0.051
Fluoranthene	ND	0.24	ug/L	0.059
Fluorene	ND	0.24	ug/L	0.065
Hexachlorobenzene	ND	0.24	ug/L	0.052
Hexachlorobutadiene	ND	0.24	ug/L	0.045
Hexachlorocyclopenta-	ND	1.2	ug/L	0.095
diene			J ,	·
Hexachloroethane	ND	1.2	ug/L	0.052
Indeno(1,2,3-cd)pyrene	ND	0.24	ug/L	0.057
Isophorone	ND	1.2	ug/L	0.056
2-Methylnaphthalene	ND	0.24	ug/L	0.056
2-Methylphenol	ND	1.2	ug/L	0.061
4-Methylphenol	ND	1.2	ug/L	0.088
Naphthalene	ND	0.24	ug/L	0.051
2-Nitroaniline	ND	6.0	ug/L	0.057
3-Nitroaniline	ND	6.0	ug/L	0.048
4-Nitroaniline	ND	6.0	ug/L	0.030
Nitrobenzene	ND	0.24	ug/L	0.076
2-Nitrophenol	ND	1.2	ug/L	0.064
4-Nitrophenol	ND	6.0	ug/L	0.084
N-Nitrosodi-n-propyl-	ND	0.24	ug/L	0.071
amine			3,	
N-Nitrosodiphenylamine	ND	0.24	ug/L	0.058
2,2'-oxybis(1-Chloropropane)	ND	0.24	ug/L	0.031
Pentachlorophenol	ND	1.2	ug/L	0.099
Phenanthrene	ND	0.24	ug/L	0.065
Phenol	ND	0.24	ug/L	0.026
Pyrene	ND	0.24	ug/L	0.067
2,4,5-Trichloro-	ND	1.2	ug/L	0.074
phenol			-	
2,4,6-Trichloro-	ND	1.2	ug/L	0.068
phenol			_	

Client Sample ID: FMC 24

GC/MS Semivolatiles

Lot-Sample #...: C7K020216-001 Work Order #...: KAEX31AC

Matrix....: WATER

SURROGATE	PERCENT RECOVERY	RECOVERY LIMITS
Nitrobenzene-d5	70	(23 - 112)
Terphenyl-d14	66	(10 - 132)
2-Fluorobiphenyl	69	(19 - 107)
2-Fluorophenol	59	(10 - 111)
Phenol-d5	66	(15 - 112)
2,4,6-Tribromophenol	77	(16 - 122)

NOTE(S):

J Estimated result. Result is less than RL.

Client Sample ID: FMC 9

GC/MS Semivolatiles

Lot-Sample #...: C7K020216-002 Work Order #...: KAE051AM Matrix....: WATER

Date Sampled...: 10/30/07 15:05 Date Received..: 11/02/07 09:20 MS Run #....: 7310082

Prep Date....: 11/06/07 Analysis Date..: 11/24/07 Prep Batch #...: 7310138 Analysis Time..: 11:49

Dilution Factor: 1.02 Initial Wgt/Vol: 980 mL Final Wgt/Vol.: 1 mL

Analyst ID....: 003200 Instrument ID..: 733

Method.....: SW846 8270C

		REPORTI	₹G		
PARAMETER	<u>RESU</u> LT	LIMIT	UNITS	MDL	
Acenaphthene	ND	0.20	ug/L	0.053	
Acenaphthylene	ND	0.20	ug/L	0.047	
Acetophenone	ND	1.0	ug/L	0.047	
Anthracene	ND	0.20	ug/L	0.052	
Atrazine	ND	1.0	ug/L	0.040	
Benzo (a) anthracene	ND	0.20	ug/L	0.042	
Benzo(a)pyrene	ND	0.20	ug/L	0.045	
Benzo(b) fluoranthene	ND	0.20	ug/L	0.032	
Benzo(ghi)perylene	ND	0.20	ug/L	0.028	
Benzo(k)fluoranthene	ND	0.20	ug/L	0.040	
Benzaldehyde	ND	1.0	ug/L	0.055	
1,1'-Biphenyl	ND	1.0	ug/L	0.061	
bis(2-Chloroethoxy)	ND	1.0	ug/L	0.12	
methane					
bis(2-Chloroethy1)-	ND	0.20	ug/L	0.047	
ether			<u> </u>		
bis(2-Ethylhexyl)	0.14 J	1.0	ug/L	0.12	
phthalate	•				
4-Bromophenyl phenyl	ND	1.0	ug/L	0.051	
ether			2.		
Butyl benzyl phthalate	0.20 J	1.0	ug/L	0.14	
Caprolactam	ND	1.0	ug/L	0.19	
Carbazole	ND	0.20	ug/L	0.053	
4-Chloroaniline	ND	1.0	ug/L	0.047	
4-Chloro-3-methylphenol	ND	1.0	ug/L	0.060	
2-Chloronaphthalene	ND	0.20	ug/L	0.045	
2-Chlorophenol	ND	1.0	ug/L	0.046	
4-Chlorophenyl phenyl	ND	1.0	ug/L	0.043	
ether					
Chrysene	ND	0.20	ug/L	0.036	
Dibenz(a,h)anthracene	ND	0.20	ug/L	0.036	
Dibenzofuran	ND	1.0	ug/L	0.055	
3,3'-Dichlorobenzidine	ND	1.0	ug/L	0.042	
2,4-Dichlorophenol	ND	0.20	ug/L	0.050	
Diethyl phthalate	ND	1.0	ug/L	0.25	
2,4-Dimethylphenol	ND	1.0	ug/L	0.053	
Dimethyl phthalate	ND	1.0	ug/L	0.043	
1 - B		~.0	~5/ H	0.043	

Client Sample ID: FMC 9

GC/MS Semivolatiles

Lot-Sample #...: C7K020216-002 Work Order #...: KAE051AM Matrix..... WATER

Di-n-butyl phthalate			REPORTI	NG		
Di-n-butyl phthalate ND 1.0 ug/L 0.047 4,6-Dinitro ND 5.1 ug/L 1.4 2-methylphenol 2.4-Dinitrophenol ND 1.0 ug/L 0.046 2,4-Dinitrotoluene ND 1.0 ug/L 0.046 2,6-Dinitrotoluene ND 1.0 ug/L 0.052 Di-n-octyl phthalate ND 1.0 ug/L 0.052 Di-n-octyl phthalate ND 0.20 ug/L 0.050 Fluorene ND 0.20 ug/L 0.050 Fluorene ND 0.20 ug/L 0.055 Hexachlorobenzene ND 0.20 ug/L 0.044 Hexachlorobutadiene ND 0.20 ug/L 0.082 Hexachlorothane ND 1.0 ug/L 0.082 Hexachlorothane ND 1.0 ug/L 0.044 Indenotic, 2, 3-cd pyrene ND 0.20 ug/L 0.044 Indenotic, 2, 3-cd pyrene		RESULT			MDL	
2-methylphenol 2,4-Dinitrophenol ND 5.1 ug/L 0.046 2,4-Dinitrotoluene ND 1.0 ug/L 0.046 2,6-Dinitrotoluene ND 1.0 ug/L 0.052 Di-n-octyl phthalate ND 1.0 ug/L 0.055 Pluoranthene ND 0.20 ug/L 0.055 Fluoranthene ND 0.20 ug/L 0.055 Hexachlorobenzene ND 0.20 ug/L 0.038 Hexachlorobtadiene ND 0.20 ug/L 0.038 Hexachlorocyclopenta- ND 0.20 ug/L 0.082 diene Hexachlorocyclopenta- ND 1.0 ug/L 0.044 Indeno(1,2,3-cd) pyrene ND 0.20 ug/L 0.049 Isophorone ND 1.0 ug/L 0.049 Isophorone ND 1.0 ug/L 0.048 2-Methylphenol ND 1.0 ug/L 0.048 2-Methylphenol ND 1.0 ug/L 0.052 4-Methylphenol ND 1.0 ug/L 0.052 A-Methylphenol ND 1.0 ug/L 0.052 A-Methylphenol ND 1.0 ug/L 0.052 A-Methylphenol ND 1.0 ug/L 0.052 A-Methylphenol ND 1.0 ug/L 0.052 A-Methylphenol ND 1.0 ug/L 0.055 Naphthalene ND 5.1 ug/L 0.044 2-Nitroaniline ND 5.1 ug/L 0.049 3-Nitroaniline ND 5.1 ug/L 0.049 A-Nitrophenol ND 1.0 ug/L 0.055 A-Nitrophenol ND 1.0 ug/L 0.055 A-Nitrophenol ND 1.0 ug/L 0.055 A-Nitrophenol ND 1.0 ug/L 0.065 A-Nitrosodi-n-propyl- ND 0.20 ug/L 0.065 A-Nitrosodi-n-propyl- ND 0.20 ug/L 0.065 A-Nitrosodi-n-propyl- ND 0.20 ug/L 0.065 A-Nitrosodi-n-propyl- ND 0.20 ug/L 0.065 Pentachlorophenol ND 1.0 ug/L 0.056 Pentachlorophenol ND 0.20 ug/L 0.065 Pentachlorophenol ND 0.20 ug/L 0.066 Phenol ND 0.20 ug/L 0.085 Phenol 0.20 ug/L 0.086		ND	1.0			
2-methylphenol 2, 4-Dinitrophenol ND 1.0 ug/L 0.046 2, 6-Dinitrotoluene ND 1.0 ug/L 0.052 Di-n-octyl phthalate ND 1.0 ug/L 0.043 Fluoranthene ND 0.20 ug/L 0.055 Fluorene ND 0.20 ug/L 0.055 Flexachlorobenzene ND 0.20 ug/L 0.044 Hexachlorobutadiene ND 0.20 ug/L 0.038 Hexachlorocyclopenta- ND 1.0 ug/L 0.082 diene Hexachlorocyclopenta- ND 1.0 ug/L 0.044 Indeno(1,2,3-cd)pyrene ND 0.20 ug/L 0.044 Indeno(1,2,3-cd)pyrene ND 0.20 ug/L 0.049 Isophorone ND 1.0 ug/L 0.049 Isophorone ND 1.0 ug/L 0.048 2-Methylphenol ND 1.0 ug/L 0.052 4-Methylphenol ND 1.0 ug/L 0.052 4-Methylphenol ND 1.0 ug/L 0.052 Naphthalene ND 0.20 ug/L 0.044 2-Nitroaniline ND 0.20 ug/L 0.044 2-Nitroaniline ND 0.10 ug/L 0.052 Nitrobenzene ND 0.20 ug/L 0.044 2-Nitrophenol ND 0.10 ug/L 0.055 4-Nitrophenol ND 0.20 ug/L 0.044 2-Nitrosodi-n-propyl- amine ND 0.20 ug/L 0.055 4-Nitrosodi-n-propyl- nmire ND 0.20 ug/L 0.056 Pentachlorophenol ND 0.20 ug/L 0.056 Phenol ND 0.20 ug/L 0.056 Phenol ND 0.20 ug/L 0.056 Phenol ND 0.20 ug/L 0.056 Phenol ND 0.20 ug/L 0.056 Phenol ND 0.20 ug/L 0.056 Phenol ND 0.20 ug/L 0.056 Phenol ND 0.20 ug/L 0.056 Phenol ND 0.20 ug/L 0.066 Phenol ND 0.20 ug/L 0.085 Phenanthrene ND 0.20 ug/L 0.085		ND	5.1			
2,4-Dinitrotoluene ND 1.0 ug/L 0.046 2,6-Dinitrotoluene ND 1.0 ug/L 0.052 Di-n-octyl phthalate ND 1.0 ug/L 0.052 Di-n-octyl phthalate ND 1.0 ug/L 0.043 Fluoranthene ND 0.20 ug/L 0.050 Fluorene ND 0.20 ug/L 0.055 Hexachlorobenzene ND 0.20 ug/L 0.044 Hexachlorobutadiene ND 0.20 ug/L 0.038 Hexachlorocyclopenta- diene ND 1.0 ug/L 0.082 diene Hexachlorocethane ND 1.0 ug/L 0.044 Indeno(1,2,3-cd) pyrene ND 0.20 ug/L 0.049 Indeno(1,2,3-cd) pyrene ND 0.20 ug/L 0.049 Isophorone ND 1.0 ug/L 0.048 2-Methylnaphthalene ND 0.20 ug/L 0.048 2-Methylphenol ND 1.0 ug/L 0.052 4-Methylphenol ND 1.0 ug/L 0.052 4-Methylphenol ND 1.0 ug/L 0.055 A-Mitroaniline ND 5.1 ug/L 0.044 2-Nitroaniline ND 5.1 ug/L 0.049 3-Nitroaniline ND 5.1 ug/L 0.049 3-Nitroaniline ND 5.1 ug/L 0.046 NITrobenzene ND 0.20 ug/L 0.055 4-Nitrophenol ND 1.0 ug/L 0.055 4-Nitrophenol ND 1.0 ug/L 0.055 4-Nitrophenol ND 0.20 ug/L 0.065 2-Nitrophenol ND 0.20 ug/L 0.055 4-Nitrophenol ND 0.20 ug/L 0.055 4-Nitrophenol ND 0.20 ug/L 0.065 2-Nitrophenol ND 0.20 ug/L 0.065 2-Nitrophenol ND 0.20 ug/L 0.065 2-Nitrosodiphenylamine ND 0.20 ug/L 0.055 4-Nitrosodiphenylamine ND 0.20 ug/L 0.056 2-2'-oxybis(1-Chloropropane) ND 0.20 ug/L 0.056 Phenanthrene ND 0.20 ug/L 0.056 Phenanthrene ND 0.20 ug/L 0.056 Phenol ND 0.20 ug/L 0.056				•		
2, 4-Dinitrotoluene ND 1.0 ug/L 0.046 2, 6-Dinitrotoluene ND 1.0 ug/L 0.052 Di-n-octyl phthalate ND 1.0 ug/L 0.043 Fluoranthene ND 0.20 ug/L 0.050 Fluorene ND 0.20 ug/L 0.055 Hexachlorobutadiene ND 0.20 ug/L 0.044 Hexachlorocyclopenta- ND 1.0 ug/L 0.038 Hexachlorocyclopenta- ND 1.0 ug/L 0.082 diene 0 1.0 ug/L 0.082 Hexachlorocyclopenta- ND 1.0 ug/L 0.082 diene 0 0.20 ug/L 0.082 Hexachlorocyclopenta- ND 1.0 ug/L 0.044 Indeno(1,2,3-cd)pyrene ND 1.0 ug/L 0.044 Indeno(1,2,3-cd)pyrene ND 1.0 ug/L 0.049 Isophorone ND 1.0 ug/L 0.048 2-Methylaphthalene ND 0.20 u	-	ND	5.1	uq/L	1.3	
2,6-Dinitrotoluene ND 1.0 ug/L 0.052 Din-octyl phthalate ND 1.0 ug/L 0.043 Fluoranthene ND 0.20 ug/L 0.055 Fluorene ND 0.20 ug/L 0.055 Hexachlorobenzene ND 0.20 ug/L 0.044 Hexachlorobutadiene ND 0.20 ug/L 0.038 Hexachlorocyclopenta- ND 1.0 ug/L 0.082 diene ND 1.0 ug/L 0.044 Hexachlorocethane ND 1.0 ug/L 0.044 Indeno (1, 2, 3-cd) pyrene ND 1.0 ug/L 0.044 Indeno (1, 2, 3-cd) pyrene ND 1.0 ug/L 0.049 Isophorone ND 1.0 ug/L 0.049 2-Methylpandthalene ND 0.20 ug/L 0.048 2-Methylphenol ND 1.0 ug/L 0.052 4-Methylphenol ND 1.0 ug/L 0.054 4-Mitroaniline ND 5.1 ug/		ND	1.0			
Di-n-octyl phthalate	2,6-Dinitrotoluene	ND	1.0			
Fluoranthene ND 0.20 ug/L 0.050 Fluorene ND 0.20 ug/L 0.055 Hexachlorobenzene ND 0.20 ug/L 0.044 Hexachlorobutadiene ND 0.20 ug/L 0.038 Hexachlorocyclopenta- ND 1.0 ug/L 0.082 diene ND 1.0 ug/L 0.044 Indeno(1, 2, 3-cd) pyrene ND 0.20 ug/L 0.049 Isophorone ND 1.0 ug/L 0.048 2-Methylnaphthalene ND 0.20 ug/L 0.048 2-Methylphenol ND 1.0 ug/L 0.052 4-Methylphenol ND 1.0 ug/L 0.052 ND 1.0 ug/L 0.052 ND 1.0 ug/L 0.052 ND 1.0 ug/L 0.052 ND 1.0 ug/L 0.052 ND 1.0 ug/L 0.055 Naphthalene ND 1.0 ug/L 0.055 Naphthalene ND 1.0 ug/L 0.044 2-Nitroaniline ND 5.1 ug/L 0.049 3-Nitroaniline ND 5.1 ug/L 0.041 4-Nitroaniline ND 5.1 ug/L 0.041 4-Nitroaniline ND 5.1 ug/L 0.065 2-Nitrobenzene ND 0.20 ug/L 0.065 2-Nitrobenol ND 1.0 ug/L 0.055 4-Nitrophenol ND 1.0 ug/L 0.055 4-Nitrophenol ND 5.1 ug/L 0.072 N-Nitrosodi-n-propyl- ND 0.20 ug/L 0.065 2-Vitrosodi-n-propyl- ND 0.20 ug/L 0.065 2-Y-Oxybis (1-Chloropropane) ND 0.20 ug/L 0.065 Phenanthrene ND 0.20 ug/L 0.026 Phenanthrene ND 0.20 ug/L 0.065 Phenanthrene ND 0.20 ug/L 0.065 Phenol ND 0.20 ug/L 0.065		ND	1.0	•		
Fluorene	Fluoranthene	ND	0.20			
Hexachlorobenzene	— — —	ND	0.20	-		
Hexachlorobutadiene ND 0.20 ug/L 0.038 Hexachlorocyclopenta- ND 1.0 ug/L 0.082 diene 1.0 ug/L 0.082 Hexachlorocethane ND 1.0 ug/L 0.044 Indeno(1,2,3-cd)pyrene ND 0.20 ug/L 0.049 Isophorone ND 1.0 ug/L 0.048 2-Methylnaphthalene ND 0.20 ug/L 0.048 2-Methylphenol ND 1.0 ug/L 0.052 4-Methylphenol ND 1.0 ug/L 0.075 Naphthalene ND 0.20 ug/L 0.044 2-Nitroaniline ND 5.1 ug/L 0.044 2-Nitroaniline ND 5.1 ug/L 0.049 3-Nitroaniline ND 5.1 ug/L 0.041 4-Nitroaniline ND 5.1 ug/L 0.065 Nitrobenzene ND 0.20 ug/L 0.065 2-Nitrophenol ND 5.1 ug/L 0.072 N-Nitrosodi-n-propyl- ND 0.20 ug/L 0.072 N-Nitrosodi-n-propyl- ND 0.20 ug/L 0.061 amine N-Nitrosodi-n-propyl- ND 0.20 ug/L 0.056 Pentachlorophenol ND 1.0 ug/L 0.056 Pentachlorophenol ND 0.20 ug/L 0.085 Phenanthrene ND 0.20 ug/L 0.085 Phenanthrene ND 0.20 ug/L 0.056 Phenol ND 0.20 ug/L 0.056 Phenol ND 0.20 ug/L 0.056 Phenol ND 0.20 ug/L 0.056 Phenol ND 0.20 ug/L 0.056 Phenol ND 0.20 ug/L 0.056 Doctor Ug/L 0	Hexachlorobenzene	ND		-		
Hexachlorocyclopenta-diene	Hexachlorobutadiene	ND		-		
Hexachloroethane	Hexachlorocyclopenta-	ND				
Indeno(1,2,3-cd) pyrene	diene			~ ₅ , 2	0.002	
Indeno(1,2,3-cd) pyrene	Hexachloroethane	ND	1.0	ug/L	0.044	
Isophorone	Indeno(1,2,3-cd)pyrene	ND			· -	
2-Methylnaphthalene ND 0.20 ug/L 0.048 2-Methylphenol ND 1.0 ug/L 0.052 4-Methylphenol ND 1.0 ug/L 0.075 Naphthalene ND 0.20 ug/L 0.044 2-Nitroaniline ND 5.1 ug/L 0.049 3-Nitroaniline ND 5.1 ug/L 0.041 4-Nitroaniline ND 5.1 ug/L 0.026 Nitrobenzene ND 0.20 ug/L 0.065 2-Nitrophenol ND 1.0 ug/L 0.055 4-Nitrophenol ND 1.0 ug/L 0.072 N-Nitrosodi-n-propyl- ND 0.20 ug/L 0.061 amine N-Nitrosodiphenylamine ND 0.20 ug/L 0.050 2,2'-oxybis(1-Chloropropane) ND 0.20 ug/L 0.026 Pentachlorophenol ND 1.0 ug/L 0.055 Phenanthrene ND 0.20 ug/L 0.056 Phenol ND 0.20 ug/L 0.065	Isophorone	ND		-		
2-Methylphenol ND 1.0 ug/L 0.052 4-Methylphenol ND 1.0 ug/L 0.075 Naphthalene ND 0.20 ug/L 0.044 2-Nitroaniline ND 5.1 ug/L 0.049 3-Nitroaniline ND 5.1 ug/L 0.041 4-Nitroaniline ND 5.1 ug/L 0.026 Nitrobenzene ND 0.20 ug/L 0.065 2-Nitrophenol ND 1.0 ug/L 0.055 4-Nitrophenol ND 1.0 ug/L 0.072 N-Nitrosodi-n-propyl- ND 0.20 ug/L 0.061 amine N-Nitrosodiphenylamine ND 0.20 ug/L 0.050 2,2'-oxybis(1-Chloropropane) ND 0.20 ug/L 0.056 Pentachlorophenol ND 1.0 ug/L 0.056 Phenol ND 0.20 ug/L 0.085 Phenol ND 0.20 ug/L 0.085 Phenol ND 0.20 ug/L 0.085 Phenol ND 0.20 ug/L 0.085	2-Methylnaphthalene	ND		-		
4-Methylphenol ND 1.0 ug/L 0.075 Naphthalene ND 0.20 ug/L 0.044 2-Nitroaniline ND 5.1 ug/L 0.049 3-Nitroaniline ND 5.1 ug/L 0.041 4-Nitroaniline ND 5.1 ug/L 0.026 Nitrobenzene ND 0.20 ug/L 0.065 2-Nitrophenol ND 1.0 ug/L 0.055 4-Nitrosodi-n-propyl- ND 0.20 ug/L 0.061 amine N-Nitrosodiphenylamine ND 0.20 ug/L 0.050 2,2'-oxybis(1-Chloropropane) ND 0.20 ug/L 0.026 Pentachlorophenol ND 1.0 ug/L 0.085 Phenanthrene ND 0.20 ug/L 0.056 Phenol ND 0.20 ug/L 0.056	2-Methylphenol	ND		- ·		
Naphthalene ND 0.20 ug/L 0.044 2-Nitroaniline ND 5.1 ug/L 0.049 3-Nitroaniline ND 5.1 ug/L 0.041 4-Nitroaniline ND 5.1 ug/L 0.026 Nitrobenzene ND 0.20 ug/L 0.065 2-Nitrophenol ND 1.0 ug/L 0.055 4-Nitrophenol ND 5.1 ug/L 0.072 N-Nitrosodi-n-propyl-amine ND 0.20 ug/L 0.050 2,2'-oxybis(1-Chloropropane) ND 0.20 ug/L 0.026 Pentachlorophenol ND 1.0 ug/L 0.085 Phenanthrene ND 0.20 ug/L 0.056 Phenol ND 0.20 ug/L 0.056	4-Methylphenol	ND		-		
2-Nitroaniline ND 5.1 ug/L 0.049 3-Nitroaniline ND 5.1 ug/L 0.041 4-Nitroaniline ND 5.1 ug/L 0.026 Nitrobenzene ND 0.20 ug/L 0.065 2-Nitrophenol ND 1.0 ug/L 0.055 4-Nitrophenol ND 5.1 ug/L 0.055 4-Nitrophenol ND 5.1 ug/L 0.072 N-Nitrosodi-n-propyl- ND 0.20 ug/L 0.061 amine N-Nitrosodiphenylamine ND 0.20 ug/L 0.050 2,2'-oxybis(1-Chloropropane) ND 0.20 ug/L 0.026 Pentachlorophenol ND 0.20 ug/L 0.085 Phenanthrene ND 0.20 ug/L 0.085 Phenol ND 0.20 ug/L 0.056 Phenol	Naphthalene	ND				
3-Nitroaniline ND 5.1 ug/L 0.041 4-Nitroaniline ND 5.1 ug/L 0.026 Nitrobenzene ND 0.20 ug/L 0.065 2-Nitrophenol ND 1.0 ug/L 0.055 4-Nitrophenol ND 5.1 ug/L 0.072 N-Nitrosodi-n-propyl- ND 0.20 ug/L 0.061 amine N-Nitrosodiphenylamine ND 0.20 ug/L 0.050 2,2'-oxybis(1-Chloropropane) ND 0.20 ug/L 0.026 Pentachlorophenol ND 1.0 ug/L 0.085 Phenanthrene ND 0.20 ug/L 0.085 Phenol ND 0.20 ug/L 0.056 Phenol ND 0.20 ug/L 0.056	2-Nitroaniline	ND				
4-Nitroaniline ND 5.1 ug/L 0.026 Nitrobenzene ND 0.20 ug/L 0.065 2-Nitrophenol ND 1.0 ug/L 0.055 4-Nitrophenol ND 5.1 ug/L 0.072 N-Nitrosodi-n-propyl- ND 0.20 ug/L 0.061 amine N-Nitrosodiphenylamine ND 0.20 ug/L 0.050 2,2'-oxybis(1-Chloropropane) ND 0.20 ug/L 0.026 Pentachlorophenol ND 1.0 ug/L 0.085 Phenanthrene ND 0.20 ug/L 0.056 Phenol ND 0.20 ug/L 0.023	3-Nitroaniline	ND		•	· · · · · ·	
Nitrobenzene ND 0.20 ug/L 0.065 2-Nitrophenol ND 1.0 ug/L 0.055 4-Nitrophenol ND 5.1 ug/L 0.072 N-Nitrosodi-n-propyl- ND 0.20 ug/L 0.061 amine N-Nitrosodiphenylamine ND 0.20 ug/L 0.050 2,2'-oxybis(1-Chloropropane) ND 0.20 ug/L 0.026 Pentachlorophenol ND 1.0 ug/L 0.085 Phenanthrene ND 0.20 ug/L 0.056 Phenol ND 0.20 ug/L 0.023	4-Nitroaniline	ND			– –	
2-Nitrophenol ND 1.0 ug/L 0.055 4-Nitrophenol ND 5.1 ug/L 0.072 N-Nitrosodi-n-propyl- ND 0.20 ug/L 0.061 amine N-Nitrosodiphenylamine ND 0.20 ug/L 0.050 2,2'-oxybis(1-Chloropropane) ND 0.20 ug/L 0.026 Pentachlorophenol ND 1.0 ug/L 0.085 Phenanthrene ND 0.20 ug/L 0.056 Phenol ND 0.20 ug/L 0.056	Nitrobenzene	ND			· ·	
4-Nitrophenol ND 5.1 ug/L 0.072 N-Nitrosodi-n-propyl-amine ND 0.20 ug/L 0.061 N-Nitrosodiphenylamine ND 0.20 ug/L 0.050 2,2'-oxybis(1-Chloropropane) ND 0.20 ug/L 0.026 Pentachlorophenol ND 1.0 ug/L 0.085 Phenanthrene ND 0.20 ug/L 0.056 Phenol ND 0.20 ug/L 0.023	2-Nitrophenol	ND		-		
N-Nitrosodi-n-propyl- ND 0.20 ug/L 0.061 amine N-Nitrosodiphenylamine ND 0.20 ug/L 0.050 2,2'-oxybis(1-Chloropropane) ND 0.20 ug/L 0.026 Pentachlorophenol ND 1.0 ug/L 0.085 Phenanthrene ND 0.20 ug/L 0.056 Phenol ND 0.20 ug/L 0.056	4-Nitrophenol	ND		- -		
amine N-Nitrosodiphenylamine ND 0.20 ug/L 0.050 2,2'-oxybis(1-Chloropropane) ND 0.20 ug/L 0.026 Pentachlorophenol ND 1.0 ug/L 0.085 Phenanthrene ND 0.20 ug/L 0.056 Phenol ND 0.20 ug/L 0.023	N-Nitrosodi-n-propyl-	ND	•	_		
2,2'-oxybis(1-Chloropropane) ND 0.20 ug/L 0.026 Pentachlorophenol ND 1.0 ug/L 0.085 Phenanthrene ND 0.20 ug/L 0.056 Phenol ND 0.20 ug/L 0.023	amine		**-*	45/ 4	0.001	
2,2'-oxybis(1-Chloropropane) ND 0.20 ug/L 0.026 Pentachlorophenol ND 1.0 ug/L 0.085 Phenanthrene ND 0.20 ug/L 0.056 Phenol ND 0.20 ug/L 0.023	N-Nitrosodiphenylamine	ND	0.20	ug/L	0.050	
Pentachlorophenol ND 1.0 ug/L 0.085 Phenanthrene ND 0.20 ug/L 0.056 Phenol ND 0.20 ug/L 0.023	2,2'-oxybis(1-Chloropropane)	ND				
Phenanthrene ND 0.20 ug/L 0.056 Phenol ND 0.20 ug/L 0.023	Pentachlorophenol	ND				,
Phenol ND 0.20 ug/L 0.023	Phenanthrene	ND				
	Phenol	ND		_		
	Pyrene	ND	•			
2,4,5-Trichloro- ND 1.0 ug/L 0.064	2,4,5-Trichloro-	ND		_		
phenol 1.0 ug/1 0.064	phenol	- 4		49/1	0.004	
2,4,6-Trichloro- ND 1.0 ug/L 0.058		ND	1 0	υσ/τ.	0.050	
phenol 1.0 dg/H 0.058		F	2.0	43/ 1	0.056	

Client Sample ID: FMC 9

GC/MS Semivolatiles

Lot-Sample #...: C7K020216-002 Work Order #...: KAE051AM

Matrix..... WATER

SURROGATE	PERCENT RECOVERY	RECOVERY LIMITS
Nitrobenzene-d5	68	(23 - 112)
Terphenyl-d14	67	(10 - 132)
2-Fluorobiphenyl	65	(19 - 107)
2-Fluorophenol	61	(10 - 111)
Phenol-d5	68	(15 - 112)
2,4,6-Tribromophenol	69	(16 - 122)
NOTE (S):		,

J Estimated result. Result is less than RL.

Client Sample ID: FMC 10

GC/MS Semivolatiles

Lot-Sample #: C7KC					Matrix:	WATER
Date Sampled: 10/3	30/07 14:35 Date	Received:	11/02/07	09:20	MS Run #:	7310082
Prep Date: 11/0		ysis Date:				
Prep Batch #: 7310)138 Analy	ysis Time:	12:18			
Dilution Factor: 1.06	I niti	ial Wgt/Vol:	940 mL		Final Wgt/Vol:	1 mL
Analyst ID: 0032	200 Instr	nument ID:	733			

Method....: SW846 8270C

		REPORTING			
PARAMETER	RESULT	LIMIT	UNITS	MDL	
Acenaphthene	ND	0.21	ug/L	0.055	
Acenaphthylene	ND	0.21	ug/L	0.049	
Acetophenone	ND	1.1	ug/L	0.049	
Anthracene	ND	0.21	ug/L	0.054	
Atrazine	ND	1.1	ug/L	0.041	
Benzo(a) anthracene	ND	0.21	ug/L	0.044	
Benzo(a)pyrene	ND	0.21	ug/L	0.046	
Benzo(b)fluoranthene	ND	0.21	ug/L	0.033	
Benzo(ghi)perylene	ND	0.21	ug/L	0.029	
Benzo(k)fluoranthene	ND	0.21	ug/L	0.042	
Benzaldehyde	ND	1.1	ug/L	0.057	
1,1'-Biphenyl	ND	1.1	ug/L	0.064	
bis(2-Chloroethoxy)	ND	1.1	ug/L	0.13	
methane					
bis(2-Chloroethyl)-	ND	0.21	ug/L	0.049	
ether			.		
bis(2-Ethylhexyl)	0.13 Ј	1.1	ug/L	0.13	
phthalate					
4-Bromophenyl phenyl	ND	1.1	ug/L	0.053	
ether					
Butyl benzyl phthalate	ND	1.1	ug/L	0.15	
Caprolactam	ND	1.1	ug/L	0.20	
Carbazole	0.097 J	0.21	ug/L	0.055	
4-Chloroaniline	ND	1.1	ug/L	0.049	
4-Chloro-3-methylphenol	ND	1.1	ug/L	0.063	
2-Chloronaphthalene	ND	0.21	ug/L	0.047	
2-Chlorophenol	ND	1.1	ug/L	0.048	
4-Chlorophenyl phenyl	ND	1.1	ug/L	0.045	
ether					
Chrysene	ND	0.21	ug/L	0.038	
Dibenz(a,h)anthracene	ND	0.21	ug/L	0.037	
Dibenzofuran	0.074 J	1.1	ug/L	0.057	
3,3'-Dichlorobenzidine	ND	1.1	ug/L	0.043	
2,4-Dichlorophenol	ND	0.21	ug/L	0.051	
Diethyl phthalate	ND	1.1	ug/L	0.26	
2,4-Dimethylphenol	ND	1.1	ug/L	0.055	
Dimethyl phthalate	ND	1.1	ug/L	0.045	
			٠.		

Client Sample ID: FMC 10

GC/MS Semivolatiles

Lot-Sample #...: C7K020216-003 Work Order #...: KAE071AM Matrix..... WATER

		REPORTI	NG	
PARAMETER	RESULT	LIMIT	UNITS	MDL
Di-n-butyl phthalate	ND	1.1	ug/L	0.049
4,6-Dinitro-	ND	5.3	ug/L	1.5
2-methylphenol			3.	
2,4-Dinitrophenol	ND	5.3	ug/L	1.4
2,4-Dinitrotoluene	ND	1.1	ug/L	0.048
2,6-Dinitrotoluene	ND	1.1	ug/L	0.054
Di-n-octyl phthalate	ND	1.1	ug/L	0.045
Fluoranthene	ND	0.21	ug/L	0.052
Fluorene	ND	0.21	ug/L	0.057
Hexachlorobenzene	ND	0.21	ug/L	0.037
Hexachlorobutadiene	ND	0.21	ug/L	0.040
Hexachlorocyclopenta-	ND	1.1	ug/L	0.085
diene		- -	49/11	0.003
Hexachloroethane	ND	1.1	ug/L	0.046
Indeno(1,2,3-cd)pyrene	ND	0.21	ug/L	0.050
Isophorone	ND	1.1	ug/L ug/L	0.050
2-Methylnaphthalene	ND	0.21	ug/L	0.050
2-Methylphenol	ND	1.1	ug/L	0.054
4-Methylphenol	ND	1.1	ug/L	0.034
Naphthalene	ND	0.21	ug/L	0.046
2-Nitroaniline	ND	5.3	ug/L	0.050
3-Nitroaniline	ND	5.3	ug/L	0.043
4-Nitroaniline	ND	5.3	ug/L	0.043
Nitrobenzene	ND	0.21	ug/L	
2-Nitrophenol	ND	1.1	ug/L	0.068
4-Nitrophenol	ND	5.3	ug/L	0.057
N-Nitrosodi-n-propyl-	ND	0.21	ug/L ug/L	0.074
amine		0.21	αд/п	0.063
N-Nitrosodiphenylamine	ND	0.21	ug/L	0.052
2,2'-oxybis(1-Chloropropane)	ND	0.21	ug/L	
Pentachlorophenol	ND	1.1	ug/L ug/L	0.027
Phenanthrene	0.32	0.21	ug/L ug/L	0.088
Phenol	ND	0.21	ug/L ug/L	0.058
Pyrene	ND	0.21	ug/L	0.023
2,4,5-Trichloro-	ND	1.1		0.060
phenol	=	***	ug/L	0.066
2,4,6-Trichloro-	ND	1.1	/T	0.050
phenol		T - T	ug/L	0.060
- · · · · · · · · · · · · · · · · · · ·				

Client Sample ID: FMC 10

GC/MS Semivolatiles

Lot-Sample #...: C7K020216-003 Work Order #...: KAE071AM

Matrix..... WATER

SURROGATE	PERCENT RECOVERY	RECOVERY LIMITS
Nitrobenzene-d5	61	(23 - 112)
Terphenyl-d14	65	(10 - 132)
2-Fluorobiphenyl	55	(19 - 107)
2-Fluorophenol	63	(10 - 111)
Phenol-d5	69	(15 - 112)
2,4,6-Tribromophenol	66	(16 - 122)

NOTE(S):

¹ Estimated result. Result is less than RL.

Client Sample ID: FMC 11

GC/MS Semivolatiles

Lot-Sample #...: C7K020216-004 Work Order #...: KAE1A1AC Matrix....: WATER Date Sampled...: 10/30/07 14:11 Date Received..: 11/02/07 09:20 MS Run #...... 7310082 **Prep Date....:** 11/06/07 **Analysis Date..:** 11/24/07 Prep Batch #...: 7310138 Analysis Time..: 12:46

Dilution Factor: 1.1 Initial Wgt/Vol: 910 mL

Final Wgt/Vol..: 1 mL Analyst ID....: 003200

Instrument ID..: 733

Method..... SW846 8270C

		REPORTI	NG		
PARAMETER	RESULT	LIMIT	UNITS	MDL	
Acenaphthene	ND	0.22	ug/L	0.057	
Acenaphthylene	ND	0.22	ug/L	0.051	•
Acetophenone	ND	1.1	ug/L	0.051	
Anthracene	ND	0.22	ug/L	0.056	
Atrazine	ND	1.1	ug/L	0.043	
Benzo (a) anthracene	ND	0.22	ug/L	0.045	
Benzo(a)pyrene	ND	0.22	ug/L	0.048	
Benzo(b)fluoranthene	ND	0.22	ug/L	0.034	
Benzo(ghi)perylene	ND	0.22	ug/L	0.030	
Benzo(k) fluoranthene	ND	0.22	ug/L	0.043	
Benzaldehyde	ND	1.1	ug/L	0.060	
1,1'-Biphenyl	ND	1.1	ug/L	0.066	
bis(2-Chloroethoxy)	ND	1.1	ug/L	0.13	
methane	*		5, -	V.25	
bis(2-Chloroethyl)-	ND	0.22	ug/L	0.051	
ether			3, -	0.001	
bis(2-Ethylhexyl)	ND	1.1	ug/L	0.13	
phthalate			J ,	0.15	
4-Bromophenyl phenyl	ND	1.1	ug/L	0.055	
ether			· 3,	0.000	
Butyl benzyl phthalate	ND	1.1	ug/L	0.15	
Caprolactam	ND	1.1	ug/L	0.21	
Carbazole	ND	0.22	ug/L	0.057	
4-Chloroaniline	ND	1.1	ug/L	0.051	
4-Chloro-3-methylphenol	ND	1.1	ug/L	0.065	
2-Chloronaphthalene	ND	0.22	ug/L	0.049	
2-Chlorophenol	ND	1.1	ug/L	0.050	
4-Chlorophenyl phenyl	ND	1.1	ug/L	0.047	
ether			3,	, , <u>, , , , , , , , , , , , , , , , , </u>	
Chrysene	ND	0.22	ug/L	0.039	
Dibenz(a,h)anthracene	ND	0.22	ug/L	0.038	
Dibenzofuran	ND	1.1	ug/L	0.059	
3,3'-Dichlorobenzidine	ND	1.1	ug/L	0.045	
2,4-Dichlorophenol	ND	0.22	ug/L	0.053	
Diethyl phthalate	ND	1.1	ug/L	0.27	
2,4-Dimethylphenol	ND	1.1	ug/L	0.057	
Dimethyl phthalate	ND	1.1	ug/L	0.046	
	•		49/10	0.040	

Client Sample ID: FMC 11

GC/MS Semivolatiles

Lot-Sample #...: C7K020216-004 Work Order #...: KAE1A1AC Matrix..... WATER

		REPORTI	NG .		
PARAMETER	RESULT	LIMIT	UNITS	MDL	
Di-n-butyl phthalate	ND	1.1	ug/L	0.051	
4,6-Dinitro-	ND	5.5	ug/L	1.6	
2-methylphenol			5 , –		
2,4-Dinitrophenol	ND	5.5	ug/L	1.4	
2,4-Dinitrotoluene	ND	1.1	ug/L	0.050	٠.
2,6-Dinitrotoluene	ND	1.1	ug/L	0.056	
Di-n-octyl phthalate	ND	1.1	ug/L	0.047	
Fluoranthene	ND	0.22	ug/L	0.054	
Fluorene	ND	0.22	ug/L	0.060	
Hexachlorobenzene	ND	0.22	ug/L	0.048	
Hexachlorobutadiene	ND	0.22	ug/L	0.041	
Hexachlorocyclopenta-	ND	1.1	ug/L	0.088	
diene				4,444	
Hexachloroethane	ND	1.1	ug/L	0.048	
Indeno(1,2,3-cd)pyrene	ND	0.22	ug/L	0.052	
Isophorone	ND	1.1	ug/L	0.052	
2-Methylnaphthalene	ND	0.22	ug/L	0.051	
2-Methylphenol	ND	1.1	ug/L	0.056	
4-Methylphenol	ND	1.1	ug/L	0.081	
Naphthalene	ND	0,22	ug/L	0.047	
2-Nitroaniline	ND	5.5	ug/L	0.052	
3-Nitroaniline	ND	5.5	ug/L	0.044	
4-Nitroaniline	ND	5.5	ug/L	0.028	
Nitrobenzene	ND	0.22	ug/L	0.070	
2-Nitrophenol	ND	1.1	ug/L	0.059	
4-Nitrophenol	ND	5.5	ug/L	0.077	
N-Nitrosodi-n-propyl-	ND	0.22	ug/L	0.065	
amine			5, -		
N-Nitrosodiphenylamine	ND	0.22	ug/L	0.054	
2,2'-oxybis(1-Chloropropane)	ND	0.22	ug/L	0.029	
Pentachlorophenol	ND	1.1	ug/L	0.091	
Phenanthrene	0.26	0.22	ug/L	0.061	
Phenol	ND	0.22	ug/L	0.024	
Pyrene	ND	0.22	ug/L	0.062	
2,4,5-Trichloro-	ND	1.1	ug/L	0.069	
phenol			-3, -	0.005	
2,4,6-Trichloro-	ND	1.1	ug/L	0.062	
phenol			-5, -		

Client Sample ID: FMC 11

GC/MS Semivolatiles

Lot-Sample #...: C7K020216-004 Work Order #...: KAE1A1AC

Matrix..... WATER

	PERCENT	RECOVERY
SURROGATE	<u>RECOVERY</u>	LIMITS
Nitrobenzene-d5	53	(23 - 112)
Terphenyl-d14	51	(10 - 132)
2-Fluorobiphenyl	48	(19 - 107)
2-Fluorophenol	50	(10 - 111)
Phenol-d5	57	(15 - 112)
2,4,6-Tribromophenol	63	(16 - 122)

Client Sample ID: FMC 12

GC/MS Semivolatiles

Analyst ID...: 003200 Instrument ID.: 733

Method.....: SW846 8270C

		REPORTING		
PARAMETER	RESULT	LIMIT	UNITS	MDL
Acenaphthene	ND	0.21	ug/L	0.054
Acenaphthylene	ND	0.21	ug/L	0.048
Acetophenone	ND	1.0	ug/L	0.048
Anthracene	ND	0.21	ug/L	0.053
Atrazine	ND	1.0	ug/L	0.041
Benzo (a) anthracene	ND	0.21	ug/L	0.043
Benzo(a)pyrene	ND	0.21	ug/L	0.046
Benzo(b) fluoranthene	ND	0.21	ug/L	0.033
Benzo(ghi)perylene	ND	0.21	ug/L	0.029
Benzo(k)fluoranthene	ND	0.21	ug/L	0.041
Benzaldehyde	ND	1.0	ug/L	0.056
1,1'-Biphenyl	ND	1.0	ug/L	0.063
bis(2-Chloroethoxy)	ND	1.0	ug/L	0.13
methane			5, -	
bis(2-Chloroethyl)-	ND	0.21	ug/L	0.048
ether		•	3.	
bis(2-Ethylhexyl)	ND	1.0	ug/L	0.12
phthalate				
4-Bromophenyl phenyl	ND	1.0	ug/L	0.052
ether			J.	
Butyl benzyl phthalate	ND	1.0	ug/L	0.14
Caprolactam	ND	1.0	ug/L	0.20
Carbazole	0.11 J	0.21	ug/L	0.054
4-Chloroaniline	ND	1.0	ug/L	0.048
4-Chloro-3-methylphenol	ND	1.0	ug/L	0.061
2-Chloronaphthalene	ND	0.21	ug/L	0.046
2-Chlorophenol	ND	1.0	ug/L	0.047
4-Chlorophenyl phenyl	ND	1.0	ug/L	0.044
ether			J.	
Chrysene	ND	0.21	ug/L	0.037
Dibenz(a,h)anthracene	ND	0.21	ug/L	0.036
Dibenzofuran	0.16 J	1.0	ug/L	0.056
3,3'-Dichlorobenzidine	ND	1.0	ug/L	0.043
2,4-Dichlorophenol	ND	0.21	ug/L	0.051
Diethyl phthalate	ND		ug/L	0.25
2,4-Dimethylphenol	ND		ug/L	0.054
Dimethyl phthalate	ND	1.0	ug/L	0.044

Client Sample ID: FMC 12

GC/MS Semivolatiles

Lot-Sample #...: C7K020216-005 Work Order #...: KAE1D1AM Matrix..... WATER

		REPORTI	NG		
PARAMETER	RESULT	LIMIT	UNITS	MDL	
Di-n-butyl phthalate	ND	1.0	ug/L	0.048	-
4,6-Dinitro-	ND	5.2	ug/L	1.5	
2-methylphenol			3, -	1.5	
2,4-Dinitrophenol	ND	5.2	ug/L	1.3	
2,4-Dinitrotoluene	ND	1.0	ug/L	0.047	
2,6-Dinitrotoluene	ND	1.0	ug/L	0.053	
Di-n-octyl phthalate	ND	1.0	ug/L	0.044	
Fluoranthene	0.077 J	0.21	ug/L	0.051	
Fluorene	0.078 Ј	0.21	ug/L	0.056	
Hexachlorobenzene	ND	0.21	ug/L	0.045	
Hexachlorobutadiene	ND	0.21	ug/L	0.039	
Hexachlorocyclopenta-	ND	1.0	ug/L	0.083	
diene					
Hexachloroethane	ND	1.0	ug/L	0.045	
Indeno(1,2,3-cd)pyrene	ND	0.21	ug/L	0.049	
Isophorone	ND	1.0	ug/L	0.049	
2-Methylnaphthalene	ND	0.21	ug/L	0.049	
2-Methylphenol	ND	1.0	ug/L	0.053	
4-Methylphenol	ND	1.0	ug/L	0.077	
Naphthalene	ND	0.21	ug/L	0.045	
2-Nitroaniline	ND	5.2	ug/L	0.049	
3-Nitroaniline	ND	5.2	ug/L	0.042	
4-Nitroaniline	ND	5.2	ug/L	0.026	
Nitrobenzene	ND	0.21	ug/L	0.067	
2-Nitrophenol	ND	1.0	ug/L	0.056	
4-Nitrophenol	ND	5.2	ug/L	0.073	
N-Nitrosodi-n-propyl-	ND	0.21	ug/L	0.062	
amine			•		
N-Nitrosodiphenylamine	ND	0.21	ug/L	0.051	
2,2'-oxybis(1-Chloropropane)	ND	0.21	ug/L	0.027	
Pentachlorophenol	ND	1.0	ug/L	0.086	
Phenanthrene	0.48	0.21	ug/L	0.057	
Phenol	ND	0.21	ug/L	0.023	
Pyrene	ND	0.21	ug/L	0.059	
2,4,5-Trichloro-	ND	1.0	ug/L	0.065	
phenol			_		
2,4,6-Trichloro-	ND	1.0	ug/L	0.059	
phenol	•				

Client Sample ID: FMC 12

GC/MS Semivolatiles

Lot-Sample #...: C7K020216-005 Work Order #...: KAE1D1AM

Matrix....: WATER

	PERCENT	RECOVERY
SURROGATE	RECOVERY	LIMITS
Nitrobenzene-d5	57	(23 - 112)
Terphenyl-d14	54	(10 - 132)
2-Fluorobiphenyl	53	(19 - 107)
2-Fluorophenol	55	(10 - 111)
Phenol-d5	62	(15 - 112)
2,4,6-Tribromophenol	65	(16 - 122)

NOTE(S):

J Estimated result. Result is less than RL.

Client Sample ID: FMC 13

GC/MS Semivolatiles

Lot-Sample #...: C7K020216-006 Work Order #...: KAE1F1AM Matrix....: WATER

Date Sampled...: 10/30/07 16:45 Date Received..: 11/02/07 09:20 MS Run #.....: 7310082

 Prep Date....: 11/06/07
 Analysis Date..: 11/24/07

 Prep Batch #...: 7310138
 Analysis Time..: 13:43

Dilution Factor: 1.09 Initial Wgt/Vol: 920 mL Final Wgt/Vol.: 1 mL

Analyst ID....: 003200 Instrument ID..: 733

Method..... SW846 8270C

		REPORTI		
PARAMETER	RESULT	LIMIT	UNITS	MDL
Acenaphthene	ND	0.22	ug/L	0.057
Acenaphthylene	ND	0.22	ug/L	0.050
Acetophenone	ND	1.1	ug/L	0.050
Anthracene	ND	0.22	ug/L	0.055
Atrazine	ND	1.1	ug/L	0.042
Benzo (a) anthracene	ND	0.22	ug/L	0.045
Benzo(a)pyrene	ND	0.22	ug/L	0.048
Benzo(b) fluoranthene	ND	0.22	ug/L	0.034
Benzo(ghi)perylene	ND	0.22	ug/L	0.030
Benzo(k) fluoranthene	ND	0.22	ug/L	0.043
Benzaldehyde	ND	1.1	ug/L	0.059
1,1'-Biphenyl	ND	1.1	ug/L	0.066
bis(2-Chloroethoxy) methane	ND	1.1	ug/L	0.13
bis(2-Chloroethyl)-	ND	0.22	ug/L	0.050
ether			J.	-
bis(2-Ethylhexyl)	ND	1.1	ug/L	0.13
phthalate			3.	
4-Bromophenyl phenyl	ND	1.1	ug/L	0.054
ether			3,	
Butyl benzyl phthalate	0.17 J	1.1	ug/L	0.15
Caprolactam	ND	1.1	ug/L	0.20
Carbazole	0.19 J	0.22	ug/L	0.057
4-Chloroaniline	ND	1.1	ug/L	0.050
4-Chloro-3-methylphenol	ND	1.1	ug/L	0.064
2-Chloronaphthalene	ND	0.22	ug/L	0.048
2-Chlorophenol	ND	1.1	ug/L	0.049
4-Chlorophenyl phenyl ether	ND	1.1	ug/L	0.046
Chrysene	ND	0.22	ug/L	0.039
Dibenz (a, h) anthracene	ND	0.22	ug/L	0.038
Dibenzofuran	` ND	1.1	ug/L	0.058
3,3'-Dichlorobenzidine	ND	1.1	ug/L	0.045
2,4-Dichlorophenol	ND	0.22	ug/L	0.053
Diethyl phthalate	ŅD	1.1	ug/L	0.27
2,4-Dimethylphenol	ND	1.1	ug/L	0.056
Dimethyl phthalate	ND	1.1	ug/L	0.046
			~3/ ~	0.040

Client Sample ID: FMC 13

GC/MS Semivolatiles

Lot-Sample #...: C7K020216-006 Work Order #...: KAE1F1AM Matrix..... WATER

		REPORTING		
PARAMETER	RESULT	LIMIT	UNITS	MDL
Di-n-butyl phthalate	ND	1.1	ug/L	0.051
4,6-Dinitro-	ND	5.4	ug/L	1.5
2-methylphenol			~.	
2,4-Dinitrophenol	ND	5.4	ug/L	1.4
2,4-Dinitrotoluene	ND	1.1	ug/L	0.049
2,6-Dinitrotoluene	ND	1.1	ug/L	0.055
Di-n-octyl phthalate	ND	1.1	ug/L	0.046
Fluoranthene	0.080 J	0.22	ug/L	0.054
Fluorene	ND	0.22	ug/L	0.059
Hexachlorobenzene	ND	0.22	ug/L	0.047
Hexachlorobutadiene	ND	0.22	ug/L	0.041
Hexachlorocyclopenta-	ND	1.1	ug/L	0.087
diene			2,	
Hexachloroethane	ND	1.1	ug/L	0.047
Indeno(1,2,3-cd)pyrene	ND	0.22	ug/L	0.052
Isophorone	ND	1.1	ug/L	0.052
2-Methylnaphthalene	ND	0.22	ug/L	0.051
2-Methylphenol	ND	1.1	ug/L	0.056
4-Methylphenol	ND	1.1	ug/L	0.080
Naphthalene	ND	0.22	ug/L	0.047
2-Nitroaniline	ND	5.4	ug/L	0.052
3-Nitroaniline	ND	5.4	ug/L	0.044
4-Nitroaniline	ND	5.4	ug/L	0.028
Nitrobenzene	ND	0.22	ug/L	0.070
2-Nitrophenol	ND	1.1	ug/L	0.059
4-Nitrophenol	ND	5.4	ug/L	0.076
N-Nitrosodi-n-propyl-	ND	0.22	ug/L	0.065
amine			J ,	
N-Nitrosodiphenylamine	ND	0.22	ug/L	0.053
2,2'-oxybis(1-Chloropropane)	ND	0.22	ug/L	0.028
Pentachlorophenol	ND ·	1.1	ug/L	0.090
Phenanthrene	0.42	0.22	ug/L	0.060
Phenol	ND	0.22	ug/L	0.024
Pyrene	0.064 J	0.22	ug/L	0.062
2,4,5-Trichloro-	ND	1.1	ug/L	0.068
phenol				· · · · · ·
2,4,6-Trichloro-	ND	1.1	ug/L	0.062
phenol			-	

Client Sample ID: FMC 13

GC/MS Semivolatiles

Lot-Sample #...: C7K020216-006 Work Order #...: KAE1F1AM Matrix..... WATER

SURROGATE	PERCENT RECOVERY	RECOVERY LIMITS
Nitrobenzene-d5	64	(23 - 112)
Terphenyl-d14	73	(10 - 132)
2-Fluorobiphenyl	61	(19 - 107)
2-Fluorophenol	63	(10 - 111)
Phenol-d5	69	(15 - 112)
2,4,6-Tribromophenol	75	(16 - 122)

NOTE(S):

J Estimated result. Result is less than RL.

Client Sample ID: FMC 16

GC/MS Semivolatiles

Lot-Sample #...: C7K020216-007 Work Order #...: KAE1J1AM Matrix....: WATER Date Sampled...: 10/31/07 09:55 Date Received..: 11/02/07 09:20 MS Run #....: 7311210

 Prep Date....: 11/07/07
 Analysis Date..: 11/22/07

 Prep Batch #...: 7311333
 Analysis Time..: 10:14

Dilution Factor: 1.09 Initial Wgt/Vol: 920 mL Final Wgt/Vol.: 1 mL

Analyst ID....: 003200 Instrument ID.:: 733

Method....: SW846 8270C

PARAMETER RESULT LIMIT UNITS MDL	
Acenaphthene ND 0.22 ug/L 0.057	
Acenaphthylene ND 0.22 ug/L 0.050	
Acetophenone ND 1.1 ug/L 0.050	
Anthracene ND 0.22 ug/L 0.055	
Atrazine ND 1.1 ug/L 0.042	
Benzo (a) anthracene ND 0.22 ug/L 0.045	
Benzo(a) pyrene ND 0.22 ug/L 0.048	
Benzo (b) fluoranthene ND 0.22 ug/L 0.034	
Benzo(ghi)perylene ND 0.22 ug/L 0.030	
Benzo(k) fluoranthene ND 0.22 ug/L 0.043	
Benzaldehyde ND 1.1 ug/L 0.059	
1,1'-Biphenyl ND 1.1 ug/L 0.066	
bis(2-Chloroethoxy) ND 1.1 ug/L 0.13	
methane	
bis(2-Chloroethyl) - ND 0.22 ug/L 0.050	
ether	
bis(2-Ethylhexyl) 0.16 J 1.1 ug/L 0.13	
phthalate	
4-Bromophenyl phenyl ND 1.1 ug/L 0.054	
ether	
Butyl benzyl phthalate ND 1.1 ug/L 0.15	
Caprolactam ND 1.1 ug/L 0.20	
Carbazole ND 0.22 ug/L 0.057	
4-Chloroaniline ND 1.1 ug/L 0.050	
4-Chloro-3-methylphenol ND 1.1 ug/L 0.064	
2-Chloronaphthalene ND 0.22 ug/L 0.048	
2-Chlorophenol ND 1.1 ug/L 0.049	
4-Chlorophenyl phenyl ND 1.1 ug/L 0.046	
ether	
Chrysene ND 0.22 ug/L 0.039	
Dibenz (a,h) anthracene ND 0.22 ug/L 0.038	
Dibenzofuran ND 1.1 ug/L 0.058	
3,3'-Dichlorobenzidine ND 1.1 ug/L 0.045	
2,4-Dichlorophenol ND 0.22 ug/L 0.053	
Diethyl phthalate ND 1.1 ug/L 0.27	
2,4-Dimethylphenol ND 1.1 ug/L 0.056	
Dimethyl phthalate ND 1.1 ug/L 0.046	

Client Sample ID: FMC 16

GC/MS Semivolatiles

Lot-Sample #...: C7K020216-007 Work Order #...: KAElJIAM Matrix..... WATER

		REPORTIN	IG		
PARAMETER	RESULT	LIMIT	UNITS	MDL	
Di-n-butyl phthalate	ND	1.1	ug/L	0.051	_
4,6-Dinitro-	ND	5.4	ug/L	1.5	
2-methylphenol			J .		
2,4-Dinitrophenol	ND	5.4	ug/L	1.4	
2,4-Dinitrotoluene	ND	1.1	ug/L	0.049	
2,6-Dinitrotoluene	ND	1.1	ug/L	0.055	
Di-n-octyl phthalate	ND	1.1	ug/L	0.046	
Fluoranthene	ND	0.22	ug/L	0.054	
Fluorene	ND	0.22	ug/L	0.059	
Hexachlorobenzene	ND	0.22	ug/L	0.047	
Hexachlorobutadiene	ND	0.22	ug/L	0.041	
Hexachlorocyclopenta-	ND	1.1	ug/L	0.087	
diene			-		
Hexachloroethane	ND	1.1	ug/L	0.047	
Indeno(1,2,3-cd)pyrene	ND	0.22	ug/L	0.052	
Isophorone	ND	1.1	ug/L	0.052	
2-Methylnaphthalene	ND	0.22	ug/L	0.051	
2-Methylphenol	ND	1.1	ug/L	0.056	
4-Methylphenol	ND	1.1	ug/L	0.080	
Naphthalene	ND	0.22	ug/L	0.047	
2-Nitroaniline	ND	5.4	ug/L	0.052	
3-Nitroaniline	ND	5.4	ug/L	0.044	
4-Nitroaniline	ND	5.4	ug/L	0.028	
Nitrobenzene	ND	0.22	ug/L	0.070	
2-Nitrophenol	ND	1.1	ug/L	0.059	
4-Nitrophenol	ND	5.4	ug/L	0.076	
N-Nitrosodi-n-propyl-	ND	0.22	ug/L	0.065	
amine					
N-Nitrosodiphenylamine	ND	0.22	ug/L	0.053	
2,2'-oxybis(1-Chloropropane)	ND	0.22	ug/L	0.028	
Pentachlorophenol	ND	1.1	ug/L	0.090	
Phenanthrene	ND	0.22	ug/L	0.060	
Phenol	ND	0.22	ug/L	0.024	
Pyrene	ND	0.22	ug/L	0.062	
2,4,5-Trichloro-	ND	1.1	ug/L	0.068	
phenol	,				
2,4,6-Trichloro-	ND	1.1	ug/L	0.062	
phenol					

Client Sample ID: FMC 16

GC/MS Semivolatiles

Lot-Sample #...: C7K020216-007 Work Order #...: KAE1J1AM M

Matrix..... WATER

SURROGATE	PERCENT RECOVERY	RECOVERY LIMITS
Nitrobenzene-d5	68	(23 - 112)
Terphenyl-d14	59	(10 - 132)
2-Fluorobiphenyl	61	(19 - 107)
2-Fluorophenol	51	(10 - 111)
Phenol-d5	59	(15 - 112)
2,4,6-Tribromophenol	74	(16 - 122)

NOTE(S):

J Estimated result. Result is less than RL.

Client Sample ID: FMC 18

GC/MS Semivolatiles

 Lot-Sample #...:
 C7K020216-008
 Work Order #...:
 KAE1K1AM
 Matrix.......
 WATER

 Date Sampled...:
 10/31/07 10:35
 Date Received...
 11/02/07 09:20
 MS Run #.....
 7311210

 Prep Date....:
 11/07/07
 Analysis Date...
 11/22/07

 Prep Batch #...:
 7311333
 Analysis Time...
 10:42

 Dilution Factor:
 1.1
 Initial Wgt/Vol:
 910 mL
 Final Wgt/Vol...
 1 mL

 Analyst ID....:
 003200
 Instrument ID...
 733

Method.....: SW846 8270C

		REPORTING			
PARAMETER	RESULT	LIMIT	UNITS	MDL	
Acenaphthene	ND	0.22	ug/L	0.057	-
Acenaphthylene	ND	0.22	ug/L	0.051	
Acetophenone	ND	1.1	ug/L	0.051	
Anthracene	ND	0.22	ug/L	0.056	
Atrazine	ND	1.1	ug/L	0.043	
Benzo (a) anthracene	ND	0.22	ug/L	0.045	
Benzo(a)pyrene	ND	0.22	ug/L	0.048	
Benzo(b) fluoranthene	ND	0.22	ug/L	0.034	
Benzo(ghi)perylene	ND	0.22	ug/L	0.030	
Benzo(k)fluoranthene	ND	0.22	ug/L	0.043	
Benzaldehyde	ND	1.1	ug/L	0.060	
1,1'-Biphenyl	ND	1.1	ug/L	0.066	
bis(2-Chloroethoxy)	ND	1.1	ug/L	0.13	
methane			3/	0.13	
bis(2-Chloroethyl)-	ND	0.22	ug/L	0.051	
ether			-3, -	0.031	
bis(2-Ethylhexyl)	ND	1.1	ug/L	0.13	
phthalate			~3/ -3	0.13	
4-Bromophenyl phenyl	ND	1.1	ug/L	0.055	
ether			~5/ ~	0.055	
Butyl benzyl phthalate	ND	1.1	ug/L	0.15	
Caprolactam	ND	1.1	ug/L	0.15	
Carbazole	ND	0.22	ug/L	0.057	
4-Chloroaniline	ND	1.1	ug/L	0.051	
4-Chloro-3-methylphenol	ND	1.1	ug/L	0.065	
2-Chloronaphthalene	ND	0.22	ug/L	0.049	
2-Chlorophenol	ND	1.1	ug/L	0.050	
4-Chlorophenyl phenyl	ND	1.1	ug/L	0.047	
ether		- · -	~9/ <u>1</u>	0.047	
Chrysene	ND	0.22	ug/L	0.039	
Dibenz(a,h)anthracene	ND	0.22	ug/L	0.039	
Dibenzofuran	ND	1.1	ug/L	0.059	
3,3'-Dichlorobenzidine	ND	1.1	ug/L	0.059	
2,4-Dichlorophenol	ND	0.22	ug/L		
Diethyl phthalate	ND	1.1	ug/L ug/L	0.053	
2,4-Dimethylphenol	ND	1.1		0.27	
Dimethyl phthalate	ND	1.1	ug/L	0.057	
• •		T - T	ug/L	0.046	

Client Sample ID: FMC 18

GC/MS Semivolatiles

Lot-Sample #...: C7K020216-008 Work Order #...: KAE1K1AM Matrix..... WATER

PARAMETER RESULT LIMIT UNITS MDL Di-n-butyl phthalate ND 1.1 ug/L 0.051 4,6-Dinitro- ND 5.5 ug/L 1.6	·
Di-n-butyl phthalate ND 1.1 ug/L 0.051 4,6-Dinitro- ND 5.5 ug/L 1.6	·
4,6-Dinitro- ND 5.5 ug/L 1.6	
2 mathematical and a second se	
2-methylphenol	
2,4-Dinitrophenol ND 5.5 ug/L 1.4	
2,4-Dinitrotoluene ND 1.1 ug/L 0.050	
2,6-Dinitrotoluene ND 1.1 ug/L 0.056	
Di-n-octyl phthalate ND 1.1 ug/L 0.047	
Fluoranthene ND 0.22 ug/L 0.054	
Fluorene ND 0.22 ug/L 0.060	
Hexachlorobenzene ND 0.22 ug/L 0.048	
Hexachlorobutadiene ND 0.22 ug/L 0.043	
Hexachlorocyclopenta- ND 1.1 ug/L 0.088	
diene	
Hexachloroethane ND 1.1 ug/L 0.048	
Indeno(1,2,3-cd)pyrene ND 0.22 Ng/L 0.052	
Isophorone ND 1.1 ug/I 0.052	
2-Methylnaphthalene ND 0.22 ug/L 0.051	
2-Methylphenol ND 1.1 ug/L 0.056	
4-Methylphenol ND 1.1 ug/L 0.081	
Naphthalene ND 0.22 ug/L 0.047	
2-Nitroaniline ND 5.5 ug/L 0.052	
3-Nitroaniline ND 5.5 ug/L 0.044	
4-Nitroaniline ND 5.5 ug/L 0.028	
Nitrobenzene ND 0.22 ug/L 0.070	
2-Nitrophenol ND 1.1 ug/L 0.059	
4-Nitrophenol ND 5.5 ug/L 0.077	
N-Nitrosodi-n-propyl- ND 0.22 ug/L 0.065	
amine	
N-Nitrosodiphenylamine ND 0.22 ug/L 0.054	
2,2'-oxybis(1-Chloropropane) ND 0.22 ug/L 0.029	
Pentachlorophenol ND 1.1 ug/L 0.091	
Phenanthrene 0.13 J 0.22 ug/L 0.061	
Phenol ND 0.22 ug/L 0.024	
Pyrene ND 0.22 ug/L 0.062	
2,4,5-Trichloro- ND 1.1 ug/L 0.069	
phenol 0.069	
2,4,6-Trichloro- ND 1.1 ug/L 0.062	
phenol 0.002	

Client Sample ID: FMC 18

GC/MS Semivolatiles

Lot-Sample #...: C7K020216-008 Work Order #...: KAE1K1AM Matrix..... WATER

SURROGATE	PERCENT RECOVERY	RECOVERY LIMITS
Nitrobenzene-d5	83	(23 - 112)
Terphenyl-d14	49	(10 - 132)
2-Fluorobiphenyl	74	(19 - 107)
2-Fluorophenol	67	(10 - 111)
Phenol-d5	73	(15 - 112)
2,4,6-Tribromophenol	81	(16 - 122)

NOTE(S):

J Estimated result. Result is less than RL.

Client Sample ID: FMC 20

GC/MS Semivolatiles

 Lot-Sample #...:
 C7K020216-009
 Work Order #...:
 KAE1P1AM
 Matrix......
 WATER

 Date Sampled...:
 10/31/07 11:00
 Date Received...
 11/02/07 09:20
 MS Run #.....
 7311210

 Prep Date.....:
 11/07/07
 Analysis Date...
 11/22/07

 Prep Batch #...:
 7311333
 Analysis Time...
 11:10

 Dilution Factor:
 0.99
 Initial Wgt/Vol:
 1010 mL
 Final Wgt/Vol...
 1 mL

 Analyst ID....:
 003200
 Instrument ID...
 733

Method....: SW846 8270C

		REPORTI	NG		
PARAMETER	RESULT	LIMIT	UNITS	MDL	
Acenaphthene	ND	0.20	ug/L	0.052	
Acenaphthylene	ND	0.20	ug/L	0.046	
Acetophenone	ND	0.99	ug/L	0.046	
Anthracene	ND	0.20	ug/L	0.050	
Atrazine	ND	0.99	ug/L	0.039	
Benzo (a) anthracene	ND	0.20	ug/L	0.041	
Benzo (a) pyrene	ND	0.20	ug/L	0.043	
Benzo(b)fluoranthene	ND	0.20	ug/L	0.031	
Benzo(ghi)perylene	ND	0.20	ug/L	0.027	
Benzo(k)fluoranthene	ND	0.20	ug/L	0.039	
Benzaldehyde	ND	0.99	ug/L	0.054	
1,1'-Biphenyl	ND	0.99	ug/L	0.060	
bis(2-Chloroethoxy)	ND	0.99	ug/L	0.12	
methane			5, -		
bis(2-Chloroethyl)-	ND	0.20	ug/L	0.046	
ether			3/ -	0.010	
bis(2-Ethylhexyl)	ND	0.99	ug/L	0.12	
phthalate			-3, -	0.12	
4-Bromophenyl phenyl	ND	0.99	ug/L	0.049	
ether			3, -	0.015	
Butyl benzyl phthalate	ND	0.99	ug/L	0.14	
Caprolactam	ND	0.99	ug/L	0.19	
Carbazole	ND	0.20	ug/L	0.052	
4-Chloroaniline	ND	0.99	ug/L	0.046	
4-Chloro-3-methylphenol	ND	0.99	ug/L	0.058	
2-Chloronaphthalene	ND	0.20	ug/L	0.044	
2-Chlorophenol	ND	0.99	ug/L	0.045	
4-Chlorophenyl phenyl ether	ND .	0.99	ug/L	0.042	
Chrysene	ND	0.20	ug/L	0.035	
Dibenz (a, h) anthracene	ND	0.20	ug/L	0.035	
Dibenzofuran	ND	0.99	ug/L ug/L		
3,3'-Dichlorobenzidine	ND	0.99	ug/L	0.053	
2,4-Dichlorophenol	ND	0.20		0.041	
Diethyl phthalate	ND	0.99	ug/L	0.048	
2,4-Dimethylphenol	ND	0.99	ug/L	0.24	
Dimethyl phthalate	ND		ug/L	0.051	
	TATA	0.99	ug/L	0.042	

Client Sample ID: FMC 20

GC/MS Semivolatiles

Lot-Sample #...: C7K020216-009 Work Order #...: KAE1P1AM Matrix..... WATER

Di-n-butyl phthalate			REPORTI	NG		
Di-n-butyl phthalate	PARAMETER	RESULT			MDI.	
4,6-Dinitro- ND 5.0 ug/L 1.4		ND				
2-methylphenol 2,4-Dinitrophenol ND 5.0 ug/L 2,4-Dinitrotoluene ND 0.99 ug/L 0.045 2,6-Dinitrotoluene ND 0.99 ug/L 0.050 Di-n-octyl phthalate ND 0.99 ug/L 0.042 Pluoranthene ND 0.20 ug/L 0.049 Pluorene ND 0.20 ug/L 0.054 Hexachlorobenzene ND 0.20 ug/L 0.037 Hexachlorobutadiene ND 0.20 ug/L 0.037 Hexachlorocyclopenta- ND 0.99 ug/L 0.037 Hexachlorocyclopenta- ND 0.99 ug/L 0.043 Indeno(1,2,3-cd) pyrene ND 0.20 ug/L 0.047 Indeno(1,2,3-dd) pyrene ND 0.99 ug/L 0.047 Indeno(1,2,3-dd) pyrene ND 0.99 ug/L 0.047 Indeno(1,2,3-dd) pyrene ND 0.99 ug/L 0.047 Indeno(1,2,3-dd) pyrene ND 0.99 ug/L 0.047 Indeno(1,2,3-dd) pyrene ND 0.99 ug/L 0.047 Indeno(1,2,3-dd) pyrene ND 0.99 ug/L 0.047 Indeno(1,2,3-dd) pyrene ND 0.99 ug/L 0.047 Indeno(1,2,3-dd) pyrene ND 0.99 ug/L 0.047 Indeno(1,2,3-dd) pyrene ND 0.99 ug/L 0.047 Indeno(1,2,3-dd) pyrene ND 0.99 ug/L 0.047 Indeno(1,2,3-dd) pyrene ND 0.99 ug/L 0.047 Indeno(1,2,3-dd) pyrene ND 0.99 ug/L 0.051 Indeno(1,2,3-dd) pyrene ND 0.99 ug/L 0.051 Indeno(1,2,3-dd) pyrene ND 0.99 ug/L 0.051 Indeno(1,2,3-dd) pyrene ND 0.20 ug/L 0.040 Indeno(1,2,3-dd) pyrene ND 0.20 ug/L 0.040 Indeno(1,2,3-dd) pyrene ND 0.20 ug/L 0.040 Indeno(1,2,3-dd) pyrene ND 0.20 ug/L 0.053 Indeno(1,2,3-dd) pyrene ND 0.20 ug/L 0.053 Indeno(1,2,3-dd) pyrene ND 0.20 ug/L 0.053 Indeno(1,2,3-dd) pyrene ND 0.20 ug/L 0.055 Indeno(1,2,3-dd) pyrene ND 0.20 ug/L 0.055 Indeno(1,2,3-dd) pyrene ND 0.20 ug/L 0.056 Indeno(1,2,3-dd) pyrene ND 0.20 ug/L 0.056 Indeno(1,2,3-dd) pyrene ND 0.20 ug/L 0.056 Indeno(1,2,3-dd) pyrene ND 0.20 ug/L 0.056 Indeno(1,2,3-dd) pyrene ND 0.20 ug/L 0.056 Indeno(1,2,3-dd) pyrene ND 0.20 ug/L 0.056 Indeno(1,2,3-dd) pyrene ND 0.20 ug/L 0.056 Indeno(1,2,3-dd) pyrene ND 0.20 ug/L 0.056 Indeno(1,2,3-dd) pyrene ND 0.20 ug/L 0.056 Indeno(1,2,3-dd) pyrene ND 0.20 ug/L 0.056 Indeno(1,2,3-dd) pyrene ND 0.20 ug/L 0.056 Indeno(1,2,3-dd) pyrene ND 0.20 ug/L 0.056 Indeno(1,2,3-dd) pyrene ND 0.056 Indeno(1,2,3-dd) pyrene ND 0.056 Indeno(1,2,3-dd) pyrene Indeno(1,2,3-dd) pyrene Indeno(1,2,3-dd) pyrene Indeno(1,2,3-dd) pyrene		ND	5.0	_		
2,4-Dinitrotoluene ND 0.99 ug/L 0.045 2,6-Dinitrotoluene ND 0.99 ug/L 0.050 Di-n-octyl phthalate ND 0.99 ug/L 0.050 Fluoranthene ND 0.20 ug/L 0.042 Fluorene ND 0.20 ug/L 0.054 Hexachlorobenzene ND 0.20 ug/L 0.054 Hexachlorobutadiene ND 0.20 ug/L 0.037 Hexachlorocyclopenta- ND 0.20 ug/L 0.037 Hexachlorocyclopenta- ND 0.99 ug/L 0.079 diene Hexachlorocthane ND 0.99 ug/L 0.079 Hexachlorothane ND 0.99 ug/L 0.043 Indeno(1,2,3-cd) pyrene ND 0.20 ug/L 0.047 Isophorone ND 0.99 ug/L 0.047 Isophorone ND 0.99 ug/L 0.047 Isophorone ND 0.99 ug/L 0.047 Isophorone ND 0.99 ug/L 0.047 Isophorone ND 0.99 ug/L 0.047 Isophorone ND 0.99 ug/L 0.047 Isophorone ND 0.99 ug/L 0.047 Isophorone ND 0.99 ug/L 0.047 Isophorone ND 0.99 ug/L 0.047 Isophorone ND 0.99 ug/L 0.051 Isophorone ND 0.99 ug/L 0.051 Isophorone ND 0.99 ug/L 0.051 Isophorone ND 0.99 ug/L 0.051 Isophorone ND 0.99 ug/L 0.051 Isophorone ND 0.99 ug/L 0.051 Isophorone ND 0.99 ug/L 0.051 Isophorone ND 0.99 ug/L 0.051 Isophorone ND 0.99 ug/L 0.051 Isophorone ND 0.20 ug/L 0.040 Isophorone ND 0.20 ug/L 0.040 Isophorone ND 0.20 ug/L 0.063 Isophorone ND 0.20 ug/L 0.063 Isophorone ND 0.20 ug/L 0.063 Isophorone ND 0.20 ug/L 0.063 Isophorone ND 0.20 ug/L 0.069 Isophorone ND 0.20 ug/L 0.069 Isophorone ND 0.20 ug/L 0.069 Isophorone ND 0.20 ug/L 0.069 Isophorone ND 0.20 ug/L 0.069 Isophorone ND 0.20 ug/L 0.069 Isophorone ND 0.20 ug/L 0.062 I	<u>- *</u>			-5/ -		
2,4-Dinitrotoluene ND 0.99 ug/L 0.045 Di-n-octyl phthalate ND 0.99 ug/L 0.050 Di-n-octyl phthalate ND 0.99 ug/L 0.042 Fluoranthene ND 0.20 ug/L 0.049 Fluorene ND 0.20 ug/L 0.054 Hexachlorobenzene ND 0.20 ug/L 0.054 Hexachlorobutadiene ND 0.20 ug/L 0.037 Hexachlorocyclopenta- diene ND 0.99 ug/L 0.037 Hexachlorotehane ND 0.99 ug/L 0.079 diene Hexachlorotehane ND 0.99 ug/L 0.043 Indeno(1,2,3-cd)pyrene ND 0.99 ug/L 0.047 Indeno(1,2,3-dd)pyrene ND 0.99 ug/L 0.047 Indeno(1,2,3-dd)pyrene ND 0.99 ug/L 0.047 Indeno(1,2,3-dd)pyrene ND 0.99 ug/L 0.047 Indeno(1,2,3-dd)pyrene ND 0.99 ug/L 0.047 Indeno(1,2,3-dd)pyrene ND 0.99 ug/L 0.047 Indeno(1,2,3-dd)pyrene ND 0.99 ug/L 0.047 Indeno(1,2,3-dd)pyrene ND 0.99 ug/L 0.047 Indeno(1,2,3-dd)pyrene ND 0.20 ug/L 0.046 Indeno(1,2,3-dd)pyrene ND 0.20 ug/L 0.051 Indeno(1,2,3-dd)pyrene ND 0.99 ug/L 0.051 Indeno(1,2,3-dd)pyrene ND 0.99 ug/L 0.051 Indeno(1,2,3-dd)pyrene ND 0.99 ug/L 0.051 Indeno(1,2,3-dd)pyrene ND 0.20 ug/L 0.043 Indeno(1,2,3-dd)pyrene ND 0.20 ug/L 0.043 Indeno(1,2,3-dd)pyrene ND 0.20 ug/L 0.063 Indeno(1,2,3-dd)pyrene ND 0.20 ug/L 0.063 Indeno(1,2,3-dd)pyrene ND 0.20 ug/L 0.069 Indeno(1,2,3-dd)pyrene ND 0.20 ug/L 0.069 Indeno(1,2,3-dd)pyrene ND 0.20 ug/L 0.054 Indeno(1,2,3-dd)pyrene ND 0.20 ug/L 0.054 Indeno(1,2,3-dd)pyrene ND 0.20 ug/L 0.054 Indeno(1,2,3-dd)pyrene ND 0.20 ug/L 0.055 Indeno(1,2,3-dd)pyrene ND 0.20 ug/L 0.056 Indeno(1,2,3-dd)pyrene ND 0.20 ug/L 0.056 Indeno(1,2,3-dd)pyrene ND 0.20 ug/L 0.056 Indeno(1,2,3-dd)pyrene ND 0.20 ug/L 0.056 Indeno(1,2,3-dd)pyrene ND 0.20 ug/L 0.056 Indeno(1,2,3-dd)pyrene ND 0.20 ug/L 0.056 Indeno(1,2,3-dd)pyrene ND 0.20 ug/L 0.056 Indeno(1,2,3-dd)pyrene ND 0.20 ug/L 0.056 Indeno(1,2,3-dd)pyrene ND 0.20 ug/L 0.056 Indeno(1,2,3-dd)pyrene ND 0.20 ug/L 0.056 Indeno(1,2,3-dd)pyrene ND 0.20 ug/L 0.056 Indeno(1,2,3-dd)pyrene ND 0.20 ug/L 0.056 Indeno(1,2,3-dd)pyrene ND 0.20 ug/L 0.056 Indeno(1,2,3-dd)pyrene ND 0.20 ug/L 0.056 Indeno(1,2,3-dd)pyrene ND 0.20 ug/L 0.056 Indeno(1,2,3-dd)pyrene ND 0.20 ug/L 0.056 Indeno(1,2,3-dd)pyrene ND 0.2	<u>-</u>	ND	5.0	uq/L	1.3	
2,6-Dinitrotoluene ND 0.99 ug/L 0.050 Di-n-octyl phthalate ND 0.99 ug/L 0.042 Fluoranthene ND 0.20 ug/L 0.049 Fluorene ND 0.20 ug/L 0.054 Hexachlorobenzene ND 0.20 ug/L 0.043 Hexachlorocyclopenta- ND 0.99 ug/L 0.037 diene ND 0.99 ug/L 0.043 Hexachlorocyclopenta- ND 0.99 ug/L 0.043 Indeno(1,2,3-cd)pyrene ND 0.99 ug/L 0.047 Isophorone ND 0.99 ug/L 0.047 Isophorone ND 0.99 ug/L 0.047 Isophorone ND 0.99 ug/L 0.047 Isophorone ND 0.99 ug/L 0.047 Isophorone ND 0.99 ug/L 0.047 Isophorone ND 0.99 ug/L 0.046 2-Methylnaphthalene ND 0.99 ug/L 0.051 <td></td> <td>ND</td> <td>0.99</td> <td></td> <td></td> <td></td>		ND	0.99			
Di-n-octyl phthalate		ND	0.99			
Fluoranthene Fluorene ND Pluor	Di-n-octyl phthalate	ND				
Fluorene	Fluoranthene	ND		-		
Hexachlorobenzene ND 0.20 ug/L 0.043 Hexachlorobutadiene ND 0.20 ug/L 0.037 Hexachlorocyclopenta- diene ND 0.99 ug/L 0.079 diene ND 0.99 ug/L 0.043 Indeno(1,2,3-cd)pyrene ND 0.20 ug/L 0.047 Indeno(1,2,3-cd)pyrene ND 0.20 ug/L 0.047 Indeno(1,2,3-cd)pyrene ND 0.20 ug/L 0.047 Indeno(1,2,3-cd)pyrene ND 0.20 ug/L 0.047 Indeno(1,2,3-cd)pyrene ND 0.20 ug/L 0.047 Indeno(1,2,3-cd)pyrene ND 0.20 ug/L 0.047 Indeno(1,2,3-cd)pyrene ND 0.29 ug/L 0.047 Indeno(1,2,3-cd)pyrene ND 0.29 ug/L 0.046 2-Methylphenol ND 0.20 ug/L 0.073 ND 0.20 ug/L 0.040 1-Nitroaniline ND		ND		_		
Hexachlorobutadiene	Hexachlorobenzene	ND		-		
Hexachlorocyclopenta-diene ND 0.99 ug/L 0.079	Hexachlorobutadiene	ND		<u>-</u> .	-	
diene ND 0.99 ug/L 0.043 Indeno(1,2,3-cd)pyrene ND 0.20 ug/L 0.047 Isophorone ND 0.99 ug/L 0.047 2-Methylnaphthalene ND 0.20 ug/L 0.046 2-Methylphenol ND 0.99 ug/L 0.051 4-Methylphenol ND 0.99 ug/L 0.073 Naphthalene ND 0.20 ug/L 0.043 2-Nitroaniline ND 5.0 ug/L 0.047 3-Nitroaniline ND 5.0 ug/L 0.047 3-Nitroaniline ND 5.0 ug/L 0.047 3-Nitroaniline ND 5.0 ug/L 0.047 3-Nitroaniline ND 5.0 ug/L 0.025 Nitrobenzene ND 0.20 ug/L 0.063 2-Nitrobenzene ND 0.99 ug/L 0.053 4-Nitrophenol ND 0.99 ug/L 0.069<	Hexachlorocyclopenta-	ND				
Indeno(1,2,3-cd) pyrene	diene		****	49/1	0.073	
Indeno(1,2,3-cd) pyrene	Hexachloroethane	ND	0.99	na/ī.	0 043	
Isophorone	Indeno(1,2,3-cd)pyrene	ND				
2-Methylnaphthalene ND 0.20 ug/L 0.046 2-Methylphenol ND 0.99 ug/L 0.051 4-Methylphenol ND 0.99 ug/L 0.073 Naphthalene ND 0.20 ug/L 0.047 3-Nitroaniline ND 5.0 ug/L 0.047 3-Nitroaniline ND 5.0 ug/L 0.047 3-Nitroaniline ND 5.0 ug/L 0.047 3-Nitroaniline ND 5.0 ug/L 0.040 4-Nitroaniline ND 5.0 ug/L 0.025 Nitrobenzene ND 0.20 ug/L 0.063 2-Nitrophenol ND 0.99 ug/L 0.053 4-Nitrophenol ND 0.99 ug/L 0.053 4-Nitrophenol ND 0.20 ug/L 0.069 N-Nitrosodi-n-propyl- amine N-Nitrosodiphenylamine ND 0.20 ug/L 0.059 ND 0.20 ug/L 0.059 ND 0.20 ug/L 0.059 Pentachlorophenol ND 0.20 ug/L 0.048 2,2'-oxybis(1-Chloropropane) ND 0.20 ug/L 0.082 Phenanthrene 0.084 J 0.20 ug/L 0.054 Phenol ND 0.20 ug/L 0.056 2,4,5-Trichloro- ND 0.99 ug/L 0.056 2,4,5-Trichloro- ND 0.99 ug/L 0.056	Isophorone	ND				
2-Methylphenol ND 0.99 ug/L 0.051 4-Methylphenol ND 0.99 ug/L 0.073 Naphthalene ND 0.20 ug/L 0.043 2-Nitroaniline ND 5.0 ug/L 0.047 3-Nitroaniline ND 5.0 ug/L 0.040 4-Nitroaniline ND 5.0 ug/L 0.025 Nitrobenzene ND 0.20 ug/L 0.063 2-Nitrophenol ND 0.20 ug/L 0.063 4-Nitrophenol ND 0.99 ug/L 0.053 4-Nitrosodi-n-propyl- ND 0.20 ug/L 0.069 N-Nitrosodi-n-propyl- ND 0.20 ug/L 0.059 amine ND 0.20 ug/L 0.059 N-Nitrosodiphenylamine ND 0.20 ug/L 0.059 Pentachlorophenol ND 0.20 ug/L 0.026 Pentachlorophenol ND 0.99 ug/L 0.082 Phenanthrene 0.084 J 0.20 ug/L 0.082 Phenanthrene ND 0.20 ug/L 0.054 Phenol ND 0.20 ug/L 0.055 2,4,5-Trichloro- ND 0.20 ug/L 0.056 2,4,5-Trichloro- ND 0.99 ug/L 0.062	2-Methylnaphthalene	ND		_		
4-Methylphenol ND 0.99 ug/L 0.073 Naphthalene ND 0.20 ug/L 0.043 2-Nitroaniline ND 5.0 ug/L 0.047 3-Nitroaniline ND 5.0 ug/L 0.040 4-Nitroaniline ND 5.0 ug/L 0.025 Nitrobenzene ND 0.20 ug/L 0.063 2-Nitrophenol ND 0.99 ug/L 0.053 4-Nitrophenol ND 5.0 ug/L 0.069 N-Nitrosodi-n-propyl- ND 0.20 ug/L 0.059 amine N-Nitrosodiphenylamine ND 0.20 ug/L 0.059 N-Nitrosodiphenylamine ND 0.20 ug/L 0.069 2,2'-oxybis(1-Chloropropane) ND 0.20 ug/L 0.026 Pentachlorophenol ND 0.99 ug/L 0.026 Pentachlorophenol ND 0.99 ug/L 0.082 Phenanthrene 0.084 J 0.20 ug/L 0.082 Phenol ND 0.20 ug/L 0.054 Phenol ND 0.20 ug/L 0.056 2,4,5-Trichloro- ND 0.99 ug/L 0.056 2,4,5-Trichloro- ND 0.99 ug/L 0.062	2-Methylphenol	ND				
Naphthalene ND 0.20 ug/L 0.043 2-Nitroaniline ND 5.0 ug/L 0.047 3-Nitroaniline ND 5.0 ug/L 0.040 4-Nitroaniline ND 5.0 ug/L 0.025 Nitrobenzene ND 0.20 ug/L 0.063 2-Nitrophenol ND 0.99 ug/L 0.053 4-Nitrophenol ND 5.0 ug/L 0.069 N-Nitrosodi-n-propyl- ND 0.20 ug/L 0.059 amine ND 0.20 ug/L 0.048 2,2'-oxybis(1-Chloropropane) ND 0.20 ug/L 0.048 2,2'-oxybis(1-Chloropropane) ND 0.99 ug/L 0.082 Phenanthrene 0.084 J 0.20 ug/L 0.054 Phenol ND 0.20 ug/L 0.056 2,4,5-Trichloro- ND 0.99 ug/L 0.062 phenol 0.4,6-Trichloro- ND 0	4-Methylphenol	ND				
2-Nitroaniline ND 5.0 ug/L 0.047 3-Nitroaniline ND 5.0 ug/L 0.040 4-Nitroaniline ND 5.0 ug/L 0.025 Nitrobenzene ND 0.20 ug/L 0.063 2-Nitrophenol ND 0.99 ug/L 0.053 4-Nitrophenol ND 5.0 ug/L 0.069 N-Nitrosodi-n-propyl- ND 0.20 ug/L 0.059 ND N-Nitrosodiphenylamine N-Nitrosodiphenylamine N-Nitrosodiphenylamine ND 0.20 ug/L 0.048 2,2'-oxybis(1-Chloropropane) ND 0.20 ug/L 0.048 2,2'-oxybis(1-Chloropropane) ND 0.20 ug/L 0.048 2,2'-oxybis(1-Chloropropane) ND 0.20 ug/L 0.048 2,2'-oxybis(1-Chloropropane) ND 0.20 ug/L 0.056 Phenanthrene 0.084 J 0.20 ug/L 0.054 Phenol Pyrene ND 0.20 ug/L 0.056 2,4,5-Trichloro- ND 0.99 ug/L 0.056 2,4,5-Trichloro- ND 0.99 ug/L 0.056	Naphthalene	ND				
3-Nitroaniline ND 5.0 ug/L 0.040 4-Nitroaniline ND 5.0 ug/L 0.025 Nitrobenzene ND 0.20 ug/L 0.063 2-Nitrophenol ND 0.99 ug/L 0.053 4-Nitrophenol ND 5.0 ug/L 0.069 N-Nitrosodi-n-propyl- ND 0.20 ug/L 0.059 amine N-Nitrosodiphenylamine ND 0.20 ug/L 0.048 2,2'-oxybis(1-Chloropropane) ND 0.20 ug/L 0.026 Pentachlorophenol ND 0.99 ug/L 0.082 Phenanthrene 0.084 J 0.20 ug/L 0.082 Phenol ND 0.20 ug/L 0.054 Phenol ND 0.20 ug/L 0.054 Phenol ND 0.20 ug/L 0.056 2,4,5-Trichloro- ND 0.99 ug/L 0.056 2,4,5-Trichloro- ND 0.99 ug/L 0.062 phenol 0.99 ug/L 0.056	2-Nitroaniline	ND				
4-Nitroaniline ND 5.0 ug/L 0.025 Nitrobenzene ND 0.20 ug/L 0.063 2-Nitrophenol ND 0.99 ug/L 0.053 4-Nitrophenol ND 5.0 ug/L 0.069 N-Nitrosodi-n-propyl- amine N-Nitrosodiphenylamine N-Nitrosodiphenylamine ND 0.20 ug/L 0.059 N-Nitrosodiphenylamine ND 0.20 ug/L 0.048 2,2'-oxybis(1-Chloropropane) ND 0.20 ug/L 0.026 Pentachlorophenol ND 0.99 ug/L 0.082 Phenanthrene 0.084 J 0.20 ug/L 0.054 Phenol ND 0.20 ug/L 0.054 Phenol ND 0.20 ug/L 0.055 0.054 Phenol ND 0.20 ug/L 0.055 0.056 Phenol ND 0.20 ug/L 0.056 Phenol ND 0.20 ug/L 0.056 Phenol 0.20 ug/L 0.056 0.4,5-Trichloro- ND 0.99 ug/L 0.056	3-Nitroaniline	ND .		-		
Nitrobenzene ND 0.20 ug/L 0.063 2-Nitrophenol ND 0.99 ug/L 0.053 4-Nitrophenol ND 5.0 ug/L 0.069 N-Nitrosodi-n-propyl-amine ND 0.20 ug/L 0.059 N-Nitrosodiphenylamine ND 0.20 ug/L 0.048 2,2'-oxybis(1-Chloropropane) ND 0.20 ug/L 0.026 Pentachlorophenol ND 0.99 ug/L 0.082 Phenanthrene 0.084 J 0.20 ug/L 0.054 Phenol ND 0.20 ug/L 0.056 2,4,5-Trichloro-phenol ND 0.99 ug/L 0.062 2,4,6-Trichloro-phenol ND 0.99 ug/L 0.056	4-Nitroaniline	ND				
2-Nitrophenol ND 0.99 ug/L 0.053 4-Nitrophenol ND 5.0 ug/L 0.069 N-Nitrosodi-n-propyl- ND 0.20 ug/L 0.059 amine N-Nitrosodiphenylamine ND 0.20 ug/L 0.048 2,2'-oxybis(1-Chloropropane) ND 0.20 ug/L 0.026 Pentachlorophenol ND 0.99 ug/L 0.082 Phenanthrene 0.084 J 0.20 ug/L 0.054 Phenol ND 0.20 ug/L 0.054 Phenol ND 0.20 ug/L 0.055 Pyrene ND 0.20 ug/L 0.056 2,4,5-Trichloro- ND 0.99 ug/L 0.062 phenol 0.99 ug/L 0.062	Nitrobenzene	ND		-	·	
4-Nitrophenol ND 5.0 ug/L 0.069 N-Nitrosodi-n-propyl-amine ND 0.20 ug/L 0.059 N-Nitrosodiphenylamine ND 0.20 ug/L 0.048 2,2'-oxybis(1-Chloropropane) ND 0.20 ug/L 0.026 Pentachlorophenol ND 0.99 ug/L 0.082 Phenanthrene 0.084 J 0.20 ug/L 0.054 Phenol ND 0.20 ug/L 0.022 Pyrene ND 0.20 ug/L 0.056 2,4,5-Trichloro-phenol ND 0.99 ug/L 0.062 2,4,6-Trichloro-ND 0.99 ug/L 0.056	2-Nitrophenol	ND		_		
N-Nitrosodi-n-propyl- ND 0.20 ug/L 0.059 amine N-Nitrosodiphenylamine ND 0.20 ug/L 0.048 2,2'-oxybis(1-Chloropropane) ND 0.20 ug/L 0.026 Pentachlorophenol ND 0.99 ug/L 0.082 Phenanthrene 0.084 J 0.20 ug/L 0.054 Phenol ND 0.20 ug/L 0.054 Phenol ND 0.20 ug/L 0.056 2,4,5-Trichloro- ND 0.99 ug/L 0.062 phenol 2,4,6-Trichloro- ND 0.99 ug/L 0.062	4-Nitrophenol	ND	•	_	·	
### Amine N-Nitrosodiphenylamine ND 0.20 ug/L 0.048 2,2'-oxybis(1-Chloropropane) ND 0.20 ug/L 0.026 Pentachlorophenol ND 0.99 ug/L 0.082 Phenanthrene 0.084 J 0.20 ug/L 0.054 Phenol ND 0.20 ug/L 0.054 Pyrene ND 0.20 ug/L 0.055 2,4,5-Trichloro- ND 0.99 ug/L 0.062 phenol 2,4,6-Trichloro- ND 0.99 ug/L 0.056	N-Nitrosodi-n-propyl-	ND	•			
2,2'-oxybis(1-Chloropropane) ND 0.20 ug/L 0.026 Pentachlorophenol ND 0.99 ug/L 0.082 Phenanthrene 0.084 J 0.20 ug/L 0.054 Phenol ND 0.20 ug/L 0.022 Pyrene ND 0.20 ug/L 0.056 2,4,5-Trichloro- ND 0.99 ug/L 0.062 phenol 2,4,6-Trichloro- ND 0.99 ug/L 0.056	amine			ug/ n	0.059	
2,2'-oxybis(1-Chloropropane) ND 0.20 ug/L 0.026 Pentachlorophenol ND 0.99 ug/L 0.082 Phenanthrene 0.084 J 0.20 ug/L 0.054 Phenol ND 0.20 ug/L 0.022 Pyrene ND 0.20 ug/L 0.056 2,4,5-Trichloro- ND 0.99 ug/L 0.062 phenol 2,4,6-Trichloro- ND 0.99 ug/L 0.056	N-Nitrosodiphenylamine	ND	0.20	ug/L	0 048	
Pentachlorophenol ND 0.99 ug/L 0.082 Phenanthrene 0.084 J 0.20 ug/L 0.054 Phenol ND 0.20 ug/L 0.022 Pyrene ND 0.20 ug/L 0.056 2,4,5-Trichloro- ND 0.99 ug/L 0.062 phenol 2,4,6-Trichloro- ND 0.99 ug/L 0.056	2,2'-oxybis(1-Chloropropane)	ND				
Phenanthrene 0.084 J 0.20 ug/L 0.054 Phenol ND 0.20 ug/L 0.022 Pyrene ND 0.20 ug/L 0.056 2,4,5-Trichloro- ND 0.99 ug/L 0.062 phenol 0.99 ug/L 0.056	Pentachlorophenol	ND		•	· · · · · ·	
Phenol ND 0.20 ug/L 0.022 Pyrene ND 0.20 ug/L 0.056 2,4,5-Trichloro- ND 0.99 ug/L 0.062 phenol 0.99 ug/L 0.056	Phenanthrene	0.084 J	. – –			
Pyrene ND 0.20 ug/L 0.056 2,4,5-Trichloro- ND 0.99 ug/L 0.062 phenol 0.99 ug/L 0.056	Phenol	ND		_		
2,4,5-Trichloro- ND 0.99 ug/L 0.062 phenol	Pyrene	ND		_		
phenol 2,4,6-Trichloro- ND 0.99 ug/L 0.056	2,4,5-Trichloro-	ND				
V-22 447 B U. USA	phenol		0.55	49/ H	0.002	
	2,4,6-Trichloro-	ND	0 99	na/T	0.056	
	phenol	-	4.2 2	49, n	0.056	

Client Sample ID: FMC 20

GC/MS Semivolatiles

Lot-Sample #...: C7K020216-009 Work Order #...: KAE1P1AM

Matrix....: WATER

SURROGATE	PERCENT RECOVERY	RECOVERY LIMITS
Nitrobenzene-d5	69	(23 - 112)
Terphenyl-d14	50 ·	(10 - 132)
2-Fluorobiphenyl	61	(19 - 107)
2-Fluorophenol	58	(10 - 111)
Phenol-d5	63	(15 - 112)
2,4,6-Tribromophenol	73	(16 - 122)

NOTE(S):

J Estimated result. Result is less than RL.

Client Sample ID: FMC 22

GC/MS Semivolatiles

Lot-Sample #:	C7K020216-010	Work Order #:	KAE1R1AM	Matrix:	ከአጥቱp
Date Sampled:	10/31/07 13:35	Date Received:	11/02/07 09:20	MS Run #	7311210
Prep Date:	11/07/07	Analysis Date:	11/22/07		7511210
Prep Batch #:		Analysis Time:	11:38		
Dilution Factor:	0.96	<pre>Initial Wgt/Vol:</pre>		Final Wgt/Vol:	1 m7.
Analyst ID:	003200	Instrument ID:	733		
		Method:	SW846 8270C		

		REPORTI	NG		
PARAMETER	RESULT	LIMIT	UNITS	MDL	
Acenaphthene	ND	0.19	ug/L	0.050	
Acenaphthylene	ND	0.19	ug/L	0.044	
Acetophenone	ND	0.96	ug/L	0.044	
Anthracene	ND	0.19	ug/L	0.049	
Atrazine	ND	0.96	ug/L	0.037	
Benzo (a) anthracene	0.095 J	0.19	ug/L	0.039	
Benzo (a) pyrene	0.15 J	0.19	ug/L	0.042	
Benzo (b) fluoranthene	0.11 J	0.19	ug/L	0.030	
Benzo(ghi)perylene	0.26	0.19	ug/L	0.026	
Benzo(k) fluoranthene	0.20	0.19	ug/L	0.038	
Benzaldehyde	ND	0.96	ug/L	0.052	
1,1'-Biphenyl	ND	0.96	ug/L	0.058	
bis(2-Chloroethoxy)	ND	0.96	ug/L	0.12	
methane			<u>.</u>		
bis(2-Chloroethyl)-	ND	0.19	ug/L	0.044	
ether					
bis(2-Ethylhexyl)	ND	0.96	ug/L	0.11	
phthalate					
4-Bromophenyl phenyl ether	ND	0.96	ug/L	0.048	•
Butyl benzyl phthalate	ND	0.96	ug/L	0.13	
Caprolactam	ND	0.96	ug/L	0.18	
Carbazole	ND	0.19	ug/L	0.050	
4-Chloroaniline	ND	0.96	ug/L	0.044	
4-Chloro-3-methylphenol	ND	0.96	ug/L	0.057	
2-Chloronaphthalene	ND	0.19	ug/L	0.042	
2-Chlorophenol	ND	0.96	ug/L	0.044	
4-Chlorophenyl phenyl ether	ND	0.96	ug/L	0.041	
Chrysene	0.16 Ј	0.19	ug/L	0.034	
Dibenz (a, h) anthracene	0.27	0.19	ug/L	0.033	
Dibenzofuran	ND	0.96	ug/L	0.051	
3,3'-Dichlorobenzidine	ND	0.96	ug/L	0.039	
2,4-Dichlorophenol	ND	0.19	ug/L	0.039	
Diethyl phthalate	ND	0.96	ug/L	0.047	
2,4-Dimethylphenol	ND	0.96	ug/L		
Dimethyl phthalate	ND	0.96	ug/L ug/L	0.050	
- •• ,		0.50	ug/ n	0.041	

Client Sample ID: FMC 22

GC/MS Semivolatiles

Lot-Sample #...: C7K020216-010 Work Order #...: KAE1R1AM Matrix..... WATER

		REPORTI	NG		
PARAMETER	RESULT	LIMIT	UNITS	MDL	
Di-n-butyl phthalate	ND	0.96	ug/L	0.045	
4,6-Dinitro-	ND	4.8	ug/L	1.4	
2-methylphenol			-		
2,4-Dinitrophenol	ND	4.8	ug/L	1.2	
2,4-Dinitrotoluene	ND	0.96	ug/L	0.043	
2,6-Dinitrotoluene	ND	0.96	ug/L	0.049	
Di-n-octyl phthalate	ND	0.96	ug/L	0.041	
Fluoranthene	ND	0.19	ug/L	0.048	
Fluorene	ND	0.19	ug/L	0.052	
Hexachlorobenzene	ND	0.19	ug/L	0.042	
Hexachlorobutadiene	ND	0.19	ug/L	0.036	
Hexachlorocyclopenta-	ND	0.96	ug/L	0.077	
diene			· • · · · ·		
Hexachloroethane	ND	0.96	ug/L	0.042	
Indeno(1,2,3-cd)pyrene	0.22	0.19	ug/L	0.046	
Isophorone	ND	0.96	ug/L	0.045	
2-Methylnaphthalene	ND	0.19	ug/L	0.045	
2-Methylphenol	ND	0.96	ug/L	0.049	
4-Methylphenol	ND	0.96	ug/L	0.071	
Naphthalene	ND	0.19	ug/L	0.041	
2-Nitroaniline	ND	4.8	ug/L	0.046	
3-Nitroaniline	ND	4.8	ug/L	0.039	
4-Nitroaniline	ND	4.8	ug/L	0.024	
Nitrobenzene	ND	0.19	ug/L	0.061	
2-Nitrophenol	ND	0.96	ug/L	0.052	
4-Nitrophenol	ND	4.8	ug/L	0.067	
N-Nitrosodi-n-propyl-	ND	0.19	ug/L	0.057	
amine			-3/ -	0.037	
N-Nitrosodiphenylamine	ND	0.19	ug/L	0.047	
2,2'-oxybis(1-Chloropropane)	ND	0.19	ug/L	0.025	
Pentachlorophenol	ND	0.96	ug/L	0.080	
Phenanthrene	ND	0.19	ug/L	0.053	
Phenol	ND	0.19	ug/L	0.021	
Pyrene	ND	0.19	ug/L	0.054	
2,4,5-Trichloro-	ND	0.96	ug/L	0.060	
phenol			~g, u	0.000	
2,4,6-Trichloro-	ND	0.96	ug/L	0.055	
phenol		,	-3/ -	0,055	

Client Sample ID: FMC 22

GC/MS Semivolatiles

Lot-Sample #...: C7K020216-010 Work Order #...: KAE1R1AM

Matrix..... WATER

SURROGATE	PERCENT RECOVERY	RECOVERY LIMITS
Nitrobenzene-d5	60	(23 - 112)
Terphenyl-d14	39	(10 - 132)
2-Fluorobiphenyl	53	(19 - 107)
2-Fluorophenol	50	(10 - 111)
Phenol-d5	54	(15 - 112)
2,4,6-Tribromophenol	59	(16 - 122)

NOTE(S):

J Estimated result. Result is less than RL.

