REMEDIAL ACTION CONSTRUCTION AND COMPLETION REPORT

for the

Lockheed West Seattle Superfund Site

Seattle, Washington (U.S. Region 10, CERCLA Docket No. 10-2015-0079)

SEPTEMBER 2020

Issued by:	Date:

FINAL REMEDIAL ACTION CONSTRUCTION AND COMPLETION REPORT

LOCKHEED WEST SEATTLE SUPERFUND SITE REMEDIAL ACTION SEATTLE, WASHINGTON

Prepared for: Lockheed Martin Corporation

Prepared by: Wood Environment & Infrastructure Solutions, Inc. Dalton, Olmsted & Fuglevand, Inc. American Construction Company

September 2020

FINAL REMEDIAL ACTION CONSTRUCTION AND COMPLETION REPORT LOCKHEED WEST SEATTLE SUPERFUND SITE CERTIFICATION STATEMENT

To the best of my knowledge, after thorough investigation, I certify that the information contained in or accompanying this submission is true, accurate, and complete. I am aware there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

Kevin Pearson

Director, Environmental Remediation Corporate Environment, Safety, and Health

Lockheed Martin Corporation

Robert Webb, PE

Engineer of Record

Dalton Olmsted & Fuglevand, Inc.

TABLE OF CONTENTS

Section		Page
Table of	Contents	i
List of F	Photos	iv
List of F	igures	iv
List of T	ables	v
List of A	Appendices	v
	·· ns and Abbreviations	
_	1 Introduction	
	2 Summary of Remedial Design	
2.1	Site Regulatory Background	
2.2	Lockheed West Seattle Site Description	
2.3	Description of Remedial Action Design	
2.3	· · · · · · · · · · · · · · · · · · ·	
2.3	.2 Construction Performance Standards	2-5
2.3	.3 Remedial Action Area	2-6
2.3	.4 Remedial Action Activities	2-7
2.3	.5 Dredging Chemical Criteria	2-8
2.3	.6 Post-ENR and RML Placement Chemical Criteria	2-8
Section	3 Summary of Construction	3-1
3.1	Construction Season 1	3-2
3.2	Construction Season 2	3-3
Section	4 Summary of Remedy Implementation Monitoring	4-1
4.1	Quarry Sampling for Chemistry and Physical Properties	4-2
4.2	Postdredging Sediment Chemistry Monitoring	4-2
4.3	Water Quality Monitoring During In-Water Work	4-3
4.4	Backfill Thickness Monitoring	4-4
4.5	Perimeter Sediment Chemistry Monitoring	4-5
Section	5 Providing a Final Remedy by Meeting RALs and CULs	5-1
5.1	Remedial Action Objectives	5-1
5.2	Risk-Driver Contaminants of Concern	5-2

	5.3	Cleanup Effectiveness	5-2
	5.3.1	Attainment of Remedial Action Levels at Dredge Leave Surface	5-2
	5.3.2	2 Attainment of Cleanup Levels at Site Surface	5-4
S	ection 6	Construction and Supporting Activities	6-1
	6.1	Tribal Coordination	6-1
	6.2	Summary of Daily and Weekly Construction Activities	6-3
	6.3	Backfill Material Quality and Approval	6-4
	6.4	Extension of In-Water Construction Work Windows	6-7
	6.5	Intertidal Shoreline Debris Removal	6-8
	6.6	Open-Water Debris Removal, Dredging, and Residual Management Layer	
	0.04	Placement	
	6.6.1	• •	
	6.6.2 6.6.3		
		3	
	6.6.4 6.6.5		
	6.6.6	1 3	
	6.6.7	·	
	6.7	Shipway Pile Removal, Dredging, and Backfill	
	6.7.1		
	6.7.2		
	6.7.3		
	6.7.4		
	6.7.5		
	6.7.6		
	6.7.7		
	6.8	Enhanced Natural Recovery Layer Placement	
S	ection 7	' Transloading of Dredge Sediments and Debris	
	7.1	Waste Management	
	7.2	American Construction Company	
S		Results of Water Quality Monitoring	
	8.1	Monitoring of Conventional Water Quality Parameters	
		Construction Season 1	

8.1	.2 Construction Season 2	8-6
8.1	.3 Comparison of Water Quality Monitoring Results to Nearby Site	8-8
8.2	Comparison to the Chemical Water Quality Criteria	8-8
8.2	.1 Construction Season 1	8-9
8.2	.2 Construction Season 2	8-12
Section Manag	9 Postconstruction Enhanced Natural Recovery Layer and jement Layer Placement Sampling	
Section	10 Pre- and Postconstruction Perimeter Monitoring	10-1
Section	11 Health & Safety	11-1
Section	12 Green Remediation	12-1
Section	13 End of Construction Season Decontamination	13-1
Section	14 Prefinal and Final Construction Inspections	14-1
Section	15 Institutional Control Implementation and Assurance	15-1
Section	16 Long-Term Monitoring and Maintenance	16-1
Section	17 Lessons Learned	17-1
17.1	Dredge Bucket Type	17-1
17.2	Turbidity	17-1
17.3	Transloading	17-3
17.4	Confirmation Sampling	17-4
17.5	Water Quality Monitoring	17-4
17.6	Enhanced Natural Recovery and Residual Management Layer Mater Placement	
17.7	Notifications	17-6
	18 Costs Incurred by Complying with the Unilateral Administration	
Section	19 References	19-1

LIST OF PHOTOS

Photo 1 Tribal Fisher Deploying Gillnet at Lockheed West Seattle Superfund Site Remedial Construction	
Photo 2 Backfill Material Being Measured to Determine if Material Meets Specific	
Photo 3 Visual Inspection of Riprap at Quarry	6-6
Photo 4 Removal of Shoreline Debris Using Dredge Bucket	
Photo 5 Environmental Dredge Bucket Used During Dredging	
Photo 6 Standard Digging Dredge Bucket Used in Areas of Significant Debris or I	Dense
Sediment	6-11
Photo 7 Geotextile Filter Bag Used Prior to Discharge of Dredge Return Water	6-12
Photo 8 Sampling Vessel Collecting Core Sample	
Photo 9 Core Sample that was Collected for Decision Unit Bottom Sampling	
Photo 10 Placement of Residual Management Layer	
Photo 11 On-board Navigation System Bucket Swing Marks	
Photo 12 Rain Gauge Bucket Retrieval	
Photo 13 Vibratory Pile Extraction	
Photo 14 Placement of Enhanced Natural Recovery Layer by Telebelt	
Photo 15 Uploading of Dredge Material from Barge at Reload Facility	
Photo 16 Excavator Used to Place Pilings in Containers	
Photo 17 Vessel Used for Water Quality Monitoring	
Photo 18 Collection of Sediment Samples after Placement of Enhanced Natural Recovery and Residual Management Layer Material	
Photo 19 Decontamination of Barge Prior to Demobilization	9-2 13-2
Thoto 19 Decontamination of Barge Frior to Demobilization	10-2
LIST OF FIGURES	
Figure 1 Site Vicinity	
Figure 2 Selected Remedy	
Figure 3 Layout of Decision Units (DUs) and Dredged Material Management Units (DMMUs)	3
Figure 4 Status of Work at End of Construction Season 1	
Figure 5 Decision Unit Confirmation Core Sample Planned and Actual Sampling Locations	
Figure 6 Approximate Locations for Rain Gauge Buckets to Measure Residual Management Layer Material Placement Thickness	
Figure 7 Isopach of Design versus As-Constructed Elevations and No-Additional Dredging Buffer Zone in Shipway	
Figure 8 Shipway Confirmation Core Sampling Locations	
Figure 9 Decision Unit 16 Geospatial Analysis for 0- to 0.5-Foot Interval	
Figure 10 Shipway Sheet Pile Wall Deformity	
Figure 11 Rain Bucket Locations in Enhanced Natural Recovery Areas	
Figure 12 Histogram of Results of Water Quality Monitoring by Activity during	
Construction Season 1	
Figure 13 Histogram of Results of Water Quality Monitoring by Activity during	
Construction Season 2	

- Figure 14 Histogram of Results of Water Quality Monitoring by Activity during Boeing Plant 2 Remediation
- Figure 15 Postbackfill and Pre- and Postconstruction Perimeter Sampling Locations
- Figure 16 Institutional Controls and Property Ownership

LIST OF TABLES

- Table 1 Summary of Cleanup Levels for Contaminants of Concern in Sediment
- Table 2 Remedial Action Levels to Be Achieved at Sediment Surface Following Excavation and Dredging
- Table 3 Backfill Materials Quantity Summary
- Table 4 Dredged Material Management Unit Approval Dates
- Table 5 Decision Unit Confirmation Core Sample Planned and Actual Sampling Locations in Open Water Areas
- Table 6 Analytical Results for Postdredge Sediment Samples
- Table 7 Example of Data Selection for Geospatial Interpolation
- Table 8 Rain Bucket Measurements in Residual Management Layer Areas
- Table 9 Decision Unit Confirmation Core Sample Planned and Actual Sampling Locations in Shipway
- Table 10 Rain Bucket Measurements in Enhanced Natural Recovery Areas
- Table 11 Cumulative Water Quality Monitoring Activities for Construction Season 1
- Table 12 Summary of Water Quality Monitoring Efforts during Construction Season 1
- Table 13 Cumulative Water Quality Monitoring Activities for Construction Season 2
- Table 14 Summary of Water Quality Monitoring Efforts during Construction Season 2
- Table 15 Analytical Results for Water Samples Collected during Construction Season 1
- Table 16 Analytical Results for Ambient Water Samples Collected during Construction Season 1
- Table 17 Analytical Results for Water Samples Collected during Construction Season 2
- Table 18 Post-ENR and RML Placement Sediment Sample Planned and Actual Locations
- Table 19 Analytical Results for Postconstruction Samples
- Table 20 Perimeter Sediment Sampling Planned and Actual Locations
- Table 21 Analytical Results for Pre- and Postconstruction Perimeter Monitoring Sediment Samples
- Table 22 Health and Safety Incident and Near-Miss Log

LIST OF APPENDICES

- Appendix A—Design Drawings
- Appendix B—Daily Construction Reports
- Appendix C—Significant Memos
- Appendix D—Weekly Construction Meetings
- Appendix E—Quality Assurance Inspection and Testing Reports
- Appendix F—Backfill Material Testing and Approval
- Appendix G—Dredged Material Management Unit Approvals
- Appendix H—Core Summary Logs

Appendix I—Decision Unit Geospatial Interpolations

Appendix J—Open-Water Dredging As-Built Drawings and Shoreline Stabilization

Appendix K—Data Validation Reports

Appendix L—Data Used in the Geospatial Interpolation of the Contiguous Areas of DUs 3, 4, 5, 6, 7, 8, and 9

Appendix M—Sheet Pile Wall Deformation Monitoring

Appendix N—Shipway Rock Buttress and Fill Drawings

Appendix O—Shipway Concrete Slab Backfill Memo

Appendix P—Shipway Fill As-Builts

Appendix Q—Disposal Barge Displacements, Bills of Lading, Transload Certificate of Disposal Forms, Gondola Tracking Records, Off-Site Disposal Requests and Approvals

Appendix R—Weekly Water Quality Monitoring Reports

Appendix S—Health and Safety Reports

Appendix T—Pre-Final and Final Construction Inspections

Appendix U—Institutional Control Implementation and Assurance Plan

Appendix V—Long-Term Monitoring and Maintenance Plan

ACRONYMS AND ABBREVIATIONS

μg/kg microgram(s) per kilogram

μg/L microgram(s) per liter

AHA activity hazards analysis

AIS automatic identification system

ARAR applicable or relevant and appropriate requirement

AWQC ambient water quality criteria

CDF controlled density fill

cm centimeter(s)

COC contaminant of concern

cPAH carcinogenic polycyclic aromatic hydrocarbon

CQAP Construction Quality Assurance Plan

CS1 construction season 1

CS2 construction season 2

CSL Cleanup Screening Level

CUL cleanup level

cy cubic yard(s)

DO dissolved oxygen

DMMU dredged material management unit

DU decision unit

EDD electronic data deliverable

ENR enhanced natural recovery

ESD Explanation of Significant Differences, 2013 Record of Decision Cleanup

Levels: Lockheed West Seattle Superfund Site (USEPA, 2015b)

Final Design Revised Final (100 Percent) Design (Amec Foster Wheeler et al., 2018a)

HPAH total high molecular weight polycyclic aromatic hydrocarbon

Lockheed Martin Corporation

m² square meter(s)

mg/kg milligram(s) per kilogram

mm millimeter(s)

MHHW mean higher high water

MLLW mean lower low water

NTU nephelometric turbidity unit

PAH polycyclic aromatic hydrocarbon

PCB polychlorinated biphenyl

Port Port of Seattle

PSR Pacific Sound Resources

QC quality control

RACCR Remedial Action Construction and Completion Report

RAL remedial action level

RAO remedial action objective

RI/FS remedial investigation and feasibility study

RML residual management layer

RNA regulated navigation area

ROD Record of Decision

Site Lockheed West Seattle Superfund Site

SMS sediment management standards

SQS sediment quality standards

SWAC surface-weighted average concentration

TBT tributyltin

TEQ toxicity equivalent quotient

Tribes Muckleshoot Indian Tribe and Squamish Tribe

UAO Unilateral Administrative Order

USEPA United States Environmental Protection Agency

Wood Environment & Infrastructure Solutions, Inc.

SECTION 1 INTRODUCTION

The Lockheed Martin Corporation ("Lockheed Martin") implemented a remedial action at the Lockheed West Seattle Superfund Site ("the Site"; Figure 1) pursuant to the *Unilateral Administrative Order for Remedial Design and Remedial Action: Lockheed West Seattle Superfund Site* (United States Environmental Protection Agency [USEPA] Docket No. 10-2015-0079/Comprehensive Environmental Response, Compensation, and Liability Act) (UAO; USEPA, 2015a).

The USEPA issued a Record of Decision (ROD) for the Lockheed West Seattle Superfund Site ("Site"; USEPA, 2013a) and an associated Explanation of Significant Differences, 2013 Record of Decision Cleanup Levels: Lockheed West Seattle Superfund Site (ESD; USEPA, 2015b). The selected remedy presented in the ROD include the following elements:

- Dredge the former shipway area (westernmost portion of the Site) to remove sediments with contaminants of concern (COC) concentrations above the sediment quality standards (SQS), which are the lower of the two sediment comparison criteria under the Washington State sediment management standards (SMS). A thin layer (6 to 9 inches) of clean material will then be placed to cover dredge residuals and promote enhanced natural recovery (ENR).
- Dredge the Navigation Channel in the West Waterway to remove sediments with COC concentrations that exceed the SQS, and place a thin layer of clean material to cover dredge residuals and promote ENR.
- Dredge the former Dry Docks 1 through 3 area and other localized areas throughout the Site to remove sediments with COC concentrations above the cleanup screening levels (CSLs), which are the higher of the two SMS comparison values. A thin layer of clean material will then be placed to cover dredge residuals and promote ENR.
- Place a thin layer of clean material to promote ENR over the remainder of the subtidal area.
- Dredge the shoreline bank and intertidal zone (defined as areas extending from mean high higher water at plus [+] 11.3 feet mean lower low water (MLLW) to minus [-] 10 feet MLLW) to remove sediments with COCs at levels above the SQS, as structurally practicable, and backfill with clean material to grade.

- Remove debris, riprap, failing wooden bulkheads, and pilings as necessary or directed by the USEPA, and dispose of them off site.
- Dispose of dredged sediments and other related remediation materials by truck or rail transport to an appropriate offsite upland facility permitted to accept these materials.
- Place institutional controls (ICs) in the form of a proprietary control that runs with the property and that requires coordination with the USEPA and management of any residual contamination (above Cleanup Levels) that is disturbed or encountered in the event of future excavation or dredging within the boundaries of the Site. In addition, the current fish advisory for Recreational Marine Area 10 (Elliott Bay) under the Puget Sound Fish Consumption Advisory, established by the Washington State Department of Health, to reduce human exposure from ingestion of contaminated seafood will continue to be posted at the Site. The USEPA can revise the fish advisory as warranted.
- Conduct postremedial confirmation sampling of sediment and surface water.
- Conduct long-term monitoring at the Site. The monitoring interval and other criteria will be defined in the *Long-Term Monitoring and Maintenance Plan*. Additional monitoring, following identified triggering weather and seismic events, also will be defined in the *Long-Term Monitoring and Maintenance Plan*. If such events occur, bathymetric monitoring will be implemented to determine whether one or more components of the Selected Remedy are affected.
- Conduct five-year reviews, which will include sediment sampling for risk-driver COCs, bathymetric surveys to ensure that the thin cover/ENR layer remains in place, file reviews, and interviews with the landowner(s) pertaining to any development that has occurred at the Site since remediation was completed. Surface water and fish tissue samples will not be collected as part of five-year reviews.

The ROD also included a technical impracticability (TI) waiver. A TI waiver of the Federal ambient water quality criteria (AWQC) for arsenic was part of the Selected Remedy. As described in the TI waiver rationale memorandum (USEPA, 2013b), it was technically impracticable for remediation of contaminated sediments at this small, 40-acre Site to measurably improve the overall water quality for arsenic within the larger Elliott Bay, and there are no treatment technologies capable of surface water treatment for arsenic at the scale of Elliott Bay (approximately 5.42 x 10¹¹ gallons, assuming no replenishment from Puget Sound). It was expected that arsenic concentrations in Elliott Bay would remain the same after Site cleanup. All Site-related arsenic sources are or were to be controlled after sediment remediation. The TI waiver applied only to AWQC exceedances at the Site and would not prevent the USEPA or other regulatory agencies from taking actions related to AWQC exceedances.

This Remedial Action Construction and Completion Report (RACCR) follows the requirements specified in the UAO and documents the cleanup action that was conducted at the Site over two construction seasons (August 2018 through March 2019 and September 2019 through March 2020) required to complete the work. All work was conducted under the oversight of USEPA in conjunction with the Port of Seattle and the Muckleshoot Indian Tribe and Suquamish Tribe (collectively "the Tribes"). In addition, the Washington State Department of Ecology provided oversight of the sediment transloading facility.

Sections 2 through 5 present summaries to allow the reader to understand the overall project without needing to read the details provided later in the document. Section 2 summarizes the remedial design, as detailed in the USEPA approved *Revised Final (100 Percent) Design* ("*Final Design*"; Amec Foster Wheeler et al., 2018a) and associated appendices that make up the Remedial Action Work Plan. Section 3 summarizes the construction, and Section 4 summarizes monitoring conducted during implementation of the remedy. Section 5 summarizes how the remedial action met the cleanup goals of the project.

Sections 6 through 10 provide details of the construction and monitoring. Section 11 discusses the health and safety procedures and protocols used during implementation of the project, and Section 12 provides information on the measures taken to reduce the impact of the remediation on the environment. Section 13 describes the decontamination protocol for construction equipment that was conducted after each of the field seasons. Section 14 discusses the prefinal and final construction inspection. Section 15 describes the institutional controls at the site in the *Institutional Control Implementation and Assurance Plan*. Section 16 provides the *Long-Term Monitoring and Maintenance Plan*, and Section 17 provides a summary of the lessons learned while constructing the project and how these lessons may impact future sediment remedial actions. Section 18 documents the costs incurred in complying with the UAO, and Section 19 presents a list of references cited in the text of the report.

Attached to the report is a DVD that contains the appendices to this report.

Appendix A – design drawings from the *Revised Final (100 Percent) Design* (Amec Foster Wheeler et al., 2018a) as well as design changes that were required where deeper dredging due to elevated concentrations of contaminants was required.

Appendix B – daily construction reports.

Appendix C – significant memos and includes the work window extension approvals, a memo on the addition of polyaromatic hydrocarbons (PAHs) to the suite of analyses that were required for certain portions of the site, and the Clean Water Act §404 ARAR Memoranda for the two construction seasons. Appendix D contains the minutes of the weekly construction meeting that were held during the project. Appendix E and Appendix F present the quality assurance inspection and testing reports and backfill material testing and approval, respectively.

Appendix G contains the dredged material management unit approvals, and Appendix H provides the core logs for the postdredging/prebackfill sampling. Appendix I provides the geospatial interpolations for each of the decision units. The as-built drawing for the site excluding the former shipway are provided in Appendix J, and the sediment data validation reports are presented in Appendix K.

The former shipway sheet pile wall deformation monitoring, shipway rock buttress and fill drawings, shipway concrete slab backfill memo, and shipway fill as-builts are presented in Appendix M, Appendix N, Appendix O, and Appendix P, respectively. Appendix Q contains the sediment and debris disposal records, Appendix R provides the weekly water quality monitoring reposts, and Appendix S provides the health and safety records. The *Pre-Final and Final Construction Inspections* report is provided in Appendix T. Provided in Appendix U is the *Institutional Control Implementation and Assurance Plan* and Appendix V is the *Long-Term Monitoring and Maintenance Plan* that was approved by USEPA as part of the design documents.

SECTION 2 SUMMARY OF REMEDIAL DESIGN

Lockheed Martin conducted the remedial action as a design-build project, with the contractor working with Lockheed Martin under a single contract to provide both final design and construction. The benefit of a design-build approach was the development of an integrated project design and implementation plan.

2.1 SITE REGULATORY BACKGROUND

The Site represents the aquatic portions of what formerly was known as Lockheed Shipyard No. 2, located near where the West Waterway enters Elliott Bay (Figure 1). The former shipyard uplands are currently owned by the Port of Seattle ("Port"). The Site was placed on the National Priorities List on March 7, 2007. Prior to this date, the Site was listed as a sediment cleanup priority project under State of Washington authority through the requirements of the Model Toxics Control Act. Lockheed Martin submitted the *Final Remedial Investigation/Feasibility Study, Lockheed West Seattle Superfund Site* to USEPA Region 10 in May 2012 (RI/FS; Tetra Tech, 2012). The RI/FS concluded that sediments within the Site contained elevated levels of several hazardous contaminants. Analytical data from surface and subsurface sediment samples indicate that metals, polychlorinated biphenyls (PCBs), tributyltin (TBT), and polycyclic aromatic hydrocarbons (PAHs) were the most frequently detected compounds in the study area. Dioxins and furans also were identified as contaminants of concern (COCs) based on their assumed presence at the Site.

Ship construction, dry dock ship repairs, vessel sandblasting, and painting resulted in contamination of underlying sediments in Elliott Bay. Sediments adjacent to the former shipyard could have been contaminated in several ways, including the following general mechanisms:

- Direct discharges from historical shipyard operations into the receiving water (e.g., loss of wastes from floating dry docks)
- Transport and discharge of historic and current storm water outfalls from adjoining upland areas

- Transport and discharge of contaminated groundwater from adjoining upland areas
- Atmospheric deposition from the shipyard
- Transport via sediment, water, or air from other sites or activities in the Site vicinity

Of these mechanisms, historical overwater operations at the former shipyard appear to have been the most significant historical source of sediment contamination. Soils contaminated by historical spills and other environmental releases have a potential pathway to the adjacent aquatic sediments from direct discharge, transfer through storm drain systems, or groundwater transport.

On August 28, 2013, USEPA issued the ROD for the Site based on the area identified in the RI/FS that warranted remedial action. The ROD presented a selected remedy (Figure 2) to address unacceptable human health risks associated with seafood consumption, net fishing, clamming, and beach play, as well as ecological risks posed to benthic invertebrates, fish, and birds. The USEPA selected remedy is described in detail in Section 2.3. The cleanup under the ROD represented the final remedial action for the Site.

In February 2015, USEPA issued an ESD to correct errors in Table 12 and Table 23 of the ROD that set forth cleanup levels for the Site. The ESD replaced these tables and described the differences between the ROD and the final details for cleanup levels of COCs at the Site¹.

On March 5, 2015, USEPA signed the UAO, documenting Lockheed Martin's responsibility for cleanup of the Site. A Statement of Work attached as Appendix B to the UAO defined the work to be accomplished in the remedial design and remedial action. The final plans and specifications, general provisions, and special requirements necessary to implement the ROD were developed during the remedial design. The remedial action was to be conducted based on the approved remedial design. At the time of the issuance of the UAO, Lockheed Martin did not own, lease, or otherwise control any of the Site, as documented in the 1992 agreement with the Port (when the property was purchased by the Port from Lockheed Martin), but was responsible to perform the work described in the UAO.

¹ In May 2014, the USEPA recognized that Tables 12 and 23 contained several errors, which necessitated preparation of this ESD. These errors included: 1) The units for certain COCs (PCBs, phthalates, and PAHs) were inadvertently listed as micrograms per kilogram organic carbon (μg/kg – OC) instead of milligrams per kilogram organic carbon mg/kg – OC). 2) The references for the Cleanup Levels for certain COCs were not cited correctly. 3) The spatial scale of exposure, or compliance basis, was mistakenly listed as "Sitewide" should have been listed as "Subtidal."

To support the design for the USEPA selected remedy, Lockheed Martin performed a predesign field investigation of surface and subsurface sediment, a geotechnical investigation in upland and offshore areas, structural evaluations, and additional bathymetric and debris surveys in November 2015 and January 2016. The complete report of these investigations can be found in the *Pre-Remedial Design Field Sampling Data Report* (Tetra Tech, 2016). The results of the predesign investigation were used to refine the selected remedy.

2.2 LOCKHEED WEST SEATTLE SITE DESCRIPTION

The Site is located near the confluence of the West Waterway and Elliott Bay, in Seattle, Washington (Figure 1). The Site is bordered by Elliott Bay on the north, the Harbor Island West Waterway Operable Unit on the east, Pacific Sound Resources (PSR) Marine Sediment Unit on the west, and the Port's Terminal 5 to the south. The Site includes the in-water marine sediments where the former Lockheed Shipyard No. 2 was located (the shipway and dry docks were located in the water over the sediments). The Site also includes a narrow shoreline intertidal bank (exposed during low tides) defined for this site as areas extending from plus [+]11.3 feet mean higher high water (MHHW) to minus [-]10 feet mean lower low water (MLLW) along the northern and eastern shorelines, as well as subtidal sediments (never exposed during low tides) that extend to -40 to -50 feet MLLW in historically dredged areas. The Site is impacted by tides, with additional influence from the Lower Duwamish Waterway, which flows into the West Waterway. In addition, at the time of remedial construction, numerous pilings remained within the footprint of the former shipway, and pier structures remained along the northern shoreline and in the northwestern portion of the Site within aquatic tidelands owned by the Port of Seattle.

The Site encompasses 40 acres of aquatic lands, including approximately 26 acres of state-owned aquatic lands managed by the Washington State Department of Natural Resources and 14 acres of aquatic tidelands owned or managed by the Port. The Site and adjacent aquatic areas are designated as Tribal Usual and Accustomed Fishing Areas. Designation as a Usual and Accustomed Fishing Area required Lockheed Martin to coordinate construction activities with the Tribes to reduce the impact to Tribal fishers. The bank and intertidal portions of the Site are accessible from the water. Access via land is currently restricted due to security fencing around Terminal 5.

The Site is located in a historically industrialized and commercial area of Seattle. Several former and current environmental sediment cleanup sites are located in the vicinity (Figure 1). These sites

include the Pacific Sound Resources Marine Sediment Unit, the West Waterway Operable Unit, the Todd Shipyard Sediment Operable Unit, and the Lockheed Shipyard Sediment Operable Unit. The primary land uses near the Site have been industrial and maritime for over a century. The adjoining area of the West Waterway includes a federally maintained navigation channel and numerous privately maintained berthing areas.

Historical shipyard operations at the Site were discontinued in 1987, and no current ongoing sources of contamination remain from present uses of the Site. However, upland and upstream sources of contamination are present in the vicinity of the Site. These off-site sources represent potential future sources of contamination to the Site.

Surface water and sediment conditions at the Site are influenced by the natural counterclockwise flow of water and tidal influences in Elliott Bay. Elliott Bay is affected by nearby urbanization, and overall concentrations of certain contaminants in bay sediments are higher than concentrations identified as being protective of human consumption of seafood (USEPA, 2013a). Thus, contaminated sediment could migrate to the Site after completion of remediation as a result of sediment transport from adjacent off-site areas.

2.3 DESCRIPTION OF REMEDIAL ACTION DESIGN

In the Lockheed West ROD, USEPA selected a remedy comprising four key elements to address contaminated sediments at the Site (Figure 2):

- 1. Removal and disposal of identified debris along the shoreline and pilings in the former shipway (details in Appendix A)
- 2. Sediment remedial action, including sediment removal and disposal in selected areas; intertidal backfill placement; residuals management; and placement of an enhanced natural recovery (ENR) layer in undredged areas (details in Appendix A)
- 3. Institutional controls
- 4. Long-term monitoring and maintenance

Source control activities were completed previously by others under a separate order with the Washington State Department of Ecology and are not part of the USEPA selected remedy. The expected outcome of the selected remedy was dredging and removal of the most highly contaminated sediments at the Site and placement of ENR in areas with lower levels of sediment

contamination. Following implementation of the remedy, the Site would be suitable for its current and anticipated future use, which includes a navigation channel. However, due to the ongoing presence of other contaminant sources in the area, the Site will not be suitable for unrestricted consumption of fish. (USEPA, 2013a).

2.3.1 Remedial Action Objectives

The ROD defined the following remedial action objectives (RAOs) to address the risks posed to human health and the environment:

• Human health risks:

- RAO 1: Reduce human health risks associated with the consumption of resident seafood by adults and children with the highest potential exposure.
- RAO 2: Prevent human health risks from direct exposure (skin contact and incidental ingestion) to contaminated sediments during net fishing, clamming, and beach play.

• Ecological risks:

- RAO 3: Prevent risks to benthic invertebrates from exposure to contaminated sediments.
- RAO 4: Prevent risks to crabs, fish, and birds from exposure to contaminated sediments.

The ROD and associated ESD set cleanup levels (CULs) for the Site COCs. These CULs represent Site-specific concentration limits to be achieved at the sediment surface (i.e., upper 10 centimeters [cm] in the subtidal zone, upper 45 cm in the intertidal zone) after dredging and placement of the dredge residual management/ENR layers or intertidal backfill and provide the basis for meeting the RAOs. The CULs for demonstrating compliance are listed in Table 1. Table 1 specifies four separate sets of CULs based on the potential exposure pathway and applicable RAO. Only a small portion of the Site, primarily at the head of the former shipway, is within the intertidal zone; therefore, CULs to be achieved are most generally the subtidal surface (upper 10 cm) concentration limits.

2.3.2 Construction Performance Standards

In addition to meeting the CULs in the top 10 to 45 cm, construction performance standards for the Site cleanup included the following:

- Remedial action levels (RALs; Table 2)—Contaminant concentrations that, when exceeded, triggered removal (dredging) of sediment. Dredging was determined to be complete at the bottom of the dredge prism when contaminant concentrations met the RAL rules detailed in Section 2.3.5. The dredge residual management layer (RML) was placed after this determination was made.
- Construction activity limits—Defined limits on environmental impacts related to construction activities, including the Federal ambient water quality criteria (AWQC) and other applicable or relevant and appropriate requirements (ARARs).

2.3.3 Remedial Action Area

Figure 3 shows an overview of the selected remedy. The remedial action area consisted of areas to be dredged followed by RML placement and areas to be remediated by placement of ENR. In order to manage the work effectively, the dredge areas were arranged into dredged material management units (DMMUs), and the ENR areas were arranged into work areas (Figure 3). A DMMU is a dredging area measuring roughly 50 feet by 200 feet (10,000 square feet), which generally corresponds to the practical operational limits of the dredge and dredge barge when the barge position is fixed. The DMMUs and ENR work areas were labelled with identifiers consisting of a number followed by a letter. Note that the DMMU numbering system is separate from and does not match the numbering used for the ENR work areas. But for both, the numbers indicate locations increasing from west to east, and the letters indicate positions ranging north/south, with the letters increasing from south to north for the DMMUs and from north to south for the ENR work areas (Figure 3).

To determine if dredging met the design requirements, the DMMUs were arranged into 16 decision units (DUs). During construction season 1 (CS1), USEPA approved the modification to the boundaries of the DUs defined in the final design documents. The boundary changes consisted of two modifications:

- The boundaries of the DUs on the western edge of the Site in the vicinity of the federal navigation channel were revised to address the two different sets of RALs (SQS and Cleanup Screening Levels [CSLs]) that apply in these areas (Table 2). To the east of the navigation channel (see Figure 2) the SQS criteria applied and to the west of the channel the CSL criteria applied.
- Steep-slope shoreline areas were removed from consideration for additional dredging once the initial design dredge depth was achieved regardless of chemical contamination criteria. This change was done because additional dredging beyond the design depth could oversteepen the shoreline bank, leading to potential instability and possibly affecting Port

infrastructure. The design calculations for slope stability are provided in Appendix H of the *Revised Final (100 Percent) Design* (Amec Foster Wheeler et al., 2018a).

The revised DU layout is shown on Figure 3.

2.3.4 Remedial Action Activities

The remedial action comprised the following elements:

- Removal and disposal of shoreline debris
- removal of creosote-treated timber pilings
- dredging to remove contaminated sediment over approximately 15 acres
- within the dredge area placement of:
 - a minimum 6-inch-thick RML consisting of sand over approximately 11.5 acres of the dredged subtidal area
 - gravel beach mix with fish mix over approximately 1.3 acres of intertidal area
 - sand over 0.2 acre in the subtidal area of the former shipway
 - riprap over approximately 2.1 acres in areas where shoreline debris was removed or in areas of the dry dock dredge slopes
 - gravel beach mix, fish mix, and sand placed to presconstruction grade in the shipway
- a minimum 6-inch-thick ENR layer consisting of sand over approximately 24.9 acres of undredged subtidal area

The USEPA-approved design drawings for the remedy are provided in Appendix A.

After dredging was completed in each DMMU, a confirmation hydrographic survey was conducted to determine if the dredging met the design prism criteria. The dredging design prism criteria for the project were:

- No material more than 0.5 foot above the design elevation could be left in place.
- At least 90% of the DMMU needed to be at or below the design elevation.
- No more than 500 contiguous square feet of area above the design elevation could be left in place.

If the confirmation survey showed that the DMMU did not meet the design criteria, then additional dredging was conducted, and a new confirmation hydrographic survey of the redredged area was completed. See Section 6.6.4 for discussion of meeting these criteria.

2.3.5 Dredging Chemical Criteria

When it was determined that the DMMU met the design depth criteria, then confirmatory sediment sampling was conducted to assess conformance with sediment chemical criteria, per the *Field Sampling Plan* (Appendix P of the *Final Design* [Amec Foster Wheeler et al., 2018b]).

When all the samples were collected and analyzed within a DU, a geospatial interpolation was conducted following the methods detailed in the *Field Sampling Plan* (Appendix P of the *Final Design*; Amec Foster Wheeler et al., 2018b). The geospatial interpolation was used to determine a surface-weighted average concentration (SWAC) for each of the COCs. The following rules were used to determine if the dredging objectives were met and the RML or backfill could be placed without additional dredging:

- The SWAC was less than the applicable RAL shown in Table 2.
- No more than 20% of a given DU area could be over 2 times the RAL.
- No point or area could be greater than 3 times the RAL.

If all three chemical criteria were met within a DU, then the RML backfill material could be placed within the boundaries of the DU. If the chemistry results failed any of the above rules, the dredging was extended to the area(s) that led to the exceedance using the geospatial interpolation conducted to calculate the SWAC. Areas that failed the chemical criteria were redredged and then reevaluated to determine if the dredging met the revised design depth criteria discussed above. The depth of additional dredging was determined based on analysis of the archived samples: dredging extended to the shallowest interval that, when incorporated into the SWAC calculation, met all the RALs (see Section 6.6.5).

2.3.6 Post-ENR and RML Placement Chemical Criteria

After placement of the ENR or RML, the surface material was sampled to determine if the postconstruction surface met the CULs identified in Table 1. If the postconstruction sediment concentrations were less than the RAO-specific CULs, the RAOs would be met for the site.

SECTION 3 SUMMARY OF CONSTRUCTION

The remedial construction work was completed over two construction seasons, 2018 to 2019 and 2019 to 2020. The in-water work windows have been established for the protection of migrating salmon. In-water work was confined to August or September, depending on the construction activity, to mid-February during each construction season although as described below the mid-February end date was extended for both construction seasons due to the need to complete additional work.

The approval of the extensions of the work window from the National Marine Fisheries Service and the United States Fish and Wildlife Service was facilitated by USEPA. The approval of the extension of the work window from the Washington Department of Fish and Wildlife was requested directly by Lockheed Martin.

The remedial work was conducted in accordance with the USEPA-approved *Revised Final* (100 Percent) Design ("Final Design"; Amec Foster Wheeler et al., 2018a) documents and the remedial action work plans, which are appendices to the *Final Design*. Daily construction reports are included in Appendix B. Material quantities removed or placed during the two-season project are listed below.

- 1,200 tons of debris (in-water and shoreline) were removed
- 790 pilings (930 tons) were removed
- 182,600 tons (134,300 cubic yards [cy]) of dredge material were removed
- 136,800 tons (100,600 cy) of backfill and shoreline protection materials were placed, which consisted of:
 - 80,300 tons (59,500 cy) of enhanced natural recovery (ENR)/residual management layer (RML) material
 - 10,200 tons (7,900 cy) of gravel beach mix

- 3,200 tons (2,500 cy) of fish mix
- 9,800 tons (7,000 cy) of filter rock
- 33,200 tons (23,800 cy) of riprap

3.1 CONSTRUCTION SEASON 1

Figure 4 summarizes the work completed during construction season 1 (CS1). During CS1, approximately:

- 1,200 tons of debris (in-water and shoreline) were removed
- 790 pilings (930 tons) were removed
- 114,100 tons of dredge material were removed (approximately 86,000 cy)
- 63,300 tons (46,600 cy) of backfill and shoreline protection materials were placed, consisting of:
 - 39,200 tons (29,000 cy) of ENR/RML material
 - 4,900 tons (3,800 cy) of gravel beach mix
 - -1,700 tons (1,300 cy) of fish mix
 - 3,900 tons (2,800 cy) of filter rock
 - 13,500 tons (9,700 cy) of riprap

Construction work began on August 13, 2018, with pile removal in the former shipway and shoreline debris removal. On August 21, 2018, work was halted due a regional crane operator's labor strike that impacted multiple work sites in Washington State; work resumed on September 10, 2018. CS1 work was completed on March 28, 2019, after USEPA and the natural resource agencies approved an extension of the construction work window. The extension approval is provided in Appendix C. The extension from February 16 to March 31, 2019, allowed for placement of clean backfill (ENR, RML, gravel beach mix, fish mix, or riprap). During the extension, no dredging was performed.

Dredging was conducted during CS1 in DUs 3, 4, 6–8, and 11–16. At the end of CS1, dredging was completed, the chemical contaminant compliance rules were met, and RML had been placed in decision units (DUs) 11, 12, 13, and 14 (Figure 4). In DUs 3, 4, 6, 7, and 15, dredging to the

design elevations was completed, but each of these DUs failed to meet the chemical contaminant compliance rules. Additional dredging was conducted in these DUs during construction season 2 (CS2). A more detailed discussion of the DU dredging is provided in Section 6.6.

In DU 8, dredging was completed, and the chemical contaminant compliance rules were met; however, RML was placed over only a portion of the dredged material management units (DMMUs) that comprised DU 8. RML was placed over only a portion of DU 8 because of the proximity of the adjacent DU 7, which required additional dredging.

The dredge design elevations in the former shipway (DU 16) were generally met except for a small area adjacent to the sheet pile wall on the west side of the shipway. In this area, the sheet pile wall deformed during dredging, which precluded dredging to the design elevation. Due to the deformity of the sheet pile wall, additional engineering was required for stabilization of the wall. This issue is discussed further in Section 6.7. As described above, several DUs were dredged to the original design elevations but did not meet the chemical contaminant compliance rules; these areas were redredged during CS2. In the DUs that did not meet the chemical criteria, a 3-inch layer of sacrificial temporary RML material was placed at the end of CS1 in DMMUs where concentrations of contaminants exceeded the RALs and were greater than the preconstruction concentrations.

ENR material was placed over about 58% of the ENR areas (approximately 13.3 acres of 22.9 acres) during CS1. ENR material was not placed adjacent to DUs that required dredging during CS2 to reduce the potential for dredge residuals to be deposited on the ENR layer (see Figure 4).

3.2 CONSTRUCTION SEASON 2

During CS2, dredging was completed in DUs where dredging was begun in CS1 and not completed (DUs 3, 4, 6, 7, 8, and 15). In addition, dredging was completed in DUs 1, 2, 5, 9, and 10. All the remaining ENR, RML, and slope protection material (filter rock and riprap) was placed during CS2.

During CS2 approximately:

• 68,500 tons of dredge material were removed (approximately 48,300 cy)

- 73,500 tons (54,000 cy) of backfill and shoreline protection materials were placed, consisting of:
 - 41,100 tons (30,400 cy) of ENR/RML material
 - 5,300 tons (4,100 cy) of gravel beach mix
 - -1,500 tons (1,200 cy) of fish mix
 - 5,800 tons (4,200 cy) of filter rock
 - 19,700 tons (14,100 cy) of riprap

Construction work began on September 3, 2019. On January 31, 2020, Lockheed Martin received an extension of the in-water work window from the Washington Department of Fish and Wildlife to allow construction to continue until March 31, 2020 (Appendix C). The in-water work window extension was required to allow additional dredging and backfilling in DU 5. It was determined that it was necessary to remove elevated concentrations of mercury in sediment at the toe of the newly constructed riprap slope adjacent to the federal navigation channel (see Sections 6.6.4 and 6.6.5 for additional detail). This work was conducted in March 2020. All in-water work was completed on March 25, 2020.

SECTION 4 SUMMARY OF REMEDY IMPLEMENTATION MONITORING

Monitoring required during implementation of the remedy was performed as described in the *Field Sampling Plan* (Appendix P of the *Revised Final (100 Percent) Design* ["Final Design"; Amec Foster Wheeler et al., 2018b]), the *Water Quality Monitoring Plan* (Appendix M of the *Final Design* [Amec Foster Wheeler et al., 2018c]), and the *Updated Final Memorandum, Clean Water Act §404 ARAR Memo: Substantive Water Quality Requirements for the Lockheed West Seattle Superfund Remedial Action* ("Clean Water Act §404 ARAR Memo; USEPA, 2018, 2019).

The monitoring program was implemented to determine if the following goals were met for the project:

- Backfill used at the Site met the cleanup levels (CULs) for the metals and organic contaminants of concern (COCs) (Table 1). See Section 6.3 for results of this monitoring.
- The postdredge surface within each of the decision units (DUs) shown on Figure 3 met the remedial action levels (RALs; Table 2). See Section 6.6.5 for postdredge surface sampling information and analytical results.
- In-water construction activities would not adversely affect water quality. The water quality monitoring results are presented in Section 8.
- The postconstruction surface sediments met the CULs (Table 1) on a surface-weighted average concentration (SWAC) basis or on a point-by-point basis as appropriate for the remedial action objective (RAO). Meeting the CULs for the COCs would protect human health and benthic organisms after placement of the enhanced natural recovery (ENR) and residual management layer (RML). Postconstruction sediment sampling is discussed in Section 9.
- Dredging, backfill placement, and other construction activities with the potential to cause resuspension and transport of contaminated sediments off site did not contribute to off-site spread of contamination. The results of the pre- and postconstruction perimeter monitoring are presented in Section 10.

4.1 QUARRY SAMPLING FOR CHEMISTRY AND PHYSICAL PROPERTIES

Samples of fine-grained material (i.e., sand) were collected and analyzed for COCs to determine if the source of proposed fill materials met the required specifications and if the levels of COCs were either undetected or below concentrations that would be deleterious to human health or marine life when placed in the marine environment. Riprap, filter rock, and gravel materials (fish mix and gravel beach mix) were not chemically analyzed; however, a visual inspection of the quarry was conducted to determine that the source material was from an undisturbed source (native rock). All fine-grained material placed at the site had COC concentrations that were less than the CULs (Table 1). See Section 6.3 for additional detail.

4.2 POSTDREDGING SEDIMENT CHEMISTRY MONITORING

As described in Section 2.3, once dredging was completed within a dredged material management unit (DMMU; met design prism criteria; see Section 6.6.4), sediment core samples were collected at 0.5-foot intervals within each of the DMMUs shown on Figure 3. When all the samples were collected and analyzed within a DU, a geospatial interpolation was conducted to determine if the interpolated chemical concentrations met the dredging chemical criteria specified in Section 2.3.5.

Analytes that were used in the geospatial interpolation were the risk-driver COCs with corresponding RALs in Table 2 (i.e., arsenic, coper, lead, mercury, and PCBs). Based on a request by USEPA, polycyclic aromatic hydrocarbons (PAHs) were added as target analytes for confirmation samples in selected locations within the project area (shipway and DU 6) and benzo(a)pyrene was used as an indicator compound for cPAHs in the geospatial interpolation.

If all three chemical criteria were met within a DU (Section 2.3.5), then the RML backfill material was placed within the boundaries of the DU. If the chemistry results failed any of the above rules, the dredging was extended to the area(s) that led to the exceedance using the geospatial interpolation conducted to calculate the SWAC. Areas that failed the criteria were redredged and then reevaluated to determine if the dredging met the design prism criteria discussed in Sections 2.3 and 6.6.4. The depth of additional redredging was determined based on analysis of the archived samples: dredging extended to the shallowest interval that, when incorporated into the SWAC calculation, met all the RALs.

DUs or portions of DUs that were in sloped areas along the shoreline (portions of DUs 5, 7, and 8; Figure 3) were not evaluated against the decision rules because potential slope stability issues precluded additional dredging in these areas. These areas were dredged to the design depths and samples were collected in these areas for informational purposes only. Also, in DU 16 (the shipway), the instability of a sheet pile wall precluded additional dredging near the wall (see Section 6.7).

Chemical compliance monitoring was conducted at 129 unique sample locations over the 14.8-acre dredging footprint, representing about 1 sample per 0.1 acre. Based on the results of the geospatial interpolations, 11 of the 15 DUs (not including the former shipway) did not meet all three chemical compliance rules and required additional dredging. Results of the chemical compliance analyses are described further in Section 6.6.5.

4.3 WATER QUALITY MONITORING DURING IN-WATER WORK

Water quality monitoring was conducted to ensure that in-water construction activities complied with the Clean Water Act §404 ARAR Memoranda (USEPA, 2018, 2019; Appendix C). The monitoring followed the requirements detailed in the *Water Quality Monitoring Plan* (Appendix M of the *Final Design* [Amec Foster Wheeler et al., 2018c]) and the Clean Water Act §404 ARAR Memoranda.

Conventional water quality parameters (i.e., temperature, dissolved oxygen, turbidity and pH) were measured in the field using a direct read multiparameter data sonde. Chemical compliance monitoring for copper, lead, mercury, zinc and total PCBs was also conducted. Samples were collected using a water sampling bottle and sent to an analytical laboratory for analysis. Activities that were monitored included dredging, barge dewatering, placement of backfill materials (ENR, RML, filter rock, gravel beach mix, and fish mix), in-water debris and pile removal, and shoreline debris removal.

The objectives of the water quality monitoring and management activities were to:

- Ensure that the water quality performance criteria prescribed by the Clean Water Act §404 ARAR Memoranda (USEPA, 2018, 2019; Appendix C) were met during implementation of the remedial action.
- Monitor for the presence of oil sheens and document their extent and persistence.

• Establish contingency measures and corrective action if unacceptable conditions were detected.

During the 100 days of monitoring during construction season 1 (CS1), 217 rounds of monitoring were conducted, with turbidity exceeding the water quality compliance criterion during 31 rounds. Most of the turbidity exceedances during CS1 occurred during backfill placement. Also, during CS1, dissolved oxygen concentrations were below the water quality criterion during 16 monitoring rounds. The low dissolved oxygen concentrations were due to an area-wide phenomenon and not related to construction activities (see Section 8.1.1).

During CS1, water samples collected as described in the *Water Quality Monitoring Plan* (Appendix M of the *Final Design* [Amec Foster Wheeler et al., 2018c]) and the Clean Water Act §404 ARAR Memoranda (USEPA, 2018, 2019) and were analyzed for copper, mercury, lead, zinc, and polychlorinated biphenyls (PCBs). Based on the analytical results, no exceedances of the chronic water criteria occurred during CS1. See Sections 8.1.1 and 8.2.1 for additional details on monitoring results during CS1.

During the 62 days of monitoring during construction season 2 (CS2), 153 rounds of monitoring were conducted, with turbidity exceeding the water quality compliance criterion during four rounds. Three of the turbidity criterion exceedances occurred during backfill placement, and one occurred during dredging. During CS2, four water samples were analyzed for copper, mercury, lead, zinc, and PCBs; all analytical results were below the chronic water quality criteria. The results of water quality monitoring during CS2 are detailed in Sections 8.1.2 and 8.2.2.

4.4 BACKFILL THICKNESS MONITORING

The entire 40-acre Site was covered with ENR or RML material, riprap, or gravel material (Figure 2). An average 6-inch layer of ENR or RML material was placed across most of the 40-acre Site. Riprap was placed along the shoreline slopes across portions of DUs 5, 7, and 8; a portion of the western side of the shipway; and DU 14. Gravel material (fish mix and gravel beach mix) was placed along the shoreward portions of DU 16 (shipway), DU 1, and DU 15.

To verify that placement of the ENR and RML material met the design specifications (i.e., average of at least 6 inches; with a minimum of 4 inches except on slope areas where the minimum was 3 inches), weighted buckets ("rain gauges") were used to measure the thickness of the placed

material. See Sections 4.1.5.2 and 4.1.5.3 of the *Construction Quality Assurance Plan* (Amec Foster Wheeler et al., 2018g).

There were 184 rain gauges within the approximately 23 acres of ENR placement (approximately 8 rain gauges/acre) and 138 rain gauges within the approximately 13.3 acres (about 10 rain gauges/acre) of dredge area to measure thickness of the placed ENR or RML material. RML and ENR placement is further described in Sections 6.6.7 and 6.8, respectively.

In areas where ENR or RML material was placed, sampling was conducted to confirm that the COC concentrations at the postplacement sediment surface (upper 0 to 10 cm) were below the CULs (see Table 1). The results of sampling were used to calculate a SWAC using the geospatial methods described in the *Field Sampling Plan* (Appendix P of the *Final Design* [Amec Foster Wheeler et al., 2018b]). Areas covered with riprap or coarser gravel (fish mix and gravel beach mix) materials that could not be effectively sampled were excluded from the SWAC calculations. The results of the geospatial interpolation show that for all contaminants, the SWAC was less than the SWAC CUL and all concentrations were below applicable point CUL. (See Section 9 for additional detail.)

4.5 PERIMETER SEDIMENT CHEMISTRY MONITORING

Pre- and postconstruction sampling was conducted outside of the project area boundary adjacent to areas where active remediation (i.e., dredging) occurred. The objective of this pre- and postconstruction perimeter monitoring was to determine if increases in concentrations of COCs with corresponding RALs (Table 2) occurred in postconstruction perimeter surface sampling areas outside the project area boundary relative to their preremediation concentrations. The results for the pre- and postconstruction perimeter monitoring are fully described in Section 10 and show that postconstruction concentrations of contaminants adjacent to the construction area were about the same as the preconstruction concentrations; therefore, the remedial action did not have an effect on the area outside of the remedy footprint.

SECTION 5 PROVIDING A FINAL REMEDY BY MEETING RALS AND CULS

The purpose of this remedial action was to provide an environmentally protective final remedy through dredging of contaminated sediment and placement of clean cover material. This section presents summaries of pre-, during-, and postconstruction data that demonstrate the effectiveness of the remedy and confirm that the cleanup criteria established in the Record of Decision (ROD) were met. Details of the work execution are presented in Sections 6 through 12.

Protectiveness of the remedy is demonstrated by the attainment of remedial action levels (RALs; Table 2) at the postdredge sediment surface and the attainment of cleanup levels (CULs; Table 1) at the final sediment surface following placement of residual management layer (RML) and enhanced natural recovery (ENR) materials. Note that as indicated in Table 1, some of the CULs are measured as point concentrations while others are based on surface-weighted average concentrations (SWACs) for the surface of the entire project site.

5.1 REMEDIAL ACTION OBJECTIVES

The Remedial Action Objectives (RAOs) identified in Section 2.3.1 were met by achieving the CULs specified in Table 1 in the following ways:

• Human health risks:

- RAO 1 was met when Site-wide average concentrations of contaminants of concern (COCs) in the upper 45 cm of intertidal sediment and in the upper 10 cm of subtidal sediment did not exceed CULs that are based on human consumption of seafood caught or gathered at the Site.
- RAO 2 was met when Site-wide average concentrations of COCs in the upper 45 cm of intertidal sediment and in the upper 10 cm of subtidal sediment did not exceed the CULs that are based on direct contact with sediment during net fishing, Tribal clamming, or beach play.

• Ecological risks:

- RAO 3 was met when point-by-point concentrations of COCs in the upper 10 cm of intertidal and subtidal sediments did not exceed CULs based on protection of benthic invertebrates (Sediment Quality Standards [SQS]² values).
- RAO 4 was met when Site-wide average concentrations of COCs in the upper 10 cm of intertidal and subtidal sediments did not exceed CULs that are based on protection of crabs, fish, and birds.

5.2 RISK-DRIVER CONTAMINANTS OF CONCERN

Risk-driver COCs were selected during the Remedial Investigation/Feasibility Study (Tetra Tech, 2012) recognizing that removal of these compounds addresses the majority, if not all, of the contaminant-exposure risk. Risk-driver COCs consisted of those contaminants that individually or in combination with other contaminants posed elevated risks for a given human-health exposure scenario or ecological receptor. Eight contaminants were identified as risk-driver COCs (arsenic, copper, carcinogenic PAHs [CPAHs], dioxins/furans, lead, mercury, total polychlorinated biphenyls [PCBs], and tributyltin [TBT]; Table 2); however, three of the COCs (TBT, cPAHs, and dioxins/furans), do not have regulatory-based criteria for protection of benthic organisms so no RAL values are listed for these COCs in Table 2.

5.3 CLEANUP EFFECTIVENESS

The cleanup approach was developed based largely on the distribution of the five risk-driver COCs with established RALs: arsenic, copper, lead, mercury, and PCBs. Dredging was conducting in areas where the existing surface sediment concentrations were above the RALs. A layer of clean material (RML) was then placed over the dredged surface to manage any residuals that may been generated during dredging. A layer of clean material (ENR) was also placed over the remainder of the Site which had lower concentrations of the risk-driver COCs.

5.3.1 Attainment of Remedial Action Levels at Dredge Leave Surface

Interpolated surface sediment concentrations of the five risk-driver COCs were calculated within the large contiguous dredge area consisting of decision units (DUs) 3, 4, 5, 6, 7, 8, and 9 (Figure 3)

^{2.} Applicable or relevant and appropriate requirements (ARARs) were frozen at the time the ROD was signed (August 2013). Therefore, the revised (2014) Washington State Sediment Management Standards terminology was not used at this Site because these standards were not an ARAR at the time the ROD was signed. The cleanup screening levels and SQS terminology was used for all work related to the Site.

both (1) prior to the remedial action and (2) after dredging but prior to backfill placement. As described in Section 2.3.5, there were three rules that had to be met after dredging prior to placement of the RML.

- The SWAC was less than the applicable RAL.
- No more than 20% of a given DU area could be over 2 times the RAL.
- No point or area could be greater than 3 times the RAL.

The results are presented in Chart 1, which shows the before and after dredging SWAC, maximum contaminant concentration at any sample location, where the maximum concentration was located, and the percentage the dredge area that exceeded 2 times the RAL. The values are compared to the RALs, which apply to the postdredge surface.

Chart 1
Concentrations of Risk-Driver Contaminants of Concern
within Dredge Area Prior To and After Dredging

	Risk-Driver COC	RAL	Surface- Weighted Average Concentration ¹	Maximum Point Concentration ¹	Area of Maximum Concentration ³	Percent of Area Exceeding 2 Times the RAL
	Arsenic	57/93 ²	56.3	367	CSL	16.3%
	Copper	390	419.2	2170	NA	12.1%
Predredge Surface	Lead	530	182.4	889	NA	0.0%
	Mercury	0.41/0.59 ²	1.2	12.6	SQS	43.6%
	Total PCBs	180/960	737.2	4420	CSL	34.8%
	Arsenic	57/93	13.3	226	CSL	0.6%
	Copper	390	82.8	959	NA	0.4%
Postdredge Surface	Lead	530	37.8	352	NA	0%
	Mercury	0.41/0.59	0.25	1.9	CSL	13.3%
	Total PCBs	180/960	137.2	2004	CSL	15.0%

- 1. Concentrations of arsenic, copper, lead, and mercury are in milligrams per kilogram (mg/kg), and the concentration of total PCBs is in micrograms per kilogram (μg/kg).
- 2. Arsenic, mercury, and total PCBs have two remedial action levels, which correspond to the Sediment Quality Standard (SQS) or the Cleanup Screening Level (CSL), depending on location. East of the navigation channel boundary the SQS applies (lower of the two values), and west of the boundary the CSL applies.
- 3. Location of maximum point concentration. If SQS or CSL noted in the column, the maximum concentration is located as indicated in Note 2 (east or west of the navigation channel boundary. If the column has a NA, there is a single SQS/CSL value for the RAL and the location is not relevant.

When compared to the predredge condition, the postdredge concentrations of risk-driver COCs were substantially reduced by the dredging component of the remedy. For example, arsenic had a predredge SWAC of 56.3 milligrams per kilogram (mg/kg) and after dredging the SWAC was 13.3 mg/kg. The maximum point concentration of arsenic prior to dredging was 367 mg/kg and after dredging the maximum concentration 226 mg/kg; because the 226 mg/kg was located within the Cleanup Screening Level (CSL) area, the concentration was less than 3 times the RAL. Prior to dredging, 16.3% of the dredge area had concentrations of arsenic that were greater than 2 times the RAL; after dredging the percentage of the area that was greater than 2 times the RAL was only 0.6%.

After dredging was completed, the SWAC for each risk-driver COC was below the respective RAL, as was required in the ROD. For copper and mercury, the SWACs in the dredged area met the RAL, and the more protective CULs (Table 1). The postdredge SWAC for copper was 83 mg/kg, which was below the required RAL of 390 mg/kg and the CUL of 114 mg/kg. The postdredge SWAC for mercury was 0.25 mg/kg, which was below the required RAL of 0.41 or 0.59 mg/kg and the CUL of 0.41 mg/kg.

The maximum point concentrations for each of the risk-driver COCs were less than 3 times the RAL except for a single mercury sample in the riprapped slope area where additional dredging could not be conducted (see Sections 2.3.3 and 4.2). The percentage of the area that exceeded 2 times the RAL after dredging was less than 20% for all the risk-driver contaminants. Except for the single mercury sample in the shoreline slope area that exceeded 3 times the RAL, the rules were met at all dredged areas.

5.3.2 Attainment of Cleanup Levels at Site Surface

Interpolated surface sediment concentrations of the five risk-driver COCs were calculated for the entire Site both (1) prior to the remedial action and (2) after dredging and placement of ENR and RML material. Chart 2 presents the pre- and postremedial action SWACs and maximum point concentrations for the five risk-driver COCs across the surface of the entire Site and shows that there was a substantial reduction in the postremedial action surface sediment concentrations as compared to the preremedial action concentrations. In addition, the postremedial action sediment surface met the CULs. Also shown in Chart 2, the SWACs for the five risk-driver COCs showed at least 95% reduction in concentration as compared to the preconstruction Site conditions.

Chart 2
Concentrations of Risk-Driver Contaminants of Concern
Across the Site Prior To and After ENR/RML Placement

		SWAC-Based Comparison		Point-Based Comparison			Percent Reduction in SWAC (Preremedial
	Risk-Driver COC	CUL	Calculated Site SWAC	CUL	Maximum Point Concentration Across Site	Percent of Sample Locations Exceeding CUL	Action vs Postremedial Action)
Preremedial Action Surface Sediment	Arsenic	7	37.3	57	338	22%	
	Copper	114	221.5	390	2170	22%	
	Lead	11	109.8	NA	1420	NA	
	Mercury	0.41	0.53	0.41	12.6	50%	
	Total PCBs	2	356	180	2240	66%	
Postremedial Action Surface Sediment	Arsenic	7	1.8	57	5.59	0%	95.2%
	Copper	114	11.7	390	43.8	0%	94.7%
	Lead	11	1.6	NA	24.5	0%	98.5%
	Mercury	0.41	0.01	0.41	0.055	0%	98.1%
	Total PCBs	2	1.6	180	8.9	0%	99.6%

Concentrations of arsenic, copper, lead, and mercury are in mg/kg and the concentration of total PCBs is in micrograms per kilogram (μ g/kg).

NA = No point CUL

The data presented in Chart 1 and Chart 2 demonstrate that the remedial action met the RAOs for the project.

SECTION 6 CONSTRUCTION AND SUPPORTING ACTIVITIES

This section presents a summary of activities that were conducted to facilitate remedial construction and a description of the construction work. The section also describes significant revisions to the approved design documents that were required as the work progressed during the two construction seasons.

6.1 TRIBAL COORDINATION

Construction during the two construction seasons overlapped fishery openings by the Muckleshoot Indian Tribe and Suquamish Tribe ("Tribes") for salmon and steelhead fishing within Elliott Bay and the Duwamish Waterway (Photo 1).

Photo 1 Tribal Fisher Deploying Gillnet at Lockheed West Seattle Superfund Site During Remedial Construction

During construction season 1 (CS1), construction overlapped tribal fisheries from late summer 2018 into January 2019. During construction season 2 (CS2), construction overlapped the tribal fisheries from late summer 2019 into November 2019. During CS2, the Tribes experienced very low returns for all salmon species fished. As a result, a very noticeable decline in participation by tribal fishermen occurred during CS2 compared to CS1. These fisheries did not have predetermined opening and closing dates but instead were driven by the actual arrival of the target species, as determined by test fisheries conducted by the Tribes. For example, the Tribes expect from historical data a salmon run will arrive approximately in early September, but the fishery opening date was determined based on the result of a test fishery. This variance in the exact date of a specific fishery opening along with the large number of tribal fishermen typically working on the waterways (again, decreased during CS2 compared to CS1) necessitated ongoing coordination between the Tribes and the project team.

Regardless of the length of the fishery or participation by the fishermen, coordination between the Tribes and the project team was required while each fishery was open. During the timeframe of the different fisheries, coordination between designated points of contact for the project team and the Tribes fisheries services was achieved through the following procedures.

- Compensation was given to the Tribes for site access and displacing fishing.
- One designated point of contact was identified for each of the Tribes and one for the Lockheed Martin project team.
- Tribes were updated by the project with a summary of scheduled activities to take place on site and the location on site where these activities were to occur.
- The Muckleshoot Indian Tribe's Net Fishery Hotline was monitored, which is a weekly notification to Tribal fishermen and users of the waterway as to which river-miles of the Duwamish Waterway or locations within Elliott Bay were open to fishing and the dates/times these areas would be opened and closed to tribal fishing.
- The designated Tribal fisheries service coordinators were notified of all upcoming traffic of barges that would either be arriving on site or transiting between the dredge and transload site in Slip 4 in the Lower Duwamish Waterway. Information contained in these notifications included but were not necessarily limited to:
 - name of barge being moved
 - estimated time of departure and location of departure point

- estimated time of arrival and location of destination
- name of tugboat(s) to be used during barge traffic
- Once received by the Tribal fisheries service coordinators, information in the above notifications was disseminated to the Tribes' fisheries coordination personnel in the field, where they could determine and notify which tribal fishermen might be affected by the upcoming barge traffic and check in the field if a net move was warranted.
- If a net move was required, the above information was used to file the appropriate paperwork so that the tribal fisherman was compensated for lost fishing time or to identify that the net move was not caused by the project but instead another user of the waterway that was not affiliated with the project. During CS1, tribal nets were required to be moved on 17 occasions to facilitate transit of barges in the Duwamish Waterway. During CS2, there were six net moves to facilitate transit of barges and two net displacements of 5 days duration each when the nets were located within a dredge area.

Due to the importance of the Chinook salmon fishery to the Tribes, Lockheed Martin halted in-water work in CS1 during the time of the Chinook salmon fishery (August 15 and 16, 2018) to eliminate any impacts to Tribal fishers.

This coordination between the project team and the Tribes resulted in no Tribal fishery conflicts during construction.

6.2 SUMMARY OF DAILY AND WEEKLY CONSTRUCTION ACTIVITIES

As described in Section 3.1, CS1 in-water construction work began on August 13, 2018, and on August 21, 2018, work was halted due a crane operator's labor strike. After the labor strike was settled, work resumed on September 10, 2018. CS1 work was completed on March 28, 2019, after the United States Environmental Protection Agency (USEPA) and the natural resource agencies approved an extension of the construction work window from February 16 to March 31, 2019.

As described in Section 3.2, CS2 work began on September 4, 2019, and was completed on March 25, 2020, after Lockheed Martin received an extension of the in-water work window through March 31, 2020, from the Washington Department of Fish and Wildlife on January 31, 2020.

Appendix B contains the daily construction reports. Appendix D contains the minutes of the weekly construction meetings attended by Lockheed Martin, the construction team, USEPA, and stakeholders.

Appendix E presents the quality assurance inspection and testing reports. These appendices provide the details of the daily work that was conducted and document issues that arose during the conduct of the work. The weekly meeting minutes produced during CS1 were not reviewed by either USEPA or the Port of Seattle ("the Port"); however, the CS2 weekly meeting minutes were reviewed and approved by USEPA.

6.3 BACKFILL MATERIAL QUALITY AND APPROVAL

All backfill material used at the Site had to meet both chemical and physical criteria. Preconstruction quarry sampling was conducted to determine if levels of contaminants of concern (COCs) in the source of proposed fill material were either undetected or below the cleanup levels (CULs; Table 1). Preconstruction quarry sampling was conducted in accordance with the *Field Sampling Plan* (Appendix P of the *Revised Final (100 Percent) Design* ["*Final Design*"; Amec Foster Wheeler et al., 2018b]). Based on chemical analysis and visual inspections (Photo 2 and Photo 3), materials from CalPortland's Dupont, Enumclaw, and Snoqualmie facilities and Washington Rock's Orting facility were determined suitable for use and were used as fill for the project (see Appendix F for results of quarry sampling and analysis). Chemical testing of material from the Manke Shelton pit showed that material from this pit was not suitable for use as fill on the project due to concentrations of cobalt, selenium, vanadium, and polychlorinated biphenyls (PCBs) that exceeded applicable CULs. Backfill material types, sources, and tonnages delivered to the Site by date are provided in Table 3.

Potential sources of backfill materials had to meet gradation requirements in the design specifications (Section 2.1 of Specification 35 42 00 of the *Specifications*; Appendix R of the *Final Design* [Amec Foster Wheeler et al., 2018e]). Gradation of the proposed materials to be used was submitted prior to delivery to the Site by vendors to confirm that the materials met the gradation specifications. In addition, the gradation was confirmed for the material delivered to the Site. Some materials delivered to the Site did not meet the gradation requirements; these were rejected and replaced with compliant material.

Photo 2 Backfill Material Being Measured to Determine if Material Meets Specifications

Riprap and filter rock were placed at selected areas of the Site shoreline to provide protection. Gravel beach mix and fish mix were placed at selected shallow-water locations for scour protection. The enhanced natural recovery (ENR) / residual management layer (RML) material that was placed in the subtidal portions of the Site was double washed to reduce potential turbidity impacts.


During CS1, approximately 63,300 tons of backfill and shoreline protection materials were placed, consisting of:

- 39,200 tons (29,000 cubic yards [cy]) of ENR/RML material
- 4,900 tons (3,800 cy) of gravel beach mix
- 1,700 tons (1,300 cy) of fish mix
- 3,900 tons (2,800 cy) of filter rock

• 13,500 tons (9,700 cy) of riprap

During CS2 approximately 73,500 tons of backfill and shoreline protection materials were placed, consisting of:

- 41,100 tons (30,400 cy) of ENR/RML material
- 5,300 tons (4,100 cy) of gravel beach mix
- 1,500 tons (1,200 cy) of fish mix
- 5,800 tons (4,200 cy) of filter rock
- 19,700 tons (14,100 cy) of riprap

During CS1, project quality assurance staff collected samples of delivered materials. The minimum frequency for the collection of quality assurance samples was 20% of barge or truck loads delivered to the Site. Excluding riprap, materials were submitted to an independent, third-party laboratory to verify and document that delivered materials met project specifications. Results of these analyses are documented in Appendix F. Visual inspection of riprap used during CS1 is detailed in Inspection and Testing Report 036 (Appendix F).

During CS1, Materials Testing and Consulting, Inc. (an independent third-party laboratory), performed gradation analysis at their materials lab of materials used for ENR/RML placement (Appendix F, Inspection and Testing Reports 001, 035, and 054), filter layer rock (Appendix F, Inspection and Testing Reports 016, 017, 028, and 030), gravel beach fill (Appendix F, Inspection and Testing Report 050), and fish mix (Appendix F, Inspection and Testing Report 051). During CS1, all visual and gradation tests demonstrated that material used met the required specifications.

During CS2, 20% of all delivered materials were sampled by project quality assurance staff for gradation analysis by an independent, third-party laboratory to verify and document that delivered material met project specifications. For riprap, which had a median diameter (D50) of 2.22 feet, a visual inspection of 20% of delivered material was required and performed. Visual inspection of riprap is detailed in Inspection and Testing Reports 061 and 109 (Appendix F). During CS2, Materials Testing and Consulting, Inc., performed gradation analysis at their materials lab of materials used for ENR/RML (Appendix F, Inspection and Testing Reports 063 and 087), filter layer rock (Appendix F, Inspection and Testing Report 060), gravel beach fill (Appendix F, Inspection and Testing Report 095). Results of these analyses are documented in the respective Inspection and Testing Reports in Appendix F. All visual or gradation tests demonstrated that delivered material met required specifications during CS2.

6.4 EXTENSION OF IN-WATER CONSTRUCTION WORK WINDOWS

As described above, USEPA and the National Oceanic and Atmospheric Administration National Marine Fisheries Service approved an extension of the CS1 construction work window from February 16 to March 31, 2019. The National Marine Fisheries Service approved the extension on March 14, 2019, and the Washington Department of Fish and Wildlife approved the extension on January 24 and March 5, 2019. Due in part to a labor strike, issues encountered during construction

in the former shipway, and the need for placement of a temporary RML layer in selected dredged material management units (DMMUs), an extension was required to help protect aquatic organisms from exposure to contaminant concentrations that were greater than preconstruction concentrations between CS1 and CS2. The extension from February 16 to March 31, 2019, allowed for placement of backfill (ENR, RML, sacrificial RML, gravel beach mix, fish mix, and riprap). During the CS1 extension, no dredging was performed.

An extension of the construction work window for CS2 was needed to complete the remedial work. The National Marine Fisheries Service did not require an official approval of the construction work window extension since no "new" work would be conducted in the extended timeframe. On January 31, 2020, Lockheed Martin received an extension of the in-water construction work window from the Washington Department of Fish and Wildlife to allow construction to continue until March 31, 2020 (Appendix C). The in-water construction work window extension was required to allow additional dredging and backfilling in DU 5. All in-water work was completed on March 25, 2020.

6.5 INTERTIDAL SHORELINE DEBRIS REMOVAL

Targeted debris removal was conducted in the intertidal areas of the Site over 7 days during CS1. A majority of debris removal was conducted in the "dry" during low tide (Photo 4).

The debris removed from the shoreline included wood piles, steel pipes, metal debris, slag, concrete debris, and other anthropogenic material larger than about 12 inches. The debris was removed using a clamshell bucket operated from a derrick barge. Debris was also removed by hand by personnel using hand tools. Debris that was removed from the shoreline was identified in the USEPA-approved design drawings (Appendix A). Diagrams of where debris was removed from the shoreline are provided in the Daily Construction Reports (Appendix B). Based on visual surveys of the shoreline, all debris identified in the design drawings was removed.

A total of 387 tons of debris was removed using equipment working completely in the dry. An additional 851 tons of debris was removed in a combination of dry and wet excavation. A total of 9 tons of metal was recycled by Seattle Iron & Metals Corp. The shoreline debris was hauled to the Waste Management 8th Avenue facility via barge for processing and separation of recyclable material. The nonhazardous waste was loaded on train gondolas and hauled to an approved

disposal site. Visual monitoring for readily apparent turbidity plumes was conducted during shoreline debris removal work. A DVD of the pre- and postcleanup video surveys of the shoreline is available on request.

Photo 4 Removal of Shoreline Debris Using Dredge Bucket

6.6 OPEN-WATER DEBRIS REMOVAL, DREDGING, AND RESIDUAL MANAGEMENT LAYER PLACEMENT

This section discusses dredging work conducted outside of the former shipway. Construction in the former shipway is discussed in Section 6.7.

6.6.1 Construction Equipment

Dredging operations were performed by two derrick barges (American Construction's Palouse and Mukilteo). Production dredging used an environmental dredging bucket (Photo 5); however, some of the site debris prevented the bucket from closing properly and resulted in leakage and loss of sediments. The loss of dredged material frequently resulted in a visible turbidity plume. Following an exceedance of the conventional water quality parameters for turbidity during water quality

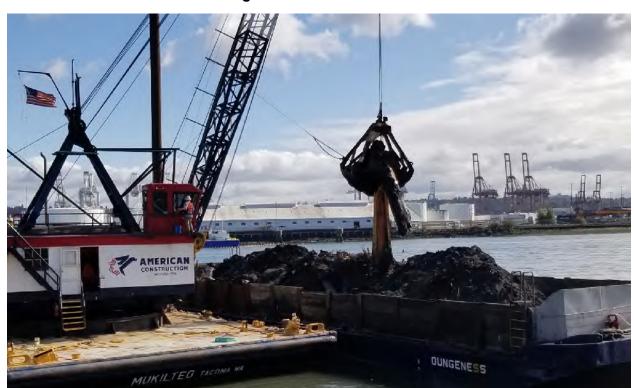

monitoring of dredging during CS1, the decision was made to switch to a standard digging bucket (Photo 6) for dredging the shallow surface sediments in areas containing large amounts of debris.

Photo 5 Environmental Dredge Bucket Used During Dredging

The standard digging bucket was also used to dredge denser sediments that the environmental bucket had problems penetrating. Final dredging and cleanup passes were conducted using the environmental bucket (where practicable).

Material placement (ENR/RML material, gravel beach mix, fish mix, filter rock, and riprap) was conducted using three derrick barges (American Construction's Palouse, Mukilteo, and Patriot) during the two construction seasons. In addition to placement using a derrick barge, some ENR material was placed using a telebelt under Piers 23, 24, 25, and at the concrete dock on the eastern shoreline (Figure 2).

Photo 6 Standard Digging Dredge Bucket Used in Areas of Significant Debris or Dense Sediment

6.6.2 Debris Removal

Prior to dredging, a targeted debris sweep using a clamshell digging bucket was conducted in the open-water area over a 3-day period during CS1 to remove debris that had been identified on the design drawings. Approximately 1,237 tons of shoreline and in-water debris were removed and disposed of. Additional debris was encountered during production dredging along the shoreline. In locations with a high concentration of debris, the debris was removed with a standard digging bucket as discussed above. During CS2, riprap was removed from the interface area between DUs 5 and 7 to facilitate dredging in DU 5. The riprap removal occurred over a 4-day period.

6.6.3 Barge Dewatering

Sediment barges were equipped with watertight steel interior bin walls and a timber fence on the exterior of the sediment bin. The timber fence was an artifact of the original barge construction before installation of the interior steel walls. As a result of the watertight bin walls, removal of free-standing water from within the sediment bin was accomplished using a pneumatic diaphragm pump. The pump transferred the water into a monofilament geotextile sediment bag. Once in the

bag, the sediments would remain, and the filtered water would drain back into the work area (Photo 7).

The *Dewatering Plan* (Appendix N of the *Final Design* [Amec Foster Wheeler et al., 2018f]) required the sediment bag fabric to have an apparent opening size of a No. 40 U.S. sieve (0.4 millimeter [mm]) or smaller. The bags used on the project had an apparent opening size of a No. 70 U.S. sieve or 0.21 mm.

Barge dewatering took place only within the Site work area as specified in the *Dewatering Plan*. Prior to barge transit between the dredge area and the offload site at Slip 4 on the Duwamish Waterway, dewatering was ceased, water within the bag was allowed to drain, and the sediment bag was placed within the sediment bin on the barge for disposal along with the dredged material at the approved disposal site.

IACOM

Photo 7 Geotextile Filter Bag Used Prior to Discharge of Dredge Return Water

6.6.4 Open-Water Dredging

Dredging was conducted in the open-water dredge areas outside of the former shipway. Open-water areas (DUs 3, 4, 6, 7, 8, 11, 12, 13, 14, and 15) were dredged on approximately 88 days during CS1 (excluding days when dredging was conducted only in the shipway) and 57 days during CS2. Determining if dredging met the dredge design based on elevation criteria was made independently for each DMMU. Once the contractor believed that a DMMU met the dredge design elevation, a bathymetric survey was submitted to the quality control (QC) officer for approval. The DMMU dredge elevation was approved if:

- no point within the dredge footprint was more than 0.5 foot above the design elevation,
- 90% of the dredge area was at or below the design elevation, and
- the largest contiguous area within each DMMU over the design elevation was less than 500 square feet.

If the DMMU dredge elevation did not meet the three acceptance criteria, then the DMMU was not approved, and additional dredging was required. The process of dredging, surveying, and QC review/approval was repeated until the DMMU met the dredge elevation acceptance criteria. The DMMU dredge elevation approvals are presented in Appendix G. During CS1, 61 DMMUs (excluding the former shipway DMMUs) were dredged to design elevation. Among these, 51 DMMUs were approved as meeting the design elevation in the first QC submittal, 11 were approved on the second submittal, and 2 were approved on the third submittal; no DMMUs required a fourth submittal.

During CS2, 53 DMMUs were dredged to design elevation, 49 of which were approved as meeting design elevation on the first QC submittal. Four DMMUs were not approved in the first submittal and required additional dredging; all of these were approved on the second submittal. Table 4 lists the DMMUs and the associated approval dates.

As described above, there was an allowance of 20% of the dredge area could be up to 0.5 foot above the design elevation and still meet the dredging requirements. The design dredge elevation was compared to the as-built dredge elevations for all the dredge areas outside of the shipway to determine the actual area that was above the design elevation when the work was complete. Based on this comparison, approximately 3.9% of the dredge area was above the design elevation with

an average of 0.14 foot above the design elevation. This percent of area above the design elevation is well below the dredge elevation allowance of 20%.

Along the shoreline slope area, additional dredging was not conducted in areas that did not meet the remedial action level (RAL) criteria due to the potential instability of the slope. However, there was one small area along the toe of the riprapped slope in DU 5 where additional dredging was conducted as described below.

In DU 5, the original design for the slope areas was to cut the slope prior to placement of riprap to no steeper than 2 horizontal:1 vertical (2:1). Based on concern of the USEPA and the US Army Corps of Engineers that the elevated concentrations of mercury in undredged sediment along the slope could affect the deepening of the adjacent navigation channel to a deeper authorized depth, Lockheed Martin evaluated options for removing the small area with elevated concentrations of mercury. Based on this evaluation, Lockheed Martin developed a plan to remove the contaminated material without undermining the riprapped slope. An area approximately 400 feet long and an average of 25 feet wide was redredged to remove elevated concentrations of mercury from the area. More information about mercury concentrations in this area is provided in Section 6.6.5.

6.6.5 Decision Unit Bottom Sampling for Evaluation of Attainment of RALs

Once a DMMU met design prism criteria, decision unit sampling was conducted in DMMUs that had sampling locations within the DMMU (Photo 8). Sampling was conducted as described in the *Field Sampling Plan* (Appendix P of the *Final Design* [Amec Foster Wheeler et al., 2018b]).

The objective of the chemical sampling at the bottom of the dredge cut was to ensure that the leave surface in each of the dredge areas met the RALs. There were 81 DMMUs within the approximately 648,000 square foot dredge area. The DMMUs were grouped into 16 larger decision units (DUs) that were used to determine if the objectives of the dredging had been met. Within the DUs, sample locations were allocated to have at least a 95% of detecting a 10,000-square-foot hot spot with a 5% false negative error rate. The sample spacing fits a systematic rectangular grid spacing equal to 116 feet x 39 feet. A total of 129 samples was collected in the DUs. DUs with less than approximately 10,000 square feet were allocated one sample near the centroid of the DU polygon. A point-by point comparison was not used to determine if the leave surface in the DU

met the RAL; in DUs that had three or more samples collected, a geospatial interpolation was used to determine if the average concentration in the DU at the bottom of the dredge cut was less than the RAL. The dredging chemical criteria (see Section 2.3.5) limited how much above the RAL a single point could be and the size of the area within a DU that could exceed that RAL.

The proposed and actual sediment sampling coordinates are listed in Table 5, and the locations are shown on Figure 5. Table 5 and Figure 5 show differences between the planned and actual sampling locations. These changes were necessary due to waves and currents that affected the sampling vessel. In addition, sample locations may have been moved slightly from the planned locations due to the lack of adequate recovery in the core during sampling.

Photo 8 Sampling Vessel Collecting Core Sample

6.6.5.1 Sediment Sample Collection, Processing, and Chemical Analysis

At each sample location, a sediment core was collected at the bottom of the dredge cut. Each core was logged, and samples were collected *in situ* at 0.5-foot intervals (Photo 9). See Appendix H for the core summary logs for all samples collected. The sample intervals were chemically analyzed using a top-down approach to a depth judged to be appropriate to the known and suspected conditions. For example, a 4-foot core yielded eight 0.5-foot samples. If the physical properties of the sediment samples suggested that pre-anthropogenic sediment was encountered at a depth of 2 feet, then the top five sample intervals were analyzed while the remaining samples were archived. At some locations, analytical results from the deepest sample analyzed exceeded the RALs; at these locations, additional cores were collected to provide deeper sample intervals than were originally collected. Two cores were required at locations, SD-CONF058, SD-CONF070, SD-CONF083, and SD-CONF101 to obtain deeper samples that were below the RALs. At SD-CONF070, four core samples were required to provide deep enough samples.

Photo 9 Core Sample that was Collected for Decision Unit Bottom Sampling

Samples were analyzed for metals (arsenic, copper, lead, and mercury) and PCBs as specified in the approved *Field Sampling Plan* (Amec Foster Wheeler et al., 2018b). At the request of the USEPA, analysis of polycyclic aromatic hydrocarbons (PAHs) was added for DU 6 that was in the vicinity of the former Dry Dock 1.

Initially, the 0- to 0.5-foot and 0.5- to 1.0-foot samples were analyzed for the four metals (arsenic, copper, lead, and mercury), PCBs, and PAHs. As detailed in the *Field Sampling Plan* (Amec Foster Wheeler et al., 2018b), a defined residual layer (soft unconsolidated surface layer at the top of the core) was excluded from any sample submitted for laboratory analysis. Not including the shipway there were 26 of 120 sample locations that had a defined residual layer that was excluded from analysis. At 16 of the sample locations that had a defined residual layer, additional dredging was conducted which likely removed the residual layer.

The results of chemical analyses in each DU are presented in Table 6A through Table 6R.

6.6.5.2 Geospatial Analysis of Sampling Results to Determine Additional Dredging

As described in the *Field Sampling Plan* (Amec Foster Wheeler et al., 2018b), a geospatial interpolation of the 0- to 0.5-foot samples was conducted for each DU where more than two samples were located. The geospatial interpolation was conducted for each of the analyzed COCs and was used to determine if the postdredge sediment surface met the chemical contaminant compliance rules provided in Section 2.3.5. The geospatial analysis was not conducted for each PAH compound where PAHs were COCs (DU 6). Instead, benzo(a)pyrene was used as an indicator for PAHs as a group.

In small DUs where only one or two samples were collected, no geospatial analysis was conducted (DUs 2, 10, 11, 12, 13, 14, and 15). For these DUs, the SWAC was calculated as the concentration of the sample for DUs with a single sample (DUs 2, 10, 11, 12, 13, and 15) or as the arithmetic average of the concentration of the two samples (DU 14). The geospatial interpolations are provided in Appendix I.

Results of these analyses showed that several DUs failed to meet the chemical contaminant compliance rules after the initial dredging to the design elevation (DUs 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 14, and 15). For these DUs, a revised dredge plan was prepared to define the depth of dredging

within each DMMU that required additional dredging within the DU. In some cases, contiguous DMMUs that required additional dredging were combined into a single DMMU; these combined DMMUs were identified with an "R" prefix (Redredge; e.g., R-DMMU20 A/B which was a dredge area that was comprised of a portion of DMMU 20A and DMMU 20B). There were 17 areas where DMMUs were combined for redredging and on average they were approximately the same size or smaller as the original average DMMU size of approximately 10,000 square feet (200 feet x 50 feet). The additional dredging in the redesigned DMMUs or R-DMMUs was subsequently approved by the QC officer and USEPA after the dredge design compliance rules were met. The DMMU approvals are presented in Appendix G, and the open-water dredging as-built drawings are provided in Appendix J.

6.6.5.3 Prescreening Electronic Data Deliverables to Expedite Decisions Regarding Additional Dredging

Due to the short turnaround time required to make decisions about additional dredging, data "prescreens" were conducted on the electronic data deliverables (EDDs) provided by the laboratory; full validation of the analytical data was not conducted until the end of the project.

The EDDs provided by the laboratory were screened by the data validator using database queries to verify that no quality control issues affected the preliminary data. These "prescreens" verified that QC samples associated with the results were in control and would not lead to rejected results, and dilutions, if performed, did not result in reporting limits that were greater than the RALs or CULs. The data prescreens allowed confidence in the analytical data used to determine whether additional analyses were required or if the bottom of the DU met chemical requirements. As a result of using preliminary data in the geospatial interpolations some values may have changed between the prescreened unvalidated data and the final validated data due to the resubmittal of laboratory reports. These changes were relatively minor and did not materially affect the geospatial interpolation and the design of additional dredging. Data may have been also qualified as estimated during the data validation process; however, this had no effect on the geospatial interpolation or decisions about additional dredging because estimated values were treated as detected values in the decision process.

Data used to demonstrate that the bottom of the DU met chemical requirements were validated following the requirements outlined in the *Quality Assurance Project Plan* (Attachment B of

Appendix P of the *Final Design* [Amec Foster Wheeler et al., 2018b). The data validation reports are provided in Appendix K.

6.6.5.4 Evaluation of the Environmental Protectiveness of the Dredging

To evaluate the overall success of the dredging and protectiveness of the remedy, an interpolation of the chemical concentrations in the postdredge sediment surface was conducted. The interpolated concentrations of arsenic, copper, lead, mercury, and total PCBs for sediments that were left in place after dredging (prior to placement of RML) were compared to the project RALs.

