

57 East Willow Street Millburn, NJ 07041

973.564.6006 PHONE 973.564.6442 FAX

www.TRCsolutions.com

October 12, 2010

New Jersey Department of Environmental Protection Division of Remediation Management and Response Bureau of Operations, Maintenance and Monitoring 401 East State Street P.O. Box 432 Trenton, New Jersey 08625-0432

Attn: Mr. Mark Souders, Case Manager

Re: Remedial Action Progress Report

Former Lockheed Electronics Company Site

Watchung, New Jersey ISRA Case No. E90038

TRC Job No. 2542-116473,0000

Dear Mr. Souders:

Enclosed find one original and two copies of a Remedial Action Progress Report for the above referenced Site. The report covers remedial activities conducted between April 2009 and March 2010.

If you have any questions or need additional information, please call.

Very truly yours,

TRC ENVIRONMENTAL CORPORATION

Scott McCray

Associate Project Manager

Stephen E. Tappert Senior Manager

Borough of North Plainfield Chuck Trione, Lockheed Martin

R\2010 RAPR.doc

cc:

CERTIFICATION

The following certification shall be signed as follows:

- 1. For a corporation, by a principal executive officer of at least the level of vice president;
- 2. For a partnership or sole proprietorship, by a general partner or the proprietor, respectively, or;
- 3. For a municipality, State, Federal or other public agency, by either a principal executive officer or ranking elected official.
- 4. For persons other than 1 through 3 above, by the person with legal responsibility for the site.

"I certify under penalty of law that I have personally examined and am familiar with the information submitted herein and all attached documents, and that based on my inquiry of those individuals immediately responsible for obtaining the information, to the best of my knowledge, I believe that the submitted information is true, accurate and complete. I am aware that there are significant civil penalties for knowingly submitting false, inaccurate or incomplete information and that I am committing a crime of the fourth degree if I make a written false statement which I do not believe to be true. I am aware that if I knowingly direct or authorize the violation of any statute, I am personally liable for the penalties."

Type/Printed	Name	
Stephen E.	Tappert	
_		
Title		
Senior Man	ager	
Signature	Spar Mi	
Company	TRC Companies, Inc.	
		Sworn to and subscribed before me on this

My Commission Expires June 28, 2014

CASE NO. E90038

REMEDIAL ACTION PROGRESS REPORT FORMER LOCKHEED ELECTRONICS COMPANY WATCHUNG, NEW JERSEY

TRC JOB NO. 2542-116473.0000

prepared by:

TRC Environmental Corporation 57 East Willow Street Millburn, New Jersey 07041

October 2010

TABLE OF CONTENTS

Section No.	<u>Title</u>	Page No
1.0	INTRODUCTION	1
2.0	BACKGROUND INFORMATION	2
	2.1 Site Location and Description	2
	2.2 Physical Setting	2
	2.2.1 Topography, Surface Water, and Wetlands	2 2 2 3 3 3
	2.2.2 Geology	2
	2.2.3 Hydrogeology	3
	2.3 Site Ownership History and Facility Operations	3
	2.4 Environmental Investigation History	3
	2.5 Well Search	4
	2.6 Baseline Ecological Evaluation	4
	2.7 Area of Concern Summary	5
	2.8 Applicable Remediation Criteria and Standards	5
	2.9 Contact Information	5
3.0	TECHNICAL OVERVIEW	6
	3.1 Remediation Objective	6
	3.2 Sampling Procedures	6
	3.3 Reliability of the Laboratory Analytical Data	6
	3.4 Factors Influencing Data	6
4.0	REMEDIAL ACTION PROGRESS REPORT	7
	4.1 Ground Water Monitoring and Sampling Activities	7
	4.1.1 Water-Level Measurements	8
	4.1.2 Ground Water Sample Collection	8
	4.1.3 Summary of Ground Water Results	9
	4.2 Surface Water Monitoring and Sampling Activities	10
	4.2.1 Surface Water Sample Collection	11
	4.2.2 Summary of Surface Water Results	11
	4.3 GWES Performance Monitoring and Sampling	11
	4.4 Vapor Intrusion Investigation	11
5.0	CONCLUSIONS AND RECOMMENDATIONS	12

LIST OF FIGURES

Figure No.	Title
1	Site Location Map
2	Site Plan
3	Shallow Zone Contour Map – September 8, 2009
4	Intermediate Zone Contour Map – September 8, 2009
5	Deep Zone Contour Map – September 8, 2009
6	Shallow Zone Contour Map – March 9, 2010
7	Intermediate Zone Contour Map – March 9, 2010
8	Deep Zone Contour Map – March 9, 2010
9	Ground Water Sampling Results September 2003 – March 2010
10	Surface Water Sampling Results July 2003 – March 2010

LIST OF TABLES

<u> Table No.</u>	Title
1	Ground Water and Surface Water Monitoring/Sampling Schedule
2	Monitoring Well Construction Details
3	Ground Water Elevation Data
4	Ground Water Analytical Results - September 2009 through March 2010
5	Historical TCE Concentrations in Ground Water
6	Comparison of Trichloroethene (TCE) Concentrations Prior to and Following Activation of Ground Water Extraction System
7	Surface Water Analytical Results - September 2009 through March 2010
8	Historical TCE Concentrations at Stream Locations
9	System Performance Summary
10	Implementation Schedule

LIST OF APPENDICES

<u>Appendix</u>	<u>Title</u>
A	NJDEP Contour Map Reporting Forms
В	Plots of TCE Concentration Versus Time for Selected Monitoring Wells
C	Stream Sampling Field Measurements
D	Plots of TCE Concentration Versus Time for Stream Locations

CASE NO. E90038

REMEDIAL ACTION PROGRESS REPORT

FORMER LOCKHEED ELECTRONICS COMPANY WATCHUNG, NEW JERSEY

1.0 INTRODUCTION

TRC Environmental Corporation (TRC) has prepared this Remedial Action Progress Report (RAPR) to summarize remedial activities completed between April 2009 and March 2010 at the former Lockheed Electronics Company (LEC) property (currently the Watchung Square Mall) located on Route 22 in the Boroughs of Watchung and North Plainfield, Somerset County, New Jersey. These remedial activities were completed in compliance with the New Jersey Department of Environmental Protection's (NJDEP's) *Technical Requirements for Site Remediation* (TRSR) (NJAC 7:26E), NJDEP's August 2005 *Field Sampling Procedures Manual* (FSPM).

This report discusses the sampling methods and results for the remedial program completed during the above-referenced reporting period. Background site information is summarized in Section 2.0. Section 3.0 presents an overview of the field program completed. Section 4.0 presents the results of the remedial activities and Section 5.0 presents conclusions and recommendations.

2.0 BACKGROUND INFORMATION

2.1 Site Location and Description

The site is an approximately 80-acre parcel of land located on the north side of US Route 22 in the boroughs of Watchung and North Plainfield, Somerset County, New Jersey. Following cessation of activities at the site by LEC, it was re-developed as the Watchung Square Mall. Figure 1 provides a map showing the location of the site on a United States Geologic Survey (USGS) 7.5-minute series topographic map (Chatham, NJ quadrangle), and depicts the site's location, local topography, and surface drainage patterns.

The site is located in a mixed residential and commercial area. Route 22 borders the site to the south, and is predominately commercial with residential properties located on side streets and mapped wetlands in drainage areas. An apartment complex (Crystal Ridge Club) borders the site to the west. Forested areas and residences border the site to the north, and commercial properties border the site to the east.

2.2 Physical Setting

2.2.1 Topography, Surface Water, and Wetlands

As shown on Figure 1, the site ranges in elevation from approximately 140 to 320 feet above mean sea level, and slopes from the First Watchung Mountain, located to the northwest of the site, to Route 22, located southeast of the site. Most of the developed area of the site is less than 200 ft above sea level.

Figure 2 provides a map showing the site and the associated network of monitoring wells located both onsite and to the south and east of the site. As shown on Figure 2, the closest surface water body is Crab Brook. North of US Route 22 (in the vicinity of the site), Crab Brook is an intermittent stream that carries much of the stormwater drainage from the site and adjacent parcels. Crab Brook is diverted under Route 22 near the site's southwestern corner. South of Route 22, the brook flows generally west through a wooded buffer zone between the highway and residential neighborhoods. Crab Brook discharges to Stony Brook approximately 6,000 feet southwest of the site. Stony Brook discharges to Green Brook which ultimately discharges to the Raritan River.

Within 1 mile of the site, wetlands areas have been mapped by the NJDEP in locations immediately north of the site and south of the site along US Route 22.

2.2.2 Geology

The native overburden at the site is generally comprised of a clay-silt layer, underlain by a sandy outwash deposit, over a thin layer of glacial till. In the vicinity of the site, the thickness of the overburden decreases towards the south-southwest but increases south of Crab Brook. The overburden is thinnest at well cluster MW-546 (3 feet) and generally increases south of Route 22 with the greatest thickness of 47 feet observed at well cluster MW-542. Construction of the original buildings and subsequent remedial activities introduced construction fill over much of the site. More recent earthmoving activities conducted during construction of the mall resulted in large cuts (northern portion of the site) and fills (southern portion of the site) to level the area for

buildings and parking lots; in some areas this activity increased overburden thickness by as much as twenty feet.

Below the overburden deposits is the Passaic Formation, a reddish-brown shale and siltstone of Jurassic age. The upper surface of the bedrock is generally weathered and soft, and becomes more competent with depth. Bedrock surface topography generally slopes to the southeast parallel to the First Watchung Mountain. The highest bedrock elevation is approximately 166 feet above sea level at well cluster MW-509 and the lowest is approximately 53 feet above sea level at wells PZ-524 and MW-542.

2.2.3 Hydrogeology

At the site itself, ground water is found only within the bedrock; further downgradient, the shallow zone includes thin layers of saturated overburden.

Prior to July 2003, ground water in the vicinity of the site flowed under natural conditions. Under natural conditions, ground water flow and contaminant migration within the bedrock aquifer were influenced by both bedrock structure and local ground water discharge areas, particularly Crab Brook. Under natural conditions, the ground water in the bedrock at the site flowed along bedrock strike (to the southwest), and then generally trended in a more southerly direction toward Crab Brook and beyond. Under these conditions, shallow ground water exhibited an upward vertical gradient near Crab Brook, and provided base flow (discharged) to Crab Brook. Vertical gradients elsewhere were (and remain) generally downward.

On July 17, 2003, a Ground Water Extraction System (GWES) consisting of an extraction well (RW-1) and associated ground water treatment facility was activated to remediate the ground water contaminant plume and intercept ground water base flow to Crab Brook. Since that time, ground water levels, gradients, and flow patterns have been altered, as the almost continuous pumping has drawn ground water from the vicinity of the site toward RW-1, and the base flow to Crab Brook originating from the vicinity of the site has been reduced.

2.3 <u>Site Ownership History and Facility Operations</u>

The site was originally developed in 1953 by Stavid Engineering. Lockheed Corporation acquired Stavid Engineering in 1959 and created Lockheed Electronics Corporation, which was subsequently operated by Sanders, A Lockheed Martin Company (Sanders). Additional land acquisitions resulted in the current site boundaries. The site was used to manufacture, assemble, and test electronic components. Trichloroethene (TCE) was used in Building 7 as a solvent to clean circuit boards. Site operations ceased in 1989.

2.4 Environmental Investigation History

The cessation of site activities in 1989 triggered a site investigation under the New Jersey Environmental Cleanup Responsibility Act (ECRA) (superseded by the Industrial Site Recovery Act [ISRA]). The initial investigations identified several areas of concern (AOCs) and included collection of soil, sediment, ground water, and surface water samples. Investigation and remedial action results have been documented in a series of reports submitted to the NJDEP since 1991. Soil AOCs contained volatile organic compounds (VOCs), primarily TCE, as well as fuel oil, and were addressed either through excavation and off-site disposal or soil vapor extraction. Site-wide soil remediation has been completed to the satisfaction of the NJDEP.

Early investigation activities identified a ground water plume containing TCE at the site. An extensive monitoring well network has been installed to delineate and monitor the plume. There are currently more than 40 active monitoring wells and piezometers associated with this project in the Boroughs of Watchung and North Plainfield, all of which are installed as either well couplets or triplets to evaluate the vertical distribution of contaminants. Ground water monitoring activities are ongoing in accordance with the site's NJDEP-approved monitoring schedule, as presented in Table 1.

Historic surface water sampling additionally identified that ground water from the ground water plume provided base flow to Crab Brook, and historically resulted in measurable impact to surface water quality between North Avenue (Norwood Avenue) and Watchung Avenue. Four surface water locations are sampled semiannually to monitor surface water quality in Crab Brook, in accordance with the site's NJDEP-approved monitoring schedule (Table 1).

As noted above, to remediate the ground water plume and intercept ground water base flow to Crab Brook, the site GWES was activated on July 17, 2003. Ground water is pumped from extraction well RW-1, located on North Drive in North Plainfield, at an approximate rate of 120 gallons per minute (gpm). In addition, an interceptor trench located on New Jersey Department of Transportation (NJDOT)-owned land on the northeast corner of Route 22 and North Drive was installed during system installation activities to collect shallow ground water. However, the continuous pumping of ground water from extraction well RW-1 has resulted in a lowering of the shallow ground water table below the invert of the interceptor trench, and consequently the interceptor trench is no longer active.

Extracted ground water is treated by granular activated carbon in a treatment plant located on the NJDOT-owned land at the corner of North Drive and Route 22, and discharged to Crab Brook in accordance with New Jersey Pollution Discharge Elimination System (NJPDES) permit No. NJG0105899. The GWES has worked almost continuously from start-up and has functioned as designed, providing control of the bedrock ground water plume and intercepting ground water base flow prior to its reaching Crab Brook.

2.5 Well Search

As part of the site's most recent ground water Classification Exception Area (CEA) biennial certification, TRC completed a NJDEP Bureau of Water Allocation 1-mile radius well records search and a computerized 5-mile radius search of water allocation permitted wells. The recent well search results were reviewed by TRC in order to identify all potentially active wells within a 1-mile radius of the site. The well records generated during this search show that a total of 82 wells are located within one mile of the site as follows: one domestic well, two industrial wells, and 79 monitoring wells. The domestic well and one of the industrial wells identified in the well records search are located either sidegradient or upgradient of the site's TCE plume, and are not within the plume area. The second industrial well was located on the Crystal Ridge Club property prior to the construction of this apartment complex, and was likely abandoned or lost during the redevelopment of the property.

2.6 Baseline Ecological Evaluation

A Baseline Ecological Evaluation (BEE) was conducted at the site during February 1999 by Environmental Management Group, Inc. and Sevee and Maher Engineers, Inc. The BEE concluded that there was no measurable acute effect on aquatic species in Crab Brook from the

inflow of the former LEC site plume containing TCE. The NJDEP approved the BEE in the August 9, 1999 letter concluding that no further ecological evaluation was required with regard to Crab Brook.

2.7 Area of Concern Summary

As documented in the NJDEP's July 22, 1998 letter and other correspondence, all soil AOCs have been addressed to the satisfaction of the NJDEP. Ground water and the surface water of Crab Brook are the only AOCs related to the site.

2.8 Applicable Remediation Criteria and Standards

The delineation of ground water contaminants is based on a comparison of the results with the NJDEP Ground Water Quality Standards (GWQS) (NJAC 7:9C).

Both Stony Brook and Green Brook are listed in N.J.A.C. 7:9B-1.15(f) and assigned stream classification FW2-NT for purposes of defining the applicable NJDEP Surface Water Quality Criteria (SWQC). Crab Brook, an unlisted tributary of these surface water bodies, also is classified as FW2-NT by extension. Therefore, the delineation of surface water contaminants is based on a comparison of the results with the NJDEP SWQC for streams classified as FW2-NT (N.J.A.C. 7:9B-1.14(c)).

2.9 <u>Contact Information</u>

The following is a list of the applicable contact information. Note that TRC is the lead responsible party pursuant to a Remediation Agreement executed in 2001.

	Mailing Address	Representative
Lead Responsible Party/ Consultant TRC Environmental Corp.	57 East Willow Street Millburn, NJ 07041	Stephen E. Tappert 973.564.6006 x 240 Scott McCray x 287
Current Site Owner/Operator Watchung Square Assoc., LLC	641 Shunpike Road Chatham, NJ 07928	Al Tafro 973.966.2800
Former Site Owner Lockheed Electronics Corp.	6801 Rockledge Drive MP CCT 246 Bethesda, MD 20817	Chuck Trione (301) 548-2223

3.0 TECHNICAL OVERVIEW

The last progress report, submitted in August 2009, presented data collected from September 2007 through March 2009. Two semi-annual sampling events have occurred since the last report submittal (September 2009 and March 2010). The approved sampling schedule is provided in Table 1. Section 4.1.3 of this report presents the results of the semi-annual ground water sampling events conducted in September 2009 through March 2010. Results from the stream sampling events are presented in Section 4.2.2. Section 4.3 contains monthly system performance results and provides an overview of the GWES.

3.1 Remediation Objectives

The objectives of the activities conducted at this site are to remediate contaminants of concern to the applicable remediation standards, and to obtain No Further Action determination (or functional equivalent) from the NJDEP for ground water and surface water.

3.2 Sampling Procedures

The remediation activities were performed in accordance with the NJDEP's TRSR and FSPM. The September 2009 and March 2010 ground water samples were submitted to Accutest Laboratories, Inc. of Dayton, New Jersey (Accutest), a New Jersey-certified laboratory.

3.3 Reliability of the Laboratory Analytical Data

Based on a review of the laboratory reports, TRC did not further qualify or reject any data points. Therefore, these data are considered to be valid and useful for the intended purposes. All method specified calibrations and quality control performance criteria were met for this job, except as noted in the conformance/non-conformance summaries provided in the laboratory deliverable packages.

3.4 Factors Influencing Data

It should be noted that the amount of precipitation (rain and snow) in the vicinity of the site in February and March 2010 was far greater than is typical for these months, and it is therefore possible that ground water elevations and/or contaminant concentrations may have been impacted by this abnormal climatic condition. This qualification is noted where discussions of contaminant concentrations has been presented. Excluding this exception, there were no significant events or seasonal variations that are known to have affected the sampling procedures or the results of the ground water or surface water sampling presented in this report.

4.0 REMEDIAL ACTION PROGRESS REPORT

Previous ground water and surface water investigations have delineated a ground water plume comprised primarily of TCE in the local bedrock and overburden aquifer system. TCE has been reported at concentrations exceeding the GWQS of 1 microgram per liter (µg/L) in ground water beneath the site, extending to the southwest approximately 7,000 feet. The site GWES was activated on July 17, 2003 to remediate the TCE plume and intercept ground water prior to its entry into Crab Brook. Ground water is pumped from extraction well RW-1, located on North Drive in North Plainfield, at an approximate rate of 120 gpm. Effluent sampling (per NJPDES permit No. NJG0105899) and monthly performance sampling is conducted to monitor the effectiveness of the recovery system. Ground water and surface water sampling is conducted on a semi-annual basis to monitor contaminant migration.

The following subsections describe remedial activities and evaluations completed in association with the ground water monitoring, surface water monitoring, and GWES performance monitoring activities completed from September 2009 through March 2010.

4.1 Ground Water Monitoring and Sampling Activities

Ground water monitoring and sampling events were conducted in September 2009 and March 2010 in accordance with the sampling schedule presented in Table 1.

As presented in TRC's August 2009 RAPR, ground water beneath the site has been divided into three vertical zones to facilitate hydrogeologic analysis: the shallow zone (overburden and shallow bedrock ground water from the ground water table to approximately 50 feet above mean sea level [ft amsl]); the intermediate zone (bedrock ground water from approximately 50 ft amsl to approximately 50 feet below mean sea level [ft bmsl]); and the deep zone (bedrock ground water below 50 ft bmsl). Historically, monitoring well clusters (couplets or triplets) have been installed to monitor ground water quality in these three vertical zones, with a naming convention that was intended to convey information about the depth of the individual wells within the well cluster. At monitoring well couplets, the deeper monitoring well designated with an "A" at the end of its name, and shallower monitoring well was designated with a "B". Similarly, at monitoring well triplets, the deepest monitoring well was designated with an "A", the intermediate-depth monitoring well was designated with a "B", and the shallowest monitoring well was designated with a "C". However, this naming convention has become cumbersome in practice, in that "A" designated wells may be present in either the deep vertical zone or the intermediate vertical zone, and "B" designated wells may be present in either the shallow or the intermediate vertical zone, depending on whether the monitoring well cluster represented is a well couplet or a well triplet. Therefore, to minimize confusion, this report has presented all monitoring wells in the shallow zone as defined above with an "S" designation, all monitoring wells in the intermediate depth zone with an "I" designation, and all monitoring wells in the deep zone with a "D" designation (replacing the previous "A", "B", and "C" designations). Table 2 presents a summary of current and historic well designations and well construction information relative to the three vertical zones used for hydrogeologic analysis.

The investigative findings and laboratory analytical results for each vertical zone are presented in the sections below.

4.1.1 Water-Level Measurements

Water level measurements were collected on September 8, 2009 and March 9, 2010 at selected monitoring wells associated with the site. Table 3 provides depth to water (DTW) measurements and water level elevations for these sampling events.

The water level elevations were used to prepare ground water contour maps. Ground water flow directions for the shallow zone, the intermediate zone, and the deep zone are depicted on Figures 3 through 8, using the hydrostratigraphic classification presented in Table 2. Since the open borehole interval of extraction well RW-1 bridges both the shallow and intermediate zones, the ground water elevation for extraction well RW-1 was included on both the shallow and intermediate zone contour maps (with no correction for well inefficiency). Figures 3 through 8 indicate that ground water in the bedrock enters the former LEC site from the east, flows across the site to the southwest, and then trends in a more southerly direction toward Crab Brook and beyond.

Based on current ground water gauging data and historic pump test results, ground water flow in the shallow and intermediate zones has been altered significantly since the continuous pumping at extraction well RW-1 began in July 2003. Based on RW-1 pumping test data, drawdown of the ground water potentiometric surface resulting from the pumping of RW-1 was measured over an area measuring approximately 2,700 feet (along bedrock strike) by 1,300 feet in the shallow zone, and 3,300 (along bedrock strike) by 1,600 feet in the intermediate zone ¹. This pumping creates a capture zone in the shallow and intermediate ground water zones, reducing local base flow to Crab Brook, and controlling the downgradient movement of the TCE ground water plume.

The effect of pumping, while less pronounced, is also present in the deep zone. While the area of apparent drawdown in the deep zone was not mapped during the 2000 pumping tests (due to an insufficient number of monitoring points), apparent drawdown was measured in both of the deep zone monitoring wells monitored (MW-546D and MW-547D) (0.33 ft and 0.92 ft, respectively). Based on these findings, it appears that the continuous pumping of ground water from RW-1 is impacting the deep zone; however the extent of the GWES influence on the deep zone is not known.

Contour Map Reporting Forms are presented in Appendix A.

Ground water elevation measurements presented in Table 3 and on Figures 3 through 8 are consistent with the last several years of ground water elevation data. As documented in TRC RAPRs submitted to the NJDEP since 2003, the ground water flow regime has not changed over the last several years of GWES operation.

4.1.2 Ground Water Sample Collection

Analytical results for the ground water samples collected during the September 2009 and March 2010 sampling events are provided in Table 4 and on Figure 9, and a summary of historical results for contaminants of concern is provided in Table 5 and Appendix B. Concentrations that exceed the NJDEP's GWQS are highlighted in Table 4. The complete ground water laboratory

TRC Job No. 2542-116473.0000 R\2010 RAPR.doc

¹ As presented in the TRC June 2004 Remedial Investigation Report Addendum.

data packages and the electronic data deliverables are included under separate cover. Sampling results for the monitoring events are discussed below in Section 4.1.3.

During the semi-annual ground water sampling events (September 2009 and March 2010), TRC collected ground water samples at each well location using passive diffusion bags (PDBs), in accordance with the FSPM. The PDBs were retrieved from each well using a dedicated retrieval line, and the ground water sample transferred to the appropriate laboratory-supplied bottleware for laboratory analysis of VOCs using EPA Method 624. Following sampling, new PDBs that had been pre-filled with laboratory-grade de-ionized water were attached to the retrieval tethers, and the tether was re-set in the monitoring well at the appropriate sampling depths, in preparation for the next semi-annual sampling event.

4.1.3 <u>Summary of Ground Water Results</u>

Semi-Annual Ground Water Sampling Events

The highest TCE concentrations reported during the two semi-annual ground water sampling events were from on-site wells MW-549S and MW-549I, located in the former source area. TCE concentrations in samples collected from MW-549S ranged from 385 to 643 μ g/L. The concentration of TCE in samples collected from MW-549I ranged from 781 to 806 μ g/L. Only four additional wells (MW-502S, MW-532D, MW-546D, and MW-550I) reported TCE concentrations over 10 μ g/L. Based upon ground water flow maps and drawdown data collected during the pumping test conducted in 2000, all these wells are within the capture zone of extraction well RW-1.

Downgradient well clusters MW-544 and MW-545 reported less than 1 μ g/L or non-detectable concentrations of TCE.

Other ground water contaminants, including chloroform, tetrachloroethene (PCE), vinyl chloride, and 1,1-dichloroethane (1,1-DCA), have been detected in sampled wells at very low concentrations. The most commonly identified compound is chloroform. PCE was detected at concentrations ranging up to 4.3 μ g/L, exceeding the GWQS of 1 μ g/L in several wells. Vinyl chloride was reported in one well at a concentration of 5.7 μ g/L, exceeding the GWQS of 1 μ g/L. No other compounds exceeded the applicable GWQS in any wells.

Comparison of Historical and Recent Ground Water Sampling Results

Historical TCE results for the sampled wells are presented in Table 5, and Figure 9 illustrates TCE and other detected VOC concentrations from the sampled wells since the GWES became operational. Historical TCE concentrations versus time plots are presented in Appendix B for selected wells. The plume and compliance wells were sampled during both the September 2009 and March 2010 events. The background wells were only sampled during the March 2010 event. The plume wells are located near the former source area or directly downgradient of it; they are also located upgradient and within the capture zone of extraction well RW-1. As shown in Appendix B and Table 5, and on Figure 9, general decreasing trends since pumping began in July 2003 were observed in the plume and compliance monitoring wells.

Table 6 presents a comparison between TCE concentrations in monitoring well samples collected in November 1999 (prior to system activation) and in September 2009^2 . As shown on Table 6, 16 of the 21 wells considered have either reported a greater than 90% decrease in TCE contaminant concentrations or have reported TCE concentrations below the GWQS since pumping was initiated. In an additional three wells, TCE concentrations decreased more than 50% since GWES activation. Only one well (PZ-522D) reported an increase in concentration (0.9 μ g/L in 1999, 2.2 μ g/L in 2009). The 2009 results for source wells MW-549S (643 μ g/L) and MW-549I (781 μ g/L) compare well with 1999 results for predecessor wells MW-548C and MW-548B, both of which reported 5,100 μ g/L of TCE. (The MW-548 cluster was installed in the same area as the MW-549 wells, but was abandoned to facilitate site development.)

As shown on Table 6 and in Appendix B, particularly significant reductions in ground water concentrations have been noted in wells MW-502S, MW-506I, MW-507I, and MW-508S, where TCE concentrations have decreased by approximately two orders of magnitude since 1999. In addition, the TCE concentration in well MW-550I has decreased from greater than 800 μ g/L to levels less than 100 μ g/L. These wells are within the area of pumping influence created by extraction well RW-1, and provide a good indication of the water quality trend in the area of the plume directly impacted by the pumping program.

It is also significant to note that the trend in the TCE analytical results for well MW-546D. Analytical results from the March 2009 sampling event (presented in the August 2009 RAPR), the September 2009 sampling event, and the March 2010 sampling event for well MW-546D reported the three lowest TCE concentrations detected in this well to date. Based upon pumping test data³, this well is located within the zone of influence of the recovery well. The March 2010 analytical result represents a 91% reduction in the TCE concentration compared to the March 2003 sample result (prior to GWES activation). Although the recent result may have been biased low due to heavy precipitation in February and March 2010, it is consistent with the analytical results from the previous two sampling events. As noted in the August 2009 RAPR, continued ground water monitoring will be required to determine whether the recently-noted contaminant reduction at this well location will be sustained.

4.2 <u>Surface Water Monitoring and Sampling Activities</u>

During the September 2009 and March 2010 sampling events, surface water samples were collected from four locations: SW-1, SW-2, SW-3 and SW-4. The surface water sample locations are presented on Figure 2.

4.2.1 Surface Water Sample Collection

During the September 2009 and March 2010 sampling events, stream flow measurements were collected at the sample locations to estimate stream discharge volume. Field measurements and calculations for stream flow are presented in Appendix C.

TRC Job No. 2542-116473.0000 R\2010 RAPR.doc

² March 2010 was excluded from analysis due to high levels of precipitation and recharge in February-March 2010, potentially biasing analytical results low.

³ Presented in TRC's June 2004 Remedial Investigation Report Addendum.

The surface water samples were analyzed for VOCs using EPA Method 624. The surface water analytical results are presented in Table 7 and on Figure 10. The complete surface water laboratory data packages and the electronic data deliverables are included under separate cover.

