September 21, 2007

New Jersey Department of Environmental Protection Division of Remediation Management and Response Bureau of Operations, Maintenance and Monitoring 401 East State Street P.O. Box 432 Trenton, New Jersey 08625-0432

Attn: Mr. Mark Souders, Case Manager

Re: Remedial Action Progress Report

Former Lockheed Electronics Company Site

Watchung, New Jersey ISRA Case No. E90038 TRC Job No. 2542TRC

Dear Mr. Souders:

Enclosed find one original and two copies of a Remedial Action Progress Report for the above referenced site. The report covers the remedial action activities conducted between June 2006 and August 2007.

If you have any questions or need additional information, please call.

Very truly yours,

TRC ENVIRONMENTAL CORPORATION

Danielle Doremus Geologist Stephen E. Tappert Sr. Project Manager

cc: Mayor Janice Allen, Borough of North Plainfield Stan Phillips, Lockheed Martin

Ron Bock, TRC

Roll Bock, TRC

CASE NO. E90038

REMEDIAL ACTION PROGRESS REPORT FORMER LOCKHEED ELECTRONICS COMPANY WATCHUNG, NEW JERSEY

TRC JOB NO. 2542-116473.0000

prepared by:

TRC Environmental Corporation 57 East Willow Street Millburn, New Jersey 07041

September, 2007

TABLE OF CONTENTS

Section No.	<u>Title</u>	Page No
1.0	INTRODUCTION	1
2.0	SITE INFORMATION	2
	2.1 Site Description	
	2.2 Site History	2
	2.3 Surrounding Area and Land Use	3
	2.4 Topography and Surface Water	2 2 3 3 3
	2.5 Geology	
	2.6 Hydrogeology	4
	2.7 Well Search	4
	2.8 Baseline Ecological Evaluation	4 5 5
	2.9 Area of Concern Summary	
	2.10 Contact Information	5
3.0	TECHNICAL OVERVIEW	6
	3.1 Remediation Objective	6
	3.2 Applicable Remediation Standard	6
	3.3 Sampling Procedures	6
	3.4 Subcontractors	7
	3.5 Reliability of the Laboratory Analytical Data	7
	3.6 Factors Influencing Data	7
4.0	REMEDIAL ACTION REPORT	8
	4.1 Ground Water Monitoring and Sampling Activities	8
	4.1.1 Water-Level Measurements	8
	4.1.2 Ground Water Sample Collection	8
	4.1.3 Summary of Ground Water Results	9
	4.2 Surface Water Monitoring and Sampling Activities	10
	4.2.1 Surface Water Sample Collection	10
	4.2.2 Summary of Surface Water Results	10
	4.3 System Performance Monitoring and Sampling	10
5.0	CONCLUSIONS	12

LIST OF FIGURES

Figure No.	<u>Title</u>			
1	Site Location Map			
2	Site Plan			
3	Shallow Zone Contour Map – September 19, 2006			
4	Intermediate Zone Contour Map – September 19, 2006			
5	Deep Zone Contour Map – September 19, 2006			
6	Shallow Zone Contour Map – March 6, 2007			
7	Intermediate Zone Contour Map – March 6, 2007			
8	Deep Zone Contour Map – March 6, 2007			
9	Quarterly Ground Water Sampling Results September 2003 – March 2007			
10	Surface Water Sampling Results July 2003 – March 2007			
LIST OF TABLES				
	LIST OF TABLES			
Table No.	LIST OF TABLES Title			
Table No.				
	Title			
1	Title Revised Water Monitoring & Sampling Schedule			
1 2	Title Revised Water Monitoring & Sampling Schedule Ground Water Elevation Data			
1 2 3	Title Revised Water Monitoring & Sampling Schedule Ground Water Elevation Data Hydrostratigraphic Classification			
1 2 3 4	Title Revised Water Monitoring & Sampling Schedule Ground Water Elevation Data Hydrostratigraphic Classification Ground Water Analytical Results - September 2006 through March 2007			
1 2 3 4 5	Title Revised Water Monitoring & Sampling Schedule Ground Water Elevation Data Hydrostratigraphic Classification Ground Water Analytical Results - September 2006 through March 2007 Historical TCE Concentrations in Ground Water			
1 2 3 4 5	Title Revised Water Monitoring & Sampling Schedule Ground Water Elevation Data Hydrostratigraphic Classification Ground Water Analytical Results - September 2006 through March 2007 Historical TCE Concentrations in Ground Water Surface Water Analytical Results - September 2006 through March 2007			

LIST OF APPENDICES

<u>Appendix</u>	<u>Title</u>
A	NJDEP Contour Map Reporting Forms
В	Plots of TCE Concentration Versus Time for Selected Monitoring Wells
C	Stream Sampling Field Measurements
D	Plots of TCE Concentration Versus Time for Stream Locations
E	Health and Safety Plan

APPENDIX A

NJDEP Contour Map Reporting Forms

APPENDIX B

Plots of TCE Concentration Versus Time for Selected Monitoring Wells

APPENDIX C

Stream Sampling Field Measurements

APPENDIX D

Plots of TCE Concentration Versus Time for Stream Locations

APPENDIX E

Health and Safety Plan

CASE NO. E90038

REMEDIAL ACTION PROGRESS REPORT

FORMER LOCKHEED ELECTRONICS COMPANY WATCHUNG, NEW JERSEY

1.0 INTRODUCTION

TRC Environmental Corporation (TRC) has prepared this Remedial Action Progress Report (RAPR) for the former Lockheed Electronics Company (LEC) site in Watchung, New Jersey (The site is now operating as the Watchung Square Mall). Figure 1 is a portion of the USGS Chatham, NJ 7.5 Minute Quadrangle depicting the site location, local topography, surface drainage, and cultural patterns.

This report discusses the sampling methods and results for the remedial program completed from June 2006 to May 2007. Background site information is summarized in section 2.0. Section 3.0 presents an overview of the field program completed. Section 4.0 presents the results of the remedial action and section 5.0 presents the conclusions and recommendations.

2.0 SITE INFORMATION

2.1 <u>Site Description</u>

The former LEC site was comprised of approximately 80 acres of land north of Route 22 in the boroughs of Watchung and North Plainfield in Somerset County, New Jersey (Figure 1).

2.2 Site History

The site was originally developed in 1953 by Stavid Engineering. Lockheed Corporation acquired Stavid Engineering in 1959 and created Lockheed Electronics Corporation, which was subsequently operated by Sanders, A Lockheed Martin Company (Sanders). Additional land acquisitions resulted in the current site boundaries. The site was used to manufacture, test, and assemble electronic components. Trichloroethene (TCE) was used in Building 7 as a solvent to clean circuit boards.

Site operations ceased in 1989, triggering a site investigation under the New Jersey Environmental Cleanup Responsibility Act (ECRA). Regulations promulgated under ECRA have been superseded by new regulations pursuant to the Industrial Site Recovery Act (ISRA). The initial investigations identified several areas of concern (AOCs) and included collection of soil, sediment, ground water, and surface water samples. Investigation and remedial action results have been documented in a series of reports submitted to the NJDEP since 1991. Soil impacted by volatile organic compounds (VOCs), primarily TCE, was identified in the vicinity of Building 7 and Building 3. Soil impacted by fuel oil contamination was identified under Building 2. Soil AOCs were addressed either through excavation and off-site disposal or soil vapor extraction, and site-wide soil remediation has been completed to the satisfaction of the NJDEP.

An extensive monitoring well network has delineated a ground water plume comprised primarily of TCE in the local bedrock aquifer and shallow unconsolidated sediments in certain locations. TCE has been reported at concentrations exceeding the Ground Water Quality Criteria (GWQC) of 1 microgram per liter (µg/L) (promulgated at N.J.A.C. 7-9.6) in ground water beneath the site, extending to the southwest approximately 7,000 feet. Contaminant migration is influenced by both bedrock structure and local ground water discharge areas, particularly Crab Brook. The axis of the plume extends to the southwest, approximating regional bedrock strike. Historically, the reach of Crab Brook between North Avenue (Norwood Avenue) and Watchung Avenue consistently yielded water samples exhibiting measurable TCE concentrations exceeding the Surface Water Quality Criteria of 1.09 µg/L. Location SW-2 consistently exhibits the highest concentrations, indicating a significant discharge of impacted ground water at or near this location. Vertical hydraulic gradients are generally downward except for the immediate vicinity of Crab Brook, and TCE concentrations decrease sharply south of Crab Brook. currently 43 active monitoring wells associated with this project in the Boroughs of Watchung and North Plainfield, all of which are installed as either well couplets or triplets to evaluate the vertical distribution of contaminants. Ground water and surface water of Crab Brook are the only AOCs remaining related to the former LEC site.

2.3 Surrounding Area and Land Use

The property is located in a mixed residential and commercial area. The Route 22 strip is predominately commercial with residential properties located on side streets. A condominium complex is located west of the site.

2.4 <u>Topography and Surface Water</u>

The former LEC site shows a range in elevation from 240 to 320 feet above mean sea level (Figure 1). The closest surface water body is Crab Brook. Crab Brook is a tributary of Stony Brook, which discharges to Green Brook and ultimately discharges to the Raritan River. Both Stony Brook and Green Brook are listed in N.J.A.C. 7:9B-1.15(f) and assigned stream classification FW2-NT, which becomes the classification for unlisted Crab Brook. Surface water quality criteria for streams classified as FW2-NT are provided at N.J.A.C. 7:9B-1.14(c). Designated uses for the FW2 classification (promulgated at N.J.A.C. 7:9B-1.12(c)) include 1) maintenance, migration and propagation of the natural and established biota; 2) primary and secondary contact recreation; 3) industrial and agricultural water supply; 4) public potable water supply after conventional filtration and disinfection; and 5) any other reasonable uses. The NT designation indicates non-trout, which provides for less stringent standards for parameters directly related to trout survival including dissolved oxygen, suspended solids, and temperature deviations.

North of Route 22, Crab Brook is an intermittent stream that carries much of the stormwater drainage from the former LEC site and adjacent parcels. South of Route 22, the brook flows westerly through a buffer zone between Route 22 and residential neighborhoods. The streambed is generally bedrock with a thin veneer of sandy sediment, and stream banks are steep and often undercut. Storm drains capturing runoff from Route 22 discharge to the brook at more or less regular intervals; drain pipes of unknown origin from residences are also present along the south bank of the brook. The Crab Brook corridor has historically been subject to overflow and frequent flooding, and the stream channel morphology reflects regular scouring with little or no aquatic vegetation present.

The primary source of water for this reach of the brook is from precipitation, originating from runoff from Route 22 and adjacent land parcels.

2.5 Geology

The overburden at the site is generally composed of construction fill associated with the remediation area of former Building #3, a sandy outwash deposit, and a thin layer of glacial till which overlies the bedrock.

The thickness of the overburden decreases towards the south-southwest but increases south of Crab Brook. The overburden was thinnest at well cluster MW-546 (three feet) and generally increases south of Route 22 with the greatest thickness of 47 feet observed at well cluster MW-542.

The reddish-brown shale and siltstone of the Passaic Formation reported in previous descriptions of the bedrock geology underlying the subject area is consistent with what was observed during the off-site investigation. The upper surface of the bedrock was generally weathered and soft, and became more competent with depth. It was difficult to discern small-scale changes in lithology since air rotary drilling method was used during drilling and a vacuum truck was used

to collect the cuttings. Bedrock surface topography generally slopes to the southeast parallel to the Watchung Mountains. The highest bedrock elevation is approximately 138 feet above sea level at well cluster MW-548 and the lowest is approximately 53 feet above sea level at wells P-524 and MW-542.

2.6 <u>Hydrogeology</u>

Ground water at the site is divided into three distinct zones, the water table (overburden/shallow bedrock) zone; the intermediate bedrock zone; and the deeper bedrock zone. The ground water in the bedrock enters the former LEC site from the easterly direction, moves across the site to the southwest, and then trends in a more southerly direction toward Crab Brook and beyond.

Ground water in the shallow water table zone flows across the former LEC site under an average horizontal gradient of 0.002 feet per foot (ft/ft). Ground water gradients in the shallow system steepen significantly (up to 0.018 ft/ft) southwest of the site.

The potentiometric surface contours in the deeper bedrock are slightly more uniform in gradient and direction than the shallow ground water system and suggest a more uniform flow system with depth in the bedrock. The direction of ground water flow is to the south at an average horizontal gradient of 0.004 ft/ft. With the exception of the area near Crab Brook east of North Drive, vertical gradients are generally downward under static conditions. Shallow ground water discharges to Crab Brook during periods of normal ground water levels.

2.7 Well Search

Water supply well searches were conducted by McLaren-Hart in 1992 and Dan Raviv Associates (Raviv) in 1993, and the results presented in the RIR/RAW submitted by SME in July 1995. The Raviv well search encompassed an area approximately 1.5 miles wide by 4 miles long, and included portions of Watchung, North Plainfield, and Green Brook. A total of 233 wells were identified, which included 136 domestic wells, 8 industrial supply wells, 78 monitoring or recovery wells, and 11 public water supply wells.

As a result of those investigations, 40 private wells (domestic, industrial, and commercial) were sampled and six domestic wells were taken out of service and replaced with public water. Five additional wells were identified for sampling in 1998, of which only two were in use for potable supply. Samples were collected from the two wells and analyzed for VOCs. No compounds associated with the former LEC site were identified.

The nearest active public water supply well is the Rock Avenue Well, located approximately 2.8 miles west of the former LEC site. According to Elizabethtown Water Company (EWC) officials, this well is 350 feet deep and produces 350 gallons per minute (gpm) of water. Approximately 2,000 feet further west the Green Brook wellfield is located north of Green Brook between Jefferson Avenue and Washington Avenue. There are 10 active wells in this wellfield, ranging in depth from 376 feet to 545 feet below grade and pumping at rates ranging from 60 gpm to 650 gpm. The wellfield is serviced by an air stripping tower to treat the influent water for VOCs. The air stripper also treats water from the Rock Avenue Well. According to EWC officials, only treated effluent from the strippers is sampled and analyzed on a regular basis.

An inactive public supply well, identified in the Raviv well survey as well P-4, is located approximately 400 feet southwest of well cluster MW-545. This well is 220 feet deep and has been inactive for many years due to VOC contamination not associated with the former LEC site. Another inactive well, well P-5, is located on Harrington Street 4,000 feet west-northwest of well P-4 and is drilled to a depth of 311 feet. Although EWC officials could not be specific about the contaminants reported in the inactive wells, they indicated that chlorinated solvents were the category of contaminants most often encountered.

Based upon this information no active public supply wells are likely to be impacted by the contaminant plume from the former LEC site, even under a no-action scenario. Although there are active domestic wells located within the Classification Exception Area, none of the sampling of domestic wells conducted to date has reported exceedences of drinking water standards for target compounds associated with the former LEC site.

2.8 <u>Baseline Ecological Evaluation</u>

A Baseline Ecological Evaluation (BEE) was conducted at the former LEC site during February 1999 by Environmental Management Group, Inc. and Sevee and Maher Engineers, Inc. The BEE concluded that there was no measurable acute effect on aquatic species in Crab Brook from the inflow of the former LEC site plume containing TCE. The NJDEP approved the BEE in the August 9, 1999 letter concluding that no further ecological evaluation with regard to Crab Brook was required.

2.9 <u>Area of Concern Summary</u>

Ground water and surface water of Crab Brook are the only AOCs remaining related to the former LEC site.

2.10 Contact Information

The following is a list of the applicable contact information. Note that TRC is the lead responsible party pursuant to a Remediation Agreement executed in 2001.

Site Owner/Operator	641 Shunpike Road	Frank Cosentino	
Watchung Square Assoc.,	Chatham, NJ 07928	973.966.2800	
LLC			
Former Site Owner	6801 Rockledge Drive	Stan Phillips	
Lockheed Electronics Corp.	Bethesda, MD 20817	817.763.7629	
Consultant		Stephen E. Tappert	
TRC Environmental	57 East Willow Street	973.564.6006 x 240	
Corporation	Millburn, NJ 07041	Danielle Doremus	
_		973.564.6006 x 221	

3.0 TECHNICAL OVERVIEW

The initial site investigation under the New Jersey Environmental Cleanup Responsibility Act (ECRA) commenced when operations at the site ceased in 1989. Regulations promulgated under ECRA have been superseded by new regulations pursuant to the Industrial Site Recovery Act (ISRA). The initial investigations identified several areas of concern (AOCs) and included collection of soil, sediment, ground water, and surface water samples. Soil AOCs were addressed either through excavation and off-site disposal or soil vapor extraction, and site-wide soil remediation has been completed to the satisfaction of the NJDEP.

An extensive monitoring well network delineated a ground water plume comprised primarily of TCE in the local bedrock aquifer. There are currently more than 40 active monitoring wells and piezometers associated with this project in the Boroughs of Watchung and North Plainfield, all of which are installed as either well couplets or triplets to evaluate the vertical distribution of contaminants.

The ground water extraction system (GWES) was activated on July 17, 2003. Ground water is pumped from extraction well RW-1, located on North Drive in North Plainfield, at an approximate rate of 130 gallons per minute (gpm). In addition, shallow ground water is extracted intermittently from an interceptor trench located on New Jersey Department of Transportation (NJDOT)-owned land on the northeast corner of Route 22 and North Drive. Extracted ground water is treated by granular activated carbon in a treatment plant located on the NJDOT-owned land adjacent to North Drive, and discharged to Crab Brook in accordance with NJPDES permit No. NJ0105899G. The GWES has worked almost continuously from start-up and has functioned as designed.

The last progress report, submitted in May 2006, presented data collected from September 2005 through March 2006. Two semi-annual sampling events have occurred since the last report submittal. Quarterly ground water sampling and monthly stream sampling were reduced to semi-annually as approved by the NJDEP in December 2005. The approved sampling schedule is provided in Table 1. Section 4.1.3 of this report presents the results of the semi-annual ground water sampling events conducted in September 2006 and March 2007. Results from the stream sampling events are presented in Section 4.2.2. Section 4.3 contains monthly system performance results and provides an overview of the GWES.

3.1 Remediation Objectives

The objectives of the activities conducted at this site are to remediate contaminants of concern to the applicable remediation standards to obtain No Further Action determination.

3.2 Applicable Remediation Standards

The applicable remediation standards for ground water are the NJDEP's Ground Water Quality Standards (GWQS). The applicable remediation standards for surface water are the New Jersey Fresh Water-2 Quality Criteria (FWQC).

3.3 Sampling Procedures

The remediation activities were performed in accordance with the NJDEP's *Technical Requirements for Site Remediation* (TRSR) and *Field Sampling Procedures Manual*. The

ground water samples were submitted to Severn Trent Laboratories, Inc. (STL) of Edison, New Jersey, a New Jersey-certified laboratory.

3.4 <u>Subcontractors</u>

Severn Trent Laboratories, Inc.	Ron Mazur
Edison, New Jersey	(732) 329-0200
NJ Certification # 12028	

3.5 Reliability of the Laboratory Analytical Data

Based on a review of the laboratory reports, TRC did not further qualify or reject any data points. Therefore, these data are considered to be valid and useful for the intended purposes. All method specified calibrations and quality control performance criteria were met for this job, except as noted in the conformance/non-conformance summaries provided in the laboratory deliverable packages.

3.6 Factors Influencing Data

There were no significant events or seasonal variations that are known to have affected the sampling procedures or the results of the ground water or surface water sampling presented in this report.

4.0 REMEDIAL ACTION REPORT

Previous ground water and surface water investigations have delineated a ground water plume comprised primarily of TCE in the local bedrock aquifer and shallow unconsolidated sediments in certain locations. TCE has been reported at concentrations exceeding the GWQC of 1 microgram per liter (µg/L) (promulgated at N.J.A.C. 7-9.6) in ground water beneath the site, extending to the southwest approximately 7,000 feet. A ground water extraction system was activated on July 17, 2003. Ground water is pumped from extraction well RW-1, located on North Drive in North Plainfield, at an approximate rate of 130 gpm. Currently, quarterly effluent sampling and monthly performance sampling is conducted to monitor the effectiveness of the recovery system. Ground water and surface water sampling is conducted on a semi-annual basis to monitor contaminant migration.

4.1 Ground Water Monitoring and Sampling Activities

Ground water monitoring and sampling events were conducted in September 2006 and March 2007 in accordance with the sampling schedule presented in Table 1. One well (P-522A) could not be sampled during the September 2006 event due to an obstruction. Results for the sampling events are presented in the sections below.

4.1.1 Water-Level Measurements

Water level measurements were collected on September 19, 2006 and March 6, 2007 at selected monitoring wells associated with the Site. Table 2 provides depth to water (DTW) measurements and water level elevations for these sampling events.

The water level elevations were used to prepare ground water contour maps. Ground water flow directions for the water table (overburden/shallow bedrock) zone, the intermediate bedrock zone, and the deeper bedrock zone are depicted on Figures 3 through 8, using the hydrostratigraphic classification presented in Table 3. The ground water elevation for extraction well RW-1 was included on both the shallow and intermediate zone contour maps during the September 2006 event. During the March 2007 event, a water-level measurement could not be taken from extraction well RW-1. The contour figures from both the September 2006 event and the March 2007 event indicate that ground water in the bedrock enters the former LEC site from the east, flows across the site to the southwest, and then trends in a more southerly direction toward Crab Brook and beyond. Ground water flow in the shallow and intermediate zones has been altered significantly since the continuous pumping at extraction well RW-1 began in July 2003. A cone of depression is apparent around extraction well RW-1 in both of these zones. In the deeper zone, the effect of pumping is less pronounced and ground water flows south towards Crab Brook and beyond. Contour Map Reporting Forms are presented in Appendix A.

Ground water elevation measurements from both the September 2006 and March 2007 events are consistent with the last several years of ground water elevation data. Aside from elevation differences associated with precipitation patterns, the ground water flow regime is strongly influenced by the pumping well and has not changed over the last several years of system operation.

4.1.2 Ground Water Sample Collection

Analytical results for the ground water samples collected during both the September 2006 and March 2007 events are provided in Table 4, and a summary table of historical results for

contaminants of concern are provided in Table V. Concentrations that exceed NJDEP Ground Water Quality Criteria (New Jersey Administrative Code 7:9-6) are highlighted in Table IV. The complete ground water laboratory data packages and the electronic data deliverables are included under separate cover. Sampling results for the monitoring events are discussed below in Section 4.1.3.

At each sampled well location, TRC collected the samples from the passive diffusion bags (PDBs) at selected intervals in the wells and filled the appropriate bottleware for analysis of volatile organic compounds (VOC+10) using EPA Method 624+10. The samples were submitted to STL for analysis.

4.1.3 Summary of Ground Water Results

The highest TCE concentrations reported during the September 2006 event were from on-site wells MW-549A and MW-549B with concentrations of 940 μ g/L and 1,100 μ g/L, respectively. The highest TCE concentrations reported during the March 2007 event were from on-site wells MW-549A and MW-549B with concentrations of 870 μ g/L and 710 μ g/L, respectively. These two wells are located in the former source area and are hydraulically upgradient from the pumping wells. During the September 2006 event, off-site wells MW-502B, MW-506A and MW-550B all reported TCE concentrations in excess of 200 μ g/L. During the March 2007 event, off-site wells MW-506A, MW-507A and MW-550B all contained TCE concentrations in excess of 200 μ g/L. These wells are located closest to the pumping well RW-1, within the cone of depression. During both the September 2006 and March 2007 sampling events, downgradient well clusters, including the MW-544 and MW-545 wells, reported single digit or non-detectable concentrations of TCE, the contaminant of concern for the Lockheed site.

Historical TCE results for the sampled wells are presented in Table 5, and Figure 6 illustrates TCE and other detected VOC concentrations from the sampled wells since the GWES became operational. Historical TCE concentrations versus time plots are presented in Appendix D for selected wells. The plume and compliance wells were sampled during both the September 2006 and March 2007 events. The background wells were only sampled during the March 2007 event. The plume wells are located near the former source area or directly downgradient and influenced the most by the active pumping at extraction well RW-1. General decreasing trends since pumping began in July 2003 were observed in most plume wells with some concentration fluctuations. The wells designated as compliance wells have also exhibited a decreasing trend in TCE concentrations.

Particularly notable is well MW-502B, located south of the extraction well at the intersection of North Drive and Route 22. Concentrations of TCE have decreased in this well from greater than 1,000 μ g/L before pumping to less than 100 μ g/L. Well MW-506A, located on North Drive, north of the extraction well, has also demonstrated a pronounced decreasing trend. These wells are within the cone of depression formed by the extraction well and provide a good indication of water quality in the cross-section of the plume directly impacted by the pumping program.

Other contaminants, including chloroform, tetrachloroethene (PCE), 1,1- Dichloroethane, cis-1,2-dichloroethene (cis-1,2-DCE), were detected in some of the sampled wells at relatively low concentrations. PCE, ethanes, and aromatic hydrocarbons are not associated with the LEC plume. Most of the off-site monitoring wells are located near major roadways, on streets and

parking lots, and the data indicate that there are other VOC sources degrading ground water quality in the general vicinity of the LEC plume.

4.2 <u>Surface Water Monitoring and Sampling Activities</u>

During the September 2006 and March 2007 sampling events, surface water samples were collected from four locations: SW-1, SW-2, SW-3 and SW-4. The approved revised monitoring plan eliminates SW-12 as a sampling point due to the presence of other sources and the distance from the Lockheed site. The surface water sample locations are presented on Figure 2.

4.2.1 Surface Water Sample Collection

During the September 2006 and March 2007 sampling events, stream flow measurements were collected at the sample locations to estimate stream discharge volume. Field measurements and calculations for stream flow are presented in Appendix C.

The surface water samples were submitted to STL and analyzed for VOC+10 using EPA Method 624+10. The surface water analytical results are presented in Table 6 and on Figure 7. The complete surface water laboratory data packages and the electronic data deliverables are included under separate cover.

4.2.2 <u>Summary of Surface Water Results</u>

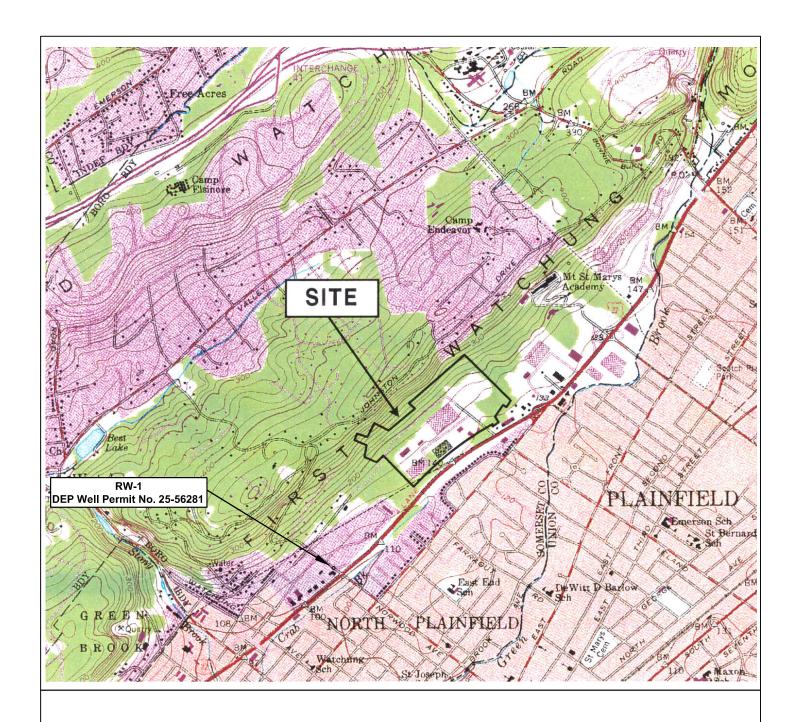
Historical TCE results for the five surface water locations are presented in Table 7 and on Figure 7. After the GWES was activated in July 2003, significant decreases in TCE concentrations at sampling locations SW-2, SW-3 and SW-4 were observed as shown on graphs of historical TCE concentrations versus time (Appendix D). The most significant decrease in TCE concentrations occurred at location SW-2, which illustrates that pumping at extraction RW-1 well is controlling discharge of ground water containing TCE to Crab Brook. TCE concentrations at surface water locations SW-1, SW-2, SW-3, and SW-4 were below the applicable criteria or non-detect during the September 2006 monitoring period. TCE concentrations at surface water locations SW-1, SW-2, SW-3, and SW-4 were non-detect during the March 2007 monitoring period. These stream locations are all directly downgradient of the pumping well, and within the cone of depression formed by the pumping well along bedrock strike.

4.3 System Performance Monitoring and Sampling

Ground water is pumped continuously from extraction well RW-1 at an average rate of approximately 130 gpm. The interceptor trench has a sump with a pump which is controlled by a level sensor. When the water level in the trench rises, the pump is started and remains on until the level declines. Normally, the cone of depression formed by the extraction well maintains a low water level and the pump in the interceptor trench is off; heavy precipitation is generally the trigger for this pump.

The discharge to Crab Brook is monitored pursuant to NJPDES permit No. NJ0105899G. The original permit was an individual permit which required monthly effluent samples, to be analyzed for VOC+10, lead, chemical oxygen demand (COD) and total suspended solids (TSS). In addition, the NJPDES permit also required quarterly sampling for whole effluent toxicity testing (conducted by Aquatic Laboratory Services, Inc.). In June 2005 the individual NJPDES permit was revoked and reissued as a General Remediation Permit; as a result, the effluent sampling requirements have been reduced from monthly to quarterly. The whole effluent toxicity testing has also been reduced from two species to one species. In addition to the


quarterly NJPDES sampling, TRC continues to collect monthly performance samples to evaluate system performance and ensure compliance with discharge requirements. No effluent sample has ever reported an exceedance for any permit requirement.