This approach was conducted for the combined, contiguous areas of DUs 3, 4, 5, 6, 7, 8, and 9; the smaller dredge areas could not be incorporated into the interpolation. The data used in the interpolation in many cases were estimated because all of the sediment associated with analytical sampling results was removed during redredging in some locations (Table 6C through Table 6J indicate which samples were removed during redredging). In addition, not all analytes were analyzed in all sample intervals, and these missing data were estimated based on results from shallower sampling intervals. Table 7 shows examples of how the data were selected to create the dataset used in the geospatial interpolation. As shown for the example data in Table 7, all analytes except mercury were estimated for shallow sample intervals at sample locations SD-CONF045 and SD-CONF032. At SD-CONF045, arsenic, copper, lead, and total PCBs were estimated for a sample at least 0.5 foot above the bottom of the dredge cut. At location SD-CONF032, arsenic, copper, lead, and total PCBs concentrations were estimated from a sample interval that was at least 2 feet above the bottom of the dredge cut. The same process for data selection was applied to all the core samples collected in DUs 3, 4, 5, 6, 7, 8, and 9. The complete dataset used in the geospatial interpolations is provided in Appendix L.

The interpolations were performed using 106 sample locations. Sample analyte concentrations were estimated from shallower samples in approximately 13% of the arsenic sample locations, 14% of the copper and lead locations, 10% of the total PCB locations, and 1% of the mercury locations. Based on the postconstruction core samples, in general, the concentration of contaminants decreased with depth below the mudline as described below.

Of the 106 sample locations, 51 were in areas that required redredging. Of the 51 sampling locations where additional dredging was required, dredging at 37 of these locations extended

below the deepest sample analyzed. It is reasonable to assume that chemical concentrations decrease with depth based on the conceptual site model of contaminated sediment being deposited on uncontaminated native material. Appendix L provides the data used in the interpolations and includes sample intervals used, notations for each sample whether the deepest sample was removed by dredging, if the values were estimated from shallower sample intervals, and an assessment whether the concentrations of contaminants decreased with depth. An assessment of whether a contaminant concentration decreased with depth was not performed for samples where dredging did not extend below the deepest sample analyzed. Data in the appendix shows that 56 of 530 contaminant values were estimated from shallower intervals. There were 185 out of 530 contaminant values (37 sample locations) removed by dredging (i.e., there were no sample intervals analyzed below the dredge cut).

Of the 42 sample locations that were removed by dredging or where concentrations were estimated from shallower samples, 38 showed a clear trend of decreasing contamination concentration with depth. One of these locations (SD-CONF112 in DU 9) showed a trend of decreasing concentration for arsenic, copper, lead, and mercury; however, total PCBs at this location did not show a trend of decreasing concentration with depth. There were five sample locations (including SD-CONF112 in DU 9 for PCBs) out of 42 sample locations that were removed by dredging or where concentrations were estimated from shallower samples that did not show a clear trend of decreasing concentration with depth. Although there were five sample locations that did not show decreasing concentration with depth, the overall trend of decreasing concentration with depth for a majority of the locations suggests that the chemical concentrations used in the interpolation were likely overestimated by some unknown amount.

The results of the evaluation are presented in the lower portion of Chart 1 in Section 5.3.1. The chart shows that, for the five contaminants evaluated in this analysis, after dredging the SWAC sediment concentrations were considerably lower than the applicable RAL and clearly show that the remedial objectives for sediment concentrations left in place after dredging were met.

As described in Section 6.6.4, additional dredging at the toe of the riprap slope in DU 5 was conducted to remove elevated concentrations of mercury. Sample locations SD-CONF032, SD-CONF033, SD-CONF034, and SD-CONF035 were within the footprint of the additional dredging. The concentrations of mercury left in place after the additional dredging are provided in Table 6E.

The maximum concentration of mercury left in place after the additional dredging was 0.218

mg/kg.

The design allowed for up to 20% of the area in each DU that could be greater than 2 times the

RAL, equivalent to requiring that a minimum of 80% of the area had to be less than 2 times the

RAL. Note that areas in steep slope areas were excluded because no further dredging could be

conducted due to potential slope instability. Within the large contiguous area of DUs 3, 4, 5, 6, 7,

8, and 9 the percent of the area that was less than 2 times the RAL was 99.4%, 99.6%, 100%,

85.7%, and 85.0% for arsenic, copper, lead, mercury, and total PCBs, respectively. These numbers

are well above the required 80%.

Another design dredging criterion was that there were to be no areas of the postdredging surface

in which the contaminant concentration exceeded 3 times the RAL. This criterion was met for all

areas outside of the steep slope area. There was one small area in the steep slope area where the

mercury concentration was greater than 3 times the RAL. To provide environmental protection

over 6 feet of cover materials were placed in this area.

In addition to evaluating cleanup success by a reduction in concentrations of COCs, the

contaminant mass that was removed was calculated. The mass reduction was estimated by

identifying subsets of the dredging quantities in which contaminant concentrations were known.

For example, if a DMMU was known to have had 600 tons of dredge spoils removed with a

concentration of lead of 110 mg/kg, then the total mass of lead removed can be calculated. In this

example, the mass of lead removed is 600 tons times 110 (concentration of lead) divided by

1 million (lead concentration unit of parts per million [mg/kg]) which equals 0.066 tons, or 132

pounds. By using the total dredge tonnage from the site and the average concentration of the risk-

driver contaminants, the mass of contaminants removed by dredging was:

Arsenic: 9,832 pounds (4,461 kg)

Copper: 75,870 pounds (34,424 kg)

Lead: 30,012 pounds (13,617 kg)

Mercury: 253 pounds (115 kg)

Total PCBs: 320 pounds (145 kg)

In summary, the dredging phase of the remedial action was very effective at reducing sediment COC concentrations. The remedial action was designed to remove sediments with chemical concentrations greater than the RALs; however, by targeting the removal of sediment exceeding the RALs, the average chemical concentrations in sediments left in place were significantly lower than the RALs; moreover, for copper and mercury, the average concentrations were below the CUL SWAC.

6.6.6 Shoreline Slope Stabilization

The shoreline slopes adjacent to DUs 7 and 8 were dredged according to the approved plans (see DMMUs 9A, 10A, 11A, 12A, and 13A in Appendix G). Due to a delay in placing the shoreline armor material, the toe anchor trench needed to be redredged prior to placement of the armor rock. The delay was caused by difficulty in obtaining shoreline stabilization materials that met the required specifications.

The subtidal slopes in the vicinity of the former drydocks were stabilized with a layer of riprap over a filter rock layer base following the dredging and postdredging sampling of the DMMUs. Approximately 3,000 tons (2,000 cy) of filter rock and 11,800 tons (7,900 cy) of riprap were placed along the shoreline in this area during CS1. Placement of the filter rock and riprap was conducted over approximately 24 days with incremental bathymetric surveys to confirm placement thickness. Twelve incremental surveys were conducted to verify the thickness of the filter rock, and seven surveys were conducted to verify the placement thickness of the riprap.

The shoreline slopes adjacent to DU 5 were dredged according to the approved plans (see DMMUs 14B, 14C, 15B, 15C, 15D1, 16A, and 16C1 in Appendix G). A portion of the area was redredged in March of 2020 as directed by the USEPA (see R-DMMUs 16AB-B, 16B-A, and 16A-C in Appendix G).

The subtidal slopes were stabilized in DU 5 following dredging, postdredge sampling, and redredging with a layer of riprap over a filter rock layer base. Approximately 4,000 tons (2,700 cy) of filter rock and 9,000 tons (6,000 cy) of riprap were placed along the shoreline in this area during initial DU 5 work in CS2. Placement of the filter rock was conducted over 14 days; placement of riprap was conducted over 9 days. An additional approximately 2,200 tons (1,600 cy) of riprap was placed along the shoreline after redredging of sediment with elevated mercury concentrations

at the toe of the original riprap slope was completed in DU 5. Placement of riprap subsequent to the redredging was conducted over 5 days. Incremental bathymetric surveys were conducted to confirm placement thickness. Fifteen incremental surveys were conducted to verify the thickness of the filter rock, and nine surveys were conducted to verify the placement thickness of the riprap. The shoreline stabilization as-built drawings and QC approvals are provided in Appendix J.

6.6.7 Residual Management Layer Placement

An average 6-inch layer of sand (RML; average of at least 6 inches; with a minimum of 4 inches except on slope areas where the minimum was 3 inches (*Construction Quality Assurance Plan* [Amec Foster Wheeler et al., 2018g]) was placed in the open-water DMMUs that met the design depth requirements and where the postconstruction core sampling indicated that the DMMU met the chemical criteria.

The RML material was placed by a derrick barge (floating crane) equipped with a 7-cy or 32-cy rehandling bucket (Photo 10). Rain gauge bucket locations at the required average density of approximately eight rain gauge buckets per acre were loaded into the derrick barge's electronic positioning system. As the derrick stepped back into a new placement set that required a rain gauge bucket, the operator would alert the two deck engineers onboard that he was spotting the location with the derrick's rehandling bucket using the derrick's positioning system. Once the location was spotted, the rain gauge bucket was lowered to the seabed by the two deck engineers working from the derrick's skiff.

Placement of RML was generally done in a single pass (or swing) of the rehandling bucket across a fixed radius from the crane's center-pin. Generally, placement of RML material was done with the opening of the rehandling bucket lowered just below the waterline during placement unless there was a danger of the bucket striking an obstruction, such as a pier, within the swing radius of the derrick's anchor wire or rain gauge bucket recovery buoy. As the operator returned the rehandling bucket back to the material barge (still at a fixed radius), the operator would mark placement progress by recording a series of bucket placement marks using the positioning system across the radius of the crane's swing (Photo 11). The practice of marking placement was done for each swing in which RML was placed, not just when a rain gauge bucket measurement was recorded. The marking of each placement swing radius served the purpose of documenting complete horizontal coverage within the placement area and was a requirement under the project's

Construction Quality Assurance Plan (Appendix D of the Final Design [Amec Foster Wheeler et al., 2018g]).

Photo 10 Placement of Residual Management Layer

Photo 11 On-board Navigation System Bucket Swing Marks

During placement of RML, a spreadsheet was updated with rain gauge bucket measurements collected by construction QA staff and a running average of ENR/RML thicknesses to date to monitor progress toward the minimum 6-inch average thickness requirement. Rain gauge buckets (approximately 10 buckets per acre) were used to monitor the thickness of RML placement (Photo 12), and overall placement quantities were based on a calculated tonnage of backfill per area. Rain buckets were positioned in locations to avoid dredged slopes greater than 3 horizontal to 1 vertical (H:V) to prevent tipping (as practicable). If the initial measurement of the thickness of RML material was less than the minimum required thickness (i.e., <4 inches [except on slope areas where the minimum was 3 inches] as specified in the *Construction Quality Assurance Plan* [Amec Foster Wheeler et al., 2018g]), then the rain gauge buckets were redeployed at the same locations and additional material was placed in radiuses leading up to and beyond the location of the rain gauge bucket. Additional RML material was placed, and a second (or potentially a third) round of measurements were made. In areas where the slope was greater than 3H:1V, the minimum

required thickness of ENR was 3 inches. Upon satisfactory completion of the horizontal (recorded bucket placements on the derrick's positioning system) and vertical requirements (rain gauge bucket measurement if required within set), the derrick continued by stepping backwards into the next placement set.

Photo 12 Rain Gauge Bucket Retrieval

At the project completion, the minimum depth placements for RML and ENR were met at all locations. The approximate locations for RML rain gauge buckets are shown on Figure 6.

6.6.7.1 Construction Season 1

During CS1, RML material was placed in DU 11, DU 12, DU 13, and DU 14, and over a portion of DU 8. RML material was not placed in DMMUs that were adjacent to DU 7, which required additional dredging in CS2. The status of the work at the end of CS1 is shown on Figure 4.

The minimum final thickness at any of the 18 rain gauge bucket locations during CS1 was 4.5 inches, the maximum was 7.5 inches, and the average was 6 inches. RML placement occurred over a period of 10 days. The RML thickness measurements are provided in Table 8.

Several DUs were dredged during CS1 to the original design elevations but did not meet the chemical contaminant compliance rules and were redredged during CS2. In the DUs that did not meet the chemical criteria, a nominal 3-inch layer of sacrificial temporary RML material was placed in DMMUs that had concentrations of arsenic, copper, lead, mercury, or PCBs greater than the preconstruction concentrations of these contaminants. Placement of approximately 3,300 tons (2,400 cy) of the temporary RML layer was conducted over 4 days. The thickness of the temporary RML placement was determined based on tons of material per acre rather than through the use rain gauge buckets. The areas where temporary RML was placed are shown on Figure 4.

6.6.7.2 Construction Season 2

During CS2, RML was placed in DUs 1, 2, 3, 4, 5, 6, 7, 8, 9, and 10. During CS2, 120 rain gauge bucket locations were measured (Table 8). The minimum thickness in any rain gauge bucket in CS2 was 4.0 inches, and the maximum thickness was 11.0 inches. The average thickness was about 6 inches.

6.7 SHIPWAY PILE REMOVAL, DREDGING, AND BACKFILL

All work conducted in the former shipway was conducted during CS1.

6.7.1 Pile Removal

Pile removal within the shipway was conducted over 15 days between August 13 and September 22, 2018 (Photo 13). An estimated 514 wood piles were identified on the design drawings for removal within the shipway. An additional 262 piles were found and removed during subsequent days of production dredging within the shipway. The additional piles were either embedded piles that apparently had been broken off at or below mudline or were laying on the sediment surface. All piles were extracted and disposed of at the Roosevelt Regional Landfill according to the approved plans and relevant best management practices.

Photo 13 Vibratory Pile Extraction

6.7.2 Shipway Dredging

Dredging in the former shipway (DU 16) required approximately 18 days. The dredge design elevations in the former shipway were generally met except for an area adjacent to the sheet pile wall on the west side of the shipway (Figure 7). In this area, the sheet pile wall on the west side of the shipway deformed during dredging, which precluded dredging to the design elevation (see Section 6.7.4). In the area of the wall deformity, an approximately 0.2-acre dredging buffer area was established to not further compromise the stability of the sheet pile wall. In addition, in the remainder of the shipway, dredging was limited to the design elevation with no overdredge allowance (i.e., the dredging was continued to the design elevation but no deeper). This restriction was done to reduce the potential for further wall deformity. The change in the dredge elevations was approved by USEPA; however, due to concern that the material to be left in place may have

contained elevated concentrations of PAHs, USEPA required that all former shipway samples be analyzed for PAHs (PAH Memo in Appendix C).

Dredging in the shipway was to be conducted using an environmental bucket; however, the presence of debris and buried piles required the use of a digging bucket for most of the shipway dredging. Approximately 6,700 cy of sediment was removed from the former shipway.

6.7.3 Shipway Postconstruction Core Sampling

After dredging was completed to the elevations that would not further compromise the stability of the sheet pile wall, core sampling was conducted at the locations provided in Table 9 and shown on Figure 8. Core sample intervals were analyzed for metals, PCBs, and PAHs. In addition to the 0.5-foot intervals that were collected from each core sample, composite samples at locations SD-CONF119 (0 to 6.5 feet), SD-CONF120 and field duplicate location SD-CONF2120 (0 to 2.5 feet), and SD-CONF127 (0 to 5.0 feet) were collected and analyzed. The composites represented material that was left in place above the original design elevation within the buffer area. Additionally, samples of the first two 0.5-foot intervals below the original design elevation were analyzed from each of the locations within the buffer area. The results of these analyses are presented in Table 6A through Table 6R.

The geospatial analysis of the shipway (Figure 9) shows that the 0- to 0.5-foot interval met the chemical contaminant compliance rules for all chemicals except for benzo(a)pyrene; the SWAC for benzo(a)pyrene was 1,540 micrograms per kilogram (µg/kg), and the RAL was 1,500 µg/kg. Concentrations of metals and PCBs in the composite samples (the material left in place above the original design elevation) were below the RALs. Concentrations in the composite sample from SD-CONF119 were elevated above the RAL for several PAHs (Table 6R). At SD-CONF120 and the duplicate sample location SD-CONF2120, only a single PAH exceeded the RAL in the composite sample. The composite sample from SD-CONF127 had no exceedance of the RALs for PAHs.

Due to the short turnaround time available to make decisions about additional dredging, full validation of the analytical data was not conducted until the end of the project. A prescreen of the data was conducted as described in Section 6.6.5.

6.7.4 Sheet Pile Wall Deformation and Stabilization

On October 16, 2018, American Construction Company observed movement of the shipway sheet pile wall and uplands slope while dredging in the former shipway. Geotechnical engineers from Wood Environment & Infrastructure Solutions, Inc., visited the site on October 16, 2018, to observe the slope movement and the condition of the sheet pile wall. The site visit documented an exposed head scarp on the slope and tension cracks behind the crest of the slope. The sheet pile wall had moved laterally and tilted outward toward the water. The top of the wall appeared to have moved up to 3 feet laterally (see Figure 10). The geotechnical engineers observed severe corrosion of the wall (red, brown, or orange in color). The wall exhibited evidence of disintegration and deterioration, and the wall walers and anchors were visibly no longer functioning.

In the area of the wall deformity and the dredging buffer area (Figure 7), surveys were conducted twice a week to monitor wall movement (Appendix M). Due to the deformity of the sheet pile wall, additional engineering was required to determine the appropriate method to stabilize the wall. Several engineering designs were considered to stabilize the wall, and the selected remedy approved by USEPA was to place a rock buttress along the wall. The rock buttress stabilized the wall. The as-built drawings and QC approvals for the filter rock and riprap placement along the sheet pile wall are provided in Appendix N. The Port has expressed concern about the stability of the decaying sheet pile wall; however, no further action is required or planned.

After placement of the rock buttress, periodic monitoring of the wall was conducted to assess the stability of the wall (Appendix M). Monitoring was conducted weekly until three consecutive surveys identified no observed movement followed by a subsequent monthly monitoring event indicating no observed movement. As of June 2019, no movement attributable to instability of the rock wall or buttress had been observed. Visual monitoring of the wall is the continuing responsibility of the Port of Seattle. Surveying may be reinitiated if a visual deformity of the wall is noted or in the event of a significant weather event, as determined by the Port in consultation with Lockheed Martin.

6.7.5 Shipway Ramp Stabilization

During dredging of the shipway, the pile-supported concrete slab at the head of the shipway became undermined when tidal action removed sand from underneath the slab. The observed undermined area of the slab was approximately 29 feet long parallel to the face of the slab, extending approximately 21 to 25 feet toward shore from the face. The vertical void space under the slab varied from a fraction of an inch inshore to approximately 25 inches at the face of the slab.

The Port requested that the void space beneath the slab be filled to help stabilize the slab. Lockheed Martin considered various engineering alternatives and decided with the Port's approval to fill the void space with controlled density fill (CDF). The slab was prepared for CDF placement by drilling six 8-inch holes through the slab for injection and observation of the CDF. The CDF was placed on February 12 and February 22, 2019. A total of approximately 38 cy of CDF was pumped into the void over two construction days. Appendix O details the placement of the CDF. After completion of the CDF placement, gravel beach mix was placed over the concrete slab to restore the preconstruction grade.

6.7.6 Shipway Fill Placement

Placement of backfill material within the shipway was conducted following completion of dredging. The approved design for the shipway fill required that fill be placed to restore the preconstruction grade. The shipway fill will isolate residual PAH contamination from the Pacific Sound Resources (PSR) found at depth in the shipway (see the *Revised Final (100 Percent) Design* [Amec Foster Wheeler et al., 2018a] for a discussion of the nature and extent of the PSR PAHs).

The fill (from bottom to top) was to consist of a sand layer of variable thickness, a 3-foot gravel beach fill layer, all overlain with a 0.5-foot layer of fish mix above an elevation of -10 feet mean lower low water (MLLW). Below elevation -10 feet MLLW, the fill was to consist of sand to restore the preconstruction grades. Above -10 feet MLLW, a minimum of 3.5 feet of backfill was placed (3 feet of gravel beach mix and 0.5 foot of fish mix). In areas where the difference in elevation between the pre- and postconstruction grades was less than 3.5 feet, the bottom elevation was raised above the preconstruction grade to accommodate the fill. The following approximate volumes of material were placed in the former shipway: 5,300 cy of sand, 580 cy of filter rock, 1,400 cy of riprap, 1,300 cy of fish mix, and 3,200 cy of gravel beach mix.

Each layer of material that was placed was approved through bathymetric surveys as meeting the design requirements prior to the next layer of material being placed. The as-built drawings and QC

approvals for the gravel beach mix and sand fill materials are presented in Appendix N. The thickness of the final layer of fish mix was monitored with rain gauge buckets.

6.7.7 As-Built Drawings

The as-built drawings for the shipway are presented in Appendix P.

6.8 ENHANCED NATURAL RECOVERY LAYER PLACEMENT

ENR material was placed using the same methods as RML placement (Section 6.6.7). Rain gauge buckets (eight buckets per acre) were used to monitor the thickness of the placement; overall placement quantities were based on a calculated tonnage of ENR material placed by area. The approximate locations where the rain gauge buckets were deployed are shown on Figure 11.

If the initial measurement of the thickness of ENR material was less than the minimum required thickness (i.e., <4 inches or on slope areas where the minimum was 3 inches) as specified in the *Construction Quality Assurance Plan* (Amec Foster Wheeler et al., 2018g), then the rain gauge buckets were redeployed at the same locations, additional ENR material was placed, and a second of measurements were made (and potentially a third round if the thickness requirements were not met after the second measurement). In areas where the slope was greater than 3H:1V, the minimum required thickness of ENR was 3 inches.

At Piers 23, 24, 25, and the concrete dock, a volumetric equivalent was placed using parts of the structures, such as pile rows, as a visual reference to assist in placement. For each bay between piling rows, a precalculated volume of ENR material measured by loader buckets was placed in the telebelt's hopper and distributed evenly by the telebelt (Photo 14). ENR placement by telebelt was overseen by project QC personnel.

Placement of ENR material was conducted on 40 construction days during both CS1 and CS2. Measurements were made at 118 rain gauge locations during CS1 and at 66 locations during CS2.

The required placement depths of ENR were met at all locations. The minimum final thickness at any rain gauge bucket location was 3.5 inches, the maximum was 13.25 inches, with an average of 6.5 inches. The minimum thickness was less than 4 inches at two locations; however, these locations were on slopes greater than 3H:1V and therefore met the thickness criterion. A summary of the rain gauge bucket results for the ENR placement is provided in Table 10.

Photo 14 Placement of Enhanced Natural Recovery Layer by Telebelt

SECTION 7 TRANSLOADING OF DREDGE SEDIMENTS AND DEBRIS

This section describes the project transloading facilities, operations, waste streams, waste quantities, and landfills used during the project. Approximately 1,237 tons of debris (in-water and shoreline), approximately 114,100 tons of dredged sediment, and approximately 790 pilings (930 tons) were disposed of during construction season 1 (CS1). A total of 1,739 rail carloads were used to transport material to the landfill during CS1. During construction season 2 (CS2), approximately 68,500 tons of dredged sediment was transported to the landfill on 1,522 rail cars. Appendix Q includes barge displacement survey reports, rail car bill of ladings, transload certificate of disposal forms, and gondola tracking records.

7.1 WASTE MANAGEMENT

All dredge material and nonpiling debris were transported from the Site to the Waste Management 8th Avenue Reload Facility located at 7400 8th Avenue South on Slip 4 in the Lower Duwamish Waterway in Seattle, Washington. The reload facility is approximately 4.5 miles from the project site and is situated just north of the Duwamish Waterway. Barges were offloaded at the facility's south dock. During CS1, the first debris load was received on September 12, 2018. The second and final barge load of debris was received on September 15, 2018. Dredge material was first received on September 18, 2018, and the last load for CS1 was received on January 16, 2019. During CS2, dredge material was first received on September 18, 2019, and the last load was received on March 18, 2020. Decontamination of barges occurred at the Waste Management 8th Avenue Reload Facility and is discussed in Section 13.

Dredge material offloading and transfer were performed using a Sennebogen 875E excavator (Photo 15).

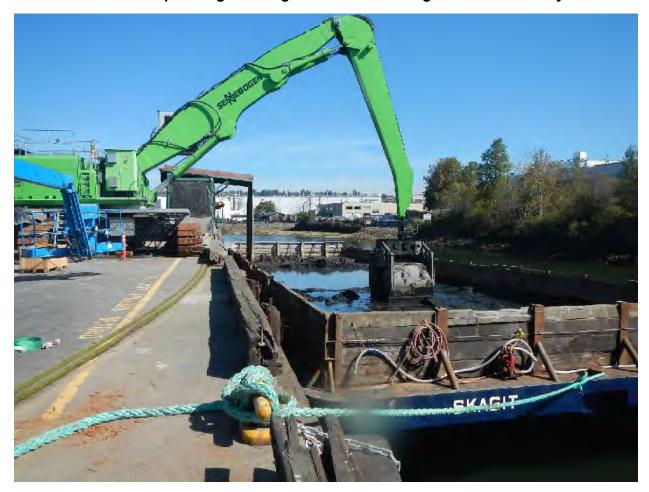


Photo 15 Uploading of Dredge Material from Barge at Reload Facility

Shoreline debris, in-water debris, and dredge material were stockpiled in the facility within secondary containment that included a water control system regulated by the Washington State Department of Ecology. Debris piles were segregated from sediments; however, other sediments and uplands soils originating from other non-Lockheed Martin generator sites were mixed in the stockpile area with sediments from the Site. These waste streams were placed into gondola rail cars using a front-end loader before being released for shipment to the Subtitle D Columbia Ridge Landfill located in Arlington, Oregon.

During a site visit on September 27, 2018, a USEPA representative observed sediment on the sides of some of the rail gondolas being released from the 8th Avenue Reload Facility. The USEPA representative notified Lockheed Martin and its subcontractors of the observation and inquired about the cleaning protocols that Waste Management has in place prior to releasing rail gondolas. Lockheed Martin discussed these observations with Waste Management's district operations

manager and project manager after the observation was reported. Waste Management explained that, although the 8th Avenue Reload Facility does not pressure wash the sides of gondolas, they do use a wire brush, broom, or similar cleaning device to brush off excess sediment and/or soils from the edges and tops of the rail cars prior to release. The protocol was explained and documented to the USEPA in the form of email communication on October 5, 2018.

7.2 AMERICAN CONSTRUCTION COMPANY

Pilings removed from the Site were transported on material barges to American Construction Company's yard located at 1501 Taylor Way, Tacoma, Washington. American Construction Company's property lies just south of the Hylebos Waterway, where material barges dock during the offloading process. These pilings were placed in containers using a small excavator (Photo 16), and the containers were picked from the material barges with an onshore crane. The first barge load of pilings was received at American Construction Company's yard on September 26, 2018, and the last load was received on October 4, 2018. Piling materials were transferred at American Construction Company's yard to containers, which were trucked to the Alaska Street Transfer Station in Seattle for rail shipment to the landfill. Pilings were transported on rail cars to the Roosevelt Regional Landfill located in Roosevelt, Washington. The first rail cars of pilings were received at the landfill on September 28, 2018, and the last rail car was received was on October 12, 2018.

Photo 16 Excavator Used to Place Pilings in Containers

SECTION 8 RESULTS OF WATER QUALITY MONITORING

Water quality monitoring was conducted in accordance with the *Water Quality Monitoring Plan* (Appendix M of the *Revised Final (100 Percent) Design* [Amec Foster Wheeler et al., 2018c]), which was approved by the United States Environmental Protection Agency (USEPA), and the *Updated Final Memorandum, Clean Water Act §404 ARAR Memo: Substantive Water Quality Requirements for the Lockheed West Seattle Superfund Remedial Action ("the Clean Water Act §404 ARAR Memo"; USEPA 2018, 2019; Appendix C).*

Weekly water quality monitoring reports submitted to USEPA and additional stakeholders are provided in Appendix R.

Water quality monitoring was performed in construction season 1 (CS1) during the following construction activities:

- pile removal
- submerged debris removal
- dredging
- barge dewatering
- enhanced natural recovery (ENR)/residual management layer (RML) material placement
- shoreline slope armoring:
 - placement of filter rock
 - placement of riprap
- material placement in shipway:
 - filter rock
 - riprap

- gravel beach mix
- fish mix
- sand

Water quality monitoring was performed in construction season 2 (CS2) during the following construction activities:

- dredging
- barge dewatering
- ENR/RML material placement
- shoreline slope armoring:
 - placement of filter rock
 - placement of riprap

Water quality monitoring generally consisted of field measurements of conventional water quality parameters (turbidity, dissolved oxygen, pH, and temperature) in accordance with the *Water Quality Monitoring Plan* (Amec Foster Wheeler et al., 2018c). Water quality monitoring was conducted using a small vessel (Photo 17). In addition, water samples were collected during the first 5 days of intensive monitoring during construction activities that had the potential to suspend contaminated sediments into the water column. These activities included the dredging and dewatering of sediments. Collection of water samples continued during subsequent weeks of dredge monitoring when turbidity measured during monitoring at any compliance station exceeded the water quality performance criteria specified in the Clean Water Act §404 ARAR Memo (USEPA, 2018, 2019; Appendix C).

8.1 MONITORING OF CONVENTIONAL WATER QUALITY PARAMETERS

This section documents water quality monitoring performed for conventional parameters during the remedial action and summarizes the results of the monitoring.

8.1.1 Construction Season 1

During CS1, in-water construction activities were conducted on 160 days of the total 226-day construction season (August 13, 2018, to March 28, 2019). Of the 160 days of in-water

construction, water quality monitoring of the conventional parameters was conducted on 100 of the construction days. The 160 days did not include visual monitoring for turbidity conducted during shoreline debris removal and during placement of shoreline protection material. During CS1, 217 rounds of water quality monitoring were performed, with exceedances of the turbidity criterion recorded during 31 rounds (exceedance ranged from 5 to 81.1 nephelometric turbidity units [NTU] above ambient levels; Table 11).

Photo 17 Vessel Used for Water Quality Monitoring

Table 12 summarizes the water quality monitoring activities conducted during CS1 by activity. The discussion below focuses on turbidity, since turbidity exceedances represented the majority of cases of noncompliance with conventional water quality criteria (turbidity at a compliance station no greater than 5 NTU more than the value measured at a corresponding ambient station or no more than 10% above ambient if ambient turbidity was greater than 50 NTU). The remaining instances of noncompliance were for dissolved oxygen (DO). Low DO values (DO <6 milligrams

per liter) were measured during some of the rounds of monitoring at the deeper compliance stations. The low DO values resulted in several apparent or confirmed instances of noncompliance with the DO criterion; however, low DO levels were also found at the corresponding ambient stations in a number of cases (i.e., deeper water at the mouth of the West Waterway or north of the project site in Elliott Bay). The low DO values appeared to be an area-wide phenomenon, unrelated to the Lockheed Martin construction activities. Fourteen of the 16 apparent or confirmed noncompliance events involving low DO occurred during the week of October 22–28, 2018. Low DO levels were measured at the corresponding ambient locations during 12 of the 16 apparent or confirmed low DO monitoring events.

Table 12 provides a further breakdown of the tidal conditions and the general water depth during which turbidity exceedances were observed. Sampling or observational information summarized in Table 12 may have been potentially biased or inconclusive due to limited number of sampling events, limited duration, or lack of variability in the sampling conditions (e.g., same tidal stage).

Figure 12 shows a histogram for the range of differences between the maximum turbidity (in NTU) at compliance stations versus the corresponding ambient station (representing the background). The differences in turbidity were grouped into the following ranges differences between the compliance station and the ambient station: <5 NTU; 5 NTU to <10 NTU; 10 NTU to <20 NTU; 20 NTU to <40 NTU; 40 NTU to <60 NTU; and ≥60 NTU. The number of rounds of water quality monitoring within each range were also broken down by general construction activity. No confirmed exceedances of turbidity were observed during monitoring of pile or submerged debris removal, barge dewatering (conducted separate from dredging), or shoreline slope armoring. These activities were not expected to result in significant amounts of turbidity or other water quality impacts, and monitoring was scheduled for the first 2 days of an activity to confirm that significant impacts were not occurring.

Exceedances of the turbidity criterion were observed for about 7% of the monitoring rounds (7 of 97 rounds of monitoring) during dredging (including dredging in the shipway). The largest exceedance (difference between the compliance station and the ambient [background]) was approximately 38 NTU over background. The remaining six turbidity exceedances during dredging were on average about 11 NTU over background. As shown in Table 12, exceedances

during dredging do not appear to be related to tidal cycle or whether work was being conducted in either deep (offshore or open areas) or shallow (nearshore areas) water.

Exceedance of the turbidity criterion during ENR/RML placement was observed for 14% of the monitoring rounds (9 of 63 monitoring rounds). The largest observed exceedance was about 14 NTU over background, and the remaining exceedances averaged about 7 NTU over background. Exceedances did not appear to be related to the tidal cycle. Exceedances did not appear to be related to where work was being conducted (deep or shallow water); however, this observation may be an artifact of the limited rounds of monitoring conducted during shallow-water ENR/RML placement. The RML placement in shallow water was limited to placement in dredged material management unit (DMMU) 4A and did not include placement of clean backfill materials in the shipway.

During material placement in the shipway, exceedances of the turbidity criterion were observed for about 37% of the monitoring rounds (15 of 41 monitoring rounds). Of the 15 exceedances, 12 occurred during sand backfill placement (using the same material used for ENR and RML). The largest exceedances were about 81 and 56 NTU over background; the average of the remaining exceedances was about 17 NTU over background. It is believed that the exceedances during sand placement resulted from several factors, including the fill material type, placement in shallow nearshore waters, and the configuration of the shipway.

During placement of sand material (ENR/RML or backfill) in shallow water, turbidity associated with the fine clays that adhered to sand were confined to a shallow lens of water. The lens of water frequently moved in a narrow band along the adjacent shoreline, driven by current induced by wind or waves. The currents and current-driven dispersion of turbid water within the shipway was further reduced due to the adjacent "L" shaped shoreline to the west and the presence of a pile-supported pier structure to the east that limits current flow, effectively creating a "U" shaped confined area. Once a turbidity plume had been generated, dispersion of the plume was limited to the surface currents because the settling time for the finer clay-size particles is on the order of hours.

The sand placed was the cleanest material (lowest percentage fines) that could be purchased in bulk (i.e., thousands of tons). This material contained up to about 1% fines (particle size

<75 micrometers). This material was double-washed at the quarry to remove a majority of the fines; however, the wash water used is recycled on site at the quarry due to operational permit requirements. The recycled wash water contained fine material (clays) that had long settling times; therefore, the sand material contained some of the clays suspended in the wash water. When this double-washed material was placed, the remaining clays were suspended in the water column and remain suspended until transported off site by currents. The sand that was used at the Site is the same double-washed material that has been used at other sites in the Lower Duwamish Waterway (i.e., Boeing Plant 2 and the Lower Duwamish Waterway Group Carbon Pilot Study). This material has the lowest turbidity-generating component of any commercially viable material.</p>

Placement of the sand with the bucket above the surface of the water resulted in a surface turbidity plume. The height above the water surface that the material was released from influenced the area over which the finer clay particles could potentially drift in the air prior to contacting the water. Within the shipway, which had shallow water depths and reduced water movement, the difference in the area impacted by the sand placement with the bucket just above the water (2 to 3 feet) versus 10 feet or more above the water could not be determined; however, the additional time required to maneuver the bucket to just above the water surface after clearing obstacles, such as the pier, resulted in an increase in the cycle time for the crane and slower placement of material. Within the shipway this made release from approximately 10 feet above the water more efficient without any apparent additional water quality impacts.

8.1.2 Construction Season 2

During CS2, in-water construction activities were conducted on 118 days of the total 204-day construction season (September 3, 2019, to March 25, 2020). Of the 118 days of in-water construction, water quality monitoring for conventional parameters was conducted on 62 of the construction days. The 62 days does not include visual monitoring for turbidity conducted during placement of shoreline protection material. During CS2, 153 rounds of water quality monitoring were performed, during which exceedances of the turbidity criterion were observed for 4 rounds (exceedances ranged from 7.9 NTU to 24.5 NTU above ambient; Table 13). Table 14 presents a summary of water quality monitoring conducted during CS2 by activity.

Figure 13 shows a histogram for the range of differences between the maximum turbidity (in NTU) at compliance stations versus the corresponding ambient station (representing the background).

The difference in turbidity was grouped into the same ranges presented in Section 8.1.1. The number of rounds of water quality monitoring within each range were also broken down by general construction activity. No confirmed exceedances of the turbidity criterion were observed during dredging (conducted separate from dredging with dewatering), dewatering (conducted separate from dredging), filter rock placement, gravel beach mix placement, riprap placement, or telebelt placement. These activities were not expected to result in significant amounts of turbidity or other water quality impacts, and monitoring was scheduled for the first 2 days of an activity to confirm that significant impacts were not occurring.

During dredging (including simultaneous dredging and dewatering), exceedances of the turbidity criterion were observed during about 1% of the monitoring rounds (1 of 70 rounds of monitoring). The observed exceedance (difference between the compliance station and the ambient [background]) was 8.4 NTU. The exceedance occurred during dredging in DMMU 19E in deep water during a flood tide.

During rock placement (including fish mix, gravel beach mix, filter rock, and riprap materials), exceedances of the turbidity criterion were observed during about 2% of the monitoring rounds (1 of 49 rounds of monitoring). The observed exceedance was 24.5 NTU over background and occurred during placement of fish mix material. The exceedance occurred in shallow water, during a flood tide, near the shoreline in DMMU 3A.

During ENR/RML placement (including sand placement with the telebelt), exceedance of the turbidity criterion occurred during approximately 6% of the monitoring rounds (2 of 32 monitoring rounds). The largest observed exceedance was 12.5 NTU over background; the remaining exceedances observed during the two rounds had an average of 7.9 NTU over background (six total turbidity exceedances in two rounds). Exceedances did not appear to be correlated to the depth of the water in which work was being conducted. Exceedances may have been related to the proximity to the shoreline in combination with the tidal cycle, whereby incoming tides may have helped generate turbidity along the shoreline. The observed exceedances occurred in DMMU 10A, near the shore, and during a flood tide and tide change. No exceedances were observed during ENR placement with the telebelt.

8.1.3 Comparison of Water Quality Monitoring Results to Nearby Site

Figure 14 shows a histogram of turbidity monitoring results for the 3 years of construction monitoring at the Boeing Plant 2 site, located upriver from the Site on the Lower Duwamish Waterway. Figure 14 shows the frequency for the range of differences between the maximum turbidity at compliance stations versus the corresponding ambient station. The values are grouped into similar ranges, and the construction activities are broken down into similar categories, as presented above for CS 1 and CS 2 at the Site.

During dredging (including dredging in Slip 4, an off-channel area), exceedances of the turbidity criterion were observed during 18.5% of the monitoring rounds (23 of 124 rounds of monitoring). The largest exceedance (difference between the compliance station and the ambient [background]) was approximately 19 NTU over background. The remaining 22 turbidity exceedances during dredging were on average about 10 NTU over background.

During placement of final backfill at Boeing Plant 2, 51 rounds of water quality monitoring were conducted, during which exceedances of the turbidity criterion were observed in 27 rounds (53%). The largest exceedances of the turbidity criterion were about 90, 80, and 53 NTU over background. The remaining exceedances averaged about 22 NTU over background. It is notable that the backfill material was placed at the Boeing Plant 2 site using a precision excavator with a small hydraulically closed bucket. The material was released from the submerged bucket approximately 2 feet above the bottom, which would presumably reduce material suspension into the water column. Even though the material during the Boeing Plant 2 project was placed using equipment believed to be the least environmentally disturbing, turbidity exceedances were about the same, if not greater than, the exceedances observed while placing material in the shipway at the Lockheed West Seattle site using a cable bucket.

These data indicate that placement of commercially viable sand, particularly in shallow water, generates turbidity that exceeds the turbidity water quality criterion and is unavoidable.

8.2 COMPARISON TO THE CHEMICAL WATER QUALITY CRITERIA

This section documents results of water quality sampling conducted during the remedial action and presents a comparison of results against the chemical water quality criteria.

8.2.1 Construction Season 1

More than 300 water samples were tested during 31 days of intensive monitoring for conventional water quality parameters during the first portion of CS1 at the Site. During CS1, a total of 26 samples (Table 15) were submitted to the laboratory for analysis for one or more analytes (selected metals [copper, mercury, lead, and zinc] and/or polychlorinated biphenyls [PCBs]). These results were compared to the Marine Acute and Chronic Water Quality Criteria for the protection of aquatic life, found within the State of Washington's Water Quality Standards and listed in the Clean Water Act §404 ARAR Memo (Appendix C).

No water quality chemistry exceedances occurred during CS1; an apparent exceedance of copper was determined to have been an anomaly from the chemical analytical method, as described below.

Water samples were collected for chemical analysis during the first 5 days of dredging and barge dewatering, and water sample collection for chemical analysis continued during the initial weeks of intensive dredge monitoring (Table 12 and Table 15). Samples with the highest turbidity on Day 1 and Day 3 of the first week of intensive dredge monitoring were analyzed for the selected metals and PCBs (Table 15). Water samples were also collected during a single round of monitoring during barge dewatering (conducted as a separate activity from the combined dredging and barge dewatering). The sample with the highest turbidity for the round of barge dewatering was analyzed for the selected metals and PCBs (Table 15).

Additional samples were analyzed during subsequent days of intensive dredge monitoring from compliance stations with turbidity exceedances. On each day when there was a confirmed turbidity exceedance, the sample collected at the compliance station with the highest turbidity was analyzed for the selected metals and PCBs. The remaining samples were archived pending the results of the initial sample analysis. If compliance with the Marine Acute and Chronic Water Quality Criteria could not be confirmed following the analysis of the initial sample (from the compliance station with the turbidity exceedance), then additional samples were analyzed following the guidelines in the *Water Quality Monitoring Plan* (Appendix M of the *Revised Final (100 Percent) Design* [Amec Foster Wheeler et al., 2018c]) to demonstrate compliance with the Marine Water Quality Criteria.

The samples collected and analyzed at the compliance stations (and at the ambient station) during the first 5 days of monitoring had reporting limits for copper that were well above the reporting limits specified in the *Water Quality Monitoring Quality Assurance Project Plan* (Attachment A in the *Water Quality Monitoring Plan* (Appendix M of the *Revised Final (100 Percent) Design* [Amec Foster Wheeler et al., 2018c]). Two compliance station samples with levels of turbidity below the water quality turbidity criterion had reported levels of dissolved copper that were above the chronic water quality criterion. Field duplicate samples were collected at the ambient station as part of the quality control (QC) requirements in the *Water Quality Monitoring Quality Assurance Project Plan* (Appendix M of the *Revised Final (100 Percent) Design* [Amec Foster Wheeler et al., 2018c]). There were detected concentrations of zinc and copper at the ambient station. In addition, a filter blank, collected as part of the QC requirements, was analyzed for the dissolved metals. The sample had detected concentrations of dissolved copper and dissolved zinc. Total mercury and PCBs were undetected in a rinsate blank collected to meet QC requirements.

Wood was able to determine that the analysis method used by the first laboratory (Method 6020) appeared to provide results that were biased high for some of the dissolved metals. The analytical results for dissolved copper provided by the first laboratory were problematic. The chronic water quality criterion for dissolved copper was close to the reporting limit provided by the laboratory for the selected analysis method. Some of the results were potentially biased high and the analysis of additional samples were required to demonstrate compliance with the water quality chemical criteria.

Selected samples were resubmitted to a second analytical laboratory (Frontier Global Sciences in Bothell, Washington) and analyzed using different analytical methods. Analytical method 200.8 demonstrated a lower reporting limit and lower overall concentrations for dissolved copper in the submitted samples. After consultation and with the approval of USEPA, all the subsequent samples submitted for dissolved metals analysis used the more sensitive Method 200.8 for dissolved copper, dissolved lead, and dissolved zinc.

The chemical results for all samples submitted and analyzed are provided in Table 15. In Table 15 samples analyzed for metals on or before September 28, 2018 were analyzed using Method 6020; sample analyzed for metals after September 28, 2018 were analyzed using Method 200.8. Samples LMCWQ-100, LMCWQ-208, LMCWQ-271, LMCWQ-276, and LMCWQ-299 were analyzed for

dissolved copper, dissolved lead, and dissolved zinc using Method 200.8. All the dissolved metal results were below the chronic criteria in the five samples. The field filtered samples were not analyzed for dissolved mercury because there was insufficient sample volume to analyze the sample for dissolved mercury (by Method 7470A) and for dissolved copper, dissolved lead, and dissolved zinc using Method 200.8.

The water samples submitted for the Method 200.8 analysis were also analyzed for total mercury for comparison against the marine chronic water quality criterion. The results for total mercury in these samples were well below the acute criteria for mercury, which is based on the dissolved fraction. The dissolved mercury fraction is a component of the total mercury fraction and is expected to be lower than the total mercury concentration. Based on the analytical results there were no exceedances of the chemical contaminant compliance criteria for the water quality monitoring conducted during CS1.

In addition to the samples from the compliance stations analyzed in response to a turbidity exceedance (discussed above) a total of 11 samples were collected at two locations used to represent ambient conditions during the water quality monitoring (Table 16). The two ambient stations were located to the east of the project site at the mouth of the West Waterway and to the north of the project site in Elliott Bay. The ambient locations are well outside the area possibly impacted by the construction activities at the Lockheed West site. Samples were collected near surface (2 feet below the surface) and deeper in the water column (40 feet or 46 feet below the surface) on 2 consecutive days and targeted both ebb and flood tides to cover ambient different conditions. The samples were field-filtered and preserved and analyzed for dissolved copper, dissolved lead, and dissolved zinc using the 200.8 analytical method. All sample results were well below the chronic criteria; however, there were detected values of copper found in the samples from the ambient stations. The copper concentrations range from 0.52 micrograms per liter (µg/L) to 1.88 µg/L (versus 3.1 µg/L chronic criterion). Copper concentrations were slightly higher on samples collected on the ebb tide versus the flood tide. Lead and zinc were undetected at reporting limits well below the chronic criteria. A pair of filter blanks submitted with the ambient samples had detected levels of dissolved copper, dissolved lead, and dissolved zinc, but all the results were well below the respective water quality chronic chemical criteria.

8.2.2 Construction Season 2

During CS2, a total of four samples (Table 13 and Table 17) were analyzed for one or more analytes (selected metals [copper, mercury, lead, and zinc] and/or PCBs) for comparison to the Marine Acute and Chronic Water Quality Criteria for the protection of aquatic life, found within the State of Washington's Water Quality Standards and listed in the Clean Water Act §404 ARAR Memo (see Appendix C). As shown in Table 13, sample LMCWQ-372 was inadvertently analyzed for mercury and PCBs; however, the results are reported. Based on the analytical results for the samples submitted, there were no exceedances of the chemical contaminant compliance criteria for the water quality monitoring conducted during CS2.

Water samples were collected during the first 5 days of dredging and barge dewatering (Table 13). Samples with the highest turbidity on Day 1, 2, 3, and 4 of intensive dredge monitoring were analyzed for the selected metals and PCBs (Table 13 and Table 17). The chemical results for all samples submitted and analyzed are provided in Table 17. Samples LMCWQ-351, LMCWQ-383, and LMCWQ-397 were analyzed for dissolved copper, dissolved lead, and dissolved zinc using Method = 200.8. All the dissolved metal results were below the chronic criteria in the three samples. The water samples submitted for the Method 200.8 analysis were also analyzed for total and dissolved mercury for comparison against the marine chronic water quality criterion. The results for dissolved mercury in these samples were well below the acute criterion. Sample LMCWQ-372 was analyzed for total and dissolved mercury and PCBs; all results were below reporting limits and therefore below acute and chronic criteria.

SECTION 9 POSTCONSTRUCTION ENHANCED NATURAL RECOVERY LAYER AND RESIDUAL MANAGEMENT LAYER PLACEMENT SAMPLING

Sampling was conducted after placement of the enhanced natural recovery (ENR) and residual management layer (RML), as specified in the *Field Sampling Plan* (Appendix P of the *Revised Final (100 Percent) Design* [Amec Foster Wheeler et al., 2018b]). The objective of sampling was to confirm that contaminant of concern (COC) concentrations at the postplacement sediment surface (upper 0 to 10 centimeters [cm]) were below cleanup level (CUL) subtidal surface-weighted average concentration (SWAC) and were no higher than the CUL surface sediment concentrations (point). The intertidal areas in the project site were armored with riprap or covered with coarser gravel (fish mix) materials that could be effectively sampled; therefore, the intertidal areas were not sampled or included in the SWAC calculation.

Samples were collected within a few days after placement of ENR or RML material. The samples were collected with a 0.1-square-meter van Veen grab sampler; the sediment represented the top 10 cm of the postbackfill surface (Photo 18). Samples were collected at 25 locations, with duplicate samples collected at three of these locations. The sampling coordinates are provided in Table 18, and the locations are shown on Figure 15.

The analytical results are provided in Table 19. Analytical results showed COC concentrations less than the applicable CUL surface sediment point criteria for the following COCs with assigned point CULs:

- antimony
- mercury

acenaphthene

arsenic

nickel

• benzo(a)anthracene

- chromium
- selenium

benzo(a)pyrene

cobalt

vanadium

benzo(g,h,i)perylene

- copper
- chrysene
- dibenzo(a,h)anthracene
- fluoranthene

- zinc
- indeno(1,2,3-cd)pyrene
- phenanthrene
- total high molecular weight polycyclic aromatic hydrocarbons (HPAHs)
- total benzofluoranthenes
- bis(2-ethylhexyl) phthalate
- pentachlorophenol
- total polychlorinated biphenyls (PCBs)

Photo 18 Collection of Sediment Samples after Placement of Enhanced Natural Recovery and Residual Management Layer Material

A geospatial interpolation was conducted for all COCs with assigned subtidal SWAC CULs:

- arsenic
- mercury
- cadmium
- benzo[g,h,i]perylene
- copper
- pentachlorophenol

- tributyltin
- total PCBs
- total dioxins/furans (TEQ)

lead

 cPAHs (micrograms per kilogram dry weight, expressed as toxicity equivalent concentration [TEQ])

The subtidal SWAC was calculated using the geospatial methods presented in Exhibit 1 of the *Field Sampling Plan* (Amec Foster Wheeler et al., 2018b) to derive the SWAC for each chemical. The SWAC was compared to the CULs for the risk-driver COCs listed in Table 1. The results of the geospatial interpolation are provided in Table 19. The results show that for all contaminants with an assigned SWAC criterion, all SWACs were less than the criterion. In addition, there was no contaminant in the postconstruction samples that exceeded the applicable point CULs. These data demonstrate that the cleanup goals were met for the project.

SECTION 10 PRE- AND POSTCONSTRUCTION PERIMETER MONITORING

Pre- and postconstruction perimeter samples were collected at 10 sample locations (with one field duplicate; see Table 20 and Figure 15). Preconstruction samples were collected by a 0.2-square-meter (m²) pneumatically operated grab sampler; the sediment represented the top 10 centimeters of the surface sediments. All of the preconstruction samples were collected on August 20, 2018, prior to the start of construction season 1 construction work. The postconstruction samples were collected at the same 10 locations where preconstruction samples were collected. Postconstruction samples were collected using a 0.1-m² van Veen grab sampler on March 26, 2020, at the end of construction season 2.

The results of the pre- and postconstruction samples were analyzed for the Site contaminants of concern (COCs), and the results are presented in Table 21.

The comparison of pre- and postdredging contaminant concentrations shows the concentrations were generally less than the sediment quality standards (SQS) prior to and after the remedial action. There were two sample locations that exceeded the SQS after the remedial action that did not before construction (a few polycyclic aromatic hydrocarbons [PAHs] at SD-PER20-001 and mercury at SD-PER20-010). There were two locations where mercury was greater than the SQS both before and after construction (SD-PERXX-006 and SD-PERXX-206 [field duplicate of SD-PERXX-006]) and there was one sample location where polychlorinated biphenyls (PCBs) were greater than the SQS before and after construction (SD-PERXX-010). Based on these data, few changes in COC concentrations were observed between the pre- and postconstruction sampling events. Any differences likely represent small-scale sediment heterogeneity.

SECTION 11 HEALTH & SAFETY

Three health and safety plans guided construction of the project, one from each of the following companies: Wood Environment & Infrastructure Solutions, Inc. (Wood), American Construction Company, and Dalton, Olmsted & Fuglevand. The health and safety plans for the Site were implemented with oversight provided by staff from Wood. Signature pages for the health and safety plan, daily tailgate meeting forms, boat safety checklists, and weekly safety surveys are presented in Appendix S.

Based on personnel involvement, workers received an induction training with one or multiple health and safety plans. A weekly safety walk was conducted by the safety officers from Wood and American Construction Company. The safety walk included an inspection of all on-site construction equipment, noting any safety deficiencies. If any deficiencies were identified during these safety walks, then corrective actions would take place immediately.

Throughout the project, the inventory of activity hazards analyses (AHAs) were updated to reflect the work that was being conducted. The crew was trained immediately when a revision or a new AHA was developed during the daily tailgate meetings. The safety of the crew and field staff was kept as the top priority for the project team.

The overall assessment of the health and safety performance was positive, with no lost-time incidents or major injuries. The project documented 40 near-miss incidents that were followed with short-term and long-term preventive actions. The incidents and near-miss reports are included in Table 22 and Appendix S.

One incident was reported during construction season 1. A worker was injured during a repair operation on the dredge barge. The worker self-treated using first aid and completed the shift. After the shift, the worker received stitches at a hospital. The incident was recorded, and an incident review PowerPoint was presented to the project team.

No incidents were recorded during construction season 2.	

SECTION 12 GREEN REMEDIATION

The remedial work was conducted in accordance with the United States Environmental Protection Agency Region 10 "Clean and Green Policy." The project team was committed to designing and conducting the Lockheed West Seattle remedial action in a manner that conserves and protects natural resources. To reduce the project's contribution to greenhouse gas emissions, the project used railcars instead of trucks to transport the dredged sediments from Seattle, Washington, to the designated landfill in Arlington, Oregon. It is estimated that by using rail instead of trucking, over 200,000 gallons of fuel were saved, and carbon dioxide emissions were reduced by over 2,240 tons throughout construction season 1 (CS1) and construction season 2 (CS2). The on-site diesel equipment operated by American Construction Company was powered with a cleaner, ultra-low-sulfur diesel fuel. The equipment on site was partially supplied by rental companies. The CAT 966 front-end wheel loader was supplied by Evergreen Equipment and met Tier 3 standards. The APE 200 vibratory pile extractor met Tier 3 standards.

In the accordance with the principles of green remediation, the contractor followed the practices to the extent practicable. The dredged material that contained recyclable material was sorted at the waste management facilities upon delivery. During shoreline debris removal and in-water debris removal, approximately 70 tons of steel was recovered and recycled. Scrap metal, aluminum, paper, and plastics used during sampling and construction oversite activities were recycled. Approximately 1,000 pounds of other material was recycled during CS1 and CS2. The waste produced on site was reduced by employing an environmental management system that used electronic transmittal of project documents, and waste reduction and recycling programs were implemented at the work site. When practicable, reports were generated and transmitted electronically to reduce paper use and to eliminate fuel use for mail or courier delivery.

SECTION 13 END OF CONSTRUCTION SEASON DECONTAMINATION

Dredging during construction season 1 (CS1) was supported using three barges to hold and transport dredged material. These barges were the Dungeness, Skagit, and ITB-249. During the construction season 2 (CS2) only the Dungeness and Skagit barges were used. The Dungeness and Skagit barges were of similar design: 156-foot-long by 48-foot-wide flat-deck barges with steel, watertight bin walls with capacities of 1,925 tons each. The ITB-249 barge was a 250-foot-long by 50-foot-wide hopper barge, with total capacity of approximately 5,000 tons. Prior to a sediment barge being either demobilized from the site or used for transporting cargo other than dredged material, decontamination of that piece of equipment was required as specified in the *Equipment Decontamination Plan* (Appendix W of the *Revised Final (100 Percent) Design* [Amec Foster Wheeler et al., 2018h]). The project requirement for successful decontamination was the removal of all visible sediment from the decks and bin (or hopper) walls of the barge (Photo 19). After a sediment barge was offloaded of dredged material at the transload site for the last time for the season, it went through the following decontamination sequence during CS1:

- The two flat deck barges (Skagit and Dungeness) had a skid steer loader placed onboard at the transload site for bulk removal of sediment. The skid steer was assisted by laborers using hand tools to remove the sediment from the corners of the bin walls and deck. Sediment removed during this step was offloaded and disposed of with the rest of the dredged material by Waste Management at their Slip 4 facility.
- Once bulk removal was complete, the remaining residual sediment was slurried and then
 consolidated into the ITB-249 barge's hoppers. Slurried material was disposed of with
 dredged material from the project.
- When the dredging contractor believed decontamination of a barge was complete, project oversight personnel performed a visual inspection of the barge for the presence of sediment on the deck and bin walls of the barge. If this inspection revealed the presence of sediment, decontamination continued until the requirement of no visible sediment was met.

- Bulk sediment onboard the ITB-249 barge from within the barge's hoppers was removed through the use of hand tools and vacuum trucks to remove the sediment at the transload site. Collected sediment was disposed of with dredged material from the project.
- Upon completion of bulk sediment removal, remaining visible residual sediment was then slurried using pressure washers and removed from the barge by vacuum truck. Slurried material was disposed of with dredged material from the project.
- As with the two flat deck barges, project oversight staff visually inspected the ITB-249
 barge to confirm that the project requirement that no visible sediment remained on the
 barge was met. Only after this condition was met was the barge released from the project.

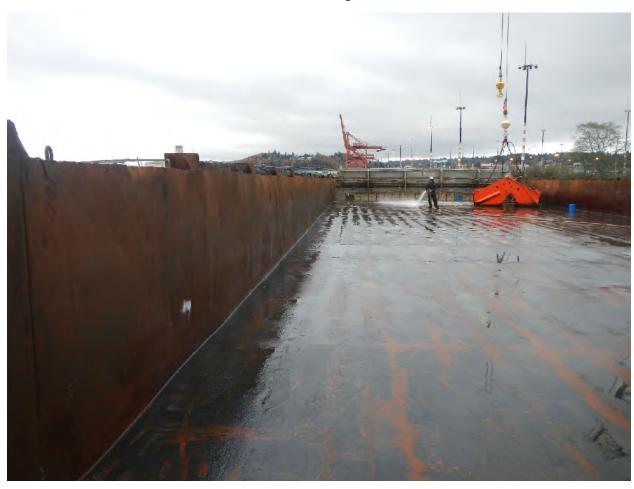


Photo 19 Decontamination of Barge Prior to Demobilization

During CS2 after a sediment barge was offloaded of dredged material at the transload site for the final load of the season, the following decontamination sequence was used:

• Prior to leaving the dredge area for the transload site, sediment outside of the sediment bin was placed back into the sediment bin by shovel.

- Once bulk material was placed into the sediment bin, the crew used water to remove any residual material from the outer deck of the barge prior to leaving the dredge area.
- Bulk sediment within the Dungeness' sediment bin was removed through the use of hand tools and vacuum trucks to remove the sediment from within the barge's hoppers at the transload site. Collected sediment was disposed of with dredged material from the project.
- Upon completion of bulk sediment removal, remaining visible residual sediment was then slurried using pressure washers and removed from the barge by vacuum truck. Slurried material was also disposed of with dredged material from the project.
- Prior to being released from the Site, quality control personnel performed visual inspection of the barge for the presence of residual sediment.

SECTION 14 PREFINAL AND FINAL CONSTRUCTION INSPECTIONS

As a requirement of the Unilateral Administrative Order, at the conclusion of construction a prefinal and final construction inspection must be conducted. Due to the Covid-19 pandemic, no in person prefinal or final construction inspections were conducted. However, a *Pre-Final and Final Construction Inspections* document was prepared to document the work that was conducted that would have required an in-person inspection (see Appendix T).

SECTION 15 INSTITUTIONAL CONTROL IMPLEMENTATION AND ASSURANCE

Existing institutional controls are in place for the Site. These include a regulated navigation area (RNA) over a portion of the site that restricts anchoring (Figure 16), and a fish consumption advisory for Washington State Marine Area 10 (Elliott Bay) and the Duwamish Waterway that is part of the Puget Sound Fish Consumption Advisory determined by the Washington Department of Health.

The RNA over a portion of the Site was implemented during the Pacific Sound Resources (PSR) remedial action as a result of contamination from the adjacent PSR site, where wood-treating compounds were removed from surface sediment and covered with a cap. This Lockheed West Seattle Superfund Site cleanup has removed contamination attributable to shipyard activities from the Lockheed West site to protective levels; therefore, no additional institutional controls are required beyond the existing RNA. It is the responsibility of the PSR site to maintain the RNA.

The fish consumption advisory in place for Elliott Bay and the Duwamish Waterway that recommends no or limited consumption of certain shellfish, flatfish, and rockfish. Although there was a significant reduction in the amount of contamination to which fish would be exposed at the Site, the Site represents only a small portion of the home range of the fish and shellfish that have consumption advisories. The current fish advisory for Recreational Marine Area 10 (Elliott Bay) under the Puget Sound Fish Consumption Advisory established by the Washington State Department of Health, to reduce human exposure from ingestion of contaminated seafood will continue to be posted at the Site.

In addition to the existing institutional controls, USEPA requires additional institutional controls (ICs) in the form of a proprietary control that runs with the property and that requires coordination with the USEPA and management of any residual contamination (above Cleanup Levels) that is disturbed or encountered in the event of future excavation or dredging within the boundaries of

the Site. The <i>Institutional Control Implementation and Assurance Plan</i> that was approved by USEPA as part of the <i>Final (100 Percent) Design</i> is provided in Appendix U.	

SECTION 16 LONG-TERM MONITORING AND MAINTENANCE

The long-term monitoring and maintenance program is described in Appendix V. The long-term monitoring program will be conducted to determine the following:

- the subtidal postconstruction sediment surface is at or above postremediation elevations, and
- differentiate postconstruction recontamination from off-site sources from remedy failure.

The postconstruction monitoring at the Site will include the following monitoring activities:

- bathymetric survey of the subtidal portions of the Site to confirm postdredge slope and backfill stability after construction completion, and
- sediment sampling (top 10 centimeters [cm]) to monitor sediment quality after completion of construction.

It is not anticipated that long-term maintenance of the project will be conducted unless there is significant erosion which will be discussed with USEPA. Stability of the subtidal portions of the Site will be assessed using a multibeam bathymetric survey conducted by a certified hydrographer in Year 4. The bathymetric survey will compare the Year 4 surface against the postconstruction "as-built" surface. The bathymetric survey will provide information about the stability and persistence of the additional enhanced natural recovery (ENR) and residual management layer (RML) material placed at the Site. It should be noted that the resolution of multibeam survey equipment may not detect small changes in elevations less than approximately 0.5 foot. In addition to performing a bathymetric survey in Year 4, a site-walk will be conducted during low tide to determine that the shoreline area has not significantly shifted or eroded.

Grab samples will be collected in the ENR area and in the dredged areas where RML material was placed. The grab sampling locations are the same locations sampled during the postbackfill sampling that was conducted following construction as described in Section 9.

At each grab sample location, the thickness of the ENR/RML material and any depositional layer will be measured if it can be determined. A sample of the top 10 cm of material will be collected from the center of the grab for analysis. If there is a discrete depositional material layer that can be sampled, a sample of this material will be collected and analyzed. If there is a discrete depositional layer, the following samples will be analyzed:

- discrete depositional layer,
- top 10-cm sample, and
- sample of underlying ENR or RML material.

If no discrete depositional layer is present, then the top 10 cm will be analyzed.

SECTION 17 LESSONS LEARNED

The remedial action work plans developed and approved in 2018 were largely based on the use of conventional and established methods for dredging and handling dredge spoils in Puget Sound. Nonetheless, small differences in conditions and lessons learned about the appropriateness and success of the methods inevitably arise. This section describes the more significant lessons learned from implementation of the remedial action.

17.1 DREDGE BUCKET TYPE

Two types of dredge buckets were used during dredging: a digging (or standard clamshell bucket) and a level-cut environmental bucket. One of the best management practices prescribed in the *Best Management Practices* (Appendix J of the *Revised Final (100 Percent) Design* [Amec Foster Wheeler et al., 2018i]) was to use an environmental bucket to the extent practicable. While this type of bucket allowed more precise level cuts through sediments, it was not found to reduce suspension of contaminated sediments while dredging through sediments with high debris content. The debris would often become lodged in the environmental bucket's flat edges, preventing closure of the bucket and allowing more sediment to escape the bucket. The digging bucket was much more successful in retaining sediments and debris due to its interlocking teeth.

17.2 TURBIDITY

The dispersal of contaminated sediment during dredging was very limited. Turbidity exceedances occurred during 8 of the 167 rounds of monitoring (approximately 5%) conducted during dredging or dredging and dewatering (see Section 8.1, Table 11, and Table 13), and no water quality chemical exceedances were observed in samples collected from turbidity exceedances during dredging (see Section 8.2). Placement of clean fill material caused more turbidity exceedances than dredging. During the monitoring of enhanced natural recovery (ENR) and residual management layer (RML) placement in the deeper offshore areas, turbidity at one or more of the

compliance stations was 5 nephelometric turbidity units (NTU) or more above the corresponding ambient station during 11 out of 91 rounds of monitoring (12%).

The construction contractor initially started placing the ENR backfill material with the bucket well above the surface of the water and then sweeping the bucket in an arc to evenly disperse the material. This placement seemed to result in a large surface plume of visible turbidity. Following a turbidity exceedance during water quality monitoring, modifications were made to the placement methods. The placement methods included completely submerging the entire bucket before dispersing and partially submerging the bucket while dispersing. Placement of the ENR material with the bucket completely submerged appeared to result in uneven distribution and possible mounding of the material on the sediment surface, based on the rain gauge bucket data. Placement with the bucket partially submerged in deeper water appeared to provide lower turbidity while still achieving a suitable distribution. This last method was used when possible when placing ENR/RML material in the deeper offshore areas.

More exceedances occurred when placing clean fill in the shallow nearshore areas (i.e., shipway) compared to placement in deeper water. During monitoring of placement of clean backfill materials in the shallow inshore shipway, turbidity at one or more of the compliance stations was 5 NTU or more above the corresponding ambient station during 15 of 41 rounds of monitoring (37%). A majority of the turbidity exceedances (12 of 15) occurred during placement of sand backfill material (see Section 8.1.1).

Placement of backfill materials in the shipway was complicated by limited access and restricted clearances. The adjacent pier and uplands required placement of backfill materials with extra care by the crane operator to avoid contact with structures and to prevent placing material on the adjacent structures or uplands. Placement and dispersion of materials was initially conducted well above the surface of the water or on the shoreline (in the dry) to provide the crane operator with a clear line of sight. Turbidity became an issue when backfill was placed in the water in the shipway. The United States Environmental Protection Agency (USEPA) directed that placement of all materials in the water be done with materials released and dispersed when the bucket is no more than 2 to 3 feet above the water surface; however, it did not appear that the release within 2 to 3 feet of the water surface improved turbidity over release heights greater than 2 to 3 feet.

Placement of clean sand (ENR/RML and backfill) caused the most turbidity exceedances during construction, and the placement method in shallower water did not appear to significantly affect the overall turbidity within the water column. If the sand was placed above the water, a near-surface plume resulted. If the sand was placed just below the water surface, surface turbidity was less noticeable, but turbidity was still noted below the surface and in deeper water. Note that import material contained less than 1% fines (measured as passing a #200 sieve). Washington regulations require that all quarries use recycled wash water, which limits the amount of fines that can be removed from fill materials.

As described in Section 8.1.3, other projects in the Lower Duwamish Waterway have experienced elevated turbidities when placing sand backfill material, particularly in shallow water. However, importantly, the material being placed has been shown to be free of chemical concentrations of any concern so the turbidity did not nor will not increase contaminant loading. Based on the above information, it is expected that future remedial actions that require placement of fine-grained material will experience exceedances of the turbidity water quality criterion, especially if the placement is in shallow water. Given that turbidity exceedances have occurred during multiple other projects, it may be appropriate for the USEPA to consider some short-term water quality variance for placement of fine-grained material in the future.

17.3 TRANSLOADING

Past Lower Duwamish Waterway projects were limited by the absence of a dedicated sediment transloading facility. With Waste Management completing its permitting of a transloading facility at 7400 8th Avenue South in Seattle (approximately river mile 2.8), the Lockheed West Seattle Superfund Site project benefited from the availability of this facility. Past sediment removal projects were restricted in part by the inability to remove and transport dredge spoils, which slowed dredging. Approximately 182,600 tons of sediment were unloaded and transported by Waste Management by rail to its Subtitle D Columbia Ridge Landfill located in Arlington, Oregon.

Discharge and filtration of excess water from dredged sediments on the material barges was found to not be needed. Initially, sediment loaded onto barges was dewatered by allowing gravity drainage to one corner of the barge, pumping the water with a diaphragm pump through a 210-micrometer filter-fabric bag, and then discharging the water directly to Elliott Bay. The process was technically sound, but the relatively small amount of water that was recovered did not justify

the effort because the process slowed dredging production. Moreover, the Waste Management 8th Avenue Reload Facility on river mile 2.8 was effective in removing and handling the moist sediment by allowing the sediments to dry within secondary containment. The on-barge dewatering process was therefore discontinued.

17.4 CONFIRMATION SAMPLING

Following dredging, collection of sediment confirmation samples was occasionally delayed allowing for more samples to be collected in a single day. However, collecting several samples during a single day created an issue of overwhelming the analytical laboratories with samples such that they could not meet desired turnaround times. Data results were delayed, which affected reporting and analysis for geospatial modeling, which in turn affected follow-up dredging. During construction season 2 (CS2), fewer samples were submitted to the analytical laboratory on a daily basis to reduce the backlog of samples to be analyzed for the project. This resulted in a quicker turnaround time for CS2 samples as compared to construction season 1 (CS1).

17.5 WATER QUALITY MONITORING

Early in CS1, two unexpected water sampling results were reported. The first was an apparent high concentration of dissolved copper. At the concentrations measured, a fish kill would have been expected, which did not in fact occur. We were able to determine that the analytical method used produced falsely high concentrations due to chemical interferences. Analytical method 6020 was used for this apparently elevated copper result. In response, the analytical method was switched to USEPA Method 200.8 for dissolved metals, which provides lower reporting limits and less bias in copper results. The second unexpected result was the detection of dissolved oxygen at concentrations less than 6.0 milligrams per liter in the vicinity of dredging in late October 2018. Based on monitoring that was conducted, the low dissolved oxygen concentrations were occurring throughout the Lower Duwamish Waterway and were not related to construction activities.

To support efficient dredging, concurrent water quality sampling is necessary. On a few occasions, the water quality data sonde malfunctioned temporarily and dredging had to be suspended. During CS2, a back-up water quality instrument was made available on site, and no failures of the water quality instrument occurred during CS2. However, the backup instrument would have allowed no delay in dredging should a failure have occurred.

During CS1, a small vessel was used for water quality monitoring and there were times that water quality monitoring could not be conducted due to inclement weather. In addition, water quality monitoring at night could not be safely conducted.

To reduce the potential that inclement weather could affect the ability to safely conduct water monitoring, a larger vessel was used during CS2. The larger vessel could work safely in any weather that construction activities could be conducted and also allowed for the ability to safely conduct water quality monitoring at night.

17.6 ENHANCED NATURAL RECOVERY AND RESIDUAL MANAGEMENT LAYER MATERIAL PLACEMENT

The placement of ENR/RML sand proved to be effective in avoiding possible dispersal of fine sediment residue (the "residuals layer"). Early in the project, there was concern that placement of sand near the water surface might disturb or disperse fine sediment, which is common as the uppermost layer of the postdredge sediment surface. Among other measures to test for possible dispersal of the residuals layer, postremediation sediment samples (after ENR or RML placement) were collected to determine if the Site met the cleanup levels. Chemical analyses of these samples showed that there was undetected or very low concentrations of organic contaminats present in the postconstruction samples confirming that there was little if any resuspension of dredge residuals. Moreover, cleanup levels were met for all contaminants of concern following ENR/RML placement. There was concern that the ENR/RML placement would disturb a fine residuals layer, which could then settle back down on the clean fill. Chemical testing demonstrated that this did not occur at the Site.

At the end of CS1, in DUs that did not meet the chemical criteria, a nominal 3-inch layer of sacrificial temporary RML material was placed in dredged material management units (DMMUs) that had concentrations of arsenic, copper, lead, mercury, or PCBs that were greater than the preconstruction concentrations of these contaminants. This was necessitated by partially dredging a portion of the site that could not be completed during the first costruction season. The placement of the sacrifical RML potentially could have been avoided by reducing the size of the areas that were partially dredged.

Placement of ENR sand between the pilings of the remaining Port of Seattle piers (Piers 23, 24, and 25) represented a modest challenge. This challenge was addressed through the use of a telebelt. The hopper-fed conveyor was used to place sand between the pilings. The telescoping arm of the conveyor allowed for even distribution of sand on the sediment surface.

17.7 NOTIFICATIONS

The U.S. Coast Guard required that the derrick barges performing dredging within the federal navigation channel be equipped with an automatic identification system (AIS). When the contractor dredge equipment was mobilized during CS2, it had not yet been equipped with an AIS. Following notification by the U.S. Coast Guard of the need for the AIS, an AIS was installed on the vessel, briefly delaying work in the navigation channel. This resulting delay did not impact the work schedule; however, the requirement for an AIS system to be installed should have been identified prior to the start of the work.

SECTION 18 COSTS INCURRED BY COMPLYING WITH THE UNILATERAL ADMINISTRATIVE ORDER

The effective date of the Unilateral Administrative Order (UAO) was April 13, 2015. Total costs incurred by Lockheed Martin to comply with the UAO from the effective date through the issuance of this report are \$54,965,695. The total cost includes such tasks as remedial design, dredging, sampling, backfilling, project management, financial assurance fees, access fees, and reporting.

SECTION 19 REFERENCES

Amec Foster Wheeler Environment & Infrastructure, Inc., Dalton, Olmsted & Fuglevand, Inc., and American Construction Company (Amec Foster Wheeler et al.), 2018a. <i>Revised Final (100 Percent) Design</i> : Prepared for Lockheed Martin Corporation.
, 2018b. Field Sampling Plan. Appendix P in the Revised Final (100 Percent) Design: Prepared for Lockheed Martin Corporation.
Frepared for Lockneed Martin Corporation.
, 2018c. Water Quality Monitoring Plan. Appendix M in the Revised Final (100 Percen Design: Prepared for Lockheed Martin Corporation.
, 2018d. Long-Term Monitoring and Maintenance Plan. Appendix Z in the Revised Fine (100 Percent) Design: Prepared for Lockheed Martin Corporation.
, 2018e. Specifications. Appendix R in the Revised Final (100 Percent) Design: Prepare for Lockheed Martin Corporation.
, 2018f. Dewatering Plan. Appendix N in the Revised Final (100 Percent) Design: Prepared for Lockheed Martin Corporation.
, 2018g. Construction Quality Assurance Plan. Appendix D in the Revised Final (100 Percent) Design: Prepared for Lockheed Martin Corporation.
, 2018h. Equipment Decontamination Plan. Appendix W in the Revised Final (100 Percent) Design: Prepared for Lockheed Martin Corporation.
, 2018i. Best Management Practices. Appendix J in the Revised Final (100 Percent) Design: Prepared for Lockheed Martin Corporation.
Tetra Tech, 2012. Final Remedial Investigation/Feasibility Study, Lockheed West Seattle Superfund Site: Prepared for Lockheed Martin Corporation. March.
, 2016. Pre-Remedial Design Field Sampling Data Report, Lockheed West Seattle Superfund Site: Prepared for Lockheed Martin Corporation. May.
United States Environmental Protection Agency (USEPA), 2013a. Record of Decision Lockhee West Seattle Superfund Site: USEPA, Region 10. Seattle, Washington. August.
, 2013b. Technical Impracticability of Surface Water Restoration Lockheed West Seattle Superfund Site Seattle, Washington, August.

_, 2015a. Unilateral Administrative Order for Remedial Design and Remedial Action: Lockheed West Seattle Superfund Site: USEPA, Region 10. CERCLA Docket No. 10-2015-0079. March.
_, 2015b. Explanation of Significant Differences 2013 Record of Decision Cleanup Levels: Lockheed West Seattle Superfund Site: Seattle, Washington. February.
_, 2018. Updated Final Memorandum, Clean Water Act §404 ARAR Memo: Substantive Water Quality Requirements for the Lockheed West Seattle Superfund Remedial Action: USEPA Region 10.
_, 2019. Updated Final Memorandum, Clean Water Act §404 ARAR Memo: Substantive Water Quality Requirements for the Lockheed West Seattle Superfund Remedial Action: USEPA Region 10.