4.2.2 Summary of Surface Water Results

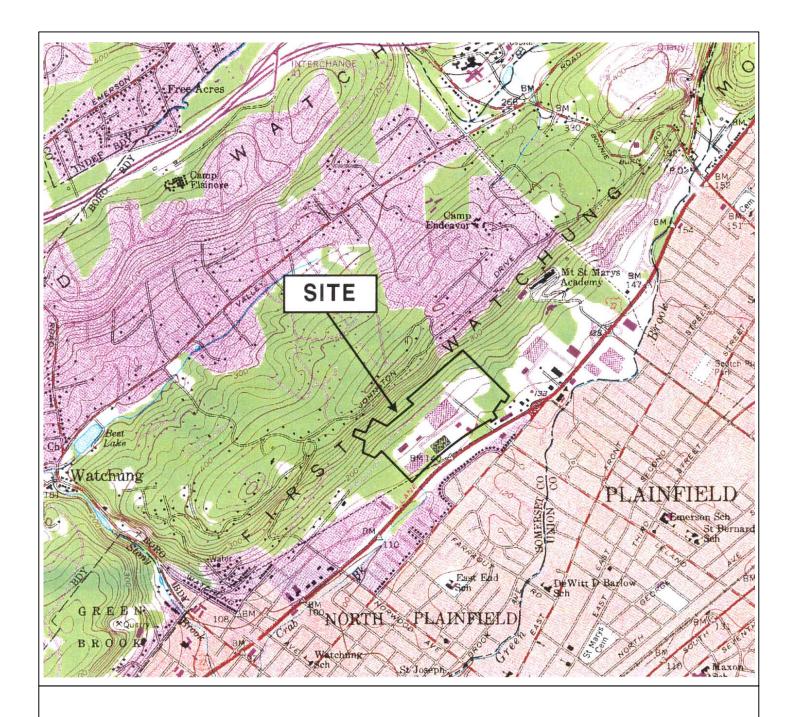
Historical surface water TCE analytical results are presented in Table 8, in Appendix D, and on Figure 10. The concentrations of TCE at surface water samples in September 2009 and March 2010 ranged from non-detectible concentrations (ND) to 0.68 μ g/L (estimated) in the surface water samples collected. All of these results are below the FW2-NT SWQC for TCE (1.09 μ g/L). Additionally, toluene (a compound not related to the former LEC site) was detected in a sample from location SW-3 during the March 2010 sampling event at a concentration of 2.1 μ g/L, well below the FW2-NT SWQC for toluene (1,300 μ g/L).

4.3 GWES Performance Monitoring and Sampling

Performance sampling results are presented in Table 9. Influent TCE concentrations for this reporting period ranged from 1.4 μ g/L (September 2009) to an estimated concentration of 0.54 μ g/L (December 2009). Effluent TCE concentrations during this monitoring period were well below the NJPDES permit effluent limit for TCE of 5.4 μ g/L.

Due to a scheduling oversight, the whole effluent toxicity (WET) sample for the fourth quarter of 2009 was not collected, resulting in the issuance of a Notice of Violation (NOV) in June 2010. Increased sampling frequency for the WET test was implemented in July 2010 as required by the NOV.

4.4 <u>Vapor Intrusion Investigation</u>


A Vapor Intrusion Investigation Workplan was submitted to the NJDEP in August 2009, which proposed collecting vapor intrusion samples from the Crystal Ridge Apartments and the Wal-Mart store in the Watchung Square shopping center. After meeting with the NJDEP and discussing the issue, a revised workplan was submitted in August 2010. Access negotiations with the property owners are ongoing.

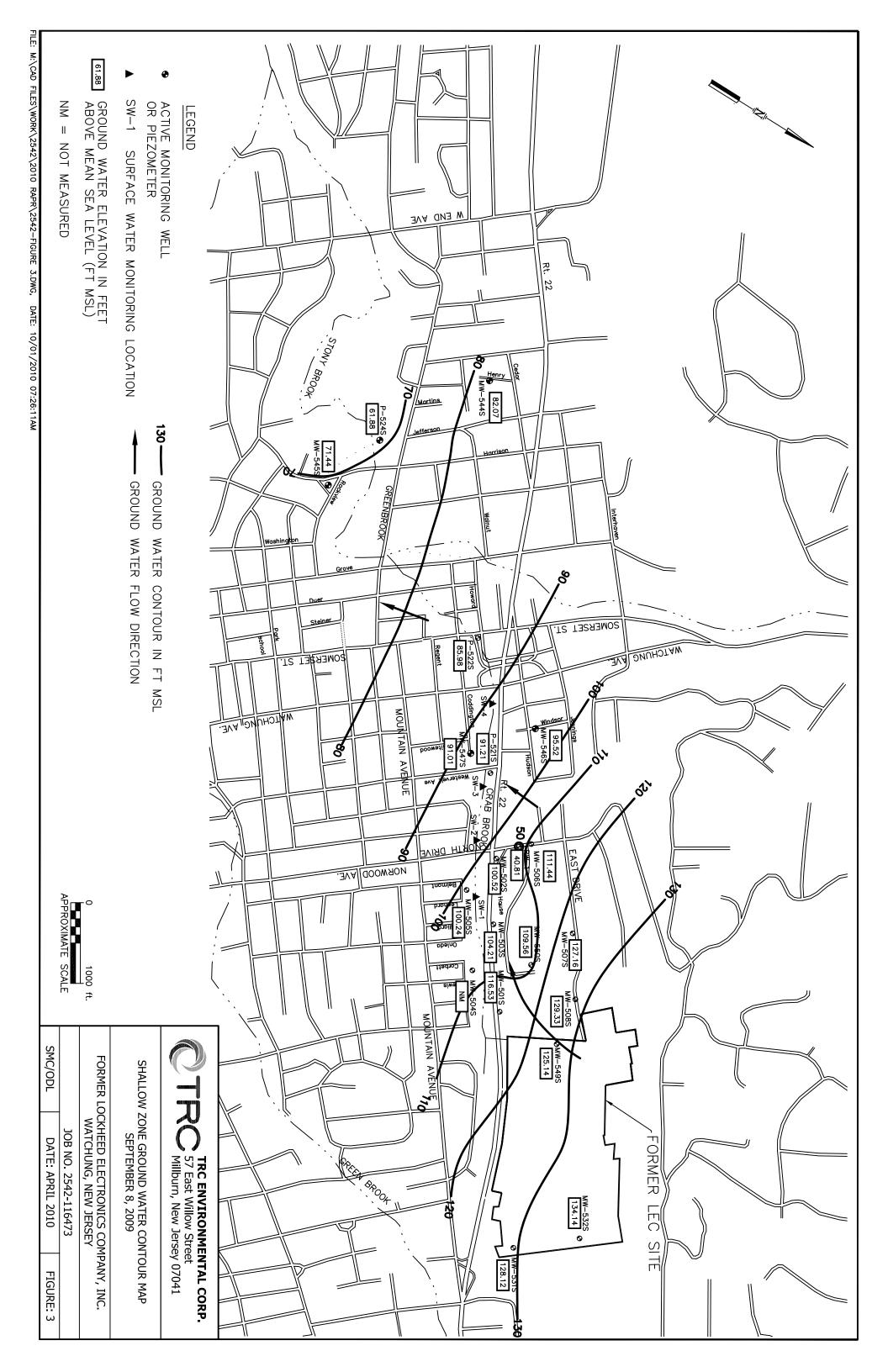
5.0 CONCLUSIONS AND RECOMMENDATIONS

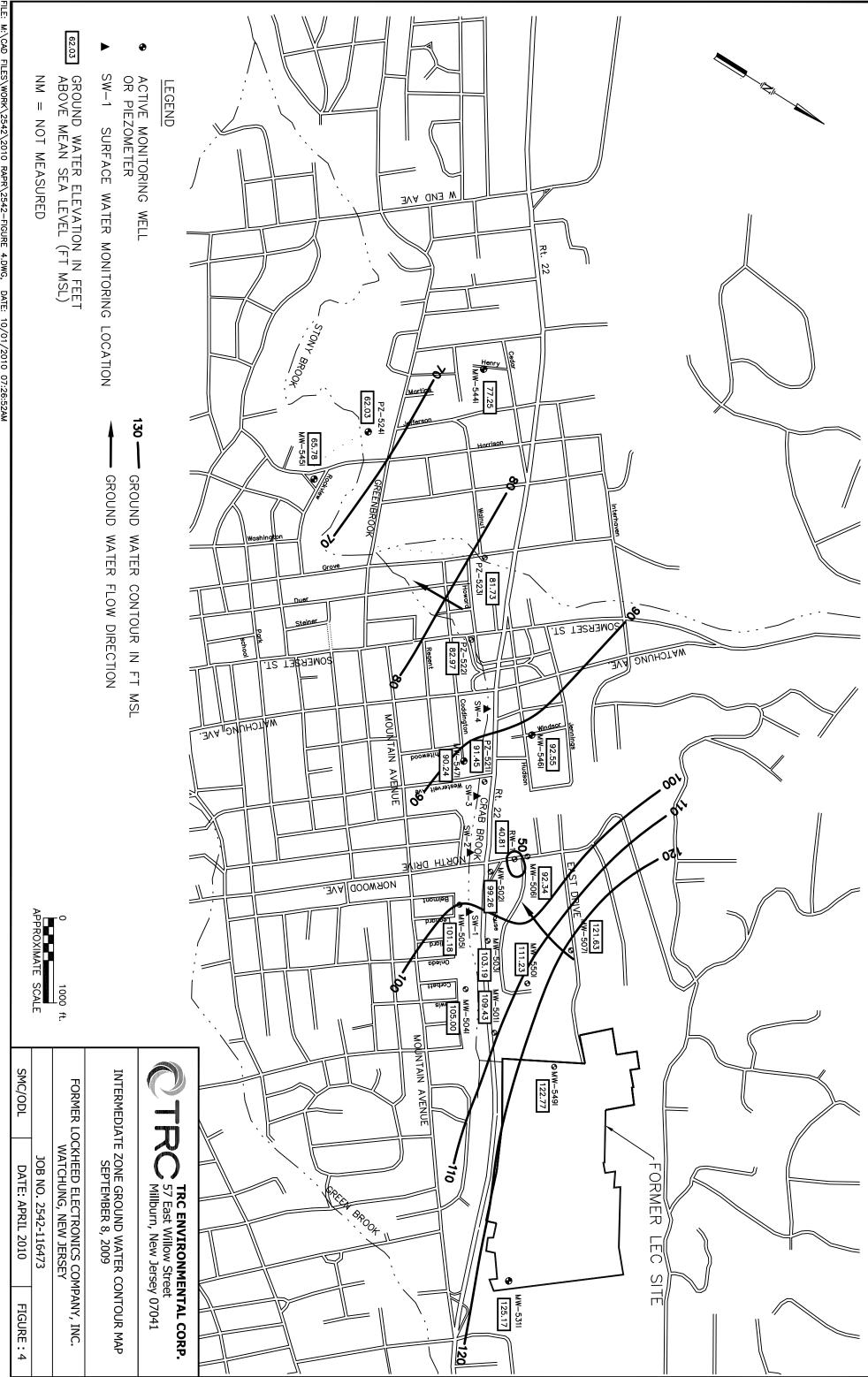
Based upon the information provided in this RAPR, the GWES at the former LEC site continues to function as designed. The discharge of contaminated ground water to Crab Brook (as base flow) has been mitigated and stream samples generally meet the SWQS, the ground water plume is being captured by the treatment system, and concentrations of contaminants in key wells continue to decline. The treatment plant is operating efficiently and no discharge permit limits have been exceeded.

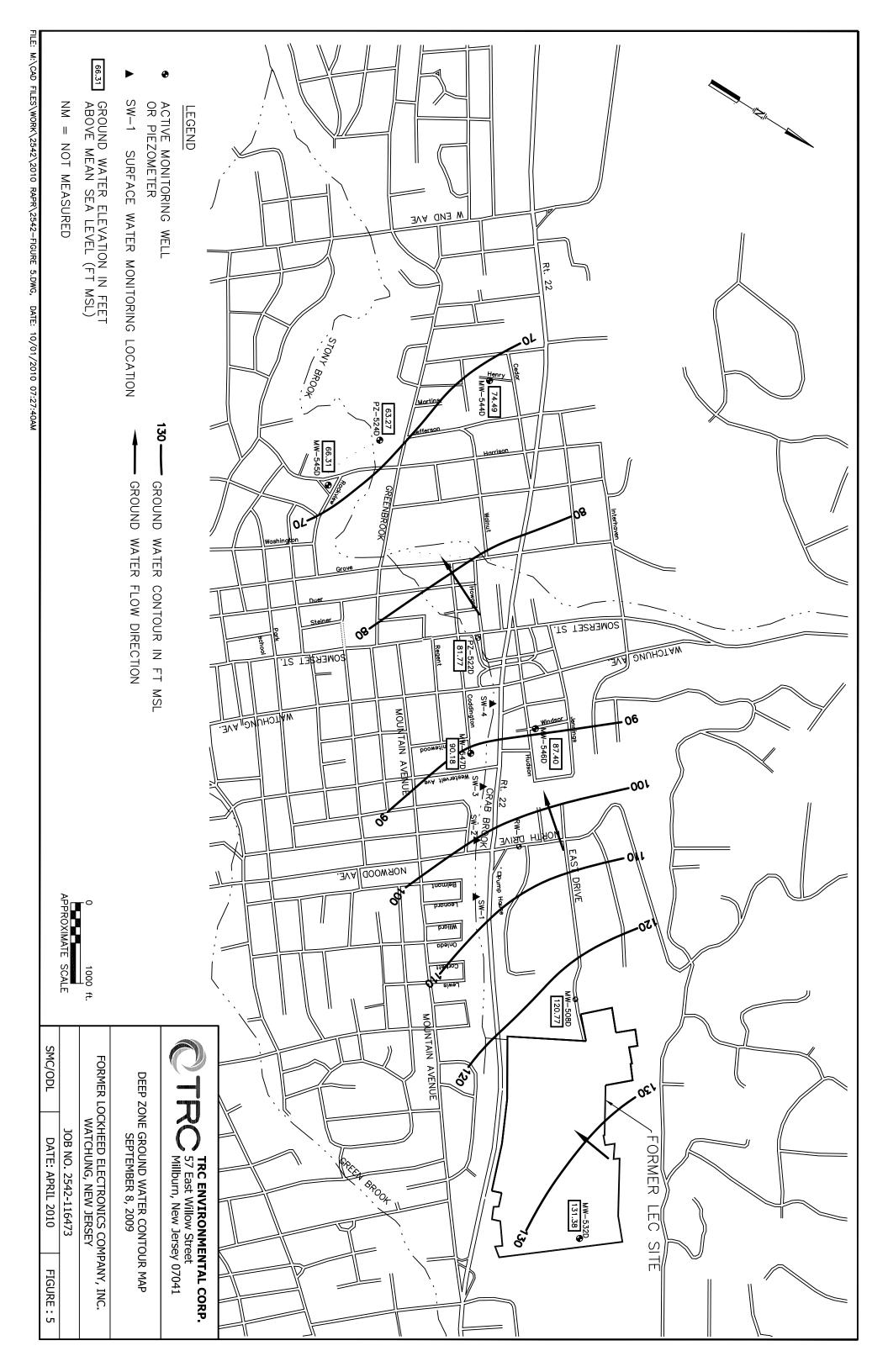
The next RAPR for the site is scheduled to be submitted in May 2011, and will cover monitoring and remedial activities through March 2011, including the anticipated vapor intrusion sampling. An implementation schedule for the proposed activities associated with the RAPR is included as Table 10.

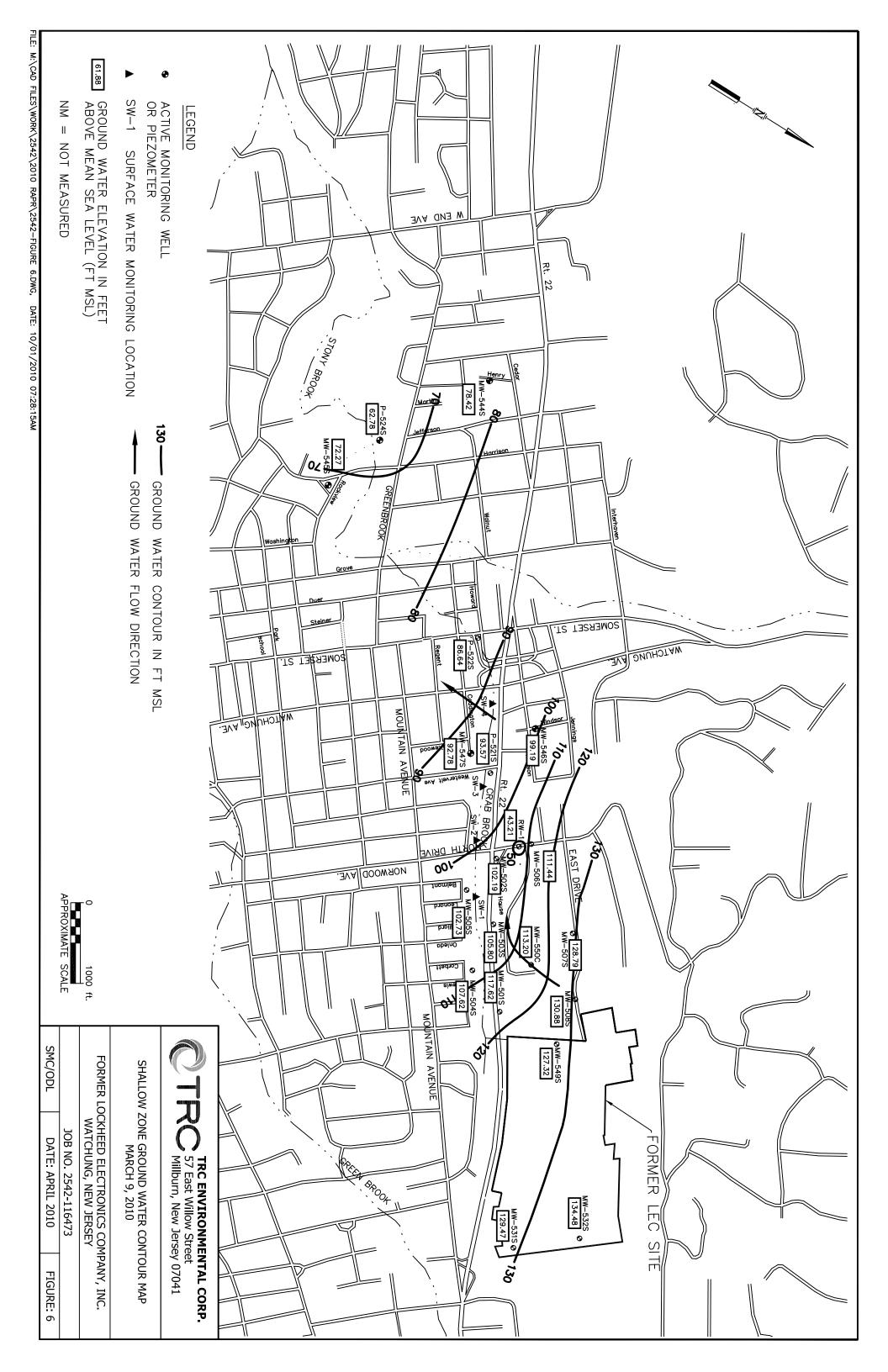
FIGURES

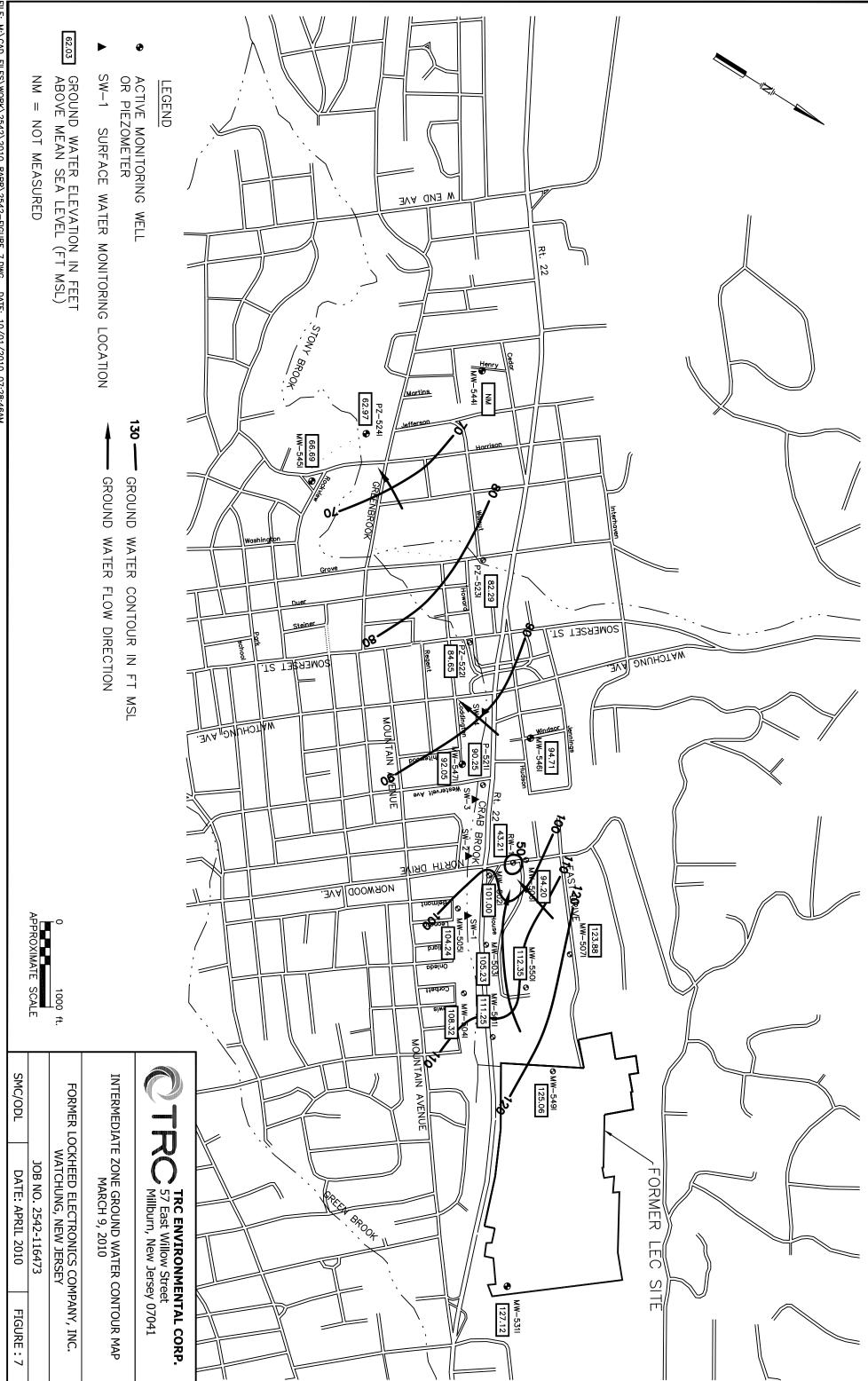
SOURCE: U.S.G.S. CHATHAM, NJ 7.5 MINUTE QUADRANGLE

