Technical Memorandum: March 2011 Surface Water Sampling Results for Frog Mortar Creek Martin State Airport 701 Wilson Point Road Middle River, Maryland

Prepared for	r:
Lockheed N	Ла

Lockheed Martin Corporation

Prepared by:

Tetra Tech, Inc.

March 2012

Michael Martin, P.G. Regional Manager

Milal Mart

Tony Apanavage, P.G. Project Manager

TABLE OF CONTENTS

<u>S</u>	<u>ection</u>		<u>Page</u>
Α	CRONYN	MS	iii
1	INTF	RODUCTION	1-1
2	SITE	E BACKGROUND	2-1
	2.1 OVE	ERVIEW	2-1
	2.2 PRE	VIOUS FROG MORTAR CREEK INVESTIGATIONS	2-2
	2.2.1	1997 Investigation	2-2
	2.2.2	2004 Investigation	2-3
	2.2.3	2007–2008 Investigation	2-3
	2.2.4	2010 Investigation	2-4
3	INVI	ESTIGATION APPROACH AND METHODOLOGY	3-1
	3.1 SUR	FACE WATER SAMPLING	3-1
	3.1.1	Surface Water Sampling and Analysis	3-1
	3.1.2	Documentation	3-2
	3.1.3	Sample Nomenclature and Handling	3-3
	3.1.4	Equipment Decontamination	3-3
	3.1.5	Waste Management	3-3
	3.2 DAT	'A MANAGEMENT	3-4
	3.2.1	Data Tracking and Control	3-4
	3.2.2	Sample Information	3-4
	3.2.3	Project Data Compilation	3-4
	3.2.4	Geographical Information System	3-5
	3.3 DAT	'A REVIEW	3-5
4	RES	SULTS	4-1
5	SUM	//MARY	5-1
6	REF	ERENCES	6-1

TABLE OF CONTENTS (continued) APPENDICES

APPENDIX A—SURFACE WATER SAMPLE LOG SHEETS

APPENDIX B—DATA-VALIDATION REPORTS (ON CD)

APPENDIX C-CHEMICAL RESULTS DATA TABLE

LIST OF FIGURES

Figure 1-1	Martin State Airport, Dump Road Area, and Frog Mortar Creek Location Map
Figure 2-1	Martin State Airport and Surrounding Features
Figure 2-2	Areas of Concern, Dump Road and Runway Area2-7
Figure 2-3	1997 Surface Water and Sediment Sampling Locations2-8
Figure 2-4	2004 Surface Water and Sediment Sampling Locations2-9
Figure 2-5	2007 Trident Probe Sampling Locations2-10
Figure 2-6	2007 Phase II Surface Water and Sediment Sampling Locations2-11
Figure 2-7	2007-2008 Phase III Surface Water and Sediment Sampling Locations2-12
Figure 2-8	July 2010 Surface Water Sampling Locations
Figure 3-1	March 2011 Surface Water Sampling Locations
Figure 4-1	Analytes Exceeding Screening Levels for Surface Water Samples, Frog Mortar Creek, March 20114-8
Figure 4-2	Concentrations of Trichloroethene in Surface Water Samples, March 20114-9
Figure 4-3	Concentrations of <i>cis</i> -1,2-Dichloroethene in Surface Water Samples, March 20114-10
Figure 4-4	Concentrations of Vinyl Chloride in Surface Water Samples, March 20114-11
	LIST OF TABLES
Table 3-1	Chemical Analyses for Frog Mortar Creek Surface Water Samples - March 2011
Table 4-1	Statistical Summary of Frog Mortar Creek Surface Water Samples - March 2011
Table 4-2	Chemical Results and Screening Levels for Frog Mortar Creek Surface Water Samples - March 2011

ACRONYMS

AWQC Ambient Water Quality Criteria

BTAG Biological Technical Advisory Group

cis-1,2-DCE cis-1,2-dichloroethene

COC chain of custody

cVOC chlorinated volatile organic compound

DRA Dump Road Area

GIS geographic information system

GPS global positioning system

HASP health and safety plan

IDW investigation-derived waste

Lockheed Martin Corporation

MAA Maryland Aviation Administration

MDE Maryland Department of the Environment

MSA Martin State Airport $\mu g/L$ microgram(s) per liter

NRWQC National Recommended Water Quality Criteria

PAHs polycyclic aromatic hydrocarbons

PCB polychlorinated biphenyl
PDF portable document format

PM project manager

PPE personal protective equipment

RI remedial investigation

SVOC semivolatile organic compound

TCE trichloroethene
Tetra Tech Tetra Tech, Inc.

USEPA U.S. Environmental Protection Agency

VC vinyl chloride

VOC volatile organic compound

This page intentionally left blank.

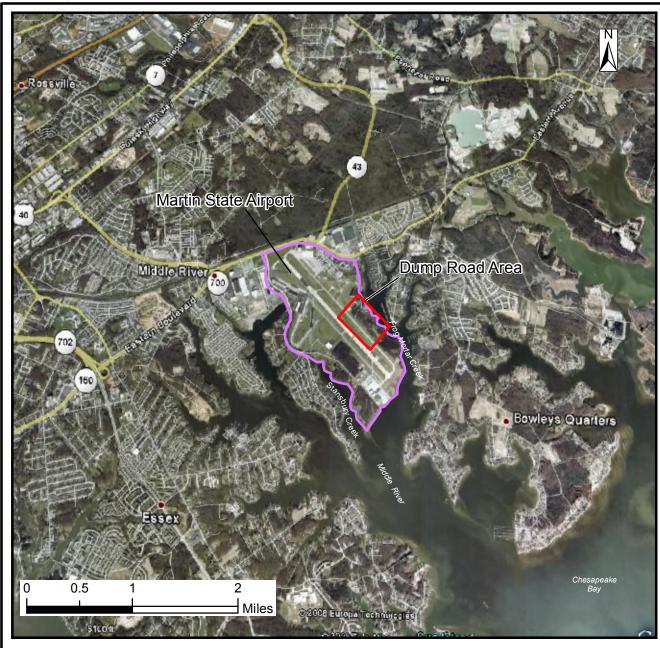
Section 1
Introduction

On behalf of Lockheed Martin Corporation (Lockheed Martin), Tetra Tech, Inc. (Tetra Tech) has prepared this technical memorandum to detail work conducted as part of the *2011 Groundwater Monitoring Work Plan* (Tetra Tech, 2011a) for the Dump Road Area (DRA), Martin State Airport (MSA), Middle River, Maryland (see Figure 1-1). This technical memorandum presents the results of surface water samples collected from Frog Mortar Creek in March 2011. The objectives of the March 2011 sampling event were to:

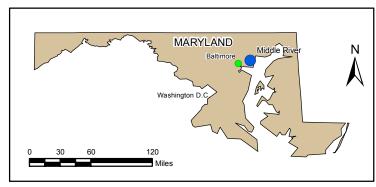
- provide surface water quality data to determine the extent of water quality criteria exceedances detected during the July 2010 Frog Mortar Creek sampling
- evaluate the interaction between shallow groundwater and Frog Mortar Creek
- provide information that can be used to update the modeling of shallow groundwater-flow patterns and discharge to Frog Mortar Creek

This technical memorandum is organized as follows:

<u>Section 2—Site Background</u>: Briefly describes the site and where detailed background information and previous investigations can be found.


<u>Section 3—Investigation Approach and Methodology</u>: Presents the technical approach used for the surface water sampling and describes the field methodology employed.

<u>Section 4—Results</u>: Presents the investigation findings.


<u>Section 5—Summary</u>: Summarizes the investigation program and results.

Section 6—References: Cites references used to compile this memorandum.

This page intentionally left blank.									

Source: Google Earth Pro, 2008

FIGURE 1-1 MARTIN STATE AIRPORT, DUMP ROAD AREA, AND FROG MORTAR CREEK LOCATION MAP Frog Mortar Creek Lockheed Martin, Martin State Airport Middle River, Maryland DATE MODIFIED: 1/9/12 MP

Section 2 Site Background

2.1 OVERVIEW

Martin State Airport (MSA) is located at 701 Wilson Point Road in Middle River, Maryland and is bounded by Frog Mortar Creek to the east and Stansbury Creek and Dark Head Cove to the west (Figure 2-1). Both creeks are tidal tributaries of the Chesapeake Bay. The area under investigation is Frog Mortar Creek, which is east of and adjacent to the Dump Road Area (DRA) site at the MSA. Environmental investigations of the Dump Road Area (DRA) began in 1989 when the Maryland Department of the Environment (MDE) conducted a preliminary assessment of MSA. During the 1930s, 1940s, and 1950s, the Glenn L. Martin Aircraft Company reportedly used a sand pit under the current Taxiway Tango to dump spent battery acid, acid-type strippers and other acidic solutions, and dredge spoils and construction debris. The U.S. Environmental Protection Agency (USEPA) concluded after a review of the preliminary assessment that no signs of waste disposal were apparent, and the site was classified as "No Further Remedial Action Planned."

In July 1991, four drums containing dried zinc-chromate paint were uncovered during installation of underground electric cables adjacent to Taxiway Tango, prompting MDE to order additional studies (MDE, 1992 and 1997). The Maryland Aviation Administration (MAA), the owner of the airport at this time, removed the drums discovered near Taxiway Tango in 1991 and conducted environmental studies from 1991–1998 including geophysical surveys to locate and identify buried materials, and sampling and chemical analyses of soil, groundwater, surface water, and sediment. These initial investigations identified four areas of concern at MSA: the Taxiway Tango Median Anomaly Area, the Drum Area, two ponds (Pond 1 and Pond 2), and the Petroleum Hydrocarbon Area (Figure 2-2).

From 1999–2009, the Lockheed Martin Corporation (Lockheed Martin), the successor entity of the Glenn L. Martin Aircraft Company, conducted a remedial investigation (RI) of the DRA (Tetra Tech, Inc. [Tetra Tech], 2010a). Supplemental RI studies of the DRA were also conducted by Lockheed Martin in 2010 and 2011 (Tetra Tech 2010a-c, 2011b-d, 2012a,b) to further delineate the

extent of soil, groundwater, and sediment chemical impacts indicated by the earlier studies. Through geophysical surveys, test pits, soil borings, and soil-sample chemical analyses, the RI and supplemental studies identified surface and subsurface-soil contamination from buried fill material. The fill material consisted of soil, stained soil, and debris, the latter of which is comprised of concrete rubble and disposed industrial items (e.g., batteries, decomposed drums, tires, paint cans, burnt items, sludge, buckets, glass, wood, etc.). Volatile organic compounds (VOC), semivolatile organic compounds (SVOC) (primarily polycyclic aromatic-hydrocarbons [PAHs]), and several metals were detected in soils at concentrations exceeding human health risk screening levels. Chlorinated VOCs (cVOCs) (trichloroethene [TCE]) and its degradation products, petroleum VOCs (e.g., benzene, etc.), and metals were also found in surficial-aquifer groundwater at concentrations exceeding Maryland groundwater and drinking water standards. Complete details of the site background, including previous investigations, descriptions of site geology and hydrogeology, and current conditions are provided in the RI (Tetra Tech, 2010a).

2.2 PREVIOUS FROG MORTAR CREEK INVESTIGATIONS

2.2.1 1997 Investigation

MAA conducted an investigation in late 1997 to evaluate potential contamination of surface water and bottom sediments in Frog Mortar Creek east of and hydraulically downgradient of the DRA (Apex Environmental, 1998). Six sediment and nine surface water samples were collected along three transects in Frog Mortar Creek, as shown in Figure 2-3. Surface water and sediment samples were analyzed for VOCs, SVOCs, metals, cyanide, and pH (a measure of the acidity or alkalinity of a substance).

SVOCs and cyanide were not detected in the surface water samples. The only detected VOC, methylene chloride, is considered a common laboratory contaminant. Several SVOCs, primarily PAHs, and metals were detected in the sediment samples. Several metals exceeded comparison criteria in surface water samples, and copper was detected at high concentrations in sediment samples. However, the Maryland Environmental Service (MAA's consultant at the time of the investigation) determined that SVOC concentrations in sediment were comparable to background levels found in other sediment samples collected in the Chesapeake Bay, and that they posed no public health or environmental concerns with respect to surface water or bottom sediment quality. An MDE memorandum dated August 20, 1998 (MDE, 1998) reviewed the surface water and

sediment data and concluded that exposure concentrations were within USEPA-recommended levels of risk.

2.2.2 2004 Investigation

In July 2004, Tetra Tech collected sediment and surface water samples from Frog Mortar Creek to provide quality data for risk assessment. Two sediment and two surface water samples were collected within 50 feet of the DRA shoreline. These locations were selected based on extensive groundwater sampling and modeling, which indicated the direction of the on-site VOC plume toward Frog Mortar Creek. Sampling locations are shown in Figure 2-4.

The sediment and surface water samples were analyzed for inorganic constituents, VOCs, SVOCs, polychlorinated biphenyls, and pesticides. Very low concentrations of VOCs and reportable concentrations of various metals were detected in surface water and sediment samples. These data were used to assess risk to recreational users of Frog Mortar Creek. The results of the human health risk assessment indicate that contacting sediments and surface water in Frog Mortar Creek while recreating did not pose a significant cancer risk or health hazard to adults, youth, and child recreational users (Tetra Tech, 2006).

2.2.3 2007–2008 Investigation

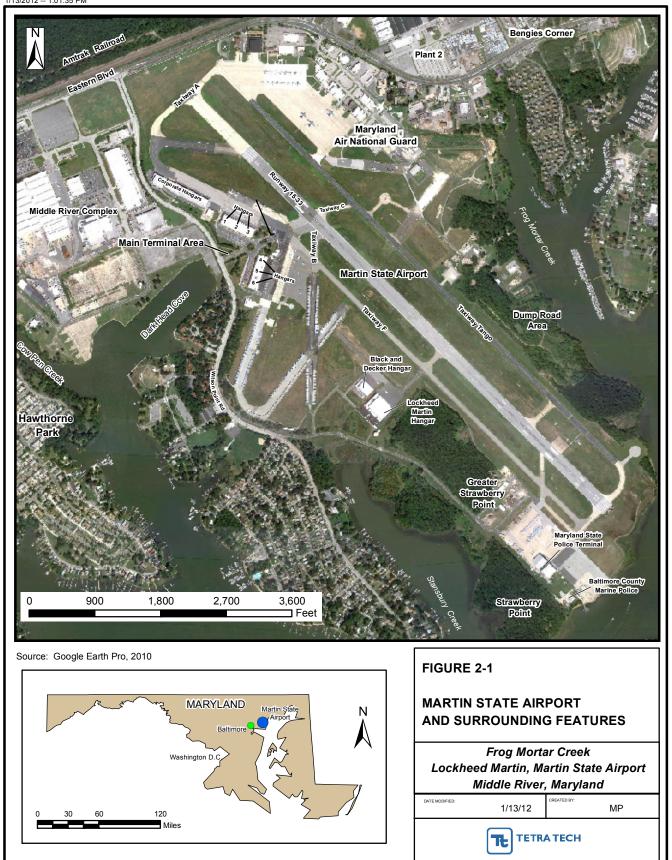
In 2007–2008, Tetra Tech completed a three-phase investigation of surface water and sediment in Frog Mortar Creek (Tetra Tech, 2009) to identify and sample areas of groundwater discharge into Frog Mortar Creek, to assess potential impacts to the sediment and surface water, and to assess whether contaminants may have historically migrated from the site into Frog Mortar Creek via surface erosion. The three-phase investigation included the following tasks: Phase I identified locations where groundwater discharged to surface water using a TridentTM probe. Phase II sampled surface water and shallow sediment at locations identified in Phase I as possible groundwater discharge points. Phase III sampled deeper sediment at locations identified in Phase II as potentially affected. Sampling locations for the three phases of this investigation are shown in Figures 2-5 through 2-7.

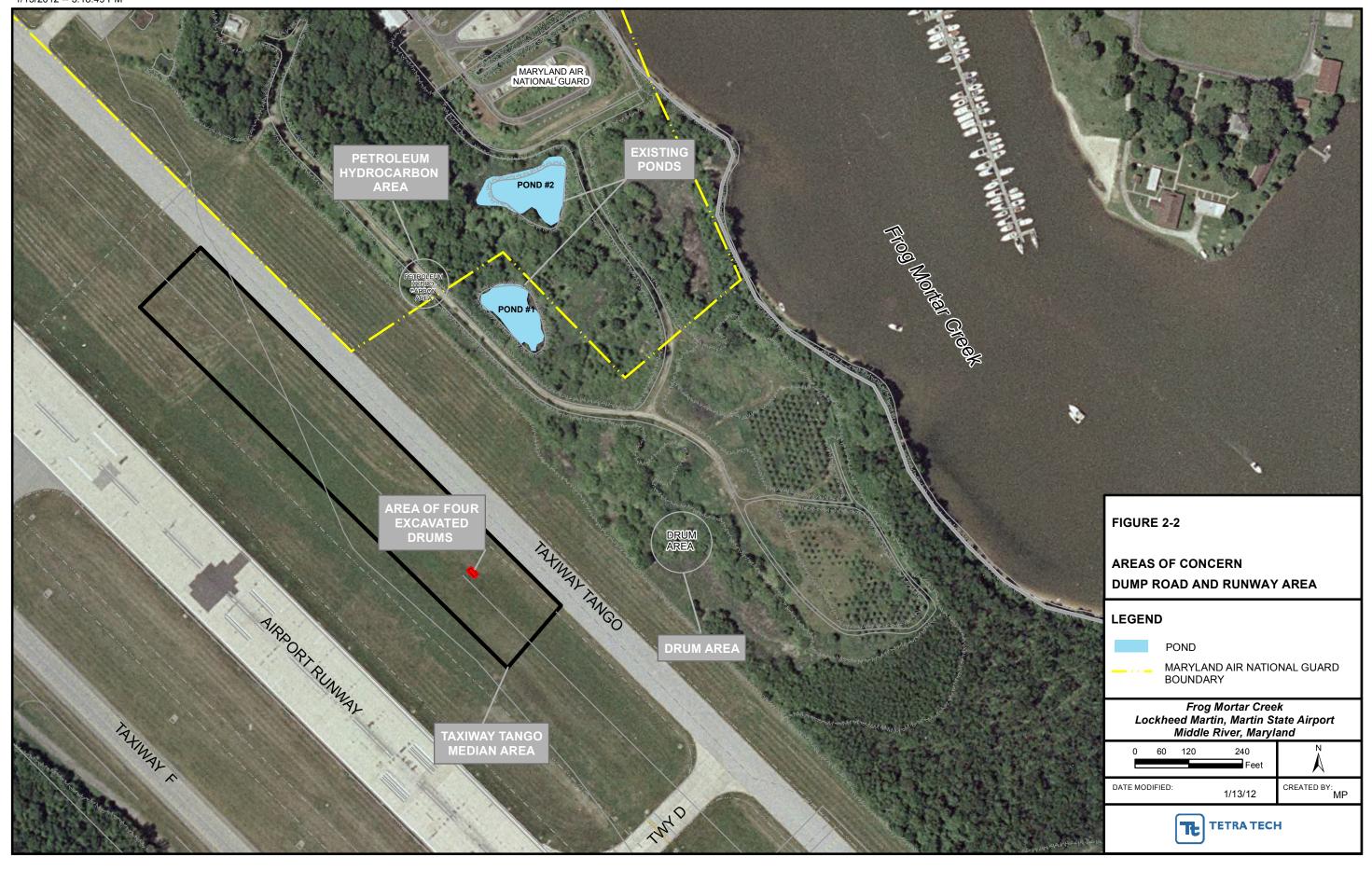
The results of the Phase I TridentTM study identified the likely presence of groundwater discharge at the southern end of the groundwater plume at the DRA. The Phase II investigation indicated that groundwater discharge appeared to be affecting surface water and sediment in Frog Mortar

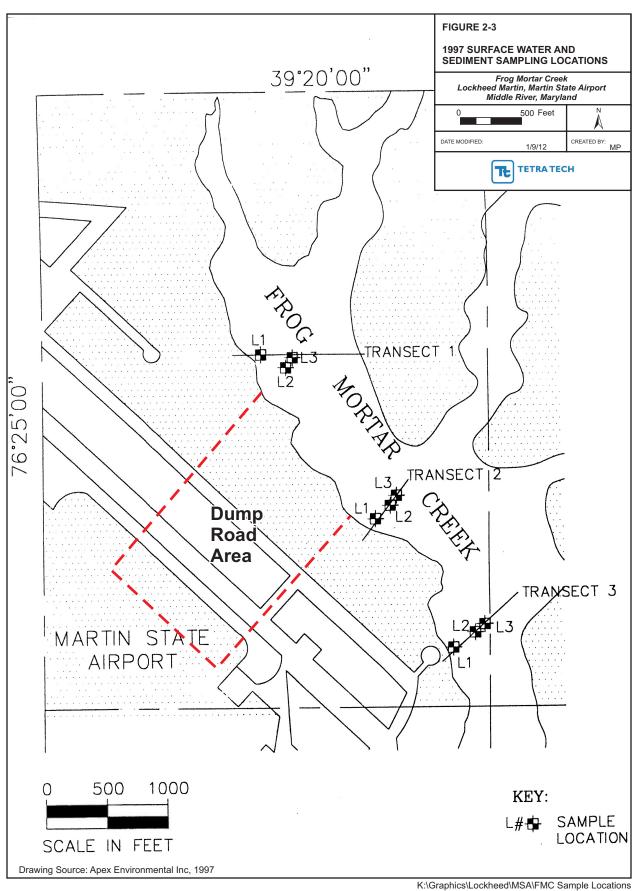
Creek east of the DRA. The Phase III investigation confirmed the Phase II results, but also indicated that metal and PAH impacts are widespread in the Frog Mortar Creek system, including upstream locations.

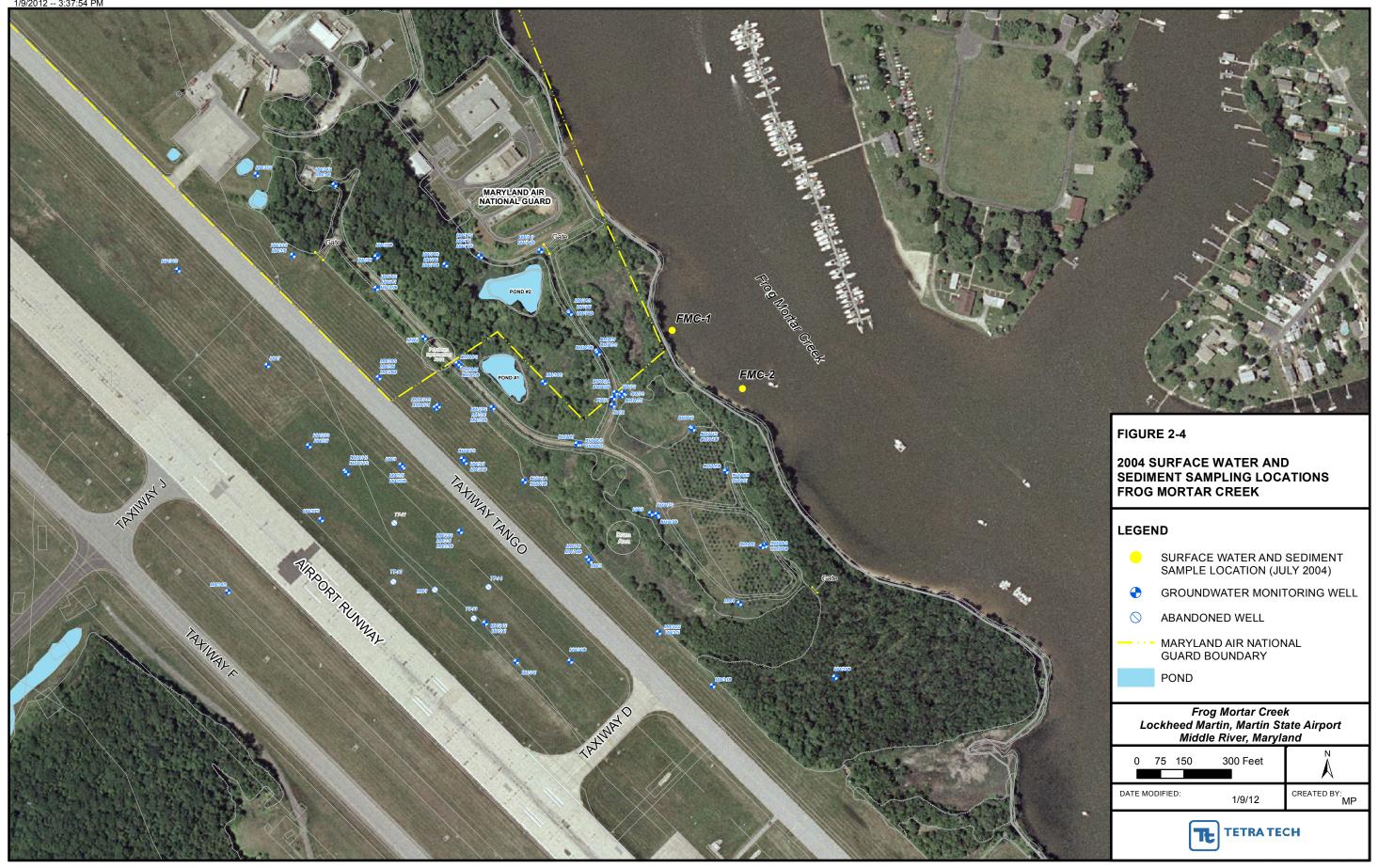
The 2007–2008 investigation concluded that cVOC groundwater contamination was affecting surface water and sediment upon discharge at locations adjacent to and east of the DRA. These locations are within the lateral boundaries of the groundwater plume and known fill area at the DRA. The sediment sampling and analyses found the highest concentrations of cVOCs known to be associated with groundwater in sediments adjacent to the site, that the highest concentrations of metals are typically found at background locations, and the highest concentrations of PAHs are found in Frog Mortar Creek north of the site.

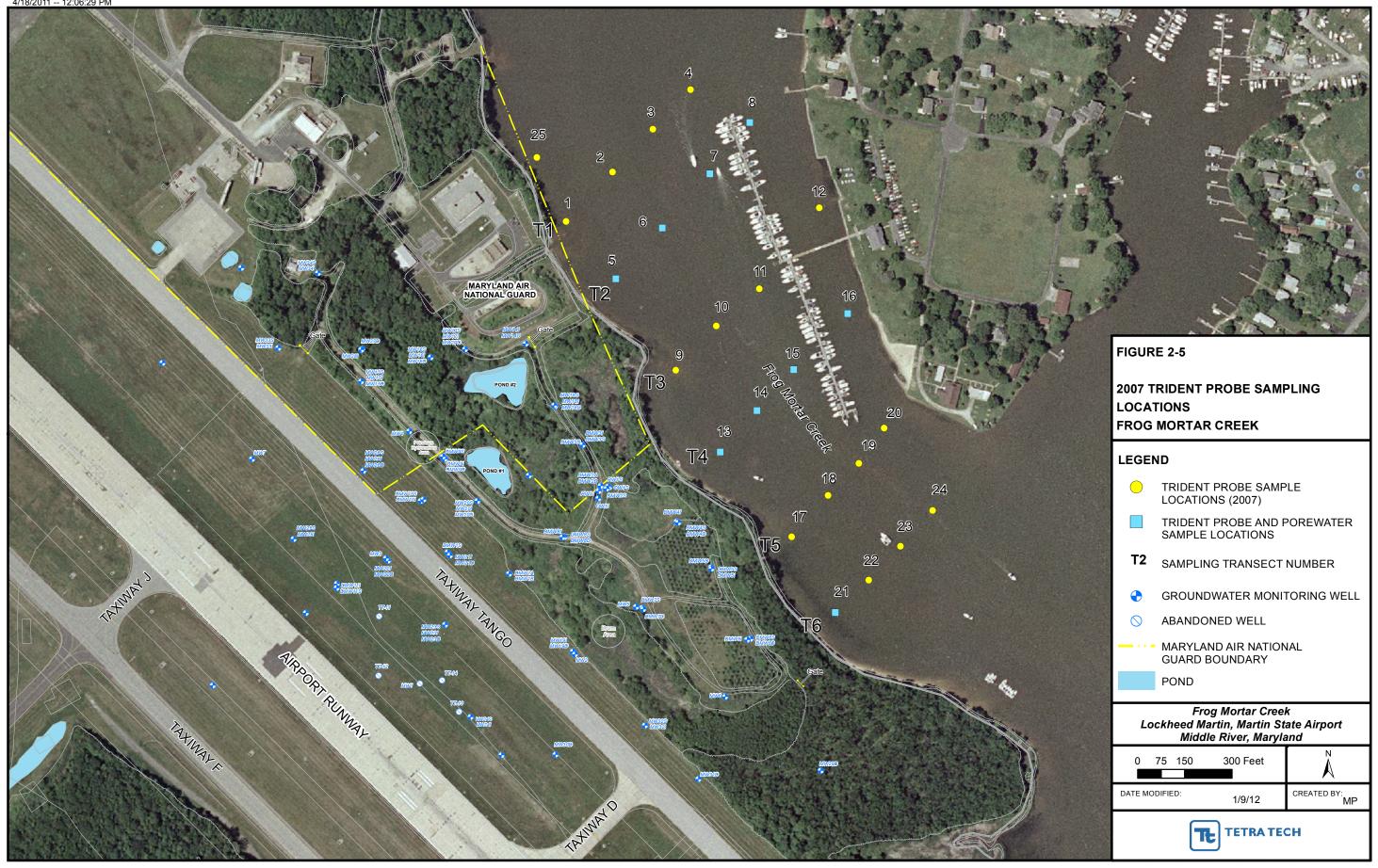
Several concentrations of metals in surface water exceeded USEPA Ambient Water Quality Criteria (AWQC). Concentrations of these metals were consistent in Frog Mortar Creek, did not appear to be associated with known MSA contaminant sources, and did not appear to represent a high level of potential risk. Most metals appeared to be in dissolved form and not adsorbed to suspended material in the water column.

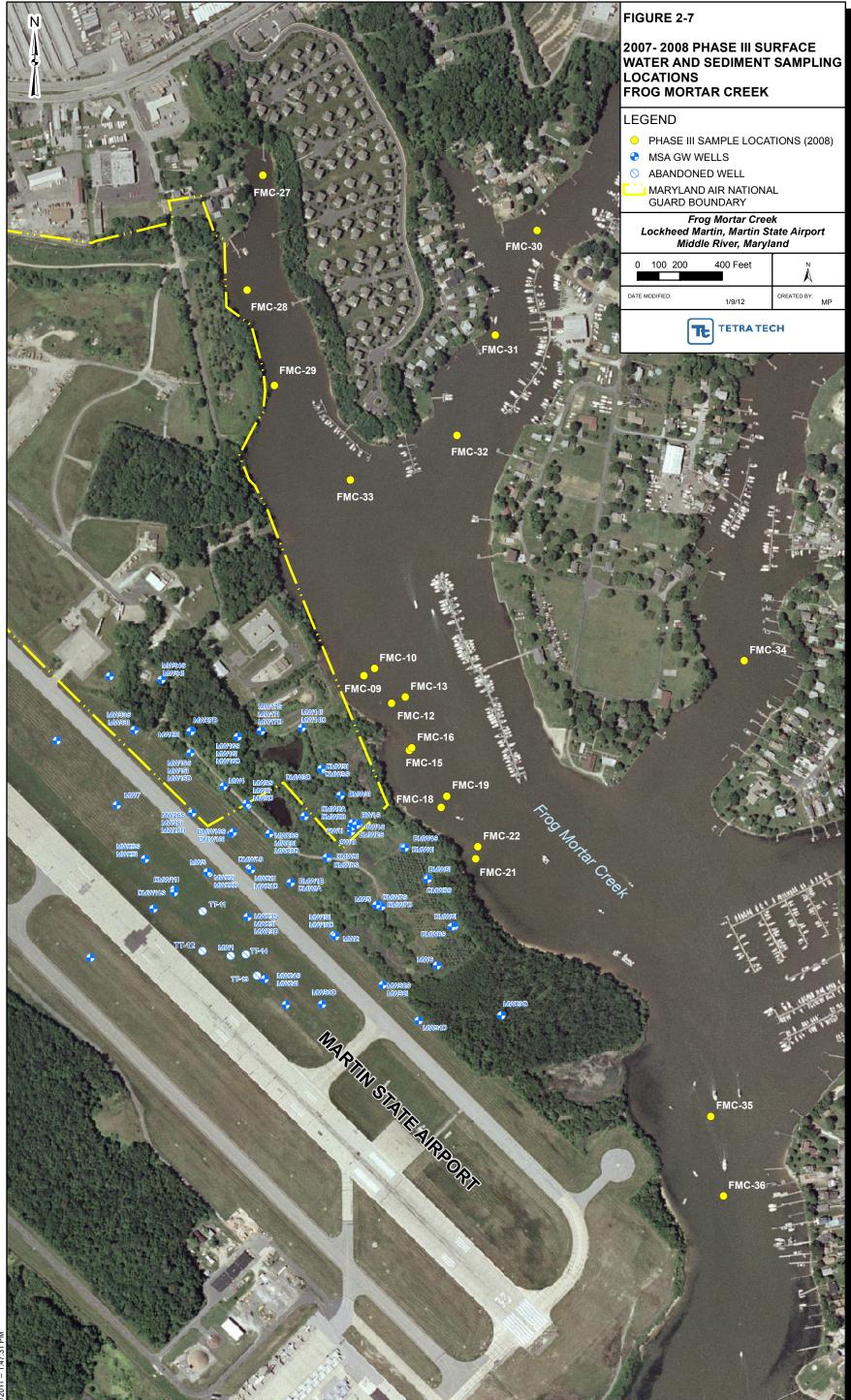

The 2007–2008 study concluded that surface water concentrations of PAHs and metals appeared to be associated with typical sources within active water bodies such as Frog Mortar Creek, including metals from marine paint, PAHs from boat exhaust and oil discharge, as well as runoff from land sources. Only Gar Gut, an embayment of Frog Mortar Creek to the north, demonstrated impacts that may not be associated with these typical types of contaminant sources in Frog Mortar Creek and thus may represent a separate source. Gar Gut was found to have localized elevated concentrations of VOCs, PAHs, and metals in surface water and elevated concentrations of PAHs in sediment. The types and concentrations of contaminants at this location have a different signature than contamination found at other locations. Based on the results of the 2007-2008 investigation, MDE issued a letter confirming no remediation requirements for sediment and surface water are necessary in Frog Mortar Creek (MDE, 2010).


2.2.4 2010 Investigation


As a part of the July 2010 groundwater and surface water-sampling program, three surface water samples were collected along the western shoreline of Frog Mortar Creek near the DRA (Tetra


Tech, 2010c). The 2010 sampling locations are shown in Figure 2-8. Sample MSA-SW38 was collected northeast of wells DMW2A/B, near the center of the DRA groundwater VOC plumes. Samples MSA-SW37 and MSA-SW39 were collected north and south of the DRA, respectively. Sample MSA-SW38 reflects near-shore surface water quality in a locale hydraulically downgradient of the DRA VOC groundwater plume. Primary site groundwater contaminants TCE, cis-1,2-dichloroethene (cis-1,2-DCE), vinyl chloride (VC), and 1,4-dioxane were detected in sample MSA-SW38, as well as low concentrations of three other DRA groundwater VOCs: 1,2,4-trichlorobenzene, 1,3-dichlorobenzene, and 1,4-dichlorobenzene. These results indicate that VOC-impacted groundwater from the DRA discharges to Frog Mortar Creek. Other site VOCs, such as benzene, toluene, ethylbenzene, xylene, chlorobenzene, and other chlorobenzene isomers, were not detected in the Frog Mortar Creek surface water samples collected in 2010. Hexavalent chromium was detected in the three surface water samples at low concentrations below the ecological and human health screening levels. The 2010 surface water results, showing increased concentrations of some constituents of concern, prompted Lockheed Martin and MDE to agree to a more frequent sampling and analysis of surface water in 2011. This report is an outcome off that agreement to conduct more frequent sampling and analysis of Frog Mortar Creek.


This page intentionally left blank.



Map Document: (K:\GProject\MartinStateAirport-LMC\MapDocs\MXD\Maps\ Frog Mortar samples_figure 2-4.mxd) 4/15/2011 -- 4:23:03 PM

Map Document: (K:\GProject\MartinStateAirport-LMC\MapDocs\MXD\Maps\Phase III Frog Mortar samples Tabloid_041811.mxd) 418/2011 -- 1:47:31 PM

Section 3

Investigation Approach and Methodology

Site-related groundwater volatile organic compound (VOC) and several metals were detected in previous Frog Mortar Creek surface water samples at concentrations exceeding ecological and/or human health screening criteria. Additional Frog Mortar Creek surface water sampling was conducted in March 2011 to confirm the chemical results at five locations (samples MSA-SW37, MSA-SW38, MSA-SW39 MSA-SW40, and MSA-SW41) to assess the extent to which surface water in Frog Mortar Creek is affected by groundwater discharge near the shoreline. This technical memorandum presents the collection procedures and results of the March 2011 surface water samples from Frog Mortar Creek.

Before sampling, appropriate Tetra Tech, Inc. (Tetra Tech) personnel reviewed the site-specific health and safety plan (HASP) and respective safe work permits and emergency response plan included in the HASP. Tetra Tech conducted a mandatory health and safety tailgate meeting before beginning field activities. The Tetra Tech site health and safety officer documented personnel in attendance and pertinent safety and sampling procedures discussed. The HASP guided the surface water sampling work in Frog Mortar Creek.

3.1 SURFACE WATER SAMPLING

3.1.1 Surface Water Sampling and Analysis

Five Frog Mortar Creek locations (MSA-SW37, MSA-SW38, MSA-SW39, MSA-SW40 and MSA-SW41) were sampled for surface water on March 3, 2011 (see Figure 3-1). All five March 2011 surface water samples were collected near the Frog Mortar Creek shoreline from approximately one foot below the water surface. Surface water samples were collected as grab samples using a direct filling sampling technique, whereby a laboratory-cleaned, preservative-free sample container was filled by submerging the container to the target depth in the water column. The sample aliquot was then decanted into the appropriate sample containers, taking care to

minimize agitation of the sample. A peristaltic pump fitted with an inline 0.45-micron filter filtered a portion of the sample for analysis of dissolved metals. Reusable equipment was decontaminated between sampling locations, using the procedure described in Section 3.1.4. Surface water sampling locations were surveyed using a hand-held global positioning system (GPS) receiver. Sampling locations were surveyed in the Maryland State Plane North American Datum of 1983 and recorded in units of feet.

Samples from locations MSA-SW38, MSA-SW40, and MSA-SW41 were analyzed for VOCs by SW846 Method 8260B, for polycyclic aromatic hydrocarbons (PAHs) and 1,4-dioxane by SW846 Method 8270D, for priority pollutant metals (filtered and unfiltered) by SW846 Methods 6010C/7470A, for hexavalent chromium by SW846 Method 7199, and for perchlorate by U.S. Environmental Protection Agency (USEPA) Method 314. Samples from locations MSA-SW37 and MSA-SW39 were analyzed for priority pollutant metals (filtered and unfiltered) by SW846 Method 6010C/7470A and for hexavalent chromium by SW846 Method 7199 only, because prior analysis of samples from these locations did not show detectable concentrations of VOCs or 1,4-dioxane. Samples were analyzed by TestAmerica, Inc. in North Canton, Ohio. Analytical parameters for the samples are shown in Table 3-1.

No duplicates were collected during this investigation. One trip blank (one per cooler containing VOC samples) was submitted for VOC analysis for quality assurance/quality control purposes. Tide stage was recorded at the time of sampling and surface water quality parameters (including temperature, pH, specific conductance, turbidity, dissolved oxygen, and oxidation-reduction potential) were measured and recorded at each location using a portable water quality meter. All information was documented on surface water sample log sheets provided in Appendix A.

Additional surface water sampling in Frog Mortar Creek will be conducted in June 2011. The June 2011 sampling includes collecting surface water samples along several transects outward from the shoreline in the area of the Dump Road Area (DRA) site. A risk assessment will be conducted after receiving the results for the June 2011 surface water samples.

3.1.2 Documentation

A master site logbook was maintained as an overall record of field activities for the site. Sample documentation includes completed chain-of-custody (COC) forms and surface water-specific

sample log sheets. COC forms are standardized to summarize and document pertinent sample information such as sample identification and type, matrix, date and time of collection, preservation, and analysis requested. Sample custody procedures document sample acquisition and integrity. Surface water sample log-sheets are in Appendix A. COC are provided along with data-validation reports in Appendix B.

3.1.3 Sample Nomenclature and Handling

Surface water samples were identified with a unique sample identification tag. Surface water samples were labeled with an "MSA-SW" prefix followed by the sample number and six-digit sampling date. For example, a surface water sample collected on March 3, 2011 from MSA-SW37 was labeled as MSA-SW37-030311. The trip blank was labeled with a "TB" prefix followed by the sample's six-digit submittal date (e.g., TB-030311).

Sample handling includes field-related considerations concerning the selection of sample containers, preservatives, allowable holding times, and analyses requested. Proper custody procedures were followed throughout all phases of sample collection and handling. COC protocols were used throughout sample handling to assure the evidentiary integrity of sample containers. These protocols demonstrate that the samples were handled and transferred in a manner that would prevent or detect possible tampering. Sample containers were released under signature from the laboratory and were accepted under signature by the sampler(s) or individual responsible for maintaining custody until the sample containers are transferred to the sampler(s). Transport containers returning to the laboratory were sealed with strapping tape and a tamper-resistant custody seal. The custody seal contains the signature of the individual releasing the transport container, along with the date and time.

3.1.4 Equipment Decontamination

Both dedicated and disposable equipment were used for surface water sampling to eliminate decontamination activities. Therefore, this project required no equipment decontamination.

3.1.5 Waste Management

Investigation-derived waste (IDW) consisted of personal protective equipment (PPE) generated during field sampling. PPE IDW was brushed off, placed in trash bags, and disposed of in a facility trash receptacle designated by facility personnel.

3.2 DATA MANAGEMENT

Laboratory data-handling procedures met the requirements of the laboratory subcontract. All analytical and field data are maintained in project files, including copies of COC forms, sample log forms, sampling location maps, and documentation of quality assurance and data corrections.

3.2.1 Data Tracking and Control

A "cradle-to-grave" sample-tracking system was used from the beginning to the end of the sampling event. The field operations leader began and coordinated sample tracking before mobilizing to the field. Sample container labels were handwritten in the field and reviewed to assure that they were accurate and adhered to work plan requirements. The project manager (PM) coordinated with the analytical laboratory to ensure that the laboratory was aware of the number and type of samples and analyses that would be submitted that day.

During field sampling, the field operations leader forwarded the COC to the PM or designee and to the laboratory. The PM or designee confirmed that the COC provided the information required by the work plan. This allowed for early detection of errors made in the field so that adjustments could be made before sample analysis.

After successful completion of all requested analyses, the laboratory submitted an electronic deliverable for each sample delivery group. When all electronic deliverables were received from the laboratory, the PM or designee checked the laboratory submittal to determine whether the laboratory had performed all analyses requested. All requested analyses were performed for this project.

3.2.2 Sample Information

Data from field measurements were recorded using appropriate sample log sheets and summarized in tabular form, as were the raw instrument data from the laboratory. The field operations leader verified field data daily; laboratory data were verified by the group supervisor and then by the laboratory's quality control/documentation department.

3.2.3 Project Data Compilation

The analytical laboratory generated an Adobe® portable document format (PDF) file of the analytical data package, as well as an electronic-database deliverable. The electronic database was

checked against the PDF file provided by the laboratory and updated as required, based on data qualifier flags applied during data validation. All data, such as units of measure and chemical nomenclature, were corrected, as necessary, to be consistent with the project database.

3.2.4 Geographical Information System

Data management systems consist of a relational database and geographical information system (GIS) to manage environmental information pertaining to MSA. The relational database stores chemical, geological, hydrogeologic, and other environmental data collected during environmental investigations. The GIS is created from the relational database and contains subsets of the larger data pool. The GIS allows posting of environmental data on base maps, thereby representing the information graphically. Compiled sample, chemical, and positional data were incorporated into the GIS.

3.3 DATA REVIEW

Data from the laboratory were entered into a sample database and evaluated against risk-based criteria. Data validation (consisting of the evaluation of data completeness, holding times, calibrations, laboratory and field blank contamination, and detection limits) was completed concurrent with the data evaluation. These reviews are based on the *USEPA Region III Modifications to the National Functional Guidelines for Data Review* (USEPA, 1993 and 1994), and the specifics of the analytical methods used. Data from this sampling event consist of surface water sample chemical results. Data validation reports and COCs are provided as PDF files in Appendix B (on compact disc). Appendix C presents a table of all March 2011 Frog Mortar Creek surface water sample analytical data, including non-detects.

TABLE 3-1 CHEMICAL ANALYSES FOR FROG MORTAR CREEK SURFACE WATER SAMPLES - MARCH 2011 LOCKHEED MARTIN, MARTIN STATE AIRPORT, MIDDLE RIVER, MARYLAND

			Analytica	I Requirements		
Sample ID Containter(s): Preservative:		PAHs and 1,4-Dioxane (USEPA 8270D SIM) 2x1-Liter amber	Perchlorate (USEPA 314) 250 ml plastic	Total PPM (USEPA 6010C/7470A) 500 ml plastic HNO ₃	Dissolved PPM (USEPA 6020B) 500 ml plastic HNO ₃	Hexavalent Chromium (USEPA 7199) 250 ml plastic
MSA-SW37				X	X	X
MSA-SW38	X	X	X	X	X	X
MSA-SW39			·	X	X	X
MSA-SW40	X	X	X	X	X	X
MSA-SW41	X	X	X	X	X	X

HCL - hydrochloric acid HNO₃ - nitric acid

ml - milliliter

PAHs - polynuclear aromatic hydrocarbons

PPM - Priority Pollutant metals

USEPA - U.S. Environmental Protection Agency

VOCs - volatile organic compounds

Section 4 Results

Five surface water samples were collected in shallow water near the western shoreline of Frog Mortar Creek near the Dump Road Area (DRA) site on March 3, 2011. MSA-SW38, MSA-SW40, and MSA-SW41 were collected directly northeast and downgradient of the DRA groundwater contaminant plume. MSA-SW37 and MSA-SW39 were collected along the Frog Mortar Creek shoreline north and south of the DRA in areas not expected to be substantially affected by chemicals in groundwater from the DRA site. Samples MSA-SW38, MSA-SW40, and MSA-SW41 were analyzed for volatile organic compounds (VOCs), polycyclic aromatic hydrocarbons (PAHs), 1,4-dioxane, and metals. Samples MSA-SW37 and MSA-SW39 were analyzed for metals only.

Validated surface water chemical data were used to generate a statistical summary table (Table 4-1) and a detection table (Table 4-2) summarizing the positive detections of chemical analytes in the March 2011 surface water samples. In Table 4-2, the sample results are screened against the U.S. Environmental Protection Agency (USEPA) Region III Biological Technical Advisory Group (BTAG) Freshwater Screening Benchmarks (USEPA, 2006), the USEPA National Recommended Water Quality Criteria (NRWQC) for acute and chronic aquatic organism exposures and for aquatic organism consumption (USEPA, 2009), and the State of Maryland Ambient Water Quality Criteria (AWQC) for acute and chronic aquatic organism exposures and for aquatic organism consumption (Code of Maryland Regulations, 2011). The NRWQCs, AWQCs and most BTAG screening levels for metals represent concentrations of dissolved metals in the water column; therefore, these criteria are used to screen against the dissolved metals results for Frog Mortar Creek. BTAG screening levels for arsenic, iron, mercury, selenium, and thallium are based on the total metal concentration in the water column. The total metal results for Frog Mortar Creek are used to screen against the BTAG criteria for these five metals. Gray shading in Table 4-2 indicates a result that exceeds only one surface water screening criterion. Black shading in Table 4-2 indicates a result that exceeds more than one surface water screening criterion. Figure 4-1 shows the screening criteria exceedances for the 2011 surface water samples.

Figures 4-2 through 4-4 show the concentrations of trichloroethene (TCE), *cis*-1,2-dichloroethene (*cis*-1,2-DCE), and vinyl chloride (VC) for the Frog Mortar Creek samples. Appendix C presents the March 2011 analytical data, including non-detects.

As shown in Table 4-2 and Figures 4-1 through 4-4, several VOCs found in groundwater at the DRA site (e.g., TCE, *cis*-1,2-DCE, and VC) were detected in March 2011 surface water samples at locations MSA-SW38, MSA-SW40, and MSA-SW41. For those three samples, concentrations of VOCs, 1,4-dioxane, and metals (e.g., dissolved cadmium, dissolved manganese, total iron) were greatest at MSA-SW38, which is located northeast and hydraulically downgradient of DRA monitoring wells that contain some of the highest concentrations of site-related constituents in shallow and intermediate depth groundwater (e.g., wells DMW2S/A/B and DMW3S/I/D).

In the March 2011 samples, TCE was detected at MSA-SW38, MSA-SW40, and MSA-SW41 (Figures 4-1 and 4-2). As shown in Figure 4-1, concentrations of TCE at locations MSA-SW38 (32 micrograms per liter [μ g/L]) and MSA-SW41 (24 μ g/L), located in the central portion of the DRA, exceeded the BTAG ecological screening level of 21 μ g/L. The VC concentration in sample MSA-SW38 (140 μ g/L) exceeded the human health NRWQC/AWQC for the consumption of organisms screening level of 24 μ g/L. In addition, concentrations of M+P xylenes at 14 μ g/L and total xylenes at 16 μ g/L exceeded the BTAG screening level of 13 μ g/L, also in sample MSA-SW38.

Metals exceeding a screening criterion in one or more of the 2011 samples include dissolved arsenic, dissolved barium, dissolved cadmium, dissolved manganese, and total iron. The dissolved arsenic concentrations for the samples, ranging from 2.6-3.0 μ g/L are similar at all five locations and are similar to the dissolved arsenic concentrations of 2.2 to 3.9 micrograms per liter reported for reference samples (i.e., background locations) collected as part of Lockheed Martin Corporation's (Lockheed Martin's) 2007-2008 Frog Mortar Creek investigation (Tetra Tech, 2009). The total arsenic concentrations, ranging from 2.1-3.7 μ g/L, are also similar to this 2007-2008 reference sample range.

PAHs, perchlorate, and hexavalent chromium were not detected in the March 2011 surface water samples.

TABLE 4-1

STATISTICAL SUMMARY OF FROG MORTAR CREEK SURFACE WATER SAMPLES - MARCH 2011
LOCKHEED MARTIN, MARTIN STATE AIRPORT, MIDDLE RIVER, MARYLAND
PAGE 1 OF 2

Observiced		uency ection ⁽¹⁾	Mininum	Maximum	Mininum	Maximum	Sample of Maximum	Mean of	Mean of	Standard
Chemical	Number	Percent	Non Detected	Non Detected	Detected	Detected	Detected	All Samples	Positive Detects	Deviation
VOLATILES (µg/l)			1					•		1
CIS-1,2-DICHLOROETHENE	3/3	100%	-	-	5.5	130	MSA-SW38-030311	52.2	52.2	NA ⁽²⁾
TRICHLOROETHENE	3/3	100%	-	-	4.2	32	MSA-SW38-030311	20.1	20.1	NA ⁽²⁾
VINYL CHLORIDE	3/3	100%	-	-	1.8	140	MSA-SW38-030311	50.2	50.2	NA ⁽²⁾
1,1-DICHLOROETHENE	2/3	67%	0.19	0.19	0.21 J	1.4 J	MSA-SW38-030311	0.568	0.805	NA ⁽²⁾
1,4-DICHLOROBENZENE	2/3	67%	0.13	0.13	0.38 J	3.9 J	MSA-SW38-030311	1.45	2.14	NA ⁽²⁾
ETHYLBENZENE	2/3	67%	0.17	0.17	0.23 J	1.9 J	MSA-SW38-030311	0.738	1.07	NA ⁽²⁾
M+P-XYLENES	2/3	67%	0.24	0.24	1.6 J	14	MSA-SW38-030311	5.24	7.80	NA ⁽²⁾
O-XYLENE	2/3	67%	0.14	0.14	0.29 J	2.8 J	MSA-SW38-030311	1.05	1.55	NA ⁽²⁾
TOTAL XYLENES	2/3	67%	0.28	0.28	1.9 J	16	MSA-SW38-030311	6.01	8.95	NA ⁽²⁾
TRANS-1,2-DICHLOROETHENE	2/3	67%	0.19	0.19	0.2 J	0.87 J	MSA-SW38-030311	0.388	0.535	NA ⁽²⁾
1,2,4-TRICHLOROBENZENE	1/3	33%	0.15	0.15	1.2 J	1.2 J	MSA-SW38-030311	0.450	1.20	NA ⁽²⁾
TOLUENE	1/3	33%	0.13	0.13	1.4 J	1.4 J	MSA-SW38-030311	0.510	1.40	NA ⁽²⁾
SEMIVOLATILES (µg/l)										
1,4-DIOXANE	2/3	67%	0.49	0.49	0.49 J	2.6	MSA-SW38-030311	1.11	1.55	NA ⁽²⁾
FILTERED METALS (µg/l)										
ARSENIC	5/5	100%	-	-	2.6 J	3 J	MSA-SW40-030311	2.72	2.72	0.164
COBALT	5/5	100%	-	-	0.98 J	3.6 J	MSA-SW38-030311	1.96	1.96	1.02
MANGANESE	5/5	100%	-	-	67.4	253	MSA-SW38-030311	141	141	70.9
							MSA-SW37-030311,			
MOLYBDENUM	5/5	100%	-	-	1 J	1.6 J	MSA-SW41-030311	1.34	1.34	0.261
NICKEL	5/5	100%	-	-	2.3 J	3.4 J	MSA-SW41-030311	2.74	2.74	0.428
BARIUM	2/5	40%	15.6	18.2	22.2	30	MSA-SW37-030311	15.6	26.1	9.98
CADMIUM	1/5	20%	0.65	0.65	0.86 J	0.86 J	MSA-SW38-030311	0.432	0.860	0.239

STATISTICAL SUMMARY OF FROG MORTAR CREEK SURFACE WATER SAMPLES - MARCH 2011 LOCKHEED MARTIN, MARTIN STATE AIRPORT, MIDDLE RIVER, MARYLAND PAGE 2 OF 2

TABLE 4-1

Chemical	Frequency of Detection ⁽¹⁾				Mininum Detected	Maximum Detected	Sample of Maximum	Mean of All	Mean of Positive	Standard Deviation
	Number	Percent	Detected	Detected			Detected		Detects	
TOTAL METALS (µg/l)										
ARSENIC	5/5	100%	-	-	2.1 J	3.7 J	MSA-SW40-030311	3.22	3.22	0.646
BARIUM	5/5	100%	-	-	49.3	58.4	MSA-SW37-030311	53.5	53.5	3.28
COBALT	5/5	100%	-	-	1.9 J	5.4	MSA-SW38-030311	2.74	2.74	1.49
IRON	5/5	100%	-	-	570	2760	MSA-SW38-030311	1433	1433	886
LEAD	5/5	100%	-	-	1.5 J	6.3	MSA-SW38-030311	3.86	3.86	2.18
MANGANESE	5/5	100%	-	-	112	311	MSA-SW38-030311	166	166	81.8
MOLYBDENUM	5/5	100%	_		1.2 J	1.3 J	MSA-SW37-030311, MSA-SW38-030311, MSA-SW41-030311	1.26	1.26	0.055
NICKEL	5/5	100%	_	_	2.6 J	5 J	MSA-SW38-030311	3.50	3.50	0.900
CHROMIUM	3/5	60%	3.6	3.6	4.5 J	7.1 J	MSA-SW38-030311	3.94	5.37	2.22
COPPER	3/5	60%	7	7.6	16	19.5	MSA-SW38-030311	12.2	17.9	7.89
VANADIUM	3/5	60%	2.2	2.2	2.9 J	5.2 J	MSA-SW38-030311	2.76	3.87	1.73
CADMIUM	1/5	20%	0.65	0.65	1.2 J	1.2 J	MSA-SW38-030311	0.500	1.20	0.391

All concentrations are in micrograms per liter (µg/L)

- 1 Analytes are ranked from highest to lowest by percent frequency of detection.
- 2 Not applicable; there are an insufficient number of samples to calculate this statistic.
- = Not applicable; analyte was detected in all (100%) samples.
- J = estimated value

For non-detects, 1/2 sample quantitation limit was used as a proxy concentration.

1/2 the detection limit was used for B qualified data.

Associated Samples

MSA-SW37-030311

MSA-SW38-030311

MSA-SW39-030311

MSA-SW40-030311

MSA-SW41-030311

TABLE 4-2

CHEMICAL RESULTS AND SCREENING LEVELS FOR FROG MORTAR CREEK SURFACE WATER SAMPLES - MARCH 2011

LOCKHEED MARTIN, MARTIN STATE AIRPORT, MIDDLE RIVER, MARYLAND

PAGE 1 OF 3

SAMPLE ID:	Recomme	nded and Amb Criteria	pient Water Quality	BTAG ⁽²⁾	MSA-SW37-030311	MSA-SW38-030311	MSA-SW39-030311	MSA-SW40-030311	MSA-SW41-030311
LABORATORY ID: SAMPLE DATE: Freshwater		Human Health Consumption of	Surface Water Screening	A1C040534002 3/3/2011	A1C040534003 3/3/2011	A1C040534004 3/3/2011	A1C040534005 3/3/2011	A1C040534006 3/3/2011	
LOCATION:	Acute	Chronic	Organism Only	Benchmarks	MSA-SW37	MSA-SW38	MSA-SW39	MSA-SW40	MSA-SW41
VOLATILES (ug/l)									
1,1-DICHLOROETHENE	NA	NA	7,100	25	NA	1.4 J	NA		0.21 J
1,2,4-TRICHLOROBENZENE	NA	NA	70	24	NA	1.2 J	NA		
1,3-DICHLOROBENZENE	NA	NA	960	150	NA		NA		
1,4-DICHLOROBENZENE	NA	NA	190	26	NA	3.9 J	NA		0.38 J
ACETONE	NA	NA	NA	1500	NA		NA		5.7 B
CIS-1,2-DICHLOROETHENE	NA	NA	NA	590 ⁽⁵⁾	NA	130	NA	5.5	21
ETHYLBENZENE	NA	NA	2,100	90	NA	1.9 J	NA		0.23 J
M+P-XYLENES	NA	NA	NA	13	NA	14	NA		1.6 J
O-XYLENE	NA	NA	NA	13	NA	2.8 J	NA		0.29 J
TOLUENE	NA	NA	15,000	2	NA	1.4 J	NA		
TOTAL XYLENES	NA	NA	NA	13	NA	16	NA		1.9 J
TRANS-1,2-DICHLOROETHENE	NA	NA	10,000	970	NA	0.87 J	NA		0.2 J
TRICHLOROETHENE	NA	NA	300 ⁽³⁾	21	NA	32	NA	4.2	24
VINYL CHLORIDE	NA	NA	24 ⁽³⁾	930	NA	140	NA	1.8	8.7
SEMIVOLATILE ORGANIC COMPOUND	S (ug/l)								
1,4-DIOXANE	NA	NA	NA	NA	NA	2.6	NA	0.49 J	
FILTERED METALS (ug/l)									
ANTIMONY	NA	NA	640	30					
ARSENIC	340	150	1.4 ⁽³⁾	*(5)	2.6 J	2.7 J	2.6 J	3 J	2.7 J
BARIUM	NA	NA	NA	4	30	22.2	17.9 B	15.6 B	18.2 B
CADMIUM	2	0.25	NA	0.25		0.86 J			
CHROMIUM	570	74	NA	74				4.5 J	
COBALT	NA	NA	NA	23	1.4 J	3.6 J	1.6 J	0.98 J	2.2 J
COPPER	13	9	NA	9	6.8 B	4.1 B	3.5 B	5.8 B	4.3 B

TABLE 4-2

CHEMICAL RESULTS AND SCREENING LEVELS FOR FROG MORTAR CREEK SURFACE WATER SAMPLES - MARCH 2011

LOCKHEED MARTIN, MARTIN STATE AIRPORT, MIDDLE RIVER, MARYLAND

PAGE 2 OF 3

SAMPLE ID:	Recomme	nded and Aml Criteria	pient Water Quality			MSA-SW38-030311	MSA-SW39-030311	MSA-SW40-030311	MSA-SW41-030311
LABORATORY ID: SAMPLE DATE: LOCATION:	Fresh Acute	water Chronic	Human Health Consumption of Organism Only	Surface Water Screening Benchmarks	A1C040534002 3/3/2011 MSA-SW37	A1C040534003 3/3/2011 MSA-SW38	A1C040534004 3/3/2011 MSA-SW39	A1C040534005 3/3/2011 MSA-SW40	A1C040534006 3/3/2011 MSA-SW41
LEAD	65	2.5	NA	2.5					
MANGANESE	NA	NA	100	120	109	253	114	67.4	161
MOLYBDENUM	NA	NA	NA	73	1.6 J	1.3 J	1.2 J	1 J	1.6 J
NICKEL	470	52	4,600	52	2.6 J	2.9 J	2.5 J	2.3 J	3.4 J
VANADIUM	NA	NA	NA	20					
ZINC	120	120	26,000	120	18.1 B	20.1 B	14.8 B	24 B	21.2 B
TOTAL METALS (ug/l)									
ANTIMONY									
ARSENIC				5 ⁽⁵⁾	2.1 J	3.6 J	3.3 J	3.7 J	3.4 J
BARIUM					58.4	54	49.3	52.5	53.3
CADMIUM						1.2 J			
CHROMIUM					4.5 J	7.1 J		4.5 J	
COBALT					2 J	5.4	2.2 J	1.9 J	2.2 J
COPPER					16	19.5	7.6 B	18.1	7 B
IRON				300 ⁽⁵⁾	1670	2760	570	1490	675
LEAD					5.5	6.3	1.5 J	4.3 J	1.7 J
MANGANESE					112	311	131	139	136
MOLYBDENUM					1.3 J	1.3 J	1.2 J	1.2 J	1.3 J
NICKEL					3.2 J	5 J	3.5 J	3.2 J	2.6 J
VANADIUM					2.9 J	5.2 J		3.5 J	
ZINC					41.2 B	51.4 B	24.1 B	33.4 B	29.9 B
MISCELLANEOUS (ug/l)									
HEXAVALENT CHROMIUM	16	11	NA	11					

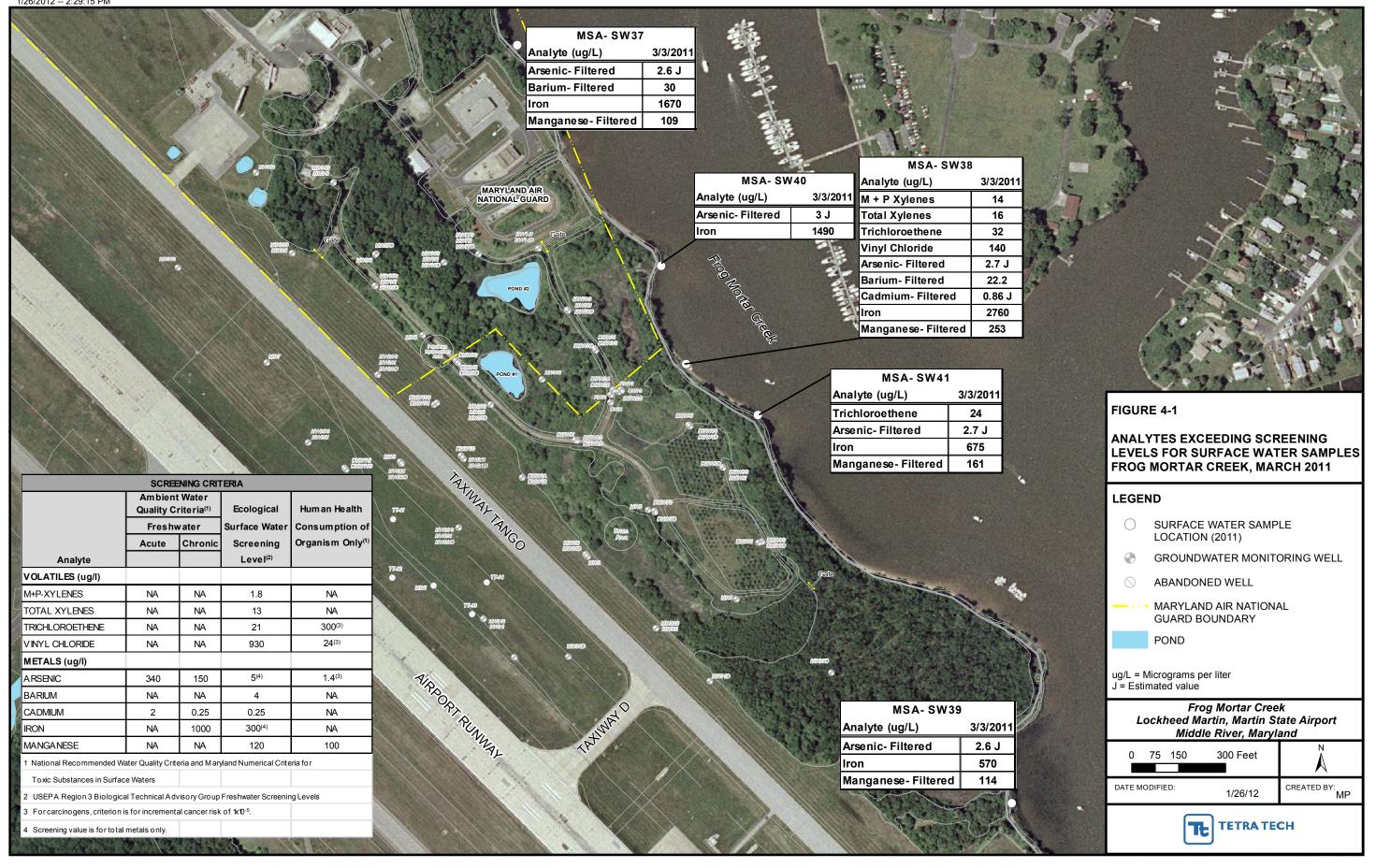
TABLE 4-2

CHEMICAL RESULTS AND SCREENING LEVELS FOR FROG MORTAR CREEK SURFACE WATER SAMPLES - MARCH 2011 LOCKHEED MARTIN, MARTIN STATE AIRPORT, MIDDLE RIVER, MARYLAND PAGE 3 OF 3

- 1 National Recommended Water Quality Criteria, http://water.epa.gov/scitech/swguidance/standards/current/index.cfm; and Maryland Numerical Criteria for Toxic Substances in Surface Waters, Code of Maryland Regulations (COMAR) 26.08.02.03, http://www.dsd.state.md.us.comarhtml/26/26.08.02.03-2.htm
- 2 U.S.Environmental Protection Agency (USEPA) Region 3 Biological Technical Advisory Group (BTAG) Freshwater Screening Levels (USEPA, 2006).

 The screening levels for the following metals were based on a hardness value of 100 milligrams per liter: cadmium, copper, lead, nickel, silver, and zinc.
- 3 For carcinogens, criterion is for incremental cancer risk of 1x10⁻⁵.
- 4 The BTAG screening benchmark for 1,2-dichloroethene (590 $\mu g/L$) is used as a surrogate screening level for cis-1,2-dichloroethene.
- 5 This BTAG screening benchmark is for the total metal concentration. Therefore, only the total metal concentrations are screened against the BTAG screening benchmark for this metal.

Gray shading indicates the value exceeds one of the criteria.


Black highlighted cell indicates the concentration exceeds more than one criterion.

- -- Not detected at the method detection limit.
- B Result is attributed to laboratory blank contamination per USEPA validation rules.
- J Positive result is considered estimated.

μg/L - micrograms per liter.

NA = Not analyzed or no criterion developed for this analyte.

This page intentionally left blank.

Section 5 Summary

The following summarizes Lockheed Martin Corporation's (Lockheed Martin's) Frog Mortar Creek surface water investigation and findings:

- Five surface water samples were collected from Frog Mortar Creek on March 3, 2011 and chemically analyzed to assess impacts to Frog Mortar Creek by constituents found in groundwater at the Dump Road Area (DRA) site.
- The March 2011 surface water samples were collected near the Frog Mortar Creek shoreline from approximately one-foot below the water surface using the direct-filling sampling technique. Samples from three locations were analyzed for volatile organic compounds (VOCs), polycyclic aromatic hydrocarbons (PAHs), 1,4-dioxane, filtered and unfiltered metals, hexavalent chromium, and perchlorate. Samples from two locations were analyzed for filtered and unfiltered metals and hexavalent chromium only.
- The data were validated in accordance with the *U.S. Environmental Protection Agency (USEPA) Region III Modifications to the National Functional Guidelines for Data Review* and the specifics of the analytical methods used.
- Sampling results were screened against the U.S. Environmental Protection Agency Region III Biological Technical Advisory Group (BTAG) ecological freshwater screening benchmarks, the U.S. Environmental Protection Agency National Recommended Water Quality Criteria (NRWQC) for acute and chronic aquatic organism exposures and for human health aquatic organism consumption, and the State of Maryland Ambient Water Quality Criteria (AWQC) for acute and chronic aquatic organism exposures and for human health aquatic organism consumption. Volatile organic compounds (primarily trichloroethene [TCE], cis-1,2-dichloroethene [cis-1,2-DCE] and vinyl chloride [VC]), 1,4-dioxane, and metals were detected in the March 2011 surface water samples.
- Polycyclic aromatic hydrocarbons, perchlorate, and hexavalent chromium were not detected in the 2011 surface water samples.
- Concentrations of volatile organic compounds, 1,4-dioxane, and several metals are greatest
 for sampling location MSA-SW38, northeast and hydraulically downgradient of Dump
 Road Area monitoring wells that contain some of the highest concentrations of site-related
 constituents in groundwater (e.g., wells DMW2S/A/B and DMW3S/I/D).
- Vinyl chloride, at a concentration of 140 micrograms per liter (µg/L) at sampling location MSA-SW38, exceeded the human health consumption of organism screening criterion of 24 micrograms per liter. Concentrations of trichloroethene, ranging from 24 micrograms

per liter in sample MSA-SW41 to 32 micrograms per liter at MSA-SW38 and xylenes at sample MSA-38A exceeded Biological Technical Advisory Group ecological screening benchmarks of 21 and 13 micrograms per liter for trichloroethene and xylenes, respectively.

- Metals exceeding the screening criteria in the March 2011 Frog Mortar Creek samples include dissolved arsenic (five locations), dissolved barium (two locations), dissolved cadmium (one location), dissolved manganese (four locations), and total iron (five locations). However, concentrations of dissolved arsenic, as well as total arsenic, are similar in all samples and are similar to the arsenic concentrations reported for reference samples (i.e., background locations) collected as part of a 2007-2008 Frog Mortar Creek investigation.
- Additional surface water sampling in Frog Mortar Creek will be conducted in June 2011.
 The June 2011 sampling includes collecting surface water samples along several transects outward from the shoreline in the area of the Dump Road Area site.

Section 6 References

- 1. Apex (Apex Environmental Inc.), 1998. "Frog Mortar Creek Sediment Sampling," letter report to Mr. William Chicca of the Maryland Environmental Service, Annapolis, Maryland from Apex Environmental Inc., of Rockville, Maryland. January 12.
- 2. Code of Maryland Regulations, 2011. *Numerical Criteria for Toxic Substances in Surface Waters*. Code of Maryland Regulations (COMAR), Title 26, Subtitle 08, Chapter 02, Regulation 03, http://www.dsd.state.md.us/comar/comarhtml/26/26.08.02.03-2.htm.
- 3. MDE (Maryland Department of the Environment), 1992. Letter from Arlene G. Weiner, MDE, Baltimore Maryland to Maryland Aviation Administration, "Subsurface Investigations," Martin State Airport, Middle River, Maryland, January 6.
- 4. MDE (Maryland Department of the Environment), 1997. Letter from Arthur O'Connell, MDE to the Maryland Aviation Administration, Martin State Airport, Middle River, Maryland, January 24.
- 5. MDE (Maryland Department of the Environment), 1998. Memorandum, Subject "Frog Mortar Creek/Surface Water and Sediment Data" from Michael Sivak, Maryland Department of the Environment, Waste Management Administration, to Peggy Smith, Maryland Department of the Environment, Waste Management Administration, August 20.
- 6. MDE (Maryland Department of the Environment), 2010. Letter from Arthur O'Connell, MDE to Lockheed Martin, Martin State Airport, Middle River, Maryland, October 18.
- 7. Tetra Tech (Tetra Tech, Inc.), 2006. *Revised Human Health Risk Assessment, Martin State Airport, Middle River, Maryland*, prepared by Tetra Tech, Inc., Germantown, Maryland for Lockheed Martin Corporation. January.
- 8. Tetra Tech (Tetra Tech, Inc.), 2009. Frog Mortar Creek Surface Water and Sediment Investigation Report Phases I, II, and III, Lockheed Martin, Martin State Airport, Middle River, Maryland prepared by Tetra Tech, Inc., Germantown, Maryland for Lockheed Martin Corporation, Bethesda, Maryland. May.
- 9. Tetra Tech (Tetra Tech, Inc.), 2010a. Remedial Investigation Report, Martin State Airport, 701 Wilson Point Road, Middle River, Maryland, report prepared by Tetra Tech, Inc., Germantown, Maryland for Lockheed Martin Corporation, Bethesda, Maryland. November.

- 10. Tetra Tech (Tetra Tech, Inc.), 2010b. *Draft Engineering Evaluation/Cost Analysis for Groundwater, Dump Road Area Site, Martin State Airport, Middle River, Maryland*, report prepared by Tetra Tech, Inc., Germantown, Maryland for Lockheed Martin Corporation, Bethesda, Maryland. November.
- 11. Tetra Tech (Tetra Tech, Inc.), 2010c. *Groundwater Monitoring Report, July 2010, Martin State Airport, 701 Wilson Point Road, Middle River, Maryland*, report prepared by Tetra Tech, Inc., Germantown, Maryland for Lockheed Martin Corporation, Bethesda, Maryland. December.
- 12. Tetra Tech (Tetra Tech, Inc.), 2011a. 2011 Groundwater Monitoring Work Plan, Martin State Airport, 701 Wilson Point Road, Middle River, Maryland, report prepared by Tetra Tech, Inc., Germantown, Maryland for Lockheed Martin Corporation, Bethesda, Maryland. February.
- 13. Tetra Tech (Tetra Tech, Inc.), 2011b. *Monitoring Well Repair Report, Martin State Airport, 701 Wilson Point Road, Middle River, Maryland*, report prepared by Tetra Tech, Inc., Germantown, Maryland for Lockheed Martin Corporation, Bethesda, Maryland. February.
- 14. Tetra Tech (Tetra Tech, Inc.), 2011c. *Dump Road Supplemental Design Characterization Report, Martin State Airport, Middle River, Maryland*, report prepared by Tetra Tech, Inc., Germantown, Maryland for Lockheed Martin Corporation, Bethesda, Maryland. April.
- 15. Tetra Tech (Tetra Tech, Inc.), 2011d. *Compass Rose Area Soil Investigation Report, Martin State Airport, 701 Wilson Point Road, Middle River, Maryland*, report prepared by Tetra Tech, Inc., Germantown, Maryland for Lockheed Martin Corporation, Bethesda, Maryland. December.
- 16. Tetra Tech (Tetra Tech, Inc.), 2012a. 2011 Groundwater Monitoring Report, Martin State Airport, 701 Wilson Point Road, Middle River, Maryland, report prepared by Tetra Tech, Inc., Germantown, Maryland for Lockheed Martin Corporation, Bethesda, Maryland. January.
- 17. Tetra Tech (Tetra Tech, Inc.), 2012b. Dump Road and Runway Area Soil and Groundwater Investigation Report, Martin State Airport, 701 Wilson Point Road, Middle River, Maryland, report prepared by Tetra Tech, Inc., Germantown, Maryland for Lockheed Martin Corporation, Bethesda, Maryland. January.
- 18. USEPA (U.S. Environmental Protection Agency), Region III, 1993. Region III Modifications to the Laboratory Data Validation Functional Guidelines for Evaluating Inorganics Analyses. April.
- 19. USEPA (U.S. Environmental Protection Agency), Region III, 1994. Region III Modifications to the National Functional Guidelines for Organic Data Review. September.
- 20. USEPA (U.S. Environmental Protection Agency) 2006. Region III Biological Technical Advisory Group Freshwater Screening Benchmarks. July.

21. USEPA (U.S. Environmental Protection Agency) 2009. National Recommended Water Quality Criteria. U.S. Environmental Protection Agency, Office of Water, Office of Science and Technology, http://water.epa.gov/scitech/swguidance/standards/current/index.cfm or http://water.epa.gov/scitech/swguidance/standards/current/upload/nrwqc-2009.pdf

This page intentionally left blank

APPENDIX A—SURFACE WATER SAMPI	LE LOG SHEETS

Tetra Tech NUS, Inc. SURFACE-WATER SAMPLE LOG SHEET

Page / of /

[] Moni				ump Road 203292		Sampled C.O.C. N Type of S [] Low	Location: By: lo.:		~0303 <i>l</i> J	
SAMPLING D	Chester of the China China China									
Date: Time:	12-30	-1 1	pH	S.C.	Temp.	Turbidity	DO	Salinity	Other	
Method:	GRAB	(Visual)	(S.U.)	(mS/cm) 7.53	8,23	(NTU)	(mg/l)	(%) ø, y	ORP	
PURGE DATA		and the and	Phoenical	7.05			Victoria de la compansión de la compansi		Parket Date of	
Date:	3/3/2011	Volume	pН	s.c.	Temp.	Turbidity	DO	Salinity	Other	
Method:	GRAB							Guillity	Guici	
Monitor Read	ing (ppm): NA									
	Diameter & Material									
Type: NA										
Water Depth (WD): 441'									
	evel (WL): NA									
	olume(gal/L): NA				······					
Start Purge (h										
End Purge (hr										
	ime (min): NA									
	ged (gal/L): NA									
	LECTION INFORMA	TION:								
	Analysis		Preser	vative		Container Re	quirements		Collected	
	Total PPM			IO ₃		1-500 ml pla				
	Dissolved PPM			103		1-500 ml pla	astic bottle			
	Hexavalent Chrom	ium	4°	°C		1-250 ml pla	astic bottle		/	
	and the state of									
					•	TOTAL CONTRACTOR				
	THE PERSON A									
OBSERVATIO	NS / NOTES:	accompany,						Salaton-Sala		
	328181 N 408769 W				Perameter	the / Date :	1002/3	?- 7-11		
Circle if Appli	cable:	and the state of t			(J. 157	Signature(s):	-			
MS/MSD	Duplicate ID No.						- 4			

Page_[of [

Monito				ump Road C03292		Sampled C.O.C. N Type of S	Location: I By: No.:		
SAMPLING DA	TA:		130 (6)					Calabania and	
Date:	3/3/2011	Color	pН	s.c.	Temp.	Turbidity	DO	Salinity	Other
Time:	1300	(Visual)	(S.U.)	(mS/cm)	(°C)	(NTU)	(mg/l)	(%)	ORP
Method:	GRAB	stilly ben	5,47	7.64	8.76	15.2	11.62	0.4	122
PURGE DATA:									
Date:	3/3/2011	Volume	рН	S.C.	Temp.	Turbidity	DO	Salinity	Other
Method:	GRAB								
Monitor Reading	g (ppm): NA								
Well Casing Dia	meter & Material								
Type: NA									
Water Depth (W	/D): 1'								
Static Water Le									
One Casing Vol							•		
Start Purge (hrs									
End Purge (hrs)	v Associate								
Total Purge Tim									
Total Vol. Purge									
	ECTION INFORMAT	ION:	Lauris of Sign						
	Analysis		Preser	vative		Container Re	quirements		Collected
	VOCs			CI		3-40 ml gl		A CO. 1921 2.	Constitution
	PAHs and 1,4-Diox	ane	40	°C		2-1 Liter			
	Perchlorate		40	°C		1-250 ml pla	astic bottle		
	Total PPM			103		1-500 mi piasuc botue			
	Dissolved PPM			NO ₃		1-500 ml pla			
	Hexavalent Chromit	um	4	,c		1-250 ml pla	astic bottle		_
									and the second
	HERMINES	MIN.							
OBSERVATION			1 1						
B 2	099 N 7699 W			Pasca	eten dute	/r.me; 3/7	14- 102	7	
Circle if Applica	able:	angent Carry	TESS STATE			Signature(s):			
MS/MSD	Duplicate ID No.:					JE C	~	- 10	

SURFACE-WATER SAMPLE LOG SHEET

Page___ of ___

Project Site Name: Project No.: Domestic Well Data Monitoring Well Data Other Well Type: QA Sample Type:			ump Road C03292		Sampled C.O.C. N Type of S	ocation: By: lo.:		
SAMPLING DATA:								
Date: 3/3/2011 Time: 1350	(Visual)	pH (S.U.)	S.C. (mS/cm)	Temp.	Turbidity (NTU)	DO (mg/l)	Salinity (%)	Other Off
Method: GRAB PURGE DATA:	styley ben	5.42	7,66	9.14	17,2	11,59	0.4	115
Date: 3/3/201	Volume	200	s.c.		Totaldita	DO	0-11-14-	Oth
Method: GRAB	Volume	pH	5.6.	Temp.	Turbidity	DO	Salinity	Other
					-			
Monitor Reading (ppm): NA Well Casing Diameter & Material								
Type: NA								
Water Depth (WD):								
Static Water Level (WL): NA								
One Casing Volume(gal/L): NA					 			
Start Purge (hrs): NA								
End Purge (hrs): NA								
Total Purge Time (min): NA								
Total Vol. Purged (gal/L): NA								
SAMPLE COLLECTION INFORMA	TION:							
Analysis		Preser	vative		Container Re	quirements	西部 から	Collected
Total PPM			NO ₃		1-500 ml pla			V
Dissolved PPM			NO ₃		1-500 ml pla		···	
Hexavalent Chrom	ium	4	°C		1-250 ml pla	astic bottle		
STEPPENDS CONTROL TO THE STATE OF THE STATE								
						10js		
					in sa			
OBSERVATIONS / NOTES:			per la comi			B1000000000000000000000000000000000000		
Same beatin as previous	te Edisun Scupling e	vent;		P.	remoter Time	/Date: 11	07/3-7-4	
Circle if Applicable:	TELEPONI I PERISE	STORE WHERE			Signature(s):			
MS/MSD Duplicate ID No.	:	neekkoneskoneskonesko			Jonature(s):			

Tetra Tech NUS, Inc. SURFACE-WATER SAMPLE LOG SHEET

Page____ of _____

Monitor [] Other V				ump Road C03292		Sampled C.O.C. N Type of S [] Low	Location: I By: Vo.:		
SAMPLING DAT	A:								CARROLL WES
Date:	3/3/2011	Color	pН	s.c.	Temp.	Turbidity	DO	Salinity	Other
Time: 1248		(Visual)	(S.U.)	(mS/cm)	(°C)	(NTU)	(mg/l)	(%)	ORT
	GRAB	disty, bon	4.9	7.85	9.57	40,0	11.84	0,4	172
PURGE DATA:									
Date:	3/3/2011	Volume	pH	S.C.	Temp.	Turbidity	DO	Salinity	Other
Method:	GRAB								
Monitor Reading	(ppm): NA								
Well Casing Diar	meter & Material								
Type: NA									
Water Depth (WI	D): '								
Static Water Lev	el (WL): NA								
One Casing Volu									
Start Purge (hrs)									
End Purge (hrs):									
Total Purge Time									
Total Vol. Purged									
	ECTION INFORMAT	TION:							
	Analysis		Preser	vative		Container Re	quirements		Collected
	VOCs		Н	CI		3-40 ml gl			
	PAHs and 1,4-Diox	ane	4°	°C		2-1 Liter	ambers		/
	Perchlorate			°C		1-250 ml pla			V
	Total PPM			1O ₃		1-500 ml pla			4
	Dissolved PPM	1920		NO ₃		1-500 ml pla			/_
	Hexavalent Chromi	um	4	°C		1-250 ml pla	astic bottle		~

OBSERVATIONS									SALE STATE
39.326	84P N		6	contreto	Time/ax:	1017/3	-7-11		
76, 407	763 61								
, 0,,									
Cirolo (# A	No.					l oi			
Circle if Applica					12 246	Signature(s):		U.Service	
MS/MSD	Duplicate ID No.:					<u> </u>	4		
						1 /			

SURFACE-WATER SAMPLE LOG SHEET

Page of

Project Site Name: MSA Dump Road Sample ID No .: MSA-SW41 - 03 03 [] Project No .: 112IC03292 Sample Location: FMC SW41 Sampled By: SBC / WP [] Domestic Well Data C.O.C. No.: [] Monitoring Well Data Type of Sample: [] Other Well Type: [] Low Concentration [] QA Sample Type: [] High Concentration SAMPLING DATA: Date: 3/3/2011 Color S.C. Temp. Turbidity DO Salinity Other Time: 1317 (Visual) (S.U.) (mS/cm) (°C) ORP (NTU) (mg/l)(%) GRAB Method: 7,24 5.81 11.5 11.65 0.4 90 PURGE DATA: Date: 3/3/2011 Volume S.C. pH Temp. Turbidity DO Salinity Other Method: **GRAB** Monitor Reading (ppm): NA Well Casing Diameter & Material Type: NA Water Depth (WD): (' Static Water Level (WL): NA One Casing Volume(gal/L): NA Start Purge (hrs): NA End Purge (hrs): NA Total Purge Time (min): NA Total Vol. Purged (gal/L): NA SAMPLE COLLECTION INFORMATION: Analysis Preservative **Container Requirements** Collected **VOCs** HCI 3-40 ml glass vials PAHs and 1,4-Dioxane 4°C 2-1 Liter ambers Perchlorate 4°C 1-250 ml plastic bottle Total PPM HNO₃ 1-500 ml plastic bottle Dissolved PPM HNO₃ 1-500 ml plastic bottle Hexavalent Chromium 4°C 1-250 ml plastic bottle OBSERVATIONS / NOTES: 26' 198338 M 36'27 2887 N Parameter time / Date: 1040/3-7-11 Circle if Applicable: Signature(s): MS/MSD **Duplicate ID No.:**

APPENDIX B—DATA-VALIDATION REPORTS (ON CD)

Tetra Tech NUS

INTERNAL CORRESPONDENCE

TO:

D. MURALI

DATE:

April 4, 2011

FROM:

MEGAN CARSON

COPIES:

DV FILE

SUBJECT:

INORGANIC DATA VALIDATION-TAL TOTAL AND DISSOLVED METALS, PERCHLORATE, AND HEXAVALENT CHROMIUM

FROG MORTAR CREEK

SDG A1C040534

SAMPLES:

5/Water/

MSA-SW37-030311

MSA-SW38-030311

MSA-SW39-030311

MSA-SW41-030311

MSA-SW40-030311

Overview

The sample set for Frog Mortar Creek, SDG A1C040534, consists of five (5) aqueous environmental samples. This SDG contained no field duplicate pairs

All samples were analyzed for TAL metals. The samples were collected by Tetra Tech NUS on March 3rd, 2011 and analyzed by Test America. Metals analyses were conducted using EPA SW-846 method 6020. Mercury analyses were conducted using SW-846 method 7470A. Perchlorate analyses were conducted by EPA method 314.0. Hexavalent chromium analyses were conducted by SW-846method 7199.

The findings offered in this report are based upon a general review of all available data. The data review was based on data completeness, holding times, MS tuning, initial and continuing calibration verification results, laboratory method / preparation blank results, ICP interference results, ICP internal standard recoveries, ICP serial dilution, laboratory control sample recoveries, matrix spike recoveries, laboratory duplicate results, detection limits and analyte quantitation.

Areas of concern with respect to data quality are listed below.

Major Problems - None.