FIGURES

Figure 1 Site Vicinity

Figure 2 Selected Remedy

Figure 3 Layout of Decision Units (DUs) and Dredged Material Management Units (DMMUs)

Figure 4 Status of Work at End of Construction Season 1

Figure 5 Decision Unit Confirmation Core Sample Planned and Actual Sampling Locations

Figure 6 Approximate Locations for Rain Gauge Buckets to Measure Residual

Management Layer Material Placement Thickness

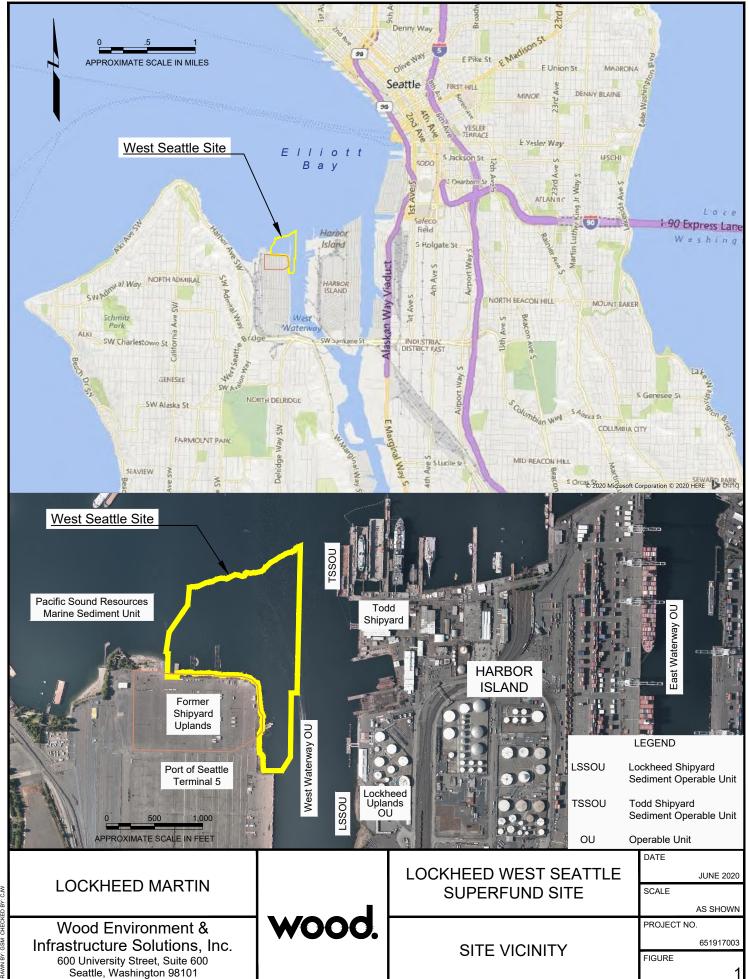
Figure 7 Isopach of Design versus As-Constructed Elevations and No-Additional Dredging Buffer Zone in Shipway

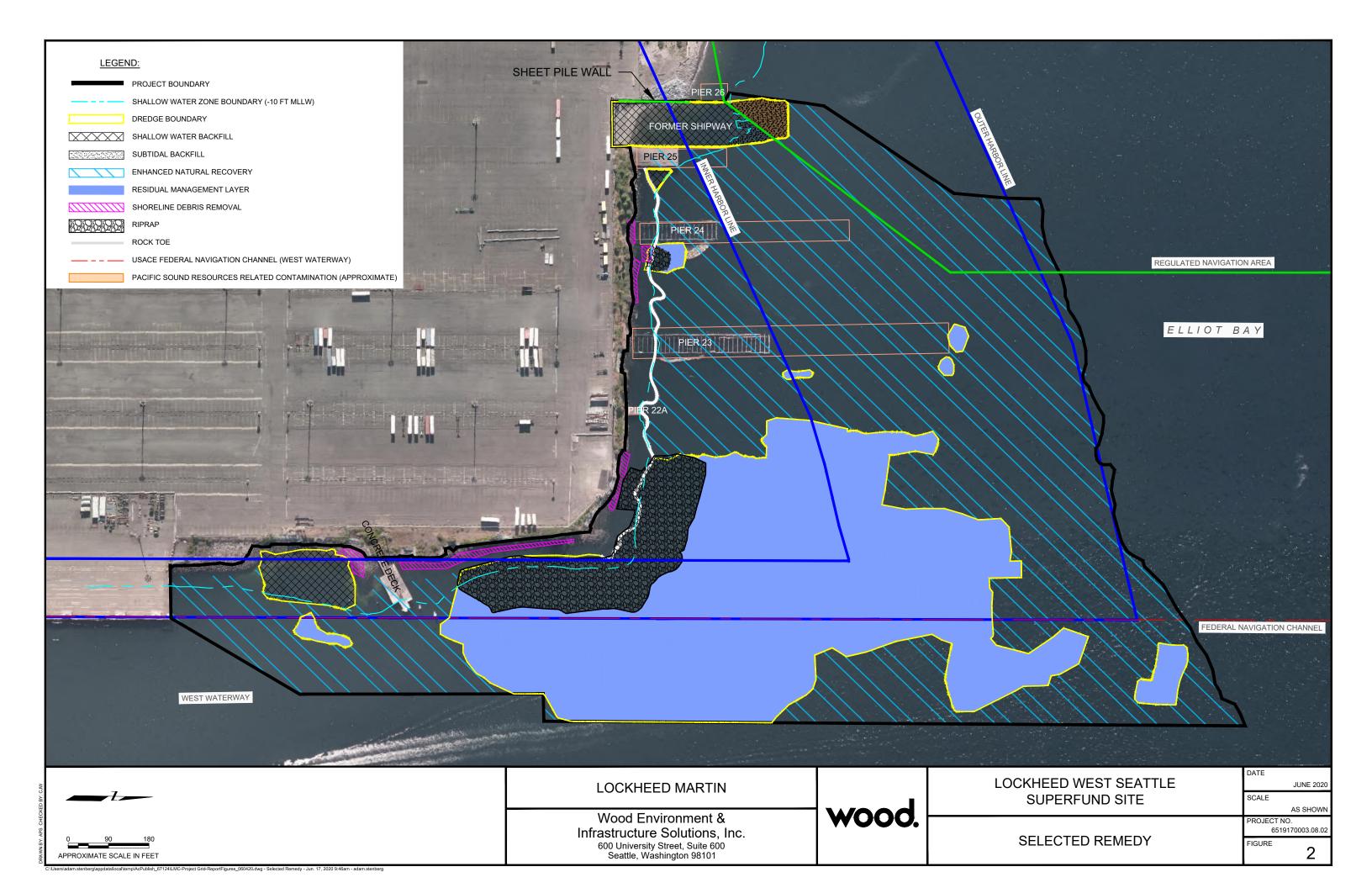
Figure 8 Shipway Confirmation Core Sampling Locations

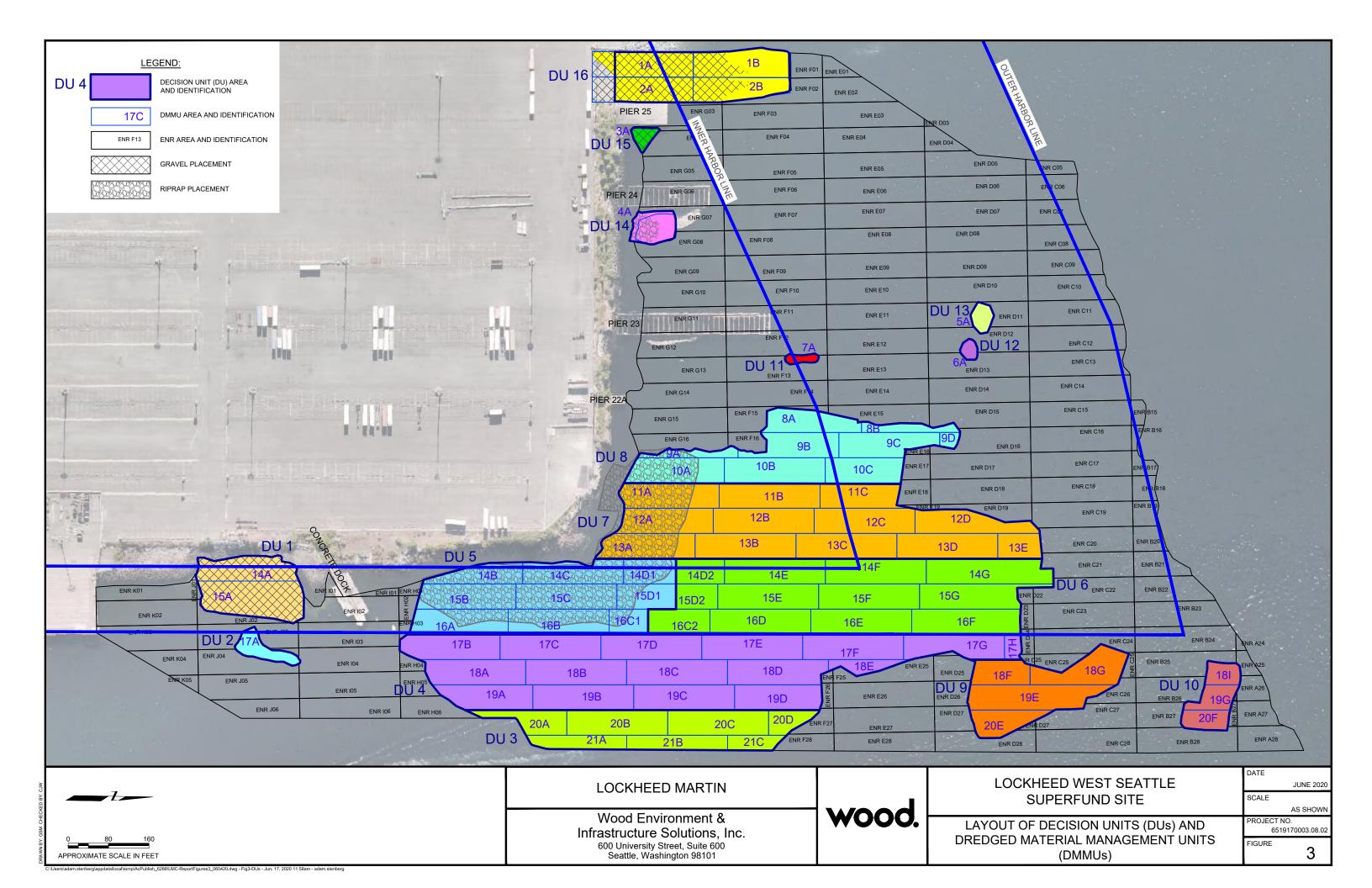
Figure 9 Decision Unit 16 Geospatial Analysis for 0- to 0.5-Foot Interval

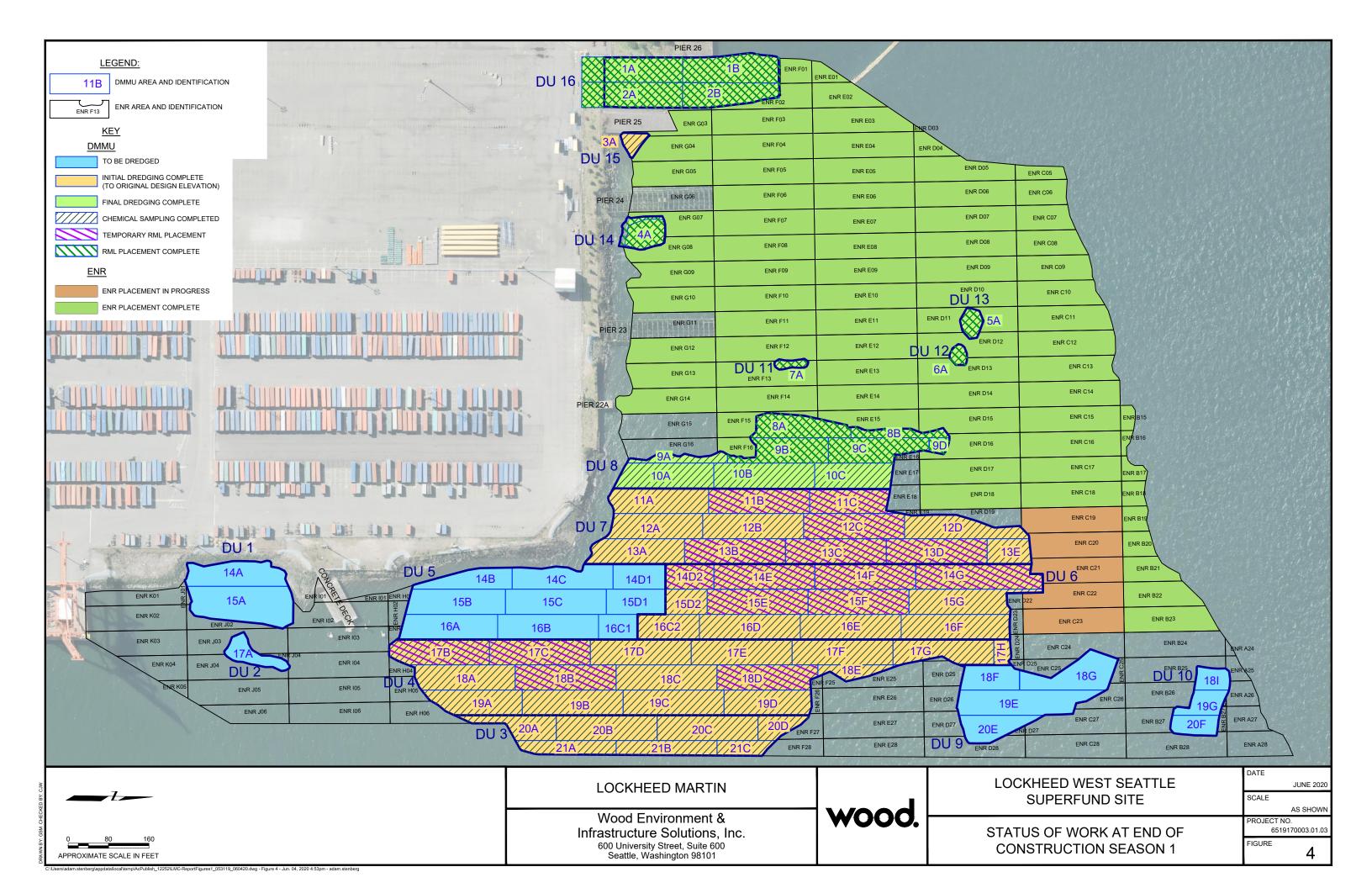
Figure 10 Shipway Sheet Pile Wall Deformity

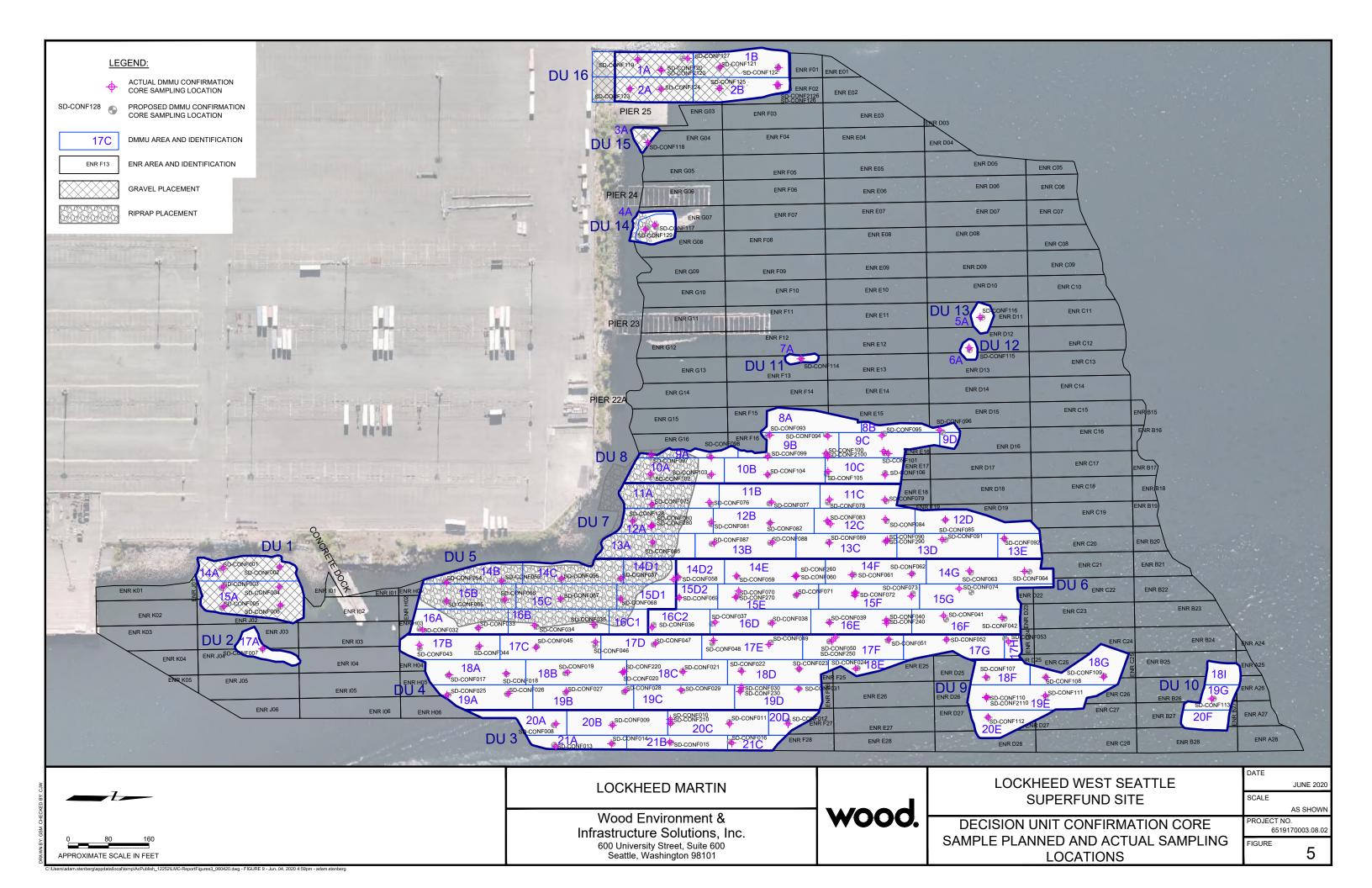
Figure 11 Rain Bucket Locations in Enhanced Natural Recovery Areas

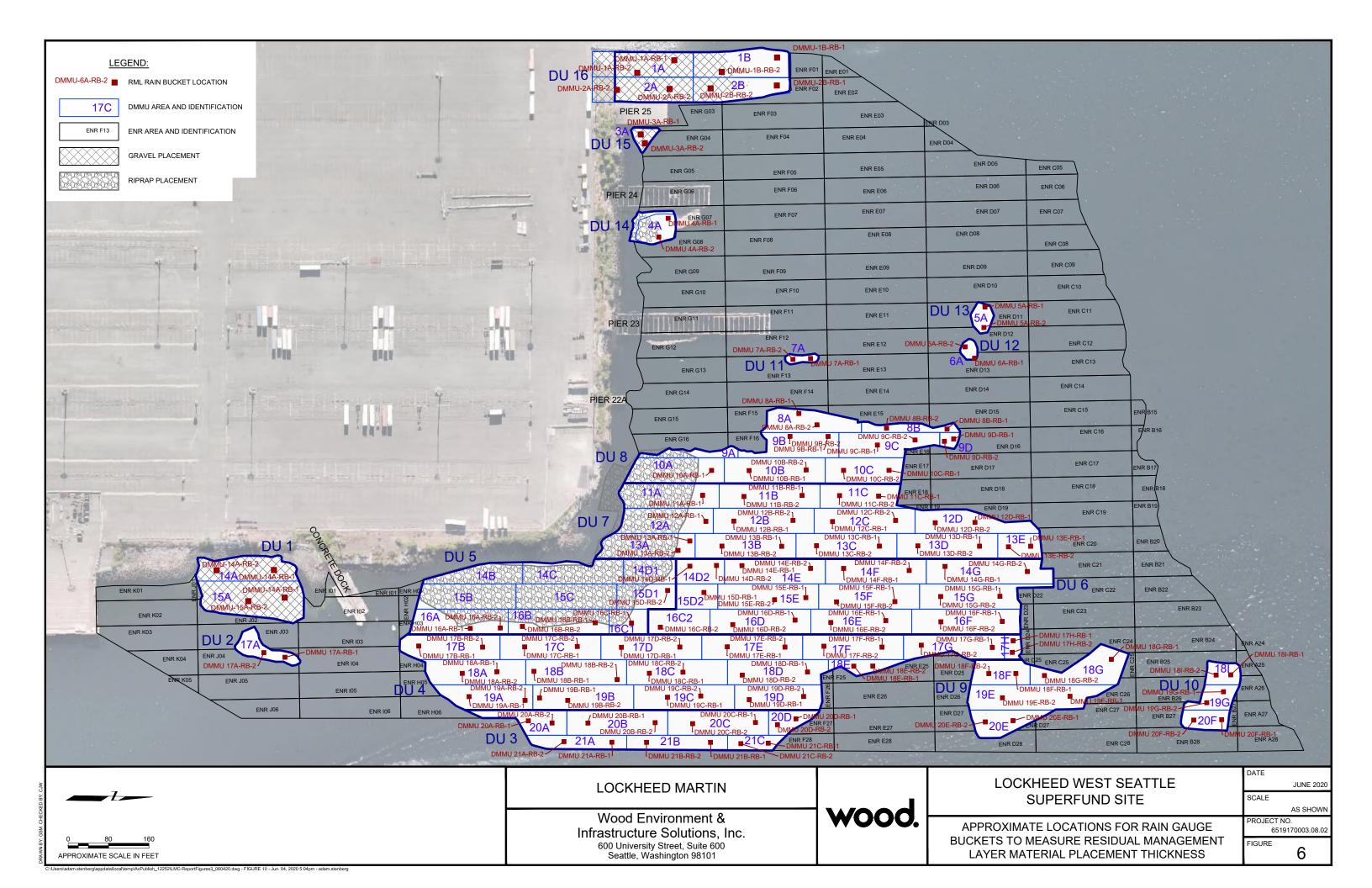

Figure 12 Histogram of Results of Water Quality Monitoring by Activity during Construction Season 1

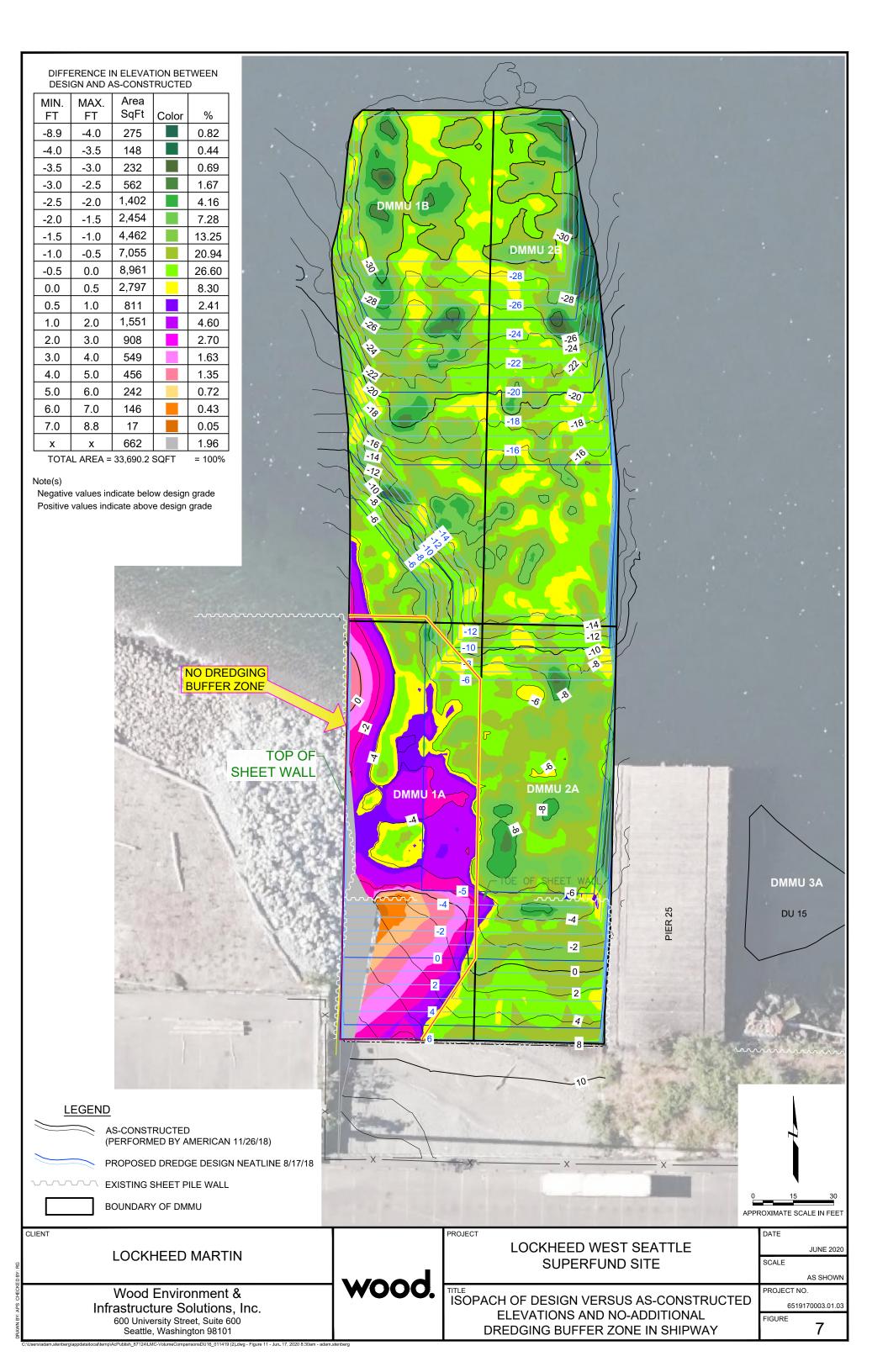

Figure 13 Histogram of Results of Water Quality Monitoring by Activity during Construction Season 2

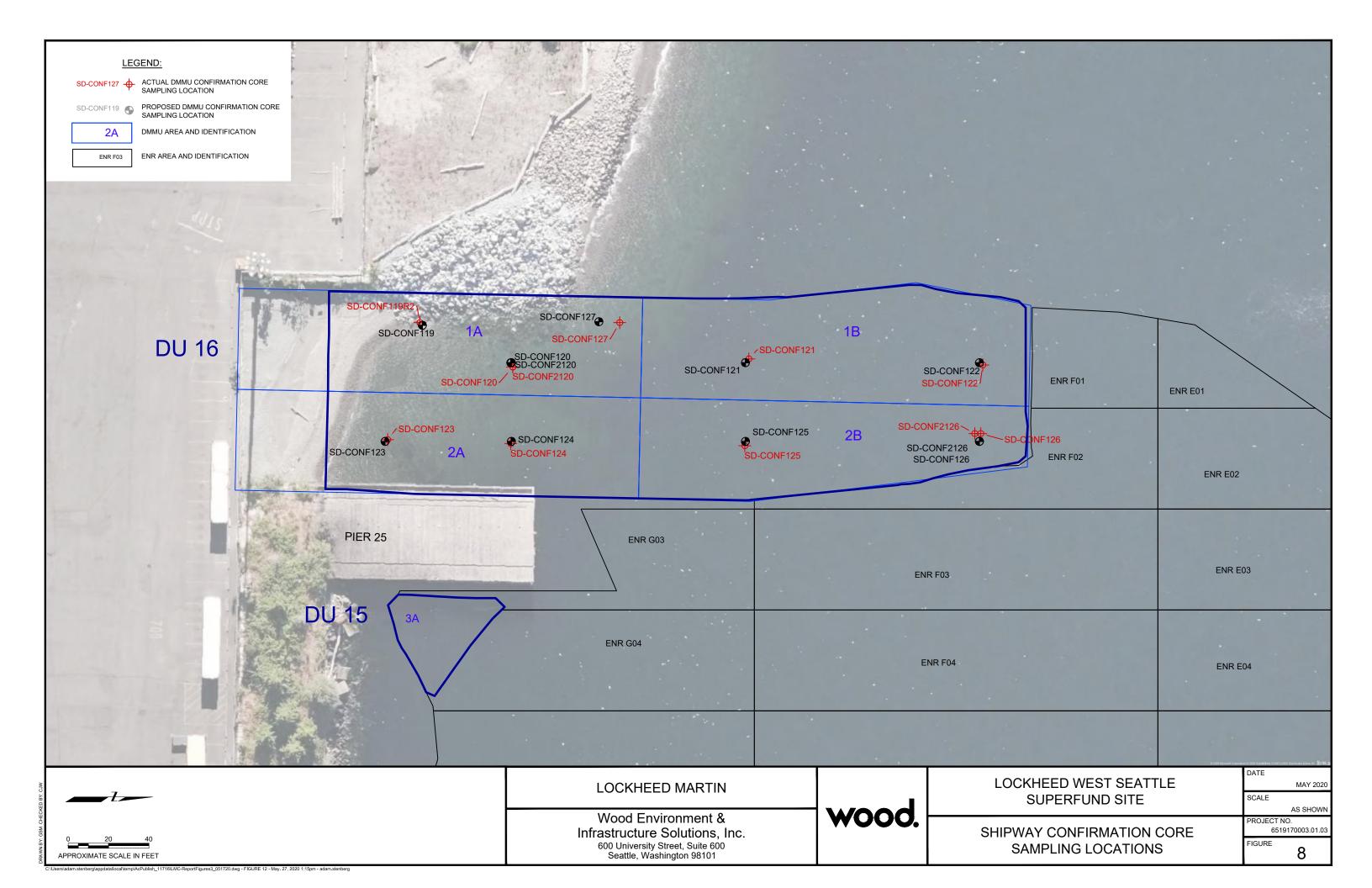

Figure 14 Histogram of Results of Water Quality Monitoring by Activity during Boeing Plant 2 Remediation

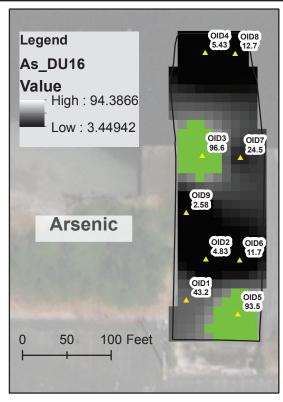

Figure 15 Postbackfill and Pre- and Postconstruction Perimeter Sampling Locations

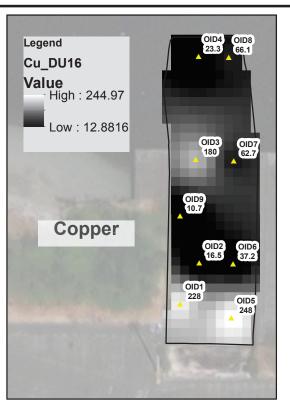

Figure 16 Institutional Controls and Property Ownership

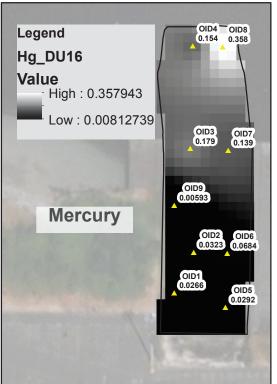


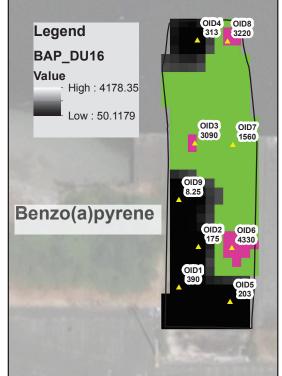


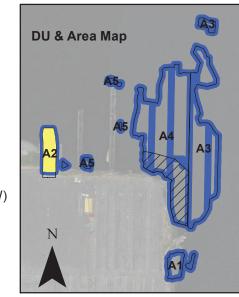


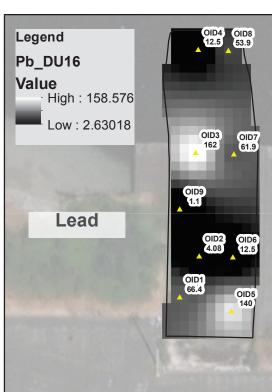


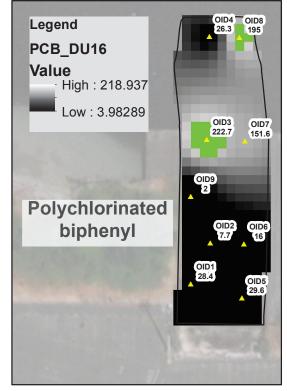


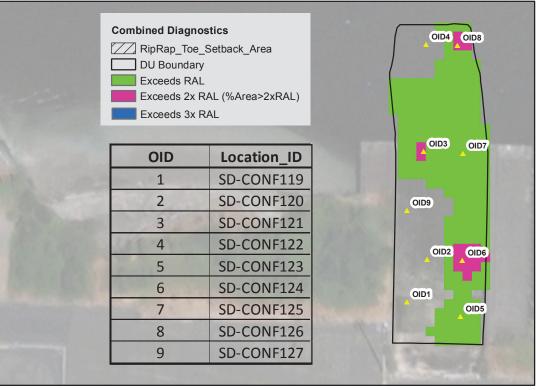




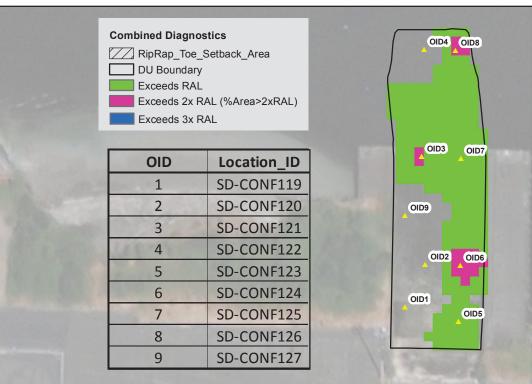





Legend for Decision Rule Failures Exceeds RAL Exceeds 2x RAL


All data are interpolated using Inverse Distance Weighting (IDW) spatial estimation.

Exceeds 3x RAL



	Interpolation Statistics													
	NAME	Units (dry wt)	MIN	MAX	SWAC	RAL_Limit	2X_RAL_Limit	3X_RAL_Limit	SWAC>RAL	%Area>2XRAL	MAX>3XRAL			
As	DU16	mg/kg	3.45	94.4	34.1	57	114	171	No		No			
BAP	DU16	mg/kg	50.1	4180	1540	1500	3000	4500	Yes	4.72% (PASS)	No			
Cu	DU16	mg/kg	12.9	245	95.8	390	780	1170	No		No			
Hg	DU16	mg/kg	0.0081	0.358	0.114	0.41	0.82	1.23	No		No			
Pb	DU16	mg/kg	2.63	159	60.1	530	1060	1590	No		No			
PCB	DU16	µg/kg	3.98	219	83.1	180	360	540	No		No			

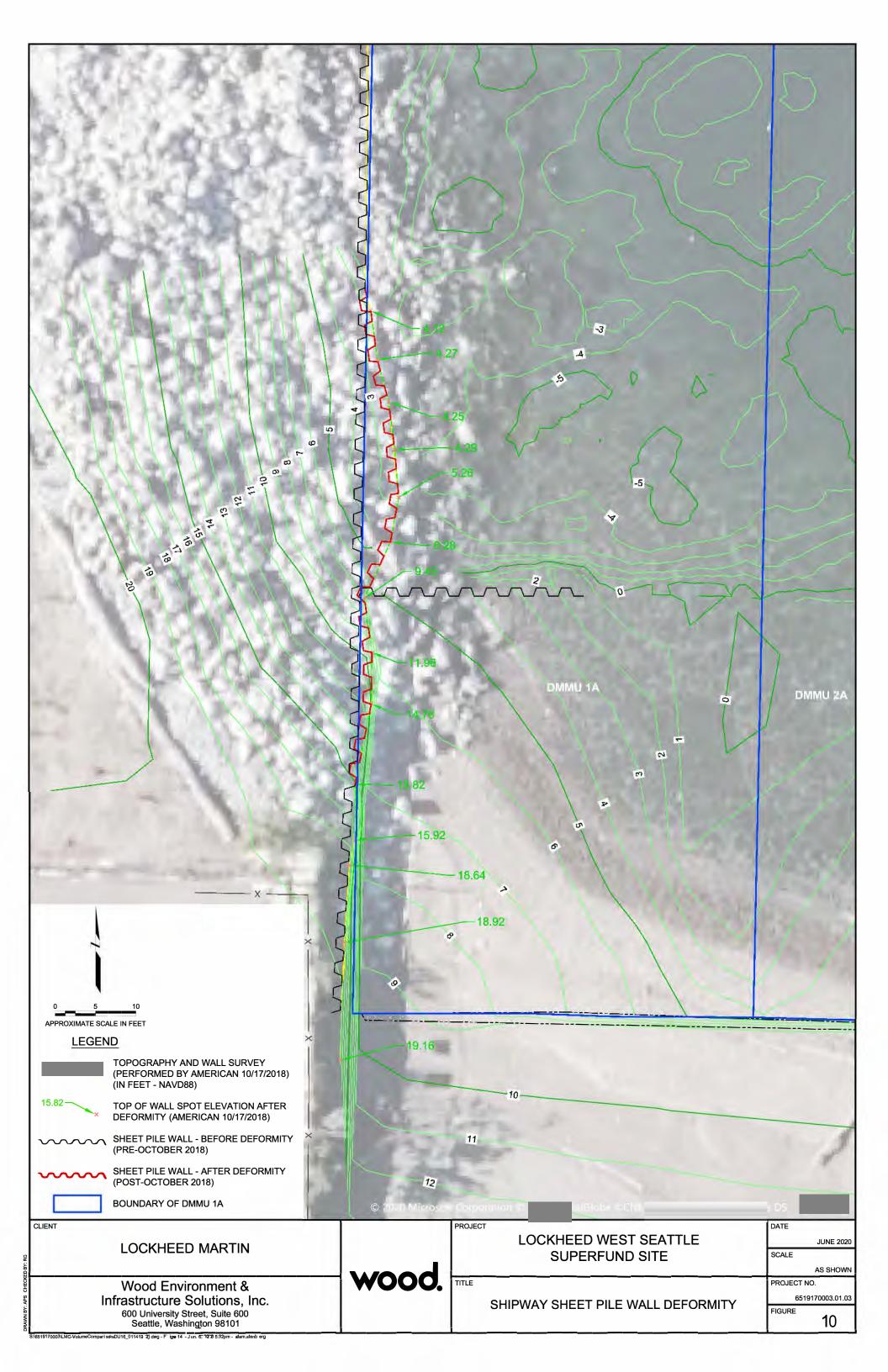
Notes: None.

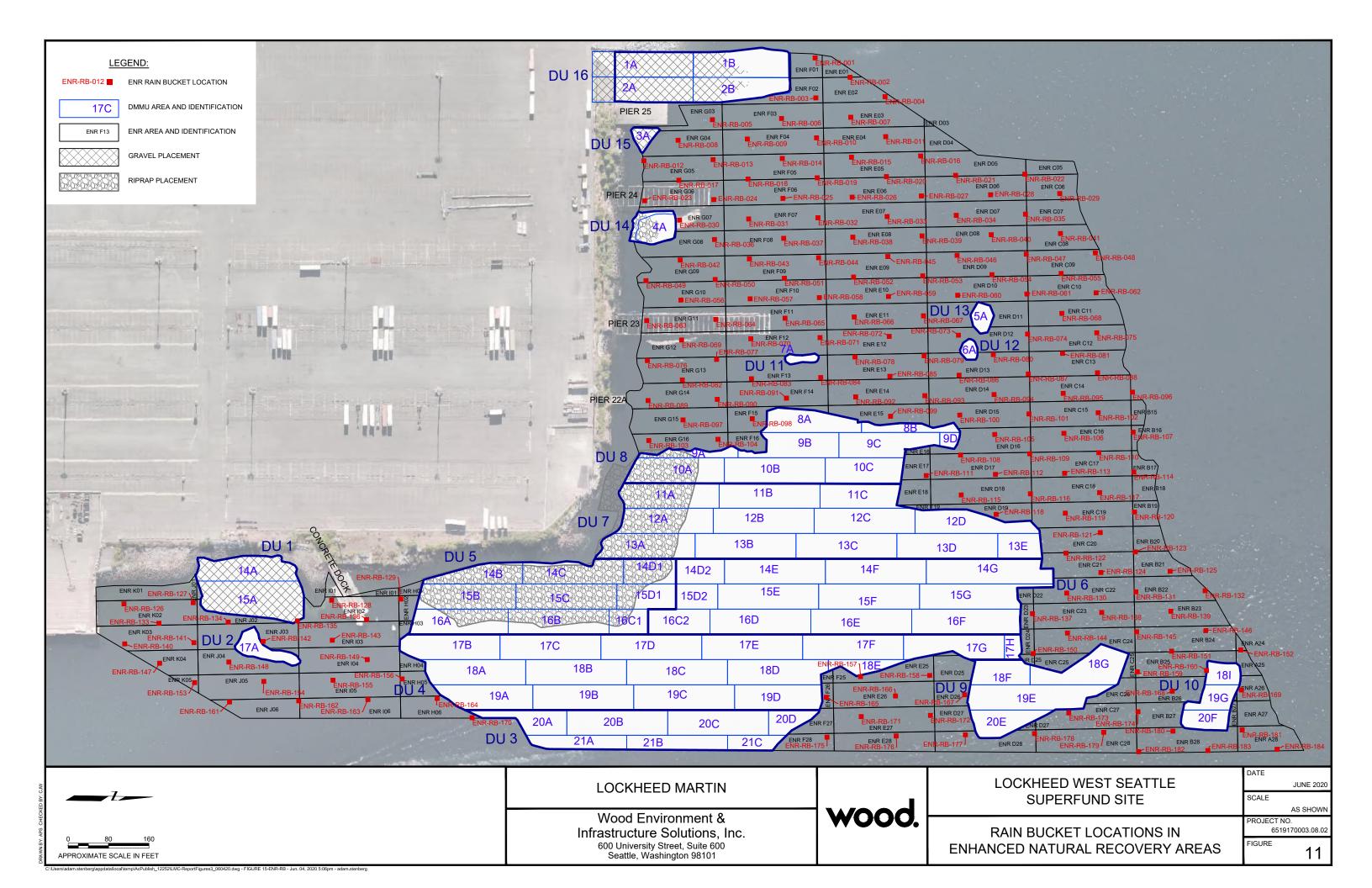
L	As	BAP	Cu	Hg	Pb	
			Consti	tuents		
	Concentration Therefore, a example, increspective R	SWAC va	lue excee	ding a valı	ue of 2, for	

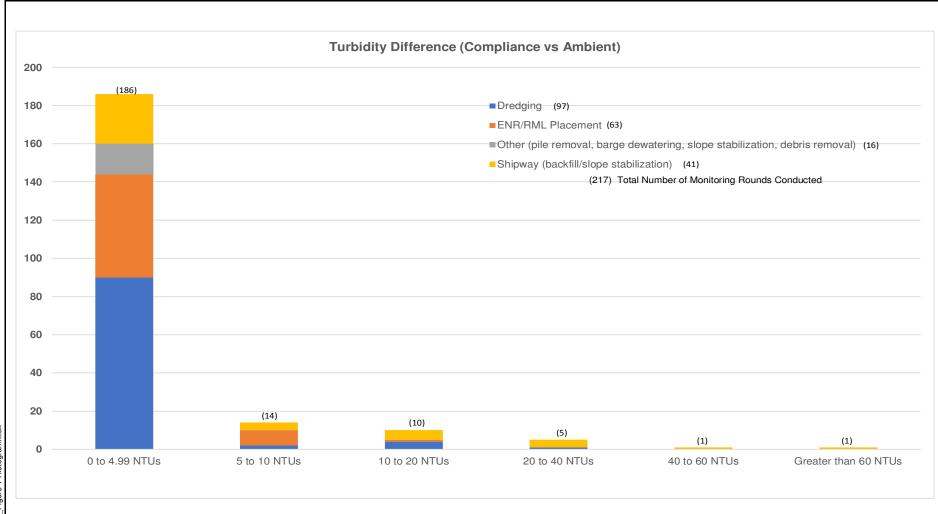
Decision Rule Failure: BAP

LOCKHEED WEST SEATTLE SUPERFUND SITE **LOCKHEED MARTIN**

DECISION UNIT 16 GEOSPATIAL ANALYSIS FOR 0- to 0.5-FOOT INTERVAL


Prepared by/Date CJL - 2/21/2019 Checked by/Date: DCM - 2/21/2019

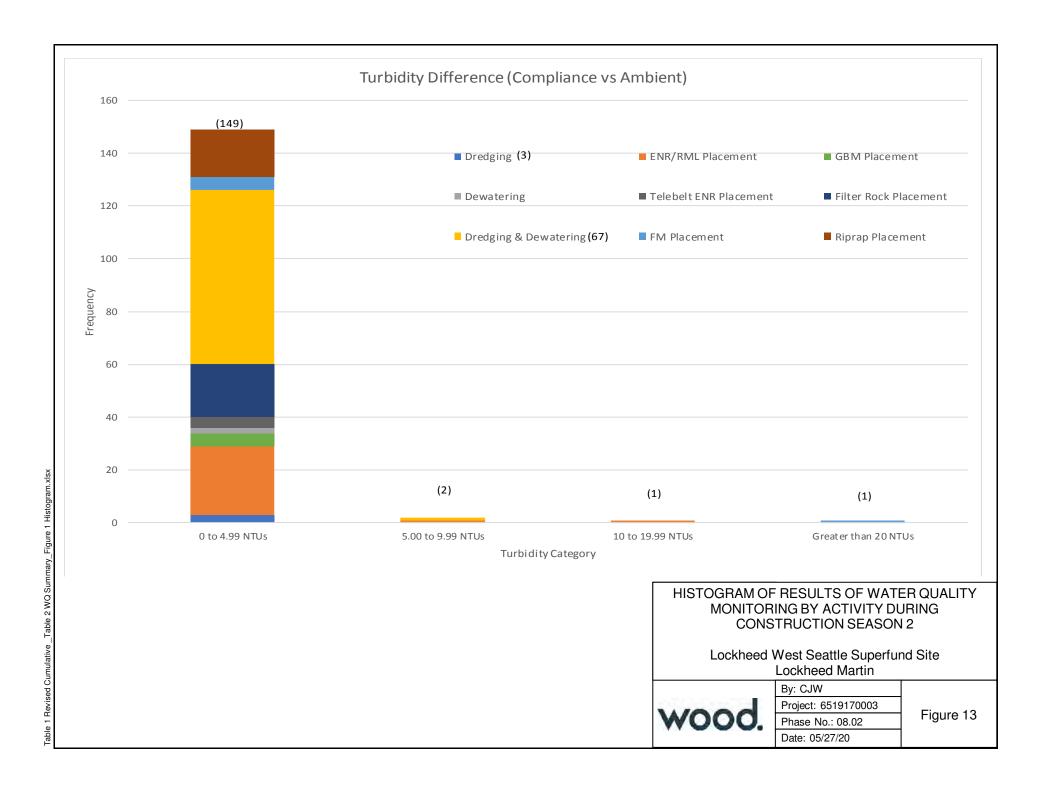

Project Number: 6519170003

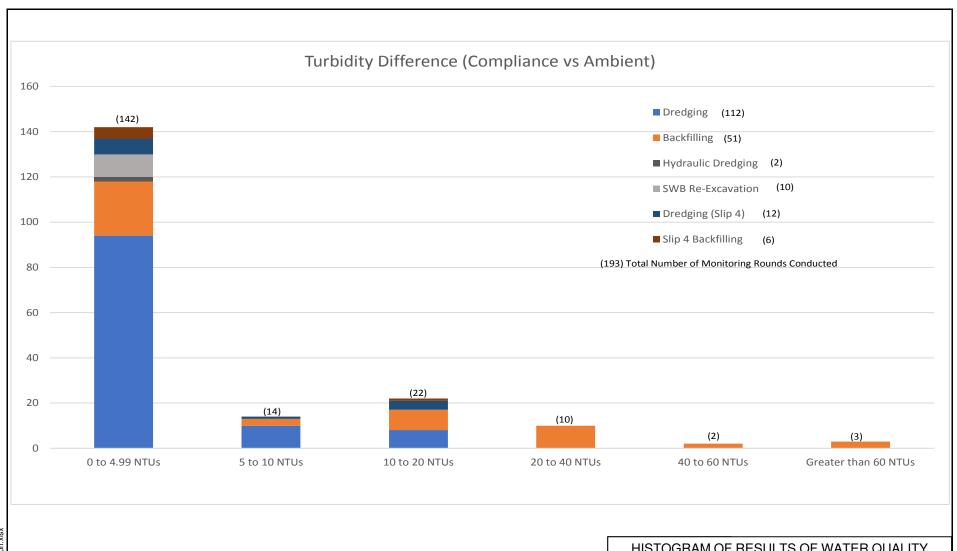

Figure:

9

■ MAX

HISTOGRAM OF RESULTS OF WATER QUALITY MONITORING BY ACTIVITY DURING CONSTRUCTION SEASON 1


Lockheed West Seattle Superfund Site Lockheed Martin

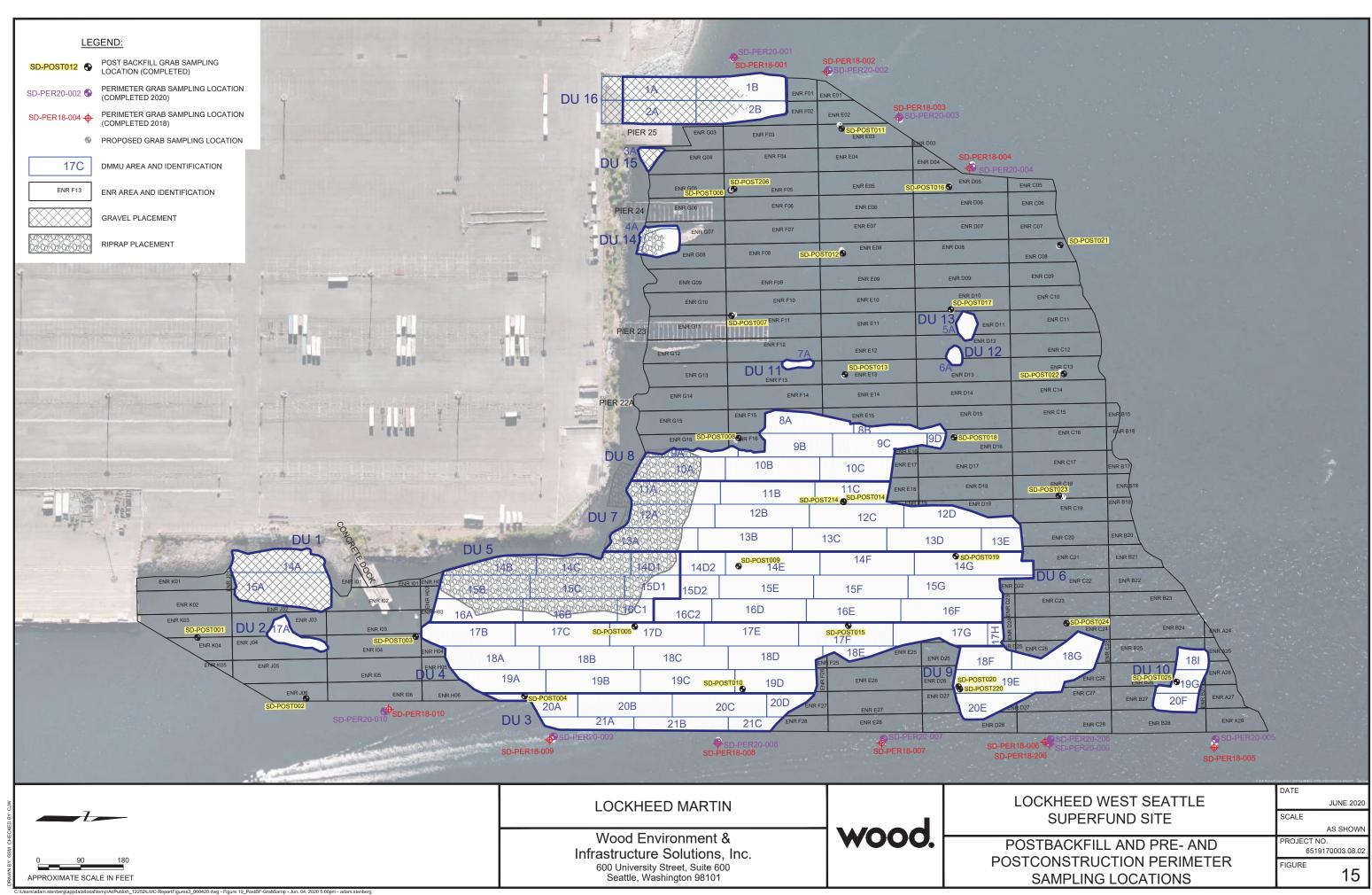

wood.

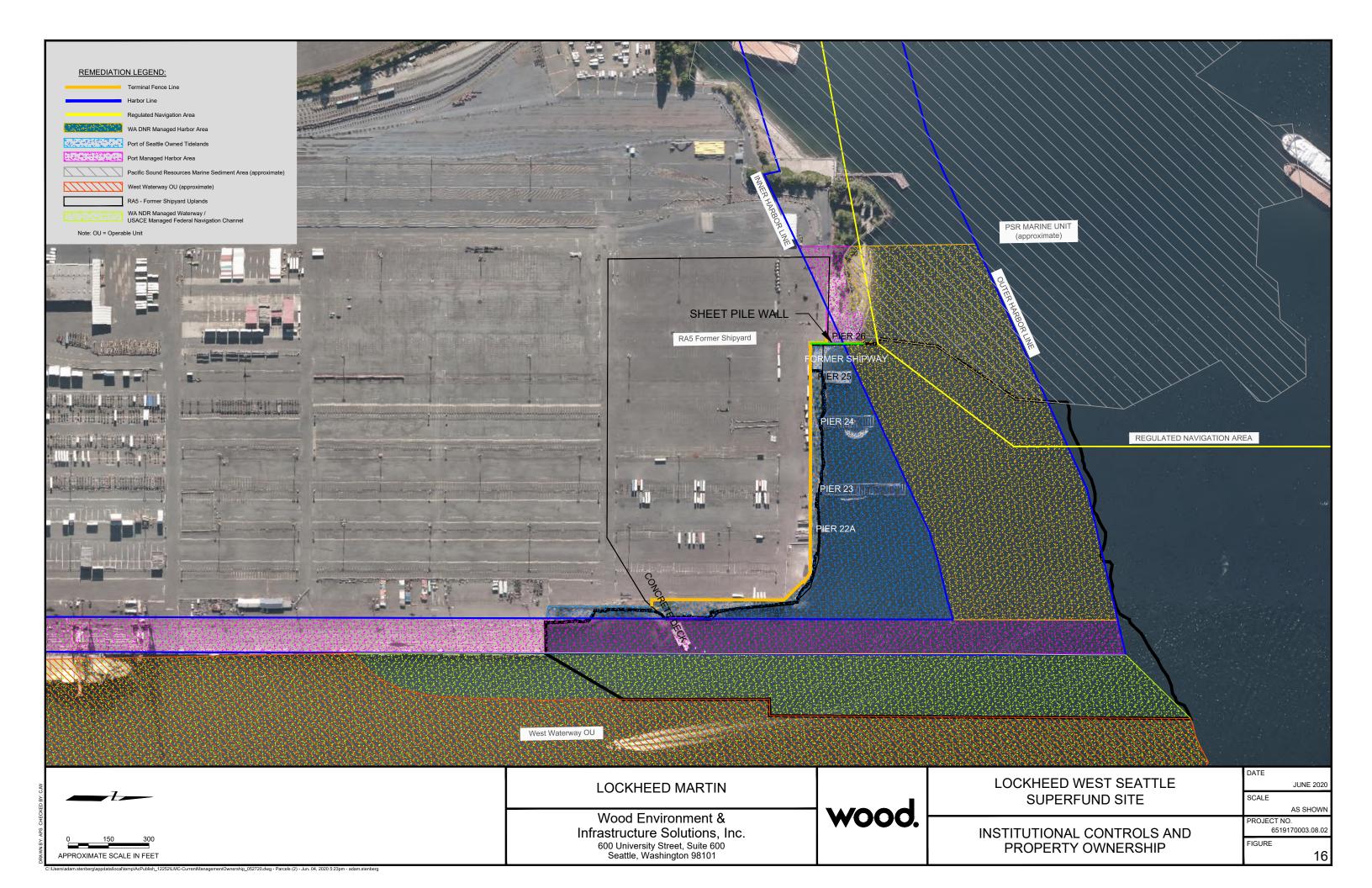
By: RHG Project: 6519170003

Phase No.: 08.02 Date: 05/27/20 Figure 12

Bevised Cumulative Table 2 WO Summary Figure 1 Histogram xlsx

HISTOGRAM OF RESULTS OF WATER QUALITY MONITORING BY ACTIVITY DURING BOEING PLANT 2 REMEDIATION


Lockheed West Seattle Superfund Site Lockheed Martin



By: RHG
Project: 6519170003
Phase No.: 08.02
Date: 05/27/20

Figure 14

Figure 2 Boeing WQ Monitoring Comparison.xlsx

TABLES

Table 1 Summary of Cleanup Levels for Contaminants of Concern in Sediment

Table 2 Remedial Action Levels to Be Achieved at Sediment Surface Following Excavation and Dredging

Table 3 Backfill Materials Quantity Summary

Table 4 Dredged Material Management Unit Approval Dates

Table 5 Decision Unit Confirmation Core Sample Planned and Actual Sampling Locations in Open Water Areas

Table 6 Analytical Results for Postdredge Sediment Samples

Table 7 Example of Data Selection for Geospatial Interpolation

Table 8 Rain Bucket Measurements in Residual Management Layer Areas

Table 9 Decision Unit Confirmation Core Sample Planned and Actual Sampling Locations in Shipway

Table 10 Rain Bucket Measurements in Enhanced Natural Recovery Areas

Table 11 Cumulative Water Quality Monitoring Activities for Construction Season 1

Table 12 Summary of Water Quality Monitoring Efforts during Construction Season 1

Table 13 Cumulative Water Quality Monitoring Activities for Construction Season 2

Table 14 Summary of Water Quality Monitoring Efforts during Construction Season 2

Table 15 Analytical Results for Water Samples
Collected during Construction Season 1

Table 16 Analytical Results for Ambient Water Samples
Collected during Construction Season 1

Table 17 Analytical Results for Water Samples Collected during Construction Season 2

Table 18 Post-ENR and RML Placement Sediment Sample Planned and Actual Locations

Table 19 Analytical Results for Postconstruction Samples

Table 20 Perimeter Sediment Sampling Planned and Actual Locations

Table 21 Analytical Results for Pre- and Postconstruction Perimeter Monitoring Sediment Samples

Table 22 Health and Safety Incident and Near-Miss Log

TABLE 1
SUMMARY OF CLEANUP LEVELS FOR CONTAMINANTS OF CONCERN IN SEDIMENT

				RAO 1	RAO 2	RAO 3	RAO 4
				Human Seafood	Human Direct		
	Risk		Spatial Scale	Consumption ³	Contact ³	Benthic Organisms⁴	Ecological ⁵
coc	Driver?	Units ¹	of Exposure ²	(0 to 10 cm)	(0 to 45 cm)	(0 to 10 cm)	(0 to 10 cm)
			Subtidal	2 (nat. bkgd)	n/a	n/a	100 (RBTC – fish)
Total PCBs	Yes	μg/kg dw	Intertidal	2 (nat. bkgd)	n/a	n/a	n/a
			Point	n/a	n/a	12 mg/kg-OC/180 (SQS)	n/a
			Subtidal	9 (nat. bkgd)	550 (RBTC) ⁶	n/a	n/a
cPAHs	Yes	μg TEQ/kg dw	Intertidal	9 (nat. bkgd)	15 (RBTC) ⁷	n/a	n/a
			Point	n/a	n/a	n/a	n/a
			Subtidal	7 (nat. bkgd)	7 (nat. bkgd)	n/a	n/a
Arsenic	Yes	mg/kg dw	Intertidal	7 (nat. bkgd)	7 (nat. bkgd)	n/a	n/a
			Point	n/a	n/a	57 (SQS)	n/a
			Subtidal	11 (nat. bkgd)	n/a	n/a	n/a
Lead	Yes	mg/kg dw	Intertidal	11 (nat. bkgd)	n/a	n/a	50 (RBTC – sandpiper)
			Point	n/a	n/a	n/a	n/a
			Subtidal	430 (RBTC – child)	n/a	n/a	150
Tributyltin	Yes	μg/kg dw	Intertidal	2,000 (RBTC – child) ⁸	n/a	n/a	n/a
			Point	n/a	n/a	n/a	n/a
			Subtidal	400 (RBTC – child)	n/a	n/a	114 (RBTC – fish)
Copper	Yes	mg/kg dw	Intertidal	400 (RBTC – child) ⁸	n/a	n/a	420 (RBTC – sandpiper)
			Point	n/a	n/a	390 (SQS/CSL)	n/a
			Subtidal	0.41 (RBTC – child)	n/a	n/a	n/a
Mercury	Yes	mg/kg dw	Intertidal	0.17 (RBTC – child)	n/a	n/a	n/a
			Point	n/a	n/a	0.41 (SQS)	n/a
			Subtidal	2 (nat. bkgd)	37 (RBTC) ⁸	n/a	n/a
Dioxins/ Furans	Yes	ng TEQ/kg dw	Intertidal	2 (nat. bkgd)	13 (RBTC) ⁸	n/a	n/a
			Point	n/a	n/a	n/a	n/a
			Subtidal	n/a	n/a	n/a	n/a
Antimony	No	mg/kg dw	Intertidal	n/a	n/a	n/a	n/a
			Point	n/a	n/a	150 (LAET/SL)	n/a
			Subtidal	0.398 (nat. bkgd)	n/a	n/a	n/a
Cadmium	No	mg/kg dw	Intertidal	0.398 (nat. bkgd)	n/a	n/a	n/a
			Point	n/a	n/a	n/a	n/a

TABLE 1
SUMMARY OF CLEANUP LEVELS FOR CONTAMINANTS OF CONCERN IN SEDIMENT

				RAO 1	RAO 2	RAO 3	RAO 4
				Human Seafood	Human Direct		
	Risk		Spatial Scale	Consumption ³	Contact ³	Benthic Organisms ⁴	Ecological ⁵
COC	Driver?	Units ¹	of Exposure ²	(0 to 10 cm)	(0 to 45 cm)	(0 to 10 cm)	(0 to 10 cm)
			Subtidal	n/a	n/a	n/a	n/a
Chromium	No	mg/kg dw	Intertidal	n/a	n/a	n/a	n/a
			Point	n/a	n/a	260 (SQS)	n/a
			Subtidal	n/a	n/a	n/a	n/a
Cobalt	No	mg/kg dw	Intertidal	n/a	n/a	n/a	n/a
			Point	n/a	n/a	10 (LAET/SL)	n/a
			Subtidal	n/a	n/a	n/a	n/a
Nickel	No	mg/kg dw	Intertidal	n/a	n/a	n/a	n/a
			Point	n/a	n/a	140 (LAET/SL)	n/a
			Subtidal	n/a	n/a	n/a	n/a
Selenium	No	mg/kg dw	Intertidal	n/a	n/a	n/a	n/a
			Point	n/a	n/a	1 (LAET/SL)	n/a
			Subtidal	n/a	n/a	n/a	n/a
Vanadium	No	mg/kg dw	Intertidal	n/a	n/a	n/a	n/a
			Point	n/a	n/a	57 (LAET/SL)	n/a
			Subtidal	n/a	n/a	n/a	n/a
Zinc	No	mg/kg dw	Intertidal	n/a	n/a	n/a	n/a
			Point	n/a	n/a	410 (SQS)	n/a
Pentachloro-			Subtidal	n/a	n/a	n/a	n/a
phenol	No	μg/kg dw	Intertidal	n/a	n/a	n/a	n/a
prierioi			Point	n/a	n/a	360 (SQS)	n/a
Bis(2-ethylhexyl)			Subtidal	n/a	n/a	n/a	n/a
phthalate	No	μg/kg dw	Intertidal	n/a	n/a	n/a	n/a
primaiate			Point	n/a	n/a	47 mg/kg-OC/710 (SQS)	n/a
			Subtidal	n/a	n/a	n/a	n/a
Acenaphthene	No	μg/kg dw	Intertidal	n/a	n/a	n/a	n/a
		- -	Point	n/a	n/a	16 mg/kg-OC/ 240 (SQS)	n/a
Ponzo(o)			Subtidal	n/a	n/a	n/a	n/a
Benzo(a)-	No	μg/kg dw	Intertidal	n/a	n/a	n/a	n/a
anthracene			Point	n/a	n/a	110 mg/kg-OC/ 1,700	n/a

TABLE 1
SUMMARY OF CLEANUP LEVELS FOR CONTAMINANTS OF CONCERN IN SEDIMENT

				RAO 1	RAO 2	RAO 3	RAO 4
	Risk		Spatial Scale	Human Seafood Consumption ³	Human Direct Contact ³	Bonthio Ornaniamo ⁴	Factoriant ⁵
coc	Driver?	Units ¹	of Exposure ²	(0 to 10 cm)		Benthic Organisms ⁴	Ecological ⁵
COC	Driver?	Units	Subtidal	n/a	(0 to 45 cm)	(0 to 10 cm)	(0 to 10 cm)
Ponzo(a)nyrono	No	ua/ka dw	Intertidal	n/a	n/a	n/a	n/a
Benzo(a)pyrene	INO	µg/kg dw	Point	n/a	n/a	99 mg/kg-OC/ 1,500 (SQS)	n/a
			Subtidal	n/a	n/a	n/a	n/a
Benzo(g,h,i)-	No	ua/ka dw	Intertidal	n/a n/a	n/a	n/a	n/a
perylene	INO	μg/kg dw	Point	n/a	n/a	31 mg/kg-OC/ 470 (SQS)	n/a
•				.,		` '	n/a
Total Benzofluor-	NI.		Subtidal	n/a	n/a	n/a	<u>n/a</u>
anthenes	No	μg/kg dw	Intertidal	n/a	n/a	n/a	<u>n/a</u>
			Point	n/a	n/a	230 mg/kg-OC/ 1,800	n/a
01		/1 1	Subtidal	n/a	n/a	n/a	<u>n/a</u>
Chrysene	No	μg/kg dw	Intertidal	n/a	n/a	n/a	n/a
			Point	n/a	n/a	110 mg/kg-OC/ 1,700	n/a
Dibenz(a,h)-	No	μg/kg dw	Subtidal	n/a	n/a	n/a	n/a
anthracene			Intertidal	n/a	n/a	n/a	n/a
antinacono			Point	n/a	n/a	12 mg/kg-OC/ 180 (SQS)	n/a
			Subtidal	n/a	n/a	n/a	n/a
Fluor-anthene	No	μg/kg dw	Intertidal	n/a	n/a	n/a	n/a
			Point	n/a	n/a	160 mg/kg-OC/ 2,400	n/a
Indeno(1,2,3-			Subtidal	n/a	n/a	n/a	n/a
cd)pyrene	No	μg/kg dw	Intertidal	n/a	n/a	n/a	n/a
cu)pyrene			Point	n/a	n/a	34 mg/kg-OC/ 510 (SQS)	n/a
			Subtidal	n/a	n/a	n/a	n/a
Phenan-threne	No	μg/kg dw	Intertidal	n/a	n/a	n/a	n/a
			Point	n/a	n/a	100 mg/kg-OC/ 1,500	n/a
			Subtidal	n/a	n/a	n/a	n/a
Total HPAH	No	μg/kg dw	Intertidal	n/a	n/a	n/a	n/a
			Point	n/a	n/a	960 mg/kg-OC/ 14,400	n/a

TABLE 1

SUMMARY OF CLEANUP LEVELS FOR CONTAMINANTS OF CONCERN IN SEDIMENT

				RAO 1	RAO 2	RAO 3	RAO 4
				Human Seafood	Human Direct		
	Risk		Spatial Scale	Consumption ³	Contact ³	Benthic Organisms ⁴	Ecological ⁵
COC	Driver?	Units ¹	of Exposure ²	(0 to 10 cm)	(0 to 45 cm)	(0 to 10 cm)	(0 to 10 cm)

Note(s)

- 1. Unless noted differently in RAO-specific values.
- 2. The spatial scale of exposure is measured as subtidal SWAC, intertidal sediments SWAC, and point measurements at single locations throughout the site (i.e., all subtidal and intertidal sediment locations) or at single locations in intertidal sediment only. The spatial scale is RAO-specific, with site-wide exposures applicable to human seafood consumption, human direct contact, and exposures of fish and crab. Intertidal-only exposures are applicable to human consumption of clams from intertidal areas and exposures of sandpiper. Point exposures are applicable to benthic organisms, which are evaluated at single station locations. The statistical metric for site-wide and intertidal evaluation of alternatives and compliance monitoring is the upper confidence limit on the mean, whereas point exposures are evaluated with concentration data at single locations.
- 3. Cleanup levels are based on 10⁻⁶ cancer risk for carcinogens (e.g., PCBs, cPAHs, arsenic) or on a child exposure hazard quotient of 1 for noncarcinogens (lead, tributyltin, copper). Where cleanup levels are based on carcinogenic risks below background, the background concentration is selected; where no background values are available (chlordanes and DDT), the method detection limit (MDL) is selected.
- 4. Applicable on a point exposure only. Two values for PCBs and PAHs (except total benzofluoranthenes). The first is the organic carbon-normalized SQS value (mg/kg-OC). The second is the dry-weight equivalent based on an average sediment total organic carbon content of 1.5%. For all other compounds, values are dry weight. Under the SMS, sediment cleanup standards are established on a site-specific basis within an allowable range. The SQS and CSL define this range. For chemicals without SMS, LAET, and 2LAET values or the SL and ML of the DMMP define this range.
- 5. Cleanup levels for site-wide exposure are the lowest for either fish or crab; cleanup levels for intertidal exposure are for sandpiper.
- 6. The cleanup level for site-wide direct contact is based on netfishing.
- 7. The cleanup level for intertidal direct contact is based on the lowest for either Tribal clamming or child beach play exposures.
- 8. The cleanup level for intertidal seafood consumption is based on consumption of clams from the intertidal sediment.

Abbreviation(s)

COC = contaminant of concern

cm = centimeter(s)

cPAH = carcinogenic polycyclic aromatic hydrocarbon

CSL = cleanup screening level

DMMP = Dredged Material Management Program

dw = dry weight

HPAH = high-molecular-weight polycyclic aromatic hydrocarbon

LAET = lowest-apparent-effect threshold

2LAET = second-lowest-apparent-affect threshold

ML = maximum level

mg/kg dw = milligram(s) per kilogram dry weight

 $mg/kg\text{-}OC = milligram(s) \ per \ kilogram, \ organic\text{-}carbon\text{-}normalized \ value}$

n/a = compounds do not present a risk for the RAO scenario

Nat. Bkgd = natural background

ng TEQ/kg dw = nanograms toxicity equivalents per kilogram dry weight

PAH = polycyclic aromatic hydrocarbon

PCB = polychlorinated biphenyl

RAO = remedial action objective

RBTC = risk-based threshold concentrations

SL = screening level

SMS = Sediment Management Standards

SQS = Washington State Sediment Quality Standards

SWAC = surface-weighted average concentration

µg/kg dw = microgram(s) per kilogram dry weight

μg TEQ/kg dw = microgram(s) toxicity equivalents per kilogram dry weight

TABLE 2

REMEDIAL ACTION LEVELS TO BE ACHIEVED AT SEDIMENT SURFACE FOLLOWING EXCAVATION AND DREDGING

COC	Risk Driver?	Compliance Zone ¹	RAL	Units	Source	
Remedial Action Levels for D	ecision Units 2, 3, 4,	9, and 10				
Total PCBs	Yes	0 to 10 cm	12	mg/kg-OC	SQS	
Total PCBS	res	0 to 10 cm	180	μg/kg dw	SQS	
cPAHs	Yes		Not app	licable		
Arsenic	Yes	0 to 10 cm	57	mg/kg dw	SQS	
Lead	Yes	0 to 10 cm	530	mg/kg dw	CSL	
Tributyltin	Yes		Not app	licable		
Copper	Yes	0 to 10 cm	390	mg/kg dw	SQS and CSL	
Mercury	Yes	0 to 10 cm	0.41	mg/kg dw	SQS	
Dioxins/Furans	Yes		Not app	licable		
Chromium	No	0 to 10 cm	260	mg/kg dw	SQS	
Cobalt	No	0 to 10 cm	10	mg/kg dw	LAET/SL	
Nickel	No	0 to 10 cm	140	mg/kg dw	LAET/SL	
Selenium	No	0 to 10 cm	1	mg/kg dw	LAET/SL	
Vanadium	No	0 to 10 cm	57	mg/kg dw	LAET/SL	
Zinc	No	0 to 10 cm	410	mg/kg dw	SQS	
Pentachlorophenol	No	0 to 10 cm	360	mg/kg dw	SQS	
Bis(2-ethylhexyl) phthalate	No	0 to 10 cm	47	mg/kg-OC	SQS	
bis(z-etifyirlexyi) pritrialate	140	O to TO CITI	710	μg/kg dw	000	
Acenaphthene	No	0 to 10 cm	16	mg/kg-OC	SQS	
Aceriaprititerie	140	O to TO CITI	240	μg/kg dw	000	
Benzo(a)anthracene	No	0 to 10 cm	110	mg/kg-OC	SQS	
Delizo(a)alitiliacelle	140	O to TO CITI	1,700	μg/kg dw	000	
Benzo(a)pyrene	No	0 to 10 cm	99	mg/kg-OC	SQS	
Donzo(a)pyrene	INO	0 10 10 6111	1,500	μg/kg dw	<u> </u>	
Benzo(g,h,i)perylene	No	0 to 10 cm	31	mg/kg-OC	SQS	
Donzo(g,n,n)porylene	INO	0 10 10 011	470	μg/kg dw	<u> </u>	
Total Benzofluoranthenes	No	0 to 10 cm	230	mg/kg-OC	SQS	
Total Delizolidoralitieries	INO	0 10 10 6111	1,800	μg/kg dw	<u> </u>	

TABLE 2

REMEDIAL ACTION LEVELS TO BE ACHIEVED AT SEDIMENT SURFACE FOLLOWING EXCAVATION AND DREDGING

COC	Risk Driver?	Compliance Zone ¹	RAL	Units	Source	
Chrysene	No	0 to 10 cm	110	mg/kg-OC	SQS	
Chrysene	INO	0 10 10 011	1,700	μg/kg dw	SQS	
Dibenz(a,h)anthracene	No	0 to 10 cm	12	mg/kg-OC	SQS	
Diberiz(a,ir)aritiriacerie	INO	0 10 10 6111	180	μg/kg dw	SQS	
Fluoranthene	No	0 to 10 cm	160	mg/kg-OC	SQS	
Fluorantinene	INO	0 10 10 011	2,400	μg/kg dw	SQS	
Indeno(1,2,3-cd)pyrene	No	0 to 10 cm	34	mg/kg-OC	SQS	
indeno(1,2,3-cd)pyrene	INO	O to TO CITI	510	μg/kg dw	300	
Phenanthrene	No	0 to 10 cm	100	mg/kg-OC	SQS	
r nenantillene	INU	0 10 10 011	1,500	μg/kg dw	3Q3	
Total HPAH	No	0 to 10 cm	960	mg/kg-OC	SQS	
TOTAL TEAT	INO	0 10 10 011	14,000	μg/kg dw	SQS	
Remedial Action Levels for	Decision Units 1, 5, 6	7, 8, 11, 12, 13, 14, 15, a	nd 16			
Total PCBs	Yes	0 to 10 cm	65	mg/kg-OC	CSL	
Total PCBs	res	0 10 10 011	960	μg/kg dw	CSL	
cPAHs	Yes		Not appl	icable		
Arsenic	Yes	0 to 10 cm	93	mg/kg dw	CSL	
Lead	Yes	0 to 10 cm	530	mg/kg dw	CSL	
Tributyltin	Yes		Not appl	icable		
Copper	Yes	0 to 10 cm	390	mg/kg dw	SQS and CSL	
Mercury	Yes	0 to 10 cm	0.59	mg/kg dw	CSL	
Dioxins/Furans	Yes		Not appl	icable		
Chromium	No	0 to 10 cm	270	mg/kg dw	CSL	
Cobalt	No	0 to 10 cm	n/a	mg/kg dw		
Nickel	No	0 to 10 cm	n/a	mg/kg dw		
Selenium	No	0 to 10 cm	n/a	mg/kg dw		
Vanadium	No	0 to 10 cm	n/a	mg/kg dw		
Zinc	No	0 to 10 cm	960	mg/kg dw	CSL	
Pentachlorophenol	No	0 to 10 cm	690	mg/kg dw	CSL	
Pig(2 othydboyd) phtholata	No	0 to 10 cm	78	mg/kg-OC	CSL	
Bis(2-ethylhexyl) phthalate	No	0 to 10 cm	1,200	μg/kg dw	USL	

TABLE 2

REMEDIAL ACTION LEVELS TO BE ACHIEVED AT SEDIMENT SURFACE FOLLOWING EXCAVATION AND DREDGING

coc	Risk Driver?	Compliance Zone ¹	RAL	Units	Source	
Acananhthana	No	0 to 10 cm	57	mg/kg-OC	CSL	
Acenaphthene	INO	0 to 10 cm	860	μg/kg dw	CSL	
Benzo(a)anthracene	No	0 to 10 cm	270	mg/kg-OC	CSL	
Derizo(a)aritiriacerie	140	O to TO CITI	4,100	μg/kg dw	COL	
Benzo(a)pyrene	No	0 to 10 cm	210	mg/kg-OC	CSL	
Delizo(a)pyrene	INO	O to TO CITI	3,200	μg/kg dw	CGL	
Benzo(g,h,i)perylene	No	0 to 10 cm	78	mg/kg-OC	CSL	
Berizo(g,ii,i)perylene	INO	0 10 10 6111	1,200	μg/kg dw	CSL	
Total Benzofluoranthenes	No	0 to 10 cm	450	mg/kg-OC	CSL	
Total Belizolldoralitileries	INO	O to TO CITI	6,800	μg/kg dw	CSL	
Chrysene	No	0 to 10 cm	460	mg/kg-OC	CSL	
Chrysene	INO		6,900	μg/kg dw	CGL	
Dibenz(a,h)anthracene	No	0 to 10 cm	33	mg/kg-OC	CSL	
Diberiz(a,ri)aritiracerie	110	O to TO CITI	500	μg/kg dw	OOL	
Fluoranthene	No	0 to 10 cm	1,200	mg/kg-OC	CSL	
i idoranti lerie	INO	0 to 10 cm	18,000	μg/kg dw	CGL	
incleno(1,2,3-cd)pyrene	No	0 to 10 cm	88	mg/kg-OC	CSL	
lincieno(1,2,3-cd)pyrene	INO	0 to 10 cm	1,300	μg/kg dw	CGL	
Phenanthrene	No	0 to 10 cm	480	mg/kg-OC	CSL	
	NO	O to 10 cm	7,200	μg/kg dw		
Total HPAH	No	0 to 10 cm	5,300	mg/kg-OC	CSL	
	INO	O to 10 cm	79,500	μg/kg dw	COL	

Note(s)

1. The Compliance Basis is Subtidal Surface Sediment (point), and is the same for all COCs.

Abbreviation(s)

COC = contaminant of concern

cm = centimeter(s)

cPAH = carcinogenic polycyclic aromatic hydrocarbon

CSL = cleanup screening level

dw = dry weight

HPAH = high-molecular-weight polycyclic aromatic hydrocarbon

LAET = lowest-apparent-affect threshold

mg/kg dw = milligrams per kilogram dry weight

n/a = compounds do not present a risk for the RAO scenario

mg/kg-OC = milligram(s) per kilogram, organic-carbon-normalized value

PCB = polychlorinated biphenyl

RAL = remedial action level

SL = screening level

SQS = Washington State Sediment Quality Standards

μg/kg dw = microgram(s) per kilogram dry weight

TABLE 3
BACKFILL MATERIALS QUANTITY SUMMARY

Date	Material	Source	Tons
10/18/2018	ENR-RML	CalPortland	4,070
10/28/2018	ENR-RML	CalPortland	5,039
12/18/2018	ENR-RML	CalPortland	5,039
1/8/2019	ENR-RML	CalPortland	4,984
1/15/2019	ENR-RML	CalPortland	5,031
1/17/2019	Filter Rock	Washington Rock	1,200
1/17/2019	Riprap	Washington Rock	3,841
1/21/2019	ENR-RML	CalPortland	5,010
1/30/2019	Riprap	Washington Rock	3,388
1/30/2019	Filter Rock	Washington Rock	1,548
2/1/2019	ENR-RML	CalPortland	4,007
2/1/2019	Gravel Beach Mix	CalPortland	504
2/1/2019	Fish Mix	CalPortland	513
2/11/2019	Riprap	Washington Rock	4,395
2/11/2019	Filter Rock	Washington Rock	582
2/16/2019	Gravel Beach Mix	CalPortland	999
2/16/2019	ENR-RML	CalPortland	4,011
2/28/2019	Riprap	Washington Rock	1,354
2/28/2019	Filter Rock	Washington Rock	598
3/15/2019	Riprap	Washington Rock	526
3/17/2019	Gravel Beach Mix	CalPortland	3,227
3/17/2019	Fish Mix	CalPortland	532
3/23/2019	ENR-RML	CalPortland	2,007
3/23/2019	Fish Mix	CalPortland	681
3/23/2019	Gravel Beach Mix	CalPortland	212
10/21/2019	Filter Rock	Washington Rock	3,991
10/21/2019	Riprap	Washington Rock	1,026
11/15/2019	Riprap	Washington Rock	4,722
11/25/2019	Riprap	Washington Rock	4,213
11/25/2019	Filter Rock	Washington Rock	790
12/5/2019	ENR-RML	CalPortland	4,545
12/13/2019	ENR-RML	CalPortland	4,517
12/13/2019	Riprap	Washington Rock	4,504
12/13/2019	Filter Rock	Washington Rock	554
12/20/2019	ENR-RML	CalPortland	4,491
12/28/2019	ENR-RML	CalPortland	4,516
1/4/2020	ENR-RML	CalPortland	4,515
1/6/2020	Riprap	Washington Rock	2,911
1/6/2020	Filter Rock	Washington Rock	505
1/10/2020	ENR-RML	CalPortland	4,528
1/10/2020	Gravel Beach Mix	Washington Rock	5,302
1/15/2020	ENR-RML	CalPortland	5,511
1/20/2020	Fish Mix	CalPortland	1,515

TABLE 3
BACKFILL MATERIALS QUANTITY SUMMARY

Date	Material	Source	Tons
1/20/2020	ENR-RML	CalPortland	4,048
1/28/2020	ENR-RML	CalPortland	3,418
3/13/2020	Riprap	Washington Rock	2,342
3/24/2020	ENR-RML	CalPortland	1,029
		Gravel Beach Mix	10,244
Totals		Filter Rock	9,768
		Riprap	33,221
		Fish Mix	3,241
		ENR-RML	80,316
	Totals	CalPortland	88,499
Totals		Washington Rock	48,291

Abbreviation(s)

ENR = enhanced natural recovery
RML = residual management layer

TABLE 4

DREDGED MATERIAL MANAGEMENT UNIT APPROVAL DATES

Construction Season	DU	DMMU	Approval Date		
Construction Season 1					
CS1	DU 11	DMMU7A	12/6/2018		
CS1	DU 12	DMMU6A	10/29/2018		
CS1	DU 13	DMMU5A	10/18/2018		
CS1	DU 14	DMMU4A	12/6/2018		
CS1	DU 15	DMMU3A	1/16/2019		
CS1	DU 16	DMMU1A			
CS1	DU 16	DMMU1B	Shipway - No		
CS1	DU 16	DMMU2A	Approval		
CS1	DU 16	DMMU2B			
CS1	DU 3	DMMU20A	1/12/2019		
CS1	DU 3	DMMU20B	1/4/2019		
CS1	DU 3	DMMU20C	1/4/2019		
CS1	DU 3	DMMU20D	1/12/2019		
CS1	DU 3	DMMU21A	1/4/2019		
CS1	DU 3	DMMU21B	1/10/2019		
CS1	DU 3	DMMU21C	1/4/2019		
CS1	DU 4	DMMU17B	1/11/2019		
CS1	DU 4	DMMU17C	1/11/2019		
CS1	DU 4	DMMU17D	1/16/2019		
CS1	DU 4	DMMU17E	1/11/2019		
CS1	DU 4	DMMU17F	12/29/2018		
CS1	DU 4	DMMU17G	12/29/2018		
CS1	DU 4	DMMU17H	12/29/2018		
CS1	DU 4	DMMU18A	1/10/2019		
CS1	DU 4	DMMU18B	1/11/2019		
CS1	DU 4	DMMU18C	1/11/2019		
CS1	DU 4	DMMU18D	1/4/2019		
CS1	DU 4	DMMU18E	1/4/2019		
CS1	DU 4	DMMU19A	1/12/2019		
CS1	DU 4	DMMU19B	1/12/2019		
CS1	DU 4	DMMU19C	1/11/2019		
CS1	DU 4	DMMU19D	1/10/2019		
CS1	DU 6	DMMU14D2	1/4/2019		
CS1	DU 6	DMMU14E	12/13/2018		
CS1	DU 6	DMMU14F	12/18/2018		
CS1	DU 6	DMMU14G	12/13/2018		
CS1	DU 6	DMMU15D2	1/11/2019		
CS1	DU 6	DMMU15E	12/29/2018		
CS1	DU 6	DMMU15F	12/18/2018		
CS1	DU 6	DMMU15G	12/19/2018		
CS1	DU 6	DMMU16C2	1/12/2019		
CS1	DU 6	DMMU16D	12/29/2018		
CS1	DU 6	DMMU16E	12/29/2018		
CS1	DU 6	DMMU16F	12/29/2018		

TABLE 4

DREDGED MATERIAL MANAGEMENT UNIT APPROVAL DATES

Construction Season	DU	DMMU	Approval Date
CS1	DU 7	DMMU11A	11/2/2018
CS1	DU 7	DMMU11B	10/31/2018
CS1	DU 7	DMMU11C	10/29/2018
CS1	DU 7	DMMU12A	11/3/2018
CS1	DU 7	DMMU12B	11/29/2018
CS1	DU 7	DMMU12C	11/2/2018
CS1	DU 7	DMMU12D	11/2/2018
CS1	DU 7	DMMU13A	11/7/2018
CS1	DU 7	DMMU13B	11/29/2018
CS1	DU 7	DMMU13C	11/29/2018
CS1	DU 7	DMMU13D	11/29/2018
CS1	DU 7	DMMU13E	11/2/2018
CS1	DU 8	Additional Dredge	1/4/2019
CS1	DU 8	DMMU10A	11/3/2018
CS1	DU 8	DMMU10B	10/29/2018
CS1	DU 8	DMMU10C	10/18/2018
CS1	DU 8	DMMU8A	10/31/2018
CS1	DU 8	DMMU8B	10/29/2018
CS1	DU 8	DMMU9A	11/3/2018
CS1	DU 8	DMMU9B	10/29/2018
CS1	DU 8	DMMU9C	10/18/2018
CS1	DU 8	DMMU9D	10/18/2018
	Construct	tion Season 2	
CS2	DU 1	DMMU14A	10/2/2019
CS2	DU 1	DMMU15A	10/3/2019
CS2	DU 10	DMMU18I	9/17/2019
CS2	DU 10	DMMU19G	9/17/2019
CS2	DU 10	DMMU20F	9/17/2019
CS2	DU 10 Redredge	RDMMMU 20F	11/24/2019
CS2	DU 10 Redredge	RDMMMU18I	11/22/2019
CS2	DU 10 Redredge	RDMMMU19G	11/22/2019
CS2	DU 15	RDMMU3A	10/2/2019
CS2	DU 2	DMMU17A	9/23/2019
CS2	DU 2 Redredge	RDMMMU17A	11/25/2019
CS2	DU 3 Redredge	RDMMU20A/B	9/30/2019
CS2	DU 4 Redredge	RDMMU17B	11/1/2019
CS2	DU 4 Redredge	RDMMU17C	11/1/2019
CS2	DU 4 Redredge	RDMMU17D/E	10/31/2019
CS2	DU 4 Redredge	RDMMU17G/H	11/4/2019
CS2	DU 4 Redredge	RDMMU18A	10/31/2019
CS2	DU 4 Redredge	RDMMU18B	10/31/2019
CS2	DU 4 Redredge	RDMMU18C/D	10/31/2019
CS2	DU 4 Redredge	RDMMU19A	11/1/2019
CS2	DU 4 Redredge	RDMMU19B	11/1/2019
CS2	DU 4 Redredge	RDMMU19C/D	11/1/2019

TABLE 4

DREDGED MATERIAL MANAGEMENT UNIT APPROVAL DATES

Construction			Approval
Season	DU	DMMU	Date
CS2	DU 5	DMMU14B	10/24/2019
CS2	DU 5	DMMU14C	10/17/2019
CS2	DU 5	DMMU14D1	10/17/2019
CS2	DU 5	DMMU15B	10/28/2019
CS2	DU 5	DMMU15C	10/24/2019
CS2	DU 5	DMMU15D1	10/24/2019
CS2	DU 5	DMMU16A	10/28/2019
CS2	DU 5	DMMU16B	10/25/2019
CS2	DU 5	DMMU16C1	10/25/2019
CS2	DU 5 Redredge	RDMMU16AB-B	3/18/2020
CS2	DU 5 Redredge	RDMMU16B-A	3/12/2020
CS2	DU 5 Redredge	RDMMU16A-C	3/16/2020
CS2	DU 6 Redredge	RDMMU14D2/E	11/19/2019
CS2	DU 6 Redredge	RDMMU14F	11/12/2019
CS2	DU 6 Redredge	RDMMU14G	11/11/2019
CS2	DU 6 Redredge	RDMMU15D2E	11/12/2019
CS2	DU 6 Redredge	RDMMU15F	10/8/2019
CS2	DU 6 Redredge	RDMMU15G	11/11/2019
CS2	DU 6 Redredge	RDMMU16C2D	11/12/2019
CS2	DU 6 Redredge	RDMMU16E/F	11/12/2019
CS2	DU 7 Redredge	RDMMU11A/B	11/22/2019
CS2	DU 7 Redredge	RDMMU11C	11/21/2019
CS2	DU 7 Redredge	RDMMU12A/B	11/19/2019
CS2	DU 7 Redredge	RDMMU12C	11/21/2019
CS2	DU 7 Redredge	RDMMU12D	11/21/2019
CS2	DU 7 Redredge	RDMMU13 A/B	11/21/2019
CS2	DU 7 Redredge	RDMMU13C	11/21/2019
CS2	DU 7 Redredge	RDMMU13D	11/21/2019
CS2	DU 9	DMMU18F	9/13/2019
CS2	DU 9	DMMU18G	9/13/2019
CS2	DU 9	DMMU19E	9/13/2019
CS2	DU 9	DMMU20E	9/13/2019
CS2	DU 9 Redredge	RDMMMU19E/20E	11/22/2019

Abbreviation(s)

CS1 = Construction Season 1

CS2 = Construction Season 2

DMMU = dredged material management unit

DU = decision unit

TABLE 5

DECISION UNIT CONFIRMATION CORE SAMPLE PLANNED AND ACTUAL SAMPLING LOCATIONS IN OPEN WATER AREAS

	Planned		Actual			
		Planned State Plane		Actual State Plane		
		Coordinates			Coordinates	
		(WA SPC North NAD 83;			(WA SPC North NAD 83;	
Decision		Survey Feet) ²			Surve	y Feet)
Unit	Location ID ¹	Easting	Northing	Location ID	Easting	Northing
DU 1	SD-CONF001	1263182	216142	SD-CONF001	1263182	216146
DU 1	SD-CONF002	1263182	216258	SD-CONF002	1263181	216258
DU 1	SD-CONF003	1263221	216142	SD-CONF003	1263219	216145
DU 1	SD-CONF004	1263221	216258	SD-CONF004	1263221	216256
DU 1	SD-CONF005	1263260	216142	SD-CONF005	1263258	216146
DU 1	SD-CONF006	1263260	216258	SD-CONF006	1263257	216258
DU 2	SD-CONF007	1263344	216221	SD-CONF007	1263343	216221
DU 3	SD-CONF008	1263504	216796	SD-CONF008	1263502	216800
DU 3	SD-CONF009	1263504	216912	SD-CONF009	1263507	216912
DU 3	SD-CONF010	1263504	217028	SD-CONF010	1263505	217027
DU 3	SD-CONF011	1263504	217144	SD-CONF011	1263508	217144
DU 3	SD-CONF012	1263504	217260	SD-CONF012	1263510	217260
DU 3	SD-CONF013	1263543	216796	SD-CONF013	1263547	216799
DU 3	SD-CONF014	1263543	216912	SD-CONF014	1263543	216909
DU 3	SD-CONF015	1263543	217028	SD-CONF015	1263542	217025
DU 3	SD-CONF016	1263543	217144	SD-CONF016	1263546	217148
DU 4	SD-CONF017	1263402	216588	SD-CONF017	1263401	216590
DU 4	SD-CONF018	1263402	216704	SD-CONF018	1263400	216703
DU 4	SD-CONF019	1263402	216820	SD-CONF019	1263400	216825
DU 4	SD-CONF020	1263402	216936	SD-CONF020	1263402	216934
DU 4	SD-CONF021	1263402	217052	SD-CONF021	1263403	217054
DU 4	SD-CONF022	1263402	217168	SD-CONF022	1263404	217170
DU 4	SD-CONF023	1263402	217284	SD-CONF023	1263401	217284
DU 4	SD-CONF024	1263402	217400	SD-CONF024	1263403	217396
DU 4	SD-CONF025	1263441	216588	SD-CONF025	1263441	216585
DU 4	SD-CONF026	1263441	216704	SD-CONF026	1263440	216707
DU 4	SD-CONF027	1263441	216820	SD-CONF027	1263438	216822
DU 4	SD-CONF028	1263441	216936	SD-CONF028	1263439	216939
DU 4	SD-CONF029	1263441	217052	SD-CONF029	1263439	217049
DU 4	SD-CONF030	1263441	217168	SD-CONF030	1263444	217166
DU 4	SD-CONF031	1263441	217284	SD-CONF031	1263441	217282
DU 5	SD-CONF032	1263309	216533	SD-CONF032	1263311	216539
DU 5	SD-CONF033	1263309	216649	SD-CONF033	1263309	216650
DU 5	SD-CONF034	1263309	216765	SD-CONF034	1263306	216761
DU 5	SD-CONF035	1263309	216881	SD-CONF035	1263306	216878
DU 6	SD-CONF036	1263309	216997	SD-CONF036	1263314	216994
DU 6	SD-CONF037	1263309	217113	SD-CONF037	1263306	217119
DU 6	SD-CONF038	1263309	217229	SD-CONF038	1263310	217232
DU 6	SD-CONF039	1263309	217345	SD-CONF039	1263311	217346
DU 6	SD-CONF040	1263309	217461	SD-CONF040	1263314	217459

TABLE 5

DECISION UNIT CONFIRMATION CORE SAMPLE PLANNED AND ACTUAL SAMPLING LOCATIONS IN OPEN WATER AREAS

	Planned		Actual			
		Planned State Plane			Actual State Plane	
		Coordinates			Coordinates (WA SPC North NAD 83;	
		(WA SPC North NAD 83;			•	•
Decision		Survey Feet) ²			Surve	y Feet)
Unit	Location ID ¹	Easting	Northing	Location ID	Easting	Northing
DU 6	SD-CONF041	1263309	217577	SD-CONF041	1263301	217572
DU 6	SD-CONF042	1263309	217693	SD-CONF042	1263307	217688
DU 4	SD-CONF043	1263348	216533	SD-CONF043	1263341	216532
DU 4	SD-CONF044	1263348	216649	SD-CONF044	1263345	216651
DU 4	SD-CONF045	1263348	216765	SD-CONF045	1263350	216763
DU 4	SD-CONF046	1263348	216881	SD-CONF046	1263341	216881
DU 4	SD-CONF047	1263348	216997	SD-CONF047	1263346	217000
DU 4	SD-CONF048	1263348	217113	SD-CONF048	1263342	217115
DU 4	SD-CONF049	1263348	217229	SD-CONF049	1263352	217225
DU 4	SD-CONF050	1263348	217345	SD-CONF050	1263340	217357
DU 4	SD-CONF051	1263348	217461	SD-CONF051	1263346	217463
DU 4	SD-CONF052	1263348	217577	SD-CONF052	1263349	217577
DU 4	SD-CONF053	1263348	217693	SD-CONF053	1263355	217700
DU 5	SD-CONF054	1263217	216584	SD-CONF054	1263218	216588
DU 5	SD-CONF055	1263217	216700	SD-CONF055	1263217	216697
DU 5	SD-CONF056	1263217	216816	SD-CONF056	1263214	216816
DU 5	SD-CONF057	1263217	216932	SD-CONF057	1263216	216934
DU 6	SD-CONF058	1263217	217048	SD-CONF058	1263215	217047
				SD-CONF058R2	1263220	217038
DU 6	SD-CONF059	1263217	217164	SD-CONF059	1263215	217163
DU 6	SD-CONF060	1263217	217280	SD-CONF060	1263218	217280
DU 6	SD-CONF061	1263217	217396	SD-CONF061	1263217	217392
DU 6	SD-CONF062	1263217	217512	SD-CONF062	1263217	217510
DU 6	SD-CONF063	1263217	217628	SD-CONF063	1263213	217625
DU 6	SD-CONF064	1263217	217744	SD-CONF064	1263216	217734
DU 5	SD-CONF065	1263256	216584	SD-CONF065	1263255	216588
DU 5	SD-CONF066	1263256	216700	SD-CONF066	1263259	216703
DU 5	SD-CONF067	1263256	216816	SD-CONF067	1263254	216813
DU 5	SD-CONF068	1263256	216932	SD-CONF068	1263257	216933
DU 6	SD-CONF069	1263256	217048	SD-CONF069	1263256	217049
DU 6	SD-CONF070	1263256	217164	SD-CONF070	1263257	217161
				SD-CONF070R2	1263245	217167
DU 6	SD-CONF071	1263256	217280	SD-CONF071	1263254	217282
DU 6	SD-CONF072	1263256	217396	SD-CONF072	1263251	217398
				SD-CONF072R2	1263258	217397
				SD-CONF072R4	1263250	217404
				SD-CONF072R5	1263253	217395
DU 6	SD-CONF073	1263256	217512	SD-CONF073	1263261	217509
DU 6	SD-CONF074	1263256	217628	SD-CONF074	1263248	217604

TABLE 5

DECISION UNIT CONFIRMATION CORE SAMPLE PLANNED AND ACTUAL SAMPLING LOCATIONS IN OPEN WATER AREAS

		Planned			Actual	
		Planned S			Actual St	ate Plane
		Coord				inates
		•	orth NAD 83;			orth NAD 83;
Decision		Survey	Feet) ²		Surve	y Feet)
Unit	Location ID ¹	Easting	Northing	Location ID	Easting	Northing
DU 7	SD-CONF075	1263073	216999	SD-CONF075	1263070	216998
DU 7	SD-CONF076	1263073	217115	SD-CONF076	1263068	217112
DU 7	SD-CONF077	1263073	217231	SD-CONF077	1263070	217235
DU 7	SD-CONF078	1263073	217347	SD-CONF078	1263067	217350
DU 7	SD-CONF079	1263073	217463	SD-CONF079	1263069	217460
DU 7	SD-CONF080	1263112	216999	SD-CONF080	1263112	216997
DU 7	SD-CONF081	1263112	217115	SD-CONF081	1263107	217115
DU 7	SD-CONF082	1263112	217231	SD-CONF082	1263111	217232
DU 7	SD-CONF083	1263112	217347	SD-CONF083	1263115	217351
				SD-CONF083R2	1263109	217345
DU 7	SD-CONF084	1263112	217463	SD-CONF084	1263108	217460
DU 7	SD-CONF085	1263112	217579	SD-CONF085	1263111	217579
DU 7	SD-CONF086	1263151	216999	SD-CONF086	1263145	216998
DU 7	SD-CONF087	1263151	217115	SD-CONF087	1263149	217120
DU 7	SD-CONF088	1263151	217231	SD-CONF088	1263150	217235
DU 7	SD-CONF089	1263151	217347	SD-CONF089	1263153	217348
DU 7	SD-CONF090	1263151	217463	SD-CONF090	1263149	217463
DU 7	SD-CONF091	1263151	217579	SD-CONF091	1263150	217572
DU 7	SD-CONF092	1262523	216997	SD-CONF092	1263150	217695
DU 8	SD-CONF093	1262938	217229	SD-CONF093	1262937	217234
DU 8	SD-CONF094	1262938	217345	SD-CONF094	1262941	217349
DU 8	SD-CONF095	1262938	217461	SD-CONF095	1262942	217456
DU 8	SD-CONF096	1262938	217577	SD-CONF096	1262933	217571
DU 8	SD-CONF097	1262977	216997	SD-CONF097	1262972	216998
DU 8	SD-CONF098	1262977	217113	SD-CONF098	1262979	217117
DU 8	SD-CONF099	1262977	217229	SD-CONF099	1262980	217229
DU 8	SD-CONF100	1262977	217345	SD-CONF100	1262975	217345
DU 8	SD-CONF101	1262977	217461	SD-CONF101	1262978	217468
				SD-CONF101R2	1262973	217459
DU 8	SD-CONF102	1263016	216997	SD-CONF102	1263010	216996
DU 8	SD-CONF103	1263016	217113	SD-CONF103	1263013	217117
DU 8	SD-CONF104	1263016	217229	SD-CONF104	1263015	217228
DU 8	SD-CONF105	1263016	217345	SD-CONF105	1263011	217348
DU 8	SD-CONF106	1263016	217461	SD-CONF106	1263020	217461
DU 9	SD-CONF107	1263426	217656	SD-CONF107	1263424	217654
DU 9	SD-CONF108	1263426	217772	SD-CONF108	1263427	217773
DU 9	SD-CONF109	1263426	217888	SD-CONF109	1263428	217887
DU 9	SD-CONF110	1263465	217656	SD-CONF110	1263465	217654
DU 9	SD-CONF111	1263465	217772	SD-CONF111	1263463	217771
DU 9	SD-CONF112	1263504	217656	SD-CONF112	1263504	217657

TABLE 5

DECISION UNIT CONFIRMATION CORE SAMPLE PLANNED
AND ACTUAL SAMPLING LOCATIONS IN OPEN WATER AREAS

		Planned			Actual	
Decision		Planned S Coord (WA SPC No Survey	inates orth NAD 83;		Actual St Coord (WA SPC No Surve	inates orth NAD 83;
Unit	Location ID ¹	Easting	Northing	Location ID	Easting	Northing
DU 10	SD-CONF113	1263475	218105	SD-CONF113	1263477	218101
DU 11	SD-CONF114	1262787	217299	SD-CONF114	1262787	217298
DU 12	SD-CONF115	1262776	217633	SD-CONF115	1262771	217632
DU 13	SD-CONF116	1262712	217659	SD-CONF116	1262711	217655
DU 14	SD-CONF117	1262521	217015	SD-CONF117	1262517	217013
DU 15	SD-CONF118	1262342	216995	SD-CONF118	1262353	217002
				SD-CONF118R2	1262340	216999
DU 7	SD-CONF128	1263100	216962	SD-CONF128	1263103	216959
DU 14	SD-CONF129	1262523	216997	SD-CONF129	1262525	216994
DU 3	SD-CONF210	1263504	217028	SD-CONF210	1263497	217027
DU 8	SD-CONF2100	1262977	217345	SD-CONF2100	1262982	217348
DU 9	SD-CONF2110	1263465	217656	SD-CONF2110	1263464	217654
DU 4	SD-CONF220	1263402	216936	SD-CONF220	1263400	216937
DU 4	SD-CONF230	1263441	217168	SD-CONF230	1263436	217169
DU 6	SD-CONF240	1263309	217461	SD-CONF240	1263308	217458
DU 4	SD-CONF250	1263348	217345	SD-CONF250	1263347	217350
DU 6	SD-CONF260	1263217	217280	SD-CONF260	1263217	217282
DU 6	SD-CONF270	1263256	217164	SD-CONF270	1263257	217161
DU 7	SD-CONF280	1263112	216999	SD-CONF280	1263114	216996
DU 7	SD-CONF290	1263151	217463	SD-CONF290	1263152	217460

- 1. Field-duplicate sample collected at selected locations. Duplicate sample ID identified by a 200 series location ID (e.g., SD-CONF226 for duplicate core collected at location SD-CONF026).
- 2. Proposed sample locations were approximate and may have been adjusted based on bathymetry to avoid areas with steeper slopes or debris.