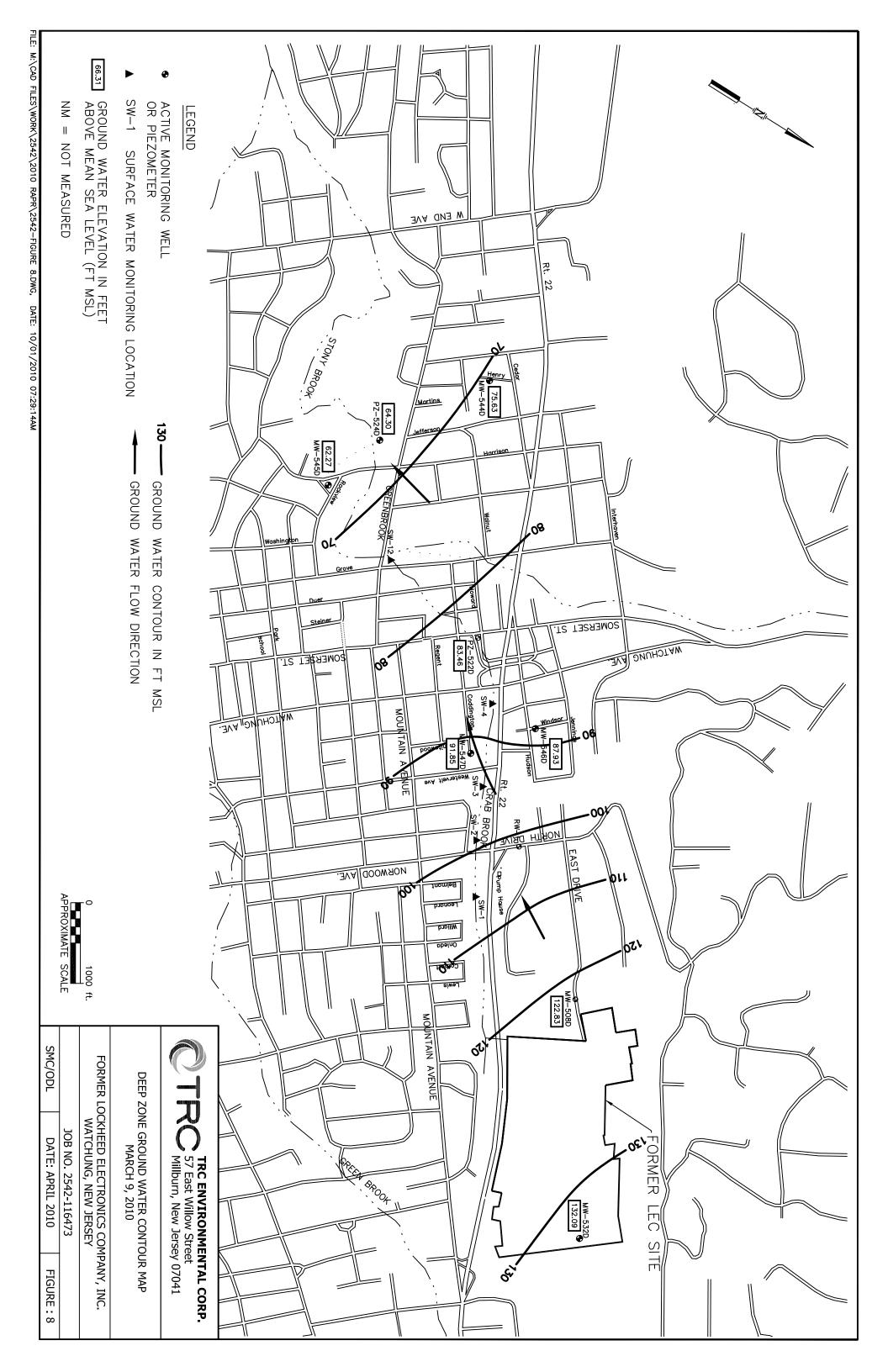


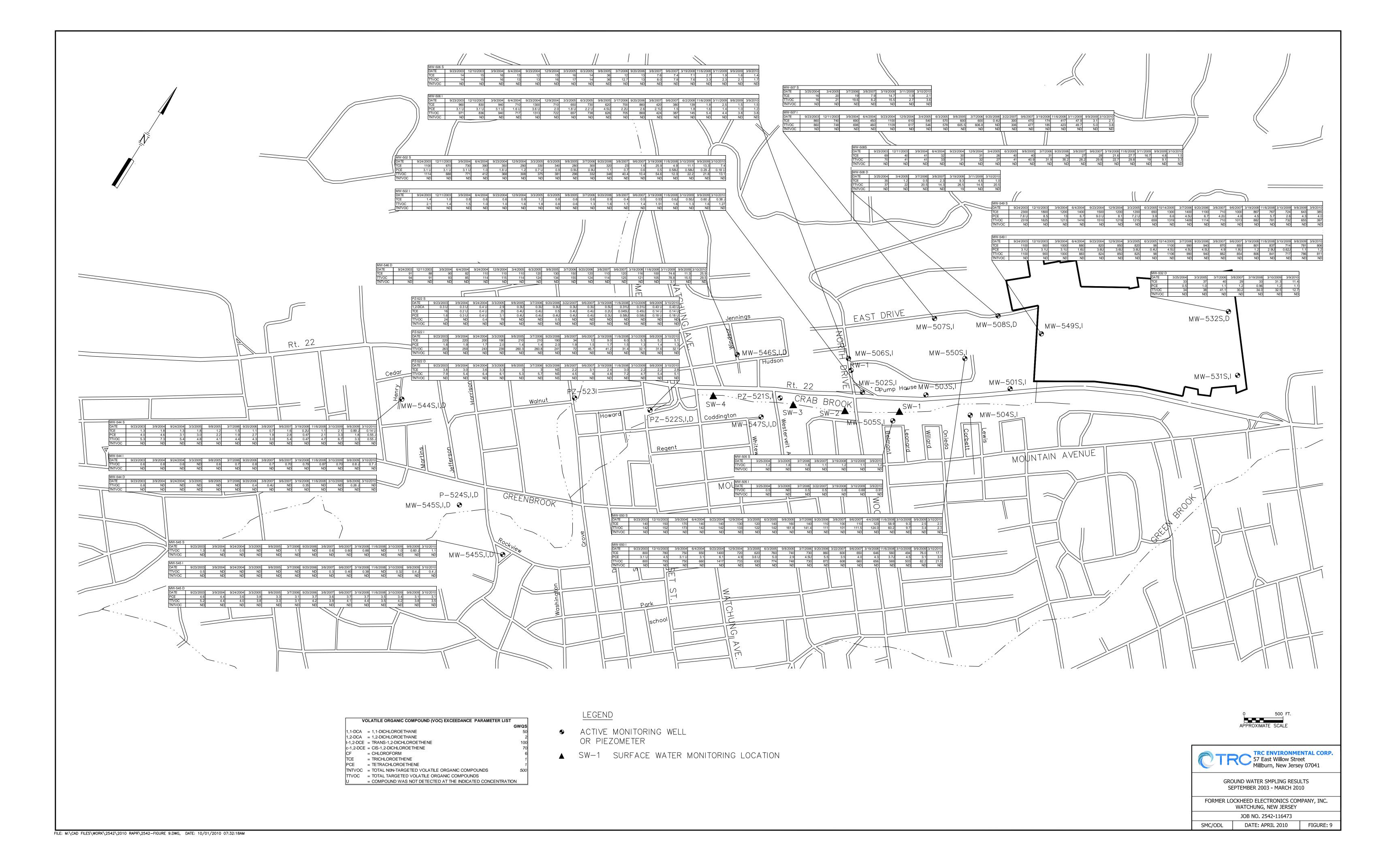

SITE LOCATION MAP

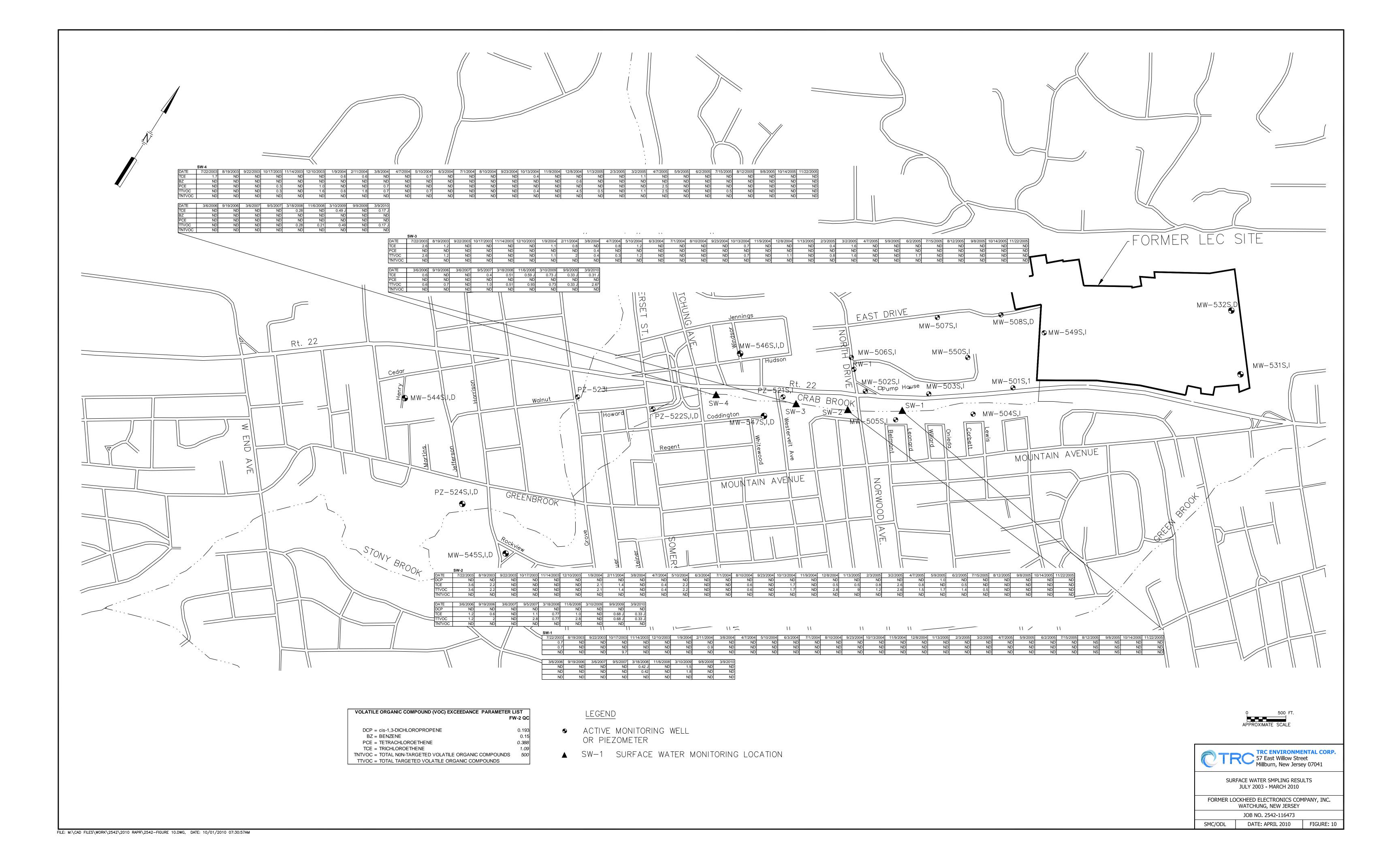

FORMER LOCKHEED ELECTRONICS COMPANY, INC. WATCHUNG, NEW JERSEY


PREPARED BY: DD/LB DATE: APRIL 2007


JOB NO.: 2542 FIGURE: 1







TABLES

TABLE 1
GROUND WATER AND SURFACE WATER MONITORING/SAMPLING SCHEDULE
FORMER LEC SITE - WATCHUNG, NEW JERSEY

	Sample Locations (Current Well Designations)	Sampling Month	Analytical Parameters
Surface Water:	SW-1, SW-2, SW-3, SW-4	March, September	VOC+10
Background Wells: Plume Wells: Compliance Wells:	505 S, I; 507 S; 508 D; 532 D 502 S, I; 506 S, I; 507 I; 508 S; 546 D; 549 S, I; 550 S, I P522 S, I, D; 544 S, I, D; 545 S, I, D	March	VOC+10
Plume Wells: Compliance Wells:	502 S, I; 506 S, I; 507 I; 508 S; 546 D; 549 S, I; 550 S, I P522 S, I, D; 544 S, I, D; 545 S, I, D	September	VOC+10

Note: Curretn and Former Well Designations Presented on Table 2.

Table 2
Monitoring Well Construction Details
Former Lockheed Electronics Corporation Facility - Watchung, New Jersey

Wells Screening Shallow Zone (From Water Table to 50 Feet Above Mean Sea Level)

Current Well Designation	WAII	Permit Number	Date Installed	Measuring Point Elevation (ft.msl)	Type/ Diameter	Depth (feet)	Approximate Screened Interval (feet below surface)	Approximate Screened Interval Elevation (ft.msl)
MW-501 S	MW-501B	25-43364	7/6/1993	121.09	PVC/2	18	8 to 18	113 to 103
MW-502 S	MW-502B	25-43366	6/29/1993	103.85	PVC/2	18	8 to 18	96 to 86
MW-503 S	MW-503B	25-43368	6/22/1993	110.58	PVC/2	23.7	8.7 to 23.7	102 to 87
MW-504 S	MW-504B	25-43520	7/15/1993	112.09	PVC/2	19.5	6.5 to 19.5	106 to 93
MW-505 S	MW-505B	25-43522	7/20/1993	103.73	PVC/2	19.7	9.7 to 19.7	94 to 84
MW-506 S	MW-506B	25-43517	7/21/1993	121.28	PVC/2	24.6	14.6 to 24.6	107 to 97
MW-507 S	MW-507B	25-43516	9/17/1993	176.39	PVC/2	59.7	49.7 to 59.7	127 to 117
MW-508 S	MW-508B	25-43524	7/27/1993	187.13	PVC/2	67.7	57.7 to 67.7	129 to 119
MW-531 S	MW-531B	25-47891	10/21/1995	138.46	PVC/2	48	38 to 48	100 to 90
MW-532 S	MW-532B	25-47893	10/20/1995	185.35	PVC/2	102.7	93 to 103	92 to 82
MW-544 S	MW-544C	25-54779	10/13/1999	86.04	PVC/2	23	3 to 23	83 to 63
MW-545 S	MW-545C	25-54786	10/9/1999	85.75	PVC/2	35	15 to 35	71 to 51
MW-546 S	MW-546C	25-55005	10/19/1999	108.16	PVC/2	32	12 to 32	96 to 76
MW-547 S	MW-547C	25-54780	10/11/1999	98.32	PVC/2	22	2 to 22	96 to 76
MW-549 S	MW-549B	25-60735	10/31/2002	179.77	PVC/2	110	90 to 110	90 to 70
MW-550 S	MW-550C	25-60738	10/31/2002	132.13	PVC/2	50	30 to 50	102 to 82
PZ-521 S	PZ-521C	25-45029	5/26/1994	100.07	PVC/2	15.2	5.2 to 15.2	95 to 85
PZ-522 S	PZ-522C	25-45020	6/4/1994	93.78	PVC/2	17.7	7.7 to 17.7	86 to 76
PZ-524 S	PZ-524C	25-45026	7/18/1994	67.78	PVC/2	14.7	4.7 to 14.7	63 to 53

Wells Screening Intermediate Zone (From 50 Feet Above Mean Sea Level to 50 Feet Below Sea Level)

		mg mile				<u> </u>	30 Feet Delow Sea Level)		
Current Well Designation	Former Well Designation	Permit Number	Date Installed	Measuring Point Elevation (ft.msl)	Type/ Diameter	Depth (feet)	Approximate Screened Interval (feet below surface)	Approximate Screened Interval Elevation (ft.msl)	
MW-501 I	MW-501A	25-43363	7/7/1993	120.90	PVC/2	74.5	64.5 to 74.5	56 to 46	
MW-502 I	MW-502A	25-43365	7/8/1993	103.87	PVC/2	74.7	64.7 to 74.7	39 to 29	
MW-503 I	MW-503A	25-43367	6/30/1993	110.26	PVC/2	71.5	61.5 to 71.5	49 to 39	
MW-504 I	MW-504A	25-43521	7/15/1993	112.10	PVC/2	76	66 to 76	46 to 36	
MW-505 I	MW-505A	25-43523	7/20/1993	103.85	PVC/2	75	65 to 75	39 to 29	
MW-506 I	MW-506A	25-43518	7/22/1993	122.22	PVC/2	99	89 to 99	34 to 24	
MW-507 I	MW-507A	25-43821	10/5/1993	176.39	PVC/4	152	142 to 152	35 to 25	
MW-531 I	MW-531A	25-47890	10/12/1995	138.43	PVC/2	142	132 to 142	6 to -4	
MW-544 I	MW-544B	25-54778	8/23/1999	86.00	PVC/2	100	80 to 100	6 to -14	
MW-545 I	MW-545B	25-54785	10/12/1999	85.80	PVC/2	93	73 to 93	13 to -7	
MW-546 I	MW-546B	25-55004	10/20/1999	107.06	PVC/2	100	80 to 100	27 to 7	
MW-547 I	MW-547B	25-54781	10/13/1999	98.46	PVC/2	100	80 to 100	18 to -2	
MW-549 I	MW-549A	25-60736	10/31/2002	179.31	PVC/2	210	190 to 210	-11 to -31	
MW-550 I	MW-550B	25-60737	10/31/2002	132.56	PVC/2	100	80 to 100	53 to 33	
PZ-521 I	PZ-521B	25-45028	5/20/1994	99.84	PVC/2	102.6	92.6 to 102.6	7 to -3	
PZ-522 I	PZ-522B	25-45019	6/16/1994	93.78	PVC/2	101	91 to 101	3 to -7	
PZ-523 I	PZ-523B	25-45022	6/21/1994	94.05	PVC/2	102	92 to 102	2 to -8	
PZ-524 I	PZ-524B	25-45025	7/14/1994	67.86	PVC/2	97.7	87.7 to 97.7	-20 to -30	

Wells Screening Deep Zone (Deeper Than 50 Feet Below Sea Level)

Current Well Designation	Well	Permit Number	Date Installed	Measuring Point Elevation (ft.msl)	Type/ Diameter	Depth (feet)	Approximate Screened Interval (feet below surface)	Approximate Screened Interval Elevation (ft.msl)
MW-508 D	MW-508A	25-43525	10/1/1993	186.85	PVC/4	262.7	252.7 to 262.7	-66 to -76
MW-532 D	MW-532A	25-47892	10/18/1995	186.55	PVC/2	263	253 to 263	-66 to -76
MW-544 D	MW-544A	25-54777	10/15/1999	85.81	PVC/2	200	180 to 200	-94 to -114
MW-545 D	MW-545A	25-54784	10/6/1999	85.69	PVC/2	200	180 to 200	-94 to -114
MW-546 D	MW-546A	25-55003	10/21/1999	106.55	PVC/2	200	180 to 200	-73 to -93
MW-547 D	MW-547A	25-54782	10/15/1999	98.33	PVC/2	200	180 to 200	-82 to -102
PZ-522 D	PZ-522A	25-45018	6/9/1994	93.85	PVC/2	197.7	187.7 to 197.7	-94 to -104
PZ-524 D	PZ-524A	25-45024	7/11/1994	68.12	PVC/2	195.7	185.7 to 195.7	-118 to -128

TABLE 3 GROUND WATER ELEVATION DATA FORMER LEC SITE - WATCHUNG, NEW JERSEY

			Septemb	er 8, 2009	March 9, 2010		
Monitoring Well	Well Depths ft. (bgs)	TOC Elevation ft. (MSL)	Depth to Water	GW Elevation ft. (MSL)	Depth to Water	GW Elevation ft. (MSL)	
MW-501S	19	121.07	4.54	116.53	3.45	117.62	
MW-501 I	75.5	120.90	11.47	109.43	9.65	111.25	
MW-502 S	19	103.85	3.33	100.52	1.66	102.19	
MW-502 I	75.5	103.89	4.63	99.26	2.83	101.06	
MW-503 S	24.4	110.58	6.37	104.21	4.78	105.80	
MW-503 I	73	110.26	7.07	103.19	4.93	105.33	
MW-504 S	19.8	112.09	NM	NM	4.47	107.62	
MW-504 I	76.5	112.10	7.10	105.00	3.28	108.82	
MW-505 S	20	107.73	7.49	100.24	5.00	102.73	
MW-505 I	75	108.27	7.09	101.18	4.03	104.24	
MW-506 S	25	121.28	9.84	111.44	7.00	114.28	
MW-506 I	96.3	122.22	29.88	92.34	28.02	94.20	
MW-507 S	60	176.39	49.23	127.16	47.60	128.79	
MW-507 I	151	176.39	54.76	121.63	52.51	123.88	
MW-508 S	68	187.13	57.80	129.33	56.25	130.88	
MW-508 D	263	186.85	66.08	120.77	64.02	122.83	
MW-531 S	47.9	138.46	10.34	128.12	8.99	129.47	
MW-531 I	142.2	138.43	13.26	125.17	11.31	127.12	
MW-532 S	102.7	185.35	51.21	134.14	50.95	134.40	
MW-532 D	250	186.55	55.17	131.38	54.46	132.09	
MW-544 S	23	86.04	3.97	82.07	7.62	78.42	
MW-544 I	100	86.00	8.75	77.25	NM	NM	
MW-544 D	197	85.81	11.32	74.49	10.18	75.63	
MW-545 S	35	85.75	14.31	71.44	13.48	72.27	
MW-545 I	92	85.80	20.02	65.78	19.11	66.69	
MW-545 D	197	85.69	19.38	66.31	18.42	67.27	
MW-546 S	31	108.16	12.64	95.52	8.97	99.19	
MW-546 I	100	107.06	14.51	92.55	12.35	94.71	
MW-546 D	200	106.55	19.15	87.40	18.62	87.93	
MW-547 S	22	98.32	7.31	91.01	5.54	92.78	
MW-547 I	100	98.25	8.01	90.24	6.20	92.05	
MW-547 D	200	98.17	7.99	90.18	6.32	91.85	
MW-549 S	115	179.77	54.63	125.14	52.40	127.37	
MW-549 I	215	179.31	56.54	122.77	54.25	125.06	
MW-550 S	50	132.13	22.57	109.56	18.93	113.20	
MW-550 I	101	132.56	21.33	111.23	20.21	112.35	
PZ-521 S	15.5	100.07	8.86	91.21	6.70	93.37	
PZ-521 I	100.26	99.84	8.39	91.45	9.59	90.25	
PZ-522 S	17.5	93.78	7.8	85.98	7.14	86.64	
PZ-522 I	100	93.78	10.81	82.97	9.13	84.65	
PZ-522 D	197	93.85	12.08	81.77	10.39	83.46	
PZ-523 I	103	94.05	12.32	81.73	11.76	82.29	
PZ-524 S	15	67.29	5.41	61.88	4.51	62.78	
PZ-524 I	99	68.39	6.36	62.03	5.42	62.78	
PZ-524 D	199	68.33	5.06	63.27	4.03	64.30	
RW-1							
KW-I	150	110.91	70.10	40.81	67.70	43.21	

 $MW = Monitoring \ Well; \ PZ = Piezometer; \ RW = Recovery \ (Extraction) \ Well$

MW = Monitoring Well; PZ = Piezometer; RW = Recovery (Extraction) Well bgs = Below Ground Surface
TOC = Top of Casing
RW-1 was continuously pumping at a rate of approximately 120-130 gallons per minute during ground water gauging activities.
NM = Not Measured

TABLE 4
GROUND WATER ANALYTICAL RESULTS
SEPTEMBER 2009 THROUGH MARCH 2010
FORMER LEC SITE - WATCHUNG, NEW JERSEY

Sample ID		MW-502 S	MW-502 I	MW-506 S	MW-506 I	MW-507 I	MW-508 S	PZ-522 S	PZ-522 I	PZ-522 D	MW-544 S	MW-544 I	MW-544 D
Lab Sample Number	New Jersey	JA27535-22	JA27535-23	JA27535-17	JA27535-13	JA27535-18	JA27535-19	JA27535-12	JA27535-11	JA27535-10	JA27535-8	JA27535-9	JA27535-7
Sampling Date	Ground Water	09/09/09	09/09/09	09/09/09	09/08/09	09/09/09	09/09/09	09/08/09	09/08/09	09/08/09	09/08/09	09/08/09	09/08/09
Matrix	Quality Standard	WATER	WATER	WATER	WATER								
Units	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
VOLATILE COMPOUNDS (GC/MS)													
Benzene	1	0.15 U	0.15 U	0.15 U	0.15 U								
Bromodichloromethane	1	0.18 U	0.18 U	0.18 U	0.18 U								
Bromoform	4	0.26 U	0.26 U	0.26 U	0.26 U								
Bromomethane	10	0.43 U	0.43 U	0.43 U	0.43 U								
Carbon Tetrachloride	1	0.18 U	0.18 U	0.18 U	0.18 U								
Chlorobenzene	50	0.21 U	0.21 U	0.21 U	0.21 U								
Chloroethane		0.48 U	0.48 U	0.48 U	0.48 U								
2-Chloroethyl Vinyl Ether		0.65 U	0.65 U	0.65 U	0.65 U								
Chloroform	70	0.32 J	1.0	0.46 J	0.74 J	0.75 J	3.8	0.18 U	3.5	2.6	0.18 U	0.18 U	0.18 U
Chloromethane		0.34 U	0.34 U	0.34 U	0.34 U								
Dibromochloromethane	1	0.26 U	0.26 U	0.26 U	0.26 U								
1,1-Dichloroethane	50	0.26 U	2.8	0.36 J	0.26 U	0.26 U	0.26 U						
1,2-Dichloroethane	2	0.43 U	0.43 U	0.43 U	0.43 U								
1,1-Dichloroethene	1	0.38 U	0.38 U	0.38 U	0.38 U								
cis-1,2-Dichloroethene	70	7.9	0.22 U	0.22 U	0.54 J	0.55 J	0.22 U	0.22 U	18.5	0.22 U	0.57 J	0.22 U	0.22 U
trans-1,2-Dichloroethene	100	0.20 U	0.23 J	0.20 U	0.20 U	0.20 U	0.20 U						
1,2-Dichloropropane	1	0.40 U	0.40 U	0.40 U	0.40 U								
cis-1,3-Dichloropropene		0.20 U	0.20 U	0.20 U	0.20 U								
trans-1,3-Dichloropropene		0.31 U	0.31 U	0.31 U	0.31 U								
Ethylbenzene	700	0.15 U	0.15 U	0.15 U	0.15 U								
Methylene Chloride	3	0.30 U	0.30 U	0.30 U	0.30 U								
1,1,2,2-Tetrachloroethane	1	0.13 U	0.13 U	0.13 U	0.13 U								
Tetrachloroethene	1	0.29 J	0.18 U	0.18 U	1.0	0.37 J	0.18 U	0.18 U	1.4	0.20 J	1.8	0.18 U	0.18 U
Toluene	600	0.19 U	0.19 U	0.19 U	0.19 U	0.25 J	0.52 J	0.19 U	0.19 U	0.19 U	0.19 U	0.19 U	0.19 U
1,1,1-Trichloroethane	30	0.21 U		0.21 U	0.21 U	0.21 U	0.21 U	0.21 U					
1,1,2-Trichloroethane	3	0.46 U	0.46 U	0.46 U	0.46 U								
Trichloroethene	1	13.3	0.60 J	1.6	1.5	3.1	4.8	0.14 U	5.2	2.2	0.89 J	0.77 J	0.26 J
Trichlorofluoromethane	2000	0.46 U	0.46 U	0.46 U	0.46 U								
Vinyl Chloride	1	0.21 U		0.21 U	0.21 U	0.21 U	0.21 U	0.21 U					
Xylene (Total)	1000	0.27 U	0.27 U	0.27 U	0.27 U								
Total Confident Conc. VOCs		21.81	1.6	2.06	3.78	5.02	9.12	ND	31.63	5.36	3.26	0.77 J	0.26 J
Total Estimated Conc. VOC TICs	500	ND	ND	ND	ND								

Notes:

ug/L - micrograms/Liter

U - compound not detected at indicated concentration

-- = No applicable criteria

VOCs - Volatile Organic Compounds

TICs - Tenetatively Identified Compounds

Bold - indicates exceedence of New Jersey GWQS

TABLE 4
GROUND WATER ANALYTICAL RESULTS
SEPTEMBER 2009 THROUGH MARCH 2010
FORMER LEC SITE - WATCHUNG, NEW JERSEY

Sample ID		MW-545 S	MW-545 I	MW-545 D	MW-546 D	MW-549 S	MW-549 I	MW-550 S	MW-550 I	FIELD BLANK	TRIP BLANK	MW-502 S	MW-502 I
Lab Sample Number	New Jersey	JA27535-6	JA27535-5	JA27535-4	JA27535-24	JA27535-1	JA27535-2	JA27535-21	JA27535-20	JA27535-25	JA27535-26	JA41514-17	JA41514-16
Sampling Date	Ground Water	09/08/09	09/08/09	09/08/09	09/09/09	09/08/09	09/08/09	09/09/09	09/09/09	09/09/09	09/09/09	03/10/10	03/10/10
Matrix	Quality Standard	WATER	WATER	WATER	WATER	WATER	WATER	WATER	WATER	WATER	WATER	WATER	WATER
Units	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
VOLATILE COMPOUNDS (GC/MS)													
Benzene	1	0.15 U	0.15 U	0.15 U	0.15 U	0.15 U	0.15 U	0.15 U	0.15 U	0.15 U	0.15 U	0.15 U	0.15 U
Bromodichloromethane	1	0.18 U	0.18 U	0.18 U	0.18 U	0.18 U	0.18 U	0.18 U	0.18 U	0.18 U	0.18 U	0.18 U	0.18 U
Bromoform	4	0.26 U	0.26 U	0.26 U	0.26 U	0.26 U	0.26 U	0.26 U	0.26 U	0.26 U	0.26 U	0.26 U	0.26 U
Bromomethane	10	0.43 U	0.43 U	0.43 U	0.43 U	0.43 U	0.43 U	0.43 U	0.43 U	0.43 U		0.43 U	0.43 U
Carbon Tetrachloride	1	0.18 U	0.18 U	0.18 U	0.18 U	0.18 U	0.18 U	0.18 U	0.18 U	0.18 U	0.18 U	0.18 U	0.18 U
Chlorobenzene	50	0.21 U	0.21 U	0.21 U	0.21 U	0.21 U	0.21 U	0.21 U	0.21 U	0.21 U		0.21 U	0.21 U
Chloroethane		0.48 U	0.48 U	0.48 U	0.48 U	0.48 U	0.48 U	0.48 U	0.48 U	0.48 U		0.48 U	
2-Chloroethyl Vinyl Ether		0.65 U	0.65 U	0.65 U	0.65 U	0.65 U	0.65 U	0.65 U	0.65 U	0.65 U	0.65 U	0.65 U	
Chloroform	70	0.60 J	0.42 J	0.39 J	3.8	2.1	0.28 J	0.51 J	1.3	0.18 U		0.18 U	
Chloromethane		0.34 U	0.34 U	0.34 U	0.34 U	0.34 U	0.34 U	0.34 U	0.34 U	0.34 U		0.34 U	
Dibromochloromethane	1	0.26 U	0.26 U	0.26 U	0.26 U	0.26 U	0.26 U	0.26 U	0.26 U	0.26 U		0.26 U	
1,1-Dichloroethane	50	0.26 U	0.26 U	0.26 U	0.26 U	0.26 U	0.26 U	0.26 U	0.26 U	0.26 U		0.26 U	0.26 U
1,2-Dichloroethane	2	0.43 U	0.43 U	0.43 U	0.43 U	0.43 U	0.43 U	0.43 U	0.43 U	0.43 U	0.43 U	0.43 U	0.43 U
1,1-Dichloroethene	1	0.38 U	0.38 U	0.38 U	0.38 U	0.38 U	0.38 U	0.38 U	0.38 U	0.38 U		0.38 U	0.38 U
cis-1,2-Dichloroethene	70	0.22 U	0.22 U	0.22 U	0.37 J	5.4	3.3	0.38 J	1.8	0.22 U		5.7	0.22 U
trans-1,2-Dichloroethene	100	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U		0.20 U	
1,2-Dichloropropane	1	0.40 U	0.40 U	0.40 U	0.40 U	0.40 U	0.40 U	0.40 U	0.40 U	0.40 U		0.40 U	
cis-1,3-Dichloropropene		0.20 U	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U		0.20 U	
trans-1,3-Dichloropropene		0.31 U	0.31 U	0.31 U	0.31 U	0.31 U	0.31 U	0.31 U		0.31 U		0.31 U	
Ethylbenzene	700	0.15 U	0.15 U	0.15 U	0.15 U	0.15 U	0.15 U	0.15 U	0.15 U	0.15 U		0.15 U	
Methylene Chloride	3	0.30 U	0.30 U	0.30 U	0.30 U	0.30 U	0.30 U	0.30 U	0.30 U	0.30 U		0.30 U	
1,1,2,2-Tetrachloroethane	1	0.13 U	0.13 U	0.13 U	0.13 U	0.13 U	0.13 U	0.13 U	0.13 U	0.13 U		0.13 U	
Tetrachloroethene	1	0.18 U	0.18 U	3.1	0.18 U	4.3	1.1	0.18 U	3.1	0.18 U		0.18 U	0.18 U
Toluene	600	0.19 U	0.19 U	0.19 U	0.19 U	0.19 U	0.19 U	0.19 U	0.19 U	0.19 U		0.19 U	
1,1,1-Trichloroethane	30	0.21 U	0.21 U	0.21 U	0.21 U	0.21 U	0.21 U	0.21 U	0.21 U	0.21 U		0.21 U	
1,1,2-Trichloroethane	3	0.46 U	0.46 U	0.46 U	0.46 U	0.46 U	0.46 U	0.46 U	0.46 U	0.46 U		0.46 U	
Trichloroethene	1	0.14 U	0.14 U	0.28 J	11.3	643	781	2.5	76.0	0.14 U	-	7.4	0.38 J
Trichlorofluoromethane	2000	0.46 U	0.46 U	0.46 U	0.46 U	0.46 U	0.46 U	0.46 U	0.46 U	0.46 U		0.46 U	
Vinyl Chloride	1	0.21 U	0.21 U	0.21 U	0.21 U	0.21 U	0.21 U	0.21 U		0.21 U		0.21 U	
Xylene (Total)	1000	0.27 U	0.27 U	0.27 U	0.27 U	0.27 U	0.27 U	0.27 U		0.27 U		0.27 U	
Total Confident Conc. VOCs		0.60 J	0.42 J	3.8	15.47	654.80	785.68	3.39	82.2	ND	ND	13.1	1.27
Total Estimated Conc. VOC TICs	500	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND

Notes:

ug/L - micrograms/Liter

U - compound not detected at indicated concentration

-- = No applicable criteria

VOCs - Volatile Organic Compounds

TICs - Tenetatively Identified Compounds

Bold - indicates exceedence of New Jersey GWQS

TABLE 4
GROUND WATER ANALYTICAL RESULTS
SEPTEMBER 2009 THROUGH MARCH 2010
FORMER LEC SITE - WATCHUNG, NEW JERSEY

Sample ID		MW-505 S	MW-505 I	MW-506 S	MW-506 I	MW-507 S	MW-507 I	MW-508 S	MW-508 D	PZ-522 S	PZ-522 I	PZ-522 D	MW-532 D
Lab Sample Number	New Jersey	JA41514-5	JA41514-6	JA41514-10	JA41514-11	JA41514-13	JA41514-12	JA41514-15	JA41514-14	JA41514-21	JA41514-20	JA41514-19	JA41514-7
Sampling Date	Ground Water	3/9/2010	3/9/2010	03/09/10	03/09/10	03/10/10	03/10/10	03/10/10	03/10/10	03/10/10	03/10/10	03/10/10	3/9/2010
Matrix	Quality Standard	WATER	WATER	WATER	WATER	WATER	WATER	WATER	WATER	WATER	WATER	WATER	WATER
Units	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
VOLATILE COMPOUNDS (GC/MS)													
Benzene	1	0.15 U	0.15 U	0.15 U	0.15 U	0.15 U	0.15 U	0.15 U	0.15 U	0.15 U	0.15 U	0.15 U	0.15 U
Bromodichloromethane	1	0.18 U	0.18 U	0.18 U	0.18 U	0.18 U	0.18 U	0.18 U	0.18 U	0.18 U	0.18 U	0.18 U	0.18 U
Bromoform	4	0.26 U	0.26 U	0.26 U	0.26 U	0.26 U	0.26 U	0.26 U	0.26 U	0.26 U	0.26 U	0.26 U	0.26 U
Bromomethane	10	0.43 U	0.43 U	0.43 U	0.43 U	0.43 U	0.43 U	0.43 U	0.43 U	0.43 U	0.43 U	0.43 U	0.43 U
Carbon Tetrachloride	1	0.18 U	0.18 U	0.18 U	0.18 U	0.18 U	0.18 U	0.18 U	0.18 U	0.18 U	0.18 U	0.18 U	0.18 U
Chlorobenzene	50	0.21 U	0.21 U	0.21 U	0.21 U	0.21 U	0.21 U	0.21 U	0.21 U	0.21 U	0.21 U	0.21 U	0.21 U
Chloroethane		0.48 U	0.48 U	0.48 U	0.48 U	0.48 U	0.48 U	0.48 U	0.48 U	0.48 U	0.48 U	0.48 U	0.48 U
2-Chloroethyl Vinyl Ether		0.65 U	0.65 U	0.65 U	0.65 U	0.65 U	0.65 U	0.65 U	0.65 U	0.65 U	0.65 U	0.65 U	0.65 U
Chloroform	70	1.2	0.91 J	0.34 J	0.71 J	1.5	0.86 J	1.8	0.18 U	0.18 U	3.5	2.3	0.21 J
Chloromethane		0.34 U	0.34 U	0.34 U	0.34 U	0.34 U	0.34 U	0.34 U	0.34 U	0.34 U	0.34 U	0.34 U	0.34 U
Dibromochloromethane	1	0.26 U	0.26 U	0.26 U	0.26 U	0.26 U	0.26 U	0.26 U	0.26 U	0.26 U	0.26 U	0.26 U	0.26 U
1,1-Dichloroethane	50	0.26 U	0.26 U	0.26 U	0.26 U	0.26 U	0.26 U	0.26 U	0.26 U	0.26 U	2.8	0.26 U	0.26 U
1,2-Dichloroethane	2	0.43 U	0.43 U	0.43 U	0.43 U	0.43 U	0.43 U	0.43 U	0.43 U	0.43 U	0.43 U	0.43 U	0.43 U
1,1-Dichloroethene	1	0.38 U	0.38 U	0.38 U	0.38 U	0.38 U	0.38 U	0.38 U	0.38 U	0.38 U	0.38 U	0.38 U	0.38 U
cis-1,2-Dichloroethene	70	0.22 U	0.22 U	0.22 U	0.40 J	0.22 U	0.45 J	0.22 U	13.5	0.22 U	19.2	0.22 U	0.22 U
trans-1,2-Dichloroethene	100	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U
1,2-Dichloropropane	1	0.40 U	0.40 U	0.40 U	0.40 U	0.40 U	0.40 U	0.40 U	0.40 U	0.40 U	0.40 U	0.40 U	0.40 U
cis-1,3-Dichloropropene		0.20 U	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U
trans-1,3-Dichloropropene		0.31 U	0.31 U	0.31 U	0.31 U	0.31 U	0.31 U	0.31 U	0.31 U	0.31 U	0.31 U	0.31 U	0.31 U
Ethylbenzene	700	0.15 U	0.15 U	0.15 U	0.15 U	0.15 U	0.15 U	0.15 U	0.15 U	0.15 U	0.15 U	0.15 U	0.15 U
Methylene Chloride	3	0.30 U	0.30 U	0.30 U	0.30 U	0.30 U	0.30 U	0.30 U	0.30 U	0.30 U	0.30 U	0.30 U	0.30 U
1,1,2,2-Tetrachloroethane	1	0.13 U	0.13 U	0.13 U	0.13 U	0.13 U	0.13 U	0.13 U	0.13 U	0.13 U	0.13 U	0.13 U	0.13 U
Tetrachloroethene	1	0.18 U	0.18 U	0.18 U	1.2	0.18 U	0.40 J	0.18 U	0.18 U	0.18 U	1.3	0.18 U	1.1
Toluene	600	0.19 U	0.19 U	0.19 U	0.19 U	0.19 U	0.19 U	0.19 U	0.30 J	0.19 U	0.19 U	0.19 U	0.19 U
1,1,1-Trichloroethane	30	0.21 U	0.21 U	0.21 U	0.21 U	0.21 U	0.21 U	0.21 U	0.21 U	0.21 U	0.21 U	0.21 U	0.21 U
1,1,2-Trichloroethane	3	0.46 U	0.46 U	0.46 U	0.46 U	0.46 U	0.46 U	0.46 U	0.46 U	0.46 U	0.46 U	0.46 U	0.46 U
Trichloroethene	1	0.14 U	0.14 U	1.4	1.5	2.1	2.1	1.5	1.0	0.14 U	5.1	2.8	11.4
Trichlorofluoromethane	2000	0.46 U	0.46 U	0.46 U	0.46 U	0.46 U	0.46 U	0.46 U	0.46 U	0.46 U	0.46 U	0.46 U	0.46 U
Vinyl Chloride	1	0.21 U	0.21 U	0.21 U	0.21 U	0.21 U	0.21 U	0.21 U	5.7	0.21 U	0.21 U	0.21 U	0.21 U
Xylene (Total)	1000	0.27 U	0.27 U	0.27 U	0.27 U	0.27 U	0.27 U	0.27 U	0.27 U	0.27 U	0.27 U	0.27 U	0.27 U
Total Confident Conc. VOCs		1.2	0.91	1.74	3.81	3.6	3.81	3.3	20.5	ND	32.1	5.1	12.71
Total Estimated Conc. VOC TICs	500	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND

Notes:

ug/L - micrograms/Liter

U - compound not detected at indicated concentration

-- = No applicable criteria

VOCs - Volatile Organic Compounds

TICs - Tenetatively Identified Compounds

Bold - indicates exceedence of New Jersey GWQS

TABLE 4
GROUND WATER ANALYTICAL RESULTS
SEPTEMBER 2009 THROUGH MARCH 2010
FORMER LEC SITE - WATCHUNG, NEW JERSEY

Sample ID		MW-544 S	MW-544 I	MW-544 D	MW-545 S	MW-545 I	MW-545 D	MW-546 D	MW-549 S	MW-549 I	MW-550 S	MW-550 I
Lab Sample Number	New Jersey	JA41514-27	JA41514-26	JA41514-25	JA41514-24	JA41514-23	JA41514-22	JA41514-18	JA41514-8	JA41514-9	JA41514-29	JA41514-28
Sampling Date	Ground Water	03/10/10	03/10/10	03/10/10	03/10/10	03/10/10	03/10/10	03/10/10	03/09/10	03/09/10	03/10/10	03/10/10
Matrix	Quality Standard	WATER	WATER	WATER	WATER	WATER						
Units	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
VOLATILE COMPOUNDS (GC/MS)												
Benzene	1	0.15 U	0.15 U	0.15 U	0.15 U	0.15 U						
Bromodichloromethane	1	0.18 U	0.18 U	0.18 U	0.18 U	0.18 U						
Bromoform	4	0.26 U	0.26 U	0.26 U	0.26 U	0.26 U						
Bromomethane	10	0.43 U	0.43 U	0.43 U	0.43 U	0.43 U						
Carbon Tetrachloride	1	0.18 U	0.18 U	0.18 U	0.18 U	0.18 U						
Chlorobenzene	50	0.21 U	0.21 U	0.21 U	0.21 U	0.21 U						
Chloroethane		0.48 U	0.48 U	0.48 U	0.48 U	0.48 U						
2-Chloroethyl Vinyl Ether		0.65 U	0.65 U	0.65 U	0.65 U	0.65 U						
Chloroform	70	0.18 U	0.18 U	0.18 U	1.1	0.35 J	0.37 J	3.6	2.6	0.23 J	0.31 J	0.99 J
Chloromethane		0.34 U		0.34 U	0.34 U	0.34 U	0.34 U					
Dibromochloromethane	1	0.26 U	0.26 U	0.26 U	0.26 U	0.26 U						
1,1-Dichloroethane	50	0.26 U	0.26 U	0.26 U	0.26 U	0.26 U						
1,2-Dichloroethane	2	0.43 U	0.43 U	0.43 U	0.43 U	0.43 U						
1,1-Dichloroethene	1	0.38 U	0.38 U	0.38 U	0.38 U	0.38 U						
cis-1,2-Dichloroethene	70	0.22 U	5.0	3.7	0.22 U	0.66 J						
trans-1,2-Dichloroethene	100	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U						
1,2-Dichloropropane	1	0.40 U	0.40 U	0.40 U	0.40 U	0.40 U						
cis-1,3-Dichloropropene		0.20 U	0.20 U	0.20 U	0.20 U	0.20 U						
trans-1,3-Dichloropropene		0.31 U	0.31 U	0.31 U	0.31 U	0.31 U						
Ethylbenzene	700	0.15 U	0.15 U	0.15 U	0.15 U	0.15 U						
Methylene Chloride	3	0.30 U	0.30 U	0.30 U	0.30 U	0.30 U						
1,1,2,2-Tetrachloroethane	1	0.13 U	0.13 U	0.13 U	0.13 U	0.13 U						
Tetrachloroethene	1	0.55 J	0.18 U	0.18 U	0.18 U	0.18 U	3.1	0.18 U	4.0	1.2	0.18 U	3.0
Toluene	600	0.19 U	0.19 U	0.19 U	0.19 U	0.19 U						
1,1,1-Trichloroethane	30	0.21 U	0.21 U	0.21 U	0.21 U	0.21 U						
1,1,2-Trichloroethane	3	0.46 U	0.46 U	0.46 U	0.46 U	0.46 U						
Trichloroethene	1	0.14 U	0.72 J	0.14 U	0.14 U	0.14 U	0.14 U	25.9	385	806	2.0	17.1
Trichlorofluoromethane	2000	0.46 U		0.46 U	0.46 U	0.46 U	0.46 U					
Vinyl Chloride	1	0.21 U	0.21 U	0.21 U	0.21 U	0.21 U						
Xylene (Total)	1000	0.27 U	0.27 U	0.27 U	0.27 U	0.27 U						
Total Confident Conc. VOCs	·	0.55 J	0.72 J	ND	1.1	0.35 J	3.47	29.5	396.6	811.13	2.31	21.75
Total Estimated Conc. VOC TICs	500	ND	ND	ND	ND	ND						

Notes:

ug/L - micrograms/Liter

U - compound not detected at indicated concentration

-- = No applicable criteria

VOCs - Volatile Organic Compounds

TICs - Tenetatively Identified Compounds

Bold - indicates exceedence of New Jersey GWQS

TABLE 5 HISTORICAL TCE CONCENTRATIONS IN GROUND WATER FORMER LEC SITE - WATCHUNG, NEW JERSEY

		TCE Concentration	
Sample Date	Well#	(ug/L)	o
08/13/93	MW-502I	3	V
10/22/93	MW-502I	5	
04/27/94	MW-502I	1.6	
11/09/94	MW-502I	2.02	
06/01/95	MW-502I	2.3	
03/30/96	MW-502I	2.9	*
09/27/97	MW-502I	7.8	
05/02/98	MW-502I	5.2	
09/25/98	MW-502I	7.9	
11/12/99	MW-502I	5.9	
11/21/02	MW-502I	3.1	
03/25/03	MW-502I	2.5	
06/25/03	MW-502I	2.7	
09/24/03	MW-502I	1.4	
12/11/03	MW-502I	1.0	
03/09/04	MW-502I	0.8	
06/04/04	MW-502I	0.6	
09/23/04	MW-502I	0.6	
12/09/04	MW-502I	0.9	
03/03/05	MW-502I	1.2	
06/03/05	MW-502I	0.8	
09/08/05	MW-502I	0.6	
03/07/06	MW-502I	0.6	
09/20/06	MW-502I	0.9	
03/08/07	MW-502I	0.4	
09/06/07	MW-502I	0.5	
03/19/08	MW-502I	0.53	J
11/06/08	MW-502I	0.6	J
03/10/09	MW-502I	0.50	J
09/09/09	MW-502I	0.60	J
03/10/10	MW-502I	0.38	J

		TCE Concentration	
Sample Date	Well#	(ug/L)	Q
08/13/93	MW-502S	1200	*
10/22/93	MW-502S	1300	
10/22/93	MW-502S	1300	
04/27/94	MW-502S	1200	
11/09/94	MW-502S	1700	
06/01/95	MW-502S	1510	
04/02/96	MW-502S	1300	DJ
09/28/97	MW-502S	1400	
05/02/98	MW-502S	1300	
09/25/98	MW-502S	1300	
09/25/98	MW-502S	1300	
11/12/99	MW-502S	1500	
11/21/02	MW-502S	1000	
03/25/03	MW-502S	920	
06/25/03	MW-502S	1100	
09/24/03	MW-502S	1100	
12/11/03	MW-502S	670	
03/09/04	MW-502S	730	
06/04/04	MW-502S	390	
09/23/04	MW-502S	350	
12/09/04	MW-502S	290	
03/03/05	MW-502S	330	
06/03/05	MW-502S	340	
09/08/05	MW-502S	280	
03/07/06	MW-502S	300	
09/20/06	MW-502S	320	
03/08/07	MW-502S	23	
09/06/07	MW-502S	1.6	
03/19/08	MW-502S	25.9	
11/06/08	MW-502S	4.9	
03/10/09	MW-502S	11.1	
09/09/09	MW-502S	13.3	
03/10/10	MW-502S	7.4	

- Q Qualifiers
- D Concentration reported at dilution
- GWQS New Jersey Groundwater Quality Standard
 - Bold- Concentration exceeds GWQS for TCE of 1 micrograms/Liter
 - ND Not detected.
 - U The compound was not detected at the indicated concentration
 - * Represents the highest concentration of the bags sampled on that date.
 - $\label{eq:J-Data} J-\ Data\ indicates\ the\ presence\ of\ a\ compound\ that\ meets\ the\ identification\ criteria.$ The result is less than the quantitation limit but greater than zero.

TABLE 5 HISTORICAL TCE CONCENTRATIONS IN GROUND WATER FORMER LEC SITE - WATCHUNG, NEW JERSEY

		TCE Concentration	
Sample Date	Well #	(ug/L)	Q
08/11/93	MW-505S	ND	
10/19/93	MW-505S	ND	
04/26/94	MW-505S	ND	
11/08/94	MW-505S	ND	
05/31/95	MW-505S	ND	
04/02/96	MW-505S	1.1	
09/23/97	MW-505S	ND	
09/24/98	MW-505S	ND	
11/09/99	MW-505S	ND	
11/20/02	MW-505S	ND	
03/25/03	MW-505S	ND	
03/25/04	MW-505S	ND	
03/03/05	MW-505S	ND	
03/07/06	MW-505S	ND	
03/08/07	MW-505S	ND	
03/19/08	MW-505S	ND	
03/10/09	MW-505S	ND	
3/9/2010	MW-505S	ND	
08/11/93	MW-505I	ND	
10/19/93	MW-505I	ND	
04/26/94	MW-505I	ND	
11/08/94	MW-505I	ND	
05/31/95	MW-505I	ND	
04/02/96	MW-505I	0.1	J
09/23/97	MW-505I	ND	
09/24/98	MW-505I	ND	
11/09/99	MW-505I	ND	
11/20/02	MW-505I	ND	
03/25/03	MW-505I	ND	
03/25/04	MW-505I	ND	
03/03/05	MW-505I	ND	
03/07/06	MW-505I	ND	
03/22/07	MW-505I	ND	
03/19/08	MW-505I	ND	
03/10/09	MW-505I	ND	
3/9/2010	MW-505I	ND	

Sample Date	Well#	TCE Concentration (ug/L)	0
08/11/93	MW-506S	18	
10/20/93	MW-506S	48	J
04/26/94	MW-506S	18	
11/11/94	MW-506S	19	
06/01/95	MW-506S	40.4	
04/01/96	MW-506S	25	J
09/25/97	MW-506S	34	
04/30/98	MW-506S	27	*
09/24/98	MW-506S	32	
11/08/99	MW-506S	50	
11/19/02	MW-506S	74	
03/24/03	MW-506S	24	
06/25/03	MW-506S	12	
09/23/03	MW-506S	14	
12/10/03	MW-506S	15	
03/09/04	MW-506S	16	
06/04/04	MW-506S	13	
09/23/04	MW-506S	12	
12/09/04	MW-506S	15	
03/03/05	MW-506S	16	
06/03/05	MW-506S	14	
10/01/05	MW-506S	36	
03/07/06	MW-506S	12	
09/20/06	MW-506S	13	
03/08/07	MW-506S	7.6	
09/06/07	MW-506S	7.4	
03/19/08	MW-506S	7.4	
11/06/08	MW-506S	2.7	
03/11/09	MW-506S	1.9	
09/09/09	MW-506S	1.6	
3/9/2010	MW-506S	1.4	

- Q Qualifiers
- D Concentration reported at dilution
- GWQS New Jersey Groundwater Quality Standard
 - Bold- Concentration exceeds GWQS for TCE of 1 micrograms/Liter
 - ND Not detected.
 - U The compound was not detected at the indicated concentration
 - * Represents the highest concentration of the bags sampled on that date.
 - $\label{eq:J-Data} J Data \ indicates \ the \ presence \ of \ a \ compound \ that \ meets \ the \ identification \ criteria.$ The result is less than the quantitation limit but greater than zero.

TABLE 5
HISTORICAL TCE CONCENTRATIONS IN GROUND WATER FORMER LEC SITE - WATCHUNG, NEW JERSEY

		TCE	
		Concentration	
Sample Date	Well #	(ug/L)	Q
08/11/93	MW-506I	1700	
10/19/93	MW-506I	1800	
04/26/94	MW-506I	1300	*
11/11/94	MW-506I	1990	
11/11/94	MW-506I	2020	
06/01/95	MW-506I	1650	
06/01/95	MW-506I	1690	
04/01/96	MW-506I	1800	DJ
09/25/97	MW-506I	1600	
09/25/97	MW-506I	1700	
04/30/98	MW-506I	1400	
09/24/98	MW-506I	1400	
11/08/99	MW-506I	1700	
11/19/02	MW-506I	1000	
03/24/03	MW-506I	850	
06/25/03	MW-506I	1000	
09/23/03	MW-506I	960	
12/10/03	MW-506I	830	
03/09/04	MW-506I	940	
06/04/04	MW-506I	710	
09/23/04	MW-506I	1300	
12/09/04	MW-506I	710	
03/03/05	MW-506I	650	
06/03/05	MW-506I	730	
09/08/05	MW-506I	620	
03/17/06	MW-506I	700	
09/20/06	MW-506I	860	
03/08/07	MW-506I	420	
09/06/07	MW-506I	380	
06/02/08	MW-506I	139	
11/06/08	MW-506I	1.8	
03/11/09	MW-506I	2.5	
9/8/2009	MW-506I	1.5	
3/9/2010	MW-506I	1.5	