Minor Problems-

The following contaminants were detected in preparation blanks at the following maximum concentrations:

	<u>Maximum</u>	Action
<u>Analyte</u>	Concentration	Level
Barium	0.88 ug/L	4.4 ug/L
Copper	0.44 ug/L	2.2 ug/L
Thallium	0.20 ug/L	1.0 ug/L
Zinc	8.1 ug/L	40.5 ug/L

An action level of 5X the maximum contaminant level has been used to evaluate sample data for blank contamination. Sample aliquot and dilution factors, if applicable, were taken into TO: D. Murali SDG: A1C040534 Page 2 of 4

raye 2 01 4

consideration when evaluating for blank contamination. Positive results less than the blank action level reported for silver and cadmium were qualified "B" as a result of laboratory blank contamination.

- The CRDL standard had a percent recovery >110% for iron and <90% antimony and thallium. All samples were affected. All non-detected antimony and thallium results were qualified as biased low (UL).
- Positive results greater than the method detection limit but less than the reporting limit were qualified as estimated (J).

Notes:

The serial dilution was analyzed on a sample that was not included on in this SDG and therefore not used to qualify sample results.

All samples were analyzed at a 5X dilution for all metals except mercury.

Samples MSA-SW38-030311, MSA-SW40-030311, and MSA-SW41-030311 were analyzed at 2X dilution for perchlorate.

Executive Summary

Laboratory Performance: Preparation and calibration blank contamination results in the qualification of sample results as non-detected. The CRDL standard non-compliance for antimony and thallium resulted in the qualification of sample results.

Other Factors Affecting Data Quality: None.

The data for these analyses were reviewed with reference to Region III modifications to the "National Functional Guidelines for Inorganic Data Validation", April 1993. The text of this report has been formulated to address only those problem areas affecting data quality.

Tetra Tech NUS Megan Carson

Chemist/Data Validator

7∕etra Tech-NUS

Joseph A. Samchuck

Quality Assurance Officer

TO: D. Murali SDG: A1C040534 Page 3 of 4

Attachments:

Appendix A – Qualified Analytical Results
Appendix B – Results as Reported by the Laboratory
Appendix C – Support Documentation

	-			
				e
		_		
		•		
	٠			

APPENDIX A QUALIFIED ANALYTICAL RESULTS

Data Validation Qualifier Codes:

A = Lab Blank Contamination

B = Field Blank Contamination

C = Calibration Noncompliance (e.g. % RSDs, %Ds, ICVs, CCVs, RRFs, etc.)

C01 = GC/MS Tuning Noncompliance

D = MS/MSD Recovery Noncompliance

E = LCS/LCSD Recovery Noncompliance

F = Lab Duplicate Imprecision

G = Field Duplicate Imprecision

H = Holding Time Exceedance

1 = ICP Serial Dilution Noncompliance

J = GFAA PDS - GFAA MSA's r < 0.995

K = ICP Interference - includes ICS % R Noncompliance

L = Instrument Calibration Range Exceedance

M = Sample Preservation Noncompliance

N = Internal Standard Noncompliance

N01 = Internal Standard Recovery Noncompliance Dioxins

N02 = Recovery Standard Noncompliance Dioxins

N03 = Clean-up Standard Noncompliance Dioxins

O = Poor Instrument Performance (e.g. base-line drifting)

P = Uncertainty near detection limit (< 2 x IDL for inorganics and <CRQL for organics)

Other problems (can be any number of issues; e.g. poor chromatography, interferences,

Q = etc.

R = Surrogates Recovery Noncompliance

S = Pesticide/PCB Resolution

T = % Breakdown Noncompliance for DDT and Endrin

% Difference between columns/detectors >25% for positive results determined via

U = GC/HPLC

V = Non-linear calibrations; correlation coefficient r < 0.995

W = EMPC result

X = Signal to noise response drop

Y = Percent solids <30%

Z = Uncertainty at 2 sigma deviation is greater than sample activity

									1		
PROJ_NO: 03292	NSAMPLE	MSA-SW37-030311	511	MSA-SW38-030311	30311		MSA-SW39-030311	30311		MSA-SW40-030311	
SDG: A1C040534	LAB_ID	A1C040534002		A1C040534003	33		A1C040534004	4		A1C040534005	
FRACTION: MF	SAMP_DATE	3/3/2011		3/3/2011			3/3/2011			3/3/2011	
MEDIA: WATER	QC_TYPE	ΣZ		MZ			ΣZ			NZ	
	UNITS	UG/L		UG/L			NG/L			UG/L	
	PCT_SOLIDS	0.0		0.0			0.0			0.0	
	DUP_OF										
PARAMETER		RESULT V	VQL QLCD	RESULT	Val	arcp	RESULT	VQL QLCD	9	RESULT VQL	QLCD
ANTIMONY		0.65 UL	O	0.65 UL	J.	ပ	0.65 UL	O Tn		0.65 UL	ပ
ARSENIC		2.6 J	۵	2.7	7	۵.	2.6 J	<u>-</u>		3)	a.
BARIUM		30		22.2			17.9 B	В		15.6 B	4
BERYLLIUM		1 U			1 U			1 U		1 0	
CADMIUM		0.65 U		0.86	7	Ь	0.65 U	n		0.65 U	
CHROMIUM		3.6 U		3.6	⊃		3.6 U	n		3.6 U	
COBALT		1.4 U	۵	3.6 J	7	Ь	1.6 J	٦		0.98	۵
COPPER		6.8 B	∢	4.1 B	മ	A	3.5 B	В		5.8 B	4
IRON		130 U		130 U	ם		130 U	n		130 U	
LEAD		U 6.0		U 6.0	D.		6.0	n		U 0.9	
MANGANESE		109		253			114			67.4	
MERCURY		0.12 U	-	0.12 U	n		0.12 U	n		0.12 U	
MOLYBDENUM		1.6 J	<u>a</u>	1.3	٠,	Ъ	1.2	<u>а</u>		ر د	۵
NICKEL		2.6 J	Д	2.9	7	Ь	2.5	J.		2.3 J	<u>a</u>
SELENIUM		N 9		9	⊃		9	0 9		Π9	
SILVER		0.4 U		0.4 U	⊃		U 4.0	D.		0.4 U	
THALLIUM		0.7 UL) T	2.0	0.7 UL	0	7.0	0.7 UL C		0.7 UL	ပ
VANADIUM		2.2 U		2.2 U	n		2.2 U	n		2.2 U	
ZINC		18.1 B	∢	20.1 B	В	4	14.8 B	В		24 B	4

SDG: A1C040534 FRACTION: MF				
FRACTION: MF	LAB_ID	A1C040534006	9	
	SAMP_DATE	3/3/2011		
MEDIA: WATER	QC_TYPE	NN		
	UNITS	UG/L		
	PCT_SOLIDS	0.0		
	DUP_OF			
PARAMETER		RESULT	VQL	QLCD
ANTIMONY		0.65	Ы	ပ
ARSENIC		2.7	7	<u>a</u>
BARIUM		18.2	В	⋖
BERYLLIUM		-	n	
CADMIUM		0.65	D	
CHROMIUM		3.6 U	ס	
COBALT		2.2	ſ	<u>a</u>
COPPER		4.3	В	٧
IRON		130 U	n	
LEAD		U 6.0	D	
MANGANESE		161		
MERCURY		0.12	n	
MOLYBDENUM		1.6	ſ	a
NICKEL		3.4	ſ	<u>а</u>
SELENIUM		9	n	
SILVER		0.4 U	n	
THALLIUM		0.7	0.7 UL	၁
VANADIUM		2.2	n	
ZINC		21.2 B	В	٧

DEC 1 NO. 02202	DIGMANDI E	MCA CM/27 020244	20244		1150 03034	020244		MCA C14/20 020244	020244		845 A 51440 030344	00044	
Thou_10. 03232	אם אווירטאו	יייייייייייייייייייייייייייייייייייייי	3		-00 MAC-MOINI	10000		SCAAC-COM			10-04-040-NOINI	-	
SDG: A1C040534	LAB_ID	A1C040534002	12		A1C040534003	203		A1C040534004	004		A1C040534005	5	;
FRACTION: M	SAMP_DATE	3/3/2011			3/3/2011			3/3/2011			3/3/2011		
MEDIA: WATER	QC_TYPE	NN			ΣZ			ΣZ			ΣZ		
	UNITS	UG/L			NG/L			NG/L		-	UG/L		
	PCT_SOLIDS	0.0			0.0			0.0			0.0		
	DUP_OF								-				
PARAMETER		RESULT	VQL	arcd	RESULT	VQL	arcp	RESULT	VQL	arcd	RESULT	VQL	arcd
ANTIMONY		70 S9:0	٦ ا	. 0	9.0	0.65 UL	ပ	0	0.65 UL	O	0.65 UL	٦n	O
ARSENIC		2.1		Ь	3.	3.6 J	<u>а</u>	(7)	3.3 J	۵	3.7	٦	_
BARIUM		58.4			2	54		48	49.3		52.5		
BERYLLIUM		_	<u>ا</u>			٦ ۲			1 U		_	1 O	
CADMIUM		0.65 U	_		-	1.2 J	۵	ö	0.65 U		0.65 U	n	
CHROMIUM		4.5	_	۵	7.	7.1 J	۵	(7)	3.6 U		4.5	7	_
COBALT		2	2 J	۵	5.	5.4		N	2.2 J	a	1.9	_	
COPPER		16			19.5	5.			7.6 B	4	18.1		
IRON		1670			2760	00		2	570		1490		
LEAD		5.5			9	6.3			1.5 J	۵	4.3	7	Ь
MANGANESE		112			311	_		-	131		139		
MERCURY		0.12 U	_		0.12	2 U		0	0.12 U		0.12 U	n	
MOLYBDENUM		1.3 J		Ь	-	1.3 J	n.	_	1.2 J	۵	1.2	7	Ь
NICKEL		3.2	7	Д		5 J	Ь	(6)	3.5 J	Ь	3.2	٦	а.
SELENIUM		9	0 9			0 9			n 9		9	0 9	
SILVER		0.4 U	n		0	0.4 U		0	0.4 U		0.4 U	ח	
THALLIUM		0.7	0.7 UL	၁	0	0.7 UL	ပ		0.7 UL	S	0.7	0.7 UL	O
VANADIUM		2.9 J	_	Ь	5.	5.2 J	Ь		2.2 U		3.5	J	Ь
ZINC		41.2 B	В	A	.13	51.4 B	A	24	24.1 B	A	33.4 B	В	A

PROJ_NO: 03292	NSAMPLE	MSA-SW41-030311	30311	·
SDG: A1C040534	LAB_ID	A1C040534006	6	
FRACTION: M	SAMP_DATE	3/3/2011		
MEDIA: WATER	QC_TYPE	NN		
	UNITS	NG/L		
	PCT_SOLIDS	0.0		
	DUP_OF			
PARAMETER		RESULT	VQL	QLCD
ANTIMONY		0.65 UL	٦n	၁
ARSENIC		3.4	٦	Ь
BARIUM		53.3		
BERYLLIUM		1	n	
CADMIUM		0.65 U	n	
CHROMIUM		3.6 U	n	
COBALT		2.2	ſ	Ь
COPPER		2	В	А
IRON		675		
LEAD		J.7 J	ſ	Ь
MANGANESE		136		
MERCURY		0.12 U	n	
MOLYBDENUM		1.3	ſ	Ь
NICKEL		2.6	ſ	Ь
SELENIUM		9	n	
SILVER		U 4.0	Ω	
THALLIUM		0.7 UL	nr	၁
VANADIUM		2.2	n	
ZINC		29.9 B	В	۷

PROJ_NO: 03292	NSAMPLE	MSA-SW37-030311	1	MSA-SW38-030311		MSA-SW39-030311		MSA_SW40_030311	
SDG: A1C040534	LAB_ID	460-23660-1		460-23660-2		460-23660-3		460-23660 4	
FRACTION: MISC	SAMP_DATE 3/3/2011	3/3/2011		3/3/2011		3/3/2011		3/3/2011	
MEDIA: WATER	QC_TYPE	NA		NM		ΣZ		MM	
	UNITS	UG/L		UG/L		UG/L		/ <u>U</u>	
	PCT_SOLIDS 0.0	0.0		0.0		0.0		100	
	DUP_OF							25	
PARAMETER		RESULT VOL	VQL QLCD	RESULT VOI	000	10/\ T 11 10 11 11	0.10	H = 1320	0
HEXAVALENT CHROMILIM		0 56 1			1015	, (c	WE'C'D	۷ لال	מרכם
		0.50		U.36 U		0.56 U		0.56 U	
PERCHLORATE				0.72 U				0.72 11	

PROJ_NO: 03292	NSAMPLE	MSA-SW41-030311	30311	
SDG: A1C040534	LAB_ID	460-23660-5		
FRACTION: MISC	SAMP_DATE 3/3/2011	3/3/2011		
MEDIA: WATER	QC_TYPE	MZ		
-	UNITS	UG/L		
	PCT_SOLIDS 0.0	0.0		
	DUP_OF			
PARAMETER		RESULT	Val alco	alcd
HEXAVALENT CHROMIUM		0.56	Ω	
PERCHLORATE		0.72 U	n	*

APPENDIX B

RESULTS AS REPORTED BY THE LABORATORY

Client Sample ID: MSA-SW37-030311

TOTAL Metals

Matrix..... WG

Lot-Sample #...: A1C040534-002

Date Sampled...: 03/03/11 12:30 Date Received..: 03/04/11 REPORTING PREPARATION-WORK PARAMETER RESULT LIMIT · UNITS METHOD ANALYSIS DATE ORDER # Prep Batch #...: 1066015 Silver ND G ug/L 5.0 SW846 6020 03/07-03/16/11 ME7501AO Dilution Factor: 5 Analyst ID....: 000079 Analysis Time..: 18:26 Instrument ID..: 18 Arsenic 2.1 B,G 25.0 uq/L SW846 6020 03/07-03/16/11 ME7501AC Dilution Factor: 5 Analysis Time..: 18:26 Analyst ID....: 000079 Instrument ID..: I8 Barium 58.4 J 5.0 03/07-03/16/11 ME7501AD ug/L SW846 6020 Dilution Factor: 5 Analysis Time..: 18:26 Analyst ID....: 000079 Instrument ID..: 18 Beryllium ND G 5.0 SW846 6020 ug/L 03/07-03/16/11 ME7501AE Dilution Factor: 5 Analysis Time..: 18:26 Analyst ID....: 000079 Instrument ID..: 18 Cadmium ND G 5.0 SW846 6020 ug/L 03/07-03/16/11 ME7501AF Dilution Factor: 5 Analysis Time..: 18:26 Analyst ID....: 000079 Instrument ID..: 18 Cobalt 2.0 B,G 5.0 uq/L SW846 6020 03/07-03/16/11 ME7501AG Dilution Factor: 5 Analysis Time..: 18:26 Analyst ID....: 000079 Instrument ID..: 18 Chromium 4.5 B,G 10.0 uq/L SW846 6020 03/07-03/16/11 ME7501AV Dilution Factor: 5 Analysis Time..: 18:26 Analyst ID....: 000079 Instrument ID..: 18 Copper 16.0 J 10.0 uq/L SW846 6020 03/07-03/16/11 ME7501AH Dilution Factor: 5 Analysis Time..: 18:26 Analyst ID....: 000079 Instrument ID..: 18 Iron 1670 250 SW846 6020 uq/L 03/07-03/16/11 ME7501AJ Dilution Factor: 5 Analysis Time..: 18:26 Analyst ID....: 000079 Instrument ID.:: 18

(Continued on next page)

SW846 6020

Analysis Time..: 18:26

uq/L

Manganese

112

5.0

Dilution Factor: 5

Instrument ID..: I8

03/07-03/16/11 ME7501AL

Analyst ID....: 000079

Client Sample ID: MSA-SW37-030311

TOTAL Metals

Lot-Sample #...: A1C040534-002 Matrix.....: WG

PARAMETER	RESULT	REPORTING LIMIT UNITS	METHOD	PREPARATION- WORK ANALYSIS DATE ORDER #
Molybdenum	1.3 B,G	10.0 ug/L Dilution Factor: 5 Instrument ID.:: 18	SW846 6020 Analysis Time: 18:26	03/07-03/16/11 ME7501AM Analyst ID: 000079
Nickel	3.2 B,G	10.0 ug/L Dilution Factor: 5 Instrument ID.:: 18	SW846 6020 Analysis Time: 18:26	03/07-03/16/11 ME7501AN Analyst ID: 000079
Lead	5.5	5.0 ug/L Dilution Factor: 5 Instrument ID.:: I8	SW846 6020 Analysis Time: 18:26	03/07-03/16/11 ME7501AK Analyst ID: 000079
Antimony	ND G	10.0 ug/L Dilution Factor: 5 Instrument ID.:: 18	SW846 6020 Analysis Time: 18:26	03/07-03/16/11 ME7501AA Analyst ID: 000079
Selenium	ND G	25.0 ug/L Dilution Factor: 5 Instrument ID.:: 18	SW846 6020 Analysis Time: 18:26	03/07-03/16/11 ME7501AP Analyst ID: 000079
Thallium	ND G	5.0 ug/L Dilution Factor: 5 Instrument ID.:: I8	SW846 6020 Analysis Time: 18:26	03/07-03/16/11 ME7501AR Analyst ID: 000079
Vanadium	2.9 B,G	100 ug/L Dilution Factor: 5 Instrument ID.:: I8	SW846 6020 Analysis Time: 18:26	03/07-03/16/11 ME7501AT Analyst ID: 000079
Zinc	41.2 B,J,G	100 ug/L Dilution Factor: 5 Instrument ID.:: I8	SW846 6020 Analysis Time: 18:26	03/07-03/16/11 ME7501AU Analyst ID: 000079
Mercury	ND	0.20 ug/L Dilution Factor: 1 Instrument ID: H1	SW846 7470A Analysis Time: 14:52	03/07-03/09/11 ME7501AW Analyst ID: 001576

NOTE(S):

G Elevated reporting limit. The reporting limit is elevated due to matrix interference.

B Estimated result. Result is less than RL.

J Method blank contamination. The associated method blank contains the target analyte at a reportable level.

Client Sample ID: MSA-SW38-030311

TOTAL Metals

Lot-Sample #...: A1C040534-003 Matrix....: WG

Date Sampled...: 03/03/11 13:00 Date Received..: 03/04/11

PARAMETER	RESULT	REPORTING LIMIT UNITS	METHOD	PREPARATION- WORK ANALYSIS DATE ORDER #
Prep Batch #	.: 1066015			
Silver	ND G	5.0 ug/L Dilution Factor: 5 Instrument ID: 18	SW846 6020 Analysis Time: 19:01	03/07-03/16/11 ME7571AT Analyst ID: 000079
Arsenic	3.6 B,G	25.0 ug/L Dilution Factor: 5 Instrument ID: I8	SW846 6020 Analysis Time: 19:01	03/07-03/16/11 ME7571AE Analyst ID: 000079
Barium	54.0 Ј	. 5.0 ug/L Dilution Factor: 5 Instrument ID.:: I8	SW846 6020 Analysis Time: 19:01	03/07-03/16/11 ME7571AF Analyst ID: 000079
Beryllium	ND G	5.0 ug/L Dilution Factor: 5 Instrument ID: I8	SW846 6020 Analysis Time: 19:01	03/07-03/16/11 ME7571AG Analyst ID: 000079
Cadmium	1.2 B,G	5.0 ug/L Dilution Factor: 5 Instrument ID.:: 18	SW846 6020 Analysis Time: 19:01	03/07-03/16/11 ME7571AH Analyst ID: 000079
Cobalt	5.4	5.0 ug/L Dilution Factor: 5 Instrument ID.:: 18	SW846 6020 Analysis Time: 19:01	03/07-03/16/11 ME7571AJ Analyst ID: 000079
Chromium	7.1 B,G	10.0 ug/L Dilution Factor: 5 Instrument ID.:: 18	SW846 6020 Analysis Time: 19:01	03/07-03/16/11 ME7571AX Analyst ID: 000079
Copper	19.5 Ј	10.0 ug/L Dilution Factor: 5 Instrument ID.:: I8	SW846 6020 Analysis Time: 19:01	03/07-03/16/11 ME7571AK Analyst ID: 000079
Iron	2760	250 ug/L Dilution Factor: 5 Instrument ID.:: I8	SW846 6020 Analysis Time: 19:01	03/07-03/16/11 ME7571AL Analyst ID:: 000079
Manganese	311	5.0 ug/L Dilution Factor: 5 Instrument ID: I8	SW846 6020 Analysis Time: 19:01	03/07-03/16/11 ME7571AN Analyst ID: 000079

(Continued on next page)

Client Sample ID: MSA-SW38-030311

TOTAL Metals

Lot-Sample #...: A1C040534-003

Matrix..... WG

		REPORTING				PREPARATION-	WORK
PARAMETER	RESULT	LIMIT	UNITS	METHO:		ANALYSIS DATE	ORDER #
Molybdenum	1.3 B,G	10.0	ug/L	SW846		03/07-03/16/11	ME7571AP
		Dilution Fact		Analysis	Time: 19:01	Analyst ID	: 000079
		Instrument ID	: 18				
Nickel	5.0 B,G	10.0	ug/L	SW846	6020	03/07-03/16/11	ME7571AQ
•		Dilution Fact	or: 5	Analysis	Time: 19:01	Analyst ID	
		Instrument ID	: I8				
Lead	6.3	5.0	ug/L	SW846	6020	03/07-03/16/11	ME7571AM
		Dilution Fact	or: 5	Analysis	Time: 19:01	Analyst ID	: 000079
		Instrument ID	: 18				
Antimony	ND G	10.0	ug/L	SW846	6020	03/07-03/16/11	MF7571AD
ozo1		Dilution Fact	٠.		Time: 19:01	Analyst ID	
		Instrument ID					
Selenium	ND G	25.0	ug/L	SW846	6020	03/07-03/16/11	MF757110
00101110111		Dilution Fact	J.		Time: 19:01	Analyst ID	
		Instrument ID			12.11.071.1	arjee ib	. 000073
m1 77 '		5.0	/ -				
Thallium	ND G	5.0	ug/L	SW846		03/07-03/16/11	
		Dilution Facto		Analysis	Time: 19:01	Analyst ID	: 000079
		Instrument ID	: 18				
Vanadium	5.2 B,G	100	ug/L	SW846	6020	03/07-03/16/11	ME7571AV
		Dilution Facto		Analysis	Time: 19:01	Analyst ID	: 000079
		Instrument ID	: 18				
Zinc	51.4 B,J,G	100	ug/L	SW846	6020	03/07-03/16/11	ME7571AW
		Dilution Facto	or: 5	Analysis	Time: 19:01	Analyst ID	: 000079
		Instrument ID	: 18				
Mercury	ND	0.20	ug/L	SW846	7470A	03/07-03/09/11	ME7571A0
		Dilution Facto	or: 1	Analysis	Time: 15:05	Analyst ID	: 001576
		Instrument ID	: H1				

NOTE(S):

North Canton 494

G Elevated reporting limit. The reporting limit is elevated due to matrix interference.

B Estimated result. Result is less than RL.

J Method blank contamination. The associated method blank contains the target analyte at a reportable level.

Client Sample ID: MSA-SW39-030311

TOTAL Metals

Lot-Sample #...: A1C040534-004 Matrix.....: WG

Date Sampled...: 03/03/11 13:50 Date Received..: 03/04/11

		REPORTIN			PREPARATION- WORK
PARAMETER	RESULT	LIMIT	_ UNITS	METHOD	ANALYSIS DATE ORDER #
Prep Batch #.	: 1066015				
Silver	ND G	5.0	ug/L	SW846 6020	03/07-03/16/11 ME76F1A3
•		Dilution Fac	tor: 5	Analysis Time: 19:10	Analyst ID: 000079
		Instrument I	D: 18		
Arsenic	3.3 B,G	25.0	ug/L	SW846 6020	03/07-03/16/11 ME76F1AN
		Dilution Fac	tor: 5	Analysis Time: 19:10	Analyst ID: 000079
		Instrument I	D: 18		
Barium	49.3 Ј	5.0	ug/L	SW846 6020	03/07-03/16/11 ME76F1AP
		Dilution Fac	tor: 5	Analysis Time: 19:10	Analyst ID: 000079
		Instrument I	D: 18		
Beryllium	ND G	5.0	ug/L	SW846 6020	03/07-03/16/11 ME76F1AQ
		Dilution Fac		Analysis Time: 19:10	Analyst ID: 000079
		Instrument I	D: 18		
Cadmium	ND G	5.0	ug/L	SW846 6020	03/07-03/16/11 ME76F1AR
		Dilution Fac		Analysis Time: 19:10	Analyst ID: 000079
		Instrument I	D: 18		
Cobalt	2.2 B,G	5.0	ug/L	SW846 6020	03/07-03/16/11 ME76F1AT
		Dilution Fac		Analysis Time: 19:10	Analyst ID: 000079
		Instrument I	D: I8	•	
Chromium	ND G	10.0	ug/L	SW846 6020	03/07-03/16/11 ME76F1A7
		Dilution Fac	tor: 5	Analysis Time: 19:10	Analyst ID: 000079
		Instrument I	D: 18		
Copper	7.6 B,J,G	10.0	ug/L	SW846 6020	03/07-03/16/11 ME76F1AU
		Dilution Fac		Analysis Time: 19:10	Analyst ID: 000079
		Instrument I	D: 18		
Iron	570	250	ug/L	SW846 6020	03/07-03/16/11 ME76F1AV
		Dilution Fac		Analysis Time: 19:10	Analyst ID: 000079
		Instrument II	18 :ט		
Manganese	131	5.0	ug/L	SW846 6020	03/07-03/16/11 ME76F1AX
		Dilution Fact		Analysis Time: 19:10	Analyst ID: 000079
		Instrument II	J: 18		

(Continued on next page)

Client Sample ID: MSA-SW39-030311

TOTAL Metals

Lot-Sample #...: A1C040534-004

Matrix..... WG

PARAMETER	RESULT	REPORTING LIMIT	G UNITS	METHOD		PREPARATION-	WORK
Molybdenum	1.2 B,G	10.0	$\frac{\text{uq/L}}{\text{uq/L}}$	SW846 6020		ANALYSIS DATE 03/07-03/16/11	ORDER #
noxybacham	1.2 5,0	Dilution Fact	3 -	Analysis Time.		Analyst ID	
		Instrument ID		marysis fime.	15.10	Analyst ID	. 000079
Nickel	3.5 B,G	10.0	ug/L	SW846 6020		03/07-03/16/11	ME76F1A1
		Dilution Fact	or: 5	Analysis Time.	.: 19:10	Analyst ID	: 000079
		Instrument ID	: 18				
Lead	1.5 B,G	5.0	ug/L	SW846 6020		03/07-03/16/11	MC7/CC13M
Lead	1.5 b,0			Analysis Time.		Analyst ID	
		Dilution Factor: 5 Instrument ID: 18		Anarysis fime.	19.10	Analyst ID	: 000079
			20				
Antimony	ND G	10.0	ug/L	SW846 6020		03/07-03/16/11	ME76F1AM
		Dilution Factor: 5		Analysis Time.	.: 19:10	Analyst ID	: 000079
		Instrument ID	: 18				
Selenium	ND G	25.0	ug/L	SW846 6020		03/07-03/16/11	ME76E172
	115 0	Dilution Fact	٥.	Analysis Time.	•	Analyst ID	
		Instrument ID		aryozo rzme.		imaryst ib	. 000073
Thallium	ND G	5.0	ug/L	SW846 6020		03/07-03/16/11	ME76F1A4
		Dilution Facto	or: 5	Analysis Time.	.: 19:10	Analyst ID	: 000079
		Instrument ID	: I8				
Vanadium	ND G	100	uq/L	SW846 6020		03/07-03/16/11	ME76F1A5
		Dilution Facto		Analysis Time.	.: 19:10	Analyst ID	
		Instrument ID	: I8	·		-	
Zinc	24.1 B, J, G	100	ug/L	SW846 6020		03/07-03/16/11	ME76E136
	21.1 5,0,0	Dilution Facto	_	Analysis Time.	. 19.10	Analyst ID	
		Instrument ID		imalyolo lime.	17.10	maryse ib	. 000079
Mercury	ND	0.20	ug/L	SW846 7470A	P	03/07-03/09/11	ME76F1A8
		Dilution Facto	or: 1	Analysis Time	: 15:00	Analyst ID	: 001576
		Instrument ID.	: H1				

NOIE (2):

G Elevated reporting limit. The reporting limit is elevated due to matrix interference.

B Estimated result. Result is less than RL.

J Method blank contamination. The associated method blank contains the target analyte at a reportable level.

Client Sample ID: MSA-SW40-030311

TOTAL Metals

Lot-Sample #...: A1C040534-005 Matrix....: WG

Date Sampled...: 03/03/11 12:48 Date Received..: 03/04/11

PARAMETER	RESULT	REPORTII		MERUOD	PREPARATION- WORK
FARAMETER	KE30FI	LIMIT	UNITS	METHOD	ANALYSIS DATE ORDER #
Prep Batch #	.: 1066015				
Silver	ND G	5.0	ug/L	SW846 6020	03/07-03/16/11 ME76H1A5
		Dilution Fac	J .	Analysis Time: 19:20	
		Instrument :	ID: 18		•
Arsenic	3.7 B,G	25.0	ug/L	SW846 6020	03/07-03/16/11 ME76H1AQ
		Dilution Fac Instrument I		Analysis Time: 19:20) Analyst ID: 000079
Barium	52.5 J	5.0	ug/L	SW846 6020	03/07-03/16/11 ME76H1AR
		Dilution Fac Instrument		Analysis Time: 19:20	Analyst ID: 000079
Beryllium	ND G	5.0	ug/L	SW846 6020	03/07-03/16/11 ME76H1AT
		Dilution Fac		Analysis Time: 19:20	Analyst ID: 000079
		Instrument 1	ID: I8		
Cadmium	ND G	5.0	ug/L	SW846 6020	03/07-03/16/11 ME76H1AU
		Dilution Fac		Analysis Time: 19:20	Analyst ID: 000079
Cobalt	1.9 B,G	5.0	ug/L	SW846 6020	03/07-03/16/11 ME76H1AV
		Dilution Fac	ctor: 5	Analysis Time: 19:20	Analyst ID: 000079
		Instrument 1	D: 18		
Chromium	4.5 B,G	10.0	ug/L	SW846 6020	03/07-03/16/11 МЕ76Н1А9
		Dilution Fac		Analysis Time: 19:20	Analyst ID: 000079
		Instrument 1	D: 18		
Copper	18.1 J	10.0	ug/L	SW846 6020	03/07-03/16/11 ME76H1AW
		Dilution Fac	tor: 5	Analysis Time: 19:20	Analyst ID: 000079
		Instrument I	D: 18		
Iron	1490	250	ug/L	SW846 6020	03/07-03/16/11 МЕ76Н1АХ
		Dilution Fac	tor: 5	Analysis Time: 19:20	Analyst ID: 000079
		Instrument I	D: 18		•
Manganese	139	5.0	ug/L	SW846 6020	03/07-03/16/11 ME76H1A1
		Dilution Fac	tor: 5	Analysis Time: 19:20	Analyst ID: 000079
		Instrument I	D: 18		

(Continued on next page)

Client Sample ID: MSA-SW40-030311

TOTAL Metals

Lot-Sample #...: A1C040534-005

Matrix..... WG

PARAMETER	RESULT	REPORTING LIMIT	; UNITS	METHO	D	PREPARATION- ANALYSIS DATE	WORK ORDER #
Molybdenum	1.2 B,G	10.0 Dilution Factor Instrument ID	ug/L or: 5	SW846		03/07-03/16/11 Analyst ID	ME76H1A2
Nickel	3.2 B,G	10.0 Dilution Facto Instrument ID		SW846 Analysis	6020 Time: 19:20	03/07-03/16/11 Analyst ID	
Lead	4.3 B,G	5.0 Dilution Factor Instrument ID		SW846 Analysis	6020 Time: 19:20	03/07-03/16/11 Analyst ID	
Antimony	ND G	10.0 Dilution Factor		SW846 Analysis	6020 Time: 19:20	03/07-03/16/11 Analyst ID	
Selenium	ND G	25.0 Dilution Facto Instrument ID		SW846 Analysis	6020 Time: 19:20	03/07-03/16/11 Analyst ID	
Thallium	ND G	5.0 Dilution Factor		SW846 Analysis	6020 Time: 19:20	03/07-03/16/11 Analyst ID	-
Vanadium	3.5 B,G	100 Dilution Facto Instrument ID.		SW846 Analysis	6020 Time: 19:20	03/07-03/16/11 Analyst ID	
Zinc	33.4 B,J,G	100 Dilution Facto Instrument ID.		SW846 Analysis	6020 Time: 19:20	03/07-03/16/11 Analyst ID	
Mercury	ND	0.20 Dilution Facto Instrument ID.			7470A Time: 15:02	03/07-03/09/11 Analyst ID	

NOTE(S):

G Elevated reporting limit. The reporting limit is elevated due to matrix interference.

B Estimated result. Result is less than RL.

J Method blank contamination. The associated method blank contains the target analyte at a reportable level.

Client Sample ID: MSA-SW41-030311

TOTAL Metals

Lot-Sample #...: A1C040534-006 Matrix.....: WG

Date Sampled...: 03/03/11 13:17 Date Received..: 03/04/11

	D. T. O. T. T.	REPORTING		PREPARATION- WORK
PARAMETER	RESULT	LIMIT UNITS	METHOD	ANALYSIS DATE ORDER #
Prep Batch #	.: 1066015			
Silver	ND G	5.0 ug/L	SW846 6020	03/07-03/16/11 ME76P1A5
		Dilution Factor: 5	Analysis Time: 19:29	Analyst ID: 000079
		Instrument ID: 18		
Arsenic	3.4 B,G	25.0 ug/L	SW846 6020	03/07-03/16/11 ME76P1AQ
		Dilution Factor: 5	Analysis Time: 19:29	Analyst ID: 000079
		Instrument ID: 18		
Barium	53.3 Ј	5.0 ug/L	SW846 6020	03/07-03/16/11 ME76P1AR
		Dilution Factor: 5	Analysis Time: 19:29	Analyst ID: 000079
		Instrument ID: 18		
Beryllium	ND G	5.0 ug/L	SW846 6020	03/07-03/16/11 ME76P1AT
		Dilution Factor: 5	Analysis Time: 19:29	Analyst ID: 000079
		Instrument ID: 18		
Cadmium	ND G	5.0 ug/L	SW846 6020	03/07-03/16/11 ME76P1AU
		Dilution Factor: 5	Analysis Time: 19:29	Analyst ID: 000079
		Instrument ID: I8		
Cobalt	2.2 B,G	5.0 ug/L	SW846 6020	03/07-03/16/11 ME76P1AV
•		Dilution Factor: 5	Analysis Time: 19:29	Analyst ID: 000079
		Instrument ID: 18		
Chromium	ND G	10.0 ug/L	SW846 6020	03/07-03/16/11 ME76P1A9
		Dilution Factor: 5	Analysis Time: 19:29	Analyst ID: 000079
		Instrument ID: I8		
Copper	7.0 B,J,G	10.0 ug/L	SW846 6020	03/07-03/16/11 ME76P1AW
		Dilution Factor: 5	Analysis Time: 19:29	Analyst ID: 000079
		Instrument ID: 18		
Iron	675	250 ug/L	SW846 6020	03/07-03/16/11 ME76P1AX
		Dilution Factor: 5	Analysis Time: 19:29	Analyst ID: 000079
		Instrument ID: 18		
Manganese	136	5.0 ug/L	SW846 6020	03/07-03/16/11 ME76P1A1
		Dilution Factor: 5	Analysis Time: 19:29	Analyst ID: 000079
		Instrument ID: I8		

(Continued on next page)

Client Sample ID: MSA-SW41-030311

TOTAL Metals

Lot-Sample #...: A1C040534-006

Matrix..... WG

PARAMETER	RESULT	REPORTING LIMIT UNITS	METHOD	PREPARATION- WORK ANALYSIS DATE ORDER #
Molybdenum	1.3 B,G	10.0 ug/L Dilution Factor: 5 Instrument ID: 18	SW846 6020 Analysis Time: 19:29	03/07-03/16/11 ME76P1A2 Analyst ID: 000079
Nickel	2.6 B,G	10.0 ug/L Dilution Factor: 5 Instrument ID.:: I8	SW846 6020 Analysis Time: 19:29	03/07-03/16/11 ME76P1A3 Analyst ID: 000079
Lead	1.7 B,G	5.0 ug/L Dilution Factor: 5 Instrument ID.:: 18	SW846 6020 Analysis Time: 19:29	03/07-03/16/11 ME76P1A0 Analyst ID: 000079
Antimony	ND G	10.0 ug/L Dilution Factor: 5 Instrument ID: I8	SW846 6020 Analysis Time: 19:29	03/07-03/16/11 ME76P1AP Analyst ID: 000079
Selenium	ND G	25.0 ug/L Dilution Factor: 5 Instrument ID.:: 18	SW846 6020 Analysis Time: 19:29	03/07-03/16/11 ME76P1A4 Analyst ID: 000079
Thallium	ND G	5.0 ug/L Dilution Factor: 5 Instrument ID: I8	SW846 6020 Analysis Time: 19:29	03/07-03/16/11 ME76P1A6 Analyst ID: 000079
Vanadium	ND G	100 ug/L Dilution Factor: 5 Instrument ID: I8	SW846 6020 Analysis Time: 19:29	03/07-03/16/11 ME76P1A7 Analyst ID: 000079
Zinc	29.9 B,J,G	100 ug/L Dilution Factor: 5 Instrument ID: I8	SW846 6020 Analysis Time: 19:29	03/07-03/16/11 ME76P1A8 Analyst ID: 000079
Mercury	ND	0.20 ug/L Dilution Factor: 1 Instrument ID: H1	SW846 7470A Analysis Time: 15:08	03/07-03/09/11 ME76P1AA Analyst ID: 001576

NOTE (S):

G Elevated reporting limit. The reporting limit is elevated due to matrix interference.

B Estimated result. Result is less than RL.

J Method blank contamination. The associated method blank contains the target analyte at a reportable level.

Client Sample ID: MSA-SW37-030311

DISSOLVED Metals

Lot-Sample #...: A1C040534-002 Matrix.....: WG

Date Sampled...: 03/03/11 12:30 Date Received..: 03/04/11

		REPORTING				PREPARATION-	WORK
PARAMETER	RESULT	LIMIT	UNITS	METHOD		ANALYSIS DATE	ORDER #
Prep Batch #	.: 1066015						
Silver	ND G	5.0	ug/L	SW846 6	6020	03/07-03/16/11	ME7501CD
		Dilution Facto	r: 5	Analysis T	rime: 18:56	Analyst ID	: 000079
		Instrument ID.	.: 18				
Arsenic	2.6 B,G	25.0	ug/L	SW846 6	6020	03/07-03/16/11	ME7501A0
		Dilution Facto Instrument ID.		Analysis T	Time: 18:56	Analyst ID	: 000079
Barium	30.0 J	5.0	ug/L	SW846 6	6020	03/07-03/16/11	ME7501A1
		Dilution Facto Instrument ID.		Analysis T	rime: 18:56	Analyst ID	: 000079
Beryllium	ND G	5.0	ug/L	SW846 6	6020	03/07-03/16/11	ME7501A2
		Dilution Facto		Analysis T	Time: 18:56	Analyst ID	: 000079
		Instrument ID.	.: 18				
Cadmium	ND G	5.0	ug/L	SW846 6	6020	03/07-03/16/11	ME7501A3
		Dilution Facto		Analysis T	Time: 18:56	Analyst ID	: 000079
		Instrument ID.	.: I8				
Cobalt	1.4 B,G	5.0	ug/L	SW846 6	6020	03/07-03/16/11	ME7501A4
		Dilution Factor		Analysis T	Time: 18:56	Analyst ID	: 000079
		Instrument ID.	.: I8				
Chromium	ND G	10.0	ug/L	SW846 6	6020	03/07-03/16/11	ME7501CH
		Dilution Factor		Analysis T	Time: 18:56	Analyst ID	: 000079
		Instrument ID.	.: I8				•
Copper	6.8 B,J,G	10.0	ug/L	SW846 6	6020	03/07-03/16/11	ME7501A5
		Dilution Factor	r: 5	Analysis T	Time: 18:56	Analyst ID	: 000079
		Instrument ID.	.: 18				
Iron	ND G	250	ug/L	SW846 6	5020	03/07-03/16/11	ME7501A6
		Dilution Factor	r: 5	Analysis T	Time: 18:56	Analyst ID	: 000079
		Instrument ID.	.: 18				
Manganese	109	5.0	ug/L	SW846 6	5020	03/07-03/16/11	ME7501A8
		Dilution Factor	c: 5	Analysis T	Time: 18:56	Analyst ID	: 000079
		Instrument ID.	.: 18				

(Continued on next page)

Client Sample ID: MSA-SW37-030311

DISSOLVED Metals

Lot-Sample #...: A1C040534-002

Matrix..... WG

	DEĆIII B	REPORTING		MEMUO	5	PREPARATION-	WORK
PARAMETER	RESULT	LIMIT	UNITS	METHO		ANALYSIS DATE	ORDER #
Molybdenum	1.6 B,G	10.0	ug/L	SW846		03/07-03/16/11	
		Dilution Fact		Analysis	Time: 18:56	Analyst ID	: 000079
		Instrument ID	: 18				
Nickel	2.6 B,G	10.0	ug/L	SW846	6020	03/07-03/16/11	ME7501CA
		Dilution Fact	or: 5	Analysis	Time: 18:56	Analyst ID	: 000079
		Instrument ID	: I8				
Lead	ND G	5.0	ug/L	SW846	6020	03/07-03/16/11	ME7501A7
		Dilution Fact	٠.		Time: 18:56	Analyst ID	
		Instrument ID					
Antimony	ND G	10.0	ug/L	SW846	6020	03/07-03/16/11	ME7501AX
•		Dilution Fact	or: 5	Analysis	Time: 18:56	Analyst ID	: 000079
		Instrument ID	: I8				
Selenium	ND G	25.0	ug/L	SW846	6020	03/07-03/16/11	ME7501CC
		Dilution Fact	or: 5	Analysis	Time: 18:56	Analyst ID	: 000079
		Instrument ID	: 18				
m) la '		- 0	/	anno 4.6	5000	00/05 00/16/11	
Thallium	ND G	5.0	ug/L	SW846		03/07-03/16/11	
		Dilution Fact		Analysis	Time: 18:56	Analyst ID	: 000079
		instrument in	10				
Vanadium	ND G	100	ug/L	SW846	6020	03/07-03/16/11	ME7501CF
		Dilution Fact	or: 5	Analysis	Time: 18:56	Analyst ID	: 000079
		Instrument ID	: 18				
Zinc	18.1 B,J,G	100	ug/L	SW846	6020	03/07-03/16/11	ME7501CG
	10.1 2/0/0	Dilution Fact	_		Time: 18:56	Analyst ID	
		Instrument ID					
Mercury	ND	0.20	ug/L	SW846	7470A	03/07-03/09/11	ME7501CJ
		Dilution Fact	or: 1	Analysis	Time: 14:59	Analyst ID	: 001576
		Instrument ID	: H1				

NOTE(S):

North Canton 492

 $[\]label{eq:Gamma-def} \textbf{G} \quad \text{Elevated reporting limit. The reporting limit is elevated due to matrix interference.}$

B Estimated result. Result is less than RL.

J Method blank contamination. The associated method blank contains the target analyte at a reportable level.

Client Sample ID: MSA-SW38-030311

DISSOLVED Metals

Lot-Sample #...: A1C040534-003 **Matrix.....:** WG

Date Sampled...: 03/03/11 13:00 Date Received..: 03/04/11

PARAMETER	RESULT	REPORTING LIMIT UNITS	METHOD	PREPARATION- WORK ANALYSIS DATE ORDER #
Prep Batch #	.: 1066015			
Silver	ND G	5.0 ug/L Dilution Factor: 5 Instrument ID: 18	SW846 6020 Analysis Time: 19:06	03/07-03/16/11 ME7571CF Analyst ID: 000079
Arsenic	2.7 B,G	25.0 ug/L Dilution Factor: 5 Instrument ID.:: I8	SW846 6020 Analysis Time: 19:06	03/07-03/16/11 ME7571A2 Analyst ID: 000079
Barium	22.2 Ј	5.0 ug/L Dilution Factor: 5 Instrument ID.:: 18	SW846 6020 Analysis Time: 19:06	03/07-03/16/11 ME7571A3 Analyst ID: 000079
Beryllium	ND G	5.0 ug/L Dilution Factor: 5 Instrument ID: I8	SW846 6020 Analysis Time: 19:06	03/07-03/16/11 ME7571A4 Analyst ID: 000079
Cadmium	0.86 B,G	5.0 ug/L Dilution Factor: 5 Instrument ID.:: I8	SW846 6020 Analysis Time: 19:06	03/07-03/16/11 ME7571A5 Analyst ID: 000079
Cobalt	3.6 B,G	5.0 ug/L Dilution Factor: 5 Instrument ID.:: I8	SW846 6020 Analysis Time: 19:06	03/07-03/16/11 ME7571A6 Analyst ID: 000079
Chromium	ND G	10.0 ug/L Dilution Factor: 5 Instrument ID.:: I8	SW846 6020 Analysis Time: 19:06	03/07-03/16/11 ME7571CK Analyst ID: 000079
Copper	4.1 B,J,G	10.0 ug/L Dilution Factor: 5 Instrument ID.:: 18	SW846 6020 Analysis Time: 19:06	03/07-03/16/11 ME7571A7 Analyst ID: 000079
Iron	ND G	250 ug/L Dilution Factor: 5 Instrument ID: I8	SW846 6020 Analysis Time: 19:06	03/07-03/16/11 ME7571A8 Analyst ID: 000079
Manganese	253	5.0 ug/L Dilution Factor: 5 Instrument ID: 18	SW846 6020 Analysis Time: 19:06	03/07-03/16/11 ME7571CA Analyst ID: 000079

(Continued on next page)

North Canton 495

Client Sample ID: MSA-SW38-030311

DISSOLVED Metals

Lot-Sample #...: A1C040534-003

Matrix..... WG

PARAMETER	RESULT	REPORTING LIMIT	G UNITS	METHOD	PREPARATION- WORK ANALYSIS DATE ORDER #
Molybdenum	1.3 B,G	10.0 Dilution Fact Instrument ID	ug/L or: 5	SW846 6020 Analysis Time:	03/07-03/16/11 ME7571CC
Nickel	2.9 B,G	10.0 Dilution Fact Instrument ID		SW846 6020 Analysis Time:	03/07-03/16/11 ME7571CD 19:06 Analyst ID: 000079
Lead	ND G	5.0 Dilution Factor Instrument ID		SW846 6020 Analysis Time:	03/07-03/16/11 ME7571A9 19:06 Analyst ID: 000079
Antimony	ND G	10.0 Dilution Factor Instrument ID		SW846 6020 Analysis Time:	03/07-03/16/11 ME7571A1 19:06 Analyst ID: 000079
Selenium	ŊD G	25.0 Dilution Factor Instrument ID.	· -	SW846 6020 Analysis Time:	03/07-03/16/11 ME7571CE 19:06 Analyst ID: 000079
Thallium	ND G	5.0 Dilution Facto Instrument ID.		SW846 6020 Analysis Time: 1	03/07-03/16/11 ME7571CG 19:06 Analyst ID: 000079
Vanadium	ND G	100 Dilution Facto Instrument ID.		SW846 6020 Analysis Time: 1	03/07-03/16/11 ME7571CH 19:06 Analyst ID: 000079
Zinc	20.1 B,J,G	100 Dilution Facto Instrument ID.		SW846 6020 Analysis Time: 1	03/07-03/16/11 ME7571CJ 9:06 Analyst ID: 000079
Mercury	ND	0.20 Dilution Facto Instrument ID.		SW846 7470A Analysis Time: 1	03/07-03/09/11 ME7571CL 5:06 Analyst ID: 001576

G Elevated reporting limit. The reporting limit is elevated due to matrix interference.

B Estimated result. Result is less than RL.

J Method blank contamination. The associated method blank contains the target analyte at a reportable level.

Client Sample ID: MSA-SW39-030311

DISSOLVED Metals

Matrix..... WG

Lot-Sample #...: A1C040534-004

Date Sampled...: 03/03/11 13:50 Date Received..: 03/04/11

·		REPORTING			PREPARATION-	WORK
PARAMETER	RESULT	LIMIT UN	ITS METHO	<u>D</u>	ANALYSIS DATE	ORDER #
Prep Batch #	• 1066015					
Silver	ND G	5.0 ug	·/L SW846	6020	03/07-03/16/11	ME76F1CD
		Dilution Factor:	5 Analysis	Time: 19:15	Analyst ID	
		Instrument ID:	18			
Arsenic	2.6 B,G	25.0 ug	/L SW846	6020	03/07-03/16/11	ME76F1AA
		Dilution Factor:	5 Analysis	Time: 19:15	Analyst ID	: 000079
		Instrument ID:	18			
Barium	17.9 Ј	5.0 ug	/L SW846	6020	03/07-03/16/11	ME76F1AC
		Dilution Factor:		Time: 19:15	Analyst ID	: 000079
		Instrument ID:	18			
Beryllium	ND G	5.0 ug	/L SW846	6020	03/07-03/16/11	ME76F1AD
		Dilution Factor:	- ·	Time: 19:15	Analyst ID	: 000079
		Instrument ID:	18			
Cadmium	ND G	5.0 ug	/L SW846	6020	03/07-03/16/11	ME76F1AE
		Dilution Factor:	2	Time: 19:15	Analyst ID	: 000079
		Instrument ID:	18			
Cobalt	1.6 B,G	_	/L SW846	6020	03/07-03/16/11	ME76F1AF
	•	Dilution Factor:		Time: 19:15	Analyst ID	: 000079
		Instrument ID:	18			
Chromium	ND G	10.0 ug			03/07-03/16/11	
		Dilution Factor:		Time: 19:15	Analyst ID	: 000079
		Instrument ID:	18			
Copper	3.5 B,J,G	10.0 ug		6020	03/07-03/16/11	ME76F1AG
		Dilution Factor:	2	Time: 19:15	Analys't ID	: 000079
		Instrument ID:	18			
Iron	ND G	250 ug			03/07-03/16/11	ME76F1AH
		Dilution Factor:		Time: 19:15	Analyst ID	: 000079
		Instrument ID:	īβ			
Manganese	114	5.0 ug	/L SW846	6020	03/07-03/16/11	ME76F1AK
		Dilution Factor:	-	Time: 19:15	Analyst ID	: 000079
		Instrument ID:	18			

(Continued on next page)

Client Sample ID: MSA-SW39-030311

DISSOLVED Metals

Lot-Sample #...: A1C040534-004

Matrix..... WG

PARAMETER	RESULT	REPORTING LIMIT UNITS	METHOD	PREPARATION- WORK ANALYSIS DATE ORDER #
Molybdenum	1.2 B,G	10.0 ug/L Dilution Factor: 5 Instrument ID: I8	SW846 6020 Analysis Time: 19:15	03/07-03/16/11 ME76F1AL Analyst ID: 000079
Nickel	2.5 B,G	10.0 ug/L Dilution Factor: 5 Instrument ID.:: I8	SW846 6020 Analysis Time: 19:15	03/07-03/16/11 ME76F1CA Analyst ID: 000079
Lead	ND G	5.0 ug/L Dilution Factor: 5 Instrument ID: 18	SW846 6020 Analysis Time: 19:15	03/07-03/16/11 ME76F1AJ Analyst ID: 000079
Antimony	ND G	10.0 ug/L Dilution Factor: 5 Instrument ID.:: I8	SW846 6020 Analysis Time: 19:15	03/07-03/16/11 ME76F1A9 Analyst ID: 000079
Selenium	ND G	25.0 ug/L Dilution Factor: 5 Instrument ID: 18	SW846 6020 Analysis Time: 19:15	03/07-03/16/11 ME76F1CC Analyst ID: 000079
Thallium	ND G	5.0 ug/L Dilution Factor: 5 Instrument ID: I8	SW846 6020 Analysis Time: 19:15	03/07-03/16/11 ME76F1CE Analyst ID: 000079
Vanadium	ND G	100 ug/L Dilution Factor: 5 Instrument ID.:: I8	SW846 6020 Analysis Time: 19:15	03/07-03/16/11 ME76F1CF Analyst ID: 000079
Zinc	14.8 B,J,G	100 ug/L Dilution Factor: 5 Instrument ID: I8	SW846 6020 Analysis Time: 19:15	03/07-03/16/11 ME76F1CG Analyst ID: 000079
Mercury	ND	0.20 ug/L Dilution Factor: 1 Instrument ID: H1	SW846 7470A Analysis Time: 15:01	03/07-03/09/11 ME76F1CJ Analyst ID: 001576

NOTE (S):

G Elevated reporting limit. The reporting limit is elevated due to matrix interference.

B Estimated result. Result is less than RL.

J Method blank contamination. The associated method blank contains the target analyte at a reportable level.

Client Sample ID: MSA-SW40-030311

DISSOLVED Metals

Lot-Sample #...: A1C040534-005

Date Sampled...: 03/03/11 12:48 Date Received..: 03/04/11

PARAMETER	RESULT	REPORTING LIMIT	G UNITS	METHOD	PREPARATION- WORK ANALYSIS DATE ORDER #
Prep Batch # Silver	.: 1066015 ND G	5.0	/ T	CM046 (000	02/07 02/16/11 MEZGU109
211/61	ND G	Dilution Fact	ug/L or: 5	SW846 6020 Analysis Time: 19:2	03/07-03/16/11 ME76H1CF 5 Analyst ID: 000079
		Instrument ID			
Arsenic	3.0 B,G	25.0	ug/L	SW846 6020	03/07-03/16/11 ME76H1AD
•		Dilution Fact Instrument ID		Analysis Time: 19:2	5 Analyst ID: 000079
Barium	15.6 Ј	5.0	ug/L	SW846 6020	03/07-03/16/11 ME76H1AE
		Dilution Fact	or: 5	Analysis Time: 19:2	5 Analyst ID: 000079
		Instrument ID	: 18		
Beryllium	ND G	5.0	ug/L	SW846 6020	03/07-03/16/11 ME76H1AF
		Dilution Fact	or: 5	Analysis Time: 19:2	5 Analyst ID: 000079
		Instrument ID	: 18		
Cadmium	ND G	5.0	ug/L	SW846 6020	03/07-03/16/11 ME76H1AG
		Dilution Fact	or: 5	Analysis Time: 19:2	5 Analyst ID: 000079
		Instrument ID	: I8		
Cobalt	0.98 B,G	5.0	ug/L	SW846 6020	03/07-03/16/11 МЕ76Н1АН
		Dilution Fact	or: 5	Analysis Time: 19:2	5 Analyst ID: 000079
		Instrument ID	: 18		
Chromium	ND G	10.0	ug/L	SW846 6020	03/07-03/16/11 ME76H1CK
		Dilution Fact	or: 5	Analysis Time: 19:2	5 Analyst ID: 000079
		Instrument ID	: 18		
Copper	5.8 B,J,G	10.0	ug/L	SW846 6020	03/07-03/16/11 ME76H1AJ
		Dilution Fact	or: 5	Analysis Time: 19:2	5 Analyst ID: 000079
		Instrument ID	: I8		
Iron	ND G	250	ug/L	SW846 6020	03/07-03/16/11 ME76H1AK
		Dilution Fact	or: 5	Analysis Time: 19:2	5 Analyst ID: 000079
		Instrument ID	: I8		
Manganese	67.4	5.0	ug/L	SW846 6020	03/07-03/16/11 ME76H1CA
		Dilution Facto	-	Analysis Time: 19:2	
		Instrument ID	: I8		

(Continued on next page)

Client Sample ID: MSA-SW40-030311

DISSOLVED Metals

Lot-Sample #...: A1C040534-005

Matrix..... WG

		REPORTING	3			PREPARATION-	WORK
PARAMETER	RESULT	LIMIT	UNITS	METHO	D	ANALYSIS DATE	ORDER #
Molybdenum	1.0 B,G	10.0	ug/L	SW846	6020	03/07-03/16/11	ME76H1CC
		Dilution Fact	or: 5	Analysis	Time: 19:25	Analyst ID	: 000079
		Instrument ID	: 18				
Nickel	2.3 B,G	10.0	ug/L	SW846	6020	03/07-03/16/11	ME76H1CD
		Dilution Fact	or: 5	Analysis	Time: 19:25	Analyst ID	: 000079
		Instrument ID	: 18				
Lead	ND G	5.0	ug/L	SW846	6020	03/07-03/16/11	ME76H1AL
		Dilution Fact	or: 5	Analysis	Time: 19:25	Analyst ID	: 000079
		Instrument ID	: 18				
Antimony	ND G	10.0	ug/L	SW846	6020	03/07-03/16/11	ME76H1AC
		Dilution Fact	or: 5	Analysis	Time: 19:25	Analyst ID	: 000079
		Instrument ID	: 18				
Selenium	ND G	25.0	ug/L	SW846	6020	03/07-03/16/11	ME76H1CE
		Dilution Fact	or: 5	Analysis	Time: 19:25	Analyst ID	: 000079
		Instrument ID	: 18				
Thallium	ND G	5.0	ug/L	SW846	6020	03/07-03/16/11	ME76H1CG
		Dilution Fact		Analysis	Time: 19:25	Analyst ID	: 000079
		Instrument ID	: 18				
Vanadium	ND G	100	ug/L	SW846	6020	03/07-03/16/11	ME76H1CH
		Dilution Fact		Analysis	Time: 19:25	Analyst ID	: 000079
		Instrument ID	: 18				
Zinc	24.0 B,J,G	100	ug/L	SW846		03/07-03/16/11	ME76H1CJ
		Dilution Fact		Analysis	Time: 19:25	Analyst ID	: 000079
		Instrument ID	: 18				
Mercury	ND	0.20	ug/L		7470A	03/07-03/09/11	
•		Dilution Fact		Analysis	Time: 15:04	Analyst ID	: 001576
		Instrument ID	: H1				

NOTE (S):

North Canton 504

 $[\]label{eq:Gamma-def} \textbf{G} \quad \text{Elevated reporting limit. The reporting limit is elevated due to matrix interference.}$

B Estimated result. Result is less than RL.

J Method blank contamination. The associated method blank contains the target analyte at a reportable level.

Client Sample ID: MSA-SW41-030311

DISSOLVED Metals

Lot-Sample #...: A1C040534-006 Matrix.....: WG

Date Sampled...: 03/03/11 13:17 Date Received..: 03/04/11

DADAMENTO.	DROUL M	REPORTIN		NETWO:	_	PREPARATION-	WORK
PARAMETER	RESULT	LIMIT	UNITS	METHO	D	ANALYSIS DATE	ORDER #
Prep Batch #	: 1066015						
Silver	ND G	5.0	ug/L	SW846	6020	03/07-03/16/11	ME76P1CF
		Dilution Fac	tor: 5	Analysis	Time: 19:47	Analyst ID	: 000079
		Instrument I	D: 18				
Arsenic	2.7 B,G	25.0	ug/L	SW846	6020	03/07-03/16/11	ME76P1AD
		Dilution Factorial Instrument II		Analysis	Time: 19:47	Analyst ID	: 000079
Barium	18.2 J	5.0	ug/L	SW846	6020	03/07-03/16/11	ME76P1AE
		Dilution Fact	tor: 5	Analysis	Time: 19:47	Analyst ID	: 000079
		Instrument II	D: 18				
Beryllium	ND G	5.0	ug/L	SW846	6020	03/07-03/16/11	ME76P1AF
		Dilution Fact		Analysis	Time: 19:47	Analyst ID	: 000079
		Instrument II	D: 18		•		
Cadmium	ND G	5.0	ug/L	SW846	6020	03/07-03/16/11	ME76P1AG
		Dilution Fact	tor: 5	Analysis	Time: 19:47	Analyst ID	: 000079
		Instrument I	D: 18	,			
Cobalt	2.2 B,G	5.0	ug/L	SW846	6020	03/07-03/16/11	ме76Р1АН
		Dilution Fact		Analysis	Time: 19:47	Analyst ID	: 000079
		Instrument II	D: I8				
Chromium	ND G	10.0	ug/L	SW846	6020	03/07-03/16/11	ME76P1CK
		Dilution Fact	cor: 5	Analysis	Time: 19:47	Analyst ID	: 000079
		Instrument II	D: I8				
Copper	4.3 B, J, G	10.0	ug/L	SW846	6020	03/07-03/16/11	ME76P1AJ
		Dilution Fact	or: 5	Analysis	Time: 19:47	Analyst ID	: 000079
		Instrument II	D: 18				
Iron	ND G	250	ug/L	SW846	6020	03/07-03/16/11	ME76P1AK
		Dilution Fact		Analysis	Time: 19:47	Analyst ID	: 000079
		Instrument II): 18				
Manganese	161	5.0	ug/L	SW846	6020	03/07-03/16/11	ME76P1CA
		Dilution Fact	or: 5	Analysis	Time: 19:47	Analyst ID	: 000079
		Instrument II): 18				

(Continued on next page)

Client Sample ID: MSA-SW41-030311

DISSOLVED Metals

Lot-Sample #...: A1C040534-006

Matrix..... WG

PARAMETER	RESULT	REPORTING LIMIT	UNITS	METHO:	n	PREPARATION- ANALYSIS DATE	WORK ORDER #
Molybdenum	1.6 B,G	10.0	ug/L	SW846		03/07-03/16/11	
•	, -	Dilution Fact Instrument ID	or: 5		Time: 19:47	Analyst ID	
Nickel	3.4 B,G	10.0 Dilution Fact Instrument ID		SW846 Analysis	6020 Time: 19:47	03/07-03/16/11 Analyst ID	
Lead	ND G	5.0 Dilution Fact Instrument ID		SW846 Analysis	6020 Time: 19:47	03/07-03/16/11 Analyst ID	
Antimony	ND G	10.0 Dilution Fact Instrument ID		SW846 Analysis	6020 Time: 19:47	03/07-03/16/11 Analyst ID	
Selenium	ND G	25.0 Dilution Fact Instrument ID		SW846 Analysis	6020 Time: 19:47	03/07-03/16/11 Analyst ID	
Thallium	ND G	5.0 Dilution Fact Instrument ID		SW846 Analysis	6020 Time: 19:47	03/07-03/16/11 Analyst ID	
Vanadium	ND G	100 Dilution Factor Instrument ID		SW846 Analysis	6020 Time: 19:47	03/07-03/16/11 Analyst ID	
Zinc	21.2 B,J,G	100 Dilution Factor Instrument ID		SW846 Analysis	6020 Time: 19:47	03/07-03/16/11 Analyst ID	
Mercury	ND	0.20 Dilution Factor Instrument ID			7470A Time: 15:09	03/07-03/09/11 Analyst ID	

NOTE(S):

 $[\]ensuremath{\mathsf{G}}$ $\ensuremath{\mathsf{Elevated}}$ reporting limit is elevated due to matrix interference.

B Estimated result. Result is less than RL.

J Method blank contamination. The associated method blank contains the target analyte at a reportable level.

Client Sample ID: MSA-SW37-030311	Lab Sample ID: 460-23660-1
Lab Name: TestAmerica Edison	Job No.: 460-23660-1
SDG ID.: A1C040534	
Matrix: Water	Date Sampled: 03/03/2011 12:30
Reporting Basis: WET	Date Received: 03/04/2011 09:45
CAS No. Analyte Result . RL	MDL Units C Q DIL Method
(hexavalent)	.0 0.56 ug/L U 1 7199

Client Sample ID: MSA-SW38-030311	Lab Sample ID: 460-23660-2
Lab Name: TestAmerica Edison	Job No.: 460-23660-1
SDG ID.: A1C040534	
Matrix: Water	Date Sampled: 03/03/2011 13:00
Reporting Basis: WET	Date Received: 03/04/2011 09:45
CAS No. Analyte Result	
18540-29-9 Chromium (hexavalent)	1.0 1.0 0.56 ug/L U 1 7199

Client Sample ID: MSA-SW39-030311	Lab Sample ID: 460-23660-3
Lab Name: TestAmerica Edison	Job No.: 460-23660-1
SDG ID.: A1C040534	
Matrix: Water	Date Sampled: 03/03/2011 13:50
Reporting Basis: WET	Date Received: 03/04/2011 09:45
CAS No. Analyte Result	RL MDL Units C Q DIL Method
18540-29-9 Chromium 1.0 (hexavalent)	1.0 0.56 ug/L U 1 7199

Client Sample ID: MSA-SW40-030311				Lab Sample ID: 460-23660-4						
Lab Name: TestAmerica Edison				Job No.: 460-23660-1						
	040534									
Matrix: Water				Date Sampled: 03/03/2011 12:48						
Reporting Basi	s: WET			Date Receiv		04/2011	09:45			
CAS No.	Appluto									
	Analyte	Result		MDL	Units		Q ·	DIF	Method	
18540-29-9	Chromium (hexavalent)	1.0	1.0	1	ug/L	U		1	7199	

Client Sample ID: MSA-SW41-030311					Lab Sample ID: 460-23660-5						
				Job No.: 460-23660-1							
SDG ID.: Alc	040534										
Matrix: Water				Date Sampled: 03/03/2011 13:17							
Reporting Basis: WET				Date Recei	ved: 03/		09:45				
CAS No.	Analyte	Result	RL	MDL	Units	C	Q	DIL	Method		
18540-29-9	Chromium (hexavalent)	1.0	1.0	0.56	ug/L	U		1	7199		

Client Sample ID: MSA-SW38-030311

General Chemistry

Lot-Sample #...: A1C040534-003

Work Order #...: ME757

Matrix..... WG

Date Sampled...: 03/03/11 13:00 Date Received..: 03/04/11

PARAMETER

RESULT

RLUNITS

METHOD

PREPARATION-ANALYSIS DATE

PREP BATCH #

Perchlorate

ND G

2.0 ug/L MCAWW 314.0

03/09/11 1069295

Dilution Factor: 2

NOTE(S): RL Reporting Limit

G Elevated reporting limit. The reporting limit is elevated due to matrix interference.

Client Sample ID: MSA-SW40-030311

General Chemistry

Lot-Sample #...: A1C040534-005

Work Order #...: ME76H

Matrix..... WG

Date Sampled...: 03/03/11 12:48 Date Received..: 03/04/11

PARAMETER Perchlorate

RESULT ND G

UNITS 2.0

METHOD MCAWW 314.0 PREPARATION-ANALYSIS DATE 03/09/11

BATCH # 1069295

PREP

Dilution Factor: 2

NOTE(S):

RL Reporting Limit

G Elevated reporting limit. The reporting limit is elevated due to matrix interference.

Client Sample ID: MSA-SW41-030311

General Chemistry

Lot-Sample #...: A1C040534-006 Work Order #...: ME76P Matrix....: WG

Date Sampled...: 03/03/11 13:17 Date Received..: 03/04/11

 PARAMETER
 RESULT
 RL
 UNITS
 METHOD
 ANALYSIS
 DATE
 BATCH #

 Perchlorate
 ND G
 2.0
 ug/L
 MCAWW 314.0
 03/09/11
 1069295

Dilution Factor: 2

NOTE (S):

North Canton 776

G Elevated reporting limit. The reporting limit is elevated due to matrix interference.

APPENDIX C SUPPORT DOCUMENTATION

CASE NARRATIVE

A1C040534

The following report contains the analytical results for five water samples and one quality control sample submitted to TestAmerica North Canton by Tetra Tech NUS, Inc from the MSA SURFACE WATER SAMPLING Site, project number 112IC03292. The samples were received March 04, 2011, according to documented sample acceptance procedures.

The 314.0 Perchlorate analysis was performed at the TestAmerica West Sacramento Laboratory. Refer to the TestAmerica West Sacramento narrative included in their data package for additional information.

The 7199 Hexavalent Chromium analysis was performed at the TestAmerica Edison Laboratory. Refer to the TestAmerica Edison narrative included in their data package for additional information.

TestAmerica utilizes USEPA approved methods in all analytical work. The samples presented in this report were analyzed for the parameter(s) listed on the analytical methods summary page in accordance with the method(s) indicated. Preliminary results were provided to Kelly Carper and Tony Apanavage on March 17, 2011. A summary of QC data for these analyses is included at the back of the report.

TestAmerica North Canton attests to the validity of the laboratory data generated by TestAmerica facilities reported herein. All analyses performed by TestAmerica facilities were done using established laboratory SOPs that incorporate QA/QC procedures described in the applicable methods. TestAmerica's operations groups have reviewed the data for compliance with the laboratory QA/QC plan, and data have been found to be compliant with laboratory protocols unless otherwise noted below.

The test results in this report meet all NELAP requirements for parameters for which accreditation is required or available. Any exceptions to NELAP requirements are noted in this report. Pursuant to NELAP, this report may not be reproduced, except in full, without the written approval of the laboratory. This laboratory report is confidential and is intended for the sole use of TestAmerica and its client.

All parameters were evaluated to the method detection limit and include qualified results where applicable.

Please refer to the Quality Control Elements Narrative following this case narrative for additional quality control information.

CASE NARRATIVE (continued)

If you have any questions, please call the Project Manager, Patrick J. O'Meara, at 330-497-9396.

This report is sequentially paginated. The final page of the report is labeled as "END OF REPORT."

SUPPLEMENTAL QC INFORMATION

SAMPLE RECEIVING

The temperature of the cooler upon sample receipt was 1.6°C.

GC/MS VOLATILES

The sample(s) that contain results between the MDL and the RL were flagged with "J". There is a possibility of false positive or mis-identification at these quantitation levels. In analytical methods requiring confirmation of the analyte reported, confirmation was performed only down to the standard reporting limit (SRL). The acceptance criteria for QC samples may not be met at these quantitation levels.

2-Chloroethyl vinyl ether cannot be reliably recovered in an acid preserved sample.

GC/MS SEMIVOLATILES

The sample(s) that contain results between the MDL and the RL were flagged with "J". There is a possibility of false positive or mis-identification at these quantitation levels. In analytical methods requiring confirmation of the analyte reported, confirmation was performed only down to the standard reporting limit (SRL). The acceptance criteria for QC samples may not be met at these quantitation levels.

METALS

The sample(s) that contain results between the MDL and the RL were flagged with "B". There is the possibility of false positive or mis-identification at these quantitation levels. The acceptance criteria for the ICB, CCB, and Method Blank are +/- the standard reporting limit (SRL).

The sample(s) had elevated reporting limits due to matrix interferences. Refer to the sample report pages for the affected analyte(s) flagged with "G".

North Canton 4

CASE NARRATIVE (continued)

METALS (cont)

The sample(s) that contained concentrations of target analyte(s) at a reportable level in the associated Method Blank(s) were flagged with "J". Refer to the sample report pages for the affected analyte(s).

No ICP MS Form IX provided for batch(es) 1066015. The serial dilution was performed on a different sample from the same QC batch(es).

GENERAL CHEMISTRY

The sample(s) had elevated reporting limits due to matrix interferences. Refer to the sample report pages for the affected analyte(s) flagged with "G".

ANALYTICAL METHODS SUMMARY

A1C040534

PARAMETEI	R	ANALYTICAL METHOD
1711/11/11/15/15/		HEIHOD
ICP-MS (6020)	SW846 6020
Mercury :	in Liquid Waste (Manual Cold-Vapor)	SW846 7470A
Perchlora	ate	MCAWW 314.0
Semivolat	tile Organic Compounds by GC/MS	SW846 8270C
Volatile	Organics by GC/MS	SW846 8260B
Reference	es:	
MCAWW	"Methods for Chemical Analysis of Wate EPA-600/4-79-020, March 1983 and subse	
SW846	"Test Methods for Evaluating Solid Was Methods", Third Edition, November 1986	• •

North Canton 14

SAMPLE SUMMARY

A1C040534

WO # S	SAMPLE#	CLIENT SAMPLE ID	SAMPLED DATE	SAMP TIME
ME75M	001	TB-030311	03/03/11	10:00
ME750	002	MSA-SW37-030311	03/03/11	12:30
ME757	003	MSA-SW38-030311	03/03/11	13:00
ME76F	004	MSA-SW39-030311	03/03/11	13:50
ME76H	005	MSA-SW40-030311	03/03/11	12:48
ME76P	006	MSA-SW41-030311	03/03/11	13:17
			÷ .	

NOTE(S):

- The analytical results of the samples listed above are presented on the following pages.
- All calculations are performed before rounding to avoid round-off errors in calculated results.
- Results noted as "ND" were not detected at or above the stated limit.
- This report must not be reproduced, except in full, without the written approval of the laboratory.
- Results for the following parameters are never reported on a dry weight basis: color, corrosivity, density; flashpoint, ignitability, layers, odor, paint filter test, pH, porosity pressure, reactivity, redox potential, specific gravity, spot tests, solids, solubility, temperature, viscosity, and weight.

TestAmerica THE LEADER IN ENVIRONMENTAL TESTING

Chain of Custody Record

North Carton

North Canton 010579 TestAmerica Laboratories, Inc 2000 I Sample Specific Notes / Special Instructions: 3/4/11 920 Date/Time: Months Company: (550) 497-9396 Analyses Lab Contact:
Pat. O'Mer.c. Seed if samples are retained longer than I moath)
Disposal By Lab Company: VOCS PAHS + HTDIORING Perchloriste Total PPM <u></u> Orther Santple Disposal (A fee may be asse sərdufi \sim 2 weeks 3 weeks 1 week 2 days Received by: \okaz HOan Seceived by: RCRA 1945 July - 8389 TAT if different from below _ Sty Canon HOBN нсі 0 NPDES 18 CONH $\frac{3/3}{11} = 1600$ POSTH Tany, Apaneruse @ Territes, Con Unknown :19Цъ ă [] pgog Client Project Manager:

Toly Adar Voice

Telephone:

Solj S. Y - S. S. S. TestAmerica Laboratory location: Regulatory program: Poison B. 9001 000 Method of Shipment/Carrier: 8 54 14 300 350 1317 Shipping/Tracking No Company: 3/3/11 Сопралу: Skin Irritant 2025 Century Bloch Ste 200 MSA Sufece WATE Expling Germanian MD 20974 112 (03292 TW-02 MSA-5W 41-030311 115050-04 WS-NZM Non-Hazard Flammable Fanmable Instructions/QC Requirements & Comments MSA-SW37-030311 MSA-SW38-030311 115050-PEWJ-A2M hone: (201)528-5552 Sample Identification etra Tech TB-030311 celinquished by elinquished by: telinquished by:

02008, TestAmerica Laboratories, Iro., Nii righta reserved. TestAmerica & Oceion Th are tradomorite of TestAmerica Laboratories, Inc

TAL 0018-1 (04/10)

Tactamarica Liggier Receipt Politikaliauve	Lot Number: ALCOHOS3	<u>} </u>
TestAmerica Cooler Receipt Form/Narrative North Canton Facility		
Client Tean Tech Project	Ву: (М Д /	$\sqrt{}$
Cooler Peceived on 3-4-11 Opened on 3-4-	(Signature)	
FedEx UPS DHL FAS Stetson Client Drop Off T	estAmerica Courier Other	
TestAmerica Cooler # Multiple Coolers Foam Bo	Client Cooler Other	
1. Were custody seals on the outside of the cooler(s)? Yes 🗵 No [Intact? Yes ☑ No ☐ NA ☐	
If YES, Quantity Quantity Quantity Unsalvageable		
Were custody seals on the outside of cooler(s) signed and dated?	Yes ☑ No ☐ NA ☐	
Were custody seals on the bottle(s)?	Yes No No	
If YES, are there any exceptions?		
and the state of t	Yes ☐ No ☐	
 Shippers' packing slip attached to the cooler(s)? Did custody papers accompany the sample(s)? Yes ☑ No ☐ 	Relinquished by client? Yes 🔲	Vo 🔲 📗
Were the custody papers signed in the appropriate place?	Yes □ No □	
Mono		
6. Cooler temperature upon receipt // C See back of form	orm for multiple coolers/temps	
METHOD: IR Other	of manapic oboises are mpe	
COOLANT: Wet Ice Blue Ice Dry Ice Water	☐ None ☐	
7. Did all bottles arrive in good condition (Unbroken)?	Yes No [
8. Could all bottle labels be reconciled with the COC?	Yes 🗖 No 🗍	
	Yes No No NA	
9. Were sample(s) at the correct pH upon receipt?	Yes 🔽 No 🗍	
10. Were correct bottle(s) used for the test(s) indicated?	Yes ☐ No Æ NA ☐	
11. Were air bubbles >6 mm in any VOA vials?	Yes No N	
12. Sufficient quantity received to perform indicated analyses?		
13. Was a trip blank present in the cooler(s)? Yes No Wer	via Verbal Voice Mail Oth	
	via verbaj 🗀 voice iviali 🗀 Oti	
Concerning 14 CHAIN OF CUSTODY		
14. Or 2001 OF		
The following discrepancies occurred:		
_ 		<u> </u>
5. SAMPLE CONDITION	tor the recommended halding time had a	(pired
Sample(s) were received af	ter the recommended holding time had ex	
Sample(s) were received af Sample(s)	were received in a broken con	tainer.
Sample(s) were received af Sample(s) were received af Sample(s) were received af Sample(s)		tainer.
Sample(s) were received af Sample(s) Sample(s) were received af Sample(s) Sample(s) were received af Sample(s)	were received in a broken con red with bubble >6 mm in diameter. (Notif	tainer.
Sample(s) were received af Sample(s) were received af Sample(s) were received af Sample(s) were received af Sample(s)	were received in a broken con yed with bubble >6 mm in diameter. (Notif were further preserved in Sample	tainer. y PM)
Sample(s) were received af Sample(s) Sample(s) were received af Sample(s) Sample(s) were received af Sample(s) Sample(s) Nitric Acid Lot# 100110-Hit 100	were received in a broken con yed with bubble >6 mm in diameter. (Notif were further preserved in Sample IO ₃ ; Sulfuric Acid Lot# 110410-H ₂ SO ₄ ; Sodium	tainer. y PM)
Sample(s) were received af Sample(s) Sample(s) were received af Sample(s) Sample(s) were received af Sample(s) Sample(s) were received af Sample(s) Receiving to meet recommended pH level(s). Nitric Acid Lot# 100110-HIP Hydroxide Lot# 100108 -NaOH; Hydrochloric Acid Lot# 092006-HCi; Sodium	were received in a broken con yed with bubble >6 mm in diameter. (Notife were further preserved in Sample IO3; Sulfuric Acid Lot# 110410-H ₂ SO ₄ ; Sodius Hydroxide and Zinc Acetate Lot# 100108-	tainer. y PM)
Sample(s) were received af Sample(s) Sample(s) were received af Sample(s) were received af Sample(s) were received af Sample(s). Sample(s) Receiving to meet recommended pH level(s). Nitric Acid Lot# 100110-Hit Hydroxide Lot# 100108 -NaOH; Hydrochloric Acid Lot# 092006-HCl; Sodium (CH3COO)2ZN/NaOH. What time was preservative added to sample(s)?	were received in a broken con red with bubble >6 mm in diameter. (Notif were further preserved in Sample IO ₃ ; Sulfuric Acid Lot# 110410-H ₂ SO ₄ ; Sodius Hydroxide and Zinc Acetate Lot# 100108-	tainer. y PM) m
Sample(s) were received af Sample(s) Sample(s) Neceiving to meet recommended pH level(s). Nitric Acid Lot# 100110-HIP Hydroxide Lot# 100108 -NaOH; Hydrochloric Acid Lot# 092006-HCi; Sodium	were received in a broken con red with bubble >6 mm in diameter. (Notifing the were further preserved in Sample Hydroxide and Zinc Acetate Lot# 100108-	tainer. y PM) n
Sample(s) were received af Sample(s) Receiving to meet recommended pH level(s). Nitric Acid Lot# 100110-Hill Hydroxide Lot# 100108 -NaOH; Hydrochloric Acid Lot# 092006-HCl; Sodium (CH ₃ COO) ₂ ZN/NaOH. What time was preservative added to sample(s)? Client ID pH	were received in a broken con red with bubble >6 mm in diameter. (Notif were further preserved in Sample IO ₃ ; Sulfuric Acid Lot# 110410-H ₂ SO ₄ ; Sodius Hydroxide and Zinc Acetate Lot# 100108-	tainer. y PM) n
Sample(s) were received af Sample(s) Sample(s) were received af Sample(s) 16. SAMPLE PRESERVATION Sample(s) Receiving to meet recommended pH level(s). Nitric Acid Lot# 100110-Hh Hydroxide Lot# 100108 -NaOH; Hydrochloric Acid Lot# 092006-HCl; Sodium (CH3COO)2ZN/NaOH. What time was preservative added to sample(s)? Client ID 37 L2 L2 L2 L2	were received in a broken con red with bubble >6 mm in diameter. (Notifing the were further preserved in Sample Hydroxide and Zinc Acetate Lot# 100108-	tainer. y PM) n
Sample(s) were received af Sample(s) Sample(s) were received af Sample(s) were received af Sample(s) were received af SAMPLE PRESERVATION Sample(s) Receiving to meet recommended pH level(s). Nitric Acid Lot# 100110-HN Hydroxide Lot# 100108 -NaOH; Hydrochloric Acid Lot# 092006-HCl; Sodium (CH3COO)2ZN/NaOH. What time was preservative added to sample(s)? Client ID pH 37 L2 L2 39 L2 L2 39 L2 L2	were received in a broken con red with bubble >6 mm in diameter. (Notifing the were further preserved in Sample Hydroxide and Zinc Acetate Lot# 100108-	tainer. y PM) n
Sample(s) Sample(s) Sample(s) Sample(s) Mere received af Sample(s) Sample(s) Receiving to meet recommended pH level(s). Nitric Acid Lot# 100110-Hit Hydroxide Lot# 100108 -NaOH; Hydrochloric Acid Lot# 092006-HCl; Sodium (CH3COO)2ZN/NaOH. What time was preservative added to sample(s)? Client ID Tyle Tyle	were received in a broken con red with bubble >6 mm in diameter. (Notifing the were further preserved in Sample Hydroxide and Zinc Acetate Lot# 100108-	tainer. y PM) n
Sample(s) were received af Sample(s) Sample(s) were received af Sample(s) were received af Sample(s) were received af SAMPLE PRESERVATION Sample(s) Receiving to meet recommended pH level(s). Nitric Acid Lot# 100110-HN Hydroxide Lot# 100108 -NaOH; Hydrochloric Acid Lot# 092006-HCl; Sodium (CH3COO)2ZN/NaOH. What time was preservative added to sample(s)? Client ID pH 37 L2 L2 39 L2 L2 39 L2 L2	were received in a broken con red with bubble >6 mm in diameter. (Notifing the were further preserved in Sample Hydroxide and Zinc Acetate Lot# 100108-	tainer. y PM) n
Sample(s) Sample(s) Sample(s) Sample(s) Mere received af Sample(s) Sample(s) Receiving to meet recommended pH level(s). Nitric Acid Lot# 100110-Hit Hydroxide Lot# 100108 -NaOH; Hydrochloric Acid Lot# 092006-HCl; Sodium (CH3COO)2ZN/NaOH. What time was preservative added to sample(s)? Client ID Tyle Tyle	were received in a broken con red with bubble >6 mm in diameter. (Notifing the were further preserved in Sample Hydroxide and Zinc Acetate Lot# 100108-	tainer. y PM) n
Sample(s) Sample(s) Sample(s) Sample(s) Mere received af Sample(s) Sample(s) Receiving to meet recommended pH level(s). Nitric Acid Lot# 100110-Hit Hydroxide Lot# 100108 -NaOH; Hydrochloric Acid Lot# 092006-HCl; Sodium (CH3COO)2ZN/NaOH. What time was preservative added to sample(s)? Client ID DH 37 19 17 19 17 19 17 19 17 19 17 17	were received in a broken conved with bubble >6 mm in diameter. (Notifing the were further preserved in Sample (No.); Sulfuric Acid Lot# 110410-H ₂ SO ₄ ; Sodius (No.); Sulfuric Acid Lot# 100108- Date Image: Part of the sulface of the sulfac	tainer. y PM) n

to an activities of the contract of the contra	C040534
diameters.	A1
	SDG

SORT	ONITS	NSAMPLE	LAB ID	OC TYPE	SAMP DATE	EXTR DATE	ANA! DATE	SMD EYTD	EXTD ANI	CMD ANI
£	UG/L	MSA-SW37-030311	A1C040534002	NN	1	03/07/2011	03/09/2011	4	2	9
НG	NG/L	MSA-SW38-030311	A1C040534003	Σ	03/03/2011	03/07/2011	03/09/2011	4	6	ဖ
HG	NG/L	MSA-SW39-030311	A1C040534004	×	03/03/2011	03/07/2011	03/09/2011	4	2	9
HG	UG/L	MSA-SW40-030311	A1C040534005	N	03/03/2011	03/07/2011	03/09/2011	4	8	9
9	ng/L	MSA-SW41-030311	A1C040534006	N N	03/03/2011	03/07/2011	03/09/2011	4	8	9
≥	UG/L	MSA-SW41-030311	A1C040534006	N Z	03/03/2011	03/07/2011	03/16/2011	4	თ	13
⋝	UG/L	MSA-SW37-030311	A1C040534002	N	03/03/2011	03/07/2011	03/16/2011	4	6	13
Σ	UG/L	MSA-SW38-030311	A1C040534003	∑	03/03/2011	03/07/2011	03/16/2011	4	<u>ග</u>	13
Σ	UG/L	MSA-SW39-030311	A1C040534004	×	03/03/2011	03/07/2011	03/16/2011	4	თ	13
Σ	NG/L	MSA-SW40-030311	A1C040534005	ΣN	03/03/2011	03/07/2011	03/16/2011	4	თ	13
HGF	NG/L	MSA-SW41-030311	A1C040534006	N N	03/03/2011	03/07/2011	03/09/2011	4	8	9
HGF	NG/L	MSA-SW37-030311	A1C040534002	MN.	03/03/2011	03/07/2011	03/09/2011	4	α	9
HGF	NG/L	MSA-SW38-030311	A1C040534003	N N	03/03/2011	03/07/2011	03/09/2011	4	87	9
HGF	NG/L	MSA-SW39-030311	A1C040534004	∑ Z	03/03/2011	03/07/2011	03/09/2011	4	8	ဖ
HGF	UG/L	MSA-SW40-030311	A1C040534005	MZ	03/03/2011	03/07/2011	03/09/2011	4	8	9
Monday, March 28, 2011	March 28	,2011								Page 1 of 3

SORT	UNITS	NSAMPLE	LAB_ID	QC_TYPE	SAMP_DATE	EXTR_DATE	ANAL_DATE	SMP_EXTR	EXTR_ANL	SMP_ANL
MF	NG/L	MSA-SW39-030311	A1C040534004	N	03/03/2011	03/07/2011	03/16/2011	4		13
MF	NG/L	MSA-SW38-030311	A1C040534003	N N	03/03/2011	03/07/2011	03/16/2011	4	6	1 3
MF	UG/L	MSA-SW41-030311	A1C040534006	N N	03/03/2011	03/07/2011	03/16/2011	4	6	13
MF	NG/L	MSA-SW37-030311	A1C040534002	N N	03/03/2011	03/07/2011	03/16/2011	4	6	13
MF	NG/L	MSA-SW40-030311	A1C040534005	N N	03/03/2011	03/07/2011	03/16/2011	4	6	13
CR6	NG/L	MSA-SW38-030311	460-23660-2	×	03/03/2011	03/04/2011	03/04/2011	-	0	· -
CR6	NG/L	MSA-SW39-030311	460-23660-3	N N	03/03/2011	03/04/2011	03/04/2011	*	0	-
CR6	UG/L	MSA-SW37-030311	460-23660-1	N N	03/03/2011	03/04/2011	03/04/2011	-	0	-
CR6	NG/L	MSA-SW40-030311	460-23660-4	N N	03/03/2011	03/04/2011	03/04/2011	-	0	-
CR6	UG/L	MSA-SW41-030311	460-23660-5	N N	03/03/2011	03/04/2011	03/04/2011		0	-
PCL	NG/L	MSA-SW38-030311	A1C040534003	MN	03/03/2011	03/09/2011	03/09/2011	9	0	ဖ
PCL	NG/L	MSA-SW40-030311	A1C040534005	ΣN	03/03/2011	03/09/2011	03/09/2011	ဖ	0	မ
PCL	NG/L	MSA-SW41-030311	A1C040534006	ΣN	03/03/2011	03/09/2011	03/09/2011	9	0	ဖ
VO	NG/L	MSA-SW38-030311	A1C040534003	∑	03/03/2011	03/11/2011	03/11/2011	ω	0	∞
00	UG/L	MSA-SW40-030311	A1C040534005	N N	03/03/2011	03/11/2011	03/11/2011	ω	0	∞
λ0	NG/L	TB-030311	A1C040534001	N N	03/03/2011	03/11/2011	03/11/2011	∞	0	· ∞
٥٨	UG/L	TB-030311	A1C040534001	B	03/03/2011	03/11/2011	03/11/2011	∞	0	80
00	NG/L	MSA-SW41-030311	A1C040534006	M	03/03/2011	03/11/2011	03/11/2011	ω		∞
Monday,	March 28,	Monday, March 28, 2011							A	Page 2 of 3

SORT	UNITS	UNITS NSAMPLE	LAB_ID	QC_TYPE	QC_TYPE SAMP_DATE	EXTR_DATE	ANAL_DATE	- 1	SMP_EXTR EXTR_ANL SMP_ANL	SMP_ANL
SIM	NG/L	-0303	A1C040534003	NM	03/03/2011	03/05/2011		2	5	7
SIM	NG/L	MSA-SW38-030311	A1C040534003	SUR	03/03/2011	03/05/2011	03/10/2011	Ø	S	. 7
SIM	NG/L	MSA-SW40-030311	A1C040534005	N N	03/03/2011	03/05/2011	03/10/2011	Ø	ა	7
SIM	NG/L	MSA-SW40-030311	A1C040534005	SUR	03/03/2011	03/05/2011	03/10/2011	Ø	ა	7
SIM	NG/L	MSA-SW41-030311	A1C040534006	N N	03/03/2011	03/05/2011	03/10/2011	8	22	7
SIM	ng/L	MSA-SW41-030311	A1C040534006	SUR	03/03/2011	03/05/2011	03/10/2011	0	ĸ	7

Batch Number: 1066015

TestAmerica Laboratories, Inc. Metals Prep Log/ Batch Summary

Prepared By:

Lisa McGall (e-Signature)

			Prep Date:	03/07/11 08:00	Prep End	I Date: 03/07/11 16	:00
Lot	Work Order		Due Date:	03/16/11	ICP Weight	ICPMS Weight	Hg Weight
A1C070000 Water	ME88G	В	Due Date: SDG:			50 mL	100 mL
A1C070000 Water	ME88G	С	Due Date: SDG:			<u>50 mL</u>	100 mL
A1C040459 Water	ME7DJ Total		Due Date: 03/16/11 SDG:			<u>50 mL</u>	
A1C050451 Water	ME81V Total		Due Date: 03/17/11 SDG:			<u>50 mL</u> .	<u>100 mL</u>
A1C040534 Water	ME750 Dissolved		Due Date: 03/18/11 SDG:			<u>50 mL</u>	100 mL
A1C040534 Water	ME750 Total		Due Date: 03/18/11 SDG:			<u>50 mL</u>	<u>100 mL</u>
A1C040534 Water	ME750 Total	S	Due Date: 03/18/11 SDG:			<u>50 mL</u>	<u>100 mL</u>
A1C040534 Water	ME750 Total	X	Due Date: 03/18/11 SDG:			<u>50 mL</u>	100 mL
A1C040534 Water	ME757 Dissolved		Due Date: 03/18/11 SDG:			<u>50 mL</u>	100 mL
A1C040534 Water	ME757 Total		Due Date: 03/18/11 SDG:			<u>50 mL</u>	<u>100 mL</u>
A1C040534 Water	ME76F Dissolved		Due Date: 03/18/11 SDG:			<u>50 mL</u>	<u>100 mL</u>
A1C040534 Water	ME76F Total		Due Date: 03/18/11 SDG:			<u>50 mL</u>	100 mL
A1C040534 Water	ME76H Dissolved		Due Date: 03/18/11 SDG:			<u>50 mL</u>	<u>100 mL</u>
A1C040534 Water	ME76H Total		Due Date: 03/18/11 SDG:			<u>50 mL</u>	<u>100 mL</u>
A1C040534 Water	ME76P Dissolved		Due Date: 03/18/11 SDG:			<u>50 mL</u>	<u>100 mL</u>
A1C040534 Water	ME76P Total		Due Date: 03/18/11 SDG:			<u>50 mL</u>	<u>100 mL</u>
A1C040558 Water	ME78T Total		Due Date: 03/18/11 SDG:			<u>50 mL</u>	<u>100 mL</u>
A1C040558 Water	ME787 Total		Due Date: 03/18/11 SDG:			<u>50 mL</u>	<u>100 mL</u>
A1C040562 Water	ME79H Total		Due Date: 03/18/11 SDG:			<u>50 mL</u>	100 mL

Batch Number:

1066015

TestAmerica Laboratories, Inc. Metals Prep Log/ Batch Summary

Prepared By:

Lisa McGall

Prep Date:

03/07/11 08:00

Prep End Date:

03/07/11 16:00

Lot Work Order

Due Date: 03/16/11

ICP Weight

ICPMS Weight

Hg Weight

LEVEL 2

BLANK AND CHECK STANDARD ON BATCH

_____x

MS/MSD AND PDS ON BATCH

X X

CORRECT SPIKES ADDED

SPIKING SOLUTIONS DOCUMENTED ON BATCH LOG

X

Comments:

B-BLANK; C-CHECK SAMPLE; L-CHECK SAMPLE DUPLICATE; P-SERIAL DILUTION; S-MATRIX SPIKE SAMPLE; D-MATRIX SPIKE DUPLICATE SAMPLE Unless otherwise noted, final volumes are as follows: Soils - 100 mL. Waters - ICP and ICPMS - 50 mL, Hg - 100 mL.