Abbreviation(s)

DU = decision unit

NAD = North American Datum

WA SPC = Washington State Plane Coordinates

TABLE 6A

ANALYTICAL RESULTS FOR POSTDREDGE SEDIMENT SAMPLES^{1, 2}

	DU		1			1			1				1	1			1				1		
	DMMU		14A		1.	4A			15	Δ			15				15A				15	Δ	
			ONF001			ONF002		9		NF003				NF004			ONF005			9		NF006	
	Sample Location							-				`											
	Sample Date		9/2019			/2019			10/9/2				10/9/				9/2019				10/9/2		
	Sample ID	SD-CONF001-A		B SD-C	ONF002-A	SD-CONF		SD-CONF00)3-A	SD-CONF00	03-B	SD-CONFO	04-A	SD-CONF004	-В	SD-CONF005-A			05-B	SD-CONF00)6-A	SD-CONFO)06-B
	Depth Interval (ft)	0-0.5	0.5-1		0-0.5	0.5-1		0-0.5		0.5-1		0-0.5		0.5-1		0-0.5	0	.5-1		0-0.5		0.5-1	
Analyte	RAL (SQS)	Result Q	Result C	Q Re	sult Q	Result	Q	Result	Q	Result	Q	Result	Q	Result	Q	Result Q	Resu	ılt	Q	Result	Q	Result	Q
Conventionals				<u>.</u>				-				-											
TOC (percent)	NA	0.41 J	2.21		1.58 J	2.4	9	0.12	J	0.08		0.05	J	0.05		0.63 J		0.36		0.08	J	0.10)
Metals (mg/kg)				=				=				=							-				
Arsenic	57	10.9	7.65		13.2	7.0	3	1.65		1.25		1.90		2.00		2.61		3.05		1.93		1.38	3
Copper	390	18.1	26.2		25.2	33.	2	7.87		7.20		7.01		7.04		15.3		13.9		8.44		7.87	7
Lead	530	25.5	7.88		19.6	5.9	5	22.1		15.8		2.54		2.17		32.8		47.3		10.8		14.5	5
Mercury	0.41	0.0223 J	0.131		0.0508	0.081	3	0.0162	J	0.00584	J	0.0256	U	0.0297 U		0.108	C	.113		0.0161	J	0.0220) J
PCBs (μg/kg)																							
Aroclor 1016	NA	2.0 U	2.0 U		2.0 U) U	2.0		2.0		2.0		2.0 U		2.0 U		2.0		2.0) U
Aroclor 1221	NA	2.0 U	2.0 U		2.0 U		U	2.0		2.0		2.0		2.0 U		2.0 U		2.0		2.0		2.0	
Aroclor 1232	NA	2.0 U	2.0 U		2.0 U		U	2.0	U	2.0		2.0		2.0 U		2.0 U		2.0		2.0			U
Aroclor 1242	NA	2.0 U	2.0 U		2.0 U		U	2.0		2.0		2.0		2.0 U		2.0 U		2.0	U	2.0		2.0	
Aroclor 1248	NA	2.0 U	2.0 U		2.0 U		U	2.0		2.0		2.0		2.0 U		0.9 J		1.1	-	2.0		2.0	
Aroclor 1254	NA	2.3	1.0 J		1.4 J) U	2.0		2.0		2.0		2.0 U		1.0 J		1.7	-	1.0		2.0	
Aroclor 1260	NA	3.5	2.2		1.9 J		U	2.0		2.0		0.6		2.0 U		2.1		2.9		1.9		1.6	
Aroclor 1262	NA	2.0 U	2.0 U		2.0 U		U	2.0		2.0		2.0		2.0 U		2.0 U		2.0		2.0		2.0	
Aroclor 1268	NA	2.0 U	2.0 U		2.0 U		U	2.0	_	2.0		2.0	_	2.0 U	_	2.0 U		2.0	_	2.0		2.0	_
Total PCBs ³	180	5.8	3.2 J		3.3 J	2.) U	2.0	U	2.0	U	0.6	J	2.0 U		4.0 J		5.7	J	2.9	J	1.6	3 J
Total PCBs (mg/kg-OC)	12	nc	nc		nc	n	С	nc		nc		no	;	nc		nc		nc		nc		nc	اد

- 1. Sample ID SD-CONF001-A indicates that sample was validated.
- 2. Laboratory qualifiers (Q) are defined as follows:
 - U = analyte not detected at reporting limit presented.
 - J = result is estimated.
- 3. Total PCBs calculated by summing detections or, if all not detected, using the highest non-detected value.

Abbreviation(s)

DU = decision unit

DMMU = dredged material management unit

ft = feet

mg/kg = milligram(s) per kilogram

mg/kg-OC = milligram(s) per kilogram, organic-carbon-normalized value

NA = not applicable

nc = not calculated; TOC <0.5% or >2%

PCB = polychlorinated biphenyl

Q = qualifier

RAL = remedial action level

SQS = Washington State Sediment Quality Standards

TOC = total organic carbon

TABLE 6B

ANALYTICAL RESULTS FOR POSTDREDGE SEDIMENT SAMPLES ^{1, 2}

	DU									-	2				
	DMMU									17					
									er		NF007				
	Sample Location														
	Sample Date										2019	×4444444444444444444444444444444444444	. .	V	1
	Sample ID	SD-CONF00	7-A	SD-CONF00	7-B	SD-CONF007	7-C	SD-CONF007-D	SD-CONF00	7-E	SD-CONF007-F	SD-CONF007-G	SD-CONF007-H	SD-CONF007-I	SD-CONF007-J
	Depth Interval (ft)	0-0.5		0.5-1		1-1.5		1.5-2	2-2.5		2.5-3	3-3.5	3.5-4	4-4.5	4.5-5
Analyte	RAL (SQS)	Result	Q	Result	Ø	Result	Ø	Result Q	Result	Ø	Result Q	Result Q	Result Q	Result Q	Result Q
Conventionals															
TOC (percent)	NA	1.73		1.76		1.78		1.32	1.41		0.67	0.12 J	na	na	na
Metals (mg/kg)															
Arsenic	57	19.3		21.0		na		na	na		na	0.98	na	na	na
Copper	390	173		199		na		na	na		na	6.40	na	na	na
Lead	530	159		133		na		na	na		na	5.12	na	na	na
Mercury	0.41	1.72		2.77		3.43		1.62	1.19		0.822	0.0270 U	0.0279 U	0.0128	0.208
PCBs (μg/kg)															
Aroclor 1016	NA	20.0	U	999	U	10.0 L	J	10.0 U	10.0	U	10.0 U	4.0 UJ	na	na	na
Aroclor 1221	NA	20.0	U	999	U	10.0 L	J	10.0 U	10.0	U	10.0 U	4.0 U	na	na	na
Aroclor 1232	NA	20.0	U	999	U	10.0 L	J	10.0 U	10.0	U	10.0 U	4.0 U	na	na	na
Aroclor 1242	NA	20.0	U	999		10.0 L	J	10.0 U	10.0	U	10.0 U	4.0 U	na	na	na
Aroclor 1248	NA	373		999	U	87.5		59.3	32.6		10.0 U	4.0 U	na	na	na
Aroclor 1254	NA	455		15400		231		162	65.8		10.3	4.0 U	na	na	na
Aroclor 1260	NA	395		3310		155		112	69.4		35.1	28.1	na	na	na
Aroclor 1262	NA	20.0		999		10.0 L		10.0 U	10.0		10.0 U	4.0 U	na	na	na
Aroclor 1268	NA	20.0	U	999	U	10.0 L	J	10.0 U	10.0	U	10.0 U	4.0 U	na	na	na
Total PCBs ³	180	1223		18710		474		333	168		45.4	28.1	na	na	na
Total PCBs (mg/kg-OC)	12	70.7		1063.1		26.6		25.3	11.9		6.8	nc	na	na	na

- 1. Sample ID in colored font SD-CONF001-A indicates that sample was validated.
- 2. Laboratory qualifiers (Q) are defined as follows:
 - U = analyte not detected at reporting limit presented.
 - J = result is estimated.
- 3. Total PCBs calculated by summing detections or, if all not detected, using the highest non-detected value.

Indicates sample removed during re-dredging

Abbreviation(s)

DU = decision unit

DMMU = dredged material management unit

ft = feet

mg/kg = milligram(s) per kilogram

mg/kg-OC = milligram(s) per kilogram, organic-carbon-normalized value

na = not analyzed

NA = not applicable

nc = not calculated; TOC <0.5% or >2% PCB = polychlorinated biphenyl

CB – polychionnated biprierryi

Q = qualifier

RAL = remedial action level

SQS = Washington State Sediment Quality Standards

TOC = total organic carbon

TABLE 6C

ANALYTICAL RESULTS FOR POSTDREDGE SEDIMENT SAMPLES 1, 2

	DU		3		3		3		3	;	3
	DMMU		20A	20	0B	2	0C	20	0C	20	OC .
	Sample Location	SD	CONF008	SD-CC	ONF009	SD-CO	ONF010		ONF210 of SD-CONF010)	SD-CC	ONF011
	Sample Date	1	17/2019	1/10	/2019	1/9/	2019	1/9/	2019	1/9/	2019
	Sample ID	SD-CONF008	-A SD-CONF008-B	SD-CONF009-A	SD-CONF009-B	SD-CONF010-A	SD-CONF010-B	SD-CONF210-A	SD-CONF210-B	SD-CONF011-A	SD-CONF011-B
	Depth Interval (ft)	0-0.5	0.5-1	0-0.5	0.5-1	0-0.5	0.5-1	0-0.5	0.5-1	0-0.5	0.5-1
Analyte	RAL (SQS)	Result	Q Result Q	Result Q	Result Q	Result Q	Result Q	Result Q	Result Q	Result Q	Result Q
Conventionals											
TOC (percent)	NA	1.04	1.34 J	0.58	0.54	0.15 J	0.62	0.48	0.46	0.35 J	0.69
Metals (mg/kg)											
Arsenic	57	50.1	7.90	8.34 J	4.39	3.30	3.52	10.5	4.03	6.46	3.37
Copper	390	305	69.5 J	44.3 J	17.7	19.3	24.0	60.5	34.9	33.3	18.4
Lead	530	246	30.9 J	18.5 J	4.91	8.87 J	12.3	28.6	16.7	31.8 J	3.14
Mercury	0.41	1.79	0.758 J	0.146 J	0.127	0.131 J	0.737	0.384	0.459	0.117 J	0.0862
PCBs (μg/kg)											
Aroclor 1016	NA	23.3 U	9.9 U	8.0 U	1.6 UJ	19.2 U	19.2 U	19.4 U	19.4 U	19.1 U	2.0 U
Aroclor 1221	NA	23.3 U	9.9 U	8.0 U	1.6 U	19.2 U	19.2 U	19.4 U	19.4 U	19.1 U	2.0 U
Aroclor 1232	NA	23.3 U	9.9 U	8.0 U	1.6 U	19.2 U	19.2 U	19.4 U	19.4 U	19.1 U	2.0 U
Aroclor 1242	NA	23.3 U	9.9 U	8.0 U	1.6 U	19.2 U	19.2 U	19.4 U	19.4 U	19.1 U	2.0 U
Aroclor 1248	NA	23.3 U	9.9 U	8.0 U	1.9	17.3 J	19.2 U	41.0	22.5	64.5 J	4.7
Aroclor 1254	NA	851	171 J	228	2.2	28.2	31.7	117	39.6	113	7.9
Aroclor 1260	NA	173	41.4	40.9 J	0.8 J	10.6 J	17.0 J	38.9	16.4 J	27.0	4.2
Aroclor 1262	NA	23.3 U	9.9 U	8.0 U	1.6 U	19.2 U	19.2 U	19.4 U	19.4 U	19.1 U	2.0 U
Aroclor 1268	NA	23.3 U	9.9 U	8.0 U	1.6 U	19.2 U	19.2 U	19.4 U	19.4 U	19.1 U	2.0 U
Total PCBs ³	180	1024	212 J	269 J	4.9	56.1 J	48.7 J	196.9	78.5 J	204.5 J	16.8
Total PCBs (mg/kg-OC)	12	98.5	15.9 J	46.4 J	0.9	nc	7.9	nc	nc	nc	2.4

TABLE 6C

ANALYTICAL RESULTS FOR POSTDREDGE SEDIMENT SAMPLES 1, 2

	DU		;	3		;	3		3	3	;	3		3
	DMMU		20)D		2′	IA		21	IA	2.	1B	2′	1C
	Sample Location	s	D-CC	NF012		SD-CC	NF013	SD-	-co	NF014	SD-CC	ONF015	SD-CC	DNF016
	Sample Date		1/16/	2019		1/14/	2019	1/	/14/	2019	1/14/	/2019	1/10/	/2019
	Sample ID	SD-CONF01	12-A	SD-CONF01	2-B	SD-CONF013-A	SD-CONF013-B	SD-CONF014	-A	SD-CONF014-B	SD-CONF015-A	SD-CONF015-B	SD-CONF016-A	SD-CONF016-B
	Depth Interval (ft)	0-0.5		0.5-1		0-0.5	0.5-1	0-0.5		0.5-1	0-0.5	0.5-1	0-0.5	0.5-1
Analyte	RAL (SQS)	Result	Q	Result	Q	Result Q	Result Q	Result	Q	Result Q	Result Q	Result Q	Result Q	Result Q
Conventionals														
TOC (percent)	NA	0.47	J	0.40		0.93 J	1.97	3.46 J		1.00	0.90 J	1.52	0.12 J	0.07
Metals (mg/kg)														
Arsenic	57	2.65		4.70		5.38 J	2.84	5.07 J		3.64	5.78 J	5.05	1.90 J	1.92
Copper	390	14.1		30.5		33.1	18.5	21.3		17.0	40.1	30.1	7.82 J	7.38
Lead	530	4.60		23.3		17.3	12.4	3.28		3.26	20.2	16.2	2.23 J	1.07
Mercury	0.41	0.0476		0.222		0.6 J	0.512	0.0786 J		0.0835	0.537 J	0.599	0.0212 J	0.0266 U
PCBs (μg/kg)														
Aroclor 1016	NA	7.9		1.6		1.8 U	1.7 U	1.9 U		1.9 U	8.1 U	8.2 U	1.6 U	1.5 U
Aroclor 1221	NA	7.9		1.6		1.8 U	1.7 U	1.9 U		1.9 U	8.1 U	8.2 U	1.6 U	1.5 U
Aroclor 1232	NA	7.9		1.6		1.8 U	1.7 U	1.9 U	_	1.9 U	8.1 U	8.2 U	1.6 U	1.5 U
Aroclor 1242	NA	7.9		1.6		1.8 U	1.7 U	1.9 U		1.9 U	8.1 U	8.2 U	1.6 U	1.5 U
Aroclor 1248	NA	7.9	U	1.6	U	16.7	1.9	2.8		1.9 U	41.5	33.0	1.6 U	1.5 U
Aroclor 1254	NA	61.8		17.2		34.1 J	3.6	4.9		1.9 U	87.8	67.4	1.8	1.5 U
Aroclor 1260	NA	265		7.9		4.8	1.6 J	1.3 J		1.9 U	26.3	16.9	0.8 J	1.5 U
Aroclor 1262	NA	7.9		1.6		1.8 U	1.7 U	1.9 U	_	1.9 U	8.1 U	8.2 U	1.6 U	1.5 U
Aroclor 1268	NA	7.9	U	1.6		1.8 U	1.7 U	1.9 U	_	1.9 U	8.1 U	8.2 U	1.6 U	1.5 U
Total PCBs ³	180	326.8		25.1	J	55.6 J	7.1 J	9.0 J		1.9 U	155.6	117.3	2.6 J	1.5 U
Total PCBs (mg/kg-OC)	12	nc		nc		6.0 J	0.4	nc		0.2	17.3 J	7.7	nc	nc

- 1. Sample ID in colored font SD-CONF001-A indicates that sample was validated.
- 2. Laboratory qualifiers (Q) are defined as follows:
 - U = analyte not detected at reporting limit presented.
 - J = result is estimated.
- 3. Total PCBs calculated by summing detections or, if all not detected, using the highest non-detected value.

Indicates sample removed during re-dredging

Abbreviation(s)

DU = decision unit

DMMU = dredged material management unit

ft = feet

mg/kg = milligram(s) per kilogram

mg/kg-OC = milligram(s) per kilogram, organic-carbon-normalized value

NA = not applicable

nc = not calculated; TOC <0.5% or >2%

PCB = polychlorinated biphenyl

Q = qualifier

RAL = remedial action level

SQS = Washington State Sediment Quality Standards

TOC = total organic carbon

TABLE 6D

ANALYTICAL RESULTS FOR POSTDREDGE SEDIMENT SAMPLES 1, 2

	DU		4		4			4					4		
<u> </u>	DMMU	1	8A	18	BA			18B					18B		
	Sample Location	SD-CC	ONF017	SD-CC	NF018			SD-CONF019					SD-CONF020		
-	Sample Date	1/10	/2019	1/8/	2019			1/14/2019					1/16/2019		
-		SD-CONF017-A	SD-CONF017-B	SD-CONF018-A	SD-CONF018-B	SD-CONF019-A	SD-CONF019-B	SD-CONF019-C	SD-CONF019-D	SD-CONF019-E	SD-CONF020-A	SD-CONF020-B	SD-CONF020-C	SD-CONF020-D	SD-CONF020-E
	Depth Interval (ft)	0-0.5	0.5-1	0-0.5	0.5-1	0-0.5	0.5-1	1-1.5	1.5-2	2-2.5	0-0.5	0.5-1	1-1.5	1.5-2	2-2.5
Analyte	RAL (SQS)	Result Q													
Conventionals			1		1				1				1	1	!
TOC (percent)	NA	0.88	1.15 J	0.78 J	0.50	2.47	1.54	0.80	0.95 J	1.09	1.33	0.75	0.86	2.51	0.89 J
Metals (mg/kg)														1	-
Arsenic	57	22.5	7.80	7.76	2.49	46.3	53.5	na	6.05	na	158	38	4.89	4.31	2.51 J
Copper	390	186	33.5	33.4	11.3	310	827	na	27.9	na	1260	415	52.0	27.0	15.0 J
Lead	530	117	20.7 J	11.6 J	1.57	113	305	na	9.29	na	690	114	14.7	22.1	3.13 J
Mercury	0.41	1.19	0.305 J	0.0622 J	0.0237 J	2.17	3.52	0.504	1.37 J	0.136	7.18	3.81	0.896	0.456	0.117 J
PCBs (µg/kg)		•					,				·				•
Aroclor 1016	NA	19.5 U	9.9 U	1.9 U	2.0 U	9.2 U	10.4 U	2.0 U	2.0 U	1.9 U	95.2 U	34.3 U	1.7 U	1.9 U	1.6 U
Aroclor 1221	NA	19.5 U	9.9 U	1.9 U	2.0 U	9.2 U	10.4 U	2.0 U	2.0 U	1.9 U	95.2 U	34.3 U	1.7 U	1.9 U	1.6 U
Aroclor 1232	NA	19.5 U	9.9 U	1.9 U	2.0 U	9.2 U	10.4 U	2.0 U	2.0 U	1.9 U	95.2 U	34.3 U	1.7 U	1.9 U	1.6 U
Aroclor 1242	NA	19.5 U	9.9 U	1.9 U	2.0 U	9.2 U	10.4 U	2.0 U	2.0 U	1.9 U	95.2 U	34.3 U	1.7 U	1.9 U	1.6 U
Aroclor 1248	NA	154	47.8	11.3	2.0 U	181	446	140	2.0 U	1.9 U	1280	34.3 U	9.4	7.5	1.0 J
Aroclor 1254	NA	311	75.7 J	24.6	2.0 U	372	624	321	2.0 U	1.9 U	2920	1310	19.0	14.6	1.7
Aroclor 1260	NA	75.8	25.7 J	5.2 J	2.0 U	83.9	244	83.3	1.1 J	1.9 U	601	97.3	8.2	4.5	1.1 J
Aroclor 1262	NA	19.5 U	9.9 U	1.9 U	2.0 U	9.2 U	10.4 U	2.0 U	2.0 U	1.9 U	95.2 U	34.3 U	1.7 U	1.9 U	1.6 U
Aroclor 1268	NA	19.5 U	9.9 U	1.9 U	2.0 U	9.2 U	10.4 U	2.0 U	2.0 U	1.9 U	95.2 U	34.3 U	1.7 U	1.9 U	1.6 U
Total PCBs ³	180	541	149.2 J	41.1 J	2.0 U	637	1314	544	1.1 J	1.9 U	4801	1407	36.6	26.6	3.8 J
Total PCBs (mg/kg-OC)	12	61.5	13.0 J	5.3 J	0.40 U	nc	85.3	nc	0 12 J	0 17 U	361	188	4.3	nc	0.43 J

TABLE 6D

ANALYTICAL RESULTS FOR POSTDREDGE SEDIMENT SAMPLES 1, 2

	DU			4				4		4		4		4
	DMMU			18B			18	BC	1	8D	1	8D	1	8E
	Sample Location		SD-CONF220	(field duplicate of	SD-CONF020)		SD-CC	NF021	SD-CO	ONF022	SD-C0	ONF023	SD-CC	ONF024
	Sample Date			1/16/2019			1/16	2019	1/8/	2019	1/8/	/2019	1/9/	2019
	Sample ID	SD-CONF220-A	SD-CONF220-B	SD-CONF220-C	SD-CONF220-D	SD-CONF220-E	SD-CONF021-A	SD-CONF021-B	SD-CONF022-A	SD-CONF022-B	SD-CONF023-A	SD-CONF023-B	SD-CONF024-A	SD-CONF024-B
	Depth Interval (ft)	0-0.5	0.5-1	1-1.5	1.5-2	2-2.5	0-0.5	0.5-1	0-0.5	0.5-1	0-0.5	0.5-1	0-0.5	0.5-1
Analyte	RAL (SQS)	Result Q	Result Q	Result Q	Result Q	Result Q	Result Q	Result Q	Result Q	Result Q	Result Q	Result Q	Result Q	Result Q
Conventionals					•	•	·		·		•	•		
TOC (percent)	NA	2.16	1.36	2.61	2.56	1.71 J	1.04	1.18 J	1.90	0.72 J	0.86 J	0.40	1.12 J	0.05
Metals (mg/kg)						-		•				•		•
Arsenic	57	56.2	20.8	11.8	8.00	7.57 J	21.4	8.39	48.2	4.47	2.24	2.10	11.5	1.96
Copper	390	1070	550	296	101	75.2 J	151	38.0	346	22.5	16.7	9.86	75.9	6.96
Lead	530	354	117	62.6	37.7	32.3 J	70.8	19.9	174	9.00	1.71	1.60	41.5 J	3.53
Mercury	0.41	9.35	3.88	2.51	1.62	0.678 J	0.545	0.402	2.43	0.142 J	0.0952 J	0.0186	1.20 J	0.0222
PCBs (µg/kg)													·	
Aroclor 1016	NA	78.0 U	9.1 U	37.4 U	1.9 U	1.8 U	9.0 U	1.8 U	28.9 U	2.0 U	1.9 U	2.0 U	2.0 U	2.0 U
Aroclor 1221	NA	78.0 U	9.1 U	37.4 U	1.9 U	1.8 U	9.0 U	1.8 U	28.9 U	2.0 U	1.9 U	2.0 U	2.0 U	2.0 U
Aroclor 1232	NA	78.0 U	9.1 U	37.4 U	1.9 U	1.8 U	9.0 U	1.8 U	28.9 U	2.0 U	1.9 U	2.0 U	2.0 U	2.0 U
Aroclor 1242	NA	78.0 U	9.1 U	37.4 U	1.9 U	1.8 U	9.0 U	1.8 U	28.9 U	2.0 U	1.9 U	2.0 U	2.0 U	2.0 U
Aroclor 1248	NA	413	9.1 U	37.4 U	13.7	8.1	9.0 U	87.4	831	4.2	1.9 U	2.0 U	7.5	2.0 U
Aroclor 1254	NA	1050	182	1240	35.7	11.6	845	182 J	1440	7.9	1.9 U	2.0 U	11.5	2.0 U
Aroclor 1260	NA	179	33.6	37.4 U	14.1	8.7	151	23.2	377	8.4	1.9 U	2.0 U	8.4	2.0 U
Aroclor 1262	NA	78.0 U	9.1 U	37.4 U	1.9 U	1.8 U	9.0 U	1.8 U	28.9 U	2.0 U	1.9 U	2.0 U	2.0 U	2.0 U
Aroclor 1268	NA	78.0 U	9.1 U	37.4 U	1.9 U	1.8 U	9.0 U	1.8 U	28.9 U	2.0 U	1.9 U	2.0 U	2.0 U	2.0 U
Total PCBs ³	180	1642	216	1240	63.5	28.4	996	293 J	2648	20.5	1.9 U	2.0 U	27.4	2.0 U
Total PCBs (mg/kg-OC)	12	nc	15.9	nc	nc	1.7 J	95.8	24.8 J	139	2.8 J	0.22 U	nc	2.4 J	nc

TABLE 6D

ANALYTICAL RESULTS FOR POSTDREDGE SEDIMENT SAMPLES 1, 2

	DU		4	4	1		4		4		4		4	4	4
	DMMU	1	9A	19	9A	19	9B	19	9B	19	9C	19	9D	19	9D
	Sample Location	SD-C	ONF025	SD-CO	NF026	SD-CC	NF027	SD-CC	ONF028	SD-CC	NF029	SD-CC	ONF030		ield duplicate of NF030)
	Sample Date	1/17	//2019	1/17/	2019	1/17	/2019	1/17	/2019	1/16	/2019	1/11/	/2019	1/11/	/2019
	Sample ID	SD-CONF025-A	SD-CONF025-B	SD-CONF026-A	SD-CONF026-B	SD-CONF027-A	SD-CONF027-B	SD-CONF028-A	SD-CONF028-B	SD-CONF029-A	SD-CONF029-B	SD-CONF030-A	SD-CONF030-B	SD-CONF230-A	SD-CONF230-B
	Depth Interval (ft)	0-0.5	0.5-1	0-0.5	0.5-1	0-0.5	0.5-1	0-0.5	0.5-1	0-0.5	0.5-1	0-0.5	0.5-1	0-0.5	0.5-1
Analyte	RAL (SQS)	Result Q													
Conventionals	·														
TOC (percent)	NA	0.78 J	0.60	1.04 J	0.41	0.21 J	0.10	0.12 J	0.37	2.15 J	5.06	0.18 J	0.10	0.75	0.06
Metals (mg/kg)									-				•		
Arsenic	57	14.3	6.40	12.3	2.42	1.84	1.86	1.86	1.72	2.86	8.12	1.77	1.59	6.56	2.34
Copper	390	91.4 J	30.3	126 J	9.72	8.50 J	7.78	9.92 J	9.40	13.4	19.4	7.58	7.59	36.2	11.7
Lead	530	65.4 J	15.4	58.5 J	1.81	1.22 J	1.14	1.17 J	1.09	2.45	2.94	1.88 J	4.29	27.9	4.22
Mercury	0.41	1.03 J	0.0828	1.09 J	0.0245	0.0218 J	0.0108 J	0.0143 J	0.0245 J	0.0372	0.0580	0.0264 J	0.0140 J	0.811	0.151
PCBs (μg/kg)															·
Aroclor 1016	NA	9.7 U	1.9 U	19.4 U	1.9 U	2.0 U	1.9 U	2.0 U	1.9 U	1.8 U	2.1 U	2.0 J	2.0 U	9.7 U	1.9 U
Aroclor 1221	NA	9.7 U	1.9 U	19.4 U	1.9 U	2.0 U	1.9 U	2.0 U	1.9 U	1.8 U	2.1 U	2.0 U	2.0 U	9.7 U	1.9 U
Aroclor 1232	NA	9.7 U	1.9 U	19.4 U	1.9 U	2.0 U	1.9 U	2.0 U	1.9 U	1.8 U	2.1 U	2.0 U	2.0 U	9.7 U	1.9 U
Aroclor 1242	NA	9.7 U	1.9 U	19.4 U	1.9 U	2.0 U	1.9 U	2.0 U	1.9 U	1.8 U	2.1 U	2.0 U	2.0 U	9.7 U	1.9 U
Aroclor 1248	NA	160	13.2	113	1.9 U	2.0 U	1.9 U	2.0 U	1.9 U	3.1	3.9	3.1	2.0 U	32.9	4.7
Aroclor 1254	NA	246 J	9.4	202	28.6	9.7	1.9 U	2.0 U	1.9 U	5.7	7.6	4.0	1.8 J	74.5	8.2
Aroclor 1260	NA	54.5	2.4	43.1	2.7	2.0 U	1.9 U	2.0 U	1.9 U	1.7 J	1.4 J	0.9 J	2.0 U	24.0	1.6 J
Aroclor 1262	NA	9.7 U	1.9 U	19.4 U	1.9 U	2.0 U	1.9 U	2.0 U	1.9 U	1.8 U	2.1 U	2.0 U	2.0 U	9.7 U	1.9 U
Aroclor 1268	NA	9.7 U	1.9 U	19.4 U	1.9 U	2.0 U	1.9 U	2.0 U	1.9 U	1.8 U	2.1 U	2.0 U	2.0 U	9.7 U	1.9 U
Total PCBs ³	180	461 J	25.0	358	31.3	9.7	1.9 U	2.0 U	1.9 U	10.5	12.9	8.0 J	1.8 J	131.4	14.5
Total PCBs (mg/kg-OC)	12	59.0 J	4.2	34.4 J	nc	17.5	nc								

TABLE 6D

ANALYTICAL RESULTS FOR POSTDREDGE SEDIMENT SAMPLES 1, 2

	DU	4	4		4			4			
	DMMU	19)D	1	7B			17B			
	Sample Location	SD-CC	NF031	SD-C	ONF043			SD-CONF044			
	Sample Date	1/11/	2019	1/14	1/2019			1/14/2019			
	Sample ID	SD-CONF031-A	SD-CONF031-B	SD-CONF043-A	SD-CONF043-B	SD-CONF044-A	SD-CONF044-B	SD-CONF044-C	SD-CONF044-D	SD-CONF04	4-E
	Depth Interval (ft)		0.5-1	0-0.5	0.5-1	0-0.5	0.5-1	1-1.5	1.5-2	2-2.5	
Analyte	RAL (SQS)	Result Q	Result	Q							
Conventionals	, ,		'								
TOC (percent)	NA	1.11 J	0.94	1.79 J	1.38	1.76	1.23	na	0.71 J	na	
Metals (mg/kg)		•									
Arsenic	57	7.08	7.57	5.99 J	3.93	63.4	12.5	na	3.22	na	
Copper	390	50.9	36.8	57.2	29.9	838	671	na	15.4	na	
Lead	530	24.5 J	8.06	50.4	47.1	362	372	na	7.91	na	
Mercury	0.41	0.757 J	0.122	0.519 J	0.572	8.47	1.26	1.96	0.114 J	0.112	
PCBs (µg/kg)		•	•				•				
Aroclor 1016	NA	9.9 UJ	2.0 U	9.3 U	1.8 U	19.2 U	45.2 U	1.7 U	1.7 U	1.6	U
Aroclor 1221	NA	9.9 U	2.0 U	9.3 U	1.8 U	19.2 U	45.2 U	1.7 U	1.7 U	1.6	
Aroclor 1232	NA	9.9 U	2.0 U	9.3 U	1.8 U	19.2 U	45.2 U	1.7 U	1.7 U	1.6	Ū
Aroclor 1242	NA	9.9 U	2.0 U	9.3 U	1.8 U	19.2 U	45.2 U	1.7 U	1.7 U	1.6	U
Aroclor 1248	NA	38.3	3.9	35.7	5.9	194	177	75.0	1.7 U	1.6	U
Aroclor 1254	NA	85.3 J	6.2	79.8	13.2	470	396	74.5	1.7 U	1.6	U
Aroclor 1260	NA	19.2 J	1.5 J	34.6	21.3	90.7	41.1 J	17.9	3.9 J	2.2	
Aroclor 1262	NA	9.9 U	2.0 U	9.3 U	1.8 U	19.2 U	45.2 U	1.7 U	1.7 U	1.6	Ū
Aroclor 1268	NA	9.9 U	2.0 U	9.3 U	1.8 U	19.2 U	45.2 U	1.7 U	1.7 U	1.6	
Total PCBs ³	180	142.8 J	11.6 J	150.1	40.4	755	614 J	167.4	3.9 J	2.2	
Total PCBs (mg/kg-OC)	12	12.9 J	1.2	8.4 J	2.9	42.9	49.9	nc	0.55 J	nc	

TABLE 6D

ANALYTICAL RESULTS FOR POSTDREDGE SEDIMENT SAMPLES 1, 2

	DU				4				,	4		4		4
	DMMU				17C				1	7C	1	7D	1	7E
	Sample Location				SD-CONF045				SD-CC	NF046	SD-C	ONF047	SD-CO	ONF048
	Sample Date				1/15/2019				1/15	/2019	1/17	/2019	1/15	/2019
		SD-CONF045-A	SD-CONF045-B	SD-CONF045-C	SD-CONF045-D	SD-CONF045-E	SD-CONF045-F	SD-CONF045-G	SD-CONF046-A	SD-CONF046-B	SD-CONF047-A	SD-CONF047-B	SD-CONF048-A	SD-CONF048-B
	Depth Interval (ft)		0.5-1	1-1.5	1.5-2	2-2.5	2.5-3	3-3.5	0-0.5	0.5-1	0-0.5	0.5-1	0-0.5	0.5-1
Analyte	RAL (SQS)	Result Q												
Conventionals													•	
TOC (percent)	NA	1.19	1.00	na	na	na	1.03 J	na	0.69 J	10.3	0.52 J	0.66	0.85 J	0.22
Metals (mg/kg)														+
Arsenic	57	60.5	120	na	na	na	4.53	na	4.28	2.95	10.1	2.06	4.79	2.00
Copper	390	1070	2320	42.1	30.4	883	24.4	na	57.3	13.0	51.8 J	10.7	16.9	10.1
Lead	530	618	428	na	na	na	9.27	na	18.9	2.10	6.31 J	1.96	7.25	2.79
Mercury	0.41	11.1	7.76	11.7	0.285	10.3	0.117	0.174	0.0323 J	0.0365	0.174 J	0.0370	0.0843 J	0.0224 J
PCBs (µg/kg)														
Aroclor 1016	NA	85.6 U	8.6 U	na	na	na	2.0 U	na	16.1 U	1.7 U	9.9 U	1.9 U	1.7 U	1.6 U
Aroclor 1221	NA	85.6 U	8.6 U	na	na	na	2.0 U	na	16.1 U	1.7 U	9.9 U	1.9 U	1.7 U	1.6 U
Aroclor 1232	NA	85.6 U	8.6 U	na	na	na	2.0 U	na	16.1 U	1.7 U	9.9 U	1.9 U	1.7 U	1.6 U
Aroclor 1242	NA	85.6 U	8.6 U	na	na	na	2.0 U	na	16.1 U	1.7 U	9.9 U	1.9 U	1.7 U	1.6 U
Aroclor 1248	NA	85.6 U	114	na	na	na	2.0 U	na	16.1 U	1.7 U	9.9 U	1.9 U	2.2	1.6 U
Aroclor 1254	NA	745	183	na	na	na	3.4	na	61.9	1.7 U	80.4	1.2 J	3.5 J	0.9 J
Aroclor 1260	NA	190	51.5	na	na	na	4.7 J	na	16.1 U	1.7 U	8.7 J	0.8 J	1.7 J	0.9 J
Aroclor 1262	NA	85.6 U	8.6 U	na	na	na	2.0 U	na	16.1 U	1.7 U	9.9 U	1.9 U	1.7 U	1.6 U
Aroclor 1268	NA	85.6 U	8.6 U	na	na	na	2.0 U	na	16.1 U	1.7 U	9.9 U	1.9 U	1.7 U	1.6 U
Total PCBs ³	180	935	349	na	na	na	8.1 J	na	61.9	1.7 U	89.1	2.0 J	7.4 J	1.8 J
Total PCBs (mg/kg-OC)	12	78.6	34.9	na	na	na	0.79 J	na	9.0 J	nc	17.1 J	0.3 J	0.9 J	nc

TABLE 6D

ANALYTICAL RESULTS FOR POSTDREDGE SEDIMENT SAMPLES 1, 2

	DU		4	1	4	4	4			4		
	DMMU	1	7E	17	7F	17	7F			17F		
	Sample Location	SD-CC	ONF049	SD-CC	NF050		ield duplicate of NF050)			SD-CONF051		
	Sample Date	1/16	/2019	1/8/2	2019	1/8/2	2019			1/7/2019		
	Sample ID	SD-CONF049-A	SD-CONF049-B	SD-CONF050-A	SD-CONF050-B	SD-CONF250-A	SD-CONF250-B	SD-CONF051-A	SD-CONF051-B	SD-CONF051-C	SD-CONF051-D	SD-CONF051-E
	Depth Interval (ft)	0-0.5	0.5-1	0-0.5	0.5-1	0-0.5	0.5-1	0-0.5	0.5-1	1-1.5	1.5-2	2-2.5
Analyte	RAL (SQS)	Result Q	Result Q	Result Q	Result Q	Result Q	Result Q					
Conventionals		•	•		•		•	·	•	•	•	
TOC (percent)	NA	0.70 J	0.06	0.05 J	0.05	0.20	0.05	0.96	3.69	na	1.76 J	5.52
Metals (mg/kg)		•	•		•		•		•	•	•	
Arsenic	57	103	10.6	1.18	1.16	1.83	1.06	5.31	8.78	na	5.71	3.56
Copper	390	160	11.9	5.66	5.31	9.69	4.82	23.6	60.1	na	33.5	21.3
Lead	530	122	20.0	1.82	1.95	3.64	1.68	16.5	56.3	na	17.4	9.82
Mercury	0.41	0.912	0.00595 J	0.00750 J	0.00667 J	0.0441	0.00971 J	0.453	1.64	2.03	0.967 J	1.23
PCBs (μg/kg)												
Aroclor 1016	NA	1.6 U	1.5 U	1.9 U	1.9 U	1.9 U	1.9 U	2.0 U	1.9 U	na	2.0 U	1.9 U
Aroclor 1221	NA	1.6 U	1.5 U	1.9 U	1.9 U	1.9 U	1.9 U	2.0 U	1.9 U	na	2.0 U	1.9 U
Aroclor 1232	NA	1.6 U	1.5 U	1.9 U	1.9 U	1.9 U	1.9 U	2.0 U	1.9 U	na	2.0 U	1.9 U
Aroclor 1242	NA	1.6 U	1.5 U	1.9 U	1.9 U	1.9 U	1.9 U	2.0 U	1.9 U	na	2.0 U	1.9 U
Aroclor 1248	NA	98.9	2.5	1.9 U	1.9 U	1.9 U	1.9 U	8.5	7.1	na	2.0 U	1.9 U
Aroclor 1254	NA	216 J	4.6	1.9 U	1.9 U	1.9 U	1.9 U	18.0	20.7	na	2.0 U	1.9 U
Aroclor 1260	NA	29.9	0.7 J	1.9 U	1.9 U	1.9 U	1.9 U	12.3	54.9	na	2.0 U	1.9 U
Aroclor 1262	NA	1.6 U	1.5 U	1.9 U	1.9 U	1.9 U	1.9 U	2.0 U	1.9 U	na	2.0 U	1.9 U
Aroclor 1268	NA	1.6 U	1.5 U	1.9 U	1.9 U	1.9 U	1.9 U	2.0 U	1.9 U	na	2.0 U	1.9 U
Total PCBs ³	180	344.8 J	7.8 J	1.9 U	1.9 U	1.9 U	1.9 U	38.8	82.7	na	2.0 U	1.9 U
Total PCBs (mg/kg-OC)	12	49.3 J	nc	nc	nc	nc	nc	4.04	nc	na	0.11 U	nc

TABLE 6D

ANALYTICAL RESULTS FOR POSTDREDGE SEDIMENT SAMPLES 1, 2

	DU					4					4	
	DMMU					17G					17H	
	Sample Location					SD-CONF0	52				SD-CONF053	
	Sample Date					1/7/2019					1/7/2019	
	Sample ID	SD-CONF05	52-A	SD-CONF0	52-B	SD-CONF05	2-C	SD-CONF052-D	SD-CONF052-E	SD-CONF053-A	SD-CONF053-B	SD-CONF053-C
	Depth Interval (ft)	0-0.5		0.5-1		1-1.5		1.5-2	2-2.5	0-0.5	0.5-1	1-1.5
Analyte	RAL (SQS)	Result	Q	Result	Q	Result	Q	Result Q	Result Q	Result Q	Result Q	Result Q
Conventionals								•	•			
TOC (percent)	NA	1.91		1.39	J	1.54		1.78	2.52	1.51	1.77 J	na
Metals (mg/kg)												
Arsenic	57	8.96		7.53	J	4.91		5.69	10.0	73.0	10.4 J	na
Copper	390	56.9		39.1	J	30.3		32.5	55.8	192	37.1 J	na
Lead	530	58.0		31.3	J	17.6		5.41	9.04	175	8.58 J	na
Mercury	0.41	1.44		1.02	J	1.10		0.182	0.186	1.76	0.198 J	0.0819
PCBs (µg/kg)												
Aroclor 1016	NA	2.0	U	1.9	U	1.9	U	1.9 U	2.0 U	39.3 U	2.0 U	na
Aroclor 1221	NA	2.0		1.9	U	1.9	C	1.9 U	2.0 U	39.3 U	2.0 U	na
Aroclor 1232	NA	2.0	U	1.9	U	1.9	C	1.9 U	2.0 U	39.3 U	2.0 U	na
Aroclor 1242	NA	2.0	U	1.9	U	1.9	C	1.9 U	2.0 U	39.3 U	2.0 U	na
Aroclor 1248	NA	21.7		2.5		1.9	C	1.9 U	2.0 U	130	5.1	na
Aroclor 1254	NA	60.2		4.8		7.9		1.9 U	2.0 U	192	7.6	na
Aroclor 1260	NA	83.6		6.5		2.3		1.9 U	2.0 U	122	5.9	na
Aroclor 1262	NA	2.0		1.9	U	1.9	U	1.9 U	2.0 U	39.3 U	2.0 U	na
Aroclor 1268	NA	2.0	U	1.9	U	1.9	U	1.9 U	2.0 U	39.3 U	2.0 U	na
Total PCBs ³	180	165.5		13.8		10.2		1.9 U	2.0 U	444	18.6	na
Total PCBs (mg/kg-OC)	12	8.7		0.99	J	0.66		0.11 U	nc	29.4	1.05 J	na

- Sample ID in colored font SD-CONF001-A indicates that sample was validated.
- 2. Laboratory qualifiers (Q) are defined as follows:
 - U = analyte not detected at reporting limit presented.
 - J = result is estimated.
- 3. Total PCBs calculated by summing detections or, if all not detected, using the highest non-detected value.

Indicates sample removed during re-dredging

Abbreviation(s)

DU = decision unit

DMMU = dredged material management unit

ft = feet

mg/kg = milligram(s) per kilogram

mg/kg-OC = milligram(s) per kilogram, organic-carbon-normalized value

na = not analyzed

NA = not applicable

nc = not calculated; TOC <0.5% or >2%

PCB = polychlorinated biphenyl

Q = qualifier

RAL = remedial action level

SQS = Washington State Sediment Quality Standards

TOC = total organic carbon

TABLE 6E

ANALYTICAL RESULTS FOR POSTDREDGE SEDIMENT SAMPLES 1, 2

	DU	5	5		5		j	5	5		5		5	
	DMMU	14B	14B		14C	14	С	15B	15B		15C		15D1	
	Sample Location	SD-CONF054	SD-CONF0	55	SD-CONF056	SD-CC	NF057	SD-CONF065	SD-CONF0	66	SD-CONF0	67	SD-CONF	068
	Sample Date	10/28/2019	10/28/2019	9	10/25/2019	10/25	/2019	10/28/2019	10/29/201	9	10/25/201	9	10/25/20	19
	Sample ID	SD-CONF054-A	SD-CONF05	5-A	SD-CONF056-A	SD-COI	IF057-A	SD-CONF065-	A SD-CONF06	6-A	SD-CONF06	7-A	SD-CONF0)68-A
	Depth Interval (ft)	0-0.5	0-0.5		0-0.5	0-).5	0-0.5	0-0.5		0-0.5		0-0.5	
Analyte	RAL (CSL)	Result C	Result	Q	Result Q	Resu	ı Q	Result C	Result	Q	Result	Q	Result	Q
Conventionals	, ,	,												
TOC (percent)	NA	0.35 J	0.66	J	1.26 J	(.25 J	0.91 J	1.17	J	0.53	J	0.14	Į J
Metals (mg/kg)								-						
Arsenic	93	15.1 J	34.6	J	37.2	3	.04	34.6 J	26.2	J	58		15.5	ز
Copper	390	356	310		479	,	3.9	310	275		800		132	2
Lead	530	352 J	210 .	J	168	,	.83	210 J	143	J	189		39)
Mercury	0.59	1.31 J	1.10	J	1.18 J	0.0	254 J	1.33 J	1.85	J	0.814	J	0.291	J
PCBs (µg/kg)														
Aroclor 1016	NA	9.9 U	9.7	U	10.0 U		2.0 U	9.9 U	10.0	U	2.0	U	2.0) U
Aroclor 1221	NA	9.9 U	9.7	U	10.0 U		2.0 U	9.9 U	10.0	U	2.0) U
Aroclor 1232	NA	9.9 U	9.7	U	10.0 U		2.0 U	9.9 U	10.0	U	2.0	U	2.0	U
Aroclor 1242	NA	9.9 U	9.7	C	10.0 U		2.0 U	9.9 U	10.0	U	2.0	C	2.0	U
Aroclor 1248	NA	416 D	100	J	474 D		2.0 U	79.9 J	160		239	D	32.9	
Aroclor 1254	NA	918 D	194	J	901 D		1.6 J	134 J	296	J	363	D	83.5	j J
Aroclor 1260	NA	223 J	90.9		199 D		2.0 U	119 J	159		118		39.6	
Aroclor 1262	NA	9.9 U	9.7		10.0 U		2.0 U	9.9 U	10.0		2.0			U
Aroclor 1268	NA	9.9 U	9.7	U	10.0 U		2.0 U	9.9 U	10.0	U	2.0	U	2.0	U
Total PCBs ³	960	1557 J	385	J	1574		1.6 J	333 J	615	J	720	J	156	ز J
Total PCBs (mg/kg OC)	65	nc	58.3	J	124.9 J		nc	36.6 J	52.6	J	135.8	J	nc	اد

TABLE 6E

ANALYTICAL RESULTS FOR POSTDREDGE SEDIMENT SAMPLES 1, 2

	DU				5									5					
	DMMU				16A									16A					$\neg \neg$
	Sample Location				SD-CONF	032								SD-CONF	033				
	Sample Date				10/28/20									10/28/20					
		SD-CONF032-	A SD-CONF	032-B	SD-CONF0	32-C	SD-CONF0	32-D	SD-CONF0	32-E	SD-CONF033-A	SD-CONF0	33-B	SD-CONF0	33-C	SD-CONF03	33-D	SD-CONFO	33-E
	Depth Interval (ft)	0-0.5	0.5-1		1-1.5		1.5-2		2-2.5		0-0.5	0.5-1		1-1.5		1.5-2		2-2.5	
Analyte	RAL (CSL)		Q Result	Q	Result	Q	Result	Q	Result	Q	Result Q		Q	Result	Q	Result	Q	Result	Q
Conventionals	(· · · · · · · · · · · · · · · · · · ·										-						
TOC (percent)	NA	1.50 J									0.42 J								
Metals (mg/kg)												_							
Arsenic	93	20.7 J									35.2 J								
Copper	390	138									225								
Lead	530	84.4 J									98.2 J								
Mercury	0.59	0.824 J	2.4	4 J	0.666	J	0.556	J	0.148	J	19.3 J	1.30	J	1.45	J	0.451	J	0.218	J
PCBs (µg/kg)																			
Aroclor 1016	NA	9.8 U									9.9 U								
Aroclor 1221	NA	9.8 U									9.9 U								
Aroclor 1232	NA	9.8 U									9.9 U								
Aroclor 1242	NA	9.8 U									9.9 U								
Aroclor 1248	NA	85.4									70.3								
Aroclor 1254	NA	174									136								
Aroclor 1260	NA	99.7 J									64.4								
Aroclor 1262	NA	9.8 U									9.9 U								
Aroclor 1268	NA	9.8 U									9.9 U								
Total PCBs ³	960	359 J									271								
Total PCBs (mg/kg OC)	65	23.9 J									64.5 J								

TABLE 6E

ANALYTICAL RESULTS FOR POSTDREDGE SEDIMENT SAMPLES 1, 2

	DU											 5									
	DMMU										10	6B									
	Sample Location									S	SD-CC	NF034							-		
	Sample Date										10/29)/2019									
	Sample ID	SD-CONF03	4-A	SD-CONF0	34-B	SD-CONF0	34-C	SD-CONF0	34-D	SD-CONF0		SD-CONF03	4-F	SD-CONF03	4-G	SD-CONF0	34-H	SD-CONF0	34-1	SD-CONFO	034-J
	Depth Interval (ft)			0.5-1		1-1.5		1.5-2		2-2.5		2.5-3		3-3.5		3.5-4		4-4.5		4.5-5	
Analyte	RAL (CSL)	Result	Q	Result	Q	Result	Q	Result	Q	Result	Q	Result	Q	Result	Q	Result	Q	Result	Q	Result	Q
Conventionals	(
TOC (percent)	NA	1.35	J																		
Metals (mg/kg)		•				•															
Arsenic	93	46.9	J																		
Copper	390	495																			
Lead	530	222	J																		
Mercury	0.59	2.49	J	5.02	J	5.58	J	9.03	J	7.01	J	8.73	J	0.187	J	10.2	J	1.53	J	0.0606	3 J
PCBs (µg/kg)																					
Aroclor 1016	NA	20.0	U																		
Aroclor 1221	NA	20.0																			
Aroclor 1232	NA	20.0	U																		
Aroclor 1242	NA	20.0	U																		
Aroclor 1248	NA	271 .	J																		
Aroclor 1254	NA	462																			
Aroclor 1260	NA	187																			
Aroclor 1262	NA	20.0																			
Aroclor 1268	NA	20.0	U																		
Total PCBs ³	960	920	J																		
Total PCBs (mg/kg OC)	65	68.1	J																		

TABLE 6E

ANALYTICAL RESULTS FOR POSTDREDGE SEDIMENT SAMPLES 1, 2

	DU					5					
	DMMU					16B					
	Sample Location					SD-CONF03	5				
	Sample Date					10/29/2019					
	Sample ID	SD-CONF035-A		SD-CONF035	-B	SD-CONF035	-C	SD-CONF035	-D	SD-CONF035-	-E
	Depth Interval (ft)	0-0.5		0.5-1		1-1.5		1.5-2		2-2.5	
Analyte	RAL (CSL)	Result	Q	Result	Q	Result	Q	Result	Q	Result	Q
Conventionals	,										
TOC (percent)	NA	0.39J									
Metals (mg/kg)											
Arsenic	93	80.1									
Copper	390	656									
Lead	530	311 J									
Mercury	0.59	1.77 J		0.0154	J	0.00583	J	0.00893	3 J	0.0174	J
PCBs (µg/kg)											
Aroclor 1016	NA	10.0 L	J								
Aroclor 1221	NA	10.0 L	J								
Aroclor 1232	NA	10.0 L	J								
Aroclor 1242	NA	10.0 L									
Aroclor 1248	NA	293 J									
Aroclor 1254	NA	611 J									
Aroclor 1260	NA	230 J									
Aroclor 1262	NA	10.0 L									
Aroclor 1268	NA	10.0 L									
Total PCBs ³	960	1134 J									
Total PCBs (mg/kg OC)	65	nc									

- 1. Sample ID in colored font SD-CONF001-A indicates that sample was validated.
- 2. Laboratory qualifiers (Q) are defined as follows:
 - U = analyte not detected at reporting limit presented.
 - J = result is estimated.
 - D = reported value if from a dilution.
- 3. Total PCBs calculated by summing detections or, if all not detected, using the highest non-detected value.

Indicates sample removed during re-dredging

Abbreviation(s)

CSL = cleanup screening level

DU = decision unit

DMMU = dredged material management unit

ft = feet

mg/kg = milligram(s) per kilogram

mg/kg-OC = milligram(s) per kilogram, organic-carbon-normalized value

NA = not applicable

nc = not calculated; TOC <0.5% or >2%

PCB = polychlorinated biphenyl

Q = qualifier

RAL = remedial action level

TOC = total organic carbon

TABLE 6F

ANALYTICAL RESULTS FOR POSTDREDGE SEDIMENT SAMPLES 1, 2

	DU									6									
	DMMU									14D2									
	Sample Location									SD-CONF08	58								
	Sample Date									1/10/2019									
	Sample ID	SD-CONF058	3-A	SD-CONF058	B-B	SD-CONF058	3-C	SD-CONF058	-D	SD-CONF058	B-E	SD-CONF058-F		SD-CONF058	-G	SD-CONF058	4 H	SD-CONF05	58-1
	Depth Interval (ft)	0-0.5		0.5-1		1-1.5		1.5-2		2-2.5		2.5-3		3-3.5		3.5-4		4-4.5	
Analyte	RAL (CSL)	Result	Q	Result	Q	Result	Q	Result	Q	Result	Q	Result	a l	Result	Q	Result	Q	Result	Q
Conventionals																			
TOC (percent)	NA	na		na		na		na		na		na	n	а	ı	na		na	
Metals (mg/kg)						•													
Arsenic	93	148.0		119		na		na		na		na		na		na		na	al
Copper	390	1170		1070		2030		1930		2550		1790		1930		2030		922	
Lead	530	276		333.0		na		na		na		na		na		na		na	
Mercury	0.59	1.58		2.24		2.51		3.09		2.92		6.2		3.98		4.1		1.56	
PCBs (μg/kg)																			
Aroclor 1016	NA	24.4	lu l	49.1	u	11.9	U	12.6	u	12.4	u	54.0 U		598	u I	348	U	322	2 10
Aroclor 1221	NA	24.4		49.1		11.9		12.6	44444444	12.4		54.0 U		598		348		322	
Aroclor 1232	NA	24.4		49.1		11.9		12.6		12.4		54.0 U		598		348		322	
Aroclor 1242	NA	24.4		49.1		11.9		12.6		12.4		54.0 U		598		348		322	
Aroclor 1248	NA	2010		2400		1160		2220		3810		3260		2270		1920		1220	
Aroclor 1254	NA	1300		2120		1560		3820		5020		6100		4500		3640		2220	
Aroclor 1260	NA	218		255		185		281		330		589		717		524		336	
Aroclor 1262	NA	24.4		49.1		11.9		12.6		12.4		54.0 U		598		348			2 U
Aroclor 1268	NA	24.4		49.1		11.9	U	12.6	U	12.4	U	54.0 U		598	U	348	U	322	
Total PCBs ³	960	3528		4775		2905		6321		9160		9949		7487		6084		3776	3
Total PCBs (mg/kg OC)	65.0	nc		nc		nc		nc		nc		nc		nc		nc		no	c
PAHs (µg/kg)																			
Acenaphthene	860	1210		585		na		na		na		na		na		na		na	a
Benz[a]anthracene	4100	4670		5360		na		na		na		na		na		na		na	a
Benzo[a]pyrene	3200	4970		4590		na		na		na		na		na		na		na	a
Benzo(b)fluoranthene	<u>—</u>	4770		4530		na		na		na		na		na		na		na	a
Benzo[g,h,i]perylene	470	3120		2640		na		na		na		na		na		na		na	а
Benzo(k)fluoranthene	-	2790		2410		na		na		na		na		na		na		na	a
Total benzofluoranthenes	6800	10100		9120		na		na		na		na		na		na		na	a
Chrysene	6900	7400		5800		na		na		na		na		na		na		na	
Dibenzo[a,h]anthracene	180	970.0		818		na		na		na		na		na		na		na	
Fluoranthene	18000	16600		11300		na		na		na		na		na		na		na	
Indeno[1,2,3-c,d]pyrene	1300	3250		2860		na		na		na		na		na		na		na	
Phenanthrene	7200	17100		4160		na		na		na		na		na		na		na	
Pyrene		14500		9050		na		na		na		na		na		na		na	
Total HPAH	79500	65580		51538		na		na		na		na		na		na		na	3

TABLE 6F

ANALYTICAL RESULTS FOR POSTDREDGE SEDIMENT SAMPLES 1, 2

	DU				6		_				6	
	DMMU				14D2					1	4E	
	Sample Location				SD-CONF058R2					SD-C0	ONF059	
T	Sample Date				2/27/2019					12/2	1/2018	
	Sample ID	SD-CONF058R2-	SD-CONF058R2	2-K	SD-CONF058R2-L	SD-CONF058R2-	М	SD-CONF058R2-N	SD-CONF059R2-A	SD-CONF059R2-B	SD-CONF059R2-C	SD-CONF059R2-D
	Depth Interval (ft)	4.5-5	5-5.5		5.5-6	6-6.5		6.5-7	0-0.5	0.5-1	1-1.5	1.5-2
Analyte	RAL (CSL)	Result (Q Result	Q	Result Q	Result	Q	Result Q	Result Q	Result Q	Result Q	Result Q
Conventionals												
TOC (percent)	NA	0.69 J	na		na	na		na	0.45	0.95	0.49	0.43 J
Metals (mg/kg)			·					<u>.</u>		·		
Arsenic	93	3.20	na		na	na		na	94.0	92.7	na	138
Copper	390	16.5	na		na	na		na	842	1270	650	959
Lead	530	2.20	na		na	na		na	118	214	na	199
Mercury	0.59	0.0397 J	na		na	na		na	39.8	3.56	0.628	0.635 J
PCBs (μg/kg)					•			<u>.</u>				
Aroclor 1016	NA	1.9 U	2.0	u l	1.9 U	2.0 U		2.0 U	292 U	103 U	19.9 U	12.4 U
Aroclor 1221	NA	1.9 U	2.0		1.9 U	2.0 U		2.0 U	292 U	103 U	19.9 U	12.4 U
Aroclor 1232	NA	1.9 U	2.0 (1.9 U	2.0 U		2.0 U	292 U	103 U	19.9 U	12.4 U
Aroclor 1242	NA	1.9 U	2.0 (U	1.9 U	2.0 U		2.0 U	292 U	103 U	19.9 U	12.4 U
Aroclor 1248	NA	1.9 U	2.0 (1.9 U	2.0 U		2.0 U	523	1140	1780	692 J
Aroclor 1254	NA	1.9 U	2.0 (1.9 U	2.0 U		2.0 U	494	1770	2750	1020 J
Aroclor 1260	NA	1.9 U	2.0		1.9 U	2.0 U		2.0 U	292 U	337	457	292 J
Aroclor 1262	NA	1.9 U	2.0 l		1.9 U	2.0 U		2.0 U	292 U	103 U	19.9 U	12.4 U
Aroclor 1268	NA	1.9 U	2.0		1.9 U	2.0 U		2.0 U	292 U	103 U	19.9 U	12.4 U
Total PCBs ³	960	1.9 U	2.0 l	U	1.9 U	2.0 U		2.0 U	1017	3247	4987	2004 J
Total PCBs (mg/kg OC)	65.0	0.3 U	nc		nc	nc		nc	nc	341.8	nc	nc
PAHs (μg/kg)												
Acenaphthene	860	1.53 J	na		na	na		na	927	687	na	615
Benz[a]anthracene	4100	1.85 J	na		na	na		na	2710	2100	na	2160
Benzo[a]pyrene	3200	4.99 U	na		na	na		na	4650	2130	na	1370
Benzo(b)fluoranthene	_	2.14 J	na		na	na		na	8670	1920	na	1220
Benzo[g,h,i]perylene	470	4.99 U	na		na	na		na	2450	1400	na	746
Benzo(k)fluoranthene	_	0.77 J	na		na	na		na	3050	1090	na	703
Total benzofluoranthenes	6800	3.73 J	na		na	na		na	14900	4140	na	2570
Chrysene	6900	4.34 J	na		na	na		na	5100	2860	na	2240
Dibenzo[a,h]anthracene	180	4.99 U	na		na	na		na	1010	440	na	285
Fluoranthene	18000	6.02	na		na	na		na	9840	7870	na	4520
Indeno[1,2,3-c,d]pyrene	1300	4.99 U	na		na	na		na	2530	1410	na	732
Phenanthrene	7200	7.08	na		na	na		na	8890	6020	na	3210
Pyrene Total HPAH	 79500	11.4 27.34	na na		na na	na na		na na	10100 53290	6670 29020	na na	4180 18803

TABLE 6F

ANALYTICAL RESULTS FOR POSTDREDGE SEDIMENT SAMPLES 1, 2

	DU					6			
-	DMMU				14	1E			
	Sample Location				SD-CC	NF060			
	Sample Date				12/21	/2018			
	Sample ID	SD-CONF060-A	SD-CONF060-B	SD-CONF060-C	SD-CONF060-D	SD-CONF060-E	SD-CONF060-F	SD-CONF060-G	SD-CONF060-H
	Depth Interval (ft)	0-0.5	0.5-1	1-1.5	1.5-2	2-2.5	2.5-3	3-3.5	3.5-4
Analyte	RAL (CSL)	Result Q							
Conventionals									•
TOC (percent)	NA	0.60	0.39	1.06	na	na	0.60 J	na	na
Metals (mg/kg)									<u>.</u>
Arsenic	93	148	6.23	3.51	na	na	13.0 J	na	na
Copper	390	1040	39.8	21.0	na	na	34.4 J	na	na
Lead	530	499	7.93	3.92	na	na	12.7 J	na	na
Mercury	0.59	6.97	0.108	0.105	0.172	9.72	0.498 J	0.0375	0.054
PCBs (µg/kg)									
Aroclor 1016	NA	111 U	3.8 U	1.6 U	na	na	1.9 U	na	na
Aroclor 1221	NA	111 U	3.8 U	1.6 U	na	na	1.9 U	na	na
Aroclor 1232	NA	111 U	3.8 U	1.6 U	na	na	1.9 U	na	na
Aroclor 1242	NA	111 U	3.8 U	1.6 U	na	na	1.9 U	na	na
Aroclor 1248	NA	1180	6.4	1.6 U	na	na	28.5 J	na	na
Aroclor 1254	NA	2080	7.8	2.8	na	na	54.3 J	na	na
Aroclor 1260	NA	482	3.1 J	1.4 J	na	na	1.9 U	na	na
Aroclor 1262	NA	111 U	3.8 U	1.6 U	na	na	1.9 U	na	na
Aroclor 1268	NA	111 U	3.8 U	1.6 U	na	na	1.9 U	na	na
Total PCBs ³	960	3742	17.3	4.2 J	na	na	82.8 J	na	na
Total PCBs (mg/kg OC)	65.0	623.7	nc	0.4	na	na	13.8 J	na	na
PAHs (μg/kg)									
Acenaphthene	860	409	83.1	63.9	na	na	172 J	na	na
Benz[a]anthracene	4100	3880	31.1	10.6	na	na	48.9	na	na
Benzo[a]pyrene	3200	2950	26.5	9.93	na	na	46.2 J	na	na
Benzo(b)fluoranthene	_	2160	26.4	11.3	na	na	43.6 J	na	na
Benzo[g,h,i]perylene	470	1630	18.2	8.24	na	na	32.6 J	na	na
Benzo(k)fluoranthene	_	1310	14.1	5.23	na	na	17.7 J	na	na
Total benzofluoranthenes	6800	4720	53.9	22.5	na	na	86.1	na	na
Chrysene	6900	4090	36.5	13.7	na	na	63.1	na	na
Dibenzo[a,h]anthracene	180	520	10.2	6.82	na	na	53.4	na	na
Fluoranthene	18000	11500	97.7	44.3	na	na	202 J	na	na
Indeno[1,2,3-c,d]pyrene	1300	1620	14.5	6.55	na	na	28.1	na	na
Phenanthrene	7200	3180	109	59.6	na	na	516 J	na	na
Pyrene		9230	128	64.5	na	na	221 J	na	na
Total HPAH	79500	40140	417	187	na	na	781.4	na	na

TABLE 6F

ANALYTICAL RESULTS FOR POSTDREDGE SEDIMENT SAMPLES 1, 2

	DU				6					6		
	DMMU			1	4E					14F		
	Sample Location			SD-CC	NF260					SD-CONF061		
	Sample Date			12/21	/2018					12/21/2018		
	Sample ID	SD-CONF260-A	SD-CONF260-B	SD-CONF260-C	SD-CONF260-D	SD-CONF260-E	SD-CONF260-F	SD-CONF061-A	SD-CONF061-B	SD-CONF061-C	SD-CONF061-D	SD-CONF061-E
	Depth Interval (ft)	0-0.5	0.5-1	1-1.5	1.5-2	2-2.5	2.5-3	0-0.5	0.5-1	1-1.5	1.5-2	2-2.5
Analyte	RAL (CSL)	Result Q	Result Q	Result Q	Result Q	Result Q	Result Q	Result Q	Result Q	Result Q	Result Q	Result Q
Conventionals	TOLE (OOL)	recent Q	resur Q	resuit Q	i i i i i i i i i i i i i i i i i i i	rtesuit Q	resuit Q	recount Q	Nesalt Q	resur Q	i itesait Q	Hoodin Q
TOC (percent)	NA	0.81	1.36	0.33	na	na	0.3 J	0.84	0.39	0.32 J	na	na
Metals (mg/kg)					1:	1::-		-:	1	-::	1::	1
Arsenic	93	90.5	55.1	7.19	na	na	3.83 J	92.5	56.7	2.42	na	na
Copper	390	698	661	46.2	na	na	21.4 J	1290	1070	14.1	na	na
Lead	530	195	340	10.8	na	na	3.72 J	426	239	1.65	na	na
Mercury	0.59	3.24	5.35	0.349	0.0811	0.0524	0.135 J	9.13	3.72	0.0221 U	0.00882 J	0.0184 J
PCBs (µg/kg)	0.00	0.2.1	0.00	0.010	0.0011	0.0021	0.100 0	0.10	0.12	0.0221 0	0.00002 0	0.010110
Aroclor 1016	NA	19.9 U	25.0 U	1.6 U			1.9 U	110 U	21.0 U	1.5lU		
Aroclor 1221	NA NA	19.9 U	25.0 U	1.6 U	na na	na na	1.9 U	110 U	21.0 U	1.5 U	na na	na na
Aroclor 1232	NA NA	19.9 U	25.0 U	1.6 U	na	na	1.9 U	110 U	21.0 U	1.5 U	na	na
Aroclor 1242	NA NA	19.9 U	25.0 U	1.6 U	na	na	1.9 U	110 U	21.0 U	1.5 U	na	na
Aroclor 1248	NA NA	767	449	25.3	na	na	3.2 J	964	443	1.5 U	na	na
Aroclor 1254	NA NA	1590	782	31.7	na	na	6.1 J	1820	735	5.0	na	na
Aroclor 1260	NA NA	463	219	13.7	na	na	1.3 J	593	264	1.0 J	na	na
Aroclor 1262	NA	19.9 U	25.0 U	1.6 U	na	na	1.9 U	110 U	21.0 U	1.5 U	na	na
Aroclor 1268	NA	19.9 U	25.0 U	1.6 U	na	na	1.9 U	110 U	21.0 U	1.5 U	na	na
Total PCBs ³	960	2820	1450	70.7	na	na	10.6 J	3377	1442	6.0 J	na	na
Total PCBs (mg/kg OC)	65.0	348.1	106.6	nc	na	na	nc	402.0	nc	nc	na	na
PAHs (µg/kg)				1		1	•					
Acenaphthene	860	956	1000	183	na	na	33.6 J	431	335	4.08	na	na
Benz[a]anthracene	4100	5630	3280	69.3	na	na	7.76	2000	948	36.7	na	na
Benzo[a]pyrene	3200	3020	2910	58.7	na	na	8.10 J	1540	604	66.4	na	na
Benzo(b)fluoranthene	_	2970	2420	55.8	na	na	8.47 J	1160	535	67.0	na	na
Benzo[g,h,i]perylene	470	1150	1730	39.3	na	na	8.47 J	898	395	33.9	na	na
Benzo(k)fluoranthene	_	1510	1420	29.4	na	na	4.76	680	305	35.1	na	na
Total benzofluoranthenes	6800	5550	5240	117	na	na	17.9	2530	1130	135	na	na
Chrysene	6900	5170	3970	83.1	na	na	9.25	2640	1010	33.0	na	na
Dibenzo[a,h]anthracene	180	402	428	24.1	na	na	6.81	275	171	13.7	na	na
Fluoranthene	18000	11700	10000	209	na	na	22.0 J	6720	3030	49.6	na	na
Indeno[1,2,3-c,d]pyrene	1300	1230	1740	37.4	na	na	5.54	829	363	33.5	na	na
Phenanthrene	7200	3730	8870	414	na	na	32.4 J	1690	2620	23.3	na	na
Pyrene		20000	9500	258	na	na	41.0 J	5820	2480	345	na	na
Total HPAH	79500	53852	38798	808.3	na	na	127	23252	10131	747	na	na

Page 4 of 15

TABLE 6F

ANALYTICAL RESULTS FOR POSTDREDGE SEDIMENT SAMPLES 1, 2

	DU						6				
	DMMU					14	4F				
	Sample Location						NF062				
	Sample Date						/2018				
	Sample ID	SD-CONF062-A	SD-CONF062-B	SD-CONF062-C	SD-CONF062-D	SD-CONF062-E	SD-CONF062-F	SD-CONF062-G	SD-CONF062-H	SD-CONF062-I	SD-CONF062-J
	Depth Interval (ft)	0-0.5	0.5-1	1-1.5	1.5-2	2-2.5	2.5-3	3-3.5	3.5-4	4-4.5	4.5-5
Analyte	RAL (CSL)	Result Q	Result Q	Result Q	Result Q	Result Q	Result Q	Result Q	Result Q	Result Q	Result Q
Conventionals	10.2 (002)			.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			1100011 4
TOC (percent)	NA	0.99	0.86	0.47	0.54	0.76	0.58	0.54	0.25 J	0.13	na
Metals (mg/kg)			·			·	·			<u>.</u>	
Arsenic	93	130	122	na	na	na	na	na	44.9	1.96	na
Copper	390	1020	1370	943	903	1140	na	na	179	8.19	na
Lead	530	336	462	na	na	na	na	na	150	1.19	na
Mercury	0.59	3.39	4.65	3.7	3.7	4.29	18.6	5.43	1.32	0.022	0.0166
PCBs (µg/kg)		·	·			•	·	·		<u>.</u>	
Aroclor 1016	NA	37.0 U	26.8 U	na	na	na	na	na	5.7 U	1.5 U	na
Aroclor 1221	NA	37.0 U	26.8 U	na	na	na	na	na	5.7 U	1.5 U	na
Aroclor 1232	NA	37.0 U	26.8 U	na	na	na	na	na	5.7 U	1.5 U	na
Aroclor 1242	NA	37.0 U	26.8 U	na	na	na	na	na	5.7 U	1.5 U	na
Aroclor 1248	NA	738	624	na	na	na	na	na	112	1.5 U	na
Aroclor 1254	NA	1320	1130	na	na	na	na	na	234 J	1.5 U	na
Aroclor 1260	NA	431	342	na	na	na	na	na	32.8	1.5 U	na
Aroclor 1262	NA	37.0 U	26.8 U	na	na	na	na	na	5.7 U	1.5 U	na
Aroclor 1268	NA	37.0 U	26.8 U	na	na	na	na	na	5.7 U	1.5 U	na
Total PCBs ³	960	2489	2096	na	na	na	na	na	379 J	1.5 U	na
Total PCBs (mg/kg OC)	65.0	251.4	243.7	na	na	na	na	na	nc	nc	na
PAHs (µg/kg)											
Acenaphthene	860	387	455	na	na	na	na	na	68.9 D	1.32 J	na
Benz[a]anthracene	4100	2470	1980	na	na	na	na	na	5370 D	1.36 J	na
Benzo[a]pyrene	3200	2210	1640	na	na	na	na	na	3810 D	1.29 J	na
Benzo(b)fluoranthene	_	1860	1370	na	na	na	na	na	3030 D	1.11 J	na
Benzo[g,h,i]perylene	470	1420	987	na	na	na	na	na	1390 D	1.01 J	na
Benzo(k)fluoranthene	_	1050	797	na	na	na	na	na	1530 D	0.74 J	na
Total benzofluoranthenes	6800	3960	2940	na	na	na	na	na	5400 D	2.95 J	na
Chrysene	6900	2660	2120	na	na	na	na	na	4310 D	1.75 J	na
Dibenzo[a,h]anthracene	180	475	354	na	na	na	na	na	523 D	3.61 U	na
Fluoranthene	18000	6370	5480	na	na	na	na	na	13400 D	2.24 J	na
Indeno[1,2,3-c,d]pyrene	1300	1380	967	na	na	na	na	na	1580 D	3.61 U	na
Phenanthrene	7200	3200	3110	na	na	na	na	na	366 D	3.28 J	na
Pyrene		6060	5320	na	na	na	na	na	12300 D	8.33	na
Total HPAH	79500	27005	21788	na	na	na	na	na	48083	18.93 J	na

TABLE 6F

ANALYTICAL RESULTS FOR POSTDREDGE SEDIMENT SAMPLES 1, 2

	DU			6				6		6
	DMMU			14G			14	1G	15	D2
	Sample Location			SD-CONF063			SD-CC	NF064	SD-CC	NF069
	Sample Date			12/21/2018			12/28	3/2018	1/14/	2019
	Sample ID	SD-CONF063-A	SD-CONF063-B	SD-CONF063-C	SD-CONF063-D	SD-CONF063-E	SD-CONF064-A	SD-CONF064-B	SD-CONF069-A	SD-CONF069-B
	Depth Interval (ft)	0-0.5	0.5-1	1-1.5	1.5-2	2-2.5	0-0.5	0.5-1	0-0.5	0.5-1
Analyte	RAL (CSL)	Result Q	Result Q	Result Q	Result Q	Result Q	Result Q	Result Q	Result Q	Q
Conventionals										
TOC (percent)	NA	1.54	1.81	0.38	0.27 J	na	0.88 J	2.21	1.76 J	0.88
Metals (mg/kg)							•		•	•
Arsenic	93	616	311	132	4.49	3.23	9.07 J	10.1	3.85 J	3.02
Copper	390	1130	806	na	13.4	na	84.0 J	53.5	15.9	13.6
Lead	530	1480	557	na	2.25	na	24.3 J	34.3	1.87	1.50
Mercury	0.59	2.45	4.16	1.82	0.0114 J	0.011 J	0.154 J	0.717	0.0271 J	0.0124 J
PCBs (µg/kg)							•			· '
Aroclor 1016	NA	21.8 U	49.3 U	17.7 U	1.9 U	2.0 U	9.5 U	1.9 U	1.9 U	1.7 U
Aroclor 1221	NA	21.8 U	49.3 U	17.7 U	1.9 U	2.0 U	9.5 U	1.9 U	1.9 U	1.7 U
Aroclor 1232	NA	21.8 U	49.3 U	17.7 U	1.9 U	2.0 U	9.5 U	1.9 U	1.9 U	1.7 U
Aroclor 1242	NA	21.8 U	49.3 U	17.7 U	1.9 U	2.0 U	9.5 U	1.9 U	1.9 U	1.7 U
Aroclor 1248	NA	878	49.3 U	1940	5.2	2.0 U	33.7	30.2	1.9 U	1.7 U
Aroclor 1254	NA	1860	2230	3130	7.8 J	2.0 U	72.9	65.9	1.9 U	1.7 U
Aroclor 1260	NA	592	1530	584	2.5	2.0 U	26.7	40.8	1.9 U	1.7 U
Aroclor 1262	NA	21.8 U	49.3 U	17.7 U	1.9 U	2.0 U	9.5 U	1.9 U	1.9 U	1.7 U
Aroclor 1268	NA	21.8 U	49.3 U	17.7 U	1.9 U	2.0 U	9.5 U	1.9 U	1.9 U	1.7 U
Total PCBs ³	960	3330	3760	5654	15.5 J	2.0 U	133.3	136.9	1.9 U	1.7 U
Total PCBs (mg/kg OC)	65.0	216.2	207.7	nc	nc	nc	15.1 J	nc	0.1 U	0.2 U
PAHs (μg/kg)										
Acenaphthene	860	1040	890	na	19.2	na	16.0	57.5	1.74 J	2.31 J
Benz[a]anthracene	4100	1700	1540	na	12.4	na	89.6	101	2.45 J	2.01 J
Benzo[a]pyrene	3200	1310	1180	na	13.6	na	114	242	4.92 U	1.35 J
Benzo(b)fluoranthene	<u> </u>	1100	1010	na	14.3	na	99.8	234	1.70 J	1.90 J
Benzo[g,h,i]perylene	470	799	716	na	9.57	na	76.3	156	2.00 J	1.73 J
Benzo(k)fluoranthene	_	635	605	na	6.35	na	55.2	118	0.80 J	1.06 J
Total benzofluoranthenes	6800	2370	2200	na	27.7	na	209	465	3.49 J	4.24 J
Chrysene	6900	1810	1530	na	21.1	na	102	164	3.52 J	3.27 J
Dibenzo[a,h]anthracene	180	263	240	na	8.1	na	27.0	43.0	4.92 U	6.47
Fluoranthene	18000	4780	4630	na	22.6	na	158	269	4.79 J	4.59 J
Indeno[1,2,3-c,d]pyrene	1300	790	719	na	4.05 J	na	72.1	139	4.92 U	1.37 J
Phenanthrene	7200	4620	3940	na	32.5	na	110	224	12.1	7.39
Pyrene Total HPAH	79500	3700 17522	3480 16235	na na	142 261	na na	184 1032	446 2025	5.64 21.89	4.60 J 29.63

TABLE 6F

ANALYTICAL RESULTS FOR POSTDREDGE SEDIMENT SAMPLES 1, 2

	DU							6				
	DMMU							15E				
	Sample Location							ONF070				
	Sample Date						_	0/2019				
	Sample ID	SD-CONF070-A	SD-CONF070-B	SD-CO	NF070-C	SD-CONF070-D	SD-CONF070-E	SD-CONF070-F	SD-CONF070-G	SD-CONF070-H	SD-CONF070-I	SD-CONF070-J
	Depth Interval (ft)	0-0.5	0.5-1		1.5	1.5-2	2-2.5	2.5-3	3-3.5	3.5-4	4-4.5	4.5-5
Analyte	RAL (CSL)	Result Q	Result	Q Resu	lt Q	Result Q	Result Q	Result Q	Result Q	Result Q	Result Q	Result Q
Conventionals												
TOC (percent)	NA	na	na		na	na	na	na	na	na	na	na
Metals (mg/kg)												
Arsenic	93	45.4	384		427	27	14.1	na	na	na	na	na
Copper	390	802	841		941	248	390	na	na	na	na	na
Lead	530	252	609.0	na		na						
Mercury	0.59	2.89	2.15		4.95	4.2	2.33	12.4	9.49	8.57	3.77	2.36
PCBs (μg/kg)												
Aroclor 1016	NA	35.6 U	34.5 U		16 U	14.9 U	15.7 U	35.1 U	193 U	19.9 U	17.1 U	7.9 U
Aroclor 1221	NA	35.6 U	34.5 U		16 U	14.9 U	15.7 U	35.1 U	193 U	19.9 U	17.1 U	7.9 U
Aroclor 1232	NA	35.6 U	34.5 U		16 U	14.9 U	15.7 U	35.1 U	193 U	19.9 U	17.1 U	7.9 U
Aroclor 1242	NA	35.6 U	34.5 U		16 U	14.9 U	15.7 U	35.1 U	193 U	19.9 U	17.1 U	7.9 U
Aroclor 1248	NA	1530	1190		799 U	746 U	392 U	777	825	115	38.5	19.2
Aroclor 1254	NA	2940	2720		12200	9090	7780	1560	1630	181	86.4	55.1
Aroclor 1260	NA	349	611		1770	656	435	463	303	70.3	35.9	28.5
Aroclor 1262	NA	35.6 U	34.5 U		16 U	14.9 U	15.7 U	35.1 U	193 U	19.9 U	17.1 U	7.9 U
Aroclor 1268	NA	35.6 U	34.5 U		16 U	14.9 U	15.7 U	35.1 U	193 U	19.9 U	17.1 U	7.9 U
Total PCBs ³	960	4819	4521		13970	9746	8215	2800	2758	366.3	160.8	102.8
Total PCBs (mg/kg OC)	65.0	na	na		na	na	na	na	na	na	na	na
PAHs (μg/kg)												
Acenaphthene	860	949	231		na	na	na	na	na	na	na	na
Benz[a]anthracene	4100	7610	2020		na	na	na	na	na	na	na	na
Benzo[a]pyrene	3200	8710	2800		na	na	na	na	na	na	na	na
Benzo(b)fluoranthene	_	7180	2860		na	na	na	na	na	na	na	na
Benzo[g,h,i]perylene	470	5120	1570		na	na	na	na	na	na	na	na
Benzo(k)fluoranthene	_	4130	1270		na	na	na	na	na	na	na	na
Total benzofluoranthenes	6800	15200	5840		na	na	na	na	na	na	na	na
Chrysene	6900	7540	2180		na	na	na	na	na	na	na	na
Dibenzo[a,h]anthracene	180	1120.0	464		na	na	na	na	na	na	na	na
Fluoranthene	18000	17600	4000		na	na	na	na	na	na	na	na
Indeno[1,2,3-c,d]pyrene	1300	5230	1660		na	na	na	na	na	na	na	na
Phenanthrene	7200	14200	2180		na	na	na	na	na	na	na	na
Pyrene		19600	6940		na	na	na	na	na	na	na	na
Total HPAH	79500	87730	27474		na	na	na	na	na	na	na	na