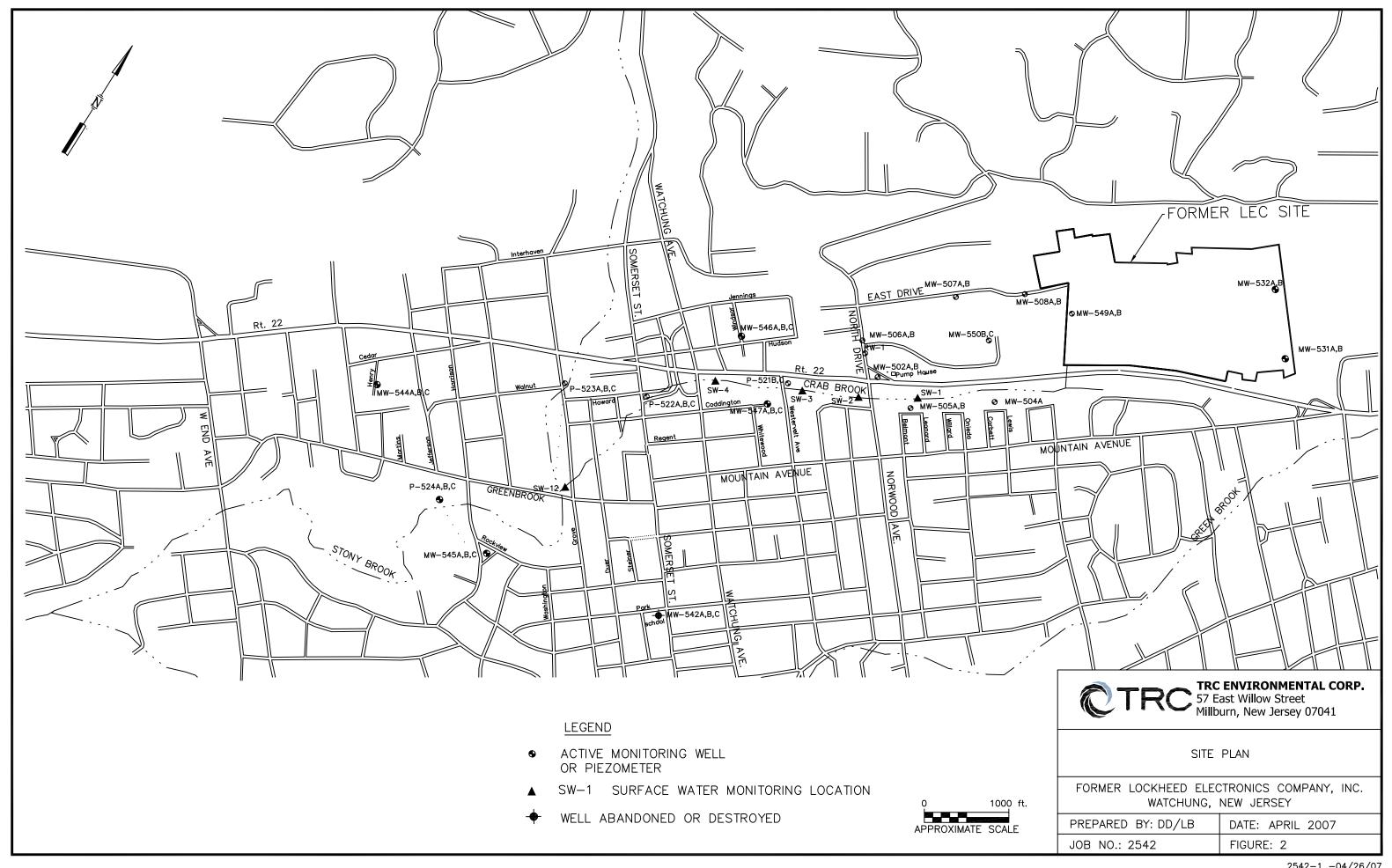

Performance sampling results are presented in Table 8. Influent TCE concentrations for this reporting period ranged from 60 μ g/L in March 2007 to 260 μ g/L in March 2006. Initial concentrations during the pumping test on the extraction well were nearly 1,000 μ g/L. Effluent TCE concentrations have never exceeded 1.7 μ g/L during the reporting period, which is well below the NJPDES permit limit for TCE of 5.4 μ g/L.

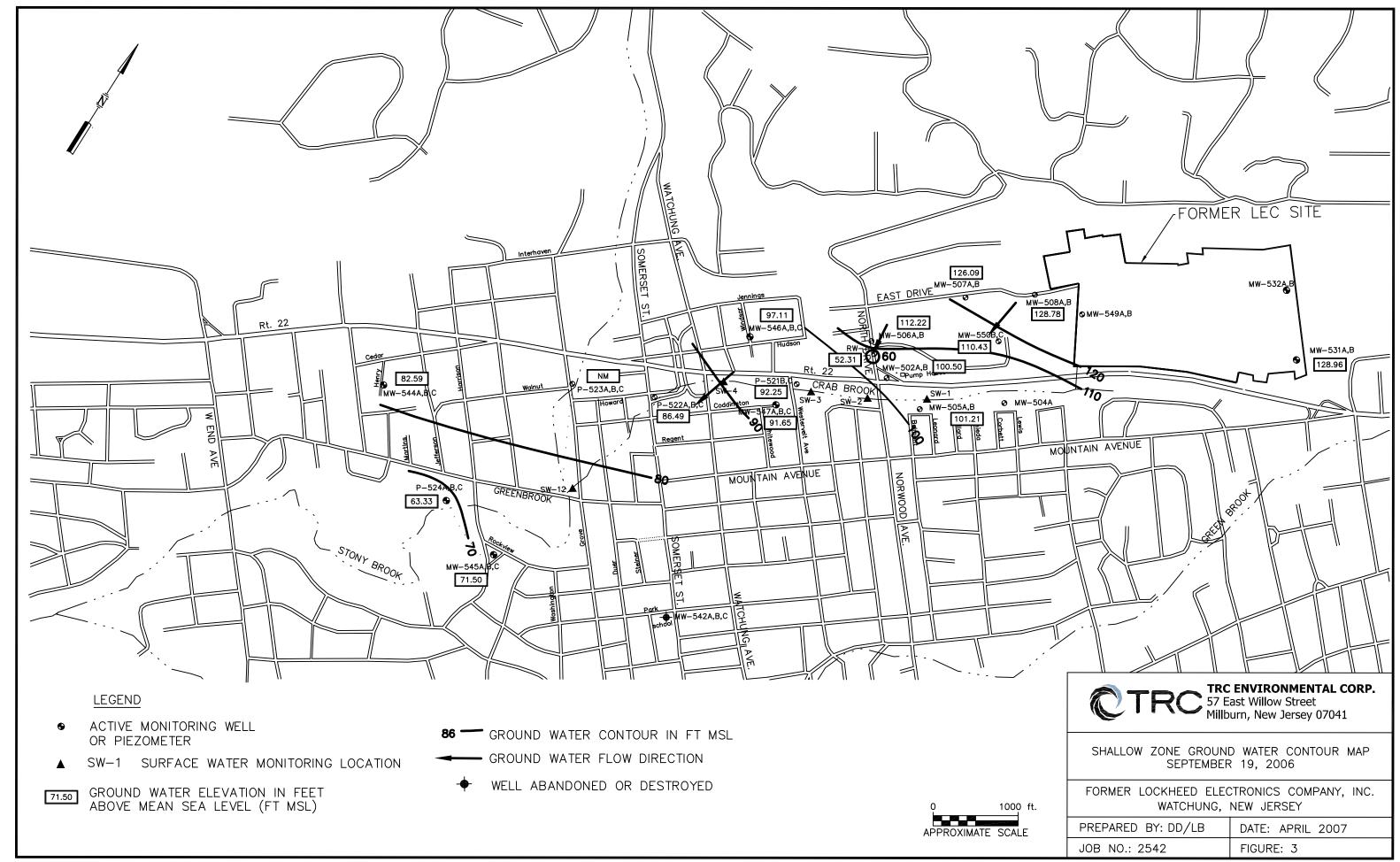
5.0 CONCLUSIONS

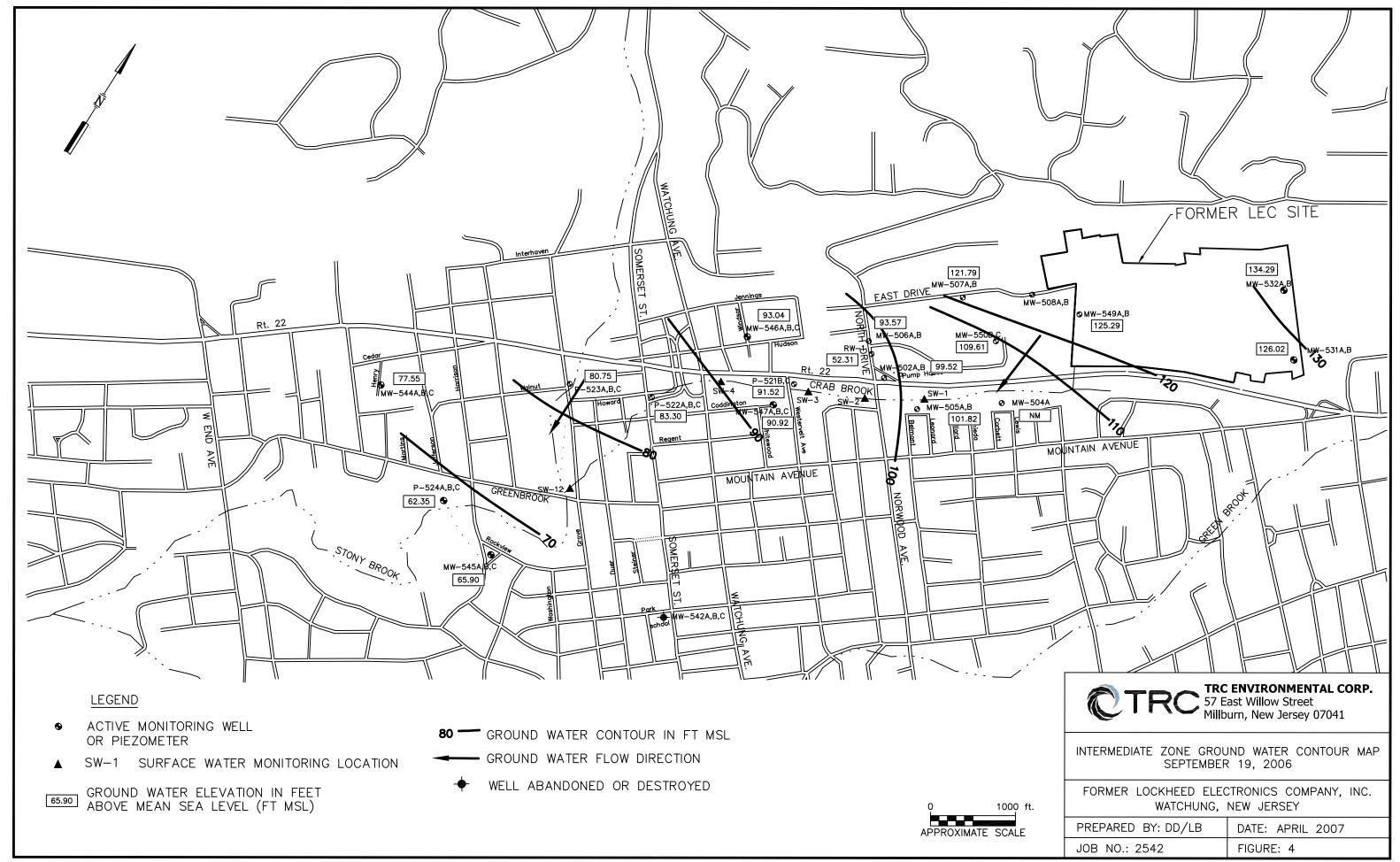

Based upon the information provided in this progress report, the ground water extraction system at the former Lockheed site continues to function as designed. The discharge of contaminated ground water to Crab Brook is negligible, the ground water plume is being captured by the treatment system, and concentrations of contaminants are generally continuing to decline. The treatment plant is operating efficiently and no discharge permit limits have been exceeded.

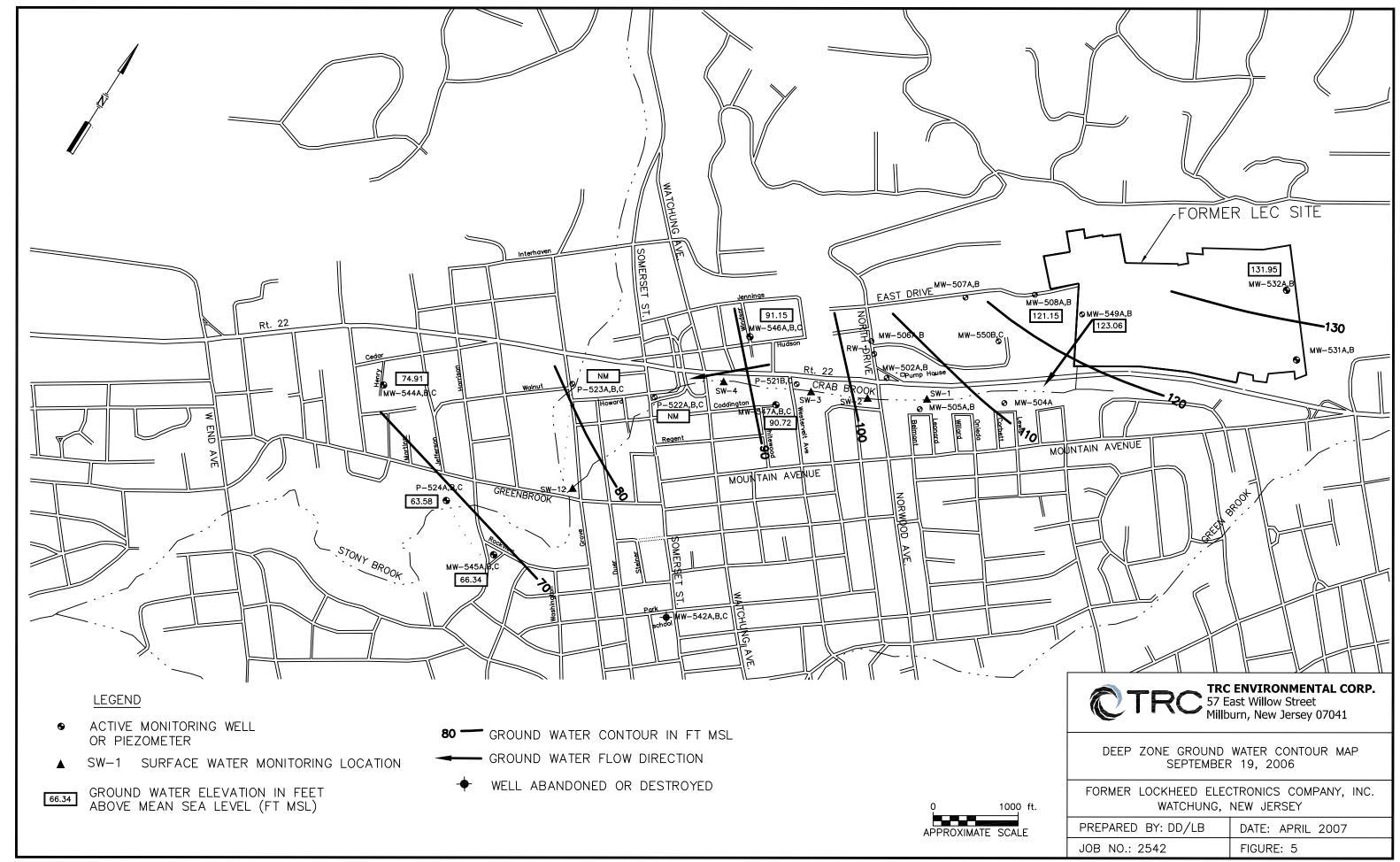
The next annual report will be submitted in May 2008, and will cover monitoring and remedial activities through March 2008. An implementation schedule for the proposed activities is included as table 9. The Health and Safety Plan is included as Appendix E.

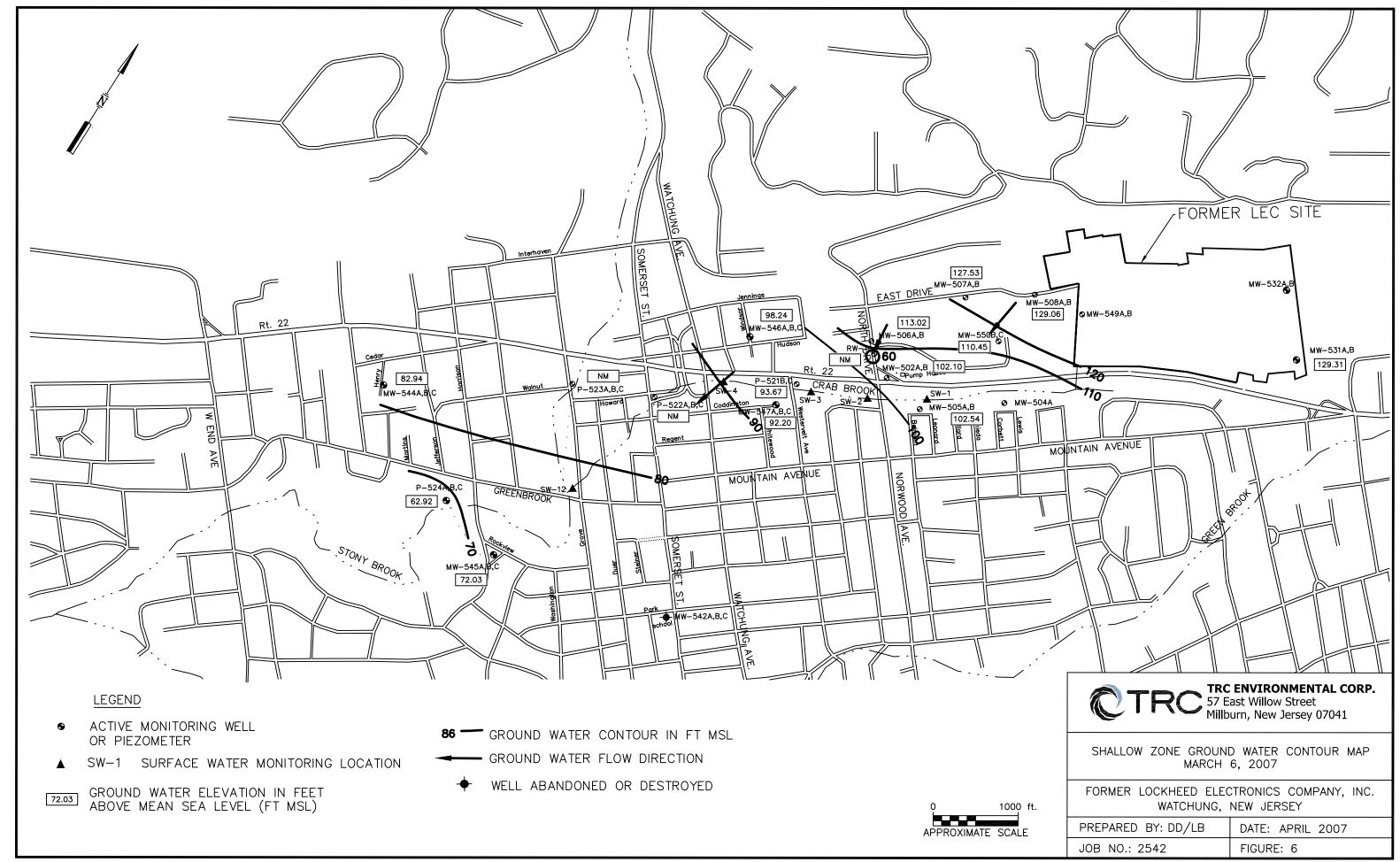
SOURCE: U.S.G.S. CHATHAM, NJ 7.5 MINUTE QUADRANGLE