Sample Date Well # Concentration (ug/L) Q 08/13/93 MW-507S 130 10/21/93 MW-507S 100 05/02/94 MW-507S 79 11/11/94 MW-507S 79 11/11/94 MW-507S 145 06/02/95 MW-507S 70 DJ 09/26/97 MW-507S 80 05/02/98 MW-507S 64 09/26/98 MW-507S 43 11/11/99 MW-507S 43 11/21/02 MW-507S 45 03/26/03 MW-507S 45 03/26/03 MW-507S 20 03/25/04 MW-507S 16 03/04/05 MW-507S 16 03/04/05 MW-507S 19 03/19/08 MW-507S 19 03/19/08 MW-507S 19 03/19/08 MW-507S 19 03/19/08 MW-507S 19 03/10/10 MW-507S 19 03/10/10 MW-507S 19 03/10/10 MW-507S			TCE	
08/13/93 MW-507S 130 10/21/93 MW-507S 100 05/02/94 MW-507S 145 06/02/95 MW-507S 115 04/01/96 MW-507S 70 DJ 09/26/97 MW-507S 64 09/26/98 MW-507S 45 03/26/03 MW-507S 20 03/25/04 MW-507S 20 03/07/06 MW-507S 20 03/07/06 MW-507S 21 03/11/19 MW-507S 20 03/07/06 MW-507S 21 03/11/19 MW-507S 21 05/02/98 MW-507I 1200 05/02/98 MW-507I 1200 05/02/98 MW-507I 1100 05/02/98 MW-507I 1200 05/02/98 MW-507I 140 03/26/03 MW-507I 140 03/22/07 MW-507I 141 141 141 141 141 141 141 141 141				
10/21/93 MW-507S 100 05/02/94 MW-507S 79 11/11/94 MW-507S 145 06/02/95 MW-507S 115 04/01/96 MW-507S 70 DJ 09/26/97 MW-507S 80 05/02/98 MW-507S 64 09/26/98 MW-507S 43 11/11/99 MW-507S 93 11/21/02 MW-507S 45 03/26/03 MW-507S 20 03/25/04 MW-507S 16 03/04/05 MW-507S 16 03/08/07 MW-507S 19 03/08/07 MW-507S 19 03/19/08 MW-507S 19 03/19/08 MW-507S 1.9 03/10/10 MW-507S 1.9 03/10/10 MW-507S 1.9 03/10/10 MW-507S 1.9 03/10/10 MW-507S 1.0 11/11/94 MW-507I 1200 11/11/94	Sample Date			Q
05/02/94 MW-507S 79 11/11/94 MW-507S 145 06/02/95 MW-507S 115 04/01/96 MW-507S 70 DJ 09/26/97 MW-507S 80 05/02/98 MW-507S 84 09/26/98 MW-507S 43 11/11/99 MW-507S 93 11/21/02 MW-507S 93 11/21/02 MW-507S 20 03/26/03 MW-507S 20 03/25/04 MW-507S 16 03/04/05 MW-507S 16 03/04/05 MW-507S 19 03/08/07 MW-507S 19 03/19/08 MW-507S 19 03/19/08 MW-507S 1.9 03/10/10 MW-507S 1.9 03/10/10 MW-507S 1.9 03/10/10 MW-507S 1.9 03/10/10 MW-507S 1.100 04/27/94 MW-507I 1200 11/11/94 <th></th> <th></th> <th></th> <th></th>				
11/11/94 MW-507S 145 06/02/95 MW-507S 115 04/01/96 MW-507S 70 DJ 09/26/97 MW-507S 80 DJ 09/26/98 MW-507S 64 09/26/98 MW-507S 43 11/11/99 MW-507S 43 11/11/199 MW-507S 45 03/26/03 MW-507S 20 03/25/04 MW-507S 20 03/25/04 MW-507S 16 03/04/05 MW-507S 20 03/04/05 MW-507S 16 03/04/05 MW-507S 19 03/08/07 MW-507S 19 03/08/07 MW-507S 19 03/19/08 MW-507S 1.9 03/19/08 MW-507S 1.9 03/19/08 MW-507S 1.9 03/11/09 MW-507S 1.9 03/11/09 MW-507S 1.9 03/10/10 1100 04/27/94 MW-507I 1200 11/11/94 MW-507I 1200 1100 04/01/96				
06/02/95 MW-507S 70 DJ 04/01/96 MW-507S 70 DJ 09/26/97 MW-507S 80 DJ 05/02/98 MW-507S 64 MW-507S 64 09/26/98 MW-507S 43 11/11/99 MW-507S 93 11/21/02 MW-507S 93 11/21/02 MW-507S 20 03/26/03 MW-507S 20 03/25/04 MW-507S 16 03/04/05 MW-507S 16 03/04/05 MW-507S 19 03/07/06 MW-507S 19 03/08/07 MW-507S 19 03/19/08 MW-507S 1.9 03/19/08 MW-507S 1.9 03/19/08 MW-507S 1.9 03/11/09 MW-507S 1.9 03/19/08 MW-507S 1.9 03/11/09 MW-507I 1200 11/11/94 MW-507I 1200 11/11/19 06/01/95 MW-507I 1100 04/27/94 MW-507I 100				
04/01/96 MW-507S 70 DJ 09/26/97 MW-507S 80 05/02/98 MW-507S 64 09/26/98 MW-507S 43 11/11/99 MW-507S 93 11/21/02 MW-507S 93 11/21/02 MW-507S 93 03/26/03 MW-507S 20 03/25/04 MW-507S 16 03/04/05 MW-507S 20 03/07/06 MW-507S 19 03/08/07 MW-507S 19 03/19/08 MW-507S 14.7 03/19/08 MW-507S 1.9 03/19/08 MW-507I 1200 11/11/94 MW-507I 1200 11/11/94 MW-507I 1100 09/26/97<				
09/26/97 MW-507S 80 05/02/98 MW-507S 64 09/26/98 MW-507S 43 11/11/99 MW-507S 93 11/21/02 MW-507S 93 11/21/02 MW-507S 93 03/26/03 MW-507S 20 03/25/04 MW-507S 16 03/04/05 MW-507S 20 03/07/06 MW-507S 19 03/08/07 MW-507S 19 03/19/08 MW-507S 7.9 03/11/09 MW-507S 1.9 03/10/10 MW-507S 1.9 03/10/10 MW-507S 1.9 03/10/10 MW-507S 1.9 03/10/10 MW-507S 2.1 10/21/93 MW-507S 1.9 03/10/10 MW-507S 2.1 10/21/93 MW-507I 1200 11/11/94 MW-507I 1200 04/27/94 MW-507I 1200 05/02/98 MW-				
05/02/98 MW-507S 64 09/26/98 MW-507S 43 11/11/99 MW-507S 93 11/21/02 MW-507S 93 11/21/02 MW-507S 93 03/26/03 MW-507S 20 03/25/04 MW-507S 16 03/04/05 MW-507S 19 03/07/06 MW-507S 19 03/08/07 MW-507S 19 03/19/08 MW-507S 19 03/19/08 MW-507S 1.9 03/11/09 MW-507S 1.9 03/10/10 MW-507S 1.9 03/10/10 MW-507S 2.1 10/21/93 MW-507S 1.9 03/10/10 MW-507S 2.1 10/21/93 MW-507I 1200 11/11/94 MW-507I 1200 11/11/94 MW-507I 1100 04/27/94 MW-507I 1200 05/02/98 MW-507I 1200 05/02/98 M			-	DJ
09/26/98 MW-507S 43 11/11/99 MW-507S 93 11/21/02 MW-507S 45 03/26/03 MW-507S 20 03/25/04 MW-507S 16 03/04/05 MW-507S 20 03/07/06 MW-507S 19 03/08/07 MW-507S 19 03/19/08 MW-507S 7.9 03/19/08 MW-507S 1.9 03/11/09 MW-507S 1.9 03/10/10 MW-507S 1.9 03/10/10 MW-507S 2.1 10/21/93 MW-507S 1.9 03/10/10 MW-507S 2.1 10/21/93 MW-507I 1200 11/11/94 MW-507I 1200 11/11/94 MW-507I 1200 04/27/94 MW-507I 1100 04/20/95 MW-507I 1100 05/02/98 MW-507I 1100 05/02/98 MW-507I 1100 05/02/98				
11/11/99 MW-507S 93 11/21/02 MW-507S 45 03/26/03 MW-507S 20 03/25/04 MW-507S 16 03/04/05 MW-507S 20 03/07/06 MW-507S 19 03/08/07 MW-507S 7.9 03/19/08 MW-507S 1.9 03/11/09 MW-507S 1.9 03/10/10 MW-507S 1.9 03/10/10 MW-507S 2.1 10/21/93 MW-507I 1200 11/11/94 MW-507I 1200 11/11/94 MW-507I 1200 04/27/94 MW-507I 1200 11/11/94 MW-507I 1200 04/01/96 MW-507I 100 04/01/96 MW-507I 1200 05/02/98 MW-507I 1100 05/02/98 MW-507I 1100 09/26/98 MW-507I 140 03/26/03 MW-507I 140 03/26/03			-	
11/21/02 MW-507S 45 03/26/03 MW-507S 20 03/25/04 MW-507S 16 03/04/05 MW-507S 20 03/07/06 MW-507S 19 03/08/07 MW-507S 19 03/19/08 MW-507S 7.9 03/11/09 MW-507S 1.9 03/11/10 MW-507S 1.9 03/10/10 MW-507S 2.1 10/21/93 MW-507I 730 04/27/94 MW-507I 1200 11/11/94 MW-507I 120 06/01/95 MW-507I 120 04/27/94 MW-507I 100 04/27/94 MW-507I 120 06/01/95 MW-507I 120 06/01/95 MW-507I 100 06/02/98 MW-507I 100 05/02/98 MW-507I 1100 09/26/98 MW-507I 1200 11/11/99 MW-507I 140 03/26/03 <t< th=""><th></th><th></th><th></th><th></th></t<>				
03/26/03 MW-507S 20 03/25/04 MW-507S 16 03/04/05 MW-507S 20 03/07/06 MW-507S 19 03/08/07 MW-507S 19 03/19/08 MW-507S 7.9 03/11/09 MW-507S 14.7 03/11/09 MW-507S 1.9 03/10/10 MW-507S 2.1 10/21/93 MW-507I 730 04/27/94 MW-507I 1200 11/11/94 MW-507I 120 06/01/95 MW-507I 1100 04/27/94 MW-507I 1200 11/11/94 MW-507I 1200 06/01/95 MW-507I 1200 06/01/96 MW-507I 100 05/02/98 MW-507I 1100 05/02/98 MW-507I 1100 09/26/98 MW-507I 140 03/26/03 MW-507I 140 03/26/03 MW-507I 630 06/25/03				
03/25/04 MW-507S 16 03/04/05 MW-507S 20 03/07/06 MW-507S 19 03/08/07 MW-507S 19 03/19/08 MW-507S 7.9 03/11/09 MW-507S 14.7 03/11/09 MW-507S 1.9 03/10/10 MW-507S 2.1 10/21/93 MW-507I 730 04/27/94 MW-507I 1200 11/11/94 MW-507I 1210 06/01/95 MW-507I 1200 11/11/94 MW-507I 1200 04/01/96 MW-507I 1200 05/02/98 MW-507I 1200 05/02/98 MW-507I 1100 09/26/98 MW-507I 1200 11/11/99 MW-507I 140 03/26/03 MW-507I 140 03/26/03 MW-507I 630 06/25/03 MW-507I 740 03/09/04 MW-507I 450 06/04/04			_	
03/04/05 MW-507S 20 03/07/06 MW-507S 19 03/08/07 MW-507S 7.9 03/19/08 MW-507S 14.7 03/11/09 MW-507S 1.9 03/10/10 MW-507S 2.1 10/21/93 MW-507I 730 04/27/94 MW-507I 1200 11/11/94 MW-507I 1210 06/01/95 MW-507I 1200 04/01/96 MW-507I 930 DJ 09/26/97 MW-507I 1200 DJ 05/02/98 MW-507I 1200 DJ 05/02/98 MW-507I 1200 DJ 11/11/99 MW-507I 1200 DJ 11/11/99 MW-507I 140 DJ 03/26/03 MW-507I 140 DJ 03/26/03 MW-507I 140 DJ 09/23/03 MW-507I 740 DJ 09/23/03 MW-507I 450 DJ <			-	
03/07/06 MW-507S 19 03/08/07 MW-507S 7.9 03/19/08 MW-507S 14.7 03/11/09 MW-507S 1.9 03/10/10 MW-507S 2.1 10/21/93 MW-507I 730 04/27/94 MW-507I 1200 11/11/94 MW-507I 1200 11/11/94 MW-507I 1200 06/01/95 MW-507I 1100 04/01/96 MW-507I 930 DJ 09/26/97 MW-507I 1200 DJ 05/02/98 MW-507I 1100 DJ 09/26/98 MW-507I 1200 DJ 11/11/99 MW-507I 140 DJ 03/26/03 MW-507I 140 DJ 03/26/03 MW-507I 140 DJ 09/23/03 MW-507I 860 12/11/03 MW-507I 740 03/09/04 MW-507I 450 09/23/04 MW-507I 450 </th <th></th> <th></th> <th>-</th> <th></th>			-	
03/08/07 MW-507S 7.9 03/19/08 MW-507S 14.7 03/11/09 MW-507S 1.9 03/10/10 MW-507S 2.1 10/21/93 MW-507I 730 04/27/94 MW-507I 1200 11/11/94 MW-507I 1210 06/01/95 MW-507I 1100 04/01/96 MW-507I 930 DJ 09/26/97 MW-507I 1200 05/02/98 MW-507I 1100 05/02/98 MW-507I 1100 09/26/98 MW-507I 1200 11/11/99 MW-507I 970 11/21/02 MW-507I 970 11/21/02 MW-507I 630 06/25/03 MW-507I 630 06/25/03 MW-507I 740 09/23/03 MW-507I 740 03/09/04 MW-507I 450 09/23/04 MW-507I 450 09/23/04 MW-507I 610	00/01/00			
03/19/08 MW-507S 14.7 03/11/09 MW-507S 1.9 03/10/10 MW-507S 2.1 10/21/93 MW-507I 730 04/27/94 MW-507I 1200 11/11/94 MW-507I 1210 06/01/95 MW-507I 1100 04/01/96 MW-507I 1200 09/26/97 MW-507I 1200 05/02/98 MW-507I 1100 05/02/98 MW-507I 1100 09/26/98 MW-507I 1200 11/11/99 MW-507I 140 03/26/03 MW-507I 140 03/26/03 MW-507I 630 06/25/03 MW-507I 630 06/25/03 MW-507I 740 03/26/03 MW-507I 740 03/23/03 MW-507I 690 06/04/04 MW-507I 450 09/23/04 MW-507I 1100 09/23/04 MW-507I 610 03/04/05 <th></th> <th></th> <th></th> <th></th>				
03/11/09 MW-507S 1.9 03/10/10 MW-507S 2.1 10/21/93 MW-507I 730 04/27/94 MW-507I 1200 11/11/94 MW-507I 1210 06/01/95 MW-507I 1100 04/01/96 MW-507I 1100 04/01/96 MW-507I 1200 09/26/97 MW-507I 1200 05/02/98 MW-507I 1100 05/02/98 MW-507I 1100 09/26/98 MW-507I 1200 11/11/99 MW-507I 140 03/26/03 MW-507I 140 03/26/03 MW-507I 630 06/25/03 MW-507I 70 09/23/03 MW-507I 740 03/09/04 MW-507I 690 06/04/04 MW-507I 450 09/23/04 MW-507I 1100 09/23/04 MW-507I 540 06/03/05 MW-507I 540 06/03/05 <th></th> <th></th> <th></th> <th></th>				
03/10/10 MW-507S 2.1 10/21/93 MW-507I 730 04/27/94 MW-507I 1200 11/11/94 MW-507I 1210 06/01/95 MW-507I 1100 04/01/96 MW-507I 1100 09/26/97 MW-507I 1200 05/02/98 MW-507I 1100 05/02/98 MW-507I 1100 09/26/98 MW-507I 1200 11/11/99 MW-507I 140 03/26/03 MW-507I 140 03/26/03 MW-507I 630 06/25/03 MW-507I 770 09/23/03 MW-507I 740 03/09/04 MW-507I 650 09/23/03 MW-507I 450 09/23/04 MW-507I 450 09/23/04 MW-507I 1100 09/23/04 MW-507I 610 03/04/05 MW-507I 540 06/03/05 MW-507I 600 09/08/05 <th></th> <th></th> <th></th> <th></th>				
10/21/93 MW-507I 730 04/27/94 MW-507I 1200 11/11/94 MW-507I 1210 06/01/95 MW-507I 1100 04/01/96 MW-507I 1100 04/01/96 MW-507I 1200 09/26/97 MW-507I 1200 05/02/98 MW-507I 1100 05/02/98 MW-507I 1100 09/26/98 MW-507I 1200 11/11/99 MW-507I 970 11/21/02 MW-507I 140 03/26/03 MW-507I 630 06/25/03 MW-507I 770 09/23/03 MW-507I 860 12/11/03 MW-507I 740 03/09/04 MW-507I 450 09/23/04 MW-507I 450 09/23/04 MW-507I 1100 03/04/05 MW-507I 540 06/03/05 MW-507I 570 09/08/05 MW-507I 600 03/07/06 <th></th> <th></th> <th></th> <th></th>				
04/27/94 MW-507I 1200 11/11/94 MW-507I 1210 06/01/95 MW-507I 1100 04/01/96 MW-507I 1100 09/26/97 MW-507I 1200 05/02/98 MW-507I 1100 05/02/98 MW-507I 1100 09/26/98 MW-507I 1200 11/11/99 MW-507I 140 03/26/03 MW-507I 140 03/26/03 MW-507I 630 06/25/03 MW-507I 770 09/23/03 MW-507I 740 03/09/04 MW-507I 690 06/04/04 MW-507I 450 09/23/04 MW-507I 450 09/23/04 MW-507I 1100 03/04/05 MW-507I 610 03/04/05 MW-507I 540 06/03/05 MW-507I 600 03/07/06 MW-507I 600 03/07/06 MW-507I 600 03/22/07 <th></th> <th></th> <th></th> <th></th>				
11/11/94 MW-507I 1210 06/01/95 MW-507I 1100 04/01/96 MW-507I 930 DJ 09/26/97 MW-507I 1200 DJ 05/02/98 MW-507I 1100 DJ 05/02/98 MW-507I 1100 DJ 09/26/98 MW-507I 1200 DJ 11/11/99 MW-507I 140 DJ 03/26/03 MW-507I 630 DJ 06/25/03 MW-507I 630 DJ 06/25/03 MW-507I 740 DJ 09/23/03 MW-507I 740 DJ 09/23/03 MW-507I 740 DJ DJ 06/04/04 MW-507I 450 DJ DJ 09/23/04 MW-507I 450 DJ DJ DJ 09/23/04 MW-507I 610 DJ	10/21/93	MW-507I	730	
06/01/95 MW-507I 1100 04/01/96 MW-507I 930 DJ 09/26/97 MW-507I 1200 DJ 05/02/98 MW-507I 1100 DJ 05/02/98 MW-507I 1100 DJ 09/26/98 MW-507I 1200 DJ 11/11/99 MW-507I 970 DJ DJ 11/21/02 MW-507I 970 DJ	04/27/94	MW-507I	1200	
04/01/96 MW-507I 930 DJ 09/26/97 MW-507I 1200 05/02/98 MW-507I 1100 05/02/98 MW-507I 1100 09/26/98 MW-507I 1200 11/11/99 MW-507I 970 11/21/02 MW-507I 140 03/26/03 MW-507I 630 06/25/03 MW-507I 770 09/23/03 MW-507I 740 03/09/04 MW-507I 690 06/04/04 MW-507I 450 09/23/04 MW-507I 1100 12/10/04 MW-507I 610 03/04/05 MW-507I 540 06/03/05 MW-507I 570 09/08/05 MW-507I 600 03/07/06 MW-507I 600 03/22/07 MW-507I 300 09/06/07 MW-507I 470 09/06/07 MW-507I 174 11/06/08 MW-507I 417	11/11/94	MW-507I	1210	
09/26/97 MW-507I 1200 05/02/98 MW-507I 1100 05/02/98 MW-507I 1100 09/26/98 MW-507I 1200 11/11/99 MW-507I 1200 11/21/02 MW-507I 970 11/21/02 MW-507I 140 03/26/03 MW-507I 630 06/25/03 MW-507I 770 09/23/03 MW-507I 860 12/11/03 MW-507I 740 03/09/04 MW-507I 690 06/04/04 MW-507I 450 09/23/04 MW-507I 1100 12/09/04 MW-507I 610 03/04/05 MW-507I 540 06/03/05 MW-507I 570 09/08/05 MW-507I 600 03/07/06 MW-507I 600 03/22/07 MW-507I 300 09/06/07 MW-507I 174 11/06/08 MW-507I 417	06/01/95	MW-507I	1100	
05/02/98 MW-507I 1100 05/02/98 MW-507I 1100 09/26/98 MW-507I 1200 11/11/99 MW-507I 1200 11/21/02 MW-507I 970 11/21/02 MW-507I 140 03/26/03 MW-507I 630 06/25/03 MW-507I 770 09/23/03 MW-507I 860 12/11/03 MW-507I 740 03/09/04 MW-507I 690 06/04/04 MW-507I 450 09/23/04 MW-507I 1100 12/09/04 MW-507I 610 03/04/05 MW-507I 540 06/03/05 MW-507I 570 09/08/05 MW-507I 600 03/07/06 MW-507I 600 03/22/07 MW-507I 300 09/06/07 MW-507I 470 09/06/07 MW-507I 417	04/01/96	MW-507I	930	DJ
05/02/98 MW-507I 1100 09/26/98 MW-507I 1200 11/11/99 MW-507I 970 11/21/02 MW-507I 970 11/21/02 MW-507I 970 03/26/03 MW-507I 140 03/26/03 MW-507I 770 09/23/03 MW-507I 860 12/11/03 MW-507I 740 03/09/04 MW-507I 690 06/04/04 MW-507I 450 09/23/04 MW-507I 1100 12/09/04 MW-507I 610 03/04/05 MW-507I 540 06/03/05 MW-507I 570 09/08/05 MW-507I 600 03/07/06 MW-507I 600 03/22/07 MW-507I 470 09/06/07 MW-507I 174 11/06/08 MW-507I 417	09/26/97	MW-507I	1200	
09/26/98 MW-507I 1200 11/11/99 MW-507I 970 11/21/02 MW-507I 140 03/26/03 MW-507I 630 06/25/03 MW-507I 770 09/23/03 MW-507I 860 12/11/03 MW-507I 740 03/09/04 MW-507I 690 06/04/04 MW-507I 450 09/23/04 MW-507I 1100 12/09/04 MW-507I 610 03/04/05 MW-507I 540 06/03/05 MW-507I 570 09/08/05 MW-507I 600 03/07/06 MW-507I 300 09/06/07 MW-507I 470 09/06/07 MW-507I 174 11/06/08 MW-507I 417	05/02/98	MW-507I	1100	
11/11/99 MW-507I 970 11/21/02 MW-507I 140 03/26/03 MW-507I 630 06/25/03 MW-507I 770 09/23/03 MW-507I 860 12/11/03 MW-507I 740 03/09/04 MW-507I 690 06/04/04 MW-507I 450 09/23/04 MW-507I 1100 12/09/04 MW-507I 610 03/04/05 MW-507I 540 06/03/05 MW-507I 570 09/08/05 MW-507I 600 03/07/06 MW-507I 600 03/22/07 MW-507I 300 09/06/07 MW-507I 174 11/06/08 MW-507I 417	05/02/98	MW-507I	1100	
11/21/02 MW-507I 140 03/26/03 MW-507I 630 06/25/03 MW-507I 770 09/23/03 MW-507I 860 12/11/03 MW-507I 740 03/09/04 MW-507I 690 06/04/04 MW-507I 450 09/23/04 MW-507I 1100 12/09/04 MW-507I 610 03/04/05 MW-507I 540 06/03/05 MW-507I 570 09/08/05 MW-507I 600 03/07/06 MW-507I 300 09/06/07 MW-507I 470 09/06/07 MW-507I 174 11/06/08 MW-507I 417	09/26/98	MW-507I	1200	
03/26/03 MW-507I 630 06/25/03 MW-507I 770 09/23/03 MW-507I 860 12/11/03 MW-507I 740 03/09/04 MW-507I 690 06/04/04 MW-507I 450 09/23/04 MW-507I 1100 12/09/04 MW-507I 610 03/04/05 MW-507I 540 06/03/05 MW-507I 570 09/08/05 MW-507I 600 03/07/06 MW-507I 300 09/06/07 MW-507I 470 09/06/07 MW-507I 174 11/06/08 MW-507I 417	11/11/99	MW-507I	970	
06/25/03 MW-507I 770 09/23/03 MW-507I 860 12/11/03 MW-507I 740 03/09/04 MW-507I 690 06/04/04 MW-507I 450 09/23/04 MW-507I 1100 12/09/04 MW-507I 610 03/04/05 MW-507I 540 06/03/05 MW-507I 570 09/08/05 MW-507I 600 03/07/06 MW-507I 600 03/22/07 MW-507I 300 09/06/07 MW-507I 174 11/06/08 MW-507I 417	11/21/02	MW-507I	140	
09/23/03 MW-507I 860 12/11/03 MW-507I 740 03/09/04 MW-507I 690 06/04/04 MW-507I 450 09/23/04 MW-507I 1100 12/09/04 MW-507I 610 03/04/05 MW-507I 540 06/03/05 MW-507I 570 09/08/05 MW-507I 600 03/07/06 MW-507I 600 03/22/07 MW-507I 300 09/06/07 MW-507I 174 11/06/08 MW-507I 417	03/26/03	MW-507I	630	
12/11/03 MW-507I 740 03/09/04 MW-507I 690 06/04/04 MW-507I 450 09/23/04 MW-507I 1100 12/09/04 MW-507I 610 03/04/05 MW-507I 540 06/03/05 MW-507I 570 09/08/05 MW-507I 600 03/07/06 MW-507I 600 03/22/07 MW-507I 300 09/06/07 MW-507I 470 09/06/08 MW-507I 417	06/25/03	MW-507I	770	
03/09/04 MW-507I 690 06/04/04 MW-507I 450 09/23/04 MW-507I 1100 12/09/04 MW-507I 610 03/04/05 MW-507I 540 06/03/05 MW-507I 570 09/08/05 MW-507I 600 03/07/06 MW-507I 600 03/22/07 MW-507I 300 09/06/07 MW-507I 470 09/06/08 MW-507I 174 11/06/08 MW-507I 417	09/23/03	MW-507I	860	
06/04/04 MW-507I 450 09/23/04 MW-507I 1100 12/09/04 MW-507I 610 03/04/05 MW-507I 540 06/03/05 MW-507I 570 09/08/05 MW-507I 600 03/07/06 MW-507I 600 03/22/07 MW-507I 300 09/06/07 MW-507I 470 09/06/07 MW-507I 174 11/06/08 MW-507I 417	12/11/03	MW-507I	740	
09/23/04 MW-507I 1100 12/09/04 MW-507I 610 03/04/05 MW-507I 540 06/03/05 MW-507I 570 09/08/05 MW-507I 600 03/07/06 MW-507I 600 03/22/07 MW-507I 300 09/06/07 MW-507I 470 09/06/07 MW-507I 174 11/06/08 MW-507I 417	03/09/04	MW-507I	690	
12/09/04 MW-507I 610 03/04/05 MW-507I 540 06/03/05 MW-507I 570 09/08/05 MW-507I 600 03/07/06 MW-507I 600 03/22/07 MW-507I 300 09/06/07 MW-507I 470 09/06/07 MW-507I 174 11/06/08 MW-507I 417	06/04/04	MW-507I	450	
03/04/05 MW-507I 540 06/03/05 MW-507I 570 09/08/05 MW-507I 600 03/07/06 MW-507I 600 03/22/07 MW-507I 300 09/06/07 MW-507I 470 09/06/07 MW-507I 174 11/06/08 MW-507I 417	09/23/04	MW-507I	1100	
03/04/05 MW-507I 540 06/03/05 MW-507I 570 09/08/05 MW-507I 600 03/07/06 MW-507I 600 03/22/07 MW-507I 300 09/06/07 MW-507I 470 09/06/07 MW-507I 174 11/06/08 MW-507I 417				
06/03/05 MW-507I 570 09/08/05 MW-507I 600 03/07/06 MW-507I 600 03/22/07 MW-507I 300 09/06/07 MW-507I 470 09/06/07 MW-507I 174 11/06/08 MW-507I 417	03/04/05	MW-507I	540	
09/08/05 MW-507I 600 03/07/06 MW-507I 600 03/22/07 MW-507I 300 09/06/07 MW-507I 470 09/06/07 MW-507I 174 11/06/08 MW-507I 417				
03/07/06 MW-507I 600 03/22/07 MW-507I 300 09/06/07 MW-507I 470 09/06/07 MW-507I 174 11/06/08 MW-507I 417				
03/22/07 MW-507I 300 09/06/07 MW-507I 470 09/06/07 MW-507I 174 11/06/08 MW-507I 417	077 0 07 0 0			
09/06/07 MW-507I 470 09/06/07 MW-507I 174 11/06/08 MW-507I 417				
09/06/07 MW-507I 174 11/06/08 MW-507I 417				
11/06/08 MW-507I 417				
03/10/10 MW-507I 2.1				

- Q Qualifiers
- D Concentration reported at dilution
- GWQS New Jersey Groundwater Quality Standard
 - Bold- Concentration exceeds GWQS for TCE of 1 micrograms/Liter
 - ND Not detected.
 - U The compound was not detected at the indicated concentration
 - * Represents the highest concentration of the bags sampled on that date.
 - J Data indicates the presence of a compound that meets the identification criteria. The result is less than the quantitation limit but greater than zero.

TABLE 5
HISTORICAL TCE CONCENTRATIONS IN GROUND WATER FORMER LEC SITE - WATCHUNG, NEW JERSEY

		TCE Concentration				TCE Concentration	
Sample Date	Well #	(ug/L)	Q	Sample Date	Well #	(ug/L)	Q
08/13/93	MW-508S	960		11/28/95	MW-532D	30	
10/25/93	MW-508S	860		01/16/96	MW-532D	31	
04/29/94	MW-508S	640	J*	03/28/96	MW-532D	18	
11/11/94	MW-508S	1120		09/23/97	MW-532D	39	
06/02/95	MW-508S	943		04/28/98	MW-532D	34	
04/02/96	MW-508S	1600	J	09/22/98	MW-532D	30	
09/26/97	MW-508S	320		11/10/99	MW-532D	32	
05/02/98	MW-508S	360		11/20/02	MW-532D	37	
09/25/98	MW-508S	210		03/27/03	MW-532D	26	
11/11/99	MW-508S	670		03/25/04	MW-532D	33	
11/21/02	MW-508S	120		03/03/05	MW-532D	37	
03/26/03	MW-508S	73		03/07/06	MW-532D	40	
06/25/03	MW-508S	58		03/08/07	MW-532D	29	
09/23/03	MW-508S	69		03/19/08	MW-532D	33.0	
12/11/03	MW-508S	40		03/10/09	MW-532D	31.3	
03/09/04	MW-508S	41		3/9/2010	MW-532D	11.4	
06/04/04	MW-508S	32		11/09/99	MW-544S	4.9	
09/23/04	MW-508S	30		11/18/02	MW-544S	1.7	
12/09/04	MW-508S	31		03/24/03	MW-544S	0.4	
03/04/05	MW-508S	26		09/23/03	MW-544S	1.3	
06/03/05	MW-508S	40		03/09/04	MW-544S	1.8	
		40			MW-544S	1.3	
09/08/05	MW-508S			09/24/04			
03/07/06	MW-508S	31		03/03/05	MW-544S	1.8	
09/20/06	MW-508S	34		09/08/05	MW-544S	1.2	
03/08/07	MW-508S	27		03/07/06	MW-544S	1.5	
09/06/07	MW-508S	28		09/20/06	MW-544S	1.1	
03/19/08 11/06/08	MW-508S MW-508S	21.6 27.7		03/08/07 09/06/07	MW-544S MW-544S	0.7 1.6	
03/11/09	MW-508S	16.7		03/19/08	MW-544S	ND	
09/09/09	MW-508S	4.8		11/06/08	MW-544S	1.1	
03/10/10	MW-508S	1.5		03/10/09	MW-544S	2.1	
10/25/93	MW-508D	30		9/8/2009	MW-544S	0.89	J
05/02/94	MW-508D	35		03/10/10	MW-544S	ND	J
						-	
11/12/94	MW-508D	36.8		11/09/99	MW-544I	0.4	
06/03/95	MW-508D	38.4	τ.	11/18/02	MW-544I	0.5	
04/02/96	MW-508D	32	J	03/24/03	MW-544I	0.8	
04/02/96	MW-508D	38	J	09/23/03	MW-544I	0.6	
09/26/97	MW-508D	35		03/09/04	MW-544I	0.8	
05/02/98	MW-508D	34		09/24/04	MW-544I	0.6	
09/25/98	MW-508D	33		03/03/05	MW-544I	ND	
11/11/99	MW-508D	34		09/08/05	MW-544I	ND	
11/21/02	MW-508D	13		03/07/06	MW-544I	0.6	
03/26/03	MW-508D	30		09/20/06	MW-544I	0.8	
03/25/04	MW-508D	35		03/08/07	MW-544I	0.7	
03/04/05	MW-508D	1.2		09/06/07	MW-544I	0.7	
03/07/06	MW-508D	0.5		03/19/08	MW-544I	0.79	J
03/08/07	MW-508D	2.3		11/06/08	MW-544I	0.87	J
03/19/08	MW-508D	9.3		03/10/09	MW-544I	0.70	
03/11/09	MW-508D	4.5		9/8/2009	MW-544I	0.77	J
03/10/10	MW-508D	1.0		03/10/10	MW-544I	0.72	J

- Q Qualifiers
- D Concentration reported at dilution
- GWQS New Jersey Groundwater Quality Standard
 - Bold- Concentration exceeds GWQS for TCE of 1 micrograms/Liter
 - ND Not detected.
 - U The compound was not detected at the indicated concentration
 - * Represents the highest concentration of the bags sampled on that date.
 - J Data indicates the presence of a compound that meets the identification criteria. The result is less than the quantitation limit but greater than zero.

TABLE 5
HISTORICAL TCE CONCENTRATIONS IN GROUND WATER FORMER LEC SITE - WATCHUNG, NEW JERSEY

		TCE	
		Concentration	
Sample Date	Well#	(ug/L)	Q
11/09/99	MW-544D	ND	
11/18/02	MW-544D	ND	
03/24/03	MW-544D	0.5	
09/23/03	MW-544D	0.8	*
03/09/04	MW-544D	ND	
09/24/04	MW-544D	ND	
03/03/05	MW-544D	ND	
09/08/05	MW-544D	ND	
03/07/06	MW-544D	ND	
09/20/06	MW-544D	0.4	
03/08/07	MW-544D	ND	
09/06/07	MW-544D	ND	·
03/19/08	MW-544D	0.35	J
11/06/08	MW-544D	ND	
03/10/09	MW-544D	ND	
9/8/2009	MW-544D	0.26	J
03/10/10	MW-544D	0.26	J
11/09/99	MW-545S	ND	
11/18/02	MW-545S	ND	
03/25/03	MW-545S	ND	
09/23/03	MW-545S	ND	
03/09/04	MW-545S	ND	
09/24/04	MW-545S	ND	
03/03/05	MW-545S	ND	
09/08/05	MW-545S	ND	
09/20/06	MW-545S	ND	
03/08/07	MW-545S	ND	
09/06/07	MW-545S	ND	
03/19/08	MW-545S	ND	
11/06/08	MW-545S	ND	
03/10/09	MW-545S	ND	
9/8/2009	MW-545S	ND	
03/10/10	MW-545S	ND	
11/09/99	MW-545I	ND	
11/18/02	MW-545I	ND	
03/25/03	MW-545I	ND	
09/23/03	MW-545I	ND	
03/09/04	MW-545I	ND	
09/24/04	MW-545I	ND	
03/03/05	MW-545I	ND	
09/08/05	MW-545I	ND	
09/20/06	MW-545I	ND	
03/08/07	MW-545I	ND	
09/06/07	MW-545I	ND	
03/19/08	MW-545I	ND	
11/06/08	MW-545I	ND	
03/10/09	MW-545I	ND	
9/8/2009	MW-545I	ND	
03/10/10	MW-545I	ND	

		TCE	
		Concentration	
Sample Date	Well #	(ug/L)	Q
11/09/99	MW-545D	ND	
11/18/02	MW-545D	0.2	
03/25/03	MW-545D	0.4	
09/23/03	MW-545D	ND	
03/09/04	MW-545D	ND	
09/24/04	MW-545D	ND	
03/03/05	MW-545D	ND	
09/08/05	MW-545D	ND	
03/07/06	MW-545D	ND	
09/20/06	MW-545D	0.5	
03/08/07	MW-545D	ND	
09/06/07	MW-545D	ND	
03/19/08	MW-545D	0.32	J
11/06/08	MW-545D	ND	
03/10/09	MW-545D	ND	
9/8/2009	MW-545D	0.28	·
03/10/10	MW-545D	ND	
11/09/99	MW-546D	130	
11/19/02	MW-546D	120	
03/25/03	MW-546D	120	
06/25/03	MW-546D	150	
09/24/03	MW-546D	91	
12/11/03	MW-546D	88	
03/09/04	MW-546D	90	
06/04/04	MW-546D	82	
09/24/04	MW-546D	110	
12/09/04	MW-546D	110	
03/04/05	MW-546D	110	
06/03/05	MW-546D	120	
09/08/05	MW-546D	130	
09/20/06	MW-546D	120	
03/08/07	MW-546D	110	
09/06/07	MW-546D	120	
03/19/08	MW-546D	116	
11/06/08	MW-546D	100	
03/10/09	MW-546D	74.6	
9/9/2009	MW-546D	11.3	
03/10/10	MW-546D	25.9	
00/10/10	141 44 -7-40ID	20.0	

- Q Qualifiers
- D Concentration reported at dilution
- GWQS New Jersey Groundwater Quality Standard
 - Bold- Concentration exceeds GWQS for TCE of 1 micrograms/Liter
 - ND Not detected.
 - U The compound was not detected at the indicated concentration
 - * Represents the highest concentration of the bags sampled on that date.
 - J Data indicates the presence of a compound that meets the identification criteria. The result is less than the quantitation limit but greater than zero.

TABLE 5 HISTORICAL TCE CONCENTRATIONS IN GROUND WATER FORMER LEC SITE - WATCHUNG, NEW JERSEY

		TCE	
		Concentration	
Sample Date	Well#	(ug/L)	Q
11/21/02	MW-549S	1400	
03/26/03	MW-549S	1900	
06/25/03	MW-549S	2800	
09/24/03	MW-549S	2300	
12/10/03	MW-549S	1800	
03/09/04	MW-549S	1200	
06/04/04	MW-549S	1400	
09/23/04	MW-549S	1500	
12/09/04	MW-549S	1200	
03/03/05	MW-549S	1200	
06/03/05	MW-549S	650	
10/14/05	MW-549S	1300	
09/06/07	MW-549S	1000	
03/19/08	MW-549S	867	
11/06/08	MW-549S	767	
03/10/09	MW-549S	724	
9/8/2009	MW-549S	643	
03/09/10	MW-549S	385	
11/21/02	MW-549I	760	
03/26/03	MW-549I	760	
06/25/03	MW-549I	1200	
09/24/03	MW-549I	1100	
12/10/03	MW-549I	900	
03/09/04	MW-549I	1000	
06/04/04	MW-549I	880	
09/23/04	MW-549I	820	
12/09/04	MW-549I	850	
03/03/05	MW-549I	820	
06/03/05	MW-549I	98	
10/14/05	MW-549I	1100	
09/20/06	MW-549I	940	
03/08/07	MW-549I	870	
09/06/07	MW-549I	850	
03/19/08	MW-549I	801	
11/06/08	MW-549I	837	
03/10/09	MW-549I	714	
9/8/2009	MW-549I	781	
03/09/10	MW-549I	806	

	TCE		
	Concentration		
Q	(ug/L)	Well #	Sample Date
	77	MW-550S	11/21/02
	130	MW-550S	03/26/03
	180	MW-550S	06/25/03
	140	MW-550S	09/23/03
	150	MW-550S	12/10/03
	170	MW-550S	03/09/04
	140	MW-550S	06/04/04
	140	MW-550S	09/23/04
	130	MW-550S	12/09/04
	120	MW-550S	03/03/05
	140	MW-550S	06/03/05
	160	MW-550S	09/08/05
	110	MW-550S	09/20/06
	100	MW-550S	03/08/07
	110	MW-550S	09/06/07
	123	MW-550S	04/04/08
	58.9	MW-550S	11/06/08
	9.3	MW-550S	03/10/09
	2.5	MW-550S	09/09/09
	2.0	MW-550S	03/10/10
	440	MW-550I	11/21/02
	870	MW-550I	3/26/03
	800	MW-550I	9/23/03
	780	MW-550I	12/10/03
	750	MW-550I	3/9/04
	650	MW-550I	6/4/04
	1400	MW-550I	9/23/04
	720	MW-550I	12/9/04
	620	MW-550I	3/3/05
	760	MW-550I	6/3/05
	740	MW-550I	9/8/05
	860	MW-550I	9/20/06
	600	MW-550I	3/22/07
	650	MW-550I	09/06/07
	646	MW-550I	03/19/08
	560	MW-550I	11/06/08
	494	MW-550I	03/10/09
	76.0	MW-550I	09/09/09
	17.1	MW-550I	03/10/10

- Q Qualifiers
- D Concentration reported at dilution
- GWQS New Jersey Groundwater Quality Standard
 - Bold- Concentration exceeds GWQS for TCE of 1 micrograms/Liter
 - ND Not detected.
 - U The compound was not detected at the indicated concentration
 - * Represents the highest concentration of the bags sampled on that date.
 - J Data indicates the presence of a compound that meets the identification criteria. The result is less than the quantitation limit but greater than zero.