TABLE 6F

ANALYTICAL RESULTS FOR POSTDREDGE SEDIMENT SAMPLES 1, 2

	DU						6			<u> </u>				
<u> </u>	DMMU						15E							_
	Sample Location						SD-CONF070R	2						_
 	Sample Date						2/27/2019							_
<u> </u>	Sample ID	SD-CONF070R	2-K	SD-CONF070F	2-L	SD-CONF070R2-M	SD-CONF070R2	2-N	SD-CONF070R2-0	SD-CON	-070R2-P	SD-CO	NF070R2-	<u>-</u> ი
-	Depth Interval (ft)	5.5-6		6-6.5		6.5-7	7-7.5		7.5-8		.5		3.5-9	_
Analyte	RAL (CSL)	Result	Q	Result	Q	Result Q	Result	Q	Result C) Resu	t Q	Res	ult	Q
Conventionals														
TOC (percent)	NA	na		0.05	J	na	na		na		na		na	
Metals (mg/kg)									•			•		_
Arsenic	93	na		3.51		na	na		na		na		na	
Copper	390	na		21.9		na	na		na		na		na	
Lead	530	na		2.84		na	na		na		na		na	
Mercury	0.59	0.0209	J	0.0384		0.0222 J	0.0207 L	J	0.0211 U	0	0282 U		0.0263	
PCBs (µg/kg)							·		•		•		•	
Aroclor 1016	NA	na		39.7	U	na	na		na		na		na	
Aroclor 1221	NA	na	<u></u>	2.0		na	na		na		na		na	_
Aroclor 1232	NA	na		149		na	na		na		na		na	
Aroclor 1242	NA	na		2.0		na	na		na		na		na	
Aroclor 1248	NA	na		2.0		na	na		na		na		na	_
Aroclor 1254	NA	na		2.0		na	na		na		na		na	
Aroclor 1260	NA	na		2.0		na	na		na		na		na	
Aroclor 1262	NA	na		2.0		na	na		na		na		na	
Aroclor 1268	NA	na		2.0		na	na		na		na		na	
Total PCBs ³	960	na		149	U	na	na		na		na		na	
Total PCBs (mg/kg OC)	65.0	na		nc		na	na		na		na		na	
PAHs (µg/kg)														
Acenaphthene	860	na		7.85		na	na		na		na		na	_
Benz[a]anthracene	4100	na		2.35	J	na	na		na		na		na	
Benzo[a]pyrene	3200	na		1.50	J	na	na		na		na		na	
Benzo(b)fluoranthene	_	na		2.05		na	na		na		na		na	
Benzo[g,h,i]perylene	470	na		1.28		na	na		na		na		na	
Benzo(k)fluoranthene	_	na		0.84	***************************************	na	na		na		na		na	
Total benzofluoranthenes	6800	na		4.22		na	na		na		na		na	
Chrysene	6900	na		3.59		na	na		na		na		na	
Dibenzo[a,h]anthracene	180	na		4.93	U	na	na		na		na		na	
Fluoranthene	18000	na		8.14		na	na		na		na		na	
Indeno[1,2,3-c,d]pyrene	1300	na		4.93	U	na	na		na		na		na	
Phenanthrene	7200	na		8.08		na	na		na		na		na	
Pyrene		na		16.8		na	na		na		na		na	
Total HPAH	79500	na		37.88		na	na		na		na	1	na	

TABLE 6F

ANALYTICAL RESULTS FOR POSTDREDGE SEDIMENT SAMPLES 1, 2

	DU						6						6
	DMMU					15	5E					1:	5E
	Sample Location					SD-CC	NF270					SD-CC	NF071
	Sample Date					1/10/	/2019						/2019
	Sample ID	SD-CONF270-A	SD-CONF270-B	SD-CONF270-C	SD-CONF270-D	SD-CONF270-E	SD-CONF270-F	SD-CONF270-G	SD-CONF270-H	SD-CONF270-I	SD-CONF270-J	SD-CONF071-A	SD-CONF071-B
	Depth Interval (ft)	0-0.5	0.5-1	1-1.5	1.5-2	2-2.5	2.5-3	3-3.5	3.5-4	4-4.5	4.5-5	0-0.5	0.5-1
Analyte	RAL (CSL)	Result Q	Result Q	Result Q	Result Q	Result Q	Result Q	Result Q	Result Q	Result Q	Result Q	Result Q	Result Q
Conventionals	RAL (USL)	Result Q	Result Q	Result Q	Result Q	Result Q	Result Q	Result Q	Result Q	Result Q	Result Q	Result Q	Result Q
TOC (percent)	NA	na	na	na	na	na	na	na	na	na	na	0.69 J	0.46
Metals (mg/kg)	101	па	Hu	liu	Huj	Hu	Hu	ma	i iu	na	iiu	0.00 0	0.40
Arsenic	93	52.4	171	110	22.4	13.8	na	na	lno I I	no	nol	3.93 J	8.63
Copper	390	731	329	826	516	285	na	na	na na	na na	na na	29.8 J	30
Lead	530	284.00	406	na	na	na	na	na	na	na	na	6.36 J	8.88
Mercury	0.59	2.84	2.63	5.38	7.2	1.44	na	11a	2.79	0.0129	0.0452	0.147 J	0.0927
PCBs (µg/kg)	0.00	2.04	2.00	0.00	1.2	1.44	na	71	2.13	0.0123	0.0432	0.147 0	0.0321
	NIA	00.0111	00.711	40 0111	0.411	0.011		40.0111	40.711	0.0[1]	0.011	0.0111	4 011
Aroclor 1016	NA NA	66.3 U	33.7 U	16.9 U	8.4 U	8.6 U	na	16.8 U	19.7 U	2.0 U 2.0 U	2.0 U	8.6 UJ	1.6 U
Aroclor 1221 Aroclor 1232	NA NA	66.3 U 66.3 U	33.7 U 33.7 U	16.9 U 16.9 U	8.4 U 8.4 U	8.6 U 8.6 U	na	16.8 U	19.7 U 19.7 U	2.0 U	2.0 U 2.0 U	8.6 U 8.6 U	1.6 U 1.6 U
Aroclor 1232 Aroclor 1242	NA NA	66.3 U	33.7 U	16.9 U	8.4 U	8.6 U	na na	16.8 U	19.7 U	2.0 U	2.0 U	8.6 U	1.6 U
Aroclor 1248	NA NA	66.3 U	33.7 U	16.9 U	87.5	17.9	na	89.3	19.7 U	2.0 U	2.0 U	45.3	1.6 U
Aroclor 1254	NA NA	3820	2720	3290	187	44.9	na	75.5	477	5.0	2.4	81.3 J	50.6
Aroclor 1260	NA NA	1020	496	297	65.7	13.2	na	55.6	19.7 U	1.0	0.6	10.5 J	5.6
Aroclor 1262	NA NA	66.3 U	33.7 U	16.9 U	8.4 U	8.6 U	na	16.8 U	19.7 U	2.0 U	2.0 U	8.6 U	1.6 U
Aroclor 1268	NA	66.3 U	33.7 U	16.9 U	8.4 U	8.6 U	na	16.8 U	19.7 U	2.0 U	2.0 U	8.6 U	1.6 U
Total PCBs ³	960	4840	3216	3587	340	76	na	220.4	477	6.0	3.0	137.1 J	56.2
Total PCBs (mg/kg OC)	65.0	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	19.9 J	nc
PAHs (μg/kg)			1				1				\	<u> </u>	
Acenaphthene	860	376	61.5	na	na	na	na	na	na	na	na	625 D	62
Benz[a]anthracene	4100	4380	717	na	na	na	na	na	na	na	na	721 D	55.4
Benzo[a]pyrene	3200	3400	1540	na	na	na	na	na	na	na	na	620 D	56.8
Benzo(b)fluoranthene	_	3020	1390	na	na	na	na	na	na	na	na	509 D	50.2
Benzo[g,h,i]perylene	470	1820	746	na	na	na	na	na	na	na	na	384 D	34.7
Benzo(k)fluoranthene	_	1730	689	na	na	na	na	na	na	na	na	302 D	28.9
Total benzofluoranthenes	6800	6420	2600	na	na	na	na	na	na	na	na	1060 D	104
Chrysene	6900	4150	801	na	na	na	na	na	na	na	na	681 D	53.3
Dibenzo[a,h]anthracene	180	495	232	na	na	na	na	na	na	na	na	214 D	24.1
Fluoranthene	18000	6450	1040	na	na	na	na	na	na	na	na	2040 D	146
Indeno[1,2,3-c,d]pyrene	1300	1940	790	na	na	na	na	na	na	na	na	412 D	36.8
Phenanthrene	7200	3810	636	na	na	na	na	na	na	na	na	2400 D	230
Pyrene		10000	5530	na	na	na	na	na	na	na	na	1780 D	130
Total HPAH	79500	34365	12085	na	na	na	na	na	na	na	na	7912	641

Page 9 of 15

TABLE 6F

ANALYTICAL RESULTS FOR POSTDREDGE SEDIMENT SAMPLES 1, 2

	DU									6								
	DMMU								1	5F								
	Sample Location									ONF072								
	Sample Date								-	7/2018								
	Sample ID	SD-CONF072-A	SD-CONF072-	В	SD-CONF072-	C:///	SD-CONF072-D	SD-CONF			CONF072-F	SD-CONF07	2-G	SD-CONF072-H		SD-CONF072-I	SD-CONF0	072-1
	Depth Interval (ft)	0-0.5	0.5-1		1-1.5		1.5-2	2-2.5		"	2.5-3	3-3.5		3.5-4		4-4.5	4.5-5	
Accelede	. ,	1								_			Q	T				
Analyte	RAL (CSL)	Result Q	Result	Q	Result	Q	Result Q	Result	Q	R	esult Q	Result	l Q	Result C	2	Result Q	Result	Q
Conventionals		2.22					21		.1							2 2 2 1 1		221
TOC (percent)	NA	0.98	1.39		1.25		0.57	1	1	<u> </u>	1.04	1.12	2	1.51		0.26	0.2	22
Metals (mg/kg)																		
Arsenic	93	45.9	205	n	ıa		na	na		na		na		na		na	16	
Copper	390	510	1210		1090		478	Ę	31		277	555	5	450		267	19	
Lead	530	153	488	n	ıa		na	na		na		na		na	na		10	
Mercury	0.59	1.33	7.14		5.38		1.65	3	65		3.13	5.67		6.31		3.28	0.94	41
PCBs (µg/kg)																		
Aroclor 1016	NA	348 U	85.1 L	J	20.7	J	12.0 U	6	1.4 U		76.4 U	33	3 U	37.4 U		7.2 U	7	7.1 U
Aroclor 1221	NA	348 U	85.1 U		20.7 (12.0 U		1.4 U		76.4 U		3 U	37.4 U		7.2 U		7.1 U
Aroclor 1232	NA	348 U	85.1 U		20.7 l		12.0 U		1.4 U		76.4 U		3 U	37.4 U		7.2 U	7	7.1 U
Aroclor 1242	NA	348 U	85.1 U		20.7 l		12.0 U		1.4 U		76.4 U		3 U	37.4 U		7.2 U		7.1 U
Aroclor 1248	NA	1460	1070		700		521	20			989	482	2	810		7.2 U	23	
Aroclor 1254	NA	2720	2030		1240		855	39	40		1680	775	5	1380		24.5	43	3.5
Aroclor 1260	NA	548	545		418		415	11			526	436		447		10.4		7.9
Aroclor 1262	NA	348 U	85.1 U	J	20.7 l	J	12.0 U		4.4 U		76.4 U		3 U	37.4 U		7.2 U		7.1 U
Aroclor 1268	NA	348 U	85.1 l	J	20.7 l	J	12.0 U	6	4.4 U		76.4 U		3 U	37.4 U		7.2 U		7.1 U
Total PCBs ³	960	4728	3645		2358		1791	71	00		3195	1693	3	2637		34.9	74	4.6
Total PCBs (mg/kg OC)	65.0	482.4	262.2		188.6		314.2	71	0.0		307.2	151.2	2	174.6		nc	1	nc
PAHs (µg/kg)																		
Acenaphthene	860	1990	171		na		na		na	T	na	na	1	na		na	205	50
Benz[a]anthracene	4100	10900	1570		na		na		na		na	na		na		na	2250	
Benzo[a]pyrene	3200	6350	2580		na		na		na		na	na		na		na	2080	
Benzo(b)fluoranthene	_	5490	2230		na		na		na		na	na	1	na		na	1540	00
Benzo[g,h,i]perylene	470	3080	1530		na		na		na		na	na	1	na		na	1330	00
Benzo(k)fluoranthene	_	3350	1310		na		na		na		na	na	1	na		na	886	
Total benzofluoranthenes	6800	12200	4800		na		na		na		na	na	a	na		na	3280	
Chrysene	6900	17700	1650		na		na		na		na	na	1	na		na	2180	
Dibenzo[a,h]anthracene	180	1500	375		na		na		na		na	na	1	na		na	227	
Fluoranthene	18000	30200	2430		na		na		na		na	na	1	na		na	5270	
Indeno[1,2,3-c,d]pyrene	1300	3090	1500		na		na	vi (111111111111111111111111111111111111	na		na	na	9: 4444444	na		na	1290	
Phenanthrene	7200	20800	1220		na		na		na		na	na	1	na		na	4300	
Pyrene		26400	7730		na		na		na		na	na	1	na		na	5030	
Total HPAH	79500	111420	24165		na		na		na		na	na	1	na		na	22937	70

Page 10 of 15

TABLE 6F

ANALYTICAL RESULTS FOR POSTDREDGE SEDIMENT SAMPLES 1, 2

	DU					6					
 	DMMU					15F					
	Sample Location					SD-CONF072I	₹2				
 	Sample Date					2/27/2019					
	Sample ID	SD-CONF072R2	2-K	SD-CONF072R	2-L	SD-CONF072R	2-M	SD-CONF072R	2-N	SD-CONF072R	2-0
	Depth Interval (ft)	5.5-6		6-6.5		6.5-7		7-7.5		7,5-8	
Analyte	RAL (CSL)	Result	Q	Result	Q	Result	Q	Result	Q	Result	Q
Conventionals	TOAL (OOL)	Result		result		result		result		resur	
TOC (percent)	NA	na		na		na		na		1.73	
Metals (mg/kg)	10.			ng		1191		1101		1,1,0	
` 0 0/	00									400	
Arsenic	93	na		na		na		na		128	
Copper	390	na		na		na		na		1270	
Lead	530	na		na		na		na		773	
Mercury	0.59	na		na		na		na		5.83	
PCBs (μg/kg)											
Aroclor 1016	NA	na		na		na		na		208	
Aroclor 1221	NA	na		na		na		na		208	
Aroclor 1232	NA	na		na		na		na		208	
Aroclor 1242	NA	na		na		na		na		208	U
Aroclor 1248	NA	na		na		na		na		9660	
Aroclor 1254	NA	na		na		na		na		30600	
Aroclor 1260	NA	na		na		na		na		7450	
Aroclor 1262	NA	na		na		na		na		208	
Aroclor 1268	NA	na		na		na		na		208	U
Total PCBs ³	960	na		na		na		na		47710	
Total PCBs (mg/kg OC)	65.0	na		na		na		na		2757.8	
PAHs (µg/kg)											
Acenaphthene	860	199		340		183		189		155	
Benz[a]anthracene	4100	3960		3700		2130		2080		2150	
Benzo[a]pyrene	3200	3880		4100		3000		3100		2540	
Benzo(b)fluoranthene	_	4520		4460		3310		3410		2800	
Benzo[g,h,i]perylene	470	2100		2200		1660		1760		1400	
Benzo(k)fluoranthene	_	2440		2380		1820		1840		1510	
Total benzofluoranthenes	6800	9150		9120		6870		7080		5760	
Chrysene	6900	4040		4270		2570		2390		2260	
Dibenzo[a,h]anthracene	180	560		598		447		283		423	
Fluoranthene	18000	5870		5980		3910		3400		2860	
Indeno[1,2,3-c,d]pyrene	1300	2110		2210		1530		1690		1350	
Phenanthrene	7200	1930		2760		1530		1460		1220	
Pyrene		11500		11200		9120		8980		8010	
Total HPAH	79500	43170		43378		31237		30763		26753	

TABLE 6F

ANALYTICAL RESULTS FOR POSTDREDGE SEDIMENT SAMPLES 1, 2

	DU						6				
	DMMU					1	5F				
	Sample Location					SD-CON	IF072R3				
	Sample Date						/2019				
	Sample ID	SD-CONF072R3-P	SD-CONF072R3-0	SD-CONF072R3-R	SD-CONF072R3-S	SD-CONF072R3-T	SD-CONF072R3-U	SD-CONF072R3-V	SD-CONF072R3-W	SD-CONF072R3-X	SD-CONF072R3-Y
	Depth Interval (ft)	8-8.5	8.5-9	9-9.5	9.5-10	10-10.5	10.5-11	11-11.5	11.5-12	12-12.5	12.5-13
Analyte	RAL (CSL)	Result Q	Result C			Result Q					
Conventionals	TAL (OOL)	Result Q	Result 6	t Result Q	Result Q	Result Q	Result Q	Result Q	resuit Q	Result Q	rtesuit Q
TOC (percent)	NA	0.18	0.85	na	1.29	na	0.83	na	0.49	na	0.72
Metals (mg/kg)								1	1		
Arsenic	93	16.0	36.8	na	12.6	na	4.46	na	2.36	na	5.19
Copper	390	263	272	813	287	36.5	27.3	810	44.9	na	325
Lead	530	105	133	na	42.5	na	5.52	na	9.06	na	62.9
Mercury	0.59	1.57	1.81	10.6	1.33	0.326	0.156	5.75	1.03	0.0581	2.32
PCBs (µg/kg)											
Aroclor 1016	NA	10 U	10lU	50 U	2.0 U	2.0 U	2.0 U	10 U	2.0 U	na	2.0 U
Aroclor 1221	NA	10 U	10 U	10 U	2.0 U	2.0 U	2.0 U	10 U	2.0 U	na	2.0 U
Aroclor 1232	NA	10 U	10 U	10 U	2.0 U	2.0 U	2.0 U	10 U	2.0 U	na	2.0 U
Aroclor 1242	NA	10 U	10 U	10 U	2.0 U	2.0 U	2.0 U	10 U	2.0 U	na	2.0 U
Aroclor 1248	NA	10 U	10 U	321	18	4.8	2.0 U	10 U	4.8	na	14.3
Aroclor 1254	NA	29	29.1	832	49	12.7	7.8	267	6.7	na	29.7
Aroclor 1260	NA	9.3	16.7	163	13	4.3	1.9	95.1	4	na	15
Aroclor 1262	NA	10 U	10 U	10 U	2.0 U	2.0 U	2.0 U	10 U	2.0 U	na	2.0 U
Aroclor 1268	NA	10 U	10 U	10 U	2.0 U	2.0 U	2.0 U	10 U	2.0 U	na	2.0 U
Total PCBs ³	960	38.3	45.8	1316	80.1	21.8	9.7	362.1	15.5	na	59
Total PCBs (mg/kg OC)	65.0	na	5.4	na	6.2	na	1.2	na	3.2	na	8.2
PAHs (μg/kg)											
Acenaphthene	860	112	1190	na	318	na	3060	na	8220	na	5200
Benz[a]anthracene	4100	5730	14200	na	1200	na	37.3	na	1730	na	2000
Benzo[a]pyrene	3200	6020	13800	na	498	na	30.1	na	403	na	1120
Benzo(b)fluoranthene	_	6260	11900	na	610	na	36	na	568	na	1210
Benzo[g,h,i]perylene	470	3010	6880	na	193	na	19	na	112	na	414
Benzo(k)fluoranthene	_	3510	6810	na	330	na	17.2	na	269	na	661
Total benzofluoranthenes	6800	13000	25900	na	1220	na	72.4	na	1070	na	2540
Chrysene	6900	6650	15300	na	1450	na	45.7	na	1660	na	2160
Dibenzo[a,h]anthracene	180	807	1960	na	60.1	na	5.27	na	41.8	na	128
Fluoranthene	18000	10800	34600	na	1860	na	341	na	12800	na	5870
Indeno[1,2,3-c,d]pyrene	1300	3020	6270	na	191	na	13.9	na	118	na	410
Phenanthrene	7200	3290	24900	na	222	na	4150	na	28700	na	5260
Pyrene		17900	42500	na	1200	na	269	na	7880	na	4380
Total HPAH	79500	66937	161410	na	7872.1	na	833.67	na	25814.8	na	19022

TABLE 6F

ANALYTICAL RESULTS FOR POSTDREDGE SEDIMENT SAMPLES 1, 2

	DU						6					
	DMMU						15F					
	Sample Location						SD-CONF072R4					
	Sample Date						7/26/2019					
		SD-CONF072R4-A	SD-CONF072R4-B	SD-CONF072R4-C	SD-CONF072R4-D	SD-CONF072R4-E		SD-CONF072R4-G	SD-CONF072R4-H	SD-CONF072R4-I	SD-CONF072R4-J	SD-CONF072R4-K
	Depth Interval (ft)		0.5-1	1-1.5	1.5-2	2-2.5	2.5-3	3-3.5	3.5-4	4-4.5	4.5-5	5-5.5
Analyte	RAL (CSL)	Result Q	Result Q	Result Q	Result Q	Result Q	Result Q	T	Result Q	Result Q	Result Q	Result Q
Conventionals	RAL (USL)	Result Q	Result Q	Result Q	Result Q	Result Q	Result Q	Result Q	Result Q	Result Q	Result Q	Result Q
TOC (percent)	NA	1.66	na	0.59	na	1.12	na	0.16	na	1.11	nal	1.77
Metals (mg/kg)	101	1,00	iα	0.00	1191	11	, iiu	0.10	i ii	1,,,,,	i iidi	1.11
` ` ` ` ` ` ` ` ` `	00	44.7		44.0	1	40.0		14.0		24.0	II	46.9
Arsenic Copper	93 390	44.7 752	na na	41.3 338	na na	16.2 441	na na	14.9 184	na na	31.8 298	na na	40.9
Lead	530	170	na	324	na	369	na	267	na	297	na	360
Mercury	0.59	0.894	na	7.1	na	3.15	na	1.5	na	3.34	na	3.68
PCBs (µg/kg)	0.00	0.004	Πα	1.1	iiu	0.10	iid	1.0	na	0.04	Ha	0.00
	N1A	00.0111	1 1		г г	00.01.1	1	1 00111	1	00.0111	1	0.010
Aroclor 1016	NA NA	20.0 U	na	50.0 U	na	20.0 U	na	2.0 U	na	20.0 U	na	2.0 U
Aroclor 1221	NA NA	20.0 U	na	50.0 U	na	20.0 U	na	2.0 U	na	20.0 U	na	2.0 U
Aroclor 1232 Aroclor 1242	NA NA	20.0 U 20.0 U	na na	50.0 U 50.0 U	na	20.0 U 20.0 U	na na	2.0 U 2.0 U	na na	20.0 U 20.0 U	na na	2.0 U 2.0 U
Aroclor 1242 Aroclor 1248	NA NA	409	na	515	na na	20.0 0	na	17.3	na	114	na	40.5
Aroclor 1254	NA NA	972	na	1400	na	511	na	49.4	na	299	na	89.9
Aroclor 1260	NA NA	188	na	385	na	303	na	10.5	na	85.3	na	59.3
Aroclor 1262	NA NA	20.0 U	na	50.0 U	na	20.0 U	na	2.0 U	na	20.0 U	na	2.0 U
Aroclor 1268	NA NA	20.0 U	na	50.0 U	na	20.0 U	na	2.0 U	na	20.0 U	na	2.0 U
Total PCBs ³	960	1569	na	2300	.,,5	1029	,,,,	77.2		498		190
Total PCBs (mg/kg OC)	65.0	.000	,iu	Loco		1020		11.2		100		.00
PAHs (μg/kg)	00.0					Name of the second						
Acenaphthene	860	650	na	84.3	na	110	na	88.9	na	961	na	801
Benz[a]anthracene	4100	4950	na	1110	na	1130	na	4310	na	11900	na	6760
Benzo[a]pyrene	3200	5810	na	1560	na	1250	na	3950	na	10400	na	2350
Benzo(b)fluoranthene	— — — — — — — — — — — — — — — — — — —	6100	na	1690	na	1250	na	3800	na	8540	na	2620
Benzo[g,h,i]perylene	470	3130	na	801	na	623	na	2070	na	5370	na	941
Benzo(k)fluoranthene	_	3600	na	931	na	695	na	2270	na	4910	na	1340
Total benzofluoranthenes	6800	12900	na	3490	na	2650	na	8190	na	19000	na	5730
Chrysene	6900	6750	na	1500	na	1510	na	4400	na	12700	na	7060
Dibenzo[a,h]anthracene	180	675	na	208	na	178	na	549	na	1230	na	214
Fluoranthene	18000	12600	na	1620	na	3140	na	9370	na	29900	na	33200
Indeno[1,2,3-c,d]pyrene	1300	3130	na	742	na	586	na	2030	na	5140	na	902
Phenanthrene	7200	7930	na	735	na	775	na	2150	na	25700	na	1560
Pyrene		19100	na	4760	na	8380	na	11500	na	38000	na	28500
Total HPAH	79500	69045		15791		19447		46369		133640		85657

Page 13 of 15

TABLE 6F

ANALYTICAL RESULTS FOR POSTDREDGE SEDIMENT SAMPLES 1, 2

	DU			6				6	6	3	6	3
	DMMU			15F			15	5G	160	C2	16	D
	Sample Location			SD-CONF073			SD-CC	NF074	SD-CO	NF036	SD-CO	NF037
	Sample Date			12/27/2018			12/28	3/2018	1/17/	2019	1/8/2	2019
	Sample ID	SD-CONF073-A	SD-CONF073-B	SD-CONF073-C	SD-CONF073-D	SD-CONF073-E	SD-CONF074-A	SD-CONF074-B	SD-CONF036-A	SD-CONF036-B	SD-CONF037-A	SD-CONF037-B
	Depth Interval (ft)	0-0.5	0.5-1	1-1.5	1.5-2	2-2.5	0-0.5	0.5-1	0-0.5	0.5-1	0-0.5	0.5-1
Analyte	RAL (CSL)	Result Q										
Conventionals										1		•
TOC (percent)	NA	1.04	0.65	1.19	1.38	0.18 J	1.53	0.92	0.40 J	0.41	1.69 J	1.23
Metals (mg/kg)										•		•
Arsenic	93	106	76.4	na	na	41.4	45.8	30.1 J	2.33	2.33	21.8 J	7.05
Copper	390	819	767	na	na	102	283	140 J	19 J	10.1	103 J	26.9
Lead	530	334	225	na	na	127	160	86.0 J	2.27 J	1.75	112 J	10.9
Mercury	0.59	1.85	0.699	na	na	0.29 J	2.2	0.798 J	0.0282 J	0.0278 J	0.512 J	0.167
PCBs (µg/kg)		·				·						
Aroclor 1016	NA	365 U	107 U	81.4 U	57.1 U	7.9 U	48.7 U	9.6 U	1.9 U	2.0 U	19.9 U	2.0 U
Aroclor 1221	NA	365 U	107 U	81.4 U	57.1 U	7.9 U	48.7 U	9.6 U	1.9 U	2.0 U	19.9 U	2.0 U
Aroclor 1232	NA	365 U	107 U	81.4 U	57.1 U	7.9 U	48.7 U	9.6 U	1.9 U	2.0 U	19.9 U	2.0 U
Aroclor 1242	NA	365 U	107 U	81.4 U	57.1 U	7.9 U	48.7 U	9.6 U	1.9 U	2.0 U	19.9 U	2.0 U
Aroclor 1248	NA	2180	1290	4020	1620	103 J	333	204 D	4.9	2.0 U	54.2 J	2.0 U
Aroclor 1254	NA	3560	2030	7620	2390	141	652	395 D	6.5 J	2.0 U	89.5 D	5.5
Aroclor 1260	NA	458	363	1250	475	48.2	263	138 D	1.6 J	2.0 U	19.4 J, D	4.4
Aroclor 1262	NA	365 U	107 U	81.4 U	57.1 U	7.9 U	48.7 U	9.6 U	1.9 U	2.0 U	19.9 U	2.0 U
Aroclor 1268	NA	365 U	107 U	81.4 U	57.1 U	7.9 U	48.7 U	9.6 U	1.9 U	2.0 U	19.9 U	2.0 U
Total PCBs ³	960	6198	3683	12890	4485	292.2 J	1248	737	13.0 J	2.0 U	163.1 J	9.9
Total PCBs (mg/kg OC)	65.0	596	566.6	1083.2	325.0	nc	81.6	80.1	nc	nc	9.7 J	0.8
PAHs (μg/kg)												
Acenaphthene	860	358	76.8	na	na	48.9	142	380 D	23.1	25.7	1810	20.7
Benz[a]anthracene	4100	1830	776	na	na	2.4 J	544	1220 D	33.9	24.8	215	48.5
Benzo[a]pyrene	3200	2420	672	na	na	1.96 J	667	1160 D	37.3	28.3	207	59.1
Benzo(b)fluoranthene	_	2580	691	na	na	2.64 J	701	1120 D	35.2	27.6	186	59.0
Benzo[g,h,i]perylene	470	1320	357	na	na	1.79 J	311	559 D	29.6	20.0	128	38.7
Benzo(k)fluoranthene	-	1280	324	na	na	1.6 J	336	624 D	18.7	13.7	105	29.7
Total benzofluoranthenes	6800	5160	1250	na	na	5.86 J	1310	2430 D	72.8	54.5	386	118
Chrysene	6900	2410	682	na	na	3.86 J	690	1300 D	39.8	29.7	238	61.2
Dibenzo[a,h]anthracene	180	357	112	na	na	4.93 U	106	475 D	11.3 U	9.61	38.2	14.9
Fluoranthene	18000	4600	2390	na	na	7.04 J	1390	3420 D	105	93.4	847	124
Indeno[1,2,3-c,d]pyrene	1300	1320	354	na	na	1.97 J	334	536 D	23.3	15.7	110	33.4
Phenanthrene	7200	2080	353	na	na	74.3	680	2420 D	84.7	82.9	1420	89.8
Pyrene	70500	7600	2770	na	na	10.4 J	4650	7530 D	172	120	990	190
Total HPAH	79500	27017	9363	na	na	35 J	10002	18630	514	396	3159	688

TABLE 6F

ANALYTICAL RESULTS FOR POSTDREDGE SEDIMENT SAMPLES 1, 2

Sample Date 1987/2019 1	16F CONF042 17/2019 SD-CONF042-B 0.5-1 Q Result Q 0.88 13.1 64.7 26.3 0.269
Sample Date 1/9/2019 1/9/2	7/2019 SD-CONF042-B 0.5-1 Q Result Q 0.88 13.1 64.7 26.3
Sample ID SD-CONF938-A SD-CONF938-B SD-CONF938-B SD-CONF938-B SD-CONF940-B SD-CONF940-B SD-CONF240-B SD-CON	SD-CONF042-B 0.5-1 Q Result Q 0.88 13.1 64.7 26.3
Depth Interval (ft)	0.5-1 Result Q 0.88 13.1 64.7 26.3
Analyte RAL (CSL) Result Q Result	0.88 0.88 13.1 64.7 26.3
Conventionals Tot (percent) NA 0.89 J 0.70 2.30 2.29 3.27 J 0.16 1.62 na 0.52 J 0.07 0.78	0.88 13.1 64.7 26.3
TOC (percent) NA 0.89 J 0.70 2.30 2.29 3.27 J 0.16 1.62 na 0.52 J 0.07 0.78	13.1 64.7 26.3
Metals (mg/kg) Arsenic 93 8.83 14.0 J 8.35 J 4.89 45.4 J 16.6 13.8 4.13 12.2 J 12.5 43.8 12.6 12.8 12.5 14.8 12.6 12.8 12.5 14.8 12.6 12.8 12.5 14.8 12.8 12.5 14.8 12.8 12.8 12.5 14.8 12.8 1	13.1 64.7 26.3
Arsenic 93 8.83 14.0 J 8.35 J 4.89 45.4 J 16.6 13.8 4.13 12.2 J 12.5 43.8 Copper 390 31.3 124 J 37.0 J 25.1 119 J 116 54.1 21.5 21.8 J 25.6 148. Lead 530 15.6 71.3 J 16.6 J 4.33 20.2 J 401 47.4 3.42 17.3 J 14.3 10.2 Mercury 0.59 0.104 0.352 J 0.227 J 0.0526 0.73 1.02 0.251 0.0362 0.0251 J 0.0562 0.138 PCB (ug/kg) Arocior 1016 NA 1.6 U 76.3 U 1.8 U 1.7 U 98.0 U 39.2 U 39.6 U 2.0 U 2.0 U 1.9 U 1.9 U 1.9 Arocior 1221 NA 1.6 U 76.3 U 1.8 U 1.7 U 98.0 U 39.2 U 39.6 U 2.0 U 2.0 U 1.9 U 1.9 U 1.9 Arocior 1232 NA 1.6 U 76.3 U 1.8 U 1.7 U 98.0 U 39.2 U 39.6 U 2.0 U 2.0 U 1.9 U 1.9 U 1.9 Arocior 1242 NA 1.6 U 76.3 U 1.8 U 1.7 U 98.0 U 39.2 U 39.6 U 2.0 U 2.0 U 1.9 U 1.9 U 1.9 Arocior 1242 NA 1.6 U 76.3 U 1.8 U 1.7 U 98.0 U 39.2 U 39.6 U 2.0 U 2.0 U 1.9 U 1.9 U 1.9 Arocior 1244 NA 1.6 U 76.3 U 1.8 U 1.7 U 98.0 U 39.2 U 39.6 U 2.0 U 2.0 U 1.9 U 1.9 U 1.9 Arocior 1245 NA 1.6 U 76.3 U 1.8 U 1.7 U 98.0 U 39.2 U 39.6 U 2.0 U 2.0 U 1.9 U 1.9 U 1.9 Arocior 1246 NA 1.6 U 76.3 U 1.8 U 1.7 U 98.0 U 39.2 U 39.6 U 2.0 U 2.0 U 1.9 U 1.9 U 1.9 Arocior 1246 NA 1.6 U 76.3 U 1.8 U 1.7 U 98.0 U 39.2 U 39.6 U 2.0 U 2.0 U 1.9 U 1.9 U 1.9 Arocior 1246 NA 1.6 U 76.3 U 1.8 U 1.7 U 98.0 U 39.2 U 39.6 U 2.0 U 2.0 U 1.9 U 1.9 U 1.9 Arocior 1246 NA 1.6 U 76.3 U 1.8 U 1.7 U 98.0 U 39.2 U 39.6 U 2.0 U 2.0 U 1.9 U 1.9 U 1.9 Arocior 1254 NA 4.6 429 64.6 J 1.7 U 98.0 U 39.2 U 39.6 U 2.0 U 2.0 U 1.9 U 1.9 U 1.9 Arocior 1254 NA 1.6 U 76.3 U 1.8 U 1.7 U 98.0 U 39.2 U 39.6 U 2.0 U 2.0 U 1.9 U 1.9 U 1.9 Arocior 1262 NA 1.6 U 76.3 U 1.8 U 1.7 U 98.0 U 39.2 U 39.6 U 2.0 U 2.0 U 1.9 U 1.9 U 1.9 Arocior 1262 NA 1.6 U 76.3 U 1.8 U 1.7 U 98.0 U 39.2 U 39.6 U 2.0 U 2.0 U 1.9 U 1.9 U 1.9 Arocior 1262 NA 1.6 U 76.3 U 1.8 U 1.7 U 98.0 U 39.2 U 39.6 U 2.0 U 2.0 U 1.9 U 1.9 U 1.9 Arocior 1262 NA 1.6 U 76.3 U 1.8 U 1.7 U 98.0 U 39.2 U 39.6 U 2.0 U 2.0 U 1.9 U 1.9 U 1.9 Arocior 1262 NA 1.6 U 76.3 U 1.8 U 1.7 U 98.0 U 39.2 U 39.6 U 2.0 U 2.0 U 1.9 U 1.9 U 1.9 Arocior 1262 NA 1.6 U 76.3 U 1.8 U 1.7 U 98.0 U 39.2 U 39.6 U 2.0 U 2.0 U 1.9 U 1.9 U 1.9 Arocior 1262 NA 1.8 U 1.	64.7 26.3
Copper 390 31.3 124 J 37.0 J 25.1 119 J 116 54.1 21.5 21.8 J 25.6 148 Lead 530 15.6 71.3 J 16.6 J 4.33 202 J 401 47.4 3.42 17.3 J 14.3 102 Lead 530 5.6 5.7 J 1.8 J 5.7 1.8 J 5.7 5.8 J 5.8	64.7 26.3
Lead	26.3
Mercury 0.59 0.104 0.352 J 0.227 J 0.0526 0.73 1.02 0.251 0.0362 0.0251 J 0.0562 0.138 PCBs (µg/kg)	
PCBs (µg/kg) Arcolor 1016 NA 1.6 U 78.3 U 1.8 U 1.7 U 98.0 U 39.2 U 39.6 U 2.0 U 2.0 U 1.9 U 1.9 U 1.9 Arcolor 1221 NA 1.6 U 78.3 U 1.8 U 1.7 U 98.0 U 39.2 U 39.6 U 2.0 U 2.0 U 1.9 U 1.9 U 1.9 U 1.9 Arcolor 1232 NA 1.6 U 78.3 U 1.8 U 1.7 U 98.0 U 39.2 U 39.6 U 2.0 U 2.0 U 1.9 U 1.9 U 1.9 Arcolor 1242 NA 1.6 U 78.3 U 1.8 U 1.7 U 98.0 U 39.2 U 39.6 U 2.0 U 2.0 U 1.9 U 1.9 U 1.9 Arcolor 1242 NA 1.6 U 78.3 U 1.8 U 1.7 U 98.0 U 39.2 U 39.6 U 2.0 U 2.0 U 2.0 U 1.9 U 1.9 U 1.9 Arcolor 1248 NA 4.6 429 64.6 U 1.7 U 98.0 U 39.2 U 39.6 U 2.0 U 2.0 U 1.9 U 1.9 U 1.9 Arcolor 1254 NA 4.7 647 112 D 1.7 U 546 D 200 91.2 2.0 U 7.1 19.1 6.7 Arcolor 1264 NA 4.7 647 112 D 1.7 U 970 D 32.6 131.0 1.4 U 1.9 U 2.0 U 7.1 19.1 6.7 Arcolor 1260 NA 1.6 U 78.3 U 1.8 U 1.7 U 242 D 117 28.3 2.0 U 2.7 10.9 41.2 8.1 Arcolor 1262 NA 1.6 U 78.3 U 1.8 U 1.7 U 98.0 U 39.2 U 39.6 U 2.0 U 2.7 10.9 3.1 Arcolor 1262 NA 1.6 U 78.3 U 1.8 U 1.7 U 98.0 U 39.2 U 39.6 U 2.0 U 2.0 U 1.9 U 1.9 U 1.9 U 1.9 Total PCBs³ 960 10.9 U 78.3 U 1.8 U 1.7 U 98.0 U 39.2 U 39.6 U 2.0 U 2.0 U 1.9 U 1.9 U 1.9 Total PCBs (mg/kg OC) 65.0 1.2 U 75.7 nc nc nc 53.8 nc C 15.5 nc 4.0 nc 2.2 PAHs (µg/kg) Acenaphthene 860 31.4 U 57.9 288 U 44.4 87.3 D 101 388 14.1 89.8 D 7.44 14.7 Benz[a]anthracene 4100 75.2 D 275 666 U 119 556.5	0.269
Arcolor 1016 NA 1.6 U 78.3 U 1.8 U 1.7 U 98.0 U 39.2 U 39.6 U 2.0 U 2.0 U 1.9 U 1.9 U 1.9 Arcolor 1221 NA 1.6 U 78.3 U 1.8 U 1.7 U 98.0 U 39.2 U 39.6 U 2.0 U 2.0 U 1.9 U 1.9 U 1.9 Arcolor 1232 NA 1.6 U 78.3 U 1.8 U 1.7 U 98.0 U 39.2 U 39.6 U 2.0 U 2.0 U 1.9 U 1.9 U 1.9 Arcolor 1242 NA 1.6 U 78.3 U 1.8 U 1.7 U 98.0 U 39.2 U 39.6 U 2.0 U 2.0 U 1.9 U 1.9 U 1.9 Arcolor 1242 NA 1.6 U 78.3 U 1.8 U 1.7 U 98.0 U 39.2 U 39.6 U 2.0 U 2.0 U 1.9 U 1.9 U 1.9 U 1.9 Arcolor 1248 NA 4.6 429 64.6 J 1.7 U 98.0 U 39.2 U 39.6 U 2.0 U 7.1 U 1.9 U 1.9 U 1.9 Arcolor 1254 NA 4.6 429 64.6 J 1.7 U 546 D 200 91.2 2.0 U 7.1 U 1.1 U	
Aroclor 1221 NA 1.6 U 78.3 U 1.8 U 1.7 U 98.0 U 39.2 U 39.6 U 2.0 U 2.0 U 1.9 U	
Aroclor 1232 NA 1.6 U 78.3 U 1.8 U 1.7 U 98.0 U 39.2 U 39.6 U 2.0 U 2.0 U 1.9 U	39.9 U
Aroclor 1242 NA 1.6 U 78.3 U 1.8 U 1.7 U 98.0 U 39.2 U 39.6 U 2.0 U 2.0 U 1.9 U	39.9 U
Aroclor 1248 NA 4.6 429 64.6 J 1.7 U 546 D 200 91.2 2.0 U 7.1 19.1 5.7 Aroclor 1254 Aroclor 1254 NA 4.7 647 112 D 1.7 U 970 D 326 131.0 1.4 J 10.9 41.2 8.1 Aroclor 1260 NA 1.6 J 154 40.8 1.7 U 242 D 117 28.3 2.0 U 2.7 10.9 3.1 Aroclor 1262 NA 1.6 U 78.3 U 1.8 U 1.7 U 98.0 U 39.2 U 39.6 U 2.0 U 2.0 U 1.9 U 1.9 U Aroclor 1268 NA 1.6 U 78.3 U 1.8 U 1.7 U 98.0 U 39.2 U 39.6 U 2.0 U 2.0 U 1.9 U 1.9 U Total PCBs³ 960 10.9 J 1230 217 J 1.7 U 1758 643 251 1.4 J 20.0 U 1.9 U 16.9 Total PCBs (mg/kg) 1.2 J 175.7 nc nc <td>39.9 U</td>	39.9 U
Aroclor 1254 NA 4.7 647 112 D 1.7 U 970 D 326 131.0 1.4 J 10.9 41.2 8.1 Aroclor 1260 NA 1.6 J 154 40.8 1.7 U 242 D 117 28.3 2.0 U 2.7 U 10.9 3.1 Aroclor 1262 NA 1.6 U 78.3 U 1.8 U 1.7 U 98.0 U 39.2 U 39.6 U 2.0 U 2.0 U 1.9 U 1.9 Aroclor 1268 NA 1.6 U 78.3 U 1.8 U 1.7 U 98.0 U 39.2 U 39.6 U 2.0 U 2.0 U 1.9 U 1.9 Total PCBs³ 960 10.9 J 1230 217 J 1.7 U 1758 643 251 1.4 J 20.7 U 71.2 U 16.9 Total PCBs (mg/kg) C 65.0 1.2 J 175.7 nc nc 53.8 U nc 15.5 U 1.4 J 20.7 U 71.2 U 16.9 PAHs (µg/kg)	39.9 U
Aroclor 1260 NA 1.6 J 154 40.8 1.7 U 242 D 117 28.3 2.0 U 2.7 U 10.9 U 3.1 U Aroclor 1262 NA 1.6 U 78.3 U 1.8 U 1.7 U 98.0 U 39.2 U 39.6 U 2.0 U 2.0 U 2.0 U 1.9 U 1.0 U 1.0 U 1.0 U	39.9 U
Arcolor 1262 NA 1.6 U 78.3 U 1.8 U 1.7 U 98.0 U 39.2 U 39.6 U 2.0 U 2.0 U 1.9 U 1.9 U 1.9 U Arcolor 1268 NA 1.6 U 78.3 U 1.8 U 1.7 U 98.0 U 39.0 U 39.6 U 2.0 U 2.0 U 2.0 U 1.9 U 1.9 U Total PCBs³ 960 10.9 J 1230 217 J 1.7 U 1758 643 251 1.4 J 20.7 U 71.2 U 16.9 U Total PCBs (mg/kg OC) 65.0 1.2 J 175.7 U nc 53.8 U nc 15.5 U nc 4.0 U nc 2.2 U PAHs (µg/kg) Acenaphthene 860 31.4 J 57.9 U 288 J 44.4 U 87.3 D 101 U 398 U 14.1 U 89.8 D 7.44 U 14.7 U Benz[a]anthracene 4100 75.2 D 275 U 665 J 119 U 505 D 433 U 356 U 13.7 U 539 D 50.5 U 56.5 U	77.4
Aroclor 1268 NA 1.6 U 78.3 U 1.8 U 1.7 U 98.0 U 39.2 U 39.6 U 2.0 U 2.0 U 1.9 U 1.9 U 1.9 U Total PCBs³ 960 10.9 J 1230 217 J 1.7 U 1758 643 251 1.4 J 20.7 71.2 16.9 Total PCBs (mg/kg OC) 65.0 1.2 J 175.7 nc nc 53.8 nc 15.5 nc 4.0 nc 2.2 PAHs (μg/kg) Acenaphthene 860 31.4 J 57.9 288 J 44.4 87.3 D 101 398 14.1 89.8 D 7.44 14.7 Benz[a]anthracene 4100 75.2 D 275 665 J 119 505 D 433 356 13.7 539 D 50.5 56.5	18.8
Total PCBs³ 960 10.9 J 1230 217 J 1.7 U 1758 643 251 1.4 J 20.7 71.2 16.9 Total PCBs (mg/kg OC) 65.0 1.2 J 175.7 nc nc 53.8 nc 15.5 nc 4.0 nc 2.2 PAHs (μg/kg) Acenaphthene 860 31.4 J 57.9 288 J 44.4 87.3 D 101 398 14.1 89.8 D 7.44 14.7 Benz[a]anthracene 4100 75.2 D 275 665 J 119 505 D 433 356 13.7 539 D 50.5 56.5	39.9 U
Total PCBs (mg/kg OC) 65.0 1.2 J 175.7 nc nc nc 53.8 nc 15.5 nc 4.0 nc 2.2 PAHs (μg/kg) Acenaphthene 860 31.4 J 57.9 288 J 44.4 87.3 D 101 398 14.1 89.8 D 7.44 14.7 Benz[a]anthracene 4100 75.2 D 275 665 J 119 505 D 433 356 13.7 539 D 50.5 56.5	39.9 U
PAHs (μg/kg) Acenaphthene 860 31.4 J 57.9 288 J 44.4 87.3 D 101 398 14.1 89.8 D 7.44 14.7 Benz[a]anthracene 4100 75.2 D 275 665 J 119 505 D 433 356 13.7 539 D 50.5 56.5	96.2
Acenaphthene 860 31.4 J 57.9 288 J 44.4 87.3 D 101 398 14.1 89.8 D 7.44 14.7 Benz[a]anthracene 4100 75.2 D 275 665 J 119 505 D 433 356 13.7 539 D 50.5 56.5	10.9
Benz[a]anthracene 4100 75.2 D 275 665 J 119 505 D 433 356 13.7 539 D 50.5 56.5	
	24.8 U
Panzelalnurana	86.9 D
	150 D
Benzo(b)fluoranthene — 48.0 D 401 379 J 54.9 460 D 633 180 6.90 494 D 45.9 83.3	133 D
Benzo[g,h,i]perylene 470 32.9 D 250 238 J 25.8 334 D 405 95.6 4.12 345 D 29.4 71.8	94.7 D
Benzo(k)fluoranthene — 24.7 D 219 197 J 27.9 260 D 348 91.5 3.63 278 D 25.5 46.4	72.5 D
Total benzofluoranthenes 6800 100 D 835 771 J 108 968 D 1310 364 14.6 1050 D 95.7 172 Observed 6000 6000 D	273 D
Chrysene 6900 62.8 D 291 664 J 98.5 636 D 462 321 11.7 680 D 74.4 65.0 Bib core for blood by constant and state of the	102 D
Dibenzo[a,h]anthracene 180 22.2 D 80.0 134.0 J 22.4 108 D 134 32.3 6.79 116 D 13.9 34.6 Fluoranthene 18000 321 D 577 2260 J 305 1150 D 1040 1540 38.0 1180 D 133 106	44.3 D 205 D
	85.6 D
Indeno[1,2,3-c,d]pyrene 1300 28.6 D 241 183 19.2 304 D 387 66.8 3.26 319 D 27.8 58.1 Phenanthrene 7200 122 D 271 896 J 139 623 D 540 846 72.4 648 D 84.8 79.3	U10.cg
Prieriantifierie 7200 122 D 271 896 J 139 623 D 340 646 72.4 646 D 64.6 79.3 Pyrene 372 D 2320 1950 J 339 1740 D 2940 1450 54.2 1830 D 156 145	
Total HPAH 79500 1064 5317 7235 1082 6290 7816 4393 153 6655 624 809	148 D 241 D

- 1. Sample ID in colored font SD-CONF001-A indicates that sample was validated.
- 2. Laboratory qualifiers (Q) are defined as follows:
 - U = analyte not detected at reporting limit presented.
 - J = result is estimated.
 - D = reported value if from a dilution.
- 3. Total PCBs calculated by summing detections or, if all not detected, using the highest non-detected value.

Indicates sample removed during re-dredging

Abbreviation(s)

CSL = cleanup screening level

DU = decision unit

DMMU = dredged material management unit

ft = feet

mg/kg = milligram(s) per kilogram

mg/kg-OC = milligram(s) per kilogram, organic-carbon-normalized value

NA = not applicable na = not analyzed

nc = not calculated; TOC <0.5% or >2% PCB = polychlorinated biphenyl

Q = qualifier

RAL = remedial action level

TOC = total organic carbon μg/kg = microgram(s) per kilogram

TABLE 6G

ANALYTICAL RESULTS FOR POSTDREDGE SEDIMENT SAMPLES^{1, 2}

	DU	R	DU 6
	DMMU	R-DN	IMU 15F
	Sample Location	SD-CC	NF072R5
	Sample Date	10/1	0/2019
	Sample ID	SD-CONF072R5-A	SD-CONF072R5-B
	Depth Interval (ft)	0-0.5	0.5-1
Analyte	RAL (CSL)	Result Q	Result Q
Conventionals			
TOC (percent)	NA	0.17	0.33
Metals (mg/kg)		•	•
Arsenic	93	12.1	2.84
Copper	390	95.9	15.9
Lead	530	38.1 J	4.28
Mercury	0.59	0.117 J	0.0428
PCBs (µg/kg)		•	•
Aroclor 1016	NA	2.0 U	2.0 U
Aroclor 1221	NA	2.0 U	2.0 U
Aroclor 1232	NA	2.0 U	2.0 U
Aroclor 1242	NA	2.0 U	2.0 U
Aroclor 1248	NA	6.4	2.1
Aroclor 1254	NA	18.4	4.2
Aroclor 1260	NA	4.9	1.1 J
Aroclor 1262	NA	2.0 U	2.0 U
Aroclor 1268	NA	2.0 U	2.0 U
Total PCBs ³	960	29.7	7.4
Total PCBs (mg/kg-OC)	65	nc	nc
PAHs (µg/kg)		•	
Acenaphthene	860	98.7 D	41.4
Benz[a]anthracene	4100	789 D	17.5
Benzo[a]pyrene	3200	734 D	21.2
Benzo(b)fluoranthene	_	607 J	24.4
Benzo[g,h,i]perylene	470	418 D	12.8
Benzo(k)fluoranthene	_	438 J	12.2
Total benzofluoranthenes	6800	1310 J	48.0
Chrysene	6900	853 J	25.0
Dibenzo[a,h]anthracene	180	120 J	5.00 U
Fluoranthene	18000	1880 J	50.0
Indeno[1,2,3-c,d]pyrene	1300	403 D	10.3
Phenanthrene	7200	1390 D	61.5
Pyrene		2150 J	99.0
Total HPAH	79500	8657	284

Note(s)

- 1. Sample ID in colored font SD-CONF001-A indicates that sample was validated.
- 2. Laboratory qualifiers (Q) are defined as follows:
 - U = analyte not detected at reporting limit presented.
 - J = result is estimated.
 - D = reported value if from a dilution.
- 3. Total PCBs calculated by summing detections or, if all not detected, using the highest non-detected value.

Abbreviation(s)

CSL = cleanup screening level

DU = decision unit

DMMU = dredged material management unit

ft = feet

HPAH = high-molecular-weight polycyclic aromatic hydrocarbon

mg/kg = milligram(s) per kilogram

mg/kg-OC = milligram(s) per kilogram, organic-carbon-normalized value

NA = not applicable

nc = not calculated; TOC <0.5% or >2%

PCB = polychlorinated biphenyl

Q = qualifier

RAL = remedial action level TOC = total organic carbon μg/kg = microgram(s) per kilogram

TABLE 6H

ANALYTICAL RESULTS FOR POSTDREDGE SEDIMENT SAMPLES 1, 2

	DU		7				7							7	7				
	DMMU		11A				11A							11	IB				
	Sample Location	SD-	CONF075				SD-CONF076						SD	-co	NF077				
	Sample Date	11	/5/2018				11/5/2018						1	11/5/	2018				
	Sample ID	SD-CONF075-	A SD-CONF075	5-В	SD-CONF07	6-A	SD-CONF076-B	SD-CONF0	76-C	SD-CONF07	7-A	SD-CONF077-B	SD-CONF077	7-C	SD-CONF07	77-D	SD-CONF07	7-E	SD-CONF077-F
	Depth Interval (ft)	0-0.5	0.5-1		0-0.5		0.5-1	1-1.5		0-0.5		0.5-1	1-1.5		1.5-2		2-2.5		2.5-3
Analyte	RAL (CSL)	Result (Q Result	Q	Result	Q	Result Q	Result	Q	Result	Q	Result Q	Result	Q	Result	Q	Result	Q	Result Q
Conventionals	, ,	•																	
TOC (percent)	NA	2.06	0.50		1.09		1.13	1.25		1.54		0.78	0.55		0.45		0.11	J	0.21
Metals (mg/kg)		•	•																
Arsenic	93	41.0	12.5		18.8		18.6	4.77		63.5		43.4	30.2		4.30		4.92		2.63
Copper	390	280	68.9		230	J	280	109		646		1320	1340		253		85.2	J	15.4
Lead	530	164	32.0		63.5		57.4	24.9		206		273	188		33.4		19.7		2.65
Mercury	0.59	0.596	0.0995		1.51	J	0.867	1.60		3.14		7.79	17.2		3.20		0.0697	J	0.0467
PCBs (μg/kg)																			
Aroclor 1016	NA	2.0 U	1.9 U	J	1.9 l	J	1.9 U	1.9	U	2.0	U	2.0 U	2.0 L	J	2.0		2.0	U	2.0 U
Aroclor 1221	NA	2.0 U	1.9 U	J	1.9 (J	1.9 U	1.9	U	2.0	U	2.0 U	2.0 L	J	2.0	U	2.0	U	2.0 U
Aroclor 1232	NA	2.0 U	1.9 U		1.9 (1.9 U	1.9	U	2.0		2.0 U	2.0 L		2.0		2.0		2.0 U
Aroclor 1242	NA	2.0 U	1.9 U	J	1.9 (J	1.9 U	1.9	U	2.0	U	2.0 U	2.0 L	J	2.0	U	2.0	U	2.0 U
Aroclor 1248	NA	343 D	17.5		50.9		65.9	19.2		1020		118	38.8		19.5		3.6		2.0
Aroclor 1254	NA	564 D	27.4		83.3		110	16.6		1650		186	77.7		29.7		4.2		1.7 J
Aroclor 1260	NA	121 J	6.8		20.5		22.5	5.3		97.9		37.3	27.6		14.7		1.1	J	0.7 J
Aroclor 1262	NA	2.0 U	1.9 U		1.9 l		1.9 U	1.9		2.0		2.0 U	2.0 L		2.0		2.0		2.0 U
Aroclor 1268	NA	2.0 U	1.9 U	J	1.9 l	J	1.9 U	1.9	U	2.0	U	2.0 U	2.0 L)	2.0	U	2.0	U	2.0 U
Total PCBs ³	960	1028 J	51.7		154.7	J	198.4	41.1		2768	J	341	144 J		63.9		8.9	J	4.4 J
Total PCBs (mg/kg OC)	65	49.9 J	10.3		14.2	J	17.6	3.3		179.7		43.8	26.2		nc		nc		nc

TABLE 6H

ANALYTICAL RESULTS FOR POSTDREDGE SEDIMENT SAMPLES 1, 2

	DU				7					7	
	DMMU				11C					11C	
	Sample Location				SD-CONF078					SD-CONF079	
	Sample Date				10/31/2018					10/30/2018	
	Sample ID	SD-CONF078-A	SD-CONF078-B	SD-CONF078-C	SD-CONF078-D	SD-CONF078-E	SD-CONF078-F	SD-CONF078-G	SD-CONF079-A	SD-CONF079-B	SD-CONF079-C
	Depth Interval (ft)	0-0.5	0.5-1	1-1.5	1.5-2	2-2.5	2.5-3	3-3.5	0-0.5	0.5-1	1-1.5
Analyte	RAL (CSL)	Result Q									
Conventionals	,										
TOC (percent)	NA	1.70	1.66	1.36	1.41	1.26	0.75 J	2.03	0.33 J	1.68	0.95
Metals (mg/kg)											
Arsenic	93	132	80.5	76.9	50.5	17.7	7.93	14.2	3.53 J	3.23	8.49
Copper	390	1100	903	988	844	584	36.6 J	17.6	23.1 J	21.7	337
Lead	530	627	574	474	397	110	11.4 J	2.67	5.57	4.85	53.6
Mercury	0.59	7.80	9.66	6.01	9.24	4.21	0.152 J	0.127	0.0414 J	0.156	1.37
PCBs (μg/kg)											
Aroclor 1016	NA	195 U	1960 U	96.4 U	40.9 U	10.0 U	2.0 U	1.9 U	2.0 U	1.9 U	2.0 U
Aroclor 1221	NA	195 U	1960 U	96.4 U	40.9 U	10.0 U	2.0 U	1.9 U	2.0 U	1.9 U	2.0 U
Aroclor 1232	NA	195 U	1960 U	96.4 U	40.9 U	10.0 U	2.0 U	1.9 U	2.0 U	1.9 U	2.0 U
Aroclor 1242	NA	195 U	1960 U	96.4 U	40.9 U	10.0 U	2.0 U	1.9 U	2.0 U	1.9 U	2.0 U
Aroclor 1248	NA	1990	5330	888	326	10.0 U	14.7	4.5	12.4	1.9 U	18.0
Aroclor 1254	NA	3610	10300	2800	669	138	29.3	3.4	21.5	3.8	26.5
Aroclor 1260	NA	1000	2460	919	228	30.2	8.5 J	2.1	5.7 J	1.5 J	15.3
Aroclor 1262	NA	195 U	1960 U	96.4 U	40.9 U	10.0 U	2.0 U	1.9 U	2.0 U	1.9 U	2.0 U
Aroclor 1268	NA	195 U	1960 U	96.4 U	40.9 U	10.0 U	2.0 U	1.9 U	2.0 U	1.9 U	2.0 U
Total PCBs ³	960	6600	18090	4607	1223	168	52.5 J	10.0	39.6 J	5.3 J	59.8
Total PCBs (mg/kg OC)	65	388	1090	339	87	13	7.0 J	0.49	nc	0.32	6.29

TABLE 6H

ANALYTICAL RESULTS FOR POSTDREDGE SEDIMENT SAMPLES 1, 2

	DU		7		7		7			7
	DMMU		12A	1:	2A		12A		12	2A
	Sample Location	SD-C	ONF080		ONF280 of SD-CONF080)		SD-CONF081		SD-CC	NF128
	Sample Date	11/	7/2018	11/7	/2018		11/8/2018		11/8/	/2018
	Sample ID	SD-CONF080-A	SD-CONF080-B	SD-CONF280-A	SD-CONF280-B	SD-CONF081-A	SD-CONF081-B	SD-CONF081-C	SD-CONF128-A	SD-CONF128-B
	Depth Interval (ft)	0-0.5	0.5-1	0-0.5	0.5-1	0-0.5	0.5-1	1-1.5	0-0.5	0.5-1
Analyte	RAL (CSL)	Result Q	Result Q	Result Q	Result Q	Result Q	Result Q	Result Q	Result Q	Result Q
Conventionals	, ,	•		·						
TOC (percent)	NA	0.22	0.53	0.25	0.54	0.40	0.45 J	0.96	0.63 J	0.77
Metals (mg/kg)			•							
Arsenic	93	34.4	4.72	41.3	3.10	74.2	73.9 J	44.1	10.3 J	22.8
Copper	390	165 J	27.9	147	21.0	383	530 J	125	109 J	276
Lead	530	50.5	6.33	72.1	4.84	161	176 J	88.1	131 J	156
Mercury	0.59	0.115 J	0.102	0.104	0.0536	4.75	1.28 J	0.316	0.401 J	0.752
PCBs (μg/kg)										
Aroclor 1016	NA	1.9 U	1.9 U	1.9 U	2.0 U	2.0 U	1.9 U	2.0 U	2.0 U	1.9 U
Aroclor 1221	NA	1.9 U	1.9 U	1.9 U	2.0 U	2.0 U	1.9 U	2.0 U	2.0 U	1.9 U
Aroclor 1232	NA	1.9 U	1.9 U	1.9 U	2.0 U	2.0 U	1.9 U	2.0 U	2.0 U	1.9 U
Aroclor 1242	NA	1.9 U	1.9 U	1.9 U	2.0 U	2.0 U	1.9 U	2.0 U	2.0 U	1.9 U
Aroclor 1248	NA	104 D	3.0	60.1	1.9 J	203	464 D	232 J	116	225
Aroclor 1254	NA	167 D	3.5	122	2.4	368	828 D	492	199	372
Aroclor 1260	NA	26 J	1.2 J	14.0	1.2 J	34.5	129 D	118 J	46.8	95.2
Aroclor 1262	NA	1.9 U	1.9 U	1.9 U	2.0 U	2.0 U	1.9 U	2.0 U	2.0 U	1.9 U
Aroclor 1268	NA	1.9 U	1.9 U	1.9 U	2.0 U	2.0 U	1.9 U	2.0 U	2.0 U	1.9 U
Total PCBs ³	960	297 J	7.7 J	196.1	5.5 J	606	1421	842	362	692.2
Total PCBs (mg/kg OC)	65	nc	1.5	nc	1.0	nc	nc	87.7	57.4 J	89.9

TABLE 6H

ANALYTICAL RESULTS FOR POSTDREDGE SEDIMENT SAMPLES 1, 2

		1						T									
	DU			7									7				
	DMMU			12B								1	2C				
	Sample Location			SD-CONF0	82							SD-C	ONF083				
	Sample Date			12/3/2018	3							11/1:	2/2018				
	Sample ID	SD-CONF08	2-A	SD-CONF08	2-B	SD-CONF08	32-C	SD-CONF083-A	SD-C	NF083	-В	SD-CONF083-C	SD-CONF	083-D	SD-CONF083-I	SD-CO	NF083-F
	Depth Interval (ft)	0-0.5		0.5-1		1-1.5		0-0.5).5-1		1-1.5	1.5-2		2-2.5	2.	.5-3
Analyte	RAL (CSL)	Result	Q	Result	Q	Result	Q	Result Q	Res	ult	Q	Result Q	Result	Q	Result C	Resu	lt Q
Conventionals	, ,							-									
TOC (percent)	NA	0.63		0.40		0.30	J	0.83		1.60		0.94	1.7	3	1.15		1.53
Metals (mg/kg)									-								•
Arsenic	93	55.8		110		15.3	J	47.8		72.7		55.1	21	7	131		178
Copper	390	537		898		102	J	1660		1370		1500	118	0	1200	1	1540
Lead	530	230		382		33.8	J	607		426		421	58	3	554		594
Mercury	0.59	3.41		3.07		0.798	J	5.04		3.09		3.04	10.	2	11.8		13.2
PCBs (μg/kg)																	
Aroclor 1016	NA	2.0	U	2.0	U	9.9	U	199 U		195 U		195 U	168	0 U	239 U		129 U
Aroclor 1221	NA	2.0	U	2.0	U	9.9	U	199 U		195 U		195 U	168	0 U	239 U		129 U
Aroclor 1232	NA	2.0		2.0		9.9	U	199 U		195 U		195 U	168	0 U	239 U		129 U
Aroclor 1242	NA	2.0	U	2.0	U	9.9		199 U		195 U		195 U	168	0 U	239 U		129 U
Aroclor 1248	NA	494		654		64.7	D	5100		2900		195 U	168		1780		1710
Aroclor 1254	NA	961		1400		119		8460		5080		9340	1850	0	3490		3630
Aroclor 1260	NA	284		235		43.9		1110		2190		1840	179		545		800
Aroclor 1262	NA	2.0		2.0		9.9		199 U		195 U		195 U	168		239 U		129 U
Aroclor 1268	NA	2.0	U	2.0	U	9.9	U	199 U		195 U		195 U	168	0 U	239 U		129 U
Total PCBs ³	960	1739		2289		227.6	J	14670	1	0170		11180	2029	0	5815	6	6140
Total PCBs (mg/kg OC)	65	276.0		nc		nc		1767		636		1189	117	3	506		401

TABLE 6H

ANALYTICAL RESULTS FOR POSTDREDGE SEDIMENT SAMPLES 1, 2

	DU			7			7	
	DMMU			12C			12C	
	Sample Location		SD-C	DNF083R2			SD-CONF084	
	Sample Date		1/	5/2019			11/12/2018	
	Sample ID	SD-CONF083R2-G	SD-CONF083R2-H	SD-CONF083R2-I	SD-CONF083R2-J	SD-CONF084-A	SD-CONF084-B	SD-CONF084-C
	Depth Interval (ft)	3-3.5	3.5-4	4-4.5	4.5-5	0-0.5	0.5-1	1-1.5
Analyte	RAL (CSL)	Result Q	Result C	Result Q	Result Q	Result Q	Result Q	Result Q
Conventionals								
TOC (percent)	NA	0.20 J	0.71	0.43	1.42	1.25	0.59	0.15 J
Metals (mg/kg)		·						·
Arsenic	93	2.50	1.77	2.05	2.46	104	76.1	8.59 J
Copper	390	7.45	9.91	10.7	10.1	949	1100	125 J
Lead	530	1.25	1.51	1.38	1.30	372	192	30.0 J
Mercury	0.59	0.00976 J	0.0770	0.0142 J	0.0116 J	5.64	2.00	0.170 J
PCBs (µg/kg)								
Aroclor 1016	NA	1.5 U	1.5 U	1.6 U	1.6 U	196 U	98.9 U	9.6 U
Aroclor 1221	NA	1.5 U	1.5 U	1.6 U	1.6 U	196 U	98.9 U	9.6 U
Aroclor 1232	NA	1.5 U	1.5 U	1.6 U	1.6 U	196 U	98.9 U	9.6 U
Aroclor 1242	NA	1.5 U	1.5 U	1.6 U	1.6 U	196 U	98.9 U	9.6 U
Aroclor 1248	NA	1.5 U	1.5 U	1.6 U	1.6 U	1190	658	187 D
Aroclor 1254	NA	2.4	1.6	1.6 U	1.6 U	1910	968	273 D
Aroclor 1260	NA	0.6 J	1.5 U	1.6 U	1.6 U	457	146	64.2 J
Aroclor 1262	NA	1.5 U	1.5 U	1.6 U	1.6 U	196 U	98.9 U	9.6 U
Aroclor 1268	NA	1.5 U	1.5 U	1.6 U	1.6 U	196 U	98.9 U	9.6 U
Total PCBs ³	960	3.0 J	1.6	1.6 U	1.6 U	3557	1772	524.2 J
Total PCBs (mg/kg OC)	65	nc	0.23	nc	0.11 U	285	300	nc

TABLE 6H

ANALYTICAL RESULTS FOR POSTDREDGE SEDIMENT SAMPLES 1, 2

	DU		7	,		7						7	7			
	DMMU		12	D	13	ЗА						13	BB			
	Sample Location	SD	-co	NF085	SD-CO	NF086					s	D-CO	NF087			
	Sample Date	1′	1/12/	/2018	11/8/	/2018						12/3/	2018			
	Sample ID	SD-CONF085	-A	SD-CONF085-B	SD-CONF086-A	SD-CONF086-B	SD-CONF	087-A	SD-CONF087	7-B	SD-CONF08	37-C	SD-CONF08	7-D	SD-CONF087-E	SD-CONF087-F
	Depth Interval (ft)	0-0.5		0.5-1	0-0.5	0.5-1	0-0.	5	0.5-1		1-1.5		1.5-2		2-2.5	2.5-3
Analyte	RAL (CSL)	Result	Q	Result Q	Result Q	Result Q	Result	Q	Result	Q	Result	Q	Result	Q	Result Q	Result Q
Conventionals				·											·	_
TOC (percent)	NA	0.70		0.90 J	0.81	0.91 J	1.6	33	0.75		0.68		0.28	J	0.29	0.28
Metals (mg/kg)																
Arsenic	93	103		16.2 D	226	43.8 J	77	.2	62.0		93.2		17.4		2.19	2.39
Copper	390	886		86.0 D	796	163 J	77	74	597		506		74.8		12.9	14.7
Lead	530	283		20.2 D	219	63.2 J	30)3	262		236		88.3		1.98	2.39
Mercury	0.59	2.65		0.0489 J	1.90	0.342 J	5.0)4	2.80		3.33		0.283	J	0.0366	0.0506
PCBs (µg/kg)																
Aroclor 1016	NA	50.5 U		1.9 U	2.0 U	2.0 U	19	.9 U	19.1 L	J	19.9	U	19.5	U	2.0 U	2.0 U
Aroclor 1221	NA	50.5 U		1.9 U	2.0 U	2.0 U	19	.9 U	19.1 L		19.9		19.5	U	2.0 U	2.0 U
Aroclor 1232	NA	50.5 U		1.9 U	2.0 U	2.0 U	19	.9 U	19.1 L	J	19.9	U	19.5	U	2.0 U	2.0 U
Aroclor 1242	NA	50.5 U		1.9 U	2.0 U	2.0 U	19	.9 U	19.1 L	J	19.9	U	19.5	U	2.0 U	2.0 U
Aroclor 1248	NA	570		22.9	381	119	152	20	671		469		46.5	D	4.2	3.8
Aroclor 1254	NA	964		36.2	899	212	23	10	1350		860		75.3	D	4.3	5.1 J
Aroclor 1260	NA	190		7.6 J	121	39.9 J	43	35	206		294		14.6	J, D	1.2 J	1.2 J
Aroclor 1262	NA	50.5 U		1.9 UJ	2.0 U	2.0 U		.9 U	19.1 U	J	19.9	U	19.5	U	2.0 U	2.0 U
Aroclor 1268	NA	50.5 U		1.9 UJ	2.0 U	2.0 U	19	.9 U	19.1 U	J	19.9	U	19.5	U	2.0 U	2.0 U
Total PCBs ³	960	1724		66.7 J	1401	370.9 J	426	65	2227		1623		136.4	J	9.7	10.1
Total PCBs (mg/kg OC)	65	246		7.4	173	40.8 J	261	.7	296.9		238.7		nc		nc	nc

Page 6 of 10

TABLE 6H

ANALYTICAL RESULTS FOR POSTDREDGE SEDIMENT SAMPLES 1, 2

	DU			7				7			
	DMMU		1;	3B				13C			
	Sample Location	s	D-CC	NF088				SD-CONFO	89		
	Sample Date		12/3/	2018				12/5/201	8		
	Sample ID	SD-CONF08	88-A	SD-CONF08	38-B	SD-CONF08	9-A	SD-CONF08	39-B	SD-CONFO	89-C
	Depth Interval (ft)	0-0.5		0.5-1		0-0.5		0.5-1		1-1.5	
Analyte	RAL (CSL)	Result	Q	Result	Q	Result	Q	Result	Q	Result	Q
Conventionals											
TOC (percent)	NA	1.27		1.02	J	0.59		0.76		0.23	J
Metals (mg/kg)											
Arsenic	93	39.4		24.9	J	87.9		53.6		2.91	J
Copper	390	442		61.9		1350		574		13.7	J
Lead	530	135		26.4		277		173		2.65	J
Mercury	0.59	3.69		0.110	J	3.60		2.31		0.0142	J
PCBs (μg/kg)											
Aroclor 1016	NA	2.0	U	1.9	U	98.9	U	19.7	U	1.9	U
Aroclor 1221	NA	2.0	U	1.9	U	98.9	U	19.7	U	1.9	U
Aroclor 1232	NA	2.0	U	1.9	U	98.9	U	19.7	U	1.9	U
Aroclor 1242	NA	2.0	U	1.9	U	98.9	U	19.7	U	1.9	U
Aroclor 1248	NA	461		14.9		1030		439		9.8	
Aroclor 1254	NA	914		19.0		1690		1670		11.3	
Aroclor 1260	NA	82.4		3.3		286		292		2.4	
Aroclor 1262	NA	2.0	U	1.9	U	98.9	U	19.7	U	1.9	U
Aroclor 1268	NA	2.0	U	1.9	U	98.9	U	19.7	U	1.9	U
Total PCBs ³	960	1457		37.2		3006		2401		23.5	
Total PCBs (mg/kg OC)	65	114.8		3.6		509.5		315.9		nc	

TABLE 6H

ANALYTICAL RESULTS FOR POSTDREDGE SEDIMENT SAMPLES 1, 2

	DU							7	7							
	DMMU							13	BC							
	Sample Location							SD-CO	NF090							
	Sample Date							12/5/	2018							
	Sample ID	SD-CONF09	0-A	SD-CONF0	90-B	SD-CONF09	90-C	SD-CONF090-D	SD-CONF09	90-E	SD-CONF09	90-F	SD-CONF09	0-G	SD-CONF0	90-H
	Depth Interval (ft)	0-0.5		0.5-1		1-1.5		1.5-2	2-2.5		2.5-3		3-3.5		3.5-4	
Analyte	RAL (CSL)	Result	Q	Result	Q	Result	Q	Result Q	Result	Q	Result	Q	Result	Q	Result	Q
Conventionals																
TOC (percent)	NA	0.49		0.40		0.42	J	0.23	0.43		0.65		0.35		0.57	·T
Metals (mg/kg)																
Arsenic	93	128		60.0		6.22	J	2.37	3.12		3.23		3.50		3.07	7
Copper	390	1060		265		34.9	J	10.5	15.2		21.5		22.9		19.7	,
Lead	530	354		157		11.0	J	1.49	1.82		2.69		3.24		2.89)
Mercury	0.59	2.73		1.91		0.0902	J	0.0285	0.0349		0.0433		0.0566		0.0427	′
PCBs (µg/kg)																
Aroclor 1016	NA	49.3	U	9.6	U	2.0	U	2.0 U	2.0	U	2.0	U	2.0	U	1.9) U
Aroclor 1221	NA	49.3		9.6		2.0	U	2.0 U	2.0	U	2.0		2.0			U
Aroclor 1232	NA	49.3	U	9.6	U	2.0	U	2.0 U	2.0	U	2.0	U	2.0		1.9) U
Aroclor 1242	NA	49.3	U	9.6	U	2.0	U	2.0 U	2.0	U	2.0	U	2.0		1.9	U
Aroclor 1248	NA	1040		131		10.6		2.0 U	2.0		2.0	U	2.0			U
Aroclor 1254	NA	1990		326		18.1		2.0 U	2.0		2.0		1.5		2.5	
Aroclor 1260	NA	314		113		9.5		2.0 U	2.0	U	2.0	U	0.7	J	0.8	J J
Aroclor 1262	NA	49.3	U	9.6	U	2.0	Ú	2.0 U	2.0	U	2.0	U	2.0	U	1.9	U
Aroclor 1268	NA	49.3	U	9.6	U	2.0	Ú	2.0 U	2.0	U	2.0	U	2.0	U	1.9	U
Total PCBs ³	960	3344		570		38.2		2.0 U	2.0	U	2.0	U	2.2		3.3	5
Total PCBs (mg/kg OC)	65	nc		nc		nc		nc	nc		0.31	U	nc		0.58	3

TABLE 6H

ANALYTICAL RESULTS FOR POSTDREDGE SEDIMENT SAMPLES 1, 2

	DU							7	7							
	DMMU							13	BC							
	Sample Location						SD-C	ONF290 (field dup	licate of SD-0	CONI	F090)					
	Sample Date							12/5/	2018							
	Sample ID	SD-CONF29	0-A	SD-CONF2	90-B	SD-CONF29	90-C	SD-CONF290-D	SD-CONF29	0-E	SD-CONF290)-F	SD-CONF29	90-G	SD-CONF2	:90-H
	Depth Interval (ft)	0-0.5		0.5-1		1-1.5		1.5-2	2-2.5		2.5-3		3-3.5		3.5-4	
Analyte	RAL (CSL)	Result	Q	Result	Q	Result	Q	Result Q	Result	Q	Result	Q	Result	Q	Result	Q
Conventionals																
TOC (percent)	NA	0.68		0.70		0.61		0.31	0.37		0.48		0.54		0.37	Т
Metals (mg/kg)																
Arsenic	93	116		43.1		54.6		2.41	3.44		2.61		3.63		2.85	5
Copper	390	913		605		393		12.4	20.2		18.2		21.2		15.2	2
Lead	530	386		79.2		211		1.72	2.53		2.42		2.83		2.04	Į.
Mercury	0.59	6.02		1.55		4.33		0.0247	0.0358		0.0365		0.0514		0.0416	j
PCBs (µg/kg)																
Aroclor 1016	NA	49.7	U	49.1	U	9.9	U	1.9 U	2.0	U	2.0 L	J	2.0	U	2.0	U
Aroclor 1221	NA	49.7	U	49.1	U	9.9	U	1.9 U	2.0	U	2.0 U	J	2.0	U	2.0) U
Aroclor 1232	NA	49.7	U	49.1	U	9.9	U	1.9 U	2.0	U	2.0 L	J	2.0	U	2.0) U
Aroclor 1242	NA	49.7	U	49.1	U	9.9	U	1.9 U	2.0	U	2.0 L	J	2.0	U	2.0) U
Aroclor 1248	NA	2270		88.9		96.4		1.9 U	2.0	U	2.0 U	J	2.0	U	2.0) U
Aroclor 1254	NA	1880		161		218		1.9 U	2.0	U	2.0 U	J	2.5		2.0) U
Aroclor 1260	NA	391		34.7	J	53.7		1.9 U	2.0	U	2.0 U		2.0	U) U
Aroclor 1262	NA	49.7	U	49.1		9.9		1.9 U	2.0		2.0 U		2.0	U) U
Aroclor 1268	NA	49.7	U	49.1	U	9.9	U	1.9 U	2.0	U	2.0 U	J	2.0	U	2.0) U
Total PCBs ³	960	4541		284.6		368.1		1.9 U	2.0	U	2.0 U	J	2.5		2.0	U
Total PCBs (mg/kg OC)	65	667.8		40.7		60.3		nc	nc		nc		0.5		no	:

TABLE 6H

ANALYTICAL RESULTS FOR POSTDREDGE SEDIMENT SAMPLES 1, 2

	DU							7			1		,	
								BD				13	·E	
	DMMU						13	עפ				13)E	
	Sample Location					S	D-CO	NF091			S	D-CO	NF092	
	Sample Date						12/5/	2018			,	11/13	/2018	
	Sample ID	SD-CONF091	I-A	SD-CONF09	1-B	SD-CONF09	91-C	SD-CONF091-D	SD-CONF091-E	SD-CONF091-F	SD-CONF09	2-A	SD-CONF09	92-B
	Depth Interval (ft)	0-0.5		0.5-1		1-1.5		1.5-2	2-2.5	2.5-3	0-0.5		0.5-1	
Analyte	RAL (CSL)	Result	Q	Result	Q	Result	Q	Result Q	Result Q	Result Q	Result	Q	Result	Q
Conventionals														
TOC (percent)	NA	0.48		0.31		0.65		0.37	0.33 J	1.17	2.43	J	1.80	
Metals (mg/kg)														
Arsenic	93	163		176		154		122	6.95	2.80	9.99		8.46	
Copper	390	803		1460		1090		853	18.9	14.5	55.6	J	44.6	,
Lead	530	427		466		594		191	14.7	1.84	8.70		6.66	,
Mercury	0.59	2.55		8.91		2.53		2.54	0.0411 J	0.0266	0.122		0.0825	,
PCBs (μg/kg)														
Aroclor 1016	NA	99.3 U	J	10 l	U	39.4	U	9.9 U	1.9 U	2.0 U	1.9	U	2.0	U
Aroclor 1221	NA	99.3 U	J	10 l	U	39.4	U	9.9 U	1.9 U	2.0 U	1.9	U	2.0	
Aroclor 1232	NA	99.3 U	J	10 l	U	39.4	U	9.9 U	1.9 U	2.0 U	1.9	U	2.0	
Aroclor 1242	NA	99.3 U	J	10 l	U	39.4	U	9.9 U	1.9 U	2.0 U	1.9	U	2.0	U
Aroclor 1248	NA	917		2540		1230		367	11.5	2.0 U	1.9	U	2.0	
Aroclor 1254	NA	1880		4660		2290		635	22.8	1.1 J	1.7	J	2.0	U
Aroclor 1260	NA	575		472		488		121	6.8	2.0 U	0.9	J	2.0	
Aroclor 1262	NA	99.3 U		10 (39.4		9.9 U	1.9 U	2.0 U	1.9		2.0	
Aroclor 1268	NA	99.3 U	J	10 (U	39.4	U	9.9 U	1.9 U	2.0 U	1.9	U	2.0	U
Total PCBs ³	960	3372		7672		4008		1123	41.1	1.1 J	2.6	J	2.0	U
Total PCBs (mg/kg OC)	65	nc		nc		616.6		nc	nc	0.09 J	0.11		0.11	U

- 1. Sample ID in colored font SD-CONF001-A indicates that sample was validated.
- 2. Laboratory qualifiers (Q) are defined as follows:
- U = analyte not detected at reporting limit presented.
- J = result is estimated.
- D = reported value if from a dilution.
- 3. Total PCBs calculated by summing detections or, if all not detected, using the highest non-detected value.