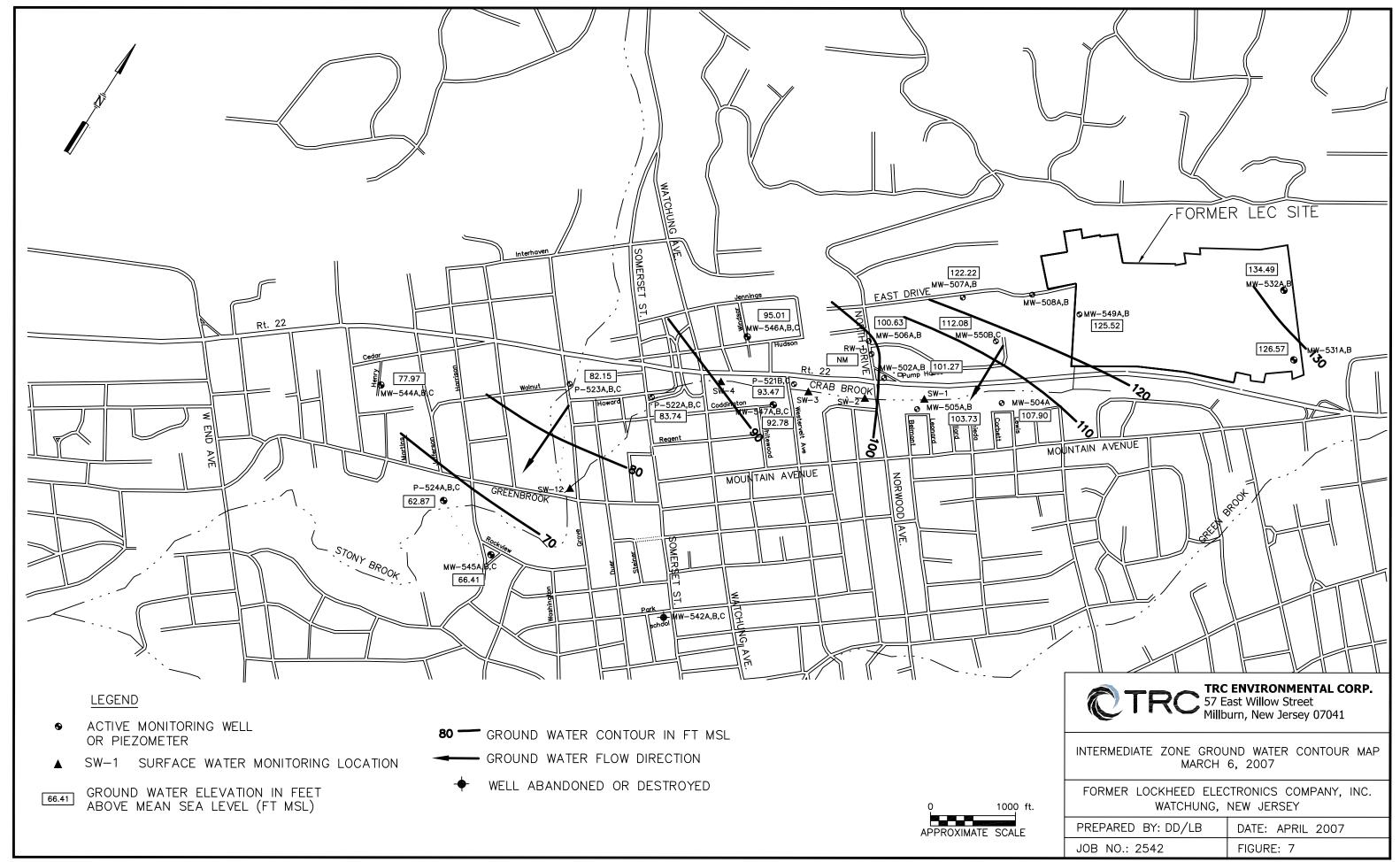


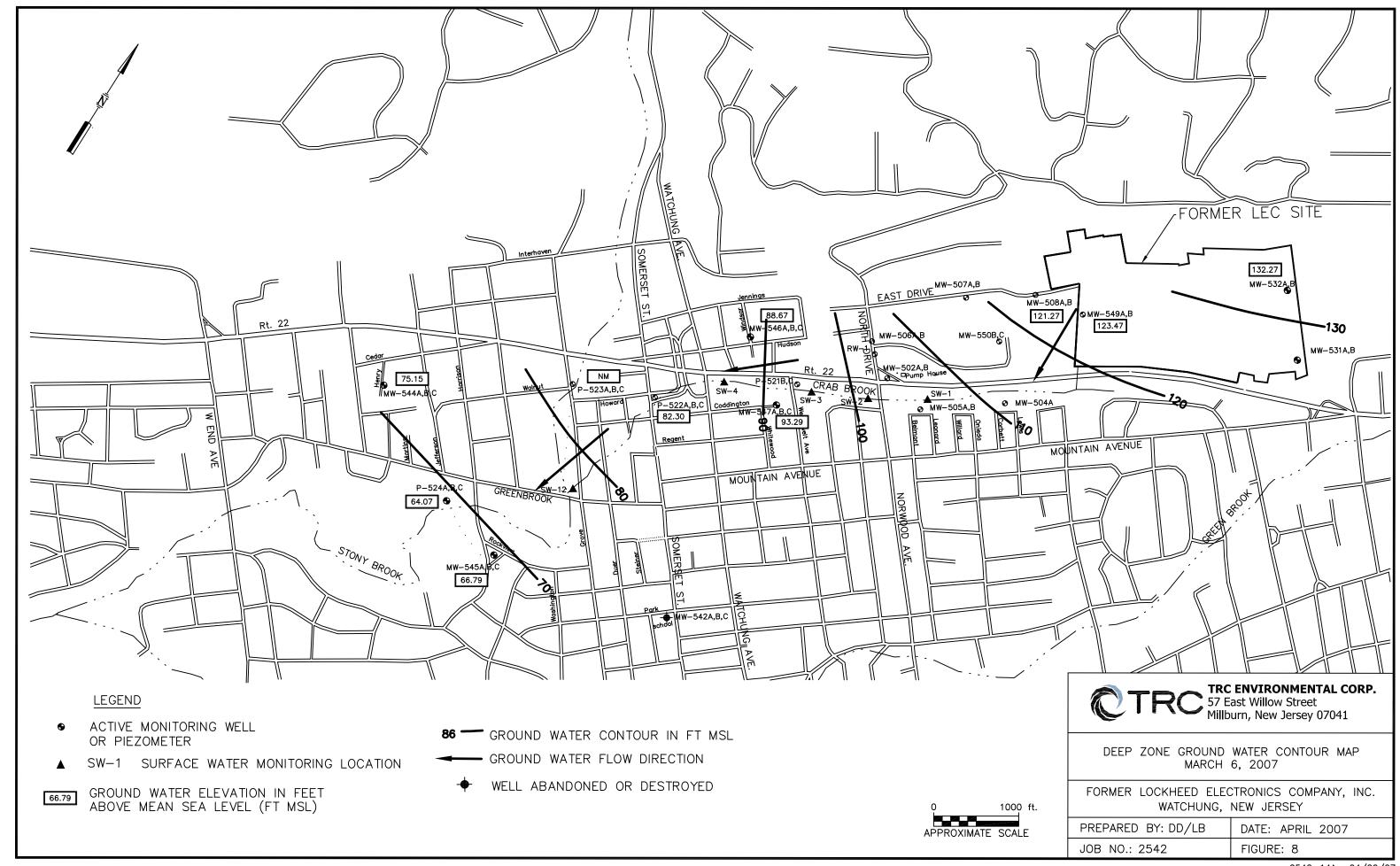

SITE LOCATION MAP

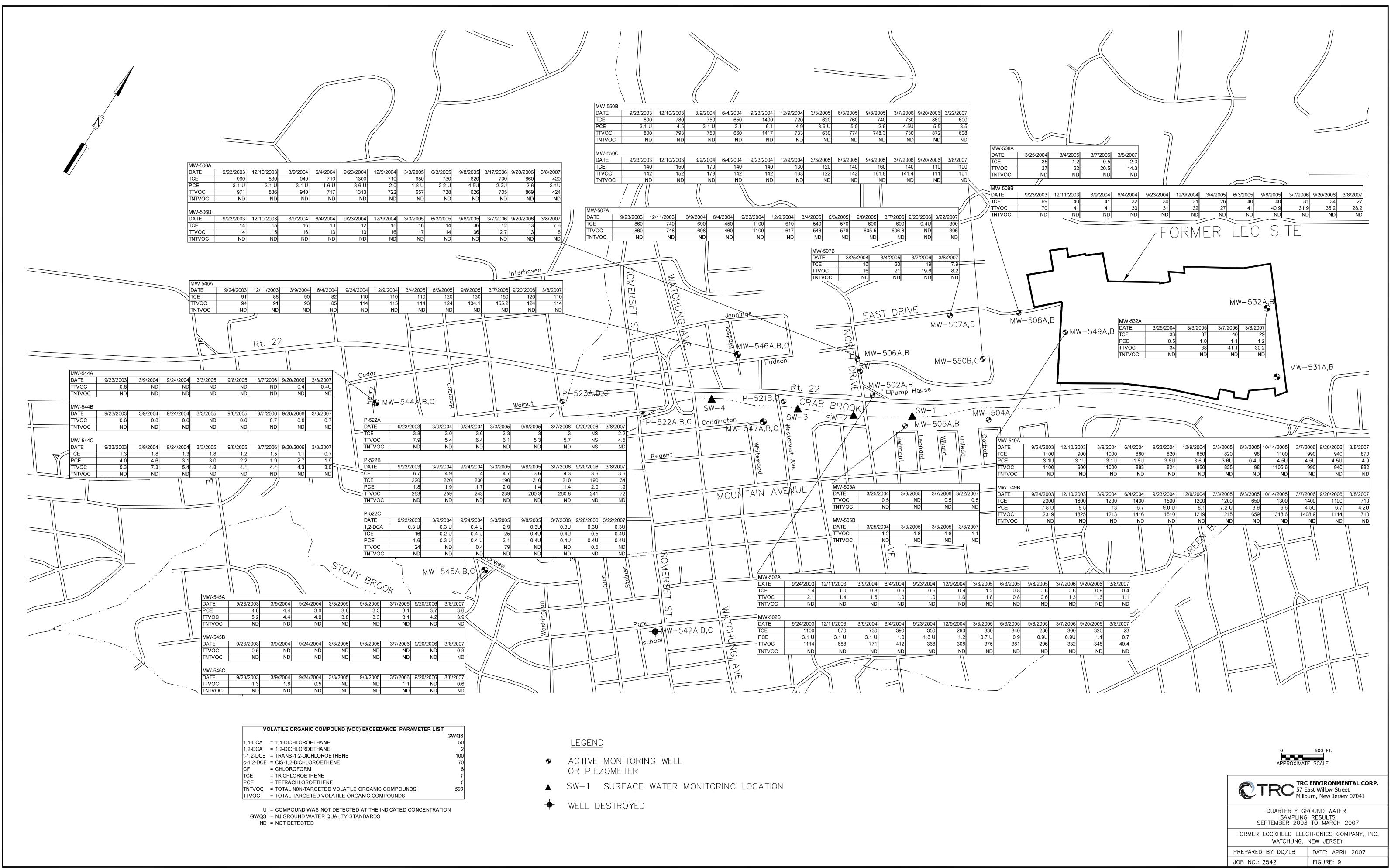

FORMER LOCKHEED ELECTRONICS COMPANY, INC. WATCHUNG, NEW JERSEY

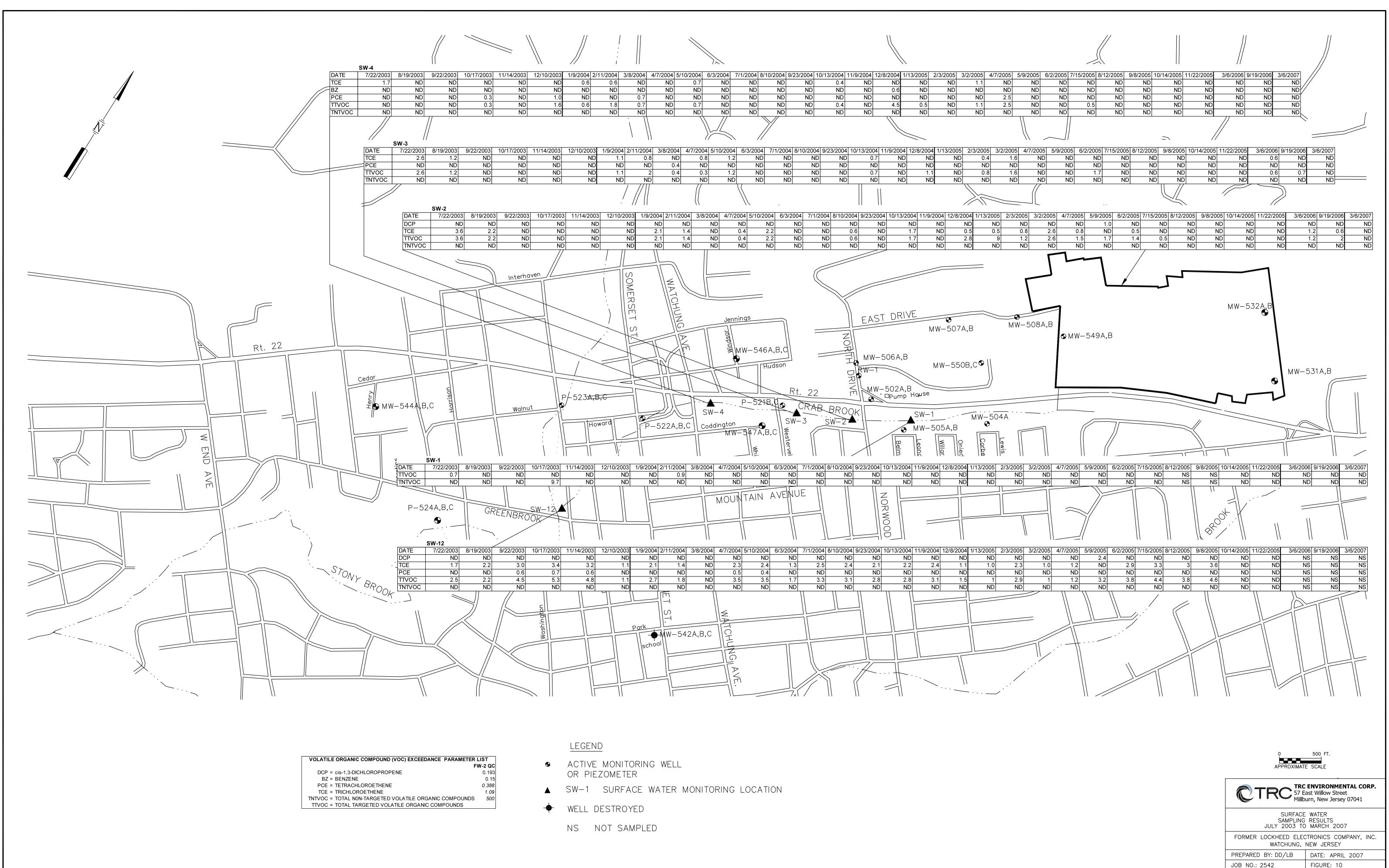

PREPARED BY: DD/LB DATE: APRIL 2007


JOB NO.: 2542 FIGURE: 1









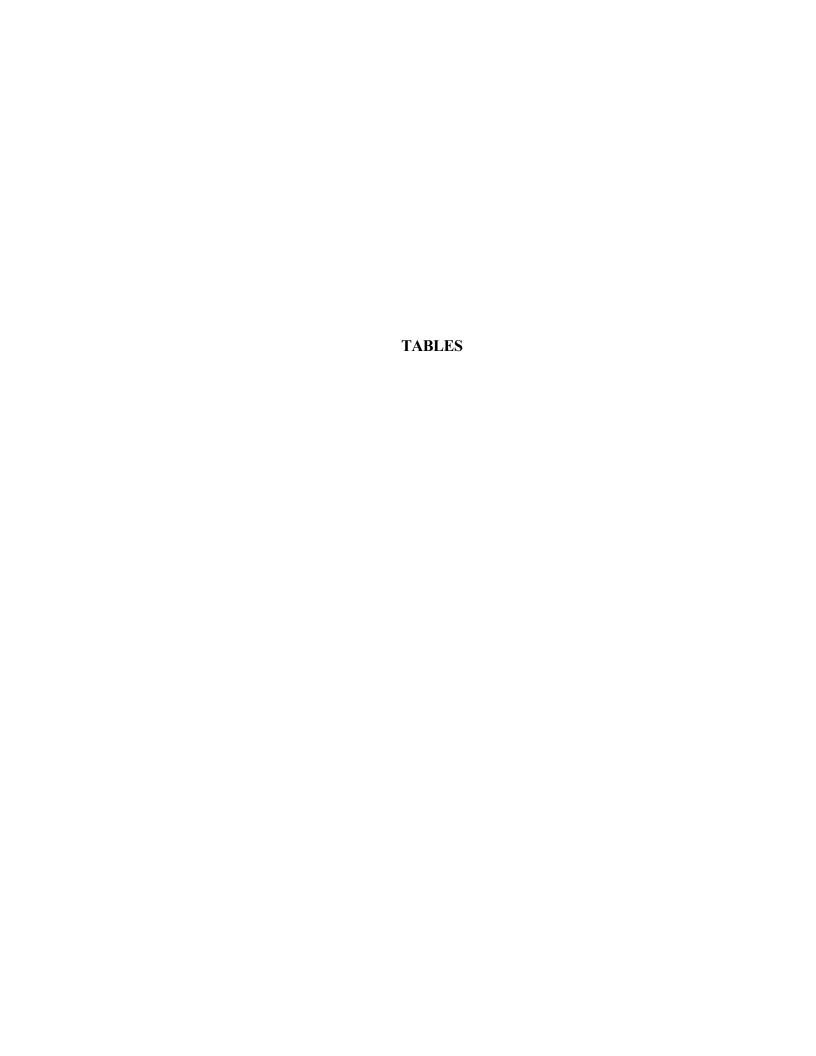


TABLE 1 REVISED WATER MONITORING & SAMPLING SCHEDULE FORMER LEC SITE - WATCHUNG, NEW JERSEY Page 1 of 1

	Revised Sample Locations	Sampling Month	Analytical Parameters
Surface Water:	SW-1, SW-2, SW-3, SW-4	March, September	VOC+10
Plume Wells:	505A,B; 507B; 508A; 532A 502A,B; 506A,B; 507A; 508B; 546A; 549A,B; 550B,C P522A,B,C; 544A,B,C; 545A,B,C	March	VOC+10
Plume Wells: Compliance Wells:	502A,B; 506A,B; 507A; 508B; 546A; 549A,B, 550B,C P522A,B,C; 544A,B,C; 545A,B,C	September	VOC+10

TABLE 2 GROUND WATER ELEVATION DATA FORMER LEC SITE - WATCHUNG, NEW JERSEY Page 1 of 2

			Septembe	r 19, 2006	March 6, 2007	
Monitoring Well	Well Depths ft. (bgs)	TOC Elevation ft. (MSL)	Depth to Water	GW Elevation ft. (MSL)	Depth to Water	GW Elevation ft. (MSL)
MW-501A	75.5	120.90	MISSING	NM	MISSING	NM
MW-501B	19	121.07	MISSING	NM	MISSING	NM
MW-502A	75.5	103.89	4.37	99.52	2.62	101.27
MW-502B	19	103.85	3.35	100.50	1.75	102.10
MW-503A	73	110.26	MISSING	NM	MISSING	NM
MW-503B	24.4	110.58	MISSING	NM	MISSING	NM
MW-504A	76.5	112.10	NM	NM	4.20	107.90
MW-504B	19.8	112.09	MISSING	NM	MISSING	NM
MW-505A	75	103.85/108.27	6.45	101.82	4.54	103.73
MW-505B	20	103.73/107.73	7.06	101.21	5.19	102.54
MW-506A	96.3	122.22	28.65	93.57	21.59	100.63
MW-506B	25	121.28	9.06	112.22	8.26	113.02
MW-507A	151	176.39	54.60	121.79	54.17	122.22
MW-507B	60	176.39	50.30	126.09	48.86	127.53
MW-508A	263	186.85	65.70	121.15	65.58	121.27
MW-508B	68	187.13	58.35	128.78	58.07	129.06
MW-509A	423	231.30	MISSING	NM	MISSING	NM
MW-509B	84	230.77	MISSING	NM	MISSING	NM
MW-510A	201	182.22	MISSING	NM	MISSING	NM
MW-510B	70	182.17	MISSING	NM	MISSING	NM
PZ-521B	100.26	99.84	8.32	91.52	6.37	93.47
PZ-521C	15.5	100.07	7.82	92.25	6.4	93.67
PZ-522A	197	93.85	NM	NM	11.55	82.30
PZ-522B	100	93.78	10.48	83.30	10.04	83.74
PZ-522C	17.5	93.78	7.29	86.49	NM	NM
PZ-523A	199	94.13	NM	NM	NM	NM
PZ-523B	103	94.05	13.30	80.75	11.9	82.15
PZ-523C	14	93.91	NM	NM	NM	NM
PZ-524A	199	68.12/68.33	4.75	63.58	4.26	64.07
PZ-524B	99	67.86/68.39	5.98	62.35	5.52	62.87
PZ-524C	15	67.78/67.29	5.00	63.33	4.37	62.92
MW-531A	142.2	138.43	12.41	126.02	11.86	126.57
MW-531B	47.9	138.46	9.50	128.96	9.15	129.31
MW-532A	250	186.55	54.60	131.95	54.28	132.27
MW-532B	102.7	185.35	51.06	134.29	50.86	134.49

TABLE 2 GROUND WATER ELEVATION DATA FORMER LEC SITE - WATCHUNG, NEW JERSEY Page 2 of 2

			Septembe	r 19, 2006	March	6, 2007
Monitoring Well	Well Depths ft. (bgs)	TOC Elevation ft. (MSL)	Depth to Water	GW Elevation ft. (MSL)	Depth to Water	GW Elevation ft. (MSL)
MW-542A	200	99.65	MISSING	NM	MISSING	NM
MW-542B	100	99.71	MISSING	NM	MISSING	NM
MW-542C	33	99.57	MISSING	NM	MISSING	NM
MW-544A	197	85.81	10.90	74.91	10.66	75.15
MW-544B	100	86.00	8.45	77.55	8.03	77.97
MW-544C	23	86.04	3.45	82.59	3.1	82.94
MW-545A	197	85.69	19.35	66.34	18.9	66.79
MW-545B	92	85.80	19.90	65.90	19.39	66.41
MW-545C	35	85.75	14.25	71.50	13.72	72.03
MW-546A	200	106.55	15.40	91.15	17.88	88.67
MW-546B	100	107.06	14.02	93.04	12.05	95.01
MW-546C	31	108.16	11.05	97.11	9.92	98.24
MW-547A	200	98.33/98.17	7.45	90.72	4.88	93.29
MW-547B	100	98.46/98.25	7.25	90.92	5.47	92.78
MW-547C	22	98.32	6.52	91.65	6.12	92.20
MW-549A	215	179.31	56.25	123.06	55.84	123.47
MW-549B	115	179.77	54.48	125.29	54.25	125.52
MW-549C	73.5	179.41	NM	NM	NM	NM
MW-550B	101	132.56	22.95	109.61	20.48	112.08
MW-550C	50	132.13	21.70	110.43	21.68	110.45
RW-1	150	110.91	58.60	52.31	NM	NM

PZ = Piezometer

bgs = Below Ground Surface

TOC = Top of Casing RW = Extraction Well

MISSING = Well has been destroyed and unable to be located

NM = Not Measured

Note: Wells MW-505A and B, PZ-524A, B, and C, and MW-547A and B were resurveyed on September 7, 2004 after they were repaired. Top of casing casing elevations have changed for these wells and were used in elevation calculations from September 2004 to June 2005.

TABLE 3
HYDROSTRATIGRAPHIC WELL CLASSIFICATION
FORMER LEC SITE - WATCHUNG, NEW JERSEY
Page 1 of 1

Shallow	Intermediate	Deep
Wells	Wells	Wells
501 B	501 A	508 A
502 B	502 A	P 522 A
503 B	503 A	P 523 A
504 B	504 A	P 524 A
505 B	505 A	532 A
506 B	506 A	542 A
507 B	507 A	544 A
508 B	510 A	545 A
509 B	P 521 B	546 A
510 B	P 522 B	547 A
P 521 C	P 523 B	548 A*
P 522 C	P 524 B	549 A
P 523 C	531 A	
P 524 C	532 B	
531 B	542 B	
542 C	544 B	
544 C	545 B	
545 C	546 B	
546 C	547 B	
547 C	548 B*	
548 C*	549 B	
549 C	549 B	
550 C	550 B	

510 A strike-through indicates well is missing or abandoned.

^{*} Monitoring well cluster 548 was abandoned in September 1999

TABLE 4 **GROUND WATER ANALYTICAL RESULTS SEPTEMBER 2006 THROUGH MARCH 2007** FORMER LEC SITE - WATCHUNG, NEW JERSEY

Sample ID		MW-502A	MW-502B	MW506A	MW-506B	MW-507A	MW-508B	PZ-522B	PZ-522C	MW-544A	MW-544B
Lab Sample Number	New Jersey	771254	771255	771257	771256	771258	771259	771261	771262	771266	771267
Sampling Date	Ground Water	9/20/2006	9/20/2006	9/20/2006	9/20/2006	9/20/2006	9/20/2006	9/20/2006	9/20/2006	9/20/2006	9/20/2006
Matrix	Quality	WATER									
Dilution Factor	Criteria (GWQC)	1.0	2.0	5.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
Units	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
VOLATILE COMPOUNDS (GC/MS)											
Chloromethane	30	0.3 U	0.6 U	1.4 U	0.3 U						
Bromomethane	10	0.3 U	0.6 U	1.6 U	0.3 U						
Vinyl Chloride	5	0.3 U	0.6 U	1.4 U	0.3 U						
Chloroethane	100	0.2 U	0.5 U	1.2 U	0.2 U						
Methylene Chloride	3	0.5 U	1.0 U	2.6 U	0.5 U						
Trichlorofluoromethane		0.2 U	0.5 U	1.2 U	0.2 U						
1,1-Dichloroethene	2	0.4 U	0.7 U	1.8 U	0.4 U						
1,1-Dichloroethane	50	0.3 U	0.6 U	1.6 U	0.3 U	0.3 U	0.3 U	2.3	0.3 U	0.3 U	0.3 U
trans-1,2-Dichloroethene	100	0.4 U	0.9 U	2.2 U	0.4 U						
cis-1,2-Dichloroethene	70	0.4 U	27	6.7	0.4 U	0.4 U	0.4 U	43	0.4 U	0.4 U	0.4 U
Chloroform	6	0.7	1.0 U	2.6 U	0.5 U	0.5 U	1.2	3.6	0.5 U	0.5 U	0.5 U
1,2-Dichloroethane	2	0.3 U	0.6 U	1.4 U	0.3 U						
1,1,1-Trichloroethane	30	0.3 U	0.7 U	1.7 U	0.3 U						
Carbon Tetrachloride	2	0.3 U	0.6 U	1.6 U	0.3 U						
Bromodichloromethane	1	0.3 U	0.6 U	1.6 U	0.3 U						
1,2-Dichloropropane	1	0.3 U	0.6 U	1.4 U	0.3 U						
cis-1,3-Dichloropropene		0.2 U	0.5 U	1.2 U	0.2 U						
Trichloroethene	1	0.9	320	860	13	0.4 U	34	190	0.5	0.4	0.8
Dibromochloromethane	10	0.3 U	0.5 U	1.4 U	0.3 U						
1,1,2-Trichloroethane	3	0.3 U	0.7 U	1.6 U	0.3 U						
Benzene	1	0.3 U	0.7 U	1.6 U	0.3 U						
trans-1,3-Dichloropropene		0.2 U	0.5 U	1.2 U	0.2 U						
2-Chloroethyl Vinyl Ether	100	0.4 U	0.8 U	2.1 U	0.4 U						
Bromoform	4	0.2 U	0.4 U	1.1 U	0.2 U						
Tetrachloroethene	1	0.4 U	1.1	2.6	0.4 U	0.4 U	0.4 U	2	0.4 U	0.4 U	0.4 U
1,1,2,2-Tetrachloroethane	1	0.3 U	0.7 U	1.7 U	0.3 U						
Toluene	1000	0.4 U	0.8 U	2.0 U	0.4 U						
Chlorobenzene	50	0.4 U	0.9 U	2.2 U	0.4 U						
Ethylbenzene	700	0.5 U	0.9 U	2.3 U	0.5 U						
Xylene (Total)	1000	0.4 U	0.8 U	1.9 U	0.4 U						
Total Confident Conc. VOAs (s)		1.6	348.1	869.3	13	ND	35.2	240.9	0.5	0.4	0.8
Total Estimated Conc. VOA TICs (s)	500	ND									

ug/L - micrograms/Liter
U - compound not detected at indicated concentration
NA - No applicable criteria
VOCs - Volatile Organic Compounds

TICs - Tenetatively Identified Compounds

TABLE 4 **GROUND WATER ANALYTICAL RESULTS SEPTEMBER 2006 THROUGH MARCH 2007** FORMER LEC SITE - WATCHUNG, NEW JERSEY

Sample ID		MW-544C	MW-545A	MW-545B	MW-545C	MW-546A	MW549A	MW549B	MW-550B	MW-550C
Lab Sample Number	New Jersey	771268	771263	771264	771265	771260	771250	771251	771252	771253
Sampling Date	Ground Water	9/20/2006	9/20/2006	9/20/2006	9/20/2006	9/20/2006	9/20/2006	9/20/2006	9/20/2006	9/20/2006
Matrix	Quality	WATER								
Dilution Factor	Criteria (GWQC)	1.0	1.0	1.0	1.0	1.0	10.0	10.0	5.0	1.0
Units	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
VOLATILE COMPOUNDS (GC/MS)										
Chloromethane	30	0.3 U	2.9 U	2.9 U	1.4 U	0.3 U				
Bromomethane	10	0.3 U	3.2 U	3.2 U	1.6 U	0.3 U				
Vinyl Chloride	5	0.3 U	2.8 U	2.8 U	1.4 U	0.3 U				
Chloroethane	100	0.2 U	2.4 U	2.4 U	1.2 U	0.2 U				
Methylene Chloride	3	0.5 U	5.1 U	5.1 U	2.6 U	0.5 U				
Trichlorofluoromethane		0.2 U	2.5 U	2.5 U	1.2 U	0.2 U				
1,1-Dichloroethene	2	0.4 U	3.5 U	3.5 U	1.8 U	0.4 U				
1,1-Dichloroethane	50	0.3 U	3.2 U	3.2 U	1.6 U	0.3 U				
trans-1,2-Dichloroethene	100	0.4 U	4.3 U	4.3 U	2.2 U	0.4 U				
cis-1,2-Dichloroethene	70	0.5	0.4 U	0.4 U	0.4 U	0.8	4.3 U	7.7	6.7	1.3
Chloroform	6	0.5 U	0.5 U	0.5 U	0.5 U	3.3	5.2 U	5.2 U	2.6 U	0.5 U
1,2-Dichloroethane	2	0.3 U	2.9 U	2.9 U	1.4 U	0.3 U				
1,1,1-Trichloroethane	30	0.3 U	3.4 U	3.4 U	1.7 U	0.3 U				
Carbon Tetrachloride	2	0.3 U	3.1 U	3.1 U	1.6 U	0.3 U				
Bromodichloromethane	1	0.3 U	3.2 U	3.2 U	1.6 U	0.3 U				
1,2-Dichloropropane	1	0.3 U	2.9 U	2.9 U	1.4 U	0.3 U				
cis-1,3-Dichloropropene		0.2 U	2.4 U	2.4 U	1.2 U	0.2 U				
Trichloroethene	1	1.1	0.5	0.4 U	0.4 U	120	940	1100	860	110
Dibromochloromethane	10	0.3 U	2.7 U	2.7 U	1.4 U	0.3 U				
1,1,2-Trichloroethane	3	0.3 U	3.3 U	3.3 U	1.6 U	0.3 U				
Benzene	1	0.3 U	3.3 U	3.3 U	1.6 U	0.3 U				
trans-1,3-Dichloropropene		0.2 U	2.4 U	2.4 U	1.2 U	0.2 U				
2-Chloroethyl Vinyl Ether	100	0.4 U	4.2 U	4.2 U	2.1 U	0.4 U				
Bromoform	4	0.2 U	2.2 U	2.2 U	1.1 U	0.2 U				
Tetrachloroethene	1	2.7	3.7	0.4 U	0.4 U	0.4 U	4.5 U	6.7	5.5	0.4 U
1,1,2,2-Tetrachloroethane	1	0.3 U	3.4 U	3.4 U	1.7 U	0.3 U				
Toluene	1000	0.4 U	4 U	4 U	2.0 U	0.4 U				
Chlorobenzene	50	0.4 U	4.5 U	4.5 U	2.2 U	0.4 U				
Ethylbenzene	700	0.5 U	4.6 U	4.6 U	2.3 U	0.5 U				
Xylene (Total)	1000	0.4 U	3.8 U	3.8 U	1.9 U	0.4 U				
Total Confident Conc. VOAs (s)		4.3	4.2	ND	ND	124.1	940	1114.4	872.2	111.3
Total Estimated Conc. VOA TICs (s)	500	ND								

ug/L - micrograms/Liter
U - compound not detected at indicated concentration
NA - No applicable criteria
VOCs - Volatile Organic Compounds

TICs - Tenetatively Identified Compounds

TABLE 4 **GROUND WATER ANALYTICAL RESULTS SEPTEMBER 2006 THROUGH MARCH 2007** FORMER LEC SITE - WATCHUNG, NEW JERSEY

Sample ID		TB030807	MW-502A	MW-502B	MW-505A	MW-505B	MW-506A	MW-506B	MW-507A	MW-507B
Lab Sample Number	New Jersey	812813	812801	812802	815560	812798	812804	812805	815561	812806
Sampling Date	Ground Water	3/8/2007	3/8/2007	3/8/2007	3/22/2007	3/8/2007	3/8/2007	3/8/2007	3/22/2007	3/8/2007
Matrix	Quality	WATER	WATER	WATER	WATER	WATER	WATER	WATER	WATER	WATER
Dilution Factor	Criteria (GWQC)	1.0	1.0	1.0	1	1.0	5.0	1.0	2	1.0
Units	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
VOLATILE COMPOUNDS (GC/MS)										
Chloromethane	30	0.4 U	0.4 U	0.4 U	0.4 U	0.4 U	2.2 U	0.4 U	0.9 U	0.4 U
Bromomethane	10	0.4 U	0.4 U	0.4 U	0.4 U	0.4 U	2.2 U	0.4 U	0.9 U	0.4 U
Vinyl Chloride	5	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	1.2 U	0.2 U	0.5 U	0.2 U
Chloroethane	100	0.4 U	0.4 U	0.4 U	0.4 U	0.4 U	2.2 U	0.4 U	0.9 U	0.4 U
Methylene Chloride	3	0.4 U	0.4 U	0.4 U	0.4 U	0.4 U	2 U	0.4 U	0.8 U	0.4 U
Trichlorofluoromethane		0.4 U	0.4 U	0.4 U	0.4 U	0.4 U	1.8 U	0.4 U	0.7 U	0.4 U
1,1-Dichloroethene	2	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	2.3 U	0.5 U	0.9 U	0.5 U
1,1-Dichloroethane	50	0.3 U	0.3 U	0.3 U	0.3 U	0.3 U	1.3 U	0.3 U	0.5 U	0.3 U
trans-1,2-Dichloroethene	100	0.4 U	0.4 U	0.4 U	0.4 U	0.4 U	2 U	0.4 U	0.8 U	0.4 U
cis-1,2-Dichloroethene	70	0.3 U	0.3 U	16	0.3 U	0.3 U	3.9	0.3 U	5.3	0.3 U
Chloroform	6	0.2 U	0.7	0.7	0.6	1.1	1 U	0.4	0.4	0.3
1,2-Dichloroethane	2	0.3 U	0.3 U	0.3 U	0.3 U	0.3 U	1.4 U	0.3 U	0.5 U	0.3 U
1,1,1-Trichloroethane	30	0.4 U	0.4 U	0.4 U	0.4 U	0.4 U	1.9 U	0.4 U	0.8 U	0.4 U
Carbon Tetrachloride	2	0.3 U	0.3 U	0.3 U	0.3 U	0.3 U	1.7 U	0.3 U	0.7 U	0.3 U
Bromodichloromethane	1	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	1.2 U	0.2 U	0.5 U	0.2 U
1,2-Dichloropropane	1	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	2.4 U	0.5 U	1 U	0.5 U
cis-1,3-Dichloropropene		0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.6 U	0.1 U	0.3 U	0.1 U
Trichloroethene	1	0.4 U	0.4	23	0.4 U	0.4 U	420	7.6	300	7.9
Dibromochloromethane	10	0.3 U	0.3 U	0.3 U	0.3 U	0.3 U	1.4 U	0.3 U	0.5 U	0.3 U
1,1,2-Trichloroethane	3	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	1.1 U	0.2 U	0.4 U	0.2 U
Benzene	1	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	1.2 U	0.2 U	0.5 U	0.2 U
trans-1,3-Dichloropropene		0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.8 U	0.2 U	0.3 U	0.2 U
2-Chloroethyl Vinyl Ether	100	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	1.2 U	0.2 U	0.5 U	0.2 U
Bromoform	4	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	1 U	0.2 U	0.4 U	0.2 U
Tetrachloroethene	1	0.4 U	0.4 U	0.7	0.4 U	0.4 U	2.1 U	0.4 U	0.8 U	0.4 U
1,1,2,2-Tetrachloroethane	1	0.4 U	0.4 U	0.4 U	0.4 U	0.4 U	1.8 U	0.4 U	0.7 U	0.4 U
Toluene	1000	0.3 U	0.3 U	0.3 U	0.3 U	0.3 U	1.5 U	0.3 U	0.6 U	0.3 U
Chlorobenzene	50	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	1.2 U	0.2 U	0.5 U	0.2 U
Ethylbenzene	700	0.4 U	0.4 U	0.4 U	0.4 U	0.4 U	2 U	0.4 U	0.8 U	0.4 U
Xylene (Total)	1000	0.4 U	0.4 U	0.4 U	0.4 U	0.4 U	2 U	0.4 U	0.8 U	0.4 U
Total Confident Conc. VOAs (s)		ND	1.1	40.4	0.6	1.1	423.9	8	305.7	8.2
Total Estimated Conc. VOA TICs (s)	500	ND	ND	ND	ND	ND	ND	ND	ND	ND

ug/L - micrograms/Liter
U - compound not detected at indicated concentration
NA - No applicable criteria

VOCs - Volatile Organic Compounds

TICs - Tenetatively Identified Compounds

TABLE 4 **GROUND WATER ANALYTICAL RESULTS SEPTEMBER 2006 THROUGH MARCH 2007** FORMER LEC SITE - WATCHUNG, NEW JERSEY

Sample ID		MW-508A	MW-508B	PZ-522A	PZ-522B	PZ-522C	MW-532A	MW-544A	MW-544B	MW-544C
Lab Sample Number	New Jersey	812808	812807	812793	812794	815559	812809	812810	812811	812812
Sampling Date	Ground Water	3/8/2007	3/8/2007	3/8/2007	3/8/2007	3/22/2007	3/8/2007	3/8/2007	3/8/2007	3/8/2007
Matrix	Quality	WATER	WATER	WATER	WATER	WATER	WATER	WATER	WATER	WATER
Dilution Factor	Criteria (GWQC)	1.0	1.0	1.0	1.0	1	1.0	1.0	1.0	1.0
Units	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
VOLATILE COMPOUNDS (GC/MS)										
Chloromethane	30	0.4 U	0.4 U	0.4 U	0.4 U	0.4 U				
Bromomethane	10	0.4 U	0.4 U	0.4 U	0.4 U	0.4 U				
Vinyl Chloride	5	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U				
Chloroethane	100	0.4 U	0.4 U	0.4 U	0.4 U	0.4 U				
Methylene Chloride	3	0.4 U	0.4 U	0.4 U	0.4 U	0.4 U				
Trichlorofluoromethane		0.4 U	0.4 U	0.4 U	0.4 U	0.4 U				
1,1-Dichloroethene	2	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U				
1,1-Dichloroethane	50	0.3 U	0.3 U	0.3 U	2.3	0.3 U	0.3 U	0.3 U	0.3 U	0.3 U
trans-1,2-Dichloroethene	100	0.4 U	0.4 U	0.4 U	0.4 U	0.4 U				
cis-1,2-Dichloroethene	70	12	0.3 U	0.3 U	30	0.3 U	0.3 U	0.3 U	0.3 U	0.4
Chloroform	6	0.2 U	1.2	2.3	3.6	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U
1,2-Dichloroethane	2	0.3 U	0.3 U	0.3 U	0.3 U	0.3 U				
1,1,1-Trichloroethane	30	0.4 U	0.4 U	0.4 U	0.4 U	0.4 U				
Carbon Tetrachloride	2	0.3 U	0.3 U	0.3 U	0.3 U	0.3 U				
Bromodichloromethane	1	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U				
1,2-Dichloropropane	1	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U				
cis-1,3-Dichloropropene		0.1 U	0.1 U	0.1 U	0.1 U	0.1 U				
Trichloroethene	1	2.3	27	2.2	34	0.4 U	29	0.4 U	0.7	0.7
Dibromochloromethane	10	0.3 U	0.3 U	0.3 U	0.3 U	0.3 U				
1,1,2-Trichloroethane	3	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U				
Benzene	1	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U				
trans-1,3-Dichloropropene		0.2 U	0.2 U	0.2 U	0.2 U	0.2 U				
2-Chloroethyl Vinyl Ether	100	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U				
Bromoform	4	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U				
Tetrachloroethene	1	0.4 U	0.4 U	0.4 U	1.9	0.4 U	1.2	0.4 U	0.4 U	1.9
1,1,2,2-Tetrachloroethane	1	0.4 U	0.4 U	0.4 U	0.4 U	0.4 U				
Toluene	1000	0.3 U	0.3 U	0.3 U	0.3 U	0.3 U				
Chlorobenzene	50	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U				
Ethylbenzene	700	0.4 U	0.4 U	0.4 U	0.4 U	0.4 U				
Xylene (Total)	1000	0.4 U	0.4 U	0.4 U	0.4 U	0.4 U				
Total Confident Conc. VOAs (s)		14.3	28.2	4.5	71.8	ND	30.2	ND	0.7	3
Total Estimated Conc. VOA TICs (s)	500	ND	ND	ND	ND	ND	ND	ND	ND	ND

ug/L - micrograms/Liter
U - compound not detected at indicated concentration
NA - No applicable criteria