TABLE 5
HISTORICAL TCE CONCENTRATIONS IN GROUND WATER FORMER LEC SITE - WATCHUNG, NEW JERSEY

		TCE	
		Concentration	
Sample Date	Well#	(ug/L)	Q
11/10/94	PZ-522S	18.6	
12/13/94	PZ-522S	20.9	
03/31/96	PZ-522S	50	
09/27/97	PZ-522S	6.1	
05/01/98	PZ-522S	67	
09/27/98	PZ-522S	16	
11/10/99	PZ-522S	12	
11/19/02	PZ-522S	17	
03/25/03	PZ-522S	22	
09/23/03	PZ-522S	16	**
03/09/04 09/24/04	PZ-522S PZ-522S	0.2 0.4	U
03/03/05	PZ-322S PZ-522S	0.4 25	U
03/03/03	PZ-322S PZ-522S	0.4	U
09/20/06	PZ-522S	0.5	U
03/08/07	PZ-522S	0.4	U
09/06/07	PZ-522S	0.4	U
03/19/08	PZ-522S	0.20	U
11/06/08	PZ-522S	0.45	U
03/10/09	PZ-522S	0.45 0.45	
9/8/2009	PZ-522S	ND	U
03/10/10	PZ-522S PZ-522S	ND ND	
12/14/94	PZ-522I	157	
03/31/96	PZ-522I	230	
09/27/97	PZ-522I	190	*
05/01/98	PZ-522I	140	
09/27/98	PZ-522I	180	
11/10/99	PZ-522I	200	
11/19/02	PZ-522I	120	
03/25/03	PZ-522I	160	
09/23/03	PZ-522I	220	
03/09/04	PZ-522I	220	
09/24/04	PZ-522I	200	
03/03/05	PZ-522I	190	
09/08/05	PZ-522I	210	
09/20/06	PZ-522I	190	
03/08/07	PZ-522I	34	
09/06/07	PZ-522I	12	
03/19/08	PZ-522I	9.0	
11/06/08	PZ-522I	6.0	
03/10/09	PZ-522I	5.3	
9/8/2009	PZ-522I	5.2	
03/10/10	PZ-522I	5.1	

Sample Date	Well#	TCE Concentration (ug/L)	Q
11/10/94	PZ-522D	2,2	
12/14/94	PZ-522D	4.8	
03/31/96	PZ-522D	0.4	J
09/27/97	PZ-522D	0.8	J
05/01/98	PZ-522D	1.8	
09/26/98	PZ-522D	1.1	
11/10/99	PZ-522D	0.9	
11/19/02	PZ-522D	1.6	
03/25/03	PZ-522D	14	
09/23/03	PZ-522D	3.8	
03/09/04	PZ-522D	3.0	
09/24/04	PZ-522D	3.6	
03/03/05	PZ-522D	3.3	
09/08/05	PZ-522D	3.0	
03/08/07	PZ-522D	2.2	
09/06/07	PZ-522D	3.1	
03/19/08	PZ-522D	2.4	
11/06/08	PZ-522D	3.0	
03/10/09	PZ-522D	2.2	
9/8/2009	PZ-522D	2.2	
03/10/10	PZ-522D	2.8	

- Q Qualifiers
- D Concentration reported at dilution
- GWQS New Jersey Groundwater Quality Standard
 - Bold- Concentration exceeds GWQS for TCE of 1 micrograms/Liter
 - ND Not detected.
 - U The compound was not detected at the indicated concentration
 - * Represents the highest concentration of the bags sampled on that date.
 - J Data indicates the presence of a compound that meets the identification criteria.

Table 6

Comparison of Trichloroethene (TCE) Concentrations Prior to and Following Activation of Ground Water Extraction System Former Lockheed Electronics Corporation Facility - Watchung, New Jersey

Wells Screening Shallow Zone (From Water Table to 50 Feet Above Mean Sea Level)

Well Designation	Depth (feet)	Approximate Screened Interval (feet below surface)	Approximate Screened Interval Elevation (ft.msl)	1999 TCE Concentration (µg/L)	Sept. 2009 TCE Concentration (µg/L)	Approximate Percent Reduction
MW-502 S	18	8 to 18	96 to 86	1,500	13.3	99%
MW-506 S	24.6	14.6 to 24.6	107 to 97	50	1.6	97%
MW-508 S	67.7	57.7 to 67.7	129 to 119	670	4.8	99%
MW-544 S	23	3 to 23	83 to 63	4.9	<gwqs< td=""><td>82%</td></gwqs<>	82%
MW-545 S	35	15 to 35	71 to 51	ND	ND	N/A
MW-549S	110	90 to 110	90 to 70	2,800*	643	77%
MW-550 S	50	30 to 50	102 to 82	180*	2.5	99%
PZ-522 S	17.7	7.7 to 17.7	86 to 76	12	ND	100%

Wells Screening Intermediate Zone (From 50 Feet Above Mean Sea Level to 50 Feet Below Sea Level)

Well Designation	Depth (feet)	Approximate Screened Interval (feet below surface)	Approximate Screened Interval Elevation (ft.msl)	1999 TCE Concentration (µg/L)	Sept. 2009 TCE Concentration (µg/L)	Approximate Percent Reduction
MW-502 I	74.7	64.7 to 74.7	39 to 29	5.9	<gwqs< td=""><td>>99%</td></gwqs<>	>99%
MW-506 I	99	89 to 99	34 to 24	1,700	1.5	>99%
MW-507 I	152	142 to 152	35 to 25	970	3.1	>99%
MW-544 I	100	80 to 100	6 to -14	<gwqs< td=""><td><gwqs< td=""><td>N/A</td></gwqs<></td></gwqs<>	<gwqs< td=""><td>N/A</td></gwqs<>	N/A
MW-545 I	93	73 to 93	13 to -7	ND	ND	N/A
MW-549 I	210	190 to 210	-11 to -31	1200*	781	35%
MW-550 I	100	80 to 100	53 to 33	870**	76.0	91%
PZ-522 I	101	91 to 101	3 to -7	200	5.2	97%

Wells Screening Deep Zone (Deeper Than 50 Feet Below Sea Level)

Well Designation	Depth (feet)	Approximate Screened Interval (feet below surface)	Approximate Screened Interval Elevation (ft.msl)	1999 TCE Concentration (µg/L)	Sept. 2009 TCE Concentration (µg/L)	Approximate Percent Reduction
MW-532 D	263	253 to 263	-66 to -76	32	11.4***	64%
MW-544 D	200	180 to 200	-94 to -114	ND	<gwqs< td=""><td>N/A</td></gwqs<>	N/A
MW-545 D	200	180 to 200	-94 to -114	ND	<gwqs< td=""><td>N/A</td></gwqs<>	N/A
MW-546 D	200	180 to 200	-73 to -93	130	11.3	91%
PZ-522 D	197.7	187.7 to 197.7	-94 to -104	<gwqs< td=""><td>2.2</td><td>0%</td></gwqs<>	2.2	0%

Green percentages Indicate >50% reduction in dissolved TCE Concentrations, or that GWQS is not exceeded.

Yellow percentages indicate 25% to 50% reduction in dissolved TCE concentrations.

Red percentages indicate <25% reduction in dissolved TCE concentrations.

 $GWQS = New\ Jersey\ Department\ of\ Environmental\ Protection\ Ground\ Water\ Quality\ Standard\ (1\mu g/L)$

 μ g/L = milligrams per liter (parts per billion)

ND = Not Detected; N/A = Not Applicable

ft. msl = feet above mean sea level

Except where otherwise noted, 1999 data from samples collected in November 1999, and reported in TRC's February 2009 Remedial Investigation Addendum Report and Off-Site Ground Water Investigation.

TABLE 7 SURFACE WATER ANALYTICAL RESULTS MARCH 2008 THROUGH SEPTEMBER 2009 FORMER LEC SITE - WATCHUNG, NEW JERSEY

Sample ID	New Jersey	SW-1	SW-2	SW-3	SW-4	SW-1	SW-2	SW-3	SW-4
Lab Sample Number	Fresh Water - 2	JA27535-3	JA27535-16	JA27535-15	JA27535-14	JA41514-4	JA41514-3	JA41514-2	JA41514-1
Sampling Date	Quality	09/08/09	09/09/09	09/09/09	09/09/09	03/09/10	03/09/10	03/09/10	03/09/10
Matrix	Criteria	WATER	WATER	WATER	WATER	WATER	WATER	WATER	WATER
Units	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
VOLATILE COMPOUNDS (GC/MS)									
Benzene	0.15	0.15 U	0.15 U	0.15 U	0.15 U	0.15 U	0.15 U	0.15 U	0.15 U
Bromodichloromethane	0.55	0.18 U	0.18 U	0.18 U	0.18 U	0.18 U	0.18 U	0.18 U	0.18 U
Bromoform	4.3	0.26 U	0.26 U	0.26 U	0.26 U	0.26 U	0.26 U	0.26 U	0.26 U
Bromomethane		0.43 U	0.43 U	0.43 U	0.43 U	0.43 U	0.43 U	0.43 U	0.43 U
Carbon Tetrachloride	0.33	0.18 U	0.18 U	0.18 U	0.18 U	0.18 U	0.18 U	0.18 U	0.18 U
Chlorobenzene	210	0.21 U	0.21 U	0.21 U	0.21 U	0.21 U	0.21 U	0.21 U	0.21 U
Chloroethane		0.48 U	0.48 U	0.48 U	0.48 U	0.48 U	0.48 U	0.48 U	0.48 U
2-Chloroethyl Vinyl Ether		0.65 U	0.65 U	0.65 U	0.65 U	0.65 U	0.65 U	0.65 U	0.65 U
Chloroform	68	0.18 U	0.18 U	0.18 U	0.18 U	0.18 U	0.18 U	0.18 U	0.18 U
Chloromethane		0.34 U	0.34 U	0.34 U	0.34 U	0.34 U	0.34 U	0.34 U	0.34 U
Dibromochloromethane	0.40	0.26 U	0.26 U	0.26 U	0.26 U	0.26 U	0.26 U	0.26 U	0.26 U
1,1-Dichloroethane		0.26 U	0.26 U	0.26 U	0.26 U	0.26 U	0.26 U	0.26 U	0.26 U
1,2-Dichloroethane	0.29	0.43 U	0.43 U	0.43 U	0.43 U	0.43 U	0.43 U	0.43 U	0.43 U
1,1-Dichloroethene	4.7	0.38 U	0.38 U	0.38 U	0.38 U	0.38 U	0.38 U	0.38 U	0.38 U
cis-1,2-Dichloroethene		0.22 U	0.22 U	0.22 U	0.22 U	0.22 U	0.22 U	0.22 U	0.22 U
trans-1,2-Dichloroethene	590	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U
1,2-Dichloropropane	0.50	0.40 U	0.40 U	0.40 U	0.40 U	0.40 U	0.40 U	0.40 U	0.40 U
cis-1,3-Dichloropropene	0.34	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U
trans-1,3-Dichloropropene	0.34	0.31 U	0.31 U	0.31 U	0.31 U	0.31 U	0.31 U	0.31 U	0.31 U
Ethylbenzene	530	0.15 U	0.15 U	0.15 U	0.15 U	0.15 U	0.15 U	0.39 J	0.15 U
Methylene Chloride		0.30 U	0.30 U	0.30 U	0.30 U	0.30 U	0.30 U	0.30 U	0.30 U
1,1,2,2-Tetrachloroethane	4.7	0.13 U	0.13 U	0.13 U	0.13 U	0.13 U	0.13 U	0.13 U	0.13 U
Tetrachloroethene	0.34	0.18 U	0.18 U	0.18 U	0.18 U	0.18 U	0.18 U	0.18 U	0.18 U
Toluene	1300	0.19 U	0.19 U	0.19 U	0.19 U	0.19 U	0.19 U	2.1	0.19 U
1,1,1-Trichloroethane	120	0.21 U	0.21 U	0.21 U	0.21 U	0.21 U	0.21 U	0.21 U	0.21 U
1,1,2-Trichloroethane	13	0.46 U	0.46 U	0.46 U	0.46 U	0.46 U	0.46 U	0.46 U	0.46 U
Trichloroethene	1.0	0.14 U	0.68 J	0.33 J	0.14 U	0.14 U	0.31 J	0.18 J	0.17 J
Trichlorofluoromethane		0.46 U	0.46 U	0.46 U	0.46 U	0.46 U	0.46 U	0.46 U	0.46 U
Vinyl Chloride	0.082	0.21 U	0.21 U	0.21 U	0.21 U	0.21 U	0.21 U	0.21 U	0.21 U
Xylene (Total)		0.27 U	0.27 U	0.27 U	0.27 U	0.27 U	0.27 U	0.27 U	0.27 U
Total Confident Conc. VOCs		ND	0.68 J	0.33 J	ND	ND	0.31 J	2.67	0.17 J
Total Estimated Conc. VOC TICs		ND	ND	ND	ND	ND	ND	ND	ND

ug/L - micrograms/Liter U - compound not detected at indicated concentration

-- = No applicable criteria
 VOCs - Volatile Organic Compounds

TICs - Tenetatively Identified Compounds Bold - indicates exceedence of New Jersey FWQC

Location	Sample Date	Analyte	Concentration (µg/L)	Qualifiers
SW-1	May-94	Trichloroethene	0.5	
SW-1	Jun-94	Trichloroethene	0.81	
SW-1	Jun-94	Trichloroethene	0.88	
SW-1	Jul-94	Trichloroethene	0.29	J
SW-1	Aug-94	Trichloroethene	0.12	J
SW-1	Feb-95	Trichloroethene	0.84	
SW-1	Apr-96	Trichloroethene	0.6	
SW-1	Apr-98	Trichloroethene	0.9	
SW-1	Nov-99	Trichloroethene	0.4	
SW-1	Dec-02	Trichloroethene	0.1	
SW-1	Mar-03	Trichloroethene	0.1	
SW-1	Jul-03	Trichloroethene	0.7	
SW-1	Aug-03	Trichloroethene	0.2	U
SW-1	Sep-03	Trichloroethene	0.3	U
SW-1	Oct-03	Trichloroethene	0.2	U
SW-1	Nov-03	Trichloroethene	0.2	U
SW-1	Dec-03	Trichloroethene	0.2	U
SW-1	Jan-04	Trichloroethene	0.2	U
SW-1	Feb-04	Trichloroethene	0.2	U
SW-1	Mar-04	Trichloroethene	0.2	U
SW-1	Apr-04	Trichloroethene	0.2	U
SW-1	May-04	Trichloroethene	0.2	U
SW-1	Jun-04	Trichloroethene	0.2	U
SW-1	Jul-04	Trichloroethene	0.4	U
SW-1	Aug-04	Trichloroethene	0.4	U
SW-1	Sep-04	Trichloroethene	0.4	Ü
SW-1	Oct-04	Trichloroethene	0.4	U
SW-1	Nov-04	Trichloroethene	0.4	U
SW-1	Dec-04	Trichloroethene	0.4	U
SW-1	Jan-05	Trichloroethene	0.4	U
SW-1	Feb-05	Trichloroethene	0.4	Ü
SW-1	Mar-05	Trichloroethene	0.4	U
SW-1	Apr-05	Trichloroethene	0.4	U
SW-1	May-05	Trichloroethene	0.4	U
SW-1	Jun-05	Trichloroethene	0.4	Ü
SW-1	Jul-05	Trichloroethene	0.4	Ü
SW-1	Oct-05	Trichloroethene	0.4	U
SW-1	Nov-05	Trichloroethene	0.4	U
SW-1	Mar-06	Trichloroethene	0.4	U
SW-1	Sep-06	Trichloroethene	0.4	U
SW-1	Mar-07	Trichloroethene	0.4	U
SW-1	Sep-07	Trichloroethene	0.4	U
SW-1	Mar-08	Trichloroethene	0.42	J
SW-1	Nov-08	Trichloroethene	0.45	U
SW-1	Mar-09	Trichloroethene	1.5	
SW-1	Sep-09	Trichloroethene	0.14	U
SW-1	Маr-10	Trichloroethene	0.14	U

U The compound was not detected above method detection limit

J Data indicates the presence of a compound detected at less than the quantitation limit. The value is approximate.

D Concentration was reported from a diluted analysis. The value is approximate.

Location	Sample Date	Analyte	Concentration (µg/L)	Qualifiers
SW-2	Aug-93	Trichloroethene	39	
SW-2	Aug-93	Trichloroethene	41	
SW-2 SW-2	Oct-93 May-94	Trichloroethene Trichloroethene	160 72	
SW-2 SW-2	Jun-94	Trichloroethene	55	
SW-2	Jun-94	Trichloroethene	59	
SW-2	Jun-94	Trichloroethene	63	
SW-2	Jul-94	Trichloroethene	53	
SW-2	Jul-94	Trichloroethene	42	
SW-2	Aug-94	Trichloroethene	69	D
SW-2	Oct-94	Trichloroethene	47	,
SW-2 SW-2	Nov-94 Dec-94	Trichloroethene Trichloroethene	71.2 75.5	J
SW-2	Jan-95	Trichloroethene	42	
SW-2	Feb-95	Trichloroethene	81.1	
SW-2	Apr-95	Trichloroethene	108	
SW-2	Jun-95	Trichloroethene	67.7	
SW-2	Jun-95	Trichloroethene	70.9	
SW-2	Jun-95	Trichloroethene	98.7	
SW-2	Aug-95	Trichloroethene	127	
SW-2 SW-2	Apr-96 Apr-96	Trichloroethene Trichloroethene	26 27	
SW-2 SW-2	Apr-96 Sep-97	Trichloroethene	36.8	
SW-2	Sep-97	Trichloroethene	41.9	
SW-2	Apr-98	Trichloroethene	45.4	
SW-2	Apr-98	Trichloroethene	48	
SW-2	Sep-98	Trichloroethene	68.7	
SW-2	Nov-99	Trichloroethene	80.1	
SW-2	Mar-00	Trichloroethene	80	
SW-2 SW-2	Dec-02 Mar-03	Trichloroethene Trichloroethene	57 33	
SW-2	Jul-03	Trichloroethene	3.6	
SW-2	Aug-03	Trichloroethene	2.2	
SW-2	Sep-03	Trichloroethene	0.3	U
SW-2	Oct-03	Trichloroethene	0.2	U
SW-2	Nov-03	Trichloroethene	0.2	U
SW-2	Dec-03	Trichloroethene	0.2	U
SW-2 SW-2	Jan-04 Feb-04	Trichloroethene Trichloroethene	2.1 1.4	
SW-2 SW-2	Mar-04	Trichloroethene	0.2	U
SW-2	Apr-04	Trichloroethene	0.4	
SW-2	May-04	Trichloroethene	2.2	
SW-2	Jun-04	Trichloroethene	0.2	U
SW-2	Jul-04	Trichloroethene	0.4	U
SW-2	Aug-04	Trichloroethene	0.6	
SW-2	Sep-04	Trichloroethene	0.4	U
SW-2 SW-2	Oct-04 Nov-04	Trichloroethene Trichloroethene	1.7 0.4	U
SW-2 SW-2	Nov-04 Dec-04	Trichloroethene	0.4	U
SW-2	Jan-05	Trichloroethene	0.5	
SW-2	Feb-05	Trichloroethene	0.8	
SW-2	Mar-05	Trichloroethene	2.6	
SW-2	Apr-05	Trichloroethene	0.8	
SW-2	May-05	Trichloroethene	0.4	U
SW-2	Jun-05	Trichloroethene	0.5	TT
SW-2 SW-2	Jul-05 Aug-05	Trichloroethene Trichloroethene	0.4 0.4	U U
SW-2 SW-2	Sep-05	Trichloroethene	0.4	U
SW-2	Oct-05	Trichloroethene	0.4	U
SW-2	Nov-05	Trichloroethene	0.4	U
SW-2	Mar-06	Trichloroethene	1.2	
SW-2	Sep-06	Trichloroethene	0.6	
SW-2	Mar-07	Trichloroethene	0.4	U
SW-2	Sep-07	Trichloroethene	1.1	т
SW-2 SW-2	Mar-08 Nov-08	Trichloroethene Trichloroethene	0.77 1.0	J
SW-2 SW-2	Nov-08 Mar-09	Trichloroethene	0.45	U
SW-2	Sep-09	Trichloroethene	0.68	J
SW-2	Mar-10	Trichloroethene	0.31	J

U The compound was not detected above method detection limit

J Data indicates the presence of a compound detected at less than the quantitation limit. The value is approximate.

D Concentration was reported from a diluted analysis. The value is approximate.

Location	Sample Date	Analyte	Concentration (µg/L)	Qualifiers
SW-3	Jun-94	Trichloroethene	34.00	
SW-3	Jun-94	Trichloroethene	36.00	
SW-3	Jul-94	Trichloroethene	29.00	
SW-3	Jul-94	Trichloroethene	26.00	
SW-3	Aug-94	Trichloroethene	32.00	
SW-3	Oct-94	Trichloroethene	14.5	
SW-3	Nov-94	Trichloroethene	26.6	J
SW-3	Dec-94	Trichloroethene	48.4	J
SW-3	Jan-95	Trichloroethene	31.7	
SW-3	Feb-95	Trichloroethene	63.2	
SW-3	Apr-95	Trichloroethene	48	
SW-3	Apr-95	Trichloroethene	51.4	
SW-3	Jun-95	Trichloroethene	29	
SW-3	Jun-95	Trichloroethene	7.51	
SW-3	Aug-95	Trichloroethene	32	
SW-3	Apr-96	Trichloroethene	24	
SW-3	Sep-97	Trichloroethene	43.7	
SW-3	Apr-98	Trichloroethene	47	
SW-3	Sep-98	Trichloroethene	26.6	
SW-3	Sep-98	Trichloroethene	27.8	
SW-3	Nov-99	Trichloroethene	41.4	
SW-3	Mar-00	Trichloroethene	60	
SW-3	Dec-02	Trichloroethene	44	
SW-3	Mar-03	Trichloroethene	28	
SW-3	Jul-03	Trichloroethene	2.6	
SW-3	Aug-03	Trichloroethene	1.2	
SW-3	Sep-03	Trichloroethene	0.3	U
SW-3	Oct-03	Trichloroethene	0.2	U
SW-3	Nov-03	Trichloroethene	0.2	U
SW-3	Dec-03	Trichloroethene	0.2	U
SW-3	Jan-04	Trichloroethene	1.1	
SW-3	Feb-04	Trichloroethene	0.8	

SW-3	Mar-04	Trichloroethene	0.2	U
SW-3	Apr-04	Trichloroethene	0.3	
SW-3	May-04	Trichloroethene	1.2	
SW-3	Jun-04	Trichloroethene	0.2	U
SW-3	Jul-04	Trichloroethene	0.4	U
SW-3	Aug-04	Trichloroethene	0.4	U
SW-3	Sep-04	Trichloroethene	0.4	U
SW-3	Oct-04	Trichloroethene	0.7	
SW-3	Nov-04	Trichloroethene	0.4	U
SW-3	Dec-04	Trichloroethene	0.4	U
SW-3	Jan-05	Trichloroethene	0.4	Ü
SW-3	Feb-05	Trichloroethene	0.4	
SW-3	Mar-05	Trichloroethene	1.6	

SW-3	Apr-05	Trichloroethene	0.4	U
SW-3	May-05	Trichloroethene	0.4	U
SW-3	Jun-05	Trichloroethene	0.4	U
SW-3	Jul-05	Trichloroethene	0.4	U
SW-3	Aug-05	Trichloroethene	0.4	U
SW-3	Sep-05	Trichloroethene	0.4	U
SW-3	Oct-05	Trichloroethene	0.4	U
SW-3	Nov-05	Trichloroethene	0.4	U
SW-3	Mar-06	Trichloroethene	0.6	
SW-3	Sep-06	Trichloroethene	0.4	U
SW-3	Mar-07	Trichloroethene	0.4	U
SW-3	Sep-07	Trichloroethene	0.4	
SW-3	Mar-08	Trichloroethene	0.51	J
SW-3	Nov-08	Trichloroethene	0.59	J
SW-3	Mar-09	Trichloroethene	0.73	J
SW-3	Sep-09	Trichloroethene	0.33	J
SW-3	Mar-10	Trichloroethene	0.18	J

U The compound was not detected above method detection limit

J Data indicates the presence of a compound detected at less than the quantitation limit. The value is approximate.

D Concentration was reported from a diluted analysis. The value is approximate.

Location	Sample Date	Analyte	Concentration (µg/L)	Qualifier
SW-4	May-94	Trichloroethene	14	
SW-4	Jun-94	Trichloroethene	14	
SW-4	Jun-94	Trichloroethene	6.9	
SW-4	Jul-94	Trichloroethene	6.5	
SW-4	Jul-94	Trichloroethene	6.6	
SW-4	Jul-94	Trichloroethene	9.4	
SW-4	Aug-94	Trichloroethene	11	
SW-4	Oct-94	Trichloroethene	2.08	
SW-4	Nov-94	Trichloroethene	4.31	J
SW-4	Dec-94	Trichloroethene	19.5	
SW-4	Jan-95	Trichloroethene	16.1	
SW-4	Jan-95	Trichloroethene	17	
SW-4	Feb-95	Trichloroethene	53.7	
SW-4	Feb-95	Trichloroethene	54.4	
SW-4	Apr-95	Trichloroethene	19.3	
SW-4	Jun-95	Trichloroethene	6.29	
SW-4	Aug-95	Trichloroethene	2.62	
SW-4	Aug-95	Trichloroethene	2.83	
SW-4	Apr-96	Trichloroethene	16	
SW-4	Sep-97	Trichloroethene	3.9	
SW-4	Apr-98	Trichloroethene	30.4	
SW-4	Sep-98	Trichloroethene	1.4	
SW-4	Nov-99	Trichloroethene	19.2	
SW-4	Mar-00	Trichloroethene	36	
SW-4	Dec-02	Trichloroethene	30	
SW-4	Mar-03	Trichloroethene	18	
SW-4	Jul-03	Trichloroethene	1.7	
SW-4	Aug-03	Trichloroethene	0.2	U
SW-4	Sep-03	Trichloroethene	0.3	U
SW-4	Oct-03	Trichloroethene	0.2	U
SW-4	Nov-03	Trichloroethene	0.2	U
				U
SW-4	Dec-03	Trichloroethene	0.2	
SW-4	Jan-04	Trichloroethene	0.6	
SW-4	Feb-04	Trichloroethene	0.6	
SW-4	Mar-04	Trichloroethene	0.2	U
SW-4	Apr-04	Trichloroethene	0.2	U
SW-4	May-04	Trichloroethene	0.7	
SW-4	Jun-04	Trichloroethene	0.2	U
SW-4	Jul-04	Trichloroethene	0.4	U
SW-4	Aug-04	Trichloroethene	0.4	U
SW-4	Sep-04	Trichloroethene	0.4	U
SW-4	Oct-04	Trichloroethene	0.4	
SW-4	Nov-04	Trichloroethene	0.4	U
SW-4	Dec-04	Trichloroethene	0.4	
SW-4	Jan-05	Trichloroethene	0.4	U
SW-4	Feb-05	Trichloroethene	0.4	U
SW-4	Mar-05	Trichloroethene	1.1	
SW-4	Apr-05	Trichloroethene	0.4	U
SW-4	May-05	Trichloroethene	0.4	U
SW-4	Jun-05	Trichloroethene	0.4	U
SW-4 SW-4	Jul-05 Jul-05	Trichloroethene	0.4	U
SW-4 SW-4	Jul-03 Aug-05	Trichloroethene	0.4	U
	-			
SW-4	Sep-05	Trichloroethene	0.4	U
SW-4	Oct-05	Trichloroethene	0.4	U
SW-4	Nov-05	Trichloroethene	0.4	U
SW-4	Mar-06	Trichloroethene	0.4	U
SW-4	Sep-06	Trichloroethene	0.4	U
SW-4	Mar-07	Trichloroethene	0.4	U
SW-4	Sep-07	Trichloroethene	0.4	U
SW-4	Mar-08	Trichloroethene	0.28	J
SW-4	Nov-08	Trichloroethene	0.45	U
SW-4	Mar-09	Trichloroethene	0.49	J
SW-4	Sep-09	Trichloroethene	0.14	U
SW-4	Mar-10	Trichloroethene	0.17	J

U The compound was not detected above method detection limit

J Data indicates the presence of a compound detected at less than the quantitation limit. The value is approximate.

D Concentration was reported from a diluted analysis. The value is approximate.