Indicates sample removed during re-dredging

Abbreviation(s)

CSL = cleanup screening level

DU = decision unit

DMMU = dredged material management unit

ft = feet

mg/kg = milligram(s) per kilogram

mg/kg-OC = milligram(s) per kilogram, organic-carbon-normalized value

NA = not applicable

nc = not calculated; TOC <0.5% or >2% PCB = polychlorinated biphenyl

Q = qualifier

RAL = remedial action level TOC = total organic carbon μg/kg = microgram(s) per kilogram

TABLE 6I

ANALYTICAL RESULTS FOR POSTDREDGE SEDIMENT SAMPLES 1, 2

	DU	1	8	T	8		8		8	8		8
	DMMU	8	В	()A	9	9A	9	В	9B	9	В
	Sample Location	SD-CC	NF096	SD-C0	ONF097	SD-CO	ONF098	SD-CC	ONF093	SD-CONF094	SD-CC	ONF099
	Sample Date	10/31	/2018	11/7	/2018	11/7	/2018	10/31	/2018	10/29/2018	10/31	1/2018
	Sample ID	SD-CONF096-A	SD-CONF096-B	SD-CONF097-A	SD-CONF097-B	SD-CONF098-A	SD-CONF098-B	SD-CONF093-A	SD-CONF093-B	SD-CONF094-A	SD-CONF099-A	SD-CONF099-B
	Depth Interval (ft)	0-0.5	0.5-1	0-0.5	0.5-1	0-0.5	0.5-1	0-0.5	0.5-1	0-0.5	0-0.5	0.5-1
Analyte	RAL (CSL)	Result Q										
Conventionals												
TOC (percent)	NA	0.18	0.30	0.17	0.29	0.23	0.23	1.48	0.15	1.47 J	1.08	0.43
Metals (mg/kg)												
Arsenic	93	1.84 J	2.37	14.1	9.27	12.6	2.85	7.84 J	2.07	8.71 J	20.4 J	13.7
Copper	390	12.8 J	15.9	68.6 J	73.7	85.5 J	15.1	49.4 J	12.1	51.4	177 J	120
Lead	530	2.86	3.45	107	65.3	39.3	4.91	16.1	1.79	82.5 J	67.6	42.9
Mercury	0.59	0.0409 J	0.0526	0.117 J	0.0524	0.235 J	0.0254	0.238 J	0.0149	0.22 J	0.573 J	0.22
PCBs (μg/kg)												
Aroclor 1016	NA	1.9 U	2.0 U	2.0 U	2.0 U	2.0 U	1.9 U	2.0 U	2.0 U	10.0 UJ	10.3 U	9.8 U
Aroclor 1221	NA	1.9 U	2.0 U	2.0 U	2.0 U	2.0 U	1.9 U	2.0 U	2.0 U	10.0 UJ	10.3 U	9.8 U
Aroclor 1232	NA	1.9 U	2.0 U	2.0 U	2.0 U	2.0 U	1.9 U	2.0 U	2.0 U	10.0 UJ	10.3 U	9.8 U
Aroclor 1242	NA	1.9 U	2.0 U	2.0 U	2.0 U	2.0 U	1.9 U	2.0 U	2.0 U	10.0 UJ	10.3 U	9.8 U
Aroclor 1248	NA	1.9 U	2.0 U	13.1	14.0	75.8	6.2	13.9	2.0 U	102 J	81.7	88.1
Aroclor 1254	NA	1.9	5.5	24.5	24.8	135	9.3	21.0	1.3	131 J	134	165
Aroclor 1260	NA	0.7 J	2.4 J	7.9 J	12.7 J	27.6	2.8 J	7.9	1.5	35.1 J	53.7 J	44.1
Aroclor 1262	NA	1.9 U	2.0 U	2.0 UJ	2.0 U	2.0 U	1.9 U	2.0 U	2.0 U	10.0 UJ	10.3 U	9.8 U
Aroclor 1268	NA	1.9 U	2.0 U	2.0 UJ	2.0 U	2.0 U	1.9 U	2.0 U	2.0 U	10.0 UJ	10.3 U	9.8 U
Total PCBs ³	960	2.6 J	7.9 J	45.5 J	51.5 J	238	18.3 J	42.8	2.8	268.1 J	269 J	297
Total PCBs (mg/kg-OC)	65	nc	nc	nc	nc	nc	nc	2.9	nc	18.2 J	24.9 J	nc

TABLE 6I

ANALYTICAL RESULTS FOR POSTDREDGE SEDIMENT SAMPLES 1, 2

	DU		8		8		8			8		
	DMMU	9)B	9	В	9	OC .			9C		
	Sample Location	SD-C	ONF100	SD-CO (field duplicate o	NF2100 of SD-CONF100)	SD-CC	ONF095	SD-CONF101		SD-COI	NF101R2	
	Sample Date	10/3	0/2018	10/30	/2018	10/29	9/2018	10/29/2018		12/3	3/2018	
	Sample ID	SD-CONF100-A	SD-CONF100-B	SD-CONF2100-A	SD-CONF2100-B	SD-CONF095-A	SD-CONF095-B	SD-CONF101-A	SD-CONF101R2-B	SD-CONF101R2-C	SD-CONF101R2-D	SD-CONF101R2-E
	Depth Interval (ft)	0-0.5	0.5-1	0-0.5	0.5-1	0-0.5	0.5-1	0-0.5	0.5-1	1-1.5	1.5-2	2-2.5
Analyte	RAL (CSL)	Result Q	Result Q	Result Q	Result Q	Result Q	Result Q	Result Q	Result Q	Result Q	Result Q	Result Q
Conventionals												
TOC (percent)	NA	0.55 J	0.38	0.55	0.60	1.00 J	1.04	0.96	na	0.74 J	na	na
Metals (mg/kg)		•	•	•	•	•	•					•
Arsenic	93	3.06 J	2.61	3.51	2.15	25.5 J	41.9	135	na	17.5	na	na
Copper	390	21.7 J	19.3	124	17.2	287	669	639	na	58.1	na	na
Lead	530	3.34	2.39	3.05	2.03	197 J	896	266	na	109	na	na
Mercury	0.59	0.0654 J	0.0301	0.0298 J	0.0227 J	0.396 J	1.38	2.39	1.59	0.171 J	0.0567	0.0288
PCBs (µg/kg)												
Aroclor 1016	NA	2.0 U	2.0 U	2.0 U	2.0 U	10.0 UJ	49.9 U	49.7 U	na	7.9 U	na	na
Aroclor 1221	NA	2.0 U	2.0 U	2.0 U	2.0 U	10.0 UJ	49.9 U	49.7 U	na	7.9 U	na	na
Aroclor 1232	NA	2.0 U	2.0 U	2.0 U	2.0 U	10.0 UJ	49.9 U	49.7 U	na	7.9 U	na	na
Aroclor 1242	NA	2.0 U	2.0 U	2.0 U	2.0 U	10.0 UJ	49.9 U	49.7 U	na	7.9 U	na	na
Aroclor 1248	NA	2.0 U	2.0 U	2.0 U	2.0 U	77.8 J	387	833	na	133 J	na	na
Aroclor 1254	NA	1.8 J	3.5	1.3 J	2.0 U	128 J	665	752	na	205 D	na	na
Aroclor 1260	NA	0.5 J	1.8 J	2.0 U	2.0 U	56.6 J	314	133	na	53.6 D	na	na
Aroclor 1262	NA	2.0 U	2.0 U	2.0 U	2.0 U	10.0 UJ	49.9 U	49.7 U	na	7.9 U	na	na
Aroclor 1268	NA	2.0 U	2.0 U	2.0 U	2.0 U	10.0 UJ	49.9 U	49.7 U	na	7.9 U	na	na
Total PCBs ³	960	2.3 J	5.3 J	1.3 J	2.0 U	262 J	1366	1718	na	392 J	na	na
Total PCBs (mg/kg-OC)	65	0.42 J	nc	0.24	0.33	26.2 J	131	179	na	53 J	na	na

TABLE 6I

ANALYTICAL RESULTS FOR POSTDREDGE SEDIMENT SAMPLES 1, 2

	DU		8		8	8	8	3		8
	DMMU	1	0A	10	DA .	10B	10	C	10	OC
	Sample Location	SD-CC	ONF102	SD-CC	DNF103	SD-CONF104	SD-CO	NF105	SD-CC	NF106
	Sample Date	11/7	/2018	11/7	/2018	10/31/2018	10/30	/2018	10/29)/2018
	Sample ID	SD-CONF102-A	SD-CONF102-B	SD-CONF103-A	SD-CONF103-B	SD-CONF104-A	SD-CONF105-A	SD-CONF105-B	SD-CONF106-A	SD-CONF106-B
	Depth Interval (ft)	0-0.5	0.5-1	0-0.5	0.5-1	0-0.5	0-0.5	0.5-1	0-0.5	0.5-1
Analyte	RAL (CSL)	Result Q								
Conventionals										
TOC (percent)	NA	0.40	0.45	0.18	0.41	0.32	0.40 J	0.51	0.25	0.21 J
Metals (mg/kg)						_				
Arsenic	93	3.17	3.24	12.5	16.4	13.1 J	11.6 J	2.62	49.3	2.48 J
Copper	390	11.3 J	12.6	71.1 J	99.7	102 J	78.6 J	16.2	216	10.1
Lead	530	2.25	1.56	26.4	41.2	33.8	33.7	2.28	135	4.27 J
Mercury	0.59	0.0186 J	0.0163	0.12 J	0.0742	0.516 J	0.158 J	0.0234	0.844	0.0249 J
PCBs (µg/kg)										
Aroclor 1016	NA	2.0 U	1.9 U	2.0 U	1.9 U	2.0 U	9.6 UJ	1.9 U	47.9 U	1.9 U
Aroclor 1221	NA	2.0 U	1.9 U	2.0 U	1.9 U	2.0 U	9.6 UJ	1.9 U	47.9 U	1.9 U
Aroclor 1232	NA	2.0 U	1.9 U	2.0 U	1.9 U	2.0 U	9.6 UJ	1.9 U	47.9 U	1.9 U
Aroclor 1242	NA	2.0 U	1.9 U	2.0 U	1.9 U	2.0 U	9.6 UJ	1.9 U	47.9 U	1.9 U
Aroclor 1248	NA	2.0 U	1.9 U	19.9	54.4	43.8	56.6 J	1.9 U	447	6.9
Aroclor 1254	NA	0.9 J	1.0 J	30.4	111 J	73.7	91.9 J	0.90 J	788	8.3
Aroclor 1260	NA	2.0 U	1.9 U	9.0 J	28.0 J	15.4 J	18.7 J	1.9 U	181	2.8
Aroclor 1262	NA	2.0 U	1.9 U	2.0 U	1.9 U	2.0 U	9.6 UJ	1.9 U	47.9 U	1.9 U
Aroclor 1268	NA	2.0 U	1.9 U	2.0 U	1.9 U	2.0 U	9.6 UJ	1.9 U	47.9 U	1.9 U
Total PCBs ³	960	0.9 J	1.0 J	59.3 J	193 J	133 J	167 J	0.90 J	1416	18
Total PCBs (mg/kg-OC)	65	nc	nc	nc	nc	nc	nc	0.18 J	nc	nc

- Sample ID in colored font SD-CONF001-A indicates that sample was validated.
- 2. Laboratory qualifiers (Q) are defined as follows:
 - U = analyte not detected at reporting limit presented.
 - J = result is estimated.
 - D = reported value if from a dilution.
- 3. Total PCBs calculated by summing detections or, if all not detected, using the highest non-detected value.

Indicates sample removed during re-dredging

Abbreviation(s)

CSL = cleanup screening level

DU = decision unit

DMMU = dredged material management unit

ft = feet

mg/kg = milligram(s) per kilogram

mg/kg-OC = milligram(s) per kilogram, organic-carbon-normalized value

NA = not applicable

na = not analyzed

nc = not calculated; TOC <0.5% or >2%

PCB = polychlorinated biphenyl

Q = qualifier

RAL = remedial action level

TOC = total organic carbon

TABLE 6J

ANALYTICAL RESULTS FOR POSTDREDGE SEDIMENT SAMPLES 1, 2

	DU	9	<u> </u>	9		9		1 ,	<u> </u>		9	Ι ,			9		
	DMMU	18	F	180	3	18	G	19)F	10	9E	19	- AF		20	 F	
	Sample Location	SD-CO		SD-CON		SD-CO		SD-CO			NF2110	SD-CO	·		SD-COI		
	Sample Date	9/17/2	2019	9/19/2	019	9/19/2	2019	9/19/	2019	9/19/	2019	9/19/	2019		9/19/2	2019	
	Sample ID S	D-CONF107-A	SD-CONF107-B	SD-CONF108-A	SD-CONF108-B	SD-CONF109-A	SD-CONF109-B	SD-CONF110-A	SD-CONF110-E	SD-CONF2110-A	SD-CONF2110-B	SD-CONF111-A	SD-CONF111-B	SD-CONF112-A	SD-CONF112-B	SD-CONF112-C	SD-CONF112-D
	Depth Interval (ft)	0-0.5	0.5-1	0-0.5	0.5-1	0-0.5	0.5-1	0-0.5	0.5-1	0-0.5	0.5-1	0-0.5	0.5-1	0-0.5	0.5-1	1-1.5	1.5-2
Analyte	RAL (SQS)																
Conventionals																	
TOC (percent)	NA	1.69 J	1.53	1.27 J	0.93	0.93 J	0.91	1.45	0.94 J	1.55	1.09 J	0.67 J	0.98	1.67	1.40	1.08 J	na
Metals (mg/kg)						-											
Arsenic	57	8.99	8.01	7.53 J	5.82	5.35 J	4.01	7.81	4.81 J	10.9	6.1 J	3.25	4.73	8.61	9.65	7.48 J	na
Copper	390	36.4	41.1	40.9 J	31.3	31.1 J	23.1	38.2	27.3	55.9	30.1	17.7	12.9	55.8	76.4	42.4 J	na
Lead	530	8.31 J	7.94	19.8 J	10.5	10.4 J	3.64	11.4	8.54	38.5	9.21	2.60	1.53	50.1	47.1	17.3 J	na
Mercury	0.41	0.221 J	0.0916	0.398 J	0.224	0.207 J	0.0586	0.905	0.168 J	1.34	0.135 J	0.0364 J	0.0542	2.14	1.42	0.186 J	0.179
PCBs (μg/kg)																	
Aroclor 1016	NA	2.0 U	2.0 U	2.0 UJ	2.0 U	2.0 U	2.0 U	10.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	20 U	na
Aroclor 1221	NA	2.0 U	2.0 U	2.0 UJ	2.0 U	2.0 U	2.0 U	10.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	20 U	na
Aroclor 1232	NA	2.0 U	2.0 U	2.0 U	2.0 U	2.0 UJ	2.0 U	10.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	20 U	na
Aroclor 1242	NA	2.0 U	2.0 U	2.0 U	2.0 U	2.0 UJ	2.0 U	10.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	20 UJ	na
Aroclor 1248	NA	3.0	3.8	2.3	3.0	8.7	2.0 U	18.8	2.0 U	4.2	2.0 U	2.0 U	2.0 U	5.6	15.9	30.7 J	na
Aroclor 1254	NA	5.2	9.9	5.5 J	6.8	23.5	2.0 U	46.2	1.3 J	10.3	2.0 U	2.0 U	2.0 U	17.7	40.8	51.5 J	na
Aroclor 1260	NA	7.5 J	3.9	5.9	4.7	11.0	2.0 U	15.1	2.0 U	4.4	2.0 U	2.0 U	2.0 U	12.5	22.9	29.8 D	na
Aroclor 1262	NA	2.0 U	2.0 U	2.0 U	2.0 U	2.0 UJ	2.0 U	10.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	20 U	na
Aroclor 1268	NA	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	10.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	20 U	na
Total PCBs	180	15.7 J	17.6	13.7 J	14.5	43.2 J	2.0 U	80.1	1.3 J	18.9	2.0 U	2.0 U	2.0 U	35.8	79.6	112 J	nc
Total PCBs (mg/kg-OC) 12	0.9 J	1.2	1.1 J	1.6	4.6 J	0.2 U	5.5	0.1 J	1.2	0.2 U	0.3	0.2 U	2.1	5.7	10.4 J	nc

Remedial Action Construction and Completion Report

Note(s

- 1. Sample ID in colored font SD-CONF001-A indicates that sample was validated.
- 2. Laboratory qualifiers (Q) are defined as follows:
- U = analyte not detected at reporting limit presented.
- J = result is estimated.
- D = reported value if from a dilution.
- 3. Total PCBs calculated by summing detections or, if all not detected, using the highest non-detected value.

Indicates sample removed during re-dredging

Abbreviation(s)

DU = decision unit

DMMU = dredged material management unit

ft = feet

mg/kg = milligram(s) per kilogram mg/kg-OC = milligram(s) per kilogram, organic-carbon-normalized value NA = not applicable

na = not analyzed

nc = not calculated; TOC <0.5% or >2%

PCB = polychlorinated biphenyl

Q = qualifier

RAL = remedial action level

SQS = Washington State Sediment Quality Standards

TOC = total organic carbon

TABLE 6K

ANALYTICAL RESULTS FOR POSTDREDGE SEDIMENT SAMPLES 1,2

	DU		,	10	
	DMMU		1	9G	
	Sample Location		SD-C	ONF113	
	Sample Date			/2019	
	Sample ID	SD-CONF	113-Δ	SD-CON	F113-B
	Depth Interval (ft)	0-0.5		0.5	
Analyta		Result	Q	Result	Q
Analyte	RAL (SQS)	Resuit	ų	Resuit	Q
Conventionals					
TOC (percent)	NA	0.63		0.45	J
Metals (mg/kg)					
Arsenic	57	3.40		3.67	
Copper	390	21.10		17.1	
Lead	530	7.50		7.99	
Mercury	0.41	0.411		0.112	J
PCBs (µg/kg)					=
Aroclor 1016	NA	2.0	U	2.0	U
Aroclor 1221	NA	2.0	U	2.0	U
Aroclor 1232	NA	2.0	U	2.0	U
Aroclor 1242	NA	2.0	U	2.0	U
Aroclor 1248	NA	8.9		2.3	
Aroclor 1254	NA	24.4		4.1	
Aroclor 1260	NA	8.2		6.2	
Aroclor 1262	NA	2.0	U	2.0	
Aroclor 1268	NA	2.0	U	2.0	U
Total PCBs ³	180	41.5		12.6	
Total PCBs (mg/kg-OC)	12	6.6		nc	

Note(s)

- 1. Sample ID in colored font SD-CONF001-A indicates that sample was validated.
- 2. Laboratory qualifiers (Q) are defined as follows:
 - U = analyte not detected at reporting limit presented.
 - J = result is estimated.
- 3. Total PCBs calculated by summing detections or, if all not detected, using the highest non-detected value.

Indicates sample removed during re-dredging

Abbreviation(s)

DU = decision unit

DMMU = dredged material management unit

mg/kg = milligram(s) per kilogram

mg/kg-OC = milligram(s) per kilogram, organic-carbon-normalized value

NA = not applicable

nc = not calculated: TOC <0.5% or >2%

PCB = polychlorinated biphenyl

Q = qualifier

RAL = remedial action level

SQS = Washington State Sediment Quality Standards

TOC = total organic carbon

ANALYTICAL RESULTS FOR POSTDREDGE SEDIMENT SAMPLES 1,2

TABLE 6L

	DU		•	11	
	DMMU		7	7A	
	Sample Location		SD-CC	ONF114	
	Sample Date		10/23	3/2018	
	Sample ID	SD-CONF11	14-A	SD-CON	IF114-B
	Depth Interval (ft)	0-0.5		0.5	j-1
Analyte	RAL (CSL)	Result	Q	Result	Q
Conventionals	,				
TOC (percent)	NA	2.17		1.46	J
Metals (mg/kg)					
Arsenic	93	110		12.5	
Copper	390	195		42.2	J
Lead	530	163		28.7	J
Mercury	0.59	0.535		0.173	
PCBs (µg/kg)		·			
Aroclor 1016	NA	2.0 U		2.0	U
Aroclor 1221	NA	2.0 U		2.0	U
Aroclor 1232	NA	2.0 U		2.0	
Aroclor 1242	NA	2.0 U		2.0	U
Aroclor 1248	NA	105		23.0	
Aroclor 1254	NA	172		35.9	
Aroclor 1260	NA	60.2		18.2	
Aroclor 1262	NA	2.0 U		2.0	
Aroclor 1268	NA	2.0 U		2.0	U
Total PCBs ³	960	337		77.1	
Total PCBs (mg/kg-OC)	65	15.5		5.3	J

Note(s)

- 1. Sample ID in colored font SD-CONF001-A indicates that sample was validated.
- 2. Laboratory qualifiers (Q) are defined as follows:
 - U = analyte not detected at reporting limit presented.
 - J = result is estimated.
- 3. Total PCBs calculated by summing detections or, if all not detected, using the highest non-detected value.

Indicates sample removed during re-dredging

Abbreviation(s)

CSL = cleanup screening level

DU = decision unit

DMMU = dredged material management unit

ft = feet

mg/kg = milligram(s) per kilogram

mg/kg-OC = milligram(s) per kilogram, organic-carbon-normalized value

NA = not applicable

PCB = polychlorinated biphenyl

Q = qualifier

RAL = remedial action level TOC = total organic carbon

TABLE 6M

ANALYTICAL RESULTS FOR POSTDREDGE SEDIMENT SAMPLES^{1, 2}

	DU		12
	DMMU		6A
	Sample Location	SD-	CONF115
	Sample Date	10	/30/2018
	Sample ID	SD-CONF115-A	SD-CONF115-B
	Depth Interval (ft)	0-0.5	0.5-1
Analyte	RAL (CSL)	Result Q	Result Q
Conventionals	(- /		
TOC (percent)	NA	0.15 J	0.22
Metals (mg/kg)	II.	- 1-	
Arsenic	93	31.5 J	3.14
Copper	390	55 J	10.4
Lead	530	57.8	2.55
Mercury	0.59	0.0182 J	0.0579
PCBs (µg/kg)			
Aroclor 1016	NA	1.9 U	2.0 U
Aroclor 1221	NA	1.9 U	2.0 U
Aroclor 1232	NA	1.9 U	2.0 U
Aroclor 1242	NA	1.9 U	2.0 U
Aroclor 1248	NA	7.1	1.1 J
Aroclor 1254	NA	11.7	1.2 J
Aroclor 1260	NA	3.2 J	0.5 J
Aroclor 1262	NA	1.9 U	2.0 U
Aroclor 1268	NA	1.9 U	2.0 U
Total PCBs ³	960	22.0 J	2.8 J
Total PCBs (mg/kg OC)	65	nc	nc

- 1. Sample ID in colored font SD-CONF001-A indicates that sample was validated.
- 2. Laboratory qualifiers (Q) are defined as follows:
 - U = analyte not detected at reporting limit presented.
 - J = result is estimated.
- 3. Total PCBs calculated by summing detections or, if all not detected, using the highest non-detected value.

Abbreviation(s)

CSL = cleanup screening level

DU = decision unit

DMMU = dredged material management unit

ft = feet

mg/kg = milligram(s) per kilogram

mg/kg-OC = milligram(s) per kilogram, organic-carbon-normalized value

NA = not applicable

nc = not calculated; TOC <0.5% or >2%

PCB = polychlorinated biphenyl

Q = qualifier

RAL = remedial action level TOC = total organic carbon

ANALYTICAL RESULTS FOR POSTDREDGE SEDIMENT SAMPLES^{1, 2}

TABLE 6N

	DU		1	3	
_	DMMU		5	A	
	Sample Location		SD-CC	NF116	
	Sample Date		10/23	3/2018	
	Sample ID	SD-CONF1	16-A	SD-CON	F116-B
	Depth Interval (ft)	0-0.5		0.5	-1
Analyte	RAL (CSL)	Result	Q	Result	Q
Conventionals	, ,	•			
TOC (percent)	NA	0.22 J		0.21	
Metals (mg/kg)					
Arsenic	93	14.2		5.9	
Copper	390	21.8 J		9.4	
Lead	530	17.7 J		7.9	
Mercury	0.59	0.0077 J		0.0285	U
PCBs (µg/kg)	•	•			
Aroclor 1016	NA	2.0 U		2.0	U
Aroclor 1221	NA	2.0 U		2.0	U
Aroclor 1232	NA	2.0 U		2.0	U
Aroclor 1242	NA	2.0 U		2.0	U
Aroclor 1248	NA	2.0 U		2.0	U
Aroclor 1254	NA	1.9 J		1.2	J
Aroclor 1260	NA	1.5 J		1.1	
Aroclor 1262	NA	2.0 U		2.0	
Aroclor 1268	NA	2.0 U		2.0	U
Total PCBs ³	960	3.4 J		2.3	J
Total PCBs (mg/kg OC)	65	nc		nc	

Note(s)

- 1. Sample ID in colored font SD-CONF001-A indicates that sample was validated.
- 2. Laboratory qualifiers (Q) are defined as follows:
 - U = analyte not detected at reporting limit presented.
 - J = result is estimated.
- 3. Total PCBs calculated by summing detections or, if all not detected, using the highest non-detected value.

Abbreviation(s)

CSL = cleanup screening level

DU = decision unit

DMMU = dredged material management unit

ft = feet

mg/kg = milligram(s) per kilogram

mg/kg-OC = milligram(s) per kilogram, organic-carbon-normalized value

NA = not applicable

nc = not calculated; TOC <0.5% or >2%

PCB = polychlorinated biphenyl

Q = qualifier

RAL = remedial action level TOC = total organic carbon

TABLE 60

ANALYTICAL RESULTS FOR POSTDREDGE SEDIMENT SAMPLES 1, 2

	DU					14					
	DMMU					4A					
	Sample Location	9	D-CO	NF117				SD-CONF1	29		
	Sample Date		10/22	/2018				10/23/201	8		
	Sample ID	SD-CONF11	7-A	SD-CONF11	7-B	SD-CONF12	9-A	SD-CONF12	9-B	SD-CONF12	9-C
	Depth Interval (ft)			0.5-1		0-0.5		0.5-1		1-1.5	
Analyte	RAL (CSL)	Result	Q	Result	Q	Result	Q	Result	Q	Result	Q
Conventionals	, - ,										
TOC (percent)	NA	0.84		1.09	J	2.05	J	1.89		1.94	
Metals (mg/kg)											
Arsenic	93	214		84.4		54.6		62.1		63.6	
Copper	390	141		63.8	J	273	J	340		211	
Lead	530	346		124		136	J	243		142	
Mercury	0.59	0.197		0.0404		0.169		0.247		0.396	
PCBs (µg/kg)								•		-	
Aroclor 1016	NA	2.0	U	2.0	U	2.0	U	2.0	U	2.0	U
Aroclor 1221	NA	2.0	U	2.0	U	2.0	U	2.0	U	2.0	U
Aroclor 1232	NA	2.0	U	2.0	U	2.0	U	2.0	U	2.0	U
Aroclor 1242	NA	2.0	U	2.0	U	2.0	U	2.0	U	2.0	U
Aroclor 1248	NA	88.8		4.7		53.4	D	68.2		89.3	
Aroclor 1254	NA	164		7.6		90.5	D	123		129	
Aroclor 1260	NA	50.6		2.5		35.3	J	70.6		44.4	
Aroclor 1262	NA	2.0		2.0		2.0		2.0	U	2.0	
Aroclor 1268	NA	2.0	U	2.0	U	2.0	U	2.0	U	2.0	U
Total PCBs ³	960	303		14.8		179	J	262		263	
Total PCBs (mg/kg OC)	65	36.1		1.4		8.7	J	13.9		13.5	

- 1. Sample ID in colored font SD-CONF001-A indicates that sample was validated.
- 2. Laboratory qualifiers (Q) are defined as follows:
 - U = analyte not detected at reporting limit presented.
- 3. Total PCBs calculated by summing detections or, if all not detected, using the highest non-detected value.

Indicates sample removed during re-dredging

Abbreviation(s)

CSL = cleanup screening level

DU = decision unit

DMMU = dredged material management unit

ft = feet

mg/kg = milligram(s) per kilogram

mg/kg-OC = milligram(s) per kilogram, organic-carbon-normalized value

NA = not applicable

PCB = polychlorinated biphenyl

Q = qualifier

RAL = remedial action level TOC = total organic carbon

ANALYTICAL RESULTS FOR POSTDREDGE SEDIMENT SAMPLES 1, 2

TABLE 6P

	DU				1	5			
F	DMMU				3	A			
	Sample Location			S	D-CC	NF118			
	Sample Date					2019			
	Sample ID	SD-CONF11	ΙΑ_Α	SD-CONF11		SD-CONF11	8-C	SD-CONF11	8-D
-		0-0.5	10-A	0.5-1	0-D	1-1.5	0-0	1.5-2	0-D
	Depth Interval (ft)			7.77					
Analyte	RAL (CSL)	Result	Q	Result	Q	Result	Q	Result	Q
Conventionals									
TOC (percent)	NA	0.52		0.29		na		na	
Metals (mg/kg)									
Arsenic	93	102		94.0		110		130	
Copper	390	492		505		520		443	
Lead	530	181		113		na		na	
Mercury	0.59	0.111		0.0389		na		na	
PCBs (µg/kg)									
Aroclor 1016	NA	9.6	U	1.9	U	na		na	
Aroclor 1221	NA	9.6	U	1.9	U	na		na	
Aroclor 1232	NA	9.6	U	1.9	U	na		na	
Aroclor 1242	NA	9.6	U	1.9	U	na		na	
Aroclor 1248	NA	154		18.7		na		na	
Aroclor 1254	NA	105		30.2		na		na	
Aroclor 1260	NA	53.2		4.6		na		na	
Aroclor 1262	NA	9.6	U	1.9	U	na		na	
Aroclor 1268	NA	9.6	Ü	1.9	U	na		na	
Total PCBs ³	960	312		53.5	J	na		na	
Total PCBs (mg/kg-OC)	65	60.0		nc		na		na	

Note(s)

- 1. Sample ID in colored font SD-CONF001-A indicates that sample was validated.
- 2. Laboratory qualifiers (Q) are defined as follows:
 - U = analyte not detected at reporting limit presented.
 - J = result is estimated.
- 3. Total PCBs calculated by summing detections or, if all not detected, using the highest non-detected value.

Indicates sample removed during re-dredging

Abbreviation(s)

CSL = cleanup screening level

DU = decision unit

DMMU = dredged material management unit

ft = feet

mg/kg = milligram(s) per kilogram

 $\label{eq:mgkg-OC} \textit{mg/kg-OC} = \underset{:}{\textit{milligram}}(s) \; \text{per kilogram, organic-carbon-normalized value}$

na = not analyzed

NA = not applicable

nc = not calculated; TOC <0.5% or >2%

PCB = polychlorinated biphenyl

Q = qualifier

RAL = remedial action level

TOC = total organic carbon μg/kg = microgram(s) per kilogram

TABLE 6Q

ANALYTICAL RESULTS FOR POSTDREDGE SEDIMENT SAMPLES^{1, 2}

	DU					R-15					
	DMMU					R-3A					
	Sample Location					SD-CONF118	BR2				
	Sample Date					10/10/2019	9				
	Sample ID	SD-CONF118	R2-A	SD-CONF11F	R2-B	SD-CONF118I	R2-C	SD-CONF118	R2-D	SD-CONF118I	R2-E
	Depth Interval (ft)	0-0.5		0.5-1		1-1.5		1.5-2		2-2.5	
Analyte	RAL	Result	Q	Result	Q	Result	Q	Result	Q	Result	Q
Conventionals											
TOC (percent)	NA	0.04		na		na		na		na	
Metals (mg/kg)											
Arsenic	93	7.22		35.4		11.8		10.5		12.6	
Copper	390	25.3		141		42.2		109		112	
Lead	530	79.2	J	na		na		na		na	
Mercury	0.59	0.0207	UJ	na		na		na		na	
PCBs (µg/kg)		-				•		-		•	
Aroclor 1016	NA	2.0	U	na		na		na		na	
Aroclor 1221	NA	2.0	U	na		na		na		na	
Aroclor 1232	NA	2.0	U	na		na		na		na	
Aroclor 1242	NA	2.0	U	na		na		na		na	
Aroclor 1248	NA	3.9		na		na		na		na	
Aroclor 1254	NA	7.5		na		na		na		na	
Aroclor 1260	NA	2.5		na		na		na		na	
Aroclor 1262	NA	2.0		na		na		na		na	
Aroclor 1268	NA	2.0	U	na		na		na		na	
Total PCBs ³	960	13.9		na		na		na		na	
Total PCBs (mg/kg-OC)	65	nc		na		na		na		nc	

Note(s)

- 1. Sample ID in colored font SD-CONF001-A indicates that sample was validated.
- 2. Laboratory qualifiers (Q) are defined as follows:
 - U = analyte not detected at reporting limit presented.
 - J = result is estimated.
- 3. Total PCBs calculated by summing detections or, if all not detected, using the highest non-detected value.

Abbreviation(s)

DU = decision unit

DMMU = dredged material management unit

ft = feet

mg/kg = milligram(s) per kilogram

mg/kg-OC = milligram(s) per kilogram, organic-carbon-normalized value

na = not analyzed

NA = not applicable

nc = not calculated; TOC <0.5% or >2%

PCB = polychlorinated biphenyl

Q = qualifier

RAL = remedial action level TOC = total organic carbon

TABLE 6R

ANALYTICAL RESULTS FOR POSTDREDGE SEDIMENT SAMPLES^{1, 2}

	DU				16							16			
	DMMU				1A							1A			
	Sample Location			SD-C	ONF119R2						SD-C	ONF120R2			
	Sample ID	SD-CONF119R2-	A SD-CONF119R2	2-N	SD-CONF119R	2-0	SD-CONF119R2-CO	MP	SD-CONF120R2-A	SD-CONF120	R2-F	SD-CONF120R2	2-G	SD-CONF120R2-C	OM
	Depth Interval (ft)	0-0.5	6.5-7		7-7.5		COMP		0-0.5	2.5-3		3-3.5		COMP	
	Sample Date	12/14/2018	'	12/14/	2018		12/14/2018		12/20/2018		12/20	/2018		12/20/2018	
Analyte	SQS	Result Q	Result	Q	Result	Q	Result	Q	Result Q	Result	Q	Result	Q	Result	Q
Conventionals	!						!		* *			!			
TOC (percent)	NA	0.10 J	0.08		0.12		0.33		0.12 J	2.45	5	0.20		0.32	2
Metals (mg/kg)		*****		I	****						-				
Arsenic	57	43.2 J	3.12		3.02		36.9		4.83 J	3.93	R	2.36		2.89	al
Copper	390	228 J	8.16		9.12		149 J		16.5 J	21.0		8.58		16.	
Lead	530	66.4 J	1.45		1.50		77.3		4.08 J	2.95		1.45		2.15	
Mercury	0.41	0.0266	0.00595	J	0.00981		0.0439		0.0323 UJ	0.0441		0.0274	J	0.0480	
PCBs (µg/kg)	•						'				•	'			•
Aroclor 1016	NA	1.9 U	2.0	U	2.0	U	1.9 L	J	2.0 U	1.9	a LI	1.9 (J	1.9	9 U
Aroclor 1221	NA NA	1.9 U	2.0		2.0		1.9 L		2.0 U	1.9		1.9 (9 U
Aroclor 1232	NA	1.9 U	2.0		2.0		1.9 L		2.0 U	1.9		1.9 (9 U
Aroclor 1242	NA	1.9 U	2.0		2.0	U	1.9 L	J	2.0 U	1.9		1.9 (9 U
Aroclor 1248	NA	12.5	2.0		2.0		23.0		4.3	1.9		1.9 l			9 U
Aroclor 1254	NA	22.7	2.0		2.0		22.6		2.6	1.9		1.9 (9 U
Aroclor 1260	NA	5.7 J	2.0		2.0		8.3		0.8 J	1.9		1.9 l			9 U
Aroclor 1262	NA	1.9 UJ	2.0		2.0		1.9 L		2.0 U	1.9		1.9			9 U
Aroclor 1268	NA	1.9 UJ	2.0		2.0		1.9 L	J	2.0 U	1.9		1.9 (9 U
Total PCBs ³	180	40.9 J	2.0	U	2.0	-	53.9		7.7 J		U	1.9 (U		9 U
Total PCBs (mg/kg-OC)	12	nc	nc		nc		nc		nc	no		nc		no)
PAHs (µg/kg)															
Acenaphthene	240	302 D	32.9		183		5360		376 J	267		471		431	
Benz[a]anthracene	1700	657 D	4.66		1.83		2720		512 J	14.4		293		31.2	
Benzo[a]pyrene	1500	390	1.86		4.89		1180		175 J	5.68		90.6		11.7	
Benzo(b)fluoranthene		470	2.99		4.89		1390		182 J	6.73		106		12.5	
Benzo[g,h,i]perylene	470	152 D	4.95		4.89		424		45 J	4.90		26.6		5.89	
Benzo(k)fluoranthene	4000	218	1.34		4.89		610		102 J	3.40		57.2		6.9	
Total benzofluoranthenes	1800 1700	910 675 D	5.76 4.30		9.78 2.67		2650 3090		377 J 577 J	14.3 16.9		219 376		26.4 39.5	
Chrysene Dibenzo[a,h]anthracene	180	75.7 D	4.30		4.89		141		47.2 D	7.04		14.7		7.5	
Fluoranthene	2400	1960 D	16.8	J	9.17		11500		2100 J	70.3		1340		160	
Indeno[1,2,3-c,d]pyrene	510	168	1.36	J	4.89		468		52.9 D	4.40		28.8		5.96	
Phenanthrene	1500	1140 D	120		367	Ť	16100		1950 J	108		1830		278	
Pyrene		2010 D	21.3		93.9		9180		1400 J	50.1		920		104	
Total HPAH	14000	6998	56.0	J	107.6		31353		5286	188	_	3309		395	

TABLE 6R

ANALYTICAL RESULTS FOR POSTDREDGE SEDIMENT SAMPLES^{1, 2}

	DU			16		16	16	16	16
	DMMU			1A		1B	1B	2A	2A
	Sample Location			0NF2120R2 of SD-CONF120R2)		SD-CONF121	SD-CONF122R2	SD-CONF123R2	SD-CONF124R2
	Sample ID	SD-CONF2120R2-A	SD-CONF2120R2-E	SD-CONF2120R2-F	SD-CONF2120R2-COM	SD-CONF121-A	SD-CONF122R2-A	SD-CONF123R2-A	SD-CONF124R2-A
	Depth Interval (ft)	0-0.5	2-2.5	2.5-3	COMP	0-0.5	0-0.5	0-0.5	0-0.5
	Sample Date		12/20	/2018	12/20/2018	12/14/2018	12/17/2018	12/17/2018	12/14/2018
Analyte	sqs	Result Q	Result Q	Result Q	Result Q	Result Q	Result Q	Result Q	Result Q
Conventionals	•		•	· · · · · · · · · · · · · · · · · · ·		<u>, </u>	<u> </u>		
TOC (percent)	NA	0.38J	0.84	1.57	0.43	19.0	1.18	0.21	1.19
Metals (mg/kg)	-		ļ	ļ		-	<u> </u>	<u> </u>	-
Arsenic	57	11.9 J	5.30	5.68	3.05	96.6	5.43	93.5	11.7
Copper	390	27.3 J	26.6	30.3	18.3	180	23.3	248	37.2
Lead	530	8.07 J	3.76	4.33	3.00	162	12.5	140	12.5
Mercury	0.41	0.0428 UJ	0.0815	0.107	0.0510	0.179	0.154	0.0292	0.0684
PCBs (µg/kg)	!		'	-		•	-	-	
Aroclor 1016	NA	2.0 U	2.0 U	2.0 U	2.0 U	9.9 U	2.0 U	2.0 U	1.9 U
Aroclor 1221	NA	2.0 U	2.0 U	2.0 U	2.0 U	9.9 U	2.0 U	2.0 U	1.9 U
Aroclor 1232	NA	2.0 U	2.0 U	2.0 U	2.0 U	9.9 U	2.0 U	2.0 U	1.9 U
Aroclor 1242	NA	2.0 U	2.0 U	2.0 U	2.0 U	9.9 U	2.0 U	2.0 U	1.9 U
Aroclor 1248	NA	2.0	2.0 U	2.0 U	1.6 J	76.2	9.5	8.9	1.9 U
Aroclor 1254	NA	1.4 J	2.0 U	2.0 U	2.0 U	109	10.4	12.0	12.4
Aroclor 1260	NA	2.0 U	2.0 U	2.0 U	2.0 U	37.5	6.4	8.7	3.6
Aroclor 1262	NA	2.0 U	2.0 U	2.0 U	2.0 U	9.9 U	2.0 U	2.0 U	1.9 U
Aroclor 1268	NA	2.0 U	2.0 U	2.0 U	2.0 U	9.9 U	2.0 U	2.0 U	1.9 U
Total PCBs ³	180	3.4 J	2.0 U	2.0 U	1.6 J	223	26.3	29.6	16
Total PCBs (mg/kg-OC)	12	nc	0.2 U	0.1 U	nc	nc	2.2	nc	1.3
PAHs (µg/kg)									
Acenaphthene	240	1060 J	666	324	263	8180	460	245	6390
Benz[a]anthracene	1700	2.25 J	4.79	6.71	137	9550	725	350	11200
Benzo[a]pyrene	1500	4.98 U	124	4.53 J	40.3	3090	313	203	4330
Benzo(b)fluoranthene	_	4.98 U	3.44 J	4.86 J	47.4	3930	375	235	3740
Benzo[g,h,i]perylene	470	4.98 U	3.88 J	4.54 J	11.0	840	102	97.3	1070
Benzo(k)fluoranthene	_	0.77 J	1.44 J	2.23 J	24.2	2100	181	111	2530
Total benzofluoranthenes	1800	9.96 U	3.49 J	9.53 J	94.9	7830	739	460	8600
Chrysene	1700	1.49 J	2.75 J	6.86	181	10100	602	346	13000
Dibenzo[a,h]anthracene	180	4.98 U	6.21	6.53	9.93	343	42.0	32.7	376
Fluoranthene Indeno[1,2,3-c,d]pyrene	2400 510	9.98 J 4.98 U	14.6 1.09 J	19.3 3.17 J	603	30800 1090	2170 115	1420 98.0	12500 1380
Phenanthrene	1500	4.96 U 292 J	23.3	22.6	836	14100	1180	893	13700
Pyrene	1500	6.84 J	13.6	18.9	400	20400	1720	1110	10300
Total HPAH	14000	20.6	174.4	80.1	1489	84043	6528	4117	62756
TOTAL HEAR	14000	20.0	1/4.4	00.1	1409	04043	0520	4117	02/30

TABLE 6R

ANALYTICAL RESULTS FOR POSTDREDGE SEDIMENT SAMPLES^{1, 2}

	DU	16		16	16					
	DMMU	2B		2B	2B				1A	
	Sample Location	SD-CONF125	R2	SD-CONF126	SD-CONF2126 (field duplicate of SD-CONF1	26)		SD-C	ONF127R2	
	Sample ID	SD-CONF125F	R2-A	SD-CONF126-A	SD-CONF2126-A		SD-CONF127R2-A	SD-CONF127R2-D	SD-CONF127R2-E	SD-CONF127-COMP
	Depth Interval (ft)	0-0.5		0-0.5	0-0.5		0-0.5	1.5-2	2-2.5	COMP
	Sample Date	12/14/2018	;	11/30/2018	11/30/2018		12/14/2018	12/14	/2018	12/14/2018
Analyte	SQS	Result	Q	Result Q	Result	Ø	Result Q	Result Q	Result Q	Result Q
Conventionals				•	•		·	•	•	•
TOC (percent)	NA	28.1		2.58	2.5	J	0.07 J	0.12 J	1.44 J	0.08 J
Metals (mg/kg)				•	•			<u> </u>	•	
Arsenic	57	24.5		12.7	8.94	J	2.58 J	1.79	5.64	2.34 J
Copper	390	62.7		66.1	46.6	J	10.7 J	8.37	18.9	6.12 J
Lead	530	61.9		53.9	40.6	J	1.10 J	2.07 J	5.26 J	1.37 J
Mercury	0.41	0.139		0.358	0.391		0.00593 J	0.0238 U	0.00621 J	0.0245 U
PCBs (µg/kg)				•	-					
Aroclor 1016	NA	2.7	U	2.0 U	1.9	H, U	2.0 U	2.0 U	1.9 U	2.0 U
Aroclor 1221	NA	2.7		2.0 U	1.9		2.0 U	2.0 U	1.9 U	2.0 U
Aroclor 1232	NA	2.7		2.0 U	1.9		2.0 U	2.0 U	1.9 U	2.0 U
Aroclor 1242	NA	2.7		2.0 U	1.9		2.0 U	2.0 U	1.9 U	2.0 U
Aroclor 1248	NA	52.0		64.8	63.3	T	2.0 U	2.0 U	1.9 U	2.0 U
Aroclor 1254	NA	73.8		83.2	67.4	Н	2.0 U	1.3 J	2.0	1.5 J
Aroclor 1260	NA	25.8		46.5	39.7	_	2.0 UJ	2.0 U	0.8 J	2.0 U
Aroclor 1262	NA	2.7		2.0 U	1.9		2.0 UJ	2.0 U	1.9 UJ	2.0 U
Aroclor 1268	NA	2.7	U	2.0 U	1.9		2.0 UJ	2.0 U	1.9 UJ	2.0 U
Total PCBs ³	180	152		195	170	_	2.0 U	1.3 J	2.8 J	1.5 J
Total PCBs (mg/kg-OC)	12	nc		nc	nc		nc	nc	0.2 J	nc
PAHs (μg/kg)										
Acenaphthene	240	6450		28900	12000	J	6.99 U	15.1	134	7.66 U
Benz[a]anthracene	1700	3960		7410	3990	H, D	13.5	61.2	266	28.5
Benzo[a]pyrene	1500	1560		3220	1730	H, D	8.25	33.3	118	16.9
Benzo(b)fluoranthene	_	1910		3910	2060	_	9.85	39.3	140	20.3
Benzo[g,h,i]perylene	470	448		1090	647		3.85 J	12.5	43.9	7.28
Benzo(k)fluoranthene	_	961		1910	952		4.33 J	19.0	73.4	9.84
Total benzofluoranthenes	1800	3820		7680	4160		19.5	77.8	286	40.7
Chrysene	1700	3770		6960	3670		12.8	65.0	270	31.0
Dibenzo[a,h]anthracene	180	183		288	840		6.44	9.18 U	20.8	7.96
Fluoranthene	2400	15300		42000	24000		27.9	177	907	67.5
Indeno[1,2,3-c,d]pyrene	510	533		1190	668		3.10 J	12.8	50.4	7.79
Phenanthrene	1500	10100		90600	36400		14.4 J	39.6	264	20.5 J
Pyrene		9930		29900	18200	J	17.4	66.4	438	32.4
Total HPAH	14000	39504		99738	57905		113 J	506	2400	240

- 1. Sample ID in colored font SD-CONF001-A indicates that sample was validated.
- 2. Laboratory qualifiers (Q) are defined as follows:
- U = analyte not detected at reporting limit presented.
- J = result is estimated.
- D = reported value if from a dilution.
- H = hold time violation: hold time was exceeded.
- 3. Total PCBs calculated by summing detections or, if all not detected, using the highest non-detected value.

Abbreviation(s)

DU = decision unit

DMMU = dredged material management unit

ft = feet

HPAH = high-molecular-weight polycyclic aromatic hydrocarbon

mg/kg = milligram(s) per kilogram

mg/kg-OC = milligram(s) per kilogram, organic-carbon-normalized value NA = not applicable

nc = not calculated; TOC <0.5% or >2% PAH = polycyclic aromatic hydrocarbon

PCB = polychlorinated biphenyl

Q = qualifier

SQS = Washington State Sediment Quality Standards

TOC = total organic carbon μg/kg = microgram(s) per kilogram

TABLE 7 EXAMPLE OF DATA SELECTION FOR GEOSPATIAL INTERPOLATION 1

DU								4									5			
DMMU	18	A			18B						17C						16A			_
Sample Location	SD-CO	NF018			SD-CONF020						SD-CONF045						SD-CONF032			
Sample Date	1/8/2	019			1/16/2019						1/15/2019						10/28/2019			
Sample ID	SD-CONF018-A	SD-CONF018-B	SD-CONF020-	A SD-CONF020-B	SD-CONF020-C	SD-CONF020	0-D SD-CONF020-E	SD-CONF045-A	SD-CONF045-	B SD-CONF045-C	SD-CONF045-D	SD-CONF045-E	SD-CONF045-F	SD-CONF045-G	SD-CONF032-A	SD-CONF032-B	SD-CONF032-	C SD-CONF032-I	SD-CONFO	32-E
Depth Interval (ft)	0-0.5	0.5-1	0-0.5	0.5-1	1-1.5	1.5-2	2-2.5	0-0.5	0.5-1	1-1.5	1.5-2	2-2.5	2.5-3	3-3.5	0-0.5	0.5-1	1-1.5	1.5-2	2-2.5	
Analyte	Result Q	Result Q	Result (Q Result Q	Result Q	Result	Q Result Q	Result Q	Result Q	Result Q	Result Q	Result Q	Result Q	Result Q	Result Q	Result Q	Result C	Result Q	Result	Q
Conventionals																				
TOC (percent)	0.78	0.50	1.33	0.75	0.86	2.51	0.89	1.19	1.00	na	na	na	1.03	na	1.50					
Metals (mg/kg)																				
Arsenic	7.76	2.49	158	38.0	4.89	4.31	2.51	60.5	120	na	na	na	4.53	na	20.7					
Copper	33.4	11.3	1260	415	52.0	27.0	15.0	1070	2320	42.1	30.4	883	24.4	na	138					
Lead	11.6	1.57	690	114	14.7	22.1	3.13	618	428	na	na	na	9.27	na	84.4					
Mercury	0.0622	0.0237 J	7.18	3.81	0.896	0.456	0.117	11.1	7.76	11.7	0.285	10.3	0.117	0.174	0.824	2.44	0.666	0.556	0.148	
PCBs (μg/kg)																				
Aroclor 1016	1.9 U	2.0 U	95.2 U	34.3 U	1.7 U	1.9 ไ	J 1.6 U	85.6 U	8.6 U	na	na	na	2.0 U	na	9.8 U					
Aroclor 1221	1.9 U	2.0 U	95.2 U	34.3 U	1.7 U	1.9 ไ	J 1.6 U	85.6 U	8.6 U	na	na	na	2.0 U	na	9.8 U					
Aroclor 1232	1.9 U	2.0 U	95.2 U	34.3 U	1.7 U	1.9 เ	J 1.6 U	85.6 U	8.6 U	na	na	na	2.0 U	na	9.8 U					
Aroclor 1242	1.9 U	2.0 U	95.2 U	34.3 U	1.7 U	1.9 l	J 1.6 U	85.6 U	8.6 U	na	na	na	2.0 U	na	9.8 U					
Aroclor 1248	11.3	2.0 U	1280	34.3 U	9.4	7.5	1.0 J	85.6 U	114	na	na	na	2.0 U	na	85.4					
Aroclor 1254	24.6	2.0 U	2920	1310	19.0	14.6	1.7	745	183	na	na	na	3.4	na	174					
Aroclor 1260	5.2	2.0 U	601	97.3	8.2	4.5		190	51.5	na	na	na	4.7	na	99.7					
Aroclor 1262	1.9 U	2.0 U	95.2 U	34.3 U	1.7 U	1.9 l		85.6 U	8.6 U	na	na	na	2.0 U	na	9.8 U					
Aroclor 1268	1.9 U	2.0 U	95.2 U	34.3 U	1.7 U	1.9 เ	J 1.6 U	85.6 U	8.6 U	na	na	na	2.0 U	na	9.8 U					
Total PCBs ²	41.1	2.0 U	4801	1407	36.6	26.6	3.8 J	935	349	na	na	na	8.1	na	359					
Total PCBs (mg/kg-OC)	5.3	0.40 U	361	188	4.3	nc	0.43	78.6	34.9	na	na	na	0.79	na	23.9					

This table shows examples of how the data were selected to create the dataset that was used in the geospatial interpolation. In general, the deepest sample that was analyzed for an analyte was selected regardless if the sample was removed or not. At some locations, analyte concentrations were estimated from shallower sample intervals (not all analytes were analyzed in each sample interval).

Note(s)

- Laboratory qualifiers (Q) are defined as follows:
- U = analyte not detected at reporting limit presented. 2. Total PCBs calculated by summing detections or, if all not detected, using the highest non-detected value.
- Indicates sample removed during re-dredging

Indicates analyte selected for geospatial interpolation

Abbreviation(s)
DU = decision unit DMMU = dredged material management unit ft = feet

mg/kg = milligram(s) per kilogram mg/kg-OC = milligram(s) per kilogram, organic-carbon-normalized value NA = not applicable nc = not calculated; TOC <0.5% or >2% na = not analyzed

PCB = polychlorinated biphenyl

Q = qualifier

TOC = total organic carbon μg/kg = microgram(s) per kilogram

TABLE 8

RAIN BUCKET MEASUREMENTS IN RESIDUAL MANAGEMENT LAYER AREAS

					First Mea	surement	Second Me	asurement	Third Mea	surement	
RML Ar Designat		Rain Gauge Bucket Designation	Final Measurement (Inches)	Date of Final Measurement	Thickness (Inches)	Date	Thickness (Inches)	Date	Thickness (Inches)	Date	Inspection & Testing Report(s) Referenced In
DMMU 4		RB- 1	6.25	12/27/18	2.5	12/27/2018		12/27/2018	(11101100)		018
DMMU 4		RB- 2	7.00	12/27/18	7	12/27/2018					018
DMMU 5/		RB- 1	4.50	01/07/19	4.5	1/7/2019					025
DMMU 5/		RB- 2	5.50	01/07/19	5.5	1/7/2019					025
DMMU 6	A	RB- 2	4.75	01/11/19	4.75	1/11/2019					031
DMMU 6	A	RB- 1	5.75	01/12/19	0.25	1/12/2019	0.5	1/12/2019	5	1/12/2019	032
DMMU 7/	A	RB- 2	7.50	01/08/19	7.5	1/8/2019					026
DMMU 7/	Α	RB- 1	5.50	01/09/19	5.5	1/9/2019					027
DMMU 8/	A	RB- 1	6.50	01/18/19	6.5	1/18/2019					039
DMMU 8/	Α	RB- 2	6.25	01/18/19	6.25	1/18/2019					039
DMMU 8I	В	RB- 1	7.00	01/15/19	7	1/15/2019					034
DMMU 8I	В	RB- 2	5.25	01/18/19	5.25	1/18/2019					039
DMMU 9I	В	RB- 1	5.25	01/19/19	5 1/4	1/19/2019					040
DMMU 9I	В	RB- 2	4.50	01/19/19	4 1/2	1/19/2019					040
DMMU 90	С	RB- 1	7.00	01/19/19	7	1/19/2019					040
DMMU 90	С	RB- 2	5.75	01/19/19	5.75	1/19/2019					040
DMMU 9I	D	RB- 1	7.25	01/16/19	7.25	1/16/2019					037
DMMU 9I	D	RB- 2	4.75	01/16/19	4.75	1/16/2019					037
DMMU 10	0A	RB- 1	7.25	12/09/19	0	12/9/2019	1.25	12/9/2019	6	12/9/2019	065
DMMU 10	0B	RB- 1	5.00	12/09/19	5	12/9/2019					065
DMMU 10	0B	RB- 2	8.25	12/09/19	1.25	12/9/2019	7	12/9/2019			065
	0C	RB- 2	8.25	12/09/19	8.25	12/9/2019					065
	0C	RB- 1	7.00	12/10/19	7	12/10/2019					066
DMMU 1	1A	RB- 2	4.75	12/10/19	4.75	12/10/2019					066
	1B	RB- 1	9.25	12/10/19	0	12/10/2019		12/10/2019	6.5	12/10/2019	066
	1B	RB- 2	6.50	12/10/19	2	12/10/2019		12/10/2019			066
	1C	RB- 1	8.00	12/10/19	8	12/10/2019					066
	1C	RB- 2	4.75	12/10/19	4.75	12/10/2019					066
	2A	RB- 1	4.50	12/11/19	4.5	12/11/2019					067
	2B	RB- 1	4.00	12/12/19	4	12/12/2019					068
	2B	RB- 2	7.25	12/12/19	7.25	12/12/2019					068
	2C	RB- 1	6.00	12/12/19	3.5	12/12/2019		12/12/2019			068
	2C	RB- 2	6.25	12/12/19	2	12/12/2019	4.25	12/12/2019			068
	2D	RB- 2	10.00	01/08/20	10	1/8/2019					084
	2D	RB- 1	4.75	01/08/20	4.75	1/8/2020					084
	3A	RB- 1	5.00	12/16/19	5	12/16/2019					069
DMMU 13	3A	RB- 2	8.00	12/16/19	8	12/16/2019					069

TABLE 8

RAIN BUCKET MEASUREMENTS IN RESIDUAL MANAGEMENT LAYER AREAS

					First Mea	surement	Second Me	easurement	Third Mea	surement	
		Rain Gauge	Final								Inspection &
RML	Area	Bucket	Measurement	Date of Final	Thickness		Thickness		Thickness		Testing Report(s)
Desig	nation	Designation	(Inches)	Measurement	(Inches)	Date	(Inches)	Date	(Inches)	Date	Referenced In
DMMU	13B	RB- 1	5.50	12/16/19	5.5	12/16/2019			,		069
DMMU	13B	RB- 2	6.00	12/16/19	6	12/16/2019					069
DMMU	13C	RB- 1	4.50	12/16/19	3	12/16/2019	1.5	12/16/2019			069
DMMU	13C	RB- 2	6.25	12/16/19	6.25	12/16/2019					069
DMMU	13D	RB- 2	5.00	12/16/19	3.5	12/16/2019	1.5	12/16/2019			069
DMMU	13D	RB- 1	6.50	12/17/19	6.5	12/17/2019					070
DMMU	13E	RB- 2	4.75	12/17/19	4.75	12/17/2019					070
DMMU	13E	RB- 1	6.00	01/08/20	1	1/8/2020	5	1/8/2020			084
DMMU	14D	RB- 1	4.25	12/17/19	4.25	12/17/2019					070
DMMU	14D	RB- 2	4.00	12/17/19	4	12/17/2019					070
DMMU	14E	RB- 1	4.75	12/17/19	4.75	12/17/2019					070
DMMU	14E	RB- 2	4.25	12/17/19	4.25	12/17/2019					070
DMMU	14F	RB- 1	5.25	12/17/19	0	12/17/2019	5.25	12/17/2019			070
DMMU	14F	RB- 2	7.25	12/17/19	7.25	12/17/2019					070
DMMU	14G	RB- 1	6.50	12/18/19	6.5	12/18/2019					071
DMMU	14G	RB- 2	8.50	12/18/19	8.5	12/18/2019					071
DMMU	15D	RB- 1	7.00	12/18/19	7	12/18/2019					071
DMMU	15D	RB- 2	6.50	12/18/19	0.5	12/18/2019		12/18/2019	4.75	12/18/2019	071
DMMU	15E	RB- 1	8.50	12/18/19	0	12/18/2019	3	12/18/2019	5.5	12/18/2019	071
DMMU	15E	RB- 2	7.75	12/18/19	7.75	12/18/2019					071
DMMU	15F	RB- 2	4.75	12/18/19	4.75	12/18/2019					071
DMMU	15F	RB- 1	5.00	12/19/19	5	12/19/2019					072
DMMU	15G	RB- 2	5.00	12/19/19	3.25	12/19/2019	1.75	12/19/2019			072
DMMU	15G	RB- 1	4.50	01/07/20	1	1/7/2020	1	1/7/2020	2.5	1/7/2020	082
DMMU	16A	RB- 1	6.75	01/20/20	3.5	1/20/2020	3.25	1/20/2010			094
DMMU	16A	RB- 2	4.50	01/21/20	0.75	1/21/2020	0.25	1/21/2020	3.5	1/21/2020	096
R-DMMU	16B-A	RB- 1	9.00	03/25/20	9	3/25/2020					111
DMMU	16B	RB- 1	5.75	12/23/19	2.5	12/23/2019	0.75	12/23/2019	2.5	12/23/2019	074
DMMU	16B	RB- 2	4.25	01/21/20	4.25	1/21/2020					096
R-DMMU	16AB-B	RB- 1	6.75	03/25/20	6.75	3/25/2020					111
DMMU	16C	RB- 2	6.50	12/20/19	3.25	12/20/2019	3.25	12/20/2019			073
DMMU	16C	RB- 1	5.75	12/26/19	3	12/26/2019		12/26/2019	2.25	12/26/2019	075
R-DMMU	16A-C	RB- 1	4.75	03/25/20	4.75	3/25/2020					111
DMMU	16D	RB- 1	4.50	12/20/19	4.5	12/20/2019					073
DMMU	16D	RB- 2	7.50	12/20/19	7.5	12/20/2019					073
DMMU	16E	RB- 1	6.50	12/23/19	3.5	12/23/2019	3	12/23/2019			074
DMMU	16E	RB- 2	10.50	12/23/19	10.5	12/23/2019					074

TABLE 8

RAIN BUCKET MEASUREMENTS IN RESIDUAL MANAGEMENT LAYER AREAS

					First Mea	surement	Second Me	easurement	Third Meas	urement]
1	. Area	Rain Gauge Bucket	Final Measurement	Date of Final	Thickness		Thickness		Thickness		Inspection & Testing Report(s)
	nation	Designation	(Inches)	Measurement	(Inches)	Date	(Inches)	Date	(Inches)	Date	Referenced In
DMMU	16F	RB- 2	5.25	12/23/19	0	12/23/2019	5.25	12/23/2019			074
DMMU	16F	RB- 1	5.00	01/07/20	5	1/7/2020					082
DMMU	17A	RB- 1	5.50	01/22/20	5.5	1/22/2020					097
DMMU	17A	RB- 2	10.75	01/22/20	10.75	1/22/2020					097
DMMU	17B	RB- 1	5.75	01/20/20	5.75	1/20/2020					094
DMMU	17B	RB- 2	5.00	01/21/20	5	1/21/2020					096
DMMU	17C	RB- 2	6.00	12/23/20	6	12/23/2019					074
DMMU	17C	RB- 1	4.00	01/21/20	4	1/21/2020					096
DMMU	17D	RB- 1	6.00	12/26/19	6	12/26/2019					075
DMMU	17D	RB- 2	5.75	12/26/19	5.75	12/26/2019					075
DMMU	17E	RB- 1	5.50	12/26/19	5.5	12/26/2019					075
DMMU	17E	RB- 2	7.00	12/26/19	0	12/26/2019	7	12/26/2019			075
DMMU	17F	RB- 1	5.75	12/26/19	5.75	12/26/2019					075
DMMU	17F	RB- 2	6.50	12/26/19	6.5	12/26/2019					075
DMMU	17G	RB- 1	5.50	12/26/19	5.5	12/26/2019					075
DMMU	17G	RB- 2	5.50	12/26/19	1	12/26/2019	4.5	12/26/2019			075
DMMU	17H	RB- 1	4.50	12/27/19	4.5	12/27/2019					076
DMMU	17H	RB- 2	11.00	12/27/19	11	12/27/2019					076
DMMU	18A	RB- 1	5.75	01/18/20	5.75	1/18/2020					093
DMMU	18A	RB- 2	7.50	01/18/20	7.5	1/18/2020					093
DMMU	18B	RB- 2	4.00	12/27/19	2	12/27/2019	2	12/27/2019			076
DMMU	18B	RB- 1	5.75	01/18/20	5.75	1/18/2020					093
DMMU	18C	RB- 1	8.50	12/30/19	8.5	12/30/2019					077
DMMU	18C	RB- 2	8.00	12/30/19	8	12/30/2019					077
DMMU	18D	RB- 1	4.75	12/30/19	3.25	12/30/2019		12/30/2019			077
DMMU	18D	RB- 2	8.50	12/30/19	8.5	12/30/2019					077
DMMU	18E	RB- 1	10.00	01/30/20	10	1/30/2020					103
DMMU	18E	RB- 2	8.75	01/30/20	8.75	1/30/2020					103
DMMU	18F	RB- 1	4.50	01/14/20	4.5	1/14/2020					089
DMMU	18F	RB- 2	6.00	01/14/20	2.5	1/14/2020	3.5	1/14/2020			089
DMMU	18G	RB- 1	7.25	01/13/20	7.25	1/13/2020					088
DMMU	18G	RB- 2	6.25	01/14/20	0	1/14/2020	6.25	1/14/2020			089
DMMU	181	RB- 1	6.00	01/13/20	6	1/13/2020	0.20	,_526			088
DMMU	181	RB- 2	6.50	01/13/20	6.5	1/13/2020					088
DMMU	19A	RB- 1	5.00	01/18/20	5	1/18/2020	1				093
DMMU	19A	RB- 2	5.00	01/18/20	5	1/18/2020	<u> </u>				093
DMMU	19B	RB- 2	8.00	12/30/19	8	12/30/2019					077

TABLE 8

RAIN BUCKET MEASUREMENTS IN RESIDUAL MANAGEMENT LAYER AREAS

				First Mea	surement	Second Me	easurement	Third Mea	surement	
RML Area Designatio		Final Measurement (Inches)	Date of Final Measurement	Thickness (Inches)	Date	Thickness (Inches)	Date	Thickness (Inches)	Date	Inspection & Testing Report(s) Referenced In
DMMU 19B	RB- 1	5.25	01/18/20	5.25	1/18/2020	,		,		093
DMMU 19C	RB- 1	4.50	12/31/19	4.5	12/31/2019					078
DMMU 19C	RB- 2	5.00	12/31/19	2	12/31/2019	3	12/31/2019			078
DMMU 19D	RB- 1	10.50	12/31/19	10.5	12/31/2019					078
DMMU 19D	RB- 2	5.25	01/02/20	0.75	1/2/2020	0	1/2/2020	4.5	1/2/2020	079
DMMU 19E	RB- 1	6.75	01/14/20	6.75	1/14/2020					089
DMMU 19E	RB- 2	5.00	01/14/20	5	1/14/2020					089
DMMU 19G	RB- 1	5.25	01/14/20	5.25	1/14/2020					089
DMMU 19G	RB- 2	6.00	01/14/20	3.5	1/14/2020	0	1/14/2020	2.5	1/14/2020	089
DMMU 20A	RB- 1	4.25	01/02/20	0	1/2/2020	4.25	1/2/2020			079
DMMU 20A	RB- 2	8.00	01/02/20	1	1/2/2020	1	1/2/2020	6	1/2/2020	079
DMMU 20B	RB- 1	5.00	01/02/20	5	1/2/2020					079
DMMU 20B	RB- 2	7.75	01/02/20	7.75	1/2/2020					079
DMMU 20C	RB- 2	5.50	01/02/20	5.5	1/2/2020					079
DMMU 20C	RB- 1	7.75	01/03/20	7.75	1/3/2020					080
DMMU 20D	RB- 1	6.00	01/03/20	6	1/3/2020					080
DMMU 20D	RB- 2	7.50	01/03/20	7.5	1/3/2020					080
DMMU 20E		4.00	01/16/20	4	1/16/2020					091
DMMU 20E	RB- 2	7.50	01/16/20	7.5	1/16/2020					091
DMMU 20F	RB- 1	5.25	01/15/20	0	1/15/2020	0	1/15/2020	5.25	1/15/2020	090
DMMU 20F	RB- 2	4.75	01/15/20	4.75	1/15/2020					090
DMMU 21A	RB- 1	4.75	01/06/20	1.5	1/6/2020	3.25	1/6/2020			081
DMMU 21A	RB- 2	5.50	01/06/20	5.5	1/6/2020					081
DMMU 21B	RB- 1	5.00	01/06/20	1	1/6/2020	4	1/6/2020			081
DMMU 21B	RB- 2	4.25	01/06/20	4.25	1/6/2020					081
DMMU 21C	RB- 1	6.00	01/06/20	6	1/6/2020					081
DMMU 21C	RB- 2	8.25	01/06/20	8.25	1/6/2020					081
Average Layer	Thickness (inches)	6.15		•	-	•	•			•
	l Thickness (inches)	11]							
			1							

Abbreviation(s)

DMMU = dredged material management unit

4

138

RML = residual management layer

Number of Rain Gauge Buckets Placed

Minimum Final Thickness (inches)

TABLE 9

DECISION UNIT CONFIRMATION CORE SAMPLE PLANNED AND ACTUAL SAMPLING LOCATIONS IN SHIPWAY

		Planned			Actual	
Decision		Coord	tate Plane linates orth NAD 83; Feet) ²		Coord (WA SPC No	ate Plane inates orth NAD 83; y Feet)
Unit	Location ID ¹	Easting	Northing	Location ID	Easting	Northing
DU 16	SD-CONF119	1262208	216914	SD-CONF119	1262188	216985
DU 16	SD-CONF120	1262208	217030	SD-CONF120	1262210	217031
DU 16	SD-CONF121	1262208	217146	SD-CONF121R2	1262206	217148
DU 16	SD-CONF122	1262208	217262	SD-CONF122R2	1262209	217264
DU 16	SD-CONF123	1262247	216914	SD-CONF123R2	1262246	216969
DU 16	SD-CONF124	1262247	217030	SD-CONF124R2	1262248	217030
DU 16	SD-CONF125	1262247	217146	SD-CONF125R2	1262249	217146
DU 16	SD-CONF126	1262247	217262	SD-CONF126	1262243	217263
DU 16	SD-CONF127	1262190	217068	SD-CONF127	1262188	217084
DU 16	SD-CONF2120	1262208	217030	SD-CONF2120R2	1262210	217031
DU 16	SD-CONF2126	1262247	217262	SD-CONF2126	1262243	217260

Note(s)

- 1. Field-duplicate sample collected at selected locations. Duplicate sample ID identified by a 200 series location ID (e.g., SD-CONF226 for duplicate core collected at location SD-CONF026).
- 2. Proposed sample locations were approximate and may have been adjusted based on bathymetry to avoid areas with steeper slopes or debris.

Abbreviation(s)

DU = decision unit

NAD = North American Datum

WA SPC = Washington State Plane Coordinates

TABLE 10

RAIN BUCKET MEASUREMENTS IN ENHANCED NATURAL RECOVERY AREAS

				First Mea	surement	Second Me	asurement	Third Mea	surement	
ENR Area Designation	Rain Gauge Bucket Designation	Final Measurement (Inches)	Date of Final Measurement	Thickness (Inches)	Date	Thickness (Inches)	Date	Thickness (Inches)	Date	Inspection & Testing Report(s) Referenced In
ENR- A24	RB- 152	7.00	01/09/20	1.5	1/8/2020	5.5	1/9/2020	(11101100)	24.0	085
ENR- A26	RB- 169	5.00	01/14/20	5	1/14/2020	0.0	17072020			089
ENR- A28	RB- 181	5.50	01/16/20	5.5	1/16/2020					091
ENR- A28	RB- 184	4.50	01/16/20	0	01/16/20	4.5	01/16/20			091
ENR- B16	RB- 107	7.50	01/16/19	7.5	1/16/2019	1.0	01/10/20			037
ENR- B17	RB- 114	4.75	01/17/19	4.75	1/17/2019					038
ENR- B19	RB- 120	8.00	01/22/19	8	1/22/2019					041
ENR- B21	RB- 123	5.75	01/23/19	5.75	1/23/2019					042
ENR- B21	RB- 125	6.00	01/23/19	6	1/23/2019					042
ENR- B22	RB- 131	6.25	01/24/19	6.25	1/24/2019					043
ENR- B22	RB- 132	4.25	01/24/19	4.25	1/24/2019					043
ENR- B23	RB- 139	4.25	01/25/19	4.25	1/25/2019					044
ENR- B24	RB- 145	7.00	01/13/20	1	1/9/2020	1	1/13/2020	5	1/13/2020	088
ENR- B24	RB- 146	6.00	01/09/20	1	1/9/2020	2.25	1/9/2020	2.75	1/9/2020	085
ENR- B24	RB- 151	4.75	01/09/20	4.75	1/9/2020			_		085
ENR- B25	RB- 159	4.50	01/13/20	4.5	1/13/2020					088
ENR- B25	RB- 160	5.25	01/13/20	0	1/13/2020	0	1/13/2020	5.25	1/13/2020	088
ENR- B26	RB- 168	6.50	01/14/20	6.5	1/14/2020					089
ENR- B27	RB- 174	6.00	01/15/20	6	1/15/2020					090
ENR- B28	RB- 180	6.25	01/16/20	6.25	1/16/2020					091
ENR- B28	RB- 182	8.25	01/16/20	3	1/16/2020	5.25	1/16/2020			091
ENR- B28	RB- 183	5.75	01/16/20	5.75	1/16/2020					091
ENR- C05	RB- 028A	10.00	11/02/18	10	11/2/2018					012
ENR- C06	RB- 029	8.00	11/02/18	8	11/2/2018					012
ENR- C08	RB- 041	7.75	11/03/18	7.75	11/3/2018					013
ENR- C09	RB- 048	5.25	01/14/19	5.25	1/14/2019					033
ENR- C09	RB- 055	10.75	11/03/18	10.75	11/3/2018					013
ENR- C10	RB- 062	7.25	01/14/19	7.25	1/14/2019					033
ENR- C11	RB- 068	4.75	01/14/19	4.75	1/14/2019					033
ENR- C12	RB- 075	6.00	11/12/19	6	11/12/2019					032
ENR- C13	RB- 081	10.75	01/12/19	10.75	1/12/2019					032
ENR- C13	RB- 088	6.50	01/12/19	6.5	1/12/2019					032
ENR- C14	RB- 095	6.75	01/14/19	6.75	1/14/2019					033
ENR- C15	RB- 102	5.50	01/16/19	5.5	1/16/2019					037
ENR- C16	RB- 106	8.75	01/16/19	8.75	1/16/2019					037
ENR- C17	RB- 110	5.75	01/17/19	5.75	1/17/2019				_	038

TABLE 10

RAIN BUCKET MEASUREMENTS IN ENHANCED NATURAL RECOVERY AREAS

				First Mea	surement	Second Me	easurement	Third Mea	asurement	
ENR Area Designation	Rain Gauge Bucket Designation	Measurement	Date of Final Measurement	Thickness (Inches)	Date	Thickness (Inches)	Date	Thickness (Inches)	Date	Inspection & Testing Report(s) Referenced In
ENR- C17	RB- 113	5.50	01/17/19	5.5	1/17/2019	((038
ENR- C18	RB- 117	4.75	01/17/19	4.75	1/17/2019					038
ENR- C19	RB- 119	9.50	01/22/19	9.5	1/22/2019					041
ENR- C20	RB- 121	8.25	01/22/19	8.25	1/22/2019					041
ENR- C21	RB- 122	5.50	01/08/20	0.75	1/8/2020	4.75	1/8/2020			084
ENR- C21	RB- 124	8.25	01/23/19	8.25	1/23/2019					042
ENR- C22	RB- 130	4.50	01/07/20	4.5	1/7/2020					082
ENR- C23	RB- 138	6.25	01/25/19	6.25	1/25/2019					044
ENR- C24	RB- 144	4.50	12/27/19	4.5	12/27/2019					076
ENR- C27	RB- 173	7.00	01/16/20	3.5	1/16/2020	3.5	1/16/2020			091
ENR- C28	RB- 179	5.75	01/17/20	5.75	1/17/2020					092
ENR- D05	RB- 021	4.00	10/25/18	4	10/25/2018					005
ENR- D05	RB- 022	8.25	10/30/18	8.25	10/30/2018					009
ENR- D07	RB- 034	6.75	10/29/18	6.75	10/29/2018					008
ENR- D07	RB- 035	7.00	10/29/18	0.75	10/29/2018		10/29/2018	3.75	10/29/2018	008
ENR- D08	RB- 040	7.25	10/31/18	7.25	10/31/2018					010
ENR- D09	RB- 046	5.00	11/01/18	5	11/1/2018					011
ENR- D09	RB- 047	7.75	11/01/18	7.75	11/1/2018					011
ENR- D09	RB- 054	8.75	11/01/18	8.75	11/1/2018					011
ENR- D10	RB- 060	8.00	11/05/18	0	11/5/2018	3.75	11/5/2018	4.25	11/5/2018	014
ENR- D10	RB- 061	4.25	11/05/18	4.25	11/5/2018					014
ENR- D12	RB- 073	5.50	01/11/19	5.5	1/11/2019					031
ENR- D12	RB- 074	5.50	01/11/19	5.5	1/11/2019					031
ENR- D13	RB- 080	6.25	01/12/19	6.25	1/12/2019					032
ENR- D13	RB- 086	5.00	01/12/19	1.5	1/12/2019	3.5	1/12/2019			032
ENR- D13	RB- 087	10.50	01/12/19	10.5	1/12/2019					032
ENR- D14	RB- 094	5.25	01/12/19	5.25	1/12/2019					032
ENR- D15	RB- 100	7.25	01/15/19	3	1/15/2019	4.25	1/15/2019			034
ENR- D15	RB- 101	5.50	01/16/19	3.75	1/16/2019	1.75	1/16/2019			037
ENR- D16	RB- 105	5.50	01/16/19	5.5	1/16/2019					037
ENR- D17	RB- 108	6.00	01/17/19	6	1/17/2019					038
ENR- D17	RB- 109	6.75	01/17/19	6.75	1/17/2019					038
ENR- D17	RB- 112	6.25	01/17/19	6.25	1/17/2019					038
ENR- D18	RB- 115	6.00	01/17/19	6	1/17/2019					038
ENR- D18	RB- 116	5.25	01/17/19	5.25	1/17/2019					038
ENR- D23	RB- 137	5.00	01/07/20	5	1/7/2020					082

TABLE 10

RAIN BUCKET MEASUREMENTS IN ENHANCED NATURAL RECOVERY AREAS

				First Mea	surement	Second Me	easurement	Third Mea	surement	
ENR Area Designation	Rain Gauge Bucket Designation	Final Measurement (Inches)	Date of Final Measurement	Thickness (Inches)	Date	Thickness (Inches)	Date	Thickness (Inches)	Date	Inspection & Testing Report(s) Referenced In
ENR- D24	RB- 150	6.75	12/27/19	6.75	12/27/2019		Date	(inches)	Date	076
	RB- 167			10.5						090
ENR- D26 ENR- D28	RB- 107	10.50	01/15/20 01/17/20		1/15/2020 1/17/2020					090
ENR- D28	RB- 178	5.00 5.50	01/17/20	5 0	1/17/2020	3.5	1/17/2020	2	1/17/2020	092
ENR- D26	RB- 002		01/31/19	7.5		3.5	1/17/2020		1/11/2020	049
		7.50 5.75		5.75	1/31/2019					049
ENR- E02	RB- 004		01/31/19		1/31/2019					
ENR- E03 ENR- E04	RB- 007 RB- 011	8.75 5.75	10/26/18 10/25/18	8.75 5.75	10/26/2018					006 005
					10/25/2018					
ENR- E05	RB- 015	9.25	10/23/18	9.25	10/23/2018					003
ENR- E05	RB- 016	10.25	10/25/18	10.25	10/25/2018					005
ENR- E05	RB- 020	8.25	10/24/18	8.25	10/24/2018					004
ENR- E06	RB- 026	9.25	10/23/18	9.25	10/23/2018					003
ENR- E06	RB- 027	7.25	10/25/18	7.25	10/25/2018					005
ENR- E07	RB- 033	8.75	10/27/18	8.75	10/27/2018					007
ENR- E08	RB- 038	9.00	10/30/18	9	10/30/2018					009
ENR- E08	RB- 039	6.75	10/31/18	6.75	10/31/2018					010
ENR- E09	RB- 045	9.75	11/01/18	9.75	11/1/2018					011
ENR- E09	RB- 052	4.50	10/31/18	0	10/31/2018	4.5	10/31/2018			010
ENR- E09	RB- 053	9.00	11/01/18	9	11/1/2018					011
ENR- E10	RB- 059	5.50	01/05/19	5.5	1/5/2019					024
ENR- E11	RB- 066	4.75	01/07/19	4.75	1/7/2019					025
ENR- E11	RB- 067	5.00	11/06/18	5	11/6/2018					015
ENR- E12	RB- 072	5.50	01/11/19	5.5	1/11/2019					031
ENR- E13	RB- 078	6.50	01/09/19	3.25	1/9/2019	3.25	1/9/2019			027
ENR- E13	RB- 079	4.75	01/11/19	4.75	1/11/2019					031
ENR- E13	RB- 085	5.75	01/11/19	2.75	1/11/2019	3	1/11/2019			031
ENR- E14	RB- 092	6.00	01/11/19	6	1/11/2019					031
ENR- E14	RB- 093	6.00	01/11/19	6	1/11/2019					031
ENR- E15	RB- 099	5.25	01/18/19	5.25	1/18/2019				-	039
ENR- E17	RB- 111	10.75	12/10/19	10.75	12/10/2019					066
ENR- E25	RB- 157	4.00	12/30/19	4	12/30/2019					077
ENR- E25	RB- 158	7.00	12/30/19	3	12/30/2019	4	12/30/2019			077
ENR- E26	RB- 166	6.00	01/07/20	6	1/7/2020					082
ENR- E27	RB- 171	6.75	01/03/20	6.75	1/3/2020					080
ENR- E27	RB- 172	4.75	01/16/20	4.75	1/16/2020					091
ENR- E27	RB- 118	6.25	01/16/20	6.25	1/16/2020					091

TABLE 10

RAIN BUCKET MEASUREMENTS IN ENHANCED NATURAL RECOVERY AREAS

				First Mea	surement	Second Me	asurement	Third Mea	surement]
ENR Area	Rain Gauge Bucket	Final Measurement	Date of Final	Thickness		Thickness		Thickness		Inspection & Testing Report(s)
Designation	Designation	(Inches)	Measurement	(Inches)	Date	(Inches)	Date	(Inches)	Date	Referenced In
ENR- E28	RB- 176	5.75	01/06/20	5.75	1/6/2020					081
ENR- F01	RB- 001	8.50	01/31/19	3.25	1/31/2019	5.25	1/31/2019			049
ENR- F02	RB- 003	5.75	01/29/19	5.75	1/29/2019					048
ENR- F03	RB- 006	6.25	01/29/19	6.25	1/29/2019					048
ENR- F04	RB- 009	6.75	01/28/19	6.75	1/28/2019					047
ENR- F04	RB- 010	9.75	10/24/18	2.5	10/24/2018	7.25	10/24/2018			004
ENR- F05	RB- 014	6.25	10/24/18	3.5	10/23/2018	2.75	10/24/2018			003, 004
ENR- F05	RB- 018	9.50	01/26/19	9.5	1/26/2019					046
ENR- F05	RB- 019	4.50	10/22/18	4.5	10/22/2018					002
ENR- F06	RB- 025	8.25	10/24/18	8.25	10/24/2018					004
ENR- F07	RB- 031	5.50	12/27/18	5.5	12/27/2018					018
ENR- F07	RB- 032	10.00	10/27/18	10	10/27/2018					007
ENR- F08	RB- 037	6.00	12/29/18	6	12/29/2018					020
ENR- F09	RB- 043	6.00	01/03/19	6	1/3/2019					022
ENR- F09	RB- 044	4.50	01/03/19	4.5	1/3/2019					022
ENR- F09	RB- 051	7.75	01/03/19	2.25	1/3/2019	0	1/3/2019	5.5	1/3/2019	022
ENR- F10	RB- 057	8.50	01/04/19	8.5	1/4/2019					023
ENR- F10	RB- 058	4.50	01/05/19	4.5	1/5/2019					024
ENR- F11	RB- 065	6.25	01/05/19	6.25	1/5/2019					024
ENR- F12	RB- 070	7.00	01/07/19	7	1/7/2019					025
ENR- F12	RB- 071	6.00	01/08/19	6	1/8/2019					026
ENR- F13	RB- 083	5.25	01/08/19	2	1/8/2019	3.25	1/8/2019			026
ENR- F13	RB- 084	5.00	01/09/19	0.75	1/9/2019	4.25	1/9/2019			027
ENR- F14	RB- 091	7.25	01/10/19	7.25	1/10/2019					029
ENR- F15	RB- 098	5.25	01/18/19	5.25	1/18/2019					039
ENR- F26	RB- 165	9.25	01/02/20	9.25	1/2/2020					079
ENR- F28	RB- 175	4.00	01/06/20	4	1/6/2020					081
ENR- G03	RB- 005	6.25	01/29/19	6.25	1/29/2019					048
ENR- G04	RB- 008	5.00	01/26/19	5	1/26/2019					046
ENR- G05	RB- 012	10.75	01/26/19	10.75	1/26/2019					046
ENR- G05	RB- 013	6.75	01/28/19	1.75	1/28/2019	5	1/28/2019			047
ENR- G05	RB- 017	7.00	01/26/19	7	1/26/2019					046
ENR- G06	RB- 024	4.25	01/26/19	4.25	1/26/2019					046
ENR- G07	RB- 030	9.25	12/27/18	9.25	12/27/2018					018
ENR- G08	RB- 036	5.50	12/28/18	5.5	12/28/2018					019
ENR- G09	RB- 042	4.75	01/02/19	1.5	1/2/2019	0	1/2/2019	3.25	1/2/2019	021

TABLE 10

RAIN BUCKET MEASUREMENTS IN ENHANCED NATURAL RECOVERY AREAS

				First Mea	surement	Second Me	asurement	Third Mea	surement]
ENR Area	Rain Gauge Bucket	Final Measurement		Thickness		Thickness		Thickness		Inspection & Testing Report(s)
Designation	Designation	(Inches)	Measurement		Date	(Inches)	Date	(Inches)	Date	Referenced In
ENR- G09	RB- 049	5.25	01/02/19	5.25	1/2/2019					021
ENR- G09	RB- 050	4.00	01/02/19	1	1/2/2019	0	1/2/2018	3	1/2/2018	021
ENR- G10	RB- 056	6.50	01/04/19	6.5	1/4/2019					023
ENR- G12	RB- 069	6.25	01/07/19	6.25	1/7/2019					025
ENR- G13	RB- 076	5.25	01/08/19	5.25	1/8/2019					026
ENR- G13	RB- 077	7.75	01/08/19	7.75	1/8/2019					026
ENR- G13	RB- 082	13.25	01/08/19	13.25	1/8/2019					026
ENR- G14	RB- 089	4.00	01/09/19	4	1/9/2019					027
ENR- G14	RB- 090	9.50	01/10/19	9.5	1/10/2019					029
ENR- G15	RB- 097	4.75	12/11/19	4.75	12/11/2019					067
ENR- G16	RB- 103	10.50	12/11/19	10.5	12/11/2019					067
ENR- G16	RB- 104	3.50	12/11/19	0.25	12/11/2019	3.25	12/11/2019			067
ENR- H02	RB- 129	5.75	01/23/20	2.75	1/23/2020	3	1/23/2020			099
ENR- H04	RB- 063	8.50	01/20/20	8.5	1/20/2020					094
ENR- H05	RB- 156	4.75	01/18/20	4.75	1/18/2020					093
ENR- H06	RB- 164	6.25	01/18/20	6.25	1/18/2020					093
ENR- H06	RB- 170	5.00	01/18/20	1	1/18/2020	4	1/17/2020			093
ENR- 102	RB- 128	9.00	01/28/20	3.25	1/28/2020	5.75	1/28/2020			101
ENR- 102	RB- 136	7.00	01/23/20	7	1/23/2020					099
ENR- 103	RB- 128	10.75	01/22/20	10.75	1/22/2020					097
ENR- 103	RB- 143	4.25	01/22/20	4.25	1/22/2020					097
ENR- 104	RB- 149	4.50	01/20/20	4.5	1/20/2020					094
ENR- 105	RB- 155	5.75	01/18/20	5.75	1/18/2020					093
ENR- 106	RB- 064	5.50	01/17/20	0	1/17/2020	3.5	1/17/2020	2	1/17/2020	092
ENR- 106	RB- 163	7.00	01/17/20	7	1/17/2020					092
ENR- J02	RB- 134	4.50	01/22/20	3.5	1/22/2020	1	1/22/2020			097
ENR- J02	RB- 135	4.25	01/22/20	4.25	1/22/2020					097
ENR- J03	RB- 142	5.50	01/22/20	5.5	1/22/2020					097
ENR- J04	RB- 148	4.75	01/21/20	4.75	1/21/2020					096
ENR- J05	RB- 154	7.25	01/21/20	7.25	1/21/2020					096
ENR- J05	RB- 023	4.00	01/21/20	4	1/21/2020					096
ENR- J06	RB- 161	7.00	01/17/20	7	1/17/2020					092
ENR- J06	RB- 162	4.50	01/17/20	4.5	1/17/2020					092
ENR- K02	RB- 126	4.00	01/29/20	3.25	1/29/2020	0.75	1/29/2020			102
ENR- K02	RB- 127	8.50	01/28/20	8.5	1/28/2020					101
ENR- K02	RB- 133	3.50	01/22/20	3.5	1/22/2020					097

TABLE 10

RAIN BUCKET MEASUREMENTS IN ENHANCED NATURAL RECOVERY AREAS

				First Mea	surement	Second Me	easurement	Third Mea	surement	
ENR Area	Rain Gauge Bucket	Final Measurement	Date of Final	Thickness		Thickness		Thickness		Inspection & Testing Report(s)
Designation	Designation	(Inches)	Measurement	(Inches)	Date	(Inches)	Date	(Inches)	Date	Referenced In
ENR- K03	RB- 140	4.50	01/22/20	0	1/22/2020	4.5	1/22/2020			097
ENR- K03	RB- 141	5.50	01/22/20	5.5	1/22/2020					097
ENR- K04	RB- 147	4.00	01/21/20	4	1/21/2020					096
ENR- K05	RB- 153	4.50	01/21/20	4.5	1/21/2020					096
Average Layer Thick	ness (inches)	6.46								
Maximum Final Thick	kness (inches)	13.25								

Abbreviation(s)

ENR = enhanced natural recovery

Number of Rain Gauge Buckets Placed

Minimum Final Thickness (inches)