Low Level Hg: final volumes are 40 mL.

ICPMS ELEMENTS WITHIN THE BATCH:

AG AL AS BA BE CD CO CR CU FE MN MO NI PB SB SE SN TL VX ZN

Matrix Spike Information:

ME750

Hg

ICPMS-I

ICPMS-2

Check Sample Information:

ME88G

Цa

ICPMS-1

ICPMS-2

Prep Method(s): MCAWW 200.8, MCAWW 245.1, SW846 3005A, SW846 7470A

METHOD BLANK REPORT

TOTAL Metals

Client Lot #:	A1C040534	Matrix:	WATER
CIICIIC DOC W	MICOIOSI	natila	WAIDN

		DEDODMING		DDEDADAMION MODIC
PARAMETER	RESULT	REPORTING LIMIT UNITS	METHOD	PREPARATION- WORK ANALYSIS DATE ORDER #
		-015 Prep Batch #:		
Antimony	ND	2.0 ug/L	SW846 6020	03/07-03/11/11 ME88G1AA
		Dilution Factor: 1	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	
		Analysis Time: 15:48	Analyst ID; 000079	Instrument ID: I8
Arsenic	ND	5.0 ug/L	SW846 6020	03/07-03/11/11 ME88G1AC
		Dilution Factor: 1		
		Analysis Time: 15:48	Analyst ID: 000079	Instrument ID: 18
Barium	(0.88 B	1.0 ug/L	SW846 6020	03/07-03/11/11 ME88G1AD
2022	0.00 2	Dilution Factor: 1		03/ 07 03/ 11/ 11 PEROOGIAD
		Analysis Time: 15:48	Analyst ID: 000079	Instrument ID: 18
Beryllium	ND	1.0 ug/L	SW846 6020	03/07-03/11/11 ME88G1AE
		Dilution Factor: 1		
		Analysis Time: 15:48	Analyst ID: 000079	Instrument ID: 18
Cadmium	ND	1.0 ug/L	SW846 6020	03/07-03/11/11 ME88G1AF
		Dilution Factor: 1		
		Analysis Time: 15:48	Analyst ID: 000079	Instrument ID: 18
Chromium	ND	2.0 ug/L	SW846 6020	03/07-03/11/11 ME88G1AV
		Dilution Factor: 1		
		Analysis Time: 15:48	Analyst ID: 000079	Instrument ID: 18
Cobalt	ND	1.0 ug/L	SW846 6020	02/07 02/11/11 ME000170
CODAIL	מא	1.0 ug/L Dilution Factor: 1	5W846 6UZU	03/07-03/11/11 ME88G1AG
		Analysis Time: 15:48	Analyst ID: 000079	Instrument ID: 18
			•	
Copper	0.44 B	2.0 ug/L Dilution Factor: 1	SW846 6020	03/07-03/11/11 ME88G1AH
		Analysis Time: 15:48	Analyst ID: 000079	Instrument ID: 18
		Analysis ilme 15.40	Analyst ID 000079	Instrument ID: 10
Iron	ND	50.0 ug/L	SW846 6020	03/07-03/11/11 ME88G1AJ
		Dilution Factor: 1		
		Analysis Time: 15:48	Analyst ID: 000079	Instrument ID: 18
Lead	ND	1.0 ug/L	SW846 6020	03/07-03/11/11 ME88G1AK
		Dilution Factor: 1		
		Analysis Time: 15:48	Analyst ID: 000079	Instrument ID: 18
Manganoso	MD	1 0 ,,,,/т	CM846 6020	02/07 02/11/11 ME000171
Manganese	ND	1.0 ug/L Dilution Factor: 1	SW846 6020	03/07-03/11/11 ME88G1AL
		Analysis Time: 15:48	Analyst ID: 000079	Instrument ID: 18

(Continued on next page)

METHOD BLANK REPORT

TOTAL Metals

Client Lot #...: A1C040534

Matrix..... WATER

		REPORTII			PREPARATION-	WORK
PARAMETER	RESULT	LIMIT	UNITS	METHOD	ANALYSIS DATE	ORDER #
Molybdenum	ND	2.0 Dilution Fac	ug/L ctor: 1	SW846 6020	03/07-03/11/11	ME88G1AM
		Analysis Tim	ne: 15:48	Analyst ID: 000079	Instrument ID	: I8
Nickel	ND	2.0 Dilution Fac	ug/L	SW846 6020	03/07-03/11/11	ME88G1AN
		Analysis Tim	ne: 15:48	Analyst ID: 000079	Instrument ID	: 18
Selenium	ND	5.0	ug/L	SW846 6020	03/07-03/11/11	ME88G1AP
		Dilution Fac				
		Analysis Tin	ne: 15:48	Analyst ID: 000079	Instrument ID	: 18
Silver	ND	1.0	ug/L	SW846 6020	03/07-03/11/11	ME88G1AQ
		Dilution Fac	tor: 1			
		Analysis Tim	ne: 15:48	Analyst ID: 000079	Instrument ID	: I8
Thallium	0.20 B	1.0	ug/L	SW846 6020	03/07-03/11/11	ME88G1AR
		Dilution Fac	_	20023	30, 0. 00, 11, 11	1200GIIII
		Analysis Tim		Analyst ID: 000079	Instrument ID	: 18
Vanadium	ND .	20.0	ug/L	SW846 6020	03/07-03/11/11	ME88G1AT
		Dilution Fac	tor: 1			
		Analysis Tim	ne: 15:48	Analyst ID: 000079	Instrument ID	: 18
Zinc	8.1 B	20.0	ug/L	SW846 6020	03/07-03/11/11	ME88G1AU
		Dilution Fac	tor: 1			
		Analysis Tim	e: 15:48	Analyst ID: 000079	Instrument ID	: 18
Mercury	ND	0.20	ug/L	SW846 7470A	03/07-03/09/11	ME88G1AW
		Dilution Fac	tor: 1			
		Analysis Tim	e: 14:50	Analyst ID: 001576	Instrument ID	: Н1
		Analysis Tim	e: 14:50	Analyst ID: 001576	Instrument ID	: H1

Calculations are performed before rounding to avoid round-off errors in calculated results.

B Estimated result. Result is less than RL.

LABORATORY CONTROL SAMPLE EVALUATION REPORT

TOTAL Metals

Client Lot #:	A1C040534			Matrix	: WATER
PARAMETER	PERCENT RECOVERY	RECOVERY LIMITS	METHOD	PREPARATION- ANALYSIS DATE	WORK ORDER #
LCS Lot-Sample#: Antimony	A1C070000- 87	(80 - 120)	r: 1 Analysis	03/07-03/11/11	ME88G1AX Analyst ID: 000079
Arsenic	86				ME88G1A0 Analyst ID: 000079
Barium	84				ME88G1A1 Analyst ID: 000079
Beryllium	85				ME88G1A2 Analyst ID: 000079
Cadmium	90				ME88G1A3
Cobalt	86				ME88G1A4
Copper	89				ME88G1A5
Iron	88	•			ME88G1A6
Lead	97	(80 - 120) Dilution Factor Instrument ID	a: 1 Analysis	03/07-03/16/11 Time: 18:12	ME88G1A7
Manganese	97	(80 - 120) Silution Factor Instrument ID	: 1 Analysis	03/07-03/11/11 Time: 15:53 A	ME88G1A8 snalyst ID: 000079

(Continued on next page)

LABORATORY CONTROL SAMPLE EVALUATION REPORT

TOTAL Metals

Client Lot #	.: A1C040534		Matrix WATER
PARAMETER Molybdenum	PERCENT RECOVERY 85	RECOVERY LIMITS METHOD (80 - 120) SW846 6020 Dilution Factor: 1 Analysis 1 Instrument ID: 18	PREPARATION- ANALYSIS DATE WORK ORDER # 03/07-03/16/11 ME88G1A9 Time: 18:12 Analyst ID: 000079
Nickel	88	(80 - 120) SW846 6020 Dilution Factor: 1 Analysis T	03/07-03/11/11 ME88G1CA Fime: 15:53 Analyst ID: 000079
Selenium	87	(80 - 120) SW846 6020 Dilution Factor: 1 Analysis T Instrument ID.:: I8	03/07-03/11/11 ME88G1CC Fime.: 15:53 Analyst ID: 000079
Silver	92		03/07-03/11/11 ME88G1CD Pime.: 15:53 Analyst ID: 000079
Thallium	88	(80 - 120) SW846 6020 Dilution Factor: 1 Analysis T Instrument ID.:: I8	03/07-03/11/11 ME88G1CE Time: 15:53 Analyst ID: 000079
Vanadium	84	(80 - 120) SW846 6020 Dilution Factor: 1 Analysis T Instrument ID: I8	03/07-03/11/11 ME88G1CF Time: 15:53 Analyst ID: 000079
Zinc	101		03/07-03/11/11 ME88G1CG ime: 15:53 Analyst ID: 000079
Chromium	88	(80 - 120) SW846 6020 Dilution Factor: 1 Analysis T. Instrument ID.:: 18	03/07-03/16/11 ME88G1CH ime: 18:12 Analyst ID: 000079
Mercury	99		03/07-03/09/11 ME88G1CJ ime: 14:51 Analyst ID: 001576
NOTE (S):		,	

Calculations are performed before rounding to avoid round-off errors in calculated results.

MATRIX SPIKE SAMPLE EVALUATION REPORT

TOTAL Metals

Client Lot #...: A1C040534 Matrix......: WG

Date Sampled...: 03/03/11 12:30 Date Received..: 03/04/11

PARAMETER	PERCENT RECOVERY	RECOVERY LIMITS METHOD	PREPARATION- ANALYSIS DATE WORK ORDER #
MS Lot-Sample a	98 98	-002 Prep Batch #: 1066015 (44 - 153) SW846 6020 Dilution Factor: 5 Analysis Analyst ID: 000079	03/07-03/16/11 ME7501CL Time: 18:26 Instrument ID: 18
Arsenic	96	(82 - 123) SW846 6020 Dilution Factor: 5 Analysis Analyst ID: 000079	03/07-03/16/11 ME7501CM Time: 18:26 Instrument ID: I8
Barium	103	(45 - 144) SW846 6020 Dilution Factor: 5 Analysis Analyst ID: 000079	03/07-03/16/11 ME7501CN Time: 18:26 Instrument ID: I8
Beryllium	92	(77 - 124) SW846 6020 Dilution Factor: 5 Analysis Analyst ID: 000079	03/07-03/16/11 ME7501CP Time: 18:26 Instrument ID: I8
Cadmium	95	(78 - 117) SW846 6020 Dilution Factor: 5 Analysis Analyst ID: 000079	03/07-03/16/11 ME7501CQ Time: 18:26 Instrument ID: 18
Chromium	94	(72 - 110) SW846 6020 Dilution Factor: 5 Analysis Analyst ID: 000079	03/07-03/16/11 ME7501C6 Time: 18:26 Instrument ID: 18
Cobalt	93	(67 - 114) SW846 6020 Dilution Factor: 5 Analysis Analyst ID: 000079	03/07-03/16/11 ME7501CR Time: 18:26 Instrument ID: 18
Copper	92	(60 - 123) SW846 6020 Dilution Factor: 5 Analysis Analyst ID: 000079	03/07-03/16/11 ME7501CT Time: 18:26 Instrument ID: 18
Iron	99	(22 - 169) SW846 6020 Dilution Factor: 5 Analysis Analyst ID: 000079	03/07-03/16/11 ME7501CU Time: 18:26 Instrument ID: 18
Lead	100	(73 - 115) SW846 6020 Dilution Factor: 5 Analysis Analyst ID: 000079	03/07-03/16/11 ME7501CV Time: 18:26 Instrument ID: 18

(Continued on next page)

MATRIX SPIKE SAMPLE EVALUATION REPORT

TOTAL Metals

Client Lot #...: A1C040534 Matrix...... WG

Date Sampled...: 03/03/11 12:30 Date Received..: 03/04/11

PARAMETER Manganese	PERCENT RECOVERY 92	RECOVERY LIMITS METHOD (10 - 172) SW846 6020 Dilution Factor: 5 Analysis Analyst ID: 000079	PREPARATION- ANALYSIS DATE WORK ORDER # 03/07-03/16/11 ME7501CW Time: 18:26 Instrument ID: 18
Molybdenum	95		03/07-03/16/11 ME7501CX Time: 18:26 Instrument ID: 18
Nickel	93		03/07-03/16/11 ME7501C0 Time: 18:26 Instrument ID: 18
Selenium	94		03/07-03/16/11 ME7501C1 Time: 18:26 Instrument ID: 18
Silver	97		03/07-03/16/11 ME7501C2 Time: 18:26 Instrument ID: 18
Thallium	98	(69 - 117) SW846 6020 Dilution Factor: 5 Analysis Analyst ID: 000079	03/07-03/16/11 ME7501C3 Time: 18:26 Instrument ID: 18
Vanadium	97	(70 - 112) SW846 6020 Dilution Factor: 5 Analysis Analyst ID: 000079	
Zinc	122		03/07-03/16/11 ME7501C5 Time: 18:26 Instrument ID: 18
Mercury	100		03/07-03/09/11 ME7501C7 Time: 14:52 Instrument ID: H1

NOTE(S):

 $\label{lem:calculations} \textbf{Calculations are performed before rounding to} \cdot \textbf{avoid round-off errors in calculated results}.$

SAMPLE DUPLICATE EVALUATION REPORT

Metals

Client Lot #...: A1C040534 Work Order #...: ME750-SMP Matrix.....: WG

ME750-DUP

Date Sampled...: 03/03/11 12:30 Date Received..: 03/04/11

PARAM RESULT	DUPLICATE RESULT	UNITS RPD	RPD LIMIT METHOD	PREPARATION- PREP ANALYSIS DATE BATCH #
Silver ND	ND	ug/L 200 Dilution Factor: 5 Instrument ID: 18	SD Lot-Sample #: (0-20) SW846 6020 Analysis Time: 18:26	A1C040534-002 03/07-03/16/11 1066015 Analyst ID: 000079
Arsenic 2.1 B,G	2.5 B,G	ug/L 14 Dilution Factor: 5 Instrument ID: I8	SD Lot-Sample #: (0-20) SW846 6020 Analysis Time: 18:26	A1C040534-002 03/07-03/16/11 1066015 Analyst ID: 000079
Barium 58.4 J	60.2	ug/L 3.1 Dilution Factor: 5 Instrument ID: I8		A1C040534-002 03/07-03/16/11 1066015 Analyst ID: 000079
Beryllium ND	ND	ug/L 0 Dilution Factor: 5 Instrument ID: 18		A1C040534-002 03/07-03/16/11 1066015 Analyst ID: 000079
Cadmium ND	ND	ug/L 11 Dilution Factor: 5 Instrument ID: 18	SD Lot-Sample #: (0-20) SW846 6020 Analysis Time: 18:26	
Cobalt 2.0 B,G	2.2 B,G	ug/L 9.4 Dilution Factor: 5 Instrument ID: 18	Analysis Time: 18:26	03/07-03/16/11 1066015
Chromium 4.5 B,G	4.5 B,G	ug/L 0.44 Dilution Factor: 5 Instrument ID: 18		A1C040534-002 03/07-03/16/11 1066015 Analyst ID: 000079
Copper 16.0 J	15.8	ug/L 1.2 Dilution Factor: 5 Instrument ID: 18	SD Lot-Sample #: (0-20) SW846 6020 Analysis Time: 18:26	
Iron 1670	1760	ug/L 5.0 Dilution Factor: 5 Instrument ID.:: 18	SD Lot-Sample #: (0-20) SW846 6020 Analysis Time: 18:26	A1C040534-002 03/07-03/16/11 1066015 Analyst ID: 000079

(Continued on next page)

SAMPLE DUPLICATE EVALUATION REPORT

Metals

Lot-Sample #	.: A1C040534-	-000 Work Order	#: ME750-SMP Matri	ix WG
PARAM RESULT	DUPLICATE RESULT	C UNITS RPD	RPD LIMIT METHOD	PREPARATION- PREP ANALYSIS DATE BATCH #
Manganese 112	117	ug/L 4.2 Dilution Factor: 5 Instrument ID.:: 18	SD Lot-Sample #: (0-20) SW846 6020 Analysis Time: 18:26	A1C040534-002 03/07-03/16/11 1066015 Analyst ID: 000079
Molybdenum 1.3 B,G	1.3 B,G	ug/L 0.39 Dilution Factor: 5 Instrument ID.:: 18		A1C040534-002 03/07-03/16/11 1066015 Analyst ID: 000079
Nickel 3.2 B,G	3.5 B,G	ug/L 7.3 Dilution Factor: 5 Instrument ID: 18	SD Lot-Sample #: (0-20) SW846 6020 Analysis Time: 18:26	A1C040534-002 03/07-03/16/11 1066015 Analyst ID: 000079
Lead 5.5	5.7	ug/L 3.4 Dilution Factor: 5 Instrument ID: 18	SD Lot-Sample #: (0-20) SW846 6020 Analysis Time: 18:26	
Antimony ND	ND	ug/L 0 Dilution Factor: 5 Instrument ID: 18		A1C040534-002 03/07-03/16/11 1066015 Analyst ID: 000079
Selenium ND	ND	ug/L 0 Dilution Factor: 5 Instrument ID: 18	SD Lot-Sample #: (0-20) SW846 6020 Analysis Time: 18:26	A1C040534-002 03/07-03/16/11 1066015 Analyst ID: 000079
Thallium ND	ND	ug/L 0 Dilution Factor: 5 Instrument ID: 18	SD Lot-Sample #: (0-20) SW846 6020 Analysis Time: 18:26	A1C040534-002 03/07-03/16/11 1066015 Analyst ID: 000079
Vanadium 2.9 B,G	2.2 B,G	ug/L 28 Dilution Factor: 5 Instrument ID: 18	SD Lot-Sample #: (0-20) SW846 6020 Analysis Time: 18:26	A1C040534-002 03/07-03/16/11 1066015 Analyst ID: 000079
Zinc 41.2 B,J,	.G 40.1 B,G	ug/L 2.6 Dilution Factor: 5 Instrument ID: 18	SD Lot-Sample #: (0-20) SW846 6020 Analysis Time: 18:26	A1C040534-002 03/07-03/16/11 1066015 Analyst ID: 000079

(Continued on next page)

SAMPLE DUPLICATE EVALUATION REPORT

Metals

Lot-Sample #	: A1C040534-0	000 Work	Order	#: ME ME	C750-SMP Matr C750-DUP	ix WG	
	DUPLICATE			RPD		PREPARATION-	PREP
PARAM RESULT	RESULT	UNITS	RPD	LIMIT	METHOD	ANALYSIS DATE	BATCH #
Mercury		•			SD Lot-Sample #:	A1C040534-002	
ND	ND	ug/L	0	(0-20)	SW846 7470A	03/07-03/09/11	1066015
		Dilution Fac Instrument 1			alysis Time: 14:52	Analyst ID:	001576

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

B Estimated result. Result is less than RL.

G Elevated reporting limit. The reporting limit is elevated due to matrix interference.

J Method blank contamination. The associated method blank contains the target analyte at a reportable level.

METHOD BLANK REPORT

DISSOLVED Metals

MB Lot-Sample Alt Alt	PARAMETER	RESULT	REPORTING LIMIT UNITS	METHOD	PREPARATION- WORK
Antimony ND 2.0 ug/L SW846 6020 03/07-03/11/11 ME88GICX Dilution Factor: 1 Analysis Time.: 15:48 Analyst ID: 000079 Instrument ID.: I8 Arsenic ND 5.0 ug/L SW846 6020 03/07-03/11/11 ME88GICO Dilution Factor: 1 Analysis Time.: 15:48 Analyst ID: 000079 instrument ID.: I8 Barium 0.88 B 1.0 ug/L SW846 6020 03/07-03/11/11 ME88GICO Dilution Factor: 1 Analysis Time.: 15:48 Analyst ID: 000079 instrument ID.: I8 Beryllium ND 1.0 ug/L SW846 6020 03/07-03/11/11 ME88GICO Dilution Factor: 1 Analysis Time.: 15:48 Analyst ID: 000079 instrument ID.: I8 Cadmium ND 1.0 ug/L SW846 6020 03/07-03/11/11 ME88GICO Dilution Factor: 1 Analysis Time.: 15:48 Analyst ID: 000079 Instrument ID.: I8 Cadmium ND 1.0 ug/L SW846 6020 03/07-03/11/11 ME88GICO Dilution Factor: 1 Analysis Time.: 15:48 Analyst ID: 000079 Instrument ID.: I8 Chromium ND 2.0 ug/L SW846 6020 03/07-03/11/11 ME88GICO Dilution Factor: 1 Analysis Time.: 15:48 Analyst ID: 000079 Instrument ID.: I8 Cobalt ND 1.0 ug/L SW846 6020 03/07-03/11/11 ME88GICO Dilution Factor: 1 Analysis Time.: 15:48 Analyst ID: 000079 Instrument ID.: I8 Copper 0.44 B 2.0 ug/L SW846 6020 03/07-03/11/11 ME88GICO Dilution Factor: 1 Analysis Time.: 15:48 Analyst ID: 000079 Instrument ID.: I8 Lead ND 1.0 ug/L SW846 6020 03/07-03/11/11 ME88GICO Dilution Factor: 1 Analysis Time.: 15:48 Analyst ID: 000079 Instrument ID.: I8 Lead ND 1.0 ug/L SW846 6020 03/07-03/11/11 ME88GICO Dilution Factor: 1 Analyst ID: 000079 Instrument ID.: I8 Manganese ND 1.0 ug/L SW846 6020 03/07-03/11/11 ME88GICO Dilution Factor: 1 Analyst ID: 000079 Instrument ID.: I8	EANAMETER	VESOFI	LIMII UNIIS	MEIHOD	ANALYSIS DATE ORDER #
Antimony ND 2.0 ug/L SW846 6020 03/07-03/11/11 ME88GICX Dilution Factor: 1 Analysis Time.: 15:48 Analyst ID: 000079 Instrument ID.: I8 Arsenic ND 5.0 ug/L SW846 6020 03/07-03/11/11 ME88GICO Dilution Factor: 1 Analysis Time.: 15:48 Analyst ID: 000079 instrument ID.: I8 Barium 0.88 B 1.0 ug/L SW846 6020 03/07-03/11/11 ME88GICO Dilution Factor: 1 Analysis Time.: 15:48 Analyst ID: 000079 instrument ID.: I8 Beryllium ND 1.0 ug/L SW846 6020 03/07-03/11/11 ME88GICO Dilution Factor: 1 Analysis Time.: 15:48 Analyst ID: 000079 instrument ID.: I8 Cadmium ND 1.0 ug/L SW846 6020 03/07-03/11/11 ME88GICO Dilution Factor: 1 Analysis Time.: 15:48 Analyst ID: 000079 Instrument ID.: I8 Cadmium ND 1.0 ug/L SW846 6020 03/07-03/11/11 ME88GICO Dilution Factor: 1 Analysis Time.: 15:48 Analyst ID: 000079 Instrument ID.: I8 Chromium ND 2.0 ug/L SW846 6020 03/07-03/11/11 ME88GICO Dilution Factor: 1 Analysis Time.: 15:48 Analyst ID: 000079 Instrument ID.: I8 Cobalt ND 1.0 ug/L SW846 6020 03/07-03/11/11 ME88GICO Dilution Factor: 1 Analysis Time.: 15:48 Analyst ID: 000079 Instrument ID.: I8 Copper 0.44 B 2.0 ug/L SW846 6020 03/07-03/11/11 ME88GICO Dilution Factor: 1 Analysis Time.: 15:48 Analyst ID: 000079 Instrument ID.: I8 Lead ND 1.0 ug/L SW846 6020 03/07-03/11/11 ME88GICO Dilution Factor: 1 Analysis Time.: 15:48 Analyst ID: 000079 Instrument ID.: I8 Lead ND 1.0 ug/L SW846 6020 03/07-03/11/11 ME88GICO Dilution Factor: 1 Analyst ID: 000079 Instrument ID.: I8 Manganese ND 1.0 ug/L SW846 6020 03/07-03/11/11 ME88GICO Dilution Factor: 1 Analyst ID: 000079 Instrument ID.: I8	MB Lot-Samp	le #: A1C07000	0-015 Prep Batch #	: 1066015	
Arsenic ND			_		03/07-03/11/11 ME88G1CX
Arsenic ND 5.0 ug/L SW846 6020 03/07-03/11/11 ME88GIC0 Dilution Factor: 1 Analysis Time: 15:48 Analyst ID: 000079 Instrument ID: 18 Barium 0.88 B 1.0 ug/L SW846 6020 03/07-03/11/11 ME88GIC1 Dilution Factor: 1 Analysis Time: 15:48 Analyst ID: 000079 Instrument ID: 18 Beryllium ND 1.0 ug/L SW846 6020 03/07-03/11/11 ME88GIC2 Dilution Factor: 1 Analysis Time: 15:48 Analyst ID: 000079 Instrument ID: 18 Cadmium ND 1.0 ug/L SW846 6020 03/07-03/11/11 ME88GIC3 Dilution Factor: 1 Analysis Time: 15:48 Analyst ID: 000079 Instrument ID: 18 Chromium ND 2.0 ug/L SW846 6020 03/07-03/11/11 ME88GIC3 Dilution Factor: 1 Analysis Time: 15:48 Analyst ID: 000079 Instrument ID: 18 Cobalt ND 1.0 ug/L SW846 6020 03/07-03/11/11 ME88GIC4 Dilution Factor: 1 Analysis Time: 15:48 Analyst ID: 000079 Instrument ID: 18 Copper 0.44 B 2.0 ug/L SW846 6020 03/07-03/11/11 ME88GIC4 Dilution Factor: 1 Analysis Time: 15:48 Analyst ID: 000079 Instrument ID: 18 Iron ND 50.0 ug/L SW846 6020 03/07-03/11/11 ME88GIC5 Dilution Factor: 1 Analysis Time: 15:48 Analyst ID: 000079 Instrument ID: 18 Lead ND 1.0 ug/L SW846 6020 03/07-03/11/11 ME88GIC5 Dilution Factor: 1 Analysis Time: 15:48 Analyst ID: 000079 Instrument ID: 18 Manganese ND 1.0 ug/L SW846 6020 03/07-03/11/11 ME88GIC7 Dilution Factor: 1 Analysis Time: 15:48 Analyst ID: 000079 Instrument ID: 18			Dilution Factor: 1		
Dilution Factor: 1			Analysis Time: 15:48	Analyst ID: 000079	Instrument ID: 18
Analysis Time: 15:48 Analyst ID: 000079 Instrument ID: 18	Arsenic	ND	J.	SW846 6020	03/07-03/11/11 ME88G1C0
Barium					
Dilution Factor: 1 Analysis Time: 15:48 Analyst ID: 000079 Instrument ID: I8			Analysis Time: 15:48	Analyst ID: 000079	Instrument ID.: 18
Dilution Factor: 1 Analysis Time: 15:48 Analyst ID: 000079 Instrument ID: I8	Barium	0 88 B	1 0 ng/L	SW846 6020	03/07-03/11/11 ME88C1C1
Analysis Time: 15:48	2022	0.00 2	J	511040 0020	03/07 03/11/11 PASOUGICI
Dilution Factor: 1 Analysis Time: 15:48 Analyst ID: 000079 Instrument ID: 18				Analyst ID: 000079	Instrument ID: I8
Dilution Factor: 1 Analysis Time: 15:48 Analyst ID: 000079 Instrument ID: 18				-	
Cadmium ND 1.0 ug/L Dilution Factor: 1 Analysis Time: 15:48 Analysis ID: 000079 Instrument ID: I8 Chromium ND 2.0 ug/L Dilution Factor: 1 Analysis Time: 15:48 Analyst ID: 000079 Instrument ID: I8 Chromium ND 2.0 ug/L Dilution Factor: 1 Analysis Time: 15:48 Analyst ID: 000079 Instrument ID: I8 Cobalt ND 1.0 ug/L Dilution Factor: 1 Analysis Time: 15:48 Analyst ID: 000079 Instrument ID: I8 Copper 0.44 B 2.0 ug/L Dilution Factor: 1 Analysis Time: 15:48 Analyst ID: 000079 Instrument ID: I8 Iron ND 50.0 ug/L Dilution Factor: 1 Analyst ID: 000079 Instrument ID: I8 Lead ND 1.0 ug/L Dilution Factor: 1 Analyst ID: 000079 Instrument ID: I8 Manganese ND 1.0 ug/L Dilution Factor: 1 Analyst ID: 000079 Instrument ID: I8	Beryllium	ND	1.0 ug/L	SW846 6020	03/07-03/11/11 ME88G1C2
Cadmium ND 1.0 ug/L Dilution Factor: 1 Analysis Time.: 15:48 ND 2.0 ug/L Dilution Factor: 1 Analysis Time.: 15:48 ND 1.0 ug/L SW846 6020 03/07-03/11/11 ME88G1DH Dilution Factor: 1 Analysis Time.: 15:48 ND 1.0 ug/L SW846 6020 03/07-03/11/11 ME88G1DH Dilution Factor: 1 Analysis Time.: 15:48 ND 1.0 ug/L SW846 6020 03/07-03/11/11 ME88G1C4 Dilution Factor: 1 Analysis Time.: 15:48 Analyst ID: 000079 Instrument ID: 18 Copper 0.44 B 2.0 ug/L SW846 6020 03/07-03/11/11 ME88G1C5 Dilution Factor: 1 Analysis Time.: 15:48 Analyst ID: 000079 Instrument ID: 18 Iron ND 50.0 ug/L SW846 6020 03/07-03/11/11 ME88G1C6 Dilution Factor: 1 Analysis Time.: 15:48 Analyst ID: 000079 Instrument ID: 18 Lead ND 1.0 ug/L SW846 6020 03/07-03/11/11 ME88G1C7 Dilution Factor: 1 Analysis Time.: 15:48 Analyst ID: 000079 Instrument ID: 18 Manganese ND 1.0 ug/L SW846 6020 03/07-03/11/11 ME88G1C8 SW846 6020 03/07-03/11/11 ME88G1C8					
Dilution Factor: 1 Analysis Time: 15:48 Analyst ID: 000079 Instrument ID: I8			Analysis Time: 15:48	Analyst ID: 000079	Instrument ID: 18
Dilution Factor: 1 Analysis Time: 15:48 Analyst ID: 000079 Instrument ID: I8	Cadmium	ND	1 0 ng/L	SW846 6020	03/07-03/11/11 ME88C1C3
Chromium ND 2.0 ug/L SW846 6020 03/07-03/11/11 ME88G1DH Dilution Factor: 1 Analysis Time: 15:48 Analyst ID: 000079 Instrument ID: I8 Cobalt ND 1.0 ug/L SW846 6020 03/07-03/11/11 ME88G1C4 Dilution Factor: 1 Analysis Time: 15:48 Analyst ID: 000079 Instrument ID: I8 Copper 0.44 B 2.0 ug/L SW846 6020 03/07-03/11/11 ME88G1C5 Dilution Factor: 1 Analysis Time: 15:48 Analyst ID: 000079 Instrument ID: I8 Iron ND 50.0 ug/L SW846 6020 03/07-03/11/11 ME88G1C5 Dilution Factor: 1 Analysis Time: 15:48 Analyst ID: 000079 Instrument ID: I8 Lead ND 1.0 ug/L SW846 6020 03/07-03/11/11 ME88G1C7 Dilution Factor: 1 Analysis Time: 15:48 Analyst ID: 000079 Instrument ID: I8 Manganese ND 1.0 ug/L SW846 6020 03/07-03/11/11 ME88G1C7 Dilution Factor: 1 Analysis Time: 15:48 Analyst ID: 000079 Instrument ID: I8		11.5		5,0010 0020	03/0/ 03/11/11 110001103
Dilution Factor: 1 Analysis Time: 15:48				Analyst ID: 000079	Instrument ID: 18
Dilution Factor: 1 Analysis Time: 15:48					
Cobalt ND 1.0 ug/L SW846 6020 03/07-03/11/11 ME88G1C4 Dilution Factor: 1 Analysis Time: 15:48 Analyst ID: 000079 Instrument ID: I8 Copper 0.44 B 2.0 ug/L SW846 6020 03/07-03/11/11 ME88G1C5 Dilution Factor: 1 Analysis Time: 15:48 Analyst ID: 000079 Instrument ID: I8 Iron ND 50.0 ug/L SW846 6020 03/07-03/11/11 ME88G1C6 Dilution Factor: 1 Analysis Time: 15:48 Analyst ID: 000079 Instrument ID: I8 Lead ND 1.0 ug/L SW846 6020 03/07-03/11/11 ME88G1C7 Dilution Factor: 1 Analysis Time: 15:48 Analyst ID: 000079 Instrument ID: I8 Manganese ND 1.0 ug/L SW846 6020 03/07-03/11/11 ME88G1C7 Dilution Factor: 1 Analysis Time: 15:48 Analyst ID: 000079 Instrument ID: I8	Chromium	ND	J.	SW846 6020	03/07-03/11/11 ME88G1DH
Cobalt ND 1.0 ug/L Dilution Factor: 1 Analysis Time: 15:48 Analyst ID: 000079 Instrument ID: I8 Copper 0.44 B 2.0 ug/L Dilution Factor: 1 Analysis Time: 15:48 Analyst ID: 000079 Instrument ID: I8 SW846 6020 03/07-03/11/11 ME88G1C5 Dilution Factor: 1 Analysis Time: 15:48 Analyst ID: 000079 Instrument ID: I8 Iron ND 50.0 ug/L Dilution Factor: 1 Analysis Time: 15:48 Analyst ID: 000079 Instrument ID: I8 Lead ND 1.0 ug/L Dilution Factor: 1 Analysis Time: 15:48 Analyst ID: 000079 Instrument ID: I8 Manganese ND 1.0 ug/L Dilution Factor: 1 Analysis Time: 15:48 Analyst ID: 000079 Instrument ID: I8 SW846 6020 03/07-03/11/11 ME88G1C7 Dilution Factor: 1 Analysis Time: 15:48 Analyst ID: 000079 Instrument ID: I8		·			
Dilution Factor: 1 Analysis Time: 15:48 Analyst ID: 000079 Instrument ID: 18 Copper 2.0 ug/L Dilution Factor: 1 Analysis Time: 15:48 Analyst ID: 000079 Instrument ID: 18 Iron ND 50.0 ug/L SW846 6020 03/07-03/11/11 ME88G1C6 Dilution Factor: 1 Analysis Time: 15:48 Analyst ID: 000079 Instrument ID: 18 Lead ND 1.0 ug/L SW846 6020 03/07-03/11/11 ME88G1C7 Dilution Factor: 1 Analysis Time: 15:48 Analyst ID: 000079 Instrument ID: 18 Manganese ND 1.0 ug/L SW846 6020 03/07-03/11/11 ME88G1C7 Dilution Factor: 1 Analysis Time: 15:48 Analyst ID: 000079 Instrument ID: 18			Analysis Time: 15:48	Analyst ID: 000079	Instrument ID: 18
Dilution Factor: 1 Analysis Time: 15:48 Analyst ID: 000079 Instrument ID: 18 2.0 ug/L SW846 6020 03/07-03/11/11 ME88G1C5 Dilution Factor: 1 Analysis Time: 15:48 Analyst ID: 000079 Instrument ID: 18 Iron ND 50.0 ug/L SW846 6020 03/07-03/11/11 ME88G1C6 Dilution Factor: 1 Analysis Time: 15:48 Analyst ID: 000079 Instrument ID: 18 Lead ND 1.0 ug/L SW846 6020 03/07-03/11/11 ME88G1C7 Dilution Factor: 1 Analysis Time: 15:48 Analyst ID: 000079 Instrument ID: 18 Manganese ND 1.0 ug/L SW846 6020 03/07-03/11/11 ME88G1C7 Dilution Factor: 1 Analysis Time: 15:48 Analyst ID: 000079 Instrument ID: 18	Cobalt	ND	1.0 ug/L	SW846 6020	03/07-03/11/11 ME88G1C4
Copper 0.44 B 2.0 ug/L Dilution Factor: 1 Analysis Time.: 15:48 SW846 6020 03/07-03/11/11 ME88G1C5 Iron ND 50.0 ug/L Dilution Factor: 1 Analysis Time.: 15:48 SW846 6020 03/07-03/11/11 ME88G1C6 Lead ND 1.0 ug/L Dilution Factor: 1 Analysis Time.: 15:48 SW846 6020 03/07-03/11/11 ME88G1C7 Manganese ND 1.0 ug/L Analysis Time.: 15:48 Analysis ID: 000079 Instrument ID: 18 Manganese ND 1.0 ug/L Dilution Factor: 1 SW846 6020 03/07-03/11/11 ME88G1C8			- J	5010 0020	00, 0, 00, 11, 11 IM000101
Dilution Factor: 1 Analysis Time: 15:48		_	Analysis Time: 15:48	Analyst ID: 000079	Instrument ID: 18
Dilution Factor: 1 Analysis Time: 15:48					
Analysis Time.: 15:48	Copper	$\left(\begin{array}{c} 0.44 \text{ B} \right)$	- 3.	SW846 6020	03/07-03/11/11 ME88G1C5
Iron ND 50.0 ug/L Dilution Factor: 1 Analysis Time: 15:48 SW846 6020 03/07-03/11/11 ME88G1C6 Lead ND 1.0 ug/L Dilution Factor: 1 Analysis Time: 15:48 SW846 6020 03/07-03/11/11 ME88G1C7 Manganese ND 1.0 ug/L Analysis Time: 15:48 Analyst ID: 000079 Instrument ID: 18 Manganese ND 1.0 ug/L Dilution Factor: 1 SW846 6020 O3/07-03/11/11 ME88G1C8					
Dilution Factor: 1 Analysis Time: 15:48 Analyst ID: 000079 Instrument ID: I8 Lead ND 1.0 ug/L SW846 6020 03/07-03/11/11 ME88G1C7 Dilution Factor: 1 Analysis Time: 15:48 Analyst ID: 000079 Instrument ID: I8 Manganese ND 1.0 ug/L SW846 6020 03/07-03/11/11 ME88G1C8 Dilution Factor: 1			Analysis Time: 15:48	Analyst ID: 000079	Instrument ID: 18
Dilution Factor: 1 Analysis Time: 15:48 Analyst ID: 000079 Instrument ID: I8 Lead ND 1.0 ug/L SW846 6020 03/07-03/11/11 ME88G1C7 Dilution Factor: 1 Analysis Time: 15:48 Analyst ID: 000079 Instrument ID: I8 Manganese ND 1.0 ug/L SW846 6020 03/07-03/11/11 ME88G1C8 Dilution Factor: 1	Iron	ND	50.0 ug/L	SW846 6020	03/07-03/11/11 ME88G1C6
Lead ND 1.0 ug/L SW846 6020 03/07-03/11/11 ME88G1C7 Dilution Factor: 1 Analysis Time: 15:48 Analyst ID: 000079 Instrument ID: I8 Manganese ND 1.0 ug/L SW846 6020 03/07-03/11/11 ME88G1C8 Dilution Factor: 1			3 '		11, 11, 10, 11, 11 112000100
Dilution Factor: 1 Analysis Time: 15:48 Analyst ID: 000079 Instrument ID: 18 Manganese ND 1.0 ug/L SW846 6020 03/07-03/11/11 ME88G1C8 Dilution Factor: 1			Analysis Time: 15:48	Analyst ID: 000079	Instrument ID: 18
Dilution Factor: 1 Analysis Time: 15:48 Analyst ID: 000079 Instrument ID: 18 Manganese ND 1.0 ug/L SW846 6020 03/07-03/11/11 ME88G1C8 Dilution Factor: 1	_				
Analysis Time: 15:48 Analyst ID: 000079 Instrument ID: 18 Manganese ND 1.0 ug/L SW846 6020 03/07-03/11/11 ME88G1C8 Dilution Factor: 1	Lead	ND		SW846 6020	03/07-03/11/11 ME88G1C7
Manganese ND 1.0 ug/L SW846 6020 03/07-03/11/11 ME88G1C8 Dilution Factor: 1				200020	T
Dilution Factor: 1			Analysis Time: 15:48	Analyst ID: 000079	instrument ID: 18
Dilution Factor: 1	Manganese	ND	1.0 ua/ī	SW846 6020	03/07-03/11/11 ME88G1C8
Analysis Time: 15:48 Analyst ID: 000079 Instrument ID: I8	3 ,	•		22.2.3.000	11, 0. 00, 11, 11 1, 11000100
			Analysis Time: 15:48	Analyst ID: 000079	Instrument ID: I8

(Continued on next page)

METHOD BLANK REPORT

DISSOLVED Metals

Matrix..... WATER

Instrument ID..: H1

Client Lot #...: A1C040534

REPORTING PREPARATION-WORK PARAMETER RESULT LIMIT UNITS METHOD ANALYSIS DATE ORDER # Molybdenum ND 2.0 uq/L SW846 6020 03/07-03/11/11 ME88G1C9 Dilution Factor: 1 Analysis Time..: 15:48 Analyst ID....: 000079 Instrument ID..: I8 Nickel ND 2.0 uq/L SW846 6020 03/07-03/11/11 ME88G1DA Dilution Factor: 1 Analysis Time..: 15:48 Analyst ID....: 000079 Instrument ID..: 18 Selenium ND 5.0 uq/L SW846 6020 03/07-03/11/11 ME88G1DC Dilution Factor: 1 Analysis Time..: 15:48 Analyst ID....: 000079 Instrument ID..: 18 Silver ND 1.0 SW846 6020 03/07-03/11/11 ME88G1DD ug/L. Dilution Factor: 1 Analysis Time..: 15:48 Analyst ID....: 000079 Instrument ID..: 18 Thallium 0.20 B 1.0 ug/L SW846 6020 03/07-03/11/11 ME88G1DE Dilution Factor: 1 Analysis Time..: 15:48 Analyst ID....: 000079 Instrument ID..: 18 Vanadium ND 20.0 03/07-03/11/11 ME88G1DF ug/L SW846 6020 Dilution Factor: 1 Analysis Time..: 15:48 Analyst ID....: 000079 Instrument ID.:: 18 Zinc 20.0 SW846 6020 uq/L 03/07-03/11/11 ME88G1DG Dilution Factor: 1 Analysis Time..: 15:48 Analyst ID....: 000079 Instrument ID..: I8 Mercury ND 0.20 uq/L SW846 7470A 03/07-03/09/11 ME88G1DJ

Analyst ID....: 001576

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

Dilution Factor: 1
Analysis Time..: 14:50

B Estimated result. Result is less than RL.

LABORATORY CONTROL SAMPLE EVALUATION REPORT

DISSOLVED Metals

Client Lot #:	A1C04.0534			Matrix.	: WATER
PARAMETER	PERCENT RECOVERY	RECOVERY LIMITS	METHOD	PREPARATION- ANALYSIS DATE	WORK ORDER #
LCS Lot-Sample#: Antimony	A1C070000- 87	(80 - 120)	or: 1 Analysis	03/07-03/11/12 Time: 15:53	! ME88G1D3 Analyst ID: 000079
Arsenic	86				ME88G1D4 Analyst ID: 000079
Barium	84				ME88G1D5 Analyst ID: 000079
Beryllium	85				ME88G1D6 Analyst ID: 000079
Cadmium	90				ME88G1D7 Analyst ID: 000079
Cobalt	86				ME88G1D8 Analyst ID: 000079
Copper	89				ME88G1D9 .nalyst ID: 000079
Iron	88				ME88G1EA nalyst ID: 000079
Lead	82	(80 - 120) Dilution Factor Instrument ID	-		ME88G1EC nalyst ID: 000079
Manganese	97	(80 - 120) Dilution Factor Instrument ID		03/07-03/11/11 Fime: 15:53 A	ME88G1ED nalyst ID: 000079

(Continued on next page)

LABORATORY CONTROL SAMPLE EVALUATION REPORT

DISSOLVED Metals

Matrix..... WATER

Client Lot #...: A1C040534

	PERCENT	RECOVERY	PREPARATION-	
PARAMETER	RECOVERY	LIMITS METH	ANALYSIS DATE WORK	CORDER #
Molybdenum	84	(80 - 120) SW84	6020 03/07-03/11/11 ME88	BG1EE
		Dilution Factor: 1	Analysis Time: 15:53 Analysis	t ID: 000079
		Instrument ID: 18		
	0.0			
Nickel	88		6020 03/07-03/11/11 ME88	
			Analysis Time: 15:53 Analysi	t ID: 000079
		Instrument ID: 18		
Selenium	87	(80 - 120) SW84	6020 03/07-03/11/11 ME88	BG1EG
			Analysis Time: 15:53 Analysi	
		Instrument ID: I8	,	
		•		
Silver	92	(80 - 120) SW84	6020 03/07-03/11/11 ME88	BG1EH
		Dilution Factor: 1	Analysis Time: 15:53 Analyst	ID: 000079
		Instrument ID: I8		
Thallium	88	/00 120) CM0//	6020 03/07-03/11/11 ME88	0.01 0.1
Indilium	00		Analysis Time: 15:53 Analyst	
		Instrument ID.:: 18	Analysis lime: 15:55 Analysi	. 10: 0000/9
		instrument ib iv		
Vanadium	84	(80 - 120) SW846	6020 03/07-03/11/11 ME88	G1EK
		Dilution Factor: 1	Analysis Time: 15:53 Analyst	
		Instrument ID: 18		
Zinc	101		6020 03/07-03/11/11 ME88	
			Analysis Time: 15:53 Analyst	: ID: 000079
		Instrument ID: 18		
Chromium	84	(80 - 120) SW846	6020 03/07-03/11/11 ME88	RG1EM
			Analysis Time.: 15:53 Analyst	
		Instrument ID: I8		2 22
Mercury	99	(81 - 123) SW846	7470A 03/07-03/09/11 ME88	G1EN
		Dilution Factor: 1	Analysis Time: 14:51 Analyst	ID: 001576
		Instrument ID: H1		•

Calculations are performed before rounding to avoid round-off errors in calculated results.

Metals Data Reporting Form

Instrument Detection Limits

Instrument: ____CVAA Units: ____ppb

Element	Wavelength	Reporting Limit	MDL	Date of MDL
Mercury	253.700	0.2	0.12	09/20/07

Metals Data Reporting Form

Instrument Detection Limits

Instrument: ____ICPMS

Units: ppb

Element	Mass	Reporting Limit	MÐL	Date of MDL
Antimony	121	2.0	0.13	05/09/07
Arsenic	75 ·	5.0	0.40	05/09/07
Barium	137	1.0	0.19	05/09/07
Beryllium	9	1.0	0.20	05/09/07
Cadmium	111	1.0	0.13	10/01/07
Chromium	52	2.0	0.71	05/09/07
Cobalt	59	1.0	0.058	05/09/07
Copper	65	2.0	0.29	10/01/07
Iron	56	50.0	26.0	10/01/07
Lead	208	1.0	0.18	05/09/07
Manganese	55	1.0	0.83	05/09/07
Molybdenum	95	2.0	0.093	05/09/07
Nickel	60	2.0	0.20	05/09/07
Selenium	78	5.0	1.2	05/09/07
Silver	107	1.0,	0.080	05/09/07
Thallium	205	1.0	0.14	05/09/07
Vanadium	51	20.0	0.44	05/09/07
Zinc	66	20.0	2.3	10/01/07

Metals Data Reporting Form

Linear Dynamic Ranges

Instrument: ICPMS Units: ppb

Element	Wavelength /Mass	Linear Range	Date of Linear Range
Antimony	121.00	1000	01/10/11
Arsenic	75.00	10000	01/12/11
Barium	137.00	10000	01/12/11
Beryllium	9.00	10000	01/10/11
Cadmium	111.00	10000	01/10/11
Chromium	52.00	10000	01/10/11
Cobalt	59.00	10000	01/10/11
Copper	65.00	10000	01/10/11
Iron	56.00	500000	01/12/11
Lead	208.00	10000	01/10/11
Manganese	55.00	10000	01/10/11
Molybdenum	95.00	10000	01/13/11
Nickel	60.00	10000	01/10/11
Selenium	78.00	10000	01/10/11
Silver	107.00	2000	01/10/11
Thallium	205.00	10000	01/10/11
Vanadium	51.00	10000	01/10/11
Zinc	66.00	10000	01/10/11

```
: Instrument Upload Run Log - Page 1 : Started Thu Mar 10 03:10:23 2011 by COUNTSK : Data File: UPL$CAN_DATA_ROOT:<LHG>HG10309A.PRN;1 :
```

#	WorkOrder	Dilution	Date	Time	Batch	Lot	Instrument
1	STD1REP1	1	09-MAR-2011	10:58:10			H1
	STD2REP1	1	09-MAR-2011				H1
	STD3REP1	1	09-MAR-2011				H1
4	STD4REP1	1	09-MAR-2011	11:02:17			H1
5	STD5REP1	1	09-MAR-2011	11:03:38			н1
6	STD6REP1	1	09-MAR-2011	11:04:53			H1
	CK5ICV	1	09-MAR-2011	11:06:19			H1
8	CK4ICB	1	09-MAR-2011	11:07:34			H1
9	MEN68/CEA/	1 MENTE	09-MAR-2011	11:08:49	1068195	A1B220518	H1
	CK2CCV	1	09-MAR-2011	11:10:04			H1
11	CK1CCB	1 '	09-MAR-2011	11:11:19			H1
12	ME6R1B	1	09-MAR-2011	11:12:43	1063012	A1C040000	Hl
13	ME6R1C	1	09-MAR-2011	11:14:10	1063012	A1C040000	Hl
14	ME5TL	1	09-MAR-2011	11:15:26	1063012	A1C030508	H1
15	ME5TLS	1	09-MAR-2011	11:16:40	1063012	A1C030508	H1
16	ME5TLD	1	09-MAR-2011	11:18:05	1063012	A1C030508	H1
17	ME598	1	09-MAR-2011	11:19:22	1063012	1C03548	Hl.
18	ME5AG	1	09-MAR-2011	11:21:09	1063012	A1C030434	Hl
19	ME5TK	1	09-MAR-2011	11:22:39	1063012	A1C030508	H1
20	ME5TJ	1	09-MAR-2011	11:23:56	1063012	A1C030508	Hl
21	ME6AD	1	09-MAR-2011	11:25:12	1063012	1C03548	Hl
22	CK2CCV	1	09-MAR-2011	11:26:37			Hl
23	CK1CCB	1	09-MAR-2011	11:27:55			H1
24	ME6CA	1	09-MAR-2011	11:29:20	1063012	A1C030554	H1
25	ME6AT	1	09-MAR-2011	11:30:35	1063012	1C03548	H1
26	ME6AM	1	09-MAR-2011	11:32:03	1063012	1C03548	Hl
27	ME5AE	1	09-MAR-2011	11:33:29	1063012	A1C030434	H1
28	ME5TG	1	09-MAR-2011	11:34:48	1063012	A1C030508	H1
29	ME5AL	1	09-MAR-2011	11:36:04	1063012	A1C030434	H1
30	ME88EB	1	09-MAR-2011	11:37:51	1066014	A1C070000	Hl
31	ME88EC	1	09-MAR-2011	11:39:12	1066014	A1C070000	H1
32	ME703	1	09-MAR-2011	11:40:27	1066014	A1C040503	H1
33	ME703S	1	09-MAR-2011	11:41:45	1066014	A1C040503	H1
34	CK2CCV	1	09-MAR-2011	11:43:12			H1
35	CK1CCB	1	09-MAR-2011	11:44:29			H1
36	ME703D	1	09-MAR-2011	11:45:54	1066014	A1C040503	Hl
37	ME77C	1	09-MAR-2011			1C03588	Hl
38	ME7AQ	1	09-MAR-2011	11:48:30	1066014	A1C040451	H1
39	ME7AV	1	09-MAR-2011			A1C040451	H1
40	ME709	1	09-MAR-2011	11:51:00	1066014	A1C040503	H1
41	ME7CG	1	09-MAR-2011	11:52:17	1066014	A1C040456	H1
	ME7CH	1	09-MAR-2011	11:53:32	1066014	A1C040456	H1
43	ME7AK	1	09-MAR-2011			A1C040451	H1
44	ME76V	1	09-MAR-2011	11:56:12	1066014	1C03588	H1

----- (continued) -----

```
: Instrument Upload Run Log - Page 2:
: Started Thu Mar 10 03:10:23 2011 by COUNTSK :
Data File: UPL$CAN_DATA_ROOT:<LHG>HG10309A.PRN;1 :
```

#	WorkOrder	Dilution	Date	Time	Batch	Lot	Instrument
45	ME71E	1 .	09-MAR-2011	11:57:29	1066014	A1C040503	H1
46	CK2CCV	1	09-MAR-2011	11:58:47			H1
47	CK1CCB	1	09-MAR-2011	12:00:07			Hl
48	ME71F	1	09-MAR-2011	12:01:32	1066014	AlC040503	Hl
49	ME7CF	1	09-MAR-2011	12:02:48	1066014	A1C040456	H1.
50	ME7AT	1	09-MAR-2011	12:04:09	1066014	A1C040451	H1
51	ME7CD	1	09-MAR-2011	12:05:25	1066014	A1C040456	H1
52	ME71J	1	09-MAR-2011	12:06:42	1066014	A1C040503	H1
53	ME71L	1	09-MAR-2011	12:07:56	1066014	A1C040503	H1
54	ME9CCBT	1	09-MAR-2011	12:09:10	1067013	A1C070000	H1
55	MFANFBT	l	09-MAR-2011	12:10:31	1067013	A1C080000	H1
56	MFANFCT	1	09-MAR-2011	12:11:47	1067013	A1C080000	H1
57	ME4L1T	1	09-MAR-2011	12:13:05	1067013	A1C020573	Hl
58	CK2CCV	1	09-MAR-2011	12:14:20			H1
59	CK1CCB	1	09-MAR-2011	12:15:36			H1
60	ME4L1ST	l	09-MAR-2011	12:16:52	1067013	A1C020573	H1.
61	ME4L1DT	1	09-MAR-2011	12:18:09	1067013	A1C020573	H1
62	ME6C0T	1	09-MAR-2011	12:19:27	1067013	A1C030563	H1
63	ME56AT	1	09-MAR-2011	12:20:54	1067013	A1C030535	H1
64	ME58VT	1	09-MAR-2011	12:22:12	1067013	A1C030535	H1
65	ME4MPT	1	09-MAR-2011	12:23:27	1067013	A1C020573	H1
66	ME4M8T	1	09-MAR-2011	12:24:44	1067013	A1C020573	H1
67	ME6C2T	1	09-MAR-2011	12:26:01	1067013	A1C030561	H1
68	ME70XT	1	09-MAR-2011	12:27:32	1067013	A1C040503	H1
69	ME6DAT	1	09-MAR-2011	12:29:09	1067013	A1C030563	H1
70	CK2CCV	1	09-MAR-2011	12:30:26			H1
71	CK1CCB	1	09-MAR-2011	12:31:40			H1
72	ME8D2T	1	09-MAR-2011	12:32:55	1067013	A1C040584	H1
73	ME59JT	1	09-MAR-2011	12:34:25	1067013	A1C030535	H1
74	ME26QBT	1	09-MAR-2011	12:35:41	1063013	A1C020000	H1
75	ME6R3BT	1	09-MAR-2011	12:37:03	1063013	A1C040000	H1
. 76	ME6R3CT	1	09-MAR-2011	12:38:33	1063013	A1C040000	H1
77	ME2N6T	1	09-MAR-2011	12:39:52	1063013	A1C010549	H1
78	ME2N6ST	1	09-MAR-2011	12:41:17	1063013	A1C010549	Hl
79	ME2N6DT	1	09-MAR-2011	12:42:43	1063013	A1C010549	H1
80	ME26LBT	1	09-MAR-2011	12:43:59	1063014	A1C020000	H1
81	ME6R5BT	1	09-MAR-2011	12:45:17	1063014	A1C040000	Hl
82	CK2CCV	1	09-MAR-2011	12:46:36			H1
83	CK1CCB	1	09-MAR-2011	12:47:50			H1
84	ME6R5CT	1	09-MAR-2011	12:49:05	1063014	A1C040000	H1
85	ME2K8T	1	09-MAR-2011	12:50:24	1063014	A1C010534	H1
86	ME2K8ST	1.	09-MAR-2011	12:51:55	1063014	A1C010534	H1
87	ME2K8DT	1	09-MAR-2011	12:53:16	1063014	A1C010534	H1
88	ME2LCT	1	09-MAR-2011	12:54:35	1063014	A1C010534	H1
							•

----- (continued)

```
: Instrument Upload Run Log - Page 3:
: Started Thu Mar 10 03:10:23 2011 by COUNTSK :
: Data File: UPL$CAN_DATA_ROOT:<LHG>HG10309A.PRN;1 :
```

#	WorkOrder		Date				· ·
	MECDYD						
90	ME6RXB	7	09-MAR-2011 09-MAR-2011 09-MAR-2011 09-MAR-2011	12:55:51	1063011	A1C040000	nı ur
90	ME6RXC ME5JQ ME5JQS ME5JQD	1	09-MAR-2011	12.57.12	1063011	A1C040000	пт
9.7	MESTOG	1	09-MAR-2011	12.50.25	1063011	A1C030470	n.
92	MEE TOD	1 .	09-MAR-2011 09-MAR-2011	12:03:40	1063011	A1C030470	u.
93	CK2CCV	1	09-MAR-2011	13.01.03	1063011	A1C030470	
			09-MAR-2011				H1 H1
			09-MAR-2011			77 <i>C</i> 020470	
							H1
	ME5J2		09-MAR-2011				H1
	ME5J5		09-MAR-2011	13:07:33	1063011	A1C030470	H1
700	MESOT	±.	09-MAR-2011	13:00:50	1063011	A1C030470	
100	MESTH	T	09-MAR-2011	13:10:11	1062011	A1C030482	H1
101	ME2K3B1	1	09-MAR-2011 09-MAR-2011 09-MAR-2011	13:11:31	1063020	A1C030000	H1
102	MEGIDEI	±	09-MAR-2011	13:12:48	1063020	A1C040000	H1
103	ME379T	т.	09-MAR-2011	13:14:15	1063020	A1C040000	H1
104	ME379T ME379ST	T.	09-MAR-2011	13:15:34	1063020	A1C020519	H1
		T.	09-MAR-2011	13:16:52	1063018	A1C020519	
	CK2CCV	1	09-MAR-2011	13:18:07			H1
	CK1CCB		09-MAR-2011			710000510	H1
	ME379DT		09-MAR-2011			ALC020519	
	CK2CCV	1	09-MAR-2011	13:22:07			H1
	CK1CCB	1	09-MAR-2011	13:23:22			H1
111	CK2CCV	1 '	09-MAR-2011	13:27:03			H1
112	CK1CCB	1	09-MAR-2011 09-MAR-2011 09-MAR-2011 09-MAR-2011 09-MAR-2011	13:28:17			H1
113	ME6AD	2	09-MAR-2011	13:29:42	1063012	1C03548	H1
114	ME6AT	20	09-MAR-2011	13:30:59	1063012	1C03548	H1
115	ME6AM	20	09-MAR-2011	13:32:19	1063012	1C03548	H1
116	ME76V	2	09-MAR-2011	13:33:36	1066014		
	CK2CCV	1	09-MAR-2011	13:34:52			H1
	CK1CCB		09-MAR-2011				Hl
			09-MAR-2011				Hl
			09-MAR-2011				H1
			09-MAR-2011				
			09-MAR-2011				
	CK2CCV	1	09-MAR-2011	13:53:36			H1
			09-MAR-2011				H1
		1	09-MAR-2011	14:25:11			Hl
126	CK1CCB	1	09-MAR-2011	14:26:26			н1
127	ME5K9BT	1	09-MAR-2011	14:27:53	1063015	A1C030000	H1
128	ME6R7BT	1	09-MAR-2011	14:29:20	1063015	A1C040000	H1
129	ME6R7CT	1	09-MAR-2011	14:30:46	1063015	A1C040000	H1
130	ME4M2T	1	09-MAR-2011	14:32:00	1063015	A1C020573	H1
	ME4M2ST	1	09-MAR-2011	14:33:15	1063015	A1C020573	H1
132	ME4M2 ∮ T (1	09-MAR-2011	14:34:31	1063015	A1C020573	H1
	D 31011	w					
		·	(conti	.nued)			

```
: Instrument Upload Run Log - Page 4:
: Started Thu Mar 10 03:10:23 2011 by COUNTSK:
: Data File: UPL$CAN_DATA_ROOT:<LHG>HG10309A.PRN;1 :
```

#	WorkOrder	Dilution	Date	Time	Batch	Lot	Instrument
133	ME4NLT	1	09-MAR-2011	14:35:48	1063015	A1C020573	H1
	ME4NHT	1	09-MAR-2011				H1
135	ME4NDT	1	09-MAR-2011	14:38:33	1063015	A1C020573	H1
136	ME4NKT	1	09-MAR-2011	14:39:58	1063015	A1C020573	H1
137	CK2CCV	l	09-MAR-2011	14:41:13			H1
138	CK1CCB	1	09-MAR-2011	14:42:28			H1
139	ME4 PMT	1	09-MAR-2011	14:43:43	1063015	A1C020577	H1
140	ME4P4T	1	09-MAR-2011	14:45:03	1063015	A1C020582	H1>X
141	ME4PXT	1	09-MAR-2011	14:46:18	1063015	A1C020580	H1
	ME4NFT	1	09-MAR-2011			A1C020573	H1
	ME4A1T	1	09-MAR-2011			A1C020534	H1
	ME88GB	1	09-MAR-2011			A1C070000	H1
	ME88GC	1	09-MAR-2011			A1C070000	H1
	ME750	1 .	09-MAR-2011			A1C040534	H1
	ME750X	1	09-MAR-2011			A1C040534	
	ME750S	1	09-MAR-2011		1000012	A1C040534	
	CK2CCV CK1CCB	1	09-MAR-2011 09-MAR-2011				H1 H1
	ME750F	1	09-MAR-2011		1066015	710040524	
	ME76F	1	09-MAR-2011 09-MAR-2011			A1C040534	
	ME76FF	1	09-MAR-2011			A1C040534	
	ME76H	1	09-MAR-2011			A1C040534	H1
	ME76HF	1	09-MAR-2011			A1C040534	H1
	ME757	1.	09-MAR-2011			A1C040534	H1
	ME757F	1	09-MAR-2011			A1C040534	H1
158	ME76P	1	09-MAR-2011	15:08:07	1066015	A1C040534	H1
159	ME76PF	1	09-MAR-2011	15:09:24	1066015	A1C040534	Hl
160	ME81V	1	09-MAR-2011	15:10:41	1066015	A1C050451	H1
161	CK2CCV	1	09-MAR-2011	15:12:08			H1
162	CK1CCB	1	09-MAR-2011	15:13:25			H1
163	ME787	1	09-MAR-2011	15:14:40	1066015	A1C040558	Hl
164	ME78T	1	09-MAR-2011	15:15:59	1066015	A1C040558	Hl
165	ME79H	1	09-MAR-2011	15:17:18	1066015	A1C040562	Hl
166	MFANDB	1	09-MAR-2011			A1C080000	H1
	MFANDC	1	09-MAR-2011			A1C080000	H1
	ME96P	1	09-MAR-2011			A1C070475	H1
	ME96PS	1	09-MAR-2011				H1
	ME96PD	1	09-MAR-2011			A1C070475	H1
	ME9KD	1	09-MAR-2011			A1C070417	H1
	ME9KK	1	09-MAR-2011		1067011	A1C070417	H1
	CK2CCV	1	09-MAR-2011				H1
	CK1CCB	1	09-MAR-2011		1067011	710070455	H1
	ME928	1	09-MAR-2011 09-MAR-2011			A1C070455	H1
1/0	ME9A7B	1	03-MAK-2011	TO: 3T: TZ	T00/014	A1C070000	H1
			/				

----- (continued)

561

```
: Instrument Upload Run Log - Page 5:
: Started Thu Mar 10 03:10:23 2011 by COUNTSK :
: Data File: UPL$CAN_DATA_ROOT:<LHG>HG10309A.PRN;1 :
```

#	WorkOrder	Dilution	Date	Time	Batch	Lot	Instrument
177	MFANHB	1	09-MAR-2011	15:32:29	1067014	A1C080000	H1
	MFANHC		09-MAR-2011				H1
	ME75E		09-MAR-2011				H1
180	ME75ES	1.	09-MAR-2011	15:36:24	1067014	A1C040530	H1
181	ME75ED	1	09-MAR-2011	15:37:42			H1
182	MFA5KBT	1	09-MAR-2011	15:38:59	1068012	A1C080000	H1
183	MFDPXBT	1	09-MAR-2011	15:40:18	1068012	A1C090000	H1
184	MFDPXCT	1	09-MAR-2011	15:41:35	1068012	A1C090000	H1
185	CK2CCV	1	09-MAR-2011	15:42:51			H1
186	CK1CCB	1	09-MAR-2011	15:44:17			H1
187	ME6J6T	1	09-MAR-2011	15:45:36	1068012	A1C030592	H1
188	ME6J6ST		09-MAR-2011			A1C030592	H1
189	ME6J6DT		09-MAR-2011				H1
190	ME7GTT	1	09-MAR-2011	15:49:24	1068012	A1C040464	H1
191	ME7GRT	1	09-MAR-2011	15:50:41	1068012	A1C040464	H1
192	MFATDT	1	09-MAR-2011	15:51:58	1068012	A1C080408	H1
193	MFAR2T	1	09-MAR-2011	15:53:15	1068012	A1C080408	H1
194	MFDPVB	1	09-MAR-2011	15:54:33	1068011	A1C090000	H1
195	MFDPVC	1.	09-MAR-2011	15:55:49	1068011	A1C090000	H1
196	MFCEG	1	09-MAR-2011	15:57:28	1068011	A1C080465	H1
197	CK2CCV	1	09-MAR-2011	15:58:43			H1
198	CK1CCB	1	09-MAR-2011	15:59:58			H1
199	MFCEGS	1	09-MAR-2011	16:01:14	1068011	A1C080465	H1
200	MFCEGD	1	09-MAR-2011	16:02:30	1068011	A1C080465	H1
201	CK2CCV	1	09-MAR-2011	16:03:47			H1
202	CK1CCB	1.	09-MAR-2011	16:05:13			H1
203	CK2CCV	1	09-MAR-2011				H1
204	CK1CCB	1	09-MAR-2011	16:08:25			H1
205	ME9KD	20	09-MAR-2011	16:09:43	1067011	A1C070417	H1
	CK2CCV		09-MAR-2011				H1
207	CK1CCB	1	09-MAR-2011	16:12:16			H1
			End	of Report	;		

Initial Calib	oration '	V eritica	tion Stan	dard								
Instrument:	C\	/AA	_				Units:		ug/L	_		
Chart Numb	er: <u>h</u> g	[10309a.]	orn_				Accepta	ble Ra	ange: 90	0% - 1	10%	
Standard So	urce:		Ultra				Standar	d ID:				
	WL/		Ck5IC 03/09/ 11:06 A	11 .M		0.6					•	
Element	Mass	True Conc	Found	% Rec	Found	% Rec	Found	% Rec	Found	% Rec	Found	% Rec
Mercury	253.7	2.5	2.45	98.1		·				· · · · · · · · · · · · · · · · · · ·		

Metals Data Reporting Form

Continuing	<u>, Calibra</u>	ition Ve	rification	<u>)</u>		·····								
Instrument:	Instrument:CVAA								Units: ug/L					
Chart Numb	oer: hg	ց10309a.բ	orn				Accepta	ıble Ra	ange:8	0% - 1	20%			
Standard So	ource:		Ultra				Standa	d ID:						
			Ck2CCV 03/09/11 2:41 PM		Ck2CC 03/09/1 2:56 Pl	11	Ck2CCV 03/09/11 3:12 PM							
Element	WL/ _Mass	True Conc	Found	% Rec	Found	% Rec	Found	% Rec	Found	% Rec	Found	% Rec		

4.85

97.0

96.9

4.84

Mercury

253.7

5.0

4.82

96.4

Contract	Require	d Detect	tion Limit	t Star	ıdard							
Instrumen	t:	CVAA				Units: ug/L						·
Chart Nun	nber:l	ng10309a		Acceptable Range: 50% - 150%								
Standard S	Source: _		<u>Ultra</u>	1		_	Standa	ard ID):			·
Element	WL/ Mass	True Conc	Ck3CRA\M 03/09/1 11:08 A	1	Found	% Rec	Found	% Rec	Found	% Rec	Found	% Poo
Mercury	253.7	0.2	0.18	89.9			1 Junu	- Acc	r ound	Nec	rouna	Rec

Initial Cali	bration B	lank R	esults									
Instrument:	CV	AA	_			,	Units:		ug/L	_	•	
Chart Numl	ber: <u>hgl</u>	0309a.p	orn_									
Standard So	ource:						Standar	d ID:				
E)	WL/	Report	l	1 .M			F 1					
Element	Mass	Limit	Found	<u>O,</u>	Found	Q	Found	_Q_	Found	<u>Q</u>	Found	Q
Mercury	253.7	0.2	0.1	U								

Continuing	5 Canon											
Instrument	:C	VAA					Units:		ug/L			
Chart Num	ber: <u>h</u> g	g10309a	ı.prn									
Standard Sc	ource: _						Standa	rd IE):			
			Ck1CC 03/09/1 2:42 PM	1	Ck1CC 03/09/1 2:57 PN	1	Ck1CC 03/09/1 3:13 PM	1				
Element	WL/ Mass	Report Limit	Found	Q	Found	Q	Found	Q	Found	Q	Found	
Mercury	253.7	0.2	0.1	U	-0.1	R	0.1	T T	-			

```
: Instrument Upload Run Log - Page 1 :
: Started Fri Mar 18 03:41:42 2011 by DAVIESB :
: Data File: UPL$CAN_DATA_ROOT:<REP>I80316A.CSV;1 :
```

#	WorkOrder	Dilution	Date	Time	Batch	Lot	Instrument
1	STD1	1	16-MAR-2011	14:12:11			18
2	STD2	1	16-MAR-2011	14:17:28			I8
3	STD3	1	16-MAR-2011	14:24:24			I8
4	STD4	1	16-MAR-2011	14:31:20			I8
	ICV	1	16-MAR-2011	14:38:18			I8
6	ICB \	1	16-MAR-2011	14:45:16			I8
7	CRI	1	16-MAR-2011		>		I8
· ·	ICSA	1	16-MAR-2011				I8
9	ICSAB	1	16-MAR-2011	15:01:26			I8
10	CCV	1	16-MAR-2011	15:08:23			I8
11	CCB	1	16-MAR-2011	15:15:18			IS $\frac{fE}{2}$
12	MFGFLA	1	16-MAR-2011	15:22:14			18 10000ppb AL pd
13	ME6R1C	1	16-MAR-2011	15:27:22			IS an Will
14	MFK7DB	1	16-MAR-2011	15:34 ⁻ :18	1073018	A1C140000	I8
	MFK7DC	1	16-MAR-2011	15:41:14	1073018	A1C140000	I8
	MEP8LR	0.98	16-MAR-2011			1B23459	18
	MEP8PR	1	16-MAR-2011			1B23459	I8
	MEP8QR	0.9	16-MAR-2011			1B23459	18
	MEP80R	0.98	16-MAR-2011			1B23459	18
	MEP82R	0.96	16-MAR-2011			1B23459	18
	MEP83R	0.97	16-MAR-2011			1B23459	I8
	CCV	1	16-MAR-2011				I.8
	CCB	1	16-MAR-2011				I8
	MEP84R	1	16-MAR-2011		1073018	1B23459	18
	MEP84LR	1	16-MAR-2011				18
	MEP84S	1	16-MAR-2011		1060034	1B23459	I8
	MEP84D	1	16-MAR-2011			1B23459	I8
	MEP86R	0.95	16-MAR-2011			1B23459	18
	MEP88R	1	16-MAR-2011			1B23459	I8
	MEP9CR	0.91	16-MAR-2011			1B23459	18
	MEP9DR	0.99	16-MAR-2011			1B23459	I8
	MEP9GR	0.9	16-MAR-2011			1B23459	I8
	MEP9HR	0.95	16-MAR-2011			1B23459	18
	CCV	1	16-MAR-2011			1210101	18
	CCB	1	16-MAR-2011				I8
	MEP9KR	0.96	16-MAR-2011		1073018	1B23459	18
	MEP9QR	0.9	16-MAR-2011			1B23459	I8
	MEP9TR	1	16-MAR-2011			1B23459	18
	MEP91R	0.96.	16-MAR-2011			1B23459	18
	MEP95R	0.88	16-MAR-2011			1B23459	18
	MEP99R	0.92	16-MAR-2011			1B23459	I8
	MEQAKR	0.93	16-MAR-2011			1B23459	18
	ME88GC	1	16-MAR-2011		_0,0010		18
	ME81V	1	16-MAR-2011				I8
77	111011	-		_0.10.00			

----- (continued)

```
: Instrument Upload Run Log - Page 2:
: Started Thu Mar 17 04:11:18 2011 by DAVIESB:
: Data File: UPL$CAN_DATA_ROOT:<REP>180316A.CSV;1
```

#	WorkOrder	Dilution	Date	Time	Batch	Lot	Instrument
45	ME750	5	16-MAR-2011	18.26.32	1066015	A1C040534	18 Zml to low
	CCV	1	16-MAR-2011		1000013	1110010331	18
	CCB	1	16-MAR-2011				18
	ME750X	5	16-MAR-2011		1066015	A1C040534	18 2 ml to 10 ml
	ME750S	5	16-MAR-2011			A1C040534	182m/ += 10m)
	ME750F	5	16-MAR-2011			A1C040534	TRALITO 1001
	ME757	5	16-MAR-2011			A1C040534	I8 Zm 1 to 10m1
	ME757F	5	16-MAR-2011			A1C040534	I8 Zml 4 10ml
53	ME76F	5	16-MAR-2011			A1C040534	18 Zn/ to 10ml
54	ME76FF	5	16-MAR-2011	19:15:36	1066015	A1C040534	18 ZM 1 to 10ml
55	ME76H	5	16-MAR-2011			A1C040534	T8 7 and to 1001
56	ME76HF	5	16-MAR-2011	19:25:03	1066015	A1C040534	TO of well to like
57	ME76P	5	16-MAR-2011	19:29:45	1066015	A1C040534	18 2m/ to 10m'
58	CCV	1	16-MAR-2011	19:34:33	•		I8
59	CCB	1	16-MAR-2011	19:41:31			I8
60	ME76PF	5	16-MAR-2011	19:47:04	1066015	A1C040534	18 Zml ta 10ml
61	ME78T	1	16-MAR-2011	19:51:51	1066015	A1C040558	18
62	ME787	1	16-MAR-2011	19:56:44	1066015	A1C040558	18
63	ME79H	1	16-MAR-2011	20:01:30	1066015	A1C040562	I8
64	ME79HL	1	16-MAR-2011	20:06:15			I8 /
65	ME79HA	1	16-MAR-2011			A1C040562	18 100 pp b MN PDS 18 18 18 18 201 to lon1
66	MFANRB	1	16-MAR-2011	20:18:00	1067019	A1C080000	I8
67	MFANRC	1	16-MAR-2011	20:22:45	1067019	A1C080000	I8
68	ME5T5	5	16-MAR-2011	20:29:43	1067019	A1C030512	18 2m/ to 10m)
69	ME5T5L	25	16-MAR-2011	20:35:20			I8
70	CCV	1	16-MAR-2011	20:40:09			18
71	CCB	1	16-MAR-2011	20:47:06			I8, 4 1/2 /
	ME5T5A	5	16-MAR-2011	-		A1C030512	I8 Zml 7- 10ml
	ME5T5S	5	16-MAR-2011			A1C030512	Is Zarl to Worl
	ME5T5D	5	16-MAR-2011			A1C030512	Is Zmitolon
	ME5T6	5	16-MAR-2011			A1C030512	182ml to 10ml
	ME5T7	5	16-MAR-2011			A1C030512	I8 Zm1 ty 10-1
	ME5T8	5	16-MAR-2011			A1C030512	18 Zm 1 to 10ml
	ME5T9	5	16-MAR-2011			A1C030512	
	MFANVB	1	16-MAR-2011			A1C080000	18
	MFANVC	1	16-MAR-2011			A1C080000	18
	ME5RH	5	16-MAR-2011		1067020	A1C030507	18 Zorl + 10 ml
	CCV	1	16-MAR-2011				18
	CCB	1	16-MAR-2011				18
	ME5RHL	25	16-MAR-2011		1007000	710020505	
	ME5RHA	5	16-MAR-2011			A1C030507	I8 Zorl to Dor 1
	ME5RHS	5	16-MAR-2011			A1C030507	18 Zml to 10ml
	ME5RHD	5	16-MAR-2011			A1C030507	I8 2 ml to 10-1
88	ME5RJ	5	16-MAR-2011	22:28:30	1067020	A1C030507	18 2ml to 10ml
			/ 1- 1	3\			

----- (continued) -----

Metals Data Reporting Form

Initial Calibration Verification Standard

Instrument:	<u>ICPMS</u>	Units:	ug/L
-------------	--------------	--------	------

Chart Number: 180316A.csv Acceptable Range: 90% - 110%

Standard Source: _____ Standard ID: ____

	***		ICV 03/16/1 2:38 Pl		, , , , ,		***************************************		- w-sv			
Element	WL/ Mass	True Conc	Found	% Rec	Found	% Doo	Faund	% Pag	F	% Dec	T2 3	% D
					Found	Rec	Found	Rec	Found	Rec	Found	Rec
Antimony	121	80.0	77.41	96.8								
Arsenic	75	80.0	79.80	99.8		}						l
Barium	137	80.0	78.09	97.6								
Beryllium	9	80.0	76.97	96.2						Ī		ŀ
Cadmium	111	80.0	81.17	101.5						1		
Chromium	52	80.0	77.99	97.5						1		
Cobalt	59	80.0	81.36	101.7								
Copper	65	80.0	80.86	101.1								
Iron	56	20000.0	19756.67	98.8								
Lead	208	80.0	79.02	98.8								1
Manganese	55	400.0	397.43	99.4								
Molybdenum	95	80.0	78.19	97.7								, !
Nickel	60	80.0	80.80	101.0								
Selenium	78	80.0	80.48	100.6								
Silver	107	80.0	83.66	104.6								
Thallium	205	80.0	76.44	95.5								
Vanadium	51	80.0	78.83	98.5								
Zinc	66	80.0	82.25	102.8								

Metals Data Reporting Form

Continuing Calibration Verification

Instrument: ICPMS

Units: ___ug/L

Chart Number: 180316A.csv

Acceptable Range: 90% - 110%

Standard Source:

Standard ID:

		CCV				CCV	3	CCV	4	CCV	5
		I	N	03/16/1	11	03/16/	11	03/16/	11	L .	
WL/	_	3:08 PI		5:26 PI		6:31 P	M	7:34 P	M		
7.7					, •		%		%		%
Mass	Conc	Found	Rec	<u>Found</u>	Rec	<u>Found</u>	Rec	Found	Rec	Found	Rec
121	100.0	98.50	98.5	96.73	96.7	102.07	102.1	104.07	104.1	100.18	100.2
75	100.0	100.77	100.8	97.06	97.1	99.30	99.3			1	
137	100.0	99.51	99.5	99.18	99.2	103.13	103.1				
9	100.0	95.74	95.7	97.70	97.7	100.18	100.2			1	
111	100.0	103.80	103.8	98.14	98.1						
52	100.0	102.17	102.2	98.09	98.1	101.33	101.3			ı	
59	100.0	103.67	103.7	98.37	98.4						
65	100.0	104.10	104.1	96.65	96.7		1				
56	25000.0	25746.67	103.0	25133.33	100.5		1			7 - 1.00	
208	100.0	103.90	103.9	104.00	104.0						
55	500.0	510.57	102.1	496.73	99.3						
95	100.0	104.00	104.0	97.63	97.6						97.5
60	100.0	103.63	103.6	97.82	i		1				95.4
78	100.0				97.4						98.4
107	100.0										103.1
205	100.0	95.52	95.5	93.33							
51	100.0										98.7
66	100.0				- 1						97.7 99.8
	Mass 121 75 137 9 111 52 59 65 56 208 55 95 60 78 107 205 51	Mass True Conc 121 100.0 75 100.0 137 100.0 9 100.0 52 100.0 59 100.0 65 100.0 56 25000.0 208 100.0 55 500.0 95 100.0 60 100.0 78 100.0 107 100.0 205 100.0 51 100.0	WL/ True Conc Found 121 100.0 98.50 75 100.0 100.77 137 100.0 99.51 9 100.0 95.74 111 100.0 103.80 52 100.0 102.17 59 100.0 103.67 65 100.0 104.10 56 25000.0 25746.67 208 100.0 103.90 55 500.0 510.57 95 100.0 104.00 60 100.0 103.63 78 100.0 108.13 205 100.0 95.52 51 100.0 101.13	WL/ True Conc 03/16/11 3:08 PM X 3:08 PM 121 100.0 98.50 98.5 75 100.0 100.77 100.8 137 100.0 99.51 99.5 9 100.0 95.74 95.7 111 100.0 103.80 103.8 52 100.0 102.17 102.2 59 100.0 103.67 103.7 65 100.0 104.10 104.1 56 25000.0 25746.67 103.0 208 100.0 103.90 103.9 55 500.0 510.57 102.1 95 100.0 104.00 104.0 60 100.0 103.63 103.6 78 100.0 108.13 108.1 205 100.0 95.52 95.5 51 100.0 101.13 101.1	WL/ True Conc 3:08 PM % 5:26 PM Mass Found Rec Found 121 100.0 98.50 98.5 96.73 75 100.0 100.77 100.8 97.06 137 100.0 99.51 99.5 99.18 9 100.0 95.74 95.7 97.70 111 100.0 103.80 103.8 98.14 52 100.0 102.17 102.2 98.09 59 100.0 103.67 103.7 98.37 65 100.0 104.10 104.1 96.65 56 25000.0 25746.67 103.0 25133.33 208 100.0 103.90 103.9 104.00 55 500.0 510.57 102.1 496.73 95 100.0 103.63 103.6 97.82 78 100.0 103.63 103.6 97.82 78 100.0 108.13 108.1 </td <td>WL/ True Conc 03/16/11 S:26 PM % % % % % % % Rec 121 100.0 98.50 98.5 96.73 96.7 75 100.0 100.77 100.8 97.06 97.1 137 100.0 99.51 99.5 99.18 99.2 9 100.0 95.74 95.7 97.70 97.7 111 100.0 103.80 103.8 98.14 98.1 52 100.0 102.17 102.2 98.09 98.1 59 100.0 103.67 103.7 98.37 98.4 65 100.0 104.10 104.1 96.65 96.7 208 100.0 103.90 103.9 104.00 104.0 55 500.0 510.57 102.1 496.73 99.3 95 100.0 103.63 103.9 104.00 104.0 60 100.0 103.63 103.6 97.82 97.8 78 100.0</td> <td>WL/ True Mass Conc Found Rec Found Found % Found % Found Found % Found Found % Found Found 6:31 P 121 100.0 98.50 98.5 96.73 96.7 102.07 75 100.0 100.77 100.8 97.06 97.1 99.30 137 100.0 99.51 99.5 99.18 99.2 103.13 9 100.0 95.74 95.7 97.70 97.7 100.18 111 100.0 103.80 103.8 98.14 98.1 101.97 52 100.0 103.67 103.7 98.37 98.4 100.67 65 100.0 103.67 103.7 98.37 98.4 100.67 65 100.0 104.10 104.1 96.65 96.7 98.82 25000.0 25746.67 103.0 25133.33 100.5 25790.00 208 100.0 103.90 103.9</td> <td>WL/ True Conc Found Rec Found 03/16/11 6:31 PM WL/ True Conc % Found Rec Found % Found % Rec 121 100.0 98.50 98.5 96.73 96.7 102.07 102.1 75 100.0 100.77 100.8 97.06 97.1 99.30 99.3 137 100.0 99.51 99.5 99.18 99.2 103.13 103.1 9 100.0 95.74 95.7 97.70 97.7 100.18 100.2 111 100.0 103.80 103.8 98.14 98.1 101.97 102.0 52 100.0 103.67 103.7 98.37 98.4 100.67 100.7 65 100.0 104.10 104.1 96.65 96.7 98.82 98.8 56 25000.0 25746.67 103.0 25133.33 100.5 25790.00 103.2</td> <td>WL/ Mass True Conc % Found % Rec Pound % Found % Rec Pound % Rec</td> <td>WL/ True Mass 03/16/11 2:08 PM 03/16/11 2:26 PM 03/16/11 2:26 PM 03/16/11 2:26 PM 03/16/11 2:27:34 PM 121 100.0 98.50 2 98.5 2 96.73 2 96.7 2 102.07 2 102.1 2 104.07 2 104.08 2 100.08 2 <th< td=""><td>WL/ Mass True Conc $\frac{03}{16}/11$ $3:08 \text{ PM}$ $\frac{03}{16}/11$ $5:26 \text{ PM}$ $\frac{03}{16}/11$ $6:31 \text{ PM}$ $\frac{03}{16}/11$ $7:34 \text{ PM}$ $\frac{03}{16}/11$ $7:34 \text{ PM}$ $\frac{03}{16}/11$ $7:34 \text{ PM}$ $\frac{03}{16}/11$ 8:40 PM WL/ Mass True Found % Rec Found % Rec Found % Rec Found Rec Found<</td></th<></td>	WL/ True Conc 03/16/11 S:26 PM % % % % % % % Rec 121 100.0 98.50 98.5 96.73 96.7 75 100.0 100.77 100.8 97.06 97.1 137 100.0 99.51 99.5 99.18 99.2 9 100.0 95.74 95.7 97.70 97.7 111 100.0 103.80 103.8 98.14 98.1 52 100.0 102.17 102.2 98.09 98.1 59 100.0 103.67 103.7 98.37 98.4 65 100.0 104.10 104.1 96.65 96.7 208 100.0 103.90 103.9 104.00 104.0 55 500.0 510.57 102.1 496.73 99.3 95 100.0 103.63 103.9 104.00 104.0 60 100.0 103.63 103.6 97.82 97.8 78 100.0	WL/ True Mass Conc Found Rec Found Found % Found % Found Found % Found Found % Found Found 6:31 P 121 100.0 98.50 98.5 96.73 96.7 102.07 75 100.0 100.77 100.8 97.06 97.1 99.30 137 100.0 99.51 99.5 99.18 99.2 103.13 9 100.0 95.74 95.7 97.70 97.7 100.18 111 100.0 103.80 103.8 98.14 98.1 101.97 52 100.0 103.67 103.7 98.37 98.4 100.67 65 100.0 103.67 103.7 98.37 98.4 100.67 65 100.0 104.10 104.1 96.65 96.7 98.82 25000.0 25746.67 103.0 25133.33 100.5 25790.00 208 100.0 103.90 103.9	WL/ True Conc Found Rec Found 03/16/11 6:31 PM WL/ True Conc % Found Rec Found % Found % Rec 121 100.0 98.50 98.5 96.73 96.7 102.07 102.1 75 100.0 100.77 100.8 97.06 97.1 99.30 99.3 137 100.0 99.51 99.5 99.18 99.2 103.13 103.1 9 100.0 95.74 95.7 97.70 97.7 100.18 100.2 111 100.0 103.80 103.8 98.14 98.1 101.97 102.0 52 100.0 103.67 103.7 98.37 98.4 100.67 100.7 65 100.0 104.10 104.1 96.65 96.7 98.82 98.8 56 25000.0 25746.67 103.0 25133.33 100.5 25790.00 103.2	WL/ Mass True Conc % Found % Rec Pound % Found % Rec Pound % Rec	WL/ True Mass 03/16/11 2 :08 PM 03/16/11 2 :26 PM 03/16/11 2 :26 PM 03/16/11 2 :26 PM 03/16/11 2 :27:34 PM 121 100.0 98.50 2 98.5 2 96.73 2 96.7 2 102.07 2 102.1 2 104.07 2 104.07 2 104.07 2 104.07 2 104.07 2 104.07 2 104.07 2 104.07 2 104.07 2 104.07 2 104.07 2 104.07 2 104.07 2 104.07 2 104.07 2 104.07 2 104.07 2 104.08 2 100.08 2 <th< td=""><td>WL/ Mass True Conc $\frac{03}{16}/11$ $3:08 \text{ PM}$ $\frac{03}{16}/11$ $5:26 \text{ PM}$ $\frac{03}{16}/11$ $6:31 \text{ PM}$ $\frac{03}{16}/11$ $7:34 \text{ PM}$ $\frac{03}{16}/11$ $7:34 \text{ PM}$ $\frac{03}{16}/11$ $7:34 \text{ PM}$ $\frac{03}{16}/11$ 8:40 PM WL/ Mass True Found % Rec Found % Rec Found % Rec Found Rec Found<</td></th<>	WL/ Mass True Conc $\frac{03}{16}/11$ $3:08 \text{ PM}$ $\frac{03}{16}/11$ $5:26 \text{ PM}$ $\frac{03}{16}/11$ $6:31 \text{ PM}$ $\frac{03}{16}/11$ $7:34 \text{ PM}$ $\frac{03}{16}/11$ $7:34 \text{ PM}$ $\frac{03}{16}/11$ $7:34 \text{ PM}$ $\frac{03}{16}/11$ 8:40 PM WL/ Mass True Found % Rec Found % Rec Found % Rec Found Rec Found<

Metals Data Reporting Form

Contract Required Detection Limit Standard

Instrument: <u>ICPMS</u> <u>Units: ug/L</u>

Chart Number: __180316A.csv ___ Acceptable Range: __50% - 150%

Standard Source: _____ Standard ID: ____

	,											
			CRI									
			03/16/1									
	WL/		2:51 PN						··			
		True		%		%		%		%		%
Element	Mass	Conc	Found	Rec	Found	Rec	Found	Rec	Found	Rec	Found	Rec
Antimony	121	2.0	1.78	89.1	>							
Arsenic	75	2.0	2.01	100.3								
Barium	137	1.0	0.92	92.3								
Beryllium	9	1.0	1.00	99.6								
Cadmium	111	0.5	0.49	98.4								
Chromium	52	2.0	2.10	104.9								
Cobalt	59	1.0	0.99	98.5								
Copper	65	2.0	2.19	109.5								
Iron	56	50.0	58.79 <	117.6	>							
Lead	208	1.0	1.01	100.9							•	
Manganese	55	1.0	1.03	103.2								
Molybdenu	95	10.0	9.38	93.8								
Nickel	60	2.0	2.12	106.1								
Selenium	78	2.0	1.89	94.5								
Silver	107	0.5	0.54	107.2						·		
Thallium	205	1.0	0.89	89.5	>							
Vanadium	51	5.0	4.87	97.3								
Zinc	66	10.0	10.21	102.1								

Metals Data Reporting Form

Initial Calibration Blank Results

Instrument: ICPMS	Units:ug/L
Chart Number: 180316A.csv	
Standard Source:	Standard ID:

			ICB 03/16/1 2:45 PM					-				
Element	WL/ Mass	Report Limit	Found	Q	Found		Found	0	Found	0	Found	Q
Antimony	121	2	0.13	U				_ <u>*</u> _	A Guild		Tound	
Arsenic	75	5	0.4	U							•	
Barium	137	1	0.19	U								
Beryllium	9	1	0.2	U								
Cadmium	111	1	0.13	U								
Chromium	52	2	0.71	U								
Cobalt	59	1	0.058	U								
Copper	65	2	0.29	U								
Iron	56	50	26	U								
Lead	208	1	0.18	U						ļ		
Manganese	55	1	0.83	U								
Molybdenum	95	2	0.093	U	·	,						
Nickel	60	2	0.2	U						l		
Selenium	78	5	1.2	U								
Silver	107	1	0.08	U								
Thallium	205	1	0.14	U								
Vanadium	51	20	0.44	U		}						į
Zinc	66	20	2.3	U								

U Result is less than the MDL

Metals Data Reporting Form

Continuing Calibration Blank Results

Instrument:	ICPMS	Units:	ug/L

Chart Number: 180316A.csv

Standard Source: _____ Standard ID: _____

			CCB 03/16/11 X 3:15 PM		CCB 2 03/16/11 5:33 PM		CCB 3 03/16/11 6:38 PM		CCB 4 03/16/11 7:41 PM		CCB 5 03/16/11 8:47 PM	
Element	WL/ _Mass	Report Limit	Found	O_	Found	Q	Found	Q	Found	O	Found	Q
Antimony	121	. 2	0.13	U	0.13	U	0.13	U	0.13	U	0.13	U
Arsenic	75	5	0.4	U	0.4	U	0.4	U	0.4	U	0.4	U
Barium	137	1	0.19	U	0.19	U	0.19	U	0.19	U	0.19	U
Beryllium	. 9	1	0.2	U	0.2	U	0.2	U	0.2	U	0.2	U
Cadmium	111	1	0.13	U	0.13	U	0.13	U	0.13	U	0.13	U
Chromium	52	2	0.71	U	0.71	U	0.71	U	0.71	U	0.71	U
Cobalt	59	1	0.058	U	0.058	U	0.058	U	0.058	U	0.058	U
Copper	65	2	0.29	U	0.29	U	0.29	U	0.29	U	0.29	U
Iron	56	50	26	U	26	U	26	U	26	U	26	U
Lead	208	1	0.18	U	0.18	U	0.18	U	0.18	U	0.18	U
Manganese	55	1	0.83	U	0.83	U	0.83	U	0.83	U	0.83	U
Molybdenum	95	2	0.27	В	0.093	U	0.093	U	0.093	U	0.093	U
Nickel	60	2	0.2	U	0.2	U	0.2	U	0.2	U	0.2	U
Selenium	78	5	1.2	U	1.2	U	1.2	U	1.2	U	1.2	U
Silver	107	1	0.08	U	0.08	U	0.08	U	0.08	U	0.08	ับ
Thallium	205	1	0.15	В	0.14	U	0.21	B	0.15	B	0.2	B
Vanadium	51	20	0.44	U	0.44	U	0.44	U	0.44	U	0.44	U
Zinc	66	20	2.3	U	2.3	U	2.3	U	2.3	U	2.3	U

^{5.04.5}

U Result is less than the MDL

B Result is between MDL and RL

Metals Data Reporting Form

Interference Check Standard A

Instrument:	ICPMS	Units:	ug/L

Chart Number: 180316A.csv Acceptable Range: 0% - 0%

Standard Source: _____ Standard ID: _____

	WL/	Reporting	True	ICSA 03/16/11 2:56 PM				
Element	Mass	Limit	Conc	Found	Found	Found	Found	Found
Antimony	121	2		0.019				
Arsenic	75	5		0.110				
Barium	137	1		0.110				
Beryllium	9	1		0.012				
Cadmium	111	1		-0.780				
Chromium	52	2		1				
Cobalt	59	1		0.040				
Copper	65	2		0.100				
Iron	56		50000	50700		:		
Lead	208	1	•	0.071				
Manganese	55	1		0.420				
Molybdenum	95	2	1000	944				
Nickel	60	2		0.420	:			
Selenium	78	5		0.069				
Silver	107	1		0.066				
Thallium	205	1		-0.100				
Vanadium	51	20		-0.230				
Zinc	66	20		1				

U Result is less than the MDL

Metals Data Reporting Form

Interference Check Standard AB

Instrument:	ICPMS	Units:	ug	/L
-------------	-------	--------	----	----

Chart Number: 180316A.csv Acceptable Range: 50% - 150%

Standard Source: _____ Standard ID: _____

	WL/		ICSAE 03/16/1 3:01 PM	l Л	and the second				-			
Element	Mass	True Conc	Found	% Rec	Found	% Rec	Found	% Rec	Found	% Rec	Found	% Rec
Antimony	121	100		103.7		-						
Arsenic	75	100		103.0								
Barium	137	100	1	106.4								·
Beryllium	9	100	l	101.1								
Cadmium	111	100	l .	105.9								
Chromium	52	100	107.3	107.3								
Cobalt	59	100	l	106.0								
Copper	65	100	105.5	105.5								
Iron	56	50000	53010.0	106.0				,				
Lead	208	100	103.1	103.1								
Manganese	55	100	105.8	105.8								
Molybdenum	95	1000	1087.7	108.8								
Nickel	60	100	106.8	106.8								
Selenium	78	100	100.7	100.7								
Silver	107	100	112.7	112.7								
Thallium	205	100	98.4	98.4		ļ						
Vanadium	51	100	106.9	106.9								
Zinc	66	100	106.6	106.6								

CASE NARRATIVE

Client: TestAmerica Laboratories, Inc.

Project: MRC MD/A1C040534

Report Number: 460-23660-1

This case narrative is in the form of an exception report, where only the anomalies related to this report, method specific performance and/or QA/QC issues are discussed. If there are no issues to report, this narrative will include a statement that documents that there are no relevant data issues.

It should be noted that samples with elevated Reporting Limits (RLs) as a result of a dilution may not be able to satisfy customer reporting limits in some cases. Such increases in the RLs are unavoidable but acceptable consequence of sample dilution that enables quantification of target analytes or interferences which exceed the calibration range of the instrument.

Calculations are performed before rounding to avoid round-off errors in calculated results.

All holding times were met and proper preservation noted for the methods performed on these samples, unless otherwise detailed in the individual sections below.

RECEIPT

The samples were received on 03/04/2011; the samples arrived in good condition, properly preserved and on ice. The temperature of the coolers at receipt was 3.0 C.

Note: All samples which require thermal preservation are considered acceptable if the arrival temperature is within 2C of the required temperature or method specified range. For samples with a specified temperature of 4C, samples with a temperature ranging from just above freezing temperature of water to 6C shall be acceptable. Samples that are hand delivered immediately following collection may not meet these criteria, however they will be deemed acceptable according to NELAC standards, if there is evidence that the chilling process has begun, such as arrival on ice, etc.

HEXAVALENT CHROMIUM

Samples 460-23660-1 through 460-23660-5 were analyzed for hexavalent chromium in accordance with EPA SW-846 Method 7199. The samples were analyzed on 03/04/2011.

No difficulties were encountered during the hex chrome analyses.

All quality control parameters were within the acceptance limits.

SAMPLE SUMMARY

Client: TestAmerica Laboratories, Inc.

Job Number: 460-23660-1

Sdg Number: A1C040534

			Date/Time	Date/Time
Lab Sample ID	Client Sample ID	Client Matrix	Sampled	Received
460-23660-1	MSA-SW37-030311	Water	03/03/2011 1230	03/04/2011 0945
460-23660-2	MSA-SW38-030311	Water	03/03/2011 1300	03/04/2011 0945
460-23660-3	MSA-SW39-030311	Water	03/03/2011 1350	03/04/2011 0945
460-23660-4	MSA-SW40-030311	Water	03/03/2011 1248	03/04/2011 0945
460-23660-5	MSA-SW41-030311	Water	03/03/2011 1317	03/04/2011 0945

COVER PAGE GENERAL CHEMISTRY

Lab Name: TestAmerica Edison	Job Number: 460-23660-1
SDG No.: A1C040534	
Project: MRC MD/A1C040534	
Client Sample ID	Lab Sample ID
MSA-SW37-030311	460-23660-1
MSA-SW38-030311	460-23660-2
MSA-SW39-030311	460-23660-3
MSA-SW40-030311	460-23660-4
MSA-SW41-030311	460-23660-5

Comments:

9-IN DETECTION LIMITS GENERAL CHEMISTRY

Lab Name: TestAmerica Edison	Job Number: 460-23660-1
SDG Number: AlC040534	
Matrix: Water	Instrument ID: IC A
Analysis Method: 7199	MDL Date: 08/06/2010 10:12
Prep Method:	
Leach Method:	
Analyte	Wavelength/ RL MDL Mass (ug/L) (ug/L)

9-IN CALIBRATION BLANK DETECTION LIMITS GENERAL CHEMISTRY

Lab Name: TestAmerica Edison	Job N	Number: 460-2	3660-1	
SDG Number: A1C040534				
Matrix: Water	Instr	nument ID: IC	A	
Analysis Method: 7199	XMDL	Date: 08/06	/2010 10:12	
Analyte	Wavelength/ Mass	XRL (ug/L)	XMDL (ug/L)	
Chromium (hexavalent)		1	0.56	3

13-IN ANALYSIS RUN LOG GENERAL CHEMISTRY

Lab Name: TestAmerica Edison

Job No.: 460-23660-1

SDG No.: A1C040534

Instrument ID: IC A

Method: 7199

Start Date: 03/04/2011 10:05

End Date: 03/04/2011 13:54

							Analy	tes					
				C r 6				:	:	:		:	
Lab Sample ID	D / F	· Т У Р		Ο,				:					
		e	Time										
22222		Ţ	10:05					-	_	+			
ZZZZZZ		·	10:12					··-		 			
ZZZZZZ			10:20							1 1			
ZZZZZZ			10:27							-			
ZZZZZZ			10:35	1 :		• •				+ 1	+	!	
ICV 460-67276/6	1	ļ <u></u>	10:42	x		;			-	+	-	-	
ICB 460-67276/7	1		10:50	X				!!				- 4	
22222			10:58	··						- 			
MB 460-67276/9		T	11:05	X		: .					+		
LCS 460-67276/10	1	T	11:13	Х					<u>-</u>				
ZZZZZZ		 	11:21										
460-23660-1	1	T	11:28	X					+				
	·	i	11:36			1.		<u>-</u>					
460-23660-2	<u> </u>	Т	11:44	X						 			
ZZZZZZ			11:51										
460-23660-3	1	T	11:59	X			+++						
ZZZZZZ		·	12:07					++					-
CCV 460-67276/18	1	: 	12:14	x					 				
CCB 460-67276/19	1	···	12:22	x		- : .			-i	+	+-+		
460-23660-4	1	T	12:30	X					-	++	++	-	-
ZZZZZZ			12:38	+ + + + + + + + + + + + + + + + + + + +	· -		- 1 4-			+			-
460-23660-5	1	Т	12:45	X								-	-
ZZZZZZ			12:53	-+						+	+-+		
460-23660-5 DU	1	Т	13:01	X			<u> </u>	-			+		
ZZZZZZ			13:08				111			 			
ZZZZZZ			13:16								-		-
460-23660-5 MS	i	T	13:24	X						 	-		
ZZZZZZ			13:31			ļ ļ.				-	1 -		
460-23660 - 5 PDS	1	Т	13:39	X			 -		i	 	-		
CCV 460-67276/30	1		13:47	X									
CCB 460-67276/31	1		13:54	X									

Prep Types

T = Total/NA

2-IN CALIBRATION QUALITY CONTROL GENERAL CHEMISTRY

Lab Nam	ne: Te	estAmer	ica Ediso	on		Job No	o.: 460-	23660-1			
SDG No.	: A10	040534									
Analyst	: RK					Batch	Start Da	te: 03/	04/20	11	
Reporting Units: ug/L						Analytical Batch No.:			67276		
Sample Number	QC Type	Time	Analyte		Result	Spike Amount	(%) Recovery	Limits	Qual	Reagent	
6	ICV	10:42	Chromium	(hexavalent)	24.83	25.0	99	90-110		WThcrIM6_00283	
7	ICB	10:50	Chromium	(hexavalent)	1.0				Ü		
18	CCA	12:14	Chromium	(hexavalent)	25.69	25.0	103	90-110		WThcrIM6_00283	
19	ССВ	12:22	Chromium	(hexavalent)	1.0				U		
30	CCV	13:47	Chromium	(hexavalent)	25.66	25.0	103	90-110		WThcrIM6_00283	
31	ССВ	13:54	Chromium	(hexavalent)	1.0				Ü		

3-IN METHOD BLANK GENERAL CHEMISTRY

Lab Name:	TestAmerica E		Job No.: 460-23660-1	
SDG No.:	A1C040534			
Method	Lab Sample ID	Analyte	Result Qual Units	RL Dil
Batch ID	: 67276 Date:	03/04/2011 11:05		· · · · · · · · · · · · · · · · · · ·
7199	MB 460-67276/9	Chromium (hexavalent)	1.0 U ug/L	1.0 1

5-IN MATRIX SPIKE SAMPLE RECOVERY GENERAL CHEMISTRY

Lab Nam	ne: TestAmeri	.ca Edison	Ċ	Job No.:		-1				
SDG No.	: A1C040534									
Matrix:	Water									
Method	Lab Sample ID		Result	C Unit	Spike Amount	Pct. Rec.	Limits	RPD -	RPD Limit	Q .
Batch	ID: 67276									
7199	460-23660-5	Chromium (hexavalent)	1.0	U ug/L						
7199	460-23660-5 MS	Chromium (hexavalent)	40.18	ug/L	40.0	100	85-115			

5-IN POST DIGESTION SPIKE SAMPLE RECOVERY GENERAL CHEMISTRY

Lab Name: TestAmerica Edison	Job No.: 460-23660-1
SDG No.: A1C040534	
Matrix: Water	
Method Lab Sample ID Analyte	Spike Pct. RPD Result C Unit Amount Rec. Limits RPD Limit Q
Batch ID: 67276 Date: 03/04/2011 13:39	
7199 460-23660-5 Chromium (hexavalent)	1.0 U ug/L
7199 460-23660-5 Chromium (hexavalent) PDS	4.53 ug/L 5.00 91 85-115

6-IN DUPLICATE GENERAL CHEMISTRY

Lab Name: TestAmerica Edison Job No.: 460-23660-1

SDG No.: A1C040534

Matrix: Water

						
Method	Client Sample ID	Lab Sample ID	Analyte	Result Unit RPD	RPD Limit Q	ual
Batch ID:		: 03/04/2011 13:01				
7199	MSA-SW41-030311	460-23660-5	Chromium (hexavalent)	1.0 ug/L		U
7199	MSA-SW41-030313	460-23660-5 DU	Chromium (hexavalent)	1.0 ug/L NC	20	U

7A-IN LAB CONTROL SAMPLE GENERAL CHEMISTRY

Lab Name: TestAmerica Edison	Job No.	: 460-23660-1	
SDG No.: A1C040534			
Matrix: Water			
Method Lab Sample ID Analyte	Result C Unit	Spike Pct. Amount Rec.	RPD Limits RPD Limit Q
Batch ID: 67276 Date: 03/04/2011 11:1	3	I.C.C. Courses Limbours C	25, 00021
7199 LCS Chromium (hexavalent) 460-67276/10		LCS Source: WThcrsLC	85-115

Case Narrative

TestAmerica West Sacramento Project Number A1C040534

General Comments

The samples were received at 0 degrees C.

WATER, 314.0, Perchlorate

Samples: 3, 5, 6

These samples were analyzed at dilutions due to matrix interferences. The reporting limits have been elevated accordingly.

There are no other anomalies associated with this project.

Perchlorate QC Check Sheet

 File Name:
 030911A

 Chemist:
 JDR

 Date:
 3/9/2011

 $\mathbf{RL} = \frac{2\pi^2}{2\pi^2} (2\pi^4, 4^2 + 2\pi^2) \qquad \text{ug/L}$

Sample ID	<u>Criteria</u>	True Value (ug/L)	Result	% Rec	Acceptance Criteria	Pass/Fail
Blank	baseline noise	n/a	0.0008	n/a	noise < 0.005	PASS
QCS/ICS	% Recovery	50	50.7147	101%	90% - 110%	PASS
ICB	< 1/2 MRL	n/a	ND	n/a	< 1/2 MRL	PASS
IPC/MCT	% Recovery	25	21.8937	88%	80% - 120%	PASS
	PD _{AH (ICV vs MCT)} A/H ICV A/H MCT	n/a 0.2549 0.2877	12.1%	n/a	< 25%	PASS
	Retention Time Shift RT ICV RT MCT	n/a 8:364 8:297	0.8%	n/a	< 5%	PASS
	ΔEC of IPC/MCT	Original EC 4880 RPD =	<u>Daily EC</u> 5040 3%	n/a 	< 10%	PASS
ICCS	% Recovery % Recovery	4 . 1	3.782 0.955	95% 96%	75% - 125% 75% - 125%	PASS PASS

METHOD BLANK REPORT

General Chemistry

Client Lot #...: A1C040534

Matrix..... WATER

		REPORTIN	G		PREPARATION-	PREP
PARAMETER	RESULT	LIMIT	UNITS	METHOD	ANALYSIS DATE	BATCH #
Perchlorate		Work Order	#: MFHAM1AA	MB Lot-Sample #:	G1C100000-295	
	ND	1.0	ug/L	MCAWW 314.0	03/09/11	1069295
		Dilution Fact	tor: 1			

Diructon Factor: .

NOTE(S):

LABORATORY CONTROL SAMPLE EVALUATION REPORT

General Chemistry

Client Lot #...: A1C040534

Matrix..... WATER

PERCENT RECOVERY RECOVERY

PREPARATION-

PREP

PARAMETER

LIMITS

METHOD

ANALYSIS DATE

BATCH #

Perchlorate

(85 - 115)

Work Order #: MFHAM1AC LCS Lot-Sample#: G1C100000-295 MCAWW 314.0

03/09/11

1069295

Dilution Factor: 1

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results

101

MATRIX SPIKE SAMPLE EVALUATION REPORT

General Chemistry

Client Lot #...: A1C040534

Matrix..... WG

Date Sampled...: 03/03/11 13:00 Date Received..: 03/04/11

		RECOVERY	RPD		PREPARATION-	PREP
PARAMETER	RECOVERY	LIMITS	RPD LIMITS	METHOD	ANALYSIS DAT	E BATCH #
Perchlorate		WO#:	ME7571CP-MS/	ME7571CQ-MSD	MS Lot-Sample #:	A1C040534-003
	93	(80 - 120)		MCAWW 314.0	03/09/11	1069295
	94	(80 - 120)	1.1 (0-20)	MCAWW 314.0	03/09/11	1069295
	•	Diluta	on Factor: 2			

Calculations are performed before rounding to avoid round-off errors in calculated results.

030911A

Operator: rogersj

Page 1 of 4 Printed: 3/10/2011 12:39:23

Title:

Datasource:

SACP205B_local

Location: Timebase: ICS-2000\2011\MAR 11

#Samples:

ICS-2000 55

) Cr

Created: Last Update: 3/9/2011 13:04:00 by rogersj 3/10/2011 12:39:18 by rogersj

No.	Na	me	Amount	Dil. Factor	Weight Inj. Date/Time	e Program	Туре
			Perchlorate ECD_1				
1	Õ	S0	n.a.	1.0000	1.0000 3/4/2011 11:1	6:40 ICS-2000	Standard
2		STD1	0.982	1.0000	1.0000 3/4/2011 11:3	2-05 ICS-2000	Standard
3	Ճ	STD2	4.050	1.0000	1.0000 3/4/2011 11:4	7:30 ICS-2000	Standard
4		STD3	20.244	1.0000	1.0000 3/4/2011 12:0	2:55 ICS-2000	Standard
5	Õ	STD4	39.983	1.0000	1.0000 3/4/2011 12:1	8:19 ICS-2000	Standard
6		STD5	59.485	1.0000	1.0000 3/4/2011 12:3	3:43 ICS-2000	Standard
7	7	STD6	80.016	1.0000	1.0000 3/4/2011 12:49	9:08 ICS-2000	Standard
8	②	STD7	100.242	1.0000	1.0000 3/4/2011 13:04	4:32 ICS-2000	Standard
9	2	BLANK	n.a.	1.0000	1.0000 3/9/2011 13:28	8:59 ICS-2000	Unknown
10	2	QCS/ICV 50 PPB	50.715	1.0000	1.0000 3/9/2011 13:4	4:24 ICS-2000	Unknown
11	2	ICB	n.a.	1.0000	1.0000 3/9/2011 13:5	9:49 ICS-2000	Unknown
12	3	ICCS 1 PPB	0.955	1.0000	1.0000 3/9/2011 14:13	5:13 ICS-2000	Unknown
13	2	ICCS 4 PPB	3.782	1.0000	1.0000 3/9/2011 14:3	0:38 ICS-2000	Unknown
14	2	IPC/MCT 25 PPB @ 600 PPM	21.894	1.0000	1.0000 3/9/2011 14:4	6:04 ICS-2000	Unknown
15	2	G1C040609-1	2409.453	1.0000	1.0000 3/9/2011 15:0	1:28 ICS-2000	Unknown
16	Ø	A1C040534-3 2X	n.a.	2.0000	1.0000 3/9/2011 15:16	6:52 ICS-2000	Unknown
17	2	A1C040534-5 2X	n.a.	2.0000	1.0000 3/9/2011 15:33	2:17 ICS-2000	Unknown
18	2	A1C040534-6 2X	n.a.	2.0000	1.0000 3/9/2011 15:43	7:41 ICS-2000	Unknown
19	2	G1C040609-1 500X	5197.375	500.0000	1.0000 3/9/2011 16:03	3:06 ICS-2000	Unknown
20	2	A1C040534-3S 2X	93.333	2.0000	1.0000 3/9/2011 16:18	8·31 ICS-2000	Unknown
21	2	A1C040534-3D 2X	94.373	2.0000	1.0000 3/9/2011 16:33		Unknown
22	2	G1C040609-1 200X	4732.942	200.0000	1.0000 3/9/2011 16:49	9:20 ICS-2000	Unknown
23	2	G1C040609-1S 200X	14399.295	200.0000	1.0000 3/9/2011 17:04		Unknown
24	2	G1C040609-1D 200X	14601.598	200.0000	1.0000 3/9/2011 17:20		Unknown
25	2	CCV 100 PPB	103.471	1.0000	1.0000 3/9/2011 17:35		Unknown
26	2	CCB	n.a.	1.0000	1.0000 3/9/2011 17:50		Unknown
27	2	MB-1	n a.	1.0000	0.1000 3/9/2011 18:06		Unknown
28	2	LCS-1	504.027	1.0000	0.1000 3/9/2011 18:21		Unknown
29	0	G1C030551-1	108.538	1.0000	0.0998 3/9/2011 18:37		Unknown
30	3	G1C030551-2	2749.113	1.0000	0.1003 3/9/2011 18:52		Unknown
31	2	G1C030551-3	1171,777	1.0000	0.0995 3/9/2011 19:08		Unknown
32	3	G1C030551-4	148.141	1.0000	0.1020 3/9/2011 19:23		Unknown
33	2	G1C030551-5	80.617	1.0000	0.1003 3/9/2011 19:38		Unknown
34	2	G1C030551-6	4053.233	1.0000	0.1000 3/9/2011 19:54		Unknown
35	2	G1C030551-7	3023.701	1.0000	0.0988 3/9/2011 20:09		Unknown
36	2	G1C030551-8	1376.068	1.0000	0.0990 3/9/2011 20:25		Unknown
37	3	CCV 60 PPB	62.366	1.0000	1.0000 3/9/2011 20:40		Unknown
38	<u> </u>	CCB	n.a.	1.0000	1.0000 3/9/2011 20:55		Unknown
39	3	G1C030551-9	148.544	1.0000	0.1010 3/9/2011 21:11		Unknown
40	2	G1C030551-10	474.492	1.0000	0.1008 3/9/2011 21:26	5:41 ICS-2000	Unknown

030911A

Operator:

rogersj

Page 2 of 4 Printed: 3/10/2011 12:39:23

Title:

Datasource:

Location: Timebase:

#Samples.

55

SACP205B_local ICS-2000\2011\MAR 11 ICS-2000

Created: Last Update: 3/9/2011 13:04:00 by rogersj 3/10/2011 12:39:18 by rogersj

No.	Na	me	Method	Status	Inj. Vol. Comment
1	Ō	S0	perchlorate	Finished	1000.0
2	Ö	STD1	perchlorate	Finished	1000.0
3		\$TD2	perchlorate	Finished	1000.0
4		STD3	perchlorate	Finished	1000.0
5		STD4	perchlorate	Finished	1000.0
6		STD5	perchlorate	Finished	1000.0
7		STD6	perchlorate	Finished	1000.0
8		STD7	perchlorate	Finished	1000.0
9	<u> </u>	BLANK	perchlorate	Finished	1000.0
10	2	QCS/ICV 50 PPB	perchlorate	Finished	1000.0
11	7	ICB	perchlorate	Finished	1000.0
12	2	ICCS 1 PPB	perchlorate	Finished	1000.0
13	3	ICCS 4 PPB	perchlorate	Finished	1000.0
14	7	IPC/MCT 25 PPB @ 600 PPM	perchlorate	Finished	1000.0
15	3	G1C040609-1	perchlorate	Finished	1000.0
16	3	A1C040534-3 2X	perchlorate	Finished	1000.0
17	7	A1C040534-5 2X	perchlorate	Finished	1000.0
18	2	A1C040534-6 2X	perchlorate	Finished	1000.0
19	2	G1C040609-1 500X	perchlorate	Finished	1000.0
20	7	A1C040534-3S 2X	perchlorate -	Finished	1000.0
21	2	A1C040534-3D 2X	perchlorate	Finished	1000.0
22	2	G1C040609-1 200X	perchlorate	Finished	1000.0
23	3	G1C040609-1S 200X	perchlorate	Finished	1000.0
24	3	G1C040609-1D 200X	perchlorate	Finished	1000.0
25	3	CCV 100 PPB	perchlorate	Finished	1000 0
26	2	CCB	perchlorate	Finished	1000 0
27	8	MB-1	perchlorate	Finished	1000.0
28	2	LCS-1	perchlorate	Finished	1000.0
29	2	G1C030551-1	perchlorate	Finished	1000.0
30	2	G1C030551-2	perchlorate	Finished	1000.0
31	2	G1C030551-3	perchlorate	Finished	1000.0
32	3	G1C030551-4	perchlorate	Finished	1000.0
33	2	G1C030551-5	perchlorate	Finished	1000.0
34	2	G1C030551-6	perchlorate	Finished	1000.0
35	8	G1C030551-7	perchlorate	Finished	1000.0
36	8	G1C030551-8	perchlorate	Finished	1000.0
37	8	CCV 60 PPB	perchlorate	Finished	1000.0
38	2	CCB	perchlorate	Finished	1000.0
39	7	G1C030551-9	perchlorate	Finished	1000.0
40	7	G1C030551-10	perchlorate	Finished	1000.0

Sequence:

030911A

Operator:

rogersj

Page 3 of 4 Printed: 3/10/2011 12:39:24

Title:

TIUE.

Datasource: Location: SACP205B_local ICS-2000\2011\MAR 11

ICS-2000

Timebase: #Samples:

55

Created: Last Update: 3/9/2011 13:04:00 by rogersj 3/10/2011 12:39:18 by rogersj

No.	Name	Amount	Dil. Factor	Weight Inj. Date/Time	Program	Туре
		Perchlorate ECD_1				
41	图 G1C030551-11	4490.908	1.0000	0.0993 3/9/2011 21:42:05	ICS-2000	Unknown
42	资 G1C030551-12	276.862	1.0000	0.1000 3/9/2011 21:57:30	ICS-2000	Unknown
43	· 👸 G1C030551-13	157.118	1.0000	0.0990 3/9/2011 22:12:54	ICS-2000	Unknown
44	G1C030551-14	518.466	1.0000	0.1005 3/9/2011 22:28:19	ICS-2000	Unknown
45	g G1C030551-15	4275.162	1.0000	0.0995 3/9/2011 22:43:43	ICS-2000	Unknown
46	6 G1C030551-16	111,181	1.0000	0.1000 3/9/2011 22:59:08	JCS-2000	Unknown
47	👸 G1C030551-17	515.148	1.0000	0.1015 3/9/2011 23:14:32	ICS-2000	Unknown
48	覆 G1C030551-18	271.303	1.0000	0.1005 3/9/2011 23:29:57	ICS-2000	Unknown
49	CCV 100 PPB	107.040	1.0000	1.0000 3/9/2011 23:45:21	ICS-2000	Unknown
50	👸 CCB	n.a.	1.0000	1.0000 3/10/2011 00:00:46	ICS-2000	Unknown
51	图 G1C030551-19	734.037	1.0000	0.0995 3/10/2011 00:16:10	ICS-2000	Unknown
52	资 G1C030551-20	3384.258	1.0000	0.1005 3/10/2011 00:31:35	ICS-2000	Unknown
53	CCV 60 PPB	62.760	1.0000	1.0000 3/10/2011 00:46:59	ICS-2000	Unknown
54		n.a.	1.0000	1.0000 3/10/2011 01:02:24	ICS-2000	Unknown
55	SHUTDOWN	n.a.	1.0000	1.0000 3/10/2011 01:17:48	SHUTDOWN	Unknown

Sequence: Operator:

030911A

rogersj

Page 4 of 4 Printed: 3/10/2011 12:39:24

Title:

Datasource:

Location:

SACP205B_local ICS-2000\2011\MAR 11 ICS-2000

Timebase: #Samples:

55

Created:

3/9/2011 13:04:00 by rogersj

Last Update:

3/10/2011 12:39:18 by rogersj

No.	Nar	me	Method	Status	Inj. Vol. Comment	
41	7	G1C030551-11	perchlorate	Finished	1000.0	
42	8	G1C030551-12	perchlorate	Finished	1000.0	
43	2	G1C030551-13	perchlorate	Finished	1000.0	
44	2	G1C030551-14	perchlorate	Finished	1000.0	
45	2	G1C030551-15	perchlorate	Finished	1000.0	
46	3	G1C030551-16	perchlorate	Finished	1000.0	
47	2	G1C030551-17	perchlorate	Finished	1000.0	
48	3	G1C030551-18	perchlorate	Finished	1000.0	
49	3	CCV 100 PPB	perchlorate	Finished	1000.0	
50	3	CCB	perchlorate	Finished	1000.0	
51	3	G1C030551-19	perchlorate	Finished	1000.0	
52	2	G1C030551-20	perchlorate	Finished	1000.0	
53	2	CCV 60 PPB	perchlorate	Finished	1000.0	
54	7	CCB	perchlorate	Finished	1000.0	
55	<u> </u>	SHUTDOWN	perchlorate	Finished	1000.0	

Tetra Tech NUS

INTERNAL CORRESPONDENCE

TO:

D. MURALI

DATE:

APRIL 4, 2011

FROM:

EDWARD SEDLMYER

COPIES:

DV FILE

SUBJECT:

ORGANIC DATA VALIDATION- VOC/PAH

FROG MORTAR CREEK

SDG A1C040534

SAMPLES:

4/Aqueous/VOC/PAH

MSA-SW38-030311

MSA-SW40-030311

MSA-SW41-030311

TB-030311

Overview

The sample set for Frog Mortar Creek, SDG A1C040534 consists of three (3) aqueous environmental samples and one (1) trip blank. All samples were analyzed for volatile organic compounds (VOC) and polynuclear aromatic hydrocarbons (PAHs) and 1,4-dioxane. The trip blank was analyzed for VOCs only.

The samples were collected by Tetra Tech on March 3, 2011 and analyzed by Test America (North Canton). All analyses were conducted in accordance with SW-846 Methods 8260B and 8270C analytical and reporting protocols.

The data contained in this SDG were validated with regard to the following parameters: data completeness, holding times, GC/MS tuning, initial/continuing calibrations, laboratory method blank results, surrogate spike recoveries, blank spike/blank spike duplicate results, internal standard recoveries, chromatographic resolution, compound identification, compound quantitation, and detection limits. Areas of concern are listed below.

<u>Major</u>

 All VOC initial calibration and continuing calibration relative response factors (RRFs) were less than the 0.05 quality control limit for tert-butyl alcohol. The non-detected results reported for tert-butyl alcohol were rejected (UR).

Minor

 The following compound was detected in the trip blank at the maximum concentration indicated below:

Compound	Concentration	Action Level
Acetone	1.5 ug/L	15 ug/L

An action level of 10X the maximum contaminant concentration was established for acetone to evaluate laboratory contamination. Dilution factors and sample aliquots were taken into consideration during the application of all action levels. The positive result for acetone below the blank action level was qualified (B) as a result of blank contamination in sample MSA-SW41-030311.

 Positive results less than the reporting limit (RL) were qualified as estimated, (J), due to uncertainty near the detection limit.

Notes

The VOC continuing calibration % Ds were greater than the quality control limit of 20% but less than 50% for dichlorodifluoromethane, chloromethane, bromomethane, chloroethane, trichlorofluoromethane, 1,1,2-and trichlorotrifluoroethanefor instrument a3ux15 on 3/11/11 @ 10:28. All of the aforementioned compounds were non-detected; therefore, no data qualification was necessary.

Sample MSA-SW38-030311 required a 4 times dilution because of concentrations greater than the linear calibration range of the instrument for cis-1,2-dichloroethene and vinyl chloride. The laboratory only submitted one run for sample MSA-SW38-030311 so this accounts for the elevated detection limits for the nondetected compounds.

Results were reported to the method detection limit (MDL).

Executive Summary

Laboratory Performance: The VOC compound tert-butyl alcohol was rejected in all samples due to a poor response factor. Blank contamination for the VOC fraction resulted in the qualification of data.

Other Factors Affecting Data Quality: None.

The data for these analyses were reviewed with reference to Region III modifications to U.S. EPA National Functional Guidelines for Organic Data Validation (Sept. 1994). The text of this report has been formulated to address only those problem areas affecting data quality.

Terra Tech-MUS

Edward Sedlmyer Chemist/Data Validator

Tetra Teel NUS Joseph A. Samchuck

Quality Assurance Officer

Attachments:

Appendix A – Qualified Analytical Results

Appendix B – Results as Reported by the Laboratory

Appendix C - Support Documentation

Appendix A

Qualified Analytical Results

Data Validation Qualifier Codes:

A = Lab Blank Contamination

B = Field Blank Contamination

C = Calibration Noncompliance (e.g. % RSDs, %Ds, ICVs, CCVs, RRFs, etc.)

C01 = GC/MS Tuning Noncompliance

D = MS/MSD Recovery Noncompliance

E = LCS/LCSD Recovery Noncompliance

F = Lab Duplicate Imprecision

G = Field Duplicate Imprecision

H = Holding Time Exceedance

I = ICP Serial Dilution Noncompliance

J = GFAA PDS - GFAA MSA's r < 0.995 / ICP PDS Recovery Noncompliance

K = ICP Interference - includes ICS % R Noncompliance

L = Instrument Calibration Range Exceedance

M = Sample Preservation Noncompliance

N = Internal Standard Noncompliance

N01 = Internal Standard Recovery Noncompliance Dioxins

N02 = Recovery Standard Noncompliance Dioxins

N03 = Clean-up Standard Noncompliance Dioxins

O = Poor Instrument Performance (e.g. base-line drifting)

P = Uncertainty near detection limit (< 2 x IDL for inorganics and <CRQL for organics)

Q = Other problems (can encompass a number of issues; e.g. chromatography,interferences, etc.)

R = Surrogates Recovery Noncompliance

S = Pesticide/PCB Resolution

T = % Breakdown Noncompliance for DDT and Endrin

U = % Difference between columns/detectors >25% for positive results determined via GC/HPLC

V = Non-linear calibrations; correlation coefficient r < 0.995

W = EMPC result

X = Signal to noise response drop

Y = Percent solids <30%

Z = Uncertainty at 2 sigma deviation is greater than sample activity

Appendix B

Results as Reported by the Laboratory

Client Sample ID: MSA-SW38-030311

GC/MS Volatiles

Lot-Sample #...: A1C040534-003 Work Order #...: ME7571AA Matrix...... WG

Date Sampled:..: 03/03/11 13:00 Date Received.:: 03/04/11 Prep Date....: 03/11/11 Analysis Date.:: 03/11/11

Prep Batch #...: 1073129

Dilution Factor: 4 Initial Wgt/Vol: 5 mL Final Wgt/Vol.: 5 mL

Method.....: SW846 8260B

		REPORTI	ic .
PARAMETER	RESULT	LIMIT	UNITS
Acetone	ND	20	ug/L
Bromobenzene	ND	4.0	ug/L
Bromochloromethane	ND	4.0	ug/L
Bromodichloromethane	ND	4.0	ug/L
2-Butanone	ND	20	ug/L
n-Butylbenzene	ND	4.0	ug/L
sec-Butylbenzene	ND	4.0	uq/L
tert-Butylbenzene	ND	4.0	ug/L
Carbon disulfide	ND	4.0	ug/L
Dibromochloromethane	ND	4.0	ug/L
1,2-Dibromo-3-chloro-	ND	8.0	ug/L
propane			~ 9 , 2
2-Chloroethyl vinyl ether	ND	20	ug/L
2-Chlorotoluene	ND	4.0	ug/L
4-Chlorotoluene	ND	4.0	ug/L
1,2-Dibromoethane	ND	4.0	ug/L
Dibromomethane	ND	4.0	ug/L
1,2-Dichlorobenzene	ND	4.0	ug/L
1,3-Dichlorobenzene	ND	4.0	ug/L
1,4-Dichlorobenzene	3.9 J	4.0	ug/L
Dichlorodifluoromethane	ND	4.0	ug/L
cis-1,2-Dichloroethene	130	4.0	uq/L
trans-1,2-Dichloroethene	0.87 J	4.0	ug/L
1,3-Dichloropropane	ND	4.0	ug/L
2,2-Dichloropropane	ND	4.0	ug/L
1,1-Dichloropropene	ND	4.0	ug/L
Trichlorofluoromethane	ND	4.0	ug/L
Hexachlorobutadiene	ND	4.0	ug/L
2-Hexanone	ND	20	ug/L
Isopropylbenzene	ND	4.0	ug/L
p-Isopropyltoluene	ND	4.0	ug/L
tert-Butyl alcohol	ND	80	ug/L
4-Methyl-2-pentanone	ND	20	ug/L
Naphthalene	ND	4.0	ug/L
n-Propylbenzene	ND	4.0	ug/L
Styrene	ND	4.0	ug/L
1,1,1,2-Tetrachloroethane	ND	4.0	ug/L
1,2,3-Trichlorobenzene	ND	4.0	ug/L
			_

(Continued on next page)

Client Sample ID: MSA-SW38-030311

GC/MS Volatiles

	310040504 000	1 0 1 N	10000000		
Lot-Sample #:	A1C040534-003	work urger #	: ME/5/1AA	Matrix	: WG

		REPORTI	1G
PARAMETER	RESULT	LIMIT	UNITS
,2,4-Trichloro-	1.2 J	4 - 0	ug/L
benzene			
,2,3-Trichloropropane	ND	4.0	ug/L
,1,2-Trichloro-	ND	4.0	ug/L
1,2,2-trifluoroethane			
,2,4-Trimethylbenzene	ND	4.0	ug/L
inyl acetate	ND	8.0	ug/L
-Xylene	2.8 J	4.0	\mathtt{ug}/\mathtt{L}
ylenes (total)	16	8.0	${ m ug/L}$
ethyl tert-butyl ether	ND	20	ug/L
-Xylene & p-Xylene	14	8.0	ug/L
,2,3-Trimethylbenzene	ND	20	ug/L
iisopropyl Ether (DIPE)	ND	20	ug/L
thyl-t-Butyl Ether (ETBE)	ND	20	ug/L
ert-amyl methyl ether (TAME)	ND	20	ug/L
enzene	ND	4.0	ug/L
romoform	ND	4.0	ug/L
romomethane	ND	4.0	ug/L
arbon tetrachloride	ND	4.0	ug/L
nlorobenzene	ND	4.0	ug/L
hloroethane	ND	4.0	ug/L
hloroform	ND	4.0	ug/L
hloromethane	ND	4.0	ug/L
,1-Dichloroethane	ND	4.0	ug/L
,2-Dichloroethane	ND	4.0	ug/L
,1-Dichloroethene	1.4 J	4.0	ug/L
,2-Dichloropropane	ND	4.0	ug/L
is-1,3-Dichloropropene	ND	4.0	ug/L
rans-1,3-Dichloropropene	ND	4.0	ug/L
thylbenzene	1.9 J	4.0	ug/L
ethylene chloride	ND	4.0	ug/L
,1,2,2-Tetrachloroethane	ND	4.0	ug/L
etrachloroethene	ND	4.0	ug/L
oluene	1.4 J	4.0	ug/L
,1,1-Trichloroethane	ND	4.0	ug/L
richloroethene	32	4.0	ug/L
inyl chloride	140	4.0	ug/L
	·		~g, ~
	PERCENT	RECOVER	(
URROGATE	RECOVERY	LIMITS	
Dibromofluoromethane	102	$\frac{211115}{(75 - 12)}$	21)
,2-Dichloroethane-d4	110	(63 - 12	
Coluene-d8	107	(74 - 1)	•
-Bromofluorobenzene	107	(66 - 13	

NOTE (S):

J Estimated result. Result is less than RL.

Client Sample ID: MSA-SW40-030311

GC/MS Volatiles

Lot-Sample #...: A1C040534-005 Work Order #...: ME76H1AM Matrix...... WG

Date Sampled...: 03/03/11 12:48 Date Received..: 03/04/11
Prep Date....: 03/11/11 Analysis Date..: 03/11/11

Prep Batch #...: 1073129

Dilution Factor: 1 Initial Wgt/Vol: 5 mL Final Wgt/Vol.: 5 mL

Method.....: SW846 8260B

		REPORTING	
PARAMETER	RESULT	LIMIT	UNITS
Acetone	ND	5.0	ug/L
Bromobenzene	ND	1.0	ug/L
Bromochloromethane	ND	1.0	ug/L
Bromodichloromethane	ND	1.0	ug/L
2-Butanone	ND	5.0	ug/L
n-Butylbenzene	ND .	1.0	ug/L
sec-Butylbenzene	ND	1.0	ug/L
tert-Butylbenzene	ND	1.0	ug/L
Carbon disulfide	ND	1.0	ug/L
Dibromochloromethane	ND	1.0	ug/L
1,2-Dibromo-3-chloro-	ИD	2.0	ug/L
propane			
2-Chloroethyl vinyl ether	ND	5.0	ug/L
2-Chlorotoluene	ND	1.0	${ t ug/L}$
4-Chlorotoluene	ND	1.0	ug/L
1,2-Dibromoethane	ND	1.0	ug/L
Dibromomethane	ND	1.0	ug/L
1,2-Dichlorobenzene	ND	1.0	ug/L
1,3-Dichlorobenzene	ND	1.0	ug/L
1,4-Dichlorobenzene	ND	1.0	ug/L
Dichlorodifluoromethane	ND	1.0	ug/L
cis-1,2-Dichloroethene	5.5	1.0	ug/L
trans-1,2-Dichloroethene	ND	1.0	ug/L
1,3-Dichloropropane	ND	1.0	ug/L
2,2-Dichloropropane	ND	1.0	ug/L
1,1-Dichloropropene	ND	1.0	ug/L
Trichlorofluoromethane	ND	1.0	ug/L
Hexachlorobutadiene	ND .	1.0	ug/L
2-Hexanone	ND	5.0	ug/L
Isopropylbenzene	ND	1.0	ug/L
p-Isopropyltoluene	ND	1.0	ug/L
tert-Butyl alcohol	ND	20	ug/L
4-Methyl-2-pentanone	ND	5.0	ug/L
Naphthalene	ND	1.0	ug/L
n-Propylbenzene	ND	1.0	ug/L
Styrene	ND	1.0	ug/L
1,1,1,2-Tetrachloroethane	ND	1.0	ug/L
1,2,3-Trichlorobenzene	ND	1.0	ug/L

(Continued on next page)

Client Sample ID: MSA-SW40-030311

GC/MS Volatiles

Lot-Sample #:	A1C040534-005	Work Order #	ME76H1AM	Matrix	- WG

D1D1VE#P0		REPORTING	
PARAMETER	RESULT	LIMIT	UNITS
1,2,4-Trichloro-	ND	1.0	ug/L
benzene			
1,2,3-Trichloropropane	ND	1.0	ug/L
1,1,2-Trichloro-	ND	1.0	ug/L
1,2,2-trifluoroethane			
1,2,4-Trimethylbenzene	ND	1.0	ug/L
Vinyl acetate	ND	2.0	ug/L
o-Xylene	ND	1.0	ug/L
Xylenes (total)	ND	2.0	ug/L
Methyl tert-butyl ether	ND	5.0	ug/L
m-Xylene & p-Xylene	ND	2.0	ug/L
1,2,3-Trimethylbenzene	ND	5.0	ug/L
Diisopropyl Ether (DIPE)	ND	5.0	ug/L
Ethyl-t-Butyl Ether (ETBE)	ND ·	5.0	ug/L
Tert-amyl methyl ether (TAME)	ND	5.0	ug/L
Benzene	. ND	1.0	ug/L ug/L
Bromoform	ND ND	1.0	
Bromomethane	ND	1.0	ug/L
Carbon tetrachloride			ug/L
	ND	1.0	ug/L
Chlorobenzene Chloroethane	ND	1.0	ug/L
	ND	1.0	ug/L
Chloroform	ND	1.0	ug/L
Chloromethane	ND	1.0	ug/L
1,1-Dichloroethane	ND	1.0	ug/L
1,2-Dichloroethane	ND	1.0	ug/L
1,1-Dichloroethene	ND	1.0	ug/L
1,2-Dichloropropane	ND	1.0	ug/L ·
cis-1,3-Dichloropropene	ND	1.0	ug/L
trans-1,3-Dichloropropene	ND	1.0	ug/L
Ethylbenzene	ND	1.0	ug/L
Methylene chloride	ND	1.0	ug/L
1,1,2,2-Tetrachloroethane	ND	1.0	ug/L
Tetrachloroethene	ND	1.0	ug/L
Toluene	ND	1.0	ug/L
1,1,1-Trichloroethane	ND	1.0	ug/L
Trichloroethene	4.2	1.0	ug/L
Vinyl chloride	1.8	1.0	ug/L
- amj a onaorado	• O	1.0	ug/ 11
	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS	
Dibromofluoromethane	95	$\frac{514113}{(75 - 121)}$	
1,2-Dichloroethane-d4	107	(63 - 121)	
Toluene-d8		(63 - 129) (74 - 115)	
	107		
4-Bromofluorobenzene	105	(66 – 117)	

Client Sample ID: MSA-SW41-030311

GC/MS Volatiles

Lot-Sample #...: A1C040534-006 Work Order #...: ME76P1AM Matrix.....: WG

Date Sampled...: 03/03/11 13:17 Date Received..: 03/04/11
Prep Date....: 03/11/11 Analysis Date..: 03/11/11

Prep Batch #...: 1073129

Method....: SW846 8260B

		REPORTING	
PARAMETER	RESULT	LIMIT	UNITS
Acetone	5.7	5.0	ug/L
Bromobenzene	ND	1.0	ug/L
Bromochloromethane	ND	1.0	ug/L
Bromodichloromethane	ND	1.0	ug/L
2-Butanone	ND .	5.0	ug/L
n-Butylbenzene	ND	1.0	ug/L
sec-Butylbenzene	ND	1.0	ug/L
tert-Butylbenzene	ND	1.0	ug/L
Carbon disulfide	ND	1.0	ug/L
Dibromochloromethane	ND	1.0	ug/L
1,2-Dibromo-3-chloro-	ND	2.0	ug/L
propane			
2-Chloroethyl vinyl ether	ND	5.0	ug/L
2-Chlorotoluene	ND	1.0	ug/L
4-Chlorotoluene	ND	1.0	ug/L
1,2-Dibromoethane	ND	1.0	ug/L
Dibromomethane	ND	1.0	ug/L
1,2-Dichlorobenzene	ND	1.0	ug/L
1,3-Dichlorobenzene	ND	1.0	ug/L
1,4-Dichlorobenzene	0.38 J	1.0	ug/L
Dichlorodifluoromethane	ND	1.0	ug/L
cis-1,2-Dichloroethene	21	1.0	ug/L
trans-1,2-Dichloroethene	0.20 J	1.0	ug/L
1,3-Dichloropropane	ND	1.0	ug/L
2,2-Dichloropropane	ND	1.0	ug/L
1,1-Dichloropropene	ND	1.0	ug/L
Trichlorofluoromethane	ND	1.0	ug/L
Hexachlorobutadiene	ND	1.0	ug/L
2-Hexanone	ND	5.0	ug/L
Isopropylbenzene	ND	1.0	ug/L
p-Isopropyltoluene	ND	1.0	ug/L
tert-Butyl alcohol	ND	20	ug/L
4-Methyl-2-pentanone	ND	5.0	ug/L
Naphthalene	ND	1.0	ug/L
n-Propylbenzene	ND ·	1.0	ug/L
Styrene	ND	1.0	ug/L
1,1,1,2-Tetrachloroethane	ND	1.0	ug/L
1,2,3-Trichlorobenzene	ND	1.0	ug/L

(Continued on next page)

Client Sample ID: MSA-SW41-030311

GC/MS Volatiles

Lot-Sample #:	A1C040534-006	Mark Order	а.	MEGCETANA		
	1110010334 000	MOTY OTGET	# :	ME / 6 PI AM	Matrix:	WG

		DEDODMEN	
PARAMETER	RESULT	REPORTIN LIMIT	
1,2,4-Trichloro-	ND	1.0	UNITS
benzene	112	1.0	ug/L
1,2,3-Trichloropropane	· ND	1.0	
1,1,2-Trichloro-	ND		ug/L
1,2,2-trifluoroethane	ND	1.0	ug/L
1,2,4-Trimethylbenzene	ND	1 0	/=
Vinyl acetate		1.0	ug/L
o-Xylene	ND O 30 T	2.0	ug/L
Xylenes (total)	0.29 J	1.0	ug/L
Methyl tert-butyl ether	1.9 J	2.0	${ m ug/L}$
m-Xylene & p-Xylene	ND .	5.0	ug/L
	1.6 Ј	2.0	${ m ug/L}$
1,2,3-Trimethylbenzene	ND	5.0	${ t ug/L}$
Diisopropyl Ether (DIPE)	ND	5.0	ug/L
Ethyl-t-Butyl Ether (ETBE)	ND	5.0	ug/L
Tert-amyl methyl ether (TAME)	ND	5.0	ug/L
Benzene	ND	1.0	ug/L
Bromoform	ND	1.0	ug/L
Bromomethane	ND	1.0	ug/L
Carbon tetrachloride	ND	1.0	ug/L
Chlorobenzene	ND	1.0	ug/L
Chloroethane	ND	1.0	ug/L
Chloroform	ND	1.0	ug/L
Chloromethane	ND	1.0	ug/L
1,1-Dichloroethane	ND	1.0	ug/L
1,2-Dichloroethane	ND	1.0	ug/L
1,1-Dichloroethene	0.21 J	1.0	_
1,2-Dichloropropane	ND	1.0	ug/L
cis-1,3-Dichloropropene	ND		ug/L
trans-1,3-Dichloropropene	ND	1.0	ug/L
Ethylbenzene	0.23 Ј	1.0	ug/L
Methylene chloride	ND	1.0	ug/L
1,1,2,2-Tetrachloroethane		1.0	ug/L
Tetrachloroethene	ND	1.0	ug/L
Toluene	ND	1.0	ug/L
	ND	1.0	ug/L
1,1,1-Trichloroethane	ND	1.0	ug/L
Trichloroethene	24	1.0	ug/L
Vinyl chloride	8.7	1.0	ug/L
CUDDOCAME	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS	
Dibromofluoromethane	104	(75 - 121)
1,2-Dichloroethane-d4	112	(63 - 129)
Toluene-d8	106	(74 - 115)
4-Bromofluorobenzene	105	(66 - 117	
NOTE (S):			

J Estimated result. Result is less than RL.

Client Sample ID: TB-030311

GC/MS Volatiles

Lot-Sample #...: A1C040534-001 Work Order #...: ME75M1AA Matrix...... WQ

Date Sampled...: 03/03/11 10:00 Date Received..: 03/04/11
Prep Date....: 03/11/11 Analysis Date..: 03/11/11

Prep Batch #...: 1073129

Dilution Factor: 1 Initial Wgt/Vol: 5 mL Final Wgt/Vol.: 5 mL

Method....: SW846 8260B

		REPORTIN	G
PARAMETER	RESULT	LIMIT	UNITS
Acetone	1.5 J	5.0	ug/L
Bromobenzene	ND	1.0	ug/L
Bromochloromethane	ND	1.0	ug/L
Bromodichloromethane	ND	1.0	ug/L
2-Butanone	ND	5.0	ug/L
n-Butylbenzene	ND	1.0	ug/L
sec-Butylbenzene	ND	1.0	ug/L
tert-Butylbenzene	ND	1.0	ug/L
Carbon disulfide	ND	1.0	ug/L
Dibromochloromethane	ND	1.0	ug/L
1,2-Dibromo-3-chloro-	ND	2.0	ug/L
propane			
2-Chloroethyl vinyl ether	ND	5.0	ug/L
2-Chlorotoluene	ND	1.0	ug/L
4-Chlorotoluene	ND	1.0	ug/L
1,2-Dibromoethane	ND	1.0	ug/L
Dibromomethane	ND	1.0	ug/L
1,2-Dichlorobenzene	ND	1.0	ug/L
1,3-Dichlorobenzene	ND	1.0	ug/L
1,4-Dichlorobenzene	ND	1.0	ug/L
Dichlorodifluoromethane	ND	1.0	ug/L
cis-1,2-Dichloroethene	ND	1.0	ug/L
trans-1,2-Dichloroethene	ND	1.0	ug/L
1,3-Dichloropropane	ND	1.0	ug/L
2,2-Dichloropropane	ND	1.0	ug/L
1,1-Dichloropropene	ND	1.0	ug/L
Trichlorofluoromethane	ND	1.0	ug/L
Hexachlorobutadiene	ND	1.0	ug/L
2-Hexanone	ND	5.0	ug/L
Isopropylbenzene	ND	1.0	ug/L
p-Isopropyltoluene	ND	1.0	ug/L
tert-Butyl alcohol	ND	20	ug/L
4-Methyl-2-pentanone	ND	5.0	ug/L
Naphthalene	ND	1.0	ug/L
n-Propylbenzene	ND	1.0	ug/L
Styrene	ND	1.0	ug/L
1,1,1,2-Tetrachloroethane	ND	1.0	ug/L
1,2,3-Trichlorobenzene	ND	1.0	ug/L

(Continued on next page)

Client Sample ID: TB-030311

GC/MS Volatiles

Lot-Sample #: A1C040534-001	Work Order #: ME75M1AA	Matrix: WQ
-----------------------------	------------------------	------------

	REPORTING		İ	
ARAMETER	RESULT	LIMIT	UNITS	
,4-Trichloro-	ND	1.0	ug/L	
benzene			_	
2,3-Trichloropropane	ND	1.0	ug/L	
,2-Trichloro-	ND .	1.0	ug/L	
1,2,2-trifluoroethane			-	
,4-Trimethylbenzene	ND	1.0	ug/L	
nyl acetate	ND	2.0	ug/L	
Xylene .	ND	1.0	ug/L	
lenes (total)	ND	2.0	ug/L	
thyl tert-butyl ether	ND	5.0	ug/L	
Xylene & p-Xylene	ND	2.0	ug/L	
2,3-Trimethylbenzene	ND	5.0	ug/L	
sopropyl Ether (DIPE)	ND	5.0	ug/L	
yl-t-Butyl Ether (ETBE)	ND	5.0	ug/L	
t-amyl methyl ether (TAME)	ND	5.0	ug/L	
zene	ND	1.0	ug/L	
moform	ND	1.0	ug/L	
pmomethane	ND	1.0	ug/L	
bon tetrachloride	ND	1.0	ug/L	
orobenzene	ND	1.0	ug/L	
oroethane	ND	1.0	ug/L	
oroform	ND	1.0	ug/L	
oromethane	ND	1.0	ug/L ug/L	
-Dichloroethane	ND	1.0	ug/L	
-Dichloroethane	ND	1.0		
-Dichloroethene	ND	1.0	ug/L	
-Dichloropropane	ND		ug/L	
-1,3-Dichloropropene	ND	1.0	ug/L	
ns-1,3-Dichloropropene		1.0	ug/L	
ylbenzene	ND	1.0	ug/L	
	ND	1.0	ug/L	
hylene chloride	ND	1.0	ug/L	
,2,2-Tetrachloroethane	ND	1.0	ug/L	
rachloroethene	ND	1.0	ug/L	
uene	ND	1.0	ug/L	
,1-Trichloroethane	ND	1.0	ug/L	
chloroethene	ND	1.0	ug/L	
yl chloride	ND	1.0	ug/L	
	PERCENT	RECOVERY		
ROGATE	RECOVERY	LIMITS		
romofluoromethane	103	(75 - 121	.)	
-Dichloroethane-d4	110	(63 - 129		
uene-d8	113	(74 - 115		
Bromofluorobenzene	107	(66 - 117		

NOTE(S):

J Estimated result. Result is less than RL.

Client Sample ID: MSA-SW38-030311

GC/MS Semivolatiles

Lot-Sample #...: A1C040534-003 Work Order #...: ME7571AC Matrix......: WG

Date Sampled...: 03/03/11 13:00 Date Received..: 03/04/11 Prep Date....: 03/05/11 Analysis Date..: 03/10/11

Prep Batch #...: 1063310

Dilution Factor: 1 Initial Wgt/Vol: 1050 mL Final Wgt/Vol..: 2 mL

Method.....: SW846 8270C

		REPORTIN	IG
PARAMETER	RESULT	LIMIT	UNITS
1,4-Dioxane	2.6	1.0	ug/L
Acenaphthene	ND	0.20	ug/L
Acenaphthylene	ND	0.20	${\tt ug/L}$
Anthracene	ND	0.20	ug/L
Benzo(a)anthracene	ND	0.20	ug/L
Benzo(a)pyrene	ND	0.20	ug/L
Benzo(b)fluoranthene	ND	0.20	ug/L
Benzo(ghi)perylene	ND	0.20	ug/L
Benzo(k)fluoranthene	ND	0.20	ug/L
Chrysene	ND .	0.20	ug/L
Dibenzo(a,h)anthracene	ND	0.20	ug/L
Fluoranthene	ND	0.20	ug/L
Fluorene	ND	0.20	ug/L
Indeno(1,2,3-cd)pyrene	ND	0.20	ug/L
Naphthalene	ND	0.20	ug/L
Phenanthrene	ND	0.20	ug/L
Pyrene	ИD	0.20	ug/L
	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS	
Nitrobenzene-d5	53	(27 - 11	1)
2-Fluorobiphenyl	51 .	(28 - 11	0)
Terphenyl-d14	69	(37 - 119)	

Client Sample ID: MSA-SW40-030311

GC/MS Semivolatiles

Lot-Sample #:	A1C040534-005	Work Order	#: ME76H1AN	Matrix	: WG
---------------	---------------	------------	-------------	--------	------

Date Sampled...: 03/03/11 12:48 Date Received..: 03/04/11
Prep Date....: 03/05/11 Analysis Date..: 03/10/11

Prep Batch #...: 1063310

Dilution Factor: 1 Initial Wgt/Vol: 960 mL Final Wgt/Vol.: 2 mL

Method.....: SW846 8270C

		REPORTIN	G	
PARAMETER	RESULT	LIMIT	UNITS	
1,4-Dioxane	0.49 J	1.0	ug/L	
Acenaphthene	ND	0.20	ug/L	
Acenaphthylene	ND	0.20	ug/L	
Anthracene	ND	0.20	ug/L	
Benzo(a)anthracene	ND	0.20	ug/L	
Benzo(a)pyrene	ND	0.20	ug/L	
Benzo(b)fluoranthene	ND	0.20	ug/L	
Benzo(ghi)perylene	ND	0.20	ug/L	
Benzo(k)fluoranthene	ND	0.20	ug/L	
Chrysene	ND	0.20	ug/L	
Dibenzo(a,h)anthracene	ND	0.20	ug/L	
Fluoranthene	ND	0.20	ug/L	
Fluorene	ND	0.20	ug/L	
Indeno(1,2,3-cd)pyrene	ND	0.20	ug/L	
Naphthalene	ND	0.20	ug/L	
Phenanthrene	ND	0.20	ug/L	
Pyrene	ND	0.20	ug/L	•
	•			
	PERCENT	RECOVERY		
SURROGATE	RECOVERY	LIMITS		
Nitrobenzene-d5	50	(27 - 11	1)	
2-Fluorobiphenyl	50	(28 - 11	0)	
Terphenyl-d14	50	(37 - 11	9)	

NOTE (S):

J Estimated result. Result is less than RL.

Client Sample ID: MSA-SW41-030311

GC/MS Semivolatiles

Lot-Sample #...: A1C040534-006 Work Order #...: ME76P1AN Matrix...... WG

Date Sampled...: 03/03/11 13:17 Date Received..: 03/04/11 Prep Date....: 03/05/11 Analysis Date..: 03/10/11

Prep Batch #...: 1063310

Dilution Factor: 1 Initial Wgt/Vol: 1050 mL Final Wgt/Vol..: 2 mL

Method.....: SW846 8270C

DI DI VICENZIO		REPORTIN	
PARAMETER	RESULT	LIMIT	UNITS
1,4-Dioxane	ND	1.0	ug/L
Acenaphthene	ND	0.20	ug/L
Acenaphthylene	ND	0.20	ug/L
Anthracene	ND	0.20	ug/L
Benzo(a)anthracene	ND	0.20	ug/L
Benzo(a)pyrene	ND	0.20	ug/L
Benzo(b)fluoranthene	ND	0.20	ug/L
Benzo(ghi)perylene	ND	0.20	ug/L
Benzo(k)fluoranthene	ND	0.20	ug/L
Chrysene	ND	0.20	ug/L
Dibenzo(a,h)anthracene	ND	0.20	ug/L
Fluoranthene	ND	0.20	ug/L
Fluorene	ND	0.20	ug/L
Indeno(1,2,3-cd)pyrene	ND	0.20	ug/L
Naphthalene	ND	0.20	ug/L
Phenanthrene	ND	0.20	ug/L
Pyrene	ND	0.20	ug/L
	PERCENT	RECOVERY	•
SURROGATE	RECOVERY	LIMITS	
Nitrobenzene-d5	49	(27 - 11	.1)
2-Fluorobiphenyl	50	(28 - 11	
Terphenyl-d14	65	(37 - 11	9)
			•

Appendix C

Support Documentation

SDG A1C040534

SORT	UNITS	NSAMPLE	LAB_ID	QC_TYPE	SAMP_DATE	EXTR_DATE	ANAL_DATE	SMP_EXTR	EXTR_ANL	SMP_ANL
뙤	NG/L	MSA-SW37-030311	A1C040534002	WN	03/03/2011	03/07/2011	03/09/2011	4	2	9
일 위	NG/L	MSA-SW38-030311	A1C040534003	NN	03/03/2011	03/07/2011	03/09/2011	4	8	9
HG	NG/L	MSA-SW39-030311	A1C040534004	Σ	03/03/2011	03/07/2011	03/09/2011	4	7	9
HG	NG/L	MSA-SW40-030311	A1C040534005	Σ	03/03/2011	03/07/2011	03/09/2011	4	8	9
HG	NG/L	MSA-SW41-030311	A1C040534006	Σ	03/03/2011	03/07/2011	03/09/2011	4	8	9
Σ	NG/L	MSA-SW41-030311	A1C040534006	×	03/03/2011	03/07/2011	03/16/2011	4	თ	13
N	UG/L	MSA-SW37-030311	A1C040534002	N	03/03/2011	03/07/2011	03/16/2011	4	თ	13
≅	NG/L	MSA-SW38-030311	A1C040534003	ΣZ	03/03/2011	03/07/2011	03/16/2011	4	თ	5
∑	NG/L	MSA-SW39-030311	A1C040534004	ΣN	03/03/2011	03/07/2011	03/16/2011	4	თ	13
∑	NG/L	MSA-SW40-030311	A1C040534005	× N	03/03/2011	03/07/2011	03/16/2011	4	o	13
HGF	NG/L	MSA-SW41-030311	A1C040534006	WN	03/03/2011	03/07/2011	03/09/2011	4	81	9
HGF	UG/L	MSA-SW37-030311	A1C040534002	NN	03/03/2011	03/07/2011	03/09/2011	4	2	9
HGF	UG/L	MSA-SW38-030311	A1C040534003	MN	03/03/2011	03/07/2011	03/09/2011	4	۵	9
НGF	UG/L:	MSA-SW39-030311	A1C040534004	ΜN	03/03/2011	03/07/2011	03/09/2011	4	8	9
HGF	UG/L	MSA-SW40-030311	A1C040534005	N N	03/03/2011	03/07/2011	03/09/2011	4	8	9
Monday, I	Warch 28,	Monday, March 28, 2011							Δ.	Page 1 of 3

SORT	UNITS	NSAMPLE	LAB_ID	QC_TYPE	SAMP_DATE	EXTR_DATE	ANAL_DATE	SMP_EXTR	EXTR_ANL	SMP_ANL
MF	NG/L	MSA-SW39-030311	A1C040534004	NM	03/03/2011	03/07/2011	03/16/2011	4	6	13
MF	UG/L	MSA-SW38-030311	A1C040534003	N.	03/03/2011	03/07/2011	03/16/2011	4	O	5
MF	NG/L	MSA-SW41-030311	A1C040534006	ΣZ	03/03/2011	03/07/2011	03/16/2011	4	6	13
MF	NG/L	MSA-SW37-030311	A1C040534002	N.	03/03/2011	03/07/2011	03/16/2011	4	თ	13
MF	NG/L	MSA-SW40-030311	A1C040534005	N N	03/03/2011	03/07/2011	03/16/2011	. 4	თ	13
CR6	NG/L	MSA-SW38-030311	460-23660-2	N	03/03/2011	03/04/2011	03/04/2011	-	0	-
CR6	UG/L	MSA-SW39-030311	460-23660-3	N N	03/03/2011	03/04/2011	03/04/2011	−.	0	-
CR6	NG/L	MSA-SW37-030311	460-23660-1	N.	03/03/2011	03/04/2011	03/04/2011	-	0	-
CR6	NG/L	MSA-SW40-030311	460-23660-4	N N	03/03/2011	03/04/2011	03/04/2011	τ	0	-
CR6	NG/L	MSA-SW41-030311	460-23660-5	×	03/03/2011	03/04/2011	03/04/2011	-	0	-
PCL	NG/L	MSA-SW38-030311	A1C040534003	N N	03/03/2011	03/09/2011	03/09/2011	9	0	ပ
PCL	NG/L	MSA-SW40-030311	A1C040534005	×	03/03/2011	03/09/2011	03/09/2011	9	0	9
PCL	NG/L	MSA-SW41-030311	A1C040534006	× N	03/03/2011	03/09/2011	03/09/2011	ဖ	0	ပ
00	NG/L	MSA-SW38-030311	A1C040534003	ΣN	03/03/2011	03/11/2011	03/11/2011	ω	0	∞
0	NG/L	MSA-SW40-030311	A1C040534005	ΣN	03/03/2011	03/11/2011	03/11/2011	ω	0	ω .
00	NG/L	TB-030311	A1C040534001	NZ Z	03/03/2011	03/11/2011	03/11/2011	ω	0	œ
00	NG/L	TB-030311	A1C040534001	1 B	03/03/2011	03/11/2011	03/11/2011	ω	0	œ
۸٥	NG/L	MSA-SW41-030311	A1C040534006	N N	03/03/2011	03/11/2011	03/11/2011	∞	0	œ
Monday, March 28, 2011	March 28	2011							Δ.	Page 2 of 3

SORT	UNITS	UNITS NSAMPLE LAB	LAB_ID	QC_TYPE	QC_TYPE SAMP_DATE	EXTR_DATE	ANAL DATE	SMP_EXTR	SMP_EXTR EXTR_ANL SMP_ANL	SMP_ANL
SIM	NG/L	꽁	A1C040534003	NM	03/03/2011	03/05/2011	03/10/2011	2	5	7
SIM	NG/L	MSA-SW38-030311	A1C040534003	SUR	03/03/2011	03/05/2011	03/10/2011	2	വ	7
SIM	NG/L	MSA-SW40-030311	A1C040534005	NZ Z	03/03/2011	03/05/2011	03/10/2011	2	ည	7
SIM	NG/L	MSA-SW40-030311	A1C040534005	SUR	03/03/2011	03/05/2011	03/10/2011	5	ည	7
SIM	NG/L	MSA-SW41-030311	A1C040534006	W N	03/03/2011	03/05/2011	03/10/2011	2	လ	
SIM	NG/L	MSA-SW41-030311	A1C040534006	SUR	03/03/2011	03/05/2011	03/10/2011	8	ιc	7

ANALYTICAL REPORT

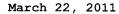
PROJECT NO. 112IC03292

MSA SURFACE WATER SAMPLING

Lot #: A1C040534

Tony Apanavage

Tetra Tech NUS Inc 20251 Century Blvd Suite 200 Germantown, MD 20874


TESTAMERICA LABORATORIES, INC.

Patrick J. O'Meara

Project Manager

patrick.omeara@testamericainc.com

Approved for release. Patrick O'Meara Project Manager 3/22/2011 5:55 PM

CASE NARRATIVE

CASE NARRATIVE

A1C040534

The following report contains the analytical results for five water samples and one quality control sample submitted to TestAmerica North Canton by Tetra Tech NUS, Inc from the MSA SURFACE WATER SAMPLING Site, project number 112IC03292. The samples were received March 04, 2011, according to documented sample acceptance procedures.

The 314.0 Perchlorate analysis was performed at the TestAmerica West Sacramento Laboratory. Refer to the TestAmerica West Sacramento narrative included in their data package for additional information.

The 7199 Hexavalent Chromium analysis was performed at the TestAmerica Edison Laboratory. Refer to the TestAmerica Edison narrative included in their data package for additional information.

TestAmerica utilizes USEPA approved methods in all analytical work. The samples presented in this report were analyzed for the parameter(s) listed on the analytical methods summary page in accordance with the method(s) indicated. Preliminary results were provided to Kelly Carper and Tony Apanavage on March 17, 2011. A summary of QC data for these analyses is included at the back of the report.

TestAmerica North Canton attests to the validity of the laboratory data generated by TestAmerica facilities reported herein. All analyses performed by TestAmerica facilities were done using established laboratory SOPs that incorporate QA/QC procedures described in the applicable methods. TestAmerica's operations groups have reviewed the data for compliance with the laboratory QA/QC plan, and data have been found to be compliant with laboratory protocols unless otherwise noted below.

The test results in this report meet all NELAP requirements for parameters for which accreditation is required or available. Any exceptions to NELAP requirements are noted in this report. Pursuant to NELAP, this report may not be reproduced, except in full, without the written approval of the laboratory. This laboratory report is confidential and is intended for the sole use of TestAmerica and its client.

All parameters were evaluated to the method detection limit and include qualified results where applicable.

Please refer to the Quality Control Elements Narrative following this case narrative for additional quality control information.

CASE NARRATIVE (continued)

If you have any questions, please call the Project Manager, Patrick J. O'Meara, at 330-497-9396.

This report is sequentially paginated. The final page of the report is labeled as "END OF REPORT."

SUPPLEMENTAL QC INFORMATION

SAMPLE RECEIVING

The temperature of the cooler upon sample receipt was 1.6°C.

GC/MS VOLATILES

The sample(s) that contain results between the MDL and the RL were flagged with "J". There is a possibility of false positive or mis-identification at these quantitation levels. In analytical methods requiring confirmation of the analyte reported, confirmation was performed only down to the standard reporting limit (SRL). The acceptance criteria for QC samples may not be met at these quantitation levels.

2-Chloroethyl vinyl ether cannot be reliably recovered in an acid preserved sample.

GC/MS SEMIVOLATILES

The sample(s) that contain results between the MDL and the RL were flagged with "J". There is a possibility of false positive or mis-identification at these quantitation levels. In analytical methods requiring confirmation of the analyte reported, confirmation was performed only down to the standard reporting limit (SRL). The acceptance criteria for QC samples may not be met at these quantitation levels.

METALS

The sample(s) that contain results between the MDL and the RL were flagged with "B". There is the possibility of false positive or mis-identification at these quantitation levels. The acceptance criteria for the ICB, CCB, and Method Blank are +/- the standard reporting limit (SRL).

The sample(s) had elevated reporting limits due to matrix interferences. Refer to the sample report pages for the affected analyte(s) flagged with "G".

CASE NARRATIVE (continued)

METALS (cont)

The sample(s) that contained concentrations of target analyte(s) at a reportable level in the associated Method Blank(s) were flagged with "J". Refer to the sample report pages for the affected analyte(s).

No ICP MS Form IX provided for batch(es) 1066015. The serial dilution was performed on a different sample from the same QC batch(es).

GENERAL CHEMISTRY

The sample(s) had elevated reporting limits due to matrix interferences. Refer to the sample report pages for the affected analyte(s) flagged with "G".

QUALITY CONTROL ELEMENTS NARRATIVE

TestAmerica conducts a quality assurance/quality control (QA/QC) program designed to provide scientifically valid and legally defensible data. Toward this end, several types of quality control indicators are incorporated into the QA/QC program, which is described in detail in QA Policy, QA-003. These indicators are introduced into the sample testing process to provide a mechanism for the assessment of the analytical data. Program or agency specific requirements take precedence over the requirements listed in this narrative.

QC BATCH

Environmental samples are taken through the testing process in groups called Quality Control Batches (QC batches). A QC batch contains up to twenty environmental samples of a similar matrix (water, soil) that are processed using the same reagents and standards. TestAmerica North Canton requires that each environmental sample be associated with a QC batch.

Several quality control samples are included in each QC batch and are processed identically to the twenty environmental samples.

For SW846/RCRA methods, QC samples include a Method Blank (MB), a Laboratory Control Sample (LCS) and, a Matrix Spike/Matrix Spike Duplicate (MS/MSD) pair or a Matrix Spike/Sample Duplicate (MS/DU) pair.

For 600 series/CWA methods, QC samples include a Method Blank (MB), a Laboratory Control Sample (LCS) and, where appropriate, a Matrix Spike (MS). An MS is prepared and analyzed at a 10% frequency for GC Methods and at a 5% frequency for GC/MS methods.

LABORATORY CONTROL SAMPLE

The Laboratory Control Sample is a QC sample that is created by adding known concentrations of a full or partial set of target analytes to a matrix similar to that of the environmental samples in the QC batch. Multi peak responders may not be included in the target spike list due to co-elution. The LCS analyte recovery results are used to monitor the analytical process and provide evidence that the laboratory is performing the method within acceptable guidelines. Failure to meet the established recovery guidelines requires the repreparation and reanalysis of all samples in the QC batch, with the exception of poor performing analytes. A list of these analytes is listed below. No corrective action is taken if these analytes do not meet criteria. Comparison of only the failed parameters from the first batch are evaluated. The only exception to the rework requirement is that if the LCS recoveries are biased high and the associated sample is ND (non-detected) for the parameter(s) of interest, the batch is acceptable.

Poor performers

Method 8270 Water and Solid:	
4-Nitrophenol	3,3' – Dichlorobenzidine
Benzoic Acid	2,4,6 - Tribromophenol
Phenol	2,4-Dinitrophenol
Phenol-d5	Pentachlorophenol
4,6-Dinitro-2-methylphenol	Hexachlorocyclopentadiene (LCG only)
Benzyl Alcohol	4-Chloroaniline
Method 8151 Solid	
Dinoseb	
Method 8260 Water and Solid	
Dichlorodifluoromethane	Hexachlorobutadiene
Trichlorofluoromethane	Naphthalene
Chloroethane	1,2,3-Trichlorobenzene
Acetone	1,2,4-Trichlorobenzene
Bromomethane	2,2-Dichloropropane
Bromoform	Chloromethane

METHOD BLANK

The Method Blank is a QC sample consisting of all the reagents used in analyzing the environmental samples contained in the QC batch. Method Blank results are used to determine if interference or contamination in the analytical system could lead to the reporting of false positive data or elevated analyte concentrations. All target analytes must be below the reporting limits (RL) or the associated sample(s) must be ND except under the following circumstances:

• Common organic contaminants may be present at concentrations up to 5 times the reporting limits. Common metals contaminants may be present at concentrations up to 2 times the reporting limit, or the reported blank concentration must be ten fold less than the concentration reported in the associated environmental samples. (See common laboratory contaminants listed in the table.)

QUALITY CONTROL ELEMENTS NARRATIVE (continued)

Volatile (GC or GC/MS)	Semivolatile (GC/MS)	Metals ICP-MS	Metals ICP Trace
Methylene Chloride,	Phthalate Esters	Copper, Iron, Zinc,	Copper, Iron, Zinc, Lead
Acetone, 2-Butanone		Lead, Calcium,	
	ł	Magnesium, Potassium,	
		Sodium, Barium,	
		Chromium, Manganese	

- Organic blanks will be accepted if compounds detected in the blank are present in the associated samples at levels 10 times the blank level. Inorganic blanks will be accepted if elements detected in the blank are present in the associated samples at 20 times the blank level.
- Blanks will be accepted if the compounds/elements detected are not present in any of the associated environmental samples.

Failure to meet these Method Blank criteria requires the repreparation and reanalysis of all samples in the QC batch.

MATRIX SPIKE/MATRIX SPIKE DUPLICATE

A Matrix Spike and a Matrix Spike Duplicate are a pair of environmental samples to which known concentrations of a full or partial set of target analytes are added. The MS/MSD results are determined in the same manner as the results of the environmental sample used to prepare the MS/MSD. The analyte recoveries and the relative percent differences (RPDs) of the recoveries are calculated and used to evaluate the effect of the sample matrix on the analytical results. Due to the potential variability of the matrix of each sample, the MS/MSD results do not have an immediate bearing on any samples except the one spiked; therefore, the associated batch MS/MSD may not reflect the same compounds as the samples contained in the analytical report. When these MS/MSD results fail to meet acceptance criteria, the data is evaluated. If the LCS is within acceptance criteria, the batch is considered acceptable.

For certain methods, a Matrix Spike/Sample Duplicate may be included in the QC batch in place of the MS/MSD. For the parameters (i.e. pH, ignitability) where it is not possible to prepare a spiked sample, a Sample Duplicate may be included in the QC batch. However, a Sample Duplicate is less likely to provide usable precision statistics depending on the likelihood of finding concentrations below the standard reporting limit. When the Sample Duplicate result fails to meet acceptance criteria, the data is evaluated.

For certain methods (600 series methods/CWA), a Matrix Spike is required in place of a Matrix Spike/Matrix Spike Duplicate or Matrix Spike/Sample Duplicate.