Client Sample ID: FMC 3

GC/MS Semivolatiles

Lot-Sample #...: C7K020216-011 Work Order #...: KAE101AM Matrix....: WATER

Date Sampled...: 10/31/07 14:25 Date Received..: 11/02/07 09:20 MS Run #....: 7311210

Prep Date....: 11/07/07 Analysis Date..: 11/22/07

Prep Batch #...: 7311333 Analysis Time..: 12:07

Dilution Factor: 0.98 Initial Wgt/Vol: 1020 mL Final Wgt/Vol..: 1 mL

Analyst ID...: 003200 Instrument ID.:: 733

Method.....: SW846 8270C

•		REPORTI	NG		
PARAMETER	RESULT	LIMIT	UNITS	MDL	
Acenaphthene	ND	0.20	ug/L	0.051	
Acenaphthylene	ND	0.20	ug/L	0.045	
Acetophenone	ND	0.98	ug/L	0.045	
Anthracene	ND	0.20	ug/L	0.050	
Atrazine	ND	0.98	ug/L	0.038	
Benzo (a) anthracene	ND	0.20	ug/L	0.040	
Benzo(a)pyrene	ND	0.20	ug/L	0.043	
Benzo(b)fluoranthene	ND	0.20	ug/L	0.031	
Benzo(ghi)perylene	ND	0.20	ug/L	0.027	
Benzo(k)fluoranthene	ND	0.20	ug/L	0.039	
Benzaldehyde	ND	0.98	ug/L	0.053	
1,1'-Biphenyl	ND	0.98	ug/L	0.059	
bis(2-Chloroethoxy)	ND	0.98	ug/L	0.12	
methane			5/	0.12	
bis(2-Chloroethyl)-	ND	0.20	ug/L	0.045	
ether			3/	0.015	
bis(2-Ethylhexyl)	0.23 J	0.98	ug/L	0.12	
phthalate			3,	V - 4.2	
4-Bromophenyl phenyl	ND	0.98	ug/L	0.049	
ether			-3/	, 0.045	
Butyl benzyl phthalate	ND	0.98	ug/L	0.14	
Caprolactam	ND	0.98	ug/L	0.18	
Carbazole	ND	0.20	ug/L	0.051	
4-Chloroaniline	ND	0.98	ug/L	0.045	
4-Chloro-3-methylphenol	ND	0.98	ug/L	0.058	
2-Chloronaphthalene	ND	0.20	ug/L	0.043	
2-Chlorophenol	ND	0.98	ug/L	0.044	
4-Chlorophenyl phenyl ether	ND	0.98	ug/L	0.042	
Chrysene	ND	0.20	ug/L	0.035	
Dibenz(a,h)anthracene	ND	0.20	ug/L	0.034	
Dibenzofuran	ND	0.98	ug/L	0.052	
3,3'-Dichlorobenzidine	ND	0.98	ug/L	0.032	
2,4-Dichlorophenol	ND	0.20	ug/L	0.048	
Diethyl phthalate	ND	0.20	ug/L	0.048	
2,4-Dimethylphenol	ND	0.98	ug/L ug/L		
Dimethyl phthalate	ND	0.98		0.051	
Z <u>F</u>	****	0.50	ug/L	0.041	

Client Sample ID: FMC 3

GC/MS Semivolatiles

Lot-Sample #...: C7K020216-011 Work Order #...: KAE101AM Matrix..... WATER

PARAMETER			REPORTING	}	
Di-n-butyl phthalate ND 4.9 ug/L 0.045 4,6-Dinitro- 2-methylphenol ND 4.9 ug/L 1.4 2,4-Dinitrophenol ND 0.98 ug/L 0.044 2,4-Dinitrotoluene ND 0.98 ug/L 0.050 2,6-Dinitrotoluene ND 0.98 ug/L 0.050 Di-n-octyl phthalate ND 0.98 ug/L 0.042 Fluoranthene ND 0.20 ug/L 0.043 Hexachlorobenzene ND 0.20 ug/L 0.053 Hexachlorobenzene ND 0.20 ug/L 0.043 Hexachlorobenzene ND 0.20 ug/L 0.078 diene ND 0.98 ug/L 0.078 Hexachlorobenzene ND 0.98 ug/L 0.043 Indeno(1,2,3-cd)pyrene ND 0.98 ug/L 0.047 Isophorone ND 0.98 ug/L 0.046 2-Methylnapthtalene ND <		RESULT	LIMIT	UNITS	MDL
2-methylphenol ND 4.9 ug/L 1.3 2,4-Dinitrophenol ND 0.98 ug/L 0.044 2,4-Dinitrotoluene ND 0.98 ug/L 0.050 Di-n-octyl phthalate ND 0.98 ug/L 0.050 Di-n-octyl phthalate ND 0.20 ug/L 0.048 Fluorene ND 0.20 ug/L 0.053 Hexachlorobenzene ND 0.20 ug/L 0.043 Hexachlorobutadiene ND 0.20 ug/L 0.037 Hexachlorocyclopenta- ND 0.98 ug/L 0.078 diene ND 0.98 ug/L 0.078 Hexachlorothane ND 0.98 ug/L 0.078 Hexachlorothane ND 0.98 ug/L 0.078 Indeno(1,2,3-cd) pyrene ND 0.98 ug/L 0.047 Isophorone ND 0.98 ug/L 0.046 2-Methylnaphthalene ND 0.98 ug/L 0.046 2-Methylphenol ND 0.98 ug/L 0.046 2-Methylphenol ND 0.98 ug/L 0.050 4-Methylphenol ND 0.98 ug/L 0.050 4-Methylphenol ND 0.98 ug/L 0.050 4-Methylphenol ND 0.98 ug/L 0.050 A-Methylphenol ND 0.98 ug/L 0.050 A-Mitroaniline ND 4.9 ug/L 0.047 3-Nitroaniline ND 4.9 ug/L 0.039 4-Nitroaniline ND 4.9 ug/L 0.053 Nitrobenzene ND 0.20 ug/L 0.047 3-Nitrobenzene ND 0.20 ug/L 0.063 2-Nitrobenol ND 0.98 ug/L 0.053 NITrosodi-n-propyl- ND 0.20 ug/L 0.069 N-Nitrosodi-n-propyl- ND 0.20 ug/L 0.058 maine ND 0.20 ug/L 0.055 Pentachlorophenol ND 0.98 ug/L 0.055 Pentachlorophenol ND 0.98 ug/L 0.055 Pentachlorophenol ND 0.99 ug/L 0.055 Pentachlorophenol ND 0.99 ug/L 0.055 Pentachlorophenol ND 0.99 ug/L 0.055 Pentachlorophenol ND 0.99 ug/L 0.055 Pentachlorophenol ND 0.99 ug/L 0.055 Pentachlorophenol ND 0.90 ug/L 0.055 Pentachlorophenol ND 0.90 ug/L 0.055 Pentachlorophenol ND 0.90 ug/L 0.055 Pentachlorophenol ND 0.90 ug/L 0.055 Pentachlorophenol ND 0.90 ug/L 0.055 Pentachlorophenol ND 0.20 ug/L 0.055 Pentachlorophenol ND 0.20 ug/L 0.055 Pentachlorophenol ND 0.20 ug/L 0.055 Pentachlorophenol ND 0.20 ug/L 0.055 Pentachlorophenol ND 0.20 ug/L 0.055 Pentachlorophenol ND 0.20 ug/L 0.055 Pentachlorophenol ND 0.90 ug/L 0.055 Pentachlorophenol ND 0.90 ug/L 0.055 Pentachlorophenol ND 0.90 ug/L 0.055 Pentachlorophenol ND 0.90 ug/L 0.055 Pentachlorophenol ND 0.90 ug/L 0.055 Pentachlorophenol ND 0.90 ug/L 0.055 Pentachlorophenol ND 0.90 ug/L 0.055 Pentachlorophenol ND 0.90 ug/L 0.055		ND	0.98		
2-methylphenol	•	ND	4.9	-	1.4
2,4-Dinitrotoluene ND 0.98 ug/L 0.044 2,6-Dinitrotoluene ND 0.98 ug/L 0.050 Di-n-octyl phthalate ND 0.98 ug/L 0.042 Fluoranthene ND 0.20 ug/L 0.048 Fluorene ND 0.20 ug/L 0.053 Hexachlorobutadiene ND 0.20 ug/L 0.037 Hexachlorocyclopenta- ND 0.98 ug/L 0.037 Hexachlorocyclopenta- ND 0.98 ug/L 0.043 Hexachlorocyclopenta- ND 0.98 ug/L 0.043 Indeno(1,2,3-cd)pyrene ND 0.98 ug/L 0.047 Isophorone ND 0.98 ug/L 0.047 Isophorone ND 0.98 ug/L 0.046 2-Methylnaphthalene ND 0.98 ug/L 0.046 2-Methylphenol ND 0.98 ug/L 0.046 2-Methylphenol ND 0.98 ug/L 0.050 4-Methylphenol ND 0.98 ug/L 0.050 4-Methylphenol ND 0.98 ug/L 0.072 Naphthalene ND 0.98 ug/L 0.072 Naphthalene ND 0.98 ug/L 0.052 4-Nitroaniline ND 4.9 ug/L 0.039 4-Nitroaniline ND 4.9 ug/L 0.039 4-Nitrobenzene ND 0.20 ug/L 0.063 2-Nitrophenol ND 0.98 ug/L 0.055 N-Nitrobenzene ND 0.98 ug/L 0.053 4-Nitrophenol ND 0.98 ug/L 0.053 4-Nitrophenol ND 0.98 ug/L 0.055 N-Nitrosodi-n-propyl- ND 0.20 ug/L 0.069 N-Nitrosodi-n-propyl- ND 0.20 ug/L 0.058 amine N-Nitrosodiphenylamine ND 0.20 ug/L 0.058 Phenol ND 0.20 ug/L 0.025 Pyrene ND 0.20 ug/L 0.025 Pyrene ND 0.20 ug/L 0.055 Phenol ND 0.98 ug/L 0.055 Phenol	2-methylphenol			•	
2,4-Dinitrotoluene	2,4-Dinitrophenol	ND	4.9	uq/L	1.3
2,6-Dinitrotoluene	2,4-Dinitrotoluene	ND	0.98	_	0.044
Di-n-octyl phthalate	2,6-Dinitrotoluene	ND	0.98	-	
Fluoranthene ND 0.20 ug/L 0.048 Fluorene ND 0.20 ug/L 0.053 Hexachlorobenzene ND 0.20 ug/L 0.037 Hexachlorocyclopenta- diene ND 0.98 ug/L 0.043 Indeno(1,2,3-cd)pyrene ND 0.98 ug/L 0.047 Isophorone ND 0.98 ug/L 0.047 Isophorone ND 0.98 ug/L 0.046 2-Methylnaphthalene ND 0.98 ug/L 0.046 2-Methylphenol ND 0.98 ug/L 0.046 2-Methylphenol ND 0.98 ug/L 0.055 4-Methylphenol ND 0.98 ug/L 0.055 4-Methylphenol ND 0.98 ug/L 0.072 Isophorone ND 0.98 ug/L 0.046 2-Methylphenol ND 0.98 ug/L 0.046 2-Methylphenol ND 0.98 ug/L 0.0550 4-Methylphenol ND 0.98 ug/L 0.072 Isophorone ND 0.98 ug/L 0.0550 4-Methylphenol ND 0.98 ug/L 0.0550 4-Methylphenol ND 0.98 ug/L 0.0550 4-Methylphenol ND 0.98 ug/L 0.0550 4-Nitroaniline ND 4.9 ug/L 0.047 3-Nitroaniline ND 4.9 ug/L 0.039 4-Nitroaniline ND 4.9 ug/L 0.053 4-Nitrophenol ND 0.20 ug/L 0.053 4-Nitrophenol ND 0.98 ug/L 0.053 4-Nitrophenol ND 0.98 ug/L 0.053 4-Nitrophenol ND 0.98 ug/L 0.053 4-Nitrosodi-n-propyl- ND 0.20 ug/L 0.058 amine N-Nitrosodiphenylamine ND 0.20 ug/L 0.058 amine N-Nitrosodiphenylamine ND 0.20 ug/L 0.058 pentachlorophenol ND 0.99 ug/L 0.055 Pentachlorophenol ND 0.99 ug/L 0.055 Pentachlorophenol ND 0.90 ug/L 0.055 Phenol ND 0.20 ug/L 0.055 Phenol ND 0.20 ug/L 0.055 Phenol ND 0.20 ug/L 0.055 Pyrene ND 0.20 ug/L 0.055 Pyrene ND 0.20 ug/L 0.055 Pyrene ND 0.20 ug/L 0.055	Di-n-octyl phthalate	ND	0.98	_	
Fluorene	Fluoranthene	ND	0.20		
Hexachlorobenzene	Fluorene	ND	0.20		
Hexachlorobutadiene	Hexachlorobenzene	ND	0.20		
Hexachlorocyclopenta-diene ND 0.98 ug/L 0.078	Hexachlorobutadiene	ND		~	
diene MD 0.98 ug/L 0.043 Indeno(1,2,3-cd)pyrene ND 0.20 ug/L 0.047 Isophorone ND 0.98 ug/L 0.046 2-Methylnaphthalene ND 0.20 ug/L 0.046 2-Methylphenol ND 0.98 ug/L 0.050 4-Methylphenol ND 0.98 ug/L 0.072 Naphthalene ND 0.20 ug/L 0.042 2-Nitroaniline ND 4.9 ug/L 0.047 3-Nitroaniline ND 4.9 ug/L 0.039 4-Nitroaniline ND 4.9 ug/L 0.039 4-Nitrobenzene ND 0.20 ug/L 0.063 2-Nitrophenol ND 0.98 ug/L 0.053 4-Nitrosodi-n-propyl- ND 0.20 ug/L 0.058 mine ND 0.20 ug/L 0.058 N-Nitrosodi-n-propyl- ND 0.20 ug/L <t< td=""><td>Hexachlorocyclopenta-</td><td>ND</td><td>0.98</td><td></td><td></td></t<>	Hexachlorocyclopenta-	ND	0.98		
Indeno(1,2,3-cd)pyrene	diene			37	0.075
Indeno(1,2,3-cd) pyrene	Hexachloroethane	ND	0.98	ug/L	0.043
Isophorone	Indeno(1,2,3-cd)pyrene	ND		_	
2-Methylnaphthalene ND 0.20 ug/L 0.046 2-Methylphenol ND 0.98 ug/L 0.050 4-Methylphenol ND 0.98 ug/L 0.072 Naphthalene ND 0.20 ug/L 0.042 2-Nitroaniline ND 4.9 ug/L 0.047 3-Nitroaniline ND 4.9 ug/L 0.039 4-Nitroaniline ND 4.9 ug/L 0.039 4-Nitroaniline ND 4.9 ug/L 0.063 2-Nitrobenzene ND 0.20 ug/L 0.063 2-Nitrophenol ND 0.98 ug/L 0.053 4-Nitrophenol ND 0.98 ug/L 0.053 4-Nitrosodi-n-propyl- ND 0.20 ug/L 0.069 N-Nitrosodi-n-propyl- ND 0.20 ug/L 0.058 amine N-Nitrosodiphenylamine ND 0.20 ug/L 0.058 2,2'-oxybis(1-Chloropropane) ND 0.20 ug/L 0.025 Pentachlorophenol ND 0.98 ug/L 0.025 Pentachlorophenol ND 0.98 ug/L 0.055 Phenanthrene 0.069 J 0.20 ug/L 0.054 Phenol ND 0.20 ug/L 0.055 2,4,5-Trichloro- ND 0.98 ug/L 0.055 2,4,5-Trichloro- ND 0.98 ug/L 0.061 phenol	Isophorone	ND	0.98	-	
2-Methylphenol ND 0.98 ug/L 0.050 4-Methylphenol ND 0.98 ug/L 0.072 Naphthalene ND 0.20 ug/L 0.042 2-Nitroaniline ND 4.9 ug/L 0.039 4-Nitroaniline ND 4.9 ug/L 0.039 4-Nitroaniline ND 4.9 ug/L 0.025 Nitrobenzene ND 0.20 ug/L 0.063 2-Nitrophenol ND 0.98 ug/L 0.053 4-Nitrophenol ND 0.98 ug/L 0.053 4-Nitrophenol ND 0.98 ug/L 0.069 N-Nitrosodi-n-propyl- ND 0.20 ug/L 0.058 amine N-Nitrosodiphenylamine ND 0.20 ug/L 0.058 2,2'-oxybis(1-Chloropropane) ND 0.20 ug/L 0.025 Pentachlorophenol ND 0.98 ug/L 0.081 Phenanthrene 0.069 J 0.20 ug/L 0.081 Phenol ND 0.20 ug/L 0.055 2,4,5-Trichloro- ND 0.98 ug/L 0.055 2,4,5-Trichloro- ND 0.98 ug/L 0.055 2,4,5-Trichloro- ND 0.98 ug/L 0.055	2-Methylnaphthalene	ND		-	· · · · · · · · · · · · · · · · · · ·
4-Methylphenol ND 0.98 ug/L 0.072 Naphthalene ND 0.20 ug/L 0.042 2-Nitroaniline ND 4.9 ug/L 0.047 3-Nitroaniline ND 4.9 ug/L 0.039 4-Nitroaniline ND 0.20 ug/L 0.063 2-Nitrobenzene ND 0.98 ug/L 0.063 2-Nitrophenol ND 0.98 ug/L 0.053 4-Nitrophenol ND 4.9 ug/L 0.069 N-Nitrosodi-n-propyl- ND 0.20 ug/L 0.058 N-Nitrosodiphenylamine ND 0.20 ug/L 0.048 2,2'-oxybis(1-Chloropropane) ND 0.20 ug/L 0.025 Pentachlorophenol ND 0.98 ug/L 0.054 Phenol ND 0.20 ug/L 0.054 Phenol ND 0.20 ug/L 0.055 2,4,5-Trichloro- ND 0.98 ug/L 0.061	2-Methylphenol	ND	0.98		
Naphthalene ND 0.20 ug/L 0.042 2-Nitroaniline ND 4.9 ug/L 0.047 3-Nitroaniline ND 4.9 ug/L 0.039 4-Nitroaniline ND 4.9 ug/L 0.025 Nitrobenzene ND 0.20 ug/L 0.063 2-Nitrophenol ND 0.98 ug/L 0.053 4-Nitrophenol ND 4.9 ug/L 0.069 N-Nitrosodi-n-propyl- ND 0.20 ug/L 0.058 amine ND 0.20 ug/L 0.048 2,2'-oxybis(1-Chloropropane) ND 0.20 ug/L 0.025 Pentachlorophenol ND 0.98 ug/L 0.081 Phenanthrene 0.069 J 0.20 ug/L 0.054 Phenol ND 0.20 ug/L 0.055 2,4,5-Trichloro- ND 0.98 ug/L 0.061 phenol 0.00 0.98 ug/L	4-Methylphenol	ND	0.98		
2-Nitroaniline ND 4.9 ug/L 3-Nitroaniline ND 4.9 ug/L 0.039 4-Nitroaniline ND 4.9 ug/L 0.025 Nitrobenzene ND 0.20 ug/L 0.063 2-Nitrophenol ND 0.98 ug/L 0.053 4-Nitrophenol ND 4.9 ug/L 0.069 N-Nitrophenol ND 4.9 ug/L 0.069 N-Nitrosodi-n-propyl- ND 0.20 ug/L 0.058 amine N-Nitrosodiphenylamine ND 0.20 ug/L 0.048 2,2'-oxybis(1-Chloropropane) ND 0.20 ug/L 0.025 Pentachlorophenol ND 0.98 ug/L 0.081 Phenanthrene 0.069 J 0.20 ug/L 0.054 Phenol ND 0.20 ug/L 0.055 2,4,5-Trichloro- ND 0.20 ug/L 0.055 2,4,5-Trichloro- ND 0.98 ug/L 0.055	Naphthalene	ND	0.20	-	· · · · · · ·
3-Nitroaniline ND 4.9 ug/L 0.039 4-Nitroaniline ND 4.9 ug/L 0.025 Nitrobenzene ND 0.20 ug/L 0.063 2-Nitrophenol ND 0.98 ug/L 0.053 4-Nitrophenol ND 0.20 ug/L 0.069 N-Nitrosodi-n-propyl- ND 0.20 ug/L 0.058 amine N-Nitrosodiphenylamine ND 0.20 ug/L 0.048 2,2'-oxybis(1-Chloropropane) ND 0.20 ug/L 0.025 Pentachlorophenol ND 0.98 ug/L 0.081 Phenanthrene 0.069 J 0.20 ug/L 0.054 Phenol Phenol ND 0.20 ug/L 0.055 0.055 0.055 0.055 0.061	2-Nitroaniline	ND	4.9		· · ·
4-Nitroaniline ND 4.9 ug/L 0.025 Nitrobenzene ND 0.20 ug/L 0.063 2-Nitrophenol ND 0.98 ug/L 0.053 4-Nitrophenol ND 4.9 ug/L 0.069 N-Nitrosodi-n-propyl- amine ND 0.20 ug/L 0.058 N-Nitrosodiphenylamine ND 0.20 ug/L 0.048 2,2'-oxybis(1-Chloropropane) ND 0.20 ug/L 0.025 Pentachlorophenol ND 0.98 ug/L 0.081 Phenanthrene 0.069 J 0.20 ug/L 0.054 Phenol ND 0.20 ug/L 0.055 2,4,5-Trichloro- phenol ND 0.98 ug/L 0.061	3-Nitroaniline	ND	4.9	 ,	
Nitrobenzene ND 0.20 ug/L 0.063 2-Nitrophenol ND 0.98 ug/L 0.053 4-Nitrophenol ND 4.9 ug/L 0.069 N-Nitrosodi-n-propyl- ND 0.20 ug/L 0.058 amine N-Nitrosodiphenylamine ND 0.20 ug/L 0.048 2,2'-oxybis(1-Chloropropane) ND 0.20 ug/L 0.025 Pentachlorophenol ND 0.98 ug/L 0.081 Phenanthrene 0.069 J 0.20 ug/L 0.054 Phenol ND 0.20 ug/L 0.055 2,4,5-Trichloro- ND 0.98 ug/L 0.061 phenol 0.061 0.98 ug/L 0.061	4-Nitroaniline	ND	4.9	_	
2-Nitrophenol ND 0.98 ug/L 0.053 4-Nitrophenol ND 4.9 ug/L 0.069 N-Nitrosodi-n-propyl- ND 0.20 ug/L 0.058 amine N-Nitrosodiphenylamine ND 0.20 ug/L 0.048 2,2'-oxybis(1-Chloropropane) ND 0.20 ug/L 0.025 Pentachlorophenol ND 0.98 ug/L 0.081 Phenanthrene 0.069 J 0.20 ug/L 0.054 Phenol ND 0.20 ug/L 0.054 Phenol ND 0.20 ug/L 0.055 2,4,5-Trichloro- ND 0.98 ug/L 0.055 2,4,5-Trichloro- ND 0.98 ug/L 0.061 phenol	Nitrobenzene	ND		_	
4-Nitrophenol ND 4.9 ug/L 0.069 N-Nitrosodi-n-propyl- ND 0.20 ug/L 0.058 amine N-Nitrosodiphenylamine ND 0.20 ug/L 0.048 2,2'-oxybis(1-Chloropropane) ND 0.20 ug/L 0.025 Pentachlorophenol ND 0.98 ug/L 0.081 Phenanthrene 0.069 J 0.20 ug/L 0.054 Phenol ND 0.20 ug/L 0.055 Pyrene ND 0.20 ug/L 0.055 2,4,5-Trichloro- ND 0.98 ug/L 0.055 phenol	2-Nitrophenol	ND	0.98	_	
N-Nitrosodi-n-propyl- ND 0.20 ug/L 0.058 amine N-Nitrosodiphenylamine ND 0.20 ug/L 0.048 2,2'-oxybis(1-Chloropropane) ND 0.20 ug/L 0.025 Pentachlorophenol ND 0.98 ug/L 0.081 Phenanthrene 0.069 J 0.20 ug/L 0.054 Phenol ND 0.20 ug/L 0.052 Pyrene ND 0.20 ug/L 0.055 2,4,5-Trichloro- ND 0.98 ug/L 0.061 phenol	4-Nitrophenol	ND			
amine N-Nitrosodiphenylamine ND 0.20 ug/L 0.048 2,2'-oxybis(1-Chloropropane) ND 0.20 ug/L 0.025 Pentachlorophenol ND 0.98 ug/L 0.081 Phenanthrene 0.069 J 0.20 ug/L 0.054 Phenol ND 0.20 ug/L 0.022 Pyrene ND 0.20 ug/L 0.055 2,4,5-Trichloro- ND 0.98 ug/L 0.061 phenol	N-Nitrosodi-n-propyl-	ND		_	
2,2'-oxybis(1-Chloropropane) ND 0.20 ug/L 0.025 Pentachlorophenol ND 0.98 ug/L 0.081 Phenanthrene 0.069 J 0.20 ug/L 0.054 Phenol ND 0.20 ug/L 0.022 Pyrene ND 0.20 ug/L 0.055 2,4,5-Trichloro- ND 0.98 ug/L 0.061 phenol	amine			5, -	***************************************
2,2'-oxybis(1-Chloropropane) ND 0.20 ug/L 0.025 Pentachlorophenol ND 0.98 ug/L 0.081 Phenanthrene 0.069 J 0.20 ug/L 0.054 Phenol ND 0.20 ug/L 0.022 Pyrene ND 0.20 ug/L 0.055 2,4,5-Trichloro- phenol ND 0.98 ug/L 0.061		ND	0.20	ug/L	0.048
Pentachlorophenol ND 0.98 ug/L 0.081 Phenanthrene 0.069 J 0.20 ug/L 0.054 Phenol ND 0.20 ug/L 0.022 Pyrene ND 0.20 ug/L 0.055 2,4,5-Trichloro- ND 0.98 ug/L 0.061 phenol		ND	0.20		
Phenanthrene 0.069 J 0.20 ug/L 0.054 Phenol ND 0.20 ug/L 0.022 Pyrene ND 0.20 ug/L 0.055 2,4,5-Trichloro- phenol ND 0.98 ug/L 0.061	Pentachlorophenol	ND	0.98	_	
Phenol ND 0.20 ug/L 0.022 Pyrene ND 0.20 ug/L 0.055 2,4,5-Trichloro- ND 0.98 ug/L 0.061 phenol 0.061 0.061 0.061 0.061	Phenanthrene	0.069 J	0.20		
Pyrene ND 0.20 ug/L 0.055 2,4,5-Trichloro- ND 0.98 ug/L 0.061 phenol	Phenol	ND	0.20	-	0.022
2,4,5-Trichloro- ND 0.98 ug/L 0.061 phenol	Pyrene	ND	0.20		
phenol	2,4,5-Trichloro-	ND		-	
2,4,6-Trichloro- ND 0.98 ug/L 0.056	phenol			J, =	
	2,4,6-Trichloro-	ND	0.98	ug/L	0.056
phenol	phenol			٥.	

Client Sample ID: FMC 3

GC/MS Semivolatiles

Lot-Sample #...: C7K020216-011 Work Order #...: KAE101AM

Matrix....: WATER

SURROGATE	PERCENT RECOVERY	RECOVERY LIMITS
Nitrobenzene-d5	66	(23 - 112)
Terphenyl-d14	43	' (10 - 132)
2-Fluorobiphenyl	60	(19 - 107)
2-Fluorophenol	54	(10 - 111)
Phenol-d5	60	(15 - 112)
2,4,6-Tribromophenol	69	(16 - 122)

NOTE (S):

J Estimated result. Result is less than RL.

Client Sample ID: FMC 5

GC/MS Semivolatiles

Lot-Sample #...: C7K020216-012 Work Order #...: KAE151AM Matrix.....: WATER

Date Sampled...: 10/31/07 15:10 Date Received..: 11/02/07 09:20 MS Run #.....: 7311210

Prep Date....: 11/07/07 Analysis Date..: 11/22/07

Prep Batch #...: 7311333 Analysis Time..: 12:35

Dilution Factor: 0.96 Initial Wgt/Vol: 1040 mL Final Wgt/Vol..: 1 mL

Analyst ID...: 003200 Instrument ID..: 733

Method.....: SW846 8270C

REPORTING PARAMETER RESULT LIMIT UNITS MDL Acenaphthene ND 0.19 ug/L 0.050 Acenaphthylene ND 0.19 ug/L 0.044 Acetophenone ND 0.96 uq/L 0.044 Anthracene ND 0.19 ug/L 0.049 Atrazine ND 0.96 uq/L 0.037 Benzo (a) anthracene ND 0.19 uq/L 0.039 Benzo (a) pyrene ND 0.19 ug/L 0.042 Benzo(b) fluoranthene ND 0.19 ug/L 0.030 Benzo (ghi) perylene ND 0.19 ug/L 0.026 Benzo(k) fluoranthene ND 0.19 ug/L 0.038 Benzaldehyde ND 0.96 ug/L 0.052 1,1'-Biphenyl ND 0.96 ug/L 0.058 bis (2-Chloroethoxy) ND 0.96 ug/L 0.12 methane bis(2-Chloroethyl)-ND 0.19 uq/L 0.044 ether bis(2-Ethylhexyl) ND 0.96 uq/L 0.11 phthalate 4-Bromophenyl phenyl ND 0.96 ug/L 0.048 ether Butyl benzyl phthalate ND 0.96 ug/L 0.13 Caprolactam ND 0.96 ug/L 0.18 Carbazole ND 0.19 ug/L 0.050 4-Chloroaniline ND 0.96 uq/L 0.044 4-Chloro-3-methylphenol MD 0.96 uq/L 0.057 2-Chloronaphthalene ND 0.19 uq/L 0.042 2-Chlorophenol ND 0.96 uq/L 0.044 4-Chlorophenyl phenyl ND 0.96 ug/L 0.041 ether Chrysene ND 0.19 ug/L 0.034 Dibenz (a, h) anthracene ND 0.19 ug/L 0.033 Dibenzofuran ND 0.96 ug/L 0.051 3,3'-Dichlorobenzidine ND 0.96 ug/L 0.039 2,4-Dichlorophenol ND 0.19 uq/L 0.047 Diethyl phthalate ND 0.96 ug/L 0.23 2,4-Dimethylphenol ND 0.96 ug/L 0.050 Dimethyl phthalate ND 0.96 ug/L 0.041

Client Sample ID: FMC 5

GC/MS Semivolatiles

Lot-Sample #...: C7K020216-012 Work Order #...: KAE151AM

Matrix....: WATER

PARMETER RESULT LIMIT UNITS MDL			REPORTI	NG		
D1-n-butyl phthalate		RESULT	LIMIT	UNITS	MDL	
A.6-Dinitro- 2-methylphenol 2.4-Dinitrophenol ND		ND	0.96			_
2-methylphenol 2,4-Dinitrophenol ND 0,96 ug/L 0,043 2,6-Dinitrotoluene ND 0,96 ug/L 0,049 Di-n-octyl phthalate ND 0,19 ug/L 0,041 Fluoranthene ND 0,19 ug/L 0,041 Fluoranthene ND 0,19 ug/L 0,042 Hexachlorobenzene ND 0,19 ug/L 0,042 Hexachlorobutadiene ND 0,19 ug/L 0,036 Hexachlorocyclopenta- diene Hexachlorocthane ND 0,96 ug/L 0,077 diene Hexachlorocthane ND 0,96 ug/L 0,077 Indeno(1,2,3-cd)pyrene ND 0,96 ug/L 0,042 Indeno(1,2,3-cd)pyrene ND 0,96 ug/L 0,045 2-Methylnaphthalene ND 0,96 ug/L 0,045 2-Methylphenol ND 0,96 ug/L 0,045 2-Methylphenol ND 0,96 ug/L 0,045 2-Methylphenol ND 0,96 ug/L 0,049 4-Methylphenol ND 0,96 ug/L 0,049 4-Methylphenol ND 0,96 ug/L 0,049 4-Methylphenol ND 0,96 ug/L 0,041 2-Nitroaniline ND 4,8 ug/L 0,046 3-Nitroaniline ND 4,8 ug/L 0,039 4-Nitrophenol ND 0,19 ug/L 0,046 Nitrobenzene ND 0,19 ug/L 0,046 Nitrobenzene ND 0,19 ug/L 0,052 4-Nitrophenol ND 0,19 ug/L 0,061 2-Nitrosodiphenylamine ND 0,19 ug/L 0,067 N-Nitrosodiphenylamine ND 0,19 ug/L 0,057 amine ND 0,19 ug/L 0,057 phenol ND 0,19 ug/L 0,055 ND 0,056		ND	4.8	_		
2,4-Dinitrotoluene ND 0.96 ug/L 0.043 2,6-Dinitrotoluene ND 0.96 ug/L 0.049 Di-n-octyl phthalate ND 0.96 ug/L 0.041 Fluoranthene ND 0.19 ug/L 0.048 Fluorene ND 0.19 ug/L 0.052 Hexachlorobutadiene ND 0.19 ug/L 0.052 Hexachlorocyclopenta- ND 0.19 ug/L 0.036 Hexachlorocyclopenta- ND 0.96 ug/L 0.077 diene Hexachlorocyclopenta- ND 0.96 ug/L 0.077 diene Hexachlorocyclopenta- ND 0.96 ug/L 0.042 Indeno(1,2,3-cd)pyrene ND 0.19 ug/L 0.045 Isophorone ND 0.96 ug/L 0.045 Isophorone ND 0.96 ug/L 0.045 2-Methylnaphthalene ND 0.19 ug/L 0.045 2-Methylphaphthalene ND 0.96 ug/L 0.045 2-Methylphenol ND 0.96 ug/L 0.045 4-Methylphenol ND 0.96 ug/L 0.047 3-Nitroaniline ND 0.96 ug/L 0.041 3-Nitroaniline ND 0.96 ug/L 0.041 3-Nitroaniline ND 4.8 ug/L 0.039 4-Nitroaniline ND 4.8 ug/L 0.039 Nitrobenzene ND 0.19 ug/L 0.061 2-Nitrophenol ND 0.96 ug/L 0.052 4-Nitrophenol ND 0.96 ug/L 0.052 4-Nitrophenol ND 0.96 ug/L 0.057 amine ND 4.8 ug/L 0.057 amine ND 4.8 ug/L 0.057 NN 0.19 ug/L 0.057 amine ND 0.19 ug/L 0.057 amine ND 0.19 ug/L 0.057 amine ND 0.19 ug/L 0.053 Pentachlorophenol ND 0.19 ug/L 0.053 Pentachlorophenol ND 0.19 ug/L 0.053 Pentachlorophenol ND 0.19 ug/L 0.053 Phenol 2,4,6-Trichloro- ND 0.96 ug/L 0.055	_ _			J		
2,4-Dinitrotoluene	-	ND	4.8	ua/L	1 2	
2,6-Dinitrotoluene		ND	0.96	_		
D1-n-octyl phthalate ND 0.96 ug/L 0.041 Fluoranthene ND 0.19 ug/L 0.048 Fluoranthene ND 0.19 ug/L 0.052 Hexachlorobenzene ND 0.19 ug/L 0.052 Hexachlorobutadiene ND 0.19 ug/L 0.036 Hexachlorocyclopenta- ND 0.96 ug/L 0.077 diene Hexachlorocyclapenta- ND 0.96 ug/L 0.042 Indeno(1,2,3-cd)pyrene ND 0.19 ug/L 0.046 Isophorone ND 0.96 ug/L 0.045 Isophorone ND 0.96 ug/L 0.045 Isophorone ND 0.96 ug/L 0.045 2-Methylaphthalene ND 0.19 ug/L 0.045 2-Methylphenol ND 0.96 ug/L 0.049 4-Methylphenol ND 0.96 ug/L 0.041 2-Nitroanilline ND 0.19 ug/L 0.046 3-Nitroanilline ND 4.8 ug/L 0.046 3-Nitroanilline ND 4.8 ug/L 0.039 4-Nitroanilline ND 4.8 ug/L 0.061 ND 0.19 ug/L 0.052 Nitrobenzene ND 0.19 ug/L 0.057 amine ND 0.19 ug/L 0.057 N-Nitrosodi-n-propyl- ND 0.19 ug/L 0.057 amine ND 0.19 ug/L 0.057 N-Nitrosodiphenylamine ND 0.19 ug/L 0.057 Pentachlorophenol ND 0.96 ug/L 0.068 Phemathrene 0.088 J 0.19 ug/L 0.053 Phemathrene ND 0.19 ug/L 0.055 Phemathrene ND 0.19 ug/L 0.055 Pyrene ND 0.19 ug/L 0.051 Pyrene ND 0.19 ug/L 0.055 Pyrene ND 0.19 ug/L 0.055 Pyrene ND 0.19 ug/L 0.055 Pyrene ND 0.19 ug/L 0.055 Pyrene ND 0.19 ug/L 0.055 Pyrene ND 0.19 ug/L 0.055 Pyrene ND 0.19 ug/L 0.055 Pyrene ND 0.19 ug/L 0.055 Pyrene ND 0.19 ug/L 0.055 Pyrene ND 0.19 ug/L 0.055 Pyrene ND 0.96 ug/L 0.060 Pyrene ND 0.96 ug/L 0.060 Pyrene ND 0.96 ug/L 0.060 Pyrene ND 0.96 ug/L 0.060 Pyrene ND 0.96 ug/L 0.060 Pyrene ND 0.96 ug/L 0.060 Pyrene ND 0.96 ug/L 0.060 Pyrene ND 0.96 ug/L 0.060 Pyrene ND 0.96 ug/	2,6-Dinitrotoluene	ND				
Fluoranthene ND 0.19 ug/L 0.048 Fluorene ND 0.19 ug/L 0.052 Hexachlorobenzene ND 0.19 ug/L 0.052 Hexachlorobutadiene ND 0.19 ug/L 0.036 Hexachlorocyclopenta- diene ND 0.96 ug/L 0.077 diene Hexachlorocthane ND 0.96 ug/L 0.042 Indeno(1,2,3-cd)pyrene ND 0.19 ug/L 0.046 Isophorone ND 0.96 ug/L 0.045 Isophorone ND 0.96 ug/L 0.045 Isophorone ND 0.96 ug/L 0.045 Isophorone ND 0.96 ug/L 0.045 Isophorone ND 0.96 ug/L 0.045 Isophorone ND 0.96 ug/L 0.045 Isophorone ND 0.96 ug/L 0.045 Isophorone ND 0.96 ug/L 0.045 Isophorone ND 0.96 ug/L 0.045 Isophorone ND 0.96 ug/L 0.045 Isophorone ND 0.96 ug/L 0.045 Isophorone ND 0.96 ug/L 0.045 Isophorone ND 0.96 ug/L 0.045 Isophorone ND 0.96 ug/L 0.046 Isophorone ND 0.96 ug/L 0.047 Isophorone ND 0.96 ug/L 0.041 Isophorone ND 0.96 ug/L 0.041 Isophorone ND 0.96 ug/L 0.046 Isophorone ND 0.96 ug/L 0.052 Isophorone ND 0.96 ug/L 0.067 Isophorone ND 0.96 ug/L 0.067 Isophorone ND 0.96 ug/L 0.052 Isophorone ND 0.96 ug/L 0.057 Isophorone ND 0.96 ug/L 0.057 Isophorone ND 0.96 ug/L 0.057 Isophorone ND 0.96 ug/L 0.055 Isophorone ND 0.96 ug/L 0.055 Isophorone ND 0.96 ug/L 0.055 Isophorone ND 0.96 ug/L 0.055 Isophorone ND 0.96 ug/L 0.055 Isophorone ND 0.96 ug/L 0.055 Isophorone ND 0.99 ug/L 0.060 Isophorone ND 0.99 ug/L 0.060 Isophorone ND 0.996 ug/L 0.060 Isophorone ND 0.996 ug/L 0.060 Isophorone ND 0.996 ug/L 0.060	Di-n-octyl phthalate	ND	0.96			
Fluorene ND 0.19 ug/L 0.052 Hexachlorobenzene ND 0.19 ug/L 0.042 Hexachlorobetadiene ND 0.19 ug/L 0.036 Hexachlorocyclopenta- ND 0.96 ug/L 0.077 diene ND 0.96 ug/L 0.042 Indeno(1,2,3-cd)pyrene ND 0.96 ug/L 0.045 Indeno(1,2,3-cd)pyrene ND 0.96 ug/L 0.045 Indeno(1,2,3-cd)pyrene ND 0.96 ug/L 0.045 Indeno(1,2,3-cd)pyrene ND 0.96 ug/L 0.045 Indeno(1,2,3-cd)pyrene ND 0.96 ug/L 0.045 Indeno(1,2,3-cd)pyrene ND 0.96 ug/L 0.045 Indeno(1,2,3-cd)pyrene ND 0.96 ug/L 0.045 Indeno(1,2,3-cd)pyrene ND 0.19 ug/L 0.045 Indeno(1,2,3-cd)pyrene ND 0.19 ug/L 0.045 Indeno(1,2,3-cd)pyrene ND 0.96 ug/L 0.045 Indeno(1,2,3-cd)pyrene ND 0.96 ug/L 0.045 Indeno(1,2,3-cd)pyrene ND 0.96 ug/L 0.045 Indeno(1,2,3-cd)pyrene ND 0.19 ug/L 0.045 Indeno(1,2,3-cd)pyrene ND 0.19 ug/L 0.052 Indeno(1,2,3-cd)pyrene ND 0.19 ug/L 0.052 Indeno(1,2,3-cd)pyrene ND 0.19 ug/L 0.057 Indeno(1,2,3-cd)pyrene ND 0.19 ug/L 0.057 Indeno(1,2,3-cd)pyrene ND 0.19 ug/L 0.057 Indeno(1,2,3-cd)pyrene ND 0.19 ug/L 0.057 Indeno(1,2,3-cd)pyrene ND 0.19 ug/L 0.055 Indeno(1,2,3-cd)pyrene ND 0.19 ug/L 0.066 Indeno(1,2,3-cd)pyrene ND 0.19 ug/L 0.066 Indeno(1,2,3-cd)pyrene ND 0.19 ug/L 0.066 Indeno(1,2,3-cd)pyrene	· · · · · · · · · · · · · · · · · · ·	ND	0.19			
Hexachlorobenzene ND 0.19 ug/L 0.042 Hexachlorobutadiene ND 0.19 ug/L 0.036 Hexachlorocyclopenta- diene ND 0.96 ug/L 0.077 Hexachlorocthane ND 0.96 ug/L 0.042 Indeno(1,2,3-cd)pyrene ND 0.19 ug/L 0.045 Indeno(1,2,3-cd)pyrene ND 0.19 ug/L 0.046 Isophorone ND 0.96 ug/L 0.045 2-Methylnaphthalene ND 0.19 ug/L 0.045 2-Methylphenol ND 0.96 ug/L 0.045 2-Methylphenol ND 0.96 ug/L 0.045 2-Methylphenol ND 0.96 ug/L 0.049 4-Methylphenol ND 0.96 ug/L 0.041 2-Nitroaniline ND 0.19 ug/L 0.046 3-Nitroaniline ND 0.19 ug/L 0.052 4-Nitroaniline ND <td< td=""><td></td><td>ND</td><td></td><td>_</td><td></td><td></td></td<>		ND		_		
Hexachlorobutadiene		ND		_		
Hexachlorocyclopenta-diene	Hexachlorobutadiene	ND				
diene ND 0.96 ug/L 0.042 Indeno(1,2,3-cd)pyrene ND 0.19 ug/L 0.046 Isophorone ND 0.96 ug/L 0.045 2-Methylnaphthalene ND 0.19 ug/L 0.045 2-Methylphenol ND 0.96 ug/L 0.049 4-Methylphenol ND 0.96 ug/L 0.071 Naphthalene ND 0.19 ug/L 0.049 4-Methylphenol ND 0.96 ug/L 0.071 Naphthalene ND 0.19 ug/L 0.041 2-Nitroaniline ND 4.8 ug/L 0.046 3-Nitroaniline ND 4.8 ug/L 0.046 3-Nitroaniline ND 4.8 ug/L 0.024 Nitrobenzene ND 0.19 ug/L 0.061 2-Nitrobenzene ND 0.96 ug/L 0.052 4-Nitrophenol ND 0.96 ug/L 0.067 </td <td>Hexachlorocyclopenta-</td> <td>ND</td> <td></td> <td>-</td> <td>•</td> <td></td>	Hexachlorocyclopenta-	ND		-	•	
Indeno(1,2,3-cd) pyrene ND 0.19 ug/L 0.046 Isophorone ND 0.96 ug/L 0.045 2-Methylnaphthalene ND 0.19 ug/L 0.045 2-Methylphenol ND 0.96 ug/L 0.045 2-Methylphenol ND 0.96 ug/L 0.049 4-Methylphenol ND 0.96 ug/L 0.071 Naphthalene ND 0.19 ug/L 0.041 2-Nitroaniline ND 4.8 ug/L 0.046 3-Nitroaniline ND 4.8 ug/L 0.039 4-Nitroaniline ND 4.8 ug/L 0.039 4-Nitroaniline ND 4.8 ug/L 0.061 2-Nitrophenol ND 0.19 ug/L 0.061 2-Nitrophenol ND 0.96 ug/L 0.052 4-Nitrophenol ND 0.96 ug/L 0.052 4-Nitrophenol ND 0.96 ug/L 0.057 amine ND 0.19 ug/L 0.067 N-Nitrosodi-n-propyl- ND 0.19 ug/L 0.057 amine ND 0.19 ug/L 0.057 Pentachlorophenol ND 0.19 ug/L 0.025 Pentachlorophenol ND 0.96 ug/L 0.025 Pentachlorophenol ND 0.96 ug/L 0.053 Phenol ND 0.96 ug/L 0.053 Phenol ND 0.96 ug/L 0.053 Phenol ND 0.96 ug/L 0.053 Phenol ND 0.96 ug/L 0.053 Phenol ND 0.19 ug/L 0.051 Pyrene ND 0.19 ug/L 0.054 2,4,5-Trichloro- ND 0.96 ug/L 0.054 2,4,6-Trichloro- ND 0.96 ug/L 0.066	diene			49/ <i>2</i>	0.077	
Indeno (1,2,3-cd) pyrene	Hexachloroethane	ND	0.96	ng/L	0.040	
Isophorone	Indeno(1,2,3-cd)pyrene	ND		- '	· 	
2-Methylphenol ND 0.19 ug/L 0.045 2-Methylphenol ND 0.96 ug/L 0.049 4-Methylphenol ND 0.96 ug/L 0.071 Naphthalene ND 0.19 ug/L 0.041 2-Nitroaniline ND 4.8 ug/L 0.046 3-Nitroaniline ND 4.8 ug/L 0.039 4-Nitroaniline ND 4.8 ug/L 0.039 4-Nitroaniline ND 4.8 ug/L 0.061 2-Nitrophenol ND 0.19 ug/L 0.061 2-Nitrophenol ND 0.96 ug/L 0.052 4-Nitrophenol ND 0.96 ug/L 0.052 4-Nitrophenol ND 0.96 ug/L 0.057 amine ND 0.19 ug/L 0.067 N-Nitrosodi-n-propyl- ND 0.19 ug/L 0.057 amine N-Nitrosodiphenylamine ND 0.19 ug/L 0.057 Pentachlorophenol ND 0.19 ug/L 0.025 Pentachlorophenol ND 0.19 ug/L 0.025 Pentachlorophenol ND 0.19 ug/L 0.025 Pentachlorophenol ND 0.19 ug/L 0.053 Phenol ND 0.19 ug/L 0.053 Phenol ND 0.19 ug/L 0.051 Pyrene ND 0.19 ug/L 0.051 Pyrene ND 0.19 ug/L 0.051 Pyrene ND 0.19 ug/L 0.051 Pyrene ND 0.19 ug/L 0.051 Pyrene ND 0.19 ug/L 0.054 2,4,5-Trichloro- ND 0.96 ug/L 0.060	Isophorone	ND		<u> </u>		
2-Methylphenol ND 0.96 ug/L 0.049 4-Methylphenol ND 0.96 ug/L 0.071 Naphthalene ND 0.19 ug/L 0.041 2-Nitroaniline ND 4.8 ug/L 0.046 3-Nitroaniline ND 4.8 ug/L 0.039 4-Nitrobenzene ND 0.19 ug/L 0.061 ND 0.19 ug/L 0.061 ND 0.19 ug/L 0.052 4-Nitrophenol ND 0.19 ug/L 0.061 ND 0.96 ug/L 0.052 4-Nitrophenol ND 0.19 ug/L 0.057	2-Methylnaphthalene	ND				
4-Methylphenol ND 0.96 ug/L 0.071 Naphthalene ND 0.19 ug/L 0.041 2-Nitroaniline ND 4.8 ug/L 0.046 3-Nitroaniline ND 4.8 ug/L 0.039 4-Nitroaniline ND 4.8 ug/L 0.024 Nitrobenzene ND 0.19 ug/L 0.061 2-Nitrophenol ND 0.96 ug/L 0.052 4-Nitrophenol ND 0.96 ug/L 0.052 4-Nitrophenol ND 0.19 ug/L 0.067 N-Nitrosodi-n-propyl- ND 0.19 ug/L 0.057 amine N-Nitrosodiphenylamine ND 0.19 ug/L 0.057 2,2'-oxybis(1-Chloropropane) ND 0.19 ug/L 0.025 Pentachlorophenol ND 0.19 ug/L 0.025 Pentachlorophenol ND 0.96 ug/L 0.080 Phenanthrene 0.088 J 0.19 ug/L 0.053 Phenol ND 0.19 ug/L 0.053 Phenol ND 0.19 ug/L 0.051 Pyrene ND 0.19 ug/L 0.054 2,4,5-Trichloro- ND 0.96 ug/L 0.054 2,4,6-Trichloro- ND 0.96 ug/L 0.060	2-Methylphenol	ND		_		
Naphthalene ND 0.19 ug/L 0.041 2-Nitroaniline ND 4.8 ug/L 0.046 3-Nitroaniline ND 4.8 ug/L 0.039 4-Nitroaniline ND 4.8 ug/L 0.024 Nitrobenzene ND 0.19 ug/L 0.061 2-Nitrophenol ND 0.96 ug/L 0.052 4-Nitrophenol ND 0.19 ug/L 0.067 N-Nitrosodi-n-propyl-amine ND 0.19 ug/L 0.057 amine ND 0.19 ug/L 0.047 2,2'-oxybis(1-Chloropropane) ND 0.19 ug/L 0.047 2,2'-oxybis(1-Chloropropane) ND 0.96 ug/L 0.080 Phenathrene 0.088 J 0.19 ug/L 0.053 Phenol ND 0.19 ug/L 0.054 2,4,5-Trichloro-phenol ND 0.96 ug/L 0.060 2,4,6-Trichloro-phenol ND 0.96 <td>4-Methylphenol</td> <td>ND</td> <td></td> <td>—· .</td> <td></td> <td></td>	4-Methylphenol	ND		—· .		
2-Nitroaniline ND 4.8 ug/L 0.046 3-Nitroaniline ND 4.8 ug/L 0.039 4-Nitroaniline ND 4.8 ug/L 0.024 Nitrobenzene ND 0.19 ug/L 0.061 2-Nitrophenol ND 0.96 ug/L 0.052 4-Nitrophenol ND 0.96 ug/L 0.052 4-Nitrosodi-n-propyl- ND 0.19 ug/L 0.067 N-Nitrosodiphenylamine ND 0.19 ug/L 0.057 amine N-Nitrosodiphenylamine ND 0.19 ug/L 0.025 Pentachlorophenol ND 0.19 ug/L 0.025 Phenanthrene 0.088 J 0.19 ug/L 0.080 Phenanthrene 0.088 J 0.19 ug/L 0.053 Phenol ND 0.19 ug/L 0.053 Phenol ND 0.19 ug/L 0.054 2,4,5-Trichloro- ND 0.96 ug/L 0.054 2,4,6-Trichloro- ND 0.96 ug/L 0.060	Naphthalene	ND		_		
3-Nitroaniline ND 4.8 ug/L 0.039 4-Nitroaniline ND 4.8 ug/L 0.024 Nitrobenzene ND 0.19 ug/L 0.061 2-Nitrophenol ND 0.96 ug/L 0.052 4-Nitrophenol ND 4.8 ug/L 0.052 4-Nitrophenol ND 4.8 ug/L 0.057 N-Nitrosodi-n-propyl- ND 0.19 ug/L 0.057 N-Nitrosodiphenylamine N-Nitrosodiphenylamine N-Nitrosodiphenylamine ND 0.19 ug/L 0.047 2,2'-oxybis(1-Chloropropane) ND 0.19 ug/L 0.025 Pentachlorophenol ND 0.96 ug/L 0.080 Phenanthrene 0.088 J 0.19 ug/L 0.053 Phenol Pyrene ND 0.19 ug/L 0.053 Phenol Pyrene ND 0.19 ug/L 0.053 Phenol Pyrene ND 0.19 ug/L 0.054 0.054 0.96 ug/L 0.055	2-Nitroaniline			- ·		
4-Nitroaniline ND 4.8 ug/L Nitrobenzene ND 0.19 ug/L 0.061 2-Nitrophenol ND 0.96 ug/L 0.052 4-Nitrophenol ND 4.8 ug/L 0.052 4-Nitrophenol ND 4.8 ug/L 0.067 N-Nitrosodi-n-propyl- ND 0.19 ug/L 0.057 N-Nitrosodiphenylamine N-Nitrosodiphenylamine ND 0.19 ug/L 0.047 2,2'-oxybis(1-Chloropropane) ND 0.19 ug/L 0.025 Pentachlorophenol ND 0.96 ug/L 0.080 Phenanthrene 0.088 J 0.19 ug/L 0.053 Phenol ND 0.19 ug/L 0.053 Phenol ND 0.19 ug/L 0.053 Phenol Pyrene ND 0.19 ug/L 0.053 Phenol Pyrene ND 0.19 ug/L 0.053 Phenol Pyrene ND 0.19 ug/L 0.054 0.055	3-Nitroaniline	ND				
Nitrobenzene ND 0.19 ug/L 0.061 2-Nitrophenol ND 0.96 ug/L 0.052 4-Nitrophenol ND 4.8 ug/L 0.067 N-Nitrosodi-n-propyl-amine ND 0.19 ug/L 0.057 N-Nitrosodiphenylamine ND 0.19 ug/L 0.047 2,2'-oxybis(1-Chloropropane) ND 0.19 ug/L 0.025 Pentachlorophenol ND 0.96 ug/L 0.080 Phenanthrene 0.088 J 0.19 ug/L 0.053 Phenol ND 0.19 ug/L 0.051 Pyrene ND 0.19 ug/L 0.054 2,4,5-Trichloro-phenol ND 0.96 ug/L 0.060 2,4,6-Trichloro-phenol ND 0.96 ug/L 0.055						
2-Nitrophenol ND 0.96 ug/L 0.052 4-Nitrophenol ND 4.8 ug/L 0.067 N-Nitrosodi-n-propyl- ND 0.19 ug/L 0.057 amine N-Nitrosodiphenylamine ND 0.19 ug/L 0.047 2,2'-oxybis(1-Chloropropane) ND 0.19 ug/L 0.025 Pentachlorophenol ND 0.96 ug/L 0.080 Phenanthrene 0.088 J 0.19 ug/L 0.053 Phenol ND 0.19 ug/L 0.053 Phenol ND 0.19 ug/L 0.051 Pyrene ND 0.19 ug/L 0.051 2,4,5-Trichloro- ND 0.96 ug/L 0.054 2,4,5-Trichloro- ND 0.96 ug/L 0.060 phenol 0.96 ug/L 0.055	Nitrobenzene	ND			_	
4-Nitrophenol ND 4.8 ug/L 0.067 N-Nitrosodi-n-propyl- ND 0.19 ug/L 0.057 amine N-Nitrosodiphenylamine ND 0.19 ug/L 0.047 2,2'-oxybis(1-Chloropropane) ND 0.19 ug/L 0.025 Pentachlorophenol ND 0.96 ug/L 0.080 Phenanthrene 0.088 J 0.19 ug/L 0.053 Phenol ND 0.19 ug/L 0.053 Phenol ND 0.19 ug/L 0.051 Pyrene ND 0.19 ug/L 0.021 Pyrene ND 0.19 ug/L 0.054 2,4,5-Trichloro- ND 0.96 ug/L 0.060 phenol 2,4,6-Trichloro- ND 0.96 ug/L 0.060	2-Nitrophenol	ND		_		
N-Nitrosodi-n-propyl- amine N-Nitrosodiphenylamine ND 0.19 ug/L 0.057 N-Nitrosodiphenylamine ND 0.19 ug/L 0.047 2,2'-oxybis(1-Chloropropane) ND 0.19 ug/L 0.025 Pentachlorophenol ND 0.96 ug/L 0.080 Phenanthrene 0.088 J 0.19 ug/L 0.053 Phenol Pyrene ND 0.19 ug/L 0.053 Phenol Pyrene ND 0.19 ug/L 0.053 Phenol 2,4,5-Trichloro- ND 0.19 ug/L 0.054 0.054 0.060 phenol 2,4,6-Trichloro- ND 0.96 ug/L 0.055						
### Amine N-Nitrosodiphenylamine ND 0.19 ug/L 0.047 2,2'-oxybis(1-Chloropropane) ND 0.19 ug/L 0.025 Pentachlorophenol ND 0.96 ug/L 0.080 Phenanthrene 0.088 J 0.19 ug/L 0.053 Phenol ND 0.19 ug/L 0.053 Pyrene ND 0.19 ug/L 0.051 0.054 2,4,5-Trichloro- ND 0.96 ug/L 0.054 0.060 phenol 2,4,6-Trichloro- ND 0.96 ug/L 0.055	N-Nitrosodi-n-propyl-	ND		_		
2,2'-oxybis(1-Chloropropane) ND 0.19 ug/L 0.025 Pentachlorophenol ND 0.96 ug/L 0.080 Phenanthrene 0.088 J 0.19 ug/L 0.053 Phenol ND 0.19 ug/L 0.021 Pyrene ND 0.19 ug/L 0.054 2,4,5-Trichloro- ND 0.96 ug/L 0.060 phenol 2,4,6-Trichloro- ND 0.96 ug/L 0.065			***	ug/ L	0.057	
2,2'-oxybis(1-Chloropropane) ND 0.19 ug/L 0.025 Pentachlorophenol ND 0.96 ug/L 0.080 Phenanthrene 0.088 J 0.19 ug/L 0.053 Phenol ND 0.19 ug/L 0.021 Pyrene ND 0.19 ug/L 0.054 2,4,5-Trichloro- ND 0.96 ug/L 0.060 phenol 2,4,6-Trichloro- ND 0.96 ug/L 0.065		ND	0.19	ng/L	0.047	
Pentachlorophenol ND 0.96 ug/L 0.080 Phenanthrene 0.088 J 0.19 ug/L 0.053 Phenol ND 0.19 ug/L 0.021 Pyrene ND 0.19 ug/L 0.054 2,4,5-Trichloro- ND 0.96 ug/L 0.060 phenol 2,4,6-Trichloro- ND 0.96 ug/L 0.055	2,2'-oxybis(1-Chloropropane)	ND				
Phenanthrene 0.088 J 0.19 ug/L 0.053 Phenol ND 0.19 ug/L 0.021 Pyrene ND 0.19 ug/L 0.054 2,4,5-Trichloro- ND 0.96 ug/L 0.060 phenol 0.96 ug/L 0.055	Pentachlorophenol	ND		-		
Phenol ND 0.19 ug/L 0.021 Pyrene ND 0.19 ug/L 0.054 2,4,5-Trichloro- ND 0.96 ug/L 0.060 phenol 2,4,6-Trichloro- ND 0.96 ug/L 0.055	Phenanthrene	0.088 J		_		
Pyrene ND 0.19 ug/L 0.054 2,4,5-Trichloro- ND 0.96 ug/L 0.060 phenol 0.96 ug/L 0.055	Phenol			_		
2,4,5-Trichloro- ND 0.96 ug/L 0.060 phenol 0.96 ug/L 0.055	Pyrene	ND	,			
phenol 2,4,6-Trichloro- ND 0.96 ug/L 0.055	2,4,5-Trichloro-			_		
V.30 (IU/I) II (ISS	phenol		0.50	ug/ L	0.000	
	2,4,6-Trichloro-	ND	0.96	na/t.	0.055	
	phenol			4 ∃/ 1	V - V 2 3	

Client Sample ID: FMC 5

GC/MS Semivolatiles

Lot-Sample #...: C7K020216-012 Work Order #...: KAE151AM

Matrix..... WATER

SURROGATE	PERCENT RECOVERY	RECOVERY LIMITS
Nitrobenzene-d5	74	(23 - 112)
Terphenyl-d14	47	(10 - 132)
2-Fluorobiphenyl	68	(19 - 107)
2-Fluorophenol	63	(10 - 111)
Phenol-d5	69	(15 - 112)
2,4,6-Tribromophenol	77	(16 - 122)

NOTE (S):

J Estimated result. Result is less than RL.

Client Sample ID: FMC 7

GC/MS Semivolatiles

 Lot-Sample #...:
 C7K020216-013
 Work Order #...:
 KAE191AM
 Matrix......
 WATER

 Date Sampled...:
 10/31/07 16:00
 Date Received...
 11/02/07 09:20
 MS Run #.....
 7311210

 Prep Date.....:
 11/07/07
 Analysis Date...
 11/22/07

 Prep Batch #...:
 7311333
 Analysis Time...
 13:03

 Dilution Factor:
 0.97
 Initial Wgt/Vol:
 1030 mL
 Final Wgt/Vol...
 1 mL

 Analyst ID....:
 003200
 Instrument ID...
 733

 Method......:
 SW846 8270C

DDDODMENA

		REPORTI	NG	
PARAMETER	RESULT	LIMIT	UNITS	MDL
Acenaphthene	ND	0.19	ug/L	0.051
Acenaphthylene	ND	0.19	ug/L	0.045
Acetophenone	ND	0.97	ug/L	0.045
Anthracene	ND	0.19	ug/L	0.049
Atrazine	ND	0.97	ug/L	0.038
Benzo (a) anthracene	ND	0.19	ug/L	0.040
Benzo(a)pyrene	ND	0.19	ug/L	0.042
Benzo(b) fluoranthene	ND	0.19	ug/L	0.030
Benzo(ghi)perylene	ND	0.19	ug/L	0.027
Benzo(k)fluoranthene	ND	0.19	ug/L	0.038
Benzaldehyde	ND	0.97	ug/L	0.052
1,1'-Biphenyl	ND	0.97	ug/L	0.058
bis(2-Chloroethoxy)	ND	0.97	ug/L	0.12
methane				
bis(2-Chloroethyl)- ether	ND	0.19	ug/L	0.045
<pre>bis(2-Ethylhexyl) phthalate</pre>	ND	0.97	ug/L	0.12
4-Bromophenyl phenyl ether	ND.	0.97	ug/L	0.048
Butyl benzyl phthalate	ND	0.97	ug/L	0.13
Caprolactam	ND	0.97	ug/L	0.18
Carbazole	ND	0.19	ug/L	0.051
4-Chloroaniline	ND	0.97	ug/L	0.045
4-Chloro-3-methylphenol	ND	0.97	ug/L	0.057
2-Chloronaphthalene	ND	0.19	ug/L	0.043
2-Chlorophenol	ND	0.97	ug/L	0.044
4-Chlorophenyl phenyl ether	ND	0.97	ug/L	0.041
Chrysene	ND	0.19	ug/L	0.034
Dibenz(a,h)anthracene	ND	0.19	ug/L	0.034
Dibenzofuran	ND	0.97	ug/L	0.052
3,3'-Dichlorobenzidine	ND	0.97	ug/L	
2,4-Dichlorophenol	ND	0.19	ug/L	0.040
Diethyl phthalate	ND	0.97	ug/L ug/L	0.047
2,4-Dimethylphenol	ND	0.97	ug/L ug/L	0.24
Dimethyl phthalate	ND	0.97	-	0.050
4 4	112	0.97	ug/L	0.041

Client Sample ID: FMC 7

GC/MS Semivolatiles

Lot-Sample #...: C7K020216-013 Work Order #...: KAE191AM Matrix....

Matrix....: WATER

		REPORTING		
PARAMETER	RESULT	LIMIT	UNITS	MDL
Di-n-butyl phthalate	ND	0.97	ug/L	0.045
4,6-Dinitro-	ND	4.8	ug/L	1.4
2-methylphenol			. 	
2,4-Dinitrophenol	ND	4.8	ug/L	1.2
2,4-Dinitrotoluene	ND	0.97	ug/L	0.044
2,6-Dinitrotoluene	ND	0.97	ug/L	0.049
Di-n-octyl phthalate	ND	0.97	ug/L	0.041
Fluoranthene	ND	0.19	ug/L	0.048
Fluorene	ND	0.19	ug/L	0.053
Hexachlorobenzene	ND	0.19	ug/L	0.042
Hexachlorobutadiene	ND	0.19	ug/L	0.036
Hexachlorocyclopenta-	ND	0.97	ug/L	0.078
diene			-2/ -	0.070
Hexachloroethane	ND	0.97	ug/L	0.042
Indeno(1,2,3-cd)pyrene	ND	0.19	ug/L	0.046
Isophorone	ND	0.97	ug/L	0.046
2-Methylnaphthalene	ND	0.19	ug/L	0.045
2-Methylphenol	ND	0.97	ug/L	0.050
4-Methylphenol	ND	0.97	ug/L	0.071
Naphthalene	ND	0.19	ug/L	0.042
2-Nitroaniline	ND	4.8	ug/L	0.046
3-Nitroaniline	ND	4.8	ug/L	0.039
4-Nitroaniline	ND	4.8	ug/L	0.025
Nitrobenzene	ND	0.19	ug/L	0.062
2-Nitrophenol	ND	0.97	ug/L	0.052
4-Nitrophenol	ND	4.8	ug/L	0.068
N-Nitrosodi-n-propyl-	ND	0.19	ug/L	0.058
amine			49/ 2	0.038
N-Nitrosodiphenylamine	ND	0.19	ug/L	0.047
2,2'-oxybis(1-Chloropropane)	ND	0.19	ug/L	0.025
Pentachlorophenol	ND	0.97	ug/L	0.081
Phenanthrene	ND	0.19	ug/L	0.053
Phenol	ND	0.19	ug/L	0.021
Pyrene	ND	0.19	ug/L	0.055
2,4,5-Trichloro-	ND	0.97	ug/L	0.061
phenol		~ · · ·	~9/ L	0.00T
2,4,6-Trichloro-	ND	0.97	uq/L	0.055
phenol				

Client Sample ID: FMC 7

GC/MS Semivolatiles

Lot-Sample #...: C7K020216-013 Work Order #...: KAE191AM

Matrix....: WATER

SURROGATE	PERCENT RECOVERY	RECOVERY LIMITS
Nitrobenzene-d5	72	(23 - 112)
Terphenyl-d14	52	(10 - 132)
2-Fluorobiphenyl	62	(19 - 107)
2-Fluorophenol	58	(10 - 111)
Phenol-d5	64	(15 - 112)
2,4,6-Tribromophenol	74	(16 - 122)

Client Sample ID: FMC 25

GC/MS Semivolatiles

Lot-Sample #:	C7K020216-014	Work Order #:	KAE2E1AM	Matrix:	M2 Man
Date Sampled:	11/01/07 12:20	Date Received:	11/02/07 09:2	0 MS Run #:	WAIEK
rrep Date:	11/0//0/	Analysis Date:	11/22/07	· 125 Actit #	/311210
Prep Batch #:	7311333	Analysis Time:			
Dilution Factor:	0.96	<pre>Initial Wgt/Vol:</pre>		Final Wgt/Vol:	1 mř.
Analyst ID:		Instrument ID:		"ge, voi	T IIITI
	•	Method:	SW846 8270C		

		REPORTI	NG		
PARAMETER	RESULT	LIMIT	UNITS	MDL	
Acenaphthene	ND	0.19	ug/L	0.050	_
Acenaphthylene	ND	0.19	ug/L	0.044	
Acetophenone	ND	0.96	ug/L	0.044	
Anthracene	ND	0.19	ug/L	0.049	
Atrazine	ND	0.96	ug/L	0.037	
Benzo (a) anthracene	ND	0.19	ug/L	0.039	
Benzo(a)pyrene	ND	0.19	ug/L	0.042	
Benzo(b)fluoranthene	ND	0.19	ug/L	0.030	
Benzo(ghi)perylene	ND	0.19	ug/L	0.026	
Benzo(k) fluoranthene	ND	0.19	ug/L	0.038	
Benzaldehyde	ND	0.96	ug/L	0.052	
1,1'-Biphenyl	ND	0.96	ug/L	0.058	
bis(2-Chloroethoxy)	ND	0.96	ug/L	0.030	
methane			~ 5 / 2	0.12	
bis(2-Chloroethyl)-	ND	0.19	ug/L	0.044	
ether			ug/ L	0.044	
bis(2-Ethylhexyl)	ND	0.96	ug/L	0.11	
phthalate		0.50	ag/ n	0.11	
4-Bromophenyl phenyl	ND	0.96	ug/L	0.048	
ether		0.150	49/1	0.048	
Butyl benzyl phthalate	0.15 J	0.96	ug/L	0.13	
Caprolactam	ND	0.96	ug/L	0.18	
Carbazole	ND	0.19	ug/L	0.050	
4-Chloroaniline	ND	0.96	ug/L	0.044	
4-Chloro-3-methylphenol	ND	0.96	ug/L	0.057	
2-Chloronaphthalene	ND	0.19	ug/L	0.042	
2-Chlorophenol	ND	0.96	ug/L	0.044	
4-Chlorophenyl phenyl	ND	0.96	ug/L	0.041	
ether			5/	0.041	
Chrysene	ND	0.19	ug/L	0.034	
Dibenz(a,h)anthracene	ND	0.19	ug/L	0.033	
Dibenzofuran	ND	0.96	ug/L	0.051	
3,3'-Dichlorobenzidine	ND	0.96	ug/L	0.039	
2,4-Dichlorophenol	ND	0.19	ug/L		
Diethyl phthalate	0.38 J	0.96	ug/L	0.047	
2,4-Dimethylphenol	ND	0.96	ug/L	0.23	
Dimethyl phthalate	ND	0.96		0.050	
* * -	-1	0.96	ug/L	0.041	

Client Sample ID: FMC 25

GC/MS Semivolatiles

Lot-Sample #...: C7K020216-014 Work Order #...: KAE2E1AM Matrix..... WATER

		REPORTI	NG		
PARAMETER	RESULT	LIMIT	UNITS	MDL	
Di-n-butyl phthalate	ND	0.96	ug/L	0.045	
4,6-Dinitro-	ND	4.8	ug/L	1.4	
2-methylphenol			J.		
2,4-Dinitrophenol	ND	4.8	ug/L	1.2	
2,4-Dinitrotoluene	ND	0.96	ug/L	0.043	
2,6-Dinitrotoluene	ND	0.96	ug/L	0.049	
Di-n-octyl phthalate	ND	0.96	ug/L	0.041	
Fluoranthene	ND	0.19	ug/L	0.048	
Fluorene	ND	0.19	ug/L	0.052	
Hexachlorobenzene	ND	0.19	ug/L	0.042	
Hexachlorobutadiene	ND	0.19	ug/L	0.036	
Hexachlorocyclopenta-	ND	0.96	ug/L	0.077	
diene			49/1	0.077	
Hexachloroethane	ND	0.96	ug/L	0.042	
Indeno(1,2,3-cd)pyrene	ND	0.19	ug/L	0.042	
Isophorone	ND	0.96	ug/L ug/L	0.045	
2-Methylnaphthalene	ND	0.19	ug/L		
2-Methylphenol	ND	0.96	ug/L	0.045	
4-Methylphenol	ND	0.96	ug/L ug/L	0.049	
Naphthalene	ND	0.19	ug/L ug/L	0.071	
2-Nitroaniline	ND	4.8	ug/L ug/L	0.041	
3-Nitroaniline	ND	4.8	ug/L ug/L	0.046	
4-Nitroaniline	ND	4.8	ug/L ug/L	0.039	
Nitrobenzene	ND	0.19	-	0.024	
2-Nitrophenol	ND	0.96	ug/L	0.061	
4-Nitrophenol	ND	4.8	ug/L	0.052	
N-Nitrosodi-n-propyl-	ND	0.19	ug/L	0.067	
amine		0.19	ug/L	0.057	
N-Nitrosodiphenylamine	ND	0.19	/7	0.045	
2,2'-oxybis(1-Chloropropane)	ND	0.19	ug/L	0.047	
Pentachlorophenol	NTD	0.19	ug/L	0.025	
Phenanthrene	0.078 J	0.19	ug/L	0.080	
Phenol	ND	0.19	ug/L	0.053	
Pyrene	ND		ug/L	0.021	
2,4,5-Trichloro-	ND	0.19	ug/L	0.054	
phenol	1111	0.96	ug/L	0.060	
2,4,6-Trichloro-	NID	0.00	1-		
phenol	1417	0.96	ug/L	0.055	
•					

Client Sample ID: FMC 25

GC/MS Semivolatiles

Lot-Sample #...: C7K020216-014 Work Order #...: KAE2E1AM

Matrix..... WATER

SURROGATE	PERCENT RECOVERY	RECOVERY LIMITS
Nitrobenzene-d5	72	(23 - 112)
Terphenyl-d14	59	(10 - 132)
2-Fluorobiphenyl	61	(19 - 107)
2-Fluorophenol	58	(10 - 111)
Phenol-d5	65	(15 - 112)
2,4,6-Tribromophenol	78	(16 - 122)

NOTE (S):

J Estimated result. Result is less than RL.

Client Sample ID: FMC 26

GC/MS Semivolatiles

 Lot-Sample #...:
 C7K020216-015
 Work Order #...:
 KAE2J1AM
 Matrix......
 WATER

 Date Sampled...:
 11/01/07 21:50
 Date Received...
 11/02/07 09:20
 MS Run #.....
 WATER

 Prep Date....:
 11/08/07
 Analysis Date...
 11/27/07

 Prep Batch #...:
 7312225
 Analysis Time...
 04:55

 Dilution Factor:
 0.96
 Initial Wgt/Vol:
 1040 mL
 Final Wgt/Vol...
 1 mL

 Analyst ID....:
 003200
 Instrument ID...
 733

 Method......:
 SW846 8270C

PARAMETER	RESULT	REPORTI			
Acenaphthene	ND ND	LIMIT 0.19	UNITS	MDL	
Acenaphthylene	ND	0.19	ug/L	0.050	
Acetophenone	ND		ug/L	0.044	
Anthracene	ND	0.96 0.19	ug/L	0.044	
Atrazine	ND	0.19	ug/L	0.049	
Benzo(a)anthracene	ND	0.19	ug/L	0.037	
Benzo(a)pyrene	ND	0.19	ug/L	0.039	
Benzo(b) fluoranthene	ND	0.19	ug/L	0.042	
Benzo(ghi)perylene	ND	0.19	ug/L	0.030	
Benzo(k)fluoranthene	ND	0.19	ug/L	0.026	
Benzaldehyde	ND	0.96	ug/L	0.038	
1,1'-Biphenyl	ND	0.96	ug/L	0.052	
bis(2-Chloroethoxy)	ND	0.96	ug/L	0.058	
methane		0.50	ug/L	0.12	
bis(2-Chloroethy1)- ether	ND	0.19	ug/L	0.044	
bis(2-Ethylhexyl) phthalate	ND	0.96	ug/L	0.11	
4-Bromophenyl phenyl ether	ND	0.96	ug/L	0.048	
Butyl benzyl phthalate	ND	0.96	ug/L		
Caprolactam	ND	0.96	ug/L ug/L	0.13	
Carbazole	ND	0.19	ug/L ug/L	0.18	
4-Chloroaniline	ND	0.96	ug/L	0.050	
4-Chloro-3-methylphenol	ND	0.96	ug/L	0.044	
2-Chloronaphthalene	ND	0.19	ug/L	0.057	
2-Chlorophenol	ND	0.96	ug/L	0.042	
4-Chlorophenyl phenyl ether	ND	0.96	ug/L	0.044 0.041	
Chrysene	ND	0.19	ug/L	0 024	
Dibenz(a,h)anthracene	ND	0.19	ug/L	0.034	
Dibenzofuran	ND	0.96	ug/L	0.033	
3,3'-Dichlorobenzidine	ND	0.96	ug/L	0.051	
2,4-Dichlorophenol	ND	0.19	ug/L ug/L	0.039	
Diethyl phthalate	ND	0.96	ug/L ug/L	0.047	
2,4-Dimethylphenol	ND	0.96	ug/L ug/L	0.23	
Dimethyl phthalate	ND	0.96	ug/L ug/L	0.050 0.041	

Client Sample ID: FMC 26

GC/MS Semivolatiles

Lot-Sample #...: C7K020216-015 Work Order #...: KAE2J1AM Matrix..... WATER

		REPORTI	NG		
PARAMETER	RESULT	LIMIT	UNITS	MDL	
Di-n-butyl phthalate	ND	0.96	ug/L	0.045	
4,6-Dinitro-	ND	4.8	ug/L	1.4	
2-methylphenol			J .	_ · · <u>-</u>	
2,4-Dinitrophenol	ND	4.8	ug/L	1.2	
2,4-Dinitrotoluene	ND	0.96	ug/L	0.043	
2,6-Dinitrotoluene	ND	0.96	ug/L	0.049	
Di-n-octyl phthalate	ND	0.96	ug/L	0.041	
Fluoranthene	ND	0.19	ug/L	0.048	
Fluorene	ND	0.19	ug/L	0.052	
Hexachlorobenzene	NID	0.19	ug/L	0.032	
Hexachlorobutadiene	ND	0.19	ug/L	0.036	
Hexachlorocyclopenta-	ND	0.96	ug/L	0.077	
diene			~ 3 / 2	0.077	
Hexachloroethane	ND	0.96	ug/L	0.042	
Indeno(1,2,3-cd)pyrene	ND	0.19	ug/L	0.042	
Isophorone	ND	0.96	ug/L	0.045	
2-Methylnaphthalene	ND	0.19	ug/L	0.045	
2-Methylphenol	ND	0.96	ug/L ug/L	0.049	
4-Methylphenol	ND	0.96	ug/L	0.049	
Naphthalene	ND	0.19	ug/L	0.071	
2-Nitroaniline	ND	4.8	ug/L	0.046	
3-Nitroaniline	ND	4.8	ug/L	0.039	
4-Nitroaniline	ND	4.8	ug/L	0.039	
Nitrobenzene	ND	0.19	ug/L	0.024	
2-Nitrophenol	ND	0.96	ug/L	0.052	
4-Nitrophenol	ND	4.8	ug/L	0.052	
N-Nitrosodi-n-propyl-	ND	0.19	ug/L	0.057	
amine		V.23	49/11	0.057	
N-Nitrosodiphenylamine	ND	0.19	ug/L	0.047	
2,2'-oxybis(1-Chloropropane)	ND	0.19	ug/L	0.025	
Pentachlorophenol	ND	0.96	ug/L	0.023	
Phenanthrene	ND	0.19	ug/L	0.053	
Phenol	ND	0.19	ug/L	0.033	
Pyrene	ND	0.19	ug/L	0.021	
2,4,5-Trichloro-	ND	0.96	ug/L ug/L		
phenol		0.50	п Э / П	0.060	
2,4,6-Trichloro-	ND	0.96	ug/L	0.055	
phenol			2.		

Client Sample ID: FMC 26

GC/MS Semivolatiles

Lot-Sample #...: C7K020216-015 Work Order #...: KAE2J1AM Matrix....: WATER

SURROGATE	PERCENT RECOVERY	RECOVERY LIMITS
Nitrobenzene-d5	70	(23 - 112)
Terphenyl-d14	63	(10 - 132)
2-Fluorobiphenyl	68	(19 - 107)
2-Fluorophenol	69	(10 - 111)
Phenol-d5	75	(15 - 112)
2,4,6-Tribromophenol	72	(16 - 122)

PCB SUMMARY

Client Sample ID: FMC 24

GC Semivolatiles

Lot-Sample #: C7K020216-001	Work Order #:	KAEX31AA	Matrix	WATER
Date Sampled: 10/30/07	Date Received:	11/02/07	MS Run	ı # :
Prep Date: 11/03/07	Analysis Date:	11/16/07		
Prep Batch #: 7307199	Analysis Time:	15:39		
Dilution Factor: 1.01	<pre>Initial Wgt/Vol:</pre>	990 mL	Final	Wgt/Vol: 40 mL
Analyst ID: 402331	Instrument ID:	S/T		•
	Method:	SW846 8082		
		REPORTING		
PARAMETER	RESULT	LIMIT	UNITS	MDL
Aroclor 1016	ND	0.40	ug/L	0.10
Aroclor 1221	ND	0.40	ug/L	0.10
Aroclor 1232	ND	0.40	ug/L	0.12
Aroclor 1242	ND	0.40	ug/L	0.075
Aroclor 1248	ND	0.40	ug/L	0.092
Aroclor 1254	ND	0.40	ug/L	0.092
Aroclor 1260	ND	0.40	ug/L	0.055
	PERCENT	RECOVERY		
SURROGATE	RECOVERY	LIMITS		
Tetrachloro-m-xylene	90	(45 - 120)		
Decachlorobiphenyl	82	(24 - 128)		

Client Sample ID: FMC 9

GC Semivolatiles

Lot-Sample #: C7K020216-002 Date Sampled: 10/30/07 Prep Date: 11/03/07 Prep Batch #: 7307199 Dilution Factor: 1.01 Analyst ID: 402331	Work Order #: Date Received: Analysis Date: Analysis Time: Initial Wgt/Vol: Instrument ID: Method	11/02/07 11/16/07 16:02 990 mL S/T	MS Rur Final	wgt/Vol:	
		REPORTING			
PARAMETER	RESULT	LIMIT	UNITS	MDL	
Aroclor 1016	ND	0.40	ug/L	0.10	•
Aroclor 1221	ND	0.40	ug/L	0.10	
Aroclor 1232	ND	0.40	ug/L	0.12	
Aroclor 1242	ND	0.40	ug/L	0.075	
Aroclor 1248	ND	0.40	ug/L	0.092	
Aroclor 1254	ND	0.40	ug/L	0.092	
Aroclor 1260	ND	0.40	ug/L	0.055	
	PERCENT	RECOVERY			
SURROGATE	RECOVERY	LIMITS			
Tetrachloro-m-xylene	87	(45 - 120)			
Decachlorobiphenyl	77	(24 - 128)			

Client Sample ID: FMC 10

Lot-Sample #: C7K020216-003 Date Sampled: 10/30/07 Prep Date: 11/03/07 Prep Batch #: 7307199 Dilution Factor: 1.05 Analyst ID: 402331	Work Order #: Date Received: Analysis Date: Analysis Time: Initial Wgt/Vol: Instrument ID: Method	11/02/07 11/16/07 16:25 950 mL S/T	MS Rur Final	Wgt/Vol:	
		REPORTING			
PARAMETER	RESULT	LIMIT	UNITS	MDL	
Aroclor 1016	ND	0.42	ug/L	0.11	
Aroclor 1221	ND	0.42	uq/L	0.10	
Aroclor 1232	ND	0.42	ug/L	0.12	
Aroclor 1242	ND	0.42	ug/L	0.078	
Aroclor 1248	ND	0.42	ug/L	0.095	
Aroclor 1254	ND	0.42	uq/L	0.096	
Aroclor 1260	ND	0.42	ug/L	0.057	
	PERCENT	RECOVERY			
SURROGATE	RECOVERY	LIMITS			
Tetrachloro-m-xylene	89	(45 - 120)			
Decachlorobiphenyl	82	(24 - 128)			

Client Sample ID: FMC 11

Lot-Sample #: C7K020216-004 Date Sampled: 10/30/07 Prep Date: 11/03/07 Prep Batch #: 7307199 Dilution Factor: 1.01 Analyst ID: 402331	Work Order #: Date Received: Analysis Date: Analysis Time: Initial Wgt/Vol: Instrument ID: Method	11/02/07 11/16/07 16:48 990 mL S/T	MS Rur Final	Wgt/Vol: 40	
PARAMETER Aroclor 1016 Aroclor 1221 Aroclor 1232 Aroclor 1242 Aroclor 1248 Aroclor 1254 Aroclor 1260	RESULT ND ND ND ND ND ND ND ND ND ND	REPORTING LIMIT 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.4	UNITS ug/L ug/L ug/L ug/L ug/L ug/L ug/L	MDL 0.10 0.10 0.12 0.075 0.092 0.092	
SURROGATE Tetrachloro-m-xylene Decachlorobiphenyl	PERCENT RECOVERY 83 78	RECOVERY LIMITS (45 - 120) (24 - 128)			

Client Sample ID: FMC 12

Date Received: Analysis Date: Analysis Time: Initial Wgt/Vol: Instrument ID:	11/02/07 11/16/07 17:11 1030 mL S/T	MS Run Final	1 #	
·	REPORTING			
RESULT	LIMIT	UNITS	MDL	
ND	0.39	ug/L	0.098	
ND	0.39	uq/L	0.097	
ND	0.39	_		
ND	0.39			
ND	0.39			
ND	0.39			
ND	0.39	ug/L	0.053	
	RECOVERY			
RECOVERY	LIMITS			
88	(45 - 120)			
81	(24 - 128)			
	Date Received: Analysis Date: Analysis Time: Initial Wgt/Vol: Instrument ID: Method: RESULT ND ND ND ND ND ND ND ND ND PERCENT RECOVERY 88	REPORTING RESULT ND 0.39 ND 0.39 ND 0.39 ND 0.39 ND 0.39 ND 0.39 ND 0.39 ND 0.39 ND 0.39 ND LIMIT RECOVERY LIMITS 88 (45 - 120)	Date Received.: 11/02/07 MS Run Analysis Date.: 11/16/07 Analysis Time.: 17:11 Initial Wgt/Vol: 1030 mL Final Instrument ID.: S/T Method: SW846 8082 REPORTING RESULT LIMIT UNITS ND 0.39 ug/L	Date Received.: 11/02/07

Client Sample ID: FMC 13

Lot-Sample #: C7K020216-006 Date Sampled: 10/30/07 Prep Date: 11/03/07 Prep Batch #: 7307199 Dilution Factor: 0.96 Analyst ID: 402331	Work Order #: Date Received: Analysis Date: Analysis Time: Initial Wgt/Vol: Instrument ID: Method	11/02/07 11/16/07 17:34 1040 mL S/T	MS Rui Final	WATER # #: Wgt/Vol.: 40 mL
**		REPORTING		
PARAMETER	RESULT	LIMIT	UNITS	MDL
Aroclor 1016	ND	0.38	ug/L	0.097
Aroclor 1221	ND	0.38	ug/L	0.096
Aroclor 1232	ND	0.38	ug/L	0.11
Aroclor 1242	ND	0.38	ug/L	0.071
Aroclor 1248	ND	0.38	ug/L	0.087
Aroclor 1254	ND	0.38	ug/L	0.088
Aroclor 1260	ND	0.38	ug/L	0.052
AVDD COLUMN	PERCENT	RECOVERY		
SURROGATE	RECOVERY	LIMITS		
Tetrachloro-m-xylene	89	(45 - 120)		
Decachlorobiphenyl	83	(24 - 128)		

Client Sample ID: FMC 16

GC Semivolatiles

Lot-Sample #: C7K020216-007 Date Sampled: 10/31/07 Prep Date: 11/03/07 Prep Batch #: 7307199 Dilution Factor: 1.03 Analyst ID: 402331	Work Order #: Date Received: Analysis Date: Analysis Time: Initial Wgt/Vol: Instrument ID: Method	11/02/07 11/16/07 17:57 970 mL S/T	MS Rur Final	c: # #: Wgt/Vol:	
		REPORTING			
PARAMETER	RESULT	LIMIT	UNITS	MDL	
Aroclor 1016	ND	0.41	ug/L	0.10	
Aroclor 1221	ND	0.41	ug/L	0.10	
Aroclor 1232	ND	0.41	ug/L	0.12	
Aroclor 1242	ND	0.41	ug/L	0.077	
Aroclor 1248	ND	0.41	ug/L	0.094	
Aroclor 1254	ND	0.41	ug/L	0.094	
Aroclor 1260	ND	0.41	ug/L	0.056	
	PERCENT	RECOVERY			
SURROGATE	RECOVERY	LIMITS			
Tetrachloro-m-xylene	91	(45 - 120)			
Decachlorobiphenyl	83	(24 - 128)			

Client Sample ID: FMC 18

Lot-Sample #: C7K020216-008 Date Sampled: 10/31/07 Prep Date: 11/03/07 Prep Batch #: 7307199 Dilution Factor: 1.02 Analyst ID: 402331	Work Order #: Date Received: Analysis Date: Analysis Time: Initial Wgt/Vol: Instrument ID: Method	11/02/07 11/16/07 18:20 980 mL S/T	MS Ru	x: n #: Wgt/Vol:	
PARAMETER		REPORTING			
Aroclor 1016	RESULT	LIMIT	UNITS	MDL	
Aroclor 1221	ND	0.41	ug/L	0.10	
	ND	0.41	ug/L	0.10	
Aroclor 1232	ND	0.41	ug/L	0.12	
Aroclor 1242	ND	0.41	ug/L	0.076	
Aroclor 1248	ND	0.41	ug/L	0.093	
Aroclor 1254	ND	0.41	ug/L	0.093	
Aroclor 1260	ND	0.41	ug/L	0.055	
	PERCENT	RECOVERY			
SURROGATE	RECOVERY	LIMITS			
Tetrachloro-m-xylene	95	(45 - 120)			
Decachlorobiphenyl	85	(24 - 128)			

Client Sample ID: FMC 20

Lot-Sample #: C7K020216-009 Date Sampled: 10/31/07 Prep Date: 11/03/07 Prep Batch #: 7307199 Dilution Factor: 0.97 Analyst ID: 402331	Work Order #: Date Received: Analysis Date: Analysis Time: Initial Wgt/Vol: Instrument ID Method	11/02/07 11/16/07 18:43 1030 mL S/T	MS Ru	%: n #: Wgt/Vol:	
PARAMETER	DEGITE M	REPORTING			
Aroclor 1016	RESULT	LIMIT	UNITS	MDL	
	ND	0.39	ug/L	0.098	
Aroclor 1221	ND	0.39	ug/L	0.097	
Aroclor 1232	ND	0.39	ug/L	0.11	
Aroclor 1242	ND	0.39	ug/L	0.072	
Aroclor 1248	ND	0.39	uq/L	0.088	
Aroclor 1254	ND	0.39	ug/L	0.089	
Aroclor 1260	ND	0.39	ug/L	0.053	
	PERCENT	RECOVERY			
SURROGATE	RECOVERY	LIMITS			
Tetrachloro-m-xylene	89	(45 - 120)			
Decachlorobiphenyl	82	(24 - 128)			

Client Sample ID: FMC 22

Lot-Sample #: C7K020216-010 Date Sampled: 10/31/07 Prep Date: 11/03/07 Prep Batch #: 7307199 Dilution Factor: 0.95 Analyst ID: 402331	Work Order #: Date Received: Analysis Date: Analysis Time: Initial Wgt/Vol: Instrument ID: Method	11/02/07 11/16/07 19:06 1050 mL S/T	MS Rur Final	Wgt/Vol:	
DEDAMORES		REPORTING			
PARAMETER	RESULT	LIMIT	UNITS	MDL	
Aroclor 1016	ND	0.38	ug/L	0.096	
Aroclor 1221	ND	0.38	ug/L	0.095	
Aroclor 1232	ND	0.38	ug/L	0.11	
Aroclor 1242	ND	0.38	ug/L	0.071	
Aroclor 1248	ND	0.38	ug/L	0.086	
Aroclor 1254	ND	0.38	-		
Aroclor 1260	ND	0.38	ug/L	0.087	
SURROGATE Tetrachloro-m-xylene Decachlorobiphenyl	PERCENT RECOVERY 92 79	RECOVERY LIMITS (45 - 120) (24 - 128)	ug/L	0.051	

Client Sample ID: FMC 3

Lot-Sample #: C7K020216-011 Date Sampled: 10/31/07 Prep Date: 11/03/07 Prep Batch #: 7307199 Dilution Factor: 0.95 Analyst ID: 402331	Work Order #: Date Received: Analysis Date: Analysis Time: Initial Wgt/Vol: Instrument ID: Method	11/02/07 11/16/07 19:29 1050 mL S/T	MS Run Final	: #: Wgt/Vol:	
PARAMETER	RESULT	REPORTING			
Aroclor 1016	ND	LIMIT	UNITS	MDL	
Aroclor 1221		0.38	ug/L	0.096	
Aroclor 1232	ND	0.38	ug/L	0.095	
	ND	0.38	ug/L	0.11	
Aroclor 1242	ND	0.38	ug/L	0.071	
Aroclor 1248	ND	0.38	ug/L	0.086	
Aroclor 1254	ND	0.38	ug/L	0.087	
Aroclor 1260	ND	0.38	ug/L	0.051	
	PERCENT	RECOVERY			
SURROGATE	RECOVERY	LIMITS			
Tetrachloro-m-xylene	89	(45 - 120)		•	
Decachlorobiphenyl	83	(24 - 128)			

Client Sample ID: FMC 5

GC Semivolatiles

Lot-Sample #: C7K020216-012 Date Sampled: 10/31/07 Prep Date: 11/03/07 Prep Batch #: 7307199 Dilution Factor: 0.95 Analyst ID: 402331	Work Order # Date Received: Analysis Date: Analysis Time: Initial Wgt/Vol: Instrument ID: Method	11/02/07 11/16/07 19:52 1050 mL S/T	MS Rur Final	wgt/Vol:	
DA DAMOGRAD		REPORTING			
PARAMETER	RESULT	LIMIT	UNITS	MDL	
Aroclor 1016	ND	0.38	ug/L	0.096	
Aroclor 1221	ND	0.38	ug/L	0.095	
Aroclor 1232	ND	0.38	ug/L	0.11	
Aroclor 1242	ND	0.38	ug/L	0.071	
Aroclor 1248	ND	0.38	ug/L	0.086	
Aroclor 1254	ND	0.38	ug/L	0.087	
Aroclor 1260	ND		ug/L	0.051	
	PERCENT	RECOVERY			
SURROGATE	RECOVERY	LIMITS			
Tetrachloro-m-xylene	85	(45 - 120)			
Decachlorobiphenyl	77	(24 - 128)			

Client Sample ID: FMC 7

Lot-Sample #: C7K020216-013 Date Sampled: 10/31/07 Prep Date: 11/03/07 Prep Batch #: 7307199 Dilution Factor: 0.96 Analyst ID: 402331	Work Order #: Date Received: Analysis Date: Analysis Time: Initial Wgt/Vol: Instrument ID: Method	11/02/07 11/16/07 20:15 1040 mL S/T	MS Rur Final	wgt/Vol:	
PARAMETER		REPORTING			
Aroclor 1016	RESULT	LIMIT	<u>UNITS</u>	MDL	
	ND	0.38	ug/L	0.097	
Aroclor 1221	ND	0.38	ug/L	0.096	
Aroclor 1232	ND	0.38	ug/L	0.11	
Aroclor 1242	ND	0.38	ug/L	0.071	
Aroclor 1248	ND	0.38	uq/L	0.087	
Aroclor 1254	ND	0.38	ug/L		
Aroclor 1260	ND	0.38	ug/L	0.088 0.052	
SURROGATE	PERCENT	RECOVERY	·		
	RECOVERY	LIMITS	•		
Tetrachloro-m-xylene	86	(45 - 120)			
Decachlorobiphenyl	76	(24 ~ 128)			

Client Sample ID: FMC 25

Lot-Sample #: C7K020216-014 Date Sampled: 11/01/07 Prep Date: 11/03/07 Prep Batch #: 7307199 Dilution Factor: 0.95 Analyst ID: 402331	Work Order #: Date Received: Analysis Date: Analysis Time: Initial Wgt/Vol: Instrument ID: Method	11/02/07 11/16/07 20:38 1050 mL S/T	MS Ru	WATER WATER Wathur: Wgt/Vol.: 40 mL
D2D2177		REPORTING		
PARAMETER	RESULT	LIMIT	UNITS	MDL
Aroclor 1016	ND	0.38	uq/L	0.096
Aroclor 1221	ND	0.38	ug/L	0.095
Aroclor 1232	ND	0.38	ug/L	0.11
Aroclor 1242	ND	0.38	ug/L	
Aroclor 1248	ND	0.38	-	0.071
Aroclor 1254	ND	0.38	ug/L	0.086
Aroclor 1260	ND	0.38	ug/L	0.087
SURROGATE	PERCENT	RECOVERY	ug/L	0.051
Tetrachloro-m-xylene	RECOVERY 89	LIMITS		
Decachlorobiphenyl		(45 - 120)		
	88	(24 - 128)		

Client Sample ID: FMC 26

GC Semivolatiles

Lot-Sample #: C7K020216-015 Date Sampled: 11/01/07 Prep Date: 11/03/07 Prep Batch #: 7307199 Dilution Factor: 0.96 Analyst ID: 402331	Work Order #: Date Received: Analysis Date: Analysis Time: Initial Wgt/Vol: Instrument ID: Method	11/02/07 11/19/07 17:07 1040 mL S/T	MS Ru	wgt/vol:	
		REPORTING			
PARAMETER	RESULT	LIMIT	UNITS	MDL	
Aroclor 1016	ND	0.38	ug/L	0.097	· · · · · ·
Aroclor 1221	ND	0.38	ug/L	0.096	
Aroclor 1232	ND	0.38	ug/L	0.11	
Aroclor 1242	ND	0.38	ug/L	0.071	
Aroclor 1248	ND	0.38	ug/L	0.087	
Aroclor 1254	0.42	0.38	ug/L	0.087	
Aroclor 1260	ND	0.38	ug/L	0.052	
	PERCENT	RECOVERY			
SURROGATE	RECOVERY	LIMITS			
Tetrachloro-m-xylene	88	(45 - 120)			
Decachlorobiphenyl	100	(24 - 128)			

APPENDIX C

SUPPORT DOCUMENTATION

CASE NARRATIVE TETRA TECH NUS, INC. Martin State Airport

Lot #: C7K020216

The following report contains the analytical results for samples submitted to TestAmerica Pittsburgh by Tetra Tech NUS, INC. The samples were received November 2, 2007 according to documented sample acceptance procedures.

TestAmerica Pittsburgh utilizes only USEPA approved methods and instrumentation in all analytical work. The samples presented in this report were analyzed for the parameters listed on the method reference page in accordance with the methods indicated.

Sample Receiving:

The lot closed on November 2, 2007.

If project specific QC was not required for samples contained in this report, when batch QC was completed on these samples, anomalous results will be discussed below.

GC/MS Volatiles:

All non-CCC compounds that have >15% RSD were evaluated to see if a better curve could be drawn using a quadratic curve. All compounds <30% RSD will use an average response factor curve if no visible improvement is accomplished using a quadratic curve. A quadratic curve will be used for a compound where it is determined to be the "best-fit" evaluation.

The LCS associated with batch 7312657 had acetone and 1,2-dibromoethane recover high and outside of criteria. All control compounds recovered within limits.

GC/MS Semivolatiles:

All non-CCC compounds that have >15% RSD were evaluated to see if a better curve could be drawn using a quadratic curve. All compounds <30% RSD will use an average response factor curve if no visible improvement is accomplished using a quadratic curve. A quadratic curve will be used for a compound where it is determined to be the "best-fit" evaluation.

The following compounds had the %D > 25% in the calibration verification standard N11210CC; but were within expected performance range for these compounds: 4-Nitrophenol 40.4% and N-Nitrosodimethylamine 32.1%.

The following compound had the %D > 25% in the calibration verification standard N11220CC; but was within expected performance range for this compound: 4-Nitrophenol 27.4%.

CASE NARRATIVE TETRA TECH NUS, INC. Martin State Airport

Lot #: C7K020216

GC/MS Semivolatiles cont.:

The following compound had the %D > 25% in the calibration verification standard V11270CC; but was within expected performance range for this compound: 2,4-Nitrophenol 25.7%.

PCBs:

There were no problems associated with the analysis.

Metals:

The method blanks had analytes detected at concentrations between the MDL and the reporting limit. The results were flagged with a "B" qualifier. Any sample associated with a method blank that had the same analyte detected had the result flagged with a "J" qualifier.

STL-4124 (0901)		264	ern Irent Laboratories, Inc.	
Address Address	Project Manager . Mike	Martin	Date 1/1/07	Chain of Custody Number
20251 Century Blud Ste 200	Telephone Number (Area C	ode)/Fax Number	Lab Number	322462
City Code State Zip Code 20874	Site Contact	Lab Contact	Analysis (Attach list if more space is needed)	Page of
Mastin State History up Mortar Ci	Carrier/Vaybill Number	1 5 (4)		
Contract/Purchase Order Quote No.	Matrix	Containers &	e de la la la la la la la la la la la la la	Special Instructions/ Conditions of Receipt
Sample I.D. No. and Description		Preservatives	25 25 25 25 25 25 25 25 25 25 25 25 25 2	Conditions of Heceipt
(Containers for each sample may be combined on one line) Date	Time R R R R	Unpres H2SO4 HNO3 HCI NaOH NaOH	SELECT GER	
FMC 25 111/07	 	X	XXXX	
FMC 26 11 11		XXX	THE PARKET	
FMC 260 1111		X XX	MANATITI	
	 			
		† .	 	
Possible Hazard Identification Non-Hazard Flammable Skin Irritant Poison R	Sample Disposal			
Turn Around Time Required	Unknown	t Disposal By Lab C	MODIOS IDDAE IN 1 MODIOS	sessed if samples are retained n(h)
☐ 24 Hours ☐ 48 Hours ☐ 7 Days 🔀 14 Days ☐ 21 Day				
2. Fletinguished By	11-01-07 1550	1. Received By	Shorth	Date 11-1-07 (600)
1100	Date 1-07 Time -30	2. Received By	m hot	Dale Time
# Helinquished By	Date Time	3. Received By	ו סוש ע	Date Time
Comments				
DISTRIBUTION: WHITE - Returned to Client with Report: CANARY - Stays w	rith the Sample; PINK - Field Copy			

STL-4124 (0901)						0616	FB 9 B	GIIL	Labo	ratol	nes,	inc.			
Tetra Tech Nus		Project Manag	Mart						D	ate /3			Chain of C	Custody Number	
Address		Telephone Nu	mber (Area Co	de)/Fax No	ımher							7	3	22460)
20251 Century Blud	540 2000	L'SOL S	283	022	,				14	ab Numi	ber		1	/	~
1000 20	00814	Site Contact		Labson	tact		Т		Analys	is (Atta	ch list	if	Page	of	
riger Name and Location (State)		Carrier/Waybill	uge	13	4411		٦		more sp	ace is	neede	<u>d)</u>			
Contract/Purchase Order Quote No. >	Trog Morter (K	Carrentayon	rvugioer	·	· .		146	13	. 5		1	2 Z			
18001572-1	V		Matrix		Containers & Preservative	g S	8		lo t	Svocs	135	\$4	Co	pecial Instru Inditions of	ictions/ Rece <mark>ipt</mark>
Sample I.D. No. and Description (Containers for each sample may be combined on one line)	Date	Time	Se Sed	2 2		ZnAc/ NaOH	2	35	Organoti.	る え ふ					
FMC 15	10/3/107		X	7	I I Z	ZZ	X X	***	3 1	2 7	-11				····
FMC 16	10/3/107			12			() (子	4+	-		- - -			
FMC 16			/ 	1-1-1	.,		XX	$\forall imes$	$\forall \bot$	-					
FMC 17					××					X X	XX		-		
FMC. 18				X			XX	44	$X \perp$	_ _		1			
FMC 18	- - -		X				坔	K	4	$\perp \perp$					
FMC 10		<u> </u>	 	X	XX		7_				XX	$\langle \mathbf{x} $			
FMC 20			\times				$\mathbf{x} \mathbf{x}$	\d							
			\times	\times			XX		X						···
		X		X	XX				7	4 ×	У×				
			X	X			УV	XX		1			 		-
-tmc 22			\times	M			××			1-1	_	† †	 		
Possible Hazard Identification	V	X			XV			TY		;;;;					
	T		e Disposal	<u></u>	. N/AI	!!.		<u> </u>		AXI.	XX				
Turn Around Time Required	Paison B 🔽 Un	known	turn To Client		posal By Lab		rchive F	or	Мо	nths i	(A fee n longer ti	nay be ass han 1 mon	sessed if sampl nth)	es are retained	
24 Hours 48 Hours 7 Days 14 Day	s 21 Days [Other			equirements (Specify)									
The Marie Control of the Control of		ale	Time	1. Rec	ved By	\	\mathcal{T}		1				Date	Time	<u> </u>
2. Relinquished by	<u> </u>	1-01-07 Date	1550		Ju		<u> </u>	ڪرد						263	602
3. Relinquished By		1-1-07	Time (8/2)		erved By	ban	Ina	1					Date /	Time	
3. Namiquished By	ا	ate	Time	3. Rec	eived B	<i>[[</i>	7.77.1							07 9.	10
Comments												· .	/] ""E .	
DISTRIBUTION, MARTE D.		· · · · · ·													
DISTRIBUTION: WHITE - Returned to Client with Report; CA	NARY - Stays with the	Sample: PINK	Field Copy												

(<u>)</u>

- 356)

Client Tetra Tech NUS Address 2025 (Centry Blu) City Cermantown State Zip Project Name and Location (State)	Ste 20t	1 1	Maga	ger	7																		
Germantown MD Zip	\d\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	Telepi	hone Nu	mber (Mal Area C	Ten odel/Fax	Numt	nar .								13		0	7	Chi	in of Cust	246	1
C :	Gede .	Site C	0(29	18	odel/Fax	2.	<u>)</u>						İ		mbei				Pa	•	2	2
/ 4 " You you would distall Location (State)	00874	Site C	Han	ava	90	Lag	Contains #	all			L_		A m	nalys ore sp	is (A ace	ttaci is ne	i list ede	if d)					
Contract Purchase Order 1000 ft por	ortar Creel	K Carrie	r/Waybil	Numb	4						黄		.				1	- F	3				
1800 1572-1				Matri	ix	T	Co	ntaine	ers & Itives		PCB Meta	afiles	44.0			3					Spec Cond	ial Instri itions of	ictions, Receip
Sample I.D. No. and Description (Containers for each sample may be combined on one line)	Date	Time	4 8	Sed	8	Unpres.	-	T	NaOH ZaAc/	ξ	Slac P	10/9	Fechal Oranat		5	7	が大		7				·
FMC 23	10/3/101	 +		1 V	S	×	¥ Ē	*	₹ K;	₹				-	#	+	#	+					
FMC 3	10.11			×		X	+		+			-			+	+	- -	+	H	+			·····
F816 833	11 (1		×			X	×	X	7			7			X s	7	$\frac{1}{\sqrt{x}}$	\ \ \	╁┤	+			
EMC 4	(1)			X		X					V.	XX	K		十	7		Y	1 +	_			 :
FMC 5	4 11			X	\bot	X	1				X	< x	K			T	T	T		1			
FMC 6	a. 11		_ X		+	X	×	X	4		_	\perp		>	4>	4,2	×	X					
FMC 7	11 11		+	X	╁	K	-		- -		X	< X	X	_	-	1.	-						
FMC 7	1 11		×		+-	X X			+-	╂╌╂	×	(K	X	-	-	+	-			_			
FMC 8	11 /1			X	+	X	X	X	-	 ,	4,	d×		- ×	\ <u> </u>	X	X	X	\dashv	+			
							†	+	+		7	7		\dashv	+	+	-		\dashv				
ossible Hazard Identification								1	_		7	+	1 +	+	+	+	-	\vdash	+	+			
1	Poison B	Unknown	Sampl Re			: ISk	Dispos	al Ru	l ab							(A	lee m	lay be	asses	ssed if	samples a	re retained	·
24 Hours	3 ☐ 21 Davs			•			Requ	iremei	ıts (Spe	ecify)	criive	ror .		Mo	nths	ion	ger th	an 1 i	month,	,	·		
Belingtostifd Bl Makingusper By		Date	1-07	Time / S	10	- 1.1	Receive	By		l	. ,	1		* /	V					Date		Time	
Relinquished By		Date - [-	07		30	2.1	Receive	ed By	Ĭ//	20	1	N H	<u> </u>			-		·		Date	61-67	Time	00
		Date		Time		3. F	Receive	ed By	1-10	Z##	Z I									Date	40%	7 9.	20
mments		- _																		<u> </u>			

22	STL-4124 (0901)	•				•			•	,,, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		11 61	LLA	uura	COLIE	55, INC	C.				
0216	Address Address		Project N	lanagei (i k	e W	lasti	· D			_				Date	10	1-7		Chain of	Custody I	Number	
		fe 200	Telephon	ie Numi	ber (Area	Code)/I	ax Num	ber						Lab N	umber	107		<u> </u>	420	154	
	CHY State Zin		Site Conf		52		300	75										Page_	1	_ of	6
	Germantoun MD	20874	Tony		i Taraza		Barb	$^{ct}\mathcal{H}_d$.//					alysis (. e spac							
	Project Name and Location (State), LATTIN State (Contract) MD (Free Contract) Purchase Order (Quote No.)	og Mortar Teek-Food	Carrier/W	/aybill I	lumber	. [] - [5.40				Kal	,									
	18001572-1			A	Aatrix	· G	C	ontair	ners & ratives		2	2	anothing.					8	Special Condition	Instruct ns of Re	tions/ eceipt
	Sample I.D. No. and Description (Containers for each sample may be combined on one line)	Date T	ime a	Aqueous	Sod.	Unpres.	-		T _E ,		Suc.	Volentiles	2	·							
W	WFCM 24 FMC 24	10/30/07		1	X			+		. ž			++			╅╼╂╌	++	-	1 11		
	FCM 24 FM 24	10/30/07		11	X			†	†-†	1	1	X	╁┼	+	-	+	++	+	-40	Z 10	US
	FOM 34 FMC 24	10/30/07			X	X		\top	1 +	1		7>		\dashv	- -	++	╅╃				
	FMC 24	10/30/07		\top	X	K		+	\vdash			╁	X		+	++	++				
10	FOR A FING 9	10/30/07	•		X	X	 	十	 	1	X		17	-	+	++-	++	+11	H -	<u> </u>	
0	For Fucq	10/30/07			X	У	╫	T	- -	+1		(\vdash	$\dashv \dashv$		+	++	17"	402	Jar.	<u>[*</u>
	Fema FW 9	10/30/07		 	x	X			\vdash	\Box	1	\\ <u>\</u>		+1		╀╌╂╾	+-	-			
	FORG FAC 9	10/30/07			X	X		†-		++	+	1		-	+	┼-┼-	+-+-	-			
j	FOR TO FMC 10	10/30/07		,	/	X		1		††	x	+-	1	++		++	+-	11	<u></u>	•	
- (FOR TO FACIO	10/30/01		+	X	X				1 1	7	1		╁┽	+	 	++	17-	402	fars	
	EST 10 FMC 10	10/300		,		X				††	+	X		++	_		+-				
W	MECHO 10 FMC 10	10/30/07		1	1	Х				$\dagger \dagger$	_	+^	X-	++		 - -	+	+			
	Possible Hazard Identification Non-Hazard Flammable Skin Irritant	Poison B 🔲 Unik			Disposal			J		<u></u>		i				lee may h	25505	sed if sam	nlos oso s	-1	
	Turn Around Time Required		nown [_I Helt	irn To Cl		OC Rec	sal B uirem	y Lab ents (S	Decify)	rchive	For _		_ Month	s long	ger than 1	1 month)	seu ii saiii	Jes are n	etained	
	24 Hours 48 Hours 7 Days 44 Day		Other_				•								•						
	2. Fight arms	1	101-	07	733	ro	1. Rece	ed B		4) Tel	D	7				.]	Date 1/-6	1-67	Time / /	50
			- (- <i>U</i>	57	Time?	30	2. Rece	ved 8	y /	16	hz	<u> </u>	2		····		 	Date	100	Time	
(1	3. Relinquished By	Dé	ite		Time		3. Recei	ved B	y [/	 O	TV		/					Date	10/	Time T	20
I	Comments									·			··								
ე ე	DISTRIBUTION: WHITE - Returned to Client with Report: CA	NARY - Stave with the	Com to t	D11 000		····									•					•	
<u> </u>	The state of the s	- Stays with the	sample: I	rink - I	⊢ield Cop	y .															