VOCs - Volatile Organic Compounds

TICs - Tenetatively Identified Compounds

TABLE 4 **GROUND WATER ANALYTICAL RESULTS SEPTEMBER 2006 THROUGH MARCH 2007** FORMER LEC SITE - WATCHUNG, NEW JERSEY

Sample ID		MW-545A	MW-545B	MW-545C	MW-546A	MW-549A	MW-549B	MW-550B	MW-550C
Lab Sample Number	New Jersey	812795	812796	812797	812792	812799	812800	815562	812803
Sampling Date	Ground Water	3/8/2007	3/8/2007	3/8/2007	3/8/2007	3/8/2007	3/8/2007	3/22/2007	3/8/2007
Matrix	Quality	WATER	WATER						
Dilution Factor	Criteria (GWQC)	1.0	1.0	1.0	1.0	5.0	10.0	5	1.0
Units	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
VOLATILE COMPOUNDS (GC/MS)									
Chloromethane	30	0.4 U	0.4 U	0.4 U	0.4 U	2.2 U	4.4 U	2.2 U	0.4 U
Bromomethane	10	0.4 U	0.4 U	0.4 U	0.4 U	2.2 U	4.4 U	2.2 U	0.4 U
Vinyl Chloride	5	0.2 U	0.2 U	0.2 U	0.2 U	1.2 U	2.4 U	1.2 U	0.2 U
Chloroethane	100	0.4 U	0.4 U	0.4 U	0.4 U	2.2 U	4.3 U	2.2 U	0.4 U
Methylene Chloride	3	0.4 U	0.4 U	0.4 U	0.4 U	2 U	4 U	2 U	0.4 U
Trichlorofluoromethane		0.4 U	0.4 U	0.4 U	0.4 U	1.8 U	3.7 U	1.8 U	0.4 U
1,1-Dichloroethene	2	0.5 U	0.5 U	0.5 U	0.5 U	2.3 U	4.6 U	2.3 U	0.5 U
1,1-Dichloroethane	50	0.3 U	0.3 U	0.3 U	0.3 U	1.3 U	2.6 U	1.3 U	0.3 U
trans-1,2-Dichloroethene	100	0.4 U	0.4 U	0.4 U	0.4 U	2 U	3.9 U	2 U	0.4 U
cis-1,2-Dichloroethene	70	0.3 U	0.3 U	0.3 U	0.7	6.1	2.8 U	4.5	1.1
Chloroform	6	0.3	0.3	0.6	3.6	1.1	2 U	1 U	0.3
1,2-Dichloroethane	2	0.3 U	0.3 U	0.3 U	0.3 U	1.4 U	2.7 U	1.4 U	0.3 U
1,1,1-Trichloroethane	30	0.4 U	0.4 U	0.4 U	0.4 U	1.9 U	3.8 U	1.9 U	0.4 U
Carbon Tetrachloride	2	0.3 U	0.3 U	0.3 U	0.3 U	1.7 U	3.4 U	1.7 U	0.3 U
Bromodichloromethane	1	0.2 U	0.2 U	0.2 U	0.2 U	1.2 U	2.5 U	1.2 U	0.2 U
1,2-Dichloropropane	1	0.5 U	0.5 U	0.5 U	0.5 U	2.4 U	4.9 U	2.4 U	0.5 U
cis-1,3-Dichloropropene		0.1 U	0.1 U	0.1 U	0.1 U	0.6 U	1.3 U	0.6 U	0.1 U
Trichloroethene	1	0.4 U	0.4 U	0.4 U	110	870	710	600	100
Dibromochloromethane	10	0.3 U	0.3 U	0.3 U	0.3 U	1.4 U	2.7 U	1.4 U	0.3 U
1,1,2-Trichloroethane	3	0.2 U	0.2 U	0.2 U	0.2 U	1.1 U	2.2 U	1.1 U	0.2 U
Benzene	1	0.2 U	0.2 U	0.2 U	0.2 U	1.2 U	2.4 U	1.2 U	0.2 U
trans-1,3-Dichloropropene		0.2 U	0.2 U	0.2 U	0.2 U	0.8 U	1.6 U	0.8 U	0.2 U
2-Chloroethyl Vinyl Ether	100	0.2 U	0.2 U	0.2 U	0.2 U	1.2 U	2.5 U	1.2 U	0.2 U
Bromoform	4	0.2 U	0.2 U	0.2 U	0.2 U	1 U	2.1 U	1 U	0.2 U
Tetrachloroethene	1	3.6	0.4 U	0.4 U	0.4 U	4.9	4.2 U	3.5	0.4 U
1,1,2,2-Tetrachloroethane	1	0.4 U	0.4 U	0.4 U	0.4 U	1.8 U	3.5 U	1.8 U	0.4 U
Toluene	1000	0.3 U	0.3 U	0.3 U	0.3 U	1.5 U	3 U	1.5 U	0.3 U
Chlorobenzene	50	0.2 U	0.2 U	0.2 U	0.2 U	1.2 U	2.5 U	1.2 U	0.2 U
Ethylbenzene	700	0.4 U	0.4 U	0.4 U	0.4 U	2 U	4.1 U	2 U	0.4 U
Xylene (Total)	1000	0.4 U	0.4 U	0.4 U	0.4 U	2 U	4 U	2 U	0.4 U
Total Confident Conc. VOAs (s)		3.9	0.3	0.6	114.3	882.1	710	608	101.4
Total Estimated Conc. VOA TICs (s)	500	ND	ND						

ug/L - micrograms/Liter
U - compound not detected at indicated concentration
NA - No applicable criteria
VOCs - Volatile Organic Compounds

TICs - Tenetatively Identified Compounds

TABLE 5 HISTORICAL TCE CONCENTRATIONS IN GROUND WATER FORMER LEC SITE - WATCHUNG, NEW JERSEY

		man a		
Sample Date	Well #	TCE Concentration	Units	Q
08/13/93	MW-502A	3	ug/L	
10/22/93	MW-502A	5	ug/L	
04/27/94 11/09/94	MW-502A MW-502A	1.6 2.02	ug/L	
06/01/95	MW-502A	2.02	ug/L ug/L	
03/30/96	MW-502A	2.5	ug/L	
03/30/96	MW-502A	2.9	ug/L	
09/27/97	MW-502A	7.8	ug/L	
05/02/98	MW-502A	5.2	ug/L	
09/25/98	MW-502A	7.9	ug/L	
11/12/99	MW-502A	5.9	ug/L	
11/21/02	MW-502A	3.1	ug/L	
03/25/03 06/25/03	MW-502A MW-502A	2.5 2.7	ug/L	
09/24/03	MW-502A	1.4	ug/L	
12/11/03	MW-502A MW-502A	1.0	ug/L	
03/09/04	MW-502A	0.8	ug/L ug/L	
06/04/04	MW-502A	0.6	ug/L	
09/23/04	MW-502A	0.6	ug/L	
12/09/04	MW-502A	0.9	ug/L	
03/03/05	MW-502A	1.2	ug/L	
06/03/05	MW-502A	0.8	ug/L	
09/08/05	MW-502A	0.6	ug/L	
03/07/06	MW-502A	0.6	ug/L	
09/20/06	MW-502A	0.9	ug/L	
03/08/07	MW-502A	0.4	ug/L	
08/13/93 08/13/93	MW-502B MW-502B	1200 930	ug/L	
10/22/93	MW-502B	1300	ug/L ug/L	
10/22/93	MW-502B	1300	ug/L	
04/27/94	MW-502B	1200	ug/L	
11/09/94	MW-502B	1700	ug/L	
06/01/95	MW-502B	1510	ug/L	
04/02/96	MW-502B	1300	ug/L	DJ
09/28/97	MW-502B	1400	ug/L	
05/02/98	MW-502B	1300	ug/L	
09/25/98	MW-502B	1300	ug/L	
09/25/98 11/12/99	MW-502B MW-502B	1300 1500	ug/L	
11/12/99	MW-502B	1000	ug/L	
03/25/03	MW-502B	920	ug/L ug/L	
06/25/03	MW-502B	1100	ug/L ug/L	
09/24/03	MW-502B	1100	ug/L	
12/11/03	MW-502B	670	ug/L	
03/09/04	MW-502B	730	ug/L	
06/04/04	MW-502B	390	ug/L	
09/23/04	MW-502B	350	ug/L	
12/09/04	MW-502B	290	ug/L	
03/03/05	MW-502B	330	ug/L	
06/03/05	MW-502B	340	ug/L	
09/08/05	MW-502B	280	ug/L	
03/07/06	MW-502B	300	ug/L	
09/20/06 03/08/07	MW-502B MW-502B	320 23	ug/L ug/L	
08/11/93	MW-505A	<gwqs< td=""><td>ug/L</td><td>U</td></gwqs<>	ug/L	U
10/19/93	MW-505A	<gwqs< td=""><td>ug/L</td><td>U</td></gwqs<>	ug/L	U
04/26/94	MW-505A	<gwqs< td=""><td>ug/L</td><td>U</td></gwqs<>	ug/L	U
11/08/94	MW-505A	<gwqs< td=""><td>ug/L</td><td>U</td></gwqs<>	ug/L	U
05/31/95	MW-505A	<gwqs< td=""><td>ug/L</td><td>U</td></gwqs<>	ug/L	U
04/02/96	MW-505A	<gwqs< td=""><td>ug/L</td><td>J</td></gwqs<>	ug/L	J
09/23/97	MW-505A	<gwqs< td=""><td>ug/L</td><td>U</td></gwqs<>	ug/L	U
09/24/98	MW-505A	<gwqs< td=""><td>ug/L</td><td>U</td></gwqs<>	ug/L	U
11/09/99	MW-505A	<gwqs< td=""><td>ug/L</td><td>U</td></gwqs<>	ug/L	U
		<gwqs< td=""><td>ug/L</td><td>U</td></gwqs<>	ug/L	U
11/20/02	MW-505A			
11/20/02 03/25/03	MW-505A	<gwqs< td=""><td>ug/L</td><td>U</td></gwqs<>	ug/L	U
11/20/02				

Sample Date	Well#	TCE Concentration	Units	Q
08/11/93	MW-505B	<gwqs< th=""><th>ug/L</th><th>U</th></gwqs<>	ug/L	U
10/19/93	MW-505B	<gwqs <gwos< td=""><td>ug/L ug/L</td><td>U</td></gwos<></gwqs 	ug/L ug/L	U
04/26/94	MW-505B	<gwqs< td=""><td>ug/L</td><td>U</td></gwqs<>	ug/L	U
11/08/94	MW-505B	<gwqs< td=""><td>ug/L ug/L</td><td>U</td></gwqs<>	ug/L ug/L	U
05/31/95	MW-505B	<gwos< td=""><td>ug/L</td><td>U</td></gwos<>	ug/L	U
04/02/96	MW-505B	1.1	ug/L ug/L	0
09/23/97	MW-505B	<gwqs< td=""><td>ug/L</td><td>U</td></gwqs<>	ug/L	U
09/24/98	MW-505B	<gwqs< td=""><td>ug/L ug/L</td><td>U</td></gwqs<>	ug/L ug/L	U
11/09/99	MW-505B	<gwqs< td=""><td>ug/L ug/L</td><td>U</td></gwqs<>	ug/L ug/L	U
11/20/02	MW-505B	<gwqs< td=""><td>-</td><td>U</td></gwqs<>	-	U
		_	ug/L	
03/25/03	MW-505B	<gwqs< td=""><td>ug/L</td><td>U</td></gwqs<>	ug/L	U
03/25/04	MW-505B	<gwqs< td=""><td>ug/L</td><td>U</td></gwqs<>	ug/L	U
03/03/05	MW-505B	<gwqs< td=""><td>ug/L</td><td>U</td></gwqs<>	ug/L	U
03/07/06	MW-505B	<gwqs< td=""><td>ug/L</td><td>U</td></gwqs<>	ug/L	U
03/08/07	MW-505B	<gwqs< td=""><td>ug/L</td><td>U</td></gwqs<>	ug/L	U
08/11/93	MW-506A	1700	ug/L	
10/19/93	MW-506A	1800	ug/L	
04/26/94	MW-506A	1200	ug/L	
04/26/94	MW-506A	1300	ug/L	
11/11/94	MW-506A	1990	ug/L	
11/11/94	MW-506A	2020	ug/L	
06/01/95	MW-506A	1650	ug/L	
06/01/95	MW-506A	1690	ug/L	
04/01/96	MW-506A	1800	ug/L	DJ
09/25/97	MW-506A	1600	ug/L	
09/25/97	MW-506A	1700	ug/L	
04/30/98	MW-506A	1400	ug/L	
09/24/98	MW-506A	1400	-	
11/08/99	MW-506A	1700	ug/L	
11/19/02			ug/L	
	MW-506A	1000	ug/L	
03/24/03	MW-506A	850	ug/L	
06/25/03	MW-506A	1000	ug/L	
09/23/03	MW-506A	960	ug/L	
12/10/03	MW-506A	830	ug/L	
03/09/04	MW-506A	940	ug/L	
06/04/04	MW-506A	710	ug/L	
09/23/04	MW-506A	1300	ug/L	
12/09/04	MW-506A	710	ug/L	
03/03/05	MW-506A	650	ug/L	
06/03/05	MW-506A	730	ug/L	
09/08/05	MW-506A	620	ug/L	
03/17/06	MW-506A	700	ug/L	
09/20/06	MW-506A	860	ug/L	
03/08/07	MW-506A	420	ug/L	
08/11/93	MW-506B	18	ug/L	
10/20/93	MW-506B	48	ug/L	J
04/26/94	MW-506B	18	ug/L ug/L	,
11/11/94	MW-506B	19	ug/L ug/L	
06/01/95	MW-506B	40.4	ug/L ug/L	
04/01/96	MW-506B	25	ug/L ug/L	J
		34	-	,
09/25/97 04/30/98	MW-506B	-	ug/L	
	MW-506B	26 27	ug/L	
04/30/98	MW-506B	27	ug/L	
09/24/98	MW-506B	32	ug/L	
11/08/99	MW-506B	50	ug/L	
11/19/02	MW-506B	74	ug/L	
03/24/03	MW-506B	24	ug/L	
06/25/03	MW-506B	12	ug/L	
09/23/03	MW-506B	14	ug/L	
12/10/03	MW-506B	15	ug/L	
03/09/04	MW-506B	16	ug/L	
06/04/04	MW-506B	13	ug/L	
09/23/04	MW-506B	12	ug/L	
12/09/04	MW-506B	15	ug/L	
03/03/05	MW-506B	16	ug/L	
06/03/05	MW-506B	14	ug/L ug/L	
10/01/05	MW-506B	36	ug/L ug/L	
	DOOD		~5/ L	ı
	MW-506P	12	11σ/Ι	
03/07/06 09/20/06	MW-506B MW-506B	12 13	ug/L ug/L	

(Units	TCE Concentration	Well #	Sample Date
	ug/L	730	MW-507A	10/21/93
ı	ug/L	1200	MW-507A	04/27/94
ı	ug/L	1210	MW-507A	11/11/94
ı	ug/L	1100	MW-507A	06/01/95
Γ	ug/L	930	MW-507A	04/01/96
ı	ug/L	1200	MW-507A	09/26/97
ı	ug/L	1100	MW-507A	05/02/98
	ug/L	1100	MW-507A	05/02/98
ì	ug/L	1200	MW-507A	09/26/98
ı	ug/L	970	MW-507A	11/11/99
ı	ug/L	140	MW-507A	11/21/02
ì	ug/L	630	MW-507A	03/26/03
ı	ug/L	770	MW-507A	06/25/03
ı	ug/L	860	MW-507A	09/23/03
ì	ug/L	740	MW-507A	12/11/03
ı	ug/L	690	MW-507A	03/09/04
ì	ug/L	450	MW-507A	06/04/04
	ug/L	1100	MW-507A	09/23/04
ı	ug/L	610	MW-507A	12/09/04
	ug/L	540	MW-507A	03/04/05
	ug/L	570	MW-507A	06/03/05
ı	ug/L	600	MW-507A	09/08/05
ì	ug/L	600	MW-507A	03/07/06
	ug/L	300	MW-507A	03/22/07
Т	ug/L	130	MW-507B	08/13/93
ì	ug/L	100	MW-507B	10/21/93
ı	ug/L	79	MW-507B	05/02/94
ı	ug/L	145	MW-507B	11/11/94
ı	ug/L	115	MW-507B	06/02/95
Ι	ug/L	70	MW-507B	04/01/96
ı	ug/L	80	MW-507B	09/26/97
ı	ug/L	64	MW-507B	05/02/98
ì	ug/L	43	MW-507B	09/26/98
ı	ug/L	93	MW-507B	11/11/99
ì	ug/L	45	MW-507B	11/21/02
ì	ug/L	20	MW-507B	03/26/03
ì	ug/L	16	MW-507B	03/25/04
ì	ug/L	20	MW-507B	03/04/05
ı	ug/L	19	MW-507B	03/07/06
	ug/L	7.9	MW-507B	03/08/07
	ug/L	30	MW-508A	10/25/93
ı	ug/L	35	MW-508A	05/02/94
ı	ug/L	36.8	MW-508A	11/12/94
ı	ug/L	38.4	MW-508A	06/03/95
	ug/L	32	MW-508A	04/02/96
	ug/L	38	MW-508A	04/02/96
ı	ug/L	35	MW-508A	09/26/97
ı	ug/L	34	MW-508A	05/02/98
ı	ug/L	33	MW-508A	09/25/98
ı	ug/L	34	MW-508A	11/11/99
ı	ug/L	13	MW-508A	11/21/02
ı	ug/L	30	MW-508A	03/26/03
ı	ug/L	35	MW-508A	03/25/04
ì	ug/L	1.2	MW-508A	03/04/05
ı	ug/L	0.5	MW-508A	03/07/06
	ug/L	2.3	MW-508A	03/08/07

Sample Date	Well #	TCE Concentration	Units	Q
08/13/93	MW-508B	960	ug/L	
10/25/93	MW-508B	860	ug/L	
04/29/94 04/29/94	MW-508B MW-508B	630 640	ug/L	J J
11/11/94	MW-508B	1120	ug/L ug/L	J
06/02/95	MW-508B	943	ug/L	
04/02/96	MW-508B	1600	ug/L	J
09/26/97	MW-508B	320	ug/L	
05/02/98	MW-508B	360	ug/L	
09/25/98	MW-508B	210	ug/L	
11/11/99	MW-508B MW-508B	670 120	ug/L	
11/21/02 03/26/03	MW-508B	73	ug/L ug/L	
06/25/03	MW-508B	58	ug/L	
09/23/03	MW-508B	69	ug/L	
12/11/03	MW-508B	40	ug/L	
03/09/04	MW-508B	41	ug/L	
06/04/04	MW-508B	32	ug/L	
09/23/04	MW-508B	30	ug/L	
12/09/04	MW-508B	31	ug/L	
03/04/05 06/03/05	MW-508B MW-508B	26 40	ug/L ug/L	
09/08/05	MW-508B	40	ug/L ug/L	
03/07/06	MW-508B	31	ug/L	
09/20/06	MW-508B	34	ug/L	
03/08/07	MW-508B	27	ug/L	
11/28/95	MW-532A	30	ug/L	
01/16/96	MW-532A MW-532A	31	ug/L	
03/28/96 09/23/97	MW-532A MW-532A	18 39	ug/L	
04/28/98	MW-532A MW-532A	34	ug/L ug/L	
09/22/98	MW-532A	30	ug/L	
11/10/99	MW-532A	32	ug/L	
11/20/02	MW-532A	37	ug/L	
03/27/03	MW-532A	26	ug/L	
03/25/04	MW-532A	33	ug/L	
03/03/05 03/07/06	MW-532A MW-532A	37 40	ug/L	
03/08/07	MW-532A MW-532A	29	ug/L ug/L	
11/09/99	MW-544A	<gwqs< td=""><td>ug/L</td><td>U</td></gwqs<>	ug/L	U
11/18/02	MW-544A	<gwqs< td=""><td>ug/L</td><td>U</td></gwqs<>	ug/L	U
03/24/03	MW-544A	0.5	ug/L	
09/23/03	MW-544A	0.8 *	ug/L	
03/09/04	MW-544A	<gwqs< td=""><td>ug/L</td><td>U</td></gwqs<>	ug/L	U
09/24/04	MW-544A	<gwqs< td=""><td>ug/L</td><td>U</td></gwqs<>	ug/L	U
03/03/05	MW-544A	0.4	ug/L	U
09/08/05	MW-544A	0.4	ug/L	U
03/07/06 09/20/06	MW-544A MW-544A	0.4 0.4	ug/L ug/L	U
03/08/07	MW-544A	0.4	ug/L ug/L	U
11/09/99	MW-544B	0.4	ug/L	
11/18/02	MW-544B	0.5	ug/L	
03/24/03	MW-544B	0.8	ug/L	
09/23/03	MW-544B	0.6	ug/L	
03/09/04	MW-544B	0.8	ug/L	
09/24/04	MW-544B	0.6	ug/L	
03/03/05 09/08/05	MW-544B MW-544B	0.4	ug/L	U
03/07/06	MW-544B	0.4 0.6	ug/L ug/L	U
09/20/06	MW-544B	0.8	ug/L	
03/08/07	MW-544B	0.7	ug/L	
11/09/99	MW-544C	4.9	ug/L	
11/18/02	MW-544C	1.7	ug/L	
03/24/03	MW-544C	0.4	ug/L	
09/23/03	MW-544C MW-544C	1.3	ug/L	
03/09/04 09/24/04	MW-544C MW-544C	1.8 1.3	ug/L ug/L	
03/03/05	MW-544C	1.8	ug/L ug/L	
09/08/05	MW-544C	1.2	ug/L	
03/07/06	MW-544C	1.5	ug/L	
09/20/06	MW-544C	1.1	ug/L	
03/08/07	MW-544C	0.7	ug/L	
11/09/99	MW-545A	0	ug/L	U
11/18/02	MW-545A	0.2	ug/L	
03/25/03	MW-545A	0.4	ug/L	**
09/23/03 03/09/04	MW-545A MW-545A	0	ug/L	U
09/24/04	MW-545A	0.4	ug/L ug/L	U
03/03/05	MW-545A	0.4	ug/L	U
09/08/05	MW-545A	0.4	ug/L	U
		0.4		
03/07/06 09/20/06	MW-545A MW-545A	0.4 0.5	ug/L ug/L	U

mple Date	Well #	TCE Concentration	Units	Q
11/09/99	MW-545B	<gwqs< td=""><td>ug/L</td><td>U</td></gwqs<>	ug/L	U
11/18/02	MW-545B	<gwqs< td=""><td>ug/L</td><td>U</td></gwqs<>	ug/L	U
03/25/03	MW-545B	<gwqs< td=""><td>ug/L</td><td>U</td></gwqs<>	ug/L	U
09/23/03	MW-545B	<gwqs< td=""><td>ug/L</td><td>U</td></gwqs<>	ug/L	U
03/09/04	MW-545B	<gwqs< td=""><td>ug/L</td><td>U</td></gwqs<>	ug/L	U
09/24/04	MW-545B	0.4	ug/L	U
03/03/05	MW-545B	0.4	ug/L	U
09/08/05	MW-545B	0.4	ug/L	U
09/20/06	MW-545B	0.4	ug/L	U
03/08/07	MW-545B	0.4	ug/L	U
1/09/99	MW-545C	<gwqs <gwos< td=""><td>ug/L</td><td>U</td></gwos<></gwqs 	ug/L	U
11/18/02	MW-545C MW-545C		ug/L	U
)3/25/03)9/23/03	MW-545C MW-545C	<gwqs <gwqs< td=""><td>ug/L ug/L</td><td>U</td></gwqs<></gwqs 	ug/L ug/L	U
			-	
03/09/04	MW-545C	<gwqs< td=""><td>ug/L</td><td>U</td></gwqs<>	ug/L	U
9/24/04	MW-545C	0.4	ug/L	U
3/03/05	MW-545C	0.4	ug/L	U
9/08/05	MW-545C	0.4	ug/L	U
9/20/06	MW-545C	0.2	ug/L	U
3/08/07	MW-545C	0.3	ug/L	U
1/09/99	MW-546A	130	ug/L	
11/19/02	MW-546A	120	ug/L	
03/25/03	MW-546A	120	ug/L	
06/25/03	MW-546A	150	ug/L	
09/24/03	MW-546A	91	ug/L	
2/11/03	MW-546A	88	ug/L	
3/09/04	MW-546A	90	ug/L	
6/04/04	MW-546A	82	ug/L	
9/24/04	MW-546A	110	ug/L	
2/09/04	MW-546A	110	ug/L	
3/04/05	MW-546A	110	ug/L	
6/03/05	MW-546A MW-546A	120 130	ug/L	
9/08/05	MW-546A	120	ug/L	
9/20/06 3/08/07	MW-546A	110	ug/L ug/L	
	MW-549A	760		
1/21/02 3/26/03	MW-549A MW-549A	760	ug/L	
6/25/03	MW-549A	1200	ug/L	
9/24/03	MW-549A	1100	ug/L ug/L	
2/10/03	MW-549A	900	-	
	MW-549A		ug/L	
3/09/04		1000	ug/L	
6/04/04	MW-549A MW-549A	880 820	ug/L	
9/23/04 2/09/04	MW-549A MW-549A	850	ug/L	
			ug/L	
3/03/05	MW-549A	820	ug/L	
6/03/05	MW-549A	98	ug/L	
0/14/05 9/20/06	MW-549A MW-549A	1100 940	ug/L	
3/08/07	MW-549A	870	ug/L ug/L	
1/21/02	MW-549B	1400		
1/21/02			ug/L	
6/25/03	MW-549B MW-549B	1900 2800	ug/L	
6/25/03 9/24/03	MW-549B MW-549B	2300	ug/L ug/L	
9/24/03 2/10/03	MW-549B	1800	ug/L ug/L	
3/09/04	MW-549B	1200	-	
5/09/04 6/04/04	MW-549B MW-549B	1400	ug/L ug/L	
9/23/04	MW-549B	1500	ug/L ug/L	
2/09/04	MW-549B	1200	ug/L ug/L	
3/03/05	MW-549B	1200	ug/L ug/L	
6/03/05	MW-549B	650	ug/L ug/L	
0/14/05	MW-549B	1300	ug/L ug/L	
1/21/02	MW-549C	2600	ug/L	
1/21/02	MW-549C MW-550B	440		
1/21/02 3/26/03	MW-550B MW-550B	870	ug/L ug/L	
9/23/03	MW-550B	800	ug/L ug/L	
2/10/03	MW-550B	780	ug/L ug/L	
3/9/04	MW-550B	750	ug/L ug/L	
6/4/04	MW-550B	650	ug/L	
9/23/04	MW-550B	1400	ug/L ug/L	
12/9/04	MW-550B	720	ug/L ug/L	
			-	
3/3/05	MW-550B	620	ug/L	
6/3/05	MW-550B	760	ug/L	
9/8/05	MW-550B	740	ug/L	
9/20/06	MW-550B	860	ug/L	
3/22/07	MW-550B	600	ug/L	

Sample Date	Well #	TCE Concentration	Units	,
11/21/02	MW-550C	77	ug/L	
03/26/03	MW-550C	130	ug/L	
06/25/03	MW-550C	180	ug/L	
09/23/03	MW-550C	140	ug/L	
12/10/03	MW-550C	150	ug/L	
03/09/04	MW-550C	170	ug/L	
06/04/04	MW-550C	140	ug/L	
09/23/04	MW-550C	140	ug/L	
12/09/04	MW-550C	130	ug/L	
03/03/05	MW-550C	120	ug/L	
	MW-550C	140	-	
06/03/05 09/08/05	MW-550C	160	ug/L	
			ug/L	
09/20/06	MW-550C MW-550C	110 100	ug/L	
03/08/07			ug/L	_
11/10/94	P-522A	2.2	ug/L	
12/14/94	P-522A	4.8	ug/L	
03/31/96	P-522A	0.4	ug/L	
09/27/97	P-522A	0.8	ug/L	
05/01/98	P-522A	1.8	ug/L	
09/26/98	P-522A	1.1	ug/L	
11/10/99	P-522A	0.9	ug/L	
11/19/02	P-522A	1.6	ug/L	
03/25/03	P-522A	14	ug/L	
09/23/03	P-522A	3.8	ug/L	
03/09/04	P-522A	3.0	ug/L	
09/24/04	P-522A	3.6	ug/L	
03/03/05	P-522A	3.3	ug/L	
09/08/05	P-522A	3.0	ug/L	
03/08/07	P-522A	2.2	ug/L	
12/14/94	P-522B	157	ug/L	
03/31/96	P-522B	230	ug/L	
09/27/97	P-522B	180	ug/L	
09/27/97	P-522B	190	ug/L	
05/01/98	P-522B	140	ug/L	
09/27/98	P-522B	180	ug/L	
11/10/99	P-522B	200	ug/L	
11/19/02	P-522B	120	ug/L ug/L	
03/25/03	P-522B	160	ug/L ug/L	
09/23/03	P-522B	220	ug/L ug/L	
		220	-	
03/09/04	P-522B		ug/L	
09/24/04	P-522B	200	ug/L	
03/03/05	P-522B	190	ug/L	
09/08/05	P-522B	210	ug/L	
09/20/06	P-522B	190	ug/L	
03/08/07	P-522B	34	ug/L	L
11/10/94	P-522C	18.6	ug/L	
12/13/94	P-522C	20.9	ug/L	
03/31/96	P-522C	50	ug/L	
09/27/97	P-522C	6.1	ug/L	
05/01/98	P-522C	67	ug/L	
09/27/98	P-522C	16	ug/L	
11/10/99	P-522C	12	ug/L	
11/19/02	P-522C	17	ug/L	
03/25/03	P-522C	22	ug/L	
09/23/03	P-522C	16	ug/L	
03/09/04	P-522C P-522C	0.2	ug/L ug/L	
		0.4	-	
09/24/04	P-522C		ug/L	
03/03/05	P-522C	25	ug/L	
09/08/05	P-522C	0.4	ug/L	
09/20/06	P-522C	0.5	ug/L	
03/08/07	P-522C	0.4	ug/L	

GWQS = New Jersey Groundwater Quality Standard
Bold- Concentration exceeds GWQS for TCE of 1 micrograms/Liter
Indicates that well has either been abandoned or destroyed
ug/L - micrograms/Liter

D - Concentration reported at dilution

J - Data indicates the presence of a compound that meets the identification criteria. The result is less than the quantitation limit but greater than zero.

The concentration given is an approximate value.

Represents the highest concentration of the bags sampled on that date.