The acceptance criteria do not apply to samples that are diluted.

SURROGATE COMPOUNDS

In addition to these batch-related QC indicators, each organic environmental and QC sample is spiked with surrogate compounds. Surrogates are organic chemicals that behave similarly to the analytes of interest and that are rarely present in the environment. Surrogate recoveries are used to monitor the individual performance of a sample in the analytical system.

If surrogate recoveries are biased high in the LCS, or the Method Blank, and the associated sample(s) are ND, the batch is acceptable. Otherwise, if the LCS, or Method Blank surrogate(s) fail to meet recovery criteria, the entire sample batch is reprepared and reanalyzed. If the surrogate recoveries are outside criteria for environmental samples, the samples will be reprepared and reanalyzed unless there is objective evidence of matrix interference or if the sample dilution is greater than the threshold outlined in the associated method SOP.

The acceptance criteria do not apply to samples that are diluted. All other surrogate recoveries will be reported.

For the GC/MS BNA methods, the surrogate criterion is that two of the three surrogates for each fraction must meet acceptance criteria. The third surrogate must have a recovery of ten percent or greater. For the Pesticide and PCB methods, the surrogate criterion is that one of two surrogate compounds must meet acceptance criteria. The second surrogate must have a recovery of 10% or greater.

TestAmerica Certifications and Approvals:

<u>The laboratory is certified for the analytes listed on the documents below. These are available upon request.</u> California (#01144CA), Connecticut (#PH-0590), Florida (#E87225),

Illinois (#200004), Kansas (#E10336), Minnesota (#39-999-348), New Jersey (#OH001), New York (#10975), Nevada (#OH-000482008A), OhioVAP (#CL0024), Pennsylvania (#008), West Virginia (#210), Wisconsin (#999518190), DoD ELAP (ADE-1437) USDA Soil Permit (P33-08-00123)

EXECUTIVE SUMMARY

ANALYTICAL METHODS SUMMARY

A1C040534

PARAMETI	ER	ANALYTICAL METHOD
Perchlor Semivola	in Liquid Waste (Manual Cold-Vapor)	SW846 6020 SW846 7470A MCAWW 314.0 SW846 8270C SW846 8260B
Referen		
MCAWW	"Methods for Chemical Analysis of Wate EPA-600/4-79-020, March 1983 and subs	
SW846	"Test Methods for Evaluating Solid Wa Methods", Third Edition, November 198	· +

SAMPLE SUMMARY

SAMPLE SUMMARY

A1C040534

<u>WO # </u>	SAMPLE#	CLIENT SAMPLE ID	SAMPLED SAMP DATE TIME
ME75M	001	TB-030311	03/03/11 10:00
ME750	002	MSA-SW37-030311	03/03/11 12:30
ME757	003	MSA-SW38-030311	03/03/11 13:00
ME76F	004	MSA-SW39-030311	03/03/11 13:50
ME76H	005	MSA-SW40-030311	03/03/11 12:48
ME76P	006	MSA-SW41-030311	03/03/11 13:17
NOME (O			

NOTE(S):

- The analytical results of the samples listed above are presented on the following pages.
- All calculations are performed before rounding to avoid round-off errors in calculated results.
- Results noted as "ND" were not detected at or above the stated limit.
- This report must not be reproduced, except in full, without the written approval of the laboratory.
- Results for the following parameters are never reported on a dry weight basis: color, corrosivity, density, flashpoint, ignitability, layers, odor, paint filter test, pH, porosity pressure, reactivity, redox potential, specific gravity, spot tests, solids, solubility, temperature, viscosity, and weight.

SHIPPING AND RECEIVING DOCUMENTS

North Canton

Chain of Custody Record

TestAmerica

Company Name: City/State/Zip: NO 7/671 Project Name: (Egy)528-SSS2
Project Name: (MSA Surface White Sayahmy roject Number: 1121 (0329) Tub-02 Relinquished by: becomentary MD 20974 MSA-SW 40-030311 MS A-SW39-03081 MSA-SW38-03031 MSA-SW37-030311 elinquished by: MS1-SW41-030311 TB-030311 Tech TestAmerica Laboratory location:
Regulatory program: Skin Irritant Client Project Manager: 3/3/h Shipping/Tracking No: Method of Shipment/Carrier: Company: Tany, Apansvesca Tetratus, lun 1555-1-15 (log JOHN MARK NOWS Sample Date Company 1000 300 727 13/7 350 230 D48 Poison B. Air 3/3/11 - 1600 Date/Time: Date/Time DW Solid Unknown Other: Sty Carrers
Thephone:
Thephone: NPDES H2SO4 Sample Disposal (A fee may be assessed if samples are retained longer than I month)

Return to Client Disposal By Lab Archive For رو رو RCRA NaOH Received by: 3 weeks 2 days l week 2 weeks ZnAc/ W ئىن Unpres × × 4 Ċ, Ç 4 VOCS Pat O Merc (330) 497-9396 PAHS +14-Dioxine Total PPM Dissolved PPM Company: Analyses Company estAmerica Laboratories, Inc 3/4/11 920 Date/Time Date/Time: Sample Specific Notes / Special Instructions: of • 010579 COCs

TAL 0018-1 (04/10)

©2008, TassAmerica Laborakorias, Iro. "Ak rights reserved: TasuAmerica & Design ™ ere tradomorius of TespAmerica Eaboratoros, Inc

TestAmerica Cooler Receipt Form/Narrative	Lot Number: ALCOHOS	34
North Canton Facility	/3 /	-
Client Tear Tech Project	By: (1) 2	\sim $ $
Cooler Received on 3-4-11 Opened on 3-4-11	(Signature))
FedEx / UPS DHL FAS Stetson Client Drop Off TestA	nerica Courier 🗌 Other	<u> </u>
TestAmerica Cooler # Multiple Coolers Foam Box	Client Cooler Other	
1. Were custody seals on the putside of the cooler(s)? Yes 🗹 No 🗌	Intact? Yes 🖸 No 🗌 NA	
If YES, Quantity Quantity Unsalvageable		
Were custody seals on the outside of cooler(s) signed and dated?	Yes ☑ No ☐ NA	
Were custody seals on the bottle(s)?	Yes 🗌 No 🖵	
If YES, are there any exceptions?	나는 얼마 없는 이 모든 경기 하다.	
2. Shippers' packing slip attached to the cooler(s)?	Yes ⊟ No □	
3. Did custody papers accompany the sample(s)? Yes ☑ No ☐	Relinquished by client? Yes	□ No □
Were the custody papers signed in the appropriate place?	Yes-☐ No ☐	
	her a t <u>er a transpara de la c</u> olar	
6. Cooler temperature upon receipt 1.6 °C See back of form f		
METHOD: IR Other		
	None	
7. Did all bottles arrive in good condition (Unbroken)?	Yes ☑ No □	
8. Could all bottle labels be reconciled with the COC?	Yes 🗖 No 🗍	
9. Were sample(s) at the correct pH upon receipt?	Yes ☑ No ☐ NA	
10. Were correct bottle(s) used for the test(s) indicated?	Yes ☑ No □	. —
11. Were air bubbles >6 mm in any VOA vials?	Yes ☐ No Æ NA	
12. Sufficient quantity received to perform indicated analyses?	Yes No	
	As on the COC? Yes No [
Contacted PM Date by	via Verbal 🔲 Voice Mail 🗍	
Concerning Date by	via verbaj voice iviali	Outlet [
14. CHAIN OF CUSTODY		
14. CHAIN OF CUSTODY		
14. CHAIN OF CUSTODY		
14 CHAIN OF CUSTODY The following discrepancies occurred:		
14. CHAIN OF CUSTODY		
14 CHAIN OF CUSTODY The following discrepancies occurred:		
14 CHAIN OF CUSTODY The following discrepancies occurred:		
14 CHAIN OF CUSTODY The following discrepancies occurred:		
14 CHAIN OF CUSTODY The following discrepancies occurred:		
14 CHAIN OF CUSTODY The following discrepancies occurred: 15 SAMPLE CONDITION		
The following discrepancies occurred: #5 SAMPLE CONDITION Sample(s) were received after the	e recommended holding time ha	
The following discrepancies occurred: 15 SAMPLE CONDITION Sample(s) were received after the Sample(s)	were received in a broken	container.
The following discrepancies occurred: 15. SAMPLE CONDITION Sample(s) were received after the Sample(s) Sample(s) were received were receive		container.
The following discrepancies occurred: 15 SAMPLE CONDITION Sample(s) were received after the Sample(s) were received were rece	were received in a broken ith bubble >6 mm in diameter. (N	container. lotify PM)
The following discrepancies occurred: 15. SAMPLE CONDITION Sample(s) were received after the Sample(s) Sample(s) were received w 16. SAMPLE PRESERVATION Sample(s)	were received in a broken ith bubble >6 mm in diameter. (Nowere further preserved in Sample	container. lotify PM)
The following discrepancies occurred: 15. SAMPLE CONDITION Sample(s) were received after the Sample(s) Sample(s) were received w 16. SAMPLE PRESERVATION Sample(s) Receiving to meet recommended pH level(s). Nitric Acid Lot# 100110-HNO3; S	were received in a broken in the bubble >6 mm in diameter. (Nowere further preserved in Sample ulfuric Acid Lot# 110410-H ₂ SO ₄ ; So	container. lotify PM) e odium
The following discrepancies occurred: 15. SAMPLE CONDITION Sample(s) were received after the Sample(s) Sample(s) were received w 16. SAMPLE PRESERVATION Sample(s) Receiving to meet recommended pH level(s). Nitric Acid Lot# 100110-HNO3; SHydroxide Lot# 100108 -NaOH; Hydrochloric Acid Lot# 092006-HCl; Sodium Hydrochlor	were received in a broken in the bubble >6 mm in diameter. (Nowere further preserved in Sample ulfuric Acid Lot# 110410-H ₂ SO ₄ ; So	container. lotify PM) e odium
The following discrepancies occurred: 15. SAMPLE CONDITION Sample(s) were received after the Sample(s) Sample(s) were received were receive	were received in a broken of the bubble >6 mm in diameter. (Note that bubble >6 mm in	container. Notify PM) e e odium
The following discrepancies occurred: The following disc	were received in a broken in the bubble >6 mm in diameter. (Nowere further preserved in Sample ulfuric Acid Lot# 110410-H ₂ SO ₄ ; So	container. Notify PM) e odium
The following discrepancies occurred: 15. SAMPLE CONDITION Sample(s) were received after the Sample(s) Sample(s) were received were receive	were received in a broken of the bubble >6 mm in diameter. (Note that bubble >6 mm in	container. Notify PM) e e odium
The following discrepancies occurred: 15. SAMPLE CONDITION Sample(s) Sample(s) Sample(s) Sample(s) Were received after the sample(s) Sample(s) Were received were	were received in a broken of the bubble >6 mm in diameter. (Note that bubble >6 mm in	container. Notify PM) e odium
The following discrepancies occurred: 15 SAMPLE CONDITION Sample(s) were received after the Sample(s) Sample(s) were received to meet recommended pH level(s). Nitric Acid Lot# 100110-HNO3; Shydroxide Lot# 100108 -NaOH; Hydrochloric Acid Lot# 092006-HCl; Sodium Hydro (CH3COO)2ZN/NaOH. What time was preservative added to sample(s)? Client ID pH 37	were received in a broken of the bubble >6 mm in diameter. (Note that bubble >6 mm in	container. Notify PM) e odium
The following discrepancies occurred: Were received after the sample(s) Sample(s) Sample(s) Receiving to meet recommended pH level(s). Nitric Acid Lot# 100110-HNO3; SHydroxide Lot# 100108 -NaOH; Hydrochloric Acid Lot# 092006-HCI; Sodium Hydrochloric Acid	were received in a broken of the bubble >6 mm in diameter. (Note that bubble >6 mm in	container. Notify PM) e odium
The following discrepancies occurred: 15 SAMPLE CONDITION Sample(s) were received after the Sample(s) Sample(s) were received to meet recommended pH level(s). Nitric Acid Lot# 100110-HNO3; Shydroxide Lot# 100108 -NaOH; Hydrochloric Acid Lot# 092006-HCl; Sodium Hydro (CH3COO)2ZN/NaOH. What time was preservative added to sample(s)? Client ID pH 37	were received in a broken of the bubble >6 mm in diameter. (Note that bubble >6 mm in	container. Notify PM) e odium
The following discrepancies occurred: Were received after the sample(s) Sample(s) Sample(s) Receiving to meet recommended pH level(s). Nitric Acid Lot# 100110-HNO3; SHydroxide Lot# 100108 -NaOH; Hydrochloric Acid Lot# 092006-HCI; Sodium Hydrochloric Acid	were received in a broken of the bubble >6 mm in diameter. (Note that bubble >6 mm in	container. Notify PM) e odium

Client ID	ler Receipt Form/Narrative cility pH	<u>Date</u>	Initials
			<u> </u>
			
W-1		-	
··			
			
			ļ
· · · · · · · · · · · · · · · · · · ·			
		·	
·			
			ļ
······································			
		· · · · · · · · · · · · · · · · · · ·	
Cooler #	Temp. °C	Method	Coolai

GCMS VOLATILE DATA

North Canton

21

SW846 8260B SURROGATE RECOVERY

Lab Name: TestAmerica Laboratories, Inc.

Client: Tetra Tech NUS, Inc

Lab Code: TALCAN

SDG No:

Lot #: A1C040534

Extraction: XXI25QK01

	CLIENT ID.	SRG01	SRG02	SRG03	SRG04	TOT OUT
		======		======	======	======
01	TB-030311	103	110	113	107	00
02	MSA-SW38-030311	102	110	107	107	00
03	MSA-SW40-030311	95	107	107	105	00
04	MSA-SW41-030311	104	112	106	105	00
05	INTRA-LAB QC	102	108	_111	_107	00
06	METHOD BLK. MFLD51AA	101	108	_111	108	00
07	LCS MFLD51AC	109	107	109	113	00
08	LAB MS/MSD D	109	112	_111	114	00
09	LAB MS/MSD S	108	111	109	112	00

SURROGA	ATES	QC LIMITS
SRG01	= Dibromofluoromethane	(75-121)
SRG02	= 1,2-Dichloroethane-d4	(63-129)
SRG03	= Toluene-d8	(74-115)
SRG04	= 4-Bromofluorobenzene	(66-117)

[#] Column to be used to flag recovery values

^{*} Values outside of required QC Limits

D System monitoring Compound diluted out

5A VOLATILE ORGANIC GC/MS TUNING AND MASS CALIBRATION - BROMOFLUOROBENZENE (BFB)

Lab Name: NORTH CANTON Contract:

Lab Code: TACAN Case No.: SAS No.: SDG No.: A1C040534

Lab File ID: BFB603 BFB Injection Date: 03/10/11

Instrument ID: A3UX15 BFB Injection Time: 1041

Matrix: (soil/water) WATER Level: (low/med) LOW Column: (pack/cap) CAP

m/e	ION ABUNDANCE CRITERIA	% RELATIVE ABUNDANCE
50 75 95 96 173 174 175 176	15.0 - 40.0% of mass 95 30.0 - 60.0% of mass 95 Base Peak, 100% relative abundance 5.0 - 9.0% of mass 95 Less than 2.0% of mass 174 50.0 - 100.0% of mass 95 5.0 - 9.0% of mass 174 Greater than 95.0%, but less than 101.0% of mass 174 5.0 - 9.0% of mass 176	29.5 52.3 100.0 6.8 0.7 (0.8)1 90.6 6.0 (6.6)1 87.0 (96.0)1 5.4 (6.3)2
1	1-Value is 2 of mass 174 2-Value is 2 of m	200 176

1-Value is % of mass 174 2-Value is % of mass 176

THIS TUNE APPLIES TO THE FOLLOWING SAMPLES, MS, MSD, BLANKS, AND STANDARDS:

	EPA SAMPLE NO.	LAB SAMPLE ID	LAB FILE ID	DATE ANALYZED	TIME ANALYZED
	=======================================	=======================================	=======================================	=======================================	
01	VSTD001	5NG-IC	UXC4096	03/10/11	1253
02	VSTD002	10NG-IC	UXC4097	03/10/11	1316
03	VSTD005	25NG-IC	UXC4098	03/10/11	1339
04	VSTD010	50NG-IC	UXC4099	03/10/11	1401
05	VSTD020	100NG-IC	UXC4100	03/10/11	1423
06	VSTD040	200NG-IC	UXC4101	03/10/11	1445
07	VSTD001	5NG-IC	UXC4102	03/10/11	1507
80	VSTD002	10NG-IC	UXC4103	03/10/11	1530
09	VSTD005	25NG-IC	UXC4104	03/10/11	1552
10	VSTD010	50NG-IC	UXC4105	03/10/11	1614
11	VSTD020	100NG-IC	UXC4106	03/10/11	1636
12	VSTD040	200NG-IC	UXC4107	03/10/11	1658
13			,		
14					
15					
16					
17	<u> </u>				
18					
19					
20					
. 21					
22					

page 1 of 1

FORM V VOA

1/87 Rev.

Report Date: 11-Mar-2011 08:53

TestAmerica North Canton

INITIAL CALIBRATION DATA

Start Cal Date : 17-MAY-2010 08:17 End Cal Date : 10-MAR-2011 16:58

Quant Method : ISTD
Origin : Disabled
Target Version : 4.14
Integrator : HP RTE

Method file : \\cansvr11\dd\chem\MSV\a3ux15.i\C10310A-IC.b\8260LLUX15.m

Last Edit : 10-Mar-2011 17:22

Curve Type : Average

Calibration File Names:

Level 1: \cansvr11\dd\chem\MSV\a3ux15.i\C10310A-IC.b\UXC4102.D Level 2: \cansvr11\dd\chem\MSV\a3ux15.i\C10310A-IC.b\UXC4103.D Level 3: \cansvr11\dd\chem\MSV\a3ux15.i\C10310A-IC.b\UXC4104.D Level 4: \cansvr11\dd\chem\MSV\a3ux15.i\C10310A-IC.b\UXC4105.D Level 5: \cansvr11\dd\chem\MSV\a3ux15.i\C10310A-IC.b\UXC4106.D Level 6: \cansvr11\dd\chem\MSV\a3ux15.i\C10310A-IC.b\UXC4107.D

	5.000	10.000	25.000	50.000	100.000	200.000	!	
Compound	Level 1	Level 2	Level 3	Level 4	Level 5	Level 6	RRF	% RSD
8 Dichlorodifluoromethane	0.18825	0.15899	0.15993			•		
9 Chloromethane	0.34375	0.26007						
10 Vinyl Chloride	0.30762	0.29117	0.29351			'		
11 Bromomethane	0.09347	0.06081	0.04665	-				
12 Chloroethane	0.15897	0.10934		· · · · · · · · · · · · · · · · · · ·				
13 Trichlorofluoromethane	0.28378	0.22651						
14 Dichlorofluoromethane	0.29986	0.21002						
15 Acrolein	0.02084	0.01845	•				,	
16 Acetone	0.08265	0.08501	0.06389				•	
17 1,1-Dichloroethene	0.24518	0.24015	0.22737				•	
18 Freon-113	0.18857	0.17274	0.15480	0.15536			:	
19 Iodomethane	0.47843	0.41968	0.37927	0.40596				
20 Carbon Disulfide	0.57270	0.52642	0.47650	0.53585				
21 Methylene Chloride	0.32411	0.29887	0.26838	0.26014	0.25871	0.25759	•	
22 Acetonitrile	0.00903	0.01256	0.01298	0.01722	0.02333	0.02198	0.01618	
23 Acrylonitrile	0.08889	0.08773	0.09229	0.09365	0.10507	0.10626	0.09565	8.431
24 Methyl tert-butyl ether	0.59819	0.58536	0.57228	0.58428	0.62882	0.64485	0.60230	4.722
25 trans-1,2-Dichloroethene	0.29064	0.27926	0.26967	0.26340	0.27092	0.27045	0.27406	3.492
26 Hexane	0.07313	0.06513	0.06225	0.05833	0.05805	0.05805	0.06249	9.519
27 Vinyl acetate	0.40634	0.41901	0.41933	0.41086	0.45995	0.48319	0.43311	7.175
28 1,1-Dichloroethane	0.54877	0.54705	0.52951	0.51920	0.54290	0.54904	0.53941	2.282
29 tert-Butyl Alcohol	0.00660	0.00576	0.00631	0.00916	0.01376	0.01410	0.00928	40.767
30 2-Butanone	0.10363	0.11007	0.10569	0.10668	0.12105	0.11739	0.11075	6.301
31 1,2-Dichloroethene (total)	0.29626	0.29016	0.27928	0.27684	0.28273	0.28030	0.28426	2.617
32 cis-1,2-dichloroethene	0.30188	0.30106	0.28889	0.29029	0.29453	0.29015	0.29447	1.955
33 2,2-Dichloropropane	0.17475	0.19077	0.18056	0.18319	0.19497	0.19939	0.18727	4.992
34 Bromochloromethane	0.14065		0.14186	0.14019	0.15069	0.14981	0.14529	3.362
35 Chloroform	0.44797	0.45710	0.44660	0.44713	0.45629	0.46175	0.45280	1.413
	1			· 		1	ı İ	

Report Date : 11-Mar-2011 08:53

TestAmerica North Canton

INITIAL CALIBRATION DATA

Start Cal Date : 17-MAY-2010 08:17 End Cal Date : 10-MAR-2011 16:58

Quant Method : ISTD : Disabled Origin Target Version : 4.14

Integrator : HP RTE

Method file : \\cansvr11\\dd\chem\MSV\a3ux15.i\\C10310A-IC.b\\8260LLUX15.m

Last Edit : 10-Mar-2011 17:22

Curve Type : Average

Compound	Level 1	10.000 Level 2	25.000 Level 3	50.000 Level 4	100.000 Level 5 ======	200.000 Level 6	RRF	% RSD
36 Tetrahydrofuran	0.09884						0.08132	11.885
37 1,1,1-Trichloroethane	0.28823	0.29862	0.29755	0.30563	0.32827	0.33256	0.30848	5.810
38 1,1-Dichloropropene	0.36898	0.37188	0.35845	0.35299	0.36289	0.36347	0.36311	1.890
39 Carbon Tetrachloride	0.24605	0.24775	0.25636	0.26906	0.28953	0.29914	0.26798]	8.280
40 1,2-Dichloroethane	0.44079	0.46107	0.43738	0.42471	0.44948	0.44944	0.44381	2.809
41 Benzene	1.16302	1.09890	1.05496	1.03027	1.08574	1.07648	1.08489	4.17
42 Trichloroethene	0.31663	0.32627	0.30235	0.29725	0.31417	0.30992	0.31110	3.33
43 1,2-Dichloropropane	0.27795	0.28350	0.28812	0.27750	0.30105	0.29893	0.28784	3.54
44 1,4-Dioxane	0:00066	0.00101	0.00093	0.00107	0.00127	0.00125	0.00103	21.80
45 Dibromomethane	0.13846	0.14569	0.14386	0.13568	0.14785	0.14728	0.14314	3.47
46 Bromodichloromethane	0.22685	0.23666	0.24898	0.25886	0.29825	0.30677	0.26273	12.47
47 2-Chloroethyl vinyl ether	0.10175	0.11933	0.12643	0.12424	0.14734	0.14212	0.12687	12.93
48 cis-1,3-Dichloropropene	0.21262	0.24370	0.26200	0.27146	0.32983	0.34414	0.27729	18.25
49 4-Methyl-2-pentanone	0.17509	0.20429	0.22578	0.21744	0.24637	0.24516	0.21902	12.29
50 Toluene	1.53278	1.48301	1.45778	1.43194	1.49067	1.50721	1.48390	2.40
51 trans-1,3-Dichloropropene	0.21219	0.23572	0.25047	0.27796	0.33656	0.35593	0.27814	20.57
52 Ethyl Methacrylate	0.24515	0.27570	0.28776	0.29725	0.33383	0.33530	0.29583	11.75
53 1,1,2-Trichloroethane	0.25387	0.24813	0.24848	0.23844	0.25358	0.24550	0.24800	2.30
54 1,3-Dichloropropane	0.43010	0.43744	0.43767	0.40817	0.44432	0.42564	0.43056	2.96
55 Tetrachloroethene	0.33380	0.31139	0.30704	0.29488	0.29542	0.28987	0.30540	5.27
56 2-Hexanone	0.17328	0.18716	0.18915	0.19582	0.21019	0.20102	0.19277	6.58
57 Dibromochloromethane	0.17655	0.18163	0.20844	0.22679	0.26894	0.27434	0.22278	18.87
58 1,2-Dibromoethane	0.21687	0.23211	0.23654	0.23092	0.25190	0.24426	0.23543	5.12
59 Chlorobenzene	1.00087	1.00432	0.94749	0.92771	0.95725	0.93456	0.96203	3.43
60 1,1,1,2-Tetrachloroethane	0.22659	0.25039	0.26181	0.27561	0.30429	0.31312	0.27197	12.06
61 Ethylbenzene	0.50130	0.51771	0.49023	0.49884	0.51105	0.49764	0.50279	1.97
62 m + p-Xylene	0.64407	0.63547	0.62238	0.61981	0.63820	0.62937	0.63155	1.49
63 Xylenes (total)	0.63167	0.62602	0.60709	0.61314	0.62773	0.61767	0.62055	1.52
64 Xylene-o	0.60687	0.60712	0.57652	0.59980	0.60678	0.59425	0.59856	1.99
65 Styrene	0.80751	0.85417	0.86380	0.90202	0.97299	0.95417	0.89244	7.06
66 Bromoform	0.07746	0.08387	0.09239	0.10404	0.12461	0.13532	0.10295	22.33
67 Isopropylbenzene	1.50281	1.51501	1.45752	1.51515	1.55591	1.51908	1.51091	2.10
68 1,1,2,2-Tetrachloroethane	0.49913	0.50572	0.51027	0.48100	0.51640	0.52146	0.50566	2.84
69 1,4-Dichloro-2-butene	0.07997	0.07419	0.08285	0.09954	0.12520	0.13816	0.09998	26.28
70 1,2,3-Trichloropropane	0.21151	0.18680	0.18988	0.16963	0.18158	0.17455	0.18566	7.93
71 Bromobenzene	0.76068	0.74364	0.73952	I 0.69526	0.74920	0.73543	0.73729	3.03

Report Date : 11-Mar-2011 08:53

TestAmerica North Canton

INITIAL CALIBRATION DATA

Start Cal Date : 17-MAY-2010 08:17

End Cal Date : 10-MAR-2011 16:58
Quant Method : ISTD
Origin : Disabled
Target Version : 4.14
Integrator : HD PTF

Integrator : HP RTE
Method file : \cansvr11\dd\chem\MSV\a3ux15.i\C10310A-IC.b\8260LLUX15.m
Last Edit : 10-Mar-2011 17:22
Curve Type : Average

	5.000	10.000	25.000	50.000	100.000	200.000		
Compound	Level 1	Level 2	Level 3	Level 4	Level 5	Level 6	RRF	% RSD
72 n-Propylbenzene	0.81287		•			0.78473		2.122
73 2-Chlorotoluene	0.01207	0.73027			0.72416	0.69787		
74 1,3,5-Trimethylbenzene	2.23333				2.37587			
75 4-Chlorotoluene	0.80212				0.74392	0.72338		
76 tert-Butylbenzene	2.10041				2.08418	-		'
•	,	•			'			
77 1,2,4-Trimethylbenzene	2.14853							
78 sec-Butylbenzene	2.72209							
79 4-Isopropyltoluene	2.27952							
80 1,3-Dichlorobenzene	1.44811							
81 1,4-Dichlorobenzene	1.52533							'
82 n-Butylbenzene	1.97825							•
83 1,2-Dichlorobenzene	1.37696					'		
84 1,2-Dibromo-3-chloropropane	0.05873							•
85 1,2,4-Trichlorobenzene	0.96132						'	•
86 Hexachlorobutadiene	0.36794	0.30752	0.28129	0.29581			'	•
87 Naphthalene	1.79623	1.68696	1.70362	1.74659	1.76700			•
88 1,2,3-Trichlorobenzene	0.86413	0.73022	0.70604	0.71663				
89 Ethyl Ether	0.32656	0.30958	0.29560	0.29723	0.33773	0.32931	'	
90 Ethanol	++++	+++++	+++++	+++++	+++++	+++++	++++	++++
91 3-Chloropropene	0.09616	0.10305	0.09948	0.10766	0.12300	0.12675	0.10935	•
92 Isopropyl Ether	0.21923	0.23135	0.22357	0.22763	0.25388	0.25458	0.23504	6.554
93 2-Chloro-1,3-butadiene	0.51756	0.50985	0.51068	0.54461	0.62836	0.66221	0.56221	11.819
94 Propionitrile	0.02006	0.02787	0.03085	0.02805	0.03701	0.03702	0.03014	21.309
95 Ethyl Acetate	0.21383	0.22492	0.19682	0.21776	0.23795	0.23390	0.22086	6.762
96 Methacrylonitrile	0.20375	0.17561	0.15682	0.14856	0.17045	0.17013	0.17089	11.100
97 Isobutanol	0.00563	0.00561	0.00581	0.00567	0.00692	0.00876	0.00640	19.686
98 Cyclohexane	0.60671	0.58349	0.55200	0.54038	0.54330	0.53943	0.56088	4.967
99 n-Butanol	0.00450	0.00261	0.00427	0.00485	0.00596	0.00689	0.00484	30.444
100 Methyl Methacrylate	0.19812	0.19373	0.19577	0.21620	0.24084	0.22452	0.21153	8.957
101 2-Nitropropane	0.03117	0.03070	0.02711	0.03055	0.03590	0.03733	0.03213	11.804
102 Chloropicrin	++++	+++++	, +++++	+++++	+++++	++++	+++++	++++
103 Cyclohexanone	0.01486	,	0.01819	0.01610	0.02241	0.02737	0.01916	25.227
104 Pentachloroethane	+++++	++++	++++	+++++	++++	++++	+++++	++++
105 Benzyl Chloride	1 +++++	1 +++++	1 +++++	++++	++++	++++	, +++++	+++++
134 Thiophene	+++++	1 +++++	++++	1 +++++	1 +++++	++++	, +++++	+++++
	+++++	+++++	+++++	+++++	1 +++++	++++	++++	++++
135 Crotononitrile(1st Isomer)	+++++	, +++++ ,	++++ +	;	****** 	1 ''''' 1	1	1

Report Date : 11-Mar-2011 08:53

TestAmerica North Canton

INITIAL CALIBRATION DATA

Start Cal Date : 17-MAY-2010 08:17 End Cal Date : 10-MAR-2011 16:58

Quant Method : ISTD
Origin : Disabled
Target Version : 4.14
Integrator : HP RTE

Method file : \\cansvr11\dd\chem\MSV\a3ux15.i\C10310A-IC.b\8260LLUX15.m

Last Edit : 10-Mar-2011 17:22

Curve Type : Average

136 Crotononitrile(2nd Isomer)	RSD
Compound	RSD
136 Crotononitrile (2nd Isomer)	
M 137 Total Crotononitrile	====
138 Paraldehyde	++ <-
138 Parattenyde	++ <-
140 1-Chlorohexane	++ <-
141 1,3,5-Trichlorobenzene	++ <-
143 Methyl Acetate	•
144 Methylcyclohexane	6.007
145 Dimethoxymethane	6.361
146 2-Methylnaphthalene	3.982
146 2-Methylnaphthalene	++ <-
147 Tetranydrochiophene	25.779
148 1,4-Dichloroputane	-++ <
151 Etnyl Acrylate	
1 000001 0 00001 0 00001 0 000531 0 035301 0 035391 0 031941	+++ <-
152 Vinyl Acetate-86	8.646
153 1,3-Butadiene	+++ <
154 n-Heptane 0.38431 0.41286 0.36966 0.38334 0.39613 0.38675 0.38884	3.732
155 tert-Butyl Ethyl Ether 0.78078 0.80102 0.75686 0.77637 0.89671 0.91123 0.82050	8.083
156 tert-Amyl Methyl Ether 0.46136 0.45455 0.45813 0.46927 0.54425 0.55328 0.49014	9.336
157 1,2,3-Trimethylbezene 1.91845 1.93412 2.00788 2.08007 2.36156 2.38086 2.11383	9.822
158 n-Butyl Acetate 0.24194 0.25068 0.24875 0.26864 0.31196 0.30802 0.27166	11.408
	:====
\$ 4 Dibromofluoromethane 0.26191 0.24914 0.25292 0.25825 0.26174 0.26370 0.25794	2.235
\$ 5 1,2-Dichloroethane-d4 0.35269 0.32719 0.31058 0.30983 0.32698 0.32749 0.32579	4.786
\$ 6 Toluene-d8 1.32111 1.25538 1.24832 1.22177 1.23529 1.23634 1.25303	2.818
\$ 7 Bromofluorobenzene 0.42704 0.39011 0.38696 0.38824 0.39411 0.38696 0.39557	3.956

INITIAL CALIBRATION DATA

End Cal Date Quant Method Start Cal Date 10-MAR-2011 ISTD 17-MAY-2010 08:17 10-MAR-2011 16:58

4.14 HP RTE

Target Version Integrator Method file Last Edit \cansvr11\dd\chem\MSV\a3ux15.i\C10310A-IC.b\8260LLUX15.m _1-Mar-2011 09:05 a3ux15.i

Calibration Level 4004D0 on File Names:
\\cansvr11\dd\chem\MSV\a3ux15.i\\\cansvr11\dd\chem\MSV\a3ux15.i\\\cansvr11\dd\chem\MSV\a3ux15.i\\\cansvr11\dd\chem\MSV\a3ux15.i\\\cansvr11\dd\chem\MSV\a3ux15.i\\\cansvr11\dd\chem\MSV\a3ux15.i\\\cansvr11\dd\chem\MSV\a3ux15.i\\\ 5.i\C10310A-IC.b\UXC4102.D 5.i\C10310A-IC.b\UXC4103.D 5.i\C10310A-IC.b\UXC4104.D 5.i\C10310A-IC.b\UXC4105.D 5.i\C10310A-IC.b\UXC4106.D 5.i\C10310A-IC.b\UXC4106.D

Leve.

Level Level

Leve. Level

	5.0000	10.0000	25.0000	50.0000	100.0000	200.0000	0	Coefficients	_	%RSD
Compound	Level 1	Level 2	Level 3	Level 4	Level 5	Level 6 Curve	ъ	ml	m2	or R^2
							=======================================	H		
8 Dichlorodifluoromethane	0.18825	0.15899	0.15993	0.16612	0.16898	0.16874 AVRG		0.16850		6.27954
→ 9 Chloromethane	60165	89044]	193795	527493	961729	2026549 WLINR	-0.01402	0.25987	_	0.99263
10 Vinyl Chloride	0.30762	0.29117	0.29351	0.28084	0.27687	0.27437 AVRG		0.28740		4.35747
_11 Bromomethane	16359	20819	41853	164706	274104	603032 QUAD	0.05129	12.57894	0.42112	0.99122
-1 2 Chloroethane	27824	37435	71561	249204	414783	865098 QUAD	0.02829]	8.14942	1.70538	0.99256
13 Trichlorofluoromethane	0.28378	0.22651	0.21354	0.28423	0.25674	0.25762 AVRG	_	0.25374		11.44125
14 Dichlorofluoromethane	0.29986	0.21002	0.20815	0.23652	0.26300	0.26311 AVRG	_	0.24677		14.37921
15 Acrolein	36482	63159	191950	499746	1111468	2476111 WLINR	0.64520	0.03123		0.99316
16 Acetone	0.08265	0.08501	0.06389	0.07059	0.08613	0.08434 AVRG	_	0.07877		11.73958
17 1,1-Dichloroethene	0.24518	0.24015	0.22737	0.22373	0.23051	0.23118 AVRG	_	0.23302		3.46842
18 Freon-113	0.18857	0.17274	0.15480	0.15536	0.15687	0.15948 AVRG	_	0.16464		8.18620
19 Iodomethane	0.47843	0.41968	0.37927	0.40596	0.39332	0.39984 AVRG	_	0.41275	_	8.44340
20 Carbon Disulfide	0.57270	0.52642	0.47650	0.53585	0.55192	0.56900 AVRG		0.53873		6.57687
21 Methylene Chloride	0.32411	0.29887	0.26838	0.26014	0.25871	0.25759 AVRG		0.27797		9.86813
	_									

INITIAL CALIBRATION DATA

Start Cal Date
End Cal Date
Quant Method
Target Version
Integrator
Method file
Last Edit 17-MAY-2010 08:17
10-MAR-2011 16:58
ISTD
4.14
HP RTE
\\cansvr11\dd\chem\MSV\a3ux15.i\C10310A-IC.b\8260LLUX15.m
\11-Mar-2011 09:05 a3ux15.i

		_								
3.54683		0.28784		0.29893 AVRG	0.30105	0.27750	0.28812	0.28350	0.27795	43 1,2-Dichloropropane
3.33945		0.31110	_	0.30992 AVRG	0.31417	0.29725	0.30235	0.32627	0.31663	42 Trichloroethene
4.17352		1.08489		1.07648 AVRG	1.08574	1.03027	1.05496	1.09890	1.16302	41 Benzene
2.80926		0.44381	_	0.44944 AVRG	0.44948	0.42471	0.43738	0.46107	0.44079	40 1,2-Dichloroethane
8.28030		0.26798	_	0.29914 AVRG	0.28953	0.26906	0.25636	0.24775	0.24605	39 Carbon Tetrachloride
1.89035		0.36311	_	0.36347 AVRG	0.36289	0.35299	0.35845	0.37188	0.36898	38 1,1-Dichloropropene
5.80970		0.30848	_	0.33256 AVRG	0.32827	0.30563	0.29755	0.29862	0.28823	37 1,1,1-Trichloroethane
11.88505		0.08132	_	0.08151 AVRG	0.08382	0.07504	0.07143	0.07726	0.09884	36 Tetrahydrofuran
1.41287		0.45280		0.46175 AVRG	0.45629	0.44713	0.44660	0.45710	0.44797	35 Chloroform
3.36184		0.14529		0.14981 AVRG	0.15069	0.14019	0.14186	0.14853	0.14065	34 Bromochloromethane
4.99152		0.18727	_	0.19939 AVRG	0.19497	0.18319	0.18056	0.19077	0.17475	33 2,2-Dichloropropane
1.95485		0.29447	_	0.29015 AVRG	0.29453	0.29029	0.28889	0.30106	0.30188	32 cis-1,2-dichloroethene
2.61690		0.28426	_	0.28030 AVRG	0.28273	0.27684	0.27928	0.29016	0.29626	M 31 1,2-Dichloroethene (total)
6.30124		0.11075		0.11739 AVRG	0.12105	0.10668	0.10569	0.11007	0.10363	30 2-Butanone
57 0.99398 <-	-4.32067	72.34014	3.51778	2182204 QUAD	1059161	326731	113294	39476	23116	29 tert-Butyl Alcohol
2.28155		0.53941		0.54904 AVRG	0.54290	0.51920	0.52951	0.54705	0.54877	28 1,1-Dichloroethane
7.17541		0.43311	_	0.48319 AVRG	0.45995	0.41086	0.41933	0.41901	0.40634	27 Vinyl acetate
9.51866		0.06249	_	0.05805 AVRG	0.05805	0.05833	0.06225	0.06513	0.07313	26 Hexane
3.49154		0.27406	_	0.27045 AVRG	0.27092	0.26340	0.26967	0.27926	0.29064	25 trans-1,2-Dichloroethene
4.72185		0.60230	_	0.64485 AVRG	0.62882	0.58428	0.57228	0.58536	0.59819	24 Methyl tert-butyl ether
8.43074		0.09565	_	0.10626 AVRG	0.10507	0.09365	0.09229	0.08773	0.08889	23 Acrylonitrile
0.99540 <-	4.06730	39.87842	1.55680	ן מאטס 221 מאטס	897703				15800	22 Acetonitrile
	11 6 6 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8)) 					Level 3	rever 2		Compound
מיש א	3	3			1 2122	7 222 7		, , ,		
%RSD		Coefficients	ဂ္ဂ	200.0000	100.0000	50.0000	25.0000	10.0000	5.0000	

INITIAL CALIBRATION DATA

Start Cal Date
End Cal Date
Quant Method
Target Version
Integrator
Method file
Last Edit 17-MAY-2010 08:17
10-MAR-2011 16:58
ISTD
4.14
HP RTE
\\cansvr11\dd\chem\MSV\a3ux15.i\C10310A-IC.b\8260LLUX15.m
11-Mar-2011 09:05 a3ux15.i

	5.0000	10.0000	25.0000	50.0000	100.0000	200.0000	co	Coefficients	_
Compound	Level 1	Level 2	Level 3	Level 4	Level 5	Level 6 Curve	ъ	m1	m2
######################################	5799	17228	41642	95490	243446	484964 WLINR	2.88518	0.00126	11 13 13 14 14
45 Dibromomethane	0.13846	0.14569	0.14386	0.13568	0.14785	0.14728 AVRG	_	0.14314	
46 Bromodichloromethane	0.22685	0.23666	0.24898	0.25886	0.29825	0.30677 AVRG	_	0.26273	
47 2-Chloroethyl vinyl ether	0.10175	0.11933	0.12643	0.12424	0.14734	0.14212 AVRG	_	0.12687	
48 cis-1,3-Dichloropropene	37213	83438	235037	483893	1269125	2663416 WLINR	0.05752	0.33805	
49 4-Methyl-2-pentanone	0.17509	0.20429	0.22578	0.21744	0.24637	0.24516 AVRG	_	0.21902	
50 Toluene	1.53278	1.48301	1.45778	1.43194	1.49067	1.50721 AVRG	_	1.48390	
-51 trans-1,3-Dichloropropene	27939	62192	175386	378102	1032090	2191856 WLINR	0.06462	0.34851	
52 Ethyl Methacrylate	0.24515	0.27570	0.28776	0.29725	0.33383	0.33530 AVRG	_	0.29583	
53 1,1,2-Trichloroethane	0.25387	0.24813	0.24848	0.23844	0.25358	0.24550 AVRG	_	0.24800	
54 1,3-Dichloropropane	0.43010	0.43744	0.43767	0.40817	0.44432	0.42564 AVRG	_	0.43056	
55 Tetrachloroethene	0.33380	0.31139	0.30704	0.29488	0.29542	0.28987 AVRG	_	0.30540	
56 2-Hexanone	0.17328	0.18716	0.18915	0.19582	0.21019	0.20102 AVRG	_	0.19277	
→ 57 Dibromochloromethane	23246	47921	145958	308492	824730	1689420 WLINR	0.05798	0.27208	
58 1,2-Dibromoethane	0.21687	0.23211	0.23654	0.23092	0.25190	0.24426 AVRG	_	0.23543	
59 Chlorobenzene	1.00087	1.00432	0.94749	0.92771	0.95725	0.93456 AVRG	_	0.96203	
60 1,1,1,2-Tetrachloroethane	0.22659	0.25039	0.26181	0.27561	0.30429	0.31312 AVRG	_	0.27197	
61 Ethylbenzene	0.50130	0.51771	0.49023	0.49884	0.51105	0.49764 AVRG	_	0.50279	
62 m + p-xylene	0.64407	0.63547	0.62238	0.61981	0.63820	0.62937 AVRG		0.63155	
M 63 Xylenes (total)	0.63167	0.62602	0.60709	0.61314	0.62773	0.61767 AVRG	_	0.62055	
64 Xylene-o	0.60687	0.60712	0.57652	0.59980	0.60678	0.59425 AVRG	_	0.59856	
65 Styrene	0.80751	0.85417	0.86380	0.90202	0.97299	0.95417 AVRG	_	0.89244	
	_	_	_			_			

INITIAL CALIBRATION DATA

Start Cal Date
End Cal Date
Quant Method
Target Version
Integrator
Method file
Last Edit

17-MAY-2010 08:17
10-MAR-2011 16:58
ISTD
4.14
HP RTE
|\cansvr11\dd\chem\MSV\a3ux15.i\C10310A-IC.b\8260LLUX15.m

11	_
$\overline{}$	-
, I	(
⇉	ς
Ø)	ŀ
\Box	ř
'.	١
	•
N	ŀ
0	ŀ
-	ŀ
$\dot{\mathbf{L}}$	•
	7
_	,
\circ	}
9	_
••	(
\circ	ŀ
ĭ	7
٠,	:
٠.	:
m	٠
ω	;
C	7
5	
-	7
Ų,	ì
•	(
μ.	٠
	•
	7
	1
	•
_1-Mar-2011 09:05 a3ux15.i	1
	_

									-		
	5.0000	10.0000	25.0000	50.0000	100.0000	200.0000	_	CO	Coefficients		%RSD
Compound	Level 1	Level 2	Level 3	Level 4	Level 5	Level 6	Curve	ъ	ml	m2	or R^2
	H H H H H H H H H H H H H H H H H H H				11 17 18 19 11 11 11 11	11 11 11 11 11 11 11 11 11 11 11 11 11				# # #	
→ 66 Bromoform	10199	22129	64692	141526	382135	833346 WLINR	WLINR	0.06976	0.13165	_	0.99161 <-
67 Isopropylbenzene	1.50281	1.51501	1.45752	1.51515	1.55591	1.51908 AVRG	AVRG		1.51091	_	2.10189
68 1,1,2,2-Tetrachloroethane	0.49913	0.50572	0.51027	0.48100	0.51640	0.52146 AVRG	AVRG		0.50566		2.84829
69 1,4-Dichloro-2-butene	5331	9871	28682	72023	198381	429910 QUAD	CLAUQ	0.09791	8.48342	-2.60381	0.99835
70 1,2,3-Trichloropropane	0.21151	0.18680	0.18988	0.16963	0.18158	0.17455 AVRG	AVRG	_	0.18566	_	7.93163
71 Bromobenzene	0.76068	0.74364	0.73952	0.69526	0.74920	0.73543 AVRG	AVRG	_	0.73729	_	3.03542
72 n-Propylbenzene	0.81287	0.81131	0.80453	0.77300	0.81281	0.78473 AVRG	AVRG	_	0.79988		2.12160
73 2-Chlorotoluene	0.73754	0.73027	0.73637	0.68321	0.72416	0.69787 AVRG	AVRG	_	0.71824		3.12760
74 1,3,5-Trimethylbenzene	2.23333	2.20684	2,24345	2.24105	2.37587	2.34696 AVRG	AVRG	_	2.27458	_	3.03843
75 4-Chlorotoluene	0.80212	0.77906	0.75641	0.70082	0.74392	0.72338 AVRG	AVRG	_	0.75095	_	4.89664
76 tert-Butylbenzene	2.10041	2.03296	2.04705	1.96672	2.08418	2.06450 AVRG	AVRG	_	2.04930	_	2.30454
77 1,2,4-Trimethylbenzene	2.14853	2.24656	2.26108	2.23649	2.35133	2.33311 AVRG	AVRG	_	2.26285		3.23518
78 sec-Butylbenzene	2.72209	2.74467	2.70489	2.67213	2.79608	2.73343 AVRG	AVRG	_	2.72888		1.52222
79 4-Isopropyltoluene	2.27952	2.26366	2.28885	2.28624	2.38693	2.36378 AVRG	AVRG	_	2,31150		2.19621
80 1,3-Dichlorobenzene	1.44811	1.40998	1.36830	1.30330	1.37854	1.35053 AVRG	AVRG	_	1.37646		3.61092
81 1,4-Dichlorobenzene	1.52533	1.45762	1.40406	1.34620	1.39463	1.37573 AVRG	AVRG	_	1.41726	_	4.54737
82 n-Butylbenzene	1.97825	1.83504	1.80995	1.88436	1.93560	1.94429 AVRG	AVRG	_	1.89791		3.48701
83 1,2-Dichlorobenzene	1.37696	1.31855	1.27682	1.23473	1.24239	1.27386 AVRG	AVRG	_	1.28722		4.12341
- 84 1,2-Dibromo-3-chloropropane	3915	9828	23024	46860	119433	285120 QUAD	QUAD	0.01028	15.14942	-11.65700	0.99954
85 1,2,4-Trichlorobenzene	0.96132	0.81988	0.77090	0.80548	0.78572	0.83386 AVRG	AVRG	_	0.82953	_	8.24963
86 Hexachlorobutadiene	0.36794	0.30752	0.28129	0.29581	0.28965	0.30074 AVRG	AVRG	_	0.30716		10.12937
87 Naphthalene	1.79623	1.68696	1.70362	1.74659	1.76700	1.97964 AVRG	AVRG	_	1.78001		5.93994

INITIAL CALIBRATION DATA

: 17-MAY-2010 08:17 : 10-MAR-2011 16:58 : ISTD : 4.14 : HP RTE

---II

Start Cal Date
End Cal Date
Quant Method
Target Version
Integrator
Method file
Last Edit \\cansvr11\dd\chem\MSV\a3ux15.i\C10310A-IC.b\8260LLUX15.m 11-Mar-2011 09:05 a3ux15.i

			 							-		+0 / +0 0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
).000e+000 <	_	0.000e+000	_	AVRG	+ + + +	++++	++++++	+++++++	+ + + + +	+++++	
).000e+000	_	0.000e+000	-	AVRG	+ + + +	++++	++++	+ + + +	+++++	+ + + + + + + + + + + + + + + + + + + +	136 Crotononitrile(2nd Isomer)
	0.000e+000		0.000e+000		AVRG	+ + + + +	+ + + + +	++++	++++	++++	++++	135 Crotononitrile(1st Isomer)
	0.000e+000	_	0.000e+000		AVRG	+++++	+ + + + + -	+ + + +	+ + + +	+ + + + + + + + + + + + + + + + + + + +	+++++++	134 Thiophene
).000e+000	_	0.000e+000		AVRG	+++++	+ + + + +	+ + + +	+ + + + + +	+++++	+++++	105 Benzyl Chloride
	0.000e+000	<u> </u>	0.000e+000	_	AVRG	+ + + + + +	+ + + + + + + -	+ + + + +	+ + + + +	+++++	+++++	104 Pentachloroethane
	0.99728	_		_		760498	293298	113109	60611	21487	9953	103 Cyclohexanone
5.0000 10.0000 25.0000 50.0000 100.0000 200.0000).000e+000	_	0.000e+000		AVRG	+ + + + +	+ + + + + -	+ + + + +	+ + + + + +	+++++	+++++	102 Chloropicrin
	11.80389	· 	0.03213			0.0373	0.03590	0.03055	0.02711	0.03070	0.03117	101 2-Nitropropane
5.0000 10.0000 25.0000 50.0000 100.0000 200.0000	8.95714	_	0.21153			0.22451	0.24084	0.21620	0.19577	0.19373	0.19812	100 Methyl Methacrylate
	0.99887	-71.12607		1.82417		740199	327517	133319	56638	14184	12379	99 n-Butanol
	4.96661		_		3 AVRG	0.5394	0.54330	0.54038	0.55200	0.58349	0.60671	98 Cyclohexane
	0.99927	-75.38421		0.62704		941521	380398	156060	77138	30511	15495	97 Isobutanol
5.0000 10.0000 25.0000 50.0000 100.0000 200.0000 Coefficients Level 1	11.10042		_		3 AVRG	0.17013	0.17045	0.14856	0.15682	0.17561	0.20375	96 Methacrylonitrile
5.0000 10.0000 25.0000 50.0000 100.0000 Coefficients Level 1 Level 2 Level 3 Level 4 Level 5 Level 6 Curve b ml m2 0.86413 0.73022 0.70604 0.71663 0.67418 0.72320 AVRG 0.33565 0.30958 0.29560 0.29723 0.33773 0.32931 AVRG 0.31600 +++++	6.76192		0.22086	_	AVRG	0.23390	0.23795	0.21776	0.19682	0.22492	0.21383	95 Ethyl Acetate
5.0000 10.0000 25.0000 50.0000 100.0000	0.99329		0.03686	0.11664		546611	265923	99569	53575	19576	7167	94 Propionitrile
5.0000 10.0000 25.0000 50.0000 100.0000	11.81909		0.56221	_	L AVRG	0.66221	0,62836	0.54461	0.51068	0.50985	0.51756	93 2-Chloro-1,3-butadiene
5.0000 10.0000 25.0000 50.0000 100.0000 200.0000 Coefficients Level 1 Level 2 Level 3 Level 4 Level 5 Level 6 Curve b ml m2	6.55434	-	0.23504	_	3 AVRG	0.25458	0.25388	0.22763	0.22357	0.23135	0.21923	92 Isopropyl Ether
5.0000 10.0000 25.0000 50.0000 100.0000 200.0000 Coefficients Level 1 Level 2 Level 3 Level 4 Level 5 Level 6 Curve b ml m2	11.59177		0.10935		5 AVRG	0.12675	0.12300	0.10766	0.09948	0.10305	0.09616	91 3-Chloropropene
5.0000 10.0000 25.0000 50.0000 100.0000 200.0000 Coefficients Level 1 Level 2 Level 3 Level 4 Level 5 Level 6 Curve b ml m2).000e+000	<u>-</u> c	0.000e+000	_	AVRG	+ + + + +	+ + + +	++++	+ + + +	++++	++++	90 Ethanol
5.0000 10.0000 25.0000 50.0000 100.0000 200.0000 Coefficients Level 1 Level 2 Level 3 Level 4 Level 5 Level 6 Curve b ml m2 c	5.60842		0.31600		L AVRG	0.32931	0.33773	0.29723	0.29560	0.30958	0.32656	89 Ethyl Ether
5.0000 10.0000 25.0000 50.0000 100.0000 200.0000 Coefficients	8.95583	. 	0.73573	_		0.72320	0.67418	0.71663		0.73022	0.86413	88 1,2,3-Trichlorobenzene
5.0000 10.0000 25.0000 50.0000 100.0000 200.0000 Coefficients Level 1 Level 2 Level 3 Level 4 Level 5 Level 6 Curve b ml m2	11 11 11 11 11 11 11	* BECSESSES B			11 11					11 11 11 11 11 11 11	11 11 11 11 11 11 11 11	
10.0000 25.0000 50.0000 100.0000 200.0000 Coefficients	or R^2	m2	ml	ъ	[Curve]	Level 6	Level 5	Level 4	Level 3	Level 2	Level 1	Compound
	%RSD	_	oefficients	ŭ	_	200.0000	100.0000	50.0000	25.0000	10.0000	5.0000	

INITIAL CALIBRATION DATA

Start Cal Date
End Cal Date
Quant Method
Target Version
Integrator
Method file
Last Edit

2.81765	1.25303	1.23634 AVRG	1.23529	1.22177	1.24832	1.25538] 1.32111]	6 Toluene-d8
4.78624	0.32579	0.32749 AVRG	0.32698	0.30983	0.31058	0.32719	0.35269	5 1,2-Dichloroethane-d4
2.23513	0.25794	0.26370 AVRG	0.26174	0.25825	0.25292		0.26191	4 Dibromofluoromethane
11.40808	0.27166	0.30802 AVRG	0.31196	0.26864	0.24875	0.25068	0.24194	158 n-Butyl Acetate
9.82150	2.11383	2.38086 AVRG	2.36156	2.08007	2.00788	1.93412	1.91845	157 1,2,3-Trimethylbezene
9.33585	0.49014	0.55328 AVRG	0.54425	0.46927	0.45813	0.45455	0.46136	156 tert-Amyl Methyl Ether
8.08329	0.82050	0.91123 AVRG	0.89671	0.77637	0.75686	0.80102	0.78078	155 tert-Butyl Ethyl Ether
3.73217	0.38884	0.38675 AVRG	0.39613	0.38334	0.36966	0.41286	0.38431	154 n-Heptane
0.000e+000 <-	0.000e+000	+++++ AVRG	+ + + +	+ + + + + -	+ + + + +	++++	+ + + + +	153 1,3-Butadiene
8.64613	0.03194	0.03529 AVRG	0.03520	0.02953	0.03050	0.02904	0.03208	152 Vinyl Acetate-86
[0.000e+000]<-	0.000e+000	+++++ AVRG	+++++	+ + + + + -	+ + + + + +	+ + + + +	+ + + + + +	151 Ethyl Acrylate
0.000e+000 <	0.000e+000	+++++ AVRG	++++	+ + + + + -	+ + + + +	+++++	+ + + + + +	148 1,4-Dichlorobutane
0.000e+000 <	0.000e+000	+++++ AVRG	+ + + + +	+++++	++++++	+++++	+ + + + + + + + + + + + + + + + + + + +	147 Tetrahydrothiophene
-0.03141 0.99908	0.13091 1.12904	6555406 QUAD	2576828	1107607	522415	174462	81848	146 2-Methylnaphthalene
[0.000e+000]<-	0.000e+000	+++++ AVRG	++++	+++++	+ + + +	++++	+ + + + + + + + + + + + + + + + + + + +	145 Dimethoxymethane
3.98205	0.41570	0.39918 AVRG	0.40333	0.40525	0.41616	0.42881	0.44144	144 Methylcyclohexane
6.36114	0.20978	0.22645 AVRG	0.22219	0.20392	0.19661	0.21476	0.19474	143 Methyl Acetate
6.00748	0.87470	0.90019 AVRG	0.85970	0.85859	0.83286	0.82846	0.96841	141 1,3,5-Trichlorobenzene
0.000e+000 <-	0.000e+000	+++++ AVRG	+++++	++++	++++	++++	+ + + + +	140 1-Chlorohexane
[0.000e+000]<	{0.000e+000	+++++ AVRG	+ + + + -	++++	+ + + + + +	+ + + + +	++++	139 3,3,5-Trimethylcyclohexanone
0.000e+000 <]0.000e+000	+++++ AVRG	+++++++	+++++	+ + + + + + + + + + + + + + + + + + + +	+	+ ! ! + ! ! + ! !	138 Paraldehyde
m2 or R"2	b m1	Level 6 Curve			Level 3			Compound
**************************************	COSTITCIENCE	1 00000	T00.0000	50.0000	25.0000	10.0000	5.0000	

INITIAL CALIBRATION DATA

Start Cal Date
End Cal Date
Quant Method
Target Version
Integrator
Method file
Last Edit

17-MAY-2010 08:17 10-MAR-2011 16:58 ISTD 4.14 HP RTE \\cansvr11\dd\chem\MSV\a3ux15.i\C10310A-IC.b\8260LLUX15.m \11-Mar-2011 09:05 a3ux15.i

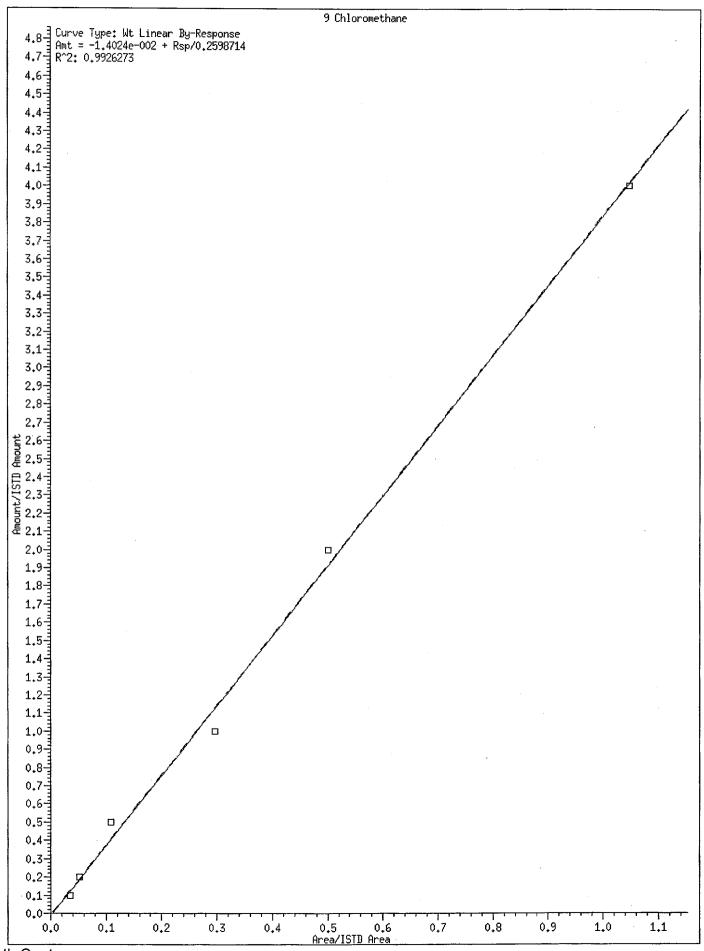
3.95585	_	0.39557		AVRG	0.38696	0.39411	0.38824	0.38696	0.39011	0.42704	7 Bromofluorobenzene
						H H H H H H H H H	H	10 11 11 11 11 11 11 11 11 11 11 11			
or R^2	m2	ml	ъ	Curve	Level 6	Level 5	Level 4	Level 3	Level 2	Level 1	Compound
%RSD	_	Coefficients		_	200.0000	100.0000	50.0000	25.0000	10.0000	5.0000	

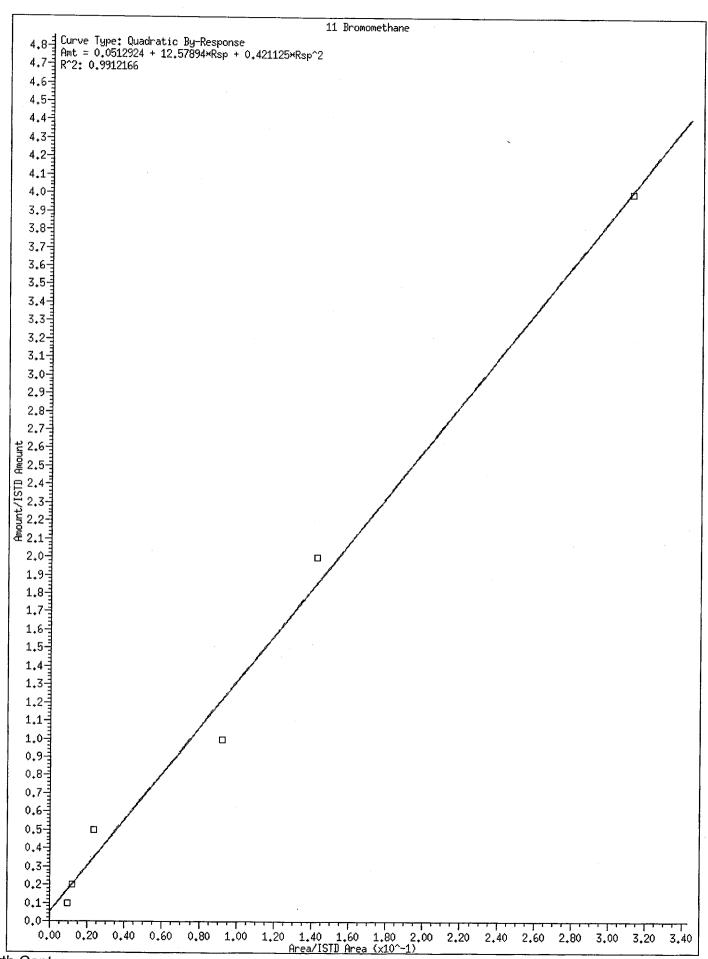
INITIAL CALIBRATION DATA

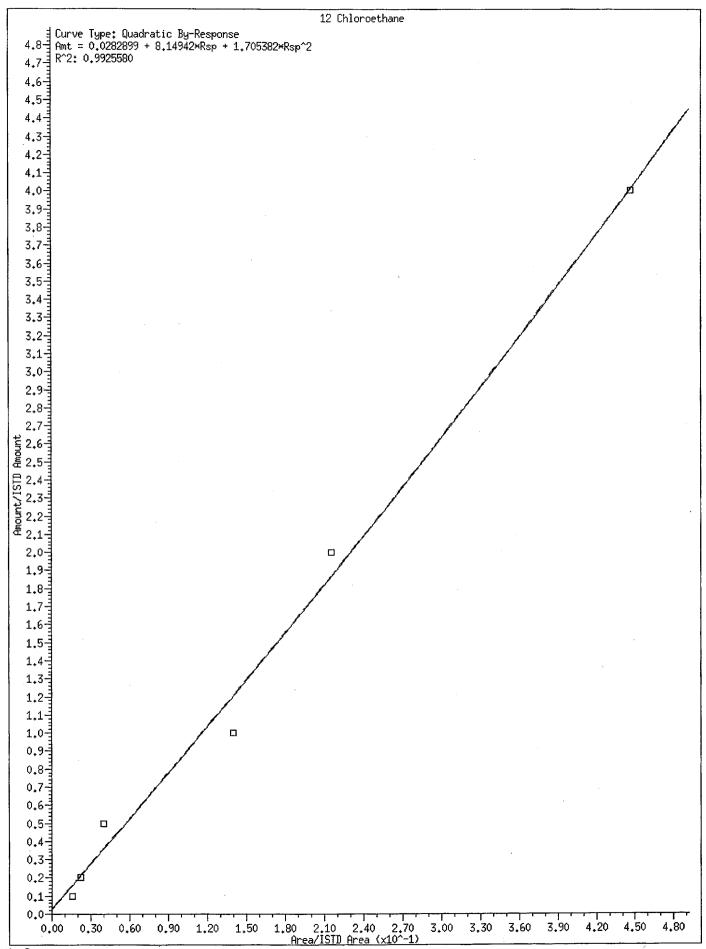
Start Cal Date
End Cal Date
Quant Method
Target Version
Integrator
Method file
Last Edit : 17-MAY-2010 08:17 : 10-MAR-2011 16:58 : ISTD : 4.14 : HP RTE

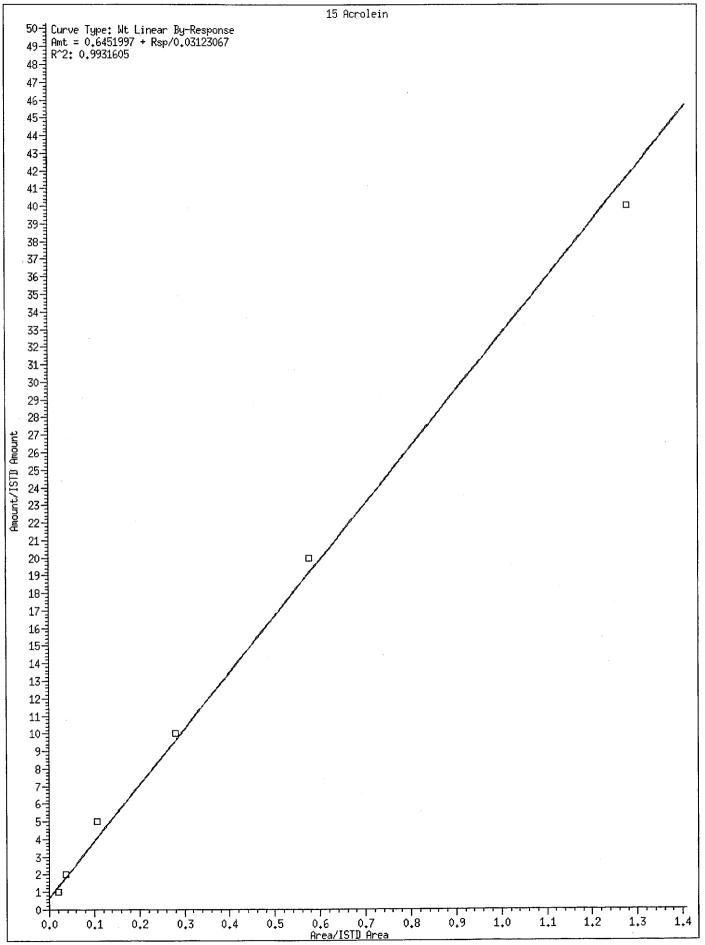
\\cansvr11\dd\chem\MSV\a3ux15.i\C10310A-IC.b\8260LLUX15.m 11-Mar-2011 09:05 a3ux15.i

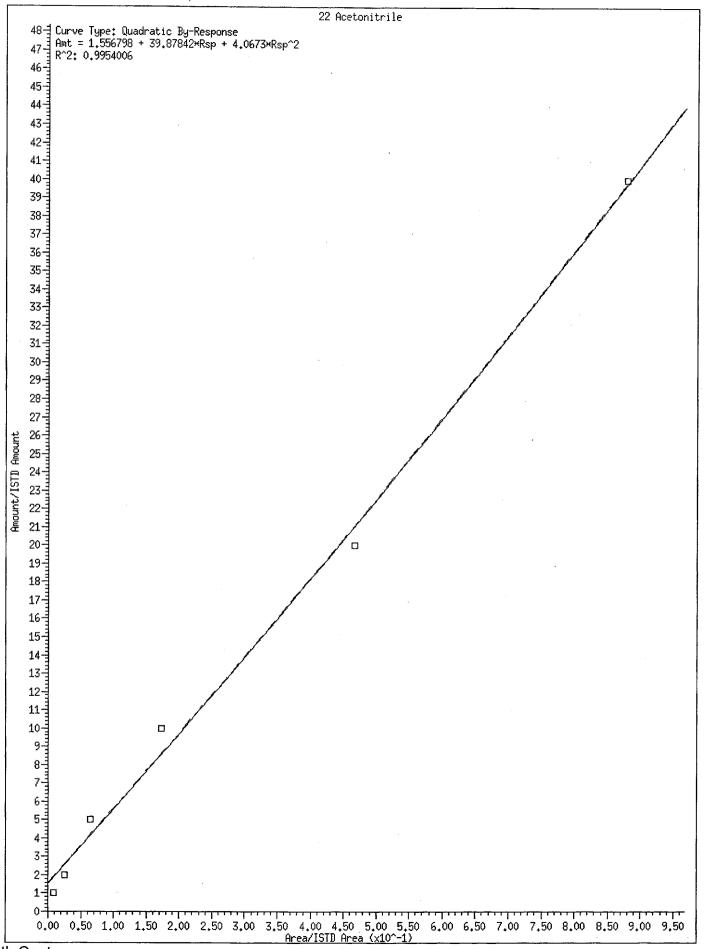
Curve	Formula	Units
11 11 11 11 11 11 11 11 11 11 11 11 11		
Averaged	Amt = Rsp/ml	Response
Wt Linear	Amt = b + Rsp/m1	Response
Quad	$Amt = b + m1*Rsp + m2*Rsp^2$	Response

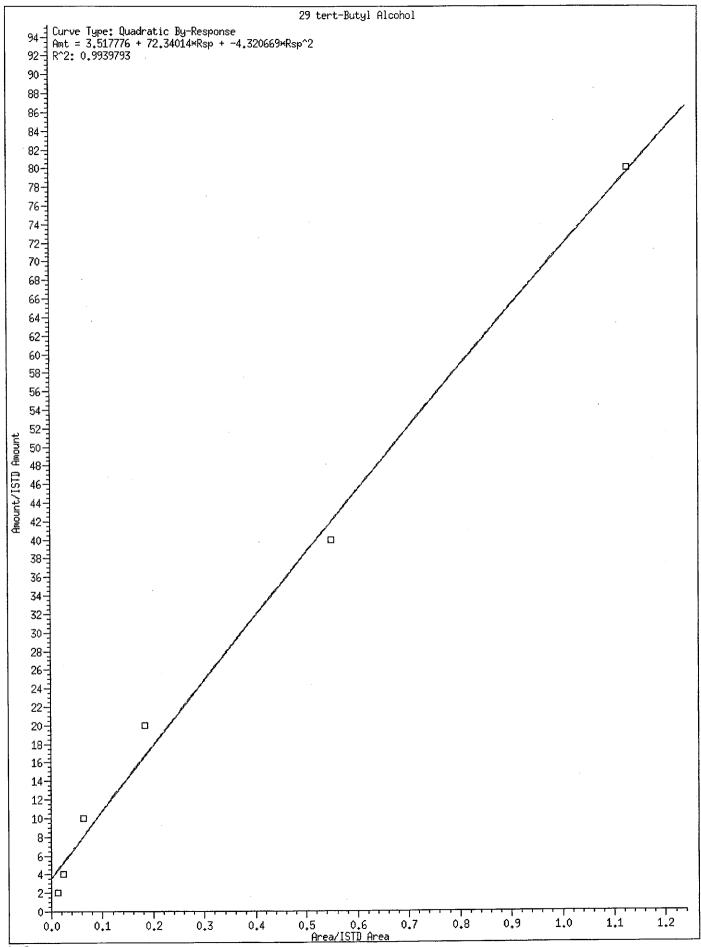


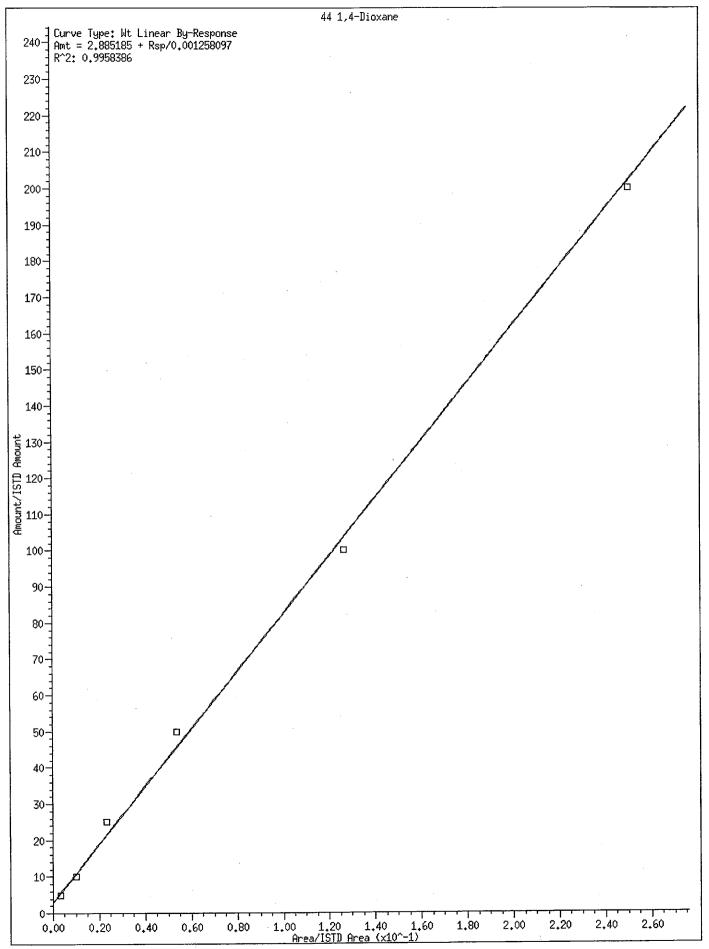


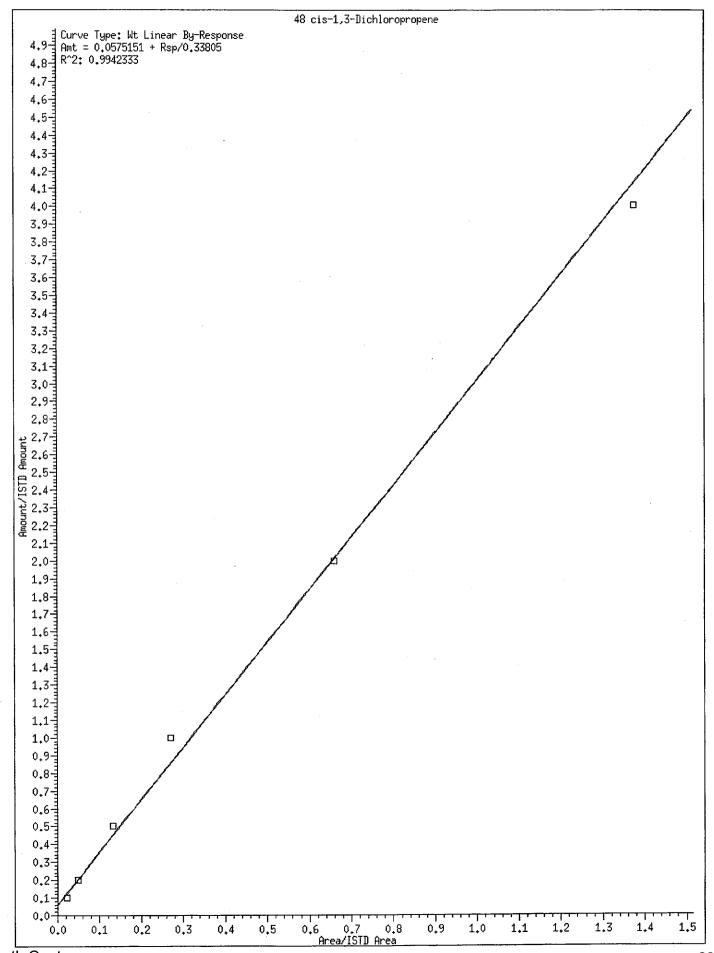

Work Instruction WI-NC-041A_110308 Effective

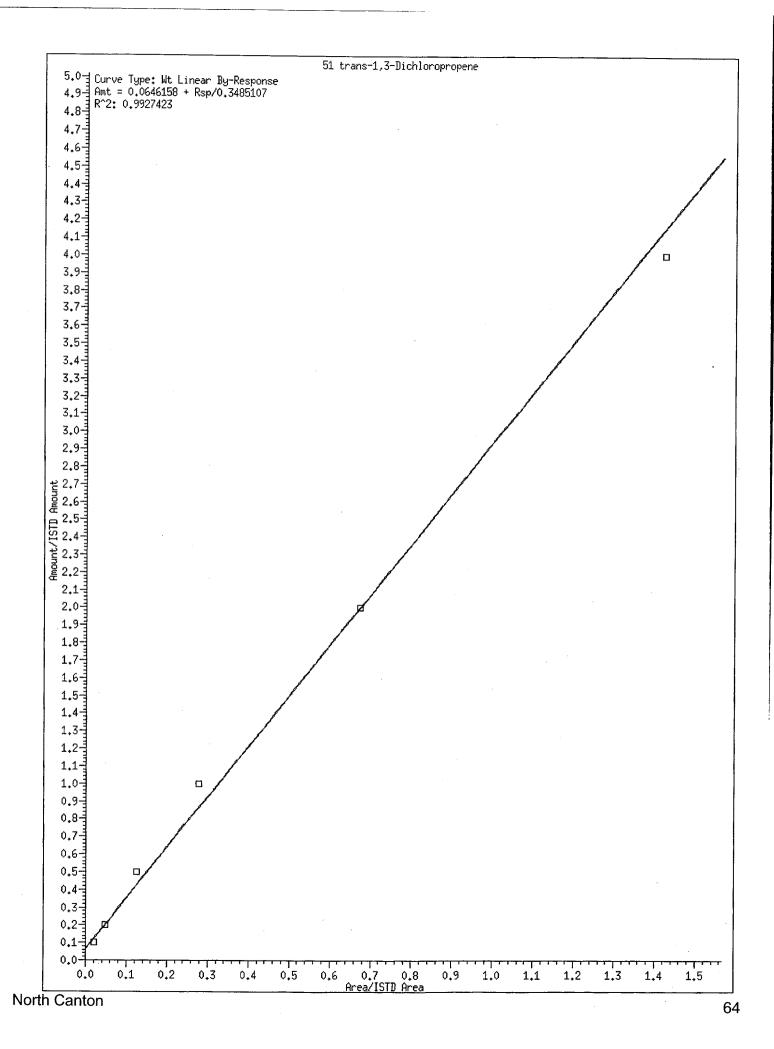

Data review checklist: 8260 A/8260B/624 Initial Calibration

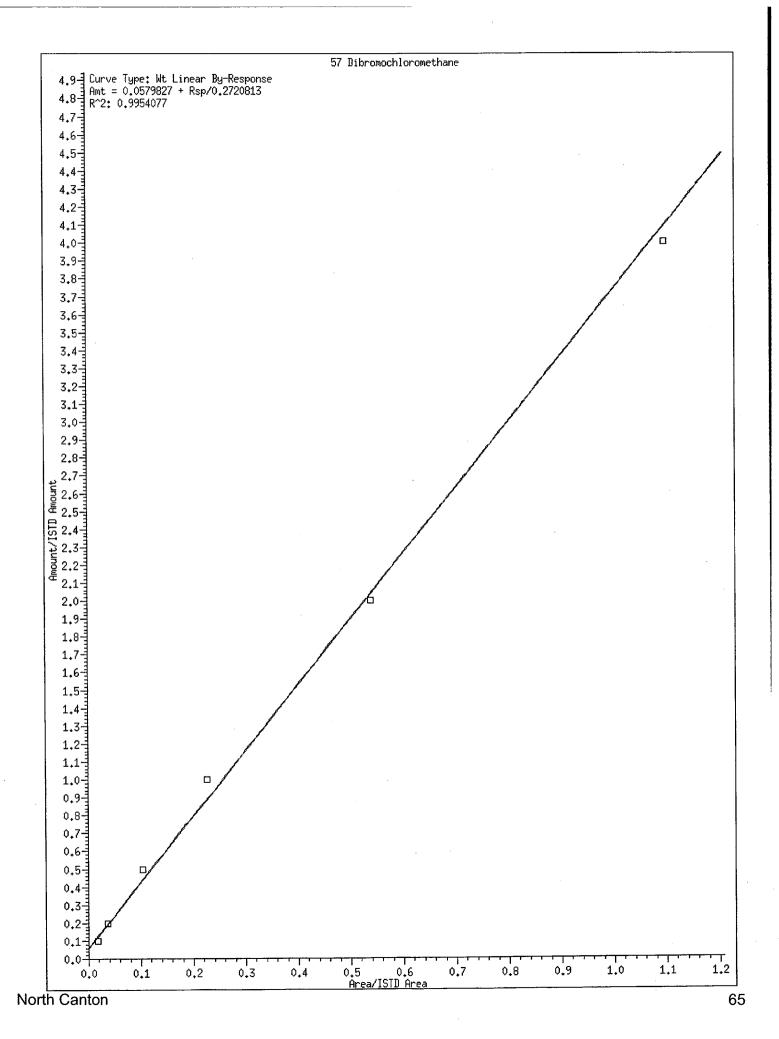

Method (check the applicable box): ☐ 8260A	• •	- ····		-	
Analysis Date: 3/10/(1 Run batch ID:					
Curve ID: <u>C/ ゆう/∪ A - ア</u> . b (curve ID must include instrument designation and date re	ference	e)			
Acceptance criteria is found in the applicable laboratory SOP. If item is N/A, mark as such in Note	es colur	nn			
Item for review	Leve Yes	el I No	Yes	vel II No	<u> </u>
Tune:			1		
BFB passes, all points within 12 hr clock (24 hr for 624)			+		
All calibration points ID'd on Calibration Summary Form					
Documentation: Raw data and run logs present for all points			1		
Run log and Raw data clearly indicate method by version			- W		
RLs: Minimum of 5 points, lowest standards at or below RL			+ -		
Linearity: 8260 CCCs ≤ 30% RSD					_
Linear Regression curve fit for all >15% RSD (35% 624) r2>0.980 (r>0.990)	٥				
Plots for all Linear Regressions printed			9		
Response: SPCCs all pass minimum response factors			9		
0.30			l	_,	
ICV- Second source standard			I		
Analytes 60-140% recovery, problem compounds may be allowed outside these limits, but must be evaluated (acrolein, acrylonitrile, 2-ceve, propionitrile, trans 1,4-dichloro-2-butene)					
Internal Standards 50-200% of recent curve			*		
Manual integrations: necessary, correct & documented		- -			NA.
Other: Verify Avg RF on Cal Summary matches Avg RF on Con Cal form Reviewed by Analyst/ Level II:	cklist.		<u> </u>		
*Peer/Sup only: In addition to the items above, all manual integrations in this package have been		ed and	found	accept	table.
Date:					