STL-4124 (0901) Client						- · · · · · · · · · · · · · · · · · · ·	·
1etraTech Wus	\$		Manager Nike N	artin		Date 19/30/07	Chain of Custody Number
20251 Century Blow	Ste 200	Telephi	one Number (Area Co	de)/Fax Number		Lab Number	322455
Capy , U	State Zin Code	5,00	11 248	Lab-Contact 15 Hall		,	Page 2 of 6
Germanteron	State Zip Code 74	Site Co	Panavage	Lab Contact	An	alysis (Attach list if	
Project Name and Location (Glate)	In Frog Mortan	Carrier/	Waybill Number	13 Hall		e space is needed)	T ····
Project Name and Location (State) Antico State Homost A Contract/Purchase Order Quote No	11) Cileek		•		76 3		
			Matrix	Containers &	20 t. c. C. C. C. C. C. C. C. C. C. C. C. C. C.		Special Instructions/
			Matrix	Preservatives	उद्घार		Conditions of Receipt
Sample I.D. No. and Description (Containers for each sample may be combined	on d on one line) Date	Time	Aqueous Sed.	Unpres. H2SO4 HNO3 HC! NaOH Znac/ NaOH	Scor Were	>	
Collinson PMC	(10/3do7						i i
FERRE !! FUC!	10/30/07		X		- × - - 		4-402 dars
FEM IT FACT	1 10kolot			┞╴╏╶╏╶╏	X	- - - - -	
Econol Suc	1 10730101						
The I			X		X		
FGM-PI FMCI	2				l v		11 ×
For 12 FMC 1	2		V		 	+ + + + + + + + + + + + + + + + + + + +	4- Koz Javs
FOR 17 FUC	12			╘┋┋┋	 × , +	+	
Fuc	12						
17 740	+ + + + +		181		X		
THE PARTY OF THE P	13				X		Wuring
FEM B FUC	13	İ			x		4-402 jars
1 Fem 13 Fuc	13		又			╅╂┼┼┼	
CAFCON 12 FINA	12	-: -	1 7 1	╶┤╶┨╶┨╶┨	+++7.,	++++	
Possible Hazard Identification	13 1 1	L	Sample Disposal				
☐ Non-Hazard ☐ Flammable ☐ Skir	1 Irritant Poison B] Unknown	Return To Client	Disposal By Lab	Archive For	(A fee may be asse	essed if samples are retained
Turn Around Time Required 24 Hours	_			OC Requirements (Specif	y)	Months longer than 1 mont	h)
24 Hours 48 Hours 7 Days	14 Days 21 Days			=	•	^	
_Kit Musel) Pate -	07 150	1. Received By	01	11	Date Time
2. Relinquis Go By		Date	Time	2. Received By	X STO		11-01-07 1600
3. Relinquished By		11-17	07 Time 8:30	1	hantet		Date Time
7 Secureda Sh		Date	Time	3. Received By	10040		Date Time
Comments							
DISTRIBUTION: WHITE - Returned to Client with	th Report: CANARY - Stays wil	h the Sample:	PINK - Field Copy				

021	STL-4124 (0901)							Seve	ern Tr	ent l	_abc	rato	ries	, Inc.			
16	Tetra Tech WUS		Manage M. f	ce M	larti	'n	~		*	··-	T	Date	0/2	0/07	Chain of Cust	ody Number 2 4 5 6	
	20251 Century Blod Ste a		Toing Num	nber (Area	Code)/Fax	Numbe	2			······································	- 1	ab Nun			2	<u> </u>	_
	Gomentour State Zip Code Project Name and Location (Cons.)	74 Site C	onjact Ha u	la vige	Lab	Contact Hal	<u> </u>		-		Analy:	sis (Ati	tach lis	t if	Page	of	
	Myrtin Stute Hirport Mo Creek	77 Carrie	Miybill			141	<u> </u>	<u>-</u>	8		1010 3	pace i	5 11000	3/19			
٠	Contract/Purchase Order/Quote No.			Matrix	1	Con	tainers	· &	Weta!	감함	<u> </u>		$\tilde{\zeta}$	22	Spec	cial Instruction	ns/
	Sample I.D. No. and Description (Containers for each sample may be combined on one line)	te Time	38		8	Pres	ervati.	res	27		CHERNO	30	32	3 2		MONS OF HECE	iρι
as		3401	है है	S 8	Unpres	HZSO4 HNO3	ğ	ZnAci	Seac.	Per	Ŝ_	d		नुष्ट			
-0	FC00 14 FMC 14 101	1	-	X		+		++	X				11	11	4-4	oz jas	
	FCM TH FMC 14				_ -	+		++	 	X	+	-	+	++	+		
Ę	MECHA 14 FMC 14			夂				† † -		1	4 1	+	++	++			· · · · · · · · · · · · · · · · · · ·
15. J	Strangy Ful 24																
V	Fem 24 FW 24	·	<u> </u>		X	44	_ _		-			X					
	FGA 24 FUC 24		-H	++		\dashv	X					$\perp X$			 		
	FCAR DY PMC 24				- - -	V					╅┪	-	X	_	+-		
ai	B FCM 24 FMC 24					X				+		+-	 	X			
			-			\prod								1/1		-	
	Possible Hazard Identification		Sample	Disposal													
•	☐ Non-Hazard ☐ Flammable ☐ Skin Irritant ☐ Poison E Turn Around Time Required	3 D Unknown	☐ Rel	tum To Clie		Dispose	al By La	b 🔲 ,	Archive F	or	M	onths	(A fee longer	may be as than 1 mo	ssessed if samples a inth)	re retained	
	24 Hours 7 Days 7-14 Days 2	1 Days Othe	<u>r</u>					(Specify)	_ ^								
٠.	2. Helingvished By	11-01-	07	Time 1550) 1.	Receive	d By	يل	V	حري	X	1			Date	Time 160	
_	3. Relinquished By		07	Time, 18:30	2	Receive	d By	Br	in the	1		<u> </u>			Date 10	Time	
μ _		Date		Time		Receive	d By	PI	110	<u>. </u>				-	Daile /	7.20	7
ú	Comments															1 .	
56)	ISTRIBUTION: WHITE Returned to Client with Report; CANARY - St	ays with the Sample	; PINK ·	Field Copy													·

0216	STL-4124 (0901) Client	<u> </u>								064	CHI	116	;/)L	La	DOF	aton	ies,	inc.				
16	Tetra Tech WUS		Project	Nik	er (Varti	'n								Dat		h 1		C	hain of Gustod	y Number	
	20251 Century Blud	Ste 200	Teleph	one Nui	SP8	Code)/F	ax Nu	mber				-			Lab	Number	30/1	2/_	\dashv	322	<u>45/</u>	
	City/ State 2	io Cade	Sira Go	21	298														P	age 4	of _	6
	Germantown MD	0874	ITA	naci In chai	mye		5 Son	taci	1					An	alysis	(Attac	h list is eeded	f				
	Project Name and Location (State) Martin State Arrest 1000	latar creek	Carrier	Waybill	Number			CAC C	L		$\dashv \neg$,,, <u>,,</u>	Spa	CO IS II	eegea	"		1		
	Contract/Purchase Order Queta sta		<u></u>					•				J	w	7.	Z		-				•	
	18001572-1				Matrix		- (Contai	iners	8		8	8	3						Specia Condition	al Instructi ons of Re	ions/ eceint
	Sample I.D. No. and Description (Containers for each sample may be combined on one line	Date	Time	ano an	Sec.	Unpres.	141	Preser	Ţ.,	AND HOSE	2cB	188	アイ	Tal.	1506							ocipi
(al		10/30/01	*	₹ ₹ -√	Sec. 18	×	Ŧ	₹ ¥	1 8	βĒ		7	4	13	2			$\bot \bot$	_ _			
	FORG FAIC 9	1		1	1	X	H	+	+	╁┼	X		\dashv	\dashv	-	╀┼		$\vdash \vdash$	$+\!\!\!\!+\!\!\!\!\!+$			
	IEGNA FAC 9		$\neg \uparrow$	-11-				-	+		1-1	겎	\dashv	\dashv	-	+		 	$\bot \bot$			
	Ich 9 FMC 9			-+		-	\vdash	_ >	4	-	+-+	_}	4	4	4-	-			$\downarrow \downarrow$		·	
L	ECHA FAC 9			+		-		<u> </u>	+-	+	+	+	4	X	+		+-		11	·		
13	FC 10 FMC 10			- -				4	+-	++		- -		4	4	\sqcup	-	-	$\bot \bot$		·	
	FGANTO FUC 10		-+	+			+	+	╀	 - -	<u> </u>	+	+	+	- -	\sqcup	-		+-+			
	ECONTO FMC 10			-++-			+		-	┼┤-	5	-31-	+	\dashv	-		1		\sqcup			
	FEM TO FUC 10			$\dagger \dagger$	+	- -	1	, ×	╁		-	+	XĮ.		-	-	+		$\bot \bot$			
اد. س	ECANTO FUCIO			$\dagger \dagger \dagger$	_ -	+		+	\vdash		 	+	- -	1	, -		- -		$+\!\!\!\!+$			
w				111	╼╂╌┼	++	-	+	┼			\perp	+	×	4_	<u></u> _	44	_	\sqcup			
		- . -		-	++		- -	+ -	<u> </u>			_	1	\perp								
	Possible Hazard Identification	L_ V		JA-	Disposal				L													
	Non-Hazard Flammable Skin Irritant	Poison B	Inknown				7 n:-		n	. 'm						·(A	fee ma	y be ass	sessed	if samples are	retained	
	Turn Around Time Required				011. 10 011		OC Re	quiren	nents	t [], (Specify)	Archive	For			Mon	hs lo	nger tha	an 1 mon	nth)		retained	
	1. Relipepis led (i)		Other_			[٠			1												
	Kut hand	l	Date	. –)	Time		. Rec	eiled	Ву	1	4	I			+	1			, Da	ile	Time	
	2. Helinquished By		 	7	155 Time			eived 6	<u>-</u> -	$\simeq \Delta$		\mathcal{E}	2	天	XV	7				1-01-03	168	<i>9</i> 0
	3. Relinquished By		11-1-	07	18:3	201	. Hec	ervea t I	1//	has	to	1							Dai	te /_ /_	Time	
1	o. Nemiquising By	1	Date		Time	3	. Rece	eived E	3y /	OOV	10								$\frac{1}{2}$	1/2/07	09.0	20
1	Comments																		Dai	re .	/ ime	
ω.																						
56	DISTRIBUTION: WHITE · Returned to Client with Report: C	ANARY - Slays with th	e Sample:	PINK -	Field Cop	y		····														
$\overline{}$					•	•																

0216	STL-4124 (0901)		Sever	n Irent Laboratories, Inc.	
16	Address Rech Wos	Project Manager Mike Mar	tio	Date 1 ala 1 a	Chain of Custody Number 322458
	A . (5) 1 ()	Telephone Number (Area Co	del/Fax Number	Lab Number	322458
	State Zin Code	301 578	3022	Lao Namber	Page 5 of 6
•	_ Committees WD 20874	Site Contact Thenavye	Lab Contact BHq(Analysis (Attach list if more space is needed)	01 <u>P</u>
•	Martin & Hipoth Mi) FoogMortur (k	Carrier/Waybill Number	1 Digit.	mice space is needed)	T
	Contract/Purchase Outlook Instantia	<u> </u>		12/2/2	Special transport
	18001572-1	Matrix	Containers & Preservatives	18633	Special Instructions/ Conditions of Receipt
	Sample I.D. No. and Description (Containers for each sample may be combined on one line) Date 7	Time 17 Young			
G	FIRE 11 10/30/07				
•	EGALTT FAC 11	- 	12 	4	
	FCOUTT FMC 11	- 	┞┈╂┈╎┈╏┈╏┈╏┈╏	 	
	Franti Fucio	- 		1 4 1 1 1 1 1 1 1 1	
٠	ECHATI FUCIO		+ + + × + + + + + + + + + + + + + + + +		
14	ECM FUC IS				
	FCAACO FUC 10				
(.1	DEGNA FINC 12		X	M	
٩	Euc 12		X	L X	
			K	X	
	- FMC 12				
				 	
	Possible Hazard Identification			 	
	Non-Hazard Flammable Skin tritoni	Sample Disposal known Return To Client		<u>* </u>	
	Turn Around Time Required	known Return To Client	Disposal By Lab Arc. QC Requirements (Specify)	hive For Months longer than 1 mon	essed if samples are retained th)
•		Other	- 0	_	
	Kuk Jasun	1-01-07 15 TO	1. Reseived By	D A	Date Time
			2. Received By	Association of the second	15-01-07 1600
_	Melinquished by	1-1-07 18:30	1/1/20	ertat	Date 11/2 /02 Time 1/2 /02 /02 /02 /02 /02 /02 /02 /02 /02 /
Ĥ.		ate Time	3. Received By		Date Time
•	Comments				
356	DISTRIBUTION: WHITE - Returned to Client with Report: CANARY - Stays with the	Samole: BINK Field C			· · · · · · · · · · · · · · · · · · ·
5)	Clayo wan ang	очтре, тик - гівіа Сору			

EWHELOE

SDG C7K020216

SORT	UNITS	NSAMPLE	LAB_ID	QC_TYPE	SAMP_DATE	EXTR_DATE	ANAL_DATE	SMP_EXTR	EXTR_ANL	SMP_ANL
HG	UG/L	FMC 13	C7K020216006	NM	10/30/2007	11/14/2007	11/14/2007	15	0	15
HG	UG/L	FMC 10	C7K020216003	NM	10/30/2007	11/14/2007	11/14/2007	15	0	15
HG	UG/L	FMC 12	C7K020216005	NM	10/30/2007	11/14/2007	11/14/2007	15	0	15
HG	UG/L	FMC 16	C7K020216007	NM	10/31/2007	11/14/2007	11/14/2007	14	0	14
HG	UG/L	FMC 18	C7K020216008	NM	10/31/2007	11/14/2007	11/14/2007	14	0 .	14
HG	UG/L	FMC 20	C7K020216009	NM	10/31/2007	11/14/2007	11/14/2007	14	0	14
HG	UG/L	FMC 22	C7K020216010	NM	10/31/2007	11/14/2007	11/14/2007	14	0	14
HG	UG/L	FMC 24	C7K020216001	NM	10/30/2007	11/14/2007	11/14/2007	15	0	15
HG	UG/L	FMC 25	C7K020216014	NM	11/1/2007	11/14/2007	11/14/2007	13	0	13
HG	UG/L	FMC 26	C7K020216015	NM	11/1/2007	11/14/2007	11/14/2007	13	0	13
HG	UG/L	FMC 3	C7K020216011	NM	10/31/2007	11/14/2007	11/14/2007	14	0	14
HG	UG/L	FMC 5	C7K020216012	NM	10/31/2007	11/14/2007	11/14/2007	14	0	14
HG	UG/L	FMC 7	C7K020216013	NM	10/31/2007	11/14/2007	11/14/2007	14	0	14
HG	UG/L	FMC 9	C7K020216002	NM	10/30/2007	11/14/2007	11/14/2007	15	0	15
HG	UG/L	FMC 11	C7K020216004	NM	10/30/2007	11/14/2007	11/14/2007	15	0	15

SORT	UNITS	NSAMPLE	LAB_ID	QC_TYPE	SAMP_DATE	EXTR_DATE	ANAL_DATE	SMP_EXTR	EXTR_ANL	SMP_ANL
M	UG/L	FMC 12	C7K020216005	NM	10/30/2007	11/14/2007	11/27/2007	15	13	28
М	UG/L	FMC 11	C7K020216004	NM	10/30/2007	11/14/2007	11/27/2007	15	13	28
М	UG/L ·	FMC 13	C7K020216006	NM	10/30/2007	11/14/2007	11/27/2007	15	13	28
М	UG/L	FMC 16	C7K020216007	NM	10/31/2007	11/14/2007	11/27/2007	14	13	27
М	UG/L	FMC 18	C7K020216008	NM	10/31/2007	11/14/2007	11/27/2007	14	13	27
М	UG/L	FMC 20	C7K020216009	NM	10/31/2007	11/14/2007	11/27/2007	14	13	27
М	UG/L	FMC 22	C7K020216010	NM	10/31/2007	11/14/2007	11/27/2007	14	13	27
М	UG/L	FMC 24	C7K020216001	NM	10/30/2007	11/14/2007	11/27/2007	15	13	28
М	UG/L	FMC 25	C7K020216014	NM	11/1/2007	11/14/2007	11/27/2007	13	13	26
М	UG/L	FMC 26	C7K020216015	NM	11/1/2007	11/14/2007	11/27/2007	13	13	26
M	UG/L	FMC 3	C7K020216011	NM .	10/31/2007	11/14/2007	11/27/2007	14	13	27
M	UG/L	FMC 5	C7K020216012	NM	10/31/2007	11/14/2007	11/27/2007	14	13	27
M	UG/L	FMC 7	C7K020216013	NM	10/31/2007	11/14/2007	11/27/2007	14	13	27
M	UG/L	FMC 9	C7K020216002	NM .	10/30/2007	11/14/2007	11/27/2007	15	13	28
M	UG/L	FMC 10	C7K020216003	NM	10/30/2007	11/14/2007	11/27/2007	15	13	28
HGF	UG/L	FMC 26	C7K020216015	NM	11/1/2007	11/16/2007	11/16/2007	15	0	15
HGF	UG/L	FMC 10	C7K020216003	NM	10/30/2007	11/16/2007	11/16/2007	17	0	17
HGF	UG/L	FMC 11	C7K020216004	NM ·	10/30/2007	11/16/2007	11/16/2007	17	0	17

SORT	UNITS	NSAMPLE	LAB_ID	QC_TYPE	SAMP_DATE	EXTR_DATE	ANAL_DATE	SMP_EXTR	EXTR_ANL	SMP_ANL
HGF	UG/L	FMC 12	C7K020216005	NM	10/30/2007	11/16/2007	11/16/2007	17	0	17
HGF	UG/L	FMC 13	C7K020216006	NM	10/30/2007	11/16/2007	11/16/2007	17	0	17
HGF	UG/L	FMC 16	C7K020216007	NM	10/31/2007	11/16/2007	11/16/2007	16	. 0	16
HGF	UG/L	FMC 18	C7K020216008	NM	10/31/2007	11/16/2007	11/16/2007	16	0	16
HGF	UG/L	FMC 20	C7K020216009	NM	10/31/2007	11/16/2007	11/16/2007	16	0	16
HGF	UG/L	FMC 22	C7K020216010	NM	10/31/2007	11/16/2007	11/16/2007	16	0	16
HGF	UG/L	FMC 25	C7K020216014	NM	11/1/2007	11/16/2007	11/16/2007	15	0	15
HGF	UG/L	FMC 3	C7K020216011	NM	10/31/2007	11/16/2007	11/16/2007	16	0	16
HGF	UG/L	FMC 5	C7K020216012	NM	10/31/2007	11/16/2007	11/16/2007	16	0 .	16
HGF	UG/L	FMC 7	C7K020216013	NM	10/31/2007	11/16/2007	11/16/2007	16	0	16
HGF	UG/L	FMC 9	C7K020216002	NM	10/30/2007	11/16/2007	11/16/2007	17	0	17
HGF	UG/L	FMC 24	C7K020216001	NM	10/30/2007	11/16/2007	11/16/2007	17	0	17
MF	UG/L	FMC 12	C7K020216005	NM	10/30/2007	11/14/2007	11/27/2007	15	13	28
MF	UG/L	FMC 13	C7K020216006	NM	10/30/2007	11/14/2007	11/27/2007	15	13	28
MF	UG/L	FMC 11	C7K020216004	NM	10/30/2007	11/14/2007	11/27/2007	15	13	28
MF	UG/L	FMC 10	C7K020216003	NM	10/30/2007	11/14/2007	11/27/2007	15	13	28
MF	UG/L	FMC 20	C7K020216009	NM	10/31/2007	11/14/2007	11/27/2007	14	13	27
MF	UG/L	FMC 22	C7K020216010	NM	10/31/2007	11/14/2007	11/27/2007	14	13 .	27

SORT	UNITS	NSAMPLE	LAB_ID	QC_TYPE	SAMP_DATE	EXTR_DATE	ANAL_DATE	SMP_EXTR	EXTR_ANL	SMP_ANL
MF	UG/L	FMC 24	C7K020216001	NM .	10/30/2007	11/14/2007	11/27/2007	15	13	28
MF	UG/L	FMC 25	C7K020216014	NM	11/1/2007	11/14/2007	11/27/2007	13	13	26
MF	UG/L	FMC 26	C7K020216015	NM	11/1/2007	11/14/2007	11/27/2007	13	13	26
MF	UG/L	FMC 3	C7K020216011	NM	10/31/2007	11/14/2007	11/27/2007	. 14	13	27
MF	UG/L	FMC 5	C7K020216012	NM	10/31/2007	11/14/2007	11/27/2007	14	13	27
MF	UG/L	FMC 7	C7K020216013	NM	10/31/2007	11/14/2007	11/27/2007	14	13	27
MF	UG/L	FMC 9	C7K020216002	NM	10/30/2007	11/14/2007	11/27/2007	15	13	28
MF	UG/L	FMC 16	C7K020216007	NM	10/31/2007	11/14/2007	11/27/2007	14	13	27
MF	UG/L	FMC 18	C7K020216008	NM	10/31/2007	11/14/2007	11/27/2007	14	13	27
os	%	FMC 24DL	C7K020216001	NM	10/30/2007	11/6/2007	11/24/2007	7	18	25
os	%	FMC 16DL	C7K020216007	NM	10/31/2007	11/7/2007	11/22/2007	7	15	22
os	%	FMC 9DL	C7K020216002	NM	10/30/2007	11/6/2007	11/24/2007	7	18	25
os	%	FMC 7DL	C7K020216013	NM	10/31/2007	11/7/2007	11/22/2007	7	15	22
os	%	FMC 5DL	C7K020216012	NM	10/31/2007	11/7/2007	11/22/2007	7	15	22
os	%	FMC 3DL	C7K020216011	NM	10/31/2007	11/7/2007	11/22/2007	7	15	22
OS	%	FMC 25DL	C7K020216014	NM	11/1/2007	11/7/2007	11/22/2007	6	15	21
OS	%	FMC 22DL	C7K020216010	NM	10/31/2007	11/7/2007	11/22/2007	7	15	22
os	%	FMC 20DL	C7K020216009	NM	10/31/2007	11/7/2007	11/22/2007	7	15	22

SORT	UNITS	NSAMPLE	LAB_ID	QC_TYPE	SAMP_DATE	EXTR_DATE	ANAL_DATE	SMP_EXTR	EXTR_ANL	SMP_ANL
os	%	FMC 11DL	C7K020216004	NM	10/30/2007	11/6/2007	11/24/2007	7	18	25
os	%	FMC 12DL	C7K020216005	NM	10/30/2007	11/6/2007	11/24/2007	7	18	25
os	%	FMC 10DL	C7K020216003	NM	10/30/2007	11/6/2007	11/24/2007	7	18	25
os	%	FMC 13DL	C7K020216006	NM	10/30/2007	11/6/2007	11/24/2007	7	18	25
OS	%	FMC 18DL	C7K020216008	NM	10/31/2007	11/7/2007	11/22/2007	7	15	22
OS	%	FMC 26DL	C7K020216015	NM	11/1/2007	11/8/2007	11/27/2007	7	19	26
os	UG/L	FMC 16DL	C7K020216007	NM	10/31/2007	11/7/2007	11/22/2007	7	15	22
OS	UG/L	FMC 9DL	C7K020216002	NM	10/30/2007	11/6/2007	11/24/2007	7	18	25
OS	UG/L	FMC 7DL	C7K020216013	NM	10/31/2007	11/7/2007	11/22/2007	7	15	22
OS	UG/L	FMC 5DL	C7K020216012	NM	10/31/2007	11/7/2007	11/22/2007	7	15	22
OS	UG/L	FMC 3DL	C7K020216011	NM	10/31/2007	11/7/2007	11/22/2007	7	15	22
OS	UG/L	FMC 26DL	C7K020216015	NM	11/1/2007	11/8/2007	11/27/2007	7	19	26
os	UG/L	FMC 25DL	C7K020216014	NM	11/1/2007	11/7/2007	11/22/2007	6	15	21
OS	UG/L	FMC 22DL	C7K020216010	NM	10/31/2007	11/7/2007	11/22/2007	7	15	22
os	UG/L	FMC 20DL	C7K020216009	NM	10/31/2007	11/7/2007	11/22/2007	7	15	22
os	UG/L	FMC 13DL	C7K020216006	NM	10/30/2007	11/6/2007	11/24/2007	7	18	25
os	UG/L	FMC 18DL	C7K020216008	NM	10/31/2007	11/7/2007	11/22/2007	7	15	22
OS	UG/L	FMC 12DL	C7K020216005	NM	10/30/2007	11/6/2007	11/24/2007	. 7	18	25

SORT	UNITS	NSAMPLE	LAB_ID	QC TYPE	SAMP_DATE	EXTR_DATE	ANAL_DATE	SMP_EXTR	EXTR_ANL	SMP_ANL
OS	UG/L	FMC 24DL	C7K020216001	NM	10/30/2007	11/6/2007	11/24/2007	7	18	25
os	UG/L	FMC 11DL	C7K020216004	NM	10/30/2007	11/6/2007	11/24/2007	7	18	25
os	UG/L	FMC 10DL	C7K020216003	NM	10/30/2007	11/6/2007	11/24/2007	7	18	25
OV	%	FMC 25	C7K020216014	NM	11/1/2007	11/8/2007	11/9/2007	7	1	8
OV	%	TripBlank#2	C7K020216017	NM	10/30/2007	11/8/2007	11/9/2007	9	1	10
OV	%	TripBlank#1	C7K020216016	NM	10/30/2007	11/8/2007	11/9/2007	9	1	10
OV	%	FMC 9	C7K020216002	NM	10/30/2007	11/8/2007	11/9/2007	9	1	10
OV	%	FMC 7	C7K020216013	NM	10/31/2007	11/8/2007	11/9/2007	8	1	9
OV	%	FMC 5	C7K020216012	NM	10/31/2007	11/8/2007	11/9/2007	8	1	9
OV	%	FMC 26	C7K020216015	NM	11/1/2007	11/8/2007	11/9/2007	7	1	8
OV	%	FMC 22	C7K020216010	NM	10/31/2007	11/8/2007	11/9/2007	8	1	9
OV	%	FMC 20	C7K020216009	NM	10/31/2007	11/8/2007	11/9/2007	8	1	9
OV	%	FMC 13	C7K020216006	NM	10/30/2007	11/8/2007	11/9/2007	9	1	10
OV	%	FMC 12	C7K020216005	NM	10/30/2007	11/8/2007	11/9/2007	9	1	10
OV	%	FMC 11	C7K020216004	NM	10/30/2007	11/8/2007	11/9/2007	9	1	10
OV	%	FMC 10	C7K020216003	NM	10/30/2007	11/8/2007	11/9/2007	9	1	10
OV	%	FMC 24	C7K020216001	NM	10/30/2007	11/8/2007	11/9/2007	9 - 1	1	10
OV	%	FMC 3	C7K020216011	NM	10/31/2007	11/8/2007	11/9/2007	8	1	9

SORT	UNITS	NSAMPLE	LAB_ID	QC_TYPE	SAMP DATE	EXTR_DATE	ANAL_DATE	SMP_EXTR	EXTR_ANL	SMP_ANL
OV	%	FMC 16	C7K020216007	NM	10/31/2007	11/8/2007	11/9/2007	8	T	9
OV	%	FMC 18	C7K020216008	NM	10/31/2007	11/8/2007	11/9/2007	8	1	9
OV	UG/L	FMC 10	C7K020216003	NM	10/30/2007	11/8/2007	11/9/2007	9	1	10
OV	UG/L	FMC 22	C7K020216010	NM	10/31/2007	11/8/2007	11/9/2007	8	1	9
OV	UG/L	FMC 20	C7K020216009	NM	10/31/2007	11/8/2007	11/9/2007	8	1	9
OV	UG/L	FMC 18	C7K020216008	NM	10/31/2007	11/8/2007	11/9/2007	8	1	9
OV	UG/L	FMC 16	C7K020216007	NM	10/31/2007	11/8/2007	11/9/2007	8	1	9
OV	UG/L	FMC 13	C7K020216006	NM	10/30/2007	11/8/2007	11/9/2007	9	1	10
OV	UG/L	FMC 11	C7K020216004	NM	10/30/2007	11/8/2007	11/9/2007	9	1	10
OV	UG/L	FMC 24	C7K020216001	NM	10/30/2007	11/8/2007	11/9/2007	9	1	10
OV	UG/L	TripBlank#2	C7K020216017	NM	10/30/2007	11/8/2007	11/9/2007	9	1	10
OV	UG/L	FMC 12	C7K020216005	NM	10/30/2007	11/8/2007	11/9/2007	9	1 .	10
OV	UG/L	FMC 26	C7K020216015	NM	11/1/2007	11/8/2007	11/9/2007	7	1	8
OV	UG/L	FMC 3	C7K020216011	NM	10/31/2007	11/8/2007	11/9/2007	8	1	9
OV	UG/L	FMC 5	C7K020216012	NM	10/31/2007	11/8/2007	11/9/2007	8	1	9
OV	UG/L	FMC 7	C7K020216013	NM	10/31/2007	11/8/2007	11/9/2007	8	1	9
OV	UG/L	TripBlank#1	C7K020216016	NM	10/30/2007	11/8/2007	11/9/2007	9	1	10
OV	UG/L	FMC 25	C7K020216014	NM	11/1/2007	11/8/2007	11/9/2007	7	1	8

SORT	UNITS	NSAMPLE	LAB_ID	QC_TYPE	SAMP_DATE	EXTR DATE	ANAL_DATE	SMP_EXTR	EXTR_ANL	SMP_ANL
OV	UG/L	FMC 9	C7K020216002	NM .	10/30/2007	11/8/2007	. 11/9/2007	9	1	10
PCB	%	FMC 16DL	C7K020216007	NM	10/31/2007	11/3/2007	11/16/2007	3	13	16
PCB	%	FMC 9DL	C7K020216002	NM	10/30/2007	11/3/2007	11/16/2007	4	13	17
PCB	%	FMC 7DL	C7K020216013	NM	10/31/2007	11/3/2007	11/16/2007	3	13	16
PCB	%	FMC 5DL	C7K020216012	NM	10/31/2007	11/3/2007	11/16/2007	3	13	16
PCB	%	FMC 3DL	C7K020216011	NM	10/31/2007	11/3/2007	11/16/2007	3	13	16
РСВ	%	FMC 26DL	C7K020216015	NM	11/1/2007	11/3/2007	11/19/2007	2	16	18
PCB	%	FMC 25DL	C7K020216014	NM	11/1/2007	11/3/2007	11/16/2007	2	13	15
PCB	%	FMC 24DL	C7K020216001	NM	10/30/2007	11/3/2007	11/16/2007	4	13	17
PCB	%	FMC 22DL	C7K020216010	NM	10/31/2007	11/3/2007	11/16/2007	. 3	13	16
PCB	%	FMC 18DL	C7K020216008	NM	10/31/2007	11/3/2007	11/16/2007	3	13	16
PCB	%	FMC 13DL	C7K020216006	NM	10/30/2007	11/3/2007	11/16/2007	4	13	17
PCB	%	FMC 12DL	C7K020216005	NM	10/30/2007	11/3/2007	11/16/2007	4	13	17
PCB	%	FMC 11DL	C7K020216004	NM	10/30/2007	11/3/2007	11/16/2007	4	13	17
PCB	%	FMC 10DL	C7K020216003	NM	10/30/2007	11/3/2007	11/16/2007	4	13	17
PCB	%	FMC 20DL	C7K020216009	NM	10/31/2007	11/3/2007	11/16/2007	3	13	16
PCB	UG/L	FMC 3DL	C7K020216011	NM	10/31/2007	11/3/2007	11/16/2007	3	13	16
PCB	UG/L	FMC 10DL	C7K020216003	NM	10/30/2007	11/3/2007	11/16/2007	4	13	17

SORT	UNITS	NSAMPLE	LAB_ID	QC_TYPE	SAMP_DATE	EXTR_DATE	ANAL_DATE	SMP_EXTR	EXTR_ANL	SMP_ANL
PCB	UG/L	FMC 11DL	C7K020216004	NM	10/30/2007	11/3/2007	11/16/2007	4	13	17
PCB	UG/L	FMC 12DL	C7K020216005	NM	10/30/2007	11/3/2007	11/16/2007	4	13	17
PCB	UG/L	FMC 13DL	C7K020216006	NM	10/30/2007	11/3/2007	11/16/2007	4	13	17
PCB	UG/L	FMC 16DL	C7K020216007	NM	10/31/2007	11/3/2007	11/16/2007	3	13	16
PCB	UG/L	FMC 18DL	C7K020216008	NM	10/31/2007	11/3/2007	11/16/2007	3	13	16
PCB	UG/L	FMC 20DL	C7K020216009	NM	10/31/2007	11/3/2007	11/16/2007	3	13	16
PCB	UG/L	FMC 22DL	C7K020216010	NM ·	10/31/2007	11/3/2007	11/16/2007	. 3	13	16
PCB	UG/L	FMC 24DL	C7K020216001	NM	10/30/2007	11/3/2007	11/16/2007	4	13	17
PCB	UG/L	FMC 26DL	C7K020216015	NM .	11/1/2007	11/3/2007	11/19/2007	2	16	18
PCB	UG/L	FMC 5DL	C7K020216012	NM	10/31/2007	11/3/2007	11/16/2007	3	13	16
PCB	UG/L	FMC 7DL	C7K020216013	NM	10/31/2007	11/3/2007	11/16/2007	3	. 13	16
PCB	UG/L	FMC 9DL	C7K020216002	NM	10/30/2007	11/3/2007	11/16/2007	4	13	17
PCB	UG/L	FMC 25DL	C7K020216014	NM	11/1/2007	11/3/2007	11/16/2007	2	13	15

5A

VOLATILE ORGANIC INSTRUMENT PERFORMANCE CHECK BROMOFLUOROBENZENE (BFB)

Lab Name: TA PITTSBURGH

Contract:

Lab Code: TA PGH Case No.: SAS No.: SDG No.: C7K020216

Lab File ID: BF61108N

BFB Injection Date: 11/08/07

Instrument ID: HP6

BFB Injection Time: 1819

GC Column: DB624 20M ID: 0.20 (mm) Heated Purge: (Y/N) N

m/e =====	ION ABUNDANCE CRITERIA	% RELATIVE ABUNDANCE
50	15.0 - 40.0% of mass 95	22.1
75	30.0 - 60.0% of mass 95	48.6
95	Base Peak, 100% relative abundance	100.0
96	5.0 - 9.0% of mass 95	7.5
173	Less than 2.0% of mass 174	
174	50.0 - 100.0% of mass 95	0.0 (0.0)1 57.9
175	5.0 - 9.0% of mass 174	
176	95.0 - 101.0% of mass 174	4.7 (8.1)1
177	5.0 - 9.0% of mass 176	55.8 (96.5)1
_ [3.3 (5.9)2
	1-Value is % mass 174 2-Value is % mass	176

THIS CHECK APPLIES TO THE FOLLOWING SAMPLES, MS, MSD, BLANKS, AND STANDARDS:

		מכופד ו				
		EPA	LAB	LAB	DATE	TIME
		SAMPLE NO.	SAMPLE ID	FILE ID	ANALYZED	ANALYZED
		=======================================	===========	==========	========	========
	01	VSTD10	VSTD10	CC61108N	11/08/07	1851
	02	· · · · · · · · · · · · · · · · · · ·	KAVP51AA	61108N01	11/08/07	2017
	03	INTRA-LAB CH	KAVP51AC	61108N03	11/08/07	2203
	04	! · · · · =	KAEX31AD	61108N07	11/09/07	0003
		FMC 9	KAE051AN	61108N08	11/09/07	0027
		FMC 10	KAE071AN	61108N09	11/09/07	0050
	07		KAE1A1AD	61108N10	11/09/07	0113
	08	FMC 12	KAEIDIAN	61108N11	11/09/07	0113
1 1	2.09	FMC 13	KAE1F1AN	61108N12	11/09/07	0200
O BLAM	10	FMC 16	KAE1J1AN	61108N13	11/09/07	0224
PHI	11	FMC 18	KAE1K1AN	61108N14	11/09/07	0247
141-	17	FMC 26	KAE2L1AA	61108N15	11/09/07	0310
1	13	FMC 20	KAE1P1AN	61108N16	11/09/07	0334
	·14	FMC 22	KAE1R1AN	61108N17	11/09/07	0357
	15	FMC 3	KAE101AN	61108N18	11/09/07	0420
	16	FMC 5	KAE151AN	61108N19	11/09/07	0443
	17	FMC 7	KAE191AN	61108N20	11/09/07	0507
	18	FMC 25	KAE2E1AN	61108N21	11/09/07	0530
			KAE2J1AN	61108N22	11/09/07	0553
	20	i	KAE211AA	61108N23	11/09/07	•
	21	<u> </u>	İ		11,03/01	0617
	22					
	-			I.	.	

page 1 of 1

FORM V VOA

OLM03.0

SW846 8260B METHOD BLANK SUMMARY

BLANK WORKORDER NO. KAVP51AA

Lab Name: TestAmerica Laboratories, Inc.

Lab Code: TALPIT

SDG Number:

Lab File ID: 61108N01.

Lot Number: C7K020216

Date Analyzed: 11/08/07

Time Analyzed: 20:17

Matrix: WATER

Date Extracted:11/08/07

GC Column: RTX-624 ID: .18

Extraction Method: 5030B/8260B

Instrument ID: HP6

Level: (low/med) LOW

THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES, LCS, LCSD, MS, MSD:

		SAMPLE	LAB	DATE	MT1 CT
	CLIENT ID.	WORK ORDER #	FILE ID		TIME
	=======================================			ANALYZED	ANALYZED
01	FMC 24	KAEX31AD	61108N07.		!
02	FMC 9	KAE051AN	61108N08.	11/09/07	00:03
03	FMC 10	KAE071AN	61108N09.	11/09/07	00:27
04	FMC 11	KAE1A1AD	61108N10.	11/09/07	00:50
	FMC 12	KAE1D1AN		11/09/07	01:13
	FMC 13	KAE1F1AN	61108N11.	11/09/07	01:37
	FMC 16	KAE1J1AN	61108N12.	11/09/07	02:00
	FMC 18	KAEIKIAN	61108N13.	11/09/07	02:24
	FMC 20	KAE1PIAN	61108N14.	11/09/07	02:47
	FMC 22		61108N16.	11/09/07	03:34
	FMC 3	KAEIRIAN	61108N17.	11/09/07	03:57
	FMC 5	KAE101AN	61108N18.	11/09/07	04:20
	FMC 7	KAE151AN	61108N19.	11/09/07	04:43
		KAE191AN	61108N20.	11/09/07	05:07
	FMC 26	KAE2E1AN	61108N21.	11/09/07	05:30
•		KAE2J1AN	61108N22.	11/09/07	05:53
	TripBlank#1	KAE2L1AA	61108N15.	11/09/07	03:10
	TripBlank#2	KAE211AA	61108N23.	11/09/07	06:17
	INTRA-LAB QC	KAG1V1AA	61108N02.	11/08/07	21:29
	LAB MS/MSD	KAG1V1AE S	61108N04.	11/08/07	22:28
	LAB MS/MSD	KAG1V1AF D	61108N05.	11/08/07	22:52
	CHECK SAMPLE	KAVP51AC C	61108N03.	11/08/07	22:03
22					
23		·			
24					
25					
26					
27				i-	
28		i			
29					
30					
		I.			

COMMENTS:	•			
	 			
		FORM	TV	

C7K020216

SW846 8260B CHECK SAMPLE RECOVERY

Lab Name: TestAmerica Laboratories, Inc.

Client: Tetra Tech NUS, Inc

Lab Code: TALPIT

SDG No:

Lot #: C7K080000

WO #: KAVP51AC BATCH: 7312657

	SPIKE	SAMPLE		OC	
	ADDED	CONCENT.	*	LIMITS	
COMPOUND	(ug/L)	(ug/L)	REC	REC	OUAL
	=======================================	==========	= =====	=========	=======
1,1-Dichloroethene	10.0	9.29	93	65- 136	
Trichloroethene	10.0	10.5	105	73- 120	
Benzene	10.0	10.2	102	80- 120	
Toluene	10.0	9.62	96	80 - 123	
Chlorobenzene	10.0	10.2	102	80- 120	
Chloromethane	10.0	7.23	72	50- 139	
Bromomethane	10.0	8.68	87	33- 171	
Vinyl chloride	10.0	8.40	84	53- 171	
Chloroethane	10.0	8.86	89	23- 186	
Methylene chloride	10.0	10.6	106	63 - 129	
Acetone	10.0	39.4	394	10- 161	
Carbon disulfide	10.0	8.34	83	54 - 132	a
1,1-Dichloroethane	10.0	10.5	105	73 - 126	
trans-1,2-Dichloroethene	10.0	10.0	100	73- 126	-
Chloroform	10.0	11.8	1118	72- 127	
1,2-Dichloroethane	10.0	11.8	118	68 - 132	
2-Butanone	10.0	8.32	83	21- 142	
1,1,1-Trichloroethane	10.0	8.71	87	63 - 133	
Carbon tetrachloride	10.0	7.96	80	55- 150	
Bromodichloromethane	10.0	10.6	106	66- 130	
1,2-Dichloropropane	10.0	11.2	112	76- 124	
cis-1,3-Dichloropropene	10.0	8.07	81	66- 120	
Dibromochloromethane	10.0	9.79	98	60- 141	·
1,1,2-Trichloroethane	10.0	11.4	114		
trans-1,3-Dichloropropene	10.0	7.65	76		
Bromoform	10.0	8.02	80	65- 125 46- 153	
4-Methyl-2-pentanone	10.0	8.78	88	<u>46- 153 </u> 37- 132	
2-Hexanone	10.0	7.21	72	25 - 132	
Tetrachloroethene	10.0	9.73	97	70- 135	
1,1,2,2-Tetrachloroethane	10.0	11.0	110		
Ethylbenzene	10.0	10.2	102	62- 125 72- 126	<u> </u>

(Continued on next page)

SW846 8260B CHECK SAMPLE RECOVERY

Lab Name: TestAmerica Laboratories, Inc. Client: Tetra Tech NUS, Inc

Lab Code: TALPIT

SDG No:

Lot #: C7K080000

WO #: KAVP51AC BATCH: 7312657

	SPIKE	SAMPLE		QC	1
	ADDED	CONCENT.	*	LIMITS	i
COMPOUND	(ug/L)	(ug/L)	REC	REC	QUAL
	=======================================	============	= ====	=========	
Styrene	10.0	10.8	108	71- 127	•
cis-1,2-Dichloroethene	10.0	11.0	110	63 - 128	
Methyl tert-butyl ether	10.0	11.1	111	64- 123	
1,3-Dichlorobenzene	10.0	10.2	102	76- 120	
1,4-Dichlorobenzene	10.0	9.63	96	77- 120	1
1,2-Dichlorobenzene	10.0	10.2	102	77- 120	
1,2-Dibromoethane	10.0	12.4	124*	74- 123	a
1,2-Dibromo-3-chloropropa	10.0	9.16	192	37- 133	
Xylenes (total)	30.0	31.8	106	72 - 128	
Dichlorodifluoromethane	10.0	4.77	48	13 - 174	
Trichlorofluoromethane	10.0	6.32	63	51- 156	
Isopropylbenzene	10.0	9.73	97	58- 130	
1,2,4-Trichlorobenzene	10.0	10.4	104	49- 124	
1,1,2-Trichloro-1,2,2-tri	10.0	6.66	67	39- 162	<u> </u>
Cyclohexane	10.0	6.48	65	50 - 150	
Methyl acetate	10.0	9.78	98	50 - 150	
Methylcyclohexane	10.0	6.01	60	50- 150	

NOTES(S):

* Values outside of QC limits

Spike Recovery: 2 out of 48 outside limits

COMMENTS:

FORM III

a Spiked analyte recovery is outside stated control limits.

SW846 8270C MATRIX SPIKE/MATRIX SPIKE DUPLICATE RECOVERY

Lab Name: TestAmerica Laboratories, Inc.

Client: Tetra Tech NUS, Inc

Lab Code: TALPIT

SDG No:

Matrix Spike ID: LAB MS/MSD

Lot #: C7K010111

WO #: J998L1DG BATCH: 7311333

	SPIKE	SAMPLE	MS	MS		
	ADDED	CONCENT.	CONCENT.	*	LIMITS	
COMPOUND	(ug/L)	(ug/L)	(ug/L)	REC	REC	QUAL
=======================================		=======	=======	=====	========	========
Phenol	18.9	ND	12.8	68	38- 95	ļ
2-Chlorophenol	18.9	ND	9.42	50	39- 93	
N-Nitrosodi-n-propylamine	18.9	ND	9.87	52	41- 96	
4-Chloro-3-methylphenol	18.9	ND	10.7	56	41- 99	
Acenaphthene	18.9	ND	9.05	48	35- 96	
4-Nitrophenol	18.9	ND	16.8	89	39- 110	
2,4-Dinitrotoluene	18.9	ND	13.9	73	37- 120	
Pentachlorophenol	18.9	ND	9.57	51	23- 108	
Pyrene	18.9	ND	9.36	50	30- 106	
bis(2-Chloroethyl) ether	18.9	ND	8.91	47	39- 92	
2-Methylphenol	18.9	ND	9.20	49	43 - 90	
4-Methylphenol	37.8	ND	18.3	48	41~ 92	
Hexachloroethane	18.9	ND	8.68	46	38- 91	
Nitrobenzene	18.9	ND	13.5	72	40- 99	
Isophorone	18.9	ND	10.2	54	44 - 99	
2-Nitrophenol	18.9	ND	11.5	61	¥3- 105	
2,4-Dimethylphenol	18.9	ND	6.71	(36*)	41- 93	a
bis (2-Chloroethoxy) methan	18.9	ND	9.08	48	39- 91	
2,4-Dichlorophenol	18.9	ND	10.5	56	41- 96	
Naphthalene	18.9	ND	8.88	47	40- 89	
Hexachlorobutadiene	18.9	ND	9.59	51	38- 98	
2-Methylnaphthalene	18.9	ND	9.26	49	38- 90	
Hexachlorocyclopentadiene	18.9	ND	3.19	17*	36- 115	a
2,4,6-Trichlorophenol	18.9	ND	10.1	53	41- 97	
2,4,5-Trichlorophenol	18.9	ND	10.1	53	38- 98	
2-Chloronaphthalene	18.9	ND	8.80	47	34 - 95	
Dimethyl phthalate	18.9	ND	10.9	58	39- 100	
Acenaphthylene	18.9	ND	9.61	51	38- 105	

(Continued on next page)

SW846 8270C MATRIX SPIKE/MATRIX SPIKE DUPLICATE RECOVERY

Lab Name: TestAmerica Laboratories, Inc. Client: Tetra Tech NUS, Inc

Lab Code: TALPIT

SDG No:

Matrix Spike ID: LAB MS/MSD

Lot #: C7K010111

WO #: J998L1DG BATCH: 7311333

1	SPIKE	SAMPLE	MS	MS	-,	
İ	ADDED	CONCENT.	CONCENT.	윰	LIMITS	
COMPOUND	(ug/L)	(ug/L)	(ug/L)	REC	REC	QUAL
	=======	_=======	========	=====	========	========
2,6-Dinitrotoluene	18.9	ND	12.2	64	40- 117	,
2,4-Dinitrophenol	18.9	ND	17.4	92	20- 142	
Dibenzofuran	18.9	ND	9.51	50	36- 94	i
Diethyl phthalate	18.9	ND	11.7	62	36- 103	
4-Chlorophenyl phenyl eth	18.9	ND	10.1	54	37- 96	
Fluorene	18.9	ND	10.2	54	36- 97	
4,6-Dinitro-2-methylpheno	18.9	ND	14.6	77	28- 128	
N-Nitrosodiphenylamine	18.9	ND	9.69	51	35 - 93	
4-Bromophenyl phenyl ethe	18.9	ND	9.44	50	39- 94	
Hexachlorobenzene	18.9	ND	8.97	47	40- 88	
Phenanthrene	18.9	0.058	10.1	53	37- 86	
Anthracene	18.9	ND	9.39	50	35- 95	
Carbazole	18.9	ND	12.0	63	36 - 95	7
Di-n-butyl phthalate	18.9	ND	10.9	57	38- 99	
Fluoranthene	18.9	ND	11.2	59	36- 96	
Butyl benzyl phthalate	18.9	ND	9.13	48	33- 106	
Benzo (a) anthracene	18.9	ND	7.38	39	38- 96	
Chrysene	18.9	ND	6.97	27	36 - 97	
bis(2-Ethylhexyl) phthala	18.9	ND	3.93	21*	33- 110	a
Di-n-octyl phthalate	18.9	ND	3.63	7 19*	28- 125	a
Benzo(b) fluoranthene	18.9	ND	5.48	7 29*	34- 99	a
Benzo(k)fluoranthene	18.9	ND	4.87	26*	32- 109	a
Benzo (a) pyrene	18.9	ND	4.53	24*	37- 112	a
Indeno(1,2,3-cd)pyrene	18.9	ND	4.46	24*	32- 116	
Dibenz(a,h)anthracene	18.9	ND	4.45	24*	29- 119	a
Benzo(ghi)perylene	18.9	ND	4.61	24*	727- 116	a
2,2'-oxybis(1-Chloropropa	18.9	ND	8.51	45	33- 98	

SW846 8270C MATRIX SPIKE/MATRIX SPIKE DUPLICATE RECOVERY

Lab Name: TestAmerica Laboratories, Inc. Client: Tetra Tech NUS, Inc

Lab Code: TALPIT

SDG No:

Matrix Spike ID: LAB MS/MSD

Lot #: C7K010111

WO #: J998L1DH BATCH: 7311333

				·			
	SPIKE	MSD	MSD				
COMPOUND	ADDED	CONCENT.		8	QC :	LIMITS	İ
	(ug/L)	(ug/L)	REC	RPD	RPD	REC	QUAL
	:	= =======	: ====	- =====:	= ====	========	=========
Phenol	19.0	13.2	69	2.7	_ 39	38- 95	i ·
2-Chlorophenol	19.0	9.44	50	0.23	39	39- 93	
N-Nitrosodi-n-propylamine	19.0	9.92	52	0.48	43	41- 96	
4-Chloro-3-methylphenol	19.0	10.5	55	1.9	42	41- 99	
Acenaphthene	19.0	8.62	45	4.8	41	35- 96	
4-Nitrophenol	19.0	17.0	89	0.89	42	39- 110	
2,4-Dinitrotoluene	19.0	13.6	72	2.0	39	37- 120	ļ
<u>Pentachlorophenol</u>	19.0	9.92	52	3.5	42	23- 108	
Pyrene	19.0	9.51	50	1.6	42	30- 106	
bis(2-Chloroethyl) ether	19.0	8.97	47	0.77	38	39- 92	¦
2-Methylphenol	19.0	9.24	49	0.44	38	43 - 90	
4-Methylphenol	38.0	18.0	47	1.3	41	41- 92	! :
<u>Hexachloroethane</u>	19.0	8.76	46	0.93	39	38 - 91	<u> </u>
Nitrobenzene	19.0	13.1	69	2.8	42	40 - 99	
Isophorone	19.0	9.81	52	3\9	43	44- 99	
2-Nitrophenol	19.0	11.3	160	1.4	41	43- 105	
2,4-Dimethylphenol	19.0	6.51	34*	3/.0	40	41- 93	
bis(2-Chloroethoxy)methan	19.0	8.88	47	2.3	46		a
2,4-Dichlorophenol	19.0	9.85	52	6.7	41		
Naphthalene	19.0	8.68	46	2.3	43		
Hexachlorobutadiene	19.0	9.59	50-	0.0	41		
2-Methylnaphthalene	19.0	8.64	45	6.9	42		
Hexachlorocyclopentadiene		3.16	 '	1.0	!!		
	19.0	9.43	50	6.6	39		a
	19.0	10.1	53	0.12	39	41- 97 38- 98	——— <u> </u>
0 = 1	19.0	8.46	!	3.9	39 39		<u></u> [
	19.0	10.3	54	5.3	! ! -	34 - 95	
1 1 1 2 2	·	9.46	!	$\frac{5.3}{1.5}$	42	39- 100	
				T.2 -	40	38- 105	

(Continued on next page)

SW846 8270C MATRIX SPIKE/MATRIX SPIKE DUPLICATE RECOVERY

Lab Name: TestAmerica Laboratories, Inc. Client: Tetra Tech NUS, Inc

Lab Code: TALPIT

SDG No:

Matrix Spike ID: LAB MS/MSD

Lot #: C7K010111

WO #: J998L1DH BATCH: 7311333

	CDTVII					···	
· ·	SPIKE	MSD	MSD				
COMPOUND	ADDED	CONCENT.	용	8	QC 1	LIMITS	
=======================================	1	4.	REC	RPD	RPD	REC	QUAL
2,6-Dinitrotoluene	=======			=====	= ====	========	=======
2,4-Dinitrophenol	19.0	12.1	64	0.76	40	40- 117	Ì
Dibenzofuran	19.0	16.5	87	5.5	53	20- 142	
	19.0	9.43	50	0.85	39	36 - 94	
Diethyl phthalate	19.0	11.3	60	3.2	39	36- 103	
4-Chlorophenyl phenyl eth Fluorene		9.85	52_	2.6	38	37- 96	
·	19.0	9.86	52	3.0	40	36- 97	
4,6-Dinitro-2-methylpheno	:	14.8	78	1.1	41	28- 128	
N-Nitrosodiphenylamine	19.0	9.82	52	1.3	36	35- 93	
4-Bromophenyl phenyl ethe		9.79	52	3.6	40	39- 94	
Hexachlorobenzene	19.0	9.23	49	2.8	35	40- 88	
Phenanthrene	19.0	10.3	54	1.9	36	37- 86	
Anthracene	19.0	9.52	50	1.3	37	35- 95	
Carbazole	19.0	12.3	65	2.4	35	36- 95	
Di-n-butyl phthalate	19.0	11.2	59	2.9	38	38- 99	
Fluoranthene	19.0	11.4	60	2.1	39	36- 96	
Butyl benzyl phthalate	19.0	9.31	48	1.9	40	33 - 106	
Benzo(a) anthracene	19.0	7.51		1.8	36	38- 96	
Chrysene	19.0	7.05		1.1	42	36- 97	
bis(2-Ethylhexyl) phthala	19.0	3.96	-/ '	0.98	40		
Di-n-octyl phthalate	19.0	3.59		$\frac{1.1}{1.1}$	44		
Benzo(b) fluoranthene	19.0	5.24		4.6	46		a
Benzo(k) fluoranthene	19.0	4.85	 !	0.27	31		
Benzo(a) pyrene	19.0	4.50		0.79	40		
Indeno(1,2,3-cd)pyrene	19.0	4.39	!	1.6	54		a
5 :3	19.0	4.40		$\frac{1.8}{1.2}$	44	32- 116	
	19.0	4.47		$\frac{3.2}{3.1}$ -	!!-	29- 119	
0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	19.0	8.63	45	1.4	44	27- 116	3
	·	<u></u> 1.			42	33- 98	

5B SEMIVOLATILE ORGANIC GC/MS TUNING AND MASS CALIBRATION - DECAFLUOROTRIPHENYLPHOSPHINE (DFTPP)

Lab Name: TESTAMERICA PITTSBURGH

Contract:

Lab Code: TA

Case No.:

SAS No.:

SDG No.: _

Lab File ID: N1106DF1

DFTPP Injection Date: 11/06/07

Instrument ID: 733

DFTPP Injection Time: 2125

m/e	ION ABUNDANCE CRITERIA	% RELATIVE ABUNDANCE
=====	化基本对抗性抗性 计自由设计 化四氢二氢甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲	
51	30.0 - 60.0% of mass 198	49.2
68	Less than 2.0% of mass 69	0.2 (0.5)1
69	Mass 69 relative abundance	46.0
70	Less than 2.0% of mass 69	0.1 (0.2)1
127	40.0 - 60.0% of mass 198	51.2
197	Less than 1.0% of mass 198	0.8
198	Base Peak, 100% relative abundance	100.0
199	5.0 - 9.0% of mass 198	6.8
275	10.0 - 30.0% of mass 198	21.7
365	Greater than 1.0% of mass 198	3.0
441	Present, but less than mass 443	10.0
442	Greater than 40.0% of mass 198	66.2
443	17.0 - 23.0% of mass 442	13.9 (21.0)2
	1-Value is % of mass 69 2-Value is % of m	200 442

1-Value is % of mass 69

THIS TUNE APPLIES TO THE FOLLOWING SAMPLES, MS, MSD, BLANKS, AND STANDARDS:

	EPA	LAB SAMPLE ID	LAB FILE ID	DATE ANALYZED	TIME ANALYZED
	SAMPLE NO.	SAMPLE ID	LIDE ID	ANADIOO	WANTED S
01	SSTD0.4	SSTD0.4	N1106IC1	11/06/07	2140
02	SSTD2.0	SSTD2.0	N1106IC2	11/06/07	2209
03	SSTD4.0	SSTD4.0	N1106IC3	11/06/07	2238
04	SSTD10	SSTD10	N1106IC4	11/06/07	2306
05	SSTD20	SSTD20	N1106IC5	11/06/07	2335
06	SSTD40	SSTD40	N1106IC6 N1106IC7	11/07/07 11/07/07	0004 0032
07 08	SSTD80	SSTD80	NTIOPICA	11/0//0/	0032
09					
10	**************************************				
11					
12					
13					
14 15					
16					
17					
18					
19					
20					·
21					
22	<u> </u>	<u></u>	l	l	I

page 1 of 1

FORM V SV

1/87 Rev.

FORM 5 SEMIVOLATILE ORGANIC INSTRUMENT PERFORMANCE CHECK DECAFLUOROTRIPHENYLPHOSPHINE (DFTPP)

Lab Name: TESTAMERICA PITTSBURGH

Contract:

Lab Code: TA

Case No.:

SAS No.:

SDG No.: C7K020216

Lab File ID: N1121DF1

DFTPP Injection Date: 11/21/07

Instrument ID: 733

DFTPP Injection Time: 0139

m/e	ION ABUNDANCE CRITERIA	<pre>% RELATIVE ABUNDANCE</pre>
====		=======================================
51	30.0 - 60.0% of mass 198	52.0
68	Less than 2.0% of mass 69	0.0 (0.0)1
69	Mass 69 relative abundance	48.0
70	Less than 2.0% of mass 69	0.3 (0.7)1
127	40.0 - 60.0% of mass 198	53.6
197	Less than 1.0% of mass 198	0.0
198	Base Peak, 100% relative abundance	100.0
199	5.0 to 9.0% of mass 198	6.8
275	10.0 - 30.0% of mass 198	22.9
365	Greater than 1.0% of mass 198	2.95
441	Present, but less than mass 443	11.3
442	Greater than 40.0% of mass 198	72.5
443	17.0 - 23.0% of mass 442	13.4 (18.5)2
	1-Value is % mass 69 2-Value is % mass	442

THIS CHECK APPLIES TO THE FOLLOWING SAMPLES, MS, MSD, BLANKS, AND STANDARDS:

	1 753	735	TAD	DATE	TIME
	EPA	LAB	LAB	DATE	
	SAMPLE NO.	SAMPLE ID	FILE ID	ANALYZED	ANALYZED
	==========	==========	=======================================	========	========
01	SSTD4.0	SSTD4.0	N11210CC	11/21/07	0155
02	INTRA-LAB BL	KANWC1AA	N1121017	11/21/07	0954
03	INTRA-LAB CH		N1121018	11/21/07 11/21/07	1022
04	111111111111111111111111111111111111111	1447702220		,, ,	-,
05					
06					
07					·
. 08					
09					
10					
11					
12					
13					
14					
15					
16					
17					
18					
19		<u> </u>			
20					
21					
22	1				

page 1 of 1

FORM V SV

Page 5

TestAmerica Pittsburgh

CONTINUING CALIBRATION COMPOUNDS

Instrument ID: 733.i Injection Date: 21-NOV-2007 01:55

Init. Cal. Date(s): 06-NOV-2007 07-NOV-2007 Init. Cal. Times: 21:40 00:32 Quant Type: ISTD

Lab File ID: N11210CC.D Init. Cal. Date(s): 06-Analysis Type: Init. Cal. Times: 21-Nov. Lab Sample ID: sstd4.0 Quant Type: ISTD Method: \\PITSVR06\D\chem\733.i\N112107.b\827011.m

	<u> </u>		MIN		MAX	Ì
COMPOUND	RRF / AMOUNT	RF4	RRF	%D / %DRIFT	%D / %DRIFT	CURVE TYP
· 中国 · · · · · · · · · · · · · · · · · ·	- ======	*********				
8 2,6-Dinitrotoluene	0.23130	0.23052	•		25.00000	Average
9 Acenaphthylene	1.61454	1.54249	0.010	4.46258	25.00000	Average
1 3-Nitroaniline	0.26586	0.29321	0.010	-10.28829	25.00000	Average
2 Acenaphthene	1.07633	1.05645	0.010	1.84675	20.00000	Average
3 2,4-Dinitrophenol	0.09091	0.08862	0.050	2-51068	50.00000	Average
5 4-Nitrophenol	0.13935	0.19571	0.050	-40.44882	50.00000	Average
5 Dibenzofuran	1.56713	1.59954	0.010	-2.06827	25.00000	Average
7 2,4-Dinitrotoluene	0.29609	0.36007	0.010	-21.60601	25.00000	Average
1 2,3,5,6-Tetrachlorophenol	0.28794	0.28174	0.010	2.15163	25.00000	Average
3 2,3,4,6-Tetrachlorophenol	0.26973	0.27988	0.010	-3.76295	25.00000	Average
2 2-Naphthylamine	0.70197	0.70940]	0.010			Average
B Diethylphthalate	1.13279	1.21306	0.010	-7.08631	25.00000	Average
Fluorene	1.24078	1.27138	0.010	-2.46608	25.00000	•
4-Chlorophenyl-phenylether	0.56746	0.63641	0.010	-12.15122	25.00000	_
4-Nitroaniline	0.27674	0.29429			•	_
4,6-Dinitro-2-methylphenol	0.08205	0.07270				_
N-Nitrosodiphenylamine (1)	0.50366	0.48714	•	•		•
00 1,2-Diphenylhydrazine	0.77898	0.69423	•	10.87950		
06 4-Bromophenyl-phenylether	0.18396	0.20006	,	-8.75308		
7 Hexachlorobenzene	0.18473	0.20913		-13.20677		Average
.0 Atrazine	0.17550	0.17790	,	-1.36810		Average
1 Pentachlorophenol	0.11461	0.12871		•	•	Average
.5 Phenanthrene	1.07903	1.04304		3.33584	25.00000	Average
.6 Anthracene	1.05037	1.01283		3.57426	•	-
9 Carbazole	0.95217	0.96809		-1.67233	25.00000	_
0 Di-n-Butylphthalate	1.14488	1.15341	•	-0.74448	25.00000	Average
3 Fluoranthene	1.11612	1.19283	•	-6.87321	20.00000	Average
4 Benzidine	0.37446	0.29906		20.13459		Average
5 Pyrene	1.30240	1.19092			25.00000	Average
1 Butylbenzylphthalate	0.56290	•		8.55987	25.00000]	Average
5 3,3'-Dichlorobenzidine	0.34930	0.53600 0.38660		4.77861	25.00000	Average
6 Benzo(a) Anthracene	:	•	•	-10.68046	25.00000	Average
7 Chrysene	1.13703	1.13359	•	0.30208	25.00000	Average
9 bis(2-ethylhexyl)Phthalate	1.08232	1.06903		1.22804	25.00000	Average
	0.81420	0.78983	•	2.99318	25.00000	Average
0 Di-n-octylphthalate	1.83649	1.92621	,	-4.88528	20.00000	Average
1 Benzo (b) fluoranthene	1.42937	1.37021	•	4.13864	25.00000	Average
2 Benzo(k) fluoranthene	1.44252	1.36676	•	5.25189	25.00000	Average
3 7,12-dimethylbenz[a]anthrac	0.66840	0.60889	•	8.90350	25.00000	Average
6 Benzo(a)pyrene	1.24357	1.20661	•	2.97227	20.00000	Average
9 Indeno(1,2,3-cd)pyrene	1.31679	1.33850	0.010	-1.64837	25.00000	Average
0 Dibenz(a,h)anthracene	1.11723	1.12298	0.010	-0.51462	25.00000	Average
l Benzo(g,h,i)perylene	1.11856	1.14691	loro.a	-2.53371	25.000001	Averaged

FORM 5 SEMIVOLATILE ORGANIC INSTRUMENT PERFORMANCE CHECK DECAFLUOROTRIPHENYLPHOSPHINE (DFTPP)

Lab Name: TESTAMERICA PITTSBURGH

Contract:

Lab Code: TA

Case No.:

SAS No.:

SDG No.: C7K020216

Lab File ID: N1122DF1

DFTPP Injection Date: 11/22/07

Instrument ID: 733

DFTPP Injection Time: 0448

m/e	ION ABUNDANCE CRITERIA	% RELATIVE ABUNDANCE
51 68	30.0 - 60.0% of mass 198 Less than 2.0% of mass 69	52.0 0.2 (0.3)1
69 70	Mass 69 relative abundance Less than 2.0% of mass 69	49.3
127	40.0 - 60.0% of mass 198	51.7
197 198	Less than 1.0% of mass 198 Base Peak, 100% relative abundance	0.5
199 275	5.0 to 9.0% of mass 198 10.0 - 30.0% of mass 198	6.6
365 441	Greater than 1.0% of mass 198	3.16
442	Present, but less than mass 443 Greater than 40.0% of mass 198	10.4
443	17.0 - 23.0% of mass 442	13.5 (20.0)2
·'	1-Value is % mass 69 2-Value is % mass	442

THIS CHECK APPLIES TO THE FOLLOWING SAMPLES, MS, MSD, BLANKS, AND STANDARDS:

i	EPA	LAB	LAB	DATE	TIME
I	SAMPLE NO.	SAMPLE ID	FILE ID	ANALYZED	ANALYZED
			# ==##################################	========	========
01	SSTD4.0	SSTD4.0	N11220CC	11/22/07	0504
02	INTRA-LAB CH	KAKQK1AC	N1122018	11/22/07	0532
03	INTRA-LAB BL	KAKQK1AA	N1122017	11/22/07	0601
04	FMC 16	KAE1J1AM	N1122009	11/22/07	1014
05	FMC 18	KAE1K1AM	N1122010	11/22/07	1042
06	FMC 20	KAE1P1AM	N1122011	11/22/07	1110
07	FMC 22	KAE1R1AM	N1122012	11/22/07	1138
08	FMC 3	KAE101AM	N1122013	11/22/07	1207
09	FMC 5	KAE151AM	N1122014	11/22/07	1235
10	FMC 7	KAE191AM	N1122015	11/22/07	1303
11	FMC 25	KAE2E1AM	N1122016	11/22/07	1331
12					
13					
14					
15					
16					
17					
18					
19					
20	· · · · · · · · · · · · · · · · · · ·				
21					
22					

page 1 of 1

FORM V SV

Report Date: 22-Nov-2007 07:43

TestAmerica Pittsburgh

CONTINUING CALIBRATION COMPOUNDS

Instrument ID: 733.i

Injection Date: 22-NOV-2007 05:04
Init. Cal. Date(s): 06-NOV-2007 07-NOV-2007
Init. Cal. Times: 21:40 00:32 Lab File ID: N11220CC.D

Analysis Type:

Lab Sample ID: sstd4.0 Quant Type: ISTD

Method: \\PITSVR06\D\chem\733.i\N112207.b\827011.m

	l		MIN		MAX	}
COMPOUND	RRF / AMOUNT	RF4	RRF	%D / %DRIFT	%D / %DRIFT	CURVE TYP

78 2,6-Dinitrotoluene	0.23130	0.26168	•		•	
79 Acenaphthylene	1.61454			•	•	
31 3-Nitroaniline	0.26586	0.28108			•	
32 Acenaphthene	1.07633	1.03130				
33 2,4-Dinitrophenol	0.09091	0.09615			1	
35 4-Nitrophenol	0.13935	0.17754		`(`J	
36 Dibenzofuran	1.56713				•	_
37 2,4-Dinitrotoluene	0.29609					Average
2,3,5,6-Tetrachlorophenol	0.28794	0.25408	0.010	11.75872	25.00000	Average
38 2,3,4,6-Tetrachlorophenol	0.26973	0.28052	0.010	-4.00209	25.00000	Average
22 2-Naphthylamine	0.70197	0.74673	0.010	-6.37762	25.00000	Average
3 Diethylphthalate	1.13279	1.21902	0.010	-7.61231	25.00000	Average
94 Fluorene	1.24078	1.26538	0.010	-1.98309	25.00000	Average
95 4-Chlorophenyl-phenylether	0.56746	0.62224	0.010	-9.65402	25.00000	Average
6 4-Nitroaniline	0.27674	0.30462	0.010	-10.07428	25.00000	Average
98 4,6-Dinitro-2-methylphenol	0.08205	0.07337	0.010	10.57060	25.00000	Average
99 N-Nitrosodiphenylamine (1)	0.50366]	0.48847	0.010	3.01681	20.00000	Average
00 1,2-Diphenylhydrazine	0.77898	0.71553	0.010	8.14629	25.00000	Average
.06 4-Bromophenyl-phenylether	0.18396	0.18187	0.010	1.13475	25.00000	Average
07 Hexachlorobenzene	0.18473	0.19608	0.010	-6.14325	25.00000	Average
10 Atrazine	0.17550	0.16799	0.010	4.28224	25.00000	Average
11 Pentachlorophenol	0.11461	0.12083	0.010	-5.42444	20.00000	Average
15 Phenanthrene	1.07903	1.06580	0.010	1.22640	25.00000	_
16 Anthracene	1.05037	1.02238	0.010	2.66437	25.00000	Average
19 Carbazole	0.95217	0.98254				•
20 Di-n-Butylphthalate	1.14488	1.09623				-
23 Fluoranthene	1.11612	1.18134				_
24 Benzidine	0.37446	0.29740	0.010	20.57745	25.00000	Average
.25 Pyrene	1.30240	1.12627	0.010	13.52322	25.00000	•
31 Butylbenzylphthalate	0.56290	0.51747	0.010	8.06988	25.00000	_
35 3,3'-Dichlorobenzidine	0.34930	0.37607	•	•		_
36 Benzo(a)Anthracene	1.13703	1.10525			•	-
37 Chrysene	1.08232	1.05827		•		_
39 bis(2-ethylhexyl)Phthalate	0.81420	0.76428	•		<u>`</u>	-
40 Di-n-octylphthalate	1.83649	1.70190	•			•
41 Benzo(b)fluoranthene	1.42937	1.39621	•			_
42 Benzo(k) fluoranthene	1.44252	1.38954			:	_
43 7,12-dimethylbenz[a]anthrac	0.66840	0.58122			:	
	·	•				
46 Benzo(a) pyrene	1.24357	1.21041				
49 Indeno(1,2,3-cd)pyrene	1.31679	1.47283			•	•
.50 Dibenz(a,h)anthracene	1.11723	1.21235	-	-8.51387		-
51 Benzo(g,h,i)perylene	1.11856	1.23859	0.010	-10.73025	25.00000	Average

5B SEMIVOLATILE ORGANIC GC/MS TUNING AND MASS CALIBRATION - DECAFLUOROTRIPHENYLPHOSPHINE (DFTPP)

Lab Name: TESTAMERICA PITTSBURGH

Contract:

Lab Code: TA

Case No.:

SAS No.:

SDG No.:

Lab File ID: N1124DF2

DFTPP Injection Date: 11/24/07

Instrument ID: 733

DFTPP Injection Time: 0508

m/e	ION ABUNDANCE CRITERIA	<pre>% RELATIVE ABUNDANCE</pre>
====		****
51	30.0 - 60.0% of mass 198	43.8
68	Less than 2.0% of mass 69	0.6 (1.3)1
69	Mass 69 relative abundance	45.7
70	Less than 2.0% of mass 69	0.5 (1.1)1
127	40.0 - 60.0% of mass 198	49.8
197	Less than 1.0% of mass 198	0.0
198	Base Peak, 100% relative abundance	100.0
199	5.0 - 9.0% of mass 198	7.0
275	10.0 - 30.0% of mass 198	19.6
365	Greater than 1.0% of mass 198	2.8
441	Present, but less than mass 443	9.9
442	Greater than 40.0% of mass 198	56.2
	17.0 - 23.0% of mass 442	12.7 (22.5)2
443	17.0 - 23.00 Of HESS 112	
	1-Value is % of mass 69 2-Value is % of m	ass 442

THIS TUNE APPLIES TO THE FOLLOWING SAMPLES, MS, MSD, BLANKS, AND STANDARDS:

1			LAB	DATE	TIME
	EPA	LAB	**** *		ANALYZED
	SAMPLE NO.	SAMPLE ID	FILE ID	ANALYZED	WANT TODD
			mm====================================	=======================================	========
01	SSTD4.0	SSTD4.0	N11240CC	11/24/07	0524
02	SSTD0.4	SSTD0.4	N1124IC1	11/24/07	0552
03	SSTD2.0	SSTD2.0	N1124IC2	11/24/07	0621
04	SSTD10	SSTD10	N1124IC4	11/24/07	0650
05	SSTD20	SSTD20	N1124IC5	11/24/07	0719
06	SSTD040	SSTD40	N1124IC6	11/24/07	0747
07	SSTD80	SSTD80	N1124IC7	11/24/07	0816
	921D00	331200	11111111111		
08		<u> </u>			
09					
10					
11					
12					
13					
14					
15					
16			\		
17					
18					
19					ll
20					
21					
]			
22	<u> </u>	<u> </u>	I		ł (

page 1 of 1

FORM V SV

1/87 Rev.

FORM 5 SEMIVOLATILE ORGANIC INSTRUMENT PERFORMANCE CHECK DECAFLUOROTRIPHENYLPHOSPHINE (DFTPP)

Lab Name: TESTAMERICA PITTSBURGH

Contract:

Lab Code: TA Case No.:

SAS No.:

SDG No.: C7K020216

Lab File ID: N1126DF1

DFTPP Injection Date: 11/26/07

Instrument ID: 733

DFTPP Injection Time: 0148

m/e	ION ABUNDANCE CRITERIA	% RELATIVE ABUNDANCE
51	30.0 - 60.0% of mass 198	40.0
68	Less than 2.0% of mass 69	0.0 (0.0)1
69	Mass 69 relative abundance	43.5
70	Less than 2.0% of mass 69	0.3 (0.7)1
127	40.0 - 60.0% of mass 198	50.2
197	Less than 1.0% of mass 198	0.5
198	Base Peak, 100% relative abundance	100.0
199	5.0 to 9.0% of mass 198	6.8
275	10.0 - 30.0% of mass 198	20.9
365	Greater than 1.0% of mass 198	2.61
441	Present, but less than mass 443	9.4
442	Greater than 40.0% of mass 198	60.0
443	17.0 - 23.0% of mass 442	11.7 (19.5)2
	0.77.1	440

1-Value is % mass 69

2-Value is % mass 442

THIS CHECK APPLIES TO THE FOLLOWING SAMPLES, MS, MSD, BLANKS, AND STANDARDS:

	EPA SAMPLE NO.	LAB SAMPLE ID	LAB FILE ID	DATE ANALYZED	TIME ANALYZED
01 02 03 04 05 06		KARGGIAC	N11260CC N1126016 N1126017 N1126018	11/26/07 11/26/07 11/26/07 11/26/07	0203 0231 0328 0357
07 08 09 10 11 12					
13 14 15 16 17 18					
19 20 21 22					

page 1 of 1

FORM V SV

TestAmerica Pittsburgh

CONTINUING CALIBRATION COMPOUNDS

Instrument ID: 733.i

Injection Date: 26-NOV-2007 02:03 Init. Cal. Date(s): 24-NOV-2007 24-NOV-2007 Init. Cal. Times: 05:24 08:16

Lab File ID: N11260CC.D Analysis Type: Lab Sample ID: sstd4.0

08:16

Quant Type: ISTD

Method: \\PITSVR06\D\chem\733.i\N112607.b\827011.m

COMPOUND	 		MIN	•	MAX	· ·
	RRF / AMOUNT	RF4	RRF		%D / %DRIFT	
198 1,4-Dioxane	0.35736	0.40251	0.010	-12.63484		•
10 N-Nitrosodimethylamine	0.47306	0.52743	0.010		•	
Pyridine	0.95506	0.97261			•	
6 Methyl methanesulfonate	0.71817		'			_
06 Benzaldehyde	0.58720	0.54556				_
1 Aniline	1 1.886121	1.97662			•	•
2 Phenol	1.59311	1.66028	•			
3 bis(2-Chloroethyl)ether	1.26860	1.19053	•			
4 2-Chlorophenol	1.32797	1.33603	•			-
6 1,3-Dichlorobenzene	1.56011	1.59934	•	,	•	~
7 1,4-Dichlorobenzene	1.60640	1.52350	•			-
8 1.2-Dichlorobenzene	1.55965	1.54229	•	1.11270		
9 Benzyl Alcohol	0.81065	0.80700	,			•
0 2-Methylphenol	1.18958	1.21280		-1.95239		
1 2,2'-oxybis(1-Chloropropane	2.05252	1.99301	,			-
7 Acetophenone	1.76551	1.76503	•	2.89904	•	-
2 N-Nitroso-di-n-propylamine	0.87639	0.88360		0.02722		
92 4-Methylphenol	1.26177	1.27999		-0.B2271		•
4 Hexachloroethane	0.68063		,	-1.44365	,	-
5 Nitrobenzene	0.38945	0.68039		0.03561		-
1 Isophorone	•	0.36383	,	6.57881		
2 2-Nitrophenol	0.63259	0.61380		2.96940		
3 2,4-Dimethylphenol	0.17798	0.18061		-1.47976		
4 bis(2-Chloroethoxy)methane	0.34075	0.33648	•	•	,	Averaged
• •	0.41703	0.40185		3.64000	25.00000)	Averaged
8 2,4-Dichlorophenol 9 Benzoic Acid	0.29817	0.29451		1.22902	20.00000	Averaged
9 Benzoic Acid 0 1,2,4-Trichlorobenzene	0.22123	0.15989	•	27.72410	25.00000	Averaged
	0.35602	0.33561		5.73263	25.00000	Averaged
1 Naphthalene	1.07381	1.02135	•	4.88517	25.00000	Averaged
2 4-Chloroaniline	0.42784	0.39149	•	8.49734	25.00000	Averaged
4 2,6-Dichlorophenol	0.31178	0.31422	•	-0.78220	25.00000	Averaged
6 Hexachlorobutadiene	0.21291	0.19983		6.14310	20.00000	Averaged
08 Caprolactam	0.09338	0.09151	•	2.00195	25.00000	Averaged
9 4-Chloro-3-Methylphenol	0.29692	0.28232	•	4.91489	20.00000	Averaged
2 2-Methylnaphthalene	0.72425	0.69639	•	3.84704	25.00000	Averaged
3 1-Methylnaphthalene	0.69373	0.63056	0.010	9.10587	25.00000	Averaged
Hexachlorocyclopentadiene	0.32129	0.23425	0.050	27.09228	50.00000	Averaged
5 2,4,6-Trichlorophenol	0.34794	0.34892	0.010	-0.28108	20.00000	Averaged
7 2,4,5-Trichlorophenol	0.39294	0.38756 0	0.010	1.37079	25.00000	Averaged
99 1,1'-Biphenyl	1.33362	1.33503	0.010	-0.10557	25.00000	Averaged
2-Chloronaphthalene	1.11027	1.10313 0	0.010	0.64328	25.00000	Averaged
3 2-Nitroaniline	0.29397	0.29738	0.010	-1.15936	25.00000	Averaged
5 Dimethylphthalate	1.19379	1.19021 0	010	0.29943	25.00000	Averaged

CALCULATION WORKSHEET

Page 1 of 1

CLIENT:	SDG No.
MARTIN STATE AIRPORT	C7K020216
SUBJECT:	
EXAMPLE CALCULATION - VOCS - WATER	
BY:	DATE:
T. JACKMAN	02/20/08

Sample FMC 12 Trichloroethene Concentration = 1.3 ug/L

EQUATION:

$$C_{W} = \frac{A_{X} \times Is \times Df}{Ais \times RRF \times V_{O}}$$

Where:

C _w	=	analyte concentration in water		ug/L
A _x	=	analyte response	=	15919
ls	=	amount of internal standard	=	50 ng
Df	=	dilution factor	=	1
Ais	=	response of internal standard	=	484847
RRF	=	response factor of compound	=	0.25353
Vo	=	volume of water purged	=	5 mL

Therefore: the concentration of trichloroethene in water =

C_w = 1.3 ug/L

Tetra Tech NUS, Inc

Client Sample ID: FMC 12

GC/MS Volatiles

Lot-Sample #...: C7K020216-005
Date Sampled...: 10/30/07
Prep Date...: 11/08/07
Prep Batch #...: 7312657

Dilution Pactor: 1
Analyst ID. 403419

Work Order #...: KAE1D1AN
Date Received..: 11/02/07
Analysis Date..: 11/09/07
Analysis Time

Analysis Time.: 01:37 Initial Wgt/Vol: 5 mL Instrument ID.: HP6

Method....: SW846 8260B

Matrix....: WATER
MS Run #...: 7312348

Final Wgt/Vol.: 5 mL

PARAMETER	 -	REPORTI	NG		
Acetone	RESULT	LIMIT	UNITS	MDL	
Benzene	ND	5.0	ug/L	2.5	
Bromodichloromethane	ND	1.0	\mathtt{ug}/\mathtt{L}	0.19	
Bromoform	ND	1.0	ug/L	0.099	
Bromomethane	ND	1.0	ug/L	0.27	
2-Butanone	ND	1.0	ug/L	0.18	
Carbon disulfide	ND	5.0	ug/L	0.65	
Carbon tetrachloride	ND	1.0	ug/L	0.11	
Chlorobenzene	ND	1.0	ug/L	0.22	
Chloroethane	ND	1.0	ug/L	0.33	
Chloroform	ND	1.0	ug/L	0.11	
Chloromethane	ND	1.0	ug/L	0.068	
Cyclohexane	ND	1.0	ug/L	0.14	
	ND	1.0	ug/L	0.11	
Dibromochloromethane	ND	1.0	ug/L	0.20	
1,2-Dibromo-3-chloro-	ND	1.0	ug/L	0.26	
propane			.		
1,2-Dibromoethane	ND	1.0	ug/L	0.15	
1,3-Dichlorobenzene	ND	1.0	ug/L	0.10	
1,4-Dichlorobenzene	ND	1.0	ug/L	0.10	
1,2-Dichlorobenzene	ND	1.0	ug/L	0.086	
Dichlorodifluoromethane	ND	1.0	ug/L	0.23	
1,1-Dichloroethane	ND	1.0	ug/L	0.19	
1,2-Dichloroethane	ND	1.0	ug/L	0.076	
1,1-Dichloroethene	ND	1.0	ug/L	0.17	
cis-1,2-Dichloroethene	0.52 J	1.0	ug/L	0.090	
trans-1,2-Dichloroethene	ND	1.0	ug/L	0.097	
1,2-Dichloropropane	ND	1,0	ug/L	0.24	•
cis-1,3-Dichloropropene	ND	1.0	ug/L	0.13	
trans-1,3-Dichloropropene	ND	1.0	ug/L	0.13	
Ethylbenzene	ND	1.0	ug/L	0.16	
2-Hexanone	ND	5.0	ug/L	0.55	
Isopropylbenzene	ND	1.0	ug/L		
Methyl acetate	ND	1.0	ug/L	0.27	
Methylene chloride	ND	1.0	ug/L	0.17	
Methylcyclohexane	ND	1.0	ug/L	0.19	
4-Methyl-2-pentanone	ND	5.0	ug/L ug/L	0.18	
Methyl tert-butyl ether	ND	1.0	•	0.61	
		v	ug/L	0.13	

(Continued on next page)

Tetra Tech NUS, Inc

Client Sample ID: FMC 12

GC/MS Volatiles

05 Work Order #.	: KAE1D1AN	Matrix	WATER
RESULT ND	REPORTING LIMIT	UNITS	MDL
ND ND	1.0	ug/L ug/L	0.25 0.22 0.11
ND ND 1.3 ND ND ND ND ND ND ND 0.29 J	1.0 1.0 1.0 1.0 1.0 1.0	ug/L ug/L ug/L ug/L ug/L ug/L ug/L	0.088 0.11 0.11 0.22 0.17 0.14 0.21 0.11
PERCENT RECOVERY 96 122 91	RECOVERY LIMITS (71 - 118) (64 - 135) (70 - 118) (64 - 128)		
	RESULT ND ND ND ND ND 1.3 ND ND ND ND PERCENT RECOVERY 96 122 91	RESULT LIMIT ND 1.0 ND 1.0 ND 1.0 ND 1.0 ND 1.0 ND 1.0 ND 1.0 ND 1.0 ND 1.0 ND 1.0 ND 3.0 PERCENT RECOVERY LIMITS 96 (71 - 118) 122 (64 - 135) 91 (70 - 118)	RESULT LIMIT UNITS ND 1.0 ug/L O.29 J 1.0 ug/L PERCENT RECOVERY RECOVERY LIMITS 96 (71 - 118) 122 (64 - 135) 91 (70 - 118)

J Estimated result. Result is less than RL.

Report Date: 09-Nov-2007 06:52

TestAmerica Pittsburgh

VOLATILE REPORT SW-846 Method

Data file : \\pitsvr06\d\chem\hp6.i\6110807N.b\61108N11.D

Lab Smp Id: kaeldlan Client Smp ID: FMC 12

Inj Date : 09-NOV-2007 01:37 Operator : 403419 Smp Info : c7k020216-005 5ml Inst ID: hp6.i

Misc Info: kaeldlan, 6110807N.b, 8260ee.m, 1-42.sub

Comment

Method : \\PITSVR06\D\chem\hp6.i\6110807N.b\8260ee.m Meth Date: 08-Nov-2007 23:44 stumpm Quant Type: ISTD Cal File: 1F61105.D Cal Date : 05-NOV-2007 15:05

Als bottle: 6

Dil Factor: 1.00000 Integrator: HP RTE Compound Sublist: 1-42.sub

Target Version: 4.14 Processing Host: PITPC-112

Concentration Formula: Amt * DF * 1/Vo*Vt * CpndVariable

Name	Value Description
DF Vo	1.000 Dilution Factor 5.000 Sample Volume
Vt Cpnd Variable	1.000 mg/L conversion (1.0 if no conversion) Local Compound Variable

				CONCENTRATIONS
		QUANT SIG		ON-COLUMN FINAL
Co	ompounds	MASS	RT EXP RT REL RT RESPON	NSE (ng) (UG/L)
==	**************************************	====		
*	46 Fluorobenzene	96	7.138 7.133 (1.000) 4848	347) 50.0000
*	69 Chlorobenzene-d5	119	10.241 10.242 (1.000)	50.0000
*	92 1,4-Dichlorobenzene-d4	152	12.565 12.566 (1.000) 2032	212 50.0000
\$	39 Dibromofluoromethane	113	6.384 6.379 (0.894) 1162	204 56.2851 11.26
\$	43 1,2-Dichloroethane-d4	65	6.761 6.756 (0.947) 1917	737 60.7304 12.15
\$	59 Toluene-d8	98	8.799 8.800 (0.859) 5171	.55 48.1536 9.631
\$	80 Bromofluorobenzene	95	11.415 11.410 (0.908) 2169	98 45.5057 9.101
	1 Dichlorodifluoromethane	85	Compound Not Detected.	
	2 Chloromethane	50	Compound Not Detected.	
	3 Vinyl Chloride	62	1.809 1.810 (0.254) 59	28 1.46699 0.2934
	4 Bromomethane	94	Compound Not Detected.	
	5 Chloroethane	64	Compound Not Detected.	
	6 Trichlorofluoromethane	101	Compound Not Detected.	
	12 1,1-Dichloroethene	96	Compound Not Detected.	
	13 Acetone	43	Compound Not Detected.	
	15 Carbon Disulfide	76	Compound Not Detected.	
	18 Methylene Chloride	84	Compound Not Detected.	
	19 trans-1,2-Dichloroethene	96	Compound Not Detected.	
	20 Methyl tert-butyl ether	73	Compound Not Detected.	
	24 1,1-Dichloroethane	63	Compound Not Detected.	
	27 2,2-Dichloropropane	77	Compound Not Detected.	
	28 cis-1,2-dichloroethene	96	5.788 5.783 (0.811) 69	21 2.62454 0.5249

		CONCENTRATIONS
	QUANT SIG	ON-COLUMN FINAL
Compounds	MASS	RT EXP RT REL RT RESPONSE (ng) (UG/L)
=======================================		
M 29 1,2-Dichloroethene (total)	96	6921 2.62454 0.5249
30 Bromochloromethane	128	Compound Not Detected.
31 2-Butanone	43	Compound Not Detected.
37 Chloroform	83	Compound Not Detected.
38 1,1,1-Trichloroethane	97	Compound Not Detected.
40 1,1-Dichloropropene	75	Compound Not Detected.
41 Carbon Tetrachloride	117	Compound Not Detected.
42 Benzene	78	Compound Not Detected.
45 1,2 Dichloroethane	62	Compound Not Detected:
47 Trichloroethene	130	7.540 7.535 (1.056) 15919 6.47525 1.295
49 1,2-Dichloropropane	63	Compound Not Detected.
50 Dibromomethane	93	Compound Not Detected.
53 Bromodichloromethane	83	Compound Not Detected.
57 cis-1,3-Dichloropropene	75	Compound Not Detected.
58 4-Methyl-2-Pentanone	43	Compound Not Detected.
60 Toluene	91	Compound Not Detected.
61 trans-1,3-Dichloropropene	75	Compound Not Detected.
63 1,3-Dichloropropane	76	Compound Not Detected.
64 1,1,2-Trichloroethane	97	Compound Not Detected.
65 Tetrachloroethene	164	Compound Not Detected.
66 2-Hexanone	43	Compound Not Detected.
67 Dibromochloromethane	129	Compound Not Detected.
68 1,2-Dibromoethane	107	Compound Not Detected.
70 Chlorobenzene	112	Compound Not Detected.
71 1,1,1,2-Tetrachloroethane	131	Compound Not Detected.
72 Ethylbenzene	106	Compound Not Detected.
73 m + p-Kylene	106	Compound Not Detected.
74 Xylene-o	106	Compound Not Detected.
M 75 Xylenes (total)	106	Compound Not Detected.
76 Styrene	104	Compound Not Detected.
77 Bromoform	173	Compound Not Detected.
78 Isopropylbenzene	105	Compound Not Detected.
79 Bromobenzene	156	Compound Not Detected.
83 1,1,2,2-Tetrachloroethane	83	Compound Not Detected.
84 1,2,3-Trichloropropane	110	Compound Not Detected.
86 1,3,5-Trimethylbenzene	105	Compound Not Detected.
88 1,2,4-Trimethylbenzene	105	Compound Not Detected.
90 4-Isopropyltoluene	119	Compound Not Detected.
91 1,3-Dichlorobenzene	146	Compound Not Detected.
93 1,4-Dichlorobenzene	146	Compound Not Detected.
95 1,2-Dichlorobenzene	146	Compound Not Detected.
96 1,2-Dibromo-3-chloropropane	157	Compound Not Detected.
97 1,2,4-Trichlorobenzene	180	Compound Not Detected.
101 1,1,2-trichlorotrifluoroetha	ne 101	Compound Not Detected.
102 Methyl acetate	43	Compound Not Detected.
104 Cyclohexane	56	Compound Not Detected.

105 Methyl Cyclohexane

Compound Not Detected.

TestAmerica Pittsburgh

INITIAL CALIBRATION DATA

Start Cal Date : 27-SEP-2007 10:12 End Cal Date : 27-SEP-2007 12:33

Quant Method : ISTD Örigin : Disabled Target Version : 4.14 Integrator : HP RTE

: \\qpitpa02\d\$\chem\hp6.i\6092707d.b\8260ee.m : 28-Sep-2007 10:11 fergusond : Average Method file Last Edit

Curve Type

_		w				,				
	1	5.000	25.000	50.000	75.000	100.000	200.000		l	1
	Compound	Level 1	Level 2	Level 3	Level 4	Level 5	Level 6	RRF	RSD	1
-		********			*****	*******	******			1
	18 Nethylene Chloride	0.70393]	0.29712	0.28590	0.27453	0.26925	0.25462	0.34772	50.361	1 <- QUA
	19 trans-1,2-Dichloroethene	0.26316	0.24984	0.25294	0.25527	0.26645	0.25385	0.25692	2.510	
	20 Methyl text-butyl ether	0.72248	0.63258	0.64648	0.70296	0.71992	0.72766	0.69201	6.029	ĺ
	21 tert-Butyl Alcohol	+++++	+++++	****	+++++	+++++	+++++	+++++	+++++	- <-
	22 Acrylonitrile	+++++	+++++	+++++	+++++	+++++	+++++ [+++++	****	
	23 Rexane	+++++	+++++]	+++++ }	+++++	+++++	+++++	+++++ {		
	24 1,1-Dichloroethane	0.60341	0.58405	0.60185	0.61415	0.62443	0.60368	0.605261	2.234	İ
	25 Isopropyl Ether	+++++	+++++	+++++	++++	+++++	+++++]	+++++ [<
	25 2-Chloro-1,3-butadiene	+++++	+++++	+++++	*****	*****	+++++	+++++ 1		e-
	27 2,2-Dichloropropane	0.37023	0.32967	0.33406	0.33411	0.34536	0.33148	0.34082		•
	28 cis-1,2-dichloroethene	0.27941	0.26399	0.26948	0.27417	0.27702	0.26760	0.27194		•
И	29 1,2-Dichlorosthene (total)	0.27128	0.25691	0.26121)	0.26472	0.27174	0.26073	0.264431		
	30 Bromochloromethane	0.11826	0.11133]	0.11283	0.11953	0.12515	0.12080]	0.11798	4.364	,
	31 2-Butanone	0.18427	0.16931	0.16056	0.20592	0.20778]		0.18944	11.194	
	32 Vinyl Acetate	+++++ }	+++++	+++++	+++++	+++++	+++++ [+++++		< -
	33 Ethyl Acetate	+++++	+++++	+++++	+++++	+++++	+++++	+++++		**
	34 Propionitrile	+++++	+++++	+++++	+++++	+++++	+++++	+++++		e-
	35 Tetrahydrofuran	+++++	+++++	+++++	+++++	+++++	+++++	+++++	•	c-
	36 Methacrylonitrile	++++	+++++	+++++	+++++	+++++	+++++	+++++	**	<-
	37 Chloroform	0.42433	0.400661	0.41412	0.41285	0.42767	0.41354	0.41553	2.306	
	38 1,1,1-Trichloroethane	0.39953	0.35859}	0.35177	0.36768	0.37416	0.36152	0.36887	4.571	
	40 1,1-Dichloropropene	0.37172	0.34490	0.34474	0.35396	0.35541	0.34522	0.35266	2.976	
	41 Carbon Tetrachloride	0.30086]	0.29102	0.29592	0.30283	0.30773	0.29742	0.299301	1.945	
	42 Benzene	1.09389	1.01540	1.02288	1.03947	1.06491	1.02571	1.04371	2.889	
	44 Isobutanol	+++++	****	+++++	*****	+++++	+++++	+++++	•	« -
	45 1,2-Dichloroethane	0.48495	0.41525	0.41696	0.44342	0.45739	0.447451	0.444241	5.892	-
	47 Trichloroethene	0.27639	0.24091	0.24076	0,25145	0.25992	0.25173	0.253531	5.273	
	48 n-Butanol	+++++	+++++	+++++	+++++	+++++	+++++	() () () () ()	/	<-
	49 1,2-Dichloropropane	0.35800	0.32566	0.33278	0.34104	0.34888	0.34051	0.341141	3.352	
	50 Dibromomechane	0.12925	0.11706	0.11814	0.13124]	8.13142	0.13129	0.12640[5.4351	
	51 Methyl methacrylate	+++++	+++++	+++++]	+++++	+++++	++++	+++++	- · · · · · ·	د ^
	52 1,4-Dioxane	+++++	++++	****	+++++	+++++	+++++	+++++	•	€^ €^
	53 Bromodichloromethane	0.32011	0.28561	0.28574	0.30747	0.30839	0.30851	0.30264	4.607	, -
	54 2-Nitropropane	+++++	+++++	++++	+++++	+++++ 1	+++++	+++++		
	55 2-Methylfuran	+++++	+++++	+++++	++++	*****	+++++	+++++	•	<-
	56 2-Chloroethyl vinyl ether	++++	++++	+++++	+++++	+++++]	+++++		•	<-
		í	1	1	1		₹₹₹₹	+++++	++++	<-

CALCULATION WORKSHEET

Page 1 of 1

CLIENT:	SDG No.					
MARTIN STATE AIRPORT	C7K020216					
SUBJECT:						
EXAMPLE CALCULATION - PHENAN	ITHRENE IN WATER					
BY: DATE:						
T. JACKMAN	02/20/08					

Sample ID = FMC 11 Concentration = 0.26 ug/L

EQUATION:

$$C_{W} = \frac{A_{X} \times Is \times V_{t} \times Df}{A_{is} \times RRF \times V_{o} \times V_{i}}$$

Where:

C _w	=	analyte concentration in water		ug/l
A _x	=	analyte response	=	29587
Is	=	amount of internal standard	=	8 ng
V _t	=	volume of final extract	=	0.001 L
Df	=	dilution factor	=	1
A _{is}	=	response of internal standard	=	455985
RRF	=	response factor of analyte	=	1.079
V _o	=	sample volume	=	0.91 L
Vi	=	volume injected	=	2 uL

Therefore: phenanthrene concentration in water =

 $C_w = 0.0003 \text{ ng/ul}$ $C_w = 0.26 \text{ ug/L}$

Tetra Tech NUS, Inc

Client Sample ID: FMC 11

GC/MS Semivolatiles

Lot-Sample #...: C7K020216-004 Work Order #...: KAE1A1AC Matrix......: WATER

Date Sampled...: 10/30/07 14:11 Date Received..: 11/02/07 09:20 MS Run #......: 7310082

Prep Date....: 11/06/07 Analysis Date..: 11/24/07 Prep Batch #...: 7310138 Analysis Time..: 12:46

Dilution Factor: 1.1 Initial Wgt/Vol: 910 mL Final Wgt/Vol.: 1 mL Analyst ID...: 003200 Instrument ID.: 733

Method..... SW846 8270C

		REPORTI	NG	
PARAMETER	RESULT	LIMIT	UNITS	MDL
Acenaphthene	ND	0.22	ug/L	0.057
Acenaphthylene	ND	0.22	ug/L	0.051
Acetophenone	ND	1.1	ug/L	0.051
Anthracene	ND	0.22	ug/L	0.056
Atrazine	ND	1.1	ug/L	0.043
Benzo (a) anthracene	ND	0.22	ug/L	0.045
Benzo(a)pyrene	ND	0.22	ug/L	0.048
Benzo(b)fluoranthene	ND	0.22	ug/L	0.034
Benzo(ghi)perylene	ND	0.22	ug/L	0.030
Benzo(k)fluoranthene	ND	0.22	ug/L	0.043
Benzaldehyde	ND	1.1	ug/L	0.060
1,1'-Biphenyl	ND	1.1	ug/L	0.066
<pre>bis(2-Chloroethoxy) methane</pre>	ND	1.1	ug/L	0.13
<pre>bis(2-Chloroethyl) - ether</pre>	ND	0.22	ug/L	0.051
<pre>bis(2-Ethylhexyl) phthalate</pre>	ND	1.1	ug/L	0.13
4-Bromophenyl phenyl ether	ND	1.1	ug/L	0.055
Butyl benzyl phthalate	ND	1.1	ug/L	0.15
Caprolactam	ND	1.1	ug/L	0.21
Carbazole	ND	0.22	ug/L	0.057
4-Chloroaniline	ND	1.1	ug/L	0.051
4-Chloro-3-methylphenol	ND	1.1	ug/L	0.065
2-Chloronaphthalene	ND	0.22	ug/L	0.049
2-Chlorophenol	ND	1.1	ug/L	0.050
4-Chlorophenyl phenyl ether	ND	1.1	ug/L	0.047
Chrysene	ND	0.22	ug/L	0.039
Dibenz (a, h) anthracene	ND	0.22	ug/L	0.038
Dibenzofuran	ND	1.1	ug/L	0.059
3,3'-Dichlorobenzidine	ND	1.1	ug/L	0.045
2,4-Dichlorophenol	ND	0.22	ug/L	0.053
Diethyl phthalate	ND	1.1	ug/L	0.27
2,4-Dimethylphenol	ND	1.1	ug/L	0.057
Dimethyl phthalate	ND	1.1	ug/L	0.046

(Continued on next page)

Tetra Tech NUS, Inc

Client Sample ID: FMC 11

GC/MS Semivolatiles

Lot-Sample #...: C7K020216-004 Work Order #...: KAE1A1AC Matrix...... WATER

		REPORTIN	IG	
PARAMETER	RESULT	LIMIT	UNITS	MDL
Di-n-butyl phthalate	ND	1.1	ug/L	0.051
4,6-Dinitro-	ND .	5.5	ug/L	1.6
2-methylphenol			٥.	
2,4-Dinitrophenol	ND	5.5	ug/L	1.4
2,4-Dinitrotoluene	ND	1.1	ug/L	0.050
2,6-Dinitrotoluene	ND	1.1	ug/L	0.056
Di-n-octyl phthalate	ND	1.1	ug/L	0.047
Fluoranthene	ND	0.22	ug/L	0.054
Fluorene	ND	0.22	ug/L	0.060
Hexachlorobenzene	ND	0.22	ug/L	0.048
Hexachlorobutadiene	ND	0.22	ug/L	0.041
Hexachlorocyclopenta-	ND	1.1	ug/L	0.088
diene			J.	
Hexachloroethane	ND	1.1	ug/L	0.048
Indeno(1,2,3-cd)pyrene	ND	0.22	ug/L	0.052
Isophorone	ND	1.1	ug/L	0.052
2-Methylnaphthalene	ND	0.22	ug/L	0.051
2-Methylphenol	ND	1.1	ug/L	0.056
4-Methylphenol	ND	1.1	ug/L	0.081
Naphthalene	ND	0.22	ug/L	0.047
2-Nitroaniline	ND	5.5	ug/L	0.052
3-Nitroaniline	ND	5.5	ug/L	0.044
4-Nitroaniline	ND	5.5	ug/L	0.028
Nitrobenzene	ND	0.22	ug/L	0.070
2-Nitrophenol	ND	1.1	ug/L	0.059
4-Nitrophenol	ND	5.5	ug/L	0.077
N-Nitrosodi-n-propyl-	ND	0.22	ug/L	0.065
amine				
N-Nitrosodiphenylamine	ND	0.22	ug/L	0.054
2,2'-oxybis(1-Chloropropane)	ND	0.22	ug/L	0.029
Pentachlorophenol	ND	1.1	ug/L	0.091
Phenanthrene	(0.26)	0.22	ug/L	0.061
Phenol	ND	0.22	ug/L	0.024
Pyrene	ND	0.22	ug/L	0.062
2,4,5-Trichloro-	ND	1.1	ug/L	0.069
phenol			_	
2,4,6-Trichloro-	ND	1.1	ug/L	0.062
phenol				

(Continued on next page)

TestAmerica Pittsburgh

Semivolatile REPORT SW-846 Method 8270 Data file : \\PITSVR06\D\chem\733.i\N112407n.b\N1124005.D Lab Smp Id: KAE1A1AC Client Smp ID: FMC 11 Inj Date : 24-NOV-2007 12:46 Operator : 3200 Inst ID: 733.i Smp Info : C7K020216-004 11/6/07 h2o (7310138)8270c

Misc Info: KAE1A1AC, N112407n.b, 827011.m, padep.sub Comment

Method

: \\PITSVR06\D\chem\733.i\N112407n.b\8270ll.m Meth Date: 25-Nov-2007 21:27 piccolinov Quant Type: ISTD Cal Date : 24-NOV-2007 06:21 Cal File: N1124IC2.D

Als bottle: 7 Dil Factor: 1.00000 Integrator: HP RTE Compound Sublist: padep.sub Target Version: 4.14

Processing Host: PITPC-502

Concentration Formula: Amt * DF * Uf * Vt/(Vo * Vi) * CpndVariable

Name	Value	Description
DF Uf Vt Vo Vi Cpnd Variable	1.000 1000.000 910.000 2.000	Dilution Factor ng unit correction factor Volume of final extract (uL) Volume of sample extracted (mL) Volume injected (uL) Local Compound Variable

				CONCENTRA	ATIONS
		QUANT SIG		ON-COLUMN	FINAL
Compo	ounds	MASS	RT EXP RT REL RT RESPONSE	(NG)	(ug/L)
	*******	s===			
* 1	1,4-Dichlorobenzene-d4	152	4.986 4.984 (1.000) 93291	8.00000	
* 2	Naphthalene-d8	136	6.460 6.458 (1.000) 387672	8.00000	
* 3	Acenaphthene-dl0	164	9.056 9.054 (1.000) 264033	8.00000	
* 4	Phenanthrene-d10	188	11.621 11.618 (1.000) 455985	8.00000	
* 5	Chrysene-d12	240	16.402 16.394 (1.000) 473394	8.00000	
* 6	Perylene-d12	264	18.923 18.921 (1.000) 392917	8.00000	
198	1,4-Dioxane	88	Compound Not Detected.		
10	N-Nitrosodimethylamine	74	Compound Not Detected.		
9	Pyridine	79	Compound Not Detected.		
16	Methyl methanesulfonate	80	Compound Not Detected.		
206	Benzaldehyde	77	Compound Not Detected.		
21	Aniline	93	Compound Not Detected.		
22	Phenol	94	Compound Not Detected.		
23	bis(2-Chloroethyl)ether	93	Compound Not Detected.		
24	2-Chlorophenol	128	Compound Not Detected.		
26	1,3-Dichlorobenzene	146	Compound Not Detected.		
27	1,4-Dichlorobenzene	146	Compound Not Detected.		
28	1,2-Dichlorobenzene	146	Compound Not Detected.		
29	Benzyl Alcohol	108	Compound Not Detected.		
30	2-Methylphenol	108	Compound Not Detected.		

			CONCENTRATIONS
	QUANT SIG		ON-COLUMN FINAL
Compounds	MASS	RT EXP RT REL RT RESPONSE	(NG) (ug/L)
医多苯基酚性法二氏二氏二氏二氏氏炎性基苯苯甲二二甲甲甲甲	====	电电话性 医骶骨性炎 电电子电子 计 医多性性性血血	
31 2,2'-oxybis(1-Chloropropane)	45	Compound Not Detected.	
37 Acetophenone	105	Compound Not Detected.	
32 N-Nitroso-di-n-propylamine	70	Compound Not Detected.	
192 4-Methylphenol	108	Compound Not Detected.	
34 Hexachloroethane	117	Compound Not Detected.	
35 Nitrobenzene	77	Compound Not Detected.	
41 Isophorone	82	Compound Not Detected.	
42 2-Nitrophenol	139	Compound Not Detected.	
43 2,4-Dimethylphenol	107	Compound Not Detected.	
44 bis(2-Chloroethoxy)methane	93	Compound Not Detected.	
48 2,4-Dichlorophenol	162	Compound Not Detected.	
49 Benzoic Acid	122	Compound Not Detected.	
50 1,2,4-Trichlorobenzene	180		
51 Naphthalene	128	Compound Not Detected.	
52 4-Chloroaniline	127	Compound Not Detected.	•
54 2,6-Dichlorophenol	162	Compound Not Detected. Compound Not Detected.	
56 Hexachlorobutadiene	224	•	
208 Caprolactam	113	Compound Not Detected. Compound Not Detected.	
59 4-Chloro-3-Methylphenol	107	•	
62 2-Methylnaphthalene	142	Compound Not Detected.	
63 1-Methylnaphthalene	142	Compound Not Detected.	
64 Hexachlorocyclopentadiene	236	Compound Not Detected.	
66 2,4,6-Trichlorophenol		Compound Not Detected.	
67 2,4,5-Trichlorophenol	196	Compound Not Detected.	
209 1,1'-Biphenyl	196	Compound Not Detected.	
	154	Compound Not Detected.	
70 2-Chloronaphthalene	162	Compound Not Detected.	
73 2-Nitroaniline	65	Compound Not Detected.	
76 Dimethylphthalate	163	Compound Not Detected.	
78 2,6-Dinitrotoluene	165	Compound Not Detected.	
79 Acenaphthylene	152	Compound Not Detected.	
81 3-Nitroaniline	138	Compound Not Detected.	
82 Acenaphthene	153	Compound Not Detected.	
83 2,4-Dinitrophenol	184	Compound Not Detected.	
85 4-Nitrophenol	109	Compound Not Detected.	
86 Dibenzofuran	168	Compound Not Detected.	
87 2,4-Dinitrotoluene	165	Compound Not Detected.	
91 2,3,5,6-Tetrachlorophenol	231	Compound Not Detected.	
88 2,3,4,6-Tetrachlorophenol	231	Compound Not Detected.	
92 2-Naphthylamine	143	Compound Not Detected.	
93 Diethylphthalate	149	Compound Not Detected.	
94 Fluorene	166	Compound Not Detected.	
95 4-Chlorophenyl-phenylether	204	Compound Not Detected.	
96 4-Nitroaniline	138	Compound Not Detected.	
98 4,6-Dinitro-2-methylphenol	198	Compound Not Detected.	
99 N-Nitrosodiphenylamine (1)	169	Compound Not Detected.	
100 1,2-Diphenylhydrazine	77	Compound Not Detected.	
106 4-Bromophenyl-phenylether	248	Compound Not Detected.	
107 Hexachlorobenzene	283	Compound Not Detected.	
210 Atrazine	200	Compound Not Detected.	
111 Pentachlorophenel	265	Compound Not Detected.	
115 Phenanthrene	178	11.663 11.661 (1.004) 29587	0.47342 0.26012
116 Anthracene	178	Compound Not Detected.	V.20012
119 Carbazole	167	12.043 12.035 (1.036) 4354	0.07471 0.041050
120 Di-n-Butylphthalate	149	Compound Not Detected.	0.07471 0.041050
• •			

TestAmerica Pittsburgh

INITIAL CALIBRATION DATA

: 06-NOV-2007 21:40 Start Cal Date : 07-NOV-2007 00:32 End Cal Date

Quant Method : ISTD : Disabled Örigin Target Version : 4.14 Integrator : HP RTE

: \\PITSVR06\D\chem\733.i\N110607.b\8270ll.m : 07-Nov-2007 00:56 piccolinov Method file

Last Edit

Curve Type : Average

Compound	0.40000 Level 1	2.000 Level 2	4.000 Lavel 3	10.000 Level 4	20.000 Level 5	40.000 Level 6	RRF	* RSD
	80.000 Level 7				 		•	
113 4-Aminobiphenyl		+++++	*****	++++	+++++	+++++	+++++	++++
114 Pronamide		+++++	+++++	****	+++++ 	+++++	++++	++++
115 Phenanthrene	1.01466 1.16844		1.05893	1.08617	1.07807	1.10746	1.07903	4 , 629
116 Anthracene	0.95048		1.04331	1.05873	1.06897	1.10060	1.05037	4.871
117 Dinoseb	 +++++ +++++	+++++	+++++	+++++ 	 +++++ 	++++	 ++++	 •••••
118 Disulfoton	••••• 	+++++ 	+++++ 	+++++ 	 +++++ 	 +++++ 	 +++++	
119 Carbazole	0.84518	•	0.92055	0.98350	0.98267	1.01524	 0.95217	 6.505
120 Di-n-Butylphthalate	1.06738	•	1.09779	1.17372	1.15412	1.24365	 1.14488] 5.887
121 4-Nitroquinoline 1-oxide	+++++	+++++ 	+++++ 		+++++	+++++ 	 +++++) +++++
122 Methapyrilene	+++++ +++++	 +++++ 	+++++ 	+++++ 	+++++	+++++ 	+++++	++++
123 Fluoranthene	1.08535	•	1.06864	1.10945	1.12561	1.17718	1.11612	4.35
		}]		1]		1	1

Tetra Tech NUS

INTERNAL CORRESPONDENCE

TO:

M.MARTIN

DATE:

FEBRUARY 18, 2008

FROM:

TERRIL. SOLOMON

COPIES:

DV FILE

SUBJECT:

INORGANIC DATA VALIDATION - SELECT TOTAL AND DISSOLVED

METALS

MARTIN STATE AIRPORT

SAMPLE DELIVERY GROUP (SDG) - C7K020216

SAMPLES:

15/Aqueous/

FMC 10 FMC 13 FMC 20	FMC 11 FMC 16 FMC 22	FMC 12 FMC 18 FMC 24
FMC 25	FMC 26	FMC 3
FMC 5	FMC 7	FMC 9

Overview

The sample set for Martin State Airport, SDG C7K020216, consists of fifteen (15) aqueous environmental samples. No field duplicate pairs were included within this SDG.

All samples were analyzed for select total and dissolved metals including antimony, arsenic, beryllium, cadmium, chromium, copper, lead, mercury, nickel, selenium, silver, thallium and zinc. The samples were collected by Tetra Tech NUS on October 30, 31 and November 1, 2007 and analyzed by Test America. Metals analyses were conducted using SW-846 method 6020. Mercury analyses were conducted using SW-846 method 7470A.

The findings offered in this report are based upon a general review of all available data. The data review was based on data completeness, holding times, initial and continuing calibration verification results, laboratory method / preparation blank results, ICP interference results, laboratory control sample recoveries, matrix spike / matrix spike duplicate recoveries, ICP serial dilution results, detection limits and analyte quantitation.

Areas of concern with respect to data quality are listed below.

Major Problems - None.

Minor Problems

- The contract required detection limit (CRDL) percent recoveries for arsenic and nickel were > 110% quality control limit affecting all samples. Positive results < 2X CRDL reported for the aforementioned analytes were qualified as biased high, "K".
- The CRDL percent recovery for lead was < 90% quality control limit affecting all samples.
 Positive results < 2X CRDL and nondetects reported for lead were qualified as biased low, "L" and "UL", respectively.

TO: M. MARTIN – PAGE 2 DATE: FEBRUARY 18, 2008

 The following contaminants were detected in the laboratory method/preparation blanks at the following maximum concentrations:

'L
Ľ
L
L
L
L
ıg/L
L
_]/L
Ĺ

Maximum concentration present in a total metals preparation blank.

²⁾ Maximum concentration present in a dissolved metals preparation blank.

An action level of 5X the maximum contaminant level has been used to evaluate sample data for blank contamination. Sample aliquot and dilution factors, if applicable, were taken into consideration when evaluating for blank contamination. Positive results less than the blank action level reported for antimony, lead, mercury, thallium and zinc were qualified "B" as a result of laboratory blank contamination.

 The matrix spike / matrix spike duplicate percent recoveries for mercury were < 75% quality control limit affecting the total metals analyses. The nondetected results reported for mercury in the affected samples were qualified as biased low, "UL".

<u>Notes</u>

The nondetected results on the EDD were reported to the reporting limit. The nondetected results should be reported to the method detection limit (MDL). The results reported on the EDD were amended to the MDL.

Executive Summary

Laboratory Performance: The CRDL percent recoveries for arsenic, lead and nickel were outside the 90-110% quality control limits. Several analytes were present in the laboratory method / preparation blanks.

Other Factors Affecting Data Quality: The matrix spike / matrix spike duplicate percent recoveries for mercury were < 75% quality control limit affecting the total metals analyses.

TO: M. MARTIN - PAGE 3 DATE: **FEBRUARY 18, 2008**

The data for these analyses were reviewed with reference to Region III modifications to the "National Functional Guidelines for Inorganic Data Validation", April 1993.

The text of this report has been formulated to address only those problem areas affecting data quality.

Terri L. Solomon

Environmental Scientist

Tetra Tech NUS Joseph A. Samchuck Quality Assurance Officer

Attachments:

1. Appendix A - Qualified Analytical Results

Appendix B - Results as reported by the Laboratory 2.

3. Appendix C - Support Documentation

APPENDIX A QUALIFIED ANALYTICAL RESULTS

Data Validation Qualifier Codes:

A = Lab Blank Contamination

B = Field Blank Contamination

C = Calibration Noncompliance (e.g. % RSDs, %Ds, ICVs, CCVs, RRFs, etc.)

C01 = GC/MS Tuning Noncompliance

D = MS/MSD Recovery Noncompliance

E = LCS/LCSD Recovery Noncompliance

F = Lab Duplicate Imprecision

G = Field Duplicate Imprecision

H = Holding Time Exceedance

I = ICP Serial Dilution Noncompliance

J = GFAA PDS-GFAA MSA's r < 0.995 / ICP PDS Recovery Noncompliance

K = ICP Interference - includes ICS % R Noncompliance

L = Instrument Calibration Range Exceedance

M = Sample Preservation Noncompliance

N = Internal Standard Noncompliance

N01 = Internal Standard Recovery Noncompliance Dioxins

N02 = Recovery Standard Noncompliance Dioxins

N03 = Clean-up Standard Noncompliance Dioxins

O - Poor Instrument Performance (e.g. base-line drifting)

P = Uncertainty near detection limit (< 2 x IDL for inorganics and <CRQL for organics)

Q = Other problems (can encompass a number of issues; e.g. chromatography,interferences, etc.)

R = Surrogates Recovery Noncompliance

S = Pesticide/PCB Resolution

T = % Breakdown Noncompliance for DOT and Endrin

U = % Difference between columns/detectors >25% for positive results determined via GC/HPLC

V = Non-linear calibrations; correlation coefficient r < 0.995

W = EMPC result

X = Signal to noise response drop

Y = Percent solids <30%

Z = Uncertainty at 2 sigma deviation is greater than sample activity

SDG: C7K020216 MEDIA: WATER DATA FRACTION: OV

nsample

FMC 10

10/30/2007

samp_date lab_id

C7K020216003

qc_type

NM

Pct_Solids DUP_OF:

nsample samp_date

lab_id

FMC 10

10/30/2007

C7K020216003

qc_type Pct_Solids DUP_OF:

NM

nsample samp_date FMC 11

10/30/2007 C7K020216004

NM

Pct_Solids

qc_type DUP_OF:

lab_id

	·			·····
Parameter	units	Result	Val Qual	Qual Code
1,1,1-TRICHLOROETHANE	UG/L	1	U	
1,1,2,2-TETRACHLOROETHANE	UG/L	1	U	
1,1,2-TRICHLOROETHANE	UG/L	i	Ŭ	
1,1,2-TRICHLOROTRIFLUOROET	UG/L	1	U	-
1,1-DICHLOROETHANE	UG/L	1	U	
1,1-DICHLOROETHENE	UG/L	1	U	
1,2,4-TRICHLOROBENZENE	UG/L	1	U	•
1,2-DIBROMO-3-CHLOROPROPA	UG/L	1	U	
1,2-DIBROMOETHANE	UG/L	1	U	
1,2-DICHLOROBENZENE	UG/L	1	U	
1,2-DICHLOROETHANE	UG/L	1	U	
1,2-DICHLOROPROPANE	UG/L	1	U	
1,3-DICHLOROBENZENE	UG/L	1	U	
1,4-DICHLOROBENZENE	UG/L	1	U	
2-BUTANONE	UG/L	5	U	
2-HEXANONE	UG/L	5	U	
4-METHYL-2-PENTANONE	UG/L	5	U	
ACETONE	UG/L	5	U	
BENZENE	UG/L	1	U	
BROMODICHLOROMETHANE	UG/L	1	U	
BROMOFORM	UG/L	1	Ú	
BROMOMETHANE	UG/L	1	Ü	
CARBON DISULFIDE	UG/L	1	U	
CARBON TETRACHLORIDE	UG/L	1	U	
CHLOROBENZENE	UG/L	1	U	
CHLORODIBROMOMETHANE	UG/L	1	U	
CHLOROETHANE	UG/L	1	U	
CHLOROFORM	UG/L	1	U	
CHLOROMETHANE	UG/L	1	U	
CIS-1,2-DICHLOROETHENE	UG/L	0.19	J	Р
CIS-1,3-DICHLOROPROPENE	UG/L	1	U	
CYCLOHEXANE	UG/L	1	U	
DICHLORODIFLUOROMETHANE	UG/L	1	U	
		•		_

Parameter	units	Result	Val	Qual
raiametei	uriits	nesuit		
			Qual	Code
ETHYLBENZENE	UG/L	1	U	
ISOPROPYLBENZENE	UG/L	1	U	
METHYL ACETATE	UG/L	1	U	
METHYL CYCLOHEXANE	UG/L	1	U	
METHYL TERT-BUTYL ETHER	UG/L	1	U	
METHYLENE CHLORIDE	UG/L	1	U	٠.
STYRENE	UG/L	1	U	
TETRACHLOROETHENE	UG/L	1	Ü	
TOLUENE	UG/L	1	U	
TOTAL XYLENES	UG/L	3	U	
TRANS-1,2-DICHLOROETHENE	UG/L	1	U	
TRANS-1,3-DICHLOROPROPENE	UG/L	1	U	
TRICHLOROETHENE	UG/L	0.35	J	Р
TRICHLOROFLUOROMETHANE	UG/L	1	U	
VINYL CHLORIDE	UG/L	1	U	

Parameter	units	Result	Val	Quai
			Qual	Code
1,1,1-TRICHLOROETHANE	UG/L	1	U	
1,1,2,2-TETRACHLOROETHANE	UG/L	1	U	
1,1,2-TRICHLOROETHANE	UG/L	1	U	
1,1,2-TRICHLOROTRIFLUOROET	UG/L	1	· U	
1,1-DICHLOROETHANE	UG/L	1	U	
1,1-DICHLOROETHENE	UG/L	1	U	
1,2,4-TRICHLOROBENZENE	UG/L	1	U	
1,2-DIBROMO-3-CHLOROPROPA	UG/L	1	U	
1,2-DIBROMOETHANE	UG/L	. 1	U	
1,2-DICHLOROBENZENE	UG/L	1	U	
1,2-DICHLOROETHANE	UG/L	1	U	
1,2-DICHLOROPROPANE	UG/L	1	U	
1,3-DICHLOROBENZENE	UG/L	1	U	
1,4-DICHLOROBENZENE	UG/L	1	U	
2-BUTANONE	UG/L	. 5	U	
2-HEXANONE	UG/L	5	U	
4-METHYL-2-PENTANONE	UG/L	5	U	
ACETONE	UG/L	3.2	В	В
BENZENE	UG/L	1	U	
BROMODICHLOROMETHANE	UG/L	1	Ü	
BROMOFORM	UG/L	1	U	
BROMOMETHANE	UG/L	1	U	
CARBON DISULFIDE	UG/L	1	U	
CARBON TETRACHLORIDE	UG/L	1	U	
CHLOROBENZENE	UG/L	1	U	
CHLORODIBROMOMETHANE	UG/L	1	U	
CHLOROETHANE	UG/L	1	U	
CHLOROFORM	UG/L	1	U	
CHLOROMETHANE	UG/L	0.16	В	В
CIS-1,2-DICHLOROETHENE	UG/L	0.26	J	Р
CIS-1,3-DICHLOROPROPENE	UG/L	1	U	
CYCLOHEXANE	UG/L	1	U	
DICHLORODIFLUOROMETHANE	UG/L	1	U	

SDG: C7K020216 MEDIA: WATER DATA FRACTION: OV

nsample

FMC 11

samp_date

10/30/2007

lab_id

C7K020216004

qc_type.