Q - Qualifiers

U - The compound was not detected at the indicated concentration

TABLE 6 SURFACE WATER ANALYTICAL RESULTS **SEPTEMBER 2006 THROUGH MARCH 2007** FORMER LEC SITE - WATCHUNG, NEW JERSEY

Sample ID	New Jersey	TB091906	FB091906	SW-1	SW-2	SW-3	SW-4
Lab Sample Number	Fresh Water - 2	770603	770604	770607	770606	770605	770608
Sampling Date	Quality	09/19/06	09/19/06	09/19/06	09/19/06	09/19/06	09/19/06
Matrix	Criteria	WATER	WATER	WATER	WATER	WATER	WATER
Dilution Factor	(FWQC)	1.0	1.0	1.0	1.0	1.0	1.0
Units	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
VOLATILE COMPOUNDS (GC/MS)							
Chloromethane	NA	0.3 U					
Bromomethane	48.4	0.3 U					
Vinyl Chloride	0.083	0.3 U					
Chloroethane	NA	0.2 U					
Methylene Chloride	2.49	0.5 U					
Trichlorofluoromethane	NA	0.2 U					
1,1-Dichloroethene	4.81	0.4 U					
1,1-Dichloroethane	NA	0.3 U					
trans-1,2-Dichloroethene	592	0.4 U					
cis-1,2-Dichloroethene	NA	0.4 U	0.4 U	0.4 U	1.4	0.7	0.4 U
Chloroform	5.67	0.5 U					
1,2-Dichloroethane	0.291	0.3 U					
1,1,1-Trichloroethane	127	0.3 U					
Carbon Tetrachloride	0.363	0.3 U					
Bromodichloromethane	0.266	0.3 U					
1,2-Dichloropropane	NA	0.3 U					
cis-1,3-Dichloropropene	0.193	0.2 U					
Trichloroethene	1.09	0.4 U	0.4 U	0.4 U	0.6	0.4 U	0.4 U
Dibromochloromethane	72.6	0.3 U					
1,1,2-Trichloroethane	13.5	0.3 U					
Benzene	0.15	0.3 U					
trans-1,3-Dichloropropene	0.193	0.2 U					
2-Chloroethyl Vinyl Ether	NA	0.4 U					
Bromoform	4.38	0.2 U					
Tetrachloroethene	0.388	0.4 U					
1,1,2,2-Tetrachloroethane	1.72	0.3 U					
Toluene	7440	0.4 U					
Chlorobenzene	22.0	0.4 U					
Ethylbenzene	3030	0.5 U					
Xylene (Total)	NA	0.4 U					
Total Confident Conc. VOAs (s)		ND	ND	ND	2	0.7	ND
Total Estimated Conc. VOA TICs (s)		ND	ND	ND	ND	ND	ND

ug/L - micrograms/Liter

U - compound not detected at indicated concentration

NA - No applicable criteria

VOCs - Volatile Organic Compounds

TICs - Tenetatively Identified Compounds
Bold - indicates exceedence of New Jersey FWQC

TABLE 6 SURFACE WATER ANALYTICAL RESULTS **SEPTEMBER 2006 THROUGH MARCH 2007** FORMER LEC SITE - WATCHUNG, NEW JERSEY

Sample ID	New Jersey	TB030607	FB030607	SW-1	SW-2	SW-3	SW-4
Lab Sample Number	Fresh Water - 2	811717	811716	811715	811714	811713	811712
Sampling Date	Quality	03/06/07	03/06/07	03/06/07	03/06/07	03/06/07	03/06/07
Matrix	Criteria	WATER	WATER	WATER	WATER	WATER	WATER
Dilution Factor	(FWQC)	1.0	1.0	1.0	1.0	1.0	1.0
Units	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
VOLATILE COMPOUNDS (GC/MS)							
Chloromethane	NA	0.4 U					
Bromomethane	48.4	0.4 U					
Vinyl Chloride	0.083	0.2 U					
Chloroethane	NA	0.4 U					
Methylene Chloride	2.49	0.4 U					
Trichlorofluoromethane	NA	0.4 U					
1,1-Dichloroethene	4.81	0.5 U					
1,1-Dichloroethane	NA	0.3 U					
trans-1,2-Dichloroethene	592	0.4 U					
cis-1,2-Dichloroethene	NA	0.3 U					
Chloroform	5.67	0.2 U					
1,2-Dichloroethane	0.291	0.3 U					
1,1,1-Trichloroethane	127	0.4 U					
Carbon Tetrachloride	0.363	0.3 U					
Bromodichloromethane	0.266	0.2 U					
1,2-Dichloropropane	NA	0.5 U					
cis-1,3-Dichloropropene	0.193	0.1 U					
Trichloroethene	1.09	0.4 U					
Dibromochloromethane	72.6	0.3 U					
1,1,2-Trichloroethane	13.5	0.2 U					
Benzene	0.15	0.2 U					
trans-1,3-Dichloropropene	0.193	0.2 U					
2-Chloroethyl Vinyl Ether	NA	0.2 U					
Bromoform	4.38	0.2 U					
Tetrachloroethene	0.388	0.4 U					
1,1,2,2-Tetrachloroethane	1.72	0.4 U					
Toluene	7440	0.3 U					
Chlorobenzene	22.0	0.2 U					
Ethylbenzene	3030	0.4 U					
Xylene (Total)	NA	0.4 U					
Total Confident Conc. VOAs (s)		ND	ND	ND	ND	ND	ND
Total Estimated Conc. VOA TICs (s)		ND	ND	ND	ND	ND	ND

ug/L - micrograms/Liter

U - compound not detected at indicated concentration

NA - No applicable criteria

VOCs - Volatile Organic Compounds

TICs - Tenetatively Identified Compounds
Bold - indicates exceedence of New Jersey FWQC

Location	Sample Date	Analyte	Conc	Result Unit	Qualifiers
SW-1	May-94	Trichloroethene	0.5	ug/L	
SW-1	Jun-94	Trichloroethene	0.81	ug/L	
SW-1	Jun-94	Trichloroethene	0.88	ug/L	
SW-1	Jul-94	Trichloroethene	0.29	ug/L	Ј
SW-1	Aug-94	Trichloroethene	0.12	ug/L	J
SW-1	Feb-95	Trichloroethene	0.84	ug/L	
SW-1	Apr-96	Trichloroethene	0.6	ug/L	
SW-1	Apr-98	Trichloroethene	0.9	ug/L	
SW-1	Nov-99	Trichloroethene	0.4	ug/L ug/L	
SW-1	Dec-02	Trichloroethene	0.4	ug/L ug/L	
SW-1	Mar-03	Trichloroethene	0	ug/L ug/L	
SW-1	Jul-03	Trichloroethene	0.7		
SW-1 SW-1		Trichloroethene	0.7	ug/L	U
	Aug-03			ug/L	
SW-1	Sep-03	Trichloroethene	0.3	ug/L	U
SW-1	Oct-03	Trichloroethene	0.2	ug/L	U
SW-1	Nov-03	Trichloroethene	0.2	ug/L	U
SW-1	Dec-03	Trichloroethene	0.2	ug/L	U
SW-1	Jan-04	Trichloroethene	0.2	ug/L	U
SW-1	Feb-04	Trichloroethene	0.2	ug/L	U
SW-1	Mar-04	Trichloroethene	0.2	ug/L	U
SW-1	Apr-04	Trichloroethene	0.2	ug/L	U
SW-1	May-04	Trichloroethene	0.2	ug/L	U
SW-1	Jun-04	Trichloroethene	0.2	ug/L	U
SW-1	Jul-04	Trichloroethene	0.4	ug/L	U
SW-1	Aug-04	Trichloroethene	0.4	ug/L	U
SW-1	Sep-04	Trichloroethene	0.4	ug/L	U
SW-1	Oct-04	Trichloroethene	0.4	ug/L	U
SW-1	Nov-04	Trichloroethene	0.4	ug/L	U
SW-1	Dec-04	Trichloroethene	0.4	ug/L	U
SW-1	Jan-05	Trichloroethene	0.4	ug/L	U
SW-1	Feb-05	Trichloroethene	0.4	ug/L	U
SW-1	Mar-05	Trichloroethene	0.4	ug/L	U
SW-1	Apr-05	Trichloroethene	0.4	ug/L	U
SW-1	May-05	Trichloroethene	0.4	ug/L	U
SW-1	Jun-05	Trichloroethene	0.4	ug/L	U
SW-1	Jul-05	Trichloroethene	0.4	ug/L	U
SW-1	Aug-05	Trichloroethene	NS	NS	NS
SW-1	Sep-05	Trichloroethene	NS	NS	NS
SW-1	Oct-05	Trichloroethene	0.4	ug/L	U
SW-1	Nov-05	Trichloroethene	0.4	ug/L ug/L	U
SW-1	Mar-06	Trichloroethene	0.4	_	U
		Trichloroethene		ug/L	
SW-1	Sep-06		0.4	ug/L	U
SW-1	Mar-07	Trichloroethene	0.4	ug/L	U
SW-2	Aug-93	Trichloroethene	39	ug/L	
SW-2	Aug-93	Trichloroethene	41	ug/L	
SW-2	Oct-93	Trichloroethene	160	ug/L	
SW-2	May-94	Trichloroethene	72	ug/L	
SW-2	Jun-94	Trichloroethene	55	ug/L	
SW-2	Jun-94	Trichloroethene	59	ug/L	
SW-2	Jun-94	Trichloroethene	63	ug/L	
SW-2	Jul-94	Trichloroethene	53	ug/L	
SW-2	Jul-94	Trichloroethene	42	ug/L	
SW-2	Aug-94	Trichloroethene	69	ug/L	D
SW-2	Oct-94	Trichloroethene	47	ug/L	
SW-2	Nov-94	Trichloroethene	71.2	ug/L	J
SW-2	Dec-94	Trichloroethene	75.5	ug/L	
SW-2	Jan-95	Trichloroethene	42	ug/L	
SW-2	Feb-95	Trichloroethene	81.1	ug/L	
SW-2	Apr-95	Trichloroethene	108	ug/L	

TRC Job No. 2542-116473.0000

Location	Sample Date	Analyte	Conc	Result Unit	Qualifiers
SW-2	Jun-95	Trichloroethene	67.7	ug/L	
SW-2	Jun-95	Trichloroethene	70.9	ug/L	
SW-2	Jun-95	Trichloroethene	98.7	ug/L	
SW-2	Aug-95	Trichloroethene	127	ug/L	
SW-2	Apr-96	Trichloroethene	26	ug/L	
SW-2	Apr-96	Trichloroethene	27	ug/L	
SW-2	Sep-97	Trichloroethene	36.8	ug/L	
SW-2	Sep-97	Trichloroethene	41.9	ug/L	
SW-2	Apr-98	Trichloroethene	45.4	ug/L	
SW-2	Apr-98	Trichloroethene	48	ug/L	
SW-2	Sep-98	Trichloroethene	68.7	ug/L	
SW-2	Nov-99	Trichloroethene	80.1	ug/L	
SW-2	Mar-00	Trichloroethene	80	ug/L	
SW-2	Dec-02	Trichloroethene	57	ug/L	
SW-2	Mar-03	Trichloroethene	33	ug/L	
SW-2	Jul-03	Trichloroethene	3.6	ug/L	
SW-2	Aug-03	Trichloroethene	2.2	ug/L	
SW-2	Sep-03	Trichloroethene	0.3	ug/L	U
SW-2	Oct-03	Trichloroethene	0.2	ug/L	U
SW-2	Nov-03	Trichloroethene	0.2	ug/L	U
SW-2	Dec-03	Trichloroethene	0.2	ug/L	U
SW-2	Jan-04	Trichloroethene	2.1	ug/L	
SW-2	Feb-04	Trichloroethene	1.4	ug/L	
SW-2	Mar-04	Trichloroethene	0.2	ug/L	U
SW-2	Apr-04	Trichloroethene	0.4	ug/L	
SW-2	May-04	Trichloroethene	2.2	ug/L	
SW-2	Jun-04	Trichloroethene	0.2	ug/L	U
SW-2	Jul-04	Trichloroethene	0.4	ug/L	U
SW-2	Aug-04	Trichloroethene	0.6	ug/L	
SW-2	Sep-04	Trichloroethene	0.4	ug/L	U
SW-2	Oct-04	Trichloroethene	1.7	ug/L	
SW-2	Nov-04	Trichloroethene	0.4	ug/L	U
SW-2	Dec-04	Trichloroethene	0.5	ug/L	
SW-2	Jan-05	Trichloroethene	0.5	ug/L	
SW-2	Feb-05	Trichloroethene	0.8	ug/L	
SW-2	Mar-05	Trichloroethene	2.6	ug/L	
SW-2	Apr-05	Trichloroethene	0.8	ug/L	
SW-2	May-05	Trichloroethene	0.4	ug/L	U
SW-2	Jun-05	Trichloroethene	0.5	ug/L	
SW-2	Jul-05	Trichloroethene	0.4	ug/L	U
SW-2	Aug-05	Trichloroethene	0.4	ug/L	U
SW-2	Sep-05	Trichloroethene	0.4	ug/L	U
SW-2	Oct-05	Trichloroethene	0.4	ug/L	U
SW-2	Nov-05	Trichloroethene	0.4	ug/L ug/L	U
SW-2	Mar-06	Trichloroethene	1.2	ug/L ug/L	
SW-2	Sep-06	Trichloroethene	0.6	ug/L ug/L	
SW-2	Mar-07	Trichloroethene	0.4	ug/L ug/L	U

Location	Sample Date	Analyte	Conc	Result Unit	Qualifiers
SW-3	Jun-94	Trichloroethene	34.00	ug/L	
SW-3	Jun-94	Trichloroethene	36.00	ug/L	
SW-3	Jul-94	Trichloroethene	29.00	ug/L	
SW-3	Jul-94	Trichloroethene	26.00	ug/L	
SW-3	Aug-94	Trichloroethene	32.00	ug/L	
SW-3	Oct-94	Trichloroethene	14.5	ug/L	
SW-3	Nov-94	Trichloroethene	26.6	ug/L	J
SW-3	Dec-94	Trichloroethene	48.4	ug/L	Ů
SW-3	Jan-95	Trichloroethene	31.7	ug/L	
SW-3	Feb-95	Trichloroethene	63.2	ug/L	
SW-3	Apr-95	Trichloroethene	48	ug/L ug/L	
SW-3	Apr-95	Trichloroethene	51.4	ug/L ug/L	
SW-3	Jun-95	Trichloroethene	29		
SW-3	Jun-95	Trichloroethene	7.51	ug/L	
				ug/L	
SW-3	Aug-95	Trichloroethene	32	ug/L	
SW-3	Apr-96	Trichloroethene	24	ug/L	
SW-3	Sep-97	Trichloroethene	43.7	ug/L	
SW-3	Apr-98	Trichloroethene	47	ug/L	
SW-3	Sep-98	Trichloroethene	26.6	ug/L	
SW-3	Sep-98	Trichloroethene	27.8	ug/L	
SW-3	Nov-99	Trichloroethene	41.4	ug/L	
SW-3	Mar-00	Trichloroethene	60	ug/L	
SW-3	Dec-02	Trichloroethene	44	ug/L	
SW-3	Mar-03	Trichloroethene	28	ug/L	
SW-3	Jul-03	Trichloroethene	2.6	ug/L	
SW-3	Aug-03	Trichloroethene	1.2	ug/L	
SW-3	Sep-03	Trichloroethene	0.3	ug/L	U
SW-3	Oct-03	Trichloroethene	0.2	ug/L	U
SW-3	Nov-03	Trichloroethene	0.2	ug/L	U
SW-3	Dec-03	Trichloroethene	0.2	ug/L	U
SW-3	Jan-04	Trichloroethene	1.1	ug/L	
SW-3	Feb-04	Trichloroethene	0.8	ug/L	
SW-3	Mar-04	Trichloroethene	0.2	ug/L	U
SW-3	Apr-04	Trichloroethene	0.3	ug/L	
SW-3	May-04	Trichloroethene	1.2	ug/L ug/L	
SW-3	Jun-04	Trichloroethene	0.2	ug/L ug/L	U
SW-3	Jul-04	Trichloroethene	0.2	ug/L ug/L	U
SW-3	Aug-04	Trichloroethene	0.4	-	U
SW-3		Trichloroethene		ug/L	U
	Sep-04 Oct-04	Trichloroethene	0.4	ug/L	
SW-3			0.7	ug/L	T T
SW-3	Nov-04	Trichloroethene	0.4	ug/L	U
SW-3	Dec-04	Trichloroethene	0.4	ug/L	U
SW-3	Jan-05	Trichloroethene	0.4	ug/L	U
SW-3	Feb-05	Trichloroethene	0.4	ug/L	
SW-3	Mar-05	Trichloroethene	1.6	ug/L	
SW-3	Apr-05	Trichloroethene	0.4	ug/L	U
SW-3	May-05	Trichloroethene	0.4	ug/L	U
SW-3	Jun-05	Trichloroethene	0.4	ug/L	U
SW-3	Jul-05	Trichloroethene	0.4	ug/L	U
SW-3	Aug-05	Trichloroethene	0.4	ug/L	U
SW-3	Sep-05	Trichloroethene	0.4	ug/L	U
SW-3	Oct-05	Trichloroethene	0.4	ug/L	U
SW-3	Nov-05	Trichloroethene	0.4	ug/L	U
SW-3	Mar-06	Trichloroethene	0.6	ug/L	
SW-3	Sep-06	Trichloroethene	0.4	ug/L	U
SW-3	Mar-07	Trichloroethene	0.4	ug/L	U

Location	Sample Date	Analyte	Conc	Result Unit	Qualifiers
SW-4	May-94	Trichloroethene	14	ug/L	Quantiers
SW-4	Jun-94	Trichloroethene	14	ug/L ug/L	
SW-4	Jun-94	Trichloroethene	6.9	ug/L ug/L	
SW-4 SW-4	Jul-94	Trichloroethene	6.5	_	
SW-4 SW-4	Jul-94 Jul-94	Trichloroethene		ug/L	
SW-4 SW-4	Jul-94 Jul-94	Trichloroethene	6.6	ug/L	
			9.4	ug/L	
SW-4	Aug-94	Trichloroethene	11	ug/L	
SW-4	Oct-94	Trichloroethene	2.08	ug/L	,
SW-4	Nov-94	Trichloroethene	4.31	ug/L	J
SW-4	Dec-94	Trichloroethene	19.5	ug/L	
SW-4	Jan-95	Trichloroethene	16.1	ug/L	
SW-4	Jan-95	Trichloroethene	17	ug/L	
SW-4	Feb-95	Trichloroethene	53.7	ug/L	
SW-4	Feb-95	Trichloroethene	54.4	ug/L	
SW-4	Apr-95	Trichloroethene	19.3	ug/L	
SW-4	Jun-95	Trichloroethene	6.29	ug/L	
SW-4	Aug-95	Trichloroethene	2.62	ug/L	
SW-4	Aug-95	Trichloroethene	2.83	ug/L	
SW-4	Apr-96	Trichloroethene	16	ug/L	
SW-4	Sep-97	Trichloroethene	3.9	ug/L	
SW-4	Apr-98	Trichloroethene	30.4	ug/L	
SW-4	Sep-98	Trichloroethene	1.4	ug/L	
SW-4	Nov-99	Trichloroethene	19.2	ug/L	
SW-4	Mar-00	Trichloroethene	36	ug/L	
SW-4	Dec-02	Trichloroethene	30	ug/L	
SW-4	Mar-03	Trichloroethene	18	ug/L	
SW-4	Jul-03	Trichloroethene	1.7	ug/L	
SW-4	Aug-03	Trichloroethene	0.2	ug/L	U
SW-4	Sep-03	Trichloroethene	0.3	ug/L	U
SW-4	Oct-03	Trichloroethene	0.2	ug/L	U
SW-4	Nov-03	Trichloroethene	0.2	ug/L	U
SW-4	Dec-03	Trichloroethene	0.2	ug/L	U
SW-4	Jan-04	Trichloroethene	0.6	ug/L	
SW-4	Feb-04	Trichloroethene	0.6	ug/L	
SW-4	Mar-04	Trichloroethene	0.2	ug/L	U
SW-4	Apr-04	Trichloroethene	0.2	ug/L	U
SW-4	May-04	Trichloroethene	0.7	ug/L	
SW-4	Jun-04	Trichloroethene	0.2	ug/L	U
SW-4	Jul-04	Trichloroethene	0.4	ug/L	U
SW-4	Aug-04	Trichloroethene	0.4	ug/L ug/L	U
SW-4	Sep-04	Trichloroethene	0.4	ug/L ug/L	U
SW-4	Oct-04	Trichloroethene	0.4	ug/L ug/L	
SW-4	Nov-04	Trichloroethene	0.4	ug/L ug/L	U
SW-4	Dec-04	Trichloroethene	0.4	ug/L ug/L	
SW-4	Jan-05	Trichloroethene	0.4	ug/L ug/L	U
SW-4 SW-4	Feb-05	Trichloroethene	0.4	=	U
SW-4 SW-4	Mar-05	Trichloroethene	1.1	ug/L	
SW-4 SW-4		Trichloroethene	0.4	ug/L	U
	Apr-05			ug/L	
SW-4	May-05	Trichloroethene	0.4	ug/L	U
SW-4	Jun-05	Trichloroethene	0.4	ug/L	U
SW-4	Jul-05	Trichloroethene	0.4	ug/L	U
SW-4	Aug-05	Trichloroethene	0.4	ug/L	U
SW-4	Sep-05	Trichloroethene	0.4	ug/L	U
SW-4	Oct-05	Trichloroethene	0.4	ug/L	U
SW-4	Nov-05	Trichloroethene	0.4	ug/L	U
SW-4	Mar-06	Trichloroethene	0.4	ug/L	U
SW-4	Sep-06	Trichloroethene	0.4	ug/L	U
SW-4	Mar-07	Trichloroethene	0.4	ug/L	U

Location	Sample Date	Analyte	Conc	Result Unit	Qualifiers
SW-12	Dec-02	Trichloroethene	7.8	ug/L	
SW-12	Mar-03	Trichloroethene	5	ug/L	
SW-12	Mar-03	Trichloroethene	3	ug/L	
SW-12	Jul-03	Trichloroethene	1.7	ug/L	
SW-12	Aug-03	Trichloroethene	2.2	ug/L	
SW-12	Sep-03	Trichloroethene	3	ug/L	
SW-12	Oct-03	Trichloroethene	3.4	ug/L	U
SW-12	Nov-03	Trichloroethene	3.2	ug/L	
SW-12	Dec-03	Trichloroethene	1.1	ug/L	
SW-12	Jan-04	Trichloroethene	2.1	ug/L	
SW-12	Feb-04	Trichloroethene	1.4	ug/L	
SW-12	Mar-04	Trichloroethene	0.2	ug/L	U
SW-12	Apr-04	Trichloroethene	2.3	ug/L	
SW-12	May-04	Trichloroethene	2.4	ug/L	
SW-12	Jun-04	Trichloroethene	1.3	ug/L	
SW-12	Jul-04	Trichloroethene	2.5	ug/L	
SW-12	Aug-04	Trichloroethene	2.4	ug/L	
SW-12	Sep-04	Trichloroethene	2.1	ug/L	
SW-12	Oct-04	Trichloroethene	2.2	ug/L	
SW-12	Nov-04	Trichloroethene	2.4	ug/L	
SW-12	Dec-04	Trichloroethene	1.1	ug/L	
SW-12	Jan-05	Trichloroethene	1.0	ug/L	
SW-12	Feb-05	Trichloroethene	2.3	ug/L	
SW-12	Mar-05	Trichloroethene	1.0	ug/L	
SW-12	Apr-05	Trichloroethene	1.2	ug/L	
SW-12	May-05	Trichloroethene	0.4	ug/L	U
SW-12	Jun-05	Trichloroethene	2.9	ug/L	
SW-12	Jul-05	Trichloroethene	3.3	ug/L	
SW-12	Aug-05	Trichloroethene	3.0	ug/L	
SW-12	Sep-05	Trichloroethene	3.6	ug/L	
SW-12	Oct-05	Trichloroethene	0.4	ug/L	U
SW-12	Nov-05	Trichloroethene	0.4	ug/L	U

micrograms/Liter

ug/L U J The compound was not detected above method detection limit

Data indicates the presence of a compound detected at less than the quantitation limit. The value is approximate.

D Concentration was reported from a diluted analysis. The value is approximate.

TABLE 8 SYSTEM PERFORMANCE SUMMARY FORMER LEC SITE - WATCHUNG, NEW JERSEY

Sample	Influent TCE	Mid TCE	Effluent TCE	Average Pumping Rate	Monthly Pumpage	RW-1 Water Level
Month	(ug/L)	(ug/L)	(ug/L)	(gpm)	(MGM)	(feet)
July 2003	62	ND	ND	133.4	2.31	43.8
August 2003	470	ND	ND	128.0	5.53	44.9
September 2003	62	ND	ND	127.5	5.51	44.6
October 2003	470	ND	ND	122.8	5.31	41.8
November 2003	510	58	ND	124.2	5.36	44.1
December 2003	650	160	ND	138.2	5.97	50.3
January 2004	430	310	1.2	138.8	6.00	51.5
February 2004	450	460	ND	135.5	5.85	52.5
March 2004	480	190	2.8	132.3	5.72	54
April 2004	370	340	2.0	129.6	5.57	49.9
May 2004	350	320	2.0	134.9	6.02	53.7
June 2004	370	3.3	0.8	100.1	4.32	55.8
July 2004	420	3.9	1	132.7	5.73	45.01
August 2004	390	53	0.6	132.3	5.72	53.73
September 2004	480	200	0.7	128.5	5.55	58.63
October 2004	400	1.2	0.5	104.5	4.52	56.06
November 2004	400	16	0.4	136.3	5.89	41.79
December 2004	360	73	0.4	118.8	5.13	55.19
January 2005	330	180	0.5	135.6	5.86	54.42
February 2005	380	260	ND	125.0	5.40	47.06
March 2005	370	47	ND	121.5	5.25	60.19
April 2005	350	130	0.4	144.2	6.23	52.3
May 2005	330	190	ND	127.8	5.52	60.8
June 2005	360	1.8	0.5	118.1	5.10	62.6
July 2005	360	5.1	0.5	129.1	5.58	61
August 2005	270	76	0.6	126.6	5.47	66.3
September 2005	240	120	NS	125.6	5.43	62.4
October 2005	320	2.9	0.5	82.7	3.57	49.9
November 2005	280	9	NS	126.5	5.47	58.9
December 2005	280	67	NS	126.9	5.48	56.5
January 2006	210	100	NS	126.3	5.46	60
February 2006	180	1.6	1.0	119.6	5.17	58.8
March 2006	260	4.1	NS	126.5	5.47	59.2
April 2006	230	14	1.2	122.0	5.27	56.7
May 2006	180	55	NS	129.4	5.59	64.9
June 2006	200	120	1.4	125.2	5.41	59.3
July 2006	180	180	NS	118.1	5.10	55
August 2006	200	200	NS	95.1	4.11	56.2
September 2006	150	27	1.5	103.2	4.46	58.4
October 2006	170	44	NS	121.2	5.24	60.1
November 2006	170	69	NS	124.8	5.39	58.4
December 2006	120	86	1.5	122.6	5.30	61.8
January 2007	85	110	NS	118.9	5.14	58.7
February 2007	90	4.7	NS	119.6	5.17	66.8
March 2007	60	4	1.7	103.9	4.49	57.5

NS Not sampled, only need to sample effluent one time per quarter as per NJPDES Permit

ND Not detected
ug/L micrograms/Liter
gpm gallons per minute
MGM million gallons per month

TABLE 9 IMPLEMENTATION SCHEDULE FORMER LEC SITE - WATCHUNG, NEW JERSEY Page 1 of 1

	2007			2008									
TASKS	May	June	July	Aug	Sept	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May
System Monitoring and Sampling													
Ground Water/Surface Water Sample Collection and Analysis													
Report Preparation													
Remedial Action Progress Report to NJDEP													

APPENDIX A

NJDEP Contour Map Reporting Forms

Shallow Zone September 19, 2006

1.	Did any surveyed well casing elevations change from the previous sampling event? YesNoX. If yes, attach new "Well Certification - Form B" and identify the reason for the elevation change (damage to casing, installation of recovery system in monitoring well, etc.).
2.	Are there any monitoring wells in unconfined aquifers in which in which the water table elevation is higher than the top of the well screen? Yes XNo
3.	Are there any monitoring wells present at the site but omitted from the contour map? Yes $\underline{\hspace{1cm}}$ No $\underline{\hspace{1cm}}$ Unless the omission of the well(s) has been previously approved by the Department, justify the omissions.
4.	Are there any monitoring wells containing separate phase product during this measuring event? Yes No X. Were any of the monitoring wells with separate phase product included in the ground water contour map? Yes No If yes, show the formula used to correct the water table elevation.
5.	Has the ground water flow direction changed more than 45° from the previous ground water contour map? Yes No \underline{X} . If yes, discuss the reasons for the change.
6.	Has ground water mounding and/or depressions been identified in the ground water contour map? YesX_No Unless the ground water mounds and/or depressions are caused by the ground water remediation system, discuss the reasons for this occurrence.
7.	Are all the wells used in the contour map screened in the same water-bearing zone? Yes X No If no, justify inclusion of those wells. See Table 3-includes the wells listed in shallow zone which are included on the contour map.
8.	Were the ground water contours computer generated, computer aided, or hand-drawn ? If computer aided or generated, identify the interpolation method(s) used.

Shallow Zone March 6, 2007

1.	Did any surveyed well casing elevations change from the previous sampling event? YesNoX. If yes, attach new "Well Certification - Form B" and identify the reason for the elevation change (damage to casing, installation of recovery system in monitoring well, etc.).
2.	Are there any monitoring wells in unconfined aquifers in which in which the water table elevation is higher than the top of the well screen? Yes X No Yes, identify these wells. All the wells used in the construction of contours are for monitoring a chlorinated solvent plume. The well screens are typically below static water level.
3.	Are there any monitoring wells present at the site but omitted from the contour map? Yes $\underline{\hspace{1cm}}$ No $\underline{\hspace{1cm}}$ Unless the omission of the well(s) has been previously approved by the Department, justify the omissions.
4.	Are there any monitoring wells containing separate phase product during this measuring event? Yes No X. Were any of the monitoring wells with separate phase product included in the ground water contour map? Yes No If yes, show the formula used to correct the water table elevation.
5.	Has the ground water flow direction changed more than 45° from the previous ground water contour map? Yes No _X If yes, discuss the reasons for the change.
6.	Has ground water mounding and/or depressions been identified in the ground water contour map? YesX_No Unless the ground water mounds and/or depressions are caused by the ground water remediation system, discuss the reasons for this occurrence.
7.	Are all the wells used in the contour map screened in the same water-bearing zone? Yes X No
8.	Were the ground water contours computer generated, computer aided, or hand-drawn X ? If computer aided or generated, identify the interpolation method(s) used.