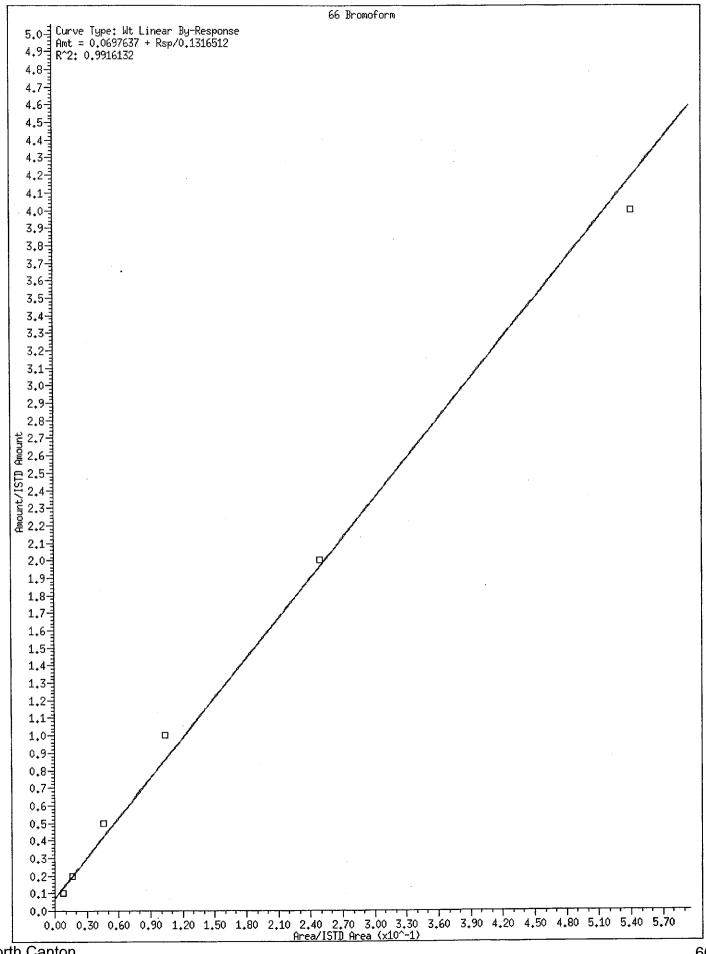


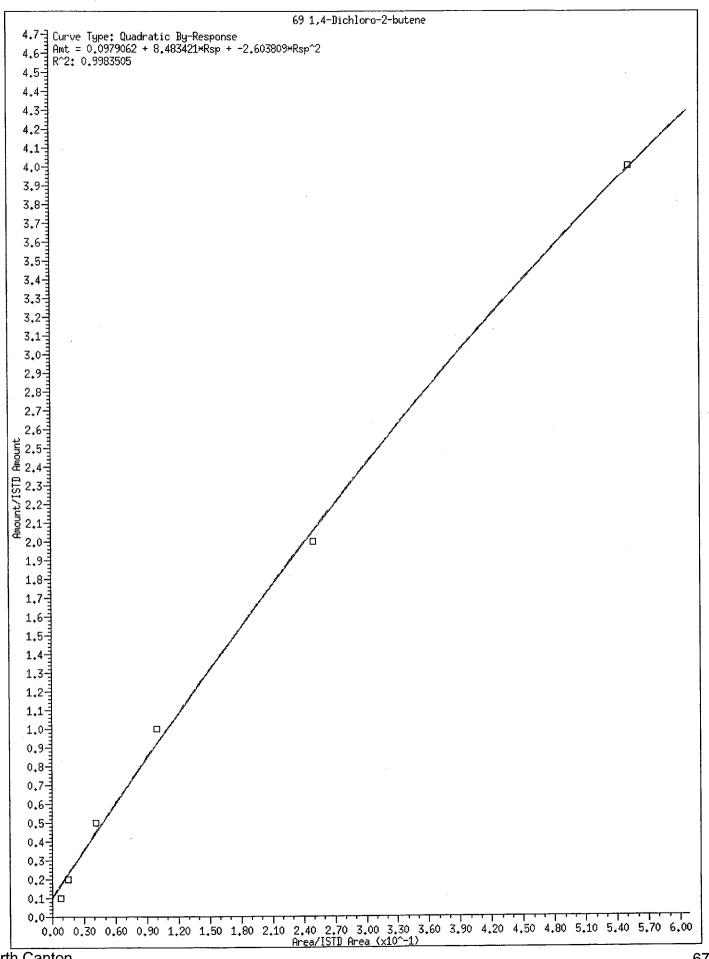


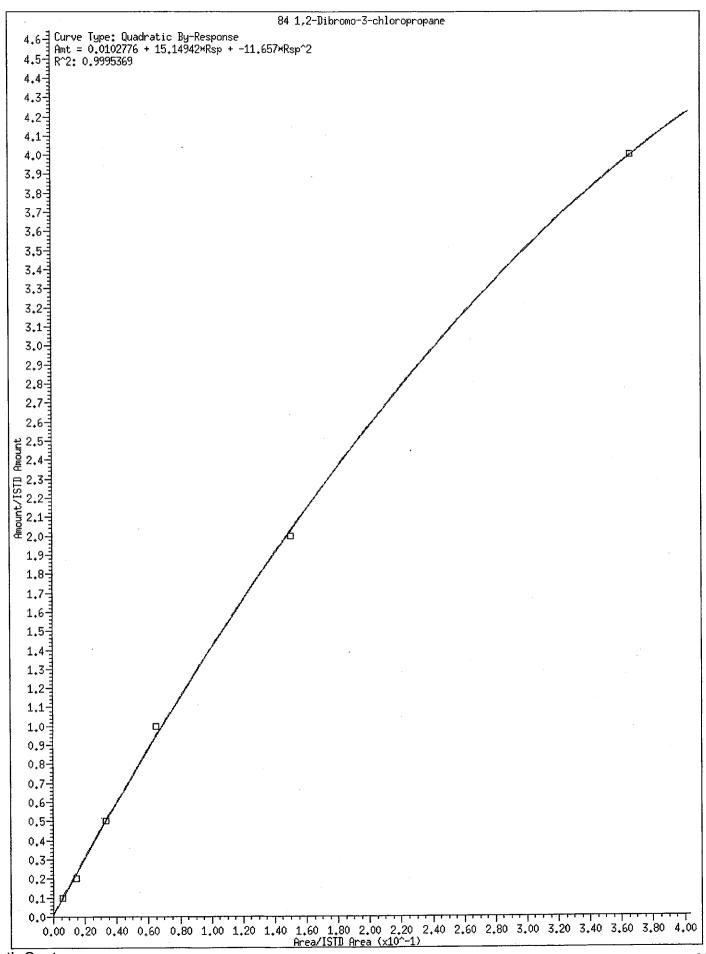


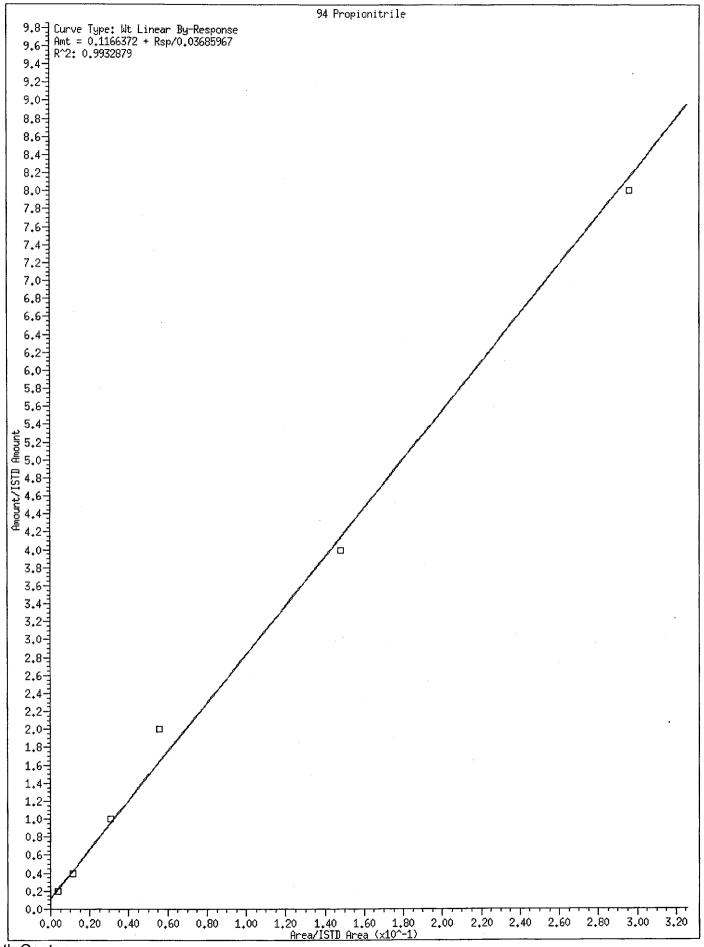


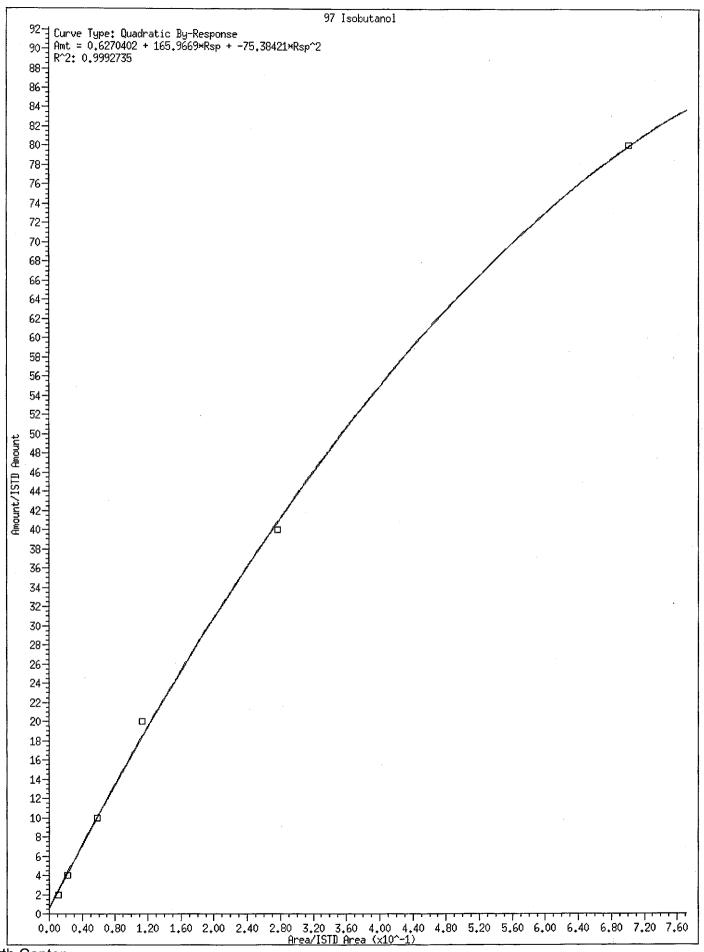


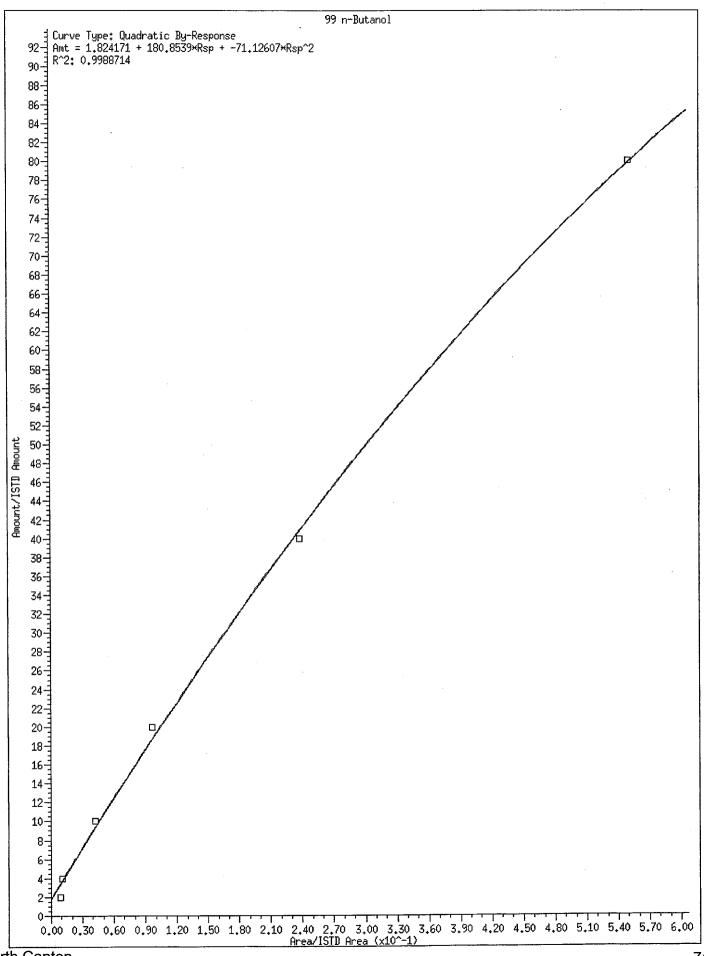


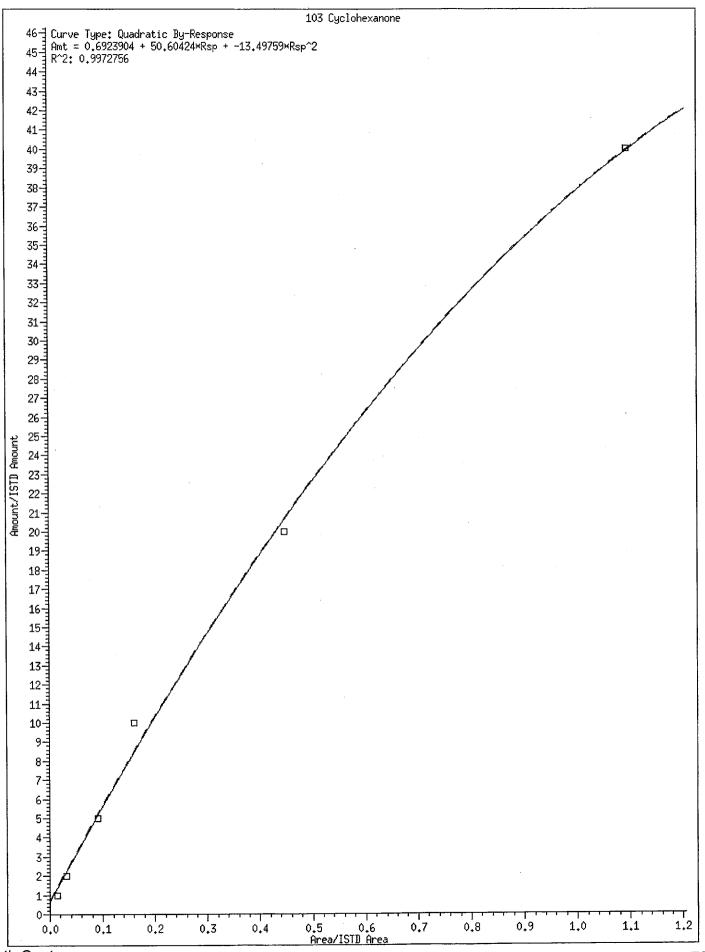


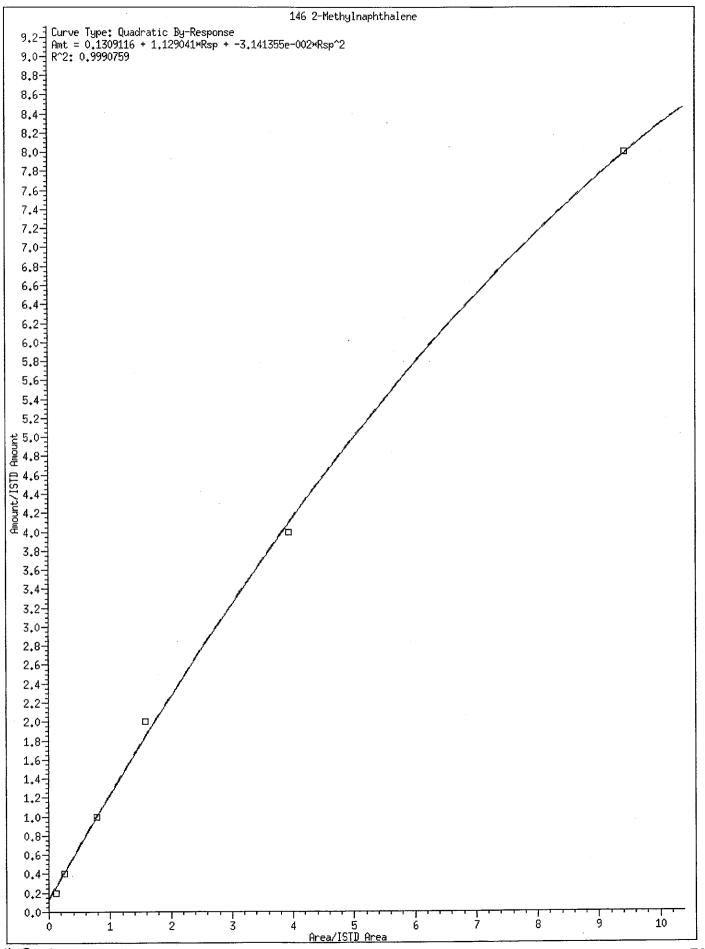












Data File: \\cansvr11\dd\chem\MSV\a3ux15.i\C10310A-IC.b\UXC4108.D

Report Date: 11-Mar-2011 09:04

TestAmerica North Canton

RECOVERY REPORT

Client SDG: SDGa00932

SampleType: METHSPIKE

Fraction: VOA

Operator: 43582

Quant Type: ISTD

Client Name:

Sample Matrix: LIQUID

Lab Smp Id: ICV

Level: LOW

Data Type: MS DATA

SpikeList File: DOD-ck.spk

Sublist File: 4-8260+IX.sub
Method File: \cansvr11\dd\chem\MSV\a3ux15.i\C10310A-IC.b\8260LLUX15.m

Misc Info: C10310A-IC, 8260LLUX15, ,43582,3

		CONC	CONC	%	
SPIKE	COMPOUND	ADDED	RECOVERED	RECOVERED	LIMITS
}	·	ug/L	ug/L		
17	1,1-Dichloroethene	10.000	9.406	94.06	45-155
	2 Trichloroethene	10.000	9.330	93.30	45-155
	Chlorobenzene	10.000	9.128	91.28	45-155
	Toluene	10.000	9.366	93.66	45-155
	Benzene	10.000	9.048	90.48	45-155
· ·	Acetone	20.000	17.016	85.08	45-155
20	Carbon Disulfide	10.000	10.842	108.42	45-155
	Chloromethane	10.000	10.035	100.35	45-155
1	Bromomethane	10.000	10.694	106.94	45-155
	Vinyl Chloride	10.000	8.834	88.34	45-155
	2 Chloroethane	10.000	10.924	109.24	45-155
23	Methylene Chloride	10.000	9.301	93.01	45-155
28	3 1,1-Dichloroethane	10.000	9.483	94.83	45-155
M 31	l 1,2-Dichloroethene	20.000	18.812	94.06	45-155
35	5 Chloroform	10.000	9.606	96.06	45-155
4(1,2-Dichloroethane	10.000	9.236	92.36	45-155
) 2-Butanone	20.000	20.216	101.08	45-155
	7 1,1,1-Trichloroeth	10.000	9.579	95.79	45-155
	9 Carbon Tetrachlori	10.000	9.052	90.52	45-155
	5 Bromodichlorometha	10.000	9.321	93.21	45-155
	3 1,2-Dichloropropan	10.000	9.552	95.52	45-155
	3 cis-1,3-Dichloropr	10.000	7.990	79.90	45-155
	1,3-Dichloropropan	10.000	9.148	91.48	45-155 45-155
	7 Dibromochlorometha	10.000	8.058	80.58 92.34	45-155
	3 1,1,2-Trichloroeth	10.000	9.234	82.86	45-155
	trans-1,3-Dichloro	10.000	8.286 7.769	77.69	45-155
66	6 Bromoform	10.000	19.651	98.26	45-155
4:	9 4-Methyl-2-pentano	20.000	19.936	99.68	45-155
	6 2-Hexanone	20.000	9.150	91.50	45-155
	Tetrachloroethene	10.000	9.218	92.18	45-155
	8 1,1,2,2-Tetrachlor	10.000	9.311	93.11	45-155
	1 Ethylbenzene	10.000	9.624	96.24	45-155
M 6	5 Styrene 3 Xylenes (total)	30.000	27.645	92.15	45-155
	2 cis-1,2-dichloroet	10.000	9.394	93.95	45-155
	trans-1,2-Dichloro	10.000	9.418	94.18	45-155
2	8 Dichlorodifluorome	10.000	6.919	69.19	45-155
	3 Trichlorofluoromet	10.000	11.324	113.24	45-155
	0 1,2,3-Trichloropro	10.000	9.303	93.03	45-155
1 1	8 Freon-113	10.000	9.566	95.66	45-155
1	0 110011 1110	1			
l		l	l	I	· · · · · · · · · · · · · · · · · · ·

Data File: \cansvr11\dd\chem\MSV\a3ux15.i\C10310A-IC.b\UXC4108.D Report Date: 11-Mar-2011 09:04

	- GOVE	CONC	-	· -
	CONC	CONC	RECOVERED	LIMITS
SPIKE COMPOUND	ADDED	RECOVERED	RECOVERED	1111111
	ug/L	ug/L		
	10.000	9.620	96.20	45-155
24 Methyl tert-butyl	10.000	9.079	90.79	45-15
58 1,2-Dibromoethane		9.071	90.71	45-15
67 Isopropylbenzene	10.000	9.128	91.28	45-15
80 1,3-Dichlorobenzen	10.000	· ·	88.99	45-15
81 1,4-Dichlorobenzen	10.000	8.899	87.96	45-15
83 1,2-Dichlorobenzen	10.000	8.796	79.11	45-15
84 1,2-Dibromo-3-chlo	10.000	7.911	86.25	45-15
85 1,2,4-Trichloroben	10.000	8.624	91.52	45-15
98 Cyclohexane	10.000	9.152		45-15
143 Methyl Acetate	10.000	8.700	87.00	45-15
144 Methylcyclohexane	10.000	9.113	91.13	45-15
71 Bromobenzene	10.000	9.422	94.22	45-15
34 Bromochloromethane	10.000	9.480	94.80	45-15
82 n-Butylbenzene	10.000	9.120	91.20	
78 sec-Butylbenzene	10.000	9.138	91.38	45-15
76 tert-Butylbenzene	10.000	9.552	95.52	45-15
73 2-Chlorotoluene	10.000	9.593	95.93	45-15
75 4-Chlorotoluene	10.000	9.282	92.82	45-15
45 Dibromomethane	10.000	9.388	93.88	45-15
33 2,2-Dichloropropan	10.000	8.699	86.99	45-15
38 1,1-Dichloropropen	10.000	9.080	90.80	45-15
86 Hexachlorobutadien	10.000	8.223	82.23	45-15
19 Iodomethane	10.000	11.366	113.66	45-15
92 Isopropyl Ether	10.000	9.619	96,19	45-15
79 4-Isopropyltoluene	10.000	9.520	95.20	45-1
87 Naphthalene	10.000	8.494	84.94	45-1
72 n-Propylbenzene	10.000	9.308	93.08	45-1
60 1,1,1,2-Tetrachlor	10.000	9.614	96.14	45-1
88 1,2,3-Trichloroben	10.000	8.332	83.33	45-1
77 1,2,4-Trimethylben	10.000	9.481	94.81	45-1
74 1,3,5-Trimethylben	10.000	9.420	94.21	45-1
152 Vinyl Acetate-86	10.000	10.850	108.50	45-1
62 m + p-Xylene	20.000	18.376	91.88	45-1
64 Xylene-o	10.000	9.269	92.69	45-15
01 11, 110110 0				_

SURROGATE COMPOUND	CONC ADDED ug/L	CONC RECOVERED ug/L	% RECOVERED	LIMITS
\$ 4 Dibromofluorometha		10.667	106.67	75-121
\$ 5 1,2-Dichloroethane		10.422	104.22	63-129
\$ 6 Toluene-d8		10.783	107.83	74-115
\$ 7 Bromofluorobenzene		10.811	108.11	66-117

VOLATILE ORGANIC GC/MS TUNING AND MASS CALIBRATION - BROMOFLUOROBENZENE (BFB)

Lab Name: NORTH CANTON

Contract:

Lab File ID: BFB604

BFB Injection Date: 03/11/11

Instrument ID: A3UX15

BFB Injection Time: 0940

Matrix: (soil/water) WATER Level: (low/med) LOW Column: (pack/cap) CAP

m/e	ION ABUNDANCE CRITERIA	% RELATIVE ABUNDANCE
50 75 95 96 173 174 175 176	15.0 - 40.0% of mass 95 30.0 - 60.0% of mass 95 Base Peak, 100% relative abundance 5.0 - 9.0% of mass 95 Less than 2.0% of mass 174 50.0 - 100.0% of mass 95 5.0 - 9.0% of mass 174 Greater than 95.0%, but less than 101.0% of mass 174 5.0 - 9.0% of mass 176	25.5 47.5 100.0 6.1 0.5 (0.6)1 85.5 6.2 (7.3)1 81.3 (95.1)1 5.1 (6.3)2
1	1-Value is % of mass 174 2-Value is % of mass 174	ass 176

THIS TUNE APPLIES TO THE FOLLOWING SAMPLES, MS, MSD, BLANKS, AND STANDARDS:

	EPA	LAB	LAB	DATE	TIME
	SAMPLE NO.	SAMPLE ID	FILE ID	ANALYZED	ANALYZED
	========				
01	VSTD010	50NG-CC	UXC4109	03/11/11	1028
02	VSTD010	50NG-A9CC	UXC4110	03/11/11	1050
03	MFLD5CHK	MFLD51AC	MFLD51AC	03/11/11	1112
04	MFLD5BLK	MFLD51AA	MFLD51AA	03/11/11	1135
05	TB-030311	ME75MLAA	UXC4123	03/11/11	1547
06	l .	ME7571AA	UXC4124	03/11/11	1610
07	MSA-SW40-030	ME76H1AM	UXC4125	03/11/11	1633
08	MSA-SW41-030	ME76PlAM	UXC4126	03/11/11	1655
09	·			. ,	
10				•	
11					
12					
13					
14					
15					
16					
17		·			
18					
19					
20					
21					
22	l	l	l	l	

page 1 of 1

FORM V VOA

1/87 Rev.

Data File: \\cansvr11\dd\chem\MSV\a3ux15.i\C10311A.b\UXC4109.D Report Date: 11-Mar-2011 11:18

TestAmerica North Canton

CONTINUING CALIBRATION COMPOUNDS .

Instrument ID: a3ux15.i Injection Date: 11-MAR-2011 10:28

Lab File ID: UXC4109.D Analysis Type: WATER Lab Sample ID: 50NG-CC Init. Cal. Date(s): 17-MAY-2010 10-MAR-2011

Init. Cal. Times: 08:17 16:58

Quant Type: ISTD

Method: \\cansvr11\dd\chem\MSV\a3ux15.i\C10311A.b\8260LLUX15.m

I	11	t	CCAL MIN	I	I MAX	!
COMPOUND	RRF / AMOUNT	RF50	RRF50 RRF	%D / %DRIFT	%D / %DRIFT	CURVE TYPE
=====================================	==== =================================	0.30223				
\$ 5 1,2-Dichloroethane-d4	1 0.325791	•	0.30223 0.010			-
\$ 6 Toluene-d8		0.374661	0.37466 0.010			
S 7 Bromofluorobenzene		1.408801	1.40880 0.010			
8 Dichlorodifluoromethane		0.44421	0.44421 0.010			Averaged
9 Chloromethane		0.206541	0.2065410.010			
10 Vinyl Chloride	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	63.15556	0.33189 0.100		0.000e+000	
11 Bromomethane	, 0.207.01	0.305651	0.30565 0.010			-
12 Chloroethane	[50.00000]	68.449421	0.10439 0.010			
13 Trichlorofluoromethane	1 50.000001	65.731891	0.15295 0.010			Quadratic
15 Acrolein	1 0.253741	0.36040	0.3604010.010		50.000001	Averaged
16 Acetone	1 5001	477	0.02779 0.010		0.000e+0001	Wt Linear
17 1,1-Dichloroethene	1 0.078771	0.077121	0.07712;0.010		50.000001	Averaged
18 Freon-113	0.233021	0.25041	0.25041 0.010	- 7.46 3721	20.000001	Averaged
19 Iodomethane	0.16464	0.20379	0.20379 0.010	i (-2 <u>3.7772</u> 51	50.000001	Averaged
	0.41275	0.43301	0.43301 0.010	-4.908071	50.000001	Averaged
20 Carbon Disulfide	0.53873	0.61964	0.61964 0.010	<u>-15.01779</u>	50.000001	Averaged
21 Methylene Chloride	1 0.277971	0.27310	0.2731010.010	1.75004]	50.000001	Averaged
22 Acetonitrile	1 5001	4541	0.01851 0.010	9.22256	0.000e+000	Quadratic
23 Acrylonitrile	0.095651	0.10142	0.10142 0.010	-6.033791	50.000001	Averaged
24 Methyl tert-butyl ether	0.602301	0.62645	0.62645]0.010]	~4.00996	50.000001	Averaged
25 trans-1,2-Dichloroethene	0.27406	0.284561	0.28456[0.010]	-3.832491	50.000001	Averaged
26 Hexane	0.062491	0.07237	0.0723710.0101	-15.81029	20.000001	Averaged
27 Vinyl acetate	0.43311	0.43151	0.43151 0.010	0.36928	50.000001	Averaged
28 1,1-Dichloroethane	0.53941	0.54278	0.54278 0.100	-0.625161	50.000001	Averaged
9 tert-Butyl Alcohol	1 1000	1012	0.01172 0.010		0.000e+0001	
30 2-Butanone	0.11075	0.11031	0.11031 0.010		50.000001	Averaged
M 31 1,2-Dichloroethene (total)	0.284261	0.29095	0.29095 0.010	-2.35379	50.000001	Averaged
32 cis-1,2-dichloroethene	0.29447	0.29735	0.29735 0.010	-0.977591	50.000001	Averaged
33 2,2-Dichloropropane	0.18727	0.21433	0.21433 0.010	-14.447391	50.000001	Averaged
34 Bromochloromethane	0.14529	0.14876	0.14876 0.010	-2.39108	50.000001	-
35 Chloroform	1 0.45280[0.46255	0.46255 0.010	-2.15194	20.000001	Averaged
36 Tetrahydrofuran	0.08132	0.083361	0.08336[0.010]	-2.507791	50.000001	Averaged!
7 1,1,1-Trichloroethane	0.30848	0.34147	0.34147 0.010	-10.69697	50.000001	Averaged
8 1,1-Dichloropropene	0.36311	0.386381	0.38638 0.010	-6.408241	•	Averaged
9 Carbon Tetrachloride	1 0.267981	0.32103	0.32103 0.010	49.79517	50.000001	Averaged
0 1,2-Dichloroethane	0.44381	0.428761	0.42876 0.010		50.000001	Averaged
1 Benzene	1 1.084891	1.05946		3.390541	50.000001	Averaged
2 Trichloroethene	0.31110	0.31055	1.05946[0.010]	2.344101	50.000001	Averaged
3 1,2-Dichloropropane	0.28784		0.31055;0.010;	0.17544	50.000001	Averaged
4 1,4-Dioxane	1 2500	0.28912	0.28912 0.010	-0.444561	20.000001	Averaged
5 Dibromomethane	0.14314	34431	0.0016610.0101		0.000e+000	
6 Bromodichloromethane	0.14314	0.14280	0.14280 0.010	0.23309	50.000001	Averaged
7 2-Chloroethyl vinyl ether	, 01202731	0.276261	027626 0.010	-5.15261	50.00000	Averaged
. 2 Shioloechyl vinyl ether	1 0.12687	0.12889	0.12889 0.010	-1.59608	50.000001	Averaged

Data File: \cansvr11\dd\chem\MSV\a3ux15.i\C10311A.b\UXC4109.D

Report Date: 11-Mar-2011 11:18

TestAmerica North Canton

CONTINUING CALIBRATION COMPOUNDS

Instrument ID: a3ux15.i Injection Date: 11-MAR-2011 10:28

Lab File ID: UXC4109.D Init. Cal. Date(s): 17-MAY-2010 10-MAR-2011
Analysis Type: WATER Init. Cal. Times: 08:17 16:58
Lab Sample ID: 50NG-CC Quant Type: ISTD
Method: \\cansvr11\\dd\chem\\MSV\\a3ux15.i\\C10311A.b\\8260LLUX15.m

1.148390	
48 cis-1,3-Dichloropropene	
49 4-Methyl-2-pentanone	
1. 1. 1. 1. 1. 1. 1. 1.	
	Averaged
1.52 Ethyl Methacrylate	Averaged
1.1.	
154 1,3-Dichloropropane	Averaged
155 Tetrachloroethene	Averaged
156 2-Hexanone	Averaged
157 Dibromochloromethane	Averaged
158 1,2-Dibromoethane	Averaged
1.59 Chlorobenzene	
160 1,1,1,2-Tetrachloroethane	Averaged
1	Averaged
1	Averaged
M 63 Xylenes (total)	Averaged
164 Xylene-0	Averaged
1	Averaged
1	Averaged
1.51091 1.47710 1.47710 0.010 2.23814 50.00000 1.68	Averaged
1	t Linear
169 1,4-Dichloro-2-butene	Averaged
170 1,2,3-Trichloropropane	Averaged
171 Bromobenzene	uadratic
172 n-Propylbenzene	Averaged
73 2-Chlorotoluene	Averaged
74 1,3,5-Trimethylbenzene	Averaged
175 4-Chlorotoluene	Averaged
176 tert-Butylbenzene	Averaged
76 tert-Butylbenzene	Averaged
17 1,2,4-Trimethylbenzene 2.26285 2.22479 2.22479 0.010 1.68180 50.00000	Averaged
	Averaged
	Averaged
79 4-Isopropyltoluene 2.31150 2.29035 2.29035 0.010 0.91495 50.00000	Averaged
	Averaged
	Averaged
00 0 1	Averaged:
	Averaged
84 1,2-Dibromo-3-chloropropane 50.00000 52.61120 0.07286 0.010 -5.22239 0.000e+000 Q	
	Averaged
133331 30.00001	Averaged
20.10.0 m. 1.12.	Averaged
	Averaged
	Averaged
143 Methyl Acetate 0.20978 0.22101 0.22101 0.010 -5.35364 50.00000	Averaged

Data File: \cansvr11\dd\chem\MSV\a3ux15.i\C10311A.b\UXC4109.D

Report Date: 11-Mar-2011 11:18

TestAmerica North Canton

CONTINUING CALIBRATION COMPOUNDS

Instrument ID: a3ux15.i Injection Date: 11-MAR-2011 10:28

Lab File ID: UXC4109.D Init. Cal. Date(s): 17-MAY-2010 10-MAR-2011
Analysis Type: WATER Init. Cal. Times: 08:17 16:58
Lab Sample ID: 50NG-CC Quant Type: ISTD
Method: \\cansvr11\\dd\chem\MSV\\a3ux15.i\\C10311A.b\\8260LLUX15.m

I				CCAL	MIN	ı	MAX	
COMPOUND	RR	F / AMOUNT	RF50 1	RRF50	RRF 1	&D / %DRIFT	%D / %DRIFT	CURVE TYPE
	== ==	=======================================			==== ===== =	-=======[=======
144 Methylcyclohexane	F	0.41570	0.500441	0.5	004410.0101	-20.38527	50.00000	Averaged
141 1,3,5-Trichlorobenzene	1	0.87470	0.78781	0.7	8781 0.010	9.93414	50.00000	Averaged
1152 Vinyl Acetate-86	1	0.03194	0.032431	0.0	3243 0.010	-1.52106	50.00000	Averaged
l	I	1	1					lI

Data File: \\cansvr11\dd\chem\MSV\a3ux15.i\C10311A.b\UXC4110.D

Report Date: 11-Mar-2011 11:18

TestAmerica North Canton

CONTINUING CALIBRATION COMPOUNDS

Instrument ID: a3ux15.i Injection Date: 11-MAR-2011 10:50

Lab File ID: UXC4110.D Init. Cal. Date(s): 17-MAY-2010 1(Analysis Type: WATER Init. Cal. Times: 08:17 16
Lab Sample ID: 50NG-A9CC Quant Type: ISTD
Method: \\cansvr11\dd\chem\MSV\a3ux15.i\C10311A.b\8260LLUX15.m Init. Cal. Date(s): 17-MAY-2010 10-MAR-2011 Init. Cal. Times: 08:17 16:58 Quant Type: ISTD

	I	1	1	CCAL	MIN	I	1	MAX	1
COMPOUND	RRF	/ AMOUNT I	RF50	RRF50	RRF	%D /	%DRIFT!	&D / %DRIFT	CURVE TYPE
*======================================	===== ===	===== =:		=======================================	·	====	=====		
14 Dichlorofluoromethane	1	0.24677	0.27706	0.2770610			2.27127	50.00000	
89 Ethyl Ether	1	0.31600	0.31691	0.31691	0.010	-	0.287681	50.00000	-
91 3-Chloropropene	1	0.10935	0.12215	0.12215	0.010	-1	1.71038	50.00000	_
92 Isopropyl Ether	t	0.23504	0.23482	0.2348210	.010	ı	0.09374	50.00000	
93 2-Chloro-1,3-butadiene	1	0.56221	0.558451	0.55845[0	0.010	j	0.66997]	50.00000	-
94 Propionitrile	1	100	92.97390	0.03212 0	0.010	i	7.026101	0.000e+000	Wt Linear
95 Ethyl Acetate	l l	0.22086	0.23170	0.23170 0	.010		4.90723	50.00000	
96 Methacrylonitrile	1	0.17089	0.16467	0.1646710	.010	ı	3.63855	50.00000	_
97 Isobutanol	1	1000	1003	0.0062010	0.010				Quadratic
99 n-Butanol	ı	1000	918	0.00475 0	.010	ı			Quadratic
103 Cyclohexanone	ı	500	5851	0.0232010	.010	-1			Quadratic
100 Methyl Methacrylate	1	0.21153	0.21712	0.21712 0	.010		2.642951	50.00000	
101 2-Nitropropane	1	0.032131	0.03609	0.0360910	.010	t -1	2.337921	50.00000	-
146 2-Methylnaphthalene	1	100	110	0.9670710	.010	I -	9.855861		Quadratic
155 tert-Butyl Ethyl Ether	1	0.82050	0.845341	0.84534 0	.010		3.028351	50.00000	
156 tert-Amyl Methyl Ether	1	0.49014	0.51716	0.51716 0	.010		5.51201	50.00000	
157 1,2,3-Trimethylbezene	1	2.11383	2.15418	2.1541810	.010		1.909251	50.00000	
154 n-Heptane	1	0.38884	0.39312	0.39312 0	.010	۱ -	1.099931	50.00000	
158 n-Butyl Acetate	1	0.27166	0.30078	0.30078 0			0.718181	50.00000	
	1	ŀ	1					55.00000	vcrageu

SW846 8260B METHOD BLANK SUMMARY

BLANK WORKORDER	NO.
MFLD51AA	ĺ
	i

Lab Name: TestAmerica Laboratories,

Lab Code: TALCAN

SDG Number:

Lab File ID: MFLD51AA.

Lot Number: AlC040534

Date Analyzed: 03/11/11

Time Analyzed: 11:35

Matrix: WATER

Date Extracted: 03/11/11

GC Column: DB624 ID: .18

Extraction Method: 5030B

Instrument ID: UX15

Level: (low/med) LOW

THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES, LCS, LCSD, MS , MSD:

	SAMPLE	LAB	DATE	TIME
CLIENT ID.	WORK ORDER #	FILE ID	ANALYZED	ANALYZED
=======================================	=========	==========	========	========
TB-030311	ME75M1AA	UXC4123.D	03/11/11	15:47
MSA-SW38-030311	ME7571AA	UXC4124.D	03/11/11	16:10
MSA-SW40-030311	ME76H1AM	UXC4125.D	03/11/11	16:33
MSA-SW41-030311	ME76P1AM	UXC4126.D	03/11/11	16:55
INTRA-LAB QC	ME91H1AA	UXC4120.D	03/11/11	14:40
LAB MS/MSD	ME91H1AC S	UXC4135.D	03/11/11	20:17
LAB MS/MSD	ME91H1AD D	UXC4136.D	03/11/11	20:39
CHECK SAMPLE	MFLD51AC C	MFLD51AC.	03/11/11	11:12
			•	
	·			
•				
	'			
		,		
	TB-030311 MSA-SW38-030311 MSA-SW40-030311 MSA-SW41-030311 INTRA-LAB QC LAB MS/MSD LAB MS/MSD	CLIENT ID. WORK ORDER # TB-030311 ME75M1AA MSA-SW38-030311 ME76H1AM MSA-SW41-030311 ME76P1AM INTRA-LAB QC ME91H1AA LAB MS/MSD ME91H1AC S LAB MS/MSD ME91H1AD D CHECK SAMPLE MFLD51AC C	CLIENT ID.	CLIENT ID. WORK ORDER # FILE ID ANALYZED ===================================

COMMENTS:					
	 	 			
	 	 	TODM	TTT	

METHOD BLANK REPORT

GC/MS Volatiles

Client Lot #...: A1C040534 Work Order #...: MFLD51AA Matrix...... WATER

MB Lot-Sample #: A1C140000-129

Prep Date....: 03/11/11 Final Wgt/Vol..: 5 mL
Analysis Date..: 03/11/11 Prep Batch #...: 1073129

Dilution Factor: 1 Initial Wgt/Vol: 5 mL

		REPORTI	NG	
PARAMETER	RESULT	LIMIT	UNITS	METHOD
Acetone	ND	5.0	ug/L	SW846 8260B
Bromobenzene	ND	1.0	ug/L	SW846 8260B
Bromochloromethane	ND	1.0	ug/L	SW846 8260B
Bromodichloromethane	ND	1.0	ug/L	SW846 8260B
n-Butylbenzene	ND	1.0	ug/L	SW846 8260B
sec-Butylbenzene	ND	1.0	ug/L	SW846 8260B
tert-Butylbenzene	ND	1.0	ug/L	SW846 8260B
Dibromochloromethane	ND	1.0	ug/L	SW846 8260B
2-Chlorotoluene	ND	1.0	ug/L	SW846 8260B
4-Chlorotoluene	ND	1.0	ug/L	SW846 8260B
Dibromomethane	ND	1.0	ug/L	SW846 8260B
1,2-Dichlorobenzene	ND	1.0	ug/L	SW846 8260B
1,3-Dichlorobenzene	ND	1.0	ug/L	SW846 8260B
1,4-Dichlorobenzene	ND	1.0	ug/L	SW846 8260B
Dichlorodifluoromethane	ND	1.0	ug/L	SW846 8260B
cis-1,2-Dichloroethene	ND	1.0	ug/L	SW846 8260B
trans-1,2-Dichloroethene	ND	1.0	ug/L	SW846 8260B
1,3-Dichloropropane	ND	1.0	ug/L	SW846 8260B
2,2-Dichloropropane	ND	1.0	ug/L	SW846 8260B
1,1-Dichloropropene	ND	1.0	ug/L	SW846 8260B
Trichlorofluoromethane	ND	1.0	ug/L	SW846 8260B
Hexachlorobutadiene	ND	1.0	ug/L	SW846 8260B
Isopropylbenzene	ND	1.0	ug/L	SW846 8260B
p-Isopropyltoluene	ND	1.0	ug/L	SW846 8260B
Naphthalene	ND	1.0	ug/L	SW846 8260B
n-Propylbenzene	ND	1.0	ug/L	SW846 8260B
Styrene	ND	1.0	ug/L	SW846 8260B
1,1,1,2-Tetrachloroethane	ND	1.0	ug/L	SW846 8260B
1,2,3-Trichlorobenzene	ND	1.0	ug/L	SW846 8260B
1,2,4-Trichloro-	ND	1.0	ug/L	SW846 8260B
benzene				
1,2,3-Trichloropropane	ND	1.0	ug/L	SW846 8260B
1,2,4-Trimethylbenzene	ND	1.0	ug/L	SW846 8260B
o-Xylene	ND	1.0	ug/L	SW846 8260B
1,1,2-Trichloro-	ND	1.0	ug/L	SW846 8260B
1,2,2-trifluoroethane			-	
Methyl tert-butyl ether	ND	5.0	ug/L	SW846 8260B
m-Xylene & p-Xylene	ND	2.0	ug/L	SW846 8260B
1,2-Dibromo-3-chloro-	ND	2.0	ug/L	SW846 8260B
propane			-	
1,2-Dibromoethane	ND	1.0	ug/L	SW846 8260B

(Continued on next page)

METHOD BLANK REPORT

GC/MS Volatiles

		REPORTI	NG	
PARAMETER	RESULT	LIMIT	UNITS	METHOD
Carbon disulfide	ND	1.0	ug/L	SW846 8260B
2-Hexanone	ND	5.0	ug/L	SW846 8260B
Vinyl acetate	ND	2.0	ug/L	SW846 8260B
Xylenes (total)	ND .	2.0	ug/L	SW846 8260B
2-Butanone	ND	5.0	ug/L	SW846 8260B
4-Methyl-2-pentanone	ND	5.0	ug/L	SW846 8260B
2-Chloroethyl vinyl ether	ND	5.0	ug/L	SW846 8260B
tert-Butyl alcohol	ND	20	ug/L	SW846 8260B
1,2,3-Trimethylbenzene	ND	5.0	ug/L	SW846 8260B
Diisopropyl Ether (DIPE)	ND	5.0	ug/L	SW846 8260B
Ethyl-t-Butyl Ether (ETBE	ND	5.0	ug/L	SW846 8260B
Tert-amyl methyl ether (T	ND	5.0	ug/L	SW846 8260B
Benzene	ND	1.0	ug/L	SW846 8260B
Bromoform	ND	1.0	ug/L	SW846 8260B
Bromomethane	ND	1.0	ug/L	SW846 8260B
Carbon tetrachloride	ND	1.0	ug/L	SW846 8260B
Chlorobenzene	ND	1.0	ug/L	SW846 8260B
Chloroethane	ND	1.0	ug/L	SW846 8260B
Chloroform	ND	1.0	ug/L	SW846 8260B
Chloromethane	ND	1.0	ug/L	SW846 8260B
1,1-Dichloroethane	ND	1.0	ug/L	SW846 8260B
1,2-Dichloroethane	ND	1.0	ug/L	SW846 8260B
1,1-Dichloroethene	ND	1.0	ug/L	SW846 8260B
1,2-Dichloropropane	·ND	1.0	ug/L	SW846 8260B
cis-1,3-Dichloropropene	ND	1.0	ug/L	SW846 8260B
trans-1,3-Dichloropropene	ND	1.0	ug/L	SW846 8260B
Ethylbenzene	ND	1.0	ug/L	SW846 8260B
Methylene chloride	ND	1.0	ug/L	SW846 8260B
1,1,2,2-Tetrachloroethane	ND	1.0	ug/L	SW846 8260B
Tetrachloroethene	ND	1.0	ug/L	SW846 8260B
Toluene	ND	1.0	ug/L	SW846 8260B
1,1,1-Trichloroethane	ND	1.0	ug/L	SW846 8260B
Trichloroethene	ND	1.0	ug/L	SW846 8260B
Vinyl chloride	ND	1.0	ug/L	SW846 8260B
	PERCENT	RECOVERY		
SURROGATE	RECOVERY	LIMITS		
Dibromofluoromethane	101	(75 - 12	•	
1 2-Dichloroothano-d4	1.00	100 10		

SURROGATE	RECOVERY	LIMITS		
Dibromofluoromethane	101	(75 - 121)		
1,2-Dichloroethane-d4	108	(63 - 129)		
Toluene-d8	111	(74 - 115)		
4-Bromofluorobenzene	108	(66 - 117)		

NOTE (S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

LABORATORY CONTROL SAMPLE EVALUATION REPORT

GC/MS Volatiles

Client Lot #...: A1C040534 Work Order #...: MFLD51AC Matrix...... WATER

LCS Lot-Sample#: A1C140000-129

Prep Date....: 03/11/11 Analysis Date..: 03/11/11

Prep Batch #...: 1073129

Dilution Factor: 1 Final Wgt/Vol..: 5 mL

Initial Wgt/Vol: 5 mL

	PERCENT	RECOVERY	
PARAMETER	RECOVERY	LIMITS	METHOD
Benzene	91	(83 - 112)	SW846 8260B
Chlorobenzene	9 0	(85 - 110)	SW846 8260B
1,1-Dichloroethene	95	(78 - 131)	SW846 8260B
Toluene	91	(84 - 111)	SW846 8260B
Trichloroethene	93	(76 – 117)	SW846 8260B
		PERCENT	RECOVERY
SURROGATE		RECOVERY	LIMITS
Dibromofluoromethane		109	(75 - 121)
1,2-Dichloroethane-d4		107	(63 - 129)
Toluene-d8		109	(74 - 115)
4-Bromofluorobenzene		113	(66 - 117)

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

Bold print denotes control parameters

SW846 8260B MATRIX SPIKE/MATRIX SPIKE DUPLICATE RECOVERY

Lab Name: TestAmerica Laboratories, Inc. Client: Tetra Tech NUS, Inc

Lab Code: TALCAN

SDG No:

Matrix Spike ID: LAB MS/MSD

Lot #: A1C070454

WO #: ME91H1AC BATCH: 1073129

	SPIKE	SAMPLE	MS	MS		
	ADDED	CONCENT.	CONCENT.	%	LIMITS	
COMPOUND	(ug/L)	(ug/L)	(ug/L)	REC	REC	QUAL
=======================================	=======	=======	=======	=====	========	========
1,1-Dichloroethene	1700	ND	1500	91	74 - 135	
Trichloroethene	1700	ND	1500	92	66- 120	
Benzene	1700	4600	6300	105	72 - 121	
Toluene	1700	ND	1500	90	78- 114	
Chlorobenzene	1700	ND	1500	89	80- 110	·

<pre># Column to be used to flag recovery and RPD values with an asterisk * Values outside of QC limits</pre>
RPD: 0 out of 0 outside limits Spike Recovery: 0 out of 5 outside limits
COMMENTS:

NOTES(S):

SW846 8260B MATRIX SPIKE/MATRIX SPIKE DUPLICATE RECOVERY

Lab Name: TestAmerica Laboratories, Inc. Client: Tetra Tech NUS, Inc

Lab Code: TALCAN

SDG No:

Matrix Spike ID: LAB MS/MSD

Lot #: A1C070454

WO #: ME91H1AD BATCH: 1073129

	SPIKE	MSD	MSD				
	ADDED	CONCENT.	용	용	QC I	IMITS	
COMPOUND	(ug/L)	(ug/L)	REC	RPD	RPD	REC	LAUQ
	=======	=======	=====	======	====	========	====
1,1-Dichloroethene	1700	1500	90	0.95	30	74- 1	35
Trichloroethene	1700	1500	90	1.8	30	66- 1:	20
Benzene	1700	6300	_104_	0.30	30	72 - 1	21
Toluene	1700	1500	90	0.34	30	78- 1	L4
Chlorobenzene	1700	1500	89	0.19	30	80- 1:	LO

Column to be used to flag recovery and RPD values with an asterisk * Values outside of QC limits
RPD:0 out of5 outside limits Spike Recovery:0 out of5 outside limits
COMMENTS:

FORM III

NOTES(S):

VOLATILE INTERNAL STANDARD AREA SUMMARY

Contract: Lab Name: NORTH CANTON

SDG No.: A1C040534 Lab Code: TACAN Case No.: SAS No.:

Date Analyzed: 03/11/11 Lab File ID (Standard): UXC4109

Instrument ID: A3UX15 Time Analyzed: 1028

Column: (pack/cap) CAP Matrix: (soil/water) WATER Level: (low/med) LOW

AREA # RT AREA # RT AREA # RT 12 HOUR STD 1667834 4.74 1302346 7.39 642822 9.5 UPPER LIMIT 3335668 5.24 2604692 7.89 1285644 10.0 IOWER LIMIT 833917 4.24 651173 6.89 321411 9.0 IOWER LIMIT EPA SAMPLE NO. MFLD5CHK 1729957 4.74 1377643 7.39 723964 9.5 MFLD5BLK 1764181 4.74 1340929 7.39 659970 9.5 MSA-SW38-030 1621950 4.74 1238628 7.39 636874 9.5 MSA-SW40-030 1866347 4.74 1238628 7.39 636874 9.5 MSA-SW41-030 1637645 4.74 1251602 7.39 650347 9.5 MSA-SW41-030 650347 9.5 MSA-SW41-030 1637645 4.74 1251602 7.39 650347 9.5 MSA-SW41-030 1637645 4.74 1251602 7.39 650347 9.5		IS1		IS2 (CBZ)		IS3 (DCB)	
UPPER LIMIT 3335668 5.24 2604692 7.89 1285644 10.0 LOWER LIMIT 833917 4.24 651173 6.89 321411 9.0 MFLD5CHK 1764181 4.74 1340929 7.39 659970 9.5 TB-030311 1563018 4.74 1168304 7.39 579437 9.5 MSA-SW38-030 1621950 4.74 1238628 7.39 636874 9.5 MSA-SW40-030 1866347 4.74 1481350 7.39 727674 9.5 MSA-SW41-030 1637645 4.74 1251602 7.39 650347 9.5 08 09 10	:		RT		RT		RT
UPPER LIMIT 3335668 5.24 2604692 7.89 1285644 10.0 LOWER LIMIT 833917 4.24 651173 6.89 321411 9.0 MFLD5CHK 1729957 4.74 1377643 7.39 723964 9.5 MFLD5BLK 1764181 4.74 1340929 7.39 659970 9.5 MSA-SW38-030 1621950 4.74 1238628 7.39 636874 9.5 MSA-SW40-030 1866347 4.74 1481350 7.39 727674 9.5 MSA-SW41-030 1637645 4.74 1251602 7.39 650347 9.5 MSA-SW41-030 1637645 4.74 1251602 7.39 650347 9.5 MSA-SW41-030 1637645 4.74 1251602 7.39 650347 9.5		========	=====	=======================================	=====		=====
LOWER LIMIT 833917 4.24 651173 6.89 321411 9.0 EPA SAMPLE NO. O1 MFLD5CHK 1729957 4.74 1377643 7.39 723964 9.5 O3 MFLD5BLK 1764181 4.74 1340929 7.39 659970 9.5 O5 MSA-SW38-030 1621950 4.74 1238628 7.39 636874 9.5 O5 MSA-SW40-030 1866347 4.74 1481350 7.39 727674 9.5 O6 MSA-SW41-030 1637645 4.74 1251602 7.39 650347 9.5 O7 O8 O9 O	12 HOUR STD	1667834	4.74	1302346	7.39	642822	9.59
LOWER LIMIT 833917 4.24 651173 6.89 321411 9.00					1		10.09
EPA SAMPLE NO.	LOWER LIMIT	833917	4.24	651173	6.89	321411	9.09
01 MFID5CHK 1729957 4.74 1377643 7.39 723964 9.5 02 MFID5BLK 1764181 4.74 1340929 7.39 659970 9.5 03 TB-030311 1563018 4.74 1168304 7.39 579437 9.5 04 MSA-SW38-030 1621950 4.74 1238628 7.39 636874 9.5 05 MSA-SW40-030 1866347 4.74 1481350 7.39 727674 9.5 06 MSA-SW41-030 1637645 4.74 1251602 7.39 650347 9.5 07 08 09 10 11 12 12 13 14 15 16 16 17 18	EPA SAMPLE						
20 21	01 MFLD5CHK 02 MFLD5BLK 03 TB-030311 04 MSA-SW38-030 05 MSA-SW40-030 07 08 09 10 11 12 13 14 15 16 17 18 19 20	1764181 1563018 1621950 1866347	4.74 4.74 4.74 4.74	1340929 1168304 1238628 1481350	7.39 7.39 7.39 7.39 7.39	723964 659970 579437 636874 727674	9.59 9.59 9.59 9.59 9.59 9.59

IS1 = Fluorobenzene UPPER LIMIT = +100%

= Chlorobenzene-d5 of internal standard area. (CBZ) IS2

LOWER LIMIT = - 50% = 1,4-Dichlorobenzene-d4 IS3 (DCB)

of internal standard area.

Column used to flag internal standard area values with an asterisk.

page 1 of 1

FORM VIII VOA

1/87 Rev.

TETRA TECH NUS,	INC. CALCULA	TION WORKSHEET	PAGE	OF
CLIENT Lockho	eed	JOB NUMBER		
SUBJECT VOC		•		
BASED ON 8260B		DRAWING NUMBER		
BY Sol Indl	CHECKED BY	APPROVED BY	DATE	

MSA -5W38-030311 Vmy/chloride = 140 ug/L

1668223×5044 = 143, / ug/L 1621950×0.2874×1.25 MG Data File: \\cansvr11\dd\chem\MSV\a3ux15.i\C10311A.b\UXC4124.D

Report Date: 14-Mar-2011 11:04

TestAmerica North Canton

VOLATILE REPORT SW-846 Method 8260A/B

Data file : \\cansvr11\dd\chem\MSV\a3ux15.i\C10311A.b\UXC4124.D

Lab Smp Id: ME7571AA Client Smp ID: MSA-SW38-030311

Inj Date : 11-MAR-2011 16:10

Operator : 43582 Inst ID: a3ux15.i

Smp Info : ME7571AA,1.25ML TO 5ML Misc Info : C10311A,8260LLUX15,,43582

Comment :

Method : \\cansvr11\dd\chem\MSV\a3ux15.i\C10311A.b\8260LLUX15.m

Meth Date : 11-Mar-2011 11:18 evansl Quant Type: ISTD Cal Date : 10-MAR-2011 16:58 Cal File: UXC4107.D

Als bottle: 17

Dil Factor: 1.00000 Integrator: HP RTE

Compound Sublist: 4-8260+IX.sub

Target Version: 4.14
Processing Host: CANPMSV30

Concentration Formula: Amt * DF * 1/Vo * CpndVariable

Name	Value	Description
DF	1 000	D'1
DF	1.000	Dilution Factor
Vo	1.250	Sample volume
Va	100.000	Injection Volume
Cpnd Variable		Local Compound Variable

				CONCENTRATIONS
		QUANT SIG		ON-COLUMN FINAL
Co	ompounds	MASS	RT EXP RT REL RT RESPONSE	(ng) (ug/L)
==		. ====		=======================================
*	1 Fluorobenzene	96	4.741 4.741 (1.000) 1621950	50.0000
*	2 Chlorobenzene-d5	117	7.386 7.386 (1.000) 1238628	50.0000
*	3 1,4-Dichlorobenzene-d4	152	9.591 9.592 (1.000) 636874	50.0000
\$	4 Dibromofluoromethane	113	4.184 4.184 (0.882) 426308	50.9487 40.759
. \$	5 1,2-Dichloroethane-d4	65	4.469 4.457 (0.942) 579335	54.8179 43.854
\$	6 Toluene-d8	98	6.093 6.093 (0.825) 1665958	53.6698 42.936
\$	7 Bromofluorobenzene	95	8.477 8.477 (1.148) 522894	53.3605 42.688
	8 Dichlorodifluoromethane	85	Compound Not Detected.	
	9 Chloromethane	50	Compound Not Detected.	
	10 Vinyl Chloride	62	1.409 1.397 (0.297) 1668223	178.939 143.15
	11 Bromomethane	94	Compound Not Detected.	
	12 Chloroethane	64	Compound Not Detected.	
	13 Trichlorofluoromethane	101	Compound Not Detected.	
	15 Acrolein	56	Compound Not Detected.	
	16 Acetone	43	Compound Not Detected.	
	17 1,1-Dichloroethene	96	2.334 2.334 (0.492) 13680	1.80978 1.448
	18 Freon-113	151	Compound Not Detected.	
	19 Iodomethane	142	Compound Not Detected.	
	20 Carbon Disulfide	76	Compound Not Detected.	
	21 Methylene Chloride	84	2.737 2.725 (0.577) 9093	1.00844 0.8067

SW846 8270C SURROGATE RECOVERY

Lab Name: TestAmerica Laboratories, Inc.

Client: Tetra Tech NUS, Inc

Lab Code: TALCAN

SDG No:

Lot #: A1C040534

Extraction: XXI51QLLB

CLIENT ID.		SRG01	SRG02	SRG03	SRG04	SRG05	SRG06	TOT OUT
#=====================================	=== =	======	======	======	======	======	======	======
1 MSA-SW38-030311		53	51	_69		1	İ	00
2 MSA-SW40-030311		50	50	50			1	00
3 MSA-SW41-030311		49	50	65				00
4 METHOD BLK. ME8KH1AA		50	51	67				00
5 LCS ME8KH1AC		67	68 .	81	75	73	70	00
6 LCSD ME8KH1AD		61	63	73	69	67	66	00

SURROGATE	S		QC LIMITS
SRG01	=	Nitrobenzene-d5	(27-111)
SRG02	==	2-Fluorobiphenyl	(28-110)
SRG03	=	Terphenyl-d14	(37-119)
SRG04	=	Phenol-d5	(10-110)
SRG05	=	2-Fluorophenol	(10-110)
SRG06	=	2,4,6-Tribromophenol	(22-120)

- # Column to be used to flag recovery values
- * Values outside of required QC Limits
- D System monitoring Compound diluted out

FORM II

SEMIVOLATILE ORGANIC INSTRUMENT PERFORMANCE CHECK DECAFLUOROTRIPHENYLPHOSPHINE (DFTPP)

Lab Name: NORTH CANTON

Contract:

Lab Code: TACAN Case No.:

SAS No.:

SDG No.: A1C040534

Lab File ID: 2DF0307

DFTPP Injection Date: 03/07/11

Instrument ID: A4AG2

DFTPP Injection Time: 1146

m/e	ION ABUNDANCE CRITERIA	% RELATIVE ABUNDANCE
51 68 69 70 127	30.0 - 80.0% of mass 198 Less than 2.0% of mass 69 Mass 69 relative abundance Less than 2.0% of mass 69 25.0 - 75.0% of mass 198	45.4 0.4 (1.0)1 45.2 0.2 (0.5)1 56.8
197 198 199 275 365 441 442 443	Less than 1.0% of mass 198 Base Peak, 100% relative abundance 5.0 to 9.0% of mass 198 10.0 - 30.0% of mass 198 Greater than 0.75% of mass 198 Present, but less than mass 443 40.0 - 110.0% of mass 198 15.0 - 24.0% of mass 442	0.0 100.0 6.4 24.3 4.11 10.6 65.0 11.9 (18.3)2
l	1-Value is % mass 69 2-Value is % mass	442

THIS CHECK APPLIES TO THE FOLLOWING SAMPLES, MS, MSD, BLANKS, AND STANDARDS:

	EPA	LAB	LAB	DATE	TIME
	SAMPLE NO.	SAMPLE ID	FILE ID	ANALYZED	ANALYZED
			===========	========	========
01	SSTD009	L9	2SHHH0307	03/07/11	1203
02	SSTD008	L8	2SHH0307	03/07/11	1220
03	SSTD007	Ъ7	2SH0307	03/07/11	1237
04	SSTD006	L6	2SMH0307	03/07/11	1254
05	SSTD005	L5	2SMM0307	03/07/11	1311
06	SSTD004	L4	2SM0307	03/07/11	1328
07	SSTD003	L3	2SML0307	03/07/11	1345
80	SSTD002	L2	2SL0307	03/07/11	1402
09	SSTD001	Ll	2SLL0307	03/07/11	1419
10				, ,	
11					
12					
13					
14					
1.5					
16					
17					
18					
19					
20					
21					
22					

page 1 of 1

FORM V SV

OLM03.0

TestAmerica North Canton

INITIAL CALIBRATION DATA

OKNW 2/8/11 Start Cal Date : 07-MAR-2011 12:03

End Cal Date : 07-MAR-2011 19:23

Ouant Method : ISTD : Disabled Origin Target Version : 4.14 : HP RTE Integrator

: \\cansvr11\dd\chem\MSS\a4aq2.i\10307A.b\8270C-625.m Method file

Last Edit : 07-Mar-2011 19:51 hulat

: Average Curve Type

Calibration File Names:

Level 1: \\cansvr11\dd\chem\MSS\a4ag2.i\\10307A.b\\2SLL0307.D Level 2: \\cansvr11\dd\chem\MSS\a4ag2.i\10307A.b\2TL0307.D Level 3: \\cansvr11\dd\chem\MSS\a4aq2.i\10307A.b\2TML0307.D Level 4: \\cansvr11\\dd\\chem\\MSS\\a4aq2.i\\10307A.b\\2TM0307.D Level 5: \\cansvr11\dd\chem\MSS\a4ag2.i\10307A.b\2TMM0307.D Level 6: \\cansvr11\dd\chem\MSS\a4ag2.i\\10307A.b\\2TMH0307.D Level 7: \\cansvr11\dd\chem\MSS\a4ag2.i\10307A.b\2TH0308.D Level 8: \\cansvr11\dd\chem\MSS\a4aq2.i\10307A.b\2THH0307.D Level 9: \\cansvr11\dd\chem\MSS\a4ag2.i\10307A.b\2THHH0307.D

	0.05000	0.25000	0.50000	1.000	2.500	5.000		
Compound	0.05000 Level 1			1.000 Level 4		•	 RRF	% RSD
Compound) reset i	rever 5	rever 3	Tever #	rever 2	rever o	KKF	ا طویم ہ
		10 000	10.500				 ! 1	i
	7.500	10.000	12.500					ŀ
	Level 7	Level 8	Level 9				. 	-
							======	
198 1,4-Dioxane	+++++	0.61953			0.58532	0.59900		2 225
	0.60343	0.66055	0.64566				0.62029	3.995
							[
7 N-Nitrosomorpholine	+++++	0.94554		'	0.90128	0.92298		
	1.04304	1.03435	0.99728				0.95664	6.267
							[
8 Ethyl methanesulfonate	++++	1.07398	1.05420	1.03145	1.02975	1.07253		
	1.21798	1.19430	1.17620				1.10630	6.957
-			-					
9 Pyridine	+++++	1.62229	1.65158	1.66093	1.64587	1.67068		
	1.71945	1.87051	1.85139				1.71159	5.630
10 N-Nitrosodimethylamine	++++	1.03315	1.02771	1.01796	0.98728	0.97388	1	
	1.00524	1.08379	1.05228				1.02266	3.449
								
11 Ethyl methacrylate	+++++	+++++	++++	++++	++++	++++	1	
	++++	++++	+++++				+++++	++++
						-	[
12 3-Chloropropionitrile	+++++	0.93382	0.93680	0.87656	0.87018	0.85485		
2 2	0.83258		•	i			0.88265	4.091
				 	 	' 		
13 Malononitrile	, +++++	! +++++	++++	++++	+++++	, +++++	[]	
	+++++	++++	1 +++++	i	, ,,,,, 	, 	, +++++	++++
			****** 	 		: 		+++++
				 	-	l		
		l		l		l	11	

INITIAL CALIBRATION DATA

OK NU

1 12:03
1 19:23
3 (8) | |

Start Cal Date : 07-MAR-2011 12:03 End Cal Date : 07-MAR-2011 19:23

Quant Method : ISTD
Origin : Disabled
Target Version : 4.14
Integrator : HP RTE

Method file : \\cansvr11\\dd\chem\MSS\a4ag2.i\\10307A.b\\8270C-625.m

Last Edit : 07-Mar-2011 19:51 hulat

Curve Type : Average

Compound		0.25000 Level 2		1.000 Level 4	2.500 Level 5	5.000 Level 6	 RRF	% RSD
	Level 1		never 2	never 4	never 3			* KDD
	7.500	10.000	12.500				į	
	,	Level 8				. !	Į.	
14 2-Picoline	-	1.52584	'				====== = 	
	1.76332					1100-2-	1.59002	7.86
15 N-Nitrosomethylethylamine	-	0.69610	0.67902	0.67088	0.68035	 0.70326	-	
13 N-WICLOSOMECHYLECHYLAMINE	0.79843			0.67088	0.66033	0.70326	0.72164	7.06
	-		'					
16 Methyl methanesulfonate	0.96713	0.88334		'	0.82916	0.86625	0.88612	6.46
	-	0.55650 				 	-	
18 1,3-Dichloro-2-propanol	++++	1.44556			1.43705	1.51011	1	
	1.71584		1.62982		 	 	1.53590	7.76
19 N-Nitrosodiethylamine	++++	0.69589					'	
	0.80527	'					0.72128	7.95
21 Aniline	+++++	2.29166	2.34515		2.37285			
	2.46080	'					2.48205	7.69
22 Phenol	-							
22 Phenoi	1.67442	1.52249 1.79784			1.62941	1.61469	1.66650	5.50
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	-		<del>-</del>					<b>-</b>
23 bis(2-Chloroethyl)ether	+++++	1.48870			1.39439	1.28984	•	4 76
	1.35360	'	1.40485		 	 	1.39987    -	4.76
24 2-Chlorophenol	++++	1.30009	1.31704	1.33116	1.33101	1.32459	ĺ	
	1.34815	1.49086		 		 	1.36318	5.26
25 Pentachloroethane	+++++	0.44767	0.48635	0.45101	0.46187		- 	
	0.55775						0.49968	9.52
26 1,3-Dichlorobenzene	+++++	1.47001			1.41622	1 :	- 	
20 2,0 Simonopolineire	1.41594				1,41022		1.45772	3.06
	-		<b>-</b>				-	

### INITIAL CALIBRATION DATA

Start Cal Date : 07-MAR-2011 12:03 End Cal Date : 07-MAR-2011 19:23

Quant Method : ISTD Õrigin : Disabled Target Version : 4.14 Integrator : HP RTE

: \\cansvr11\dd\chem\MSS\a4ag2.i\10307A.b\8270C-625.m : 07-Mar-2011 19:51 hulat Method file

Last Edit

		0.25000	0.50000	1.000	2.500	5.000	1	
Compound	Level 1	Level 2	Level 3	Level 4	Level 5	Level 6	RRF	% RSD
		10.000	12.500			- <b></b>   		
	Level 7	Level 8	Level 9				İ	
27 1,4-Dichlorobenzene	+++++	1.35630		ll .	'	======    1.41739	•	=======
	1.40374					i i	1.43491	4.304
28 1,2-Dichlorobenzene	·     +++++	1.39012	1.38955		•	   1.37435		
	1.35486						1.39157	2.478
29 Benzyl Alcohol		<b></b>     0.76478	0.79559			   0.86717		
	0.89528	'		0.84957	0.83338	_0.86717  	0.87154	8.589
20. 2. Mothylphonol		[						
30 2-Methylphenol	1.24392	1.21759 1.34621		'	1.20760	1.18631  	1.23048	6.338
				'				- <b></b>
31 bis(2-Chloroisopropyl)ether	1.86905	2.02541   1.97593		2.00856	2.00234	1.91903  	1.97503	3.437
32 N-Nitroso-di-n-propylamine	1.21582	1.20357	'	1.22182	1.23829	1.19078	•	0 151
		1.27281  	1.24927			 	1.22593	2.151 
195 Cresols, total	+++++	2.39423		2.47627	2.48541	2.46675		
	2.57639	2.76757				  i	2.54044	5.750
192 4-Methylphenol	+++++	1.17664		1.30839	1.27781	1.28044	i	
	1.33247	1.42136			 	 	1.30996	6.020
193 3-Methylphenol	+++++	1.07144		'			1	<b>-</b>
	1.50279	1.44071	1.38414	!	! !		1.27285	12.431
34 Hexachloroethane		0.60673	0.58205	0.57180	0.58133	0.57290		
	0.56412	0.60534	0.59021		1	ļ	0.58431	2.658
35 Nitrobenzene	0.43525	0.41114	,	0.38314	0.39256	0.39252		
	0.37826			0.00014	0.35230	0.32222	0.40028	4.346
<del>-</del> <del></del>	1							

### INITIAL CALIBRATION DATA

Start Cal Date : 07-MAR-2011 12:03 End Cal Date : 07-MAR-2011 19:23

Quant Method

: ISTD

Origin

: Disabled

Target Version : 4.14

: HP RTE

Integrator Method file

: \\cansvr11\dd\chem\MSS\a4ag2.i\10307A.b\8270C-625.m

Last Edit

: 07-Mar-2011 19:51 hulat

Curve Type

: Average

Compound		0.25000	0.50000	1.000	2.500	5.000	1 1	
Compound	Level 1	Level 2	Level 3	Level 4	Level 5	Level 6	RRF	% RSD
	7.500	10.000	12.500			 	1   1	
=======================================	Level 7	Level 8	Level 9		İ	ĺ	]	
36 N-Nitrosopyrrolidine	+++++	0.67698						========
	0.83978	0.82499	•			0.72232	0.73037	9.856
37 Acetophenone	   +++++	   1.92328	1 00051				1	
•	1.95732				1.89877	1.87865	   1.95481	3.418
39 o-Toluidine								
> 0-101uldine	+++++     1.94034	2.12241   1.69050		2.06102	2.03867	1.93267	'	
		1.03030  					1.92048  	11.216
0 N-Nitrosopiperidine	+++++	0.17044		0.16578	0.16387	0.17188	; 	
	0.19771  	0.19540	0.19203	1			0.17802	8.088
1 Isophorone	+++++	0.71387	'	0.70872	0.74030		 	
	0.73606		0.78886		ì	j	0.73892	4.545
42 2-Nitrophenol	+++++	0.15048	0.15992	0.16818	0.17849	,		
i	0.18001	0.19717	0.19128	1.10010	10.17049	0.17747	0.17538	8.818
43 2,4-Dimethylphenol								
is 2,1 21com iphenoi	+++++ 0.36241	0.31874   0.38530	0.33984	0.33948	0.36131	0.35360	0.35503	6.211
								0.211
44 bis(2-Chloroethoxy) methane	+++++   0.38266	0.39914	0.39541	0.38300	0.39639	0.39107		
\   <del>-</del>	0.38266	0.41348	0.40579	! 	 	 	0.39587	2.672
45 O,O,O-Triethyl phosphorothioa	+++++	0.13269	0.12773	0.13721	0.13435	0.14418	1	
 	0.16514	0.16412	0.16331			1	0.14609	10.734
46 2,4-Toluenediamene	+++++	0.24475	0.20664	0.27321	0.23131	0.20233	- 	
!	0.22102	0.08313	++++	1	1		0.20891	28.942
47 1,3,5-Trichlorobenzene	+++++	0.27920	0.25807					
	0.26350	0.27920	0.25807	0.26083	0.26614	0.26735	0.27147	4.482
				·			-	

### INITIAL CALIBRATION DATA

Start Cal Date : 07-MAR-2011 12:03 End Cal Date : 07-MAR-2011 19:23

Quant Method : ISTD : Disabled Origin Target Version : 4.14 Integrator : HP RTE

: \\cansvr11\dd\chem\MSS\a4ag2.i\10307A.b\8270C-625.m : 07-Mar-2011 19:51 hulat Method file

Last Edit

Curve Type : Average

	0.05000	0.25000	0.50000	1.000	2.500	5.000		
Compound	Level 1	Level 2	Level 3	Level 4	Level 5	Level 6	RRF	% RSD
	7.500	10.000	12.500		<del>-</del>	 		
	Level 7		Level 9					
48 2,4-Dichlorophenol	+++++	0.19652		•	0.24095		========	=========
, .	0.25377	0.27849		•	İ		0.24145	11.792
49 Benzoic Acid		   +++++	0.11245		0.21818	•	 	
	0.27803			•	i İ	İ	0.22567	30.560
50 1,2,4-Trichlorobenzene		   0.26573		   0.25623	0.26665	0.26764	 	
	0.25894	'		1			0.26915	3.974
51 Naphthalene	1.15320	1.02925	1.01139	1.02587	1.04403	1.05167	 	<del>-</del>
51 Naphchalene	1.13320			•	1.04403	1.03107	1.06810	5.07
				1	   0.48695	   0.49883		
52 4-Chloroaniline	0.48822	0.45358		ı	0.48695	0.43883	   0.49106	5.89
				•				
53 a,a-Dimethyl-phenethylamine	1.13470				0.90493	0.99364	   0.91318	23.45
	·	 						
54 2,6-Dichlorophenol	0.29378	0.21449	!		0.23924 	0.25395	   0.25192	13.26
	.							
55 Hexachloropropene	+++++   0.19996	+++++   0.19727	+++++	0.15228	0.16103	0.17091 	   0.17986	11.71
	-			, 				
56 Hexachlorobutadiene	0.12735	0.12045	'	•	0.12700	0.13025	0.13028	6.14
•	-		•	•	 			
57 1,2,3-Trichlorobenzene	+++++	0.24778	•		0.24676	0.24833	   0.25119	4.52
·	0.24350	0.27045	0.26785	l 	 	 		4.52
58 N-Nitrosodi-n-butylamine	+++++	0.23950	•	•	0.24700	0.25628		0.77
	0.29610	0.28706	0.28689	 	 	 	0.26206	9.11
	_i	· 	i 			i	i	

### INITIAL CALIBRATION DATA

Start Cal Date : 07-MAR-2011 12:03 End Cal Date : 07-MAR-2011 19:23

: ISTD Quant Method Origin : Disabled Target Version : 4.14 Integrator : HP RTE

Method file : \\cansvr11\dd\chem\MSS\a4ag2.i\10307A.b\8270C-625.m : 07-Mar-2011 19:51 hulat

Last Edit

	0.05000	0.25000	0.50000	1.000	2.500	5.000	l	
Compound	Level 1	Level 2	Level 3	Level 4	Level 5	Level 6	RRF	% RSD
	7.500	10.000	12.500	<b></b> -	<del></del>	- <b></b>	] 	 
	Level 7	Level 8	Level 9		İ	İ	i i	
EO 4 Chloro 2 Mathylphorol		========					•	
59 4-Chloro-3-Methylphenol	+++++     0.31417	+++++ 0.33711	0.28175 0.33841		0.29859 	0.30076	   0.30893	   7.116
• • • • • • • • • • • • • • • • • • • •		 						
60 p-Phenylene diamine	+++++	+++++	0.19301	0.27099	0.30242	0.27862	'	
	0.30639    <b>-</b>	0.25131	+++++		   <del></del>	   <b></b>	0.26712	15.595 
61 Safrole	'   +++++	0.23561	0.23268	0.23764	•	0.25389	, 	
·	0.29825	0.29274				1	0.26029	10.920
62 2-Methylnaphthalene	   0.57471	0.55242	0.56023	0.56387	0.57953	0.56964		<del>-</del> 
	0.59626			•	0.37333	0.50501	0.58704	, 5.840
					<del>-</del>			
63 1-Methylnaphthalene	0.70753 0.67330				0.66765	0.65811	   0.67554	5.500
•	0.67330  			 	 	 		
64 Hexachlorocyclopentadiene	+++++	0.21943	0.22481	0.23216	0.27018	0.28181	1	
	0.28894	0.32896		•	 		0.27086	15.639
65 1,2,4,5-Tetrachlorobenzene	   +++++	0.38331			0.36878	0.39012		 
	0.45274	0.45433	0.44128	İ	I	I	0.40449	9.406
66 2,4,6-Trichlorophenol	   +++++	0.24892		0.26750	0.27872	0.27988		<b></b> -
88 2,4,8-111CHIOLOPHENOI	0.29092			•	0.27872 	0.27988	0.28393	l   9.979
		   ₋				 		 
67 2,4,5-Trichlorophenol	+++++ 0.30775	0.28160	,	!	0.29939	0.29683	0.30173	   9.516
	0.30775  	0.34863		!	 	 		9.510
68 1,2,3,5-Tetrachlorobenzene	. +++++	0.40155	•	'	0.39581	0.40367		
	0.38981	0.43245	0.42596	]		t •	0.40162	4.722
69 1,4-Dinitrobenzene	   +++++	+++++	0.13518	0.14481	0.17318	0.19097		
	0.22058		•	•			0.18557	19.227

### INITIAL CALIBRATION DATA

Start Cal Date : 07-MAR-2011 12:03 End Cal Date : 07-MAR-2011 19:23

Quant Method : ISTD
Origin : Disabled
Target Version : 4.14
Integrator : HP RTE

Method file : \\cansvr11\\dd\chem\MSS\a4ag2.i\\10307A.b\\8270C-625.m

Last Edit : 07-Mar-2011 19:51 hulat

	0.05000	0.25000	0.50000	1.000	2.500	5.000		
Compound	Level 1	Level 2		Level 4	Level 5	Level 6	RRF	% RSD
	   7.500	10.000	12.500			 	} 	
	•	Level 8			· ·	[	į	
		=======	'			'	=======================================	
70 2-Chloronaphthalene	1.10979    1.03091	'			1.05097	1.04560	1.06133	4.503
					. 	, 		
71 Isosafrole 1	+++++	0.14977	0.15361	0.15351	0.15715	0.16474		
	0.18941				<u> </u>		0.16872	10.954
188 Isosafrole, Total		1 00020	1.01939		'	   1.10299		
188 ISOSALIOIE, IOCAL	1.27263				1.05000	1.10255	1.12214	11.101
					<b></b>			
72 Isosafrole 2	+++++	0.85043		•	0.89370	0.93824	•	
	1.08322	1.09319		•	 	 	0.95342	11.134
73 2-Nitroaniline	   +++++	0.44878	,	1	•	1		
	0.44886	0.48978	0.47462		]		0.45574	3.758
			'	'		•		<b></b> -
74 1,2,3,4-Tetrachlorobenzene	+++++   0.36356	0.37681	<u>'</u>	'	0.37251	0.37575	0.37357	4.230
			0.39203	•	 			
75 1,4-Naphthoquinone	+++++	++++	0.34368	0.36239	0.39670	0.40073		
	0.44900		•	•	<u> </u>	<u>.</u>	0.40484	10.265
76 Dimethylphthalate		1.25258	•			1.26224		
76 Dimethyiphtharate	1.30685		•	•	1.20300	1.20221	1.29569	6.53
	[			 				
77 m-Dinitrobenzene	+++++	+++++	0.17158		0.19714	0.21438		
	0.25034	•	0.24015	•	 		0.21643	14.349
78 2,6-Dinitrotoluene	+++++	0.24610	•	•	1	1	· '	
	0.28411	0.30830	0.30589	1	1	1	0.28070	7.71
			•	1				
79 Acenaphthylene	1.83270   1.90501	•	•	'	1.84471	1.87048	   1.86047	5.76
	1.90501	•	•		1			

### INITIAL CALIBRATION DATA

Start Cal Date : 07-MAR-2011 12:03

End Cal Date : 07-MAR-2011 19:23

Quant Method

: ISTD

Origin

: Disabled

Target Version : 4.14

: HP RTE

Integrator Method file

: \\cansvr11\dd\chem\MSS\a4ag2.i\10307A.b\8270C-625.m

Last Edit

: 07-Mar-2011 19:51 hulat

Curve Type

: Average

	0.05000	0.25000	0.50000	1.000	2.500	5.000		
Compound	Level 1	Level 2		Level 4	Level 5	Level 6	RRF	% RSD
	7.500	   10.000	12.500		 	 	1	
	•	Level 8	'		i 	 		
	= =========	=======	=======	=======		=======		
80 1,2-Dinitrobenzene	++++	0.11899			0.14446	0.13989		
··	0.14050		!	'		 	0.13797	8.716
81 3-Nitroaniline	++++	0.32086			ı	'		
	0.38477	0.41658	0.41581		, 	· 	0.37667	8.375
	-				,	'		
2 Acenaphthene	1.18474		•	'	1.15148	1.13552	1.15965	4.189
	1.15190	1.24659	1.21179		 	 	1.15965	4.18:
33 2,4-Dinitrophenol	+++++	+++++	0.09027	0.12915	0.19309	0.21827	i	
	0.22790	0.25843	0.24838				0.19507	32.29
A Destruction of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract	-							
84 Pentachlorobenzene	0.38599	0.31764			0.30442	0.33508	0.34251	11.21
	-				 	 		
85 4-Nitrophenol	++++	++++	0.13855	0.15647	0.20028	0.21102	į	
	0.19451	•	'	•		!	0.19814	20.09
86 Dibenzofuran	1.53384	1.50467		1	1	1.51600	1	
ob Dibenzoruran	1.53384		'		1.52476	1.51000  	1.54774	6.56
·								
87 2,4-Dinitrotoluene	++++	0.32678	0.35822	0.36214	0.39907	0.38970		
	0.38750	0.41451	•	 	 	 	0.38188	8.08
88 2,3,4,6-Tetrachlorophenol	+++++		0.10107	ı	ı			
2,3,1,0 recruentorophenor	0.25290	i	•	•	0.20010		0.19720	29.55
	-		<b></b>					
89 1-Naphthylamine	+++++	1.07655		1.05983	1.00446	0.90091		
	+++++	+++++	+++++ 	 	 	 	1.02846	7.73
90 Zinophos	+++++	0.29484	0.29063	0.29113	0.29402	0.31337	· · · · · · · · · · · · · · · · · · ·	
<u>*</u>	0.35382					!	0.31539	8.63
	-					1		

### INITIAL CALIBRATION DATA

Start Cal Date : 07-MAR-2011 12:03 End Cal Date : 07-MAR-2011 19:23

Quant Method : ISTD
Origin : Disabled
Target Version : 4.14
Integrator : HP RTE

Method file : \\cansvr11\\dd\chem\MSS\a4ag2.i\\10307A.b\\8270C-625.m

Last Edit : 07-Mar-2011 19:51 hulat

	0.05000	0.25000	0.50000	1.000	2.500	5.000		
Compound	Level 1	Level 2	Level 3	Level 4	Level 5	Level 6	RRF	% RSD
	7.500	10.000	12.500	· [				
	Level 7	Level 8	Level 9				1	
91 2,3,5,6-Tetrachlorophenol	+++++	+++++	0.18349	•	0.21363	0.21691	======   	=======
•	0.22482	0.25462					0.21835	
92 2-Naphthylamine	   +++++	1.12198	1.17934	!	1.04974	   0.90758	<b></b>   	
SE Chapmon, Lamant	0.82135	+++++	++++		Ì	i	1.02838	13.283
93 Diethylphthalate	-	1.32217	1.35290	1.30334		1.36790	 	
33 Diechylphchalace	1.41058			•			1.40182	6.358
	-		1	'	1 20500	1.29969	 	
94 Fluorene	1.39606	•	•		1.29590	1.29969	   1.31906	5.996
	-			1				
95 4-Chlorophenyl-phenylether	0.50334	0.50189	'	•	0.49998	0.50896	   0.51029	4.523
	-			:				
96 4-Nitroaniline	+++++	0.33710	'	•	0.40609	0.41194	   0.40503	9.391
	0.41835	0.45379	<u>.</u>	•	 			
97 5-Nitro-o-toluidine	+++++	0.30472	•		0.33362	0.32647		
	0.34552	0.34556	0.30187 	[ 	 	 	0.32448	5.51; 
98 4,6-Dinitro-2-methylphenol	++++	++++	,   0.07700	0.09464	0.11679	0.12707	i i	İ
	0.13305	0.15114		'		 	0.12161	22.95
99 N-Nitrosodiphenylamine	+++++	0.63313	•	•	0.66103	0.64415	1	
	0.68495		•	•	!	 	0.67379	6.32
100 1,2-Diphenylhydrazine	-	0.96539	!	•	0.98544	ļ.	1	 
	0.99394		•	İ	1	1	0.99326	4.28
101 Diphenylamine	-	0.63313	0.64115	0.65175	0.66103	0.64415	 	 
202 Septicity adminis	0.68495	'	•	'	1	İ	0.67379	6.32
	-							

### INITIAL CALIBRATION DATA

Start Cal Date : 07-MAR-2011 12:03 End Cal Date : 07-MAR-2011 19:23

Quant Method : ISTD
Origin : Disabled
Target Version : 4.14
Integrator : HP RTE

Method file : \\cansvr11\\dd\chem\MSS\a4ag2.i\\10307A.b\\8270C-625.m

Last Edit : 07-Mar-2011 19:51 hulat

	0.05000	0.25000	0.50000	1.000	2.500	5.000		
Compound		Level 2	Level 3		Level 5	Level 6	RRF	% RSD
	7.500	   10.000	12.500			 	 	
		Level 8						
				'	'	'		
102 Tetraethyl dithiopyrophosphat	+++++ 0.10800	0.08716 0.10925		'	0.08876	0.09206  	   0.09499	12.097
			0.10800	•		 	•	
103 Diallate 1	+++++	0.67107	0.65852	0.65816	0.65535	0.65963	. 1	
	0.72096		++++				0.67437	3.723
189 Diallate, Total	++++	2.71016	2.70747	'	2.69028	2.74722	•	
,	3.10769				2,0,020		2.81552	5.670
104 Phorate	+++++	0.16771			0.17586	0.17977		7 000
*	0.20380	0.19688	0.19189			 	0.18281  	
105 1,3,5-Trinitrobenzene	·   +++++	+++++	0.04152	'	0.06422	0.06767	'	
	0.08283	0.08747	0.08410				0.06817	26.252
106 4-Bromophenyl-phenylether	+++++	0.16023		'			- <b></b>	
is a promopheny i phony i conci	0.16273				0.10220	0.10200	0.16415	6.439
							j	
107 Hexachlorobenzene	+++++	0.16410			0.15881	0.16397		
	0.16225	0.18191	0.18319			 	0.16705  	5.825
108 Phenacetin	+++++	0.38824				0.46929	,	
•	0.53069	0.52644	0.51458				0.46197	12.333
100 pislant 0								
109 Diallate 2	+++++   0.15296	0.12589		'	0.12870	0.13502	0.13803	8.983
110 Dimethoate	+++++	+++++	0.32738	0.32609	0.32319	0.31966		
	0.33460	0.33561	0.30725	'			0.32483	2.969
111 Pentachlorophenol	   +++++	   +++++	0.07512	'	0.10841	0.11802		
	0.13371						0.11786	24.060

### INITIAL CALIBRATION DATA

Start Cal Date : 07-MAR-2011 12:03 End Cal Date : 07-MAR-2011 19:23

Quant Method : ISTD
Origin : Disabled
Target Version : 4.14
Integrator : HP RTE

Method file : \\cansvr11\\dd\chem\MSS\a4ag2.i\\10307A.b\\8270C-625.m

Last Edit : 07-Mar-2011 19:51 hulat

Curve Type : Average

·					·			
Compound	0.05000     Level 1	0.25000     Level 2			2.500 Level 5	5.000 Level 6	   RRF	% RSD
	7.500	10.000	12.500	 		 	 	
	Level 7	Level 8	Level 9		   	'   	,      1	=========
112 Pentachloronitrobenzene	+++++	0.08212	0.08456 0.11075	0.08099	0.08563	0.09435	0.09492	į
113 4-Aminobiphenyl	1 +++++   0.71847	0.76155	0.75859	0.73978	0.72388	0.69062	0.73215	3.666
114 Pronamide	   +++++     0.43009		0.33755	0.33776		,	     0.38131	11.905
115 Phenanthrene	   1.31128    1.21342		1.08209	1.08885	1.12733	   1.14113 	   .     1.17359	7.200
116 Anthracene	   1.27566    1.21851	1.07417	1.07168 1.15915	1.09024	1.14164	1.14567 	1.15604	6.253
117 Dinoseb	   +++++   0.20378	+++++ 0.21276	0.06493 0.20746		0.13354	0.16216	   0.15497	
118 Disulfoton	   +++++     0.51428	0.42243	0.42793 0.49187		0.44305	0.45632	0.46118	7.905
119 Carbazole	+++++     1.17266	1.05728 1.31347	1.05586 1.26380		1.09428	   1.11353 	   1.14550	
120 Di-n-Butylphthalate	   +++++   1.58969		1.41200 1.26996	1.40940	1.47819	1.48855	1.43615	6.330
121 4-Nitroquinoline 1-oxide	+++++   0.14165	+++++	0.04092 0.14929			0.11720	0.10902	39.932
122 Methapyrilene	   +++++     0.37842	0.40921		0.45963	0.43790	0.35107	             0.41173	9.883
	1						<b>-</b>   	