3.50

184

RB = rain bucket

TABLE 11

CUMULATIVE WATER QUALITY MONITORING ACTIVITIES FOR CONSTRUCTION SEASON 1

												Conventional				Chei	mical Comp	oliance Re	sults			
Date	Activity	Area	Monitoring Level ¹	Monitoring Round	Time	Tide	Wind	Depth	Highest Turbidity (NTU)	Ambient Turbidity (NTU)	Compliance Station (w/ highest turbidity)	Parameter Exceedance (Y/N)	Sample Collected (Y/N)	Sample ID No. Analyzed	Cu (diss. µg/L)	Pb (diss. μg/L)	Hg (diss. µg/L)	Hg (total µg/L)	Zn (diss. μg/L)	Total PCBs (μg/L)	Chemical Exceedance (Y/N)	Comments
	Mobilization	NA NA	Level	Round	Time	Tiuc	Willia	Берин	(1110)	(1110)		(1714)	(1/14)	No. Analyzou	μg/L/	μg/ <i>-</i> /	μg/L/	μg, -)	<u> ⊬y, ⊏)</u>	(μg/L)	(1/11)	Comments
8/14/2018	Pile removal	Shipway	Intensive	1	14:15	Flood	N2	Shallow	5.5	5.4	150 DOWN NS	N	N									
8/14/2018	Pile removal	Shipway	Intensive	2	15:40	Flood	S2	Shallow	5.5	5.2	150 DOWN NS	N	N									
3/15/2018	Pile removal	Shipway	Intensive	1	10:00	Ebb	N0	Shallow	8.5	4.8	150 DOWN NB	N	N									
3/15/2018	Pile removal	Shipway	Intensive	2	10:22	Ebb	N0	Shallow	5.6	5	150 DOWN NS	N	N									
3/16/2018	Pile removal/debris removal	Shipway/ Shoreline (above MLLW)	Routine (Visual monitoring)																			
3/17/2018	Submerged debris removal	Near DMMU 14B	Intensive	1	11:50	Ebb	E7	Shallow	7.5	4.9	150 DOWN NS	N	N									
3/20/2018	Pile removal/debris removal	Shipway/ Shoreline	Routine (Visual monitoring)																			
	Work Stoppage																					
9/10/2018	Pile removal/debris removal	Shipway/ Shoreline (above MLLW)	Routine (Visual monitoring)																			
9/11/2018	Pile removal	Shipway	Routine (Visual monitoring)																			
9/12/2018	Submerged debris removal	Dredge areas	Intensive	1	12:00	Ebb	S5	Deep	6.3	5.1	150 DOWN NS	N	N									
9/12/2018	Submerged debris removal	Dredge areas	Intensive	2	14:30	Flood	S4	Deep	5.2	4.7	150 DOWN MD	N	N									
9/13/2018	Pile removal/debris removal	Shipway/ Dredge Areas (submerged)	Routine (Visual monitoring)																			
/14/2018	Pile removal/debris removal	Shipway/ Dredge Areas (submerged)	Routine (Visual monitoring)																			
)/15/2018	Pile removal/debris removal, partial day of production dredging	Shipway/ Dredge Areas (submerged)	Routine (Visual monitoring)																			
9/17/2018	Dredging	DU 12 (DMMU 6A)	Intensive	1	9:00	Flood	S2	Deep	8.2	4.4	150 DOWN NB	N	Y	LMCWQ-005	2.5U	0.50 U	0.020 U	0.020 U	11.4 J	0.010 U		
)/17/2018	Dredging	DU 13 (DMMU 5A)	Intensive	2	14:45	Ebb	N1	Deep	6.4	4.2	300 UP NB	N	N									
/18/2018	Dredging	DMMU 8B, 9C, 8A, 9B	Intensive	1	12:30	Flood	N2	Deep	8.1	4.4	150 UP NB	N	Y									

TABLE 11

CUMULATIVE WATER QUALITY MONITORING ACTIVITIES FOR CONSTRUCTION SEASON 1

												Conventional				Chei	nical Com	pliance Re	esults			
Date	Activity	Area	Monitoring Level ¹	Monitoring Round	Time	Tide	Wind	Depth	Highest Turbidity (NTU)	Ambient Turbidity (NTU)	Compliance Station (w/ highest turbidity)	Conventional Parameter Exceedance (Y/N)	Sample Collected (Y/N)	Sample ID No. Analyzed	Cu (diss. µg/L)	Pb (diss. μg/L)	Hg (diss. µg/L)	Hg (total µg/L)	Zn (diss. µg/L)	Total PCBs (µg/L)	Chemical Exceedance (Y/N)	Comments
9/19/2018	Dredging	DMMU 9C	Intensive	1	9:00	Flood	N0	Deep	9.6	5	150 DOWN NS	N	Y	LMCWQ-027	3.47	0.5 U	0.02 U	0.02 U	10 J	0.010 U	N	Copper exceeded the chronic criterion but not the acute criterion at 150 ft.
9/19/2018	Dredging	DMMU 9C	Intensive	1							300 DOWN NS	N	Y	LMCWQ-030	2.5						N	Copper below the chronic criteria at 300 ft. No chemical exceedance.
9/19/2018	Dredging	DMMU 9C	Intensive	2	12:20	Flood	N0	Deep	8	4.9	150 UP NS	N	N									
9/20/2018	Barge Dewatering	DMMU 10B	Intensive	1	10:40	Flood	E1	Deep	4.9	4.8	150 DOWN NS	N	Y	LMCWQ-047	3.61	1 U	0.02 U	0.02 U	40 U	0.010 U	N	Copper exceeded the chronic but not the acute at 150 ft.
9/20/2018	Dredging	DMMU 10B	Intensive	2	14:20	Flood	E5	Deep	7.3	4.3	150 UP NB	N	N									
9/21/2018	Dredging	DMMU 10B	Intensive	1	14:00	Flood	E5	Deep	9.1	4.8	150 DOWN NS	N	N									
9/22/2018	Dredging	DMMU 10A	Intensive	1 (partial)	11:45	Flood	E12	Deep	15.9	4.4	150 DOWN NB	Y (Turbidity)	Y	LMCWQ-054	3.51	0.6	0.02 U	0.032 J	4.45 J	0.006 J	N	Partial Round Copper and mercury exceeded the chronic but not the acute at 150 ft.
9/22/2018	Dredging	DMMU 10A	Intensive	1 (partial)							300 DOWN NB	N	Y	LMCWQ-057				0.038				Analysis for dissolved copper on hold.
9/22/2018	Dredging	DMMU 10A	Intensive	1 (partial)							300 DOWN NB	N	Y	LMCWQ-056				0.020 U				Analysis for total mercury for average at 300 ft.
9/24/2018	Dredging	DMMU 8A, 8B, 9B, 9C, and 9D	Intensive	1	9:30	Ebb	W7	Deep	8	4.6	150 DOWN NB	N	Y	LMCWQ-063	2.73	0.5 U	0.02 U	0.02 U	6.09 J	0.004 J	N	
9/24/2018	Dredging	DMMU 8A, 8B, 9B, 9C, and 9D	Intensive	2	13:45	Flood	E1	Deep	7.6	4.5	300 DOWN NB	N	N									
9/25/2018	Dredging	DMMU 10C	Intensive	1	8:30	Ebb	N1	Deep	5.1	5.1	150 DOWN NS	Y (DO)	N									Low DO at mid-depth and near bottom compliance and ambient stations. DO probe calibrated.
9/26/2018	Dredging	DMMU 8A, 8B, 9B, and 9C	Intensive	1	12:00	Tide change	N3	Deep	4.8	4.4	150 DOWN NB	N	Y									Apparent turbidity exceedance, not confirmed.
9/27/2018	Dredging	DMMU 12D	Intensive	1 (partial)	9:30	Ebb	N5	Deep	5	NA	150 UP NS	N	N									Partial Round only (weather and boat mechanical problems)
9/28/2018	Dredging	DMMU 12C	Intensive	1	13:30	Flood	N4	Deep	8.4	5.1	150 UP NB	N	Y									Boat repair and delay in unloading material barges
9/28/2018	Dredging	DMMU 12C	Intensive	1							300 UP NB	N	Y	LMCWQ-089				0.020 U				

TABLE 11

CUMULATIVE WATER QUALITY MONITORING ACTIVITIES FOR CONSTRUCTION SEASON 1

												Conventional				Chei	mical Com	pliance Re	esults			
Date	Activity	Area	Monitoring Level ¹	Monitoring Round	Time	Tide	Wind	Depth	Highest Turbidity (NTU)	Ambient Turbidity (NTU)	Compliance Station (w/ highest turbidity)	Parameter Exceedance (Y/N)	Sample Collected (Y/N)	Sample ID No. Analyzed	Cu (diss. µg/L)	Pb (diss. µg/L)	Hg (diss. µg/L)	Hg (total µg/L)	Zn (diss. µg/L)	Total PCBs (μg/L)	Chemical Exceedance (Y/N)	Comments
9/28/2018	Dredging	DMMU 12C	Intensive	1							300 UP MD	N	Y	LMCWQ-090				0.020 U				
9/29/2018	Dredging	DMMU 12C	Intensive	1	9:40	Ebb	N4	Deep	13.4	4.4	300 UP NB	Y (Turbidity)	N									Limited duration of dredging, confirmed turbidity exceedance
9/29/2018	Dredging	DMMU 12C	Intensive	2 (upcurrent only)	10:30	Ebb	N5	Deep	9.3	4.4	300 UP NB	N (Sample for previous exceedance)	Y	LMCWQ-100	1.13 J	1.01 U	_	0.043	7.56	0.031	N	Dissolved Hg not analyzed. Total Hg below Acute criterion. Total Hg and PCBs at 300 ft below Chronic criterion.
9/29/2018	Dredging	DMMU 12C	Intensive	2 (upcurrent only)							300 UP NS	N	Y	LMCWQ-099				0.021		0.010 U		
9/29/2018	Dredging	DMMU 12C	Intensive	2 (upcurrent only)							300 UP MD	N	Y	LMCWQ-101				0.032		0.010 U		
10/1/2018	Dredging	DMMU 1A/2B	Intensive	1	9:30	Tide change	S8	Shallow	6.1	4.4	150 DOWN NS & NB	N	Υ									
10/1/2018	Dredging	DMMU 12C	Intensive	2	13:20	Ebb	S5	Deep	7.9	4.4	300 DOWN MD	N	N									
10/2/2018	Dredging	DMMU 1A/2B	Intensive	1	9:20	Flood	S9	Shallow	5.2	4.5	150 DOWN MD	N	Y									
10/2/2018	Dredging	DMMU 12A	Intensive	2	13:45	Ebb	S14	Deep	8.6	4.4	150 UP NB	N	N									
10/3/2018	Dredging	DMMU 13D	Intensive	1	9:30	Flood	N0	Deep	6	4.3	150 DOWN NB	N	Y									
10/3/2018	Dredging	DMMU 1B/2B	Intensive	2	14:00	Ebb	E2	Shallow	7.6	4.6	150 DOWN NS	N	N									
10/4/2018	Dredging	DMMU 1B/2B	Intensive	1	8:50	Flood	N12	Shallow	9.4	4.6	150 UP NB	N	Y									
10/4/2018	Dredging	DMMU 13B	Intensive	2	15:00	Ebb	N4	Deep	6.9	4.9	300 DOWN NB	N	N									
10/5/2018	Dredging	DMMU 10C	Intensive	1	9:45	Flood	S4	Deep	6.6	5.1	150 DOWN NS	N	Y									
10/6/2018	Dredging	DMMU 1A/2A	Intensive	1	9:15	Flood	N14	Shallow	5.1	1.2	150 UP NS	N	Y									
10/6/2018	Dredging	DMMU 1B/2B	Intensive	2	12:00	Flood	N13	Shallow	4.4	1.3	300 UP NS	N	N									

TABLE 11

CUMULATIVE WATER QUALITY MONITORING ACTIVITIES FOR CONSTRUCTION SEASON 1

												Commentional				Chen	nical Com	pliance Re	sults			
Date	Activity	Area	Monitoring Level ¹	Monitoring Round	Time	Tide	Wind	Depth	Highest Turbidity (NTU)	Ambient Turbidity (NTU)	Compliance Station (w/ highest turbidity)	Conventional Parameter Exceedance (Y/N)	Sample Collected (Y/N)	Sample ID No. Analyzed	Cu (diss. µg/L)	Pb (diss. μg/L)	Hg (diss. μg/L)	Hg (total µg/L)	Zn (diss. μg/L)	Total PCBs (µg/L)	Chemical Exceedance (Y/N)	Comments
10/8/2018	Dredging	DMMU 13E	Intensive	1	11:30	Flood	W1	Deep	2.1	0.9	300 DOWN NB	N	Y									
10/8/2018	Dredging	DMMU 16E	Intensive	2	14:00	Flood	N2	Deep	3.3	1	150 DOWN NB	N	N									
10/9/2018	Dredging		No monitoring (unsafe sea conditions)																			Monitoring not conducted. Unsafe sea conditions.
10/10/2018	Dredging	DMMU 1A/2A	Intensive	1	10:30	Ebb	S1	Shallow	7.3	2.7	150 UP NS	N	N									
10/10/2018	Dredging	DMMU 1A/2A	Intensive	2	13:00	Flood	S1	Shallow	4.2	1.3	150 DOWN MD	N	Y									
10/11/2018	Dredging	DMMU 1A/2A	Intensive	1	9:00	Ebb	N4	Shallow	5	1.4	150 DOWN NS	N	N									
10/11/2018	Dredging	DMMU 13C	Intensive	2	9:55	Ebb	N3	Deep	4.7	1.1	150 UP NB	N	Y									
10/12/2018	Dredging	DMMU 1B/2B	Intensive	1	9:50	Ebb	N0	Shallow	13.3	1.1	150 DOWN NB	Y	Y	LMCWQ-208	1.61 J	1.01 U	_	0.02 U	12.6 U	0.010 U	N	Dissolved Hg not analyzed. Total Hg below Acute criterion.
10/12/2018	Dredging	DMMU 1B/2B	Intensive	2	13:25	Tide change	E1	Shallow	8.2	1.3	150 DOWN NS	Y (Apparent turbidity exceedance)	N									Apparent turbidity exceedance (not confirmed).
10/13/2018	Dredging	DMMU 1B/2B	Intensive	1	9:35	Ebb	N6	Shallow	4.6	1.1	300 UP MD	N	Y									
10/15/2018	Dredging	DMMU 12C	Intensive	1	10:00	Tide change	N5	Deep	4.6	1.4	300 DOWN NB	N	Y									
10/15/2018	Dredging	DMMU 1B/2B	Intensive	2	12:30	Ebb	N9	Shallow	2.2	1.3	150 DOWN NS	N	N									
10/16/2018	Dredging		No monitoring (WQ instrument																			
10/17/2018	Dredging	DMMU 13E	Intensive	1	11:20	Tide change	N2	Deep	4.4	1.3	300 DOWN NB	N	Y									
10/18/2018	Dredging	DMMU 9A/10A	Intensive	1 (partial)	11:00	Flood	N0	Deep	3.8	1.1	150 DOWN NB	N	Y (partial)									Dredge equipment failure just after start of monitoring.
10/22/2018	ENR material placement	ENR F05	Intensive	1	13:00	Flood	N2	Deep	1.8	1.1	300 DOWN NB	N	N									
10/22/2018	ENR material placement	ENR F05	Intensive	2	14:00	Flood	E2	Deep	4.4	1.4	300 UP NS	N	N									

TABLE 11

CUMULATIVE WATER QUALITY MONITORING ACTIVITIES FOR CONSTRUCTION SEASON 1

												Conventional				Che	mical Com	pliance Re	esults			
Date	Activity	Area	Monitoring Level ¹	Monitoring Round	Time	Tide	Wind	Depth	Highest Turbidity (NTU)	Ambient Turbidity (NTU)	Compliance Station (w/ highest turbidity)	Parameter Exceedance (Y/N)	Sample Collected (Y/N)	Sample ID No. Analyzed	Cu (diss. µg/L)	Pb (diss. µg/L)	Hg (diss. µg/L)	Hg (total µg/L)	Zn (diss. µg/L)	Total PCBs (µg/L)	Chemical Exceedance (Y/N)	Comments
10/22/2018	Dredging	DMMU 9A	Intensive	3	14:30	Flood	E2	Deep	3.7	1.2	300 UP MD	N	N									
10/23/2018	ENR material placement	ENR F06/E06	Intensive	1	10:00	Ebb	S5	Deep	5.7	1.9	300 DOWN NS	Y (Apparent DO exceedance)	N									Low DO at near bottom compliance and ambient stations.
10/23/2018	ENR material placement	ENR E06	Intensive	2	12:45	Flood	S9	Deep	3.4	1.4	150 UP NS	Y (Apparent DO exceedance)	N									Low DO at near bottom compliance and ambient stations.
10/23/2018	Dredging	DMMU 9B	Intensive	3	14:00	Flood	S12	Deep	6	1.2	150 UP NB	N	Y									
10/24/2018	ENR material placement	ENR E04	Intensive	1	10:15	Ebb	S6	Deep	4.8	1.2	300 UP NB	Y (DO)	N									
10/24/2018	ENR material placement	ENR E04	Intensive	2	12:45	Flood	S7	Deep	4.4	1.2	150 DOWN NB	N	N									
10/24/2018	ENR material placement	ENR E04	Intensive	3	13:55	Flood	S4	Deep	4.2	1.5	150 UP NB	N	N									
10/25/2018	Dredging	DMMU 12A	Intensive	1	10:30	Ebb	S5	Deep	5.6	1.4	150 DOWN NB	Y (Apparent DO exceedance)	N									No water samples collected, exceedance driven sampling in effect.
10/25/2018	ENR material placement	ENR D05	Intensive	2	11:00	Ebb	S8	Deep	7.9	1.6	300 DOWN NS	Y (Turbidity and apparent DO)	N									
10/25/2018	ENR material placement	ENR D06	Intensive	3	15:25	Flood	W1	Deep	5.7	1.4	300 DOWN NS	Y (Apparent DO exceedance)	N									Modification of placement methods.
10/26/2018	ENR material placement	ENR E03	Intensive	1	9:00	Ebb	S6	Deep	3.6	2.3	150 DOWN NS	Y (Apparent DO exceedance)	N									Modification of placement methods.
10/26/2018	Dredging	DMMU 12A	Intensive	2	9:30	Ebb	S6	Deep	6.2	1.7	150 UP NB	Y (Apparent DO exceedance)	N									
10/26/2018	ENR material placement	ENR E03	Intensive	3	10:00	Ebb	S3	Deep	11.6	2.1	150 DOWN NS	Y (Turbidity and apparent DO)	N									Modification of placement methods.
10/26/2018	ENR material placement	ENR E03	Intensive	4	12:45	Tide change	S7	Deep	2.8	1.4	150 UP NB	Y (Apparent DO exceedance)	N									Modification of placement methods.
10/26/2018	Dredging	DMMU 12A	Intensive	5	13:15	Flood	S10	Deep	3.3	2.1	300 UP NS	Y (Apparent DO exceedance)	N									
10/26/2018	ENR material placement	ENR E03	Intensive	6	14:10	Flood	S13	Deep	10	1.3	150 UP NB	Y (Apparent turbidity exceedance)	N									Modification of placement methods.
10/26/2018	ENR material placement	ENR E07	Intensive	7	14:55	Flood	S13	Deep	7.2	2.3	150 DOWN NB	Y (Apparent DO exceedance)	N									Modification of placement methods.

TABLE 11

CUMULATIVE WATER QUALITY MONITORING ACTIVITIES FOR CONSTRUCTION SEASON 1

												Q				Che	mical Com	pliance Re	esults			
Date	Activity	Area	Monitoring Level ¹	Monitoring Round	Time	Tide	Wind	Depth	Highest Turbidity (NTU)	Ambient Turbidity (NTU)	Compliance Station (w/ highest turbidity)	Conventional Parameter Exceedance (Y/N)	Sample Collected (Y/N)	Sample ID No. Analyzed	Cu (diss. µg/L)	Pb (diss. µg/L)	Hg (diss. µg/L)	Hg (total µg/L)	Zn (diss. μg/L)	Total PCBs (µg/L)	Chemical Exceedance (Y/N)	Comments
10/27/2018	ENR material placement	ENR D07	Intensive	1	10:30	Ebb	E1	Deep	6.1	1.2	150 UP NB	N	N									Modification of placement methods.
10/27/2018	Dredging	DMMU 12A/13A	Intensive	2	14:50	Flood	N1	Deep	5.9	2	150 UP NS	Y (Apparent DO exceedance)	N									
10/29/2018	Dredging	DMMU 12A	Intensive	1	9:30	Tide change	S14	Deep	4.9	1.3	150 DOWN NB	N	N									
10/29/2018	ENR material placement	ENR D07	Intensive	2	11:00	Ebb	S13	Deep	11.2	1.5	150 DOWN NS	Y (Turbidity)	N									Modification of placement methods.
10/29/2018	Dredging	DMMU 13A	Intensive	3	11:45	Ebb	S13	Deep	3.6	2.8	150 UP NB	N	N									
10/29/2018	ENR material placement	ENR D07	Intensive	4	13:15	Ebb	S7	Deep	10.2/1.8	1.5	150 UP NB	N	N									Modification of placement methods.
10/29/2018	ENR material placement	ENR D07	Intensive	5	14:10	Flood	S9	Deep	4.3	2.1	150 DOWN NS	N	N									Modification of placement methods.
10/30/2018	ENR material placement	ENR D06	Intensive	1	9:30	Flood	S7	Deep	5.4	1.8	150 UP NS	N	N									Modification of placement methods.
10/30/2018	Dredging	DMMU 10A	Intensive	2	11:00	Tide change	S7	Deep	6.3	1.4	150 DOWN NB	N	N									
10/30/2018	Dredging	DMMU 10A	Intensive	3	12:30	Ebb	S7	Deep	2.4	1.6	300 UP NB	N	N									
10/30/2018	ENR material placement	ENR E08	Intensive	4	13:20	Ebb	S5	Deep	2.2	2.3	150 UP NS	N	N									Modification of placement methods.
10/30/2018	ENR material placement	ENR E08	Intensive	5	14:10	Ebb	S6	Deep	8.1/4	1.4	150 UP NB	N	N									Modification of placement methods.
10/31/2018	ENR material placement	ENR D08	Intensive	1	9:30	Flood	S16	Deep	4.3	1.6	150 UP NS	N	N									Modification of placement methods.
10/31/2018	ENR material placement	ENR D08	Intensive	2	10:45	Flood	S12	Deep	4.8	1.4	300 UP NB	N	N									Modification of placement methods.
10/31/2018	Dredging	DMMU 13A	Intensive	3	11:10	Flood	S14	Deep	6.2	1.7	300 UP MD	N	N									
10/31/2018	ENR material placement	ENR D08	Intensive	4	11:40	Tide change	S14	Deep	10/6.7	1.5	150 DOWN NB	Y	N									Modification of placement methods.
10/31/2018	Dredging	DMMU 13A	Intensive	5	13:00	Ebb	S13	Deep	14.5/11.4	1.3	300 DOWN NB	Y	Y (300 ft)	LMCWQ-271	0.99 J	1.01 U	_	0.111	12.6 U	0.024 J	N	Dissolved Hg not analyzed. Total Hg below Acute criterion. 300 ft samples collected on 10/31 &11/1 analyzed for total Hg.

TABLE 11

CUMULATIVE WATER QUALITY MONITORING ACTIVITIES FOR CONSTRUCTION SEASON 1

												Conventional				Cher	nical Com	pliance Re	esults			
Date	Activity	Area	Monitoring Level ¹	Monitoring Round	Time	Tide	Wind	Depth	Highest Turbidity (NTU)	Ambient Turbidity (NTU)	Compliance Station (w/ highest turbidity)	Parameter Exceedance (Y/N)	Sample Collected (Y/N)	Sample ID No. Analyzed	Cu (diss. µg/L)	Pb (diss. µg/L)	Hg (diss. µg/L)	Hg (total µg/L)	Zn (diss. μg/L)	Total PCBs (µg/L)	Chemical Exceedance (Y/N)	Comments
10/31/2018	Dredging	DMMU 13A	Intensive								300 UP NB	N	Y	LMCWQ-272				0.02 U				Analysis for total Hg.
10/31/2018	Dredging	DMMU 13A	Intensive								300 UP NS	N	Υ	LMCWQ-273				0.02 U				Analysis for total Hg.
10/31/2018	Dredging	DMMU 13A	Intensive						10.3	1.5	300 DOWN MD	Υ	Y	LMCWQ-274				0.028				Analysis for total Hg.
10/31/2018	Dredging	DMMU 13A	Intensive								300 DOWN NS	N	Y	LMCWQ-275				0.02 U				Analysis for total Hg.
10/31/2018	Dredging	DMMU 13A	Intensive	6	14:20	Ebb	S12	Deep	17.1/39.6	1.5	150 DOWN NB	Υ	y (150 ft)	LMCWQ-276	0.7 J	1.01 U	_	0.165	12.6 U	0.045 J	N	Dissolved Hg not analyzed. Total Hg below Acute criterion.
11/1/2018	ENR material placement	ENR D09	Intensive	1	10:10	Flood	S7	Deep	3.5	1.6	150 UP NS	N	N									Modification of placement methods.
11/1/2018	ENR material placement	ENR D09	Intensive	2	11:30	Flood	S9	Deep	3.6	1.4	150 DOWN NB	N	N									Modification of placement methods.
11/1/2018	ENR material placement	ENR D09	Intensive	3	12:55	Tide change	S12	Deep	6	1.2/1.7	150 UP NB & 150 DOWN NS	N	N									Modification of placement methods.
11/1/2018	Dredging	DMMU 13B	Intensive	4	13:20	Ebb	S12	Deep	5.5	1.2	150 DOWN NB	N	y (150 ft & 300 ft)									
11/1/2018	Dredging	DMMU 13B	Intensive								300 DOWN NS	N	Υ	LMCWQ-284				0.02 U				Analysis for total Hg.
11/1/2018	Dredging	DMMU 13B	Intensive								300 DOWN NB	N	Y	LMCWQ-285				0.02 U				Analysis for total Hg.
11/1/2018	Dredging	DMMU 13B	Intensive								300 DOWN MD	N	Υ	LMCWQ-286				0.02 U				Analysis for total Hg.
11/1/2018	Dredging	DMMU 13B	Intensive								300 UP NS	N	Υ	LMCWQ-289				0.02 U				Analysis for total Hg.
11/1/2018	Dredging	DMMU 13B	Intensive								300 UP NB	N	Y	LMCWQ-290				0.02 U				Analysis for total Hg.
11/2/2018	ENR material placement	ENR C05	Intensive	1	13:15	Flood	S15	Deep	3.7	1.7	150 UP NS	N	N									Modification of placement methods.
11/2/2018	Dredging	DMMU 14D	Intensive	2	13:55	Ebb	S14	Deep	6.8/5.3	1.3	150 DOWN NB	N	Y (300 ft)									
11/2/2018	ENR material placement	ENR C07	Intensive	3	15:05	Ebb	S2	Deep	5.3	1.5	150 DOWN NS	N	N									Modification of placement methods.

TABLE 11

CUMULATIVE WATER QUALITY MONITORING ACTIVITIES FOR CONSTRUCTION SEASON 1

												Commentional				Che	mical Com	pliance Re	esults			
Date	Activity	Area	Monitoring Level ¹	Monitoring Round	Time	Tide	Wind	Depth	Highest Turbidity (NTU)	Ambient Turbidity (NTU)	Compliance Station (w/ highest turbidity)	Conventional Parameter Exceedance (Y/N)	Sample Collected (Y/N)	Sample ID No. Analyzed	Cu (diss. µg/L)	Pb (diss. μg/L)	Hg (diss. µg/L)	Hg (total µg/L)	Zn (diss. µg/L)	Total PCBs (µg/L)	Chemical Exceedance (Y/N)	Comments
11/2/2018	Dredging	DMMU 14D	Intensive	4	15:30	Ebb	S2	Deep	5.3	1.3	300 DOWN NB	N	N									
11/3/2018	Dredging	DMMU 14E	Intensive	1	9:50	Flood	S6	Deep	6.9/15.5	1.4	150 DOWN NB	Y (Turbidity)	Y (150 ft & 300 ft)	LMCWQ-299	0.53 J	1.01 U	_	0.021	12.6 U	0.079 J	N	Dissolved Hg not analyzed. Total Hg below Acute criterion.
11/3/2018	ENR material placement	ENR E10	Intensive	2	13:30	Flood	S10	Deep	6.8	1.8	300 UP NS	Y (Apparent turbidity exceedance)	N									Modification of placement methods.
11/3/2018	ENR material placement	ENR E10	Intensive	3	14:30	Tide change	S7	Deep	8.5/6.7	1.3	150 DOWN NS	Y (Turbidity)	N									Modification of placement methods.
11/5/2018	ENR material placement	ENR D10	Intensive	1	10:45	Flood	S7	Deep	4.6	1.4	300 DOWN NB	N	N									Modification of placement methods.
11/5/2018	ENR material placement	ENR C10	Intensive	2	14:00	Flood	S7	Deep	4.1	1.8	150 UP NS	N	N									Modification of placement methods.
11/6/2018	ENR material placement	ENR D11/D12	Intensive	1	9:50	Flood	S 7	Deep	14/5.6	2.3	150 UP NS	N	N									Modification of placement methods.
11/6/2018	Dredging	DMMU 15G	Intensive	2	11:25	Flood	S 7	Deep	4.2	2.1	300 UP NS	N	N									
11/6/2018	ENR material placement	ENR D12	Intensive	3	12:40	Flood	S 7	Deep	6.2	1.9	150 UP NS	N	N									Modification of placement methods.
11/6/2018	Dredging	DMMU 15F	Intensive	4	13:50	Flood	S7	Deep	4	1.2	150 DOWN NB	N	N									
11/7/2018	Dredging	DMMU 15E	Intensive	1	13:10	Flood	S7	Deep	4.6	4	150 UP NS	N	N									
11/7/2018	Dredging	DMMU 15E	Intensive	2	14:00	Flood	S7	Deep	5.5	1.6	300 DOWN NB	N	N									
11/8/2018	Dredging	DMMU 15D	Intensive	1	9:30	Ebb	E2	Deep	6	1.2	300 DOWN NB	Y (Apparent DO exceedance)	N									
11/8/2018	Dredging	DMMU 14D	Intensive	2	13:20	Flood	E2	Deep	5.1	1.3	150 UP NB	N	N									
11/9/2018	Dredging	DMMU 15D	Intensive	1	9:15	Ebb	E1	Deep	5.2	1.8	150 UP NB	N	N									
11/9/2018	Dredging	DMMU 15D	Intensive	2	11:00	Ebb	N0	Deep	6.5	1.6	300 DOWN NB	N	N									
11/10/2018	Dredging	DMMU 14F	Intensive	1	9:35	Ebb	S3	Deep	5.8	1.3	150 DOWN NB	N	N									

TABLE 11

CUMULATIVE WATER QUALITY MONITORING ACTIVITIES FOR CONSTRUCTION SEASON 1

												Conventional				Chei	mical Com	pliance Re	esults			
Date	Activity	Area	Monitoring Level ¹	Monitoring Round	Time	Tide	Wind	Depth	Highest Turbidity (NTU)	Ambient Turbidity (NTU)	Compliance Station (w/ highest turbidity)	Parameter Exceedance (Y/N)	Sample Collected (Y/N)	Sample ID No. Analyzed	Cu (diss. µg/L)	Pb (diss. µg/L)	Hg (diss. µg/L)	Hg (total µg/L)	Zn (diss. µg/L)	Total PCBs (µg/L)	Chemical Exceedance (Y/N)	Comments
11/10/2018	Dredging	DMMU 14F	Intensive	2	10:35	Ebb	S7	Deep	2.4	2	300 UP NS	N	N									
11/12/2018	Dredging	DMMU 14G	Intensive	1	10:35	Ebb	N3	Deep	4.6	1.7	150 DOWN NS	N	N									
11/12/2018	Dredging	DMMU 16E	Intensive	2	12:45	Ebb	N4	Deep	4.3	1.8	300 DOWN NB	N	N									
11/13/2018	Dredging	DMMU 14E	Intensive	1	9:50	Ebb	S6	Deep	4.8	1.4	150 UP NB	N	N									
11/13/2018	Dredging	DMMU 14E	Intensive	2	10:55	Ebb	S7	Deep	5.1	1.9	150 DOWN NS	N	N									
11/14/2018	Dredging		Routine (Visual monitoring)																			Per USEPA direction.
11/15/2018	Dredging	DMMU 15G	Routine	1	10:00	Flood	S7	Deep	2.7	1.4	150 DOWN NB	N	N									
11/15/2018	Dredging	DMMU 15G	Routine	2	11:00	Tide change	S6	Deep	2.5	1.3	300 DOWN NB	N	N									
11/16/2018	Dredging		Routine (Visual monitoring)																			
11/17/2018	Dredging		Routine (Visual monitoring)																			
11/19/2018	Dredging		Routine (Visual monitoring)																			
11/20/2018	Dredging	DMMU 2B	Routine	1	11:00	Flood	E1	Shallow	3.6	1	150 UP NS	N	N									
11/20/2018	Dredging	DMMU 2B	Routine	2	12:13	Flood	N1	Shallow	5.3	1.2	150 UP NS	N	N									
11/21/2018	Dredging		Routine (Visual monitoring)																			
11/26/2018	Dredging		Routine (Visual monitoring)																			
11/27/2018	Dredging	DMMU 16E	Routine	1	11:00	Ebb	S12	Deep	5.3	1.3	150 DOWN NS	N	N									
11/28/2018	Dredging		Routine (Visual monitoring)																			

TABLE 11

CUMULATIVE WATER QUALITY MONITORING ACTIVITIES FOR CONSTRUCTION SEASON 1

												Conventional				Che	mical Com	pliance Re	esults			
Date	Activity	Area	Monitoring Level 1	Monitoring Round	Time	Tide	Wind	Depth	Highest Turbidity (NTU)	Ambient Turbidity (NTU)	Compliance Station (w/ highest turbidity)	Parameter Exceedance (Y/N)	Sample Collected (Y/N)	Sample ID No. Analyzed	Cu (diss. µg/L)	Pb (diss. μg/L)	Hg (diss. µg/L)	Hg (total µg/L)	Zn (diss. μg/L)	Total PCBs (µg/L)	Chemical Exceedance (Y/N)	Comments
11/29/2018			Routine (Visual monitoring)									, ,			, ,	, ,	, ,	, ,	10 /	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
11/30/2018	Dredging	DMMU 17E	Routine	1	9:25	Flood	W2	Deep	5.9	1.4	150 UP NS	N	N									
1/30/2018	Dredging	DMMU 17E	Routine	2	10:25	Flood	N0	Deep	3.4	2.9	150 UP NS	N	N									
12/1/2018	Dredging		Routine (Visual monitoring)																			
12/3/2018	Dredging		Routine (Visual monitoring)																			
12/4/2018	Dredging	DMMU 16D	Routine	1	10:15	Flood	N5	Deep	4.3	0.6	150 DOWN NB	N	N									
12/4/2018	Dredging	DMMU 16C/16D	Routine	2	12:40	Flood	N5	Deep	3.4	0.5	150 DOWN NB	N	N									
12/5/2018	Dredging		Routine (Visual monitoring)																			
12/6/2018	Dredging	DMMU 18C	Routine	1	10:00	Tide change	E3	Deep	4.2	1	150 UP NB	N	N									
12/6/2018	Dredging	DMMU 18C	Routine	2	11:00	Flood	N1	Deep	5.9	1.1	150 DOWN NB	N	N									
12/7/2018	Dredging		Routine (Visual monitoring)																			
12/8/2018	Dredging		Routine (Visual monitoring)																			
2/10/2018	Dredging	DMMU 19D	Routine	1	11:30	Ebb	S11	Deep	5.5	0.9	150 UP NB	N	N									
2/10/2018	Dredging	DMMU 19D	Routine	2	13:00	Tide change	S11	Deep	4.8	2.4	300 UP NB	N	N									
2/11/2018	Dredging		Routine (Visual monitoring)																			
2/12/2018	Dredging	DMMU 16D	Routine	1	9:30	Ebb	S3	Deep	4.6	0.7	150 UP NB	N	N									
2/12/2018	Dredging	DMMU 16D	Routine	2	10:55	Ebb	S9	Deep	4.5	0.7	300 UP MD	N	N									

TABLE 11

CUMULATIVE WATER QUALITY MONITORING ACTIVITIES FOR CONSTRUCTION SEASON 1

												Conventional				Che	mical Com	pliance Re	esults			
Date	Activity	Area	Monitoring Level ¹	Monitoring Round	Time	Tide	Wind	Depth	Highest Turbidity (NTU)	Ambient Turbidity (NTU)	Compliance Station (w/ highest turbidity)	Conventional Parameter Exceedance (Y/N)	Sample Collected (Y/N)	Sample ID No. Analyzed	Cu (diss. µg/L)	Pb (diss. μg/L)	Hg (diss. µg/L)	Hg (total µg/L)	Zn (diss. µg/L)	Total PCBs (µg/L)	Chemical Exceedance (Y/N)	Comments
12/13/2018			Routine (Visual monitoring)																			
12/14/2018	Dredging		Routine (Visual monitoring)																			
12/15/2018	Dredging		Routine (Visual monitoring)																			
12/17/2018	Dredging	DMMU 19C	Routine	1	9:20	Flood	S12	Deep	1.7	1.1	150 DOWN NS	N	N									
12/17/2018	Dredging	DMMU 20A	Routine	2	10:40	Flood	S14	Deep	3.1	1.2	150 UP NB	N	N									
12/18/2018	Dredging		Routine (Visual monitoring)																			
12/19/2018	Dredging	DMMU 19C	Routine	1	10:45	Flood	S22G22	Deep	4.8	2.6	150 UP NS	N	N									
12/19/2018	Dredging	DMMU 19C	Routine	2	13:10	Tide change	S14	Deep	2.2	2.3	300 UP NS	N	N									
12/20/2018	Dredging		Routine (Visual monitoring)																			
12/21/2018	Dredging		Routine (Visual monitoring)																			
12/26/2018	Dredging	DMMU 15D2	Routine	1	14:06	Ebb	S9	Deep	4.9	0.9	150 DOWN NS	N	N									
12/26/2018	RML material placement	DMMU 4A	Routine	2	14:40	Flood	S9	Shallow	1.8	0.7	150 UP NS	N	N									Modification of placement methods, partially submerged bucket.
12/27/2018	Dredging/RML/ENR Placement		Routine (Visual monitoring)																			
12/28/2018	Dredging	DMMU 17C	Routine	1	9:30	Tide change	N0	Deep	1.7	0.3	300 UP NB	N	N									
12/28/2018	RML material placement	DMMU 4A	Routine	2	13:15	Ebb	E3	Shallow	3.8	0.7	300 DOWN NS	N	N									Modification of placement methods, partially submerged bucket.
12/29/2018	Dredging/RML/ENR Placement		Routine (Visual monitoring)																			
1/2/2019	ENR material placement	ENR G09	Routine	1	9:30	Flood	N1	Deep	15.4	1.1	150 UP MD	Υ	N									Modification of placement methods, partially submerged bucket.

TABLE 11

CUMULATIVE WATER QUALITY MONITORING ACTIVITIES FOR CONSTRUCTION SEASON 1

												Conventional				Cher	nical Com	pliance Re	esults			
Date	Activity	Area	Monitoring Level ¹	Monitoring Round	Time	Tide	Wind	Depth	Highest Turbidity (NTU)	Ambient Turbidity (NTU)	Compliance Station (w/ highest turbidity)	Parameter Exceedance (Y/N)	Sample Collected (Y/N)	Sample ID No. Analyzed	Cu (diss. µg/L)	Pb (diss. μg/L)	Hg (diss. µg/L)	Hg (total µg/L)	Zn (diss. μg/L)	Total PCBs (µg/L)	Chemical Exceedance (Y/N)	Comments
1/2/2019	ENR material placement	ENR G09	Intensive	2	10:45	Flood	E2	Deep	3.6	3.7	150 UP NS	N	N									Modification of placement methods, partially submerged bucket.
1/2/2019	Dredging	DMMU 14D	Routine	3	13:25	Tide change	S4	Deep	2.3	4.1	150 DOWN NS	N	N									
1/3/2019	Dredging/RML/ENR Placement		Routine (Visual monitoring)																			ENR placement WQ monitoring not conducted; unsafe conditions; dredging and ENR placement suspended.
1/4/2019	Dredging	DMMU 17C	Routine	1	8:40	Ebb	S15	Deep	2.6	2.2	150 UP NS	N	N									
1/4/2019	ENR material placement	ENR G10	Intensive	2	10:00	Tide change	S19	Deep	3.4	0.6	300 UP NB	N	N									Modification of placement methods, partially submerged bucket.
1/4/2019	ENR material placement	ENR G10	Intensive	3	14:10	Flood	S20G20	Deep	2.9	1.6	300 UP NS	N	N									Modification of placement methods, partially submerged bucket.
1/5/2019	ENR material placement	ENR E10	Intensive	1	10:20	Ebb	N0	Deep	5.3	0.8	150/300 DOWN MD	N	N									Modification of placement methods, partially submerged bucket.
1/5/2019	ENR material placement	ENR F11	Intensive	2	12:30	Flood	N0	Deep	2.9	1	150 DOWN MD	N	N									Modification of placement methods, partially submerged bucket.
1/7/2019	ENR material placement	ENR D12	Intensive	1	9:45	Ebb	S12	Deep	5.4	0.8	150 DOWN MD	N	N									Modification of placement methods, partially submerged bucket.
1/7/2019	Dredging	DMMU 18B	Routine	2	10:10	Ebb	S14	Deep	1.9	2	150 UP NS	N	N									
1/8/2019	ENR material placement	ENR G13	Intensive	1	11:10	Ebb	N9	Deep	5.8	0.5	150 DOWN MD	Y (Apparent turbidity exceedance)	N									Unconfirmed exceedance of turbidity criteria.
1/8/2019	ENR material placement	ENR G14	Intensive	2	13:30	Flood	N3	Deep	3.8	1.6	150 UP NS	N	N									Modification of placement methods, partially submerged bucket.
1/9/2019	ENR material placement	ENR F13	Intensive	1	9:30	Ebb	W6	Deep	3.6	1.2	150 DOWN NS	N	N									Modification of placement methods, partially submerged bucket.
1/9/2019	Dredging	DMMU 16C	Routine	2	9:50	Ebb	W6	Deep	4.9	0.4	150 DOWN NB	N	N									
1/9/2019	ENR material placement	ENR E13	Intensive	3	13:45	Flood	N4	Deep	3.8	0.9	150 DOWN NS	N	N									Modification of placement methods, partially submerged bucket.
1/10/2019	ENR material placement	ENR G14	Intensive	1	11:00	Ebb	S8	Deep	4.7	1.2	150 DOWN NS	N	N									Modification of placement methods, partially submerged bucket.
1/10/2019	ENR material placement	ENR F14	Intensive	2	13:55	Tide change	S12	Deep	2.9	1.1	150 DOWN NS	N	N									Modification of placement methods, partially submerged bucket.

TABLE 11

CUMULATIVE WATER QUALITY MONITORING ACTIVITIES FOR CONSTRUCTION SEASON 1

												Conventional				Cher	nical Com	pliance Re	esults			
Date	Activity	Area	Monitoring Level ¹	Monitoring Round	Time	Tide	Wind	Depth	Highest Turbidity (NTU)	Ambient Turbidity (NTU)	Compliance Station (w/ highest turbidity)	Parameter Exceedance (Y/N)	Sample Collected (Y/N)	Sample ID No. Analyzed	Cu (diss. µg/L)	Pb (diss. μg/L)	Hg (diss. µg/L)	Hg (total µg/L)	Zn (diss. μg/L)	Total PCBs (µg/L)	Chemical Exceedance (Y/N)	Comments
1/11/2019	Dredging/RML/ENR Placement		Routine (Visual monitoring)																			RML/ENR placement monitoring reduced to routine monitoring following 2 days without exceedance.
1/12/2019	Dredging/RML/ENR Placement		Routine (Visual monitoring)																			
1/14/2019	Dredging	DMMU 17D	Routine	1	9:40	Flood	N13	Deep	3	0.9	150 DOWN NS	N	N									
1/14/2019	ENR material placement	ENR C11	Routine	2	10:00	Tide change	N12	Deep	1.4	0.9	150 UP NS	N	N									Modification of placement methods, partially submerged bucket.
1/15/2019	ENR material placement		Routine (Visual monitoring)																			
1/16/2019	ENR material placement		Routine (Visual monitoring)																			
1/17/2019	ENR material placement	ENR C17	Routine	1	9:30	Flood	N0	Deep	3.3	0.4	150 DOWN MD	N	N									
1/17/2019	Placement of Filter Rock	DMMU 10A	Intensive	2	10:20	Flood	W3	Deep	0.9	0.7	300 DOWN NS	N	N									Placing Filter Rock with Bucket Near Bottom.
1/17/2019	ENR material placement	ENR C17	Routine	3	13:00	Ebb	N7	Deep	0.7	0.6	150/300 UP NS	N	N									
1/17/2019	Placement of Filter Rock	DMMU 10A	Intensive	4	13:30	Ebb	N7	Deep	2.1	0.3	150 DOWN NB	N	N									Placing Filter Rock with Bucket Near Bottom.
1/18/2019	Placement of Filter Rock	DMMU 9A	Intensive	1	10:00	Flood	S17	Deep	4.8	0.4	150 DOWN NB	N	N									Placing Filter Rock with Bucket Near Bottom.
1/18/2019	Placement of Filter Rock	DMMU 9A	Intensive	2	12:50	Tide change	S16	Deep	0.7	0.2	150 DOWN MD and 300 UP NB	N	N									Placing Filter Rock with Bucket Near Bottom.
1/19/2019	Placement of Riprap	DMMU 10A	Intensive	1	10:50	Flood	S14	Deep	2.2	0.8	300 UP NS	N	N									Placing riprap with bucket near bottom.
1/19/2019	Placement of Riprap	DMMU 10A	Intensive	2	12:45	Flood	S19	Deep	1	0.4	150 DOWN NB	N	N									Placing riprap with bucket near bottom.
1/21/2019	Placement of Riprap	DMMU 10A	Intensive	1	9:00	Ebb	W4	Deep	1.5	1.1	150 UP NS	N	N									Placing riprap with bucket near bottom.
1/21/2019	Placement of Riprap	DMMU 9A	Intensive	2	11:10	Tide change	W1	Deep	1.8	0.8	300 UP NS	N	N									Placing riprap with bucket near bottom.
1/22/2019	ENR material placement	ENR C19	Routine	1	9:10	Ebb	S10	Deep	5.5	0.8	300 DOWN NS	N	N									Modification of placement methods, bucket just above the water surface.

TABLE 11

CUMULATIVE WATER QUALITY MONITORING ACTIVITIES FOR CONSTRUCTION SEASON 1

												Conventional				Che	mical Con	npliance R	esults			
Date	Activity	Area	Monitoring Level ¹	Monitoring Round	Time	Tide	Wind	Depth	Highest Turbidity (NTU)	Ambient Turbidity (NTU)	Compliance Station (w/ highest turbidity)	Parameter Exceedance (Y/N)	Sample Collected (Y/N)	Sample ID No. Analyzed	Cu (diss. µg/L)	Pb (diss. µg/L)	Hg (diss. µg/L)	Hg (total µg/L)	Zn (diss. μg/L)	Total PCBs (μg/L)	Chemical Exceedance (Y/N)	Comments
1/22/2019	ENR material placement	ENR C20	Routine	2	12:30	Flood	S8	Deep	5.2	0.8	150 DOWN NS	N	N									Modification of placement methods, bucket just above the water surface.
1/23/2019	ENR material placement Riprap placement		Routine (Visual monitoring)																			
1/24/2019	ENR material placement	ENR C22	Routine	1	11:40	Ebb	N6	Deep	3.6	2.6	150 DOWN NS	N	N									Modification of placement methods, bucket just above the water surface.
1/24/2019	ENR material placement	ENR B22	Routine	2	13:35	Tide change	N6	Deep	2.6	3.5	150 DOWN NS	N	N									Modification of placement methods, bucket just above the water surface.
1/25/2019	ENR material placement Riprap placement		Routine (Visual monitoring)																			
1/26/2019	ENR material placement		Routine (Visual monitoring)																			
1/28/2019	ENR material placement	ENR F5	Routine	1	9:30	Flood	N5	Deep	3.8	1.3	150 UP NS	N	N									Modification of placement methods, bucket just above the water surface.
1/28/2019	ENR material placement	ENR F5	Routine	2	12:50	Ebb	N5	Deep	4.3	1.1	150 DOWN NS	N	N									Modification of placement methods, bucket just above the water surface.
1/29/2019	ENR material placement Riprap placement		Routine (Visual monitoring)																			
1/30/2019	Placement of Riprap		Routine (Visual monitoring)																			
1/31/2019	ENR material placement Riprap placement		Routine (Visual monitoring)																			Placement of ENR material and sand in shipway.
2/1/2019	Placement of Riprap		Routine (Visual monitoring)																			
2/2/2019	Sand placement in shipway Riprap placement		Routine (Visual monitoring)																			
2/4/2019	Placement of Riprap		Routine (Visual monitoring)																			Weather standdown.
2/5/2019	Placement of Riprap		Routine (Visual monitoring)																			
2/6/2019	Riprap placement Gravel berm and bulkhead installation at shipway (night)		Routine (Visual monitoring)																			Visual report of elevated turbidity investigated during riprap placement. Elevated turbidity was not confirmed.
2/7/2019	Placement of Riprap		Routine (Visual monitoring)																			Night work - drilling holes in concrete slab in the dry.

TABLE 11

CUMULATIVE WATER QUALITY MONITORING ACTIVITIES FOR CONSTRUCTION SEASON 1

												Conventional				Cher	nical Com	pliance Re	esults			
Date	Activity	Area	Monitoring	Monitoring Round	Time	Tide	Wind	Depth	Highest Turbidity (NTU)	Ambient Turbidity (NTU)	Compliance Station (w/ highest turbidity)	Parameter Exceedance (Y/N)	Sample Collected (Y/N)	Sample ID No. Analyzed	Cu (diss. µg/L)	Pb (diss. μg/L)	Hg (diss. µg/L)	Hg (total µg/L)	Zn (diss. µg/L)	Total PCBs (µg/L)	Chemical Exceedance (Y/N)	Comments
	Placement of Riprap		Routine (Visual monitoring)					2000	(*****)	(4.1.4)		(****)	(****)		F3'-7	F-3·-/	F3'-/	F3/	F3'-/	(F3: -7	(·····y	
2/12/2019	Placement of Riprap		Routine (Visual monitoring)																			
2/13/2019	Sand Placement in Shipway	DMMU 1A	Routine	1	11:20	Ebb	W2	Shallow	25.4	2.9	150 DOWN NS	Υ	N									
2/13/2019	Sand Placement in Shipway	DMMU 1A	Intensive	2	12:40	Ebb	S8	Shallow	27.3	2.5	150 UP NS	Υ	N									
2/14/2019	Sand Placement in Shipway	DMMU 2A	Intensive	1	12:00	Ebb	N6	Shallow	14.2	4.5	150 DOWN NS	Υ	N									
2/14/2019	Sand Placement in Shipway	DMMU 2A	Intensive	2	15:35	Ebb	N9	Shallow	81.6	0.5	150 UP NS	Υ	N									Additional monitoring at approximately 525 ft, no exceedance.
2/15/2019	Sand Placement in Shipway	DMMU 1A/2A	Intensive	1	11:55	Tide change	S2	Shallow	5.3	3.8	150 DOWN NS	N	N									
2/15/2019	Sand Placement in Shipway	DMMU 1A/2A	Intensive	2	13:00	Ebb	E1	Shallow	16.7	2.2	300 DOWN NS	Υ	N									
2/15/2019	Controlled density fill under slab in shipway	DMMU 1A/2A	Visual monitoring																			Monitoring during controlled density fill under slab in shipway.
2/16/2019	Filter Rock Placement in Shipway	DMMU 1A/2A	Intensive	1	15:30	Ebb	W2	Shallow	14	1.4	150 DOWN NS	Υ	N									
2/18/2019	Filter Rock Placement in Shipway	DMMU 1A/2A	Intensive	1	11:15	Flood	S1	Shallow	0.6	0.5	150 DOWN MD	N	N									
2/18/2019	Placement of Riprap in Shipway	DMMU 1A/2A	Intensive	2	14:50	Tide change	S5	Shallow	1	1.4	150 UP NS	N	N									
2/19/2019	RML Placement (thin cap)	DMMU 11B	Routine	1	13:40	Flood	S2	Deep	3	0.4	300 DOWN NB	N	N									Resumption of RML placement.
2/19/2019	RML Placement (thin cap)	DMMU 11C	Routine	2	16:00	Tide change	S3	Deep	2.8	0.3	300 UP NB	N	N									Resumption of RML placement.
	Sand Placement in Shipway	DMMU 1A/2A	Intensive	1	9:30	Ebb	W6	Shallow	20.8	1.2	150 DOWN NS	Υ	N									
2/21/2019	RML Placement (thin cap)	DMMU 14G	Routine	1	15:00	Flood	E2	Deep	1.7	0.2	300 DOWN NB	N	N									
	RML Placement (thin cap)	DMMU 14G	Routine	2	16:35	Flood	E2	Deep	1.9	1.3	300 DOWN NS	N	N									

TABLE 11

CUMULATIVE WATER QUALITY MONITORING ACTIVITIES FOR CONSTRUCTION SEASON 1

												Conventional				Che	mical Com	pliance Re	sults			
Date	Activity	Area	Monitoring Level ¹	Monitoring Round	Time	Tide	Wind	Depth	Highest Turbidity (NTU)	Ambient Turbidity (NTU)	Compliance Station (w/ highest turbidity)	Parameter Exceedance (Y/N)	Sample Collected (Y/N)	Sample ID No. Analyzed	Cu (diss. µg/L)	Pb (diss. µg/L)	Hg (diss. µg/L)	Hg (total µg/L)	Zn (diss. μg/L)	Total PCBs (µg/L)	Chemical Exceedance (Y/N)	Comments
2/22/2019	Controlled density fill under slab in shipway	DMMU 1A/2A	Visual monitoring																			Monitoring during controlled density fill under slab in shipway.
2/26/2019	Filter Rock Placement in Shipway	DMMU 1A	Intensive	1	10:05	Ebb	N10	Shallow	4.8	1	150 DOWN NS	N	N									Monitoring conducted after suspension of material placement.
2/27/2019	Placement of Gravel Beach Mix in Shipway	DMMU 1A	Intensive	1	12:20	Ebb	N5	Shallow	2.5	0.8	150 UP NS	N	N									
2/27/2019	Placement of Gravel Beach Mix in Shipway	DMMU 1A	Intensive	2	13:45	Ebb	N10	Shallow	5.1	0.2	150 UP NS	N	N									
2/28/2019	Filter Rock Placement in Shipway	DMMU 1A/2A	Intensive	1	12:40	Ebb	S4	Shallow	4.7	0.3	300 DOWN NS	N	N									
2/28/2019	Filter Rock Placement in Shipway	DMMU 1A/2A	Intensive	2	14:45	Ebb	N0	Shallow	11.3	0.7	150 DOWN NS	Υ	N									
3/4/2019	Nighttime construction activities in Shipway	Shipway DMMU 1A/2A/1B/2B	Visual monitoring																			Nighttime visual monitoring only.
3/5/2019	Nighttime construction activities in Shipway	Shipway DMMU 1A/2A/1B/2B	Visual monitoring																			Nighttime visual monitoring only.
3/6/2019	Nighttime construction activities in Shipway	Shipway DMMU 1A/2A/1B/2B	Visual monitoring																			Nighttime visual monitoring only.
3/7/2019	Nighttime construction activities in Shipway	Shipway DMMU 1A/2A/1B/2B	Visual monitoring																			Nighttime visual monitoring only.
3/8/2019	Nighttime construction activities in Shipway	Shipway DMMU 1A/2A/1B/2B	Visual monitoring																			Nighttime visual monitoring only.
3/9/2019	Nighttime construction activities in Shipway	Shipway DMMU 1A/2A/1B/2B	Visual monitoring																			Nighttime visual monitoring only.
3/11/2019	Nighttime construction activities in Shipway	Shipway DMMU 1A/2A/1B/2B	Visual monitoring																			
3/12/2019	Placement of Gravel Beach Mix in Shipway	DMMU 1A/2A	Intensive	1	14:40	Ebb	N3	Shallow	2.8	2	150 DOWN NS	N	N									
3/12/2019	Placement of Gravel Beach Mix in Shipway	DMMU 1A/2A	Intensive	2	15:50	Tide change	E1	Shallow	1.8	2.1	150 UP NS	N	N									
3/13/2019	Placement of Gravel Beach Mix in Shipway	DMMU 1A/2A	Intensive	1	9:50	Ebb	S5	Shallow	5.6	1.5	150 UP NS	N	N									
3/13/2019	Sand Placement in Shipway	DMMU 1A/2A	Intensive	2	13:50	Ebb	S6	Shallow	56	0.3	150 UP NB	Υ	N									Additional monitoring at 800 ft.

TABLE 11

CUMULATIVE WATER QUALITY MONITORING ACTIVITIES FOR CONSTRUCTION SEASON 1

												Conventional				Che	mical Com	pliance Re	esults			
Date	Activity	Area	Monitoring	Monitoring Round	Time	Tide	Wind	Depth	Highest Turbidity (NTU)	Ambient Turbidity (NTU)	Compliance Station (w/ highest turbidity)	Parameter Exceedance (Y/N)	Sample Collected (Y/N)	Sample ID No. Analyzed	Cu (diss. µg/L)	Pb (diss. μg/L)	Hg (diss. µg/L)	Hg (total µg/L)	Zn (diss. μg/L)	Total PCBs (µg/L)	Chemical Exceedance (Y/N)	Comments
3/13/2019	Sand Placement in Shipway	DMMU 1A/2A	Intensive	3	15:15	Ebb	S2	Shallow	27.7	0.6	300 UP NB	Y (Apparent turbidity exceedance)	N		F37	P3'-7	r-3/	r-3·-/	F3 = 7	(1-9)	(****)	Change in placement methods, additional monitoring shows turbidity dissipating.
3/14/2019	Placement of Riprap in Shipway	DMMU 2A	Visual monitoring																			Riprap being placed in the dry.
3/16/2019	Placement of Fish Mix in Shipway	DMMU 1A/2A	Intensive	1	12:35	Flood	N10	Shallow	2.8	0.3	300 DOWN NB	N	N									Limited placement in water.
3/18/2019	Placement of Gravel Beach Mix in Shipway	DMMU 1A/2A	Intensive	1	12:50	Flood	N10	Shallow	4.7	0.5	150 DOWN NS	N	N									
3/19/2019	Placement of Gravel Beach Mix in Shipway	DMMU 1A/2A	Intensive	1	10:30	Tide change	N5	Shallow	1.8	0.8/0.6	150 DOWN NS/ 150 UP NB	N	N									
3/19/2019	Placement of Gravel Beach Mix in Shipway	DMMU 1A/2A	Intensive	2	11:45	Flood	N5	Shallow	5.2	0.5	300 UP NS	N	N									
3/19/2019	Placement of Fish Mix in Shipway	DMMU 1A/2A	Intensive	3	15:20	Flood	N6	Shallow	3.1	0.3	150 UP NS	N	N									
3/20/2019	Placement of Gravel Beach Mix in Shipway	Shipway	Intensive	1	12:45	Flood	N3	Shallow	2.3	0.3	300 UP MD	N	N									Problem with WQ instrument prevented second round.
3/21/2019	Placement of Gravel Beach Mix in Shipway	Shipway	Intensive	1	9:45	Ebb	S6	Shallow	2.4	0.3	300 UP MD	N	N									
3/21/2019	Placement of Gravel Beach Mix in Shipway	Shipway	Intensive	2	11:20	Tide change	S7	Shallow	14.5	1.1	150 DOWN NS	Υ	N									
3/21/2019	Placement of Gravel Beach Mix in Shipway	Shipway	Intensive	3	13:15	Flood	S 7	Shallow	4	1.2	150 UP NS	N	N									
3/22/2019	Placement of Gravel Beach Mix in Shipway	Shipway	Intensive	1	8:55	Ebb	S 7	Shallow	3.4	0.7	150 DOWN NS	N	N									
3/22/2019	Placement of Fish Mix in Shipway	Shipway	Intensive	2	13:05	Flood	S1	Shallow	4.8	1.2	150 DOWN NS	N	N									
3/25/2019	Sand Placement in Shipway	Shipway	Intensive	1	11:45	Ebb	N3	Shallow	8.4	0.4	150 DOWN MD	Υ	N									
3/25/2019	Sand Placement in Shipway	Shipway	Intensive	2	13:40	Ebb	N6	Shallow	9.7	0.6	150 DOWN MD	Υ	N									
3/26/2019	Sand Placement in Shipway	Shipway	Intensive	1	9:20	Ebb	S12	Shallow	4.2	0.2	150 DOWN MD	N	N									
3/26/2019	Sand Placement in Shipway	Shipway	Intensive	2	11:10	Ebb	S13	Shallow	34.1	0.4	150 DOWN NB	Y	N									

TABLE 11 **CUMULATIVE WATER QUALITY MONITORING ACTIVITIES FOR CONSTRUCTION SEASON 1**

												Conventional				Chen	nical Com	pliance Re	sults			
Date	Activity	Area	Monitoring Level ¹	Monitoring Round	Time	Tide	Wind	Depth	Highest Turbidity (NTU)	Ambient Turbidity (NTU)	Compliance Station (w/ highest turbidity)	Parameter Exceedance (Y/N)	Sample Collected (Y/N)	Sample ID No. Analyzed	Cu (diss. µg/L)	Pb (diss. μg/L)	Hg (diss. µg/L)	Hg (total µg/L)	Zn (diss. µg/L)	Total PCBs (µg/L)	Chemical Exceedance (Y/N)	Comments
	Placement of Gravel Beach Mix in Shipway	Shipway	Intensive	3	13:50	Ebb	S12	Shallow	3.7	0.3	300 UP NB	N	N							0	, ,	
3/26/2019	Sand Placement in Shipway	Shipway	Intensive	4	14:50	Ebb	S11	Shallow	5.1	0.6	150 DOWN NB	N	N									
3/2//2019	Sand Placement in Shipway	Shipway	Intensive	1	9:25	Tide change	N11	Shallow	1.4	0.7	300 UP NB	N	N									
3/27/2019	Placement of Fish Mix in Shipway	Shipway	Intensive	2	11:50	Ebb	N9	Shallow	5.7	0.8	300 DOWN NS	N	N									
1 3/28/2019	Sand Placement in Shipway	Shipway	Intensive	1	8:05	Flood	S6	Shallow	7.6	0.1	150 DOWN MD	Y	N									
3/28/2019	Sand Placement in Shipway	Shipway	Intensive	2	13:20	Ebb	E1	Shallow	4.3	0.1	150 DOWN MD	N	N									
										Completic	on of in-water construction	n activities for Sea	son 1	•	-	•			<u> </u>			

Completion of in-water construction activities for Season 1.

- Note(s)
 1. Monitoring Level: Intensive/Routine/Additional.
 2. Compliance Station Codes: 150/300 100 or 300 feet from activity; UP/DOWN Upcurrent or Downcurrent from Activity; NS/MD/NB — Near surface sample, Mid-depth sample, Near bottom sample, respectively.

Data Qualifier

- U = analyte not detected at reporting limit presented.
- J = analyte positively identified; value is approximate concentration in sample.

Abbreviations Cu = copper

DMMU = dredged material management unit

DO = dissolved oxygen

DU = decision unit

ENR = enhanced natural recovery

ft = feet Hg = mercury

MLLW = mean lower low water NA = not analyzed

NB = near bottom sample

MD = mid-depth sample

NS = near surface sample NTU = nephelometric turbidity unit

Pb = lead

PCB = polychlorinated biphenyl RML = residual management layer

μg/L = microgram(s) per liter WQ = water quality

USEPA = United States Environmental Protection Agency

Zn = zinc

TABLE 12

SUMMARY OF WATER QUALITY MONITORING EFFORTS DURING CONSTRUCTION SEASON 1

Activity Monitored	Total Days with Monitoring	Total Rounds of Monitoring	Intensive Monitoring Rounds	Routine Monitoring Rounds	Rounds with One or More Cases of Apparent or Confirmed Noncompliance	Turbidity Exceedance (one or more in a round)
Pile Removal	2	4	4	0	0	
Submerged Debris Removal	2	3	3	0	0	
Dredging	61	97	71	26	13	7
Barge Dewatering	1	1	1	0	0	
ENR/RML Material Placement	30	63	47	16	16	9
Shoreline Slope Armoring	3					
Placement of Filter Rock (Shoreline Slope)	2	4	4	0	0	
Placement of Riprap (Shoreline Slope)	2	4	4	0	0	
Work in Shipway						
Filter Rock Placement in Shipway	4	5	5	0	2	2
Placement of Riprap in Shipway	1	1	1	0	0	
Placement of Gravel Beach Mix in Shipway	9	14	14	0	1	1
Placement of Fish Mix in Shipway	4	4	4	0	0	
Sand Placement in Shipway	9	17	17	1	12	12
Totals	100 ¹	217 ²	174	43	44 ³	31 ⁴
						14 % ⁵

Note(s)

- 1. Total days when intensive or routine water quality monitoring was conducted. Additional days of visual monitoring or standby were not included in count.
- 2. Total rounds of monitoring (including partial rounds) with reported results.
- 3. Rounds of monitoring with one or more compliance stations showing noncompliance of the conventional water quality parameters. Count includes dissolved oxygen noncompliance and turbidity exceedances (apparent and confirmed).
- 4. Rounds of monitoring with one or more compliance stations with turbidity exceedances. Count includes confirmed and apparent but unconfirmed turbidity exceedances.
- 5. Percentage of total monitoring rounds with one or more turbidity exceedances (apparent and confirmed).

Abbreviation(s)

ENR = enhanced natural recovery RML = residual management unit

TABLE 13

CUMULATIVE WATER QUALITY MONITORING ACTIVITIES FOR CONSTRUCTION SEASON 2

												Cher	mical Com	pliance Re	sults			
		. 1	Monitoring	Monitoring	Highest Turbidity	Ambient Turbidity	Compliance Station	Conventional Parameter Exceedance	Sample Collected	Sample ID	Cu (diss.	Pb (diss.	Hg (diss.	Hg (total	Zn (diss.	Total PCBs	Chemical Exceedance	_
Date	Activity	Area 1	Level ²	Round	(NTU)	(NTU)	(w/ highest turbidity) 3	(Y/N)	(Y/N)	No. Analyzed	μg/L)	μg/L)	μg/L)	μg/L)	μg/L)	(µg/L)	(Y/N)	Comments
9/4/2019	Dredging	DMMU 18F	Intensive	1	-0.4	-1.9	150-ft near bottom upcurrent	N	N	NA								No samples collected due to field instrument malfunction
9/4/2019	Dredging	DMMU 18F	Intensive	2	2.7	0.5	150-ft near bottom downcurrent	N	Y	LMCWQ-351	2.0 U	0.22 J	0.020 U	0.020 U	40 U	0.010 U	N	none
9/6/2019	Dredging	DMMU 18G	Intensive	1	4.8	0.2	300-ft near bottom downcurrent	Ν	N	NA				1		-		none
9/6/2019	Dredging & Dewatering	DMMU 18G	Intensive	2	4.1	1.0	150-ft near bottom upcurrent	N	Y	LMCWQ-372			0.020 U	0.020 U		0.010 U	N	Inadvertently analyzed second day sample for PCBs and Hg
9/9/2019	Dredging & Dewatering	DMMU 19E	Intensive	1	5.1	2.0	150-ft near surface upcurrent	N	N	NA				-				none
9/9/2019	Dredging & Dewatering	DMMU 19E	Intensive	2	3.9	1.6	300-ft near surface upcurrent	N	Υ	LMCWQ-383	1.3 J	0.30 J	0.020 U	0.013 J	40 U	0.010 U	N	none
9/10/2019	Dredging & Dewatering	DMMU 19E	Intensive	1	5.4	1.1	300-ft near bottom downcurrent	N	N	NA				1				none
9/10/2019	Dredging & Dewatering	DMMU 19E	Intensive	2	9.4	1.0	150-ft near bottom downcurrent	Y	Υ	LMCWQ-397	1.0 J	0.15 J	0.020 U	0.011 J	40 U	0.010 U	N	none
9/11/2019	Dredging & Dewatering	DMMU 20E	Intensive	1	4.5	2.0	150-ft near surface downcurrent	N	N	NA	ı			1	ı		-	none
9/11/2019	Dredging & Dewatering	DMMU 19E	Intensive	2	3.7	1.5	150-ft near surface downcurrent	N	N	NA	ŀ			1	ŀ			none
9/16/2019	Dredging & Dewatering	DMMU 18I	Routine	1	1.8	1.7	150 and 300-ft near surface down and upcurrent	N	N	NA				-				none
9/16/2019	Dredging & Dewatering	DMMU 17A	Routine	2	4.5	1.8	150-ft near surface downcurrent	N	N	NA					-			none
9/17/2019	Dewatering	DMMU 15A	Routine	1	2.5	1.3	150-ft near bottom downcurrent	N	N	NA	-			1	ı		-	none
9/17/2019	Dredging & Dewatering	DMMU 17A	Routine	2	3.8	1.3	150-ft near bottom downcurrent	N	N	NA								none
9/18/2019	Dredging & Dewatering	DMMU 15A	Intensive	1	2.0	1.8	300-ft near surface downcurrent	N	N	NA	ŀ			1	ŀ			none
9/18/2019	Dredging & Dewatering	DMMU 15A	Intensive	2	4.6	2.0	150-ft near surface downcurrent	N	N	NA				I				none
9/20/2019	Dredging & Dewatering	DMMU 14A	Intensive	1	3.6	1.5	300-ft near bottom downcurrent	N	N	NA								none
9/20/2019	Dredging & Dewatering	DMMU 14A	Intensive	2	2.0	1.9	150-ft near surface downcurrent	N	N	NA				-				none
9/20/2019	Dredging & Dewatering	DMMU 15A	Intensive	3	4.0	1.7	150-ft mid-depth upcurrent	N	N	NA								none

TABLE 13

CUMULATIVE WATER QUALITY MONITORING ACTIVITIES FOR CONSTRUCTION SEASON 2

								Conventional				Cher	nical Com	pliance Re	sults			
Date	Activity	Area ¹	Monitoring Level ²	Monitoring Round	Highest Turbidity (NTU)	Ambient Turbidity (NTU)	Compliance Station (w/ highest turbidity) ³	Conventional Parameter Exceedance (Y/N)	Sample Collected (Y/N)	Sample ID No. Analyzed	Cu (diss. µg/L)	Pb (diss. μg/L)	Hg (diss. µg/L)	Hg (total µg/L)	Zn (diss. µg/L)	Total PCBs (µg/L)	Chemical Exceedance (Y/N)	Comments
9/23/2019	Dredging & Dewatering	DMMU 15A	Routine	1	3.8	1.4	150-ft near surface upcurrent	N	N	NA				-				none
9/23/2019	Dredging & Dewatering	DMMU 14A	Routine	2	5.7	1.5	150-ft mid-depth downcurrent	N	N	NA								none
9/23/2019	Dredging & Dewatering	DMMU 14A	Routine	3	4.6	1.4	300-ft near bottom downcurrent	N	N	NA								none
9/25/2019	Dredging & Dewatering	DMMU 15A	Routine	1	4.6	2.6	150-ft near surface downcurrent	N	N	NA								none
9/25/2019	Dredging & Dewatering	DMMU 15A	Routine	2	3.8	1.4	150-ft near bottom downcurrent	N	N	NA				-				none
9/26/2019	Dredging & Dewatering	DMMU 3A	Intensive	1	1.9	1.6	300-ft near surface upcurrent	N	N	NA				-				none
9/26/2019	Dredging & Dewatering	DMMU 3A	Intensive	2	2.6	1.4	150-ft near surface upcurrent	N	N	NA								none
9/27/2019	Dredging & Dewatering	DMMU 3A	Intensive	1	2.0	1.7 & 1.3	150 near surface & near bottom upcurrent	N	N	NA								none
9/27/2019	Dredging & Dewatering	DMMU 3A	Intensive	2	2.2	1.3 & 1.4	150-ft near bottom downcurrent & 300-ft near bottom upcurrent	N	N	NA								none
9/30/2019	Dredging & Dewatering	DMMU 3A	Routine	1	1.9	2.2 & 2.1	150-ft near surface and near bottom upcurrent	N	N	NA								none
9/30/2019	Dredging & Dewatering	DMMU 15A	Routine	2	4.8	1.5	150-ft near bottom downcurrent	N	N	NA				-				none
10/2/2019	Dredging & Dewatering	DMMU R15F	Routine	1	3.9	2.3	150-ft near surface downcurrent	N	N	NA								none
10/2/2019	Dewatering	DMMU R15F	Routine	2	2.7	1.5	150-ft mid-depth upcurrent	N	N	NA								none
10/7/2019	Dredging & Dewatering	DMMU 14D1	Intensive	1	1.5	0.3	150-ft near surface downcurrent	N	N	NA								none
10/7/2019	Dredging & Dewatering	DMMU 14C	Intensive	2	3.6	0.1	150-ft near surface upcurrent	N	N	NA				-				none
10/8/2019	Dredging & Dewatering	DMMU 14D1	Intensive	1	1.9	0.7	150-ft near surface downcurrent	N	N	NA				-				none
10/8/2019	Dredging & Dewatering	DMMU 14D1	Intensive	2	0.6	0	150-ft near bottom downcurrent	N	N	NA	I			1	-			none
10/11/2019	Dredging & Dewatering	DMMU 15D1	Routine	1	9.1	9.4	150-ft near bottom downcurrent	N	N	NA	I			1	-			none
10/11/2019	Dredging & Dewatering	DMMU 14D1	Routine	2	3.7	0.2	300-ft near bottom downcurrent	N	N	NA	-			1				none
10/14/2019	Dredging & Dewatering	DMMU 14D1	Routine	1	5.4	2.9	150-ft near bottom upcurrent	N	N	NA				-				none
10/14/2019	Dredging & Dewatering	DMMU 15C	Routine	2	5.7	2.7	150-ft near surface upcurrent	N	N	NA								none

TABLE 13

CUMULATIVE WATER QUALITY MONITORING ACTIVITIES FOR CONSTRUCTION SEASON 2

												Cher	mical Com	pliance Re	esults			
Date	Activity	Area ¹	Monitoring Level ²	Monitoring Round	Highest Turbidity (NTU)	Ambient Turbidity (NTU)	Compliance Station (w/ highest turbidity) ³	Conventional Parameter Exceedance (Y/N)	Sample Collected (Y/N)	Sample ID No. Analyzed	Cu (diss. µg/L)	Pb (diss. µg/L)	Hg (diss. µg/L)	Hg (total µg/L)	Zn (diss. µg/L)	Total PCBs (μg/L)	Chemical Exceedance (Y/N)	Comments
10/16/2019	Dredging & Dewatering	DMMU 16B	Routine	1	5.7	3.5	300-ft mid depth downcurrent	N	N	NA								none
10/17/2019	Dredging & Dewatering	DMMU 16C1	Routine	2	7.9	4.1	150-ft near bottom upcurrent	N	N	NA								none
10/17/2019	Dredging & Dewatering	DMMU 16B	Routine	3	7.9	3.5	150-ft near bottom upcurrent	N	N	NA								none
10/21/2019	Dredging & Dewatering	DMMU 16A	Routine	1	7.9	3.5	300-ft near bottom upcurrent	N	N	NA								none
10/21/2019	Dredging & Dewatering	DMMU 16A	Routine	2	6.6	4.1	150-ft near bottom downcurrent	N	N	NA								none
10/23/2019	Dredging & Dewatering	DMMU R-17C	Routine	1	7.1	6.9	300-ft near surface upcurrent	N	N	NA								none
10/24/2019	Dredging & Dewatering	DMMU R-17D	Routine	2	7.5	7.2	150-ft near surface upcurrent	N	N	NA								none
10/29/2019	Dredging & Dewatering	DMMU R-19B	Routine	1	6.3	3.1	150-ft near bottom upcurrent	N	N	NA								none
10/29/2019	Dredging & Dewatering	DMMU R- 19C/D	Routine	2	7.6	6.9	150-ft near bottom upcurrent	N	N	NA								none
10/30/2019	Filter Rock Placement	Station 3+75	Intensive	1	4.6	3.9	300-ft near surface downcurrent	N	N	NA								none
10/30/2019	Filter Rock Placement	Station 3+75	Intensive	2	5.8	4.2	300-ft near surface upcurrent	N	N	NA								none
10/31/2019	Filter Rock Placement	Station 3+75	Intensive	1	6.2	3.7	150-ft near bottom downcurrent	N	N	NA								none
10/31/2019	Filter Rock Placement	Station 3+76	Intensive	2	6.2	3.6	150-ft near bottom downcurrent	N	N	NA								none
10/31/2019	Dredging & Dewatering	DMMU R15G	Routine	1	6.9	3.5	150-ft near bottom upcurrent	N	N	NA								none
10/31/2019	Dredging & Dewatering	DMMU R15G	Routine	2	6.2	3.8	150-ft near surface downcurrent	N	N	NA								none
11/4/2019	Filter Rock Placement	Station 4+00	Routine	1	4.4	2.8	300-ft near bottom downcurrent	N	N	NA								none
11/4/2019	Filter Rock Placement	Station 4+00	Routine	2	6.6	2.6	150-ft mid-depth downcurrent	N	N	NA								none
11/4/2019	Dredging & Dewatering	DMMU R15D2/E	Routine	1	7.1	2.7	150-ft near bottom upcurrent	N	N	NA								none
11/4/2019	Dredging & Dewatering	DMMU R15D2/E	Routine	2	7.0	2.9	150-ft near bottom upcurrent	N	N	NA								none
11/6/2019	Filter Rock Placement	Station 4+50	Routine	1	4.8	0.1	150-ft near bottom downcurrent	N	N	NA								none

TABLE 13

CUMULATIVE WATER QUALITY MONITORING ACTIVITIES FOR CONSTRUCTION SEASON 2

								0				Cher	nical Com	pliance Re	sults			
Date	Activity	Area ¹	Monitoring Level ²	Monitoring Round	Highest Turbidity (NTU)	Ambient Turbidity (NTU)	Compliance Station (w/ highest turbidity) ³	Conventional Parameter Exceedance (Y/N)	Sample Collected (Y/N)	Sample ID No. Analyzed	Cu (diss. µg/L)	Pb (diss. µg/L)	Hg (diss. µg/L)	Hg (total µg/L)	Zn (diss. μg/L)	Total PCBs (μg/L)	Chemical Exceedance (Y/N)	Comments
11/6/2019	Filter Rock Placement	Station 5+00	Routine	2	3.3	0.1	150-ft near bottom upcurrent	N	N	NA								none
11/6/2019	Dredging & Dewatering	DMMU R16- C2/D	Routine	1	0.9	0.1 to 0.5	300-ft near bottom up and downcurrent & near surface upcurrent	N	N	NA								none
11/6/2019	Dredging & Dewatering	DMMU R16- C2/D	Routine	2	4.9	0.1	150-ft near bottom downcurrent	N	N	NA	1							none
11/11/2019	Dredging & Dewatering	DMMU R-12C	Routine	1	5.0	0.3	150-ft near bottom downcurrent	N	N	NA	-							none
11/11/2019	Dredging & Dewatering	DMMU R-12C	Routine	2	4.3	0.1	150-ft mid-depth downcurrent	N	N	NA								none
11/11/2019	Filter Rock Placement	Station 5+25	Routine	1	3.3	0.1	150-ft near bottom downcurrent	N	N	NA								none
11/11/2019	Filter Rock Placement	Station 5+75	Routine	2	4.5	0.1	300-ft near bottom upcurrent	N	N	NA								none
11/13/2019	Dredging & Dewatering	DMMU R-11C	Routine	1	6.0	2.5	150-ft near bottom downcurrent	N	N	NA								none
11/13/2019	Filter Rock Placement	Station 6+00	Routine	1	4.3	3.1 to 3.7	150-ft near surface upcurrent & near bottom downcurrent	N	N	NA								none
11/13/2019	Filter Rock Placement	Stations 6+00 & 6+25	Routine	2	4.8	3.6	300-ft near surface downcurrent	N	N	NA								none
11/18/2019	Dredging & Dewatering	DMMU R- 12A/B &R-12C	Routine	1	6.7	2.8	150-ft near bottom downcurrent	N	N	NA								none
11/18/2019	Dredging & Dewatering	DMMU R- 12A/B &R-12C	Routine	2	7.7	3.6	300-ft near bottom upcurrent	N	N	NA								none
11/20/2019	Dredging & Dewatering	DMMU R-18I	Routine	1	7.5	3.3	150-ft near bottom downcurrent	N	N	NA	1							none
11/20/2019	Dredging & Dewatering	DMMU R- 17G/H	Routine	2	5.3	4.7	150-ft near surface upcurrent	N	N	NA	-							none
11/20/2019	Filter Rock Placement	Stations 4+00 & 4+50	Routine	1	4.3	3.9	150-ft near surface up and downcurrent	N	N	NA	-							none
11/20/2019	Filter Rock Placement	Stations 4+00 & 4+50	Routine	2	6.6	3.3	150-ft near bottom upcurrent	N	N	NA								none
11/22/2019	Riprap Placement	Stations 4+50 & 5+00	Routine	1	7.6	3.6	300-ft near surface downcurrent	N	N	NA								none
11/22/2019	Riprap Placement	Stations 4+50 & 5+00	Routine	2	7.5	3.5	300-ft near surface upcurrent	N	N	NA								none
12/4/2019	Riprap Placement	Stations 5+00 & 5+50	Routine	1	4.5	3.9	150-ft near surface downcurrent	N	N	NA								none
12/4/2019	Riprap Placement	Stations 5+00 & 5+50	Routine	2	4.4	4.0	150-ft near surface downcurrent	N	N	NA								none

TABLE 13

CUMULATIVE WATER QUALITY MONITORING ACTIVITIES FOR CONSTRUCTION SEASON 2

								Conventional				Chei	mical Com	pliance Re	sults			
Date	Activity	Area ¹	Monitoring Level ²	Monitoring Round	Highest Turbidity (NTU)	Ambient Turbidity (NTU)	Compliance Station (w/ highest turbidity) ³	Conventional Parameter Exceedance (Y/N)	Sample Collected (Y/N)	Sample ID No. Analyzed	Cu (diss. µg/L)	Pb (diss. μg/L)	Hg (diss. µg/L)	Hg (total µg/L)	Zn (diss. μg/L)	Total PCBs (μg/L)	Chemical Exceedance (Y/N)	Comments
12/6/2019	Filter Rock Placement	Stations 4+00 & 3+75	Routine	1	3.9	4.0	150-ft near bottom upcurrent	N	N	NA								none
12/6/2019	Filter Rock Placement	Stations 4+00 & 3+75	Routine	2	3.4	2.7 to 3.0	150-ft mid-depth and near bottom upcurrent	N	N	NA								none
12/9/2019	Filter Rock Placement	Stations 6+00 & 6+50	Routine	1	7.5	2.9	150-ft near bottom downcurrent	N	N	NA	1				-			none
12/9/2019	Filter Rock Placement	Stations 6+00 & 6+50	Routine	2	7.2	2.6	300-ft mid-depth downcurrent	N	N	NA	1				-			none
12/9/2019	ENR/RML Placement	DMMU 10A	Intensive	1	6.2	3.1	150-ft near surface downcurrent	N	N	NA	-							none
12/9/2019	ENR/RML Placement	DMMU 10A	Intensive	2	15.1	2.6	150-ft mid-depth downcurrent	Y	N	NA	-							none
12/9/2019	ENR/RML Placement	DMMU 10A	Intensive	3	10.8	2.9	150-ft near surface upcurrent	Y	N	NA	1				-			none
12/9/2019	ENR/RML Placement	DMMU 10A	Intensive	4	7.1	2.7	300-ft mid-depth downcurrent	N	N	NA	-							none
2/10/2019	ENR/RML Placement	DMMU 11A & 11B	Intensive	1	7.0	3.1	300-ft near surface downcurrent	N	N	NA	I				I			none
12/10/2019	ENR/RML Placement	DMMU 11C	Intensive	2	7.2	2.8	150-ft mid-depth upcurrent	N	N	NA	I				I			none
12/11/2019	Filter Rock/Riprap Placem	Stations 5+00 - 6+00	Routine	1	5.8	3.7	150-ft near bottom downcurrent	N	N	NA	-				-			none
12/11/2019	Filter Rock/Riprap Placem	Stations 5+00 - 6+00	Routine	2	7.6	3.9	150-ft near bottom downcurrent	N	N	NA	1				-			none
12/17/2019	ENR/RML Placement	DMMU 14D2	Routine	1	8.4	3.9	150-ft mid-depth upcurrent	N	N	NA	1				-			none
12/17/2019	ENR/RML Placement	DMMU 14F	Routine	2	8.5	3.9	150-ft near-bottom downcurrent	N	N	NA					-			none
12/17/2019	Riprap Placement	Stations 3+50 - 3+75	Routine	3	5.2	4.3	150-ft and 300-ft near- surface upcurrent	N	Ν	NA	-				-			none
2/17/2019	Riprap Placement	Stations 3+50 - 3+75	Routine	4	6.9	3.9	300-ft mid-depth downcurrent	N	N	NA								none
2/19/2019	ENR/RML Placement	DMMU 15G	Routine	1	7.7	4.1	150-ft near surface downcurrent	N	N	NA								none
2/19/2019	Riprap Placement	Stations 6+00 - 6+25	Routine	2	5.6	4.0	150-ft mid-depth upcurrent	N	N	NA								none
2/19/2019	Riprap Placement	Stations 6+00 - 6+25	Routine	3	5.2	4.2	150-ft near bottom downcurrent	N	N	NA	-1							none
2/23/2019	Riprap Placement	Stations 6+00 - 6+25	Routine	1	7.1	5.8	150-ft near surface upcurrent	N	N	NA								none

TABLE 13

CUMULATIVE WATER QUALITY MONITORING ACTIVITIES FOR CONSTRUCTION SEASON 2

												Cher	nical Com	pliance Re	esults			
Date	Activity	Area ¹	Monitoring Level ²	Monitoring Round	Highest Turbidity (NTU)	Ambient Turbidity (NTU)	Compliance Station (w/ highest turbidity) ³	Conventional Parameter Exceedance (Y/N)	Sample Collected (Y/N)	Sample ID No. Analyzed	Cu (diss. µg/L)	Pb (diss. µg/L)	Hg (diss. μg/L)	Hg (total µg/L)	Zn (diss. μg/L)	Total PCBs (μg/L)	Chemical Exceedance (Y/N)	Comments
12/23/2019	ENR/RML Placement	DMMU 17D	Routine	2	8.0	5.5	300-ft near surface upcurrent	N	N	NA								none
12/26/2019	Riprap Placement	Stations 6+00 - 6+75	Routine	1	5.4	4.5	150-ft near surface downcurrent	N	N	NA								none
12/26/2019	Riprap Placement	Stations 6+00 - 6+75	Routine	2	8.6	4.7	300-ft near bottom upcurrent	N	N	NA								none
12/26/2019	ENR/RML Placement	DMMU 16C1 & 17D	Routine	1	8.3	4.6	150 & 300-ft near surface downcurrent	N	N	NA								none
12/26/2019	ENR/RML Placement	DMMU 17E	Routine	2	8.2	4.8	150-ft near surface downcurrent	N	N	NA								none
12/30/2019	Riprap Placement	Stations 6+00 - 6+75	Routine	1	8.1	3.5	150-ft near bottom downcurrent	N	N	NA								none
12/30/2019	Riprap Placement	Stations 6+00 - 6+75	Routine	2	3.8	3.5	150-ft near surface downcurrent	N	N	NA								none
12/30/2019	ENR/RML Placement	DMMU 18D	Routine	1	8.1	3.3	150-ft and 300-ft mid- depth upcurrent	N	N	NA								none
12/30/2019	ENR/RML Placement	ENR D25- DMMU 18F	Routine	2	6.9	4	300-ft near surface downcurrent	N	N	NA								none
1/2/2020	ENR/RML Placement	DMMU 20B	Routine	1	8.2	4.3	150-ft near surface downcurrent	N	N	NA								none
1/2/2020	ENR/RML Placement	DMMU 20C	Routine	2	8.7	4.8	150-ft near surface downcurrent	N	N	NA								none
1/2/2020	Riprap Placement	Stations 5+75 - 7+00	Routine	1	7.4	3.2	150-ft near bottom upcurrent	N	N	NA								none
1/2/2020	Riprap Placement	Stations 5+75 - 7+00	Routine	2	5.8	3.5	300-ft near bottom upcurrent	N	N	NA								none
1/8/2020	ENR/RML Placement	ENR C20	Routine	1	8.9	15.3	150-ft near surface upcurrent	N	N	NA								Ambient turbidity elevated due to weather conditions
1/8/2020	ENR/RML Placement	ENR A24	Routine	2	12.7	13	150-ft near surface upcurrent	N	N	NA								Ambient turbidity elevated due to weather conditions
1/8/2020	Riprap Placement	Stations 4+25 to 4+75	Routine	1	15.1	17.6	300-ft near surface upcurrent	N	N	NA								Ambient turbidity elevated due to weather conditions
1/10/2020	Riprap Placement	Stations 0+20 to 0+45	Routine	1	6.5	7.5	150-ft near surface downcurrent	N	N	NA								none
1/10/2020	Riprap Placement	Stations 0+20 to 0+45	Routine	2	6.7	8.7	300-ft near surface downcurrent	N	N	NA								none
1/14/2020	GBM Placement	DMMU 15A	Intensive	1	7.6	8.3	150-ft near surface upcurrent	N	N	NA								none
1/14/2020	GBM Placement	DMMU 15A	Intensive	2	6.1	6.1	300-ft near surface upcurrent	N	N	NA								none
1/15/2020	GBM Placement	DMMU 15A	Intensive	1	5.8	4.3	300-ft near surface downcurrent	N	N	NA								none

TABLE 13

CUMULATIVE WATER QUALITY MONITORING ACTIVITIES FOR CONSTRUCTION SEASON 2

								Conventional				Cher	mical Com	pliance Re	sults			
Date	Activity	Area ¹	Monitoring Level ²	Monitoring Round	Highest Turbidity (NTU)	Ambient Turbidity (NTU)	Compliance Station (w/ highest turbidity) ³	Parameter Exceedance (Y/N)	Sample Collected (Y/N)	Sample ID No. Analyzed	Cu (diss. µg/L)	Pb (diss. µg/L)	Hg (diss. µg/L)	Hg (total µg/L)	Zn (diss. µg/L)	Total PCBs (μg/L)	Chemical Exceedance (Y/N)	Comments
1/15/2020	GBM Placement	DMMU 15A	Intensive	2	6.4	7.1	150-ft near surface downcurrent	N	N	NA								none
1/15/2020	ENR/RML Placement	DMMU 19G	Routine	1	6.1	4.7	150-ft near surface upcurrent	N	N	NA								none
1/15/2020	ENR/RML Placement	ENR C27	Routine	2	6.5	5.6	300-ft near surface upcurrent	N	N	NA								none
1/17/2020	ENR/RML Placement	ENR D28	Routine	1	7.9	3.4	300-ft mid depth upcurrent	N	N	NA								none
1/17/2020	ENR/RML Placement	ENR J06	Routine	2	7.8	4.3	150-ft near surface downcurrent	N	N	NA								none
1/21/2020	ENR/RML Placement	DMMU 17C	Routine	1	8.5	4.6	150-ft mid-depth downcurrent	N	N	NA	-							none
1/21/2020	ENR/RML Placement	ENR J05	Routine	2	7.9	4.5	150-ft mid-depth upcurrent	N	N	NA								none
1/21/2020	GBM Placement	DMMU 3A	Routine	1	6.8	4.3	300-ft near bottom upcurrent	N	N	NA								none
1/23/2020	FM Placement	DMMU 3A	Intensive	1	4.2	3.4/3.9	150-ft near surface downcurrent, 150-ft near bottom downcurrent, 300- ft near surface upcurrent	N	N	NA								none
1/23/2020	FM Placement	DMMU 3A	Intensive	2	30	5.5	150-ft near surface upcurrent	Y	N	NA								none
1/23/2020	FM Placement	DMMU 3A	Intensive	3	8.1	5.5	300-ft near surface upcurrent and downcurrent	N	N	NA								none
1/23/2020	ENR/RML Placement	ENR I02	Routine	1	9.5	5.6	150-ft near surface downcurrent	N	N	NA								none
1/23/2020	ENR/RML Placement	ENR I02	Routine	2	8.6	6.5	150-ft near surface downcurrent	N	N	NA								none
1/24/2020	FM Placement	ENR J01	Intensive	1	8.9	9.1	150-ft near surface downcurrent	N	N	NA								none
1/27/2020	FM Placement	ENR J01	Routine	1	9.5	5.2	150-ft mid-depth downcurrent	N	N	NA	1							none
1/27/2020	FM Placement	ENR I01	Routine	2	10	8.8	300-ft near surface downcurrent	N	N	NA	-							none
1/29/2020	ENR/RML Placement	ENR K01/K02	Routine	1	9.1	5.4	300-ft mid-depth downcurrent	N	N	NA								none

TABLE 13

CUMULATIVE WATER QUALITY MONITORING ACTIVITIES FOR CONSTRUCTION SEASON 2

								Conventional				Chei	nical Com	pliance Re	sults]	
Date	Activity	Area ¹	Monitoring Level ²	Monitoring Round	Highest Turbidity (NTU)	Ambient Turbidity (NTU)	Compliance Station (w/ highest turbidity) ³	Parameter Exceedance (Y/N)	Sample Collected (Y/N)	Sample ID No. Analyzed	Cu (diss. µg/L)	Pb (diss. μg/L)	Hg (diss. µg/L)	Hg (total µg/L)	Zn (diss. μg/L)	Total PCBs (µg/L)	Chemical Exceedance (Y/N)	Comments
1/29/2020	ENR/RML Placement	ENR K01/K02	Routine	2	10.2	5.5	300-ft near bottom downcurrent	N	N	NA								none
2/3/2020	Telebelt Placement	ENR G11	Intensive	1	16.3	27	150-ft near surface downcurrent	N	N	NA								none
2/3/2020	Telebelt Placement	ENR G11	Intensive	2	15.6	27.3	150-ft near surface upcurrent	N	N	NA								none
2/4/2020	Telebelt Placement	ENR D11-G11	Intensive	1	14.8	13.4	150-ft near surface upcurrent	N	N	NA								none
2/4/2020	Telebelt Placement	ENR D11-G11	Intensive	2	18.1	17.5	150-ft near surface downcurrent	N	N	NA								none
3/9/2020	Dredging & Dewatering	Sta 4+94 to 6+25	Intensive	1	4.7	5.8	150-ft near surface downcurrent	N	N	NA								none
3/9/2020	Dredging & Dewatering	Sta 4+94 to 6+25	Intensive	2	6.6	3.5	150-ft near bottom downcurrent	N	N	NA								none
3/10/2020	Dredging & Dewatering	Sta 4+94 to 6+25	Intensive	1	5.9	3.4	150-ft near bottom downcurrent	N	N	NA								none
3/10/2020	Dredging & Dewatering	Sta 4+94 to 6+25	Intensive	2	6.2	3.5	300-ft near bottom upcurrent	N	N	NA								none
3/13/2020	Dredging & Dewatering	Sta 7+25 to 8+75	Intensive	1	6.4	4	300-ft near surface downcurrent	N	N	NA								none
3/13/2020	Dredging & Dewatering	Sta 7+25 to 8+75	Intensive	2	5.9	3.8	150-ft near bottom upcurrent	N	N	NA								none
3/16/2020	Dredging & Dewatering	Sta 6+25 to 7+25	Intensive	1	6.9	3.6	300-ft near bottom downcurrent	N	N	NA								none
3/16/2020	Dredging & Dewatering	Sta 6+25 to 7+25	Intensive	2	8.3	4.5	150-ft mid depth upcurrent	N	N	NA								none

TABLE 13

CUMULATIVE WATER QUALITY MONITORING ACTIVITIES FOR CONSTRUCTION SEASON 2

								Conventional				Cher	nical Com	pliance Re	sults			
Date	Activity	Area ¹	Monitoring Level ²	Monitoring Round	Highest Turbidity (NTU)		Compliance Station (w/ highest turbidity) ³	Parameter Exceedance	Sample Collected	Sample ID No. Analyzed	Cu (diss. µg/L)	Pb (diss. μg/L)	Hg (diss. µg/L)	Hg (total µg/L)	Zn (diss. μg/L)	Total PCBs (µg/L)	Chemical Exceedance (Y/N)	Comments
3/17/2020	Dredging & Dewatering	Sta 6+25 to 7+25	Intensive	1	5.8	3.8	300-ft near bottom upcurrent	N	N	NA								none
3/17/2020	Dredging & Dewatering	Sta 6+25 to 7+25	Intensive	2	7.5	4.4	150-ft near bottom downcurrent	N	N	NA								none
								4										

Note(s)

- 1. See Appendix R for locations with stations X+XX.
- 2. Monitoring Level: Intensive/Routine/Additional.
- 3. Compliance Station Codes: 150/300 100 or 300 feet from activity; UP/DOWN Upcurrent or Downcurrent from Activity; NS/MD/NB Near surface sample, Mid-depth sample, Near bottom sample, respectively.