Intermediate Zone March 6, 2007

1.	Did any surveyed well casing elevations change from the previous sampling event? YesNoX. If yes, attach new "Well Certification - Form B" and identify the reason for the elevation change (damage to casing, installation of recovery system in monitoring well, etc.).
2.	Are there any monitoring wells in unconfined aquifers in which in which the water table elevation is higher than the top of the well screen? Yes No X . If yes identify these wells. The wells used in this contour map are screened within an intermediate bedrock zone.
3.	Are there any monitoring wells present at the site but omitted from the contour map? Yes $\underline{\hspace{1cm}}$ No $\underline{\hspace{1cm}}$. Unless the omission of the well(s) has been previously approved by the Department, justify the omissions.
4.	Are there any monitoring wells containing separate phase product during this measuring event? Yes No X. Were any of the monitoring wells with separate phase product included in the ground water contour map? Yes No If yes, show the formula used to correct the water table elevation.
5.	Has the ground water flow direction changed more than 45° from the previous ground water contour map? Yes NoX If yes, discuss the reasons for the change.
6.	Has ground water mounding and/or depressions been identified in the ground water contour map? Yes X No Unless the ground water mounds and/or depressions are caused by the ground water remediation system, discuss the reasons for this occurrence.
7.	Are all the wells used in the contour map screened in the same water-bearing zone? Yes \underline{X} No $\underline{\hspace{0.5cm}}$. If no, justify inclusion of those wells. See Table 3 for the wells used in the intermediate zone contour map
8.	Were the ground water contours computer generated, computer aided, or hand-drawn ? If computer aided or generated, identify the interpolation method(s) used.

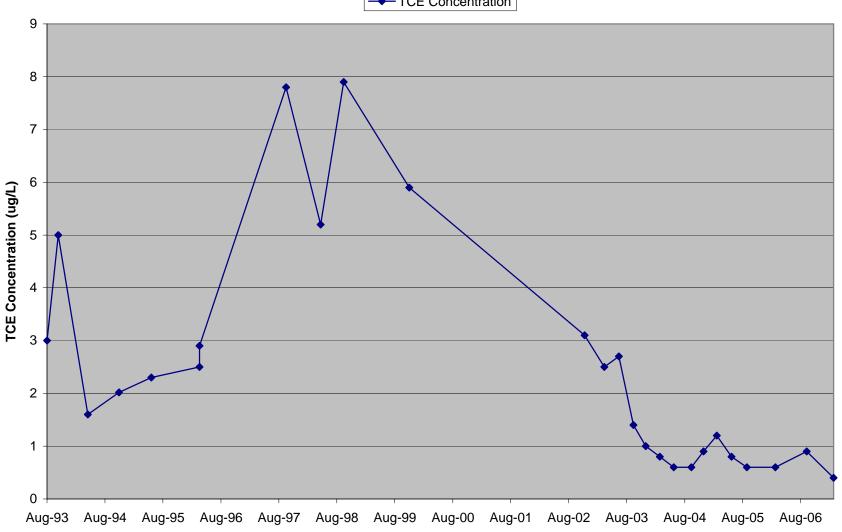
Deep Zone March 6, 2007

1.	Did any surveyed well casing elevations change from the previous sampling event? YesNoX. If yes, attach new "Well Certification - Form B" and identify the reason for the elevation change (damage to casing, installation of recovery system in monitoring well, etc.).
2.	Are there any monitoring wells in unconfined aquifers in which in which the water table elevation is higher than the top of the well screen? Yes No X . If yes identify these wells. The wells used in this contour map are screened within the deep bedrock zone.
3.	Are there any monitoring wells present at the site but omitted from the contour map? Yes $\underline{\hspace{1cm}}$ No $\underline{\hspace{1cm}}$. Unless the omission of the well(s) has been previously approved by the Department, justify the omissions.
4.	Are there any monitoring wells containing separate phase product during this measuring event? Yes No X. Were any of the monitoring wells with separate phase product included in the ground water contour map? Yes No If yes, show the formula used to correct the water table elevation.
5.	Has the ground water flow direction changed more than 45° from the previous ground water contour map? Yes No _X If yes, discuss the reasons for the change.
6.	Has ground water mounding and/or depressions been identified in the ground water contour map? Yes No X Unless the ground water mounds and/or depressions are caused by the ground water remediation system, discuss the reasons for this occurrence.
7.	Are all the wells used in the contour map screened in the same water-bearing zone? Yes X No If no, justify inclusion of those wells. See Table 3 for the wells used in the deep zone contour map
8.	Were the ground water contours computer generated $\underline{\hspace{0.1cm}}$, computer aided $\underline{\hspace{0.1cm}}$, or hand-drawn $\underline{\hspace{0.1cm}}$? If computer aided or generated, identify the interpolation method(s) used.

Intermediate Zone September 19, 2006

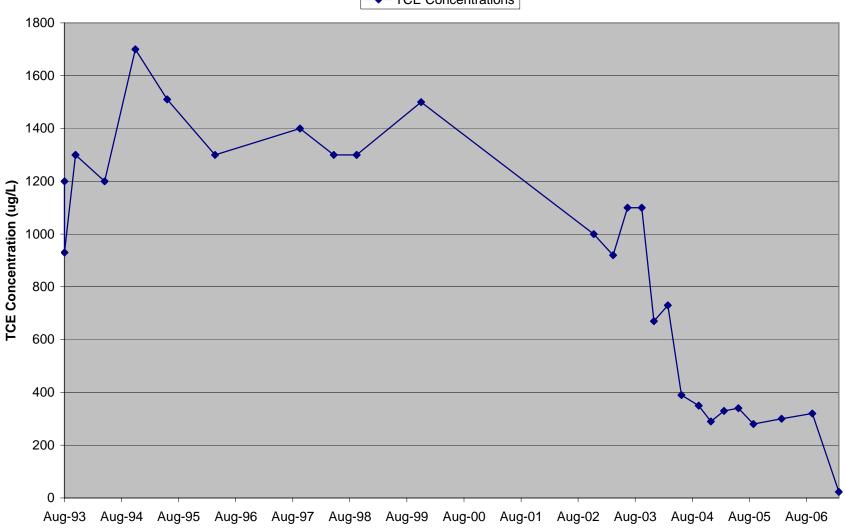
1.	Did any surveyed well casing elevations change from the previous sampling event? YesNoX. If yes, attach new "Well Certification - Form B" and identify the reason for the elevation change (damage to casing, installation of recovery system in monitoring well, etc.).
2.	Are there any monitoring wells in unconfined aquifers in which in which the water table elevation is higher than the top of the well screen? YesNo_ \underline{X} . If yes, identify these wells. The wells used in this contour map are screened within an intermediate bedrock zone.
3.	Are there any monitoring wells present at the site but omitted from the contour map? Yes $\underline{\hspace{1cm}}$ No $\underline{\hspace{1cm}}$. Unless the omission of the well(s) has been previously approved by the Department, justify the omissions.
4.	Are there any monitoring wells containing separate phase product during this measuring event? Yes NoX. Were any of the monitoring wells with separate phase product included in the ground water contour map? Yes No If yes, show the formula used to correct the water table elevation.
5.	Has the ground water flow direction changed more than 45° from the previous ground water contour map? Yes NoX If yes, discuss the reasons for the change.
6.	Has ground water mounding and/or depressions been identified in the ground water contour map? Yes X_No Unless the ground water mounds and/or depressions are caused by the ground water remediation system, discuss the reasons for this occurrence.
7.	Are all the wells used in the contour map screened in the same water-bearing zone? Yes X No If no, justify inclusion of those wells. See Table 3 for the wells used in the intermediate zone contour map
8.	Were the ground water contours computer generated, computer aided, or hand-drawn X ? If computer aided or generated, identify the interpolation method(s) used.

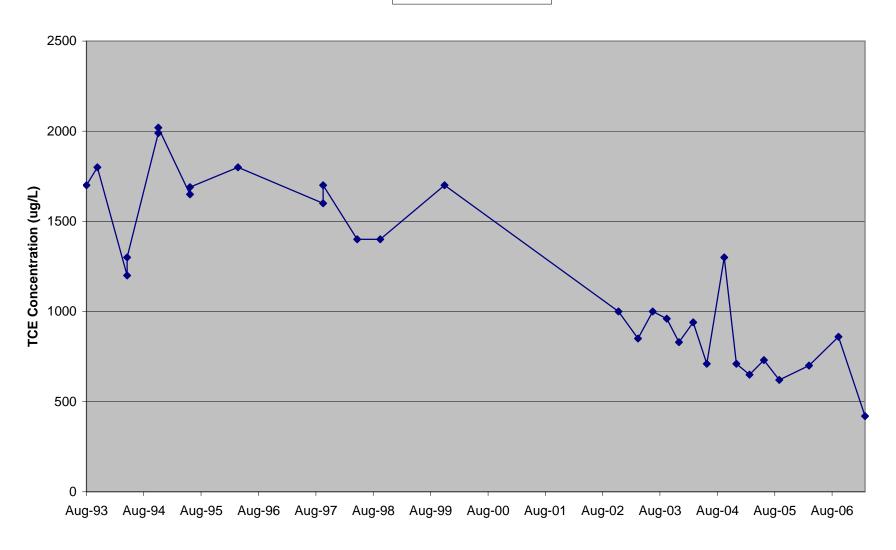
Deep Zone September 19, 2006


1.	Did any surveyed well casing elevations change from the previous sampling event? YesNoX. If yes, attach new "Well Certification - Form B" and identify the reason for the elevation change (damage to casing, installation of recovery system in monitoring well, etc.).
2.	Are there any monitoring wells in unconfined aquifers in which in which the water table elevation is higher than the top of the well screen? Yes No \underline{X} . If yes, identify these wells. The wells used in this contour map are screened within the deep bedrock zone.
3.	Are there any monitoring wells present at the site but omitted from the contour map? Yes No_X . Unless the omission of the well(s) has been previously approved by the Department, justify the omissions.
4.	Are there any monitoring wells containing separate phase product during this measuring event? Yes $___$ No $__X$. Were any of the monitoring wells with separate phase product included in the ground water contour map? Yes $___$ No $__$. If yes, show the formula used to correct the water table elevation.
5.	Has the ground water flow direction changed more than 45° from the previous ground water contour map? Yes No _X If yes, discuss the reasons for the change.
6.	Has ground water mounding and/or depressions been identified in the ground water contour map? YesNoX Unless the ground water mounds and/or depressions are caused by the ground water remediation system, discuss the reasons for this occurrence.
7.	Are all the wells used in the contour map screened in the same water-bearing zone? Yes \underline{X} No $\underline{\hspace{0.5cm}}$. If no, justify inclusion of those wells. See Table 3 for the wells used in the deep zone contour map
8.	Were the ground water contours computer generated, computer aided, or hand-drawn ? If computer aided or generated, identify the interpolation method(s) used.

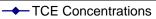
APPENDIX B

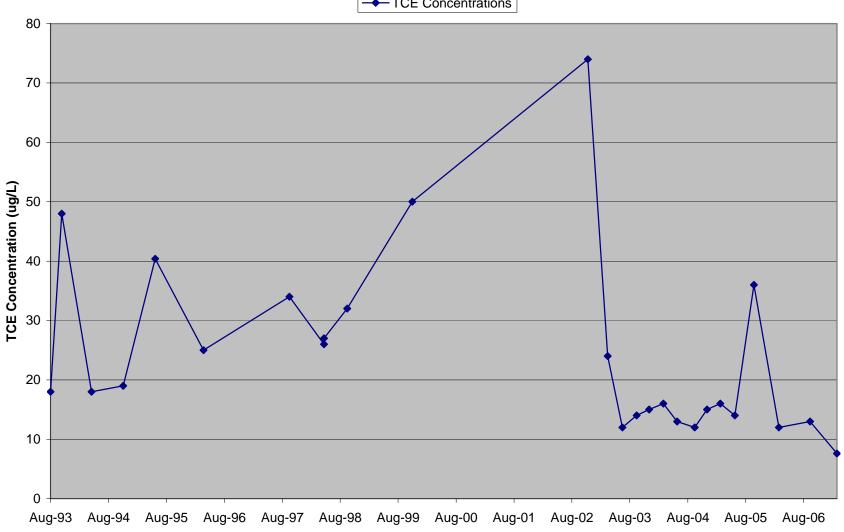
Plots of TCE Concentration Versus Time for Selected Monitoring Wells


Well MW-502A **Historical TCE Concentrations**

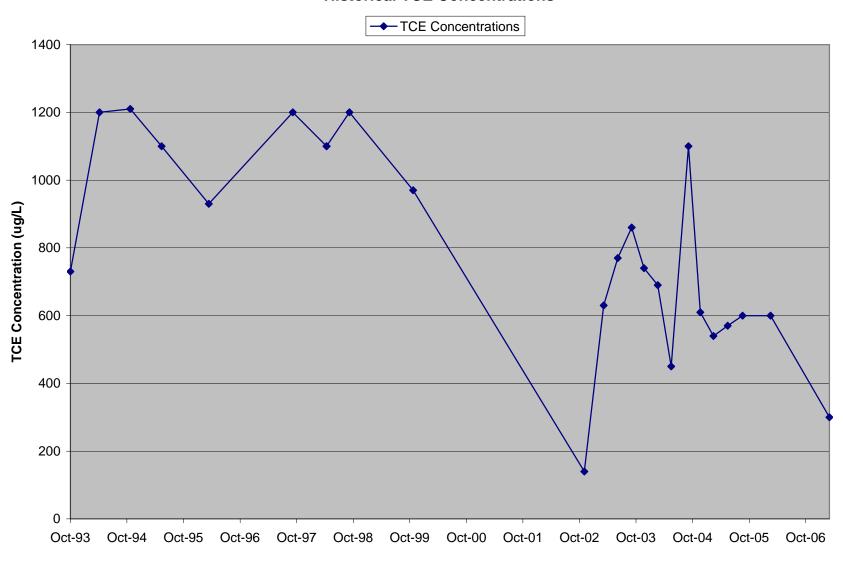

Well MW-502B Historical TCE Concentrations

TCE Concentrations

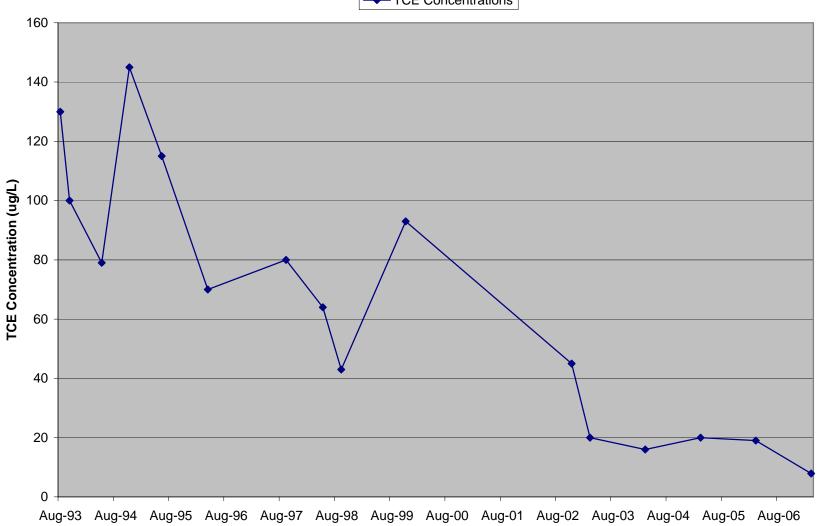



Well MW-506A Historical TCE Concentrations

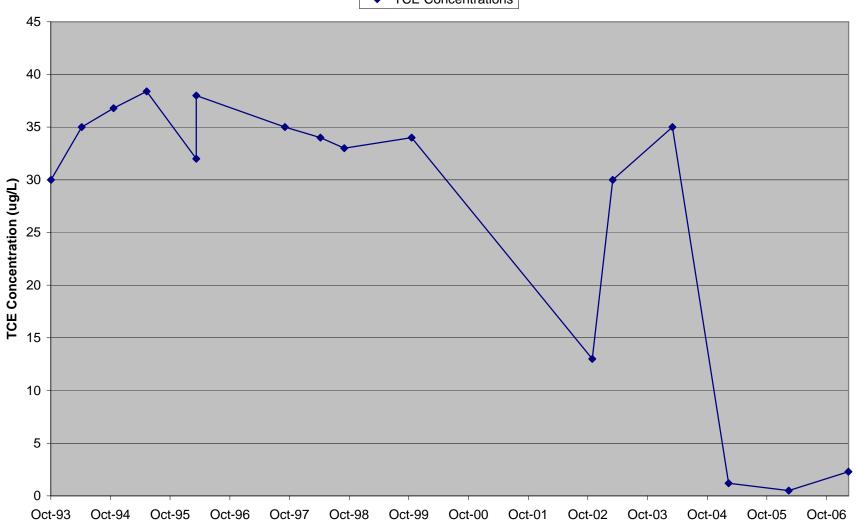
TCE Concentrations



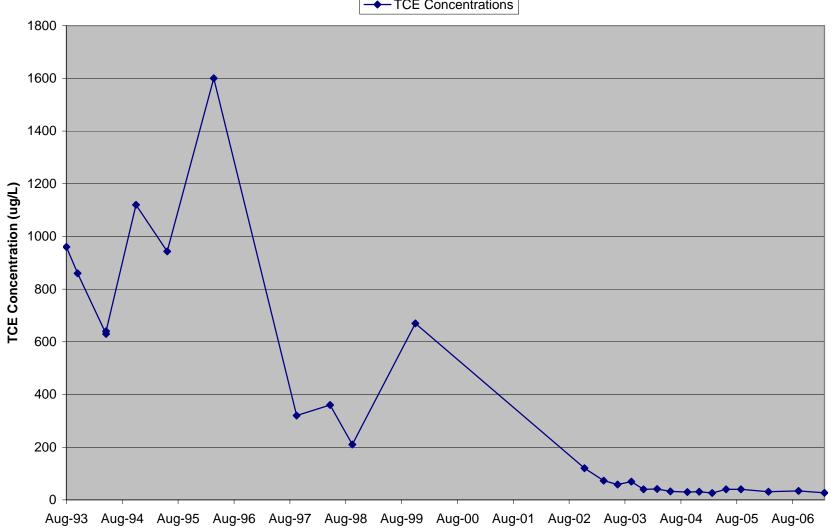
Well MW-506B **Historical TCE Concentrations**

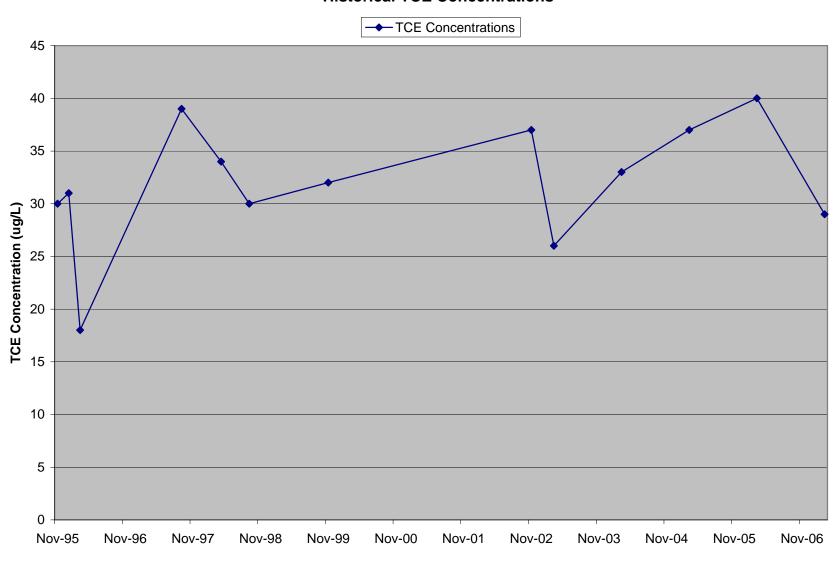


Well MW-507A Historical TCE Concentrations

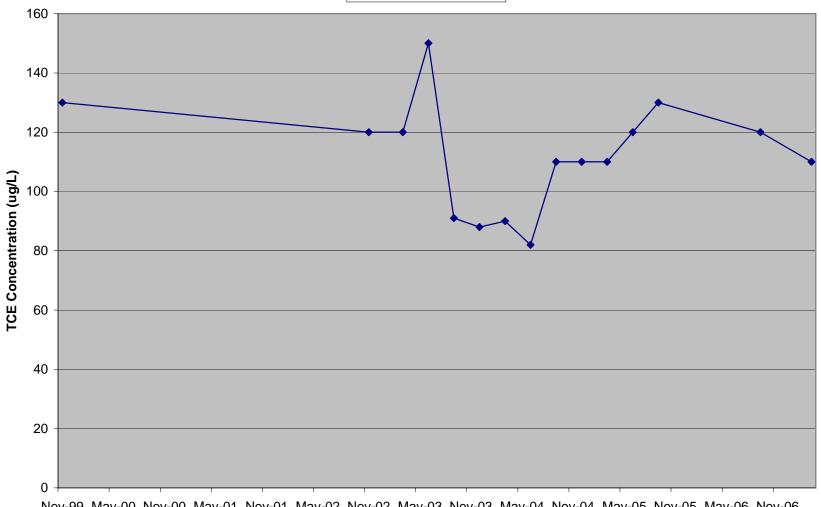

Well MW-507B Historical TCE Concentrations

→ TCE Concentrations


Well MW-508A Historical TCE Concentrations

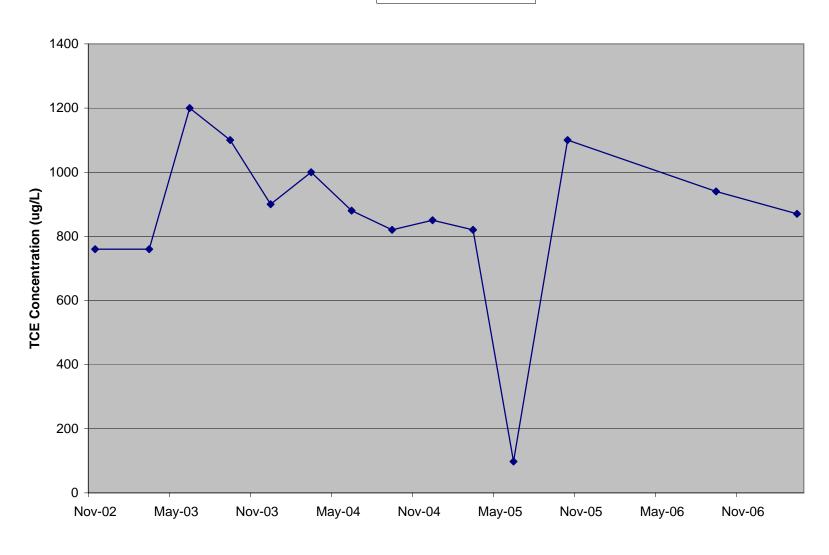


Well MW-508B **Historical TCE Concentrations**

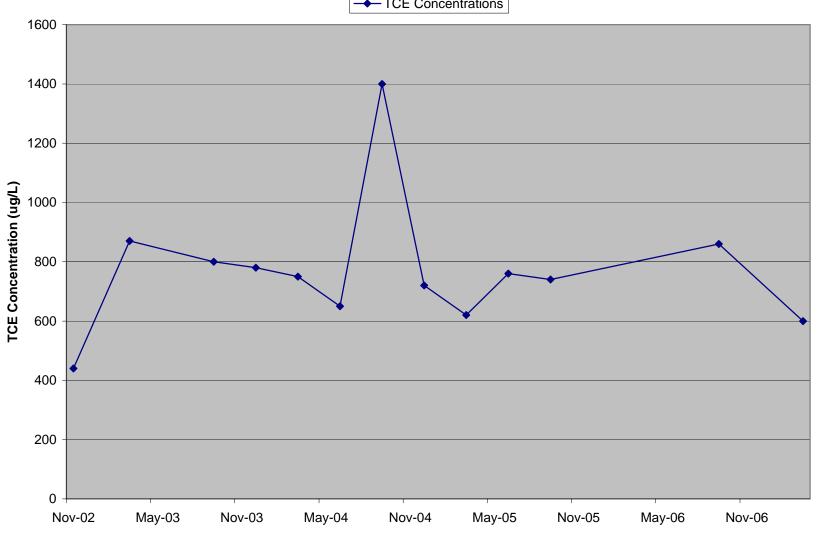


Well MW-532A Historical TCE Concentrations

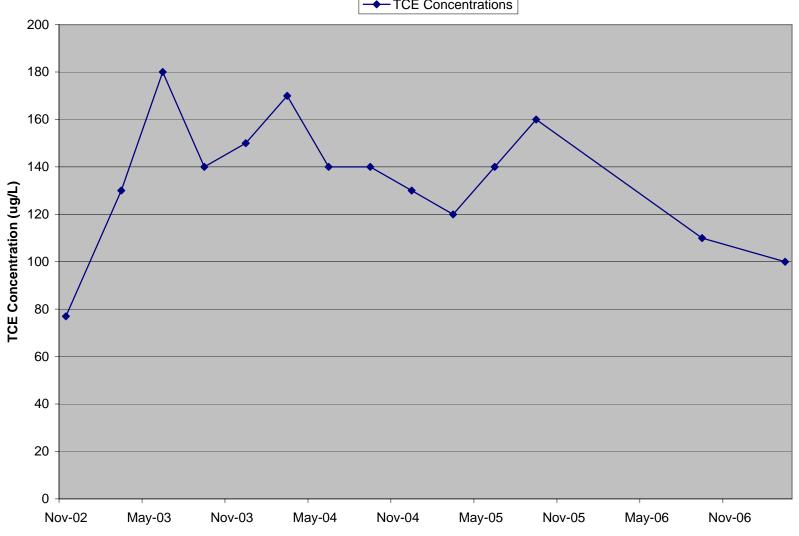
Well MW-546A **Historical TCE Concentrations**

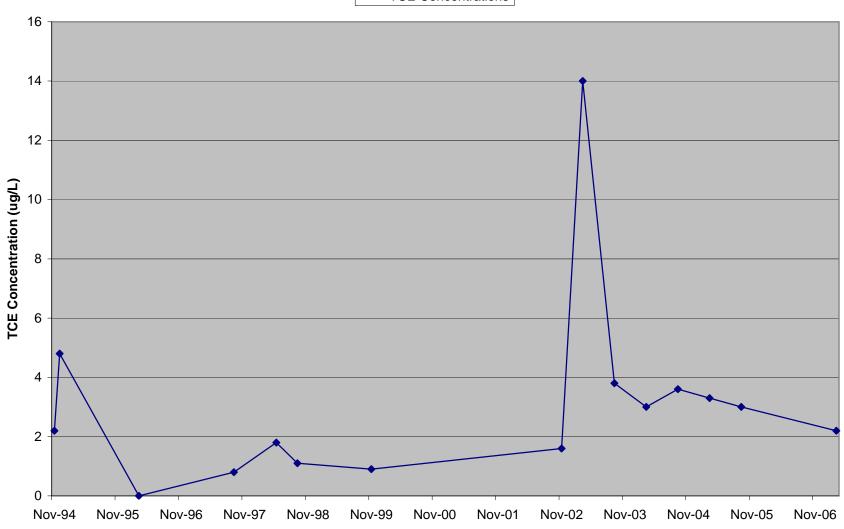

→ TCE Concentrations

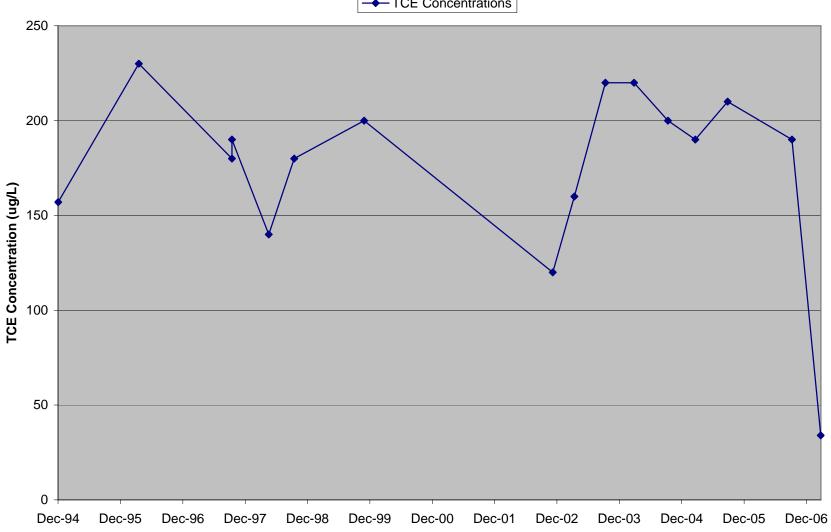
Nov-99 May-00 Nov-00 May-01 Nov-01 May-02 Nov-02 May-03 Nov-03 May-04 Nov-04 May-05 Nov-05 May-06 Nov-06


Well MW-549A Historical TCE Concentrations

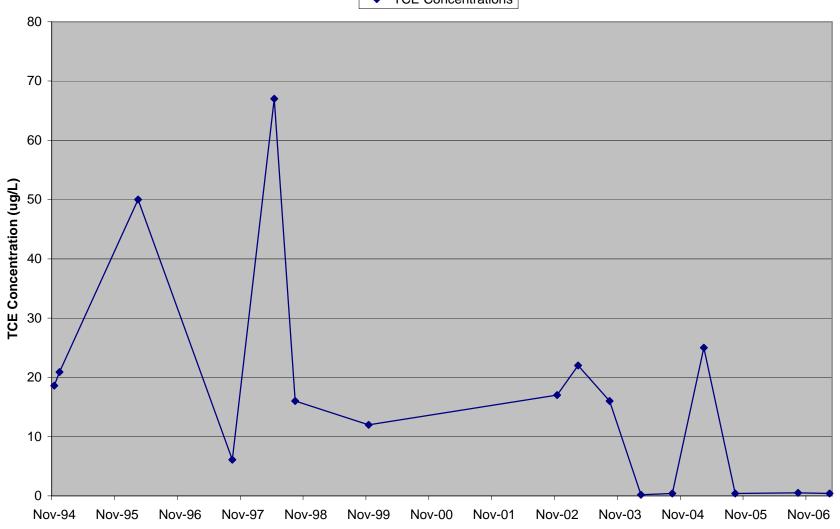
TCE Concentrations


Well MW-550B **Historical TCE Concentrations**


Well MW-550C **Historical TCE Concentrations**


Well P-522A
Historical TCE Concentrations

→ TCE Concentrations


Well P-522B **Historical TCE Concentrations**

Well P-522C Historical TCE Concentrations

APPENDIX C

Stream Sampling Field Measurements

TRC Environmental Corporation SAMPLE DATA RECORD: Crab Brook

Site ID:	Former LEC Site	Sample 1	Date: 9/19/2006
Site ib.	Tormer ELE Site	Sample	Juic. 9/19/2000
Stream Location:	Crab Brook	Sample T	ime: 10:00
Sample Location:	SW-1 Water Body	Sample Type:	Surface Water Sample
Sample ID:	SW-1	Decon (y/n)	
Sample Collection Method:	bailer Velocity(ft3/sec):	0.42 FI	ow Rate(gpm): 188.50
Sample Appearance/Odor:	Clear	Sampler(s):	DD/TD
рН	7.60	Temperature	19.7
Conductivity	0.56 mS/cm	Salinity	0.0
Turbidity	6.7	Eh	287
DO	7.41		
Sample Bottles ID <u>SW-1</u>	Sample EPA Method	624+10	
Notes:		HORIBA U-22	
Location Sketch Leanord	woods	montl	
Flow Direction	Collected sample	at SW-1	
	woods		