NM

Pct_Solids DUP_OF:

nsample samp_date

lab_id

FMC 12

NM

10/30/2007

C7K020216005

qc_type Pct_Solids DUP_OF:

nsample

samp_date

10/30/2007 C7K020216005

FMC 12

NM

qc_type

Pct_Solids

DUP_OF:

lab_id

Parameter	units	Result	Val Qual	Qual Code
ETHYLBENZENE	UG/L	1	υ	
ISOPROPYLBENZENE	UG/L	1	U	
METHYL ACETATE	UG/L	1	U	
METHYL CYCLOHEXANE	UG/L	1	U	
METHYL TERT-BUTYL ETHER	UG/L	1	U	
METHYLENE CHLORIDE	UG/L	1	U	
STYRENE	UG/L	1	U	
TETRACHLOROETHENE	UG/L	1	U	
TOLUENE	UG/L	1	U	
TOTAL XYLENES	UG/L	3	U	
TRANS-1,2-DICHLOROETHENE	UG/L	1	U	
TRANS-1,3-DICHLOROPROPENE	UG/L	1	U	
TRICHLOROETHENE	UG/L	0.63	J	P
TRICHLOROFLUOROMETHANE	UG/L	1	U	
VINYL CHLORIDE	UG/L	0.18	· J	F
	•			

	units	Result	Val Qual	Qual Code
1,1,1-TRICHLOROETHANE	UG/L	1	U	
1,1,2,2-TETRACHLOROETHANE	UG/L	1	U	
1,1,2-TRICHLOROETHANE	UG/L	1	U	
1,1,2-TRICHLOROTRIFLUOROET	UG/L	1	U	
1,1-DICHLOROETHANE	UG/L	1	U	
1,1-DICHLOROETHENE	UG/L	1	U	
1,2,4-TRICHLOROBENZENE	UG/L	1	U	
1,2-DIBROMO-3-CHLOROPROPA	UG/L	1	U	
1,2-DIBROMOETHANE	UG/L	1	U	
1,2-DICHLOROBENZENE	UG/L	1	U	
1,2-DICHLOROETHANE	UG/L	1	U	
1,2-DICHLOROPROPANE	UG/L	1	U	
1,3-DICHLOROBENZENE	UG/L	1	U	
1,4-DICHLOROBENZENE	UG/L	1	U	
2-BUTANONE	UG/L	5	U	
2-HEXANONE	UG/L	5	U	
4-METHYL-2-PENTANONE	UG/L	5	U	
ACETONE	UG/L	5	U	
BENZENE	UG/L	1	U	
BROMODICHLOROMETHANE	UG/L	1	U	
BROMOFORM	UG/L	1	U	
BROMOMETHANE	UG/L	1	U	
CARBON DISULFIDE	UG/L	1	U	
CARBON TETRACHLORIDE	UG/L	1	U	
CHLOROBENZENE	UG/L	1	U	
CHLORODIBROMOMETHANE	UG/L	1	U	
CHLOROETHANE	UG/L	1	U	
CHLOROFORM	UG/L	1	U	
CHLOROMETHANE	UG/L	1	U	
CIS-1,2-DICHLOROETHENE	UG/L	0.52	J	Р
CIS-1,3-DICHLOROPROPENE	UG/L	1	U	
CYCLOHEXANE	UG/L	1	U	
DICHLORODIFLUOROMETHANE	UG/L	1	U	

Parameter	units	Result	Val Qual	Qual Code
ETHYLBENZENE	UG/L	1	U	
ISOPROPYLBENZENE	UG/L	1	U	
METHYL ACETATE	UG/L	1	U	
METHYL CYCLOHEXANE	UG/L	1	U	
METHYL TERT-BUTYL ETHER	UG/L	1	. U	
METHYLENE CHLORIDE	UG/L	1	U	
STYRENE	UG/L	1	U	
TETRACHLOROETHENE	UG/L	1	U	
TOLUENE	UG/L	1	U	
TOTAL XYLENES	UG/L	3	U	
TRANS-1,2-DICHLOROETHENE	UG/L	1	U	
TRANS-1,3-DICHLOROPROPENE	UG/L	1	U	
TRICHLOROETHENE	UG/L	1.3		
TRICHLOROFLUOROMETHANE	UG/L	1	U	
VINYL CHLORIDE	UG/L	0.29	J	Р
	<u> </u>			

SDG: C7K020216 MEDIA: WATER DATA FRACTION: OV

nsample samp_date FMC 13

NM

10/30/2007

lab_id qc_type C7K020216006

Pct_Solids DUP_OF:

nsample samp_date

lab_id

FMC 13

10/30/2007 C7K020216006

qc_type Pct_Solids NM

DUP_OF:

nsample

FMC 16

samp_date lab_id

10/31/2007 C7K020216007

qc_type

NM

Pct_Solids DUP_OF:

Parameter	units	Result	Val Qual	Qual Code
1,1,1-TRICHLOROETHANE	UG/L	1	U	
1,1,2,2-TETRACHLOROETHANE	UG/L	1	U	
1,1,2-TRICHLOROETHANE	UG/L	1	U	
1,1,2-TRICHLOROTRIFLUOROET	UG/L	1	U	
1,1-DICHLOROETHANE	UG/L	1	Ü	
1,1-DICHLOROETHENE	UG/L	1	, U	
1,2,4-TRICHLOROBENZENE	UG/L	1	U	
1,2-DIBROMO-3-CHLOROPROPA	UG/L	1	U	
1,2-DIBROMOETHANE	UG/L	1	U	
1,2-DICHLOROBENZENE	UG/L	1	U	
1,2-DICHLOROETHANE	UG/L	1	U	
1,2-DICHLOROPROPANE	UG/L	1	U	
1,3-DICHLOROBENZENE	UG/L	1	U	
1,4-DICHLOROBENZENE	UG/L	1	U	
2-BUTANONE	UG/L	5	U	
2-HEXANONE	UG/L	5	U	
4-METHYL-2-PENTANONE	UG/L	- 5	U	
ACETONE	UG/L	5	U	
BENZENE	UG/L	1	U	
BROMODICHLOROMETHANE	UG/L	1	U	
BROMOFORM	UG/L	1	U	
BROMOMETHANE	UG/L	1	U	**
CARBON DISULFIDE	UG/L	1	U	
CARBON TETRACHLORIDE	UG/L	1	U	
CHLOROBENZENE	UG/L	1	U	
CHLORODIBROMOMETHANE	UG/L	1	· U	
CHLOROETHANE	UG/L	1	U	
CHLOROFORM	UG/L	1	U	
CHLOROMETHANE	UG/L	0.18	В	Ē
CIS-1,2-DICHLOROETHENE	UG/L	0.5	J	F
CIS-1,3-DICHLOROPROPENE	UG/L	1	U	
CYCLOHEXANE	UG/L	1	U	
DICHLORODIFLUOROMETHANE	UG/L	1	U	

Parameter	units	Result	Val Qual	Quai Code
ETHYLBENZENE	UG/L	1	U	
ISOPROPYLBENZENE	UG/L	1	U	
METHYL ACETATE	UG/L	1	Ú	
METHYL CYCLOHEXANE	UG/L	1	U	
METHYL TERT-BUTYL ETHER	UG/L	1	U	
METHYLENE CHLORIDE	UG/L	1	U	
STYRENE	UG/L	1	U	
TETRACHLOROETHENE	UG/L	1	U	
TOLUENE	UG/L	1	U	-
TOTAL XYLENES	UG/L	3	U	
TRANS-1,2-DICHLOROETHENE	UG/L	1	U	
TRANS-1,3-DICHLOROPROPENE	UG/L	1	U	
TRICHLOROETHENE	UG/L	2.2		
TRICHLOROFLUOROMETHANE	UG/L	1	Ú	
VINYL CHLORIDE	UG/L	0.33	J	Р

Parameter	units	Result	Val Qual	Qual Code
1,1,1-TRICHLOROETHANE	UG/L	1	U	
1,1,2,2-TETRACHLOROETHANE	UG/L	1	U	
1,1,2-TRICHLOROETHANE	UG/L	1	U	
1,1,2-TRICHLOROTRIFLUOROET	UG/L	1	U	
1,1-DICHLOROETHANE	UG/L	1	U	
1,1-DICHLOROETHENE	UG/L	1	U	
1,2,4-TRICHLOROBENZENE	UG/L	1	U	
1,2-DIBROMO-3-CHLOROPROPA	UG/L	1	U	
1,2-DIBROMOETHANE	UG/L	1	U	
1,2-DICHLOROBENZENE	UG/L	1	U	
1,2-DICHLOROETHANE	UG/L	1	U	
1,2-DICHLOROPROPANE	UG/L	1	U	
1,3-DICHLOROBENZENE	UG/L	1	U	
1,4-DICHLOROBENZENE	UG/L	1	U	
2-BUTANONE	UG/L	5	U	
2-HEXANONE	UG/L	5	U	
4-METHYL-2-PENTANONE	UG/L	5	U	
ACETONE	UG/L	3.1	. В	В
BENZENE	UG/L	1	U	
BROMODICHLOROMETHANE	UG/L	1	U	
BROMOFORM	UG/L	1	U	
BROMOMETHANE	UG/L	1	Ų	
CARBON DISULFIDE	UG/L	1	U	
CARBON TETRACHLORIDE	UG/L	1	U	
CHLOROBENZENE	UG/L	. 1	U	
CHLORODIBROMOMETHANE	UG/L	1	Ų	
CHLOROETHANE	UG/L	1	U	
CHLOROFORM	UG/L	1	U	
CHLOROMETHANE	UG/L	0.14	В	В
CIS-1,2-DICHLOROETHENE	UG/L	1.1		
CIS-1,3-DICHLOROPROPENE	UG/L	1	U	
CYCLOHEXANE	UG/L	1	U	
DICHLORODIFLUOROMETHANE	UG/L	1	U	

00998

SDG: C7K020216 MEDIA: WATER DATA FRACTION: OV

nsample

FMC 16

samp_date

10/31/2007

lab_id

C7K020216007

qc_type
Pct_Solids

NM

Pct_Solids DUP_OF: nsample samp_date

lab_id

FMC 18

10/31/2007

NM

C7K020216008

qc_type
Pct_Solids
DUP_OF:

nsample samp_date

lab_id

FMC 18

10/31/2007 C7K020216008

qc_type NM

Pct_Solids DUP_OF:

		DUF

Parameter	units	Result	Val	Qual
			Qual	Code
ETHYLBENZENE	UG/L	1	U	
ISOPROPYLBENZENE	UG/L	1	Ü	
METHYL ACETATE	UG/L	1	U	
METHYL CYCLOHEXANE	UG/L	1	U	
METHYL TERT-BUTYL ETHER	UG/L	1	U	
METHYLENE CHLORIDE	UG/L	1	U	
STYRENE	UG/L	1	U	
TETRACHLOROETHENE	UG/L	1	U	
TOLUENE	UG/L	1	U	
TOTAL XYLENES	UG/L	3	U	" <u>-</u>
TRANS-1,2-DICHLOROETHENE	UG/L	1	U	
TRANS-1,3-DICHLOROPROPENE	UG/L	1	U	
TRICHLOROETHENE	UG/L	3.1		
TRICHLOROFLUOROMETHANE	UG/L	1	U	
VINYL CHLORIDE	UG/L	0.73	J	. Р
				•

Parameter	units	Result	Val Qual	Qual Code
1,1,1-TRICHLOROETHANE	UG/L	1	U	
1,1,2,2-TETRACHLOROETHANE	UG/L	. 1	U	
1,1,2-TRICHLOROETHANE	UG/L	1	U	
1,1,2-TRICHLOROTRIFLUOROET	UG/L	1	Ū	
1,1-DICHLOROETHANE	UG/L	. 1	U	
1,1-DICHLOROETHENE	UG/L	1	U	
1,2,4-TRICHLOROBENZENE	UG/L	1	U	
1,2-DIBROMO-3-CHLOROPROPA	UG/L	1	U	
1,2-DIBROMOETHANE	UG/L	1	U	
1,2-DICHLOROBENZENE	UG/L	1	U	
1,2-DICHLOROETHANE	UG/L	1	U	
1,2-DICHLOROPROPANE	UG/L	1	U	
1,3-DICHLOROBENZENE	UG/L	1	Ü	
1,4-DICHLOROBENZENE	UG/L	1	U	
2-BUTANONE	UG/L	5	U	
2-HEXANONE	UG/L	5	U	
4-METHYL-2-PENTANONE	UG/L	5	U	
ACETONE	UG/L	2.8	В	В
BENZENE	UG/L	1	U	
BROMODICHLOROMETHANE	ÙG/L	1	U	
BROMOFORM	UG/L	1	U	
BROMOMETHANE	UG/L	1	Ü	
CARBON DISULFIDE	UG/L	1	U	
CARBON TETRACHLORIDE	UG/L	1	U	
CHLOROBENZENE	UG/L	1	U	
CHLORODIBROMOMETHANE	UG/L	1	U	
CHLOROETHANE	UG/L	1	U	
CHLOROFORM	UG/L	1	U	
CHLOROMETHANE	UG/L	0.14	В	В
CIS-1,2-DICHLOROETHENE	UG/L	0.22	J	Р
CIS-1,3-DICHLOROPROPENE	UG/L	1	U	
CYCLOHEXANE	UG/L	1	U	
DICHLORODIFLUOROMETHANE	UG/L	1	Ü	

Parameter	units	Result	Val Qual	Qual Code
ETHYLBENZENE	UG/L	1	U	
ISOPROPYLBENZENE	UG/L	1	U	
METHYL ACETATE	UG/L	1	U	
METHYL CYCLOHEXANE	UG/L	1	U	
METHYL TERT-BUTYL ETHER	UG/L	1	U	
METHYLENE CHLORIDE	UG/L	1	U	
STYRENE	UG/L	1	U	
TETRACHLOROETHENE	UG/L	1	U	
TOLUENE	UG/L	1	Ü	
TOTAL XYLENES	UG/L	3	U	
TRANS-1,2-DICHLOROETHENE	UG/L	1	U	
TRANS-1,3-DICHLOROPROPENE	UG/L	1	U	
TRICHLOROETHENE	UG/L	0.4	J	Р
TRICHLOROFLUOROMETHANE	UG/L	1	U	
VINYL CHLORIDE	UG/L	1	· U	
	-			

SDG: C7K020216 MEDIA: WATER DATA FRACTION: OV

nsample samp_date FMC 20

10/31/2007

lab_id

C7K020216009

qc_type

NM

Pct_Solids DUP_OF:

nsample samp_date

lab_id

FMC 20

qc_type Pct_Solids 10/31/2007 C7K020216009

NM

DUP_OF:

nsample

lab_id

FMC 22

samp_date

10/31/2007 C7K020216010

NM

qc_type Pct_Solids DUP_OF:

Parameter	units	Result	Val Qual	Qual Code
1,1,1-TRICHLOROETHANE	UG/L	1	U	
1,1,2,2-TETRACHLOROETHANE	UG/L	1	U	
1,1,2-TRICHLOROETHANE	UG/L	1	U	
1,1,2-TRICHLOROTRIFLUOROET	UG/L	1	U	
1,1-DICHLOROETHANE	UG/L	1	Ú	
1,1-DICHLOROETHENE	UG/L	1	U	
1,2,4-TRICHLOROBENZENE	UG/L	1	U	
1,2-DIBROMO-3-CHLOROPROPA	UG/L	1	U	
1,2-DIBROMOETHANE	UG/L	1	U	
1,2-DICHLOROBENZENE	UG/L	1	U	
1,2-DICHLOROETHANE	UG/L	1	U	
1,2-DICHLOROPROPANE	UG/L	1	U	
1,3-DICHLOROBENZENE	UG/L	1	U	
1,4-DICHLOROBENZENE	UG/L	1	U	
2-BUTANONE	UG/L	- 5	U	
2-HEXANONE	UG/L	5	U	
4-METHYL-2-PENTANONE	UG/L	5	U	
ACETONE	UG/L	5	U	
BENZENE	UG/L	1	U	
BROMODICHLOROMETHANE	UG/L	1	U	***
BROMOFORM	UG/L	1	U	
BROMOMETHANE	UG/L	1	U	
CARBON DISULFIDE	UG/L	1	U	
CARBON TETRACHLORIDE	UG/L	1	U	
CHLOROBENZENE	UG/L	1	U	
CHLORODIBROMOMETHANE	UG/L	1	U	
CHLOROETHANE	UG/L	1	U	
CHLOROFORM	UG/L	1	U	v-ma
CHLOROMETHANE	UG/L	0.14	В	В
CIS-1,2-DICHLOROETHENE	UG/L	1	Ü	*
CIS-1,3-DICHLOROPROPENE	UG/L	1	Ü	
CYCLOHEXANE	UG/L	. 1	U	
DICHLORODIFLUOROMETHANE	UG/L	1	U	

Parameter	units	Result	Val Qual	Qual Code
ETHYLBENZENE	UG/L	1	Ū	
ISOPROPYLBENZENE	UG/L	1	U	
METHYL ACETATE	UG/L	1	U	
METHYL CYCLOHEXANE	UG/L	1	U	
METHYL TERT-BUTYL ETHER	UG/L	1	U	
METHYLENE CHLORIDE	UG/L	1	U	
STYRENE	UG/L	1	U	
TETRACHLOROETHENE	UG/L	1	U	
TOLUENE	UG/L	1	U	
TOTAL XYLENES	UG/L	3	U	
TRANS-1,2-DICHLOROETHENE	UG/L	1	U	
TRANS-1,3-DICHLOROPROPENE	UG/L	1	U	
TRICHLOROETHENE	UG/L	0.36	J	Р
TRICHLOROFLUOROMETHANE	UG/L	1	Ü	
VINYL CHLORIDE	UG/L	1	Ū	

Parameter	units	Result	Val Qual	Qual Code
1,1,1-TRICHLOROETHANE	UG/L	1	U	
1,1,2,2-TETRACHLOROETHANE	UG/L	1	U	
1,1,2-TRICHLOROETHANE	UG/L	1	U	
1,1,2-TRICHLOROTRIFLUOROET	UG/L	1	U	
1,1-DICHLOROETHANE	UG/L	1	U	
1,1-DICHLOROETHENE	UG/L	1	U	
1,2,4-TRICHLOROBENZENE	UG/L	1	U	
1,2-DIBROMO-3-CHLOROPROPA	UG/L	1	U	
1,2-DIBROMOETHANE	UG/L	1	U	
1,2-DICHLOROBENZENE	UG/L	1	U	
1,2-DICHLOROETHANE	UG/L	1	U	
1,2-DICHLOROPROPANE	UG/L	1	U	
1,3-DICHLOROBENZENE	UG/L	1	U	
1,4-DICHLOROBENZENE	UG/L	1	u	
2-BUTANONE	UG/L	5	u	
2-HEXANONE	UG/L	. 5	u	
4-METHYL-2-PENTANONE	UG/L	5	U	
ACETONE	UG/L	2.6	В	В
BENZENE	UG/L	1	U	
BROMODICHLOROMETHANE	UG/L	1	U	
BROMOFORM	UG/L	1	U	
BROMOMETHANE	UG/L	1	U	
CARBON DISULFIDE	UG/L	1	U	
CARBON TETRACHLORIDE	UG/L	1	U	
CHLOROBENZENE	UG/L	1	U	
CHLORODIBROMOMETHANE	UG/L	1	U	
CHLOROETHANE	UG/L	1	U	
CHLOROFORM	UG/L	1	U	
CHLOROMETHANE	UG/L	0.15	В	В
CIS-1,2-DICHLOROETHENE	UG/L	0.3	J	P
CIS-1,3-DICHLOROPROPENE	UG/L	1	U	<u>.</u>
CYCLOHEXANE	UG/L	1	U	
DICHLORODIFLUOROMETHANE	UG/L	1	U	

SDG: C7K020216 MEDIA: WATER DATA FRACTION: OV

nsample samp_date FMC 22

10/31/2007

lab_id

C7K020216010

qc_type

NM

Pct_Solids DUP_OF:

lab_id qc_type

nsample samp_date

FMC 24 10/30/2007 C7K020216001

NM

Pct_Solids DUP_OF:

nsample samp_date lab_id qc_type

FMC 24 10/30/2007 C7K020216001

NM

Pct_Solids DUP_OF:

		γ		
Parameter	units	Result	Val	Qual
			Qual	Code
ETHYLBENZENE	UG/L	1	U	
ISOPROPYLBENZENE	UG/L	1	· U	
METHYL ACETATE	UG/L	1	U	
METHYL CYCLOHEXANE	UG/L	1	U	
METHYL TERT-BUTYL ETHER	UG/L	1	U	
METHYLENE CHLORIDE	UG/L	1	U	
STYRENE	UG/L	1	U	
TETRACHLOROETHENE	UG/L	1	Ū	
TOLUENE	UG/L	1	U	
TOTAL XYLENES	UG/L	3	U	
TRANS-1,2-DICHLOROETHENE	UG/L	1	U	
TRANS-1,3-DICHLOROPROPENE	UG/L	1	U	
TRICHLOROETHENE	UG/L	0.45	J	P
TRICHLOROFLUOROMETHANE	UG/L	1,	Ü	
VINYL CHLORIDE	UG/L	1	U	

Parameter	units	Result	Val Qual	Qual Code
1,1,1-TRICHLOROETHANE	UG/L	1	U	-
1,1,2,2-TETRACHLOROETHANE	UG/L	1	Ü	
1,1,2-TRICHLOROETHANE	UG/L	1	U	
1,1,2-TRICHLOROTRIFLUOROET	UG/L	1	U	
1,1-DICHLOROETHANE	UG/L	.1	U	
1,1-DICHLOROETHENE	UG/L	1	U	
1,2,4-TRICHLOROBENZENE	UG/L	1	U	
1,2-DIBROMO-3-CHLOROPROPA	UG/L	1	U	
1,2-DIBROMOETHANE	UG/L	1	U	
1,2-DICHLOROBENZENE	UG/L	1	U	
1,2-DICHLOROETHANE	UG/L	1	U	
1,2-DICHLOROPROPANE	UG/L	1	U	
1,3-DICHLOROBENZENE	UG/L	1	U	
1,4-DICHLOROBENZENE	UG/L	1	U	
2-BUTANONE	UG/L	5	U	
2-HEXANONE	UG/L	5	U	
4-METHYL-2-PENTANONE	UG/L	5	U	
ACETONE	UG/L	2.8	В	В
BENZENE	UG/L	1	U	-
BROMODICHLOROMETHANE	UG/L	1	U	
BROMOFORM	UG/L	1	U	
BROMOMETHANE	UG/L	1	U	
CARBON DISULFIDE	UG/L	1	U	
CARBON TETRACHLORIDE	UG/L	1	U	
CHLOROBENZENE	UG/L	1	U	
CHLORODIBROMOMETHANE	UG/L	1	U	
CHLOROETHANE	UG/L	1	Ü	
CHLOROFORM	UG/L	1	U	
CHLOROMETHANE	UG/L	1	U	
CIS-1,2-DICHLOROETHENE	UG/L	1	U	$\overline{}$
CIS-1,3-DICHLOROPROPENE	UG/L	1	U	
CYCLOHEXANE	UG/L	1	U	
DICHLORODIFLUOROMETHANE	UG/L	1	υ	

·			
units	Result	Val	Qual
		Qual	Code
UG/L	1	U	
UG/L	1	U	
UG/L	1,	Ū	
UG/L	1	Ū	
UG/L	1	U	
UG/L	3	U	
UG/L	1	U	
UG/L	1	U	***************************************
UG/L	0.27	J	Р
UG/L	1	U	7
UG/L	. 1	U	***
	UG/L UG/L UG/L UG/L UG/L UG/L UG/L UG/L	UG/L 1 UG/L 1 UG/L 1 UG/L 1 UG/L 1 UG/L 1 UG/L 1 UG/L 1 UG/L 1 UG/L 1 UG/L 1 UG/L 1 UG/L 1 UG/L 1 UG/L 1 UG/L 1 UG/L 3	Qual UG/L 1 U UG/L 1 U UG/L 1 U UG/L 1 U UG/L 1 U UG/L 1 U UG/L 1 U UG/L 1 U UG/L 1 U UG/L 1 U UG/L 1 U UG/L 1 U UG/L 1 U UG/L 1 U UG/L 1 U UG/L 1 U UG/L 1 U UG/L 3 U UG/L 1 C7K020216 MEDIA: WATER DATA FRACTION: OV

nsample samp_date

FMC 25

11/1/2007

lab_id

C7K020216014

qc_type

NM

Pct_Solids DUP_OF: nsample samp_date

lab_id

FMC 25

11/1/2007

C7K020216014

qc_type
Pct_Solids

NM

Pct_Solids DUP_OF: nsample samp_date FMC 26

NM

lab_id

11/1/2007 C7K020216015

qc_type

Pct_Solids DUP_OF:

Parameter	units	Result	Val Quai	Qual Code
1,1,1-TRICHLOROETHANE	UG/L	1	U	
1,1,2,2-TETRACHLOROETHANE	UG/L	1	U	
1,1,2-TRICHLOROETHANE	UG/L	1	U	
1,1,2-TRICHLOROTRIFLUOROET	UG/L	1	U	
1,1-DICHLOROETHANE	UG/L	1	IJ	
1,1-DICHLOROETHENE	UG/L	1	U	
1,2,4-TRICHLOROBENZENE	UG/L	. 1	U	
1,2-DIBROMO-3-CHLOROPROPA	UG/L	1	U	***
1,2-DIBROMOETHANE	UG/L	1	U	
1,2-DICHLOROBENZENE	UG/L	1	U	**
1,2-DICHLOROETHANE	UG/L	1	U	
1,2-DICHLOROPROPANE	UG/L	1	U	
1,3-DICHLOROBENZENE	UG/L	. 1	U	
1,4-DICHLOROBENZENE	UG/L	1	U	
2-BUTANONE	UG/L	5	Ű	-
2-HEXANONE	UG/L	5	U	
4-METHYL-2-PENTANONE	UG/L	5	U	
ACETONE	UG/L	3.8	В	E
BENZENE	UG/L	1	U	
BROMODICHLOROMETHANE	UG/L	1	Ü	
BROMOFORM	UG/L	1	Ŭ	
BROMOMETHANE	UG/L	1	U	
CARBON DISULFIDE	UG/L	1	U	

UG/L

UG/L

UG/L

UG/L

UG/L

UG/L

UG/L

UG/L

UG/L

UG/L

U

U

U

U

U

Ų

U

U

U

U

Parameter	units	Result	Val Qual	Qual Code
ETHYLBENZENE	UG/L	1	U	
ISOPROPYLBENZENE.	UG/L	1	U	***
METHYL ACETATE	UG/L	1	Ü	
METHYL CYCLOHEXANE	UG/L	1	U	-
METHYL TERT-BUTYL ETHER	UG/L	1	U	
METHYLENE CHLORIDE	UG/L	1	U	
STYRENE	UG/L	1	U	
TETRACHLOROETHENE	UG/L	1	U	
TOLUENE	UG/L	1	U	
TOTAL XYLENES	UG/L	3	U	~
TRANS-1,2-DICHLOROETHENE	UG/L	1	U	
TRANS-1,3-DICHLOROPROPENE	UG/L	1	U	
TRICHLOROETHENE	UG/L	1	U	
TRICHLOROFLUOROMETHANE	UG/L	1	U	
VINYL CHLORIDE	UG/L	1	U	

Parameter	units	Result	Val	Qual
			Qual	Code
1,1,1-TRICHLOROETHANE	UG/L	1	U	
1,1,2,2-TETRACHLOROETHANE	UG/L	1	U	
1,1,2-TRICHLOROETHANE	UG/L	1	Ū	
1,1,2-TRICHLOROTRIFLUOROET	UG/L	1	U	
1,1-DICHLOROETHANE	UG/L	1	U	
1,1-DICHLOROETHENE	UG/L	1	U	
1,2,4-TRICHLOROBENZENE	UG/L	1	U	
1,2-DIBROMO-3-CHLOROPROPA	UG/L	1	U	
1,2-DIBROMOETHANE	UG/L	1	U	
1,2-DICHLOROBENZENE	UG/L	1	U	
1,2-DICHLOROETHANE	UG/L	1	U	
1,2-DICHLOROPROPANE	UG/L	1	U	
1,3-DICHLOROBENZENE	UG/L	1	U	
1,4-DICHLOROBENZENE	UG/L	. 1	U	
2-BUTANONE	UG/L	5	U	
2-HEXANONE	UG/L	5	U	
4-METHYL-2-PENTANONE	UG/L	5	U	
ACETONE	UG/L	2.7	В	В
BENZENE	UG/L	1	U	
BROMODICHLOROMETHANE	UG/L	1	U	
BROMOFORM	UG/L	1	U	
BROMOMETHANE	UG/L	1	U	
CARBON DISULFIDE	UG/L	1	U	
CARBON TETRACHLORIDE	UG/L	1	U	
CHLOROBENZENE	UG/L	1	U	
CHLORODIBROMOMETHANE	UG/L	1	U	
CHLOROETHANE	UG/L	1	U	
CHLOROFORM	UG/L	1	U	
CHLOROMETHANE	UG/L	0.14	В	В
CIS-1,2-DICHLOROETHENE	UG/L	1	U	
CIS-1,3-DICHLOROPROPENE	UG/L	1	U	
CYCLOHEXANE	UG/L	1	U	
DICHLORODIFLUOROMETHANE	UG/L	1	U	

CARBON TETRACHLORIDE

CHLORODIBROMOMETHANE

CIS-1,2-DICHLOROETHENE

CIS-1,3-DICHLOROPROPENE

DICHLORODIFLUOROMETHANE

CHLOROBENZENE

CHLOROETHANE

CHLOROMETHANE

CHLOROFORM

CYCLOHEXANE

SDG: C7K020216 MEDIA: WATER DATA FRACTION: OV

nsample samp_date

FMC 26

11/1/2007

lab_id

C7K020216015

qc_type

NM

Pct_Solids DUP_OF:

samp_date lab_id qc_type

nsample FMC 3 10/31/2007 C7K020216011

NM

Pct_Solids DUP_OF:

nsample samp_date FMC 3

10/31/2007 C7K020216011

NM

qc_type Pct_Solids DUP_OF:

lab_id

units	Result	Val	Qual Code
110/		Guur	
UG/L	1	U	
UG/L	3	U	
UG/L	1	U	****
UG/L	1	U	
UG/L	1	Ü	
UG/L	1	Ü	
UG/L	1	U	****
	UG/L UG/L UG/L UG/L UG/L UG/L UG/L UG/L	UG/L 1 UG/L 1 UG/L 1 UG/L 1 UG/L 1 UG/L 1 UG/L 1 UG/L 1 UG/L 1 UG/L 1 UG/L 1 UG/L 1 UG/L 1 UG/L 1 UG/L 1 UG/L 1 UG/L 1 UG/L 1 UG/L 1	Qual UG/L 1 U

Parameter	units	Result	Val Qual	Qual Code
1,1,1-TRICHLOROETHANE	UG/L	1	U	
1,1,2,2-TETRACHLOROETHANE	UG/L	1	U	****
1,1,2-TRICHLOROETHANE	UG/L	1	U	
1,1,2-TRICHLOROTRIFLUOROET	UG/L	1	U	
1,1-DICHLOROETHANE	UG/L	1	U	
1,1-DICHLOROETHENE	UG/L	1	U	
1,2,4-TRICHLOROBENZENE	UG/L	1	U	
1,2-DIBROMO-3-CHLOROPROPA	UG/L	1	U	_
1,2-DIBROMOETHANE	UG/L	1	U	
1,2-DICHLOROBENZENE	UG/L	1	U	
1,2-DICHLOROETHANE	UG/L	1	U	
1,2-DICHLOROPROPANE	UG/L	1	U	
1,3-DICHLOROBENZENE	UG/L	1	U	
1,4-DICHLOROBENZENE	UG/L	1	U	
2-BUTANONE	UG/L	5	U	
2-HEXANONE	UG/L	5	U	
4-METHYL-2-PENTANONE	UG/L	5	U	
ACETONE	UG/L	5.4	В	В
BENZENE	UG/L	1	U	-
BROMODICHLOROMETHANE	UG/L	1	U	
BROMOFORM	UG/L	1	U	
BROMOMETHANE	UG/L	1	U	-
CARBON DISULFIDE	UG/L	1	U	
CARBON TETRACHLORIDE	UG/L	1	U	
CHLOROBENZENE	UG/L	1	U	
CHLORODIBROMOMETHANE	UG/L	1	U	
CHLOROETHANE	UG/L	1	U	
CHLOROFORM	UG/L	1	U	
CHLOROMETHANE	UG/L	0.26	В	В
CIS-1,2-DICHLOROETHENE	UG/L	0.25	J	P
CIS-1,3-DICHLOROPROPENE	UG/L	1	U	
CYCLOHEXANE	UG/L	1	U	
DICHLORODIFLUOROMETHANE	UG/L	1	U	

Parameter	units	Result	Val Qual	Qual Code
ETHYLBENZENE	UG/L	1.	U	
ISOPROPYLBENZENE	UG/L	1	U	
METHYL ACETATE	UG/L	1	U	
METHYL CYCLOHEXANE	UG/L	1	U	
METHYL TERT-BUTYL ETHER	UG/L	1	U	
METHYLENE CHLORIDE	UG/L	1	U	
STYRENE	UG/L	1	U	
TETRACHLOROETHENE	UG/L	1	U	
TOLUENE	UG/L	1	U	
TOTAL XYLENES	UG/L	3	U	
TRANS-1,2-DICHLOROETHENE	UG/L	1	U	
TRANS-1,3-DICHLOROPROPENE	UG/L	1	U	
TRICHLOROETHENE	UG/L	0.53	J	Р
TRICHLOROFLUOROMETHANE	UG/L	1	U	
VINYL CHLORIDE	UG/L	1	U	

SDG: C7K020216 MEDIA: WATER DATA FRACTION: OV

nsample

FMC 5

samp_date lab_id

10/31/2007

qc_type

C7K020216012 NM

Pct_Solids DUP_OF:

nsample samp_date FMC 5

10/31/2007

lab_id qc_type C7K020216012 NM

Pct_Solids DUP_OF:

nsample

samp_date lab_id

FMC 7

10/31/2007 C7K020216013

NM

qc_type Pct_Solids DUP_OF:

Parameter	units	Result	Val Qual	Qual Code
1,1,1-TRICHLOROETHANE	UG/L	1	U	
1,1,2,2-TETRACHLOROETHANE	UG/L	1	Ū	
1,1,2-TRICHLOROETHANE	UG/L	1	Ú	
1,1,2-TRICHLOROTRIFLUOROET	UG/L	1	U	
1,1-DICHLOROETHANE	UG/L	1	U	
1,1-DICHLOROETHENE	UG/L	1	U	
1,2,4-TRICHLOROBENZENE	UG/L	1	U	
1,2-DIBROMO-3-CHLOROPROPA	UG/L	1	U	
1,2-DIBROMOETHANE	UG/L	1	U	
1,2-DICHLOROBENZENE	UG/L	1	U	
1,2-DICHLOROETHANE	UG/L	1	U	•
1,2-DICHLOROPROPANE	UG/L	1	U	
1,3-DICHLOROBENZENE	UG/L	1	Ü	
1,4-DICHLOROBENZENE	UG/L	1	Ú	****
2-BUTANONE	UG/L	5	U	
2-HEXANONE	UG/L	5	U	
4-METHYL-2-PENTANONE	UG/L	5	U	
ACETONE	UG/L	2.8	В	۰В
BENZENE	UG/L	1	U	
BROMODICHLOROMETHANE	UG/L	1	U	
BROMOFORM	UG/L	1	U	
BROMOMETHANE	UG/L	1	U	
CARBON DISULFIDE	UG/L	1	U	*
CARBON TETRACHLORIDE	UG/L	1	U	
CHLOROBENZENE	UG/L	1	Ü	
CHLORODIBROMOMETHANE	UG/L.	1	Ú	
CHLOROETHANE	UG/L	1	U	
CHLOROFORM	UG/L	1	U	
CHLOROMETHANE	UG/L	1	U	
CIS-1,2-DICHLOROETHENE	UG/L	0.18	J	Р
CIS-1,3-DICHLOROPROPENE	UG/L	1	U	
CYCLOHEXANE	UG/L	1	U	V4F4
DICHLORODIFLUOROMETHANE	UG/L	1	U	

Parameter	units	Result	Val Qual	Qual Code
ETHYLBENZENE	UG/L	1	U	
ISOPROPYLBENZENE	UG/L	1	U	
METHYL ACETATE	UG/L	1	U	
METHYL CYCLOHEXANE	UG/L	1	U	
METHYL TERT-BUTYL ETHER	UG/L	1	U	
METHYLENE CHLORIDE	UG/L	1	· U	Al-kA
STYRENE	UG/L	1	U	
TETRACHLOROETHENE	UG/L	1	U	
TOLUENE	UG/L	1	U	**
TOTAL XYLENES	UG/L	3	U	
TRANS-1,2-DICHLOROETHENE	UG/L	1	Ü	,
TRANS-1,3-DICHLOROPROPENE	UG/L	1	U	
TRICHLOROETHENE	UG/L	0.5	J	Р
TRICHLOROFLUOROMETHANE	UG/L	1	U	
VINYL CHLORIDE	UG/L	1	U	

Parameter	units	Result	Val	Qual
			Qual	Code
1,1,1-TRICHLOROETHANE	UG/L	1	U	
1,1,2,2-TETRACHLOROETHANE	UG/L	1	U	
1,1,2-TRICHLOROETHANE	UG/L	1	Ü	
1,1,2-TRICHLOROTRIFLUOROET	UG/L	1	U	
1,1-DICHLOROETHANE	UG/L	1	U	
1,1-DICHLOROETHENE	UG/L	1	U	
1,2,4-TRICHLOROBENZENE	UG/L	1	U	
1,2-DIBROMO-3-CHLOROPROPA	UG/L	1	U	
1,2-DIBROMOETHANE	UG/L	. 1	U	
1,2-DICHLOROBENZENE	UG/L	1	U	
1,2-DICHLOROETHANE	UG/L	1	U	
1,2-DICHLOROPROPANE	UG/L	1	U	
1,3-DICHLOROBENZENE	UG/L	1	U	
1,4-DICHLOROBENZENE	UG/L	1	U	
2-BUTANONE	UG/L	5	U	
2-HEXANONE	UG/L	5	U	
4-METHYL-2-PENTANONE	UG/L	5	U	
ACETONE	UG/L	4.6	В	В
BENZENE	UG/L	1	U	
BROMODICHLOROMETHANE	UG/L	1	U	
BROMOFORM	UG/L	1	U	
BROMOMETHANE	UG/L	1	U	
CARBON DISULFIDE	UG/L	1	U	
CARBON TETRACHLORIDE	UG/L	1	U	
CHLOROBENZENE	UG/L	1	U	
CHLORODIBROMOMETHANE	UG/L	1	U	
CHLOROETHANE	UG/L	1	U	
CHLOROFORM	UG/L	1	U	
CHLOROMETHANE	UG/L	0.19	В	В
CIS-1,2-DICHLOROETHENE	UG/L	0.18	J	P
CIS-1,3-DICHLOROPROPENE	UG/L	1	U	
CYCLOHEXANE	UG/L	1	U	
DICHLORODIFLUOROMETHANE	UG/L	1	U	

SDG: C7K020216 MEDIA: WATER DATA FRACTION: OV

nsample

FMC 7

samp_date

10/31/2007

lab_id qc_type C7K020216013

Pct_Solids DUP_OF:

NM

lab_id qc_type Pct_Solids DUP_OF:

nsample samp_date FMC 9

10/30/2007 C7K020216002

NM

nsample samp_date lab_id qc_type

FMC 9

10/30/2007 C7K020216002

NM

Pct_Solids DUP_OF:

units	Result	Val Qual	Qual Code
UG/L	1	U	
UG/L	1	U	
UG/L	1	U	
UG/L	1	U	
UG/L	1	U	
UG/L	1	U	
UG/L	1	U	
UG/L	1	U	
UG/L	1	U	
UG/L	3	Ü	
UG/L	1	Ŭ	
UG/L	1	U	
UG/L	0.53	J	P
UG/L	. 1	U	
UG/L	1	· U	
	UG/L UG/L UG/L UG/L UG/L UG/L UG/L UG/L	UG/L 1 UG/L 1 UG/L 1 UG/L 1 UG/L 1 UG/L 1 UG/L 1 UG/L 1 UG/L 1 UG/L 1 UG/L 1 UG/L 1 UG/L 1 UG/L 1 UG/L 1 UG/L 1 UG/L 3 UG/L 1 UG/L 1 UG/L 1	UG/L 1 U UG/L 1 U UG/L 1 U UG/L 1 U UG/L 1 U UG/L 1 U UG/L 1 U UG/L 1 U UG/L 1 U UG/L 3 U UG/L 1 U UG/L 1 U UG/L 0.53 J UG/L 1 U UG/L 1 U

Parameter	units	Result	Val Qual	Qual Code
1,1,1-TRICHLOROETHANE	UG/L	1	U	
1,1,2,2-TETRACHLOROETHANE	UG/L	1	U	
1,1,2-TRICHLOROETHANE	UG/L	1	U	
1,1,2-TRICHLOROTRIFLUOROET	UG/L	-1	Ų	
1,1-DICHLOROETHANE	UG/L	1	U	
1,1-DICHLOROETHENE	UG/L	1	U	
1,2,4-TRICHLOROBENZENE	UG/L	1	U	
1,2-DIBROMO-3-CHLOROPROPA	UG/L	1	U	
1,2-DIBROMOETHANE	UG/L	1	U	
1,2-DICHLOROBENZENE	UG/L	1	U	
1,2-DICHLOROETHANE	UG/L	1	U	
1,2-DICHLOROPROPANE	UG/L	1	U	
1,3-DICHLOROBENZENE	UG/L	1	Ú	
1,4-DICHLOROBENZENE	UG/L	1	. U	
2-BUTANONE	UG/L	5	U	
2-HEXANONE	UG/L	5	U	
4-METHYL-2-PENTANONE	UG/L	5	U	
ACETONE	UG/L	2.5	В	В
BENZENE	UG/L	1	U	
BROMODICHLOROMETHANE	UG/L	1	U	
BROMOFORM	UG/L	1	U	
BROMOMETHANE	UG/L	1	U	
CARBON DISULFIDE	UG/L	1	U	
CARBON TETRACHLORIDE	UG/L	1	U	
CHLOROBENZENE	UG/L	1	U	
CHLORODIBROMOMETHANE	UG/L	1	U	
CHLOROETHANE	UG/L	1	U	
CHLOROFORM	UG/L	. 1	J	
CHLOROMETHANE	UG/L	1	IJ	
CIS-1,2-DICHLOROETHENE	UG/L	0.22	J	Р
CIS-1,3-DICHLOROPROPENE	UG/L	1	Ü	
CYCLOHEXANE	UG/L	1	Ü	
DICHLORODIFLUOROMETHANE	UG/L	1	U	

Parameter	units	Result	Val Qual	Qual Code
ETHYLBENZENE	UG/L	1	U	
ISOPROPYLBENZENE	UG/L	1	U	
METHYL ACETATE	UG/L	1	U	
METHYL CYCLOHEXANE	UG/L	1	U	
METHYL TERT-BUTYL ETHER	UG/L	1	U	
METHYLENE CHLORIDE	UG/L	1	U	
STYRENE	UG/L	1	U	
TETRACHLOROETHENE	UG/L	1	U	
TOLUENE	UG/L	1	U	
TOTAL XYLENES	UG/L	3	U	
TRANS-1,2-DICHLOROETHENE	UG/L	1	U	
TRANS-1,3-DICHLOROPROPENE	UG/L	1	U	
TRICHLOROETHENE	UG/L	0.32	J	Р
TRICHLOROFLUOROMETHANE	UG/L	1	U	
VINYL CHLORIDE	UG/L	0.13	J	Р

SDG: C7K020216 MEDIA: WATER DATA FRACTION: OV

nsample samp_date

TripBlank#1

10/30/2007

C7K020216016

qc_type Pct_Solids

lab_id

NM

Pct_Solids DUP_OF:

nsample samp_date lab_id

DUP_OF:

TripBlank#1 1.0/30/2007 C7K020216016

NM

qc_type Pct_Solids nsample samp_date lab_id qc_type TripBlank#2 10/30/2007 C7K020216017

NM

Pct_Solids DUP_OF:

		,		
Parameter	units	Result	Val Qual	Qual Code
1,1,1-TRICHLOROETHANE	UG/L	1	U	
1,1,2,2-TETRACHLOROETHANE	UG/L	1	U	
1,1,2-TRICHLOROETHANE	UG/L	1	U	
1,1,2-TRICHLOROTRIFLUOROET	UG/L	. 1	U	
1,1-DICHLOROETHANE	UG/L	1	U	
1,1-DICHLOROETHENE	UG/L	1	U	
1,2,4-TRICHLOROBENZENE	UG/L	1	U	
1,2-DIBROMO-3-CHLOROPROPA	UG/L	1	U	
1,2-DIBROMOETHANE	UG/L	1	U	
1,2-DICHLOROBENZENE	UG/L	1	U	
1,2-DICHLOROETHANE	UG/L	1	U	
1,2-DICHLOROPROPANE	UG/L	1	U	
1,3-DICHLOROBENZENE	UG/L	1	U	
1,4-DICHLOROBENZENE	UG/L	1	U	
2-BUTANONE	UG/L	5	U	
2-HEXANONE	UG/L	5	U	
4-METHYL-2-PENTANONE	UG/L	5	U	
ACETONE	UG/L	3.3	j	EP
BENZENE	UG/L	1	U	
BROMODICHLOROMETHANE	UG/L	1	U	
BROMOFORM	UG/L	1	U	
BROMOMETHANE	UG/L	1	U	
CARBON DISULFIDE	UG/L	1	U	
CARBON TETRACHLORIDE	UG/L	1	U	
CHLOROBENZENE	UG/L	1	U	
CHLORODIBROMOMETHANE	UG/L	1	Ü	
CHLOROETHANE	UG/L	1	U	
CHLOROFORM	UG/L	1	U	
CHLOROMETHANE	UG/L	1	U	
CIS-1,2-DICHLOROETHENE	UG/L	1	U	
CIS-1,3-DICHLOROPROPENE	UG/L	1	U	
CYCLOHEXANE	UG/L	1	U	
DICHLORODIFLUOROMETHANE	UG/L	1	U	

Parameter ·	units	Result	Val Qual	Qual Code
ETHYLBENZENE	UG/L	1	Ú	
ISOPROPYLBENZENE	UG/L	1	U	
METHYL ACETATE	UG/L	1	U	
METHYL CYCLOHEXANE	UG/L	1	U	
METHYL TERT-BUTYL ETHER	UG/L	1	U	
METHYLENE CHLORIDE	UG/L	1	U	
STYRENE	UG/L	1	U	
TETRACHLOROETHENE	UG/L	1	U	
TOLUENE	UG/L	0.24	J	Р
TOTAL XYLENES	UG/L	3	U	
TRANS-1,2-DICHLOROETHENE	UG/L	1	U	
TRANS-1,3-DICHLOROPROPENE	UG/L	1	U	
TRICHLOROETHENE	UG/L	1	U	
TRICHLOROFLUOROMETHANE	UG/L	. 1	U	
VINYL CHLORIDE	UG/L	1	U	

Parameter	units	Result	Val	Qual
			Qual	Code
1,1,1-TRICHLOROETHANE	UG/L	1	U	
1,1,2,2-TETRACHLOROETHANE	UG/L	1	U	
1,1,2-TRICHLOROETHANE	UG/L	1	U	
1,1,2-TRICHLOROTRIFLUOROET	UG/L	1	U	
1,1-DICHLOROETHANE	UG/L	1	U	
1,1-DICHLOROETHENE	UG/L	1	U	
1,2,4-TRICHLOROBENZENE	UG/L	1	U	
1,2-DIBROMO-3-CHLOROPROPA	UG/L	1	U	
1,2-DIBROMOETHANE	UG/L	1	U	
1,2-DICHLOROBENZENE	UG/L	1	, U	
1,2-DICHLOROETHANE	UG/L	1	U	
1,2-DICHLOROPROPANE	UG/L	. 1	U	
1,3-DICHLOROBENZENE	UG/L	1	U	
1,4-DICHLOROBENZENE	UG/L	1	U	
2-BUTANONE	UG/L	5	U	
2-HEXANONE	UG/L	5	U	
4-METHYL-2-PENTANONE	UG/L	5	U	
ACETONE	UG/L	11	K	E
BENZENE	UG/L	1	Ü	
BROMODICHLOROMETHANE	UG/L	1	U	
BROMOFORM	UG/L	1	U	
BROMOMETHANE	UG/L	1	U	
CARBON DISULFIDE	UG/L	1	Ü	
CARBON TETRACHLORIDE	UG/L	1	U	
CHLOROBENZENE	UG/L	1	U	
CHLORODIBROMOMETHANE	UG/L	1	U	
CHLOROETHANE	UG/L	1	U	
CHLOROFORM	UG/L	1	U	
CHLOROMETHANE	UG/L	0.15	J	. Р
CIS-1,2-DICHLOROETHENE	UG/L	1	U	
CIS-1,3-DICHLOROPROPENE	UĞ/L	. 1	U	
CYCLOHEXANE	UG/L	1	U	
DICHLORODIFLUOROMETHANE	UG/L	1	U	
		L	1	

00998 SDG: C7K020216 MEDIA: WATER DATA FRACTION: OV

nsample

TripBlank#2

samp_date

10/30/2007

lab_id

C7K020216017

qc_type

NM

Pct_Solids DUP_OF:

				
Parameter	units	Result	Val Qual	Qual Code
ETHYLBENZENE	UG/L	1	U	
ISOPROPYLBENZENE	UG/L	, 1	U	
METHYL ACETATE	UG/L	1	U	
METHYL CYCLOHEXANE	UG/L	1	Ü	
METHYL TERT-BUTYL ETHER	UG/L	1	. U	
METHYLENE CHLORIDE	UG/L	1	U	
STYRENE	UG/L	1	U	
TETRACHLOROETHENE	UG/L	1	U	,
TOLUENE	UG/L	0.39	J	Р
TOTAL XYLENES	UG/L	3	Ū	
TRANS-1,2-DICHLOROETHENE	UG/L	1	U	
TRANS-1,3-DICHLOROPROPENE	UG/L	1	Ü	
TRICHLOROETHENE	UG/L	1	Ü	
TRICHLOROFLUOROMETHANE	UG/L	1	U	
VINYL CHLORIDE	UG/L	1	U	

SDG: C7K020216 MEDIA: WATER DATA FRACTION: OS

nsample samp_date FMC-10DL

10/30/2007

lab_id

C7K020216003

qc_type Pct_Solids

DUP_OF:

NM

samp_date lab_id

nsample

FMC 10DL 10/30/2007

C7K020216003

NM

qc_type Pct_Solids DUP_OF:

nsample samp_date FMC 11DL 10/30/2007

lab_id

C7K020216004 NM

qc_type Pct_Solids

DUP_OF:

Parameter	units	Result	Val Qual	Qual Code
1,1-BIPHENYL	UG/L	1.1	U	
2,2'-OXYBIS(1-CHLOROPROPAN	UG/L	0.21	U	
2,4,5-TRICHLOROPHENOL	UG/L	1.1	U	
2,4,6-TRICHLOROPHENOL	UG/L	1.1	U	
2,4-DICHLOROPHENOL	UG/L	0.21	U	
2,4-DIMETHYLPHENOL	UG/L	1.1	U	
2,4-DINITROPHENOL	UG/L	5.3	U	
2,4-DINITROTOLUENE	UG/L	. 1.1	U	
2,6-DINITROTOLUENE	UG/L	1.1	U	
2-CHLORONAPHTHALENE	UG/L	0.21	U	
2-CHLOROPHENOL	UG/L	1.1	U	
2-METHYLNAPHTHALENE	UG/L	0.21	U	
2-METHYLPHENOL	UG/L	1.1	U	,
2-NITROANILINE	UG/L	5.3	Ų	
2-NITROPHENOL	UG/L	1.1	U	
3,3'-DICHLOROBENZIDINE	UG/L	1.1	U	
3-NITROANILINE	UG/L	5.3	U	
4,6-DINITRO-2-METHYLPHENOL	UG/L	5.3	U	
4-BROMOPHENYL PHENYL ETH	UG/L	1.1	U	
4-CHLORO-3-METHYLPHENOL	UG/L	1.1	U	
4-CHLOROANILINE	UG/L	1.1	U	
4-CHLOROPHENYL PHENYL ETH	UG/L	1.1	U	
4-METHYLPHENOL	UG/L	1.1	U	
4-NITROANILINE	UG/L	5.3	U	
4-NITROPHENOL	UG/L	5.3	U	
ACENAPHTHENE	UG/L	0.21	Ü	
ACENAPHTHYLENE	UG/L	0.21	U	
ACETOPHENONE	UG/L	1.1	U	
ANTHRACENE	UG/L	0.21	U	
ATRAZINE	UG/L	1.1	U	
BENZALDEHYDE	UG/L	1.1	U	****
BENZO(A)ANTHRACENE	UG/L	0.21	U	
BENZO(A)PYRENE	UG/L	0.21	U	

Parameter	units	Result	Val Qual	Qual Code
BENZO(B)FLUORANTHENE	UG/L	0.21	Ú	
BENZO(G,H,I)PERYLENE	UG/L	0.21	U	
BENZO(K)FLUORANTHENE	UG/L	0.21	U	
BIS(2-CHLOROETHOXY)METHAN	UG/L	1.1	U	
BIS(2-CHLOROETHYL)ETHER	UG/L	0.21	U	
BIS(2-ETHYLHEXYL)PHTHALATE	UG/L	0.13	J	Р
BUTYL BENZYL PHTHALATE	UG/L	1.1	U	
CAPROLACTAM	UG/L	1.1	U	
CARBAZOLE	UG/L	0.097	J	Р
CHRYSENE	UG/L	0.21	U	
DIBENZO(A,H)ANTHRACENE	UG/L	0.21	U	
DIBENZOFURAN	UG/L	0.074	J	Р
DIETHYL PHTHALATE	UG/L	1.1	U	
DIMETHYL PHTHALATE	UG/L	1.1	· U	
DI-N-BUTYL PHTHALATE	UG/L	1.1	U	
DI-N-OCTYL PHTHALATE	UG/L	1.1	· U	
FLUORANTHENE	UG/L	0.21	U	
FLUORENE	UG/L	0.21	Ų	
HEXACHLOROBENZENE	UG/L	0.21	U	
HEXACHLOROBUTADIENE	UG/L	0.21	U	
HEXACHLOROCYCLOPENTADIE	UG/L	1.1	Ũ	
HEXACHLOROETHANE	UG/L	. 1.1	U	
INDENO(1,2,3-CD)PYRENE	UG/L	0.21	U	
ISOPHORONE	UG/L	1.1	U	_
NAPHTHALENE	UG/L	0.21	U	
NITROBENZENE	UG/L	0.21	U	
N-NITROSO-DI-N-PROPYLAMINE	UG/L	0.21	U	
N-NITROSODIPHENYLAMINE	UG/L	0.21	U	
PENTACHLOROPHENOL	UG/L	1.1	U	
PHENANTHRENE	UG/L	0.32		
PHENOL	UG/L	0.21	U	
PYRENE	UG/L	0.21	U	

Parameter	units	Result	Val Qual	Qual Code
1,1-BIPHENYL	UG/L	1.1	U	
2,2'-OXYBIS(1-CHLOROPROPAN	UG/L	0.22	U	
2,4,5-TRICHLOROPHENOL	UG/L	1,1	U	
2,4,6-TRICHLOROPHENOL	UG/L	1.1	U	
2,4-DICHLOROPHENOL	UG/L	0.22	U	
2,4-DIMETHYLPHENOL	UG/L	1.1	U	
2,4-DINITROPHENOL	UG/L	5.5	U	
2,4-DINITROTOLUENE	UG/L	1.1	U	
2,6-DINITROTOLUENE	UG/L	1.1	U	
2-CHLORONAPHTHALENE	UG/L	0.22	U	
2-CHLOROPHENOL	UG/L	1.1	U	
2-METHYLNAPHTHALENE	UG/L	0.22	U	
2-METHYLPHENOL	UG/L	1.1	U	
2-NITROANILINE	UG/L	5.5	U	
2-NITROPHENOL	UG/L	1.1	U	
3,3'-DICHLOROBENZIDINE	UG/L	1.1	U	
3-NITROANILINE	UG/L	5.5	U	
4,6-DINITRO-2-METHYLPHENOL	UG/L	5.5	U	
4-BROMOPHENYL PHENYL ETH	UG/L	1.1	U	
4-CHLORO-3-METHYLPHENOL	UG/L	1.1	U	
4-CHLOROANILINE	UG/L	1.1	Ų	
4-CHLOROPHENYL PHENYL ETH	UG/L	1.1	U	
4-METHYLPHENOL	UG/L	1.1	U	
4-NITROANILINE	UG/L	5.5	U	
4-NITROPHENOL	UG/L	5.5	U	
ACENAPHTHENE	UG/L	0.22	U	
ACENAPHTHYLENE	UG/L	0.22	U	
ACETOPHENONE	UG/L	1.1	U	
ANTHRACENE	UG/L	0.22	U	
ATRAZINE	UG/L	1.1	U	
BENZALDEHYDE	UG/L	1.1	U	
BENZO(A)ANTHRACENE	UG/L	0.22	U	
BENZO(A)PYRENE	UG/L	0.22	U	

SDG: C7K020216 MEDIA: WATER DATA FRACTION: OS

nsample

FMC 11DL

samp_date

10/30/2007

lab_id qc_type

DUP_OF:

C7K020216004

Pct_Solids

NM

qc_type Pct_Solids DUP_OF:

lab_id

nsample samp_date FMC 12DL

10/30/2007

C7K020216005

NM

nsample samp_date lab_id

FMC 12DL

10/30/2007 C7K020216005

NM

qc_type Pct_Solids

DUP_OF:

Parameter	Danasatan		D	17-1	0 1
BENZO(G,H,I)PERYLENE	Parameter	units	Result	Val Qual	Qual Code
BENZO(G,H,I)PERYLENE	BENZO(B)FLUORANTHENE	UG/I	0.22	·····	
BENZO(K)FLUORANTHENE					
BIS(2-CHLOROETHOXY)METHAN				Ū	
BIS(2-CHLOROETHYL)ETHER UG/L 0.22 U BIS(2-ETHYLHEXYL)PHTHALATE UG/L 1.1 U BUTYL BENZYL PHTHALATE UG/L 1.1 U CAPROLACTAM UG/L 1.1 U CARBAZOLE UG/L 0.22 U CHRYSENE UG/L 0.22 U DIBENZO(A,H)ANTHRACENE UG/L 0.22 U DIBENZOFURAN UG/L 0.22 U DIBENZOFURAN UG/L 1.1 U DIBENZOFURAN UG/L 1.1 U DIBENZOFURAN UG/L 1.1 U DIBENZOFURAN UG/L 1.1 U DIBENZOFURAN UG/L 1.1 U DIBENZOFURAN UG/L 1.1 U DISETHYL PHTHALATE UG/L 1.1 U DIMETHYL PHTHALATE UG/L 1.1 U DI-N-BUTYL PHTHALATE UG/L 1.1 U FLUORANTHENE UG/L 0.22		UG/L			
BIS(2-ETHYLHEXYL)PHTHALATE		UG/L	0.22	U	
BUTYL BENZYL PHTHALATE		UG/L		U	
CAPROLACTAM UG/L 1.1 U CARBAZOLE UG/L 0.22 U CHRYSENE UG/L 0.22 U DIBENZOFURAN UG/L 0.22 U DIBENZOFURAN UG/L 1.1 U DIETHYL PHTHALATE UG/L 1.1 U DIMETHYL PHTHALATE UG/L 1.1 U DI-N-BUTYL PHTHALATE UG/L 1.1 U DI-N-BUTYL PHTHALATE UG/L 1.1 U DI-N-BUTYL PHTHALATE UG/L 1.1 U DI-N-BUTYL PHTHALATE UG/L 1.1 U DI-N-BUTYL PHTHALATE UG/L 1.1 U DI-N-BUTYL PHTHALATE UG/L 1.1 U DI-N-BUTYL PHTHALATE UG/L 1.1 U DI-N-BUTYL PHTHALATE UG/L 0.22 U FLUORATE UG/L 0.22 U FLUORATE UG/L 0.22 U HEXACHLOROBENZENE UG/L 0.22		UG/L	1.1	U	
CHRYSENE DIBENZO(A,H)ANTHRACENE UG/L DIBENZOFURAN UG/L DIETHYL PHTHALATE UG/L DI-N-BUTYL PHTHALATE UG/L DI-N-OCTYL PHTHALATE UG/L FLUORANTHENE UG/L HEXACHLOROBENZENE HEXACHLOROETHANE UG/L			- :	U	
CHRYSENE UG/L 0.22 U DIBENZO(A,H)ANTHRACENE UG/L 0.22 U DIBENZOFURAN UG/L 1.1 U DIETHYL PHTHALATE UG/L 1.1 U DIMETHYL PHTHALATE UG/L 1.1 U DI-N-BUTYL PHTHALATE UG/L 1.1 U DI-N-OCTYL PHTHALATE UG/L 1.1 U FLUORANTHENE UG/L 0.22 U FLUORENE UG/L 0.22 U HEXACHLOROBENZENE UG/L 0.22 U HEXACHLOROBUTADIENE UG/L 0.22 U HEXACHLOROCYCLOPENTADIE UG/L 1.1 U HEXACHLOROETHANE UG/L 1.1 U INDENO(1,2,3-CD)PYRENE UG/L 0.22 U ISOPHORONE UG/L 0.22 U NAPHTHALENE UG/L 0.22 U N-NITROSO-DI-N-PROPYLAMINE UG/L 0.22 U N-NITROSODIPHENYLAMINE UG/L	CARBAZOLE	UG/L	0.22	U	
DIBENZOFURAN UG/L 1.1 U DIETHYL PHTHALATE UG/L 1.1 U DIMETHYL PHTHALATE UG/L 1.1 U DI-N-BUTYL PHTHALATE UG/L 1.1 U DI-N-OCTYL PHTHALATE UG/L 1.1 U FLUORANTHENE UG/L 0.22 U FLUORENE UG/L 0.22 U HEXACHLOROBENZENE UG/L 0.22 U HEXACHLOROBUTADIENE UG/L 0.22 U HEXACHLOROCYCLOPENTADIE UG/L 1.1 U HEXACHLOROETHANE UG/L 1.1 U INDENO(1,2,3-CD)PYRENE UG/L 0.22 U ISOPHORONE UG/L 0.22 U NAPHTHALENE UG/L 0.22 U NITROBENZENE UG/L 0.22 U N-NITROSO-DI-N-PROPYLAMINE UG/L 0.22 U N-NITROSODIPHENYLAMINE UG/L 0.22 U PENTACHLOROPHENOL UG/L	CHRYSENE	UG/L	0.22	U	
DIETHYL PHTHALATE UG/L 1.1 U DIMETHYL PHTHALATE UG/L 1.1 U DI-N-BUTYL PHTHALATE UG/L 1.1 U DI-N-OCTYL PHTHALATE UG/L 1.1 U FLUORANTHENE UG/L 0.22 U FLUORENE UG/L 0.22 U HEXACHLOROBENZENE UG/L 0.22 U HEXACHLOROBUTADIENE UG/L 0.22 U HEXACHLOROCYCLOPENTADIE UG/L 1.1 U HEXACHLOROETHANE UG/L 1.1 U INDENO(1,2,3-CD)PYRENE UG/L 0.22 U ISOPHORONE UG/L 0.22 U NAPHTHALENE UG/L 0.22 U NITROBENZENE UG/L 0.22 U N-NITROSO-DI-N-PROPYLAMINE UG/L 0.22 U N-NITROSODIPHENYLAMINE UG/L 0.22 U PENTACHLOROPHENOL UG/L 0.26 U PHENANTHRENE UG/L	DIBENZO(A,H)ANTHRACENE	UG/L	0.22	· U	
DIMETHYL PHTHALATE UG/L 1.1 U DI-N-BUTYL PHTHALATE UG/L 1.1 U DI-N-OCTYL PHTHALATE UG/L 1.1 U FLUORANTHENE UG/L 0.22 U FLUORENE UG/L 0.22 U HEXACHLOROBENZENE UG/L 0.22 U HEXACHLOROBUTADIENE UG/L 0.22 U HEXACHLOROCYCLOPENTADIE UG/L 1.1 U HEXACHLOROETHANE UG/L 1.1 U INDENO(1,2,3-CD)PYRENE UG/L 0.22 U ISOPHORONE UG/L 0.22 U NAPHTHALENE UG/L 0.22 U NITROBENZENE UG/L 0.22 U N-NITROSO-DI-N-PROPYLAMINE UG/L 0.22 U N-NITROSODIPHENYLAMINE UG/L 0.22 U PENTACHLOROPHENOL UG/L 0.26 U PHENANTHRENE UG/L 0.26 U PHENOL UG/L <	DIBENZOFURAN	UG/L	1.1	U	
DI-N-BUTYL PHTHALATE UG/L 1.1 U DI-N-OCTYL PHTHALATE UG/L 1.1 U FLUORANTHENE UG/L 0.22 U FLUORENE UG/L 0.22 U HEXACHLOROBENZENE UG/L 0.22 U HEXACHLOROBUTADIENE UG/L 0.22 U HEXACHLOROCYCLOPENTADIE UG/L 1.1 U HEXACHLOROETHANE UG/L 1.1 U INDENO(1,2,3-CD)PYRENE UG/L 0.22 U ISOPHORONE UG/L 0.22 U NAPHTHALENE UG/L 0.22 U NITROBENZENE UG/L 0.22 U N-NITROSO-DI-N-PROPYLAMINE UG/L 0.22 U N-NITROSODIPHENYLAMINE UG/L 0.22 U PENTACHLOROPHENOL UG/L 0.26 U PHENANTHRENE UG/L 0.26 U PHENOL UG/L 0.22 U	DIETHYL PHTHALATE	UG/L	1.1	U	
DI-N-OCTYL PHTHALATE UG/L 1.1 U FLUORANTHENE UG/L 0.22 U FLUORENE UG/L 0.22 U HEXACHLOROBENZENE UG/L 0.22 U HEXACHLOROBUTADIENE UG/L 0.22 U HEXACHLOROCYCLOPENTADIE UG/L 1.1 U HEXACHLOROETHANE UG/L 1.1 U INDENO(1,2,3-CD)PYRENE UG/L 0.22 U ISOPHORONE UG/L 0.22 U NAPHTHALENE UG/L 0.22 U NITROBENZENE UG/L 0.22 U N-NITROSO-DI-N-PROPYLAMINE UG/L 0.22 U N-NITROSODIPHENYLAMINE UG/L 0.22 U PENTACHLOROPHENOL UG/L 0.22 U PHENANTHRENE UG/L 0.26 PHENOL UG/L 0.22 U	DIMETHYL PHTHALATE	UG/L	1.1	U	. ,
FLUORANTHENE UG/L 0.22 U FLUORENE UG/L 0.22 U HEXACHLOROBENZENE UG/L 0.22 U HEXACHLOROBUTADIENE UG/L 0.22 U HEXACHLOROCYCLOPENTADIE UG/L 1.1 U HEXACHLOROETHANE UG/L 1.1 U INDENO(1,2,3-CD)PYRENE UG/L 0.22 U ISOPHORONE UG/L 1.1 U NAPHTHALENE UG/L 0.22 U NITROBENZENE UG/L 0.22 U N-NITROSO-DI-N-PROPYLAMINE UG/L 0.22 U N-NITROSODIPHENYLAMINE UG/L 0.22 U PENTACHLOROPHENOL UG/L 0.22 U PHENANTHRENE UG/L 0.26 U PHENOL UG/L 0.22 U	DI-N-BUTYL PHTHALATE	UG/L	1.1	U	
FLUORENE UG/L 0.22 U HEXACHLOROBENZENE UG/L 0.22 U HEXACHLOROBUTADIENE UG/L 0.22 U HEXACHLOROCYCLOPENTADIE UG/L 1.1 U HEXACHLOROETHANE UG/L 1.1 U INDENO(1,2,3-CD)PYRENE UG/L 0.22 U ISOPHORONE UG/L 0.22 U NAPHTHALENE UG/L 0.22 U NITROBENZENE UG/L 0.22 U N-NITROSO-DI-N-PROPYLAMINE UG/L 0.22 U N-NITROSODIPHENYLAMINE UG/L 0.22 U PENTACHLOROPHENOL UG/L 0.22 U PHENANTHRENE UG/L 0.26 P PHENOL UG/L 0.22 U	DI-N-OCTYL PHTHALATE	UG/L	1.1	U	
HEXACHLOROBENZENE	FLUORANTHENE	UG/L	0.22	U	
HEXACHLOROBUTADIENE UG/L 0.22 U HEXACHLOROCYCLOPENTADIE UG/L 1.1 U HEXACHLOROETHANE UG/L 1.1 U INDENO(1,2,3-CD)PYRENE UG/L 0.22 U ISOPHORONE UG/L 1.1 U NAPHTHALENE UG/L 0.22 U NITROBENZENE UG/L 0.22 U N-NITROSO-DI-N-PROPYLAMINE UG/L 0.22 U N-NITROSODIPHENYLAMINE UG/L 0.22 U PENTACHLOROPHENOL UG/L 1.1 U PHENANTHRENE UG/L 0.26 PHENOL UG/L 0.22 U	FLUORENE	UG/L	0.22	U	
HEXACHLOROCYCLOPENTADIE UG/L 1.1 U HEXACHLOROETHANE UG/L 1.1 U INDENO(1,2,3-CD)PYRENE UG/L 0.22 U ISOPHORONE UG/L 1.1 U NAPHTHALENE UG/L 0.22 U NITROBENZENE UG/L 0.22 U N-NITROSO-DI-N-PROPYLAMINE UG/L 0.22 U N-NITROSODIPHENYLAMINE UG/L 0.22 U PENTACHLOROPHENOL UG/L 1.1 U PHENANTHRENE UG/L 0.26 PHENOL UG/L 0.22 U	HEXACHLOROBENZENE	UG/L	0.22	U	
HEXACHLOROETHANE	HEXACHLOROBUTADIENE	UG/L	0.22	U	
INDENO(1,2,3-CD)PYRENE	HEXACHLOROCYCLOPENTADIE	UG/L	1.1	U	
ISOPHORONE	HEXACHLOROETHANE	UG/L	1.1	U	
NAPHTHALENE UG/L 0.22 U NITROBENZENE UG/L 0.22 U N-NITROSO-DI-N-PROPYLAMINE UG/L 0.22 U N-NITROSODIPHENYLAMINE UG/L 0.22 U PENTACHLOROPHENOL UG/L 1.1 U PHENANTHRENE UG/L 0.26 PHENOL UG/L 0.22 U	INDENO(1,2,3-CD)PYRENE	UG/L	0.22	U	
NITROBENZENE UG/L 0.22 U N-NITROSO-DI-N-PROPYLAMINE UG/L 0.22 U N-NITROSODIPHENYLAMINE UG/L 0.22 U PENTACHLOROPHENOL UG/L 1.1 U PHENANTHRENE UG/L 0.26 D PHENOL UG/L 0.22 U	ISOPHORONE	UG/L	1.1	U	
N-NITROSO-DI-N-PROPYLAMINE UG/L 0.22 U N-NITROSODIPHENYLAMINE UG/L 0.22 U PENTACHLOROPHENOL UG/L 1.1 U PHENANTHRENE UG/L 0.26 PHENOL UG/L 0.22 U	NAPHTHALENE	UG/L	0.22	U	
N-NITROSODIPHENYLAMINE UG/L 0.22 U PENTACHLOROPHENOL UG/L 1.1 U PHENANTHRENE UG/L 0.26 UG/L PHENOL UG/L 0.22 U		UG/L	0.22	Ü	
PENTACHLOROPHENOL UG/L 1.1 U PHENANTHRENE UG/L 0.26 PHENOL UG/L 0.22 U	N-NITROSO-DI-N-PROPYLAMINE	UG/L	0.22	U	
PHENANTHRENE UG/L 0.26 PHENOL UG/L 0.22 U	N-NITROSODIPHENYLAMINE	UG/L	0.22	U	
PHENOL UG/L 0.22 U	PENTACHLOROPHENOL	UG/L	1.1	U	
	PHENANTHRENE	UG/L	0.26		
PYRENE UG/L 0.22 U		UG/L	0.22	U	
- · · · · · · · · · · · · · · · · · · ·	PYRENE	UG/L	0.22	U	

Parameter	units	Result	Val Qual	Qual Code
1,1-BIPHENYL	UG/L	1	U	
2,2'-OXYBIS(1-CHLOROPROPAN	UG/L	0.21	U	
2,4,5-TRICHLOROPHENOL	UG/L	1	U	
2,4,6-TRICHLOROPHENOL	UG/L	1	U	
2,4-DICHLOROPHENOL	UG/L	0.21	U	
2,4-DIMETHYLPHENOL	UG/L	1	U	
2,4-DINITROPHENOL	UG/L	5.2	U	
2,4-DINITROTOLUENE	UG/L	1	U	
2,6-DINITROTOLUENE	UG/L	1	U	
2-CHLORONAPHTHALENE	UG/L	0.21	U	
2-CHLOROPHENOL	UG/L	1	U	
2-METHYLNAPHTHALENE	UG/L	0.21	U	
2-METHYLPHENOL	UG/L	1	U	
2-NITROANILINE	UG/L	5.2	U	
2-NITROPHENOL	UG/L	1	U	
3,3'-DICHLOROBENZIDINE	UG/L	. 1	U	
3-NITROANILINE	UG/L	5.2	U	
4,6-DINITRO-2-METHYLPHENOL	UG/L	5.2	U	
4-BROMOPHENYL PHENYL ETH	UG/L	1	U	
4-CHLORO-3-METHYLPHENOL	UG/L	1	U	
4-CHLOROANILINE	UG/L	1	Ü	
4-CHLOROPHENYL PHENYL ETH	UG/L	1	U	
4-METHYLPHENOL	UG/L	1	U	
4-NITROANILINE	UG/L	5.2	U	
4-NITROPHENOL	UG/L	5.2	U	
ACENAPHTHENE	UG/L	0.21	U	
ACENAPHTHYLENE	UG/L	0.21	U	
ACETOPHENONE	UG/L	1	U	
ANTHRACENE	UG/L	0.21	U	
ATRAZINE	UG/L	1	U	
BENZALDEHYDE	UG/L	1	U	
BENZO(A)ANTHRACENE	UG/L	0.21	U	
BENZO(A)PYRENE	UG/L	0.21	U	

units	Result	Val	Qual Code
110/	0.04		Code
	0.21		
	1	U	
UG/L	1	U	
UG/L	1	U	
UG/L	0.11	J	Р
UG/L	0.21	U	
UG/L	0.21	U	
UG/L	0.16	J	. Р
UG/L	1	U	
UG/L	1	U	-
UG/L	1	U	
UG/L	1	U	
UG/L	0.077	J	Р
UG/L	0.078	J	Р
UG/L	0.21	U	
UG/L	0.21	U	
UG/L	1	U	
UG/L	1	U	
UG/L	0.21	U	
UG/L	1	U	
UG/L	0.21	U	
UG/L	0.21	U	
UG/L	0.21	U	
UG/L	0.21	U	
UG/L	1	U	
UG/L	0.48		
UG/L	0.21	U	
UG/L	0.21	U	
	UG/L UG/L UG/L UG/L UG/L UG/L UG/L UG/L	UG/L 0.21 UG/L 0.21 UG/L 0.21 UG/L 0.21 UG/L 1 UG/L 0.21 UG/L 1 UG/L 1 UG/L 0.11 UG/L 0.21 UG/L 0.21 UG/L 0.21 UG/L 0.16 UG/L 1 UG/L 1 UG/L 1 UG/L 1 UG/L 1 UG/L 1 UG/L 1 UG/L 1 UG/L 1 UG/L 1 UG/L 1 UG/L 0.077 UG/L 0.078 UG/L 0.21	Qual UG/L 0.21 U UG/L 0.21 U UG/L 0.21 U UG/L 1 U UG/L 1 U UG/L 1 U UG/L 0.21 U UG/L 0.21 U UG/L 0.21 U UG/L 1 U UG/L 1 U UG/L 1 U UG/L 1 U UG/L 1 U UG/L 1 U UG/L 1 U UG/L 1 U UG/L 0.077 J UG/L 0.078 J UG/L 0.21 U UG/L 0.21 U UG/L 1 U UG/L 1 U UG/L 1 U UG/L 0.24 U UG/L 0.48 UG/L 0.21 U UG/L 0.48 UG/L 0.21 U

SDG: C7K020216 MEDIA: WATER DATA FRACTION: OS

nsample samp_date FMC 13DL 10/30/2007

NM

lab_id

C7K020216006

qc_type Pct_Solids DUP_OF:

nsample samp_date lab_id

qc_type

Pct_Solids

DUP_OF:

FMC 13DL 10/30/2007 C7K020216006

NM

nsample samp_date lab_id qc_type

FMC 16DL 10/31/2007

C7K020216007

NM

Pct_Solids DUP_OF:

				
Parameter	units	Result	Val Qual	Qual Code
1,1-BIPHENYL	UG/L	1.1	U	
2,2'-OXYBIS(1-CHLOROPROPAN	UG/L	0.22	U	
2,4,5-TRICHLOROPHENOL	UG/L	1.1	U	
2,4,6-TRICHLOROPHENOL	UG/L	1.1	U	
2,4-DICHLOROPHENOL	UG/L	0.22	U	
2,4-DIMETHYLPHENOL	UG/L	1.1	U	
2,4-DINITROPHENOL	UG/L	5.4	U	
2,4-DINITROTOLUENE	UG/L	1.1	U	
2,6-DINITROTOLUENE	UG/L	1.1	U	
2-CHLORONAPHTHALENE	UG/L	0.22	U	
2-CHLOROPHENOL	UG/L	1.1	U	
2-METHYLNAPHTHALENE	UG/L	0.22	U	
2-METHYLPHENOL	UG/L	1.1	U	
2-NITROANILINE	UG/L	5.4	U	
2-NITROPHENOL	UG/L	1.1	U	
3,3'-DICHLOROBENZIDINE	UG/L	1.1	υ	
3-NITROANILINE	UG/L	5.4	U	
4,6-DINITRO-2-METHYLPHENOL	UG/L	5.4	U	
4-BROMOPHENYL PHENYL ETH	UG/L	1.1	U	
4-CHLORO-3-METHYLPHENOL	UG/L	1.1	U	
4-CHLOROANILINE	UG/L	1.1	U	.,,
4-CHLOROPHENYL PHENYL ETH	UG/L	1.1	U	
4-METHYLPHENOL	UG/L	1.1	Ü	
4-NITROANILINE	UG/L	5.4	U	
4-NITROPHENOL	UG/L	5.4	U	
ACENAPHTHENE	UG/L	0.22	U	
ACENAPHTHYLENE	UG/L	0.22	U	
ACETOPHENONE	UG/L	1.1	U	
ANTHRACENE	UG/L	0.22	U	
ATRAZINE	UG/L	1.1	U	
BENZALDEHYDE	UG/L	1.1	U	
BENZO(A)ANTHRACENE	UG/L	0.22	U	
BENZO(A)PYRENE	UG/L	0.22	U	

Parameter	units	Result	Val Qual	Qual Code
BENZO(B)FLUORANTHENE	UG/L	0.22	U	
BENZO(G,H,I)PERYLENE	UG/L	0.22	U	
BENZO(K)FLUORANTHENE	UG/L	0.22	Ű	
BIS(2-CHLOROETHOXY)METHAN	UG/L	1,1	U	
BIS(2-CHLOROETHYL)ETHER	UG/L	0.22	U	,
BIS(2-ETHYLHEXYL)PHTHALATE	UG/L	1.1	U	
BUTYL BENZYL PHTHALATE	UG/L	0.17	J	Р
CAPROLACTAM	UG/L	1.1	U	
CARBAZOLE	UG/L	0.19	J	Р
CHRYSENE	UG/L	0.22	U	
DIBENZO(A,H)ANTHRACENE	UG/L	0.22	U	
DIBENZOFURAN	UG/L	1,1	U	
DIETHYL PHTHALATE	UG/L	1.1	U	
DIMETHYL PHTHALATE	UG/L	1.1	U	
DI-N-BUTYL PHTHALATE	UG/L	1.1	U	·
DI-N-OCTYL PHTHALATE	UG/L	1.1	U	
FLUORANTHENE	UG/L	0.08	J	Р
FLUORENE	UG/L	0.22	U	
HEXACHLOROBENZENE	UG/L	0.22	. U	
HEXACHLOROBUTADIENE	UG/L	0.22	U	
HEXACHLOROCYCLOPENTADIE	UG/L	1.1	U	
HEXACHLOROETHANE	UG/L	1.1	U	
INDENO(1,2,3-CD)PYRENE	UG/L	0.22	U	
ISOPHORONE	UG/L	1.1	Ü	
NAPHTHALENE	UG/L	0.22	U	
NITROBENZENE	UG/L	0.22	Ü	
N-NITROSO-DI-N-PROPYLAMINE	UG/L	0.22	U	
N-NITROSODIPHENYLAMINE	UG/L	0.22	U	
PENTACHLOROPHENOL	UG/L	1.1	U	
PHENANTHRENE	UG/L	0.42		
PHENOL	UG/L	0.22	Ú	
PYRENE	UG/L	0.064	J	Р

Parameter	units	Result	Val Qual	Qual Code
1,1-BIPHENYL	UG/L	1.1	U	
2,2'-OXYBIS(1-CHLOROPROPAN	UG/L	0.22	. U	
2,4,5-TRICHLOROPHENOL	UG/L	1.1	U	
2,4,6-TRICHLOROPHENOL	UG/L	1.1	U	
2,4-DICHLOROPHENOL	UG/L	0.22	U	
2,4-DIMETHYLPHENOL	UG/L	1.1	U	
2,4-DINITROPHENOL	UG/L	5.4	U	
2,4-DINITROTOLUENE	UG/L	1.1	U	
2,6-DINITROTOLUENE	UG/L	1.1	U	
2-CHLORONAPHTHALENE	UG/L	0.22	U	
2-CHLOROPHENOL	UG/L	1.1	U	
2-METHYLNAPHTHALENE	UG/L	0.22	Ú	
2-METHYLPHENOL	UG/L	1.1	U	
2-NITROANILINE	UG/L	5.4	U	
2-NITROPHENOL	UG/L	1.1	U	
3,3'-DICHLOROBENZIDINE	UG/L	1.1	Ü	
3-NITROANILINE	UG/L	5.4	U	
4,6-DINITRO-2-METHYLPHENOL	UG/L	5.4	U	
4-BROMOPHENYL PHENYL ETH	UG/L	1.1	U	
4-CHLORO-3-METHYLPHENOL	UG/L	1.1	U	
4-CHLOROANILINE	UG/L	1.1	U	
4-CHLOROPHENYL PHENYL ETH	UG/L	1.1	U	
4-METHYLPHENOL	UG/L	1.1	Ū	
4-NITROANILINE	UG/L	5.4	U	
4-NITROPHENOL	UG/L	5.4	U	
ACENAPHTHENE :	UG/L	0.22	U	
ACENAPHTHYLENE	UG/L	0.22	U	
ACETOPHENONE	UG/L	1.1	U	
ANTHRACENE	UG/L	0.22	U	
ATRAZINE	UG/L	1.1	U	
BENZALDEHYDE	UG/L	1.1	U	-
BENZO(A)ANTHRACENE	UG/L	0.22	U	
BENZO(A)PYRENE	UG/L	0.22	U	

SDG: C7K020216 MEDIA: WATER DATA FRACTION: OS

nsample samp_date

FMC 16DL

10/31/2007 C7K020216007

lab_id qc_type

NM

Pct_Solids
DUP_OF:

nsample samp_date lab_id FMC 18DL 10/31/2007 C7K020216008

NM

do.

Pct_Solids DUP_OF:

qc_type

nsample samp_date lab_id

FMC 18DL 10/31/2007 C7K020216008

NM

Pct_Solids DUP_OF:

qc_type

Parameter	units	Result	Val	Qual
			Qual	Code
BENZO(B)FLUORANTHENE	UG/L	0.22	U	
BENZO(G,H,I)PERYLENE	UG/L	0.22	Ü	
BENZO(K)FLUORANTHENE	UG/L	0.22	U	
BIS(2-CHLOROETHOXY)METHAN	UG/L	1.1	U	·
BIS(2-CHLOROETHYL)ETHER	UG/L	0.22	U	
BIS(2-ETHYLHEXYL)PHTHALATE	UG/L	0.16	J	F
BUTYL BENZYL PHTHALATE	UG/L	1.1	U	
CAPROLACTAM	UG/L	1.1	U	
CARBAZOLE	UG/L	0.22	U	
CHRYSENE	UG/L	0.22	U	
DIBENZO(A,H)ANTHRACENE	UG/L	0.22	U	
DIBENZOFURAN	UG/L	1.1	Ū	
DIETHYL PHTHALATE	UG/L	1.1	U	
DIMETHYL PHTHALATE	UG/L	1.1	U	
DI-N-BUTYL PHTHALATE	UG/L	1.1	U	
DI-N-OCTYL PHTHALATE	UG/L	1.1	U	
FLUORANTHENE	UG/L	0.22	U	
FLUORENE	UG/L	0.22	U	
HEXACHLOROBENZENE	UG/L	0.22	U	
HEXACHLOROBUTADIENE	UG/L	0.22	U	
HEXACHLOROCYCLOPENTADIE	UG/L	1.1	U	-
HEXACHLOROETHANE	UG/L	1.1	U	
INDENO(1,2,3-CD)PYRENE	UG/L	0.22	U	
SOPHORONE	UG/L	1.1	U	
NAPHTHALENE	UG/L	0.22	U	
NITROBENZENE	UG/L	0.22	U	
N-NITROSO-DI-N-PROPYLAMINE	UG/L	0.22	U	
V-NITROSODIPHENYLAMINE	UG/L	0.22	U	
PENTACHLOROPHENOL	UG/L	1.1	U	
PHENANTHRENE	UG/L	0.22	U	
PHENOL	UG/L	0.22	U	
PYRENE	UG/L	0.22	Ü	

	Parameter	units	Result	Val Qual	Qual Code
1	1,1-BIPHENYL	UG/L	1.1	U	
1	2,2'-OXYBIS(1-CHLOROPROPAN	UG/L	0.22	U	
	2,4,5-TRICHLOROPHENOL	UG/L	1.1	U	
1	2,4,6-TRICHLOROPHENOL	UG/L	1.1	U	
1	2,4-DICHLOROPHENOL	UG/L	0.22	U	
	2,4-DIMETHYLPHENOL	UG/L	1.1	U	
	2,4-DINITROPHENOL	UG/L	5.5	U	
	2,4-DINITROTOLUENE	UG/L	1.1	U	
	2,6-DINITROTOLUENE	UG/L	1.1	U	
	2-CHLORONAPHTHALENE	UG/L	0.22	U	
	2-CHLOROPHENOL	UG/L	1.1	U	
	2-METHYLNAPHTHALENE	UG/L	0.22	U	
	2-METHYLPHENOL	UG/L	1.1	U	
	2-NITROANILINE	UG/L	5.5	U	
	2-NITROPHENOL	UG/L	1.1	U	
	3,3'-DICHLOROBENZIDINE	UG/L	1.1	U	
	3-NITROANILINE	UG/L	5.5	U	
	4,6-DINITRO-2-METHYLPHENOL	UG/L	5.5	U	
	4-BROMOPHENYL PHENYL ETH	UG/L	1.1	U	
	4-CHLORO-3-METHYLPHENOL	UG/L	1.1	U	
	4-CHLOROANILINE	UG/L	1.1	U	
	4-CHLOROPHENYL PHENYL ETH	UG/L	1.1	U	
	4-METHYLPHENOL	UG/L	1.1	U	
	4-NITROANILINE	UG/L	5.5	U	
	4-NITROPHENOL	UG/L	5.5	U	
	ACENAPHTHENE	UG/L	0.22	U	
	ACENAPHTHYLENE	UG/L	0.22	U	
	ACETOPHENONE	UG/L	1.1	U	
	ANTHRACENE	UG/L	0.22	U	
	ATRAZINE	UG/L	1.1	U	
	BENZALDEHYDE	UG/L	1.1	U	
	BENZO(A)ANTHRACENE	UG/L	0.22	U	
	BENZO(A)PYRENE	UG/L	0.22	U	

Parameter	units	Result	Val Qual	Qual Code
BENZO(B)FLUORANTHENE	UG/L	0.22	U	
BENZO(G,H,I)PERYLENE	UG/L	0.22	U	
BENZO(K)FLUORANTHENE	UG/L	0.22	U	
BIS(2-CHLOROETHOXY)METHAN	UG/L	1.1	U	
BIS(2-CHLOROETHYL)ETHER	UG/L	0.22	U	
BIS(2-ETHYLHEXYL)PHTHALATE	UG/L	1.1	U	
BUTYL BENZYL PHTHALATE	UG/L	1.1	U	
CAPROLACTAM	UG/L	1.1	U	
CARBAZOLE	UG/L	0.22	U	
CHRYSENE	UG/L	0.22	U	
DIBENZO(A,H)ANTHRACENE	UG/L	0.22	U	770
DIBENZOFURAN	UG/L	1.1	U	
DIETHYL PHTHALATE	UG/L	1.1	U	
DIMETHYL PHTHALATE	UG/L	1.1	U	
DI-N-BUTYL PHTHALATE	UG/L	1.1	U	
DI-N-OCTYL PHTHALATE	UG/L	1.1	· U	
FLUORANTHENE	UG/L	0.22	U	-
FLUORENE	UG/L	0.22	Ų	
HEXACHLOROBENZENE	UG/L	0.22	U	
HEXACHLOROBUTADIENE	UG/L	0.22	U	
HEXACHLOROCYCLOPENTADIE	UG/L	1.1	U	
HEXACHLOROETHANE	UG/L	1.1	U	
INDENO(1,2,3-CD)PYRENE	UG/L	0.22	U	
ISOPHORONE	UG/L	1.1	U	
NAPHTHALENE	UG/L	0.22	U	
NITROBENZENE	UG/L	0.22	U	
N-NITROSO-DI-N-PROPYLAMINE	UG/L	0.22	U	
N-NITROSODIPHENYLAMINE	UG/L	0.22	U	
PENTACHLOROPHENOL	UG/L	1.1	U	
PHENANTHRENE	UG/L	0.13	J	Р
PHENOL	UG/L	0.22	U	
PYRENE	UG/L	0.22	U	

SDG: C7K020216 MEDIA: WATER DATA FRACTION: OS

nsample samp_date FMC 20DL

10/31/2007

lab_id

C7K020216009

qc_type Pct_Solids

DUP_OF:

NM

nsample samp_date

lab_id

qc_type

FMC 20DL 10/31/2007

C7K020216009

NM

Pct_Solids DUP_OF:

nsample

samp_date lab_id

FMC 22DL 10/31/2007

C7K020216010

NM

Pct_Solids DUP_OF:

qc_type

		·		
Parameter	units	Result	Val Qual	Qual Code
1,1-BIPHENYL	UG/L	0.99	U	
2,2'-OXYBIS(1-CHLOROPROPAN	UG/L	0.2	U	
2,4,5-TRICHLOROPHENOL	UG/L	0.99	U	
2,4,6-TRICHLOROPHENOL	UG/L	0.99	U	
2,4-DICHLOROPHENOL	UG/L	0.2	U	
2,4-DIMETHYLPHENOL	UG/L	0.99	Ü	
2,4-DINITROPHENOL	UG/L	5	U	
2,4-DINITROTOLUENE	UG/L	0.99	U	
2,6-DINITROTOLUENE	UG/L	0.99	U	
2-CHLORONAPHTHALENE	UG/L	0.2	U	
2-CHLOROPHENOL	UG/L	0.99	U	
2-METHYLNAPHTHALENE	UG/L	0.2	U	
2-METHYLPHENOL	UG/L	0.99	Ü	
2-NITROANILINE	UG/L	5	U	
2-NITROPHENOL	UG/L	0.99	U	
3,3'-DICHLOROBENZIDINE	UG/L	0.99	U	
3-NITROANILINE	UG/L	5	U	-
4,6-DINITRO-2-METHYLPHENOL	UG/L	5	Ü	-
4-BROMOPHENYL PHENYL ETH	UG/L	0.99	U	
4-CHLORO-3-METHYLPHENOL	UG/L	0.99	Ü	
4-CHLOROANILINE	UG/L	0.99	U	
4-CHLOROPHENYL PHENYL ETH	UG/L	0.99	U	-
4-METHYLPHENOL	UG/L	0.99	U	•
4-NITROANILINE	UG/L	5	U	
4-NITROPHENOL	UG/L	5	Ü	
ACENAPHTHENE	UG/L	0.2	U	
ACENAPHTHYLENE	UG/L	0.2	U	
ACETOPHENONE	UG/L	0.99	U	
ANTHRACENE	UG/L	0.2	U	
ATRAZINE	UG/L	0.99	U	
BENZALDEHYDE	UG/L	0.99	U	
BENZO(A)ANTHRACENE	UG/L	0.2	U	
BENZO(A)PYRENE	UG/L	0.2	U	

Parameter	units	Result	Val Qual	Qual Code
BENZO(B)FLUORANTHENE	UG/L	0.2	U	
BENZO(G,H,I)PERYLENE	UG/L	0.2	U	
BENZO(K)FLUORANTHENE	UG/L	0.2	U	
BIS(2-CHLOROETHOXY)METHAN	UG/L	0.99	U	*
BIS(2-CHLOROETHYL)ETHER	UG/L	0.2	U	
BIS(2-ETHYLHEXYL)PHTHALATE	UG/L	0.99	U	****
BUTYL BENZYL PHTHALATE	UG/L	0.99	U	
CAPROLACTAM	UG/L	0.99	U	
CARBAZOLE	UG/L	0.2	U	
CHRYSENE	UG/L	0.2	U	
DIBENZO(A,H)ANTHRACENE	UG/L	. 0.2	U	
DIBENZOFURAN	UG/L	0.99	U	
DIETHYL PHTHALATE	UG/L	0.99	U	
DIMETHYL PHTHALATE	UG/L	0.99	U	
DI-N-BUTYL PHTHALATE	UG/L	0.99	U	****
DI-N-OCTYL PHTHALATE	UG/L	0.99	U	
FLUORANTHENE	UG/L	0.2	U	~~
FLUORENE	UG/L	0.2	U	
HEXACHLOROBENZENE	UG/L	0.2	U	
HEXACHLOROBUTADIENE	UG/L	0.2	U	
HEXACHLOROCYCLOPENTADIE	UG/L	0.99	U	
HEXACHLOROETHANE	UG/L	0.99	U	
INDENO(1,2,3-CD)PYRENE	UG/L	0.2	U	
ISOPHORONE	UG/L	0.99	U	
NAPHTHALENE	UG/L	0.2	U	
NITROBENZENE	UG/L	0.2	U	
N-NITROSO-DI-N-PROPYLAMINE	UG/L	0.2	U	
N-NITROSODIPHENYLAMINE	UG/L	0.2	U	
PENTACHLOROPHENOL	UG/L	0.99	U	
PHENANTHRENE	UG/L	0.084	J	Р
PHENOL	UG/L	0.2	U	
PYRENE	UG/L	0.2	U	

1,1-BIPHENYL UG/L 0.96 U 2,2'-OXYBIS(1-CHLOROPROPAN) UG/L 0.19 U 2,4,5-TRICHLOROPHENOL UG/L 0.96 U 2,4,6-TRICHLOROPHENOL UG/L 0.96 U 2,4-DICHLOROPHENOL UG/L 0.19 U 2,4-DIMETHYLPHENOL UG/L 0.96 U 2,4-DINITROPHENOL UG/L 4.8 U 2,4-DINITROTOLUENE UG/L 0.96 U 2,6-DINITROTOLUENE UG/L 0.96 U 2-CHLORONAPHTHALENE UG/L 0.96 U 2-CHLOROPHENOL UG/L 0.96 U 2-METHYLNAPHTHALENE UG/L 0.96 U 2-METHYLPHENOL UG/L 0.96 U 2-NITROANILINE UG/L 0.96 U 3-NITROANILINE UG/L 0.96 U 3-NITROANILINE UG/L 4.8 U 4-BROMOPHENYL PHENYL ETH UG/L 0.96 U 4-CHLORO-3-METHYLPHENOL UG/L 0.96 U 4-CHLOROPHENYL PHENYL ETH	Parameter	units	Result	Val	Qual
2,2'-OXYBIS(1-CHLOROPROPAN UG/L 0.19 U 2,4,5-TRICHLOROPHENOL UG/L 0.96 U 2,4,6-TRICHLOROPHENOL UG/L 0.96 U 2,4-DICHLOROPHENOL UG/L 0.19 U 2,4-DIMETHYLPHENOL UG/L 0.96 U 2,4-DINITROPHENOL UG/L 0.96 U 2,4-DINITROPHENOL UG/L 0.96 U 2,4-DINITROTOLUENE UG/L 0.96 U 2,6-DINITROTOLUENE UG/L 0.96 U 2-CHLORONAPHTHALENE UG/L 0.19 U 2-CHLOROPHENOL UG/L 0.96 U 2-METHYLPHENOL UG/L 0.19 U 2-METHYLPHENOL UG/L 0.96 U 2-NITROANILINE UG/L 0.96 U 3,3'-DICHLOROBENZIDINE UG/L 0.96 U 3,3'-DICHLOROBENZIDINE UG/L 0.96 U 4.8 U 4,6-DINITRO-2-METHYLPHENOL UG/L 4.8 U 4,6-DINITRO-2-METHYLPHENOL UG/L 4.8 U 4-BROMOPHENYL PHENYL ETH UG/L 0.96 U 4-CHLORO-3-METHYLPHENOL UG/L 0.96 U 4-CHLORO-3-METHYLPHENOL UG/L 0.96 U 4-CHLOROPHENYL PHENYL ETH UG/L 0.96 U 4-CHLOROPHENYL PHENYL ETH UG/L 0.96 U 4-CHLOROPHENYL PHENYL ETH UG/L 0.96 U 4-CHLOROPHENYL PHENYL ETH UG/L 0.96 U 4-CHLOROPHENYL PHENYL ETH UG/L 0.96 U 4-CHLOROPHENYL PHENYL ETH UG/L 0.96 U 4-CHLOROPHENYL PHENYL ETH UG/L 0.96 U 4-CHLOROPHENYL PHENYL ETH UG/L 0.96 U 4-CHLOROPHENYL PHENYL ETH UG/L 0.96 U 4-CHLOROPHENYL PHENYL ETH UG/L 0.96 U 4-CHLOROPHENYL PHENYL ETH UG/L 0.96 U 4-CHLOROPHENYL PHENYL ETH UG/L 0.96 U 4-METHYLPHENOL UG/L 4.8 U	·			Qual	Code
2,4,5-TRICHLOROPHENOL UG/L 0.96 U 2,4,6-TRICHLOROPHENOL UG/L 0.96 U 2,4-DICHLOROPHENOL UG/L 0.19 U 2,4-DINITROPHENOL UG/L 0.96 U 2,4-DINITROPHENOL UG/L 0.96 U 2,4-DINITROTOLUENE UG/L 0.96 U 2,6-DINITROTOLUENE UG/L 0.96 U 2-CHLORONAPHTHALENE UG/L 0.96 U 2-CHLOROPHENOL UG/L 0.96 U 2-METHYLNAPHTHALENE UG/L 0.96 U 2-METHYLPHENOL UG/L 0.96 U 2-NITROANILINE UG/L 0.96 U 3,3'-DICHLOROBENZIDINE UG/L 0.96 U 3-NITROANILINE UG/L 4.8 U 4,6-DINITRO-2-METHYLPHENOL UG/L 4.8 U 4-BROMOPHENYL PHENYL ETH UG/L 0.96 U 4-CHLORO-3-METHYLPHENOL UG/L 0.96 U 4-CHLOROPHENYL PHENYL ETH UG/L 0.96 U 4-CHLOROPHENYL PH	1,1-BIPHENYL	UG/L	0.96	Ū	
2,4,6-TRICHLOROPHENOL UG/L 0.96 U 2,4-DICHLOROPHENOL UG/L 0.19 U 2,4-DIMETHYLPHENOL UG/L 0.96 U 2,4-DINITROPHENOL UG/L 4.8 U 2,4-DINITROTOLUENE UG/L 0.96 U 2,6-DINITROTOLUENE UG/L 0.96 U 2-CHLORONAPHTHALENE UG/L 0.19 U 2-CHLOROPHENOL UG/L 0.96 U 2-METHYLNAPHTHALENE UG/L 0.96 U 2-METHYLPHENOL UG/L 0.96 U 2-NITROANILINE UG/L 0.96 U 3,3'-DICHLOROBENZIDINE UG/L 0.96 U 3,-NITROANILINE UG/L 4.8 U 4,6-DINITRO-2-METHYLPHENOL UG/L 4.8 U 4-BROMOPHENYL PHENYL ETH UG/L 0.96 U 4-CHLORO-3-METHYLPHENOL UG/L 0.96 U 4-CHLOROPHENYL PHENYL ETH UG/L 0.96 U 4-CHLOROPHENYL PHENYL ETH UG/L 0.96 U 4-METHYLPHEN	2,2'-OXYBIS(1-CHLOROPROPAN	UG/L	0.19	U	
2,4-DICHLOROPHENOL UG/L 0.19 U 2,4-DIMETHYLPHENOL UG/L 0.96 U 2,4-DINITROPHENOL UG/L 4.8 U 2,4-DINITROTOLUENE UG/L 0.96 U 2,6-DINITROTOLUENE UG/L 0.96 U 2,6-DINITROTOLUENE UG/L 0.96 U 2-CHLORONAPHTHALENE UG/L 0.96 U 2-CHLOROPHENOL UG/L 0.96 U 2-METHYLPHENOL UG/L 0.96 U 2-NITROANILINE UG/L 4.8 U 2-NITROPHENOL UG/L 0.96 U 3,3'-DICHLOROBENZIDINE UG/L 0.96 U 3-NITROANILINE UG/L 4.8 U 4,6-DINITRO-2-METHYLPHENOL UG/L 4.8 U 4-BROMOPHENYL PHENYL ETH UG/L 0.96 U 4-CHLORO-3-METHYLPHENOL UG/L 0.96 U 4-CHLOROPHENYL PHENYL ETH UG/L 0.96 U 4-CHLOROPHENYL PHENYL ETH UG/L 0.96 U 4-METHYLPHENOL	2,4,5-TRICHLOROPHENOL	UG/L	0.96	U	
2,4-DIMETHYLPHENOL UG/L 0.96 U 2,4-DINITROPHENOL UG/L 4.8 U 2,4-DINITROTOLUENE UG/L 0.96 U 2,6-DINITROTOLUENE UG/L 0.96 U 2-CHLORONAPHTHALENE UG/L 0.19 U 2-CHLOROPHENOL UG/L 0.96 U 2-METHYLNAPHTHALENE UG/L 0.96 U 2-METHYLPHENOL UG/L 0.96 U 2-NITROANILINE UG/L 4.8 U 2-NITROPHENOL UG/L 0.96 U 3-NITROANILINE UG/L 0.96 U 4-6-DINITRO-2-METHYLPHENOL UG/L 4.8 U 4-BROMOPHENYL PHENYL ETH UG/L 0.96 U 4-CHLORO-3-METHYLPHENOL UG/L 0.96 U 4-CHLOROANILINE UG/L 0.96 U 4-CHLOROPHENYL PHENYL ETH UG/L 0.96 U 4-METHYLPHENOL UG/L 0.96 U 4-METHYLPHENOL UG/L 0.96 U 4-METHYLPHENOL UG/L	2,4,6-TRICHLOROPHENOL	UG/L	0.96	U	
2,4-DINITROPHENOL UG/L 4.8 U 2,4-DINITROTOLUENE UG/L 0.96 U 2,6-DINITROTOLUENE UG/L 0.96 U 2-CHLORONAPHTHALENE UG/L 0.19 U 2-CHLOROPHENOL UG/L 0.96 U 2-METHYLNAPHTHALENE UG/L 0.96 U 2-METHYLPHENOL UG/L 0.96 U 2-MITROANILINE UG/L 4.8 U 2-NITROPHENOL UG/L 0.96 U 3,3'-DICHLOROBENZIDINE UG/L 0.96 U 3-NITROANILINE UG/L 4.8 U 4,6-DINITRO-2-METHYLPHENOL UG/L 4.8 U 4-BROMOPHENYL PHENYL ETH UG/L 0.96 U 4-CHLORO-3-METHYLPHENOL UG/L 0.96 U 4-CHLOROPHENYL PHENYL ETH UG/L 0.96 U 4-CHLOROPHENYL PHENYL ETH UG/L 0.96 U 4-METHYLPHENOL UG/L 0.96 U 4-METHYLPHENOL UG/L 4.8 U	2,4-DICHLOROPHENOL	UG/L	0.19	U	
2,4-DINITROTOLUENE	2,4-DIMETHYLPHENOL	UG/L	0.96	U	
2,6-DINITROTOLUENE UG/L 0.96 U 2-CHLORONAPHTHALENE UG/L 0.19 U 2-CHLOROPHENOL UG/L 0.96 U 2-METHYLNAPHTHALENE UG/L 0.19 U 2-METHYLPHENOL UG/L 0.96 U 2-NITROANILINE UG/L 4.8 U 2-NITROPHENOL UG/L 0.96 U 3,3'-DICHLOROBENZIDINE UG/L 0.96 U 3-NITROANILINE UG/L 4.8 U 4,6-DINITRO-2-METHYLPHENOL UG/L 4.8 U 4-BROMOPHENYL PHENYL ETH UG/L 0.96 U 4-CHLORO-3-METHYLPHENOL UG/L 0.96 U 4-CHLOROANILINE UG/L 0.96 U 4-CHLOROPHENYL PHENYL ETH UG/L 0.96 U 4-CHLOROPHENYL PHENYL ETH UG/L 0.96 U 4-METHYLPHENOL UG/L 0.96 U 4-NITROANILINE UG/L 4.8 U	2,4-DINITROPHENOL	UG/L	4.8	U	
2-CHLORONAPHTHALENE UG/L 0.19 U 2-CHLOROPHENOL UG/L 0.96 U 2-METHYLNAPHTHALENE UG/L 0.19 U 2-METHYLPHENOL UG/L 0.96 U 2-NITROANILINE UG/L 4.8 U 2-NITROPHENOL UG/L 0.96 U 3,3'-DICHLOROBENZIDINE UG/L 0.96 U 3-NITROANILINE UG/L 4.8 U 4,6-DINITRO-2-METHYLPHENOL UG/L 4.8 U 4-BROMOPHENYL PHENYL ETH UG/L 0.96 U 4-CHLORO-3-METHYLPHENOL UG/L 0.96 U 4-CHLOROANILINE UG/L 0.96 U 4-CHLOROPHENYL PHENYL ETH UG/L 0.96 U 4-CHLOROPHENYL PHENYL ETH UG/L 0.96 U 4-CHLOROPHENYL PHENYL ETH UG/L 0.96 U 4-CHLOROPHENYL PHENYL ETH UG/L 0.96 U 4-METHYLPHENOL UG/L 0.96 U 4-METHYLPHENOL UG/L 0.96 U 4-METHYLPHENOL UG/L 0.96 U	2,4-DINITROTOLUENE	UG/L	0.96	U	
2-CHLOROPHENOL UG/L 0.96 U 2-METHYLNAPHTHALENE UG/L 0.19 U 2-METHYLPHENOL UG/L 0.96 U 2-NITROANILINE UG/L 4.8 U 2-NITROPHENOL UG/L 0.96 U 3,3'-DICHLOROBENZIDINE UG/L 0.96 U 3-NITROANILINE UG/L 4.8 U 4,6-DINITRO-2-METHYLPHENOL UG/L 4.8 U 4-BROMOPHENYL PHENYL ETH UG/L 0.96 U 4-CHLORO-3-METHYLPHENOL UG/L 0.96 U 4-CHLOROANILINE UG/L 0.96 U 4-CHLOROPHENYL PHENYL ETH UG/L 0.96 U 4-CHLOROPHENYL PHENYL ETH UG/L 0.96 U 4-CHLOROPHENYL PHENYL ETH UG/L 0.96 U 4-METHYLPHENOL UG/L 0.96 U 4-METHYLPHENOL UG/L 0.96 U 4-METHYLPHENOL UG/L 0.96 U	2,6-DINITROTOLUENE	UG/L	0.96	U	
2-METHYLNAPHTHALENE UG/L 0.19 U 2-METHYLPHENOL UG/L 0.96 U 2-NITROANILINE UG/L 4.8 U 2-NITROPHENOL UG/L 0.96 U 3,3'-DICHLOROBENZIDINE UG/L 0.96 U 3-NITROANILINE UG/L 4.8 U 4-6-DINITRO-2-METHYLPHENOL UG/L 4.8 U 4-BROMOPHENYL PHENYL ETH UG/L 0.96 U 4-CHLORO-3-METHYLPHENOL UG/L 0.96 U 4-CHLOROANILINE UG/L 0.96 U 4-CHLOROANILINE UG/L 0.96 U 4-CHLOROPHENYL PHENYL ETH UG/L 0.96 U 4-CHLOROPHENYL PHENYL ETH UG/L 0.96 U 4-METHYLPHENOL UG/L 0.96 U 4-METHYLPHENOL UG/L 0.96 U	2-CHLORONAPHTHALENE	UG/L	0.19	U	
2-METHYLPHENOL	2-CHLOROPHENOL	UG/L	0.96	U	
2-NITROANILINE	2-METHYLNAPHTHALENE	UG/L	0.19	U	
2-NITROPHENOL UG/L 0.96 U 3,3'-DICHLOROBENZIDINE UG/L 0.96 U 3-NITROANILINE UG/L 4.8 U 4,6-DINITRO-2-METHYLPHENOL UG/L 4.8 U 4-BROMOPHENYL PHENYL ETH UG/L 0.96 U 4-CHLORO-3-METHYLPHENOL UG/L 0.96 U 4-CHLOROANILINE UG/L 0.96 U 4-CHLOROPHENYL PHENYL ETH UG/L 0.96 U 4-CHLOROPHENYL PHENYL ETH UG/L 0.96 U 4-METHYLPHENOL UG/L 0.96 U 4-METHYLPHENOL UG/L 4.8 U	2-METHYLPHENOL	UG/L	0.96	U	
3,3'-DICHLOROBENZIDINE UG/L 0.96 U 3-NITROANILINE UG/L 4.8 U 4,6-DINITRO-2-METHYLPHENOL UG/L 4.8 U 4-BROMOPHENYL PHENYL ETH UG/L 0.96 U 4-CHLORO-3-METHYLPHENOL UG/L 0.96 U 4-CHLOROANILINE UG/L 0.96 U 4-CHLOROPHENYL PHENYL ETH UG/L 0.96 U 4-CHLOROPHENYL PHENYL ETH UG/L 0.96 U 4-METHYLPHENOL UG/L 0.96 U 4-NITROANILINE UG/L 4.8 U	2-NITROANILINE	UG/L	4.8	U	
3-NITROANILINE	2-NITROPHENOL	UG/L	0.96	U	*
4,6-DINITRO-2-METHYLPHENOL UG/L 4.8 U 4-BROMOPHENYL PHENYL ETH UG/L 0.96 U 4-CHLORO-3-METHYLPHENOL UG/L 0.96 U 4-CHLOROANILINE UG/L 0.96 U 4-CHLOROPHENYL PHENYL ETH UG/L 0.96 U 4-METHYLPHENOL UG/L 0.96 U 4-MITROANILINE UG/L 4.8 U	3,3'-DICHLOROBENZIDINE	UG/L	0.96	U	
4-BROMOPHENYL PHENYL ETH UG/L 0.96 U 4-CHLORO-3-METHYLPHENOL UG/L 0.96 U 4-CHLOROANILINE UG/L 0.96 U 4-CHLOROPHENYL PHENYL ETH UG/L 0.96 U 4-METHYLPHENOL UG/L 0.96 U 4-NITROANILINE UG/L 4.8 U	3-NITROANILINE	UG/L	4.8	U	
4-CHLORO-3-METHYLPHENOL UG/L 0.96 U 4-CHLOROANILINE UG/L 0.96 U 4-CHLOROPHENYL PHENYL ETH UG/L 0.96 U 4-METHYLPHENOL UG/L 0.96 U 4-NITROANILINE UG/L 4.8 U	4,6-DINITRO-2-METHYLPHENOL	UG/L	4.8	U	
4-CHLOROANILINE UG/L 0.96 U 4-CHLOROPHENYL PHENYL ETH UG/L 0.96 U 4-METHYLPHENOL UG/L 0.96 U 4-NITROANILINE UG/L 4.8 U	4-BROMOPHENYL PHENYL ETH	UG/L	0.96	U	
4-CHLOROPHENYL PHENYL ETH UG/L 0.96 U 4-METHYLPHENOL UG/L 0.96 U 4-NITROANILINE UG/L 4.8 U	4-CHLORO-3-METHYLPHENOL	UG/L	0.96	U	
4-METHYLPHENOL UG/L 0.96 U 4-NITROANILINE UG/L 4.8 U	4-CHLOROANILINE	UG/L	0.96	U	
4-NITROANILINE UG/L 4.8 U	4-CHLOROPHENYL PHENYL ETH	UG/L	0.96	U	· ·
0.0.2 1.0	4-METHYLPHENOL	UG/L	0.96	U	
4-NITROPHENOL LIG/L 4.8 LI	4-NITROANILINE	UG/L	4.8	U	
	4-NITROPHENOL	UG/L	4.8	U	
ACENAPHTHENE UG/L 0.19 U	ACENAPHTHENE	UG/L	0.19	U	
ACENAPHTHYLENE UG/L 0.19 U	ACENAPHTHYLENE	UG/L	0.19	U	
ACETOPHENONE UG/L 0.96 U	ACETOPHENONE	UG/L	0.96	U	
ANTHRACENE UG/L 0.19 U	ANTHRACENE	UG/L	0.19		
ATRAZINE UG/L 0.96 U	ATRAZINE	UG/L			
BENZALDEHYDE UG/L 0.96 U	BENZALDEHYDE	UG/L			
DENIZO(A) ANTI-LIDA CENTE	BENZO(A)ANTHRACENE				P
		UG/L			P

SDG: C7K020216 MEDIA: WATER DATA FRACTION: OS

nsample samp_date FMC 22DL

10/31/2007

lab_id

C7K020216010

qc_type

NM

Pct_Solids DUP_OF:

nsample samp_date FMC 24DL

10/30/2007 C7K020216001

NM

nsample samp_date lab_id

FMC 24DL 10/30/2007

C7K020216001

NM

qc_type Pct_Solids DUP_OF:

Pct_Solids

lab_id

qc_type

DUP_OF:

Parameter	units	Result	Val Qual	Qual Code
BENZO(B)FLUORANTHENE	UG/L	0.11	J	Р
BENZO(G,H,I)PERYLENE	UG/L	0.26		*****
BENZO(K)FLUORANTHENE	UG/L	0.2		
BIS(2-CHLOROETHOXY)METHAN	UG/L	0.96	U	
BIS(2-CHLOROETHYL)ETHER	UG/L	0.19	U	
BIS(2-ETHYLHEXYL)PHTHALATE	UG/L	0.96	U	
BUTYL BENZYL PHTHALATE	UG/L	0.96	U	
CAPROLACTAM	UG/L	0.96	U	
CARBAZOLE	UG/L	0.19	U	
CHRYSENE	UG/L	0.16	J	Р
DIBENZO(A,H)ANTHRACENE	UG/L	0.27	Ť	u.s
DIBENZOFURAN	UG/L	0.96	U	
DIETHYL PHTHALATE	UG/L	0.96	U	
DIMETHYL PHTHALATE	UG/L	0.96	U	
DI-N-BUTYL PHTHALATE	UG/L	0.96	U	
DI-N-OCTYL PHTHALATE	UG/L	0.96	U	
FLUORANTHENE	UG/L	0.19	Ū	***
FLUORENE	UG/L	0.19	U	
HEXACHLOROBENZENE	UG/L	0.19	U	
HEXACHLOROBUTADIENE	UG/L	0.19	U	
HEXACHLOROCYCLOPENTADIE	UG/L	0.96	U	
HEXACHLOROETHANE	UG/L	0.96	U	
INDENO(1,2,3-CD)PYRENE	UG/L	0.22		,
ISOPHORONE	UG/L	0.96	U	
NAPHTHALENE	UG/L	0.19	U	
NITROBENZENE	UG/L	0.19	U	
N-NITROSO-DI-N-PROPYLAMINE	UG/L	0.19	U	
N-NITROSODIPHENYLAMINE	UG/L	0.19	U	
PENTACHLOROPHENOL	UG/L	0.96	U	
PHENANTHRENE	UG/L	0.19	U	
PHENOL	UG/L	0.19	U	
PYRENE	UG/L	0.19	U	

Parameter	units	Result	Val Qual	Qual Code
1,1-BIPHENYL	UG/L	1.2	Ú	
2,2'-OXYBIS(1-CHLOROPROPAN	UG/L	0.24	U	
2,4,5-TRICHLOROPHENOL	UG/L	1.2	U	
2,4,6-TRICHLOROPHENOL	UG/L	1.2	U	
2,4-DICHLOROPHENOL	UG/L	0.24	U	
2,4-DIMETHYLPHENOL	UG/L	1.2	U	
2,4-DINITROPHENOL	UG/L	6	Ū	
2,4-DINITROTOLUENE	UG/L	1.2	Ü	
2,6-DINITROTOLUENE	UG/L	1.2	U	
2-CHLORONAPHTHALENE	UG/L	0.24	U	
2-CHLOROPHENOL	UG/L	1.2	U	
2-METHYLNAPHTHALENE	UG/L	0.24	U	
2-METHYLPHENOL	UG/L	1.2	U	
2-NITROANILINE	UG/L	6	U	
2-NITROPHENOL	UG/L	1.2	U	
3,3'-DICHLOROBENZIDINE	UG/L	1.2	U	
3-NITROANILINE	UG/L	6	Ü	
4,6-DINITRO-2-METHYLPHENOL	UG/L	6	U	
4-BROMOPHENYL PHENYL ETH	UG/L	1.2	U	
4-CHLORO-3-METHYLPHENOL	UG/L	1.2	U	
4-CHLOROANILINE	UG/L	1.2	U	
4-CHLOROPHENYL PHENYL ETH	UG/L	1.2	Ų	
4-METHYLPHENOL	UG/L	1.2	U	
4-NITROANILINE	UG/L	6	Ū	
4-NITROPHENOL	UG/L	6	U	
ACENAPHTHENE	UG/L	0.24	U	
ACENAPHTHYLENE	UG/L	0.24	U	
ACETOPHENONE	UG/L	1.2	U	
ANTHRACENE	UG/L	0.24	U	
ATRAZINE	UG/L	1.2	U	
BENZALDEHYDE	UG/L.	1.2	U	
BENZO(A)ANTHRACENE	UG/L	0.24	U	
BENZO(A)PYRENE	UG/L	0.24	U	

Parameter	units	Result	Val Qual	Qual Code
BENZO(B)FLUORANTHENE	UG/L	0.24	U	
BENZO(G,H,I)PERYLENE	UG/L	0.24	U	
BENZO(K)FLUORANTHENE	UG/L	0.24	U	
BIS(2-CHLOROETHOXY)METHAN	UG/L	1.2	U	
BIS(2-CHLOROETHYL)ETHER	UG/L	0.24	U	
BIS(2-ETHYLHEXYL)PHTHALATE	UG/L	0.5	J	Р
BUTYL BENZYL PHTHALATE	UG/L	0.37	J	Р
CAPROLACTAM	UG/L	1.2	U	
CARBAZOLE	UG/L	0.24	U	
CHRYSENE	UG/L	0.24	U	
DIBENZO(A,H)ANTHRACENE	UG/L	0.24	U	
DIBENZOFURAN	UG/L	1.2	U	
DIETHYL PHTHALATE	UG/L	1.2	U	
DIMETHYL PHTHALATE	UG/L	1.2	U	
DI-N-BUTYL PHTHALATE	UG/L	1.2	U	
DI-N-OCTYL PHTHALATE	UG/L	1.2	. U	,
FLUORANTHENE	UG/L	0.24	Ũ	-
FLUORENE	UG/L	0.24	U	
HEXACHLOROBENZENE	UG/L	0.24	U	
HEXACHLOROBUTADIENE	UG/L	0.24	U	
HEXACHLOROCYCLOPENTADIE	UG/L	1.2	U	
HEXACHLOROETHANE	UG/L	1.2	U	
NDENO(1,2,3-CD)PYRENE	UG/L	0.24	U	
SOPHORONE	UG/L	1.2	U	
NAPHTHALENE	UG/L	0.24	U	
NITROBENZENE	UG/L	0.24	Ú	
N-NITROSO-DI-N-PROPYLAMINE	UG/L	0.24	U	
N-NITROSODIPHENYLAMINE	UG/L	0.24	U	
PENTACHLOROPHENOL	UG/L	1.2	U	
PHENANTHRENE	UG/L	0.24	Ű	
PHENOL	UG/L	0.24	U	
PYRENE	UG/L	0.24	U	

SDG: C7K020216 MEDIA: WATER DATA FRACTION: OS

nsample

FMC 25DL

11/1/2007

samp_date lab_id C7K020216014

qc_type

NM

samp_date lab_id

FMC 25DL 11/1/2007

NM

C7K020216014

qc_type Pct_Solids DUP_OF:

nsample

nsample

samp_date lab_id

FMC 26DL

11/1/2007 C7K020216015

NM

qc_type Pct_Solids DUP_OF:

Pct_Solids DUP_OF:

Parameter	units	Result	Val Qual	Qual Code
1,1-BIPHENYL	UG/L	0.96	U	
2,2'-OXYBIS(1-CHLOROPROPAN	UG/L	0.19	U	
2,4,5-TRICHLOROPHENOL	UG/L	0.96	U	
2,4,6-TRICHLOROPHENOL	UG/L	0.96	U	
2,4-DICHLOROPHENOL	UG/L	0.19	,U	
2,4-DIMETHYLPHENOL	UG/L	0.96	U	
2,4-DINITROPHENOL	UG/L	4.8	٠U	
2,4-DINITROTOLUENE	UG/L	0.96	U	
2,6-DINITROTOLUENE	UG/L	0.96	U	
2-CHLORONAPHTHALENE	UG/L	0.19	U	
2-CHLOROPHENOL	UG/L	0.96	U	
2-METHYLNAPHTHALENE	UG/L	0.19	U	
2-METHYLPHENOL	UG/L	0.96	U	
2-NITROANILINE	UG/L	4.8	U	
2-NITROPHENOL	UG/L	0.96	U	
3,3'-DICHLOROBENZIDINE	UG/L	0.96	U	
3-NITROANILINE	UG/L	4.8	U	
4,6-DINITRO-2-METHYLPHENOL	UG/L	4.8	U	
4-BROMOPHENYL PHENYL ETH	UG/L	0.96	U	
4-CHLORO-3-METHYLPHENOL	UG/L	0.96	U	
4-CHLOROANILINE	UG/L	0.96	U	
4-CHLOROPHENYL PHENYL ETH	UG/L	0.96	U	
4-METHYLPHENOL	UG/L	0.96	U	
4-NITROANILINE	UG/L	4.8	U	
4-NITROPHENOL	UG/L	4.8	U	
ACENAPHTHENE	UG/L	0.19	U	
ACENAPHTHYLENE	UG/L	0.19	U	
ACETOPHENONE	UG/L	0.96	U	
ANTHRACENE	UG/L	0.19	IJ	
ATRAZINE	UG/L	0.96	U	
BENZALDEHYDE	UG/L	0.96	U	
BENZO(A)ANTHRACENE	UG/L	0.19	U	
BENZO(A)PYRENE	UG/L	0.19	Ü	

Parameter	units	Result	Val Qual	Qual Code
BENZO(B)FLUORANTHENE	UG/L	0.19	U	
BENZO(G,H,I)PERYLENE	UG/L	0.19	U	
BENZO(K)FLUORANTHENE	UG/L	0.19	U	
BIS(2-CHLOROETHOXY)METHAN	UG/L	0.96	U	
BIS(2-CHLOROETHYL)ETHER	UG/L	0.19	U	
BIS(2-ETHYLHEXYL)PHTHALATE	UG/L	0.96	U	
BUTYL BENZYL PHTHALATE	UG/L	0.15	J	Р
CAPROLACTAM	UG/L	0.96	U	
CARBAZOLE	UG/L	0.19	U	
CHRYSENE	UG/L	0.19	U	
DIBENZO(A,H)ANTHRACENE	UG/L	0.19	U	
DIBENZOFURAN	UG/L	0.96	U	
DIETHYL PHTHALATE	UG/L	0.38	· J	Р
DIMETHYL PHTHALATE	UG/L	0.96	U	
DI-N-BUTYL PHTHALATE	UG/L	0.96	U	
DI-N-OCTYL PHTHALATE	UG/L	0.96	U	
FLUORANTHENE	UG/L	0.19	U	
FLUORENE	UG/L	0.19	U	
HEXACHLOROBENZENE	UG/L	0.19	U	
HEXACHLOROBUTADIENE	UG/L	0.19	U	
HEXACHLOROCYCLOPENTADIE	UG/L	0.96	U	
HEXACHLOROETHANE	UG/L	0.96	U	
INDENO(1,2,3-CD)PYRENE	UG/L	0.19	U	
ISOPHORONE	UG/L	0.96	U	
NAPHTHALENE	UG/L	0.19	U	
NITROBENZENE	UG/L	0.19	U	
N-NITROSO-DI-N-PROPYLAMINE	UG/L	0.19	U	
N-NITROSODIPHENYLAMINE	UG/L	0.19	U	
PENTACHLOROPHENOL	UG/L	0.96	U	
PHENANTHRENE	UG/L	0.078	J	Р
PHENOL	UG/L	0.19	U	
PYRENE	UG/L	0.19	U	

Parameter	units	Result	Val	Qual
			Qual	Code
1,1-BIPHENYL	UG/L	0.96	U	
2,2'-OXYBIS(1-CHLOROPROPAN	UG/L	0.19	U	
2,4,5-TRICHLOROPHENOL	UG/L	0.96	U	
2,4,6-TRICHLOROPHENOL	UG/L	0.96	U	
2,4-DICHLOROPHENOL	UG/L	0.19	U	
2,4-DIMETHYLPHENOL	UG/L	0.96	U	
2,4-DINITROPHENOL	UG/L	4.8	U	
2,4-DINITROTOLUENE	UG/L	0.96	U	
2,6-DINITROTOLUENE	UG/L	0.96	U	
2-CHLORONAPHTHALENE	UG/L	0.19	U	
2-CHLOROPHENOL	UG/L	0.96	Ü	
2-METHYLNAPHTHALENE	UG/L	0.19	U	
2-METHYLPHENOL	UG/L	0.96	U	
2-NITROANILINE	UG/L	4.8	U	
2-NITROPHENOL	UG/L	0.96	U	
3,3'-DICHLOROBENZIDINE	UG/L	0.96	U	
3-NITROANILINE	UG/L	4.8	U	
4,6-DINITRO-2-METHYLPHENOL	UG/L	4.8	U	
4-BROMOPHENYL PHENYL ETH	UG/L	0.96	U	
4-CHLORO-3-METHYLPHENOL	UG/L	0.96	U	
4-CHLOROANILINE	UG/L	0.96	U	
4-CHLOROPHENYL PHENYL ETH	UG/L	0.96	U	
4-METHYLPHENOL	UG/L	0.96	U	
4-NITROANILINE	UG/L	4.8	U	
4-NITROPHENOL	UG/L	4.8	U	
ACENAPHTHENE	UG/L	0.19	U	
ACENAPHTHYLENE	UG/L	0.19	U	
ACETOPHENONE	UG/L	0.96	U	
ANTHRACENE	UG/L	0.19	U	
ATRAZINE	UG/L	0.96	U	
BENZALDEHYDE	UG/L	0.96	U	
BENZO(A)ANTHRACENE	UG/L	0.19	Ū	
BENZO(A)PYRENE	UG/L	0.19	U	
• / • • • • • • •	_			

SDG: C7K020216 MEDIA: WATER DATA FRACTION: OS

nsample samp_date FMC 26DL

11/1/2007 C7K020216015

lab_id qc_type

NM

Pct_Solids DUP_OF:

nsample samp_date

lab_id

qc_type

DUP_OF:

FMC 3DL

10/31/2007

C7K020216011

Pct_Solids

NM

nsample samp_date

lab_id

FMC 3DL

10/31/2007

C7K020216011

NM

qc_type Pct_Solids

DUP_OF:

				···
Parameter	units	Result	Val Qual	Qual Code
BENZO(B)FLUORANTHENE	UG/L	0.19	U	
BENZO(G,H,I)PERYLENE	UG/L	0.19	U	
BENZO(K)FLUORANTHENE	UG/L	0.19	Ũ	
BIS(2-CHLOROETHOXY)METHAN	UG/L	0.96	U	
BIS(2-CHLOROETHYL)ETHER	UG/L	0.19	Ū	
BIS(2-ETHYLHEXYL)PHTHALATE	UG/L	0.96	U	
BUTYL BENZYL PHTHALATE	UG/L	0.96	U	
CAPROLACTAM	UG/L	0.96	U	
CARBAZOLE	UG/L	0.19	Ū	
CHRYSENE	UG/L	0.19	U	
DIBENZO(A,H)ANTHRACENE	UG/L	0.19	U	,
DIBENZOFURAN	UG/L	0.96	U	
DIETHYL PHTHALATE	UG/L	0.96	U	
DIMETHYL PHTHALATE	UG/L	0.96	U	
DI-N-BUTYL PHTHALATE	UG/L	0.96	U	***
DI-N-OCTYL PHTHALATE	UG/L	0.96	U	
FLUORANTHENE	UG/L	0.19	U	
FLUORENE	UG/L	0.19	U	
HEXACHLOROBENZENE	UG/L	0.19	U	
HEXACHLOROBUTADIENE	UG/L	0.19	U	
HEXACHLOROCYCLOPENTADIE	UG/L	0.96	U	
HEXACHLOROETHANE	UG/L	0.96	U	
INDENO(1,2,3-CD)PYRENE	UG/L	0.19	U	
ISOPHORONE	UG/L	0.96	U	
NAPHTHALENE	UG/L	0.19	U	
NITROBENZENE	UG/L	0.19	U	
N-NITROSO-DI-N-PROPYLAMINE	UG/L	0.19	Ü	
N-NITROSODIPHENYLAMINE	UG/L	0.19	U	
PENTACHLOROPHENOL	UG/L	0.96	U	•
PHENANTHRENE	UG/L	0.19	Ü	
PHENOL	UG/L	0.19	U	
PYRENE	UG/L	0.19	U	

Parameter	units	Result	Val Qual	Quai Code
1,1-BIPHENYL	UG/L	0.98	U	
2,2'-OXYBIS(1-CHLOROPROPAN	UG/L	0.2	U	
2,4,5-TRICHLOROPHENOL	UG/L	0.98	U	
2,4,6-TRICHLOROPHENOL	UG/L	0.98	U	-
2,4-DICHLOROPHENOL	UG/L	0.2	U	
2,4-DIMETHYLPHENOL	UG/L	0.98	U	
2,4-DINITROPHENOL	UG/L	4.9	U	
2,4-DINITROTOLUENE	UG/L	0.98	U	
2,6-DINITROTOLUENE	UG/L	0.98	U	
2-CHLORONAPHTHALENE .	UG/L	0.2	U	
2-CHLOROPHENOL	UG/L	0.98	U	
2-METHYLNAPHTHALENE	UG/L	0.2	U	
2-METHYLPHENOL	UG/L	0.98	U	
2-NITROANILINE	UG/L	4.9	U	
2-NITROPHENOL	UG/L	0.98	U	
3,3'-DICHLOROBENZIDINE	UG/L	0.98	U	
3-NITROANILINE	UG/L	4.9	U	
4,6-DINITRO-2-METHYLPHENOL	UG/L	4.9	U	
4-BROMOPHENYL PHENYL ETH	UG/L	0.98	U	
4-CHLORO-3-METHYLPHENOL	UG/L	0.98	U	
4-CHLOROANILINE	.UG/L	0.98	U	
4-CHLOROPHENYL PHENYL ETH	UG/L	0.98	U	
4-METHYLPHENOL	UG/L	0.98	U	
4-NITROANILINE	UG/L	4.9	U	
4-NITROPHENOL	UG/L	4.9	U	
ACENAPHTHENE	UG/L	0.2	U	
ACENAPHTHYLENE	UG/L	0.2	U	
ACETOPHENONE	UG/L	0.98	Ū	
ANTHRACENE	UG/L	0.2	U	
ATRAZINE	UG/L	0.98	U	
BENZALDEHYDE	UG/L	0.98	U	
BENZO(A)ANTHRACENE	UG/L	0.2	U	
BENZO(A)PYRENE	.UG/L	0.2	Ū	

Parameter	units	Result	Val Qual	Qual Code
BENZO(B)FLUORANTHENE	UG/L	0.2	U	
BENZO(G,H,I)PERYLENE	UG/L	0.2	U	
BENZO(K)FLUORANTHENE	UG/L	0.2	U	
BIS(2-CHLOROETHOXY)METHAN	UG/L	0.98	U	
BIS(2-CHLOROETHYL)ETHER	UG/L	0.2	U	
BIS(2-ETHYLHEXYL)PHTHALATE	UG/L	0.23	J	Р
BUTYL BENZYL PHTHALATE	UG/L	0.98	U	*****
CAPROLACTAM	UG/L	0.98	U	
CARBAZOLE	UG/L	0.2	U	
CHRYSENE	UG/L	0.2	U	
DIBENZO(A,H)ANTHRACENE	UG/L	0.2	U	
DIBENZOFURAN	UG/L	0.98	U	
DIETHYL PHTHALATE	UG/L	0.98	U	
DIMETHYL PHTHALATE	UG/L	0.98	U	
DI-N-BUTYL PHTHALATE	UG/L	0.98	U	
DI-N-OCTYL PHTHALATE	UG/L	0.98	U	-,-
FLUORANTHENE	UG/L	0.2	U	
FLUORENE	UG/L	0.2	U	
HEXACHLOROBENZENE	UG/L	0.2	U	
HEXACHLOROBUTADIENE	UG/L	0.2	U	
HEXACHLOROCYCLOPENTADIE	UG/L	0.98	U	
HEXACHLOROETHANE	UG/L	0.98	U	
INDENO(1,2,3-CD)PYRENE	UG/L	0.2	U	
ISOPHORONE	UG/L	0.98	U	
NAPHTHALENE	UG/L	0.2	U	
NITROBENZENE	UG/L	0.2	U	
N-NITROSO-DI-N-PROPYLAMINE	UG/L	0.2	U	
N-NITROSODIPHENYLAMINE	UG/L	0.2	U	
PENTACHLOROPHENOL	UG/L	0.98	U	
PHENANTHRENE	UG/L	0.069	J	Р
PHENOL	UG/L	0.2	U	
PYRENE	UG/L	0.2	U	
			,	

SDG: C7K020216 MEDIA: WATER DATA FRACTION: OS

nsample

FMC 5DL

samp_date lab_id 10/31/2007

qc_type

C7K020216012 NM

_type

Pct_Solids DUP_OF: nsample samp_date

lab_id

DUP_OF:

FMC 5DL 10/31/2007

10/31/2007 C7K020216012

qc_type Pct_Solids NM

020210012

nsample samp_date lab_id qc_type FMC 7DL

10/31/2007 C7K020216013

NM

F

Pct_Solids DUP_OF:

Parameter	units	Result	Val Qual	Qual Code
1,1-BIPHENYL	UG/L	0.96	U	
2,2'-OXYBIS(1-CHLOROPROPAN	UG/L	0.19	U	
2,4,5-TRICHLOROPHENOL	UG/L	0.96	U	
2,4,6-TRICHLOROPHENOL	UG/L	0.96	U	
2,4-DICHLOROPHENOL	UG/L	0.19	U	
2,4-DIMETHYLPHENOL	UG/L	0.96	U	
2,4-DINITROPHENOL	UG/L	4.8	U	
2,4-DINITROTOLUENE	UG/L	0.96	U	
2,6-DINITROTOLUENE	UG/L	0.96	U	
2-CHLORONAPHTHALENE	UG/L	0.19	Ü	
2-CHLOROPHENOL	UG/L	0.96	U	
2-METHYLNAPHTHALENE	UG/L	0.19	U	
2-METHYLPHENOL	UG/L	0.96	U	
2-NITROANILINE	UG/L	4.8	U	
2-NITROPHENOL	UG/L	0.96	U	
3,3'-DICHLOROBENZIDINE	UG/L	0.96	U	
3-NITROANILINE	UG/L	4.8	U	
4,6-DINITRO-2-METHYLPHENOL	UG/L	4.8	U	
4-BROMOPHENYL PHENYL ETH	UG/L	0.96	Ü	
4-CHLORO-3-METHYLPHENOL	UG/L	0.96	U	
4-CHLOROANILINE	UG/L	0.96	U	
4-CHLOROPHENYL PHENYL ETH	UG/L	0.96	U	
4-METHYLPHENOL	UG/L	0.96	U	
4-NITROANILINE	UG/L	4.8	U	
4-NITROPHENOL	UG/L	4.8	U	
ACENAPHTHENE	UG/L	0.19	U	
ACENAPHTHYLENE	UG/L	0.19	U	
ACETOPHENONE	UG/L	0.96	U	
ANTHRACENE	UG/L	0.19	U	
ATRAZINE	UG/L	0.96	υ	
BENZALDEHYDE	UG/L	0.96	Ű	
BENZO(A)ANTHRACENE	UG/L	0.19	U	
BENZO(A)PYRENE	UG/L	0.19	U	

Parameter	units	Result	Val Qual	Qual Code
BENZO(B)FLUORANTHENE	UG/L	0.19	U	
BENZO(G,H,I)PERYLENE	UG/L	0.19	Ú	
BENZO(K)FLUORANTHENE	UG/L	0.19	U	T-10
BIS(2-CHLOROETHOXY)METHAN	UG/L	0.96	U	
BIS(2-CHLOROETHYL)ETHER	UG/L	0.19	U	
BIS(2-ETHYLHEXYL)PHTHALATE	UG/L	0.96	U	
BUTYL BENZYL PHTHALATE	UG/L	0.96	Ü	
CAPROLACTAM	UG/L	0.96	U	
CARBAZOLE	UG/L	0.19	U	
CHRYSENE	UG/L	0.19	U	
DIBENZO(A,H)ANTHRACENE	UG/L	0.19	, U	
DIBENZOFURAN	UG/L	0.96	U	
DIETHYL PHTHALATE	UG/L	0.96	U	
DIMETHYL PHTHALATE	UG/L	0.96	U	
DI-N-BUTYL PHTHALATE	UG/L	0.96	U	
DI-N-OCTYL PHTHALATE	UG/L	0.96	U	
FLUORANTHENE	UG/L	0.19	U	2331.
FLUORENE	UG/L	0.19	U	
HEXACHLOROBENZENE	UG/L	0.19	U	
HEXACHLOROBUTADIENE	UG/L	0.19	U	
HEXACHLOROCYCLOPENTADIE	UG/L	0.96	U	
HEXACHLOROETHANE	UG/L	0.96	Ú	
INDENO(1,2,3-CD)PYRENE	UG/L	0.19	U	
ISOPHORONE	UG/L	0.96	U	
NAPHTHALENE	UG/L	0.19	U	
NITROBENZENE	UG/L	0.19	U	
N-NITROSO-DI-N-PROPYLAMINE	UG/L	0.19	U	
N-NITROSODIPHENYLAMINE	UG/L	0.19	U	
PENTACHLOROPHENOL	UG/L	0.96	U	
PHENANTHRENE	UG/L	0.088	J	Р
PHENOL	UG/L	0.19	U	
PYRENE	UG/L	0.19	U	

1,1-BIPHENYL 2,2'-OXYBIS(1-CHLOROPROPAN UG/L 0.19 U 2,4,5-TRICHLOROPHENOL UG/L 0.97 U 2,4,6-TRICHLOROPHENOL UG/L 0.97 U 2,4-6-TRICHLOROPHENOL UG/L 0.97 U 2,4-DICHLOROPHENOL UG/L 0.19 U 2,4-DIMETHYLPHENOL UG/L 0.97 U 2,4-DINITROPHENOL UG/L 0.97 U 2,4-DINITROPHENOL UG/L 0.97 U 2,4-DINITROTOLUENE UG/L 0.97 U 2,6-DINITROTOLUENE UG/L 0.97 U 2-CHLORONAPHTHALENE UG/L 0.19 U 2-CHLOROPHENOL UG/L 0.97 U 2-METHYLNAPHTHALENE UG/L 0.19 U 2-METHYLPHENOL UG/L 0.97 U 2-NITROANILINE UG/L 0.97 U 3,3'-DICHLOROBENZIDINE UG/L 0.97 U 3,3'-DICHLOROBENZIDINE UG/L 0.97 U 4-CHLORO-3-METHYLPHENOL UG/L 4.8 U 4-BROMOPHENYL PHENYL ETH UG/L 0.97 U 4-CHLORO-3-METHYLPHENOL UG/L 0.97 U 4-CHLORO-3-METHYLPHENOL UG/L 0.97 U 4-CHLOROPHENYL PHENYL ETH UG/L 0.97 U 4-CHLOROPHENYL PHENYL ETH UG/L 0.97 U 4-CHLORO-3-METHYLPHENOL UG/L 0.97 U 4-CHLOROPHENYL PHENYL ETH UG/L 0.97 U 4-CHLOROPHENYL PHENYL ETH UG/L 0.97 U 4-CHLOROPHENYL PHENYL ETH UG/L 0.97 U 4-METHYLPHENOL UG/L 0.97 U 4-METHYLPHENOL UG/L 0.97 U 4-METHYLPHENOL UG/L 0.97 U 4-METHYLPHENOL UG/L 0.97 U 4-NITROPHENOL UG/L 0.97 U 4-NITROPHENOL UG/L 0.97 U 4-CENAPHTHENE UG/L 0.19 U ACENAPHTHYLENE UG/L 0.19 U ACENAPHTHYLENE UG/L 0.19 U ACENAPHTHYLENE UG/L 0.97 U ANTHRACENE UG/L 0.97 U BENZALDEHYDE UG/L 0.97 U BENZALDEHYDE	Parameter	units	Result	Val Qual	Qual Code
2,2'-OXYBIS(1-CHLOROPROPAN UG/L 0.19 U 2,4,5-TRICHLOROPHENOL UG/L 0.97 U 2,4,6-TRICHLOROPHENOL UG/L 0.97 U 2,4-DICHLOROPHENOL UG/L 0.19 U 2,4-DIMETHYLPHENOL UG/L 0.97 U 2,4-DINITROPHENOL UG/L 4.8 U 2,4-DINITROTOLUENE UG/L 0.97 U 2,4-DINITROTOLUENE UG/L 0.97 U 2,6-DINITROTOLUENE UG/L 0.97 U 2-CHLORONAPHTHALENE UG/L 0.97 U 2-CHLOROPHENOL UG/L 0.97 U 2-METHYLNAPHTHALENE UG/L 0.97 U 2-METHYLPHENOL UG/L 0.97 U 2-METHYLPHENOL UG/L 0.97 U 2-NITROANILINE UG/L 0.97 U 2-NITROPHENOL UG/L 0.97 U 3,3'-DICHLOROBENZIDINE UG/L 0.97 U 3,3'-DICHLOROBENZIDINE UG/L 0.97 U 4-BROMOPHENYL PHENYL ETH	4.4.5151.510.0				Code
2,4,5-TRICHLOROPHENOL UG/L 0.97 U 2,4,6-TRICHLOROPHENOL UG/L 0.97 U 2,4-DICHLOROPHENOL UG/L 0.19 U 2,4-DIMETHYLPHENOL UG/L 0.97 U 2,4-DINITROPHENOL UG/L 4.8 U 2,4-DINITROTOLUENE UG/L 0.97 U 2,6-DINITROTOLUENE UG/L 0.97 U 2-CHLORONAPHTHALENE UG/L 0.19 U 2-CHLOROPHENOL UG/L 0.97 U 2-METHYLNAPHTHALENE UG/L 0.97 U 2-METHYLPHENOL UG/L 0.97 U 2-METHYLPHENOL UG/L 0.97 U 2-NITROANILINE UG/L 0.97 U 3-NITROANILINE UG/L 0.97 U 3-NITROANILINE UG/L 0.97 U 4-BROMOPHENYL PHENYL ETH UG/L 4.8 U 4-BROMOPHENYL PHENYL ETH UG/L 0.97 U 4-CHLORO-3-METHYLPHENOL UG/L 0.97 U 4-CHLOROPHENYL PHENYL ETH					
2,4,6-TRICHLOROPHENOL UG/L 0.97 U 2,4-DICHLOROPHENOL UG/L 0.19 U 2,4-DIMETHYLPHENOL UG/L 0.97 U 2,4-DINITROPHENOL UG/L 4.8 U 2,4-DINITROTOLUENE UG/L 0.97 U 2,6-DINITROTOLUENE UG/L 0.97 U 2,6-DINITROTOLUENE UG/L 0.97 U 2-CHLORONAPHTHALENE UG/L 0.19 U 2-CHLOROPHENOL UG/L 0.97 U 2-METHYLNAPHTHALENE UG/L 0.97 U 2-METHYLPHENOL UG/L 0.97 U 2-METHYLPHENOL UG/L 0.97 U 2-METHYLPHENOL UG/L 0.97 U 2-METHYLPHENOL UG/L 0.97 U 3,3'-DICHLOROBENZIDINE UG/L 0.97 U 3,3'-DICHLOROBENZIDINE UG/L 0.97 U 4,6-DINITRO-2-METHYLPHENOL UG/L 4.8 U 4-BROMOPHENYL PHENYL ETH UG/L 0.97 U 4-CHLORO-3-METHYLPHENOL	-				
2,4-DICHLOROPHENOL UG/L 0.19 U 2,4-DIMETHYLPHENOL UG/L 0.97 U 2,4-DINITROPHENOL UG/L 4.8 U 2,4-DINITROTOLUENE UG/L 0.97 U 2,6-DINITROTOLUENE UG/L 0.97 U 2-CHLORONAPHTHALENE UG/L 0.19 U 2-CHLOROPHENOL UG/L 0.97 U 2-METHYLNAPHTHALENE UG/L 0.97 U 2-METHYLPHENOL UG/L 0.97 U 2-METHYLPHENOL UG/L 0.97 U 2-NITROANILINE UG/L 0.97 U 2-NITROPHENOL UG/L 0.97 U 3,3'-DICHLOROBENZIDINE UG/L 0.97 U 3,3'-DICHLOROBENZIDINE UG/L 0.97 U 4,6-DINITRO-2-METHYLPHENOL UG/L 4.8 U 4-BROMOPHENYL PHENYL ETH UG/L 0.97 U 4-CHLORO-3-METHYLPHENOL UG/L 0.97 U 4-CHLOROPHENYL PHENYL ETH UG/L 0.97 U 4-CHLOROPHENYL PHENYL E					
2,4-DIMETHYLPHENOL UG/L 0.97 U 2,4-DINITROPHENOL UG/L 4.8 U 2,4-DINITROTOLUENE UG/L 0.97 U 2,6-DINITROTOLUENE UG/L 0.97 U 2-CHLORONAPHTHALENE UG/L 0.19 U 2-CHLOROPHENOL UG/L 0.97 U 2-METHYLNAPHTHALENE UG/L 0.97 U 2-METHYLPHENOL UG/L 0.97 U 2-NITROANILINE UG/L 0.97 U 2-NITROPHENOL UG/L 0.97 U 3,3'-DICHLOROBENZIDINE UG/L 0.97 U 3,3'-DICHLOROBENZIDINE UG/L 0.97 U 4,6-DINITRO-2-METHYLPHENOL UG/L 4.8 U 4,6-DINITRO-2-METHYLPHENOL UG/L 4.8 U 4-BROMOPHENYL PHENYL ETH UG/L 0.97 U 4-CHLORO-3-METHYLPHENOL UG/L 0.97 U 4-CHLORO-3-METHYLPHENOL UG/L 0.97 U 4-CHLORO-3-METHYLPHENOL UG/L 0.97 U 4-METHYLP					
2,4-DINITROPHENOL UG/L 4.8 U 2,4-DINITROTOLUENE UG/L 0.97 U 2,6-DINITROTOLUENE UG/L 0.97 U 2-CHLORONAPHTHALENE UG/L 0.19 U 2-CHLOROPHENOL UG/L 0.97 U 2-METHYLNAPHTHALENE UG/L 0.19 U 2-METHYLPHENOL UG/L 0.97 U 2-NITROANILINE UG/L 4.8 U 2-NITROPHENOL UG/L 0.97 U 3,3'-DICHLOROBENZIDINE UG/L 0.97 U 3-NITROANILINE UG/L 0.97 U 4,6-DINITRO-2-METHYLPHENOL UG/L 4.8 U 4-BROMOPHENYL PHENYL ETH UG/L 0.97 U 4-CHLORO-3-METHYLPHENOL UG/L 0.97 U 4-CHLORO-3-METHYLPHENOL UG/L 0.97 U 4-CHLOROPHENYL PHENYL ETH UG/L 0.97 U 4-CHLORO-3-METHYLPHENOL UG/L 0.97 U 4-CHLOROPHENYL PHENYL ETH UG/L 0.97 U 4-METHYLPHE	· · · · · · · · · · · · · · · · · · ·		L		
2,4-DINITROTOLUENE UG/L 0.97 U 2,6-DINITROTOLUENE UG/L 0.97 U 2-CHLORONAPHTHALENE UG/L 0.19 U 2-CHLOROPHENOL UG/L 0.97 U 2-METHYLNAPHTHALENE UG/L 0.19 U 2-METHYLPHENOL UG/L 0.97 U 2-NITROANILINE UG/L 4.8 U 2-NITROPHENOL UG/L 0.97 U 3,3'-DICHLOROBENZIDINE UG/L 0.97 U 3-NITROANILINE UG/L 4.8 U 4,6-DINITRO-2-METHYLPHENOL UG/L 4.8 U 4-BROMOPHENYL PHENYL ETH UG/L 0.97 U 4-CHLORO-3-METHYLPHENOL UG/L 0.97 U 4-CHLORO-3-METHYLPHENOL UG/L 0.97 U 4-CHLORO-3-METHYLPHENOL UG/L 0.97 U 4-CHLORO-3-METHYLPHENOL UG/L 0.97 U 4-CHLORO-BENYL PHENYL ETH UG/L 0.97 U 4-CHLORO-BENYL PHENYL ETH UG/L 0.97 U 4-MIT				-	
2,6-DINITROTOLUENE UG/L 0.97 U 2-CHLORONAPHTHALENE UG/L 0.19 U 2-CHLOROPHENOL UG/L 0.97 U 2-METHYLNAPHTHALENE UG/L 0.19 U 2-METHYLPHENOL UG/L 0.97 U 2-MITROANILINE UG/L 4.8 U 2-NITROPHENOL UG/L 0.97 U 3,3'-DICHLOROBENZIDINE UG/L 0.97 U 3-NITROANILINE UG/L 4.8 U 4,6-DINITRO-2-METHYLPHENOL UG/L 4.8 U 4-BROMOPHENYL PHENYL ETH UG/L 0.97 U 4-CHLORO-3-METHYLPHENOL UG/L 0.97 U 4-CHLORO-3-METHYLPHENOL UG/L 0.97 U 4-CHLORO-BENYL PHENYL ETH UG/L 0.97 U 4-CHLORO-BENYL PHENYL ETH UG/L 0.97 U 4-CHLORO-BENYL PHENYL ETH UG/L 0.97 U 4-METHYLPHENOL UG/L 0.97 U 4-NITROANILINE UG/L 0.97 U 4-NITROPHENOL <td></td> <td></td> <td>4.8</td> <td></td> <td></td>			4.8		
2-CHLORONAPHTHALENE		UG/L	0.97	U	
2-CHLOROPHENOL 2-METHYLNAPHTHALENE UG/L 2-METHYLPHENOL UG/L 2-METHYLPHENOL UG/L 2-NITROANILINE UG/L 2-NITROPHENOL UG/L 3,3'-DICHLOROBENZIDINE UG/L 3-NITROANILINE UG/L 4.8 U 4,6-DINITRO-2-METHYLPHENOL UG/L 4-BROMOPHENYL PHENYL ETH UG/L 4-CHLORO-3-METHYLPHENOL UG/L 4-CHLOROANILINE UG/L 4-CHLOROPHENYL PHENYL ETH UG/L 4-CHLOROPHENYL PHENYL ETH UG/L 4-METHYLPHENOL UG/L 4-NITROANILINE UG/L 4-NITROANILINE UG/L 4-NITROPHENOL UG/L 4-RETHYLPHENOL UG/L	2,6-DINITROTOLUENE	UG/L	0.97	U	
2-METHYLNAPHTHALENE	2-CHLORONAPHTHALENE	UG/L	0.19	U	
2-METHYLPHENOL UG/L 0.97 U 2-NITROANILINE UG/L 4.8 U 2-NITROPHENOL UG/L 0.97 U 3,3'-DICHLOROBENZIDINE UG/L 0.97 U 3-NITROANILINE UG/L 4.8 U 4,6-DINITRO-2-METHYLPHENOL UG/L 4.8 U 4-BROMOPHENYL PHENYL ETH UG/L 0.97 U 4-CHLORO-3-METHYLPHENOL UG/L 0.97 U 4-CHLOROPHENYL PHENYL ETH UG/L 0.97 U 4-CHLOROPHENYL PHENYL ETH UG/L 0.97 U 4-METHYLPHENOL UG/L 0.97 U 4-NITROANILINE UG/L 0.97 U 4-NITROANILINE UG/L 4.8 U 4-NITROPHENOL UG/L 4.8 U ACENAPHTHENE UG/L 0.19 U ACENAPHTHENE UG/L 0.19 U ACETOPHENONE UG/L 0.97 U ANTHRACENE UG/L 0.19 U ATRAZINE UG/L 0.97 U BENZALDEHYDE UG/L 0.97 U BENZALDEHYDE UG/L 0.97 U BENZALDEHYDE UG/L 0.97 U	2-CHLOROPHENOL	UG/L	0.97	U	
2-NITROANILINE	2-METHYLNAPHTHALENE	UG/L	0.19	U	
2-NITROPHENOL	2-METHYLPHENOL	UG/L	0.97	U	
3,3'-DICHLOROBENZIDINE	2-NITROANILINE	UG/L	4.8	U	
3-NITROANILINE	2-NITROPHENOL	UG/L	0.97	U	
4,6-DINITRO-2-METHYLPHENOL UG/L 4.8 U 4-BROMOPHENYL PHENYL ETH UG/L 0.97 U 4-CHLORO-3-METHYLPHENOL UG/L 0.97 U 4-CHLOROPHENYL PHENYL ETH UG/L 0.97 U 4-CHLOROPHENYL PHENYL ETH UG/L 0.97 U 4-METHYLPHENOL UG/L 0.97 U 4-NITROANILINE UG/L 4.8 U 4-NITROPHENOL UG/L 4.8 U ACENAPHTHENE UG/L 0.19 U ACENAPHTHYLENE UG/L 0.19 U ACETOPHENONE UG/L 0.97 U ANTHRACENE UG/L 0.19 U ATRAZINE UG/L 0.97 U BENZALDEHYDE UG/L 0.19 U BENZO(A)ANTHRACENE UG/L 0.19 U	3,3'-DICHLOROBENZIDINE	UG/L	0.97	U	
4-BROMOPHENYL PHENYL ETH UG/L 0.97 U 4-CHLORO-3-METHYLPHENOL UG/L 0.97 U 4-CHLOROANILINE UG/L 0.97 U 4-CHLOROPHENYL PHENYL ETH UG/L 0.97 U 4-METHYLPHENOL UG/L 0.97 U 4-NITROANILINE UG/L 4.8 U 4-NITROPHENOL UG/L 4.8 U ACENAPHTHENE UG/L 0.19 U ACENAPHTHYLENE UG/L 0.19 U ACETOPHENONE UG/L 0.97 U ANTHRACENE UG/L 0.19 U ATRAZINE UG/L 0.97 U BENZALDEHYDE UG/L 0.97 U BENZO(A)ANTHRACENE UG/L 0.19 U	3-NITROANILINE	UG/L	4.8	U	:
4-CHLORO-3-METHYLPHENOL UG/L 0.97 U 4-CHLOROANILINE UG/L 0.97 U 4-CHLOROPHENYL PHENYL ETH UG/L 0.97 U 4-METHYLPHENOL UG/L 0.97 U 4-NITROANILINE UG/L 4.8 U 4-NITROPHENOL UG/L 4.8 U ACENAPHTHENE UG/L 0.19 U ACENAPHTHYLENE UG/L 0.19 U ACETOPHENONE UG/L 0.97 U ANTHRACENE UG/L 0.97 U ATRAZINE UG/L 0.97 U BENZALDEHYDE UG/L 0.97 U BENZO(A)ANTHRACENE UG/L 0.19 U	4,6-DINITRO-2-METHYLPHENOL	UG/L	4.8	U	
4-CHLOROANILINE UG/L 0.97 U 4-CHLOROPHENYL PHENYL ETH UG/L 0.97 U 4-METHYLPHENOL UG/L 0.97 U 4-NITROANILINE UG/L 4.8 U 4-NITROPHENOL UG/L 4.8 U ACENAPHTHENE UG/L 0.19 U ACENAPHTHYLENE UG/L 0.19 U ACETOPHENONE UG/L 0.97 U ANTHRACENE UG/L 0.97 U ATRAZINE UG/L 0.97 U BENZALDEHYDE UG/L 0.97 U BENZO(A)ANTHRACENE UG/L 0.19 U	4-BROMOPHENYL PHENYL ETH	UG/L	0.97	U	
4-CHLOROPHENYL PHENYL ETH UG/L 0.97 U 4-METHYLPHENOL UG/L 0.97 U 4-NITROANILINE UG/L 4.8 U 4-NITROPHENOL UG/L 4.8 U ACENAPHTHENE UG/L 0.19 U ACENAPHTHYLENE UG/L 0.19 U ACETOPHENONE UG/L 0.97 U ANTHRACENE UG/L 0.19 U ATRAZINE UG/L 0.97 U BENZALDEHYDE UG/L 0.97 U BENZO(A)ANTHRACENE UG/L 0.19 U	4-CHLORO-3-METHYLPHENOL	UG/L	0.97	U	
4-METHYLPHENOL UG/L 0.97 U 4-NITROANILINE UG/L 4.8 U 4-NITROPHENOL UG/L 4.8 U ACENAPHTHENE UG/L 0.19 U ACENAPHTHYLENE UG/L 0.19 U ACETOPHENONE UG/L 0.97 U ANTHRACENE UG/L 0.19 U ATRAZINE UG/L 0.97 U BENZALDEHYDE UG/L 0.97 U BENZO(A)ANTHRACENE UG/L 0.19 U	4-CHLOROANILINE	UG/L	0.97	U	
4-NITROANILINE	4-CHLOROPHENYL PHENYL ETH	UG/L	0.97	U	
4-NITROPHENOL UG/L 4.8 U ACENAPHTHENE UG/L 0.19 U ACENAPHTHYLENE UG/L 0.19 U ACETOPHENONE UG/L 0.97 U ANTHRACENE UG/L 0.19 U ATRAZINE UG/L 0.97 U BENZALDEHYDE UG/L 0.97 U BENZO(A)ANTHRACENE UG/L 0.19 U	4-METHYLPHENOL	UG/L	0.97	U	
ACENAPHTHENE UG/L 0.19 U ACENAPHTHYLENE UG/L 0.19 U ACETOPHENONE UG/L 0.97 U ANTHRACENE UG/L 0.19 U ATRAZINE UG/L 0.97 U BENZALDEHYDE UG/L 0.97 U BENZO(A)ANTHRACENE UG/L 0.19 U	4-NITROANILINE	UG/L	4.8	U	
ACENAPHTHYLENE UG/L 0.19 U ACETOPHENONE UG/L 0.97 U ANTHRACENE UG/L 0.19 U ATRAZINE UG/L 0.97 U BENZALDEHYDE UG/L 0.97 U BENZO(A)ANTHRACENE UG/L 0.19 U	4-NITROPHENOL	UG/L	4.8	U	
ACETOPHENONE UG/L 0.97 U ANTHRACENE UG/L 0.19 U ATRAZINE UG/L 0.97 U BENZALDEHYDE UG/L 0.97 U BENZO(A)ANTHRACENE UG/L 0.19 U	ACENAPHTHENE	UG/L	0.19	U	
ANTHRACENE UG/L 0.19 U ATRAZINE UG/L 0.97 U BENZALDEHYDE UG/L 0.97 U BENZO(A)ANTHRACENE UG/L 0.19 U	ACENAPHTHYLENE	UG/L	0.19	U	
ANTHRACENE UG/L 0.19 U ATRAZINE UG/L 0.97 U BENZALDEHYDE UG/L 0.97 U BENZO(A)ANTHRACENE UG/L 0.19 U	ACETOPHENONE	UG/L	0.97	U	
BENZALDEHYDE UG/L 0.97 U BENZO(A)ANTHRACENE UG/L 0.19 U	ANTHRACENE		0.19	U	
BENZO(A)ANTHRACENE UG/L 0.19 U	ATRAZINE	UG/L	0.97	U	
BENZO(A)ANTHRACENE UG/L 0.19 U	BENZALDEHYDE	UG/L	0.97	Ū	
· · · · · · · · · · · · · · · · · · ·	BENZO(A)ANTHRACENE			Ú	
	BENZO(A)PYRENE	UG/L	0.19	U	

SDG: C7K020216 MEDIA: WATER DATA FRACTION: OS

nsample samp_date FMC 7DL

10/31/2007

lab_id

DUP_OF:

C7K020216013

qc_type Pct_Solids

NM

lab_id qc_type FMC 9DL 10/30/2007

NM

C7K020216002

Pct_Solids DUP_OF:

nsample

samp_date

nsample samp_date lab_id

FMC 9DL 10/30/2007

C7K020216002

NM qc_type

Pct_Solids DUP_OF;

				
Parameter	units	Result	Val Qual	Qual Code
BENZO(B)FLUORANTHENE	UG/L	0.19	U	
BENZO(G,H,I)PERYLENE	UG/L	0.19	U	
BENZO(K)FLUORANTHENE	UG/L	0.19	Ü	
BIS(2-CHLOROETHOXY)METHAN	UG/L	0.97	Ü	
BIS(2-CHLOROETHYL)ETHER	UG/L	0.19	· U	
BIS(2-ETHYLHEXYL)PHTHALATE	UG/L	0.97	U	
BUTYL BENZYL PHTHALATE	UG/L	0.97	U	
CAPROLACTAM	UG/L	0.97	U	
CARBAZOLE	UG/L	0.19	U	
CHRYSENE	UG/L	0.19	U	
DIBENZO(A,H)ANTHRACENE	UG/L	0.19	U	
DIBENZOFURAN	UG/L	0.97	U	
DIETHYL PHTHALATE	UG/L	0.97	U	
DIMETHYL PHTHALATE	UG/L	0.97	U	
DI-N-BUTYL PHTHALATE	UG/L	0.97	U	
DI-N-OCTYL PHTHALATE	UG/L	0.97	U	
FLUORANTHENE	UG/L	0.19	U	
FLUORENE	UG/L	0.19	U	
HEXACHLOROBENZENE	UG/L	0.19	U	
HEXACHLOROBUTADIENE	UG/L	0.19	U	
HEXACHLOROCYCLOPENTADIE	UG/L	0.97	U	
HEXACHLOROETHANE	UG/L	0.97	U	
INDENO(1,2,3-CD)PYRENE	UG/L	0.19	U	
ISOPHORONE	UG/L	0.97	U	103.02
NAPHTHALENE	UG/L	0.19	U	
NITROBENZENE	UG/L	0.19	U	
N-NITROSO-DI-N-PROPYLAMINE	UG/L	0.19	U	
N-NITROSODIPHENYLAMINE	UG/L	0.19	U	
PENTACHLOROPHENOL	UG/L	0.97	U	
PHENANTHRENE	UG/L	0.19	. U	
PHENOL	UG/L	0.19	U	
PYRENE	UG/L	0.19	U	

Parameter	units	Result	Val Qual	Qual Code
1,1-BIPHENYL	UG/L	1	U	
2,2'-OXYBIS(1-CHLOROPROPAN	UG/L	0.2	U	
2,4,5-TRICHLOROPHENOL	UG/L	1	U	
2,4,6-TRICHLOROPHENOL	UG/L	1	U	, ,
2,4-DICHLOROPHENOL	UG/L	0.2	U	
2,4-DIMETHYLPHENOL	UG/L	1	U	
2,4-DINITROPHENOL	UG/L	5.1	U	
2,4-DINITROTOLUENE	UG/L	1	U	
2,6-DINITROTOLUENE	UG/L	1	U	
2-CHLORONAPHTHALENE	UG/L	0.2	U	
2-CHLOROPHENOL	UG/L	1	U	
2-METHYLNAPHTHALENE	UG/L	0.2	U	
2-METHYLPHENOL	UG/L	. 1	U	
2-NITROANILINE	UG/L	5.1	U	
2-NITROPHENOL	UG/L	1	U	
3,3'-DICHLOROBENZIDINE	UG/L	1	U	
3-NITROANILINE	UG/L	5.1	U	
4,6-DINITRO-2-METHYLPHENOL	UG/L	5.1	U	
4-BROMOPHENYL PHENYL ETH	UG/L	1	U	
4-CHLORO-3-METHYLPHENOL	UG/L	1	U	
4-CHLOROANILINE	UG/L	1	U	
4-CHLOROPHENYL PHENYL ETH	UG/L	1	U	
4-METHYLPHENOL	UG/L	1	U	
4-NITROANILINE	UG/L	5.1	U	
4-NITROPHENOL	UG/L	5.1	U	
ACENAPHTHENE	UG/L	0.2	U	
ACENAPHTHYLENE	UG/L	0.2	Ü	
ACETOPHENONE	UG/L	1	U	
ANTHRACENE	UG/L	0.2	U	
ATRAZINE	UG/L	1	U	
BENZALDEHYDE	UG/L	1	U	
BENZO(A)ANTHRACENE	UG/L	0.2	U	
BENZO(A)PYRENE	UG/L	0.2	U	

Parameter	units	Result	Val Qual	Qual Code
BENZO(B)FLUORANTHENE	UG/L	0.2	U	
BENZO(G,H,I)PERYLENE	UG/L	0.2	U	
BENZO(K)FLUORANTHENE	UG/L	0.2	U	
BIS(2-CHLOROETHOXY)METHAN	UG/L	1	U	
BIS(2-CHLOROETHYL)ETHER	UG/L	0.2	Ü	
BIS(2-ETHYLHEXYL)PHTHALATE	UG/L	0.14	J	Р
BUTYL BENZYL PHTHALATE	UG/L	0.2	J	Р
CAPROLACTAM	UG/L	1	U	
CARBAZOLE	UG/L	0.2	U	
CHRYSENE	UG/L	0.2	U	
DIBENZO(A,H)ANTHRACENE	UG/L	0.2	U	
DIBENZOFURAN	UG/L	1	U	
DIETHYL PHTHALATE	UG/L	1	U	
DIMETHYL PHTHALATE	UG/L	1	U	
DI-N-BUTYL PHTHALATE	UG/L	1	U	
DI-N-OCTYL PHTHALATE	UG/L	1	U	
FLUORANTHENE	UG/L	0.2	U	
FLUORENE	UG/L	0.2	U	
HEXACHLOROBENZENE	UG/L	0.2	U	
HEXACHLOROBUTADIENE	UG/L	0.2	U	
HEXACHLOROCYCLOPENTADIE	UG/L	1	U	
HEXACHLOROETHANE	UG/L	1	U	
NDENO(1,2,3-CD)PYRENE	UG/L	0.2	U	
SOPHORONE	UG/L	1	U	
NAPHTHALENE	UG/L	0.2	U	
NITROBENZENE	UG/L	0.2	U	
N-NITROSO-DI-N-PROPYLAMINE	UG/L	0.2	. U	
N-NITROSODIPHENYLAMINE	UG/L	0.2	U	
PENTACHLOROPHENOL	UG/L	1	U	
PHENANTHRENE	UG/L	0.2	U	
PHENOL	UG/L	0.2	U	
PYRENE	UG/L	0.2	U	
,				

00998

SDG: C7K020216 MEDIA: WATER DATA FRACTION: PEST/PCB

nsample samp_date FMC 10DL

10/30/2007 C7K020216003

nsample samp_date lab_id

FMC 11DL

10/30/2007 C7K020216004

nsample samp_date lab_id

FMC 12DL 10/30/2007 C7K020216005

NM.

qc_type Pct_Solids DUP_OF:

lab_id

NM

qc_type Pct_Solids DUP_OF:

NM

qc_type Pct_Solids

DUP_OF:

Val Parameter Result units Qual Qual Code AROCLOR-1016 UG/L 0.42 U AROCLOR-1221 UG/L U 0.42 AROCLOR-1232 UG/L 0.42 U AROCLOR-1242 U UG/L 0.42 AROCLOR-1248 UG/L 0.42 U AROCLOR-1254 UG/L 0.42 U AROCLOR-1260 UG/L 0.42 U

Parameter	units	Result	Val Qual	Qual Code
AROCLOR-1016	UG/L	0.4	U	
AROCLOR-1221	UG/L	0.4	U	
AROCLOR-1232	UG/L	0.4	U	
AROCLOR-1242	UG/L	0.4	U	
AROCLOR-1248	UG/L	0.4	U	
AROCLOR-1254	UG/L	0.4	U	
AROCLOR-1260	UG/L	0.4	U	

Parameter	units	Result	Val	Qual
			Qual	Code
AROCLOR-1016	UG/L	0.39	U	
AROCLOR-1221	UG/L	0.39	U	
AROCLOR-1232	UG/L	0.39	U	
AROCLOR-1242	UG/L	0.39	U	
AROCLOR-1248	UG/L	0.39	U	
AROCLOR-1254	UG/L	0.39	U	
AROCLOR-1260	UG/L	0.39	U	

00998

SDG: C7K020216 MEDIA: WATER DATA FRACTION: PEST/PCB

nsample samp_date FMC 13DL

10/30/2007 C7K020216006 nsample samp_date lab_id

FMC 16DL 10/31/2007

nsample samp_date FMC 18DL 10/31/2007

lab_id qc_type

NM

qc_type

C7K020216007 ΝM

lab_id qc_type

C7K020216008 NM

Pct_Solids DUP_OF:

Pct_Solids DUP_OF:

Pct_Solids

DUP_OF:

Parameter	units	Result	Val Qual	Qual Code
AROCLOR-1016	UG/L	0.38	U	
AROCLOR-1221	UG/L	0.38	U	
AROCLOR-1232	UG/L	0.38	U	
AROCLOR-1242	UG/L	0.38	U	
AROCLOR-1248	UG/L	0.38	C	
AROCLOR-1254	UG/L	0.38	U	
AROCLOR-1260	UG/L	0.38	U	

		- ·		
Parameter	units	Result	Val	Qual
			Qual	Code
AROCLOR-1016	UG/L	0.41	U	
AROCLOR-1221	UG/L	0.41	U	
AROCLOR-1232	UG/L	0.41	U	
AROCLOR-1242	UG/L	0.41	U	
AROCLOR-1248	UG/L	0.41	U	
AROCLOR-1254	UG/L	0.41	U	
AROCLOR-1260	UG/L	0.41	U	

units	Result	Val	Qual
		Qual	Code
UG/L	0.41	U	
UG/L	0.41	C	
UG/L	0.41	U	
UG/L	0.41	U	
UG/L	0.41	U	
UG/L	0.41	U	
UG/L	0.41	U	
	UG/L UG/L UG/L UG/L UG/L	UG/L 0.41 UG/L 0.41 UG/L 0.41 UG/L 0.41 UG/L 0.41 UG/L 0.41	Qual UG/L 0.41 U UG/L 0.41 U UG/L 0.41 U UG/L 0.41 U UG/L 0.41 U UG/L 0.41 U UG/L 0.41 U

00998

SDG: C7K020216 MEDIA: WATER DATA FRACTION: PEST/PCB

nsample samp_date FMC 20DL

10/31/2007

samp_date C7K020216009 lab_id

10/31/2007 C7K020216010

NM

FMC 22DL

samp_date lab_id

nsample

FMC 24DL 10/30/2007 C7K020216001

lab_id qc_type

NM

qc_type Pct_Solids qc_type

NM

Pct_Solids

DUP_OF:

DUP_OF:

nsample

Pct_Solids DUP_OF:

Parameter	units	Result	Val Qual	Qual Code
AROCLOR-1016	UG/L	0.39	U	
AROCLOR-1221	UG/L	0.39	U	
AROCLOR-1232	UG/L	0.39	U	
AROCLOR-1242	UG/L	0.39	U	
AROCLOR-1248	UG/L	0.39	U	
AROCLOR-1254	UG/L	0.39	Ü	
AROCLOR-1260	UG/L	0.39	Ū	

Parameter	units	Result	Val Qual	Qual Code
AROCLOR-1016	UG/L	0.38	U	
AROCLOR-1221	UG/L	0.38	U	
AROCLOR-1232	UG/L	0.38	U	
AROCLOR-1242	UG/L	0.38	U	
AROCLOR-1248	UG/L	0.38	U	
AROCLOR-1254	UG/L	0.38	U	
AROCLOR-1260	UG/L	0.38	U	

Parameter	units	Result	Val Qual	Qual Code
AROCLOR-1016	UG/L	0.4	U	
AROCLOR-1221	UG/L	0.4	U	
AROCLOR-1232	UG/L	0.4	U	
AROCLOR-1242	UG/L	0.4	U	
AROCLOR-1248	UG/L	0.4	U	
AROCLOR-1254	UG/L	0.4	U	
AROCLOR-1260	UG/L	0.4	U	

SDG: C7K020216 MEDIA: WATER DATA FRACTION: PEST/PCB

00998

nsample samp_date

lab_id

FMC 25DL

11/1/2007

C7K020216014

NM

samp_date lab_id qc_type

nsample

11/1/2007 C7K020216015

FMC 26DL

NM

nsample

samp_date lab_id qc_type

Pct_Solids

DUP_OF:

FMC 3DL 10/31/2007 C7K020216011

NM

qc_type Pct_Solids DUP_OF:

Pct_Solids DUP_OF:

Parameter	units	Result	Val Qual	Qual Code
AROCLOR-1016	UG/L	0.38	U	
AROCLOR-1221	UG/L	0.38	J	
AROCLOR-1232	UG/L	0.38	U	
AROCLOR-1242	UG/L	0.38	U	
AROCLOR-1248	UG/L	0.38	Ú	
AROCLOR-1254	. UG/L	0.38	U	
AROCLOR-1260	UG/L	0.38	U	

units	Result	Val Qual	Qual Code
UG/L	0.38	U	•
UG/L	0.38	U	
UG/L	0.42		
UG/L	0.38	U	
	UG/L UG/L UG/L UG/L UG/L UG/L	UG/L 0.38 UG/L 0.38 UG/L 0.38 UG/L 0.38 UG/L 0.38 UG/L 0.42	Qual UG/L 0.38 U UG/L 0.38 U UG/L 0.38 U UG/L 0.38 U UG/L 0.38 U UG/L 0.38 U UG/L 0.42

units	Result	Val	Qual
		Qual	Code
UG/L	0.38	U	
	UG/L UG/L UG/L UG/L UG/L UG/L UG/L	UG/L 0.38 UG/L 0.38 UG/L 0.38 UG/L 0.38 UG/L 0.38 UG/L 0.38 UG/L 0.38	UG/L 0.38 U UG/L 0.38 U UG/L 0.38 U UG/L 0.38 U UG/L 0.38 U UG/L 0.38 U UG/L 0.38 U

00998

SDG: C7K020216 MEDIA: WATER DATA FRACTION: PEST/PCB

nsample samp_date

lab_id

FMC 5DL

10/31/2007

C7K020216012

qc_type Pct_Solids

DUP_OF:

NM

Pct_Solids DUP_OF:

nsample

samp_date 10/31/2007 lab_id C7K020216013

qc_type

nsample

samp_date lab_id

FMC 9DL 10/30/2007

C7K020216002

NM

qc_type Pct_Solids DUP_OF:

Parameter	units	Result	Val Qual	Qual Code
AROCLOR-1016	UG/L	0.38	U	
AROCLOR-1221	UG/L	0.38	U	
AROCLOR-1232	UG/L	0.38	U	
AROCLOR-1242	UG/L	0.38	U	
AROCLOR-1248	UG/L	0.38	Ú	
AROCLOR-1254	UG/L	0.38	U	
AROCLOR-1260	UG/L	0.38	U	

Parameter	units	Result	Val Qual	Qual Code
			Quai	Oode
AROCLOR-1016	UG/L	0.38	U	
AROCLOR-1221	UG/L	0.38	U	
AROCLOR-1232	UG/L	0.38	U	
AROCLOR-1242	UG/L	0.38	U	***
AROCLOR-1248	UG/L	0.38	U	*****
AROCLOR-1254	UG/L	0.38	U	
AROCLOR-1260	UG/L	0.38	U	

FMC 7DL

NM

Parameter	units	Result	Val Qual	Qual Code
AROCLOR-1016	UG/L	0.4	U	_
AROCLOR-1221	UG/L	0.4	U	
AROCLOR-1232	UG/L	0.4	U	
AROCLOR-1242	UG/L	0.4	U	
AROCLOR-1248	UG/L	0.4	U	***************************************
AROCLOR-1254	UG/L	0.4	U	
AROCLOR-1260	UG/L	0.4	U	

APPENDIX B RESULTS AS REPORTED BY THE LABORATORY

Client Sample ID: FMC 10

TOTAL Metals

Lot-Sample #...: C7K020216-003 Matrix WATER Date Sampled...: 10/30/07 Date Received..: 11/02/07 REPORTING PREPARATION-WORK PARAMETER RESULT LIMIT UNITS METHOD ANALYSIS DATE ORDER # Prep Batch #...: 7318317 Silver ND 1.0 ug/L SW846 6020 11/14-11/27/07 KAE071A6 Dilution Factor: 1 Analysis Time ... 20:33 Analyst ID....: 400149 Instrument ID. .: ICPMS MS Run #..... 7318166 MDL..... 0.077 Arsenic 3.1 1.0 ug/L SW846 6020 11/14-11/27/07 KAE071A7 Dilution Factor: 1 Analysis Time..: 20:33 Analyst ID....: 400149 Instrument ID. : ICPMS MS Run #.....: 7318166 MDL..... 0.14 Beryllium ND 1.0 uq/L SW846 6020 11/14-11/27/07 KAE071A8 Dilution Factor: 1 Analyst ID....: 400149 Analysis Time..: 20:33 Instrument ID. .: ICPMS MS Run #..... 7318166 MDL..... 0.068 Cadmium 0.12 B . 1.0 ug/L SW846 6020 11/14-11/27/07 KAR071AA Analysis Time..: 20:33 Dilution Factor: 1 Analyst ID....: 400149 Instrument ID. .: ICPMS MS Run #..... 7318166 MDL.... 0.11 Chromium 2.8 J 2.0 ug/L SW846 6020 11/14-11/27/07 KAR071AC Dilution Factor: 1 Analysis Time..: 20:33 Analyst ID....: 400149 Instrument ID..: ICPMS MS Run #..... 7318166 MDL..... 0.11 Copper 5.4 2.0 uq/L SW846 6020 11/14-11/27/07 KAE071AD Dilution Factor: 1 Analysis Time..: 20:33 Analyst ID....: 400149 MS Run #..... 7318166 Instrument ID..: ICPMS MDL..... 0.14 Nickel 2.5 1.0 uq/L SW846 6020 11/14-11/27/07 KAE071AR Dilution Factor: 1 Analysis Time..: 20:33 Analyst ID..... 400149 Instrument ID..: ICPMS MS Run #.....: 7318166 MDL..... 0.073 Lead 1.1 1.0 ug/L SW846 6020 11/14-11/27/07 KAE071AF Dilution Factor: 1

(Continued on next page)

uq/L

Instrument ID. .: ICPMS

Instrument ID..: ICPMS

Dilution Factor: 1

2.0

Analysis Time..: 20:33

Analysis Time..: 20:33

MS Run #..... 7318166

SW846 6020

MS Run #..... 7318166

Antimony

0.26 B

Analyst ID....: 400149

MDL..... 0.020

11/14-11/27/07 KAE071AG

Analyst ID....: 400149

MDL....: 0.047

Client Sample ID: FMC 10

TOTAL Metals

Lot-Sample #...: C7K020216-003

Matrix..... WATER

PARAMETER	RESULT	REPORTING LIMIT UNITS	METHOD	PREPARATION- WORK ANALYSIS DATE ORDER #
Selenium	9.1	5.0 ug/L	SW846 6020	11/14-11/27/07 KAE071AH
		Dilution Factor: 1 Instrument ID: ICPMS	Analysis Time: 20:33 MS Run #: 73181	Analyst ID: 400149
Thallium	0.023 B	1.0 ug/L Dilution Factor: 1	SW846 6020 Analysis Time: 20:33	11/14-11/27/07 KAE071AJ Analyst ID: 400149
e in the second		Instrument ID: ICPMS	MS Run # 731810	
Zinc	11.1 Ј	5.0 ug/L Dilution Factor: 1 Instrument ID: ICPMS	SW846 6020 Analysis Time.: 20:33 MS Run #: 731810	-
Prep Batch #	: 7318436			
Mercury	ND	0.20 ug/L Dilution Factor: 1 Instrument ID.:: HGHYDRA	SW845 7470A Analysis Time: 19:50 MS Run #: 731823	

NOTE(S):

B Estimated result. Result is less than RL.

J Method blank contamination. The associated method blank contains the target analyte at a reportable level.

Client Sample ID: FMC 11

TOTAL Metals

	: C7K020216		Received.	.: 11/02/07	Matrix: WATER
		REPORTIN	ic .		DDDDDDDDDDDDDDD
PARAMETER	RESULT	LIMIT	UNITS	METHOD	PREPARATION- WORK ANALYSIS DATE ORDER #
. : '''					ANALYSIS DATE ORDER #
Prep Batch #	: 7318317				
Silver	ND	1.0	ug/L	SW846 6020	11/14-11/27/07 KAELALAV
	•	Dilution Fac	tor: 1	Analysis Time: 20:37	Analyst ID: 400149
•		Instrument I	D: ICPMS	MS Run # 731816	
Arsenic	3.6	1.0	ug/L	SW846 6020	11/14-11/27/07 KAR1A1AW
		Dilution Fac	tor: 1	Analysis Time: 20:37	Analyst ID: 400149
		Instrument I	D: ICPMS	MS Run #: 731816	
Beryllium	ND	1.0	ug/L	SW846 6020	11/14-11/27/07 KAE1A1AX
		Dilution Fac	tor: 1	Analysis Time: 20:37	Analyst ID: 400149
		Instrument I	D: ICPMS	MS Run # 731816	6 MDL 0.068
Cadmium	ND	1.0	ug/L	SW846 6020	11/14-11/27/07 KAE1A1A0
		Dilution Fac		Analysis Time: 20:37	Analyst ID: 400149
		Instrument I	D: ICPMS	MS Run # 7318166	6 MDL 0.11
Chromium	3.0 Ј	2.0	ug/L	SW846 6020	11/14-11/27/07 KARIA1A1
		Dilution Fact	· -	Analysis Time: 20:37	Analyst ID: 400149
		Instrument II	D: ICPMS	MS Run # 7318166	MDL 0.11
Copper	5.4	2.0	ug/L	SW846 6020	11/14-11/27/07 KAR1A1A2
		Dilution Fact		Analysis Time: 20:37	Analyst ID: 400149
•		Instrument II	O: ICPMS	MS Run # 7318166	MDL 0.14
Nickel	2.4	1.0	ug/L	SW846 6020	11/14-11/27/07 KARIALA3
		Dilution Fact		Analysis Time: 20:37	Analyst ID: 400149
		Instrument II	: ICPMS	MS Run # 7318166	MDL 0.073
Lead	1.0	1.0	ug/L	SW846 6020	11/14-11/27/07 KAE1A1A4
		Dilution Fact		Analysis Time: 20:37	Analyst ID: 400149
		Instrument II	: ICPMS	MS Run # 7318166	MDL 0.020
Antimony	0.27 B	2.0	ug/L	SW846 6020	11/14-11/27/07 KAE1A1A5
		Dilution Fact		Analysis Time: 20:37	Analyst ID: 400149
		Instrument ID	: ICPMS	MS Run #: 7318166	MDL 0.047

(Continued on next page)

Client Sample ID: FMC 11

TOTAL Metals

Lot-Sample #...: C7K020216-004

Matrix....: WATER

		REPORTING	√ .		PROPERTY
PARAMETER	RESULT	LIMIT	UNITS	METHOD	PREPARATION- WORK
Selenium	10.3	5.0	ug/L		ANALYSIS DATE ORDER #
DCICILIUM	10.3			SW846 6020	11/14-11/27/07 KAE1A1A6
		Dilution Fact	or: 1	Analysis Time	: 20:37 Analyst ID: 400149
		Instrument ID	: ICPMS	MS Run #	: 7318166 MDL 0.21
Thallium	ND	1.0	ug/L	SW846 6020	11/14-11/27/07 KAE1A1A7
		Dilution Fact	or: 1	Analysis Time	: 20:37 Analyst ID: 400149
		Instrument ID	: ICPMS	MS Run #	
Zinc	15.8 Ј	5.0	ug/L	SW846 6020	11/14-11/27/07 KAR1A1A8
	•	Dilution Fact	or: 1	Analysis Time	: 20:37 Analyst ID: 400149
r .		Instrument ID	: ICPMS	MS Run #	
Prep Batch #	.: 7318436				
Mercury	0.058 B,J	0.20	ug/L	SW846 7470A	11/14/07 KAR1A1AE
4. ·		Dilution Fact	or: 1	Analysis Time	: 19:52 Analyst ID: 400491
		Instrument ID	: HGHYDRA	MS Run #	: 7318234 MDL 0055

NOTE(S):

J Method blank contamination. The associated method blank contains the target analyte at a reportable level.

B Estimated result. Result is less than RL.

Client Sample ID: FMC 12

TOTAL Metals

Lot-Sample #. Date Sampled.			Matrix: WATER	
		REPORTING	•	PREPARATION- WORK
PARAMETER	RESULT	LIMIT UNITS	METHOD	ANALYSIS DATE ORDER #
			•	
Prep Batch #.				
Silver	ND	1.0 ug/L	SW846 6020	11/14-11/27/07 KAE1D1A6
		Dilution Factor: 1	Analysis Time: 20:42	Analyst ID: 400149
		Instrument ID: ICPMS	MS Run #: 731816	6 MDL 0.077
Arsenic	3.5	1.0 ug/L	SW846 6020	11/14-11/27/07 KAE1D1A7
		Dilution Factor: 1	Analysis Time: 20:42	Analyst ID: 400149
•		Instrument ID: ICPMS	MS Run # 731816	-
Beryllium	ND	1.0 ug/L	SW846 6020	11/14-11/27/07 KAE1D1A8
		Dilution Factor: 1	Analysis Time: 20:42	Analyst ID: 400149
		Instrument ID: ICPMS	MS Run # 731816	_
Cadmium	ND	1.0 ug/L	SW846 6020	11/14-11/27/07 KAEIDIAA
		Dilution Factor: 1	Analysis Time: 20:42	Analyst ID: 400149
		Instrument ID: ICPMS	MS Run # 731816	-
Chromium	3.6 J	2.0 ug/L	SW846 6020	11/14-11/27/07 KAELDIAC
		Dilution Factor: 1	Analysis Time: 20:42	Analyst ID: 400149
•		Instrument ID: ICPMS	MS Run # 731816	6 MDL 0.11
Copper	6.3	2.0 ug/L	SW846 6020	11/14-11/27/07 KARIDIAD
		Dilution Factor: 1	Analysis Time: 20:42	Analyst ID: 400149
		Instrument ID: ICPMS	MS Run # 731816	6 MDL 0.14
Nickel	2.7	1.0 ug/L	SW846 6020	11/14-11/27/07 KARIDIAR
		Dilution Factor: 1	Analysis Time: 20:42	Analyst ID: 400149
		Instrument ID: ICPMS	MS Run #: 7318160	6 MDL 0.073
Lead	1.7	1.0 ug/L	SW846 6020	11/14-11/27/07 KARIDIAF
		Dilution Factor: 1	Analysis Time: 20:42	Analyst ID: 400149
		Instrument ID: ICPMS	MS Run # 7318166	5 MDL 0.020
Antimony	0.24 B	2.0 ug/L	SW846 6020	11/14-11/27/07 KAELDLAG
		Dilution Factor: 1	Analysis Time: 20:42	Analyst ID: 400149
		Instrument ID: ICPMS	MS Run #: 7318166	MDL 0.047

(Continued on next page)

Client Sample ID: FMC 12

TOTAL Metals

Lot-Sample #...: C7K020216-005

Matrix..... WATER

		REPORTING			PREPARATION-	WORK
PARAMETER	RESULT	LIMIT	UNITS	METHOD	ANALYSIS DATE	
Selenium	11.1	5.0	ug/L	SW846 6020	11/14-11/27/07	
		Dilution Facto	or: 1	Analysis Time: 20:42		
	•	Instrument ID.	: ICPMS	MS Run # 73181	-	
Thallium	ND	1.0	ug/L	SW846 6020	11/14-11/27/07	KAE1D1AJ
		Dilution Facto	or: 1	Analysis Time: 20:42	Analyst ID	
		Instrument ID.	.: ICPMS	MS Run # 73181		
Zinc	12.7 J	5.0	ug/L	SW846 6020	11/14-11/27/07	KAE1D1AK
	•	Dilution Facto	or: 1	Analysis Time: 20:42		
		Instrument ID.	.: ICPMS	MS Run # 731816		
Prep Batch #	: 7318436					
Mercury	0.057 B,J	0.20	ug/L	SW846 7470A	11/14/07	KAB1D1AP
	•	Dilution Facto	•	Analysis Time: 19:54		
		Instrument ID.	.: HGHYDRA	MS Run # 731823	-	
•						

NOTE(S):

J Method blank contamination. The associated method blank contains the target analyte at a reportable level.

B Estimated result. Result is less than RL.

Client Sample ID: FMC 13

TOTAL Metals

Lot-Sample #. Date Sampled.		· · · · · · · · · · · · · · · · · · ·	: 11/02/07	Matrix: WATER
		REPORTING		PREPARATION- WORK
PARAMETER	RESULT	LIMIT UNITS	METHOD	ANALYSIS DATE ORDER #
Prep Batch #.	- 7210217			
Silver	ND	1.0 ug/L	SW846 6020	11/14 11/22/02 *********************************
	112	Dilution Factor: 1	Analysis Time: 20:46	11/14-11/27/07 KAE1F1A6
		Instrument ID.: ICPMS	MS Run # 731816	Analyst ID: 400149 MDL 0.077
		The time to the terms	ris kair #; /31816	ми (0.077
Arsenic	3.4	1.0 ug/L	SW846 6020	11/14-11/27/07 KAE1F1A7
		Dilution Factor: 1	Analysis Time: 20:46	Analyst ID: 400149
•		Instrument ID: ICPMS	MS Run # 731816	66 MDL 0.14
Beryllium	ND	1.0 ug/L	SW846 6020	11/14 12/22/22 ******************************
wow y was am	112	Dilution Factor: 1	Analysis Time: 20:46	11/14-11/27/07 KAE1F1A8
	•	Instrument ID.: ICPMS	MS Run #: 731816	Analyst ID: 400149
		indiancie ib icens	M5 Rui # /31016	56 UUU U.068
Cadmium	ND	1.0 ug/L	SW846 6020	11/14-11/27/07 KAE1F1AA
		Dilution Factor: 1	Analysis Time: 20:46	Analyst ID: 400149
		Instrument ID: ICPMS	MS Run #: 731816	66 MDL
Chromium	3.7 J	2.0 ug/L	SW846 6020	11/14-11/27/07 KAE1F1AC
		Dilution Factor: 1	Analysis Time: 20:46	Analyst ID: 400149
		Instrument ID: ICPMS	MS Run # 731816	•
_	_			
Copper	6.4	2.0 ug/L	SW846 6020	11/14-11/27/07 KAR1F1AD
		Dilution Factor: 1	Analysis Time: 20:46	Analyst ID: 400149
		Instrument ID.: ICPMS	MS Run #: 731816	6 MDL 0.14
Nickel	2.5	1.0 ug/L	SW846 6020	11/14-11/27/07 KAR1F1AR
		Dilution Factor: 1	Analysis Time: 20:46	Analyst ID: 400149
		Instrument ID: ICPMS	MS Run #: 731816	· -
Lead	1.4	1.0 ug/L	SW846 6020	11/14-11/27/07 KAE1F1AF
		Dilution Factor: 1	Analysis Time: 20:46	Analyst ID: 400149
		Tretminent ID TOTAL	16 Town II	

(Continued on next page)

MS Run #.....: 7318166

Analysis Time..: 20:46

MS Run #.....: 7318166

SW846 6020

Instrument ID. .: ICPMS

Instrument ID. .: ICPMS

Dilution Factor: 1

ug/L

2.0

Antimony

0.22 B

MDL..... 0.020

11/14-11/27/07 KAE1F1AG

Analyst ID....: 400149

MDL..... 0.047

Client Sample ID: FMC 13

TOTAL Metals

Lot-Sample #...: C7K020216-006

Matrix....: WATER

		•		
		REPORTING		PREPARATION- WORK
PARAMETER	RESULT	LIMIT UNITS	METHOD	ANALYSIS DATE ORDER #
Selenium	10.8	5.0 ug/L	SW846 6020	11/14-11/27/07 KAB1F1AH
		Dilution Factor: 1	Analysis Time: 20:46	Analyst ID: 400149
		Instrument ID: ICPMS	MS Run # 73181	166 MDL 0.21
Thallium	ND	1.0 ug/L	SW846 6020	11/14-11/27/07 KAE1F1AJ
		Dilution Factor: 1	Amalysis Time: 20:46	
		Instrument ID: ICPMS	MS Run #: 73183	L66 MDL 0.018
Zinc	10.7 Ј	5.0 ug/L	SW846 6020	11/14-11/27/07 KAR1F1AK
		Dilution Factor: 1	Analysis Time: 20:46	Analyst ID: 400149
		Instrument ID: ICPMS	MS Run # 73181	.66 MDL
Prep Batch #.	: 7318436			
Mercury	ND	0.20 ug/L	SW846 7470A	11/14/07 KAE1F1AP
- ,		Dilution Factor: 1		5 Analyst ID: 400491
		Instrument ID: HGHYDRA	MS Run # 73182	_

NOTE(S):

J Method blank contamination. The associated method blank contains the target analyte at a reportable level.

B Estimated result. Result is less than RL.

Client Sample ID: FMC 16

TOTAL Metals

Date Sampled	: C7K0202:	Date Received.	.: 11/02/07	Matrix: WATER
PARAMETER	RESULT	REPORTING		PREPARATION- WORK
	KEROUII	LIMIT UNITS	METHOD	ANALYSIS DATE ORDER #
	7318317			
Silver	ND	1.0 ug/L	SW846 6020	11/14-11/27/07 KAE1J1A6
		Dilution Factor: 1	Analysis Time: 20:50	Analyst ID: 400149
		Instrument ID: ICPMS	MS Run # 731816	6 MDL 0.077
Arsenic	2.6	1.0 ug/L	SW846 6020	11/14-11/27/07 KAE1J1A7
		Dilution Factor: 1	Analysis Time: 20:50	Analyst ID: 400149
		Instrument ID: ICPMS	MS Run #: 731816	6 MDL 0.14
Beryllium	ND	1.0 ug/L	SW846 6020	11/14 11/07/07 **********
		Dilution Factor: 1	Analysis Time: 20:50	11/14-11/27/07 KAE1J1A8 Analyst ID: 400149
		Instrument ID: ICPMS	MS Run # 731816	6 MDL 0.068
On desire				
Cadmium	0.18 B	1.0 ug/L	SW846 6020	11/14-11/27/07 KARIJIAA
•		Dilution Factor: 1	Analysis Time: 20:50	Analyst ID: 400149
		Instrument ID: ICPMS	MS Run # 7318166	MDL 0.11
Chromium	3.2 J	2.0 ug/L	SW846 6020	11/14-11/27/07 KABIJIAC
		Dilution Factor: 1	Analysis Time: 20:50	Analyst ID: 400149
	•	Instrument ID: ICPMS	MS Run # 7318166	MDL 0.11
Copper	4.9	2.0 ug/L	SW846 6020	11/14-11/27/07 KAEIJ1AD
		Dilution Factor: 1	Analysis Time: 20:50	Analyst ID: 400149
		Instrument ID: ICPMS	MS Run # 7318166	MDL 0.14
Nickel	2.4	1.0 ug/L	SW846 6020	11/14-11/27/07 KARIJIAR
		Dilution Factor: 1	Analysis Time: 20:50	Analyst ID: 400149
		Instrument ID.: ICPMS	MS Run #: 7318166	MDL 0.073
Lead	0.85 B	1.0 ug/L	SW846 6020	11/14-11/27/07 KABIJIAF
		Dilution Factor: 1	Analysis Time: 20:50	Analyst ID: 400149
		Instrument ID: ICPMS	MS Run # 7318166	MDL 0.020
Antimony	0.24 B	2.0 ug/L	SW846 6020	11/14-11/27/07 KABIJIAG
		Dilution Factor: 1	Analysis Time: 20:50	Analyst ID: 400149
		Instrument ID: ICPMS	MS Run #: 7318166	MDL 0.047

(Continued on next page)

Client Sample ID: FMC 16

TOTAL Metals

Lot-Sample #...: C7K020216-007

PARAMETER	RESULT	REPORTING LIMIT UNITS	METHOD	PREPARATION- WORK ANALYSIS DATE ORDER #
Selenium	8.3	5.0 ug/L Dilution Factor: 1 Instrument ID: ICPMS	SW846 6020 Analysis Time: 20:50 MS Run # 731810	11/14-11/27/07 KAELJIAH Analyst ID: 400149
Thallium	ND	1.0 ug/L Dilution Factor: 1 Instrument ID: ICPMS	SW846 6020 Analysis Time: 20:50 MS Run # 731816	•
Zinc	9.7 J	5.0 ug/L Dilution Factor: 1 Instrument ID.:: ICPMS	SW846 6020 Analysis Time: 20:50 MS Run #: 731816	11/14-11/27/07 KAELJIAK Analyst ID: 400149 56 MDL 0.60

Prep Batch #...: 7318436 Mercury ND

0.20 ug/L Dilution Factor: 1 Instrument ID..: HGHYDRA

SW846 7470A Analysis Time..: 19:57

MS Run #..... 7318234

11/14/07

KAE1J1AP

Analyst ID....: 400491 MDL..... 0.055

Matrix....: WATER

NOTE(S):

B Estimated result. Result is less than RL.

J Method blank contamination. The associated method blank contains the target analyte at a reportable level.

Client Sample ID: FMC 18

TOTAL Metals

Lot-Sample #. Date Sampled.			d: 11/02/07	Matrix WATER
			, .	
D3 D31455555		REPORTING		PREPARATION- WORK
PARAMETER	RESULT	LIMIT UNITS	METHOD	ANALYSIS DATE ORDER #
Prep Batch #.	: 7318317		•	
Silver	ND	1.0 ug/L	EM946 6000	
		Dilution Factor: 1	SW846 6020	11/14-11/27/07 KAE1K1A
		Instrument ID.:: ICPM	Analysis Time: 20:55	
•		instrument in: ICPM	S MS Run #: 731816	66 MDL 0.077
Arsenic	2.8	1.0 ug/L	SW846 6020	11/14-11/27/07 KAE1K1AT
		Dilution Factor: 1	Analysis Time: 20:55	Analyst ID: 400149
		Instrument ID.:: ICPM;		
			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	66 MDL 0.14
Beryllium	ND	1.0 ug/L	SW846 6020	11/14-11/27/07 KAE1K1A8
		Dilution Factor: 1	Analysis Time: 20:55	Analyst ID: 400149
•		Instrument ID: ICPMS		
		·		
Cadmium	ND	1.0 ug/L	SW846 6020	11/14-11/27/07 KAE1K1AA
		Dilution Factor: 1	Analysis Time: 20:55	Analyst ID: 400149
		Instrument ID: ICPMS		
Chromium	3.9 Л	2.0 ug/L		
	3.50	-3 <i>i</i> -	SW846 6020	11/14-11/27/07 KAB1K1AC
		Dilution Factor: 1	Analysis Time: 20:55	Analyst ID: 400149
		Instrument ID: ICPMS	MS Run # 731816	6 MDL 0.11
Copper	7.0	2.0 ug/L	SW846 6020	13/14 13/02/02 22
		Dilution Factor: 1	Analysis Time: 20:55	11/14-11/27/07 KARIKLAD
		Instrument ID: ICPMS		Analyst ID: 400149
		201110	AS Run #: /31816	6 MDL 0.14
Nickel	2.5	1.0 ug/L	SW846 6020	11/14-11/27/07 KAE1K1AE
		Dilution Factor: 1	Analysis Time: 20:55	Analyst ID: 400149
		Instrument ID.:: ICPMS	MS Run #: 7318166	
ead	1.5	1.0 ug/L	SW846 6020	11/14-11/27/07 KAE1K1AF
		Dilution Factor: 1	Analysis Time: 20:55	Analyst ID: 400149
		Instrument ID: ICPMS	MS Run # 7318166	
antimony	0.25 B	2.0 ug/L	eman a el como	
---		-3 <i>7</i> —		11/14-11/27/07 KAR1K1AG
		Dilution Factor: 1	Analysis Time: 20:55	Analyst ID: 400149
		Instrument ID: ICPMS	MS Run # 7318166	MDL 0.047

(Continued on next page)

Client Sample ID: FMC 18

TOTAL Metals

Lot-Sample #...: C7K020216-008

Matrix..... WATER

PARAMETER	RESULT	REPORTING LIMIT	UNITS	METHOD	PREPARATION- WORK ANALYSIS DATE ORDER #
Selenium	9.4	5.0 Dilution Facto Instrument ID.		SW846 6020 Analysis Time: 20:55 MS Run #: 731816	11/14-11/27/07 KAE1K1AH Analyst ID: 400149
Thallium	ND	1.0 Dilution Facto Instrument ID.		SW846 6020 Analysis Time: 20:55 MS Run # 731816	
Zinc	12.3 Ј	5.0 Dilution Facto Instrument ID.		SW846 6020 Analysis Time: 20:55 MS Run #: 731816	
Prep Batch # Mercury	: 7318436 ND	0.20 Dilution Factor Instrument ID.		SW846 7470A Analysis Time: 19:59 MS Run #: 731823	11/14/07 KAE1K1AP Analyst ID: 400491 4 MDL: 0.055

NOTE(S):

I Method blank contamination. The associated method blank contains the target analyte at a reportable level.

B Estimated result. Result is less than RL.

Client Sample ID: FMC 20

TOTAL Metals

Lot-Sample #: C7K020216-009 Date Sampled: 10/31/07 Date Received			deceived.	Matrix: WA		
PARAMETER	RESULT	REPORTING LIMIT	UNITS	METHOD	PREPARATION- ANALYSIS DATE	WORK ORDER #
Prep Batch # Silver	ND	1.0 Dilution Factor Instrument ID.		SW846 6020 Analysis Time: 20:59 MS Run #: 731816	11/14-11/27/07 Analyst ID	: 400149
Arsenic	3.4	1.0 Dilution Factor Instrument ID.		SW846 6020 Analysis Time: 20:59 MS Run #: 731816	11/14-11/27/07 Analyst ID	: 400149
Beryllium	ND	1.0 Dilution Facto Instrument ID.	r: 1	SW846 6020 Analysis Time: 20:59 MS Run #: 731816	11/14-11/27/07 Analyst ID	: 400149
Cadmium	ND.	1.0 Dilution Facto Instrument ID.		SW846 6020 Analysis Time: 20:59 MS Run # 7318166	11/14-11/27/07 Analyst ID	400149
Chromium	3.5 J	2.0 Dilution Factor Instrument ID.		SW846 6020 Analysis Time: 20:59 MS Run #: 7318166	11/14-11/27/07 Analyst ID	400149

2.0

1.0

1.0

2.0

Dilution Factor: 1

Dilution Factor: 1

Dilution Factor: 1

Dilution Factor: 1

Instrument ID..: ICPMS

Instrument ID..: ICPMS

Instrument ID..: ICPMS

Analyst ID....: 400149 Instrument ID..: ICPMS MS Run #....: 7318166 MDL..... 0.047

SW846 6020

SW846 6020

SW846 6020

SW846 6020

Analysis Time..: 20:59

Analysis Time..: 20:59

Analysis Time..: 20:59

Analysis Time..: 20:59

MS Run #..... 7318166

MS Run #.....: 7318166

MS Run #..... 7318166

(Continued on next page)

ug/L

ug/L

ug/L

ug/L

Copper

Nickel

Lead

Antimony

2.5

1.3

0.26 B

11/14-11/27/07 KAB1PlAD

Analyst ID....: 400149

11/14-11/27/07 KAR1P1AR

Analyst ID....: 400149

MDL..... 0.073

11/14-11/27/07 KAE1Plap

Analyst ID....: 400149

MDL..... 0.020

11/14-11/27/07 KAE1PlaG

MDL..... 0.14

Client Sample ID: FMC 20

TOTAL Metals

Lot-Sample #...: C7K020216-009

REPORTING PREPARATION-WORK RESULT UNITS METHOD ANALYSIS DATE ORDER # 9.3 5.0 ug/L SW846 6020 11/14-11/27/07 KAR1P1AH Dilution Factor: 1 Analysis Time..: 20:59 Analyst ID....: 400149 Instrument ID. .: ICPMS MS Run #..... 7318166 MDL..... 0.21 ND 1.0 ug/L SW846 6020. 11/14-11/27/07 KAE1P1AJ Dilution Factor: 1 Analysis Time..: 20:59 Analyst ID....: 400149 Instrument ID. .: ICPMS MS Run #..... 7318166 MDL..... 0.018 15.2 J 5.0 uq/L SW846 6020 11/14-11/27/07 KAR1PLAK Dilution Factor: 1 Analysis Time..: 20:59 Analyst ID....: 400149 MS Run #..... 7318166 Instrument ID. .: ICPMS

Prep Batch #...: 7318436

Mercury ND

0.20 uq/L Dilution Factor: 1

Instrument ID. .: HGHYDRA

SW846 7470A

11/14/07

KAE1P1AP

Analysis Time..: 20:00 MS Run #..... 7318234

Analyst ID....: 400491 MDL..... 0.055

MDL..... 0.60

Matrix..... WATER

NOTE(S):

PARAMETER

Selenium

Thallium.

Zinc

J Method blank contamination. The associated method blank contains the target analyte at a reportable level.

B Estimated result. Result is less than RL.

Client Sample ID: FMC 22

TOTAL Metals

Lot-Sample #.	• C7K02021	6-010	· .	
Date Sampled.			: 11/02/07	Matrix: WATER
The second secon		PEDODUTNO		· .
PARAMETER	RESULT	REPORTING LIMIT UNITS	METHOD	PREPARATION- WORK
		DIMIT UNITS	METHOD	ANALYSIS DATE ORDER #
Prep Batch #.	: 7318317			
Silver	ND	1.0 ug/L	SW846 6020	11/14-11/27/07 KAE1R1A6
		Dilution Factor: 1	Analysis Time: 21:15	Analyst ID: 400149
		Instrument ID: ICPMS	MS Run #: 731816	
Arsenic	3.6	1.0 ug/L	SW846 6020	11/14-11/27/07 KABIRLA7
		Dilution Factor: 1	Analysis Time: 21:15	Analyst ID: 400149
		Instrument ID: ICPMS	MS Run # 731816	- · · · · · · · · · · · · · · · · · · ·
Beryllium	ND	1.0 ug/L	SW846 6020	11/14-11/27/07 KAE1R1A8
		Dilution Factor: 1	Analysis Time: 21:15	Analyst ID: 400149
		Instrument ID: ICPMS	MS Run #: 731816	
Cadmium	ND	1.0 ug/L	SW846 6020	11/14-11/27/07 KAE1R1AA
		Dilution Factor: 1	Analysis Time: 21:15	Analyst ID: 400149
		Instrument ID: ICPMS	MS Run #: 731816	6 MDL 0.11
Chronium	3.3 J	2.0 ug/L	SW846 6020	11/14-11/27/07 KABIRIAC
	•	Dilution Factor: 1	Analysis Time: 21:15	Analyst ID: 400149
		Instrument ID: ICPMS	MS Run #: 731816	6 MDL 0.11
Copper	5.6	2.0 ug/L	SW846 6020	11/14-11/27/07 KABIRIAD
		Dilution Factor: 1	Analysis Time: 21:15	Analyst ID: 400149
		Instrument ID: ICPMS	MS Run # 731816	
Nickel	2.4	1.0 ug/L	SW846 6020	11/14-11/27/07 KAE1R1AE
		Dilution Factor: 1	Analysis Time: 21:15	Analyst ID: 400149
		Instrument ID: ICPMS	MS Run # 731816	6 MDL 0.073
Lead	0.94 B	1.0 ug/L	SW846 6020	11/14-11/27/07 KAEIRIAF
		Dilution Factor: 1	Analysis Time: 21:15	Analyst ID: 400149
		Instrument ID: ICPMS	MS Run # 731816	6 MDL 0.020
Antimony	0.29 B	2.0 ug/L	SW846 6020	11/14-11/27/07 KARIRIAG
		Dilution Factor: 1	Analysis Time: 21:15	Analyst ID: 400149
		Instrument ID: ICPMS	MS Run # 731816	5 MDL 0.047

(Continued on next page)

Client Sample ID: FMC 22

TOTAL Metals

Lot-Sample #...: C7K020216-010

Matrix....: WATER

PARAMETER Selenium	RESULT 9.4			METHOD SW846 6020 malysis Time S Run #		PREPARATION- ANALYSIS DATE 11/14-11/27/07 Analyst ID	: 400149
Thallium	ND	1.0 ug Dilution Factor: Instrument ID.::	1 A	SW846 6020 malysis Time S Run #	: 21:15	11/14-11/27/07 Analyst ID	: 400149
Zinc	10.4 Ј	5.0 uc Dilution Factor: Instrument ID:	1 A	SW846 6020 malysis Time S Run #	: 21:15	11/14-11/27/07 Analyst ID	: 400149
Prep Batch #	: 7318436						
Mercury	ND	0.20 ug Dilution Factor: Instrument ID:	1 A:	SW846 7470A malysis Time S Run #	: 20:06	Analyst ID	

NOTE(S):

J Method blank contamination. The associated method blank contains the target analyte at a reportable level.

B Estimated result. Result is less than RL.

Client Sample ID: FMC 24

TOTAL Metals

Int-Sample #	: C7K02021	6-001	•	
	: 10/30/07		.: 11/02/07	Matrix: WATER
		REPORTING		PREPARATION- WORK
PARAMETER	RESULT	LIMIT UNITS	METHOD	ANALYSIS DATE ORDER #
Prep Batch #	•			
Silver	ND	1.0 ug/L	SW846 6020	11/14-11/27/07 KAEX31AV
•		Dilution Factor: 1	Analysis Time: 21:41	Analyst ID: 400149
·		Instrument ID: ICPMS	MS Run # 731816	66 MDL 0.077
Arsenic	3.0	1.0 ug/L	SW846 6020	11/14-11/27/07 KAEX31AW
		Dilution Factor: 1	Analysis Time: 21:41	Analyst ID: 400149
	•	Instrument ID: ICPMS	MS Run #: 731816	
Beryllium	ND	1.0 ug/L	SW846 6020	11/14-11/27/07 KAEX31AX
		Dilution Factor: 1	Analysis Time: 21:41	Analyst ID: 400149
		Instrument ID: ICPMS	MS Run #: 731816	- · · · · · · · · · · · · · · · · · · ·
Cadmium	ND	1.0 ug/L	SW846 6020	11/14-11/27/07 KAEX31A0
:		Dilution Factor: 1	Analysis Time: 21:41	Analyst ID: 400149
		Instrument ID: ICPMS	MS Run #: 731816	
Chromium	3.6 J	2.0 ug/L	SW846 6020	11/14-11/27/07 KAKX31A1
		Dilution Factor: 1	Analysis Time: 21:41	Analyst ID: 400149
		Instrument ID: ICPMS	MS Run # 731816	· · · · · · · · · · · · · · · · · · ·
Copper	5.8	2.0 ug/L	SW846 6020	11/14-11/27/07 KAKX31A2
		Dilution Factor: 1	Analysis Time: 21:41	Analyst ID: 400149
		Instrument ID: ICPMS	MS Run # 731816	6 MDL 0.14
Nickel	2.2	1.0 ug/L	SW846 6020	11/14-11/27/07 KAEX31A3
		Dilution Factor: 1	Analysis Time: 21:41	Analyst ID: 400149
		Instrument ID: ICPMS	MS Run #: 731816	
Lead	0.86 B	1.0 ug/L	SW846 6020	11/14-11/27/07 KAEX31A4
		Dilution Factor: 1	Analysis Time: 21:41	Analyst ID: 400149
		Instrument ID: ICPMS	MS Run #: 731816	
Antimony	0.25 B	2.0 ug/L	SW846 6020	11/14-11/27/07 KAKX31A5
		Dilution Factor: 1	Analysis Time: 21:41	Analyst ID: 400149
		Instrument ID: ICPMS	MS Run # 7318166	5 MDL 0.047

(Continued on next page)

Client Sample ID: FMC 24

TOTAL Metals

Lot-Sample #...: C7K020216-001

Matrix WATER

	1 to 1	REPORTING				PREPARATION-	WORK
PARAMETER	RESULT	LIMIT	UNITS	METHOD		ANALYSIS DATE	ORDER #
Selenium	9.5	5.0	ug/L	SW846 6020		11/14-11/27/07	KAEX31A6
	*	Dilution Factor	r: 1	Analysis Time:	21:41	Analyst ID	: 400149
		Instrument ID.	.: ICPMS	MS Run #:	7318166	MDL	: 0.21
Thallium	ND	1.0	ug/L	SW846 6020		11/14-11/27/07	KAEX31A7
**		Dilution Factor	r: l	Analysis Time:	21:41	Analyst ID	: 400149
		Instrument ID.	.: ICPMS	MS Run #:	7318166	MDL	: 0.018
Zinc	10.5 J	5.0	ug/L	SW846 6020		11/14-11/27/07	KAEX31A8
•	·	Dilution Factor	r: 1	Analysis Time:	21:41	Analyst ID	: 400149
		Instrument ID.	.: ICPMS	MS Run #:	7318166	MDL	: 0.60
		· A					
Prep Batch #	: 7318436						
Mercury	ND	0.20	ug/L	SW846 7470A		11/14/07	KAEX31AE
•		Dilution Factor	:: 1	Analysis Time:		Analyst ID	
		Instrument ID	: HGHYDRA	MS Run #:		-	

NOTE(S):

J Method blank contamination. The associated method blank contains the target analyte at a reportable level.

B Estimated result. Result is less than RL.

Client Sample ID: FMC 25

TOTAL Metals

Lot-Sample #...: C7K020216-014 Matrix..... WATER Date Sampled...: 11/01/07 Date Received..: 11/02/07 REPORTING PREPARATION-WORK PARAMETER RESULT LIMIT UNITS METHOD ANALYSIS DATE ORDER # Prep Batch #...: 7318317 Silver . 1.0 ug/L SW846 6020 11/14-11/27/07 KAE2E1A6 Dilution Factor: 1 Analysis Time..: 21:32 Analyst ID....: 400149 Instrument ID. .: ICPMS MS Run #..... 7318166 MDL..... 0.077 Arsenic 3.5 1.0 uq/L SW846 6020 11/14-11/27/07 KAR2ELA7 Dilution Factor: 1 Analysis Time..: 21:32 Analyst ID....: 400149 Instrument ID. .: ICPMS MS Run #..... 7318166 MDL.... 0.14 Beryllium ND 1.0 ug/L SW846 6020 11/14-11/27/07 KAE2E1A8 Dilution Factor: 1 Analysis Time..: 21:32 Analyst ID....: 400149 Instrument ID. .: ICPMS MS Run #..... 7318166 MDL..... 0.068 Cadmium ND 1.0 ug/L SW846 6020 11/14-11/27/07 KAE2E1AA Dilution Factor: 1 Analysis Time..: 21:32 Analyst ID....: 400149 Instrument ID..: ICPMS MS Run #..... 7318166 MDL..... 0.11 Chromium 3.6 Ј 2.0 ug/L SW846 6020 11/14-11/27/07 KAE2E1AC Dilution Factor: 1 Analysis Time..: 21:32 Analyst ID....: 400149 Instrument ID. .: ICPMS MS Run #..... 7318166 MDL..... 0.11 Copper 5.1 2.0 ug/L SW846 6020 11/14-11/27/07 KAE2E1AD Dilution Factor: 1 Analysis Time..: 21:32 Analyst ID....: 400149 Instrument ID. .: ICPMS MS Run #..... 7318166 MDL..... 0.14 Nickel 2.3 1.0 ug/L SW846 6020 11/14-11/27/07 KAE2E1AE Dilution Factor: 1 Analysis Time..: 21:32 Analyst ID....: 400149 Instrument ID..: ICPMS MS Run #..... 7318166 MDL..... 0.073 Lead 0.84 B 1.0 uq/L SW846 6020 11/14-11/27/07 KAE2E1AF Dilution Factor: 1 Analysis Time..: 21:32 Analyst ID....: 400149 Instrument ID. .: ICPMS MS Run #..... 7318166 MDL..... 0.020 Antimony 0.23 B 2.0 uq/L SW846 6020 11/14-11/27/07 KAR2E1AG Dilution Factor: 1 Analysis Time..: 21:32 Analyst ID....: 400149 Instrument ID..: ICPMS MS Run #..... 7318166

(Continued on next page)

MDL..... 0.047

Client Sample ID: FMC 25

TOTAL Metals

Lot-Sample #...: C7K020216-014

Matrix..... WATER

PARAMETER	RESULT	REPORTING LIMIT	UNITS	METHOD		PREPARATION- ANALYSIS DATE	WORK ORDER #
Selenium	10.7	5.0 Dilution Facto	ug/L	SW846 6020		11/14-11/27/07	KAB2B1AH
•		Instrument ID.		Analysis Time: MS Run #		Analyst ID	
Thallium	ND	1.0 Dilution Facto	ug/L r: 1	SW846 6020 Analysis Time:		11/14-11/27/07 Analyst ID	_
		Instrument ID.	.: ICPMS	MS Run #:			
Zinc	6.0 Ј	5.0 Dilution Facto Instrument ID.		SW846 6020 Analysis Time: MS Run #:		11/14-11/27/07 Analyst ID 5 MDL	: 400149
Prep Batch #	: 7318436	·		•			
Mercury	ND	0.20 Dilution Facto Instrument ID.		SW846 7470A Analysis Time MS Run #	20:12	Analyst ID	

NOTE (S):

J Method blank contamination. The associated method blank contains the target analyte at a reportable level.

B Estimated result. Result is less than RL.

Client Sample ID: FMC 26

TOTAL Metals

Lot-Sample #...: C7K020216-015

Date Sampled...: 11/01/07

Date Received..: 11/02/07

Garage Contraction				
		REPORTING	• .	PREPARATION- WORK
PARAMETER	RESULT	LIMIT UNITS	METHOD	ANALYSIS DATE ORDER #
Prep Batch #	.: 7318317	. •		
Silver	ND	1.0 ug/L	SW846 6020	11/14-11/27/07 KAE2J1A6
		Dilution Factor: 1	Analysis Time: 21:37	Analyst ID: 400149
		Instrument ID: ICPMS	MS Run #: 731816	6 MDL 0.077
Arsenic	2.2	1.0 ug/L	SW846 6020	11/14-11/27/07 KAR2J1A7
		Dilution Factor: 1	Analysis Time: 21:37	Analyst ID: 400149
		Instrument ID: ICPMS	MS Run # 731816	
Beryllium	ND	1.0 ug/L	SW846 6020	11/14-11/27/07 KAE2J1A8
		Dilution Factor: 1	Analysis Time: 21:37	Analyst ID: 400149
		Instrument ID: ICPMS	MS Run #: 7318160	The state of the s
Cadmium	ND	1.0 ug/L	SW846 6020	11/14-11/27/07 KAE2J1AA
		Dilution Factor: 1	Analysis Time: 21:37	Analyst ID: 400149
		Instrument ID: ICPMS	MS Run # 7318166	
Chromium	3,2 J	2.0 ug/L	SW846 6020	11/14-11/27/07 KAR2J1AC
		Dilution Factor: 1	Analysis Time: 21:37	Analyst ID: 400149
	•	Instrument ID: ICPMS	MS Run # 7318166	
Copper	4.5	2.0 ug/L	SW846 6020	11/14-11/27/07 KAE2J1AD
		Dilution Factor: 1	Analysis Time: 21:37	Analyst ID: 400149
		Instrument ID.: ICPMS	MS Run # 7318166	
Nickel	2.2	1.0 ug/L	SW846 6020	11/14-11/27/07 KAE2J1AE
		Dilution Factor: 1	Analysis Time: 21:37	Analyst ID: 400149
		Instrument ID: ICPMS	MS Run #: 7318166	
Lead	0.56 B	1.0 ug/L	SW846 6020	11/14-11/27/07 KAE2J1AF
		Dilution Factor: 1	Analysis Time: 21:37	Analyst ID: 400149
		Instrument ID.:: ICPMS	MS Run # 7318166	"
Antimony	0.17 B	2.0 ug/L	SW846 6020	11/14-11/27/07 KAE2J1AG
		Dilution Factor: 1	Analysis Time: 21:37	Analyst ID: 400149
		Instrument ID: ICPMS	MS Run # 7318166	

Client Sample ID: FMC 26

TOTAL Metals

Lot-Sample #...: C7K020216-015

Matrix WATER

		•				
		REPORTING			PREPARATION-	WORK
PARAMETER	RESULT	LIMIT UNITS	METHOD		ANALYSIS DATE	ORDER #
Selenium	10.4	5.0 ug/L	SW846 6020		11/14-11/27/0	7 KAB2J1AH
		Dilution Factor: 1	Analysis Time:	21:37	Analyst ID	: 400149
• .	•	Instrument ID: ICPMS	MS Run #:	731816	6 MDL	: 0.21
Thallium	ND	1.0 ug/L	SW846 6020		11/14-11/27/0	7 KAE2J1AJ
		Dilution Factor: 1	Analysis Time:	21:37	Analyst ID	: 400149
		Instrument ID: ICPMS	MS Run #	731816	6 MDL	: 0.018
Zinc	5.3 J	5.0 ug/L	SW846 6020	,	11/14-11/27/0	7 KAE2J1AK
		Dilution Factor: 1	Analysis Time:	21:37	Analyst ID	: 400149
. *		Instrument ID: ICPMS	MS Run #:	731816	6 MDL	: 0.60
•	•					
Prep Batch #.	: 7318436	•				
Mercury	ND	0.20 ug/L	SW846 7470A	•	11/14/07	KAE2J1AP
		Dilution Factor: 1	Analysis Time:	20:14	Analyst ID	
		Instrument ID: HGHYDR				

NOTE(S):

I Method blank contamination. The associated method blank contains the target analyte at a reportable level.

B Estimated result. Result is less than RL.

Client Sample ID: FMC 3

TOTAL Metals

. —	: C7K020216 : 10/31/07	Date Received.	.: 11/02/07	Matrix: WATER
		REPORTING		PREPARATION- WORK
PARAMETER	RESULT	LIMIT UNITS	METHOD	ANALYSIS DATE ORDER #
D D-4-L #	221001			
Prep Batch #. Silver	ND	1.0	<u> </u>	
PITAGE	ND .	1.0 ug/L	SW846 6020	11/14-11/27/07 KAE101A6
•		Dilution Factor: 1 Instrument ID.:: ICPMS	Analysis Time: 21:20	Analyst ID: 400149
		Institument ID: ICPMS	MS Run #: 731816	6 MDL 0.077
Arsenic	3.4	1.0 ug/L	SW846 6020	11/14-11/27/07 KAE101A7
· · · · · · · · · · · · · · · · · · ·		Dilution Factor: 1	Analysis Time: 21:20	Analyst ID: 400149
		Instrument ID: ICPMS	MS Run #: 731816	-
Beryllium	ND	1.0 ug/L	SW846 6020	11/14-11/27/07 KAE101A8
		Dilution Factor: 1	Analysis Time: 21:20	Analyst ID: 400149
		Instrument ID: ICPMS	MS Run # 731816	
Cadmium	ND	1.0 ug/L	SW846 6020	11/14-11/27/07 KAE101AA
		Dilution Factor: 1	Analysis Time: 21:20	Analyst ID: 400149
		Instrument ID: ICPMS	MS Run # 731816	6 MDL 0.11
Chromium	3.4 J	2.0 ug/L	SW846 6020	11/14-11/27/07 KAE101AC
		Dilution Factor: 1	Analysis Time: 21:20	Analyst ID: 400149
		Instrument ID: ICPMS	MS Run # 731816	
Copper	5.9	2.0 ug/L	SW846 6020	11/14-11/27/07 KAE101AD
		Dilution Factor: 1	Analysis Time: 21:20	Analyst ID: 400149
		Instrument ID: ICPMS	MS Run #: 731816	5 MDL 0.14
Nickel	2.4	1.0 ug/L	SW846 6020	11/14-11/27/07 KAE101AE
		Dilution Factor: 1	Analysis Time: 21:20	Analyst ID: 400149
٠.		Instrument ID: ICPMS	MS Run # 7318166	MDI 0.073
Lead .	1.2	1.0 ug/L	SW846 6020	11/14-11/27/07 KAE101AF
		Dilution Factor: 1	Analysis Time: 21:20	Analyst ID: 400149
		Instrument ID: ICPMS	MS Run #: 7318166	
Antimony	0.26 B	2.0 ug/L	SW846 6020	11/14-11/27/07 KAR101AG
		Dilution Factor: 1	Analysis Time: 21:20	Analyst ID: 400149
		Instrument ID: ICPMS	MS Run #: 7318166	=

Client Sample ID: FMC 3

TOTAL Metals

Lot-Sample	#	:	C7K020216-011	•
------------	---	---	---------------	---

Matrix....: WATER

	·					
		REPORTING			PREPARATIO	N- WORK
PARAMETER	RESULT	LIMIT U	NITS NITS	ÆTHOD	ANALYSIS I	ATE ORDER #
Selenium	9.1	5.0 ug	g/L S	W846 6020	11/14-11/2	7/07 KAR101AH
		Dilution Factor:	1 An	alysis Time: 21	:20 Analyst I	D: 400149
		Instrument ID:	ICPMS MS	Run #: 73	18166 MDL	: 0.21
Thallium	ND	1.0 ug	g/L 5	SW846 6020	11/14-11/2	7/07 KAE101AJ
		Dilution Factor:	1 An	alysis Time: 21	:20 Analyst I	D: 400149
		Instrument ID:	ICPMS MS	Run # 73	18166 MDL	: 0.018
Zinc	9.1 Ј	5.0 ug	g/L S	SW846 6020	11/14-11/2	7/07 KAE101AK
		Dilution Factor:	1 And	alysis Time: 21		D: 400149
		Instrument ID:	ICPMS MS	Run #: 73	18166 MDL	: 0.60
Prep Batch #	.: 7318436					
Mercury	ND	0.20 ug	g/L 9	W846 7470A	11/14/07	KAE101AP
		Dilution Factor:	1 Ana	alysis Time: 20	:07 Analyst I	D: 400491
		Instrument ID:		Run # 73		: 0.055

NOTE(S):

J Method blank contamination. The associated method blank contains the target analyte at a reportable level.

B Estimated result. Result is less than RL.

Client Sample ID: FMC 5

TOTAL Metals

Lot-Sample #...: C7K020216-012 Matrix..... WATER Date Sampled...: 10/31/07 Date Received..: 11/02/07 REPORTING PREPARATION-WORK PARAMETER RESULT LIMIT UNITS METHOD ANALYSIS DATE ORDER # Prep Batch #...: 7318317 Silver ND 1.0 ug/L SW846 6020 11/14-11/27/07 KAE151A6 Dilution Factor: 1 Analysis Time..: 21:24 Analyst ID....: 400149 Instrument ID..: ICPMS MS Run #..... 7318166 MDL..... 0.077 Arsenic 3.7 1.0 ug/L SW846 6020 11/14-11/27/07 KAR151A7 Dilution Factor: 1 Analysis Time..: 21:24 Analyst ID....: 400149 Instrument ID..: ICPMS MS Run #.....: 7318166 MDL..... 0.14 Beryllium ND 1.0 ug/L SW846 6020 11/14-11/27/07 KAE151A8 Dilution Factor: 1 Analysis Time..: 21:24 Analyst ID....: 400149 Instrument ID..: ICPMS MS Run #..... 7318166 MDL..... 0.068 Cadmium 0.13 B 1.0 ug/L SW846 6020 11/14-11/27/07 KAR151AA Dilution Factor: 1 Analysis Time..: 21:24 Analyst ID....: 400149 Instrument ID. .: ICPMS MS Run #..... 7318166 MDL..... 0.11 Chromium 3.4 J 2.0 ug/L SW846 6020 11/14-11/27/07 KAR151AC Dilution Factor: 1 Analysis Time..: 21:24 Analyst ID....: 400149 Instrument ID. .: ICPMS MS Run #..... 7318166 MDL..... 0.11 Copper 6.3 2.0 ug/L SW846 6020 11/14-11/27/07 KAR151AD Dilution Factor: 1 Analysis Time..: 21:24 Analyst ID....: 400149 Instrument ID..: ICPMS MS Run #..... 7318166 MDL..... 0.14 Nickel 2.3 1.0 ug/L SW846 6020 11/14-11/27/07 KAR151AR Dilution Factor: 1 Analysis Time..: 21:24 Analyst ID....: 400149 Instrument ID..: ICPMS MS Run #..... 7318166 MDL..... 0.073 Lead 1.1 1.0 ug/L SW846 6020 11/14-11/27/07 KAR151AF Dilution Factor: 1 Analysis Time..: 21:24 Analyst ID....: 400149 Instrument ID. .: ICPMS MS Run #..... 7318166 MDL..... 0.020 Antimony 0.26 B 2.0 ug/L SW846 6020 11/14-11/27/07 KAR151AG Dilution Factor: 1 Analysis Time..: 21:24 Analyst ID....: 400149 Instrument ID..: ICPMS MS Run #..... 7318166 MDL..... 0.047

Client Sample ID: FMC 5

TOTAL Metals

Lot-Sample #...: C7K020216-012

Matrix..... WATER

PARAMETER	RESULT	REPORTING LIMIT	UNITS	METHOD	PREPARATION- ANALYSIS DATE	WORK ORDER #
Selenium	10.3	5.0	ug/L	SW846 6020	11/14-11/27/07	
•		Dilution Facto	or: 1	Analysis Time: 21:24	Analyst ID	: 400149
		Instrument ID.	.: ICPMS	MS Run # 731816	6 MDL	: 0.21
Thallium	ND	1.0	ug/L	SW846 6020	11/14-11/27/07	KAE151AJ
		Dilution Facto	or: 1	Analysis Time: 21:24	Analyst ID	: 400149
		Instrument ID.	.: ICPMS	MS Run #: 731816	6 MDL	: 0.018
Zinc	13.3 Ј	5.0	ug/L	SW846 6020	11/14-11/27/07	KAB151AK
		Dilution Facto	r: 1	Analysis Time: 21:24	Analyst ID	: 400149
		Instrument ID.	.: ICPMS	MS Run #: 731816	6 MDL	: 0.60
Prep Batch #	: 7318436					
Mercury	0.056 B,J	0.20	ug/L	SW846 7470A	11/14/07	KAB151AP
		Dilution Facto	r:.1	Analysis Time: 20:09	Analyst ID	: 400491
		Instrument ID.	.: HGHYDRA	MS Run # 731823		

NOTE(S):

B Estimated result. Result is less than RL.

J Method blank contamination. The associated method blank contains the target analyte at a reportable level.

Client Sample ID: FMC 7

TOTAL Metals

Lot-Sample #...: C7K020216-013 Matrix.... WATER Date Sampled...: 10/31/07 Date Received..: 11/02/07 REPORTING PREPARATION-WORK PARAMETER RESULT LIMIT. UNITS METHOD ANALYSIS DATE ORDER # Prep Batch #...: 7318317 Silver 1.0 ug/L SW846 6020 11/14-11/27/07 KAB191A6 Dilution Factor: 1 Analysis Time..: 21:28 Analyst ID....: 400149 Instrument ID. .: ICPMS MS Run #..... 7318166 MDL..... 0.077 Arsenic 3.4 1.0 uq/L SW846 6020 11/14-11/27/07 KAE191A7 Dilution Factor: 1 Analysis Time..: 21:28 Analyst ID....: 400149 Instrument ID ..: ICPMS MS Run #..... 7318166 MDL..... 0.14 Beryllium ND 1.0 ug/L SW846 6020 11/14-11/27/07 KAE191A8 Dilution Factor: 1 Analysis Time..: 21:28 Analyst ID....: 400149 Instrument ID. .: ICPMS MS Run #..... 7318166 MDL..... 0.068 Cadmium ND 1.0 uq/L SW846 6020 11/14-11/27/07 KAE191AA Dilution Factor: 1 Analysis Time..: 21:28 Analyst ID....: 400149 Instrument ID..: ICPMS MS Run #.....: 7318166 MDL..... 0.11 Chromium 3.5 J 2.0 uq/L SW846 6020 11/14-11/27/07 KAR191AC Dilution Factor: 1 Analysis Time..: 21:28 Analyst ID....: 400149 Instrument ID. .: ICPMS MS Run #....: 7318166 MDL..... 0.11 Copper 6.2 2.0 ug/L SW846 6020 11/14-11/27/07 KAE191AD Dilution Factor: 1 Analysis Time..: 21:28 Analyst ID....: 400149 Instrument ID..: ICPMS MS Run #.....: 7318166 MDL..... 0.14 Nickel 2.4 1.0 uq/L SW846 6020 11/14-11/27/07 KAE191AE Dilution Factor: 1 Analysis Time..: 21:28 Analyst ID....: 400149 Instrument ID..: ICPMS MS Run #..... 7318166 MDL..... 0.073 Lead 1.1 1.0 ug/L SW846 6020 11/14-11/27/07 KAR191AF Analysis Time..: 21:28 Dilution Factor: 1 Analyst ID....: 400149 Instrument ID. .: ICPMS MS Run #..... 7318166 MDL..... 0.020 Antimony 0.24 B 2.0 uq/L SW846 6020 11/14-11/27/07 KAE191AG Dilution Factor: 1 Analysis Time..: 21:28 Analyst ID....: 400149 Instrument ID..: ICPMS MS Run #....: 7318166

(Continued on next page)

MDL..... 0.047

Client Sample ID: FMC 7

TOTAL Metals

Lot-Sample #...: C7K020216-013

Matrix....: WATER

PARAMETER	RESULT	REPORTING LIMIT UNITS	METHOD	PREPARATION- WORK ANALYSIS DATE ORDER #
Selenium	10.2	5.0 ug/L Dilution Factor: 1 Instrument ID.: ICPMS	SW846 6020 Analysis Time: 21:28 MS Run #: 731816	11/14-11/27/07 KAE191AH Analyst ID: 400149
Thallium	ND	1.0 ug/L Dilution Factor: 1 Instrument ID.:: ICPMS	SW846 6020 Analysis Time: 21:28 MS Run #: 7318160	11/14-11/27/07 KAE191AJ Analyst ID: 400149 5 MDL 0.018
Zinc	12.2 Ј	5.0 ug/L Dilution Factor: 1 Instrument ID: ICPMS	SW846 6020 Analysis Time: 21:28 MS Run #: 7318166	11/14-11/27/07 KAR191AK Analyst ID: 400149 MDL: 0.60
Prep Batch #. Mercury	: 7318436 ND	0.20 ug/L Dilution Factor: 1 Instrument ID: HGHYDRA	SW846 7470A Analysis Time: 20:11 MS Run #: 7318234	11/14/07 KAE191AP Analyst ID: 400491 MDL: 0.055
MOTP/C).				

J Method blank contamination. The associated method blank contains the target analyte at a reportable level.

B Estimated result. Result is less than RL.