### INITIAL CALIBRATION DATA

Start Cal Date : 07-MAR-2011 12:03 End Cal Date : 07-MAR-2011 19:23

Quant Method : ISTD
Origin : Disabled
Target Version : 4.14
Integrator : HP RTE

Method file : \\cansvr11\dd\chem\MSS\a4ag2.i\\10307A.b\\8270C-625.m

Last Edit : 07-Mar-2011 19:51 hulat

Curve Type : Average

	0.05000	0.25000	0.50000	1.000	l 2.500 l	5.000	1	
Compound	Level 1	Level 2	Level 3	Level 4		Level 6	RRF	% RSD
			<b></b>					
	7.500	10.000	12.500	l		1		
	,	Level 8		] •				
123 Fluoranthene	1.16041		•	•			=======	
	1.12518		<u>'</u>	<u>'</u>			1.09774	7.615
124 Benzidine	+++++	++++	0.72435	'	0.88740	0.91049	1	
	0.96501					 	0.90636	11.129
125 Pyrene	1.32959	!	1.20598	,	!	1.25824		
200 1,1000	1.29653	•	•	•			1.28716	6.518
	1	 						
126 Aramite 1	++++	0.07332	•	•	0.08186	0.08718		
	0.09445		•		ļ 1		0.08455	13.965
191 Aramite, Total	+++++	0.50324	1	•	0.55457	   0.58476		
252 III amzee, 10tal	0.66794	'	•	•			0.58101	14.232
		, 				 		
127 Aramite 2	++++	0.09200	0.08314	0.08993	0.09911	0.10627		
	0.11339	•	1		!	İ	0.10277	13.484
128 p-Dimethylamino azobenzene	+++++	0.20208	0.20737		0.22779	   0.24858		
128 p-bimethylamino azobenzene	0.27391	•	·		0.22775		0.24086	13.968
129 p-Chlorobenzilate	+++++	0.52128	0.51452	0.51255	0.54739	0.57983	1	
	0.65344	0.66888	!		1		0.57968	11.329
130 Famphur 1	1 +++++	   0.43159	0.42092	0.39086	0.28024	0.15102		
130 ramphar 1	0.05018	1	1 +++++	0.33086	0.20024	0.15102	0.28747	54.836
					, 		i	<b>-</b>
131 Butylbenzylphthalate	+++++	+++++	++++	0.71615	0.75912	0.73211	•	
	0.74459	0.81198	0.78242	1	!		0.75773	4.614
132 3,3'-Dimethylbenzidine	+++++	0.55964	0.52782	0.50746	0.44573	0.27094	 	
132 3,3 -Dimethylpenzialne	+++++	+++++	+++++	0.50746	0.445/3	0.27034	0.46232	24.828
							<u> </u>	

### INITIAL CALIBRATION DATA

Start Cal Date : 07-MAR-2011 12:03 End Cal Date : 07-MAR-2011 19:23

Quant Method : ISTD Origin : Disabled Target Version : 4.14 : HP RTE Integrator

: \\cansvr11\dd\chem\MSS\a4ag2.i\10307A.b\8270C-625.m : 07-Mar-2011 19:51 hulat Method file

Last Edit

Curve Type : Average

				·				
	0.05000	0.25000	0.50000	1.000	2.500	5.000		
Compound	' '	Level 2	Level 3	Level 4	Level 5	Level 6	RRF	% RSD
•	   7.500	10.000	12.500				l I	
	Level 7	Level 8	Level 9					
	=======	=======	=======	=======	=======	======	=======	2222223
133 3,3'-Dimethoxybenzidine	+++++	0.25261	0.27389	0.27629	0.27784	0.31661	1	
	0.28895	,		1		 	0.29401	11.02
134 2-Acetylaminofluorene	   +++++	0.47507	0.47495	0.53251	0.57192	'		
101 1 1000/141011401010	0.69915			0.0000			0.61163	18.69
· [']								
135 3,3'-Dichlorobenzidine	+++++	0.42563	0.42742	0.43358	0.45450	0.45212		
	0.48861		'				0.46841	9.49
136 Benzo(a)Anthracene	   1.20223	   1.01618	0.99037	1.00407	1.02148	1.05297	<b></b>   	<b></b>
130 Belizo (a) Alichiacelle	1.08185		'	1.00407	1.02140	1 1.0025	1.08485	8.26
			'				 	
137 Chrysene	1.02550	0.95018	0.99275	0.93842	0.94914	0.97610		
	1.00998		'			<u> </u>	1.00780	6.63
						•		
138 4,4'-Methylene bis(o-chloroan	+++++   0.25468				0.23263	0.24005	0.24384	11.55
		0.20003			 	 		
139 bis(2-ethylhexyl)Phthalate	+++++	1.02103	1.01934	1.10928	1.06242	1.04418		
	1.06853	1.15274	1.11881		]	l	1.07454	4.49
					ı			
140 Di-n-octylphthalate	+++++	1.59336			1.94101	1.98781	   1.90198	   10.39
	2.11054			   <b></b>	   <b></b>	! 	1.90196  	
141 Benzo(b) fluoranthene	1.17751	'		1.09010	I	1.10758	! 	<u> </u>
	1.20318	1.44586	1.53429			}	1.21596	13.59
142 Benzo(k) fluoranthene	1.37095				1.17452	1.28278		
	1.33842	1.30607	1.23491	<u> </u>	 	1	1.25164	6.05
143 7,12-dimethylbenz[a]anthracen	+++++	0.45909	0.45407	0.45643	0.48952	0.53523	, <del></del>	<b></b> 
213 ., 22 almostly ibenz (a) afferracen	0.62307	•	•	•			0.49334	11.98
								<b></b>
		İ			l	l		l

### INITIAL CALIBRATION DATA

Start Cal Date : 07-MAR-2011 12:03 End Cal Date : 07-MAR-2011 19:23

Quant Method : ISTD
Origin : Disabled
Target Version : 4.14
Integrator : HP RTE

Method file : \\cansvr11\\dd\chem\MSS\a4ag2.i\\10307A.b\\8270C-625.m

Last Edit : 07-Mar-2011 19:51 hulat

Curve Type : Average

	0.05000	0.25000	0.50000	1.000	2.500	5.000		
Compound	Level 1	Level 2	Level 3	Level 4	Level 5	Level 6	RRF	% RSD
	7.500	10.000	12.500			<del>-</del>   	 	
	Level 7	Level 8	Level 9				ĺ	
======================================	=======    +++++	+++++	+++++	+++++	+++++	+++++	========	========
•	+++++	+++++	+++++	.,			+++++	++++
145 Hexachlorophene product		<b></b>	   ++ <b>+</b> ++	+++++	   +++++	   +++++	 	
	+++++	+++++	+++++			İ	+++++	++++
146 Benzo(a)pyrene	1.19338	1.00163	1.01529	1.02593	1.06695	1.10323		
	1.14628	1.26769					1.11860	8.992
148 3-Methylcholanthrene	+++++	0.50409	0.48273	0.48968	0.51320	0.55866		
	0.64443						0.56573	14.301
149 Indeno(1,2,3-cd)pyrene	1.08469	'	1.09521	1.09990	1.20110	'	 	**
	1.25949						1.19450	
L50 Dibenz(a,h)anthracene	0.93155	0.86051	0.87534	0.90769	0.97872	'		
	1.06959	1.18589		!		 	0.99522	12.039
L51 Benzo(g,h,i)perylene	0.84713	J	0.89842	0.90269	0.94377	1	 	
	1.00279	,				! !	0.96064	
199 3-Picoline	+++++	1.29650		1.35956	1.40349	<b> </b>   1.45484		
	1.66722			!	1		1.46357	10.224
200 N,N-Dimethylacetamide		+++++	1.40576	1.35212	1.33302	<b></b>     1.35922		
	1.52495	1.44863	1.38037	!			1.40058	4.775
201 Quinoline	+++++	0.46272	0.49990	0.50938	0.53765	0.54984		
	0.56940				l.	 	0.53142	7.135
202 Diphenyl	+++++	1.15373		Į.	1.15597			
	1.18609	1.15966			į	, <u>, , , , , , , , , , , , , , , , , , </u>	1.14735	2.788

### INITIAL CALIBRATION DATA

Start Cal Date : 07-MAR-2011 12:03 End Cal Date : 07-MAR-2011 19:23 Quant Method

: ISTD Origin : Disabled Target Version : 4.14 Integrator : HP RTE

: \\cansvr11\dd\chem\MSS\a4ag2.i\10307A.b\8270C-625.m : 07-Mar-2011 19:51 hulat Method file

Last Edit

Company			0.50000	1.000	2.500	5.000	1 <u> </u>	
Compound	Level 1	Level 2	Level 3	Level 4	Level 5	Level 6	RRF	% RSD
	7.500		12.500	   -	!	 	 	
		Level 8	Level 9	İ	·	1	,  -	
	+++++	0.58402		======    0.58177		•	'	========
	0.61554				0.60837	0.60143	   0.60008	2.648
204 6-Methylchrysene	+++++	   0.54262	'	'		1	' '	
	0.63617				0.59250	0.61305	   0.59934	7.809
005 50	-					 		
205 Benzenethiol	0.60956	+++++ 0.57256	0.93158 0.59363		0.82171	0.54987	'	
	-			 		 	0.70132  	22.066
207 Indene	+++++	1.83351	,	1.74912	1.74379	1.56264		
	1.64409	•	+++++		. ]		1.72572	
208 Dibenz(a,j)acridine	+++++	0.54906	0.57813		0.64742	0.68353	 	
	0.69735	0.72602	0.73104	İ	i	ĺ	0.65150	10.635
209 Benzaldehyde	-	1.10480	1.08083	1.07482		,		
-	0.82360		+++++	1.07482	1.01480	0.84110	0.90459i	28.017
220 0	-		'	ı	i		i	
210 Caprolactam	0.12228	+++++   0.13161	0.10446	0.10495	0.12236	0.11795		0.050
	-				! 	 	0.11920	9.253 
211 1,1'-Biphenyl	+++++	1.43926	1.39627	1.39994	1.47823	1.47892	i	
	1.47892 	1.63631	1.60789		. [ 		1.48947	5.960
212 Atrazine	+++++	0.17697		0.19764	0.20540	,		
	0.20055	0.20073	0.20025	İ	ĺ	1	0.19613	4.625
213 Benzothiazole	-     +++++	0.38346	0.40661	0.39101	0.41698			
	0.42671	0.42084	0.43791	3.33131	0.42070	J. 12104	0.41345	4.481
214 1 2 Dimothyl 2 Whianger	-							
214 1,3-Dimethyl-2-Thiourea	0.41409	+++++   0.42120	0.27510	0.27568	0.36024	0.41266	0.37074	10 627
	-			ا . ا	۱ ا ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ	ا ا۔۔۔۔۔۔۔	0.37074	18.677

### INITIAL CALIBRATION DATA

Start Cal Date : 07-MAR-2011 12:03 End Cal Date : 07-MAR-2011 19:23

Quant Method : ISTD Origin : Disabled Target Version : 4.14 Integrator : HP RTE

Method file : \\cansvr11\dd\chem\MSS\a4ag2.i\10307A.b\8270C-625.m : 07-Mar-2011 19:51 hulat

Last Edit

Compound		0.25000			2.500	5.000	!	1
Compound	Level 1	Level 2	Level 3	Level 4	Level 5	Level 6	RRF	% RSD
	7.500	10.000	12.500	 	<del>-</del>	 1	1	l I
	Level 7	Level 8	Level 9	! ]	! 	[ ]	i i	] [
	=======	========	=======	1   ========	  ===≠=====	ı 1========	  -========	 
215 Phenyl ether	+++++	++++	++++	++++	++++	++++	1	
	+++++	+++++	+++++				+++++	++++
·				- <b></b>				
216 1,3-Diethyl-2-Thiourea	+++++	++++	0.25172	0.31837	0.34142	0.37935		
I	0.39871	0.39614	0.39968			}	0.35506	15.590
017.3.3.7.7% 1.0.7%								
217 1,3-Dibutyl-2-Thiourea	++++	+++++	++++	+++++	++++	+++++	ļ	
 	+++++	+++++	+++++		1		+++++	++++
218 1,1,3,3-Tetramethyl-2-Thioure	+++++	0.24141	0.25625	0.26125			[	
=== =,=,+,+ ===========================	0.28540			0.26125	0.27860	0.28375	   0.27210	6.253
						 		0.253
219 o-Benzyl Phenol	+++++	0.22097	0.25138		,	0.28430		
Ì	0.28218	0.28105	0.28943			!	0.26648	8.860
220 Diphenyl Thiourea	++++	++++	0.05954	0.05103	0.05386	0.08801	· 	
	0.12912	0.14241	0.15251	إ			0.09664	45.562
221 Hexabromobenzene	++++	+++++	+++++	+++++	0.04747	0.04928	,	1
	0.05183	0.05072				{	0.05076	5.215
222 Dibenz(a,h)acridine	+++++	0.612021	0.55400	0.60700				
	0.71504	0.61392 0.74668	0.55428	0.60700	0.64170	0.72136	   0.66922	77 704
 							0.66922  	11.134
223 1,2-bis(2-chloroethoxy)ethane	+++++	0.23848	0.26983		,	ı		1
- 	0.27302	0.25990	0.26878			1	0.26314	4.286
224 Acrylamide	+++++	+++++	0.39173	0.40426	0.44388	0.47362		j
1	0.49672	0.49956	0.50483	1		1	0.45923	10.188
225 Methyl parathion	++++	+,++++	0.25705	0.27306	0.28762	0.28790		I
	0.29813	0.30399	0.28355	1	l	İ	0.28447	5.506
		[			l			

### INITIAL CALIBRATION DATA

Start Cal Date : 07-MAR-2011 12:03 End Cal Date : 07-MAR-2011 19:23

: ISTD Quant Method Origin : Disabled Target Version : 4.14 Integrator : HP RTE

Method file : \\cansvr11\dd\chem\MSS\a4ag2.i\10307A.b\8270C-625.m : 07-Mar-2011 19:51 hulat

Last Edit

	0.05000				2.500	5.000			ļ
Compound	Level 1		Level 3	Level 4	Level 5	Level 6   	RRF	% RSD	1
	7.500	10.000	12.500					 	i
	Level 7	Level 8	Level 9	İ	ĺ	Ì			l
226 Prochisco	=   ======	=======					========		1
226 Parathion	0.21809	0.14788			0.18265	0.19675	0.18882	!   15.066	  -
·	-			, 		 			i
227 Isodrin	+++++	0.14682	· .	•	0.14551	0.14341			ŀ
	0.16114	0.15683	0.15369	 	   <b></b>	   <b></b>	0.14978	4.503	1
! 229 Famphur, Total	+++++	+++++	+++++	+++++		+++++			1
	+++++	+++++	+++++				+++++	++++	ŀ
	-								1
230 Famphur 2	+++++	+++++	+++++	+++++	+++++ 	+++++ 	+++++	   +++++	1
		~			 	 			
231 2-Chloroacetophenone		+++++	+++++	++++	++++	++++			1
•	+++++	+++++	++++		!	<u> </u>	++++	+++++	1
232 2-Methylcyclohexanone	+++++	0.84602	0.80648	0.86296	0.83759			 	1
232 2-Methyleyetonexanone	0.95012			<u>'</u>	0.03733	0.00710	0.85820	, ] 5.536	,  ;
			<b></b>		<b>-</b>				۱
233 3-Methylcyclohexanone	++++	1.41552		!	1.36862	1.35336			1
	1.60598	1.50617		   <i></i> -	 	 	1.43741	5.831 	•
234 4-Methylcyclohexanone	+++++	1.25855		,	•	1.19234			1
	1.41395	1.31428	1.26184	l	1	l	1.27780	5.248	,
			ı			1	<b></b>		Ŧ
235 Tributyl phosphate	1 2.20798	1.59923	'	1.73640 	1.73667 	1.84491 	   1.83948	   11.359	†  ∉
				: 		 			
236 Phenyl sulfone	+++++	++++	0.54427	1.26540	0.57437	0.58103		1	
	0.55456	0.54166	0.55932	1	<u> </u>		0.66009	40.496	•
237 3,4-Dichloronitrobenzene	+++++	+++++	0.14908	   0.16105	0.17235	0.18016	<del></del>	 	1
25. 2, 2 Sienioioniciosenschie	0.18368	'	'	•		1	0.17371	8.036	,
		1					<b>- -</b>		. [
	I	l	l	l	l	l			_ ]

### INITIAL CALIBRATION DATA

Start Cal Date : 07-MAR-2011 12:03 End Cal Date : 07-MAR-2011 19:23

Quant Method : ISTD

Origin : Disabled Target Version : 4.14 : HP RTE Integrator

: \\cansvrl1\dd\chem\MSS\a4ag2.i\10307A.b\8270C-625.m : 07-Mar-2011 19:51 hulat Method file

Last Edit

	0.05000	0.25000	0.50000	1.000	2.500	5.000	I	I
Compound	Level 1	Level 2	Level 3	Level 4	Level 5	Level 6		% RSD
		10.000	12.500	<del>-</del> 	<del></del>	- <del>-</del>	1	1 
	•		Level 9		!	ļ	İ	ĺ
======================================	+++++		==   +++++	========   +++++		+++++	 	========
	+++++	++++	+++++	İ	İ		+++++	+++++
239 Bis(4-hydroxyphenyl)methane	+++++	   +++++	+++++		   +++++	   +++++	 	 
	+++++	+++++	+++++		1	l	++++	+++++
240 4-Chlorophenol	+++++	+++++		   +++++				
	++++	++++	++++				++++	,   +++++
241 2,3-Dichlorophenol	+++++		   +++++	+++++	   +++++	+++++		1
z z z , z z z chi otophenor	+++++	+++++	+++++				;   +++++	+++++
242 2,5-Dichlorophenol	+++++	   +++++	   +++++	   +++++	   +++++	   +++++	<del>-</del> -	
242 2,5-Dichiolophenoi	+++++	+++++	+++++	+++++	1	+++++	   +++++	!   +++++
242 Ostorblessessesses		1						
243 Octachlorostyrene	+++++	+++++	+++++	+++++ 	+++++	++++ 	)   +++++	+++++
244 Octachlorocyclopentene	+++++	++++	+++++	+++++ 	+++++	+++++	   +++++	}   +++++
245 Catechol	+++++	+++++	+++++	+++++ 	+++++	+++++ 	   +++++	+++++
	İ							
246 3-methylcatechol	+++++	+++++	+++++	+++++ 	+++++	+++++	   +++++	1 +++++
		- <del>-</del>		<b>-</b>			[	İ
247 4-methylcatechol	+++++	+++++	+++++	+++++ 	+++++	+++++ 	   +++++	+++++
				1		, 		
248 Hydroquinone	+++++	+++++	+++++	+++++ 	+++++	+++++	   +++++	+++++
	+++++	+++++	1 +++++	l t	1	I I	TTTTT	****** 

### INITIAL CALIBRATION DATA

Start Cal Date : 07-MAR-2011 12:03 End Cal Date : 07-MAR-2011 19:23

Quant Method : ISTD
Origin : Disabled
Target Version : 4.14
Integrator : HP RTE

Method file : \\cansvr11\\dd\chem\MSS\a4ag2.i\\10307A.b\\8270C-625.m

Last Edit : 07-Mar-2011 19:51 hulat

	0.05000	0.25000	0.50000	1.000	2.500	5.000	1	
Compound		Level 2	Level 3	'	Level 5	Level 6	RRF	% RSD
	7.500	10.000	12.500			<b></b> -	1	
		Level 8	Level 9	!   <b>i</b>			! !	
	=== =======		======				=======	=======
249 Resorcinol	+++++	+++++	+++++	+++++	+++++	+++++		
·			+++++	 	 	 	+++++	+++++
250 N-methyl-pyrrolidone	++++	++++	+++++	+++++	+++++	++++	İ	
	+++++	+++++	++++	 	 	1	+++++	++++
251 N,N-Dimethylformamide	+++++	+++++	+++++	++++	+++++	+++++	!	
	+++++	++++	+++++		İ		+++++	++++
:=====================================	0.48637	0.43077	0.43848	0.42754	0.43500	0.43389		=======================================
, 134 Mitrobenzene-da	0.42037	'		•	0.43500	0.43389  	0.43811	4.359
	[						i	
3 155 2-Fluorobiphenyl	1.25848	1.15773			1.19454	1.21435	2 02 00 1	5 70
	1.20445				 	   <b></b>	1.21681	5.105
3 156 Terphenyl-d14	0.73938	0.63930						
	0.67860	0.74261		'			0.69219	5.491
3 157 Phenol-d5	+++++	1.51717	1.58307	'	   1.57923	1.56778	 	
	1.62627	'		'		i	1.61165	4.588
5 158 2-Fluorophenol			,	'		'		
5 158 2-Fluorophenol	+++++	1.16208			1.19363  	1.20726  	1.23239	5.408
							,	
159 2,4,6-Tribromophenol	+++++	0.09829			0.10234	0.10817		
	0.11440	0.12507	0.12821		 	 	0.10764	13.002
3 186 2-Chlorophenol-d4	+++++	1.21509	1.20056		'	1.21375		
	1.24346	1.33034					1.24129	
3 187 1,2-Dichlorobenzene-d4	   +++++	0.87597			0.86239		 	
_,	0.84368	•			0.302337	0.30021	0.87576	2.493
							<b>-</b>	

INITIAL CALIBRATION DATA

Quant Method End Cal Date Cal Date 07-MAR-2011 07-MAR-2011 ISTD 12:03 19:23

4.14

P RTE

Target Version Integrator Method file Last Edit \\cansvr11\dd\chem\MSS\a4ag2.i\10307A.b\8270C-625.m 07-Mar-2011 19:51 hulat

Leve Leve Leve Level Leve. Leve. Leve Leve Leve Calibration 42245000 File Names \chem\MSS\a4ag2 1 10307A.k 1 10307A.k 1 10307A.k 1 10307A.k 1 10307A.k 1 10307A.k \10307A.b 0\2TMM0307.D 0\2TMH0307.D 0\2TH0308.D 0\2THH0307.D \2TML0307.D \2TM0307.D \2TL0307.D 2THHH0307.D

8 Ethyl methanesulfonate	7 N-Nitrosomorpholine	198 1,4-Dioxane	 	Compound
1.21798	1.04304	+++++ 0.61953 0.62885 0.62001 0.58532 0.59900 0.60343 0.66055 0.64566	7.5000 Level 7	0.0500000     Level 1
1.07398	0.94554	0.61953	10.0000   Level 8	0.2500000   Level 2
1.05420	0.91448	0.62885	12.5000 Level 9	0.5000000   1.0000   Level 3   Level
1.03145	0.89415	0.62001		1.0000 Level 4
1.02975	0.90128	0.58532		2.5000 Level 5
1.07253	0.92298	0.59900		5.0000 Level 6
AVRG	AVRG	AVRG		Curve
		AVRG		р С
1,10630	0.95664	0.62029		Coefficients ml
		 		m2
6.95688	6 1 26 1 1 26 1 1 2 1 2 1 2 1 2 1 2 1 2	3.99521		%RSD or R^2

-

^

^

INITIAL CALIBRATION DATA

Start Cal Date
End Cal Date
Quant Method
Target Version
Integrator
Method file
Last Edit

07-MAR-2011 12:03 07-MAR-2011 19:23 ISTD 4.14 HP RTE \\cansvr11\dd\chem\MSS\a4ag2.i\10307A.b\8270C-625.m 07-Mar-2011 19:51 hulat

7.06409 <-	0.72164	AVRG	0.70326	0.68035	0.67088	0.67902	0.69610	0.79843	15 N-Nitrosomethylethylamine
7.86249 <-	1.59002	AVRG	1.56222	1.49242	1.48426	1.45149	1.52584	1.76332	14 2-Picoline
0.000e+000 <-	  0.000e+000	AVRG	++++	; + ; + ; + ; + ; + ; ; + ; ; + ; ; + ; ; + ; ; + ; ; + ; ; + ; ; + ; ; + ; ; + ; ; + ; ; + ; ; + ; ; + ; ; + ; ; + ; ; + ; ; + ; ; + ; ; + ; ; + ; ; + ; ; + ; ; + ; ; + ; ; + ; ; + ; ; + ; ; + ; ; + ; ; + ; ; + ; ; + ; ; + ; ; + ; ; + ; ; + ; ; + ; ; + ; ; + ; ; + ; ; + ; ; + ; ; + ; ; + ; ; + ; ; + ; ; + ; ; + ; ; + ; ; + ; ; + ; ; + ; ; + ; ; + ; ; + ; ; + ; ; + ; ; + ; ; + ; ; + ; ; + ; ; + ; ; + ; ; + ; ; + ; ; + ; ; + ; ; + ; ; + ; ; + ; ; + ; ; + ; ; + ; ; + ; ; + ; ; + ; ; + ; + ; ; + ; + ; ; + ; + ; + ; + ; + ; + ; + ; + ; + ; + ; + ; + ; + ; + ; + ; + ; + ; + ; + ; + ; + ; + ; + ; + ; + ; + ; + ; + ; + ; + ; + ; + ; + ; + ; + ; + ; + ; + ; + ; + ; + ; + ; + ; + ; + ; + ; + ; + ; + ; + ; + ; + ; + ; + ; + ; + ; + ; + ; + ; + ; + ; + ; + ; + ; + ; + ; + ; + ; + ; + ; + ; + ; + ; + ; + ; + ; + ; + ; + ; + ; + ; + ; + ; + ; + ; + ; + ; + ; + ; + ; + ; + ; + ; + ; + ; + ; + ; + ; + ; + ; + ; + ; + ; + ; + ; + ; + ; + ; + ; + ; + ; + ; + ; + ; + ; + ; + ; + ; + ; + ; + ; + ; + ; + ; + ; + ; + ; + ; + ; + ; + ; + ; + ; + ; + ; + ; + ; + ; + ; + ; + ; + ; + ; + ; + ; + ; + ; + ; + ; + ; + ; + ; + ; + ; + ; + ; + ; + ; + ; + ; + ; + ; + ; + ; + ; + ; + ; + ; + ; + ; + ; + ; + ; + ; + ; + ; + ; + ; + ; + ; + ; + ; + ; + ; + ; + ; + ; + ; + ; + ; + ; + ; + ; + ; + ; + ; + ; + ; + ; + ; + ; + ; + ; + ; + ; + ; + ; + ; + ; + ; + ; + ; + ; + ; + ; + ; + ; + ; + ; + ; + ; + ; + ; + ; + ; + ; + ; + ; + ; + ; + ; + ; + ; + ; + ; + ; + ; + ; + ; + ; + ; + ; + ; + ; + ; + ; + ; + ; + ; + ; + ; + ; + ; + ; + ; + ; + ; + ; + ; + ; + ; + ; + ; + ; + ; + ; + ; + ; + ; + ; + ; + ; + ; + ; + ; + ; + ; + ; + ; + ; + ; + ; + ; + ; + ; + ; + ; + ; + ; + ; + ; + ; + ; + ; + ; + ; + ; + ; + ; + ; + ; + ; + ; + ; + ; + ; + ; + ; + ; + ; + ; + ; + ; + ; + ; + ; + ; + ; + ; + ; + ; + ; + ; + ; + ; + ; + ; + ; + ; + ; + ; + ; + ; + ; + ; + ; + ; + ; + ; + ; + ; + ; + ; + ; + ; + ; + ; + ; + ; + ; + ; + ; + ; + ; + ; + ; + ; + ; + ; + ; + ; + ; + ; + ; + ; + ; + ; + ; + ; + ; + ; + ; + ; + ; + ; + ; + ; + ; + ; + ; + ; + ; + ; + ; + ;	+ + + + + + + + + + + + + + + + + + +		!	1 + + + + + + + + + + + + + + + + + + +	13 Malononitrile
4.09075	0.88265	AVRG	0.85485	0.87018	0.87656	0.93680	0.93382	0.83258	12 3-Chloropropionitrile
0.000e+000 <-	  0.000e+000	AVRG	+++++	+ + + + + +	+++++++++++++++++++++++++++++++++++++++	; ; ; ; ; + + ; + + ; + +	1	; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;	11 Ethyl methacrylate
3.44874	1.02266	AVRG	0.97388	0.98728	1.01796	1.02771	1.03315	1.00524	10 N-Nitrosodimethylamine
5.62987	1.71159	AVRG	1.67068	1.64587	1.66093	1.65158	1.62229	1.71945	[ t 1 1 1
						12.5000   Level 9	10.0000   Level 8	7.5000     Tevel 7	
%RSD   or R^2	Coefficients ml m2	Curve   b	5.0000   Level 6	2.5000 Level 5	1.0000   Level 4	0.5000000   Level 3	0.2500000 Level 2	0.0500000 Level 1	Compound

INITIAL CALIBRATION DATA

Start Cal Date End Cal Date Quant Method Target Version Integrator Method file Last Edit 07-MAR-2011 12:03 07-MAR-2011 19:23 ISTD 4.14 HP RTE \\cansvr11\dd\chem\MSS\a4ag2.i\10307A.b\8270C-625.m 07-Mar-2011 19:51 hulat

1 1										
5.26493	<u>CO</u> 1	1.36318	AVRG	1.32459	1.33101	1.33116	1.31704	1.30009	1.34815	24 2-Chlorophenol
4.76840	7	1.39987	AVRG	1.28984	1.39439	1.37712	1.49194	1.48870	1.35360	23 bis(2-Chloroethyl)ether
5.50646		1.66650	AVRG	1.61469	1.62941	1.64693	1.65222	1.52249	1.67442	22 Phenol
7.69573 <-	)5	2.48205	AVRG	2.44931	2.37285	2.38092	2.34515	2.29166	2.46080	21 Aniline
7.95322	8 :	0.72128	AVRG	0.69981	0.67407	0.66582	0.66969	0.69589	0.80527	19 N-Nitrosodiethylamine
7.76709	90	1.53590	AVRG	1.51011	1.43705	1.44057	1.43152	1.44556	1.71584	18 1,3-Dichloro-2-propanol
6.46573		0.88612	25   AVRG	0.86625		0.82099	0.84082	0.88334	0.96713	16 Methyl methanesulfonate
				1	i i		12.5000   Level 9	10.0000 Level 8	7.5000   Level 7	# H H H H H H H H H H H H H H H H H H H
%RSD	nts m2	Coefficients b ml	Curve	5.0000 Level 6	2.5000   Level 5	1.0000   Level 4	0.5000000 Level 3	0.2500000 Level 2	0.0500000 Level 1	Compound

TestAmerica North Canton

### INITIAL CALIBRATION DATA

Start Cal Date End Cal Date Quant Method Target Version : 07-MAR-2011 12:03 : 07-MAR-2011 19:23 : ISTD : 4.14 : HP RTE

Integrator Method file Last Edit \\cansvr11\dd\chem\MSS\a4ag2.i\10307A.b\8270C-625.m 07-Mar-2011 19:51 hulat

	31 bis(2-Chloroisopropyl)ether	30 2-Methylphenol	29 Benzyl Alcohol	28 1,2-Dichlorobenzene	27 1,4-Dichlorobenzene	26 1,3-Dichlorobenzene	25 Pentachloroethane		Compound
	1.86905	1,24392	0.89528	1.35486	1.40374	1.41594	+++++		0.0500000     Level 1
	1.97593	1.21759	0.76478	1.39012	1.35630	1.47001	0.44767	10.0000   Level 8	0.2500000   Level 2
	2.07819	1.13146	0.79559	1.38955	1.41084	1.42550	0.48635	12.5000   Level 9	0.5000000   Level 3
	2.00856	1.16787	0.84957	1.38902	1.41972	1.45518			1.0000   Level 4
	2.00234	1.20760	0.85358	1.35354	1.41272	1.41622	0.46187		2.5000   Level 5
	1.91903	1.18631	0.86717	1.37435	1.41739	1.43287	.48739		5.0000 Level 6
	AVRG	AVRG	AVRG	AVRG	AVRG	AVRG	AVRG	# H H H H H H H H H H H H H H H H H H H	Curve
								N N N N N N N N N N N N N N N N N N N	Coeff
<u> </u>	1.97503	1.23048	0.87154	1,39157	1.43491	1.45772	0,49968	6 H H H H H H H H H H H H H H H H H H H	Coefficients ml
	1 1	<u> </u>	<u> </u>	1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1	· · · · · · · · · · · · · · · · · · ·		m2
	3,43706 <-	6.33841 <-	8.58891 <-	2.47829   <-	4.30358 <-	3.06616 <-	9.52276   <-		%RSD or R^2

INITIAL CALIBRATION DATA

Start Cal Date
End Cal Date
Quant Method
Target Version
Integrator
Method file
Last Edit 07-MAR-2011 12:03 07-MAR-2011 19:23 ISTD 4.14 HP RTE \\cansvr11\dd\chem\MSS\a4ag2.i\10307A.b\8270C-625.m 07-Mar-2011 19:51 hulat

9.85607	0.73037	0.72252     AVRG	0.69910	0.68010	0.66911	0.67698	0.83978	36 N-Nitrosopyrrolidine
4,34590	0.40028	0.39252 AVRG	0.39256	0.38314	0.39359	0.41114	0.43525	35 Nitrobenzene
2.65790	0.58431	0.57290   AVRG	0.58133	0.57180	0.58205	0.60673 0.60534	+++++ 0.56412	34 Hexachloroethane
12.43063	1.27285	1.28347 AVRG	1.22847	1.16466	1.10715	1.07144	1.50279	193 3-Methylphenol
6.02030	1.30996	1.28044   AVRG	1.27781	1.30839	1.27428	1.17664	1.33247	192 4-Methylphenol
5.75047	2.54044	2.46675 AVRG	2.48541	2.47627	2.40574	2.39423	2.57639	M 195 Cresols, total
	1 1 1 1	AVRG	1.23829	1.22182	1.21508	1.20357	1.21582	32 N-Nitroso-di-n-propylamine
11   1   1   1   1   1   1   1   1   1					12.5000   Level 9		7.5000 Level 7	
m2   %RSD	Coefficients b m1	5.0000     Level 6   Curve	2.5000   Level 5	1.0000   Level 4	0.5000000   Level 3	0.2500000   Level 2	0.0500000   Level 1	Compound

INITIAL CALIBRATION DATA

Start Cal Date
End Cal Date
Quant Method
Target Version
Integrator
Method file
Last Edit

07-MAR-2011 12:03 07-MAR-2011 19:23 ISTD 4.14 HP RTE \\cansvr11\dd\chem\MSS\a4ag2.i\10307A.b\8270C-625.m 07-Mar-2011 19:51 hulat

44 bis(2-Chloroethoxy)methane	43 2,4-Dimethylphenol	42 2-Nitrophenol	41 Isophorone	40 N-Nitrosopiperidine	39 o-Toluidine	37 Acetophenone		Compound
0.38266	0.36241	0.18001	0.73606	0.19771	1.94034	1.95732	7.5000 Level 7	0.0500000 Level 1
0.39914	0.31874	0.15048	0.71387	0.17044	2.12241	1.92328	10.0000   Level 8	0.2500000 Level 2
0.39541	0.33984	0.15992	0.72008	0.16705	2.07402	1.92851	12.5000   Level 9	0.5000000   Level 3
0.38300	0.33948	0.16818	0.70872	0.16578	2.06102	1	#	1.0000 Level 4
0.39639	0.36131	0.17849	0.74030	0.16387	2.03867	1.89877	11 11 11 11 11 11 12 11 11 11	2.5000 Level 5
0.39107	0.35360	0.17747	0.71197	0.17188	1.93267	, 6 , 5		5.0000 Level 6
AVRG	AVRG	AVRG	AVRG	AVRG	AVRG	AVRG		  Curve
0.39587	0.35503	0.17538	0.73892	0.17802	1.92048	1.95481		Coefficients b ml m2
2.67162 <	6.21118 <-	8.81752	1 4 5 4 4 6 1 6 2	8.08844	11.21641 <	3.41816 <		%RSD     or R^2

INITIAL CALIBRATION DATA

Start Cal Date
End Cal Date
Quant Method
Target Version
Integrator
Method file
Last Edit 07-MAR-2011 07-MAR-2011 ISTD 4.14 HP RTE 12:03 19:23

\\cansvr11\dd\chem\MSS\a4ag2.i\10307A.b\8270C-625.m 07-Mar-2011 19:51 hulat

	51 Naphthalene	50 1,2,4-Trichlorobenzene	49 Benzoic Acid	48 2,4-Dichlorophenol	47 1,3,5-Trichlorobenzene	46 2,4-Toluenediamene	45 O,O,O-Triethyl phosphorothioa		Compound
1.08592	1.15320	0.25894	2293609	0.25377	0.26350	0.22102		7.5000 Level 7	0.0500000   Level 1
1.15949		0.26573	3242798	0.19652	0.27920	0.24475		10.0000   Level 8	0.2500000 Level 2
1.05206	1.01139	0.26794	66292	0.22230	0.25807	0.20664	! 1	12.5000 Level 9	0.5000000 Level 3
; ; ; ; ; ;	1.02587	0.25623	137625	0.21886	0.26083	0.27321	0.1		1.0000 Level 4
	1.04403	0.26665	614543	0.24095	0.26614	0.23131	0.134		2.5000 Level 5
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1.05167	0.26764	1314234	0.24393	0.26735	0.20233	0.14418		5.0000 Level 6
AVRG			DAND	AVRG	AVRG	AVRG	AVRG		Curve
; ; ; ; ;	1 1 1 1	,	0.35824	; 1 1 1 1 1 1 1	; ; ; ; ;	1 	1	0 	Ф
1.06810		0.26915	3.92110	0.24145	0.27147	0.22988	0.14609	22 22 15 16 16 16 16 16 16 16 16 16 16 16 16 16	Coefficients ml
	1		-0.23715	1 1 1 1 1 1	) 	1 1 1 1 1 1 1 1 1		10 10 10 10 10 10 11 11 11 11	m2
5.07733		3.97378 <-	0.99978	11.79208 <-	4.48204 <-	11.47460   <-		11 11 11 11 11 11 11 11 11 11 11 11 11	%RSD or R^2

INITIAL CALIBRATION DATA

Start Cal Date
End Cal Date
Quant Method
Target Version
Integrator
Method file
Last Edit 07-MAR-2011 07-MAR-2011 ISTD 4.14 HP RTE 12:03

\\cansvr11\dd\chem\MSS\a4ag2.i\10307A.b\8270C-625.m 07-Mar-2011 19:51 hulat

Compound												
Compound	9.10990 <-	 	0.26206	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	3	0.25628	0.24700	0.24129	0.24234	0.23950	0.29610	58 N-Nitrosodi-n-butylamine
0.0500000   0.25000000   1.0000   2.5000   5.0000   Coefficients	4	; ; ; ; ; ; ; ;	0.25119		3 AVRG	0.24833	0.24676	0.24403	0.24081	0.24778	0.24350	57 1,2,3-Trichlorobenzene
Compound   Level 1   Level 2   Level 3   Level 4   Level 5   Level 6   Curve   b   m1   m2	6.14598		0.13028	: 1 1 1 1 1 1 1	5 AVRG	0.13025	0.12700	0.12508	0.12734	0.12045	0.12735	
O.0500000   O.2500000   O.5000000   O.05000000   O.05000000   O.05000000   O.05000000   O.05000000   O.05000000   O.05000000   O.05000000   O.05000000   O.05000000   O.05000000   O.00000   O.00000   O.00000   O.00000   O.00000   O.00000   O.00000   O.00000   O.00000   O.00000   O.00000   O.00000   O.00000   O.00000   O.00000   O.00000   O.00000   O.00000   O.00000   O.00000   O.00000   O.00000   O.00000   O.00000   O.00000   O.00000   O.00000   O.00000   O.00000   O.00000   O.00000   O.00000   O.00000   O.00000   O.000000   O.000000   O.000000   O.000000   O.000000   O.000000   O.000000   O.000000   O.000000   O.000000   O.000000   O.000000   O.000000   O.000000   O.000000   O.000000   O.000000   O.000000   O.000000   O.000000   O.000000   O.000000   O.000000   O.000000   O.000000   O.000000   O.000000   O.000000   O.000000   O.000000   O.000000   O.000000   O.000000   O.000000   O.000000   O.000000   O.0000000   O.0000000   O.0000000   O.0000000   O.0000000   O.0000000   O.0000000   O.0000000   O.0000000   O.0000000   O.0000000   O.0000000   O.0000000   O.00000000   O.0000000   O.00000000   O.00000000   O.000000000   O.0000000000	11.71571 <	; ; ; ; ; ; ; ; ; ;	0.17986	! ! ! ! ! ! !	1 AVRG	0.17091	0.16103	0,15228	+++++	1+++++	0.19996	
Compound   Level 1   Level 2   Level 3   Level 4   Level 5   Level 6   Curve   b   m1   m2   Compound   Coefficients   Compound   Coefficients   Compound   Coefficients   Compound   Coefficients   Compound   Coefficients   Coefficients   Coefficients   Coefficients   Coefficients   Coefficients   Coefficients   Coefficients   Coefficients   Coefficients   Coefficients   Coefficients   Coefficients   Coefficients   Coefficients   Coefficients   Coefficients   Coefficients   Coefficients   Coefficients   Coefficients   Coefficients   Coefficients   Coefficients   Coefficients   Coefficients   Coefficients   Coefficients   Coefficients   Coefficients   Coefficients   Coefficients   Coefficients   Coefficients   Coefficients   Coefficients   Coefficients   Coefficients   Coefficients   Coefficients   Coefficients   Coefficients   Coefficients   Coefficients   Coefficients   Coefficients   Coefficients   Coefficients   Coefficients   Coefficients   Coefficients   Coefficients   Coefficients   Coefficients   Coefficients   Coefficients   Coefficients   Coefficients   Coefficients   Coefficients   Coefficients   Coefficients   Coefficients   Coefficients   Coefficients   Coefficients   Coefficients   Coefficients   Coefficients   Coefficients   Coefficients   Coefficients   Coefficients   Coefficients   Coefficients   Coefficients   Coefficients   Coefficients   Coefficients   Coefficients   Coefficients   Coefficients   Coefficients   Coefficients   Coefficients   Coefficients   Coefficients   Coefficients   Coefficients   Coefficients   Coefficients   Coefficients   Coefficients   Coefficients   Coefficients   Coefficients   Coefficients   Coefficients   Coefficients   Coefficients   Coefficients   Coefficients   Coefficients   Coefficients   Coefficients   Coefficients   Coefficients   Coefficients   Coefficients   Coefficients   Coefficients   Coefficients   Coefficients   Coefficients   Coefficients   Coefficients   Coefficients   Coefficients   Coefficients   Coefficients   Coefficients   Coefficients   Coeffi	13.26548	 	0.25192	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	AVRG	0.25395	0.23924	0.22711	0.21374	0.21449	0.29378	54 2,6-Dichlorophenol
0.0500000   0.2500000   1.0000   2.5000   5.0000   Coefficients   Compound   Level 1   Level 2   Level 3   Level 4   Level 5   Level 6   Curve   b   m1   m2   o   m2   o   m1   m2   o   m2   o   m2   o   m2   o   m3   m2   o   m3   m2   o   m3   m2   o   m3   m2   o   m3   m2   o   m3   m2   o   m3   m2   o   m3   m3   o   m3   o   m3   o   m3   o   m3   o   m3   o   m3   o   m3   o   m3   o   m3   o   m3   o   m3   o   m3   o   m3   o   m3   o   m3   o   m3   o   m3   o   m3   o   m3   o   m3   o   m3   o   m3   o   m3   o   m3   o   m3   o   m3   o   m3   o   m3   o   m3   o   m3   o   m3   o   m3   o   m3   o   m3   o   m3   o   m3   o   m3   o   m3   o   m3   o   m3   o   m3   o   m3   o   m3   o   m3   o   m3   o   m3   o   m3   o   m3   o   m3   o   m3   o   m3   o   m3   o   m3   o   m3   o   m3   o   m3   o   m3   o   m3   o   m3   o   m3   o   m3   o   m3   o   m3   o   m3   o   m3   o   m3   o   m3   o   m3   o   m3   o   m3   o   m3   o   m3   o   m3   o   m3   o   m3   o   m3   o   m3   o   m3   o   m3   o   m3   o   m3   o   m3   o   m3   o   m3   o   m3   o   m3   o   m3   o   m3   o   m3   o   m3   o   m3   o   m3   o   m3   o   m3   o   m3   o   m3   o   m3   o   m3   o   m3   o   m3   o   m3   o   m3   o   m3   o   m3   o   m3   o   m3   o   m3   o   m3   o   m3   o   m3   o   m3   o   m3   o   m3   o   m3   o   m3   o   m3   o   m3   o   m3   o   m3   o   m3   o   m3   o   m3   o   m3   o   m3   o   m3   o   m3   o   m3   o   o   m3   o   o   o   o   o   o   o   o   o	0.99790 <-	-0.00449	0.89886	0.14276	guan	2869044	1491137	511789	193263	109173	+++++ 4302609	
0.0500000   0.25000000   1.0000   2.5000   5.0000   Coefficients   Level 1	5.89916	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0.49106	: 	3	0.49883	0.48695	0.46611	0.47126	0.45358	0.48822	,
0.0500000   0.5000000   1.0000   2.5000   5.0000   Coefficients   Level 1   Level 2   Level 3   Level 4   Level 5   Level 6   Curve   b ml m2			0 11 11 11 11 10 10 10 10 10 10 10 10 10		"	4 11 11 11 11 11 11 11			12.5000   Level 9	10.0000   Level 8	7.5000     Level 7	] ] ]
	%RSD or R^2	m2	oefficients ml		Curve	5.0000 Level 6	2.5000   Level 5	1.0000   Level 4	0.5000000   Level 3	0.2500000   Level 2	0.0500000 Level 1	Compound

INITIAL CALIBRATION DATA

Start Cal Date
End Cal Date
Quant Method
Target Version
Integrator
Method file
Last Edit

07-MAR-2011 12:03 07-MAR-2011 19:23 ISTD 4.14 HP RTE \\cansvr11\dd\chem\MSS\a4ag2.i\10307A.b\8270C-625.m 07-Mar-2011 19:51 hulat

								1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			_
	0.40449		2	0.39012	0,36878	0.36984	0.37556 0.44128	0.38331	+++++	65 1,2,4,5-Tetrachlorobenzene	
-0.30115	3.63482	0.05959	9    aauq	398719	214729	58969	37363	17482 999611	678284	64 Hexachlorocyclopentadiene	
	0.67554	t 1 1 1 1 1	1	0.65811	0.66765	0.63952	0.64731	0.63045	0.70753	63 1-Methylnaphthalene	~
	0.58704	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	4	0.56964	0.57953	0.56387	0.56023	0.55242	0.57471	62 2-Methylnaphthalene	
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0.26029	1 1 1 1 1	9   AVRG   -	0.25389	0.24152	0.23764	0.23268	0.23561	0.29825	61 Safrole	
	0.27267	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2	0.27862	0.30242	0.27099	+++++	+++++	0.30639	60 p-Phenylene diamine	
	0.30893	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	6	0.30076	0.29859	0.29171		0.33711	0.31417	59 4-Chloro-3-Methylphenol	
# # # # # # # # # # # # # # # # # # #	11 11 11 11 11 11 11 11 11 11		# # #		# # # # # # # # # # # # # # # # # # #	D 10 10 10 10 10 10 10 10 10 10 10 10 10	12.5000 Level 9	10.0000 Level 8	7.5000 Level 7		
m2	Coefficients ml	ъ	Curve	5.0000   Level 6	2.5000   Level 5	1.0000   Level 4	0.5000000 Level 3	0.2500000 Level 2	0.0500000     Level 1	Compound	,

INITIAL CALIBRATION DATA

: 07-MAR-2011 12:03 : 07-MAR-2011 19:23 : ISTD : 4.14 : HP RTE

Start Cal Date
End Cal Date
Quant Method
Target Version
Integrator
Method file
Last Edit \\cansvr11\dd\chem\MSS\a4ag2.i\10307A.b\8270C-625.m 07-Mar-2011 19:51 hulat

-Mar-2011	
19:51	
hulat	

									}		
11.10138   <-		1.12214	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	99       AVRG	1.10299	1.05086	1.00390	1.01939	1.00020	1.27263	M 188 Isosafrole, Total
10.95430 <-		0.16872	1	74	0.16474	0.15715	0.15351	0.15361	0.14977	+++++	71 Isosafrole 1
4.50335		1.06133	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	50	1.04560	1.05097	1.01446	0.99789	1.05076	1.10979	70 2-Chloronaphthalene
0.99690 <	0.01647	4.43803	0.19942	17	306547	160891	56255	21998 728243	+++++ 654601	+++++ 473399	69 1,4-Dinitrobenzene
4.72215	1	0.40162	! ! ! ! ! ! !	57	0.40367	0.39581	0.38461	0.37908	0.40155	0.38981	68 1,2,3,5-Tetrachlorobenzene
9.51646 <-	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0.30173	: : : : : : :	33	0.29683	0.29939	0.27466	0.26808	0.28160	0.30775	67 2,4,5-Trichlorophenol
9.97889   <-		0.28393	: : : : : : :	AVRG		0.27872	0.26150	0.26214		0.29092	66 2,4,6-Trichlorophenol
)                    		 !! !! !! !! !! !! !!	11 11 11 11 11 14 11 11		3 II II II II II II II II II II II II II			12.5000   Level 9	10.0000 Level 8	~	
%RSD or R^2	m2 	Coefficients ml	Ö A	Curve	5.0000   Level 6	2.5000   Level 5	1.0000   Level 4	0.5000000   Level 3	0.2500000   Level 2	0.0500000   Level 1	Compound

INITIAL CALIBRATION DATA

Start Cal Date
End Cal Date
Quant Method
Target Version
Integrator
Method file
Last Edit 07-MAR-2011 07-MAR-2011 ISTD 4.14 HP RTE 12:03

\\cansvrl1\dd\chem\MSS\a4ag2.i\10307A.b\8270C-625.m 07-Mar-2011 19:51 hulat

7.71192	0.28070	0.28775   AVRG	0.28615	0.26621	0.26106	0.24610	0.28411	78 2,6-Dinitrotoluene
14.34490 <-	0.21643	0.21438     AVRG	0.19714	0.19203	0.17158	1+++++	0.25034	77 m-Dinitrobenzene
6.53865	1.29569	1.26224     AVRG	1.28386	1.22666	1.19182	1.25258	1.30685	76 Dimethylphthalate
10.26513	0.40484	0.40073	0.39670	0.36239	0.34368	0.45104	+++++	75 1,4-Naphthoquinone
4.23023	0.37357	0.37575	0.37251	0.35376	0.35619	0.37681	0.36356	74 1,2,3,4-Tetrachlorobenzene
3.75827	0.45574	0.44709	0.45188	0.44283	0.44210	0.44878 0.48978	0.44886	73 2-Nitroaniline
	0.95342	0.93824 AVRG	0.89370	0.85040	0.86578	0.85043	1 +	72 Isosafrole 2
11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		   			12.5000   Level 9	10.0000   Level 8	7.5000 Level 7	
m2   %RSD	Coefficients b ml	5.0000     Level 6  Curve	2.5000   Level 5	1.0000     Level 4	0.5000000   Level 3	0.2500000   Level 2	0.0500000 Level 1	Compound

### INITIAL CALIBRATION DATA

Start Cal Date
End Cal Date
Quant Method
Target Version
Integrator
Method file
Last Edit : 07-MAR-2011 12:03 : 07-MAR-2011 19:23 : ISTD : 4.14 : HP RTE

\\cansvr11\dd\chem\MSS\a4ag2.i\10307A.b\8270C-625.m 07-Mar-2011 19:51 hulat

85 4-Nitrophenol	84 Pentachlorobenzene	83 2,4-Dinitrophenol	82 Acenaphthene	81 3-Nitroaniline	80 1,2-Dinitrobenzene	79 Acenaphthylene		Compound
456611	0.38599	1069978	1.18474	+++++	+++++	1.83270	- L 7	0.0500000   Level 1
741530	0.31764	1570580	1.15549	0.32086	0.11899	1.76446	10.0000 Level 8	0.2500000   Level 2
23026	0.31345	30005	1.10240	0.36150	0.12835		12.5000   Level 9	0.5000000   Level 3
39743	0.30722	65606	1.09695	0.35615	0.12750	1.73442	9 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1	1.0000   Level 4
159171	0.30442	306924	1.15148	0.37949	0.14446	1		2.5000   Level 5
298567	0.33508	617645	1.13552	0.37817	0.13989		11 11 11 12 13 14 14 15 16 16 16 16 16 16 16 16 16 16 16 16 16	5.0000 Level 6
QUAD	AVRG	QUAD	AVRG	AVRG	AVRG		"	Curve
0.06518	1	0.41621	; ; ; ; ; ;	1 1 1 1 1 1 1	 	: : : : : : : :		ъ
5.24652	0.34251	4.31572	1.15965	0.37667	0.13797	1.86047		Coefficients ml
-0.81519	1 1 1 1 1 1 1 1 1	-0.16381	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	; ; ; ; ;	· · · · · · · · · · · · · · · · · · ·		m2
0.99437 <	11.21719 <-	0,99727	4.18500	8.37545	8.71648	5.75997	# # # # # # # # # # # # # # # # # # #	%RSD .   or R^2

INITIAL CALIBRATION DATA

Start Cal Date
End Cal Date
Quant Method
Target Version
Integrator
Method file
Last Edit 07-MAR-2011 07-MAR-2011 . 12:03 . 19:23

ISTD 4.14 HP RTE

\\cansvr11\dd\chem\MSS\a4ag2.i\10307A.b\8270C-625.m 07-Mar-2011 19:51 hulat

	92 2-Naphthylamine	91 2,3,5,6-Tetrachlorophenol	90 Zinophos	89 1-Naphthylamine	88 2,3,4,6-Tetrachlorophenol	87 2,4-Dinitrotoluene	86 Dibenzofuran		Compound
	0.82135	+++++	+++++	+ + + + + + + + + + + + + + + + + + + +	+++++ 542766	0.38750		7.5000 Level 7	0.0500000 Level 1
1	1.12198	+++++ 0.25462	0.29484	1.07655	+++++ 728081	0.32678	1.50467 1.75777	10.0000   Level 8	0.2500000.   Level 2
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1.17934	0.18349	0.29063	1.10056	16446 832932	0.35822	1.43500	12.5000   Level 9	0.5000000   Level 3
1	1.09033	0.18658	0.29113	1.05983	55005	0.36214		II II II II II II II II II	1.0000   Level 4
! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !	1.04974	0.21363	0.29402	1.00446	170445	0.39907	1.52478	11 11 10 10 11 11 11 11 11 11	2.5000   Level 5
1 1	0.90758	0.21691	0.31337	0.90091	339807	0.38970	1.51600	K 10 11 11 11 11 11 11	5.0000 Level 6
	AVRG	AVRG	AVRG	AVRG	QUAD	AVRG	AVRG		Curve
		1	1	1	0.25309	; ; ; ; ;	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	U U U U U U U U U U U U U U U U U U U	b Co
	1.02838	0.21835	0.31539	1.02846	3.89709	0.38188	1.54774		Coefficients ml
	1				-0.00515		· · · · · · · · · · · · · · · · · · ·		m2
	13.28295 <	12.55514   <-	8.63152	7.73902   <-	0.99679	8.08793   <-	6.55983	11 11 11 11 11 12 14 15 11	%RSD or R^2

INITIAL CALIBRATION DATA

Start Cal Date
End Cal Date
Quant Method
Target Version
Integrator
Method file
Last Edit 07-MAR-2011 12:03 07-MAR-2011 19:23 ISTD 4.14 HP RTE \\cansvr11\dd\chem\MSS\a4ag2.i\10307A.b\8270C-625.m 07-Mar-2011 19:51 hulat

.1
Mar-
N
01
1
$\vdash$
9
••
51
Lud
⊊.
at t
٠.

99 N-Nitrosodiphenylamine	98 4,6-Dinitro-2-methylphenol	97 5-Nitro-o-toluidine	96 4-Nitroaniline	95 4-Chlorophenyl-phenylether	94 Fluorene	1 1 1 1 1 1		Compound
0.68495	484561	0.34552	0.41835	0.50334	1.39606		7.5000 Level 7	0.0500000   Level 1
0.63313	710024	0.30472	0.33710	0.50189	1.25694	1.32217	10.0000 Level 8	0.2500000 Level 2
0.64115	19789	0.30673	0.38149	0.49259	1.22590	1.35290	12.5000 Level 9	0.5000000   Level 3
0.65175	36759	0.33133	0.38316	0.48485	1.22957	1.30334		1.0000 Level 4
0.66103	146818	0.33362	0.40609	0.49998	1.29590	1.38681		2.5000 Level 5
0.64415	283113	0.32647	0.41194	0.50896	1.29969	1.36790   AVRG	1	5.0000 Level 6
AVRG	QUAD	AVRG	AVRG	AVRG	AVRG			Curve
	0.12978		1 1 1 1 1 1			11 11 11 11 12 13 14 14		מ
0.67379	7.87348	0.32448	0.40503	0.51029	1.31906	1.40182		Coefficients ml
	-1.58576	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1	1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	11 11 11 11 11 11 11 11		m2
6.31975	0.99854	5.51157	9.39117	4.52292	5.99617	6.35849	-	%RSD or R^2

INITIAL CALIBRATION DATA

Start Cal Date
End Cal Date
Quant Method
Target Version
Integrator
Method file
Last Edit 07-MAR-2011 12:03 07-MAR-2011 19:23 ISTD 4.14 HP RTE \\cansvr11\dd\chem\MSS\a4ag2.i\10307A.b\8270C-625.m 07-Mar-2011 19:51 hulat

				_	_			_	_	
0.99540	-2.49748	12.49310	0.21892	171248	91645	29292	10541   444684	409054	283331	105 1,3,5-Trinitrobenzene
7.29551		0.18281		0.17977   AVRG	0.17586	0.16794	0.17866	0.16771	0.20380	104 Phorate
5.66966		2.81552	! ! ! ! ! !	2.74722   AVRG	2.69028	2.68617	2.70747	2.71016	3.10769	M 189 Diallate, Total
3,72292 <-		0.67437		0.65963	0.65535	0.65816	0.65852	0.67107	+++++	103 Diallace 1
12.09684		0.09499		0.09206   AVRG	0.08876	0.08452	0.08218	0.08716	0.10800	102 Tetraethyl dithiopyrophosphat
6.31975		0.67379	; ; ; ; ; ; ; ; ; ; ; ;	0.64415   AVRG	0.66103	0.65175	0.64115	0.63313	0.68495	101 Diphenylamine
4.28861		0.99326	· · · · · · · · · · · · · · · · · · ·	0.96373 AVRG	0		0.96550	1.08061		1 1 1
				 			12.5000   Level 9	10.0000   Level 8	7.5000   Level 7	
%RSD or R^2	m2	Coefficients ml	b O	5.0000     Level 6  Curve	2.5000   Level 5	1.0000   Level 4	0.5000000   Level 3	0.2500000   Level 2	0.0500000   Level 1	Compound

INITIAL CALIBRATION DATA

07-MAR-2011 12:03 07-MAR-2011 19:23 ISTD 4.14 HP RTE

Start Cal Date
End Cal Date
Quant Method
Target Version
Integrator
Method file
Last Edit \\cansvr11\dd\chem\\MSS\a4ag2.i\\10307A.b\\8270C-625.m

J
-Mar
. ! .
N
0
$\vdash$
2011
μ
ં
• •
σı
ب
hul
<u></u>
ja C
<b>(</b> )

14.29338 <		0.09492	1 5 7 1 1 1	5	0.09435	0.08563	0.08099	0.08456	0.08212	0.10939	112 Pentachloronitrobenzene
0.99816	-0.87165	8.04207	0.31475	-   CTWD   -	525929	272574	71023	38612	1396769	+++++	111 Pentachlorophenol
2.96933	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0.32483	; ; 1 1 1 1 1 1 1	6	0.31966	0.32319	0.32609	0.32738	+++++	+++++	110 Dimethoate
8.98309	1 1 1 1 1 1 1 1 1 1 1	0.13803	. 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	AVRG	0.13502	0.12870	0.12630	0.13047	0.12589	+++++	109 Diallate 2
12.33302   <-	· · · · · · · · · · · · · · · · · · ·	0.46197	• • • • • • • • • • • • • • • • • • •	9	0.46929	0.43725	0,43043	0.39888	0.38824	+++++	108 Phenacetin
5.82511	i i i i i i i i	0.16705	• 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	7 AVRG	0.16397	0.15881	0.16023	0.16194	0.16410	+++++	107 Hexachlorobenzene
6.43935	:	0.16415		AVRG	<u> </u>	0.16220	0.1	0.15028		<del></del>	106 4-Bromophenyl-phenylether
u 8 6 6 7 7 8 8 1 1 1 1 1 1 1		1	)7 35 51 61 61 11 11 11 12 12 12 13 14	6 6 0	                          	II II II II II II II	D 10 10 10 10 10 10 10 10 10 10 10 10 10	12.5000 Level 9	10.0000 Level 8		ı
%RSD   or R^2	m2 — —	Coefficients ml	<b>ט</b>	Curve	5.0000 Level 6	2.5000 Level 5	1.0000   Level 4	0.50000000   Level 3	0.2500000 Level 2	0.0500000     Level 1	Compound

INITIAL CALIBRATION DATA

Start Cal Date
End Cal Date
Quant Method
Target Version
Integrator
Method file
Last Edit 07-MAR-2011 12:03 07-MAR-2011 19:23 ISTD 4.14 HP RTE \\cansvr11\dd\chem\MSS\a4ag2.i\10307A.b\8270C-625.m 07-Mar-2011 19:51 hulat

7
-Mar-
N
0
-2011
19
φ
••
51
Н
hulat

8.42202	50 -	1.14550	) 	AVRG	1.11353	1.09428	1.09315	1.05586	1.05728	1.17266	119 Carbazole
7.90490	18	0.46118		AVRG	0.45632	0.44305	0.43129	0.42793	0.42243	0.51428	118 Disulfoton
-0.42169 0.99504		2 5.02799	0.29902	dano	410357	190577	59456	16485	+++++	697091	117 Dinoseb
6.25339	0 1	1.15604		AVRG	1.14567	1.14164	1.09024	1.07168	1.07417	1.27566	116 Anthracene
7.19981	59	1.17359	: : : : : : : :	AVRG	1.14113	1.12733	1.08885	1.08209	1.10398	1.31128	115 Phenanthrene
11.90545	31 —	0.38131		AVRG	0.37276	0.36096	0.33776	0.33755	0.33954	0.43009	114 Pronamide
3.66595	II II	0.73215	1 11 11 11 11 11 11 11 11 11 11 11 11 1	AVRG	0.69062	0.72388	0.73978	0.75859	0.76155	1	113 4-Aminobiphenyl
				<del>-</del>				12.5000 Level 9	10.0000     Level 8	7.5000     Tevel 7	
%RSD m2 or R^2		Coefficients ml	ρ,	Curve	5.0000   Level 6	2.5000 Level 5	1.0000 Level 4	0.5000000 Level 3	0.2500000 Level 2	0.0500000   Level 1	Compound

INITIAL CALIBRATION DATA

Start Cal Date End Cal Date Quant Method Target Version Integrator Method file Last Edit 07-MAR-2011 12:03 07-MAR-2011 19:23 ISTD 4.14 HP RTE \\cansvr11\dd\chem\MSS\a4ag2.i\10307A.b\8270C-625.m 07-Mar-2011 19:51 hulat

13.96473		0.08455	1	AVRG	0.08718	0.08186	0.07431	0.06864	0.07332	0.09445	126 Aramite 1
6.51796		1.28716	· 	AVRG	1.25824	1.24581	1.22408	1.20598	1.19565	1.32959	125 Pyrene
11.12890   <-		0.90636		AVRG	0.91049	0.88740	0.84540	0.72435	1.02253	0.96501	124 Benzidine
7.61519	,	1.09774		AVRG	1.07737	1.05230	1.01586	1.02723	1.00189	1.16041	123 Fluoranthene
9.88269		0.41173		AVRG	0.35107	0.43790	0.45963	0.43417	0.40921	0.37842	122 Methapyrilene
1388 0.99638 <-	-1.04388	7.21800	0.29300	QUAD	296603	138274	38458	10390	712501	4845	121 4-Nitroquinoline 1-oxide
6.32954		1.43615		AVRG	1.48855		1.40940	1.41200	1.43410	1.58969	
			 					12.5000   Level 9	10.0000 Level 8	7.5000 Level 7	
%RSD or R^2	m2	Coefficients ml	O G	Curve	5.0000 Level 6	2.5000   Level 5	1.0000 Level 4	0.5000000   Level 3	0.2500000 Level 2	0.0500000     Level 1	Compound

INITIAL CALIBRATION DATA

Start Cal Date
End Cal Date
Quant Method
Target Version
Integrator
Method file
Last Edit 07-MAR-2011 12:03 07-MAR-2011 19:23 ISTD 4.14 HP RTE \\cansvr11\dd\chem\MSS\a4ag2.i\10307A.b\8270C-625.m 07-Mar-2011 19:51 hulat

		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		- <del>!</del>	 	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;	
0.98461	1.07412	2.50460	-0.12036	517   QUAD	5995	568103	273671   	122560	75233 1076989	*++++ 889592	132 3,3'-Dimethylbenzidine
4.61431   <-		0.75773		211	0.732	0.75912	0.71615	1.78242	0.81198	0.74459	131 Butylbenzylphthalate
35.54158	1	0.33493		102       AVRG	0.151	0.28024	0.39086	0.42092	0.43159		130 Famphur 1
11.32938 <		0.57968		983	0.579	0.54739	0.51255	0.51452	0.52128	0.65344	129 p-Chlorobenzilate
13.96755 <-		0.24086	1 1 1 1 1 1 1	358	0.24858	0.22779	0.20893	0.20737	0.20208	0.27391	128 p-Dimethylamino azobenzene
13.48361 <		0.10277		527      AVRG	0.10627	0.09911	0.08993	0.08314	0.09200	0.11339	127 Aramite 2
14.23188		0.58101		AVRG	0.58476	0.55457	0.51112	0.47632	0.50324	0.66794	1 Aramite, Total
 		1 1 1 1 1 3 4 4 1 1 1 1 1 1 1						12.5000   Level 9	10.0000 Level 8	7.5000 Level 7	
%RSD or R^2	m2	Coefficients ml	σ	6  Curve	5.0000 Level 6	2.5000 Level 5	1.0000   Level 4	0.5000000   Level 3	0.2500000 Level 2	0.0500000   Level 1	Compound

INITIAL CALIBRATION DATA

Start Cal Date
End Cal Date
Quant Method
Target Version
Integrator
Method file
Last Edit 07-MAR-2011 12:03 07-MAR-2011 19:23 ISTD 4.14 HP RTE

\\cansvr11\dd\chem\MSS\a4ag2.i\10307A.b\8270C-625.m 07-Mar-2011 19:51 hulat

4.49035	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1.07454	1 5 1 1 1 1 1 1	18	1.04418	1.06242	1.10928	1.01934	1.02103	1.06853	139 bis(2-ethylhexyl)Phthalate
11.55055	; ; ; ; ; ; ;	0.24384	1 1 1 1 1 1	)5     AVRG	0.24005	0.23263	0.22233	0.21610	0.21627	0.25468	138 4,4'-Methylene bis(o-chloroan
6.63613	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1.00780	1 1 1 1 1 1 1	10	0.97610	0.94914	0.93842	0.99275	0.95018	1.02550	137 Chrysene
8.26917	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1.08485	P 1 1 1 1 1 1	97     AVRG	1.05297	1.02148	1.00407	0.99037	1.01618	1.20223	136 Benzo(a)Anthracene
9.49937	1 1 1 1 1 1 1 1 1	0.46841	)  1  1  1  1  1  1	12	0.45212	0.45450	0.43358	0.42742	0.42563 0.53343	+++++	135 3,3'-Dichlorobenzidine
0.99574	-0.03245	35 1.46813	0.11235	91   TWND	143548	728931	287178	110284	63864 3184977	+++++ 2161439	134 2-Acetylaminofluorene
11.02111 <-	1	0.29401	! ! ! ! !	1		0.27784	0.27629	0.27389	0.25261	0.28895	133 3,3'-Dimethoxybenzidine
19 15 16 11 11 10 11 11		11 11 11 11 11 11 11 11 11 14 14 14 14 1	II Id Id Id Id Id Id Id Id Id Id Id Id I	           				12.5000   Level 9	Le	7.5000 Level 7	
%RSD or R^2	m2	Coefficients ml		Curve	5.0000 Level 6	2.5000 Level 5	1.0000   Level 4	0.5000000   Level 3	0.2500000 Level 2	0.0500000 Level 1	Compound

INITIAL CALIBRATION DATA

Start Cal Date
End Cal Date
Quant Method
Target Version
Integrator
Method file
Last Edit

07-MAR-2011 12:03 07-MAR-2011 19:23 ISTD 4.14 HP RTE \\cansvr11\dd\chem\MSS\a4ag2.i\10307A.b\8270C-625.m 07-Mar-2011 19:51 hulat

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				
8,99156	1.11860	AVRG	1.10323   AV	1.06695	1.02593	1.01529	1.00163	1.19338	146 Benzo(a)pyrene
0.000e+000	0.000e+000	AVRG	+ + + + + + + + AV	! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !	+ + + + + + + + + + + + + + + + + + + +		+ + + + + + + + + + + + + + + + + + + +	+ + + + + + + + + + + + + + + + + + + +	145 Hexachlorophene product
0.00000	0.000e+000	AVRG	+++++ A(		+++++++++++++++++++++++++++++++++++++++	; + + ; + + ; + + ; + +	+ + + + + + + + + + + + + + + + + + + +	· + + + · · · + · · · · · · · · · · · ·	144 Hexachlorophene
11.98081 <-	0.49334	AVRG	0.53523 AV	0.48952	0.45643	0.45407	0.45909	+++++	143 7,12-dimethylbenz(a]anthracen
6.05223	1.25164	AVRG	1.28278     A1	1.17452	1.16111	1.20222	1.19381	1.37095	142 Benzo(k) fluoranthene
13.59812	1.21596	AVRG	1.10758  A	1.20785	1.09010	1.05112	1.12616	1.17751	141 Benzo(b) fluoranthene
10.39383	1.90198	81   ==== ==============================	1.98781 A	1.94101	1.75496	1.69938	1.59336	+++++ 2.11054	140 Di-n-octylphthalate
						12.5000 Level 9	10.0000 Level 8	7.5000 Level 7	
%RSD or R^2	Coefficients m1 m2	Curve b	5.0000   Level 6  C	2.5000   Level 5	1.0000 Level 4	0.5000000 Level 3	0.2500000 Level 2	0.0500000 Level 1	Compound

INITIAL CALIBRATION DATA

Start Cal Date
End Cal Date
Quant Method
Target Version
Integrator
Method file
Last Edit 07-MAR-2011 12:03 07-MAR-2011 19:23 ISTD 4.14 HP RTE \\cansvr11\dd\chem\MSS\a4ag2.i\10307A.b\8270C-625.m 07-Mar-2011 19:51 hulat

	0.0500000	0.2500000	0.5000000	1.0000	2.5000	5.0000	-	Сое	Coefficients	_	%RSD
Compound	Level 1	Level 2	Level 3	Level 4	Level 5	Level 6 (	Curve	σ	m1	m2	or R^2
	7.5000   Level 7	10.0000   Level 8	12.5000   Level 9								
148 3-Methylcholanthrene	U   U   U   U   U   U   U   U   U   U		0.48273	0.48968	0.51320	0.55866	66			1) 1) 1) 1) 1) 1) 1) 1)	
	0.64443	0.67062	0.66241	i i i i i i	1 1 1 2 2 3 5 5 5 7	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	AVRG	-	0.56573		14.30145
149 Indeno(1,2,3-cd)pyrene	1.08469	1.08155	1.09521	1.09990	1.20110	1.17274	AVRG		1.19450		10.06931
150 Dibenz(a,h)anthracene	0.93155	0.86051	0.87534	0.90769	0.97872	0.98418	AVRG		0.99522		12.03912
151 Benzo(g,h,i)perylene	1.00279	0.91082	0.89842	0.90269	0.94377	0.94480	AVRG		0.96064		9.19770
   199 3-Picoline	+ + + + + + + + + + + + + + + + + + + +	1.29650	1.30045	1.35956	1.40349	1.45484			1 46357		10 22358
	1.00/22		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	; ; ; ; ; ;	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	· · · · · · · · · · · · · · · · · · ·	-	1 1 1 1 1 1 1 1 1
200 N,N-Dimethylacetamide	1.52495	1.44863	1.40576 1.38037	1.35212	1.33302	1.35922	AVRG	<u> </u>	1.40058	1	4.77495
201 Quinoline	0.56940	0.46272	0.49990	0.50938	0.53765	0.54984	AVRG		0.53142	1 1 1 1 1 1 1	7.13458
			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1							

INITIAL CALIBRATION DATA

Start Cal Date
End Cal Date
Quant Method
Target Version
Integrator
Method file
Last Edit 07-MAR-2011 12:03 07-MAR-2011 19:23 ISTD 4.14 HP RTE

\\cansvr11\dd\chem\MSS\a4ag2.i\10307A.b\8270C-625.m 07-Mar-2011 19:51 hulat

209 Benzaldehyde	208 Dibenz(a,j)acridine	207 Indene	205 Benzenethiol	204 6-Methylchrysene	203 Diphenyl ether	202 Diphenyl		Compound
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ridine			ene	Ř			
0.82360	0.69735	1.64409	***** 846725	+++++ 0.63617	0.61554	1.18609	7.5000 Level 7	0.0500000   Level 1
1.10480	0.54906	1.83351	1090375	0.54262	0.58402	1.15373	10.0000   Level 8	0.2500000 Level 2
1.08083	0.57813	1.89234	90837	0.55956	0.58099	1.09922	12.5000   Level 9	0.5000000   Level 3
1.07482	0.59947	1.74912	148496	0.54499	0.58177	1.09810		1.0000 Level 4
1.01480	0.64742	1,74379	306057	0.59250	0.60857			2.5000   Level 5
0.84110	0.68353	1.56264	517829	0.61305	0.60145		61 10 10 10 10 11 11 11 11 11 11	5.0000 Level 6
AVRG	AVRG	AVRG	QUAD	AVRG	AVRG			Curve
 	) 	: : : : : : : :	-0.27094	 	1 1 1 1 1 1 1	 	11   1   1   1   1   1   1   1   1   1	D d
0.98999	0.65150	1.72572	1.84755	0.59934	0.60008	1.14735	II II II II II II II II II II II II II	Coefficients ml
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	; ; ; ; ;	-0.01994	; ; ; ; ; ;	; ; ; ; ;		11	m2
12.70472 <	10.63533	6.63140	0.99244	7.80933	2.64800	2.78811		%RSD or R^2

INITIAL CALIBRATION DATA

Start Cal Date
End Cal Date
Quant Method
Target Version
Integrator
Method file
Last Edit 07-MAR-2011 12:03 07-MAR-2011 19:23 ISTD 4.14 HP RTE

\\cansvr11\dd\chem\MSS\a4ag2.i\10307A.b\8270C-625.m 07-Mar-2011 19:51 hulat

										<u> </u>	
0.99968	-0.01946	2.49685	0.12268	6  dwn	886866	302188	135231	57892 2026236	1863046	1337570	216 1,3-Diethyl-2-Thiourea
0.000e+0000 <-		0.000e+000	! ! ! ! ! !	AVRG	1	+ + + + + + + + + + + + + + + + + + + +	+++++++++++++++++++++++++++++++++++++++	+ + + + + + + + + + + + + + + + + + + +	+ + + + + + + +	+ + + + + + + + + + + + + + + + + + + +	215 Phenyl ether
0.99963   <-	-0.06537	2.43097	0.12720	3   QUAD	964733	318843	117097[	63267	1980883	1389176	214 1,3-Dimethyl-2-Thiourea
4.48118	; ; ; ; ; ; ; ;	0.41345	1 1 1 1 1 1 1 1	AVRG	0.42404	0.41698	0.39101	0.40661	0.38346	0.42671	213 Benzothiazole
4.62540   <-	1	0.19613	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	7	0.18867	0.20540	0.19764	0.19886	0.17697	0.20055	212 Atrazine
5.95965	1	1.48947		AVRG	1.47892	1.47823	1.39994	1.39627	1.43926	1.47892	211 1,1'-Biphenyl
9.25300   <-	 	0.11920	! ! ! ! ! !	_ <del>_</del>		0.12236	0.10495	0.10446	+++++ [ 0.13161]	0.12228	210 Caprolactam
		61 11 11 11 11 12 13 14 14 11	II D II II U II II II	9 8 8 8	11 K K H H H H H H H H			12.5000   Level 9	10.0000   Level 8	7.5000 Level 7	
%RSD   or R^2	m2	Coefficients ml	رر م	Curve	5,0000 Level 6	2.5000   Level 5	1.0000 ·  Level 4	0.5000000   Level 3	0.2500000   Level 2	0.0500000   Level 1	Compound

INITIAL CALIBRATION DATA

: 07-MAR-2011 12:03 : 07-MAR-2011 19:23 : ISTD : 4.14 : HP RTE

Start Cal Date End Cal Date Quant Method Target Version Integrator Method file Last Edit \\cansvrll\dd\chem\MSS\a4ag2.i\10307A.b\8270C-625.m

••
07-M
ar-201
Р
19:51
hulat

			<u></u>	_							
4.28612	! ! ! ! !	0.26314	1 1 1 1 1	)1    AVRG	0.26991	0.26767	0.25753	0.26983	0.23848	+++++	223 1,2-bis(2-chloroethoxy)ethane
11.13368 <-		0.66922		36     AVRG	0.721	0.64170	0.60700	0.55428	0.61392	+++++ [	222 Dibenz(a,h)acridine
5.21527		0.05076	† 1 ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !	AVRG	0.04928	0.04747	1 + + + + + + + + + + + + + + + + + + +	0.05449	+++++ 0.05072	0.05183	221 Hexabromobenzene
0.98894	2.65630	689 8.54909	0.40689		34241	79868	36633	23100	1119619	717384	220 Diphenyl Thiourea
8.86039	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0.26648	; ; ; ; ; ; ;	30     AVRG	0.2843	0.27238	0.25017	0.25138	0.22097	0.28218	219 o-Benzyl Phenol
6.25274 <-	t t t t t t t t t t t t t t t t t t t	0.27210		75     AVRG	0.2837	0.27860	0.26125	0.25625	0.24141	0.28540	218 1,1,3,3-Tetramethyl-2-Thioure
0.000e+000		0.000e+000				1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	+ + + + + + + + + + + + + + + + + + + +	+ + + + + + + + + + + + + + + + + + + +	+ +   + +   + +   + +   + +	+ +     + +     + +     + +     	217 1,3-Dibutyl-2-Thiourea
## ## ## ## ## ## ## ## ## ## ## ## ##			11 11 10 11 11 10 11 10 11	11 11 12 13 14 14		11 14 16 10 10 11 11 11 11 11 11 10		12.5000   Level 9			
%RSD   or R^2	m2	Coefficients ml	ъ	- Curve	5.0000 Level 6	2.5000 Level 5	1.0000   Level 4	0.5000000   Level 3	0.2500000   Level 2	0.0500000   Level 1	Compound

INITIAL CALIBRATION DATA

Start Cal Date End Cal Date Quant Method Target Version Integrator Method file Last Edit

07-MAR-2011 12:03 07-MAR-2011 19:23 ISTD 4.14 HP RTE \\cansvr11\dd\chem\MSS\a4ag2.i\10307A.b\8270C-625.m 07-Mar-2011 19:51 hulat

Compound	0.0500000   Level 1	0.2500000   Level 2	0.5000000   Level 3	1.0000   Level 4	2.5000   Level 5	5.0000 Level 6	Curve	ס	Coefficients ml	m2	%RSD   or R^2
	7.5000	10.0000	12.5000	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1	1					
	Level 7	Level 8	Level 9	- <del></del>			_				- —
224 Acrylamida	_ II	B	0 79173	0 40404	0 44388	0 47760	B B B B B B B B B B B B B B B B B B B			1 1 1 1 1 1 1 1	11 13 14 14 14 14
	0.49672	0.49956	0.50483				AVRG		0.45923		10.18753   <-
225 Methyl parathion	+ + + + + + + + + + + + + + + + + + + +	+ ! ! + ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !	0.25705	0.27306	0.28762	0.28790					
	0.29813	0.30399	0.28355		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	 	AVRG		0.28447	: : : : : : :	5.50606 <-
226 Parathion	746047	22209  1026641	39148    39148	104322	260672	497901	QUAD	0.09467	4.72486	-0.15980	0.99869
227 Isodrin	0.16114	0,14682	0.14852	0.14234	0.14551	0.14341	AVRG	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0.14978	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	4.50331 <
4 229 Famphur,Total	+ + + + + + + +	+ + + + + + + +	+ + + + + + + + + +	+ + + + +	+ + + + +	+ + + +	AVRG		0.000e+000		0.000e+000 <-
230 Famphur 2	+ + + + + + + + + + + + + + + + + + + +	+ + + + + + + + + + + + + + + + + + +	+ + + + + + + + + + + + + + + + + + + +	+ + + + + + + + + + + + + + + + + + + +	+ + + + + + + + + + + + + + + + + + + +	+ + + + + + + + + + + + + + + + + + + +	AVRG	•	0.000e+000	<del></del>	0.000e+000 <-
231 2-Chloroacetophenone	+ + 1	+ + 1	+ + ! + + ! + + !	+ ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !	+ ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !	+ ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !	AVRG	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			0.000e+000i<-
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1	1				1 1 1 1 1 1 1	1	1	
and the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second s											

3

INITIAL CALIBRATION DATA

Start Cal Date
End Cal Date
Quant Method
Target Version
Integrator
Method file
Last Edit

07-MAR-2011 12:03 07-MAR-2011 19:23 ISTD 4.14 HP RTE \\cansvr11\dd\chem\MSS\a4ag2.i\10307A.b\8270C-625.m 07-Mar-2011 19:51 hulat

•	Mar-201
	0
	H
	19:
	(n
	5
	hulat

238 Bis(2-hydroxyphenyl)methane	237 3,4-Dichloronitrobenzene	236 Phenyl sulfone	235 Tributyl phosphate	234 4-Methylcyclohexanone	233 3-Methylcyclohexanone	232 2-Methylcyclohexanone		Compound
		30	2. +				7.5000 Level 7	0.0500000   Level 1
	0.18368	3006676	+++++	1.41395	1.60598	0.95012	- — — – 1	
+ + + + + + + + + + + + + + + + + + + +	0.18228	4159666	1.59923	1.25855	1.41552	0.84602	10.0000   Level 8	0.2500000   Level 2
	0.14908	195266 4530829	1.72628	1.27933	1.39129	0.80648	12.5000   Level 9	0.5000000   Level 3
+ + + + + + + + + + + + + + + + + + + +	0.16105	852266	1.73640	1.28465	1.40184	0.86296		1.0000   Level 4
+ + + + + + + + + + + + + + + + + + + +	0.17235	784907	1.73667	1.21750	1.36862	0.83759		2.5000   Level 5
	0.18016	2087755	1.84491	1.19234	1.35336	0.80718		5.0000 Level 6
AVRG	AVRG	QUAU	AVRG	AVRG	AVRG	. < :		Curve
		-0.23399	,		1 1 1 1 1 1	1		ъ
0.000e+000	0.17371	1.88720	1.83948	1.27780	1.43741	0.85820		Coefficients ml
		-0.00156		 		! ! ! !	 	m2 -
0.000e+0000 <-	8.03584	0.99026	11.35852 <-	5.24833 <-	5.83124 <-	5.53585		%RSD   or R^2

INITIAL CALIBRATION DATA

: 07-MAR-2011 12:03 : 07-MAR-2011 19:23 : ISTD : 4.14 : HP RTE

Start Cal Date
End Cal Date
Quant Method
Target Version
Integrator
Method file
Last Edit \\cansvr11\dd\chem\MSS\a4ag2.i\10307A.b\8270C-625.m 07-Mar-2011 19:51 hulat

+++++ +++++   AVRG
+++++
+++++ + +++++   AVRG
+++++ +++++     AVRG
+++++ + +++++     AVRG
+++++
+++++
2.5000   5.0000   Level 5   Level 6   Curve

^

^

٨

^

INITIAL CALIBRATION DATA

Start Cal Date
End Cal Date
Quant Method
Target Version
Integrator
Method file
Last Edit 07-MAR-2011 12:03 07-MAR-2011 19:23 ISTD 4.14 HP RTE \\cansvr11\dd\chem\MSS\a4ag2.i\10307A.b\8270C-625.m 07-Mar-2011 19:51 hulat

4.35851	 	1	1		500		0.42754	0.43848	0.43077	0.42037	\$ 154 Nitrobenzene-d5
[0.000e+000]	# # # # # # # # # # # # # # # # # # #	0.000e+000	AVRG	+++++     AVRG	+	11 14 11	+ + + + + + + + + + + + + + + + + + + +	 		+ + + + + + + + + + + + + + + + + + + +	251 N,N-Dimethylformamide
0.000e+000		0.000e+000	RG	+++++     AVRG	+ + + + + + + + + + + + + + + + + + + +	 			1	+ + +   + +   + +   + +   + +   + +   +   +   +   +   +	250 N-methyl-pyrrolidone
0.000e+000		0.000e+000	RG	+++++    AVRG	1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 +	1 1 1 1 1 1 1 1 1	1 + 1 + 1 + 1 + 1			1 + + + 1 + + + 1 + + + 1	249 Resorcinol
0.000e+000		0.000e+000	,	+++++    AVRG	+ + + + + + + + + + + + + + + + + + +	; ; ; ; ; ; ;	) 1 1 1 1 1 1 1 1 + 1 1 + 1 1 + 1 1 + 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		; + + ; + + ; + + ; + +	+ + + + + + + + + + + + + + + + + + + +	248 Hydroquinone
0.000e+000]		0.000e+000		+++++     AVRG	1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 +	t t t t t t t t t t t t t t t t t t t	; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;				247 4-methylcatechol
0.000e+000		0.000e+000		+++++     AVRG	<del></del>		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				3-methylcatechol
11 11 11 11 11 11 11 11 11 11 11 11 11	11 11 12 13 15 16 17 18	11			97 17 18 18 18 18 18 19 19		11 11 11 11 11 11 11 11	12.5000   Level 9	10.0000   Level 8	7.5000 Level 7	
%RSD     or R^2	m2	Coefficients ml	rve –	5.0000   Level 6  Curve	<u> </u>	2.5000   Level 5	1.0000 Level 4	0.5000000   Level 3	0.2500000   Level 2	0.0500000     Level 1	Compound

<u>^</u>

INITIAL CALIBRATION DATA

07-MAR-2011 12:03 07-MAR-2011 19:23

ISTD 4.14 HP RTE

Start Cal Date
End Cal Date
Quant Method
Target Version
Integrator
Method file
Last Edit \\cansvr11\dd\chem\MSS\a4ag2.i\10307A.b\8270C-625.m 07-Mar-2011 19:51 hulat

0.0500000   0.2500000   0.5000000   1.0000   2.5000	0.0500000   0.2500000   0.5000000   1.0000   2.5000   5.0000	0.0500000   0.2500000   0.5000000   1.0000   2.5000   5.0000	0.0500000   0.2500000   0.5000000   1.0000   2.5000   5.0000	0.0500000   0.2500000   0.5000000   1.0000   2.5000   5.0000
0.2500000   0.5000000   1.0000   2.50	0.2500000   0.5000000   1.0000   2.5000   5.0000	0.2500000   0.5000000   1.0000   2.5000   5.0000	0.2500000   0.5000000   1.0000   2.5000   5.0000	0.2500000   0.5000000   1.0000   2.5000   5.0000
00   0.5000000   1.0000   2.50	00   0.5000000   1.0000   2.5000   5.0000	00   0.5000000   1.0000   2.5000   5.0000	00   0.5000000   1.0000   2.5000   5.0000	00   0.5000000   1.0000   2.5000   5.0000
1.0000   2.50	1.0000   2.5000   5.0000	1.0000   2.5000   5.0000	1.0000   2.5000   5.0000	1.0000   2.5000   5.0000       Coefficients
2.5000	5.0000	5.0000	5.0000	5.0000   Coefficients
	, 8	, 8		OO Coefficients