Stream Location: Belmont & Leanord

SW-1	Width ft	Depth ft	Velocity ft/sec	Stream Flow ft3/sec	Stream Flow gpm
#1 #2	3.0 3.0	0.35 0.70	0.40 0.00	0.4 0.0	188.496 0.000
Total Width	5.0			0.42	188.50

TRC Environmental Corporation SAMPLE DATA RECORD : Crab brook

Site ID:	Former LEC Site	Sample Date: 9/19/2006
Stream Location:	Crab Brook	Sample Time: 9:40
Sample Location:	SW-2 Water Body	Sample Type: Surface Water Sample
Sample ID:	SW-2	Decon (y/n)
Sample Collection Method:	bailer Velocity(ft3/sec):	: 1.12 Flow Rate(gpm): 502.66
Sample Appearance/Odor:	Clear	Sampler(s): DD/TD
рН	7.36	Temperature 16.98
Conductivity	0.60 mS/cm	Salinity 0.0
Turbidity	3.9	Eh <u>255</u>
DO	7.63	
Sample Bottles ID SW-2	Sample EPA Method	624+10
Notes:		HORIBA U-22
Location Sketch North Drive Flow Direction	Collected surface water sample SW-2	er

Stream Location: North Drive

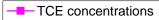
SW-2	Width	Depth	Velocity	Stream Flow	Stream Flow
	ft	ft	ft/sec	ft3/sec	gpm
#1	4.0	0.20	0.00	0.0	0.000
#2	4.0	0.35	0.80	1.1	502.656
#3	4.0	0.45	0.00	0.0	0.000
Total Widt	th 5.0			1.12	502.66

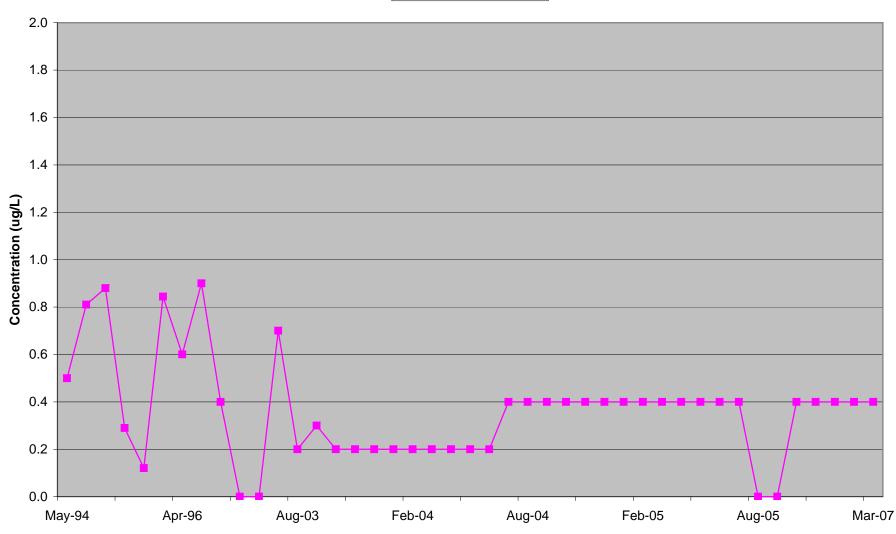
TRC Environmental Corporation SAMPLE DATA RECORD : Crab Brook

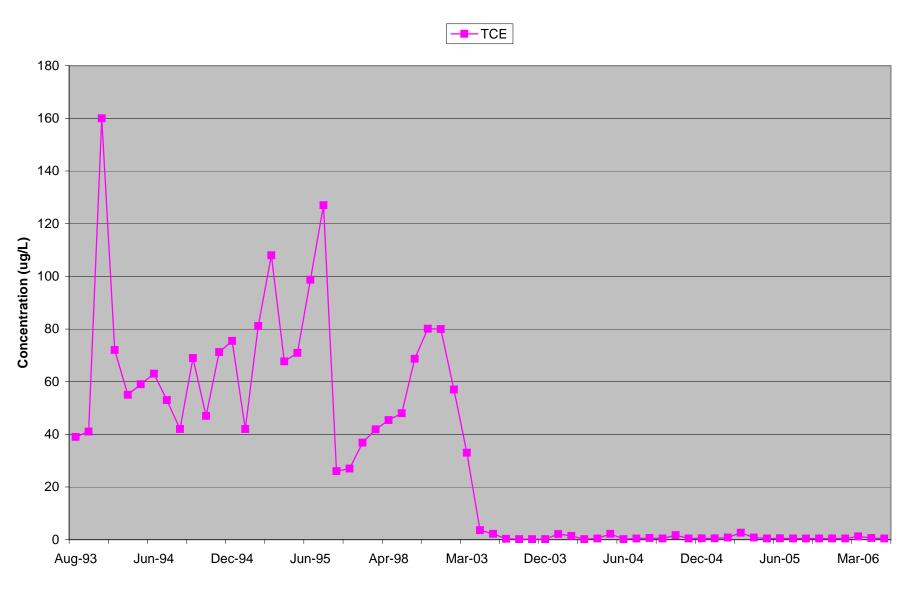
Site ID:	Former LEC Site	Samp	ple Date: 9/19/2006
Stream Location:	Crab Brook	Samp	ole Time: 9:21
Sample Location:	SW-3 W	ater Body Sample Type:	Surface Water Sample
Sample ID:	SW-3	Decon (y/n)	
Sample Collection Method:	bailer Velocit	xy(ft3/sec): 1.08	Flow Rate(gpm): 484.70
Sample Appearance/Odor:	Clear	Sampler(s):	DD/TD
рН	6.94	Temperature	17.4
Conductivity	0.62 mS/cm	Salinity	0.0
Turbidity	4.2	Eh	245
DO	8.09		
Sample Bottles ID SW-3	Sample EPA Metho	d <u>624+10</u>	
Notes:		HORIBA U-2	22
Location Sketch Collected surface sample SW-3 Flow Direction	water	Westervelt Avenue	

Stream Location: Westervelt Avenue

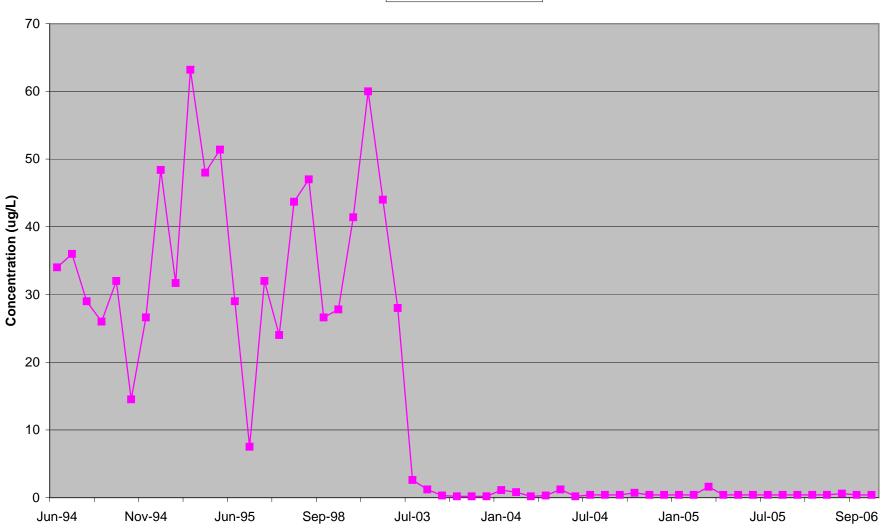
SW-3	Width	Depth	Velocity	Stream Flow	Stream Flow
	ft	ft	ft/sec	ft3/sec	gpm
#1	6.0	0.20	0.10	0.120	53.856
#2	6.0	0.20	0.50	0.600	269.28
#3	6.0	0.20	0.30	0.36	161.568
Total Wid	th 4.0			1.080	484.704

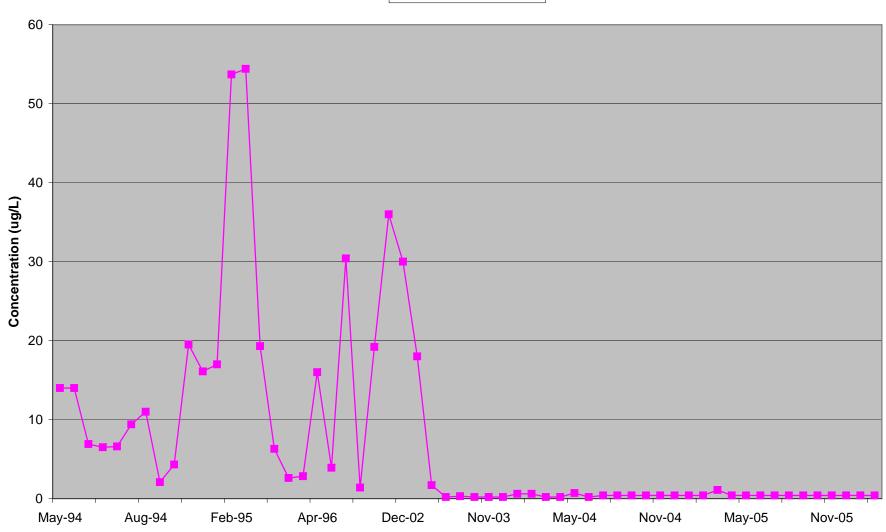

TRC Environmental Corporation SAMPLE DATA RECORD : Crab Brook


Site ID:	Former LEC S	Site San	nple Date: 9/19/2006
Stream Location:	Crab Brook	San	nple Time: 10:20
Sample Location:	SW-4	Water Body Sample Type:	Surface Water Sample
Sample ID:	SW-4	Decon (y/n)	
Sample Collection Method:	bailer V	Velocity(ft3/sec): 2.46	Flow Rate(gpm): 1104.04
Sample Appearance/Odor:	Clear	Sampler(s):	DD/TD
рН	7.73	Temperature	18.62
Conductivity	0.60 mS/cm	Salinity	0.0
Turbidity	7.1	Eh	287_
DO	8.47		
Sample Bottles ID SW-4	_	624+10	
Notes:		HORIBA U	-22
Collected surface w sample SW-4 locati		Watchung Avenue	


SW-4	Width ft	Depth ft	Velocity ft/sec	Stream Flow ft3/sec	Stream Flow gpm
#1	6.0	0.20	0.1	0.12	53.856
#2	6.0	0.25	0.7	1.05	471.24
#3	6.0	0.30	0.3	0.54	242.352
#4	6.0	0.25	0.5	0.75	336.6
Total Widt	th 5.0			2.46	1104.048

APPENDIX D


Plots of TCE Concentration Versus Time for Stream Locations



TCE concentrations

APPENDIX E

Health and Safety Plan

HEALTH AND SAFETY PLAN

FORMER LOCKHEED ELECTRONICS COMPANY SITE WATCHUNG, NEW JERSEY

TRC Job No. 2542-116473.0000

Prepared by:

TRC Environmental Corporation 57 East Willow Street Millburn, New Jersey 07041

September 2007

SITE-SPECIFIC HEALTH AND SAFETY PLAN FORMER LOCKHEED ELECTRONICS COMPANY SITE WATCHUNG, NEW JERSEY

Prepared by:		Date:	
1 ,	Danielle Doremus, Geolo		
Approved by:	Michael Speck, HSO	Date:	
Approved by:	Stephen E. Tappert, Sr. P	Date: roject Manager	
	and Safety Plan (HASP) and employees and subcontra	must be read and signed by ctors.	all personnel at the site
I have reviewe	ed this HASP and agree to	abide by the requirements cont	tained herein
TRC Employ	<u>ees</u>		
Name	Sign	nature	Date
Name	Sign	nature	Date
Name	Sign	nature	Date
Name	Sign	nature	Date
Name	Sign	nature	Date

TRC Employees (cont'd)

Name	Signature	Date
Name	Signature	Date
Name	Signature	 Date

Subcontractors

Name	Signature	Company	Date
Name	Signature	Company	Date
Name	Signature	Company	Date
Name	Signature	Company	Date
Name	Signature	Company	Date
Name	Signature	Company	Date
Name	Signature	Company	Date
Name	Signature	Company	Date
Name	Signature	Company	Date
Name	Signature	Company	Date
Name	Signature	Company	Date

TAILGATE SAFETY MEETING AND SAFETY INSPECTIONS

Pre-Field Activities

- Read and understand this Health & Safety Plan to ensure that all safety measures are considered (i.e., traffic control, overhead lines, etc.).
- Provide the subcontractors with a copy of TRC's HASP and be sure they bring their own HASP related to their field of expertise.
- If performing intrusive work, request from subcontractors a copy of the NJ One Call Mark-Out Confirmation Sheet and include it in your workplan.
- Confirm Utility Companies in HASP match the Utility Companies on the One Call Mark-Out Confirmation Sheet.

In the Field

- Make sure that all TRC field personnel and subcontractors have signed this HASP.
- When the subcontractors arrive, the Site Safety Officer shall perform a daily tailgate safety meeting that includes, but is not limited to, the following:
 - Brief discussion of site history and contaminants of concern.
 - Confirm subcontractors have appropriate H&S training.
 - Discuss the day's scope of work, and the suspected and potential hazards of each task, including chemical hazards and physical hazards (i.e., trip and fall, lifting, overhead obstacles, traffic, etc.).
 - Discuss the required protective personal equipment (PPE); confirm that all personnel have the appropriate PPE and have been trained to use it properly.
 - Discuss communication and chain of command.
 - Discuss emergency actions and emergency evacuation procedures.
 - Document meeting in field book.
 - Always ask if anyone has questions.
 - The meeting should be about 15 minutes long.
- The Site Safety Officer shall perform additional tailgate safety meetings whenever (1) risks or hazards change, (2) new personnel arrive, and (3) site operations warrant training.
- When procedural deficiencies are identified, the Site Safety Officer shall perform additional safety meetings to address the situation.

TABLE OF CONTENTS

Section No.	Title	Page No
1.0	INTRODUCTION	1
2.0	EMERGENCY INFORMATION	2
3.0	TRC CONTACTS AND KEY PERSONNEL 3.1 TRC Contacts 3.2 Key TRC Personnel 3.3 Responsibilities	3 3 3 3
4.0	SCOPE OF WORK AND GENERAL SITE BACKGROUND 4.1 Scope of Work 4.2 General Site Background	7 7 7
5.0	CONTAMINANTS OF CONCERN	8
6.0	PERSONAL PROTECTION EQUIPMENT	10
7.0	AIR MONITORING AND ACTION LEVELS	14
8.0	HAZARD EVALUATION AND MITIGATION 8.1 Physical Hazards 8.2 Chemical Hazards 8.3 Biological Hazards 8.4 Radiological Hazards 8.5 General Safety Measures	16 16 20 24 25 25
9.0	SITE CONTROL MEASURES 9.1 Support Zone 9.2 Contaminant Reduction Zone 9.3 Exclusion Zone	26 26 26 26
10.0	MEDICAL SURVEILLANCE	27
11.0	HEALTH AND SAFETY PROGRAM 11.1 Personnel Training and Respirator Protection 11.2 Exempt Personnel 11.3 Tailgate Safety Meetings and Safety Inspections	28 37 37 37

LIST OF FIGURES

Figure No.	<u>Title</u>
1	Site Location Map
2	Directions to Hospital
3	Site Map

LIST OF APPENDICES

<u>Appendix</u>	Title
A	Material Safety Data Sheets (MSDS)
В	Accident Reporting Form

HEALTH AND SAFETY PLAN

FORMER LOCKHEED ELECTRONICS COMPANY SITE WATCHUNG, NEW JERSEY

1.0 INTRODUCTION

The purpose of a Health and Safety Plan (HASP) is to establish requirements for protecting the health and safety of personnel from possible exposure to potentially hazardous substances during site activities. This HASP has been developed by TRC Environmental Corporation (TRC) to establish the site-specific health and safety procedures required to minimize potential risk to personnel performing certain activities at the above-referenced site (hereinafter "the Site") (Figure 1).

The provisions of this HASP apply to all personnel who may potentially be exposed to health and safety hazards related to specific activities at the site. All activities will be conducted in accordance with this HASP.

All TRC's HASPs are written to meet the requirements of all applicable federal, state and local health and safety regulations, including 29 CFR 1910.120, and are based on current knowledge regarding the specific chemical and physical hazards that are known or anticipated to be present at the Site.

TRC will provide subcontractors with a copy of TRC's site-specific HASP that includes a description of the chemical hazards that may be present at the Site. The subcontractor is required to provide a copy of TRC's site-specific HASP to all of its employees and subcontractors who perform work at the Site and who may come into contact with waste or other contaminated materials derived from the Site. The subcontractor's employees and its subcontractors must review TRC's HASP and, when on-site, sign documentation that they have read and understand TRC's HASP. Personnel who cannot or will not comply with TRC's HASP will be excluded from on-site activities.

Subcontractors must prepare their own HASP related to their specific expertise and are solely responsible for complying with all OSHA requirements and federal, state and local safety requirements applicable to their work.

2.0 EMERGENCY INFORMATION

The appropriate telephone numbers are listed below for medical emergencies. For non-life threatening emergencies, Immedicenters can be used if distance permits.

ANY SERIOUS EMERGENCY - DIAL 911

Other Emergency Numbers

Nearest Hospital: Muhlenburg Regional Medical Center

Hospital Emergency Room Telephone Number: (908) 668-2127

Hospital Main Telephone Number: (908) 668-2000

Directions to Hospital (road map with driving directions to hospital is on Figure 2)

Make a left turn onto Route 22 West and proceed 1.2 miles to the Watchung Avenue Exit. Follow signs to Somerset Avenue (South). Go south on Somerset Avenue and proceed approximately 2.25 miles. Somerset Avenue turns into Park Avenue. Hospital will be on the left at the corner of Park Avenue and Randolph Road.

Millburn Medical Center	(072) 270 5055		
	(973) 379-5055		
Police Emergency	911		
Fire Emergency	911		
Rescue Squad	911		
N.J. Poison Control Center	(800) 962-1253		
National Response Center and Terrorist Hotline	(800) 424-8802		
American Association of National Poison Control	(800) 222-1222		
Center for Disease Control	(800) 311-3435		
Utility Mark-Out	(800) 272-1000		
U.S. Coast Guard National Response Center	(800) 424-8802		
Chemtrec (Chemical Spills)	(800) 424-9300		
<u>Utilities</u>			
Electric PSE&G	Number: (800) 436-7734		
Gas PSE&G	Number: <u>(800)</u> 436-7734		
Phone Verizon	Number: (800) 275-2355		
Water <u>Elizabethtown Water Co.</u>	Number: (908) 222-8739		
Other	Number:		

3.0 TRC CONTACTS AND KEY PERSONNEL

3.1 TRC Contacts

In the event of problems that require notification of TRC, the following contacts are listed in order of priority:

Name	Title	Number and Ext.	Cell Number
Stephen E. Tappert	Project Manager	(973) 564-6006, Ext. 240	(973) 670-5107
Danielle Doremus	Geologist	(973) 564-6006, Ext. 221	(973) 445-2192
Michael Speck	Health and Safety Officer	(973) 564-6006, Ext. 227	(201) 390-9534
Ken Siet	Vice-President	(973) 564-6006, Ext. 217	(973) 715-8449

3.2 Key TRC Personnel

The key TRC personnel involved with this project are listed below.

Project Manager	Site Safety Officer	Field Supervisor	Field Personnel
Stephen E. Tappert	Tom Dolan	Danielle Doremus	Tom Dolan
			Rich Alborn

^{*} Site Safety Officer and Field Supervisor can be the same TRC personnel.

3.3 Responsibilities

Responsibilities for implementing safe work practices and specifically the requirements of this are described below.

Project Manager

The Project Manager is responsible for controlling all technical work in an environmentally safe manner, assuring that operational hazards are minimized and implementing this during all project task elements. Specific responsibilities include but are not limited to:

- (1) Verifying that all personnel involved with this project have read and understand this HASP and have signed the HASP.
- (2) Assuring that all personnel involved with this project have attended a briefing or a tailgate safety meeting regarding the contents of the HASP and site-specific hazards prior to performing work.

- (3) Determining that sufficient PPE, air monitoring and equipment as required by this HASP is available.
- (4) Assuring that all contractor personnel submit documentation of employee participation in a medical, training and drug & alcohol programs (when applicable).
- (5) Maintaining a high level of health and safety consciousness among the field personnel.

Health and Safety Officer (HSO)

The Health and Safety Officer is responsible for the preparation, interpretation and modification of the HASP. Specific duties include but are not limited to:

- (1) Advising the Project Manager and field personnel on matters relating to health and safety.
- (2) Recommending appropriate PPE and air monitoring instrumentation to protect personnel from site hazards.
- (3) Conducting field audits to monitor the effectiveness of the HASP and to assure compliance with the HASP
- (4) Performing personal exposure monitoring where required and to determine the adequacy of protective measures and PPE specified by this HASP.
- (5) Maintaining contact with the Project Manager and field personnel to regularly evaluate site conditions and any new information that might require modifications to the HASP.
- (6) Working with the Project Manager to ensure that sufficient PPE is available onsite.
- (7) Conducting briefing meetings and apprise personnel of the contents of the HASP and site hazards.
- (8) Conducting accident/incident investigations and preparing accident/incident investigation reports.

Site Safety Officer (SSO)

The Site Safety Officer is responsible for ensuring the Health & Safety guidelines are followed, in addition to monitoring for airborne contaminants when necessary and evaluating new hazards and operation changes. The Site Safety Officer has the authority to correct all noncompliance situations immediately and to stop work in cases of immediate danger. Specific responsibilities include but are not limited to:

- (1) Perform daily safety meetings prior to commencement of work, commencement of a new task and whenever new personnel arrive.
- (2) Obtaining the air monitoring instrumentation required and conducting the necessary air monitoring.

- (3) Verifying that all PPE and other health and safety equipment is in proper working condition.
- (4) Upgrading and downgrading PPE as specified in the HASP.
- (5) Notifying the Project Manager and Health & Safety Officer of all noncompliance and dangerous situations.
- (6) Supervising and monitoring the safety performance of all field personnel to ensure required safety and health procedures are followed and correct any deficiencies.
- (7) Reporting all accidents/incidents to the Health & Safety Officer.
- (8) Initiating emergency response procedures.
- (9) Establishing the work zones whenever necessary.

Field Supervisor

The Field Supervisor is responsible for the field operations needed to complete the project. The Field Supervisor may also be the Site Safety Officer. Specific responsibilities include but are not limited to:

- (1) Ensuring all equipment needed for the project is available and properly maintained.
- (2) Ensuring field personnel have received the necessary training and Health & Safety briefings before work begins. Conduct a Tailgate Safety Briefing each day before fieldwork is started and review emergency procedures.
- (3) Correcting any deficiencies regarding health, safety or operating procedures.
- (4) Communicating newly identified hazards or noncompliance issues with the Project Manager, Health & Safety Officer and the Site Safety Officer.
- (5) Reporting any injuries and illnesses to the Project Manager and Company Health & Safety Officer.
- (6) Stopping work in cases of immediate danger.

Field Personnel

All field personnel are responsible for following the Health & Safety procedures specified in this and work practices specified in applicable operating procedures. Some specific responsibilities include but are not limited to:

- (1) Reporting all accidents, incidents, injuries or illnesses to the Field Supervisor
- (2) Complying with the requests of the Site Safety Officer.

(3)	Immediately communicating newly identified hazards or noncompliance issues to the Field
	Supervisor or Site Safety Officer.

(4) Stopping work in cases of immediate danger.

4.0 SCOPE OF WORK AND SITE BACKGROUND

4.1	Scope of Work
Sampl	ling (Check all appropriate)
	Soil X Ground Water Sediment X Surface Water Sludge Sanitary Wastewater Air Process Wastewater Other (Specify)
Soil B	orings
Well I	nstallation
Soil E	xcavation
UST (Closure
Vapor	Intrusion
Other	X Explain: Ground Water/Surface water sampling, water-levels
ТҮРЕ	OF SITE (Check all appropriate)
	Active Gas Station X Industrial Facility X Inactive R&D Facility Power Facility X Manufacturing TSDF Facility Military Base Private Facility Other (specify):
RELE	ASE HISTORY
	No evidence of soil contamination Suspected or known soil contamination X Suspected or known ground water contamination

4.2 <u>General Site Background</u>

Site Description

The former Lockheed Electronics Company (LEC) site was comprised of approximately 80 acres of land north of Route 22 in the boroughs of Watchung and North Plainfield in Somerset County, New Jersey. (The site is now operating as the Watchung Square Mall). Figure 1 is a portion of the USGS Chatham, NJ 7.5 Minute Quadrangle depicting the site location, local topography, surface drainage, and cultural patterns.

Site History

The site was originally developed in 1953 by Stavid Engineering. Lockheed Corporation acquired Stavid Engineering in 1959 and created Lockheed Electronics Corporation, which was subsequently operated by Sanders, A Lockheed Martin Company (Sanders). Additional land acquisitions resulted in the current site boundaries. The site was used to manufacture, test, and assemble electronic components. Trichloroethene (TCE) was used in Building 7 as a solvent to clean circuit boards.

Site operations ceased in 1989, triggering a site investigation under the New Jersey Environmental Cleanup Responsibility Act (ECRA). Regulations promulgated under ECRA have been superseded by new regulations pursuant to the Industrial Site Recovery Act (ISRA). The initial investigations identified several areas of concern (AOCs) and included collection of soil, sediment, ground water, and surface water samples. Investigation and remedial action results have been documented in a series of reports submitted to the NJDEP since 1991. Soil impacted by volatile organic compounds (VOCs), primarily TCE, was identified in the vicinity of Building 7 and Building 3. Soil impacted by fuel oil contamination was identified under Building 2. Soil AOCs were addressed either through excavation and off-site disposal or soil vapor extraction, and site-wide soil remediation has been completed to the satisfaction of the NJDEP.

An extensive monitoring well network has delineated a ground water plume comprised primarily of TCE in the local bedrock aguifer and shallow unconsolidated sediments in certain locations. TCE has been reported at concentrations exceeding the Ground Water Quality Criteria (GWQC) of 1 microgram per liter (µg/L) (promulgated at N.J.A.C. 7-9.6) in ground water beneath the site, extending to the southwest approximately 7,000 feet. Contaminant migration is influenced by both bedrock structure and local ground water discharge areas, particularly Crab Brook. The axis of the plume extends to the southwest, approximating regional bedrock strike. The reach of Crab Brook between North Avenue (Norwood Avenue) and Watchung Avenue has consistently yielded water samples exhibiting measurable TCE concentrations exceeding the Surface Water Quality Criteria of 1.09 µg/L. Location SW-2 consistently exhibits the highest concentrations, indicating a significant discharge of impacted ground water at or near this location. Vertical hydraulic gradients are generally downward except for the immediate vicinity of Crab Brook, and TCE concentrations decrease sharply south of Crab Brook. There are currently 43 active monitoring wells associated with this project in the Boroughs of Watchung and North Plainfield, all of which are installed as either well couplets or triplets to evaluate the vertical distribution of contaminants. Ground water and surface water of Crab Brook are the only AOCs remaining related to the former LEC site.

5.0 CONTAMINANTS OF CONCERN

The primary contaminants of concern that have been identified or are anticipated at the site and the affected media are listed below. Material Safety Data Sheets are included in Appendix A.

Volatile Organic	1		
Compounds	Media	Base Neutrals	Media
Trichloroethene (TCE)	Ground Water		
Trichloroethene (TCE)	Surface Water		
Metals	Media	Pesticides	Media
Other Compounds	Media	Other Compounds	Media

The following is a list of the accepted exposure limits in parts per million (ppm) of the contaminants of concern.

Contaminant of Concern	PEL- TWA	PEL- STEL	TLV- TWA	TLV- STEL	A1	A2	Skin	Ceiling
Trichloroethene (TCE)	100	NA	50	100	No	No	No	200
, , ,								

PEL-TWA, OSHA = Permissible Exposure Limit-Time Weighted Average

PEL-STEL, OSHA = Permissible Exposure Limit-Short Term Exposure Limit

TLV-TWA, ACGIH = Threshold Limit Value-Time Weighted Average

TLV-STEL, ACGIH = Threshold Limit Value-Short Term Exposure Limit

A1, ACGIH = Known Human Carcinogen

A2 = Suspected Human Carcinogen

Skin = Potential overall exposure through skin absorption, including mucous membranes and eye, either airborne or through direct contact with the substance

Ceiling, ACGIH = Concentration that should not be exceeded during any part of the working exposure

6.0 PERSONAL PROTECTION EQUIPMENT

Employee safety is a paramount concern for TRC. OSHA Standard 29 CFR 1910.132 requires employers to assess the employer's work area and determine whether hazards are present that require Personal Protective Equipment (PPE). Due to the variety of job sites and situations that TRC may be involved in, it is important that TRC maintain a consistent approach with health and safety procedures. The Project Manager and Field Supervisor are responsible for ensuring that all personnel wear the appropriate PPE.

Protective footwear must be worn when working in the field. Footwear must at a minimum include steel toe and shank protection. Protective footwear must meet ANSI Z41-1991. Additionally, chemical protective footwear may also be required if the potential for contaminated materials exists.

Eye protection must be worn during all sampling activities, stack sampling and inside manufacturing facilities. Eye protection must include side shields. Prescription lenses worn as eye protection and other protective eyewear must meet ANSI Z87.1.

Hardhats are to be worn when overhead hazards are present. Hardhats must meet ANSI Z89.

Hand protection is to be worn on a site-specific basis. The hand protection must be selected based on the chemical hazards expected to be encountered. In addition, Kevlar gloves or other types of puncture resistant gloves are to be worn by all personnel working with or cleaning glass.

Other PPE, such as coveralls, respiratory protection and hearing protection, will be determined on a site-specific basis.

Before donning PPE, workers will estimate their anticipated work duration. There are several limiting factors that affect the length of work time. These factors must be addressed:

- Air supply consumption
- Permeation and penetration of the Chemical Protective Clothing;
- Ambient temperature; and
- Coolant supply (ice or chilled area to keep the worker's body temperature at a normal temperature).

Site-Specific PPE

Levels of protection will be upgraded as necessary based on action levels of the site-specific contaminant of concern. Only the Site Safety Officer, with the consent of the Health & Safety Officer, can downgrade to a lower level.

The contaminants of concern at the Site determine the level of PPE to be worn. For the work to be performed at the Site under this HASP, the following PPE will be worn.