Client Sample ID: FMC 9

TOTAL Metals

Lot-Sample # Date Sampled	: 10/30/07	Date Received	: 11/02/07	Matrix: WATER
PARAMETER	RESULT	REPORTING LIMIT UNITS	METHOD	PREPARATION- WORK ANALYSIS DATE ORDER
Prep Batch #	: 7318317		•	
Silver	ND	1.0 ug/L	0770.4.5	
		Dilution Factor: 1 Instrument ID.:: ICPMS	SW846 6020 Analysis Time: 20:29 MS Run #: 731816	11/14-11/27/07 KAE051A Analyst ID: 400149 6 MDL 0.077
Arsenic	2.1	1.0 ug/L Dilution Factor: 1 Instrument ID: ICPMS	SW846 6020 Analysis Time: 20:29 MS Run #: 731816	11/14-11/27/07 KAE051A Analyst ID: 400149 6 MDL: 0.14
Beryllium	ND .	1.0 ug/L Dilution Factor: 1 Instrument ID.:: ICPMS	SW846 6020 Analysis Time: 20:29 MS Run #: 7318166	11/14-11/27/07 KAE051A Analyst ID: 400149 5 MDL 0.068
Cadmium	0.12 B	1.0 ug/L Dilution Factor: 1 Instrument ID.:: ICPMS	SW846 6020 Analysis Time: 20:29 MS Run #: 7318166	11/14-11/27/07 KAE051A Analyst ID: 400149 MDL 0.11
Chronium	2.9 J	2.0 ug/L Dilution Factor: 1 Instrument ID.:: ICPMS	SW846 6020 Analysis Time: 20:29 MS Run #: 7318166	11/14-11/27/07 KAR051A0 Analyst ID: 400149 MDL 0.11
Copper	6.1	2.0 ug/L Dilution Factor: 1 Instrument ID: ICPMS	SW846 6020 Analysis Time: 20:29 MS Run #: 7318166	11/14-11/27/07 KAE051A1 Analyst ID: 400149 MDL 0.14
Nickel	2.4	1.0 ug/L Dilution Factor: 1 Instrument ID: ICPMS	SW846 6020 Analysis Time: 20:29 MS Run #: 7318166	11/14-11/27/07 KAE051AE Analyst ID: 400149 MDL 0.073
Lead	1.7	1.0 ug/L Dilution Factor: 1	SW846 6020 Analysis Time: 20:29	L1/14-11/27/07 KAE051AF
	•	Instrument ID: ICPMS	MS Run #: 7318166	Analyst ID: 400149 MDL 0.020
Antimony	0.26 B	2.0 ug/L	SW846 6020	11/14-11/27/07 KAE051AG

Client Sample ID: FMC 9

TOTAL Metals

Lot-Sample #...: C7K020216-002

Matrix....: WATER

		·		
		REPORTING	•	PREPARATION- WORK
PARAMETER	RESULT	LIMIT UNITS	METHOD	ANALYSIS DATE ORDER #
Selenium	7.5	5.0 ug/L	SW846 6020	11/14-11/27/07 KAE051AH
	•	Dilution Factor: 1	Analysis Time: 20:29	Analyst ID: 400149
		Instrument ID: ICPMS	MS Run # 73181	66 MDL 0.21
Thallium	0.022 B	1.0 ug/L	SW846 6020	11/14-11/27/07 KAR051AJ
		Dilution Factor: 1	Analysis Time: 20:29	
		Instrument ID: ICPMS	MS Run # 73181	66 MDL 0.018
Zinc	12.3 J	5.0 ug/L	SW846 6020	11/14-11/27/07 KAR051AK
•		Dilution Factor: 1	Analysis Time: 20:29	Analyst ID: 400149
		Instrument ID: ICPMS	MS Run # 73181	
		•		
Prep Batch #	.: 7318436			
Mercury	ND	0.20 ug/L	SW846 7470A	11/14/07 KAE051AP
		Dilution Factor: 1	Analysis Time: 19:49	
		Instrument ID: HGHYDRA	MS Run #: 73182	

NOTE(S):

B Estimated result. Result is less than RL.

J Method blank contamination. The associated method blank contains the target analyte at a reportable level.

Client Sample ID: FMC 10

DISSOLVED Metals

Lot-Sample #...: C7K020216-003 Matrix....: WATER Date Sampled...: 10/30/07 Date Received..: 11/02/07 REPORTING PREPARATION-WORK PARAMETER RESULT LIMIT. UNITS METHOD ANALYSIS DATE ORDER # Prep Batch #...: 7318307 Silver ND 1.0 uq/L SW846 6020 11/14-11/27/07 KAE071AR Dilution Factor: 1 Analysis Time..: 22:47 Analyst ID....: 400149 Instrument ID. .: ICPMS MS Run #..... 7318162 MDL..... 0.077 Arsenic 1.8 1.0 uq/L SW846 6020 11/14-11/27/07 KAB071AT Dilution Factor: 1 Analysis Time..: 22:47 Analyst ID....: 400149 Instrument ID ..: ICPMS MS Run #..... 7318162 MDL..... 0.14 Beryllium ND 1.0 uq/L SW846 6020 11/14-11/27/07 KAE071AU Dilution Factor: 1 Analysis Time..: 22:47 Analyst ID....: 400149 Instrument ID. .: ICPMS MS Run #..... 7318162 MDL..... 0.068 Cadmium 0.13 B 1.0 uq/L SW846 6020 11/14-11/27/07 KAE071AV Dilution Factor: 1 Analysis Time..: 22:47 Analyst ID....: 400149 Instrument ID. .: ICPMS MS Run #..... 7318162 MDL..... 0.11 Chronium 3.4 J 2.0 ug/L SW846 6020 11/14-11/27/07 KAB071AW Dilution Factor: 1 Analysis Time..: 22:47 Analyst ID....: 400149 Instrument ID..: ICPMS MS Run #....: 7318162 Copper 3.4 2.0 uq/L SW846 6020 11/14-11/27/07 KAE071AX Dilution Factor: 1 Analysis Time..: 22:47 Analyst ID....: 400149 Instrument ID..: ICPMS MS Run #....: 7318162 MDL..... 0.14 Nickel 2.4 1.0 ug/Ľ SW846 6020 11/14-11/27/07 KAE071A0 Dilution Factor: 1 Analysis Time..: 22:47 Analyst ID....: 400149 Instrument ID. .: ICPMS MS Run #..... 7318162 MDL..... 0.073 Lead ND 1.0 uq/L SW846 6020 11/14-11/27/07 KAE071A1 Dilution Factor: 1 Analysis Time..: 22:47 Analyst ID....: 400149 Instrument ID. .: ICPMS MS Run #..... 7318162 MDL..... 0.020 Antimony 0.31 B 2.0 ug/L SW846 6020 11/14-11/27/07 KAE071A2 Dilution Factor: 1 Analysis Time..: 22:47 Analyst ID....: 400149

(Continued on next page)

MS Run #..... 7318162

Instrument ID..: ICPMS

MDL..... 0.047

Client Sample ID: FMC 10

DISSOLVED Metals

Lot-Sample #...: C7K020216-003

PARAMETER Selenium	RESULT	REPORTING LIMIT UNITS 5.0 ug/L	METHOD SW846 6020		ORK ORDER #
		Dilution Factor: 1 Instrument ID: ICPMS	Analysis Time: 22:47 MS Run #: 731816	Analyst ID:	400149
Thallium	0.093 в	1.0 ug/L Dilution Factor: 1 Instrument ID.:: ICPMS	SW846 6020 Analysis Time: 22:47 MS Run # 7318162	11/14-11/27/07 R Analyst ID:	400149
Zinc	7.2	5.0 ug/L Dilution Factor: 1 Instrument ID.:: ICPMS	SW846 6020 Analysis Time: 22:47 MS Run #: 7318162	11/14-11/27/07 K Analyst ID: MDL	400149
Prep Batch #. Mercury	.: 7320210 ND	0.20 ug/L Dilution Factor: 1 Instrument ID: HGHYDRA	SW846 7470A Analysis Time: 13:55 MS Run #: 7320130	Analyst ID:	

NOTE(S):

Matrix..... WATER

B Estimated result. Result is less than RL.

J Method blank contamination. The associated method blank contains the target analyte at a reportable level.

Client Sample ID: FMC 11

DISSOLVED Metals

Lot-Sample #.	: C7K020216	5-004		Matrix: WATER
Date Sampled.		Date Received.	.: 11/02/07	FARCLIAN WALDA
		REPORTING		PREPARATION- WORK
PARAMETER	RESULT	LIMIT UNITS	METHOD	ANALYSIS DATE ORDER #
Prep Batch #.	7318307			
Silver	ND	1.0 ug/L	SW846 6020	13/14 11/05/05 #271275
		Dilution Factor: 1		11/14-11/27/07 KAE1A1AG
		Instrument ID.: ICPMS	Analysis Time: 22:51 MS Run #: 731816	Analyst ID: 400149
		The comment of the comment	MS RUI # /31816	2 MDL 0.077
Arsenic	3.4	1.0 ug/L	SW846 6020	11/14-11/27/07 KAELA1AH
	•	Dilution Factor: 1	Analysis Time: 22:51	Analyst ID: 400149
		Instrument ID: ICPMS	MS Run # 731816	2 MDL 0.14
n		<u> </u>	·	
Beryllium	ND	1.0 ug/L	SW846 6020	11/14-11/27/07 KAE1A1AJ
•		Dilution Factor: 1	Analysis Time: 22:51	Analyst ID: 400149
• 1		Instrument ID: ICPMS	MS Run # 731816	2 MDL 0.068
Cadmium	ND	1.0 ug/L	SW846 6020	11/14-11/27/07 KAE1A1AK
		Dilution Factor: 1	Analysis Time: 22:51	Analyst ID: 400149
		Instrument ID: ICPMS	MS Run # 731816	· · · · · · · · · · · · · · · · · · ·
Chromium	3.2 Ј	2.0 ug/L	SW846 6020	11/14-11/27/07 KAR1A1AL
**		Dilution Factor: 1	Analysis Time: 22:51	Analyst ID: 400149
		Instrument ID: ICPMS	MS Run # 7318162	MDL 0.11
Copper	3.4	2.0 ug/L	SW846 6020	11/14-11/27/07 KAR1A1AM
		Dilution Factor: 1	Analysis Time: 22:51	Analyst ID: 400149
		Instrument ID: ICPMS	MS Run # 7318162	_
		_		•
Nickel	2.1	1.0 ug/L	SW846 6020	11/14-11/27/07 KAR1A1AN
		Dilution Factor: 1	Analysis Time: 22:51	Analyst ID: 400149
		Instrument ID: ICPMS	MS Run #: 7318162	MDL 0.073
Lead	ND	1.0 ug/L	SW846 6020	11/14-11/27/07 KAE1A1AP
		Dilution Factor: 1	Analysis Time: 22:51	Analyst ID: 400149
		Instrument ID.:: ICPMS	MS Run # 7318162	-
3 _43				
Antimony	0.25 B	2.0 ug/L	SW846 6020	11/14-11/27/07 KAE1A1AQ
		Dilution Factor: 1	Analysis Time: 22:51	Analyst ID: 400149
		Instrument ID: ICPMS	MS Run # 7318162	MDL 0.047

Client Sample ID: FMC 11

DISSOLVED Metals

Lot-Sample #	:	C7K020216-004
--------------	---	---------------

		•		•		
	•	REPORTI	NG		PREPARATION-	WORK
PARAMETER	RESULT	LIMIT	UNITS	METHOD	ANALYSIS DATE	ORDER #
Selenium	10.8	5.0	ug/L	SW846 6020	11/14-11/27/0	7 KAELALAR
		Dilution Fa	ctor: 1	Analysis Time: 22:5	1 Analyst ID	: 400149
		Instrument	ID: ICPMS	MS Run #: 7318	162 MDL	: 0.21
Thallium	0.040 B	1.0	ug/L	SW846 6020	11/14-11/27/0	7 KABLALAT
		Dilution Fa		Analysis Time: 22:5	•	
		Instrument	ID: ICPMS	MS Run # 7318	-	
Zinc	7.1	5.0	ug/L	SW846 6020	11/14-11/27/0	7 KAR1A1AU
		Dilution Fa	ctor: 1	Analysis Time: 22:5	1 Analyst ID	: 400149
:		Instrument	ID: ICPMS	MS Run #: 7318	162 MDL	: 0.60
Prep Batch #.	: 7320210					
Mercury	ND	0.20	ug/L	SW846 7470A	11/16/07	KAE1A1AF

Instrument ID.:: HGHYDRA MS Run #....: 7320130

Analysis Time..: 14:00

NOTE(S):

Dilution Factor: 1

Analyst ID..... 400491

MDL..... 0.055

J Method blank contamination. The associated method blank contains the target analyte at a reportable level.

B Estimated result. Result is less than RL,

Client Sample ID: FMC 12

DISSOLVED Metals

Lot-Sample #. Date Sampled.	: C7K020216		d: 11/02/07	Matrix: WATER
PARAMETER	RESULT	REPORTING LIMIT UNITS	METHOD	PREPARATION- WORK ANALYSIS DATE ORDER #
Prep Batch #.	- 7318307			
Silver	ND	1.0 ug/L Dilution Factor: 1 Instrument ID: ICPM	SW846 6020 Analysis Time: 22:56 S MS Run #: 731816	11/14-11/27/07 KAE1D1AR Analyst ID: 400149 2 MDL: 0.077
Arsenic	3.7	1.0 ug/L Dilution Factor: 1 Instrument ID.:: ICPM	SW846 6020 Analysis Time: 22:56 S MS Run #: 731816	11/14-11/27/07 KAEIDIAT Analyst ID: 400149 12 MDL 0.14
Beryllium	ND	1.0 ug/L Dilution Factor: 1 Instrument ID: ICPM	SW846 6020 Analysis Time.: 22:56 S MS Run #: 731816	
Cadmium	0.12 B	1.0 ug/L Dilution Factor: 1 Instrument ID: ICPM	SW846 6020 Analysis Time: 22:56 MS Run #: 731816	11/14-11/27/07 KAE1D1AV Analyst ID: 400149 2 MDL: 0.11
Chromium	3.2 Ј	2.0 ug/L Dilution Factor: 1 Instrument ID: ICPMS	SW846 6020 Analysis Time: 22:56 MS Run #: 731816	11/14-11/27/07 KAR1D1AW Analyst ID: 400149 2 MDL: 0.11
Copper	3.1	2.0 ug/L Dilution Factor: 1 Instrument ID: ICPMS	SW846 6020 Analysis Time: 22:56 MS Run #: 731816	11/14-11/27/07 KARIDIAX Analyst ID: 400149 2 MDL: 0.14
Nickel	2.2	1.0 ug/L Dilution Factor: 1 Instrument ID: ICPMS	SW846 6020 Analysis Time: 22:56 MS Run # 731816	11/14-11/27/07 KAB1D1A0 Analyst ID: 400149 2 MDL: 0.073
Lead	0.022 B	1.0 ug/L Dilution Factor: 1 Instrument ID: ICPMS	SW846 6020 Analysis Time: 22:56 MS Run # 731816	11/14-11/27/07 KAR1D1A1 Analyst ID: 400149 2 MDL 0.020
Antimony	0.30 В	2.0 ug/L Dilution Factor: 1	SW846 6020 Analysis Time: 22:56	11/14-11/27/07 KAE1D1A2 Analyst ID: 400149

(Continued on next page)

MS Run #..... 7318162

Instrument ID..: ICPMS

Client Sample ID: FMC 12

DISSOLVED Metals

UNITS

ug/L

uq/L

ug/L

Lot-Sample #...: C7K020216-005

RESULT

0.038 B

7.1

12.3

PREPARATION-WORK ANALYSIS DATE ORDER # 11/14-11/27/07 KAR1D1A3 Analysis Time..: 22:56 Analyst ID....: 400149 MS Run #..... 7318162 MDL..... 0.21 11/14-11/27/07 KARIDIA4 Analysis Time..: 22:56 Analyst ID....: 400149 MS Run #..... 7318162 MDL..... 0.018

11/14-11/27/07 KARIDIA5

Analyst ID....: 400149

MDL..... 0.60

Matrix....: WATER

Prep Batch #...: 7320210

Mercury ND 0.20

ug/L

SW846 7470A

METHOD

SW846 6020

SW846 6020

SW846 6020

11/16/07

KAE1D1AO

Dilution Factor: 1

REPORTING

Dilution Factor: 1

Dilution Factor: 1

Dilution Factor: 1

Instrument ID. .: ICPMS

Instrument ID. .: ICPMS

Instrument ID..: ICPMS

LIMIT

5.0

1.0

5.0

Analysis Time..: 14:02

Analyst ID....: 400491

Instrument ID..: HGHYDRA

MS Run #..... 7320130

Analysis Time..: 22:56

MS Run #..... 7318162

MDL..... 0.055

NOTE(S):

PARAMETER.

Selenium

Thallium

Zinc

B Estimated result. Result is less than RL.

J Method blank contamination. The associated method blank contains the target analyte at a reportable level.

Client Sample ID: FMC 13

DISSOLVED Metals

	: C7K020210		.: 11/02/07	Matrix: WATER
		REPORTING		PREPARATION- WORK
PARAMETER	RESULT	LIMIT UNITS	METHOD	ANALYSIS DATE ORDER #
Prep Batch #	7318307			
Silver	ND	1.0 ug/L	SW846 6020	11/14 11/27/07 WARTELEN
		Dilution Factor: 1	Analysis Time: 23:00	11/14-11/27/07 KAE1FlAR Analyst ID: 400149
		Instrument ID: ICPMS	MS Run # 731816	
Arsenic	4.2	1.0 ug/L	SW846 6020	11/14-11/27/07 KARIFIAT
		Dilution Factor: 1	Analysis Time: 23:00	Analyst ID: 400149
		Instrument ID: ICPMS	MS Run # 731816	
Beryllium	ND	1.0 ug/L	SW846 6020	11/14-11/27/07 KAE1F1AU
		Dilution Factor: 1	Analysis Time: 23:00	Analyst ID: 400149
		Instrument ID.:: ICPMS	MS Run #: 731816	
Cadmium	ND	1.0 ug/L	SW846 6020	11/14-11/27/07 KAE1F1AV
		Dilution Factor: 1	Analysis Time: 23:00	Analyst ID: 400149
		Instrument ID: ICPMS	MS Run #: 731816	2 MDL 0.11
Chromium	2.9 Ј	2.0 ug/L	SW846 6020	11/14-11/27/07 KAR1FlAW
		Dilution Factor: 1	Analysis Time: 23:00	Analyst ID: 400149
•		Instrument ID: ICPMS	MS Run # 731816	2 MDL 0.11
Copper	3.0	2.0 ug/L	SW846 6020	11/14-11/27/07 KAR1F1AX
		Dilution Factor: 1	Analysis Time: 23:00	Analyst ID: 400149
		Instrument ID: ICPMS	MS Run # 7318162	2 MDL 0.14
Nickel	1.9	1.0 ug/L	SW846 6020	11/14-11/27/07 KAE1F1A0
		Dilution Factor: 1	Analysis Time: 23:00	Analyst ID: 400149
		Instrument ID: ICPMS	MS Run #: 7318162	MDL 0.073
Lead	0.067 B	1.0 ug/L	SW846 6020	11/14-11/27/07 KAR1F1A1
		Dilution Factor: 1	Analysis Time: 23:00	Analyst ID: 400149
		Instrument ID: ICPMS	MS Run # 7318162	MDL 0.020
Antimony	0.25 B	2.0 ug/L	SW846 6020	11/14-11/27/07 KAE1F1A2
		Dilution Factor: 1	Analysis Time: 23:00	Analyst ID: 400149
		Instrument ID: ICPMS	MS Run #: 7318162	MDL 0.047

Client Sample ID: FMC 13

DISSOLVED Metals

Lot-Sample #...: C7K020216-006

Matrix....: WATER

		REPORTING) , 5	•	PREPARATION- WORK
PARAMETER	RESULT	LIMIT	UNITS	METHOD	ANALYSIS DATE ORDER #
Selenium	13.9	5.0	ug/L	SW846 6020	11/14-11/27/07 KAE1F1A3
		Dilution Fact	or: 1	Analysis Time:	
	•	Instrument ID	: ICPMS	MS Run #:	•
Thallium	0.021 B	1.0	ug/L	SW846 6020	11/14-11/27/07 KAB1F1A4
		Dilution Facto	or: 1	Analysis Time:	
		Instrument ID	: ICPMS	MS Run #:	
Zinc	7.6	5.0	ug/L	SW846 6020	11/14-11/27/07 KAR1F1A5
	•	Dilution Facto	or: 1	Analysis Time:	
		Instrument ID	: ICPMS	MS Run #:	7318162 MDL 0.60
•		•			•
Prep Batch #	: 7320210				
Mercury	ND	0.20	ug/L	SW846 7470A	11/16/07 KAE1F1AQ
		Dilution Facto	or: 1	Analysis Time:	14:03 Analyst ID: 400491
•		Instrument ID	: HGHYDRA	MS Run #:	7320130 MDL 0.055

NOTE(S):

J Method blank contamination. The associated method blank contains the target analyte at a reportable level.

B Estimated result. Result is less than RL.

Client Sample ID: FMC 16

DISSOLVED Metals

	: C7K02021		-: 11/02/07	Matrix: WATER
PARAMETER	RESULT	REPORTING LIMIT UNITS	METHOD	PREPARATION - WORK ANALYSIS DATE ORDER #
Prep Batch # Silver	: 7318307 ND	1.0 ug/L Dilution Factor: 1 Instrument ID: ICPMS	SW846 6020 Analysis Time: 23:17 MS Run #: 731816	11/14-11/27/07 KAE1J1AR Analyst ID: 400149 2 MDL 0.077
Arsenic	4.4	1.0 ug/L Dilution Factor: 1 Instrument ID: ICPMS	SW846 6020 Analysis Time: 23:17 MS Run # 731816	11/14-11/27/07 KAE1J1AT Analyst ID: 400149 2 MDL: 0.14
Beryllium	ND	1.0 ug/L Dilution Factor: 1 Instrument ID.:: ICPMS	SW846 6020 Analysis Time: 23:17 MS Run #: 7318162	11/14-11/27/07 KAE1J1AU Analyst ID: 400149 MDL: 0.068
Cadmium	ND	1.0 ug/L Dilution Factor: 1 Instrument ID: ICPMS	SW846 6020 Analysis Time: 23:17 MS Run #: 7318162	11/14-11/27/07 KAE1J1AV Analyst ID: 400149 MDL 0.11
Chromium	2.6 J	2.0 ug/L Dilution Factor: 1 Instrument ID: ICPMS	SW846 6020 Analysis Time: 23:17 MS Run # 7318162	11/14-11/27/07 KAE1J1AW Analyst ID: 400149 MDL: 0.11
Copper	3.1	2.0 ug/L Dilution Factor: 1 Instrument ID.:: ICPMS	SW846 6020 Analysis Time: 23:17 MS Run #: 7318162	11/14-11/27/07 KAR1J1AX Analyst ID: 400149 MDL 0.14
Nickel	2.2	1.0 ug/L Dilution Factor: 1 Instrument ID: ICPMS	SW846 6020 Analysis Time 23:17 MS Run # 7318162	11/14-11/27/07 KAE1J1A0 Analyst ID: 400149 MDL 0.073
Lead	ND	1.0 ug/L Dilution Factor: 1 Instrument ID.:: ICPMS	SW846 6020 Analysis Time: 23:17 MS Run # 7318162	11/14-11/27/07 KAE1J1A1 Analyst ID: 400149 MDL: 0.020
Antimony	0.28 B	2.0 ug/L Dilution Factor: 1 Instrument ID.:: ICPMS	SW846 6020 Analysis Time: 23:17 MS Run #: 7318162	Analyst ID: 400149 MDL 0.047

Client Sample ID: FMC 16

DISSOLVED Metals

Lot-Sample #...: C7K020216-007

Matrix..... WATER

PARAMETER	RESULT	REPORTING LIMIT UNITS	METHOD	PREPARATION- WORK ANALYSIS DATE ORDER #
Selenium	14.3	5.0 ug/L	SW846 6020	11/14-11/27/07 KARIJIA3
		Dilution Factor: 1 Instrument ID: ICPMS	Analysis Time: 23:17 MS Run #: 731816	Analyst ID: 400149
Thallium	ND	1.0 ug/L Dilution Factor: 1 Instrument ID: ICPMS	SW846 6020 Analysis Time: 23:17 MS Run #: 731816	11/14-11/27/07 KAE1J1A4 Analyst ID: 400149 2 MDL: 0.018
Zinc	6.9	5.0 ug/L Dilution Factor: 1 Instrument ID.:: ICPMS	SW846 6020 Analysis Time: 23:17 MS Run #: 731816	11/14-11/27/07 KAR1J1A5 Analyst ID: 400149 2 MDL 0.60
Prep Batch #.	: 7320210			
Mercury	ND	0.20 ug/L Dilution Factor: 1 Instrument ID: HGHYDRA	SW846 7470A Analysis Time: 14:08 MS Run #: 732013	

MOTP(2):

J Method blank contamination. The associated method blank contains the target analyte at a reportable level.

B Estimated result. Result is less than RL.

Client Sample ID: FMC 18

DISSOLVED Metals

Lot-Sample # Date Sampled	: C7K02021 : 10/31/07	6-008 Date Received.	: 11/02/07	Matrix: WATER
PARAMETER	RESULT	REPORTING LIMIT UNITS	METHOD	PREPARATION- WORK ANALYSIS DATE ORDER #
Prep Batch #	7318307			
Silver	ND	1.0 ug/L Dilution Factor: 1 Instrument ID: ICPMS	SW846 6020 Analysis Time: 23:21 MS Run #: 731816	11/14-11/27/07 KAE1K1AR Analyst ID: 400149 2 MDL 0.077
Arsenic	2.9	1.0 ug/L Dilution Factor: 1 Instrument ID.:: ICPMS	SW846 6020 Analysis Time: 23:21 MS Run # 731816	11/14-11/27/07 KAR1K1AT Analyst ID: 400149 2 MDL 0.14
Beryllium	ND	1.0 ug/L Dilution Factor: 1 Instrument ID: ICPMS	SW846 6020 Analysis Time: 23:21 MS Run #: 731816	11/14-11/27/07 KAE1K1AU Analyst ID: 400149 2 MDL 0.068
Cadmium	ND	1.0 ug/L Dilution Factor: 1 Instrument ID: ICPMS	SW846 6020 Analysis Time: 23:21 MS Run #: 7318162	11/14-11/27/07 KAE1K1AV Analyst ID: 400149 2 MDL 0.11
Chromium	3.1 J	2.0 ug/L Dilution Factor: 1 Instrument ID.:: ICPMS	SW846 6020 Analysis Time: 23:21 MS Run #: 7318162	11/14-11/27/07 KAE1K1AW Analyst ID: 400149 2 MDL
Copper	3.4	2.0 ug/L Dilution Factor: 1 Instrument ID: ICPMS	SW846 6020 Analysis Time: 23:21 MS Run #: 7318162	11/14-11/27/07 KAE1K1AX Analyst ID: 400149 MDL: 0.14
Nickel	2.1	1.0 ug/L Dilution Factor: 1 Instrument ID: ICPMS	SW846 6020 Analysis Time: 23:21 MS Run #: 7318162	11/14-11/27/07 KAE1K1AO Analyst ID: 400149 MDL: 0.073
Lead	ND	1.0 ug/L Dilution Factor: 1 Instrument ID: ICPMS	SW846 6020 Analysis Time: 23:21 MS Run #: 7318162	11/14-11/27/07 KAE1K1A1 Analyst ID: 400149 MDL 0.020
Antimony	0.24 B	2.0 ug/L Dilution Factor: 1 Instrument ID: ICPMS	SW846 6020 Analysis Time: 23:21 MS Run #: 7318162	11/14-11/27/07 KAR1K1A2 Analyst ID: 400149 MDL 0.047

Client Sample ID: FMC 18

DISSOLVED Metals

Lot-Sample #...: C7K020216-008

PARAMETER	RESULT	REPORTING LIMIT UNITS	NTT TO THE RESERVE OF THE PERSON OF THE PERS	PREPARATION- WORK
Selenium Thallium	9.4 ND	5.0 ug/L Dilution Factor: 1 Instrument ID: ICPMS 1.0 ug/L	METHOD SW846 6020 Analysis Time: 23:21 MS Run # 731816 SW846 6020	11/14-11/27/07 KAE1K1A4
Zinc		Dilution Factor: 1 Instrument ID: ICPMS	Analysis Time: 23:21 MS Run #: 731816	Analyst ID: 400149 2 MDL 0.018
ZINC	8.0	5.0 ug/L Dilution Factor: 1 Instrument ID.:: ICPMS	SW846 6020 Analysis Time: 23:21 MS Run #: 731816	11/14-11/27/07 KAB1K1A5 Analyst ID: 400149 2 MDL
Prep Batch #.	: 7320210			
Mercury	ND	0.20 ug/L Dilution Factor: 1 Instrument ID : HGHYDDA	SW846 7470A Analysis Time: 14:10	

MS Run #....: 7320130

NOTE(S):

Instrument ID..: HGHYDRA

Matrix.... WATER

MDL..... 0.055

I Method blank contamination. The associated method blank contains the target analyte at a reportable level.

B Estimated result. Result is less than RL.

Client Sample ID: FMC 20

DISSOLVED Metals

Lot-Sample #...: C7K020216-009

Date Sampled...: 10/31/07

Date Received..: 11/02/07

		•		
		REPORTING		PREPARATION- WORK
PARAMETER	RESULT	LIMIT UNITS	METHOD	ANALYSIS DATE ORDER #
				TECHNICAL CAPER #
Prep Batch #	-: 7318307			
Silver	ND ·	1.0 ug/L	SW846 6020	11/14-11/27/07 KAE1P1AR
		Dilution Factor: 1	Analysis Time: 23:25	
		Instrument ID: ICPMS	MS Run # 731816	_
Arsenic	2.6	1.0 ug/L	SW846 6020	11/14-11/27/07 KAE1P1AT
		Dilution Factor: 1	Analysis Time: 23:25	Analyst ID: 400149
	•	Instrument ID: ICPMS	MS Run # 731816	2 MDL 0.14
Beryllium	ND	1.0 ug/L	SW846 6020	11/14-11/27/07 KAE1P1AU
		Dilution Factor: 1	Analysis Time: 23:25	Analyst ID: 400149
		Instrument ID: ICPMS	MS Run # 731816	
Cadmium	ND	1.0 ug/L	SW846 6020	11/14-11/27/07 KAE1P1AV
		Dilution Factor: 1	Analysis Time: 23:25	Analyst ID: 400149
		Instrument ID: ICPMS	MS Run # 731816	2 MDL 0.11
Chromium	3.4 J	2.0 ug/L	SW846 6020	11/14-11/27/07 KAE1PlAW
		Dilution Factor: 1	Analysis Time: 23:25	Analyst ID: 400149
		Instrument ID: ICPMS	MS Run # 731816	
Copper	3.4	2.0 ug/L	G7045 5000	
	3.1	Dilution Factor: 1	SW846 6020	11/14-11/27/07 KAE1PLAX
		Instrument ID: ICPMS	Analysis Time: 23:25 MS Run #: 7318162	Analyst ID: 400149
		THE TOTAL TOTAL	MS Run # /318162	2 MDL 0.14
Nickel	2.1	1.0 ug/L	SW846 6020	11/14-11/27/07 KAR1P1A0
		Dilution Factor: 1	Analysis Time: 23:25	Analyst ID: 400149
		Instrument ID: ICPMS	MS Run # 7318162	
Lead	ND	1.0 ug/L	SW846 6020	31/14-11/27/07 WARTED 37
		Dilution Factor: 1	Analysis Time: 23:25	11/14-11/27/07 KAE1P1A1 Analyst ID: 400149
		Instrument ID.:: ICPMS	MS Run # 7318162	
Antimony	0.24 B	2.0 ug/L	SW846 6020	11/14-11/27/07 KAE1P1A2
		Dilution Factor: 1	Analysis Time: 23:25	Analyst ID: 400149
		Instrument ID: ICPMS	MS Run # 7318162	MDL 0.047

Client Sample ID: FMC 20

DISSOLVED Metals

Lot-Sample #...: C7K020216-009

Matrix.... WATER

	· ·	•		•
		REPORTING		PREPARATION- WORK
PARAMETER	RESULT	LIMIT UNITS	METHOD	ANALYSIS DATE ORDER #
Selenium	10.4	5.0 ug/L	SW846 6020	11/14-11/27/07 KAR1P1A3
		Dilution Factor: 1	Analysis Time:	23:25 Analyst ID: 400149
		Instrument ID: ICPM	AS MS Run #:	7318162 MDL 0.21
Thallium	ND	1.0 ug/L	SW846 6020	11/14-11/27/07 KAE1P1A4
		Dilution Factor: 1	Analysis Time:	23:25 Analyst ID: 400149
		Instrument ID: ICP	MS Run #:	7318162 MDL 0.018
Zinc	6.4	5.0 ug/L	SW846 6020	11/14-11/27/07 KAR1P1A5
		Dilution Factor: 1	Analysis Time:	23:25 Analyst ID: 400149
		Instrument ID.:: ICPM	MS Run #:	7318162 MDL 0.60
Prep Batch #.	: 7320210			
Mercury	ND	0.20 ug/L	SW846 7470A	11/16/07 KAE1P1AQ
		Dilution Factor: 1	Analysis Time:	•
		Instrument ID: HGHY	•	•

NOTE(S)

J Method blank contamination. The associated method blank contains the target analyte at a reportable level.

B Estimated result. Result is less than RL.

Client Sample ID: FMC 22

DISSOLVED Metals

Lot-Sample #...: C7K020216-010 Matrix..... WATER Date Sampled...: 10/31/07 Date Received..: 11/02/07 REPORTING PREPARATION-WORK PARAMETER LIMIT UNITS METHOD ANALYSIS DATE ORDER # Prep Batch #...: 7318307 Silver ND 1.0 ug/L SW846 6020 11/14-11/27/07 KAE1R1AR Dilution Factor: 1 Analysis Time..: 23:30 Analyst ID....: 400149 Instrument ID..: ICPMS MS Run #..... 7318162 MDL..... 0.077 Arsenic 3.3 1.0 ug/L SW846 6020 11/14-11/27/07 KAE1R1AT Dilution Factor: 1 Analysis Time..: 23:30 Analyst ID....: 400149 Instrument ID. .: ICPMS MS Run #..... 7318162 MDL..... 0.14 Beryllium ND 1.0 ug/L SW846 6020 11/14-11/27/07 KAE1R1AU Dilution Factor: 1 Analysis Time..: 23:30 Analyst ID....: 400149 Instrument ID..: ICPMS MS Run #..... 7318162 MDL..... 0.068 Cadmium ND 1.0 uq/L SW846 6020 11/14-11/27/07 KAE1R1AV Dilution Factor: 1 Analysis Time..: 23:30 Analyst ID....: 400149 Instrument ID. .: ICPMS MS Run #..... 7318162 MDL..... 0.11 Chromium 3.2 J 2.0 ug/L SW846 6020 11/14-11/27/07 KAR1R1AW Dilution Factor: 1 Analysis Time..: 23:30 Analyst ID: 400149 Instrument ID. .: ICPMS MS Run #..... 7318162 MDL..... 0.11 Copper 3.8 2.0 ug/L SW846 6020 11/14-11/27/07 KAE1R1AX Dilution Factor: 1 Analysis Time..: 23:30 Analyst ID....: 400149 Instrument ID. .: ICPMS MS Run #..... 7318162 MDL..... 0.14 Nickel 2.2 1.0 uq/L SW846 6020 11/14-11/27/07 KAE1R1AO Dilution Factor: 1 Analysis Time..: 23:30 Analyst ID....: 400149 Instrument ID. .: ICPMS MS Run #..... 7318162 MDL..... 0.073 Lead ND 1.0 uq/L SW846 6020 11/14-11/27/07 KAE1R1A1 Dilution Factor: 1 Analysis Time..: 23:30 Analyst ID....: 400149 Instrument ID. .: ICPMS MS Run #....: 7318162 MDL..... 0.020 Antimony 0.21 B 2.0 ug/L SW846 6020 11/14-11/27/07 KAE1R1A2 Dilution Factor: 1 Analysis Time..: 23:30 Analyst ID....: 400149

(Continued on next page)

MS Run #..... 7318162

Instrument ID..: ICPMS

MDL..... 0.047

Client Sample ID: FMC 22

DISSOLVED Metals

Lot-Sample #: C7K020216-010

Matrix..... WATER

PARAMETER	RESULT	REPORTING LIMIT UNITS	METHOD	PREPARATION- WORK ANALYSIS DATE ORDER #
Selenium	11.5	5.0 ug/L	SW846 6020	11/14-11/27/07 KAKIRIA3
taga kalenta ekologia Geografia Kalenta		Dilution Factor: 1 Instrument ID.:: ICPMS	Analysis Time: 23:30 MS Run #: 731816	Analyst ID: 400149
Thallium	ND	1.0 ug/L Dilution Factor: 1 Instrument ID: ICPMS	SW846 6020 Analysis Time: 23:30 MS Run #: 731816	11/14-11/27/07 KAE1R1A4 Analyst ID: 400149 2 MDL: 0.018
Zinc	6.5	5.0 ug/L Dilution Factor: 1 Instrument ID.:: ICPMS	SW846 6020 Analysis Time: 23:30 MS Run #: 731816	11/14-11/27/07 KAR1R1A5 Analyst ID: 400149 2 MDL: 0.60
Prep Batch #	.: 7320210			
Mercury	ND	0.20 ug/L Dilution Factor: 1 Instrument ID.:: HGHYDRA	SW846 7470A Analysis Time: 14:14 MS Run #: 7320130	

NOTE(S):

J Method blank contamination. The associated method blank contains the target analyte at a reportable level.

B Estimated result. Result is less than RL.

Client Sample ID: FMC 24

DISSOLVED Metals

Date Sampled	: C7K02021	6-001 Date Received.	.: 11/02/07	Matrix: WATER
PARAMETER	RESULT	REPORTING LIMIT UNITS	METHOD	PREPARATION- WORK ANALYSIS DATE ORDER #
Prep Batch #	: 7318307			
Silver	ND	1.0 ug/L Dilution Factor: 1 Instrument ID.:: ICPMS	SW846 6020 Analysis Time: 22:22 MS Run #: 731816	11/14-11/27/07 KAEX31AG Analyst ID: 400149 2 MDL: 0.077
Arsenic	3.8	1.0 ug/L Dilution Factor: 1 Instrument ID: ICPMS	SW846 6020 Analysis Time: 22:22 MS Run #: 731816:	11/14-11/27/07 KAEX31AH Analyst ID: 400149 MDL: 0.14
Beryllium	ND	1.0 ug/L Dilution Factor: 1 Instrument ID: ICPMS	SW846 6020 Analysis Time: 22:22 MS Run # 7318162	11/14~11/27/07 KAEX31AJ Analyst ID: 400149 MDL: 0.068
Cadmium	ND	1.0 ug/L Dilution Factor: 1 Instrument ID.:: ICPMS	SW846 6020 Analysis Time: 22:22 MS Run #: 7318162	11/14-11/27/07 KAEX31AK Analyst ID: 400149 MDL: 0.11
Chromium	3.0 Ј	2.0 ug/L Dilution Factor: 1 Instrument ID.:: ICPMS	SW846 6020 Analysis Time: 22:22 MS Run #: 7318162	11/14-11/27/07 KAKX31AL Analyst ID: 400149 MDL: 0.11
Copper	4.6	2.0 ug/L Dilution Factor: 1 Instrument ID: ICPMS	SW846 6020 Analysis Time: 22:22 MS Run #: 7318162	11/14-11/27/07 RARX31AM Analyst ID: 400149 MDL 0.14
Nickel	2.1	1.0 ug/L Dilution Factor: 1 Instrument ID.:: ICPMS	SW846 6020 Analysis Time 22:22 MS Run #: 7318162	11/14-11/27/07 KAKX31AN Analyst ID: 400149 MDL 0.073
Lead	0.17 в	1.0 ug/L Dilution Factor: 1 Instrument ID.:: ICPMS	SW846 6020 Analysis Time.: 22:22 MS Run #: 7318162	11/14-11/27/07 KAEX31AP Analyst ID: 400149 MDL: 0.020
Antimony	0.33 B	2.0 ug/L Dilution Factor: 1 Instrument ID: ICPMS	SW846 6020 Analysis Time: 22:22 MS Run # 7318162	Analyst ID: 400149 MDL 0.047

Client Sample ID: FMC 24

DISSOLVED Metals

Lot-Sample #...: C7K020216-001

Matrix.... WATER

PARAMETER	RESULT	REPORTING LIMIT UNITS	METHOD	PREPARATION- WORK ANALYSIS DATE ORDER #
Selenium	9.2	5.0 ug/L	SW846 6020	11/14-11/27/07 KAKX31AR
		Dilution Factor: 1	Analysis Time: 22:22	
		Instrument ID: ICPMS	MS Run # 73181	62 MDL 0.21
Thallium	0.092 B	1.0 ug/L	SW846 6020	11/14-11/27/07 KAEX31AT
		Dilution Factor: 1	Analysis Time: 22:22	
		Instrument ID: ICPMS		62 MDL 0.018
Zinc	10.4	5.0 ug/L	SW846 6020	11/14-11/27/07 KAEX31AU
		Dilution Factor: 1	Analysis Time: 22:22	
		Instrument ID: ICPMS	MS Run # 731816	- · · · · · · · · · · · · · · · · · · ·
Drop Batal H	72000			
Prep Batch #				
Mercury	ND	0.20 ug/L	SW846 7470A	11/16/07 KAEX31AF
•		Dilution Factor: 1	Analysis Time: 13:52	Analyst ID: 400491
		Instrument ID: HGHYDRA	MS Run # 732013	<u>-</u>

NOTE(S):

J Method blank contamination. The associated method blank contains the target analyte at a reportable level.

B Estimated result. Result is less than RL.

Client Sample ID: FMC 25

DISSOLVED Metals

Lot-Sample # Date Sampled		5-014 Date Received.	.: 11/02/07	Matrix: WATER
PARAMETER	RESULT	REPORTING LIMIT UNITS	METHOD	PREPARATION- WORK ANALYSIS DATE ORDER #
Prep Batch #	-: 7318307			ANALYSIS DATE ORDER #
Silver	ND	1.0 ug/L Dilution Factor: 1 Instrument ID.:: ICPMS	SW846 6020 Analysis Time: 23:47 MS Run #: 731816	11/14-11/27/07 KAE2E1AR Analyst ID: 400149 2 MDL 0.077
Arsenic	3.0	1.0 ug/L Dilution Factor: 1 Instrument ID: ICPMS	SW846 6020 Analysis Time: 23:47 MS Run #: 731816	11/14-11/27/07 KAR2E1AT Analyst ID: 400149 2 MDL: 0.14
Beryllium	ND	1.0 ug/L Dilution Factor: 1 Instrument ID: ICPMS	SW846 6020 Analysis Time 23:47 MS Run # 7318162	11/14-11/27/07 KAE2E1AU Analyst ID: 400149 MDL: 0.068
Cadmium	ND	1.0 ug/L Dilution Factor: 1 Instrument ID: ICPMS	SW846 6020 Analysis Time: 23:47 MS Run #: 7318162	11/14-11/27/07 KAE2E1AV Analyst ID 400149 MDL 0.11
Chromium	2.2 J	2.0 ug/L Dilution Factor: 1 Instrument ID.:: ICPMS	SW846 6020 Analysis Time: 23:47 MS Run #: 7318162	11/14-11/27/07 KAR2ElAW Analyst ID: 400149 MDL: 0.11
Copper	3.0	2.0 ug/L Dilution Factor: 1 Instrument ID: ICPMS	SW846 6020 Analysis Time: 23:47 MS Run #: 7318162	11/14-11/27/07 KAE2R1AX Analyst ID: 400149 MDL: 0.14
Nickel	1.8	1.0 ug/L Dilution Factor: 1 Instrument ID.:: ICPMS	SW846 6020 Analysis Time: 23:47 MS Run #: 7318162	11/14-11/27/07 KAE2E1A0 Analyst ID: 400149 MDL: 0.073
Lead	ND	1.0 ug/L Dilution Factor: 1 Instrument ID.:: ICPMS	SW846 6020 Analysis Time: 23:47 MS Run #: 7318162	11/14-11/27/07 KAE2E1A1 Analyst ID: 400149 MDL: 0.020
Antimony	0.25 B	2.0 ug/L Dilution Factor: 1 Instrument ID.:: ICPMS	SW846 6020 Analysis Time: 23:47 MS Run #: 7318162	11/14-11/27/07 KAE2E1A2 Analyst ID: 400149 MDL: 0.047

Client Sample ID: FMC 25

DISSOLVED Metals

UNITS

ug/L

ug/L

uq/L

Lot-Sample #...: C7K020216-014

RESULT

11.5

ND

3.6 B

PREPARATION-WORK ANALYSIS DATE ORDER # 11/14-11/27/07 KAE2E1A3 Analysis Time..: 23:47 Analyst ID....: 400149 MS Run #.....: 7318162 MDL..... 0.21 11/14-11/27/07 KAE2E1A4 Analysis Time..: 23:47 Analyst ID....: 400149 MS Run #....: 7318162 MDL..... 0.018

Matrix.... WATER

Prep Batch #...: 7320210

Mercury

PARAMETER

Selenium

Thallium

Zinc

ND

0.20

REPORTING

Dilution Factor: 1

Dilution Factor: 1

Dilution Factor: 1

Instrument ID. .: ICPMS

Instrument ID..: ICPMS

Instrument ID.:: ICPMS

LIMIT

5.0

1.0

5.0

ug/L

SW846 7470A

METHOD

SW846 6020

SW846 6020

SW846 6020

11/16/07

KAE2E1AO

Dilution Factor: 1 Instrument ID. .: HGHYDRA

Analysis Time..: 14:21

Analysis Time..: 23:47

MS Run #..... 7318162

Analyst ID....: 400491

11/14-11/27/07 KAR2E1A5

Analyst ID....: 400149

MDL..... 0.60

MS Run #....: 7320130 MDL..... 0.055

NOTE(S):

J Method blank contamination. The associated method blank contains the target analyte at a reportable level.

B Estimated result. Result is less than RL.

Client Sample ID: FMC 26

DISSOLVED Metals

Lot-Sample #...: C7K020216-015
Date Sampled...: 11/01/07
Date Received..: 11/02/07

		•	•	•
PARAMETER	RESULT	REPORTING LIMIT UNITS	METHOD	PREPARATION- WORK ANALYSIS DATE ORDER #
Prep Batch #.	7318307			
Silver	ND	1.0 ug/L Dilution Factor: 1 Instrument ID.:: ICPMS	SW846 6020 Analysis Time: 23:51 MS Run #: 731816	11/14-11/27/07 KAE2JIAR Analyst ID: 400149 2 MDL 0.077
Arsenic	3.0	1.0 ug/L Dilution Factor: 1 Instrument ID.:: ICPMS	SW846 6020 Analysis Time: 23:51 MS Run #: 731816	11/14-11/27/07 KAK2J1AT Analyst ID: 400149 2 MDL 0.14
Beryllium	ND	1.0 ug/L Dilution Factor: 1 Instrument ID.:: ICPMS	SW846 6020 Analysis Time: 23:51 MS Run #: 731816	11/14-11/27/07 KAE2J1AU Analyst ID: 400149 2 MDL: 0.068
Cadmium	ND	1.0 ug/L Dilution Factor: 1 Instrument ID.:: ICPMS	SW846 6020 Analysis Time: 23:51 MS Run #: 731816	11/14-11/27/07 KAE2J1AV Analyst ID: 400149 2 MDL: 0.11
Chromium	2.3 Ј	2.0 ug/L Dilution Factor: 1 Instrument ID.:: ICPMS	SW846 6020 Analysis Time: 23:51 MS Run #: 7318162	11/14-11/27/07 KAR2J1AW Analyst ID: 400149 MDL: 0.11
Copper	3.0	2.0 ug/L Dilution Factor: 1 Instrument ID.:: ICPMS	SW846 6020 Analysis Time: 23:51 MS Run #: 7318162	11/14-11/27/07 KAR2J1AX Analyst ID: 400149 MDL: 0.14
Nickel	2.0	1.0 ug/L Dilution Factor: 1 Instrument ID: ICPMS	SW846 6020 Analysis Time: 23:51 MS Run #: 7318162	11/14-11/27/07 KAE2JIA0 Analyst ID: 400149 MDL: 0.073
Lead	ND	1.0 ug/L Dilution Factor: 1 Instrument ID: ICPMS	SW846 6020 Analysis Time: 23:51 MS Run #: 7318162	11/14-11/27/07 KAE2J1A1 Analyst ID: 400149 MDL: 0.020
Antimony	0.20 B	2.0 ug/L Dilution Factor: 1 Instrument ID.:: ICPMS	SW846 6020 Analysis Time: 23:51 MS Run # 7318162	11/14-11/27/07 KAR2J1A2 Analyst ID: 400149 MDL: 0.047

Client Sample ID: FMC 26

DISSOLVED Metals

Lot-Sample #...: C7K020216-015

Matrix.	_	_	_	_	_	_		-	WATER

		* *,		
PARAMETER	RESULT	REPORTING LIMIT UNITS	Marion	PREPARATION- WORK
Selenium	10.8		METHOD	ANALYSIS DATE ORDER #
Deachie	10.6	5.0 ug/L	SW846 6020	11/14-11/27/07 KAE2J1A3
* *		Dilution Factor: 1	Analysis Time: 23:51	Analyst ID: 400149
		Instrument ID: ICPMS	MS Run # 731816	
Thallium	ND	1.0 ug/L	SW846 6020	11/14-11/27/07 KAE2J1A4
		Dilution Factor: 1	Analysis Time: 23:51	
		Instrument ID: ICPMS	MS Run # 731816	•
Zinc	2.8 B	5.0 ug/L	SW846 6020	11/14-11/27/07 KAE2J1A5
		Dilution Factor: 1	Analysis Time: 23:51	Analyst ID: 400149
		Instrument ID: ICPMS	MS Run # 731816	
Prep Batch #	.: 7320210			•
Mercury	ND	0.20 ug/L	SW846 7470A	11/16/07 KAE2J1AO
		Dilution Factor: 1		
		Instrument ID.: HGHYDRA	Analysis Time: 14:22	Analyst ID: 400491
		Imperument ID.: HGHYDRA	MS Run # 732013	0 MDL 0.055

NOTE(S):

I Method blank contamination. The associated method blank contains the target analyte at a reportable level.

B Estimated result. Result is less than RL.

Client Sample ID: PMC 3

DISSOLVED Metals

Lot-Sample #		. 03.1	•	
Date Sampled.		Date Received.	.: 11/02/07	Matrix WATER
	•		,,,	
D.S.D.S. Accomption	. <u>-</u>	REPORTING		PREPARATION- WORK
PARAMETER	RESULT	LIMIT UNITS	METHOD	ANALYSIS DATE ORDER #
Prep Batch #	- 7318307			
Silver	ND	1.0 ug/L	GW0.4.C. CO.0.0	
	112	Dilution Factor: 1	SW846 6020	11/14-11/27/07 KAE101AR
		Instrument ID: ICPMS	Analysis Time: 23:34	Analyst ID: 400149
·		Institutent ID.:: ICPMS	MS Run # 731816	52. MDL 0.077
Arsenic	2.4	1.0 ug/L	SW846 6020	11/14-11/27/07 KAE101AT
		Dilution Factor: 1	Analysis Time: 23:34	Analyst ID: 400149
		Instrument ID: ICPMS	MS Run # 731816	
	•			
Beryllium	ND	1.0 ug/L	SW846 6020	11/14-11/27/07 KAE101AU
		Dilution Factor: 1	Analysis Time: 23:34	Analyst ID: 400149
•		Instrument ID: ICPMS	MS Run #: 731816	2 MDL 0.068
Cadmium	ND	7 0/7		
	1417	1.0 ug/L	SW846 6020	11/14-11/27/07 KAE101AV
•		Dilution Factor: 1 Instrument ID.:: ICPMS	Analysis Time: 23:34	Analyst ID: 400149
		institutent ID: ICPMS	MS Run # 731816	2 MDL 0.11
Chromium	3.2 Ј	2.0 ug/L	SW846 6020	11/14-11/27/07 KAB101AW
		Dilution Factor: 1	Analysis Time: 23:34	Analyst ID: 400149
		Instrument ID.:: ICPMS	MS Run # 731816	
0				
Copper	3.4	2.`0 ug/L	SW846 6020	11/14-11/27/07 KAR101AX
		Dilution Factor: 1	Analysis Time. : 23:34	Analyst ID: 400149
	,	Instrument ID: ICPMS	MS Run # 731816	2 MDL 0.14
Nickel	2.1	1.0 ug/L	CHOAC COOP	m - 4 - 1 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2
		Dilution Factor: 1	SW846 6020	11/14-11/27/07 KAE101A0
		Instrument ID.:: ICPMS	Analysis Time: 23:34 MS Run #: 7318162	Analyst ID: 400149
			MD Rout # /318164	2 MDL 0.073
Lead	ND	1.0 ug/L	SW846 6020	11/14-11/27/07 KAE101A1
		Dilution Factor: 1	Analysis Time: 23:34	Analyst ID: 400149
		Instrument ID: ICPMS	MS Run # 7318162	
Antimony	0.10 =			
war remorta	0.19 B	2.0 ug/L	SW846 6020	11/14-11/27/07 KAB101A2
		Dilution Factor: 1	Analysis Time: 23:34	Analyst ID: 400149
		Instrument ID: ICPMS	MS Run # 7318162	MDL 0.047

Client Sample ID: FMC 3

DISSOLVED Metals

Lot-Sample #...: C7K020216-011

Matrix....: WATER

		REPORTING	· .	PREPARATION- WORK
PARAMETER	RESULT	LIMIT UNITS	METHOD	ANALYSIS DATE ORDER #
Selenium	11.1	5.0 ug/L	SW846 6020	11/14-11/27/07 KAB101A3
		Dilution Factor: 1	Analysis Time: 23:34	
2" #		Instrument ID: ICPMS	MS Run #: 731816	
Thallium	ND	1.0 ug/L	SW846 6020	11/14-11/27/07 KAE101A4
		Dilution Factor: 1	Analysis Time: 23:34	Analyst ID: 400149
		Instrument ID: ICPMS	MS Run # 731816	
Zinc	5.5	5.0 ug/L	SW846 6020	11/14-11/27/07 KAR101A5
		Dilution Factor: 1	Analysis Time: 23:34	Analyst ID: 400149
		Instrument ID: ICPMS	MS Run #: 731816	
	•			
Prep Batch	#: 7320210	•	•	
Mercury	ND	0.20 ug/L	SW846 7470A	11/16/07 KAE101AQ
		Dilution Factor: 1	Analysis Time: 14:16	Analyst ID: 400491
		Instrument ID: HGHYDRA	MS Run #: 732013	0 MDL 0.055

MOIB (S):

J Method blank contamination. The associated method blank contains the target analyte at a reportable level,

B Estimated result. Result is less than RL.

Client Sample ID: FMC 5

DISSOLVED Metals

Lot-Sample #.	: C7K020216	-012			Matrix:	WATED
Date Sampled: 10/31/07			Received	: 11/02/07		WAIDK
		REPORTI	1G		PREPARATION-	WORK
PARAMETER	RESULT	LIMIT	UNITS	METHOD	ANALYSIS DATE	ORDER #
A STATE OF THE STA			·. ······			
Prep Batch #.	: 7318307					
Silver	ND	1.0	ug/L	SW846 6020	11/14-11/27/07	KAE151AR
		Dilution Fac	ctor: 1	Analysis Time: 23:38	Analyst ID	: 400149
		Instrument 1	D: ICPMS	MS Run #: 731816	2 MDL	: 0.077
Arsenic	2.9	1.0	ug/L	SW846 6020	11/14-11/27/07	KAB151AT
		Dilution Fac	tor: 1	Analysis Time: 23:38	Analyst ID	: 400149
•		Instrument I	D: ICPMS	MS Run # 731816	2 MDL	: 0.14
Beryllium	ND	1.0	ug/L	SW846 6020	11/14-11/27/07	KAE151AU
		Dilution Fac	tor: 1	Analysis Time: 23:38	Analyst ID	: 400149
		Instrument I	D: ICPMS	MS Run # 731816	2 MDL	: 0.068
Cadmium	ND	1.0	ug/L	SW846 6020	11/14-11/27/07	KAE151AV
	•	Dilution Fac	tor: 1	Analysis Time: 23:38	Analyst ID	: 400149
·		Instrument I	D: ICPMS	MS Run #: 731816	2 MDL	: 0.11
Chromium	3.1 J	2.0	ug/L	SW846 6020	11/14-11/27/07	KAR151AW
		Dilution Fac	tor: 1	Analysis Time: 23:38	Analyst ID	: 400149
		Instrument I	D: ICPMS	MS Run # 7318162	2 MDL	: 0.11
Copper	4.1	2.0	ug/L	SW846 6020	11/14-11/27/07	KAR151AX
		Dilution Fac	tor: 1	Analysis Time: 23:38	Analyst ID	: 400149
		Instrument I	D ICPMS	MS Run # 7318162	MDI	: 0.14
Nickel	2.2	1.0	ug/L	SW846 6020	11/14-11/27/07	KAB151A0
		Dilution Fac		Analysis Time: 23:38	Analyst ID	: 400149
		Instrument I	D: ICPMS	MS Run #: 7318162	MDL	: 0.073
Lead	0.076 B	1.0	ug/L	SW846 6020	11/14-11/27/07	KAE151A1
		Dilution Fac		Analysis Time: 23:38	Analyst ID	: 400149
•		Instrument I	D: ICPMS	MS Run # 7318162	MDL	: 0.020
Antimony	0.22 B	2.0	ug/L	SW846 6020	11/14-11/27/07	KAR151A2
		Dilution Fac	tor: 1	Analysis Time: 23:38	Analyst ID	
		Instrument 1	D: ICPMS	MS Run # 7318162	MDL	: 0.047

(Continued on next page)

Client Sample ID: FMC 5

DISSOLVED Metals

Lot-Sample #...: C7K020216-012

roc-sambte #	: C7K02021	6-012		Matrix WATER
PARAMETER Selenium	RESULT 11.5	REPORTING LIMIT UNITS 5.0 ug/L Dilution Factor: 1 Instrument ID.:: ICPMS	METHOD SW846 6020 Analysis Time: 23:38 MS Run #: 731816	PREPARATION- WORK ANALYSIS DATE ORDER # 11/14-11/27/07 KAB151A3 Analyst ID 400149 2 MDL 0.21
Thallium	ND	1.0 ug/L Dilution Factor: 1 Instrument ID.:: ICPMS	SW846 6020 Analysis Time: 23:38 MS Run #: 731816	
Zinc	7.9	5.0 ug/L Dilution Factor: 1 Instrument ID: ICPMS	SW846 6020 Analysis Time: 23:38 MS Run #: 7318162	
Prep Batch #. Mercury	: 7320210 ND	0.20 ug/L Dilution Factor: 1 Instrument ID.:: HGHYDRA	Analysis Time: 14:17	11/16/07 KAE151AQ Analyst ID: 400491

J Method blank contamination. The associated method blank contains the target analyte at a reportable level.

NOTE(S):

B Estimated result. Result is less than RL.

Client Sample ID: FMC 7

DISSOLVED Metals

Lot-Sample #. Date Sampled.		5-013 Date Received	: 11/02/07	Matrix: WATER
PARAMETER	RESULT	REPORTING LIMIT UNITS	METHOD	PREPARATION- WORK ANALYSIS DATE ORDER #
Prep Batch #.	7318307			
Silver	ND	1.0 ug/L Dilution Factor: 1 Instrument ID.: ICPMS	SW846 6020 Analysis Time: 23:42 MS Run #: 731816	11/14-11/27/07 KAE191AR Analyst ID: 400149 2 MDL 0.077
Arsenic	3.2	1.0 ug/L Dilution Factor: 1 Instrument ID: ICPMS	SW846 6020 Analysis Time: 23:42 MS Run # 7318162	11/14-11/27/07 KAR191AT Analyst ID: 400149 2 MDL: 0.14
Beryllium	ND	1.0 ug/L Dilution Factor: 1 Instrument ID: ICPMS	SW846 6020 Analysis Time: 23:42 MS Run #: 7318162	11/14-11/27/07 KAE191AU Analyst ID: 400149 MDL: 0.068
Cadmium	ND	1.0 ug/L Dilution Factor: 1 Instrument ID: ICPMS	SW846 6020 Analysis Time: 23:42 MS Run #: 7318162	11/14-11/27/07 KAE191AV Analyst ID: 400149 MDL: 0.11
Chromium	3.1 J	2.0 ug/L Dilution Factor: 1 Instrument ID.:: ICPMS	SW846 6020 Analysis Time: 23:42 MS Run #: 7318162	11/14-11/27/07 KAE191AW Analyst ID: 400149 MDL: 0.11
Copper	3.6	2.0 ug/L Dilution Factor: 1 Instrument ID: ICPMS	SW846 6020 Analysis Time: 23:42 MS Run #: 7318162	11/14-11/27/07 KAR191AK Analyst ID: 400149 MDL: 0.14
Nickel	1.9	1.0 ug/L Dilution Factor: 1 Instrument ID: ICPMS	SW846 6020 Analysis Time: 23:42 MS Run # 7318162	11/14-11/27/07 KAR191A0 Analyst ID: 400149 MDL: 0.073
Lead	ND	1.0 ug/L Dilution Factor: 1 Instrument ID.: ICPMS	SW846 6020 Analysis Time: 23:42 MS Run #: 7318162	11/14-11/27/07 KAE191A1 Analyst ID: 400149 MDL 0.020
Antimony	0.23 в	2.0 ug/L Dilution Factor: 1 Instrument ID.:: ICPMS	SW846 6020 Analysis Time: 23:42 MS Run # 7318162	11/14-11/27/07 KAE191A2 Analyst ID: 400149 MDL: 0.047

(Continued on next page)

Client Sample ID: FMC 7

DISSOLVED Metals

Lot-Sample #...: C7K020216-013

Matrix....: WATER

•			,	·		
		REPORTING			PREPARATION-	WORK
PARAMETER	RESULT	LIMIT	UNITS	METHOD	ANALYSIS DATE	ORDER #
Selenium	12.3	5.0	ug/L	SW846 6020	11/14-11/27/07	KAE191A3
		Dilution Facto	or: 1	Analysis Time: 23:42	Analyst ID	: 400149
	•	Instrument ID.	: ICPMS	MS Run # 731816		
Thallium	ND	1.0	ug/L	SW846 6020	11/14-11/27/07	KAE191A4
•		Dilution Facto	or: 1	Analysis Time: 23:42		
		Instrument ID.	: ICPMS	MS Run #: 731816	=	
Zinc	8.2	5.0	ug/L	SW846 6020	11/14-11/27/07	KAR191A5
		Dilution Facto	or: 1	Analysis Time: 23:42	Analyst ID	
		Instrument ID.	: ICPMS	MS Run #: 731816	2 MDL	: 0.60
·.				<i>.</i> •		
Prep Batch #	: 7320210					
Mercury	ND	0.20	ug/L	SW846 7470A	11/16/07	KAE191AO
		Dilution Facto	r: 1	Analysis Time: 14:19	· ·	-
		Instrument ID.	.: HGHYDRA	MS Run # 732013	-	

NOTE(S):

J Method blank contamination. The associated method blank contains the target analyte at a reportable level.

B Estimated result. Result is less than RL.

Client Sample ID: FMC 9

DISSOLVED Metals

Lot-Sample #	.: C7K020216	-002		Matrix: WATER
Date Sampled	: 10/30/07	Date Received	: 11/02/07	
	:	REPORTING		PREPARATION- WORK
PARAMETER	RESULT	LIMIT UNITS	METHOD	ANALYSIS DATE ORDER #
Prep Batch #	- 7318307			
Silver	ND	1.0 ug/L	SW846 6020	11/14-11/27/07 KAE051AR
•		Dilution Factor: 1	Analysis Time: 22:43	Analyst ID: 400149
		Instrument ID: ICPMS	MS Run #: 731816	52 MDL 0.077
Arsenic	3.7	1.0 ug/L	SW846 6020	11/14-11/27/07 KAE051AT
		Dilution Factor: 1	Analysis Time: 22:43	Analyst ID: 400149
		Instrument ID: ICPMS	MS Run # 731816	32 MDL 0.14
Beryllium	ND	1.0 ug/L	SW846 6020	11/14-11/27/07 KAE051AU
		Dilution Factor: 1	Analysis Time: 22:43	Analyst ID: 400149
		Instrument ID: ICPMS	MS Run #: 731816	2 MDL 0.068
Cadmium	ND	1.0 ug/L	SW846 6020	11/14-11/27/07 KAE051AV
		Dilution Factor: 1	Analysis Time: 22:43	Analyst ID: 400149
		Instrument ID.:: ICPMS	MS Run #: 731816	2 MDL 0.11
Chromium	2.6 Ј	2.0 ug/L	SW846 6020	11/14-11/27/07 KAE051AW
		Dilution Factor: 1	Analysis Time: 22:43	Analyst ID: 400149
		Instrument ID: ICPMS	MS Run #: 731816	2 MDL 0.11
Copper	2.9	2.0 ug/L	SW846 6020	11/14-11/27/07 KAR051AX
		Dilution Factor: 1	Analysis Time: 22:43	Analyst ID: 400149
		Instrument ID: ICPMS	MS Run #: 731816	2 MDL 0.14
Nickel	2.2	1.0 ug/L	SW846 6020	11/14-11/27/07 KAB051A0
		Dilution Factor: 1	Analysis Time: 22:43	Analyst ID: 400149
•		Instrument ID: ICPMS	MS Run # 731816	2 MDL 0.073
Lead	ND .	1.0 ug/L	SW846 6020	11/14-11/27/07 KAE051A1
		Dilution Factor: 1	Analysis Time: 22:43	Analyst ID: 400149
		Instrument ID: ICPMS	MS Run # 731816	2 MDL 0.020

(Continued on next page)

SW846 6020

Analysis Time..: 22:43

MS Run #.....: 7318162 MDL...... 0.047

ug/L

Antimony

0.37 B

2.0

Dilution Factor: 1

Instrument ID..: ICPMS

11/14-11/27/07 KAR051A2

Analyst ID....: 400149

Client Sample ID: FMC 9

DISSOLVED Metals

Lot-Sample #...: C7K020216-002

Matrix..... WATER

		REPORTING		PREPARATION- WORK
PARAMETER	RESULT	LIMIT UNITS	METHOD	ANALYSIS DATE ORDER #
Selenium	12.7	5.0 ug/L	SW846 6020	11/14-11/27/07 KAR051A3
		Dilution Factor: 1	Analysis Time: 22:43	
		Instrument ID: ICPMS	MS Run #: 73183	-
Thallium	0.12 B	1.0 ug/L	SW846 6020	11/14-11/27/07 KAE051A4
*		Dilution Factor: 1	Analysis Time: 22:43	
•		Instrument ID: ICPMS	MS Run # 73181	
Zinc	7.5	5.0 ug/L	SW846 6020	11/14-11/27/07 KAE051A5
		Dilution Factor: 1	Analysis Time: 22:43	
		Instrument ID: ICPMS	MS Run #: 73181	_
•				
Prep Batch #.	: 7320210			
Mercury	ND	0.20 ug/L	SW846 7470A	11/16/07 KAE051AO
		Dilution Factor: 1	Analysis Time: 13:54	
		Instrument ID: HGHYDRA	MS Run #: 73201	-

J Method blank contamination. The associated method blank contains the target analyte at a reportable level.

NOTE(S):

B Estimated result. Result is less than RL.

APPENDIX C SUPPORT DOCUMENTATION

ANALYTICAL REPORT

PROJECT NO. MARTIN STATE

Martin State Airport, MD

Lot #: C7K020216

Amy Thomson

Tetra Tech NUS Inc Foster Plaza 7 661 Anderson Drive Pittsburgh, PA 15220-2745

TESTAMERICA LABORATORIES, INC.

Veronica Bortot Project Manager

December 11, 2007

CASE NARRATIVE TETRA TECH NUS, INC. Martin State Airport

Lot #: C7K020216

The following report contains the analytical results for samples submitted to TestAmerica Pittsburgh by Tetra Tech NUS, INC. The samples were received November 2, 2007 according to documented sample acceptance procedures.

TestAmerica Pittsburgh utilizes only USEPA approved methods and instrumentation in all analytical work. The samples presented in this report were analyzed for the parameters listed on the method reference page in accordance with the methods indicated.

Sample Receiving:

The lot closed on November 2, 2007.

If project specific QC was not required for samples contained in this report, when batch QC was completed on these samples, anomalous results will be discussed below.

GC/MS Volatiles:

All non-CCC compounds that have >15% RSD were evaluated to see if a better curve could be drawn using a quadratic curve. All compounds <30% RSD will use an average response factor curve if no visible improvement is accomplished using a quadratic curve. A quadratic curve will be used for a compound where it is determined to be the "best-fit" evaluation.

The LCS associated with batch 7312657 had acetone and 1,2-dibromoethane recover high and outside of criteria. All control compounds recovered within limits.

GC/MS Semivolatiles:

All non-CCC compounds that have >15% RSD were evaluated to see if a better curve could be drawn using a quadratic curve. All compounds <30% RSD will use an average response factor curve if no visible improvement is accomplished using a quadratic curve. A quadratic curve will be used for a compound where it is determined to be the "best-fit" evaluation.

The following compounds had the %D > 25% in the calibration verification standard N11210CC; but were within expected performance range for these compounds: 4-Nitrophenol 40.4% and N-Nitrosodimethylamine 32.1%.

The following compound had the %D > 25% in the calibration verification standard N11220CC; but was within expected performance range for this compound: 4-Nitrophenol 27.4%.

CASE NARRATIVE TETRA TECH NUS, INC. Martin State Airport

Lot #: C7K020216

GC/MS Semivolatiles cont.:

The following compound had the %D > 25% in the calibration verification standard V11270CC; but was within expected performance range for this compound: 2,4-Nitrophenol 25.7%.

PCBs:

There were no problems associated with the analysis.

Metals:

The method blanks had analytes detected at concentrations between the MDL and the reporting limit. The results were flagged with a "B" qualifier. Any sample associated with a method blank that had the same analyte detected had the result flagged with a "J" qualifier.

METHODS SUMMARY

C7K020216

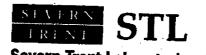
PARAMETER	ANALYTICAL METHOD	PREPARATION METHOD
ICP-MS (6020)	SW846 6020	SW846 3005A
ICP-MS (6020)	SW846 6020	SW846 3010
Mercury in Liquid Waste (Manual Cold-Vapor)	SW846 7470A	SW846 7470A
PCBs by SW-846 8082	SW846 8082	SW846 3510C
Semivolatile Organics GCMS BNA 8270C	SW846 8270C	
Volatile Organics by GC/MS	SW846 8260B	SW846 5030B/826

References:

SW846

"Test Methods for Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 and its updates.

0216	STL-4124 (0901)	Severn frent Laboratories, Inc.											
16	Tetra Tech WUS	Project Manager Mike Muhin Telephone Number (Area Codo) Factor Lot 30/07	Chain of Custody Number 322457										
	00251 Century Blv Ste 200	Telephone Number (Area Code)/Fax Number 3:0	322451										
	Germantown MD 200874	Side Contact Lab Contact	Page 7 of 6										
	Project Name and Location (State)	Carrier Waybill Nulper											
	CONTROLLED OF ORDER OF THE TOTAL OF THE TOTA												
	18001572-1	Matrix Containers & S S S S S S S S S S S S S S S S S S	Special Instructions/ Conditions of Receipt										
	Sample I.D. No. and Description (Containers for each sample may be combined on one line) Date	1 1 1 1 1 1 1 1 1 1											
(M)	FING PMC 9 Wasder												
	FORTY FARE 9												
	Forg FMC 9												
	Fang Fine 9												
13	EGYA FMC 9												
ω	FCM 10 FMC 10												
	FGM 10 FUC 10												
	ECONTO FMC 10												
	FEM TO FMC 10												
الدي	CARTO FACTO												
<i>C0-</i> 3													
	Possible Hazard Identification												
	□ Non-Hazard □ Flammable □ Skin Irritant □ Reiners □	Sample Disposal (A fee may be as Archive For Marth	ssessed if samples are retained										
	rum Around Time Required	QC Requirements (Specify) Months longer than 1 mg	onth)										
	1. Reineuisiled By	Other											
•	2. Reinguished By	141-07 15to 1	11-91-0> Time 1680										
		1-1-07 Time 20 2. Received by Jan tot	Date , , Time										
1	3. Helinauished By	ale Time 3. Received By	11/2/07 09:20										
1	Comments		Date / Time										
ω. σ.	DISTRIBUTION: WHITE Behimed to City												
6)	DISTRIBUTION: WHITE - Returned to Client with Report: CANARY - Stays with th	Sample: PINK - Field Copy											


STL-4124 (0901) Client TO fra TO (0.11).2 C		Severn Trent Laboratories, Inc.											
Address 2025 (Centry (s	Blu Ste 200 Teles Top Ste 200 Site Top Ste 200 Teles Top Ste 200 Teles Top Ste 200 Teles Top Ste 200 Teles Top Ste 200 Teles		NFax Number DD22 Lab Contage BHall	Ana more	Date O 3 1 0 7 Lab Number lysis (Attach list if pages is needed)	Chain of Custody Number 322461 Page 2 of 2							
Contract/Purchase Order/Oxofe Del. 800 572- Sample I.D. No. and Description (Containers for each sample may be combined on PMC 23	Troughou has Creek	Matrix 8	Containers & Preservatives	Suc Panetal Volaties Pechante Organation	PCB. LL SOC. LL Loc. Latel Metal Dissue) Notal	Special Instructions/ Conditions of Receipt							
FMC 3 FMC 4 FMC 5 FMC 5 FMC 6 FMC 7 FMC 7			××	X X X X X X X X X X X X X X X X X X X	X X XXX								
Possible Hazard Identification Non-Hazard Flammable Skin Irrita Tum Around Time Required 24 Hours 48 Hours 7 Days	C OTATIONTI			4xxx	(A fee may be assess longer than 1 month)	sed if samples are retained							
1. Relinquished By 2. Relinquished By Comments	Date	01-07 Time 01-07 1550 -07 Time	1. Received By 2. Received By 3. Received By	for	\	Date Time							

STL 4124 (0901)	·						•		26A	em	ire	nt La	bor	ator	ies,	inc.					
Tetra Tech NUS		- 1	ct Manag	11 k	ch	las	fin		<u> </u>		 .	·	Dai	e//	[[0-	7	Chain of Cu	stody Nui	nber	
20251 Century Blud S	te 200	Teleg	Phone Nu	nber (Are	a Code,	Fax N	1777						Lab	Numbe	er er	<u> </u>			<u>. 240</u> 1	02	7
Cermant own Stage 24	20874	Site	Pentact			ab Co	volace			_r	<u>-</u>	Ai	nalysis	(Attac	ch list	if		Page	-	of _	<u>_</u>
Office Marine and Copation (Spare)	§	Carrie	HOLU er/Vaybill	Number		<u> </u>	·Ha			┵╗		mo N	re spa	ce is n	eede		Ť	-			
Contract/Purchase Order Quote No.	ortar Cre		т-		٦.					theta	7	4 t		3	The state of the s	影		Sp	ecial Ins	stauctie	ons
18001572-1	T		<u> </u>	Matrix			Conta Presei	iners vativ	& 35	27.77	P	2 5	Ι.	33	8	3		Cor	nditions	of Re	ceij
Sample I.D. No. and Description (Containers for each sample may be combined on one line)	Date	Time	Air	Sout.		Unpres. H2SO4	HNO3	ğ	ZnAc/ NaOH	28	3	Perch		12	4	200		\cdot			
Enc 25	11/07	·;		X	_	<u> </u>	E	* *	ΝŽ	T _X	7		$-\Gamma$	1	7/	#	_	 	-	·	
FMC 25	A 11		\Box_{X}		++	4	y,		\prod	+1	7	77		۲.,	x x	KK	+	+			
FMC 26	11 11			X		1	17			V	y,	XX	- 7	**	~~	P	+				
FMC do	1011		X		>	1	XX				1	1	` 	1 xk	AXI		+	 		·	
			_														\top				
		· · · · · ·	$\sqcup \bot$			\perp									1		1	†			
						1		L		$\perp \downarrow$							_	 			
						-				$\bot \bot$	1	11									
				-		-		1	_ _		_	\perp	\perp								
			_ _		-		-	$\left \cdot \right $		$\downarrow \downarrow$	-	11			\bot				·		
				_		+		$\left \cdot \right $		-	_			Ц.	<u></u>						
Ssible Hazard Identification Non-Hazard			Sampi	e Disposi	al	لــــــــــــــــــــــــــــــــــــــ					\bot										
m Around Time Required	Poison B	Unknown	☐ Re	tum To C	lient	30	isposal i	By Lat		Archive	9 For		_ Mon	ths lo	A fee m Inger th	nay be a nan 1 m	ssess onth)	ed if sample:	s are retai	ned	
24 Hours	s 🗌 21 Days		er				requirer	nents	(Specify)											
Kost Samuel.		Dale	1-07	Time_	6	1. Re	ceve	Ву	Q	1		c ak	X		•			Date	Ting	1e 6 c	
Relinquished By	· · · · · · · · · · · · · · · · · · ·	Date	-11	Time	$\frac{1}{2\lambda}$	2. Re	ceived	by /	77		<u>x</u> /	1_		<u> </u>			I,	//-/-O	7 (b C	ፓር —
helinquished By		Date	01	Time	<u> </u>	3. Re	ceived i	/_	[D	TY	<i>b1</i>							11/2/0	27	920	2
mments						<u> </u>			<u>'</u>								-	Date	Tim	e	
THOUSE OF	<u></u> .																L				
TRIBUTION: WHITE - Returned to Client with Report: CA	NARY - Stays with	the Sampl	e; PINK	Field Co	ру																

STL-4124 (0901) Client					2646	ern Irent	Laborate	ories, Inc.	
Address		roject Manag M	ke Ma	ctin	<u> </u>		Date	10/2-1-	Chain of Custody Number 322456
20251 Centery Blod Ste	- 400	elephone Nu	mber (Area Co	de)/Fax Number 3072			Lab Nui	0/30(07	322456
Gomentour Signo ZDC	0874 S	ite Conject		Lab Contact BH4[[<u> </u>	Analysis (Al	tach list if	Page of O
Project Name and Location (State)	Martar a	arrier/Whybill	Number 1	BHall			more space i	s needed)	-
OVINIOUVE UICHASO (IMPORTUMIA NA)	ek					2 2		77/43	
18001572-1			Matrix	Containe Preserva	ers & tives	E CE	すい	3023	Special Instructions, Conditions of Receip
Sample I.D. No. and Description (Containers for each sample may be combined on one line)	Date Tim	A Automa	So So	61-1	NaOH Znaci NaOH	Ser Sol	PCB 3	打山村室	
W Eem 14 Fuc 14	1013/07	- 4 4	V 3	HNC HNC	\$ 52 8	╀╼╀┈┼╌	7	1720	
FCM TH FMC 14		11	17			XX	++-		4-402 jas
FAC 14			 				+++	+++-	
CIFCIM 14 FMC 14			丈一		++-	-	1++	+++-	
WE TO THE TOTAL					11-			+++-	
MITCH THE 24		X		X			x		
1 5 M 24				X			+1 _x	┦┼┼┼	
FGA 24 FUC 24				X			1 1		
TOME ON FINE 24				X			1 1 1		
W TOTAL ALL									
Possible Hazard Identification		Sample	Disposal						
☐ Non-Hazard ☐ Flammable ☐ Skin Irritant ☐ F Turn Around Time Required.	Paison B D Unkno	wn Re	lurn To Client	Disposal By t	ab 🗆 A	Archive For	Months	(A fee may be asse longer than 1 month	ssed if samples are retained
24 Hour 48 Hours 7 Days 7-14 Days	21 Days 0	Other		OC Requiremen	ts (Specify)			Tonger than 1 month	,
Tist January	Date		Time	1. Received By	1	- 17	11		Date Time
2. Relinguished By	Date	1-07	1550 Time,	2. Received By		400	COL.		1/401-07 1600
3. Relinquished By		1-07	Time.	1	1/60	201			Date 11/2/07 Time 9'20
Comments	- Julio			3. Received By	/ /×				Dalle Time
· 									

STL-4124 (0901)			Sev	ern Trent Lab	ooratories, Inc.	
Address Tech Nus 20251 Century Rlud	C C Teleg	ict Manager Like Must phone Number (Area Co OLS28 3	n de)/Fax Number		Date 6/31/6 7 Lab Number	Chain of Custody Number 322460
German town Mn 21	Code Site C	Contact	Lab Contact	Ana	lysis (Attach list if	Page of 2
(State)	Trog Morder (L' Carrie	Danaváa P er/Waybill Nulliber	113 Hall	Resheral	space is needed)	
18001572-1	V	Matrix	Containers & Preservatives	835	E E SO	Special Instructions/ Conditions of Receipt
Sample I.D. No. and Description (Containers for each sample may be combined on one line)	 	Advance Sed. Soil	Unpress HZSO4 HNO3 HC! NaOH NaOH	Scoc Politice Politic	12 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
FMC 16	10/31/07	HAL	X	XXXX		
FMC 16	10131101			XXXX		
FMC 17			Y XX		X XXXX	
EMC 18				XXXX	+	
FMC 18		X	X/XX	XXXX	XXXX	
FMC 19		X		XVXX		
FMC 20		-	\times	XXXX		
Fuc 21			XXX		XXXXX	
FMC 22			 	XXXX		
Possible Hazard Identification	4	X/1-1-1	X XX	XXXX		
Пи — —	Poison B 🛂 Unknown	Sample Disposal Return To Client		Archive For	(A fee may be asset	ssed if samples are retained
	s 21 Days Cine	r	QC Requirements (Specify)		Months longer than 1 month	<i>y</i>
2. Relinquitings by	Dale 11-0(-	07 1550	1. Received By	lest		Date Time 1600
3. Relinquished By	Date	-07 [8,30 Time	2. Received By 3. Received By	tot		Date 1/2/07 9:20
Comments			o. Hacerved By			Date Time
DISTRIBUTION: WHITE Returned to Client with Report: CAI	NARY - Stays with the Sample	: PINK - Field Copy				1

STL-1124 (0901) Client	Severn Trent Laboratories, Inc.									
Address Address Blu Ste 200	Project Manager N, Ke Telephone Number (Date U30107 ab Number	Chain of Custody Number 322458					
Project Name, and Legistion (State) State State Tip Code 74 Project Name, and Legistion (State)	THE CONTROL	Lab Contact	Analys	sis (Attach list if Dace is needed)	Page 5 of 6					
Martin St HI-POIT MI) Fooghertur Ck Contractifuctuse Order Ductorias 18001572-1		Containers &	225	Jace is needed)	Special Instructions/					
Sample 1.D. No. and Description (Containers for each sample may be combined on one line) Date	Time Rose	Proservatives Preservatives Proservatives Proservatives Proservatives Proservatives Proservatives	12 L S. C. L. C. C. C. C. C. C. C. C. C. C. C. C. C.		Conditions of Receipt					
WHOLE THE I WISHOT			X							
FOR THE FUC II		X								
FCM-12 FMC 12		X								
WHEN FINC 12		X								
FMC 12 FMC 12		V V								
Possible Hazard Identification					·					
Non-Hazard	Unknown Return To	·	Archive For Moi	(A fee may be asses	sed if samples are retained					
24 Hours 48 Hours 7 Days 14 Days 21 Days Heimographic By 2. Relinguished By	Other	1. Received by	D		Date , Time					
J. Helinquished By	Date Time	2. Received By	rostot	7	1/2-01-07 (6 0 U					
Comments	rane	3. Received By			Date Time					

Tetraled WUS Address DO 25 1 Century B(v) Se 200 Teleprone Number (Area Code) Figs Number Containing May 2006 Project Name and Location (State) Project Name and Location (State) Mastia State Arout MD True Work) (k Containers & Preservatives Sample 1D. No. and Description (Containers for each sample may be combined on one line) PMC (3 FMC (3 FMC (3) FMC (3)	Lab Number Analysis (Attach iore space is nee	DIO 7	Chain of Custody Number 322459 Page O of O Special Instructions Conditions of Receipt
Project Name and Location (State). Mastin State Description (Containers for each sample may be combined on one line) Page 13 10/30/17 X X X X X X X X X	Analysis (Attach incre space is nee	list if	Page 6 of 6
Project Name and Location (State). Mastin State Assort MD Tog Mith) (k Carrier/Waybill Number) Contract/Purchase Orden Quote No. Sample I.D. No. and Description (Containers for each sample may be combined on one line) Pauc 13 FMC 13 FMC 13	tore space is nee	list if	Special Instructions
Mastin State Acront M. Tou Mith) (k Carrier/Waybill Number) Contract/Purchase Orden Quote No.) Sample 1.D. No. and Description (Containers for each sample may be combined on one line) Puc 13 Fuc 13 Fuc 13 Fuc 13	tore space is nee	neded)	Special Instructions Conditions of Receip
Contract/Purchase Orden Quote No.) BOO1 5 72 - 1	Disolary Wet of		Special Instructions Conditions of Receip
Sample I.D. No. and Description (Containers for each sample may be combined on one line) Pauc 13 FMC 13 FMC 13	Distalled We		Special Instructions Conditions of Receip
Sample I.D. No. and Description (Containers for each sample may be combined on one line) Date Time T	Display		
FMC (3 FMC (3 FMC 13	<u>X</u>		
FMC (3) FMC (3) FMC (3)			
EMC 13			
MC (3	8		
		 	
		1 1 1 1	
	- - - 		
Dissible Hazard Identification			
Non-Hazard			
m Around Time Required Disposal By Lab Archive For	Months longe	ee may be assessed Ier than 1 month)	nd if samples are retained
Relipopuished By			
Test Much Date Time 1. Received By Relinquished By	 	10	Date Time
Date Time 2. Received By / 2. Received By / 2.	<u> </u>		11-01-07 1600
Pelinquished By Date Date Date Date Date Date Date Date Date Date Date		, D.	11/2/07 Time 09:20
Date Time 3. Received By		Di	Pale Time
TRIBUTION: WHITE - Returned to Client with Report; CANARY - Stays with the Sample; PINK - Field Copy			

HOLDIIME

SDG C7K020216

SORT	UNITS	NSAMPLE	LAB_ID	QC_TYPE	SAMP_DATE	EXTR_DATE	ANAL_DATE	SMP EXTR	EXTR_ANL	SMP_ANL
HG	UG/L	FMC 7	C7K020216013	NM	10/31/2007	11/14/2007	11/14/2007	14	0	14
HG	UG/L	FMC 9	C7K020216002	NM	10/30/2007	11/14/2007	11/14/2007	15	0	15
HG	UG/L	FMC 5	C7K020216012	NM	10/31/2007	11/14/2007	11/14/2007	14	0	14
HG	UG/L	FMC 3	C7K020216011	NM	10/31/2007	11/14/2007	11/14/2007	14	0	14
HG	UG/L	FMC 26	C7K020216015	NM	11/1/2007	11/14/2007	11/14/2007	13	0	13
HG	UG/L	FMC 25	C7K020216014	NM	11/1/2007	11/14/2007	11/14/2007	13	0	13
HG	UG/L	FMC 24	C7K020216001	NM	10/30/2007	11/14/2007	11/14/2007	15	0	15
HG	UG/L	FMC 20	C7K020216009	NM	10/31/2007	11/14/2007	11/14/2007	14	0 .	14
HG	UG/L	FMC 18	C7K020216008	NM	10/31/2007	11/14/2007	11/14/2007	14	0	14
HG	UG/L	FMC 16	C7K020216007	NM	10/31/2007	11/14/2007	11/14/2007	14	0	14
HG	UG/L	FMC 13	C7K020216006	NM	10/30/2007	11/14/2007	11/14/2007	15	0	15
HG	UG/L	FMC 12	C7K020216005	NM	10/30/2007	11/14/2007	11/14/2007	15	0	15
HG	UG/L	FMC 11	C7K020216004	NM	10/30/2007	11/14/2007	11/14/2007	15	0	15
HG	UG/L	FMC 22	C7K020216010	NM	10/31/2007	11/14/2007	11/14/2007	14	0	14
HG	UG/L	FMC 10	C7K020216003	NM	10/30/2007	11/14/2007	11/14/2007	15	0	15

Friday, December 14, 2007

SORT	UNITS	NSAMPLE	LAB_ID	QC_TYPE	SAMP_DATE	EXTR_DATE	ANAL DATE	SMP_EXTR	EXTR_ANL	SMP_ANL
М	UG/L	FMC 7	C7K020216013	NM	10/31/2007	11/14/2007	11/27/2007	14	13	27
M	UG/L	FMC 11	C7K020216004	NM	10/30/2007	11/14/2007	11/27/2007	15	13	28
М	UG/L	FMC 12	C7K020216005	NM	10/30/2007	11/14/2007	11/27/2007	15	13	28
M	UG/L	FMC 13	C7K020216006	NM	10/30/2007	11/14/2007	11/27/2007	15	13	28
M	UG/L	FMC 16	C7K020216007	NM	10/31/2007	11/14/2007	11/27/2007	14	13	27
М	UG/L	FMC 18	C7K020216008	NM	10/31/2007	11/14/2007	11/27/2007	14	13	27
М	UG/L	FMC 20	C7K020216009	NM	10/31/2007	11/14/2007	11/27/2007	14	13	27
М	UG/L	FMC 24	C7K020216001	NM	10/30/2007	11/14/2007	11/27/2007	15	13	28
M	UG/L	FMC 26	C7K020216015	NM	11/1/2007	11/14/2007	11/27/2007	13	13	26
М	UG/L	FMC 5	C7K020216012	NM	10/31/2007	11/14/2007	11/27/2007	14	13	27
М	UG/L	FMC 9	C7K020216002	NM	10/30/2007	11/14/2007	11/27/2007	15	13	28
М	UG/L	FMC 10	C7K020216003	NM	10/30/2007	11/14/2007	11/27/2007	15	13	28
M	UG/L	FMC 22	C7K020216010	NM	10/31/2007	11/14/2007	11/27/2007	14	13	27
M	UG/L	FMC 3	C7K020216011	NM	10/31/2007	11/14/2007	11/27/2007	14	13	27
М	UG/L	FMC 25	C7K020216014	NM	11/1/2007	11/14/2007	11/27/2007	13	13	26
HGF	UG/L	FMC 18	C7K020216008	NM	10/31/2007	11/16/2007	11/16/2007	16	0	16
HGF	UG/L	FMC 11	C7K020216004	NM	10/30/2007	11/16/2007	11/16/2007	17	0	17
HGF	UG/L	FMC 12	C7K020216005	NM	10/30/2007	11/16/2007	11/16/2007	17	0	17

SORT	UNITS	NSAMPLE	LAB ID	QC_TYPE	SAMP_DATE	EXTR_DATE	ANAL_DATE	SMP_EXTR	EXTR_ANL	SMP_ANL
HGF	UG/L	FMC 13	C7K020216006	NM	10/30/2007	11/16/2007	11/16/2007	17	0	17
HGF	UG/L	FMC 9	C7K020216002	NM	10/30/2007	11/16/2007	11/16/2007	17	0	17
HGF	UG/L	FMC 16	C7K020216007	NM	10/31/2007	11/16/2007	11/16/2007	16	0	16
HGF	UG/L	FMC 20	C7K020216009	NM	10/31/2007	11/16/2007	11/16/2007	16	0	16
HGF	UG/L	FMC 10	C7K020216003	NM	10/30/2007	11/16/2007	11/16/2007	17	0	17
HGF	UG/L	FMC 22	C7K020216010	NM	10/31/2007	11/16/2007	11/16/2007	16	0	16
HGF	UG/L	FMC 24	C7K020216001	NM ·	10/30/2007	11/16/2007	11/16/2007	17	0	17
HGF	UG/L	FMC 25	C7K020216014	NM	11/1/2007	11/16/2007	11/16/2007	15	0	15
HGF	UG/L	FMC 26	C7K020216015	NM	11/1/2007	11/16/2007	11/16/2007	15	0	15
HGF	UG/L	FMC 3	C7K020216011	NM	10/31/2007	11/16/2007	11/16/2007	16	0	16
HGF	UG/L	FMC 5	C7K020216012	NM	10/31/2007	11/16/2007	11/16/2007	16	0	16
HGF	UG/L	FMC 7	C7K020216013	NM	10/31/2007	11/16/2007	11/16/2007	16	0	16
MF	UG/L	FMC 22	C7K020216010	NM	10/31/2007	11/14/2007	11/27/2007	14	13	27
MF	UG/L	FMC 7	C7K020216013	NM	10/31/2007	11/14/2007	11/27/2007	14	13	27
MF	UG/L	FMC 5	C7K020216012	NM	10/31/2007	11/14/2007	11/27/2007	14	13	27
MF	UG/L	FMC 3	C7K020216011	NM	10/31/2007	11/14/2007	11/27/2007	14	13	27
MF	UG/L	FMC 26	C7K020216015	NM	11/1/2007	11/14/2007	11/27/2007	13	13	26
MF	UG/L	FMC 24	C7K020216001	NM	10/30/2007	11/14/2007	11/27/2007	15	13	28

Friday, December 14, 2007

SORT	UNITS	NSAMPLE	LAB_ID	QC_TYPE	SAMP_DATE	EXTR_DATE	ANAL_DATE	SMP_EXTR	EXTR_ANL	SMP_ANL
MF	UG/L	FMC 9	C7K020216002	NM	10/30/2007	11/14/2007	11/27/2007	15	13	28
MF	UG/L	FMC 18	C7K020216008	NM	10/31/2007	11/14/2007	11/27/2007	14	13	27
MF	UG/L	FMC 16	C7K020216007	NM	10/31/2007	11/14/2007	11/27/2007	14	13	27
MF	UG/L	FMC:13	C7K020216006	NM	10/30/2007	11/14/2007	11/27/2007	15	13	28
MF	UG/L	FMC 12	C7K020216005	NM	10/30/2007	11/14/2007	11/27/2007	15	13	28
MF	UG/L	FMC 11	C7K020216004	NM	10/30/2007	11/14/2007	11/27/2007	15	13	28
MF	UG/L	FMC 10	C7K020216003	NM	10/30/2007	11/14/2007	11/27/2007	15	13	28
MF	UG/L	FMC 25	C7K020216014	NM	11/1/2007	11/14/2007	11/27/2007	13	13	26
MF	UG/L	FMC 20	C7K020216009	NM	10/31/2007	11/14/2007	11/27/2007	14	13	27
os	%	FMC 9DL	C7K020216002	NM	10/30/2007	11/6/2007	11/24/2007	7	18	25
os	%	FMC 25DL	C7K020216014	NM	11/1/2007	11/7/2007	11/22/2007	6	15	21
os	%	FMC 26DL	C7K020216015	NM	11/1/2007	11/8/2007	11/27/2007	7	19	26
OS	%	FMC 3DL	C7K020216011	NM	10/31/2007	11/7/2007	11/22/2007	7	15	22
os	%	FMC 24DL	C7K020216001	NM	10/30/2007	11/6/2007	11/24/2007	7	18	25
OS	%	FMC 7DL	C7K020216013	NM	10/31/2007	11/7/2007	11/22/2007	7	15	22
os	%	FMC 13DL	C7K020216006	NM	10/30/2007	11/6/2007	11/24/2007	7	18	25
os	%	FMC 5DL	C7K020216012	NM	10/31/2007	11/7/2007	11/22/2007	7	15	22
OS	%	FMC 22DL	C7K020216010	NM	10/31/2007	11/7/2007	11/22/2007	7	15	22

Friday, December, 14, 2007

SAMPLE SUMMARY

C7K020216

WO #	SAMPLE#	CLIENT SAMPLE ID	SAMPLED DATE	SAMP TIME
KAEX3	001	FMC 24	10/30/07	13:35
KAE05	002	FMC 9	10/30/07	15:05
KAE07	003	FMC 10	10/30/07	
KAE1A	004	FMC 11	10/30/07	
KAE1D	005	FMC 12	10/30/07	
KAE1F	006	FMC 13	10/30/07	
KAE1J	007	FMC 16	10/31/07	
KAE1K	800	FMC 18	10/31/07	
KAE1P	009	FMC 20	10/31/07	
KAE1R	010	FMC 22	10/31/07	
KAE10	011	FMC 3	10/31/07	
KAE15	012	FMC 5	10/31/07	
KAE19	013	FMC 7	10/31/07	
KAE2E	014	FMC 25	11/01/07	
KAE2J	015	FMC 26	11/01/07	
KAE2L	016	TripBlank#1	10/30/07	
KAE21	017	TripBlank#2	10/30/07	

NOTE(S):

⁻ The analytical results of the samples listed above are presented on the following pages.

⁻ All calculations are performed before rounding to avoid round-off errors in calculated results.

⁻ Results noted as "ND" were not detected at or above the stated limit.

⁻ This report must not be reproduced, except in full, without the written approval of the laboratory.

⁻ Results for the following parameters are never reported on a dry weight basis: color, corrosivity, density, flashpoint, ignitability, layers, odor, paint filter test, pH, porosity pressure, reactivity, redox potential, specific gravity, spot tests, solids, solubility, temperature, viscosity, and weight.

- 2a INITIAL AND CONTINUING CALIBRATION VERIFICATION

Client: TETRA TECH

SDG No.: C7K020216

Initial Calibration Source:

Instrument:

ICPMS

Continuing Calibration Source:

ample	ID .	Analyte	Result ug/L	True Value ug/L	% Recovery	Acceptance Window (%R)	М	Analysis Date	Analysis Time	Run Number
CV1				ICV1 N	CETCOOD AS					
	Antimo	ony	82.50	80.0	IET6089-07	00.0 110.0				
	Arsenio	3	80.00	80.0		90.0 - 110.0	MS	11/27/2007	15:03	X71127A, gen
	Berylli	um	81.03	80.0	100.0	90.0 - 110.0	MS	11/27/2007	15:03	X71127A, gen
	Cadmi		82.54	80.0	101.3	90.0 - 110.0	MS	11/27/2007	15:03	X71127A, gen
	Chrom	ium	80.65		103.2	90.0 - 110.0	MS	11/27/2007	15:03	X71127A, gen
	Copper		81.32	80.0	100.8	90.0 - 110.0	MS	11/27/2007	15:03	X71127A, gen
	Lead		78.33	80.0	101.6	90.0 - 110.0	MS	11/27/2007	15:03	X71127A, gen
	Nickel		81.77	80.0	97.9	90.0 - 110.0	MS	11/27/2007	15:03	X71127A, gen
	Seleniu	m		80.0	102.2	90.0 - 110.0	MS	11/27/2007	15:03	X71127A, gen
	Silver	111	80.99	80.0	101.2	90.0 - 110.0	MS	11/27/2007	15:03	X71127A, gen
	Thallim	•	81.88	80.0	102.4	90.0 - 110.0	MS	11/27/2007	15:03	X71127A, gen
	Zinc	11	78.41	80.0	98.0	90.0 - 110.0	MS	11/27/2007	15:03	X71127A, gen
	ZIIIC		83.09	80.0	103.9	90.0 - 110.0	MS	11/27/2007	15:03	X71127A, gene X71127A, gene
CV1				00011	Dermone o	_				
	Antimor	ıy	99.67	100.0	MET6093-0					
	Arsenic		98.58	100.0	99.7	90.0 - 110.0	MS	11/27/2007	15:24	X71127A, gene
	Berylliu	m .	98.37	100.0	98.6	90.0 - 110.0	MS	11/27/2007	15:24	X71127A, gene
	Cadmiur	n	100.54	100.0	98.4	90.0 - 110.0	MS	11/27/2007	15:24	X71127A, gene
	Chromiu	m	98.73	100.0	100.5	90.0 - 110.0	M\$	11/27/2007	15:24	X71127A, gene
	Соррег		99.28	100.0	98.7	90.0 - 110.0	MS	11/27/2007	15:24	X71127A, gene
	Lead		100.63	100.0	99.3	90.0 - 110.0	MS	11/27/2007	15:24	X71127A, gene
	Nickel		98.75		100.6	90.0 - 110.0	MS	11/27/2007	15:24	X71127A, gene
	Selenium	1	98.04	100.0	98.8	90.0 - 110.0	MS	11/27/2007	15:24	X71127A, gene
	Silver	•	98.04	100.0	98.0	90.0 - 110.0	MS	11/27/2007	15:24	X71127A, gene
	Thallium			100.0	98.1	90.0 - 110.0	MS	11/27/2007	15:24	X71127A, gene
	Zinc		100.23	100.0	100.2	90.0 - 110.0	MS	11/27/2007	15:24	X71127A, gene
•	LIR		107.27	100.0	107.3	90.0 - 110.0	MS	11/27/2007		X71127A, gene X71127A, gene

Test America Pittsburgh - 2a INITIAL AND CONTINUING CALIBRATION VERIFICATION

Client: TETRA TECH

SDG No.: C7K020216

Initial Calibration Source:

Instrument:

ICPMS

Continuing Calibration Source:

Sample ID	Analyte	Result ug/L	True Value ug/L	% Recovery	Acceptance Window (%R)	М	Analysis Date	Analysis Time	Run Number
CCV2			CCV1-	2					
Anti	mony	99.59	100.0	99.6	90.0 - 110.0	MS	11/27/2007	16-00	3/21100.
Arse	enic	99.12	100.0	99.1	90.0 - 110.0	MS	11/27/2007	16:22	X71127A, gene
Bery	llium	95.92	100.0	95.9	90.0 - 110.0	MS	11/27/2007	16:22	X71127A, gene
Cadi	mium ·	102.43	100.0	102,4	90.0 - 110.0	MS	11/27/2007	16:22	X71127A, gene
Chro	mium	98.57	100.0	98.6	90.0 - 110.0	MS	11/27/2007	16:22	X71127A, gene
Cop	per	100.71	100.0	100.7	90.0 - 110.0	MS	11/27/2007	16:22	X71127A, gene
Lead	1	99.10	100.0	99.1	90.0 - 110.0	MS	11/27/2007	16:22	X71127A, gene
Nick	el	99.66	100.0	99.7	90.0 - 110.0	MS	11/27/2007	16:22	X71127A, gene
Sele	nium	97.69	100.0	97.7	90.0 - 110.0	MS	11/27/2007	16:22	X71127A, gene
Silve	भ	101.77	100.0	101.8	90.0 - 110.0	MS	11/27/2007	16:22	X71127A, gene
Thal	lium	98.97	100.0	99.0	90.0 - 110.0	MS	11/27/2007	16:22	X71127A, gene
Zinc		107.97	100.0	108.0	90.0 - 110.0	MS	11/27/2007	16:22 16:22	X71127A, gene X71127A, gene
CV3			CCV1-3						
Antin	nony	98.86	100.0	98.9	90.0 - 110.0	MS	11/07/000		
Arser	nic	97.04	100.0	97.0	90.0 - 110.0	MS MS	11/27/2007	17:17	X71127A, gene
Beryl	lium	96.83	100.0	96.8	90.0 - 110.0		11/27/2007	17:17	X71127A, gene
Cadm	uium	101.37	100.0	101.4	90.0 - 110.0	M\$	11/27/2007	17:17	X71127A, gene
Chron	nium	98.94	100.0	98.9	90.0 - 110.0	MS	11/27/2007	17:17	X71127A, gene
Copp	er	99.57	100.0	99.6	90.0 - 110.0	MS	11/27/2007	17:17	X71127A, gene
Lead		99.05	100.0	99.0	90.0 - 110.0	MS MS	11/27/2007	17:17	X71127A, gene
Nicke	1	99.33	100.0	99.3	90.0 - 110.0	MS MS	11/27/2007	17:17	X71127A, gene
Seleni	ium	97.03	100.0	97.0	90.0 - 110.0		11/27/2007	17:17	X71127A, gene
Silver		101.50	100.0	101.5	90.0 - 110.0	MS MS	11/27/2007	17:17	X71127A, gene
Thalli	um	98.56	100.0	98.6	90.0 - 110.0	-	11/27/2007	17:17	X71127A, gene
Zinc	. •	106.87	100.0	106.9	90.0 - 110.0	MS MS	11/27/2007 11/27/2007	17:17 17:17	X71127A, gene X71127A, gene

- 2a INITIAL AND CONTINUING CALIBRATION VERIFICATION

Client: TETRA TECH

SDG No.: C7K020216

Initial Calibration Source:

Instrument:

ICPMS

Continuing Calibration Source:

Sample	ID Analy	Result te ug/L	True Value ug/L	% Recovery	Acceptance Window (%R)	M	Analysis Date	Analysis Time	Run Number
CCV4			CCV1-	1					
	Antimony	99.82	100.0	99.8	90.0 - 110.0	MS	11/07/2002	10.14	
	Arsenic	101.90	100.0	101.9	90.0 - 110.0	MS	11/27/2007	18:13	X71127A, gen
	Beryllium	98.77	100.0	98.8	90.0 - 110.0	MS	11/27/2007	18:13	X71127A, gen
•	Cadmium	102.40	100.0	102.4	90.0 - 110.0		11/27/2007	18:13	X71127A, gene
	Chromium	101.27	100.0	101.3	90.0 - 110.0	MS MS	11/27/2007	18:13	X71127A, gene
	Copper	102.67	100.0	102.7	90.0 - 110.0		11/27/2007	18:13	X71127A, gene
	Lead	99.23	100,0	99.2	90.0 - 110.0	MS	11/27/2007	18:13	X71127A, gene
	Nickel	101.83	100.0	101.8	90.0 - 110.0	MS	11/27/2007	18:13	X71127A, gene
	Selenium	101.18	100.0	101.2	90.0 - 110.0	MS MS	11/27/2007	18:13	X71127A, gene
,	Silver	101.10	100.0	101.1	90.0 - 110.0		11/27/2007	18:13	X71127A, gene
	Thallium	98.98	100.0	99.0	90.0 - 110.0	MS	11/27/2007	18:13	X71127A, gene
	Zinc	108.33	100.0	108.3	90.0 - 110.0	MS	11/27/2007	18:13	X71127A, gene
٠		•			20.0 - 210.0	MS	11/27/2007	18:13	X71127A, gene
CV5			CCV1-5						
	Antimony	98.97	100.0	99.0	90.0 - 110.0	MS	11/27/2007	10.00	
	Arsenic	102.67	100.0	102.7	90.0 - 110.0	MS	11/27/2007	19:08	X71127A, gene
	Beryllium	104.73	100.0	104.7	90.0 - 110.0	MS		19:08	X71127A, gene
	Cadmium	100.79	100.0	100.8	90.0 - 110.0	MS	11/27/2007	19:08	X71127A, gene
	Chromium	99.98	100.0	100.0	90.0 - 110.0	MS	11/27/2007	19:08	X71127A, gene
	Copper	103.00	100.0	103.0	90.0 - 110.0	MS	11/27/2007	19:08	X71127A, gene
	Lead	98.44	100.0	98.4	90.0 - 110.0	MS	11/27/2007 11/27/2007	19:08	X71127A, gene
	Nickel	103.13	100.0	103.1	90.0 - 110.0	MS		19:08	X71127A, gene
	Selenium	102.17	100.0	102.2	90.0 - 110.0	MS	11/27/2007 11/27/2007	19:08	X71127A, gene
	Silver	101.63	100.0	101.6	90.0 - 110.0	MS		19:08	X71127A, gene
	Thallium	98.56	100.0	98.6	90.0 - 110.0	MS	11/27/2007	19:08	X71127A, gene
	Zinc	106.20	100.0	106.2	90.0 - 110.0	MS	11/27/2007 11/27/2007	19:08 19:08	X71127A, gene X71127A, gene

- 2a -INITIAL AND CONTINUING CALIBRATION VERIFICATION

Client: TETRA TECH

SDG No.: C7K020216

Initial Calibration Source:

Instrument:

ICPMS

Continuing Calibration Source:

Sample I	ID Analyte	Result ug/L	True Value ug/L	% Recovery	Acceptance Window (%R)	М	Analysis Date	Analysis Time	Run Number
CCV6			CCV1-	5					
	Antimony	98.60	100.0	98.6	90.0 - 110.0	MS	11/27/2007 -	20:12	V711074
	Arsenic	102.67	100.0	102.7	90.0 - 110.0	MS	11/27/2007	20:12	X71127A, gene
	Beryllium	100.41	100.0	100.4	90.0 - 110.0	MS	11/27/2007	20:12	X71127A, gene
	Cadmium	100.11	100.0	100.1	90.0 - 110.0	MS	11/27/2007	20:12	X71127A, gene
	Chromium	98.59	100.0	98.6	90.0 - 110.0	MS	11/27/2007	20:12	X71127A, gene
•	Copper	101.80	100.0	101.8	90.0 - 110.0	MS	11/27/2007	20:12	X71127A, gene
	Lead	98.68	100.0	98.7	90.0 - 110.0	MS	11/27/2007	20:12	X71127A, gene
	Nickel	102.20	100.0	102.2	90.0 - 110.0	MS	11/27/2007	20:12	X71127A, gene
	Selenium	101.16	100.0	101.2	90.0 - 110.0	MS	11/27/2007	20:12	X71127A, gene
	Silver	100.80	100.0	100.8	90.0 - 110.0	MS	11/27/2007	20:12	X71127A, gene
	Thallium	98.46	100.0	98.5	90.0 - 110.0	MS	11/27/2007	20:12	X71127A, gene
	Zinc	105.30	100.0	105.3	90.0 - 110.0	MS	11/27/2007	20:12	X71127A, gene X71127A, gene
CV7			CCV1-7						
	Antimony	97.17	100.0	97.2	90.0 - 110.0	MS	11/27/2007	A1 A 2	75
	Arsenic	100.03	100.0	100.0	90.0 - 110.0	MS	11/27/2007	21:07	X71127A, gene
1	Beryllium	100.24	100.0	100.2	90.0 - 110.0	MS	11/27/2007	21:07	X71127A, gene
(Cadmium	99.74	100.0	99.7	90.0 - 110.0	MS	11/27/2007	21:07	X71127A, gene
(Chromium	96.74	100.0	96.7	90.0 - 110.0	MS	11/27/2007	21:07	X71127A, gene
(Copper	99,29	100.0	99.3	90.0 - 110.0	MS	11/27/2007	21:07	X71127A, gene
3	Lead	97.45	100.0	97.4	90.0 - 110.0	MS	11/27/2007	21:07	X71127A, gene
1	Nickel	99.72	100.0	99.7	90.0 - 110.0	MS	11/27/2007	21:07	X71127A, gene
5	Selenium	99.12	100.0	99.1	90.0 - 110.0	MS	11/27/2007	21:07	X71127A, gene
5	Silver	99.87	100.0	99.9	90.0 - 110.0	MS	11/27/2007	21:07	X71127A, gene
7	Thallium	97.05	100.0	97.0	90.0 - 110.0	MS	11/27/2007	21:07	X71127A, gene
2	Zinc	103.03	100.0	103.0	90.0 - 110.0	M\$	11/27/2007	21:07 21:07	X71127A, gene X71127A, gene

Test America Pittsburgh - 2a INITIAL AND CONTINUING CALIBRATION VERIFICATION

Client: TETRA TECH

SDG No.: C7K020216

Initial Calibration Source:

Instrument:

ICPMS

Continuing Calibration Source:

ample	ID Analyt	Result e ug/L	True Value ug/L	% Recovery	Acceptance Window (%R)	М	Analysis Date	Analysis Time	Run Number
CV8			CCV1-	8					
	Antimony	97.77	100.0	97.8	90.0 - 110.0	MS	11/22/2007		_
	Arsenic	101.00	100.0	101.0	90.0 - 110.0	MS	11/27/2007	22:06	X71127A, gene
	Beryllium	99.17	100.0	99.2	90.0 - 110.0	MS	11/27/2007	22:06	X71127A, gene
	Cadmium	100.12	100.0	100.1	90.0 - 110.0	MS	-1/2//2007	22:06	X71127A, gene
	Chromium	99.26	100.0	99.3	90.0 - 110.0		11/27/2007	22:06	X71127A, gene
	Copper	100.07	100.0	100.1	90.0 - 110.0	MS	11/27/2007	22:06	X71127A, gene
	Lead	98.78	100.0	98.8	90.0 - 110.0	MS	11/27/2007	22:06	X71127A, gene
	Nickel	99.27	100.0	99.3	90.0 - 110.0	MS	11/27/2007	22:06	X71127A, gene
	Selenium	99.80	100.0	99.8	90.0 - 110.0	MS	11/27/2007	22:06	X71127A, gene
	Silver	100.36	100.0	100.4	90.0 - 110.0	MS	11/27/2007	22:06	X71127A, gene
	Thallium	98.70	100.0	98.7		MS	11/27/2007	22:06	X71127A, gene
	Zinc	105.67	100.0	105.7	90.0 - 110.0	MS	11/27/2007	22:06	X71127A, gene
			100.0	105.7	90.0 - 110.0	MS	11/27/2007	22:06	X71127A, gene
CV9			CCV1-9						
	Antimony	97.93	100.0	97.9	90.0 - 110.0	MS	11/27/2007	22.00	
	Arsenic	100.38	100.0	100.4	90.0 - 110.0	MS		23:08	X71127A, gene
	Beryllium	98.26	100.0	98.3	90.0 - 110.0	MS	11/27/2007	23:08	X71127A, gene
	Cadmium	99.94	100.0	99.9	90.0 - 110.0	MS	11/27/2007	23:08	X71127A, gene
	Chromium	99.17	100.0	99.2	90.0 - 110.0		11/27/2007	23:08	X71127A, gene
	Copper	98.45	100.0	98.4	90.0 - 110.0	MS MS	11/27/2007	23:08	X71127A, gene
	Lead	98.13	100.0	98.1	90.0 - 110.0	MS	11/27/2007	23:08	X71127A, gene
	Nickel	98.71	100.0	98.7	90.0 - 110.0	MS MS	11/27/2007	23:08	X71127A, gene
	Selenium	98.92	100.0	98.9	90.0 - 110.0		11/27/2007	23:08	X71127A, gene
	Silver	99.59	100.0	99.6	90.0 - 110.0	MS	11/27/2007	23:08	X71127A, gene
	Thallium	98.55	100.0	98.6	90.0 - 110.0	MS	11/27/2007	23:08	X71127A, gene
	Zinc	104.57	100.0	104.6	90.0 - 110.0	MS MS	11/27/2007 11/27/2007	23:08 23:08	X71127A, gene X71127A, gene

- 2a -INITIAL AND CONTINUING CALIBRATION VERIFICATION

Client: TETRA TECH

SDG No.: C7K020216

Initial Calibration Source:

Instrument:

ICPMS

Continuing Calibration Source:

ample ID	Analyte	Result ug/L	True Value ug/L	% Recovery	Acceptance Window (%R)	М	Analysis Date	Analysis Time	Run Number
CV10			CCV1-	10					
Antii	nony	97.51	100.0	97.5	90.0 - 110.0	MS	11/27/2007	23:59	X71127A, gene
Arse	nic	101.33	100.0	101.3	90.0 - 110.0	MS	11/27/2007	23:59	X71127A, gene X71127A, gene
	llium	99.67	100.0	99.7	90.0 - 110.0	MS	11/27/2007	23:59	X71127A, gene
Cadn		99.01	100.0	99.0	90.0 - 110.0	MS	11/27/2007	23:59	X71127A, gene
Chro	mium	98.28	100.0	98.3	90.0 - 110.0	M\$	11/27/2007	23:59	X71127A, gene
Copp	er .	97.14	100.0	97.1	90:0 - 110.0	MS	11/27/2007	23:59	X71127A, gene
Lead		98.39	100.0	98.4	90.0 - 110.0	MS	11/27/2007	23:59	X71127A, gene
Nicke	el	99.31	100.0	99.3	90.0 - 110.0	MS	11/27/2007	23:59	X71127A, gene X71127A, gene
Selen	ium	99.77	100.0	99.8	90.0 - 110.0	MS	11/27/2007	23:59	X71127A, gene X71127A, gene
Silve	Г	98.90	100.0	98.9	90.0 - 110.0	MS ⁻	11/27/2007	23:59	X71127A, gene X71127A, gene
Thall	ium	98.28	100.0	98.3	90.0 - 110.0	MS	11/27/2007	23:59	X71127A, gene X71127A, gene
Zinc		101.27	100.0	101.3	90.0 - 110.0	MS	11/27/2007	23:59	X71127A, gene X71127A, gene

Metals Data Reporting Form

Instrument	:C	VAA					Units:		ug/L			
Chart Num	ber: <u>G</u>	1116B.P	RN				Accepta	ıble Ra	inge: 9	– 0% - 1	10%	
Standard S	ource:		Ultra	***			Standar	rd ID:		ET635		·
	WL/		ICV6- 11/16/20 1:40 Pi	007	-							
Element	Mass	True Conc	Found	% Rec	Found	% Rec	Found	% Rec	Found	% Rec	Forme	% D
Mercury	253.7	2.5	2.47	98.8						1XEC	Found	Rec

Metals Data Reporting Form

Initial Calil	bration	Verifica	tion Stan	dar								
Instrument:	C	VAA					Units:		ug/L			
Chart Numb	er: <u>G</u> 7	'1114B.P	RN				Accepta	ble R	inge: 9	0% - 1	10%	
Standard So	urce:		Ultra		<u> </u>		Standar	d ID:	M	ET631	8-07	
	WL/	True	ICV6- 11/14/20 6:37 PI	007		%		%				
Element	Mass	Conc	Found	Rec	Found	Rec	Found	% Rec	Found	% Rec	Found	% Rec
Mercury	253.7	2.5	2.37	94.8								ı

Metals Data Reporting Form

Continuing Calibration Verification

Instrument: CVAA

Units: ug/L

Chart Number: <u>G71116B.PRN</u>

Acceptable Range: 80% - 120%

Standard Source: Inorganic Ventures

Standard ID.