TABLE 9 SYSTEM PERFORMANCE SUMMARY FORMER LEC SITE - WATCHUNG, NEW JERSEY

Sample Month	Influent TCE (ug/L)	Mid TCE (ug/L)	Effluent TCE (ug/L)	Average Pumping Rate (gpm)	Monthly Pumpage (MGM)	RW-1 Water Level (feet)
July 2003	62	ND	ND	133	2.31	43.8
August 2003	470	ND	ND	128	5.53	44.9
September 2003	62	ND	ND	128	5.51	44.6
October 2003	470	ND	ND	123	5.31	41.8
November 2003	510	58	ND	124	5.36	44.1
December 2003	650 430	160 310	ND 1.2	138 139	5.97 6	50.3 51.5
January 2004 February 2004	450	460	ND	139	5.85	52.5
March 2004	480	190	2.8	132	5.72	54
April 2004	370	340	2.0	130	5.57	49.9
May 2004	350	320	2.0	135	6.02	53.7
June 2004	370	3.3	0.8	100	4.32	55.8
July 2004	420	3.9	1.0	133	5.73	45.01
August 2004	390	53	0.6	132	5.72	53.73
September 2004	480	200	0.7	128	5.55	58.63
October 2004	400	1.2	0.5	105	4.52	56.06
November 2004 December 2004	400 360	16 73	0.4 0.4	136 119	5.89 5.13	41.79 55.19
January 2005	330	180	0.5	136	5.86	54.42
February 2005	380	260	ND	125	5.40	47.06
March 2005	370	47	ND	122	5.25	60.19
April 2005	350	130	0.4	144	6.23	52.3
May 2005	330	190	ND	128	5.52	60.8
June 2005	360	1.8	0.5	118	5.10	62.6
July 2005	360	5.1	0.5	129	5.58	61
August 2005	270	76	0.6	127	5.47	66.3
September 2005	240	120	NS	126	5.43	62.4
October 2005	320	2.9	0.5	83	3.57	49.9
November 2005	280	9	NS	127	5.47	58.9
December 2005	280	67	NS	127	5.48	56.5
January 2006 February 2006	210 180	100 1.6	NS 1.0	126 120	5.46	60 50 0
March 2006	260	4.1	NS	120	5.17 5.47	58.8 59.2
April 2006	230	14	1.2	127	5.27	56.7
May 2006	180	55	NS	129	5.59	64.9
June 2006	200	120	1.4	125	5.41	59.3
July 2006	180	180	NS	118	5.10	55
August 2006	200	200	NS	95	4.11	56.2
September 2006	150	27	1.5	103	4.46	58.4
October 2006	170	44	NS	121	5.24	60.1
November 2006	170	69	NS	125	5.39	58.4
December 2006	120	86	1.5	123	5.30	61.8
January 2007	85	110	NS	119	5.14	58.7
February 2007	90	4.7	NS 1.7	120	5.17	66.8
March 2007 April 2007	60 74	4 17	1.7 NS	104 106	4.49 4.59	57.5 58.1
May 2007	71	31	NS NS	123	5.32	59.4
June 2007	56	37	NS	130	5.60	58.1
July 2007	53	50	1.7	127	5.48	65.4
August 2007	26	50	NS	125	5.42	65.6
September 2007	29	43	NS	113	4.87	66.7
October 2007	24	11	2.5	71	3.08	61.5
November 2007	16	11	NS	87	3.76	64.7
December 2007	16	13	1.3	128	5.54	66
January 2008	12	13	NS NS	127	5.51	62.3
February 2008 March 2008	6.5 5.5	12 12	NS 1.4	129 88	5.57 3.78	57.4 63.5
April 2008	4.1	11	NS	129	5.57	60.8
May 2008	1.8	7.9	NS NS	129	5.55	65.0
June 2008	8.9	0.9	1.4	128	5.52	64.2
July 2008	1.4	8.3	NS	124	5.34	63.6
August 2008	1.2	6.7	NS	118	5.11	64.1
September 2008	1.1	6.2	1.6	118	5.12	63.4
October 2008	ND	6.8	NS	126	5.43	68.7
November 2008	1.4	6.3	NS	129	5.56	65.2
December 2008	1.3	5.8	2.5	123	5.30	63.4
January 2009	1.2	4.6	NS	128	5.51	69.6
February 2009	1.4	5.9	NS	125	5.39	69.1
March 2009 April 2009	1.2 1.4	4.5 6.2	3.6 NS	121 118	5.23 5.09	70.9 66.7
May 2009	1.4	4.9	NS NS	112	4.82	64.7
June 2009	1.1	4.7	NS NS	120	5.14	64.0
July 2009	1.1	5.5	NS	103	4.41	59.5
August 2009	1.2	5.6	3.3	109	4.67	69.7
September 2009	1.4	5.1	NS	125	5.38	71.4
October 2009	1.3	4.8	NS	120	5.20	71.0
November 2009	1.0	3.8	1.4	115	4.96	64.5
December 2009	0.54 J	3.9	NS	116	5.00	70.4
		2 5	1.2	125	5.40	71.8
January 2010 February 2010	1.1 1.2	3.5 3.8	NS	123	5.40 5.26	70.6

Not sampled, only need to sample effluent one time per quarter as per NJPDES Permit
Not detected
micrograms/Liter
gallons per minute
million gallons per month NS ND ug/L gpm MGM

TABLE 10 IMPLEMENTATION SCHEDULE FORMER LEC SITE - WATCHUNG, NEW JERSEY

	2010	2011
TASKS	Aug Sept Oct Nov Dec	Jan Feb Mar Apr May
System Monitoring and Sampling		
Submission of Sensitive Population Resource Checklist		
Ground Water/Surface Water Sample Collection and Analysis		
Report Preparation		
Remedial Action Progress Report to NJDEP		

APPENDICES

APPENDIX A

APPENDIX A

NJDEP Contour Map Reporting Forms

Shallow Zone September 8, 2009

1.	Did any surveyed well casing elevations change from the previous sampling event? YesNoX. If yes, attach new "Well Certification - Form B" and identify the reason for the elevation change (damage to casing, installation of recovery system in monitoring well, etc.).
2.	Are there any monitoring wells in unconfined aquifers in which in which the water table elevation is higher than the top of the well screen? Yes XNO
	All the wells used in the construction of contours are for monitoring a chlorinated solvent plume. The well screens are typically below static water level.
3.	Are there any monitoring wells present at the site but omitted from the contour map? Yes NoX . Unless the omission of the well(s) has been previously approved by the Department, justify the omissions.
4.	Are there any monitoring wells containing separate phase product during this measuring event? Yes NoX. Were any of the monitoring wells with separate phase product included in the ground water contour map? Yes No If yes, show the formula used to correct the water table elevation.
5.	Has the ground water flow direction changed more than 45° from the previous ground water contour map? Yes No _X If yes, discuss the reasons for the change.
6.	Has ground water mounding and/or depressions been identified in the ground water contour map? Yes X No Unless the ground water mounds and/or depressions are caused by the ground water remediation system, discuss the reasons for this occurrence.
7.	Are all the wells used in the contour map screened in the same water-bearing zone? Yes X No
8.	Were the ground water contours computer generated, computer aided, or hand-drawn ? If computer aided or generated, identify the interpolation method(s) used.

$\underline{\textbf{CONTOUR MAP REPORTING FORM}} -$

Intermediate Zone September 8, 2009

1.	Did any surveyed well casing elevations change from the previous sampling event? YesNoX. If yes, attach new "Well Certification - Form B" and identify the reason for the elevation change (damage to casing, installation of recovery system in monitoring well, etc.).
2.	Are there any monitoring wells in unconfined aquifers in which in which the water table elevation is higher than the top of the well screen? YesNo \underline{X} . If yes, identify these wells.
	The wells used in this contour map are screened within an intermediate bedrock zone.
3.	Are there any monitoring wells present at the site but omitted from the contour map? Yes $No X$. Unless the omission of the well(s) has been previously approved by the Department, justify the omissions.
4.	Are there any monitoring wells containing separate phase product during this measuring event? Yes No X. Were any of the monitoring wells with separate phase product included in the ground water contour map? Yes No If yes, show the formula used to correct the water table elevation.
5.	Has the ground water flow direction changed more than 45° from the previous ground water contour map? Yes NoX. If yes, discuss the reasons for the change.
6.	Has ground water mounding and/or depressions been identified in the ground water contour map? Yes X No Unless the ground water mounds and/or depressions are caused by the ground water remediation system, discuss the reasons for this occurrence.
7.	Are all the wells used in the contour map screened in the same water-bearing zone? Yes X No If no, justify inclusion of those wells. See Table 3 for the wells used in the intermediate zone contour map
8.	Were the ground water contours computer generated, computer aided, or hand-drawn ? If computer aided or generated, identify the interpolation method(s) used.

Deep Zone September 8, 2009

1.	Did any surveyed well casing elevations change from the previous sampling event? YesNoX. If yes, attach new "Well Certification - Form B" and identify the reason for the elevation change (damage to casing, installation of recovery system in monitoring well, etc.).
2.	Are there any monitoring wells in unconfined aquifers in which in which the water table elevation is higher than the top of the well screen? Yes No \underline{X} . If yes, identify these wells.
	The wells used in this contour map are screened within the deep bedrock zone.
3.	Are there any monitoring wells present at the site but omitted from the contour map? Yes $\underline{\hspace{1cm}}$ No $\underline{\hspace{1cm}}$. Unless the omission of the well(s) has been previously approved by the Department, justify the omissions.
4.	Are there any monitoring wells containing separate phase product during this measuring event? Yes NoX. Were any of the monitoring wells with separate phase product included in the ground water contour map? Yes No If yes, show the formula used to correct the water table elevation.
5.	Has the ground water flow direction changed more than 45° from the previous ground water contour map? Yes No _ <u>X</u> . If yes, discuss the reasons for the change.
6.	Has ground water mounding and/or depressions been identified in the ground water contour map? YesNoX Unless the ground water mounds and/or depressions are caused by the ground water remediation system, discuss the reasons for this occurrence.
7.	Are all the wells used in the contour map screened in the same water-bearing zone? Yes X No
8.	Were the ground water contours computer generated, computer aided, or hand-drawn ? If computer aided or generated, identify the interpolation method(s) used.

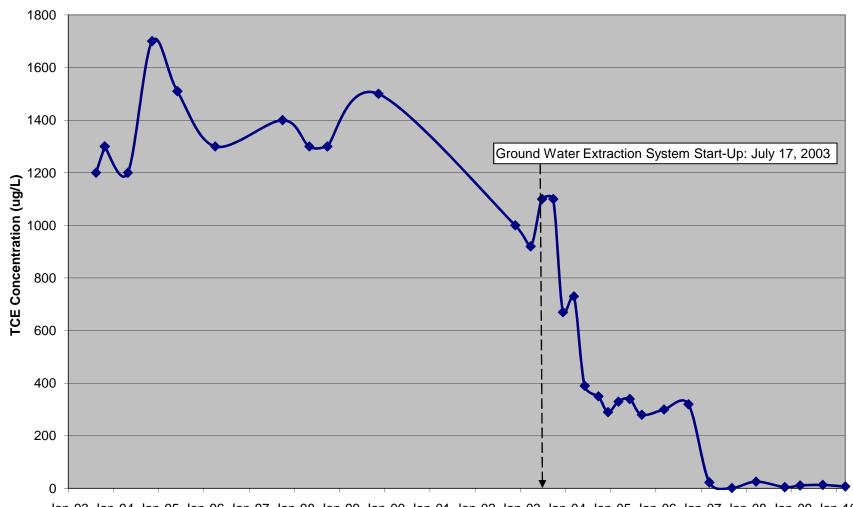
Shallow Zone March 9, 2010

1.	Did any surveyed well casing elevations change from the previous sampling event? YesNoX. If yes, attach new "Well Certification - Form B" and identify the reason for the elevation change (damage to casing, installation of recovery system in monitoring well, etc.).
2.	Are there any monitoring wells in unconfined aquifers in which the water table elevation is higher than the top of the well screen? Yes \underline{X} No $\underline{\hspace{1cm}}$. If yes, identify these wells.
	All the wells used in the construction of contours are for monitoring a chlorinated solvent plume. The well screens are typically below static water level.
3.	Are there any monitoring wells present at the site but omitted from the contour map? YesNoX. Unless the omission of the well(s) has been previously approved by the Department, justify the omissions.
4.	Are there any monitoring wells containing separate phase product during this measuring event? Yes NoX. Were any of the monitoring wells with separate phase product included in the ground water contour map? Yes No If yes, show the formula used to correct the water table elevation.
5.	Has the ground water flow direction changed more than 45° from the previous ground water contour map? Yes No _X If yes, discuss the reasons for the change.
6.	Has ground water mounding and/or depressions been identified in the ground water contour map? YesX_No Unless the ground water mounds and/or depressions are caused by the ground water remediation system, discuss the reasons for this occurrence.
7.	Are all the wells used in the contour map screened in the same water-bearing zone? Yes X No If no, justify inclusion of those wells. See Table 3-includes the wells listed in shallow zone which are included on the contour map.
8.	Were the ground water contours computer generated, computer aided, or hand-drawn ? If computer aided or generated, identify the interpolation method(s) used.

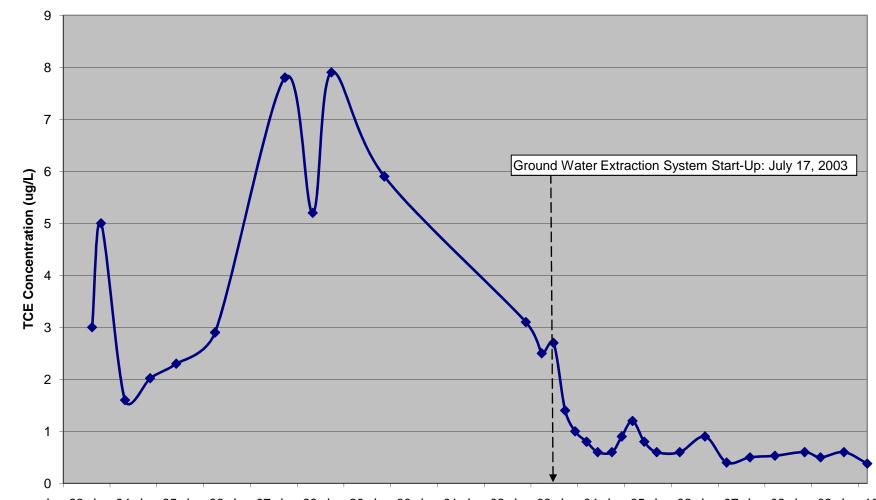
Intermediate Zone March 9, 2010

1.	Did any surveyed well casing elevations change from the previous sampling event? YesNoX. If yes, attach new "Well Certification - Form B" and identify the reason for the elevation change (damage to casing, installation of recovery system in monitoring well, etc.).
2.	Are there any monitoring wells in unconfined aquifers in which the water table elevation is higher than the top of the well screen? Yes_No \underline{X} . If yes, identify these wells.
	The wells used in this contour map are screened within an intermediate bedrock zone.
3.	Are there any monitoring wells present at the site but omitted from the contour map? YesNo_X. Unless the omission of the well(s) has been previously approved by the Department, justify the omissions.
4.	Are there any monitoring wells containing separate phase product during this measuring event? Yes NoX. Were any of the monitoring wells with separate phase product included in the ground water contour map? Yes No If yes show the formula used to correct the water table elevation.
5.	Has the ground water flow direction changed more than 45° from the previous ground water contour map? Yes No _ <u>X</u> . If yes, discuss the reasons for the change.
6.	Has ground water mounding and/or depressions been identified in the ground water contour map? Yes X No Unless the ground water mounds and/or depressions are caused by the ground water remediation system, discuss the reasons for this occurrence.
7.	Are all the wells used in the contour map screened in the same water-bearing zone? Yes X No If no, justify inclusion of those wells. See Table 3 for the wells used in the intermediate zone contour map
8.	Were the ground water contours computer generated, computer aided, or hand-drawn Yere the ground water contours computer generated, computer aided, or hand-drawn Yere the ground water contours computer generated, computer aided, or hand-drawn

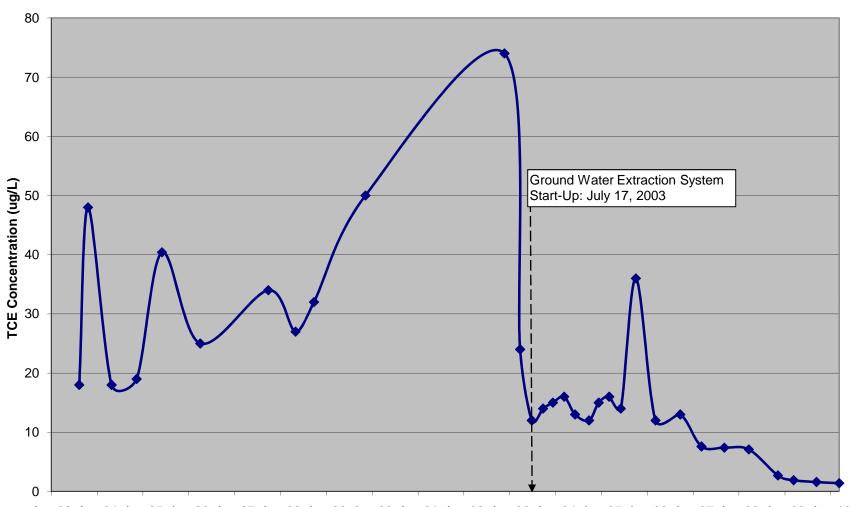
Deep Zone March 9, 2010

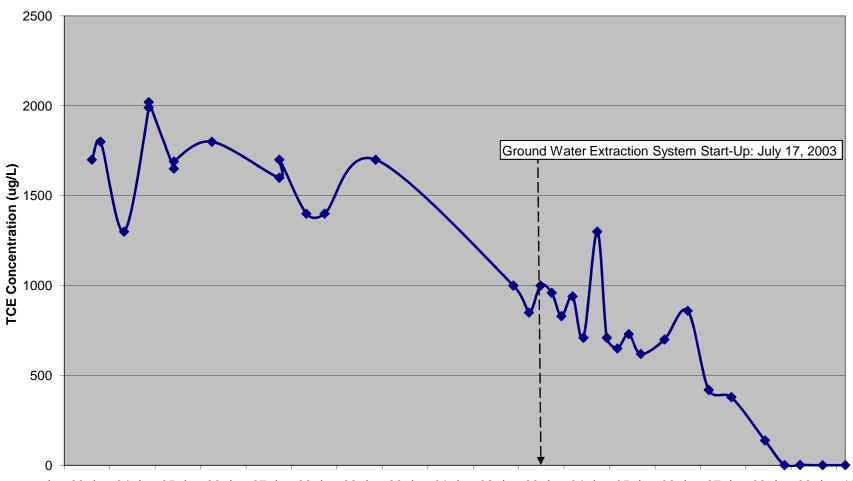

1.	Did any surveyed well casing elevations change from the previous sampling event? YesNoX. If yes, attach new "Well Certification - Form B" and identify the reason for the elevation change (damage to casing, installation of recovery system in monitoring well, etc.).
2.	Are there any monitoring wells in unconfined aquifers in which the water table elevation is higher than the top of the well screen? Yes_No \underline{X} . If yes, identify these wells.
	The wells used in this contour map are screened within the deep bedrock zone.
3.	Are there any monitoring wells present at the site but omitted from the contour map? Yes $\underline{\hspace{1cm}}$ No $\underline{\hspace{1cm}}$ X . Unless the omission of the well(s) has been previously approved by the Department, justify the omissions.
4.	Are there any monitoring wells containing separate phase product during this measuring event? Yes NoX. Were any of the monitoring wells with separate phase product included in the ground water contour map? Yes No If yes, show the formula used to correct the water table elevation.
5.	Has the ground water flow direction changed more than 45° from the previous ground water contour map? Yes NoX If yes, discuss the reasons for the change.
6.	Has ground water mounding and/or depressions been identified in the ground water contour map? YesNoX Unless the ground water mounds and/or depressions are caused by the ground water remediation system, discuss the reasons for this occurrence.
7.	Are all the wells used in the contour map screened in the same water-bearing zone? Yes \underline{X} No If no, justify inclusion of those wells. See Table 3 for the wells used in the deep zone contour map
8.	Were the ground water contours computer generated $\underline{\hspace{0.1cm}}$, computer aided $\underline{\hspace{0.1cm}}$, or hand-drawn $\underline{\hspace{0.1cm}}$? If computer aided or generated, identify the interpolation method(s) used.

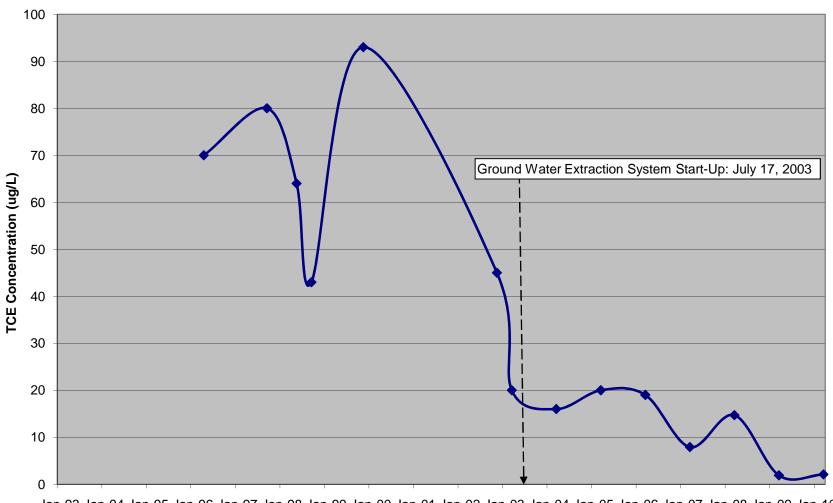
APPENDIX B

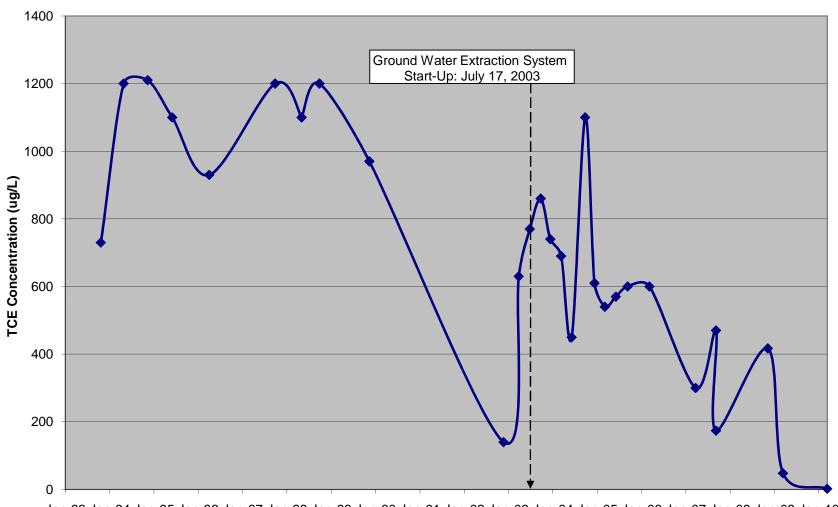

APPENDIX B

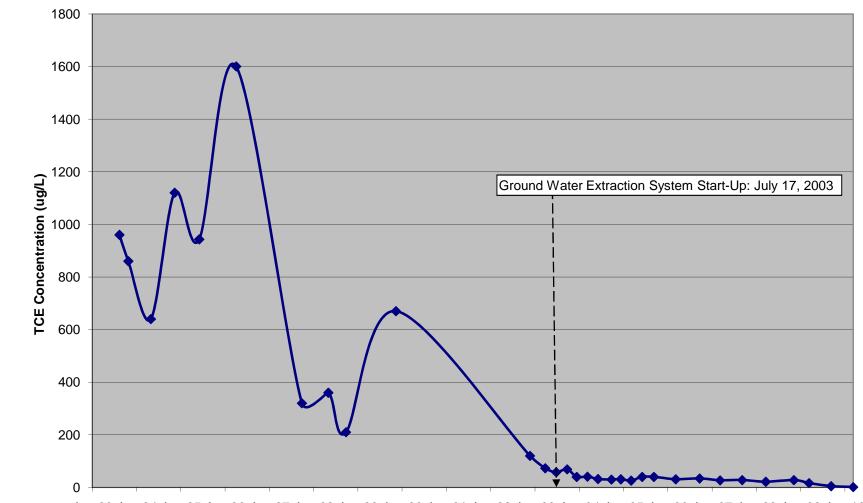
Plots of TCE Concentration Versus Time for Selected Monitoring Wells