	X <u>Level D Modified Protection</u> (for minimal, non-intrusive work)
(a)	Boots: Steel-toe and shank protection
(b)	Safety Glasses with Side Shields Yes
(c)	Hard Hat: Yes No
(d)	Coveralls:
(e)	Glove Type: Latex/Vinyl
(f)	Hearing Protection (if exposed to at least 85 dB of sound)
(g)	High Visibility Safety Vest: In high traffic areas
(h)	Other (Specify):
(i)	Modifications:
	Level D Protection
(a)	Boots: Steel-toe and shank protection
(a) (b)	
. ,	Boots: Steel-toe and shank protection
(b)	Boots: Steel-toe and shank protection Safety Glasses with Side Shields or Chemical Splash Goggles
(b) (c)	Boots: Steel-toe and shank protection Safety Glasses with Side Shields or Chemical Splash Goggles Hard Hat: Yes No
(b) (c) (d)	Boots: Steel-toe and shank protection Safety Glasses with Side Shields or Chemical Splash Goggles Hard Hat: Yes No Coveralls:
(b) (c) (d) (e)	Boots: Steel-toe and shank protection Safety Glasses with Side Shields or Chemical Splash Goggles Hard Hat: Yes No Coveralls: Glove Type:
(b) (c) (d) (e) (f)	Boots: Steel-toe and shank protection Safety Glasses with Side Shields or Chemical Splash Goggles Hard Hat: Yes No Coveralls: Glove Type: Hearing Protection (if exposed to at least 85 dB of sound)

	Level C Protection (atmosphere must contain at least 19.5% oxygen)
(a)	Full-Face, Air-Purifying Respirator (1):
(b)	Cartridge Type (2):
(c)	Coveralls: Chemical-resistant clothing or disposable chemical-resistant suit
(d)	Glove Type:
(e)	Boots: Steel-toe and shank protection with chemically-resistant outer boot cover
(f)	Hard Hat: Yes No
(g)	Hearing Protection (if exposed to at least 85 dB of sound)
(h)	High Visibility Safety Vest
(i)	Other (Specify): Two-way radio communication
(j)	Modifications:
	(1) All personnel using a full-face air-purifying respirator must be quantitatively fit tested.
	(2) Cartridges should not be used longer than one shift or when breakthrough occurs.
	Level B Protection
(a)	Positive-pressure, full-face, self-contained breathing apparatus (SCBA) or a tethered, cascade breathing system:
(b)	Coveralls: Chemical-resistant clothing or disposable chemical-resistant suit
(b)	
(c)	Glove Type:
(d)	
(e)	Hard Hat: Yes No Hearing Protection (if exposed to at least 85 dB of sound)
(f)	, , ,
(g)	High Visibility Safety Vest
(h)	Other (Specify): Two-way radio communication
(i)	Modifications:
nel :	Decontamination Procedure
)·	Segregated equipment drop boot and glove wash boot and glove rinse tape removal

Person

Level D: boot cover removal, glove removal and field wash.

Level C: Segregated equipment drop, boot cover and glove wash, boot cover and glove rinse, tape removal, boot cover removal, outer glove removal, (canister or mask change), rubber boot removal, splash suit removal, inner glove removal, and field wash.

Level B: Segregated equipment drop, boot cover and glove wash, boot cover and glove rinse, tape removal, boot cover removal, outer glove removal, SCBA backpack removal, suit and hard hat removal, inner glove removal, and field wash.

7.0 AIR MONITORING AND ACTION LEVELS

When appropriate, an air-monitoring program should be implemented to identify areas of elevated airborne contaminant concentrations and to determine the level of the concentrations relative to background.

Frequency of Surveillance
Headspace in wells

Dust quality should be monitored with a Miniram or similar instrument. If readings are above the action level, dust control measures will be implemented (i.e., water spraying).

ACTION LEVELS

Direct Reading Instruments

A complex variety of toxic air pollutants (including organic and inorganic vapors, gases or particulates) can be produced at abandoned waste sites. Direct-reading field instruments will not detect or measure all of these substances. Thus negative readings should not be interpreted as the complete absence of airborne toxic substances. Verification of negative results can only be done by collecting air samples and analyzing them in a laboratory or in an off-site location using portable analyzers and should be considered and determined on a case-by-case basis.

Instrument	Action Level	Action Required				
Organic Vapor Monitoring						
PID with 10.6eV Lamp	Above 10 ppm sustained for 15 minutes or longer in the breathing zone.	Upgrade to Level C				
PID with 10.6eV Lamp	Between 10 to 50 ppm sustained for 15 minutes or longer in the breathing zone.	Stop operations until levels remain < 10 ppm.				
PID with 10.6eV Lamp	Above 50 ppm sustained for 15 minutes or longer in the breathing zone.	Stop operations. Level B necessary				

Dust Monitoring		
Miniram	7 mg/m ³ sustained	Stop operations until levels remain <7 mg/m ³

- (1) See the HSO for action levels using an 11.7eV lamp.
- (2) Conduct air monitoring periodically to determine when and if work may be continued. For work to continue above 50 ppm, cease work immediately and upgrade to Level B.
- (4) If dust is present above the action level, wear a dust mask or a respirator using a particulate filter (P100) and use dust control measures such as water spraying.

Inorganic Gases and Vapors

The ability to detect and quantify nonspecific inorganic vapors and gases is extremely limited. If specific inorganics are known or suspected to be present, measurements should be made with appropriate measuring device.

8.0 HAZARD EVALUATION AND MITIGATION

A summary of the potential hazards suspected to be present in work areas is provided below. For life threatening emergencies requiring immediate attention, dial 911.

The field team should make visual observations to help evaluate site hazards and other potentially hazardous conditions (i.e., animals; stressed vegetation; wind directions; labels on containers indicating explosive, flammable, toxic or corrosive materials; conditions conductive to splash or contact with unconfined liquids, sludges or solids).

	nation for site: Preliminary	Sketchy	None
Detailed	110111111111111y	Sketchy	1\one
Hazardous/Cor	ntaminated Material F	form(s):	
		· /	Gas Vapo
Containment T	ype(s):		
		Pit	Debris
Pond	Lagoon		
	<u> </u>		
Hazardous Mat	terial Characteristics:		
X Volatile	Corrosive	Reactive	Radioactive
			Other (Specify):
Routes of Expo	vente.		
	Dermal	Eve	Respiratory
	Berman	<i>Eye</i>	Respiratory
	h and Safety Hazards		
	h and Safety Hazards		
	h and Safety Hazards		pment
Potential Healt X Heat	h and Safety Hazards	Heavy Equi	
Potential Healt X Heat X Cold	·	Heavy Equi	ards
Potential Healt X Heat X Cold X Falls, Sl	h and Safety Hazards	Heavy Equi X Traffic Haz Congested	ards Areas
Potential Healt X Heat X Cold X Falls, SI Noise	ippage	Heavy Equi X Traffic Haz Congested A General Co	ards Areas nstruction
Potential Healt X Heat X Cold X Falls, SI Noise Confine	ippage d Space Entry	Heavy Equi X Traffic Haz Congested A General Co Electrical H	ards Areas nstruction lazards
Potential Healt X Heat X Cold X Falls, SI Noise Confine	ippage d Space Entry	Heavy Equi X Traffic Haz Congested A General Co Electrical H	ards Areas nstruction lazards
Potential Healt X Heat X Cold X Falls, SI Noise Confine	ippage d Space Entry	Heavy Equi X Traffic Haz Congested A General Co Electrical H	ards Areas nstruction lazards
Potential Healt X Heat X Cold X Falls, SI Noise Confine	ippage d Space Entry	Heavy Equi X Traffic Haz Congested A General Co Electrical H	ards Areas nstruction lazards

The following general and physical hazards may be associated with this project. TRC's Accident Reporting Form (Appendix B) must be completed if an accident occurs.

1. Potential Hazard: Slips, Trips and Falls

Procedures to Mitigate Hazard: Exercise caution in all work areas. Be sure of footing when moving through the work area. Avoid stepping or standing on uneven or unsteady surfaces. Clearly delineate open pits, wells and other fall hazards with caution tape and securely cover as appropriate.

2. Potential Hazard: Traffic Hazards

Procedures to Mitigate Hazard: Use cones, signs, sawhorses, caution tape and/or high visibility clothing around work area.

3. Potential Hazard: Struck by heavy equipment.

Procedures to Mitigate Hazard: Heavy equipment should be equipped with back-up alarm or use horn when backing up. Stay clear of operating equipment and rig movement.

4. Potential Hazard: Underground Utilities

Procedures to Mitigate Hazard: Underground utilities in and near the work area shall be identified prior to conducting subsurface work. A geophysical survey or hand/soft dig to the appropriate depth should be performed if necessary.

No underground intrusive work is to commence without an underground utility markout. The One-Call Underground Utility Damage Prevention System (1-800-727-1000) must be notified not less than 3 full business days before and not more than 10 business days prior to beginning of an excavation or demolition.

5. Potential Hazard: Overhead Utilities and Other Overhead Objects.

Procedures to Mitigate Hazard: Overhead utilities and other overhead objects in and near the work area shall be identified prior to conducting work. A minimum of 10-foot clearance should be maintained from overhead power lines. The drilling rig, excavator and all other equipment shall be positioned to avoid overhead utility lines in accordance with the distance requirements defined by voltage and local regulations. Use spotter when raising drilling rig mast to confirm clearance of overhead lines and other obstructions.

6. Potential Hazard: Stability of Drill Rig/Operating Equipment

Procedures to Mitigate Hazard: Avoid positioning rig on soft or uneven ground.

7. Potential Hazard: Moving Equipment

Procedures to Mitigate Hazard: Wear appropriate PPE including hardhat, properly sized gloves, and steel-toed boots. Stay clear of rotating auger or direct push equipment.

8. Potential Hazard: Suspended loads

Procedures to Mitigate Hazard: Do not walk under suspended loads. Be aware of the travel path of suspended loads.

9. Potential Hazard: Excessive Noise

Procedures to Mitigate Hazard: Acoustic hazards may be present during soil excavation or drilling activities. When a noise level prevents conversation in a normal voice at a distance of 3 feet, use proper National Institute of Occupational Safety and Health (NIOSH) approved hearing protection. Personnel will wear hearing protection to avoid the damaging effects of high noise levels that destroy the ability to hear and create a stressful environment. Proper hearing protection such as earplugs or earmuffs must be worn by all personnel around large machinery such as drill rigs and backhoes, or sources associated with the work site, such as vehicles. Noise levels in the work areas that potentially meet or exceed an 8-hour time-weighted average of 85 decibels, will be evaluated by the SSO to ensure proper protection is implemented. The hearing protection must provide a sufficient reduction in the noise exposure to be below 85 decibels. Wear hearing protection with in 20 feet of drill rig and other operating equipment.

10. Potential Hazard: Vapors and Dust

Procedures to Mitigate Hazard: Wear appropriate PPE and wear air-purifying respirator when PID readings exceed action levels. Stop work if hazardous conditions are identified until precautions are taken and work deemed safe to restart. Workers should stay upwind of potential sources of dust and vapors. Calibrate PID prior to use.

11. Potential Hazard: Lighting

Procedures to Mitigate Hazard: Work areas must have adequate lighting for employees to perform work and identify hazards, (5-foot candles minimum comparable to a single 70 to 100 watt bulb). Personnel should carry flashlights in all normally dark areas for use in the event of a power failure. Applicable OSHA standards for lighting, 29 CFR 1910.120 (m), shall apply.

12. Potential Hazard: Electrical Power

Procedures to Mitigate Hazard: All electrical power must have a ground fault circuit interrupter as part of the circuit. All equipment must be suitable and approved for the class of hazard. Relevant OSHA standards for electrical safety, 29 CFR 1926 (k), shall apply.

13. Potential Hazard: Fire Protection/Fire Prevention

Procedures to Mitigate Hazard: Operations involving the potential for fire hazards shall be conducted in a manner to minimize the risk. Non-sparking tools and fire extinguishers shall be used or available as appropriate. Sources of ignition shall be removed. When necessary, explosion-proof instruments and/or bonding and grounding will be used to prevent fire or explosion.

14. Potential Hazard: Excavations/Cave-ins

Procedures to Mitigate Hazard: All excavations that could potentially expose cave-ins shall be protected by sloping or benching the sides of the excavation, supporting the sides of the excavation, or placing a shield between the side of the excavation and the work area.

15. Potential Hazard: Eye Wash Protection

Procedures to Mitigate Hazard: All operations involving the potential for eye injury, splash, etc., must have eye wash units available.

16. Potential Hazard: Damaged and Deteriorated Buildings

Procedures to Mitigate Hazard: Damaged and deteriorated buildings often contain unguarded walkways, doors, etc. where a fall potential exists. These must be guarded and/or posted to prevent employee use or passage. Areas where work will not be performed will be closed off and posted.

17. Potential Hazard: High or elevated work

Procedures to Mitigate Hazard: All work over 4 feet in elevation or where a fall potential exists will be performed using appropriate ladders or step stools and/or fall protection (i.e., body harness and lifeline).

The following is a list of the potential hazards at the Site.

POTENTIAL HAZARD	ANTICIPATED RISK
Inhalation of Dusts	Low to high, keep soils wet to reduce dust, if necessary
Inhalation of Volatile Contaminants	Low to high, perform air monitoring
Ingestion of Contaminants	Low to moderate, use PPE to avoid contact; use washing facilities
Skin and Eye Contact with Contaminants	Low to high, use PPE to avoid contact; use washing facilities
Working with/near Heavy Equipment	Low to moderate, wear safety vests and stay away from swing radius of equipment
Excavation Hazards	Moderate, avoid standing near the perimeter of the excavation and do not enter the excavation if >4 feet
Noise Exposure	Low to moderate, use hearing protection
Tripping Hazards	High, avoid hazards; employ good housekeeping
Heat Stress	Depends on ambient temperature, drink fluids and monitor heart rate

POTENTIAL HAZARD	ANTICIPATED RISK
Cold Exposure	Depends on ambient temperature, wear warm clothing; if clothing gets wet, remove and replace with dry clothing
Biological Hazards	Low, identify nearby plants
Flammable Hazards	Low to moderate, use LEL meters and ventilate areas with LEL readings >10%; be aware when using gasoline generators
Electrical Hazards	Low to high; markout underground utilities; be aware of overhead power lines and maintain a safe distance; use ground fault circuit interrupters on portable power tools
Traffic Hazards	Moderate to high, wear safety vests and use cones, stay aware
Lighting Hazards	Low, ensure proper illumination

Hazard Identification/Ranking

Task: Ground Water Sampling	Low X	Medium	High
Task: Surface Water Sampling	Low X	Medium	High
Task: Water-levels	Low X	Medium	High
Task:	Low	Medium	High
Task:	Low	Medium	High

Low = non-intrusive work, exposure to contaminants possible.

Medium = intrusive work, possible safety hazards with powered tools and heavy equipment, exposure to contaminants possible.

High = intrusive work, possible safety hazards with equipment, exposure to contaminants very probable.

8.2 Chemicals Used by TRC

The following is a list of the chemicals to be brought on-site and used by TRC personnel (check all that apply):

	Acetone for decontamination
	Hexane for decontamination
	Nitric Acid for decontamination
	Methanol for sample preservation
X	Isobutylene for PID calibration

	H ₂ SO ₄ for sample preservation
	HNO ₃ for sample preservation
X	HCL for sample preservation
	Gasoline for generators

MSDSs for these chemicals are included in Appendix A.

The following is a list of the accepted exposure limits of the chemicals to be used by TRC, with concentrations in parts per million (ppm):

	PEL-	PEL-	TLV-	TLV-				
Chemical	TWA	STEL	TWA	STEL	A1	A2	Skin	Ceiling
Acetone	1000	NA	500	750	No	No	Yes	NA
Hexane	500	NA	500	1000	No	No	Yes	NA
Gasoline	NA	NA	300	500	No	No	Yes	NA
Nitric Acid*	2	4	2	4	No	No	Yes	NA
Hydrochloric Acid*	5	NA	NA	2	No	No	Yes	5
Sulfuric Acid	1	1	10	15	No	No		20
Methanol	200	250	200	250	No	No	Yes	NA

^{*} Diluted to 10%

PEL-TWA, OSHA = Permissible Exposure Limit-Time Weighted Average

PEL-STEL, OSHA = Permissible Exposure Limit-Short Term Exposure Limit

TLV-TWA, ACGIH = Threshold Limit Value-Time Weighted Average

TLV-STEL, ACGIH = Threshold Limit Value-Short Term Exposure Limit

A1, ACGIH = Known Human Carcinogen

A2 = Suspected Human Carcinogen

Skin = Potential overall exposure through skin absorption, including mucous membranes and eye, either airborne or through direct contact with the substance

Ceiling, ACGIH = Concentration that should not be exceeded during any part of the working exposure NA = not available

The following information is based on the 2004 ACGIH's TLVs and BEIs and 2006 NIOSH Pocket Guide to Chemical Hazards.

CHEMICALS COMMONLY BROUGHT ON SITE							
Substance	Route of Entry	Target Organs	Treatment	8-Hour TWA	STEL & IDLH		
Acetone	Inhalation	Irritation,	Eye: Immediately	250	STEL: 750		
	Ingestion	Eyes, Skin,	wash eyes	ppm	ppm		
	Skin/Eye	Respiratory			IDLH: 2500		
	Contact	System, CNS	Skin: Immediately		ppm		
			flush skin with soapy				
			water.				
			Breath: Move to fresh air; perform mouth-to-mouth resuscitation if necessary. Swallow: Get medical attention immediately.				

	CHEMICALS COMMONLY BROUGHT ON SITE						
Substance	Route of Entry	Target Organs	Treatment	8-Hour TWA	STEL & IDLH		
Hexane	Inhalation Ingestion Skin/Eye	Irritation, Eyes, Skin, Respiratory	Eye: Immediately wash eyes.	50 ppm	IDLH: 1100 ppm		
	Contact	System, CNS, PNS	Skin: Immediately flush skin with soapy water.				
			Breath: Move to fresh air; perform mouth-to-mouth resuscitation if necessary.				
			Swallow: Get medical attention immediately.				
Gasoline	Inhalation Absorption Ingestion	Eyes, Skin, Respiratory System,	Eye: Immediately wash eyes.	300 ppm	STEL: 500 ppm		
	Skin/Eye Contact	CNS, Liver, Kidneys, Irritation, Neuropathy	Skin: Immediately flush with soapy water.				
		1 3	Breath: Move to fresh air; perform mouth-to-mouth resuscitation if necessary.				
			Swallow: Get medical attention immediately.				
Nitric Acid	Inhalation Ingestion Skin/Eye Contact	Irritation, Respiratory System, Teeth, Skin, Eyes, Corrosion, Pulmonary	Eye: Immediately wash eyes. Skin: Immediately flush with soapy water.	2 ppm	STEL: 4 ppm IDLH: 25 ppm		
		Pulmonary Edema	Breath: Move to fresh air; perform mouth-to-mouth resuscitation if necessary.				
			Swallow: Get medical attention immediately.				

CHEMICALS COMMONLY BROUGHT ON SITE							
Substance	Route of Entry	Target Organs	Treatment	8-Hour TWA	STEL & IDLH		
Hydrochloric Acid	Inhalation Ingestion Skin/Eye Contact	Irritation, Corrosion, Eyes, Skin, Respiratory System	Eye: Immediately wash eyes. Skin: Immediately flush with soapy water. Breath: Move to fresh air; perform mouth-to-mouth resuscitation if necessary. Swallow: Get medical attention immediately.	5 ppm	STEL: 2 ppm IDLH: 50 ppm		
Sulfuric Acid	Inhalation Ingestion Skin/Eye Contact	Eyes, Skin, Respiratory System, Teeth	Eye: Immediately wash eyes. Skin: Immediately flush with soapy water. Seek medical attention immediately	0.2 mg/m ³	IDLH: 15 mg/m ³		
Methanol	Inhalation Absorption Ingestion Skin/Eye Contact	Neuropathy, Vision, CNS	Eye: Immediately wash eyes. Skin: Immediately flush with soapy water. Breath: Move to fresh air; perform mouth-to-mouth resuscitation if necessary. Swallow: Get medical attention immediately.	200 ppm	IDLH: 6000 ppm		

8.3 <u>Biological Hazards</u>

The biological hazards anticipated at the site are noted below.

X Ticks and Chiggers

Ticks and chiggers may be present in vegetated areas during the spring, summer and fall seasons. Preventative measures include protective clothing; head/hair protection; and the use of insect repellant containing DEET on all exposed areas and coveralls. Workers should check their bodies thoroughly for ticks and should bathe soon after returning home. Remove any ticks carefully, using a gentle, firm, tugging motion with fine tweezers. Do not kill the tick before it has been removed. Workers should save the ticks and monitor their bites, checking for a rash and other symptoms (up to about eight weeks after the bite).

X Toxic Effects from Plants

Poison ivy, poison oak and poison sumac may be present during the spring, summer and fall seasons. Contact with it should be avoided, however, if one has come in contact with it. The affected skin area should be washed thoroughly with soap and cool water. Care should be taken when handling clothing or any other items that have come in contact with poison ivy. If an allergic reaction occurs, a physician's advice should be sought.

X Animal Bites or Stings

Animal bites or stings are usually nuisances (localized swelling, itching and minor pain) that can be handled by first aid treatment. The bites of certain snakes, lizards and spiders contain sufficient poison to warrant medical attention. There also are diseases that can be transmitted by animal bites that will require professional medical attention. Examples are rabies (mainly from dogs, skunks, raccoons, and foxes), Lyme Disease (from ticks), and West Nile Disease or encephalitis (from mosquitoes).

The biggest hazard and most common cause of fatalities from animal bites and inspect stings (particularly bees, wasps and spiders) is a sensitivity reaction. Anaphylactic shock due to stings can lead to severe reactions to the circulatory, respiratory, and central nervous system and it can also result in death.

Workers who are bitten by an animal or stung by an insect must immediately notify the HSO or his designated site representative.

Bloodborne Pathogens

All employees trained in first aid may have exposure to infectious materials.

8.4 <u>Radiological Hazards</u>

Radiation monitoring should be incorporated in the initial survey where radioactive materials may be present, for example, fires at warehouses or hazardous material storage facilities, transportation incidents involving unknown materials, or abandoned waste sites.

Gamma Radiation

Normal gamma radiation background is approximately 0.01 to 0.02 milliroentgen per hour (mR/hr) on a gamma survey instrument. Work can continue with elevated radiation exposure rates; however, if the exposure rate increases to 3 to 5 times above gamma background, a qualified health physicist should be consulted. At no time should work continue with an exposure rate of 0.1 mR/hr or more above background without the advice of a health physicist. The Bureau of Emergency Response and the Radiation Protection Programs within NJDEP have radiation specialists on staff for assistance.

The absence of gamma readings above background should not be interpreted as the complete absence of radioactivity. Radioactive materials emitting low-energy Γ (gamma), α (alpha), or β (beta) radiation may be present, but for a number of reasons may not cause a response on the instrument. Unless airborne, these radioactive materials should present minimal hazard but more thorough surveys should be conducted as site operations continue to completely investigate the presence of any radioactive material.

8.5 General Safety Measures

All employees will wash their hands immediately after potential exposure to infectious materials.

No eating, drinking, chewing gum, tobacco smoking, applying cosmetics, lip balm or any other practice which increases the tendency for hand-to-mouth contact shall be prohibited within the contaminated zone(s) and prior to washing hands and face within the contamination reduction corridor or decontamination line.

Medicine and alcohol can intensify the effects of exposure to toxic chemicals. Alcohol, Caffeine products and certain medications can contribute to and exacerbate the effects of heat stress. Personnel during site activities should not take prescription and non-prescription drugs when the potential for absorption, inhalation or ingestion of toxic substances exists, unless specifically approved by a qualified physician.

Contact with surfaces known or suspected of being contaminated should be avoided during onsite activities. Avoid walking through puddles, mud, or discolored surfaces; kneeling on ground; leaning, sitting, or placing equipment on drums.

All equipment and environmental and working surfaces will be cleaned and decontaminated with an appropriate disinfectant immediately or as soon as feasible when surfaces are overtly contaminated or after any spill of blood or other potentially infectious materials.

After an exposure incident, a confidential medical evaluation and follow-up will be immediately available to the exposed individual. Arrangements for the medical evaluation should be coordinated with the HSO.

9.0 SITE CONTROL MEASURES

If warranted by the Project Manager and Health & Safety Officer, zones may be established to prevent or minimize exposure of unauthorized personnel to hazards by establishing boundaries to reduce migration of contaminants from designated work areas into clean areas. These zones are designated as the Support Zone, the Contamination Reduction Zone and the Exclusion Zone. The zones will be identified during safety briefings and may be clearly marked by traffic cones, caution tape, barricades, signs or other means.

9.1 Support Zone

The Support Zone is the clean area where the possibilities of encountering hazardous materials or conditions are minimal. Therefore, personal protective and respiratory equipment are not necessary. Inside the Support Zone, the following will be available: an effective means of communication, first-aid supplies, fire extinguisher, drinking water and other appropriate support facilities. The Support Zone shall also serve as the main point of contact for the visitor check-in and initiation of emergency services when necessary.

Communications using radios or other means must be maintained between personnel performing the work at all times. Emergency communications should be prearranged in case of radio failure.

9.2 Contamination Reduction Zone

The Contamination Reduction Zone is the area where equipment and personnel are decontaminated after leaving the Exclusion Zone. Personnel will remove and/or decontaminate PPE and place it in appropriate containers. Site vehicles and equipment will also be decontaminated in the Contamination Reduction Zone. The Contamination Reduction Zone will consist of a temporary decontamination area, a means of washing protective equipment, site equipment; containers for liquids, solids and PPE; first-aid supplies; an eyewash kit; and a fire extinguisher. Eating, drinking, chewing gum or tobacco smoking or any activity that increases the probability of hand-to-mouth transfer and ingestion of material is prohibited in the Contamination Reduction Zone.

Personnel performing decontamination operations will be provided with appropriate personal protection equipment, including face shield, rain suits or chemical resistant PPE as needed, water/chemical resistant boot covers, gloves and hearing protection.

9.3 Exclusion Zone

The Exclusion Zone includes the designated work areas at the site. Only authorized, trained and qualified personnel with the appropriate personal protective equipment shall be admitted into the Exclusion Zone.

Work activities within the Exclusion Zone pose the greatest possibility of exposure to personnel and equipment. The Site Safety Officer shall be responsible for controlling the access points. The Exclusion Zone will be clearly marked with flagging, barricade tape, traffic cones or other signals to limit access.

Eating, drinking, chewing gum or tobacco, smoking, or any practice that increases the probability of hand-to-mouth transfer and ingestion of material is prohibited in the Exclusion Zone.

10.0 MEDICAL SURVEILLANCE

All personnel participating in this activity must comply with the Medical Surveillance requirements of 29 CFR 1910.120 (f). Additionally, all personnel must be certified as medically fit to use a respirator in accordance with 29 CFR 1910.134 (Respiratory Protection) if Level C or higher PPE is used. Records including fit testing results and medical form stating that the person is fit to wear respirator are kept at TRC's office for TRC personnel.

11.0 HEALTH AND SAFETY PROGRAMS

11.1 <u>Personnel Training and Respirator Protection</u>

All personnel involved in the field work, including subcontractors conducting field activities, must be trained in accordance with OSHA's Hazwoper requirements in 29 CFR 1910.120 unless otherwise designated as exempt personnel described below. Personnel required to meet the training requirements must present evidence of this training when requested. The subcontractor is also solely responsible for complying with all applicable OSHA requirements and all other federal, state and local safety requirements for their field of expertise.

In addition, an annual 8-hour minimum refresher course after the initial training shall be provided to all field personnel.

All personnel must be certified as medically fit to use a respirator in accordance with 29 CFR 1910.134 (Respiratory Protection) if Level C or higher PPE is used. Records including fit testing results and medical form stating that the person is fit to wear respirator must be presented when requested.

11.2 Exempt Personnel

Those personnel working on the construction site in the support zone, but not entering the exclusion zone are exempt to these training requirements. Exempt personnel requesting access to the work areas could include, but not limited to, personnel making deliveries or performing repairs to utilities, public or government officials or untrained visitors. Individuals from these groups would not be required to comply with the OSHA training requirements.

Observation areas will be upwind from site operations, as decided on the basis of predominant wind directions. Weather conditions or site activities may restrict access to observation areas. Approvals for exempting personnel and decisions on access limitation for other personnel will be handled on a case-by-case basis by the SSO in consultation with the Field Supervisor and Project Manager.

11.3 Tailgate Safety Meetings and Safety Inspections

A safety meeting shall be conducted at least daily or (1) whenever risks or hazards change, (2) whenever new personnel arrive and (3) when site operations warrant training. Safety meetings shall be conducted by the SSO or another qualified individual. Where procedural deficiencies are identified, additional safety meetings will be conducted to address the situation. The following items are to be addressed during the meetings including review of the day's scope of work, suspected hazards, required PPE, communication and chain of command, decontamination procedures and emergency procedures.

The SSO will inspect the site daily to identify potential hazardous conditions or work areas. The HSO will visit the site periodically to evaluate whether work operations are being conducted in compliance with the protocols and procedures outlined in this HASP.

APPENDIX A MATERIAL SAFETY DATA SHEETS (MSDS)

APPENDIX B ACCIDENT REPORTING FORM

TRC ACCIDENT REPORTING FORM

Field Personnel		Job Name and No.			
Date & Time		Location			
Tasks performed		Witnesses			
Resulted in	Injury Fatality	Property Damage			
	Property Damage				
njured Person		Weather Conditions			
Describe Accident Fac					
Supervisor's Root Cause Analysis Check ALL that apply to this accident					
Unsafe Acts		Unsafe Conditions	Unsafe Conditions		
Improper work technique		Poor Workstation design			
Safety rule violation		Unsafe Operation Method			
Improper PPE or PPE not used		Improper Maintenance			
Operating without authority		Lack of direct supervision			
Failure to warn or secure		Insufficient Training			
Operating at improper speeds		Lack of experience			
By-passing safety devices		Insufficient knowledge of job			
Protective equipment not in use		Slippery conditions			
Improper loading or placement		Excessive noise			
Improper lifting		Inadequate guarding of hazards			
Servicing machinery in motion		Defective tools/equipment			
Horseplay		Poor housekeeping			
Drug or alcohol use		Insufficient lighting	Insufficient lighting		
Unsafe Acts require a	a written warning and re-training	ng <u>before</u> the Employee resumes work			

Accident Report Review

Employee Signature	Date
Sr. Project Manager	Date
Health & Safety Officer	Date

- Find the cause to prevent future accidents use an unbiased approach during investigation
- Interview witnesses & injured employees at the scene conduct a walkthrough
- Conduct interviews in private interview one witness at a time.
- Get signed statements from all involved.
- Take photos or make a sketch of the accident scene.
- What hazards are present what unsafe acts contributed to accident
- Ensure hazardous conditions are corrected immediately.