MET6261 07

							Stallua	u ID:	IVI	E1030	1-0/	·
	WL/	-	CCV6-1 11/16/2007 1:45 PM		CCV6-2 11/16/2007 2:05 PM		CCV6-3 11/16/2007 2:25 PM		CCV6-4 11/16/2007 2:45 PM		CCV6-5 11/16/2007 3:05 PM	
Element	Mass	True Conc	Found	% Rec	Found	% Rec	Found	% Rec	Found	% Rec	Found	% Rec
Mercury	253.7	5.0	5.03	100.6	5.15	103.0	5.23	104.6	5.13	102.6		102.4

Metals Data Reporting Form

Continuing	g Calibra	tion Ve	rification	1								
Instrument:	C\	VAA	_				Units:		ug/L			
Chart Numl	ber: <u>G</u> 7	'1116B.P	RN				Accepta	ble Ra	ange: 8	0% - 1	20%	
Standard So	ource:	In	organic Ve	ntures	}		Standar	d ID:	M	ET636	1-07	
CVAA												
Element	Mass		Found		Found		Found		Found		Found	% Rec
Mercury	253.7	5.0	5.06	101.2	5.09	101.8						

Metals Data Reporting Form

Continuing Calibration Verification

Instrument: ____ CVAA

Units: ug/L

Chart Number: <u>G71114B.PRN</u>

Acceptable Range: 80% - 120%

Standard Source: Inorganic Ventures

Standard ID:

MET6320-07

									1411	31032	0-07	_
	WL/		CCV6-1 11/14/2007 6:42 PM		CCV6-2 11/14/2007 7:02 PM		CCV6-3 11/14/2007 7:22 PM		CCV6-4 11/14/2007 7:42 PM		CCV6-5 11/14/2007 8:02 PM	
Element	Mass	True Conc	Found	% Rec	Found	% Rec	Found	% Rec	Found	% Rec	Found	% Rec
Mercury	253.7	5.0	4.81	96.2	5.02	100.4	4.97	99.4	4.85	97.0	4.72	94.4

Metals Data Reporting Form

Continuing	g Calibra	ation Ve	erification									
Instrument:		VAA	_		,		Units:		ug/L			 :
Chart Numl	ber: <u>G</u> 7	'1114B.P	RN				Accepta	ble R	ange: 8	- 0% - 1	20%	
Standard So	ource: _	In	organic Ver	ntures	<u> </u>		Standar	d ID:	M	ET632	0-07	
Element	WL/ Mass	True Conc	CCV6-6 11/14/200 8:19 PM Found	07	Found	% Rec	Found	% Rec	Found	% Rec	Found	% Poo
Mercury	253.7	5.0	4.69	93.8			x vanu	-100	Tound	Rec	Found	Rec

Test America Pittsburgh - 2b CRDL STANDARD FOR AA & ICP

Client: TETRA TECH

SDG No.: C7K020216

ICPMS Standard Source:

Inorganic Ventures

Instrument:

ICPMS

Sample ID	Analyte	Result ug/L	True Value ug/L	% Recovery	Advisory Limits (%R)	M	Analysis Date	Analysis Time	Run Number
CRDL1		CR	I MET6090-0	7 .					
Anti	mony	1.98	2.0	99.0	50 - 150	MS	11/27/200	15:11	X71127A, g
Arse	mic	1.19	1.0	119.0	50 - 150	MS	11/27/200	15:11	X71127A, g
Bery	llium	1.00	1.0	100.0	50 - 150	MS	11/27/200	15:11	X71127A, g
Cad	mium	1.03	1.0	103.0	50 - 150	MS	11/27/200	15:11	X71127A, g
Chro	omium	1.86	2.0	93.0	50 - 150	MS	11/27/200	15:11	X71127A, g
Cop	per	2.11	2.0	105.5	50 - 150	M\$	11/27/200	15:11	X71127A, g
Lead	i	0.82	1.0	82.0	50 - 150	MS	11/27/200	15:11	X71127A, g
Nick	cel .	1.13	1.0	113.0	50 - 150	M\$	11/27/200	15:11	X71127A, g
Sele	nium	4.45	5.0	89.0	50 - 150	MS	11/27/200	15:11	X71127A, g
Silve	er	1.05	1.0	105.0	50 - 150	MS	11/27/200	15:11	X71127A, g
Thal	lium	0.94	1.0	94.0	50 - 150	MS	11/27/200	15:11	X71127A, g
Zinc	,	4.98	5.0	99.6	50 - 150	MS	11/27/200	15:11	X71127A, g

Contract	Required	1 Detect	tion Limi	t Star	ndard									
Instrumen	it:	VAA					Units:		ug/L					
Chart Nur	nber: _G	71114B.	PRN				Accep	table l	Range:	50% -	150%			
Standard S	Source: _		Ultra	a		Standard ID: MET6319-07								
WL/ CRA/RLV 11/14/2007 6:40 PM True % Found Rec Found Found Rec Found							Found	% Rec	Found	% Rec	Found	% Rec		
Mercury	253.7	0.2	0.21	102.5		Rec					rounu	. ACC		

Metals Data Reporting Form

Contract Required Detection Limit Standard Instrument: CVAA Units: ug/L Chart Number: <u>G71116B.PRN</u> Acceptable Range: 50% - 150% Standard Source: Ultra Standard ID: MET6360-07 CRA/RLV 11/16/2007 1:43 PM WL/ True % % % % Element Mass Conc Rec Found Found Rec Found Rec Found Rec Found Rec Mercury 253.7 0.2 0.21 104.5

Client: TETRA TECH

SDG No.: C7K020216

Instrument:

		·			•			•		
Sample ID	Analyte	Result ug/L	Acceptance Limit	Conc Qual	MDL	CRQL	M	Analysis Date	Analysis Time	Run
ICB1			IQB/							
	Antimony	0.07	1 /-2.00	\mathbf{J}_{-}	0.05	2.00	MS	11/27/2007	15:07	X71127A, gen
	Arsenic	-0.02	+/-1.00	υ	0.14	1.00	MS	11/27/2007	15:07	X71127A, gen
	Beryllium	-0.01	+/-1.00	U	0.07	1.00	MS	11/27/2007	15:07	X71127A, gen
	Cadmium	-0.04	+/-1.00	U	0.11	1.00	MS	11/27/2007	15:07	X71127A, gen
	Chromium	-0.02	+/-2.00	U	0.11	2.00	MS	11/27/2007	15:07	X71127A, gen
	Copper	-0.03	+/-2.00	U	0.14	2.00	MS	11/27/2007	15:07	X71127A, gen
	Lead	-0.11	+/-1.00	J	0.02	1.00	MS	11/27/2007	15:07	X71127A, gen
	Nickel	-0.02	+/-1.00	U	0.07	1.00	MS	11/27/2007	15:07	X71127A, gen
•	Selenium	0.03	+/-5.00	U	0.21	5.00	MS	11/27/2007	15:07	X71127A, gen
	Silver	0.03	+/-1.00	U	0.08	1.00	MS	11/27/2007	15:07	X71127A, gen
	Thallium	0.00	+/-1.00	U	0.02	1.00	MS	11/27/2007	15:07	X71127A, gen
	Zinc	-0.10	+/-5.00	U	0.60	5.00	MS	11/27/2007	15:07	X71127A, gen
			<u>.</u>							
CCB1	Antimony	0.17	CCB1 \+/-2.00	J	0.05	2.00	3.60	11/05/0005	1.000	
	Antoniony	-0.07	+/-1.00	U	0.05	2.00	MS	11/27/2007	15:28	X71127A, gen
	Beryllium	0.00	+/-1.00	U	0.14	1.00	MS	11/27/2007	15:28	X71127A, gen
	Cadmium	0.00	+/-1.00	U ·	0.07	1.00	MS	11/27/2007	15:28	X71127A, gen
	Chromium	0.04	+/-2.00	U	0.11	1.00	MS MS	11/27/2007	15:28	X71127A, gen
	Соррег	0.00	+/-2.00	U	0.11	2.00 2.00	MS MS	11/27/2007	15:28	X71127A, gen
	Lead	-0.03	+/-2.00	j	0.14	1.00	MS	11/27/2007	15:28	X71127A, gen
	Nickel	0.01						11/27/2007	15:28	X71127A, gen
	Nickei Selenium	-0.13	+/-1.00 +/-5.00	U	0.07	1.00	MS	11/27/2007	15:28	X71127A, gen
	Silver	-0.13 0.02		U	0.21	5.00	MS	11/27/2007	15:28	X71127A, gen
			+/-1.00	U	0.08	1.00	MS	11/27/2007	15:28	X71127A, gen
	Thallium	0.02	+/-1.00	U	0.02	1.00	MS	11/27/2007	15:28	X71127A, gen
	Zinc	-0.04	+/-5.00	U	0.60	5.00	MS	11/27/2007	15:28	X71127A, gen

Client: TETRA TECH

SDG No.: C7K020216

Instrument:

										•••
Sample ID	Analyte	Result ug/L	Acceptance Limit	Conc Qual	MDL	CRQL	M	Analysis Date	Analysis Time	Run
CCB2			dord'						1.1	
CCB2	Antimony	0.20	+/-2.00	J	0.05	2.00	MS	11/27/2007	16:27	X71127A, ge
	Arsenic	-0.07	+/-1.00	U	0.14	1.00	MS	11/27/2007	16:27	X71127A, get X71127A, get
	Beryllium	-0.02	+/-1.00	υ	0.07	1.00	MS	11/27/2007	16:27	X71127A, ge
	Cadmium	-0.07	+/-1.00	U	0.11	1.00	MS	11/27/2007	16:27	X71127A, ge
	Chromium	0.01	+/-2.00	U	0.11	2.00	MS	11/27/2007	16:27	X71127A, ge
	Copper	0.00	+/-2.00	U	0.14	2.00	MS	11/27/2007	16:27	X71127A, ge
	Lead	-0.13	+/-1.00	J	0.02	1.00	MS	11/27/2007	16:27	X71127A, ge
	Nickel	-0.03	+/-1.00	U	0.07	1.00	MS	11/27/2007	16:27	X71127A, ge
	Selenium	-0.22	+/-5.00	j	0.21	5.00	MS	11/27/2007	16:27	X71127A, ge
	Silver	0.00	+/-1.00	U	0.08	1.00	MS	11/27/2007	16:27	X71127A, ge
	Thallium	0.01	+/-1.00	U	0.02	1.00	MS	11/27/2007	16:27	X71127A, ge
	Zinc	-0.02	+/-5.00	U	0.60	5.00	MS	11/27/2007	16:27	X71127A, ge
			1							12.1.2/1.2/
0000			1/							
CCB3	Antimony	0.19	CVB3 _+/-2.00	¥	0.05	2.00		11/05/000		
	Arsenic	-0.11	+/-1.00	J	0.05	2.00	MS	11/27/2007	17:21	X71127A, ge
	Beryllium	0.01	+/-1.00	u u	0.14 0.07	1.00	MS	11/27/2007	17:21	X71127A, ge
	Cadmium	-0.07	+/-1.00	U ·		1.00	MS	11/27/2007	17:21	X71127A, ge
	Chromium	0.02	+/-2.00		0.11	1.00	MS	11/27/2007	17:21	X71127A, ge
	Copper	0.02	+/-2.00	U U	0.11 0.14	2.00	MS	11/27/2007	17:21	X71127A, ge
	Lead	-0.14	+/-1.00	J	0.14	2.00 1.00	MS MS	11/27/2007	17:21	X71127A, ge
	Nickel	-0.14	+/-1.00	, ປ	0.02	•		11/27/2007	17:21	X71127A, ge
	Selenium	0.01	+/-5.00	υ	0.07	1.00	MS	11/27/2007	17:21	X71127A, ge
	Silver	0.00	+/-1.00	บ	0.21	5.00	MS	11/27/2007	17:21	X71127A, ge
	Thallium	0.00	+/-1.00	U	0.08	1.00	MS	11/27/2007	17:21	X71127A, ge
	Zinc	-0.01	+/-1.00	U		1.00	MS	11/27/2007	17:21	X71127A, ge
	DIR C	10.0	T/-3.00	U	0.60	5.00	MS	11/27/2007	17:21	X71127A, ger

Client: TETRA TECH

SDG No.: C7K020216

Instrument:

	•									
Sample ID	Analyte	Result ug/L	Acceptance Limit	Conc Qual	MDL	CRQL	M	Analysis Date	Analysis Time	Run
			\ /					· · · · · · · · · · · · · · · · · · ·	_	
CCB4			CCB4							
	Antimony	0.17	X+/-2.00	J	0.05	2.00	MS	11/27/2007	18:17	X71127A, ger
	Arsenic	-0.07	\\ /-1.00	U	0.14	1.00	MS	11/27/2007	18:17	X71127A, ge
	Beryllium	0.00	+/-1.00	U	0.07	1.00	MS	11/27/2007	18:17	X71127A, ge
	Cadmium	-0.01	+/-1.00	U	0.11	1.00	MS	11/27/2007	18:17	X71127A, ge
	Chromium	0.02	+/-2.00	U	0.11	2.00	M\$	11/27/2007	18:17	X71127A, ger
C	Copper	-0.01	+/-2.00	U	0.14	2.00	MS	11/27/2007	18:17	X71127A, ge
· L	ead	-0.14	+/-1.00	J	0.02	1.00	MS	11/27/2007	18:17	X71127A, ge
N	Nickel	0.01	+/-1.00	U	0.07	1.00	MS	11/27/2007	18:17	X71127A, ge
. S	elenium	-0.11	+/-5.00	U	0.21	5.00	MS	11/27/2007	18:17	X71127A, ge
S	ilver	-0.01	+/-1.00	U	0.08	1.00	MS	11/27/2007	18:17	
T	hallium	0.01	+/-1.00	U	0.02	1.00	MS	11/27/2007	18:17	X71127A, ge
Z	line	-0.02	+/-5.00	U	0.60	5.00	MS	11/27/2007	18:17	X71127A, get X71127A, get
			. /						,	A/112/A, gei
CCB5			1_/_							
	ntimony	0.19	CCB5 +/-2.00	r	0.05					
	rsenic	-0.02	+/-1.00	J	0.05	2.00	MS	11/27/2007	19:13	X71127A, gen
	eryllium	-0.02	+/-1.00	U	0.14	1.00	M\$	11/27/2007	19:13	X71127A, gen
	admium			U	0.07	1.00	MS	11/27/2007	19:13	X71127A, ger
	hromium	0.05	+/-1.00	U	0.11	1.00	MS	11/27/2007	19:13	X71127A, ger
		0.05	+/-2.00	U	0.11	2.00	MS	11/27/2007	19:13	X71127A, ger
	opper	0.02	+/-2.00	U	0.14	2.00	MS	11/27/2007	19:13	X71127A, ger
	ead	-0.12	+/-1.00	J	0.02	1.00	MS	11/27/2007	19:13	X71127A, ger
	ickel	0.01	+/-1.00	U	0.07	1.00	MS	11/27/2007	19:13	X71127A, gen
	elenium	0.01	+/-5.00	U	0.21	5.00	MS	11/27/2007	19:13	X71127A, gen
	lver	0.00	+/-1.00	U	0.08	1.00	MS	11/27/2007	19:13	X71127A, gen
	nallium	0.01	+/-1.00	U	0.02	1.00	MS	11/27/2007	19:13	X71127A, gen
Zi	nc	0.02	+/-5.00	U	0.60	5.00	MS	11/27/2007	19:13	X71127A, gen

- 3a INITIAL AND CONTINUING CALIBRATION BLANK SUMMARY

Client: TETRA TECH

SDG No.: C7K020216

Instrument:

•			* .			•				
Sample ID	Analyte	Result ug/L	Acceptance Limit	Conc Qual	MDL	CRQL	M	Analysis Date	Analysis Time	Run
CCB6	Antimony	0.28	CCB6 +/-2.00		0.05			444577		
	Anniony	-0.09		J	0.05	2.00	MS	11/27/2007	20:16	X71127A, gen
			+/-1.00	. บ	0.14	1.00	MS	11/27/2007	20:16	X71127A, gen
•	Beryllium	0.01	+/-1.00	U	0.07	1.00	MS	11/27/2007	20:16	X71127A, gen
	Cadmium	0.02	+/-1.00	U.	0.11	1.00	MS	11/27/2007	20:16	X71127A, gen
	Chromium	0.05	+/-2.00	U	0.11	2.00	MS	11/27/2007	20:16	X71127A, gen
	Copper	0.00	+/-2.00	U	0.14	2.00	MS	11/27/2007	20:16	X71127A, gen
	Lead	-0.09	+/-1.00	J	0.02	1.00	MŞ	11/27/2007	20:16	X71127A, gen
	Nickel	-0.02	+/-1.00	U	0.07	1.00	MS	11/27/2007	20:16	X71127A, gen
· ·	Selenium	-0.29	+/-5.00	J	0.21	5.00	MS	11/27/2007	20:16	X71127A, gen
	Silver	0.01	+/-1.00	U	0.08	1.00	MS	11/27/2007	20:16	X71127A, gen
	Thallium	(0.05)	+/-1.00	J	0.02	1.00	MS	11/27/2007	20:16	X71127A, gen
	Zinc	-0.01	+/-5.00	U	0.60	5.00	MS	11/27/2007	20:16	X71127A, gen
ССВ7			CCB7							
	Antimony	0.20	+/-2.00	J	0.05	2.00	MS	11/27/2007	21:11	X71127A, gen
	Arsenic	0.17	+/-1.00	J	0.14	1.00	MS	11/27/2007	21:11	X71127A, gen
	Beryllium	-0.01	+/-1.00	U	0.07	1.00	MS	11/27/2007	21:11	X71127A, gen
	Cadmium	-0.01	+/-1.00	. U	0.11	1.00	MS	11/27/2007	21:11	X71127A, gen
	Chromium	0.33	+/-2.00	J	0.11	2.00	MS	11/27/2007	21:11	X71127A, gen
	Copper	0.10	+/-2.00	U	0.14	2.00	MS	11/27/2007	21:11	X71127A, gen
	Lead	-0.09	+/-1.00	J	0.02	1.00	M\$	11/27/2007	21:11	X71127A, gen
	Nickel	0.05	+/-1.00	Ŭ	0.07	1.00	MS	11/27/2007	21:11	X71127A, gen
	Selenium	0.39	+/-5.00	J	0.21	5.00	MS	11/27/2007	21:11	X71127A, gen
	Silver	0.01	+/-1.00	U	0.08	1.00	MS	11/27/2007	21:11	X71127A, gen
	Thallium	0.01	+/-1.00	Ū	0.02	1.00	MS	11/27/2007	21:11	X71127A, gen
	Zinc	0.04	+/-5.00	บ	0.60	5.00	MS	11/27/2007	21:11	X71127A, gen X71127A, gen
				•	0.00	2.00	-120	- 1/2//2001	41.11	ATTIZIAL, Bell

Client: TETRA TECH

SDG No.: C7K020216

Instrument:

Sample ID CCB8	Analyte	ug/L	Acceptance Limit	Conc Quai	MDL	CRQL	M	Analysis Date	Analysis Time	Run
CCR8			ССВ8						·	
0000	Antimony	0.17	+/-2.00	J	0.05	2.00				
	Arsenic	-0.02	+/-1.00	U	0.03	2.00		11/27/2007	22:10	X71127A, ger
•	Beryllium	-0.01	+/-1.00	บ	0.14	1.00		11/27/2007	22:10	X71127A, gei
	Cadmium	-0.03	+/-1.00	บ	0.07	1.00	MS	11/27/2007	22:10	X71127A, ger
	Chromium	0.14	+/-2.00	j		1.00	MS	11/27/2007	22:10	X71127A, ger
	Copper	0.02	+/-2.00		0.11	2.00	MS	11/27/2007	22:10	X71127A, gen
	Lead	-0.06	+/-2.00	U	0.14	2.00	MS	11/27/2007	22:10	X71127A, gen
	Nickel	0.01		J	0.02	1.00	MS	11/27/2007	22:10	X71127A, gen
	Selenium	0.35	+/-1.00	U	0.07	1.00	MS	11/27/2007	22:10	X71127A, gen
	Silver		+/-5.00	J	0.21	5.00	MS	11/27/2007	22:10	X71127A, gen
	Thallium	0.01	+/-1.00	U	0.08	1.00	MS	11/27/2007	22:10	X71127A, gen
•	Zinc	0.01	+/-1.00	U	0.02	1.00	MS	11/27/2007	22:10	X71127A, gen
	Zinc .	0.03	+/-5.00	U	0.60	5.00	MS	11/27/2007	22:10	X71127A, gen
ССВ9			ССВ9							
	Antimony	0.18	+/-2.00	J	0.05	2.00	MS	11/27/2007	23:12	V711074
	Arsenic	0.17	+/-1.00	J.	0.14	1.00	MS	11/27/2007	23:12	X71127A, gen
1	Beryllium	0.00	+/-1.00	U	0.07	1.00	MS	11/27/2007	23:12	X71127A, gen
(Cadmium	-0.03	+/-1.00	U	0.11	1.00	MS	11/27/2007	23:12	X71127A, gen
(Chromium	0.34	+/-2.00	J	0.11	2.00	MS	11/27/2007		X71127A, gen
(Copper	0.07	+/-2.00	υ	0.14	2.00	MS	11/27/2007	23:12	X71127A, gen
· 1	Lead	0.00	+/-1:00	Ū	0.02	1.00	MS	11/27/2007	23:12	X71127A, gen
1	Vickel	0.02	+/-1.00	U	0.07	1.00	MS		23:12	X71127A, gen
5	Selenium	0.47	+/-5.00	J	0.21		MS	11/27/2007	23:12	X71127A, gen
. 5	Silver	0.01	+/-1.00	U	0.08		MS	11/27/2007	23:12	X71127A, gen
7	Thallium	0.04	+/-1.00	J	0.02			11/27/2007	23:12	X71127A, gen
7	Zine .	0.05	+/-5.00	U	0.60		MS MS	11/27/2007 11/27/2007	23:12 23:12	X71127A, gen X71127A, gen

Client: TETRA TECH

SDG No.: C7K020216

Instrument:

Sample ID	Analyte	Result ug/L	Acceptance Limit	Conc Qual	MDL	CRQL	М	Analysis Date	Analysis Time	Run
CCB10		•	CCB10							
A	Antimony	0.20	+/-2.00	J	0.05	2.00	MS	11/28/2007	00:03	X71127A, gen
· A	Arsenic	(0.26)	+/-1.00	J	0.14	1.00	MS	11/28/2007	00:03	X71127A, gen
. 18	Beryllium	0.00	+/-1.00	U	0.07	1.00	MS	11/28/2007	00:03	X71127A, gen
i c	Cadmium	-0. 01	+/-1.00	U	0.11	1.00	MS	11/28/2007	00:03	X71127A, gen
C	Chromium	2.36	+/-2.00	J	0.11	2.00	MS	11/28/2007	00:03	X71127A, gen
C	Copper	0.16	+/-2.00	J.	0.14	2.00	MS	11/28/2007	00:03	X71127A, gen
L	ead	(0.04)	+/-1.00	·J	0.02	1.00	MS	11/28/2007	00:03	X71127A, gen
· N	lickel	0.03	+/-1.00	υ	0.07	1.00	MS	11/28/2007	00:03	X71127A, gen
\$	elenium	1.08	+/-5.00	J.	0.21	5.00	MS	11/28/2007	00:03	X71127A, gen
S	ilver	0.01	+/-1.00	U	0.08	1.00	MS	11/28/2007	00:03	X71127A, gen
Т	hallium	0.03	+/-1.00	J	0.02	1.00	M\$	11/28/2007	00:03	X71127A, gen
Z	inc	0.38	+/-5.00	υ	0.60	5.00	MS	11/28/2007	00:03	X71127A, gen

Initial Calib	ration B	lank R	esults									•
Instrument:	CV	AA			Units:		ug/L					
Chart Numb	er: <u>G71</u>	116B.P	RN				•					
Standard Sou	ırce:						Standar	rd ID:				
			ICB1 11/16/20 1:41 P	007								
Element	WL/ Mass	Report Limit	Found	O	Found	Q	Found	0	Found	O	Found	o
Mercury	253.7	0.2	0.1	U								

Initial Calib	ration B	lank R	esults		<u>.</u>							
Instrument:	CV.	AA	-				Units:		ug/L			
Chart Number	er: <u>G71</u>	114B.P	<u>RN</u>									
Standard Sou	irce:						Standar	d ID:				
	WL/	Report										
Element	Mass	Limit	Found	0	Found	Q	Found	Q	Found	O	Found	0
Mercury	253.7	0.2	0.1	U								

Continuing	g Calibra	ation B	lank Res	ult								
Instrument:	C	VAA_				-	Units:		ug/L			
Chart Numl	ber: <u>G</u>	71116B.	PRN									
Standard Sc	ource: _	<u> </u>					Standa	rd II):		··-	·····
			CCB1 11/16/20 1:46 PM	07	CCB 11/16/2 2:07 P	007	CCB3 11/16/2007 2:27 PM		CCB 11/16/2 2:47 P	007	CCB: 11/16/20 3:07 Pi	007
Element	WL/ Report		0	Found (Found O		Found	0			
Mercury	253.7	0.2	0.1	U	0.1	U	0.1	U	0.1	U	0.1	U

Continuing	g Calibra	ation B	lank Res	ult								
Instrument	:C	VAA					Units:		ug/L		7014	
Chart Num	ber: <u>G</u>	71116B.	PRN									
Standard Sc	ource: _				·		Stand	ard II):			
			CCB6 11/16/20 3:27 PM	07	CCB 11/16/2 3:32 P	007		.				
Element	WL/ Mass	Report Limit	Found	0	Found	0	Found	0	Found	0	Found	0
Mercury	253.7	0.2	0.1	U	0.1	U		-				

Continuin	g Calibr	ation E	lank Res	ult								
Instrument	: <u>C</u>	VAA	,				Units:		ug/L			
Chart Num	ber: <u>G</u>	71114B.	PRN									
Standard S	ource: _	·	***************************************				Standa	rd II	D:			
			CCB1 11/14/20 6:43 PM	07	CCB2 11/14/200 7:04 PM		CCB3 11/14/20 7:24 PM	07	CCB ² 11/14/20 7:44 PI	907	CCB5 11/14/20 8:04 PM	07
Element	WL/ Mass	Report Limit	Found	0	Found	Q	Found	Q	Found	0	Found	<u>ν.</u>
Mercury	253.7	0.2	0.1	U	0.1	Ų	0.1	U	0.1	U	0.1	υ

Continuing	g Calibra	ation B	lank Res	ult								
Instrument	: <u>C</u>	VAA					Units:		ug/L			
Chart Num	ber: <u>G</u>	71114B.	PRN									
Standard Sc	ource: _					_	Standa	ard II):			
			CCB6 11/14/20 8:21 PM	07								
Element	WL/ Mass	Report Limit	Found	0	Found	0	Found	o	Found	0	Found	0
Mercury	253.7	0.2	0.1	U								

TOTAL Metals

Client	Lot	#:	C7K020216
--------	-----	----	-----------

	•	REPORTING		PREPARATION- WORK
PARAMETER	RESULT	LIMIT UNIT	CS METHOD	ANALYSIS DATE ORDER #
WD Tob C1-	H : CD777 4 0 0 0			
we ror-sample		0-317 Prep Batch		
Antimony	ND	2.0 ug/I	SW846 6020	11/14-11/27/07 KA8JK1A
		Dilution Factor: 1		
	·	Analysis Time: 19	:39 Analyst ID: 400	149 Instrument ID.:: ICP
Arsenic	ND	1.0 ug/I	SW846 6020	11/14-11/27/07 KA8JK1A
		Dilution Factor: 1	2,010 0020	11/14-11/2//0/ RASURIAL
•		Analysis Time: 19	39 Analyst ID: 400	149 Instrument ID: ICP
			•	
Beryllium	ND	1.0 ug/L	SW846 6020	11/14-11/27/07 KA8JK1AH
		Dilution Factor: 1		
		Analysis Time: 19	39 Analyst ID: 400	149 Instrument ID: ICP
Cadmium	ND	1.0	G170 4 5 5 5 5 5	
CHAMILLIM	MD	1.0 ug/I Dilution Factor: 1	SW846 6020	11/14-11/27/07 KA8JK1A0
		Analysis Time: 19:	39 Analyst ID: 400	
		· · · · · · · · · · · · · · · · · · ·	Analyst ID: 400	149 Instrument ID: ICP
Chromium	(0.16 B /	2.0 ug/L	SW846 6020	11/14-11/27/07 KASJKIAJ
		Dilution Factor: 1		/
		Analysis Time: 19:	39 Analyst ID: 400	149 Instrument ID: ICP
		**		
Copper	ND	2.0 ug/L	SW846 6020	11/14-11/27/07 KA8JK1AK
		Dilution Factor: 1		
		Analysis Time: 19:	39 Analyst ID: 400:	149 Instrument ID: ICP
Cead	ND	1.0 ug/L	SW846 6020	11/14-11/27/07 KA8JK1AM
		Dilution Factor: 1	50040 0020	11/14-11/2//0/ KASJKIAN
		Analysis Time: 19:	39 Analyst ID: 400:	149 Instrument ID: ICP
		•		
Vickel	ND	1.0 ug/L	SW846 6020	11/14-11/27/07 KA8JK1AL
	•	Dilution Factor: 1		
	•	Analysis Time: 19:	39 Analyst ID: 4001	149 Instrument ID: ICP
Selenium	ND	5.0 ug/L	CV10.4.C. C00.0	
, 0 = 0.11 till	ND	5.0 ug/L Dilution Factor: 1	SW846 6020	11/14-11/27/07 KA8JK1AN
		Analysis Time: 19:	39 Applicat TD 4000	
			39 Analyst ID: 4001	149 Instrument ID: ICP
Silver	ND	1.0 ug/L	SW846 6020	11/14-11/27/07 KA8JK1AC
		Dilution Factor: 1		al, al la, a, y, o, idioonine
		Analysis Time: 19:	39 Analyst ID: 4001	49 Instrument ID: ICP
hallium	ND	1.0 ug/L	SW846 6020	11/14-11/27/07 KA8JK1AP
		Dilution Factor: 1		
		Analysis Time: 19:	39 Analyst ID: 4001	49 Instrument ID: ICP

TOTAL Metals

ug/L

Client Lot #...: C7K020216

Matrix..... WATER

REPORTING

5.0

UNITS METHOD

PREPARATION-

ANALYSIS DATE

ORDER # 11/14-11/27/07 KASJK1AT

Dilution Factor: 1

Analysis Time..: 19:39

Analyst ID....: 400149

Instrument ID..: ICP

MB Lot-Sample #:

Mercury

PARAMETER

Zinc

C7K140000-436 Prep Batch #...: 7318436 0.059 B

RESULT

1.6 B

0.20 ug/L

SW846 7470A

SW846 6020

11/14/07

KA9AJ1AA

Dilution Factor: 1

Analysis Time..: 19:32

Analyst ID....: 400491

Instrument ID..: HGH

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

B Estimated result. Result is less than RL.

DISSOLVED Metals

Client Lot # ...: C7K020216

		PEROPETING		THE WATER	
PARAMETER	RESULT	REPORTING LIMIT UNITS	METHOD	PREPARATION- WORK ANALYSIS DATE ORDER #	ı
				ANALISIS DATE ORDER	<u>-</u>
MB Lot-Sample	#: C7K140000	-307 Prep Batch #	: 7318307		
Antimony	ND	2.0 ug/L	SW846 6020	11/14-11/27/07 KA8H112	łΚ
	·	Dilution Factor: 1			
		Analysis Time: 21:58	Analyst ID: 400149	Instrument ID: ICP	
Arsenic	ND	1.0 ug/L	SW846 6020	11/14-11/27/07 KA8H11#	łC
	•	Dilution Factor: 1			
•		Analysis Time: 21:58	Analyst ID: 400149	Instrument ID: ICP	
Beryllium	ND	1.0 ug/L	SW846 6020	11/14-11/27/07 KA8H11A	4D
		Dilution Factor: 1			
		Analysis Time: 21:58	Analyst ID: 400149	Instrument ID: ICP	
Cadmium	ND	1.0 ug/L	SW846 6020	11/14-11/27/07 KA8H11A	Œ
•		Dilution Factor: 1			
. ·		Analysis Time: 21:58	Analyst ID: 400149	Instrument ID: ICP	
Chromium	(0.40 B)	2.0 ug/L	SW846 6020	11/14-11/27/07 KA8H11A	F
		Dilution Factor: 1		,	_
, ·		Analysis Time: 21:58	Analyst ID: 400149	Instrument ID: ICP	
Copper	ND	2.0 ug/L	SW846 6020	11/14-11/27/07 KA8H11A	'G
		Dilution Factor: 1			
		Analysis Time: 21:58	Analyst ID: 400149	Instrument ID: ICP	
Lead	ND	1.0 ug/L	SW846 6020	11/14-11/27/07 KA8H11A	ιT
		Dilution Factor: 1		,	_
•		Analysis Time: 21:58	Analyst ID: 400149	Instrument ID: ICP	
Nickel	ND	1.0 ug/L	SW846 6020	11/14-11/27/07 KA8H11A	บ
		Dilution Factor: 1		11/11 11/2//07 IGNITIA	11
		Analysis Time: 21:58	Analyst ID: 400149	Instrument ID: ICP	•
Selenium	ND	5.0 ug/L	SW846 6020	11/14-11/27/07 KA8H11A	т.
		Dilution Factor: 1		11/14 11/2//07 MONITA	ш
		Analysis Time: 21:58	Analyst ID: 400149	Instrument ID: ICP	
Silver	ND	1.0 ug/L	SW846 6020	11/14-11/27/07 KA8H11A	7.
		Dilution Factor: 1	58040 0020	11/14-11/2//0/ KASHITA	A
		Analysis Time: 21:58	Analyst ID: 400149	Instrument ID.:: ICP	
Thallium	ND	1.0 227	CMOAC COOO	33/34 33/68/a=	
	414-	1.0 ug/L Dilution Factor: 1	SW846 6020	11/14-11/27/07 KA8H11A	M
		Analysis Time: 21:58	Analyst TD 400140	Inglamment In Ion	
			Analyst ID: 400149	Instrument ID: ICP	•

(Continued on next page)

DISSOLVED Metals

Client Lot #...: C7K020216

Matrix....: WATER

REPORTING PREPARATION-WORK PARAMETER LIMIT UNITS METHOD ANALYSIS DATE ORDER # Zinc. ND 5.0 ug/L SW846 6020 11/14-11/27/07 KASH11AN Dilution Factor: 1 Analysis Time..: 21:58 Analyst ID....: 400149 Instrument ID..: ICP

MB Lot-Sample #: C7K160000-210 Prep Batch #...: 7320210

Mercury

ND

0.20 ug/L

SW846 7470A

11/16/07

KCEDM1AA

Dilution Factor: 1

Analysis Time..: 13:48

Analyst ID....: 400491

Instrument ID. .: HGH

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

B Estimated result. Result is less than RL.

Test America Pittsburgh - 4 - INTERFERENCE CHECK SAMPLE

Client: TETRA TECH

SDG No.: C7K020216

ICS Source:

Inorganic Ventures

Instrument ID:

Sample ID Analyte	WL/Mass	Result ug/L	Qual	True Value ug/L	% Recovery	Acceptance Window	Analysis Date	Analysis Time	Run Number
ICSA METO	COO1 O7								
Antimony	121Sb	0				-6.0 - 6.0	11/27/2007	15:15	V71127A ~
Arsenic	75As	0				-3.0 - 3.0	11/27/2007		X71127A, g
Beryllium	9Be	0						15:15	X71127A, g
Cadmium	111Cd	0				-3.0 - 3.0	11/27/2007	15:15	X71127A, g
Chromium	52Cr					-3.0 - 3.0	11/27/2007	15:15	X71127A, g
		0				-6.0 - 6.0	11/27/2007	15:15	X71127A, g
Copper	65Cu	1				-6.0 - 6.0	11/27/2007	15:15	X71127A, g
Lead	208Рь	0		•		-3.0 - 3.0	11/27/2007	15:15	X71127A, g
Nickel	60Ni	0				-3.0 - 3.0	11/27/2007	15:15	X71127A, g
Selenium	82Se	0				-15.0 - 15.0	11/27/2007	15:15	X71127A, g
Silver	107Ag	0				-3.0 - 3.0	11/27/2007	15:15	X71127A, g
Thallium	205Tl	0				-3.0 - 3.0	11/27/2007	15:15	X71127A, g
Zinc	66 Z n	5				-15.0 - 15.0	11/27/2007	15:1 5	X71127A, g
ICSAB ME	Г6092-07	•	*						
Antimony	121Sb	21.35		20	106.8	80 - 120%	11/27/2007	15:20	X71127A, g
Arsenic	75As	21.15		20	105.8	80 - 120%	11/27/2007	15:20	X71127A, g
Beryllium	9Be	20,84		20	104.2	80 - 120%	11/27/2007	15:20	X71127A, g
Cadmium	111Cd	22.23		20	111.2	80 - 120%	11/27/2007	15:20	X71127A, g
Chromium	52Cr	21.72		20	108.6	80 - 120%	11/27/2007	15:20	X71127A, g
Copper	65Cu	21.29		20	106.4	80 - 120%	11/27/2007	15:20	X71127A, g
Lead	208Pb	21.94		20	109.7	80 - 120%	11/27/2007	15:20	X71127A, g
Nickel	60Ni	21.58		20	107.9	80 - 120%	11/27/2007	15:20	X71127A, g
Selenium	82Se	50.41		50	100.8	80 - 120%	11/27/2007	15:20	X71127A, g
Silver	107Ag	22.62		20	113.1	80 - 120%	11/27/2007	15:20	X71127A, g
Thallium	205T1	21.87		20	109.4	80 - 120%	11/27/2007	15:20	X71127A, g X71127A, g
Zinc	66Zn	27.08		25	108.3	80 - 120%	11/27/2007	15:20	X71127A, g X71127A, g

TOTAL Metals

Client Lot	#: C71	K020216				Matri	x:	WATER
PARAMETER	SPIKE AMOUNT	MEASURE AMOUNT	· · · ·	ERCNT	METHOD		PARATION- LYSIS DATE	WORK ORDER #
LCS Lot-Sam	nle#- C7)	(140000 <u>-</u> 3	17 Prep Batch	. #	. 7210217			
Silver	50.0	49.2	. ug/L 9	1 1	SW846 6020 Analysis Time:	11/: 19:43	14-11/27/07 Analyst ID.	KA8JK1AV
.*			institutent ib;	ICPMS				
Arsenic	40.0		ug/L 8 Dilution Factor: 1 Instrument ID.::	_	SW846 6020 Analysis Time:	11/: 19:43	14-11/27/07 Analyst ID.	
Beryllium	50.0		ug/L 8 Dilution Factor: 1	1	SW846 6020 Analysis Time:		14-11/27/07 Analyst ID.	
Cadmium	50.0		ug/L 9 Dilution Factor: 1 Instrument ID: 1	1	SW846 6020 Analysis Time:		4-11/27/07 Analyst ID	
Chromium	200	-	ug/L 9	١.	SW846 6020 Analysis Time:	•	4-11/27/07 Analyst ID	
Copper	250		ug/L 10 Dilution Factor: 1 Instrument ID: I	L	SW846 6020 Analysis Time: 1		4-11/27/07 Analyst ID	
Nickel	500		ug/L 10	L	SW846 6020 Analysis Time: 1		4-11/27/07 Analyst ID	
Lead	20.0		ug/L 99 ilution Factor: 1 nstrument ID.:: I		SW846 6020 Analysis Time: 1		4-11/27/07 Analyst ID	
Selenium	10.0		ug/L 83 ilution Factor: 1 nstrument ID: I	•	SW846 6020 Analysis Time: 1		4-11/27/07 :	
Thallium	50.0		ug/L 97 ilution Factor: 1 nstrument ID: I		SW846 6020 Analysis Time: 1		4-11/27/07 Analyst ID	

(Continued on next page)

TOTAL Metals

Client	Lot	#	. :	C7K020	216
--------	-----	---	-----	--------	-----

Matrix..... WATER

PARAMETER	SPIKE AMOUNT	MEASURE AMOUNT	-	PERCNT RECVRY	METHOD	PREPARATION- WORK ANALYSIS DATE ORDER #
Antimony	500	432	ug/L		SW846 6020	11/14-11/27/07 KA8JK1A9
\$			Dilution Factor:	: 1	Analysis Time: 19	:43 Analyst ID: 400149
			Instrument ID	: ICPMS		
Zinc	500	423	ug/L	85	SW846 6020	11/14-11/27/07 KA8JK1CC
•			Dilution Factor:	: 1	Analysis Time: 19	
		٠	Instrument ID:	: ICPMS		
LCS Lot-Sam	ple#: C7K	140000-4	36 Prep Bato	:h #:	7318436	
Mercury	2.50	2.46	ug/L	98	SW846 7470A	11/14/07 KA9AJ1AC
			Dilution Factor:	1	Analysis Time: 19:	:34 Analyst ID: 400491
			Instrument ID:	HGHYDRA		

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

DISSOLVED Metals

Client Lot	#: C7K	020216				Matrix		WATER
PARAMETER	SPIKE AMOUNT	MEASURED AMOUNT	UNITS	PERCNT RECVRY	METHOD		ARATION- YSIS DATE	WORK ORDER #
LCS Lot-Sam	ple#: C7K	140000-30	7 Prep Bate	ch #	: 7318307			
Silver	50.0	50.9	ug/L pilution Factor enstrument ID	102	SW846 6020 Analysis Time:		4-11/27/07 Analyst ID.	
Arsenic	40.0	D	ug/L ilution Factor instrument ID		SW846 6020 Analysis Time:			
Beryllium	50.0	ם	ug/L ilution Factor nstrument ID	-	SW846 6020 Analysis Time:			
Cadmium	50.0	D	ug/L ilution Factor nstrument ID		SW846 6020 Analysis Time:	, _	4-11/27/07 Analyst ID.	
Chromium	200		ug/L ilution Factor nstrument ID		SW846 6020 Analysis Time:		4-11/27/07 Analyst ID.	
Copper	250		ug/L ilution Factor nstrument ID		SW846 6020 Analysis Time:		4-11/27/07 Analyst ID.	
Nickel	500		ug/L ilution Factor: nstrument ID		SW846 6020 Analysis Time		4-11/27/07 Analyst ID.	
Lead	20.0	D	ug/L ilution Factor: nstrument ID:		SW846 6020 Analysis Time:	,	4-11/27/07 Analyst ID.	
Antimony	500		ug/L ilution Factor: nstrument ID:		SW846 6020 Analysis Time:		4-11/27/07 Analyst ID.	
Selenium	10.0		ug/L ilution Factor: nstrument ID:		SW846 6020 Analysis Time:		4-11/27/07 Analyst ID.	

(Continued on next page)

DISSOLVED Metals

Client	Lot	#	:	C7K0202	16
--------	-----	---	---	---------	----

Client Lot #	: C7K	020216			•	Matrix:	WATER
PARAMETER Thallium	SPIKE AMOUNT 50.0		UNITS ug/L	95 : 1	METHOD SW846 6020	PREPARATION- ANALYSIS DATE 11/14-11/27/07 22:14 Analyst ID.	KA8H11A2
Zinc	500	449	ug/L Dilution Factor: Instrument ID:	1	SW846 6020 Analysis Time: 2	11/14-11/27/07 22:14 Analyst ID	KA8H11A3
LCS Lot-Samp	le#: C7K 2.50	2.61	- ·	104	SW846 7470A Analysis Time: 1	11/16/07 3:50 Analyst ID	KCEDM1AC

Calculations are performed before rounding to avoid round-off errors in calculated results.

TOTAL Metals

Client L Date Sam	ot #: pled:	C7K0202	2 16 07	Date Rece	eived:	11/02/	Mata 07	rix WAT	ER
PARAMETE		SPIKE AMT	MEASRD AMOUNT	UNITS	PERC RECV	NT RY RPD	METHOD	PREPARATION- ANALYSIS DATE	WORK ORDER #
MS Lot-S Antimony		C7K0201	L33-001	Prep Bato	:h #:	731831	7		
	0.15 0.15	500 500		ug/L ug/L tion Factor:	88 89	0.76	SW846 6020 SW846 6020	11/14-11/27/07 11/14-11/27/07	
				ysis Time: un #:		Instrum	ent ID: ICPMS	Analyst ID:	400149
Arsenic									
	ND ND	40.0 40.0	33.4 33.2	ug/L ug/L	84 83	0.54	SW846 6020 SW846 6020	11/14-11/27/07 11/14-11/27/07	
			Analy	cion Factor: vsis Time: un #:	20:00		ent ID: ICPMS	Analyst ID:	
Beryllium	1		,	·					
	ND	50.0	42.7	ug/L	85		SW846 6020	11/14-11/27/07	773 D.C.113 MT
*. *	ND	50.0		ug/L ion Factor: sis Time:	85 1		SW846 6020	11/14-11/27/07	KAD6H1CM
				n #		Institut	ent ID: ICPMS	Analyst ID:	400149
Cadmium	•								
	ND	50.0	45.6	ug/L	91		SW846 6020	11/14-11/27/07	Paneus on
	ND	50.0		ug/L ion Factor:			SW846 6020	11/14-11/27/07	KAD6H1CP
				sis Time:		Instrume	ent ID: ICPMS	Analyst ID:	400149
Chromium									
		200	203	ug/L	101		SW846 6020	11/14-11/27/07	КАДЕНЗСТ
	1.0	200		ug/L ion Factor:		2.6	SW846 6020	11/14-11/27/07	
				sis Time:		Instrume	nt ID: ICPMS	Analyst ID:	400149
Copper									
		250		ug/L	97	1	SW846 6020	11/14-11/27/07	KAD6H1CV
	0.52	250	Diluti	ug/L on Factor:		1.5	SW846 6020	11/14-11/27/07	
		·		is Time:		Instrume	nt ID: ICPMS	Analyst ID:	400149

(Continued on next page)

TOTAL Metals

Client Lot #...: C7K020216

Date Sampled...: 11/01/07

Date Received..: 11/02/07

Matrix....: WATER

$\{e_1, e_2, e_3, \dots, e_n\}$	SAMPLE		MEASRD		PERCN'	r		PREPARATION-	WORK
PARAMETE	R AMOUNT	TMA	AMOUNT	UNITS	RECVE	Y RPD	METHOD	ANALYSIS DATE	ORDER #
Lead	· -								
		20.0	20.3	ug/L	101		SW846 6020	11/14-11/27/07	KAD6H1C1
	0.12	20.0	20.2	ug/L	100	0.44	SW846 6020	11/14-11/27/07	KAD6H1C2
			Dilut	ion Factor: 1					
		-	-	sis Time: 20		Instrum	ent ID: ICPMS	Analyst ID:	400149
			MS Ru	n # 73	318166				
Nickel									
	3.0	500	498	ug/L	99		CMO4C COOO	12/24 52/05/05	
	3.0	500	492	ug/L	98	1 1	SW846 6020 SW846 6020	11/14-11/27/07	
				ion Factor: 1			SW040 6020	11/14-11/27/07	KAD6H1C0
				sis Time: 20		Inetrom	ent ID: ICPMS	71	
•				n # 73		1115 C L WIII	ent ID: ICFMS	Analyst ID:	400149
*	*						•		
Selenium									
	ND	10.0	8.16	ug/L	82		SW846 6020	11/14-11/27/07	KAD6H1C3
•	ND	10.0	7.50	ug/L	75	8.5	SW846 6020	11/14-11/27/07	
			Dilut	ion Factor: 1					
			Analy	sis Time: 20	:00	Instrume	ent ID: ICPMS	Analyst ID:	400149
			MS Ru	n # 73	18166				
Silver									
	ND	50.0	48.7	ug/L	97		CMOAC COOO	22/24 22/24	
•	ND ·	50.0	49.6	ug/L	99		SW846 6020 SW846 6020	11/14-11/27/07	
				ion Factor: 1		1.7	24040 0020	11/14-11/27/07	KAD6H1CF
				sis Time: 20	-00	Tostrons	ent ID: ICPMS	Amalanah TD	
	•			a # 73:			sic id icems	Analyst ID:	400149
Thallium									
		50.0	49.8	ug/L	99		SW846 6020	11/14-11/27/07	KAD6H1C5
	0.24	50.0	49.6	ug/L	99	0.40	SW846 6020	11/14-11/27/07	
			Dilut	ion Factor: 1				, ,	
	•		Analys	sis Time: 20	:00	Instrume	ent ID: ICPMS	Analyst ID:	400149
			MS Rur	1 # 73:	18166				
m:								•	
Zinc	10 6	±00	426	/					
		500 500		ug/L	83		SW846 6020	11/14-11/27/07	KAD6H1DC
	17.0	500		ug/L	82	1.2	SW846 6020	11/14-11/27/07	KAD6H1DD
				on Factor: 1					
			_	sis Time: 20:		Instrume	ent ID: ICPMS	Analyst ID:	400149
			, PAS RUI	1 # 73]	19100				

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

TOTAL Metals

SAMPLE SPIKE MEASRD PERCNT PREPARATION- WORK

PARAMETER AMOUNT AMT AMOUNT UNITS RECVRY RPD METHOD ANALYSIS DATE ORDER #

MS Lot-Sample #: C7K020133-003 Prep Batch #...: 7318436

Mercury

ND 1.00 0.588 N ug/L 59 SW846 7470A 11/14/07 KAD7L1A9 ND 1.00 0.571 N ug/L 57 2.9 SW846 7470A 11/14/07 KAD7L1CA

Dilution Factor: 1

Analysis Time..: 19:40 Instrument ID..: HGHYDRA Analyst ID.....: 400491

MS Run #....: 7318234

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

N Spiked analyte recovery is outside stated control limits.

DISSOLVED Metals

Client Lot #...: C7K020216

Date Sampled...: 10/30/07

Date Received..: 11/02/07

			* *.				•		
	SAMPLE		MEAS		PERC	NT	•	PREPARATION-	WORK
PARAMETI	ER AMOUNT	AMT	AMOU	NT UNITS	RECV	RY RPD	METHOD	ANALYSIS DATE	ORDER #
MS Tot-	Samole #•	で フドロンロン	16-00	1 Prep Bato	ъ и	221020	_		
Antimony	/	C/ROZOZ	10-00	r Freb Baco	m #:	/31830	<i>/</i> .		
	0.33	500	442	ug/L	88		SW846 6020	11/14-11/27/07	KY EKS 1 CA
	0.33	500	434	ug/L	87	1.8	SW846 6020	11/14-11/27/07	
•			D	ilution Factor:	1			,,	141111111111111111111111111111111111111
		•		nalysis Time:			ent ID: ICPMS	Analyst ID:	400149
			M	S Run #:	7318162			·	
Arsenic	•								
ALBCITE	3.8	40.0	37.9	ug/L	0.5		0770.4		
	3.8	40.0	38.2		85 86	0.60	SW846 6020	11/14-11/27/07	
				ilution Factor:		0.60	SW846 6020	11/14-11/27/07	KAEX31CD
				nalysis Time:		Tostm	ent ID: ICPMS	Analyst ID:	
				S Run #:			ene is ieras	Anaryse ID:	400149
							•		
Berylliu									
•	ND	50.0	43.7		87		SW846 6020	11/14-11/27/07	KAEX31CE
	ND	50.0	43.2	ug/L	86	1.2	SW846 6020	11/14-11/27/07	KAEX31CF
•				llution Factor:					
				alysis Time: Run #:		Instrum	ent ID: ICPMS	Analyst ID:	400149
			Ма	× Kuii #:	/318167				
Cadmium									
	ND	50.0	43.3	ug/L	87		SW846 6020	11/14-11/27/07	KARY21CC
	ND	50.0	43.6	ug/L	87		SW846 6020	11/14-11/27/07	
				lution Factor:				, , , , , ,	
				alysis Time:		Instrume	ent ID: ICPMS	Analyst ID:	400149
			MS	Run #:	7318162				
Chromium									
	3.0	200	194	ug/L	96		SW846 6020	77/14 17/07/07	T/A TIV/A # 40 ~
	3.0	200	194	ug/L	95		SW846 6020	11/14-11/27/07 11/14-11/27/07	
			Di	lution Factor:	1			11/14 11/2//0/	KABASICK
			An	alysis Time:	22:31	Instrume	ent ID: ICPMS	Analyst ID:	400149
			MS	Run #:	7318162				
					•				
Copper	1 6	254	222			•			
			221 222	ug/L	87		SW846 6020	11/14-11/27/07	
		230		ug/L lution Factor:	87	0.31	SW846 6020	11/14-11/27/07	KAEX31CM
•				alysis Time:		Tnot	75 TD . 75715	\$ \$ 1	
				Run #:		THECTUME	nt ID: ICPMS	Analyst ID:	400149
				#					

(Continued on next page)

DISSOLVED Metals

Client Lot #...: C7K020216

Date Sampled...: 10/30/07

Date Received..: 11/02/07

Matrix.... WATER

		SPIKE	MEASRD		PERCNT	I		PREPARATION-	WORK
	ER AMOUN	AMT	AMOUNT	UNITS	RECVRY	RPD .	METHOD	ANALYSIS DATE	ORDER #
Lead									
	0.17	20.0	20.8	ug/L	103		SW846 6020	11/14-11/27/07	KAEX31CO
•	0.17	20.0	20.6	ug/L	102	0.91	SW846 6020	11/14-11/27/07	
			Dilut	ion Factor: 1					
				sis Time: 22		Instrum	ent ID: ICPMS	Analyst ID:	400149
			MS Ru	ın # 73	18162				
Nickel									
	2.1	500	439	ug/L	87		SW846 6020	11/14 11/05/05	700 10000 0 000
	2.1	500	443	ug/L	88	0 79	SW846 6020	11/14-11/27/07	KAEX31CN
			Dilut	ion Factor: 1		0.73	DN040 8020	11/14-11/27/07	KAEX31CP
				sis Time: 22	:31 т	[nstrame	ent ID: ICPMS	handeret ID	
				n. # 73:			JAC 1D ICENS	Analyst ID:	400149
the state of				4					
Selenium	n '								
	9.2	10.0	20.7	ug/L	116		SW846 6020	11/14-11/27/07	KARY21CU
	9.2	10.0	21.3	ug/L	122		SW846 6020	11/14-11/27/07	KVEX31CM
.*			Dilut	ion Factor: 1				//-/	TOTAL STON
			Analy	sis Time: 22:	31 I	nstrume	ent ID: ICPMS	Analyst ID:	400149
			MS Ru	n # 731			-		100113
		*							
Silver									
	ND ·	50.0	44.3	ug/L	89		SW846 6020	11/14-11/27/07	KAEX31A9
	ND	50.0	44.4	ug/L	89	0.29	SW846 6020	11/14-11/27/07	
				ion Factor: 1					
				sis Time: 22:		nstrume	ent ID: ICPMS	Analyst ID:	400149
			MS Ru	o # 731	8162				
Thallium									
THATTIUM	0.092	E0 0	40.0	/-					
	0.092	50.0	49.8	- ·	100		SW846 6020	11/14-11/27/07	
	0.092	50.0	50.4		101	0.99	SW846 6020	11/14-11/27/07	KAEX31C0
				ion Factor: 1					
				sis Time: 22:		nstrume	nt ID: ICPMS	Analyst ID	400149
		٠.	MS Rur	1 # 731	8162				
Zinc									
	10.4	500	392	no/1	7.0		~~~		
	10.4	500		•	76 76		SW846 6020	11/14-11/27/07	
		J00	· ·	ug/L : .on Factor: 1	76	U.UZ S	SW846 6020	11/14-11/27/07	KAEX31C2
					· -				
			_	is Time: 22::		ıstrumeı	nt ID: ICPMS	Analyst ID:	400149
			IIIA GUI	· m····· /311	o <i>⊤</i> 0⊼				
• •									

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

DISSOLVED Metals

Date Sampled:		Date Receive	:d: 11/02/07	Matrix: WATER
SAMPLE PARAMETER AMOUNT			PERCNT RECVRY RPD METHOD	PREPARATION- WORK ANALYSIS DATE ORDER #
MS Lot-Sample #:	C7K020216-003	Prep Batch #	7320210	

Mercury

ND 1.00 1.13 ug/L 113 SW846 7470A 11/16/07 KAE071A9 ND 1.00 1.14 ug/L 114 0.88 SW846 7470A 11/16/07 KAE071CA

Dilution Factor: 1

Analysis Time..: 13:57 Instrument ID..: HGHYDRA Analyst ID....: 400491 MS Run #..... 7320130

Calculations are performed before rounding to avoid round-off errors in calculated results.

- 9 -SERIAL DILUTION SAMPLE SUMMARY

Client:

TETRA TECH

SDG No.:

C7K020216

Sample ID:

KAEX3F

Serial Dilution ID:

FMC 24LF

Client ID: FMC 24LF

Batch Number:

7318317

Prep Date:

11/14/2007

Matrix:

WATER

Initial Wt/Vol:

50.00

Final Vol:

50.0

% Solids:

0.0

Instrument:

Analyte	Init Dil	Initial Result ug/L	Ċ	Init Date/Time	SD Dil	Serial Result ug/L	C	SD Date/Time	% Diff	Qual	SD Limits
Antimony	1	0.332	J	11/27/2007 22:22:35	5 .	0.390		11/27/200722:26:51	17.5		10.00 %
Arsenic	1	3.822		11/27/2007 22:22:35	5	4.345	J	11/27/200722:26:51	13.7		10.00 %
Beryllium	. 1	0.068	υ	11/27/2007 22:22:35	5	0.340		11/27/200722:26:51	100.0		10.00 %
Cadmium	1	0.106	U	11/27/2007 22:22:35	5	0.531	U	11/27/200722:26:51			10.00 %
Chromium	1	3.047		11/27/2007 22:22:35	5	6.625	J	11/27/200722:26:51	117.4		10.00 %
Copper	1	4.599		11/27/2007 22:22:35	5	6.330	J	11/27/200722:26:51	37.6		10.00 %
Lead	1	0.173	J	11/27/2007 22:22:35	5	0.160	j	11/27/200722:26:51	7.5		10.00 %
Nickel	1	2.068		11/27/2007 22:22:35	5	2.375	J	11/27/200722:26:51	14.8		10.00 %
Selenium	1	9.156		11/27/2007 22:22:35	5	12.075	J	11/27/200722:26:51	31.9		10.00 %
Silver	1	0.077	U	11/27/2007 22:22:35	5	0.386	U	11/27/200722:26:51			10.00 %
Thallium	1	0.092	J	11/27/2007 22:22:35	5	0.091		11/27/200722:26:51	30.4		10.00 %
Zinc	1	10.410		11/27/2007 22:22:35	5	12.445	J	11/27/200722:26:51	19.5		10.00 %

Test America Pittsburgh - 10 METHOD DETECTION LIMITS

Client: TETRA TECH

SDG No.: C7K020216

************	Analyte	Mass	MDL ug/L	CRQL ug/L	
CPMS		MDL Date:	3/24/2007		
	Antimony	121	0.047	2	
	Arsenic	75	0.14	1	
	Beryllium	9	0.068	1	
	Cadmium	111	0.106	1	
	Chromium	52	0.11	2	
	Copper	65	0.14	2	
	Lead	208	0.020	1	
	Nickel	60	0.1	1	
	Selenium	82	0.21	5	
	Silver	107	0.08	1	
	Thallium	205	0.018	1 .	
	Zinc	66	0.60	5	

Metals Data Reporting Form

Instrument Detection Limits

Instrument: ___CVAA Units: ___ppb

Element	Wavelength	Reporting Limit	MDL	Date of MDL
Mercury	253.700	0.2	0.055	3/15/2007

Test America Pittsburgh - 12 -LINEAR RANGES

Client: TETRAT	ЕСН	_	SDG No.: C7K020216	
Contract:		Lab Code: STL Pitt.	Case No.:	SAS No.:
Instrument ID:	ICPMS		Date: 4/1/2007	

Analyte	LDR ug/L
Antimony	12500
Arsenic	4500
Beryllium	7500
Cadmium	12500
Chromium	12500
Copper	12500
Lead	12500
Nickel	12500
Selenium	4500
Silver	2500
Thallium	12500
Zinc	12500

Metals Data Reporting Form

Linear Dynamic Ranges

Instrument: CVAA Units: ppb

Element	Wavelength	Linear	Date of Linear
	/Mass	Range	Range
Mercury	253.70	10	3/15/2007

14 - IN

ICP-MS Tune

Lab Name: Test America Pittsburgh

Contract:

Lab Code: STL Pitt

Case No.:

NRAS No.:

SDG NO.: C7K020216

ICP-MS Instrument ID:

ICPMS

Date:

11/27/2007

Element - Mass	Avg. Measured Mass (amu)	Avg. Peak Width at 5% Peak Height (amu)	%RSD
Be 9	8.96218	0.73000	0.6170
Mg_24	24.015041	0.81000	0.8680
Mg_25	25.01583	0.81000	3.2580
Mg 26	26.01259	0.79000	1.1600
Co_59	58.963189	0.86000	1.0380
In 113	112.874404	0.81000	1.7710
In_115	114.87387	0.82000	0.5090
Ce_140	139.875441	0.82000	0.9410
Pb 206	205.944457	0.78000	0.5940
Pb_207	206.945876	0.78000	
Pb 208	207.946639	0.78000	0.9400

Comments:

C7K02

Method 6020	Matrix Water		Start Time 1120	SDO	G -
Analyst Danny Mayo	Data 11-14-07	'	Lot Numbers		
MS STLPA-MS-A, STLPA-MS-C, STI Lab Lot # Met 5329-07, 5328-0		**************************************		C7K020133, C7K020216	6, C7K020320
Analyst Sign:	7, 5327-07				
Total State of the state of the			<u> </u>		
Sample ID	initial Wt/Vol g/mL	Final Vol mL	·	Comments	
KAD6H	50m2	50mL	·		CHALLAND .
KAD6H S			+0.5 m2 M	S-A.C., ICPM	3
KAD6H D			1		
KAD7H					
KAD7L					
KAE05					
KAE07					
KAE10					
KAE15					
KAE19					/
KAE1A					
KAEID					
KAEIF				/	
KAE1J				/	
KAEIK					
KAE1P					*
KAEIR					
KAE2E					
KAE2J					
KAEX3					
KAFV7					
KAFXK			/		
KA8JK B			/		
KASJK C	Dut DE HE	<u> </u>			1802 1/14/52
KASJK C	_	V	+0.5 mL M	s-A.C.ICINS	
					W 1111-5
SAMPLE CODING: B-Blank (Duplicate
NOTE: Samples marked with an	asterisk (*) required filts	ration after dige	estion and prior to ana	llysis	
Samples marked with a p	plus sign (+) required ad	ditional Conc.	INO3 in digestion prod	cess, brown furnes were	observed
	5901E09797, J.T. Baker			Hot P	late/Block Temp Correction Factor
5 ml 1:1 HCL, Met	6099-07, Standards Log			#3	3 95°C -0.4°C
	Minimum dioas	ation times have b	een met (analyst inklals):	. X	
Digestate(s) Date	Time (Received)				equished) Analyst Location
All Home 11/14/2	7 1700	DW		14/01 1705	DM A6
All About 11-27	07 1405	Wic u	GTIOZ AG IL	2707 1720	
T	Lot Number		4anufacturer	Dinet de variant	
Initial Digestion Vessel:	A706LP019		ental Express	Pipet #: J0450H Balance #: n/a	
	n/a	n/a	7, , , ,	Printed on: 14-Nov-07	
Filter Paper:	n/a	n/a		4:01:38 PM	
Reviewed By:		428	8 Date:)	11/14/02	MET-90-7(3483071 - 4301)

v1.0.5 - Lest Revised 12/30/2005

	Matrix				120		SDG	-	
Analyst Danny Mayo		1-14-07		Lot Numbers					
MS STLPA-MS-C, STLPA			·			C7K(020216		
Lab Lot # -Met 5328-	07, 5327 - 07								
Sample ID	initial W		nal Voi		·	Comment	·		
	g/m		mL			Johnnehu			
KAE05	500	1 + 5	lml.						
KAE07			-						
KAE10									
KAE15									
KAE19									
KAEIA								/	
KAEID									
KAE1F							,		
KAE1J							· ·		
KAE1K						/			
KAE1P								·	
KAE1R					/				···
KAE2E									
KAE2J							· · · · · · · · · · · · · · · · · · ·		
KAEX3									11 002
KAEX3 S				+0.5 mL	115-1	J.ICP	A E		
KAEX3 D				· OED ME	100-0	1) J-L 1 S	1.2		
KA8H1 B			+	<u> </u>	Ψ				ii M
KA8H1 C	50min	= 40		126 1	4.4.5"	C TC5	1115		12/0/ 1/
			V	+0.5 mL	///>-	Lepher	741)		
-									
					·				
						·	· · · · · · · · · · · · · · · · · · ·		
		_			······································				
							-		N II
	District Colored A Col								
GAMDI E CODING. B		ス しいいかいさい		Dallin D. Hadelin	A. R B				
Samples marke	ed with an asterisk (*) requed with a plus sign (+) requ	ired filtration a ired additiona	after dige	stion and prior to	analysis		s were ob	served	
NOTE: Samples marke Samples marke Reagents: 1.5 ml Co	ed with an asterisk (*) requed with a plus sign (+) requence HNO3, 6901E09797, J.T	ired filtration a uired additiona . Baker	after dige	stion and prior to	analysis		s were ob		Correcti
NOTE: Samples marke Samples marke Reagents: 1.5 ml Co 1 ml Conc	ed with an asterisk (*) requed with a plus sign (+) requence HNO3, 6901E09797, J.T. tc HNO3, 6901E09797, J.T. 1	ired filtration a ired additiona . Baker Baker	after dige	stion and prior to	analysis		s were ob	served	
NOTE: Samples marke Samples marke Reagents: 1.5 ml Co 1 ml Conc	ed with an asterisk (*) requed with a plus sign (+) requence HNO3, 6901E09797, J.T	ired filtration a ired additiona . Baker Baker	after dige	stion and prior to	analysis		were ob	served /Block Temp	
NOTE: Samples marke Samples marke Reagents: 1.5 ml Co 1 ml Conc	ed with an asterisk (*) requed with a plus sign (+) requence throat, 6901E09797, J.T. 1 one HCL, V078E09429, Mall	tired filtration a tired additiona Baker Baker linkrodt	after dige	estion and prior to INO3 in digestion	analysis process, t		were ob	served /Block Temp	
NOTE: Samples marke Samples marke Reagents: 1.5 ml Co 1 ml Com 2.5 ml Co	ed with an asterisk (*) requed with a plus sign (+) requence throat, 6901E09797, J.T. to throat, 6901E09797, J.T. to throat, V078E09429, Mali	tired filtration a tired additiona Baker Baker linkrodt	after dige	estion and prior to INO3 in digestion	analysis process, t		were ob	served Block Temp	-O.
NOTE: Samples marke Samples marke Reagents: 1.5 ml Co 1 ml Com 2.5 ml Co Digestate(s)	ed with an asterisk (*) requed with a plus sign (+) requence throat form throa	tired filtration a tired additional Baker Baker linkrodt um digestion time eceived)	after dige at Conc.H	estion and prior to INO3 in digestion seen met (analyst in Location	p analysis process, the process, the process, the process of the p	Time	were ob Hot Plate/	served (Block Temp	-O.
NOTE: Samples marke Samples marke Reagents: 1.5 ml Co 1 ml Com 2.5 ml Co	ed with an asterisk (*) requed with a plus sign (+) requence throat, 6901E09797, J.T. to throat, 6901E09797, J.T. to throat, V078E09429, Mali	tired filtration a tired additional Baker Baker linkrodt um digestion time eceived)	after dige at Conc.H	estion and prior to INO3 in digestion seen met (analyst in Location	analysis process, t tials):	Time	Hot Plate/	served (Block Temp	- O.
NOTE: Samples marke Samples marke Reagents: 1.5 ml Co 1 ml Com 2.5 ml Co Digestate(s)	ed with an asterisk (*) requed with a plus sign (+) requence throat form throa	tired filtration a tired additional Baker Baker linkrodt um digestion time eceived)	after dige at Conc.H	estion and prior to INO3 in digestion seen met (analyst in Location	p analysis process, the process, the process, the process of the p	Time	Hot Plate/	served (Block Temp	- O
NOTE: Samples marke Samples marke Reagents: 1.5 ml Co 1 ml Com 2.5 ml Co Digestate(s)	ed with an asterisk (*) requed with a plus sign (+) requence throat form throa	tired filtration a tired additional Baker Baker linkrodt um digestion time eceived)	after dige at Conc.H	estion and prior to INO3 in digestion seen met (analyst in Location	p analysis process, the process, the process, the process of the p	Time	Hot Plate/	served (Block Temp	-0
NOTE: Samples marke Samples marke Reagents: 1.5 ml Co 1 ml Com 2.5 ml Co Digestate(s)	ed with an asterisk (*) requed with a plus sign (+) requence throat form throa	tired filtration a tired additional Baker Baker linkrodt um digestion tire aceived)	after dige after dige	estion and prior to INO3 in digestion seen met (analyst in Location	n analysis of process, the process, the process, the process, the process of the	Time 1705	Were ob Hot Plate #-3 (Relinquis	served (Block Temp	- O.
NOTE: Samples marke Samples marke Reagents: 1.5 ml Co 1 ml Com 2.5 ml Co Digestate(s) All Alone All Alone	ed with an asterisk (*) request with a plus sign (+) request with a plus sign (+) request. The choose for the c	ired filtration a ired additional Baker Baker linkrodt um digestion time poelved)	after dige after dige	estion and prior to INO3 in digestion seen met (analyst in Location	malysis process, to process, t	Time	were ob Hot Plate/ #-3 (Relinquis	served (Block Temp	- O.
NOTE: Samples marke Samples marke Reagents: 1.5 ml Co 1 ml Com 2.5 ml Co Digestate(s)	ed with an asterisk (*) request with a plus sign (*) request with a plus sign (*) request. The throat of the content of the co	tired filtration a tired additional Baker Baker linkrodt um digestion time scelved)	after dige after dige	estion and prior to INO3 in digestion Been met (analyst in Location FR 37103 FR	tials): Date	Time 1705	Were ob Hot Plate #-3 (Relinquis	served (Block Temp	M

estion Start Time:	130 Digestion End Time	Mercury Dig			lethod(s) 74		Logbook ID: MT2294
<u> </u>			Filter Paper Man			·	Balance ID:
Sample ID	Date Received	Prep Date	Prepared	by Wt/ Volume	Sample Type	Run Date	Comments
5700	N/A	11-16-07	WAM	100,01	WATER	11-16-07	418
STÓI					L		MET 6354-07
STAL							1 6355-67
5703							6356-07
5704							6357-07
57.05							6358-07
Icu							6359-07
ICB							N/A
CRA/RU							MET 6360-07
CCV						1	¥ 6361-07
COB							MA
KCDXAB							MIA
KCDXAC							
KCDXAL							+ (2(2))
KASNPT						111	6363-07
KASPATT						1116	MINIST HAD A XID DILUTION
KASRLT							ON DIGESTIVAL (LIMITED SA
KASXET				50TC		·	¥
MASout							N/A
KASP97					- 		
KCACOT							SO HOLE MAIL A YEAR AND AND AND AND AND AND AND AND AND AND
REDXERT							SAMPLE MAD A XIC DILUTION DENN DISESTION I MATRIX
HCD XECT		 					N/A
MASTER							MET 6364-07
							NA
MALCHT	11.0.01	Y	Y		4	Y	
Reagents HN03	2.5m!	Volume (mL)			ance Number	Autoc	clave pressure:
H2SO4	5.0ml			MAILMEKRODT	£180	038	13,21
KMINQ4	115.0ml			<i>พ</i> ย 6323		/ ∝ o Autoc	lave Temperature: /20°C
K2\$204	8.0 ml			1 6255	`-07	Wate	rbath temperature:
L NH2OH Additional volumes indic seconde as necessary Stannous Chloride	6.cm1	NºA		6350	- 07		
ct(s) (record line # from above)	Date Time	N/A Extract(s) Race	Junet Angles	V 6.116-		<u></u>	nometer ID:
(Cook a mon mon poort)			ived Analyst	Location	Date Time	Extract(s)	Refinquished Analyst Location
· · · · · · · · · · · · · · · · · · ·							

Mercury Digestion Log v2 8/11/08 Method(s) 7470A Logbook ID: MT2294 Digestion Start Time: 1200 **Digestion End Time:** 1215 Filter Paper Menufacturer / Lot#: Balance ID: Sample ID **Date Received** Prepared by Prep Date WV Volume Sample Type Run Date Comments KCEDMBF KCEDUCF NA 11-16-07 SINE 100.015 WATER 11-16-07 MET 6369 UT KAEX3F 10-30-07 KAEOSF KAEDTF KAEOTSE HIN MET 19352-07 KAGOTOF Hul MET 6352-57 KAEIAF AL KAEIDE KARIFF KAEIJF 10-31-57 KAEIKF 12. KAEIPF KAEIRF 13. KAEIOF 15. KAEISF 16. KAEIAF KAEZEF 11-1-07 KAEZJF 19. KAWYTE 11-8-07 20. KAWVOF KAWYTF KAWWDF KAWWHF 24. KCEEPBT NA KLEEPLT MET 63+0.07 Reagents Volume (mL) Reference Number 15psi 2.5 202 Autoclave pressure: **HNO3** MALLINCKROBT E23038 H2SQ4 5. Omla E18028 120 °c Autoclave Temperature: 15. ande KMN04 Met 6351 07 8. Ouls 6299.57 Waterbath temperature: NaCL NH2OH Additional volumes indicated per L. Dull 632407 Stannous Chlorida NA Thermometer ID: 6116-57 Extract(s) (record line # from above) Time Extract(s) Received Analyst Location Date Time Extract(s) Relinquished Analyst Location 11-16-07

TestAmerica P

urgh

Sample D Date Resided Prop Date Prop Date Proposed by WV Volume Sample Type Ron Date Controlled	Digestion Start Time: 12.0	O Digestion End Time	1215	Filter Paper Manul	ecturer / Lot#:	Method(s) 7		Logbook ID: MT229#
KA58FBT 11-14-54 11-16-54 7NS 100-15 WATER 11-16-54 NA KA313T	Sample ID	Date Received	Prep Date	Prepared by	Wt/ Volume	Sample Type	Run Date	
KA313T	KA58FBT	11-14-57	11-16-07	7W5	(00.0)			
EAD 135T	KA313T		1	7	100,715	WATER	11-76-04	NA.
KCEERBT N A				 		 	 	+
KCEERST A A			 		- 	ļ		
KCEERCT KA57PBT 1(-11-5) KA7745T KA7745T KA7745T KCED6B MA KCED6B MA KCED6B MA KCED6B MA KCED6B MA KCED6B MA KCED6B MA KCED6B MA KCED6B MA KCED6B MA KCED6B MA KCED6B MA KCAATC 10-31-55 KAATC 10-31-55 MA KAATC MET 6372-57 MET 6373-57 MA MAACC KAAKC/2 K		- 114		 				+5ml MET 635207
KA57PBT 11-14-81		- PA	 					N/A
KAJ24T		11-111-0						MET 637) OF
HAJ245T HSQL		11-14-04						NA
KAJUOT								
KCEDGB								+5 ml MET 6252 VZ
	1.7	4						+5 ml mFT 6257 25+
KCED6L	., ., ., .,	N 4					 	
KAATC 10-31-54								
		+						
KAAJT KAAJT KAAYC KAAKC/2 KARKG/2 KARKG/2 KARKG/2 KARKH/2 KARKH IOOM'S IOOM'S KARKK IKAAKL	14	10-31-04						
KAAYC Z SO 100 mls DIL TILL DUE TO LIMITED SA								NIA
KAA KC Z	KAAJT							
VAAKH Z	KAAJ9						<u> </u>	
KARKG Z	KAAKC/Z				501 00 1			¥
VAAKK 100 M's 100 M'					1100mls			DILYTION DUE TO LIMITED SAMP
LAAKJ 100 M's N/A KAAKL KAAKN 2 50 /100 mls Dir VTICH DVE TO LIM 1972 AS KAAKO 2								
IOOM'S I	**************************************				-			1 4 4
KAAKD Z SO IOO nd Dir UTION DIVE TO Lim 17205	1 1111111				100 11'5			MA.
KAAKN/2	1 1 1 1 1 1 1 1 1							
Respents Notional (mt.) Reference Number HNO3 Z.5-Ma H2SO4 J.5-Ma MALLINUKLOST E18026 Autoclave pressure: 15p5; Mattinuklost E18026 Autoclave Temperature: 12.0 < Mattinuklost Mattinukl	1				+			1
Reagents Volume (mL) Reference Number HN03 Zi5nJa MALLIN LK LOST EZ3038 Autoclave pressure: 1595 i H2S04 5:0 NA FERENCE Number KMN04 I5 Aulu KMN04 I5 Aulu KZ\$204 8-0 NA FERENCE Number KZ\$204 8-0 NA FERENCE Number KZ\$204 8-0 NA FERENCE Number KZ\$204 8-0 NA FERENCE Number indicated per G.D. MALLIN LK LOST THE Number of NA FERENCE NUMBER IN NA FERENCE NUMBER IN NA FERENCE NA NA NA FERENCE NA NA NA FERENCE NA NA NA FERENCE NA NA NA FERENCE NA NA NA FERENCE NA NA NA FERENCE NA NA NA FERENCE NA NA NA FERENCE NA NA NA FERENCE NA NA NA NA FERENCE NA NA NA FERENCE NA NA NA NA FERENCE NA NA NA NA FERENCE NA NA NA NA FERENCE NA NA NA NA FERENCE NA NA NA NA FERENCE NA NA NA NA NA NA FERENCE NA NA NA NA NA NA NA NA NA NA NA NA NA	1 11 1 1 2				50/100mli			DILUTION DIVE TO LIMITED SAM
HNO3 ZISALA MALLINICK COST EZ3 038 H2S04 5:0 AL ES026 KMN04 ISALA MCClave pressure: 1595 i KMN04 ISALA MCClave Temperature: 12.0 C K2S204 8-0 AL CCC MCClave Temperature: 12.0 C K2S204 8-0 AL CCC MCClave Temperature: 12.0 C CCC MCCC MCClave Temperature: 12.0 C CCC MCCC MCCC MCCC MCCC MCCC MCCC M	KAAKU12	- ∤	*	+	1		+	1
HNO3 ZISAMA MALLINUKROST EZ3038 Autoclave pressure: 1595 i H2SO4 5:0 M			Volume (mL)		Refer	ence Number		
KMNO4 IS. Ouls Mct 4351 of E18026 Autoclave Temperature: /2.0 < K2\$204 B-0 L G299-07 Waterbath temperature: /2.0 < INCL NH2OH Additional volumes indicated per sample an inconstant of the sample an inconstant of the sample and inconstant of the sa				N	ALLINLKROS		Autoc	lave pressure: 15 PS /
KZS204 B Public GZ 99 TST Waterbath temperature:		15 A. A.				5.18		lave Temperature: /20 <
Stannous Chloride N/A Stanno		8 Puls						
Stannous Chloride N/A + 6/16-07+ Thermometer ID: act(s) (record line # from above) Date Time Extract(s) Received Analyst (position) Date Time Extract(s) Received Analyst (position)							Water	rbath temperature:
(act(s) (record line # from above) Date Time Extract(s) Received Analyst (position)	Stannous Chloride		NA				Them	nometer ID:
- Authority Location	act(s) (record line # from abova)	Date Time	Extract(s) Recei	ved Analyst				
	U 553							, and control control
1-16-54	1-16-04							TWS

estion Start Time: 1645	Digestion End Time	: 1700	Filter Paper Manufac	turer / Lot#;			Balance ID:	
Sample ID	Date Received	Prep Date	Prepared by	₩∜ Volume	Sample Type	Run Date	Comments	
STD C STO 1	μA	11-14-07	aws.	100mls	Water	11-14-07	NA	
570 1			,		,	,	MET 6313-07	
5162							MET 6314 07	
5703							MET 6315-07	
51D4						1	MET 6316-07	
SD5		 				 		
ICV						 		
ICB		1				-	<u> </u>	
CRA/RLY		 				 	NIA	
CCV		 					MET 6319-57	
CCB		 				 	MET 6320-07	
KABAMB	+	 	 			 	ρ)A	
KASAMC							+	
J9XN1	10.00.0						MET 6321-07	
	10-25-57	<u> </u>					NA	
JAXNIS		ļ <u> </u>					HIMET 6300-07	
TOXNID		<u> </u>					HIMMET 6300-ST	
JAXPP	4						PIA	
J9456	10-29-07							
J442T	+							
J9772	10-30-07							
J97725							HIMLMET 6300-57	
J4772D							+1 ml MET 6300-57 +1 ml MET 6300-57	
J9779						· ·	NIA	
J978'd							N//-	
J978E				1 1		 		
Reagents	1	Volume (mL)	7	Pofes	ence Number	` `		
HNQ3	2.5 ml	()	MA	+ LLIN CKRONT		3038 Auto	clave pressure: 15ps.	
H2SO4	5.0 ml			+	E18	~ ~ ~	clave Temperature: 120 <	
KMNO4	15.0 rul			Met 626	8-57-		120	
K2\$204 CL NH2OH Additional volumes indicated (* lo.D.ul			6231		Wate	erbath temperature:	
CL NH2OH Additional volumes indicated (sample as necessary Stannous Chloride	10.000	N/A		4 6116		Ther	mometer ID:	
ct(s) (record line # from above)	Date Time	Extract(s) Rece	ived Analyst	Location	- Date Tim		Relinquished Analyst Location	
	was a superior of the superior			16				
				MZ			(1-14	
		- the state of the						

Ition Start Time: 1645 Sample ID J979E KAAVJ ICAAV8 KAAWC	Digestion End Time: Date Received	(700 Prep Date	Filter Paper Ma		COUP.				Balance ID:		
J979E KAAVJ KAAV8	<u> </u>	t tob paro	Prepared	d by	Wt/ Volume	Sample Ty	Dun	Date	Comments		
KAAVJ KAAVB	10-30-54		·	•					Comments		
KAAV8		11-14-07	JW 5	<u> </u>	100mls	WATER	2 (1-1	407	Αٰ ب		
	10-31-57		<u> </u>		1			l			
KAANC			\								
KAAWG											
KAA6W	4										
KAFJ8	10-31-07										
KAFKC	1							 			
KAFN3	10-29-57										
KAFN9	+						-				
KA9AJB	NA										
KAGAJC	1 1								4 5 - 62:22 57		
KADGH	11-1-07								MET 6322-57		
KAD7H		-	 						U A		
KADTL						 					
KADTLS									*		
KADTLD								·	+1 ml MET 6300-57		
KAEX3	10-30-57								+ImlMET 6300-5		
KAE05	10.30.04								NA		
KAEOT											
KAEIA	<u> </u>										
KAEID											
KAEIF	4										
KAEIJ	10-31-57										
KAEIK	+	∤ .	+		₹	1	1	,	4		
Reagents		Volume (mL)			Refe	rence Number		A.4.			
	25 m	•.		MALL	INCKROD:		E23038	Autoc	lave pressure: 15ps i		
	5.0ml 15.0ml			4	+		=18028	Autoc	lave Temperature: 120		
KMNO4 K2S2O4	8.0ml			Me							
NH2OH Additional volumes indicated per sample as pecasaer. Stannous Chloride	is. Dul			 	6234 6250	1-07-		vvater	Waterbath temperature:		
		N/A			6116	-57		Them	nometer ID:		
(S) (record line # from above).	Date Time	Extract(s) Rece	lved Analyst	Loca		Date	Time I	xtract(s)	Relinquished Analyst Location		

Mercury Digestion Log v2 8/11/06 Method(s) 7470A Logbook ID: MT229/ Digestion Start Time: 1645 Digestion End Time: 1700 Filter Paper Manufacturer / Lot#: Balance (D: Sample ID Date Received Prep Date Prepared by Wt/ Volume Sample Type Run Date Comments KAEIP 10-31-07 11-14-57 2 W. 100mls WATER 11-1407 2/4 KAEIR KAEIO KAE15 KAEIG KAEZE 11-1-07 KAEZJ KAE63 KAWYO 11-8-07 11. 13. 14. 15. 16. 347 19. 20. Reagents Volume (mL) Reference Number HNO3 2,5ml Autoclave pressure: MALLINCKRODT E23038 H2504 5.0ml E18028 15.0ml Autoclave Temperature: KMN04 Met 6268:57 K2S2O4 8. Oml 6236-57 NaCL NH2OH Additional volumes indicated per 6-0 ml Waterbath temperature: 6250-5+ Stannous Chloride N/A 6116-57 Thermometer ID: Extract(s) (record line # from above) Date Time Extract(s) Received Analyst Location Date Time Extract(s) Relinquished Analyst Location 11-14-57

TestAmerica P

Sample List

	PC =		and the second	/ 14	ME		•	,	
•	Vo Label		Туре		Weight	Rack	Rov	Col	Height
		NCE REPORT	Instrument Se	etup	1.000	1		1	155
	2 STD1 3 STD2X MF		Blank		1.000	0	. 1		155
			Fully Quant St	andard	1.000	0	1		155
			Fully Quant St	andard	1.000	0	1	3	155
	5 ICV1 MET6 6 ICB1	089-07	QC Sample		1.000	0	1	. 5	155
	7 CRI METGO	00.07	QC Sample		1.000	0	1	. 1	155
	8 ICSA METO	-	QC Sample		1.000	0	1	6	155
	9 ICSAB MET		QC Sample		1.000	0	1	7	155
	0 CCV1-1 ME		QC Sample		1.000	0	1	8	155
	1 CCB1	10093-07	QC Sample		1.000	0	1	4	155
	2 KA60KB		QC Sample		1.000	0	1	1	155
	3 KA60KC		Unknown		1.000	1	1	2	155
	4 KAE63		Unknown Unknown		1.000	1	1	3	155
1			Unknown		1.000	1	1	4	155
10			Unknown		1.000	1	1	5	155
1			Unknown		1.000	1	,1	5	155
18			Unknown		1.000	1	1	7	155
19			Unknown		1.000	1	1	8	155
20			Unknown		1.000	1	1	9	155
21	I KANFT		Unknown		1.000	1	1	10	155
22	CCV1-2		QC Sample			1	1	11	155
23	CCB2		QC Sample		1.000	0	1	4	155
24	KANFTP5		Unknown		1.000	0	1	1	155
25	KANFTS		Unknown		1.000	1 1	1	12	155
26	KANFTD		Unknown		1.000	1	2	1	155
27	KANFX		Unknown		1.000	1	2	2	155
28	KANGF		Unknown		1.000	1	2	3	155
29	KANGP		Unknown		1.000	1	2	4	155
30			Unknown		1.000	1	2	5 6	155
31			Unknown		1.000	1	2	7	155
32		1	Unknown		1.000	i	2	8	155
33		i	Unknown		1.000	1	2	9	155
34		4	QC Sample		1.000	Ô	1	4	155
35	CCB3	(QC Sample		1.000	Ď	1	1	155
36	KANHD	ŧ	Jnknown		1.000	1	2	10	155 155
37	KA6XHB	l	Jnknown		1.000	1	2	11	155
38	KA6XHC	· ·	Inknown		1.000	1	2	12	155
39	KAE6)		Jnknown		1.000	1	3	1	155
40	KAE6X	ŧ	inknown		1.000	1	3	2	155
41	KAE61		Inknown		1.000	1	3	3	155
42 43	KAE64		hknown		1.000	1	3	4	155
44	KAE69 KAE7A		Inknown		1.000	1	3	5	155
45	KAE7A KAE7D		nknown		1.000	1	3	6	155
46	CCV1-4		nknown		1.000	1	3	7	155
47	CCB4		C Sample		1.000	0	. 1	4	155
48	KAE7F		C Sample		1.000	0	1	1	155
49	KAE7H		nknown		1.000	1	3	8	155
50	KANFO		nknown		1.000	. 1	3	9	155
51	KANF3		nknown		1.000	1	3	10	155
52	KANF4		nknown		1.000	1	3	11	155
53	KANF4P5		nknown nknown		1.000	1	3	12	155
54	KANF4S		iknown		1.000	1	4	1	155
.55	KANF4D		iknown		1.000	1	4	2	155
56	KANF5		iknown		1.000	1	4	3	155
57	KANF6		iknown		1.000	1	4	4	155
58	CCV1-5		Sample		1.000	1	4	5	155
59	CCB5	-	Sample		1.000	0	1	4	155
60	KANF8	_	. sample known		000.1	0	1	1	155
	KANF9		known		1.000	1	4	6	155
	KANGA		known		1.000	1	4	7	155
	KANGE		known		1.000	1	4	8	155
	KABJKB		known Known		.000		4	9	155
	KA8JKC		known		.000			10	155
	KAD6H		known		.000			11	155
	KAD6HP5		KNOWN		.000				155
		Jin	- Willi	1	.000	1	5	1	155

40						
68 KAD6HS	Unknown	1.000	1	5	2	155
69_KAD6HD	Unknown	1.000	1	5	3	155
70 CCV1-6	QC Sample	1.000	0	1	4	155
71 CCB6	QC Sample	1.000	0	1	1	155
72 KAD7H	Unknown	1.000	1	5	4	155
73 KAD7L	Unknown .	1.000	1	5	5	155
74 (KAE05)	Unknown	1.000	1	5	6	155
75 (KAE07)	Unknown	1.000	1	5	7	155
76 (KAEIA)	Unknown	1.000	1	5	8	155
77 (KAE1D)	Unknown	1.000	1	5	9	155
78 (KAE1F)	Unknown	1.000	1	5	10	155
79 (KAE1)	Unknown	1.000	1	5	11	155
80 (KAE1K)	Unknown	1.000	1	5	12	155
81 KAEIP	Unknown	1.000	2	1	1	155
82 CCV1-7	QC Sample	1.000	0	1	4	155
83 CCB7	QC Sample	1.000	0	1	1	155
84 (KAE1R)	Unknown	1.000	2	1	2	155
85 (KAE10	Unknown.	1.000	2	1	3	155
86 KAE15	Unknown	1.000	2	1	4	155
87 KAE19	Unknown	1.000	2	1	5	155
88 KAEZE	Unknown	1.000	2	1	6	155
89 (KAE2)/	Unknown	1.000	2	1	7	155
90 (KAEX3)	Unknown	1.000	2	. 1	8	155
91 KAFV7	Unknown	1.000	2	1	9	155
92 Kafxik	Unknown	1.000	2	1	10	155
93 KA8H1BF	Unknown	1.000	2	1	11	155
94 CCV1-8	QC Sample	1.000	0	1	4	155
95 CCB8	QC Sample	1.000	0	1	1	155
96 KASH1CF	Unknown	1.000	2	1	12	155
97 (KAEX3F)	Unknown	1.000	2	2	1	155
98 KAEX3P5F	Unknown	1.000	2	2	2	155
99 KAEX3SF	Unknown	1.000	2	2	3	155
100 KAEX3DF	Unknown	1.000	2	2	4	155
101 (KAE05F)	Unknown	1.000	2	2	5	155
102 (KAE07F)	Unknown	1.000	2	2	6	155
103 (KAETAF)	Unknown	1.000	2	2	7	155
104 (RAEIDF)	Unknown	1.000	2	2	8	155
105 (KAEIFE)	Unknown	1.000	2	2	9	155
106 CCV1-9	QC Sample	1.000	0	1	4	155
107 CCB9	QC Sample	1.000	0	1	1	155
108 (KAEIJF)	Unknown	1.000	2	2	10	155
109 (KAE1KE	Unknown	1.000	2	2	11	155
110 (KAE1PF)	Unknown	1.000	2	2	12	155
111 (KAE1RF)	Unknown	1.000	2	3	1	155
112 (KAE10F)	Unknown	1.000	2	3	2	155
113 (KAE15F)	Unknown	1.000	2	3	3	155
114 (KAE19F)	Unknown	1.000	2	3	4	155
115 KAEZEE	Unknown	1.000	2	3	5	155
116 (KAE21F)	Unknown	1.000	2	3	6	155
117 CCV1-10	QC Sample	1.000	0	1	4	155
118 CCB10	QC Sample	1.000	0	1	1	155

*									
11/28/	/2007 11	:15:32 AM	Fr	nc	//			Pag	e 75 of 117
				40+	al me	tals	A. (n	
KA	E1A 11/2	27/2007 8:37:52 F	PM	•	۲	ep res	sult to	or HS	1,
User Pre-	-dilution: 1.00							3.60	
Run	Time	6Li ppb	9Be ppb	10B ppb	118 ppb	13C ppb	23Na ppb	25Mg ppb	26Mg ppb
1	20:38:35	73.486%	0.012	770.800	814.200	0.000	1006000.000	266500,000	271200.000
2	20:39:18	69.706%	-0.002	774.100	838.700	0.000	1040000.000	274000.000	279200.000
3	20:40:01	67.693%	-0.010	792.300	837.800	0.000	1072000.000	272200.000	279900.000
X	<u> </u>	70.295%	-0.000	779.100	830.200	0.000	1039000.000	270900.000	276800.000
− σ %RSD		2.941% 4.184	0.012 21460.000	11.570 1.485	13.870 1.671	0.000	33310.000 3.205	3889.000 1.435	4824.000 1.743
Run	Time	27AI	28Si	37CI	39K	43Ca	44Ca	45Sc	47Tì
		ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1	20:38:35	257.600	2407.000	0.000	82600.000	91670.000	96040.000	68.096%	4.047
3	20:39:18	259.000 271.100	2298,000 2500,000	0.000 0.000	80790.000 83590.000	90860.000 92230.000	96420.000 96470.000	67.389% 65.286%	3.790 3.806
×	20.70.01	262.600	2402.000	0.000	82330.000	91590.000	96310.000	66.924%	3.881
σ	j	7.426	101.000	0.000	1418.000	686.700	234.400	1.461%	0.144
%RSD]	2.828	4.207	0.000	1.723	0.750	0.243	2.184	3.711
Run	Time	51V ppb	52Cr ppb	55Mn ppb	56Fe ppb	57Fe ppb	59Co ppb	60Ni ppb	63Cu ppb
1	20:38:35	1.337	3.014	64.810	306.000	546.300	0.738	2,475	9.173
2	20:39:18	2.466	2.791	62.630	296.300	518.900	0.812	2.436	9.147
3	20:40:01	-0.898	3.058	65.300	305.900	535.100	0.810	2.402	9.318
x	<u> </u>	0.968	2.954	64.240	302.700	533.400	0.786	2.438	9.213
%RSD		1.712 176.800	0.143 4.849	1.423 2.215	5.573 1.84 1	13.740 2.577	0.042 5.395	0.037 1.504	0.093 1.004
Run	Time	65Cu	66Zn	68Zn	75As	78Se	82Se	88Sr	89Y
		ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1	20:38:35	5.466	15.210	15.640	3.672	2.260	9.885	1574.000	65.646%
3	20:39:18	5,349 5,460	15.780 16.330	15.690 15.090	3.291 3.873	2.197 1.474	10.900 9.985	1575.000 1596.000	66.205% 65.120%
×	20.40.01	5.425	15.770	15.470	3.612	1.977	10.260	1582.000	65.657%
σ	j	0,066	0.562	0.335	0.295	0.437	0.562	12.000	0.543%
%RSD]	1.210	3.566	2.163	8.179	22.090	5.473	0.759	0.826
Run	Time	95Mo ppb	98Mo ppb	103Rh ppb	107Ag ppb	109Ag ppb	111Cd ppb	114Cd ppb	115In ppb
1	20:38:35	3.698	3.695	58.096%	-0.019	-0.015	0.018	0.051	62.778%
2	20:39:18	3.347	3.457	57.455%	0.002	-0.010	0.040	0.049	62.462%
3	1	3.690	3.672	57.474%	-0.003	-0.015	0.090	0.078	62.989%
×	Ä	3.578 0.201	3.608 0.131	57.675% 0.365%	-0.007 0.011	-0.013 0.003	0.050 0.037	0.059 0.016	62.743% 0.265%
%RSD]	5.611	3.638	0.5633	156.500	21.490	74.520	27.000	0.423
Run	Time	118Sn	121Sb	123Sb	135Ba	137Ba	159ТЬ	165Ho	203TI
		ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 2		9.454 9.341	0.242 0.293	0.317 0.237	61.770 62.420	62.600 61.410	70.133% 70.516%	70.525% 71.603%	0.012 0.018
3		8,808	0.270	0.297	62.520	62.460	70.957%	71.786%	0.018
х	1	9.201	0.269	0.284	62.240	62.160	70.535%	71.305%	0.016
σ]	0.345	0.026	0.042	0.408	0.651	0.413%	0.681%	0.003
%RSD]	3.747	9.531	14.780	0.655	1.048 209Bi	0.585	0.956	21.050
Run	Time	205TI ppb	206Pb ppb	207Pb ppb	208Pb ppb	ppb			
1	20:38:35	0.009	0.993	1.082	1.031	53.636%			
			0.004	0.000	0.072	53.806%			
2		0.025	0.984	0.896	0.972				
3	20:40:01	0.012	1.064	1.037	1.021	54.536%			
3 X	20:40:01	0.012 0.015	1.064 1.013	1.037 1.005	1.021 1.008	54.536% 53.993%			
3	20:40:01	0.012	1.064	1.037 1.005 0.097	1.021	54.536%			

TEST2 Folder: G71114B Page 6087 19:50:59 14 Nov 2007 Protocol: hgppb Line Conc. Units SD/RSD 1 2 *** Sample ID: KAE07 19:50:59 14 Nov 07 HG Seq: 51 Hg .050 ppb SAMPLE FMC 11 *** Sample ID: KAE1A Seq: 52 19:52:38 14 Nov 07 HG total mercury rep result 0.058 ugl Hg .058 ppb 134 *** Sample ID: KAE1D Sea: 53 19:54:17 14 Nov 07 HG Hg .057 ppb 130 *** Sample ID: KAE1F Seq: 54 19:55:55 14 Nov 07 HG Hg .053 ppb *** Sample ID: KAE1J Seq: 55 19:57:36 14 Nov 07 HG Hg .055 ppb 122 *** Sample ID: KAE1K Seq: 56 19:59:13 14 Nov 07 HG Hg .054 ppb *** Sample ID: KAE1P Seq: 57 20:00:52 14 Nov 07 HG Hg .053 ppb 110 *** Sample ID: CCV6-5 20:02:33 14 Nov 07 HG Seq: 58 Hg 4.72 ppb 22773 *** Sample ID: CCB5 Seq: 59 20:04:11 14 Nov 07 HG Hg .038 ppb 39 *** Sample ID: KAE1R Seq: 60 20:06:00 14 Nov 07 HG

Hg .048 ppb

Hg .053 ppb

*** Sample ID: KAE10

88

112

Seq: 61

20:07:38 14 Nov 07 HG

Tetra Tech NUS

INTERNAL CORRESPONDENCE

TO:

M. MARTIN

DATE:

FEBRUARY 28, 2008

FROM:

MATTHEW D. KRAUS

COPIES:

DV FILE

SUBJECT:

INORGANIC DATA VALIDATION - IRON/MISC/OVG

MARTIN STATE AIRPORT

SAMPLE DELIVERY GROUPS (SDGs) - P0710154& P0710189

SAMPLES:

3/Aqueous/P0710154

DMW-6D-100907

DMW-6I-100907

DWM-9I-100907

4/Aqueous/P0710189

DMW-5D-101107

DMW-5I-101107

DMW-5S-101107

D**MW-**7D-101107

Overview

The sample sets for Martin State Airport, SDG P0710154 and SDG P0710189 consist of three and four aqueous environmental samples, respectively. All samples were analyzed for dissolved iron; alkalinity as calcium carbonate; the anions chloride, nitrate, nitrite, and sulfate; the organic volatile gases (OVG) ethane, ethene and methane; the light hydrocarbons acetylene, n-butane, iso-butane, propane and propylene; and dissolved carbon dioxide. The samples for SDGs P0710154 and P0710189 were collected on October 5, 2007 and October 11, 2007, respectively. All samples were analyzed by Microseeps, Inc.

The following table exhibits the analytical methods and instrumentation used for analyses.

Target Analyte	Analytical Method	Instrumentation
Dissolved Iron	SW-846 6010B	Inductively Coupled Plasma-
		Atomic Emission
<u> </u>		Spectrometry (ICP-AES)
Light Hydrocarbons and OVG	AM20GAX	Gas Chromatography/Flame
		Ionization Detector (GC/FID)
CO_2	AM20GAX	Gas Chromatography/Thermal
		Conductivity Detector
		(GC/TCD)
Anions	SW-846 9056	Ion Chromatography (IC)
Alkalinity as calcium carbonate	SM2320B	Titration

Summary

The data contained in this SDG were validated with regard to the following parameters: data completeness, holding times, initial/continuing calibrations, laboratory method blank results, matrix spike/matrix spike duplicate recoveries, laboratory control sample recoveries, laboratory duplicate sample results, compound identification, compound quantitation and detection limits. Areas of concern are listed below.

TO: MARTIN, M - PAGE 2 DATE: FEBRUARY 28, 2008

Major Problems

None.

Minor Problems

• The following contaminants were detected in the laboratory method/preparation blanks at the following maximum concentrations:

	<u>Maximum</u>	<u>Action</u>
<u>Analyte</u>	Concentration	<u>Level</u>
Iron (1)	0.040 mg/L	0.20 mg/L
Alkalinity (2)	2.00 mg/L	10.0 mg/L
Alkalinity (3)	1.00 mg/L	5.00 mg/L

(1) Maximum concentration affects all samples in SDG P0710189.

Maximum concentration affects samples DMW-5S-101107, DMW-5I-101107, DWM-6I-100907 and DWM-9I-100907.

Maximum concentration affects samples DMW-6D-100907, DMW-5D-101107, and DMW-7D-101107.

An action level of 5X the maximum contaminant level has been used to evaluate sample data for blank contamination. Sample aliquot and dilution factors, if applicable, were taken into consideration when evaluating for blank contamination. No results were qualified due to laboratory blank contamination.

- The dissolved iron percent recovery (%R) for the ICP interference check sample analysis on October 15, 2007 was less than 80% but greater than 30% affecting all samples. All results reported for dissolved iron were qualified as biased low, "L".
- The matrix spike %R for chloride was less than 75% but greater than 30% for the matrix spike analysis of sample DMW-5S-101107 affecting all samples in SDG P0710154. The positive results reported for chloride in SDG P0710154 were qualified as biased low, "L".
- Positive results reported below the reporting limit (RL) but above the method detection limit (MDL) were qualified as estimated, "J".

Executive Summary

Laboratory Performance: None.

Other Factors Affecting Data Quality: Several compounds were qualified due to uncertainty near the detection limit. Dissolved iron and chloride results were qualified due to ICP interference check sample and matrix spike noncompliance, respectively.

TO: MARTIN, M - PAGE 3
DATE: FEBRUARY 28, 2008

The data for these analyses were reviewed with reference to the "EPA Region III Modifications to National Functional Guidelines for Inorganic Data Validation", April 1993. The text of this report has been formulated to address only those problem areas affecting data quality.

Tetra Tech NUS Matthew D. Kraus Environmental Chemist

Joseph A. Samchuck Quality Assurance Officer

Attachments:

1. Appendix A - Qualified Analytical Results

2. Appendix B - Results as reported by the Laboratory

3. Appendix C - Support Documentation

Data Qualifier Key

U - Value is considered non-detected as reported by the laboratory.

J - Positive result is considered estimated as a result of technical noncompliance.

L - Positive result is considered biased low due to a technical noncompliance.

APPENDIX A QUALIFIED ANALYTICAL RESULTS

Data Validation Qualifier Codes:

Z

Α	= Lab Blank Contamination
В	= Field Blank Contamination
С	= Calibration Noncompliance (e.g. %RSDs, %Ds, ICVs, CCVs, RRFs, etc.)
C01	= GC/MS Tuning Noncompliance
D	= MS/MSD Recovery Noncompliance
Е	= LCS/LCSD Recovery Noncompliance
F	= Laboratory Duplicate Imprecision
G	= Field Duplicate Imprecision
Н	= Holding Time Exceedance
I	= ICP Serial Dilution Noncompliance
J	= GFAA PDS - GFAA MSA's r <0.995 / ICP PDS Recovery Noncompliance
K	= IPC Interference – included ICS %R Noncompliance
L	= Instrument Calibration Range Exceedance
М	= Sample Preservation Noncompliance
N	= Internal Standard Noncompliance
N01	= Internal Standard Recovery Noncompliance Dioxins
N02	= Recovery Standard Noncompliance Dioxins
N03	= Clean-up Standard Noncompliance Dioxins
0	= Poor Instrument Performance (e.g. base-line drifting)
Р	= Uncertainty near detection limit (< 2 x IDL for inorganics and < CRDL for organics)
Q	= Other problems (can encompass a number of issues; e.g. chromatography, interferences, etc.)
R	= Surrogate Recovery Noncompliance
S	= Pesticide/PCB Resolution
Т	= % Breakdown Noncompliance for DDT and Endrin
U	= % Difference between columns/detectors > 25% for positive results determined via GC/HPLC
٧	= Non-linear calibrations; correlation coefficient r < 0.995
W	= EMPC result
X	= Signal to noise response drop
Υ	= Percent solids <30%

= Uncertainty at 2 sigma deviation is greater than sample activity

00998

SDG: P0710154 MEDIA: WATER DATA FRACTION: MF

nsample samp_date lab_id

qc_type

units

DMW-6D-100907

10/9/2007 P0710154-01A

samp_date lab_id qc_type units

Pct_Solids

DUP_OF:

nsample

DMW-61-100907

10/9/2007 P0710154-02A

NM

0.0

MG/L

lab_id qc_type units Pct_Solids

nsample

samp_date

DMW-9I-100907 10/9/2007

10/9/2007 P0710154-03A NM

MG/L 0.0

DUP_OF:

Pct_Solids DUP_OF:

Parameter	Result	Val Qual	Qual Code
IRON	0.023	L	K

NM

0.0

MG/L

Parameter	Result	Val Qual	Qual Code
IRON	28	L	K

Parameter	Result		Qual Code
IRON	8.8	L	K

00998 SDG: P0710154 MEDIA: WATER DATA FRACTION: MISC

nsample

DMW-6D-100907

10/9/2007

nsample DMW-6I-100907 samp_date 10/9/2007

nsample samp_date lab_id

DMW-9I-100907

samp_date lab_id

P0710154-01A

P0710154-02A

10/9/2007 P0710154-03A

qc_type Pct_Solids

NM 0.0

NM 0.0

qc_type Pct_Solids NM 0.0

DUP_OF:

Pct_Solids DUP_OF:

qc_type

lab_id

DUP_OF:

Parameter	units	Result	Val	Qual
			Qual	Code
ACETYLENE	UG/L	0.5	U	
ALKALINITY	MG/L	9.1		
BUTANE	UG/L	0.094		
CARBON DIOXIDE	MG/L	94		
CHLORIDE	MG/L	130	L	D
ISOBUTANE	UG/L	0.023	J	Р
NITRATE	MG/L	2.8		
NITRITE	MG/L	0.5	Ü	
PHOSPHATE	MG/L	1,	U	
PROPANE	UG/L	0.051		
PROPYLENE	UG/L	0.062		
SULFATE	MG/L	43		

Parameter	units	Result	Val	Qual
			Qual	Code
ACETYLENE	UG/L	0.5	U	
ALKALINITY	MG/L	4	U	
BUTANE	UG/L	0.05	U	
CARBON DIOXIDE	MG/L	150		
CHLORIDE	MG/L	38	L	С
ISOBUTANE	UG/L	0.05	U	
NITRATE	MG/L	1		
NITRITE	MG/L	1.7		
PHOSPHATE	MG/L	1	U	
PROPANE	UG/L	0.1		
PROPYLENE	UG/L	0.05	U	
SULFATE	MG/L	500		

		γ		
Parameter	units	Result	Val	Qual
			Qual	Code
ACETYLENE	UG/L	0.5	Ü	
ALKALINITY	MG/L	71		
BUTANE	UG/L	0.2		
CARBON DIOXIDE	MG/L	240		
CHLORIDE	MG/L	100	L	D
ISOBUTANE	UG/L	0.013	J	Р
NITRATE	MG/L	2.6		
NITRITE	MG/L	1.4		
PHOSPHATE	MG/L	1	U	
PROPANE	UG/L	0.19		
PROPYLENE	UG/L	0.25		
SULFATE	MG/L	220		

00998

SDG: P0710154 MEDIA: WATER DATA FRACTION: OVG

nsample	DMW-6D-100907	nsample	DMW-6I-100907	nsample	DMW-9I-100907
samp_date	10/9/2007	samp_date	10/9/2007	samp_date	10/9/2007
lab_id	P0710154-01A	lab_id	P0710154-02A	lab_id	P0710154-03A
qc_type	NM	qc_type	NM	qc_type	NM
Pct_Solids	0.0	Pct_Solids	0.0	Pct_Solids	0.0
DUP_OF:		DUP_OF:		DUP OF:	

Parameter	units	Result	Val Qual	Qual Code
ETHANE	UG/L	0.029		
ETHENE	UG/L	0.03		
METHANE	UG/L	0.46		

Parameter	units	Result	Val Qual	Qual Code
ETHANE	UG/L	0.081		
ETHENE	UG/L	0.02	J	Р
METHANE	UG/L	9.7		

Parameter	units	Result	Val Qual	Qual Code
ETHANE	UG/L	5		
ETHENE	UG/L	120		
METHANE	UG/L	500		

00998

SDG: P0710189 MEDIA: WATER DATA FRACTION: MF

nsample DMW-5D-101107 samp_date 10/11/2007 lab_id P0710189-03A qc_type NM units MG/L Pct_Solids 0.0 DUP_OF:

nsample samp_date lab_id qc_type units Pct_Solids

DUP_OF:

10/11/2007 P0710189-02A NM MG/L 0.0

DMW-5I-101107

nsample samp_date lab_id qc_type units Pct_Solids

DUP_OF:

10/11/2007 P0710189-01A NM MG/L 0.0

DMW-5S-101107

Parameter	Result	Val Qual	Qual Code
IRON	0.25	L	К

Parameter	Result	Val Qual	Qual Code
IRON	26	L	K

Parameter	Result	Val Qual	Qual Code
IRON	15	L	K

SDG: P0710189 MEDIA: WATER DATA FRACTION: MF

nsample

DMW-7D-101107

samp_date

10/11/2007

lab_id

P0710189-04A

qc_type

NM

units

MG/L

Pct_Solids

0.0

DUP_OF:

Parameter	Result	Val Qual	Qual Code
IRON	2.2	L	K

SDG: P0710189 MEDIA: WATER DATA FRACTION: MISC

nsample DMW-5D-101107 nsample DMW-5I-101107 nsample DMW-5S-101107 samp_date 10/11/2007 samp_date 10/11/2007 samp_date 10/11/2007 lab_id lab_id lab_id P0710189-03A P0710189-02A P0710189-01A qc_type NM qc_type NM qc_type NM Pct_Solids 0.0 Pct_Solids 0.0 Pct_Solids 0.0 DUP_OF: DUP_OF: DUP_OF:

Parameter	units	Result	Val Qual	Quai Code
ACETYLENE	UG/L	0.5	Ù	
ALKALINITY	MG/L	4	U	
BUTANE	UG/L	0.05	U	
CARBON DIOXIDE	MG/L	34		
CHLORIDE	MG/L	8.1		
ISOBUTANE	UG/L	0.05	Ü	
NITRATE	MG/L	2.6		
NITRITE	MG/L	0.5	U	
PHOSPHATE	MG/L	1.	U	
PROPANE	UG/L	0.05	U	
PROPYLENE	UG/L	0.05	U	
SULFATE	MG/L	4.6		

Parameter	units	Result	Val	Qual
			Qual	Code
				·
ACETYLENE	UG/L	0.5	U	
ALKALINITY	MG/L	4	U	
BUTANE	UG/L	0.046	J	Р
CARBON DIOXIDE	MG/L	160		
CHLORIDE	MG/L	100		
ISOBUTANE	UG/L	0.05	U	
NITRATE	MG/L	1.2		
NITRITE	MG/L	0.5	U	1
PHOSPHATE	MG/L	1	U	
PROPANE	UG/L	0.046	J	Р
PROPYLENE	UG/L	0.032	J	Р
SULFATE	MG/L	750		

Parameter	units	Result	Val	Qual
			Qual	Code
ACETYLENE	· UG/L	0.2	J	· P
ALKALINITY	MG/L	4	U	
BUTANE	UG/L .	0.11		
CARBON DIOXIDE	MG/L	200		·
CHLORIDE	MG/L	160		
ISOBUTANE	UG/L	0.05	U	
NITRATE	MG/L	1.1		
NITRITE	MG/L	2.1		
PHOSPHATE	MG/L	1	U	
PROPANE	UG/L	0.11		
PROPYLENE.	UG/L	0.058		
SULFATE	MG/L	1000		

SDG: P0710189 MEDIA: WATER DATA FRACTION: MISC

nsample

DMW-7D-101107

samp_date

10/11/2007

lab_id

P0710189-04A

qc_type

NM

Pct_Solids

0.0

DUP_OF:

units	Result	Val Qual	Qual Code
UG/L	0.5	U	
MG/L	8.1		
UG/L	0.3		
MG/L	62		
MG/L	21	-	
UG/L	0.14		
MG/L	1.1		
MG/L	0.5	Ū	
MG/L	1	Ū	
UG/L	0.14		
UG/L	0.15		-
MG/L	3.1		
	UG/L MG/L UG/L MG/L UG/L UG/L MG/L UG/L MG/L UG/L UG/L UG/L	UG/L 0.5 MG/L 8.1 UG/L 0.3 MG/L 62 MG/L 21 UG/L 0.14 MG/L 1.1 MG/L 0.5 MG/L 1 UG/L 0.14 UG/L 0.15	Qual UG/L 0.5 U MG/L 8.1 UG/L 0.3 MG/L 62 MG/L 21 UG/L 0.14 MG/L 1.1 MG/L 0.5 U MG/L 1 U UG/L 0.14 UG/L 0.15

00998

SDG: P0710189 MEDIA: WATER DATA FRACTION: OVG

nsample	DMW-5D-101107	nsample	DMW-5I-101107	nsample	DMW-5S-101107
samp_date	10/11/2007	samp_date	10/11/2007	samp_date	10/11/2007
lab_id	P0710189-03A	lab_id	P0710189-02A	lab_id	P0710189-01A
qc_type	NM	qc_type	NM	qc_type	NM
Pct_Solids	0.0	Pct_Solids	0.0	Pct_Solids	0.0
DUP_OF:		DUP_OF:		DUP_OF:	

Parameter	units	Result	Val Qual	Qual Code
ETHANE	UG/L	0.016	J	Р
ETHENE	UG/L	0.19		
METHANE	UG/L	0.23		

Parameter	units	Result	Qual Code
ETHANE	UG/L	0.054	
ETHENE	UG/L	0.55	
METHANE	UG/L	24	

Parameter	units	Result	Val Qual	Qual Code
ETHANE	UG/L	0.25		
ETHENE	UG/L	2.1		
METHANE	UG/L	58		

00998

SDG: P0710189 MEDIA: WATER DATA FRACTION: OVG

nsample

DMW-7D-101107

samp_date

10/11/2007

lab_id

P0710189-04A

qc_type

NM

Pct_Solids 0.0

DUP_OF:

Parameter	units	Result	Val Qual	Qual Code
ETHANE	UG/L	0.084		
ETHENE	UG/L	0.19		
METHANE	UG/L	9.6		

APPENDIX B RESULTS AS REPORTED BY THE LABORATORY

U.S. EPA - CLP 1 INORGANIC ANALYSIS DATA SHEET

EPASampleNo:

Lab Name:	Microseeps, Ir	C.		Contract:	1024686		DM	W-5D-	101107
Lab Code:	P0710189	Case No.:	Martin State Airport	SAS No.:			SDO	3 No.:	DMW-5D-10110
Matrix (soil /	water): Water			Lab Sample	D: P07101	89-03A			
Level (low/m	ed):			Date Receive	ed: 10/12/20	007			
% Solids:			Concentration	on Units: <u>mg/</u>	L				
	CAS No).	Analyte	Concer	atration	С	Q	M]
	7439-89	-6 Iron-dis	solved		0.250		M	P	

ColorBefore:	ClarityBefore:	Texture:
ColorAfter:	ClarityAfter:	Artifacts:
	Mary Control of the C	

U.S. EPA - CLP I INORGANIC ANALYSIS DATA SHEET

EPASampleNo:

							J./1 /	roamp.			
Lab Name:	Microseeps, Inc.			Contract: 1024686			DM	DMW-5I-101107			
Lab Code:	P0710189	Case No.:	Martin State Airport	SAS No.:			SD	G No.:	DMW-5D-10110		
Matrix (soil /	water): Water	_		Lab Sample ID	: P071018	9-02A					
Level (low/me	ed):			Date Received:	10/12/20	07					
% Solids:		<u></u>	Concentration	on Units: mg/L							
	CAS No.		Analyte	Concent	ration	С	Q	M			
	7439-89-6	Iron-dis	solved		26.0		M	P			

ColorBefore:	ClarityBefore:	Texture:
ColorAfter:	ClarityAfter:	Artifacts:

U.S. EPA - CLP INORGANIC ANALYSIS DATA SHEET

EPASampleNo: "

Lab Name:	Microseeps, I	nc.			1024686		DMW-5S-101107		
Lab Code:	P0710189	Case No.:	Martin State Airport	SAS No.:			SDC	No.:	DMW-5D-101107
Matrix (soil /	water): Water	******		Lab Sample	ID: P071018	9-01A	_		
Level (low/m	ed):			Date Receiv	red: 10/12/20	07			
% Solids:			Concentration	on Units: <u>mg</u>	/L				
	CACN	- T	Analyte	Conce	entration	C	0	м	7

	7439-89-6	Iron-dissolved	 	15.0		M	Р .	ĺ
•								
					,			

Analyte

CAS No.