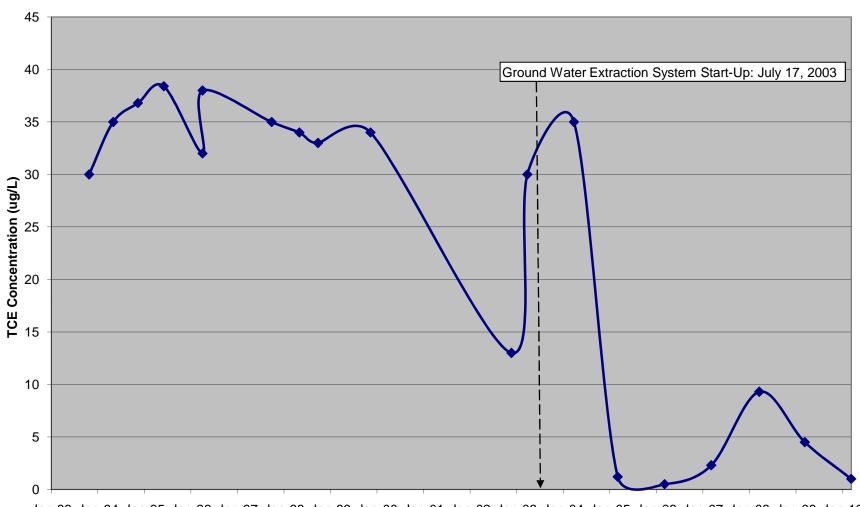

Well MW-502S Historical TCE Concentrations

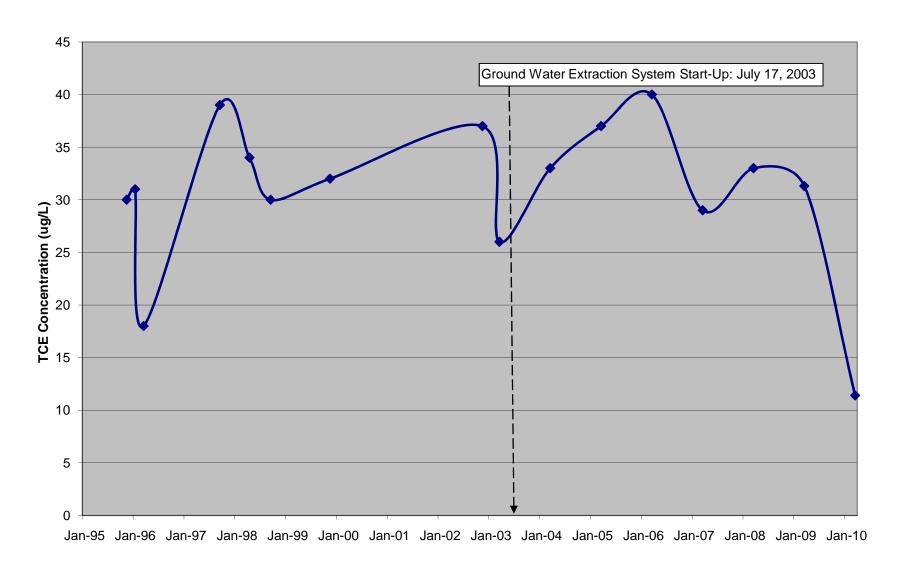

Well MW-502l Historical TCE Concentrations

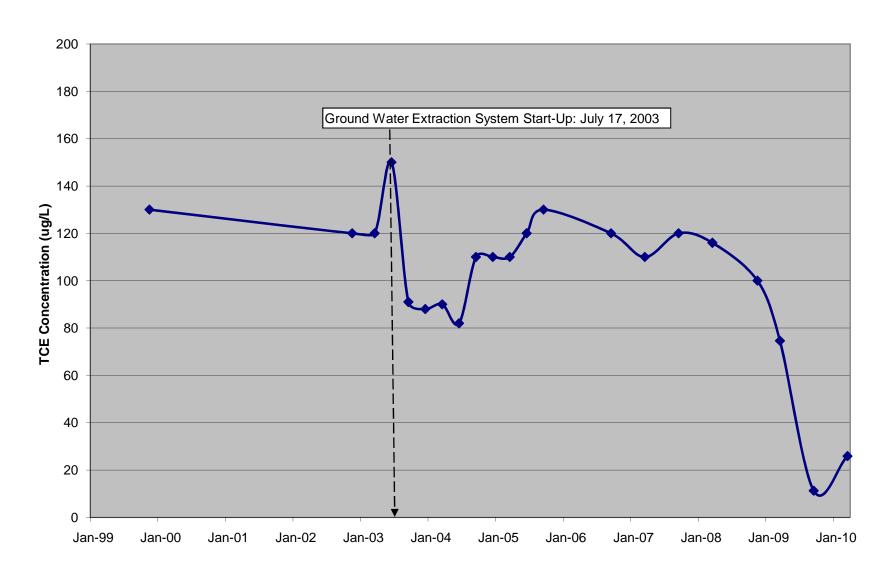

Well MW-506S Historical TCE Concentrations

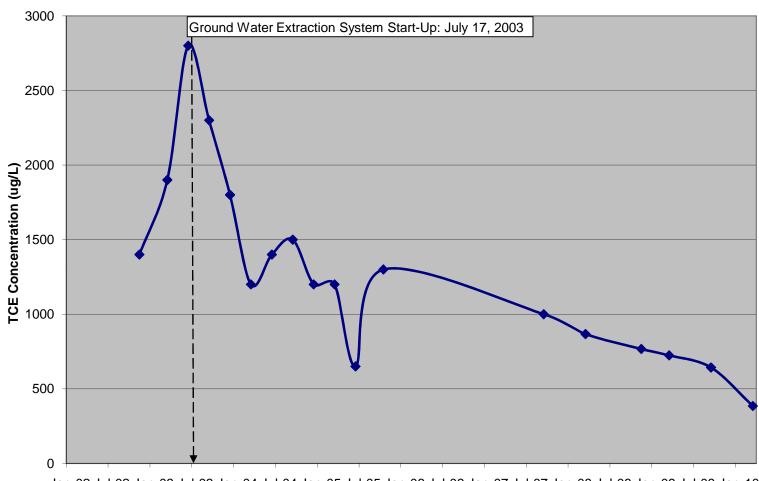

Well MW-506l Historical TCE Concentrations


Well MW-507S **Historical TCE Concentrations**

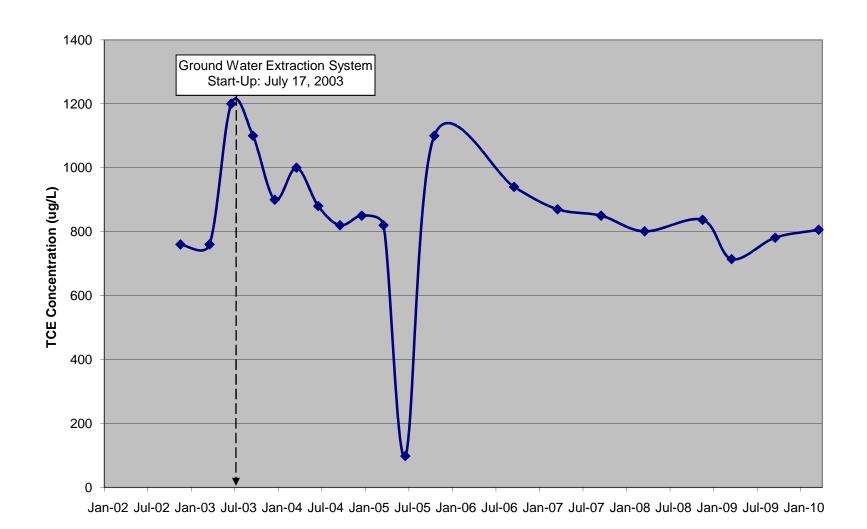

Well MW-507I
Historical TCE Concentrations


Well MW-508S Historical TCE Concentrations

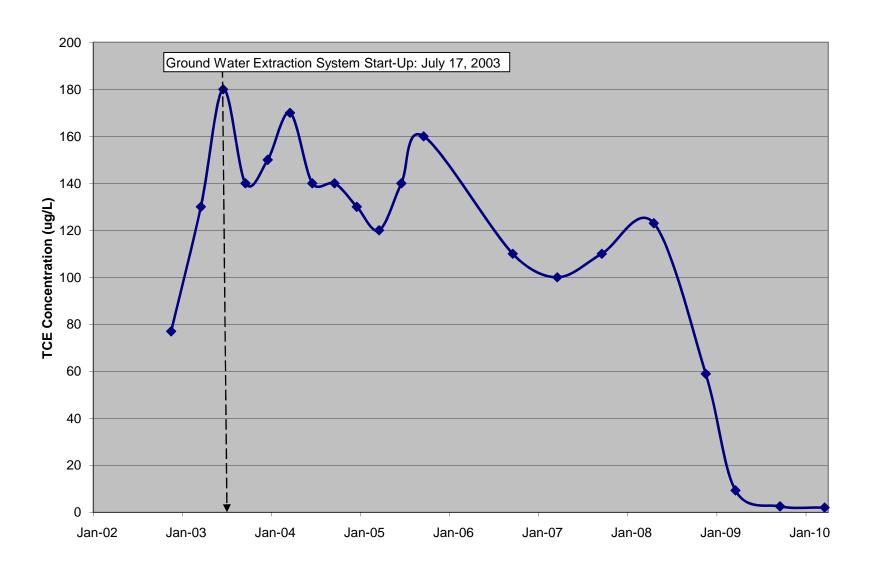

Well MW-508D Historical TCE Concentrations


Well MW-532D Historical TCE Concentrations

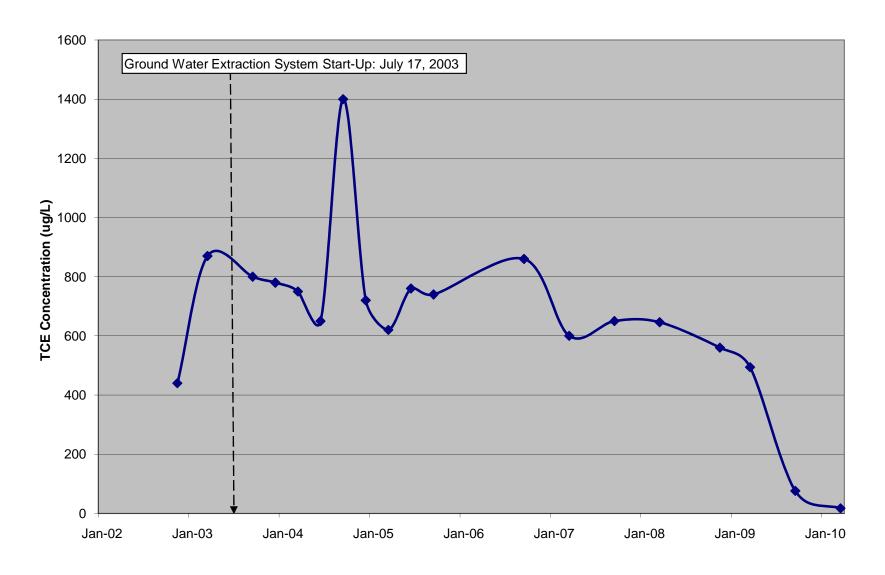
Well MW-546D Historical TCE Concentrations

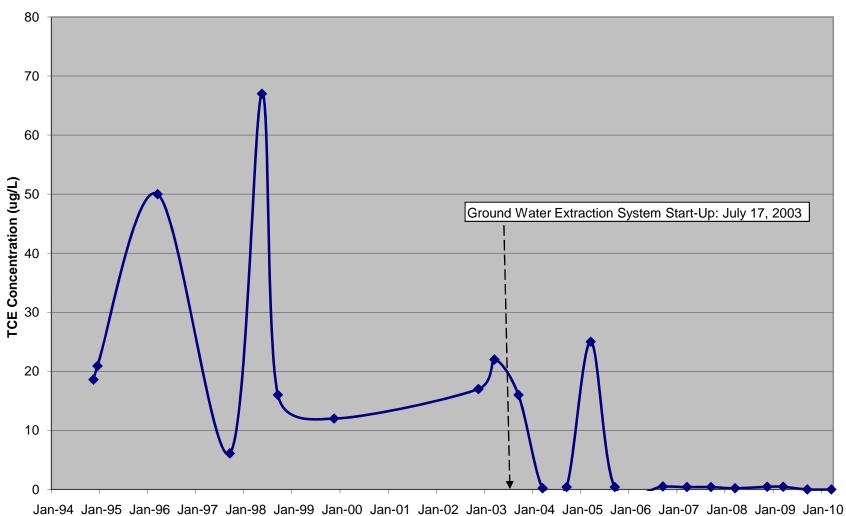


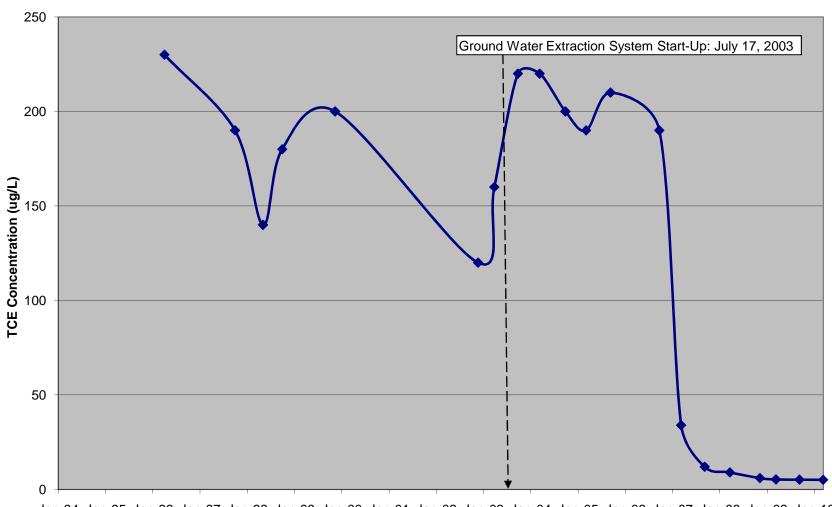
Well MW-549S Historical TCE Concentrations



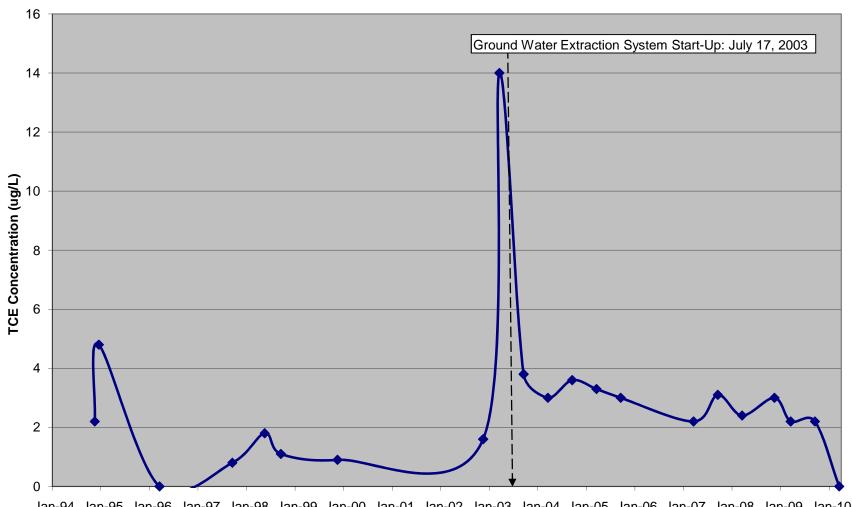
Jan-02 Jul-02 Jan-03 Jul-03 Jan-04 Jul-04 Jan-05 Jul-05 Jan-06 Jul-06 Jan-07 Jul-07 Jan-08 Jul-08 Jan-09 Jul-09 Jan-10


Well MW-549I Historical TCE Concentrations


Well MW-550S Historical TCE Concentrations


Well MW-550I Historical TCE Concentrations

Well PZ-522S **Historical TCE Concentrations**



Well PZ-522I
Historical TCE Concentrations

Jan-94 Jan-95 Jan-96 Jan-97 Jan-98 Jan-99 Jan-00 Jan-01 Jan-02 Jan-03 Jan-04 Jan-05 Jan-06 Jan-07 Jan-08 Jan-09 Jan-10

Well PZ-522D **Historical TCE Concentrations**

Jan-94 Jan-95 Jan-96 Jan-97 Jan-98 Jan-99 Jan-00 Jan-01 Jan-02 Jan-03 Jan-04 Jan-05 Jan-06 Jan-07 Jan-08 Jan-09 Jan-10

APPENDIX C

APPENDIX C

Stream Sampling Field Measurements

TRC Environmental Corporation SAMPLE DATA RECORD: Crab Brook

Site ID:	Former LEC Site	Sample 1	Date: 9/8/2009
Stream Location:	Crab Brook	Sample T	Гіте: 0:00
Sample Location:	SW-1 Water Bod	y Sample Type:	Surface Water Sample
Sample ID:	SW-1	Decon (y/n)	
Sample Collection Method:	Grab Velocity(ft3/sec)): 0.50 F	low Rate(gpm): 225.1
Sample Appearance/Odor:	Clear	Sampler(s):	JO/TD_
рН	6.99	Temperature	19.02
Conductivity	0.819 mS/cm	Salinity	
Turbidity	8.3	Eh	288
DO	7.59		
Sample Bottles ID SW-1	Sample EPA Method	624+10	
Notes:		HORIBA U-22	
Location Sketch Leanc	woods	elmont	
Flow Direction	Collected sample	e at SW-1	
	woods		

Stream Location: Belmont & Leanord

SW-1	Width	Depth	Velocity	Stream Flov	v Stream Flow
	(ft)	(ft)	(ft/sec)	(ft3/sec)	(gpm)
#1	1.25	1.08	ND	0.0	0.0
#2	1.25	0.75	ND	0.0	0.0
#3	1.25	0.38	1.50	0.4	157.8
#4	1.25	0.16	1.50	0.2	67.3
Total Width	n 5.0			0.50	225.1

TRC Environmental Corporation SAMPLE DATA RECORD : Crab brook

Site ID:	Former LEC Site	Sample Date: 9/9/2009
Site ID.	Former LEC Site	Sample Date. 9/9/2009
Stream Location:	Crab Brook	Sample Time: 9:58
Sample Location:	SW-2 Water Body	Sample Type: Surface Water Sample
Sample ID:	SW-2	Decon (y/n)
Sample Collection Method:	Grab Velocity(ft3/sec):	: 0.70 Flow Rate(gpm): 314.8
Sample Appearance/Odor:	Clear	Sampler(s): JO/TJB
рН	7.44	Temperature 16.33
Conductivity	0.757 mS/cm	Salinity
Turbidity	12.6	Eh <u>254</u>
DO	8.38	
Sample Bottles ID SW-2	_Sample EPA Method	624+10
Notes:		HORIBA U-22
Location Sketch PLOCATION Sketch PLOCATION Sketch	Collected surface water sample SW-2	er

Stream Location: North Drive

SW-2	Width	Depth	Velocity	Stream Flow	Stream Flow
	(ft)	(ft)	(ft/sec)	(ft3/sec)	(gpm)
#1	0.8	0.08	ND	0.0	0.0
#2	0.8	0.08	0.70	0.05	20.9
#3	0.8	0.10	0.90	0.1	33.6
#4	0.8	0.25	1.4	0.3	125.7
#5	0.8	0.25	1.5	0.3	134.6
Total Widtl	h 4.0	•	•	0.70	314.8

TRC Environmental Corporation SAMPLE DATA RECORD : Crab Brook

Site ID:	Former LEC Site	Samı	ole Date: 9/9/2009
Site 15.	Tornier EEC Site	Sump	sic Bacc. 3/3/2003
Stream Location:	Crab Brook	Samp	le Time: 9:40
Sample Location:	SW-3 Water Bo	ody Sample Type:	Surface Water Sample
Sample ID:	SW-3	Decon (y/n)	
Sample Collection Method:	Grab Velocity(ft3/s	sec): 0.49	Flow Rate(gpm): 221.5
Sample Appearance/Odor:	Clear	Sampler(s):	ЈО/ТЈВ
рН	7.70	Temperature	17.02
Conductivity	0.780 mS/cm	Salinity	
Turbidity	7.6	Eh	275
DO	8.41		
Sample Bottles ID SW-3	Sample EPA Method	624+10	
Notes:		HORIBA U-2	22
Collected surface sample SW-3 Flow Direction		stervelt	

Stream Location: Westervelt Avenue

SW-3	Width	Depth	Velocity	Stream Flow	Stream Flow
	(ft)	(ft)	(ft/sec)	(ft3/sec)	(gpm)
#1	1.4	0.25	ND	0.05	23.6
#2	1.4	0.25	0.30	0.11	47.1
#3	1.4	0.33	0.50	0.23	103.7
#4	1.4	0.33	ND	0.07	31.1
#5	1.4	0.17	ND	0.04	16.0

Total Width 7.0 0.49 221.5

TRC Environmental Corporation SAMPLE DATA RECORD : Crab Brook

Site ID:	Former LEC Si	ite Sar	nple Date: 9/9/2009
Stream Location:	Crab Brook	San	nple Time: 9:25
Sample Location:	SW-4	Water Body Sample Type:	Surface Water Sample
Sample ID:	SW-4	Decon (y/n)	
Sample Collection Method:	Grab Vo	elocity(ft3/sec): 0.31	Flow Rate(gpm): 137.9
Sample Appearance/Odor:	Clear	Sampler(s):	JO/TJB_
рН	7.58	Temperature	17.7
Conductivity	0.785 mS/cm	Salinity	
Turbidity	6.4	Eh	293
DO	8.77		
Sample Bottles ID SW-4	_	624+10	
Notes:		HORIBA U	-22
Collected surface was ample SW-4 location Flow Direction		Watchung Avenue	
Stream Location: Watcung Avenue		'	
SW-4 Width	Depth	Velocity Stream Flow St	ream Flow

S VV -4	w iuui	Depui	velocity	Sueam Flow	Sueam Flow	
	(ft)	(ft)	(ft/sec)	(ft3/sec)	(gpm)	
#1	0.8	0.30	0.36	0.0864	38.8	
#2	0.8	0.30	0.32	0.0768	34.5	
#3	0.8	0.30	0.14	0.0336	15.1	
#4	0.8	0.30	0.22	0.0528	23.7	
#5	0.8	0.30	0.24	0.0576	25.9	

Total Width 4.0 0.3072 137.9

TRC Environmental Corp. SAMPLE DATA RECORD: Crab Brook

Job # 2542

Site ID:	Former LEC Site	Sample Date:	3/9/2010
Stream Location:	Crab Brook	Sample Time:	13:00
Sample Location:	SW-1 Water Body	Sample Type: Su	rface Water Sample
Sample ID:	SW-1	Decon (y/n)	
Sample Collection Method:	Grab Velocity(ft3/sec):	0.08 Flow F	Rate(gpm): 37.8
Sample Appearance/Odor:	Clear	Sampler(s):	JO/TD
рН	9.20	Temperature	11.11
Conductivity	<u>0.783 mS</u> /cm	Salinity	
Turbidity	0.2	Eh	-87
DO	N/A		
Sample Bottles ID SW-1	Sample EPA Method	624+10	
Notes: Dissolved oxy	gen measuremetns not availa	HORIBA U-22 able due to meter malfuncti	ion
Location Sketch Leanord	Woods	nont	
Flow Direction	Collected sample	at SW-1	

Stream Location: Belmont & Leanord

SW-1	Width	Depth	Velocity	Stream Flov	v Stream Flow
	(ft)	(ft)	(ft/sec)	(ft3/sec)	(gpm)
#1	1.00	0.98	ND	0.000	0.0
#2	1.00	0.75	0.10	0.000	0.0
#3	1.00	0.38	0.30	0.056	25.2
#4	1.00	0.16	0.35	0.028	12.6
Total Width	4.0			0.08	37.8

TRC Environmental Corp. SAMPLE DATA RECORD : Crab brook

Job # 2542

Site ID:	Former LEC Site/ Watchung, NJ Sa	imple Date: 3/9/2010
Stream Location:	Crab Brook San	mple Time: 12:50
Sample Location:	SW-2 Water Body Sample Type:	Surface Water Sample
Sample ID:	SW-2 Decon (y/n) y	/es
Sample Collection Method:	Bailer Velocity(ft3/sec): 0.15	Flow Rate(gpm): 67.5
Sample Appearance/Odor:	Clear Sampler(s):	JO/TD
рН	8.41 Temperature	11.5
Conductivity	0.87 Salinity	<u></u>
Turbidity	Eh	-67
DO	N/A	
Sample Bottles ID <u>SW-2</u>	Sample EPA Method 624+10	
Notes: HORIBA U-22 Dissolved oxygen measuremetrs not available due to meter malfunction		
Location Sketch North Drive Flow Direction	Collected surface water sample SW-2	

Stream Location	
North Drive	

1101	III DIIVC				
SW-2	Width	Depth	Velocity	Stream Flow Stream Flow	
	ft	ft	ft/sec	ft3/sec	gpm
#1	1.80	0.42	0.15	0.057	25.4
#2	1.80	0.29	0.16	0.042	18.7
#3	1.80	0.29	0.13	0.034	15.2
#4	1.80	0.25	0.08	0.018	8.1
#5	1.80	0.17	0.10	0.015	6.9
Total Width 9.0			0.15	67.5	

TRC Environmental Corp. SAMPLE DATA RECORD : Crab Brook

Job # 2542

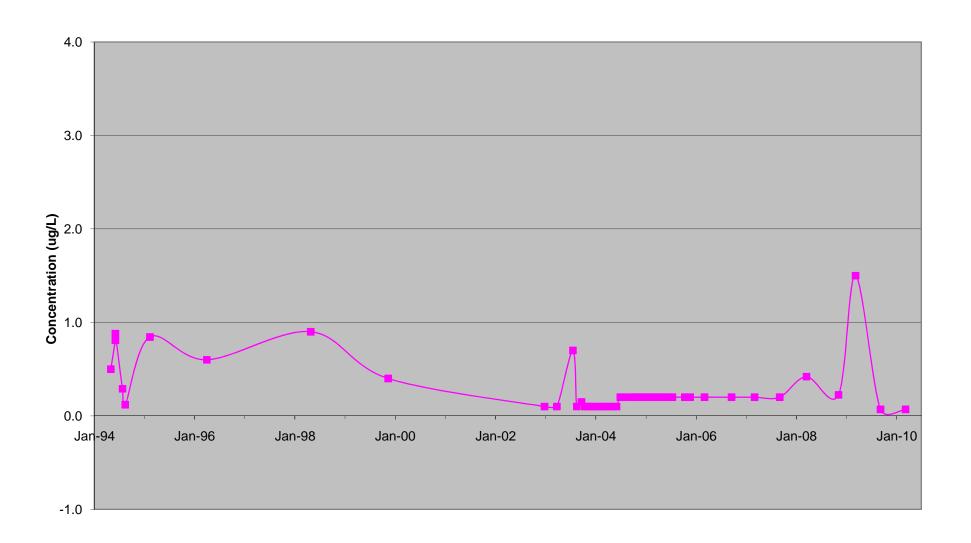
			J00 # 2342		
Site ID:	Former LEC	Site/ Watchung, NJ Sa	mple Date: 3/9/2010		
Stream Location:	Crab Brook	Sai	mple Time: 12:20		
Sample Location:	SW-3	Water Body Sample Type:	Surface Water Sample		
Sample ID:	SW-3	Decon (y/n)	yes		
Sample Collection Method:	Bailer	Velocity(ft3/sec): 0.18	Flow Rate(gpm): 81.68		
Sample Appearance/Odor: Clear Sampler(s): JO/TD					
рН	8.68	Temperature	11.0		
Conductivity	0.824	Salinity	<u></u>		
Turbidity	0	Eh	-76.0		
DO	N/A				
Sample Bottles ID SW-3	Sample EPA	Method <u>624+10</u>			
Notes: HORIBA U-22 Dissolved oxygen measuremetns not available due to meter malfunction					
Collected surface water sample SW-3 Flow Direction Westervelt Avenue					
Stream Location					

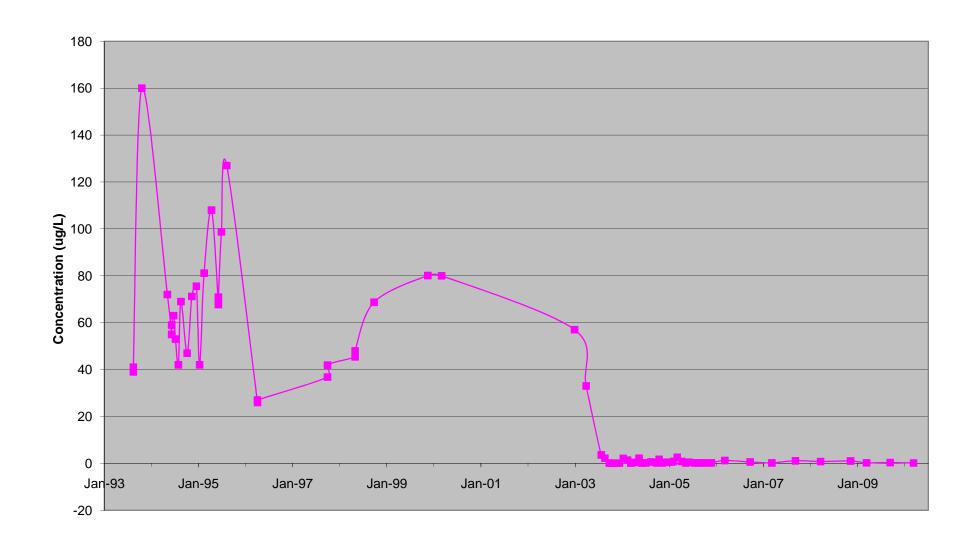
Stream Location	
Westervelt Avenue	

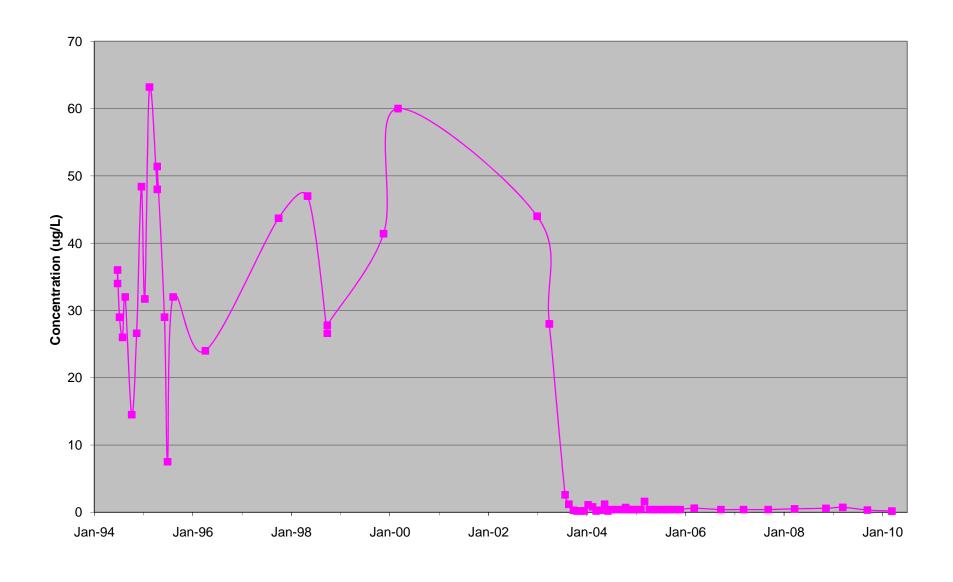
SW-3	Width	Depth	Velocity	Stream Flow Stream Flow	
	ft	ft	ft/sec	ft3/sec	gpm
#1	1.40	0.30	0.30	0.1	28.3
#2	1.40	0.40	0.20	0.1	25.1
#3	1.40	0.45	0.10	0.0	14.1
#4	1.40	0.45	0.10	0.0	14.1
#5	1.40	0.40	0.10	0.0	12.6
Total Width 7.0				0.18	81.7

TRC Environmental Corp. SAMPLE DATA RECORD : Crab Brook

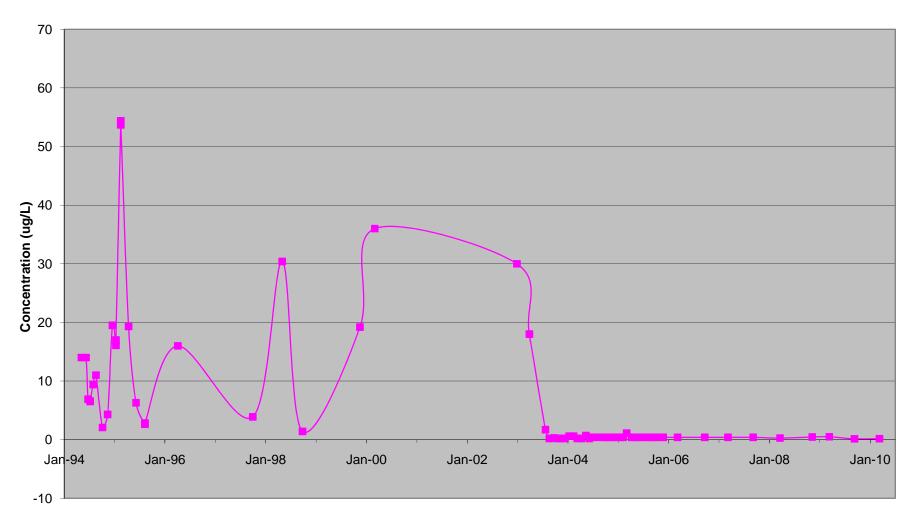
Job # 2542


Site ID:	Former I EC	Site/ Watchung, NJ	Sample Date: 3/9/2010		
SIC ID.	TOITHEI LEC	Site/ watching, NJ	Sample Date. 3/3/2010		
Stream Location:	Crab Brook	S	Sample Time: 12:00		
Sample Location:	SW-4	Water Body Sample Type:	Surface Water Sample		
Sample ID:	SW-4	Decon (y/n)			
Sample Collection Method:	Bailer	Velocity(ft3/sec): 0.20	Flow Rate(gpm): 88.86		
Sample Appearance/Odor: Clear Sampler(s): JO/TD					
рН	7.87	Temperatur	e 9.24		
Conductivity	0.878	Salinity			
Turbidity	0.7	Eh			
DO	N/A				
Sample Bottles ID SW-4 624+10					
Notes: HORIBA U-22 Dissolved oxygen measuremetns not available due to meter malfunction					
Location Sketch Collected surface water sample SW-4 location. Flow Direction Watchung Avenue					
Stream Location					


20100	III Location				
Watc	ung Avenue				
SW-4	Width	Depth	Velocity	Stream Flow Stream Flow	
	ft	ft	ft/sec	ft3/sec	gpm
#1	1.20	0.30	0.10	0.018	8.1
#2	1.20	0.35	0.30	0.063	28.3
#3	1.20	0.30	0.30	0.054	24.2
#4	1.20	0.35	0.30	0.063	28.3
#5	1.20	0.30	0.20	0.036	16.2
Total Width 6.0				0.20	88.9


APPENDIX D

APPENDIX D


Plots of TCE Concentration Versus Time for Stream Locations

TCE Concentrations