Data Qualifier

U = analyte not detected at reporting limit presented.

J = analyte positively identified; value is approximate concentration in sample.

Abbreviation(s)

Cu = copper DMMU = dredged material management unit

ENR = enhanced natural recovery

ft = feet

GBM = gravel beach mix

Hg = mercury

NA = not analyzed

NTU = nephelometric turbidity unit

Pb = lead

PCB = polychlorinated biphenyl

RML = residual management unit µg/L = microgram(s) per liter

Zn = zinc

TABLE 14

SUMMARY OF WATER QUALITY MONITORING EFFORTS DURING CONSTRUCTION SEASON 2

Activity Monitored Dredging and Backfill Material Place	Total Days with Monitoring	Total Rounds of Monitoring	Intensive Monitoring Rounds	Routine Monitoring Rounds	Turbidity Exceedance (one or more in a round)
Dewatering	2	2		2	
Dredging	2	3	3		
Dredging & Dewatering	33	67	30	37	1
ENR/RML Placement	14	28	6	22	2
Fish Mix Placement	2	6	4	2	1
Gravel Beach Mix Placement	1	5	4	1	
Telebelt Placement of ENR Material	2	4	4		
Shoreline Slope Armoring					
Filter Rock Placement	2	18	4	14	
Filter Rock/Riprap Placement	1	2		2	
Riprap Placement	3	18		18	
Totals	62 ¹	153 ²	55	98	4
					2.6 % ³

Note(s)

- 1. Total days when intensive or routine water quality monitoring was conducted. More than one activity may have been monitored during the same day. Additional days of visual monitoring or standby were not included in count.
- 2. Total rounds of monitoring (including partial rounds) with reported results.
- 3. Percentage of total monitoring rounds with one or more turbidity exceedances (apparent and confirmed).

Abbreviation(s)

ENR = enhanced natural recovery

RML = residual management unit

TABLE 15

ANALYTICAL RESULTS FOR WATER SAMPLES COLLECTED DURING CONSTRUCTION SEASON 1

Sample ID	LMCWQ-005	LMCWQ-013	LMCWQ-014	LMCWQ-027	LMCWQ-030	LMCWQ-039	LMCWQ-040	LMCWQ-047	LMCWQ-054
Activity Monitored	Dredging	QC Sample	QC Sample	Dredging	Dredging	QC Sample	QC Sample	Barge Dewatering	Dredging
Monitoring Location	150 ft Downcurrent Near-Bottom (43.9 ft)	Ambient Near-Surface (2 ft)	Ambient Near-Surface (2 ft) Field Duplicate	150 ft Downcurrent Near-Surface (2 ft)	300 ft Downcurrent Near-Surface (2 ft)	Rinsate Blank	Filter Blank	150 ft Downcurrent Near-Surface (2 ft)	150 ft Downcurrent Near-Bottom (37 ft)
Sample Date	9/17/2018	9/17/2018	9/17/2018	9/19/2018	9/19/2018	9/19/2018	9/19/2018	9/20/2018	9/22/2018
Sample Time	10:35	13:30	13:35	9:04	9:45	11:30	11:32	11:44	13:31
Sample Turbidity (NTUs)	8.2	4.4	4.4	9.6	5.9			4.9	15.9
Background Turbidity (NTUs)	4.4	4.4	4.4	5.0	5.0			4.8	4.4
Difference	3.8	0	0	4.6	0.9		-	0.1	11.5

																				$\overline{}$
	Acute	Chronic																		
Analyte	Criteria ¹	Criteria ¹	Result	Q^2	Result	Q ²	Result	Q^2	Result	Q ²	Result	Q²	Result	Q^2	Result	Q^2	Result	Q^2	Result	Q ²
Dissolved Metals	s (µg/L)																			
Copper	4.8	3.1	2.50	U	1.91	J	2.50	U	3.47	J	2.50				0.576		3.61		3.51	
Lead	210	8.1	0.50	U	0.50	U	0.50	J	0.5	U					0.1	U	1	U	0.6	i
Mercury	1.8		0.020	U	0.020	U	0.020	J	0.02	U					0.02	U	0.02	U	0.02	: U
Zinc	90	81	11.4	J	11.0	J	21.3		10.0	J					2.90	J	40	U	4.45	J
Total Metals (µg/	L)																			
Mercury		0.025	0.020	U	0.020	U	0.020	U	0.02	U			0.02	U	0.02	U	0.02	U	0.032	. J
PCBs (µg/L)																				
Aroclor 1016	NE	NE	0.010	U	0.011	U	0.010	U	0.010	U			0.010	U			0.010	U	0.010	U
Aroclor 1221	NE	NE	0.010	U	0.011	U	0.010	U	0.010	U			0.010	U			0.010	U	0.010	U
Aroclor 1232	NE	NE	0.010	U	0.011	U	0.010	U	0.010	U			0.010	U			0.010	U	0.010	U
Aroclor 1242	NE	NE	0.010	U	0.011	U	0.010	J	0.010	U			0.010	U	-		0.010	U	0.010	U
Aroclor 1248	NE	NE	0.010	U	0.011	U	0.010	J	0.010	U			0.010	U	-		0.010	U	0.010	U
Aroclor 1254	NE	NE	0.010	U	0.011	U	0.010	U	0.010	U			0.010	U	-		0.010	U	0.006	i J
Aroclor 1260	NE	NE	0.010	U	0.011	U	0.010	U	0.010	U			0.010	U			0.010	U	0.010	U
Aroclor 1262	NE	NE	0.010	U	0.011	U	0.010	U	0.010	U			0.010	U			0.010	U	0.010	U
Aroclor 1268	NE	NE	0.010	U	0.011	U	0.010	U	0.010	U			0.010	U			0.010	U	0.010	U
Total PCBs4	10	0.03	0.010	U	0.011	U	0.010	U	0.010	U			0.010	U			0.010	U	0.006	J

TABLE 15

ANALYTICAL RESULTS FOR WATER SAMPLES COLLECTED DURING CONSTRUCTION SEASON 1

Sample ID	LMCWQ-056	LMCWQ-057	LMCWQ-063	LMCWQ-089	LMCWQ-090	LMCWQ-100	LMCWQ-099	LMCWQ-101	LMCWQ-208
Activity Monitored	Dredging	Dredging	Dredging	Dredging	Dredging	Dredging	Dredging	Dredging	Dredging
Monitoring Location	300 ft Downcurrent Near-Surface (2 ft)	300 ft Downcurrent Near-Bottom (33.5 ft)	150 ft Downcurrent Near-Bottom (28 ft)	300 ft Upcurrent Near-Bottom (48 ft)	300 ft Upcurrent Mid-depth (25 ft)	300 ft Upcurrent Near-Bottom (48 ft)	300 ft Upcurrent Near-Surface (48 ft)	300 ft Upcurrent Mid-depth (25 ft)	150 ft Downcurrent Near-Bottom (28 ft)
Sample Date	9/22/2018	9/22/2018	9/24/2018	9/28/2018	9/28/2018	9/29/2018	9/29/2018	9/29/2018	10/12/2018
Sample Time	12:51	13:00	10:52	14:39	14:46	10:40	10:31	10:57	10:47
Sample Turbidity (NTUs)	5.5	9	8	4.7	4.5	9.3	4.7	4.6	13.3
Background Turbidity (NTUs)	5.2	4.4	4.6	5.6	4.7	4.4	4.6	4.4	1.1
Difference	0.3	4.6	3.4	-0.9	-0.2	4.9	0.1	0.2	12.2

Analyte	Acute Criteria ¹	Chronic Criteria ¹	Result	Q ²	Result	Q ²	Result	Q ²	Result	Q ²	Result	Q ²	Result	Q ²	Result	Q ²	Result	Q²	Result	Q²
Dissolved Metal	s (µg/L)	•	•	•																
Copper	4.8	3.1					2.73						1.13	J					1.61	J
Lead	210	8.1					0.5	U					1.01	U					1.01	U
Mercury	1.8						0.02	U					— ⁴						_ 4	
Zinc	90	81					6.09	J			-		7.56		-				12.6	U
Total Metals (µg	/L)																			
Mercury		0.025	0.02	U	0.038		0.02	U	0.02	U	0.02	U	0.043		0.021		0.032		0.02	U
PCBs (µg/L) Arcelor 1016 NE NE NE 0.010 0.0																				
Aroclor 1016	NE	NE					0.010	U					0.010	U	0.010	U	0.010	U	0.010	U
Aroclor 1221	NE	NE					0.010	U					0.010	U	0.010	U	0.010	U	0.010) U
Aroclor 1232	NE	NE					0.010	U					0.010	U	0.010	U	0.010	U	0.010	U
Aroclor 1242	NE	NE					0.010	C			-		0.010	U	0.010	U	0.010	U	0.010) U
Aroclor 1248	NE	NE					0.010	U					0.013		0.010	U	0.010	U	0.010	U
Aroclor 1254	NE	NE					0.004	J			-		0.014		0.010	U	0.010	U	0.010) U
Aroclor 1260	NE	NE			-		0.010	U	-		-		0.004	J	0.010	U	0.010	U	0.010	U
Aroclor 1262	NE	NE			-		0.010	U	-		-		0.010	U	0.010	U	0.010	U	0.010	U
Aroclor 1268	NE	NE					0.010	U			-		0.010	U	0.010	U	0.010	U	0.010) U
Total PCBs ⁴	10	0.03					0.004	J 0					0.031	J	0.010	U	0.010	U	0.010) U
			Average (1	otal H	$g = 0.024 \mu g/$	L) 3							A	Average	e (Total Hg =	0.032	2 μg/L) ³			· ·
							•								(Total PCBs					
										Ave	erage (Total I	Hg [30	0 ft Upcurrer							

TABLE 15

ANALYTICAL RESULTS FOR WATER SAMPLES COLLECTED DURING CONSTRUCTION SEASON 1

Sample ID	LMCWQ-271	LMCWQ-272	LMCWQ-273	LMCWQ-274	LMCWQ-275	LMCWQ-284	LMCWQ-285	LMCWQ-286	LMCWQ-289	LMCWQ-290
Activity Monitored	Dredging	Dredging	Dredging	Dredging	Dredging	Dredging	Dredging	Dredging	Dredging	Dredging
Monitoring Location	300 ft Downcurrent Near-Bottom (55 ft)	300 ft Upcurrent Near-Bottom (12 ft)	300 ft Upcurrent Near-Surface (2 ft)	300 ft Downcurrent Mid-depth (27 ft)	300 ft Downcurrent Near-Surface (2 ft)	300 ft Downcurrent Near-Surface (2 ft)	300 ft Downcurrent Near-Bottom (45 ft)	300 ft Downcurrent Mid-depth (23 ft)	300 ft Upcurrent Near-Surface (2 ft)	300 ft Upcurrent Near-Bottom (5.2 ft)
Sample Date	10/31/2018	10/31/2018	10/31/2018	10/31/2018	10/31/2018	11/1/2018	11/1/2018	11/1/2018	11/1/2018	11/1/2018
Sample Time	13:32	13:41	13:51	13:58	14:05	13:44	13:50	13:57	14:33	14:41
Sample Turbidity (NTUs)	11.4	2.5	1.7	10.3	5.4	2.4	2	1.9	1.8	1.9
Background Turbidity (NTUs)	1.3	2	2	1.5	2	1.6	1.2	1.2	1.7	1.3
Difference	10.1	0.5	-0.3	8.8	3.4	0.8	0.8	0.7	0.1	0.6

	Acute	Chronic																				
Analyte	Criteria ¹	Criteria ¹	Result	Q^2	Result	Q^2	Result	Q ²	Result	Q^2	Result	Q ²	Result	Q^2	Result	Q^2	Result	Q^2	Result	Q^2	Result	Q^2
Dissolved Metals	s (µg/L)																					
Copper	4.8	3.1	0.99	J																		-
Lead	210	8.1	1.01	U							-				-				-			-[
Mercury	1.8		_4								-				-				-			-
Zinc	90	81	12.6	U							-				-		-		-			-
Total Metals (µg/	Otal Metals (µg/L) 0.025 0.111 0.02<																					
Mercury		0.025	0.111		0.02	U	0.02	U	0.028		0.02	U	0.02	U	0.02	U	0.02	U	0.02	U	0.02	U
PCBs (µg/L)	CBs (μg/L)																					
Aroclor 1016	NE	NE	NE 0.010 U																			-
Aroclor 1221	NE	NE	0.010	U							-				1				-			-
Aroclor 1232	NE	NE	0.010	U							-				-				-			-
Aroclor 1242	NE	NE	0.010	U							-								-			-
Aroclor 1248	NE	NE	0.010								-				-				-			-
Aroclor 1254	NE	NE	0.011								-				-		-		-			-
Aroclor 1260	NE	NE	0.003	J							-								-			-
Aroclor 1262	NE	NE	0.010	U					-		-				-				-			-
Aroclor 1268	NE	NE	0.010	U							-											
Total PCBs ⁴	10	0.03	0.024	J							-								-			
									Av	erage	(Total Hg [30	00 ft 10	0/31 & 11/1] =	0.02	19 μg/L) ³							

TABLE 15 ANALYTICAL RESULTS FOR WATER SAMPLES COLLECTED DURING CONSTRUCTION SEASON 1

Sample ID	LMCWQ-276	LMCWQ-299
Activity Monitored	Dredging	Dredging
Monitoring Location	150 ft Downcurrent Near-Bottom (55 ft)	150 ft Downcurrent Near-Bottom (53 ft)
Sample Date	10/31/2018	11/3/2018
Sample Time	14:48	11:00
Sample Turbidity (NTUs)	39.6	15.5
Background Turbidity (NTUs)	1.5	1.4
Difference	38.1	14.1

	Acute	Chronic				
Analyte	Criteria ¹	Criteria ¹	Result	Q ²	Result	Q^2
Dissolved Metals (µg/L)						
Copper	4.8	3.1	0.7	J	0.53	J
Lead	210	8.1	1.01	J	1.01	U
Mercury	1.8		_4		_4	
Zinc	90	81	12.6	U	12.6	U
Total Metals (µg/L)						
Mercury		0.025	0.165		0.021	
PCBs (μg/L)						
Aroclor 1016	NE	NE	0.010	U	0.010	U
Aroclor 1221	NE	NE	0.010	U	0.010	U
Aroclor 1232	NE	NE	0.010	U	0.010	U
Aroclor 1242	NE	NE	0.010	U	0.010	U
Aroclor 1248	NE	NE	0.017		0.035	
Aroclor 1254	NE	NE	0.021		0.037	
Aroclor 1260	NE	NE	0.007	J	0.007	J
Aroclor 1262	NE	NE	0.010	U	0.010	U
Aroclor 1268	NE	NE	0.010	U	0.010	U
Total PCBs⁴	10	0.03	0.045	J	0.079	J

Bold values exceed one or more of the Aquatic Life Criteria

but may not be an exceedance based on distance from the turbidity generating activity.

Note(s)

- 1. Criteria obtained from the following:
 - a. Lowest of National Recommended Water Quality Criteria: Aquatic Life Criteria. USEPA, http://water.epa.gov/scitech/ swguidance/standards/criteria/current/index.cfm or Water Quality Standards for Surface Waters of the State of Washington (WAC 173-201A-240).
 - b. Acute and chronic criteria for metals (except for mercury) are based on the dissolved fraction. The chronic criterion for mercury is based on total recoverable and the acute criterion is based on the dissolved fraction.
 - c. Criteria for total PCBs based on total recoverable fraction (USEPA, 2002).
- 2. Laboratory qualifiers (Q) are defined as follows:
 - U = analyte not detected at reporting limit presented.
 - J = analyte positively identified; value is approximate concentration in sample.
- 3. Average at compliance boundary uses 1/2 Reporting Limit for undetected analytes in calculation.
- 4. Not analyzed due to insufficient sample volume collected for Method 200.8 and Method 7470A.

Abbreviation(s)

- = not analyzed

ft = feet

Hg = mercury

NE = not established

NTU = nephelometric turbidity unit PCB = polychlorinated biphenyl

μg/L = microgram(s) per liter USEPA = United States Environmental

QC = quality control

Protection Agency

WAC = Washington Administrative Code

Reference(s)

USEPA (United States Environmental Protection Agency). 2002. National Recommended Water Quality Criteria: 2002. USEPA, Office of Water,

TABLE 16

ANALYTICAL RESULTS FOR AMBIENT WATER SAMPLES COLLECTED DURING CONSTRUCTION SEASON 1

Sample ID	LMCWQ-320	LMCWQ-321	LMCWQ-322	LMCWQ-323	LMCWQ-324	LMCWQ-325	LMCWQ-326
Activity Monitored	_	_	_	_	_	_	_
Monitoring Location	Ambient (Mouth of West Waterway)	Ambient (Mouth of West Waterway)	Ambient (Elliott Bay 2,000 ft north of project area)	Ambient (Mouth of West Waterway)	Ambient (Mouth of West Waterway)	Ambient (Elliott Bay 2,000 ft north of project area)	Ambient (Elliott Bay 2,000 ft north of project area)
Sample Date	11/7/2018	11/7/2018	11/7/2018	11/8/2018	11/8/2018	11/8/2018	11/8/2018
Sample Time	14:44	14:47	14:51	9:39	10:08	10:16	10:22
Sample Depth	2 ft	46 ft	2 ft	2 ft	40 ft	2 ft	40 ft
Sample Turbidity (NTUs)	3.0	1.6	2.6	3.6	1.2	1.6	1.4
Tide	Flood	Flood	Flood	Ebb	Ebb	Ebb	Ebb

	Acute	Chronic																					
Analyte	Criteria ¹	Criteria ¹	Result	Q1 ²	Q2 ²	Result	Q1 ²	Q2 ²	Result	Q1 ²	Q2 ²	Result	Q1 ²	$Q2^2$	Result	Q1 ²	Q2 ²	Result	Q1 ²	Q2 ²	Result	Q1 ²	Q2 ²
Dissolved Metal	s (µg/L)																						
Copper	4.8	3.1	0.88	J		0.82	J		1.12	J		1.15	J		1.88	J		1.72	J		1.61	J	
Lead	210	8.1	1.01	U		1.01	U		1.01	U		1.01	C		1.01	U		1.01	U		1.01	U	
Zinc	90	81	12.6	U		12.6	U		12.6	U		12.6	C		12.6	U		12.6	U		12.60	U	

TABLE 16

ANALYTICAL RESULTS FOR AMBIENT WATER SAMPLES COLLECTED DURING CONSTRUCTION SEASON 1

Sample ID	LMCWQ-327	LMCWQ-328	LMCWQ-329	LMCWQ-330	LMCWQ-331	LMCWQ-332
Activity Monitored	_	_	_	_	_	_
Monitoring Location	Ambient (Elliott Bay 2,000 ft north of project area)	Ambient (Elliott Bay 2,000 ft north of project area)	Ambient (Mouth of West Waterway)	Ambient (Mouth of West Waterway)	Filter Blank	Filter Blank
Sample Date	11/8/2018	11/8/2018	11/8/2018	11/8/2018	11/12/2018	11/12/2018
Sample Time	13:23	13:27	13:35	13:40	11:34	11:41
Sample Depth	2 ft	40 ft	2 ft	40 ft	_	_
Sample Turbidity (NTUs)	77	1.4	2.1	1.4	_	_
Tide	Flood	Flood	Flood	Flood	-	_

	Acute	Chronic																		
Analyte	Criteria ¹	Criteria ¹	Result	Q1 ²	Q2 ²															
Dissolved Metals	s (µg/L)																			
Copper	4.8	3.1	0.84	J		0.65	J		0.7	J		0.52	J		0.23			0.19		
Lead	210	8.1	1.01	U		0.006	J		0.009	J										
Zinc	90	81	12.6	U		1.13			1.06											

Note(s)

- 1. Criteria obtained from the following:
 - Lowest of National Recommended Water Quality Criteria: Aquatic Life Criteria. USEPA, http://water.epa.gov/scitech/swguidance/standards/criteria/current/index.cfm or Water Quality Standards for Surface Waters of the State of Washington (WAC 173-201A-240).
 - Acute and chronic criteria for selected metals are based on the dissolved fraction.
- 2. Laboratory qualifiers (Q1) and data validation qualifiers (Q2) are defined as follows:

U = analyte not detected at reporting limit presented.

J = analyte positively identified; value is approximate concentration in sample.

Abbreviation(s)

— = not applicable

ft = feet

NTU = nephelometric turbidity unit

 μ g/L = microgram(s) per liter

USEPA = United States Environmental Protection Agency

WAC = Washington Administrative Code

Reference(s)

USEPA (United States Environmental Protection Agency).

2002. National Recommended Water Quality Criteria:

2002. USEPA, Office of Water,

TABLE 17

ANALYTICAL RESULTS FOR WATER SAMPLES COLLECTED DURING CONSTRUCTION SEASON 2

	Sam	ple ID	LMCWQ-35	51	LMCWQ-37	'2	LMCWQ-38	3	LMCWQ-39	97
	Activity N	M onitored	Dredging		Dredging & Dewatering		Dredging & Dewatering		Dredging & Dewatering	
	Monitoring	g Location	150 ft Down-Curre Near Botto (51 ft)		150 ft Upcurren Near Botto (56 ft)		300 ft Upcurrent Near Surfac (2 ft)		150 ft Down-Curre Near Botto (52 ft)	
	S	ample Date	9/4/2019		9/6/2019		9/9/2019		9/10/2019)
	Sa	ample Time	13:55		14:45		12:31		13:32	
	Samp	le Turbidity (NTUs)	2.7		4.1		3.9		9.4	
	Backgrour	nd Turbidity (NTUs)	0.5		1.0		1.6		1.0	
		Difference	2.2		3.1		2.3		8.4	
	Acute	Chronic								
Analyte	Criteria ¹	Criteria ¹	Result	Q	Result	Q	Result	Q	Result	Q
Dissolved Metal	s (µg/L)	•								
Copper	4.8	3.1	2.0	U			1.3	J	1.0	J
Lead	210	8.1	0.22	J			0.30	J	0.15	J
Mercury	1.8		0.020	U	0.020	U	0.020		0.02	
Zinc	90	81	40	U			40	U	40	U
Total Metals (µg	/L)									
Mercury		0.025	0.020	U	0.020	U	0.013	J	0.011	J
PCBs (µg/L)										
Aroclor 1016	NE	NE	0.010	U	0.010	U	0.010	U	0.010	U
Aroclor 1221	NE	NE	0.010		0.010		0.010		0.010	
Aroclor 1232	NE	NE	0.010		0.010		0.010		0.010	
Aroclor 1242	NE	NE	0.010	U	0.010		0.010		0.010	
Aroclor 1248	NE	NE	0.010		0.010		0.010		0.010	
Aroclor 1254	NE	NE	0.010		0.010		0.010		0.010	
Aroclor 1260	NE	NE	0.010		0.010		0.010		0.010	
Aroclor 1262	NE	NE	0.010		0.010		0.010		0.010	-
Aroclor 1268	NE	NE	0.010		0.010		0.010		0.010	_
Total PCBs⁴	10	0.03	0.010	U	0.010	IU I	0.010	U	0.010	li i

Bold values exceed one or more of the Aquatic Life Criteria but may not be an exceedance based on distance from the turbidity generating activity.

Note(s)

- 1. Criteria obtained from the following:
 - a. Lowest of National Recommended Water Quality Criteria: Aquatic Life Criteria. U.S. Environmental Protection Agency, http://water.epa.gov/scitech/swguidance/standards/criteria/current/index.cfm or Water Quality Standards for Surface Waters of the State of Washington (WAC 173-201A-240).
 - b. Acute and chronic criteria for metals (except for mercury) are based on the dissolved fraction. The chronic criterion for mercury is based on total recoverable and the acute criterion is based on the dissolved fraction.
 - c. Criteria for total PCBs based on total recoverable fraction (USEPA, 2002).
- 2. Laboratory qualifiers (Q) are defined as follows:
 - U = analyte not detected at reporting limit presented.
 - J = analyte positively identified; value is approximate concentration in sample.
- 3. Average at compliance boundary uses 1/2 Reporting Limit for undetected analytes in calculation.
- 4. Not analyzed due to insufficient sample volume collected for Method 200.8 and Method 7470A.

Abbreviation(s)

-- = not analyzed

EPA = U.S. Environmental Protection Agency

ft = feet

NE = not established

PCB = polychlorinated biphenyl

Q = qualifier NTU = nephelometric turbidity unit μg/L = microgram(s) per liter WAC = Washington Administrative Code

Reference(s)

Remedial Action Construction and Completion Report

USEPA (U.S. Environmental Protection Agency). 2002. National Recommended Water Quality Criteria: 2002. USEPA, Office of Water,

TABLE 18

POST-ENR AND RML PLACEMENT SEDIMENT SAMPLE PLANNED AND ACTUAL LOCATIONS

	(WA SPC No	lane Coordinates orth NAD 83; y Feet)	(WA SPC No	nne Coordinates orth NAD 83; y Feet)
Location ID ¹	Easting	Northing	Easting	Northing
SD-POST001	1263343	216019	1263347	216025
SD-POST002	1263476	216249	1263476	216247
SD-POST003	1263343	216478	1263349	216481
SD-POST004	1263476	216708	1263479	216709
SD-POST005	1263343	216938	1263336	216945
SD-POST006	1262415	217167	1262417	217165
SD-POST206	1262415	217167	1262414	217171
SD-POST007	1262680	217167	1262682	217161
SD-POST008	1262945	217167	1262942	217172
SD-POST009	1263211	217167	1263212	217167
SD-POST010	1263476	217167	1263472	217171
SD-POST011	1262282	217397	1262290	217401
SD-POST012	1262547	217397	1262554	217399
SD-POST013	1262813	217397	1262810	217399
SD-POST014	1263078	217397	1263079	217392
SD-POST214	1263078	217397	1263079	217392
SD-POST015	1263343	217397	1263342	217400
SD-POST016	1262415	217627	1262417	217626
SD-POST017	1262680	217627	1262677	217626
SD-POST018	1262945	217627	1262947	217628
SD-POST019	1263211	217627	1263199	217627
SD-POST020	1263476	217627	1263475	217628
SD-POST220	1263476	217627	1263482	217627
SD-POST021	1262547	217857	1262545	217860
SD-POST022	1262813	217857	1262817	217863
SD-POST023	1263078	217857	1263074	217847
SD-POST024	1263343	217857	1263345	217859
SD-POST025	1263476	218086	1263473	218090

Note(s)

1. Field-duplicate sample identified by a 200 series location ID (e.g., SD-POST220 for duplicate core collected at location SD-POST020).

Abbreviation(s)

ENR = enhanced natural recovery RML = residual management layer

NAD = North American Datum WA SPC = Washington State Plane Coordinates

ANALYTICAL RESULTS FOR POSTCONSTRUCTION SAMPLES

TABLE 19

Suppose Supp	J 0.04 J J 0.19 U 0.73 J 0.09 U 3.93 J 3.90 J 11.1 J 0.57 J 0.00562 J	0.04 J 0.04 J 0.04 J 0.04 J 0.01 U 0.10 U 0.10 U 0.10 J 0.63 J 0.00443 J 11.1 J	0.03 J J 0.19 UJ 0.59 J
Cleanup Level Surface Weighted Surface Weighted Surface Weighted Surface Weighted Average Surface Weighted Average Surface Conventionals Con	J 0.04 J JJ 0.19 U 0.73 J 0.09 U J 3.93 J 3.90 J 11.1 J 0.57 J J 0.00562 J 9.34 J 0.47 U	0.04 J J 0.2 U 1.04 0.10 U 7.05 J 4.42 J 13.7 J 0.63 J 0.00443 J 11.1 J	0.03 J J 0.19 UJ 0.59 J 0.10 U 7.17 J 5.45 J 5.69 0.45 0.00666 J
Level Subtact Subtact Survice Subtact Survice Subtact Survice Subtact	JJ 0.19 U 0.73 J 0.09 U J 3.93 J 3.90 J J 11.1 J J 0.57 J J 0.00562 J J 9.34 J 0.47 U	J 0.2 U 1.04 0.10 U 7.05 J 4.42 J 0.63 J 0.00443 J 11.1 J	J 0.19 UJ 0.59 J 0.10 U 7.17 J 5.45 J 5.69 0.45 0.00666 J
Conventionals	JJ 0.19 U 0.73 J 0.09 U J 3.93 J 3.90 J J 11.1 J J 0.57 J J 0.00562 J J 9.34 J 0.47 U	J 0.2 U 1.04 O 1.04 O 1.05 O 1	J 0.19 UJ 0.59 J 0.10 U 7.17 J 5.45 J 5.69 0.45 0.00666 J
TOC (percent)	JJ 0.19 U 0.73 J 0.09 U J 3.93 J 3.90 J J 11.1 J J 0.57 J J 0.00562 J J 9.34 J 0.47 U	J 0.2 U 1.04 O 1.04 O 1.05 O 1	J 0.19 UJ 0.59 J 0.10 U 7.17 J 5.45 J 5.69 0.45 0.00666 J
Metals (mg/kg)	JJ 0.19 U 0.73 J 0.09 U J 3.93 J 3.90 J J 11.1 J J 0.57 J J 0.00562 J J 9.34 J 0.47 U	J 0.2 U 1.04 O 1.04 O 1.05 O 1	J 0.19 UJ 0.59 J 0.10 U 7.17 J 5.45 J 5.69 0.45 0.00666 J
Antimony	0.73 J 0.09 U J 3.93 J J 11.1 J J 0.57 J J 0.00562 J J 9.34 J 0.47 U	1.04 0.10 U 7.05 J 4.42 J 13.7 J 0.63 J 0.00443 J 11.1 J	0.59 J 0.10 U 7.17 J 5.45 J 5.69 0.45 0.00666 J
Arsenic	0.73 J 0.09 U J 3.93 J J 11.1 J J 0.57 J J 0.00562 J J 9.34 J 0.47 U	1.04 0.10 U 7.05 J 4.42 J 13.7 J 0.63 J 0.00443 J 11.1 J	0.59 J 0.10 U 7.17 J 5.45 J 5.69 0.45 0.00666 J
Cadmium	J 0.09 U J 3.93 J J 11.1 J J 0.57 J J 0.00562 J J 9.34 J 0.47 U	0.10 U 7.05 J 4.42 J 13.7 J 0.63 J 0.00443 J 11.1 J	0.10 U 7.17 J 5.45 J 5.69 0.45
Chromium — 260 8.68 22.5 J 6.21 8.14 14.0 J 15.7 J 11.4 8.42 J 5.98 17.5 J 11.2 J Cobalt — 10 4.11 3.81 3.83 5.08 4.20 4.25 J 3.32 2.60 J 4.79 4.75 4.28 Copper 114 390 11.7 12.9 5.06 J 12.2 9.28 18.4 J 9.40 9.66 8.87 33.4 10.8 J 16.2 J Lead 111 — 1.6 1.05 0.68 J 2.41 0.82 2.52 J 0.52 J 2.13 0.99 1.21 1.43 J 2.18 J Mercury 0.41 0.41 0.01 0.0195 U 0.0189 U 0.0182 J 0.0237 U 0.022 U 0.0063 UJ 0.00509 J 0.00665 J 0.0251 J 0.0191 U 0.0246 U Nickel — 140 12.5 9.28 J 12.8 26.3 20.1 13.2 J 16.3 10.8 10.7 17.7 17.6 J Selenium — 1 0 0.50 U 0.49 U 0.62 0.90 0.50 U 0.54 0.53 D 0.48 U 0.49 0.50 U 0.76 Semivolatile Organic Compounds (µg/kg) Aromatic Hydrocarbons Acenaphthene — 240 1.15 J 5.00 U 1.83 J 4.97 U 1.32 J 1.45 J 4.68 U 0.73 J 4.64 U 2.06 J 0.62 J 0.62 J 0.75 J 1.12 J 1.14 J 4.96 J 1.07 J 1.0	J 3.93 J 3.90 J J 11.1 J J 0.57 J J 0.00562 J J 9.34 J 0.47 U	7.05 J 4.42 J 13.7 J 0.63 J 0.00443 J 11.1 J	7.17 J 5.45 J 5.69 0.45
Cobalt — 10 4.11 3.81 3.63 5.08 4.20 4.25 J 3.32 2.60 J 4.79 4.75 4.28 Copper 1114 390 11.7 12.9 5.06 J 12.2 9.28 18.4 J 9.40 9.66 8.87 33.4 10.8 J 16.2 J Lead 11 — 1.6 1.05 0.68 J 2.41 0.82 2.52 J 0.52 J 2.13 0.99 1.21 1.43 J 2.18 J Mercury 0.41 0.41 0.01 0.0195 U 0.0195	3.90 J J 11.1 J J 0.57 J J 0.00562 J J 9.34 J 0.47 U	4.42 J 13.7 J 0.63 J 0.00443 J 11.1 J	5.45 J 5.69 0.45 0.00666 J
Copper	J 11.1 J J 0.57 J J 0.00562 J J 9.34 J 0.47 U	13.7 J 0.63 J 0.00443 J 11.1 J	5.69 0.45 0.00666 J
Lead	J 0.57 J J 0.00562 J J 9.34 J 0.47 U	0.63 J 0.00443 J 11.1 J	0.45 0.00666 J
Mercury 0.41 0.41 0.01 0.0195 U 0.0189 U 0.0182 J 0.0237 U 0.022 U 0.0063 U 0.00509 J 0.00665 J 0.0251 J 0.0191 U 0.0246 U Nickel U Nickel U 14.0 U 14.5 U 14.8	J 0.00562 J J 9.34 J 0.47 U	0.00443 J 11.1 J	0.00666 J
Nickel — 140 12.5 9.26 J 12.8 26.3 20.1 13.2 J 16.3 10.8 10.7 17.7 17.6 J Selenium — 1 0.50 U 0.49 U 0.62 0.90 0.50 U 0.54 0.53 0.48 U 0.49 0.50 U 0.76 Vanadium — 57.0 18.4 16.1 20.5 19.1 23.3 J 20.9 J 13.1 15.1 J 17.7 23.7 J 22.5 Zinc — 410 10.4 U 14.6 17.2 U 15.3 U 21.4 14.3 14.2 17.4 19.7 32.4 25.5 Semivolatile Organic Compounds (μg/kg) Acomatic Hydrocarbons Acenaphthene — 240 1.15 J 5.00 U 1.83 J 4.97 U 1.32 J 1.45 J 4.68 U 0.73 J 4.64 U 2.06 J 0.62 J Phenanthrene — 1500 0.97 UJ 41.9 3.34 UJ 4.97 U 12.5 J 4.80 2.57 J 2.15 J 0.76 J 0.76 J 1.61 J Eluoranthene — 2400 0.89 J 21.3 4.95 J 4.97 U 12.8 12.3 7.37 7.52 1.84 J 4.96 J 1.07 J Benz[a]anthracene — 1700 5.00 U 2.38 J 2.39 J 4.97 U 2.42 J 5.75 J 19.4 3.45 J 4.64 U 5.00 U 4.99 U Chrysene — 1700 5.00 U 3.85 J 2.94 J 4.97 U 5.10 7.22 15.7 3.45 J 4.64 U 2.00 J 4.99 U 7.04 J 9.98 U 9.99 U 9.98 U 7.04 J 9.98 U 9.99 U 9.99 U 9.98 U 9.99 U 9.99 U 9.99 U 9.99 U 9.99 U 9.99 U 9.98 U 9.99	9.34 J 0.47 U	11.1 J	
Selenium	0.47 U		
Vanadium — 57.0 18.4 16.1 20.5 19.1 23.3 J 20.9 J 13.1 15.1 J 17.7 23.7 J 22.5 Zinc — 410 10.4 U 14.6 17.2 U 15.3 U 21.4 14.3 14.2 17.4 19.7 32.4 25.5 Semivolatile Organic Compounds (μg/kg) Acomatic Hydrocarbons Acenaphthene — 240 1.15 J 5.00 U 1.83 J 4.97 U 1.32 J 1.45 J 4.68 U 0.73 J 4.64 U 2.06 J 0.62 J Phenanthrene — 1500 0.97 UJ 41.9 3.34 UJ 4.97 U 12.5 J 4.80 2.57 J 2.15 J 0.76 J 11.2 U 1.61 J Fluoranthene — 2400 0.89 J 21.3 4.95 J 4.97 U 12.8 12.3 7.37 7.52 1.84 J 4.96 J 1.07 J Benz[a]anthracene 1 — 1700 5.00 U 2.38 J 2.39 J 4.97 U 2.42 J 5.75 J 19.4 3.45 J 4.64 U 5.00 U 4.99 U Chrysene 1 — 1700 5.00 U 3.85 J 2.94 J 4.97 U 5.10 7.22 15.7 3.45 J 4.64 U 5.00 U 4.99 U 5.00		0.49 U	
Zinc — 410 10.4 U 14.6 17.2 U 15.3 U 21.4 14.3 14.2 17.4 19.7 32.4 25.5 Semivolatile Organic Compounds (µg/kg) Aromatic Hydrocarbons Acenaphthene — 240 1.15 J 5.00 U 1.83 J 4.97 U 1.32 J 1.45 J 4.68 U 0.73 J 4.64 U 2.06 J 0.62 J Phenanthrene — 1500 0.97 UJ 41.9 3.34 UJ 4.97 U 12.5 J 4.80 2.57 J 2.15 J 0.76 J 11.2 U 1.61 J Fluoranthene — 2400 0.89 J 21.3 4.95 J 4.97 U 12.8 12.3 7.37 7.52 1.84 J 4.96 J 1.07 J Benz[a]anthracene 1	98/1.1	21.1 J	
Semivolatile Organic Compounds (µg/kg)	16.9	15.0	22.8
Aromatic Hydrocarbons Acenaphthene — 240 1.15 J 5.00 U 1.83 J 4.97 U 1.32 J 1.45 J 4.68 U 0.73 J 4.64 U 2.06 J 0.62 J Phenanthrene — 1500 0.97 UJ 41.9 3.34 UJ 4.97 U 12.5 J 4.80 2.57 J 2.15 J 0.76 J 11.2 U 1.61 J Fluoranthene — 2400 0.89 J 21.3 4.95 J 4.97 U 12.8 12.3 7.37 7.52 1.84 J 4.96 J 1.07 J Benz[a]anthracene 1 — 1700 5.00 U 2.38 J 2.39 J 4.97 U 2.42 J 5.75 J 19.4 3.45 J 4.64 U 5.00 U 4.99 U Chrysene 1 — 1700 5.00 U 3.85 J 2.94 J 4.97 U 5.10 7.22 15.7 3.45 J 4.64 U 2.00 J 4.99 U Total benzofluoranthenes 1 — 1800 10.000 U 9.99 U 14.4 J 9.94 U 9.11 J 10.4			
Phenanthrene — 1500			
Phenanthrene — 1500 0.97 UJ 41.9 3.34 UJ 4.97 U 12.5 J 4.80 2.57 J 2.15 J 0.76 J 11.2 U 1.61 J Fluoranthene — 2400 0.89 J 21.3 4.95 J 4.97 U 12.8 12.3 7.37 7.52 1.84 J 4.96 J 1.07 J Benz[a]anthracene ¹ — 1700 5.00 U 2.38 J 2.39 J 4.97 U 2.42 J 5.75 J 19.4 3.45 J 4.64 U 5.00 U 4.99 U Chrysene ¹ — 1700 5.00 U 3.85 J 2.94 J 4.97 U 5.10 7.22 15.7 3.45 J 4.64 U 2.00 J 4.99 U Total benzofluoranthenes ¹ — 1800 10.000 U 9.99 U 14.4 J 9.94 U 9.11 J 10.4 J 81.4 7.16 J 9.28 U 9.99 U 9.98 U	J 4.91 U	4.97 U	0.85 J
Fluoranthene — 2400 0.89 J 21.3 4.95 J 4.97 U 12.8 12.3 7.37 7.52 1.84 J 4.96 J 1.07 J Benz[a]anthracene ¹ — 1700 5.00 U 2.38 J 2.39 J 4.97 U 2.42 J 5.75 J 19.4 3.45 J 4.64 U 5.00 U 4.99 U Chrysene ¹ — 1700 5.00 U 3.85 J 2.94 J 4.97 U 5.10 7.22 15.7 3.45 J 4.64 U 2.00 J 4.99 U Total benzofluoranthenes ¹ — 1800 10.000 U 9.99 U 14.4 J 9.94 U 9.11 J 10.4 J 81.4 7.16 J 9.28 U 9.99 U 9.98 U		1 4.97 U	4.62 U
Benz[a]anthracene 1 — 1700 5.00 U 2.38 J 2.39 J 4.97 U 2.42 J 5.75 J 19.4 3.45 J 4.64 U 5.00 U 4.99 U Chrysene 1 — 1700 5.00 U 3.85 J 2.94 J 4.97 U 5.10 7.22 15.7 3.45 J 4.64 U 2.00 J 4.99 U Total benzofluoranthenes 1 — 1800 10.000 U 9.99 U 14.4 J 9.94 U 9.11 J 10.4 J 81.4 7.16 J 9.28 U 9.99 U 9.98 U		1 5.45 U	0.59 J
Chrysene ¹ — 1700 5.00 U 3.85 J 2.94 J 4.97 U 5.10 7.22 15.7 3.45 J 4.64 U 2.00 J 4.99 U Total benzofluoranthenes ¹ — 1800 10.000 U 9.99 U 14.4 J 9.94 U 9.11 J 10.4 J 81.4 7.16 J 9.28 U 9.99 U 9.98 U		1 4.97 U	4.62 U
Total benzofluoranthenes 1 — 1800 10.000 U 9.99 U 14.4 J 9.94 U 9.11 J 10.4 J 81.4 7.16 J 9.28 U 9.99 U 9.98 U		ı 2.84 J	4.62 U
Reprofessionary 1 - 1500 5.00 5.00 3.00 4.97 1 1.46 1 3.96 J 36.4 2.67 J 4.64 U 5.00 1 4.00 U		6.18 J	9.23 U
ι Βοπεσιαργιστο τη τη τουστή τουσία το συστοί τουσία τουσία τουσία τουσία τουσία τουσία τουσία τουσία τουσία τ	J 4.91 U	2.59 J	4.62 U
Indeno[1,2,3-c,d]pyrene 1 — 510 5.00 U 5.00 U 3.25 J 4.97 U 4.97 U 1.81 J 18.6 1.40 J 4.64 U 5.00 U 4.99 U	J 4.91 U	ı 4.97 U	4.62 U
Dibenzo[a,h]anthracene ¹ — 180 5.00 U 5.00 U 3.11 J 4.97 U 4.97 U 5.88 11.5 4.63 U 4.64 U 5.00 U 4.99 U	J 4.91 U	6.75	4.62 U
Benzo[g,h,i]perylene 470 470 2.4 5.00 U 1.25 J 3.08 J 4.97 U 4.97 U 1.34 J 17.0 1.55 J 4.64 U 5.00 U 4.99 U	J 4.91 U	1 4.97 U	4.62 U
Total HPAH — 14000 2.64 J 48.0 J 41.2 J 9.94 U 54.69 J 55.8 213 31.2 J 3.87 J 13.5 J 2.00 J		23.1 J	1.44 J
CPAHs (µg TEQ/kg dry wt) 9 — 2.7 1.75 U 1.87 J 2.91 J 1.74 U 2.31 J 6.42 49.6 8.24 J 3.50 U 1.70 J 1.75 U	J 3.55 J	4.41 J	3.49 U
Phthalate Esters			
Bis[2-ethylhexyl]phthalate — 710 50.0 U 50.0 U 49.8 U 49.7 U 49.7 U 47.3 U 46.9 U 46.5 U 46.8 U 49.9 U 49.9 U	J 49.4 U	49.4 U	46.5 U
Ionizable Organic Compounds			
Pentachlorophenol 58 360 3.1 6.24 U 6.22 U 6.23 U 6.23 U 6.24 U 5.9 U 5.86 U 6.18 U 5.89 U 6.21 U 6.22 U	J 6.18 U	6.18 U	6.19 U
Organometallics	-		•
Tributyltin 150,000 — 1.9 3.86 U 3.86 U 3.86 U 0.918 J 3.74 U 3.75 U 1.04 J 3.82 U 0.793 J 3.83 U	J 0.525 J	2.07 J	3.79 U
Polychlorinated Biphenyls (μg/kg)	-		
Total PCBs 2 180 1.6 2.0 U 2.0 U 2.0 U 8.5 J 2.0 U	J 2.0 U	0.90 J	2.0 U
Dioxins/Furans (ng/kg)	-		•
Total TEQ Dioxins/Furans (ND=1/2 EDL) 2 — 0.1 0.253 0.187 0.254 J 0.252 0.282 J 0.106 J 0.069 0.067 0.077 J 0.259 J 0.253	0.064 J	0.090	0.041 J

TABLE 19

ANALYTICAL RESULTS FOR POSTCONSTRUCTION SAMPLES

			0 1 15	OD DOOTS44	SD-POST214 field	00 0007045	OD DOOTS40	OD DOOTS47	OD DOOTS46	00 0007040	00 0007000	SD-POST220 Field	op poortee/	op poores	OD DOOTSON	op pootss.	op poores
	Cleanup	Criteria	Sample ID	SD-POST014 1/7/2020	duplicate 1/7/2020	SD-POST015 1/7/2020	SD-POST016 11/13/2018	SD-POST017 11/13/2018	SD-POST018 1/18/2019	SD-POST019 1/7/2020	SD-POST020 1/22/2020	Duplicate 1/20/2020	SD-POST021 11/13/2018	1/18/2019	SD-POST023 1/18/2019	SD-POST024 1/20/2020	SD-POST025 1/22/2020
	Cleanup Level Subtidal SWAC (0 to 10 cm)	Cleanup Level Surface Sediment (point)	Surface- Weighted Average Concentration (SWAC)	1///2020	11712020	17772020	11/13/2016	11/13/2016	1/10/2019	177/2020	1/22/2020	1/20/2020	11/13/2016	1/10/2019	1/10/2019	1/20/2020	1/22/2020
Conventionals	(0 10 10 0111)	(point)	(011740)			<u></u>	<u></u>			<u></u>	<u></u>						
TOC (percent) 1	_	_		0.02 U	0.02 U	0.02 U	0.04 J	0.04 J	0.05 J	0.02 U	0.02 U	0.02 U	0.03 J	0.06 J	0.07 J	0.03 J	0.02 U
Metals (mg/kg)			I	0.02	0.02	0.02 0	5.5.15	2.2.		0.02	0.02	0.02		5.55	0.0.	0.00	0.02
Antimony	_	150		0.05 J	0.20 UJ	0.20 UJ	0.20 UJ	0.20 UJ	0.04 UJ	0.20 UJ	0.19 U	0.27 UJ	0.20 UJ	0.20 UJ	0.20 UJ	0.20 UJ	0.20 U
Arsenic	7	57	1.8	2.53	2.50	1.47	1.84	1.10	1.53 J	2.61	0.89 J	2.29 J	1.68	1.49 J	0.74 J	2.09	1.36
Cadmium	0.398	_	0.05	0.10 U	0.05 J	0.05 J	0.04 J	0.1 U	0.04 J	0.1 U	0.05 J	0.14 U	0.10 U	0.10 U	0.10 U	0.10 U	0.10 U
Chromium	_	260		24.4 J	23.8 J	9.08 J	16.6 J	3.06 J	3.21 J	10.7 J	6.99	20.6 J	4.63 J	7.59 J	4.03 J	4.82 J	9.46
Cobalt	_	10		5.16	5.22	3.86	3.52 J	2.38 J	2.13 J	3.09	3.90 J	3.07 J	3.25 J	2.29 J	2.10 J	3.35	2.77
Copper	114	390	11.7	43.8 J	17.0 J	12.2 J	15.7 J	3.76 J	9.40	9.92 J	5.79 J	20.6 J	10.4 J	5.05	3.70	11.4 J	7.04
Lead	11	_	1.6	24.5 J	1.79 J	1.32 J	1.47 J	0.59 J	1.43	1.11 J	0.58 J	3.06 J	1.11 J	0.66	1.21	0.63 J	1.14
Mercury	0.41	0.41	0.01	0.014 J	0.00706 J	0.0169 J	0.00598 J	0.013 J	0.00578 J	0.02 U	0.0548 J	0.0242 U	0.0231 U	0.00573 J	0.00555 J	0.0223 U	0.0251 J
Nickel	_	140		20.3	18.5	13.5	24.2 J	5.32 J	4.81	18.0	12.3	13.5 J	8.55 J	10.4	5.47	6.62 J	8.74
Selenium		1		0.49 U	0.56	0.49 U	0.45 J	0.49 U	0.47 U	0.48 J	0.48 U	0.79	0.49 U	0.5 U	0.51 U	0.65	0.51 U
Vanadium		57.0		25.8 J	27.1 J	23.5 J	16.3 J	7.05 J	10.2 J	20.1 J	17.5	14.6	13.7 J	12.1 J	7.04 J	17.8	15.3
Zinc		410		33.2	28.3	20.7	33.6	10.2	14.3	14.4	13.6 U	18.7	13.4	14.0	9.60	12.2	11.9 U
Semivolatile Organic Compounds (µg/kg	g)			<u> </u>		<u> </u>			<u> </u>		<u> </u>						
Aromatic Hydrocarbons																	
Acenaphthene	_	240		5.00 U	5.00 U	5.00 U	4.7 U	4.97 U	4.62 UJ	4.98 U	4.98 U	4.98 U	4.97 U	4.64 UJ	4.60 UJ	4.96 U	4.96 U
Phenanthrene	_	1500		6.07 U	3.38 UJ	0.91 UJ	6.43	4.97 U	4.62 U	1.52 UJ	4.98 U	4.98 U	4.97 U	4.64 U	4.60 U	1.06 J	4.96 U
Fluoranthene	_	2400		14.9	7.00	1.59 J	13.3 U	5.73 U	0.60 J	1.03 J	4.98 U	4.98 U	4.08 UJ	0.48 J	0.81 J	4.96 U	4.96 U
Benz[a]anthracene ¹	_	1700		5.27	2.78 J	5.00 U	6.87	4.97 U	4.62 U	4.98 U	4.98 U	4.98 U	4.97 U	4.64 U	4.60 U	4.96 U	4.96 U
Chrysene ¹	_	1700		7.29	3.38 J	5.00 U	7.09	4.97 U	4.62 U	4.98 U	4.98 U	4.98 U	4.97 U	4.64 U	4.60 U	4.96 U	4.96 U
Total benzofluoranthenes ¹	_	1800		18.0	6.12 J	10.0 U	18.5	3.58 J	9.24 U	9.97 U	9.96 U	9.95 U	3.67 J	9.28 U	9.19 U	9.92 U	9.93 U
Benzo[a]pyrene ¹	_	1500		6.19	2.31 J	5.00 U	7.76	4.97 U	4.62 U	4.98 U	4.98 U	4.98 U	4.97 U	4.64 U	4.60 U	4.96 U	4.96 U
Indeno[1,2,3-c,d]pyrene 1	_	510		3.62 J	5.00 U	5.00 U	4.43 J	4.97 U	4.62 U	4.98 U	4.98 U	4.98 U	4.97 U	4.64 U	4.60 U	4.96 U	4.96 U
Dibenzo[a,h]anthracene ¹	_	180		5.00 U	5.00 U	5.00 U	6.97	4.97 U	4.62 U	4.98 U	4.98 U	4.98 U	6.71	4.64 U	4.60 U	4.96 U	4.96 U
Benzo[g,h,i]perylene	470	470	2.4	4.21 J	2.59 J	5.00 U	4.92	4.97 U	4.62 U	4.98 U	4.98 U	4.98 U	4.97 U	4.64 U	4.60 U	4.96 U	4.96 U
Total HPAH	-	14000		71.78 J	34.8 J	3.38 J	67.5 J	6.51 J	0.60 J	2.23 J	9.96 U	9.95 U	13.0 J	0.48 J	0.81 J	9.92 U	9.93 U
cPAHs (μg TEQ/kg dry wt)	9	_	2.7	4.29 J	1.96 J	1.75 U	11.5 J	3.61 J	3.49 U	1.74 U	1.74 U	1.74 U	4.04 J	3.5 U	3.47 U	1.74 U	1.74 U
Phthalate Esters																	
Bis[2-ethylhexyl]phthalate	_	710		49.9 U	49.9 U	49.7 U	49.8 U	49.7 U	46.4 U	49.9 U	49.8 U	49.9 U	49.9 U	46.0 U	42.4 J	49.7 U	49.9 U
Ionizable Organic Compounds																	
Pentachlorophenol	58	360	3.1	6.25 U	6.24 U	6.21 U	6.23 U	6.17 U	6.21 U	6.22 U	6.24 U	6.25 U	6.21 U	6.23 U	6.19 U	6.23 U	6.17 U
Organometallics																	
Tributyltin	150,000	_	1.9	8.31	0.682 J	3.86 U	1.1 J	3.74 U	3.79 U	3.8 U	3.82 U	3.84 U	3.81 U	3.75 U	3.78 U	3.86 U	3.85 U
Polychlorinated Biphenyls (µg/kg)																	
Total PCBs	2	180	1.6	8.9	2.0 U	2.0 U	2.2 J	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	4.9 J	2.0 U	2.0 U	2.0 U	2.0 U
Dioxins/Furans (ng/kg)																	
Total TEQ Dioxins/Furans (ND=1/2 EDL)	2	_	0.1	0.460 J	0.196 J	0.083	0.091 J	0.053	0.054	0.259	0.251	0.170	0.053 J	0.042 J	0.058	0.252	0.158 U

Note(s)

1. All results presented in dry weight because TOC values are below 0.5 percent.

<u>Data Qualifier(s)</u> J = Result is estimate

U = The analyte is not detected above the reporting limit

Abbreviation(s)
cm = centimeter(s)

cPAH = carcinogenic polycyclic aromatic hydrocarbon EDL = estimated detection limit

HPAH = high-molecular-weight polycyclic aromatic hydrocarbon

mg/kg = milligram(s) per kilogram

ND = non detected

ng/kg = nanogram(s) per kilogram

PCB = polychlorinated biphenyl SWAC = surface-weighted average concentration

TEQ = toxic equivalency quotient
μg TEQ/kg dry wt = microgram(s) TEQ per kilogram dry weight
TOC = total organic carbon

μg/kg = microgram(s) per kilogram

TABLE 20
PERIMETER SEDIMENT SAMPLING PLANNED AND ACTUAL LOCATIONS

PI	anned Locatio	n	Pre-Const	ruction Actual	Location	Post-Cons	truction Actual	Location
	(WA SPC No	Coordinates orth NAD 83; y Feet)		(WA SPC No	Coordinates orth NAD 83; y Feet)		(WA SPC No	Coordinates orth NAD 83; y Feet)
Location ID	Easting	Northing	Location_ID	Easting	Northing	Location_ID	Easting	Northing
SD-PERXX-001	1262138	217174	SD-PER18-001	1262137	217177	SD-PER20-001	1262135	217176
SD-PERXX-002	1262170	217377	SD-PER18-002	1262169	217372	SD-PER20-002	1262166	217376
SD-PERXX-003	1262273	217525	SD-PER18-003	1262269	217522	SD-PER20-003	1262268	217524
SD-PERXX-004	1262371	217677	SD-PER18-004	1262378	217671	SD-PER20-004	1262377	217677
SD-PERXX-005	1263605	218168	SD-PER18-005	1263613	218167	SD-PER20-005	1263596	218170
SD-PERXX-006	1263597	217818	SD-PER18-006	1263595	217810	SD-PER20-006	1263598	217819
SD-PERXX-206	1263597	217818	SD-PER18-007	1263591	217463	SD-PER20-007	1263583	217468
SD-PERXX-007	1263588	217468	SD-PER18-008	1263587	217117	SD-PER20-008	1263584	217116
SD-PERXX-008	1263580	217118	SD-PER18-009	1263572	216761	SD-PER20-009	1263565	216770
SD-PERXX-009	1263571	216768	SD-PER18-010	1263502	216421	SD-PER20-010	1263506	216412
SD-PERXX-010	1263503	216418	SD-PER18-006	1263600	217818	SD-PER20-006	1263590	217821

Abbreviation(s)

NAD = North American Datum WA SPC = Washington State Plane Coordinates

TABLE 21

ANALYTICAL RESULTS FOR PRE- AND POSTCONSTRUCTION PERIMETER MONITORING SEDIMENT SAMPLES

	SD-PEF	DVV 004	en nee	RXX-002	en ner	RXX-003	SD-PEF	DVV 004	en ner	RXX-005	en ner	RXX-006
Sample Location	SD-PER	XAA-001	SD-PER	KAA-002	SD-PER	KAA-003	SD-PER	KAA-004	SD-PER	KAA-005	SD-PER	XAA-006
											SD-PER18-006	SD-PER20-006
Sample Date	8/20/2018	3/26/2020	8/20/2018	3/26/2020	8/20/2018	3/26/2020	8/20/2018	3/26/2020	8/20/2018	3/26/2020	8/20/2018	3/26/2020
Metals (mg/kg)												
Arsenic	4.14	18.1	2.82	3.51	1.59	2.82	2.72	1.58	3.72	4.40	9.28	7.73 J
Chromium	22.7	48.7	10.9	16.8	10.4	11.7	10.9	14.8	12.2	12.0	21.5	18.6
Cobalt	4.14	4.41	3.89	2.95	3.72	4.44	3.37	2.95	4.45	4.17	6.18	5.66
Copper	21.7	48.7 J	14.5	19.3 J	14.2	20.0 J	11.5	6.18 J	18.1	25.4 J	58.2	107 J
Lead	8.76	35.0	5.13	9.32	7.55	5.41	4.72	1.43	6.01	15.7	42.3	32.0 J
Mercury	0.0154 J	0.0701 J	0.0271 U	0.127 J	0.0213 U	0.0602 J	0.00746 J	0.0253 J	0.0268 J	0.168 J	0.746 J	0.721 J
Nickel	15.5	15.7	11.3	12.8	9.47	15.2	12.2	11.9	9.98	8.90	15.2	13.6
Selenium	0.55 U	0.82	0.60 U	0.66	0.56 U	0.58	0.57 U	0.48 U	0.70 U	0.76	0.84	0.82
Vanadium	26.5	24.8	25.6	21.5	18.2	31.1	23.3	16.7	32.6	29.1	41.5	37.7
Zinc	46.3	128	28.5	29.1	25.2	37.8	25.1	18.0	44.6	42.2	84.7	69.4
Semivolatile Organic Compounds (µg/kg)												
Aromatic Hydrocarbons												
Acenaphthene	18.0	230	2.24 J	12.0	0.92 J	1.56 J	2.71 J	4.97 U	2.42 J	4.39 J	24.6 J	18.1
Phenanthrene	220 J	1130	19.1	52.3	6.54 J	11.8	12.2 J	4.97 U	19.9 J	35.7	165 J	116
Fluoranthene	782	5860	20.1	94.2	18.8	28.2	15.6	0.62 J	23.7	71.2	214 J	182
Benz[a]anthracene	513	1750	12.0	55.5	8.13	12.4	7.16	4.97 U	14.9	36.9	80.0 J	68.3
Chrysene	756	2050	19.2	79.7	12.0	18.6	11.5	4.97 U	23.2	56.5	105 J	97.5
Total benzofluoranthenes	837	2120	34.2	123	19.8	43.4	20.7	9.95 U	33.1	113	253 J	247
Benzo[a]pyrene	340	852	12.9	54.6	7.00	16.9	8.53	4.97 U	14.6	50.2	124	117
Indeno[,2,3-c,d]pyrene	129	361	7.71	28.9	4.50 J	12.4	6.26	4.97 U	10.3	33.9	72.9	71.8
Dibenzo[a,h]anthracene	46.9	139 J	3.18 J	11.0	1.37 J	3.40 J	1.92 J	4.97 U	3.26 J	11.3	21.8	18.2
Benzo[g,h,i]perylene	133	268	11.2	34.4	7.66	15.3	9.46	4.97 U	13.3	41.5	96.4	93.3
Pyrene	297	4040	14.9	86.1	15.9	33.1	15	0.71 J	28.5	85.1	330 J	264
Total HPAH	3,834	17,301 J	135 J	567	95.2 J	184 J	96.1 J	1.33 J	165 J	500	1,297 J	1,159
Phthalate Esters												
Bis[2-ethylhexyl]phthalate	84.5	49.2 J	48.6 U	50.0 U	49.0 U	49.9 U	48.6 U	49.9 U	49.5 U	30.7 J	29.3 J	41.6 J
Ionizable Organic Compounds												
Pentachlorophenol	6.02 U	6.25 U	6.02 U	6.23 U	6.14 U	6.25 U	6.10 U	6.21 U	6.17 U	6.24	24.0 J	10.6
Polychlorinated Biphenyls (µg/kg)	<u> </u>							-	-			-
Total PCBs	7.5 J	58.7 J	4.1 J	52.2	4.9 J	24.0	5.0	2.0 U	8.0	36.0	87.7 J	133

TABLE 21

ANALYTICAL RESULTS FOR PRE- AND POSTCONSTRUCTION PERIMETER MONITORING SEDIMENT SAMPLES

	SD-PEF field du of SD-PE	ıplicate	SD-PEF	RXX-007	SD-PEF	RXX-008	SD-PEF	RXX-009	SD-PEF	RXX-010
Sample Location	SD-PER18-206 field duplicate of SD-PER18-006	SD-PER20-206 field duplicate of SD-PER20-006	-		-		SD-PER18-009			
Sample Date	8/20/2018	3/26/2020	8/20/2018	3/26/2020	8/20/2018	3/26/2020	8/20/2018	3/26/2020	8/20/2018	3/26/2020
Metals (mg/kg)										
Arsenic	8.15	12.8 J	7.68	3.16	16.3	3.17	5.31	5.43	11.7	18.2
Chromium	17.7	17.3	16.3	8.94	11.3	25.0	12.6	14.3	20.3	27.7
Cobalt	6.22	6.35	5.86	3.13	4.47	5.70	4.21	3.48	4.87	5.51
Copper	58.7	65.7 J	38.7	12.0 J	28.9	18.7 J	32.8	43.9 J	72.8	117 J
Lead	43.3	50.5 J	17.7	1.79	16.9	5.41	17.1	15.6	56.5	62.3
Mercury	0.93 J	0.668 J	0.162	0.0225 U	0.136	0.262 J	0.195	0.325 J	0.390	0.756 J
Nickel	15.7	12.9	13.5	14.4	8.98	16.6	8.49	12.1	11.7	13.7
Selenium	0.71 J	0.81	0.86	0.54	0.68 U	0.56	0.70 U	0.57 U	0.70 U	0.78
Vanadium	41.4	39.0	43.9	19.9	30.8	21.6	34.2	21.7	33.4	35.8
Zinc	78.3	118	53.7	16.4	52.0	33.3	46.6	45.5	102	125
Semivolatile Organic Compounds (µg/kg)										
Aromatic Hydrocarbons										
Acenaphthene	37.1 J	11.7	11.8 J	4.99 U	8.08 J	2.78 J	15.4 J	2.2 J	15.3 J	26.5
Phenanthrene	206 J	78.5	87.1 J	1.86 J	59.0 J	15.2	85.1 J	16.8	131 J	180
Fluoranthene	252	122	132	2.98 J	89.6	23.9	122	38.2	187	373
Benz[a]anthracene	85.2	59.0	54.2	3.01 J	42.6	12.2	47.0	14.4	108	180
Chrysene	106	80.7	72.9	3.92 J	63.1	15.2	60.5	18.4	150	223
Total benzofluoranthenes	279	168	135	7.41 J	127	42.8	134	37.7	304	480
Benzo[a]pyrene	143	83.9	66.7	3.39 J	62.1	18.7	67.2	16.8	153	219
Indeno[,2,3-c,d]pyrene	81.5	52.3	39.0	2.19 J	35.0	13.1	38.0	11.7	93.9	132
Dibenzo[a,h]anthracene	24.3	15.2	13.1	4.99 U	10.4	4.46 J	12.0	3.37 J	31.2	42.3
Benzo[g,h,i]perylene	107	64.5	52.9	4.77 J	47.6	15.1	51.9	14.1	119	150 J
Pyrene	392	181	180	3.74 J	121	36.2	149	40.4	250	465
Total HPAH	1,470	827	746	31.4 J	598	182 J	682	195 J	1,396	2,264 J
Phthalate Esters										
Bis[2-ethylhexyl]phthalate	45.3 J	53.7	61.3	50.0 U	44.6 J	49.7 U	101	36.7 J	124	281
Ionizable Organic Compounds										
Pentachlorophenol	6.24 U	17.5 J	6.20 U	6.19 U	6.19 U	6.62 U	6.19 U	5.51 J	16.1	38.4
Polychlorinated Biphenyls (µg/kg)						1				1
Total PCBs	72 J	119 J	43.3 J	2.0 U	42.7	14.8	56.1	35.0	423 J	350.1 J

Note(s)

U = This analyte is not detected above the reporting limit (RL) or if noted, not detected above the limit of detection (LOD).

Abbreviation(s)

HPAH = high-molecular-weight polycyclic aromatic hydrocarbon

mg/kg = milligram(s) per kilogram

PCB = polychlorinated biphenyl

μg/kg = microgram(s) per kilogram

J = Estimated concentration value detected below the reporting limit.

TABLE 22
HEALTH AND SAFETY INCIDENT AND NEAR-MISS LOG

						Action/	Work Order				
No.	Area	Inspection Date	Deficiency Code	Suspension Date	Deficiency Description	Short-Term Corrective Actions	Long-Term Preventive Actions	Point of Contact	Reporting Person	Company of Reporting Person	Comments
1	Project Office	10/30/2018	1	10/31/2018	Proper PPE was not used during cutting of metal sample tubes. No face shield and secondary ear protection.			Alec Anderson	Alec Anderson	Wood	AHA for the activity was modified
2	Outer Harbor	11/1/2018	24	11/2/2018	Sampling boat radio communication was crossed over during barge movement, preventing communication with operators	Sampling boat will not access radio during barge movement	Sampling boat will not access radio during barge movement	Alec Anderson	Matt Moldenhauer	ACC	The problem was discussed with boat crew
3	Project Office	12/3/2018	5		Slippery surface on dock surface with icy conditions and wet surfaces	Safety boots and training	Install mats or traction control over wood surface	Alec Anderson	Alec Anderson	Wood	
4	Project Office	12/14/2018	1	12/14/2018	Personnel within the restriction zone of the edge of the dock without PFD	Speak to personnel about PFD requirements		Alec Anderson	Lindsey Baumann	Jacobs	Unclear of personnel's company
5	Project Office	12/21/2018	4	1/2/2019	Core barrel rolled over on personnel's hand during transportation	Stopped using core barrel cart	Purchase new cart for carrying core barrels	Alec Anderson	Alec Anderson	Wood	
6	Outer Harbor	12/27/2018	1	1/2/2019	Personnel on top of crane didn't have hardhat and protective glasses	Spoke with personnel about proper PPE	Update AHA for activity	Alec Anderson	Lindsey Baumann	Jacobs	
7	Outer Harbor	1/14/2019	4	1/14/2019	Improper walkway used for access to the barge. Open walkway placed at steep angle with no handrails	Remove walkway and used a ladder	Training on proper use of walkway equipment	Alec Anderson	Alec Anderson	Wood	
8	Pier edge	9/3/2019	17		"Cletus" float was installed at pier adjacent to ladder so no safe ascent/descent route was available	Jim Stan spoke with Rod Gowdy about the issue, RG replied that it will be moved	Observe that ACC moves float to a safe location	Chelsea Foster	Chelsea Foster	Wood	
9	Outer Harbor	9/3/2019	1		Two ACC workers were observed spray painting on the Dungeness barge without safety glasses	Jim Stan informed workers that they were required to wear safety glasses in that area/during that task	Workers will be observed to	Jim Stan	Chelsea Foster	Wood	
10	Project Office	9/4/2019	4		During morning meeting, ACC worker leaned on table in field office and it gave way, the worker sustained his balance and stood up as the table broke	Tell workers to not put their weight on foldable tables	Fix table but make sure it is used properly going forward	Stu Bills	Chelsea Foster	Wood	
11	Outer Harbor	9/4/2019	18		Water quality crew member sustained sun burn on neck due to high UV ray conditions	Treat sun burn with moisturizing cream and protective clothing	Wear SPF or protective clothing to prevent future event	Luke Kerner	Chelsea Foster	Wood	
12	Outside of trailer	9/5/2019	5		Piece of garbage on ground caused worker to slip and fall, no injury was sustained	picked up garbage	Watch footing around site, wear closed toe, good grip shoes	Chelsea Foster	Rich May	DOF	
13	Outside project trailer	9/9/2019	19		Cones and barrier tape marking 6 feet distance from edge of pier were moved during the mid- morning	SSHO repositioned barriers to mark correct 6 feet safety distance	Check that these portable barriers are correctly positioned each workday	Chelsea Foster	Chelsea Foster	Wood	
14	Outer Harbor	9/12/2019	14		Worker was seen jumping on a silt bag on the edge of the barge. The act was done in order to loosen sediment to keep up flow through the bag during dewatering.	Workers were instructed not to perform this task until an AHA has been completed.	An AHA will be created and reviewed by all participating parties to complete the task more safely.	Chelsea Foster	Jim Stan	Wood	

TABLE 22
HEALTH AND SAFETY INCIDENT AND NEAR-MISS LOG

						Action/	Work Order				
No.	Area	Inspection Date	Deficiency Code	Suspension Date	Deficiency Description	Short-Term Corrective Actions	Long-Term Preventive Actions	Point of Contact	Reporting Person	Company of Reporting Person	Comments
15	Outer Harbor	9/13/2019	14		Worker was adjusting connection of the digging bucket to the crane for use and climbed outside of the railing to perform task. This put the worker above 6 feet off the ground without any fall protection.	Jim Stan of Wood corrected the action when the worker was back on the ground safely. ACC Superintendent was also informed of the occurrence	Workers should stay within railing whenever possible to complete task. If not possible, a fall protection harness must be used.	Chris Raymond	Jim Stan	Wood	
16	Outer Harbor	9/13/2019	14		Worker was repainting a portion of the crane to protect from weathering and leaned out past a railing above 6 feet off the ground. The worker exposed them self to a fall hazard when completing this maintenance task.	Chris Raymond of ACC spoke with worker to warn them of the offense and let them know it was an unsafe act	Workers should stay within railing whenever possible to complete task. If not possible, a fall protection harness must be used	Chris Raymond	Jim Stan	Wood	
17	Outside project trailer	9/17/2019	18	9/18/2019	Eye wash station was not setup during core barrel processing	Located the eye wash station and setup in the connex	Eye station in position in Connex	Alec Anderson	Alec Anderson	Wood	
18	Barge	9/18/2019	7	9/19/2019	Air lines do not have whip check	Install whip check on lines	install whip check on lines	Chris Raymond	Alec Anderson	Wood	
19	Barge	9/18/2019	24	9/19/2019	No emergency contact list or route to hospital	Provide list and route map for emergencies	Provide list and route map for emergencies	Alec Anderson	Alec Anderson	Wood	
20	Project Trailers	9/19/2019	1	9/20/2019	Field staff was not wearing face shield during cutting of core barrel.	Purchased face shield for sediment core processing	Update AHA for activity	Alec Anderson	Alec Anderson	Wood	
21	Project Trailers	9/19/2019	4	9/20/2019	Not stabilizing the casing on the saw horses	Retraining on cutting of the core barrel with one person stabilizing core barrel	Update AHA for activity and retraining with competent person	Alec Anderson	Piper Peterson	EPA	
22	Project Trailers	9/19/2019	6	9/20/2019	Trip hazards in the core processing connex	Retraining on housekeeping and reorganize the connex	Housekeeping in AHA	Alec Anderson	Piper Peterson	EPA	Notified by Email
23	Project Trailers	9/19/2019	4	9/20/2019	Remove the casing guide on the circular saw for bent cores	Retraining on cutting bent core barrels with competent person	Update AHA for activity and retraining with competent person	Alec Anderson	Piper Peterson	EPA	Notified by Email
24	Barge	9/24/2019	18	10/1/2019	Need double leak protection for air compressor	Order new containment for air compressor	Verify that other equipment has double containment	Chris Raymond	Chris Raymond	American	
25	Project Trailers	9/24/2019	11	9/24/2019	Loading zone near site has forklifts and truck traffic	Reroute foot traffic to the	Training in the weekly meeting	Alec Anderson	Alec Anderson	Wood	
26	Barge	9/24/2019	24	10/3/2019	Sign posted on top of crane for areas that require fall protection	Install signs on crane for hazard	Inform workers of new signage	Alec Anderson	Chris Raymond	American	
27	Barge	10/4/2019	12	10/8/2019	No Smoking signs are not located on the dredge barge near gas tanks	Notify Barge workers of unsafe smoking areas	Post no smoking signs in hazardous areas	Alec Anderson	Alec Anderson	Wood	
28	WM Site	10/7/2019	24	10/7/2019	No safety protocol for WM site access	Discuss Safety protocol with WM crew for site access and notify field staff	Notify project staff of access requirements	Alec Anderson	Alec Anderson	WOOD	
29	WQ Boat	10/8/2019	11	10/8/2019	Water quality boat was on the water during a thunderstorm	Retreat under the West Seattle bridge until the storm passed	Monitor storm conditions throughout the day	Alec Anderson	Alec Anderson	Wood	

TABLE 22 HEALTH AND SAFETY INCIDENT AND NEAR-MISS LOG

						Action/	Work Order				
No.	Area	Inspection Date	Deficiency Code	Suspension Date	Deficiency Description	Short-Term Corrective Actions	Long-Term Preventive Actions	Point of Contact	Reporting Person	Company of Reporting Person	Comments
30	Barge	10/15/2019	1	10/15/2019	Oversight believed they saw a tug boat crew member without a hard hat during a barge swap	PPE, but reminded Island Tug	Notify subcontractor of correct PPE on site	Alec Anderson	Mark Endo	Jacobs	
31	WQ Boat	10/16/2019	24	10/18/2019	Water quality crew didn't have a proper AHA for night work and equipment was not purchased for operations		Implement new AHA in tailgate meeting	Alec Anderson	Piper Peterson	EPA	
32	Sampling Boat	10/28/2019	24	10/30/2019	Core sampling boat didn't have radio contact with the Mukilteo barge due to a dead battery on the radio	Contact barge crew via cellphone	Test radios at the marina during start-up procedure	Alec Anderson	Alec Anderson	Wood	
33	Barge	10/28/2019	17	10/31/2019	Personnel accessed the barge from the survey boat without the proper 3 points of contact across the barge fenders		Tailgate meeting about access to the barge	Alec Anderson	Jimmy Yeager	LMC	
34	Palouse	10/31/2019	24	11/5/2019	Emergency contacts and routes to the nearest hospital/ care facility are not posted on board	Print out contact list and maps for job shack	Print out contact list and maps for job shack	Alec Anderson	Alec Anderson	Wood	
35	Palouse	10/31/2019	6	12/5/2019	No Smoking signs are not located on the dredge barge near gas tanks	Post signs on the barge	Post signs on the barge	Alec Anderson	Alec Anderson	Wood	
36	Palouse	10/31/2019	14	12/5/2019	Fall protection signs required on spud tower	Post signs on access points to fall protection area	Post signs on access points to fall protection area	Alec Anderson	Alec Anderson	Wood	
37	Patriot	12/5/2019	24	12/10/2019	Emergency contacts and routes to the nearest hospital/ care facility are not posted on board	Inform crew of emergency procedures	Post emergency routes and phone numbers	Alec Anderson	Alec Anderson	Wood	
38	Patriot	12/5/2019	9	12/10/2019	Expired Fire Extinguishers on board under the crane	Removed fire extinguisher and additional fire extinguisher within 20 feet of location	Check all extinguishers	Alec Anderson	Alec Anderson	Wood	
39	Barge	12/20/2019	6	12/23/2019	Crew boat had high water levels inside the boat due to heavy rainfall and it was unstable when loading crew	with hand pump and monitor water levels inside the boat	Penlace hilge nump in hoat	Alec Anderson	Alec Anderson	Wood	
40	Patriot	12/27/2019	9	1/10/2020	Loader on the material barge does not have fire extinguisher	Notify crew of deficiency and explain the risk of no extinguisher	Install new fire extinguisher	Alec Anderson	Alec Anderson	Wood	

Abbreviation(s)
AHA = activity hazard assessment

LMC = Lockheed Martin Corporation PFD = personal flotation device

PPE = personal protective equipment SSHO = site health and safety officer

WQ = water quality

Deficiency Code (s) 1. PPE Violation

12. Fire Hazard

4. Improper use of equipment 5. Trip Hazard 14. Fall Protection 17. Access/Egress

6. House Keeping

18. Health

7. Guarding

19. Signs and Barricades

9. Fire Extinguishers

24. Communication

11. Struck By

APPENDICES (Provided Separately on DVD)

Appendix A—Design Drawings

Appendix B—Daily Construction Reports

Appendix C—Significant Memos

Appendix D—Weekly Construction Meetings

Appendix E—Quality Assurance Inspection and Testing Reports

Appendix F—Backfill Material Testing and Approval

Appendix G—Dredged Material Management Unit Approvals

Appendix H—Core Summary Logs

Appendix I—Decision Unit Geospatial Interpolations

Appendix J—Open-Water Dredging As-Built Drawings and Shoreline Stabilization

Appendix K—Data Validation Reports

Appendix L—Data Used in the Geospatial Interpolation of the Contiguous Areas of DUs 3, 4, 5, 6, 7, 8, and 9

Appendix M—Sheet Pile Wall Deformation Monitoring

Appendix N—Shipway Rock Buttress and Fill Drawings

Appendix O—Shipway Concrete Slab Backfill Memo

Appendix P—Shipway Fill As-Builts

Appendix Q—Disposal Barge Displacements, Bills of Lading, Transload Certificate of Disposal Forms, Gondola Tracking Records, Off-Site Disposal Requests and Approvals

Appendix R—Weekly Water Quality Monitoring Reports

Appendix S—Health and Safety Reports

Appendix T—Pre-Final and Final Construction Inspections

Appendix U—Institutional Control Implementation and Assurance Plan

Appendix V—Long-Term Monitoring and Maintenance Plan