ColorBefore:	ClarityBefore:	Texture:
ColorAfter:	ClarityAfter:	Artifacts:

U.S. EPA - CLP 1 INORGANIC ANALYSIS DATA SHEET

							EPA	Samp	leNo: -	
Lab Name:	Microseeps, In	c.		Contract: 1024686			DMW-7D-101107			
Lab Code:	P0710189	Case No.:	Martin State Airport	SAS No.:			SD	G No.:	DMW-5D-10110	
Matrix (soil /	water): Water	_		Lab Sample ID:	P0710189	04A				
Level (low/m				Date Received:	•••					
% Solids:		 -								
			Concentration	on Units: mg/L						
				Concentra	ation	 	1 -	1	7	
	CAS No.		Analyte		2.20	C	Q M	M P		
	7439-89	-6 Iron-m:	SSOIVEG		2.20	<u></u>	1 1/1	J <u>F</u>	_	
		•								
•										
								•		
				•						
ColorBe	fore:		ClarityBefore	:	T	exture:				

Comments:

ColorAfter:

Artifacts:

ClarityAfter:

U.S. EPA - CLP

OTHER ANALYSIS DATA SHEET

EPASampleino:						
÷						
DMW-5D-101107						

Lab Name:	Microseeps, Inc			Contract: SAS No.:	1024686	DMW-5D	-101107	
Lab Code:	P0710189	Case No.:	Martin State Airport			SDG No.:	DMW-5D	-10110
Matrix (soil /	water): Water			Lab Sample	ID: P0710189-03A			
Level (low/m	ed):			Date Receiv	/ed: 10/12/2007			
% Solids:								
			Concentration	n I Inite				

CAS No.	Analyte	Concentration	Units	С	Q	M
16887-00-6	Chloride	8.10	mg/L		M	
14797-65-0	Nitrite	0.50	mg/L	U		
14797-55-8	Nitrate	2.60	mg/L			
14808-79-8	Sulfate	4.60	mg/L		M	
14596-37-3	Phosphate	1.00	mg/L	U		
***************************************	Alkalinity as CaCO3	4.00	mg/L	บ		
124-38-9	Carbon dioxide	34.0	mg/L			
74-86-2	Acetylene	0.500	ug/L	ប		
75-28-5	iso-Butane	0.050	ug/L	U		
74-84-0	Ethane	0.016	ug/L	1		
74-85-1	Ethene	0.190	ug/L			
106-97-8	n-Butane	0.050	ug/L	U		
74-98-6	Propane	0.050	ug/L	U		~
115-07-1	Propene	0.050	ug/L	ט		
74-82-8	Methane	0.230	ug/L			

U.S. EPA - CLP 1 OTHER ANALYSIS DATA SHEET

EPASampleNo:

Lab Name:	Microseeps, Inc	Microseeps, Inc.			1024686	DMW-5I-		
Lab Code:	P0710189	Case No :	Martin State Airport	SAS No.:		SDG No.:	DMW-5D	-101107
Matrix (soil /	water): Water			Lab Sample II	D: P0710189-02A	_		
Level (low/me	ed):			Date Received	d: 10/12/2007	··		
% Solids:								
			Concentration	n Units :		-		

CAS No.	Analyte	Concentration	Units	С	Q	М
16887-00-6	Chloride	100	mg/L		M	
14797-65-0	Nitrite	0.50	mg/L.	U		
14797-55-8	Nitrate	120	mg/L			
14808-79-8	Sulfate	750	mg/L		M	
14596-37-3	Phosphate	1.00	mg/L	U		
	Alkalinity as CaCO3	4.00	mg/L	U		
124-38-9	Carbon dioxide	160	mg/L	<u> </u>		
74-86-2	Acetylene	0.500	ug/L	U		
75-28-5	iso-Butane	0.050	ug/L	U		
74-84-0	Ethane	0.054	ug/L			4.5
74-85-1	Ethene	0.550	ug/L			
106-97-8	n-Butane	0.046	ug/L	J		
74-98-6	Propane	0.046	ug/L	J		
115-07-1	Propene	0.032	ug/L	J		
74-82-8	Methane	24.0	ug/L			

EPASampleNo:

U.S. EPA - CLP 1 OTHER ANALYSIS DATA SHEET

Lab Name:	Microseeps, Inc.			Contract:	1024686	DMW-5S-	101107	
Lab Code:	P0710189	Case No.:	Martin State Airport	SAS No.:		SDG No.:	DMW-5D-	10110
Matrix (soil / w	vater): Water			Lab Sample I	D: P0710189-01A	_		
Level (low/med	d):			Date Received	d: 10/12/2007	-		
% Solids:								
			Concentratio	n Units :				ı

CAS No. Analyte		Concentration	Units	C	Q	M
16887-00-6	Chloride	160	mg/L		M	
14797-65-0	Nitrite	2.10	mg/L			
14797-55-8	Nitrate	1.10	mg/L			
14808-79-8	Sulfate	1000	mg/L		M	
14596-37-3	Phosphate	1.00	mg/L	U		
	Alkalinity as CaCO3	4.00	mg/L	บ		
124-38-9	Carbon dioxide	200	mg/L			
74-86-2	Acetylene	0.200	ug/L	J		
75-28-5	iso-Butane	0.050	ug/L	U		
74-84-0	Ethane	0.250	ug/L			
74-85-1	Ethene	2.10	ug/L			
106-97-8	n-Butane	0 110	ug/L			
74-98-6	Propane	0.110	ug/L			
115-07-1	Propene	0.058	ug/L			
74-8.2-8	Methane	58.0	ug/L			

U.S. EPA - CLP 1 OTHER ANALYSIS DATA SHEET

EPASampleNo:

Lab Name:	Microseeps, Inc	: .		Contract: 1	024686	DMW-7D		
Lab Code:	P0710189	Case No.:	Martin State Airport	SAS No.:		SDG No.:	DMW-5D-	-10110
Matrix (soil /	water): Water			Lab Sample ID	: P0710189-04A	_		
Level (low/me	ed):			Date Received:	: 10/12/2007	_ ·		
% Solids:								,
			Concentration	on Units :				

CAS No.	Analyte	Concentration	Units	С	Q	M
16887-00-6	Chloride	21.0	mg/L		M	
14797-65-0	Nitrite	0.50	mg/L	U		
14797-55-8	Nitrate	1.10	mg/L			
14808-79-8	Sulfate	3.10	mg/L		M	
14596-37-3	Phosphate	1.00	mg/L	U		
	Alkalinity as CaCO3	8.10	mg/L			
124-38-9	Carbon dioxide	62.0	mg/L			
74-86-2	Acetylene	0.500	ug/L	บ		
75-28-5	iso-Butane	0.140	ug/L			
74-84-0	Ethane	0.084	ug/L			
74-85-1	Ethene	0.190	ug/L			
106-97-8	n-Butane	0.300	ug/L			
74-98-6	Propane	0.140	ug/L			
115-07-1	Propene	0.150	ug/L			•
74-82-8	Methane	9.60	ug/L			

U.S. EPA - CLP 1 INORGANIC ANALYSIS DATA SHEET

EPASampleNo: '

		Microseeps, Inc.									· · ·	7
Lab Name:	Microse					Contract: 1024686			DMW-6D-100907			
Lab Code:	P07101		Case No :	Martin S	tate Airport	SAS No.	·			SDC	No.:	DMW-6D-10090
						Lab Sam	ple ID: P0	710154-	 01A			
Matrix (soil /		<u> </u>					eived: 10					
Level (low/me	ea):											
% Solids:					Concentration	on Units:	mg/L	_				
		CAS No.	T	Analyte	2	Co	ncentratio	n	С	Q	M	1
	L	7439-89-6	Iron-di				0.02	:3	J	М	P]
•	L	1437 07 0	1 2011 1									
								•				
										,		
	•											
			;			-						
ColorB					ClarityBefor	re;			Texture:			
ColorA	fter:	·····		-	ClarityAfter	•		1	Artifacts	:		

U.S. EPA - CLP 1 INORGANIC ANALYSIS DATA SHEET

EPASampleNo:

						EPA	SampleNe	D:
Lab Name:	Microseeps, Inc.			Contract: 102468	6		W-6I-1009	
Lab Code:		Case No : Martin St	ate Airport	SAS No.:		SDO	No.: Di	MW-6D-1009
			····	Lab Sample ID: P07	10154-02A			
	water): Water			Date Received: 10/1				
Level (low/m			•					
% Solids:			Concentration	Units: mg/L				
	CAS No.	Analyte		Concentration	C	Q	M	
	7439-89-6	Iron-dissolved		28.000		М	P	
		•						
	·				•			
			Oli+-D-f		Texture	::		
ColorB			ClarityBefore		Artifact			· · · · · · · · · · · · · · · · · · ·
ColorA	\fter:		ClarityAfter:		Aitilaoi			

ILM**3**4.0

U.S. EPA - CLP

INORGANIC ANALYSIS DATA SHEET

EPASampleNo: : DMW-9I-100907 1024686 Contract: Microseeps, Inc. Lab Name: SDG No.: DMW-6D-10090 Case No.: Martin State Airport SAS No.: P0710154 Lab Code: Lab Sample ID: P0710154-03A Matrix (soil / water): Water Date Received: 10/10/2007 Level (low/med): % Solids: Concentration Units: mg/L

-	CAS No.	Analyte	Concentration	C	Q	M	
	7439-89-6	Iron-dissolved	8.800		M	P	į

ColorBefore: ColorAfter:	ClarityBefore: ClarityAfter:	Texture: Artifacts:	
Comments:		•	

U.S. EPA - CLP OTHER ANALYSIS DATA SHEET

	EPASamp	eino.	
	DMW-6D-	-100907	
	SDG No.:	DMW-6D-1009	DT.
01 A			

Lab Name:	Microseeps, Inc	>.		Contract:	1024686	DMW-6D-100907		
Lab Code:	P0710154	Case No :	Martin State Airport	SAS No.:		SDG No:	DMW-6D	-100907
Matrix (soil /	water): Water			Lab Sample II	D: P0710154-01A			
Level (low/me	ed):			Date Received	d: 10/10/2007	_		
% Solids:								
			Concentratio	n Units:				

CAS No.	Analyte	Concentration	Units	С	Q	M
16887-00-6	Chloride	130	mg/L			
14797-65-0	Nitrite	0.50	mg/L	U		
14797-55-8	Nitrate	.2.80	mg/L			
14808-79-8	Sulfate	43.0	mg/L			
14596-37-3	Phosphate	1.00	mg/L	U		
	Alkalinity as CaCO3	9.10	mg/L			
124-38-9	Carbon dioxide	94.0	mg/L			
74-86-2	Acetylene	0.500	ug/L	U		
75-28-5	iso-Butane	0.023	ug/L	J		
74-84-0	Ethane	0.029	ug/L			
74-85-1	Ethene	0.030	ug/L			
106-97-8	n-Butane	0.094	ug/L			,
74-98-6	Ргорапе	0.051	ug/L			
115-07-1	Propene	0.062	ug/L			
74-82-8	Methane	0.460	ug/L			

U.S. EPA - CLP

OTHER ANALYSIS DATA SHEET

	EPASampleNo:	
I	:	
	DMW-6I-100907	

Lab Name:	Microseeps, In	C.		Contract:	1024686	DMW-61-	100907
Lab Code:	P0710154	Case No.:	Martin State Airport	SAS No:		SDG No.:	DMW-6D-10090
Matrix (soil /	water): Water			Lab Sample	ID: P0710154-02A		
Level (low/m				Date Receive	ed: 10/10/2007		
% Solids:							
			Concentration	n Units :	•		

CAS No.	Analyte	Concentration	Units	С	Q	M
16887-00-6	Chloride	38.0	mg/L			
14797-65-0	Nitrite	1.70	mg/L			
14797-55-8		1.00	mg/L			
14808-79-8	Sulfate	500	mg/L		M	
14596-37-3	Phosphate	1.00	mg/L	U		
	Alkalinity as CaCO3	4.00	mg/L	บ		
124-38-9	Carbon dioxide	150	mg/L			
74-86-2	Acetylene	0.500	ug/L	U		
75-28-5	iso-Butane	0.050	ug/L	U		, , , , , , , , , , , , , , , , , , , ,
74-84-0	Ethane	0.081	ug/L			
74-85-1	Ethene	0.020	ug/L	J		
106-97-8	n-Butane	0.050	ug/L	U		
74-98-6	Propane	0.100	ug/L			
115-07-1	Propene	0.050	ug/L	U		
	Methane	9.70	ug/L			

U.S. EPA - CLP

OTHER ANALYSIS DATA SHEET

						EPASamp1	leNo:
Lab Name: Lab Code:	Microseeps, Inc	l		Contract: SAS No.:	1024686	DMW-9I-	100907
	P0710154	Case No.:	Martin State Airport			SDG No.:	DMW-6D-10090
Matrix (soil /	water): Water			Lab Sample	ID: P0710154-03A		
Level (low/m		<u> </u>		Date Receiv	ved: 10/10/2007		
% Solids:							

Concentration Units:

CAS No.	Analyte	Concentration	Units	С	Q	М
16887-00-6	Chloride	100	mg/L			
14797-65-0	Nitrite	1.40	mg/L			
14797-55-8		2.60	mg/L			
14808-79-8	Sulfate	220	mg/L		M	
	Phosphate	1.00	mg/L	U		
	Alkalinity as CaCO3	71.0	mg/L			
124-38-9	Carbon dioxide	240	mg/L		`.	···
74-86-2	Acetylene	0.500	ug/L	บ		
75-28-5	iso-Butane	0.013	ug/L	J		v
74-84-0	Ethane	5.000	ug/L			
74-85-1	Ethene	120.0	ug/L			
106-97-8		0.200	ug/L.			
	Propane	0.190	ug/L			·
	Ргорепе	0.250	ug/L			
	Methane	500.0	ug/L			

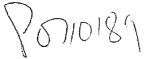
APPENDIX C SUPPORT DOCUMENTATION

SDG P0710189

e e	SORT	UNITS	NSAMPLE	LAB_ID	QC_TYPE	SAMP_DATE	EXTR_DATE	ANAL_DATE	SMP_EXTR	EXTR_ANL	SMP_ANL
	MF	MG/L	DMW-5S-101107	P0710189-01A	NM	10/11/2007	10/15/2007	10/15/2007	4	0	4
	MF	MG/L	DMW-5I-101107	P0710189-02A	NM	10/11/2007	10/15/2007	10/15/2007	4	0	4
	MF	MG/L	DMW-5D-101107	P0710189-03A	NM	10/11/2007	10/15/2007	10/15/2007	4	0	4
	MF	MG/L	DMW-7D-101107	P0710189-04A	NM	10/11/2007	10/15/2007	10/15/2007	4	0	4
	ACET	UG/L	DMW-5I-101107	P0710189-02A	NM	10/11/2007	10/24/2007	10/24/2007	13	0	13
	ACET	UG/L	DMW-7D-101107	P0710189-04A	NM	10/11/2007	10/24/2007	10/24/2007	13	0	13
	ACET	UG/L	DMW-5S-101107	P0710189-01A	NM	10/11/2007	10/24/2007	10/24/2007	13	0	13
	ACET	UG/L	DMW-5D-101107	P0710189-03A	NM	10/11/2007	10/24/2007	10/24/2007	13	0	13
	ALK	MG/L	DMW-5D-101107	P0710189-03A	NM	10/11/2007	10/17/2007	10/17/2007	6	0	6
	ALK	MG/L	.DMW-7D-101107	P0710189-04A	NM	10/11/2007	10/17/2007	10/17/2007	6	0	6
	ALK	MG/L	DMW-5S-101107	P0710189-01A	NM	10/11/2007	10/17/2007	10/17/2007	6	0	6
	ALK	MG/L	DMW-5I-101107	P0710189-02A	NM	10/11/2007	10/17/2007	10/17/2007	6	0	6
	CL	MG/L	DMW-7D-101107	P0710189-04A	NM	10/11/2007	10/12/2007	10/12/2007	1	0	1
	CL	MG/L	DMW-5S-101107	P0710189-01A	NM	10/11/2007	10/12/2007	10/12/2007	1	0	1
	CL	MG/L	DMW-5I-101107	P0710189-02A	NM	10/11/2007	10/12/2007	10/12/2007	1	0	1

Thursday, November 15, 2007

SORT	UNITS	NSAMPLE	LAB_ID	QC_TYPE	SAMP_DATE	EXTR DATE	ANAL_DATE	SMP_EXTR	EXTR_ANL	SMP_ANL
CL	MG/L	DMW-5D-101107	P0710189-03A	NM	10/11/2007	10/12/2007	10/12/2007	1	0	1
CO2	MG/L	DMW-5S-101107	P0710189-01A	NM	10/11/2007	10/24/2007	10/24/2007	13	0	13
CO2	MG/L	DMW-5I-101107	P0710189-02A	NM	10/11/2007	10/24/2007	10/24/2007	13	0	. 13
CO2	MG/L	DMW-5D-101107	P0710189-03A	NM	10/11/2007	10/24/2007	10/24/2007	13	0	13
CO2	MG/L	DMW-7D-101107	P0710189-04A	NM	10/11/2007	10/24/2007	10/24/2007	13	0	13
MISC	UG/L	DMW-5S-101107	P0710189-01A	NM	10/11/2007	10/24/2007	10/24/2007	13	0	13
MISC	UG/L	DMW-5I-101107	P0710189-02A	NM	10/11/2007	10/24/2007	10/24/2007	13	0	13
MISC	UG/L	DMW-7D-101107	P0710189-04A	NM	10/11/2007	10/24/2007	10/24/2007	13	0	13
MISC	UG/L	DMW-5D-101107	P0710189-03A	NM	10/11/2007	10/24/2007	10/24/2007	13	0	13
NTA	MG/L	DMW-5D-101107	P0710189-03A	NM	10/11/2007	10/12/2007	10/12/2007	1	0	1
NTA	MG/L	DMW-5I-101107	P0710189-02A	NM	10/11/2007	10/12/2007	10/12/2007	1	0	1
NTA	MG/L	DMW-5S-101107	P0710189-01A	NM	10/11/2007	10/12/2007	10/12/2007	1	0	1
NTA	MG/L	DMW-7D-101107	P0710189-04A	NM	10/11/2007	10/12/2007	10/12/2007	1	0	1
NTI	MG/L	DMW-5D-101107	P0710189-03A	NM	10/11/2007	10/12/2007	10/12/2007	1	0	1
NTI	MG/L	DMW-5I-101107	P0710189-02A	NM	10/11/2007	10/12/2007	10/12/2007	1	0	1
NT1	MG/L	DMW-5S-101107	P0710189-01A	NM	10/11/2007	10/12/2007	10/12/2007	1	0	1
NTI	MG/L	DMW-7D-101107	P0710189-04A	NM	10/11/2007	10/12/2007	10/12/2007	1	0	1
PO4	MG/L	DMW-7D-101107	P0710189-04A	NM	10/11/2007	10/17/2007	10/17/2007	6	0	6


Thursday, November 15, 2007

SORT	UNITS	NSAMPLE	LAB_ID	QC_TYPE	SAMP DATE	EXTR_DATE	ANAL_DATE	SMP_EXTR	EXTR_ANL	SMP_ANL
PO4	MG/L	DMW-5D-101107	P0710189-03A	NM	10/11/2007	10/17/2007	10/17/2007	6	0	6
PO4	MG/L	DMW-5I-101107	P0710189-02A	NM	10/11/2007	10/16/2007	10/16/2007	5	0	5
PO4	MG/L	DMW-5S-101107	P0710189-01A	NM	10/11/2007	10/16/2007	10/16/2007	5	0	5
PROP	UG/L	DMW-5I-101107	P0710189-02A	NM	10/11/2007	10/24/2007	10/24/2007	13	0	13
PROP	UG/L	DMW-5S-101107	P0710189-01A	NM	10/11/2007	10/24/2007	10/24/2007	13	0	13
PROP	UG/L	DMW-5D-101107	P0710189-03A	NM	10/11/2007	10/24/2007	10/24/2007	13	0	13
PROP	UG/L	DMW-7D-101107	P0710189-04A	NM .	10/11/2007	10/24/2007	10/24/2007	13	0	13
SO4	MG/L	DMW-5S-101107	P0710189-01A	NM	10/11/2007	10/16/2007	10/16/2007	5	0	5
SO4	MG/L	DMW-5I-101107	P0710189-02A	NM	10/11/2007	10/16/2007	10/16/2007	5	0	5
SO4	MG/L	DMW-5D-101107	P0710189-03A	NM	10/11/2007	10/12/2007	10/12/2007	1	0	1
SO4	MG/L	DMW-7D-101107	P0710189-04A	NM	10/11/2007	10/12/2007	10/12/2007	1	0	1
ETHA	UG/L	DMW-5S-101107	P0710189-01A	NM	10/11/2007	10/24/2007	10/24/2007	13	0	13
ETHA	UG/L	DMW-5I-101107	P0710189-02A	NM	10/11/2007	10/24/2007	10/24/2007	13	0	13
ETHA	UG/L	DMW-5D-101107	P0710189-03A	NM	10/11/2007	10/24/2007	10/24/2007	13	0	13
ETHA	UG/L	DMW-7D-101107	P0710189-04A	NM	10/11/2007	10/24/2007	10/24/2007	13	0	13
ETHE	UG/L	DMW-5D-101107	P0710189-03A	NM	10/11/2007	10/24/2007	10/24/2007	13	0	13
ETHE	UG/L	DMW-5I-101107	P0710189-02A	NM	10/11/2007	10/24/2007	10/24/2007	13	0	13
ETHE	UG/L	DMW-5S-101107	P0710189-01A	NM	10/11/2007	10/24/2007	10/24/2007	13	0	13

Thursday, November 15, 2007

SORT	UNITS	NSAMPLE	LAB ID	QC_TYPE	SAMP_DATE	EXTR_DATE	ANAL_DATE	SMP_EXTR	EXTR ANL	SMP ANL
ETHE	UG/L	DMW-7D-101107	P0710189-04A	NM	10/11/2007	10/24/2007	10/24/2007	13	0	13
METH	UG/L	DMW-5D-101107	P0710189-03A	NM	10/11/2007	10/24/2007	10/24/2007	13	0	13
METH	UG/L	DMW-5I-101107	P0710189-02A	NM	10/11/2007	10/24/2007	10/24/2007	13	0	13
METH	UG/L	DMW-7D-101107	P0710189-04A	NM .	10/11/2007	10/24/2007	10/24/2007	13	0	13
METH	UG/L	DMW-5S-101107	P0710189-01A	NM	10/11/2007	10/24/2007	10/24/2007	13	0	13

Chain of Custody Record

Severn Trent Laboratories, Inc.

STL-4124 (0901)					Date	Chain of Custody Number 5
Client 15 1 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	Project Manager	Water for	W		10-11-07	322839 4
Address	Telephone Number	r (Area Code)/Fax	Number		Lab Number	
20251 CONFUNT Blue STE ZU	(301) 5	75.302	ح	<u>, v</u>	1 1 1 2 1 2	Page of
Client IEVICA TECH 145 Address ZUZSI CCN KIN, BILLE STE ZUD City General Form IN 70874 Project Name and Location (State)	Site Contact	Jan Lab C	Contact		lysis (Attach list if space is needed)	
Project Name and Location (State) More five Share Arm Don 4 Contract/Purchase Order/Quote No.	Carrier/Waybill Nu	mber	. У	17 Con 2 Con	Dreet	Special Instructions/ Conditions of Receipt
Contract/Purchase Order/Quote No.	Ma	atrix	Containers & Preservatives		127	
Sample I.D. No. and Description (Containers for each sample may be combined on one line) Date	Time Jy Ville	Soil	H2SO4 HNO3 HCI NaOH ZnAc/ NaOH	11.110 11.10 11.10	Cim Cim	
DMW-55-101107 10-11-07	1450 X	\times	\times	$\times \times \times$	XX	
DMW - 5I - 101107	1234 X	X	X	XXXX	$\times \times $	
Dmv - 50 - 101107	1450 X		X	XXXX	$\times \times$	
Drus - 70 - 16/167	1625 X	X		XXXX	XX	
JANES ID = ICHOI		Sees to order to the			. 3	
<u> </u>		74				
			++++++			
Possible Hazard Identification	Samo	le Disposal			/A fee may be a	assessed if samples are relained
Non-Hazard	☐ Unknown ☐ Re	eturn To Client		Archive For	Months longer than 1 m	onth)
Turn Around Time Required			OC Requirements (Spec	PI(X)	\cap \mathcal{A}	
24 Hours 48 Hours 7 Days 14 Days 21 Days.	Date	Time / 200	1. Received By			Date Time
2. Relinquished By	Date	Time	2. Received By	7-4		Dale Time
		<u> </u>	2. Recoved Pu			, Date Time
3. Relinquished By	Date	Time	3. Received By			
Comments		<u> </u>				
;	with the Cample: GIN	W. 57-11 Occ				

P0710189 : LabProject #: Client Code: TetraTechP Client: TetraTech NUS Inc. Project: Martin State Airport 人名 计一位 化二丁的复数形式电路 使用的复数形式的过去分词 Cooler ID: 1 10/12/2007 Date cooler opened: A. Preliminary Examination Phase: Cooler opened by: Carrier Name: FedEx Airbill #: 1. Was airbill Attached? N/A Seal Name: 0 Location: How many? N/A 2. Custody Seals? Yes 3. Seals intact? 4. Screened for radiation? N/A Signed by employee? Yes Properly Completed? Yes Yes 5. COC Attached? Martin State Airport 6. Project Identification from custody paper: Temperature: Yes 7. Preservative: Comments: B. Log-In Phase: Samples Log-in Date: Log-in By: 10/12/2007 1. Packing Type: 2. Were samples in separate bags? Yes Labels agree with COC? Yes 3. Were containers intact? Number of samples received: 24 4. Number of bottles received: Correct preservatives added? N/A Yes 5. Correct containers used? Yes 6. Sufficient sample volume? N/A 7. Bubbles in VOA samples? 8. Was Project manager called and status discussed? N/A Comments:

Have designate person initial here to acknowledge receipt of cooler:

Page 1 of 1

CASE NARRATIVE

Client: TetraTech NUS
Project Name: Martin State Airport
SDG: DMW-5D-101107

Microseeps Project No.: P0710189

Sample Receipt

Microseeps, Inc. received the sample shipment on 10/12/2007. Copies of the laboratory's cooler receipt forms are enclosed. A summary of the field and laboratory identifications is presented below.

FIELD IDENTIFICATION	LAB IDENTIFICATION				
DMW-5S-101107	P0710189-01				
DMW-5I-101107	P0710189-02				
DMW-5D-101107	P0710189-03				
DMW-7D-101107	P0710189-04				

For some of the reporting forms, the sample identifications have been truncated because of space limitations.

A copy of all communications concerning this project has been enclosed.

Sample Analyses

The sample analyses were performed in accordance with Microseeps routine Standard Operating procedures. There were no unusual observances noted during the analysis of these samples

The percent recovery for the matrix spike analyses for iron was outside of control limits. The unspiked sample concentration was approximately 20 times the spike added.

The percent recoveries for the batch MS analyses for chloride were outside of control limits. The unspiked sample concentration was over 2 times the spike added. All other QC analyses were acceptable.

Case Narrative

	フルル	\sim	•	
Batch number:	M071015008.10)16	aK .	Original Run Date:	10/15/07

Sample numbers: P0710095-01AD->03AD, P0710092-01AD->07AD, P0710093-05AD, 06AD, 07AD, P0710154-01AD->03AD, P0710189-01AD->04AD.

Out of Control Event: P0710095-01AD-MSPK was out for Fe.

Corrective Action Taken: N/A.

Result: N/A.

Observations to support use of data: The concentration of the sample was greater than four times the concentration of the matrix spike for Fe. Accept data.

Manual Integration Checklist and Approval

- Manual Integration approved?: Yes No
- Satisfactorily documented on this narrative?
- Manually integrated chromatogram initialed and dated by analyst?

Signature	Lead	Anal	vst or	Lab.	Mgr.

Date

Analyzed & Reviewed by: (10)(Date: 10/15/07
Manual Integration Conducted? YES NO
(Circle One)
Reviewed by: Date:
Reviewed & Entered by: LIMS Date: 10/16/07
Reviewed by: Date: Date: 10/16/7
Corrected by: Date:

Lab Name:	Microseeps, In	nc.		Contract:	1024686	
Lab Code:	P0710189	Case No :	Martin State Airport	SAS No.:		SDG No : <u>DMW-5D-101</u> 10
Initial Calibration Source:		SCP Sci				
Continuing Calibration Source			-			

Concentration Units: mg/L

	Initial Calibration								
Analyte	True	Found	%R(1)	True	Found	%R(1)	Found	%R(1)	M
Iron, dissolved	1.000	1.017	102	12.50	12.61	101	12.71	102	

(1) Control Limits: Mercury 80-120; other Metals 90-110; Cyanide 85-115

Lab Name:	Microseeps, Inc	3,	Contract:		1024686		
Lab Code:	P0710189	Case No.:	Martin State Airport	SAS No.:		SDG No.:	DMW-5D-101107
Initial Calibrat	tion Source:						
Continuing Calibration Source		SCP Sci					

Concentration Units: mg/L

	Init	tial Calibratio	מי	Continuing Calibration					
Analyte	True	Found	%R(1)	True	Found	%R(1)	Found	%R(1)	M
Iron, dissolved				12.50	1.2.76	102	12.73	102	

(1) Control Limits: Mercury 80-120; other Metals 90-110; Cyanide 85-115

Lab Name:	Microseeps, Inc	inc.		Contract:	1024686		
Lab Code:	P0710189	Case No.:	Martin State Airport	SAS No.:		SDG No.:	DMW-5D-10110
Initial Calibrat	ion Source:						
Continuing Calibration Source		SCP Sci					

Concentration Units: mg/L

	Ini	tial Calibratio	n		Conti	nuing Calibra	tion		
Analyte	True	Found	%R(1)	True	Found	%R(1)	Found	%R(1)	M
Iron,dissolved				12.50	12.84	103	12.96	104	

(1) Control Limits: Mercury 80-120; other Metals 90-110; Cyanide 85-115

U.S. EPA - CLP BLANKS

Lab Name:

Microseeps, Inc.

Contract:

1024686

Lab Code:

P0710189

Case No :

SAS No.:

SDG No.: DMW-5D-101101

Preparation.Blank Matrix (soil/water):

Water

Preparation Blank Concentration Units:

mg/L

Martin State Airport

	Init Calib.			Cont	inuing Calibi	ration B	Blank		Preparation		
Analyte	Blank	С	1	C	2	C	3	С	Blank	С	M
Iron-dissolved	0.050U	U	0.040	J	0.050	U	0.050	U	0.050	υ	P

 Lab Name:
 Microseeps, Inc.
 Contract:
 1024686

 Lab Code:
 P0710189
 Case No.:
 Martin State Airport
 SAS No.:
 SDG No.:
 DMW-5D-101 107

Preparation Blank Matrix (soil/water): Water

Preparation Blank Concentration Units : mg/L

	Init Calib Blank	·		Cont	inuing Calib	ration I	Blank	<u></u>	Preparation Blank	<u> </u>	М
Analyte	Diank	U	1	<u> </u>	۷	<u> </u>	<u> </u>	<u> </u>		<u> </u>	101
Iron, dissolved			0.040	J	0.040	J	0.040	J		,	

U.S. EPA - CLP ICP INTERFERENCE CHECK SAMPLE

Lab Name:

Microseeps, Inc.

Contract:

1024686

Lab Code:

P0710189

Case No: Martin State Airport

SAS No :

SDG No.: DMW-5D-101107

ICP ID Number: EL99063568

ICS Source:

SCP Sci

	Tr	ue	Initi	al Found		Fi	nal Found	
Analyte	Sol. A	Sol. AB	Sol. A	Sol. AB	%R	Sol. A	Sol. AB	%R
Iron	200		151	152	75.5			
						7		

U.S. EPA - CLP 7 LABORATORY CONTROL SAMPLE

Lab Name: Microseeps, Inc.

Lab Code: P0710189 Case No.: Martin State Airport SAS No.: SDG No.: DMW-5D-101107

Solid LCS Source: SCP Sci

	Aquec	us (mg/L)				Solid (n	ng/Kg)	
Analyte	True	Found	%R	True	Found	С	Limits	%R
Iron-dissolved	5.00	5.013	100					

U.S. EPA - CLP 13

PREPARATION LOG

Lab Name:

Microseeps, Inc.

Contract:

1024686

Lab Code:

P0710189

Case No.: Martin State Airport

SAS No:

SDG No : DMW-5D-101107

Method:

EPA Sample No.	Preparation Date	Weight (gram)	Volume (ml)
PBW	10/12/2007		50
LCSW	10/12/2007		50
ZZZZZZ	10/12/2007		50
ZZZZZZ	10/12/2007		50
ZZZZZZ	10/12/2007		50
ZZZZZZ	10/12/2007		50
ZZZZZZ	10/12/2007		50
ZZZZZZ	10/12/2007		50
ZZZZZZ	10/12/2007		50
ZZZZZZ	10/12/2007		50
ZZZZZZ	10/12/2007		50
ZZZZZZ	10/12/2007		50
ZZZZZZ	10/12/2007		50
ZZZZZZ	10/12/2007		50
ZZZZZZ	10/12/2007		50
ZZZZZZ	10/12/2007		50
ZZZZZZ	10/12/2007		50
ZZZZZZ	10/12/2007		50
ZZZZZZ	10/12/2007		50
ZZZZZZ	10/12/2007		50
DMW-5S-101107	10/12/2007		50
DMW-5I-101107	10/12/2007		50
DMW-5D-101107	10/12/2007		50
DMW-7D-101107	10/12/2007		50

U.S. EPA - CLP 14 ANALYSIS RUN LOG

Lab Name: Microseeps, Inc.

Lab Code: P0710189 Case No.: Martin State Airport SAS No.: SDG No.: DMW-5D-10110*

 Instrument ID Number:
 EL99063568
 Method:
 P

 Start Date:
 10/15/2007
 End Date:
 10/15/2007

						_																					
				<u> </u>	r -	1		· · · · ·							Ana	·	Т'''	_	т	_	Т-	Т	_	Т	т-		Γ-
EPA Sample No.	D/F	Time	%R	A L	S B	A S	B A	B E	C D	C A	C R	0	U	Ε	В	G	N	1	Ĭ		E	G	N A	I		И	
ICV	1	09:01		X	Г	X	X			X							X	ł	X	L	X		_1			X	
ICB	1	09:08		X		X		1		X			1			X	X	1	,		X	•		1		X	L
ICSA	1	09:11				X			X	- 1	X		X		X		X			١.	X	J			L		L
ICSAB	1	09:14					X	, ,	X	•	X		X		X			L	X	,		X	,		L	X	L
CCV	1	09:17		X		X				X			- 1				X		i	J	X	1	1	J	L	X	L
ССВ	1	09:20		X		X	X		1	X	X						X	<u></u>	X	<u> </u>	X	X	۰.	.I	L	X	L
PBW	1	09:23			I	X			X					X	1		X	l		X		L	X	J	L		
LCSW	1	09:26				X		. ,	X	\perp			1	X			X	l		X	5 .	L	X	I	L	Ш	L
ZZZZZZ	1	09:29				X			X				1	X			X	J		X	1	L	X	L	L	Ш	L
ZZZZZZ	1	09:32				X			X				!	X			X			X		L	X	<u> </u>			_
ZZZZZZ	1	09:35	-			X			X				. 1	X			X			X	1	L	X				L
ZZZZZZ	1	09:38		X	1 1	X			I.	X	E	J.	L		X						X					X	
ZZZZZZ	1	09:41		X		X				X .		- 1					X				X			,		X	
ZZZZZZ	1	09:44		X		X	1	,	X		X		,				X				X	ł	<u> </u>	ł		X	
ZZZZZZ	1	09:47		X			X		X		X						X				X	1	1		F1	X	
ZZZZZZ	1	09:50		X	1	X	{	- 1	X		X	- 1		- 1	X	. 1	!!				X	ł	1	L		X	
CCV	1	09:53		X	,	X	1			X .		- 1			X						X		•		, ,	X	
CCB	1	09:56		X		X	X		X	X .	X		X	X	X	X	X		X	X	X	X	X	L		X	
ZZZZZZ	40	09:59															Ш				Ш	L	L				
ZZŻZZZ	10	10:02								1												L		L		Ц	
ZZZZZZ	5	10:05																									
ZZZZZZ	10	10:08												\perp								L	L			Ц	
ZZZZZZ	10	10:11			\int					\int	\int											L			Ш		
ZZZZZZ	1	10:14						\prod		\int				X											Ш	\perp	_
ZZZZZZ	-1	10:17								$oldsymbol{\mathbb{I}}$		$oldsymbol{\mathbb{I}}$										_					
ZZZZZZ	1	10:20							T	\int				X											\Box		
ZZZZZZ	I	10:23						floor	\int	\int		\perp	- 1	X											Ш		
ZZZZZZ	1	.10:26			T			\prod	\int	\int				X											Ш	\perp	
CCV	1	10:29		X	1.	X	1.			X 2					X				- 1		X		1 I			X	
CCB	1	10:32		X	1	X.	X	7	()	X	X]2	X :	X.	X.	X	X		X	X	X	X	X			X	
ZZZZZZ	20	10:35		7	1	\top		\top	T	T	T								T							floor	
ZZZZZZ	10	10:38		7	7	1	T		T	T			T	T							J						
ZZZZZZ	40	10:41		寸	1	\top	1	\top	1	T	\top	T	T	T			T	7	T		7				T	T	

U.S. EPA - CLP 14 ANALYSIS RUN LOG

Lab Name:	Microseeps, Inc.	Contract	: 1024686

Lab Code: P0710189 Case No.: Martin State Airport SAS No.: SDG No.: DMW-5D-101101

Instrument ID Number: EL99063568 Method: P

Start Date: 10/15/2007 End Date: 10/15/2007

			T	Т										F	\na	ilyt	es										
EPA Sample No.	D/F	Time	%R					B E															N A			Z N	
ZZZZZZ	10	10:45		Π																	$oxed{\Box}$				$oxed{\Box}$		
ZZZZZZ	5	10:48																			\prod				L		
ZZZZZZ	1	10:51																			L						L
ZZZZZZ	1	10:54																	L		L	L			L		L
ZZZZZZ	1	10:57		X		X	X		X	X	X			X	X	X	X		X		X	X				$\overline{\mathbf{X}}$	
DMW-5S-101107	1	11:00												X													
DMW-5I-101107	1	11:03		Γ										X													Ĺ
CCV	1	11:06		X	1	X	i I				X			X		- 1					X					X	L
CCB	1	11:20		X		X	X		X	X	X		X	X	X	X	X		X	X	X	X	X			X	Ĺ
ZZZZZZ	10	11:23																									
ZZZZZZ	10 ,	11:26																									
ZZZZZZ	20	11:29													·												
ZZZZZZ	.10	11:32																									
DMW-5D-101107	1	11:35					\neg							X													
ZZZZZZ	1	11:38		X		X			X		X	1		X	- 1	ł	X		X		X					X	
ZZZZZZ	1	11:41		X		X		- 1	X	- 1	X		,	X	- 1		X		X		X					X	
ZZZZZZ	1	11:44		X		X		į	X		X		L	X.			X		X	- 1	X					X	
ZZZZZZ	1	11:47		X		X			X		X		- 1	X	- 1	- 1	X		X		X					X	
ZZZZZZ	1	11:50		X		X		- 1	X		X	{		X :			X	1	X		X					X	
CCV	1	11:53		X		X	X		X,					X .					!		X					X	
CCB	1	12:04		X		X	X	7	X	X	X			X .	X :	X :	X		X	X	X	X	X			X	
DMW-7D-101107	1	12:07				\neg						T].	X		T	T	7	T		П					T	٦
ZZZZZZ	1	12:10		X		\exists	T			X		T	1	X]	\mathbf{x}	X		Т		\Box	X				\top	٦
ZZZZZZ	1	12:13		X			1	T		X			1	X	ŀ	X	K	$ \top $	T			X			\neg	T	٦
ZZZZZZ	1	12:16		X			\top	T	1	X		T	1	X	7	X Z	K	T	T		Ţ	X		7	\neg	T	٦
ZZZZZZ	1	12:19			\Box		T	T	T	T]	X		X Z	K		T	X	T		X		T	T	٦
ZZZZZZ	1	12:22			T			\sqcap	T			T	7	X	7	X Z	K	T		$\overline{\mathbf{x}}$	T		X	T	T	T	٦
ZZZZZZ	1	12:25		\dashv		\top	1	1	1		\neg	T	7	X	7	X	4	T	1	X	1		\top	\top	\top	丁	٦
ZZZZZZ	1	12:28		\exists	7	\top	7		1	T	1	\top	7	K	2	2	3	7	1	X	\top	\exists	X	1	\top	\top	٦
ZZZZZZ	1	12:31		\top	7	十	\top	\top	\top	7		1	7	X	1	T	1	1	1	1	7	1	T	丁	7	X	7
ZZZZZZ	1	12:34		7	\top	7	\top	\top	\top	\top	1	1	2	K	T	7		1	T	7	7		1	1	T	7	7
CCV	1	12:37		\mathbf{x}		X	X	ζ	X 2	X	X	7	X Z	()		7		7	x	X.	X	X.	X	\top	7	X	٦
CCB	1	12:40		\mathbf{x}		X Z	1		X 2					(2					I		\mathbf{x}			十	7	X	1

FORM XIV - IN

ICP101507, All Data Report 10/15/2007, 3:21:35 PM, Method: SOP-P3, Instrument ID: EL99063568

Label	Sol'n Conc.	Units	SD	%RSD	Int. (c/s)
(Mn 257.610)	0.0008	ppm-	0:0000	2.2	255.6
Mo 202 032	0.0009	ppm	0.0002	23.2	12.44
Na 588,995	62,62o	ppm	0.5877	0.9	26129694
Ni 231.604\	0.0005uv	ppm	0.0007	134.6	9.024
Pb 220.353)	0.0039	_ppm	0.0003	8.0	10.94
S 181.972	0.0599	ppm	0.0032	5.4	28.34
Se 196.026	0.0085	ppm	0.0033	39.0	6.450
Ti 337,280	-0.0020uv	ppm	0.0002	11.7	60.92
Zn 213.857	0.0630	-ppm	0.0003	0.4 -	162 8

P0710189-01AD (S	amp) 1	0/15/200	7, 11:00:05 AM	R	ack 3, Tube
Weight: 1	1	/olume: 1	ĺ	D	ilution: 1
Label	Sol'n Conc.	Units	SD	%RSD	Int. (c/s)
Ag 328.068	vu0000uv	ppm	0.0000	323.4	24.82
AJ 394.401	5.616	ppm	0.0046	0.1	73370
As 193.696	-0.0042uv	ppm	0.0004	9.2	4.222
B 249.678	0.2538	ppm	0.0026	1.0	2539
Ba 413.064	0.0487	ppm	0.0004	0.7	1081
Ca 373.690	38.40	ppm	0.1411	0.4	399729
Cd 214.439	0.0009	ppm	0.0001	11.9	25.80
Cr 267.716	0.0039	ppm	0.0000	0.8	152.4
Cu 327.395	0.0016	ppm	0.0000	1.2	324.6
Fe 259.940	15.01	ppm	0.0105	0.1	243184
K 769.897	5.184	ppm	0.0143	0.3	325791
Mg 279.800	34.57	ppm	0.0372	0.1	76414
Mn 257 610	3.010	ppm	0.0017	0.1	638964
Mo 202.032	-0.0001uv	ppm	0.0001	157.4	5.087
Na 588.995	36.92o	ppm	0.1198	03	15416290
Ni 231.604	0.0496	ppm	0.0006	1.2	218.7
РЬ 220.353	0.0029	ppm	0.0009	32.4	9.465
S 181.972	108.0x	ppm	0.1742	0.2	28677
Se 196.026	0.0019	ppm	0.0014	74.5	1.796
Ti 337.280	0.0077	ppm	0.0001	1.6	516.3
Zn 213.857	0.1357	ppm	0.0004	0.3	3288

P0710189-02AD (Sai	np) 1	0/15/2007	, 11:03:06 AM	Ra	ck 3, Tube 20
Weight: 1	V	olume: 1		Dil	ution: 1
Label	Sol'n Conc.	Units	SD	%RSD	Int. (c/s)
Ag 328.068	-0.0001uv	ppm	0.0001	61.8	13.84
Al 394.401	3.353	ppm	0.0089	0.3	43946
As 193.696	-0.0049uv	ppm	0.0016	32.6	3.664
B 249 678	0.2043	ppm	0.0017	0.9	2065
Ba 413.064	0.0414	ppm	0.0001	0.2	950.2
Ca 373.690	40.82	ppm	0.2569	0.6	424918
Cd 214.439	0.0009	ppm	0.0001	15.0	25.80
Cr 267.716	0.0052	ppm	0.0000	0.5	194.5
Cu 327.395	-0.0001uv	_ppm	0.0001	229.4	209.4
Fe 259.940	25.90	ppm	0.1206	0.5	419508
K. 769.897	4.833	ppm	0.0797	1.6	304972
Mg 279.800	27.27	ppm	0.1510	0.6	60289

19

Beach Number: MOMIGITOZZ

Original Run Date:

Sample Numbers: POT 10189-174, POT 10191-173, POT10154-2,3 P6710093-4

Out of Control Event: O Sample Po710093-64 was over the calibration range. EFirst COV out of acceptance priteria for PO4

Corrective Action Taken: (ask deletion was analyzed.

2 Damples 20710189-174 will be Manalupe

Result of Result in nany.

Observations to support use of data:

Oper Armen				
Manual Integration Checklist and Approval Manual Integration approved? Yes No Satisfactionly documented on this narrative? Manually integrated chromatogram initialed and dated by analyst? Signature Lead Analyst or Lab Mgr. Date	Analyzed and Reviewed by: Manual Integration Conducts Reviewed by: Reviewed and Entered by: Reviewed by: Corracted by:	dr? (Date: VES Date: Date: Date: Date:	10/18/G

Case Narrative/BIOREM 12

Analytical Method: AM20Gax Ba	tch Number Original Run Date: 10/24/07
Light Hydrocarbons (C ₁ -C ₄) Permanent Gases (CO ₂ , O ₂ , N ₂ , CH ₄ , CO)	M071024001 M071024002
1. Sample numbers:	
P0710189 (01-04) P0710191 (01-03) P0710192 (01-06) P0710196 (01-02) P0710198 (01-04) P0710209 (01) 2. Out of Control Event:	
3. Corrective Action Taken:i. None4. Result:i. Analysis OK	e software not compensating for baseline flucuations.
i. None Manual Integration Checklist and Approval Manual Integration approved? Yes No Satisfactorily documented on this narrative Manually integrated chromatogram initiale and dated by analyst? Manually Manually integrated chromatogram initiale and dated by analyst? Date	Analyzed & Reviewed by: RCW_Date: 0 407 Manual Integration Conducted? Yes Reviewed by: Date:

Lab Name:	Microseeps, II	IC.		Contract:	1024686		
Lab Code:	P0710189	Case No : No : No : No : No : No : No : No	Martin State Airport	SAS No.:		SDG No.:	DMW-5D-10110
Initial Calibra	ntion Source:	AccuStd	_				
Continuing C	alibration Source						

	Ini	tial Calibration	n .		Continuing Calibration					
Analyte	True	Found	%R	True	Found	%R	Found	%R	M	
Chloride	10.00	9.980	99.8						<u> </u>	
Nitrate	10.00	9.101	91.0						<u> </u>	
Nitrite	10.00	9.702	97.0							
Phosphate	10.00	9.686	96.9							
Sulfate	10.00	9.837	98.4							

Lab Name:	Microseeps, Inc			Contract:	1024686	
Lab Code:	P0710189	Case No.:	Martin State Airport	SAS No :		SDG No : <u>DMW-5D-101</u> 10:
Initial Calibra	tion Source:					
Continuing Ca	alibration Source:	CPI				

		Initial Calibra	tion		Continuing Calibration					
Analyte	True	Found	%R	True	Found	%R	Found	%R	M	
Chloride				10,00	10.053	100	10.988	110		
Nitrate				10.00	9.298	93.0	9.317	93.2		
Nitrite				10.00	9.850	98.5	9.843	98.4		
Phosphate				10.00	8.591	85.9	8.682	86.8		
Sulfate				10.00	9.875	98.8	9.806	98.1		

Lab Name:	Microseeps, Inc			Contract:	1024686		
Lab Code:	P0710189	Case No.:	Martin State Airport	SAS No.:		SDG No.:	DMW-5D-10110
Initial Calibrati	ion Source:	CPI					

		Initial Calibration			Continuing Calibration					
Analyte	True	Found	%R	True	Found	%R	Found	%R	M	
Chloride				10.00	10.358	104				
Nitrate				10.00	9.330	93.3				
Nitrite				10.00	9.841	98.4				
Phosphate				10.00	10.170	102				
Sulfate				10.00	10.800	108				

Lab Name:	Microseeps, Inc			Contract:	1024686		
Lab Code:	P0710189	Case No.:	Martin State Airport	SAS No.:		SDG No.:	DMW-5D-10110
Initial Calibra Continuing Ca	tion Source:	CPI					

		Initial Calibrat	tion		Conti	nuing Calibra	ation		
Analyte	True	Found	%R	True	Found	%R	Found	%R	M
Phosphate				10.00	10.882	109	9.726	97.3	
Sulfate				10.00	10.779	108	10.106	101	

Lab Name:	Microseeps, Inc	•		Contract:	1024686		
Lab Code:	P0710189	Case No.:	Martin State Airport	SAS No.:		SDG No.:	DMW-5D-10110
Initial Calibra	ation Source:						
Continuing C	alibration Source:	CPI					
				_			

							······································		
		Initial Calibra	ation	Continuing Calibration					
Analyte	Irue	Found	%R	True	Found	%R	Found	%R	M
Phosphate				10.00	9.512	95.1	8.694	86.9	
Sulfate				10.00	10.087	101	10.659	107	

Lab Name:	Microseeps, In	ıc.		Contract:	1024686		
Lab Code:	P0710189	Case No.:	Martin State Airport	SAS No.:	OTHER PROPERTY OF THE PROPERTY	SDG No.:	DMW-5D-10110
Initial Calibra	ation Source:	Scotty					
Continuing Co	alibration Source					•	

	Init	ial Calibratio	a		Continuing Calibration						
Analyte	True	Found	%R	True	Found	%R	Found	%R	M		
Acetylene	74.31	78.98	106								
Methane	24.79	25.79	104					·			
Ethane	48.14	48.27	100								
Ethene	53.55	54.49	102								
Propane	68.54	74.76	109					<u> </u>			
Propene	79.76	78.16	98.0		·						
iso-Butane	84.46	89.16	105								
n-Butane	88.23	90.25	102	·			·		<u>L</u>		
Carbon dioxide	107.4	108.52	101				٠.				
Methane	4294	4485.8	104								
Acetylene	74.31	78.21	105		7						

Lab Name:	Microseeps, Inc) ·	Contract:	1024686		•
Lab Code:	P0710189	Case No.: Martin State Airport	SAS No.:		SDG No.:	DMW-5D-10110
Initial Calibra	tion Source:					
Continuing C	alibration Source:	Spectra				

		Initial Calibra	tion	Continuing Calibration						
Analyte	True	Found	%R	True	Found	%R	Found	%R	M	
Acetylene				74.31	77.82	105	76.84	103		
Methane				24.79	26.52	107	26.79	108		
Ethane				48.14	49.71	103	49.83	104		
Ethene				53.55	56.26	105	56.46	105		
Propane				68.54	77.51	113	77.64	113		
Propene				79.76	8126	102	81.42	102		
iso-Butane				84.46	92.64	110	92.34	109		
n-Butane				88.23	92.63	105	91,10	103		
Carbon dioxide				107.4	105.3	98.0	107.6	100		
Methane	·			4294	4411.9	103	4328.8	101		

U.S. EPA - CLP 3 BLANKS

Lab Name:	Microseeps, Inc	,		Contract:	1024686		
Lab Code:	P0710189	Case No.:	Martin State Airport	SAS No.:		SDG No.:	DMW-5D-10110
Preparation b	lank Matrix (soil/w	ater)	Water				·
Preparation B	lank Concentration	Units	mg/L				

	Init Calib		Con	itinuing Ca	Preparation						
Analyte	Blank	C	1	С	2	C	. 3	С	Blank	C	M
Nitrite	0.50	U	0.50	U.	0.50	U	0.50	U	0.50	U	
Nitrate	0.50	U	0.50	U	0.50	U	0.50	บ	0.50	U	
Sulfate	1.00	U	1.00	บ	1.00	บ	1.00	Ū	1.00	n	
Phosphate	1.00	U	1.00	U	1.00	U	1.00	บ	1.00	U	
Chloride	1.00	υ	1.00	U	1.00	U	1.00	U	1.00	u	

Lab Name: Microseeps, Inc.

Lab Code: P0710189 Case No : Martin State Airport SAS No.: SDG No : DMW-5D-10110:

Preparation blank Matrix (soil/water) Water

mg/L

Preparation Blank Concentration Units

	Init Calib			Conti	nuing Cal		Preparation				
Analyte	Blank	С	1	С	2	С	3	С	Blank	C	M
Chloride			1.00	U							
Nitrate			0.50	U						<u> </u>	
Nitrite			0.50	บ							
Phosphate			1.00	บ							
Sulfate			1.00	U							

Lab Name: Microseeps, Inc.

Lab Code: P0710189 Case No.: Martin State Airport SAS No.: SDG No.: DMW-5D-10110:

Preparation blank Matrix (soil/water) Water

Preparation Blank Concentration Units mg/L

	Init Calib.			Con	tinuing Ca	libration	Blank		Preparation		
Analyte	Blank	С	1	C	2	C	3	С	Blank	С	M
Phosphate			1.00	U	1.00	U	1.00	U	1.00	U	
Sulfate			100	U	1.00	U	1.00	U	1.00	U	

Lab Name: Microseeps, Inc.

Lab Code: P0710189 Case No.: Martin State Airport SAS No.: SDG No.: DMW-5D-101101

Preparation blank Matrix (soil/water) Water

Preparation Blank Concentration Units mg/L

Analyte	Init Calib. Blank	С	1	Con C	tinuing Ca 2	libration B C	lank 3	С	Preparation Blank	С	M
Phosphate			1.00	U	1.00	U				ļ	
Sulfate			1.00	U	1.00	U					

Lab Name: Microseeps, Inc Contract: 1024686

Lab Code: P0710189 Case No.: Martin State Airport SAS No.: SDG No.: DMW-5D-101101

Preparation blank Matrix (soil/water) Water

Preparation Blank Concentration Units mg/L

Analyte	Init Calib Blank	С	1	Conti C	nuing Cali 2	bration I	Blank 3	С	Preparation Blank	С	М
Alkalinity as CaCO3									2.0	J	

Lab Name: Microseeps, Inc.

Lab Code: P0710189 Case No.: Martin State Airport SAS No.: SDG No.: DMW-5D-10110

Preparation blank Matrix (soil/water) Water

Preparation Blank Concentration Units mg/L

	Init Calib	•		Conti	nuing Cali	bration B	lank		Preparation		
Analyte	Blank	С	1	С	2	С	3	С	Blank	C	M
Alkalinity as CaCO3								<u> </u>	4.0	U	

Lab Name: Microseeps, Inc.

Lab Code: P0710189 Case No.: Martin State Airport SAS No.: SDG No.: DMW-5D-10110°.

Preparation blank Matrix (soil/water) Water

Preparation Blank Concentration Units ug/L

	Init Calib.	Init Calib			Continuing Calibration Blank						
Analyte	Blank	С	1	С	2	С	- 3	C.	Blank	С	M
Acetylene	0.500	U	0.500	U					0.500	U	
iso-Butane	0.050	U	0.050	U					0.050	U	
Ethane	0.025	ט	0.025	U					0.025	U	
Ethene	0.025	Ū	0.025	U					0.025	Ü	
n-Butane	0.050	บ	0.050	U					0.050	U	
Propane	0.050	U	0.050	U	.,				0.050	U	
Propene	0.050	U	0.050	U		İ			0.050	Ü	
Methane	0.100	บ	0.100	υ					0.100	U	

Lab Name: Microseeps, Inc.

Lab Code: P0710189 Case No.: Martin State Airport SAS No.: SDG No.: DMW-5D-10110:

Preparation blank Matrix (soil/water) Water

Preparation Blank Concentration Units mg/L

	Init Calib			Conti	inuing Calib	ration E	lank		Preparation		
Analyte	Blank	С	1	С	2	С	3	С	Blank	С	M
Carbon dioxide	5.00	บ	5.00	U					5.00	U	

6 DUPLICATES

EPA	Sample	No.
		-

Lab Name:	Microseeps	s, Inc		Contract:	1024686	dmw-5s-101107
Lab Code:	P0710189	Case No.:	Martin State Airport	SAS No.:		SDG No.: <u>DMW-5D-1011</u>
Matrix (soil/v	vater):	Water			Level (low/med):	
% Solids for	Sample:				% Solids for Duplicat	e:

Concentration Units: mg/L

Analyte	Control Limit	Sample	С	Duplicate	С	RPD	Q	М
Chloride	0-20	164.6		162.3		1.41		
Nitrite	0-20	2.128		2.159		1.31	<u> </u>	
Nitrate	0-20	1.070		1.076		0.56		
Phosphate	0-20	1.00	U	1.00	U	0.00		

EPA Sample No.

Lab Name:	Microseeps,	Inc.		Contract:	1024686	DMW-5S-101107
Lab Code:	P0710189	Case No.:	Martin State Airport	SAS No.:		SDG No : DMW-5D-10110
Matrix (soil/v	vater): W	ater			Level (low/med):	
% Solids for S	Sample:				% Solids for Duplica	te:

Concentration Units: mg/L

Analyte	Control Limit	Sample	С	Duplicate	С	RPD	Q	М
Phosphate	0-20	1.00	U	1.00	ប	0		
Sulfate	0-20	1014		960.0		9.70		

					EPA Samp	ole No.
Lab Name:	Microseeps, Inc.		Contract:	1024686	LCS	;.
Lab Code:	P0710189	 Martin State Airport	SAS No:		SDG No.:	DMW-5D-10110
Matrix (soil/w	rater): Water			Level (low/med):		
% Solids for S	Sample:			% Solids for Duplicat	e:	

Concentration Units: ug/L

Analyte	Control Limit	Sample	С	Duplicate	С	RPD	Q	M
Acetylene	0-20	38.58		37.56		2.68		
Methane	0-20	893.0		841.3		5.96		
Ethane	0-20	48.94		47.51		2.88		
Ethene .	0-20	45.06		43.84		2.74		
Propane	0-20	71.73		69.62		2.98		
Propene	0-20	64.73		62.88		2.90		
iso-Butane	0-20	95.41		92.11		3.52		
n-Butane	0-20	92.82		89.57		3.56		

							EPA Sample No.		
Lab Name:	Microsee	ps, Inc.		Contra	ect: 1024686	-	LCS		
Lab Code:	P071018	9 Case No.:	Martin State Airpor	t SAS N	lo.:		SDG No.:	DMW	-5D-10110°
Matrix (soil/w	vater):	Water			Level (low/med)):			
% Solids for S	Sample:				% Solids for Du	plicate:			
		, ,	Conc	entration Un	its: mg/L				J. 11. 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1
Anal	yte	Control Limit	Sample	С	Duplicate	С	RPD	Q	М
Carbon dioxid	 e	0-20	142.7		141.7		0.70		

0-20

Carbon dioxide

Lab Name:	Microseeps, Ir	ic.		Contract:	1024686		
Lab Code:	P0710189	Case No :	Martin State Airport	SAS No:		SDG No.:	DMW-5D-101107
Solid LCS So	ource:						
Aqueous LCS	S Source: C	CPI					

		Aqueo	us		Solid (mg/Kg)					
Analyte	Units	True	Found	%R	True	Found	С	Limits	%R	
Chloride	mg/L	10.00	10.274	103						
Nitrite	mg/L	10.00	9.803	98.0						
Nitrate	mg/L	10.00	9.352	93.5						
Sulfate	mg/L	10.00	10.740	107						
Phosphate	mg/L	10.00	8.888	88.9						

Lab Name:	Microseeps, Inc			Contract:	1024686			
Lab Code:	P0710189	Case No :	Martin State Airport	SAS No.:		SDG No:	DMW-5D-10110:	
Solid LCS So	urce:							
Aqueous L.CS	Source: CP	ľ						

	Aqueous						Solid (mg/Kg)					
Analyte	Units	True	Found	%R	True	Found	С	Limits	%R			
Sulfate	mg/L	10.00	10.097	101				·				
Phosphate	mg/L	10.00	9.265	92.6								

Lab Name:	Microseeps, Inc	•		Contract:	1024686		
Lab Code:	P0710189	Case No.:	Martin State Airport	SAS No:		SDG No.:	DMW-5D-10110
Solid LCS Son Aqueous LCS			-				

		Aquec	us		Solid (mg/Kg)					
Analyte	Units	True	Found	%R	True	Found	С	Limits	%R	
Alkalinity as CaCO3	mg/L	96.2	101	105						

Lab Name:	Microseeps, In	C.		Contract:	1024686		
Lab Code:	P0710189	Case No.:	Martin State Airport	SAS No :		SDG No.:	DMW-5D-101107
Solid LCS So	ource:						
Aqueous LCS	S Source: S	pectra					

		Aqueo	ous		Solid (mg/Kg)					
Analyte	Units	True	Found	%R	True	Found	С	Limits	%R	
Acetylene	ug/L.	36.10	38.58	107						
iso-Butane	ug/L	80.58	95.41	118						
Ethane	ug/L	41.68	48.94	117						
Ethene	ug/L	38.89	45.06	116						
n-Butane	ug/L.	80.58	92.82	115						
Propane	ug/L	61.13	71.73	118						
Propene	ug/L	58.33	64.73	111						
Methane	ug/L	822.8	893.0	108						

Lab Name: Microseeps, Inc. Contract: 1024686

Lab Code: P0710189 Case No.: Martin State Airport SAS No.: SDG No.: DMW-5D-101107

Solid LCS Source: Spectra

		Aqueo	us		Solid (mg/Kg)				
Analyte	Units	True	Found	%R	True	Found	С	Limits	%R
Carbon dioxide	mg/L	1293	142.7	110					

I Utal Alkallilly (- 20 mg / L us out Unique ID# QC SBAFTUP KAILLE Reagents & Stds SOP-WC 11 LCS P135-50 CAUCO 44-68-28 RH 10+7-67 Accumet Model 50 MS H2SO4 MO7101701 WC044-7019 Na2CO3 Solution WC0414-51pH Buffer 4.0 pH Buffer 7.0 pH Buffer 10.0 Normality of 0.02N H2SO4: 0,0202

For alkalinities < 1000 mg/L CaCO3 use 0.02 N titrant. For alkalinities > 1000 mg/L CaCO3 use 0.1 N titrant. d for each titration should exceed 20 ml, but not greater than the sample volume.

Titrate to pH = 4.5	ed for each titration sh	Run Low				Di i ilicia, ani		sh_V
	Sample	Sample	Spl.	N		SO4 Titrant Volumes	Titer	(mg/l) as CaCO3
	Identification	Vol. (ml)	pН	H2SO4	Initial	Final	0.1	2.02
PBW		50		0.0002		0.1		101
LCSW	% Rec. = 104 %	50	905	0.0202	<u>0,000</u>	5.0	5.0	
Slope of PH Elect	trode: 59,12							
fficiency of Elec			<u> </u>	2.0		0,3	0.3	6,06
PO71009.	5-01AF	50.		0,0302	0,000		22,0	444.4
3 - 112	-oaaf	50		6,0303		22,0	22.3	450,46
	-OZAF DUP	50		0,0202		22.3	26,8	541.36
9740	-OJAF MS	50		0.0302		26,8	16.7	327,24 /
	-03AF	50		0,0302	0,000	16.2	1.8	36,36 V
Po7/009		50		0.0200	0,000	1.8	6.7	135,34
1-1	-02AJ	50		0,0303-	0,000	6,7	14.3	288,86
	-03AJ	50		0,0303	0,000	14.3		32.32.1
P071011:	2-0/AE	<i>5</i> 0	5.71	0.0003	- 0.000	1,6	1.6	113.12
, , , , , , , , ,	-OZAE	50		0.0303	0,000		2.3	46,46 ~
	-03AE	50		9,000	0,000	2.3		10,10
P07/015		50	5.20	0,0203		0,5	0,5	0,000
1011010	-OJAE	50	3.67	1	0,000	0.000	0,000	70,7 V
	-63AF	50		0,0202	0.000	3,5	315	72,724
	-03AFDup	50	5.65	0.0303	0000	3.6	3,6	0,000
P071018	9-OVAP	50	4,19		0,000	0.000	0,00	2.02 V
0110.0	-OZAE	50	4,72	0.00	0,000	0,1	0.1	
	-68AF	50	4.48		0,000	0,000	<u>ტ.თი</u>	0,000 (
	-04AF	50		0.0767		0.6		
CCV 2000		<i>3</i> 0 ·	10.50	0.0302	0,000	9,6	9,6	193,92 V
CCV WOOP					,			
DD Completous (Calculated: 1, 3%							
71 71 71						Total Alkalinity =		Vol. x N x 50,000) nple Volume
Required QC:	PBW: < MS: 69			14%		Total Alkalinity =		

Record all calculation esults on this data sheet)

Method:

Instrument:

LIMS Batch No.:

Date of Analysis:

LCSW: 87% - 113%

Your signature indicates all data is within acceptance criteria or justified in a narrative form.

lata reviewed & approved by :

Data entered by:

SRV: P07/0189-04AF= DMW-7D-101107

SOP-WC 11

Accumet Model 50

Method:

Instrument:

Reagents & Stds

LCS

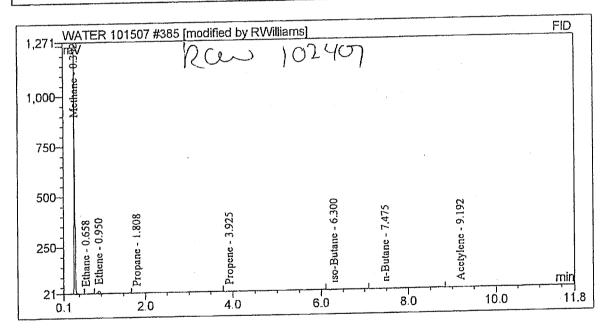
MS

[calo] = 8.1 mg/ as republiky the lab. Low Level Total Alkalinity

Unique ID #

P0710189 QC Spl. True Value

LIMS Batch No.: MOT	101701	6		H2SO4	WE044	-70-18		
				Na2CO3 Solution			ļ	
Date of Analysis: 10-1	7-07			pH Buffer 4.0	WC044	-51-6	ļ	
.4 .	/			pH Buffer 7.0	WC044	-51-34	<u> </u>	
	ta Bush				(B) Normality	of 0.02N H ₂ SO ₄	0,0) 02
pH meter calibrated start	inish							
Titrate to pH range 4.3 - 4.7, the	n add titrant to 1	educe pl	A exactly 0.30	pH unit.				
Sample	Sample	Spl.		H2SO4 T	itrant Volumes	(ml)		Total Alkalinity
Identification	Vol. (ml)	pН	Initial	Intermediate	Intermed.	Final Volume	Net Titer	(mg/l)
	ļ		Volume	Volume to pH	pН	to change		CaCO3
·				Range 4.3-4.7		tiau Hq E.0	1	•
				(A)			(C)	
PBW	100	5.63	0,000	0.1	4.73	0.2	0.1	1.01
LCSW % Rec.								
Slope of PH Electrode: 59,1								
Efficiency of Electrode: 94,	9				1		 	0.00
P0710095-01AF		5,13	0,000	0.6	4.76	0,9	0.3	9.09
-O/AFI)40 98	5,27	0,000	0.65	4.77	0.9	0,25	10.82V
PO710154-01AE		5,26	0,000	0,55	9.74	0.75	0,2	9.09 V
PO710189-03A	F 100	4.72	0.000	0,000	4.73	0.15	0.15	0,000 V
-04A	F 100	5.30		0.5	4,59	0.7	0.2	8.08 1
	1,00	1-1						
						· · · · · · · · · · · · · · · · · · ·		
					i i			
					 			
					 			
					 			
					-			
	1 76	1]			
RPD Sample/Dup Calculated:	17.38	-51	л	Lov	v Level Alk=	(2,A - C) x B x	50,000	
Required QC:	PBW: < PQ MS: 69% - 1		1	D.O.		(ml) Samp		
	Sample/Dup		or =14%			, .		
(Record all calculation results on this data sheet)	LCSW: 87%				Where: A	ml titrant to first	recorded pH	
			7		В	mormality of 0 0	2N Sulfuric Ac	eid .
a(03)- 1660-1 [[200.5]	-0.2)×0.0202	× 50,00	101		— , c	ml titrant to reac	h pH 0.3 unit)	ower
. J.	10001			= [8.08 mg/L	- 1			
Your signature indicates all data is		ce criter	ia or justified	in a narrative form.	<u>ئے</u>			
YAN SEPREMINISTRATION OF THE P	4.		•	,			111 -1	7-07
Data entered by :	Rover	us_	Bus	ra		Date: _	10-1	1-0/
	Robei Mas		- Da	. 1		D-4-	10-12	7-07
Data reviewed & approved by:	YIIa	Will	DID	UM		Date: _	10 17	$-\frac{\sqrt{7}_{182}}{}$

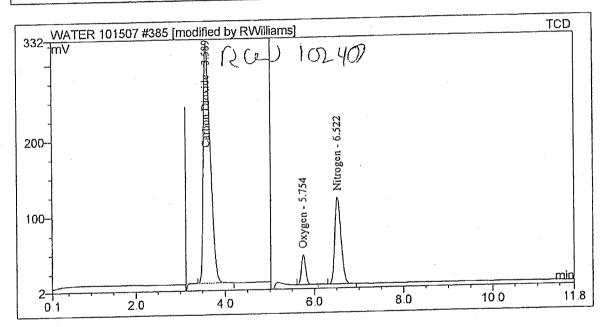

P0710189

Sample Analysis Report

385 Sequence No: P0710189-01A D Sample Name: BIOREM12 Instrument ID: **WATER 101507** Sequence Name: 1.0 Injection vol.: WATER 101507 Program Method: 1.0000 Dilution Factor: **Quantitation Method:** WATER 101507 PM01C/AM20GAx Analytical Method: 9:05 Date Time Collected: 10/24/2007 Comment **RWilliams** System Operator:

Peak	Component	Retention	Area	Height	Туре	Amount
No.	Name	Time	mV*min	mV		
140.	Methane)	0.392	22,283	1248.929	BMb*	58.0126
	Ethane	0,658	0.083	2.289	ьмв	0.2466
		0.950	0.648	12.039	BMB*	2.1461
3	Ethene	1,808	0.036	0.311	BMB*	0.1144
4	Propane		0.036	0.075	BMB*	0,0583
5	Propene	3,925		0.027	BMB*	0.0101
6	iso-Butane	6.300	0.003		BMB*	0.1147
7	n-Butane	7.475	0.038	0.089		0.2048
8	Acetylene	9.192	0.022	0.054	BMB*	0.20-10

FID UNITS (Methane thru Acetylene ug/L) TCD UNITS (Methane ug/L, CO2, O2, N2, CO mg/L)

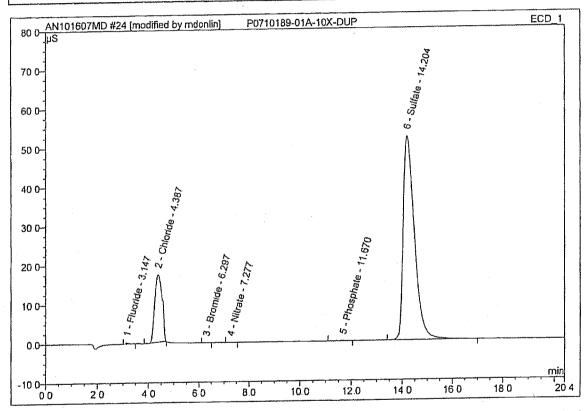

P0710189

Sample Analysis Report

385 Sequence No: P0710189-01A D Sample Name: BIOREM12 Instrument ID: WATER 101507 Sequence Name: 1.0 Injection vol.: WATER 101507 Program Method: 1.0000 **Dilution Factor: Quantitation Method:** WATER 101507 PM01C/AM20GAX **Analytical Method:** 10/24/2007 9:05 Date Time Collected: Comment **RWilliams** System Operator:

						A	
Peak	Component	Retention	Area	Height	Туре	Amount	i
No.	Name	Time	mV*min	mV		105 5507	1
	Carbon Dioxide	3,589	57.205	313.657	BMB*	195.5537	
		5.754	4,246	38.742	BMB	5.5942	ı
2	Oxygen	6,522	18.466	113.157	BMB*	22,8227	į
3	Mitrogen	0.522	10.400				

FID UNITS (Methane thru Acetylene ug/L) TCD UNITS (Methane ug/L, CO2, O2, N2, CO mg/L)


SRV: PO710189-01A = DMW-55-101107 [Sulfate] = 1,000 mg/L as reported by the laboratory.

Operator:mdonlin Timebase:Anions Sequence:AN101607MD

P0710189

Page 1-1 10/17/2007 11:26 AM

24 P07101	89-01A-10X-DUP		
Sample Name: Vial Number: Sample Type: Control Program: Quantif. Method: Recording Time: Run Time (min):	P0710189-01A-10X-DUP 100 unknown as14PN5_v2 as14PN5 10/16/2007 22:18 20.40	Injection Volume: Channel: Wavelength: Bandwidth: Dilution Factor: Sample Weight: Sample Amount:	1.0 ECD_1 n.a. n.a. 1.0000 1.0000

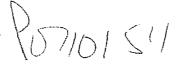
No.	Ret.Time min	Peak Name	Height μS	Area μS*min	Rel.Area %	Amount ppm	Type
1	3.15	Fluoride	0.334	0.058	0.18	-0.493	BMB*
2	4,39	Chloride	17.213	5.820	17.78	17.643	BMB*
3	6 30	Bromide	0.043	0.008	0.02	0.823	BMB
4	7.28	Nitrate	0.031	0.007	0.02	0.979	BMB
5	11.67	Phosphate	0.040	0.020	0.06	-0.626	BMB
6	14.20 (Sulfate	52,146	26.820	81.94	<u>(96.004</u>)) BMB*
Total:			69.807	32.732	100.00	114.330	

96 × 10. = 960 mg/2

HOLDIME

SDG P0710154

SORT	UNITS	NSAMPLE	LAB_ID	QC_TYPE	SAMP_DATE	EXTR DATE	ANAL_DATE	SMP_EXTR	EXTR_ANL	SMP_ANL
MF	MG/L	DMW-9I-100907	P0710154-03A	NM	10/9/2007	10/12/2007	10/15/2007	3	3	6
MF	MG/L	DMW-6D-100907	P0710154-01A	NM	10/9/2007	10/12/2007	10/15/2007	3	3	6
MF	MG/L	DMW-6I-100907	P0710154-02A	NM	10/9/2007	10/12/2007	10/15/2007	3	3	6
ACET	UG/L	DMW-9I-100907	P0710154-03A	NM	10/9/2007	10/22/2007	10/22/2007	13	0	13
ACET	UG/L	DMW-6I-100907	P0710154-02A	NM	10/9/2007	10/22/2007	10/22/2007	13	0	13
ACET	UG/L	DMW-6D-100907	P0710154-01A	NM	10/9/2007	10/22/2007	10/22/2007	13	0	13
ALK	MG/L	DMW-91-100907	P0710154-03A	NM	10/9/2007	10/17/2007	10/17/2007	8	0	8
ALK	MG/L	DMW-6I-100907	P0710154-02A	NM	10/9/2007	10/17/2007	10/17/2007	8	0	8
ALK	MG/L	DMW-6D-100907	P0710154-01A	NM	10/9/2007	10/17/2007	10/17/2007	8	0	8
CL	MG/L	DMW-6I-100907	P0710154-02A	NM	10/9/2007	10/10/2007	10/10/2007	1	0	1
CL	MG/L	DMW-6D-100907	P0710154-01A	NM	10/9/2007	10/10/2007	10/10/2007	1	0	1
CL	MG/L	DMW-9I-100907	P0710154-03A	NM	10/9/2007	10/10/2007	10/10/2007	1	0	1
MISC	MG/L	DMW-6D-100907	P0710154-01A	NM	10/9/2007	10/22/2007	10/22/2007	13	0	13
MISC	MG/L	DMW-6I-100907	P0710154-02A	NM	10/9/2007	10/22/2007	10/22/2007	13	0	13
MISC	MG/L	DMW-9I-100907	P0710154-03A	NM	10/9/2007	10/22/2007	10/22/2007.	13	0	13


Monday, November 12, 2007

SORT	UNITS	NSAMPLE	LAB_ID	QC_TYPE	SAMP_DATE	EXTR DATE	ANAL_DATE	SMP_EXTR	EXTR_ANL	SMP_ANL
MISC	UG/L	DMW-9I-100907	P0710154-03A	NM	10/9/2007	10/22/2007	10/22/2007	13	0	13
MISC	UG/L	DMW-6I-100907	P0710154-02A	NM	10/9/2007	10/22/2007	10/22/2007	13	0	. 13
MISC	UG/L	DMW-6D-100907	P0710154-01A	NM	10/9/2007	10/22/2007	10/22/2007	13	0	13
NTA	MG/L	DMW-6D-100907	P0710154-01A	NM	10/9/2007	10/10/2007	10/10/2007	1	0	1
NTA	MG/L	DMW-6I-100907	P0710154-02A	NM	10/9/2007	10/10/2007	10/10/2007	1	0	1
NTA	MG/L	DMW-9I-100907	P0710154-03A	NM	10/9/2007	10/10/2007	10/10/2007	1	0	1
NTI	MG/L	DMW-6D-100907	P0710154-01A	NM	10/9/2007	10/10/2007	10/10/2007	1	0	1
NTI	MG/L	DMW-6I-100907	P0710154-02A	NM	10/9/2007	10/10/2007	10/10/2007	. 1	0	1
NTI	MG/L	DMW-9I-100907	P0710154-03A	NM	10/9/2007	10/10/2007	10/10/2007	1	0	1
PO4	MG/L	DMW-6D-100907	P0710154-01A	NM ~	10/9/2007	10/10/2007	10/10/2007	1	0	1
PO4	MG/L	DMW-6I-100907	P0710154-02A	NM	10/9/2007	10/10/2007	10/10/2007	1	0	1
PO4	MG/L	DMW-9I-100907	P0710154-03A	NM	10/9/2007	10/10/2007	10/10/2007	1	0 .	1
PROP	UG/L	DMW-9I-100907	P0710154-03A	NM	10/9/2007	10/22/2007	10/22/2007	13	0	13
PROP	UG/L	DMW-6D-100907	P0710154-01A	NM	10/9/2007	10/22/2007	10/22/2007	13	0	13
PROP	UG/L	DMW-6I-100907	P0710154-02A	NM	10/9/2007	10/22/2007	10/22/2007	13	0	13
SO4	MG/L	DMW-6D-100907	P0710154-01A	NM	10/9/2007	10/10/2007	10/10/2007	1	0	1
SO4	MG/L	DMW-9I-100907	P0710154-03A	NM	10/9/2007	10/12/2007	10/12/2007	3	0	3
SO4	MG/L	DMW-6I-100907	P0710154-02A	NM	10/9/2007	10/12/2007	10/12/2007	3	0	3

Monday, November 12/2007

SORT	UNITS	NSAMPLE	LAB_ID	QC_TYPE	SAMP_DATE	EXTR_DATE	ANAL DATE	SMP_EXTR	EXTR_ANL	SMP_ANL
ETHA	UG/L	DMW-9I-100907	P0710154-03A	NM	10/9/2007	10/22/2007	10/22/2007	13	0	13
ETHA :	UG/L	DMW-6I-100907	P0710154-02A	NM	10/9/2007	10/22/2007	10/22/2007	13	0	13
ETHA	UG/L	DMW-6D-100907	P0710154-01A	NM	10/9/2007	10/22/2007	10/22/2007	13	0	13
ETHE	UG/L	DMW-6D-100907	P0710154-01A	NM	10/9/2007	10/22/2007	10/22/2007	13	0	13
ETHE	UG/L	DMW-6I-100907	P0710154-02A	NM	10/9/2007	10/22/2007	10/22/2007	13	0	13
ETHE	UG/L	DMW-9I-100907	P0710154-03A	NM	10/9/2007	10/22/2007	10/22/2007	13	0	13
METH	UG/L	DMW-6D-100907	P0710154-01A	NM	10/9/2007	10/22/2007	10/22/2007	13	0	13
METH	UG/L	DMW-6I-100907	P0710154-02A	NM	10/9/2007	10/22/2007	10/22/2007	13	0	13
METH	UG/L	DMW-9I-100907	P0710154-03A	NM	10/9/2007	10/22/2007	10/22/2007	13	0	13

Ghain of Custody Record

Severn Trent Laboratories, Inc.

STL-4124 (0901)			,														10	ate					17	bara	of Co	etado A	Jumbr		
Client		Project M	anag AA	er ·//	٠,	بد محادثا	. 1	. ,									10		10.	- 5	- 0	7	١	o i icilii i	37	stody M	7	Ä	
lEtag lech nus		Telephon	O Alu	PC C	1102 (odel.	Fayn	lumbo					**				1	ab Ni		_					1	. h	Free .	<u>,,,</u>	
20251 Century Blud	STE ZOO	3°	/)	5-7	E -	3	02	72	,				<u>ل</u> بر	,										Page	<u> </u>	<u> </u>	0		
Address ZUZSI CENTURY BLUCK City GERMAN FORM Project Name and Location (State) Man XIN STATE AIRPORT Contract/Purchase Order/Quote No.	Code 20974	Site Cont	act 4	2	_	1	.ab C	ontact				Г	17/1	रा	<u> </u>	An moi	re s	oace	ttac us r	h lis leed	! if ≥d) 	_		4					
Project Name and Location (State)	<u> </u>	· Carrier/W	/aybil	Numb	er		***************************************						Theres	13	3	1	- X	14.2											
Mantin State Auspent													17	23	4	~>	0	3,11										uctions,	
Contract/Purchase Order/Quote No.				Matr	ix	4.		Cor	itali sen	ners d	š S		1	7	X	12.	. 3	Eli							Coi	ηαιτιο	ns o	^r Receip	ı.
Sample I.D. No. and Description (Containers for each sample may be combined on one line)	Date	Time	į.	Sed	Soil		Unpres	HNO3	HC	NaOH	ZnAc/ NaOH		Metil	Fiffel	Sche	Alka	C. 16	Beta	<i>a.</i>										
DAIN- 60- 100907	10-5-07	1644		X .			X	×	7				X	×	X	と	ايز	X							,,,,,		_		
DAN - 6I - 100807		1215	>	<			X	X					\vee	X	X	ソ	X	X					\perp	_					
DAW - 9I - 100907	مل	1525		×		1.	X	メ	1				\leq	\angle	X	$\geq \leq$	×	×			_			-					
																									,				
																							_						
																								_					
																										uve-n			
															-									\perp					
																											·····		

			1						T								Π												
Possible Hazard Identification	J.,		Sa	mple D	ispos	al					. 1				•					(A I	ee ma	ay be	asse	ssed i	if sam	ples ar	e reta	ined	
☐ Non-Hazard ☐ Flammable ☐ Skin Irritant	Poison B] Unknown		Retur	n To (Client		Disp						ive l	cor .			Moi	nths	long	ger th	an f	month	1)					
Turn Around Time Required							1	OC Re	QUII	гетеп	15 (Sp	ecify)		•					\neg								}		
24 Hours 48 Hours 7 Days 14 D	ays 🔲 21 Day		er				_	I. Rec	\ \ \ \ \ \ \	- A D.	4		_	<u>`~</u>		——			4	100				. Da	te	$-\gamma$, Ti	ne	 /
1. Relinquished By		Date / 0 - 9	6-0	z '	ime 18	10		i. Hec	eivĘ	/J		<u>></u>			-/	<u>></u>			//* 		7				مرمديد	<u> Y12</u>	2	10	<u>() e</u> -
2. Rélinquished By		Date		7	ime		Ţ	2. Rec	eive	ed By			`-				{			`	······································			Da	ite /	:	\[\begin{picture} \tau_i^{\tau_i} \\ \tau_i^{\tau_	ne	
3. Relinquished By	-	Date		7	ime		-	3. Rec	eive	d By		7	********				-			<u> </u>				Da	ite		T1	пе	
Comments																											1		(
OCTUDITION, WHITE Command of Command	CANARY Clave	ith the Carr	vino 17	HAIL !	iold !	· ·	•																			,			 (
DISTRIBUTION: WHITE - Returned to Client with Report;	CHINAMT · DIAYS	war une deutle	ne, r	1141/ - 1	icin (Opy	1																						-

Cooler Receipt Form

Client Code: TetraTechP P0710154 LabProject #: Client: TetraTech NUS Inc Project: Martin State Airport Cooler ID: 1 10/10/2007 Date cooler opened: A. Preliminary Examination Phase: Cooler opened by: dp Carrier Name: FedEx Airbill #: 1. Was airbill Attached? N/A Seal Name: Location: How many? N/A 2. Custody Seals? Yes 3. Seals intact? 4. Screened for radiation? N/A Signed by employee? Yes Properly Completed? Yes Yes 5, COC Attached? Martin State Airport 6. Project Identification from custody paper: Temperature: 7. Preservative: Yes Comments: 10/10/2007 Log-in By: B. Log-In Phase: Samples Log-in Date: Other 1. Packing Type: N/A 2. Were samples in separate bags? Labels agree with COC? 3. Were containers intact? Yes Number of samples received: 18 4. Number of bottles received: Correct preservatives added? N/A Yes 5. Correct containers used?

N/A

Comments:

6. Sufficient sample volume?

7. Bubbles in VOA samples?

8. Was Project manager called and status discussed?

Have designate person initial here to acknowledge receipt of cooler:

Yes

N/A

Date:

Page 1 of 1

CASE NARRATIVE

Client: TetraTech NUS
Project Name: Martin State Airport
SDG: DMW-6D-100907
Microseeps Project No.: P0710154

Sample Receipt

Microseeps, Inc. received the sample shipment on 10/10/2007. Copies of the laboratory's cooler receipt forms are enclosed. A summary of the field and laboratory identifications is presented below.

FIELD IDENTIFICATION	LAB IDENTIFICATION
DMW-6D-100907	P0710154-01
DMW-6I-100907	P0710154-02
DMW-9I-100907	P0710154-03

For some of the reporting forms, the sample identifications have been truncated because of space limitations.

A copy of all communications concerning this project has been enclosed.

Sample Analyses

The sample analyses were performed in accordance with Microseeps routine Standard Operating procedures. There were no unusual observances noted during the analysis of these samples

The percent recovery for the matrix spike analyses for iron was outside of control limits. The unspiked sample concentration was approximately 20 times the spike added.

The percent recovery for the batch MS analysis for chloride was outside of control limits. The unspiked sample concentration was over 2 times the spike added. All other QC analyses were acceptable.

Case Narrative

Batch number: M07101500\$. 10 16 07	Batch number:	M071015008.10/16	OK
-------------------------------------	---------------	------------------	----

Original Run Date: 10/15/07

Sample numbers: P0710095-01AD->03AD, P0710092-01AD->07AD, P0710093-05AD, 06AD, 07AD, P0710154-01AD->03AD, P0710189-01AD->04AD.

Out of Control Event: P0710095-01AD-MSPK was out for Fe.

Corrective Action Taken: N/A.

Result: N/A.

Observations to support use of data: The concentration of the sample was greater than four times the concentration of the matrix spike for Fe. Accept data.

Manual Integration Checklist and Approval

- Manual Integration approved?: Yes No
- Satisfactorily documented on this narrative?
- Manually integrated chromatogram initialed and dated by analyst?

Signature Lead Analyst or Lab. Mgr.

Date

Analyzed & Reviewed by: (I) Date: 10/15/07
Manual Integration Conducted? YES NO
(Circle One)
Reviewed by: Date:
Reviewed & Entered by: LIMS Date: 10/16/07
Reviewed by: D Dater Dice 19
Corrected by: Date:

U.S. EPA - CLP 2A INITIAL AND CONTINUING CALIBRATION VERIFICATION

Lab Name: Microseeps, Inc.

Lab Code: P0710154 Case No.: Martin State Airport SAS No.: SDG No.: DMW-6D-10090:

Initial Calibration Source: SCP Sci

Continuing Calibration Source SCP Sci

Concentration Units: mg/L

	Init	ial Calibration	n						
Analyte	True	Found	%R(1)	True	Found	%R(1)	Found	%R(1)	M
Iron-dissolved	1.00	1.017	102	12.50	12.61	101	12.71	102	

(1) Control Limits: Mercury 80-120; other Metals 90-110; Cyanide 85-115

U.S. EPA - CLP 2A INITIAL AND CONTINUING CALIBRATION VERIFICATION

Lab Name:	Microseeps, Inc	5 .		Contract:	1024686		
Lab Code:	P0710154	Case No.:	Martin State Airport	SAS No.:		SDG No.:	DMW-6D-10090
Initial Calibra	tion Source:						
Continuing Co	alibration Source	SCP Sci					

Concentration Units: mg/L

	Trais	tial Calibratio	173	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,					
Analyte				True	Found	nuing Calibra %R(1)	Found	%R(1)	M
Iron-dissolved	17.00		%R(1)	12.50	12.76	102			
11 011-013301 vod									

(1) Control Limits: Mercury 80-120; other Metals 90-110; Cyanide 85-115

BLANKS

Lab Name:

Microseeps, Inc.

Contract:

1024686

Lab Code:

P0710154

Case No.:

SAS No.:

SDG No.: DMW-6D-100901

Preparation Blank Matrix (soil/water):

Water

Preparation Blank Concentration Units:

mg/L

Martin State Airport

Analyte	Init Calib Blank	С	1 ×	Cont C	inuing Calibi 2	ration E C	Blank 3	С	Preparation Blank	С	М
Iron-dissolved	0.050	U	0.043	J	0.050	U	0.050	U	0.050	U	P

U.S. EPA - CLP

ICP INTERFERENCE CHECK SAMPLE

Lab Name:

Microseeps, Inc.

Contract:

1024686

Lab Code:

P0710154

Case No.: Martin State Airport

SAS No :

SDG No.: DMW-6D-100907

ICP ID Number: EL99063568

ICS Source:

SCP Sci

Concentration Units: mg/L

	True		Initia	al Found		Final Found						
Analyte	Sol A	Sol AB	Sol. A	Sol AB	%R	Sol. A	Sol. AB	%R				
Iron-dissolved	200		151.2	152.4	75.6							

Lab Name: Microseeps, Inc. Contract: 1024686

Lab Code: P0710154 Case No.: Martin State Airport SAS No.: SDG No.: DMW-6D-10090

Solid LCS Source:

Aqueous LCS Source:

SCP Sci

	Aqueo	ous (mg/L)			Solid (mg/Kg)									
Analyte	True	Found	%R	True	Found	С	Limits	%R						
Iron-dissolved	5.00	5.013	100											

U.S. EPA - CLP 13

PREPARATION LOG

Lab Name:

Microseeps, Inc.

Contract:

1024686

Lab Code:

P0710154

Case No.: Martin State Airport

SAS No.:

SDG No.: DMW-6D-100907

Method:

EPA Sample No.	Preparation Date	Weight (gram)	Volume (ml)
PBW	10/12/2007		50
LCSW	10/12/2007		50
ZZZZZZ	10/12/2007		50
ZZZZZZ	10/12/2007		50
ZZZZZZ	10/12/2007		50
ZZZZZZ	10/12/2007		50
ZZZZZZ	10/12/2007		50
ZZZZZZ	10/12/2007		50
ZZZZZZ	10/12/2007		50
ZZZZZZ	10/12/2007		50
ZZZZZZ	10/12/2007		50
ZZZZZZ	10/12/2007		50
ZZZZZZ	10/12/2007		50
ZZZZZZ	10/12/2007		50
ZZZZZZ	10/12/2007		50
ZZZZZZ	10/12/2007		50
ZZZZZZ	10/12/2007		50
DMW-6D-100907	10/12/2007		50
DMW-6I-100907	10/12/2007		50
DMW-9I-100907	10/12/2007		50
ZZZZZZ	10/12/2007		50
ZZZZZZ	10/12/2007		50
ZZZZZZ	10/12/2007		50
ZZZZZZ	10/12/2007		50

U.S. EPA - CLP 14 ANALYSIS RUN LOG

Lab Name: Microseeps, Inc. Contract: 1024686

Lab Code: P0710154 Case No.: Martin State Airport SAS No.: SDG No.: DMW-6D-100901

Instrument ID Number: EL99063568 Method: P

Start Date: 10/15/2007 End Date: 10/15/2007

														Analytes													
EPA Sample No	D/F	Time	%R	A L	S B				C D		C R		C U	F E	P B	M G	M N	H G	N I	K				N A	T \ L.		C
ICV	1	09:01		X	П	X	X		X	X	X		X	X	X	X	X		X	X	X	ζ.		X	T	X	
ICB	1	09:08		X	П	X	X	2	X	X	X			X			•				X	•	•	,	T	X	
ICSA	1	09:11		Γ	П	X	X		X		X	- 1	X		X		X	ŧ	1	ł	X			X			
ICSAB	1	09:14				X		1 1	X		X		X		X		X	•	X	ł		>	•			X	F
CCV	1	09:17		X	1	X	4	ł J.	. 1	1	X			X	ŀ		1				X					X	
ССВ	1	09:20		X	П	X	X	2	X.		X			X	X		Ŀ	l	X		X	. >	. 1	L		X	
PBW	1	09:23		X					- 1	X				X		ļ	X	Į.,		X		L		K	\perp	\perp	
LCSW	1	09:26		X						X				X			X			X		L		K	\perp	\perp	Ш
ZZZZZZ	1	09:29		X					J.	X				X		i	X			X		L	3	ł	\perp	\perp	
ZZZZZZ	1	09:32		X					- 1	X			,	X	·	<u>. </u>	X	L		X		L	7		\perp	\perp	Ш
ZZZZZZ	1	09:35		X			•		1	X				X		1	X		L	X		L	2		1		Ш
ZZZZZZ	1	09:38		X	i	X	1			X				X		<u></u>	<u></u>	<u></u>	X	1	X			- 1	\perp	X	, ,
ZZZZZZ	1	09:41		X		X			X.		X	- 1		X		ł			ŧ	•	X	1	т.		\perp	X	
ZZZZZZ	1	09:44		X	ı t	X	- 1		X		X		•	X			1 .		,		X	Ŧ		•	\perp	X	1 1
ZZZZZZ]	09:47		X		$\overline{\mathbf{X}}$,		K	- 1	X	- 1	- 1	X		ł				Į	X	1			\perp	X	1 1
ZZZZZZ	1	09:50		X		X	L	1	K		X		ŧ	X		L					X				\perp	X	
CCV	I	09:53		X			X	, ,	X :		X			X	1 1	1	ŧ		J	L	X	1		Ŧ	\perp	X	. 1 1
ССВ	1	09:56		X	ì	X	X	2	Κ.	X	X		X	X	X	X	X		X	X	X	X	()		\perp	X	
ZZZZZZ	40	09:59														<u> </u>							1		\perp		Ш
ZZZZZZ	10	10:02				\perp															L	L	\perp	\perp	\perp		
ZZZZZZ	5	10:05									\bot										L				\perp	\perp	$\perp \downarrow$
ZZZZZZ	10	10:08																			L		1	1	\perp	\perp	$\perp \downarrow$
ZZZZZZ	10	10:11										\perp									L	L	\perp	\perp	\perp	\perp	Ц
ZZZZZZ	1	10:14										\perp		X								L	\perp	\perp	\perp	_	Ц
ZZZZZZ	1	10:17											- 1	X							L	L	L	\perp	\perp	\perp	Ш
DMW-6D-100907	1	10:20										\perp		X							L	L	\perp	\perp	\perp	\perp	ot
DMW-61-100907	1	10:23										\perp		X								L	\perp		\perp	\perp	Ц
DMW-9I-100907	1	10:26											- 1	X								L	L	\perp	\perp	\perp	\sqcup
CCV	1	10:29		X		X :	- 1			X :	_1		•	X							X	,	•	Ŧ		X	1 1
CCB	1	10:32		X	1	X :	X	X		X :	X		X	X	X	X	X		X	X	X	X	X		\perp	X	

Betch Number: M071012006

Original Run Date:

10-10-07

Sample Numbers: PO710154-173, PO710155-177, PO710093-174,6,7

Out of Control Event (1) Some samples were over the collection range

Corrective Action Taken (Alutions will sither be analyzed at a latered ate or were analyzed enthis run.

Result

Observations to support use of data:

	·	
Manual Integration Checklist and Approval	Analyzed and Reviewed by: MW	Date: 10-12-07
Wantal Integration approved? Yes No Satisfactorily documented on this narrative?	Manual Integration Conducted?	YES NO
Satisfactionly documentarious an initialed warually integrated chromatogram initialed and dated by analyst?	Reviewed by: Reviewed and Entered by: Que	Date: 10/12/07
	Reviewed by:	Date:
Signature Lead Analyst or Lab Mgr. Date	Corrected by:	
	•	

Batch Number: MOHIGIM 022

Original Run Dzie:

Sample Numbers: P07 10189-174, P07 10191-173, P0710154-2,3
P67 10693-4

Out of Control Event O Sample Po710093-64 was over the calibration range.

(2) First COV out of acceptance exiteria oper Po4

Corrective Action Taken: (2) 25x deletion was analyzed.

(2) Samples PO710189-174 well be Manalyzed

Result of Result in range.

Observations to support use of data:

Case Narrative/BIOREM 12

Analytical Method: AM20Gax	Batch Number Original Run Date: 10/22/07
Light Hydrocarbons (C ₁ -C ₄) Permanent Gases (CO ₂ , O ₂ , N ₂ , CH ₄ , CO)	M071022001 M071022002
1. Sample numbers:	
P0710149 (01-03)	
P0710151 (01)	
P0710153 (01-02)	
P0710154 (01-03)	
P0710156 (01-03)	
P0710173 (08-12)	
P0710174 (04-06)	
 3. Corrective Action Taken: i. None 4. Result: i. Analysis OK 5. Observations to support use of data: In None 	the software not compensating for baseline flucuations.
Manual Integration Checklist and Approval Manual Integration approved: Yes Satisfactorily documented on this narrative Manually integrated chromatogram initial and dated by analyst? Manually integrated Chromatogram initial and dated by analyst? Jozanski Date	Reviewed by: MG - Date: 102307 Reviewed & Entered by: LIMS UPLOAD Date: 10207 Reviewed by: Date: Date:

Lab Name:	Microseeps, I	nc.		Contract:	1024686		
Lab Code:	P0710154	Case No :	Martin State Airport	SAS No.:		SDG No.:	DMW-6D-10090
Initial Calibra	ation Source:	AccuStd					
Communic O	<u></u>						

•	Initia	l Calibratio	n.	Continuing Calibration					
Analyte	True F	ound	%R	True	Found	%R	Found	%R	M
Chloride	10.0	9.980	99.8						<u> </u>
Nitrate	10.0	9.101	91.0						
Nitrite	10.0	9.702	97.0						
Phosphate	10.0	9.686	96.9						
Sulfate	10.0	9.837	98.4					<u> </u>	

Lab Name:	Microseeps, In	Microseeps, Inc.			1024686		,
Lab Code:	P0710154	Case No:	Martin State Airport	SAS No.:		SDG No.:	DMW-6D-10090
Initial Calibra	ation Source:						
Continuing C	alibration Source:	CPI					

		Initial Calibra	tion		Continuing Calibration					
	True	Found	%R	True	Found	%R	Found	%R	M	
Analyte Chloride	True	, cana	T	10.0	10.338	103	9.685	96.8		
				10.0	9.388	93.9	9.342	93.4		
Nitrate				10.0	9.555	95.6	9.545	95.5		
Nitrite				10.0			9.945	99.4		
Phosphate			-				10.740	107		
Phosphate Sulfate				10.0			10.740	10	07	

Lab Name:	Microseeps, Inc	C.		Contract:	1024686		
Lab Code:	P0710154	Case No.:	Martin State Airport	SAS No.:		SDG No.:	DMW-6D-10090
Initial Calibrat	tion Source: dibration Source:	CPI					

	[Initial Calibration			Continuing Calibration True Found %R Found %R					
Analyte	True	Found	%R	True			Tourie	T	M	
Chloride				10.	0 10.095	101				
Nitrate				10.	0 9.357	93.6				
				10	0 9.612	96.1				
Nitrite								1	†	
Phosphate	.	[10	0 10.229			 		
Sulfate				10	0 10.755	108				

Lab Name:	Microseeps, Inc	•		Contract:	1024686	•	
Lab Code:	P0710154	Case No :	Martin State Airport	SAS No.:		SDG No.:	DMW-6D-10090
Initial Calibra	ation Source:		araya araya				
Continuing C	alibration Source:	CPI					
			Concentration U	Jnits: mg/L			

		Initial Calibrat	ion		Conti	nuing Calibra	ation		·
Analyte	True	Found	%R	True	Found	%R	Found	%R	M
Sulfate				10.	.0 9.875	98.8	9.806	98.1	

Lab Name:	Microseeps, Inc			Contract:	1024686		
Lab Code:	P0710154	Case No.:	Martin State Airport	SAS No.:		SDG No.:	DMW-6D-10090
Initial Calibra	ation Source:		-				
Continuing C	alibration Source:	CPI					
			Concentration U	Jnits: mg/L			

		Initial Calibra	ition		Conti	nuing Calibra	ation		
Analyte	True	Found	%R	True	Found	%R	Found	%R	M
Sulfate				10.0	10.800	108			

Lab Name:	Microseeps, In	c.		Contract:	1024686		
Lab Code:	P0710154	Case No.:	Martin State Airport	SAS No.:	-	SDG No.:	DMW-6D-10090
Initial Calibrat	ion Source:	Scotty					
Continuing Ca	libration Source:	****					

	Ini	Initial Calibration			Continuing Calibration					
Analyte	True	Found	%R	True	Found	%R	Found	%R	M	
Methane	24.79	25.79	104						ļ	
Ethane	48.14	48.27	100						<u> </u>	
Ethene	53.55	54.49	102						<u> </u>	
Propane	6854	74.76	109						<u> </u>	
Propene	79.76	78.16	98.0							
iso-Butane	84.46	89.16	106						<u> </u>	
n-Butane	88.23	90.25	102							
Acetylene	74.31	78.98	106							
Carbon dioxide	107.4	108.52	101						<u> </u>	
Methane	4294	4486	104						1	
Acetylene	74.31	78.21	105				,			

Lab Name:	Microseeps, Inc			Contract:	1024686		
Lab Code:	P0710154		Martin State Airport	SAS No.:		SDG No.:	DMW-6D-10090
Initial Calibra		Spectra					
Continuing C	alibration Source:	<u> эресца</u>			•		

		Initial Calibra	tion		Conti	nuing Calibra	ation		
Analyte	True	Found	%R	True	Found	%R	Found	%R	M
Methane				24.79	28.11	113	26.62	107	
Ethane				48.14	52.63	109	49.82	103	
				53.55	59.58	111	56.57	106	
Ethene			-	68,54	81.98	120	78.03	114	
Propane				79.76	85.81	108	82.02	103	
Propene				84.46		116	92.96	110	
iso-Butane				88.23		112	90.99	103	
n-Butane							74.09	99.7	
Acetylene				74.31	<u> </u>			102	
Carbon dioxide		1		107.4	110,81	103	109.89		
Methane				4294	4506	105	4526	105	· · ·

BLANKS

1024686 Contract: Microseeps, Inc. Lab Name: SDG No.: DMW-6D-100907 Martin State Airport SAS No.: Case No.: Lab Code: P0710154 Preparation blank Matrix (soil/water) Water Preparation Blank Concentration Units mg/L

Analyte	Init Calib Blank		1	Con C	tinuing Ca 2	libration C	Blank 3	С	Preparation Blank	С	М
	1.00	U	1.00	U	1.00	U	1.00	U	1.00	U	
Chloride	0.50	U	0.50	U	0.50	U	050	U	050	U	
Nitrite		บ	0.50	U	0.50	U	0.50	U	0.50	U	
Nitrate	0.50	 _		 U	1.00	11	1.00	T _U	1.00	U	
Sulfate	1.00	U	1.00			17		117	1.00	17	
Phosphate	1.00	U	1.00	U	1.00	U	1.00	10	1.00	<u> </u>	

Lab Name:	Microseeps, Inc.		Contract:	1024686	
Lab Code:	P0710154 Case No	: Martin State Airport	SAS No.:		SDG No.: <u>DMW-6D-1009</u> 0
Preparation bl	lank Matrix (soil/water)	Water			
Preparation B	lank Concentration Units	mg/L			

Analyte	Init Calib. Blank	С	1	Conti C	nuing Cal 2	ibration B C	lank 3	С	Preparation Blank	С	М
Chloride			1.00	U							
Nitrate			0.50	U							
Nitrite			0.50	U					., .,		
Phosphate			1.00	U							
Sulfate			1.00	U							

Lab Name: Microseeps, Inc.

Lab Code: P0710154 Case No.: Martin State Airport SAS No.: SDG No.: DMW-6D-10090:

Preparation blank Matrix (soil/water) Water

Preparation Blank Concentration Units mg/L

Analyte	Init Calib. Blank	С	1	Cont C	inuing Calil 2	oration E	Blank 3	С	Preparation Blank	С	М
Alkalinity as CaCO3						<u> </u>			2.0	h	<u> </u>

U.S. EPA - CLP 3 BLANKS

Lab Name: Microseeps, Inc.

Lab Code: P0710154 Case No.: Martin State Airport SAS No.: SDG No.: DMW-6D-10090:

Preparation blank Matrix (soil/water) Water

Preparation Blank Concentration Units mg/L

Analyte	Init Calib. Blank	С	1	Conti C	inuing Cali 2	bration E C	Blank 3	С	Preparation Blank	С	М
Alkalinity as CaCO3									1.0	<u> </u>	

Lab Name: Microseeps, Inc.

Lab Code: P0710154 Case No: Martin State Airport SAS No: SDG No.: DMW-6D-10090:

Preparation blank Matrix (soil/water) Water

Preparation Blank Concentration Units mg/L

	Init Calib Blank		1	Cont	inuing Cali	bration C	Blank 3	С	Preparation Blank	С	M
Analyte Sulfate	Dialik	r –	1.00	U	1.00	U	1.00	U	1.00	u	

Lab Name: Microseeps, Inc.

Lab Code: P0710154 Case No.: Martin State Airport SAS No.: SDG No.: DMW-6D-10090:

Preparation blank Matrix (soil/water) Water

Analyte	Init Calib Blank	С	1	Cont C	inuing Calit 2	oration E C	Blank 3	С	Preparation Blank	С	· M
Sulfate			1.00	U						<u> </u>	

mg/L

Preparation Blank Concentration Units

BLANKS

1024686 Contract: Microseeps, Inc. Lab Name: SDG No.: DMW-6D-100907 Case No.: Martin State Airport SAS No.: P0710154 Lab Code: Water Preparation blank Matrix (soil/water) ug/L Preparation Blank Concentration Units

	Init Calib.			Conti	nuing Cali	_	lank	_	Preparation	<u></u>	M
Analyte	Blank	Ç	1	С	2	С	3	<u>C</u>	Blank	С	101
Acetylene	0.500	U	0.500	U					0.500	U	
iso-Butane	0.050	U	0.050	U					0.050	U	
Ethane	0.025	บ	0.025	U					0.025	U	
Ethene	0.025	บ	0.025	บ					0.025	U	
n-Butane	0.050	U	0.050	.U					0.050	U	
Propane	0.050	บ	0.050	U.					0.050	U	
Propene	0.050	U	0.050	U					0.050	Ū	
Methane	0.100	U	0.100	U					0.100	ū	

U.S. EPA - CL.P 3 BLANKS

Lab Name: Microseeps, Inc.

Lab Code: P0710154 Case No.: Martin State Airport SAS No.: SDG No.: DMW-6D-10090:

Preparation blank Matrix (soil/water) Water

Preparation Blank Concentration Units mg/L

	Init Calib.			Conti	inuing Calib	ration B	lank		Preparation			
Analyte	Blank	С	11	С	2	C	3	C	Blank	C C	М	
Carbon dioxide	5.00	บ	5.00	U					5.00	h		

U.S. EPA - CLP 5A

SPIKE SAMPLE RECOVERY

EPA Sample No.

DMW-5S-101107 Contract: 1024686 Microseeps, Inc. Lab Name: SDG No.: DMW-5D-101101 SAS No.: Case No .: Martin State Airport Lab Code: P0710189 Level (low/med): Water Matrix (soil/water):

Concentration Units: mg/L

% Solids for Sample:

Analyte	Control Limit %R	Spike Sample Result	С	Sample Result	С	Spike Added	%R	Q	М
Chloride	70-130	193.4		164.6		50.0	57.6		
Nitrite	70-130	9.685		2.128		10.0	75.6		
Nitrate	70-130	9.434		1.070		10.0	83.6		
Phosphate	70-130	11.999		1.00	U	10.0	120		

Comments:

DUPLICATES

,							EPA Sample No.			
Lab Name:	Microseeps, Inc.				Contract:	1024686		DMW-9I		
Lab Code:	P0710154 Case 1		Case No.:	Martin State Airport	SAS No.:	,		SDG No.:	DMW	-6D-10090
Matrix (soil/v	vater):	Water				Level (low/med):			_	•
% Solids for	Sample:					% Solids for Dup	licate:			
				Concent	ration Units:	mg/L				
		Co	ontrol			Darlanta		D DIO		M

							T	[Ī
Analyte	Control Limit	Sample	С	Duplicate	С	RPD	Q	М	
Alkalinity as CaCO3	0-20	70.7		72.7		2.79			

U.S. EPA - CLP 6 DUPLICATES

rn.	Commis	λla
EPA	Sample	190.

Lab Name:	Microseeps, Inc.			Contract:	1024686	LCS
Lab Code:	P0710154	Case No.:	Martin State Airport	SAS No:		SDG No: DMW-6D-10090
Matrix (soil/w		r		•	Level (low/med): % Solids for Duplication	ate:
76 3011ds 101 v			Concent	ration Units :	ug/L	

Analyte	Control Limit	Sample	С	Duplicate	С	RPD	Q	М
Ethane	0-20	51.54		51.56		0.04		
Ethene	0-20	47.84		48.03		0.40	<u> </u>	
	0-20	75.42		75.49		0.09		
Propane	0-20	68.80		69.42		0.90		
Propene	0-20	39.67		42.09		5.92		
Acetylene	0-20	100.44		100.12		0.32		
iso-Butane	0-20	97.14		98.09		0.97	1	
n-Butane Methane	0-20	842.1		871.4		3.42		

U.S. EPA - CLP 6 DUPLICATES

6
PLICATES

EPA Sample No.

Lab Name:	Microse	eeps, Inc		Contract:	1024686		LCS			
Lab Code:	P07101	54 Case No	: Martin State Airport	SAS No.:			SDG No.:	DMW-6D-10090		907
Matrix (soil/w	vater):	Water			Level (low/med):			_		
% Solids for Sample:		<u> </u>			% Solids for Dup	licate:				
70 Bonds to: C			Concer	ntration Units:	mg/L					-,
Anal	yte	Control Limit	Sample	С	Duplicate	С	RPD	Q	М	
Carbon dioxid	<u> </u>	0-20	147.77		152.87		3.39			

Lab Name:	Microseeps, I	nc.		Contract:	1024686		
Lab Code:	P0710154	Case No.:	Martin State Airport	SAS No.:		SDG No.:	DMW-6D-10090
Solid LCS So	urce:						•
Aqueous LCS	Source:	CPI					

		Aqueo	us			Solid (mg/Kg)				
Analyte	Units	True	Found	%R	True	Found	С	Limits	%R	
Chloride	mg/L	10.0	10.404	104						
Nitrite	mg/L	10.0	9.828	98.3						
Nitrate	mg/L	10.0	9.593	95.9						
Sulfate	mg/L	10.0	10.759	108						
Phosphate	mg/L	10.0	8.375	83.8						

Lab Name:	Microseeps	croseeps, Inc			1024686		
Lab Code:	P0710154	Case No :	Martin State Airport	SAS No.:		SDG No:	DMW-6D-10090
Solid LCS Sou	rce:						
Aqueous LCS Source:		ERA	_				

	Aqueous				Solid (mg/Kg)				
Analyte	Units	True	Found	%R	True	Found	С	Limits	%R
Alkalinity as CaCO3	mg/L.	96.2	101	105					

Lab Name: Microseeps, Inc.

Lab Code: P0710154 Case No.: Martin State Airport SAS No.: SDG No.: DMW-6D-10090°

Solid LCS Source:

Solid LCS Source: CPI

	Aqueous				Solid (mg/Kg)				
Analyte	Units	True	Found	%R	True	Found	С	Limits	%R
Sulfate	mg/L	100	10.740	107					

Lab Name:	Microseeps, Inc	i.		Contract:	1024686		
Lab Code:	P0710154	Case No.:	Martin State Airport	SAS No:		SDG No.:	DMW-6D-10090
Solid LCS So	urce:						
Aqueous LCS	Source: Sp	ectra					

	Aqueous				Solid (mg/Kg)				
Analyte	Units	True	Found	%R	True	Found	С	Limits	%R
Acetylene	ug/L.	36.10	39.67	110			<u> </u>		
iso-Butane	ug/L	80.58	100.4	124					
Ethane	ug/L	41.68	51.54	1.24					
Ethene	ug/L	38.89	47.84	123					
n-Butane	ug/L	80.58	97.14	120					
Propane	ug/L	61.13	75.42	123					
Propene	ug/L	58.33	68.80	.118					
Methane	ug/L	822.8	842.1	102					

Lab Name: Microseeps, Inc.

Contract: 1024686

Lab Code: P0710154 Case No.: Martin State Airport SAS No.: SDG No.: DMW-6D-10090

Solid L.CS Source:

Aqueous LCS Source: Spectra

	Aqueous				Solid (mg/Kg)				
Analyte	Units	True	Found	%R	True	Found	С	Limits	%R
Carbon dioxide	mg/L	129.3	147.77	114					