A STOCK OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE	0 050000	0 350000	0 5000000 1	1.0000	2.5000	5.0000	-	Coefficients	010	%RSD
Compound	Level 1	Level 2	Level 3	Level 4	Level 5	. 6	Curve	b m1 n	m2   or	or R^2
	7.5000	10.0000	12.5000				<u></u> -		. <u></u> -	. —
	Level 7		Level 9		1				1 - 1	11 15 15 19 19 11 11 11 11
155 2-Fluorobiphenyl	1.25848	1.15773	1.15723	1.14865	1.19454	435		<u>-</u>	<del>-</del>	5.10495
\$ 156 Terphenyl-dl4	0.73938	0.63930	0.66822	0.66448	0.67414	0.68508	AVRG	0.69219		5.49115
\$ 157 Phenol-d5	1.62627	1.51717	1.58307	1.57807	1.57923	1.56778	AVRG	1.61165		4.58819
\$ 158 2-Fluorophenol	1 + 1 1 2 3 1 + 1 1 9 8	1.16208	1.32786	1.19065	1.19363	1.20726	AVRG	1.23239		5.40808
\$ 159 2,4,6-Tribromophenol	+++++	0.09829	0.08976	0.09487	0.10234	0.10817	AVRG	0.10764	<u>:</u> 	13.00220   <-
\$ 186 2-Chlorophenol-d4	1.24346	1.21509	1.20056	1.19153	1.21581	1.21375	AVRG	1.24129	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	4.34077   <-
\$ 187 1,2-Dichlorobenzene-d4	0.84368	0.87597	0.89980	0.86510	0.86239	0.86021	AVRG	0.87576	 	2.49325 <-
	0.73938	0.63930 0.74261 1.51717 1.73479 1.16208 1.34314 0.09829 0.12507 1.21509 1.33034 1.33034 0.87597 0.90552	0.66822 0.73789 1.58307 1.70679 1.20250 1.32786 0.12821 1.20056 1.31976 0.89338	0.66448 1.57807 1.19065 1.19065 0.09487 0.86510	0.67414	508 7778 7726  375	AVRG AVRG AVRG AVRG AVRG AVRG AVRG AVRG	0.69219 1.61165 1.23239 1.23239 0.10764 0.10764		

INITIAL CALIBRATION DATA

Start Cal Date
End Cal Date
Quant Method
Target Version
Integrator
Method file
Last Edit

07-MAR-2011 12:03 07-MAR-2011 19:23 ISTD 4.14 HP RTE \\cansvr11\dd\chem\MSS\a4ag2.i\10307A.b\8270C-625.m 07-Mar-2011 19:51 hulat

Quad	Averaged		Curve
$Amt = b + m1*Rsp + m2*Rsp^2$	Amt = Rsp/m1		Formula
Response	Response		Units
	$  Amt = b + m1*Rsp + m2*Rsp^2 $	Amt = Rsp/m1   Amt = b + m1*Rsp + m2*Rsp^2	Amt = Rsp/m1

Data File: \\cansvr11\dd\chem\MSS\a4ag2.i\10307A.b\ICVTCL.D

Report Date: 08-Mar-2011 06:45

Page 1

### TestAmerica North Canton

### CONTINUING CALIBRATION COMPOUNDS

Instrument ID: a4ag2.i

Injection Date: 07-MAR-2011 14:36

Lab File ID: ICVTCL.D

Init. Cal. Date(s): 07-MAR-2011 07-MAR-2011

Analysis Type:

Init. Cal. Times: 12:03

19:23

Lab Sample ID: ICVTCL Quant Type: ISTD

Method: \\cansvr11\\dd\\chem\\MSS\a4ag2.i\\10307A.b\\8270C-625.m

I COMPOUND		1	CCAL   MIN		MAX	I
====================================	!RRF / AMOUNT!	RF5	RRF5   RRF	%D / %DRIFT	%D / %DRIFT	CURVE TYPE
198 1,4-Dioxane	0.62029	0.600931	0.60093 0.010			
19 Pyridine	1 1.71159	1.72651				
10 N-Nitrosodimethylamine	1.022661	1.02215	1.7265110.010			
12 3-Chloropropionitrile	1 0.882651	0.891491	1.02215 0.010			
209 Benzaldehyde	1 0.989991	0.94892	0.89149 0.010		*	
21 Aniline	1 2.482051	2.462941	0.94892 0.010			
22 Phenol	1 1.66650]	1.667051	2.46294 0.010			
23 bis(2-Chloroethyl)ether	1 1.399871	1.38529	1.66705 0.010			
24 2-Chlorophenol	1 1.363181		1.3852910.0101			Averaged
26 1,3-Dichlorobenzene	1 1.457721	1.357831	1.35783 0.010		50.00000	Averaged
27 1,4-Dichlorobenzene		1.46422	1.46422 0.010		50.000001	Averaged
28 1,2-Dichlorobenzene	,	1.44258	1.44258 0.010		20.000001	Averaged
29 Benzyl Alcohol		1.406861	1.4068610.0101	-1.099061	50.000001	Averaged
30 2-Methylphenol		0.884091	0.88409 0.010	-1.43962	50.000001	Averaged
31 bis(2-Chloroisopropyl)ether	1.23048	1.21869	1.21869 0.010	0.95875	50.000001	Averaged!
37 Acetophenone	1 1.97503	2.02683	2.0268310.0101	-2.62239	50.000001	Averaged
32 N-Nitroso-di-n-propylamine	1.95481	1.94044	1.94044 0.010	0.734791	50.000001	Averaged
192 4-Methylphenol	1.22593	1.25439	1.25439 0.050	-2.32173	50.000001	Averaged
34 Hexachloroethane	1 1.30996	1.31308	1.31308 0.010	-0.23843	50.000001	Averaged
	0.58431	0.58440	0.58440 0.010	-0.015221	50.000001	Averaged
35 Nitrobenzene	0.400281	0.40597	0.40597 0.010	-1.42087	50.000001	Averaged
41 Isophorone	0.738921	0.75794	0.75794 0.010	-2.573691	50.000001	Averaged
42 2-Nitrophenol	0.175381	0.18005	0.18005 0.010	-2.66828	20.000001	Averaged
43 2,4-Dimethylphenol	0.355031	0.36551	0.36551 0.010	-2.950481	50.000001	Averaged
44 bis(2-Chloroethoxy)methane	1 0.39587	0.404131	0.40413 0.010	-2.08817	50.000001	Averaged!
46 2,4-Toluenediamene	1 0.229881	0.23616	0.23616 0.010	-2.73077	50.000001	Averaged
47 1,3,5-Trichlorobenzene	0.27147	0.27140	0.27140 0.010	0.02442	50.000001	Averaged
48 2,4-Dichlorophenol	0.241451	0.24822	0.24822 0.010	-2.802321	20.000001	Averaged
19 Benzoic Acid	10.000001	9.60911	0.24493 0.010		0.000e+0001	
00 1,2,4-Trichlorobenzene	0.26915	0.26931	0.26931[0.010]	-0.05777	50.000001	Averaged
1 Naphthalene	1.06810;	1.08408	1.08408 0.010	-1.495891	50.000001	Averaged
2 4-Chloroaniline	0.49106	0.486861	0.48686 0.010	0.855581	50.000001	Averaged
6 Hexachlorobutadiene	! 0.13028	0.13041;	0.13041 0.010	-0.097041	20.000001	Averaged
10 Caprolactam	0.11920	0.11994	0.11994 0.010	-0.61427	50.000001	
7 1,2,3-Trichlorobenzene	0.25119	0.25081	0.25081 0.010	0.152231		Averaged
9 4-Chloro-3-Methylphenol	1 0.308931	0.31073	0.31073 0.010	-0.581061	50.000001	Averaged
2 2-Methylnaphthalene	l 0.58704	0.58598	0.58598 0.010		20.000001	Averaged
3 1-Methylnaphthalene	0.67554	0.66418	0.66418 0.010	0.18011	50.000001	Averaged
4 Hexachlorocyclopentadiene	5.000001	4.878191		1.68154	50.000001	Averaged
6 2,4,6-Trichlorophenol	1 0.283931	0.281631	0.27785 0.050		0.000e+0001	
7 2,4,5-Trichlorophenol	0.30173	0.28604	0.28163 0.010	0.81212	20.000001	Averaged
ll 1,1'-Biphenyl	1 1.48947	1.45818	0.28604 0.010	5.19924	50.000001	Averaged
8 1,2,3,5-Tetrachlorobenzene	0.40162		1.45818 0.010	2.10043	50.000001	Averaged!
	. 0.301051	0.39572	0.39572 0.010	1.469261	50.000001	Averaged

Report Date: 08-Mar-2011 06:45

Page 2

### TestAmerica North Canton

### CONTINUING CALIBRATION COMPOUNDS

Instrument ID: a4ag2.i Injection Date: 07-MAR-2011 14:36

Init. Cal. Date(s): 07-MAR-2011 07-MAR-2011 Lab File ID: ICVTCL.D

Analysis Type: Init. Cal. Times: 12:03 19:23

Lab Sample ID: ICVTCL Quant Type: ISTD Method: \\cansvr11\\dd\\chem\\MSS\a4ag2.i\\10307A.b\\8270C-625.m

F .	1	1	1	CCAL	MIN	1	I MAX	I
COMPOUND		/ AMOUNT	RF5				%D / %DRIFT	
		1.06133	1.049341	1.04934				
173 2-Nitroaniline	1	0.45574	0.46210	0.46210	0.010	1 ~1.39495	1 50:00000	Averaged
74 1,2,3,4-Tetrachlorobenzene	1	0.373571	0.363831	0.36383	0.010	2.60806	50.00000	-
76 Dimethylphthalate	1	1.29569	1.26880	1.26880	0.010	2.07586	50.00000	-
78 2,6-Dinitrotoluene	1	0.28070	0.28730	0.28730	0.010	-2.35140	50.00000	Averaged
79 Acenaphthylene .	1	1.86047	1.862491	1.86249	0.010	-0.10893	50.00000	=
80 1,2-Dinitrobenzene	1	0.13797	0.14466	0.14466	0.010	-4.84703	50.00000	
81 3-Nitroaniline	1	0.37667	0.37091	0.37091	0.010	1.52725	50.00000	_
82 Acenaphthene	1	1.15965	1.140261	1.14026	0.010	1.67198	20.00000	_
83 2,4-Dinitrophenol	1	10.000001	9.564541	0.21076	0.050	4.35463	0.000e+000	=
85 4-Nitrophenol	1	5.000001	4.77374	0.19121	0.050	4.52512	0.000e+000	
86 Dibenzofuran	1	1.54774	1.53767	1.53767	0.010	0.65079	50.00000	Averaged
87 2,4-Dinitrotoluene	1	0.38188	0.394301	0.39430			50.00000	
91 2,3,5,6-Tetrachlorophenol	1	0.21835	0.21574	0.21574				-
93 Diethylphthalate	i	1.40182	1.39781	1.39781				-
94 Fluorene	1	1.31906	1.30137	1.30137			1 50.00000	
95 4-Chlorophenyl-phenylether	i	0.510291	0.513751	0.51375				-
96 4-Nitroaniline	1	0.405031	0.406261	0.40626				
98 4,6-Dinitro-2-methylphenol	1	5.000001	4.800971	0.12297			0.000e+000	
99 N-Nitrosodiphenylamine	ī	0.67379	0.66855	0.66855				
100 1,2-Diphenylhydrazine	i	0.993261	1.00240	1.00240				_
106 4-Bromophenyl-phenylether	i	0.16415	0.16738	0.16738				
107 Hexachlorobenzene	i	0.16705	0.15910	0.15910				
212 Atrazine	i	0.196131	0.19783	0.19783				
111 Pentachlorophenol	1 1	0.000001	10.04870	0.12568				Quadratic
115 Phenanthrene	i	1.173591	1.16364	1.16364				
116 Anthracene	i	1.156041	1.16793	1.16793				-
119 Carbazole	i	1.14550	1.13290	1.13290				
120 Di-n-Butylphthalate	Ī	1.436151	1.51853	1.51853				
123 Fluoranthene	i	1.097741	1.086641	1.08664				
124 Benzidine	1	0.906361	0.91081	0.91081				•
125 Pyrene	,	1.28716	1.28261	1.28261				-
131 Butylbenzylphthalate	1	0.757731	0.74975	0.749751				
133 3,3'-Dimethoxybenzidine	i	0.29401	0.263891	0.263891				
135 3,3'-Dichlorobenzidine	. '	0.46841	0.457791	0.45779				-
136 Benzo (a) Anthracene	i	1.08485	1.053531	1.05353				
137 Chrysene	i	1.00780	0.973521	0.97352				-
138 4,4'-Methylene bis(o-chloro	i	0.24384	0.243651	0.973521				-
139 bis(2-ethylhexyl)Phthalate	i	1.07454	1.052851	1.05285				
140 Di-n-octylphthalate	i	1.90198	1.99112	1.03263			•	-
141 Benzo(b) fluoranthene	1	1.21596	1.175551	1.17555				
							•	
142 Benzo(k)fluoranthene	I	1.25164	1.24772	1.24772	0.010	0.31324	50.00000	l Averaged

Data File: \\cansvr11\dd\chem\MSS\a4ag2.i\10307A.b\ICVTCL.D

Report Date: 08-Mar-2011 06:45

Page 3

### TestAmerica North Canton

### CONTINUING CALIBRATION COMPOUNDS

Instrument ID: a4ag2.i Injection Date: 07-MAR-2011 14:36

Init. Cal. Date(s): 07-MAR-2011 07-MAR-2011
Init. Cal. Times: 12:03 19:23
Quant Type: ISTD Lab File ID: ICVTCL.D Analysis Type:

Lab Sample ID: ICVTCL

Method: \\cansvr11\dd\chem\MSS\a4ag2.i\10307A.b\8270C-625.m

1			1	CCAL   MIN	1	MAX I	
COMPOUND	RRF	/ AMOUNT!	RF5	RRF5   RRF	%D / %DRIFT %	D / %DRIFT(	CURVE TYPE
					: ======= =	[-	
146 Benzo(a)pyrene	1	1.11860	1.10354	1.10354 0.010	1.34661	20.000001	Averaged
149 Indeno(1,2,3-cd)pyrene	1	1.19450	1.22458	1.22458 0.010	-2.51826	50.000001	Averaged
150 Dibenz(a,h)anthracene	1	0.995221	1.01799	1.01799 0.010	-2.28720	50.00000	Averaged
151 Benzo(g,h,i)perylene	1	0.96064	0.96634	0.96634 0.010	0  -0.59411	50.000001	Averaged
\$ 154 Nitrobenzene-d5	1	0.43811	0.44567	0.44567 0.010	-1.72671	50.00000	Averaged
\$ 155 2-Fluorobiphenyl	1	1.21681	1.20417	1.20417 0.010	1.038591	50.000001	Averaged
\$ 156 Terphenyl-d14	1	0.69219	0.70238	0.70238 0.010	-1.47256	50.00000	Averaged
\$ 157 Phenol-d5	1	1.61165	1.60230	1.60230 0.010	0.580101	50.00000	Averaged
\$ 158 2-Fluorophenol	1	1.23239	1.22301	1.22301 0.010	0.761261	50.000001	Averaged
\$ 159 2,4,6-Tribromophenol	1	0.10764	0.106681	0.10668 0.010	0.893321	50.000001	Averaged
\$ 186 2-Chlorophenol-d4	. 1	1.24129	1.21077	1.21077 0.010	2.458181	50.000001	Averaged
\$ 187 1,2-Dichlorobenzene-d4	1	0.87576	0.86977	0.86977]0.010	0.68368	50.00000	Averaged
[M 195 Cresols, total	1	2.54044	2.53177	2.53177 0.010	0.34143	50.000001	Averaged
101 Diphenylamine	1	0.67379	0.66855	0.6685510.010	0.77742	50.000001	Averaged
l	111	I		I	11_	1	

### 5B

### SEMIVOLATILE ORGANIC INSTRUMENT PERFORMANCE CHECK DECAFLUOROTRIPHENYLPHOSPHINE (DFTPP)

Lab Name: NORTH CANTON

Contract:

Lab Code: TACAN Case No.:

SAS No.:

SDG No.: A1C040534

Lab File ID: 2DF0309

DFTPP Injection Date: 03/09/11

Instrument ID: A4AG2

DFTPP Injection Time: 0841

m/e	ION ABUNDANCE CRITERIA	% RELATIVE ABUNDANCE
51 68 69 70 127 197 198 199 275 365 441 442 443	30.0 - 80.0% of mass 198 Less than 2.0% of mass 69 Mass 69 relative abundance Less than 2.0% of mass 69 25.0 - 75.0% of mass 198 Less than 1.0% of mass 198 Base Peak, 100% relative abundance 5.0 to 9.0% of mass 198 10.0 - 30.0% of mass 198 Greater than 0.75% of mass 198 Present, but less than mass 443 40.0 - 110.0% of mass 198 15.0 - 24.0% of mass 442	51.3 0.8 ( 1.6)1 48.3 0.2 ( 0.5)1 58.9 0.0 100.0 6.2 23.8 4.34 9.5 57.3 11.4 ( 19.9)2
	1-Value is % mass 69 2-Value is % mass	442

THIS CHECK APPLIES TO THE FOLLOWING SAMPLES, MS, MSD, BLANKS, AND STANDARDS:

	EDA	Т ЖТЭ :	TAD	TO A COURT	m Time
	EPA	LAB	LAB	DATE	TIME
	SAMPLE NO.	SAMPLE ID	FILE ID	ANALYZED	ANALYZED
	=========	=========	=======================================	=========	=======
01	SSTD006	L6	2SMH0309	03/09/11	0932
02	ME8KHCHK	ME8KH1AC	ME8KH1AC	03/09/11	1023
03	ME8KHCKDUP	ME8KH1AD	ME8KH1AD	03/09/11 03/09/11	1040
04	ME8KHBLK	ME8KH1AA	ME8KH1AA	03/09/11	1256
05		I'MOIGILAA	rimordita.	03/03/11	1230
06	ļ <del>-                                   </del>				
07					
80					
09					
10					
11					
12					
13					
14	v				
15					
16	<u> </u>		· · · · · · · · · · · · · · · · · · ·		
17			·		
18					
19					
20					
21					
22					

page 1 of 1

FORM V SV

OLM03.0

Data File: \\cansvr11\dd\chem\MSS\a4ag2.i\10309A.b\2SMH0309.D

Report Date: 09-Mar-2011 10:52

### TestAmerica North Canton

Page 1

### CONTINUING CALIBRATION COMPOUNDS

Instrument ID: a4ag2.i Injection Date: 09-MAR-2011 09:32

Lab File ID: 2SMH0309.D Init. Cal. Date(s): 07-MAR-2011 07-MAR-2011 19:23

Analysis Type: Init. Cal. Times: 12:03

Quant Type: ISTD Lab Sample ID: L6

Method: \\cansvr11\\dd\chem\MSS\a4aq2.i\10309A.b\8270C-625.m

	I		CCAL	MIN		XAM	
COMPOUND	RRF / AMOUNT	RF5	RRF5			%D / %DRIFT 	
198 1,4-Dioxane	0.62029	0.55938	0.55938				
9 Pyridine	1.71159	1.63398	1.63398	0.010	4.53437	50.00000	Average
10 N-Nitrosodimethylamine	1.02266	1.00832	1.00832	0.010	1.40227	50.00000	Average
12 3-Chloropropionitrile	0.88265	0.89733	0.89733	0.010	-1.66256	50.00000	Average
209 Benzaldehyde	0.98999	0.80653	0.80653	0.010	18.53208	50.00000	Average
21 Aniline	2.48205	2.59356	2.59356	0.010	-4.49254	50.00000	Average
22 Phenol	1.66650	1.71429	1.71429	0.010	-2.86787	20.00000	Average
23 bis(2-Chloroethyl)ether	1.39987	1.42720	1.42720	0.010	-1.95245	50.00000	Average
24 2-Chlorophenol	1.36318	1.40022	1.40022	0.010	-2.71770	50.00000	Average
26 1,3-Dichlorobenzene	1.45772	1.51069	1.51069	0.010	-3.63402	50.00000	Average
27 1,4-Dichlorobenzene	1.43491	1.48316	1.48316	0.010	-3.36242	20.00000	Average
28 1,2-Dichlorobenzene	1.39157	1.44650	1.44650	0.010	-3.94759	50.00000	Average
29 Benzyl Alcohol	0.87154	0.84345	0.84345	0.010	3.22390	50.00000	Average
30 2-Methylphenol	1.23048	1.23894	1.23894	0.010	-0.68746	50.00000	Average
31 bis(2-Chloroisopropyl)ether	1.97503	2.08386	2.08386	0.010	-5.51009	50.00000	Average
37 Acetophenone	1.95481	2.01385	2.01385	0.010	-3.02039	50.00000	Average
32 N-Nitroso-di-n-propylamine	1.22593	1.28482	1.28482	0.050	-4.80359	50.00000	Average
192 4-Methylphenol	1.30996	1.34556	1.34556	0.010	-2.71768	50.00000	Average
34 Hexachloroethane	0.58431	0.60769	0.60769	0.010	-4.00181	50.00000	Average
35 Nitrobenzene	0.40028	0.42180	0.42180	0.010	-5.37672	50.00000	Average
41 Isophorone	0.73892	0.79203	0.79203	0.010	-7.18737	50.00000	Average
42 2-Nitrophenol	0.17538	0.19044	0.19044	0.010	-8.59146	20.00000	Average
43 2,4-Dimethylphenol	0.35503	0.38906	0.38906	0.010	-9.58497	50.00000	Average
44 bis(2-Chloroethoxy)methane	0.39587	0.42349	0.42349	0.010	-6.97747	50.00000	Average
46 2,4-Toluenediamene	0.22988	0.18753	0.18753	0.010	18.42042	50.00000	Average
47 1,3,5-Trichlorobenzene	0.27147	0.28975	0.28975	0.010	-6.73530	50.00000	Average
48 2,4-Dichlorophenol	0.24145	0.26080	0.26080	0.010	-8.01571	20.00000	Average
49 Benzoic Acid	10.000001	7.88480	0.19422	0.010	21.15205	0.000e+000	Quadrati
50 1,2,4-Trichlorobenzene	0.26915	0.28744	0.28744	0.010	-6.79537	50.00000	Average
51 Naphthalene	1.06810	1.13482	1.13482	0.010	-6.24662	50.00000	Average
52 4-Chloroaniline	0.49106	0.52341	0.52341	0.010	-6.58812	50.00000	Average
56 Hexachlorobutadiene	0.13028	0.14018	0.14018	0.010	-7.59917	20.00000	Average
210 Caprolactam	0.11920	0.13098	0.13098	0.010	-9.88103	50.00000	Average
57 1,2,3-Trichlorobenzene	0.25119	0.26744	0.26744	0.010	-6.46858	50.00000	Average
59 4-Chloro-3-Methylphenol	0.30893	0.33011	0.33011	0.010	-6.85602	20.00000	Average
62 2-Methylnaphthalene	0.58704	0.62626	0.62626	0.010	-6.68078	50.00000	Average
63 1-Methylnaphthalene	0.67554			0.010	-6.89421	.  50.00000	Average
64 Hexachlorocyclopentadiene	5.00000	4.87345	0.27755	0.050	2.53092	0.000e+000	Quadrat:
66 2,4,6-Trichlorophenol	0.28393			0.010	-1.93220	20.00000	Averag
67 2,4,5-Trichlorophenol	0.30173		•	•		50.00000	Averag
211 1,1'-Biphenyl	1.48947			0.010	-4.27221	50.00000	Averag
68 1,2,3,5-Tetrachlorobenzene	0.40162	•	•	•	1	50.00000	Average
	1		,	i	İ	1	1
		l	·				

Data File: \\cansvr11\dd\chem\MSS\a4ag2.i\10309A.b\2SMH0309.D Report Date: 09-Mar-2011 10:52 Page 2

### TestAmerica North Canton

### CONTINUING CALIBRATION COMPOUNDS

Instrument ID: a4ag2.i

Injection Date: 09-MAR-2011 09:32
Init. Cal. Date(s): 07-MAR-2011 (Init. Cal. Times: 12:03 (Quant Type: ISTD Lab File ID: 2SMH0309.D 07-MAR-2011

Analysis Type: 19:23

Lab Sample ID: L6

Method: \\cansvrl1\\dd\\chem\\MSS\\a4ag2.i\\10309A.b\\8270C-625.m

	l	1	CCAL MIN	1	MAX	ļ
COMPOUND	RRF / AMOUNT	•	•	%D / %DRIFT	•	
70 2 Chloropophtheless			=======================================			
<ul><li>70 2-Chloronaphthalene</li><li>73 2-Nitroaniline</li></ul>	1.06133			•	•	
	0.45574	•	•	•	•	
74 1,2,3,4-Tetrachlorobenzene	0.37357	•		•	•	Average
76 Dimethylphthalate	1.29569			•	50.00000	Average
78 2,6-Dinitrotoluene	0.28070		•		50.00000	Average
79 Acenaphthylene	1.86047		•		50.00000	Average
80 1,2-Dinitrobenzene	0.13797			•	50.00000	Average
81 3-Nitroaniline	0.37667		0.39746   0.010	-5.52062	50.00000	Average
82 Acenaphthene	1.15965	1.19951	1.19951 0.01	-3.43753	20.00000	Average
83 2,4-Dinitrophenol	10.00000	9.80879	0.21692 0.050	1.91212	0.000e+000	Quadratio
85 4-Nitrophenol	5.00000	5.13611	0.20756 0.050	-2.72214	0.000e+000	Quadratio
86 Dibenzofuran	1.54774	1.63696	1.63696   0.010	-5.76424	50.00000	Averaged
87 2,4-Dinitrotoluene	0.38188	0.42426	0.42426   0.010	-11.09809	50.00000	Averaged
91 2,3,5,6-Tetrachlorophenol	0.21835	0.20903	0.20903   0.010	4.26739	50.00000	Averaged
93 Diethylphthalate	1.40182	1.50799	1.50799 0.010	-7.57303	50.00000	Averaged
94 Fluorene	1.31906	1.41557	1.41557   0.010	-7.31605	50.00000	Average
95 4-Chlorophenyl-phenylether	0.51029	0.54734	0.54734 0.010	-7.26049	50.00000	Average
96 4-Nitroaniline	0.40503	0.43230	0.43230   0.010	-6.73125	50.00000	Average
98 4,6-Dinitro-2-methylphenol	5.00000	5.04729	0.13015   0.010	-0.94578	0.000e+000	Quadratio
99 N-Nitrosodiphenylamine	0.67379	0.70974	0.70974   0.010	-5.33485	20.00000	Averaged
100 1,2-Diphenylhydrazine	0.99326	1.05246	1.05246 0.010	-5.96063	50.00000	Averaged
106 4-Bromophenyl-phenylether	0.16415	0.18130	0.18130 0.010	-10.44572	50.00000	Averaged
107 Hexachlorobenzene	0.16705	0.17978	0.17978   0.010	-7.61920	50.00000	Average
212 Atrazine	0.19613	0.20306	0.20306 0.010	-3.53320	50.00000	Averaged
111 Pentachlorophenol	10.00000	8.31217	0.10107   0.010	16.87830	0.000e+000	-
115 Phenanthrene	1.17359	1.26601	1.26601 0.010	•		
116 Anthracene	1.15604	1.26390	1.26390 0.010	-9.33079	•	
119 Carbazole	1.14550	1.23547	1.23547 0.010	-7.85423		Averaged
120 Di-n-Butylphthalate	1.43615	1.61013	1.61013 0.010			-
123 Fluoranthene	1.09774	1.16303	1.16303 0.010		•	~
124 Benzidine	0.90636		0.89613   0.010			•
125 Pyrene	1.28716	•	1.29881 0.010	•	•	Averaged
131 Butylbenzylphthalate	0.75773		0.75555 0.010			Averaged
133 3,3'-Dimethoxybenzidine	0.29401	0.30628	0.30628 0.010		•	_
135 3,3'-Dichlorobenzidine	0.46841	0.48432	0.48432 0.010			-
136 Benzo(a)Anthracene	1.08485		1.10352 0.010			Averaged
137 Chrysene	1.00780		1.03970 0.010	•		Averaged
138 4,4'-Methylene bis(o-chloro	0.24384	0.25171	0.25171   0.010	•		Averaged
139 bis(2-ethylhexyl)Phthalate	1.07454		1.10920 0.010	•		Averaged
140 Di-n-octylphthalate	1.90198	2.12925	2.12925 0.010			-
141 Benzo(b) fluoranthene	1.21596	1.27434	1.27434   0.010		,	Averaged
142 Benzo(k) fluoranthene	1.25164	1.27916	•			Averaged
Julia (N) Liverantinono	1 1.20104	1.2/316	1.27916 0.010	-2.19808	50.00000	Averaged
	_			I		

Data File: \\cansvr11\dd\chem\MSS\a4ag2.i\10309A.b\2SMH0309.D Page 3 Report Date: 09-Mar-2011 10:52

### TestAmerica North Canton

### CONTINUING CALIBRATION COMPOUNDS

Instrument ID: a4ag2.i Injection Date: 09-MAR-2011 09:32

Lab File ID: 2SMH0309.D Init. Cal. Date(s): 07-MAR-2011 07-MAR-2011 Init. Cal. Times: 12:03 19:23 Quant Type: ISTD

Analysis Type: Lab Sample ID: L6

Method: \\cansvrl1\dd\chem\MSS\a4ag2.i\10309A.b\8270C-625.m

COMPONE	.	İ	CCAL	MIN	1	MAX	İ
COMPOUND	RRF / AMOUNT	RF5	RRF5	RRF	%D / %DRIFT	%D / %DRIFT	CURVE TYP
=======================================		==============		====	========	=========	=======
146 Benzo(a)pyrene	1.11860	1.18563	1.18563	0.010	-5.99227	20.00000	Average
149 Indeno(1,2,3-cd)pyrene	1.19450	1.29278	1.29278	0.010	-8.22835	50.00000	
150 Dibenz(a,h)anthracene	0.99522	1.07849	1.07849	0.010	•		,
151 Benzo(g,h,i)perylene	0.96064	1.03584	1.03584	•			
\$ 154 Nitrobenzene-d5	0.43811	0.41929	0.41929	0.010		,	
155 2-Fluorobiphenyl	1.21681	1.27820	1.27820				5-
\$ 156 Terphenyl-d14	0.69219	0.72201	0.72201				
157 Phenol-d5	1.61165	1.66428	1.66428				Average
5 158 2-Fluorophenol	1.23239	1.22737	1.22737				
159 2,4,6-Tribromophenol	0.10764	0.10962	0.10962				Average
186 2-Chlorophenol-d4	1.24129	1.26887	1.26887			1	Average
187 1,2-Dichlorobenzene-d4	0.87576	0.91733	0.91733				Average
1 195 Cresols, total	2.54044	2.58450	2.58450				Average
.01 Diphenylamine	0.67379	0.70974	0.70974	•			Average
-	1 0.073731	. 0.703/4	0.70974	0.010	-5.33485	50.00000	Average

### 5B

### SEMIVOLATILE ORGANIC INSTRUMENT PERFORMANCE CHECK DECAFLUOROTRIPHENYLPHOSPHINE (DFTPP)

Lab Name: NORTH CANTON

Contract:

Lab Code: TACAN Case No.:

SAS No.:

SDG No.: A1C040534

Lab File ID: 2DF0310

DFTPP Injection Date: 03/10/11

Instrument ID: A4AG2

DFTPP Injection Time: 0901

m/e	ION ABUNDANCE CRITERIA	% RELATIVE ABUNDANCE
51 68 69	30.0 - 80.0% of mass 198  Less than 2.0% of mass 69  Mass 69 relative abundance	47.5 0.1 ( 0.1)1 45.4
70 127	Less than 2.0% of mass 69 25.0 - 75.0% of mass 198	0.4 ( 0.8)1
197 198 199	Less than 1.0% of mass 198  Base Peak, 100% relative abundance  5.0 to 9.0% of mass 198	100.0
275 365	10.0 - 30.0% of mass 198 Greater than 0.75% of mass 198	24.1
441 442	Present, but less than mass 443	9.1
443	15.0 - 24.0% of mass 442	11.9 ( 19.2)2

THIS CHECK APPLIES TO THE FOLLOWING SAMPLES, MS, MSD, BLANKS, AND STANDARDS:

	EPA SAMPLE NO.	LAB SAMPLE ID	LAB FILE ID	DATE ANALYZED	TIME ANALYZED
		SAMPLE ID ====================================			
16 17 18					
20 21 22					

page 1 of 1

FORM V SV

OLMO3.0

Data File: \\cansvr11\dd\chem\MSS\a4aq2.i\\10310A.b\\2SMH0310.D

Report Date: 10-Mar-2011 10:58

### TestAmerica North Canton

Page 1

### CONTINUING CALIBRATION COMPOUNDS

Injection Date: 10-MAR-2011 09:35 Instrument ID: a4aq2.i

Init. Cal. Date(s): 07-MAR-2011 07-MAR-2011 Lab File ID: 2SMH0310.D 19:23

Analysis Type: Init. Cal. Times: 12:03

Lab Sample ID: L6 Quant Type: ISTD Method: \\cansvr11\dd\chem\MSS\a4ag2.i\10310A.b\8270C-625.m

	i		CCAL	MIN		XAM	
COMPOUND	RRF / AMOUNT	RF5	RRF5			%D / %DRIFT	
.98 1,4-Dioxane	0.62029	0.58185	   0.58185		6.19699		
Pyridine	1.71159	1.67718	1.67718				_
LO N-Nitrosodimethylamine	1.02266	1.09033	1.09033				
12 3-Chloropropionitrile	0.88265	1.00238	1.00238		•		-
209 Benzaldehyde	0.88283	0.88650	0.88650				
21 Aniline	2.48205	2.72499	2.72499				-
22 Phenol	1.66650	1.91906	1.91906				
23 bis(2-Chloroethyl)ether	1.39987	1.70964	1.70964		•	•	_
•	1	1.51135	1.51135			•	
24 2-Chlorophenol	1.36318		1.60167			•	
26 1,3-Dichlorobenzene	[ 1.45772]	1.60167	1.60553			1	
27 1,4-Dichlorobenzene	1.43491	1.60553				•	
28 1,2-Dichlorobenzene	1.39157	1.56582	1.56582			•	
29 Benzyl Alcohol	0.87154	0.93233	0.93233		•	:	•
30 2-Methylphenol	1.23048	1.42687	1.42687			•	
31 bis(2-Chloroisopropyl)ether	1.97503	2.43724	2.43724			•	
37 Acetophenone	1.95481	2.27636	2.27636	•		:	:
32 N-Nitroso-di-n-propylamine	1.22593	1.46849	1.46849	•	-		
192 4-Methylphenol	1.30996	1.48156	1.48156	•		-	•
34 Hexachloroethane	0.58431	0.64340	0.64340	•		•	
35 Nitrobenzene	0.40028	0.43910		,		•	
41 Isophorone	0.73892	0.84653	0.84653	•			
42 2-Nitrophenol	0.17538	0.20261			-		
43 2,4-Dimethylphenol	0.35503	0.41496					
44 bis(2-Chloroethoxy)methane	0.39587	0.45673	0.45673	0.010	-15.37521	•	
46 2,4-Toluenediamene	0.22988	0.17251	0.17251	0.010	24.95384	•	-
47 1,3,5-Trichlorobenzene	0.27147	0.30730	0.30730	0.010	-13.20105	•	
48 2,4-Dichlorophenol	0.24145	0.27750	0.27750	0.010		•	
49 Benzoic Acid	10.00000	8.53467	0.21312	0.010	14.65330	0.000e+000	Quadrat
50 1,2,4-Trichlorobenzene	0.26915	0.29493	0.29493	0.010	-9.57690	50.00000	Averag
51 Naphthalene	1.06810	1.19494	1.19494	0.010	-11.87521	50.00000	Averag
52 4-Chloroaniline	0.49106	0.54718	0.54718	0.010	-11.42748	50.00000	Averag
56 Hexachlorobutadiene	0.13028	0.14134	0.14134	0.010	-8.48954	20.00000	Averag
210 Caprolactam	0.11920	0.13258	0.13258	0.010	-11.22483	50.00000	Averag
57 1,2,3-Trichlorobenzene	0.25119	0.27815	0.27815	0.010	-10.73440	50.00000	Averag
59 4-Chloro-3-Methylphenol	0.30893	0.34540	0.34540	0.010	-11.80496	20.00000	Averag
62 2-Methylnaphthalene	0.58704	0.67031	0.67031	0.010	-14.18535	50.00000	Averag
63 1-Methylnaphthalene	0.67554	0.76871	0.76871	0.010	-13.79201	50.00000	Averag
64 Hexachlorocyclopentadiene	5.00000	4.72104	0.26810	0.050	5.57917	0.000e+000	Quadrat
66 2,4,6-Trichlorophenol	0.28393	0.30403	0.30403	0.010	-7.07925	20.00000	Averag
67 2,4,5-Trichlorophenol	0.30173			0.010	-12.28147	50.00000	Averag
211 1,1'-Biphenyl	1.48947		1.72166	0.010	-15.58888	50.00000	Averag
,	•	0.44832	-			50.00000	Averag

Report Date: 10-Mar-2011 10:58

### TestAmerica North Canton

### CONTINUING CALIBRATION COMPOUNDS

Instrument ID: a4ag2.i

Injection Date: 10-MAR-2011 09:35
Init. Cal. Date(s): 07-MAR-2011 07-MAR-2011 Lab File ID: 2SMH0310.D Init. Cal. Date(s): 07-MAR-2011
Analysis Type: Init. Cal. Times: 12:03
Lab Sample ID: L6 Quant Type: ISTD
Method: \cansvr11\dd\chem\MSS\a4ag2.i\10310A.b\8270C-625.m

19:23

		-	CCAL	MIN		MAX	
COMPOUND	RRF / AMOUNT	RF5	RRF5	RRF	%D / %DRIFT	  %D / %DRIFT	CURVE TYPE
,   ====================================			===========		========	========	
70 2-Chloronaphthalene	1.06133	1.17441	1.17441				
73 2-Nitroaniline	0.45574	0.50774	0.50774	0.010	-11.41006	50.00000	Averaged
74 1,2,3,4-Tetrachlorobenzene	0.37357	0.41845	0.41845	0.010	-12.01371	50.00000	Averaged
76 Dimethylphthalate	1.29569	1.42946	1.42946	0.010	-10.32382	50.00000	Averaged
78 2,6-Dinitrotoluene	0.28070	0.31646	0.31646	0.010	-12.74075	50.00000	Averaged
79 Acenaphthylene	1.86047	2.05923	2.05923	0.010	-10.68378	50.00000	Averaged
80 1,2-Dinitrobenzene	0.13797	0.15420	0.15420	0.010	-11.76313	50.00000	Averaged
81 3-Nitroaniline	0.37667	0.41144	0.41144	0.010	-9.23125	50.00000	Averaged
82 Acenaphthene	1.15965	1.29219	1.29219	0.010	-11.42908	20.00000	Averaged
83 2,4-Dinitrophenol	10.00000	8.01916	0.17215	0.050	19.80843	0.000e+000	•
85 4-Nitrophenol	5.00000	5.29045	0.21459	0.050	-5.80897	0.000e+000	· -
86 Dibenzofuran	1.54774	1.70528	1.70528	0.010	-10.17862	50.00000	Averaged
87 2,4-Dinitrotoluene	0.38188	0.42766	0.42766	0.010	-11.98820	•	•
91 2,3,5,6-Tetrachlorophenol	0.21835	0.22285	0.22285	0.010	-2.06043	•	
93 Diethylphthalate	1.40182	1.55597	1.55597	0.010	-10.99587	•	
94 Fluorene	1.31906	1.48356	1.48356	0.010	-12.47095	50.00000	
95 4-Chlorophenyl-phenylether	0.51029	0.56500	0.56500	0.010	-10.72206	•	
96 4-Nitroaniline	0.40503	0.43886	0.43886	0.010		•	
98 4,6-Dinitro-2-methylphenol	5.00000	3.89901	0.09721	0.010	22.01975	0.000e+000	Quadratic
99 N-Nitrosodiphenylamine	0.67379	0.75827	0.75827	0.010	-12.53820		•
100 1,2-Diphenylhydrazine	0.99326	1.12679	1.12679	0.010	-	•	
106 4-Bromophenyl-phenylether	0.16415	0.18342	0.18342	0.010	•	•	
107 Hexachlorobenzene	0.16705	0.17835	•		•		•
212 Atrazine	0.19613	0.21492	0.21492	0.010	•	•	
111 Pentachlorophenol	10.00000	8.78181	0.10765	0.010		0.000e+000	
115 Phenanthrene	1.17359	1.31395	•	•	•	•	•
116 Anthracene	1.15604	1.31539	•	•			-
119 Carbazole	1.14550	1.26422		•			•
120 Di-n-Butylphthalate	1.43615	•	•	•	•	1	
123 Fluoranthene	1.09774	•	-	•	-	-	
124 Benzidine	0.90636	•		•		•	· .
125 Pyrene	1.28716	•		•	•		•
131 Butylbenzylphthalate	0.75773	•		•	•	•	•
133 3,3'-Dimethoxybenzidine	0.29401		•	•		•	•
135 3,3'-Dichlorobenzidine	0.46841			•			•
136 Benzo(a)Anthracene	1.08485	•		•	1	•	
137 Chrysene	1.00780	•				•	•
138 4,4'-Methylene bis(o-chloro	0.24384	•					
139 bis(2-ethylhexyl)Phthalate	1.07454	•	1	•			
140 Di-n-octylphthalate	1.90198	:		•	•	•	:
141 Benzo(b) fluoranthene	1.21596	•	•			J.	•
142 Benzo(k) fluoranthene	1.25164	1.46185	1.46189	5 0.010	(-16.7939)	50.0000	)  Averaged
1		l	.1	_!		_1	

Data File: \\cansvrl1\dd\chem\MSS\a4ag2.i\10310A.b\2SMH0310.D Page 3

Report Date: 10-Mar-2011 10:58

### TestAmerica North Canton

### CONTINUING CALIBRATION COMPOUNDS

	1	j		CCAL	MIN	l	MAX	I
COMPOUND	RRF	/ AMOUNT	RF5	RRF5	RRF	%D / %DRIFT	%D / %DRIFT	CURVE TYPE
	=== ====	======		=========	=====	========		=======
146 Benzo(a)pyrene	1	1.11860	1.24008	1.24008	0.010	-10.85943	20.00000	Averaged
149 ·Indeno(1,2,3-cd)pyrene		1.19450	1.34804	1.34804	0.010	-12,85451	50.00000	Averaged
150 Dibenz(a,h)anthracene		0.99522	1.15811	1.15811	0.010	16_36629	50.00000	Averaged
151 Benzo(g,h,i)perylene		0.96064	1.08846	1.08846	0.010	-13.30585	50.00000	Averaged
\$ 154 Nitrobenzene-d5		0.43811	0.44747	0.44747	0.010	-2.13829	50.00000	Averaged
\$ 155 2-Fluorobiphenyl	1	1.21681	1.33760	1.33760	0.010	-9.92687	50.00000	Averaged
\$ 156 Terphenyl-d14	1	0.69219	0.77487	0.77487	0.010	-11.94488	50.00000	Averaged
\$ 157 Phenol-d5		1.61165	1.82821	1.82821	0.010	-13.43763	50.00000	Averaged
\$ 158 2-Fluorophenol		1.23239	1.26170	1.26170	0.010	-2.37866	50.00000	Averaged
\$ 159 2,4,6-Tribromophenol	ļ	0.10764	0.10862	0.10862	0.010	-0.91066	50.00000	Averaged
\$ 186 2-Chlorophenol-d4	[	1.24129	1.37123	1.37123	0.010	-10.46843	50.00000	Averaged
\$ 187 1,2-Dichlorobenzene-d4	Į.	0.87576	0.97876	0.97876	0.010	-11.76168	50.00000	Averaged
M 195 Cresols, total	1	2.54044	2.90842	2.90842	0.010	-14.48489	50.00000	Averaged
101 Diphenylamine	1	0.67379	0.75827	0.75827	0.010	-12.53820	50.00000	Averaged
· 				1	.1	l	l	l

### SW846 8270C METHOD BLANK SUMMARY

BLANK WORKORDER NO.

T - 1-	M	To at Amorian	Laboratories.	Tna
Lab	Name:	restamerica	Laboratories.	inc.

Lab Code: TALCAN

SDG Number:

Lab File ID: ME8KH1AA.

Lot Number: AlC040534

Date Analyzed: 03/09/11

Time Analyzed: 12:56

Matrix: WATER

Date Extracted:03/05/11

GC Column: DB-5.625 ID: .18

Extraction Method: 3520C

Instrument ID: AG2

Level:(low/med) LOW

THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES, LCS, LCSD, MS, MSD:

_						<u>`</u>	
Ī		SAMPLE		LAB		DATE	TIME
	CLIENT ID.	WORK ORDE	R #	FILE ID		ANALYZED	ANALYZED
	=======================================	========	====	=======================================	==	========	========
01	MSA-SW38-030311	ME7571AC	· 	ME7571AC.		03/10/11	19:46
02	MSA-SW40-030311	ME76H1AN		ME76H1AN.		03/10/11	20:03
03	MSA-SW41-030311	ME76P1AN		ME76PlAN.		03/10/11	20:20
04	CHECK SAMPLE	ME8KH1AC	C.	ME8KH1AC.		03/09/11	10:23
05	DUPLICATE CHECK	ME8KH1AD	L	ME8KH1AD.		03/09/11	10:40
06					: !		
07							
80							
09							
10			<u></u>				
11							
12							
13							
14				l			
15				]			
16		<u> </u>					
17							
18		·		l			
19				<u> </u>			
20				]			
21							
22					<u>.                                    </u>		
23							
24							
25							
26			<u>.</u>	<u> </u>			
27							
28							
29							
30							l

### METHOD BLANK REPORT

### GC/MS Semivolatiles

REPORTING

LIMIT UNITS

Client Lot #...: A1C040534 Work Order #...: ME8KH1AA Matrix....: WATER

MB Lot-Sample #: A1C040000-310

Prep Date....: 03/05/11 Final Wgt/Vol..: 2 mL

Analysis Date..: 03/09/11 Prep Batch #...: 1063310

Dilution Factor: 1 Initial Wgt/Vol: 1000 mL

1,4-Dioxane	ND	1.0	${\tt ug/L}$	SW846 8270C
Acenaphthene	ND	0.20	ug/L	SW846 8270C
Acenaphthylene	ND	0.20	ug/L	SW846 8270C
Anthracene	ND	0.20	ug/L	SW846 8270C
Benzo(a)anthracene	ND	0.20	ug/L	SW846 8270C
Benzo(a)pyrene	ND	0.20	ug/L	SW846 8270C
Benzo(b)fluoranthene	ND	0.20	ug/L	SW846 8270C
Benzo(ghi)perylene	ND	0.20	ug/L	SW846 8270C
Benzo(k)fluoranthene	ND	0.20	ug/L	SW846 8270C
Chrusono	רווא	0.20	12~ /T	CMO 4 C 0 0 7 0 C

			J.	
Benzo(k)fluoranthene	ND	0.20	ug/L	SW846 8270C
Chrysene	ND	0.20	ug/L	SW846 8270C
Dibenzo(a,h)anthracene	ND	0.20	ug/L	SW846 8270C
Fluoranthene	ND	0.20	ug/L	SW846 8270C
Fluorene	ND	0.20	ug/L	SW846 8270C
Indeno(1,2,3-cd)pyrene	ND	0.20	ug/L	SW846 8270C
Naphthalene	ND	0.20	ug/L	SW846 8270C
Phenanthrene	ND	0.20	ug/L	SW846 8270C
Pyrene	ND	0.20	ug/L	SW846 8270C

	PERCENT	RECOVERY
SURROGATE	RECOVERY	LIMITS
Nitrobenzene-d5	50	(27 - 111)
2-Fluorobiphenyl	51	(28 - 110)
Terphenyl-d14	67	(37 - 119)

NOTE(S):

PARAMETER

Calculations are performed before rounding to avoid round-off errors in calculated results.

### LABORATORY CONTROL SAMPLE EVALUATION REPORT

### GC/MS Semivolatiles

Client Lot #...: A1C040534 Work Order #...: ME8KH1AC-LCS Matrix..... WATER

LCS Lot-Sample#: A1C040000-310 ME8KH1AD-LCSD

Prep Date....: 03/05/11 Analysis Date..: 03/09/11

Prep Batch #...: 1063310

Dilution Factor: 1 Final Wgt/Vol..: 2 mL

Initial Wgt/Vol: 1000 mL

	PERCENT	RÉCOVERY		RPD	
PARAMETER	RECOVERY	LIMITS	RPD	LIMITS	METHOD
Acenaphthene	70	(40 - 110)	- 1112		SW846 8270C
	64	(40 - 110)	8.7	(0-30)	SW846 8270C
1,2,4-Trichloro-	59	(25 - 110)	0.,	(0 30)	SW846 8270C
benzene		(20 210)			5.0010 02.00
2011	54	(25 - 110)	8.5	(0-30)	SW846 8270C
		(20 110)	•••	(0 00)	5,010 02700
2,4-Dinitrotoluene	76	(52 - 123)			SW846 8270C
	71	(52 - 123)	7.1	(0-30)	SW846 8270C
N-Nitrosodi-n-propyl-	66	(37 - 121)		` ,	SW846 8270C
amine					
	61	(37 - 121)	7.8	(0-30)	SW846 8270C
1,4-Dichlorobenzene	57	(19 - 110)			SW846 8270C
	52	(19 - 110)	8.5	(0-30)	SW846 8270C
Pentachlorophenol	35	(26 - 110)			SW846 8270C
	34	(26 - 110)	4.0	(0-30)	SW846 8270C
Phenol	76	(14 - 112)			SW846 8270C
	69	(14 - 112)	9.4	(0-30)	SW846 8270C
2-Chlorophenol	76	(27 - 110)			SW846 8270C
	68	(27 - 110)	11	(0-30)	SW846 8270C
4-Chloro-3-methylphenol	74	(39 - 110)			SW846 8270C
	69	(39 - 110)	8.0	(0-30)	SW846 8270C
Pyrene	70	(55 - 120)			SW846 8270C
	64	(55 - 120)	9.8	(0-30)	SW846 8270C
4-Nitrophenol	66	(12 - 130)			SW846 8270C
	63	(12 - 130)	5.4	(0-30)	SW846 8270C
		PERCENT	RECOV	ERY	
SURROGATE		RECOVERY	LIMIT	S	
Nitrobenzene-d5		67	(27 -	111)	
		61	(27 -		
2-Fluorobiphenyl		68	(28 -		
		63	(28 -	110)	
Terphenyl-d14		81	(37 -		
		73	(37 –		
Phenol-d5		75 .	(10 -		
		69	(10 -		
2-Fluorophenol		73	(10 -	•	
		67	(10 -	110)	

(Continued on next page)

### LABORATORY CONTROL SAMPLE EVALUATION REPORT

### GC/MS Semivolatiles

Client Lot #...: A1C040534 Work Order #...: ME8KH1AC-LCS Matrix..... WATER

LCS Lot-Sample#: A1C040000-310 ME8KH1AD-LCSD

 SURROGATE
 RECOVERY
 LIMITS

 2,4,6-Tribromophenol
 70
 (22 - 120)

 66
 (22 - 120)

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

Bold print denotes control parameters

### 8B SEMIVOLATILE INTERNAL STANDARD AREA AND RT SUMMARY

Lab Name: NORTH CANTON

Contract:

Lab Code: TACAN

Case No.:

SAS No.:

SDG No.: A1C040534

Lab File ID (Standard): 2SMH0309

Date Analyzed: 03/09/11

Instrument ID: A4AG2

Time Analyzed: 0932

		IS1 (DCB)		IS2 (NPT)		IS3 (ANT)	
		AREA #	RT #	AREA #	RT #	AREA #	RT #
		========	======	=========	======	========	=======
	12 HOUR STD	291550	3.40	1149095	4.29	676781	5.56
	UPPER LIMIT	583100 145775	3.90 2.90	2298190 574548	4.79 3.79	1353562	6.06
	TOMER TIMITI	145//5	2.90	5/4548	3./9	338391	5.06
	EPA SAMPLE						
	NO.						
01	ME8KHCHK	241993	3.40	976052	4.29	570163	5.56
	ME8KHCKDUP	240499	3.40	956649	4.29	552903	5.56
03	ME8KHBLK	267256	3.40	1041320	4.29	585887	5.56
04							
05							
06 07							
08							
09		· · · · · · · · · · · · · · · · · · ·					
10							
11							
12 13							
14						<del></del>	
15							
16							
17							
18				•	· .	·	
19 20		· · · · · · · · · · · · · · · · · · ·				· · · · · · · · · · · · · · · · · · ·	
21							
22							
	<u> </u>	· <del> · · · · · · · · · · · · · · · · ·</del>					·1

IS1 (DCB) = 1,4-Dichlorobenzene-d4

IS2 (NPT) = Naphthalene-d8

IS3 (ANT) = Acenaphthene-d10

AREA UPPER LIMIT = +100% of internal standard area AREA LOWER LIMIT = - 50% of internal standard area

RT UPPER LIMIT = + 0.50 minutes of internal standard RT RT LOWER LIMIT = - 0.50 minutes of internal standard RT

# Column used to flag internal standard area values with an asterisk.

* Values outside of QC limits.

page 1 of 1

FORM VIII SV-1

OLM03.0

### 8C SEMIVOLATILE INTERNAL STANDARD AREA AND RT SUMMARY

Lab Name: NORTH CANTON

Contract:

Lab Code: TACAN

Case No.:

SAS No.:

SDG No.: A1C040534

Lab File ID (Standard): 2SMH0309

Date Analyzed: 03/09/11

Instrument ID: A4AG2

Time Analyzed: 0932

		IS4 (PHN)		IS5 (CRY)		IS6 (PRY)	
		AREA #	RT #	AREA #	RT #	AREA #	RT #
		========	======	=========	======	========	======
	12 HOUR STD	1060899	6.64	980465	8.60	836727	9.90
	UPPER LIMIT	2121798	7.14	1960930	9.10	1673454	10.40
	LOWER LIMIT	530450	6.14	490233	8.10	418364	9.40
	EPA SAMPLE						
	NO.						İ
ĺ	===========	========	======	=========	======	========	======
	ME8KHCHK	878532	6.64	794813	8.59	673155	9.89
	ME8KHCKDUP	866774	6.64	782643	8.60	675465	9.89
03	ME8KHBLK	914267	6.64	846103	8.60	744551	9.90
05							
06		<del></del>		<del></del>			
07							
08							
09							
10 11							<del></del>
12							
13							
14	<del> </del>						
15							
16							
17						<del></del>	
18 19				·			
20							
21							
22			·····				

IS4 (PHN) = Phenanthrene-d10

IS5 (CRY) = Chrysene-d12 IS6 (PRY) = Perylene-d12

AREA UPPER LIMIT = +100% of internal standard area AREA LOWER LIMIT = - 50% of internal standard area

RT UPPER LIMIT = + 0.50 minutes of internal standard RT RT LOWER LIMIT = - 0.50 minutes of internal standard RT

# Column used to flag internal standard area values with an asterisk.

* Values outside of QC limits.

page 1 of 1

FORM VIII SV-2

OLM03.0

### SEMIVOLATILE INTERNAL STANDARD AREA AND RT SUMMARY

Lab Name: NORTH CANTON

Contract:

Lab Code: TACAN

Case No.:

SAS No.:

SDG No.: A1C040534

Lab File ID (Standard): 2SMH0310

Date Analyzed: 03/10/11

Instrument ID: A4AG2

Time Analyzed: 0935

	IS1(DCB)		IS2 (NPT)		IS3 (ANT)	
	AREA #	RT #	AREA #	RT #	AREA #	RT #
	=========	======	=========	======	=========	======
12 HOUR STD UPPER LIMIT		3.42	1130433	4.31	666467	5.58
LOWER LIMIT		3.92 2.92	2260866 565217	4.81 3.81	1332934 333234	6.08 5.08
TOMER DIMIT	130032	2.92	363217	3.01	333234	3.00
EPA SAMPLE			_			
NO.				•		
	=========	======	========	======	========	======
01 MSA-SW38-030		3.42	832529	4.32	579867	5.59
02 MSA-SW40-030 03 MSA-SW41-030		3.42 3.42	907324 897440	4.32 4.32	615936 590334	5.59 5.59
04 MBA-BW41 050	200540	3.42	05/440	4.52	390334	3.39
05						
06						
07						
08						
10	-	ļ <del></del>				
11	-			<del></del>		
12						
13						
14						
15	-		<u> </u>			
16 17	-					
18	-					
19	-					
20						
21						
22						

(DCB) = 1,4-Dichlorobenzene-d4 IS1

(NPT) = Naphthalene-d8 IS2 (ANT) = Acenaphthene-d10 IS3

AREA UPPER LIMIT = +100% of internal standard area
AREA LOWER LIMIT = - 50% of internal standard area
RT UPPER LIMIT = + 0.50 minutes of internal standard RT
RT LOWER LIMIT = - 0.50 minutes of internal standard RT

# Column used to flag internal standard area values with an asterisk.

* Values outside of QC limits.

page 1 of 1

FORM VIII SV-1

OLMO3.0

### 8C SEMIVOLATILE INTERNAL STANDARD AREA AND RT SUMMARY

Lab Name: NORTH CANTON

Contract:

Lab Code: TACAN

Case No.:

SAS No.:

SDG No.: A1C040534

Lab File ID (Standard): 2SMH0310

Date Analyzed: 03/10/11

Instrument ID: A4AG2

Time Analyzed: 0935

		IS4 (PHN)		IS5 (CRY)		IS6 (PRY)	
		AREA #	RT #	AREA #	RT #	AREA #	RT #
	=========	========	======	========	======	========	======
	12 HOUR STD	1046361	6.67	951941	8.63	814387	9.95
	UPPER LIMIT	2092722	7.17	1903882	9.13	1628774	10.45
	TOMER LIMIT	523181	6.17	475971	8.13	407194	9.45
	EPA SAMPLE						======
	NO.						
		=========	======	========	======	========	======
01	MSA-SW38-030	996122	6.68	918472	8.65	809594	9.98
	MSA-SW40-030	1048001	6.68	1006035	8.65	872230	9.98
03 04	MSA-SW41-030	993395	6.68	967559	8.63	833731	9.97
05						<del></del>	<del></del>
06							
07							
08							
09							
10 11							· 
12							
13							
14		<del></del>					
15							
16							
17							
·18							
20				<del></del>			
21		<del></del>					
22		<del>- · · · · · · · · · · · · · · · · · · </del>				<del></del>	

IS4 (PHN) = Phenanthrene-d10 IS5 (CRY) = Chrysene-d12 IS6 (PRY) = Perylene-d12

AREA UPPER LIMIT = +100% of internal standard area AREA LOWER LIMIT = - 50% of internal standard area

RT UPPER LIMIT = + 0.50 minutes of internal standard RT RT LOWER LIMIT = - 0.50 minutes of internal standard RT

* Values outside of QC limits.

page 1 of 1

FORM VIII SV-2

OLM03.0

[#] Column used to flag internal standard area values with an asterisk.

Run Date: 3/22/2011 Time: 8:43:41	Expanded Deliverable COC Completed Bench Sheet Copied Package Submitted to AnalyticalGroup Bench Sheet Copied per COC	PREP DATE: 3/05/11 COMP DATE: 3/06/11	SOLVENTS SPIKE STANDARD/	250.0 0.0 .2ML BNA SURR #78922	250.0 0.0 .2ML BNA SURR #78922	250.0 0.0 .2ML BNA SURR #78922	250.0 0.0 .2ML BNA SURR #78922	250.0 0.0 .2ML BNA SURR #78922
		0C) ) - Acid	EXTRACTION	DCM	DCM	DCM	DCM	DCM
		**************************************	ADJ2	NA	NA	NA	NA	NA
Inc.		**************************************	PH"S ADJ1	N	2	2	8	~
ories,		r**** rCH: and (Aci	TINI	7.0	7.0	7.0	7.0	7.0
TestAmerica Laboratories, EXTRACTION BENCH SHEET	heet olume sheets & Method	**************************************	INIT/FIN WT/VOL	960mī 2.00mī	1050mL 2.00mL	1000mL 2.00mL	1050mL 2.00mL	1050mL 2.00mL
TestAme EXT	Weights/Volumes Spike & Surrogate Worksheet Vial contains correct volume Labels, greenbars, worksheets computer batch: correct & Anomalies to Extraction Method	Bas LIC SW8	MATRIX	WATER	WATER	WATER	WATER	WATER
	Olume urrog ains freenb batch	7/11	MTH	QL	OL	Q	OL	OL
	Weights/Volum Spike & Surro Vial contains Labels, green computer batc	s well 3/07/1	EXT	51	51	51	51	51
	Weight Spike Vial c Labels comput	ris Coast Eric Mills Leslie Howell	TEST FLGS	Д	Ω		Д	ф.
LEV		404000 Chris Co 402608 Eric 000123 Lesli JONESD	LOT#, MSRUN#/ WORK ORDER	A1C040534-005 ME76H-1-AN	A1C040534-006 <b>ME76P-1-AN</b>	A1C040000-310 ME8KH-1-AA B	A1C040503-027 <b>ME709-1-AC</b>	A1C040503-028 <b>ME71E-1-AC</b>
\Signal \Signal \Signal \Signal \Signal \Signal \Signal \Signal \Signal \Signal \Signal \Signal \Signal \Signal \Signal \Signal \Signal \Signal \Signal \Signal \Signal \Signal \Signal \Signal \Signal \Signal \Signal \Signal \Signal \Signal \Signal \Signal \Signal \Signal \Signal \Signal \Signal \Signal \Signal \Signal \Signal \Signal \Signal \Signal \Signal \Signal \Signal \Signal \Signal \Signal \Signal \Signal \Signal \Signal \Signal \Signal \Signal \Signal \Signal \Signal \Signal \Signal \Signal \Signal \Signal \Signal \Signal \Signal \Signal \Signal \Signal \Signal \Signal \Signal \Signal \Signal \Signal \Signal \Signal \Signal \Signal \Signal \Signal \Signal \Signal \Signal \Signal \Signal \Signal \Signal \Signal \Signal \Signal \Signal \Signal \Signal \Signal \Signal \Signal \Signal \Signal \Signal \Signal \Signal \Signal \Signal \Signal \Signal \Signal \Signal \Signal \Signal \Signal \Signal \Signal \Signal \Signal \Signal \Signal \Signal \Signal \Signal \Signal \Signal \Signal \Signal \Signal \Signal \Signal \Signal \Signal \Signal \Signal \Signal \Signal \Signal \Signal \Signal \Signal \Signal \Signal \Signal \Signal \Signal \Signal \Signal \Signal \Signal \Signal \Signal \Signal \Signal \Signal \Signal \Signal \Signal \Signal \Signal \Signal \Signal \Signal \Signal \Signal \Signal \Signal \Signal \Signal \Signal \Signal \Signal \Signal \Signal \Signal \Signal \Signal \Signal \Signal \Signal \Signal \Signal \Signal \Signal \Signal \Signal \Signal \Signal \Signal \Signal \Signal \Signal \Signal \Signal \Signal \Signal \Signal \Signal \Signal \Signal \Signal \Signal \Signal \Signal \Signal \Signal \Signal \Signal \Signal \Signal \Signal \Signal \Signal \Signal \Signal \Signal \Signal \Signal \Signal \Signal \Signal \Signal \Signal \Signal \Signal \Signal \Signal \Signal \Signal \Signal \Signal \Signal \Signal \Signal \Signal \Signal \Signal \Signal \Signal \Signal \Signal \Signal \Signal \Signal \Signal \Signal \Signal \Signal \Signal \Signal \Signal \Signal \Signal \Signal \Signal \Signal \Signal \Signa	Z Blank Y Check MS/MSD	ه ۲۰	ANL	3/18/11	3/18/11	0/0/0	3/10/11	3/10/11
North Canton		Extractionist: Concentrationi Reviewer/Date:	EXTR	3/10/11 COMMENTS:	3/10/11 COMMENTS:	3/09/11 COMMENTS:	3/10/11 COMMENTS:	3/10/11 COMMENTS:

Page 2 of 3

	<b>PREP DATE:</b> 3/05/11 <b>COMP DATE:</b> 3/06/11		SOLVENTS SPIKE STANDARD/ VOL EXCHANGE VOL SURROGATE ID	0.0 .2ML #A079095/79132 .2ML BNA SURR #78922	250.0 0.0 .2ML BNA SURR #78922	0.0 0.0 0.0 .2ML BNA SURR #78922	250.0 0.0 .2ML BNA SURR #78922	250.0 0.0 .2ML BNA SURR #78922	0.0 0.0 .2ML BNA SURR #78922	250.0 0.0 .2ML BNA SURR #78922	250.0 0.0 .2ML BNA SURR #78922	250.0 0.0 .2ML BNA SURR #78922
	PRI			25	25	250	25	25	250	25	25	25
* * * *	* * *	***	ADJ2 EXTRACTION	NA DCM	NA DCM	NA DCM	NA DCM	NA DCM	NA DCM	NA DCM	NA DCM	NA DCM
Inc. r****	1063310	****	PH"S ADJ1 A	2	~	2	7	~	~	7	7	~
ories, H SHEET	СН:	****************	LNIT	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0
<pre>TestAmerica Laboratories, Inc. EXTRACTION BENCH SHEET ***********************************</pre>	* *QC BATCH: *	****	INIT/FIN WT/VOL	1000mL 2.00mL	1030mL 2.00mL	1050mL 2.00mL	1050mL 2.00mL	1050mL 2.00mL	1050mL 2.00mL	1050mL 2.00mL	1000mL 2.00mL	1050mL 2.00mL
TestAmer EXTF			MATRIX	WATER	WATER	WATER	WATER	WATER	WATER	WATER	WATER	WATER
			MTH	QL	QL	QL	OL	OL	OL	OL	OL	OL
			EXT	51	51	51	51	51	51	51	51	51
			TEST FLGS	0	<u>м</u>	Ω ε	D m	Q 9	1 D	2 D	B 9	4 U
			LOT#, MSRUN#/ WORK ORDER	A1C040000-31( <b>ME8KH-1-AC</b> C	A1C040503-030 <b>ME71J-1-AC</b>	A1C040534-003 <b>ME757-1-AC</b>	A1C030579-003 <b>ME6FD-1-AA</b>	A1C030579-006 <b>ME6FL-1-AA</b>	A1C030579-001 <b>ME6E4-1-AA</b>	A1C030579-002 <b>ME6FC-1-AA</b>	A1C040503-026 ME703-1-AC	A1C030579-004 <b>ME6FG-1-AA</b>
			ANL	0/0/0	3/10/11	3/18/11	3/16/11	3/16/11	3/16/11	3/16/11	3/10/11	3/16/11
Cantor	ı		EXTR	3/09/11 COMMENTS:	3/10/11 COMMENTS:	3/10/11 COMMENTS:	3/09/11 COMMENTS:	3/09/11 COMMENTS:	3/09/11 COMMENTS:	3/09/11 COMMENTS:	3/10/11 COMMENTS:	3/09/11 COMMENTS:

Page 3 of 3

NUMBER OF WORK ORDERS IN BATCH:

ton							*******	****	****	***				
ı							* *QC BATCH: *	СН:	1063310	* * * 310		PREP DATE: COMP DATE:	3/05/11	)/11 5/11
							********	*****	***	****				
EXTR	ANL	LOT#, MSRUN#/ WORK ORDER	TEST FLGS	EXT	MTH	MATRIX	INIT/FIN WT/VOL	FINIT A	PH"S ADJ1 A	ADJ2	EXTRACTION	SOLVENTS VOL EXCHANGE	TOA	SPIKE STANDARD/ SURROGATE ID
3/09/11 COMMENTS:	3/16/11	A1C030579-005 <b>ME6FH-1-AA</b>	. D	51	OL	WATER	1050mL 2.00mL	7.0	2	NA	DCM	250.0 .2ML	0.0 BNA SURR	SURR #78922
3/10/11 COMMENTS:	3/10/11	A1C040503-029 <b>ME71F-1-AC</b>	Д	51	OL	WATER	1050mL 2.00mL	7.0	7	NA	DCM	250.0	0.0 BNA SURR	SURR #78922
3/10/11 COMMENTS:	3/16/11	A1C030579-007 ME6FQ-1-AA	7 D	. 51	QL	WATER	1050mL 2.00mL	7.0	8	NA	DCM	250.0	0.0 BNA	SURR #78922
3/10/11 COMMENTS:	3/16/11	A1C030582-001 ME6GJ-1-AA	1 D	51	JQ	WATER	1050mL 2.00mL	7.0	2	NA	DCM	250.0	0.0 BNA SURR	SURR #78922
3/09/11 COMMENTS:	0/0/0	A1C040000-310 ME8KH-1-AD L	0	51	JO	WATER	1000mL 2.00mL	7.0	7	NA	DCM	250.0 .2ML .2ML .	0.0 #A079 BNA	0.0 #A079095/79132 BNA SURR #78922
S/S CC DCM #J5	cc #J52J01 NA2SO4	804 #J36591 1:1	#J09E01	F01										

TestAmerica Laboratories, Inc. EXTRACTION BENCH SHEET

SAMPLE ID MSA-SW38-030311

Amt. inj

CONCENTRATION PPB

T (NG) Final Extract Volume (UL) AVE RRF 2000 0.6203 Sample Volume (PL)  $\mathcal{M}$ 

1,4-dioxane = 2.6 ug/L

Data File: \\cansvr11\dd\chem\MSS\a4ag2.i\10310A.b\ME7571AC.D Page 1

Report Date: 13-Mar-2011 11:42

### TestAmerica North Canton

Semivolatile REPORT SW-846 Method 8270

Data file: \\cansvr11\\dd\chem\MSS\a4ag2.i\\10310A.b\\ME7571AC.D

Lab Smp Id: ME7571AC Client Smp ID: MSA-SW38-030311

Inj Date : 10-MAR-2011 19:46

Inst ID: a4ag2.i

Misc Info :

Comment

Method : \\cansvr11\dd\chem\MSS\a4ag2.i\10310A.b\8270C-625.m

Meth Date : 11-Mar-2011 12:56 hulat Quant Type: ISTD Cal Date : 07-MAR-2011 19:23 Cal File: 2TL0307.D

Als bottle: 38

Dil Factor: 1.00000

Integrator: HP RTE Target Version: 4.14

Compound Sublist: PAHD.SUB

Concentration Formula: Amt * DF * Uf * Vt/(Vo * Vi) * CpndVariable

Name Va	alue De	escription
Vo 10	1.000 no 000.000 Vo 050.000 Vo 0.50000 Vo	ilution Factor g unit correction factor olume of final extract (uL) olume of sample extracted (mL) olume injected (uL) ocal Compound Variable

			CONCENTRATIONS
		QUANT SIG	ON-COLUMN FINAL
Compo	unds	MASS	RT EXP RT REL RT RESPONSE ( NG) ( ug/L)
	=======================================	====	
* 1	1,4-Dichlorobenzene-d4	152	3.420 3.419 (1.000) 196639 2.00000 (Q)
* 2	Naphthalene-d8	136	4.318 4.313 (1.000) 832529 2.00000
* 3	Acenaphthene-d10	164	5.586 5.580 (1.000) 579867 2.00000
* 4	Phenanthrene-d10	188	6.677 6.666 (1.000) 996122 2.00000
* 5	Chrysene-d12	240	8.645 8.634 (1.000) 918472 2.00000
* 6	Perylene-d12	264	9.977 9.950 (1.000) 809594 2.00000
198	1,4-Dioxane	88	1.590 1.606 (0.465) . 42303 0.69364 2.6424
51	Naphthalene	128	Compound Not Detected.
62	2-Methylnaphthalene	142	Compound Not Detected.
63	1-Methylnaphthalene	142	Compound Not Detected.
79	Acenaphthylene	152	Compound Not Detected.
82	Acenaphthene	153	Compound Not Detected.
94	Fluorene	166	Compound Not Detected.
107	Hexachlorobenzene	284	Compound Not Detected.
115	Phenanthrene	178	Compound Not Detected.
116	Anthracene	178	Compound Not Detected.
123	Fluoranthene	202	Compound Not Detected.
125	Pyrene	202	Compound Not Detected.
136	Benzo(a)Anthracene	228	Compound Not Detected.

AP	APPENDIX C—CHEMICAL RESULTS DATA TABLE						

**TABLE C-1** 

### CHEMICAL ANALYTICAL RESULTS FOR SURFACE WATER SAMPLES, MARCH 2011 FROG MORTAR CREEK LOCKHEED MARTIN, MARTIN STATE AIRPORT, MIDDLE RIVER, MARYLAND PAGE 1 OF 7

SAMPLE ID: LABORATORY ID: LOCATION: SAMPLE DATE:	MSA-SW37-030311 A1C040534002 MSA-SW37 3/3/2011	MSA-SW38-030311 A1C040534003 MSA-SW38 3/3/2011	MSA-SW39-030311 A1C040534004 MSA-SW39 3/3/2011	MSA-SW40-030311 A1C040534005 MSA-SW40 3/3/2011	MSA-SW41-030311 A1C040534006 MSA-SW41 3/3/2011
VOLATILES (ug/l)					
1,1,1,2-TETRACHLOROETHANE		0.92 U		0.23 U	0.23 U
1,1,1-TRICHLOROETHANE		0.88 U		0.22 U	0.22 U
1,1,2,2-TETRACHLOROETHANE		0.72 U		0.18 U	0.18 U
1,1,2-TRICHLOROTRIFLUOROETHANE		1.1 U		0.28 U	0.28 U
1,1-DICHLOROETHANE		0.6 U		0.15 U	0.15 U
1,1-DICHLOROETHENE		1.4 J		0.19 U	0.21 J
1,1-DICHLOROPROPENE		0.52 U		0.13 U	0.13 U
1,2,3-TRICHLOROBENZENE		0.68 U		0.17 U	0.17 U
1,2,3-TRICHLOROPROPANE		1.7 U		0.43 U	0.43 U
1,2,3-TRIMETHYLBENZENE		0.024 U		0.0059 U	0.0059 U
1,2,4-TRICHLOROBENZENE		1.2 J		0.15 U	0.15 U
1,2,4-TRIMETHYLBENZENE		0.48 U		0.12 U	0.12 U
1,2-DIBROMO-3-CHLOROPROPANE		2.7 U		0.67 U	0.67 U
1,2-DIBROMOETHANE		0.96 U		0.24 U	0.24 U
1,2-DICHLOROBENZENE		0.52 U		0.13 U	0.13 U
1,2-DICHLOROETHANE		0.88 U		0.22 U	0.22 U
1,2-DICHLOROPROPANE		0.72 U		0.18 U	0.18 U
1,3-DICHLOROBENZENE		0.56 U		0.14 U	0.14 U
1,3-DICHLOROPROPANE		0.64 U		0.16 U	0.16 U
1,4-DICHLOROBENZENE		3.9 Ј		0.13 U	0.38 J
2,2-DICHLOROPROPANE		0.52 U		0.13 U	0.13 U
2-BUTANONE		2.3 U		0.57 U	0.57 U
2-CHLOROETHYL VINYL ETHER		4 U		0.99 U	0.99 U
2-CHLOROTOLUENE		0.44 U		0.11 U	0.11 U
2-HEXANONE		1.6 U		0.41 U	0.41 U

**TABLE C-1** 

### CHEMICAL ANALYTICAL RESULTS FOR SURFACE WATER SAMPLES, MARCH 2011 FROG MORTAR CREEK LOCKHEED MARTIN, MARTIN STATE AIRPORT, MIDDLE RIVER, MARYLAND PAGE 2 OF 7

SAMPLE ID: LABORATORY ID: LOCATION: SAMPLE DATE:	MSA-SW37-030311 A1C040534002 MSA-SW37 3/3/2011	MSA-SW38-030311 A1C040534003 MSA-SW38 3/3/2011	MSA-SW39-030311 A1C040534004 MSA-SW39 3/3/2011	MSA-SW40-030311 A1C040534005 MSA-SW40 3/3/2011	MSA-SW41-030311 A1C040534006 MSA-SW41 3/3/2011
4-CHLOROTOLUENE		0.72 U		0.18 U	0.18 U
4-ISOPROPYLTOLUENE		0.48 U		0.12 U	0.12 U
4-METHYL-2-PENTANONE		1.3 U		0.32 U	0.32 U
ACETONE		4.4 U		1.1 U	5.7 B
BENZENE		0.52 U		0.13 U	0.13 U
BROMOBENZENE		0.52 U		0.13 U	0.13 U
BROMOCHLOROMETHANE		1.2 U		0.29 U	0.29 U
BROMODICHLOROMETHANE		0.6 U		0.15 U	0.15 U
BROMOFORM		2.6 U		0.64 U	0.64 U
BROMOMETHANE		1.6 U		0.41 U	0.41 U
CARBON DISULFIDE		0.52 U		0.13 U	0.13 U
CARBON TETRACHLORIDE		0.52 U		0.13 U	0.13 U
CHLOROBENZENE		0.6 U		0.15 U	0.15 U
CHLORODIBROMOMETHANE		0.72 U		0.18 U	0.18 U
CHLOROETHANE		1.2 U		0.29 U	0.29 U
CHLOROFORM		0.64 U		0.16 U	0.16 U
CHLOROMETHANE		1.2 U		0.3 U	0.3 U
CIS-1,2-DICHLOROETHENE		130		5.5	21
CIS-1,3-DICHLOROPROPENE		0.56 U		0.14 U	0.14 U
DIBROMOMETHANE		1.1 U		0.28 U	0.28 U
DICHLORODIFLUOROMETHANE		1.2 U		0.31 U	0.31 U
DIISOPROPYL ETHER		6 U		1.5 U	1.5 U
ETHYL TERT-BUTYL ETHER		0.44 U		0.11 U	0.11 U
ETHYLBENZENE		1.9 J		0.17 U	0.23 J
HEXACHLOROBUTADIENE		1.2 U		0.3 U	0.3 U
ISOPROPYLBENZENE		0.52 U		0.13 U	0.13 U

**TABLE C-1** 

### CHEMICAL ANALYTICAL RESULTS FOR SURFACE WATER SAMPLES, MARCH 2011 FROG MORTAR CREEK LOCKHEED MARTIN, MARTIN STATE AIRPORT, MIDDLE RIVER, MARYLAND PAGE 3 OF 7

SAMPLE ID: LABORATORY ID: LOCATION: SAMPLE DATE:	MSA-SW37-030311 A1C040534002 MSA-SW37 3/3/2011	MSA-SW38-030311 A1C040534003 MSA-SW38 3/3/2011	MSA-SW39-030311 A1C040534004 MSA-SW39 3/3/2011	MSA-SW40-030311 A1C040534005 MSA-SW40 3/3/2011	MSA-SW41-030311 A1C040534006 MSA-SW41 3/3/2011
M+P-XYLENES		14		0.24 U	1.6 J
METHYL TERT-BUTYL ETHER		0.68 U		0.17 U	0.17 U
METHYLENE CHLORIDE		1.3 U		0.33 U	0.33 U
NAPHTHALENE		0.96 U		0.24 U	0.24 U
N-BUTYLBENZENE		0.48 U		0.12 U	0.12 U
N-PROPYLBENZENE		0.56 U		0.14 U	0.14 U
O-XYLENE		2.8 J		0.14 U	0.29 Ј
SEC-BUTYLBENZENE		0.52 U		0.13 U	0.13 U
STYRENE		0.44 U		0.11 U	0.11 U
TERT-AMYL METHYL ETHER		0.27 U		0.067 U	0.067 U
TERT-BUTYLBENZENE		0.52 U		0.13 U	0.13 U
TERTIARY-BUTYL ALCOHOL		16 UR		3.9 UR	3.9 UR
TETRACHLOROETHENE		1.2 U		0.29 U	0.29 U
TOLUENE		1.4 J		0.13 U	0.13 U
TOTAL XYLENES		16		0.28 U	1.9 J
TRANS-1,2-DICHLOROETHENE		0.87 J		0.19 U	0.2 J
TRANS-1,3-DICHLOROPROPENE		0.76 U		0.19 U	0.19 U
TRICHLOROETHENE		32		4.2	24
TRICHLOROFLUOROMETHANE		0.84 U		0.21 U	0.21 U
VINYL ACETATE		0.76 U		0.19 U	0.19 U
VINYL CHLORIDE		140		1.8	8.7
SEMIVOLATILES (ug/l)					
1,4-DIOXANE		2.6		0.49 J	0.49 U
POLYCYCLIC AROMATIC HYDROCARBONS (ug/	1)				
ACENAPHTHENE		0.1 U		0.1 U	0.1 U
ACENAPHTHYLENE		0.1 U		0.1 U	0.1 U

**TABLE C-1** 

### CHEMICAL ANALYTICAL RESULTS FOR SURFACE WATER SAMPLES, MARCH 2011 FROG MORTAR CREEK LOCKHEED MARTIN, MARTIN STATE AIRPORT, MIDDLE RIVER, MARYLAND PAGE 4 OF 7

SAMPLE ID: LABORATORY ID: LOCATION: SAMPLE DATE:	A1C040534002	MSA-SW38-030311 A1C040534003 MSA-SW38 3/3/2011	MSA-SW39-030311 A1C040534004 MSA-SW39 3/3/2011	MSA-SW40-030311 A1C040534005 MSA-SW40 3/3/2011	MSA-SW41-030311 A1C040534006 MSA-SW41 3/3/2011
ANTHRACENE		0.1 U		0.1 U	0.1 U
BENZO(A)ANTHRACENE		0.1 U		0.1 U	0.1 U
BENZO(A)PYRENE		0.1 U		0.1 U	0.1 U
BENZO(B)FLUORANTHENE		0.1 U		0.1 U	0.1 U
BENZO(G,H,I)PERYLENE		0.1 U		0.1 U	0.1 U
BENZO(K)FLUORANTHENE		0.1 U		0.1 U	0.1 U
CHRYSENE		0.1 U		0.1 U	0.1 U
DIBENZO(A,H)ANTHRACENE		0.1 U		0.1 U	0.1 U
FLUORANTHENE		0.1 U		0.1 U	0.1 U
FLUORENE		0.1 U		0.1 U	0.1 U
INDENO(1,2,3-CD)PYRENE		0.1 U		0.1 U	0.1 U
NAPHTHALENE		0.1 U		0.1 U	0.1 U
PHENANTHRENE		0.1 U		0.1 U	0.1 U
PYRENE		0.1 U		0.1 U	0.1 U
TOTAL METALS (ug/l)					
ANTIMONY	0.65 UL	0.65 UL	0.65 UL	0.65 UL	0.65 UL
ARSENIC	2.1 J	3.6 J	3.3 J	3.7 J	3.4 J
BARIUM	58.4	54	49.3	52.5	53.3
BERYLLIUM	1 U	1 U	1 U	1 U	1 U
CADMIUM	0.65 U	1.2 J	0.65 U	0.65 U	0.65 U
CHROMIUM	4.5 J	7.1 J	3.6 U	4.5 J	3.6 U
COBALT	2 J	5.4	2.2 J	1.9 J	2.2 J
COPPER	16	19.5	7.6 B	18.1	7 B
IRON	1670	2760	570	1490	675
LEAD	5.5	6.3	1.5 J	4.3 J	1.7 J
MANGANESE	112	311	131	139	136

**TABLE C-1** 

### CHEMICAL ANALYTICAL RESULTS FOR SURFACE WATER SAMPLES, MARCH 2011 FROG MORTAR CREEK LOCKHEED MARTIN, MARTIN STATE AIRPORT, MIDDLE RIVER, MARYLAND PAGE 5 OF 7

SAMPLE ID: LABORATORY ID: LOCATION: SAMPLE DATE:	MSA-SW37-030311 A1C040534002 MSA-SW37 3/3/2011	MSA-SW38-030311 A1C040534003 MSA-SW38 3/3/2011	MSA-SW39-030311 A1C040534004 MSA-SW39 3/3/2011	MSA-SW40-030311 A1C040534005 MSA-SW40 3/3/2011	MSA-SW41-030311 A1C040534006 MSA-SW41 3/3/2011
MERCURY	0.12 U				
MOLYBDENUM	1.3 J	1.3 J	1.2 J	1.2 J	1.3 J
NICKEL	3.2 J	5 J	3.5 J	3.2 J	2.6 J
SELENIUM	6 U	6 U	6 U	6 U	6 U
SILVER	0.4 U				
THALLIUM	0.7 UL				
VANADIUM	2.9 J	5.2 J	2.2 U	3.5 J	2.2 U
ZINC	41.2 B	51.4 B	24.1 B	33.4 B	29.9 B
FILTERED METALS (ug/l)					
ANTIMONY	0.65 UL				
ARSENIC	2.6 J	2.7 J	2.6 J	3 J	2.7 Ј
BARIUM	30	22.2	17.9 B	15.6 B	18.2 B
BERYLLIUM	1 U	1 U	1 U	1 U	1 U
CADMIUM	0.65 U	0.86 J	0.65 U	0.65 U	0.65 U
CHROMIUM	3.6 U				
COBALT	1.4 J	3.6 J	1.6 J	0.98 J	2.2 J
COPPER	6.8 B	4.1 B	3.5 B	5.8 B	4.3 B
IRON	130 U				
LEAD	0.9 U				
MANGANESE	109	253	114	67.4	161
MERCURY	0.12 U				
MOLYBDENUM	1.6 J	1.3 J	1.2 J	1 J	1.6 J
NICKEL	2.6 J	2.9 J	2.5 J	2.3 J	3.4 J
SELENIUM	6 U	6 U	6 U	6 U	6 U
SILVER	0.4 U				
THALLIUM	0.7 UL				

**TABLE C-1** 

### CHEMICAL ANALYTICAL RESULTS FOR SURFACE WATER SAMPLES, MARCH 2011 FROG MORTAR CREEK LOCKHEED MARTIN, MARTIN STATE AIRPORT, MIDDLE RIVER, MARYLAND PAGE 6 OF 7

LABORATO	TION:	MSA-SW37-030311 A1C040534002 MSA-SW37 3/3/2011	MSA-SW38-030311 A1C040534003 MSA-SW38 3/3/2011	MSA-SW39-030311 A1C040534004 MSA-SW39 3/3/2011	MSA-SW40-030311 A1C040534005 MSA-SW40 3/3/2011	MSA-SW41-030311 A1C040534006 MSA-SW41 3/3/2011
TUNGSTEN						
VANADIUM		2.2 U	2.2 U	2.2 U	2.2 U	2.2 U
ZINC		18.1 B	20.1 B	14.8 B	24 B	21.2 B

### **TABLE C-1**

### CHEMICAL ANALYTICAL RESULTS FOR SURFACE WATER SAMPLES, MARCH 2011 FROG MORTAR CREEK LOCKHEED MARTIN, MARTIN STATE AIRPORT, MIDDLE RIVER, MARYLAND PAGE 7 OF 7

SAMPLE ID: LABORATORY ID: LOCATION: SAMPLE DATE:	A1C040534002 MSA-SW37	MSA-SW38-030311 A1C040534003 MSA-SW38 3/3/2011	MSA-SW39-030311 A1C040534004 MSA-SW39 3/3/2011	MSA-SW40-030311 A1C040534005 MSA-SW40 3/3/2011	MSA-SW41-030311 A1C040534006 MSA-SW41 3/3/2011
MISCELLANEOUS (ug/l)					
HEXAVALENT CHROMIUM	0.56 U	0.56 U	0.56 U	0.56 U	0.56 U
PERCHLORATE		0.72 U		0.72 U	0.72 U

- U- Not detected at the method detection limit shown left of the letter.
- B Result is attributed to laboratory blank contamination per USEPA validation rules.
- J Result is considered estimated.
- L Positive result or detection limit is considered biased low due to technical noncompliance.
- R Result is rejected due to technical noncompliance.
- ug/l micrograms per liter.

Blank cell indicates analysis was not performed for the sample.